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ABSTRACT 
 

 

 

 

 

The Linear Array CCD technology is widely used in the new generation aerial 
photogrammetric sensors and also in the high-resolution satellite optical sensors. In 
comparison to the Matrix (frame/area) Array sensors, the Linear Array CCD sensors have 
smaller number of detectors to cover the same swath width. In addition, the flexibility is 
higher in the physical sensor design. The conventional film cameras used in aerial 
photogrammetry are manufactured in frame format. The first remote sensing sensors for 
Earth observation employed film cameras as well. The recent sensor technologies of the 
optical remote sensing satellites are replaced with the Linear Array CCDs. In case of the 
aerial photogrammetric sensors, medium and small format aerial cameras are produced 
only in the frame format. The development in large format cameras is twofold. The Linear 
Array CCD and Matrix Array CCD sensors have been present in the industry since the year 
2000.  

Due to the geometric differences between the Linear Array cameras and the frame 
cameras, the conventional photogrammetric procedures for the geometric processing of the 
Linear Array CCD images should be redefined or newly developed. The trajectory 
modeling is one of the main concepts, which entered into the field of photogrammetry with 
the aerial and satellite pushbroom sensors. The modified collinearity equations are 
extended with mathematical functions to model the image trajectory in the bundle 
adjustment. This study encompasses the triangulation of Linear Array CCD images with 
the use of different trajectory models. The self-calibration models are partially adapted 
from the frame sensors in accordance with the physical structures of the Linear Array CCD 
sensors. 

In general, the triangulation and self-calibration of the aerial and the satellite Linear Array 
CCD images show similarities in terms of trajectory modeling and the physical definitions 
of the additional parameters. The main difference is in the number unknown parameters 
defined in the bundle adjustment, which is calculated as a function of the number of lenses, 
the trajectory model configuration, and the number of Linear Array CCDs used in the 
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sensor. Therefore, similar sensor modeling and calibration approaches are applied in this 
study, with necessary adjustments for each system.  

In order to obtain high accuracy point positioning, high quality image trajectory 
measurement is crucial. The given trajectory can be modeled in the adjustment by using 
constant and linear correction parameters, as well as higher order polynomials. This study 
investigates the three different trajectory models with three different mathematical 
approaches. Two of the models are investigated at different levels of sophistication by 
altering the model parameters. 

Two different aerial Linear Array CCD sensors, the STARIMAGER of former Starlabo 
Corporation, Japan, and the ADS40 sensor of the Leica Geosystems, Heerbrugg, are used 
for the practical investigations. The PRISM (Panchromatic Remote-sensing Instrument for 
Stereo Mapping) onboard of Japanese ALOS satellite launched by JAXA (Japan 
Aerospace Exploration Agency) in 2006 is the satellite Linear Array CCD sensor used for 
the application parts of this study. The two aerial Linear Array CCD sensors work with the 
TLS (Three-Line-Scanner) principle. Three or more Linear Array CCDs are located in the 
focal plane of a single lens with different viewing angles providing stereo capability. The 
PRISM sensor differs in the optical design with three camera heads, each associated with a 
different viewing angle. 

Due to the design differences between the sensors, two sets of additional parameters for 
self-calibration are applied in this study. The aerial TLS sensors share the same set of 
additional parameters due to similar interior geometries of the sensors. The self-calibration 
of the PRISM sensor uses a different set due to multiple lenses and also multiple CCD 
chips used to form each image line. 

The sensor orientation and calibration methods presented in this study are validated using a 
number of application datasets. The image datasets of the three sensors are acquired over 
specially established testfields. Triangulation results prove the importance of high quality 
trajectory measurements for accurate sensor orientation. When the given image trajectory 
has a low quality, a sophisticated trajectory model should be used together with a high 
number of ground control points. 

This study also shows that, despite their weaker sensor geometry, the Linear Array CCD 
sensors have reached the accuracy potential of the conventional frame imagery for point 
determination. In addition, similar to the conventional film sensors, self-calibration has 
proven as a powerful tool for modeling the systematic errors of the Linear Array CCD 
imagery, albeit the method should be applied with a great care. 
 



 

 

 
 

 

RIASSUNTO 
 

 

 

 

I sensori CCD lineari, detti anche sensori pushbroom, sono ampiamente utilizzati nella 
nuova generazione di camere aeree e sensori ottici satellitari ad alta risoluzione. Rispetto ai 
sensori a matrice rettangolare, i sensori CCD lineari utilizzano un minor numero di 
rivelatori per coprire la stessa larghezza di strisciata e presentano maggiore flessibilita’ di 
progettazione. Le camere analogiche convenzionali utilizzate in fotogrammetria aerea 
erano fabbricate in formato quadrato. Anche i primi sensori di telerilevamento per 
l'osservazione della Terra lavoravano con camere analogiche, ma sono stati sostituiti dai 
sensori CCD lineari. Nel caso di camere fotogrammetriche aeree, i sensori digitali di 
piccolo e medio formato sono a matrice rettangolare. I sensori di grande formato sono 
presenti gia’ dal 2000 sia a matrice lineare che rettangolare. 

A causa della diversa geometria del sensore, la procedura convenzionale usata in 
fotogrammetria per il processamento geometrico dei sensori CCD lineari deve essere 
ridefinita o interamente sviluppata. La modellazione della traiettoria di volo è uno dei 
principali aspetti introdotti in fotogrammetria aerea e satellitare dai sensori pushbroom. 
Infatti le equazioni di collinearità sono estese con funzioni matematiche che modellano la 
traiettoria del sensore. Questa ricerca ha come obiettivo la triangolazione di immagini 
acquisite da sensori CCD lineari, usando diversi modelli per la traiettoria. Per 
l’autocalibrazione, il modello usato per i sensori a matrice rettangolare e’ stato 
parzialmente modificato e adattato alla struttura fisica dei sensori CCD lineari. 

In generale, la triangolazione e l’autocalibrazione dei sensori CCD lineari montati su aereo 
e satellite mostra analogie in termini di modellazione della traiettoria e definizione fisica 
dei parametri aggiuntivi di autocalibrazione. La differenza principale e’ il numero di 
parametri incogniti presenti nella compensazione a stelle proiettive, che e’ calcolata in 
funzione del numero di lenti e di vettori CCD nel sensore e la configurazione del modello 
della traiettoria. Di conseguenza simili approci sono utilizzati in questo studio, con 
adattamenti necessari per i singoli sensori. 

Per ottenere un'elevata precisione di posizionamento, e’ cruciale misurare la traiettoria 
accuratamente. La traiettoria osservata viene successivamente modellata nella 
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compensazione con parametri di correzione costanti o lineari, così come polinomi di ordine 
superiore. Questo studio indaga tre diversi modelli di traiettoria con tre differenti approcci 
matematici. Due dei modelli sono studiati a diversi livelli di sofisticazione, modificando i 
parametri del modello stesso. 

Per la valutazione pratica degli algoritmi sviluppati, sono stati utilizzati due sensori CCD 
lineari aerei, STARIMAGER della Starlabo Corporation, Giappone, e ADS40 della Leica 
Geosystems, Svizzera, e il sensore PRISM (Panchromatic Remote-sensing Instrument for 
Stereo Mapping) montato a bordo del satellite giapponese ALOS, lanciato dalla JAXA 
(Japan Aerospace Exploration Agency) nel 2006. I due sensori aerei lavorano con il 
pricipio TLS (Three-Line-Scanner), con tre linee di sensori. Secondo questa geometria, tre 
o più CCD lineari sono montati sul piano focale di un’unica lente, con diversi angoli di 
vista per garantire l’acquisizione in stereo. Il sensore PRISM differisce nel design ottico, 
poiche’ utilizza tre camere separate, ciascuna associata ad un diverso angolo di 
visualizzazione. 

A causa delle differenze di progettazione dei sensori, due serie di parametri aggiuntivi per 
l'auto-calibrazione sono utilizzate. I sensori TLS aerei hanno lo stesso set di parametri 
aggiuntivi, mentre nel caso di PRISM il set tiene conto della presenza di piu’ lenti e chips 
CCD. 

L’orientamento e calibrazione dei sensori pushbroom presentati in questo studio sono 
validati con diversi set di dati. Le immagini utilizzate sono state acquisite su testfields 
appositamente istituiti. I risultati della triangolazione dimostrano l'importanza di una 
misurazione accurata della traiettoria per l’orientamento del sensore. Quando la traiettoria 
e’ misurata con bassa o insufficiente qualità, un sofisticato modello deve essere usato per 
la modellazione della traiettoria, insieme ad un numero elevato di punti di controllo a terra. 

Questo studio mostra anche che, nonostante la debole geometria, i sensori CCD lineari 
hanno raggiunto la precisione dei sensori a matrice rettangolare nel posizionamento dei 
punti. In aggiunta, come per le tradizionali camere analogiche, l’autocalibrazione risulta 
essere un potente strumento per la modellazione degli errori sistematici del sensore, anche 
se deve essere applicata con una grande cautela. 
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INTRODUCTION 
 

 

 

Full automatization of the processes is still one of the major aims in the field of aerial and 
satellite photogrammetry. A significant amount of research is devoted to automatization 
both on the hardware level, e.g. the use of auxiliary measurement devices, and on the 
algorithmic level, e.g. automated image matching for point extraction and DSM generation 
purposes. Avoidance of ground measurements is still a main task of many research projects 
without compromising high accuracy.  

The development of digital airborne cameras is an important step for automatization of 
processes and especially realization of on-line triangulation in aerial and satellite 
photogrammetry. With the help of auxiliary exterior orientation (EO) measurement devices 
and automatic matching algorithms, the post-processing burden in triangulation is 
significantly reduced. A quasi real-time data processing procedure is almost possible, 
which allows the operator to control the blunders and other model errors, and to remove 
false observations or add new observations at an early stage of block processing. Such a 
capability increases significantly the speed of execution and the reliability of results of the 
overall triangulation procedure (Gruen, 1985b). Furthermore, the direct georeferencing 
accuracy may be sufficient for many applications with proper calibration of the sensors and 
post-processing of the measurements. Thus, the triangulation procedure may become 
obsolete. 

At the current time, most of the high resolution satellite optical digital cameras acquiring 
images with a large swath width use Linear Array CCD technology. The large format 
aerial digital cameras employ the CCD Array sensors either in area or line form. The main 
advantages of the Linear Array CCD technology over the Matrix Array (called also as 
Frame Array or Area Array) CCD sensors can be listed as: (i) design flexibility, (ii) better 
affordability, and (iii) a nearly parallel projection in the flight direction. Multiple Linear 
Array CCDs can be located on the focal plane of a single lens in parallel position, 
providing image acquisition capability from different spectral channels and different angles 
for stereo viewing. In comparison to the Frame Array sensors, a lighter camera design with 
large swath width is possible with the Linear Array sensors by using a smaller number of 
CCD detectors in total. For similar reasons, the affordability is increased in terms of 
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number of lenses and CCD detectors required for the same swath width and spectral 
channels to be used. In addition, the operational constraints caused by the camera weight 
are reduced, which may be important especially for the satellite platforms. 

Both the aerial and satellite Linear Array CCD sensors operate with the pushbroom 
principle and collect one or more image lines at an instant of time. Therefore, there is one 
set of EO parameters for each image line, except the Three-Line-Scanners (TLS). The 
multiple image lines of the TLS sensors, which are by definition located on the focal plane 
of a single lens, share the same set of orientation parameters at the same instant of time. 
The image geometry of the Linear Array CCD images is different from the conventional 
frame imaging. It is considered weaker due to excessive number of EO parameters. 
Opposite to the traditional photogrammetry, it is impossible to reconstruct the EO 
parameters of all image lines with the help of ground control points (GCPs) only. 

The position and attitude measurement devices, i.e. GPS (Global Positioning System) 
antenna, IMUs (Inertial Measurement Units), etc., are used for exterior orientation 
determination in aerial and satellite photogrammetry for about two decades. The star 
trackers are also used for the attitude determination of satellite sensors. The qualities of the 
measurements are increased in the meantime and the direct georeferencing without use of 
GCPs is nowadays possible for many applications, which require relatively low accuracy. 
In addition to the developments on the hardware side, the use of sophisticated 
mathematical algorithms, such as Kalman Filtering, increases the overall navigation 
accuracy significantly. The EO parameter measurements with the GPS/IMU devices and 
star trackers are crucial for the Linear Array CCD sensors and a high quality image 
trajectory is very important for the systems’ overall accuracy. The data obtained from the 
auxiliary devices can be used as observations in the photogrammetric triangulation and be 
improved with the use of GCPs. The concept of trajectory modeling becomes important 
and new algorithms are developed for this purpose.  

A modified bundle adjustment procedure with the possibility of using three different 
trajectory models has been developed at the Institute of Geodesy and Photogrammetry 
(IGP), Chair of Photogrammetry and Remote Sensing, ETH Zurich by Gruen and Zhang 
(2003): (a) Direct georeferencing with stochastic exterior orientations (DGR), (b) 
Piecewise Polynomials with kinematic model up to second order and stochastic first and 
second order constraints (PPM), and (c) Lagrange Polynomials with variable orientation 
fixes (LIM). These models are used for the improvement of the exterior orientation 
parameters, which are measured by the GPS and INS (Inertial Navigation System)/star 
tracker in a modified photogrammetric bundle adjustment procedure. The models are 
implemented in a software module called TLS-LAB. A number of ground control points 
are needed in these approaches in order to achieve high accuracies. 

Self-calibration is an efficient and powerful technique used for the calibration of 
photogrammetric imaging systems. If used in the context of general bundle solution, it 
provides for object space coordinates or object features, camera exterior and interior 
orientation parameters, and models systematic errors as well (Gruen and Beyer, 2001). It 
has now been more than 30 years since the concept of camera system self-calibration was 
introduced into the photogrammetric community. It has become even more important for 
the satellite remote sensing, where in-flight calibration is necessary on a regular base in 
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order to achieve high positional accuracy. The definition of additional parameters (APs) is 
one of the major issues for self-calibration.  

Most of the problems of photogrammetric triangulation for conventional aerial cameras 
have already been solved and its accuracy potential has been investigated. Systematic error 
models of conventional aerial cameras for aerial photogrammetry and digital cameras for 
close-range photogrammetry have already been defined by many authors. As a new-
generation imaging sensor, the systematic error sources of Linear Array CCD sensors 
should be identified and discussed accordingly. The physical conditions of the sensors are 
considered for AP definition in this study. Although different sets of APs are defined for 
the aerial and satellite sensors, some of the parameters are commonly used due to the 
Linear Array CCD structure. 

Geometric modeling, calibration and validation of aerial and satellite Linear Array CCD 
sensors are the main investigation topics of this study. The methodologies include rigorous 
modeling using modified collinearity equations, which are expanded by three different 
trajectory models. Sensor calibration is performed through self-calibration. Specially 
designed sets of APs for different sensors are used for this purpose. The validations of the 
methods are performed using statistical analysis tools for quality control and accuracy 
assessment. The precision and reliability characteristics of the Linear Array CCD sensors 
are investigated in the same quality control system using the data of three different sensors, 
two for the aerial and one for the satellite platforms, acquired over a number of testfields. 

 

1.1 Research Objectives 

The main objectives of this study are: 

 Investigation of the accuracy potential of the Linear Array CCD sensors under several 
testfield designs and network conditions, i.e. block configurations, different numbers 
and distributions of ground control points, tie points, etc. 

 Investigation of the modeling capabilities and limitations of the trajectory models 
developed by Gruen and Zhang (2003) with different configurations, i.e. varying 
numbers of orientation fixes, polynomial segments, etc. 

 Investigation of the self-calibration capabilities of Linear Array CCD sensors and 
implementation of an automated AP detection strategy using statistical tests for 
parameter determinability 

 Implementation of an automated blunder detection algorithm using Baarda’s (1967, 
1968) data snooping approaches 

 Development of a software package integrated into the existing Linear Array CCD 
sensor data processing software, TLS-LAB, developed at the IGP, ETH Zurich using 
MS Visual C++ 6.0 

Validation of the software and the methods implemented here is another important task of 
this study. Images of a number of aerial and satellite Linear Array CCD sensors and 
reference data acquired over designated testfields are used to achieve these goals. 
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1.2 Review of Digital Optical Sensors 

A brief introduction and overview of the airborne and satellite digital optical sensors are 
given in this section. The sensors are analyzed according to their interior geometries, i.e. 
frame sensors, line sensors, etc., which determines the image collection method, i.e. 
pushbroom, whiskbroom, frame imaging, etc., as well. 

Two different imaging technologies, the charge-coupled device (CCD) and the 
complementary metal oxide semiconductor (CMOS), are used in the digital optical sensors. 
The CCD technology is commonly used in the high-resolution satellite optical sensors and 
large and medium format aerial digital cameras. The CMOS technology is mostly used in 
the small format digital cameras, used in aerial photogrammetry, such as Kodak Pro SLR 
cameras, Canon EOS series, and Nikon D2X range cameras (Petrie and Walker, 2007). 

The satellite digital optical sensors are presented mainly in three different formats: (i) 
Point-based sensors, (ii) Linear Array CCD sensors, and (iii) Frame (Matrix/Area) Array 
sensors. The large format aerial digital cameras are manufactured in the latter two formats 
only. The main characteristics of the three types of the sensors are given below. Most 
frequently used sensors in the industry are classified in the corresponding sections.  

 

1.2.1 Point-based Sensors 

A point sensor images only a single point at any instant of time (Mikhail et al., 2001). The 
point-based electromechanical sensors acquire images in whiskbroom mode. They use 
rotating mirrors to scan the terrain surface from side to side perpendicular to the direction 
of the sensor platform movement, like a whiskbroom (Poli, 2005). The width of the sweep 
is referred to as the sensor swath. Advantages of whiskbroom scanners over other types of 
sensors are that they have simple overall design, wide field-of-view, and easier to calibrate 
due to small number of detectors. On the other hand, they have more moving parts, post-
processing is required due to spatial incongruence, and they have more constraints in 
spectral and spatial resolution due to low integration time (Nieke and Itten, 2007). 

Well known examples of satellite whiskbroom imagers are MSS on LANDSAT 1-5, TM 
on LANDSAT 4-5, ETM+ on LANDSAT 6-7, AVHRR on POES, SeaWiFS on SeaStar, 
and the GOES satellites (Poli, 2005).  

Examples of airborne whiskbroom imagers can be found in hyperspectral imaging, e.g. 
Hymap of HyVista Corp., Australia, and ARES of Integrated Spectronics, Australia, co-
financed by DLR German Aerospace Center and the GFZ GeoResearch Center Potsdam, 
Germany. 

 

1.2.2 Linear Array CCD Sensors 

These types of sensors use CCD detectors located along a straight line in the focal plane. 
There are several configurations of the arrangement of the CCD lines in the focal plane of 
a lens/optics, which are explained in detail in Chapter 2.  

The Linear Array CCD sensors operate with the pushbroom principle. The sensor is 
located in the focal plane perpendicular to the platform’s motion. The perspective 
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projection is applicable only in the across-track direction. With the pushbroom principle, 
one image line is acquired at an instant of time and stored one after the other to form a strip 
during the platform movement. 

Most of the high-resolution Earth observation satellite sensors in operation (e.g. SPOT 
4&5 sensors of CNES, France; IKONOS, Orbview-3, and GeoEye-1 sensors of GeoEye, 
U.S.A.; KOMPSAT-1 and KOMPSAT-2 sensors of KARI, South Korea; QuickBird and 
Worldview-1 sensors of Digital Globe, U.S.A.; EROS-A1 and EROS-B sensors of 
ImageSat Intl., Israel; Cartosat-1 and Cartosat-2 sensors of ISRO, India; and the PRISM 
and AVNIR-2 sensors of JAXA, Japan) and planned for near future (e.g. RapidEye sensor 
of RapidEye AG, Germany; Worldview-2 sensor of Digital Globe, U.S.A.; EROS-C sensor 
of ImageSat Intl., Israel; and Pleiades-1 and Pleiades-2 sensors of CNES, France) are using 
Linear Array CCD technology.  

In case of the large format aerial digital cameras, Wide Angle Airborne Camera WAAC 
(Boerner et al., 1997), the High Resolution Stereo Camera HRSC (Wewel et al., 1999), the 
Digital Photogrammetric Assembly DPA (Haala et al., 1998) were the first digital systems 
being used for airborne applications. The first commercial line scanner Airborne Digital 
Sensor ADS40 was developed by LH Systems jointly with DLR (Reulke et al., 2000, 
Sandau et al., 2000). In the year 2000, Starlabo Corporation, Tokyo designed the Three-
Line-Scanner (TLS) system, jointly with the Institute of Industrial Science, University of 
Tokyo (Murai and Matsumoto, 2000). JAS-150s of Jena-Optronik, Germany, is a recent 
example of the Linear Array CCD sensors in the market (Jena-Optronik, 2007). The 3-
DAS-1 and 3-OC systems of Wehrli Associates, NY, U.S.A., are also relatively new 
products and differ from other TLS sensors with their multiple camera heads (lenses).  

 

1.2.3 Frame (Area /Matrix) Array CCD Sensors 

In digital frame sensors, the CCD pixels are positioned in a rectangular matrix. Similar to 
the film cameras, the images are taken in a central projection. The images are taken with a 
certain amount of overlap for stereo viewing and with a time interval. The perspective 
projection is valid in all directions of imaging. 

In satellite sensors, the matrix array configuration is mostly applied in small-satellite 
missions (body mass < 1000 kg), e.g. Bilsat-1, TUBSAT series, UoSAT series, Kitsat 
series, etc., and in some of the meteorology and environmental monitoring satellite sensors, 
such as MERIS on ENVISAT, POLDER on ADEOS, etc. In comparison to satellite Linear 
Array CCD sensors, frame array CCD cameras of small satellite missions have larger 
GSDs or smaller coverage area due to small number CCD detectors (e.g. 2048 2048 
pixels in Bilsat-1, 750 x 580 pixels in DLR-TUBSAT, 1024 x 1024 pixels in UoSAT SHI 
and MSI cameras). 

The aerial Frame Array sensors can be categorized as small, medium, and large format 
cameras. Petrie (2003) categorizes the aerial digital frame cameras as: 

i. small format (up to 16 megapixels) 

ii. medium format (from 16 up to 50 megapixels) 

iii. large format (greater than 50 megapixels) 
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Medium and large format cameras are used in large scale photogrammetric projects. 
Among the medium format cameras, the DSS of Applanix, Canada, DigiCAM of IGI, 
Germany, and Rollei AIC of RolleiMetric, Germany, can be listed. DMC of Intergraph, 
U.S.A., UltraCam-D and UltraCam-X cameras of Microsoft, and the DiMAC of DIMAC 
Systems, Luxembourg, are large format digital frame cameras playing major roles in the 
aerial photogrammetry market. 

A comprehensive study reported by Alamús et al. (2005 and 2006) on the DMC image 
geometry shows that analog cameras and the DMC achieve comparable 3D point 
accuracies in aerotriangulation and also in stereoplotting. A geometric performance study 
on the UltraCam-D sensor has been published by Honkavaara et al. (2006). Both works 
propose use of multiple sets of additional parameters, one set for each camera head, for 
improved point determination accuracy. More information on the DMC image processing 
can be found in Madani et al. (2004), Rosengarten (2005), Doerstel (2005), Doerstel et al. 
(2005), Zhang et al. (2006), and on UltraCam-D processing in Leberl and Gruber (2003) 
and Kroepfl et al. (2004). 

A European project on “Digital Camera Calibration” initiated by EuroSDR (European 
Spatial Data Research) has been finalized by the end of 2007. Image datasets of three large 
format aerial digital cameras, the DMC, the UltraCam-D, and the ADS40, have been 
acquired over different testfields and tested by different participants, from universities, 
research institutes, and companies. The results are reported by Cramer (2007). Self-
calibration is used to improve the accuracy of all datasets with different sets of additional 
parameters. The planimetric accuracy results of the DMC and the UltraCam-D are 
comparable. However, the UltraCam-D has performed better in height. The ADS40 results 
are superior to the results of both sensors, especially in height. 

 

1.3 Review of Sensor Calibration Approaches for the Linear Array CCD 
Sensors 

The aerial and satellite sensor systems should be calibrated in order to meet the 
georeferencing accuracy requirements. Calibration can be a component or a system 
approach and includes the calibration of cameras and the auxiliary measurement devices, 
such as GPS, IMU, star trackers, etc., and their relative alignments.  

The relative alignment of the camera and the auxiliary measurement devices might change 
during operation. An in-flight calibration method should be performed on a regular base 
for satellite sensors, in order to detect those changes. In case of aerial photogrammetric 
projects, the auxiliary devices are usually calibrated individually and aligned with the 
camera in the flight preparation phase. The literature on the GPS/INS calibration and 
integration are briefly summarized in the following section. 

The cameras are calibrated basically for two main aspects: for their radiometry and 
geometry. The radiometric calibration techniques fall out of the scope of this study.  

Considering their physical structures, cameras are calibrated mainly for distortions of the 
optical system (lens) and the focal plane arrangements. The well-known lens distortion 
models of Brown (1971) are used in photogrammetric applications. The focal plane 
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arrangements include the principal point of the lens, camera focal length, positions of the 
imaging detectors with respect to the principal point, and the detector size. 

There are different techniques for camera calibration. The main categorization of the 
techniques includes laboratory calibration, testfield calibration, and self-calibration. The 
development line of the calibration techniques is briefly explained by Clarke and Fryer 
(1998). 

Self-calibration is an efficient and powerful technique used for the calibration of 
photogrammetric imaging systems. Systematic error models of conventional aerial cameras 
for aerial photogrammetry and digital cameras for close-range photogrammetry have 
already been defined by several authors (Ebner, 1976; Brown, 1971 and 1976; Gruen, 
1978; Beyer, 1992; Fraser, 1997). 

A self-calibration model, originally developed for frame cameras, was adapted for the 
ADS40 sensor and is currently available in the Orima software of Leica Geosystems 
(Tempelmann et al., 2003). The algorithmic details of the sensor model are given in 
Hinsken et al. (2002). The laboratory calibration procedures of the ADS40 sensors, both at 
DLR and Leica Geosystems, are reported by Schuster and Braunecker (2000). 

Chen et al. (2003) described the laboratory calibration method for the TLS (later 
STARIMAGER) sensor. The camera’s interior orientation data, lens distortion parameters, 
and the alignment errors of the CCD sensors in the flight direction are estimated in this 
model.  

Post-launch and in-flight calibration have drawn considerable interest in the satellite 
remote sensing community. A number of radiometric and geometric calibration techniques 
and results of several calibration programs are presented in Morain and Budge (2004). An 
AP set, which includes mainly the lens distortions, scale error and CCD line inclination, is 
applied to a number of satellite pushbroom sensors by Poli (2005). The BLUH software 
developed at the University of Hannover is used for self-calibration of a number of aerial 
and satellite sensors (Jacobsen, 2004). 

 

1.4 Review of Sensor Orientation Methods for Linear Array CCD 
Sensors 

 

1.4.1 Direct vs. Indirect Georeferencing 

Georeferencing is a process which provides the position and rotation information of an 
object or an event at a certain time in an Earth reference frame as output. The concept of 
the georeferencing provides the position and the attitude values (EO parameters) of the 
sensor at the time of imaging.  

There are three methods to obtain the EO parameters of an image: the direct, indirect, and 
integrated georeferencing. With the direct georeferencing method, the EO parameters are 
obtained from external instruments on board of a sensor platform, such as GPS, inertial 
measurement units (IMU), star trackers, etc. The indirect georeferencing is the 
conventional way of obtaining the EO parameters. The parameters are computed in a 
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mathematical solution using a number of GCPs. The indirect georeferencing methods can 
be analyzed in two categories: rigorous sensor models and the generic ones. 

When the rigorous sensor modeling is required, a bundle adjustment is applied for the 
solution. The image and the ground coordinates of the control points, image coordinate of 
the tie points and sensor interior orientation parameters are inputs of the bundle 
adjustment. The indirect georeferencing is a post-processing method, while the direct 
georeferencing method can be used for online photogrammetric applications. 

A third approach to solve the georeferencing problem is called integrated sensor 
orientation. It is a combined solution which employs both the direct and indirect 
georeferencing methods. The EO parameters provided by the external measurement 
devices are used as input and improved in this post-processing method. The input 
parameters are stochastically weighted in the process. 

A large amount of research has already been devoted to the systematic analysis of the GPS 
and IMU systems, integration algorithms for their data, and direct georeferencing of the 
airborne sensors. The GPS is part of a satellite-based navigation system developed by the 
U.S. Department of Defense. The fundamentals of the GPS can be found in Grewal et al. 
(2001). The major problems and limitations are described also by Jekeli (2000). 

In the literature, there are several GPS/INS designs for georeferencing of airborne images. 
According to each design, different integration methods are proposed. A brief overview of 
accuracy requirements of several applications areas can be found in Schwarz et al. (1994), 
and Schwarz (1995). Error models for INS/GPS integration and design methods for 
improving the attitude accuracy are discussed by Skaloud (1999) and by Skaloud and 
Schwarz (2000). In another study, the system calibration issues for a digital Airborne 
Integrated Mapping System (AIMS) and a performance analysis are introduced by Grejner-
Brzezinska (1999) and Toth (1999). 

The Applanix Corporation in Canada has developed an off-the-shelf Position and 
Orientation System for Direct Georeferencing (POS/DG) for airborne applications and 
tested in a collaboration with the University of Calgary (Lithopoulos, 1999; Mostafa and 
Schwarz, 2000). The performance analysis of the system with low-cost digital cameras is 
reported by Mostafa and Schwarz (2001), Mostafa and Hutton (2001), and Mostafa (2002). 

Most of the GPS/INS data integration algorithms, which are presented by the authors 
mentioned above, use the Kalman Filter approach. Kalman Filter is one of the most well 
known and often-used mathematical tools, which can be used for estimation from noisy 
sensor measurements with a complex stochastic model. It is named after Rudolph E. 
Kalman, who in 1960 published his famous paper describing a recursive solution to the 
discrete-data linear filtering problem (Kalman, 1960).  

Kalman Filter is an extremely effective and versatile procedure for combining noisy sensor 
outputs to estimate the state of a system with uncertain dynamics. In GPS/INS integration, 
noisy sensors include GPS receivers and IMU components, and the system state include 
the position, velocity, acceleration, attitude, and attitude rate of a vehicle. Uncertain 
dynamics include unpredictable disturbances of the host vehicle and unpredictable changes 
in the sensor parameters (Grewal et al., 2001). A Kalman filter optimally estimates 
position, velocity, and attitude errors, as well as errors in the inertial and GPS 
measurements (Grejner-Brzezinska and Toth, 1998). 
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The European Organization for Experimental Photogrammetric Research (OEEPE, later 
renamed as EuroSDR) has initiated a multi-site test investigation of direct and integrated 
sensor orientation using GPS and IMU in comparison and in combination with aerial 
triangulation. The focus was on the accuracy of large scale topographic mapping using film 
cameras. The results were assessed in the scenarios of; (i) conventional aerial triangulation, 
(ii) GPS/IMU observations for the projection centers only (direct sensor orientation), (iii) 
combination of aerial triangulation with GPS/IMU (integrated sensor orientation). The 
accuracy results of direct sensor orientation were proven to be an alternative to 
conventional bundle adjustment. The RMSE values obtained from independent check 
points (multi-ray) were between 5-10 cm in planimetry and 10-15 cm in height in image 
scale 1:5 000. For two rays points, the RMSE differences were higher by a factor of about 
1.5. In case of integrated sensor orientation, the planimetric RMSE values were only 
slightly better than the direct sensor orientation. Improvements occurred primarily in 
height (Heipke et al., 2002). 

