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Abstract Since the late 1970s, numerical modelling has become established as an

important technique for the understanding of ice sheet and glacier dynamics, and several

models have been developed over the years. Ice sheet models are particularly relevant for

predicting the possible response of ice sheets to climate change. Recent observations

suggest that ice dynamics could play a crucial role for the contribution of ice sheets to

future sea level rise under global warming conditions, and the need for further research into

the matter was explicitly stated in the Fourth Assessment Report (AR4) of the United

Nations Intergovernmental Panel on Climate Change (IPCC). In this paper, we review the

state of the art and current problems of ice sheet and glacier modelling. An outline of the

underlying theory is given, and crucial processes (basal sliding, calving, interaction with

the solid Earth) are discussed. We summarise recent progress in the development of ice

sheet and glacier system models and their coupling to climate models, and point out

directions for future work.
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1 Introduction

Ice sheets (with their attached ice shelves), ice caps and glaciers are an important dynamic

part of the Earth’s climate system on time scales of decades and more. Most of the

terrestrial freshwater reserves are stored in these ice masses, and they amount to more than

60 m of sea level equivalent. Against the background of ongoing global warming, research

into the behaviour of ice sheets and glaciers is of great relevance. Some basic observational

data are summarised in Table 1.

In Chap. 10 (‘‘Global Climate Projections’’) of the Fourth Assessment Report (AR4) of

the United Nations Intergovernmental Panel on Climate Change (IPCC), an increase of the

mean global sea level by 18–59 cm for the twentyfirst century is projected for the SRES

(Special Report on Emissions Scenarios) marker scenarios (Meehl et al. 2007). The main

causes are thermal expansion of ocean water and melting of glaciers and ice caps, and to a

lesser extent changes of the surface mass balance of the Greenland and Antarctic ice

sheets. However, recent observations suggest that ice flow dynamics could lead to sig-

nificant additional sea level rise, as stated explicitly in the AR4: ‘‘Dynamical processes

related to ice flow not included in current models but suggested by recent observations

could increase the vulnerability of the ice sheets to warming, increasing future sea level

rise. Understanding of these processes is limited and there is no consensus on their

magnitude.’’ (IPCC 2007). This illustrates the importance of ice sheet and glacier models,

and further improvement of them, for assessing the impact of future climate change, and

for that reason it is a very ‘‘hot topic’’.

Numerical models may be classified as process models (Fowler 2001) or explanatory
models (Murray 2002) on the one hand, and system models (Fowler 2001) or numerical
simulations (Murray 2002) on the other. The first are generally simplified models designed

to focus specific processes. The latter are required to simulate the evolution of ice sheets in

a given climate, as sketched in Fig. 1.

The large ice sheets constitute systems with complex interactions with bounding

external systems such as the atmosphere, ocean and lithosphere. Smaller glaciers generally

constitute a simpler system than the large ice sheets in terms of coupled external systems;

however, the flow field is more demanding in terms of computational requirements.

The reason for this difference lies in the fact that the aspect ratio e, ratio of vertical extent

to horizontal extent of the ice mass, is of the order e ¼ 10�3 for large ice sheets, but e ¼ 10�1

for small glaciers. The shallowness of large ice sheets allows for a corresponding approxi-

mation that omits horizontal coupling. However, this shallow ice approximation has to be

taken with caution if processes on smaller scales or with large horizontal gradients are

considered, such as basal sliding/non-sliding transitions, rough bed topography or shear

margins at ice sheet/ice stream transitions. The process aspect ratio ep, ratio of local ice

Table 1 Ice inventory on the present-day Earth (Lemke et al. 2007; Bindoff et al. 2007)

Glaciers and ice caps Greenland ice sheet Antarctic ice sheet (?ice shelves)

Area (106 km2) 0.51–0.54 1.7 12.3 (?1.5)

Volume (106 km3) 0.05–0.13 2.9 24.7 (?0.7)

Sea level equivalent (m) 0.15–0.37 7.3 56.6 (?0)

Sea level rise

1993–2003 (mm a-1) 0.77 ± 0.22 0.21 ± 0.07 0.21 ± 0.35

Note the large contribution of glaciers and ice caps to current sea level rise despite their small volume
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thickness to horizontal scale length of the corresponding process, is generally larger, ep � e,
and thus the shallowness assumption no longer holds. A similar situation is given in models if

the resolution of the horizontal grid becomes comparable to the local ice thickness. In this

case, the grid aspect ratio eg, ratio of local thickness to horizontal grid spacing, may be of

comparable magnitude to ep, and the shallowness assumption may also become unreliable.

Current ice sheet and glacier models are capable of simulating the continuous fields,

velocity, temperature, surface and basal topography, to the correct magnitude. The accu-

racy, however, is critically affected by discontinuous processes such as sliding, calving,

basal thermal and mechanical transitions, grounding lines, lateral margins. For long term

simulations, the reliability of the model experiments also depends on the reliability of

initial conditions and the transient boundary conditions.

Glacial systems may be considered stable if their change in volume is determined by the

climatologically determined mass flux time scale, where the rate of volume changes is

limited by the possible range of climatic accumulation and ablation rates. Internal dis-

continuous processes such as glacial hydraulics, sliding and calving, may lead to volume

changes on much shorter time scales that may be referred to as catastrophic time scale. The

latter processes will pose the greatest challenge for future ice sheet models, especially if

the pressing question about the stability of the West Antarctic ice sheet must be answered.

This paper reviews the present state of ice sheet and glacier modelling and lists the

present pressing questions concerning the dynamics of ice sheets and glaciers in the

anticipated warming climate. The next section presents a summary of the Stokes problem

of thermomechanically coupled ice flow, followed in Sect. 3 by a hierarchy of approxi-

mations presently in use. Discontinuities such as sliding, calving and the related issue of

the stability of marine ice sheets are addressed in Sect. 4. Section 5 outlines the thermal

and mechanical interaction of ice masses with the underlying solid Earth, which are

relevant for the long term (105 years) dynamics of ice sheets during glacial cycles. In Sect.

6 we describe system models of ice sheets and glaciers, discuss the coupling with climate

models of various sophistication and the possibilities to test the reliability of quantitative

predictions. The concluding Sect. 7 outlines the currently pressing questions and topics,

and the activities required to address them.

Lithosphere Ocean

Ice sheet

Atmosphere

Ice shelf

Fig. 1 Schematic of an ice sheet (with attached ice shelf) in the climate system. Gravity-driven glacial flow
transports the ice from the central areas towards the margins. The ice sheet interacts with the atmosphere by
precipitation (snowfall), surface temperature and surface melting. At the ice shelf-ocean interface, melting
and freezing processes occur, and the ice shelf releases icebergs into the surrounding ocean (‘‘calving’’).
Interaction with the lithosphere is by the geothermal heat flux entering the ice body from below, and by
isostatic sinking and rebound. The vertical exaggeration factor is 200–500

Surv Geophys (2011) 32:555–583 557

123



2 Full Stokes Flow Problem

Polycrystalline ice, as it occurs in ice sheets and glaciers, is described rheologically as an

incompressible, nonlinear-viscous, heat-conducting fluid (e.g., Greve and Blatter 2009).

The mass balance (continuity equation) thus reads

div v ¼ 0; ð1Þ

where v is the velocity. Integration over the vertical coordinate z yields the evolution

equation for the ice thickness H(x, y, t) (horizontal coordinates x, y, time t)

oH

ot
¼ �div Qþ as � ab; ð2Þ

where Q is the volume flux (vertically integrated horizontal velocity), and as and ab are the

mass balances at the surface (positive for supply) and the bottom (positive for loss),

respectively. Equation (2) is the central evolution equation of glacier and ice sheet

dynamics.

The deformation of ice is most commonly described by the nonlinear-viscous Glen flow
law,

D ¼ 1

2gðT 0; reÞ
tD; ð3Þ

where D ¼ sym grad v ¼ 1
2
ðgrad vþ ðgrad vÞTÞ is the strain-rate (stretching) tensor, tD the

deviatoric part of the Cauchy stress tensor t and g the shear viscosity. The fluidity (inverse

viscosity) 1/g factorises as

1

gðT 0; reÞ
¼ 2EAðT 0Þf ðreÞ; ð4Þ

where T 0 ¼ T � Tm þ T0 is the temperature relative to the pressure melting point Tm

[Tm = T0 - b p; melting temperature at standard pressure T0 = 273.15 K, Clausius–

Clapeyron constant for air-saturated ice b = 9.8 9 10-8 K Pa-1, pressure p], AðT 0Þ the

rate factor, re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

trðtDÞ2
q

the effective stress (square root of the second invariant of tD),

f(re) the creep function and E the flow enhancement factor (see below).

