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  Preface 
 

I 

Preface 

Impulse waves generated in natural lakes and reservoirs by the impact of landslides may 
cause damages during run-up shores or against dams. Particular attention has, in this 
context, to be given to dams and in particular to embankments dams which, if over-
topped, may suffer serious damages or even fail completely. It is, therefore, of great 
importance that the size of such waves and their run-up height on the shore or dam face 
are known. 
 

Over the past thirty years the VAW has carried out a number of research projects on 
impulse waves, and this manual presents the results of this research together with avail-
able international literature on the topic. In addition, it gives an explanation of a compu-
tation procedure that enables forecast values for all relevant parameters to be deter-
mined. This makes possible emergency planning and allows preventive action, for 
instance precautionary lowering of the lake or reservoir, to be taken in good time. 

 
The objective of this manual is to make the research results available to practising 

engineers in appropriate form. The results of these computations may still result in 
estimations to certain extent so it is necessary, as so often in engineering design, to 
include safety factors in the computations. In many cases the possible errors are so large 
that a hydraulic model test or a numerical simulation has to be resorted to. Nonetheless, 
the order of magnitude of the characteristics of the impulse waves can be estimated. 
 

We wish to express our thanks to the Dam Safety Section of the Swiss Federal Of-
fice of Energy SFOE, which commissioned this work, for all their cooperation, and to 
Dr. Andreas Huber for his critical comments. Thanks also to Mr. Ian David Clarke for 
the translation of the German to this English version. 
 

This manual, as well as the spread sheets, are available in electronic form on the 
VAW-Website www.vaw.ethz.ch under “News & Events”, “Latest VAW Reports”. We 
hope that this manual finds a wide readership. 
 
 
 
 
 
Zurich, February 2009 Valentin Heller, Willi H. Hager and Hans-Erwin Minor 
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Summary 

Landslide generated impulse waves are typically caused by landslides, rockfalls, shore 
instabilities, snow avalanches or glacier calvings in oceans, bays, lakes or reservoirs. 
They are particularly relevant for the Alpine environment because of steep valley sides, 
possible large slide masses and impact velocities and the great number of reservoirs. In 
this manual, a state-of-the-art on the impulse wave generation and its effects on dams 
are presented including a computation procedure. Based on this method, engineers or 
natural scientists may predict the dangers originating from impulse waves efficiently 
and economically.  

The introduction in Chapter 1 contains background information on the topic and 
compares the available methods dealing with landslide generated impulse waves. The 
method presented in this manual is based on generally applicable equations. Chapter 2 
introduces basic principles of the water wave theory. The computation procedure is 
presented in Chapter 3 and shown in Figure 3-1. It is based on the findings of the two 
items wave generation (Appendix A) and effects of impulse waves on dams (Appen-
dix B). The computation procedure (Figure 3-1) includes two steps: in the 1st step the 
generally applicable equations are applied according to Chapter 3, whereas in the 2nd 
step the effects not contained in the 1st step such as the effective instead of the idealized 
reservoir geometry are considered according to Chapter 4. 

In the 1st step, the mass movement is modelled as a granular slide. To analyse the 
effect of impulse waves on dams the wave height, amplitude, period and length are 
important. These are computed with the equations of Heller (2007a) as a function of the 
slide parameters. Two extreme cases for estimating the wave parameters are considered: 
(a) laterally constricted (2D) and (b) free radial propagation of the impulse waves (3D). 
The wave generation in both (a) and (b) depend on the identical parameters, whereas 
these for the wave propagation are not identical. Once the necessary wave parameters in 
front of the dam are determined, the run-up height and the overtopping volume may be 
computed according to Müller (1995). Since the impulse wave profiles and the water 
particle movement may differ considerably from case to case, the force effects on dams 
are computed with two methods: for relatively small Stokes-like waves, including deep 
to intermediate-water waves of oscillatory character, the method of Sainflou (1928) is 
proposed, and for the remaining wave types involving relatively large wave heights, 
including intermediate to shallow-water waves of translational character, using the 
method of Ramsden (1996). To distinguish between these wave types the 2D criterion 
of Heller (2007a) is accounted for. Both methods are first applied as if the dam would 
be vertical since the horizontal force component is independent from the dam inclina-
tion. The additional vertical force component for inclined dams then is computed as-
suming static wave pressure. If an impulse wave partially overtops a dam, only a partial 
water pressure has to be considered resulting in a reduction method for the remaining 
wave types. 
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Once the results from the 1st step are available, the effects of the geometrical differ-
ences to the idealised extreme cases (a) and (b) have to be quantified in the 2nd step 
according to Chapter 4. These differences may be caused by the three-dimensional 
reservoir geometry differing from the idealised 2D or 3D geometries, or by the non-
granular mass characteristics. The impulse wave parameters may considerably differ 
due to these effects. The 2nd step is also required if the spread sheets are applied, be-
cause these include only the generally applicable equations from the 1st step. Finally, 
Section 4.4 contains a sensitivity analysis and some reservoir safety aspects.  

The Chapter 5 includes two computation examples and the application instructions 
for the spread sheets in Excel. In Chapter 6 the conclusions and open questions concern-
ing landslide generated impulse waves are presented. 

Although the computational results, such as the run-up height, seem to be exact, it 
should be kept in mind that the present method results in estimations. Safety allowances 
for all planned actions have to be considered. More exact predictions may emerge from 
a prototype-specific model test or with numerical simulations.  
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Zusammenfassung 

Rutscherzeugte Impulswellen entstehen in Ozeanen, Meeresbuchten und in natürlichen 
oder künstlichen Seen typischerweise durch Erdrutsche, Felsstürze, Uferinstabilitäten, 
Schneelawinen oder Gletscherkalbungen. Im Alpenraum sind sie aufgrund der steilen 
Talflanken, dem Potential grosser Rutschvolumina mit grossen Eintauch-
geschwindigkeiten und der grossen Anzahl künstlicher Stauseen relevant. In diesem 
Manual wird das gegenwärtige Wissen über die Impulswellengenerierung und deren 
Einwirkungen auf Talsperren zusammengetragen und vervollständigt. Schliesslich wird 
daraus ein Berechnungsverfahren entwickelt. Der Ingenieur oder Naturwissenschaftler 
kann somit die von Impulswellen ausgehenden Gefahren nach dem neuesten Wissens-
stand relativ schnell und kostengünstig abschätzen. 

Die Einleitung (Kapitel 1) beinhaltet neben einigen Hintergrundinformationen einen 
Vergleich der verschiedenen Methoden im Umgang mit rutscherzeugten Impulswellen. 
Dabei basiert das in diesem Manual entwickelte Verfahren auf allgemeingültigen Be-
rechnungsgleichungen. Im Kapitel 2 wird auf die theoretischen Wellengrundlagen 
eingegangen. Das eigentliche Berechnungsverfahren wird im Kapitel 3 erläutert und ist 
in Abbildung 3-1 dargestellt. Es basiert auf den Erkenntnissen zu den Themenkreisen 
Wellengenerierung (Anhang A) und Auswirkungen von Impulswellen auf Talsperren 
(Anhang B). Das Berechnungsverfahren (Abbildung 3-1) basiert auf zwei Schritten: Im 
1. Schritt werden die allgemeingültigen Berechnungsgleichungen gemäss Kapitel 3 
angewendet, im 2. Schritt werden gemäss Kapitel 4 die im 1. Schritt nicht berücksich-
tigten Einflüsse wie die nicht ideale Stauraumgeometrie qualitativ abgeschätzt. 

Im 1. Schritt wird die Massenbewegung als granularer Rutsch modelliert. Hinsicht-
lich der Auswirkungen der Impulswellen auf Talsperren haben die Wellenhöhe, die 
Wellenamplitude, die Wellenperiode sowie die Wellenlänge Einfluss und werden mit 
den Berechnungsformeln nach Heller (2007a) in Funktion der Rutschparameter ermit-
telt. Zur Bestimmung dieser Wellenparameter stehen zwei Extremfälle zur Verfügung: 
(a) eingeengte transversale Ausbreitung (2D) bzw. (b) komplett freie radiale Ausbrei-
tung der Impulswellen (3D). Während in beiden Fällen zur Wellengenerierung die 
gleichen Einflussparameter massgebend sind, sind diese bezüglich der Impulswellenab-
nahme verschieden. Sind die Wellenparameter vor der Talsperre bekannt, so kann die 
Auflaufhöhe bzw. das Überschwappvolumen nach Müller (1995) berechnet werden. Da 
Impulswellen hinsichtlich Profil und der inneren Wasserpartikelbewegung unterschied-
lich sein können, wird ihre Krafteinwirkung mit zwei Methoden berechnet: Für die 
relativ kleinen Stokes-ähnlichen Wellen, welche den Tief- bis Übergangswasserwellen 
mit oszillatorischem Charakter zugeordnet werden, wird die Methode von Sainflou 
(1928) verwendet und für die restlichen Wellentypen mit relativ grosser Höhe, welche 
sich eher wie Übergangs- bis Flachwasserwellen mit translatorischem Charakter verhal-
ten, die Methode nach Ramsden (1996). Die Unterscheidung zwischen den Wellentypen 
ist mit einem 2D Kriterium nach Heller (2007a) möglich. Beide Methoden werden 
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zuerst angewendet, als ob die Talsperre wasserseitig senkrecht wäre. Für eine geneigte 
Talsperre ist die horizontale Kraftkomponente unabhängig von der Talsperrenneigung, 
und die zusätzliche vertikale Kraftkomponente kann unter der Annahme einer statischen 
Wasserdruckverteilung der Welle ermittelt werden. Schwappt ein Teil der Impulswelle 
über, greift nicht die ganze Kraft an der Talsperre an. Deshalb kommt für die restlichen 
Wellentypen ein entsprechendes Reduktionsverfahren zur Anwendung. 

Nachdem die Ergebnisse aus dem 1. Schritt vorliegen, müssen die Effekte aus den 
geometrischen Abweichungen zu den idealisierten Extremfällen (a) und (b) in einem 
2. Schritt gemäss Kapitel 4 qualitativ abgeschätzt werden. Diese Abweichungen entste-
hen durch die dreidimensionale Stauraumgeometrie, die von der idealisierten 2D- oder 
3D-Betrachtung abweicht oder wenn die Masse keine granulare Konsistenz aufweist. 
Die Impulswellenparameter können sich durch diese Einflüsse stark verändern. Der 
2. Schritt ist ebenfalls erforderlich, wenn die elektronischen Berechnungstabellen ange-
wendet werden, da diese nur auf den allgemeingültigen Berechnungsgleichungen des 
1. Schritts basieren. Schliesslich werden in Unterkapitel 4.4 eine Sensitivitätsanalyse 
durchgeführt sowie einige Überlegungen zu Sicherheitszuschlägen angestellt. 

Das Kapitel 5 enthält zwei Rechenbeispiele sowie eine Anleitung zur Anwendung 
der elektronischen Berechnungstabellen in Excel. In Kapitel 6 werden die Schlussfolge-
rungen gezogen sowie die noch offenen Fragen betreffend rutscherzeugter Impulswellen 
aufgezeigt. 

Trotz der scheinbar rechnerisch genauen Ermittlung beispielsweise der Auflaufhöhe 
liefert das vorliegende Verfahren lediglich Abschätzungen. Bei allen geplanten Mass-
nahmen ist daher ein Sicherheitszuschlag zu berücksichtigen. Genauere Voraussagen 
sind mit einer prototyp-spezifischen Modelluntersuchung oder mit numerischen Simula-
tionen zu erzielen.  
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Résumé 

Les ondes d’impulsions résultent du glissement de masses instables (glissement de 
terrain, chute de blocs, rocheux, avalanches de neige ou chute de glacier) sur un plan 
d’eau (océan, baies, retenues d’eau naturelles ou artificielles). Ces phénomènes sont 
particulièrement importants dans les vallées alpines pentues (comportant généralement 
beaucoup de retenues), où les masses mises en mouvement et leurs vitesses d’impacts 
sur les plans d’eau peuvent être considérables. Dans ce manual, les connaissances ac-
tuelles sur la génération et la propagation des ondes d’impulsion ainsi que leurs actions 
sur des barrages sont présentées et complétées pour développer un procédé de calcul, 
qui aide l’ingénieur dans l’estimation des dangers liés à ce phénomène.  

L’introduction (Chapitre 1) contient, outre des informations de fond, une comparai-
son des diverses méthodes pour modéliser les ondes d’impulsion générées par des glis-
sements. Le procédé de calcul proposé dans ce manual se base sur des équations géné-
ralisées. Dans le Chapitre 2, les bases théoriques des ondes hydrauliques sont introdui-
tes. Le procédé de calcul proprement dit est décrit dans le Chapitre 3 et est illustré par la 
Figure 3-1. Il est basé sur les connaissances acquises sur la génération d’ondes (An-
nexe A) et sur les effets des ondes d’impulsion sur les barrages (Annexe B). Le procédé 
de calcul, décrit dans la Figure 3-1, se déroule en deux étapes : Dans la 1. étape, les 
équations généralisées décrites dans le Chapitre 3 sont appliquées. Puis, dans la 
2. étape, les effets non pris en compte dans la 1. étape (tels que la géométrie de la rete-
nue d’eau) sont intégrés dans le Chapitre 4 à l’aide d’une estimation appropriée. 

Dans la 1. étape, le mouvement de masse est modélisé comme un éboulement gra-
nulaire. Pour caractériser l’effet des ondes d’impulsion sur les barrages, nous détermine-
rons les paramètres, tels que la hauteur d’onde, l’amplitude d’onde, la période d’onde et 
la longueur d’onde, à l’aide des équations proposées par Heller (2007a), en fonction des 
paramètres de l’éboulement. En ce qui concerne la détermination de ces paramètres 
d’ondes, deux cas extrêmes sont proposés : (a) propagation d’ondes en canal (2D) et (b) 
propagation d’ondes dans l’espace sans parois latérales (3D). Tandis que dans les deux 
cas les mêmes paramètres influencent la propagation d’ondes, on constate des différen-
ces importantes concernant la réduction de la hauteur d’onde. Une fois les paramètres 
d’onde devant un barrage déterminés, la hauteur de run-up et le volume de surverse 
peuvent être calculés selon Müller (1995). Comme le profil de surface et la distribution 
des vitesses peuvent varier selon le type d’onde d’impulsion, l’effet des forces 
s’exerçant sur un barrage est déterminée par deux méthodes : Pour les petites ondes 
relatives du type de Stokes, (valables des eaux profondes à des eaux de profondeurs 
intermédiaires avec un caractère d’oscillation) le procédé de Sainflou (1928) est appli-
qué, tandis que le reste des ondes d’impulsion de grandes hauteurs relatives (valables 
des eaux de profondeurs intermédiaires à des eaux peu profondes avec un caractère de 
translation) ont été traitées selon la méthode de Ramsden (1996). La distinction entre les 
deux types d’ondes est possible grâce au critère de Heller (2007a). Les deux méthodes 
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sont tout d’abord appliquées au cas d’un barrage ayant un parement amont vertical. 
Dans le cas réel où le parement est incliné, la composante horizontale est indépendante 
de l’inclinaison du parement. Il est donc possible de déterminer la composante verticale 
de la force pour un barrage au parement incliné en admettant une répartition hydrostati-
que de la pression dans l’onde. Si une partie de l’onde surverse le barrage, seulement 
une partie de la force est à considérer. Cette force se détermine avec un procédé de 
réduction pour les ondes d’impulsion dans l’eau peu profonde.  

