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Abstract A macroscopic framework to model heat transfer in materials and composites,
subjected to physical degradation, is proposed. The framework employs the partition of unity
concept and captures the change from conduction-dominated transfer in the initial continuum
state to convection and radiation-dominated transfer in the damaged state. The underlying
model can be directly linked to a mechanical cohesive zone model, governing the initiation
and subsequent growth and coalescence of micro-cracks. The methodology proved to be
applicable for quasi-static, periodic, and transient problems.

Keywords Failure · Damage · Cohesive zone model · Partition of unity (PU) ·
Heat transfer · Continuous–discontinuous framework
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A Area (m2)
Ai Amplitude of the periodic temperature fluctuation on the inner wall surface (K)
B Matrix containing the derivatives of the finite element shape functions (m−1)
c Specific heat capacity (J/(kg K))
Cb Black body constant (W/(m2 K4))
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400 P. Moonen et al.

e Emission factor
FT Temperature factor
hi, he Heat transfer coefficient (indoor, outdoor) (W/(m2 K))
H�d Heaviside function
k Effective thermal conductivity (W/(m K))
K�d Thermal conductivity of the material bond (W/(m K))
K� Thermal conductivity matrix of the continuum material (W/(m K))
n Normal vector
N Vector containing finite element shape functions
Nu Dimensionless Nusselt number
Q Energy flow rate (J/s)
q Total heat flux vector (J/(m2 s))
qeff Energy exchange via the undamaged material bond (J/(m2 s))
q̄ Energy exchange via an internal or external boundary (J/(m2 s))
R�d Effective thermal resistance of the material bond ((m K)/W)
t Time [s]
T Absolute temperature (K)
T̂ Regular component of the absolute temperature (K)
T̃ Enhanced component of the absolute temperature (K)
w Variational temperature field (K)

Greek Symbols
α Relative interface position
γ 1 Unit meter (m)
λ Thermal conductivity of the medium inside the discontinuity (W/(m K))
φi Phase angle of the periodic temperature fluctuation on the inner wall surface (◦)
ρ Average mass density (kg/m3)
ω Damage variable

Subscripts
� Boundary
�d Discontinuity
� Body

1 Introduction

Coupled hygro-thermo-mechanical processes are the main cause of physical degradation of
porous (building) materials, they are a determining factor in many biological and chemical
processes, and they are prevalent in various geophysical applications, like underground stor-
age of nuclear or hazardous waste and geothermal energy extraction. Thermo-mechanical
behavior is of importance in the design of micro-electronic devices, especially regarding the
connections between materials with different thermal properties. A proper understanding of
thermal transport processes in porous media with inclusions, such as fractures or material
interfaces, is therefore indispensible.
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A Continuous–Discontinuous Approach 401

Studies during the nineteenth and twentieth century led to the development of a general
theory describing the behavior of multi-phase porous continua, based on the principles of
mechanics and thermodynamics (De Boer 2000). Although many materials can initially be
considered as porous continua, they may degrade over time. Since it is well known that
transport processes in porous media can be affected to a large extent by the presence of frac-
tures, a reliable analysis of the risk associated with certain geophysical and civil engineering
applications or a prediction of the degradation rate of materials or material interfaces, needs
to account for the presence and the potential evolution of the fracture network in the porous
medium (Roels et al. 2003). Nowadays, efforts are being made to incorporate effects of crack
initiation and propagation into the continuum theory. A trend toward coupled continuous–
discontinuous modeling techniques can be observed.

Regarding the modeling of failure, this idea has been pursued by many authors. Ren and
Bićanić (1997) employ an element removal technique to obtain discrete cracks at the final
stages of failure. Jirásek and Zimmermann (2001) propose a method in which smeared cracks
are combined with embedded discontinuities. Simone et al. (2003) introduce a traction-free
discontinuity at the final stages of failure. Similar to Ren and Bićanić (1997), the continuum
model governs the softening behavior. Wells and Sluys (2001) make use of the cohesive zone
assumption (Dugdale 1960; Barenblatt 1962) and the fracture energy concept (Hillerborg
et al. 1976) to describe the gradual formation of cracks in quasi-brittle materials. A trac-
tion-separation model governs the non-linear behavior in the fracture process zone and the
continuum was assumed to remain elastic at all times. All mentioned approaches have in
common that a single moment exists at which the continuous model is replaced by a discon-
tinuous model. The distinct feature of the model proposed by Moonen et al. (2008) is that
this transition takes place gradually. This avoids the introduction of a high dummy stiffness
or an artificial damage parameter for the non-active cracks, and enhances the robustness of
the algorithm.

Parallel to the research on the modeling of failure, mass transfer in fractured porous media
has also been the subject of study. At present, the most widespread models used in practice
are the equivalent porous continuum model (Wu et al. 1999) and the dual permeability model
(Pruess et al. 1999). However, these only describe the geometry of the fracture network in
an approximate way and are, therefore, not capable to capture all physics of the flow inside
the fracture. This observation stimulated the development of so-called discrete fracture flow
models, where the geometry of the fracture network is explicitly modeled (Vandersteen et al.
2003; Carmeliet et al. 2004). The discrete model can be coupled to the continuum transport
model by employing interface elements (Segura and Carol 2008), by introducing a mass
source term along the length of a discrete fracture (Therrien and Sudicky 1996; Roels et al.
2006) or by inserting a strong (de Borst et al. 2004; Alfaiate et al. 2010) or a weak (Réthoré
et al. 2007, 2008) discontinuity in the pressure field.

