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Abstract

This paper tests the usefulness of time-varying parameters when fore-
casting with mixed-frequency data. For this we compare the forecast
performance of bridge equations and unrestriced MIDAS models with
constant and time-varying parameters. An out-of-sample forecasting
exercise with US real-time data shows that the use of time-varying
parameters does not improve forecasts significantly over all vintages.
However, since the Great Recession, forecast errors are smaller when
forecasting with bridge equations due to the ability of time-varying
parameters to incorporate gradual structural changes faster.
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1 Introduction
Policy makers need up-to-date information on the state of the economy
in order to efficiently implement policy actions. This need has lead to
the emergence of models that can incorporate readily available up-to-date
high frequency data into econometric models. Two econometric approaches
which allow the combination of different frequencies are bridge models and
(restricted and unrestricted) Mixed Data Sampling (MIDAS) models.

Another problem when using up-to-date data are temporal instabilities
of the parameters which are difficult to detect at the current edge of the
data. This difficulty can be addressed to some degree by using time-varying
parameters where the parameters follow a random-walk process. The aim of
this paper is to analyse whether the use of time-varying parameters gives
an advantage when forecasting with mixed frequency data compared to
established methods, in this case ordinary least squares (OLS).

A few approaches have been tested in the literature so far. Carriero et al.
(2012) use a Bayesian mixed-frequency regression model with stochastic
volatility and find some usefulness of using stochastic volatility for forecast-
ing US GDP but not when using time-varying parameters. Galvão (2013)
uses a transition function that governs for some parameters the change in
parameters in MIDAS regressions. Guerin & Marcellino (2013) propose a
Markov-Switching MIDAS approach which allows for switches between a
small number of regimes. Schumacher (2014) analyses MIDAS regressions
with time-varying parameters for Euro area GDP and corporate bonds
spreads by using a particle filter to deal with non-linearities in the MIDAS
equation.

This paper extends the literature by using time-varying parameters in both
bridge equations and unrestricted MIDAS models. Additionally, we compare
forecast performance of the different models and methods for a long forecast
horizon. For this analysis we employ a large real-time data set for the US.

The real-time data set of US data contains both quarterly data (GDP) as
well as monthly data. We use 11 monthly standard business cycle indicators
and their growth rates (month-on-month, 3-month change, year-on-year) to
predict quarter on quarter GDP growth. The real-time data set ranges from
1970 until mid-2013.

Due to technical restrictions we can only incorporate few lags, as unrestricted
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MIDAS models tend to get over-parametrized fast. Still, even a minimum
specification includes enough information for now- and short-term forecast-
ing. Albeit forecasts are made with the use of a single variable, we also look
at forecast combinations of the individual models, both as an unweighted
average and as weighted average based on the past forecast performance. We
find that the use of time-varying parameters does not significantly improve
forecast performance of bridge equations over all vintages. But the possi-
bility to incorporate gradual structural changes can help when forecasting
recessions and especially the phase since the Great Recession. Economic
relationships between variables have changed since the Great Recession.
This is the reason why forecasting with bridge models using time-varying
parameters is superior to forecasting with OLS. The results are also ro-
bust when estimating with a rolling window instead of an expanding window.

The paper is structured as follows: Section 2 explains the method and the
estimation strategy. Section 3 discusses the used data set and Section 4
presents an analysis of the real-time parameter estimates of the used models
and methods over all vintages. The results of the real-time experiment are
shown in Section 5. Section 6 concludes.

2 Mixed-frequency models with time-varying
parameters

2.1 Model setup
We employ two standard single equation mixed frequency models for
forecasting, namely bridge equations and unrestricted MIDAS models.
Bridge equations are common in policy organizations due to their simplicity
and transparency. The general idea behind bridge equations is to explain a
low-frequency variable by a time-aggregated contemporary high frequency
variable. First, forecasts of the high frequency variable are generated by
using an additional model, normally an autoregressive process. These
forecasts are then time-aggregated to the lower frequency. Both equations
can be easily estimated by OLS. Forecasts are then done iteratively by using
the previously obtained parameters as well as the high- and low-frequency
forecasts. Early applications of bridge equations in the literature can be
found for example in Ingenito & Trehan (1996) or Baffigi et al. (2004) as
well at central banks like ECB (2008) or Bundesbank (2013).