Une fois les résultats de la 1. étape déterminés, les effets dus aux approximations et 
à l’idéalisation des cas extrêmes (a) et (b) doivent être prises en considération dans une 
2. étape, et seront évalués qualitativement dans le Chapitre 4. Ces écarts par rapport à la 
réalité provient de la géométrie 3D réelle du barrage, différente des cas 2D et 3D idéali-
sés, ou de la nature non granulaire du glissement de terrain en masse. Ces différents 
effets peuvent avoir une grande influence sur les paramètres d’onde d’impulsion. Une 
2. étape est également nécessaire lorsque le calcul électronique est appliqué, vu que ce 
procédé se base uniquement sur les équations généralisées de la 1. étape. Finalement, 
une analyse de sensibilité est proposée dans le Sous-chapitre 4.4 ainsi que des réflexions 
relatives aux marges de sécurité à adopter. 

Le Chapitre 5 contient deux exemples de calcul et un procédé pour l’application des 
tables de calcul électronique sur Excel. Le Chapitre 6 tire les conclusions de cette étude 
et discute des questions ouvertes dans le domaine des ondes d’impulsion.  

Il est à noter que les calculs relatifs aux ondes d’impulsion peuvent seulement être 
considérés comme des estimations. Des facteurs de sécurité sont à appliquer quelque 
soit les mesures préventives envisagées. Des informations plus précises peuvent seule-
ment être obtenues à l’aide de prototype de modèles réduits hydrauliques ou à l’aide de 
simulations numériques appropriées.  
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Sommario 

Le onde d’impulso generate da fenomeni di scivolamento si formano negli oceani, nelle 
baie marine e nei laghi naturali o artificiali, tipicamente in seguito a frane, smottamenti, 
instabilità di pendii, valanghe o distaccamenti di masse di ghiaccio. Questo tipo di onda 
riveste una notevole importanza nella regione alpina data la presenza di pendii ripidi, 
del potenziale volume delle masse in movimento con conseguenti velocità di 
immersione elevate e del grande numero di laghi artificiali. Il presente manuale 
raccoglie e completa le conoscenze odierne in materia di generazione di onde d’impulso 
e della loro influenza sugli sbarramenti e ne sviluppa in seguito un metodo di calcolo. 
Grazie ad esso l’ingegnere o il ricercatore scientifico è in grado di valutarne i pericoli in 
maniera relativamente veloce ed economica basandosi sulle conoscenze più attuali. 

L’introduzione (Capitolo 1) contiene, oltre alle informazioni di base, un confronto 
dei diversi metodi in relazione alle onde d’impulso generate da fenomeni di 
scivolamento. Il metodo sviluppato nel presente manuale si basa su equazioni di calcolo 
generalmente valide. Nel Capitolo 2 viene approfondito il tema dei principi teorici 
fondamentali riguardanti le onde. Il metodo di calcolo vero e proprio è illustrato nel 
Capitolo 3 ed è rappresentato in Figura 3-1. Esso si basa sulle conoscenze nell’ambito di 
generazione delle onde d’impulso (Appendice A) e delle loro ripercussioni sugli 
sbarramenti (Appendice B). Il procedimento di calcolo (Figura 3-1) avviene in due fasi: 
dapprima vengono applicate le equazioni di calcolo generalmente valide secondo il 
Capitolo 3 e in seguito, secondo il Capitolo 4, vengono stimati qualitativamente i fattori 
d’influenza non considerati nella prima fase, quali ad esempio la geometria non ideale 
della zona di retenzione. 

Nella prima fase la massa in movimento viene modellata come scivolamento 
granulare. L’altezza, l’amplitudine, il periodo e la lunghezza dell’onda d’impulso 
esercitano una certa influenza in relazione alle sue conseguenze sugli sbarramenti. Tali 
parametri vengono determinati mediante le formule di Heller (2007a) in funzione dei 
parametri di scivolamento. Per determinare i parametri relativi all’onda, vengono 
considerati due casi estremi della sua propagazione: (a) propagazione trasversale 
ristretta (2D) e (b) propagazione radiale completamente libera (3D). Mentre in entrambi 
i casi i medesimi parametri influenti sono determinanti per la generazione dell’onda, 
essi sono tuttavia diversi per quanto riguarda la sue diminuzione. Nel caso in cui essi 
siano conosciuti a monte dello sbarramento, l’altezza traboccante e rispettivamente il 
volume di traboccamento possono essere calcolati secondo Müller (1995). Dato che le 
onde d’impulso possono differire per quanto riguarda il profilo e il movimento interno 
delle particelle d’acqua, l’effetto della loro forza viene calcolato in due modi: per le 
onde di tipo Stokes, relativamente piccole, dal comportamento simile a onde in acque da 
profonde a intermedie con carattere oscillatorio, viene applicato il metodo di Sainflou 
(1928) mentre per gli altri tipi di onde con un’altezza relativamente grande, le quali si 
comportano prevalentemente come onde in profondità da intermedie a piccole con un 
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carattere di traslazione, viene applicato il metodo di Ramsden (1996). Il criterio 
bidimensionale secondo Heller (2007a) permette la differenziazione del tipo di onda. 
Entrambi i metodi vengono applicati inizialmente come se il paramento di monte dello 
sbarramento fosse perpendicolare. Per uno sbarramento inclinato la componente 
orizzontale della forza è indipendente dall’inclinazione dello sbarramento e la 
componente verticale aggiuntiva può essere determinata ammettendo una distribuzione 
idrostatica della pressione dell’onda. Nel caso in cui una parte dell’onda d’impulso 
dovesse traboccare, non tutta la forza viene esercitata sullo sbarramento, perciò si può 
applicare un adeguato procedimento di riduzione per gli altri tipi di onde. 

Dopo che i risultati della prima fase sono a disposizione, nella seconda fase, 
secondo il Capitolo 4, gli effetti delle differenziazioni geometriche dai casi limiti ideali 
(a) e (b) sono approssimati qualitativamente. Tali differenze risultano dalla geometria 
tridimensionale dello sbarramento che differisce dall’analisi idealizzata bi- o 
tridimensionale oppure nel caso in cui la massa non presenti una consistenza granulare. 
A causa di questi effetti, i parametri delle onde d’impulso possono variare 
considerevolmente. La seconda fase è altrettanto necessaria in caso vengano impiegate 
tabelle elettroniche di calcolo, in quanto quest’ultime si basano unicamente sulle 
equazioni di calcolo generalmente valide della prima fase. Infine, nel sottocapitolo 4.4, 
viene eseguita un’analisi della sensibilità e vengono mostrate alcune considerazioni 
concernenti le sicurezze supplementari. 

Il Capitolo 5 contiene due esempi di calcolo e le istruzioni per l’applicazione della 
tabella elettronica di calcolo in Excel. Nel Capitolo 6 sono esposte le conclusioni e 
vengono mostrate le questioni ancora aperte sul tema delle onde d’impulso generate da 
fenomeni di scivolamento. 

Nonostante la valutazione aritmetica apparentemente esatta dell’altezza di 
traboccamento, a titolo di esempio, il presente procedimento fornisce unicamente 
un’approssimazione. Una sicurezza supplementare è quindi da tenere in considerazione 
per qualsiasi provvedimento pianificato. Previsioni più precise possono essere ricavate 
da uno studio specifico su prototipo oppure da simulazioni numeriche. 
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1 Introduction 

1.1 Overview 

Impulse waves typically occur in open oceans, bays, lakes and reservoirs as the result of 
landslides, rockfalls, shore instability, avalanches or glacier calvings. They are classed 
as gravity waves and can, in extreme cases, result in the overtopping of dams, with 
catastrophic consequences. Alpine regions face a high risk of such events in view of 
their steep valley flanks, their potentially large slide volumes, with high impact veloci-
ties, and their large number of reservoirs (Heller 2007a). 

One extreme event was the Vaiont reservoir catastrophe which occurred in 1963. 
After the reservoir had been impounded for the first time behind the 261.60 m high 
double-curved arch dam, the left valley flank became unstable. About 300 million m3 of 
earth and rock, twice the active reservoir capacity, slid into the reservoir. Displaced 
reservoir water spilled over the dam crest, to a depth of at least 70 m, and swept through 
the village of Longarone. About 2,000 people lost their lives. The dam itself withstood 
this extreme event with almost no damage (Schnitter 1964). 

Impulse waves have also occurred in Switzerland or, as a precaution, have been ana-
lysed numerically or investigated in hydraulic models. Examples are Walensee 
(Huber 1975) and Urnersee (Müller and Schurter 1993). Huber (1982) summarised 
about fifty documented events in Switzerland over the past 600 years. On 20 June 2007, 
a rockfall into Lake Lucerne, near Obermatt, created an impulse wave which caused 
slight damage when it flowed up into the village of Weggis, on the opposite shore of the 
lake. 

Schuster and Wieczorek (2002) presented several possible causes of mass move-
ments. In addition to classic scenarios such as earthquake and intense rainfall, they 
described 46 cases of slides which followed rapid changes in the water level of reser-
voirs, for instance during first impounding. Only in rare cases has it been possible to 
arrest the mass movement; one example is Clyde reservoir in New Zealand (MacFarlane 
and Jenks 1996). In most cases only passive measures to minimise damage are possible 
and include evacuation of the population, reservoir drawdown, controlled blasting and, 
when designing the dam, provision of adequate freeboard. For early risk assessment of a 
threatening slide, empirical equations can help to determine the potential danger. 

Generally applicable equations are quickly and easily used in practice. They can 
provide an initial estimate of the most important wave properties, such as wave height 
and run-up height against the dam, and this information on the effects of the impulse 
waves can help when taking decisions on any further preventive measures which may 
be needed. However, such equations provide only a first estimate, of the wave height for 
instance, as they largely neglect the geometry of the reservoir (Section 4.2). But impulse 
waves may be greatly affected by water depth variations or by the shape of the reservoir 
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basin. More extensive methods are available for more precise analysis, as discussed in 
Section 1.2. 

The aim of this manual is to formulate a practical computation procedure using the 
generally applicable equations that are in current use. This is worthwhile because re-
searchers’ understanding of these processes has improved in recent years (e.g. 
Müller 1995; Ramsden 1996; Heller 2007a). Computation examples and electronic 
calculation spread sheets in Excel have made it easier to make use of this procedure. 

The equations described in this manual are based principally on granular slide mate-
rial. The parameters of the mass movement are uniformly referred to as slide, for exam-
ple slide thickness, although other mass movement types such as fall or topple exist. 
The mass movement types and their influence on wave parameters are discussed in 
Section 4.3. 
 

 
Figure 1-1 The ways in which impulse waves can be generated. 

 
Figure 1-1 shows three ways in which impulse waves can be generated. Slides can 

be activated subaerial, partially submerged or wholly submerged. In this manual, only 
slide masses located above water level are considered, as these represent most cases 
encountered in Switzerland. Slides activated partially or wholly submerged are less 
common in Switzerland and, as most develop unnoticed, no time is available for their 
observation or predictive analysis. 
 

 
Figure 1-2 The three phases of an impulse wave above a horizontal reservoir bed: (1) slide impact with 

wave generation, (2) wave propagation with wave transformation and (3) impact and run-up 
of the impulse wave with load transfer to the dam and, in some cases, overtopping of the 
dam (after Heller 2007a). 

 
Figure 1-2 shows the three phases of impulse wave development above a horizontal 

reservoir bed: (1) slide impact with wave generation, (2) wave propagation with wave 
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transformation and (3) impact and run-up of the impulse wave with load transfer to a 
dam and in some cases overtopping of the dam. In narrow reservoirs, phase (2) may not 
occur. The mechanisms of phases (1) and (2) are both covered by the same equations, 
which are discussed in Section 3.2 and in Appendix A. Other researchers have described 
phase (3) with so-called run-up equations, which are described in Section 3.3 and Ap-
pendix B. 
 

1.2 Methods for predicting landslide generated impulse waves 

In this manual, a computation procedure, based on generally applicable equations, is 
developed for the assessment of landslide generated impulse waves. Firstly, for a better 
appraisal of the advantages and disadvantages of this procedure, the available methods 
relating to landslide generated impulse waves are discussed. Basically the following five 
methods exist: 
 

(i) Generally applicable equations developed from model tests 
(ii) Prototype-specific model tests 
(iii) Numerical simulations 
(iv) Empirical equations derived from field data 
(v) Analytical investigations 

 

Table 1-1 Comparison of the five methods for the prediction of landslide generated impulse waves. 

 
 

Table 1-1 compares the five methods, based on the following criteria: the quality of 
the results, time requirement and cost, the user of each method, the clarity of the results 
and the efforts needed to determine the governing parameters required for each proce-
dure. These include the parameters describing the topography of the reservoir and the 
slide geometry as well as the slide characteristics. Table 1-1 shows that, in general, the 
more precise the results the greater the time expended and cost. Likewise, the effort 
needed to determine the governing parameters increases accordingly; this is because 
more data are needed about the geometry of the reservoir and the slide, as well as about 
the slide characteristics. As explained in Section 1.2, the two last methods, (iv) and (v), 
are still not fully developed, and this means that methods (i) to (iii) are the most suitable 
for use in practice. The quality of the results and the time and cost of numerical simula-
tions depend above all on the equations applied and the simplifications made. Table 1-1 
shows where the strengths of the generally applicable equations lie: an engineer may 



1 Introduction 

4 

make an assessment of, for example, the run-up height R on the dam face at little cost 
and in a short time, and only moderate effort is needed to determine the governing 
parameters. Particular points relating to each method, not mentioned in Table 1-1, will 
now be discussed individually and illustrated with examples taken from the technical 
literature. 
 

(i) Generally applicable equations developed from model tests 
 

A literature review for generally applicable equations is given in Appendices A and 
B. Figure 1-3 shows two generally applicable model tests in (a) a wave basin and (b) 
a wave channel. In addition to the points indicated in Table 1-1, the following ad-
vantage and disadvantages of this method need to be mentioned: 

 
+ The results aid in deciding whether more precise investigations with a pro-

totype-specific model or numerical simulations are necessary. 
− Scale effects in too small models cannot be ignored and model effects (re-

flection, refraction, diffraction etc.) occur with geometrical variations from 
the prototype. 