The rate factor and creep function are usually expressed in the form of an Arrhenius law

AðT 0Þ ¼ A0e�Q=RT 0 ð5Þ

(A0: pre-exponential constant, Q: activation energy, R = 8.314 J mol-1 K-1: universal gas

constant), and a power law,

f ðreÞ ¼ rn�1
e ð6Þ

(n: stress exponent), respectively (Table 2).

The inverse form of Glen’s flow law (3) with the fluidity factorisation (4) and the power

law (6) is

tD ¼ 2gðT 0; deÞD; ð7Þ

where de ¼
ffiffiffiffiffiffiffiffiffiffiffi

1
2

trD2
q

is the effective strain rate (square root of the second invariant of D).

The viscosity g now factorises as
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gðT 0; deÞ ¼
1

2
EsBðT 0Þd�ð1�1=nÞ

e ; ð8Þ

where BðT 0Þ ¼ AðT 0Þ�1=n
is the associated rate factor and Es = E-1/n the stress enhance-

ment factor.

The flow enhancement factor E is equal to unity for secondary creep of pure, macro-

scopically isotropic polycrystalline ice (that is, the ice crystallites, a.k.a. grains, in the

polycrystalline aggregate are randomly oriented). However, in regions of flowing ice sheets

and glaciers with relatively high temperatures and/or stresses, tertiary creep may prevail,

which goes along with the formation of an anisotropic fabric (non-uniform orientation

distribution of the crystallites) favourable for the deformation regime at hand. A crude way

of including this effect in the flow law is by multiplying the isotropic ice fluidity for

secondary creep by a flow enhancement factor E [ 1 chosen in an ad-hoc fashion (e.g.,

Hooke 2005). More sophisticated models attempt at describing the evolution of anisotropy

and its effect on ice deformation macroscopically (phenomenologically) or even on the

microscopic scale. This leads to modified flow laws that either provide a flow enhancement

factor depending on the anisotropic fabric, or replace the scalar relation (collinearity)

between the tensors tD and D by a tensorial one (e.g., Gagliardini et al. 2009; Greve and

Blatter 2009).

Another potential limitation of Glen’s flow law lies in the use of the power law (6) with

a single stress exponent. This is justified by the simplifying assumption that, under the

stress, strain rate and temperature conditions typically prevailing in glaciers and ice sheets,

a single microscopic creep mechanism (dislocation creep) is dominant. In reality, ice

deformation results from a combination of creep mechanisms with different stress expo-

nents (e.g., Alley 1992; Langdon 1996; Goldsby and Kohlstedt 2001; Pettit and Wadd-

ington, 2003), and thus the creep function may be expressed as a sum of different powers

of the effective stress. However, there is no consensus about which additional terms should

be considered, and because of that Cuffey and Paterson (2010) recommend to stick to the

simple power law (6) with n = 3.

Scaling arguments show that, in contrast to atmosphere and ocean dynamics, the

acceleration (inertia) term and the Coriolis force can be neglected in the momentum

balance (e.g., Greve and Blatter 2009), so that it reduces to the force balance

div tþ qg ¼ 0; ð9Þ

where q = 910 kg m-3 is the density of ice and g the downward-pointing gravitational

acceleration with the value g = |g| = 9.81 m s-2. Combining the force balance (9) with

the decomposition of the stress tensor

Table 2 Parameters for the Arrhenius law (5) and the power law (6) (Paterson 1994; Greve and Blatter
2009)

Parameter Value

Pre-exponential constant (A0) 3.985 9 10-13 s-1 Pa-3 (for T 0 � 263:15 K)

1.916 9 103 s-1 Pa-3 ðfor T 0[ 263:15 K)

Activation energy (Q) 60 kJ mol-1 ðfor T 0 � 263:15 K)

139 kJ mol-1 ðfor T 0[ 263:15 K)

Stress exponent (n) 3
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t ¼ �pIþ tD ð10Þ

(where p is the pressure and I the unit tensor) and the flow law in the form of Eq. (7) yields

the Stokes equation

�grad pþ div gðT 0; deÞ gradvþ ðgradvÞT
� �h i

þ qg ¼ 0; ð11Þ

which is the equation of motion for ice flow. Owing to the dependency of the viscosity g on

the velocity v via the effective strain rate de, it is non-linear in v.

From the general energy balance, Fourier’s law of heat conduction

q ¼ �jðTÞgrad T ð12Þ

(q: heat flux, j: heat conductivity, see Table 3) and the caloric equation of state

u ¼
Z

T

T0

cð �TÞd �T ð13Þ

(u: specific internal energy, c: specific heat, see Table 3), the temperature evolution

equation

qc
oT

ot
þ v � grad T

� �

¼ divðjgrad TÞ þ 4gd2
e ð14Þ

results. In this relation, the production term trðtD � DÞ ¼ 4gd2
e is the strain heating, and

volumetric heating due to radiation has been neglected.

The above equations need to be complemented by dynamic and thermodynamic

boundary conditions at the surface and the bottom of the respective ice body. Since the

surface is in contact with the atmosphere, it can be described in good approximation as

stress-free, that is,

t � njs¼ 0; ð15Þ

where n is the outer unit normal vector, and the subscript ‘‘s’’ denotes the surface. The

surface temperature Ts can be prescribed directly as a Dirichlet condition.

If the bottom is a sufficiently cold ice/rock or ice/sediment interface, the basal ice is

essentially frozen to the underlying substrate, and a no-slip condition can be employed,

vb ¼ 0; ð16Þ

where the subscript ‘‘b’’ stands for the ice base. By contrast, if the basal temperature is at or

close to the pressure melting point, basal sliding will occur and must be parameterised by

an empirical sliding law. This will be discussed in more detail below (Sect. 4.1).

Table 3 Heat conductivity j
and specific heat c (Ritz 1987;
Greve and Blatter 2009)

Parameter Value

Heat conductivity (j) 9.828 e-0.0057 T[K] W m-1K-1

Specific heat (c) (146.3 ? 7.253 T[K]) J kg-1K-1
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As for the temperature field, let us assume that the geothermal heat flux that enters the

ice body from below (qgeo) is known. Provided that the basal temperature is below the

melting point and sliding is negligible, this yields the Neumann condition

j
oT

on

�

�

�

�

b

¼ qgeo; ð17Þ

where n is again the outer unit normal vector. If the basal temperature is at pressure

melting, this statement itself serves as a boundary condition,

Tb ¼ ðTmÞb ¼ T0 � bpb; ð18Þ

where pb is the basal pressure.

For the case of floating ice shelves, the basal boundary conditions must be changed.

Instead of the no-slip condition (16) or an empirical sliding law, a stress condition

holds that equals the basal stress t � njb to the hydrostatic pressure of the sea water

below the ice. The temperature conditions (17) or (18) are replaced by the statement

that the basal temperature is equal to the freezing temperature of the sea water below

the ice.

3 Hierarchy of Approximations

The full Stokes formulation is applicable to grounded ice sheets, ice caps and glaciers of all

sizes as well as floating ice shelves. However, its numerical solution is demanding and

computationally expensive. Therefore, it is desirable to derive suitable approximations that

make use of the specific properties of the different systems. Specifically, the global geo-

metric aspect ratio

e ¼ ½H�½L� ð19Þ

(where [H] and [L] are scales for the vertical and horizontal extents, respectively, of the ice

body in question) can be used to truncate the Stokes equation in different order approxi-

mations. However, ice sheet and glacier dynamics are largely determined by other scale

lengths such as smaller-scale variations in the bed topography or variations in the bed

conditions, or even discontinuities. Thus, the applied approximation must be chosen to

meet the requirements of the scales of the modelled processes. These global or local

geometric aspect ratios, however, do not exclusively define the mode of operation of an ice

mass, but the slip ratio, the ratio of the sliding velocity to the shear velocity, defines a

second characteristic parameter:

es ¼
½Ub�
½Ud�

ð20Þ

(where [Ub] and [Ud] are scales for the basal sliding and internal deformation (shear)

velocities, respectively). Of the two extreme cases, small aspect ratio and small slip ratio

(e� 1; es � 1) are well described by the shallow ice approximation (Sect. 3.2), whereas

small aspect ratio and large slip ratio (e� 1; es � 1) define a membrane flow, of which

the shallow shelf approximation (Sect. 3.3) is a known example.
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3.1 Higher Order Approximations

The largest portion of terrestrial ice is locked in ice sheets and glaciers with a horizontal

extent [L] that is much larger than the vertical extent [H]. Thus, the geometric aspect ratio

e� 1, and this fact gives the motivation for a hierarchy of approximations. A detailed

account of the approximations is given, for example, in Greve and Blatter (2009). Here, an

overview is presented.

