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Abstract

This thesis explores the analysis and design of a new stochastic, it-
erative second-order method for minimizing unconstrained and con-
tinuous optimization problems as they typically arise in the field of
large scale learning. Specifically, we consider the minimization of non-
convex objectives and focus our attention on second-order trust region
approaches that are commonly used to globalize Newton’s method.
The starting point of our analysis is a recent trust region variant known
as cubic regularization, which is particularly attractive because it is
guaranteed to escape (strict) saddle points and yields fast local and
stronger global convergence rates than first and second-order linear-
search, as well as classical trust-region methods. However, this method
suffers from a high computational complexity which makes it impracti-
cal for large-scale learning. Here, we propose a novel approach that
uses sub-sampling to lower this computational cost. By the use of
non-asymptotic probabilistic deviation bounds we provide sampling
schemes that give sufficiently accurate gradient and Hessian approxi-
mations to retain the remarkable global and local convergence guaran-
tees of deterministic, cubically regularized methods. To the best of our
knowledge this is the first work that gives global second-order guaran-
tees as well as quadratic local convergence for a sub-sampled newton
method and it is also the first to study Hessian sampling in the context
of cubic regularization frameworks. Finally, we provide experimental
results on well-known machine learning datasets that widely confirm
our theoretical analysis.

i





Contents

Contents iii

1 Introduction 1

2 Concepts and Methods for Large Scale Learning 5
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Overview of Common Methods . . . . . . . . . . . . . . . . . . 10
2.4 Why second-order? . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Adaptive Cubic Regularization . . . . . . . . . . . . . . . . . . 17

3 Stochastic Cubic Regularization 23
3.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Finding the Cubically Regularized Newton Step . . . . . . . . 26

3.2.1 On the Existence of a Global Minimizer . . . . . . . . . 26
3.2.2 Exact Subproblem Minimization . . . . . . . . . . . . . 28
3.2.3 Approximate Model Minimization . . . . . . . . . . . . 41
3.2.4 Krylov Subspace Minimization . . . . . . . . . . . . . . 43

3.3 Total Computational Complexity . . . . . . . . . . . . . . . . . 45

4 Theoretical Analysis 49
4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Sampling Gradient and Hessian Information . . . . . . . . . . 50

4.2.1 Sufficient Agreement Conditions . . . . . . . . . . . . . 50
4.2.2 Concentration Inequalities . . . . . . . . . . . . . . . . 50
4.2.3 Sampling Conditions . . . . . . . . . . . . . . . . . . . . 54

4.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Preliminary Results . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Local Convergence . . . . . . . . . . . . . . . . . . . . . 64
4.3.3 Global Convergence . . . . . . . . . . . . . . . . . . . . 68

iii



Contents

4.3.4 Worst-case Complexity . . . . . . . . . . . . . . . . . . 71
4.3.5 Discussion of Sampling Effects . . . . . . . . . . . . . . 73

4.4 Comparison with Trust Region Approaches . . . . . . . . . . . 74

5 Experimental Results 77
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Practical Implementation of SCR . . . . . . . . . . . . . 79
5.2.2 Other Methods . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Influence of Size, Conditioning and Convexity . . . . . 81
5.3.2 Influence of Dimensionality . . . . . . . . . . . . . . . . 83
5.3.3 Multiclass Problems . . . . . . . . . . . . . . . . . . . . 83
5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion and Future Work 87

Bibliography 89

A Appendix 95

iv



Chapter 1

Introduction

The thesis at hand explores the analysis and design of a new stochastic, it-
erative second-order method for minimizing unconstrained and continuous
optimization problems as they typically arise in the field of large scale learn-
ing. Specifically, we consider the minimization of (potentially non-convex,
twice continuously differentiable) objective functions F : Rd → R which can
be written as a finite sum of individual functions fi that each correspond
to a certain datapoint i ∈ [0, 1, . . . , n]. Thus, we consider minimizing the
following problem

min
w∈Rd

F(w) :=
1
n

n

∑
i=1

fi(w). (1.1)

in a setting where n � d � 0. Classical examples of such problems are
logistic regressions, support vectors machine and neural networks training,
tensor decomposition and many more. Optimization algorithms typically
applied for solving (1.1) are iterative methods essentially walking down an
error surface in a step wise manner. Thus, when considering the compu-
tational complexity of these methods, two things come into play: the total
number of iterations an algorithm takes and the per-iteration cost of each
step. Classical optimization methods tend to have high per-iteration cost
and thus progress slowly on large scale problems.

However, with continuously increasing amounts of readily-available data in
today’s digital world, the need to solve optimization problems of unprece-
dented sizes has grown strongly. This development has triggered a lot of
research giving rise to modern variants and modifications of these methods
that scale better to instances with higher numbers of datapoints. The most fa-
mous example is likely the evolution from Gradient Descent over Stochastic
Gradient Descent1 to newer, variance-reduced versions like SVRG or SAGA

1which has per-iteration cost that are independent of n but suffers from slower conver-
gence
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1. Introduction

that retain Gradient Descent’s linear (asymptotic) convergence rate while
keeping the iteration cost low.

We here want to contribute to a similar development that recently emerged
in the field of second-order methods, where it has become increasingly popu-
lar to use sub-sampling techniques to approximate the Hessian matrix, such
as done for example in [Byrd et al., 2011] and [Martens, 2010]. The latter
was the first to apply a sub-sampled Newton method for deep learning and
showed promising empirical advantages over training deep neural networks
with first-order methods. Yet, their analysis is lacking theoretical conver-
gence guarantees. The method we propose for minimizing (1.1) is based on
the cubic regularization framework of Nesterov and Polyak [2006] as well
as on a recently popularized adaptive version (ARC) that was introduced
by Cartis et al. [2011]. These methods can be viewed as an extension of
the well-known Trust Region approaches (e.g. [Conn et al., 2000]). They are
particularly attractive because they escapes strict saddle points2 and provide
stronger convergence guarantees than first and second-order linear-search,
as well as classical trust-region methods.
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Figure 1.1: Graph of a two-dimensional, non-convex objective and path of
the iterates of Gradient Descent (GD), Newton’s method (Newton) as well
as the stochastic cubic regularization method (SCR)

However, like most methods that incorporate second-order information they
suffer from a high computational complexity which makes them impractical

2We will explain this term in Section 2.1.
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for large-scale learning. Here, we propose a novel method that uses sub-
sampling to lower this computational cost. Particularly, by the use of con-
centration inequalities, we derive iteration specific sampling conditions that
yield sufficiently accurate gradient and Hessian approximations to retain the
remarkable global and local convergence guarantees of deterministic cubic
regularization methods.

The contributions of this thesis is fourfold:

• We provide gradient and Hessian sampling schemes that give rise to a
stochastic cubic regularization method and prove that the convergence
guarantees of [Nesterov and Polyak, 2006, Cartis et al., 2011] can be
retained.

• At the same time we lower the computational cost significantly by
reducing the number of samples used in each iteration.

• We provide experimental results demonstrating significant speed-ups
compared to standard first and second-order optimization methods for
various convex and non-convex objectives.

• Finally, to the best of our knowledge, this is the first work to apply
Hessian sampling in a Trust Region framework and the first stochastic
Newton method to achieve quadratic local convergence and a global
second-order worst case complexity of O(ε−3/2).

The thesis is structured as follows. To lay the foundation of the following
analysis we firstly introduce the notation and give a short overview of the ba-
sic concepts and methods involved in unconstrained optimization in Chap-
ter 2. Rather than to be exhaustive, it is intended to familiarize the reader
with the concepts necessary for the main analysis and shall furthermore mo-
tivate the development of our method. In Chapter 3 we formulate SCR and
elaborate further on the type of local non-linear models we employ and how
these can be solved efficiently. Chapter 4 then gives a detailed theoretical
analysis of our method, including the statement of our main convergence
theorems. To substantiate the theoretical findings, Chapter 5 summarizes
experimental results on well-known machine learning datasets that widely
confirm our analysis. Finally, in Chapter 6 we summarize and reflect our
results and outline possible future lines of research.

The main contribution of the thesis at hand, namely the theoretical and com-
putational design and analysis of SCR arose in fruitful cooperation with
Aurelien Lucchi, which is why the following chapters are not exclusively
due to my own work. I am very grateful to my supervisor for his enthusias-
tic encouragement and assistance as well as numerous interesting research
discussions. Many thanks also to Christoph Neumann and Robert Mohr,
both PhD candidates at KIT, for sharing their views with me and to Lina
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1. Introduction

and my friends in Zurich without whom the fall semester would have been
as grey as the weather.
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Chapter 2

Concepts and Methods for Large Scale
Learning

2.1 Notation

Throughout the thesis, scalars are denoted by greek letters, vectors by regu-
lar lower case letters and matrices by regular upper case letters. For a vector
w, and a matrix A, ‖w‖ and ‖A‖ denote the vector `2−norm and the matrix
spectral norm, respectively. g = ∇ f (w) and H = ∇2 f (w) are the gradient
and the Hessian of f at w. Approximations to H are commonly stated as B.
For two symmetric matrices A and B, A � B indicates that A− B is symmet-
ric positive semi-definite. The condition number of a matrix is defined as
follows:

Definition 2.1 (Condition number) Let A be a normal matrix, then its condi-
tion number is given by

κ(A) = ‖A‖/‖A−1‖ = λmax(A)/λmin(A), (2.1)

where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A.

Regarding the smoothness of the objective functions (and its derivatives) we
shall define the following concept:

Definition 2.2 (Lipschitz Continuity) For D ⊆ RN a function F : D → Rm is
called Lipschitz-continous on D, if

∃ L > 0 ∀w1, w2 ∈ D : ‖ f (w1)− f (w2)‖ ≤ L · ‖w1 − w2‖

.

Our analysis makes extensive use of Taylor’s Theorem and the Mean Value
Theorem ([Nocedal and Wright, 2006], Chapter 2 and Appendix 2) as well as
the Cauchy–Schwarz inequality and triangle inequality ([Conn et al., 2000],
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2. Concepts and Methods for Large Scale Learning

Chapter 2). However, for the sake of brevity, we do not cite these tools each
time they are used.

Furthermore, we make use of the following definition of convergences rates:

Definition 2.3 (Convergence Rates) Let {wk} be a sequence converging to a
limit point w∗. We call it

a) sublinearly convergent, if

∃ 0 ≤ ck ≤ 1 ∀ k ∈ N :
‖wk+1 − w∗‖
‖wk − w∗‖ ≤ ck, ck → 1

b) linearly convergent, if

∃ 0 ≤ c ≤ 1 ∀ k ∈ N :
‖wk+1 − w∗‖
‖wk − w∗‖ ≤ c

c) superlinearly convergent, if

∃ 0 ≤ ck ≤ 1 ∀ k ∈ N :
‖wk+1 − w∗‖
‖wk − w∗‖ ≤ ck, ck → 0

d) quadratically convergent, if

∃ 0 ≤ c ≤ 1 ∀ k ∈ N :
‖wk+1 − w∗‖
‖wk − w∗‖2 ≤ c

Another way to express these rates is to upper bound the ratio of the distance
of the k-th and the 0-th element to w∗. For example one can easily find by
recursively applying Definition 2.3.b), that this inequality is equivalent to
stating ‖wk −w∗‖/‖w0 −w∗‖ ≤ ck and hence the distance to the limit point
at index k is O(ck). Furthermore, we can write ck = ek log(c) ≤ ε to find
that a linearly converging sequence achieves an ε distance after O(ln(1/ε))
elements for the first time. Similarly, sublinear convergences is sometimes
referred to as O(1/k) and O(ε−1) or even slower: O(1/

√
k) and O(ε−2).

These rates come into play when considering the convergence behaviour of
the sequence of iterates generated by optimization algorithms, where the
subscript k (e.g. wk) denotes an iteration counter. We call a method globally
convergent if its sequence of iterations {wk}∞

k=0 converges to a critical point
w∗ from any initialization w0. Given that a method converges, one can es-
tablish upper bounds on the global convergence rate which we shall refer
to as worst case complexity since these bounds constitute an upper bound on
the total number of iterations an algorithm may take to converge globally.

6



2.2. Problem Description

Furthermore, assuming that the trajectory of a method converges to the limit
point w∗ we are also interested in the asymptotic or local convergence rate of
this method, i.e. the rate of convergence that sets in as soon as some iterate
wk is sufficiently close to w∗.

Regarding the type of limit points that may be approached we make the
following distinction:

Definition 2.4 (Critical points) Let f : R → Rd be twice-differentiable at a
point w∗ ∈ Rd. We call w∗ a

a) first-order critical point if and only if ∇ f (w∗) = 0.

b) strict saddle point if and only if ∇ f (w∗) = 0 and ∇2 f (w∗) has at least one
positive and one negative eigenvalue.

c) local minimizer or second-order critical point, if∇ f (w∗) = 0 and∇2 f (w∗) �
0.

d) global minimizer, if and only if f (w∗) ≤ f (w) ∀w ∈ Rd.

Note that the set of saddle points is a subset of the set of critical points.
Furthermore, in a convex setting saddle points as in 1.3.a) do not exist and all
critical points are local and global minimizers. In a strongly convex setting
at most one such critical point exists. Moreover, in both the convex and
non-convex setting Definition 1.3.c) of a local minimizer is only necessary
and not sufficient for w to be a local minimizer in the sense that there is
no other point in the neighbourhood of w that has a strictly lower objective
value. A sufficient condition would be to require ∇2 f (w) � 0 but there is a
gap between the two since even the strict local minimizer w = 0 for f (w) =
w4 violates the latter. Consequently, when we talk about local minimizers
we specifically also include higher order saddle points where the gradient
vanishes but ∇2 f (w) � 0 and ∃ λn = 0. Obviously, this consideration is
obsolete in the case of strongly convex objectives.

2.2 Problem Description

Common tasks in the field of (supervised) machine learning and statistics
are based on identifying patterns or relationships in a set of datapoints
(X, y) ∈ Rn,d ×Rd where each xi ∈ Rd is an instance with d (nominal or
numerical) explanatory variables (features) and each yi is the target variable
(label) associated with this particular instance. The goal is to find some map-
ping h : X → y from the input training set X to the known outcome y which
can be nominal (classification) or real-valued (regression). The mapping itself
is commonly scaled by a weight vector w ∈ Rd over which the optimization
is to be performed.

7



2. Concepts and Methods for Large Scale Learning

In this context, it is commonly assumed that the training data are a statis-
tical sample drawn independently from some fixed, unknown probability
distribution (X, y) ∼ D, which allows us to interpret the learning problem
as a problem of statistical inference1. Given the data, one then chooses a spe-
cific family of functions H := {h(X, w)} (i.e. a bag of possible models) and
tries to find the one hypothesis h(X, w∗) out of this hypothesis space that
on average has the lowest error of prediction l(h(X, w), y) across all possible
realizations of the data, particularly including unobservable realizations.

Towards this goal a natural approach would be to minimize the so-called
expected risk in order to find the parameters that give rise to the desired
hypothesis

w∗ = arg min
w∈R

∫
l(h(X, w), y)dD(X, y) = arg min

w∈R
E [l(h(X, w), y)]D . (2.2)

However, since the generative process of X and y is unknown we cannot
form the expected value with respect to D. Instead we minimize the so-
called empirical risk with respect to the observed samples in the hope of
approximating the expected risk, i.e. retaining a high predictive accuracy
on unseen data

ŵ = arg min
w∈R

1
n

n

∑
i=1

l(h(xi, w), yi). (2.3)

Fortunately, based on the pioneering work on uniform convergence by Vap-
nik and Chervonenkis [1971], bounds of the following type can be shown to
hold

E [l(h(X, ŵ), y)]D ≤ E [l(h(X, w∗), y)]D + O

(√
VC(H)

n

)
w.h.p. (2.4)

In this regard the so called VC dimension VC(H) can be interpreted as a
measure of model complexity and is assumed to be finite. As a result, the
optimality gap between the empirical and expected loss minimizer increases
when a richer family of prediction functions is employed (due to the risk of
overfitting). Furthermore, for a fixed hypothesis space H the generalization
error of the hypothesis h(X, ŵ) is within O(

√
1/n) of that of the true popula-

tion risk minimizer h(X, w∗) and thus inversely proportional to the number
of data points in X. Consequently, in the large scale learning setting that we
consider in this thesis where n � 1 minimizing (2.3) is reasonably likely to
yield a low generalization error.

1The joint probability distribution D(w, y) represents both, the distribution of features
D(w) as well as the conditional label probability D(y|X).
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2.2. Problem Description

To simplify matters we shall define the function f as a composition of the
loss function l and the prediction h

fi(w) = l(h(xi, w), y). (2.5)

This gives rise to the empirical risk minimization problem as stated in (1.1)
that represents an unconstrained, continuous and deterministic optimiza-
tion problem. At this point we remark that often an (easily to compute)
regularization term r(w) parametrized by a scalar λ > 0 is added to the
objective and that the methods discussed in the subsequent sections can be
applied readily to the task of minimizing the regularized empirical loss as long
as r is smooth.

Finally, throughout the entire analysis we assume that the objective is smooth
and twice continuously differentiable f ∈ C2 and note that the sum-structure
of the objective is obviously also inherited by the first and second derivatives
of f and we can thus write:

∇ f =
1
n

n

∑
i=1
∇ fi and ∇2 f =

1
n

n

∑
i=1
∇2 fi (2.6)

Popular examples of machine learning algorithms that include minimizing
(1.1) are linear regression (squared loss), logistic regression (log loss) and
support vector machines (hinge loss) which all three give rise to a convex
problem setting. Yet, non-convex problems also frequently arise in machine
learning like for example dictionary learning, gaussian mixture models and
training neural networks. For this kind of problems there is sound evidence
from statistical physics and random matrix theory that within the group of
critical points, saddle points prevail in high dimensions, especially in areas
where the error is relatively high (Bray and Dean [2007]). These results are
in line with the findings of Choromanska et al. [2015]. They specifically
investigate the error surface of multilayer neural networks and find that
the objective values of local minimizer are located in a certain band lower-
bounded by the global minimum and that above this band the number of
local minima decreases exponentially in the size of the network while the
occurrence of saddle points accumulates.

As laid out in the discussion following Definition (2.4) also higher order sad-
dles points like the well-known monkey saddle may arise in a non-convex
problem. While it can be shown theoretically that the subset of functions
with exclusively strict critical points is open and dense in C2(Rn, Rn) (Jon-
gen et al. [2013]), real world applications may still give rise to high order
saddle points e.g. due to over-specified models or permutation-symmetry
in multi-layer neural nets. Since one needs third order information in order
to escape such saddles we will not differentiate between true and degenerate

9



2. Concepts and Methods for Large Scale Learning

local minimizers in this thesis. The reader is referred to the work of Anand-
kumar and Ge [2016] for such a method. Furthermore, some problems like
dictionary learning and orthogonal tensor decomposition have indeed been
proven to have a strict saddle structure such that the Hessian of every sad-
dle point has a negative eigenvalue and thus there always exists direction
of negative curvature along which second-order methods can progress (Sun
et al. [2015]).

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0 2.0 1.5 1.0 0.50.0 0.5 1.0 1.5 2.0
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Figure 2.1: Graph of the function w3
1− 3w1w2

2 which gives rise to the monkey
saddle

Finally, we note that finding a global minimizer can be extremely hard. As
a matter of fact, the work of Hillar and Lim [2013] showed that even a
degree four polynomial can be NP-hard to optimize. Instead of aiming for
a global minimizer, we will thus seek for a local optimum in the hope that
this optimum yields a comparably low objective value.

2.3 Overview of Common Methods

For the sake of completeness, let us now review some fundamental optimiza-
tion algorithms that can be applied to solve (1.1). We explicitly consider only
first and second-order methods with updates of the form

wk+1 = wk − ηkQk∇ f (wk), (2.7)

where ηk is the learning rate of iteration k and Qk is a suitable scaling matrix
that may provide curvature information. Derivative free metaheuristics like

10



2.3. Overview of Common Methods

random search or particle swarm optimization are not treated in this thesis.

First-Order Methods The prototypical optimization method is Gradient
Descent (GD) which, based on the fact that the gradient ∇ f (w) points into
the direction of steepest ascent, takes a step along the negative gradient with
a learning rate ηk > 0. Hence the scaling matrix Qk equals the identity
matrix I, the updates become

wk+1 = wk − ηk∇ f (wk) (GD) (2.8)

and the per-iteration cost boils down to evaluating n gradients O(nd). GD
with a constant learning rate is converging to a first-order critical points
at a sub-linear rate O(1/k) if f is convex and at a linear rate O(ρk) if f is
strongly convex. However, note that the constant ρ = 1− (1/κ(H∗)) gets
worse the higher the condition number of the Hessian at the limit point w∗

is ([Nesterov, 2013]).

An increasingly popular variant called Stochastic Gradient Descent (SGD)
reduces the per-iteration cost to O(d) by using only one datapoint at a time
to compute the update

wk+1 = wk − ηk∇ fi(wk) (SGD). (2.9)

Of course, the iterates {wk} generated by SGD now constitute a random se-
quence that depends on the sequence of sampled datapoints {ik} and the
objective value is no longer guaranteed to decrease in each iteration. How-
ever, when sampled uniformly and independently, the direction −∇ fi is
a descent direction in expectation. Furthermore, a decreasing learning rate
is needed for this method to converge and the convergence rate reduces
(compared to GD) to the sub-linear levels O(1/

√
k) in a convex and O(1/k)

in a strongly convex setting[Nemirovski et al., 2009]. Yet, the cheaper per-
iteration cost may overcompensate the slower convergence rate in terms of
total computation time when a large number of datapoints is involved2.