The literature on heat flow in fractured porous media is rather limited. Often fractures
are considered in an approximate way, or adiabatic behavior is assumed, i.e., no energy is
exchanged with the surrounding porous material. Heat exchange between the fracture and
the surrounding matrix is considered in the work of Secchi et al. (2004). They employ a
remeshing strategy to capture the change in topology upon fracture growth. The effect of the
fracture on the temperature distribution was shown to be in good agreement with experimen-
tal data. Fagerström and Larsson (2008) insert a strong discontinuity in the temperature field
to capture the impact of varying topology on the temperature distribution, hereby avoiding
the need for remeshing. Unfortunately, the full potential of the proposed method is not shown,
since their examples are limited to the case in which the temperature field exhibits a weak
discontinuity.
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402 P. Moonen et al.

The aim of this article is to propose a macroscopic model for heat transfer in frac-
tured materials or composites. The model incorporates the gradual change from conduction-
dominated transfer in the continuum state, prior to crack formation, to convection and radia-
tion-dominated transfer in the damaged state afterward. As shown in Moonen et al. 2010, the
proposed model can be directly linked to a mechanical cohesive zone model governing the
initiation and subsequent growth and coalescence of micro-cracks. It can also be combined
with discrete fracture flow models, describing the transport of fluid—and enthalpy—inside
the crack (e.g., Vandersteen et al. 2003; Carmeliet et al. 2004). As such, the proposed theory
contributes to the development of more complete models for applications in geophysics, civil
engineering, building physics, and micro-electronics.

The article is structured as follows. In the next section (Sect. 2), heat transfer in a frac-
tured porous medium is discussed. First, we introduce the cohesive zone concept. Afterward
the use of a discontinuous temperature field is motivated, followed by the derivation of the
damage-based discrete constitutive equation for heat transfer. Finally, simplified models for
heat transfer across micro-cracks and cavities are given. In Sect. 3, the implementation of
the model in a strong discontinuity framework is treated. Both strong and weak form and
aspects of discretization and linearization are discussed. The last section (Sect. 4) contains a
number of academic examples to illustrate the potential of the proposed modeling strategy.

2 Heat Transfer in Fractured Porous Media

2.1 Cohesive Zone Concept

In quasi-brittle materials, a transition region exists between the fracture and the undamaged
material. In this region, micro-cracks and defects are present, but have not yet coalesced into
a discrete fracture. The partially damaged material, therefore, still possesses some degree of
cohesion, but generally less than the undamaged material. This transition region is termed
the cohesive zone. Cohesive zones exist both in material and in interface failure. The latter
is illustrated in Fig. 1a.

continuum model

discrete model

material IImaterial I

fracturecohesive zone

(a) 

(b) 

transition (=cohesive zone model)

interface

Fig. 1 a Schematic representation of a body � consisting of two materials with indication of the cohesive
zone and the fracture domain and b applied modeling techniques in the different regions
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Successful modeling of the behavior of damaged porous media crucially depends on the
adopted modeling technique for the cohesive zone. The approach described in this article
starts from the physical observation that the cohesive zone is a transition region between the
continuum material on the one hand and the fracture on the other hand (Fig. 1b).

In the continuum material, heat transfer is often modeled as effective conduction. The
word effective indicates that the macroscopically observed conductive heat flow results from
a combination of conductive flow through the porous material matrix, conductive and con-
vective flow in the fluid occupying the pore space and energy exchange by means of radiation
between the pore walls. If an external pressure gradient is exerted on the fluid inside the pore
space, the resulting flow provides an additional means to transport energy. At the macro-
scale, the material can be regarded as a porous continuum, and, since the basic principles of
continuum mechanics like continuity and smoothness are fulfilled at this scale, continuum
models based on effective conductivity are an adequate modeling technique for this region.

The fracture network can be modeled as a system of interconnected channels through
which heat (and mass) transfer can take place. Conduction, convection, and radiation are
again the main heat transfer mechanisms. However, because the characteristic width of the
flow channels is typically much larger than the characteristic pore size of the surrounding
material, heat transfer in the fracture network cannot be modeled as effective conduction.
Instead, an explicit description of the individual heat transfer mechanisms needs to be given,
based on the actual dimensions and connectivity of the fracture network. Discrete fracture
flow models provide such description and are therefore an adequate modeling technique for
this region.

In the cohesive zone, we simultaneously encounter continuum and discrete behavior.
Close to the boundary with the material domain, effective conduction adequately describes
heat transfer, while close to the boundary with the fracture domain, the dominant transfer
mechanisms of the fracture domain prevail. The proposed cohesive zone model insures a
gradual transition from a continuum model into a discrete model, as the degree of degrada-
tion increases (Fig. 1b), and will be presented in Sect. 2.3. The modeling technique for the
cohesive zone is formulated irrespective of the choice for a specific continuum or discrete
model, and does not introduce artificial parameters or parameters with a debatable physical
significance. As will be shown, most existing continuum and discrete models can be incor-
porated into the generic framework in an efficient and robust way. This allows selecting the
best available models for the application under study.

2.2 A Discontinuity in the Temperature Field

The temperature distribution T inside an intact porous medium is assumed to be contin-
uous. If a fracture occurs, the overall temperature field remains continuous, although the
temperatures at both crack surfaces can be different (Fig. 2a). In that case, the temperature
field exhibits a finite gradient over the width of the fracture, i.e., across the fracture domain
(Fig. 2b). The temperature distribution in the material domain � is piecewise continuous
(Fig. 2c). Mathematically, the latter can be expressed as:

T = T̂ + H�d T̃ on � (1)

where T̂ and T̃ are smooth, continuous functions on � and H�d is the Heaviside step func-
tion, used as enhanced approximation basis. The Heaviside function is equal to one for all
points x ∈ �+ and zero for all other points x ∈ �−, where � = �− ∪ �+. Equation 1 is
based on the Partition of Unity principle. This concept was first formulated by Melenk and
Babuška (1996) using a continuous enrichment function. Later, Moës et al. (1999) applied this
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T

(b) fracture domain 

T

(c) material domain 

T

(a) fractured porous medium 

+=

+Ω−Ω +Ω−Ω

− +Ω = Ω ∪ Ω

Fig. 2 Temperature distribution inside a the fractured porous medium, and inside the two sub-domains,
namely b the fracture domain and c the material domain � = �− ∪ �+

concept to study crack propagation processes, hereby employing a discontinuous Heaviside
enrichment function.

