
ETH Library

Efficient Nonlinear Solvers for
Nodal High-Order Finite Elements
in 3D

Journal Article

Author(s):
Brown, Jed

Publication date:
2010-10

Permanent link:
https://doi.org/10.3929/ethz-b-000157780

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Journal of Scientific Computing 45(1-3), https://doi.org/10.1007/s10915-010-9396-8

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000157780
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10915-010-9396-8
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

J Sci Comput (2010) 45: 48–63
DOI 10.1007/s10915-010-9396-8

Efficient Nonlinear Solvers for Nodal High-Order Finite
Elements in 3D

Jed Brown

Received: 1 June 2009 / Revised: 7 March 2010 / Accepted: 23 June 2010 / Published online: 23 July 2010
© Springer Science+Business Media, LLC 2010

Abstract Conventional high-order finite element methods are rarely used for industrial
problems because the Jacobian rapidly loses sparsity as the order is increased, leading to
unaffordable solve times and memory requirements. This effect typically limits order to at
most quadratic, despite the favorable accuracy and stability properties offered by quadratic
and higher order discretizations. We present a method in which the action of the Jacobian
is applied matrix-free exploiting a tensor product basis on hexahedral elements, while much
sparser matrices based on Q1 sub-elements on the nodes of the high-order basis are assem-
bled for preconditioning. With this “dual-order” scheme, storage is independent of spectral
order and a natural taping scheme is available to update a full-accuracy matrix-free Jacobian
during residual evaluation. Matrix-free Jacobian application circumvents the memory band-
width bottleneck typical of sparse matrix operations, providing several times greater floating
point performance and better use of multiple cores with shared memory bus. Computational
results for the p-Laplacian and Stokes problem, using block preconditioners and AMG,
demonstrate mesh-independent convergence rates and weak (bounded) dependence on or-
der, even for highly deformed meshes and nonlinear systems with several orders of mag-
nitude dynamic range in coefficients. For spectral orders around 5, the dual-order scheme
requires half the memory and similar time to assembled quadratic (Q2) elements, making it
very affordable for general use.

Keywords High-order · Finite element method · Newton-Krylov · Preconditioning

1 Introduction

High order spatial discretization has significant advantages over low order when high accu-
racy is required, especially when the solution is smooth. When the solution is only piecewise
smooth, hp finite element methods [5, 26, 28, 30] are capable of exponential convergence,
but high order discretization may yield higher quality results before asymptotic convergence

J. Brown (�)
Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich, Zürich, Switzerland
e-mail: brown@vaw.baug.ethz.ch

mailto:brown@vaw.baug.ethz.ch

J Sci Comput (2010) 45: 48–63 49

rates are realized. Optimal hp meshes are usually defined in terms of minimizing the dis-
cretization error for a given number of degrees of freedom, and effective refinement strate-
gies (e.g. [1, 6]) have been developed relative to this metric.

Due to rapid loss of sparsity in the Jacobian under p-refinement, the total number of
degrees of freedom is only weakly related to the practical performance metrics, computa-
tional time and storage requirements. For linear constant coefficient problems, this can be
avoided by choosing special hierarchical bases that preserve sparsity [17]. When the spectral
element method (a special case of nodal p-FEM which reuses the interpolation nodes for
quadrature) is used with (nearly) affine elements, linear constant coefficient problems can
be very efficiently solved using the fast diagonalization method combined with a multilevel
coarse solve [22].

For nonlinear and variable coefficient problems in 3D, the element matrices are neces-
sarily dense and fast diagonalization is not available. For order p tensor product bases on
hexahedral elements, there are n = (p + 1)3 degrees of freedom per element, but the dense
element matrices contribute (p+1)6 nonzeros to the global matrix. Since most sparse matrix
operations scale linearly with the number of nonzeros, both time and memory costs scale as
O(n2) under p-refinement. A popular method for reducing linear algebra costs is static con-
densation which removes the interior degrees of freedom. This method is effective at mod-
erate to high order in 2D because a large portion of the nodes are interior, but in 3D less than
half the nodes are interior when p < 9. For a scalar problem with p = 9, condensation re-
quires manipulating a dense 1000 × 1000 matrix for each element. This is very expensive in
time and memory for only 1000 degrees of freedom, and still contributes a dense 488 × 488
matrix to the global system. An additional bottleneck of traditional hp-FEM is integration
of element matrices. Naïve assembly of the true Jacobian using a p-point quadrature rule
is O(p9) although it can be improved to O(p7) by exploiting the tensor product structure
using sum factorization. The cost incurred by forming and manipulating these dense matri-
ces is the primary reason why high order (even quadratic) elements are not more popular in
applications where extremely high accuracy is not needed.

If extremely high accuracy is desired, conventional high-order methods are attractive
because the extra cost is more than made up for by improved convergence rate in the asymp-
totic range. For practical simulations, the asymptotic range is typically only mildly realized
because an acceptable accuracy is obtained shortly after the solution is resolved. This effect
is illustrated in Fig. 1. High-order methods must have comparable cost per degree of free-
dom to be competitive with low-order methods unless the desired level of accuracy is well
into the asymptotic range.

To develop efficient solvers for high order elements, we examine the bottlenecks present
in nonlinear solvers, and design the discretization to eliminate as many of these bottlenecks
as possible. Our approach to preconditioning involves the method proposed by [27] and
further investigated by [7, 8, 15, 18], resulting in a scheme with storage costs equivalent
to Q1 (piecewise trilinear) elements independent of p and total CPU time which is mesh
independent and only weakly dependent on p. The principle contributions of this paper are
a formulation of this preconditioner that is applicable to general nonlinear systems, a matrix-
free representation of the Jacobian, and observation of a much lower “crossover” order p at
which this class of methods is to be preferred over conventional methods.

