mzuriCh ETH Library

A remark on the estimate of a
determinant by Minami

Journal Article

Author(s):
Graf, Gian Michele; Vaghi, Alessio

Publication date:
2007-01

Permanent link:
https://doi.org/10.3929/ethz-b-000158618

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Letters in Mathematical Physics 79(1), https://doi.org/10.1007/s11005-006-0120-4

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://doi.org/10.3929/ethz-b-000158618
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s11005-006-0120-4
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Letters in Mathematical Physics (2007) 79:17-22 © Springer 2006
DOI 10.1007/s11005-006-0120-4

A Remark on the Estimate of a Determinant
by Minami

GIAN MICHELE GRAF and ALESSIO VAGHI
Theoretische Physik, ETH-Honggerberg, Ziirich 8093, Switzerland.
e-mail: gmgraf@itp.phys.ethz.ch; vaghial@student.ethz.ch

Received: 20 April 2006 ; revised version: 9 September 2006
Published online: 8 December 2006

Abstract. In the context of the Anderson model, Minami proved a Wegner type bound on
the expectation of 2 x 2 determinant of Green’s functions. We generalize it so as to allow
for a magnetic field, as well as to determinants of higher order.
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1. Introduction

Minami [2] considered the Anderson model
H=—A+V

acting on ¢>(Z?), where A is the discrete Laplacian and V ={V,} .z« consists of
independent, identically distributed real random variables, whose common density
p is bounded. He showed that in the localization regime the eigenvalues of the
Hamiltonian restricted to a finite box A CZ? are Poisson distributed if appropri-
ately rescaled in the limit as A grows large. More precisely, the eigenvalue statis-
tics near an energy E €R is described by the point process

[Al

E(A: E)(dx) =D 8aj(;— k) (dx), (1)

Jj=1

where E; are the eigenvalues of the Hamiltonian Ha on £2(A) obtained by trun-
cating H to A through Dirichlet boundary conditions. For E in the localization
regime Minami showed that £(A; E) converges in law weakly to the Poisson point
process £(E) of intensity n(E)dx,

E(A; E)dD) =S £(E)(d),  (A1Z), )

where n is the density of states.
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The result and, up to small changes, its proof also apply when the kinetic
energy —A is replaced by a more general operator K = K* with a rapid off-diago-
nal decay of its matrix elements K (x, y) in the position basis (x, y € Z%), as long as

Kx,y)=K(,x). (3)

Use of this property is made in the proof of Lemma 2 in [2], where H, and hence
its resolvent G(z) = (H —z)~', is assumed symmetric: G(z; x, y) = G(z; y, x), cf.
Equations (2.68) and (2.75).

In physical terms Equation (3) states invariance of K, and hence of H, under
time reversal, i.e., under the antiunitary operator on ¢%(Z¢) given by complex
conjugation. In fact invariance means K (x,y) = K (x, y), which is equivalent to
(3), because K is self-adjoint. In particular, that condition entails the absence
of an external magnetic field, and it may thus be desirable to dispense with it.
This is achieved in this note. But first we recall Minami’s Lemma 2. Let ImG =
(G —G*)/2i. Then [2]

(ImG)(z; x,x) AmG)(z; x,y) s
E[det ((ImG)(Z; v,x) ImG)(z; y, y)) ] <7olplls s 4)

for x #y and Imz >0, and the same applies to the Hamiltonian H, with A>x,y
in place of H.

Equation (4) should be compared with the Wegner bound E((Im G)(z; x, x)) <
7| plleo, Which implies that the expected number of eigenvalues in an interval I is
bounded by ||p|lco|I||A|. Similarly (4) implies that the expected number of pairs of
eigenvalues is bounded by (||p]leol/||A])?. These bounds enter the proof of (2) as
follows. The scaling of eigenvalues seen in (1) amounts to keeping |/||A| constant.
For large |A|, localization allows to approximate the point process §(A; E) by
Z,ICVZI &(Cy; E), where the box A has been broken into N> 1 cubes Cy, yet each of
volume |A|/N > 1. Since the first bound is linear in |A|[, the total number of scaled
eigenvalues remains of order 1. However, the number of pairs of eigenvalues, both
coming from a same cube, is N - O(N~2) = O(N~!). Different eigenvalues thus
effectively come from different cubes and are hence independent, leading to the
Poisson distribution. For details, see [2].

Because of G*(z; x, y)=G(z; y, x), the above matrix element

G(z; x,y) =G(z; y, x)

(ImG)(z; x,y)= oF

)

agrees with Im(G(z; x, y)) only if the symmetry (3) is assumed, which we shall not
do here. Then the agreement is limited to x =y. For the sake of clarity we remark
that it is the operator interpretation (5) of Im G, and not the one in the sense of
matrix elements, which makes (4) true and useful in the general case.
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The core of the argument is contained in the following
LEMMA 1. Let A=(a;;); j=1,2 with ImA>0. Then
/ dvidv, det(Im[diag(vi, v2) — A1)

5 detIm A
=TT .
/(detImA)2+%(detImA>(|a12|2+ laz1 1) + 1 (lan2|? — laz1 [2)?