2.3 Damage-Based Discrete Constitutive Equation for Heat Transfer

2.3.1 General Derivation

Consider a partially fractured material interface, as illustrated in Fig. 1. We observe several
regions: the two material domains, the fracture and the cohesive zone in front of the crack tip.
The cohesive zone contains imperfections, like micro-cracks and voids, which can potentially
coalesce and form a macro-crack. This microscopic damage at the interface is schematically
depicted in Fig. 3a. The amount of interface damage can be described by means of a scalar
damage variable ω, defined as the ratio of the fractured area to the total area of an infinitesimal
part d A of the interface. The damage variable ω, therefore, ranges from zero to one, where
the case ω = 0 corresponds to a locally intact interface, and ω = 1 to a complete separation
of the two materials along that part of the interface. The magnitude of the damage variable
ω can be determined by means of a (damage-based) mechanical cohesive zone model, like
the one proposed in Moonen et al. (2008).

The derivation for the discrete cohesive zone model for heat transfer starts from energy
conservation, written for three different positions, namely �−

d , �+
d , and �d, which are the

interfaces between �− and the cohesive zone, �+ and the cohesive zone, and between the two
materials, respectively (Fig. 3a). For an infinitesimal part of �−

d with area d A and outward
normal n−, energy conservation reads (Fig. 3b):

∑
Q = 0 → q− · n−d A + qeff

�−
d

(1 − ω) d A + q̄�−
d
ωd A = 0 (2)

where Q is the energy flow rate through the surface d A, q− is the heat flux in �− at the
interface �−

d , qeff
�−

d
is the amount of energy exchanged per unit area and time between �d and

�−
d via the undamaged part of the cohesive zone ((1 − ω) d A), i.e., the intact material bond,

and q̄�−
d

is the amount of energy exchanged per unit area and time between �d and �−
d , via

the damaged part of the cohesive zone (ωd A), i.e., the microscopic fracture. The latter flux
can, e.g., represent the enthalpy flux corresponding to evaporation at the fracture surface.
More details on the exchange term q̄�−

d
are given in Sect. 2.4. By convention, qeff

�−
d

and q̄�−
d

are positive if energy is added to the interface �−
d . The components of n− and q− are positive

if they are aligned with the axes of the global coordinate system.
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(b) 

d

effq −Γ

d
q −Γ dAω

(d) 

d

effq +Γ

− −⋅q n + +⋅q n

d
q +Γ

(c) 

α
0 1

(a) 

dAω

+Ω−Ω

d
−Γ d

+ΓdΓ

projected continuum flux 

flux through undamaged 
material bond 

flux through damaged 
material bond 

Fig. 3 a Schematic representation of the damaged material interface. Heat flux equilibrium at the positions
b �−

d , c �d, and d �+
d

We decompose the effective heat flux qeff
�−

d
into two components, namely (i) a component

proportional to the temperature gradient, in magnitude equal to the continuum flux in �− at
�−

d and (ii) a discrete component, proportional to the difference in temperature between �−
d

and �d. At this stage, the latter component can be seen as a correction term, to compensate
for the unbalance between qeff

�−
d

and the continuum term. Later, it will become clear that this

discrete term is damage-related, as is the development of a temperature jump. The term qeff
�−

d
is given by:

qeff
�−

d
= −q− · n− + γ −1α−1 K�−

d
(T�d − T�−

d
) (3)

where the minus sign in front of the heat flux term results from the convention that sink terms
are negative. The quantity γ follows from dimensional analysis and equals one unit meter.
The variable α, ranging between zero and one, indicates the relative position of the material
interface within the cohesive zone (Fig. 3a). In case α is zero, �d coincides with �−

d , in case
α is one, the material interface coincides with �+

d . The default value is α = 0.5. Physically
α defines the relative contribution of each of the materials sharing the material interface to
the material behavior within the cohesive zone. T�d and T�−

d
are the temperatures at �d and

�−
d , respectively. K�−

d
is the discrete conductivity of the material bond. K�−

d
can be modeled

as n− · K�−n−, i.e., the projection of the continuum conductivity K�− onto the interface
�−

d . Alternatively, an expression for K�−
d

can be postulated and determined by means of
experiments, or K�−

d
can be obtained from upscaling a lower scale simulation in which the

degradation of the cohesive zone is modeled in detail.
Substitution of (3) into (2) and rearranging leads to:

q− · n− = (1 − ω)(q− · n− + γ −1α−1 K�−
d
(T�−

d
− T�d )) − ωq̄�−

d
(4)

Analogously, the equilibrium at �+
d yields (Fig. 3d):

q+ · n+ = (1 − ω)(q+ · n+ + γ −1(1 − α)−1 K�+
d
(T�+

d
− T�d )) − ωq̄�+

d
(5)
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Energy conservation for the intact part of the material interface �d, can be expressed as
(Fig. 3c):

qeff
�−

d
+ qeff

�+
d

= 0 (6)

Equation 6 allows determining the interface temperature T�d . To that extent we first insert
the expression for qeff

�−
d

(Eq. 3) and an equivalent expression for qeff
�+

d
into Eq. 6:

(q− · n− + γ −1α−1 K�−
d
(T�−

d
−T�d ))+(q+ · n+ + γ −1(1−α)−1 K�+

d
(T�+

d
− T�d )) = 0

(7)

Now, q− · n− can be eliminated by means of Eq. 4 and q+ · n+ by means of Eq. 5, leading
to:

T�d =
γ −1(α−1 K�−

d
T�−

d
+ (1 − α)−1 K�+

d
T�+

d
) − ω(q̄�−

d
+ q̄�+

d
)