In Cartesian coordinates (x, y, z), where x, y and z are the two horizontal and the

vertical coordinates, respectively, the components of the force balance (9) are

otxx

ox
þ otxy

oy
þ otxz

oz
¼ 0;

otxy

ox
þ otyy

oy
þ otyz

oz
¼ 0;

otxz

ox
þ otyz

oy
þ otzz

oz
¼ qg;

ð21Þ

where the tab are the corresponding components of the Cauchy stress tensor t. Omitting the

small horizontal derivatives of the shear stresses in Eq. (21)3 results in the hydrostatic

equation

tzz ¼ �qgðh� zÞ: ð22Þ

Eliminating the non-deviatoric stress components yields the equations for the force balance

written in deviatoric stress components (txx
D , tyy

D ) only,

2
otD

xx

ox
þ

otD
yy

ox
þ otxy

oy
þ otxz

oz
¼ qg

oh

ox
;

2
otD

yy

oy
þ otD

xx

oy
þ otxy

ox
þ otyz

oz
¼ qg

oh

oy
:

ð23Þ

Substituting Glen’s flow parameterisation, Eqs. (7) and (8), in the hydrostatic version of

Eq. (21) results in two equations with the three velocity components vx, vy and vz,

4
o

ox
g
ovx

ox

� �

þ 2
o

ox
g
ovy

oy

� �

þ o

oy
g

ovx

oy
þ ovy

ox

� �� �

þ o

oz
g

ovx

oz
þ ovz

ox

� �� �

¼ qg
oh

ox
;

4
o

oy
g
ovy

oy

� �

þ 2
o

oy
g
ovx

ox

� �

þ o

ox
g

ovx

oy
þ ovy

ox

� �� �

þ o

oz
g

ovy

oz
þ ovz

oy

� �� �

¼ qg
oh

oy
:

ð24Þ

Thus Eq. (24) must be solved simultaneously with the continuity equation (1). This

hydrostatic approximation can be done for grounded ice sheets and floating ice shelves

alike.

The next step of approximation is only valid for grounded ice sheets and glaciers, and

applies the assumption that the vertical velocity component vz scales with geometric aspect

ratio to the horizontal velocity components vx and vy, thus the ratios of the horizontal

gradients of vz to the vertical gradients of the horizontal velocity components are order e2

(Greve and Blatter 2009). This approximation is sometimes called first-order approxi-
mation (Blatter 1995) and is shown to
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reproduce the solution to the underlying Stokes equations to second order in the

film’s aspect ratio, regardless of the amount of slip at the base of the fluid (Schoof

and Hindmarsh 2010).

With this assumption all terms in the hydrostatic approximation, Eq. (24), containing vz

are omitted. The resulting two equations contain only the two horizontal velocity com-

ponents vx and vy, and can be solved independently of the continuity equation (1). There is

no equivalent to this first-order approximation for floating ice shelves.

3.2 Shallow Ice Approximation

The above hydrostatic and first order approximations still consider horizontal derivatives of

the velocity components, and thus consider all shear and deviatoric stress components. The

shallow ice approximation (Hutter 1983; Morland 1984) omits the so called membrane
stresses (Hindmarsh 2006b), and thus the deviatoric stresses txx

D and tyy
D , and the shear stress

component in the vertical plane, txy. The separation of membrane stresses and horizontal
shear stresses defines the two extremes, the shallow ice approximation (SIA) and the

shallow shelf approximation (SSA). The SIA omits the membrane stresses due to the

shallowness assumption and large friction at the bed, the SSA omits the horizontal shear

stresses due to shallowness and mostly free basal slip.

The assumption that the deviatoric components txx
D and tyy

D , the shear stress component txy

and their gradients are negligibly small in Eq. (23) yields

otxz

oz
¼ qg

oh

ox
;

otyz

oz
¼ qg

oh

oy
;

ð25Þ

and Glen’s flow law reduces to

ovx

oz
¼ 2AðT 0Þrn�1

e txz;

ovy

oz
¼ 2AðT 0Þrn�1

e tyz:

ð26Þ

This shallow ice approximation is widely used in present-day ice sheet models. Equations

(25) and (26) reduce the dependencies of txz, tyz, vx and vy to the depth below the ice

surface and the inclination of the ice surface in the respective directions. The equations can

be integrated such that the velocity components can be computed by quadratures,

vx ¼ vbx � 2ðqgÞnjgrad hjn�1 oh

ox

Z

z

b

AðT 0Þðh� �zÞnd�z;

vy ¼ vby � 2ðqgÞnjgrad hjn�1 oh

oy

Z

z

b

AðT 0Þðh� �zÞnd�z;

ð27Þ

where vbx and vby are the respective velocities at the ice base.
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3.3 Shallow Shelf Approximation

For shallow ice shelves, the hydrostatic approximation follow the same arguments as those

for the ice sheet flow and is also given by Eq. (24). The shallow shelf approximation
(Morland 1987; Weis et al. 1999) assumes that a plug flow (very large slip ratio)

approximates the velocity field closely in the membrane-type situation with almost van-

ishing shear tractions at both the upper and lower boundary of the plate,

ovx

oz
� 0;

ovy

oz
� 0: ð28Þ

With these assumptions, the vertically integrated force balance equation (23) becomes

4
o

ox
�g
ovx

ox

� �

þ 2
o

ox
�g
ovy

oy

� �

þ o

oy
�g

ovx

oy
þ ovy

ox

� �� �

¼ qgH
oh

ox
;

4
o

oy
�g
ovy

oy

� �

þ 2
o

oy
�g
ovx

ox

� �

þ o

ox
�g

ovx

oy
þ ovy

ox

� �� �

¼ qgH
oh

oy
;

ð29Þ

where �g is the vertically integrated viscosity of the ice and H the local ice thickness. A

detailed account of the derivation of these equations is given, for example, in Greve and

Blatter (2009). Equation (29) is not incompressible in the horizontal plane since vertical ice

flow determines the changes of the thickness of the ice plate. These equations must be

complemented by the mass continuity equation and boundary conditions at the upper and

lower surface, at the grounding line and at the calving front. The shallow shelf approxi-

mation allows for a simple formulation of the contact problem at the grounding line by

using the floating condition.

3.4 Accuracy of Approximations

Approximations are mostly motivated by the limitations of computing power or the

availability of efficient, stable and accurate numerical algorithms to solve the system of

generally non-linear equations in question. The definition of the accuracy of approxima-

tions is essentially defined by the purpose of the model, either simulation (system) models

or explanatory models (Fowler 2001). The primary goal of most system models is the

computation of the evolution of the distributed ice thickness; thus the accuracy of the ice

flow is most essential. In three-dimensional models, the ice flow (Q in Eq. 2) is computed

by integration of the vertical profiles of the horizontal velocity component, whereas in

vertically integrated models, the ice flow is a direct result of the vertically integrated model

equations and the details of the velocity field are not explicitly computed. The determi-

nation of the accuracy of the latter models and their predictive power is thus more difficult.

In this section, we do not consider the verification of the numerical schemes. Consid-

ering the accuracy of approximations, the focus lies on a comparison of approximations to

an exact solution of the equations such as the full Stokes equation. It must be ensured that

in such a comparison neither the approximation nor the exact solution are polluted by

significant errors in the numerical solutions.

Several studies investigated the accuracy of approximations of the Stokes equation at a

range of wavelengths of the perturbations (Hindmarsh 2004, 2006a, b; Gudmundsson 2008;

Schoof and Hindmarsh 2010); however, thus far only for isothermal ice flow. Since most of

the approximations in consideration exploit the shallowness of the ice masses, the
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approximations should be considered an expansion of the Stokes equations in terms of the

global geometric aspect ratio.

The results of Hindmarsh (2004, 2006a) and Gudmundsson (2003) show a clear devi-

ation of all approximations from the full Stokes solutions for shorter wavelength pertur-

bations. The shallow ice approximation apparently starts to deviate from Stokes solutions

at wavelengths shorter than 102 to 101, where the unit is given by the local ice thickness.