− Special cases are often not investigated, since the available equations are 
limited on simple geometries. 

 

 
Figure 1-3 Generally applicable model tests: (a) rigid body prior to impact into a wave basin (Panizzo 

et al. 2005) and (b) granular slide material during impact into a wave channel (Heller et     
al. 2008). 

 
This method is often the only possibility when calculations have to be done quickly, 
for instance when a landslide already shows signs of slow movement. In order to be 
able to neglect scale effects, the following rules of thumb may be followed: the still 
water depth in the slide impact zone should be h ≥ 0.200 m (Heller et al. 2008) and 
in addition the wave period should be T > 0.35 s (Hughes 1993), such that the waves 
(as gravity waves) are dominated by gravity and not by surface tension forces (as 
capillary waves). For a prototype in which h = 50 m, the first rule leads to a mini-
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mum scale of 1:250. An associated reservoir surface area of one million m2 would 
correspond to a modelled area of 1,000,000/2502 = 16 m2. More precise data on 
scale effects related to impulse waves were defined by Heller et al. (2008). Model 
effects, i.e. effects arising mainly from differences between the geometry of the res-
ervoir basin to the model may be taken into account qualitatively by employing the 
methods described in Section 4.2. 

 
(ii) Prototype-specific model tests 

 
Prototype-specific model tests were carried out for example by Müller and Schurter 
(1993) for planned rock blasting on Urnersee, as shown in Figure 1-4(a), as well as 
by the Western Canada Hydraulic Laboratories (WCHL 1970) for a potential slide 
above Mica reservoir as shown in Figure 1-4(b). In addition to the points shown in 
Table 1-1, the following disadvantages of this method should be noted:  

 
− Scale effects cannot be neglected in too small models. 
− Model effects may occur with geometric simplifications. 
 

 
Figure 1-4 Prototype-specific model tests: (a) for planned rock blasting on Urnersee (Müller and 

Schurter 1993) and (b) for Mica reservoir (Western Canada Hydraulic Laboratories 1970). 

 
To allow scale effects to be neglected, the same rules of thumb apply as for method 
(i): h ≥ 0.200 m in the impact zone and T > 0.35 s. For a prototype with h = 50 m, 
the first of these criteria gives a minimum scale of 1:250, which means that the cor-
responding reservoir area of 1,000,000 m2, according to (i), will be represented by 
16 m2 in the model. Therefore, it is often impossible to model the entire reservoir 
with negligible scale effects, because of limited availability of space and the corre-
sponding cost. An alternative method is to model only the impact zone and the wave 
run-up zone and then attempt to estimate the wave transformation between them. 
Knowledge of the reservoir geometry is essential for the precise determination of the 
wave characteristics, especially when shallow-water or intermediate-water waves 
are expected. This is because waves of these types are affected by the reservoir bed 
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(Section 2.1). For deep-water waves, which are not affected by the reservoir bed, the 
reservoir geometry must be known above all in the slide impact and wave run-up 
zones. 

 
(iii) Numerical simulations 

 
Published works on numerical simulations of landslide generated impulse waves 
were carried out, for example, by the following researchers: Falappi and Gallati 
(2007) used the Smoothed Particle Hydrodynamics (SPH) method to simulate an 
experiment by Fritz (2002), as shown in Figure 1-5(b). Quecedo et al. (2004) used 
the complete Navier-Stokes equations to simulate the Lituya Bay slide of 1958. 
Zweifel et al. (2007) used the shallow-water equations for their simulations of 
model tests. Furthermore, Fäh (2005) modelled impulse waves in a snow-melt lake 
following a possible partial collapse of the Trift glacier, making use of shallow-
water and Boussinesq equations. 
In addition to the points shown in Table 1-1, the following advantage and disadvan-
tages of this method should be noted: 

 
+ This method will gain in significance with continuing development of com-

puter capacity. 
− Calibration and validation data are needed; for landslide generated impulse 

waves these are usually derived from hydraulic model tests. 
− Simplifications of the Navier-Stokes equations are necessary, as well as 

limitation on one section of the reservoir, or the use of a coarse calculation 
grid, in order to keep the computation time within acceptable limits. 

 

 
Figure 1-5 Numerical analysis using Smoothed Particle Hydrodynamics: (a) hydraulic model tests by 

Fritz (2002) and (b) corresponding numerical simulation by Falappi and Gallati (2007) 

 
For the purposes of calibration and validation, most numerical models are compared 
with data from model tests and only then used for the given reservoir geometry. The 
scale or model effects of hydraulic models correspond numerically to the simplifica-
tion of the basic equations adopted for the analysis. Despite good results in individ-
ual cases in comparison with data from the hydraulic models, the authors are not 
aware of any reliable general model for simulating landslide generated impulse 
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waves that may be used to analyse any given slide mass and reservoir geometry 
(Section 6.2). 

 
(iv) Empirical equations derived from field data 

 
Ataie-Ashtiani and Malek Mohammadi (2007) have derived equations from field 
data but no other publications on this approach are known of by the authors. In addi-
tion to the points shown in Table 1-1, the following advantage and disadvantages of 
this method need to be stated: 
 
+ No scale effects. 
− Based on field data which are mostly estimates rather than measurements 

(for instance wave heights indirectly calculated using run-up heights). 
− Governing parameters are also only estimates (for example based on un-

derwater deposits of slide material). 
− The equations of Ataie-Ashtiani and Malek Mohammadi (2007) allow only 

the wave amplitude to be calculated; there is no known work on the deter-
mination of other wave parameters. 

 

 
Figure 1-6 Field data: photomontage of the 1958 Lituya Bay case showing the boundaries of the slide 

area and the maximum wave run-up height of 524 m on the opposite shore of the bay (after 
Fritz 2002). 

 
The Lituya Bay case of 1958 shown in Figure 1-6 is a rare but fortunate event for 
researchers because knowing the run-up height on the opposite shore yields infor-
mation on an impulse wave close to the slide impact location. Few other reliable 
field data are known to exist. As a result, equations derived from field measure-
ments are hardly valid for general practice. 
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(v) Analytical investigations 
 

Analytical equations were derived for example by Noda (1970) and Di Risio and 
Sammarco (2008). A comparison of these two methods with an impulse wave gen-
erated in a hydraulic model by a solid mass (Di Risio 2005) is shown in Figure 1-7. 
In addition to the points shown in Table 1-1, analytical investigations have the fol-
lowing advantage and disadvantages: 

 
+ No scale effects. 
− The impact mechanism is too complex to be described analytically, so pre-

dictions for the far field can only be based on simplified initial conditions. 
− Deduction of the results is difficult to follow. 
− Simplifications are necessary, e.g. use of linear-wave theory, potential the-

ory etc., which allows consideration of only relatively small and symmetri-
cal waves. 

 

 
Figure 1-7 Comparison of the analytical computation of a landslide generated impulse wave profile at a 

distance x = 5.30 m from the impact location with an experiment (Di Risio and Sammarco 
2008). 

 
As this method may provide predictions only for very idealised slides and then only 
in the far field, it is not very useful for practical application. 
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The first three methods, (i) to (iii), are of practical relevance for the assessment of land-
slide generated impulse waves and their effects. Sometimes it may be better to use 
hybrid modelling, i.e. to combine model testing with numerical analysis. This may be 
done, for example, when the criteria for negligible scale effects in the hydraulic model 
allow only the investigation of the generation of the waves; the wave propagation will 
therefore be calculated numerically, or if a part of the reservoir is studied using a hy-
draulic model, the results obtained are then used to calibrate a numerical model. Natu-
rally, the time required and the cost increase with this method. 
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2 Water wave theory 

2.1 Introduction 

This chapter explains the most important properties of water waves. Landslide gener-
ated impulse waves belong to the category of gravity waves, i.e. they are principally 
influenced by the gravitational force in contrast to capillary waves. 

The relevant wave parameters are shown in Figure 2-1 in the (x, z) plane, on a de-
fined sine wave whose profile describes a sine curve. If the sine wave is small 
(H/h < 0.03) and flat (H/L < 0.006) it is also referred to as a linear wave. The original 
water depth is defined as the still water depth h. The wave height H is measured from 
the trough, i.e. from the lowest point on the wave surface to the crest, the highest point. 
The wave amplitude is the height from the undisturbed water surface to the wave crest. 
For the sine wave shown in Figure 2-1, a = H/2. This no longer applies for impulse 
waves, which are generally non-linear and vary from the perfect sine wave (Figure 2-1). 
Furthermore the wave length L extends from wave node to node, crest to crest or trough 
to trough. The wave period T is the time it takes for the crests, nodes or troughs, respec-
tively, of two successive waves, to pass a fixed point. For the sine wave, the period can 
be calculated as T = L/c, in which c is the wave celerity. The square of the celerity for a 
linear sine wave is given by 
 

⎟
⎠
⎞

⎜
⎝
⎛=

L
hgLc π2tanh

π2
2 . (2.1) 

 
c [m/s] = Wave celerity (Figure 2-1) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 
L [m] = Wave length (Figure 2-1) 
π [-] = Circular constant; π = 3.14 

 

 
Figure 2-1 Principal wave parameters presented on an idealised sine wave (in addition, the wave is said 

to be linear if H/h < 0.03 and H/L < 0.006). 
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The following terms can be used to differentiate between various water wave types: 
 

a) Oscillatory or translatory waves 
b) Shallow, intermediate or deep-water waves 
c) Periodic or non-periodic waves 
d) Linear or non-linear waves 

 
a) Oscillatory or translatory waves 
 
In water waves, the individual particles of water do not move in the same way as the 
water surface or the wave celerity c. This may be seen in Figure 2-1, where the or-
bital motion of a water particle is shown for an oscillatory wave. Whilst the water 
surface seems to advance at the wave celerity, the water particle moves elliptically 
and, over the period considered, remains in the same position. Oscillatory waves do 
not therefore transport fluid mass, but only energy, which sets the surrounding water 
particles in motion. Translatory waves are the opposite, as the water particles move 
horizontally in the direction of wave propagation and there is transport of fluid mass 
as well as energy (Figure 2-5). 
 
b) Shallow, intermediate or deep-water waves 
 
The criterion for the definition of shallow, intermediate or deep-water waves is the 
ratio of wave length to still water depth L/h. Figure 2-2 shows, for an oscillatory 
wave, the water particle movement of waves of these three types. Figure 2-2(a) 
shows a shallow-water wave, corresponding to L/h >20, in which the water particles 
move in elliptical orbits. With increasing water depth, these orbits become flatter 
and smaller, until their movement at depth is eventually parallel to the reservoir bed. 
The vertical movement of the particles is constrained by the bed and this for exam-
ple modifies the wave height H. A tsunami, caused by tectonic plate movement, is 
normally a shallow-water wave. Because the ratio L/h for small, sinusoidal shallow-
water waves is large, the wave celerity may be calculated using Eq. (2.1) as 
c = (gh)1/2. 

The opposite case is shown in Figure 2-2(c), a deep-water wave commensurate 
with L/h < 2. In this case the water particles move in circular orbits, which decrease 
with increasing water depth until no more movement can be detected on the bed. In 
other words, deep-water waves are not affected by the lake or sea bed. Wind waves 
on open water are deep-water waves. Applying Eq. (2.1) for a small sinusoidal wave 
a wave celerity of c = [gL/(2π)]1/2 is obtained because the ratio L/h is small. Bet-
ween deep and shallow-water waves is the zone of intermediate-water waves, for 
which 2 < L/h < 20 (Figure 2-2b). Such waves are partly influenced by the lake or 
sea bed and their wave celerity may be calculated, for linear waves, using Eq. (2.1). 
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c) Periodic or non-periodic waves 
 
Periodic waves are formed by a group of several waves as shown, for example, in 
Figure 2-1. A non-periodic wave occurs as a single wave (Figure 2-5). 

 
d) Linear and non-linear waves 
 
The term non-linearity originates from the mathematical definition of waves. Linear 
waves have the form of a sine curve and their relative height H/h < 0.03; in addition, 
the wave steepness must be H/L < 0.006 (Dean and Dalrymple 1991; Figure 2-1). 
Hence, in the mathematical analysis, the terms H/h and H/L are only considered 
linearly, with higher powers being neglected. In addition, the condition for sinusoi-
dal waves that the wave height is H = 2a no longer applies. The greater the degree 
of non-linearity, the more the wave profile deviates from this ideal sinusoidal pro-
file, i.e. the ratios H/h and/or H/L increase. Normally, the greater the degree of non-
linearity, the more complex and time consuming is the mathematical description of 
the wave profile. 

 

 
Figure 2-2 Water particle movement of an oscillatory wave in (a) shallow (L/h > 20), (b) intermediate 

(2 < L/h < 20) and (c) deep-water (L/h < 2). 

 
Water waves naturally exhibit a combination of the properties described in a) to d). 

Landslide generated impulse waves are non-periodic waves and normally strongly non-
linear; as a result they are difficult to analyse mathematically. Furthermore, fluid mass 
transport by such waves may vary from little to considerable and the waves are of trans-
latory rather than oscillatory nature. Depending on the characteristics of the slide, shal-
low or deep-water waves may be formed, but mostly intermediate-water waves result.  
 

2.2 Theoretical wave types  

Water waves differ to a greater or lesser extent from the ideal sinusoidal profile shown 
in Figure 2-1, which may be described for small dimensions (H/h < 0.03 and 
H/L < 0.006) by the linear wave theory (Dean and Dalrymple 1991). Here a few special 
non-linear water waves are discussed (Section 2.1), which have been relatively well 
studied, both theoretically and experimentally. The four wave types presented below are 
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relevant, as all landslide generated impulse waves may be allocated to one of the fol-
lowing groups (Appendix A.3.2.1): a) Stokes wave, b) cnoidal wave, c) solitary wave 
and d) bore. 
 
a) Stokes wave 
 
Figure 2-3 shows the profile of a Stokes wave, which is a deep-water to intermediate-
water wave and may therefore be applied, for example, for wind generated waves. The 
Stokes wave is steeper than the sinusoidal wave in Figure 2-1, and the wave trough is 
somewhat flatter and longer than the wave peak. The wave particles do not move in a 
closed orbital fashion and, in consequence, slight transport of fluid mass takes place.  
 

 
Figure 2-3 Stokes wave profile showing the most important wave parameters; slight fluid mass trans-

port. 

 
b) Cnoidal wave 
 
Figure 2-4 shows a cnoidal wave, which is a periodic wave in intermediate or shallow-
water. Wind generated waves in shallow-water, for example, may be described with this 
theory. The cnoidal wave has mainly an oscillatory character, but also exhibits open 
water particle orbits and hence transport of fluid mass. Using the equation for cnoidal 
waves, both the linear wave (sinusoidal wave) and the solitary wave are included as 
limiting cases. 
 