γ −1(α−1 K�−
d

+ (1 − α)−1 K�+
d
)

(8)

After substituting Eq. 8 in Eq. 4, the discrete flux at �−
d becomes

q− · n− = (1 − ω)(q− · n− + γ −1 K�d (T�−
d

− T�+
d
))

+ω(1 − ω)(α−1 K�−
d

+ (1 − α)−1 K�+
d
)−1α−1 K�−

d
(q̄�−

d
+ q̄�+

d
) − ωq̄�−

d

(9)

where K�d = (αK −1
�−

d
+ (1 − α)K −1

�+
d
)−1 is the combined discrete conductivity of the cohe-

sive zone. If the material at both sides of the cohesive interface is identical, i.e., the case of
material failure instead of interface failure, we can take K�−

d
= K�+

d
. The combined discrete

conductivity K�d then equals the material conductivity, independent of the value for α.
After eliminating the temperature T�d at the interface, the discrete flux at �+

d reads:

q+ · n+ = (1 − ω)(q+ · n+ + γ −1 K�d (T�+
d

− T�−
d
))

+ω(1 − ω)(1 − α)−1 K�+
d
(α−1 K�−

d
+ (1 − α)−1 K�+

d
)−1(q̄�−

d
+ q̄�+

d
) − ωq̄�+

d

(10)

Expressions (9) and (10) are the general expressions for the discrete thermal cohesive
zone model of a material interface. From Eqs. 9 and 10, we obtain the identity:

ω(q− · n− + q+ · n+) + ω2(q̄�−
d

+ q̄�+
d
) = 0 (11)

We define

q̄�d ≡ ω(q̄�−
d

+ q̄�+
d
) (12)

The sum of q̄�−
d

and q̄�+
d

is the total amount of energy exchanged per unit area and time
between the fracture and the surrounding material. The fracture only occupies a fraction ω of
the cohesive zone. Therefore, q̄�d represents the average heat flow per unit area of the planar
cohesive zone and per unit time. q̄�d is positive if energy is transferred from the fracture
toward the surrounding material. Equation 11 has to hold for every value of ω, therefore:

q− · n− + q+ · n+ + q̄�d = 0 (13)

which simply represents the global energy equilibrium over the cohesive region. Time-
dependent terms are absent since the cohesive region is assumed planar, and consequently
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A Continuous–Discontinuous Approach 407

does not possess a volume nor a thermal capacity. This does not imply that the model can only
describe heat flow along the fracture under steady-state conditions. The fracture has a width
and consequently also a volume. The energy conservation law, written for the domain of the
fracture, can therefore contain time-dependent terms. The interaction between the fracture
domain and the surrounding porous medium takes place via the exchange terms q̄�−

d
and q̄�+

d
.

These terms are the link to the discrete models used in the fracture, e.g., the model described
in Sect. 2.4.

2.3.2 Isolated Micro-Crack or Cavity

In an isolated micro-crack or cavity, external sources of energy are absent. Therefore, the
flux via the damaged part of �−

d to the cavity must be equal to the flux from the cavity to �+
d ,

or more precisely q̄�−
d

= −q̄�+
d

. In this case, expressions (9) and (10) simplify to:

q− · n− = (1 − ω)(q− · n− + γ −1 K�d (T�−
d

− T�+
d
)) − ωq̄�−

d
(14)

and

q+ · n+ = (1 − ω)(q+ · n+ + γ −1 K�d (T�+
d

− T�−
d
)) + ωq̄�−

d
(15)

Summing both expressions and rearranging yields:

ω(q− · n− + q+ · n+) = 0 (16)

which has to hold for every value of ω. Since n− = −n+ ≡ n, we find q− = q+ ≡ q, and
the discrete thermal cohesive zone model in case of a micro-crack or cavity reads:

− q · n = (1 − ω)(−q · n + γ −1 K�d [[T ]])︸ ︷︷ ︸
(i)

+ωq̄�−
d︸ ︷︷ ︸

(ii)

(17)

with [[T ]] = T�+
d

− T�−
d

, the temperature jump across the micro-crack or cavity. Expres-
sion (17) clearly states that the total flux (left hand side) consists of (i) a flux through the
undamaged material bond (right hand side, first term) and (ii) a flux through the micro-crack
or cavity (right hand side, second term). The flux through the undamaged material bonds (i)
consists of a continuum and a discrete component. The physical meaning of both terms can
be understood by rearranging Eq. 17:

− ωq · n = (1 − ω)γ −1 K�d [[T ]] + ωq̄�−
d

(18)

Equation 18 shows that a temperature jump cannot occur (i.e., [[T ]] has to be zero) in
absence of damage (i.e., if ω = 0). When damage is present (ω �= 0), the thermal flux that
flows toward the damaged part of the interface (−ωq ·n) is redistributed. A part of this energy
is exchanged with the micro-crack or cavity via the fractured part of the interface (ωq̄�−

d
).

The remaining heat flows through the undamaged material bond. The magnitude of the latter
is proportional to the temperature difference across the material bond.

2.3.3 Adiabatic Fracture

If it is assumed that no heat is exchanged between the material and the fracture, or q̄�−
d

=
q̄�+

d
= 0, we obtain the academic limit case of an adiabatic fracture. Even in a vacuum, this
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situation does not occur since heat exchange by means of radiation will still take place. Con-
sidering an adiabatic fracture therefore only has theoretical value. In this case, expressions
(9) and (10) reduce to:

q− · n = (1 − ω)(q− · n + γ −1 K�d (T�−
d

− T�+
d
)) (19)

and

q+ · n+ = (1 − ω)(q+ · n+ + γ −1 K�d (T�+
d

− T�−
d
)) (20)

Equation 16 also holds in this case. Therefore, q− = q+ ≡ q, and the discrete thermal
cohesive zone model in case of an adiabatic fracture reads:

− q · n = (1 − ω)(−q · n + γ −1 K�d [[T ]]) (21)

After rearranging, we obtain:

− ωq · n = (1 − ω)γ −1 K�d [[T ]] (22)

Comparing with Eq. 18, it is clear that the total thermal flux toward the damaged part
of the interface (−ωq · n) now flows through the undamaged material bond. Also here, the
magnitude of the flow is proportional to the temperature difference across the material bond,
i.e., flow by means of effective conduction.