2 Newton-Krylov

Jacobian-free Newton-Krylov (JFNK) methods combine Newton-type methods for superlin-
early convergent solution of nonlinear equations with Krylov subspace methods for solving

50 J Sci Comput (2010) 45: 48–63

Fig. 1 The left panel shows truncation error as a function of total degrees of freedom for a 3D Poisson
problem with smooth but rapidly varying solution. The thick horizontal line represents an acceptable accuracy
and is only modestly within the asymptotic range for all approximation orders. The right panel shows the total
number of nonzeros in the Jacobian which is an optimistic lower bound for the flops required for the solve

the Newton step without actually forming the true Jacobian [20]. In this section, we intro-
duce the method and highlight the performance bottlenecks.

2.1 The Newton Iteration

The Newton iteration for the nonlinear system F(x) = 0 with state vector x involves solving
the sequence of linear systems

J (xk)sk = −F(xk), xk+1 ← xk + sk, k = 0,1, . . . (1)

until convergence which is frequently measured as a relative tolerance

∥
∥
∥
∥

F(xk)

F (x0)

∥
∥
∥
∥

< εtol.

The structure and conditioning of the Jacobian J (x) = ∂F (x)

∂x
is dependent on the equations

and discretization, but for second order elliptic operators, the condition number κ(J) =
‖J‖‖J−1‖ scales as O(h−2p4) where h is the mesh size and p is the approximation order.

2.2 Krylov Methods

Krylov methods solve Jx = b using the Krylov subspaces

Kj = span{b̃, J̃ b̃, J̃ 2b̃, . . . , J̃ j−1b̃}

where J̃ = P −1J , b̃ = P −1b0 for left preconditioning and J̃ = JP −1, b̃ = b for right pre-
conditioning. The convergence rate of various Krylov methods (e.g. CG, MINRES, GM-
RES, BiCGStab, QMR) depend in diverse ways on the spectral properties of J̃ (see [25]
for matrices where each nonsymmetric iteration beats all others by a large margin) but a
useful heuristic is that the iteration count scales as the square root of κ(J̃). When solving
the Newton step (1) we rely on P −1 to overcome the O(h−2p4) conditioning of the spa-
tial discretization. Our preconditioners are obtained by applying an algorithm P to data Jp

provided by the discretization of the equations, i.e. P −1 = P(Jp). Concretely, Jp almost al-
ways contains one or more assembled matrices, but may contain auxiliary information such

J Sci Comput (2010) 45: 48–63 51

as a multilevel hierarchy. The fundamental preconditioners P are relaxation (e.g. SOR) and
(incomplete) factorization, which are used to build scalable and problem-specific precondi-
tioners such as multigrid, domain decomposition, and Schur-complement. The notation P −1

comes from incomplete factorization in which P = LU is available, but multiplication by P

is never needed in the Krylov iteration and indeed is rarely available. A complete solver for
Jx = b is K(J,P(Jp)) which represents a choice of Krylov accelerator K, preconditioning
method P, and preconditioning data Jp .

As discussed in the introduction, the Jacobian in (1) loses sparsity for high order methods
so we will never form it explicitly. The finite difference representation

J (x)y = F(x + εy) − F(x)

ε

for appropriately chosen ε is attractive because it requires no additional storage and no
coding beyond function evaluation, however the adjoint J T is not available, its accuracy is
at best

√
εmachine, and it performs unnecessary computation if function evaluation involves

costly fractional powers or transcendental functions. The inaccuracy can lead to stagnation
due to a poor quality Krylov basis, especially when restarts are needed. Automatic differ-
entiation (AD) offers a full accuracy alternative and can produce adjoints in reverse mode,
but such evaluations, especially in reverse mode, are usually more expensive than function
evaluation due to suboptimal taping1 strategies. In Sect. 3.3 we detail an alternative with
several advantages over finite differencing and which is similar to AD with optimal taping.

2.3 Performance

The most expensive parts of the Newton-Krylov iteration are assembling matrices for the
preconditioner and subsequently solving for the Newton step. Most preconditioners require
a setup phase after the matrices (and whatever else goes into Jp) are assembled. Scalable
preconditioners require a globally coupled coarse level solve and we take multigrid as the
canonical example. With geometric multigrid the coarse level can be provided by the appli-
cation by rediscretizing the governing equations while algebraic multigrid must analyze the
matrix structure to determine the coarse component and then compute the Galerkin coarse
operator (involving relatively expensive matrix-matrix products and producing a denser
coarse operator). The coarse operator needs to be factored, a task that is often done re-
dundantly. Finally, the solve involves matrix multiplication and smoothers on each level.

The relative cost of these three phases (assembly, setup, solve) is highly problem depen-
dent, but we offer some general guidelines for perspective; see [13, 20, 21] for more detailed
analysis of these issues. Matrix assembly in finite element methods involves pointwise op-
erations at quadrature points and is typically limited by instruction level parallelism and
scheduling (especially for high-order methods). The setup and solve phases are limited by
memory bandwidth on the fine levels and by network latency on the coarse levels. An impor-
tant issue is simultaneously keeping the number of levels small so that relatively little work
is done on the less efficient coarse levels while keeping the coarse operator small enough
and sparse enough that it is cheap to factor. When strong preconditioners are used so to keep
the iteration count low, setup can be much more expensive than the solve. Direct solvers are

1This is a slight abuse of terminology, “taping” in the AD context refers to intermediate values stored in
memory (as opposed to checkpoints which are typically written to disk) during reverse-mode computation.
We use the term more loosely to refer to any intermediate storage that makes multiplication by J (u) and
JT (u) more efficient than only storing the state vector u.