 
Figure 2-4 Cnoidal wave profile showing the most important wave parameters; slight fluid mass trans-

port. 
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c) Solitary wave 
 
A solitary wave is shown in Figure 2-5. Classic tsunamis, which are caused by the 
movement of tectonic plates, are often described with the solitary wave theory. This is 
the non-linear water wave which has been most researched, both by numerical simula-
tions and laboratory experiments. It consists only of a wave peak but no trough. The 
wave amplitude is thus equal to the wave height a = H. In addition, the wave length L = 
∞ and the wave is classed as a shallow-water wave (L/h > 20). 
 

 
Figure 2-5 Solitary wave profile showing the most important wave parameters; major fluid mass 

transport. 

 
Movement of the water particles is horizontal and as a consequence there is large 

fluid mass transport. In a rectangular channel on a horizontal bed, the height of this type 
of wave in theory does not decrease and the wave may propagate over unlimited dis-
tances without any change of shape. In reality, turbulence, created mainly on the bed of 
the ocean or lake, results in some reduction of wave height, but this is still less than 
occurs with other wave types. The solitary wave theory is developed from the cnoidal 
wave theory, as the wave period T → ∞. The wave celerity of solitary waves is given by 
 

c = [ g ( h + a)]1/2. (2.2) 
 

a [m] = Wave amplitude (Figure 2-1) 
c [m/s] = Wave celerity 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth 

 
If the wave amplitude a of a solitary wave above a horizontal bed exceeds 0.78h, the 

wave breaks and moves on as a bore. However, this process cannot realistically be 
described analytically. 
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d) Bore 
 
Figure 2-6 shows a bore, which is created e.g. during wave breaking near the shore 
when air is entrained at the crest or when the top of the crest curls over. A bore is a 
shallow-water wave with horizontal particle movement which thus transports large fluid 
masses. Its profile is characterised by a steep front and a gently sloped back. 
 

 
Figure 2-6 Wave profile of a bore with the most important wave parameters; large fluid mass transport. 

 
The four wave types: Stokes, cnoidal and solitary waves, as well as bore, described 

above will be used in Chapter 3 and in Appendices A and B for classifying impulse 
waves.  
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3 Computation procedure and 1st step 

3.1 Introduction 

Chapter 3 presents the calculation procedure employed to determine the effects of land-
slide generated impulse waves on dams. This is valid for slide masses that are originally 
located above the water surface (Figure 1-1) and are based on selected studies given in 
the list of references in Appendices A and B. Details of the studies and the reasons 
justifying their inclusion in the studies are given in these Appendices. Figure 3-1 sum-
marises the computation procedure with the corresponding literature references and the 
section references to this manual. Some of the original methods have been further de-
veloped or supplemented, or the corresponding equations were adjusted. The approach 
is in two steps (Figure 3-1). 

The 1st step makes use of the generally applicable equations. With regard to the 
generation of the waves, a differentiation is made between studies based on a prismatic 
wave channel (2D) and those in a rectangular wave basin (3D), as shown in Figure 3-3. 
Both methods are justified in practice and cover the extreme cases of restricted trans-
verse and completely free radial propagation of the impulse waves above a horizontal 
sea or reservoir bed (Figure 3-2). The 2D equations were developed by Heller (2007a), 
based on Zweifel (2004) and Fritz (2002), and will be converted for 3D conditions using 
a method implicitly contained in Huber and Hager (1997). 

In contrast to those covering the generation of the waves, the generally applicable 
equations governing the effects of impulse waves on dams are based only on 2D mod-
els. In other words, 3D effects such as a curved dam shape are not taken into account. 
The run-up and overtopping of the waves are calculated using the method of Müller 
(1995), as shown in Figure 3-1. Impulse waves differ in terms of their profile and inter-
nal water particle movement (Appendix A.3.2.1). For this reason, the effect on a dam of 
forces resulting from small, Stokes-like waves will be determined by the method of 
Sainflou (1928) and for the remaining wave types by the method of Ramsden (1996). 
The Stokes-like wave type can be limited by a 2D criterion of Heller (2007a). Both 
methods are applied in the first place assuming that the upstream dam face is vertical 
( β = 90°) with full force effect but no overtopping. For the remaining wave types, over-
topping is likely and a corresponding force reduction method is applied. To analyse 
dams with sloping upstream faces (β < 90°), it is necessary for both the Sainflou (1928) 
and Ramsden (1995) procedures to resolve the forces into their vertical and horizontal 
components. To simplify the procedures for this resolution, the total loading is assumed 
to be static as for the moment of the maximum run-up height, practically all kinetic 
energy is converted into potential wave energy (Appendix B.5). 

In the 2nd step, when the results of the generally applicable equations are available, 
the effects of variations from the idealised reservoir geometry (prismatic, channel-form 
geometry, rectangular basin form; Section 4.2) must be considered, as well as those of 
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the mass movement type (granular slide; Section 4.3). These variations may lead to 
significant differences in the results obtained. Only the generally applicable equations 
are taken into account in the spread sheets; the 2nd step in Figure 3-1 is also needed 
here and must be carried out by hand after the spread sheets have been applied. 
 

 
Figure 3-1 Computation procedure of landslide generated impulse waves with the phases of the impulse 

wave, calculation methods and references to the sections. 

 
Chapter 3 is set out to follow the procedure shown in Figure 3-1. Section 3.2 ad-

dresses the wave generation and propagation. The individual calculation equations are 
presented, after an introduction and the definition and explanation of the relevant gov-
erning parameters. Distinctions are made between equations that are valid for both 2D 
and 3D, equations for channel-form reservoir geometry (2D) and those for basin-form 
geometry (3D). This differentiation covers the extreme cases of restricted transverse 
(2D) and completely free radial (3D) wave propagation in reservoirs (Figure 3-2). The 
wave parameters for general reservoir geometries are determined by either combination 
with or interpolation between these two extreme cases (Section 5.2). The results from 
Section 3.2 serve as governing parameters for the calculation of the effects of impulse 
waves on dams (Sections 3.3 and 3.4). Section 3.3 addresses the relevant governing 
parameters for the run-up and overtopping of dams. The forces acting on the dam can 
then be calculated in Section 3.4. After the introduction of the hydrostatic pressure in 
Subsection 3.4.2, methods for relatively small Stokes-like waves and for the remaining 
wave types are discussed in Subsections 3.4.3 and 3.4.4, respectively. 
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3.2 Wave generation and propagation 

3.2.1 Introduction 

The procedure is based on generally applicable equations. The equations for wave gen-
eration were developed by laboratory tests either (a) in a prismatic wave channel (2D) 
or (b) in a rectangular wave basin (3D) (Section 3.1; Appendix A). The two extreme 
cases (a) and (b) are shown in Figure 3-2 and can be described as follows: 
 

• Extreme case (a): the slide mass impacts longitudinally into a long reservoir, the 
slide width being either the same as or greater than the width of the reservoir. 
The impulse waves are confined as they move along the reservoir and are not 
able to propagate laterally (Figure 3-2a). 

 
• Extreme case (b): the slide mass impacts at any possible location into the reser-

voir, and the slide width is less than that of the reservoir. The reservoir geometry 
is such that the impulse wave can propagate radially and completely freely from 
the slide impact zone (Figure 3-2b). 

 

 
Figure 3-2  Reservoir geometries for two idealised cases which can be described directly with generally 

applicable equations: (a) extreme case (a) with longitudinal impacting slide and confined 
transverse wave propagation and (b) extreme case (b) with the slide impacting across the 
reservoir and completely free radial wave propagation. 

 
The same governing parameters are relevant for the computation of the wave generation 
for both extreme cases (a) and (b) (Subsection 3.2.2). In fact, the parameters of the 
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waves vary only slightly for 2D and 3D cases in the immediate vicinity of the slide 
impact zone (Huber 1980). Because in extreme case (b), impulse waves (and thus their 
energy) propagate over a larger area, the wave height decreases more rapidly than in 
case (a), i.e. the attenuation terms differ for the two cases. 

In order to extrapolate the results of model tests to prototypes, geometrical similarity 
must exist between them. Deviations of the geometry may result in model effects, for 
example, the relative wave heights not corresponding between model and prototype. 
Figure 3-2 shows geometric forms that are ideally suited to 2D and 3D model tests. In 
the transition zone between the wave parameters calculated for these two extreme cases, 
(a) and (b), the parameters are found in a general geometrical form. A prerequisite for 
this is that the neglected effects discussed in Sections 4.2 and 4.3 have not yet been 
taken into account. The more the actual form of the reservoir deviates from the two 
idealised geometries, the more dominant will be effects such as reflection, shoaling or 
constriction. In this way, the limiting values for extreme cases (a) and (b) may even be 
exceeded. As a result, greater insecurity in the determination of the wave parameters has 
to be expected in this transition zone. The neglected governing parameters are discussed 
in Sections 4.2 and 4.3. In this case, more precise predictions may be possible with a 
prototype-specific model test or a numerical simulation (Section 1.2). 
 

3.2.2 Governing parameters 

Figure 3-3 shows sketches defining the relevant parameters for the impulse wave gen-
eration in (a) channel-form (2D) as well as for (b) basin-form (3D) reservoirs. The 
following parameters have an effect on the calculations of the maximum wave ampli-
tude aM and the maximum wave height HM in both 2D and 3D cases: 
 

• Slide impact velocity Vs 
• Bulk slide volume Vs 
• Slide thickness s 
• Slide width or reservoir width b 
• Bulk slide density ρs 
• Bulk slide porosity n 
• Slide impact angle α 
• Still water depth h 

 
Further governing parameters such as slide length ls and the slide front angle φ are 
discussed in Appendix A, even though these have a negligible effect on wave genera-
tion. 

The origin of the coordinate system (x, z) is the intersection of the still water level 
and the slide slope (Figure 3-3). The governing parameters of the slide are related to the 
impact location and not to the original position of the slide. Of the seven slide parame-
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ters given above, the first six may vary between the original position of the slide and its 
impact location. The bulk slide volume Vs and the bulk slide density ρs comprise the 
bulk slide porosity n. This is not introduced as an independent parameter in the compu-
tation procedure, nor is the slide mass ms = Vs·ρs. The bulk slide volume Vs and the bulk 
slide density ρs, which consider the bulk slide porosity n, must be differentiated from 
the slide grain volume Vg and grain density ρg (Appendix A.2). The equations for con-
version between grain and bulk slide properties are given in Table 3-1. 
 

 
Figure 3-3  Sketches defining the governing parameters on impulse wave generation and the most 

important wave parameters in (a) 2D and (b) 3D. 

 

Table 3-1 Conversion of grain to bulk slide parameters, and vice versa, with the help of the bulk slide 
porosity n. 

 
 
The slide thickness s is the maximum thickness of the slide measured perpendicu-

larly to the slide slope at the moment of impact. The slide width b should be selected as 
the average width during impact. If the slide width is greater than that of the reservoir, 
then b should be taken to be the reservoir width. The slide impact angle α is the hill 
slope angle at the impact location, measured as the angle from the horizontal 
(Figure 3-3a). This defines the impulse transmission angle of the slide on the water 
body. The still water depth h is taken as the average depth in the slide impact zone, 
along the slide axis (γ = 0°; Figure 3-3). The slide impact velocity Vs is that of the centre 
of gravity of the slide mass during impact and can be expressed by the energy equation, 
taking into consideration the friction between the slide and the underlying slope of 
constant inclination (Körner 1976) as 
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)cottan1(2 αδ−Δ= scs zgV . (3.1) 

 
g [m/s2]  =  Gravitational acceleration; g = 9.81 m/s2 
Vs [m/s] =  Slide impact velocity (Figure 3-4) 
α  [°]  =  Slide impact angle (Figure 3-4) 
δ  [°]  =  Dynamic bed friction angle (Figure 3-4) 
Δ zsc [m] = Drop height of the centre of gravity of the slide (Figure 3-4) 

 
The parameters in Eq. (3.1) are shown in Figure 3-4(a) for a slope of constant inclina-
tion. The drop height of the centre of gravity of the slide Δ zsc is the vertical distance 
between the centre of gravity of the slide mass in its original position and at the impact 
location. The dynamic bed friction angle δ represents the friction at the contact between 
the slide mass and the underlying slope. The greater this friction the greater is the value 
of δ, which is normally in the range 15° ≤ δ  ≤ 35°. A value of δ ≈ 20° may be assumed, 
irrespective of whether the slide mass consists of rock, ice or snow (Hutter 2008). The 
value for the slide impact angle α  is the average slope angle. Should at any point the 
gradient of the slope change, as shown in Figure 3-4(b), the slide velocity at point of 
slope change VsNK may be calculated from Eq. (3.1), by introducing values for the rele-
vant parameters Δ zscN, δ N and α N. The increase of the slide velocity to the slide impact 
velocity Vs can be determined from Eq. (3.2), with the value of VsNK taken from 
Eq. (3.1), as 
 

)cottan1(22 αδ−Δ+= scsNKs zgVV . (3.2) 
 

g [m/s2]  =  Gravitational acceleration; g = 9.81 m/s2 
Vs [m/s] =  Slide impact velocity (Figure 3-4b) 
VsNK [m/s] =  Slide velocity at point of slope change (Figure 3-4b) 
α  [°]  =  Slide impact angle (Figure 3-4b) 
δ  [°]  =  Dynamic bed friction angle (Figure 3-4b) 
Δ zsc [m] = Drop height of the centre of gravity of the slide 
  (Figure 3-4) 

 
If a number of slope changes exist, their analysis may proceed in an analogous fash-

ion. The slide velocity at the uppermost slope change can be computed from Eq. (3.1), 
by introducing the values of Δ zscN, δ N and α N, valid for the slope above the change. The 
slide velocity so obtained VsNK is then introduced in Eq. (3.2), together with the relevant 
values for the next slope section. For each successive slope section the same Eq. (3.2) 
can be applied, introducing the values for the slope in question and the slide velocity at 
the end of the previous section. Equation (3.1) is therefore a particular case for 



3 Computation procedure and 1st step 

23 

Eq. (3.2), in which VsNK is equal to zero. Salm et al. (1990) address the question of the 
determination of the slide thickness s and slide impact velocity Vs for flow avalanches. 
 

 
Figure 3-4  Sketches defining the parameters for determination of the slide impact velocity Vs for        

(a) slope of constant slide impact angle α and (b) for slopes with a slope change. 

 
Changes of a generated impulse wave when propagating in reservoirs of horizontal, 

channel-form or basin-form geometry are reflected in the following parameters 
(Figure 3-3): 
 

• Distance x (2D) 
• Radial distance r (3D) 
• Wave propagation angle γ   (3D) 

 
In a channel-form reservoir (2D; Figure 3-3a), the impulse wave changes only with 
regard to the distance x. In a basin-form reservoir (3D; Figure 3-3b) both the radial 
distance r and the wave propagation angle γ  are involved. 
 

