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Abstract

The goal of this thesis is to develop novel model-based methods for opti-

mal control and optimal design of hybrid electric vehicles. Two different

approaches are used when designing the energy management strategy for

two types of parallel hybrid electric vehicles. For the full parallel hybrid a

pure mathematical approach is used while an approach derived from op-

timal sizing studies is used to design the energy management strategy for

the torque-assist parallel hybrid.

The optimal control problem associated with the energy management in

a full parallel hybrid is solved explicitly for a simplified model. The solution

of the optimal control problem shows how optimal energy management

strategies are derived and that the solution yields simple rules depending

on vehicle parameters. Furthermore, a causal, real-time control strategy

including anti-windup is presented.

The novel energy management for the torque-assist hybrid shows that

the gear shifting control can be separated from the torque split control.

The energy management strategy utilizes the gear shifting strategy for

control of the energy flows while the torque split strategy is given by a

simple rule. Results show that the proposed energy management strategy

achieves a fuel consumption within 1% from the global optimum for most

driving cycles. Furthermore, the results are not sensitive to limitations

and energy losses associated with gear shifting.

Both the full and the torque-assist parallel hybrid vehicles are optimized

with respect to the component dimensions. The overall power-to-weight

ratio is kept constant while the hybridization ratio is optimized and inves-

tigated for the full hybrid and the torque-assist hybrid. The study shows

the non-intuitive result that the need for hybridization is larger in the

ix



torque-assist hybrid than in the full hybrid.

The simplicity of the torque-assist hybrid allows the optimal hybridiza-

tion ratio to be found using a very simple and computationally cheap rule.

The objective of this rule is to minimize the total CO2 emissions of the

vehicle, while maintaining its drivability at a constant level. The starting

point is an analysis in which the optimal energy management strategy is

found for eight typical driving cycles using dynamic programming. Ana-

lyzing these results, a simple yet powerful rule-based method is proposed

that allows choosing the sizes of the combustion engine and of the electric

motor such that the CO2 emissions are very close to the minimum value,

i.e., with a deviation of less than 1% for most driving cycles.

In the last chapter of this thesis the focus is on the dynamic program-

ming algorithm. Issues related to the implementation of the dynamic

programming algorithm for optimal control of a one-dimensional dynamic

model is investigated. A study on the resolution of the discretized state

space emphasizes the need for careful implementation. A novel method

is presented to treat numerical issues appropriately. In particular, the

method deals with numerical problems that arise due to high gradients

in the optimal cost-to-go function. These gradients mainly occur on the

border of the feasible state region. The proposed method not only en-

hances the accuracy of the solution but also allows for a reduction of the

state-space resolution with maintained accuracy. The latter substantially

reduces the computational effort to calculate the global optimum. Finally,

the improved dynamic programming algorithm is summarized and imple-

mented in a general, public Matlab function.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Entwicklung neuer, modellbasierter Meth-

oden für die optimale Regelung und Auslegung von elektrischen Hybrid-

fahrzeugen. Zwei verschiedene Ansätze werden angewandt für die Entwick-

lung des Energiemanagements für zwei Typen von parallelen elektrischen

Hybridfahrzeugen. Für den Fall eines Vollhybridfahrzeuges wird ein rein

mathematischer Ansatz angewandt, während das Energiemanagement für

ein mildes Hybridfahrzeug aus Studien der optimalen Auslegung abgeleitet

wird.

Das Optimal Control Problem für das Energiemanagement von paral-

lelen Vollhybridfahrzeugen wird explizit gelöst für ein vereinfachtes Mod-

ell. Diese Lösung zeigt auf, wie optimale Energiemanagementstrategien

hergeleitet werden und dass die resultierenden Lösungen einfache Regeln

darstellen, welche durch die Fahrzeugparameter definiert sind. Desweit-

eren wird eine darauf basierende kausale Echtzeitstrategie mit Anti-Windup

hergeleitet.

Ein neuartiges Energiemanagement für milde Hybridfahrzeuge zeigt

auf, dass die Gangwahl von der Regelung der Momentenaufteilung separi-

ert werden kann. Dieses Energiemanagement verwendet die Gangwahl zur

Steuerung der Energieflüsse während die Momentenaufteilung durch ein-

fache Regeln vorgegeben wird. Die Resultate zeigen, dass dieses Energiem-

anagement Treibstoffverbräuche erzielt, welche für die meisten Fahrzyklen

weniger als 1% Abweichung vom globalen Optimum aufweisen. Die erziel-

ten Resultate sind insensitiv bezüglich Beschränkungen und energetischen

Verlusten bei Gangschaltvorgängen.

Sowohl das Voll- wie auch das Mildhyridfahrzeug werden bezüglich

Komponentendimensionierung optimiert. Das Leistungs/Gewichts-Verhält-
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nis wird konstant gehalten während der Hybridisierungsgrad optimiert

wird. Der Unterschied zwischen optimalem Hybridisierungsgrad für Voll-

beziehungsweise Mildhybridfahrzeug wird untersucht. Die Resultate zeigen

überaschenderweise, dass milde Hybridfahrzeuge höhere optimale Hybri-

disierungsgrade benötigen als Vollhybridfahrzeuge.

Die Einfachheit von milden Hybriden erlaubt den optimalen Hybri-

disierungsgrad mittels einer sehr einfachen und rechnerisch effizienten Regel

zu finden. Das Ziel dieser Regel ist die Minimierung der totalen CO2

Emissionen des Fahrzeuges, wobei die Fahrleistungen konstant gehalten

werden. Ausgangspunkt ist eine Analyse, in welcher die optimale En-

ergiemanagementstrategie mittels Dynamischer Programmierung für acht

typische Fahrzyklen ausgewertet wird. Die Untersuchung dieser Resul-

tate erlaubt die Herleitung einer einfachen, aber effektiven Methode, die

es erlaubt, die Dimensionierung des Verbrennungsmotors und des Elektro-

motors so zu wählen, dass die CO2 Emissionen sehr nahe beim Minimum

liegen. Die Abweichungen sind kleiner als 1% für die meisten Fahrzyklen.

Das letzte Kapitel dieser Arbeit fokussiert auf den Algorithmus der

Dynamischen Programmierung. Probleme bezüglich der Implementierung

der Dynamischen Programmierung für eindimensionale Optimal Control

Probleme werden untersucht. Eine Studie der Auflösung des diskretisierten

Zustandsraumes verdeutlicht die Notwendigkeit einer exakten Implemen-

tierung. Eine neue Methode wird vorgestellt, die es erlaubt, diese nu-

merischen Probleme korrekt zu behandeln. Die Methode behandelt nu-

merische Probleme, die aufgrund grosser Gradienten in der optimalen

Restkostenfunktion auftreten. Diese Gradienten treten meist am Rand des

lösbaren Zustandsraumes auf. Die vorgestellte Methode verbessert nicht

nur die Genauigkeit des gefundenen Lösungen, sondern sie erlaubt auch die

Auflösung des Zustandsraumes zu reduzieren bei gleicher Genauigkeit wie

im ursprünglichen Problem . Diese Reduktion der Auflösung reduziert den

Rechenaufwand für die Auswertung des globalen Optimums wesentlich.

Der verbesserte Algorithmus der Dynamischen Programmierung wird let-

ztlich zusammengefasst und in einer Matlabfunktion implementiert.
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Chapter 1

Introduction

1.1 Hybrid Electric Vehicles

Hybrid electric vehicles, i.e., vehicles that include an electric path (elec-

tric motor and electric energy storage) are an interesting solution to the

problem of reducing the carbon dioxide emissions of passenger vehicles.

Compared to conventional automobiles, the main benefits of hybrid elec-

tric vehicles are the additional operating modes possible and the possibility

of downsizing the combustion engine and thus operating it most of the time

at higher efficiencies. The additional operating modes are (1) brake energy

recuperation, (2) engine start-stop operation, (3) engine operating point

shifting and, for some configurations, (4) pure electric driving. However,

the main drawback of hybridizing a conventional combustion engine based

powertrain is the additional system complexity and cost.

There exist several types of topologies of hybrid electric vehicle, such

as series, parallel, and split hybrids. In this text a parallel type is consid-

ered, where there is only one mechanical connection between the electric

motor and combustion engine. However, the methods proposed in this

text can easily be extended to other topologies. The two main types of

parallel hybrids are the full parallel hybrid and the torque-assist parallel

hybrid, also known as single-shaft hybrid [1], mild hybrid [2], or power-

assist hybrid. In the full hybrid the combustion engine can be decoupled

from the electric motor using an electronically controlled clutch. Frequent

opening and closing of this clutch during normal driving operation requires
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careful control [3] and puts high requirements on the components in order

to guarantee a sufficient lifetime. The torque-assist hybrid, on the other

hand, does not require an electronically controlled clutch since the electric

motor is always coupled with the combustion engine. The disadvantage of

not having a clutch is the reduced possibility to utilize pure electric driving

and recharging operation in the vehicle [4].

1.2 Objectives of this Thesis

In the thesis at hand, the optimal control and optimal design of hybrid

electric vehicles are investigated. There are three main objectives of this

text. The first objective is to explain in detail how the optimal control of

the power split between the two energy converters is derived mathemati-

cally and to show the implications for real-time applications. The second

objective is to show how the interconnection between optimal control and

optimal sizing of the components in hybrid vehicles can help in developing

both energy management strategies and sizing rules. The third objective

is to develop efficient tools for calculating the optimal control of hybrid

vehicles. The text is intended to give the reader new perspectives on how

to optimize hybrid electric vehicles.

1.3 Contributions of this Thesis

This work, with the objectives presented in the previous section, resulted

in several contributions to the field of optimal control and design of hybrid

electric vehicles.

Two different approaches are used when designing the energy manage-

ment strategy for the two parallel hybrid electric vehicles. For the full

parallel hybrid, a pure mathematical approach is used while an approach

derived from optimal sizing is used for the torque-assist parallel hybrid.

The mathematical approach for the full parallel hybrid shows that the

optimal control problem associated with the energy management can be

solved explicitly, as shown in [I]. The solution shows that the optimal
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energy management strategy is in fact a set of simple rules depending on

vehicle parameters. The approach for the torque-assist hybrid in [II] shows

that the gear shifting control can be separated from the torque distribution

control. The development of the gear shifting energy management strat-

egy led to the patent application [III]. This energy management strategy

is derived from a simple rule developed for determining the optimal hy-

bridization ratio in a torque-assist hybrid.

The optimal hybridization ratio in the full hybrid and the torque-assist

hybrid are investigated in [IV]. This investigation shows the non-intuitive

results that the need for hybridization is larger in a torque-assist hybrid

than in a full hybrid. Moreover, the simplicity of the torque-assist hybrid

allows the optimal hybridization ratio to be found using a very simple and

computationally cheap rule, as explained in [V].

Finally, a key tool for evaluating hybrid vehicles is the dynamic pro-

gramming algorithm. In [VI] and [VII] a novel method for improving the

accuracy of the dynamic programming algorithm is presented. The method

is particularly useful for solving optimal control problems with final state

constraints. The method allows the state-grid resolution to be reduced

and thus reducing the computational demand. The improved dynamic

programming algorithm is implemented in Matlab and an overview of the

function is presented in [VIII]. This implementation allows researchers to

quickly and accurately solve dynamic programming problems.

1.4 Publications Associated with this Thesis

The following publications are associated with this project:

[I] D. Ambühl, O. Sundström, A. Sciarretta, L. Guzzella, ”Explicit Op-

timal Control Policy and its Practical Application for Hybrid Elec-

tric Powertrains”, Control Engineering Practice, 2009, Submitted for

publication

[II] O. Sundström, L. Guzzella, and P. Soltic, ”A Transmission-Actuated

Energy Management Strategy”, IEEE Transactions on Vehicular

Technology, 2009, Accepted for publication
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[III] O. Sundström, L. Guzzella, P. Soltic, and T. Huber, ”Betriebstrate-

gie für milde hybrid fahrzeuge”, Deutsches Patent- und Markenamt,

Germany, Submitted on 24 November 2008

[IV] O. Sundström, L. Guzzella, and P. Soltic, ”Optimal Hybridization in

Two Parallel Hybrid Electric Vehicles using Dynamic Programming”,

In Proceedings of the 17th IFAC World Congress, pages 4642-4647,

Seoul, Korea, 2008

[V] O. Sundström, L. Guzzella, and P. Soltic, ”Torque-Assist Hybrid

Electric Powertrain Sizing: From Optimal Control Towards a Siz-

ing Law”, IEEE Transactions on Control Systems Technology, 2009,

Accepted for publication

[VI] O. Sundström, D. Ambühl, and L. Guzzella, ”On Implementation

of Dynamic Programming for Optimal Control Problems with Final

State Constraints”, Oil & Gas Science and Technology - Rev. IFP,

DOI : 10.2516/ogst:2009020, 2009, Accepted for publication

[VII] O. Sundström, D. Ambühl, and L. Guzzella, ”On Implementation

of Dynamic Programming for Optimal Control Problems with Final

State Constraints”, In Proceedings of Les Rencontres Scientifiques de

l’IFP Advances in Hybrid Powertrains, Rueil-Malmaison, France,

2008

[VIII] O. Sundström and L. Guzzella, ”A Generic Dynamic Programming

Matlab Function”, In Proceedings of the 18th IEEE International

Conference on Control Applications, pages 1625-1630, Saint Peters-

burg, Russia, 2009



Chapter 2

Control of Hybrid Electric Vehicles

Minimization of the integral fuel consumption of hybrid electric vehicles

requires appropriate control of the power distribution between the primary

and the secondary power converter. This optimal control problem is of-

ten referred to as the energy management problem in literature. Various

approaches have been published so far. These approaches are typically di-

vided into two groups, namely heuristic strategies and optimal strategies

[5].

Heuristic approaches are often applied in real-time implementations.

Low fuel consumption can be achieved, but the performance is very sensi-

tive to the tuning of the rules. A typical rule-based method is fuzzy logic,

which was used by [6] and [7]. Such a heuristic control strategies are in

general not scalable, since these rules are often not model-based. [8] used

a different approach where they used the results obtained from dynamic

programming to extract rules.

On the other hand, strategies minimizing a local cost function to find

the actual control proved to achieve low fuel consumption. This local

cost function is typically an equivalent fuel consumption that consists of

the actual fuel consumption and a weighted electric consumption. These

approaches were introduced by [9, 10] and [11] and further improved by

[12] and [13]. The local minimization strategies require a model of the

powertrain, but are easily scalable. However, such strategies can require

more computational power than rule-based methods, since an online opti-

mization has to be carried out in real-time operation. In [14] and [15] the

authors used Pontryagin’s minimum principle to derive similar strategies
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that minimize a local cost function.

In the first part of this chapter an optimal strategy based on Pontrya-

gin’s minimum principle is derived for a full parallel hybrid. In the second

part an energy management strategy is derived for a torque-assist parallel

hybrid. The strategy for the torque-assist hybrid controls both the torque

split and the gear shifting and it is a combination of a rule-based and an

optimal strategy.

2.1 Control of a Full Parallel Hybrid

In this section the explicit optimal control of a full parallel hybrid is stud-

ied. First a speed independent, unconstrained model of the full parallel

hybrid is presented. This model allows for an analytical solution of the

optimal control, resulting in clearly defined rules. This rule-based control

is one of the main findings in this part of the chapter. All rules are well

defined by powertrain parameters only and close the gap between optimal

strategies and heuristic strategies.

The simplified model is then extended to a speed dependent, input

constrained model. The analytical optimal control for the extended model

is found similarly to the one for the first model. The control can still

be expressed as clearly defined rules being now speed dependent. The

analytical solution is then used to derive a causal controller. This solution

allows to derive an anti-windup scheme, for the integrator in the causal

controller, using only powertrain parameters.

2.1.1 Speed Independent Model

For the parallel hybrid electric powertrain whose structure is illustrated in

Fig. 2.1, we use a simplified model relating the total power demand Pd(t),
the motor power Pm(t), and the engine power Pe(t) to the fuel power

Pf (t), the battery power Pb(t), and the energy content in the battery

Eb(t). Assuming a battery model with a voltage source Voc in series with
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Pd

Pm

Pb

Pe

B

Eb

Pf

EM BAT

ICE

Figure 2.1: Topology of the parallel hybrid electric powertrain. EM and ICE
are static blocks while BAT is a dynamic block with the state variable Eb. The
variable B decides whether the engine is on and the clutch is closed.

a resistor R, the battery current Ib is given by

Ib = Voc −√V 2
oc − 4RPb

2R
. (2.1)

The total power loss over the resistance is

Pl(Pb) = RI2
b = (Voc −√V 2

oc − 4RPb)2
4R

. (2.2)

Approximating the power loss using a Taylor series around Pb = 0 yields

Pl(Pb) ≈ Pl(0) + P
′

l (0)
1!
⋅Pb +

P
′′

l (0)
2!

⋅ P 2
b +O(P 3

b ) (2.3)

= 0 + 0 ⋅ Pb +
R

V 2
oc

⋅ P 2
b +O(P 3

b ). (2.4)

Throughout this section, the battery power loss in the simplified model is

therefore assumed to be

Pl(Pb) = R

V 2
oc

⋅ P 2
b = αP 2

b . (2.5)
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The model equations are

Pe(t) = Pd(t) −Pm(t) (2.6)

Pf (t) = Pe(Pm(t), Pd(t)) +P0

e
⋅B (2.7)

Pb(t) = Pm(t) ⋅ η−sgn(Pm(t)) (2.8)

d

dt
Eb(t) = −Pb(Pm(t)) − αPb(Pm(t))2, (2.9)

where B is equal to one when the fuel injection is active (engine on) and the

clutch between engine and motor is engaged, (Pe(t) > 0), P0 is the engine

friction power, e its internal efficiency, η the efficiency of the electric motor,

and α = R
V 2

oc
. The only state variable of this model is the energy content of

the battery Eb(t) given by (2.9). In the remainder of this section the time

dependencies of the variables Pd, Pe, Pm, Pf , Pb, and Eb in the model

equations (2.6)–(2.9) are omitted to increase readability.

Initially, the only constraint to the model is that the engine cannot

provide any negative power,

Pe ∈ [0,∞) (2.10)

Pm ∈ (−∞,∞). (2.11)

However, in Section 2.1.5 constraints are added to the model in order to

achieve a more realistic behavior.

Table 2.1: Parameters of the powertrain

Parameter Value Unit

P0 4.5 ⋅ 103 W

e 0.4 -

η 0.9 -

R 0.5 Ω

Voc 300 V

α = R
V 2

oc
≈ 5.6 ⋅ 10−6 W−1



9 Chapter 2 Control of Hybrid Electric Vehicles

2.1.2 Optimal Control

The optimal control problem consists of finding the optimal power signal

for the electric motor P o
m such that the fuel consumption is minimized and

the charge in the battery is sustained over the driving cycle. The requested

power profile Pd is given by the driving cycle as a disturbance and the final

time tf , being the duration of the cycle, is fixed.

The optimal control problem is formulated by the cost functional, the

system dynamics, input constraints and state constraints, and the initial

and the final condition. The cost functional to be minimized, which is the

total fuel (energy) consumption over the driving cycle is

J = ∫ tf

0
Pf (τ)dτ. (2.12)

While the system dynamics and input constraints are given by (2.6)–(2.11),

the state constraints are neglected throughout this section. The initial and

the final condition are chosen equal to zero such that charge sustenance is

guaranteed

Eb(0) = Eb(tf) = 0. (2.13)

Hence, a positive (negative) battery energy content Eb(t) indicates that the

battery is charged (discharged) at time t compared to the initial condition.

Note that the energy content of batteries is in general bounded. However,

the optimal control problems solved in this section neglect the bounds on

the state. This assumption allows for explicit solutions. Nevertheless, as

it will be shown in Section 2.1.8, the battery’s energy content can still be

kept within reasonable bounds by an appropriate causal control.

2.1.3 Pontryagin’s Minimum Principle

The solution to the optimal control problem stated above is solved using

Pontryagin’s minimum principle. This method has been successfully ap-

plied by [14]. This section shows the detailed derivation of the optimal

control law using the simplified model. The formulation of the optimal

control problem defined by (2.6)–(2.13) yields the following Hamiltonian
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[16]

H = Pf − λ ⋅ (Pb +αP 2
b )

= Pd −Pm +P0

e
⋅B − λ ⋅ (Pm ⋅ η

−sgn(Pm) +αP 2
m ⋅ η

−2sgn(Pm)) . (2.14)

If the control P o
m is optimal, then the conditions (2.15)–(2.19) are satisfied

according to Pontryagin’s minimum principle.

d

dt
Eo

b = −P o
m ⋅ η

−sgn(P o
m) −α (P o

m ⋅ η
−sgn(Pm))2 (2.15)

Eo
b (0) = 0 (2.16)

Eo
b (tf) = 0 (2.17)

d

dt
λo = −∇Eb

H ∣o = 0 (2.18)

H(P o
m,λo, t) ≤H(Pm, λo, t) (2.19)

These conditions are necessary for optimality. Since the Hamiltonian is

not a function of the state variable Eb, the optimal co-state λo is constant.

Throughout this section the constant optimal co-state (2.20), with inverted

sign, is referred to as equivalence factor, s, since it is weighting the electric

power in the battery with the chemical power provided by fuel in the

Hamiltonian (2.14).

λo(t) = −s (2.20)

Equation (2.19) states that P o
m can only be optimal if it is the global mini-

mizer of the Hamiltonian. Therefore, the Hamiltonian is carefully analyzed

in the following to derive the optimal control law. The Hamiltonian (2.14)

expressed as a piecewise function is

H =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pd+P0

e
+ (sη − 1

e
)Pm + sαη2P 2

m, if Pm ≤ 0 < Pd −Pm

Pd+P0

e
+ ( s

η
−

1
e
)Pm +

sα
η2 P 2

m, if 0 ≤ Pm < Pd

s
η
Pm +

sα
η2 P 2

m, if Pm = Pd ≥ 0

sηPm + sαη2P 2
m, if Pm = Pd ≤ 0

(2.21)

The first interval Pm ≤ 0 < Pd −Pm indicates that the electric motor power

is negative Pm < 0 and the engine power positive Pe = Pd −Pm > 0.

To simplify the explanations throughout this section, the four parts of

the Hamiltonian (2.21), together with the special case Pm = 0 < Pd, are
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defined as

Hre = Pd +P0

e
+ (sη − 1

e
)Pm + sαη2P 2

m, for Pm < 0 < Pd −Pm (2.22)

Hth = Pd +P0

e
, for Pm = 0 < Pd (2.23)

Hbo = Pd +P0

e
+ ( s

η
−

1

e
)Pm +

sα

η2
P 2

m, for 0 < Pm < Pd (2.24)

Hel = s

η
Pm +

sα

η2
P 2

m, for Pm = Pd ≥ 0, (2.25)

H−el = sηPm + sαη2P 2
m, for Pm = Pd ≤ 0, (2.26)

where Hre is the Hamiltonian for recharging, Hth represents pure thermal

operation, Hbo boosting, Hel pure electric propulsion, and H−el pure electric

recuperation.

To find the control Pm that minimizes the Hamiltonian (2.21), the first

and second derivatives of the Hamiltonian with respect to the control Pm

are analyzed. Since the Hamiltonian is not differentiable at Pm = 0 and

Pm = Pd, the derivatives are only analyzed for Hre and Hbo

∂Hre

∂Pm

= (sη − 1

e
) + 2sαη2Pm, for Pm < 0 < Pd −Pm (2.27)

∂Hbo

∂Pm

= ( s

η
−

1

e
) + 2

sα

η2
Pm, for 0 < Pm < Pd. (2.28)

Since the parameters α and η are positive and s is assumed to be positive1,

the second derivatives of the Hamiltonians Hre and Hbo are positive

∂2Hre

∂P 2
m

= 2sαη2 > 0 (2.29)

∂2Hbo

∂P 2
m

= 2
sα

η2
> 0. (2.30)

To analyze the change in the derivative ∂H
∂Pm

at the point Pm = 0 the limits

of the first derivatives (2.27) and (2.28) are investigated. The limits when

1A posteriori checking of the optimal solution will reveal that this assumption was

valid.
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Pm is approaching zero are

lim
Pm→0−

∂Hre

∂Pm

= sη −
1

e
(2.31)

lim
Pm→0+

∂Hbo

∂Pm

= s

η
−

1

e
, (2.32)

where

lim
Pm→0−

∂Hre

∂Pm

< lim
Pm→0+

∂Hbo

∂Pm

. (2.33)

Equation 2.33 is true for any s since 0 < η < 1. Equation (2.33), together

with the property of the second derivative (2.29)–(2.30), proves that

∂Hre

∂Pm

< ∂Hbo

∂Pm

. (2.34)

This property will be used in the following for the minimization of the

Hamiltonian.