Higher order solutions start to deviate at wavelengths below 5 to 10. This fact requires

careful analysis of model results if dynamical or geometrical patterns of corresponding

small scales are to be resolved. The possible accuracy is thus not only given by the global
geometric aspect ratio e, but, in realistic glacial systems, as well by local aspects ratios

defined by local conditions. This may be expected to become a concern in shallow ice

models if the resolution of horizontal grids is increased, such that the grid aspect ratio

(ratio of vertical resolution to horizontal resolution) becomes substantially larger than the

global geometric aspect ratio.

4 Discontinuous Processes

4.1 Basal Sliding

One difficulty in ice sheet modelling is the large range of possible sliding velocities such as

between no sliding conditions at cold bases through slow sliding in the normal ice flow

mode to fast sliding in ice streams. Basal friction may depend on largely different basal

conditions such as rough hard beds to smoother sediment beds, or even perfect lubrication

over subglacial lakes. Different types of sliding parameterisations stem from different

underlying physical models of the sliding process itself; thus it is likely that one single

sliding paramterisation may not be adequate for modelling the entire ice sheet.

The Weertman-type sliding parameterisation (Weertman 1957, 1964, 1971) is based on

the assumption that the sole of the ice slides frictionlessly over a rough bed with a

roughness with a wavelength considerably smaller than the local ice thickness. Thus, the

sliding is described as the spatial mean velocity of the ice over a fictitious basal plane,

averaged over a spatial area considerably larger than the roughness elements. This mean

sliding velocity is determined by the resistance of the mean bed induced by the defor-

mation of the ice across and around the roughness elements (Hutter 1983). The resulting

resistance relates the mean sliding velocity to a power of the mean basal shear traction as

can be anticipated from dimensional analysis (Gudmundsson 1994a; Greve and Blatter

2009) or determined by numerical modelling applying the Stokes equation for a fluid

flowing over a wavy bed (Gudmundsson 1994a, b),

vb ¼ C1s
n
b; ð30Þ

where C1 is a parameter defined by the roughness. The roughness can be modified by

pressurised water at the bed such that the ice separates from the bed and sees a smaller

effective amplitude of roughness, thus

vb ¼ C2

sn
b

peff

: ð31Þ

where the effective pressure peff = pb - pw is defined by the difference of the basal

hydrostatic pressure pb of the ice and the water pressure pw in the basal hydraulic system,
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and C2 is a tunable coefficient. The direction of the basal velocity vector is always parallel

to the basal shear traction, i.e., to the tangential component of the stress vector at the base.

Such Weertman-type sliding parameterisation has been implemented in many ice flow

models of different approximations, in particular in shallow ice sheet models. The shal-

lowness assumption implies that the stress field is a function of the local geometry alone

and the velocity field additionally depends on the local temperature profile. Thus, sliding

does not feedback on these fields except weakly through the slowly varying temperature

field and the evolving geometry and its influence on the driving stress.

The fact that sliding in a SIA model does not feedback to the local nor the neighbouring

stress profiles implies a singularity at the bed position where the criterion from non-sliding

switches to sliding or vice versa, e.g., where the basal temperature has a cold/temperate

transition (Fowler 2001). Stress only remains bounded if the velocity is continuous, which

is a necessary condition for obvious reasons, and the second derivative of the horizontal

velocity components with respect to the horizontal coordinates is finite (Blatter 1995). In

numerical shallow ice sheet models, this singularity is hidden in the discretisation grids

(Bueler and Brown 2009), especially at low resolution. With increasing computing power,

higher resolution models become feasible and this issue may become a problem of

accuracy and stability if processes with large gradients in the fields are resolved.

The Weertman-type sliding parameterisation has been implemented in higher order and

full Stokes flow models in various ways. Direct implementations of the sliding parame-

terisation have been implemented through the discretisation scheme for basal grid point or

mesh cells (Jouvet et al. 2009). One possibility is the inclusion of a homogeneous

deforming shallow layer at the bottom of the ice, with no sliding between the ice sole and

the layer and no sliding between the layer and the underlying bed (Vieli et al. 2001). The

resulting relation between the tangential velocity component and the shear traction at the

ice sole depends on the assumed rheology of the shallow layer. The Weertman-type power

law with exponent n results if a power law stress strain-rate relation with exponent n for the

layer is applied (Vieli et al. 2001; Greve and Blatter 2009).

In the above shallow layer implementation for sliding, the layer only shears in the

horizontal plane; however, stress coupling in the horizontal direction is not included. If the

shallow layer sliding model is coupled to higher order and full Stokes models, the

membrane stresses are handled internally in the flow domain and the sliding parameteri-

sation only handles the local stress strain-rate relation. If this sliding implementation is

coupled to a SIA ice sheet model, it can not feedback to its shear velocity or handle the

horizontal stress coupling.

A hybrid scheme is proposed by Bueler and Brown (2009) by implementing a similar

idea for models in the shallow ice approximation: the ice sheet model yields the driving

stress, a basal thin layer model handles the resistive basal shear stress, tb, and a membrane

balances the driving stress and the shear stress. To introduce the shallow shelf approxi-

mation as a sliding parameterisation, the shear stress is added to the right side of Eq. (29).

The basal shear stress tb must be parameterised by a flow model for the basal thin layer

corresponding to the envisaged basal sliding, and can depend on various physical quantities

such as yield stress or water pressure in the layer.

This sliding parameterization does not feedback on the shear velocity in the local

vertical profile of the shallow ice model. High sliding velocity corresponds to low friction

and consequently to low basal shear stress. A weighted average of the velocities of the

three-dimensional non-sliding shallow ice approximation and the velocities in the mem-

brane was suggested by Bueler and Brown (2009) to consider the influence of basal sliding

conditions on the velocity profile. However, the shallow ice approximation gives no
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information on the weighting factor, except for non slip conditions the weight starts at one

for the shear velocity and zero for sliding, and goes to zero for the shear velocity and to one

for sliding for very large basal velocities. This scheme also avoids problems associated

with the singularity at slip/no-slip transitions mentioned above and it allows for handling

large ranges of sliding velocities as demonstrated with the Parallel Ice Sheet Model

Greenland model for ice streams (Bueler et al. 2010).

Sliding remains a critical issue. One reason is the difficulty in observing sliding and the

basal conditions directly. A second reason is that sliding can be highly variable on short

temporal and spatial scales. Furthermore, sliding velocities can not be determined on a

spatial resolution better than about one to two local ice thicknesses for objective reasons by

inverse methods using surface observations (Bahr et al. 1994; Truffer 2004).

4.2 Calving

On the Greenland ice sheet, calving accounts to about 47% of the total annual mass loss

besides surface and bottom melt (Ohmura 2010). The corresponding number seems to be

somewhat larger for Antarctica but is more difficult to estimate. Calving is a process which

is not directly coupled to the actual climatic conditions and may lead to mass loss on much

shorter time scales than ablation through climate controlled melt. As a discontinuous

process, calving is difficult to quantify in numerical models that can not resolve its tem-

poral and spatial scales.

4.2.1 Grounded Ice

Glaciers may calve into freshwater lakes and into sea water. Due to the difference in the

densities of fresh and salty water, calving may be slightly different due to processes such as

frontal melt and convection in the water in front of the ice cliff. Especially glaciers with

mostly temperate basal ice are resting entirely, including the calving front, on the solid bed.

A few grounded calving fronts have been observed over time periods of decades, such

as Columbia Glacier, Alaska (Krimmel 2001) and Hansbreen, Spitsbergen (Vieli et al.

2002). These observations clearly reveal a connection between the calving rate and

resulting advance or retreat rates and the bed geometry (Van der Veen 1996). Front

positions on beds sloping downwards in the flow direction seem to be stable whereas, on

upsloping beds, stable front positions may not be possible. One process that may explain

this behaviour is buoyancy, which directly depends on the water depth at the calving front.

However, buoyancy requires that the pressure of the sea water is transmitted below the ice

at least to some distance, which is perhaps only possible over distributed areas if the glacier

bed is temperate.

Model studies could reproduce these patterns of retreating and advancing grounded

calving tongues over an undulating bed by applying a calving parameterisation related to

an ice thickness above floatation (Vieli et al. 2000, 2001). For Hansbreen, Spitsbergen, the

time scales of the modelled fast retreats over bed depressions correspond well with

observed retreat rates (Vieli et al. 2002).

Nick et al. (2007) applied a simplified model to Columbia Glacier, Alaska, and con-

firmed the importance of bed geometry for calving rates, especially if moraines modify the

bed topography near the calving front. Their results indicate that stable equilibria may not

exist on backsloping beds; however, the results are not entirely conclusive.