Mixed data sampling (MIDAS) proposed by Ghysels et al. (2004), building
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on distributed lag models like Almon (1965), is another single equation
approach which is able to handle time series with different frequencies even
in the presence of a long lag structure. The high-frequency variable is not
time-aggregated but directly related to the low-frequency variable. As this
approach can lead to a high number of parameters to be estimated, lag
polynomials are used to decrease the necessary number of parameters. The
estimation can be done by non-linear least squares (Ghysels et al., 2007).
Early applications of this method were mostly with financial data. More
recently MIDAS has also been used for macroeconomic data for example in
Clements & Galvão (2008) and Clements & Galvão (2009) or Armesto et al.
(2010) and Andreou et al. (2011). Foroni et al. (2015) have shown, that if
differences in frequencies are small, for instance for a mixture of quarterly
and monthly data, an unrestricted MIDAS setup (U-MIDAS) is equivalent
or even superior compared with standard MIDAS setups. An unrestricted
MIDAS setup requires less computational and modelling efforts compared
with standard MIDAS setups. As the U-MIDAS approach represents a
compromise between parsimony, simplicity and accuracy it is often used for
nowcasting (Aprigliano et al., 2016).

In order to test the usefulness of time-varying parameters for forecasting both
models are estimated in their standard form by using ordinary least squares
as well as in a Bayesian state-space framework with time-varying coef-
ficients. The time-varying approaches are presented in the next sub-chapters.

Time-varying bridge equations
We specify the bridge equation model using lags of a quarterly variable yt as
well as time aggregated quarterly values of a monthly variable xq

t . This is
defined as follows:

yt = ct +
p∑

i=1
βi,tL

iyt +
n∑

j=0
γj,tL

jxq
t + εt (1)

Li and Lj indicate the lag operator for lag lengths p and n respectively. The
parameter βi,t for each ith lag of variable yt and the parameter γj,t for the jth
lag of the time-aggregated high-frequency variable xq

t as well as the constant
ct are time-varying and follow a random walk. With the bridge equations
parameters as at = [ct β1,t ... βp,t γ1,t ... γn,t] the measurement equation can
be written as:
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yt = at



1
yt−1
...

yt−p

xq
t
...

xq
t−n


+ εt (2)

The state equation models the random walk behaviour of the time-varying
parameters:

at = at−1 + νt (3)

The variance-covariance matrix of the innovations is block-diagonal:

(
εt

νt

)
∼ N(0, V ), V =

(
σ2 0
0 Q

)
(4)

The forecast procedure for bridge equations consists of three steps. Firstly,
the forecasts for the high-frequency variable are generated. This is normally
done by using an autoregressive model. The model is estimated by using
OLS and the lag length is optimized according to the Bayesian Informa-
tion Criteria (BIC). In a second step, the high-frequency forecasts are
time-aggregated to the lower frequency. Thirdly, the forecasts are plugged
into the above specification in order to compute forecasts of the quarterly
variable. The forecasts are computed iteratively. In this application, we
analyse both bridge models using OLS and time-varying parameters. In
both cases the high-frequency forecasts are done by OLS as described in the
first step. When forecasting using OLS, the estimated parameters are used
for forecasting. In the case of time-varying parameters only the parameters
of the last quarter in each vintage are used. The real-time estimates are
described and analysed in section 4.