Minimization for Pd > 0

The minimum of the Hamiltonian can be found, depending on the value

of s, in different intervals of the control Pm. A sketch of the Hamiltonian

for all intervals of s is shown in Fig. 2.2. There is a discontinuity in the

Hamiltonian at Pm = Pd. Hence, this control can be an optimal control

candidate for all intervals in s.

The minimization of the Hamiltonian for its continuous part is carried

out by analyzing its derivatives. If the limit of the derivative of Hbo (2.32)

is negative, i.e. s < η

e
, the optimum of the Hamiltonian is either in Hbo or

in Hel. If the limit of the derivative of Hre (2.31) is positive, i.e. s > 1
ηe

, the

optimum of the Hamiltonian is either in Hre or in Hel. Finally, if the limit

of the derivative of Hbo (2.32) is positive and the limit of the derivative of

Hre (2.32) is negative, then the optimum is either in Hth or in Hel. These

conclusions can be summarized as

min
Pm

H(Pm) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min{Hel,Hbo}, if s < η

e

min{Hel,Hth}, if η

e
≤ s ≤ 1

ηe

min{Hel,Hre}, if s > 1
ηe

(2.35)
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η
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Hel

Figure 2.2: Schematic overview of the shape of the Hamiltonians Hre and Hbo

for all intervals of s.

To find the control Pm that minimizes the Hamiltonian Hbo (2.24), the

derivative (2.28) is set to zero and solved for Pm.

∂Hbo

∂Pm

= ( s

η
−

1

e
) + 2

sα

η2
Pm = 0 (2.36)

⇒ Pm = P bo
m (s) ≜ η(η

e
− s)

2sα
(2.37)

To find the control Pm that minimizes the Hamiltonian Hre (2.22), the

derivative (2.27) is set to zero and solved for Pm.

∂Hre

∂Pm

= (sη − 1

e
) + 2sαη2Pm = 0 (2.38)

⇒ Pm = P re
m (s) ≜ −s − 1

ηe

2sαη
(2.39)

The candidates for the optimal control P o
m corresponding to (2.35) are

therefore

P o
m ∈
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{Pd, P bo
m (s)}, if s < η

e{Pd, 0}, if η

e
≤ s ≤ 1

ηe{Pd, P re
m (s)}, if s > 1

ηe
.

(2.40)

The control that minimizes the Hamiltonian is determined by comparing

the Hamiltonians in (2.35) when using the corresponding optimal control

candidates in (2.40).

For s < η

e
, only Hel(Pd) and Hbo(P bo

m (s)) can be optimal according to

(2.35) and (2.40). Therefore, the condition for pure electric driving is
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Hel(Pd) <Hbo (P bo
m (s)). Solving this inequality for the power demand Pd

yields the condition for pure electric driving, namely

Pd < P bo
lim(s) ≜ −(

s
η
−

1
e
) +√4 sα

η2

P0

e

2 sα
η2

. (2.41)

For η

e
≤ s ≤ 1

ηe
, the condition Hel(Pd) <Hth(0) yields as condition for pure

electric driving

Pd < P th
lim(s) ≜ −(

s
η
−

1
e
) +
√
( s

η
−

1
e
)2 + 4 sα

η2

P0

e

2 sα
η2

. (2.42)

For s > 1
ηe

, from Hel(Pd) <Hre (P re
m (s)) it follows

Pd < P re
lim(s) ≜ −(

s
η
−

1
e
) +
√
( s

η
−

1
e
)2 − ( s

η
−

1
eη2 )2 + 4 sα

η2

P0

e

2 sα
η2

. (2.43)

It is interesting to note that for equality of the above conditions, i.e.

Pd = P
(⋅)
lim, the Hamiltonian has two identical minima. For a constant

power demand, this would result in singular optimal control as investi-

gated by [17]. The only charge-sustaining solution would be either pure

thermal propulsion or duty cycling between pure electric and recharging.

In reality, the power profile is never constant over the entire problem dura-

tion. Consequently, the optimal control for Pd = P
(⋅)
lim is chosen to be pure

electric P o
m = Pd without loss of optimality.

Minimization for Pd < 0

When Pd < 0, both boosting Hbo and pure thermal driving Hth are not pos-

sible since Pe ∈ [0, ∞). The Hamiltonian Hre given by (2.22) is possible

when Pd −Pm > 0. Equation (2.22) remains the same when Pd < 0. How-

ever, the Hamiltonian for pure electric recuperation (2.26) is different from

the one of pure electric driving (2.25). During braking phases (Pd < 0),

the only candidates are therefore Hre (P re
m (s)) and H−el(Pd). Pure electric
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Figure 2.3: Overview of the regions with the different optimal control P o
m (sep-

arated by solid lines) and the power limits P
(.)
lim

for the unconstrained problem.

recuperation is optimal if

H−el(Pd) <Hre (P re
m (s)) (2.44)

Pd <P re−
lim (s) ≜ − (sη −

1
e
) +√4sαη2 P0

e

2sαη2
. (2.45)

2.1.4 Resulting Optimal Control Law

The resulting optimal control law can be represented as a clearly defined

map. This map is shown in Fig. 2.3 for a powertrain with the parameters

specified in Table 2.1. It contains the optimal motor power as a function of

a constant equivalence factor s and the requested power Pd. The constant

equivalence factor s is introduced in Section 2.1.3 below, where the optimal

control law is derived in detail. The optimal control law consists of only

four regions, namely pure electric driving (including recuperation), pure

thermal, boosting, and recharging.
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The power limits P
(.)
lim separating the four regions in the control map

are given by

P bo
lim(s) = −(

s
η
−

1
e
) +√4 sα

η2

P0

e

2 sα
η2

(2.46)

P th
lim(s) = −(

s
η
−

1
e
) +√( s

η
−

1
e
)2 + 4 sα

η2

P0

e

2 sα
η2

(2.47)

P re
lim(s) = −(

s
η
−

1
e
) +√( s

η
−

1
e
)2 − ( s

η
−

1
eη2 )2 + 4 sα

η2

P0

e

2 sα
η2

(2.48)

P re−
lim (s) = − (sη −

1
e
) +√4sαη2 P0

e

2sαη2
. (2.49)

These power limits show the clear advantage of the simplified model pre-

sented in this section, namely the fact that the resulting optimal control is

a simple rule-based controller. However, it is completely defined by phys-

ical powertrain parameters and it is derived using Pontryagin’s minimum

principle.

The optimal control corresponding to the map shown in Fig. 2.3 is

mathematically expressed as

P o
m(Pd, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η( η

e
−s)

2sα
, if (Pd > 0) ∩ (s < η

e
) ∩ (Pd > P bo

lim(s))
0, if (Pd > 0) ∩ (η

e
≤ s ≤ 1

ηe
) ∩ (Pd > P th

lim(s))
−

s− 1

ηe

2sαη
, if (Pd > 0) ∩ (s > 1

ηe
) ∩ (Pd > P re

lim(s))
−

s− 1

ηe

2sαη
, if (Pd < 0) ∩ (Pd > P re−

lim (s))
Pd, otherwise.

(2.50)

Example on a Driving Cycle

The optimal control law (2.50) as a function of the power demand Pd

and the equivalence factor s is applied in this section to a driving cycle,



17 Chapter 2 Control of Hybrid Electric Vehicles

η

e

1
ηe

equivalence factor s [-]

fi
n
a
l
b
a
tt

er
y

en
er

g
y

E
b
(t f)

[M
J
]

scs = 2.8399

1 1.5 2 2.5 3 3.5 4
-60

-40

-20

0

20

40

60

80

Figure 2.4: Energy in the battery Eb at final time tf on CADC as a function
of the equivalence factor s. The charge sustaining value scs is indicated by the
vertical line.

namely the Common Artemis Driving Cycle (CADC) [18], see Appendix B.

The remaining problem consists of finding a constant equivalence factor

that guarantees the charge sustenance for the driving cycle. Figure 2.4

shows the final energy content in the battery when the optimal control law

(2.50) is applied with the powertrain parameters given in Table 2.1. The

charge sustaining equivalence factor is found by a root finding algorithm

at Eb(tf) = 0.

The shaded area in Fig. 2.5 illustrates the instances during which the

engine is used to recharge the battery, with Pm = −2187.1 W. As stated

by the optimal control law (2.50), the threshold that determines between

pure electric and recharging operation is a power limit as shown in the

upper graph of Fig. 2.5. The bottom part of the figure shows the speed

profile and illustrates clearly that there is no speed limit deciding between

electric or recharging modes.
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Figure 2.5: Power and speed profile Pd(t) and v(t) of CADC on the inter-
val t ∈ [2900, 3050] with the optimal control. Gray indicates recharging mode
(Pm = −2187.1 W), white indicates electric mode (Pm = Pd).

2.1.5 Input Constrained Model

The optimal control of the simplified model presented in Section 2.1 is

being extended toward a more realistic model in this section. First, in-

put constraints, i.e., power limits on the engine and the motor are being

imposed. Second, the model is extended to a time-variant model, i.e., its

parameters are speed-dependent.

The only constraint in the model thus far has been that the engine

cannot provide any negative power. This single input constraint is not suf-

ficient, however. The minimum and maximum power limits of the electric

motor must be considered as well as the maximum power of the combustion

engine. Hence, this section extends the optimal control law in presented

Section 2.1.4 with the following power constraints:

Pe ∈ [0, Pemax] (2.51)

Pm ∈ [Pmmin, Pmmax]. (2.52)

As a consequence of these constraints, the power balance (2.6) cannot al-

ways be fulfilled. For example, very high power demands Pd > Pemax + Pmmax
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Table 2.2: Power limits of the powertrain

Parameter Value Unit

Pemax 75 ⋅ 103 W

Pmmax 25 ⋅ 103 W

Pmmin −25 ⋅ 103 W

are infeasible. Similarly, strongly negative power demands Pd < Pmmin are

infeasible for the powertrain. However, for such strong negative power

demands, the remaining braking power is assumed to be absorbed by the

conventional brakes such that Pm = Pmmin.

The control Pm can now be limited to Pmmin, Pmmax, or to Pd −Pemax

indirectly by the engine. Hence, the optimal control that minimizes the

Hamiltonian is not only a function of s, but also of the constraints be-

ing active. The power limits shown in Fig. 2.3 that separate the different

operating modes are now extended with additional limits due to the con-

straints. Figure 2.6 shows an example of the new power limits for a pow-

ertrain with the parameters listed in Table 2.1 and Table 2.2. Note that

this is only an example and that there will be other active power limits if

the parameters change. Figure 2.6 shows that the number of power limits

and the number of regions with different operating modes have increased.

The power limits that are added to the previous limits (2.46)–(2.49) are

Pemax + P bo
m (s), Pemax, Pemax + P re

m (s), Pemax +Pmmin, Pmmax, Pmmin,

P
re,m
lim (s), and P

re,m−
lim (s). These power limits are derived analogously to

the limits (2.46)–(2.49). The regions in Fig. 2.6 are also separated by

the two new equivalence factor limits s
bo,m
lim and s

re,m
lim . The equations for

the power limits P
re,m
lim (s) and P

re,m−
lim (s) are given in (C.6) and (C.9) re-

spectively. The equations for the equivalence factor limits s
bo,m
lim and s

re,m
lim

are given in (C.2) and (C.4). These equations are explained further in

Appendix C.

All new power limits that result from including the constraints on the

engine and motor must be calculated for determining the optimal control

at the actual operating condition. Therefore, the computational effort for

determining the optimal control P o
m from the equivalence factor s and the

current power demand Pd has increased.
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Figure 2.6: Overview of the regions with the different optimal control P o
m

(separated by solid lines) and the power limits P
(.)
lim for the constrained problem.

A more efficient way of determining the optimal control P o
m is to, as

described in [15], evaluate the Hamiltonian (2.21) for the possible optimal

control candidates given by

P(Pd, s) = {0, Pd, P bo
m (s), P re

m (s), Pmmax, Pmmin, Pd −Pemax}. (2.53)

The optimal control is then determined by evaluating the Hamiltonian for

the control candidates in (2.53) and selecting the control that yields the

minimum. This selective minimization of the Hamiltonian must respect

the constraints (2.51) and (2.52), as well as the power balance (2.6)

P o
m(Pd, s) = argmin

Pm∈P(Pd,s)

H(Pm, Pd, s) (2.54)

s.t.

Pe = Pd −Pm (2.55)

Pm ∈ [Pmmin, Pmmax] (2.56)

Pe ∈ [0, Pemax]. (2.57)

Throughout this section, the method of selectively minimizing the Hamil-

tonian for the optimal control candidates is referred to as selective Hamil-
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tonian minimization (SHM). Note that, for many operating conditions,

a careful implementation of the SHM can utilize the constraints (2.55)–

(2.57) in order to minimize the feasible candidates in P(s). It is therefore

possible to reduce the computational effort to perform the minimization

(2.54).

Example on a Driving Cycle

When the power constraints in the engine and motor are included, the

method of finding the charge sustaining equivalence factor is the same as

in Section 2.1.4, i.e., a root finding algorithm is used. Note that the initial

guess of the algorithm must be larger than s
bo,m
lim since below this equiva-

lence factor the operating modes do not change and the final energy in the

battery is constant. The charge sustaining equivalence factor for CADC is

slightly different when including the constraints scs = 2.8463 compared to

the unconstrained case scs = 2.8399 because of the new regions shown in

Fig. 2.6.

Figure 2.7 shows a section of the optimal charge-sustaining control for

the CADC where four different modes can be observed. These modes

are recharging Pm = −2409.0 W, electric driving and recuperation Pm = Pd,

maximum recuperation Pm = Pmmin, and boosting or recharging limited by

the engine Pm = Pd − Pemax. This figure clearly shows that the different

operating modes are separated by power limits (top graph) and not by

speed limits (bottom graph).

2.1.6 Input Constrained, Speed Dependent Model

The model described in Section 2.1.5 does not depend on the rotational

speed of the crankshaft. In reality, however, several component parameters

are speed-dependent. This section investigates a modified version of the

model given by equations (2.6)–(2.9) including the input constraints (2.51)

and (2.52), where e, P0, and Pemax are replaced by e(ω), P0(ω), and

Pemax(ω), respectively.
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Figure 2.7: Power and speed profile Pd(t) and v(t) of CADC on the inter-
val t ∈ [2900, 3050] with the optimal control. Light gray indicates recharg-
ing mode (Pm = −2409.0 W), medium gray indicates maximum recuperation
(Pm = Pmmin), dark gray indicates boosting or recharging limited by engine
(Pm = Pd − Pemax), and white indicates electric mode (Pm = Pd).

In the electric path, only the parameters of the electric motor are speed-

dependent, strictly speaking. This would result in the parameters η(ω),
Pmmax(ω), and Pmmin(ω). The battery characteristics are indeed not

speed-dependent. However, the parameter α, which captures nonlineari-

ties in the battery, can also be used to capture the nonlinearities in the

electric motor. Consequently, the entire electric path is integrated in the

parameters η(ω), α(ω), Pmmax(ω), and Pmmin(ω).
The speed-dependent model is finally obtained by fitting the parameters

of the simplified, speed-independent model to measured data for a set of

rotational speeds. The following data of a real powertrain are typically

available to fit the speed-dependent model:

● A stationary fuel consumption map of the engine as a function of the

rotational speed and the torque,

● the maximum torque curve of the engine,
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● the idle speed of the engine,

● a stationary electric consumption map of the motor as a function of

the rotational speed and the torque,

● the maximum and minimum torque lines of the motor,

● the open circuit voltage and the inner resistance curves for charging

and discharging of the battery as a function of the state-of-charge.

Measured-Data Model

In order to evaluate the simplified model introduced Section 2.1.5 using

speed-dependent parameters versus the real powertrain, an extended model

relying on the measured data of the powertrain is used. This model is

referred to as the original model in throughout this section. It is being

used instead of the real powertrain since a prototype is not available at

this stage.

The modeling approach follows common approaches such as those de-

scribed by [19] and [20]. These models assume that the speeds and the

accelerations are kept constant over each sampling interval. Such models

are known as quasi-static models. This assumption has been verified for

engines of passenger cars by [21]. It is obvious that this assumption is also

valid for electric machines because the time constants of the electric com-

ponents are very small compared to the dynamics of the powertrain speed.

An overview of a quasi-static model is shown in Appendix A. The model

used in this section relies on a fuel consumption map for the combustion

engine and a electric power map for the electric motor. The battery model

is based on an equivalent circuit model as shown in Appendix A. The

parameters for the battery model is based on measurements of a Li-Ion

battery.

Fitting of Speed Dependent Parameters

The speed-dependent parameters of the simplified model are evaluated for

each rotational speed such that the sum of the absolute errors between
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the simplified model and the original model is minimized. Such a fit is

shown in Fig. 2.8 for ω = 1000 rpm and ω = 3000 rpm. It clearly shows

that the engine can be well approximated with an affine function and that

the electric path is well described by a piecewise quadratic function.

The resulting speed-dependent parameters for the simplified model are

shown in Fig. 2.9, while the corresponding efficiency maps are shown in

Figs. 2.10 and 2.11. The peak efficiency in Fig. 2.10 is very high for an

SI engine. This is a consequence of the affine approximation that tends to

underestimate the fuel consumption at high loads due to enrichment.

Optimal Control

Using the speed-dependent model, the derivation and the solution of the

optimal control problem stated in (2.6)–(2.13) do not change from those

using the speed-independent model above. The optimal control policy

given in (2.54) is still optimal when speed-dependent parameters are used.

However, the power limits are now dependent on the rotational speed and

thus the different regions shown in Fig. 2.6 vary with the rotational speed.

Therefore, the regions defining the optimal control increase by one dimen-

sion, namely the speed ω. Figure 2.12 shows the regions for the charge-

sustaining equivalence factor for CADC. In order to improve readability,

this figure is expressed with torque values instead of power.

2.1.7 Model Validation

In this section, the simplified model (2.6)–(2.9) with the speed-dependent

parameters shown in Fig. 2.9 and the constraints (2.51)–(2.52) is validated

by the original model in Section 2.1.6. The validation is carried out by

application of a feedforward control signal to both models. Both the state

trajectory Eb(t) and the cost functional Ef(t) are being compared for three

driving cycles. The driving cycles used in this section are the CADC, the

New European Driving Cycle (NEDC), and the Federal Test Procedure

72 (FTP72). The feedforward signal applied here is the charge-sustaining

optimal control signal evaluated for the simplified model. The charge-
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sustaining optimal control for the CADC is shown in Fig. 2.12. Figure 2.13

shows the state trajectory Eb(t) and the cost functional Ef(t) of both

models for the CADC. Note that the models are actuated with the same

signal. Both trajectories match very well and justify the simplifications

adopted when the simplified model was formulated from the original model.

The relative deviations of the two models for both signals at the final

time tf are defined as

ǫff,Eb
= Eb,orig(tf) −Eb,simp(tf)

∫ tf

0 ∣Ėb,orig(τ)∣dτ
(2.58)

ǫff,Ef
= Ef,orig(tf) −Ef,simp(tf)

Ef,orig(tf) . (2.59)

Table 2.3 shows that the final energy content of the battery Eb(tf) as well

as the final fuel energy use Ef (tf) of the simplified model fit the original

model well. The largest error, i.e., the error in the final energy content

ǫff,Eb
for NEDC, is 1.6%.

Note that the error in the final state ǫff,Eb
cannot be separated from

the error in the cost functional ǫff,Ef
since a surplus in final battery energy

Eb(tf) could have been used to lower the fuel energy Ef (tf). Therefore,

in order to compare the error in fuel consumption only, the two simula-

tions carried out must have identical initial and final battery energy levels.

This is achieved by first obtaining the fuel consumption by simulating

the original model with the feedforward P o
m,simp derived for the simpli-

fied model. This fuel consumption is the compared to the optimal fuel

consumption having identical initial and final battery energy levels. The

optimal fuel consumption for the original model is found by means of dy-

namic programming [22, 23]. The dynamic programming algorithm has

been implemented using the ideas introduced by [24]. The difference in

fuel consumption between these two simulations reveals the losses intro-

duced by using a simplified model for the evaluation of the control. This

excess in fuel consumption is expressed as

ǫff/dp = E
ff,simp
f,orig (tf) −E

dp
f,orig(tf)

E
dp
f,orig(tf) . (2.60)

These increases in fuel consumption are shown in Table 2.4. Note that

the simplified model is state independent while in the original model the
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Table 2.3: Validation of the simplified model versus the original model.

Variable CADC NEDC FTP72

ǫff,Eb
0.2% 1.6% 1.1%

ǫff,Ef
0.2% 0.7% 1.0%

Table 2.4: Increased fuel consumption due to simplified model for control.

Variable CADC NEDC FTP72

ǫff/dp 0.8% 1.2% 1.5%

battery is dependent on the state. A large deviation of the state will

therefore increase the error between the models. Part of the error ǫff/dp

in Table 2.4 is a consequence of the relatively large state deviations Eb(t)
when applying P o

m,orig. The solution from dynamic programming accounts

for the state dependencies of the original model and reduces the state

deviation.

2.1.8 Application of Simplified Model

The simplified, speed-dependent model which was validated in Section 2.1.7

can be used for energy management in a real vehicle. The control of the

powertrain at each time sample is then evaluated by the following algo-

rithm:

1. Read the requested power Pd and the actual speed ω.

2. Evaluate the speed-dependent parameters for the rotational speed ω.

3. For a given s, evaluate the control P o
m that minimizes the Hamilto-

nian according to (2.54).

4. Apply P o
m to the electric motor and Pd − P o

m to the engine.

The constant equivalence factor must be found such that charge sustenance

is achieved for the given driving cycle as described in Section 2.1.4. Such

a controller cannot be realized because it relies on future information, i.e.,
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Figure 2.14: Schematic of the control loop including the causal feedback con-
troller (CFC), the selective hamiltonian minimization (SHM), and the power-
train.

it is non-causal. However, suboptimal approaches can be taken to render

the control causal.

Causal Feedback Control

A causal controller evaluates an appropriate equivalence factor using only

information of the past and the present. Many approaches have been pre-

sented in literature [12, 25, 26, 27]. These approaches commonly rely on

controlling the state-of-charge ξ to some reference value ξr by the equiv-

alence factor s. For this investigation, the (causal) equivalence factor is

computed as in [27] by

s(t) = 2.8 + 1197 ⋅ (ξr − ξ(t))3 + ∫ t

0

ξr − ξ(τ)
100

dτ. (2.61)

The numeric values in this expression are computed with the tuning pa-

rameters used by [27] together with the battery capacity Q0 = 6.2 Ah, the

open circuit voltage Voc(ξ = 0.6) = 300 V, and the reference state-of-charge

ξr = 0.6.