52 J Sci Comput (2010) 45: 48–63

an extreme case of this, but multigrid can also have an expensive setup step, especially with
many processors and Galerkin coarse operators.

Efficient linear solvers involve a tradeoff between many iterations with cheap precondi-
tioners and fewer iterations with expensive preconditioners. With JFNK, the setup costs can
be reduced by lagging the preconditioner (not recomputing it on every Newton step) at the
expense of additional Krylov iterations. If matrix-free Jacobian application is inexpensive,
the cost of these extra iterations may be affordable, making lagging appealing. On the other
hand, if matrix assembly and preconditioner setup is cheap, there is no need to work with a
stale preconditioner. Note that use of a stale Jacobian compromises quadratic convergence
of the Newton method while a stale preconditioner only affects the convergence rate of the
Krylov iteration.

Most of the time required to solve strongly nonlinear equations is spent before enter-
ing the neighborhood where Newton methods are quadratically convergent. Until the fi-
nal phase, it is not important to solve the Newton step to high accuracy. In particular,
J (xk)sk = −F(xk) may be “solved” so that

∥
∥J (xk)sk + F(xk)

∥
∥ ≤ ηk

∥
∥F(xk)

∥
∥

and the method converges q-superlinearly as long as ηk → 0, and q-quadratically if ηk ∈
O(‖F(xk)‖). Various heuristics have been developed to automatically adjust the “forcing
term” ηk to avoid oversolving without sacrificing quadratic convergence in the terminal
phase, see [9] for further discussion and a particularly useful heuristic which we use in the
numerical examples.

3 High Order Finite Element Methods

3.1 Discretization

Let {x̂i}p

i=0 denote the Legendre-Gauss-Lobatto (LGL) nodes of degree p in ascending order
on the interval [−1,1], with the corresponding Lagrange interpolants {φ̂p

i }p

i=0. Choose a
quadrature rule with nodes {rq

i }q

i=0 and weights {wq

i }. The basis evaluation, derivative, and
integration matrices are B̂

qp

ij = φ̂
p

j (r
q

i), D̂
qp

ij = ∂xφ̂
p

j (r
q

i), and Ŵ
q

ij = w
q

i δij . In the following,
we use index-free notation and suppress the superscripts for clarity.

We extend these definitions to 3D via tensor product

B̂ = B̂ ⊗ B̂ ⊗ B̂

D̂0 = D̂ ⊗ B̂ ⊗ B̂

D̂1 = B̂ ⊗ D̂ ⊗ B̂

D̂2 = B̂ ⊗ B̂ ⊗ D̂

(2)

with the diagonal weighting matrix Ŵ = Ŵ ⊗ Ŵ ⊗ Ŵ . With isotropic basis order p and
quadrature order q , these tensor product operations cost 2(p3q + p2q2 + pq3) flops and
touch only O(p3 + q3) memory. It should be noted that in the special case of the spectral
element method where the same LGL points are reused for quadrature, B is the identity and
differentiation reduces to 2p4 operations. In the present work, we prefer to use more accurate
Gauss quadrature and do not find the extra floating point operations in basis evaluation to

J Sci Comput (2010) 45: 48–63 53

be prohibitively expensive. Every other required operation will be O(p3) or O(q3) so the
performance of the operation (2) is crucial to the success of the method, see Sect. 3.5 for
further discussion.

Let K̂ = [−1,1]3 be the reference element and partition the domain � into hexahedral
elements {Ke}E

e=1 with coordinate map xe : K̂ → Ke and Jacobian J e
ij = ∂xe

i /∂x̂j . The Ja-
cobian must be invertible at every quadrature point so we have (J e)−1 = ∂x̂/∂xe and can
express the element derivative in direction i as

De
i = 	

(
∂x̂0

∂xi

)

D̂0 + 	

(
∂x̂1

∂xi

)

D̂1 + 	

(
∂x̂2

∂xi

)

D̂2

where we have used the notation 	(x)ij = xiδij for expressing pointwise multiplication as a
diagonal matrix. Note that forming De would ruin the tensor product structure so multipli-
cation by De

i is done using the definition (2) followed by pointwise multiplication and sum.
The transpose is defined similarly

(De
i)

T = D̂
T

0 	

(
∂x̂0

∂xi

)

+ D̂
T

1 	

(
∂x̂1

∂xi

)

+ D̂
T

2 	

(
∂x̂2

∂xi

)

.

With the element integration matrix W e = Ŵ	(|J e(r)|), we are prepared to evaluate
weak forms over arbitrary elements. The global problem is defined using the element as-
sembly matrix E = [E e] where each E e extracts the degrees of freedom associated with
element e from the global vector. In the special case of a conforming mesh and equal ap-
proximation order on every element, E will have a single unit entry per row. When the mesh
is h- or p-nonconforming, a global basis can be chosen by using minimum order on the
largest faces and edges, then the element basis can be constrained by writing it as a linear
combination of global basis functions [5].