Variance Reduced (VR) variants make explicit use of the finite sum-structure
in (1.1) in order to retain GDs linear convergence rate while keeping the
learning rate constant3. The basic idea is the following: By sampling one
gradient ∇ fi(wk) per-iteration we try to estimate its expected value, the full
gradient ∇ f (wk), cheaply. Given that some prior information, say ∇ fi(αi)
and ∇ f (α) = 1

n ∑n
j ∇ f j(α), has been stored we can estimate ∇ f (wk) instead

by θk = ∇ fi(wk) − ∇ fi(αi) + ∇ f (α). Given that E [∇ fi(αi)] = ∇ f (α) it

2compare the total times O(nd) ∗O(log(1/ε)) of GD to O(d) ∗O(1/ε) of SGD which are
needed to achieve ε optimality asymptomatically.

3Johnson and Zhang [2013] show that the variance of SGD can only go to zero if a
decreasing learning rate is used.
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2. Concepts and Methods for Large Scale Learning

becomes evident that θk is still an unbiased estimator, however the vari-
ance Var(θk) = Var(∇ fi(wk)) + Var(∇ fi(αi)) − 2 Cov(∇ fi(wk),∇ fi(αi)) is
reduced given that the covariance term is large enough. Hence the iterate
update scheme is written as follows:

wk+1 = wk − ηk

(
∇ fi(wk)−∇ fi(αi) +

1
n

n

∑
j
∇ f j(αj)

)
(VR) (2.10)

which generally has a runtime of O(d) but comes at the cost of needing to
store past information. Different methods use different techniques to obtain
αi which is furthermore updated regularly in order to keep the covariance
high. Two particularly popular approaches are SVRG, which sets αi = wl , ∀i
and hence computes and stores the full gradient (O(nd) computation and
O(d) storage cost) every other iteration (Johnson and Zhang [2013]) and
SAGA which stores the initial gradient of each datapoint in a table αi = w0, ∀i
(O(nd) storage cost) and updates only one entry in every iteration to the most
recent iterate αi = wk, i = sampled index (Defazio et al. [2014]).

As all first-order methods only use gradient information, there is no global
convergence guarantee towards a second-order local minimizer in the gen-
eral setting of non-convex function.

Second-Order Methods The canonical second-order method is Newton’s
methods (NM) which uses the inverse Hessian as a scaling matrix QK =
∇2 f (wk)

−1 = H(wk)
−1 and thus has updates of the form

wk+1 = wk − H(wk)
−1∇ f (wk) (NM). (2.11)

Using curvature information to rescale the steepest descent direction gives
Newton’s method the useful property of being linearly scale invariant, i.e.
for some (non-singular) re-parametrization w̃ = Aw the optimal update
given by this method remains w̃k+1 = w̃k − H(Awk)

−1∇ f (Awk) = w̃k −
H(w̃k)

−1∇ f (w̃k). Contrary to the above presented first-order methods, this
gives rise to a problem independent local convergence rate that is furthermore
also faster, namely super-linear and even quadratic in the case of Lipschitz
continuous Hessians (see Nocedal and Wright [2006] Theorem 3.5).

However, there are certain drawbacks about applying classical Newton’s
method. First of all, the Hessian matrix may be singular and thus not invert-
ible. Secondly, even if it is invertible the Newton direction is not necessarily
a direction of descent and hence arbitrary critical points (including local
maxima) may be approached. Finally, the cost of forming and inverting the
Hessian sum up to O(nd2 + d3) and are thus prohibitively high for appli-
cations in high dimensional problems. To tackle the first and second issue
sophisticated line search approaches modify H to make it positive definite
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2.3. Overview of Common Methods

for example by adding a positive diagonal matrix B = H + λI with some
λ > 0. Alternatively, trust region methods can be used to make Newton’s
method globally convergent which we will present in great detail later.

The last issue can be partially resolved by applying so-called quasi-Newton
methods like the celebrated Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm which construct the matrix Qk in a computationally more feasible
way (O(nd + d2)) while preserving sufficient second-order information. To-
wards this end the change in the gradients and iterates from one iteration
to another is used to dynamically update a direct approximation of the
inverse H−1

k . Specially, the BFGS methods computes sk = wk+1 − wk and
vk = gk+1 − gk, sets

Qk =

(
I −

sk−1vᵀk−1

sᵀk−1vk−1

)ᵀ
Qk−1

(
I −

vk−1sᵀk−1

sᵀk−1vk−1

)
+

sk−1sᵀk−1

sᵀk−1vk−1
(2.12)

and then updates the current iterate according to the following scheme

wk+1 = wk −Q(wk)
−1∇ f (wk) (BFGS). (2.13)

Notably, the updated approximations Qk from (2.12) are symmetric, positive
definite and satisfy the secant equation Qkvk−1 = sk−1.

While this routine also yields a superlinear convergence rate the construction
of Q as in (2.12) has the downside of producing dense scaling matrices even
when the exact Hessian is sparse which limits the approach to application in
small and midsize problems (O(d2) storing cost) [Nocedal and Wright, 2006]
Chapter 6 . A common alternative is the so-called limited memory BFGS or
L-BFGS. This method does not form Qk explicitly but directly computes the
matrix-vector product Q−1

k ∇ f (wk) based on the last m > 0 displacement
pairs (s, v) that have been stored in memory. While this approach incurs
per-iteration cost in the order of O(md), only a linear local convergence rate
can be proven [Liu and Nocedal, 1989].

Of course, it is possible to apply the variance reduction techniques presented
above within a quasi-Newton framework and this combination may lead to
practical improvements as demonstrated by Lucchi et al. [2015].

Sub-sampled second-order Methods Based on the pioneering work of Byrd
et al. [2011], constructing the scaling matrix Qk by usage of sub-sampling
techniques for the Hessian has become an increasingly popular alternative
to quasi-Newton methods (see e.g. Erdogdu and Montanari [2015], Roosta-
Khorasani and Mahoney [2016a] and Agarwal et al. [2016b]). The intuition
behind this approach is that in many large-scale applications the data does
involve a good deal of (approximate) redundancy which makes using all
of the samples in every iteration computationally inefficient. Thus, in each

13



2. Concepts and Methods for Large Scale Learning

iteration k sub-sampled Newton methods choose a subset SH ∈ {1, 2, . . . , n}
at random form

Qk =
1
n ∑

i∈S
Hi(wk). (2.14)

Assuming that the sub-sampled Hessian Qk is invertible the update can be
written as follows

wk+1 = wk − ηkQ−1
k ∇ f (wk) (subNewton). (2.15)

Of course gradient and Hessian information may also be sub-sampled at the
same time which gives a fully stochastic algorithm. Generally it has been
shown that sub-sampled Newton methods can be made globally converg-
ing on strongly convex objectives. Furthermore, linear convergence can be
achieved by uniformly sampling the Hessian and it is sampled to an increas-
ing accuracy as the algorithm progresses even superlinear can be obtained
Roosta-Khorasani and Mahoney [2016b]. Remarkably, Martens [2010] was
the first to apply a sub-sampled hessian-free damped newton method with
increasing sample size for deep learning and was able to (empirically) im-
prove on the commonly observed under-fitting behaviour of SGD in the con-
text of training deep neural networks. Since the damped Newton approach
puts a quadratic penalty on the step size this work is fairly close to our
approach and thus suggests its application on neural networks. As stated
above these networks give rise to many high level saddle points which can
be efficiently escaped using second-order information as we shall elaborate
in the next section.

Finally we want to note that all of the large majority of recently proposed
sub-sampled Newton methods are line-search type methods and the only
stochastic trust region approaches that we are aware of are those of Martens
[2010] and Blanchet et al. [2016]. As discussed, the former applies only a
very minimalist TR framework and furthermore gives no theoretical conver-
gence analysis at all. The latter analyses the first-order global convergence
of a first-order trust region method on non-convex functions based on the
properties of supermartingales. Hence our approach is to the best of our
knowledge the first to explore Hessian sub-sampling in a trust region and
specifically in a cubic regularization framework and also the first to give a
quadratic convergence rate as well as a second-order guarantee of such a
method on non-convex objectives.

2.4 Why second-order?

Fast asymptotic convergence and highly accurate solutions As we have
seen above the local convergence rate of first-order methods suffers from
a high condition number of the Hessian. Geometrically, this term can be
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2.4. Why second-order?

interpreted as the maximum stretch of the unit sphere by H, where the
unit sphere of a vector space V in a certain norm ‖ · ‖ is the set of all
points w of distance 1 from its central point ({w ∈ V : ‖w‖ = 1}). In
other words, a large discrepancy between λmin(H) and λmax(H) causes an
equally large discrepancy between the longest and the shortest half-axis of
the resulting ellipsoid which generally leads to more elongated level curves
levα

f = {w ∈ Rn|q(w) = α} of an objective near to its minimizer4. This, in
turn, causes gradient descent methods to enter the so-called zig-zagging be-
haviour which may lead to unacceptably slow asymptotic convergence rates
even for strongly convex objectives.

Figure 2.2 illustrates this effect for a convex-quadratic objective wᵀw, w ∈ R2

before (left) and after the linear transformation A = diag(1,
√

5). As can be
seen, Newton’s method finds the global minimizer of the quadratic objective
within one step in both cases due to the discussed linear scale invariance.

Figure 2.2: Level sets of a convex quadratic objective and iterates of Gradient
Descent and Newton’s method

But why does rescaling the gradient by curvature information give rise to
more sensible directions? Intuitively, the curvature in a particular descent
direction d signals how much the gradient of the objective changes along
this direction. Thus, in case of low (positive) curvature, the gradient will
change slowly along d (i.e. d stays a descent direction over a large range)
and hence it is appropriate to take a step s that moves far along d (i.e. by
making sᵀd large), even if the first-order information itself signals a rela-
tively small objective decrease, i.e. −∇ f ᵀs is small. Following the same
arguments it is thus advisable to choose a step that does not go far along d
in case of high curvature in this direction. As a consequence, the zig-zagging

4In practice it is not uncommon to encounter problems with κ(H) in the order of 103 to
106 (see Section 5)
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2. Concepts and Methods for Large Scale Learning

behaviour of GD can be attributed to repeatedly taking steps that travel too
far in directions of high curvature. Newton’s method, on the other hand,
computes the distance to go along the gradient as the ratio of reduction in-
dicated by the steepness divided by the associated curvature information:
−‖∇ f ‖/(∇ f ᵀH∇ f ). This is precisely the step size after which the objective
f increases in the case that it is a convex-quadratic function.

As a result the Newton step can be interpreted as the step to the critical
point of the following local quadratic approximation of f around the current
iterate w:

m(s) = f (w) +∇ f (w)ᵀs +
1
2

sᵀHs (2.16)

which can be shown to be O(‖s‖3) close to f based on a second-order Taylor
approximation.

It is sometimes argued that one never really looks for highly accurate solu-
tions in Machine Learning due to the risk of over-fitting the training dataset.
In this context the asymptotic properties of steepest descent methods are
then considered a feature rather than a bug. However, we have already laid
out in equation (2.4) that there is no point in settling with an inaccurate
solution to the empirical risk minimization when n is high because the risk
of over-fitting vanishes5. Furthermore, in some applications like General-
ized Linear Models the learned vector w contains specific meanings that one
might be interested in interpreting for the sake of understanding real world
relationships.

Escaping saddles quickly A further disadvantage of first-order methods is
that there is no global convergence guarantee regarding second-order critical
points which may cause them to get stuck at a saddle point with an arbitrar-
ily bad objective value. The classic Newton method doesn’t provide such a
guarantee either but it can be globalized easily as mentioned in Section 2.3.

To be fair, though, one has to admit that it is actually highly unlikely for a
gradient descent method to converge to a strict saddle. As a matter of fact
Panageas and Piliouras [2016] show that, if initialized at random, GD does
not converge to a saddle point with probability one. Consider for example
the function f (w1, w2) = 1/2w2

1 + 1/4w4
2 − 1/2w2

2 which is non-convex but
coercive and has global minimizers at w̄ = (0, 1) and w∗ = (0,−1). If start-
ing anywhere along the line segment (w1, 0), the steepest descent direction
−∇ f (w1, 0) = −(w1, 0) points right at the saddle ŵ = (0, 0) and GD will
end up getting stuck there. However, from any other initial point it would
surely find one of the global minimizers. Stochastic variants like SGD that
use a noisy gradient approximation for their step calculation are even less

5given that one has opted for a suitable model in the first place. See Eq. (2.2)
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likely to halt at the saddle. As a matter of fact, Ge et al. [2015] prove that
the convergence rate of a (noise injected) SGD algorithm has a polynomial
dependency on the inverse of the gradient norms around the saddle.

Nevertheless, a closer look at Figure 2.3 a) suggests that saddles delay the
progress of first-order methods significantly since directions of low curva-
ture are explored with too small steps. Furthermore, it illustrates that NM,
even though it was initialized off the saddle convergence line (w1, 0), is in-
deed attracted by first-order critical points. Yet, as can be seen in Figure 2.3
b) this issue as well as the small progress problem are resolved when a trust
region framework is applied6.

Figure 2.3: Graph of the function 1/2w2
1 + 1/4w4

2 − 1/2w2
2 and the iterates

of different first- and second-order optimization methods

All in all, the ubiquity of high error saddle points in high dimensional prob-
lems as introduced in Section 2.2 seems to make it particularly hard for
curvature-free methods like gradient-descent to quickly progress towards
regions of lower loss. This impedes rapid high dimensional non-convex op-
timization with first-order methods and thus strongly suggests the use of
second-order information.

2.5 Adaptive Cubic Regularization

Trust Region As we have just seen it can be of great advantage to take
second-order information into consideration when minimizing both: con-

6ARC exact (blue) minimizes the subproblems globally while ARC lanczos (red) uses
does so in Krylov subspaces. ARC cp (black) takes Cauchy steps which are not enough for
second-order convergence. Details follow in Section 3.2.
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2. Concepts and Methods for Large Scale Learning

vex and non-convex functions. However, next to the drawbacks of Newton’s
method discussed in Section 2.3 (namely that steps may be ascending or
not even computable) another issue is that the local quadratic model (2.17)
that is minimized in each NM iteration may simply be an in-adequate ap-
proximation of the true objective. A powerful framework to resolve both of
these issues is the so-called trust region approach (TR). These methods also
construct a quadratic model mk but constrain the subproblem in such a way
that the stepsize is restricted to stay within a certain radius ∆k within which
the model is trusted to be sufficiently adequate:

min
s∈Rd

mk(s) = f (wk) +∇ f (wk)
ᵀs +

1
2

sᵀH(wk)s, s.t. ‖s‖ ≤ ∆k (TR) (2.17)

Hence, contrary to line-search methods this approach finds the step sk and
its length ‖sk‖ simultaneously by minimizing (2.17). Subsequently the func-
tion decrease f (wk) − f (wk + sk) is compared to the model (or predicted)
decrease m(0)− m(sk) and the step is only accepted if this ratio ρ exceeds
some predefined success threshold. As a consequence, the Newton Step
sN = −H−1

k gk is only taken if it lies within the trust region radius and
yields a certain amount of decrease in the objective value. Finally, the trust
radius is updated adaptively depending on ρk as it constitutes a measure for
the model adequacy. Since many functions look somehow quadratic close
to a minimizer the radius can be expected to grow asymptotically such that
eventually full Newton steps are taken in every iteration which retains the
local quadratic convergence rate.

However, when not in a neighbourhood of the minimizer, the issue with
quadratic approximations is that they assume a constant curvature and may
thus become inadequate quickly for general non-linear functions with vary-
ing curvature. Let us take another look at the saddle function introduced in
Figure 2.3. Obviously, slicing the error surface along the w1 axis gives rise
to a parabola but a saddle arises due to the order 4 polynomial in w2. This
can also be seen when looking at the Hessian H(w) = diag(1, 3w2

2 − 1).

As can be seen on the left hand side of Figure 2.4 the convex-quadratic
approximation m(s) around w̄ drastically underestimates the objective f (w)
for points w with w2 > w̄2 because of the rapid curvature change in this
direction. As a consequence, Newton’s method (purple) initialized at w̄
takes a step that travels too long and ends up on a higher level set than
where it started, as can be seen on the right. The trust region method (shown
in blue for different values of ∆ ∈ [0, 1.25]) does far better by altering the
step directions towards the minimizer and furthermore rejecting any step
that travels further than ‖s‖ = 1.25 even before the function decrease is
negative because of a too low decrease ratio ρ.
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Figure 2.4: Graph and level sets of the function f (w) = 1/2w2
1 + 1/4w4

2 −
1/2w2

2 and a local quadratic approximation m(w̄, s) formed around the point
w̄ = (1,

√
3 + 0.01)

Nesterov 2006 In a Lagrangian manner the constrained trust region solu-
tion can (in the case of boundary solutions) be shown to be equivalent to
minimizing the model function with a suitable quadratic penalty term on the
stepsize (see Proof following Theorem 7.2.1 in Conn et al. [2000]). Thus, a
natural extension is the cubic regularization method introduced by Nesterov
and Polyak [2006] which use a cubic penalty term as a regularization tech-
nique for the computation of the trial step. Assuming a Lipschitz continuous
Hessian with constant κH and setting the penalty parameter to this constant
in each iteration they show that the model

mk(sk) := f (wk) + sᵀk∇ f (wk) +
1
2

sᵀk Hksk +
κH

6
‖sk‖3 (Nesterov 2006) (2.18)

is a global over-estimator of the objective, i.e. f (wk + sk) ≤ m(sk) ∀w, s ∈ Rd

and hence any minimizer of mk is guaranteed to yield a positive function
decrease in f . Nesterov and Polyak [2006] were able to show that, if the step
is computed by globally minimizing the cubic model, this method possesses
the best known worst case complexity to solve Eq. (1.1): an overall worst-
case iteration count of order ε−3/2 for generating ‖∇ f (wk)‖ ≤ ε, and of order
ε−3 for achieving approximate non-negative curvature. Consider Table 2.1
for a comparison with other methods7.

ARC However, minimizing (2.18) in an exact manner impedes the perfor-
mance of this method for large scale learning applications as it requires

7Interestingly, Cartis et al. [2012] show that the first-order worst case complexity bounds
are sharp which reveals the fact that the classical NM may be as slow as GD!
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Method local rate ‖∇ f ‖ ≤ ε ∇2 f � −ε Source

GD linear O
(

nd
ε2

)
n/a [Cartis et al., 2010]

SGD sublinear O
(

d
ε4

)
n/a [Ghadimi and Lan, 2016]

SVRG linear O
(

nd +
n2/3d

ε2

)
n/a [Allen-Zhu and Hazan, 2016]

NM superlinear O
(

nd2 + d3

ε2

)
n/a [Cartis et al., 2010]

quasi NMs superlinear n/a n/a [Nocedal and Wright, 2006]
sub NMs (super)linear n/a n/a [Erdogdu and Montanari, 2015]

TR superlinear O
(

nd2

ε2

)
O
(

nd2

ε3

)
[Gratton et al., 2008]

ARC superlinear O
(

nd2

ε3/2

)
O
(

nd2

ε3

)
[Cartis et al., 2010]

Table 2.1: Comparison of common optimization methods in terms of local
convergence rate and worst case time complexity for achieving ε first and
second-order criticality.

access to the full Hessian matrix. More recently, Cartis et al. [2011] pre-
sented a method (hereafter referred to as ARC) which introduced three cru-
cial changes to make the method more practical. First, they relaxed the
Lipschitz continuity assumption of the Hessian and introduced an adaptive
penalty parameter σk which is updated in the spirit of trust region meth-
ods. Second, they derived a condition that allows the use of a quadratic
approximation Bk that is sufficiently close to Hk in the following way:

‖(Bk − Hk)sk‖ ≤ C‖sk‖2, ∀k ≥ 0, C > 0 (2.19)

Finally, they showed that it is sufficient to find an approximate subproblem
minimizer e.g. by applying a Lanczos-type method to build up evolving
Krylov spaces, which can be constructed in a Hessian-free manner (i.e. by
accessing the Hessian only indirectly via matrix-vector products). Thus the
ARC method minimizes subproblems of the following type at each iteration
k:

mk(sk) := f (wk) + sᵀk∇ f (wk) +
1
2

sᵀk Bksk +
σk

3
‖sk‖3 (ARC) (2.20)

where σk > 0.

However, there are still three major obstacles for the application of ARC in
the field of machine learning: (1) The cost of the Lanczos process increases
linearly in n and can thus become very expensive for large datasets, (2) the
use of exact gradient information impedes applications where n is so large
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that even computing the full gradient is too expensive and (3) there is no the-
oretical guarantee that quasi-Newton approximations such as (2.12) satisfy
Eq. (2.19) and Cartis et al. [2011] do not provide any alternative approxima-
tion technique.

In this work we set out to resolve these issues in order to come up with
a computationally efficient cubic regularization variant that retains all of
ARCs outstanding global and local convergence properties. In this regard,
we make the following contributions

• Based on concentration inequality bounds we provide a theoretical
Hessian sampling scheme that is guaranteed to satisfy Eq. (2.19) with
high probability.

• Since the dominant iteration cost lie in the construction of the Lanczos
process and increase linearly in n, we lower the computational cost
significantly by reducing the number of samples used in each iteration.

• We extend the analysis to inexact gradients and prove that the conver-
gence guarantees of Nesterov and Polyak [2006], Cartis et al. [2011]
can be retained.