Anti-Windup

The causal feedback control (CFC) given by (2.61) contains an integral

part to avoid static errors. This integral part can lead to undesired behav-

ior, called wind-up of the integrator, if the controller output is saturated

[28]. The controller for this consideration is only the function (2.61) with
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ξr − ξ(t) being the controller input and s(t) being the controller output

as schematically shown in Fig. 2.14. For equivalence factors s being less

than s
bo,m
lim (C.2), the control of the powertrain is independent of the equiv-

alence factor as it can be seen in Fig. 2.6. Hence, the controller output

s(t) is saturated for s < s
bo,m
lim . For very high values of s(t), such a satura-

tion does not occur because the power limit P
re,m−
lim converges for s→∞

to the minimum power limit of the motor Pmmin. This means that for

s > s
re,m
lim , there is always more recharging of the battery for larger values

of s. Consequently, an anti-windup scheme is implemented with a satura-

tion of s(t) ∈ [ssub, ∞), where

ssub =min
ω

s
bo,m
lim (ω) =min

ω

η(ω)2
e(ω) (2Pmmax(ω)α(ω) + η(ω)) . (2.62)

Example on a Driving Cycle

The causal controller relying on the simplified model is finally applied

on the original model. To benchmark its performance, the optimal solu-

tion having the same initial and final conditions as the causal controller

E
fb,simp
b,orig (tf) = E

dp
b,orig(tf) is found using dynamic programming. The rel-

ative excess fuel consumption is expressed by

ǫfb/dp = E
fb,simp
f,orig (tf) −E

dp
f,orig(tf)

E
dp
f,orig(tf) (2.63)

and is shown in Table 2.5.

The state trajectories resulting from applying the simplified model for

causal control of the original model are shown in Fig. 2.15 for the CADC.

The figure also shows the optimal state trajectory determined using dy-

namic programming.

The sub-optimality of the control can be explained by two effects. First,

the model used to evaluate the control is simplified, i.e., it does not per-

fectly represent the real plant. This effect is investigated in Section 2.1.7.

Second, the causal controller cannot take into account any future informa-

tion on the driving cycle. In contrast, the optimal solution from dynamic

programming fully exploits information on the driving cycle.
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Figure 2.15: State trajectory resulting from applying the simplified model for
causal control of the original model (solid), and the state trajectory using DP
on the original model (dashed) for CADC

Table 2.5: Relative fuel excess consumption using the simplified model for
control of original model

Variable CADC NEDC FTP72

ǫfb/dp 1.1% 1.7% 1.7%

However, the causal controller given by (2.61) and (2.53)–(2.57) with

the speed-dependent parameters shown in Fig. 2.9 is computationally cheap

and simple to implement. The controller also achieves results which are

within 1.7% from the global optimum for three various driving cycles.
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2.2 Control of a Torque-Assist Parallel Hy-

brid

In this section a torque-assist parallel hybrid equipped with a dual-clutch

transmission is studied. The methods of deriving the optimal control for

a full hybrid, described in the previous section, can of course also be used

for a torque-assist hybrid. However, the approach for designing the energy

management strategy in this section is closely linked with the process of

finding the optimal design of the torque-assist hybrid. In other words, the

strategy proposed in this section is an extension to the simple sizing law

for a torque-assist parallel hybrid presented in Chapter 3.

In the literature the gearbox is not always considered when develop-

ing energy management strategies. However, in [29], [30], and [31] the

gear shifting or crankshaft speed is optimized along with the instanta-

neous power-split in order to minimize fuel consumption. What is more,

the number of gear ratios in the gearbox is, in conventional vehicles, typ-

ically optimized for drivability and extreme conditions. Such conditions

can be an uphill vehicle launch with a trailer or low-speed driving in a

traffic jam. In hybrid vehicles, the gearbox can be optimized for fuel con-

sumption since the electric motor can compensate for torque fluctuations

and torque deficits during gearshifts [32]. In this section the proposed en-

ergy management strategy is therefore applied to different number of gear

ratios in the gearbox.

The focus of this section is to develop an energy management strategy

which considers the gear shifting strategy and have low computational

requirements, good scalability, and low fuel consumption. Furthermore,

the proposed energy management strategy is a combination of the rule-

based and the model-based optimal control strategies. The computational

load is therefore reduced while maintaining a satisfactory scalability and

fuel consumption.
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Figure 2.16: Signal flow of the torque-assist parallel hybrid configuration in-
cluding a dual clutch transmission.

2.2.1 Hybrid Vehicle Model

The vehicle model in this section is based on a midsized vehicle with the

mass of mv ≈ 1660 kg. The hybrid vehicle model in this section is slightly

different than the model in Appendix A. Since the gearbox is a dual-clutch

transmission and the gear number is a second input variable the model can

be described as follows:

xk+1 =F (xk,uk,wk) (2.64)

where the state vector x, input vector u, and disturbance vector w are

xk =[ξk, ϕprev,k]T (2.65)

uk =[Te,k, ϕk]T (2.66)

wk =[vk, ak]T . (2.67)

where the state vector x contains the battery state-of-charge ξk and the

previous gear number ϕprev,k. The input vector u contains the combustion

torque Te,k and the new gear number ϕk. The disturbance vector w con-

tains the vehicle speed vk and the acceleration ak. The input Te,k can be

calculated from, or replaced by, the torque split factor us in Appendix A.6.

The basic hybrid vehicle model is explained in Appendix A. Only the

model of the dual-clutch gearbox is presented in this section.
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2.2.2 Dual Clutch Transmission: Gear Shift

During a gear shift some energy is lost in the two clutches in the gearbox.

To estimate the extra required power from the engine and/or the electric

motor a simple model of the two shafts in the DCT is used. An overview

of the model and the nomenclature is shown in Fig. 2.17. In [33], [34] a

more detailed model of a DCT is used to optimize the shifting procedure.

In the simple model the two equations explaining the speed dynamics

of the two inertias are

(Je + Jm)ω̇c = Td + Tc (2.68)

Jvω̇v = TL + Tg (2.69)

where Td is the torque delivered by the powertrain, Tc is the gearbox

input torque, Tg is the gearbox output torque, and TL is the load torque.

However, assuming that during the gear shift procedure from γ(ϕprev,k)
to γ(ϕk) the output speed of the gearbox ωg does not change and that

only the crankshaft speed ωc changes results in

Jvω̇g = 0⇒ Tg = −TL. (2.70)

Since in a dual-clutch gearbox there are two shafts and two clutches (c1

and c2), the gearbox input and output torque is divided on the two shafts

Tg = Tg1 + Tg2 Tc = Tc1 + Tc2. (2.71)
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Define the torque split uc ∈ [0, 1] in the gearbox as

uc = Tg1

Tg

= Tg1

Tg1 + Tg2

(2.72)

Tg1 = Tguc (2.73)

Tg2 = Tg(1 − uc). (2.74)

Since the torque on both sides of each clutch are equal, the gears γ(ϕprev,k)
and γ(ϕk) define the relationship between the shaft torque T1,2 and the

output torque Tg

Tc1 = T1 = γ(ϕprev,k)Tg1 = γ(ϕprev,k)Tguc (2.75)

Tc2 = T2 = γ(ϕk)Tg2 = γ(ϕk)Tg(1 − uc). (2.76)

The gears γ(ϕprev,k) and γ(ϕk) also define the relationship between the

speeds of the two shafts ω1,2 and the speed of the gearbox output shaft ωg

ω1 = ωg

γ(ϕprev,k) ω2 = ωg

γ(ϕk) . (2.77)

The power losses at the clutches are then

Pc1 = ∣(ωc − ω1)T1∣ = ∣(ωc −
ωg

γ(ϕprev,k))γ(ϕprev,k)Tguc∣ (2.78)

Pc2 = ∣(ωc − ω2)T2∣ = ∣(ωc −
ωg

γ(ϕk))γ(ϕk)Tg(1 − uc)∣ (2.79)

where ωc is the crankshaft speed. The total power loss is

Pc = Pc1 +Pc2

= ∣(ωc −
ωg

γ(ϕprev,k))γ(ϕprev,k)Tguc − (ωc −
ωg

γ(ϕk))γ(ϕk)Tg(1 − uc)∣
(2.80)

Assume the crankshaft speed changes linearly with time

ωc(t) = ( 1

γ(ϕk) − 1

γ(ϕprev,k))
ωg

tgs

⋅ t +
ωg

γ(ϕprev,k) (2.81)

where tgs is the duration of the shift procedure t ∈ [0, tgs]. Also assume

that the torque split uc(t) goes from one to zero linearly with time during

the shift procedure

uc(t) = tgs − t

tgs

(2.82)
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The power loss as a function of time is

Pc(t) = ∣(γ(ϕprev,k)2 − γ(ϕk)2)(t2 − tgst)Tgωg

γ(ϕprev,k)γ(ϕk)t2gs

∣ . (2.83)

The total energy loss during a gear shift is

Ec = ∫ tgs

0
Pc(t) dt = ∣(γ(ϕprev,k)2 − γ(ϕk)2)Tgωg∣ tgs

6γ(ϕprev,k)γ(ϕk) (2.84)

The maximum power loss is at t = 0.5tgs

Pc,max = ∣ (γ(ϕprev,k)2 − γ(ϕk)2)Tgωg

4γ(ϕprev,k)γ(ϕk) ∣ (2.85)

2.2.3 Dual Clutch Transmission: Model

In this section the manual transmission in Appendix A is replaced by

the gearbox model presented here. The gearbox model calculates the
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crankshaft rotational speed and acceleration together with the crankshaft

torque based on the gearbox output speed, acceleration, torque, and de-

sired and current gear number, ϕk and ϕprev,k. The gearbox efficiency is

assumed to be constant for all gears ηgb = 0.95. The rotational speed and

acceleration of the crankshaft are

ωc = ωg

γ(ϕk) ∆ωc = ∆ωg

γ(ϕk) (2.86)

where γ(ϕk) is the gear ratio of the gear ϕk. The previous gear number

ϕprev,k is the second state variable in the model and it is updated according

to the new desired gear ϕk using

ϕprev,k+1 = ϕk. (2.87)

In order to evaluate the proposed gear shifting strategy three types of

limitations on the gear shifting are used: 1) unlimited shifting without en-

ergy losses, 2) limited shifting without energy losses, and finally 3) limited

shifting with energy losses. The equations for each of the three types are

specified in the following list:

1) Unlimited shifting without energy losses:

The total gearbox input torque is

Tc =
⎧⎪⎪⎨⎪⎪⎩
Tgγ(ϕk)η−1g , if Tg ≥ 0

Tgγ(ϕk)ηg, if Tg < 0
(2.88)

Since the gear shifting is independent of the current gear, the desired

gear can be anyone of the gears in the gearbox

ϕk ∈ {0,1,2,3,4,5,6}. (2.89)
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2) Limited shifting without energy losses:

The total gearbox input torque is decided as in (2.88), but the gear

shifting is limited to

ϕk ∈
⎧⎪⎪⎨⎪⎪⎩
{0,1,3,5}, if ϕprev,k ∈ {0,2,4,6}
{0,2,4,6}, if ϕprev,k ∈ {0,1,3,5} (2.90)

in order to model the instantaneous gear shifting between the two

shafts on the DCT.

3) Limited shifting with energy losses:

During a gear shift some energy is lost in the two clutches in the

gearbox. To estimate the extra required power from the engine

and/or the electric motor a simple continuous-time model of the

two shafts in the DCT is used. Using the gear shift model described

in Appendix 2.2.2, the total energy loss during a gear shift is

Ec = ∣(γ(ϕprev,k)2 − γ(ϕk)2)Tgωg∣ tgs

6γ(ϕprev,k)γ(ϕk) . (2.91)

Since the vehicle model is a discrete-time model with a time step

of one second, the energy Ec contributes to an additional torque

amount as follows:

Tgs = Ec

ωgts
= ∣(γ(ϕprev,k)2 − γ(ϕk)2)Tg∣ tgs

6γ(ϕprev,k)γ(ϕk)ts . (2.92)

where γ(ϕk) is the new gear ratio and γ(ϕprev,k) is the previous

gear ratio. The total gearbox input torque is

Tc =
⎧⎪⎪⎨⎪⎪⎩
(Tgs + Tg)γ(ϕk)η−1g , if Tg ≥ 0

(Tgs + Tg)γ(ϕk)ηg, if Tg < 0
(2.93)

The gear shifting is also limited according to (2.90).

The energy management strategy in the hybrid vehicle decides how the

torque demand is divided between the electric motor and the combustion
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engine. The torque-assist parallel hybrid always drags the internal com-

bustion engine even when the vehicle is driving purely electrically since

the motor and the engine are always directly coupled. The torque balance

at the crankshaft is given by (A.27) in Appendix A. The total torque

Td demanded from combustion and/or electromagnetic forces is given by

(A.28). In this chapter, the electric motor torque Tm is determined by

Tm = Td − Te. (2.94)

The electric motor torque Tm and the torque from combustion Te are

limited to

Tm ∈ [Tmmin(ωc), Tmmax(ωc)] (2.95)

Te ∈ [0, Temax(ωc)] (2.96)

where Tmmin(ωc) < 0, Tmmax(ωc) > 0, and Temax(ωc) > 0.

2.2.4 Control Problem

For the considered powertrain both the input variable Te, thus the electric

motor torque through (2.94), and the gear number ϕk must be decided.

The control objective throughout this section is to minimize the fuel con-

sumption over a driving cycle

J = N−1∑
k=0

∗
mf (uk,wk) ⋅ ts (2.97)

by choosing the engine torque Tm,k and the desired gear number ϕk at

every time step while respecting the battery current, voltage, and state-of-

charge limitations, the electric motor and combustion engine torque and

speed limitations, and the limitations in the dual-clutch transmission. This

section presents a suboptimal causal controller and two optimal solutions

based on dynamic programming. The dynamic programming results are

used as comparisons for the proposed suboptimal causal controller.

Transmission-Equilibrium Point Strategy (TEPS)

As defined in [35] the equilibrium point strategy (EPS) is defined as the

torque split strategy that recuperates all the braking energy possible,
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Figure 2.19: The different operating regions of the EPS for the combustion
engine and the electric motor in a map showing crankshaft speed and total
torque demand.

launches the vehicle from stand-still, and assists the combustion engine

when it is operating at maximum load. The EPS is in other words the

torque split strategy that uses the combustion engine as much as possible

and the electric motor as little as possible. The equilibrium point strategy,

shown in Fig. 2.19, is the simple torque split rule

Te =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Td, if 0 < Td ≤ Temax and ωc ≥ ωidle

Temax, if Td > Temax and ωc ≥ ωidle

0, otherwise

(2.98)

Tm =max(Td − Te, Tmmin). (2.99)

Note that the EPS in (2.98) and (2.99) is not charge sustaining since the

battery state-of-charge is not considered. However, it is shown in [35] that,

using a fixed gear shifting strategy, the optimal hybridization ratio [36] of a

torque-assist parallel hybrid is close to the hybridization ratio at which the

EPS is charge sustaining. The focus of this section is therefore to extend

the EPS with a charge sustaining element.
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The proposed scheme, denoted Transmission-Equilibrium Point Strategy

(TEPS), utilizes the EPS together with the gear shifting in the gearbox to

control the state-of-charge in the battery. The gear choice is decided using

an equivalent consumption minimization strategy (ECMS) approach [10].

In an ECMS the control is given by the minimizer of the total equivalent

fuel consumption in the combustion engine and battery. Typically, in an

ECMS for parallel hybrids, the control is the torque split in the vehicle. In

this study, however, the control is only the gear number since the torque

split is given by the EPS for any given crankshaft speed. The desired gear

number ϕk is decided using

ϕk = argmin
ϕk∈I(ϕprev,k)

Pf(uk,wk) + sk ⋅ Pb(xk,uk,wk) (2.100)

where Pf is the fuel power used for combustion, Pb is the internal battery

power, and sk is the equivalence factor. The desired gear number must be

an element of the allowed gears I(ϕprev,k) as defined in (2.90). Note that

the fuel power Pf and the battery internal power Pb are calculated based

on the EPS for a given gear number ϕk and state-of-charge ξk.

Since the future driving schedule is generally unknown, the equivalence

factor sk must be controlled such that the battery state-of-charge respects

the boundaries for various driving cycles. There exist many controllers

for the equivalence factor such as proportional controllers or integrating

controllers. Moreover, prediction data can be included in the equivalence

controller that is based on GPS and driving mission data [37], [38]. In

this section, as in [38], the equivalence factor sk is determined using a

PI-controller

sk = s0 +
ts

Ti

⋅

k∑
τ=0

(ξref − ξτ ) + kp

Q0Voc(ξk) ⋅ (ξref − ξk). (2.101)

Using the necessary assumptions, the proportional part of the controller

can be derived using optimal control theory and by the instantaneous

minimization of the Hamiltonian using a quadratic penalty on the state-

of-charge deviation from a reference value [38]. The integrator part of

the controller is added to compensate for modeling errors. The benefit

of the proposed controller is that both the gear choice and the torque

split are considered. Furthermore, the proposed controller only selects the

gear among those possible, that minimizes the equivalent fuel consumption
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(2.100). The advantage of this approach is that the control is inherently

discrete with a low number of possibilities. Compared to controllers which

also need to find the minimizer for the continuous torque split, the com-

putational burden is therefore reduced when solving (2.100).

2.2.5 Comparisons

In this section the proposed controller is compared to two types of opti-

mal controllers optimal toque-split/standard shifting and optimal torque-

split/optimal shifting. The two types of optimal controllers are explained

in the following list:

1) Optimal torque split/optimal gear shifting (OO):

To determine the global optimal solution the dynamic programming

algorithm is used to decide both the torque split through Tm,k and

the gear choice ϕk. This is done in order to evaluate the proposed

controller with respect to the lowest achievable fuel consumption.

2) Optimal torque split/standard gear shifting (OS):

To highlight the importance of the proposed controller a standard

gear shifting strategy is used together with an global optimal torque

split (determined by a single-state single-input dynamic program-

ming algorithm). The standard gear shifting strategy is shown in

Fig. A.1. It is a simple speed dependent strategy reflecting a nor-

mal driver’s behavior. The focus is not on finding an optimized rule-

based strategy, but rather on providing a strategy sample which can

be used for comparisons. The gray dots in Fig. A.1 show the gear

shifting in the New European Driving Cycle (NEDC). The NEDC

shifting is similar to the standard shifting strategy represented by

the gray boxes.

The resulting gear shifting and state-of-charge trajectories for the proposed
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control schemes TEPS and the globally optimal control scheme OO are

shown in Fig. 2.20 for the NEDC.

Furthermore, the proposed controller is compared when using different

limitations and energy losses for shifting gears (unlimited shifting without

losses, limited shifting without losses, and limited shifting with losses).

Since a causal controller cannot guarantee an exact charge sustenance for

a driving cycle the following method is used for a comparison. First,

the proposed causal controller is used for a given driving cycle, then the

optimal controllers OO and OS are calculated to achieve exactly the same

final state-of-charge as the causal strategy. The relative increase in fuel

consumption (FC) from the global optimum using both optimal shifting

and optimal torque split (OO) is

ǫOS = FC ∣OS − FC ∣OO

FC ∣OO

(2.102)

ǫTEPS = FC ∣TEPS − FC ∣OO

FC ∣OO

(2.103)

For all comparisons, four different driving cycles have been used. The

driving cycles are shown in Fig. B.1 in Appendix B.

Study on limited gear shifting

Fast gear shifting in a DCT is only allowed from gears on one shaft to

gears on the second shaft. This is done by preselecting the desired gear

on the unused shaft and then quickly disengaging and engaging the two

clutches such that continuous power is delivered to the gearbox output.

Since the proposed controller controls the gear shifting, it is important

to evaluate the sensitivity on such limitation. Furthermore, during each

gear shifting energy is dissipated when the two clutches are disengaged or

engaged. Therefore it is also important to investigate the influence of these

energy losses on the optimality of the proposed controller.

Table 2.6 shows the relative increase in fuel consumption ǫOS and ǫTEPS

for the four different driving cycles and for the three different gearbox lim-

itation schemes. It is important to note that on the average, the proposed

controller is within 0.9% of the global optimal controller, regardless of the
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Table 2.6: The relative increase in fuel consumption between OS and OO
(ǫOS) together with the relative increase in fuel consumption between TEPS
and OO (ǫTEPS). The values are given for different driving cycles and for types
of limitations on gear shifting.

driving cycle
FC unlimited limited limited

increase w/o losses w/o losses w/ losses

NEDC
ǫOS [%] 17.1 17.1 17.0

ǫTEPS [%] 0.0 0.1 0.1

CADC Urban
ǫOS [%] 24.4 23.6 22.8

ǫTEPS [%] 0.9 1.6 1.5

CADC Road
ǫOS [%] 12.8 12.3 11.9

ǫTEPS [%] 0.6 0.8 0.8

FTP-72
ǫOS [%] 23.9 23.4 23.0

ǫTEPS [%] 0.7 0.9 0.9

average
ǫOS [%] 19.5 19.1 18.7

ǫTEPS [%] 0.6 0.9 0.8

gearbox limitation scheme. Furthermore, the proposed controller outper-

forms by far the OS control strategy for all cycles and limitation schemes.

This emphasizes the importance of not using standard gear shifting for

the considered hybrid configuration. In the following sections, the results

are only evaluated on the basis of the average fuel consumption increase,

ǫTEPS and ǫOS , for all four driving cycles.

Study on hybridization ratio

In hybrid vehicles the size of the components, such as that of the engine

and of the electric motor, can significantly influence the control strategy.

The ratio between the maximum power of the electric motor and the max-

imum power of the powertrain is here referred to as hybridization ratio.

The hybridization ratio is further explained in Chapter 3. Other studies

focusing more on design optimization and optimal hybridization ratios are

[4] and [39]. A high hybridization ratio results in a large electric path

(electric motor and battery) and a small combustion engine. On the other

hand, a low hybridization ratio results in a small electric path and a large
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Table 2.7: The average relative increase in fuel consumption for the four driving
cycles, shown for different hybridization ratios. The top figure shows the relative
increase in fuel consumption for the TEPS and the bottom figure shows it for
the OS scheme.

powertrain parameters FC unlimited limited limited

(HR/Vd/Pemmax/Q0) increase w/o losses w/o losses w/ losses

10%/1.9l/11kW/2.9Ah
ǫOS [%] 18.6 18.1 17.7

ǫTEPS [%] 0.8 0.9 0.9

22%/1.6l/24kW/6.4Ah
ǫOS [%] 19.5 19.1 18.7

ǫTEPS [%] 0.6 0.9 0.8

30%/1.4l/33kW/9.0Ah
ǫOS [%] 19.7 19.2 18.8

ǫTEPS [%] 0.4 0.6 0.7

combustion engine. When the hybridization ratio is changed, the engine is

sized using the displacement volume, as defined in (A.18) and (A.19), and

the motor torque limits and power map are sized linearly with the maxi-

mum power. The battery capacity is related to the maximum power of the

battery. The capacity is therefore scaled to match the maximum power of

the electric motor. The mass of each of the components scales also with the

hybridization ratio. The total vehicle mass therefore increases when the

hybridization ratio is increased. However, the maximum power-to-weight

ratio of the vehicle is kept constant at 68 W/kg for different hybridization

ratios.

In this section, a range of hybridization ratios have been investigated,

namely HR ∈ {0.1,0.22,0.3}. For the lowest hybridization ratio, the en-

gine has a displacement of 1.9 liter, while it is 1.4 liter for the highest

hybridization ratio. The maximum power of the electric motor for the

lowest hybridization ratio is 11 kW and 33 kW for the highest hybridiza-

tion ratio.

Table 2.7 shows the average increase in fuel consumption ǫOS and ǫTEPS

for different hybridization ratios. The results show that the relative in-

creases in fuel consumption between the control schemes are insensitive to

the hybridization ratio. The proposed controller is therefore applicable to

different levels of hybridization without compromising performance.
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Study on reducing the number of gears

This section studies the number of gears in the gearbox in order to show

the sensitivity of different gear configurations on the performance of the

proposed controller. In this study the gear ratios have been kept constant

while the possible gears have been varied. The new configurations are

γ̃ ∈ {γ1,3,6, γ1,3,5, γ1,2,5, γ1,2,4, γ1,3,4} (2.104)

The results of the average relative increase in fuel consumption for the

four driving cycles are shown in Fig. 2.21. The results are shown with

the proposed strategy using the original gear configuration γ as reference.