Time-varying U-MIDAS model
The unrestricted MIDAS approach was promoted by Foroni et al. (2015).
Instead of approximating the parameters of each high-frequency observation
of the high frequency variable xt with the help of polynomials, this approach
estimates the weights as unrestricted parameters. The number of param-
eters depends both on the number of high frequency periods m inside the

5



low frequency period as well as the number of low frequency period lags n.
Depending on the frequency of the high-frequency variable and the number
of desired lags, this approach can easily be over-parametrized. But when
frequency differences are small as with macroeconomic data, the results of
the U-MIDAS are similar or even slightly superior to the MIDAS approach.
For instance, when xt is a monthly variable and yt a quarterly variable, then
m = 3. Forecasts in U-MIDAS models are done directly, thus the model is
specified with respect to the desired forecast horizon h. The aim is to find the
specification that would have predicted yt h quarters ahead. The functional
form of the U-MIDAS can be written as:

yt = ct +
p+h∑
i=h

βi,tL
iyt +

K∑
k=mh

γk,tL
k/mxt+l + εt (5)

Lk/3 is a lag operator for monthly variables which is defined as xt−1/3 = L1/3xt

and l is defined as the lead of the high-frequency variable on the low-frequency
variable. As the models is specified for each forecast horizon h, K = mnh.
The forecasts are done directly by plugging the most recent data into the
formula using the estimated parameters for each forecast horizon h. Thus,
with the U-MIDAS parameters as at = [ct βh,t ... βp+h,t γnh/3,t ... γK/3,t] the
measurement equation can be written as

yt = at



1
yt−h
...

yt−(p+h)
xt+l−nh/3

...
xt+l−K/3


+ εt (6)

and the state equation as

at = at−1 + νt (7)

with the variance-covariance matrix:

(
εt

νt

)
∼ N(0, V ), V =

(
1 0
0 Q

)
(8)
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2.2 Estimation
Due to the complexity of the estimation of time-varying parameters,
classical methods lead to problems when encountering peaks in regions
of low probability and thus can lead to unreasonable results. A Bayesian
framework offers the tools to circumvent these problems. We adopt a
Bayesian approach and use the Markov Chain Monte Carlo (MCMC)
method for the estimation of the time-varying model following Cogley &
Sargent (2001), Cogley & Sargent (2005), Primiceri (2005). More precisely
we employ a Gibbs sampling algorithm which involves the following steps.
Firstly, the matrix V is initialized. The initial values in this step are set to
σ2

0 being 0.01 and Q0 ∼ IW (k2
QIs, TQ) with s being the number of states,

the scaling factor kQ set to 0.05 and the shape parameter TQ set to dim(Q)
+ 2. As suggested by DeJong (1991), for the initial conditions a0 we chose
an uninformative prior centered at zero with a high variance p0 of 1000. In a
second step aT is sampled from the conditional probability p(aT |yT , xT , V ),
given the previous results for the variance-covariance matrix V as well as
the actual data yT and xT . In a third step, conditional on the data yT and
xT as well as the previous draws for the parameter vector aT the innovations
of νt are treated as observable. Thus, V can be sampled by sampling Q from
p(Q|yT , xT , aT ). The second and third step are then repeated for a number
of iterations. In this case we set the number of iterations to 50 000 while
discarding the first 80% as burn-in.

3 Data
The real-time data used in our analysis comprise quarterly real seasonally
adjusted GDP as well as the following monthly data: the consumer price
index, industrial production, housing starts and the unemployment rate.
Data sources are the ArchivaL Federal Reserve Economic Data (ALFRED)
published by the Federal Reserve Bank of St. Louis and the Federal Reserve
Bank of Philadelphia Real-Time Data Set for Macroeconomists (RTDSM).
In addition, we employ a set of time series that are not subject to data
revisions: the ISM indices for manufacturing, supplier delivery times
and orders, the S&P 500 stock market index, the 3-month treasury bill
yield, the 10-year treasury bond yield and average weekly hours worked
by production and supervisory workers. Following common practice we
time-aggregate all variables with a higher than monthly frequency by
using their end-of-month values (Carriero et al., 2012 and Schorfheide &
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Song, 2013, e.g.) Table 1 provides precise data definitions. We use differ-
ent data transformations for our forecast evaluation, namely year-on-year
growth rates, 3-month growth rates as well as month-on-month growth rates.