3.2.3 Computation procedure 

3.2.3.1 Values independent from 2D or 3D 

The equations given below are valid for both extreme cases of idealised reservoir ge-
ometry (a) and (b) as described in Subsection 3.2.1. The celerity c of a landslide gener-
ated impulse wave can be determined using the equation for the solitary wave celerity 
 

( )[ ] 2/1ahgc += . (3.3) 
 

a [m]  =  Wave amplitude (Figure 3-5) 
c [m/s] =  Wave celerity 
g [m/s2]  =  Gravitational acceleration; g = 9.81 m/s2 
h [m]  =  Still water depth 
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The value of c can be determined locally or between two points. In the latter case, the 
average values of a and h, between the two points, are introduced into Eq. (3.3). An 
impulse wave with an amplitude of a = 20 m in water h = 100 m deep will have a celer-
ity c of about 34 m/s or 124 km/h. 

The value of a is determined indirectly from the wave height H. This can be done by 
applying Eqs. (3.6), (3.10) or (3.13). For a known wave height H, the wave amplitude a 
for subaerial landslide generated impulse waves is 
 

Ha )5/4(= . (3.4) 
 
a [m]  =  Wave amplitude (Figure 3-5) 
H [m]  =  Wave height (Figure 3-5) 

 
The wave trough is thus equal on average to only about 20% of the wave height H 
(Figure 3-3a). Equation (3.4) was developed in a prismatic wave channel, i.e. for case 
(a) in Figure 3-2. In this manual, Eq. (3.4) is also used for case (b), as per Figure 3-2, 
and also for all wave types considered, although it is poorly satisfied for Stokes-like 
waves (Appendix A.3.2.1). The last assumption has a small effect. Equation (3.4) leads 
to an over-estimation of the wave amplitude a for Stokes-like waves and hence of the 
wave celerity c according to Eq. (3.3). In addition, a is used in the method discussed in 
Subsection 3.4.4, which is, however, not applied on Stokes-like waves. 

The impulse product parameter P of Heller (2007a) and Heller and Hager (2009a) 
has an important role in both 2D and 3D calculations and is defined as 

 
[ ]{ } 2/14/12/1 )7/6(cos αMSFP =  for 0.17 ≤ P ≤ 8.13. (3.5) 

 
b [m] = Slide width (Figure 3-3b) 
F [-]  = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/( ρw bh2) 
P [-] = Impulse product parameter 
s [m] = Slide thickness (Figure 3-3a) 
S [-]  = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity from Eq. (3.1) or Eq. (3.2) 
  (Figure 3-3a) 
Vs [m3] = Bulk slide volume (Figure 3-3a) 
α  [°]  = Slide impact angle (Figure 3-3a) 
ρs [kg/m3] = Bulk slide density (Figure 3-3a) 
ρw [kg/m3] = Water density 
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Apart from the water density ρw and the gravitational acceleration g, the value of P is 
determined only from governing parameters and can therefore be estimated prior to any 
slide event. The significance of the dimensionless values F, S, M and α, as applied in 
Eq. (3.5), is discussed by Heller (2007a) or Heller and Hager (2009a). 

In the calculation equations given below, slide densities from compact snow to gran-
ite, slide impact angles from 30° to 90°, and distances from the coordinate origin of up 
to 59h are taken into account. In practice, the limitations given in Table 3-2 must be 
respected when using this procedure (Appendix A.2). 
 

Table 3-2 Limitations for the calculation of the impulse wave generation. 

 
 

3.2.3.2 Extreme case (a) (2D) 

The equations presented here are based on Heller (2007a) (Figure 3-1). They are for the 
calculation of impulse waves which propagate confined, longitudinally in a reservoir, 
following the impact of a slide mass in a longitudinal direction (Figure 3-2a; extreme 
case (a) in Subsection 3.2.1). With regard to the effects of impulse waves on dams, 
above all the wave height H and the wave amplitude a are of particular importance. In 
addition, the wave length L and the wave period T are taken into consideration which, 
according to the linear wave theory, are connected with the wave celerity c as L = Tc 
(Section 2.1). The maximum wave height HM in the slide impact zone is often formed 
by a wall of water rather than by a coherent wave as such (Figure A-11; Figure A-15 in 
Appendix A). For this reason, a difference will be made between the maximum wave 
height HM in the slide impact zone and the wave height H in the wave propagation zone. 
The former may be determined from Figure A-6(a) in Appendix A as 
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hH M
5/4)9/5( P= . (3.6) 

 
h [m] = Still water depth (in the slide impact zone) 
HM [m] = Maximum wave height (Figure 3-3a) 
P [-] = Impulse product parameter from Eq. (3.5) 

 
The distance of the maximum wave height from the slide impact location xM is given 
according to Figure A-6(b) in Appendix A by 
 

( ) hxM
2/12/11 P= . (3.7) 

 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.5) 
xM [m] = Streamwise distance of the maximum wave amplitude 
  from the impact location (Figure 3-3a) 

 
The wave period TM of the maximum wave height HM can be calculated, as per Appen-
dix A.3.2.1, as 
 

2/12/1 )/(9 ghTM P= . (3.8) 
 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
HM [m] = Maximum wave height (Figure 3-3a) 
P [-] = Impulse product parameter from Eq. (3.5) 
TM [s] = Wave period from HM 

 
With TM from Eq. (3.8), and with the linear relationship L = T c, the wave length LM of 
HM can be determined as 

 
cTL MM = . (3.9) 

 
c [m/s] = Solitary wave celerity from Eq. (3.3) 
HM [m] = Maximum wave height (Figure 3-3a) 
LM [m] = Wave length of HM  
TM [s] = Wave period of HM 

 
For the evaluation of wave run-up, the wave height at the dam or reservoir shore is 

required, and not only the maximum wave height HM in the slide impact zone. Further-
more, the streamwise coordinate x must be considered (Figure 3-3a). If the wave height 
H sought is located farther from the slide impact location than where the maximum 
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wave height HM occurs (x/h = X > XM = xM /h), then the wave height H as shown in 
Figure A-7 of Appendix A, can be determined as 

 

( )( ) hXxH 5/43/14/3)( −= P  for X > XM. (3.10) 
 

h [m] = Still water depth (in the slide impact zone) 
H [m] = Wave height (Figure 3-5) 
P [-] = Impulse product parameter from Eq. (3.5) 
x [m] = Streamwise coordinate in the longitudinal channel 
  direction (Figure 3-3a) 
xM [m] = Streamwise distance of the maximum wave amplitude 
  from the impact location  
X [-] = Relative streamwise distance; X = x/h 
XM [-] = Relative streamwise distance of the maximum wave  
  amplitude from the impact location; XM = xM /h 

 
Equation (3.10) is only to be used when X > XM. The wave period T(x) is determined in 
Appendix A.3.2.1 as 

 
2/116/54/1 )/(9)( ghXxT P=  for X > XM. (3.11) 

 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
P [-] = Impulse product parameter from Eq. (3.5) 
T [s] = Wave period (Figure 3-5) 
x [m] = Streamwise coordinate in the longitudinal channel 
  direction (Figure 3-3a) 
xM [m] = Streamwise distance of the maximum wave amplitude  
  from the impact location  
X [-] = Relative streamwise distance; X = x/h 
XM [-] = Relative streamwise distance of the maximum wave 
  amplitude from the impact location; XM = xM /h 

 
The wave length L(x) can, again in accordance with the linear wave theory, be deter-
mined from 
 

)()()( xcxTxL = . (3.12) 
 

c [m/s] = Solitary wave celerity from Eq. (3.3) 
L [m] = Wave length (Figure 3-5) 
T [s] = Wave period from Eq. (3.11) (Figure 3-5) 
x [m] = Streamwise coordinate in longitudinal channel direction 
  (Figure 3-3a) 
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3.2.3.3 Extreme case (b) (3D)  

The equations for the 3D case are based on Heller (2007a) as well as the conversion 
method of Huber and Hager (1997) (Figure 3-1). They can be used to analyse impulse 
waves propagating radially and completely freely in a reservoir (Figure 3-2b; extreme 
case (b) in Section 3.2). The difference in the size of impulse waves between 2D and 3D 
models in the slide impact zone is small (Huber 1980). Estimation of the maximum 
values of wave height HM in the slide impact zone, and the corresponding period TM and 
wave length LM, respectively, may therefore also be determined from Eqs. (3.6), (3.8) 
and (3.9). The wave height H(r, γ ) at any given location in the reservoir for r/h > XM, 
can be determined according to Appendix A.3.2.2 as 
 

( ) ( ) hhrrH 3/225/4 )/(
3

2cos2/3, −⎟
⎠
⎞

⎜
⎝
⎛= γγ P  for r/h > XM. (3.13) 

 

h [m] = Still water depth (in the slide impact zone at γ = 0°) 
H [m] = Wave height (Figure 3-5) 
P [-] = Impulse product parameter from Eq. (3.5) 
r [m] = Radial distance from the impact location in the wave 
  basin (Figure 3-3b) 
xM [m] = Streamwise distance of the maximum wave amplitude  
  from the impact location  
XM [-] = Relative streamwise distance of the maximum wave am- 
  plitude from the impact location; XM = xM /h  
γ  [°] = Wave propagation angle (Figure 3-3b) 

 

The wave period T(r, γ ) corresponding to the wave height H(r, γ ) from Eq. (3.13) can 
be determined according to Appendix A.3.2.1 as 
 

( ) ( ) 2/1
4/1

/15, gh
h
HrT ⎟
⎠
⎞

⎜
⎝
⎛=γ  for r/h > XM.  (3.14) 

 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (at a given position) 
H [m] = Wave height from Eq. (3.13) (Figure 3-5) 
r [m] = Radial distance from the impact location in the wave 
  basin (Figure 3-3b) 
T [s] = Wave period (Figure 3-5) 
xM [m] = Streamwise distance of the maximum wave amplitude 
  from the impact location 
XM [-] = Relative streamwise distance of the maximum wave 
  amplitude from the impact location; XM = xM /h 
γ  [°] = Wave propagation angle (Figure 3-3b) 
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Finally, the wave length L(r, γ ), again according to the linear wave theory, is given by 
 

( ) ( ) ( )γγγ ,,, rcrTrL = . (3.15) 
 
c [m/s] = Solitary wave celerity from Eq. (3.3) 
L [m] = Wave length (Figure 3-5) 
r [m] = Radial distance from the impact location in the wave 
  basin (Figure 3-3b) 
T [s] = Wave period from Eq. (3.14) (Figure 3-5) 
γ  [°] = Wave propagation angle (Figure 3-3b) 

 

3.3 Wave run-up and dam overtopping 

3.3.1 Introduction 

In contrast to wave generation, the equations for wave run-up and dam overtopping are 
based only on 2D investigations. 3D effects such as curvature of the dam or asymmetri-
cal wave impact angles cannot be taken into account generally. They must be estimated 
in the 2nd step in Section 4.2, using the generally applicable equations, after the initial 
calculation has been completed. In this regard, for the 2D run-up formula, it is irrelevant 
whether the wave parameters have been determined using the equations given in Sub-
sections 3.2.3.2 or 3.2.3.3. 

3.3.2 Governing parameters 

Figure 3-5 shows a sketch defining the effects of impulse waves on dams, together with 
the relevant parameters. The following parameters have an influence in this procedure 
on the run-up height R, the overtopping volume V per unit length dam crest or the force 
effects: 
 

• Wave height H (2D) 
• Wave amplitude a (2D) 
• Wave length L (2D) 
• Wave period T (2D) 
• Still water depth h (2D) 
• Run-up angle equal to dam face slope β (2D) 
• Freeboard f (2D) 
• Crest width bK (2D) 
 

The first four parameters H, a, L and T characterise the approaching impulse wave. 
They refer to the cross-section in front of the dam, where they are still not influenced by 
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the dam (Figure 3-5). These values are determined in Subsection 3.2.3. The still water 
depth h should be taken as that immediately upstream of the dam. The run-up angle β is 
measured from the horizontal (Figure 3-5). For the overtopping volume V per unit 
length dam crest, as shown in Figure 3-5, the freeboard f and the crest width bK are of 
relevance. These parameters are discussed in more detail in Appendix B, together with 
the rationale for neglecting the roughness of the dam slope. 
 

 
Figure 3-5 Sketch defining the parameters for the wave run-up and dam overtopping. 

 

3.3.3 Wave run-up and overtopping 

The following equations are taken from Müller (1995) (Figure 3-1). The run-up height R 
can be determined, according to Appendix B.3.2, by 
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h [m]  = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
L [m] = Wave length (in front of the dam) (Figure 3-5) 
R [m] = Run-up height (Figure 3-5) 
β  [°] = Run-up angle equal to dam face slope (Figure 3-5) 

 
Limitations on the use of Eq. (3.16), according to Appendix B.3.2, are shown in 
Table 3-3. 
 

Table 3-3 Limitations for the calculation of the wave run-up. 
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In order to determine the overtopping volume per unit length dam crest V an inter-
mediate step is required. Firstly, the overtopping volume V0 per unit length dam crest 
for f = 0 is calculated with 
 

V0
2

9/43/4

/
45.1 h

gh
T

h
H

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= κ . (3.17) 

 
f [m] = Freeboard (Figure 3-5) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
T [s] = Wave period (in front of the dam)  (Figure 3-5) 
V0 [m3/m] = Overtopping volume per unit length dam crest for f = 0 
κ [-] = Overfall coefficient for overtopping; κ = κ qκ bκ w

3/2 

κ b [-] = Overfall coefficient for the crest width 
κ q [-] = Overfall coefficient for the steady case 
κ w [-] = Overfall coefficient for the increased flow energy 
  compared with the steady case 

 
The overfall coefficient κ = κ qκ bκ w

3/2 in Eq. (3.17) was defined in a similar way as in 
the formula of Poleni (e.g. Hager 1995). In this, κ q is the overfall coefficient for the 
steady case, κ b takes account of the influence of the crest width of the dam and κ w takes 
account of the greater wave energy, compared with the steady case and hence the higher 
flow velocity over the dam. The three values are 
 

(a) κ q = 0.41 (β = 90°), κ q = 0.47 ( β = 45°) and κ q = 0.51 ( β = 18.4°), whereby in-
termediate values may be interpolated, 

 

(b) κ b is determined from Figure 3-6(a) as a function of the relative maximum over-
topping depth aMax,T /bK and 

 

(c) κ w = 1.3 for the whole range 18.4° ≤ β ≤ 90°. 
 
The maximum overtopping depth over the dam aMax,T is shown in Figure 3-6(b). This is 
somewhat greater than the wave amplitude a in front of the dam and was, therefore, 
taken by Müller (1995) to be approximately equal to the wave height H in front of the 
dam (Figure 3-5). 
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Figure 3-6 (a) Overfall coefficient κ b for the crest width bK as a function of the maximum overtopping 

depth over a dam aMax,T /bK (Müller 1995) and (b) corresponding definition sketch. 