At the University of Stuttgart, the sensor integration and system calibration issues for three 
line scanner imagery are discussed by Cramer et al (1999) and Cramer and Stallmann 
(2002). In addition, Terzibaschian and Scheele (1994) introduced the attitude and 
positioning system used for georeferencing of WAOSS three-line scanner. A combined 
block adjustment approach using GPS and IMU data was introduced by the University of 
Hannover (Jacobsen, 1999). The potential and limitation of this combined sensor 
orientation was evaluated by Jacobsen (2000) and the calibration aspects of the sensors 
were provided by Jacobsen (2002) and Wegmann (2002).  

On the satellite imagery side, the direct georeferencing accuracies of different sensors are 
varying. The main factors are the measurement precision and calibration accuracies of 
onboard GPS/INS instruments and their relative alignments with respect to the imaging 
sensor. Direct georeferencing accuracy of a sensor is usually inferior at early phases of 
operation. The accuracy improves during operation by regular calibration of the sensors. 
For example, the expected geopositioning accuracy of IKONOS Geo imagery was 24 m in 
2001 (Fraser et al., 2001), while in 2008 the satellite operator (Geoeye, 2008) gives the 
accuracy values better than 15 m. Another example can be given from the SPOT-5 HRS 
sensor. The HRS absolute location accuracy increased from an initial 63 m RMSE value 
right after the commissioning phase (July 2002), up to about 20 m RMSE (Bouillon, 2004; 
Baudoin et al., 2004). On the other hand, the Cartosat-1 sensor data (launched in 2005) still 
has very large positional biases (100 m – 5750 m) as reported by Lutes (2006), Baltsavias 
et al. (2007) and Kocaman et al. (2008), which makes the images unsuitable for global 
mapping purposes without use of GCPs.  

In case of the ALOS/PRISM sensor, the direct georeferencing accuracy results were given 
as 2.5 (6.25 m) pixels in planimetry and up to 9 pixels (22.5 m) in height (Tadono et al., 
2007). JAXA EORC announced the positioning accuracy of the PRISM sensor as 9.8 m, 
16.7 m, and 18.1 m for the nadir, forward and backward cameras (as of 28 September 
2007). The direct georeferencing accuracy of the PRISM sensor was assessed by Kocaman 
and Gruen (2008) using the images acquired over two different testfields. The RMSE 
values obtained from the two datasets were 1.7 m-3.6 m and 2.5 m-6.4 m in planimetry and 
in height, respectively. 
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1.4.2 Rigorous vs. Generic Models for Georeferencing 

The rigorous sensor models reflect the physical reality of the sensor. There is no unique 
formulation of the rigorous models. The functional model should be defined according to 
the physical characteristics of the sensor. The basic formulation is based on the collinearity 
equation. Aerial Linear Array CCD images are usually georeferenced with rigorous sensor 
models.  

The generic sensor models are independent from a priori knowledge of the physical sensor 
conditions. The geometric metadata information is not necessarily used with the generic 
models. The generic models are in most cases only approximations and generally do not 
produce as accurate results as the physical models. The main advantage of using the 
generic models is that a sophisticated knowledge of the sensor geometry is not required 
and that they can be used in a fairly simple way. Some well-known examples of the 
generic models are 2D/3D polynomial functions, the Rational Function Models, 2D/3D 
affine transformation, and the Direct Linear Transformation model. These models are 
briefly introduced below. 

 

1.4.2.1 Generic Models for Sensor Orientation 

The 2D/3D polynomial functions are approximations and can be used when a rigorous 
model is not available. The polynomial functions are in general used up to 3rd order, since 
higher orders may bring instability and a large number of unknowns into the adjustment. 
For a detailed analysis on the use of 2D/3D polynomial functions, see Toutin (2004a). 

An affine transformation is in fact a 1st order polynomial function and consists of 6 
parameters: 2 translations, 2 scales and 2 rotations. The 2D-3D affine models are often 
used for the orientation of the small field of view satellite imagery as an approximate 
model. For satellite sensors with a narrow field of view like IKONOS, the affine 
transformation model may be used. For details of two different affine models (3D affine 
and the relief-corrected 2D affine transformation) see Baltsavias et al. (2001) and Fraser et 
al. (2002). Their validity and performance is expected to deteriorate with increasing 
area/field of view size and rotation of the satellite during imaging (which may introduce 
non-linearities), and with increasing height range and lack of good GCP distribution. 

The Rational Function Models (RFMs) is a form of polynomial functions. It has recently 
drawn considerable interest in the remote sensing community, especially in light of the 
trend that some commercial high-resolution satellite imaging systems, such as IKONOS, 
are only supplied with rational polynomials coefficients (RPCs) instead of rigorous sensor 
model parameters (Tao and Hu, 2001; Grodecki and Dial, 2003). A RFM is generally the 
ratio of two polynomials with its parameters derived from a rigorous sensor model or a 
number of ground control points. These models do not describe the physical imaging 
process but use a general transformation to describe the relationship between image and 
ground coordinates (Zhang, 2005). 

The RPCs obtained from a RFM can be corrected in a bundle adjustment procedure using 
affine transformation parameters. The model has originally been proposed by Grodecki and 
Dial (2003) for the block adjustment of the IKONOS images. The model has been 
implemented with two different parameter sets (two shift parameters and six parameters for 
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translation and rotation) by Zhang (2005) and has been used for accuracy improvement of 
the RPCs provided by a number of different satellite operators (Eisenbeiss et al., 2004, 
Zhang, 2005, Baltsavias et al., 2007, Kocaman et al., 2008, Kocaman and Gruen, 2008). 
The investigations have shown that the affine correction provided better accuracy results 
than the two-parameter (shifts only) correction model. Sub-pixel (up to 0.4) accuracies 
have been achieved in different investigations. Homogeneous GCP distribution was crucial 
to achieve the optimal results and a small number of GCPs (3-6) was usually sufficient for 
the adjustment (Baltsavias et al., 2007, Kocaman et al., 2008). On the other hand, the 
accuracy results of the RPC affine correction were inferior to the rigorous model results 
(Kocaman and Gruen, 2008), which showed that the affine parameters were not sufficient 
to model the local systematic errors. 

A comparison between the relief-corrected 2D affine, 3D affine, and the RPC correction 
with two translational parameters and affine parameters were provided in Eisenbeiss et al. 
(2004). The results have shown that the 3D affine is inferior to all other models, due to 
sensitivity of the GCP selection, the number of GCPs, and high elevation range in the 
testfield. The RPC correction model with affine parameters came out as the best model 
providing accurate and stable results in all images even with small number of GCPs (4). 

The Direct Linear Transformation (DLT) is a well-known example of the application of 
projective geometry in photogrammetry. The DLT model relates the 3D object space 
coordinates to image space by a rational function polynomial with 11 coefficients. For 
computation of the DLT parameters, a minimum of 6 GCPs are required. The DLT has 
been used by El-Manadili and Novak (1996) and Savopol and Armenakis (1998) with 
SPOT and IRS-1C images respectively. The investigations of Savopol and Armenakis 
(1998) have shown that pixel level accuracy can be achieved with the DLT model using 9 
GCPs. Wang (1999) expanded the DLT by adding corrections for self-calibration, and 
Yang (2001) used it in piecewise functions. The potential disadvantages of the DLT model 
over the rigorous models are the requirement of a larger number of GCPs, sensitivity to 
both the topography and the GCP distribution (in planimetry and in height), and 
inadequacy in modeling the systematic errors of the images. 
 

1.4.2.2 Rigorous Sensor Orientation of Linear Array CCD Sensors 

The rigorous solution of sensor orientation uses the modified collinearity equations in a 
bundle adjustment model. The most elementary unit in photogrammetry is the image ray, 
which connects an object point, the perspective center of the camera lens, and the 
projection of the point on the image. The exterior orientation (EO) and interior orientation 
(IO) parameters, and the systematic error components of the camera should be known to 
reconstruct the image ray. The rigorous sensor models developed for the orientation and 
self-calibration of the STARIMAGER, ADS40, and the ALOS/PRISM are explained in 
detail in Chapter 4. 
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1.4.2.2.1 Review of Trajectory Modeling Approaches 

Trajectory modeling approach is crucial for the processing of aerial and satellite images, 
which are based on of Linear Array CCD technology.  

A trajectory modeling concept with orientation fixes has been proposed by Hofmann et al. 
(1982) for the orientation of a newly developed three line scanner, so called Digital 
Photogrammetry System (DPS). Further developments and investigations on the accuracy 
of the system were published by Hofmann (1984a, 1984b, 1986). 

The concept of the DPS has been further developed and realized in the airborne imaging 
system DPA (Digital Photogrammetry Assembly) and the satellite Linear Array sensor 
MOMS-02. The first evaluation of the DPA system has been presented by Hofmann et al. 
(1993). Details of the mathematical model used for the evaluation was published by Müller 
(1991). 

The mathematical model of Hofmann et al. (1982) has been developed by Ebner et al. 
(1992) at the TU Munich for the orientation of the MOMS-02 spaceborne sensor. The 
MOMS-02 consists of three lenses acquiring simultaneous along-track stereo images from 
three different viewing angles. The unknown parameters of the sensor model contain a 
total of 12 EO (X,Y,Z, ,, for the forward and the backward lenses) and 9 IO (principal 
point displacements and camera constant parameters for each lens) parameters. The EO 
parameters for the nadir lens were not included in the model in order to avoid over-
parameterization in bundle adjustment. The EO parameters are determined at the 
orientation fixes, and the EO parameters for the image lines between the orientation fixes 
are interpolated with a 3rd order Lagrange polynomial function. The investigations based 
on the simulation data has shown that the 3rd order polynomial functions approximate the 
orbit quite accurately. Different orientation fix intervals have been tested with the 
simulation data in this study. In addition the corrections at the orientation fixes, platform 
position and attitude offset and drift parameters (12 in total) were introduced in the system 
to model the errors of the external measurement devices. The study presented by the Group 
was based on simulation data and the absolute accuracy of the model was not evaluated. 
The model was tested later with the imagery of airborne MEOSS and the spaceborne 
MOMS-02 sensors (Ohlhof, 1995), HRSC and WAOSS sensors (Ohlhof and Kornus, 
1994), and the MOMS-2P sensor (Kornus et al., 1999a and 1999b). 

The model proposed for DPS/DPA (Hofmann et al., 1982, Müller, 1991) has been 
implemented later for the orientation of the imagery of the ADS40 camera, Leica 
Geosystems, Heerbrugg, in the Orima software (Hinsken et al., 2002). In the sensor model 
of Orima, the EO parameters are determined at the orientation fixes, and the EO 
parameters for the image lines between the orientation fixes are interpolated with a linear 
interpolation. The position and attitude drift parameters are not used. A constant GPS 
offset and IMU misalignment parameter set for the whole image block is introduced in the 
adjustment. Regarding self-calibration, an AP set developed for frame cameras has been 
adapted for the ADS40 sensor in Orima (Tempelmann et al. 2003). 

Lee et al. (2000) has developed a piecewise polynomial model for the trajectory modeling 
of an airborne hyperspectral pushbroom sensor HYDICE. The model has been used before 
for the trajectory modeling of other multispectral sensors (Ethridge, 1977, McGlone and 
Mikhail, 1981). In this study, the trajectory is modeled by dividing it into pieces 
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(segments) and defining 15 parameters per segment (up to first order and up to second 
order polynomials coefficients for the position and attitude errors, respectively). Two kinds 
of constraints are applied at the section boundaries (zero and first order continuity 
constraints). 

Kratky (1989) developed a rigorous sensor model for the SPOT images. With this model, 
the satellite position is derived from known nominal orbit relations. The attitude variations 
are modeled by a polynomial functions (linear or quadratic). This model has been used for 
the orientation of SPOT (Baltsavias and Stallmann, 1992), MOMS-02/D2 (Baltsavias and 
Stallmann, 1996), MOMS-02/Priroda (Poli et al., 2000). The model was also investigated 
and extended in Fritsch and Stallmann (2000). 

The piecewise polynomial approach for the satellite sensor trajectory modeling has been 
applied by Poli (2005) with zero order, first order, and second order continuity constraints. 
In addition, a self-calibration model has been included in this approach. The sensor model 
has been applied to the imagery of a number of satellite sensors (i.e. MOMS-02, SPOT-
5/HRS, ASTER, MISR, EROS-A1). 

The trajectory models used in this dissertation (the DGR, the PPM, and the LIM) have 
been developed by Gruen and Zhang (2003) for the orientation of aerial TLS images. The 
PPM has similarities with the piecewise polynomial models presented by Lee et al. (2000) 
and Poli (2005). With the PPM, the errors of each trajectory segment are modeled by 18 
parameters (second order polynomials for each EO parameter). The trajectory can also be 
modeled as a whole.  

The DGR model can be considered as a simplified version of the PPM, where the position 
data errors are modeled with translational offset parameters and the attitude data errors are 
modeled with shift and drift parameters. The DGR models the trajectory errors as a whole 
without segmentation.  

The LIM proposed by Gruen and Zhang (2003) has its origins in the study of Ebner et al. 
(1992). With the LIM, the attitude data errors are corrected at the orientation fixes and also 
by shift and drift parameters per trajectory, with consideration of the availability of high 
accuracy position data provided by the GPS. The current implementation of the model, 
which is presented in Chapter 4, is different and simplified and models the position and 
attitude errors by shift parameters (6 orientation parameters) at the orientation fixes. Global 
modeling of the position and attitude offset parameters can be performed by applying the 
DGR prior to the LIM if necessary. 

 

1.4.2.2.2 Geometric Accuracy of Aerial Linear Array CCD Sensors 

The first accuracy evaluation tests with the airborne DPA system have been reported by 
Hofmann et al. (1993) and Müller et al. (1994). The empirical accuracy results were 
approximately 1-2 pixels in planimetry and 3-5 pixels in height. The results have been 
confirmed by further DPA evaluation tests reported by Fritsch (1997). 

A comparison between the airborne DPA, and HRSC imagery has been published by Haala 
et al. (2000). While DPA accuracy results were in the order of 3-4 pixels, the HRSC 
accuracy was at sub-pixel level (~0.5 pixel). 
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Point determination accuracy studies with the ADS40 imagery have been performed by 
several authors in different test areas. Yotsumata et al. (2002) obtained 0.6 and 1.1 pixel 
absolute accuracy in X, 0.75 pixel absolute accuracy in Y, and 1.4 pixel absolute accuracy 
in Z at two different flights. Tempelmann et al. (2003) announced the results of Tsukuba 
area (Japan) tests as 0.5 pixel in sigma naught, 0.6, 0.5, and 0.7 pixels RMSE in X, Y, and 
Z respectively. Alhamlan et al. (2004) triangulated the Waldkirch (Switzerland) test data 
with a different number of control points and with four different combinations of the three 
panchromatic scenes (forward-nadir-backward). 0.5-0.7 pixels in sigma naught, 0.7-1.5 
pixels in RMSE X, 0.7-1.3 pixels in RMSE Y, and 0.9-3.3 pixels in RMSE Z are the 
results of these tests. All investigations given above were performed with the Orima 
software of Leica Geosystems, Heerbrugg. 

The results of two more recent ADS40 datasets acquired over the Vaihingen/Enz testfield, 
Germany, and the Pavia testfield, Italy, have been presented by the University of Pavia, 
Italy, IGP, ETH Zurich, and IFP, University of Stuttgart. The Vaihingen/Enz test flight has 
been performed as a joint project between the IFP, Stuttgart and Leica Geosystems, 
Heerbrugg. The dataset has been processed within the “Digital Camera Calibration” project 
initiated by EuroSDR and the results were published by Kocaman et al. (2006) and Cramer 
(2007). The Pavia testfield results were reported in Casella et al. (2007a) and Kocaman et 
al. (2007). Further analyses of the results are given in the Chapter 5.2 of this dissertation. 

The three trajectory models developed for the STARIMAGER (former TLS sensor) 
imagery have been tested with data acquired with the SI-100 camera over the GSI testfield 
in Japan, and the results were published in Gruen and Zhang (2002, 2003). The test area is 
covered by a single strip with triple overlap of 650 m x 2500 m and with a dense ground 
control point (GCP) distribution (48 GCPs). 0.5-1.2 pixel accuracy in planimetry and 0.7-
2.1 pixel accuracy in height have been achieved for ground point determination. Self-
calibration has not been applied in these tests. The triangulation accuracy of the tests were 
superior to the results of other STARIMAGER tests, which are presented in Chapter 5.1, 
due to a number of factors (e.g. smaller test area, more accurate trajectory and camera 
calibration data, etc.). The tests performed by Gruen and Zhang (2002, 2003) have shown 
that the more complex trajectory models (the PPM and the LIM) resulted in higher 
triangulation accuracy, which were represented by RMSE values and the standard 
deviations. The accuracy improvement in height was visible only when a high number of 
GCPs were used (>12). When the number of orientation fixes/polynomial are compared, 
the use of a higher number improved the accuracy values especially in height. 

On the other hand, Chen et al. (2004) presented another trajectory modeling approach, 
which divides the trajectories into sections with overlapping parts. The test results, which 
were obtained from the STARIMAGER dataset acquired over the Yoriichio testfield, vary 
with the number of control points and the block configuration. In the multiple strip 
configuration and using 12 GCPs, the RMSE values are equal to 1.5 and 3.0 pixels in 
planimetry and in height, respectively. 

 

1.4.2.2.3 Geometric Accuracy of High-resolution Satellite Optical Sensors 

Rigorous modeling of ALOS/PRISM sensor has been performed by JAXA, Japan and the 
Chair of Photogrammetry and Remote Sensing, ETH Zurich. Geometric calibration 
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principles and triangulation results of both research groups have been reported by Tadono 
et al. (2007), Gruen et al. (2007), and Kocaman and Gruen (2007a, 2007b, 2008). The 
georeferencing accuracies obtained over the same test datasets were in general similar in 
both groups. In some cases, the ETH Zurich results were slightly better. A number of 
GCPs is necessary to acquire sub-pixel accuracy. RMSE values of 1/2 pixels in planimetry 
and 1/3 pixels in height were obtained in the best case. Two different trajectory models 
have been tested in bundle adjustment with self-calibration at ETH Zurich. The methods 
and the results are provided in detail in Chapter 4 and Chapter 5.3, respectively.  

Eisenbeiss et al. (2004) have tested geometric accuracies of the QuickBird and IKONOS 
images, which were acquired over two different areas (Thun and Geneva, Switzerland). 
RPC corrections with translation (RPC1) and affine parameters (RPC2), and 2D and 3D 
affine transformation models were investigated in this study. The results of Geneva 
IKONOS data for all models were quite similar. The best results of the QuickBird dataset 
acquired over the same area were obtained from the RPC2. The RMSE values obtained 
using RPC2 with all GCPs were 0.44 m (x, 0.72 pixel) and 0.42 m (y, 0.68 pixel) for the 
QuickBird and 0.54 m (x, 0.54 pixel) and 0.42 m (y, 0.42 pixel) for the IKONOS images. A 
3D accuracy assessment using an IKONOS triplet over the Thun area was performed using 
RPC1, RPC2, and 3D affine transformation. The best results were obtained from RPC2 and 
led to RMSE values of 0.4 and 0.7 pixels in planimetry and in height, respectively. 

A physical sensor model developed by Toutin (1995) to geometrically process multisensor 
images has been adapted for the QuickBird images (60 cm GSD) and investigated by 
himself (2004b) using a stereopair. Planimetric and height accuracy values of 2.6 and 2.3 
pixels, respectively, have been achieved in this study. However, the full geometric 
potential could not be achieved due to the low accuracy of the GCP coordinates (1 m in 
planimetry and 2 m in height).  

Jacobsen (2007) reported on the geometric accuracies of eight different satellite optical 
sensors (ASTER, KOMPSAT-1, SPOT-5, IRS-1C, Orbview-3, Cartosat-1, IKONOS, 
QuickBird). The evaluations were performed using different software modules developed 
at the University of Hannover. Three different sensor models (RPC corrections, 3D affine 
transformation, DLT) and different sets of additional parameters have been tested using 
images acquired over four testfields. The achieved accuracies were between 0.5-1.6 pixels 
depending on the sensors and datasets. 

An early report on IKONOS geometric accuracy potential using DLT and 3D affine 
transformation models can be found in Fraser et al. (2001). The achieved RMSE values 
were 0.35-0.5m in planimetry and 0.5-0.8m in height, for both stereopairs and image 
triplets. In comparison to the 3D affine transformation model, the DLT have been found to 
be of slightly lower triangulation accuracy and exhibited stability problems for certain 
GCP configurations. 

Poli et al. (2004) evaluated the 3D point positioning accuracy of SPOT-5/HRS images 
using a rigorous sensor model with the PPM. The spatial resolutions of the images were 10 
m in along-track and 5 m in across-track directions. Using 16 control and 25 check points, 
the achieved RMSE values were 3.5 m, 6.2 m, 3.8 m in X,Y,Z, respectively. The best 
results were obtained by modeling the exterior orientation with 2 segments and 2nd order 
functions and with self-calibration.  
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The Indian Cartosat-1 satellite is similar to the PRISM in terms of spatial resolution. The 
main difference is in image geometry, where one forward and one near nadir camera takes 
Cartosat-1 image stereopairs simultaneously. Investigations on the Cartosat-1 image 
geometry have been performed by several groups, including ours, within the ISPRS-ISRO 
Cartosat-1 Scientific Assessment Programme (C-SAP). We act as principal investigator for 
some test sites and evaluated also data from other test sites. The results obtained from 
several test sites were reported by different groups. Some examples can be found in Lehner 
et al. (2007, 2008), Baltsavias et al. (2007), Kocaman et al. (2008), and Willneff et al. 
(2008). A synthesis of the Programme results was given in Nandakumar et al. (2008). Half 
a pixel accuracy in the object space has been obtained in most of the datasets, while in a 
few of them 1/3rd of a pixel could be achieved. 

 

1.5 Quality Analysis and Validation of the Geometric Processing 
Methods 

In general, validation is the process of checking if something satisfies a certain criterion. 
Validation implies one is able to testify that a solution or process is correct or compliant 
with set standards or rules (Wikipedia). 

The geometric validation of aerial and satellite Linear Array CCD sensors are performed in 
terms of accuracy and reliability. Accurate calibration of the cameras and auxiliary 
measurement devices, the image quality, consistency of the results, sensitivity to erroneous 
operations and error detection capabilities, and meeting the actual data and accuracy 
requirements of the industry are parts of the validation process. 

The validation of the imagery of the aerial and satellite Linear Array CCD sensors requires 
appropriate hardware and software tools, and well-equipped testfields. The laboratory 
calibration for the aerial and the satellite sensors (before the launch) is necessary. The 
cross-check mechanisms for the position and attitude measurement devices, such as 
increasing the redundancy by using multiple IMU devices and a star tracker in parallel, are 
control tools on the hardware side. On the software side, preprocessing of the GPS and 
IMU data with a Kalman Filter, using a rigorous sensor model to reflect the physical reality 
of the sensors, implementation of the self-calibration capability in a bundle adjustment 
with appropriate additional parameters, development of trajectory models with sufficient 
order of parameters for systematic error compensation, and implementation of statistical 
analysis tools for the accuracy assessment, are the major validation tools. To possibly 
prove the image quality and stereo capabilities of the sensors, other tools such as 
radiometric preprocessing and analysis, a sophisticated matching algorithm for DSM 
generation, are indispensable parts of a photogrammetric software suit. 

On the other hand, the validation of the methods is also crucial for adequate system 
validation. Selection of the appropriate georeferencing and calibration method for an image 
dataset, internal control mechanisms of the bundle adjustment, statistical evaluation of the 
results, and seeking for consistency of the results, are the important aspects of the 
methodological validation at first hand. 

This study aims at validation of the Linear Array CCD sensors and the developed methods 
simultaneously. Three different trajectory models and self-calibration with different sets of 
additional parameters are investigated in terms of accuracy, reliability and determinability. 
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A gross error detection method, Baarda’s (1967, 1968) data snooping algorithm, is 
integrated into the models to remove the blunders in the measurements. The modeling 
errors are investigated by comparing the internal and external accuracy parameters. The 
systems’ precisions are assessed through the analysis of the covariance matrix. An 
automated iterative parameter removal algorithm is implemented in the self-calibration 
software in order to detect undeterminable parameters and also to use the optimal set of 
additional parameters. 

 

1.6 Outline 

This dissertation is organized in six chapters. After the introduction chapter, the main 
aspects of the characterizations of the aerial and satellite Linear Array CCD sensors are 
given Chapter 2. The common features of the aerial and satellite Linear Array CCD 
sensors are described and the differences are underlined when necessary. 

The Chapter 3 defines the main calibration parameters for the Linear Array CCD sensors. 
The parameters explained in this section are the most common parameters and can be used 
for a substantial number of optical Linear Array CCD sensors. 

The methodologies used in this work are given in detail in the Chapter 4. The methods of 
rigorous sensor orientation with trajectory modeling and self-calibration are explained 
stepwise. The geometric preprocessing algorithms needed to be applied to the data before 
the bundle adjustment and the accuracy assessment methods are given in this part as well. 

The practical applications are provided in the Chapter 5. The image datasets of three 
different Linear Array CCD sensors acquired over a number of testfields are investigated 
and the results of 9 different datasets are presented and discussed in this section. 

The study is concluded in the last Chapter together with recommendations and outlook for 
the future work. 
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CHARACTERIZATIONS of the LINEAR ARRAY 
CCD SENSOR GEOMETRIES 

 

 

 

 

 

This section describes the major characterizations of aerial and high-resolution satellite 
Linear Array CCD sensors, with a brief overview of the existing sensor designs and 
technologies.  

Considering the imaging parts and the operational aspects, the aerial and high-resolution 
satellite Linear Array CCD sensors can be characterized in the following categories: (i) 
optical system specification, (ii) line geometry, (iii) sensor resolution, and (iv) operational 
specifications. These aspects are explained in the following subsections. Differences 
between the aerial and satellite sensors are underlined when necessary. 

An overview of the Linear Array CCD geometries is given in Table 2.1. 

 

2.1 Optical System Specification 

According to the optical systems involved, there are two main design principles: single-lens 
and multiple-lens systems. For utilization of an aerial/satellite optical sensor in 3D 
photogrammetric applications, the sensor should have stereo image collection capability. 
Stereo imaging is possible both in single and multiple lens systems, with the help of 
platform movement capabilities or the special arrangement of the Linear Array CCD 
sensors on the focal plane. 

High-resolution satellite sensors with single optical system usually work with 
asynchronous imaging principle, as explained in section 2.4.1, and along-track agile body 
pointing capability to acquire stereo images in the same orbital pass (e.g. EROS-A of 
ImageSat Intl., QuickBird of Digital Globe, SPOT-5 HRS of CNES, and IKONOS of 
GeoEye, etc.).  
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Table 2.1. Categorization of the optical Linear Array CCD sensor geometries 

 Characterization Aerial sensors Satellite sensors 

Single optical camera 

- Single line sensors  

- Three-Line-
Scanners 

Single line sensors 

Optical System 

Multiple optical 
cameras 

Single line sensors Single line sensors 

Line constitution 
A single CCD chip 
forms an image line 

- Single CCD chip 
forms an image 
line 

- Multiple CCD 
chips form an 
image line 

Staggered arrays optional optional 
Line Geometry 

TDI technology Not used 

- TDI is used (the 
number of image 
lines defines the 
TDI level) 

- TDI is not used 

Spatial 
Flexible spatial 
resolution with regard 
to the flying height 

- Low-resolution 

- Medium-
resolution 

- High-resolution 

Radiometric Varies in the range of 8-16 bits 

Spectral 

Varies in the range of 0.45-0.95 µm for 
optical satellite and aerial sensors. Spectral 
sensitivity of each CCD sensor is named 
according to the bandwidth (e.g. RGB, PAN, 
NIR, etc.) 

Resolution 

Temporal 
Not used for 
characterization 

Defined with the 
revisit time 

Sensor and platform 
synchronization 

Synchronous 
- Synchronous 

- Asynchronous 

Stereo acquisition Along-track 
- Along-track 

- Across-track 

Operation 
principles 

Platform stabilization 
- Stabilized with gyro-mount 

- Not-stabilized 
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Forward Backward Nadir 

Flight direction 

In case of the aerial sensors, the Three-Line-Scanner (TLS) design involves a single lens 
with multiple Linear Array CCDs located on the focal plane for stereo acquisition (Figure 
2.1). The ADS40 sensor of Leica, Heerbrugg, the STARIMAGER system of former 
Starlabo Corporation, Japan, the JAS-150 system of Jena Optronik, Germany, and the 
HRSC-A and HRSC-AX sensors of DLR, Germany, are examples of aerial TLS sensors. 

Satellite sensors with multiple optical systems (cameras), such as Cartosat-1 of ISRO, 
India, and ALOS/PRISM of JAXA, Japan, etc., can acquire stereo images without body 
tilting. The image acquisition geometry of ALOS/PRISM sensor is depicted in Figure 2.2 
and also in Figure 2.5. The 3-DAS-1 and the 3-OC systems of Wehrli Associates, U.S.A. 
are the aerial examples of Linear Array CCD sensors with multiple camera heads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. A TLS camera operates with pushbroom principle and acquires array images 
continuously. Multiple image lines with different looking angles are acquired 
at an instant of time. 

 

2.2 Line Geometry 

Several arrangements of the Linear Array CCD chips on the focal plane of a lens can be 
applied. The arrangements can be classified as following: 

- Line constitution: One or more CCD chips can be used to form an image line. The 
STARIMAGER of the Starlabo and the ADS40 of Leica Geosystems are examples of 
the sensors with single CCD chips located parallel to the line direction. Alternatively, 
multiple CCD chips can be employed along a single line with a small overlap and 
optical butting, as shown in Figure 2.3. Examples of this type of line construction can 
be found in IRS 1C/1D PAN sensors of ISRO, the IKONOS sensor of GeoEye, the 
QuickBird sensor of Digital Globe, and the ALOS/PRISM sensor of JAXA. In case of 
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ALOS/PRISM, 6 and 8 Linear Array CCD chips are used to form the image lines of 
the nadir and forward/backward cameras, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Each camera (forward-nadir-backward) of the ALOS/PRISM acquires one 
panchromatic image line at time t. All three cameras operate simultaneously 
and take continuous images of the Earth (t3-t1=t5-t3=45.3). 

 

 

 

 

 

Figure 2.3. Multiple CCD chips can be located along a single virtual line with a small 
overlap and optical butting. 

 

 

- Staggered arrays: Two identical Linear Array CCD chips are located closely in order 
to improve the ground resolution. Taking one CCD chip as reference, the second CCD 
chip is shifted by half a pixel in the line direction (Figure 2.4). 
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Figure 2.4. Staggered array structure of the CCD chips. 