The ranges of relative fuel consumption increase for the four cycles of each

gear configuration are also shown. Fig. 2.21 shows an increase of only a

2% in fuel consumption with a gearbox containing only the 1st, 3rd, and

6th gear from the original gearbox. Furthermore, the reduced gearbox

γ1,3,6 has less than 3% increase in fuel consumption than the optimally

controlled original gearbox. It is important to note that with only three

gears there will be drivability issues in many operating conditions. Thus,

this study only shows that the number of gears can be reduced in terms of

energy management and fuel consumption.

2.3 Summary and Discussion

In the first part of this chapter, the explicit solution to the optimal control

problem of a simplified speed independent unconstrained full hybrid elec-

tric powertrain has been derived and studied. The solution to the optimal

control problem shows how simple power limits determine the optimal op-

erating mode in the hybrid. The unconstrained problem has been extended

to the case where the electric motor and combustion engine have power

constraints. The derivation of the optimal control is similar to the uncon-

strained case. However, there are several additional power limits deciding

the optimal control.

The speed independent, constrained model has been further extended to

a speed dependent model. The powertrain parameters were fitted to mea-

sured data. The explicit solution to the problem can still be determined
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with several additional power limits. The charge sustaining optimal con-

trol map is shown for the CADC in terms of torque demand and rotational

speed. It shows that the optimal control can be expressed as a simple rule-

based map where all regions are defined by model parameters. However,

a computationally cheaper method is proposed where the Hamiltonian is

selectively minimized for a set of explicit optimal control candidates. The

benefit of this formulation is the simple structure and the low number of

possible minima.

The model has been validated using the original model that relies on

measured data. A comparison of the signals of the original and simplified

model by applying a feedforward signal has been carried out. It shows a

maximum error of 1.6% in the final state and 1.0% in the final cost for

three commonly used driving cycles. Despite the broad simplifications the

model captures the most important characteristics of the original hybrid

powertrain.

The simplified model is used in a causal energy management strategy,
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where the equivalence factor is updated by a causal controller. When using

the simplified model for causal control the fuel consumption is within 1.7%

from the global optimum for three driving cycles. The simplicity and the

high performance in fuel economy prove that the proposed strategy is well

suited for realtime-control of parallel hybrid electric powertrains. The

formulation of the simplified model further allowed to analytically derive

a saturation in the equivalence factor that can be used to implement an

anti-windup scheme in a causal equivalence factor controller.

The second part of this chapter shows a novel energy management strat-

egy for a torque-assist hybrid equipped with an automatic manual gearbox.

Typically, the torque split control is used for the purpose of energy man-

agement in parallel hybrid vehicles. However, a simple rule is used for the

torque split control while the gear shifting strategy is used as a supervi-

sory energy management controller to influence the battery state-of-charge.

The benefit of the proposed controller is the relatively low computational

requirement since an online optimization is only performed on the possible

gear choices.

The proposed controller is robust with regard to different hybridization

ratios. Moreover, it is also robust to the gear shifting limitations and

energy losses normally present in automated manual gearboxes. Finally,

the proposed control strategy can be used with a gearbox having only three

possible gears while keeping the overall fuel consumption within 3% from

the global optimum obtained using gearbox with 6 possible gears. The

number of gears is therefore not of significant importance when the gear

shifting strategy is used for energy management purposes. However, it is

important to note that the 6-speed gearbox is the most efficient option and

that it offers many benefits with respect to drivability.

The model is relatively simple and detailed drivability issues has not

been taken into account. Additional studies on drivability issues must

be performed in order to evaluate the usefulness of the proposed energy

management strategy.
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Design of Hybrid Electric Vehicles

Designing a hybrid electric vehicle involves two major tasks: first, siz-

ing the engine and electric components, and second, developing an energy

management strategy, which decides on the power distribution between the

electric motor and the combustion engine. The difficulty of this process

comes from the fact that these two issues are inherently and intimately

coupled. This interconnection has been emphasized in [40] for a series hy-

brid electric vehicle. The sizing problem includes several non-trivial con-

straints, such as packaging, cost, and availability limitations. The freedom

of choosing component sizes is therefore restricted. The sizing problem

is often solved intuitively while respecting all the constraints. The con-

trol design problem is better amenable to a systematic solution, but a

good design requires that both problems are solved as well as possible.

An overview of studies in the field of simulating the effects of sizing the

combustion engine and electric motor is shown in [41].

There exist two main approaches to the problem of optimal control/di-

mensioning of hybrid electric vehicles. The first one uses a parameterized

rule-based energy management strategy [42, 43, 44, 45, 46] and optimizes

the strategy parameters together with the engine and electric path size

for a given cycle [39, 47]. This approach allows fast evaluation of each

of the configurations. It can therefore be used easily in an optimization

environment that is based on evolutionary algorithms for example [48, 49].

However, due to the fact that the rule-based energy management strategy

is not optimal, the various configurations cannot be evaluated on the basis

of their optimal performance.
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The second approach to the control/dimensioning problem is to use an

optimal control approach. Since the energy management problem in a

hybrid electric vehicle is nonlinear and includes both state and input con-

straints, the optimal control problem can be solved using a dynamic pro-

gramming algorithm [22]. In [50] the authors used a simplified stochastic

dynamic programming approach to optimize a fuel cell hybrid vehicle. An-

other approach is to use Pontryagin methods for determining the optimal

control and thus the design parameters [51]. With the optimal control ap-

proach the energy management strategy is optimal for the given cycle, but

the computational requirement when solving the optimal control problem

is large, compared with that of a straightforward rule-based energy man-

agement strategy.

Sizing the hybrid powertrain involves finding the optimal size of the

internal combustion engine, the electric motor, and the battery. The rela-

tionship between the maximum power of the powertrain and the maximum

power of the electric motor can be described using the hybridization ratio

[36, 39, 50, 52] which is further explained in Section 3.1.2. A similar defi-

nition of degree of hybridization is used in [53] and of hybridization factor

in [54].

The first part of this chapter shows how the optimal hybridization ra-

tios differ for the full parallel hybrid compared to the torque-assist parallel

hybrid. The second part presents a computationally efficient method of

determining the optimal hybridization ratio in a torque-assist parallel hy-

brid.

3.1 Optimal Hybridization Ratio in Parallel

Hybrid Vehicles

The focus of this section is to quantify the hybridization needs, i.e. the

optimal dimensioning of the power train components, in two types of par-

allel hybrid electric vehicles while excluding the influence of the control

strategy on component sizing. The two types of parallel topologies are

the torque-assist hybrid, shown in Fig. 3.1, and the full hybrid, shown in
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Fig. 3.2. Note that the full hybrid requires an electrically controlled clutch

between the engine.

3.1.1 Hybridization Ratio

The total maximum power of the vehicle Ptotmax be the sum of the maxi-

mum output power levels of the two power sources

Ptotmax =max
ωc

{(Ticemax(ωc) + Temmax(ωc)) ⋅ ωc} (3.1)

where Ticemax = Temax − Te0 is the maximum output torque of the engine

and Temmax = Tmmax − Tm0 is the maximum output torque of the electric

motor. Let

ωo
c = argmax

ωc

{(Ticemax(ωc) + Temmax(ωc)) ⋅ ωc} (3.2)

then the hybridization ratio, as in [36], is defined as

HR = Pemmax(ωo
c)

Ptotmax

(3.3)

where Pemmax is the maximum output power of the electric motor. When

optimizing the hybridization ratio in the vehicle it is only interesting to

compare ratios with similar driving performance. Performance can be

defined in several ways such as time from 0 to 100 km/h, steady-state top

speed, and gradability. The time from 0 to 100 km/h is strongly related to

the maximum power-to-weight ratio [20]. This chapter therefore compares

different hybridization ratios with equivalent maximum power-to-weight

ratios (≈ 68 W/kg which corresponds to t0−100km/h ≈ 11.3s).

3.1.2 Model Scaling

The combustion engine model is scaled using the displacement volume

Vd according to the equations given in Appendix A. For all engine sizes

the bore-to-stroke ratio is kept constant and therefore the mean piston

speed for a given rotational speed changes with changing displacement.

In the electric motor model the maximum torque and electric-power map
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Γ(ωc, Tem) are scaled using a linear dependency on the rated maximum

power. Furthermore, the mass and inertia of the motor are also scaled using

a linear relationship on the maximum power. In the battery model, the

nominal open circuit voltage is kept constant while the internal resistance

and battery mass are scaled based on the battery capacity. The battery

is assumed to have a constant maximum-current-to-capacity ratio. The

desired maximum power of the battery, given by the maximum power of

the electric motor, together with the nominal voltage and the maximum-

current-to-capacity ratio therefore gives the capacity of the battery. Thus,

the battery capacity is scaled such that the maximum power corresponds

to the maximum electric power of the electric motor.

The different vehicle characteristics for different hybridization ratios are

shown in Fig. 3.4. Note that steady-state top speed vice
max is defined as

the top speed when only the combustion engine is used. The steady-

state top speed of vice
max ≈ 120 km/h for a hybridization ratio of 80% is

sufficient for most countries. Since the total vehicle mass is increasing

with increasing degree of hybridization, the total maximum power also

increases to maintain an equal power-to-weight ratio.

The gear ratio choice in the 6-speed manual gearbox is separated into

two schemes: fixed gear ratios and adjusted gear ratios. When referring

to fixed gear ratios the gear ratios in the gearbox are kept constant even

when changing the hybridization ratio. However, since the mean piston

speed changes with the hybridization ratio, keeping the gear ratios fixed

is undesirable.

When referring to the adjusted gear ratios the following simple rule for

choosing the gear ratios is used: the fifth gear γ(5) is optimized for vehicle

top-speed at the maximum engine speed. The sixth gear γ(6) is chosen

such that the vehicle speed is maximized when the engine speed is where

the engine reaches its maximum torque. The first gear γ(1) is chosen such

that the vehicle speed at engine idle (and with a closed clutch) is constant.

The remaining gears γ(2)− γ(4) are chosen with a constant ratio between

the gears γ(j)
γ(j+1)

= C. The different gear ratios for the fixed and the adjusted

schemes are shown in Fig. 3.3.
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3.1.3 Dynamic Programming: Results

To exclude the influence of the control strategy on component sizing an

optimal control method is used. By using this method all different designs

are evaluated based on their optimal performance and therefore compared

on an equal basis. This method has been used to determine the effect of

battery size on total energy losses in a fuel cell hybrid electric vehicle by

[55]. Since the considered system is highly nonlinear and is valid under

multiple complex constraints Bellman’s dynamic programming algorithm

[22] is a suitable method to compute the optimal control input. The dy-

namic programming algorithm is explained in detail in Chapter 4.

When using dynamic programming for solving the energy management

problem, for a given driving cycle and hybridization ratio, the results is an

optimal control signal map over time and state of charge. To get the opti-

mal state trajectory and the minimum CO2 emission, the optimal control

signal map is used to determine the torque split during a forward simula-

tion of the vehicle for the same drive cycle. Such an optimal control signal

map is shown in Fig. 3.5 for a torque-assist hybrid with 21.5% hybridiza-

tion. Figure 3.6 shows the optimal control signal map for a full hybrid with

21.5% hybridization. Note that the optimal strategy is very different in

the two types of hybrids. In the full hybrid there are long periods of pure

electric driving (green) while in the torque-assist hybrid the engine and

motor both supplies power (blue). The only time the torque-assist hybrid
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vehicle total mass, and steady-state top speed (for fixed and adjusted gear ratios)
with changing hybridization ratio.
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Table 3.1: Optimal hybridization ratio for the torque assist hybrid (TAo), the
full hybrid (Fo) and the difference (TAo

− Fo). The hybridization ratio where
the full hybrid has the same CO2 emission as the optimum of the torque assist
hybrid (FTAo) and the difference (TAo

− FTAo)

Hybridization Ratio (%)

Cycle TAo Fo TAo
−Fo FTAo TAo

−FTAo

NEDC 59.5 52 7.5 14.4 45.1

CADC U. 62 45 17 13.3 48.7

CADC R. 56 40 16 14.5 41.5

CADC H. 45 41.5 3.5 27.9 17.1

CADC 49 41.5 7.5 19.1 29.9

HWFET 61.5 59.5 2 49.2 12.3

FTP-72 65 51 14 14.2 50.8

US06 45.5 37 8.5 20.1 25.4

is using the motor solely is during the braking and starting phases. The ac-

tual optimal input trajectory is the torque split (color) exactly on the state

of charge trajectory (black line) in Fig. 3.5 and 3.6. The resulting CO2

emission for the 21.5% torque-assist hybrid is 144.2 g/km and for a full

hybrid with the same hybridization is 109.2 g/km which is approximately

24% less.

3.1.4 Comparison Between Two Types of Parallel Hy-

brid Vehicles

In order to see the influence of hybridization on CO2 emissions the torque

split problem is solved using dynamic programming for hybridization ratios

ranging from 5% to 75% with a step of 0.5%. The resulting CO2 emissions

for the eight different driving cycles are shown in Fig. 3.7. The resulting

optimal hybridization ratios and comparisons are summarized in Table 3.1.

Since the step in hybridization is 0.5% the numbers in Table 3.1 are only

a rough estimate.
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Figure 3.5: The optimal input map for the torque-assist hybrid with 21.5%
hybridization ratio driving the NEDC and the optimal state of charge trajectory
(black).
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Figure 3.7: Carbon dioxide emissions for the torque-assist hybrid (dashed) and
the full hybrid (solid).
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Since the optimal control in the full hybrid utilizes electric driving con-

siderably more than in the torque-assist hybrid the expectation is that the

need for hybridization is higher in a full hybrid than in a torque-assist

hybrid. The results in Fig. 3.7 and in Table 3.1 on the other hand show

that the optimal hybridization ratio in a full parallel hybrid is in fact at

lower levels of hybridization than in a torque-assist parallel hybrid. The

reason for this is the reduced degree of freedom in the torque-assist hybrid.

Electric driving is not beneficial since the engine cannot be decoupled and

has to be dragged by the electric motor. The reduced degree of freedom

makes the torque-assist hybrid a typical downsizing concept where most

of the reduction in fuel consumption when increasing hybridization ratio

is due to the downsized combustion engine. For the full parallel hybrid

the benefit also comes from the possibility of occasionally increasing the

load of the combustion engine in order to, later, be able to drive purely

electrically. The freedom of such shifts in operating points is reduced when

the hybridization ratio is increased too much. The clear difference in opti-

mal strategy has therefore also clear implications on optimal hybridization

ratio.
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3.2 Sizing Rule for the Torque-Assist Paral-

lel Hybrid

In this section we consider a torque-assist parallel hybrid electric vehicle.

The torque-assist hybrid configuration is shown in Fig. 2.16. This section

starts from the optimal control approach using the dynamic programming

method and, through analysis of the optimal strategies and optimal hy-

bridization ratios, develops a simple rule to size the considered hybrid

vehicle for a given driving cycle. The proposed sizing law is compared to

the results from dynamic programming for all the eight different driving

cycles in Appendix B. Two gear-ratio-definition schemes are used to ex-

amine the influence of the gear ratio choice on the proposed sizing law,

fixed and adjusted gear ratios. The adjusted gear ratios are defined us-

ing a simple rule described in Section 3.1.2 and the fixed gear ratios are

defined for a 1.6 liter combustion engine. Finally, a study on how several

parameters affect the results is shown in order to emphasize the robustness

of the proposed sizing rule.

3.2.1 Dynamic Programming: Analysis

This section presents the results obtained when the dynamic programming

algorithm, shown in Chapter 4, is used to optimize the energy management

strategy for different hybridization ratios with the same maximum power-

to-weight ratio. The dynamic programming algorithm has been used for

hybridization ratios between 5% and 85% using a discretization of 0.5%.

This section analyzes the dynamic programming results in order to estab-

lish a basis for developing a component sizing law. For a single vehicle

configuration the output of the dynamic programming algorithm is an

optimal torque split map over time and battery state-of-charge. For a vi-

sualization of such a map readers are referred to [4]. Once the optimal

torque split map is calculated, the map and the model is used in a forward

fashion to generate the optimal state-of-charge trajectory, fuel consump-

tion, and CO2 emission. The optimal CO2 emissions using fixed gear ratios

for different hybridization ratios for the driving cycles NEDC, CADC, and

FTP-72 as detailed in Appendix B are shown in Fig. 3.8. To analyze
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different hybridization ratios for NEDC, CADC, and FTP-72 using fixed gear
ratios.

Engine

Engine

Engine

Engine

E
le

c
tr

ic
m

o
to

r
E

le
c
tr

ic
m

o
to

r

E
le

c
tr

ic
m

o
to

r
E

le
c
tr

ic
m

o
to

r

Battery

Battery

Battery

Battery

Gearbox

Gearbox

Gearbox

Gearbox

Clutch

Clutch

Clutch

Clutch
F
in

a
l
d
ri

v
e

F
in

a
l
d
ri

v
e

F
in

a
l
d
ri

v
e

F
in

a
l
d
ri

v
e

Recharging Boosting

Recuperation Electric driving

Figure 3.9: Energy flow for the electric operating modes 1) Recharging 2)
Torque boosting 3) Recuperation 4) Electric driving. When operating in electric
driving and recuperation modes, there is also an energy flow to the engine due
to engine friction and the coupling between the motor and the engine.



3.2. Sizing Rule for the Torque-Assist Parallel Hybrid 64

the results shown in Fig. 3.8, the different electric operating modes must

be considered. The operating modes are different levels of torque boost-

ing, electric driving, brake energy recuperation, and battery recharging.

The energy flows for the various electric operating modes are shown in

Fig. 3.9. Torque boosting is when both the combustion engine and the

electric motor provide torque for traction (top right graph in Fig. 3.9).

Battery recharging corresponds to the mode when the combustion engine

is providing more torque than demanded by the driving cycle in order to

recharge the battery (top left graph in Fig. 3.9). Electric driving and brake

energy recuperation are the modes when only the electric motor is used

for negative torque (braking) and positive torque (traction), respectively

(shown in the bottom two graphs in Fig. 3.9). Note that in the electric

driving and recuperation modes some energy is always dissipated in the

engine due to friction.

The different levels of each mode are determined by the torque split

factor u. It is important to note that in this study the engine and electric

motor are always coupled and that the results of this study would change

significantly if a clutch was introduced between engine and motor.

The following analysis of the different modes focuses on the electric

path energy and in particular on the energy available for traction at the

crankshaft. For example, the recuperated braking energy has to go through

the electric path into the battery and then back again in order to be

referred to as energy available for traction.

The different energy flows in the electric path are shown in Fig. 3.10.

Each energy in Fig. 3.10 is the power accumulated during the driving cycle.

The battery average efficiency ηbatt, motor efficiency ηmot, and generator

efficiency ηgen are given by

ηbatt = Eout
el

Ein
el

ηmot = Eout
mech

Eout
el

ηgen = Ein
el

Ein
mech

(3.4)

if the final state-of-charge is the same as the initial state-of-charge, which

is the case when solving the dynamic programming problem described in

Chapter 4. The total electric path efficiency, calculated over a driving

cycle, is

ηepath = ηgen ⋅ ηbatt ⋅ ηmot. (3.5)
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Figure 3.10: Electric path energy flows.

Let us start by analyzing the modes that charge the battery, namely

recharging and brake energy recuperation. The amount of recuperated

brake energy is

Erec = −∑
0≤k<N
Td,k<0
Tm,k<0

Tm,k ⋅ ωc,k ⋅ ts. (3.6)

Note that the recuperated energy Erec might not be equivalent to the

amount of brake energy during a driving cycle, due to powertrain limita-

tions during hard braking phases (such as current and torque limitations).

The recuperated energy available for traction is then

Etra
rec = ηepath ⋅Erec (3.7)

since the recuperated energy has to go through the electric path (generator-

battery-motor) before being available for traction. The recharging energy

is

Erech = −∑
0≤k<N
Td,k>0
Tm,k<0

Tm,k ⋅ ωc,k ⋅ ts. (3.8)

Similarly to the recuperated energy, the recharged energy available for

traction is

Etra
rech = ηepath ⋅Erech (3.9)
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Figure 3.11: Torque profile for a part of the NEDC. Combustion engine maxi-
mum torque (dashed), driving cycle torque demand (solid), and the origin of the
required boost torque (gray area).

since the recharged energy has to go through the electric path before being

available for traction. To estimate the optimal hybridization ratio consider

the following definition. Let the minimum required boost energy for a given

driving cycle be

Ebst = ∑
0≤k<N

Td,k>Temax,k

ωc,k≥ωidle

(Td,k − Temax,k) ⋅ ωc,k ⋅ ts. (3.10)

Figure 3.11 shows the torque demand Tdem (solid line) at the end of the

NEDC. In addition, the maximum engine torque, for a rather small en-

gine, is shown (dashed line) together with the torque deficit (gray region)

which, multiplied with the crankshaft speed, yields the minimum required

boosting power.

The additional required energy from the electric path is the required

start-assist energy

Estart = ∑
0≤k<N
Td,k>0

ωc,k<ωidle

Td,k ⋅ ωc,k ⋅ ts. (3.11)

The operating points in terms of torque and speed from where the required

boost energy Ebst, required start-assist energy Estart, and recuperation

energy Erec originate are shown in Fig. 3.12.
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Figure 3.12: Speed-torque map over combustion engine and electric motor
torque limits, together with the regions from which the required boost energy
Ebst, required start-assist energy Estart and recuperation energy Erec originate.

It is now possible to define the theoretical minimum required electric

energy

Eel,req = Estart +Ebst, (3.12)

which is the smallest amount of electric energy that is required to complete

the driving cycle.

Consider the optimal CO2 emission for NEDC, CADC, and FTP-72

shown in Fig. 3.8. The main reason for the reduction in CO2 emission

is the fact that the engine is downsized when the hybridization ratio is

increased. This leads to a higher mean effective pressure and therefore a

higher efficiency. However, the energies in the electric path also affect the

CO2 emission. The theoretical minimum required electric energy, the recu-

perated energy available for traction, and the recharging energy available

for traction for the three driving cycles are shown in Fig. 3.13.

The recuperated energy available for traction Etra
rec (solid curve in Fig. 3.13)

increases with an increasing hybridization ratio due to three effects. First,

the electric path size increases and thus the peak charging power increases,

which allows for a more complete recuperation. Second, the total ve-

hicle mass increases and with it the energy to be recuperated potentially.

Third, the ICE drag torque decreases, which thus reduces the energy losses
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while braking. The theoretical minimum required electric energy1 Eel,req

(dashed line in Fig. 3.13) includes the two components, the start-assist

energy and the minimum required boost energy. The start-assist energy

increases slightly due to the increased mass of the vehicle. However, the

largest contribution to the increase in the minimum required electric en-

1Note that the theoretical minimum required electric energy with its components

start and boost energy requirement, is not the same as the actual electric energy used

by the optimal strategy. For low hybridization ratios the recuperated energy available

for traction is larger than the theoretical minimum required electric energy. The optimal

strategy thus uses the remaining recuperated energy either for torque boosting or for

electric driving.
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ergy Eel,req is due to the minimum required boost energy Ebst. The reason

for this fact is the decreasing maximum torque of the ICE when the hy-

bridization ratio is increased. The significant change in the slope of the

minimum electric energy required Eel,req for the NEDC at HR ≈ 0.55 is

due to the non-smooth torque distribution for this cycle. For the NEDC,

there are long constant vehicle speed regions with constant torque demand.

Consequently there is a threshold at which the maximum engine torque is

lower than the torque required at the constant vehicle speed regions of the

cycle. The slope of Eel,req in Fig. 3.13 thus changes since the torque deficit

has to be provided by the electric motor. A similar but much smaller ef-

fect can be observed in the FTP-72 cycle. The electric energy produced

by the ICE available for traction Etra
rech is shown by the dot-dashed curve

in Fig. 3.13.

The following observations can be made from the energy analysis shown

in Fig. 3.13. The recharging mode is used only when the recuperated

energy available for traction is lower than the minimum required electric

energy. When the recuperated energy cannot fulfill the minimum required

electric energy demand, only the difference must be recharged using the

ICE (see Fig. 3.13 at high hybridization ratios). The optimal strategy is

therefore to minimize the amount of necessary recharging using the ICE

as much as possible, since otherwise recharging would occur even for low

hybridization ratios.