3.2 Residual Evaluation

We now turn to evaluation of the discrete residual statement F(u) = 0 in weak form. Since
the weak form is always linear in the test functions, it can be expressed as a pointwise alge-
braic operation taking values and derivatives of the current iterate (u,∇u) to the coefficients
of the test functions and derivatives (v,∇v), i.e. the Dirichlet problem is to find u in a
suitable space VD such that

〈v,f (u)〉 =
∫

�

v · f0(u,∇u) + ∇v:f1(u,∇u) = 0 (3)

for all v in the corresponding homogeneous space V0 where f0 and f1 contain any possible
sources. For an n-component problem in d dimensions, f0 ∈ R

n and f1 ∈ R
nd . Inhomoge-

neous Neumann, Robin, and nonlinear boundary conditions will add similar terms integrated
over boundary faces. The fully discrete form is

∑

e

E T
e

[

(Be)T W e	(f0(u
e,∇ue)) +

d
∑

i=0

(De
i)

T W e	(f1(u
e,∇ue))

]

= 0 (4)

where ue = Be E eu and ∇ue = {De
i E eu}2

i=0. Note that all physics is contained in the point-
wise operation (u,∇u) �→ (f0, f1).

54 J Sci Comput (2010) 45: 48–63

3.3 Jacobian Representation

Jacobian application w �→ J (u)w can be performed in the same way as residual evaluation.
The associated bilinear form is expressible as

〈v,J (u)w〉 =
∫

�

[

vT ∇vT
]
[

f0,0 f0,1

f1,0 f1,1

][

w

∇w

]

(5)

with the notation fi,0 = ∂fi

∂u
(u,∇u) and fi,1 = ∂fi

∂∇u
(u,∇u). This construction is completely

general and applies to any H 1 Galerkin or Petrov-Galerkin method. The application of J (u)

and J T (u) can clearly be performed if fi,j (u,∇u) is stored at quadrature points (including
similar terms at boundary quadrature points where boundary integrals are required).

There are two extreme cases for the storage of fi,j (u,∇u). The first is to simply store
(u,∇u) which requires n(d + 1) storage per quadrature point for an n-component system
in d dimensions, but all the physics must be reevaluated in each Jacobian application. This
option is slightly faster than standard use of automatic differentiation since the finite ele-
ment mechanics to reevaluate (u,∇u) is not needed. The other extreme is to fully evaluate
fi,j (u,∇u) which requires [n(d + 1)]2 storage per quadrature point. Compare to n2(p + 1)d

per node for the Qp element matrices and (asymptotically) for globally assembled matrices.
For many physical systems, fi,j (u,∇u) possesses structure (e.g. sparsity, symmetry,

isotropic plus rank-1 update) such that compared to the naïve representation, it is both cheap
to store and cheap to multiply by. Such representations may be constructed from any form
between (u,∇u) and fi,j . It is common for this efficient representation to be available at
low cost during residual evaluation, and it may be stored cheaply since the memory bus
is relatively unstressed at this time. The process from (3) to (5) is mechanical and is easily
performed using symbolic algebra. Also note that AD may be used as a complementary tech-
nique, well-isolated to pointwise operations so that it doesn’t interfere with global software
design.

Note that with this representation, the adjoint of (5) is readily available with no additional
programming effort, at exactly the same cost as the Jacobian itself. A worked example is
given in Sect. 4.1, we find that our matrix-free Jacobian application is significantly faster
than function evaluation. Since it is full accuracy and provides adjoints, this representation
is clearly superior to finite difference Jacobians. Note that naïve automatic differentiation of
F would not be aware of this efficient intermediate form, thus an AD Jacobian J (u) would
need to re-evaluate the base vector at quadrature points and compute fi,j

[w

∇w

]

using (u,∇u).
The intermediate form is roughly equivalent to an optimal taping strategy.

3.4 Preconditioning

To precondition J , we assemble a matrix by rediscretizing the governing equations on Q1

sub-elements defined by the LGL interpolation nodes as shown in Fig. 2. In the notation
of Sect. 2, this matrix is Jp and any preconditioner P for assembled matrices can be used
in the Krylov iteration. This could be a direct solve, but that is rarely the most economical
choice. When multigrid works well, such as for elliptic problems with smooth coefficients,
we find that P = MG requires very few extra iterations compared to a direct solve P = LU .
This preconditioner has received substantial attention in the collocation and spectral element
contexts (e.g. [7, 8, 15, 18, 27]), but is not widely used for Galerkin discretization with
independent quadrature.

J Sci Comput (2010) 45: 48–63 55

Fig. 2 A patch of four Q5
elements with one Q1
subelement shaded

3.5 Performance of Matrix Operations

Our test platform is a 2.5 GHz Intel Core 2 Duo (T9300) which can issue one packed double
precision (two 64-bit values packed in each 128-bit register) add and one packed multiply
per clock cycle with a latency of 3 and 5 cycles respectively. If there are no data dependen-
cies and both execution units can be kept busy, it is possible to perform 4 flops per clock
cycle resulting in a theoretical peak of 10 Gflop/s. The memory controller has a peak read
throughput of 5.3 GB/s implying that dual core performance for matrix-vector products can-
not exceed 900 Mflop/s, ignoring access costs for the vector (each matrix entry is 8 bytes
plus 4 bytes for the column index, and supplies only 2 flops for an arithmetic intensity of
1 flop / 6 bytes). Note that this is less than 5% of the theoretical dual-core peak 20 Gflop/s.
Even if the column indices were known, the operation cannot exceed 4 bytes per flop, despite
the system being capable of performing nearly 4 flops for each byte loaded from memory.