 
In the prototype, the freeboard is normally f > 0, and the overtopping volume V0 per 

unit length dam crest for f = 0, when calculated from Eq. (3.17), will be correspondingly 
reduced. The equation to determine the overtopping volume per unit length dam crest is 
obtained for f > 0, according to Figure B-3(a) in Appendix B, as 
 

V
5/11

1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

R
f V0. (3.18) 

 
f [m] = Freeboard (Figure 3-5) 
R [m] = Run-up height (Figure 3-5) 
V [m3/m] = Overtopping volume per unit length dam crest (Figure 3-5) 
V0 [m3/m] = Overtopping volume per unit length dam crest for f = 0  

 
According to Appendix B.3.2, the limitations given in Table 3-4 apply to the use of 
Eqs. (3.17) and (3.18). 

 

Table 3-4 Limitations for the calculation of overtopping. 

 
 

In addition to V, the discharge per unit length dam crest is also important. According 
to Müller (1995) only the average discharge q0m per unit length dam crest for f = 0 may 
be estimated. For this, Müller (1995) determined that the duration of overtopping t0 for 
f = 0, as a function of the wave period with maximum variation of −12% (Figure B-4a 
in Appendix B) is calculated from 
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( ) 2/19/4

0 )/(/4 ghhgTt = . (3.19) 

 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2  
h [m] = Still water depth (in front of the dam) 
t0 [s] = Duration of overtopping for f = 0 
T [s] = Wave period (in front of the dam) (Figure 3-5) 

 
The average discharge q0m per unit length dam crest for f = 0 is determined from 
 

q0m = V0 /t0. (3.20) 
 

q0m [m2/s] = Average discharge per unit length dam crest for f = 0 
t0 [s] = Duration of overtopping for f = 0  
V0 [m3/m] = Overtopping volume per unit length dam crest for f = 0 

 
The maximum discharge q0M per unit length dam crest for f = 0 is q0M ≈ 2·q0m (Appen-
dix B.3.2; Figure B-4). The limitations for the calculation of the duration of overtopping 
for f = 0 are given in Table 3-5. 
 

Table 3-5 Limitations for the calculation of the duration of overtopping t0. 

 
 

No empirical equation is available on the discharge for f > 0. As V < V0, the values 
of q0m and q0M are higher for f = 0 and constitute upper limiting values for the unknown 
values with f > 0. To determine the freeboard f for which the impulse wave no longer 
overtops, an iterative procedure is required, as described for example 1 in Section 5.1. 
 

3.4 Wave force on dams 

3.4.1 Introduction 

This section covers the impulse wave force acting on dams. The prediction of such force 
is limited by great uncertainty; even when the forces of identical waves are measured in 
model tests, there can be considerable scatter of the results. Walkden (1999) generated 
330 identical waves but found that their maximum force on bank protection varied by 
up to +100% and −50% from the mean value. The variation may be smaller for forces 
acting on a flat surface, e.g. the face of a dam. The calculations which follow are based 
on an estimation of the run-up height R and therefore the calculation of R with 
Eq. (3.16) is not necessary. However, they do require the wave height H, the wave 
amplitude a and the wave length L given in Subsection 3.2.3. 
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Subsection 3.4.2 considers the effects resulting from the still water pressure. Im-
pulse waves can have different profiles and hence properties (Appendix A.3.2.1). In 
order to make a reliable estimate of the force acting on a dam, it is necessary to consider 
different wave types. To this end, a rough differentiation will be made between two 
basically different types of wave, namely: (i) The effects of Stokes-like waves, which 
behave as deep to intermediate-water waves, with principally oscillatory character, are 
calculated in Subsection 3.4.3; (ii) The effects of the remaining wave types, which 
behave as intermediate to shallow-water waves, with mainly translatory character, are 
determined using the method given in Subsection 3.4.4. When considering the force on 
dams, it must be borne in mind that this is the maximum wave force which often acts in 
the prototype for only a few seconds (Figure B-8b in Appendix B). 
 

3.4.2 Hydrostatic pressure 

Figure 3-7(a) shows a reservoir with a still water depth h impounded by a vertical grav-
ity dam. The resulting hydrostatic pressure distribution is shown in Figure 3-7(b). The 
maximum water pressure ρwgh acts on the foundation and the horizontal force compo-
nent KRW,h acts h/3 above the foundation level (e.g. Schröder and Saenger 2002). 

The horizontal force component KRW,h per unit length dam crest resulting only from 
the hydrostatic pressure, can be calculated as 
 

2/, 2ghK whRW ρ= . (3.21) 
 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
KRW,h [N/m] = Horizontal force component per unit length dam crest 
  resulting only from hydrostatic pressure 
ρw [kg/m3] = Water density 

 
The horizontal force component in Eq. (3.21) has to be added to the wave force deter-
mined by the following method for Stokes-like waves (Subsection 3.4.3). On the other 
hand, the still water pressure is already taken into account for the method of the remain-
ing wave types (Subsection 3.4.4). 
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Figure 3-7  Effect of impounded volume on a vertical dam: (a) still water surface for still water depth h 

and (b) hydrostatic pressure distribution with horizontal force component KRW,h per unit 
length dam crest and elevation h/3 of the resultant of KRW,h. 

 

 
Figure 3-8  Pressure distribution for a still water depth h impounded by the inclined dam face: on the 

left the horizontal force component, in the centre the vertical force component and on the 
right the total force (after Schröder and Saenger 2002). 

 
If the dam face is inclined at angle β, the water load results in a vertical force com-

ponent, in addition to the horizontal force component (Figure 3-8). This vertical force 
component is of importance e.g. for the determination of the safety of a gravity dam 
against sliding. The horizontal still water pressure is not affected by the dam face slope 
β and can be calculated for β < 90° using Eq. (3.21). The vertical force component 
KRW,v per unit length dam crest is given, according to Figure 3-8, by 
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ββρ tan/,)tan2/(, 2
hRWwvRW KghK == . (3.22) 

 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
KRW,h [N/m] = Horizontal force component per unit length dam crest 
  resulting only from hydrostatic pressure 
KRW,v [N/m] = Vertical force component per unit length dam crest  
  resulting only from hydrostatic pressure 
β  [°] = Dam face slope (Figure 3-5) 
ρw [kg/m3] = Water density 

 

3.4.3 Stokes-like waves 

Stokes-like waves from the wave channel of Heller (2007a) are shown in Figure 3-9. 
They are created when a relatively small slide mass impacts relatively slowly into a 
relatively large body of water. Several relatively small waves of similar size are formed. 
This is the case most often to be expected in the reservoirs of the Alpine regions. The 
wave type can be determined with the wave type product S1/3Mcos[(6/7)α]. Specifically, 
Stokes-like waves occur if, according to Heller (2007a) or Heller and Hager (2009b) 
and as shown in Figure A-8 in Appendix A, the following criterion is satisfied 
 

( )[ ] ( ) 5/73/1 5/47/6cos −< FαMS . (3.23) 
 
b [m] = Slide width (Figure 3-3b) 
F [-] = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/( ρw bh2) 
s [m] = Slide thickness (Figure 3-3a) 
S [-] = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity (Figure 3-3a) 
Vs [m3] = Bulk slide volume (Figure 3-3a) 
α  [°] = Slide impact angle (Figure 3-3a) 
ρs [kg/m3] = Slide density (Figure 3-3a) 
ρw [kg/m3] = Water density 

 
The force effect of Stokes-like waves may be calculated using Sainflou’s (1928) 

standing wave theory. Due to the total reflection at a vertical dam face, the approaching 
and reflected waves are practically identical and form a standing wave, on which the 
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wave nodes always remain in the same position whilst the area between the nodes 
moves up and down. This leads to run-up movement at the dam. 

 

 
Figure 3-9  Stokes-like waves in a 2D wave channel with (--) initial still water level (Heller 2007a). 

 

 
Figure 3-10  Run-up of a standing wave on a vertical dam: (a) definition sketch and (b) corresponding 

pressure distribution as per Eqs. (3.24) to (3.26) (after Minikin 1950). 

 
Figure 3-10(a) shows the definition sketch of the run-up of a standing wave. The 

most important assumptions of the theory of Sainflou (1928) are: 
 

• The mean water level of a standing wave, when running-up, is at a height Δh 
above the still water level, which can be calculated from Eq. (3.25). 

 

• At a height of H + Δh above the still water level, where H is the wave height, 
the water pressure is zero. 

 

• The maximum pressure p2 due solely to wave action, occurs at the still water 
level (Figure 3-10b). 
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Figure 3-10(b) shows the pressure distribution in a standing wave running-up the 
vertical dam face. That part of the distribution resulting solely from the wave is shown 
by the area “abcd”, and the total pressure distribution, with still water pressure from 
Figure 3-10, is determined from the triangle “agd”. Calculation of the effect resulting 
only from the wave run-up is done in several stages. 
 

a) Calculation of the additional pressure p1 on the dam foundation 
 

)/π2cosh(1 Lh
gH

p wρ
= . (3.24) 

 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
L [m] = Wave length (in front of the dam) (Figure 3-5) 
p1 [N/m2] = Pressure on dam foundation (Figure 3-10b) 
π [-] = Circular constant; π = 3.14 
ρw [kg/m3] = Water density 

 
b) Calculation of the average water level rise Δh 
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h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
L [m] = Wave length (in front of the dam) (Figure 3-5) 
Δh [m] = Average water level rise (Figure 3-10) 
π [-] = Circular constant; π = 3.14 

 
c) Calculation of the pressure p2  at the still water level 

 

hhH
Hhpgh

p w

+Δ+
+Δ+
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))(( 1

2
ρ

. (3.26) 

 

g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
p1 [N/m2] = Pressure on dam foundation (Eq. 3.24; Figure 3-10b) 
p2 [N/m2] = Pressure at still water level (Figure 3-10b) 
Δh [m] = Average water level rise (Figure 3-10) 
ρw [kg/m3] = Water density 
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d) Calculation of the additional horizontal force component ΔKh per unit length 
dam crest resulting from impulse wave 

 

2
)(

2
)( 212 hppHhpKh

+
+

+Δ
=Δ . (3.27) 

 
h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
p1 [N/m2] = Pressure on dam foundation (Eq. 3.24; Figure 3-10b) 
p2 [N/m2] = Pressure at still water level (Eq. 3.26; Figure 3-10b) 
Δh [m] = Average water level rise (Figure 3-10) 
ΔKh [N/m] = Additional horizontal force component per unit length dam 
  crest resulting from impulse wave 

 
The hyperbolic cosine function cosh(y) = (e 

y + e−y)/2 and the hyperbolic cotangent 
function coth(y) = (e 

y + e−y)/(e 
y − e−y

 ) are applied, taking y as any rational number. The 
graphical solution of cosh(2π h/L) is shown in Figure 3-11(a) and that of coth(2π h/L) in 
Figure 3-11(b). Both functions tend asymptotically to unity. 

The elevation zΔK,h of the resultant of ΔKh is shown in Figure 3-10(b) and is equal to 
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h [m] = Still water depth (in front of the dam) 
H [m] = Wave height (in front of the dam) (Figure 3-5) 
p1 [N/m2] = Pressure on dam foundation (Eq. 3.24; Figure 3-10b) 
p2 [N/m2] = Pressure at still water level (Eq. 3.26; Figure 3-10b) 
zΔK,h [m] = Elevation of the resultant of ΔKh 
Δh [m] = Average water level rise (Figure 3-10) 
ΔKh [N/m] = Additional horizontal force component per unit length dam 
  crest resulting from impulse wave 

 
In addition to the horizontal force component ∆Kh from Eq. (3.27), the hydrostatic still 
water pressure has to be taken into account from Eq. (3.21). 

If Stokes-like waves overtop a dam, their full force is not imposed on the structure. 
However, as the probability of overtopping by such waves is only slight, and the force 
reduction would be relatively limited compared with the total loading, a corresponding 
force reduction procedure has been dispensed with. 
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Figure 3-11 Representation of the (a) hyperbolic cosine and (b) hyperbolic cotangent functions; both 

functions tend to unity for decreasing ordinate values. 

 
The static horizontal force component remains unaffected by the dam face slope β. 

However, an additional vertical force component exists if the dam face is inclined 
(β < 90°), as shown in Figure 3-8. This is equal to the force calculated in Eq. (3.27), 
divided by tanβ (Subsection 3.4.2). To simplify, the total force effect is thereby consid-
ered to approximate static conditions (Appendix B.5). 
 

3.4.4 Remaining wave types 

Waves larger and stronger than Stokes-like waves are formed when the slide mass and 
the slide volume meet the criteria given in Eq. (3.29). Solitary or cnoidal-like waves 
then formed are as shown in Figure 3-12. As distinct from Stokes-like waves, these 
consist of an initial dominant wave, sometimes followed by smaller waves. In Hel-
ler (2007a) the first wave of the remaining wave types was always the biggest and thus 
the relevant wave. The profile of the solitary wave is just a wave peak with no trough. 
The solitary-like wave in Figure 3-12(b) has a profile which is very close to this ideal. 
Also for the cnoidal-like wave in Figure 3-12(a) the depth of the trough is only 
about 25% of the crest height. Heller (2007a) generally found that the criterion 
H = (5/4)a from Eq. (3.4) applies for landslide generated impulse waves, hence the 
depth of the wave trough represents on average 25% of the wave amplitude. The effects 
of cnoidal-like waves on dams will therefore be considered in the following sections 
using the method of Ramsden (1996), which is intended for solitary waves. 

The wave type product S1/3Mcos[(6/7)α] serves to determine the wave type (Appen-
dix A.3.2.1). The corresponding criterion which rules out Stokes-like waves, whilst 
defining the remaining wave types, is given as 
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( )[ ] ( ) 5/73/1 5/47/6cos −≥ FαMS . (3.29) 
 

b [m] = Slide width (Figure 3-3b) 
F [-] = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
M [-] = Relative slide mass; M = ρsVs/( ρw bh2) 
s [m] = Slide thickness (Figure 3-3a) 
S [-] = Relative slide thickness; S = s/h 
Vs [m/s] = Slide impact velocity (Figure 3-3a) 
Vs [m3] = Bulk slide volume (Figure 3-3a) 
α  [°] = Slide impact angle (Figure 3-3a) 
ρs [kg/m3] = Slide density (Figure 3-3a) 
ρw [kg/m3] = Water density 

 

 
Figure 3-12 Wave types in a 2D wave channel showing (--) the original still water level: (a) cnoidal-like 

wave and (b) solitary-like wave (Heller 2007a). 

 
In extreme cases, bore-like waves can also develop (Figure A-15 in Appendix A). If 

they are created in the slide impact zone, they transform over a short distance into cnoi-
dal or solitary-like waves. They are therefore also analysed by the following method. 