2.4 Heat Transfer Across Micro-Cracks, Cavities, and Fractures

2.4.1 Model Classification

We make a distinction between the cohesive zone, i.e., the region in which 0 < ω < 1,
and the fracture (ω = 1). The cohesive zone is characterized by micro-cracks and cavities
of different sizes. Depending on the amount of damage, the cavities and micro-cracks are
isolated features, or are partially interconnected. In contrast to a cohesive zone, a fracture is
considered a single, fully-connected, macroscopic entity. The distinction between cohesive
zone and fracture is important in the modeling of heat transfer. Because of the relatively large
size of a fracture, convective heat flow can occur. For the smaller micro-cracks and cavities in
the cohesive zone, it can be argued that heat transfer is conduction-dominated. Furthermore,
the volume of the micro-cracks and cavities in the cohesive zone is much smaller than the one
of the fracture. Therefore, neglecting thermal capacity of the fluid inside the micro-cracks and
cavities can be defended, as a first approximation. However, this assumption is debatable for
fractures, certainly if they are filled with a fluid like water. Below, a simplified model for heat
transfer across the cohesive zone is given. The use of more advanced discrete models within
the proposed framework is briefly discussed, but they are not considered in the examples in
the remainder of this article.

2.4.2 A Simple Model for Heat Transfer Across Micro-Cracks or Cavities

A micro-crack or cavity can be seen as two parallel surfaces, exchanging heat by means
of conduction, convection, and radiation. Due to the limited dimensions, it can be argued
that convective heat transfer is less important than conductive and radiative transfer. The
gas or liquid inside the micro-crack or cavity is often less conductive than the surround-
ing solid material—compare for instance the effective conductivity of concrete (k ≈1.2–
2 W/(m K)) with the conductivity of liquid water at 273 K and at atmospheric pressure (λ ≈
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A Continuous–Discontinuous Approach 409

0.561 W/(m K)). For many materials, micro-cracks and cavities therefore act as a thermal
resistance. Since the thermal resistance increases with distance, conduction across a micro-
crack or cavity is more likely to occur than along the micro-crack. A similar argument holds
for radiative transfer. Therefore, disregarding the heat flow along the micro-crack or cavity is
defendable in a first approximation. Furthermore, the volume of the micro-cracks and cavities
is small enough to neglect the capacity of the fluid inside. Under these assumptions, the heat
flux across a micro-crack or cavity can by approximated by:

q̄�+
d

= k�d (T�−
d

− T�+
d
) (23)

where k�d is the effective thermal conductivity, given by:

k�d = λNu

[[ũ]] · n
+ Cb FT

1
e
�

−
d

+ 1
e
�

+
d

− 1
(24)

The first term on the right hand side of Eq. 24 describes combined conduction–
convection, while the second term expresses radiation between two parallel surfaces. In
Eq. 24, λ is the thermal conductivity of the fluid in the micro-crack or cavity, Nu is the
dimensionless Nusselt number describing the ratio of convective to conductive heat transfer,
[[ũ]] · n is the dimension of the micro-crack or cavity in the direction of the normal to the
discontinuity, Cb = 5.67 W/m2 K4 is the black body constant, e�−

d
and e�+

d
are the emission

factors of both crack surfaces, and FT is the temperature factor, given by:

FT ≈ 4

100

(
Tm

100

)3

(25)

where Tm = 1/2(T�−
d

+ T�+
d
). For dry air at 273 K and at atmospheric pressure λ ≈

0.025 W/(m K), while for water vapor under the same conditions, λ ≈ 0.016 W/(m K).
For liquid water λ ≈ 0.561 W/(m K).

The effective conductivity needs to be constrained in order to account for crack closure:

1

k�d

= max

(
Rcontact

�d
,

1

k�d

)
(26)

with Rcontact
�d

the residual thermal resistance upon crack closure, i.e., when [[ũ]] · n = 0.
According to Eqs. 23–26, the thermal resistance of the fracture increases with increasing
fracture width for a given Nusselt number. If the crack width decreases afterward, the ther-
mal resistance will reduce down to the residual resistance Rcontact

�d
.

The residual resistance results from the formation of micro-cracks during the irreversible
damage process. As micro-cracks initiate and coalesce, Rcontact

�d
increases, up to a value

Rcontact,ω=1
�d

for a fully developed crack. A simple expression that captures the evolution of
the residual thermal resistance reads:

Rcontact
�d

= min

(
1

khistory
�d

, Rcontact,ω=1
�d

)
(27)

with khistory
�d

the minimum effective thermal conductivity (i.e., maximum thermal resistance)
ever reached.
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2.4.3 Advanced Modeling Strategies

Equations 23–27 provide a simplified model for heat transfer across micro-cracks or cavities.
A wide range of more advanced discrete models is available in literature. They can be easily
incorporated within the proposed theory by means of the exchange terms q̄�−

d
≡ q̄�−

d
· n

and q̄�+
d

≡ q̄�+
d

· n. Basically two strategies exist. In a monolithic approach, q̄�−
d

and q̄�+
d

are substituted by the transfer equations of the discrete model. This approach works best
if the contrast in conductivity between fracture and material matrix is limited. If not, it is
suggested to use a staggered approach, where the matrix flow and the fracture flow are solved
independently, and the exchange terms q̄�−

d
and q̄�+

d
are updated iteratively.