Tidewater and freshwater glaciers may not become floating if only buoyancy would

control the calving rate, such as applied in models with simple buoyancy related calving
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parameterisations. A different approach has been taken by Benn et al. (2007). Following

Nye (1957), the crevasse depths is parameterised with a depth

where the longitudinal tensile strain rate exactly balances creep closure resulting

from ice overburden pressure (Benn et al. 2007)

and the calving front is located where the crevasse depth reaches sea level. This may

happen for both grounded and floating conditions.

The above model approaches to handle calving must be considered parameterisations. A

novel suggestion to model calving may be given by damage mechanics (Pralong et al.

2003, 2006; Pralong and Funk 2005), which may be included into full Stokes flow models.

Damage denotes a continuous field that is defined by source and sink terms related to the

stress field, as formulated by Pralong and Funk (2005):

The damage is described by a state variable D (called damage variable), which is

defined through the change in rheological properties with increasing material dete-

rioration (Kachanov 1999). The value of the damage variable is therefore determined

with regard to the effects of the micro-defects on the mesoscopic response of the

material (Krajcinovic 1996).

The magnitude of the damage defines the strength or weakness of the ice, a highly

damaged zone is much less viscous and the density is small. Sources for damage are given

by large stresses, sinks must be parameterised by additional conditions, which may be

difficult to identify, to let ice recover to normal strength. Two-dimensional flow models

including damage were successfully applied to crevasse opening and triggering ice ava-

lanches (Pralong et al. 2003; Pralong and Funk 2005). One version of a two-dimensional

model including the acceleration term in the force balance qualitatively reproduced the

calving of a grounded terminus. When the viscosity in the damaged zone becomes small

enough, the system becomes unstable and the calving piece of ice slides rapidly over the

damaged zone (Jouvet 2010).

4.2.2 Floating Ice

In most ice sheet models, the floating ice shelves are treated with the shallow shelf

approximation; however, the boundary conditions at the margins, (a) grounding line, (b)

coastline, (c) ice rise margins and (d) calving front (Weis et al. 1999) require treatment that

is beyond the possibilities of the approximation. In particular, the calving front is some-

times not treated explicitly and the ice shelf extends to the margin of the numerical grid

(Huybrechts 1990) or the ice shelf is cut off at a given ice thickness (Ritz et al. 2001) or at

the grounding line (Saito and Abe-Ouchi 2004; PISM, http://www.pism-docs.org/).

Ice shelves are the parts of ice sheets where the contact to ocean water establishes an

important boundary that may control the dynamics and the stability of the larger glacial

system. In view of this complexity, existing ice shelf models must be considered as process
models. The ice shelf-ocean coupling involves not only the floating condition but may also

contribute substantially to the mass budget at the ice base (Nøst and Foldvik 1994;

Grosfeld and Sandhäger 2004). Depending on thermal conditions and flow of ocean water,

the water-ice interaction may lead to both melting and freezing at the base. Melting at the

ice base produces a layer of fresh water that may flow upwards towards the margin and

become supercooled and form ice platelets with decreasing pressure. This ice may accu-

mulate at the base and thus further contribute to the accumulation. The increased buoyancy

due to the ice platelets in the ocean water, an ice shelf plume may form which feeds back to
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the ocean circulation beneath the shelf (Lewis and Perkin 1986; Jenkins and Bombosch

1995; Smedsrud and Jenkins 2004).

Both grounded and floating calving thus far can only be handled by parameterisation.

The primary problem lies in the fact that stress fields computed in models are only given at

low resolution compared with the small scales on which the processes leading to calving

work. This is especially true in shelves where fractures are triggered locally but progress

over large distances and calve off large tabular ice bergs.

The Benn et al. (2007) calving law allows for both grounded and floating calving and

the transition between both. Otero et al. (2010) extended the Benn et al. (2007) calving law

to a three-dimensional glacier. They identified some weaknesses in the model related to

basal sliding parameterisation and the parameterisation of crevasse depths; however, they

also identified some possible improvement such as assuming a partial filling of crevasses

with water, and the balancing at the crevasse bottom of the opening tensile deviatoric stress

with the closing ice overburden pressure.

Several other observed processes may have to be considered in realistic floating calving

models. Calving of tabular icebergs seems to be closely related to rift systems (Joughin and

MacAyeal 2005), where rift widening seems to progress gradually but rift length increases

episodically. A conceptual model, also related to rift formation, proposes rapid ice shelf

disintegration due to bending stresses induced by calving along the shelf terminus

(Scambos et al. 2009). The deepening of the new crevasses formed by the bending stress

after the previous calving event is further supported by increased hydrostatic pressure due

to increased amount of water in the crevasse (hydro-fracture) in a warming climate.

Enhanced bottom melting in a warming climate may also carve substantial channels in the

bottom of the ice shelf, thus may affect the mechanical strength of the shelf and support

breaking of the ice (Rignot and Steffen 2008).

4.3 Stability of Marine Ice Sheets

Marine ice sheets or glaciers are in close contact with ocean water and are thus more

exposed to possible instabilities than land based grounded glaciers. One possible situation

of instability is related to grounding calving termini on reversely tilted glacier beds, where

seemingly no stable equilibrium positions are possible (Vieli et al. 2001; 2002; Nick et al.

2007). Closely related to this is the situation of floating glacier tongues with a grounding

line on a reversely tilted bed (Schoof 2007); however, this is under the assumption that the

floating part only weakly feeds back on the dynamics of the grounding line. These results

were found by using two-dimensional flowline models and do not consider other factors to

be influencing the stability. There are indications that this partly applies to three-dimen-

sional valley glaciers, e.g., Hansbreen, Spitsbergen (Vieli et al. 2002) and Columbia

Glacier (Nick et al. 2007). However, Nick et al. (2010) show that stable equilibria may

exist even if a grounded calving tongue or a grounding line lies on backsloping beds, if

calving is determined by crevassing at the surface and at the bed, and not directly by

buoyancy.

Thus far, the applied and presented full Stokes models of the ice sheet/ice shelf tran-

sition are two-dimensional (flowline) process models. Durand et al. (2009a) confirmed the

hysteresis of Schoof (2007) in the grounding line dynamics; however, they also found a

sensitivity of the grounding line position to the chosen horizontal grid resolution (Durand

et al. 2009b), possibly making adaptive grid resolution a requirement for the modelling of

the grounding line position and stability in large scale system models of Antarctica (Vieli

and Payne 2005; Gladstone et al. 2009). The addition of melting below ice shelves and the
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simulation of buttressing by including a lateral resistance to the force balances clearly

demonstrate the strong influence of these additional factors to the grounding line dynamics

(Walker et al. 2008; Goldberg et al. 2009; Gagliardini et al. 2010); however, also dem-

onstrates the limitations of two-dimensional process models. They allow us to identify

processes, such as basal melt, buttressing and basal flow conditions and topography, that

are relevant for the dynamics and stability of marine ice sheets. For conclusive, quanti-

tative and reliable predictions of the stability of West Antarctica, for example, considerably

more complex models are required.

Large parts of the West Antarctic ice sheet are grounded well below sea level and

laterally bounded by large floating ice shelves. This situation is certainly vulnerable to

instabilities; however, despite the partly reverse tilt of the bed, additional features make it

very difficult to conclusively judge the present day situation with respect to a possible

runaway mass loss of the large ice shelves or even parts or the presently grounded West

Antarctic ice sheet. Disintegration may mean break up of the floating parts of marine ice

sheets as was observed in recent years on smaller ice shelves along the Antarctic peninsula.

It may also mean that grounding lines move into critical regions where stable states are not

possible. For large scale disintegration, both processes may have to work together such that

floating parts break apart after grounding lines retreat inland, or vice versa, that ice shelf

thinning due to bottom or surface melt or reduced advection leads to a migration of the

grounding line into unstable positions. Thus, modelling of such breakup and retreat or

collapse of marine ice sheets requires the treatment of these processes explicitly if a

reliable prediction is to be obtained. The challenge is that these processes either act on

small scales and must be treated by subgrid parameterisation (hydro-fracture, rift forma-

tion) or require the solution of the full equations without approximations, e.g., full Stokes

for the force balance or plate bending stress (Scambos et al. 2009).