 

Examples of staggered array technology can be found in the ADS40 sensor of Leica 
Geosystems (Reulke et al., 2006) and SPOT missions of CNES. According to Sandau 
(2003), the spatial resolution can be improved by a factor of 2 when staggered arrays 
are used in an optimal sampling pattern. However, Becker et al. (2005) analyzed the 
effect of the staggered arrays into the spatial resolution improvement with ADS40 
images. Their investigations show that the improvements are between 8%-15%. 
Platform motions during the image collection are the main obstacle for the resolution 
improvement in this case. 

 

- Time Delayed Integration (TDI) technology: Dealing with high-speed image 
acquisition and processing systems, the speed of operation is often limited by the 
amount of available light, due to short exposure times. Therefore, high-speed 
applications often use line-scan cameras, based on CCD sensors with TDI 
(Bodenstorfer et al., 2007). Depending on the TDI level, a number of Linear Array 
CCDs are located in parallel, in order to acquire images with improved radiometry. 
With the TDI technology, a longer effective exposure time is provided without 
introducing additional motion blur. The TDI is the state-of-the-art and used in a 
number of high-resolution satellite sensors, such as, the IKONOS, the KOMPSAT-1 
and the KOMPSAT-2, the EROS-B, and the WorldView-1.  

 

2.3 Resolution Specification 

The term resolution defines the smallest discernable physical unit of an observed signal by 
a sensor (Kramer, 2002). For the airborne and spaceborne digital optical sensors, one 
should consider spatial, spectral, temporal, and radiometric resolutions. The primary use 
of this term in this dissertation refers to the spatial resolution.  

 

2.3.1 Spatial Resolution 

Spatial resolution defines the size of an image resolution cell in the target area, or the size 
of pixels in the focal plane. It is usually expressed in terms of GSD (Ground Sample 
Distance), footprint, pixel size, or IFOV (Instantaneous Field of View) . The IFOV denotes 
the (angular) aperture within which the sensor is sensitive to electromagnetic radiation, and 
it is often expressed as a small solid angle. 

The aerial Linear Array CCD sensors can produce images with different GSDs, which are 
computed with respect to flying height. On the other hand, the earth observation satellite 
sensors are known with a constant GSD value, even though there might be a deviation 

Flight direction

Line direction 
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from this value mainly due to variable convergence angles. Sensors with satellite body 
movement capability can take images from variable along-track and across-track looking 
angles and produce different GSDs. 

The satellite optical sensor imagery can be classified according to their GSD size. The 
major classification is done as low, medium and high resolution. The term “very-high 
resolution” is also used in the literature to point out the sensors with a GSD of better than 5 
m. The definitions of the low, medium and high-resolution imagery have always been 
altered with the availability of the imagery with greater ground resolution. The satellite 
optical sensors which provide images with a ground resolution of 10 m and better are 
considered as high-resolution nowadays, while the resolution up to 500 m is classified as 
medium resolution. Other satellite sensors having a spatial resolution of 500 m and less are 
considered as low-resolution. Very often, multiple imaging sensors with different spatial 
resolutions are mounted onboard of one satellite platform. 

 

2.3.2 Radiometric Resolution 

The radiometric resolution describes the ability to discriminate very slight differences in 
energy and represents the sensitivity to detect small differences in reflected or emitted 
energy. It is expressed by an integer number that corresponds to the number of bits (in 
power of 2) used to quantize a pixel.  

Images provided by line scanners for 3D mapping may have a resolution ranging from 8 
bit (256 grey values) to 16 bits (65 566 grey values). Most of satellite and airborne imagers 
have radiometric resolutions between 8 bits and 12 bits. 

 

2.3.3 Spectral Resolution 

The spectral resolution refers to the resolving power of a system in terms of wavelength or 
frequency (Kramer, 2002). The aerial and satellite Linear Array CCD sensors acquire 
images usually in panchromatic (PAN) mode and/or in multispectral (MS) mode. These 
sensors often have multiple Linear Array CCDs with one or more optical camera heads 
acquiring imagery in different spectral channels. Some sensors, such as IRS 1C/1D, 
acquire images in a single PAN band covering only a certain part of electromagnetic 
spectrum (0.50-0.75 m), while some others acquire images in multiple bands, such as 
IKONOS operating in the PAN (0.50-0.95 m), Blue (0.45-0.52 m), Green (0.51-
0.60 m), Red (0.63-0.79 m), and the Near Infrared (0.76-0.85 m) bands. The 
definitions of the MS bandwidths can differ slightly for different sensors. However, the 
spectrum definition of PAN band also varies very often, such as the bandwidth is between 
(0.50-0.90 m) for EROS-A1, (0.49-0.69 m) for Quickbird, (0.45-0.90 m) for 
GeoEye-1, and (0.50-0.85 m) for Cartosat-2. New band definitions, such as red edge, 
will be available with the launches of the RapidEye, the Sentinel-2, and the WorldView-2. 

Advanced multispectral sensors for remote sensing applications are the hyperspectral 
sensors, which detect hundreds of very narrow spectral bands throughout the visible, near-
infrared, and mid-infrared portions of the electromagnetic spectrum. Their very high 
spectral resolutions facilitate fine discriminations between different targets based on their 
spectral response in each of the narrow bands. 
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Panchromatic, RGB (red-green-blue), and near-infrared channels are mainly used in the 
aerial large format digital cameras. There are also examples of aerial hyperspectal 
pushbroom sensors, e.g. CASI 1500 and SASI 600 from Itres Research, Canada 
(www.itres.com, last accessed on 18.01.2008).  

 

2.3.4 Temporal Resolutions of Satellite Sensors 

The absolute temporal resolution of a satellite remote sensing system is the time interval 
between two successive acquisitions of the same area. The temporal resolution is used as 
an important characteristic for the satellite sensors, since they operate on pre-defined and 
fixed orbits.  

In near-polar orbits, areas at high latitudes will be imaged more frequently than the 
equatorial zone due to the increasing overlap in adjacent swaths as the orbit paths come 
closer together near the poles. Some satellite systems can be maneuvered and pointed to 
the target area to reduce the revisit period. Thus, the actual temporal resolution of a sensor 
depends on a variety of factors, including the satellite/sensor capabilities, the swath overlap 
and the latitude. 

The ability to collect imagery of the same area of the Earth’s surface at different periods of 
time is one of the most important characteristics of the remote sensors. Spectral and spatial 
characteristics of features may change over time and these changes can be detected by 
collecting and comparing multi-temporal imagery. By imaging on a continuous basis at 
different times, we are able to monitor the changes that take place on the Earth’s surface, 
whether they are naturally occurring (such as changes in natural vegetation cover or 
flooding) or induced by humans (such as urban development or deforestation). 

 

2.4 Operation Principles 

Operational principles of the satellite platforms and sensors can be analyzed in two main 
categories: sensor and platform synchronization and stereo-acquisition principle. When 
the aerial Linear Array CCD sensors considered, the platform stabilization is a distinctive 
character of some sensors. 

 

2.4.1 Sensor and Platform Synchronization 

According to the sensor and platform synchronization, there are two different operating 
principles of the satellite sensors: 

- Synchronous acquisition mode: The acquisition mode is synchronous if the satellite 
speed and the scanning speed are equal. Each scan line of a Linear Array CCD is 
acquired with the same viewing angle. Examples of synchronous image modes are 
the ALOS/PRISM, Cartosat-1, Orbview-3, etc. Image acquisition principle of the 
ALOS/PRISM sensor is demonstrated in Figure 2.5. 

- Asynchronous acquisition mode: The acquisition mode is asynchronous if the 
scanning velocity and the platform velocity are not the same (Poli, 2005). 
Asynchronous imaging is mainly used in the sensors with single optics, in order to 
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acquire along-track stereo images. Examples can be found in Quickbird and EROS-
A (Figure 2.6). The image geometries are affected by different off-nadir angles, 
which cause different sizes of GSDs. 

Some satellite sensors, e.g. IKONOS, can operate in both synchronous and asynchronous 
acquisition modes. The stereo image acquisition is performed using agile body pointing 
and asynchronous operation capabilities.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5. Image acquisition principle of the PRISM sensor (Tadono et al., 2004) 
 
 

 
Figure 2.6. EROS A1 sensor, asynchronous image acquisition, scan angles and the real 

shape of the imaged geographical area. (http://imagesat.pionet.com) 
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2.4.2 Stereo Acquisition 

Considering the stereo acquisition, there are two main streams: 

- Along-track stereo acquisition: In case of satellite sensors with along-track stereo 
capability, the stereo images of the same area are taken along the flight direction, 
with a time delay in the order of seconds. Images acquired by successive orbits may 
have a small overlap in the across-track direction, too. The main advantage of the 
along-track stereo acquisition (quasi-simultaneous imaging) over the across-track 
stereo acquisition (on different dates) appears on the radiometric differences of the 
stereo images. The radiometric image variations, which can be caused by temporal 
changes, sun illumination, etc., are relatively small between the along-track images. 
SPOT-HRS, IKONOS, ALOS/PRISM (Figure 2.5), Cartosat-1, EROS-B, and 
EROS-A1 sensors are examples of along-track stereo image acquisition. All large 
format aerial Linear Array CCD sensors acquire along-track stereo images. 

- Across-track stereo-acquisition: In across-track configuration, the CCD lines and 
the optical system are combined with a mirror that rotates from one side of the 
sensor to the other across the flight direction. The along-track angle is constant and 
close to zero. The across-track angle is usually up to 30°, but can reach larger 
values (for example 45° with Orbview-3). The number of strips is equal to the 
number of channels (one for each CCD line), all looking in the same direction. At 
the next satellite pass over the area of interest, the strips are acquired with a 
different viewing angle. According to this configuration, the stereo images are 
collected from different orbits, with the overlapping area across the flight direction 
(Poli, 2005). The most relevant consequence of this configuration is that the time 
interval between the acquisitions of two stereo scenes can be in the order of days or 
more, therefore differences in the land cover, due to natural events or human 
actions, in weather, and in the cloud distribution may occur. KOMPSAT-1, SPOT-
5 HRG, ALOS/AVNIR-2, and RapidEye are examples of the sensors for across-
track stereo acquisition. Across-track stereo acquisition with the RapidEye 
constellation is demonstrated in Figure 2.7. 

A few of the high-resolution satellite platforms and sensors has the capability to operate in 
both modes due to sensor agility. Examples of such sensors in operation and planned for 
launch in near future are Quickbird, Orbview-3, ResourceSat-1, Formosat-2, KOMPSAT-
2, Cartosat-2, GeoEye-1, WorldView-1, WorldView-2, EROS-C, Pleiades-1, and Pleiades-
2.  

 

2.4.3 Platform Stabilization 

The aerial Linear Array sensors are often stabilized using a gyro-mount in order to reduce 
the image deformation caused by the aircraft movement and to keep the viewing angle. In 
comparison to the aircrafts, the satellite platforms operate in a smoother fashion. 
Therefore, the use of gyro-mount may not be necessary. 

As an example, the STARIMAGER sensor (formerly called TLS) uses a high-performance 
stabilizer, especially since it was initially mounted on a helicopter. The stabilizer has a 
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vibration absorbing spring and 5 gimbals, absorbs the shake of the helicopter, and keeps 
the optical axis direction of the TLS camera stable within a single pixel of the line sensor.  

Due to this high-performance stabilizer, an acquired original image is not waving and has 
no blurs and the burden for post-processing can be reduced (Tsuno et al., 2004). Figure 2.8 
shows two examples of STARIMAGER images from different areas, one with and the 
other one without gyro-stabilization. 

 

Figure 2.7. Cross-track stereo acquisition with the RapidEye constellation (Scherer and 
Krischke, 2001). 

 

 

Figure 2.8. Parts of images acquired with the aerial STARIMAGER sensor, without (left) 
and with (right) gyro-stabilizer (Tsuno et al., 2004). 
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CALIBRATION PARAMETERS for the LINEAR 
ARRAY CCD SENSORS 

 

 

 

 

 

The interior orientation parameters of a Linear Array CCD sensor are usually determined 
with a laboratory calibration method. However, these parameters might be altered by time 
during the operation, which causes systematic errors in image coordinates. A refinement or 
in-flight calibration is usually necessary to update the given camera calibration data. 

Systematic error components of Linear Array CCD sensors encompass camera systematic 
errors and sensor misalignment and displacements with respect to exterior orientation 
measurement devices. These components might not be separable due to high correlations 
among them. Therefore, only a reduced set of components are introduced into bundle 
adjustment as additional parameters. Often, a parameter corrects errors with similar 
mathematical effect, e.g. camera constant and the height offset. 

This chapter aims to explain only the most common systematic errors of the interior 
orientation for the Linear Array CCD sensors. These systematic errors can be categorized 
as optical system (lens) related and the CCD line related parameters. The errors in CCD 
lines and lens distortions have been described also in another doctoral dissertation by Poli 
(2005). 

 

3.1 Optical System Related Parameters 

The well-known systematic error parameters of the sensor optical systems include lens 
distortions, change in focal length, and the principal point offset. These parameters are lens 
specific and if multiple lenses are employed in sensor design, one set of parameters should 
be defined for each lens separately. 
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3.1.1 Principal Point Displacement 

The principal point is defined as “that point on the image plane which is at the base of the 
perpendicular from the ‘centre of the lens’, or more correctly, from the rear nodal point” 
(Atkinson, 1996). The length of that perpendicular is the principal distance and, at infinity 
focus, it is equal to the focal length of the lens (Clarke et al., 1998).  

The camera parameters (principal point and the lens distortion) is calibrated in a laboratory 
with the help of an optical goniometer. In an idealized lens model, the image plane is 
exactly perpendicular to the optical axis. In reality, there is a slight difference. The point 
where the optical axis intersects the image plane is called principal point of 
autocollimation (PPA). The center of the lens distortions refers to the point, where the 
principal ray of best symmetry intersects the image plane. This point is called principal 
point of best symmetry (PBS). The image coordinates are referred to the PBS. The 
mathematical projection centre is at a distance c from PBS (Kraus, 1993). 

Systematic errors in the principal point definition cause constant corrections (xp, yp) in 
the image coordinates of all points. 

 

3.1.2 Camera Constant 

The principal distance is called also as camera constant and both terms are equal to camera 
focal length at infinity focus. Here, all three terms are used identically. The correction term 
for the camera constant describes any changes in the given parameter of the optical system. 
A systematic error in the camera constant creates a scale effect in the resulting image 
coordinates, in case of flat terrain (Figure 3.1). The effect of a change c in the focal 
length on the image coordinates of a point i are computed using the Equation set 3.1. The 

cx  and cy  represent the correction terms for xi and yi, respectively. 
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where, c is the focal length, c is the change in the focal length, xi, yi are the image 
coordinates of each point, xp, yp are the image coordinates of the principal point of the lens. 

 

3.1.3 Lens Distortions 

The widely used definitions of the lens systematic distortions include the radial symmetric 
lens distortion and the decentering distortion parameters. The Brown (1971) model is used 
here to correct the systematic errors in the image coordinates caused by the lens distortion. 

The radial symmetric distortion is represented as power series of the radial distance r: 

 ...7
3

5
2

3
1  rKrKrKr  

(3.1)

(3.2)
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where, r2 =(x-xp)
 2 +(y-yp)

 2 and, xp, yp are calibrated image coordinates of the principal 
point (PBS) of the lens. 

In wide-angle and fish-eye lenses, the first three terms (K1, K2, K3) are needed to model the 
radial symmetric lens distortion of the digital cameras. After the corrections, the error 
correction terms regarding the radial symmetric lens distortion (xk, yk) on the image 
coordinates xi, yi of a point i is computed using the Equation set 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Effect of the systematic change in the camera constant. H: flying height, PP: 
principal point, c: calibrated focal length, c’: erroneous focal length 
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The first two parameters (p1, p2) of the decentering distortion model defined by Brown 
(1976) bring corrections (xd, yd) to image coordinates xi, yi of a point i as: 

xd = (ri
2 +2(xi-xp)

2 )p1 +2(xi-xp) (yi-yp)p2 

yd = (ri
2 +2(yi-yp)

2 )p2 +2(xi-xp)(yi-yp)p1 

For the Linear Array CCD sensors, if no camera calibration data is provided, it is assumed 
that the xi=xp (equal to zero) for the nadir view. With the camera calibration data, xp = yp= 
0 in the beginning of the adjustment. In the subsequent steps, these parameters are replaced 

(3.3)

(3.4)

Nominal Flight direction 

Camera lens 

Image line on the ground 

H 

Focal plane c c 

PP

Focal plane 

PP



 32 

with estimated principal point displacement correction term to obtain corrected image 
coordinates. 

 

3.2 CCD Line Related Parameters 

As shown in Chapter 2.2, an image line can be formed using one or more CCD chips. The 
systematic error parameters presented here, i.e. scale, rotation, displacement from the 
principal point, and bending, are in general defined per CCD image line (Figure 3.2). If 
multiple CCD chips are used to form an image line, it might be necessary to define 
calibration parameters per CCD chip instead of image line. 

 

3.2.1 Scale effect 

The scale effect parameter represents any change in the size of CCD pixel detectors 
(Figure 3.2a). Systematic errors in CCD detector size and in camera constant have similar 
influences on the image coordinates. If multiple image lines are located on the focal plane, 
such as in the Three-Line-Scanners, it might be necessary to introduce one scale parameter 
for each line. The scale parameter has a significant effect on the y coordinates of the image 
points, which is defined perpendicular to the flight direction. The correction term for each 
point i is computed using the Equation 3.5. 

ys = -(yi-yp)s 

where ys is the resulting correction term on image coordinate yi of each point in y 
direction, s is the scale parameter for each CCD chip, yp is the image coordinate of 
the principal point of the lens in y direction. 

 

3.2.2 Rotation 

In the pushbroom sensors, the CCD lines are assumed to be perpendicular to the flight 
direction. However, small rotations might occur during manufacturing. This rotation 
should be considered in the calibration model. If only one image line is located in the focal 
plane, i.e. forward, nadir, and backward cameras of the ALOS/PRISM, the line rotation 
parameter might not be separable from the yaw error of image trajectory. A graphical 
representation of CCD line rotation is given in Figure 3.2b. 

The effect of the CCD line rotation is significant in the x direction. The correction term 
regarding the CCD line rotation ( x ) for any image point i is computed using the 

Equation 3.6. 

 


 

)y-(y pi
x  

where, yi is the image coordinate of each point in y direction, yp is the image coordinate of 
the principal point of the lens in y direction, and 

(3.6)

(3.5)
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 = 180/π,  

)(   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. (a) Effect of a change in CCD detector size (scale effect). The (x,y) axes 
represent the image coordinate system, PP is the principal point, l and l are 
the calibrated and given (uncalibrated or determined in a former calibration 
method, e.g. using laboratory calibration) positions of a CCD line, 
respectively. 

(b) CCD line rotation in the focal plane.  and  represent the calibrated and 
the given rotations of a CCD line, respectively. 

(c) CCD line bending in the focal plane. 

(d) CCD chip displacements with respect to the principal point. C1, C2, and C3 
are calibrated, and C1, C2, and C3 are the given positions of the CCD chip 
centers. 
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3.2.3 Displacement from the Principal Point 

The center of a CCD line or the individual CCD chips which form an image line are in 
general displaced from the principal point of the camera. The positions of the CCD chip 
centers with respect to the principal point should be known for a precise point positioning 
process. Figure 3.2d demonstrates a change from the given calibration parameters, which 
can be estimated through self-calibration. 

A pair of displacement parameters (xp, yp) is defined for each individual CCD chip. 
Image coordinates (xi,yi) of each CCD pixel i are updated by adding the estimated (xp, 
yp) parameters of  the corresponding chip. 

 

3.2.4 Bending 

A bending error in the Linear Array CCDs forms an arc on the line (Figure 3.2c). The 
parameter is mainly effective in the x coordinate of the image points. The correction term 
(xb) for each point i is computed using the Equation 3.7. 

xb = (yi-yp)ri
2b 

where b is the CCD line bending, yi is the image coordinate of each point in y direction, yp 
is the image coordinate of the principal point of the lens in y direction, and  

ri
2 =(xi-xp)

 2 +(yi-yp)
 2 

 

 

(3.7) 
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METHODOLOGY FOR SENSOR ORIENTATION 
AND CALIBRATION 

 

 

 

 

 

Solutions for the georeferencing problem of the imagery of the Linear Array CCD sensors 
employ both existing and also new photogrammetric algorithms. For accurate 
georeferencing, the image trajectory should be recorded by external measurement devices, 
such as GPS, INS, star tracker, etc. The given (measured) trajectory very often contains 
systematic errors, such as constant positional and rotational displacements, drift in time, 
etc. The trajectory modeling concept is therefore introduced into the bundle adjustment by 
modifying the conventional collinearity equations. 

Three different trajectory models have been developed and implemented at the Chair of 
Photogrammetry and Remote Sensing, ETH Zurich by Gruen and Zhang (2003). The 
models, named as the DGR, the PPM and the LIM, are explained in detail in the following 
sections. The DGR is applied to the imagery of all sensors in Chapter 5 and validated using 
reference data. When compared to the DGR, the PPM and the LIM are more complex 
models. The LIM is applied only in the aerial TLS data, where the image trajectory is 
comparably uneven due to relatively rough aircraft movements, and sudden changes and 
jumps can be expected. Therefore, dense orientation fixes might be necessary to model the 
trajectory errors. On the contrary, the Earth observation satellites move in a smooth orbit 
and a small number of segments would be adequate for modeling the trajectory errors. 
With LIM, at least four orientation fixes should be defined with the current implementation 
of the model. Therefore, the PPM and the DGR are applied to the satellite image data (i.e. 
ALOS/PRISM) and the use of LIM is avoided. 

The airborne optical sensors used here are working with the Three-Line-Scanner (TLS) 
principle (see Figure 2.1 in Chapter 2). The term TLS refers to the airborne linear array 
CCD sensors with single lens and three parallel CCD lines located on the focal plane. 
Although two images of an area acquired from two Linear Array CCDs with different 
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looking angles are sufficient for triangulation, more images can be used to increase the 
adjustment redundancy and reliability. The algorithms and procedures used here are tested 
with image triplets (forward-nadir-backward), although in some cases not all points are 
measured in all three images of a strip. Images are acquired with the ADS40 sensors of 
Leica Geosystems, Heerbrugg, Switzerland, and the STARIMAGER sensors of the former 
Starlabo Corporation, Japan. 

The ALOS/PRISM sensor of JAXA, Japan, is the satellite optical sensor used for testing of 
the methods. The PRISM sensor is composed of three cameras with forward, nadir and 
backward looking angles (see Figures 2.2 and 2.5 in Chapter 2). A number of CCD chips 
are aligned along a single line on the focal plane of each camera (Figure 4.1). An important 
advantage of a TLS sensor over the ALOS/PRISM sensor is that there is only one lens in 
the former one. Thus, an image triplet shares the same set of EO (exterior orientation) data 
at an instant of time. Therefore, in comparison to the ALOS/PRISM sensor, the number of 
EO parameters to be estimated in the adjustment is reduced by a factor of 3 for a selected 
trajectory model. It should also be noted that the three cameras of ALOS/PRISM operate 
on the same orbit simultaneously. However, there is a time interval of approximately 45.3 
seconds (300 km on the ground) between the image acquisition of the same area on the 
terrain with the forward-nadir and nadir-backward cameras (approximately 90.6 seconds 
between the forward-backward cameras). 

 

 

 

 

 

 

 

 

 

Figure 4.1. Focal plane arrangements of the ALOS/PRISM sensor. 

Other differences between the ALOS/PRISM and the TLS system in the data preparation, 
functional models, and the observation equations are highlighted in the following sections.  

Each scan line of a Linear Array CCD image is collected in a pushbroom fashion at a 
different instant of time. Therefore, there is in principle a different set of values for the six 
exterior orientation parameters (EOPs) for each scan line, except the TLS sensors, where 
the images of a strip share the same trajectory. Nominally, the Linear Array CCDs are 
positioned perpendicular to the flight direction (Figure 4.1). One image array per CCD line 
is acquired at an instant of time. With the movement of the aircraft the image strips are 
constructed. An onboard GPS Antenna and an Inertial Measurement System (INS) are used 
to record the position and the attitude information of the platform in the aircraft. In case of 
the satellite platforms, a star tracker may be used to obtain the attitude data as a standalone 
system or also together with an INS (e.g. ALOS/PRISM sensor). The use of external 
position and attitude measurement devices are essential for a precise georeferencing. The 
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image trajectory, which contains the EO data of each line, is generated from the GPS and 
INS/star tracker measurements in a post-processing procedure. 

The self-calibration is an alternative method to the laboratory and testfield calibration for 
the calibration of optical imaging systems in the photogrammetric community. It includes 
mathematical definitions of potential systematic errors of sensors and other system 
components. These errors are introduced as additional parameters and estimated in the 
bundle adjustment procedure together with other unknowns (i.e. EOPs, object space 
coordinates of points). In case of laboratory calibration, the camera interior orientation and 
distortion parameters are measured using auxiliary devices in a laboratory environment. On 
the other hand, the testfield calibration is accomplished by acquiring data over specially 
designated testfields. A regular bundle adjustment (without additional parameters) is 
applied to obtain image residuals, which are used for determination and analysis of 
systematic errors in image space. 

In this study, the three trajectory models are expanded for self-calibration. The functional 
model of additional parameters are defined for the aerial TLS sensors and the 
ALOS/PRISM sensor separately.  

Details of the triangulation and the self-calibration procedures are explained in the 
following sections of this chapter. Solution algorithms of the bundle adjustment system 
and accuracy evaluation methods are given accordingly. 

 

4.1 Preparation for Rigorous Sensor Orientation 

The data provided by the camera vendors and satellite operators are usually presented in a 
variety of formats. The data should be converted into the input format of the developed 
models. The major steps of data preparation can be categorized as image trajectory and 
interior orientation extraction, and coordinate system transformations (pixel-to-image 
space and between the object space systems). There are some other preparation steps of 
bundle adjustment that are not covered here, such as GCP ground and image 
measurements, image format extraction, image preprocessing, etc. 

 

4.1.1 Image Trajectory Extraction 

The image trajectory data contain the EOPs of each image line. The given trajectory data 
should refer to the perspective center of the camera. Trajectory extraction for each image 
line regards to post-processing of the position and attitude measurement devices, 
coordinate transformation, sensor alignment correction, and time integration including data 
interpolation. In case of the satellite imagery, orbital data extraction can be part of the 
process as well. 

The EOPs of the aerial Linear Array imagery are measured using GPS and INS 
instruments. A specially designed Kalman Filter is often applied for integration of the 
GPS/INS data. The data output rates of the GPS devices are lower than the image scan rate 
(i.e. 5 Hz vs. 500 Hz, respectively). An INS comprises multiple IMUs (Inertial 
Measurement Units), which measure the attitude and acceleration of a platform. There is a 
variety of IMUs, with different data output frequencies and accuracy levels. The post-
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processing of GPS/INS data with the Kalman Filter increases the overall accuracy of the 
system. As a part of the data integration process, coordinate system transformations might 
be necessary to bring different sources of data into the same coordinate system, such as 
from inertial reference system and the GPS system to the camera system, which has the 
origin in the perspective center of the camera. These transformations include sensor 
misalignment parameters and positional displacements. 

It is often necessary to interpolate the output trajectory data to compute the EOPs of each 
image line. For example, in case of the ALOS/PRISM imagery, the EO (exterior 
orientation) values are given in certain periods of time, i.e. every 1 second for attitude, etc. 
Instead of a simple linear interpolation, a polynomial function, such as Lagrange 
polynomials, is preferred to improve the interpolation accuracy. 

Alternatively, the orbit of a satellite can be defined with Keplerian elements or state 
vectors. The Keplerian elements are composed of six elements: semi-major axis, 
inclination, argument of perigee, eccentricity, true anomaly, and right ascension of 
ascending node. The state vectors contain position, attitude and velocity of the satellite for 
a particular time. However, these two approaches have not been employed in this study. 

 

4.1.2 Interior Orientation Extraction 

The interior orientation data of the Linear Array CCD imagery refers to the location of 
each CCD pixel (x, y) in the image coordinate system and the focal length of the camera. In 
the practical implementation of the TLS-LAB software, a look-up table, which contains the 
position parameters (x,y) of each CCD detector with regard to the principal point, is used 
for transformation of measured pixel coordinates into image space coordinates. If the given 
interior orientation data is expressed as a set of sensor parameters, such as lens distortion 
parameters, number of CCD pixel detectors, pixel size, CCD line inclination, etc., these 
parameters should be transformed into a look-up table for being input into the software. 
Another problem of interior orientation extraction might appear in the coordinate 
transformation. If the given parameters are defined in a reference system other than the 
image coordinate system, e.g. the PRISM pixel positions, they should be transformed into 
the image system accordingly. 

 

4.1.3 Coordinate System Transformations 

 

4.1.3.1 Transformations Among Object Space Coordinates 

The basic collinearity equation in photogrammetry is in principle a similarity 
transformation for each imaging ray and should be performed in a Cartesian coordinate 
system. If camera perspective center coordinates (i.e. EOPs) and GCP ground coordinates 
are given in different systems, they are transformed into a Cartesian reference system. If 
the coordinates are referenced to a projection system, such as geographical coordinates, the 
Universal Transverse Mercator (UTM), etc., a local coordinate system can be defined by 
the user. 
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The planimetric coordinates of the GCPs used in the practical applications of this study are 
mostly given in either the UTM projection system or the geographical coordinates (latitude 
and longitude). The height values are referenced to the ellipsoidal or geoid surfaces.  

The image trajectory data of the aerial Linear Array CCD sensors are usually provided in 
the UTM projection system. In the case of the ALOS/PRISM sensor, the trajectory data are 
defined in two different reference systems. The attitude data are presented as 4 parameter 
quaternion defined in the ECI (Earth Centered Inertial) system. A transformation from the 
given attitude data into the earth fixed coordinate system (ECR- Earth Centered Rotational) 
is therefore performed by taking the earth rotation into account. The satellite position data 
are provided both in the ECR and the ECI systems.  

In a last step, an additional transformation procedure has been applied to bring the 
trajectory coordinates and the GCP ground coordinates into the same Cartesian coordinate 
system, which is a local system and defined per project. 

After the bundle adjustment, the following back transformations may be applied to 
appropriate systems: 

 The trajectory data may be updated after the bundle adjustment process, and the 
new trajectory coordinates are transformed into the corresponding projection 
system. 

 The ground coordinates of the new (tie) points are transformed from the local 
coordinate system into the coordinate system in which the GCPs are defined 
originally. 

 

4.1.3.2 Pixel-Space to Image-Space Transformation 

In Linear Array CCD imagery, the pixel coordinates of one certain point are measured by 
its digital image column v and the scan line number u (Figure 4.2). The origin point of the 
image coordinate system is defined according to the perspective center (xp, yp, -c) of the 
camera, where (xp, yp) are the principal point coordinates on the focal plane, and c is the 
camera constant. The (x,y) are used to denote the image space coordinates of the points. In 
the following formulations, the x axis is defined parallel to the nominal flight direction 
(Figure 4.3). The y axis is perpendicular to the x axis. In the ideal case, the y axis shall be 
parallel to the Linear Array CCD. In practice, there is often a small inclination angle 
between the y axis and the Linear Array CCDs. 