The outline of the optimal CO2 emissions (shown first in Fig. 3.8) are

shown in Fig. 3.13 as areas shaded gray. The minimum CO2 emission

and the optimal hybridization ratio are very close to the point where the

recuperated energy available for traction Etra
rec is equal to the theoretical

minimum required electric energy Eel,req

HRo ≈HR∣Eel,req=Etra
rec

, (3.13)

in other words, where the recuperated energy only is used for the necessary

boosting when the engine is operating at maximum load. This observation,

which is a key result of this section, is also true for the remaining driving

cycles shown in Appendix B. The next section uses this property to define

a simple sizing algorithm for the considered hybrid electric vehicle.
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3.2.2 Equilibrium Point: Definition

Based on the observations and the analysis in the previous section, it is

now possible to define the equilibrium hybridization point and the corre-

sponding equilibrium point strategy as follows:

Definition

The equilibrium point strategy (EPS) is the energy management strategy in

a hybrid electric vehicle that uses all recuperated energy for vehicle starting

and torque-assist when the combustion engine operates at maximum load.

Definition

The equilibrium hybridization point (EP) for a hybrid electric vehicle on

a given driving cycle is the hybridization ratio (defined in Section 3.1.2)

where the equilibrium point strategy is charge-sustaining.

Note that the EPS is not charge-sustaining for hybridization ratios other

than EP. Using the definitions of EPS and EP, the equilibrium point is ex-

actly that hybridization ratio at which the required electric energy Eel,req

is equal to the recuperated energy available for traction Etra
rec

EP ≡HR∣Eel,req=Etra
rec

. (3.14)

One of the main results of this section is that the EP is close to the global

optimum. It is important to note that the EPS is an extremely simple and

rule-based energy management strategy, which can be written as

Te =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Td if 0 < Td ≤ Temax and ωc ≥ ωidle

Temax if Td > Temax and ωc ≥ ωidle

0 otherwise

(3.15)

Tm =max(Td − Te, Tepathmin). (3.16)
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Moreover, its simplicity allows the EP to be found using a simple iterative

procedure of vehicle model scaling and simulation. One simple algorithm

for finding the EP is the following:

1. Initialize a hybrid electric vehicle model with the hybridization ratio

HR =HR0 (using a constant power-to-weight ratio)

2. Simulate the given driving cycle using the equilibrium-point strategy

3. If ξN > ξ0

then increase HR and go to step 2

If ξN < ξ0

then decrease HR and go to step 2

If ξN = ξ0

then EP =HR

Note that if, due to vehicle limitations, the equilibrium point cannot be

found within the feasible range of the hybridization ratios the final state-

of-charge will differ from the initial state-of-charge for the feasible hy-

bridization ratios. If this is the case, the resulting fuel consumption/CO2

emission must be corrected for the stored/missing energy in the battery.

This can be done by estimating the equivalence factor [5] using the average

efficiencies of the electric path and the combustion engine.

3.2.3 Equilibrium Point: Results

As shown in Section 3.2.1 the EP is close to the optimal hybridization

ratio. This section shows the EP and the optimal CO2 emissions for all

eight driving cycles described in Appendix B. The EP is compared to the

global optimum obtained by DP for three different cases. First the EP is

compared to the global optimum when the gear ratios are kept constant

while the hybridization ratio is changed. Secondly, a comparison is made

when the gear ratios are adjusted to the specific engine size, as mentioned
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Figure 3.14: The optimal CO2 emissions (using fixed gear ratio) determined by
DP (solid black) for eight different driving cycles together with the EP solution
(circle) for each of the driving cycles.

in Section 3.1.2. Third, the optimal hybridization ratios using the rule-

based gear switching strategy for adjusted gear ratios are compared to the

optimal hybridization ratios obtained when the gear switching is optimal2.

Fixed Gear Ratio

This section shows the equilibrium point for the eight cycles using fixed

gear ratios. The optimal CO2 emissions for various hybridization ratios

and the EP are shown in Fig. 3.14. There is a clear optimum for each of

the eight driving cycles, and the EP solution is close to the optimal hy-

bridization ratio. The absolute values for the equilibrium point, together

with the optimal hybridization ratios, are shown in Table 3.2. Also, the

relative hybridization ratio error ehr between EP and the optimal HR is

shown in Table 3.2. When considering fixed gear ratios, the equilibrium

2The optimal gear shifting is determined by extending the DP algorithm described

in Chapter 4 to two input variables, namely torque split and gear number.
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Table 3.2: Results: fixed gear ratios

Drive cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 61.5 61.3 -0.3 115.0 115.0 0.0

CADC Urb. 64.0 64.1 0.1 123.9 123.7 -0.1

CADC Rd. 56.0 52.8 -6.2 119.5 119.8 0.3

CADC Hwy. 45.5 40.0 -13.7 184.4 185.3 0.5

CADC 49.5 46.3 -7.0 158.0 158.5 0.3

HWFET 61.5 58.3 -5.5 116.1 116.4 0.3

FTP-72 65.5 65.3 -0.3 105.3 105.3 0.0

US06 43.5 43.3 -0.4 166.1 166.3 0.1

point is a lower estimate for the optimal hybridization ratio. The relative

error is less than 14% for all driving cycles, which shows that the EP can

be used for the estimation of the optimal hybridization ratio.

Table 3.2 also shows the absolute value of the CO2 emission for the

optimal HR and the CO2 emission for the EP, together with the relative

error eco2
. For all driving cycles the CO2 emission of the EP is extremely

close to the CO2 emission of the optimal HR. Clearly, for all driving cycles,

the relative error between the CO2 emission of the EP and the optimal HR

is less than 0.5%.

It is important to note that, in Table 3.2, the proposed method appears

to be better than dynamic programming for the CADC Urban driving

cycle. There are two reasons for this effect. First, the hybridization ratios

investigated in the dynamic programming analysis might not be exactly the

true optimum due to the discretization of 0.5%. In contrast, the proposed

method finds a hybridization ratio in a continuous interval. Secondly, the

discretization of the continuous state and input spaces, when using the

dynamic programming algorithm, always causes certain numerical errors.

An additional dynamic programming optimization for CADC Urban with

a hybridization of 64.1%, 3001 elements in the state grid, and 201 elements

in the input grid shows an optimal CO2 emission of 123.7 g/km, which is

equivalent to the EP solution shown in Table 3.2.
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Figure 3.15: The optimal CO2 emissions (using adjusted gear ratio) determined
by DP (solid line) for eight different driving cycles together with the equilibrium
point (circle) for each of the driving cycles.

Adjusted Gear Ratio

This section shows the results obtained when adjusting the gear ratios for

different hybridization ratios. Figure 3.15 shows the equilibrium point and

the optimal CO2 emission using the same representation as in Fig. 3.14.

As mentioned earlier, the bore-to-stroke ratio is kept constant when the

displacement is varied. For small engine displacements the speed range of

the engine is therefore higher than for engines with larger displacements.

When using fixed gear ratios in the gearbox, the rotational speed of the

engine is equal for different engine sizes. Small engines therefore have rela-

tively low rotational speeds compared to their operating range. Also, large

engines have relatively high rotational speeds compared to their operating

range when fixed gear ratios are used. As Fig. 3.15 shows, the CO2 emis-

sion lines therefore turn out to be flatter when adjusted gear ratios are

used than for the fixed gear ratios shown in Fig. 3.14.

For the driving cycles CADC, CADC Highway, and US06 the optimal
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Table 3.3: Results: adjusted gear ratios

Driving cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 76.5 79.3 3.5 124.0 124.5 0.4

CADC Urb. 71.0 78.3 9.3 143.3 147.4 2.7

CADC Rd. 68.0 68.4 0.5 127.5 127.5 0.0

CADC Hwy. 37.0 36.8 -0.5 184.3 184.3 0.0

CADC 54.5 54.8 0.6 162.3 162.3 0.0

HWFET 77.5 78.8 1.6 124.1 124.1 0.0

FTP-72 77.0 80.6 4.5 121.6 122.6 0.8

US06 49.0 49.6 1.3 167.8 167.7 0.0

HR does not change significantly when adjusted gear ratios are considered.

However, for the remaining driving cycles the optimal hybridization is

shifted towards higher levels.

Table 3.3 shows the EP solution, the optimal HR, and the relative HR

error ehr. Note the largest relative HR error of ehr = 9.3% for the CADC

Urban driving cycle. The reason for this is that, occasionally, electric driv-

ing is considered optimal even though the engine is dragged. This results

in higher required electric energy and therefore in a shift of the calculated

optimum towards lower levels. However, this effect is only present for ex-

tremely low demanding driving cycles. The CO2 emission prediction for

the CADC Urban, however, is only 2.7% from the global optimum.

The low relative error in hybridization ratio of less than 5%, for most

cycles indicates that the EP is in fact closer to the optimal HR than when

fixed gear ratios are considered. Moreover, as the right part of Table 3.3

shows, when the CO2 emissions are considered, the EP predicts the optimal

CO2 emission with practically no relative error for most driving cycles.

In summary, especially for predicting the optimal CO2 emission for a

given driving cycle, the method of using the EP and EPS is a viable ap-

proach for estimating the global optimal solution. The small relative error

in the optimal CO2 emission prediction for CADC Urban indicates that

the optimum is relatively flat and that the larger relative error in the
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Table 3.4: HRo [%] optimal gear shifting (adjusted gear ratios)
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rule-based 76.5 71.0 68.0 37.0 54.5 77.5 77.0 49.0

optimal 75.5 91.0 61.5 39.5 50.5 73.0 85.5 47.5

prediction of the optimal hybridization ratio is not significant.

Optimal Gear Shifting

Thus far, the gear was chosen using a simple speed-dependent rule-based

strategy. It is therefore interesting to investigate whether optimal gear

shifting would significantly change the optimal hybridization ratio. In

this section, the gear is included as an additional input variable for the

DP algorithm to decide. When the gear is included in the algorithm,

the computational burden is multiplied by the number of possible gear

selections.

The optimal hybridization ratio for rule-based gear shifting, together

with the optimal hybridization ratio when optimal gear shifting3 is used,

are shown in Table 3.4. On average for all eight driving cycles the CO2

emission is 17% lower when using optimal gear shifting. The difference

of the optimal HR using rule-based gear shifting and using optimal gear

shifting is relatively small for most driving cycles. In other words, the

equilibrium point is close to the optimal hybridization ratio even when

the gear shifting is optimal. Note that for CADC Urban the optimal

hybridization ratio changes significantly due to the increased amount of

electric driving. For this extremely low demanding driving cycle the engine

is only used to deliver a small amount of energy such that the final battery

state-of-charge is equivalent to the initial state-of-charge. The majority of

3Note that the CO2 emissions are different when optimal gear shifting is used since

it offers a large potential of saving fuel.
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the driving cycle is therefore driven purely electrically.

3.2.4 Parameter Sensitivity Analysis

The results in Section 3.2.3 are specific for the considered vehicle, i.e., a

power-to-weight ratio of 68 W/kg, a nominal vehicle mass of m0 ≈ 1500 kg,

and using no auxiliary electric power demand. This section explores the

sensitivity of the results with respect to these parameters. First a variation

on the power-to-weight ratio is explored, secondly a study of the sensitivity

of m0 on the results is performed. Finally, the effects of the auxiliary

electric power demand on the optimal hybridization are investigated. All

results in this section are produced by using the adjusted gear ratios.

Power-To-Weight Variation

Thus far, a constant power-to-weight ratio of 68 W/kg has been used. It

is important to also verify the proposed method using different power-

to-weight ratios. Table 3.5 shows the results of the proposed method,

and using dynamic programming, for a power-to-weight ratio of 81 W/kg.

Table 3.6 shows, in a similar way, the results of the proposed method for

a power-to-weight ratio of 57 W/kg.

Note that when using a relatively low ratio of 57 W/kg the largest

relative error in hybridization ratio is found for the CADC Highway driving

cycle. The reason for the EP not corresponding to the optimum HR for

this cycle is that the battery state-of-charge reaches its boundaries during

this driving cycle. The method of finding the equilibrium point described

in this section does not include the state-of-charge boundaries and is thus

unable to make the necessary corrections. The dynamic programming

solution on the other hand predicts and accounts for the state-of-charge

limits.

The effect of the increased electric driving for extremely low demanding

driving cycles such as CADC Urban, mentioned in Section 3.2.3, is similar

also for different power-to-weight ratios. This can be seen by the high

relative error for CADC Urban in Tables 3.5 and 3.6.
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Table 3.5: Power-to-weight ratio 81 W/kg (adjusted gear ratios)

Driving cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 80.0 82.6 3.2 131.3 131.9 0.4

CADC Urb. 74.0 81.4 9.1 155.4 160.0 2.9

CADC Rd. 71.5 73.5 2.7 134.6 134.6 0.0

CADC Hwy. 49.5 49.3 -0.4 189.5 189.5 0.0

CADC 60.5 63.0 4.0 168.9 168.9 0.0

HWFET 81.5 82.3 0.9 129.9 129.8 0.0

FTP-72 80.0 83.5 4.2 130.4 131.4 0.8

US06 56.0 57.9 3.2 175.0 175.1 0.0

Table 3.6: Power-to-weight ratio 57 W/kg (adjusted gear ratios)

Driving cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 72.5 75.1 3.5 118.3 118.9 0.4

CADC Urb. 66.5 74.5 10.7 134.0 137.4 2.5

CADC Rd. 62.0 62.1 0.1 122.0 122.0 0.0

CADC Hwy. 29.5 26.3 -12.4 181.8 181.8 0.0

CADC 43.5 43.6 0.1 157.9 157.9 0.0

HWFET 72.0 74.4 3.3 119.8 119.9 0.1

FTP-72 73.0 77.1 5.3 114.7 115.6 0.8

US06 38.5 38.3 -0.5 163.2 163.1 0.0
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Table 3.7: 150 kg lighter vehicle (adjusted gear ratios)

Drive cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 75.0 78.6 4.6 116.3 116.9 0.5

CADC Urb. 69.0 77.8 11.3 132.2 136.5 3.2

CADC Rd. 67.5 67.8 0.5 119.5 119.5 0.0

CADC Hwy. 35.0 33.9 -3.1 176.5 176.6 0.0

CADC 52.5 52.9 0.7 154.1 154.1 0.0

HWFET 75.0 78.3 4.2 117.7 117.8 0.1

FTP-72 76.0 80.1 5.1 113.2 114.3 1.0

US06 48.0 48.6 1.3 158.9 158.8 0.0

However, for most driving cycles the equilibrium point corresponds well

to the global optimal hybridization ratio and the CO2 emission of the EP

is extremely close to the global optimum calculated using DP.

Vehicle Mass Variation

In contrast to the previous section where the power-to-weight ratio is var-

ied for a constant nominal vehicle mass m0 ≈ 1500 kg this section deals

with a varying nominal vehicle mass for a constant power-to-weight ratio,

namely 68 W/kg. Table 3.7 shows the results of the EP and the optimum

determined by DP when a nominal vehicle mass of m0 ≈ 1350 kg is used.

Similarly, Table 3.8 shows the resulting EP and the optimum determined

by DP when a nominal vehicle mass of m0 ≈ 1650 kg is used. There is

a slight indication that the method performs better in a heavier vehicle

since the relative errors are slightly higher in Table 3.7. In general, how-

ever, the proposed method of using the EP as an estimate for the optimal

hybridization ratio is not sensitive to changes in the nominal vehicle mass.

Influence of Auxiliary Power Demand

The influence of the auxiliary electric power demand on the optimal hy-

bridization ratio was investigated by varying the auxiliary power demand
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Table 3.8: 150 kg heavier vehicle (adjusted gear ratios)

Drive cycle
HR [%] CO2 [g/km]

HRo EP ǫhr[%] COo
2 COep

2 ǫco2
[%]

NEDC 78.0 79.8 2.2 131.7 132.1 0.3

CADC Urb. 71.0 78.6 9.7 154.4 158.1 2.3

CADC Rd. 68.5 68.9 0.5 135.4 135.4 0.0

CADC Hwy. 39.0 38.8 -0.6 192.2 192.2 0.0

CADC 55.5 56.2 1.2 170.4 170.4 0.0

HWFET 79.0 79.1 0.2 130.6 130.5 0.0

FTP-72 77.5 81.0 4.3 129.9 130.7 0.6

US06 50.0 50.3 0.6 176.7 176.7 0.0

Paux ∈ {0, 500, 1000, 1500, 2000} W and determining the optimal hybridiza-

tion ratio for each level of power demand. The dependency of the optimal

hybridization ratio HRo on the auxiliary power Paux was thereafter fitted

linearly, for each driving cycle, using a least squares method. The resulting

sensitivity of the optimal hybridization ratio to the auxiliary power ∂HRo

∂Paux

is shown in Table 3.9 for fixed and adjusted gear ratios. The average sensi-

tivity of the optimal hybridization ratio with respect to the auxiliary power

demand Paux of all driving cycles is -1.2 %/kW when fixed gear ratios are

used. Moreover, the average sensitivity is -3.9 %/kW when adjusted gear

ratios are used. These results show that the optimal hybridization ratio

decreases only slightly when the auxiliary power demand is increased. This

low dependency on the auxiliary electric power demand is a confirmation

of the fact that the hybridization ratio found using the method described

in this section also is close to the optimum for varying levels of auxiliary

power demand.

3.3 Summary and Discussion

We can conclude that for all eight driving cycles the optimal hybridization

is lower in a full parallel hybrid than in a torque-assist parallel hybrid. The

difference in hybridization ratio between the optimal torque-assist hybrid

and the full hybrid that has the same fuel consumption and CO2 emission



81 Chapter 3 Design of Hybrid Electric Vehicles

Table 3.9: HRo sensitivity on auxiliary power ∂HRo

∂Paux
[%/kW]
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fixed -1.1 -3.4 -1.0 -0.5 -0.6 -0.7 -1.7 -0.2

adjusted -2.5 -5.4 -4.8 -0.5 -3.6 -4.1 -4.3 -5.9

can be as high as 51% (see FTP-72 in Table 3.1 and Fig. 3.7). What is

more, the difference in CO2 emissions between the torque-assist hybrid and

the full hybrid increases with decreasing hybridization ratio. For a 20%

hybrid driving the NEDC there is a 27% reduction of the fuel consumption

when including an extra, electronically controlled, clutch. Since the model

does not consider any energy losses during clutching and during starting of

the combustion engine, the results of the full parallel hybrid is optimistic.

This study assumes a predefined gear switching strategy and fixed gear

ratios therefore future work will investigate the gear switching strategy’s

and ratios’ influence on the results. Future work also include an analysis

of the phenomenons that explain why the hybridization requirements in a

full hybrid is smaller than in a torque-assist hybrid.

The proposed method of sizing a torque-assist parallel hybrid electric ve-

hicle by finding the equilibrium point yields the optimal fuel consumption/CO2

emission within 2.7% of the global optimum for eight different, commonly

used, drive cycles. For most of the cycles the proposed method performs

even better, less than 1%.

The reason that the method does not perform equally well on the CADC

Highway cycle is that the state-of-charge boundary of the battery is reached

and that the dynamic programming algorithm overcomes this problem

whereas the proposed algorithm for finding the equilibrium point cannot

do this without modifications.

The estimation is robust to the definition of the gear ratios since it is

valid both when considering fixed gear ratios for different engine sizes and

when considering adjusted gear ratios for different engine sizes. Further-
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more, when using a given gear-switching strategy the equilibrium point

is close to the optimal hybridization ratio using optimal gear switching.

These results show that proposed method is robust with respect to the

gear-shifting strategy. The parameter sensitivity analysis shows that the

proposed method is robust to changes in power-to-weight ratio and nom-

inal vehicle mass. The study on auxiliary power variations shows a very

small influence on the optimal hybridization.

Future work includes deeper analysis and investigations on the exact

reason why the auxiliary electric power demand has a small effect on the

optimal hybridization ratio. Future work also includes similar investiga-

tions of other hybrid powertrain structures. In particular the question

must be answered if the proposed approach of finding a sizing rule can be

applied in other cases as well.



Chapter 4

Dynamic Programming

In this chapter a special class of optimal control problems is studied,

namely problems with fixed final time and a partially constrained final

state. Furthermore, the considered problems are assumed to include state

constraints and input constraints. What is more, the dynamic systems in

this study include only a single state variable, and the disturbances are

assumed to be perfectly known. In summary, this problem can be written

as an optimal control problem

min
u(t)

J(u(t)) (4.1)

s.t.

ẋ(t) = F (x(t), u(t), t) (4.2)

x(0) = x0 (4.3)

x(tf ) ∈ [xf,min, xf,max] (4.4)

x(t) ∈ X (t) (4.5)

u(t) ∈ U(t), (4.6)

where

J(u(t)) = G(x(tf)) +∫ tf

0
H(x(t), u(t), t)dt (4.7)

is the cost functional. This section gives a brief overview of the determin-

istic dynamic programming algorithm [22], which throughout this study is

referred to as dynamic programming (DP). Since dynamic programming

is a numerical algorithm used here to solve a continuous control problem,

the continuous-time model (4.2) must be discretized. Let the discrete-time
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model be given by

xk+1 = Fk(xk, uk), k = 0,1, . . . ,N − 1 (4.8)

with the state variable xk ∈ Xk and the control signal uk ∈ Uk. Furthermore,

assume that the disturbance is perfectly known in advance and at every

time instance k.

4.1 Basic Algorithm

Let π = {µ0, µ1, . . . µN−1} be a control policy. Further let the discretized

cost of (4.7) using π with the initial state x(0) = x0 be

Jπ(x0) =gN(xN) + φN (xN) . . .
+

N−1∑
k=0

hk(xk, µk(xk)) + φk(xk), (4.9)

where gN(xN) + φN(xN ) is the final cost. The first term gN(xN) corre-

sponds to the final cost in (4.7). The second term is the additional penalty

function φN (xN) forcing a partially constrained final state (4.4). The

function hk(xk, µk(xk)) is the cost of applying µk(xk) at xk, according to

H(x(t), u(t), t) in (4.7). The state constraints (4.5) are enforced by the

penalty function φk(xk) for k = 0,1, . . . ,N − 1.

The optimal control policy πo is the policy that minimizes Jπ

Jo(x0) =min
π∈Π

Jπ(x0), (4.10)

where Π is the set of all admissible policies.

Based on the principle of optimality [22], dynamic programming is the

algorithm which evaluates the optimal cost-to-go1 function Jk(xi) at every

node in the discretized state-time space2 by proceeding backward in time:

1The terms cost-to-go and optimal cost-to-go are used equivalently throughout this

chapter referring to optimal cost-to-go. It is important to note that the term optimal

is used in the sense of optimality achievable despite the numeric errors.
2The following notation is used: x

i
k denotes the state variable x in the discretized

state-time space at the node with time-index k and state-index i, while xk denotes a

(state-)continuous state variable at time k.
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1. End cost calculation step

JN (xi) = gN(xi) + φN(xi) (4.11)

2. Intermediate calculation step for k = N − 1 to 0

Jk(xi) = min
uk∈Uk

{hk(xi, uk) + φk(xi) . . .
+ Jk+1(Fk(xi, uk))} (4.12)

The optimal control is given by the argument that minimizes the right-

hand side of equation (4.12) for each xi at time index k of the discretized

state-time space.

The cost-to-go function Jk+1(x) used in (4.12) is evaluated only on dis-

cretized points in the state space. Furthermore, the output of the model

function Fk(xi, uk) is a continuous variable in the state space which can be

between the nodes of the state grid. Consequently, the last term in (4.12),

namely Jk+1(Fk(xi, uk))must be evaluated appropriately. There exist sev-

eral methods of finding the appropriate cost-to-go function Jk+1(Fk(xi, uk))
such as using a nearest-neighbor approximation or using an interpolation

scheme. Throughout this study, linear interpolation of the cost-to-go func-

tion Jk+1 is used to account for the problem of the discretized state space.