An additional feature that makes the interaction between ice sheet and ice shelf even more

complex is the occurrence of ice streaming (Walker et al. 2009). Ice streams are dynamic

systems, although their grounding lines seem to be relatively stable or moving only epi-

sodically between stable positions (Horgan and Anandakrishnan, 2006). A possible stabil-

ising mechanism is the till deposition at the grounding line of ice streams (Anandakrishnan

et al. 2007). There are also indications that ice streams are able to transmit changes in the

floating part upstream on timescales of decades, i.e., more rapidly than at non-streaming parts

(Payne et al. 2004). Thus the ice sheet/ocean coupling may become more important in ice

streams. On the other hand, a shutdown of streaming may result from climatic warming,

increased precipitation, resulting in larger advection rates (Verbitsky 2002). Thus, the

response and stability of marine ice sheets in changing climates is not obvious, and

Continued measurement of the evolving flow field, geophysical efforts to define the

fjord geometry more precisely, and improved understanding of ocean/fjord/ice

interactions will all improve our collective ability to model this (marine ice sheet)

and similar systems (Joughin et al. 2008).

5 Interaction with the Solid Earth

5.1 Temperature Evolution in the Lithosphere

In time-dependent scenarios, the thermal inertia of the lithosphere dampens temperature

changes in the deeper parts of a glacier or an ice sheet significantly. In order to account for
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this effect, the temperature evolution in a thermal boundary layer of the lithosphere must

be computed,

qlcl

oT

ot
þ v � grad T

� �

¼ divðjlgrad TÞ; ð32Þ

where ql is the density, cl the specific heat (qlcl	 2; 000–3; 000 kJ m�3K�1) and jl

(*3 Wm-1 K-1) the heat conductivity of the lithospheric (crustal) material. This equation

is similar to the temperature evolution equation (14) for ice; however, strain heating has

been neglected. The horizontal component of the velocity v of the lithosphere is also

negligible, whereas a vertical component arises from the displacement of the lithosphere

due to glacial isostasy (see Sect. 5.2 below).

The thickness of the lithospheric thermal boundary layer to be considered depends on

the time scale of imposed temperature changes at the surface. Ritz (1987) demonstrated

that for climatological time scales B 100 ka a thickness of 2 km is sufficient. If Eq. (32) is

solved together with Eq. (14), the geothermal heat flux (Eq. 17) must be prescribed at the

bottom of the lithospheric thermal boundary layer rather than at the ice base. Instead,

temperature continuity is assumed between the ice and the lithosphere.

5.2 Glacial Isostasy

Glacial isostasy describes the process of restoring gravitational equilibrium between the

Earth’s lithosphere and the underlying asthenosphere under the influence of temporally and

spatially varying ice loads. As a consequence, the lithosphere suffers an essentially vertical

displacement w(x, y, t) with respect to its unloaded equilibrium position (Fig. 2).

This process can be described in great detail by sophisticated self-gravitating, spherical,

visco-elastic multi-layer (SGVE) models of the Earth (e.g., Lambeck et al. 1990; Le Meur

1996; Thoma and Wolf 1999; Le Meur and Huybrechts 2001; Tarasov and Peltier, 2002).

However, in typical ice sheet modelling applications, such a level of complexity is not

required, and a simpler treatment is feasible that models the lithosphere as a thin elastic

plate and the asthenosphere as a viscous fluid, parameterised by a time-lag constant

(‘‘elastic lithosphere/relaxing asthenosphere’’ or ELRA model; Le Meur and Huybrechts

1996).

In the ELRA model, the steady-state displacement wss of the lithosphere under the

influence of the ice load qgH (downward) and the buoyancy qagwss (upward) is governed

by the biharmonic equation

Fig. 2 Glacial isostasy: vertical
displacement w of the lithosphere
(thickness Hl) due to a temporally
and spatially varying ice load
q gH. The dashed lines mark the
top and bottom of the lithosphere
in unloaded equilibrium
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KlD
2 wss þ qagwss ¼ qgH ð33Þ

(e.g., Marguerre and Woernle 1969), where Kl (*1025 N m) is the flexural stiffness of the

lithosphere and qa = 3,300 kg m-3 the density of the asthenosphere. The Green function

G of Eq. (33) is given by

GðrÞ ¼ Gðx; �x; y; �yÞ ¼ � L2
r

2pKl

kei
r

Lr

� �

; ð34Þ

with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� �xÞ2 þ ðy� �yÞ2
q

; Lr ¼
Kl

qag

� �1=4

ð35Þ

(Brotchie and Silvester 1969). Here, keið�Þ is a Kelvin function of zero order, which can be

derived from the general Bessel function, and whose values are tabulated in mathematical

handbooks (e.g., Abramowitz and Stegun 1970). It is shown in Fig. 3.

The Green function (34) allows to construct the solution of the biharmonic equation (33)

for a general distribution of the ice load by superposition,

wssðx; y; tÞ ¼
Z

Aice

qgHð�x; �y; tÞGðx; �x; y; �yÞd�xd�y; ð36Þ

where Aice denotes the ice-covered area.

Due to the viscosity of the asthenosphere, the lithosphere cannot assume the steady-state

displacement wss immediately. In the ELRA model, this is parameterised by the isostatic

time lag sa (*3 ka), and the actual displacement w(x, y, t) is determined by the simple

relaxation equation

ow

ot
¼ � 1

sa

ðw� wssÞ: ð37Þ

The radius of relative stiffness Lr has a value of *100 km. This is much smaller than

the typical horizontal extent of a large ice sheet like Antarctica or Greenland. Therefore,

the elastic term in Eq. (33) is sometimes neglected, which leads to the local balance

between ice load and buoyancy

qagwss ¼ qgH ) wss ¼
q
qa

H: ð38Þ

In combination with the relaxation equation (37), this model is referred to as the local

lithosphere/relaxing asthenosphere or LLRA model.

Fig. 3 The Kelvin function
(normalised displacement of the
elastic lithosphere under a point
load)

572 Surv Geophys (2011) 32:555–583

123



For ice caps like Vatnajökull or Austfonna, the horizontal extent is similar to Lr, and the

LLRA model cannot be used; the non-locality of the elastic lithosphere approach is then

essential and must be accounted for. Glaciers are typically much smaller than Lr, which

leads to an extreme spreading of the isostatic displacement and renders it negligible. Thus

isostasy need not be considered for glaciers.

6 System Models

6.1 Ice Sheet Models

Although glaciers may contribute more to sea level changes on time scales of decades, the

ice sheets of Greenland and Antarctica may be more important on longer time scales and in

terms of large catastrophic contributions.

To study ice sheet dynamics, models of various degrees of sophistication are required,

depending on the specific questions. These questions may concern the understanding of

glacial cycles, the present state of the ice sheet or the future of the ice sheets for a range of

possible climate scenarios.

Although the flow field is quasi-stationary, thermal inertia and the evolution of the

geometry, both the basal isostatic relaxation and the surface evolution, are truly transient

with a wide range of temporal scales. The long memory of the ice sheet requires accurate

initial conditions in addition to accurate history of the boundary conditions. Furthermore,

the extent, surface altitude and surface conditions may feedback to the conditions above

and below the ice sheet. This may make it necessary to couple ice sheet models to models

of the solid Earth, ocean and atmosphere bounding systems. Since these systems act on

largely different scales, especially time scales, the coupling must apply specific techniques

to maintain realistic process physics and computability.

The prediction of the future evolution of, e.g., the Greenland ice sheet depends pri-

marily on the assumed scenarios of the future climate but also on the initial (present)

conditions to start the model run. Observations provide the accurate surface and bedrock

topography and information from the existing ice cores provides additional data such as ice

temperature and rheology at given locations. The three-dimensional fields of present-day

temperature and viscosity of the ice sheet can only be obtained by numerical ice sheet

models.

The thermo-mechanical processes are slow in comparison with the temporal and spatial

variability of the climatic states of the atmosphere and ocean. The long memory, over more

than one glacial cycle (Calov and Hutter 1996) requires a correspondingly long spin up run

of the model to establish the present-day conditions. Thus far, two distinct methods to

compute present-day initial conditions were applied, (1) simulations driven by temperature

reconstructions based on ice cores, and (2) steady state simulations with present-day cli-

mate conditions (Rogozhina et al. 2011 and references therein). Since the present state

cannot possibly be a steady state to the present or any other climate condition, it must

necessarily deviate from any transient state obtained by method 1). Seemingly, the steady

state temperatures are too high and the domain of basal and near-basal temperate ice is too

large (Huybrechts, 1996; Greve 1997; 2000). Also the present-day conditions obtained by

transient model runs for some time in the past may depend on the chosen past initial

conditions, unless the integration time is long enough for the ice sheet to forget those initial

conditions. This, however, may be a problem since the paleo-climate reconstructions

needed for the boundary conditions lose accuracy and reliability with increasing age.
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Accurate initial conditions to start a model run for the next few millennia are crucial

especially since basal thermal conditions determine whether there is sliding or non-sliding

and large shearing of soft warmer ice or hard colder ice.