3 Implementation in a Strong Discontinuity Framework

3.1 Strong Form

Conservation of energy, in absence of energy sources, reads:

ρc
∂T

∂t
+ ∇ · q = 0 in � (28)

where ρ is the mass density and c is the thermal capacity of the material, and t denotes time.
The proposed framework can be used in combination with basically any constitutive equa-
tion. For simplicity we assume that effective conduction is adequately described by Fourier’s
law:

q = −K�∇T (29)

where K� denotes the effective thermal conductivity of the intact continuum material.
The essential boundary conditions are imposed on the external boundary �1 (Fig. 4):

T = T̄ on �1 (30)

The natural boundary conditions are imposed on the external boundary �2 with outward
normal n̄ (Fig. 4), and are given by:

q · n̄ = −q̄�2 on �2 (31)

Along the internal boundaries �+
d and �−

d (Fig. 4), the proposed cohesive zone model
given by the Eqs. 9 and 10 is applied. The model allows imposing natural boundary condi-
tions along �+

d and �−
d . Here, we employ the discrete model equations described in Sect. 2.4.

Fig. 4 Schematic representation
of a body � crossed by a
displacement discontinuity, with
indication of the employed
notation

dΓ

+Ω−Ω

n

2Γ

1Γ

q

−n

123



A Continuous–Discontinuous Approach 411

3.2 Weak Form

The weak form of Eq. 28 is given by:
∫

�

w

(
ρc

∂T

∂t
+ ∇ · q

)
d� = 0 (32)

which must hold for all admissible variations w = ŵ + H�d w̃ of temperature T . Hereby, ŵ

and w̃ are smooth, continuous functions on the domain �. Following a Galerkin approach
leads, after standard manipulations, to the following set of variational statements:

∫

�

ŵ

(
ρc

∂T

∂t

)
d� +

∫

�

∇ŵ · K�∇T d�

=
∫

�2

ŵq̄�2 d� −
∫

�−
d

ŵq− · n−d� −
∫

�+
d

ŵq+ · n+d� (33a)

∫

�

H�d w̃

(
ρc

∂T

∂t

)
d� +

∫

�

H�d∇w̃ · K�∇T d�

=
∫

�2

H�d w̃q̄�2 d� −
∫

�−
d

H�d w̃q− · n−d� −
∫

�+
d

H�d w̃q+ · n+d� (33b)

where we employed Fourier’s law (29) and the boundary conditions (31).

3.3 Discretized and Linearized Form

3.3.1 Discretization in Time

We employ a finite difference scheme to perform discretization in time:

∂T

∂t
≈ T − T t

�t
(34)

where the superscript t denotes a value at the previous converged time step and �t is the
adopted time step.

3.3.2 Discretization in Space

Discretization in space is performed using finite elements. Nodes whose support is crossed
by a discontinuity are assigned a regular and an enhanced set of degrees of freedom, denoted
by a and b, respectively. The discretized format of the temperature field T , given by equation
(1), reads:

T = N · a + H�d N · b (35)

where N is the vector containing the finite element shape functions. The same interpolation is
assumed for both regular and enhanced degrees of freedom. Following a Galerkin approach,
an identical discretization is performed for the variational field w. The gradient of the tem-
perature field and the corresponding variational field can be discretized in a similar fashion
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using the interpolation matrix B, containing the spatial derivatives of the finite element shape
functions:

∇T = Ba + H�d Bb (36)

For elements with only regular degrees of freedom a, the problem field and its gradient
are discretized in the standard way.

3.3.3 Discretized and Linearized Governing Equations

After applying temporal discretization, according to Eq. 34, and spatial discretization of the
variational fields, in analogy with Eqs. 35 and 36, the variational statements (33) read:

1

�t

∫

�

NT ρcT d� +
∫

�

BT K�∇T d� = 1

�t

∫

�

NT ρcT t d�

+
∫

�2

NT q̄�2 d� −
∫

�−
d

NT q− · n−d� −
∫

�+
d

NT q+ · n+d� (37a)

1

�t

∫

�

H�d NT ρcT d� +
∫

�

H�d BT K�∇T d� = 1

�t

∫

�

H�d NT ρcT t d�

+
∫

�2

H�d NT q̄�2 d� −
∫

�−
d

H�d NT q− · n−d� −
∫

�+
d

H�d NT q+ · n+d� (37b)

In Eq. 37, the term q+ · n+ is given by Eq. 10 and relies on the knowledge of the true
local flux vector q|�+

d
. Even in a medium with constant thermal properties, the magnitude

and direction of the heat flux vector can vary from point to point, e.g., when a heat wave
travels through the material. Within a finite element context, the spatial variation of the tem-
perature field is described by the derivative of the finite element shape functions (Eq. 36).
Except for very specific cases, shape functions do not provide an exact representation of
the true spatial variation of the temperature field. Therefore, the local heat flux vector at a
point is only approximately known in the finite element method. The true local flux vector
q|�+

d
can generally not be computed. This conflict can be resolved without approximation

if ωcrit ≤ ω ≤ 1, where ωcrit is a real positive number, close to zero. In that case, the flux
vector can be eliminated from the cohesive zone model. The reduced format of the discrete
thermal model reads:

q+ · n+ =
(

1 − ω

ω

) (
γ −1 K�d

(
T�+

d
− T�−

d

)
+

(1 − α)−1 K�+
d

(1 − α)−1 K�+
d

+ α−1 K�−
d

q̄�d

)
− q̄�+

d

(38)

For small values of the damage variable (0 ≤ ω < ωcrit), the denominator of the right
hand side of Eq. 38 would tend toward zero, leading to large errors in the solution field.
Therefore, it is more accurate to employ the original Eq. 10, using an approximate value for
the heat flux:

q+ = 1/2(q|�−
d

+ q|�+
d
) (39)

Similar expressions hold for the term q− · n−.
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The system of Eq. 37 can be linearized in the classical way. Afterward, the temperature
field and its gradient can be substituted by their discretized counterparts (35) and (36). The
resulting coupled system of equations after assembly becomes:

[
Ki

aa Ki
ab

Ki
ba Ki

bb

] [
δai+1

δbi+1

]
=

[
f i
ext,a

f i
ext,b

]
−

[
f i
int,a

f i
int,b

]
(40)

where the superscript i indicates the iteration counter in the global iterative procedure.
The terms of the K-matrix are given by:

Ki
aa = 1

�t

∫

�

NT ρcNd� +
∫

�

BT K�Bd� −
∫

�2

NT ∂ q̄�2

∂T
d� −

∫

�d

NT ∂ q̄�d

∂T
d� (41a)

Ki
ab = 1

�t

∫

�

H�d NT ρcNd� +
∫

�

H�d BT K�Bd�

−
∫

�2

H�d NT ∂ q̄�2

∂T
d� −

∫

�d

H�d NT ∂ q̄�d

∂T
d� (41b)

Ki
ba = 1

�t

∫

�

H�d NT ρcNd� +
∫

�

H�d BT K�Bd�

−
∫

�2

NT ∂ q̄�2

∂T
d� +

∫

�d

H�d NT ∂q+ · n+

∂T
d� (41c)

Ki
bb = 1

�t

∫

�

H�d H�d NT ρcNd� +
∫

�

H�d H�d BT K�Bd�

−
∫

�2

H�d H�d NT ∂ q̄�2

∂T
d� +

∫

�d

H�d H�d NT ∂q+ · n+

∂T
d� (41d)

where we introduced q̄�d based on Eq. 13 and we used H�−
d

= 0. The entries in the external
force vector read:

f i
ext,a =

∫

�2

NT q̄i
�2

d� (42a)

f i
ext,b =

∫

�2

H�d NT q̄i
�2

d� (42b)

The entries of the internal force vector are given by:

f i
int,a = 1

�t

∫

�

NT ρ(ci T i − ct T t )d� −
∫

�

BT qi d� −
∫

�d

NT q̄i
�d

d� (43a)

f i
int,b = 1

�t

∫

�

H�d NT ρ(ci T i − ct T t )d� −
∫

�

H�d BT qi d�

+
∫

�+
d

H�d NT (q+ · n+)i d� (43b)
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In the system of Eq. 40, the terms related to the linearization of the non-linear material
properties have been disregarded in order to obtain a symmetric system of equations. Hereby,
the computational cost per iteration is reduced, but the convergence rate decreases as well.
According to Janssen et al. (2007), the former effect dominates for 2D and 3D computations.

4 Academic Examples

In this section, two numerical examples are presented. In the first example, the transient ther-
mal behavior of a fractured porous medium is studied. The influence of the damage parameter
and the heat capacity are investigated. Next, a similar test is performed on a two-layer com-
posite material. It is shown that impact of damage on the dynamic thermal response depends
on the layer order.

4.1 Heat Transfer in a Fractured Porous Medium

Transient heat transfer is studied on a 2D square sample with edge length of 0.03 m (Fig. 5).
The sample is discretized with nine square bilinear elements (Q4). A strong discontinuity
with a normal pointing in the positive x-direction is inserted in the three middle elements.
Initially the temperature of the sample is uniform and equals 283 K. The temperature of the
nodes on the left boundary is kept constant in time (T̄ = 283 K). At t = 0, the right boundary
is exposed to an indoor environment at Ti = 293 K. The resulting heat flux is proportional
to the difference in temperature between the sample boundary and the environment, and is
consequently varying over time:

q̄�2 = hi (Ti − T ) (44)

A heat transfer coefficient of hi = 8 W/(m2 K) is selected. We investigate the influence
of the heat capacity (c = 0 or 500 J/(kg K)) and the amount of interface damage (ω = 0,
0.1 or 1) on the thermal behavior. The case c = 0 corresponds to the steady-state solution.
A mass density of ρ = 2000 kg/m3 and effective thermal conductivity of k = 0.4 W/m K
were used. In this example, we want to focus on the influence of damage on the magnitude
of the temperature jump across the discontinuity under steady-state and transient conditions.
To simplify interpretation of the results, the fracture is assumed adiabatic (q̄�−

d
= q̄�+

d
= 0).

All energy is therefore transported via the undamaged part of the material interface (see
Sect. 2.3.3). In the subsequent example, more realistic thermal behavior of the fracture will
be considered.

Figure 6 summarizes the results of the simulations. In the left column, the temperature
evolution over time is shown for four different locations, namely at the left sample boundary
(x = 0 m), at both sides of the discontinuity (x = 0.015 m) and at the right sample boundary

Fig. 5 Heat transfer in a
fractured porous medium:
geometry, mesh, and boundary
conditions
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03
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n
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Fig. 6 Heat transfer in a fractured porous medium: temperature profiles at selected points in space (left col-
umn) and temperature evolution at selected points in time (right column) for three different amounts of damage
at the interface: a ω = 0, b 10, and c 100%. Solid lines indicate steady-state simulations (c = 0 J/(kg K));
dashed lines correspond to transient simulations (c = 500 J/(kg K))

(x = 0.03 m). In the right column, temperature profiles over the width of the sample are
given at selected points in time (t = 0, 15, 30 and 60 s).

Figure 6a shows the results for a damage-free discontinuity. At every instance in time,
the temperature profile is continuous across the sample. This indicates that an undamaged
interface does not possess thermal resistance. Under steady-state conditions, the temperature
at the right sample boundary can be computed analytically from the energy equilibrium:

hi (Ti − T ) + k

d
(T̄ − T ) = 0 → T =

(
hi + k

d

)−1 (
hi Ti + k

d
T̄

)
(45)

with d the total thickness of the material sample. For the given material properties and geom-
etry, a temperature of 286.75 K is obtained. The same value is found in the steady-state
simulation. The transient simulation tends asymptotically toward the equilibrium state.