• Finally, to substantiate the theoretical findings, we provide experimen-
tal results demonstrating significant speed-ups compared to standard
first and second-order optimization methods for various convex and
non-convex objectives.
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Chapter 3

Stochastic Cubic Regularization

3.1 Formulation

As laid out above, we are interested in optimizing potentially (non-convex)
sum-structured empirical risk minimization problems such as Eq. (1.1) in
a large-scale setting where the number of datapoints is very large and the
dimensionality of the problem is large (n � d � 1), such that the cost of
solving the cubic regularization subproblem Eq. (2.20) exactly becomes pro-
hibitive. In this regard we identify a sampling scheme that allows us to
retain the convergence results of deterministic trust region and cubic regu-
larization methods, including quadratic local convergence rates and global
convergence guarantees as well as worst-case complexity bounds. A de-
tailed theoretical analysis is given in Chapter 4. Here we shall first state the
algorithm itself and elaborate further on the type of local non-linear models
we employ and how these can be solved efficiently.

Model objective Instead of using deterministic gradient and Hessian in-
formation as in Eq. (2.20) in every iteration k we apply unbiased estimates
of these quantities constructed from two independent subsets of points de-
noted by Sg and SB which represent a collection of unique indices from
{1, 2, . . . , n} and whose cardinality is denoted by |S|, with 0 < |S| ≤ n. We
then construct a local cubic model that is (approximately) minimized in each
iteration:

mk(s) := f (wk) + sᵀgk +
1
2

sᵀBks +
σk

3
‖s‖3 (3.1)

where gk := 1
|Sg| ∑i∈Sg

∇ fi(wk) and Bk := 1
|SB| ∑i∈SB

∇2 fi(wk).

Note that this objective may be non-convex and may have global and local
minimizers as well as saddle points, as can be seen in Figure 3.1. Its deriva-
tive with respect to sk is defined as

∇mk(s) = gk + Bks + λs (3.2)
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and hence the second derivative can be written as follows

∇2mk(s) = Bk + λI + λ

(
s
‖s‖

)(
s
‖s‖

)ᵀ
, (3.3)

where λ = σk‖s‖. This term can be interpreted as a damping parameter that
re-conditions the Hessian to be positive semidefinite as done for example in
the Levenbeg-Marquard method [Nocedal and Wright, 2006]. Note that the
last summand in (3.3) is merely a constant independent of s for quadratically
regularized methods such as trust region algorithms.

Figure 3.1: Graph of a two-dimensional instance of (3.7) with g = (1/2, 0)ᵀ

and H = [−10, 1; 1,−10]

Algorithm Our Stochastic Cubic Regularization (SCR) method is presented
in Algorithm 1. At iteration k, we sub-sample two sets of datapoints uni-
formly and independently from which we compute a stochastic estimate of
the gradient and the Hessian. We then minimize the obejctive from Eq. (3.7)
with respect to s approximately using the method described in Section 3.2.3
to obtain a trial step which is only accepted if the function decrease is greater
or equal to η1 · 100% of the model decrease. Finally, we update the regular-
ization parameter σk also depending on how well the model approximates
the true objective. In particular, very successful steps indicate that the model
is (at least locally) an adequate approximation of the objective such that the
penalty parameter is decreased in order to allow for longer steps. Inspired
by Cartis et al. [2011] the intention here is to reduce the penalty rapidly to al-
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Algorithm 1 Sub-sampled Cubic Regularization (SCR)

1: Input:
2: Starting point w0 ∈ Rd (e.g w0 = 0)
3: γ > 1, 1 > η2 > η1 > 0, and σ0 > 0
4: for k = 0, 1, . . . , until convergence do
5: Sample gradient gk and Hessian Hk according to Eq. (4.26) and

Eq. (4.32) respectively
6: Obtain sk by solving mk(s) (Eq. (3.7)) such that A3.7 holds
7: Compute f (wk + sk) and

ρk =
f (wk)− f (wk + sk)

f (wk)−mk(sk)
(3.4)

8: Set

wk+1 =

{
wk + sk if ρk ≥ η1

wk otherwise
(3.5)

9: Set

σk+1 =


max{min{σk, ‖gk‖}, εm} if ρk > η2 (very successful iteration)
σk if η2 ≥ ρk ≥ η1 (successful iteration)
γσk otherwise (unsuccessful iteration),

(3.6)
where εm ≈ 10−16 is the relative machine precision.

low for (almost1) Newton steps once convergence sets in, while preserving
some regularisation non-asymptotically. In case of unsuccessful iterations
we reject the trial step and increase the penalty parameter in order to reduce
the length of the next trial step to a region where the quadratic approxima-
tion is more likely to be accurate.

Readers familiar with trust region methods might see that one can interpret
the penalty parameter σk as inversely proportional to the trust region radius
δk. Note that contrary to the deterministic case (ARC), the successfulness of
an SCR iteration now depends on two issues: a) the adequacy of a quadratic
model in itself and b) the accuracy of the sub-sampled quantities. We thus
re-sample after both, successful and unsuccessful iteration and note that due
to the decrease in stepsize the sampling schemes (4.26) and (4.32) increase
|S| after unsuccessful iterations2.

1Note that contrary to the trust region approach, cubic regularization methods never
take full Newton steps as the regularization is always ”on” (i.e. σk > 0, ∀k ≥ 0).

2More sophisticated update schemes might well be able to untangle the two effects but
this is not subject of this thesis
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3.2 Finding the Cubically Regularized Newton Step

The following analysis is rather lengthy and detailed but at the same time
important as the subproblem minimization task commonly causes the main
computation complexity of trust region/cubic regularization methods and is
furthermore decisive for their convergence results. Our approach is mainly
based on ideas developed for trust regions algorithms as in [Conn et al.,
2000] Section 7.3 and [Nocedal and Wright, 2006] Section 4.3. Furthermore,
we here aim to extend [Cartis et al., 2011] Section 6 for the sake of compre-
hensibility, since surprisingly many aspects of the exact ARC subproblem
minimization are not given by Cartis et al. [2011] (including the final algo-
rithm) but differences to the trust region approach are ubiquitous due to a)
the absence of interior solutions and b) the difference in the definition of λ.

Readers who are short on time may view the exact subproblem minimiza-
tion (Section 3.2.2) as an iterative black box routine that requires factorizing
B + λI in each of its sub-iteration i, whose number grows in the desired
accuracy3. Thus4, it returns the global minimizer s∗ in O(id3) operations
for general matrices B and in O(id) operations for tri-diagonal matrices B
which, as we shall see, happens to be the case in Krylov subspaces.

3.2.1 On the Existence of a Global Minimizer

We shall start this Section by investigating the feasibility of the subproblems
that arise in each SCR iteration.

Theorem 3.1 (Feasibility of the subproblem) Let f ∈ C2 and mk defined
as in (3.7). The problem

min
s∈Rd

mk(s) (3.7)

is feasible.

Proof: The model objective itself is a continuous function since (i) the dot
product sᵀg is a linear functional and bounded by the Cauchy-Schwarz in-
equality and (ii) sᵀHks is continuous as long as the partial derivatives of f
which define H are continuous functions which is given due to the assump-
tion f ∈ C2.

3At a globally linear and locally logarithmic rate (Theorem 6.3, [Cartis et al., 2011])
4unless B is indefinite and g orthogonal to the leftmost eigenvectors of B
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In addition, mk is coercive in the sense that for every sequence {sν} ∈ Rd

with ‖sν‖ → ∞ also mk(sν)→ ∞ since:

mk(sν) = f (wk) + (sν)ᵀgk +
1
2
(sν)ᵀBksν +

σk

3
‖sν‖3

≥ −‖sν‖‖gk‖+
1
2

λ1‖sν‖2 +
σk

3
‖sν‖3

= ‖sν‖(−‖gk‖+ ‖sν‖(λmin +
σk

3
‖sν‖)) ‖s

ν‖→∞→ +∞,

(3.8)

where we used the above mentioned Cauchy-Schwarz inequality to lower
bound the gradient- and a spectral decomposition to lower bound the Hes-
sian term and furthermore applied that ‖gk‖ and λmin are constant as well
as σk > 0.

As a result of the continuity and coercivity of mk we argue that each level set
levα
≤(mk, Rd) = {s ∈ Rd|mk(s) ≤ α} is non-empty and compact (see Lemma

A.2 in the Appendix) which guarantees the existence of a global minimizer
of

min
s∈Rd

mk(s) s.t. s ∈ levα
≤(mk, Rd)

according to Weierstrass extreme value theorem (Theorem A.1 in Appendix).
Finally, any global minimizer of mk on the α level set is obviously also a
global minimizer of mk on Rd which proves the assertion.

�

Now that we know of the existence of (at least one) global minimizer let us
proceed by giving its characterization, as it can be found in [Cartis et al.,
2011] Theorem 3.1 for the proof.

Theorem 3.2 (Characterization of global minimizer) Any s∗k is a global
minimizer of mk(s) over Rd if and only if it satisfies the system of equations

(Bk + λ∗ I)s∗k = −gk, λ∗ = σk‖s∗k‖, and (Bk + λ∗ I) � 0, (3.9)

where λ∗k = σk‖s∗k‖ and Bk + λ∗k I is p.s.d.

A direct consequence of this theorem is that since Bk is a quadratic matrix
it has full rank whenever Bk � 0 and thus the solution of (3.7) is unique
whenever Bk is positive definite. For the sake of simplicity, we shall drop
the iteration subscript k in the following subsection.
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3. Stochastic Cubic Regularization

3.2.2 Exact Subproblem Minimization

We shall now derive the useful proposition that the above mentioned prob-
lem can be solved by finding the root of an univariate non-linear equation in
the scalar λ.

Problem formulation in λ

First off, let us use the optimality conditions (3.9) to express s as a function
of λ and define a search window in which λ∗ must lie. Obviously, from the
third condition we have that λ∗ > −λmin(B). From the second condition we
can deduce the equality

‖s(λ)‖ = λ

σ
⇔ ‖s(λ)‖2 =

λ2

σ2 . (3.10)

In order to study these conditions and the existence of a global minimizer in
more detail, we assume for the moment that B is diagonizable and that
its eigenvalue decomposition is given by B = QᵀΛQ. Furthermore, let
λ1, λ2, ..., λd denote the smallest to largest eigenvalues of B. Then, B−1 =
QᵀΛ−1Q since Q is orthogonal and the first condition is written

s(λ) = −(B + λI)−1g⇔ s(λ) = −Qᵀ(Λ + λI)−1Qg. (3.11)

Since QᵀQ = I we can write

‖s(λ)‖2 =(−Qᵀ(Λ + λI)−1Qg)ᵀ(−Qᵀ(Λ + λI)−1Qg)

=gᵀQᵀ((Λ + λI)−1)ᵀ(Λ + λI)−1Qg

=‖(Λ + λI)−1Qg‖2

=
d

∑
i

(qᵀi g)2

(λ1 + λ)2 ,

(3.12)

where qi is the i−th row of Q and since B is symmetric it is the transpose
of the i−th eigenvector of B. Since x2 is a monotonic transformation on the
image of ‖s‖, this reveals some interesting properties of ‖s(λ)‖. First of all,
it is a non-negative, monotonically decreasing function in λ on the interval
(−λ1, ∞) since then λi + λ > 0, for all i = 1, · · · , d.

In fact, we have
lim

λ→∞
‖s(λ)‖ = 0. (3.13)

Secondly, ‖s(λ)‖ has poles at each λ = −λi, for which the dot-product
qᵀi g 6= 0, i.e.

lim
λ→−λi

‖s(λ)‖ = ∞, ∀i ∈ {i = 1, · · · , d|∃qᵀi g 6= 0} (3.14)
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Figure 3.2: Graph of ‖s(λ)‖ for g = (1/2, 1/2, 1/2)ᵀ and B = diag(2, 1,−1)

Normal case

Lemma 3.3 As long as ∃i ∈ {i = 1, . . . , d|λi = λ1} with qᵀi g 6= 0,, there exists a
unique solution

λ∗ ∈ [max{0,−λ1},+∞)], (3.15)

which satisfies the global optimality conditions of (3.9).

Proof: Due to (3.14) and under the above mentioned assumptions ‖s(λ)‖ has
a pole at λ = −λ1. Furthermore, we have already established that it is a
monotonically decreasing function and the limit (3.13) holds. Thus, at some
point λ∗ to the right of −λ1 (i.e. where (B + λ∗ I) � 0) the stepsize norm is
guaranteed to take the value λ∗/σ, i.e.

‖s(λ∗)‖ = λ∗/σ (3.16)

and the second and third condition of (3.9) are satisfied. Finally, in (3.11) we
have defined s(λ) in such a way that the first condition of (3.9) always holds.
Thus, all of (3.9) is satisfied.

But we can narrow the search windows even further down. Note that when-
ever B is indefinite, −λ1 > 0. Furthermore, when B is positive semidefinite
−λ1 < 0 but for λ < 0 we have λ/σ < 0 while ‖s(λ)‖ ≥ 0 so there cannot
be any negative root of θ1. As a result, the value of λ we search for lies at
the single positive root of θ1(λ) in the interval.

�
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3. Stochastic Cubic Regularization

Hard case When qᵀi g = 0, ∀i ∈ {i = 1, . . . , d|λi = λ1}, the limit (3.14)
does not hold for λ → −λ1 and we cannot be sure that there actually is a
λ∗ ∈ (−λ1, ∞) such that ‖s(λ∗)‖ = λ∗/σ. As discussed above, for a positive
semidefinite B the max{0,−λ1} = 0 and θ1(0) ≥ 0 so that the root finding
technique can be applied without further considerations.

However, for an indefinite B, we cannot be sure that ‖s(−λ1)‖ ≥ −λ1/σ
and thus the function value θ1(−λ1) may be negative so that there exists no
root in the given search interval. Inspired by Conn et al. [2000] we shall call
this the hard case.

Lemma 3.4 Be qᵀi g = 0, ∀i ∈ {i = 1, . . . , d|λi = λ1} and B not positive definite.
Then for any of these eigenvectors qi, the step s∗ = s(−λ1) + αq1 with α ∈ R

chosen such that
λ1 = σ‖s(−λ1) + αq1‖. (3.17)

satisfies the global optimality conditions of (3.9).

Proof: Since (B + λI) must be positive semidefinite at any global minimizer
s∗, we are only left with the choice λ∗ = −λ1. But then, the element in the
sum term of equation (3.12) is undetermined and it cannot be used to find
the minimizer s∗. However, at this point (B + λ∗ I) is positive semidefinite
and singular. Thus, luckily, there are other solutions to (3.11), because for
any eigenvector q1 corresponding to the leftmost eigenvalue λ1, we have
(B + λ∗ I)q1 = 0 and thus

(B− λ1 I)(s(−λ1) + αq1) = −g (3.18)

for any scalar α. Consequently, a model minimizer is given by (3.18) when
α ∈ R is chosen such that

λ1 = σ‖s(−λ1) + αq1‖, (3.19)

since then s∗ = s(−λ1) + αq1 also satisfies (3.10).

�

As a consequence, resolving the hard case requires computing a partial
eigensolution of B in order to obtain −λ1 and solving a quadratic system
of equations (3.19). However, note that the occurrence of a hard case is very
unlikely, as it requires B to be indefinite and g to be orthogonal to the eigen-
vector(s) of the leftmost eigenvalue of B. Furthermore, it can be recognized
without computing the eigenvalue decomposition of B as we shall elaborate
when deriving Algorithm 3.
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3.2. Finding the Cubically Regularized Newton Step

Computing λ∗ with Newton’s root finding algorithm

As derived above, we are looking for a value of λ ≥ max{0,−λ1} that solves

θ1(λ) := ‖s(λ)‖ − λ

σ
=

√√√√ d

∑
i=1

(qᵀi g)2

(λ1 + λ)2 −
λ

σ

!
= 0 (3.20)

Yet, for λ greater, but close to −λ1, these functions are highly nonlinear as
‖s(λ)‖ has a pole at −λ1. Since Newton’s method benefits from reasonably
behaved derivatives in the area of interest, it produces more reliable and
faster results when applied to the following reformulation of θ1 as secular
equations:

ϕ1(λ) :=
1

‖s(λ)‖ −
σ

λ

!
= 0, (3.21)

since for λ slightly greater than −λ1 this are nearly linear5 and obviously
the roots are the same. To see this compare θ1(λ) and ϕ1(λ) in the neighbor-
hood of −λ1

θ1(λ) ≈
c1

λ + λ1
+ c2, and ϕ1(λ) ≈

λ + λ1

c3
+ c4 (3.22)

for some constants c1, c3 > 0 and c2, c4 ∈ R.

Figure 3.3 illustrates the graphs of the above discussed function for σ = 1,
the indefinite Hessian H = diag(−1, 1) and the gradient g = (1/4, 1)ᵀ on
the left (soft case) as well as the same σ and H with the slightly altered
gradient g = (0, 1)ᵀ. Note how the pole at λ = 1 vanishes and the intersect
of ‖s(λ)‖ and λ/σ moves to the left of −λ1, which makes the root finding
algorithm impractical.

As a result, for the soft case we are tempted to apply a plain root-finding
Newton’s method to the function variant ϕ1 which generates a sequence of
iterates λl by setting

λl+1 = λl − ϕ1(λ
l)

ϕ′1(λ
l)

. (3.23)

Clearly, the evaluation of ϕ1(λ
l) involves the quantity s(λl) and thus the

solution of the system of equations6

(B + λl I)s(λl) = −g (3.24)

5Wherever ‖s(λ)‖ has a pole, 1/‖s(λ)‖ has a root
6The eigendecomposition of (3.11) was just used to study the existence of a global solu-

tion. Applying it in the root finding steps would be too costly (O(p3 + p2 log2 p log b) for an
approximation within 2−b Pan and Chen [1999]
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3. Stochastic Cubic Regularization

Figure 3.3: Graphs of the functions θ1(λ), ‖s(λ)‖, λ/σ and ϕ1(λ) for the soft-
and hard case respectively.

in each iteration l. If we had the inverse of (B + λl I), which is positive def-
inite in the range λ > −λ1, the solution would be easily computable by a
single matrix-vector product (2d2 operations) . However, to get the inverse
of this matrix, e.g. by Jordan-Gauss elimination, O(2d3/3) operations are
needed. Alternatively, the Cholesky decomposition (B + λl I) = L(λl)L(λl)ᵀ

can be obtained in roughly half the number of operations (O(d3/3) opera-
tions and we can reformulate (3.24) into

L(λl)L(λl)ᵀs(λl) = −g. (3.25)

Because L is lower-triangular, we can rewrite this as two triangular systems
which are solvable in d2 operations each:

L(λl)y = −g (forward substitution) and L(λl)ᵀs(λl) = y (backward substitution).
(3.26)

See Chapter 3 in Golub and Van Loan [2012] for more details on the com-
plexity of solving general linear systems. Additionally, the Newton iteration
requires the derivative of ϕ1(λ) with respect to λ but this can be obtained
easily after factorizing (B + λl I), as we shall see in the following.

Lemma 3.5 Suppose that s(λ) satisfies (3.11). Furthermore be g 6= 0. Then the
function ϕ1(λ) is strictly increasing and concave when λ > max{0,−λ1}. Its
first derivative is

ϕ1(σ)
′ = − s(λ)ᵀ∇λs(λ)

‖s(λ)‖3 +
σ

λ2 , (3.27)

where
∇λs(λ) = −(B + λI)−1s(λ). (3.28)

Proof: First, from (3.12) we know that ‖s(λ)‖ is strictly positive and decreas-
ing in λ for g 6= 0 and λ > −λ. Furthermore − σ

λ is strictly increasing
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3.2. Finding the Cubically Regularized Newton Step

for λ 6= 0. Together, this implies that ϕ1(σ) is strictly increasing, when
λ > max{0,−λ1} . The concaveness of ϕ1(σ) can be proven by showing that
its second derivative is always lower or equal to zero (see Lemma 7.3.1 in
Conn et al. [2000]).

Second, we have

∂(‖s(λ)‖2)

∂λ
=

∂(s(λ)ᵀs(λ))
∂λ

= 2s(λ)ᵀ∇λs(λ) (3.29)

and
‖s(λ)‖−1 = (‖s(λ)‖2)−1/2. (3.30)

Thus, we can find the derivative of ϕ1(σ) by the chain rule

ϕ1(λ)
′ = −1

2
(‖s(λ)‖2)−3/2 · 2s(λ)ᵀ∇λs(λ) + σλ−2, (3.31)

which gives (3.27). Finally, differentiating the defining equation

(B + λI)s(λ) = −g (3.32)

with respect to λ, gives

∇λs(λ)(B + λI) + s(λ)I = 0

⇔∇λs(λ) = −(B + λI)−1s(λ),
(3.33)

which is equation (3.28).

�

As a matter of fact, we do not even need to find ∇λs(λ), because the nu-
merator of the first summand of ϕ1(λ)

′ can be obtained in the following
way

s(λ)ᵀ∇λs(λ) = −s(λ)ᵀ[(L(λ)ᵀ)−1L(λ)−1s(λ)]

= −[L(λ)−1s(λ)]ᵀ[L(λ)−1s(λ)] =: −‖w‖2,
(3.34)

which motivates step 5 of Newton’s root finding algorithm as we would like
to apply it to solve ϕ(λ)

Alternative update rule for the root finder

As argued above we solve ϕ(λ) = 1/‖s‖− σ/λ instead of θ(λ) = ‖s‖− λ/σ
because we suspect ϕ to be more linear around λ∗. This idea originates
from the trust region framework, where ϕ(λ) = 1/‖s‖ − ∆. However, for
cubically regularized methods the last term of ϕ is no longer a constant but
the ratio λ/σ. Thus, when λ → 0, ϕ(λ) → −∞ and becomes very steep
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3. Stochastic Cubic Regularization

Algorithm 2 Newton’s method to solve ϕ1(λ) = 0

1: Let λ > max{0,−λ1} and λ0, σ > 0 given.
2: for l = 0, 1, 2, ... do:
3: Factorize (B + λl I) = L(λl)L(λl)ᵀ

4: Solve L(λl)L(λl)ᵀs(λl) = −g
5: Solve L(λl)w = s(λl)
6: Set

λl+1 = λl − ϕ1(λ
l)

ϕ′1(λ
l)

= λl − ‖s(λl)‖−1 − σ/λl

‖w‖2‖s(λl)‖−3 + σ/(λl)2
. (3.35)

and non-linear. This causes the Newton’s root finding algorithm to gener-
ally take more steps in this setting than in the trust region case, especially
when H is positive definite. Because then the poles of θ are in the negative
region and λ∗ may lie close to 0. Figure 3.4 illustrates this issue. In both
frameworks we try to find the intersect between the dashed-purple curve
with the dashed-green (ARC) and dashed-yellow (TR) curve by finding the
root of the solid-cyan (ARC) and solid-blue (TR) curve. It becomes evident
that the first derivative of ϕ is much more well behaved in the trust region
case.