The image coordinates (x, y) of an image point are computed using the pixel coordinate v 
and the interior orientation parameters. A common approach used to perform pixel-to-
image space coordinate transformation for the Linear Array CCD imagery is to estimate 
the camera interior orientation parameters and lens distortion in the laboratory and to 
generate a calibration file for each CCD line of the camera accordingly. In case of satellite 
imagery, the interior orientation parameters change after the launch due to temperature 
differences. Therefore in-flight calibration through self-calibration is necessary to update 
the camera calibration data file. The calibration data file contains the camera interior 
parameters, such as focal length and CCD pixel size, and a look-up table with the image 
space coordinates (x,y) of the center of each pixel in the CCD array.  
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Figure 4.2. Pixel coordinate system of Linear Array CCD images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Image space (focal plane) coordinate system of TLS cameras. PP denotes the 
principal point of camera lens and origin of the image coordinate system. As a 
first approximation, the PP coincides with the center point of the nadir CCD 
line. 

By using the look-up table, the image coordinates of a point i can be computed in sub-pixel 
level. Having the pixel coordinates (u,v) of the point as input, a linear interpolation is 
performed between the image coordinates of the centers of two neighboring pixels, as 
following: 

 

xi =calxk +(calxk+1-calxk) × dv 

yi =calyk +(calyk+1-calyk) × dv 

where (xi,yi) are the calibrated image space coordinates of a measured point i, which is 
located between the center points of the two neighboring CCD detectors (k) and (k+1), 
calxk and calyk are the calibrated coordinates of the centers of pixel k (corresponds to the 
integer part of measured coordinate v), and dv denotes the decimal (sub-pixel) part of v. 
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In case of the STARIMAGER camera, the interior orientation parameters were estimated 
by a collimator device. The CCD line structure is demonstrated in Figure 4.4. C denotes 
the center point of the Linear Array CCD, PP is the principal point of the camera, and  is 
the inclination of CCD array to the y-axis. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. TLS CCD sensor coordinate system definition and interior orientation 
parameters (Gruen, Zhang, 2002). 

 

The image coordinates (x, y) of a point in STARIMAGER are computed by following 
equations with respect to its pixel coordinate v: 

x = xc + (v-Midv) × ps × sin 

y = yc + (v-Midv) × ps × cos 

x = x + r × x/r = Ix(v) 

y = y + r × y/r = Iy(v) 

where r = a1r + a3r
3 + a5r

5   r = 22 yx   

A correction term (r) for the radial distortion of the camera is included in the 
transformation. (xc, yc) are the image coordinates of the center of the CCD arrays,   is the 
inclination angle for the CCD arrays to the image y axis, a1, a3 and a5 are radial symmetric 
lens distortion correction coefficients, Midv is the number of the CCD central pixel, and ps 
is the pixel size (Gruen and Zhang, 2002).  
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4.2 Rigorous Sensor Orientation 

 

4.2.1 Modified Bundle Adjustment with Trajectory Modeling 

The rigorous sensor orientation uses the traditional collinearity equations in a bundle 
adjustment model. The most elementary unit in photogrammetry is the image ray, which 
connects an object point, perspective center of an image, and the projection of the point on 
the image. The exterior orientation parameters, sensor interior geometry, and the 
systematic error components of the camera should be known to reconstruct the ray at the 
time of imaging.  

The adjustment models of images of the frame cameras and the Linear Array CCD sensors 
show some differences, even though both methods use the collinearity equations. The 
basics of the frame bundle adjustment are given in the Appendix. 

The sensor model for the Linear Array CCD cameras is based on modified collinearity 
equations. The basic collinearity equation (A.18) can be modified to employ different 
forms of trajectory models. These models are used to improve the triangulation accuracy 
and also for the improvement of the measured exterior orientation parameters for each scan 
line of the Linear Array CCD images by a modified photogrammetric bundle adjustment 
procedure.  

The exterior orientation parameters can be measured by the onboard GPS and attitude 
measurement devices, such as INS, star tracker, etc., directly, or estimated by means of a 
photogrammetric triangulation procedure with some well-distributed control points. The 
directly measured position and attitude elements (XGPS, YGPS, ZGPS, m, m, m) from the 
GPS and INS/Star tracker system usually do not refer to the perspective center of the 
imaging camera. The GPS antenna and the center of the INS/Star tracker units are 
displaced from the camera, resulting in translational and rotational offsets (Figure 4.5). 
These translational and rotational displacements should be corrected in order to obtain 
correct exterior orientation parameters for the instantaneous perspective center. In addition, 
other error sources might affect the accuracy of the given data, such as INS drift in time. A 
trajectory model is used to correct the constant and temporal errors of the given data by: 

X0(t) = XGPS(t) + X(t) 

Y0(t) = YGPS(t) + Y(t) 

Z0(t) = ZGPS(t) + Z(t) 

0(t)  = m(t) + (t) 

0(t)  = m(t) + (t) 

0(t)  = m(t) + (t) 

where (X(t), Y(t), Z(t), (t), (t), (t)) are the correction terms for the position and 
attitude measurements at time t. The trajectory data is recorded separately for each optical 
camera (lens). Therefore, one Equation set (4.4) is written for each camera at time t.  

(4.4) 
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Figure 4.5. System configuration of the TLS system (Gruen and Zhang, 2003) 

Considering the position and attitude correction terms, the collinearity equation given in 
equation (A.18) can be written as: 
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where (Xi, Yi, Zi) are the object space coordinates of a point i, which is located on the 
image line ui acquired at time t by camera j, (XGPS(t), YGPS(t), ZGPS(t), m(t), m(t), m(t)) 
are the given (measured) position and attitude data of the line ui acquired by camera j, and 
(X(t), Y(t), Z(t), (t), (t), (t)) are the corresponding trajectory correction terms 
for the image line ui of j, (xi,yi) are the image coordinates of the point i, (xp,yp) are the 
principal point coordinates of the camera j, c is the camera constant. The ij refers to the 
scale factor. 

By substituting the EO observations and the corrections with the perspective center 
position and rotations, the Equation 4.5 can be simplified as following: 
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The elements of the Rj rotation matrix are computed similar to the Equation A.20 using the 
updated attitude parameters (0(t), 0(t), 0(t)) at time t.  

By re-arranging the Equation 4.6, the collinearity equation is written as following: 

(4.5) 

GPS Anntena 

Camera Center 

GPS/IMU Vector 

INS/Camera Vector 

INS 
Stabilizer Center 

(4.6) 
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The ij is canceled out similar to the Equations (A.19a) and (A.19b). 

Equations (4.5, 4.6, 4.7a and 4.7b) are the basic equations in the triangulation approach of 
the Linear Array images, which are appended by a trajectory model. Three different types 
of trajectory models are investigated by Gruen and Zhang (2003): (a) Direct 
georeferencing with stochastic exterior orientations (DGR), (b) Piecewise Polynomials 
with kinematic model up to second order and stochastic first and second order constraints 
(PPM) and (c) Lagrange Polynomials with variable orientation fixes (LIM). The LIM has 
been modified in this study. The mathematical definitions of the trajectory models and 
their observation equations used in the adjustment are given in the following sub-sections.  

 

4.2.1.1 DGR Model 

The image trajectory is modeled as a whole with the DGR model. Considering the errors of 
the aircraft attitude elements and the GPS errors, the positional systematic errors of the 
trajectory are modeled as: 

X0(t) = XGPS(t) +Xoff 

Y0(t) = YGPS(t) + Yoff 

Z0(t) = ZGPS(t) + Zoff 

where (Xoff, Yoff, Zoff) are one set of unknown offset parameters to be estimated for the 
whole strip.  

Similarly, the attitude error terms (, , ) can be modeled by 6 parameters using the 
following equations for the whole trajectory:  

(t) = 0 + 1t 

(t) = 0 + 1t 

(t) = 0 + 1t 

The attitude errors of the INS/Star tracker system mainly consist of the constant offset (0, 
0, 0) due to the incorrect initial alignment and the drift errors in time (1, 1, 1). These 
errors have to be determined or corrected to obtain the correct attitude data at time t (0(t), 
0(t), 0(t)). 

The EO elements of the collinearity equation are updated in the adjustment after each 
iteration using: 

(4.8) 

(4.9) 

(4.7a) 

(4.7b) 
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X0j = XGPS(t) + Xoff 

Y0j = YGPS(t) + Yoff 

Z0j = ZGPS(t) + Zoff 

0j = m(t) + 0 + 1t 

0j = m(t) + 0 + 1t 

0j = m(t) + 0 + 1t 

The factor t for the attitude drift vector parameters represents the time. In case that the data 
acquisition time is not recorded, the t can be represented as a function of the pixel 
coordinate (u) assuming a constant scanning frequency (fs): 

sf

u
t   

When the scan line frequency (fs) information is not available, this term can be replaced by 
a ratio factor di for each point: 

se

si
i uu

uu
d




  

where ui is the pixel coordinate of a point (i) in the scan line direction, us is the first line of 
the trajectory part used in the adjustment (if the whole trajectory is used for the adjustment, 
then us = 0), and ue is the number of last scan line of the trajectory part used for the 
adjustment.  

The observation equations used for the DGR model are: 

vc=Axoff + Bsxs + Bdxd + Cxg  – lc ;  Pc 

voff= xoff                         – loff ;  Poff 

vs=               xs                         – ls ;  Ps 

vd=                           xd            – ld ;  Pd 

vg=                                     xg  – lg ;  Pg 

The first equation of this system is the linearized observation equations of the modified 
collinearity equations, which are obtained from substitution of the trajectory model 
parameters given in Equation set 4.10 into the Equations 4.7a and 4.7b. xoff is the unknown 
positional offset vector; xs and xd are the unknown INS shift and drift terms respectively; xg 
is the ground coordinates vector; A, Bs, Bd and C are the corresponding design matrices; v, l 
and P are the respective residual and discrepancy vectors and weight matrices. 

(4.13)

(4.10)

(4.12)

(4.11)
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The total number of the unknown parameters for the DGR model is computed using: 

pnsunknowns nnu 39   

where ns is total number of image trajectories to model, and npn is the total number of 
object points. The factor 9 for ns refers to the trajectory unknowns, which are unknown 
positional offset vector (given in Equation set (4.8): Xoff, Yoff, Zoff), and the INS shift and 
drift vectors (given Equation set (4.9): 0,0,0, 1,1,1). 

The total number of observation equations is computed using: 

gcpcsraysnsobservatio nnnn 32   

where nrays is number of measured image points (rays), ncs is the number of observation 
equations used for the trajectory unknowns (9×ns), and ngcp is the number of GCPs, which 
are used as full-control, in the adjustment. If a GCP is used only as planimetric or as height 
control point, then only the respective ground coordinates are introduced as weighted 
observations and the number of constraints for this point is two or one, respectively. 

The minimum number of image points and GCPs to be used with the DGR model are listed 
below for basic image block configurations of two types of sensors. The underlying 
assumptions for the computations are: all GCPs are full control points, all points are 
measured in all images with a good distribution, and the EO parameters are free unknowns 
in the adjustment (apriori EOP >> gcp & EOP >> pixel size). 

- For the triangulation of one ALOS/PRISM image triplet, a minimum of 3 full GCPs 
should be measured for the estimation of the trajectory unknowns (4 is preferred for 
redundancy). A total of 6 points (GCP + tie) are required for the solution. When the 
self-calibration is applied, one additional point per image should be measured per 
AP (e.g. for the 6 AP set, 2 more points should be measured in all 3 images). 

- For the triangulation of one TLS image triplet, again a minimum of 3 full GCPs 
should be measured for estimation of the trajectory unknowns (4 is preferred). 
When the self-calibration is applied (with 18 APs), a total of 6 points (GCP + tie) 
are required for the solution. 

By substituting the updated EO elements (Equation 4.10) in the collinearity equations (4.7a 
and 4.7b), the image coordinates (xi, yi) of the point are computed. The discrepancy vector 
consist of the differences between the image coordinates (xi, yi), which are computed from 
the collinearity equations, and the measured ones obtained after a transformation from 
pixel to the image systems ( '' , ii yx ): 

lx=
'
ii xx   

ly=
'
ii yy   

The partial terms of the collinearity equation (A.21a and A.21b), which are fx, fy, and fz, are 
used for further computation of the elements of the design matrices. The design matrices 
for image observations are formed as following: 

(4.14)

(4.15)

(4.16)
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The following equations are used to compute the elements of the design matrix A for each 
image point i. 
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Equation set (4.18a) is used for computations of the a11, a12, a13, which are elements of 
design matrix A for the xi component of image coordinates, while the equation set (4.18b) 
is used for computing the a21, a22, a23 elements for the yi component. c denotes the camera 
focal length, r11…r33 are the elements of the rotation matrix given in Equation set (A.20), 
and fx, fy, and fz, are the partial terms of the collinearity equation given in Equation set 
(A.21). 

For the x component of the image space coordinates, the following derivatives are used to 
compute the elements of the Bs matrix: 
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And for the y component: 

(4.18a)

(4.18b)

(4.19a)

(4.17)
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where c is the camera constant, and fx, fy, and fz are the partial terms of the collinearity 
equation given in equation set (A.21). 

Elements of the design matrix Bd are functions of the elements of the design matrix Bs: 
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The di coefficient is computed from the Equation 4.12 for each image point (ray) i. 

(4.19b)

(4.20)

(4.21)
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The structural characteristic of the design matrices A, Bs, Bd, and C of Eq. 4.13 are 
represented in Figure 4.6. The resulting normal equations matrix (N = Qxx

-1 in Eq. A.14) 
and the solution vector ( x̂  in Eq. A.6) are demonstrated in Figure 4.7. The sample matrices 
given in both Figures are demonstrated for an ALOS/PRISM image triplet (forward, nadir, 
and backward images). 

 

 

 

lT (discrepancy vector) 
lc 

[image rays  2,1] 

loff+ ls+ ld 

[3  9,1] 

lg 

[Full GCP  3,1]

Figure 4.6. The sparsity structure of the design matrix and the discrepancy vector for the 
DGR model, demonstrated for an ALOS/ PRISM image triplet. 

A + Bs + Bd 

Forward
image 

9 

Nadir 
image 
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Backward 
image 

9 

C 
Pn3 

A + Bs + Bd 

A + Bs + Bd P1 

P2 

Pn-1 

Pn 

Image rays  2 

3  9 

Full GCP  3 
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N = Qxx
-1 

 

 

xT (solution vector) 
Forward image Nadir image Backward image Points’ object coordinates 

xoff 

[3,1] 

xs 

[3,1] 

xd 

[3,1] 

xoff 

[3,1]

xs 

[3,1] 

xd 

[3,1] 

xoff 

[3,1] 

xs 

[3,1]

xd 

[3,1] 

xg 

[Pn  3,1] 

 

Figure 4.7. The sparsity structure of the normal equations matrix (N) and the solution 
vector for the DGR model for an ALOS/ PRISM image triplet. Pn denotes the 
total number of the points in the adjustment. 

 

The weight coefficients are computed using the formulas given in Appendix (A.7, A.8) and 
a diagonal matrix (P) is formed accordingly. The main principles for determination of the a 
priori standard deviations of the observations are given in Section 4.2.3. 

 

3  9 

Pn  3 

3  9 Pn  3
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4.2.1.2 Piecewise Polynomial Model 

The piecewise polynomial model is used to model the image trajectory with respect to time 
(Lee et al. 2000). In this model, the values of the exterior orientation parameters are written 
as polynomial functions of time. The bundle adjustment solution determines the 
polynomial coefficients instead of the exterior orientation parameters themselves. Due to 
the instability of the high-order polynomial models, the piecewise polynomial model is 
used, in which the full complex trajectory is divided into sections, with each section having 
its own set of low-order polynomials. Continuity constraints on the orientation parameters 
at the section boundaries ensure that the calculated positions and attitudes are continuous 
across the boundaries. The piecewise polynomial model is used to model the position and 
attitude errors (given in Eq. 4.4: X, Y, Z, , , ) with respect to time. The model 
is described as: 

2
210)( txtxxtX kkk   

2
210)( tytyytY kkk   

2
210)( tztzztZ kkk   

2
210)( ttt kkk    

2
210)( ttt kkk    

2
210)( ttt kkk    

for k=1,2,…,ns (ns = number of polynomial segments) 

The given trajectory data is updated in the bundle adjustment after each iteration, using the 

estimated unknowns ( kkkkkkkkkkkkkkkkkkk zyxzyxzyx 2222111000222111000 ,,,,,,,,,,,,,,,,,  ); 

(k=1,2,…, ns) as following: 
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(4.22) 

(4.23)
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k represents the polynomial segment number, u is the pixel space coordinate of a measured 
point in scan line direction, and us and ue are the begin line and end line numbers of the 
polynomial segment k, respectively. 

There are two kinds of constraints that are applied to each parameter at the section 
boundaries. The zero order continuity constraints ensure that the value of the function 
computed from the polynomial in every two neighboring sections is equal at their 
boundaries, i.e.  
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where k=2,3,…,ns 

The first order continuity constraint requires that the slope, or first order derivatives of the 
functions in two adjacent sections is forced to have the same value at their boundary, i.e. 
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With the PPM, the bundle adjustment solution determines the polynomial coefficients 
instead of the exterior orientation parameters themselves. The overall estimation model 
results in: 

(4.24) 

(4.25) 
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vc  = Axpos + Bxatt +  Cxg  – lc ;  Pc 

vpos=   xpos                – lpos;  Ppos 

vA2=A1xpos                 – lA1;  PA1 

vA3=A2xpos                 – lA2;  PA2 

vatt=               xatt          – latt;  Patt 

vB2=           B1xatt           – lB1;  PB1 

vB1=           B2xatt          – lB2;  PB2 

vg  =                            xg – lg ;  Pg 

where the first equation of this system is the linearized observation equations of the 
modified collinearity equations, which are obtained from substitution of the trajectory 
model parameters given in Equation set 4.23 into the Equations 4.7a and 4.7b. The 
following equations are derived from the two kinds of constraints; xpos contains the 
unknown positional correction terms (X, Y, Z) for all sections; xatt is the unknown 
attitude error vector (, , ) for all sections; xg is the ground coordinate vector; A, A1, 
A2, B, B1, B2, and C are the corresponding design matrices; v, l and P are the respective 
residual and discrepancy vectors and weight matrices. Through this consequent weighting 
scheme much flexibility is obtained with respect to the modeling of different trajectory 
conditions. 

The number of unknowns in this model is computed by: 
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where ns is the total number of image trajectories to model, npieces is the number of 
polynomial pieces (segments), and npn is the total number of object points. 18 is the 
number of polynomial coefficients per trajectory segment. 

The number of observation equations is computed with: 

gcpcsraysnsobservatio nnnn 32   

where nrays is number of measured image points (rays), ngcp is number of full ground 
control points in the adjustment. The number of observation equations (ncs) contains three 
different kinds of constraints. The zero and first order continuity constraints (Eq. 4.24 and 
4.25) are applicable when the trajectory is divided into multiple segments. In addition, the 
trajectory unknowns are introduced as weighed observations (vpos and vatt in Eq. 4.26) into 
the adjustment in order to increase modeling flexibility and also to increase adjustment 
stability . In case of multiple trajectory segments, the ncs is computed using: 





s

i

s

i

n

i
pieces

n

i
piecescs nnn

11

)1(1218  

If the trajectory is modeled as a whole, the last term of the equation above becomes zero.  

(4.27)

(4.28)

(4.26)

(4.29)
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The minimum number of image points and GCPs to be used in the adjustment with the 
PPM with one segment are listed below for the basic image block configurations of the two 
sensor types. The underlying assumptions for the computations are: all GCPs are full 
control points, all points are measured in all images with a good distribution, and the EO 
parameters are free unknowns in the adjustment (apriori EOP >> gcp & EOP >> pixel 
size). 

- For the triangulation of one ALOS/PRISM image triplet, a minimum of 6 full GCPs 
should be measured for determination of 18 trajectory unknowns. A total of 13 
points (GCP + tie) are required for the solution for the triplet. When the self-
calibration is applied, one additional point (of any type) per image should be 
measured per AP (e.g. for the 6 AP set, 2 more points should be measured in all 3 
images). 

- For the triangulation of one TLS image triplet, again at least 6 full GCPs should be 
measured for determination of 18 trajectory unknowns. When the self-calibration is 
applied (with 18 APs), a minimum of 7 points (GCP + tie) are required for the 
solution. 

 

The design matrices are formed for each image point i as following: 
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The elements of the first three columns of the A and B matrices are computed using 
equations (4.18) and (4.19). The remaining elements are computed with: 
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The design matrix C and the discrepancy vector lc are generated using the same formulas 
as in the DGR model. 

 

The non-zero elements of the design matrices A1 and A2, and the elements of the 
discrepancy vectors lA1 and lA2 are computed for each polynomial segment k as following: 
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Similarly, the design matrices B1 and B2, the discrepancy vectors lB1 and lB2 are formed as: 
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The structural characteristic of the design matrices A, A1, A2, B, B1,B2, and C of Eq. 4.26 
are represented in Figure 4.8. The resulting normal equations matrix (N = Qxx

-1 in Eq. 
A.14) and the solution vector ( x̂  in Eq. A.6) are demonstrated in Figure 4.9. The matrices 
demonstrated in both Figures are formed for one TLS image strip, where three images 
share the same set EO data, and two polynomial segments as example. 

 

(4.32)

(4.33)
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lT (discrepancy vector) 
lc 

[image rays  2,1] 

lpos+ latt 

[ns  18,1] 

lA1+ lA2+ lB1+ lB2 

[(ns -1)  12,1] 

lg 

[Full GCP  3,1]

 

Figure 4.8. The sparsity structure of the design matrix and the discrepancy vector (l) for the 
PPM with two segments demonstrated for a TLS image strip. Pn denotes the 
total number of points in the adjustment and ns denotes the number of 
polynomial segments. 

A + B 

Segment-1 
18 

Segment-2 
18 

C 
Pn3 

A + B 

P1 

P2 

Pn-1 

A1 

A2 

B1 

B2 

Pn 

Image rays  2 

ns  18 

Full GCP  3 

(ns -1)  12 
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N = Qxx
-1 

 

 

xT (solution vector) 
Segment-1 Segment-2 Points’ object 

coordinates 
xdis 

[9,1] 

xs 

[9,1] 

xdis 

[9,1] 

xs 

[9,1] 

xg 

[Pn  3] 

 

Figure 4.9. The sparsity structure of the normal equations matrix (N) and the solution 
vector for the PPM with two segments for a TLS image strip. Pn denotes the 
total number of points in the adjustment. 

 

 

 

 

 

 

 

ns  18 

Pn  3 

ns  18 Pn  3
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4.2.1.3 Lagrange Interpolation Model (LIM) 

Ebner et al. (1992) developed the principle of orientation images or orientation fixes for 
the geometric in-flight calibration of MOMS imagery. This method is based on collinearity 
equations and the exterior orientation parameters are determined in the so-called 
orientation fixes, which are introduced at certain time intervals. Between the orientation 
fixes, the exterior orientation parameters of an arbitrary scan line are interpolated using 
Lagrange polynomials. All unknown orientation parameters for these orientation fixes are 
estimated in a least squares adjustment procedure, and the parameters for each individual 
scan line are interpolated with its neighboring orientation fixes. The general form of the nth 
order Lagrange polynomial is given as: 
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Where Pn(t) at time t is interpolated from the values P(ti) at the n+1 neighboring 
orientation fixes at time ti; Pn(t) is any of the six exterior orientation parameters for a scan 
line at time t. 

The interpolation function of order three has attracted most attention (Ebner et al. 1992, 
Fraser & Shao 1996). This method is modified by Gruen and Zhang (2002) according to 
TLS sensor model with the provision of auxiliary position/attitude data generated by the 
GPS/INS system.  

In this study, the Lagrange polynomials are used to model GPS and INS translational 
errors (X, Y, Z, , , ). In the bundle adjustment, using the Lagrange function 
given in equation (4.34), four Lagrange coefficients are computed for each image point: 
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where; linei < u < linei+1;  

u is the pixel space coordinate of an image point in scan line direction, linei is the pixel 
column number of the orientation fix number i. 

(4.34) 

(4.35)
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Using the Lagrange coefficients, the given exterior orientation parameters of the scan line, 
to which the measured point belongs, are updated using the following equations during the 
iterations:  

24132110 )(   iiiiGPSj XtXtXtXttXX  
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where i represents the orientation fix number. 

The observation equations used for bundle adjustment with the LIM model are: 

vc=Axoff + Bxs + Cxg  – lc ;  Pc 

voff= xoff                      – loff ;  Poff 

vs=               xs             – ls ;  Ps 

vg=                          xg  – lg ;  Pg 

 

Where the first equation of this system is the linearized observation equation of the 
modified collinearity equations, which are obtained from substitution of the trajectory 
model parameters given in Equation set 4.36 into the Equations 4.7a and 4.7b. xoff is the 
unknown positional offset vector; xs is the unknown INS shift term; xg is the ground 
coordinates vector; A, B and C are the corresponding design matrices; v, l and P are the 
respective residual and discrepancy vectors and weight matrices. 

The total number of unknowns in this system is computed with: 
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where ns is total number of image strips, nf is the number of orientation fixes, and npn is the 
total number of object points. 6 is the number of exterior orientation parameters per 
orientation fix. 

The number of observation equations is computed with: 

(4.37)

(4.38)

(4.36)
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gcpcsraysnsobservatio nnnn 32   

where nrays is the number of measured image points (rays), ngcp is the number of full 
ground control points in the adjustment, and ncs is the number of observation equations 
used as constraints for the given EO parameters at each orientation fix. ncs is computed 
using: 
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where ns is total number of image strips and nf is the number of orientation fixes. 

The minimum number of orientation fixes is defined as 4 in the TLS-LAB software, due to 
the number of Lagrange coefficients used in the model (Eq. 4.35).  

Figure 4.10 demonstrates the number of unknown and known parameters in the 
adjustment, when LIM is applied with 4 orientation fixes, without self-calibration, and 3 
control and 3 tie points.  

 

 

 

 

 

 

 

Figure 4.10. A demonstration of the number of known and unknown parameters in the LIM 
using 4 orientation fixes, 3 GCPs, and 3 tie points. The triangles and the solid 
circles represent the GCPs and the tie points, respectively. The unknown and 
known parameters are marked with bold and italic characters, respectively. 

 

Computation of the minimum number of image rays 

The minimum number of image rays between any two fixes is computed separately for the 
adjustment models with and without self-calibration. Figure 4.11 represents the relation 
between the adjustment redundancy and the number of points (GCP, check and tie) 
between any two orientation fixes, orientation fix number, and the number of GCPs, 
according to the following assumptions: 

- All GCPs are full control points 

- All points are evenly distributed between the fixes over the whole strip 

(4.39)

(4.40)

6EO 6EO 6EO 
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3(x,y) 
1(X,Y,Z) 
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3(x,y) 
1(X,Y,Z) 

12 unknowns 
& 12 knowns 

in total 

18 unknowns 
& 15 knowns 

in total 

12 unknowns 
& 18 knowns 

in total 

Strip trajectory 

Ori. fix 1 Ori. fix 2 Ori. fix 3 Ori. fix 4 

3(x,y) 
1(X,Y,Z) 
1(X,Y,Z) 

3(x,y) 
1(X,Y,Z) 
1(X,Y,Z) 

3(x,y) 
1(X,Y,Z) 

3(x,y) 
1(X,Y,Z) 
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- All points are measured in 3 images of a strip 

- The EO parameters are free unknowns in the adjustment (apriori EOP >> gcp & 
EOP >> pixel size) 

- 18 APs are introduced in the adjustment with self-calibration (18 is for the TLS 
sensors with a single lens system) 

- Computations are performed for one strip (TLS image triplet) only 

 

 

Figure 4.11. The adjustment redundancy of the LIM when different number of points, 
orientation fixes and different number of full GCPs are used. 

 

By analyzing the numbers in Figure 4.11, the following conclusions can be drawn from 
this given configuration: 

- At least 2 points should be measured between two orientation fixes when self-
calibration is not applied 

- At least 3 points should be measured between two orientation fixes when self-
calibration is applied 
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At the current implementation of the TLS software, the following conditions, which are 
derived from Figure 4.11, are applied to compute the minimum number of rays between 
two orientation fixes in order to ensure adjustment redundancy (before the adjustment): 

If (nf7) min(nrays)=9 (3 points) 

If (nf>7) min(nrays)=8 

If (nf=4) min(nrays) = 15 (5 points) 

If (nf=5 & nf=6) min(nrays) = 12  

If (nf=7) min(nrays) = 10  

If (nf>7) min(nrays)=9 

The discrepancy vector elements are computed with the same method as in equation set 
(4.16). For each strip, (nf ×6) columns are added to the design matrix A. For each image 
point measurement, the following row vector elements of the design matrices A and B are 
computed for the x and y components (4.41a and 4.41b). 
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Without self-calibration 

With self-calibration 
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For the y component: 
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The derivatives used for these coefficients are computed with the Equations (4.18) and 
(4.19). The design matrix C is generated using the same formula as in the DGR model. 
When large position and attitude offset errors are expected in the trajectory, performing the 
adjustment with the DGR model before the LIM to correct these offset errors increases the 
adjustment stability. This approach is not necessarily used for PPM, since the problem can 
be solved by giving appropriate weights to the polynomial parameters. 

The structural characteristic of the design matrices A, B, and C of Eq. 4.37 and the 
discrepancy matrix are represented in Figure 4.12. The resulting normal equations matrix 
(N = Qxx

-1 in Eq. A.14) and the solution vector ( x̂  in Eq. A.6) is demonstrated in Figure 
4.13. The matrices demonstrated in both Figures are formed for one TLS image strip, 
where three images share the same set EO data, and 6 orientation fixes. 

 

 

 

 

(4.41b)
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     Fix1       Fix2       Fix3      Fix4        Fix5         Fix6            C 
       6          6         6         6           6           6           Pn3 

 

lT (discrepancy vector) 
lc 

[image rays  2,1] 

loff+ ls 

[nfixes  6,1] 

lg 

[nGCP  3,1] 

 

Figure 4.12. The sparsity structure of the design matrix and the discrepancy vector (l) for 
the LIM with 6 orientation fixes demonstrated for a TLS image strip. Pn, nrays, 
nfixes, and nGCP denote the number of all points, the number of image rays, the 
number of orientation fixes, and the number of full GCPs, respectively. 
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N = Qxx
-1 

 

 

xT (solution vector) 
Fix1 Fix2 … Fix6 Points’ object coordinates 
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[3,1] 

xoff + xs 

[18,1] 

xoff 

[3,1]

xs 

[3,1]

xg 

[Pn  3,1] 

 

Figure 4.13. The sparsity structure of the normal equations matrix (N) and the solution 
vector for the LIM with 6 orientation fixes (nfixes=6) for a TLS image strip. 
Pn denotes the total number of points in the adjustment. 

 

 

4.2.2 Self-calibration Method 

The self-calibration method is an alternative and supplementary method to the laboratory 
and testfield calibration. It can be used to improve or update the existing laboratory 
calibration data. 

nfixes  6 

Pn  3 

nfixes  6 Pn  3
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Additional parameters are defined and applied to the image coordinates to correct for 
potential systematic errors of the sensor and other system components (e.g. atmospheric 
effects). The right-hand sides of the collinearity equations (A.21a and A.21b in Appendix) 
are expanded with additional parameter functions  xij , yij: 

xij = ijpj

z

x
j xx

f

f
c   

yij = ijpj

z

y
j yy

f

f
c   

The terms  xij and  yij can be understood as corrections to the image coordinates xij and 
yij in order to reduce the physical reality of the sensor geometry to the perspective model. 
They are usually meaningful functions of image coordinates. 