As shown in Figure 3-13(a), the pressure distribution of a solitary-like wave is ap-
proximated to a triangular form (Appendix B.4.2). For the assessment of the force ef-
fect, the run-up height R is considered to be independent from the values calculated in 
Eq. (3.16), and is assumed to be equal to 2a. Equation (3.30) for the determination of 
the total horizontal force component Ktot,h per unit length dam crest resulting from an 
impulse wave and hydrostatic pressure is based on the measured values of Rams-
den (1996), as shown in Figure B-7 in Appendix B.4.2. The component Ktot,h is indi-
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cated as a function of the relative wave amplitude a/h. The measured points in        
Figure B-7(a) may be approximated by 

 

[ ] hhshtot KhaK ,)/(5.11, 6/1−=                              for 0 ≤ a/h ≤ 0.6. (3.30) 
 
a [m] = Wave amplitude (in front of the dam) (Figure 3-5) 
h [m] = Still water depth (in front of the dam)  
Khs,h [N/m] = Horizontal component of hydrostatic force per unit length 
  dam crest resulting from a still water level displaced 
  upwards by 2a, according to Ramsden (1996) 
Ktot,h [N/m] = Total horizontal force component per unit length dam 
  crest resulting from an impulse wave and hydrostatic 
  pressure 

 

 
Figure 3-13 Pressure distribution on the vertical dam face as a result of a solitary-like wave with a 

maximum value of 2Ktot,h /(2a + h) for the cases of (a) f ≥ 2a and (b) reduced pressure effects 
if f < 2a. 

 
The wave amplitude a can be determined from the wave height H as a = (4/5)H 
(Eq. 3.4). In Figure B-7(a) of Appendix B, and in Eq. (3.30), the horizontal component 
of hydrostatic force Khs,h resulting from a still water level displaced upwards by 2a, is 
applied. Ramsden (1996) made use of this parameter Khs,h for the calibration of his 
measurement points, and this is given by 
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2)2()2/1(, hagK whhs += ρ . (3.31) 
 

a [m] = Wave amplitude (in front of the dam) (Figure 3-5) 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] =  Still water depth (in front of the dam) 
Khs,h [N/m] = Horizontal component of hydrostatic force per unit length 
  dam crest resulting from a still water level displaced upwards 
  by 2a, according to Ramsden (1996) 
ρw [kg/m3] = Water density 

 
The elevation zK,tot,h of the resultant of Ktot,h is located (2a + h)/3 above the dam founda-
tion (Figure 3-13a). 

Should the wave overtop the dam crest, i.e. if the freeboard is less than twice the 
wave amplitude f < 2a, the force effect is reduced as shown in Figure 3-13(b). The 
pressure at dam crest pK is determined in proportion 
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a [m] = Wave amplitude (in front of the dam) (Figure 3-5) 
f [m] = Freeboard (Figure 3-5) 
h [m] = Still water depth (in front of the dam) 
Ktot,h [N/m] = Total horizontal force component per unit length dam crest 
  resulting from an impulse wave and hydrostatic pressure 
  (Eq. 3.30) 
pK [N/m2] = Pressure at dam crest (Figure 3-13b) 

 
With the help of Eq. (3.32) the reduced total horizontal force component per unit length 
dam crest Ktot,h,abg resulting from an impulse wave and hydrostatic pressure for f < 2a 
may be generally formulated as 
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a [m] = Wave amplitude (in front of the dam) (Figure 3-5) 
f [m] = Freeboard (Figure 3-5) 
h [m] = Still water depth (in front of the dam) 
Ktot,h  [N/m] = Total horizontal force component per unit length dam crest 
  resulting from an impulse wave and hydrostatic pressure 
  (Eq. 3.30) 
Ktot,h,abg [N/m] = Reduced total horizontal force component per unit length 
  dam crest resulting from an impulse wave and hydrostatic 
  pressure (Eq. 3.30) 
pK [N/m2] = Pressure at dam crest (Figure 3-13b) 
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The elevation zK,tot,h, abg of the resultant of the reduced total horizontal force component 
Ktot,h,abg is shown in Figure 3-13(b) and may be expressed as 
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a [m] = Wave amplitude (in front of the dam) (Figure 3-5) 
f [m] = Freeboard (Figure 3-5) 
h [m] = Still water depth (in front of the dam) 
Ktot,h [N/m] = Total horizontal force component per unit length dam 
  crest resulting from an impulse wave and hydrostatic 
  pressure (Eq. 3.30) 
K tot,h,agb [N/m] = Reduced total horizontal force component per unit length 
  dam crest resulting from an impulse wave and hydro- 
  static pressure (Eq. 3.30) 
pK [N/m2] = Pressure at dam crest (Figure 3-13b) 
zK ,tot,h,abg [m] = Elevation of the resultant of Ktot,h,abg 

 
The effect of the hydrostatic pressure in accordance with Eq. (3.21) is already taken 

into account in the computation procedure in Subsection 3.4.4. The horizontal force 
effect remains independent of the dam face slope β. On the other hand, for β < 90° an 
additional vertical force component exists (Figure 3-8). This is equal to the force deter-
mined in Eq. (3.30) or Eq. (3.33) respectively, divided by tanβ (Subsection 3.4.2). To 
simplify, the total force effect is thereby considered to approximate to static conditions 
(Appendix B.5). 

 

3.5 Final comments 

The computation procedure presented in accordance with Figure 3-1 are based on gen-
erally applicable equations which were established from model tests in a prismatic wave 
channel or in a rectangular wave basin. Deviations from these ideal forms may lead to 
model laboratory effects (Subsection 3.2.1). It is absolutely essential to estimate the 
effects which are neglected in the generally applicable equations, such as reservoir 
geometry and the mass movement type. In the computation procedure shown in     
Figure 3-1, this is explained in the 2nd step. These effects are described in Chapter 4. 
They also have to be considered when the spread sheets are applied (Section 5.3). 
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4 2nd step, sensitivity analysis and safety allowance 

4.1 Introduction 

Sections 4.2 and 4.3 cover the 2nd step of the computation procedure shown in      
Figure 3-1 for the analysis of landslide generated impulse waves. The influences ex-
plained here may lead to significant changes in the wave parameters and thus the run-up 
heights, as compared with these determined in the 1st step. This 2nd step also has to 
include the effects of exceeding the limitations for the calculation of impulse waves, in 
accordance with Tables 3-2, 3-3, 3-4 and 3-5. Large deviations from the values calcu-
lated in the 1st step, as a result of breaching the limitations in question, are generally not 
to be expected, but they do increase their level of uncertainty. 

In addition to the impulse transmission there will be a displacement mechanism if 
the slide volume is large in relation to the reservoir capacity. The resulting increase of 
the reservoir level is not allowed for in the procedure shown in Figure 3-1, but an ap-
proximation of it can be made by dividing the slide volume by the surface area of the 
reservoir (Subsections 5.1.3 and 5.2.3). 

The equations in Chapter 3 are based on a 2D prismatic channel, or a rectangular, 
3D wave basin, in each case with a horizontal bed. The influence which a reservoir 
shape varying from one or the other of these ideal forms has on the wave parameters is 
discussed in Section 4.2. The equations in Chapter 3 are based on movement of a granu-
lar slide, but mass movement can also comprise of a solid body. The various mass 
movement types are discussed in Section 4.3. Then the difference between the maximum 
wave amplitude generated by a solid body, compared with that created by granular 
slide, is addressed. In Section 4.4, a sensitivity analysis of the run-up height R, as a 
function of the governing parameters, is described. Finally, some comments are made 
on the accuracy of the results and on safety allowances. 
 

4.2 Effects of the reservoir shape 

This Section considers these effects of reservoir geometry that deviate from the two 
extreme cases of (a) confined transversal and (b) completely free, radial propagation of 
the generated waves, according to Figure 3-2. They are presented here in order that their 
influence on wave height, and thus on the run-up height, can be qualitatively assessed in 
the 2nd step, in accordance with Figure 3-1. The shape of the reservoir has a significant 
effect on the propagation of impulse waves (Camfield 1980). As the still water depth h 
decreases, a deep-water wave (L/h < 2) at first changes to an intermediate-water wave 
(2 < L/h < 20) before becoming a shallow-water wave (L/h > 20), i.e. then influenced by 
the bed. The contact with the bed results normally in an increase of the wave height, as 
the friction losses of the bed may be neglected when compared with shoaling. A shal-
low-water wave will be influenced not only by shoaling but also by refraction. Irrespec-
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tive of whether it is classed as a shallow, intermediate or deep-water wave, any wave 
will be subject to diffraction, constriction and reflection (Coastal Engineering Manual 
USCE 2006). These effects may be described as follows: 
 

a) Refraction (Figure 4-1a): a shallow-water wave changes direction such that it 
moves mostly frontally onto the shore. 

 

 
Figure 4-1 (a) Principles of refraction near a shore and diffraction around a peninsula and (b) wave 

height increase resulting from constrictions near the flanks of an arch dam. 

 
b) Shoaling (Figure 4-2b): the height of a shallow-water wave increases whilst, at 

the same time, the wave length decreases. The increase in wave height due to 
shoaling may be determined according to Dean and Dalrymple (1991) as 
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b1 [m] = Reservoir width at cross-section 1 of Figure 4-2(b) 
b2 [m] = Reservoir width at cross-section 2 of Figure 4-2(b) 
h1 [m] = Still water depth at cross-section 1 of Figure 4-2(b) 
h2 [m] = Still water depth at cross-section 2 of Figure 4-2(b) 
H1 [m] = Wave height at cross-section 1 of Figure 4-2(b) 
H2 [m] = Wave height at cross-section 2 of Figure 4-2(b) 

 
Equation (4.1) is based on the assumption of a constant energy flux between 
cross-sections 1 and 2, as shown in Figure 4-2(b). If the widths between cross-
sections 1 and 2 are constant, b1 = b2, then Eq. (4.1) can be reduced to 
H2/H1 = (h1/h2)1/4, known as Green’s law. 



4 2nd step, sensitivity analysis and safety allowance  

47 

c) Diffraction (Figure 4-1a): a wave passes around an obstacle and gives up some 
of its energy laterally into the area of the wave shadow. 
 

d) Constriction (Figure 4-1b): a wave in a constricted area of a reservoir will in-
crease in height, due to the concentration of wave energy. This can occur, for in-
stance, against the flank of a dam. For shallow-water waves, the estimation is 
again possible using Eq. (4.1) and for deep-water waves Eq. (4.1) can be simpli-
fied to H2/H1 = (b1/b2)1/2 because h2 ≈ h1. The effects of constrictions at dam 
flanks will be quantified below in Section 4.2. 

 
e) Reflection (Figure 4-2a): on reaching the shore, a wave is reflected and moves 

with reduced height back. The height of the reflected wave depends on how 
much of the wave energy is dissipated during run-up. The energy dissipation 
during run-up against dams with vertical faces, where wave overtopping cannot 
take place, is almost nothing resulting in total reflection. The height and ampli-
tude of the reflected wave are practically the same as for the arriving wave 
a ≈ aR (Figure 4-2a). When a reflected wave meets an approaching wave, non-
linear superposition occurs at the meeting point, providing neither of the waves 
has broken. The individual waves move amongst each other and their profiles, 
after the waves have crossed, are practically uninfluenced by their encounter 
(Figure 4-3). 

 

 
Figure 4-2  Principle sketches from (a) reflection of a solitary wave by the face of a dam with a > aR and 

(b) shoaling of a solitary wave close to the shore with a1 < a2 and L1 > L2. 

 
Müller (1995) measured the run-up height on dam faces taking account of a lateral 

reservoir flank. The angle between the dam and the valley slope acts as a constriction 
(Figure 4-4a). Even if a deep-water wave approaches the shore it will, as the still water 
depth decreases, transform into a shallow-water wave and be influenced by the bed due 
to shoaling. Figure 4-4(b) shows, for a lateral shore inclination of 3:4, the relation of the 
run-up height to the run-up height at the dam centre R/Rm, as a function of the relative 
width of reservoir flank l/lF. The wave run-up heights in the vicinity of the inclined 
shore are about 20-30% greater than at the centre of the dam. For purposes of compari-
son, the run-up height according to Green’s law according to Eq. (4.1) is also shown; 
however, the height at the dam flank is too large. Müller (1995) gives two possible 
explanations: (i) the wave in the model does not approach the lateral reservoir flank 
directly, and (ii) the friction losses at the bed reduce the run-up height in the model 
compared with its theoretical value as deduced from Green’s law. 
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Figure 4-3  Collision of two waves in the VAW channel: (a) two similar solitary waves approach each 

other, (b) they meet and form a non-linear water oscillation and (c) after they have crossed 
their profiles have changed only insignificantly as a result of the collision (Heller 2007a). 

 

 
Figure 4-4  Run-up height as consequence of an inclined lateral reservoir flank and constriction:          

(a) definition sketch showing the lateral flank of the reservoir and (b) relationship of the 
run-up height to the run-up height at the dam centre R/Rm as a function of the relative width 
of the reservoir flank l/lF [%] as well as the values calculated from Green’s law (─) accord-
ing to Eq. (4.1) (after Müller 1995). 

 

The effects of ice cover on impulse waves were investigated by Müller (1995). Ice 
up to 0.5 m thick has only a negligible effect on wave attenuation, irrespective of 
whether the cover is broken or compact. A prerequisite for this is that the slide mass 
pierces and passes through the ice layer. If a snow avalanche does not succeed in pene-
trating the ice layer two dangers may nevertheless arise on the shore; the additional 
weight may cause the ice cover to tip into an inclined position and thus create a small 
impulse wave, or water which is displaced under the ice cover may, for instance, flow 
up from under the ice on the shore. 
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4.3 Mass movement types 

The equations in Chapter 3 assume the slide consists of granular material. In natural 
conditions, however, there exists a whole range of mass movement types. If the mass 
moves as a solid body, the wave height H, as compared with that for granular material, 
is about the same for high impact velocities, but considerably greater if the impact 
velocity is low. When a granular slide impacts at low velocity, water can enter the pore 
volume, whereas a solid body of porosity n ≈ 0 displaces all the water. Furthermore, the 
shape of a granular slide may change during impact (Zweifel 2004). 

Classification helps to judge whether a mass moves as a granular slide rather than as 
a solid body. The following Section discusses the mass movement types and their proc-
esses, as described by Cruden and Varnes (1996), for rock, debris or earth. This infor-
mation also helps the understanding of the processes for snow and ice avalanches as 
well as for glacier calving. An alternative classification was, for example, developed by 
Nemcok et al. (1972). 

A mass movement may be roughly defined by two nouns; the material in question 
followed by the movement type, for example landslide or rockfall. Cruden and       
Varnes (1996) identified five mass movement types (Figure 4-5): 
 

• Sliding (Figure 4-5a): the slide mass can move rotating (Figure 4-5a) along a 
curved concave slide plane or by translation on a plane. Slides can move as 
solid body or granular; in the latter case the bulk slide volume Vs increases cor-
respondingly as far as the impact zone (Subsection 3.2.2). 