The output of the algorithm (4.11)–(4.12) is an optimal control signal

map. This map is used to find the optimal control signal during a forward

simulation of the model (4.8), starting from a given initial state x0, to

generate the optimal state trajectory. In the map the control signal is only

given for the discrete points in the state-space grid. The control signal

is therefore interpolated when the actual state does not coincide with the

points in the state grid.

4.2 Numerical Issues on the Boundary Line

When implementing the algorithm numerical errors must be considered

and minimized. One issue to consider is the definition of the cost function

for infeasible states and inputs. Infeasible states and inputs are of course
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infinitely expensive and should therefore have infinite cost φk(xi /∈ Xk)→∞
for k = 1, . . . ,N since the defined objectives (such as final state constraints

and model limitations) cannot be achieved. When using infinite cost for

such states, some substantial numerical errors occur due to the discretiza-

tion of time and state space.

Define the set of reachable states Ωi
k over one time-step by using all

admissible inputs and starting at a given state xi at time k

Ωi
k = {x∣x = Fk(xi, u) ∀ u ∈ Uk}. (4.13)

Consider the grid point/time step domain in Fig. 4.1 (bottom) and the fact

that the DP algorithm is calculating the cost-to-go for the state xi at time

k+1. If an infinite cost was used for infeasible states together with a linear

interpolation, the feasible part of Ωi
k+1 would use an interpolation between

an infinite cost-to-go Jk+2(xi) and a finite cost-to-go Jk+2(xi+1). As a

result, the cost-to-go for xi at time k + 1 becomes infinite, i.e., Jk+1(xi) →
∞, although the grid point {k + 1, i} lies perfectly within the feasible

domain.

Now consider the algorithm at time k and the step of calculating the

cost-to-go for the state xi. For the same reason as for the time k + 1,

the cost-to-go Jk(xi) will be infinite since Jk+1(xi) was calculated before

to be infinite. When these effects continue and the algorithm proceeds

backwards in time, the calculated infeasible region will grow into the actual

feasible region.

A first step to tackle this problem is to use a big, but finite value for the

cost instead of infinity φk(xi /∈ Xk) = J∞ for k = 1, . . . ,N . This big, finite

value J∞ must be bigger than the maximum value of the cost-to-go func-

tion Jk(xi). Using a finite cost value for infeasible domains improves the

solution, but the effect shown above for infinity cannot be completely elim-

inated close to the boundary line. Throughout this chapter, the method

of using a finite cost value J∞ for infeasible domains together with the

algorithm in Section 4.1 is referred to as basic DP.

Due to the interpolation between feasible and infeasible states, the in-

finite gradient at the boundary line is being blurred. This is shown in

Fig. 4.2 for the fishing problem (introduced later), where the dashed line
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Figure 4.1: Schematic overview of an optimal control problem solved using the
dynamic programming algorithm. The figure shows the state variable boundaries
for the dynamic programming algorithm for the entire problem domain (top) and
in the grid point/time step domain (bottom).
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Figure 4.2: Section of the cost-to-go function Jk(x) at time index k such that
t = 180 h for the fishing problem. State-space discretization is ∆x = 10, penalty
for infeasible states is set to J∞ = 1200.

is the cost-to-go computed by DP with a finite cost for infeasible states,

i.e., the basic DP method. The solid line corresponds to the cost-to-go

from DP improved by the new method introduced in this chapter. As a

result of the blurred cost-to-go function, the optimal state trajectory can-

not approach the boundary line since the computed cost-to-go near the

boundary line is too high. Figure 4.3 shows the corresponding state tra-

jectory (dashed) being deviated by this effect. The solid line is the state

trajectory from DP improved by the new method.

4.3 Boundary-line method

The method presented in this chapter tackles the problem of a blurred

gradient at the boundary line due to interpolation of the cost-to-go between

a feasible and an infeasible state-grid point. Therefore, the boundary line

between feasible and infeasible regions must be found. This is shown in

the first part of this section. The second part shows a simple, yet powerful



89 Chapter 4 Dynamic Programming

time t [h]

st
a
te

va
ri

a
b
le

x
[-
]

boundary-line DP

basic DP

x0

xf

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

900

1000

Figure 4.3: State trajectories from DP for the fishing problem. The solid
line shows the result based on the boundary-line method. The dashed line is
the state trajectory resulting from the basic DP. The dotted vertical line at
t = 180 h indicates the time where Fig. 4.2 is evaluated. State-space discretization
is ∆x = 10, penalty for infeasible states is set to J∞ = 1200.

method to improve the DP by accounting for this boundary line. This

improved DP is referred to as boundary-line DP.

Throughout this section, equation (4.8) is reformulated as

xk+1 = fk(xk, uk) + xk, k = 0,1, . . . ,N − 1 (4.14)

where

fk(xk, uk) = Fk(xk, uk) − xk. (4.15)

4.3.1 Computation of the Boundary Line

There exist infeasible regions in the state-time space of an optimization

problem with fixed final time and a partially constrained final state if the

state dynamics are bounded. Since the dynamic system is assumed to be

one-dimensional, there exist only two infeasible regions, namely an upper
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and a lower region. This is depicted in Fig. 4.1. In this section, the lower

boundary line between the feasible and the infeasible region is derived.

The upper boundary line is found analogously.

The partially constrained final state is given by (4.4). The lower bound-

ary line is defined as the lowest state xk,low at each time instance k that

allows achieving the minimal final state xf,min. Note that the lower bound-

ary line is only discretized in time, i.e., it is continuous in the state variable.

The lower boundary line can be evaluated by sequentially going backward

in time from k = N − 1 to k = 0 and solving the following optimization

problem at each time instance k

min
xk,low,uk

xk,low (4.16)

s.t.

fk(xk,low, uk) + xk,low = xk+1,low (4.17)

uk ∈ Uk (4.18)

xk,low ∈ Xk. (4.19)

The problem is initialized with xN,low = xf,min. At each time-step, uk and

xk,low are the only unknowns, while xk+1,low is a parameter at time k. By

solving (4.17) for xk,low and inserting it in (4.16) the following, more direct

problem is obtained

max
xk,low ,uk

fk(xk,low , uk) (4.20)

s.t.

fk(xk,low , uk) + xk,low = xk+1,low (4.21)

uk ∈ Uk (4.22)

xk,low ∈ Xk. (4.23)

If the state is assumed to be unconstrained, i.e., (4.23) is omitted, the

following formulation is equivalent

xk,low = xk+1,low − max
uk∈Uk

fk(xk,low , uk) (4.24)

Equation (4.24) is a so-called fixed point problem (x = f(x)), where xk,low

is the unknown.

The lower boundary line is finally found by the following algorithm:
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1. Initialize with the lower bound of the partially constrained final state

xk,low = xf,min.

2. Proceed backward in time for k = N − 1, . . . , 0

(a) Solve the fixed point problem (4.24) without state constraints

as shown below in (4.25)–(4.27).

(b) Check wether the solution found respects the state constraints.

(c) If the constraints are not respected, solve the general problem

(4.20)–(4.23).

(d) Store the solution xk,low with the respective minimizer uk,low

and the cost-to-go Jk,low .

The fixed point problem (4.24) of time step k without state constraints

can be solved with the following algorithm3:

1. Initialization:

x
j=0
k,low = xk+1,low (4.25)

2. Iteration over j until a specified tolerance is achieved:

x
j+1
k,low = xk+1,low − max

uk∈Uk

{fk(xj
k,low, uk)} (4.26)

This algorithm converges if

RRRRRRRRRRRR
∂

∂x
j
k,low

max
uk∈Uk

{fk(xj
k,low , uk)}RRRRRRRRRRRR < 1. (4.27)

Note that the algorithm mentioned above (4.25)–(4.27) finds the limit value

xk,low in the first iteration if the update function fk is independent of the

state variable xk.

3The top right index of x is the iteration index, here. It is not the index of the

state-grid as used in the rest of the chapter.
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Figure 4.4: Interpolation of Jk+1(x) near the boundary line. The dashed lines
illustrates the (linearly) interpolated values including the boundary line. The
dotted line illustrates the interpolation used by the basic algorithm.

4.3.2 Interpolation Near the Boundary Line

It is assumed that the state boundary lines xk,low (and xk,high) shown in

Fig. 4.1 with their corresponding cost-to-go Jk,low (and Jk,high) along the

boundary line have been calculated prior to the DP algorithm. Therefore,

when the set Ωi
k contains the boundary it is possible to interpolate be-

tween the exact boundary and a feasible state grid point, as illustrated in

Fig. 4.4 with the solid and the dashed lines. The dotted line illustrates

the interpolation by the basic algorithm at the boundary between feasible

and infeasible regions.

Consider the DP algorithm to evaluate the cost-to-go for the state-grid

point xi at time k + 1 (see Fig. 4.1, bottom). Starting from state xi, the

state achieved at the end of this time-step

xk+2 = fk+1(xi, uk+1) + xi ∈ Ωi
k+1 (4.28)

can reach the feasible as well as the infeasible region. The corresponding
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cost-to-go Jk+2(xk+2) is evaluated by interpolation between Jk+2(xi+1)
and Jk+2,low if the state xk+2 is above or on the boundary line xk+2,low.

Otherwise, the cost-to-go is set to infinity or to the big, finite value J∞.

This procedure allows maintaining the same accuracy close to the bound-

ary line as achieved within the feasible domain.

The application of the optimal control signal map in the forward sim-

ulation which is mentioned in Section 4.1 is improved by the boundary

line analogously. Since the control signal on the boundary line was evalu-

ated before, interpolation of the control signal is carried out between the

grid points of the feasible domain or between the feasible domain and the

boundary line.

4.4 Example: Lotka-Volterra Fishery

This section studies a well-known optimal control problem, namely the op-

timal fishing in a Lotka-Volterra fish population [56]. The fishing problem

is chosen because it has an analytic solution.

4.4.1 Continuous-Time Problem

The continuous-time dynamic Lotka-Volterra system is

ẋ(t) = 2

100
⋅ (x(t) − x2(t)

1000
) − u(t), (4.29)

where the state variable x(t) is the amount of fish in a lake, the con-

trol signal u(t) is the fishing rate. The control signal u(t) is limited

to u(t) ∈ [0, 10]. For the considered system the state x(t) is limited to

x(t) ∈ [0, 1000] since

lim
t→∞

u(t)=0

x(t) = 1000. (4.30)

The objective is to maximize the amount of fish caught, which is equivalent

to minimizing

J = ∫ tf

0
−u(t)dt (4.31)
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within a fixed time tf while the minimal amount of fish in the population

at the final time must be xf,min = 750. This can be stated as the optimal

control problem

min
u(t)
∫ tf

t=0
−u(t)dt (4.32)

s.t.

ẋ(t) = 2

100
⋅ (x(t) − x2(t)

1000
) − u(t) (4.33)

x(0) = 250 (4.34)

x(tf) ≥ 750 (4.35)

x(t) ∈ [0, 1000] (4.36)

u(t) ∈ [0, 10] (4.37)

tf = 200. (4.38)

The solution to this optimal control problem is straightforward to de-

termine and consists of three parts: First, there is no fishing to let the

population grow, then there is fishing such that the population is kept

constant, then there is no fishing again to let the population grow to the

final condition. The optimal control expressed in time is

uo(t) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if t ∈ [0, ta]
5 if t ∈ (ta, tf − tb)
0 if t ∈ [tf − tb, tf ]

(4.39)

where

ta = tb = 100 ⋅ artanh(1
2
) . (4.40)

The final maximum amount of fish caught is

Jo
analytic = −5 ⋅ (tf − ta − tb)

= −1000 ⋅ (1 − artanh(1
2
))

≈ −450.694 (4.41)
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4.4.2 Discrete-Time Problem

In order to evaluate the optimal solution by means of dynamic program-

ming, the continuous-time state dynamics (4.29) must be discretized. Us-

ing an Euler forward approximation with a time step ts = 0.2 h, the

discrete-time model is

xk+1 = f(xk, uk) + xk, k = 0,1, . . . ,N − 1 (4.42)

where

f(xk, uk) = ts ⋅ ( 2

100
⋅ (xk −

x2
k

1000
) − uk) . (4.43)

The state xk is the amount of fish in a lake, while the control signal uk is

the constant fishing rate during one time step. The discrete-time optimal

control problem is

min
uk∈[0, 10]

N−1∑
k=0

−uk ⋅ ts (4.44)

s.t.

xk+1 = f(xk, uk) + xk (4.45)

x0 = 250 (4.46)

xN ≥ 750 (= xf,min) (4.47)

xk ∈ [0, 1000] (4.48)

N = 200

ts
+ 1. (4.49)

As mentioned in Section 4.2, use of a big, but finite value J∞ to penalize

infeasible states improves the numerics. This value should be chosen as

small as possible, but larger than any value of the (feasible) cost-to-go that

could occur. Since this simple example allows for analytic solutions, the

maximum cost-to-go of the continuous-time problem is evaluated in order

to choose a suitable value for J∞. The minimum of the cost-to-go Jt(x)
is obviously at t = 0 and x = 1000 and yields

Jt=0(x = 1000) = 500 artanh(1
2
) − 1000− 125π

≈ −1118 (4.50)
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For the fishing problem, at t = 0, the minimum cost-to-go (4.50) is approx-

imately 1118 less than the cost-to-go at t = tf = 200

Jt=200(x ∈ Xt=200) = 0. (4.51)

The infeasible states at tf must therefore be penalized by a value larger

than 1118 to ensure that the final state constraint is met.

Consequently, the penalty J∞ used for the cost-to-go of infeasible states

is set to a value greater than J∞ > 1118. For the example here a value of

J∞ = 1200 (4.52)

is chosen and is used in the DP algorithm.

The output of the dynamic programming algorithm is an optimal control

signal map, specifying the optimal control signal at each time step k and

each state xk ∈ Xk. The optimal control signal map for the Lotka-Volterra

system is shown in Fig. 4.5. It shows that in the beginning of the problem

the optimal control is ”not fishing” (u = 0) if the fish population is small

(x < 500), ”moderate fishing” (u = 5) if the population is x = 500 and ”full

fishing” (u = 10) if the population is large (x > 500). Toward the end of the

problem, one must stop fishing as late as possible, such that the population

reaches the specified minimum final size of xf,min = 750. The resulting

optimal state trajectory, i.e., the fish population for an initial state of

x0 = 250 is shown as the black solid line. The solution of the dynamic

programming clearly reflects the optimal control found for the continuous

problem (4.39).

4.4.3 Resolution Study

As mentioned earlier, the accuracy of the solution obtained with dynamic

programming can degrade due to numeric issues. The state space must

be discretized for the DP algorithm. The resolution of the state-space

discretization is a critical quantity. On one hand, the computational effort

increases with a higher resolution. On the other hand, the accuracy of the

solution improves with increasing resolution.
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Figure 4.5: The optimal control signal map, determined using dynamic pro-
gramming, for the discrete-time Lotka-Volterra system. The optimal state tra-
jectory for x0 = 250 when using the map is shown as the solid black line.

Therefore, a study is carried out here to quantify the accuracy of the

solution obtained by DP for the simple example of the fishing problem.

The fishing problem has been chosen because an analytic solution exists

that can be used as a benchmark. The resolution study is carried out for

the basic DP, but also for the new method presented in this chapter, i.e.,

the boundary-line DP.

The quality of the solution is expressed as the relative difference be-

tween optimal cost obtained by DP and the analytic optimal solution,
Jo

analytic−J
o
dp

Jo
analytic

. Figure 4.6 shows this deviation of the optimal solution evalu-

ated with DP (basic and boundary-line) from the analytic optimal solution.

Since the analytic solution is evaluated for the original continuous-time

problem, the discrete-time solution can never achieve the analytic optimal

solution. This discretization error is indicated in Fig. 4.6 with the dotted

line marked as ”minimum time-discretization error”. It emphasizes that

the solution using the boundary-line DP converges well toward the discrete-

time optimum. Furthermore, this figure illustrates the importance of the

boundary line: the numeric solution with the boundary-line DP is closer
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Figure 4.6: The relative deviation of the cost computed by dynamic program-
ming compared to the optimal analytic solution for the fishing problem.

to the analytic solution by a factor of 50 to 68000 than with the basic

DP for the same resolution. It is interesting to note that the cost (4.44)

resulting from boundary-line DP is inferior to the cost resulting from basic

DP over the entire range of resolution that was investigated. The solution

using the boundary-line DP at the lowest resolution (∆x = 125) is closer

to the analytic solution than the solution of the basic DP at the highest

resolution (∆x = 1).

The relative deviation of the final state achieved by the DP (basic and

boundary-line) from the optimal final state is shown in Fig. 4.7 for different

resolutions. The optimal final state is the lowest admissible final state for

this example, i.e., xo(tf) = xf,min. The figure shows clearly that the final

state deviation of the basic DP decreases with decreasing ∆x, i.e., with

increasing resolution. Using the boundary-line DP, the final state deviation

is negligible over the entire range of resolutions investigated here.
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Figure 4.7: The relative deviation of the actual final state and the optimal
final state for the fishing problem.

4.4.4 Computational Effort

The computational effort of an optimization method is often a crucial fac-

tor that determines whether a method is being applied in practice for a

given problem or not. Therefore, not only the accuracy of a solution as

shown in Section 4.4.3 is relevant, but also the corresponding computa-

tional cost.

The number of model-function evaluations for the basic DP with an

equally spaced grid is given by

NDPbasic
feval =Nx ⋅Nu ⋅N. (4.53)

This is only true for a single-dimensional state space and a scalar control

signal. The variable Nx represents the number of grid points for the state

space, Nu for the control signal, and N for the time discretization.

When using the boundary-line DP, the infeasible domain is well known.

Consequently, the computation for the grid points in this infeasible domain

(see Fig. 4.1) can be omitted [37]. The number of infeasible grid points
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Figure 4.8: Number of function evaluations needed to find the solution of the
fishing problem.

at a time step k is denoted as N
infeas
k,x . Hence, the number of function

evaluations that can be saved are

N
infeas
feval =Nu ⋅

N−1∑
k=0

N
infeas
k,x . (4.54)

The cost for evaluating the boundary line cannot be neglected. The num-

ber of function evaluations needed to compute the line is denoted by N line
feval.

Consequently, the number of function evaluations required for solving

the DP with the boundary-line method is given by

NDPline
feval = NDPbasic

feval −N
infeas
feval +N line

feval. (4.55)

Figure 4.8 shows the number of function evaluations for the fishing prob-

lem over the discretization step ∆x. It shows that more computations can

be saved due to the infeasible domain than are required to evaluate the

boundary line. The boundary-line DP requires fewer function evaluations

by a factor of 1.5 to 1.85 than the basic DP over the entire range of dis-

cretization steps investigated here. Furthermore, it should be recalled that
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Table 4.1: Comparison at similar accuracy for the fishing problem

basic DP boundary-line DP

state-space discretization [-] ∆x 1 125

amount of fish caught [-] −J 445.936 449.340

function evaluations [-] Nfeval 1002001000 4877143

the accuracy of the solution is considerably higher, even though the com-

putational burden is lower.

More interesting is a comparison of solutions of similar accuracy. There-

fore, the solution using the basic DP at the lowest discretization step of

∆x = 1 is compared to the solution of the boundary-line DP at its high-

est discretization step of ∆x = 125. The values obtained are shown in

Table 4.1. These results reveal that the boundary-line DP is computation-

ally more efficient by a factor of 1002001000
4877143

≈ 205 than the basic DP, even

though the accuracy of the solution is still better (449.340 > 445.936). This

result motivates to apply the method to more complex systems.

4.5 DPM-Function

In this section a Matlab function is introduced that solves dynamic pro-

gramming problems using the theories presented in the previous section.

The function is call Dynamic Programming Matrix (DPM) function. The

dpm function solves the discretized version of the optimal control problem

(4.1)–(4.7). This section shows the syntax and commands for solving such

problems. In particular, the syntax is shown for two simple optimal control

problem. The dpm function can be downloaded at [57].

When solving discrete-time optimal control problems the dpm function

is normally called using

[res dyn] = dpm(fun, par, grd, prb, options);
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where fun is the model function handle, par is any user defined parameter

structure that is forwarded to the model, grd is the grid structure, prb is

the problem structure, and options is the option structure. The output of

the dpm function are normally two structures representing the DP-output

and the signals from forward simulation of the model using the optimal

control input map.

Since the DP algorithm is often time consuming, the dpm function can

also be used only for forward simulation when the DP output structure

dyn is precalculated. This can be very useful when changing the initial

condition or when increasing the starting time N0 of the problem. To call

the dpm function when the DP output structure is already calculated use

res = dpm(dyn, fun, par, grd, prb, options);

All the structures in the code above are further explained in the remainder

of this section.

4.5.1 Problem Formulation

In the problem structure all necessary parameters that define the problem

are given. The important parameters are the time step Ts of the model

description and the problem length N. Moreover, in the problem structure

an optional cell array can be defined, which contains time-variant infor-

mation relevant for the problem description. For example, if the model

explicitly depends on the time the cell array W{1} would contain a time

vector with N elements. The corresponding elements in these time-variant

vectors are forwarded to the model function throughout the problem. The

problem structure can also contain a starting time index where the forward

simulation starts. This can be helpful when searching for a time optimal

solution. An overview of the problem structure is shown in Table 4.2.
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Table 4.2: Problem-structure (prb)

Syntax Description

Ts time step (is passed to the model function)

N number of time steps in problem (integer that de-

fines the problem length)

N0 (optional) start time index (only used in forward

simulation)

W{.} (optional) vectors with length N containing time-

variant data for the model

Table 4.3: Grid-structure (grd)

Syntax Description

Nx{.} number of grid points in state grid

Xn{.}.lo lower limits for each state (vector for time-variant

or scalar for fixed)

Xn{.}.hi upper limits for each state (vector for time-variant

or scalar for fixed)

XN{.}.lo final state lower constraints

XN{.}.hi final state upper constraints

X0{.} inital value (only used in forward sim)

Nu{.} number of grid points in input grid

Un{.}.lo (optional) upper limits for each input (vector for

time-variant or scalar for fixed)

Un{.}.hi (optional) upper limits for each input (vector for

time-variant or scalar for fixed)
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4.5.2 State/Input Grids and Constraints

The grid structure grd contains all the information about the state and

input grids and constraints. An overview of the grd structure is shown

in Table 4.3. The grd structure is composed by cell arrays, where there

is a cell for each state variable and each input variable. For example, for

a problem with two state variables the grd structure contains grd.X{1},

grd.X{2}, grd.Xn{1}.lo, grd.Xn{2}.lo, and so on. The input grid is

used in a similar way depending on the number of input variables of the

problem.

4.5.3 Options Structure

The DP approach can be used for many different problem settings and the

options structure defines how to use the algorithm. An overview of the

options that can be specified in the options structure is shown in Table

4.4. The HideWaitbar options decides if waitbars are shown or not when

running the DP algorithm. The SaveMap option determines if the optimal

cost-to-go is saved and returned. Note that the memory requirements

increase when SaveMap=1.

An important option is the UseLine option, which decides if the bound-

ary line method, introduced in Section 4.3, is used or not. The boundary

line method is very useful for increasing the accuracy of problems with

final state constraints. Note in the actual version of the dpm function it

can only be used when there is only one state variable. If the boundary

line method is used, i.e., if UseLine=1, there are three additional options

Iter, Tol, and FixedGrid that must be defined. The options Iter and

Tol determines the stopping criteria when numerically inverting the model

function. The option FixedGrid decides whether to adjust the grid to the

boundary lines or fix the grid to the definition in grd.