For multi-component problems, we can exploit structural blocking to reduce the band-
width required for column indices. For example, a 3-component problem with full coupling
only needs to store one index per 3 × 3 block, improving arithmetic intensity to almost
1 flop / 4 bytes. In addition, it is advantageous to reorder the unknowns owned by each
processor to reduce the matrix bandwidth (e.g. with reverse Cuthill-McKee), thus improv-
ing cache reuse by the vector during matrix-vector multiplication and preconditioning ker-
nels (relaxation and solves with factors), and also the effectiveness of these preconditioning
kernels. On our 3D elasticity test, these two optimizations combined for a 75% speedup rel-
ative to scalar formats in the natural ordering, see [13] for further analysis of blocking and
reordering.

High order methods allow much more effective utilization of today’s multicore hardware.
An implementation of the tensor product operation (2) operates entirely within L1 cache for
practical basis orders and attains 5.7 Gflops for Q3 on a single core. (This was written using
SSE3 intrinsics since the author was unable to find a compiler that produced competitive
code for this operation.) Since this kernel puts no pressure on the shared memory bus, all
cores are completely independent and limited only by instruction scheduling and data de-
pendence. Although only the tensor-product operation has been vectorized, multiplication
by the matrix-free Q3 Jacobian for a scalar-valued problem is only 2.5 times slower than the
assembled Q2 Jacobian when using one core of an otherwise idle socket.

4 Numerical Examples

All examples with dual-order preconditioning were implemented as part of a new C li-
brary named Dohp, available from the author, which is tightly integrated with PETSc [2]
and uses the ITAPS [16] interfaces for mesh and geometry services. In particular, we use
the MOAB [32] and CGM [31] implementations of the iMesh and iGeom interfaces. In the

56 J Sci Comput (2010) 45: 48–63

examples using algebraic multigrid, we use smoothed aggregation from ML [12] and clas-
sical multigrid from BoomerAMG [14], all accessed through the common PETSc interface.
The ML interface is designed to only produce aggregates which PETSc uses to construct
the multigrid hierarchy and thus exposes all PETSc preconditioners as smoothers, while
BoomerAMG is essentially a black-box preconditioner. Smoothed aggregation is known to
scale slightly superlinearly, but in our tests ML was always significantly faster and less mem-
ory consuming than the typically more robust BoomerAMG. We use PETSc-3.0.0, ML-6.22,
and BoomerAMG from Hypre-2.4.0b.

The libMesh [19] library is used to provide a reference for conventional methods
(based on assembling the true Jacobian). Since libMesh also uses PETSc for linear al-
gebra, identical solver parameters are used so that the results are representative.

4.1 p-Poisson

The inhomogeneous p-Laplacian is

−∇ · (|∇u|p−2∇u) − f = 0

where 1 ≤ p ≤ ∞ (see [11] for discussion of these limiting cases). This equation is singular
at ∇u = 0 when p < 2 and degenerate when p > 2, so we solve a regularized variant with
weak form: find u ∈ VD such that

〈v,F (u)〉 =
∫

�

η∇v · ∇u − f v = 0 (6)

for all v ∈ V0 where VD = H 1
D(�) includes inhomogeneous Dirichlet conditions, V0 =

H 1
0 (�) is the corresponding homogeneous space, and η(γ) = (ε + γ)

p−2
2 is effective vis-

cosity with regularization ε > 0 and γ = 1
2 |∇u|2. We manufacture the forcing term f so

that

u(x, y, z) = cos(ax) sin(by) exp(cz)

solves (6) in � = [−1,1]3. Figure 1 shows convergence rates for the linear (p = 2) case
a, b, c = (16,15,14) with 1 ≤ p ≤ 7. The expected O(hp+1) is indeed observed in the as-
ymptotic range, but in this section we are concerned with the time and memory needed for
solution.

The Newton step for (6) corresponds to the weak form: find w ∈ V0 such that

〈v,J (u)w〉 =
∫

�

η∇v · ∇w + η′(∇v · ∇u)(∇u · ∇w) = −(v,F (u))

for all v ∈ V0, where J (u) is the Jacobian of F at u. It is informative to rewrite the integrand
as

∇v:[η1 + η′∇u ⊗ ∇u
]:∇w

to clarify the effect of the Newton linearization. Since η′ < 0 for p < 2, the (heterogeneous)
isotropic conductivity tensor η1 is being squished in the direction ∇u. In the singular limit

2We have observed that ML-6.2 produces much higher quality aggregates than ML-5.0 for the assembled Q2
case, leading to a 50% speedup and significantly lower memory usage.

J Sci Comput (2010) 45: 48–63 57

Fig. 3 Linear solve time for 3D
Poisson with relative tolerance of
10−8 using assembled Q2
elements and unassembled Q3,
Q5, and Q7 elements
preconditioned by an assembled
Q1 operator

Table 1 Assembly and solve
time (seconds) for a 3D Poisson
problem with 1213 degrees of
freedom (1203 for Q7), relative
tolerance of 10−8

Event libMesh Q2 Dohp Q3 Dohp Q5 Dohp Q7

Assembly 41 25 24 23

Krylov 111 73 119 117

MF MatMult – 36 55 55

PCSetUp 16 10 12 9

PCApply 82 27 51 52

CG its 34 23 41 49

Mat nonzeros 111 M 44.7 M 44.7 M 44.3 M

p → 1, it flattens completely which has the effect of allowing diffusion only in level sets
of u.