 

4.2.2.1 Functional Model of the Additional Parameters for the Airborne 
TLS Sensors 

A graphical representation of the CCD line structure and image coordinate system of a 
TLS system is given in Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14. CCD line structure of TLS. (x,y) denote the image coordinate system. Ob, On, 
and Of  denote the CCD line centers for backward, nadir and forward images. 
b, n and f are the inclination angles with y axis for each CCD line. PP 
represents the principal point of the camera lens. 
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Additional parameters used for the self-calibration of TLS sensors are: 

 c: Systematic error in the focal length of the camera lens. 

 Lens Distortion Parameters: Radial symmetric lens distortion (k1, k2, k3) and 
decentering distortion (p1, p2) models of Brown (1971). 

 xp: Displacement of the CCD line center from the principal point (PP) of the 
camera lens, defined in the flight direction. 

 yp: Displacement of the CCD line center from the principal point (PP) of the 
camera lens, defined across the flight direction. 

  sy: Scale parameter, defined in the (y) direction.  

 : Systematic error of the inclination angle between the CCD line and the (y) axis 
of the camera coordinate system (Figure 4.14). The effect of  on the y-
coordinates can be neglected due to the small error magnitude. 

 

The functional model for self-calibration of a TLS system with backward, nadir and 
forward images include a total of 18 APs and is formed as: 

xi<b,n,f>  =  xp<b,n,f>-
c

xx pi )(  c + (xi-xp)ri
2k1 + (xi-xp)ri

4k2 +(xi-xp)ri
6k3  

                   + (ri
2 +2(xi-xp)

2 )p1 +2(xi-xp) (yi-yp)p2 + 


)y-(y pi <b,n,f> 

yi<b,n,f>  = yp<b,n,f>-
c

yy pi )(  c+(yi-yp)ri
2k1 + (yi-yp)ri

4k2 +(yi-yp)ri
6k3  

+ (ri
2 +2(yi-yp)

2 )p2 +2(xi-xp)(yi-yp)p1 – (yi-yp)sy<b,n,f> 

where; xi, yi : image coordinates of each point, 

xp, yp : image coordinates of the principal point 

 = 180/π 

ri
2 =(xi-xp)

 2 +(yi-yp)
 2 

 

The CCD line bending parameter, which is explained in Chapter 3.2.4, is not introduced 
for the TLS sensor in order to prevent over-parameterization. 

 

 

 

(4.43a) 

(4.43b)
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4.2.2.2 Functional Model of the Additional Parameters for the 
ALOS/PRISM Sensor 

For the self-calibration of the PRISM imagery, 30 additional parameters in total are 
defined initially for the 3 cameras. The parameters are described in accordance with the 
physical structure of the PRISM imaging sensors.  

The Linear Array CCD structure of the nadir camera is demonstrated in Figure 4.15. The 
nadir camera contains 6 CCD chips, while the backward and the forward camera heads 
contain 8 CCD chips. When a swath width of 35 km is chosen, the PRISM images are 
generated using the data from up to 4 CCD chips in all viewing directions. The selection of 
the CCD chips to be used is project-dependent and done by the satellite operator. 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 4.15. Linear Array CCD structure of the PRISM nadir viewing camera. 

 
Each camera head has its own coordinate system definition. The x-axis is parallel to the 
flight direction, while the y-axis is parallel to the CCD line (across-track) direction (Figure 
4.16). The origin of the image coordinate system is located in the principal point of the 
optical system. The CCD chip structures of the backward and forward looking cameras are 
similar, as demonstrated in Figure 4.16.  

The APs are defined separately for each PRISM camera (forward, nadir and backward). 
Here the AP set is different from the TLS images (Eq. set 4.43) because of smaller field of 
view and multiple CCD chips which are used to form single image line. The displacements 
of the CCD line centers are defined for each CCD chip separately. The scale parameter is 
defined similarly and effective in (y) direction. The first three terms of the lens distortion 
parameters (k1, k2, k3) had been tested during the early phase of software implementation 
and found insignificant for the PRISM images. The  and c parameters were avoided 
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due to inevitable high correlation with the EO parameters () and Z0, respectively. In case 
of the aerial TLS images, this problem has not been considered, because of the multiple 
CCD lines, which are located on the focal plane and are sharing the same set of EO 
parameters.  

On the other hand, the CCD line bending parameter has been introduced to correct the 
effect of potential non-linear (arc shaped) systematic deformation of the row of chips. 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 4.16. The backward and forward imaging lines contain 8 CCD chips. 32 pixels are 
located in the overlapping area. There is one coordinate system definition per 
camera (x: flight direction; y: CCD line direction). The camera principal point 
is the origin of the image coordinate system. 

 

The AP set of each image includes: 

- scale effect s in y direction (per image), 

- CCD line bending b parameter (per image), 

- 2 x 4 = 8 displacements of the centres of the CCD chips from the principal point 
(per image)  

The terms  xij and  yij of Equations (4.42a) and (4.42b) include the APs used to model 
the systematic errors. The mathematical expressions of the correction terms  xij and  yij 
are:  

xij =  xnj + yijrij
2bj 

yij =  ynj  + yijsj 

with  

i  = 1,…, m;  m = number of points 

j  = 1,…, 3  number of cameras   

(4.44a)

(4.44b)
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n = 1,..., 4  number of CCD chips per focal plane 

xij , yij : image coordinates of each point i in image (camera) j 

xnj, ynj: displacement of the centre of each CCD chip n from the principal point 
of the relevant camera j 

bj : CCD line bending parameter for the CCD line in each camera j 

sj : scale parameter for each camera line j 
222
ijijij yxr     

 

 

4.2.2.3 Extended Observation Equations for Self-calibration 

The self-calibration model is appended to each trajectory model by extending the image 
observation equations. In addition, a set of observation equation is added to constrain the 
additional parameters.  

 

The observation equation set for the DGR model with self-calibration is: 

vc=Axoff + Bsxs + Bdxd + Cxg + DxAP – lc ;  Pc 

voff= xoff                          – loff ;  Poff 

vs=               xs                          – ls ;  Ps 

vd=                           xd             – ld ;  Pd 

vg=                                     xg   – lg ;  Pg 

vAP=                                             xAP  – lAP ;  PAP 

 

For the LIM: 

vc= Axoff + Bxs + Cxg + DxAP - lc ;  Pc 

voff= xoff                       – loff ; Poff 

vs=               xs              – ls ;  Ps 

vg=                          xg   – lg ;  Pg 

vAP=                                  xAP – lAP ;  PAP 

 

 

 

 

 

(4.45)

(4.46)
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For the PPM: 

vc  = Axpos + Bxatt +  Cxg +  DxAP – lc ;  Pc 

vpos=   xpos                 – lpos;  Ppos 

vA2=A1xpos                 – lA1;  PA1 

vA3=A2xpos                  – lA2;  PA2 

vatt=               xatt          – latt;  Patt 

vB2=           B1xatt            – lB1;  PB1 

vB1=           B2xatt           – lB2;  PB2 

vg  =                            xg  – lg ;  Pg 

vAP=                                     xAP  – lAP ;  PAP 

 

Since the functional models of self-calibration (Equation sets 4.43 and 4.44) are already 
linear, linearization is not necessary. The elements of the design matrices D (d1, d2, …, dn ; 
n=18) in Equations (4.45 - 4.47) are computed according to the functional model. For the 
airborne TLS sensors, the Equations (4.48a and 4.48b) are extracted from the Equations 
(4.43a and 4.43b). Similarly, the Equations (4.49a and 4.49b) are extracted from the 
Equations (4.44a and 4.44b) for the ALOS/PRISM sensor. 

 

For the TLS sensors, we get for the x components: 
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(4.48a) 

(4.47)
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For the TLS sensors, we get for the y components: 
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d pi
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For the ALOS/PRISM sensor, we get for the x components: 

1
njxd  2

ijijb ryd
j
  

 

For the ALOS/PRISM sensor, we get for the y components: 

1
njyd    ijs yd

j
  

 

 

4.2.2.4 Determinability Analysis for the Self-Calibration Parameters 

The aim of self-calibration for this work is to determine the optimal set of APs for optimal 
estimation of the object space coordinates of the measured image points. The adjustment 
procedure starts with the full parameter set and eliminates undeterminable parameters 
automatically in an iterative approach. The APs are introduced as free unknowns into the 
system. The major problem for parameter elimination is to find robust criteria for rejection 
of undeterminable parameters. A stepwise parameter elimination algorithm proposed by 
Gruen (1985a) is used here. The algorithm includes: 

i. Determinability check by analyzing the diagonal elements of the factorized normal 
matrix during Cholesky decomposition. If an element falls below a pivot value, the 
parameter is excluded from the system by replacing this element with a large 
number. 

ii. Correlation analysis between the APs and the EO parameters, and also between the 
APs and the points’ object space coordinates. Elements of the correlation coefficients 
matrix are computed using: 

 
jjii

ij
ij

qq

q
r   

where qij, qii, and qjj are corresponding elements of the Qxx covariance matrix. 

(4.48b) 

(4.50) 

(4.49a) 

(4.49b) 
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iii. Analysis of the negative effect of each AP on the object space coordinates of the 
points by using the trace check algorithm of the covariance matrix. The effect of 
each AP is computed with: 





pn

i

n

j
jjij

pn
AP qr

n 1

22
0

2 1   

where, 0  is the a priori standard deviation of the unit weight, npn is the total 

number of points in the adjustment, rij is the correlation coefficient between the AP i 
and corresponding coordinate of the point j, and qjj is the corresponding element of 
the Qxx covariance matrix. The 

iAP  values of each AP i are computed for the 

X,Y,Z coordinate components separately and compared with a critical value. The 
critical value is chosen as a ratio of the image GSD. 

iv. Statistical significance tests under Student’s t distribution for the individual 
analysis of the APs; and under Fisher (F) distribution for the analysis of sub-sets of 
APs are applied. Six groups of APs, which consist of (xpb, , xpn ,xpf), (ypb,, 
ypn ,ypf), (syb, syn, syf), (b ,n, f), (k1, k2, k3), (p1, p2), are tested with the F-
distribution due to strong correlations between the parameters of the same group. 

Student’s t distribution values are computed for each additional parameter using: 

ti = 
ii

i

q

x

0ˆ

ˆ


 

where ti is Student’s t distribution value, ix̂  is the estimated AP value, 0̂  is the a 

posteriori standard deviation of unit weight, qii is the corresponding diagonal 
element of covariance matrix of unknowns. The distribution value is compared with 
a threshold value t, which is chosen by the user according to the significance level 
required. If ti<t, then the parameter is considered as insignificant in the bundle 
system. 

),...,,(ˆ 21 k
T xxxx   parameters are tested in every sub-set of APs, and the statistical 

variable of F distribution for each group is obtained as follows: 

2
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F xx
T 
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where x̂  is the estimated parameter vector in the bundle adjustment, xxQ ˆˆ  is the 

corresponding part of the covariance matrix, k is the number of APs in the group, 
and 0̂  is the a posteriori standard deviation of the unit weight. The obtained F 

value is compared with a threshold value, computed with an assumed significance 
level . When F<F, then the AP group is considered as insignificant. 

 

(4.52) 

(4.51) 

(4.53) 
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4.2.3 Weighting Scheme of the Bundle Adjustment 

The weighting scheme is of high importance for the triangulation of Linear Array Imagery. 
The unknown parameters of the bundle adjustment, in particular the trajectory unknowns, 
are usually highly correlated. In order to ensure parameter determinability under the 
weakening correlation pattern, the given EO parameters measured by GPS and INS/star 
tracker systems, shall be introduced as weighted observations. The weighting scheme plays 
a significant role in the adjustment accuracy. 

The weight of an observation is computed using a priori standard deviation value 
according to the Equation A.8. Here, the standard deviation of the unit weight is always 
chosen as equal to a priori standard deviation of image measurements (0 = img). Selection 
of appropriate a priori standard deviations of the adjustment observations, including the 
constraint equations, is a crucial procedure for optimal estimation. The main principles 
followed here for a priori standard deviation selection are: 

 For trajectory unknowns, in principle the standard deviations provided by the 
sensor developer or data provider are taken into account. However, these values do 
not always represent the reality, due to the influences of operational and processing 
aspects which cause improvement or deterioration of the data quality. The 
trajectory data might be improved in a post-processing e.g. with Kalman Filtering, 
or may suffer from different types of errors, such as sensor relative alignment 
errors, lack of appropriate post-processing, etc. Therefore, the instrument precision 
values might be questionable and after the triangulation, the solution vector and the 
adjustment accuracy should be analyzed carefully in order to detect any anomaly 
caused by the weighting scheme. 

For each trajectory model, different approaches are used to introduce the a priori 
standard deviations of the given EO data. In case of the DGR model, the a priori 
standard deviations of the position and attitude offset parameters (Xoff, Yoff, Xoff, 
o, o, o) are selected according to the principles above. The a priori standard 
deviations of attitude drift parameters (1, 1, 1) should represent the error budget 
of the INS/Star tracker instrument within a certain time interval. The standard 
deviation value used to compute the respective weight should reflect the total drift 
error for the entire image strip. 

In case of the PPM, the Ppos and Patt matrices of the Eq. 4.26 are formed to 
introduce the quality of given trajectory data into the adjustment, whereas the PA1, 
PA2, PB1, PB2 are formed to ensure data continuity between neighboring segments. 
The unknown parameters of each polynomial segment (Eq. 4.22) are introduced 
individually in the Ppos and Patt matrices by forming 18 observation equations.  The 
zero order parameters reflect the offset errors expected for the whole trajectory. 
The a priori standard deviations of the first and second order parameters should be 
in accordance with the expected maximum error values for an entire segment. The 
weight coefficients of the continuity constraints should be relatively high, 
representing the allowed differences between the position and attitude values of the 
two neighboring image lines located at the segment borders.  
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In case of the LIM, the Poff and Ps matrices (Eq. 4.37) are used for stochastic 
modeling of the trajectory unknowns. For each orientation fix, 3 position and 3 
attitude offset parameters are estimated. The a priori standard deviations of these 
parameters represent the maximum errors to be estimated at an orientation fix. In 
comparison to the DGR and the PPM, the control of the adjustment with the 
stochastic model in LIM is considerably weaker due to large number of orientation 
parameters and fewer constraints. If a large number of orientation fixes is used in 
an image strip, a large number of control points or highly accurate trajectory data is 
required for precise modeling. 

As a supplementary technique, if the given trajectory data contains large position 
and attitude offset errors, it is recommended to use the DGR prior to the LIM to 
model those errors. In a similar situation, the PPM can be run with one segment 
definition and low weights on the zero order parameters. After this adjustment, the 
trajectory shall be corrected. As a second step, the PPM can be run with multiple 
segments and with relatively higher weights on the zero order parameters. If the 
accuracy achieved in the first step is sufficient, the second step may not be 
necessary. 

 For image measurements, depending on the image quality and measurement 
accuracy, 0.3-0.5 pixels are usually taken as a priori standard deviation. The values 
can be judged by the operator, who performs the image measurements. 

 In principle, the additional parameters are introduced as free unknowns in the 
beginning of the adjustment. In practice, it is carried out by introducing very high a 
priori standard deviations (e.g. APi = 10 mm, etc.). In the parameter elimination 
procedure, undeterminable parameters are removed from the system by introducing 
very low standard deviation value to the corresponding parameter (e.g. APi = 
0.000001 mm, etc.). 

 For the ground control points, the a priori standard deviations come from the 
ground data collection accuracy. The measurement accuracy varies with the 
measurement method. When a static GPS measurement method is used, the 
accuracy is usually better than 5 cm. 

 

 

4.2.4 Accuracy Assessment of the Bundle Adjustment 

The internal accuracy is expressed in terms of theoretical accuracy (precision) parameters. 
The theoretical sigma values (standard deviations) can be obtained from the analysis of the 
covariance matrix after the bundle adjustment or by using empirical accuracy values. The 
covariance matrix Kxx (Eq. A.12 in Appendix) is defined as a measure of precision of the 
solution x̂  in the bundle block adjustment (Gruen, 1982).  

Parameters used for internal quality control of the system are: 

 A posteriori  standard deviation of unit weight (sigma naught): 
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un

PvvT


0̂  

where, v is the residual vector, P is the weight matrix, n is the number of 
observations, and u is the number of unknowns. Equation (4.54) is analogous to the 
Equation (A.10) in Appendix. 

 

 Standard deviations of object space coordinates: 

In the least squares adjustment procedure, the a posteriori sigma naught value and 
the elements of the covariance matrix Kxx (Eq. A.12 and Eq. A14 ) are used to 
compute the individual standard deviations of the object points. 

iii XXX q0ˆˆ    
iii YYY q0ˆˆ     

iii ZZZ q0ˆˆ    

where 
ii XXq , 

iiYYq , 
iiZZq , are diagonal elements of the inverse of the normal equation 

matrix at the position of the corresponding unknown.  

As described by Gruen (1982), the means of the variances of the adjusted ground 
point coordinates are used as theoretical precision measures. The mean standard 
deviations for the point set are computed via the law of error propagation: 
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with nX, nY, nZ number of point coordinates used for the computation, and 
iX̂ , 

iY̂ , and 
iZ̂  are the standard deviations of the X,Y,Z coordinates obtained from the 

covariance matrix. These parameters are computed and evaluated separately for 
control, check and tie points.  

 

The absolute (external) accuracy is evaluated by using reference data. The differences 
between the given and estimated coordinates of check points (CP) are calculated to obtain 
the residuals. Check points are a subset of GCPs that are not used as control point in the 
adjustment procedure. The residuals of the CPs in object space are computed using: 

r
iii XXX  ˆˆ  

r
iii YYY  ˆˆ  

r
iii ZZZ  ˆˆ  

(4.54) 

(4.55) 

(4.56) 

(4.57) 
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where iX̂ , iŶ iẐ  are the estimated ground coordinates of a CP (i), and r
iX , r

iY r
iZ  are the 

given coordinates. 

 

A common representation of absolute accuracy of georeferencing is the root-mean-square 
error (RMSE) value. The RMSE is computed from the ground residuals of CPs using the 
following formulae: 
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Where nX, nY, nZ are the numbers of CP coordinates; and iX̂ , iŶ , iẐ  are the object 

residuals computed by using the Equation set (4.57). 

A large difference between the RMSE and the theoretical  values is an indication of 
remaining systematic errors in the dataset.  

 

The absolute maximum of the residuals in a CP set is an important measure of the quality 
of the point set and the georeferencing method. 

 

The theoretical and the empirical accuracies in X and Y axes are often expressed with one 
parameter, and called “planimetric accuracy”. The formulations of the planimetric 
standard deviation and the planimetric RMSE are as follows: 
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The arithmetic mean values are often calculated and used to evaluate biases in the 
residuals: 
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where nX, nY, nZ are number of CP coordinates; and iX̂ , iŶ , iẐ  are the object 

residuals computed in Equation set (4.57). 

In an unbiased dataset, the arithmetic mean value should be close to zero.  

 

The empirical standard deviations of a point set can be computed from the analysis of 
residuals by: 

(4.58) 

(4.59) 

(4.60) 
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These parameters can be obtained also from the mean of the residuals and the RMSE 
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For the theoretical foundations of the accuracy estimators in bundle block adjustment see 
Gruen (1982).  

 

 

4.2.5 Processing Time 

The software development and testing have been performed on a Windows XP platform 
using Visual C++ 6.0 programming language. The triangulation tests, which are introduced 
in the next Chapter, have been performed on a standard desktop personal computer, which 
has Pentium 4 CPU and 2 GB RAM capacity. 

The computational time records have been noted for a couple of adjustment models and 
network configurations as example. The time records are provided in Table 4.1. The values 
are obtained from the PRISM Zurich/Winterthur tests and the ADS40 tests with Pavia 
testfield images acquired from 2000 m flight altitude. The details of the test datasets are 
given in the following Chapter. The time records are only for one full adjustment process, 
without considering the total time of the process with parameter elimination.  

 

 

 

 

 

(4.61a) 

(4.61b) 

(4.61c) 

(4.62a) 

(4.62b) 

(4.62c) 
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Table 4.1. Adjustment processing time for different network and trajectory model 
configurations 

Sensor-dataset Number 
of image 
points 

DGR DGR 
SC** 

PPM-
1 

SC** 

PPM-
2 

SC** 

LIM-
4 

LIM-
18 

LIM-
18 

SC** 

PRISM-
Zurich/Winterthur

99 N.A.* 22 sec 24 sec 33 sec N.A.* N.A.* N.A.* 

PRISM-
Zurich/Winterthur

200 N.A.* 3.5 
min 

4 min 4.5 
min 

N.A.* N.A.* N.A.* 

ADS40-Pavia 
2000 m 

46 1 sec N.A.* N.A.* N.A.* 1 sec 1 sec N.A.* 

ADS40-Pavia 
2000 m 

897 53 sec 5.5 
hours 

N.A.* N.A.* 1 min 4.3 
min 

8 
hours 

*N.A.: Not applied to the dataset 

**SC: Self-calibration is applied 

 

From Table 4.1, the major factors influencing the adjustment speed can be drawn as: 

1. the number of image rays in the adjustment 

2. application of self-calibration with the complete set of parameters and appropriate 
statistical analysis 

3. chosen trajectory model and its configuration (i.e. the number of orientation fixes 
or polynomial segments) 

4. image block configuration (e.g. number of images, etc.) 

It should also be noted that during the software development, time optimization has not 
been a part of the primary goals and further efforts shall decrease the time cost for self-
calibration. 
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APPLICATIONS 
 

 

 

 

 

The methodologies, which are proposed in Chapter 4 for geometric processing and 
validation of aerial and high-resolution satellite Linear Array CCD sensors, are applied to 
imagery of three different sensors. The STARIMAGER sensor of former Starlabo Corp., 
Japan, and the ADS40 sensor of the Leica Geosystems, Heerbrugg, Switzerland are the 
aerial Linear Array CCD sensors, which are operating with the Three-Line-Scanner 
principle. Applications of the proposed methods to the satellite Linear Array CCD sensor 
are realized using the imagery of the PRISM sensor, which operates onboard of the 
Japanese ALOS satellite. The images of all sensors are acquired over a number of specially 
designed testfields. 

As a common procedure, Baarda’s data snooping algorithm (Eq. A.17) has been applied to 
all datasets before starting comprehensive testing, in order to eliminate blunder 
measurements from the point sets. This is a critical issue especially for large point sets, 
such as in ADS40 and STARIMAGER cases, where a great number of tie points were 
collected in automatic or semi-automatic fashion to provide sufficient flexibility with the 
LIM (i.e. selection of number of orientation fixes). The algorithm has worked successfully 
and the test datasets were free of gross errors. 

This chapter is subdivided in three main subsections, one per sensor. The sensor 
descriptions and their applications to the testfields are given in the respective sections. 
Brief discussions on the results are provided for each sensor. 

 

5.1 The STARIMAGER (TLS) Sensor 

The STARIMAGER sensor was designed in the year 2000 by the Starlabo Corporation, 
Tokyo jointly with the Institute of Industrial Science, University of Tokyo. The system was 
originally called Three-Line-Scanner (TLS). The TLS system was initially designed to 
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record line features (roads, rivers, railways, power-lines, etc) only, but later tests also 
revealed the suitability for general mapping and GIS-related applications (Murai and 
Matsumoto, 2000). Starlabo Corporation has presented four different configurations of 
STARIMAGER cameras, namely SI-100, SI-250, SI-290, and SI-290N, with various 
numbers of CCD lines and pixels in each. The Starlabo Corporation has been discontinued 
and the system has passed to some of the shareholders of the company. The 
STARIMAGER is still in operation in Japan and used for airborne surveying and mapping 
applications. 

The STARIMAGER systems are composed of eight major subsystems (imaging, data pre- 
and post-processing, trajectory data recording, data storage systems, etc.), which are 
discussed in Chen et al. (2003). The imaging system typically has three major 
subassemblies: stabilizer, INS, and the TLS. The TLS system produces seamless high-
resolution images (5 - 10 cm footprint on the ground) in three viewing directions (forward, 
nadir and backward). The camera system is equipped with a high quality stabilizer. The 
stabilizer with five gimbals absorbs the vibrations of the aircraft movement and produces 
images with much less jitter than caused by an uncompensated platform movement. 

The first design of the STARIMAGER system, called SI-100, consists of 3 Linear Array 
CCDs located on the focal plate of a single lens. Each line includes 12 000 CCD detectors 
with a size of 7 µm. In the later configurations (i.e. SI-250, SI-290, and SI-290N) 10 
Linear Array CCDs having 14 400 pixels were used.  

Two image datasets acquired over the Yoriichio Testfield, Japan with the SI-100 and SI-
290 are processed in this study. The results of the SI-290 dataset were published in 
Kocaman (2005). The SI-100 dataset was analyzed in Kocaman et al. (2006). More details 
on the results are presented in the following sections. The sensor and dataset descriptions 
are provided accordingly. 

 

5.1.1 Applications over the Yoriichio Testfield, Japan 

 

5.1.1.1 SI-290 Dataset 

The main system specifications of the SI290 sensor are given in Table 5.1. The focal 
distance of the SI-290 camera lens system is 93 mm, and the stereo angles are 15, 23, 
and 38, between forward and nadir, nadir and backward, and forward and backward, 
respectively. Each line sensor consists of 14 400 CCD pixels with 5 m spacing, and 
acquires 500 line images per second (2 msec acquisition interval), recorded with a 
controlling and recording device installed in the aircraft. A GPS antenna acquires the 
camera position signal at 5 Hz and the IMU on the top of the TLS camera acquires the 
camera attitude signal at 500 Hz. A Trimble MS750 serves as Rover GPS and collects 
L1/L2 kinematic data at 5 Hz and another Trimble MS750 serves as Base GPS on the 
ground. The stabilizer has a vibration-absorbing spring and 5 gimbals, absorbing the 
fluctuations of the aircraft, and keeps the optical axis direction of the TLS camera stable 
within a single pixel of the line sensor. The TLS camera and stabilizer are controlled by the 
electronic devices in the aircraft cabin, which record images, position and attitude data 
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(Tsuno et al., 2004). The camera interior orientation parameters were obtained by both 
laboratory calibration and self-calibration by Starlabo Corporation. 

Table 5.1. SI-290 system specifications 

Configuration Item Specification 

Pixels/line 14400 
CCD Elements 

Pixel pitch 5 m 

Number of sensors 
10 (3 directions with 
RGB and NIR) 

Intensity Dynamic Range 9 bits or more 

Lens focal length 93 mm 

Stereo Angle 15, 23, 38 

FOV (across-track) 46 

TLS Camera 

Number of capturing lines 
125, 250, and 500 
lines/sec. 

Angle resolution in attitude 0.00125 

Spatial stability 0.00029 

Maximum angle velocity 30/sec 
Stabilizer 

Data output (acceleration/attitude) 500 Hz 

Planimetric accuracy 2 cm + 2 ppm 2f kinematics (post 
processes) Height accuracy 3 cm + 2 ppm GPS Receiver 

Data output 5 Hz 

Recording speed 150 MB/sec or more 
Recorder HDD Recording 

Recording capacity 320 GB 
 

The SI-290 test flight was performed with an airplane in July 2004. The testfield is located 
in Yoriichio area, Japan. Four image strips acquired in this flight were used for the tests 
(Figure 5.1). 

 

 

 

 

 

 

 

Figure 5.1. Yoriichio SI-290 image block configuration and the GCP distribution. 

Strip 1 

Strip 2 

Strip 3 

Strip 4 
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The Yoriichio SI-290 dataset was used mainly to analyze the effect of the image block 
configuration and the control point distribution on the triangulation results. The self-
calibration was not effective and the results from these tests were not used for further 
analysis. 

The main parameters of the test dataset are given in Table 5.2. The tie points were 
measured semi-automatically or manually using the TLS-LAB software. Forward, nadir, 
and backward red channel images were used for the point measurement and image 
orientation. A total of 39 control points were measured in the testfield using GPS devices. 
The given accuracy for the GCPs is 3 cm in planimetry and in height. Although the control 
points were signalized on the ground, many of them were of very poor image quality, and 
could be measured manually with one-to-two pixels precision only (Figure 5.2). 

 

Table 5.2. Main parameters of the SI-290 Yoriichio dataset. 

Number of strips 4 

Test area 2.5 km x 9 km 

Location Yoriichio, Japan 

Flying height 1800 m 

Ground sample distance 10 cm  10 cm 

Number of scan lines per strip (as 
used in the adjustment) 

Strip 1: 99 150   /    Strip 2: 99 000 
Strip 3: 34 300   /    Strip 4: 31 700 

Total number of GCPs 39 

Number of tie points 550 
 

 

 

Forward image  Nadir image   Backward image 

 

Figure 5.2. Two examples for the control point measurements on the Yoriichio images. 

The triangulation tests were performed with three different strip configurations: single 
strip, two parallel strips with 30% side-lap, and four strips composed of two parallel and 
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two cross strips. The strip-1, demonstrated in Figure 5.1, was used for single strip tests, 
while the strip-1 and strip-2 were used for the parallel strips tests.  

For each configuration, various numbers of control points were used. In order to analyze 
the effect of control point distribution on the accuracy results, different sets of control 
points having the same number in total were tested for some cases. Each test was named 
with the number of control points used. If two tests were performed with the same number 
of control points having different distributions, then a second number was set as suffix to 
distinguish between tests. For example, T.3-1 and T.3-2 represent two different tests both 
performed with three control points but with different GCP distributions.  

For each test, the GCPs, which were not used as control points, were used as check points. 
The image coordinates of the check points were used as observations together with the 
control and tie points in the bundle adjustment.  

The tests were performed using the DGR model and the LIM with four different numbers 
of orientation fixes (5, 15, 30, and 45). The number of image lines between any two 
orientation fixes for the LIM are approximately: 

5 orientation fixes: 25 000, 8 500, and 8 000 for the strips 1&2, strip 3, and strip 4 
respectively  

15 orientation fixes: 7 000 and 2 500 for the strips 1&2 and the strips 3 & 4 
respectively 

30 orientation fixes: 3 400, 2 000, 2 400 for the strips 1&2, strip 3, and strip 4 
respectively 

45 orientation fixes: 2250, 2000, and 2400 for the strips 1&2, strip 3, and strip 4 
respectively 

The given number of orientation fixes are nominal and defined by the user before the 
adjustment starts. The actual numbers are computed automatically by the software and 
limited according to the number of image observations available between the fixes. The 
details of the computational principles are given in Section 4.2.1.3. 

The a priori standard deviations of the unknown parameters used to compute the weight 
coefficients matrices in the LIM and the DGR are given Table 5.3. Since the information 
of trajectory data quality was not available from the Starlabo Corp., the approximations for 
the a priori standard deviations were obtained from the DGR tests with all GCPs and very 
low weights on the EO parameters. The values are kept the same in all test configurations 
of the SI-290 dataset.  