Upon increasing the amount of interface damage, the part of the cross-sectional area
that participates in the heat transfer across the discontinuity decreases and consequently the
thermal resistance of the interface increases. Correspondingly, the temperature difference
over the sample increases and a temperature jump develops across the interface (Fig. 6b).
Again, we notice that the transient simulation tends asymptotically toward the steady-state
temperature distribution.
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Fig. 7 Heat transfer in a two-layer composite material: geometry, mesh, and boundary conditions

Figure 6c illustrates the fully fractured case. Since the fracture is considered adiabatic in
this simulation, a fully damaged crack acts as a perfect heat barrier. Therefore, the left part of
the sample remains at the initial temperature, while the right part of the sample strives toward
thermal equilibrium with the environment. The temperature jump across the discontinuity
eventually becomes equal to the temperature difference between Ti and T̄ .

This academic example illustrates that the predicted change of the temperature distribu-
tion across and the heat flux within the porous medium during the development of a discrete
crack exhibits the expected behavior. Note that a time and fracture width-dependent behavior
was observed, although the fracture does not have a thermal resistance nor a heat capacity–
adiabatic behavior was assumed.

4.2 Heat Transfer in a Composite

Heat transfer in a two-layer composite material is studied to illustrate that the proposed dis-
crete model is capable of capturing dynamic effects. For a given amount of damage at the
interface, it is shown that its influence on the dynamic thermal behavior is not fixed, but
depends on the properties of both layers and the layer order.

We consider a 2D square sample with edge length of 0.3 m (Fig. 7). The sample is
discretized with nine square bilinear elements (Q4). A strong discontinuity with normal
pointing in the positive x-direction is inserted in the three middle elements, separating mate-
rial 1 (left) from material 2 (right). Both materials have a mass density of ρ = 2000 kg/m3.
The effective thermal conductivity ki and the heat capacity ci of each layer vary from simula-
tion to simulation (Table 1). We will investigate both perfect and imperfect contact between
both materials. The imperfect contact is simulated by assuming 10 % interface damage. The
thermal behavior of the air-filled cavities between both materials is modeled according to
Eqs. 23–25. We assume e�−

d
= e�+

d
= 0.9, Nu = 1 and [[ũ]] · n = 2 · 10−3 m. Crack closure

is not considered, hence Eqs. 26–27 are not used. All investigated cases are summarized
in Table 1. Initially the temperature of the composite sample is uniform and equals 283 K.
The left boundary is exposed to an exterior environment with a periodically varying temper-
ature Te = 283 + 10 sin(2π t/86400), corresponding to a simplified day-night cycle (he =
23 W/(m2 K)).

q̄�2 = he(Te − T ) (46)

The right boundary is in contact with an indoor environment at a constant temperature
Ti = 293 K (hi = 8 W/(m2 K), see Eq. 44).

We simulate ten cycles, sufficient to reach periodic response of the two-layer compos-
ite system. The last cycle is used to compute the amplitude Ai and the phase angle φi of
the harmonic temperature fluctuation at the inner surface. The last two columns of Table 1
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Table 1 Investigated parameter combinations and resulting amplitude and phase shift

c1 (J/(kg K)) k1 (W/(m K)) ω c2 (J/(kg K)) k2 (W/(m K)) Ai φi (◦)

(a)

1 1000 1 0.0 100 1 2.65 −81.4

2 1000 1 0.1 100 1 2.57 −91.8

3 100 1 0.0 1000 1 2.22 −93.2

4 100 1 0.1 1000 1 2.07 −102.4

(b)

1 1000 1 0.0 1000 2 1.81 −118.3

2 1000 1 0.1 1000 2 1.68 −138.0

3 1000 2 0.0 1000 1 2.02 −119.0

4 1000 2 0.1 1000 1 1.86 −137.3

Tests are subdivided in two groups (a, b). Corresponding results are shown in Fig. 8a,b

(a) variable capacity 
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292
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Fig. 8 Heat transfer in a two-layer composite material: temperature fluctuations at the inner surface. Both
layers have different a capacity or b effective conductivity. Solid and dashed lines correspond to simulations
with a damage-free and 10% damaged interface, respectively. All parameter combinations are listed in Table 1.
Markers have been added to distinguish between cases 1 and 2 (with markers) and cases 3 and 4 (without
markers)

summarize the results. The temperature variation at the inner surface for the last cycle is
shown in Fig. 8.

First, we focus on the impact of the amount of interface damage. It is clear that increasing
the damage leads to smaller temperature fluctuations (Table 1) and a higher average tem-
perature (Fig. 8) on the inner surface. This is evident, since additional damage corresponds
to supplementary contact resistance. But, because the additional damage alters the dynamic
behavior of the system, an extra phase shift φi is observed as well, although no capacity is
added (Table 1).

It is well known that the dynamics of a layered system depends on the layer order. From
Fig. 8 and Table 1, we observe that the effect of a constant increase in damage depends on
the layer order. Having a capacitive material at the outside suppresses the damage-induced
damping and phase shift φi to some extent (group a). The mutual position of a conductive
and a resistive layer does not have a pronounced impact on the effect of the damage on the
damping. Damage causes a larger phase shift if the more conductive material is placed at the
outside (group b).
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5 Conclusions

It was shown that the influence of fractures or partially damaged material interfaces on heat
transfer can be modeled adequately by means of a continuous–discontinuous strategy. With-
out introducing artificial parameters, the proposed cohesive zone model insures a gradual
transition from conduction-dominated transfer in the continuum state, prior to crack forma-
tion, to convection and radiation-dominated transfer in the damaged state afterward. Hereby,
both the continuum model and the discrete model can be chosen freely as a function of the
application and the material under study. The thermal cohesive zone model can be directly
linked to a mechanical cohesive zone model by means of a damage variable. In absence of
damage, the continuum behavior is recovered. The methodology proved to be applicable for
quasi-static, periodic, and transient problems.
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