To illustrate the taping strategy of Sect. 3.3 for the p-Laplacian, first note that it is de-
sirable to store ∇u at each quadrature point in order to avoid it’s expensive recomputation.
Fractional powers are one of the more expensive mathematical operations so we would also
like to avoid recomputing them. This suggests taping (η,∇u) which are explicitly avail-
able during residual evaluation (6). If a few Krylov iterations will be required, it becomes
beneficial to amortize computation of

η′ = ∂η

∂γ
= p − 2

2

η

ε + γ

which involves one multiplication and one division when taped during function evaluation,
very cheap compared to the fractional power, and less expensive than recomputing γ on the
first Krylov iteration.

A further enhancement3 to taping (η, η′,∇u) is (η,
√−η′∇u) which is both compact and

minimizes the operations necessary to apply the Jacobian.
Figure 3 shows linear solve performance compared to conventional methods for quadratic

elements. The matrices for conventional Q2 elements were assembled using the libMesh
library and the solver in all cases was conjugate gradients preconditioned by ML. The time
spent in each phase for the largest problem size is shown in Table 1. Note the greatly reduced
assembly time compared to conventional Q2 elements.

3sqrt requires the same number of cycles as division.

58 J Sci Comput (2010) 45: 48–63

Fig. 4 Two all-hexahedral meshes, twist and random, containing nearly degenerate elements

Table 2 Iteration counts for four
different meshes using ML,
BoomerAMG (BMG), and
Cholesky (Chol) preconditioning.
For Q1 random, BoomerAMG
failed, producing NaN. ML on
the flat mesh was run with
stronger smoothers as described
in the text. Note that the problem
size increases with element order

Mesh brick twist random flat

element\PC ML BMG ML BMG ML BMG ML Chol

Q1 4 4 4 4 8 – 4 1

Q2 24 24 25 23 27 27 29 26

Q3 24 24 29 27 28 27 38 34

Q4 29 28 39 30 34 33 47 37

Q5 35 27 47 34 42 35 58 40

Q6 35 29 60 40 43 41 80 44

4.1.1 Poor-Quality Meshes

Figure 4 shows two low-quality meshes, twist and random. The first was generated by
stretching and twisting a mesh of the reference cube and the second generated using the
“random” feature of Cubit [4]. Additionally, we consider flat, a uniform Cartesian mesh
with dimensions 1 × 1 × 10−5. These should be compared to brick, an 83 mesh of the
reference cube.

While the approximation properties of these meshes are poor, the preconditioner is still
effective provided a good preconditioner for the low-order system is available. The iteration
count to oversolve the second Newton iteration to a relative tolerance of 10−8 for a p = 1.5
case is shown in Table 2. With the exception of ML on twist and flat, the mesh has a
limited impact on performance.

J Sci Comput (2010) 45: 48–63 59

Table 3 Time (seconds) spent in various stages of a nonlinear solve for Q3 elements preconditioned by
ILU(0) and ILU(1) applied to the corresponding Q1 matrix. The first columns solve the linear system to a
relative tolerance of 10−4 with a maximum of 60 Krylov iterations per Newton, the latter use the Eisenstat-
Walker method for adjusting solver tolerances [9] with a maximum of 30 Krylov iterations. The events MF
MatMult (matrix-free Jacobian application), PCSetup, and PCApply are part of the Krylov iteration. Addi-
tional Residual evaluations are needed when the line search is activated

Tolerance 10−4 relative E-W

event\PC ILU(0) ILU(1) ILU(0) ILU(1)

Residual 35 29 57 51

Assembly 78 68 127 110

Krylov 295 274 187 166

MF MatMult 259 190 155 110

PCSetup 2 11 5 17

PCApply 26 67 27 39

Total time 413 374 377 333

Newton # 15 13 24 21

Residual # 25 20 40 36

Krylov # 911 667 545 386

Anisotropic meshes such as flat require semi-coarsening and/or line smoothers for
multigrid performance. Convergence on this mesh is poor with both algebraic multigrid
packages. BoomerAMG allows little flexibility in smoothers, and although some semi-
coarsening was evident in the hierarchy, coarse spaces suitable for the builtin smoothers
were not produced. ML’s coarse spaces were less precisely semi-coarsened, and itera-
tion counts could only be marginally controlled through the use of very strong smoothers
(8-block overlap-1 additive Schwarz with direct subdomain solves).

4.1.2 Nonlinearities

For strongly nonlinear problems, the majority of the solve time is spent in the pre-asymptotic
range. Since a high-accuracy solve is not needed, it is very important to consider matrix as-
sembly and preconditioner setup time when developing an efficient solver. We consider the
p = 1.2, ε = 10−8 case with an initial guess of zero (the state at which the system is most
nearly singular) which requires a fair number of Newton steps. Table 3 shows the time spent
in various stages of the solve for 203 Q3 elements (226981 degrees of freedom). In the most
efficient configuration, roughly one third of the time is spent in matrix-free Jacobian ap-
plication with a similar amount spent in assembly. This problem demonstrates a situation
where low-accuracy linear solves slow the nonlinear convergence, but it is still not cost ef-
fective to perform high accuracy linear solves. Lagging the preconditioner was not found to
be effective for this problem, therefore only limited returns would be provided by a method
with higher assembly costs, even if that setup enabled the use of a stronger preconditioner.
We have computed a fourth order accurate solution with essentially the same memory re-
quirements and modest cost increase over a second order scheme (Q1). This solution is less
expensive in both space and time than a conventional third order (Q2) scheme, the reduced
assembly costs offer more flexibility in nonlinear solver, and the sparser matrix offers more
preconditioning choices.