The a posteriori sigma naught ( 0̂ ) values obtained from the tests with different models 

for all block configurations are demonstrated in Figure 5.3. Since the 0̂  values do not 

vary with the number of control points used in the adjustment, only the values obtained 
from 4 GCP tests are presented in the graph. From the Figure 5.3 it can be clearly seen that 
the increase in the number of orientation fixes has a positive effect on the 0̂ . 
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Table 5.3. A priori standard deviations used for the unknown parameters of the SI-290 
dataset. 

Parameter Std. deviation () in DGR Std. deviation () in LIM* 

Xoff, Yoff 20 m 2 m 

Zoff 5 m 2 m 

0, 0 0.2 0.1 

0 3 0.1 

1, 1, 1 0.2 Not applicable 

GCP (X,Y,Z) 3 cm 3 cm 

Image measurement Initial: 2 pixels 

After 3rd iteration: 0̂  
Initial: 0̂  obtained from the 

DGR 

After 3rd iteration: 0̂  

* The DGR is run prior to the LIM in order to remove large position and attitude offsets 
from the system. 

 

The triangulation results are presented in the following parts according to the image block 
configuration (single, parallel and cross-strip configurations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. A posteriori sigma naught values of the all block configurations obtained from 
the 4 GCP tests. 
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Single Strip Results 

22 GCPs and 273 tie points are measured in Strip-1 (Figure 5.1). The DGR results are 
given in Figure 5.4. The use of a higher number of GCPs improved the RMSE values 
significantly. However, the improvements in sigma values were not significant in this case. 
In comparison to T.4, T.6-1 has a better control distribution at the edges of the strip, that 
provides an important improvement in planimetric RMSE. From the results it can be said 
that the DGR model was not sufficient to model the systematic errors of the trajectories.  

On the other hand, the LIM delivers better sigma and RMSE values than the DGR model 
(Figures 5.5 and 5.6). However, the single strip has poorer geometry than the multiple-
cross strip block configuration and a greater number of control points were necessary to 
provide the system stability. Therefore, the number of orientation fixes should be chosen 
carefully in order to keep the system stable. The LIM-15 delivers better accuracy values 
than the LIM-45. In addition, when a small number of control points are used, a small 
number of orientation fixes should be preferred. In comparison to the DGR model results, 
the increase of the number of control points has a more significant effect on the LIM 
results. The GCP distribution is also more important when the LIM is used. When two 
different versions of the 3 and 6 GCP cases are compared, the results of DGR do not show 
large differences. However, the LIM delivers significantly different results when the 
different distributions are chosen for the same number of control points. 

 
Figure 5.4. The DGR model results for the single strip with different numbers and 

distributions of GCPs. 
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Figure 5.5. LIM results with 15 orientation fixes for the single strip with different numbers 
and distributions of GCPs. 

 

Figure 5.6. LIM results with 45 orientation fixes for the single strip with different number 
and distribution of GCPs. 
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2-Strips (Parallel-strips) Results 

The two parallel strips having same flight direction and 30% side-lap were tested using a 
total of 35 GCPs as control and check points. In addition, a total of 493 tie points were 
measured in the two images. The sigma and the RMSE values were obtained from the 
check points. 3, 4, 6, 8, 12, and 20 GCP configurations were tested with the dataset. Two 
different control point sets were tested for the 4 GCP case (Figure 5.7). Three of the points 
were the same in both sets. In test T.4.1. the whole planimetric extent is covered by the 
four points, while in test T.4.2. one point was located in the overlapping area of the 
images.  

 

 

 

 

 

Figure 5.7. Control point distributions for the 2-strips tests T.4-1 (left) and T.4.2 (right). 
The triangles and the circles denote the control and the check points, 
respectively. 

 

The results of the DGR model, and the LIM with 15 and 45 orientation fixes are presented 
in Figures 5.8, 5.9, and 5.10, respectively. It must be noted that the given EO parameters 
are used in the adjustment with very low apriori weights, due to large displacements. 
Therefore, in both models, very strong correlations between the EO paramaters (especially 
between X and , and Y and ) were observed in the adjustment, which evidently weakens 
the system.  

In order to estimate EO parameters under these conditions, it is necessary to have an 
efficient block design and also a larger number of ground control points with good 
distribution. When the results of the T.4-1 and T.4-2 are compared, the effect of the control 
point distribution can be clearly seen especially from the RMSE height values. In the latter 
composition, although the distribution in planimetry seems to be disadvantageous, the 
results are better due to one control point located in the overlapping area.  

When compared to the single strip results, the parallel strip results were worse with similar 
number of GCPs, due to low-constrained (almost free) EO parameters in the system, which 
resulted in perfect correlation values (1). 
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Figure 5.8. The DGR model results of the 2-strips tests with different number and 
distribution of GCPs. 

 

 

Figure 5.9. The LIM results of the 2-strips tests with 15 orientation fixes and different 
numbers and distributions of GCPs. 
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Figure 5.10. The LIM results of 2-strips tests with 45 orientation fixes and different 
numbers and distributions of GCPs. 

 

4-Strips Results 

The 4-strips block is composed of two parallel and two cross strips. A total of 39 ground 
control points were used as control and check points for the adjustment. 553 tie points were 
distributed homogeneously in all four images. 3, 4, 6, 8, 12, and 20 control point 
distributions were tested to observe the number of control points on the results. Two 
different distributions of 3 and 6 GCP cases were tested. The two different distributions of 
the 3 GCP cases are given in Figure 5.11. In the T.3-1 case, the two points on the left side 
were selected to cover a larger planimetric extent of the area. In the T.3-2 distribution, the 
two GCPs on the left were measured in two strips.  

 

 

 

 

 

 

 

Figure 5.11. Control point distribution for the 4-strips test T.3-1 (left) and T.3-2 (right). 
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The results of the DGR model and the LIM with 45 fixes are given in Table 5.4. For the 
DGR results, the difference in RMSE height between T.3-1 and T.3-2 was caused by the 
different distributions of the control points. However, comparing the LIM-45 results of 
these two distributions, it is not possible to prefer any of the distributions as they provided 
equal level of accuracies. With the DGR model, the main improvement from 3 to 20 
control points was in height (Table 5.4, Figure 5.12). From 3 to 20 control points, the 
height RMSE values showed an improvement of 25%. However, the improvement of the 
corresponding sigma values was only 9%. A similar improvement can be observed also 
with the LIM model. Here, a large number of GCPs are useful to model the height errors 
better. However, this conclusion cannot be generalized for all TLS datasets. 

The trajectory parameters estimated in test T.12 with the DGR are given in Table 5.5. The 
large offset parameters can be seen in the DGR results, which justifies the relatively small 
weights on the trajectory unknowns. The deviations from these offset values are computed 
with the LIM. The deviation interval (minimum and maximum values) for each parameter 
is given in Table 5.5 as well. The values are derived from the LIM-45 results using the 
same set of 12 GCPs. 

The LIM results with 15 and 45 orientation fixes are presented in Figures 5.13 and 5.14. 
Contrary to the 2-strips tests, the LIM-45 produced more accurate and stable results than 
the LIM-15. In addition, the most accurate results out of all block configurations were 
obtained from the 4-strips tests. Given the inaccurate trajectory values, the best solution for 
this dataset was obtained with cross-strip configuration and using the LIM with a high 
number of orientation fixes and control points (T.20). The results of this test correspond to 
1.2 and 2.1 pixels absolute accuracy in planimetry and height, respectively.  

 

 

Table 5.4. 4-strips tests, the DGR and the LIM-45 results 

DGR   LIM-45  

 XY (cm) Z (cm) XY (cm) Z (cm)  XY (cm) Z (cm) Z (cm) Z (cm)

T.3-1 22 67 43 107  T.3-1 16 47 15 46 

T.3-2 22 67 47 81  T.3-2 16 47 16 47 

T.4 22 66 44 99  T.4 14 45 16 47 

T.6-1 21 64 44 72  T.6-1 11 40 16 43 

T.6-2 21 64 45 88  T.6-2 12 41 15 36 

T.8-1 20 63 40 80  T.8-1 10 36 14 32 

T.12 20 62 33 78  T.12 9 33 12 25 

T.20 19 61 33 58  T.20 8 28 12 21 
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Figure 5.12: The DGR model results of 4-strips tests. 

 

Table 5.5. 4-strips tests, trajectory parameters estimated with the DGR using 12 GCPs and 
the deviations (min and max values) at 45 orientation fixes computed with the LIM 

 DGR 

Parameter Xoff Yoff Zoff 0 0 0 1 1 1 

Strip-1 2.2 m 13.8 m 5.1 m 0.202 0.318 1.46 -0.050 0.170 0.36

Strip-2 1.7 m 13.6 m 5.1 m 0.149 -0.124 3.27 -0.096 0.231 0.41

Strip-3 16.7 m -0.9 m 4.5 m 0.027 0.092 3.94 0.018 0.035 0.02

Strip-4 -16.9 m 0.8 m 4.8 m 0.019 0.032 4.15 -0.013 -0.059 0.15

LIM 

Parameter Xoff Yoff Zoff 0 0     0 

All strips -3.5 m

6.3 m

-2.9 m

3.5 m

-1.4 m

1.7 m

-0.116

0.084

-0.092

0.169

  -0.08 

    0.07 
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Figure 5.13. 4-strips tests, the LIM results with 15 orientation fixes. 

 

 

Figure 5.14. 4-strips tests, the LIM results with 45 orientation fixes. 
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5.1.1.2 SI-100 Dataset 

As the first engineering model of the STARIMAGER, the SI-100 camera configuration 
contains three times three parallel one-dimensional CCD focal plane arrays, with 10 200 
pixels of 7m each (Gruen and Zhang, 2002). The STARIMAGER camera is shown in 
Figure 5.15. The system configuration is given in Figure 4.5. The sensor parameters of the 
SI-100 camera are given in Table 5.6.  

 

 

 

Figure 5.15. The STARIMAGER (Tsuno et al., 2004) 

 

 

 

 

Table 5.6. SI-100 sensor and imaging parameters 

Focal length 60.0 mm 

Number of pixels per array 10 200 

CCD pixel size 7 m 

Number of Linear Array CCDs on the focal plane 3 

Stereo view angle 21/42 * 

Field of view 61.5 
Instantaneous field of view 0.0065 
Scan line frequency 500 HZ 
* forward-nadir/forward-backward stereo view angles 

 

Three parallel SI-100 image strips acquired over the Yoriichio testfield were used for the 
triangulation tests. The self-calibration improved the accuracy in this dataset. Here, 
different strip configurations were not used for investigations and only the whole block 
was tested with different numbers of control points. The main parameters of the dataset are 
given in Table 5.7. The image stripes and the GCP distribution are shown in Figure 5.16. 

The DGR and the LIM with different numbers of orientation fixes were applied to the 
datasets. The number of image lines between any two orientation fixes for the LIM are 
approximately: 

5 orientation fixes: 38 400, 38 900, and 37 700 for the strips 1, 2, and 3 
respectively  



 96 

10 orientation fixes: 17 000, 17 200, and 16 700 for the strips 1, 2, and 3 
respectively 

20 orientation fixes: 8 100, 8 200, and 7 900 for the strips 1, 2, and 3 respectively 

30 orientation fixes: 8 100, 8 200, and 5 200 for the strips 1, 2, and 3 respectively 

 

Table 5.7. Main parameters of the SI-100 Yoriichio dataset 

Number of image strips (triplets)   3 

Date of acquisition   02/02/2002 

Test area   10 km x 1.4 km 

Flying height   600 m 

GSD (footprint)   7 cm  7 cm 

Number of scan lines per strip (as used in 
the adjustment) 

Strip 1: 153 700   /    Strip 2: 155 700 
Strip 3: 150 600 

Number of GCPs   61 

Total number of tie points   182 
 

Figure 5.16. Three SI-100 image strips are acquired over the Yoriichio testfield. The lines 
denote the strip edges and the triangles denote the GCPs. 

 

The a priori standard deviations of the unknown parameters, which were used to compute 
the weight coefficients matrices in the LIM and the DGR, are given Table 5.8. Since the 
trajectory data quality was not specified by the Starlabo Corp., the approximations of the a 
priori standard deviations were obtained from the DGR adjustment with all GCPs and the 
values were kept the same in all test configurations of SI-100 dataset.  

The Yoriichio testfield SI-100 data triangulation results with the DGR model are given in 
Figure 5.17. From 6 to 15 GCPs, the RMSE values improve slightly both in planimetry and 
in height. When the self-calibration is applied, the major improvements appeared in the 
theoretical values, i.e. the standard deviations and the sigma naught. The RMSE values 
however did not show any improvement. The AP set described in section 4.2.2.1 was used 
in the adjustment.  

The triangulation accuracy results with the LIM are presented in Figures 5.18 and 5.19. 
The results of the tests varied with the number of GCPs and the orientation fixes. The 
results of both with and without self-calibration are presented here. In comparison to the 
DGR model, a higher number of control points were needed when the LIM was used. 
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Contrary to the DGR, using more control points improved the accuracy significantly. 
When the self-calibration was applied, the RMSE values and the standard deviations 
improved in all LIM tests. The best accuracy results of the Yoriichio dataset were obtained 
using the LIM with 30 orientation fixes, and using 30 GCPs. The sigma naught values 
were around one pixel for this configuration. The RMSE values correspond to 1 pixel in 
planimetry and 2 pixels in height. 

 

Table 5.8. A priori standard deviations used for the unknown parameters of SI-100 dataset. 

Parameter Std. deviation () in DGR Std. deviation () in LIM 

Xoff, Yoff 1.2 m 1.2 m 

Zoff 1 m 1 m 

0, 0 0.1 0.1 

0 0.1 0.1 

1, 1, 1 0.05 Not applicable 

GCP (X,Y,Z) 3 cm 

Image 
measurement 

Initial: 2 pixels 

After 3rd iteration: 0̂  

 

SI-100 Yoriichio DGR Results
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GCP no.
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RMSE-XY 18 18 15 14 18 18 14 13

RMSE-Z 29 24 24 22 24 25 29 21
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Figure 5.17. Yoriichio SI-100 dataset, the DGR model results. 
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Yoriichio LIM Results with 15 GCPs
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Figure 5.18. Yoriichio SI-100 dataset LIM results with 15 GCPs. 

 

Yoriichio LIM results with 30 GCPs
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Figure 5.19. Yoriichio SI-100 dataset LIM results with 30 GCPs. 
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5.1.2 Findings and Discussion 

Considering the Yoriichio SI-290 dataset, using three different block configurations and 
the LIM, the accuracy results of the best cases are as following: 

 single strip: 1.1 pixels in planimetry and 2.1 pixels in height using 11 control 
points; 

 2-strips: 1.6 pixels in planimetry and 3.3 pixels in height using 12 control points;  

 4-strips: 1.1 pixels in planimetry and 2.4 pixels in height using 12 control points. 

The sigma naught values of the LIM tests with 45 orientation fixes were around one pixel 
for all three block configurations. The increase in the number of the LIM orientation fixes 
has a positive effect on the estimated sigma naught values.  

With the cross-strip configuration of 4-strips, it was possible to obtain a relatively stable 
system even with 3 control points. With the use of the LIM and a high number of tie 
points, thus higher number of orientation fixes, the sigma naught and the standard 
deviations of the ground coordinates became smaller. The positive effect of trajectory 
modeling with the LIM was more significant in height values. The DGR model was not 
adequate to model the systematic errors of the trajectory with the nine modeling 
parameters defined by the algorithm. Using the DGR model, the following accuracy results 
were achieved: 

 single strip: 2.5 pixels in planimetry and 4.9 pixels in height using 11 control 
points; 

 2-strips: 3.3 pixels in planimetry and 6.3 pixels in height using 12 control points;  

 4-strips: 3.3 pixels in planimetry and 7.8 pixels in height using 12 control points. 

One of the main problems of the test data was very low GCP image quality due to poor 
signalization on the ground. For an adequate and comprehensive accuracy testing, well-
signalized and well-distributed control points are crucial. The quality of the trajectory data 
has a major effect on the accuracy of the results. The trajectory data used in these tests 
most probably had a high noise level. Due to these errors, trajectory modeling with the 
LIM was very important for high adjustment accuracy.  

An efficient block configuration and control point distribution was important to improve 
the system accuracy due to two reasons. First, the correlations between the exterior 
orientation parameters were very high and they should be controlled by the network 
geometry as well as the stochastical model of the adjustment. The 2-strips block had the 
disadvantage of inadequate distribution of control points. With a better control point 
distribution, the exterior orientation parameters could be estimated more precisely. 

Secondly, with an efficient block configuration it was possible to reduce the number of 
control points to reach a certain accuracy level. In the LIM case, the sigma and RMSE 
values of the single strip tests performed with 6 GCPs were similar to the those of 4-strips 
tests performed with 3 GCPs. Single strip tests have shown that a single strip had poorer 
geometry and a high number of control points was necessary for the system stability and 
trajectory modeling. With a small number of control points (<=6), it was better to use the 
DGR model or the LIM with smaller number of orientation fixes.  
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Considering the SI-100 Yoriichio dataset, the DGR model required less control points in 
comparison to the LIM, but the accuracy remained the same with more control points. The 
self-calibration with the DGR model improved the sigma naught and the standard 
deviations only. The LIM modeled the trajectory errors better, although more control 
points were needed. In addition, the APs helped to improve the overall system accuracy in 
all LIM tests. A high number of orientation fixes provided only slightly better triangulation 
accuracy. However more control points were needed to keep the system stable in this case. 

In both datasets, the blocks suffered from insufficient image quality, bad definition of 
signalized points, and problems in GPS/INS processing. Therefore, the results shown here 
should be examined with some care and should not be generalized. 
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5.2 The ADS40 Sensor 

The ADS40 sensor is developed by Leica Geosystems, Heerbrugg, Switzerland. 
Simultaneous multiple image acquisitions are performed with the TLS principle. 
Therefore, the main design principles are similar to the STARIMAGER sensors of the 
former Starlabo Corporation, Tokyo. The basic design principles are given by Sandau et al. 
(2000). The ADS40 is accommodated in the PAV30 gyro-stabilized mount. The ADS40 
sensor and its onboard installation are demonstrated in Figure 5.20. 

The Linear Array CCD arrangements of different ADS40 sensors can be customized based 
on the user demands prior to production. Therefore, the sensors used in the following 
testfields have slight differences in terms of spectral characteristics and the positions of the 
CCD arrays in the focal plane and the viewing angles. The sensors’ main characteristics 
are given in the sections of respective datasets. 

 

5.2.1 Applications to Testfields 

Imagery of two different ADS40 sensors acquired over two different testfields, the 
Vaihingen/Enz testfield, Germany, and the Pavia testfield, Italy, were investigated in this 
study. The Vaihingen/Enz tests flights were part of the EuroSDR (European Spatial Data 
Research) project “Digital Camera Calibration”, together with the test flights of two aerial 
Frame Array sensors. As a project participant, we have also processed a part of the ADS40 
dataset at the IGP, ETH Zurich. The test results were published in Kocaman et al. (2006). 
In addition to these results, the triangulation results of two other research groups are 
provided by Cramer (2007). All results were at the same level of accuracy when self-
calibration was applied. 

The Pavia test flights were performed in the year 2004 by the CGR Company, Italy, with 
an ADS40 sensor, which has a specially designed Linear Array CCD arrangement in the 
focal plane. The ADS40 datasets from two different flying heights were processed at the 
IGP, ETH Zurich, and the Geomatics Laboratory at the University of Pavia. The results 
were published before in Casella et al. (2007a, 2007b) and Kocaman et al. (2007).  

The IGP results of both the Vaihingen/Enz and the Pavia ADS40 datasets are presented in 
more details in the following sections together with discussions and concluding remarks 

 

5.2.1.1 Vaihingen/Enz, Germany 

The Vaihingen/Enz test site was established by the Institute for Photogrammetry (IFP), 
University of Stuttgart, in 1995 originally for the geometrical performance test of the DPA 
sensor. The test site itself is located about 20km north-west of Stuttgart in a hilly area 
providing several types of vegetation and land use, a mostly rural area with smaller forests 
and villages. There exist more than 200 signalized and natural control points in the area 
(Cramer, 2005). 
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Figure 5.20. a) The ADS40 sensor b) Components of the ADS40: 1) Sensor head SH40 
with Digital optics DO64 and IMU, 2) Control unit CU40 with position and 
attitude computer POS, 3) Mass memory MM40, 4) Operator interface OI40, 
5) Pilot guidance indicator GI40, and 6) Mount PAV30 (Fricker, 2001) 

An ADS40 test flight has been performed in summer 2004, as a joint project of Leica 
Geosystems and IFP Stuttgart with different flying heights. The focal plane arrangement of 
the sensor is shown in Figure 5.21. In addition to the standard ADS40 system installation, 
additional GPS/inertial units were installed during the flight. The performance analyses of 
these GPS/inertial systems and the triangulation results with the Orima software of Leica 
Geosystems and with the DGAP software of IFP Stuttgart are given by Cramer (2005). 
However, only the trajectory data acquired by the standard GPS/IMU installation of 
ADS40 including Applanix LN200 fiber-optic gyro based IMU (Litton) is used in this 
study. Some important camera parameters of the ADS40 are given in Table 5.9. 

 

Figure 5.21. Layout of ADS40 focal plane (Fricker, 2001). 

(a) (b)
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The data acquired in the 1500m flight were used in these tests. The ADS40 test block 
parameters are given in Table 5.10. When the image scale is considered (1/24 000), the 
average ground sample distance (GSD) of each pixel corresponds to 15.6 cm. The 
resolution improvement from the staggered array capability is not considered in the 
calculation. The test dataset includes a total of 6 image strips, and 201 ground control 
points (Figure 5.22). 

 
Table 5.9. ADS40 sensor and imaging parameters (Reulke et al., 2004), used over the 

Vaihingen/Enz testfield 

Focal length   62.7 mm 

Pixel size   6.5 m 

Panchromatic line   2  12.000 pixels 

Colour lines   12.000 pixels 

Field of view (across track)   64 
Stereo angles   16, 26, 42 
Dynamic range   12 bit 

 

Table 5.10. ADS40 Vaihingen/Enz test block parameters 
# of image strips (triplets)   6 

Date of acquisition   2004 

Flying height   1 800 m 

Length/width of the TLS block   7.5 km  4.8 km 
GSD   15.6 cm  15.6 cm 
# of GCPs   201 

Apriori std. dev. of GCP coordinates   2 cm (Cramer, 2007) 

 

In addition to image measurements in the PAN channels and the ground coordinates of the 
control points, the image trajectory files and the camera calibration data have been 
received from IFP, Stuttgart. The data have been tested under several numbers and 
distributions of control points using the LIM and the DGR models. In addition, the self-
calibration algorithm has been applied.  

The a priori standard deviations of the unknown parameters, which were used to compute 
the weight coefficients matrices in the LIM and the DGR, are given Table 5.11. The 
approximations of the values are obtained from the adjustment with all GCPs and kept the 
same in all test configurations of the Vaihingen/Enz dataset.  
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Figure 5.22. Image trajectories and ground control point distribution in the ADS40 
Vaihingen/Enz dataset. The triangles represent the control point distribution 
for the 12 control points case. The remaining points are used as check points 
to compute the empirical accuracy. 

 
Table 5.11. A priori standard deviations used for the unknown parameters of the ADS40 

Vaihingen/Enz dataset. 

Parameter Std. deviation () in DGR Std. deviation () in LIM* 

Xoff, Yoff 11 cm 3 cm 

Zoff 20 cm 3 cm 

0, 0, 1, 1 0.004 0.001 (not applicable for 1 & 1) 

0, 1 0.008 0.001( not applicable 1) 

GCP (X,Y,Z) 5 cm 5 cm 

Image 
measurement 

Initial: 0.6 pixels 

After 3rd iteration: 0̂  
Initial: 0̂  obtained from the DGR 

After 3rd iteration: 0̂  

* The DGR is run prior to the LIM in order to remove position and attitude offsets from the 
system. 

 

First, the empirical accuracy of the given network has been computed using the differences 
of the given object space coordinates of the check points and the computed ones by 
performing spatial intersection, through the process of Direct Georeferencing. The RMSE 
values were under one pixel in X (12 cm) and Y (13 cm) directions, and slightly more than 
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one pixel in height (18 cm). This indicates already the exceptionally good accuracy of the 
measured orientation elements. 

When the bundle adjustment with the DGR model was applied, even without using control 
points there was a certain improvement in the RMSE values especially in Y direction 
(RMSE(X,Y,Z) = (14.5, 4.7, 15.2) cm). The results of 4, 9, and 12 control points cases 
with the DGR are presented in Figure 5.23. The apriori standard deviations for trajectory 
parameters were assumed to be equal to the above mentioned RMSE (X,Y,Z) values 
obtained from the space intersection process. With the use of the DGR model with 4 
control points, the accuracy improves to 4.2 cm, 5.3 cm, and 6.4 cm in X, Y, and Z 
respectively. The same level of accuracy was obtained in case of 9 and 12 control points. 
When the self-calibration was applied, the DGR model accuracy results improved 
significantly in planimetry. The theoretical sigma values obtained from the covariance 
matrix and the estimated 0 improved with self-calibration as well. 

 

 

Figure 5.23. Vaihingen/Enz ADS40 dataset DGR model results. 

 

The LIM results with different numbers of control points and two different number of 
orientation fixes are presented in Figures 5.24 and 5.25. With the LIM, when the number 
of control points was increased, the height accuracy improved as well. However, for this 
dataset, the DGR results were in general slightly better than the LIM results. On the other 
hand, the positive effect of the self-calibration parameters was observed in the planimetric 
accuracy results. The 0 parameter improves to 1.17 m with use of self-calibration with 
LIM having 8 orientation fixes. 
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Figure 5.24. Vaihingen/Enz ADS40 dataset LIM results with 4 orientation fixes. 

 

 

Figure 5.25. Vaihingen/Enz ADS40 dataset LIM results with 8 orientation fixes. 

 

 



 107

5.2.1.2 Pavia, Italy 

The Pavia test site was established by the Geomatics Laboratory, University of Pavia. A 
number of signalized and natural GCPs were added to the site. Three different ADS40 test 
flights over the Pavia testfield were performed in 2004 in a joint project with the CGR 
Company, Italy, and the University of Pavia. 7 ADS40 strips were taken at three different 
flight altitudes (2000 m, 4000 m, and 6000 m). The staggered-array functionality was 
switched off and only one line was acquired for the backward and forward views. 

The Pavia triangulations tests have been performed in a joint project with the Geomatics 
Laboratory, University of Pavia and the Chair of Photogrammetry and Remote Sensing, 
ETH Zurich. Different approaches for triangulation and self-calibration have been applied 
to the same image and point datasets. The University of Pavia approach has used a 
commercial software, Orima, supplied by the vendor of the ADS40 camera (Leica 
Geosystems, Heerbrugg). An additional parameter set with 21 parameters, which has been 
originally developed for the frame cameras and adopted for line cameras, has been used in 
the adjustment. The trajectory model of the Orima software uses the orientation fixes as in 
the LIM of this study. The mathematical description of this model is given in Hinsken et al. 
(2002). When the test results of both Groups are compared, they are similar when the self-
calibration is used (Casella et al., 2007a, 2007b, 2008, Kocaman et al., 2007). 

The main characteristics of the ADS40 sensor owned by the CGR Company are provided 
in Table 5.12. The sensor structure is given in Figure 5.26. 

Table 5.12. ADS40 sensor and imaging parameters (owned by the CGR Company, Italy) 

Focal length 62.77 mm 

Pixel size 6.5 μm 

Number of CCD lines 10 

Panchromatic line 2 * 12 000 pixels 

Colour lines (RGB and IR line) 12 000 pixels 

Field of view (along track, stereo angles) 
 
 

28.4°  (Forward / nadir) 
42.6°  (Forward / backward) 
28.4°  (Nadir / backward) 

Field of view (across-track) 75° 

Dynamic range 12 bit 

The triangulation results of the 2000 m and 4000 m image blocks are presented here. 
Figure 5.27 shows the strip outlines of both. The inner rectangles denote the actual 
processing area for triangulation. The average ground resolutions are ~20 cm and ~39 cm 
for the low and high flight altitudes, respectively. The test area is approximately 5.5  6.5 
km2. 

Signalized GCPs with a size of 60 cm are used in this study. They were measured with a 
high-accuracy GPS. The DGR and the LIM were tested both with and without self-
calibration. Two different GCP configurations (5 and 12 GCPs) were used. The red points 
in Figure 5.27 were used as control points in the tests of the 5 GCP configuration. For the 
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12 GCP configuration, the green points and the four red points in the corners were used. 
The black points were used as independent check points in all tests. 

 

 

 

 

Figure 5.26. Structure of the ADS40 owned by CGR and used to acquire the studied 
imagery (Casella & Franzini, 2006). 

 

 

Figure 5.27. Structures of the 2000 m (red) and 4000 m (blue) blocks and the distributions 
of GCPs (Kocaman et al., 2007). 

The image coordinate measurements of the control points were manually performed at the 
University of Pavia and provided to the our Group. 46 and 50 signalized control points 
were measured on the images of 2000 m flight and 4000 m flight, respectively. The 
visibility of the points in the images of all flight datasets are shown in Figure 5.28. Tie 
points were extracted and measured automatically with the APM of Socet Set.  

 

(a) (b) 

 

(c) 
Figure 5.28. Visibility of a GCP in (a) the 2000m block (b) the 4000m block (c) the 

6000m block (Casella et al., 2007b). 
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The a priori standard deviations of the unknown parameters, which are used to compute the 
weight coefficients matrices in the LIM and the DGR, are given Table 5.13. The 
approximations of the values are obtained from the adjustment with all GCPs and kept the 
same in all test configurations of the Pavia dataset.  

 
Table 5.13. A priori standard deviations used for the unknown parameters of the ADS40 

Pavia dataset. 

Parameter Std. deviation () in the DGR and the LIM  

Xoff, Yoff 10 cm 

Zoff 20 cm 

0, 0, 1, 1 0.0054 

0, 1 0.0081 

GCP (X,Y,Z) XY: 1.5 cm, Z: 2 cm 

Image measurement Initial: 1/3 pixel (=2.2 microns) 
 

Direct georeferencing results: Direct georeferencing was performed using multiple 
weighted forward intersection. The results are given in Table 5.14. Both datasets show 
systematic error behaviour, as can be seen from the mean of the residuals, especially in 
height.  

 

Table 5.14. The ADS40 Pavia datasets, the results of direct georeferencing 

Flight/parameter 2000 m block 4000 m block 

Component X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

RMSE 0.12 0.10 0.65 0.32 0.57 1.79 

Mean  0.01 -0.01 -0.57 -0.14 0.34 -1.78 

Sigma 0.10 0.10 0.22 0.15 0.18 0.39 

 

The sigma variable in Table 5.14 is computed via error propogation from the covariance 
matrix of spatial intersection according to: 

X

X
X n

i
2ˆ

ˆ


  
Y

Y
Y n

i
2ˆ

ˆ


   
Z

Z
Z n

i
2ˆ

ˆ


  

with nX nY, nZ number of point coordinates used for the computation.  

 

Further investigations from Casella and Franzini (2008) have shown that the main factor of 
the systematic errors came from the camera calibration provided by the vendor. The APs 
are found mostly significant in the adjustment tests presented below. 