Figure 3.4: Functions involved in the subproblem minimization process of
ARC and TR for g = (1/4, 1/2)ᵀ and H = diag(2, 1/2)

It is thus meaningful to only linearize the first term 1/
√

ϕ(λ) = 1/‖s(λ)‖
of ϕ(λ) in order to reduce the number of Newton steps. The update (∆λ)
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then needs to satisfy the following quadratic equation (compare [Cartis et al.,
2011] Eq. (6.12))

− 1
2

ϕ′(λl)

ϕ(λl)3 (∆λ)2 +

(
1

ϕ(λl)
− 1

2
ϕ′(λl)λl

ϕ(λl)3

)
(∆λ) +

λl

ϕ(λl)
− σ = 0, (3.36)

which has also empirically proven to perform better than updating λl as in
3.35.

Safeguards

Unfortunately, Algorithm 2is only guaranteed to converge when started in
a certain range of the search window [0,−λ1),+∞)] and we thus must es-
tablish safeguards to guarantee its convergence globally. To this end, let us
follow the approach of Conn et al. [2000] and separate the possible values of
λ into three disjoint sets

N ={λ | λ ≤ max{0,−λ1}},
L ={λ | max{0,−λ1} < λ ≤ λ∗},
G ={λ | λ > λ∗}.

(3.37)

These sets can be distinguished in the following way. Obviously, whenever
λ < 0 it lies in N . For a positive λ, the Cholesky factorization only succeeds
if λ > −λ1. Thus, if it does not succeed we are in N , else we are in L if
ϕ(λ) < 0 and in G if the function value is strictly positive. Note that, in
the hard case there may not even be any λ > −λ1 for which ϕ(λ) < 0 and
thus L = ∅. This observation will be crucial for identifying the hard case
algorithmically.

The convergence of Algorithm 2 can be guaranteed for the case that λ0 ∈ L,
since in this region the slope of ϕ is positive and hence the next iterate lies
to the right of the prior (λl < λl+1). Furthermore, we start to the left of
λ∗ and cannot overshoot because of the concavity of ϕ (see Lemma 7.3.2 in
Conn et al. [2000]). However, if ϕ(λ0) > 0, i.e. λ0 ∈ G the next iterate λ+

will move left and furthermore have a negative function value because of the
concavity of ϕ. That is, λ+ may either lie in the just presented convergence
regime or else λl < −λ1. In the latter case the Cholesky factorization will
not succeed and the convergence to λ∗ is lost. Thus, inspired by [Conn et al.,
2000] Section 7.3.4. we will find and update an interval [λl , λu] in which λ∗

is guaranteed to lie and reject any iterate λl that lies outside of this interval.
Particularly, we proceed in the following way.

How to update λ? If λ ∈ L ∪ G we make a Newton step by solving 3.36
and accept it, if it lands in L. Otherwise it must have landed in N and we
instead guess a random λ in [λu, λl ].
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How to update interval? Updating the interval in each iteration l is as easy
as setting λu := λl , if λl ∈ G (where we landed by guess) and λl := λl in
any other case. This ensures that the interval shrinks in each iteration and
in the worst case these bounds ultimately coincide. Specifically, if no iterate
λl > −λ1 gives a positive function value ϕ(λl) > 0 the safeguard interval is
decreased repeatedly until it finally only contains −λ1. Then, if ϕ(−λ1) < 0
we know that we are in the hard case, else λ∗ = −λ1.

How to guess λ? In cases, where the Newton step is rejected, we shall
update λ in analogy to Conn et al. [2000] Section 7.3.6

λl+1 = max
{√

λLλU , λL + θ(λU − λL)
}

, (3.38)

for some small θ ∈ (0, 1), e.g. θ = 0.01. This rule guarantees that the ratio
of lengths of two successive intervals is

max{1− θ, θ,
√

λu√
λu +
√

λl
} (3.39)

and it is biased towards finding λl+1 ∈ L.

How to initialize λl, λu and λ? As established above, the value λ∗ we
search must lie in the interval [max{0,−λ1},+∞] which gives rise to a fairly
large search windows. Fortunately, we can narrow it down significantly by
following the approach for trust region methods as presented in [Conn et al.,
2000]. However, contrary to the trust region case, we do not have the simple
bound ‖s‖ ≤ ∆ which is why we will have to put some more effort into
finding good initial bounds for λ∗, as we shall see now.

Obviously, zero as well as any lower bound on the negative eigenvalue of
B serves as an initial value for λl . Since λ1 < λ2 < · · · < λd, a negated
upper bound on the largest eigenvalue would give such a lower bound on λ1.
However, for any non-negative definite matrix this bound will be positive
and hence the negated form will be below 0 and thus of no use. A more
promising approach is combining the Rayleigh inequalities of B and λI (see
Definition A.9 in the Appendix)

λ1 ≤
sᵀBs
sᵀs
≤ λd

λ∗ ≤ sᵀ(λ∗ I)s
sᵀs

≤ λ∗,
(3.40)

which sum up to

λ∗ + λ1 ≤
sᵀ(B + λ∗ I)s

sᵀs
≤ λ∗ + λd. (3.41)
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Let us square the whole equation and recall the optimality characterization
(3.9) which gives

(λ∗ + λ1)
2 ≤ ((B + λ∗ I)s)ᵀ((B + λ∗ I)s)

sᵀs
≤ (λ∗ + λd)

2

⇔ (λ∗ + λ1) ≤
‖g‖
‖s‖ ≤ (λ∗ + λd)

⇔ (λ∗ + λ1) ≤
‖g‖
λ/σ

≤ (λ∗ + λd).

(3.42)

From which we can deduce the following two quadratic inequalities

(λ∗)2 + λ1λ∗ − σ‖g‖ ≤ 0

(λ∗)2 + λdλ∗ − σ‖g‖ ≥ 0,
(3.43)

that are also valid for any lower bound on λ1 and upper bound on λd. The
first inequality holds for values of λ that satisfy

−λ1 −
√

λ2
1 + 4σ‖g‖

2
≤ λ ≤

−λ1 +
√

λ2
1 + 4σ‖g‖

2
(3.44)

and the second inequality holds for

λ ≤ −λn −
√

λ2
n + 4σ‖g‖

2
or λ ≥ −λn +

√
λ2

n + 4σ‖g‖
2

. (3.45)

Note that the left-hand sides of both, (3.44) and (3.45), are always non-
positive and thus of no use for our purpose. The right-hand sides, however,
constitute easily computable non-negative bounds on λ∗ that give rise to a
reasonably sized search window.

Of course, obtaining the exact values λ1 and λd would require a full eigende-
composition of B and make the whole approach obsolete but as stated above
it is perfectly fine to use the following bounds given by the Gershgorin in-
tervals for real-symmetric matrices (Chapter 2,[Conn et al., 2000])

λ1 ≥ min
i=1,...,p

(
Bi,i −

p

∑
j=1,j 6=i

|Bi,i|
)

=: Λl

λn ≤ max
i=1,...,p

(
Bi,i +

p

∑
j=1,j 6=i

|Bi,i|
)

=: Λu.

(3.46)

Finally, let us note that a necessary condition for B + λI � 0 is that any diag-
onal entry of it be positive, which gives the extra condition λl ≥ −mini{Bi,i}.
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Together, these considerations lead to the following choice of λl and λu:

λl = max

[
−min

i
Bi,i,
−Λu +

√
Λ2

u + 4σ‖g‖
2

]

λu =
−Λl +

√
Λ2

l + 4σ‖g‖
2

(3.47)

Of course, it is meaningful to replace Λu by upper bounds on the `2 norm
of B like the Forbenius or `∞ norm in case they give sharper bounds on
λd. Regarding the initial value of λ itself, without further information, we
can in general not do better than guess any λ within the specified interval.
However, in the case of an unsuccessful iterations, where the model has not
changed but only the penalty parameter has risen, the terminating value for
λ for the smaller σ should be chosen for both λl and the initial λ for the
increased σ. This is because (in the easy case) this terminating λ will lie in L
for the new (increased) penalty parameter, and convergence is guaranteed
from here7. In the hard case, λl still gives a good lower bound.

The complete algorithm

We are now ready to state a complete algorithm to solve (3.7) and give its
convergence guarantee. The algorithm is inspired by Algorithm 7.3.4 in
[Conn et al., 2000] and can be viewed as an adaption to the cubic regulariza-
tion case. Note that the dominant cost of this algorithm lie in the (repeated)
factorization of B+λI which can be done in O(d3) flops for general matrices
B and O(d) flops for tri-diagonal matrices T.

7Graphically, ‖s(λ)‖ does not change but the line λ/σ becomes flatter so the new inter-
sect lies to the right of λl . Furthermore, −λ1 has not changed so λl must lie in L
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Algorithm 3 Safeguarded Newton’s method to solve ϕ1(λ) = 0 at wk

1: Let B, g and σ > 0 be given and Initialize λl , λu as in (3.47).
2: if previous iteration successful then:
3: Choose a λ0 in [λl , λu] at random.
4: else:
5: Set λ0 to the terminating value of λ of the previous iteration
6: for l = 0, 1, 2, ... do:
7: lambda+_in_N:= False
8: Attempt to factorize (B + λl I) = L(λl)L(λl)ᵀ

9: if Factorization succeeds then:
10: Solve L(λl)L(λl)ᵀs(λl) = −g
11: Solve L(λl)w = s(λl)
12: Compute ϕ(λl) = 1/‖s‖ − σ/λl and check for termination
13: Obtain the update ∆λ by solving Eq. (3.36) and set

λ+ = λl + ∆λ (3.48)

14: if ϕ(λl) < 0 then (1. λl ∈ L):
15: Set λl+1 := λ+

16: else if ϕ(λl) > 0 then (2. λl ∈ G):
17: Set λu := λl

18: if λ+ > 0 then:
19: Attempt to Factorize (B + λ+ I) = L(λl)L(λl)ᵀ

20: if Factorization succeeds then (2.1. λ+ ∈ L):
21: Set λl+1 := λ+

22: else:
23: Set lambda+_in_N:=True
24: else if λ+ > 0 or lambda+_in_N==True then (2.2 λ+ ∈ N ):
25: Set λl := max{λl , λ+}
26: λl+1 = max{

√
λl ∗ λu, λl + 0.01 ∗ (λu − λl)}

27: if λl == λu then (hard case):
28: Obtain λ1, u1 via partial eigendecomposition of B
29: Find an α by solving the quadratic equation

‖s + αu1‖ = λ/σ (3.49)

30: Set s := s + αu1
31: break
32: else (3. λl ∈ N ):
33: Set λl := max{λl , λl}
34: λl+1 = max{

√
λl ∗ λu, λl + 0.01 ∗ (λu − λl)}

35: if λl == λu then(hard case):
36: Obtain λ1, u1 via partial eigendecomposition of B
37: if λ1 >= then (wk is 2nd order critical):
38: break
39: else hard case :
40: Find an α by solving Eq. (3.49)
41: Set s := s + αu1
42: break
43: return s
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Theorem 3.6 Suppose that no termination test is applied in Step 12 of Algo-
rithm 3. Then the iterates λl converge to λ∗ and the limiting point sl is s∗. The
algorithm converges either in a finite number of steps or, except in the hard case,
ultimately at a Q-quadratic rate.

Proof: As described at the beginning of Section 3.2.2, there are three possible
scenarios. First, if an iterate λl falls into the set L, Lemma 7.3.2. in Conn et al.
[2000] shows that all further iterates stay in this set and converge asymptot-
ically Q-quadratic to λ∗. Finally, as established above, the corresponding
step s(λ∗) satisfies the optimality characterization (3.9).

Second, if λl lies in G the safety interval is reduced and the following iterate
either falls into L or N .

Third, if λl ∈ N the next iterate λl+1 will be guessed within the safety
interval according to (3.38). Unless λl+1 ∈ L, this will lead to either an
increase in λu or a decrease in λl , depending on where λl+1 falls, and thus
gives a guaranteed reduction in the length of the safety interval as in (3.39).
Hence, if no iterate falls into L, the length of the interval converges to 0. Per
design, λl ≤ −λ1 ≤ λu and thus the safety interval converges to −λ1. This
can only happen in the hard case. Since H(−λ1) is positive definite and
singular, (H − λ1)u1 = 0 for any eigenvector u1 corresponding to λ1. Thus
the condition (H − λ1)s = −g has many solutions, i.e.

(H + λ)(s + αu1) = −g (3.50)

for any α ∈ R. Consequently, a model minimizer is given if we chose α such
that

‖s + αu1‖ = λ/σ (3.51)

�

In conclusion, the exact subproblem solver is able to find the global mini-
mizer s∗ if run infinitely. Moreover, it converges at a quadratic rate once
an iterate falls into L since only Newton steps are taken in the following
subiterations. To make it practical, however, we break the routine in line 12
as soon as

|ϕ(λl)| ≤ εexact, (3.52)

for some εexact > 0.
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3.2. Finding the Cubically Regularized Newton Step

3.2.3 Approximate Model Minimization

As described above the exact subproblem minimization routine, requires
factorizing B + λI in each of its inner iterations, which makes the method
prohibitively expensive for large scale learning as the cost rise cubically in
the dimensionality of the problem. Thus it is an obvious alternative to mini-
mize 3.7 only approximately.

In this regard, Cartis et al. [2011] show that it is indeed possible to retain the
remarkable properties of Nesterov’s cubic regularization algorithm as long
as the inexact minimizer sk satisfies the following two requirements

Assumption 3.7 (Approximate model minimizer)

sᵀk gk + sᵀk Bksk + σk‖sk‖3 = 0 (3.53)

sᵀk Bksk + σk‖sk‖3 ≥ 0 (3.54)

which directly transfer to the SCR framework (originally (3.11) and (3.12) in
[Cartis et al., 2011]). The first equation is equal to∇mk(sk)

ᵀsk and the second
to sᵀk∇2mk(sk)sk. Thus they can be interpreted as variants of the first- and
second-order criticality conditions when sk is a global minimizer of mk over
a subspace of Rd, which suggests the idea of minimizing (3.7) in a suitable
space L ⊆ Rd.

One (extreme) way to do this would be to compute the minimizer of mk
along the current negative gradient direction −gk and step to the resulting
point which is often referred to as the Cauchy step

sC
k = −αkgk, where αk = arg min

α∈R+

mk(−αgk). (3.55)

While this can be done very cheaply, no second-order guarantees arise with
this method8 and the resulting first-order guarantees are no better than the
ones of GD ([Cartis et al., 2011]). This is not particularly surprising since the
Cauchy step does not make use of any curvature information. It is thus a
natural idea to improve upon the Cauchy point and at the same time avoid
the computational complexity of exact global minimization by minimizing
in a subspace between the two extremes (R1 and Rd).

Lemma 3.8 (Approximate model minimization) 9 Let sk be the global mini-
mizer of mk(s), for s ∈ Lk, where Lk ⊆ Rd. Then sk satisfies Af3.7. Furthermore,
letting Qk denote any n× l matrix, whose columns form an orthonormal basis of
Lk, we have that

Qᵀk BkQk + σk‖sk‖I � 0. (3.56)
8Now is a good time to take another look at Figure 2.3 a)
9This is essentially Lemma 3.2 in [Cartis et al., 2011], but we here give a more detailed

proof.
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3. Stochastic Cubic Regularization

Proof: Since sk is the global minimizer of mk in Lk we can write

sk = arg min
s∈Lk

mk(s). (3.57)

Furthermore we have

col(Qk) = span(q1, . . . , ql) = Lk, qᵀi qj = 0, i 6= j and ‖qi‖ = 1, ∀i, j = 1, . . . , l
(3.58)

where qi is the i−th column of Qk. As a result Qᵀk Qk = I and Qk is a regular
matrix so that for all s ∈ L we can write

s = Qku, u ∈ Rl . (3.59)

Consequently, we can find the following subspace formulation of the model
mk(u)

uk = arg min
u∈Rl

mk(u) := f (wk)+ (Qku)ᵀgk +
1
2

uᵀQᵀk BkQku+
1
3

σk‖u‖3, (3.60)

where we used ‖Qku‖2 = (Qku)ᵀQku = uᵀQᵀk Qku = uᵀu = ‖u‖2 and thus

‖s‖ = ‖Qku‖ = ‖u‖, for all u, s. (3.61)

Taking the derivative of mk with respect to u gives

Qᵀk BkQku + σk‖u‖u = −Qᵀk gk (3.62)

and multiplying by u yields

uᵀQᵀk BkQku + σk‖u‖3 = −Qᵀk gku, (3.63)

which is equivalent to condition (3.53) in Assumption 3.7 due to (3.59). Fur-
thermore, the second derivative of mk with respect to u along with (3.61)
and the fact that uk is a global minimizer of mk yields

Qᵀk BkQk + σk‖Qkuk‖I = Qᵀk BkQk + σk‖sk‖I � 0. (3.64)

which proves (3.56). Finally, multiplying this equation by uᵀu gives

uᵀQᵀk BkQku + σk‖sk‖3 ≥ 0, (3.65)

which is equivalent to condition (3.54) in Assumption 3.7 that is thus fulfilled
by any global subspace minimizer sk = Qkuk.

�
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3.2.4 Krylov Subspace Minimization

Towards the end of finding a sufficiently accurate step sk at reasonable cost
Krylov-type methods are an attractive option as they naturally include the
gradient in all iterations and allow to minimize mk in increasingly larger
subspaces and thus with increasing accuracy.

For trust region methods, this has first been proposed in Gould et al. [1999]
as part of the so-called generalized Lanczos trust region method (GLTR),
which takes a sequence of conjugate gradient steps until either the model
minimizer is found (interior solution) or the size of the current trial step si,k
exceeds the trust region radius ∆k. In the latter case it switches over to min-
imizing the i−dimensional Krylov subspace globally (boundary solution).
The GLTR method is thus basically a hybrid between a conjugate gradient
and a Lanczos-based approach. An important aspect to note is that both, the
conjugate gradient and the Lanczos process build up a basis for the same
nested Krylov spaces Kk = {gk, Hkgk, H2

k gk, . . .} and that it is possible to
reconstruct the latter (orthogonal) from the former (conjugate) basis [Conn
et al., 2000].

In the cubic regularization framework, however, interior solutions cannot
arise and thus it is meaningful to directly use the Lanczos method to build
up an orthogonal basis Qi = (q1, q2, . . . , qi) for the Krylov subspaceKk(Bk, gk, i) =
{gk, Bkgk, B2

k gk, ..., Bi
kgk}, which can be done in a Hessian-free manner10.

Algorithm 4 Lanczos method for an orthogonal basis of K(B, g, j)

1: Given gk, set y1 = gk and q0 = 0.
2: for i = 1, 2, ... do:
3: γi = ‖yi‖
4: qi = yi/γi
5: δi = qᵀi Bkqi
6: yi+1 = Bkqi − δiqi − γiqi−1

We note that, in matrix terms, the last equation can be written as follows

HQi −QiTi = γi+1qi+1eᵀi+1, (3.66)

where ei+1 is the (i + 1)−th unit vector and the tridiagonal matrix Ti is

Ti =


δ1 γ2
γ2 δ2 ·

· · ·
· δi−1 γi

γi δi

 .

10For the sake of simplicity we drop the iteration subscript k for all quantities generated
directly by the Lanczos process.
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For the sake of brevity we refer the reader to Conn et al. [2000] Section 5.2
for more details on the derivation of Algorithm 4 and shall now explain how
it can be used to approximately solve the cubic regularization subproblems.
For each outer iteration k, successive problems of the type

si,k = arg min
s∈K(g,H,i)

mk(s) (3.67)

shall be solved exactly over increasing subspaces Ki until a sufficiently accu-
rate solution is found.

Assumption 3.9 (Termination Criteria) Assume that the Lanczos process stops
as soon as some inner iteration i satisfies the criterion

TC: ‖∇mk(si,k)‖ ≤ θk‖gk‖, (3.68)

where θk = κθ min(1, ‖si,k‖), κθ ∈ (0, 1).

Obviously, since ∇ms
k(si,k) = 0 for any global minimizer of ms

k in Rp, the
worst that can happen is that the subproblem solver iterates until the global
minimizer is found but in practice we hope that the subroutine terminates
well before a Krylov space of dimensionality d is built up.

Krylov subproblems Another, crucial advantage of the Lanczos method
over exact minimization is that a closer look at the subproblems (3.67) re-
veals that an equivalent formulation with a tridiagonal matrix can be found,
which is a lot easier to factorize (O(d)) especially in high dimensions (see
[Conn et al., 2000] 5.2.12). To show this we recall that the i−th iteration of the
Lanczos process gives rise to an orthogonal matrix Qi with Qᵀi Qi = QiQ

ᵀ
i = I.