60 J Sci Comput (2010) 45: 48–63

4.2 Stokes

The weak form of the Dirichlet Stokes problem is: find (u,p) ∈ V D × P such that

∫

�

ηDv:Du − p∇ · v − q∇ · u − f · v = 0

for all (v, q) ∈ V 0 × P where Du = 1
2 (∇u + (∇u)T) is the symmetric gradient, V D =

H 1
D(�) is the inhomogeneous velocity space with V 0 the corresponding homogeneous

space, and P = {p ∈ L2
0(�) : ∫

�
p = 0} is the pressure space. Stability requires satisfac-

tion of the discrete inf-sup condition

inf
p

sup
u

∫

�
p∇ · u

‖p‖0‖u‖1
≥ β > 0.

The finite element space Qk − Qk−2 is stable with β ∈ O(k−(d−1)/2) in d dimensions (see
[29]) and is thus quite usable for the modest orders we propose.

4.2.1 Indefinite Preconditioning

Standard preconditioners perform poorly or fail completely when applied to indefinite prob-
lems. Block factorization provides a general framework for constructing effective precondi-
tioners for the Stokes problem. They are based on factoring the Jacobian as

J (u) =
[

A(u) BT

B

]

=
[

1
BA−1 1

][

A

S

][

1 A−1BT

1

]

(7)

where S = −BA−1BT is the Schur complement which is dense and must be preconditioned
by other means. When GMRES is used with left (right) preconditioning, the upper (lower)
block is typically dropped (since the resulting exactly preconditioned operator has minimal
degree 2, see [24]), and all occurrences of A−1 are replaced by a suitable preconditioner.
There are numerous ways to precondition S (e.g. [3, 10]), here we use only the classic pres-
sure mass matrix Mp , but more sophisticated methods are needed for strongly heterogeneous
or anisotropic problems (see [23]), for Navier-Stokes with non-vanishing Reynolds number,
and for short time steps in a time-dependent simulation. With the dual-order method, it is
only necessary to assemble matrices to precondition A and S (the latter via a diagonal ap-
proximation to the mass matrix Mp), all “matrix multiplies” are performed matrix-free.

For the Dirichlet Stokes problem, constant pressure is in the null space of J and S. This
does not impact solver performance as long as the right hand side is consistent and the solver
removes the null space from the Krylov basis. Table 4 shows iteration counts for a variety of
elements and meshes using right-preconditioned GMRES and the right-triangular precondi-
tioner resulting from the factorization (7) with S−1 approximated by the diagonal of Mp and
A−1 approximated by one V-cycle of ML with inter-component coupling dropped. The itera-
tion count is scalable with resolution, but deteriorates much more rapidly with element order
than for the definite problem. The corresponding solve times, shown in Fig. 5, confirm the
asymptotics under h-refinement with each element type. More sophisticated preconditioners
for S were able to reduce the iteration count, but did not reliably reduce solve time across
the range of element orders. Further investigation of indefinite preconditioner performance
under p-refinement is needed.

J Sci Comput (2010) 45: 48–63 61

Table 4 Problem size and
Krylov iterations to solve the
Stokes problem to a relative
tolerance of 10−6 with elements
of different orders using
right-preconditioned
GMRES(30) and field-split ML
on the A block. Each restart
caused an approximately
2-iteration stall

Element Q3 − Q1 Q5 − Q3 Q7 − Q5

mesh dofs its dofs its dofs its

43 4118 38 22774 79 68310 92

83 37230 38 193582 75 568046 92

123 130822 38 666790 76 1942342 95

163 316382 40 1596766 77

203 625398 40

243 1089358 40

303 2144698 41

Fig. 5 Linear solve time for 3D
Stokes with relative tolerance of
10−6. For Q2 − Q1 and
Q3 − Q2 elements, convergence
is significantly slower than with
Qk − Qk−2, but apparently
scalable despite being somewhat
erratic

5 Discussion

We have presented a practical method of obtaining high-order accuracy with cost similar to
conventional methods for lower order accuracy. It is robust on highly deformed meshes and
nonlinear problems provided an effective preconditioner is available for the associated Q1

matrix. The computational kernels remove significant pressure on the memory bus enabling
more effective use of floating point units, especially in multicore environments.

The extra structure imposed by high-order methods provides natural coarsening which
suggests the use of one or more levels of geometric multigrid. This avoids the cost of com-
puting interpolation operators in algebraic multigrid and enables the use of rediscretized
coarse operators which preserve sparsity in comparison to Galerkin operators. Integration
with PETSc’s geometric multigrid framework is underway.

Since solve time is only weakly dependent on element order, the dual-order scheme is
well-suited for use in an hp-adaptive simulation where existing refinement strategies for
minimizing degrees of freedom will more accurately represent computational cost. Relative
to conventional Q2 and higher elements, the dual-order scheme significantly reduces the
cost of matrix assembly and preconditioner setup, while maintaining competitive iteration
counts when used with preconditioners such as algebraic multigrid.

Acknowledgements We thank the PETSc team for support and a framework in which this work could
be naturally expressed. Thanks also to Tim Tautges for explaining numerous mesh and geometry issues and
providing the MOAB and CGM libraries. This work was supported by Swiss National Science Foundation
Grant 200021-113503/1.