The real-time dataset comprises 344 vintages covering the time frame
January 1970 to August 2013. The first vintage starts in January 1970 and
includes all data available until the end of January 1985. In order to use an
expanding window setup each following vintage one month is added, i.e. the
second vintage starts in January 1970 and includes all data available until
the end of February 1985, and so on.

The choice of actual realizations is a delicate issue in a real time data
context (cf. the discussions in Croushore, 2006, Romer & Romer, 2000, and
Sims, 2002). There have been several benchmark revisions in the time series
that we use; the latest revision for GDP occurred in mid-2014 and included
a substantial redefinition of gross fixed capital formation which accounts for
20 percent of GDP. A forecaster in, e.g., 1985 could not have predicted such
a definition change. Thus we follow Romer & Romer (2000), Faust & Wright
(2009) and Carriero et al. (2012) who propose to use the second estimate of
quarterly GDP as the actual realization with which we compare our forecasts.

In order to reproduce the available information a forecaster would have had at
each forecast date, i.e. at the end of each month m, we need to take differing
publication lags – so called ragged edges – into account. For most monthly
variables the (first) release for each month is not available directly at the end
of the month, but is published with a time lag of up to one month. Only the
S&P 500 index, the 10-year treasury bond yield and the 3-month treasury
bill yield are available directly at the end of each month. The latter three
variables are released daily and are never revised. Equally, for the quarterly
variable, namely GDP, the (first) release for each quarter q is published with
a time lag of up to one month. Consequently, when forecasting at the end
of a quarter q the releases for quarter q cannot be used for forecasting but
must be backcasted using all information available until the end of q.

4 Real-time parameter estimates
To start our analysis we look at the real-time estimates of the parameters
that are used for the forecasts, starting with the estimates of the bridge
equations. In total, over all vintages we have time series with over 300
observations. They contain the parameters of the bridge equations for each
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variable both for the estimates using OLS and the TVP parameters. In
the TVP case we only show the parameter values of the last quarter of
each vintage (which are the ones used for the calculation of the forecast).
Figure 1 shows the OLS and TVP parameters of the bridge equations using
the month-on-month growth rate of industrial production and the 3-month
growth rate of housing starts.1 As can be seen from the figure, the OLS
parameters that are used to produce the forecasts are relatively stable
over the vintages and exhibit a much lower variance than the time-varying
parameters. Nonetheless the estimated time-varying parameters do not
show a lot of sudden jumps and do not, at least at first glance seem to
introduce much noise.

The same analysis is done for the parameters of the U-MIDAS equations.
As forecasts with the U-MIDAS method are done directly in contrast to the
iterative approach of bridge equations, for each forecast horizon h and each
variable we have a set of 1, ..., H estimated parameters both for OLS and
TVP. Additionally, parameters change with each month of each quarter.
Thus, for sake of simplicity, in figure 2 we show only the estimates of the
first month m1 of each quarter for horizons h = 1, ..., 5. The figure shows
the constant of the U-MIDAS specification when using the 3-month growth
rate of housing starts as high-frequency variable. In case of U-MIDAS, the
estimated parameters are a bit more volatile compared to the parameters
for the bridge equations in figure 1 which could introduce more noise into
the forecasts. In the next section we will analyse whether this parameter
volatility is actually a problem for the forecast performance of the different
models.