Hence, Qi is a regular matrix and for each vector s ∈ Rd exists a vector
u ∈ Ri of the form s = Qiu. Regarding these vectors we note the following
key relationships:

(i) Qᵀi gk = γ1e1, (ii) Qᵀi BkQi = Ti and (iii) ‖s‖ = ‖u‖. (3.69)

(i) follows immediately from the definition of q1 = g/‖g‖ and the fact that
the qi are orthonormal (qᵀi qj = 0, i 6= j). Premultiplying Eq. (3.66) by Qᵀi and
using Qᵀi qi+1 = 0 gives (ii). Finally, (iii) was already derived for Eq. (3.61).

We are thus able to reformulate (3.67) in the following way

ui = arg min
u∈Ri

mi,k(u) := f (wk) + γ1uᵀe1 +
1
2

uᵀTiu +
1
3

σk‖u‖3. (3.70)

In each subiteration this i−dimensional problem is handed over to the exact
minimization routine presented in the previous section (Algorithm 3) which
can solve (3.70) in O(l(i)) flops (thanks to the tri-diagonal structure of Ti),
where l is the number of inner solver iterations.
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Of course, recovering sk,i from ui involves the computation of the matrix-
vector product Qiui and furthermore it may be prohibitively storage inten-
sive to keep Qi in memory for high dimensional problems. Fortunately,
there is a simple way to test the stopping criterion (3.9) with readily-available
iteration information. To this end, note that

‖∇smk(sk,i)‖ = ‖gk + Bsk,i + σk‖sk,i‖sk,i‖ = ‖gk + Bsk,i + λk,isk,i‖ (3.71)

, where with Conn et al. [2000] Theorem 7.5.10 the right hand side can be
shown to equal

γk+1|eᵀk+1uk|. (3.72)

We can thus rewrite the stopping criterion TC (3.9) such that the Lanczos
process is terminated as soon as for some inner iterate i

γi+1|eᵀi+1ui| ≤ κθ min{1, ‖ui‖}‖gk‖ (3.73)

and either reload Q from backing-storage or re-run the Lanczos process in
order to recover sk = Qiui

3.3 Total Computational Complexity

As a result of the above analysis, each major SCR iteration k triggers i Lanc-
zos process iterations (Algorithm 4) of which each triggers li exact subprob-
lem iterations (Algorithm 3). The total number of operations that are due to
the latter sum up to O(∑i

j=0 lj(j)). Obviously, i < d and since the Newton
root finder is linearly convergent (once λl ∈ L) a rough bound on this would
be O(log(1/εexact)d). The operations that are needed to build up the i dimen-
sional Lanczos process in the first place are O(idn) due to the the Hessian-
vector products Bkqi in Step 5. Finally, the outer SCR frameworks main
effort lies in the computation of the function and model decrease which can
be done in O(nd).

Intuitively, we can expect i to be small in the beginning but grow asymp-
totically as more and more accurate steps are needed close to a minimizer.
More precisely, the analysis in Chapter 4 will show that i → d asymptoti-
cally for second-order convergence. Thus, for high-dimensional problems
where d � 0 and consequently i � 0 asymptotically as well as i = d in
the ”worst case” the major computation cost of our method clearly lies in
the Lanczos process which may require up to O(d2n) operations11. Since
these cost increase linearly in n we are thus confident to achieve substantial
runtime reductions by sub-sampling the Hessian which reduces the (worst
case) per-iteration cost to O(d2|SH |).

11Note that this is still significantly cheaper than a global exact minimization which re-
quires O(d3) flops for factorizing Bk
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3. Stochastic Cubic Regularization

For the case where n � 1 is so large that it becomes too expensive to even
compute the full gradient (O(nd)) we will explicitly develop and include
the possibility to use inexact gradient approximations in SCR. However,
in ”smaller” problems the above considerations suggest that it is indeed
cost-effective to use the high-quality first-order information provided by the
full gradients. This evolves from that fact that k gradient evaluations stand
against a couple of hundred or even thousand Hessian-vector products and
for this type of method k is likely to be very small (in the tens) especially
compared to the number of gradient evaluations that first-order methods
commonly take.12 Interestingly, Martens [2010] who employ the conjugate-
gradient method in each iteration of their damped Newton framework arrive
at a similar conclusion and thus sub-sampled only Hessians as well.

Consider Figure 3.5 for an illustration of the above considerations. Here
we minimize the convex regularized logistic empirical error on the synthetic
dataset gaussian for which the feature vectors X = (x1, x2, ..., xd), xi ∈ Rn

were drawn from a multivariate Gaussian distribution

X ∼ N (µ, Σ) (3.74)

with a mean of zero µ = (0, . . . , 0) and the n× d identity matrix as covariance
matrix, i.e. Σ = I. This gives rise to a very well-behaved problem 13

d = 10 d = 100 d = 1000

Figure 3.5: Log suboptimality (avg. of 10 independent runs) on Gaussian
datasets with Σ = I.

All methods were started from the initial weight vector w0 := (0, . . . , 0)
and take between 10 and 12 iterations to reach ‖∇ f (wk)‖ < 10−11, except
for the Cauchy step solver that takes much more iterations albeit the well-
conditioning of the problem. Note how (i) the exact minimizer gives com-
petitive results on the low dimensional dataset but suffers heavily from an

12where it is thus more likely beneficial to sub-sample the gradients
13algorithms face an average condition number of 14.7 on their way to- and 22.1 at the

minimizer for d = 1000 and comparable numbers for the smaller problems)
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increase in d and (ii) the runtime of the Lanczos solver can indeed be further
reduced by sub-sampling the Hessian (SCR).
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Chapter 4

Theoretical Analysis

In this section, we provide the convergence analysis of sub-sampled cubic
regularization methods. For the sake of brevity, we assume global Lipschitz
continuous Hessians immediately but note that a superlinear local conver-
gence result (Theorem A.5) as well as the global first-order convergence the-
orem can both be obtained without the former assumption.

First, we lay out some basic Assumptions and present critical conditions
regarding the exactness of general gradient and Hessian approximations.
Second, we show that one can theoretically satisfy these assumptions with
high probability by sub-sampling first- and second-order information. Third,
we give a condensed convergence analysis of SCR which is widely based on
[Cartis et al., 2011] but adapted for the case of inexact gradients. There,
we show that the local and global convergence properties of ARC can be
retained by sub-sampled versions at the price of slightly worse constants.

4.1 Assumptions

Assumption 4.1 (second-order continuity) The functions fi ∈ C2(Rd), ∇ fi
and ∇2 fi are Lipschitz continuous for all i, with Lipschitz constants κ f , κg and κH
respectively.

By use of the triangle inequality, if follows that these assumptions hold for
all g = 1

|Sg
∑i∈|Sg|∇ fi and B = 1

|SB
∑i∈|SB|∇

2 fi, independent of the actual
samples Sg and SH . Furthermore, note that the Hessian and gradient norms
are uniformly bounded as a consequence of Assumption 4.1, i.e. ‖∇ fi‖ ≤ κ f

and ‖∇2 fi‖ ≤ κg which of course translates to g and B.
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4.2 Sampling Gradient and Hessian Information

We will now first consider conditions regarding the agreement of the stochas-
tic gradient and stochastic Hessian with its deterministic counterparts that
are sufficient for retaining the local and global convergence guarantees of
ARC. Subsequently, we introduce probabilistic deviation bounds for these
quantities based on which we shall translate the agreement conditions into
concrete conditions on the magnitude of the samples in each iteration.

4.2.1 Sufficient Agreement Conditions

In each iteration k, the Hessian approximation Bk shall satisfy condition
AM.4 from [Cartis et al., 2011], which we restate here for the sake of com-
pleteness.

Assumption 4.2 (Sufficient Agreement of H and B)

‖(Bk − H(wk))sk‖ ≤ C‖sk‖2, ∀k ≥ 0, C > 0. (4.1)

We explicitly stress the fact that this condition is stronger than the well-
known Dennis Moré Condition1, which usually characterizes superlinear
convergence of quasi-Newton methods [Dennis and Moré, 1974]:

‖(Bk − H(wk)) sk‖
‖sk‖

→ 0, whenever ‖gk‖ → 0. (4.2)

While quasi-Newton approximations satisfy the latter, there is no theoretical
guarantee that they also satisfy the former [Cartis et al., 2011].

Similarly, any sub-sampled gradient shall satisfy the following condition
which closely resembles the intuition of the Hessian agreement condition.

Assumption 4.3 (Sufficient Agreement of ∇ f and g)

‖∇ f (wk)− g(wk)‖ ≤ M‖sk‖2, ∀k ≥ 0, M > 0. (4.3)

4.2.2 Concentration Inequalities

In what follows we shall quickly introduce the idea of so-called concentra-
tion inequalities. The interested reader is referred to [Boucheron et al., 2013]
for an extensive discourse. To put it briefly, these inequalities control the
probability of a sum of general random variables to be far from its expecta-
tion. In a way they generalize classic limit theorems, such as the Laws of

1Intuitively, it states that Bk does not need to converge to H(w) uniformly but that it
suffices for Bk to become increasingly similar to the Hessian along the directions sk.
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Large Numbers2 or the Central Limit Theorem, to a non-asymptotic setting
which makes them specifically attractive for applications in machine learn-
ing. One of the simplest such inequalities is Chebyshev’s inequality which
follows directly from Markov’s inequality:

Lemma 4.4 (Chebyshev’s inequality) Let X be a random variable with E
[
X2] <

∞. Then,

P (|X−E [X] > ε) ≤ Var(X)

ε2 (4.4)

The intuitive idea that arises form this inequality is that while a sum of i.i.d.
centered random variables Xi

X = X1 + X2 + . . . + Xn (4.5)

may, if all Xi ”work together”, take values in the order of O(n), it is actually
very likely that some of the Xi cancel out such that X is just of order of its
standard deviation O(

√
n).

More elaborated results such as Hoeffding’s inequality and Bernstein’s in-
equality (as well as the recent vector and Matrix versions) strengthen this
result. In particular, they give (contrary to the quadratically decaying bound
of 4.4) exponentially decaying bounds on the probability of a random vari-
able to differ greater or equal than ε from its mean for any fixed number of
samples. We here use Bernstein’s inequality to upper bound the `2-norm dis-
tance ‖∇ f − g‖, as well as the spectral-norm distance ‖B− H‖ by quantities
involving the sample sizes |SB| and |Sg|. By applying the resulting bounds
in the sufficient agreement assumptions (A4.2 & A4.3) and re-arranging for
|SB| and |Sg| respectively, we are able to translate these assumptions into
concrete sampling conditions.

For the sake of simplicity we shall drop the iteration subscript k in this
subsection.

Vector Bernstein Inequality First, we extend the Vector Bernstein Inequal-
ity as it can be found in Kueng and Gross [2014] to the average of indepen-
dent, zero-mean vector-valued random variables. This result will be applied
in Lemma 4.7 in order to find a probabilistic bound on the deviation of the
sub-sampled gradient from the full gradient.

Lemma 4.5 (Vector Bernstein Inequality) Let x1, . . . , xn be independent
vector-valued random variables with common dimension d and assume that

2which state that sums of independent random variables concentrate around their means
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each one is centered, uniformly bounded and also the variance is bounded above:

E [xi] = 0 and ‖xi‖2 ≤ µ as well as E
[
‖xi‖2

]
≤ σ2.

Let

z :=
1
n

n

∑
i=1

xi.

Then we have for 0 < ε < σ2/µ

P (‖z‖ ≥ ε) ≤ exp
(
−n · ε2

8σ2 +
1
4

)
(4.6)

Proof: Proposition 7 in Kueng and Gross [2014] gives the following Vector
Bernstein inequality for values of 0 < ε < σ2/µ.

P

(
‖

n

∑
i=1

xi‖ ≥ ε

)
≤ exp

(
− ε2

8V
+

1
4

)
. (4.7)

Since the individual variance is assumed to be bounded above, we can write

V = ∑ E
[
‖xi‖2

]
≤ nσ2. (4.8)

This term also constitutes an upper bound on the variance of y = ∑n
i=1 xi, be-

cause the xi are independent and thus uncorrelated . However, z = 1
n ∑n

i=1 xi
and we must account for the averaging term. Since the xi are centered we
have E [z] = 0, and thus

Var(z) = E
[
‖z−E [z]‖2

]
= E

[
‖z‖2

]
= E

[
‖ 1

n

n

∑
i=1

xi‖2

]
=

1
n2 E

[
∑
i,j

(
xᵀj xi

)]

=
1
n2 ∑

i,j

(
E
[

xᵀj xi

])
=

1
n2

(
n

∑
i=1

(E
[
xᵀi xi

]
) +

n

∑
i=1

n

∑
j 6=i

(E
[
xᵀi xj

]
)

)

=
1
n2

n

∑
i=1

(E
[
‖xi‖2

]
) ≤ 1

n
σ2,

(4.9)
where we used the fact that the expectation of a sum equals the sum of the
expectations and the crossterms E

[
xᵀj xi

]
= 0, j 6= i because of the indepen-

dence assumption. Hence, we can bound the term

V ≤ 1
n

σ2 (4.10)
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for the random vector sum z.

Now, since n > 1 and ε > 0, as well as P(z > ε) is falling in ε and exp(−α)
falling in α ∈ R, we can use the bound (4.10) on the variance of z in (4.7),
which gives the desired inequality

P (‖z‖ ≥ ε) ≤ exp
(
−n · ε2

8σ2 +
1
4

)
(4.11)

�

Matrix Bernstein Inequality Similar to the vector case, the following result
exhibits that sums of independent random matrices provide normal concen-
tration near its mean in a range determined by the variance of the sum.
In Lemma 4.9 we will apply this result in order to derive a bound on the
deviation of the sub-sampled Hessian from the full Hessian.

Lemma 4.6 (Matrix Bernstein Inequality) Let A1, .., An be independent
random Hermitian matrices with common dimension d × d and assume that
each one is centered, uniformly bounded and also the variance is bounded above:

E [Ai] = 0 and ‖Ai‖2 ≤ µ as well as ‖E
[
A2

i
]
‖2 ≤ σ2

Introduce the sum

Z :=
1
n

n

∑
i=1

Ai

Then we have

P(‖Z‖ ≥ ε) ≤ 2d · exp
(
−n ·min

{
ε2

4σ2 ,
ε

2µ

})
(4.12)

Proof: Theorem 12 in Gross [2011] gives the following Operator-Bernstein
inequality

P(‖
n

∑
i=1

Ai‖ ≥ ε) ≤ 2d · exp
(
−min

{
ε2

4V
,

ε

2µ

})
, (4.13)

where V = nσ2. As we shall see, this is an upper bound on the variance of
Y = ∑n

i=1 Ai since the Ai are independent and have an expectation of zero
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(E [Y] = 0).

Var(Y) =‖E
[
Y2]−E [Y]2‖ = ‖E

[
(∑

i
Ai)

2

]
‖ = ‖E

[
∑
i,j

Ai Aj

]
‖

=‖∑
i,j

E
[
Ai Aj

]
‖ = ‖∑

i
E [Ai Ai] + ∑

i
∑
j 6=i

E
[
Ai Aj

]
‖

=‖∑
i

E
[
A2

i
]
‖ ≤∑

i
‖E
[
A2

i
]
‖ ≤ nσ2,

(4.14)

where we used the fact that the expectation of a sum equals the sum of the
expectations and the crossterms E

[
Aj Ai

]
= 0, j 6= i because of the indepen-

dence assumption.

However, Z = 1
n ∑n

i=1 Ai and we must account for the averaging term:

Var(Z) = ‖E
[
Z2]‖ = ‖E [( 1

n

n

∑
i=1

Ai)
2

]
‖ = 1

n2 ‖E
[
(

n

∑
i=1

Ai)
2

]
‖ ≤ 1

n
σ2.

(4.15)
Hence, we can bound

V ≤ 1
n

σ2 (4.16)

for the average random matrix sum Z. Furthermore, since n > 1 and ε, µ > 0
as well as exp(−α) decreasing in α ∈ R we have that

exp
(
− ε

2µ

)
≤ exp

(
− ε

n2µ

)
. (4.17)

Together with the Operator-Bernstein inequality, (4.16) and (4.17) give the
desired inequality (4.12).

�

4.2.3 Sampling Conditions

Gradient Sampling

In each iteration k we shall sub-sample a gradient index set Sg,k ⊆ {0, 1, . . . , n}
uniformly, independently and without replacement. We then use the aver-
age of the gradients at these indices as an (unbiased) estimator of ∇ f (wk)

gk :=
1
|Sg,k| ∑

i∈Sg,k

∇ fi(wk). (4.18)

Furthermore, let ek be the gradient approximation error, i.e. ek := gk −
∇ f (wk). Before we derive the sampling condition let us quickly revisit some
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basic properties of sub-sampled gradients which will come into play when
analysing the convergence behaviour of methods with sub-sampled gradi-
ents. Specifically, note the following two properties regarding the gradient
norm

‖∇ f ‖2 =
√
∇( f 1)2 + ... +∇( f d)2

, where ∇( f j) = 1
n ∑n

i=1∇ f j
i is the average over all individual gradients in

the j− th dimension:

• neither ‖∇ f ‖ = 0→ ‖g‖ = 0 nor ‖g‖ = 0→ ‖∇ f ‖ = 0 hold

• neither ‖∇ f ‖ ≥ ε→ ‖g‖ ≥ ε nor ‖g‖ ≥ ε→ ‖∇ f ‖ ≥ ε hold.

However, regarding the deviation of the sub-sampled from the exact gradi-
ent we can state the following Lemma due to the vector Bernstein inequality.

Lemma 4.7 (Gradient deviation bound) Let the sub-sampled gradient gk be de-
fined as in Eq. (4.18). Then we have with probability (1− δ) that

‖g(wk)−∇ f (wk)‖ ≤ 4
√

2κ f

√
log((2d)/δ) + 1/4

|Sg,k|
. (4.19)

Proof: To apply the vector Bernstein inequality (4.6) we need to center the
gradients. Thus we define

xi = gi(wk)−∇ f (wk), i = 1, . . . , |Sg,k| (4.20)

and note that from the Lipschitz continuity of f (A4.1), we have

‖xi‖ = ‖gi(wk)−∇ f (wk)‖ ≤ ‖gi(wk)‖+ ‖∇ f (wk)‖ ≤ 2κ f (4.21)

as well as
‖xi‖2 ≤ 4κ2

f , i = 1, . . . , |Sg,k|. (4.22)

With σ2 := 4κ2
f and

z =
1
|Sg,k| ∑

i∈Sg,k

xi =
1
|Sg,k| ∑

i∈Sg,k

gi(wk)−
1
|Sg,k| ∑

i∈Sg,k

∇ f (wk) = g(wk)−∇ f (wk)

(4.23)
in equation (4.6), we can require the probability of a deviation larger or
equal to ε to be lower than some δ ∈ (0, 1]

P (‖g(wk)−∇ f (wk)‖ > ε) ≤2d exp

(
−|Sg,k| ·

ε2

32κ2
f
+

1
4

)
!
≤ δ

⇔|Sg,k| ·
ε2

32κ2
f
− 1

4

!
≥ log((2d)/δ)

⇔ε ≥ 4
√

2κ f

√
log ((2d)/δ) + 1/4

|Sg,k|
.

(4.24)
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Conversely, the probability of a deviation of

ε ≤ 4
√

2κ f

√
log ((2d)/δ) + 1/4

|Sg,k|
(4.25)

is lower or equal to 1− δ.

�

This result constitutes a non-asymptotic bound on the deviation of the gra-
dient norms that holds with high probability. Note, how the accuracy of
the gradients increases in the sample size. Of course, any sampling scheme
that guarantees the right hand side of (4.19) to be smaller or equal to M
times the squared step size, directly satisfies the sufficient gradient agree-
ment condition (A4.3). Consequently, plugging the former into the latter
and rearranging for the sample size gives the following Theorem.

Theorem 4.8 (Gradient Sampling) If

|Sg,k| ≥
32κ2

f (log ((2d)/δ) + 1/4)

M2‖sk‖4 , M ≥ 0 and ∀k ≥ 0 (4.26)

then gk satisfies the sufficient agreement condition A4.3 with probability (1−
δ).

Proof:

By use of Lemma 4.7 we can write

‖g(wk)−∇ f (wk)‖ ≤ M‖s‖2

w.h.p.⇔ 4
√

2κ f

√
log((2d)/δ + 1/4)

|Sg,k|
≤ M‖sk‖2

|Sg,k| ≥
32κ2

f log ((2d)/δ + 1/4)

M2‖sk‖4

(4.27)

�
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Hessian Sampling

In each iteration k we shall sub-sample a Hessian index set SB,k ⊆ {0, 1, . . . , n}
uniformly, independently and without replacement. We then use the aver-
age of the Hessians at these indices as an (unbiased) estimator of ∇2 f (xk)

Bk :=
1
|SB,k| ∑

i∈SB,k

∇2 fi(wk). (4.28)

In analogy to the gradient case, we use the matrix version of Bernstein’s
Inequality to derive the following Lemma:

Lemma 4.9 (Hessian deviation bound) Let the sub-sampled Hessian B be de-
fined as in Eq. (4.28). As long as ε ≤ 4κg, we have with probability (1− δ) that

‖B(wk)− H(wk)‖ ≤ 4κg

√
log((2d)/δ)

|SB,k|
. (4.29)

Proof: Bernstein’s Inequality holds as f ∈ C2 and thus the Hessian is sym-
metric by Schwarz’s Theorem. Since the expectation of the random matrix
needs to be zero, we center the individual Hessians

Xi = Hi(wk)− H(wk), i = 1, ..., |SB,k|

and note that now from the Lipschitz continuity of g (A4.1) we can deduce

‖Xi‖2 ≤ 2κg, i = 1...|SB,k| and ‖X2
i ‖2 ≤ 4κ2

g, i = 1...|SB,k|.