62 J Sci Comput (2010) 45: 48–63

References

1. Ainsworth, M., Senior, B.: An adaptive refinement strategy for hp-finite element computations. Appl.
Numer. Math. 26(1), 165–178 (1998)

2. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman McInnes,
L., Smith, B.F., Zhang, H.: PETSc users manual. Technical Report ANL-95/11—Revision 3.0.0, Ar-
gonne National Laboratory (2008)

3. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137
(2005)

4. Blacker, T., Bohnhoff, W., Edwards, T., Hipp, J., Lober, R., Mitchell, S., Sjaardema, G., Tautges, T.,
Wilson, T., Oakes, W., et al.: CUBIT mesh generation environment. Technical report, Sandia National
Labs., Albuquerque, NM. Cubit Development Team (1994)

5. Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O.: Toward a universal hp adaptive finite element
strategy. I: Constrained approximation and data structure. Comput. Methods Appl. Mech. Eng. 77, 79–
112 (1989)

6. Demkowicz, L., Rachowicz, W., Devloo, P.: A fully automatic hp-adaptivity. J. Sci. Comput. 17(1), 117–
142 (2002)

7. Deville, M., Mund, E.: Chebyshev pseudospectral solution of second-order elliptic equations with finite
element preconditioning. J. Comput. Phys. 60, 517 (1985)

8. Deville, M.O., Mund, E.H.: Finite-element preconditioning for pseudospectral solutions of elliptic prob-
lems. SIAM J. Sci. Stat. Comput. 11, 311 (1990)

9. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact newton method. SIAM J. Sci.
Comput. 17(1), 16–32 (1996)

10. Elman, H.C., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of
parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput.
Phys. 227(1), 1790–1808 (2008)

11. Evans, L.C.: The 1-Laplacian, the ∞-Laplacian and differential games. Perspect. Nonlinear Partial Dif-
fer. Equ.: In Honor of Haim Brezis 446, 245 (2007)

12. Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S., Sala, M.G.: ML 5.0 smoothed aggregation user’s
guide. Technical Report SAND2006-2649, Sandia National Laboratories (2006)

13. Gropp, W.D., Kaushik, D.K., Keyes, D.E., Smith, B.: Performance modeling and tuning of an unstruc-
tured mesh cfd application. In: Supercomputing ’00: Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing (CDROM), Washington, DC, USA, 2000, p. 34. IEEE Computer Society, New York
(2000)

14. Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl.
Numer. Math. 41(1), 155–177 (2002)

15. Heys, J.J., Manteuffel, T.A., McCormick, S.F., Olson, L.N.: Algebraic multigrid for higher-order finite
elements. J. Comput. Phys. 204(2), 520–532 (2005)

16. Interoperable technologies for advanced petascale simulations (ITAPS). http://www.itaps.org/
17. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Ox-

ford University Press, Oxford (2005)
18. Kim, S.D.: Piecewise bilinear preconditioning of high-order finite element methods. Electron. Trans.

Numer. Anal. 26, 228–242 (2007)
19. Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ library for paral-

lel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006).
http://dx.doi.org/10.1007/s00366-006-0049-3

20. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applica-
tions. J. Comput. Phys. 193(2), 357–397 (2004)

21. Knoll, D.A., McHugh, P.R.: Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma
flow. SIAM J. Sci. Comput. 19(1), 291–301 (1998)

22. Lottes, J.W., Fischer, P.F.: Hybrid multigrid/Schwarz algorithms for the spectral element method. J. Sci.
Comput. 24(1), 45–78 (2005)

23. May, D.A., Moresi, L.: Preconditioned iterative methods for Stokes flow problems arising in computa-
tional geodynamics. Phys. Earth Planet. Inter. 171(1–4), 33–47 (2008). Recent Advances in Computa-
tional Geodynamics: Theory, Numerics and Applications

24. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM
J. Sci. Comput. 21(6), 1969–1972 (2000)

25. Nachtigal, N.M., Reddy, S.C., Trefethen, L.N.: How fast are nonsymmetric matrix iterations? SIAM J.
Matrix Anal. Appl. 13, 778 (1992)

26. Oden, J.T., Demkowicz, L., Rachowicz, W., Westermann, T.A.: Toward a universal hp adaptive finite
element strategy. II: A posteriori error estimation. Comput. Methods Appl. Mech. Eng. 77, 113–180
(1989)

http://www.itaps.org/
http://dx.doi.org/10.1007/s00366-006-0049-3

J Sci Comput (2010) 45: 48–63 63

27. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)
28. Rachowicz, W., Oden, J.T., Demkowicz, L.: Toward a universal hp adaptive finite element strategy. III:

Design of hp meshes. Comput. Methods Appl. Mech. Eng. 77, 181–212 (1989)
29. Schötzau, D., Schwab, C., Stenberg, R.: Mixed hp-FEM on anisotropic meshes. Math. Models Methods

Appl. Sci. 8, 787–820 (1998)
30. Schwab, C.: P- and Hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.

Oxford University Press, Oxford (1998)
31. Tautges, T.J.: CGM: a geometry interface for mesh generation, analysis and other applications. Eng.

Comput. 17(3), 299–314 (2001)
32. Tautges, T.J., Meyers, R., Merkley, K., Stimpson, C., Ernst, C.: MOAB: a mesh-oriented database. Tech-

nical report, Sandia National Laboratories, April 2004