The problem becomes particularly serious if the evolution of ice sheets over the coming

decades or few centuries must be predicted. Over this short time span, the initial conditions

strongly influence the prognostic computations, and, if not accurate, produce poor pre-

dictions (Arthern and Gudmundsson 2010). To overcome this problem, combinations of

observed data and model computations are applied, such as data assimilation techniques

based on control methods (Vieli and Payne 2003; Vieli et al. 2006; Arthern and Hindmarsh

2006), or adjoint models that derive the sensitivities of ice sheets to boundary and initial

conditions (Heimbach and Bugnion, 2009).

Three operational ice sheet models are currently available on the internet as free

software:

• Glimmer-CISM (Community Ice Sheet Model, http://glimmer-cism.berlios.de/);

• PISM (Parallel Ice Sheet Model, http://www.pism-docs.org/);

• SICOPOLIS (SImulation COde for POLythermal Ice Sheets, http://sicopolis.greveweb.net/).

These models include three-dimensional coupling of temperature and velocity fields in the

shallow ice approximation. They differ in the numerical grids and some numerical

schemes, but also allow for various physical processes such as polythermal conditions

(SICOPOLIS, PISM) or a novel type of sliding parameterisation (PISM). Glimmer-CISM

is particularly designed to be interfaced to a range of global climate models. All three

models are currently under rapid development, and in different stages towards implemen-

tation of higher-order dynamics (Sect. 3.1), ice shelf dynamics (Sect. 3.3) and

discontinuous processes (Sect. 4). Figure 4 illustrates schematically the various compo-

nents of the models.

6.2 Coupling to Climate Models

Glacial cycles constitute climate changes beyond the observed variations of the past few

centuries. Thus, the reconstruction of the waxing and waning of the ice sheets is an essential

component in studying the climate system, and, in particular, the dynamics of ice sheets. It is

now well accepted that the Milankovitch cycles of orbital and rotational elements of the

Earth play an essential role in the triggering and pacing of the growth and shrinkage of the ice

sheets, especially in the northern hemisphere. However, a thorough understanding of internal

processes and feedback mechanisms of the climate system is crucial to understand many

details of the glacial cycles. It is thus necessary to couple, in some adequate way, a climate

system model to a model of the ice sheets to capture the interactions between climate and ice

sheets during entire glacial cycles. However, comprehensive global atmosphere ocean cir-

culation models including sea ice and possible other sub-systems to handle CO2 fluxes, land

albedo and aerosols are prohibitively expensive in computational requirements. Thus, the

integration over glacial cycles is still far beyond the reach of computer capacity presently and

possibly for quite some time in the future.

To circumvent this obstacle, a whole palette of simplified methods for direct and

indirect coupling of ice sheet models to climate models has been proposed. Since three-

dimensional thermomechanically coupled ice sheet models can be run over several glacial

cycles with present computers, the compromises always concern the climate models.

Basically, three different types of approaches can be distinguished.
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The most commonly used approach uses the present-day observed climate and applies

some perturbation to it derived from available proxy data such as isotopic composition and

atmospheric greenhouse gas concentrations from ice cores (Ritz et al. 1997; Abe-Ouchi

et al. 2007; and references therein).

A second approach couples ice sheet models to climate models reduced in dimension,

resolution and physical processes. Recently, so called Earth Models of Intermediate

Complexity (EMICs), see Clausen et al (2002), allow for long term climate simulations for

a coarse zonal and sectorial resolution. The advantage of an EMIC is the possibility to

couple several subsystems, such as the atmosphere, oceans, land surface types and energy

and mass fluxes, atmospheric aerosols, and a comprehensive three-dimensional ice sheet

model (Ganopolski et al. 2010). The low spatial resolution and limited physics, however,

limit the possibility to take into account the feedback of variations in the ice sheet extent

and altitude on the climate, in particular on atmospheric and oceanic circulation patterns.

A third possibility is the use of comprehensive three-dimensional global climate

models, either atmosphere ocean general circulation models (AO-GCM) or atmosphere

circulation models (A-GCM) with some idealised slab ocean. However, even at low spatial

resolution, the computational requirement limits the time span to be modelled to few

centuries. Therefore, time slices of a few decades for selected periods of glaciation extents,

astronomical forcings or greenhouse gas concentrations may serve to parameterise climatic

conditions, such as temperature and mass balance (Abe-Ouchi et al. 2007). Furthermore,

A-GCM and AO-GCM experiments give the possibility to investigate the influence of the

Lithosphere:
Isostatic displacement
Temperature

•
•

Ice sheet:
Extent and thickness
Velocity
Temperature
Water content
Age

•
•
•
•
•

Atmosphere:
Precip., evap., runoff
Temperature

•
•

Ocean:
Sea level•

Ice physics:
Flow law
Heat conductivity

•
•

Physics of the
lithosphere:

Deformation law
Heat conductivity

•
•

Lithosphere:
Geothermal heat flux•

Fig. 4 Scheme of a modern, dynamic/thermodynamic ice sheet model. The rectangular boxes correspond
to prognostic model components, the oval boxes to input quantities
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ice sheet to general patterns of the atmospheric circulation and storm tracks, and thus have

an influence back to the mass balance and ice sheet dynamics.

In coupled modelling of the ice age cycles, input from climate models is commonly

given at low spatial resolution compared with the resolution of ice sheet models. However,

one should not reduce the resolution of ice sheet models because, depending on the scheme

to advance the ice sheet margin, a minimal resolution of the ice sheet models must be

applied to avoid a failure of properly advancing the margin (Abe-Ouchi and Blatter 1993).

To better match the resolutions of climate and ice sheet models, regional climate models

are a possibility, see e.g. Box et al. (2006).

In contrast to glacial cycles, future global warming scenarios typically encompass time

scales of decades to centuries. As mentioned above, for such time scales the coupling of

AO-GCMs with ice sheet models has become feasible (see, e.g., Vizcaı́no et al 2008;

Ridley et al. 2009). The ongoing increase in computer performance will certainly allow

improvements in time span covered and model resolution in the near future.

6.3 Testing Ice Sheet Models

System models of ice sheets consist of a coupled set of non-linear differential equations

with boundary conditions on mass, momentum and energy fluxes, and initial conditions of

geometry and thermodynamic fields. The complexity of the system requires simplifications

of physical processes and the system components, and the computation of the evolution of

the system requires numerical solutions of the equations.

Such a model requires the testing of its reliability in various ways. It may be reasonable

to stick to a terminology that seems to be established in the community: verification refers

to the test of the numerical solution process and validation refers to the test with observed

information on a real system (Oreskes et al. 1994; Thompson 1995; Bueler 2008)

Although the word verification stems from the Latin word for truth, verification is a

matter of accuracy rather than truth. The word validation in turn should be interpreted as a

test of reliability. Taking the words too literally may tempt one to declare the corre-

sponding control as impossible (Oreskes et al. 1994), instead of taking them more

pragmatically.

A third testing possibility are intercomparisons of models for the same system. Inter-

comparison projects became popular in many Earth system modelling sciences, in par-

ticular in glacier and ice sheet modelling (Huybrechts et al. 1997). Model intercomparisons

may contain elements of both verification and validation. Verification (or falsification) may

result if the models in comparison solve the equations with essentially different numerical

methods (Pattyn et al. 2007), or if a verified benchmark is available.

The European Ice Sheet Modelling Initiative intercomparison revealed a common feature

of all ice sheet models, the breaking of the cylindrical symmetry in the internal fields despite

the radial symmetry in the boundary conditions (Payne et al. 2000). Interestingly, such a

symmetry breaking does not show in models of realistic ice sheets or, perhaps, it is disguised

in the fields with more variability. The intercomparison shows that all models display this

symmetry breaking; however, the patterns vary between the models. Higher order mechanics

does not reduce the symmetry breaking (Saito et al. 2006) and the specific shapes may also

depend on initial conditions. A persistent pattern is that the spokes follow the grid lines and

grid symmetry, except for very cold ice sheets, where irregularities emerge that do not follow

the grid symmetry (A. Aschwanden, personal communication, September 2009).

The EISMINT intercomparison discovered (Payne et al. 2000), described (Payne and

Baldwin 2000) and compared the spokes in various different models; however, they did not
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explain their physical or mathematical origin, except for some speculative interpretations

(Payne and Dongelmans 1997). The emergence of the spoky patterns must be taken as an

indication that the system of equations is vulnerable to ill condition and perhaps instability.