5 Real-time out-of-sample results

5.1 Forecast comparison
In this section the forecast results of the different models and methods are
presented. Namely, these are bridge equations and U-MIDAS models esti-
mated by either OLS or time-varying parameters in a Bayesian state space
setup (TVP). In order to coherently compare the forecasts of the models and
methods we have to make sure that always the same information is used, so
that differences in forecast performance result only from the different mod-
els / methods. As U-MIDAS models tend to get overparametrized quickly

1An overview over all used parameters can be found in Appendix A.1.
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we restrict the data used in this forecasting exercise to one lagged quarter
of low-frequency data and three months of high-frequency data. For the
comparison of the forecast performance of the different models we calculate
the relative root mean squared forecast error (RMSFE) for each model and
forecast horizon h which is defined as:

∆RMSFEh = 100 ∗
(
RMSFEModel 1

h −RMSFEModel 2
h

RMSFEModel 2
h

)
.

We refer to ∆RMSFEh as the relative change in the RMSFE. The more
negative ∆RMSFEh is, the better performs model 1 compared to the
respective benchmark model in terms of predictive power.

In order to test if the two forecasts are actually different from each other we
employ the Diebold-Mariano test for equality of forecast accuracy (Diebold
& Mariano, 1995). For this we use a quadratic loss function differential d
between the forecast errors ε of the models 1 and 2 at time t for the period
t+ h:

dt = (ε1
(t+h|t))2 − (ε2

(t+h|t))2

The Diebold-Mariano test statistic DM is defined as

DM = d̄√
(1/T ) ∗ LRV (d)

with d̄ being the sample mean of dt, T being the number of forecasts and the
estimated long run variance (LRV) which corrects for possible serial correla-
tion of the loss differentials d for forecast horizons h > 1:

LRV (d) = Var(d) + 2
h−1∑
k=1

Cov(dt, dt−k)

Under the null hypothesis of equal forecast accuracy the test statistic is
asymptotically N(0,1) distributed, thus the null hypothesis will be rejected
it the test statistic falls outside the range of -1.96 and 1.96 at the 5 percent
significance level. The significance is incorporated in the following subsec-
tions in the graphs for the relative RMSFE. In case the null hypothesis is not
rejected the relative RMSFE will be in a dashed line. If the Diebold-Mariano
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test indicates a significant difference in forecast accuracy the lines will be
solid. In the following sections the different combinations of models and
methods will be tested separately.

5.2 Performance over all vintages
When estimating with OLS, the forecast performance of bridge equations
and U-MIDAS models over all vintages turns out to be basically equal.
This is in line with previous work by Marcellino et al. (2006) who find that
direct forecasting can be at least as accurate as indirect forecasting. Bridge
models have a slightly smaller RMSFE for some of the used variables like the
ISM total or hours worked, whereas for some other variables the U-MIDAS
models have smaller forecast errors. Figure 3 shows the relative RMSFE on
average over all variables as well as the results for a forecast combination
using forecast errors of the previous 4 quarters of each vintage to weight
forecasts.2 The figure shows a slightly lower RMSFE for bridge equations
up to a maximum of 9 percent. But the results are hardly significant. Only
for forecast horizons from 7 to 9 months ahead the Diebold-Mariano test
indicates actual differences in forecast accuracy (pointed out by the solid
line for those months). But even in those cases the difference in forecast
accuracy is very small.

The picture changes somewhat when using time-varying parameters to com-
pare those two models: In most cases the forecast errors of bridge models
are smaller compared to the U-MIDAS specification. Still, when using
short term interest rates or industrial production the RMSFE is somewhat
smaller for the U-MIDAS setup compared to the bridge equations. Over
all variables, as can be seen in figure 4 the RMSFE is clearly – and for
shorter forecast horizons significantly – smaller for bridge equations than
for U-MIDAS models. This result could be due to an introduction of noise
when using time-varying parameters with U-MIDAS as shown in chapter 4.

This result can also be seen in the direct comparison of OLS and TVP
in the case of U-MIDAS models: For almost all variables the forecast
errors are smaller when using OLS and also the average and combination
forecasts show a clear outperformance by OLS over TVP (figure 5). The
differences in forecast accuracy are also significant for shorter forecast
horizons. In the case of bridge equations, the results are not that distinct.