(5.1) 
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2000 m flight: The DGR and the LIM models were tested in two different GCP 
configurations (5 and 12). The self-calibration method was applied to both models for the 
two GCP configurations. The LIM was tested with 4 and 18 orientation fixes. The fix 
number 18 was chosen for a comparison of the results with the Orima software by applying 
roughly the same interval between the orientation fixes. The fix number 4 was chosen to 
observe the effect of a smaller number of orientation fixes.  

The a posteriori sigma naught (0) values were in the range of 0.38-0.48 pixels. The self-
calibration method brings an improvement to the 0 values in all test configurations. The 
theoretical sigma values were obtained from the analysis of the covariance matrix. The 
sigma values improved slightly, which can be explained with the decrease of the 0 values 
in all cases. For more details on the results are given in Casella et al. (2007a). 

The test results with the 5 GCP configuration are demonstrated in Figure 5.29. When the 
DGR is compared to the LIM-18, the DGR produced more stable results. This implies that 
the given trajectory values were accurate and even a less complex model was sufficient for 
modeling the trajectory errors. The instability of the LIM can further be reduced by tuning 
the stochastical model parameters.  

 

Figure 5.29. 2000 m flight, the accuracy figures for the 5 GCP configuration 

 

The test results with the 12 GCP configuration is given in Figure 5.30. When compared to 
the 5 GCP cases, the RMSE values have been improved and resulted in 4 cm in planimetry 
and 5 cm in height in the best case with the DGR and self-calibration. Considering the 20 
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cm GSD, the values correspond to 0.2 and 0.25 pixels in planimetry and in height, 
respectively. 

Even when self-calibration was not used, 12 GCPs provided a significant improvement in 
the height values. However, when the 5 GCP configuration was used with self-calibration, 
the results were still superior to the results of the 12 GCPs case without self-calibration. 
The use of self-calibration leads thus to a more economical solution. While in the stable 
self-calibration cases the theoretical precision estimates (Sigma) match the empirical 
values (RMSE) quite well. We get for the 12 GCP / Z values even better RMSEs than 
predicted by the Sigmas. 
 

 

Figure 5.30. Accuracy figures for the 12 GCP configuration 

 

The effect of the self-calibration on the object space residuals can be clearly seen in the 
Figures 5.31 and 5.32. Without self-calibration the RMSE values include large systematic 
errors, which are corrected by self-calibration. The improvement is observed especially on 
the Y coordinates and the height values. 

 

4000 m flight: The DGR and the LIM were tested with the same GCP configurations (5 
and 12), both with and without self-calibration. The LIM was tested with 4 and 15 
orientation fixes. The 15 was chosen for a comparison of the results with the Orima 
software, which was used by the University of Pavia, by applying roughly the same 
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interval between the orientation fixes. The 4 was chosen as orientation fix number to 
observe the effect of a smaller number of orientation fixes. The a posteriori 0 values of all 
tests were in the range of 0.44-0.52 pixels. A graphical representation of the results of the 5 
and 12 GCP cases are provided in Figures 5.33 and 5.34. The test results without self-
calibration show large systematic errors, which were corrected by self-calibration (Figures 
5.35 and 5.36). 

 

The RMSE values obtained from the tests without self-calibration were between 0.8-1.0 
pixels for planimetry, and 1.9-2.4 pixels for height. The LIM performed better than the 
DGR in height. Also, the use of 12 GCPs improved the RMSE height values slightly. The 
self-calibration improved the RMSE results. They were in the range of 0.18-0.24 pixels for 
planimetry and 0.31-0.38 pixels for height. The DGR and the LIM results with self-
calibration were very similar in planimetry, while in height the DGR was slightly better. 
The results of the 5 and 12 GCP cases were very similar in all self-calibration tests. 
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Figure 5.31. Object space residuals for the DGR model with 12 GCPs without self-
calibration 
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Figure 5.32. Object space residuals for the DGR model with 12 GCPs and self-calibration. 

 

 

Figure 5.33. The triangulation results of 4000 m flight dataset with 5 GCPs 
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Figure 5.34. The triangulation results of 4000 m flight dataset with 12 GCPs 

 

 

Figure 5.35. Object space residuals for the DGR model with 5 GCPs and without self-
calibration 
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Figure 5.36. Object space residuals for the DGR model with 5 GCPs and with self-
calibration 

 

5.2.2 Findings and Discussion 

The images acquired with two different ADS40 sensors were tested in two different 
testfields. The Vaihingen/Enz block has outstanding trajectory accuracy, especially in 
height. The dataset could not be tested for different strip configurations due to data access 
limitations. The RMSE values achieved with 4, 9, and 12 GCPs did not show significant 
differences. The use of self-calibration improved the RMSEs only in planimetry. Without 
consideration of the improvement of the GSD with the use of staggered array technology, 
the best RMSE values obtained in this dataset were 0.21 and 0.37 pixels in planimetry and 
in height, respectively. These results were obtained with the DGR and with self-
calibration. The modeling of the trajectory wsith LIM is not necessary in this case. 

In the Pavia ADS40 tests, the direct georeferencing results were identical to the University 
of Pavia results in terms of RMSE. The 2000 m dataset provided a good level of accuracy, 
0.5 pixels in planimetry and 3 pixels in height, even without the use of GCPs. The direct 
georeferencing results of the 4000 m block were worse with 1.2 pixels in planimetry and 
4.6 pixels in height. With the bundle adjustment, the results were comparable to the 
University of Pavia results when self-calibration was used. For the 2000 m block, the best 
results were obtained using the DGR model with self-calibration and with 12 GCPs. In this 
case, the RMSE values were 4 cm and 5 cm (0.2 and 0.25 pixels) in planimetry and in 
height, respectively. For the 4000 m block, using the DGR with 5 GCPs and with self-
calibration, the RMSE values resulted in 8 cm and 12 cm (0.2 and 0.3 pixels) in planimetry 
and height, respectively. The use of self-calibration improved the accuracy in all cases. We 
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should also note that the staggered array technology was switched off in the Pavia test 
flights. 

Overall, the ADS40 tests showed that 

- The APs were in general determinable under the given estimation model 
parameters. There were usually high correlations between the EO and APs in the 
initial set, which were treated by the parameter removal algorithm in an iterative 
approach. When the RMSE values are analyzed at each iteration, differences 
between the full and reduced sets of APs were found very small and negligible, 
showing the fact that there was no significant disturbance on the object point 
coordinates which was caused by the APs. This fact was also proved by the trace 
check algorithm. 

- An accurate image and trajectory dataset can reach the geometric accuracy potential 
even with few well-defined and signalized GCPs. 
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5.3 The ALOS/PRISM Sensor 

 

5.3.1 Introduction 

The Chair of Photogrammetry and Remote Sensing, ETH Zurich, is a member of the 
JAXA (Japan Aerospace Exploration Agency) Cal/Val team for the ALOS/PRISM sensor. 
Since the launch of the satellite, the calibration and validation work has been performed. 
Software and algorithms have been developed and tested using data from several testfields 
for this purpose. 

Two of the trajectory models, the PPM and the DGR model, are used for georeferencing 
and calibration with a specially developed set of APs, which are described in Chapter 
4.2.2.2. The LIM is not applied here, since the PPM provides sufficient level of complexity 
to model errors of the satellite trajectory. In addition, a small number of segments are 
applicable with this model whereas a minimum of 4 orientation fixes are required with the 
LIM. The AP set and the trajectory models are described in Chapter 4.  

A brief overview of the PRISM sensor and data characteristics, pre-processing methods, 
the results of the sensor orientation and calibration obtained in a number of testfields, and 
an analysis of the results are given in the following sections. Details of different phases of 
sensor calibration are given in chronological order. The algorithms have been updated 
during the calibration work. Therefore, there are differences in the applications. 

Georeferencing results from a number of other high-resolution satellite (HRS) images are 
presented in the next section for a comparison with the findings from PRISM images. 

 

5.3.1.1 PRISM Sensor Description 

The new generation Japanese remote sensing satellite ALOS (Advanced Land Observing 
Satellite) has three remote-sensing instruments onboard: PRISM (Panchromatic Remote-
sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared 
Radiometer type-2), and PALSAR (Cloud Phased Array type L-band Synthetic Aperture 
Radar). A StarTracker and a GPS antenna are installed on the satellite in order to measure 
the platform rotation and position, respectively. A graphical demonstration of the satellite 
is provided in Figure 5.37. 

PRISM is a panchromatic radiometer with 2.5-meter spatial resolution. It has three optical 
systems for forward, nadir and backward view working with pushbroom principle (see 
Figures 2.2 and 2.5 in Chapter 2). There are two different image acquisition modes 
according to chosen swath width. In triplet imaging mode, the swath width is 35 km. If 70 
km swath width is preferred, only the nadir and backward cameras work simultaneously. 
The main characteristics of the PRISM sensor are given in Table 5.15. 
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Figure 5.37. ALOS platform configuration (ref : www.jaxa.jp) 

 

Table 5.15. Main characteristics of the PRISM sensor onboard ALOS 

Country of origin Japan 

Mission Cartography 

GSD 2.5 m 

Radiometric resolution 8 bit 

Spectral resolution Panchromatic imaging, 0.52 µm - 0.77 µm 

Swath width 35 km (triplet imaging) 

Sensor type Linear Array CCD 

No. of pixels ~5000 pixels per CCD chip 

Operation mode Pushbroom 

Stereo-acquisition Along-track 

Stereo capability ±23.8º Forward-Nadir-Backward 

Revisit time 1-2 days 

Orbit Polar sun-synchronous, sub-recurrent 
 

Unlike the single camera lens of the TLS sensors (e.g. the ADS40), the PRISM features 
one particular camera with a number of Linear Array CCD chips in the focal plane for each 
viewing angle. Three PRISM images per scene are acquired quasi-simultaneously in 
forward, nadir and backward viewing angles in along-track direction. Each scene has 
stereoscopic viewing capability with the forward-nadir, the forward-backward and the 
nadir-backward images. The interval between the image acquisition time of the forward, 
nadir and backward images is 45 seconds each. The images are taken at separate time 
intervals and there is no time overlap between the images of a triplet. 

The PRISM images have three different processing levels and only two of them are 
available to end users. The differences between the levels are defined according to the 
radiometric and geometric corrections applied to the images. The following levels are 
defined by JAXA: 
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 Level 1A: This level of imagery is generated from the Level 0 (original raw) data. 
No geometric or radiometric corrections are applied. This level of imagery is not 
available to the users. 

 Level 1B1: This level of imagery is obtained after applying radiometric correction 
to Level 1A data, and includes the absolute calibration data.  

 Level 1B2: It obtained from geometric processing of Level 1B1 data. The images 
are rectified on a reference plane. They are available in two formats: R (Geo-
referenced in the original image coverage area); G (Geo-corded data- image is 
resampled to head to north). 

 

5.3.1.2 PRISM Data Description and Preprocessing 

The image selection and ordering is done through a JAXA website, which is specially 
designated for the PIs (Principal Investigators). Level 1B1 images are always preferred, 
since Level 1B2 images are geometrically preprocessed and are not suitable for rigorous 
sensor modeling. The PRISM scenes are not always available as image triplet. Sometimes 
only single or double images are available for a scene. Still, all images used here are 
composed of image triplets. While ordering through the website, an optional post-
processing of the attitude data has always been selected in order to receive the most precise 
available data from JAXA. When this option is selected, a post-processing at JAXA is 
performed. However, at early phases after the launch, attitude data was not available for 
many datasets. 

The image supplementary files contain a substantial information on the satellite and sensor 
data, such as image and data acquisition (e.g. time data), exterior orientation (e.g. platform 
position and attitude data, sensor relative alignments, coordinate transformations, 
Geographical Coordinates of the image centers and corners, etc.), interior orientation (e.g. 
CCD chip locations, distortion data, etc.), and processing details (e.g. compression, level of 
data, radiometric and geometric corrections, data format, etc.). The sensor characteristics, 
processing algorithms, and data formats are explained in ALOS PRISM Level-1 Product 
Format Description (JAXA, 2005) and ALOS PRISM & AVNIR-2 Level 1 Data 
Processing Algorithm (JAXA, 2006) provided to the PIs. However, there are several 
problems encountered in the documents especially due to language problems and missing 
information, which has became one of the major drawbacks of the project. Most of the 
problems could be solved through personal communications with the JAXA members of 
the Cal/Val team. 

The first step of preprocessing is to merge the given sub-images. Interior orientation 
structures of the PRISM cameras are explained in Chapter 4.2.2.2 and Figures 4.15 and 
4.16. Instead of a full scene, images of individual chips are provided. A software tool 
developed during this work is used to merge the sub-images and generate the full scene. 
Metadata of each sub-image is located in the header part of the image files, which contains 
image size, radiometric resolution, and information on the unusable (dummy) parts of the 
images. 

The attitude and position estimates are based on star tracker and GPS receiver data (Iwata, 
2003). The given trajectory values are used as stochastic unknowns (observed values) in 
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the adjustment. The position data is given in the image supplementary files in two different 
coordinate systems (ECI- Earth Centered Inertial and ECR- Earth Centered Rotating 
systems). The ECR data are used directly in the computations. The position data is 
provided for 25 hours in one minute interval. Given the image acquisition time, the 
position data of each image line is interpolated using a 2nd order polynomial function. The 
accuracy of the position data is also provided in this file and usually equal to 1 m. 

The attitude data was not available for some of the early PRISM images. Therefore, they 
were estimated in the adjustment. In later datasets, the attitude data was given in the image 
supplementary file. However, it was still not employed in some of the following datasets 
due to lack of proper data format description at the time of processing.  

The provided attitude data is in quaternion format, which is composed of four elements to 
reconstruct the rotation matrix. The rotation matrix defines the transformation between the 
ECI (J2000) system to satellite coordinate system. First of all, a transformation between 
the ECI system to ECR system is required. The attitude data is given with 0.1 second 
interval for one orbit cycle (approximately 99 minutes). The following rotations are 
applied in a stepwise procedure for the ECI-to-ECR transformation for each attitude 
dataset. 

To convert the J2000 values into TOD (True of Date) system, astronomic nutation and 
precession matrices are applied. Both matrices contain time dependent parameters. 

Between the TOD and the ECR, the Greenwich Sidereal Time and polar motion matrices 
are applied to the data. 

After the transformation into the ECR system, an interpolation is performed using a 2nd 
order polynomial function, in order to obtain the attitude data of each image line according 
to image acquisition time. 

Since the trajectory data is defined in satellite coordinate system, after this step, it is 
transformed into the camera coordinate systems, which has its origin at the camera 
perspective center. In addition, before the triangulation, another transformation is applied 
to the trajectory data and the GCP coordinates to convert them into a local Cartesian 
coordinate system. The origin of the local coordinate system is taken as the center of the 
nadir image. 

As a part of preprocessing, the given CCD chip positions have been interpolated for each 
pixel and transformed into the focal plane. The positions of the centers of three CCD pixel 
detectors (start, center, and end) for each CCD chip were provided by JAXA as a part of 
Cal/Val team work. First, a scale transformation was performed since the given values 
were defined on a virtual plane, which is parallel to the focal plane. Afterwards, a linear 
interpolation function was used to generate a look-up table for each camera, which 
contains the positions of all CCD pixels in image coordinate system. This step was 
necessary to adapt data into the software input format.  

In addition to the CCD chip positions, the focal length of each PRISM camera and the 
CCD pixel size were provided by JAXA. 
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5.3.2 Applications to Testfields 

Until now, 12 different PRISM image datasets have been processed in terms of 
triangulation and self-calibration and the results of most of them have been published in 
different scientific platforms (e.g. Gruen et al., 2007, Kocaman and Gruen 2007a, 2007b, 
2008, etc.). In addition, DSMs (digital surface models) have been generated automatically 
for most of these testfields and some others from the PRISM images using the IGP 
software SAT-PP. The DSMs results are evaluated in Gruen et al. (2007), Gruen and Wolff 
(2007), Wolff and Gruen (2007). 

Here the results of five testfields, Saitama and Okazaki, Japan, Piemont, Italy, Bern/Thun 
and Zurich/Winterthur, Switzerland, are presented. The Saitama dataset was the first one to 
be processed. The initial phases of calibration, software development, and testing have 
been performed with this dataset. The details are given in the following section. 

The Zurich/Winterthur dataset represents the most recent status of the algorithm and 
software development, image quality, and the sensor calibration of JAXA. The results were 
therefore different from the other four earlier datasets, especially for the minimum GCP 
requirement to achieve sub-pixel accuracy. 

 

5.3.2.1 Saitama, Japan 

The Saitama testfield is located in the north-east of Tokyo, Japan. It was the first 
ALOS/PRISM Cal/Val dataset generated by JAXA. The PRISM images have been 
acquired in April, 2006. The main parameters of the dataset are given in Table 5.16. There 
are 203 ground control points measured on the images (Figure 5.38). The image 
measurements of the GCPs have been performed by JAXA, Japan. Many of the GCPs are 
closely located on the ground (Figure 5.39). 111 tie points were measured manually at the 
IGP in order to have denser image point distribution. 

Table 5.16. Main parameters of the PRISM dataset acquired over the Saitama testfield. 

Imaging Date 30.04.2006 

Number of PRISM images 1 scene with forward, nadir and backward images 

Viewing angles -23.8, 0, 23.8
No. of GCPs 203 

No. of tie points 111 
 

The software development, additional parameter (AP) definition for self-calibration, and 
the testing have been initially performed with the Saitama dataset in a stepwise procedure. 
The image metadata extraction and generation of full image scene have been performed as 
the very first step. The supplementary data extraction part has evolved during testing, and 
further implementations are still necessary. 

In the second step, the DGR model has been implemented for the multiple camera structure 
of the PRISM. No APs were defined at this step. Since no attitude data were available, they 
have been estimated using all GCPs. These values were used as rough approximations and 
the dataset was tested with 12 GCPs. The achieved theoretical and empirical accuracy 
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values were 1½ pixels. It should also be noted that the a priori standard deviations of the 
trajectory unknowns were 100 m for the position, 2 for the 0, 0, 0, and 0.2 for the 
1,1, 1 parameters for a whole image (0.034/second), and did not represent the reality, 
especially due to the metadata interpretation problem. In addition, the interior orientation 
data were not precise, only the nominal values of focal length and the CCD pixel size were 
known, and CCD detector position information was missing.  

In the next step, the scale and CCD line bending parameters (two parameters per image) 
have been added to the DGR model. Using the APs and correct weighting scheme (given in 
Table 5.17), the achieved RMSE values were (0.8 pixel) in planimetry and 2.8 m (1.1 
pixel) in height. The a posteriori sigma naught was equal to 0.6 pixel. There were still 
strong systematic effects in the object space (Figure 5.40). In order to identify the sources 
of these errors, the residuals have been back projected into the image space. The back-
projected error vectors indicated displacements in the relative positions of the CCD chips, 
in all three images. The image space residuals obtained from the Saitama tests are 
presented in Figures 5.41a,b,c. CCD center displacement parameters have been added to 
the model (Eq. 4.44a and 4.44b in Chapter 4) and the shifts could be compensated by these 
parameters. 

 

 

Figure 5.38. GCP distribution in Saitama PRISM nadir image. 
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Figure 5.39. The GCPs are mostly located in close groups on the ground in Saitama 
testfield. 

 

 

Figure 5.40. Object space residuals of the Saitama tests with the DGR model and the 6 APs 
using 9 GCPs. 
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(c) 

Figure 5.41. Object space residuals (3D vectors) of GCP coordinates back-projected into 
(a) the forward image space, (b) the nadir image space, and (c) the backward 
image space. 

 

Shortly after this phase, the calibration data for the PRISM cameras were received from 
JAXA, which proved the findings of the self-calibration. Using the laboratory calibration 
data as input in the adjustment, the significance pattern of the APs changed. The relative 
displacements of the CCD chip centers were no longer significant in the following tests. 
The significances of the CCD line bending and the scale parameters vary with the project. 
In the Saitama dataset, the scale parameters were highly significant because of the data 
interpretation problem. The CCD detector coordinates were provided on a virtual plane 
other than the focal plane. This problem has been later found out in the Okazaki dataset 
and fixed through transformation of the given values. 

The PPM has been implemented after this phase with 6 APs (scale and bending 
parameters) only. The model has been tested with different numbers of segments and 
different GCP configurations. For the DGR model, the same 6 APs were used as free 
unknowns in the adjustment, while the CCD center displacement parameters were fixed 
through the stochastical model. The a priori standard deviations of unknown parameters in 
the adjustment for both models are given in Table 5.17.  

 

 

 

Image area of the chip 6 

Image area of the chip 5 

Image area of the chip 4 

Image area of the chip 3 
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Table 5.17. A priori standard deviations used for the unknown parameters of the Saitama 
PRISM dataset. 

Parameter Std. deviation () in DGR Std. deviation () in PPM-2 

Xoff, Yoff, Zoff 2 m 2 m (X0, Y0, Z0) 

X1, Y1, Z1 Not applicable 1 m 

X2, Y2, Z2 Not applicable 0.5 m 

0, 0, 0 2 2 

1, 1, 1 0.5 per image (0.08/sec) 0.5 per trajectory segment 
(0.04/sec) 

2, 2, 2 Not applicable 0.01 per trajectory segment 
(0.0008/sec) 

GCP (X,Y,Z) 50 cm 

Image measurement 0.5 pixels 
 

A brief overview of triangulation accuracy results obtained from the DGR and the PPM 
with two segments per image trajectory is given in Table 5.18. A graphic representation of 
the RMSE and standard deviation values (std.dev.) are given in Figure 5.42. The RMSE 
values have been computed from the differences of the given and the estimated coordinates 
of the check points (CP). The CPs were a subset of the GCPs, which were not used as 
control points in the adjustment. The average standard deviations were computed from the 
covariance matrix. 

 

Table 5.18. The DGR and the PPM results of Saitama tests with self-calibration and with 5, 
9 and 25 GCP configurations. The results are in meters. 

GCP no. 5 5 9 9 25 25 

Model DGR PPM-2 DGR PPM-2 DGR PPM-2 

RMSEXY 1.38 2.10 1.24 1.25 1.24 1.34 

MaxXY Residual  2.83 4.04 2.62 2.52 2.47 2.91 

RMSEZ 2.46 2.77 2.13 2.33 2.00 2.30 

MaxZ Residual 5.86 6.49 5.77 5.87 5.36 5.58 

XY  0.79 1.52 0.74 0.86 0.71 0.70 

Max XY  0.91 2.27 0.83 1.04 0.77 0.78 

Z  2.10 2.76 1.98 2.18 1.92 1.89 

Max Z  2.43 3.57 2.26 2.46 2.13 2.14 

0 
*

 0.39 0.37 0.39 0.37 0.41 0.38 
* Sigma naught is given in pixel 
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Figure 5.42. Saitama tests accuracy results (RMSEs and standard deviations, computed for 
check point coordinates) 

 

With the DGR, the RMSE values in planimetry were at sub-pixel level, even with only 5 
GCPs. There was not much to gain by going from 5 over 9 to 25 GCPs. The RMSE values 
in height were similar in all versions (Figure 5.42). When the DGR and the PPM models 
are compared, the accuracy values were about at the same level in the 9 and 25 GCPs 
versions. However, the PPM requires a higher number of control points to be stable. The 
instability of the PPM has been indicated by the theoretical values (std. dev.) of the 5 GCPs 
case, which show significant differences between both models, although the sigma naught 
is almost equal. In all cases the standard deviations were clearly better than the related 
RMSEs. This shows the existence of small systematic residual errors. 

 

5.3.2.2 Bern/Thun, Switzerland 

The Bern/Thun testfield is located between the Bern and Thun cities of Switzerland. The 
testfield was set up by the Chair of Photogrammetry and Remote Sensing, ETH Zurich, 
under a contract with JAXA (Gruen et al., 2006). The coordinates of the GCPs were 
determined by GPS. The main parameters of the PRISM Bern/Thun dataset are given in 
Table 5.19. The testfield setup is demonstrated in Figure 5.43. All points were measured 
manually in the images. Similar to the Saitama dataset, the images suffer from a number of 
radiometric problems, leading to image artifacts, partially to fixed pattern noise. The 
reasons for those deficiencies are problems with black reference calibration (resulting in 
striping), jpeg-compression (resulting in blocking), saturation effects (mainly related to 
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only 8-bit radiometric depth collection) and others. More details on image quality analysis 
can be found in Gruen et al. (2007). 

Table 5.19. Main parameters of the PRISM dataset acquired over the Bern/Thun testfield 

Imaging Date 21.09.2006 

Number of PRISM images 1 scene with forward, nadir and backward images 

Viewing angles -23.8, 0, 23.8 
No. of GCPs 108 

No. of tie points 24 
 

 

Figure 5.43. The Bern/Thun testfield configuration. The red circles represent the GCP 
locations, the red rectangle represent the border of the PRISM nadir image, 
and the blue rectangles denote the coverage areas of reference DSMs (PK25, 
Swisstopo, Bern). 

The dataset has been tested using the DGR model and the PPM with two segments. Self-
calibration has been applied with both models using 6 APs in total. The a priori standard 
deviations of the unknown parameters in the adjustment, which were used to compute the 
weight coefficients, have been similar to those of the Saitama dataset (Table 5.17). The 
platform attitude data were not provided for this dataset. The initial approximations for the 
attitude parameters in the adjustment were taken from the Saitama results. 

The results of triangulation are given in Table 5.20. The accuracy both in planimetry and 
height, as evidenced by RMSEXY and RMSEZ, was below one pixel in all DGR tests. The 
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PPM was instable with a small number (5) of GCPs. A graphical representation of the 
RMSEs and standard deviations computed from all check points is given in Figure 5.44. 

All 6 APs were found significant in the adjustment with both models, especially because of 
the focal plane definition problem, which was explained in the Saitama tests.  

Table 5.20. The DGR model and the PPM results with self-calibration and with 5, 9 and 25 
GCP configurations. The results are in meters. 

GCP no. 5 5 9 9 25 25 

Model DGR PPM-2 DGR PPM-2 DGR PPM-2 

RMSEXY 2.23 4.35 1.97 3.47 1.80 1.93 

MaxXY Residual  4.59 10.75 4.37 6.30 3.47 3.45 

RMSEZ 1.77 5.24 1.57 3.30 1.46 3.21 

MaxZ Residual 4.80 12.82 4.63 8.40 4.45 8.45 

XY  0.82 2.52 0.75 0.99 0.89 1.01 

Max XY  1.10 4.44 1.04 1.34 1.19 1.30 

Z  2.09 6.51 2.01 2.62 2.43 2.77 

Max Z  3.60 13.14 3.54 4.80 4.21 4.58 

0 
*

 0.38 0.39 0.39 0.41 0.51 0.55 
* Sigma naught is given in pixel 

 

 
Figure 5.44. Bern/Thun tests accuracy results (RMSEs and standard deviations, computed 

for check point coordinates). 
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5.3.2.3 Piemont, Italy 

The Piemont testfield is located in the north western part of Italy. The testfield was set up 
by GAEL Consultant, France. Due to mountainous terrain structure, it was difficult locate 
GCPs with a homogeneous distribution. The ground coordinates of the GCPs were 
determined by GPS. The main parameters of the PRISM dataset acquired over the Piemont 
testfield are given in Table 5.21. The GCPs are measured manually in the images. GCP 
distribution in PRISM nadir image is given in Figure 5.45.  

Although the attitude data were provided for this dataset, they could not be employed in 
the adjustment. The main reason was the complexity of the data transformation between 
different coordinate systems and the lack of proper format definition. The a priori standard 
deviations of the unknown parameters in the adjustment, which were used to compute the 
weight coefficients, are similar to those of the Saitama dataset (Table 5.17). 

Table 5.21. The main parameters of the PRISM dataset acquired over the Piemont testfield 

Imaging Date 04.09.2006 

Number of PRISM images 1 scene with forward, nadir and backward images 

Viewing angles -23.8, 0, 23.8 
Total no. of GCPs 29 

Total no. of tie points 142 
Since there are only 29 GCPs in the testfield, the DGR model and the PPM have been 
tested with two different GCP configurations. The results are given in Table 5.22 and a 
graphical representation is shown in Figure 5.46. The accuracy values are at sub-pixel level 
for all models. The DGR model performs again better than the PPM in the 5 GCPs 
configuration. The difference can be observed especially in the theoretical values. Similar 
to the Saitama and the Bern/Thun datasets, all APs were significant here in both models, 
especially due to focal plane definition problem. 

Table 5.22. The DGR model and the PPM results with self-calibration and with 5 and 9 
GCP configurations. The results are in meters. 

GCP no. 5 5 9 9 

Model DGR PPM-2 DGR PPM-2 

RMSEXY 2.34 2.58 2.22 2.20 

MaxXY Residual  3.71 4.10 3.55 4.19 

RMSEZ 1.05 2.36 1.03 1.20 

MaxZ Residual 2.36 4.84 2.04 2.18 

XY  0.58 2.37 0.59 0.68 

Max XY  0.67 6.66 0.70 1.40 

Z  1.60 4.10 1.64 1.82 

Max Z  1.84 10.68 1.94 3.23 

0 
*

 0.28 0.26 0.30 0.27 
* Sigma naught is given in pixel 
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Figure 5.45. GCP distribution in Piemont PRISM nadir image. 
 

 
Figure 5.46. Piemont tests accuracy results (RMSEs and standard deviation, computed for 

check point coordinates) 
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5.3.2.4 Okazaki, Japan 

The Okazaki testfield is located in the Aichi Prefecture on the Honshu island of Japan. The 
testfield has been generated as the 2nd ALOS/PRISM Cal/Val dataset by JAXA. The main 
project parameters are given in Table 5.23. GCP distribution in the PRISM nadir image is 
shown in Figure 5.47. The attitude data were provided for this dataset. However, this data 
could not be employed in the adjustment due to missing transformation parameters in the 
algorithm. The a priori standard deviations of the unknown parameters in the adjustment 
are defined similar to those of the Saitama dataset (Table 5.17). 

 

Table 5.23. Main parameters of the PRISM dataset acquired over the Okazaki testfield. 

Imaging Date 20.06.2006 

Number of PRISM images 1 image triplet  

Viewing angles -23.8, 0, 23.8 
Total number of GCPs 51 

No. of tie points 135 
 

 

Figure 5.47. GCP distribution in Okazaki PRISM nadir image. 
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The DGR results with 5, 9, and 25 GCP configurations and the PPM results with 25 GCPs 
are presented in Figure 5.48. Since the Okazaki tests were performed after the first three 
testfields, the PPM was not applied with a small number of GCPs. Only the 25 GCPs 
configuration is used and the whole trajectory is modeled with one segment only. 
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Figure 5.48. Okazaki tests accuracy results (RMSEs and standard deviations, computed for 
check point coordinates) 

Using the DGR model, there was not much to gain from 5 to 25 GCPs in planimetric 
accuracy. However, the height accuracy improved with the increase of the number of 
GCPs. The a posteriori sigma naught values were very similar in all tests and vary between 
0.51-0.54 pixels. Comparing the results of the DGR and the PPM test, the theoretical and 
empirical accuracy values are equally the same. From these tests, it can be again concluded 
that the DGR parameters are sufficient to model the trajectory errors. 