Seemingly, the spokes only occur in the system with full thermomechanical coupling and

free surface, and

derivative with respect to temperature of the strain-heating term (can be identified) as

the controlling quantity in the spokes . . .
. . . local grid refinement near areas of maximum strain heating and/or smoothing of

the strain heating term will ameliorate this problem (Bueler et al. 2005, 2006).

Recently, in the Heinrich Event INtercOmparison (HEINO) topic of the Ice-Sheet

Model Intercomparison Project (ISMIP) internal large-scale ice sheet instabilities in dif-

ferent contemporary ice sheet models were explored (Calov et al. 2010). For the experi-

ments, a simplified geometry that reproduces the main characteristics of the Laurentide ice

sheet (including the sedimented region over Hudson Bay and Hudson Strait) and a tem-

porally constant glacial climate were employed. It was found that all participating models

(eight SIA models and one combined SIA/SSA model) are capable of producing Heinrich-

type free oscillations if the boundary conditions are sufficiently favourable. However, the

large differences between the results of different models (some are much more prone to

produce oscillations than others) clearly showed that further model improvements are

crucial for adequate, robust simulations of ice sheet instabilities.

6.4 Glacier Models

Land ice masses not connected to the Greenland and Antarctic ice sheets contribute less

than 1% to the water locked in all ice sheets, ice caps and glaciers together (Table 1).

Although glaciers may contribute to sea level rise by less than 0.5 m, their impact is on the

short term, decades to centuries, and more local.

The strain softening property of ice limits the ice thickness as a function of the hori-

zontal extent and steepness of the glacier. Thus the geometric aspect ratio of glaciers is one

to two orders of magnitude larger than that of ice sheets, and requires more accurate

models than the shallow ice approximation to reliably predict the long term evolution of its

volume and geometry.

The application of higher order approximations or the full Stokes formulation of the ice

flow make the implementation of a glacier model more demanding. The solution of the

governing equations requires numerical algorithms that may be computationally expensive.

Furthermore, the coupling of the ice flow in longitudinal and transverse directions due to

the stress gradients makes the influence of boundary conditions non-local. Basal sliding

feeds back to the velocity field both in vertical and horizontal directions and thus is not

defined by local basal conditions alone, in contrast to the shallow ice approximation.

Various glacier models using the full Stokes scheme for the ice flow were implemented

to study a range of processes, and recently to study glacial systems. Three-dimensional

models were implemented to investigate the confluence of glaciers in the Swiss Alps

(Gudmundsson 1994a, 1999). Full Stokes flow models including thermodynamics

(Zwinger and Moore 2009) and in addition a compressible firn rheology (Lüthi and Funk

2000; Zwinger et al. 2007) were applied to high altitude firn areas for dating bore hole

locations.

On a time scale of decades to centuries, for the predicted climate warming, glaciers and

ice caps likely contribute more to sea level rise than the large ice sheets. Missing
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information and prohibitive computation time prevents a reliable prediction of the change

in ice volume in most glaciers with comprehensive models. However, the modelling of

carefully chosen sample glaciers may give a background information for the behaviour of

the multitude of glaciers.

The size of most glaciers falls short of the grid resolution of prognostic global climate

models, but also of the resolution of local networks of meteorological stations. Further-

more, the local conditions in glacierised valleys or on ice caps may be influenced by the

topography and the thermal conditions of the ice surface itself. Thus, downscaling of the

projected climatic conditions is an important requirement.

A possible simplified downscaling is based on the assumption that in a changing climate

the fields of temperature and precipitation have larger spatial variability than the fields of

their corresponding changes over time. Thus, the observed present-day local conditions can

be combined with the larger scale change of climatic conditions to generate a local climate

scenario (Schneeberger et al. 2001, 2003). More sophisticated downscaling schemes range

from statistical downscaling (see, e.g., Hofer et al. 2010, and references therein) to the

nesting of comprehensive global and regional climate models (Christensen and Christensen

2007; Frei et al. 2007). The climate input can be transformed to a mass balance infor-

mation using e.g. the temperature and radiation index model of Hock (1999), e.g., Jouvet

et al. (2008) with measured meteorological data for the past decades or climate scenarios

for the future.

7 Conclusions and Prospects

The seemingly high sensitivity of a glacial system is reflected in the high sensitivity of the

combined problem of free surface flow and thermomechanical coupling. Thus, the prog-

nostic power of ice sheet modelling depends crucially on reliable verification of the

numerical methods used. However, the prognostic power may suffer from limited

knowledge, either limited accuracy or even lack of information on internal processes

(anisotropy, hydraulics, sliding, grounding line) and on the boundary conditions given from

external systems (atmosphere, ocean, solid Earth). This is already the case for the ice sheet

dynamics determined on the mass flux time scale by the smooth and continuous processes

such as ice flow and climatological mass fluxes on the surface. Even more, this is true for

processes determined by discontinuous processes that may lead to changes on the cata-
strophic time scale such as surges and ice shelf disintegration due to grounding line

instabilities.

Computation power and efficiency of numerical methods have progressed to the point

where full Stokes solutions for glaciers are obtainable on affordable computers. Three-

dimensional flow fields were computed diagnostically for the Gorshkov crater glacier,

Kamchatka (Zwinger et al. 2007), including thermomechanical coupling and firn, and

prognostically for Midtre Lovénbreen, Svalbard (Zwinger and Moore 2009). A three-

dimensional full Stokes model coupled to a novel scheme for solving the transport equation

with a volume of fluid method was applied to Alpine glaciers (Jouvet et al. 2008; Jouvet

et al. 2009). The above models apply a finite element method on unstructured grids. A

three-dimensional full Stokes model solving the equations on a finite difference grid was

applied to study the stability of subglacial lakes (Pattyn 2008).

The next logical steps in ice sheet model development may be anticipated by extrap-

olating recent developments and requirements for the future. The developments will likely

include full Stokes solutions for entire ice sheets with adaptive grids to obtain high spatial
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resolution where required. They will apply novel solvers and pre-conditioners to increase

computational efficiency and certainly faster computers. Currently, at least three projects

started to develop the next generation ice sheet models (http://www.elmerfem.org/wiki/

index.php/Elmer_Ice_Sheet_modeling, http://issm.jpl.nasa.gov/, http://trac.mcs.anl.gov/

projects/sisiphus). This kind of engineering work requires close collaboration between

specialists in various fields: physicists, mathematicians, computer scientists. However, the

challenge will also be the identification of the right processes and their relevant physics to

obtain truly conclusive answers to the pressing questions of the future of the ice sheets and

their stability.
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ETH Zürich

Gudmundsson GH (1999) A three-dimensional numerical model of the confluence area of unteraargletscher,
bernese alps, switzerland. J Glaciol 45(150):219–230

Gudmundsson GH (2003) Transmission of basal variability to a glacier surface. J Geophys Res 108:B42253.
doi:10.1029/2002JB002107

Gudmundsson GH (2008) Analytical analysis of small-amplitude perturbations in the shallow ice stream
approximation. Cryosphere Discuss 2:23–74

Heimbach P, Bugnion V (2009) Greenland ice-sheet volume sensitivity to basal, surface and initial con-
ditions derived from an adjoint model. Ann Glaciol 50(52):67–80

580 Surv Geophys (2011) 32:555–583

123

http://www.gi.alaska.edu/snowice/glaciers/iceflow/posterBKAJS.pdf
http://www.gi.alaska.edu/snowice/glaciers/iceflow/posterBKAJS.pdf
http://dx.doi.org/10.1029/2008JF001170
http://www.occc.ch
http://dx.doi.org/10.1029/2010GL043334
http://dx.doi.org/10.1029/2009JF001615
http://dx.doi.org/10.1029/2008JF001227
http://dx.doi.org/10.1029/2002JB002107


Hindmarsh RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice
sheet and glacier modeling. J Geophys Res 109:F01,012

Hindmarsh RCA (2006) Paradoxes and problems with the longitudinal stress approximations used in glacier
mechanics. GAMM-Mitt 29(1):52–79

Hindmarsh RCA (2006) The role of membrane-like stresses in determining the stability and sensitivity of the
Antarctic ice sheet: back pressure and grounding line motion. Phil Trans R Soc A 364:1733–1767

Hock R (1999) A distributed temperature-index ice and snowmelt model including potential direct solar
radiation. J Glaciol 45(149):101–111
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