2The graphs for all variables and all forecast comparisons can be seen in Appendix A.2.
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The forecasts errors for almost all variables are smaller when using OLS
instead of TVP. But, as figure 6 shows, the differences in forecast accuracy
are not statistically different, except for a forecast horizon of 7 to 9 months
when using a combined forecast instead of an average over all variables.
But even in this case the differences in forecast performance are rather small.

In summary, over all vintages, the use of time-varying parameters does
not give an advantage when forecasting with mixed-frequency models.
The estimation of U-MIDAS models with time-varying parameters mostly
introduces noise due to the more volatile monthly data. Forecast errors of
U-MIDAS models when using TVP are clearly worse. So when deciding
between bridge equations and U-MIDAS models, it might be slightly
beneficial using bridge equations when using TVP. But bridge equations
when using TVP are, over all vintages, also not clearly better compared to
bridge equations estimated with OLS.

5.3 Performance in times of structural changes
The higher flexibility of time-varying parameters and thus the possibility to
incorporate gradual structural changes could lead to a better performance
of models using this technique in some special phases. In order to test this
conjecture a sub-sample of our data is created. Specifically, we look at the
Great Recession and the subsequent upswing. It can be argued that with
the Great Recession economic relationships between GDP and different
indicators changed. In this case, a model using time-varying parameters
should be able to react faster to such changes than a simple OLS model
with an expanding window.

In the following, for the sake of presentation, only the average forecast results
of the previous analysis are presented.3 Figure 7 shows that since the Great
Recession bridge equations are slightly superior than U-MIDAS models both
when using OLS or TVP. When forecasting with bridge equations it was
advantageous to use TVP instead of OLS. The relative RMSFE lies now
mostly below zero and is, at least for longer forecast horizons, significant.
This result can be explained by the change in the time-varying parameters
in 2009. Figure 8 shows as example the time-varying parameter of the
autoregressive term in bridge models when using the short-term interest
rate as high-frequency variable over several vintages. Beginning in 2009

3All results can be found in Appendix A.3
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the parameters shift upwards and show a very different dynamic also in
2010 and 2011. Similar reactions can be found using other high-frequency
variables. This higher flexibility allows for better forecasts after the Great
Recession.

In order to check the robustness of the results for the full sample we split
the sample at the beginning of the Great Recession. As can be seen in figure
9 most results do not differ too much between the sample before the Great
Recession and afterwards. Bridge models still are preferable compared to
U-MIDAS when using OLS (albeit not significantly anymore) and when
using TVP. Also when forecasting with U-MIDAS models OLS should be the
preferred estimation method. The biggest differences between the samples
occur when using bridge models for forecasting. Before the Great Recession
the estimation with OLS was slightly superior. During and after the Great
Recession the use of TVP is slightly superior, increasingly so with longer
forecast horizons. In order to check if this result stays robust we estimate
the OLS models using a rolling window instead of an expanding window.
This allows the parameters to be more flexible and to adapt faster to such
structural changes. While the OLS parameters are more flexible they do
not adapt as fast time-varying parameters and even with rolling windows
of 36, 48 and 60 quarters the results are robust. In summary, the use of
time-varying parameters can be beneficial when using bridge models for
forecasting especially since the Great Recession.

6 Conclusion
To study the usefulness of time-varying parameters for forecasting with
mixed-frequency data we compared different forecasting models and estima-
tion methods. We used two standard mixed-frequency forecasting models,
namely bridge equation and unrestricted MIDAS (U-MIDAS) models.
These models were estimated with standard ordinary least squares (OLS)
and in a Bayesian state space framework that allows for the estimation of
time-varying parameters.