Hence, for ε ≤ 4κg we are in the small deviation regime of Bernstein’s bound
with a sub-gaussian tail. Then, we may plug

1
|SB,k|

|SB,k |

∑
i=1

Xi = B(wk)− H(wk)

into (4.12), to get

P(‖B(wk)− H(wk)‖ ≥ ε) ≤ 2d · exp

(
− ε2|SB,k|

16κ2
g

)
. (4.30)

Finally, we shall require the probability of a deviation of ε or higher to be
lower than some δ ∈ (0, 1]

2d · exp

(
− ε2|SB,k|

16κ2
g

)
!
≤ δ

⇔ − ε2|SB,k|
16κ2

g

!
≤ log(δ/(2d))

⇔ ε
!
≥ 4κg

√
log((2d)/δ)

|SB,k|
,

(4.31)
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which is equivalent to ‖B(wk)−H(wk)‖ staying within this particular choice
of ε with probability (1− δ), generally perceived as high probability.

�

Again, this Lemma can directly be used to derive a Hessian sampling con-
dition that is guaranteed to satisfy the sufficient agreement condition (A4.2)
with high probability.

Theorem 4.10 (Hessian Sampling) If

|SB,k| ≥
16κ2

g log((2d)/δ)

(C‖sk‖)2 , C ≥ 0, and ∀k ≥ 0 (4.32)

then Bk satisfies the strong agreement condition A4.2 with probability (1− δ).

Proof: Since ‖Av‖ ≤ ‖A‖op‖v‖ for every v ∈ V we have for the choice of
the spectral matrix norm and euclidean vector norm that any Bk that satisfies
‖(B(wk)−H(wk))‖ ≤ C‖sk‖ also satisfies the sufficient agreement condition
Asm. 4.2. Furthermore,

‖(B− H(wk))‖ ≤ C‖sk‖

w.h.p.⇔ 4κg

√
log((2d)/δ)

|SB,k|
≤ C‖sk‖

⇔ |SB,k| ≥
16κ2

g log((2d)/δ)

(C‖sk‖)2 , C > 0.

(4.33)

�

As expected, the required sample sizes grow in the problem dimensionality
d and in the Lipschitz constants κ f and κg. Note that it might be possible to
derive a less restrictive sampling condition that satisfy A4.2 since condition
(4.33) is based on the worst case bound ‖Av‖ ≤ ‖A‖op‖v‖ which indeed
only holds with equality if v happens to be (exactly in the direction of) the
largest eigenvector of A.

Finally, we shall restate a Lemma from [Cartis et al., 2011] which illustrates
that the stepsize goes to zero and hence the sample size to n as the algorithm
converges.
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Lemma 4.11 Let { f (wk)} be bounded below by some finf > −∞. Also, let sk
satisfy A3.7 and σk be bounded below by some σinf > 0. Then we have for all
successful iterations that

‖sk‖ → 0, as k→ ∞. (4.34)

The proof can be found in [Cartis et al., 2011] Section 5. Consequently, the
sample sizes used in SCR must approach n as the algorithm converges and
thus we have

g→ ∇ f as well as B→ H as k→ ∞. (4.35)

On the left hand side of Figure 4.1 we illustrate the Hessian sample sizes
that result when applying SCR with a practical version of Theorem 4.10
to the higgs dataset3. On the right, we benchmark our algorithm to the
deterministic as well as two stochastic version of ARC with linearly and
exponentially increasing sample sizes.

Figure 4.1: Suboptimality and sample size for different cubic regularization
methods on higgs

The difference in runtime is not particularly stunning but note that both the
linear- and the exponential sampling scheme were carefully fine tuned to
reach the full sample size at the very last iteration. In general however, the
total number of iterations an algorithm may take is obviously unknown and
it is thus a clear advantage of SCR that no such sample size tuning is needed
ex-ante.

4.3 Convergence Analysis

We shall now establish the crucial properties that ensure global, as well
as fast local convergence and improve the worst-case complexity of fully

3see Chapter 5 for details
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stochastic cubic regularization methods over standard trust region approaches.
Next to the cubic regularization term itself, these properties arise mainly
from the penalty parameter updates and step acceptance criteria of this
framework, which give rise to a good relation between regularization and
stepsize. In this section we do not assume any specific sampling scheme.
Instead, all we require is that the stochastic estimates are unbiased and sat-
isfy the sufficient agreement conditions (4.2) and (4.3). Yet, in the case that
Theorem (4.8) and (4.10) are satisfied by the applied sampling scheme the
resulting method satisfies these requirements with high probability. Hence,
the following convergence results hold with high probability for the SCR
version that we implement in Chapter 5.

4.3.1 Preliminary Results

First, we note that the penalty parameter sequence {σk} is guaranteed to
stay within some bounded positive range, which is essentially due to the
fact that SCR is guaranteed to find a successful step as soon as the penalty
parameter exceeds some critical value σsup.

Lemma 4.12 (Boundedness of σk) Let A4.1, A4.2 and A4.3 hold. Then

σk ∈ [σinf, σsup], ∀k ≥ 0, (4.36)

where σinf is defined in Step 7 of Algorithm 1 and

σsup :=
{

σ0,
3
2

γ2(2M + C + κg)

}
. (4.37)

Proof: The lower bound σinf follows directly from Step 7 in the algorithm de-
sign (see Algorithm 1). Regarding the upper bound, the constant σ0 accounts
for the start value of the penalty parameter. Let us now show that as soon as
some σk > 3( 2M+C+κg

2 ), the iteration is very successful and σk+1 < σk. Finally,
γ2 allows for σk being ”close to” the successful threshold, but increased one
last time.

Any iteration with f (wk + sk) ≤ m(sk) yields a ρk ≥ 1 ≥ η2 and is thus very
successful. From a second-order Taylor approximation of f (wk + sk) around
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wk we have:

f (wk + sk)−mk(sk) = (∇ f (wk)− g(wk))
ᵀsk +

1
2

sᵀk (H(wk + τsk)− Bk) sk

− σ

3
‖sk‖3

≤ eᵀk sk +
1
2
‖sk‖2‖H(wk + τsk)− H(x)‖

+
1
2
‖H(wk)− Bk‖‖sk‖ −

σk

3
‖sk‖3

≤ ‖ek‖‖sk‖+
(

C + κg

2
− σk

3

)
‖sk‖3

≤M‖sk‖3 +

(
C + κg

2
− σk

3

)
‖sk‖3

=

(
2M + C + κg

2
− σk

3

)
‖sk‖3,

(4.38)
where we applied the sufficient agreement conditions (4.1) & (4.3), Cauchy-
Schwarz’s inequality as well as the Lipschitz continuity of H. Requiring the
right hand side to be non-positive and solving for σk gives the desired result.

�

Furthermore, for any successful iteration the objective decrease can be di-
rectly linked to the model decrease via the step acceptance criterion in
Eq. (3.6). The latter, in turn, can be shown to be lower bounded by the
stepsize which combined gives the following result.

Lemma 4.13 (Sufficient function decrease) Suppose that sk satisfies A3.7. Then,
for all successful iterations k ≥ 0

f (wk)− f (wk+1) ≥ η1( f (wk)−m(sk))

≥ 1
6

η1σinf‖sk‖3.
(4.39)

Proof: By definition of the stochastic model mk(sk) we have

f (wk)−mk(sk) =− sᵀk g(wk)−
1
2

sᵀk Bksk −
1
3

σk‖sk‖3

=
1
2

sᵀk Bksk +
2
3

σk‖sk‖3

≥1
6

σk‖sk‖3,

(4.40)

where we applied equation (3.53) first and equation (3.54) secondly.
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�

Finally, the termination criterion TC also guarantees step sizes that do not be-
come too small compared to the respective gradient norm. However, before
we can prove the lower bound on the stepsize ‖sk‖ we must first transfer
the rather technical result from Lemma 4.6 in [Cartis et al., 2011] to our
framework of stochastic gradients.

Lemma 4.14 Let f ∈ C2, Lipschitz continuous gradients (A4.1) and TC (A3.9)
hold. Then, for each (very-) successful k, we have

(1− κθ)‖∇ f (wk+1)‖ ≤ σk‖sk‖2 + ‖sk‖ζk, (4.41)

with ζk = ζk,1 + ζk,2 and

ζk,1 := ‖
∫ 1

0
(H(wk + tsk)− H(wk))dt‖+ ‖(H(wk)− Bk)sk‖

‖sk‖

ζk,2 := κθκg‖sk‖+ (1 + κθκg)
‖ek‖
‖sk‖

(4.42)

with κθ ∈ (0, 1) as in TC (3.68).

Proof: We shall by noting that wk+1 = wk + sk which is why we can write

‖∇ f (wk + sk)‖ ≤ ‖∇ f (wk + sk)−∇mk(sk)‖+ ‖∇mk(sk)‖
≤ ‖∇ f (wk + sk)−∇mk(sk)‖︸ ︷︷ ︸

(a)

+ θk‖gk(wk)‖︸ ︷︷ ︸
(b)

, (4.43)

where the last inequality results from TC. Now, let us find bounds on each
of the above summands:

(a) By (3.2) we have

‖∇ f (wk + sk)−∇mk‖ = ‖∇ f (wk + sk)− gk(wk)− Bksk − σksk‖sk‖‖. (4.44)

We can rewrite the right-hand side by a Taylor expansion of ∇ f (wk + sk)
around wk to get

(4.44) = ‖∇ f (wk) +
∫ 1

0
H(wk + τsk)skdτ − gk(wk)− Bksk − σksk‖sk‖‖,

(4.45)
for some τ ∈ (0, 1). Contrary to the case of deterministic gradients, the first
and third summand no longer cancel out. Applying the triangle inequality
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repeatedly, we thus get the error term ek in the final bound on (a):

‖∇ f (wk + sk)−∇mk‖ ≤ ‖
∫ 1

0
H((wk + tsk)− Bk)skdt‖+ σk‖sk‖2

+ ‖∇ f (wk)− gk(wk)‖

≤ ‖
∫ 1

0
H((wk + tsk)dt− H(wk)‖ · ‖sk‖

+ ‖(H(wk)− Bk)sk‖+ σk‖sk‖2 + ‖ek‖.

(4.46)

(b) To bound the second summand, we can write

‖g(wk)‖ ≤ ‖∇ f (wk)‖+ ‖ek‖
≤ ‖∇ f (wk + sk)‖+ ‖∇ f (wk)−∇ f (wk + sk)‖+ ‖ek‖
≤ ‖∇ f (wk + sk)‖+ κg‖sk‖+ ‖ek‖.

(4.47)

Finally, using the definition of θk as in (3.68) (which also gives θk ≤ κθ) and
summing up Eq. (4.46) and (4.47) gives (4.41) which proves the assertion.

�

Lemma 4.15 (Lower bound on stepsize) Let Asm. 4.1, Asm. 4.2 and Asm. 4.3
hold. Furthermore, assume TC and suppose that w → w∗, as k → ∞. Then, for all
sufficiently large successful iterations sk satisfies

‖sk‖ ≥ κs

√
‖∇ f (wk+1)‖ (4.48)

where κs is a positive constant

κs ≤
√

1− κθ
1
2 κH + (1 + κθκg)M + C + σsup + κθκg

. (4.49)

Proof: The conditions of Lemma 4.14 are satisfied. By multiplying ζk‖sk‖ out
in equation (4.41) we get

(1− κθ)‖∇ f (wk+1)‖ ≤‖
∫ 1

0
(H(wk + τsk)− H(wk))dτ‖‖sk‖

+ ‖(H(wk)− Bk)sk‖+ κθκg‖sk‖2

+ (1 + κθκg)‖ek‖+ σk‖sk‖2.

(4.50)

Now, applying the sufficient agreement conditions (4.3) and (4.1) as well as
the Lipschitz continuity of H we can rewrite this as

(1− κθ)‖∇ f (wk+1)‖ ≤ (
1
2

κH + C + (1 + κθκg)M + σsup + κθκg)‖sk‖2, (4.51)

for all sufficiently large, successful k. Solving for the step size ‖sk‖ provides
the above results.
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�

4.3.2 Local Convergence

Since the models mk depend on random quantities, the iterates generated by
these random models constitute a sequence of random variables themselves.
However, given that the stochastic gradients and Hessians are sampled uni-
formly and independently, the approximation error vanishes in expectation,
i.e. E [gk] = ∇ f (wk) and E [Bk] = ∇2 f (wk). Hence, the local convergence re-
sult we present in this section refers to the norm of the expectation of {wk},
commonly named as convergence in expectation (See Definition A.3).

Yet, before we can study the convergence rate of SCR in a locally convex
neighbourhood of a local minimizer w∗ we first need to establish three cru-
cial properties:

a) a lower bound on ‖s‖ that depends on ‖gk‖.

b) an upper bound on ‖s‖ that depends on ‖gk+1‖.

c) conditions under which all steps are eventually very successful.

With this at hand we will be able to relate ‖gk+1‖/‖gk‖, show that (in ex-
pectation) this ratio eventually goes to zero at a quadratic rate and conclude
from a Taylor expansion around g that the iterates themselves converge as
well (see Lemma A.6).

We have already established (a) in Lemma 4.15 so let us turn our attention
directly to b):

Lemma 4.16 (Upper bound on stepsize) Suppose that sk satisfies (3.53) and
that the Rayleigh coefficient Rk(sk) (Def. A.9) is positive, then

‖sk‖ ≤
1

Rk(sk)
‖gk‖ =

1
Rk(sk)

‖∇ f (wk) + ek‖ ≤
1

Rk(sk)
(‖∇ f (wk)‖+ ‖ek‖)

(4.52)

Proof: Given the above assumptions we can rewrite (3.53) as follows

Rk(sk)‖sk‖2 = −sᵀk gk − σk‖sk‖3 ≤ ‖sk‖‖gk‖, (4.53)

where we used Cauchy-Schwarz inequality as well as the fact that σk > 0, ∀k.
Solving 4.53 for ‖sk‖ gives (4.52).

�

Now that we have both stepsize bounds note that they only hold for suffi-
ciently large successful iterations. Thus, we shall now establish c), namely that,
when converging, all SCR iterations are indeed very successful asymptoti-
cally.
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Lemma 4.17 (Eventually successful iterations) Let f ∈ C2,∇ f uniformly con-
tinuous and Bk bounded above. Let B and g satisfy the agreement conditions
Asm. 4.2 and Asm. 4.3, as well as sk satisfy (3.53). Furthermore, let

wk → w∗, as k→ ∞, (4.54)

with ∇ f (w∗) = 0 and H(w∗) positive definite. Then there exists Rmin > 0 such
that for all k sufficiently large

Rk(sk) ≥ Rmin. (4.55)

Furthermore, in expectation all iterations are eventually very successful.

Proof: Since f is continuous, the limit (4.54) implies that { f (wk)} is bounded
below. Since H(w∗) is positive definite per assumption, so is H(wk) for all k
sufficiently large. Therefore, there exists a constant Rmin such that

sᵀk H(wk)sk

‖sk‖2 > Rmin > 0, for all k sufficiently large. (4.56)

In order to show that asymptotically all iterations k are very successful, we
need to ensure that the following quantity rk eventually becomes negative:

rk := f (wk + sk)−m(sk)︸ ︷︷ ︸
(i)

+(1− η2) (m(sk)− f (wk))︸ ︷︷ ︸
(ii)

, (4.57)

where η2 ∈ (0, 1) is the ”very successful” threshold.

(i) By a (second-order) Taylor approximation around f (wk) and applying
the Cauchy-Schwarz inequality, we have:

f (wk + sk)−m(sk) =(∇ f (w)− gk)
ᵀsk +

1
2

sᵀk ((H(wk + τsk)− Bk)sk −
σk

3
‖s‖3

≤‖ek‖‖sk‖+
1
2
‖((H(wk + τsk)− Bk)sk‖‖sk‖,

(4.58)
where the term ‖ek‖‖sk‖ is extra compared to the case of deterministic gra-
dients.

(ii) Regarding the second part we note that if sk satisfies (3.53), we have by
the definition of Rk and equation (4.55) that

f (wk)−mk(sk) =
1
2

sᵀk Bsk +
2
3

σk‖sk‖3

≥1
2

Rmin‖sk‖2,
(4.59)
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which negated gives the desired bound on (ii). All together, the upper bound
on rk is written as

rk ≤
1
2
‖sk‖2

(
2‖ek‖
‖sk‖

+
‖((H(wk + τsk)− Bk)sk‖

‖sk‖
− (1− η2)Rmin

)
. (4.60)

Let us add and subtract H(wk) to the second summand and take the expec-
tation of rk to find

E [rk] ≤
1
2
‖E [sk]‖2

(
‖((H(wk + τE [sk])− H(wk))E [sk]‖

‖E [sk]‖
− (1− η2)Rmin

)
,

(4.61)
where we furthermore applied E [ek] = 0 & E [Hk − Bk] = 0 as well as the
Cauchy-Schwarz inequality.

Since τ ∈ [0, 1] we have that ‖wk + τE [sk]‖ ≤ ‖wk + E [sk]‖ but from (4.16)
we know that E [sk] → 0 whenever ∇ f (wk) → 0. Hence, H(wk + τsk) and
H(wk) eventually agree. Finally, η2 < 1 and Rmin > 0 such that E [rk] is
negative for all k sufficiently large, which implies that every such iteration
is very successful.

�

Theorem 4.18 (Quadratic local convergence in expectation) Let
Asm. 4.1, Asm. 4.2 and Asm. 4.3 hold. Furthermore, let sk satisfy Asm. 3.7
and

wk → w∗ as k→ ∞, (4.62)

where H(w∗) is positive definite. Moreover, assume the stopping criterion TC
(Asm 3.9). Then,

‖E [wk+1 − w∗|wk]‖
‖wk − w∗‖2 ≤ c, c > 0 as k→ ∞. (4.63)

That is, wk converges in expectation quadratically to w∗ as k→ ∞.

Proof: We will first derive the convergence result carrying potential approxi-
mation errors arising from the stochastic gradients and Hessian over along
the way.

From Lemma 4.12 we have σk ≤ σsup. Furthermore, all assumptions needed
for the step size bounds of Lemma 4.15 and 4.16 hold. Finally, Lemma 4.17
gives that all iterations are eventually successful (in expectation). Thus, we
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can combine the upper (4.52) and lower (4.48) bound on the stepsize for all
k sufficiently large to obtain

1
Rmin

(‖∇ f (wk)‖+ ‖ek‖) ≥ ‖sk‖ ≥ κs

√
‖∇ f (wk+1)‖ (4.64)

which we can solve for the gradient norm ratio

‖∇ f (wk+1)‖
‖∇ f (wk)‖2 ≤

(
1

Rminκs

(
1 +

‖ek‖
‖∇ f (wk)‖

))2

. (4.65)

Consequently, as long as the right hand side of (4.65) stays below infinity,
i.e. ‖ek‖/‖∇ f (wk)‖ 6→ ∞, we have quadratic convergence of the gradient
norms. Let us now take the expectation of (4.65)

‖E [∇ f (wk+1)]‖
‖E [∇ f (wk)]‖2 ≤

(
1

RminE [κs]

(
1 +

‖E [ek]‖
‖∇ f (wk)‖

))2

=

(
1

RminE [κs]

)2

,

(4.66)

where (from Eq. (4.49):

E [κs] ≤
√

1− κθ
1
2 κH + σsup + κθκg

. (4.67)

Thus E [κs] is bounded above by a constant and since furthermore Rmin is
a positive constant itself we have proven that the right hand side of equa-
tion (4.65) is bounded in expectation. The convergence of the iterates (4.69)
follows from Lemma A.6, which proves the assertion.

�

Note that the need of using the expected values in Lemma 4.17 and Theorem
4.18 solely arises due to the inexactness of g which makes it impossible to
upper bound sk in terms of ∇ f . However, the quadratic convergence result
can be obtained in a deterministic fashion when only the Hessians are sub-
sampled.

Theorem 4.19 (Quadratic local convergence) Let Asm. 4.1 and Asm. 4.2
hold and assume gk = ∇ f (wk). Let sk satisfy Asm. 3.7 and

wk → w∗, as k→ ∞, (4.68)
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where H(w∗) is positive definite. Moreover, assume the stopping criterion TC
(Asm. 3.9). Then,

‖wk+1 − w∗‖
‖wk − w∗‖2 ≤ c, c > 0 as k→ ∞. (4.69)

That is, wk converges quadratically to w∗ as k→ ∞.

Proof: Follow the proofs of Lemma 4.17 and Theorem 4.19 to Eq. (4.61) and
Eq. (4.65) respectively and use the fact that in the case of deterministic gra-
dients we have ek = gk −∇ f (wk) = 0.

�

4.3.3 Global Convergence

First order critical points

The preliminary results Lemma 4.13 and 4.15 allow us to lower bound the
function decrease of a successful step in terms of the full gradient ∇ fk+1.
Combined with Lemma 4.12, this enables us to give a deterministic global
convergence guarantee while using only stochastic first order information4.

Theorem 4.20 (Convergence to 1st-order Critical Points) Let Asm. 3.7,
Asm. 4.1, Asm. 4.2 and Asm. 4.3 hold. Furthermore, let { f (wk)} be bounded
below by some finf > −∞. Then

lim
k→∞
‖∇ f (wk)‖ = 0 (4.70)

Proof: We will consider two cases regarding the number of successful steps
for this proof.

Case (i): SCR takes only finitely many successful steps. Hence, we have
some index k0 which yields the very last successful iteration and all further
iterates stay at the same point wk0+1. That is wk0+1 = wk0+i, ∀ i ≥ 1. Let us
assume that ‖∇ f (wk0+1)‖ = ε > 0, then

‖∇ f (wk)‖ = ε, ∀ k ≥ k0 + 1. (4.71)

4Note that this result can also be proven without Lipschitz continuity of H and less
strong agreement conditions as done in Corollary 2.6 in [Cartis et al., 2011].
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Now, since all iterations k ≥ k0 + 1 are unsuccessful, σk increases by γ in
each of these iterations such that

σk → ∞ as k→ ∞. (4.72)

However, this is in contradiction with Lemma 4.12, which states that σk is
bounded above. Hence, the above assumption cannot hold and we have
‖∇ f (wk0+1)‖ = ‖∇ f (w∗)‖ = 0.