(6)

The right-hand side is trivially bounded by 72, since detImA > 0. In [2],
Equations (2.72) and (2.74), the equality was established in the special case ajp =
ap1. It was applied to

_(Ail)(”v vi=H-2" ), @v=xy),

where H is H with V, and V, set equal to zero. With the so defined 2 x 2 matrix
A the two matrices under “detIm” in (4) and on the left-hand side of (6) agree, a
fact known as Krein’s formula. That A is actually well defined and satisfies Im A >
0 is seen from Im(z — H )=Imz>0 and the following remarks [3], which apply to
any complex n x n matrix C:

) ImC >0 < Im(—C~ 1) >0. (7)
Indeed, C is invertible, since otherwise Cu = 0 for some 0 # u € C",
implying (u, (Im C)u) = Im(u, Cu) =0, contrary to our assumption. More-
over, Im(—C~1)=C~*(ImC)C~!. The converse implication is because C
(=)~ ! is an involution.

(ii) ImC>0=>ImC>0, (8)
where C is the restriction of C to a subspace, as a sesquilinear form. In fact,
ImC=ImC.

A more qualitative understanding of the bound 72 for (6) may be obtained from
its generalization to n X n matrices:

LEMMA 2. Let A:(aij),-,jzl » with Im A > 0. Then

/dvl -o.dv, det(Im[diag(vl, c,Un) —A]_l)gn”.

As a result, Equation (4) also generalizes to the corresponding determinant of
order n.

2. Proofs

Proof of Lemma 1. Following [2] we will use that

1 7T _
/dx ax 1B = mGa)” (a,beC, Im(ba) > 0) ©)
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and

1 27 2
/de=ﬁ, (a>0,b,ceR,A:=4ac—b >0) (10)

We observe that
1
detIm A = (Imay;)(Imag) — Z|au—ﬁ|2, (11)

and hence the right-hand side of (6), do not depend on Rea;;, (i=1,2). Similarly
the left hand side, by a shift of integration variables. We may thus assume Rea;; =
0. The matrix on the left-hand side of (6) is

Im[diag(v;, v2) — A] ™' = (A* —diag(v1, v2)) "' (Im A) (A — diag(v1, v2) ™", (12)
and its determinant equals

detIm A - |det(A —diag(vy, vz)) |_2 =detImA- |(v1 —ai1)(vy —ax) —airan |_2 .
(13)

The vy-integration of the second factor (13) is of the type (9) with a=v; —aj; and
b= (a1} —vi)axn —aiaz. Then

Im(ba) = (Imax)|vi —ar|* + Im(ajzaz1) (vi —Reayn) +Re(arpaz)(Imayy)

=(Im azz)vf +Im(arpaz)vy + (Imaxn)(Imay)? +Re(apaz) (Imayy) .
(14)

By (10), the v;-integral is obtained by computing the discriminant A of this qua-
dratic function:
272

e (15)

/dvldvz |det(A — diag(v1, v2)) |_2 =
2
A=4(Imay; Imax)* +4(Imaj; Imax) Re(anaz) — (Im(arpaz))
2
= (2Imay; Imax + Re(ana))” —lana .

In doing so we tacitly assumed that A, and hence (14), are positive. This is indeed
so, because A<0 would imply that A —diag(v{, vp) is singular for some vy, v €R,
which contradicts Im A >0, cf. (7). It also follows because A /4 equals the expres-
sion under the root in (6), a claim we need to show anyhow: from (11) and

) 2 2
la12 —an1|” =la12|” +la21|” —2Re(ajpazr)
we obtain

1
2Imay; Imay +Re(ainay) =2detIm A+ 5 (lar2l* +laz11?)
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and hence
1 2
A =4(detIm A)* +2(jai2]* + |a21]?) (det Im A) + Z(|a12|2 +lazi?)” — lanan|*.

Since the last two terms equal (|la12|*> — |a21]?)?/4, we establish the claim and, by
Equations (13) and (15), the lemma. ]

Proof of Lemma 2. By induction in n. It may start with n =0, in which case the
determinant is 1 by natural convention, or with n=1, where the claim, i.e.,

/dv Im(via)gn, (Ima > 0),

is easily seen to hold as an equality. We maintain the induction step

/dvn det(Im[diag(vy, ..., va) — A]_l)gn det(Im[diag(vi, ..., va—1) — B]_l)
for some (n—1) x (n—1) matrix B with Im B > 0. This is actually a special case of

/dv det(Im[diag(0, ..., 0, v) — A]"") <z detIm(—B) ", (16)
where B is the Schur complement of a,, given as

B:A\—an_nl(av ®apg) 17)

in terms of the (n— 1, 1)-block decomposition of an n x n matrix:

C=(6 CV).
CH Cnn

By a computation similar to (12) the integrand in (16) is

detIm A . detIm A
|det(A — diag(0, ..., 0, v))|2 |detA—vdetA\|2
detIm A _ det Im(—A~1)

et AR[T—v(A D 1= v(A D]t

In the first line we used that v € R and that the determinant is linear in the last
row; in the second that

(C Y -detC=detC. (18)
By (9) the integral is 7 times

detIm(—A~")  detIm(—A~")
Im(—A_l)nn B (Im(—A—l))

<det[Im(—A~ )] =det Im[-A 1],

nn
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where the estimate is by applying
detC <cup-detC, (C>0)

to C=Im(—A""), cf. (7). This inequality is by Cauchy’s for the sesquilinear form
C: letting §,=(0,...,0,1),

1=(C718,, C8,)*<(C718,, CCT8,) - (80, C82) =(C ™V - »

cf. (18). Finally, E may be computed by means of the Schur (or Feshbach) for-
mula [1, p. 18]: A='=B~! with B as in (17). Note that the left-hand side is invert-
ible because of Im(—A~1)>0, cf. (7) and (8), and that it is the inverse of a matrix
with positive imaginary part. O

Note added in proof: After completion of this work, we learnt about a different
proof (J. Bellissard et al., in preparation) of Lemma 2.
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