Time-varying parameters offer the possibility to address potential temporal
instabilities which are hard to detect, especially when working at the current
edge of the data. By using the estimated parameters for the latest quarter,
forecasts could be improved compared to using OLS parameters that do not
include potential shifts in the correlation of different variables.
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To test the forecast performance of bridge equations and U-MIDAS models
estimated with OLS and time-varying parameters (TVP) we conduct a
real-time experiment using US data with vintages from January 1985 until
August 2013. We compare the out-of-sample forecasts of all models and
methods separately. We find that when using OLS, bridge equations and
U-MIDAS models perform almost equally over all vintages. When using
TVP, bridge equations perform significantly better. Due to the more
volatile high-frequency data used in U-MIDAS models in contrast to the
time-aggregated data in bridge equations the time-varying parameters seem
to introduce noise compared to the estimation with OLS. When using
bridge equations the estimation method does not seem to matter much: the
forecast performance is roughly the same when using OLS or TVP and the
differences are hardly significant for most forecast horizons. For U-MIDAS
models the classic estimation method is clearly and significantly better for
forecasting.

We also analyse if the higher flexibility of time-varying parameters and thus
the possibility to incorporate gradual structural changes could lead to a better
performance of models using this technique in times of structural changes.
We check a sub-sample of our data, namely the period since the start of
the Great Recession. While most results change only slightly in the sub-
sample, the results for bridge models stand out. Forecast errors are smaller
when using time-varying parameters compared to OLS and get smaller for
longer forecast horizons. The results are robust even when estimating the
bridge models with a rolling window. Even though models with a rolling
window can adapt faster to structural changes compared to the use of an
expanding window, the time-varying parameters are able to react faster to
the changes after the Great Recession. In summary, over all vintages the
use of time-varying parameters did not improve forecast results significantly.
However, since the Great Recession it was advantageous to use time-varying
parameters when forecasting with bridge models due to the higher flexibility
of those models.
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7 Figures and Tables

Table 1: Data overview

VARIABLE NAME FREQUENCY REAL TIME SOURCE NOTES

Real seasonal adjusted GDP quarterly yes RTDSM

Industrial production
index: manufacturing monthly yes RTDSM From 1997M12 to 1998M10 his-

torical data from 1969 to 1970
were not available in the data
set. As there do not seem to
be any revisions in between,
we make the assumption that
there were no revisions.

Consumer price index monthly yes ALFRED For some months two vintages
were available. In those cases
we used the later publications.
This was the case for 2000M9,
2005M2, 2006M2, 2007M2,
2008M2, 2009M2, 2010M2,
2011M2 and 2012M2.

Housing starts monthly yes RTDSM There were no observations
available for the first publica-
tion of 1995M11 and 1995M12.
We make the assumption that
in those cases no revision took
place and use the same values
as in the second publication.

Umemployment rate monthly yes ALFRED We used the real-time data
from ALFRED data base be-
cause the RTDSM only offers
quarterly vintages.

ISM index for manufacturing
(= ISM total) monthly no Institute for Supply Management

ISM index for supplier
delivery times monthly no Institute for Supply Management

ISM index for orders monthly no Institute for Supply Management

Average weekly hours of produc-
tion and supervisory workers

monthly no US Bureau of Labor Statistics

S&P 500 stock market index monthly no Thomson Reuters Datastream

3-month treasury bill yield monthly no Thomson Reuters

10-year treasury bond yield monthly no Thomson Reuters
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Figure 1: Parameters for bridge equation

Figure 2: Parameters for U-MIDAS model
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Figure 3: Rel. RMSFE: Bridge vs U-MIDAS using OLS

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.

Figure 4: Rel. RMSFE: Bridge vs U-MIDAS using TVP

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.
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Figure 5: Rel. RMSFE: TVP vs OLS using U-MIDAS

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.