Case (ii): SCR takes infinitely many successful steps. While unsuccessful
steps keep f (wk) constant, (very) successful steps strictly decrease f (wk)
and thus the sequence { f (wk)} is monotonically decreasing. In addition, it
is bounded below per assumption and thus the objective values converge

f (wk)→ finf, as k→ ∞. (4.73)

All requirements of Lemma 4.13 and Lemma 4.15 hold and we thus can
combine Eq. (4.39) and Eq. (4.48) to write

f (wk)− finf ≥ f (wk)− f (wk+1) ≥
1
6

η1σinfκ
3
s ‖∇ f (wk+1)‖3/2. (4.74)

Since ( f (wk) − finf) → 0 as k → ∞ and σinf > 0, η1 > 0 as well as κ3
s >

0 (because σsup < ∞), we must have ‖∇ f (wk)‖ → 0, which proves the
assertion.

�

second-order critical points

Unsurprisingly, the second-order convergence guarantee relies mainly on
the use of second-order information so that the stochastic gradients do nei-
ther alter the result nor much of the proof as it can be found in Section
5 of Cartis et al. [2011]. We shall nevertheless state the adaptions to our
framework here for the sake of completeness.

Theorem 4.21 (Second-order global convergence) Let Asm. 4.1,
Asm. 4.2 and Asm. 4.3 hold. Furthermore, let { f (wk)} bounded below by finf
and let sk be a global minimizer of mk over a subspace Lk that is spanned by
the columns of the d× l orthogonal matrix Qk. If B → H asymptotically, any
subsequence of negative leftmost eigenvalues

{
λmin(Q

ᵀ
k H(wk)Qk)

}
converges

to zero for sufficiently large, successful iterations. Hence

lim
k succ.

inf
k→∞

λmin(Q
ᵀ
k H(wk)Qk) ≥ 0. (4.75)
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Finally, if Qk becomes a full orthogonal basis of Rd as k → ∞, then any limit
point of the sequence of successful iterates {wk} is second-order critical (pro-
vided such a limit point exists).

Sketch of proof : Regarding the subspace minimization we can use the results
elaborated thoroughly in Lemma 3.8. Thus, for all s ∈ L we have s =
Qku, u ∈ Rl and any global minimizer sk of mk in Lk satisfies Eq. (3.64),
which is

Qᵀk BkQk + σk‖Qkuk‖I = Qᵀk BkQk + σk‖sk‖I � 0. (4.76)

By applying Lemma 4.12 we can reformulate this for all iterations k ≥ 0
with a negative definite Qᵀk BkQk to

σsup‖sk‖ ≥ σk‖sk‖ ≥ −λmin(Q
ᵀ
k BkQk) = |λmin(Q

ᵀ
k BkQk)| (4.77)

which for accepted steps, whole length eventually converges to zero accord-
ing to Lemma 4.11), implies

lim
k succ.

inf
k→∞

λmin(Q
ᵀ
k B(wk)Qk) ≥ 0. (4.78)

Furthermore, if the Hessian and its approximation finally agree, i.e. ‖Hk −
Bk‖ → 0, whenever ‖gk‖ → 0 we have

lim
k succ.

inf
k→∞

λmin(Q
ᵀ
k HkQk) ≥ 0, (4.79)

which proves the first part of the assertion, namely that any subsequence of
negative leftmost eigenvalues

{
λmin(Q

ᵀ
k H(wk)Qk)

}
converges to zero as for

sufficiently large successful iterations (Eq. (4.75)).

Note that Qᵀk Qk = I, since the columns form an orthonormal basis of Lk.
However, as long as l < n, QkQᵀk 6= I since the n row-vectors of Qk cannot
be linearly independent5 in Rl . Thus, in order to ensure that any limit point
of {xk} is actually second-order critical in Rd, we need Qk to become a full
orthogonal basis of Rd, i.e. l = d. Because ony then, the eigenvalues of
Qᵀk H(wk)Qk and H(wk) coincide as can be seen in Lemma A.8.

�

Note that, when the Krylov subspace minimization routine from Section
3.2.4 is applied, Qk can indeed be expected to become a full orthogonal basis

5In fact, QkQᵀk constitutes the orthogonal projection P onto col(Qk) since P =

Qk(Q
ᵀ
k Qk)

−1Qᵀk = QkQᵀk
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provided the gradient is not orthogonal to any eigenvector of Bk [Cartis et al.,
2011]. Furthermore, SCR versions that sample according to Theorem 4.10 the
Hessian and its approximations are guaranteed to agree eventually because
of Lemma 4.11 which implies Eq. (4.35), such that the above derived results
holds with high probability.

4.3.4 Worst-case Complexity

For the worst-case analysis we shall establish the two disjunct index sets
Uj and Sj, which represent the un- and successful SCR iterations that have
occurred up to some iteration j > 0, respectively. Furthermore, let us im-
pose the following weak restriction on the penalty parameter decrease for
successful iterations

σk+1 ≥ γ3σk, for some γ3 ∈ (0, 1] and all k ∈ S∞ (4.80)

As stated in Lemma 4.12 the penalty parameter σk is bounded above and
hence SCR may only take a limited number of consecutive unsuccessful
steps. As a consequence, the total number of unsuccessful iterations is at
most a problem-dependent constant times the number of successful itera-
tions.

Lemma 4.22 (Number of unsuccessful iterations) For any fixed j ≥ 0, next
to Eq. (4.80) let all assumptions of Lemma 4.12 hold. Then we have that

|Uj| ≤
⌈
(|Sj|+ 1)

log(σsup)− log(σinf)

log(η1)

⌉
. (4.81)

Proof: From the algorithm construction of SCR we have

γ1σk ≤ σk+1, for all k ∈ Uj (4.82)

and since equation (4.80) holds for all k ∈ Sj per assumption, we can deduce
inductively that

σ0γ
|Sj|
3 γ

|Uj|
1 ≤ σj. (4.83)

Because σinf ≤ σsup we may choose η3 := σinf/σsup ∈ (0, 1]. This, and Lemma
4.12 yield

log(σinf) + |Sj| log(
σinf

σsup
) + |Uj| log(µ1) ≤ log(σsup), (4.84)

which can be rearranged to give the desired upper bound on Uj.

�
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Regarding the number of successful iterations we have already established
the two key ingredients: (i) a sufficient function decrease in each successful
iteration (Lemma 4.13) and (ii) a step size that does not become too small
compared to the respective gradient norm (Lemma 4.15), which is essential
for driving the latter below ε at a fast rate. Combined they give rise to the
guaranteed function decrease for successful iterations

f (wk)− f (wk+1) ≥
1
6

η1σinfκ
3
s ‖∇ f (wk+1)‖3/2, (4.85)

which already contains the power of 3/2 that will appear in the complexity
bound. Finally, by summing over all successful iterations one obtains the
following (so far best known) worst case iteration bound to reach ε-first-
order criticality.

Theorem 4.23 (First-order worst-case complexity) Let Asm. 3.7,
Asm. 4.1, Asm. 4.2 and Asm. 4.3 hold. Furthermore, let { f (wk)} bounded
below by finf and the termination critertion TC (Asm. 3.9) be applied . Then,
for 1 ≥ ε > 0 the total number of iterations that stochastic cubic regularization
methods take to generate the first iterate j with ‖∇ f (wj+1)‖ ≤ ε is bounded as
follows:

j ≤
⌈
(1 + κi)(2 + κj)ε

−3/2
⌉

, (4.86)

where

κi =
6( f (w0)− finf)

η1σinfκ3
s

and κj =
log(σsup)− log(σinf)

log(η1)
(4.87)

Proof: Since f is bounded below for all iterates and ‖ f (wk+1)‖ > ε for all
k < j, we get by summing over all iterations in Sj−1 and applying inequality
(4.85) that

f (w0)− finf ≥ ∑
k∈Sj−1

f (wk)− f (wk+1)

≥1
6

η1σinfκ
3
s ∑

k∈Sj−1

ε3/2

=
1
6

η1σinfκ
3
s |Sj−1|ε3/2.

(4.88)

Solving this inequality for |Sj−1| and noting that |Sj−1| ∈N gives

|Sj−1| ≤
⌊

κiε
−3/2

⌋
. (4.89)

Of course, that the last iteration j itself must be successful such that we can
state the following bound on the overall number of successful iterations

|Sj| ≤
⌊

κiε
−3/2

⌋
+ 1 =

⌈
κiε
−3/2

⌉
, (4.90)
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where κi is defined as in (4.87).Furthermore, σk is bounded since all condi-
tions of Lemma 4.12 hold and we can thus apply the upper bound on the
number of unsuccessful iterations from Lemma 4.22 to find that

|Sj|+ |Uj| ≤|Sj|+
⌈
(|Sj|+ 1)κj

⌉
≤
⌈

κiε
−3/2

⌉
+
⌈
(dκiε

−3/2e+ 1)κj

⌉
≤
⌈

κiε
−3/2 + 1 + (κiε

−3/2 + 2)κj

⌉
=
⌈

ε−3/2
(

κi + κiκj + (1 + 2κj)ε
3/2
)⌉

,

(4.91)

where we used Lemma A.10 as well as the fact that dκiε
−3/2e ≤ κiε

−3/2 + 1
in step 3. Let us now note that ε3/2 < 1 and continue

|Sj|+ |Uj| ≤
⌈

ε−3/2(κi + κiκj + (1 + 2κj))
⌉

≤
⌈
(1 + κi)(2 + κj)ε

−3/2
⌉

,
(4.92)

which proves the assertion.

�

4.3.5 Discussion of Sampling Effects

The analysis of this Chapter shows that any sub-sampled cubic regularized
method whose gradient and Hessian approximations satisfy 4.1 and 4.3 in-
deed retain the remarkable convergences properties of [Cartis et al., 2011]
and [Nesterov and Polyak, 2006]. Specifically, sub-sampled methods that
sample such that Theorem 4.8 and 4.10 hold retain these results with high
probability (and regarding the local convergences: in expectation). Yet, it
would be surprising if the cheaper SCR iterations came at no price at all.
Let us thus take a closer look at the constants involved in the above derived
convergence rates.

First off, Lemma 4.12 reveals that the supremum of {σ} increases in the
inaccuracy of the sub-sampled gradients and Hessians, i.e. ceteris paribus:

M ∨ C ↑⇒ σsup ↑ . (4.93)

This has the direct effect of increasing the number of unsuccessful steps SCR
may take, which can be seen in Eq. (4.81).

Additionally, the upper bound σsup also appears in the denominator of (the
bound on) κs in Eq. (4.49), where gradient and Hessian inaccuracies also
show up. Thus we have, again ceteris paribus:

M ∨ C ∨ σsup ↑⇒ κs ↓, (4.94)
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which in turn decreases the lower stepsize bound in Lemma 4.15. Thus, a
lower value of κs has two negative effects. First, it increases the constant of
the quadratic convergence result (Theorem 4.19 and secondly it increases the
upper bound on the total number of successful steps that SCR may take via
κi (see Eq. (4.89)).

As a result, the inaccuracy of the sub-sampled quantities may well lead to
an increased overall number of SCR iterations. However, the total number
of iterations stays within the same order of magnitude which suggests that
the cheaper per-iteration cost overweight this effect. Empirical evidence for
this claim is presented in the following Chapter.

4.4 Comparison with Trust Region Approaches

When viewing the penalty parameter σk as inversely proportional to the trust
region radius ∆k the algorithmic structure of cubic regularization and trust
region methods is almost identical. Thus it is not surprising that similar
convergence results can be found for trust region methods and compara-
ble efforts are needed to solve the subproblems. To be specific, TR meth-
ods provide a global second-order convergence guarantee as well as a local
quadratic convergence rate because eventually the trust region radius will
be large enough to allow for full Newton steps.

Yet, the key difference between the two approaches is the effect that the
regularization parameter updates have on the step size norm ‖sk‖, which
can be seen in Figure 4.2 (see Section 3.2.2 for a derivation of the graphs).

Figure 4.2: Step sizes of TR and ARC for different trust region radii
∆ ∈ {2, 1, 1/2} and regularizes σ ∈ {1, 2, 4} for g = (1/4, 1/2)ᵀ and
H = diag(2, 1/2).

Even though both methods perform the same regularization updates, the
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steps decrease over-proportionally in the trust region framework. Thus, the
main drawback of trust region methods is that they may go from a large
unsuccessful trial step to a successful but (too) short step. As a matter of
fact, Curtis et al. [2014] show that the rate of decrease in ‖s‖ is linear for
trust region and only sublinear for cubic regularization methods6.

To see this analytically note that if a trust region method never finds interior
solutions, i.e. ‖sk‖ = ∆k, ∀k ≥ 0, we have (as stated in Section 2.5) that it
behaves equivalently to a method that minimizes the quadratic model with
a suitable quadratic regularizer σ̂k in each iteration k

ŝk = arg min
s∈Rd

m̂k(s) := f (xk) + sᵀgk +
1
2

sᵀBks +
σ̂k

3
‖s‖2 (4.95)

and the model derivative changes to

∇m̂k(s) = gk + Bks + σ̂ks. (4.96)

As a result the term σk‖sk‖2 in Eq. (4.41) of Lemma 4.14 becomes σ̂k‖ŝk‖ and
we cannot establish the lower step size bound of Lemma 4.15 that relates
‖sk‖ to

√
∇ f (wk+1), which is one of the two crucial ingredients for the

O(ε−3/2) worst case complexity of cubically regularized methods. More
detailes along with a rigorous proof of the O(ε−2) worst case bound that
holds for trust region methods can be found in [Gratton et al., 2008].

Recently, Curtis et al. [2014] designed a trust region variant with more so-
phisticated penalty parameter updates and step acceptance criteria to over-
come precisely the above mentioned issue. They were indeed able to show
that their method can achieve the O(ε−3/2) first order worst case complexity
but its practical relevance is questionable because of the increased complex-
ity in the framework.

6for repeatedly unsuccessful iterations
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Chapter 5

Experimental Results

In this section we present experimental results on synthetic as well as real-
world data which largely confirm the analysis derived in the previous sec-
tions. The goal of our experiments is to investigate the performance of SCR
in different problem settings. To be precise, we want to investigate the effect
of

a) the number of datapoints n

b) the dimensionality d

c) the condition number κ

d) the presence and absence of convexity

on the performance of our method as well as baseline methods typically
used in machine learning.

To this end, we first present results of logistic regressions on various real-
world datasets. These are of fairly small dimensions but cover a wide range
of problem sizes and condition numbers. In addition, the logistic loss func-
tion is per se convex but can be made non-convex by adding a suitable
regularizer. Thus the first set of results covers the topics a), c) and d).

Subsequently, to be able to study the effect of an increasing dimensionality
we generate three artificial datasets where the data itself arises from a multi-
nominal Gaussian distribution. Again, we minimize a logistic loss function.

Finally, to foreshadow the applicability of sub-sampled cubic regularization
methods in the context of learning neural networks we also present two
results on image classification tasks that we train with multinominal logistic
regression.
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5.1 Datasets

Real-world Datasets

The real-world datasets we use represent very common instances of Machine
Learning problems and are part of the libsvm library [Chang and Lin, 2011],
except for cifar which is from Krizhevsky and Hinton [2009]. A summary of
their main characteristic can be found in Table 5.1.

type n d κ(H∗) λ

a9a Classification 32, 561 123 761.8 1e−3

a9a nc Classification 32, 561 123 1, 946.3 1e−3

covtype Classification 581, 012 54 3 · 109 1e−3

covtype nc Classification 581, 012 54 25, 572, 903.1 1e−3

higgs Classification 11, 000, 000 28 1, 412.0 1e−4

higgs nc Classification 11, 000, 000 28 2, 667.7 1e−4

mnist Multiclass 60, 000 7, 840 10, 281, 848 1e−3

cifar Multiclass 50, 000 10, 240 1 · 109 1e−3

Table 5.1: Overview over the real-world datasets used in our experiments
with convex and non-convex (nc) regularizer

The multiclass datasets are both instances of so-called image recognition
problems. The mnist images are greyscale and of size 28× 28. The original
cifar images are 32× 32× 3 but we converted them to greyscale so that the
problem dimensionality is comparable to mnist. Both datasets have 10 differ-
ent classes, which multiplies the problem dimensionality by 10, giving the
values in Table 5.1.

Synthetic Datasets

To test the influence of the dimensionality on the progress of the above
applied methods we created artificial datasets of three different sizes, labeled
as gaussian s, gaussian m and gaussian l.

type n d κ(H∗) λ

gaussian s Classification 50, 000 100 2, 083.3 1e−3

gaussian m Classification 50, 000 1, 000 98, 298.9 1e−3

gaussian l Classification 50, 000 10, 000 1, 167, 211.3 1e−3

Table 5.2: Overview over the synthetic datasets used in our experiments
with convex regularizer

The feature vectors X = (x1, x2, ..., xd), xi ∈ Rn were drawn from a multivari-
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ate Gaussian distribution
X ∼ N (µ, Σ) (5.1)

with a mean of zero µ = (0, . . . , 0) and a covariance matrix that has reason-
ably uniformly distributed off-diagonal elements in the interval (−1, 1).

5.2 Implementations

5.2.1 Practical Implementation of SCR

We implement SCR as stated in Algorithm 1 and note the following de-
tails. Following Erdogdu and Montanari [2015], we require the sampling
conditions derived in Section 4.2 to hold with probability O(1− 1/d), which
yields the following practically (almost) applicable sampling schemes

|SB,k| ≥
36κ2

g log(d)
(C‖sk‖)2 , C > 0, ∀k > 0

|Sg,k| ≥
32κ2

f (log(d) + 1/4)

M2‖sk‖4 , M > 0, ∀k > 0.

(5.2)

The positive constants C and M can be used to scale the sample size to
a reasonable portion of the entire dataset and can furthermore be used to
offset the κg and κ f , which are generally expensive to obtain. One way to
estimate κg would be using the quantity (Bk−1sk−1)/‖sk−1‖) but empirically
this made no significant (positive or negative) difference on our datasets.

As argued in Section 3.3 the use of stochastic gradient estimates is not very
likely to improve the performance of SCR as long as n stays below the point
where evaluating full gradients becomes overwhelmingly costly1. Prelim-
inary experiments confirm this intuition2. We thus make use of full first-
order information and only sub-sample the Hessian according to Eq. (5.2) in
the following.

However, when choosing |SB,k| for the current iteration k, the stepsize sk is
yet to be determined. Based on the Lipschitz continuity of the involved func-
tions, we argue that the previous stepsize is a fair estimator of the current
and this is confirmed by the experimental results. Finally we point out that
the sampling schemes derived in Eq. (5.2) gives our method a clear edge over
sampling schemes that do not take any iteration information into account,
e.g. linearly or geometrically increased samples (see Section 4.2.3).

1Note that this threshold would certainly decrease if we had way of solving the subprob-
lems linearly or even logarithmically in d.

2In fact, on gaussian s the first n that made gradient sampling competitive was n =
22, 000, 000
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The regularization parameter updating is analog to the rule used in the
reported experiments of Cartis et al. [2011], where γ = 2. The goal is to re-
duce the regularization penalty rapidly as soon as convergence sets in, while
keeping some regularization in the non asymptotic regime. Regarding the
successfulness thresholds we chose η1 = 0.2, and η2 = 0.8. As initial (and
minimum) sample size we chose a value between 2.5% and 10%, depending
on the problem.

5.2.2 Other Methods

We here briefly describe the choice of hyper-parameters for the baseline
algorithms. Further details on these methods can be found in Section 2.3.

• Stochastic Gradient Descent (SGD): To bring in some variation, we
select a mini-batch of the size dn/10e on the real world classification-
and dn/100e on the multiclass problems. On the artificial datasets we
only sample 1 datapoint per iteration and update the parameters with
respect to this point. We use a problem-dependent, constant step-size
as this yields faster initial convergence [Hofmann et al., 2015],[Roux
et al., 2012].

• SAGA: is a variance-reduced variant of SGD that only samples 1 data-
point per iteration and uses a constant step-size.

• Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and sta-
ble Quasi-Newton method.

• Limited-memory BFGS is a variant of BFGS which uses only the recent
K iterates and gradients to construct an approximate Hessian. We
used K = 20 in our experiments. Both methods employs a line-search
technique that satisfies the strong Wolfe condition to select the step
size.

• NM is the classic version of Newton’s method which we apply with a
backtracking line search.

For L-BFGS and BFGS we used the implementation available in the opti-
mization library of scipy. All other methods are our own implementation.
During this thesis we developed in particular: a) the trust region framework
with various subproblem solvers, b) the adaptive cubic regularization frame-
work with various subproblem solvers, c) the bi- as well as multinominal
logistic loss function as well as their derivatives and d) the non-convex reg-
ularizer as well as its derivatives.

The source code is available on github. It is optimized with respect to
runtime, i.e. all algebraic operations are coded as vectorized operations in
numpy which we build against Intels high performance MathKernelLibrary.
For the multinominal logistic loss we apply an efficient, backpropagation
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like approach for evaluating Hessian-vector product in O(nd) that is due to
Pearlmutter [1994].

All experiments with d < 1000 were run on a machine with 8 GB memory
and a CPU with a 2.4 GHz nominal clock rate. The others were run on a
machine with 32 GB memory and 2.8 GHz nominal CPU clock rate.