Finally, the InfCost is the cost of infeasible states and inputs of the

model. When not using the boundary line method InfCost is also used to

enforce the final state constraints in (4.9), with φN (xN) =InfCost when

xN ∉ [xf,min, xf,max].
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Table 4.4: Options-structure (options)

Syntax Description

HideWaitbar hide waitbars (0/1)

Warnings show warnings (0/1)

SaveMap save cost-to-go map (0/1)

UseLine use boundary line method (0/1)

FixedGrid (used if UseLine=1) using the original grid as spec-

ified in grd or adjust the grid to the boundary lines

(0/1)

Iter (used if UseLine=1) maximum number of iterations

when inverting model

Tol (used if UseLine=1) minimum tolerance when in-

verting model

InfCost a large cost for infeasible states (I=1)

Minimize (optional) minimizing (or maximizing) cost function

(0/1) default is minimizing

InputType (optional) string with the same number of characters

as number of inputs. Contains the character ’c’ if

input is continuous or ’d’ if discrete (default is all

continuous).

gN{1} (optional) Cost matrix at the final time (must be of

size(options.gN{1}) = [grd.Nx{1} grd.Nx{2} ...

grd.Nx{.}])
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Table 4.5: DP output-structure (dyn)

Syntax Description

B.hi Xo,Uo{.},Jo contains the cost, input, and state for

the upper boundary line

B.lo Xo,Uo{.},Jo contains the cost, input, and state for

the lower boundary line

Jo{.,.} optimal cost-to-go (indexed by input number and

time index)

Uo{.,.} optimal control input (indexed by input number and

time index)

Table 4.6: Results-structure (res)

Syntax Description

X{.} state trajectories

C{.} cost trajectory

I infeasible vector (problem is not solved if nonzero

elements)

signals structure containing all the signals that were saved

in the model function

4.5.4 Output Structure

The outputs of the dpm function are two structures, namely res and dyn.

The res structure contains the results from the forward simulation of the

model when applying the optimal control input map. The dyn structure is

associated with the dynamic programming algorithm, the optimal cost-to-

go, and the optimal control input map. When the boundary line method

is used the dyn structure also contains the boundary lines (with the states,

inputs, and costs). An overview of the two structures are shown in Tables

4.5 and 4.6.
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4.5.5 Model Structure

The equations describing the model must be implemented in a correct

format in order to be used with the dpm function. To generate a sample

function use the command

dpm(’sample_model’,Nx,Nu);

This command will save an m-function as sample_model.m with a ran-

dom model of Nx state variables and Nu input variables, suitable for usage

with the dpm function, which can be used as a template when developing

a new problem description.

In general the model function should have the format:

function [X, C, I, signals] = mymodel(inp,par)

where the model input structure inp is generated by the dpm-function and

contains the elements in Table 4.7. The structure par can contain any

user defined parameters necessary in the model function. It is important

that the model function preserves the size of the inputs to the outputs.

Consequently, the elements inp.X{.}, inp.U{.} and the outputs X{.},

C{.}, and I must have the same size. The structure signals can contain

any user defined internal signals in model. These signals are stored during

the forward simulation and returned in the res structure when calling the

dpm-function, Table 4.6.
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Table 4.7: Input-structure (inp)

Syntax Description

X{.} current states (n+m dimensional matrix form de-

pending on the number of inputs and state variables)

U{.} current inputs (n+m dimensional matrix form de-

pending on the number of inputs and state variables)

W{.} current time-variant data (scalar)

Ts time step

Table 4.8: Model outputs

Syntax Description

X{.} resulting states after applying inp.U{.} at

inp.X{.} (same size as inp.X{.})

C{.} resulting cost of applying inp.U{.} at inp.X{.}

(same size as inp.X{.})

I set with infeasible combinations (feasible=0, infea-

sible=1) (same size as inp.X{.})

signals structure with user defined signals (same size as

inp.X{.})

4.6 Examples

To illustrate the usefulness of the dpm function, two examples are dis-

cussed below. First, the well-known Lotka-Volterra fishery problem [56]

is explained and solved using the dpm function. Of course, there exist an

analytic solution to the continuous-time Lotka-Volterra fishery problem,

and it is therefore not necessary to use a DP algorithm to solve it. How-

ever, since this problem is simple and is similar to the problems normally

solved with DP, it is used as an example to illustrate the syntax of the dpm

function. Second, an example of an optimal energy management prob-

lem for a parallel hybrid-electric vehicle is solved using the dpm function.

This problem is well suited for the DP algorithm. Not surprisingly, DP

has been used extensively proposed in the literature to solve such energy

management problems, both for comparison to causal controllers and for
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evaluation of different system configurations. Some examples are [58], [59],

[60], and [5].

In the first example of the Lotka-Volterra fishery problem the entire

code necessary to use the dpm function is shown. In the hybrid-electric

vehicle example, however, the model function contains far too many lines

to be included in this thesis. Interested readers can download the complete

model equations at [57].

4.6.1 Lotka-Volterra Fishery

In order to evaluate the optimal solution to the Lotka-Volterra fishery

problem introduced in Section 4.4 the model function (4.42) is implemented

in Matlab as:

function [X, C, I, signals] = fishery(inp,par)

% state update

func = (0.02.*(inp.X{1}-inp.X{1}.^2/1000)-inp.U{1});

X{1} = inp.Ts.*func + inp.X{1};

% cost

C{1} = -inp.Ts.*inp.U{1};

% infeasibility

I = 0;

signals.U{1} = inp.U{1};

Since the state and input spaces have to be discretized, the dpm function

includes a simple way to define such grids. Let the state variable be limited

between 0 and 1000 and let it be discretized using a step of 5 such that
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xk ∈ {0,5,10, ...,995,1000}. Also, let the control input variable be limited

between 0 and 10 and let it be discretized with a step of 0.5 such that

uk ∈ {0,0.5,1, ...,9.5,10}. The optimal control problem (4.44)–(4.49) is

then solved with the dpm function using:

grd.Nx{1} = 201;

grd.Xn{1}.lo = 0;

grd.Xn{1}.hi = 1000;

grd.Nu{1} = 21;

grd.Un{1}.lo = 0;

grd.Un{1}.hi = 10;

% set initial state

grd.X0{1} = 250;

% set final state constraints

grd.XN{1}.hi = 1000;

grd.XN{1}.lo = 750;

% define problem

prb.Ts = 1/5;

prb.N = 200*1/prb.Ts + 1;

% set options

options = dpm();

options.UseLine = 1;

options.SaveMap = 1;

options.InfCost = 1200;

options.FixedGrid = 1;

[res dyn] = dpm(@fishery,[],grd,prb,options);
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The output of the DP algorithm is an optimal control signal map, spec-

ifying the optimal control signal at each time step k and at each state

xk ∈ Xk. The optimal control signal map for the Lotka-Volterra system is

shown in Fig. 4.5. It shows that the optimal control is ”not fishing” u = 0

if the fish population is small x < 500, ”moderate fishing” u = 5 if the

population is x = 500 and ”full fishing” u = 10 if the population is large

x > 500. Toward the end of the problem, one must stop fishing as late

as possible, such that the population reaches the specified minimum final

size of xf,min = 750. The resulting optimal state trajectory, i.e., the fish

population for an initial state of x0 = 250, is shown in Fig. 4.5 by the black

solid line.

4.6.2 Hybrid-Electric Vehicle Example

The energy consumption of hybrid-electric vehicles can be described well

using a quasi-static discrete-time models. The modeling follows the ideas

described in [20, 61]. Essentially, the model contains the battery state-of-

charge as the only state variable. In a nutshell, the combustion engine is

modeled using an affine Willans approximation [62], the electric motor is

modeled using an electric-power map (derived from detailed simulations),

and the battery is modeled as a voltage source together with a resistance

in series. The vehicle model includes air drag, rolling friction, and inertial

forces. The gearbox is modeled using a constant efficiency of 95%. The

hybrid vehicle considered in this study has a 20% hybridization as defined

in [4].

The model equations can be summarized and described as

ξk+1 = f(ξk, uk, vk, ak, ϕk) + ξk, (4.56)

where ξk is the battery state-of-charge, uk is the torque split factor, vk is

the vehicle speed, ak is the vehicle acceleration, and ϕk is the gear number.

The model assumes isothermal conditions of the components, no extra fuel

consumption during the startup of the combustion engine, and no energy

losses during gear shifting. A constant auxiliary electric power demand of

350 W is used in the model.

Since the drive cycle is assumed to be known in advance the particular
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driving speed vk, acceleration ak and gear number ϕk at instance k can be

included in the model function to form the time-variant model:

ξk+1 = fk(ξk, uk) + ξk, k = 0,1, . . . ,N − 1. (4.57)

The optimization problem of minimizing the total fuel mass consumed

J = N−1∑
k=0

∗
mf (uk, k) ⋅ ts (4.58)

for the hybrid vehicle over a given drive cycle, here the Japanese 10-15

drive cycle (J1015), can be stated as the discrete-time optimal control

problem:

min
uk∈Uk

N−1∑
k=0

∗
mf (uk, k) ⋅ ts (4.59)

s.t.

ξk+1 = fk(ξk, uk) + ξk (4.60)

ξ0 = 0.55 (4.61)

ξN = 0.55 (4.62)

ξk ∈ [0.4, 0.7] (4.63)

N = 660

ts
+ 1 (4.64)

where
∗
mf is the fuel mass consumption. The time step in this example

is ts = 1 s. The optimal control problem (4.59)–(4.64) is solved using DP.

Figure 4.9 shows the resulting optimal control map dyn.Uo{1,:} and state

trajectory res.X{1} when using the dpm-function as described below.
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% create grid

grd.Nx{1} = 61;

grd.Xn{1}.hi = 0.7;

grd.Xn{1}.lo = 0.4;

grd.Nu{1} = 21;

grd.Un{1}.hi = 1;

grd.Un{1}.lo = -1;

% set initial state

grd.X0{1} = 0.55;

% final state constraints

grd.XN{1}.hi = 0.55;

grd.XN{1}.lo = 0.55;

% define problem

prb.W{1} = speed_vector; % (661 elements)

prb.W{2} = acceleration_vector; % (661 elements)

prb.W{3} = gearnumber_vector; % (661 elements)

prb.Ts = 1;

prb.N = 660*1/prb.Ts + 1;

% set options

options = dpm();

options.UseLine = 1;

options.SaveMap = 1;

options.InfCost = 1000;

options.Iter = 5;

options.InputType = ’c’;

options.FixedGrid = 0;

[res dyn] = dpm(@hev,par,grd,prb,options);
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4.7 Summary and Discussion

The boundary-line DP presented in this chapter improves the efficiency

of dynamic programming considerably for the case of a single state vari-

able. Not only the final state constraint is fulfilled at high accuracy, but

also the calculated optimal cost is very close to the true solution even for a

moderate resolution of the discretized state space. The computational cost

is substantially reduced since the new method allows the accuracy to be

maintained at a much lower state-space resolution. Furthermore, the num-

ber of calculated grid points is reduced by evaluating the feasible domain

only. The method presented here improves the dynamic programming only

if the optimal state trajectory is close to the bounds of the feasible region

at some points. This is typically the case for constrained optimal control

problems.

The novel method is well suited for optimal control of hybrid electric ve-

hicles because the optimal trajectory coincides with the boundary line at

the end of most drive cycles and because the system can be sufficiently well

described with a single state variable. The resulting gain in computational

time can be used for extensive parametric studies, for instance, such as op-

timal component dimensioning without increasing the total computational

effort.

In this study, the proposed method is applied to partially constrained

optimal control problems where only the lower state boundary line is deter-

mined. However, the proposed method can easily be applied to constrained

optimal control problems where a lower and an upper state boundary line

have to be determined.

Finally, a Matlab function is introduced that efficiently solves the deter-

ministic DP problems. The syntax and the main features of the function

are highlighted using two examples. This dpm function together with the

model functions introduced in this chapter can be downloaded at [57]. The

computational time4 required for backward calculation for the two exam-

ples, without using the boundary line, is shown in Fig. 4.10. It shows that

the function evaluates 600000 points/s for the fishery problem and 200000

4Calculated on a 32-bit Intel Pentium D 2.8GHz with 2.0 GB RAM.
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points/s for the HEV problem. This is due to the more complex model in

the HEV problem.

Future work includes the attempt of a possible extension of the boundary

line method to more general problems such as multi-dimensional optimal

control problems, and the support of simple discrete-time Simulink mod-

els. The main task for the near future will be to optimize the memory

requirements of the function.



Chapter 5

Conclusions and Outlook

This chapter presents conclusions and future work in the field of optimal

control and design of hybrid electric vehicles. The goal here is not to

provide a detailed summary and conclusions since this can be found in

each of the previous chapters. The goal is rather on providing general

conclusions of this thesis and on providing an broad outlook of research

areas that should be further explored.

5.1 Conclusions

In this thesis the energy management problem in hybrid electric vehicles

is studied. A mathematical approach is used and the explicit optimal

control is derived for a simplified model of a full hybrid. The derivation

shows how an optimal strategy is structured and how vehicle parameters

affect the strategy. The explicit optimal control is used to derive an en-

ergy management strategy, where the equivalence factor is updated by a

causal controller. The formulation of the simplified model further allowed

to analytically derive a saturation in the equivalence factor that can be

used to implement an anti-windup scheme in a causal equivalence factor

controller.

This thesis also shows a novel state-of-charge controller for a torque-

assist hybrid equipped with an automatic manual gearbox. The benefit

of the proposed controller is the clear separation between the torque-split
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control and the gear choice. This study shows that the torque split, which

is normally used to control the state-of-charge of the battery, can be im-

plemented as a simple rule while the gear choice is used as supervisory

control to influence the battery state-of-charge. The proposed controller is

robust when regarding different hybridization ratios. Moreover, the pro-

posed controller is also robust to the limitations and energy losses normally

present in automated manual gearboxes.

The thesis also investigates the optimal design of hybrid vehicles and in

particular the optimal hybridization ratio of parallel hybrid vehicles. This

investigation shows that the hybridization need is in fact lower in a full

parallel hybrid than in a torque-assist hybrid. A novel method to optimize

the hybridization ratio in a torque-assist hybrid is also presented. The

method achieves close to optimal solutions while substantially reducing

the computational time required to determine the solution. This method is

the starting point for the development of the dual clutch transmission gear

shifting strategy for the torque-assist hybrid. It is important to note the

connection between the method for optimizing the hybridization ratio in

the torque-assist hybrid and the gear shifting energy management strategy.

Dynamic programming is used as a tool throughout this thesis. A novel

method is presented to improve the accuracy of the dynamic program-

ming solution and therefore also to increase the possibility to reduce the

computational requirements. The tool has been implemented in Matlab

and is available online for interested researchers and students. The tool is

not restricted to the energy management problem of hybrid vehicles, but

has also been successfully applied to vehicle parking problems, intelligent

cruise control problems, and engine emission control problems.

5.2 Outlook

There are several areas where the research in this thesis can be further

explored. The dynamic programming tool should be further developed to

reach a broader audience. In particular the boundary-line method, used

to enhance the accuracy of dynamic programming, should be extended to

multiple dimensions.
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Furthermore, the modeling process used to derive the simplified model

for the explicit optimal control can also be used for other topologies. The

simplest extension is for the series hybrid where some additional efficien-

cies would be added to the model before the optimal control derivation.

Insights like the anti-windup scheme can therefore also be found for other

topologies.

Moreover, the simplified model can be used to explicitly prove that the

optimal hybridization ratio is indeed lower in a full hybrid than in a torque-

assist hybrid. If appropriate assumptions on power constraints and pow-

ertrain parameters are made a general proof could be developed.

Since the results and methods described in this thesis rely on simulations

the obvious extension to this work is to validate the results, where possible,

also with actual hybrid vehicle measurements.



5.2. Outlook 120



Appendix A

Hybrid Electric Vehicle Model

The hybrid electric vehicle model is a quasi-static discrete-time model.

The modeling process follows the theories in [20] and [61]. The model can

be described as

xk+1 =F (xk,uk,wk) (A.1)

where normally the state vector x, input vector u, and disturbance vector

w are

xk =[ξk]T (A.2)

uk =[us,k]T (A.3)

wk =[vk, ak, ϕk]T , (A.4)

where ξk is the battery state-of-charge, us,k the torque split factor, vk the

vehicle speed vk, ak the vehicle acceleration, and ϕk the gear number.

Throughout this study a time step of one second has been used ts = 1 s.

The model is separated into the subsystems; vehicle, final drive, gearbox,

internal combustion engine, electric motor, and battery. The equations

describing the subsystems are shown in the following sections.

A.1 Vehicle Model

The vehicle model is based on a vehicle with a nominal mass of m0 ≈
1500 kg equipped with a 1.6 liter internal combustion engine (totally m0 +
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me ≈ 1610 kg). The total mass of the vehicle is

mv =m0 +me +mm +mb, (A.5)

where the engine mass me, motor mass mm, and battery mass mb all

depend on the specific component sizes.

The vehicle speed vk and acceleration ak are given by the drive cycle.

The outputs of the model are the wheel rotational speed ωw, wheel ro-

tational acceleration ∆ωw, and the wheel torque Tw. The outputs are

determined from the inputs using the following equations

ωw = vk/rw (A.6)

∆ωw = ak/rw (A.7)

where rw is the wheel radius and

Tw = (Ff +Fa +Fi) ⋅ rw, (A.8)

where the vehicle air drag force is

Fa = 0.5 ⋅ ρair ⋅ cd ⋅A ⋅ v
2
k, (A.9)

and the inertial force is

Fi = (mv +mr) ⋅ ak, (A.10)

with mr is the moment of inertia of the drivetrain converted into an equiv-

alent mass. The friction force is

Ff =mv ⋅ g ⋅ (cr0 + cr1 ⋅ v
cr2

k ). (A.11)

The friction coefficients cr0, cr1, cr2, and cd have been identified using

vehicle coastdown experiments. The vehicle model assumes no wheel slip

and the road is assumed to be flat.

A.2 Gearbox Model

In the vehicle two types of gearboxes are considered. The first type is

a manual six speed transmission and the second type is a six speed dual
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Figure A.1: The standard gear shifting strategy. The gray areas indicate the
hysteresis in vehicle speed where each gear is chosen. The New European Driving
Cycle shifting is shown as gray dots.

clutch transmission. Normally, when not considering an optimal gear shift-

ing, a simple gear shifting strategy is used for both gearboxes. However, for

the New European Driving Cycle the regulatory shifting strategy is used.

The simple gear shifting strategy is shown in Fig. A.1. The gear shifting

strategy is a simple speed dependent strategy reflecting a normal driver’s

behavior. The focus is not to have an optimized rule-based strategy, but

rather on providing a strategy sample which can be used for comparisons.

The gray dots in Fig. A.1 shows the regulatory gear shifting in the New

European Driving Cycle. The New European Driving Cycle shifting is

similar to the standard shifting strategy represented by the gray boxes.

Final Drive Model

The final drive is assumed to include all the gear ratios between the wheel

and the gearbox output. It is assumed that there are no energy losses in
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the final drive and the gearbox output torque and speed are therefore

Tg = Tw

γf

(A.12)

ωg = γf ⋅ ωw (A.13)

∆ωg = γf ⋅∆ωw. (A.14)

where γf is the total gear ratio of the final drive.

Manual Transmission Model

The inputs to the manual transmission model are the gearbox output

speed, gearbox output acceleration, gearbox output torque, and gear num-

ber ϕk. The outputs are the crankshaft rotational speed and acceleration

together with the crankshaft torque. The gearbox efficiency is constant for

all gears ηgb = 0.95 and thus the torque on the clutch side of the gearbox

is

Tc =
⎧⎪⎪⎨⎪⎪⎩

Tg

ηgb ⋅γ(ϕk)
Tg ≥ 0

Tg ⋅ηgb

γ(ϕk)
Tg < 0

(A.15)

where γ(ϕk) is the gear ratio for each of the gears. The rotational speed

of the crankshaft is

ωc = γ(ϕk) ⋅ ωg (A.16)

∆ωc = γ(ϕk) ⋅∆ωg. (A.17)

The manual gearbox assumes no energy losses during gear shifting.

A.3 Internal Combustion Engine Model

The internal combustion engine model is based on an affine Willans approx-

imation [62, 61], i.e. the brake mean effective pressure is an affine function

of the fuel mean effective pressure pbmep ≈ e(ωc) ⋅ pfmep − pbmep0(ωc). The

internal efficiency e(ωc), friction mean effective pressure pbmep0(ωc), and

maximum indicated mean effective pressure pimepmax(ωc) are all identi-

fied using engine test bench measurements of a naturally aspirated 1.6
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liter gasoline direct injection engine. The engine friction torque is then

given by

Te0(ωc) = Vd ⋅ pbmep0(ωc)
4 ⋅ π

, (A.18)

with the displacement Vd. The maximum torque from combustion in the

engine is

Temax(ωc) = Vd ⋅ pimepmax(ωc)
4 ⋅ π

. (A.19)

Note that the maximum net output torque of the engine is therefore

Ticemax = Temax(ωc) − Te0(ωc). The fuel mass consumption is calculated

using
∗
mf= Te ⋅ ωc

e(ωc) ⋅Qlhv

, (A.20)

where Qlhv is the lower heating value of gasoline. The combustion engine

torque Te is determined using the equations in Appendix A.6. A com-

parison between the measured and the simulated fuel consumption maps

are shown in Fig. A.2. It clearly shows that the model estimates the fuel

consumption well. The mass of the internal combustion engine is approxi-

mated as me = Vd ⋅ 67600, where Vd is given in m3. The model assumes no

extra fuel consumption during starting of the combustion engine.

It is assumed that there is complete fuel cut-off for negative torque de-

mand throughout the entire speed range of the combustion engine. Instead

of injecting fuel to prevent the engine from stalling at low speed the electric

motor would provide the additional torque.

A.4 Electric Motor Model

The model for the electric motor is generated from detailed simulation data

of a 24 kW motor. To determine the electric power needed from/supplied

to the battery a map Γ, derived from detailed simulations, is used

Pm,el = Γ(ωc, Tm) (A.21)

The efficiency map of the 24 kW electric motor

ηm(ωc, Tm) = ⎧⎪⎪⎨⎪⎪⎩
Tm⋅ωc

Γ(ωc,Tm)
if Tm ≥ 0

Γ(ωc,Tm)
Tm⋅ωc

if Tm < 0
(A.22)
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Figure A.2: Internal combustion engine fuel consumption map; measured
(solid) and simulated (dotted). The friction mean effective torque is shown in
dashed.

is shown in Fig. A.3.

A.5 Battery Model

The battery pack consists of multiple modules in parallel and in series

which are each modeled as a voltage source in series with a resistance.

The battery model is based on an ADVISOR model of a 6.5 Ah NiMH

battery. The battery input/output power is the total power supplied to

(or by) the electric motor Peltot

Peltot = Pm +Paux (A.23)

where Paux is a constant auxiliary power demand. The battery current Ib

is calculated using

Ib(Peltot) = Voc −
√

V 2
oc − 4 ⋅Ri ⋅ Peltot

2 ⋅Ri

, (A.24)
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Figure A.3: Electric motor efficiency map, ηm(ωc, Tm), with maximum and
minimum motor torque.

where Voc is the open circuit voltage of the battery and Ri is the battery’s

internal resistance. Both the open circuit voltage and the internal resis-

tance are functions of the state of charge and the number of modules, and

cells per module, used in the battery pack. The battery current is limited

to, Imin ≤ Ib ≤ Imax, where Imin and Imax depends on the capacity of the

battery. The battery’s state of charge (SoC) xk is calculated using

ξk+1 = −Ib ⋅ ηb(Ib) ⋅ ts
Q0

+ ξk (A.25)

where ηb is the battery charging efficiency

ηb(Ib) = ⎧⎪⎪⎨⎪⎪⎩
1.0 Ib ≥ 0

0.9 Ib < 0,
(A.26)

and Q0 is the battery capacity.
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A.6 Torque Split Factor

The energy management strategy in the hybrid vehicle decides in every

time step how the torque demand is split between the electric motor and

the combustion engine. The electric motor torque demand Tm and the

combustion engine torque demand Te are determined using the torque

split factor us ∈ [−1, 1] and the total torque demanded Td. The torque

balance at the input side of the gearbox is

Td − Te0 − Tm0 = Jm ⋅∆ωc + Je ⋅∆ωc + Tc (A.27)

where Td = Te + Tm is the total torque demanded from the combustion

and/or from the electromagnetic forces. The total torque demand for the

torque-assist parallel hybrid is

Td = Jm ⋅∆ωc + Je ⋅∆ωc + Te0 + Tm0 + Tc (A.28)

and

Td =
⎧⎪⎪⎨⎪⎪⎩
Jm ⋅∆ωc + Tm0 + Tc if electric driving

Jm ⋅∆ωc + Je ⋅∆ωc + Te0 + Tm0 + Tc otherwise
(A.29)

for the full parallel hybrid, where Te0 is the engine friction torque, Jm is

the electric motor inertia, Je is the engine inertia, ∆ωc is the rotational

acceleration of the crankshaft, and Tc is the torque demanded at the gear-

box input. Note that the engine friction torque always has to be provided

for the torque-assist hybrid, even during pure electric driving, since motor

and engine are always coupled. For the full parallel hybrid the engine fric-

tion torque does not have to be provided during electric driving since the

clutch is assumed to be disengaged.