Figure 6: Rel. RMSFE: TVP vs OLS using Bridge

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.
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Figure 7: Rel. RMSFEs for Great Recession

Note: The four graphs show the relative RMSFE of the four previously used cases for the average forecast over all variables.
The graph OLS shows the case of Bridge vs U-MIDAS using OLS. Graph TVP shows the case Bridge vs U-MIDAS using
TVP. The graph BRIDGE depicts the comparison TVP vs OLS using Bridge and respectively in graph U-MIDAS the case
TVP vs OLS using U-MIDAS. Values below zero indicate the smaller percentage forecast error of the benchmark model.
The solid line indicates significant results according to the Diebold-Mariano test.

Figure 8: Time-varying parameters over different vintages

22



Figure 9: Rel. RMSFEs for split sample

Note: The four graphs show the relative RMSFE of the four previously used cases for the average forecast over all variables
for 3 different samples. The graph OLS shows the case of Bridge vs U-MIDAS using OLS. Graph TVP shows the case
Bridge vs U-MIDAS using TVP. The graph BRIDGE depicts the comparison TVP vs OLS using Bridge and respectively
in graph U-MIDAS the case TVP vs OLS using U-MIDAS. Values below zero indicate the smaller percentage forecast
error of the benchmark model. The solid line indicates significant results according to the Diebold-Mariano test.
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A Appendix

A.1 Parameter estimates for all models and forecast
horizons

In this section the parameter estimates for all models and forecast horizons
are presented. In order to safe space in the graphs the used variables are
abbreviated. An overview can be found in Table 2. If the variable name has
no ending, it is used in its original form. Three different transformations
are also used, when appropriate, namely year-on-year growth rates, 3-month
growth rates as well as month-on-month growth rates. These are labelled by
the addition of 1y, 3m or 1m respectively as ending of the variable name.

Table 2: Abbreviations of variables

VARIABLE NAME ABBREVIATION
Industrial production index: manufacturing hfindpro
Consumer price index hfcpi
Housing starts hfhstarts
Umemployment rate hfunemp
ISM index for manufacturing hfISMtot
ISM index for supplier delivery times hfISMsupply
ISM index for orders hfISMorder
Average weekly hours of production and supervisory workers hfhworked
S&P 500 stock market index hfsp500
3-month treasury bill yield hfi3m
10-year treasury bond yield hfi10y
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Figure 10: Parameters for bridge equation
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Figure 11: Parameters for U-MIDAS model with h = 1
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Figure 12: Parameters for U-MIDAS model with h = 2
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Figure 13: Parameters for U-MIDAS model with h = 3
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Figure 14: Parameters for U-MIDAS model with h = 4
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Figure 15: Parameters for U-MIDAS model with h = 5
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A.2 Results for full sample for all models

Figure 16: Rel. RMSFE: U-MIDAS vs Bridge using OLS

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.

Figure 17: Rel. RMSFE: U-MIDAS vs Bridge using TVP

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.
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Figure 18: Rel. RMSFE: OLS vs TVP using Bridge

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.

Figure 19: Rel. RMSFE: OLS vs TVP using U-MIDAS

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.
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A.3 Results for Great Recession

Figure 20: Rel. RMSFE: U-MIDAS vs Bridge using OLS

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.
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Figure 21: Rel. RMSFE: U-MIDAS vs Bridge using TVP

Note: The dashed line shows the relative RMSFE of bridge equations compared to the benchmark model U-MIDAS.
Values below zero indicate the smaller percentage forecast error of bridge equations compared to U-MIDAS. The solid line
indicates significant results according to the Diebold-Mariano test.

Figure 22: Rel. RMSFE: OLS vs TVP using Bridge

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.
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Figure 23: Rel. RMSFE: OLS vs TVP using U-MIDAS

Note: The dashed line shows the relative RMSFE of TVP compared to the benchmark method OLS. Values below zero
indicate the smaller percentage forecast error of TVP compared to OLS. The solid line indicates significant results according
to the Diebold-Mariano test.
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