5.3 Results

The following results largely confirm our analysis since SCR reduces the
runtime of ARC on all instances without losing its global convergence prop-
erty. The deterministic ARC method performs consistently well. While it is
mostly comparable to TR in terms of runtime, it has a little edge in terms of
epochs3.

In general, none of the first-order methods provides comparable (log) sub-
optimality values in reasonable time. Both methods perform significantly
worse on problems with higher condition numbers. As expected SAGA gen-
erally outperforms SGD in terms of runtime and samples seen. The latter
quickly enters the so-called zig-zagging behaviour which can best be ob-
served in Figure 5.2 and 5.3, where lower batch sizes were used. SAGA
is not in the higgs plot since creating the stored gradient table itself takes
longer than most other methods needs to converge.4

The quasi-Newton algorithms perform somewhere in between the first and
second-order methods, which reflects their hybrid nature. Interestingly, No-
cedal and Wright [2006] state that the main weakness of L-BFGS is its slow
convergence on ill-conditioned problems (without giving any analytical rea-
son). Our results clearly support this claim since L-BFGS performs compa-
rably bad on covtype and cifar.

5.3.1 Influence of Size, Conditioning and Convexity

Convex Problems

For the first set of problems we added the classical `2 regularization λ‖w‖2

to the objectives to make them strongly convex. Figure 5.1 shows the results.
Compare a9a and higgs for the in the influence of n since they have very
similar characteristics. The influence of the conditioning can be studied
when comparing the ill-conditioned higgs dataset to the other two.

Since all of the problems in this subsection are fairly low dimensional, New-
ton’s method does quite well. Especially on covtype where second-order

3Remember that the theoretical superiority of cubic regularization methods is indeed in
terms of iterations and not runtime.

4Furthermore, the memory requirement sums up to about 2500 megabyte. The creation
of this table is why SAGA starts one epoch to the right of all others in the Figures.
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Figure 5.1: Log suboptimality of the empirical risk averaged over 10 inde-
pendent runs on convex problems

information seems to be crucial5. In this case ARC and TR take more time
to optimize but are in a comparable range of epochs which suggests that the
additional overhead due to the more complex framework plays a role in the
runtime.

Non-convex Problems

Figure 5.2 shows the performance of the above mentioned methods on the
same problems with the following non-convex regularizer

r(w) =
d

∑
i

w2
i

1 + w2
i

, ∇r(w) =


2w1

(w2
1+1)2

...
2wd

(w2
d+1)2

 , ∇2r(w) = diag(


2−6w2

1
(w2

1+1)3

...
2−6w2

d
(w2

d+1)3

),

(5.3)
which we applied to investigate the second-order convergence results of
SRC. The function r(w) is obviously non-convex as soon as some wi >

√
1/3.

Yet, as expected, the presence of saddle points does not prevent SCR and
ARC from finding a global minimizer in reasonable time.

As a matter of fact, all methods converge on a9a but on covtype and higgs
they suffer clearly from the presence of non-convexity. Newton’s method

5compare the condition numbers in Table 5.1)
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cannot optimize covtype because at some iterate it encounters a singular Hes-
sian. Interestingly, on higgs, BFGS steps to a saddle point and terminates the
optimization process.
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Figure 5.2: Log suboptimality of the empirical risk averaged over 10 inde-
pendent runs on non-convex problem

5.3.2 Influence of Dimensionality

As expected Newton’s method is slowed down severely by the increase in d
since the factorization of the Hessian rises cubically in its dimension. Con-
sider Figure 5.3. On the gaussian l dataset it needs 27.8 minutes to find the
optimum whereas the hessian-free approaches (TR, ARC and SCR) reach
approximate optimality in a matter of seconds. They scale comparably very
well since they only need indirect access to the Hessian via matrix-vector
products. Evidently, these methods outperform also the quasi-newton ap-
proaches even in high dimensions. Among these, the limited memory ver-
sion of BFGS is significantly faster than original variant.

5.3.3 Multiclass Problems

In this section we leave the trust region method out because our implemen-
tation is not optimized towards solving multi-class problems. We do not
run Newton’s method or BFGS either as the above results suggests that they
are unlikely to be competitive. Furthermore, Figure 5.4 does not show loga-
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Figure 5.3: Log suboptimality of the empirical risk averaged over 10 inde-
pendent runs on convex-problems

rithmic but linear suboptimality, because optimizing these problems to high
precision takes very long and yields few additional benefits6. The interested
reader can find long term results in the Appendix (Figure A.1).

As a result these kind of problems are hardly ever optimized to high preci-
sion. Instead, ”early stopping” is applied which is reasonable to do since the
marginal utility of the last digits of precision is fairly low because after all
what we minimize is the expected risk but our original goal is for the method
to generalize well to unseen data7.

In this regard, SCR yields early progress at a comparable rate to other meth-
ods but gives the opportunity to solve the problem to high precision if
needed.

5.3.4 Conclusion

Unsurprisingly, the runtime of all algorithms increases in n. Yet, the second-
order methods (ARC, SCR, TR and Newton’s method) suffer comparably
less and n has no influence in terms of epochs.

6For example, the 25th SCR iteartion drove the gradient norm from 3.8 · 10−5 to 5.6 · 10−8

after building up a Krylov space of dimensionality 7800. It took 9.47 hours and did not
change any of the first 13 digits of the loss.

7In the field of machine learning this is sometimes seen as a type of regularization to
prevent overfitting
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Figure 5.4: Suboptimality of the empirical risk

A higher dimensionality d, in turn, increases both runtime and iterations of
especially the second-order and quasi-newton methods. The effect goes so
far that Newton’s method and BFGS are hardly applicable in dimensions of
10, 000 or higher. However, the Hessian free variants scale comparably well.
SCR and ARC perform more and more similar as d increases which is due to
the fact that the our sampling scheme (Eq. (5.2)) tends to give sample sizes
close to n already after a few iteration in such high dimensions.8

On the other hand, the results from covtype and cifar suggest that sampling
may be particularly efficient on ill-conditioned problems, i.e. when κ is high.
While ill-conditioning is generally perceived as an obstacle for optimization
algorithms, there is indeed a rational behind this effect. In our setting, one
source of a high eigenvalue spectrum of the Hessian is the presence of cor-
relation in the dataset X. For example, the Hessian of a linear regression
model is XᵀX. A closer look at this matrix reveals that its diagonal con-

8Preliminary experiments with lower sample sizes (exponential increase) yielded longer
runtimes than ARC and SCR.
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tains variance terms and the off-diagonal elements are the covariances of
the columns of X. Furthermore, it is intuitive that the higher the covariance
and thus redundancy in the data, the more meaningful it becomes to sub-
sample datapoints. Since most datasets of the era of ”Big Data” presumably
contain at least some redundancy, this is an argument for the use of SCR in
machine learning.

Finally, the introduction of non-convexity appears to have a negative ef-
fect on both, runtime and epochs. The combination of non-convexity and
ill-conditioning, as it can be found on covtype, yields particularly bad re-
sults. Here, SCR provides the greatest savings which shows that even when
second-order information is clearly important, carefully chosen sub-samples
may provide sufficient information at comparably low cost. This reinforces
the above given argument for the use of sub-sampled cubic regularization
methods also in non-convex settings.
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Chapter 6

Conclusion and Future Work

Conclusion This thesis laid out the foundational work for a class of stochas-
tic cubic regularization methods that make use of sub-sampled gradient and
Hessian estimates for solving large-scale non-convex learning problems.

Specifically, we extended the adaptive cubic regularization approach of Car-
tis et al. [2011] to a fully stochastic framework that allows the use of inexact
gradients and Hessians. Using concentration inequalities we developed sam-
pling conditions that are sufficient to retain the convergence properties of the
deterministic method, which include the best known global convergence
rate on non-convex functions. To the best of our knowledge, the Hessian
sampling scheme we propose is the first Hessian approximation technique
that provably yields sufficient second-order information for these guaran-
tees to hold. Furthermore, this is the first work to explore sub-sampled
cubic regularization methods for applications in machine learning.

Numerical experiments on both, real and synthetic datasets demonstrate the
superior performance of the proposed algorithm over its deterministic coun-
terpart. In addition, the general framework of cubic regularization methods
has proven to be preferable to the use of stochastic gradient descent and
quasi-Newton methods over a wide range problems.

Future work Perhaps the most exciting direction for future research is the
application of sub-sampled cubic regularization methods in the context of
Deep Learning. Based on our theoretical analysis these methods are well-
equiped to tackle this problem and the pioneering work of Martens [2010]
suggests their practicability. Towards this end, a major improvement would
be to reduce the computational complexity of solving the subproblems in
very high dimensions.

Fortunately, the issue of solving trust region and cubic regularization sub-
problems has been under continuous investigation during the past two decades.
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6. Conclusion and Future Work

Remarkable recent results include the work of Agarwal et al. [2016a] and
Carmon and Duchi [2016] as well as Carmon et al. [2016]. The former min-
imize the subproblems approximately in Rd using a safeguarded binary
search that makes only logarithmic number of guesses on λ∗. Thus, they
achieve an overall runtime that is linear in d. Carmon and Duchi [2016]
show that a sophisticated version of GD is sufficient to approximate the
global model minimizer regardless of the multiple saddle points and local
minima of the objective. The convergence rate scales only logarithmically in
the dimension. However, they need to find a good initial point for GD in the
first place which requires two Hessian-vector products. Furthermore, both
approaches loose the O(ε−3/2) worst case guarantee. Specifically, the first
approach yields an O(ε−7/4) rate while the second only provide a O(ε−2)
worst case bound.

Another interesting direction to follow is the field of importance sampling
techniques that create a non-uniform sampling distribution {pi}n

i=1 to cap-
ture the varying amounts of information contained by each datapoint in each
iteration. Interestingly, spectral approximation techniques such as leverage
score based (online) row sampling [Cohen et al., 2016] can be extended to
sampling datapoints. For example, Xu et al. [2016] achieve a linear-quadratic
local convergence rate by applying two non-uniform sub-sampled newton
methods. The first samples based on the block norm squares, which is ba-
sically a Frobenius norm ratio and the second on (block partial) leverage
score.

For problems with such high numbers of datapoints that make evaluat-
ing the full gradient too costly, sub-sampling gradients according to our
framework could be combined with forming coarse Hessian approximations,
e.g. as diagonal matrix or via sketching techniques as studied by Pilanci
and Wainwright [2016]. As a matter of fact lower dimensional hessian ap-
proximations would be beneficial regarding the runtime because of their
quadratic presence in the subproblem solver complexity.

Regarding the outer cubic regularization framework, it should both possible
and beneficial to decouple the penalty parameter updates from the inexact-
ness of the stochastic quantities. For this purpose, sophisticated successful-
ness measures need to be designed. These may likely offset some of the
increase in the convergence constants that we attributed to the inexact first-
and second-order information in Chapter 4.

In summary, such developments would lead to new, light-weight random-
ized cubic regularization methods that scale well to high dimensional prob-
lems such as deep learning.
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Appendix A

Appendix

Feasibility of subproblems

Lemma A.1 (Weierstrass extreme value theorem) If M is a compact set in
Rd, and f a continuous function from M to R, then f has a global maximum
and a global minimum on M.

See [Birkhoff and Mac Lane, 1966] for a sketch of the proof.

Lemma A.2 (Coercivity and compactness) Let f ∈ C2(Rd, R). If f is fur-
thermore coercive then for every α ∈ R the level set levα

≤ = {w| f (w) ≤ α} is
compact.

Proof: Obviously, the continuity of f implies that the sets levα
≤ are closed.

To show that they are furthermore bounded, suppose ∃ ˆalpha ∈ R such that

lev
ˆalpha
≤ is unbounded. Then there must exist a sequence {wν} ∈ lev

ˆalpha
≤ with

limν‖wν‖ = +∞ which by the coercivity of f implies f (wν) → ∞. However,

this is a clear contradiction to f (wν) ≤ α, ∀ν = 1, 2, ... and thus lev
ˆalpha
≤ must

be bounded.

�

Note that the above lemma actually holds with if and only if but for the sake
of brevity we only present the direction that is relevant for our analysis.
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A. Appendix

Convergence of random sequences

The method presented here depends on random quantities, in particular ran-
dom gradients and random Hessian matrices in each iteration. Hence, the
iterates generated by the random models constitute a sequence of random
variables themselves. We shall thus establish the following two concepts of
convergence of a random sequence.

Definition A.3 (Convergence of a random sequence) Consider a se-
quence of random variables {wk}. Firstly, we say that the norm of the
expectation of {wk} converges to w∗ with rate c ∈ [0, 1), if

‖E [wk]− w∗‖ ≤ ck‖w0 − w∗‖, (A.1)

which is equivalent to
‖E [wk+1 − w∗]‖
‖wk − w∗‖

≤ c (A.2)

Furthermore, this implies that E [wk]→ 0 and thus the sequence converges in
expectation.

Second, we say that the expected norm of {wk} converges to w∗ with rate
c ∈ [0, 1), if

E
[
‖wk − w∗‖2

]
≤ ck‖w0 − w∗‖2 (A.3)

which is equivalent to
E [‖wk+1 − w∗‖]2

‖wk − w∗‖2 ≤ c (A.4)

This implies both, convergence in expectation and convergence in probability
(Gower [2016]), which is characterized as follows. For any ε > 0

P(‖wk − w∗‖2 ≥ ε‖w0 − w∗‖2)→ 0, as k→ ∞. (A.5)

Superlinear convergence

We now derive a superlinear convergence result that can be obtained without
assuming a lipschitz continous Hessian and furthermore by only requiring
the Dennis More condition for the Hessian agreement and a similarly weaker
gradient agreement condition which we shall state first.

Assumption A.4 (Weak Agreement of ∇ f and gs)

‖∇ f (wk)− gs(wk)‖
‖sk‖

→ 0, whenever ‖gk‖ → 0. (A.6)
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Theorem A.5 (Superlinear local convergence in expectation) Let f ∈
C2, ∇ f Lipschitz continuous and Bk bounded above. Let sk satisfy (3.53) and

wk → w∗, as k→ ∞, (A.7)

where H(w∗) is positive definite. Moreover, assume that TC is satisfied with
gk → 0, k→ ∞, k ∈ S . Then, if E

[
gs

k

]
= ∇ fk and E [Bk] = Hk

‖E [∇ f (wk+1)|wk]‖
‖∇ f (wk)‖

≤ ck, ck → 0, as k→ ∞ (A.8)

and
‖E [wk+1 − w∗|wk]‖
‖wk − w∗‖

≤ ck, ck → 0, as k→ ∞. (A.9)

That is, wk converges to w∗, superlinearly as k→ ∞.

Proof: TC and Asm.3.7 (thus (3.53)) are defined for any possible model min-
imizer sk and thus also apply for the expected value of sk. Consequently,
the deterministic analysis carries over to the stochastic case and it is most
convenient to directly apply E

[
gs

k

]
= ∇ fk → E [ek] = 0, E [Bk] = Hk and

E [sk] at the very end of the original proof.

‖E [∇ f (wk+1)]‖
‖∇ f (wk)‖

≤
(

1 +
‖E [ek]‖
‖∇ f (wk)‖

)(
RminE [dk] + σsup(‖∇ f (wk)‖+ ‖E [ek]‖)

R2
min(1− κθ)

)
=

RminE [dk] + σsup‖∇ f (wk)‖
R2

min(1− κθ)
,

(A.10)
where

E [dk] =‖
∫ 1

0
(H(wk + tE [sk])− H(wk))dt‖+ ‖(H(wk)−E [Bk])sk‖

‖E [sk]‖
+ κθκgE [gk]

+ (1 + κθκg)
‖E [ek]‖
‖E [sk]‖

= ‖
∫ 1

0
(H(wk + tE [sk])− H(wk))dt‖+ κθκgE [gk]

(A.11)
Since, asymptotically, the first summand goes to zero and gk → 0 per as-
sumption, also E [gk] → 0. Together, this implies E [dk] → 0, as k → ∞.
Additionally, we have that ∇ f (wk)→ 0 when approximating w∗ from Theo-
rem (4.20) and we can finally note that

‖E [∇ f (wk+1)]‖
‖∇ f (wk)‖

≤ ck where lim
k→∞

ck → 0. (A.12)
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A. Appendix

Consequently, the sequence of iterates generated by sARC converges super-
linearly in expectation.

�

Equivalently to the quadratic convergence case the use of full gradients
makes taking the expected value obsolete.

Convergence of gradients and iterates

Lemma A.6 Let f ∈ C2, the Hessian bounded above and σk bounded above
and below (4.12). Furthermore let {wk} → w∗, with w∗ 2nd-order critical
point. Then

‖gk+1‖
‖gk‖

→ 0 also
‖wk+1 − w∗‖
‖wk − w∗‖ → 0 (A.13)

Proof: Let us first introduce a multidimensional version of Taylor’s Theorem.

Definition A.7 (Multidimensional Taylor Theorem (1-jet)) Let g : Rn → Rm

and g ∈ C2 then:

g(y) = g(x) + D(g(x))(y− x) + O(‖y− x‖2) (A.14)

with D(g(w)) ∈ Rn×n the Jacobi-Matrix of g.

Since the Hessian of f equals the transpose of this Jacobi-Matrix and is fur-
thermore symmetric for f ∈ C2 we have D(g(w)) = H(w). Thus follows by
Taylor expansions of gk and gk+1 around w∗ that we have

‖gk‖ = ‖g(w∗) + H(w∗)(wk − w∗) + O(‖wk − w∗‖2)‖,

where O(‖w− w∗‖2) is of the form ω(w)‖w− w∗‖2 with limw→w∗ ω(w) =
ω(w∗) = 0. Thus for wk → w∗ and g(w∗) = 0 as well as H(w∗) � 0 and
‖H‖ ≤ κH:

‖gk+1‖
‖gk‖

=
‖H(w∗)(wk+1 − w∗)‖
‖H(w∗)(wk − w∗)‖ ≥

σmin(H(w∗))‖(wk+1 − w∗)‖
σmax(H(w∗))‖wk − w∗‖ (A.15)

Finally, since ‖·‖ ≥ 0 and by the above assumptions 0 < σmin < σmax ≤ κH
we get:

‖gk+1‖
‖gk‖

→ 0 also
‖wk+1 − w∗‖
‖wk − w∗‖ → 0 (A.16)
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�

Comment on Eq (A.15):

From a SVD of the Hessian we have: Hv = UΣVTv, with U and V orthogo-
nal and since orthogonal transformations preserve length, i.e. ‖Hv‖ = ‖v‖
we have:

‖Hv‖2 = ‖UΣVTv‖2 = ‖U(ΣVT)v‖2 = ‖VT(Σv)‖2 (A.17)

= ‖Σv‖2 =
√

σ2
1 v2

1 + ... + σ2
nv2

n (A.18)

≥
√

σ2
min(v

2
1 + ... + v2

n) = σmin(H)‖v‖2 (A.19)

For the denominator we apply the upper bound ‖Hv‖ ≤ ‖H‖‖v‖ ≤ σmax‖v‖

Miscellaneous

Lemma A.8 Let Q and A square matrices of the same size and furthermore Q
orthogonal. Then the Eigenvalues λ of QᵀAQ and A coincide.

Proof: Let v ∈ Rn \ {0} an eigenvector of A, i.e. Av = λv. Then λ is an
eigenvalue of QᵀAQ with eigenvector Qᵀv:

(QᵀAQ)(Qᵀv) = Q′A(QQᵀ)v = QᵀAv = λ(Qᵀv).

Let v ∈ L \ {0} an eigenvector of (QᵀAQ), i.e. (QᵀAQ)v = λv. Then λ is an
eigenvalue of A with eigenvector Qv:

A(Qv) = IAQv = QQᵀAQv = Q(QᵀAQv) = λ(Qv).

In both cases we used the following characterization of orthogonal matrices
QᵀQ = QQᵀ = I, which only holds for square matrices.

�

Definition A.9 (Rayleigh Coefficient) If a matrix A is symmetric and the vector
w 6= 0 than we call the scalar

R(w)
de f
=

wᵀBw

‖w‖2 (A.20)

the Rayleigh coefficient of w.
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A. Appendix

This quotient has the nice property of lying between the left- and rightmost
eigenvalues of A, that is

λmin(A) ≤ R(w) ≤ λmax(A). (A.21)

Lemma A.10 (Upper bound on ceil of sum) Let β1, β2 ∈ R≥0 then

dβ1e+ dβ2e ≤ dβ1 + β2e+ 1 (A.22)

Proof: Let us denote by α1, α2 ∈ [0, 1) the decimal digits of β1 and β2 respec-
tively. Then we can rewrite every βi as

βi = bβic+ αi

, i ∈ {1, 2} and since dz + βe = z + dβe for each z ∈ Z, inequality (A.22)
becomes

bβ1c+ bβ2c+ dα1e+ dα2e ≤ bβ1c+ bβ2c+ dα1 + α2e+ 1.

Hence, the crucial quantities for investigating the order in (A.22) are the
decimal digits and its respective ceils. There are three cases to distinguish.

(a) If β1 and β2 are in Z then α1 = α2 = dα1e = dα2e = dα1 + α2e = 0 and
(A.22) holds since 0 ≤ 1. (b) If either one of β1, β2 is in Z and the other is
not, we have for example a1 ∈ (0, 1) and a2 = 0 so that (a1 + a2) ∈ (0, 1) and
thus dα1e+ dα2e = 1 ≤ dα1 + α2e+ 1 = 2. Finally, (c) if both β1, β2 6∈ Z we
have α1, α2 ∈ (0, 1) and thus dα1e+ dα2e = 2 ≤ dα1 + α2e+ 1, since in this
case dα1 + α2e ∈ {1, 2}. Together, this proves the assertion.

�

Experimental results
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Figure A.1: (Log) Suboptimality of the empirical risk
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