Considering the 25 GCPs tests, the AP significance patterns were similar in both models. 
Scale parameters in forward and nadir images, and the CCD line bending parameter in 
backward image were found significant in the Student’s test.  
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5.3.2.5 Zurich, Switzerland 

The Zurich/Winterthur testfield has been established by the IGP, ETH Zurich in summer 
2007 under an ESA-ESRIN contract. The PRISM image triplet has been acquired before 
the establishment of the testfield. During the GPS measurement campaign, the images were 
used to select the control points with good image definition. The main parameters of the 
PRISM dataset in this testfield are given in Table 5.24. A total of 99 GCPs were measured 
in the field and also in the PRISM images. The GCPs and the tie points were measured 
with least squares matching. However, the matching procedure was not successful for 
some of the points due to inferior image definition and these points have been measured 
manually. The testfield setup is represented in Figure 5.49. The overview and the 
documentations of the GCP’s are reproduced with authorization of Swisstopo, Switzerland 
(ref: BA081107). 

Table 5.24. Main parameters of the PRISM dataset acquired over the Zurich/Winterthur 
testfield 

Imaging date 22.04.2007 

Number of PRISM images 1 image triplet 

Viewing angles (nominal) -23.8, 0, 23.8 
Total no. of GCPs 99 

No. of tie points 101 
 

Before testing the Zurich/Winterthur data, the coordinate system transformation algorithm 
of the software was improved using an updated format description. However, the task 
could not be accomplished, again due to partially missing information. Therefore, the 
complete coordinate transformation parameters were not employed in the model. The 
calibration data of the sensor relative alignment parameters were still missing in the 
transformation, which introduced a constant shift error into the position and attitude 
parameters in the adjustment. The drift error in the attitude data could be removed with the 
new implementation.  

The positional shift values were relatively small (below 2 m). Considering the accuracy of 
given position data (usually given as 1 m) and the spatial resolution of the sensor, their 
effect can be neglected in the error budget. 

3 attitude shift parameters (roll, pitch, and yaw) per image trajectory were estimated in the 
adjustment, with 0.07 a priori standard deviation. This value is quite small in comparison 
to the former datasets, where the trajectory attitude data was not provided and/or 
employed. The complete weighting schema is provided in Table 5.25. 

The dataset was tested with the DGR and the PPM model with one segment per image 
trajectory. With the help of more accurate trajectory data, smaller number of GCPs could 
be tested for this dataset. 1, 2, 4, and 9 GCP configurations have been used in the tests. The 
points were selected in a homogeneous distribution in planimetry for the multiple GCP 
cases. The results are provided in Table 5.26 and Figure 5.50. 
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Figure 5.49. The Zurich/Winterthur testfield configuration. The red dots represent the GCP 
locations, the blue rectangle represents the border of the PRISM nadir image, 
and the yellow rectangles denote the coverage areas of two reference DSMs. 

 

Table 5.25. A priori standard deviations used for the unknown parameters of the 
Zurich/Winterthur PRISM dataset. 

Parameter Std. deviations () in DGR Std. deviations () in PPM 

Xoff, Yoff, Zoff 2 m 2 m (X0, Y0, Z0) 

X1, Y1, Z1 Not applicable 1 m 

X2, Y2, Z2 Not applicable 0.5 m 

0, 0, 0 0.07 0.07 

1, 1, 1 0.0001 0.0001 

2, 2, 2 Not applicable 0.00001 

GCP (X,Y,Z) 20 cm 

Image measurement 0.5 pixels 
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Table 5.26. Triangulation results of Zurich/Winterthur testfield dataset 

Number of GCPs/C.P. 1/98 2/97 4/95 9/90 9/90 

Trajectory model DGR DGR DGR DGR PPM-1 

RMSEXY (m) 3.23 1.60 1.36 1.34 1.34 

RMSEZ (m) 7.68 0.89 0.85 0.91 0.91 

SigmaXY (m) 2.45 0.70 0.62 0.55 0.55 

SigmaZ (m) 11.08 1.92 1.69 1.50 1.50 

Sigma0 (pixel) 0.30 0.30 0.30 0.30 0.31 
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Figure 5.50. Zurich/Winterthur tests accuracy results (RMSEs and standard deviations, 
computed for check point coordinates) 

The a posteriori sigma naught values were equal to 0.3 pixels for all tests. When only 1 
GCP was used, the RMSE values were equal to 1.3 and 3 pixels in planimetry and height, 
respectively. Even with only 2 GCPs, a sub-pixel level accuracy could be achieved with 
the DGR method (Table 5.26, Figure 5.50). The PPM has been tested only with the 9 GCP 
configuration. This model practically behaved similar to the DGR, due to low a priori 
standard deviations applied to the given positions and 1st and 2nd order unknown attitude 
parameters (Table 5.25). The PPM results are presented here to demonstrate the similarity 
of the results with the DGR under the same GCP configurations and high a priori weight 
settings.  

Comparing the 2, 4, and 9 GCP configurations, the planimetric accuracy was slightly 
worse in the 2 GCPs case than in the 4 and 9 GCPs cases. The height accuracy remains 
almost the same in all cases. The accuracy both in planimetry and height, as evidenced by 
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RMSEXY and RMSEZ, was below one pixel in all tests. The PPM results were the same as 
the DGR model results of the same 9 GCP configuration.  

Considering the self-calibration, four of the additional parameters (scale parameters of the 
forward-nadir-backward images and the CCD line bending parameter of the nadir image) 
were statistically significant in the Zurich/Winterthur tests. 

 

5.3.3 Findings and Discussion 

The calibration procedure of the ALOS/PRISM images is presented here in a chronological 
order. The software and algorithm development steps have been carried out using testfield 
data acquired over five areas. The Piemont, Italy, Saitama and Okazaki, Japan and 
Bern/Thun, Switzerland, datasets represent earlier phases of the images and also 
algorithms. The Zurich/Winterthur testfield was setup later and the most recent PRISM 
data were acquired over this testfield. PRISM images from a number of other testfields 
have been tested afterwards, but the results were quite similar and they are discussed in 
Kocaman and Gruen (2008). 

Here, the PRISM system has been calibrated using the technique of self-calibration. In all 
cases, PRISM image triplets have been used. Validation is a system approach. It includes 
the sensor performance, but also the quality of both the data processing algorithms and the 
reference data. The validations of our georeferencing procedures could be performed in all 
five testfields. 

We started our calibration approach with partially uncalibrated Saitama image data. The 
missing information concerning the precise location of the individual focal plane array 
CCD chips with respect to the camera’s principal point led to significant systematic errors 
in object and image space. By applying the respective additional parameters in our self-
calibration procedure (2 shifts for each chip in image space) we were able to compensate 
these systematic errors, thus leading to much better results (improvement of up to 50%).  

After receiving from JAXA the calibrated shift values for the chips we applied those and 
found the results correct after validation by self-calibration.  

For georeferencing we applied both our sensor/trajectory models DGR and PPM and found 
that DGR had the better performance in case of very few GCPs. Under the given sensor 
configurations the PPM method turned out to be a bit instable with 5 GCPs, but with 9 and 
more GCPs both methods performed equally well overall. 

Considering the DGR results only, a brief summary of the accuracy values obtained in the 
best GCP configurations over all five testfields are summarized in Table 5.27. Concerning 
the planimetric accuracy the theoretical expectations (SigmaXY) were usually significantly 
better than the empirical values (RMSEXY). However, we note that in some cases the 
empirical height accuracy values (RMSEZ) were even better than the corresponding 
theoretical precision values. This can be explained by the fact that the image definitions of 
the points in planimetry were much worse than the height definition. This problem arises 
basically from the image radiometric quality problems. On the other hand, the GCPs were 
defined mostly on the road intersections, which can usually be considered as flat in the area 
of one pixel. 



 138 

Table 5.27. Summary of the accuracy results obtained from the best GCP and sensor model 
configurations in all 5 testfields 

Component Parameter Minimum (m) Maximum (m) 

RMSE XY 1.20 2.30 Planimetric 
accuracy Sigma XY 0.55 0.94 

RMSE Z 0.85 2.50 Height accuracy 

Sigma Z 1.50 2.60 

Sigma 0 0.27 0.54 

 

Over all five testfields we achieved with our empirical accuracy values quite consistent 
results. We stay in all cases in the sub-pixel domain, in the best cases we achieved about 
half a pixel planimetric accuracy and 1/3 pixel height accuracy. This relatively high 
accuracy is surprising, considering the fact that the image quality of PRISM has still much 
potential for improvement. On the other side one usually uses only well defined points as 
GCPs and check points, where the inferior image quality has not such a negative influence.  

With the latest version of the algorithm, which was developed during this study, and the 
calibration data provided by JAXA, two GCPs are sufficient to model the errors of the 
system and to calibrate the images. 

Self-calibration is a very powerful method for sensor model refinement. However, it 
should be noted that the most appropriate additional parameter functions have not yet been 
fully explored for PRISM imagery. The physical sensor model is still not complete due 
partially missing relative alignment parameters in the coordinate system transformation. In 
any case, self-calibration should be used with great care. The statistical testing of 
additional parameters for determinability is a crucial requirement for a successful use of 
this technique. 

If we compare these georeferencing results with those which were obtained with other 
satellite sensors of similar type (SPOT-5, IKONOS, Quickbird, Cartosat-1) we note that 
the accuracy (expressed in pixels) is about the same as with these other sensors. 
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CONCLUSIONS and OUTLOOK 
 

 

 

 

 

6.1 Summary 

This study has accomplished a large part of the initial objectives. Sensor geometries and 
self-calibration capabilities of a number of aerial and satellite Linear Array CCD sensors 
have been investigated under different network conditions, i.e. different numbers of strips, 
images, GCPs, etc. However, systematic studies with synthetic data are still required in 
order to provide definitive conclusions. 

Imagery of a number of aerial and satellite Linear Array CCD sensors have been oriented 
using rigorous models based on collinearity conditions. The Linear Array Bundle 
adjustment software developed at the IGP, ETH Zurich, has been adapted according to the 
requirements of each sensor. In addition, algorithms for the preparation of image datasets 
for the sensor orientation have been implemented in the software. Among those, image and 
trajectory extraction, coordinate transformations between coordinate systems (object 
spaces, image space, and pixel space), preprocessing of calibration data can be listed. For 
reference data preparation, GCP coordinate measurements were performed in the images 
and on the ground. Additional tie points were extracted manually or semi-automatically 
when needed. 

Three different trajectory models were used for the investigations. The Direct 
Georeferencing Model (DGR) is the relatively simple one among all three considering the 
mathematical model and the number of unknown parameters introduced into the 
adjustment. In this study, the model has been applied to both aerial and satellite cases. The 
Lagrange Interpolation Model (LIM) has been preferred for the modeling of the imagery of 
the aerial Linear Array CCD sensors, while the Piecewise Polynomial Model (PPM) has 
been applied only in the satellite images, where the satellite moves along a smoother 
trajectory and a small number of segments is sufficient for modeling. With LIM, at least 
four orientation fixes should be defined with the current implementation of the model. 
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The self-calibration is a useful technique for on-the-job calibration of sensors and 
modeling of the system errors and thus improving the accuracies in practical applications. 
It has been applied to the data of all sensors used in this study. Different additional 
parameter sets have been defined for the airborne and satellite cases due to differences 
between focal plane arrangements and the sensor characteristics. In both cases, the self-
calibration has been found useful when applied with appropriate care. 

Images of two different aerial Linear Array CCD sensors, the STARIMAGER of former 
Starlabo Corporation, Japan, and the ADS40 sensor of the Leica Geosystems, Heerbrugg, 
were used for the investigations. The results obtained from two different engineering 
models of STARIMAGER, the SI-100 and the SI290 models, are presented here. The 
images were acquired over the Yoriichio Testfield, Japan. A number of image and 
trajectory problems have been encountered in the dataset, which resulted in relatively low 
georeferencing accuracy and requirement of a large number of GCPs. On the contrary, 
both of the ADS40 datasets, which were acquired over the Vaihingen/Enz Testfield, 
Germany, and the Pavia Testfield, Italy, have superior quality in terms of image and 
trajectory data. All practical results are presented in Chapter 5 of this report. 

Briefly, the main achievements of the STARIMAGER datasets are: 

 Considering the Yoriichio SI-290 dataset and the three different block 
configurations, the best accuracy results were obtained with the LIM. The results 
were between 1.1-1.6 pixels in planimetry and 2.1-3.3 pixels in height. The best 
results were obtained using the highest number of GCPs, which was 11 for the single 
strip and 20 for the multiple strips cases. With the cross-strip configuration of 4-
strips, it was possible to obtain a relatively stable system even with 3 control points. 
The Single strip tests have shown that the single strip has poor geometry and use of a 
higher number of GCPs was necessary. In this dataset, an efficient block 
configuration provided a better handling of correlations between the EO parameters 
and high accuracy with small number of GCP.  

 Considering the SI-100 Yoriichio dataset, the APs have improved the overall system 
accuracy. In the best case with the LIM and 30 orientation fixes, and using 30 GCPs, 
the RMSE values corresponded to 1 pixel in planimetry and 2 pixels in height. 

 Both datasets cope with poor image quality, small ground signal size, and problems 
in GPS/INS processing. The trajectory data used in these tests have most probably a 
high noise level. The DGR was not adequate to model these errors. Therefore, the 
trajectory modeling with the LIM was very important for a high adjustment 
accuracy. However, with the small number of control points (<=6), it was better to 
use the DGR model or the LIM with smaller number of orientation fixes (4-6 fixes, 
depending on the GCP distribution). 

 

Major achievements of the ADS40 datasets were: 

 The Vaihingen/Enz block has outstanding trajectory accuracy, especially in height. 
The RMSE values achieved with 4, 9, and 12 GCPs did not show significant 
differences. The use of self-calibration improved the RMSEs only in planimetry. 
Without considering the improvement of the GSD with the use of staggered array 
technology, the best RMSE values obtained in this dataset were 0.21-0.37 pixels in 
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planimetry and in height, respectively. These results were obtained with the DGR 
and with self-calibration. The modeling of the trajectory with LIM was not necessary 
in this case. 

 In the Pavia ADS40 tests, we had the possibility to compare our results with the 
University of Pavia results. The direct georeferencing results were identical in terms 
of RMSE values. The 2000 m dataset provides a good level of accuracy, 0.5 pixels in 
planimetry and 3 pixels in height, even without the use of GCPs. The direct 
georeferencing results of the 4000 m block were worse and resulted in 1.2 pixels in 
planimetry and 4.6 pixels in height with a forward intersection. The bundle 
adjustment results were comparable to the University of Pavia results when the self-
calibration was applied. For the 2000 m block, the best RMSE values were 0.2 and 
0.25 pixels in planimetry and height, respectively. For the 4000 m block, using the 
DGR with 5 GCPs and with self-calibration, the RMSE values resulted in 0.2 and 0.3 
pixels in planimetry and in height, respectively. The use of self-calibration improved 
the accuracy in all cases. We should also note that the staggered array technology 
was switched off during the Pavia test flights. 

 Overall, the ADS40 tests showed that the APs are in general determinable under 
given estimation model parameters. No high disturbances on the object point 
coordinates caused by the APs were observed in the trace check algorithm. Our 
parameter removal algorithm works efficiently. An accurate image and trajectory 
dataset can reach the geometric accuracy potential even with few well-defined GCPs. 

 

The PRISM onboard of the Japanese ALOS is the example of the satellite Linear Array 
CCD sensor used for investigations in this study. PRISM can acquire along-track image 
triplets with multiple camera heads. 12 different PRISM image datasets acquired over 
designated testfields have been georeferenced and calibrated. The results of only the first 
five datasets are presented here due to two reasons. First, the early PRISM datasets reflect 
the calibration problems, which had been faced in the initial period after the satellite 
launch. Second, the sensor is already geometrically calibrated and stable, and has reached 
its accuracy potential in terms of georeferencing. The recent PRISM datasets (i.e. Adana, 
Turkey, Wellington, South Africa, Sakurajima, Japan, Haiphong, Vietnam, Thimpu, 
Bhutan) have similar accuracy with the presented datasets and do not exhibit any new 
characteristics. 

The Piemont, Italy, Saitama and Okazaki, Japan, and Bern/Thun, Switzerland, datasets 
represent the earlier phases of image acquisition and calibration, data processing, and 
algorithm development both at the IGP and at JAXA. The more recent PRISM images 
were acquired over the Zurich/Winterthur testfield. Dense and homogeneous GCP 
distribution in the PRISM images were provided in this testfield. PRISM Level 1B1 
(geometrically uncorrected) image triplets have been used in all testfields. The results of 
the five datasets can be summarized as: 

 Self-calibration is powerful to model the systematic errors of the PRISM images. In 
the early steps of the Saitama processing, the missing information concerning the 
precise location of the individual focal plane array CCD chips with respect to the 
camera’s principal point led to significant systematic errors in object and image 
space. By applying the respective additional parameters in our self-calibration 
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procedure, we were able to compensate these systematic errors, and achieve much 
better results (improvement of up to 50%). After receiving the calibrated shift values 
of the CCD chips from JAXA, we have performed the adjustment again and 
validated the values by self-calibration. 

 For georeferencing we have applied two of our sensor/trajectory models, the DGR 
and the PPM, and found that the DGR performed better in case of very few GCPs. 
The PPM method turned out to be a bit instable with small number of GCPs. But 
with 9 and more GCPs, both methods performed equally accurate overall. 
Considering the DGR results only, the best RMSE values, which were achieved in 
over all five testfields, are between 1.2-2.3 pixels in planimetry and 0.85-2.5 pixels 
in height. 

 If we compare these georeferencing results with those which were obtained with 
other satellite sensors of similar type (i.e. SPOT-5, IKONOS, Quickbird, Cartosat-1, 
etc.), we see that the accuracies (expressed in pixels) are almost the same. 

 

6.2 Conclusions 

Overall, the following points and conclusions can be highlighted for all sensors and 
datasets: 

 A number of well defined points as GCPs and check points are necessary for 
comprehensive analysis of the systems’ geometries and self-calibration capabilities. 
The minimum number of GCPs required for this procedure depends mainly on: 

- sensor configuration (i.e. number of lenses and Linear Array CCDs), 

- image block configuration (e.g. the number of image strips and the number of 
images per strip), 

- quality of the given trajectory and the camera calibration data, 

- selected trajectory model and its configuration in the bundle adjustment, 

- and, use of self-calibration and the definition of additional parameters, 

The GCP ground coordinates are nowadays measured with differential GPS 
technology and the measurement accuracy is adequate for the use of large format 
aerial digital cameras and high-resolution satellite optical sensors. Definition of 
GCPs in images is a key issue for accurate sensor orientation and can sometimes be 
a limiting factor for high-accuracy due to low image quality and signalization 
problems on the ground. A homogeneous distribution of the GCPs should be 
considered while preparing a calibration and validation test site. Full planimetric and 
vertical coverage of the image extent should be aimed at. 

 Depending on the number of control and check points, the use of tie points might be 
necessary when a complex trajectory model (such as the PPM or the LIM), and self-
calibration are used in the adjustment. In addition, the minimum number of tie points 
depends also on the number of orientation fixes defined for the LIM and number of 
segments defined for the PPM. 
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 As can be seen from the STARIMAGER applications, the point determination 
accuracy of the Linear Array CCD sensors is highly dependent on the quality of the 
given trajectory. If the trajectory data contains large systematic errors, trajectory 
modeling in the adjustment using the PPM or LIM is crucial. The main drawback of 
these models is the requirement for a high number of GCPs. Using accurate a priori 
trajectory data, the systematic error correction with the DGR is usually sufficient and 
a small number of GCPs (between 2-6, depending on the AP set) is enough in these 
cases. 

 Another advantage of high quality trajectory data appears in the handling of the 
stochastical model. The EO parameters of the Linear Array CCD imagery are highly 
correlated (especially between X- and Y-). The correlation pattern weakens the 
system, may reduce the adjustment reliability and parameter determinability for the 
EO parameters and the APs in general, and increases the demand for a higher number 
of GCPs. Therefore, the operational aspects of the Linear Array CCD image 
acquisition and data preprocessing (i.e. trajectory data processing with Kalman 
Filtering) become much more important than the traditional film imaging and the 
Matrix Array imagery. 

 The self-calibration is applicable to the Linear Array CCD imagery. Our experiences 
have shown that the success of the self-calibration depends mainly on: 

- the mathematical definition of APs, 

- sensor configuration (i.e. number of lenses and Linear Array CCDs), 

- test site configuration (e.g. the number of image strips and the number of 
images per strip, the number and the distribution of the GCPs, etc.), 

- quality of the given trajectory and the camera calibration data, 

- selected trajectory model and its configuration in the bundle adjustment, 

- existence of systematic errors in the system, 

- and, the noise level contained in the system. 

The applications of the self-calibration to the STARIMAGER datasets were the 
problematic cases, mainly due to the trajectory errors and other undefined errors of 
the system, and also low image quality of the GCPs. The parameter definition and 
determinability are the key issues of self-calibration and the method should not be 
applied blindly. The AP sets for each sensor should be tested and analyzed 
comprehensively using the imagery acquired over well-defined testfields. Accurate 
reference data is necessary for validation of the methods and the image data. Using 
appropriate statistical detection tools, parameter determinability should be checked 
at different steps of the adjustment. 

 The data snooping algorithm of Baarda was tested with different trajectory models 
and image datasets. The method has worked efficiently to detect blunders in the 
image measurements and provided a testing with clear datasets (free of gross errors). 
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6.3 Recommendations and Future Work 

In order to understand the systems fully, more investigations on the Linear Array CCD 
imagery should be performed. The applications presented here can be seen as early steps of 
this research field. Further work is necessary, especially on: 

i. Trajectory analysis methods, in order to understand the quality of given image 
trajectory data, 

ii. Analysis of the stochastical model, sensitiveness of the models to given apriori 
accuracies of GCPs and the trajectory data, 

iii. Extension of the investigations on the trajectory models and the self-calibration for 
other Linear Array CCD sensors, 

iv. Investigations on the direct georeferencing capabilities of the sensors (so far, only 
the accuracies of the ADS40 datasets could be assessed with direct georeferencing). 

v. And, structural analysis on the trajectory models and the network conditions using 
synthetic data. 

Investigations with synthetic data are recommended as a part of the future work also for 
realization of the first two items above. Although systematic investigations with synthetic 
data were part of the objectives of this study at the beginning and was even initiated for the 
airborne Linear Array CCD imagery (Kocaman and Gruen, 2006), it was not possible to 
finalize this part of the work within the time frame. 

The most time consuming aspects of working with the practical data came from the 
metadata extraction and data import to the software format. Currently, the fields of aerial 
and satellite photogrammetry lack standardization of data processing methods and 
presentation to the users. There is a variety of sensor orientation and calibration methods; 
yet the society does not have a consensus on the processing methods of Linear Array CCD 
imagery. In addition, the image and the auxiliary data are usually presented in different 
formats by the image vendors, creating difficulties in importing the data into existing 
software and algorithms. A standardization of the formats and methods would increase the 
speed of any research work and software development in these fields and provide the users 
better understanding of the systems. 
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A.1 Introduction to the Least Squares Estimation 

Most of the quantities involved in photogrammetric processes are random variables. Their 
values are obtained from measurements. Due to several factors, such as human limitations, 
instrumental imperfections, there is a certain amount of errors included in the 
measurements. An error is the difference between an observed value of a variable and its 
true value. The errors are categorized as random errors, systematic errors, and gross errors 
(blunders).  

The blunders and systematic errors in the measurements can be eliminated with appropriate 
care and mathematical corrections. However, the random errors cannot be corrected and 
are treated with a statistical method, called least squares adjustment. The method was 
introduced by Carl Gauss at the beginning of 19th century. 

The least squares adjustment assumes that the measurements are redundant, so that there 
are more measurements than the number of unknowns in the adjustment. The redundancy 
is denoted as:  

r= n-u;  n>u 

where n is the number of measurements and u is the number of unknowns. r is known also 
as degrees of freedom in the adjustment. 

The number of unknowns is defined according to the mathematical model used. The 
mathematical model describes the geometric and physical situation involved in the 
adjustment problem. The mathematical model is composed of two parts: a functional 
model and a stochastical model. When the sensor orientation problem is considered, the 
functional model is determined by the chosen georeferencing method. The stochastical 

(A.1) 
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model includes the a priori knowledge about the accuracy of the measured quantities, 
which are introduced with weights in the adjustment. 

In the least squares adjustment, the true value, which is theoretically the correct or exact 
value of a variable cannot be obtained. Instead, the most probable value, which has the 
highest probability for a measured or indirectly determined quantity, is estimated based on 
the observations. The observations are the directly measured/observed quantities and 
contain random errors.  

 

A.1.1 Method of Least Squares 

A sensible method of estimating unknown parameters is given by minimizing the sum of 
the squares of the deviations of the observations l from the estimators s[E(l)] of their 
expected values E(l), which are functions of the unknown parameters (Koch, 1999). Let the 
linear model be: 

l=Ax+e 

where  

s(E(l)) = Ax,  

E(l)=l, 

E(e)=0 

l is the vector of observations, A is the coefficient matrix, x is the unknown 
parameters vector, and e is the vector of errors.  

The method of least squares estimation (called also as least squares adjustment) aims at: 

(l-Ax)T(l-Ax) = minimum 

Since the vector of the true errors e is unknown, the vector of the residuals (v), which are 
the differences between an observed value and the value given by the model, is minimized 
in the estimation (v=-e). 

 

A.1.2 Gauss-Markoff Model 

Let A be an nu matrix of given coefficients, x a u1 vector of unknown, fixed parameters, 
l an n1 random vector of observations, and P(l)= 2 1D  the nn covariance matrix of l, 
where the weight matrix D of observations l is known and the positive factor 2  is 
unknown. Let A have full column rank, i.e. rankA=u, and let the weight matrix P be 
positive definite. Then 

 Ax=E(l) with P(l)= 2 1D  

(l-Ax)TP(l)-1(l-Ax) = minimum 

(A.2)

(A.3) 

(A.4) 

(A.5) 
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is said to be a Gauss-Markoff model with full rank (Koch, 1999). 

In this model, instead of minimizing the sum of squares of the residuals, one minimizes a 
quadratic form in the residuals. This leads to the estimator: 

 x̂ = (ATPA)-1ATPl 

which is the best linear unbiased estimator for x. The A is the design matrix in the 
adjustment, formed by observation equations, and P is the weight coefficient matrix of the 
l measurements vector.  

The D(l)= 2 1P  belongs to the stochastical part of the adjustment. It is assumed to be 
known except for the factor 2 . The matrix P is supposed to be positive definite and 
denotes the weight matrix of the observations l. In least squares adjustment, one also sets 

1P =Q, which is the cofactors or weight coefficients matrix. The 2 is called the variance 
of unit weight (Koch, 1999). In practice, the unit weight (P0=I) is used for one type of 
observations. In bundle adjustment, the unit weight is usually used for the a priori standard 
deviation of the image coordinates:  

0=img , P0=Pimg=I 

where 2
0  corresponds to the  2 , the variance of the unit weight. 

Weights of other observation equations are computed using following formulation: 

02

2
0 PP
i

i 


  

where i  is the a priori standard deviation of an observation i. 

 

A.2 Statistical Testing (Hypothesis Testing) 

Using the terminology of modern linear estimation theory for interval estimation, the linear 
adjustment model given in Equation (A.5) with the assigned weight matrix P can be 
formulated as a null-hypothesis H0 (Gruen, 1982): 

H0: l N(Ax, 2
0 P-1) 

(i.e. l has a multidimensional normal distribution with the assumptions as in Equation A.4). 
Suppose a minimum variance of unbiased estimates of x and 2

0  is performed with: 

)ˆ()ˆ(
1

ˆ 2
0 lxAPlxA

r
T   

where r is the redundancy given in Equation (A.1). The residuals are denoted by: 

 lxAv  ˆ  

(A.6)

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A11) 
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Under H0 the distributions of x̂  and v are: 

x̂  N(x,Kxx),   Kxx =
2
0 Qxx 

v N(0,Kvv),   Kvv =
2
0 Qvv 

with the weight coefficients matrices: 

Qxx = (ATPA)-1 

 T
xxvv AAQPQ  1  

The term precision is defined by the statistical features of the estimated parameters x̂ , if 
the a priori assumptions (functional and stochastical relations) of the adjustment model are 
considered to be true. The covariance matrix Kxx contains all information concerning the 
precision of the solution x̂ . The precision describes the deviation of the estimated x̂  from 
its expectation associated with the corresponding model. 

For the discussion of the effects of a possibly wrong model, the term accuracy becomes 
more important. The accuracy is formulated as:  

A( x̂ )=E(( x̂ -x)( x̂ -x)T) 

If the adjustment model is a false model, then we get E(l)≠Ax. For more details on the 
model testing under the null-hypothesis of Equation (A.9), see Gruen (1982). 

Another important aspect of the selected adjustment model is the reliability. The reliability 
defines the quality of the adjustment model with respect to the detection of model errors. 
Those errors can be blunders, systematic errors (errors in the functional assumptions), and 
weight errors (errors in the stochastical assumptions). Baarda’s (1967, 1968) reliability 
theory is a well-known and commonly used algorithm among photogrammetrists. The 
algorithm is based on the assumption that there is only one gross error in the observations 
at a time. The adjustment should be repeated to search for multiple errors. Using the 
elements (qvv) of Qvv given in Equation (A.15), the statistical test value wi for each 
observation is obtained as: 

 
ivv
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where vi is the corresponding element of the residual vector obtained by Equation (A.11), 
and 0 is the a priori sigma naught. According to a chosen significance level, a critical 
value |wmax| is compared with each wi. The internationally adopted significance level is 
0.001 which has been chosen by Baarda (1968). 
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A.3 Frame Bundle Adjustment 

The most elementary unit in photogrammetry is the image ray, which connects an object 
point, perspective center of an image, and the projection of the point on the image. The 
exterior orientation parameters, sensor interior geometry, and the systematic error 
components of the camera should be known to reconstruct the ray at the time of imaging.  

A single frame image can be thought of as a bundle of such rays converging at the 
perspective center with an unknown position and orientation in space. A bundle block 
adjustment establishes the position and orientation of each bundle, using the rays in each 
bundle and the given ground control information (Mikhail et al., 2001). The bases of the 
bundle method are the collinearity equations: 
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where Xi, Yi, Zi are the object space coordinates of object point (Pi), X0j, Y0j, Z0j are the 
object space coordinates of the perspective center (Oj), xij, yij, 0 are the measured image 
coordinates of point ( '

ijP ), xpj, ypj are the image space coordinates of principal point (PPj), cj 

is the camera constant for the lens j, Rj is the rotation matrix between image and object 
space coordinate systems, ij is the scale factor for the imaging ray. To relate the image 
coordinates (x, y) to the object coordinates (X, Y, Z) of a terrain point at any given instant, 
the collinearity equations are used. 

The components of Equation (A.18) are reduced to two by canceling out the scale factor  
and are re-arranged according to: 
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r11j…r33j are the elements of the rotation matrix Rj. Three rotation angles (,,) are used 
to generate the rotation matrix. There are several methods to compute the elements. Here, 
the following formulations are used: 

 

 

 

 

i 

(A.18) 

(A.19a)

(A.19b)
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jjr  coscos11   

jjr  sincos12   

jr sin13   

jjjjjr  sincoscossinsin21   

jjjjjr  sincossinsinsin22   

jjr  sincos23   

jjjjjr  sinsincoscossin31   

jjjjjr  cossinsincossin32   

jjr  coscos33   

 

Equations (A.19a) and (A.19b) can be written in compact form as: 
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