A summary of the meaning of the torque split factor is shown in Ta-

ble A.1. Note that this table does not show the complete definition of

the input signal us. For example, if the torque demand is higher than

the maximum torque of the engine, then the range us ∈ [−1, u0] where

u0 ∈ (0, 1) represents boosting with maximum engine load.

The torque split factor us ∈ [−1, 1] determines the electric motor torque

Tm using a linear interpolation between three distinct values of us, namely
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Table A.1: Meaning of the control signal us

Control signal us Td Type of operation

us = −1 positive maximum recharging using engine

negative purely conventional braking

us ∈ (−1, 0) positive partial recharging using engine

negative purely conventional braking

us = 0
positive provide all torque by engine

negative purely conventional braking

us ∈ (0, 1) positive provide torque by motor and engine

negative partial regenerative braking

us = 1
positive provide all torque by motor

negative maximum regenerative braking

Tm∣us=1, Tm∣us=0, and Tm∣us=−1. This is done in order to guarantee that

all us ∈ [−1, 1] are feasible and thus minimizing numerical problems when

using the dynamic programming algorithm

Tm∣Td>0 =

=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min{Tepathmax, Td} us = 1

max{Td − Temax, 0} us = 0

max{Td − Temax, Tepathmin} us = −1
(A.30)

Tm∣Td<0 =

=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
max{Tepathmin, Td} us = 1

0 us = 0

0 us = −1.

(A.31)

The combustion engine torque is then given by

Te =
⎧⎪⎪⎨⎪⎪⎩
Td − Tm Td > 0

0 Td < 0
(A.32)

The maximum torque Tepathmax and the minimum torque Tepathmin of the

electric path are calculated by inverting the battery and the electric motor

model.
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Appendix B

Driving Cycles

The drive cycles considered, shown in Fig. B.1, are the New European

Driving Cycle (NEDC) according to the directive 70/220/EEC with all

its amendments, the urban part of the Common Artemis Driving Cycle

[18] (CADC Urban), the road part of the Common Artemis Driving Cycle

(CADC Road), the highway part of the Common Artemis Driving Cycle

(CADC Highway), the complete Common Artemis Driving Cycle (CADC),

the Highway Federal Emissions Test cycle (HWFET), the Federal Test Pro-

cedure 72 cycle (FTP-72) which is also known as the Urban Dynamometer

Driving Schedule (UDDS), and the US06 Supplemental Federal Test Pro-

cedure cycle (US06).

The cycles chosen include different driving patterns ranging from low-

speed city driving to demanding high-speed cycles. The speed profiles have

been adjusted such that a conventional vehicle with a 1.6 liter combustion

engine is capable to drive them. This is done in order to have exactly the

same speed profile for varying hybridization ratios.
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Figure B.1: The driving cycle speed profiles: NEDC, CADC Urban, CADC
Road, CADC Highway, CADC, HWFET, FTP-72, and US06.



Appendix C

Hamiltonian Minimization

The amount of boosting P bo
m (s) in (2.37) is limited by the electric motor

maximum power constraint when

P bo
m (s) > Pmmax (C.1)

which is equivalent to

s < s
bo,m
lim ≜ η2

e(2Pmmaxα + η) . (C.2)

The amount of recharging P re
m (s) in (2.39) is limited by the electric motor

minimum power constraint when

P re
m (s) < Pmmin (C.3)

which is equivalent to

s > s
re,m
lim ≜ 1

ηe(1 + 2αηPmmin) . (C.4)

When the electric motor minimum power constraint is active in the recharg-

ing region, electric driving is optimal for Pd > 0 when

Hel(Pd) <Hre (Pmmin) (C.5)

Pd <P re,m
lim (s) ≜ . . .

−( s
η
−

1
e
) +√( s

η
−

1
e
)2 + 4 sα

eη2 Ψ1

2 sα
η2

(C.6)
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where

Ψ1 = (P0 +Pmmin(ηes(1 +Pmminηα) − 1)) . (C.7)

If Pd < 0 then recuperation is optimal when

H−el(Pd) <Hre (Pmmin) (C.8)

Pd <P re,m−
lim (s) ≜ . . .

−( s
η
−

1
e
) +√( s

η
−

1
e
)2 + 4sαη2Ψ2

2 sα
η2

(C.9)

where

Ψ2 = (P0

e
+ (sη − 1

e
)Pmmin + sαη2P 2

mmin) . (C.10)



Nomenclature

Latin Symbols

A Area [m2]

B Boolean (1/0) [-]

E Energy [J]

F Force [N]

H Hamiltonian [W]

I Current [A]

J Cost [-]

Inertia [kgm2]J Cost-to-go

P Power [W]

Q0 Battery capacity [As]

Qlhv Lower heating value [J/kg]

T Torque [Nm]X State spaceU Input space

V Voltage [V]

Volume [m3]

a Acceleration [m/s2]

cd Air drag coefficient [-]

cr Rolling friction coefficient [-]

e Internal engine efficiency [-]

g Gravity constant [N]

m Mass [kg]
∗
mf Mass flow [kg/s]

135
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p Pressure [Pa]

s Equivalence factor [-]

t Time [s]

tgs Gear Shift Duration [s]

ts Time step [s]

x State vector

u Input vector

v Speed [m/s]

w Disturbance vector

Greek Symbols

Γ Electric motor map [W]

α Electric path coefficient [W−1]

γ Gear ratio [-]

ǫ Error [-]

η Efficiency [-]

λ Costate

ξ Battery state-of-charge [-]

ρ Density [kg/m3]

ϕ Gear number [-]

ω Rotational speed [rad/s]

∆ω Rotational acceleration [rad/s2]

Abbreviations

BAT Battery

CADC Common Artemis Driving Cycle

CFC Causal Feedback Controller

DCT Dual Clutch Transmission

DP Dynamic Programming

DPM Dynamic Programming Matrix (Function)

ECMS Equivalent Consumption Minimization Strategy

EM Electric Motor



137 Nomenclature

EP Equilibrium Point

EPS Equilibrium Point Strategy

F Full (Parallel Hybrid)

FTP-72 Federal Test Procedure 72

GPS Global Positioning System

HEV Hybrid Electric Vehicle

HR Hybridization Ratio

HWFET Highway Federal Emissions Test

ICE Internal Combustion Engine

NEDC New European Driving Cycle

OO Optimal Torque Split / Optimal Gear Shifting

OS Optimal Torque Split / Standard Gear Shifting

SHM Selective Hamiltonian Minimization

TA Torque-Assist (Parallel Hybrid)

TEPS Transmission Equilibrium Point Strategy

US06 Supplemental Federal Test Procedure



Nomenclature 138



List of Tables

2.1 Parameters of the powertrain . . . . . . . . . . . . . . . . . . 8

2.2 Power limits of the powertrain . . . . . . . . . . . . . . . . . . 19

2.3 Validation of the simplified model versus the original model. 29

2.4 Increased fuel consumption due to simplified model for control. 29

2.5 Relative fuel excess consumption using the simplified model

for control of original model . . . . . . . . . . . . . . . . . . . 32

2.6 The relative increase in fuel consumption between OS and

OO (ǫOS) together with the relative increase in fuel con-

sumption between TEPS and OO (ǫTEPS). The values are

given for different driving cycles and for types of limitations

on gear shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 The average relative increase in fuel consumption for the

four driving cycles, shown for different hybridization ratios.

The top figure shows the relative increase in fuel consump-

tion for the TEPS and the bottom figure shows it for the

OS scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Optimal hybridization ratio for the torque assist hybrid

(TAo), the full hybrid (Fo) and the difference (TAo
− Fo).

The hybridization ratio where the full hybrid has the same

CO2 emission as the optimum of the torque assist hybrid

(FTAo) and the difference (TAo
−FTAo) . . . . . . . . . . . . 58

3.2 Results: fixed gear ratios . . . . . . . . . . . . . . . . . . . . . 73



List of Tables 140

3.3 Results: adjusted gear ratios . . . . . . . . . . . . . . . . . . . 75

3.4 HRo [%] optimal gear shifting (adjusted gear ratios) . . . . . 76

3.5 Power-to-weight ratio 81 W/kg (adjusted gear ratios) . . . . 78

3.6 Power-to-weight ratio 57 W/kg (adjusted gear ratios) . . . . 78

3.7 150 kg lighter vehicle (adjusted gear ratios) . . . . . . . . . . 79

3.8 150 kg heavier vehicle (adjusted gear ratios) . . . . . . . . . 80

3.9 HRo sensitivity on auxiliary power ∂HRo

∂Paux
[%/kW] . . . . . . 81

4.1 Comparison at similar accuracy for the fishing problem . . . 101

4.2 Problem-structure (prb) . . . . . . . . . . . . . . . . . . . . . . 103

4.3 Grid-structure (grd) . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Options-structure (options) . . . . . . . . . . . . . . . . . . . . 105

4.5 DP output-structure (dyn) . . . . . . . . . . . . . . . . . . . . 106

4.6 Results-structure (res) . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 Input-structure (inp) . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Model outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1 Meaning of the control signal us . . . . . . . . . . . . . . . . . 129



List of Figures

2.1 Topology of the parallel hybrid electric powertrain. EM and

ICE are static blocks while BAT is a dynamic block with

the state variable Eb. The variable B decides whether the

engine is on and the clutch is closed. . . . . . . . . . . . . . . 7

2.2 Schematic overview of the shape of the Hamiltonians Hre

and Hbo for all intervals of s. . . . . . . . . . . . . . . . . . . . 13

2.3 Overview of the regions with the different optimal control

P o
m (separated by solid lines) and the power limits P

(.)
lim for

the unconstrained problem. . . . . . . . . . . . . . . . . . . . . 15

2.4 Energy in the battery Eb at final time tf on CADC as a

function of the equivalence factor s. The charge sustaining

value scs is indicated by the vertical line. . . . . . . . . . . . 17

2.5 Power and speed profile Pd(t) and v(t) of CADC on the

interval t ∈ [2900, 3050] with the optimal control. Gray in-

dicates recharging mode (Pm = −2187.1 W), white indicates

electric mode (Pm = Pd). . . . . . . . . . . . . . . . . . . . . . 18

2.6 Overview of the regions with the different optimal control

P o
m (separated by solid lines) and the power limits P

(.)
lim for

the constrained problem. . . . . . . . . . . . . . . . . . . . . . 20



List of Figures 142

2.7 Power and speed profile Pd(t) and v(t) of CADC on the in-

terval t ∈ [2900, 3050] with the optimal control. Light gray

indicates recharging mode (Pm = −2409.0 W), medium gray

indicates maximum recuperation (Pm = Pmmin), dark gray

indicates boosting or recharging limited by engine (Pm = Pd −Pemax),

and white indicates electric mode (Pm = Pd). . . . . . . . . . 22

2.8 Characteristics of the engine (top) and the electric path

(bottom) for two selected speeds for the original model (solid)

and the fitted simplified model (dashed). . . . . . . . . . . . 25

2.9 Parameters of the simplified, speed-dependent model of the

parallel propulsion system. . . . . . . . . . . . . . . . . . . . . 25

2.10 Engine map of the simplified, speed-dependent model with

iso-efficiency and peak torque lines. . . . . . . . . . . . . . . . 26

2.11 Efficiency map of the electric path of the simplified, speed-

dependent model. The efficiency includes electric motor and

battery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.12 Overview of the regions with the different optimal control

P o
m (separated by solid lines) for the constrained, speed-

dependent problem. The regions are represented for the

charge-sustaining equivalence factor scs for CADC as a func-

tion of gearbox speed ω and torque Td. . . . . . . . . . . . . . 28

2.13 Signals for the simplified and original models when using

the optimal control determined using the simplified model

for the CADC. The upper graph shows the state trajectory

Eb, while the lower graph shows the fuel energy Ef . . . . . . 28

2.14 Schematic of the control loop including the causal feedback

controller (CFC), the selective hamiltonian minimization

(SHM), and the powertrain. . . . . . . . . . . . . . . . . . . . 30

2.15 State trajectory resulting from applying the simplified model

for causal control of the original model (solid), and the state

trajectory using DP on the original model (dashed) for CADC 32



143 List of Figures

2.16 Signal flow of the torque-assist parallel hybrid configuration

including a dual clutch transmission. . . . . . . . . . . . . . . 34

2.17 Overview of dual clutch transmission model. . . . . . . . . . 35

2.18 The torque split uc(t) top, the crankshaft speed ωe middle,

and the power at the two clutches Pc(t) during an upshift. . 37

2.19 The different operating regions of the EPS for the com-

bustion engine and the electric motor in a map showing

crankshaft speed and total torque demand. . . . . . . . . . . 41

2.20 The vehicle speed vk, the state-of-charge trajectories ξk, the

gear shifting trajectories ϕk, and the power loss at the two

clutches P̄c(t) during gear shifting. . . . . . . . . . . . . . . . 44

2.21 Free shifting: Increase in fuel consumption when reducing

the number of gears in the gearbox compared to a 6-speed

gearbox. Values are given as the average fuel consumption

increase for the NEDC, CADC Urban, CADC Road, and

FTP-72 driving cycles. . . . . . . . . . . . . . . . . . . . . . . 49

3.1 The torque-assist parallel hybrid electric vehicle configura-

tion (including input signals and output signals). . . . . . . . 54

3.2 The full parallel hybrid electric vehicle configuration (in-

cluding input signals and output signals). . . . . . . . . . . . 54

3.3 Transmission ratios of the gearbox, including the final drive,

for different hybridization ratios. Fixed ratios are repre-

sented by dashed lines and adjusted gear ratios are shown

with solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Engine displacement and motor maximum power, battery

capacity, vehicle total mass, and steady-state top speed (for

fixed and adjusted gear ratios) with changing hybridization

ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures 144

3.5 The optimal input map for the torque-assist hybrid with

21.5% hybridization ratio driving the NEDC and the opti-

mal state of charge trajectory (black). . . . . . . . . . . . . . 59

3.6 The optimal input map for the full hybrid with 21.5% hy-

bridization ratio driving the NEDC and the optimal state

of charge trajectory (black). . . . . . . . . . . . . . . . . . . . 59

3.7 Carbon dioxide emissions for the torque-assist hybrid (dashed)

and the full hybrid (solid). . . . . . . . . . . . . . . . . . . . . 60

3.8 Optimal CO2 emissions, determined by dynamic program-

ming, for different hybridization ratios for NEDC, CADC,

and FTP-72 using fixed gear ratios. . . . . . . . . . . . . . . . 63

3.9 Energy flow for the electric operating modes 1) Recharg-

ing 2) Torque boosting 3) Recuperation 4) Electric driving.

When operating in electric driving and recuperation modes,

there is also an energy flow to the engine due to engine

friction and the coupling between the motor and the engine. 63

3.10 Electric path energy flows. . . . . . . . . . . . . . . . . . . . . 65

3.11 Torque profile for a part of the NEDC. Combustion engine

maximum torque (dashed), driving cycle torque demand

(solid), and the origin of the required boost torque (gray

area). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.12 Speed-torque map over combustion engine and electric mo-

tor torque limits, together with the regions from which the

required boost energy Ebst, required start-assist energy Estart

and recuperation energy Erec originate. . . . . . . . . . . . . 67

3.13 Energy analysis with recharging energy available for trac-

tion (dot-dashed), recuperated energy available for traction

(solid), and theoretical minimum required electric energy

(dashed) and the minimum CO2 emission profile (gray) for

the NEDC, CADC, FTP-72 with varying hybridization ratio. 68



145 List of Figures

3.14 The optimal CO2 emissions (using fixed gear ratio) deter-

mined by DP (solid black) for eight different driving cycles

together with the EP solution (circle) for each of the driving

cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.15 The optimal CO2 emissions (using adjusted gear ratio) de-

termined by DP (solid line) for eight different driving cycles

together with the equilibrium point (circle) for each of the

driving cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Schematic overview of an optimal control problem solved us-

ing the dynamic programming algorithm. The figure shows

the state variable boundaries for the dynamic programming

algorithm for the entire problem domain (top) and in the

grid point/time step domain (bottom). . . . . . . . . . . . . . 87

4.2 Section of the cost-to-go function Jk(x) at time index k

such that t = 180 h for the fishing problem. State-space dis-

cretization is ∆x = 10, penalty for infeasible states is set toJ∞ = 1200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 State trajectories from DP for the fishing problem. The

solid line shows the result based on the boundary-line method.

The dashed line is the state trajectory resulting from the ba-

sic DP. The dotted vertical line at t = 180 h indicates the

time where Fig. 4.2 is evaluated. State-space discretization

is ∆x = 10, penalty for infeasible states is set to J∞ = 1200. 89

4.4 Interpolation of Jk+1(x) near the boundary line. The dashed

lines illustrates the (linearly) interpolated values including

the boundary line. The dotted line illustrates the interpo-

lation used by the basic algorithm. . . . . . . . . . . . . . . . 92

4.5 The optimal control signal map, determined using dynamic

programming, for the discrete-time Lotka-Volterra system.

The optimal state trajectory for x0 = 250 when using the

map is shown as the solid black line. . . . . . . . . . . . . . . 97



List of Figures 146

4.6 The relative deviation of the cost computed by dynamic

programming compared to the optimal analytic solution for

the fishing problem. . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 The relative deviation of the actual final state and the op-

timal final state for the fishing problem. . . . . . . . . . . . . 99

4.8 Number of function evaluations needed to find the solution

of the fishing problem. . . . . . . . . . . . . . . . . . . . . . . . 100

4.9 Optimal input map obtained using the DP algorithm for

a full parallel hybrid-electric vehicle driving the Japanese

10-15 driving cycle. The black curve shows the optimal

state-of-charge trajectory when the battery is 55% charged

at the start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 The computational cost for the two examples. The values

are given in calculated grid points per second as a function

of the total number of grid points. . . . . . . . . . . . . . . . 114

A.1 The standard gear shifting strategy. The gray areas indicate

the hysteresis in vehicle speed where each gear is chosen.

The New European Driving Cycle shifting is shown as gray

dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.2 Internal combustion engine fuel consumption map; mea-

sured (solid) and simulated (dotted). The friction mean

effective torque is shown in dashed. . . . . . . . . . . . . . . . 126

A.3 Electric motor efficiency map, ηm(ωc, Tm), with maximum

and minimum motor torque. . . . . . . . . . . . . . . . . . . . 127

B.1 The driving cycle speed profiles: NEDC, CADC Urban,

CADC Road, CADC Highway, CADC, HWFET, FTP-72,

and US06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



Bibliography

[1] K. Oh, J. Min, D. Choi, and H. Kim. Optimization of control strategy

for a single-shaft parallel hybrid electric vehicle. Journal of Automo-

bile Engineering, 221:555–565, 2007.

[2] P. Tona, P. Moulin, S. Venturi, R. Tilagone, and P. Gautier. Towards

integrated powertrain control for a mild-hybrid urban vehicle with

a downsized turbo-charge CNG engine. Oil and Gas Science and

Technology, 62(4):595–613, 2007.

[3] H.-D. Lee, S.-K. Sul, H.-S. Cho, and J.-M. Lee. Advanced gear-

shifting and clutching strategy for a parallel-hybrid vehicle. IEEE

Industry Applications Magazine, 6(6):26–32, 2000.

[4] O. Sundstrom, L. Guzzella, and P. Soltic. Optimal hybridization in

two parallel hybrid electric vehicles using dynamic programming. In

Proc. of the 17th IFAC World Congress, pages 4642–4647, Seoul, Ko-

rea, 2008.

[5] A. Sciarretta and L. Guzzella. Control of hybrid electric vehicles.

IEEE Control Systems Magazine, 27(2):60–70, 2007.

[6] N. J. Schouten, A. Salman, and N. A. Kheir. Energy management

strategies for parallel hybrid vehicles using fuzzy logic. Control Engi-

neering Practice, 11(2):171–177, 2003.

[7] J.-S. Won and R. Langari. Intelligent energy management agent for a

parallel hybrid vehiclepart II: Torque distribution, charge sustenance

strategies, and performance results. IEEE Transactions on Vehicular

Technology, 54(3):935–953, 2005.

[8] C.-C. Lin, J.-M. Kang, J.W. Grizzle, and H. Peng. Energy manage-

ment strategy for a parallel hybrid electric truck. In Proceedings of



Bibliography 148

the American Control Conference, Arlington, VA, USA, June 25–27

2001.

[9] G. Paganelli, T. M. Guerra, J.-J. Santin, A. Noel, M. Delhom, and

E. Combes. Single shaft parallel hybrid car powertrain: Modelisa-

tion and control. In International Conference on Advances in Vehicle

Control and Safety, pages 415–419, Amiens, France, July 1–4 1998.

[10] G. Paganelli, T. M. Guerra, S. Delprat, J.-J. Santin, M. Delhom, and

E. Combes. Simulation and assessment of power control strategies for

a parallel hybrid car. Journal of Automobile Engineering, 214(7):705–

717, 2000.

[11] A. Brahma, Y. Guezennec, and G. Rizzoni. Optimal energy manage-

ment in series hybrid electric vehicles. In Proceedings of the American

Control Conference, pages 60–64, Chicago, IL, USA, June 28–30 2000.

[12] A. Sciarretta, M. Back, and L. Guzzella. Optimal control of paral-

lel hybrid electric vehicles. IEEE Transactions on Control Systems

Technology, 12(3):352–363, 2004.

[13] C. Musardo, G. Rizzoni, Y. Guezennec, and B. Staccia. A-ECMS: An

adaptive algorithm for hybrid electric vehicle energy management.

European Journal of Control, 11(4–5):509–524, 2005.

[14] S. Delprat, T.M. Guerra, and J. Rimaux. Optimal control of a paral-

lel powertrain: from global optimization to real time control strategy.

In Proceedings of Vehicular Technology Conference, IEEE 55th, vol-

ume 4, pages 2082–2088, Birmingham, AL, USA, May 6–9 2002.

[15] R. Cipolone and A. Sciarretta. Analysis of the potential performance

of a combined hybrid vehicle with optimal supervisory control. In

Proceedings of the 2006 IEEE international conference on control ap-

plications, pages 2802–2807, October 2006.

[16] M. Athans and P. L. Falb. Optimal Control. New York: McGraw-Hill,

1966.

[17] X. Wei, L. Guzzella, V. Utkin, and G. Rizzoni. Model-based fuel opti-

mal control of hybrid electric vehicle using variable structure control

systems. Journal of Dynamic Systems, Measurement, and Control,

129(1):13–19, 2007.



149 Bibliography

[18] M. Andr. The artemis european driving cycles for measuring car pol-

lutant emissions. Science of The Total Environment, 334–335(1):73–

84, 2004.

[19] L. Guzzella and A. Amstutz. CAE tools for quasi-static modeling and

optimization of hybrid powertrains. IEEE Transactions on Vehicular

Technology, 48(6):1762–1769, 1999.

[20] L. Guzzella and A. Sciarretta. Vehicle propulsion systems: Intro-

duction to modeling and optimization. Springer, Berlin, 2nd edition,

2007.

[21] L. Guzzella. Discrete-event IC engine models: Why the constant

speed assumption is valid. Journal of Dynamic Systems, Measure-

ment, and Control, 125(4):674–676, 2003.

[22] R.E. Bellman. Dynamic programming. Princeton University Press,

Princeton, NJ, 1957.

[23] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena

Scientific, 1995.
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