 

• Flowing (Figure 4-5b): the mass behaves as a viscous liquid. 
 

• Falling (Figure 4-5c): a fall may be considered to be mostly free-fall, if the hill 
slope angle α > 76°; if this angle is smaller the mass falls onto the slope where 
it may break. 

 

• Toppling (Figure 4-5d): the mass moves around a rotation point or axis located 
below its centre of gravity. 

 

• Spreading (Figure 4-5e): the mass volume spreads and breaks into finer mate-
rial. This movement type occurs when the slope angle is small 0.3° ≤ α ≤ 5° and 
is most often triggered by an earthquake. This form of movement is rarely sig-
nificant, in particular in Alpine regions, for the generation of impulse waves. 
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Figure 4-5 Mass movement types: (a) sliding (b) flowing (c) falling (d) toppling and (e) spreading 

(Cruden and Varnes 1996). 

 
Zweifel (2004) studied the difference between impulse waves resulting from granu-

lar slides and from solid bodies. He carried out 11 tests with a solid body of constant 
density ρs = 1,340 kg/m3 for a range of still water depths 0.150 m ≤ h ≤ 0.600 m. Most 
of the equations in Subsection 3.2.3 are based on tests conducted in the same hydraulic 
model, but with granular slides, as distinct from the 11 tests of Zweifel (2004). His 
dimensionless parameters are 0.5 ≤ F ≤ 2.8, 0.3 ≤ S ≤ 1.4, 0.3 ≤ M ≤ 4.1 and α = 45°. 
The maximum wave amplitudes aMb as result of solid bodies were compared by   
Zweifel (2004) with corresponding values from empirical equations for the maximum 
wave amplitudes aM (Figure 3-3) resulting from a granular slide. This comparison is 
shown in Figure 4-6. The relative percentage difference of the maximum wave ampli-
tude (aMb /h − aM /h)/(aMb /h) is plotted on the ordinate against the slide Froude number F 
on the abscissa. To determine aM, the maximum wave height HM from Eq. (3.6) can be 
multiplied by the factor (4/5) (Subsection 3.2.3.1). The differences between the maxi-
mum wave amplitudes generated by a solid body and granular slide were described with 
a coefficient of determination R2 = 0.97 and a deviation of less than ±10% in Figure 4-6 
as 
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aM [m] = Maximum wave amplitude (due to granular slide) 
aMb [m] = Maximum wave amplitude as result of a solid body 
F [-] = Slide Froude number; F = Vs /(gh)1/2 
g [m/s2] = Gravitational acceleration; g = 9.81 m/s2 
h [m] = Still water depth (in the slide impact zone) 
Vs [m/s] = Slide impact velocity  
 

 
Figure 4-6 Comparison between the maximum wave amplitude generated by a solid body and a granu-

lar slide (after Zweifel 2004). 

 
Whereas Zweifel (2004) determined that, for small Froude numbers, the maximum 
wave amplitude aMb is up to seven times greater for solid bodies than for granular slides, 
the difference for F > 3.0 is small. This is because, for high Froude numbers and slide 
impact velocities Vs, the water is not able to enter the pore volume of the slide. 
Zweifel’s (2004) comparison refers only to the maximum wave amplitude aM in a very 
limited range. More comprehensive experiments on this effect have not been conducted. 
 



4 2nd step, sensitivity analysis and safety allowance 

52 

4.4 Sensitivity analysis and safety allowance 

This Section discusses the sensitivity of the run-up height R to variations of the govern-
ing parameters and defines those parameters to which R reacts particularly sensitively. 
As comprehensive calculation equations are available only for the 1st step, the sensitiv-
ity analysis relates only to them (Figure 3-1). 
 

 
Figure 4-7 Calculation sequence to determine the effect on the run-up height R of a change of the slide 

impact velocity Vs by +20%. 

 
Figure 4-7 shows the calculation sequence to determine the effect on the run-up 

height R of a change of the slide impact velocity Vs by +20%. In this procedure, Vs was 
each time made equal to 1.2 rather than 1.0, in order to determine the relative change. 
The value Vs occurs linearly in F and P. Equation (3.13) shows that the wave height H 
is proportional to P4/5, and the relative change decreases to (1.2/1.0)4/5 = 1.157 or 
+15.7%. The percentage change may be determined in steps for all those variables 
which are influenced directly or indirectly by Vs. Finally, the change of R may be de-
termined. An increase of Vs by +20% raises R by +18.7% (Figure 4-7). As the value of 
R is sensitive to Vs, the precise determination of the latter variable is important. 
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Analogous to Figure 4-7, the sensitivity of the run-up height R to a change by ±20% 
may be determined for each of the individual governing parameters. These are illus-
trated in Figure 4-8 for the 3D case (Eqs. 3.13, 3.14, 3.15 and 3.16). The individual 
parameters are presented in percentages as a bar chart, giving the variations and the 
extent of the effect on R. The following variables are included as governing parameters 
for wave generation and propagation: slide impact velocity Vs, still water depth h in the 
slide impact zone, slide thickness s, bulk slide volume Vs, bulk slide density ρs, slide 
width b, slide impact angle α and the wave propagation angle γ  (Subsection 3.2.2). The 
governing parameters considered for wave run-up and dam overtopping are the still 
water depth h in front of the dam and the run-up angle β (Subsection 3.3.2). The follow-
ing parameters were intentionally not considered as they may be determined precisely: 
distance x, radial distance r, freeboard f and the crest width bK of the dam. The bulk 
slide porosity n was neglected as it is only indirectly included in the equations through 
ρs. The basis α = γ = 45° was selected to determine the relative deviation of the angles. 
 

 
Figure 4-8 Sensitivity of the run-up height R according to Eq. (3.16) as a consequence of a variation of 

+20% (left) and −20% (right) of the governing parameters for the 3D case, with an increas-
ing effect in red and a decreasing effect in green on R; Abbreviations: i. = impact zone and 
d. = dam. 

 
The run-up height is particularly sensitive to the slide impact velocity Vs because 

any variation of Vs acts on R in a proportion of almost 1:1 (Figure 4-8). The wave 
propagation angle γ  is not known exactly if the slide slope is inclined laterally and the 
principal impulse direction of the slide cannot be given unequivocally. The value R also 
reacts sensitively to γ. Finally, a relatively precise determination of the still water depth 
h in the slide impact zone and of the slide thickness s are important. The effects on R of 
Vs, ρs, h (in front of the dam), β, b and α are of secondary importance. From Figure 4-8 
it can also be seen whether an increase or a decrease of a governing parameter acts 
negatively (red) or positively (green) on the value of R. To be on the safe side, the se-
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lected values of Vs and h in the slide impact zone, as well as of s, should be rather 
greater than estimated, and the corresponding value of γ  rather smaller. 

Figure 4-8 shows only the sensitivity of R to variations in each of the governing pa-
rameters by ±20%. Combinations of changes in the governing parameters were not 
considered, neither was the sensitivity of further variables such as the additional hori-
zontal force component ΔKh or the overtopping volume V per unit length dam crest. 
These more complex cases may be analysed with the spread sheets (Section 5.3). 
 

Basically, any dam overtopping by impulse waves should be prevented by precau-
tionary water level lowering of the reservoir. Some safety considerations are given in 
this section. Further points are possible, depending on the prototype, and must be con-
sidered from case to case. The following factors affect the selection of safety reserves, 
for instance with regard to the run-up height R: 
 

(i) Scatter of the measurement points in the empirical calculation equations 
(ii) Probability of occurrence of mass movement 
(iii) Extent of the deviations from the idealisation of the 1st step 
(iv) Dam type (concrete dam, embankment dam with or without protective face) 
(v) Damage potential in the valley downstream of the dam 

 
(i) Scatter of the measurement points in the empirical calculation equations 
 
The right-hand side of Eq. (3.16) for the determination of the run-up height R con-
sists of a product. Analogous to the error calculation (e.g. Demidovich and Maron 
1987) the maximum relative scatter for a product is equal at most to the sum of the 
individual values of the relative scatter of the parameters involved. Expressed 
mathematically, relevant for the product u = x’1·x’2·…·x’n is 
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Equation (3.16) for the determination of R can be converted, with the help of L = Tc 
(e.g. Eq. 3.15) to  
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The governing parameters h and β are not subjected to the scatter discussed here and 
were treated in Eq. (4.5) as constants. If Eq. (4.4) is divided by Eq. (4.5), the abso-
lute value is formed and the maximum calculated value is considered, it follows in 
analogy to Eq. (4.3) 
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Most data points for H lie between ±40% (Figure A-7 in Appendix A), those of T 
between ±100% (Figure A-17b in Appendix A) and those of the wave celerity c be-
tween ±10% (Heller 2007a). The Eq. (4.6) results in (11/10)·40% + (3/20)·100% + 
(3/20)·10% ≈ 60%, whereby it may be predicted that R has a maximum scatter of 
about ±60%. 

The maximum scatter for the calculation equations for other relevant values may 
be determined in a similar way to that used for R. For example, for the additional 
horizontal force component ΔKh per unit length dam crest resulting from impulse 
wave, as calculated by Ramsden (1996), the scatter is ±50% and for ΔKh, as calcu-
lated by Sainflou (1928), it is ±60%. 
 
(ii) Probability of occurrence of mass movement 
 
If a mass has started to creep, the risk of a slide occurring is greater than when only 
a potential slide mass exists. The higher the risk of occurrence of a slide, the more 
safety allowances are recommended. 
 
(iii) Extent of the deviations from the idealisation of the 1st step 
 
In the 1st step according to Figure 3-1 calculation equations are available. In the 2nd 
step, the effects of deviations from the idealisation in the 1st step can be determined 
only qualitatively or with estimation equations. The greater the deviation from the 
idealised concept (e.g. rectangular reservoir form, granular slide), the more safety 
allowances is needed. 
 
(iv) Dam type (concrete dam, embankment dam with or without protective face)  
 
Embankment dams with unprotected faces may be eroded by overtopping caused by 
impulse waves and, in the extreme case, this may lead to dam failure (Singh 1996). 
Gravity and arch dams are more resistant in this respect. The Vaiont arch dam with-
stood overtopping by an impulse wave and suffered no damage except at the left 
hand end of the dam crest (Schnitter 1964). 
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(v) Damage potential in the valley downstream of the dam 
 
The greater the population of the downstream valley that would be affected by the 
effects of overtopping caused by an impulse wave or the greater the importance of 
the infrastructure of the valley, the more the safety allowances that have to be de-
cided on. To determine the areas which would be affected, a numerical dam break 
calculation may be carried out. 

 
Points (ii) to (v) must be assessed case by case. Selection of the safety allowances de-
pends much on the characteristics of the prototype. A publication by the International 
Commission On Large Dams ICOLD (2002) addresses risk management with regard to 
potential slides into reservoirs. 
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5 Computational examples 

5.1 Example 1 

5.1.1 Problem description and governing parameters 

Figure 5-1 shows the reservoir geometry assumed for example 1. A rockfall at location 
A threatens to impact into a reservoir, which is covered by a 0.25 m thick layer of ice. 
The maximum run-up height at point B on the opposite shore has to be determined. In 
addition, it has to be estimated whether the arch dam will be overtopped by the impulse 
wave and if so by how much the reservoir would have to be drawn down in order to 
prevent this overtopping. The freeboard is f =7 m. The sections A-B and A-C, corre-
sponding to the broken lines in Figure 5-1, are shown in Figure 5-3. 
 

 
Figure 5-1 Reservoir geometry for example 1 with a rockfall impacting at point A; the reservoir is 

impounded by an arch dam. 

 
The slide impact velocity Vs can be calculated using the detail from Figure 5-3(a) as 

shown in Figure 5-2. The parameters required to do this are given in Table 5-1. As there 
is a slope change, it is necessary to use both Eq. (3.1) and Eq. (3.2) for the calculation of 
Vs. The slide velocity at the point of slope change VsNK is given by 
 

)cottan1(2 NNscNsNK zgV αδ−Δ=  after Eq. (3.1) 

=°°−⋅⋅= )70cot20tan1(4081.92sNKV 26.1 m/s. 

 
From this the slide impact velocity Vs can be calculated as 
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)cottan1(22 αδ−Δ+= scsNKs zgVV  Eq. (3.2) 

=°°−⋅⋅+= )40cot20tan1(6081.921.26 2
sV 36.7 m/s. 

 
The calculated value of Vs, the governing parameters for wave generation, and those for 
the determination of the effects on the arch dam and on the opposite shore of the reser-
voir, are summarised in Table 5-2. The value b denotes the mean slide width and s is the 
maximum slide thickness in the impact zone. The values of bulk slide density ρs and 
bulk slide volume Vs also refer to the impact zone. The slide axis (γ = 0°) is governing 
for the selection of the still water depth h (Figure 3-3b). 
 

 
Figure 5-2 Parameters for the calculation of the slide impact velocity Vs. 

 

Table 5-1 Governing parameters for the slide impact velocity Vs according to Figure 5-2. 
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Figure 5-3 Sections for example 1 after Figure 5-1: (a) section A-B with rockslide and still water depth 

h = 30 m on the slide axis, and (b) section A-C; the broken lines indicate the idealised ge-
ometry for the 1st step. 

 

Table 5-2 Governing parameters for impulse wave generation and the effects on the opposite shore, as 
well as on the arch dam. 

 
 

5.1.2 1st step  

In this section, the 1st step is carried out, in accordance with Figure 3-1. The impulse 
wave propagates radially and completely freely. Hence, the wave parameters can be 
calculated using the 3D equations for the reservoir of rectangular form (Subsec-
tion 3.2.1). The calculation proceeds in several partial steps: 
 

a) Dimensionless parameters and limitations control on the calculation of the wave 
generation and propagation 

For optimum prediction with this computation procedure the dimensionless parameters 
of the prototype must be within the range of limitations for use of the calculation equa-
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tions. The relevant dimensionless parameters and limitations (Subsection 3.2.3.1) are 
given in Table 5-3. 
 

Table 5-3 Dimensionless parameters and limitations control for the calculation of the wave generation 
and propagation. 

 
 

In the wave generation phase all limitations are satisfied. 
 

b) Calculation of wave generation and propagation 
Wave generation will be analysed using the 3D method, as described in Subsec-
tion 3.2.3.3, for which important variables are the wave height H, wave amplitude a, 
wave period T and the wave length L. The maximum wave parameter values in the slide 
impact zone are determined, independently of the 2D or 3D geometry, by applying 
Eqs. (3.6), (3.8) and (3.9). If, however, for the distance to the point for which the wave 
parameters are sought x > xM (2D) or r > xM (3D), the calculation equations differ for the 
2D and 3D cases (Subsections 3.2.3.2 and 3.2.3.3). The streamwise distance xM of the 
maximum wave height HM can be determined with Eq. (3.7) as 
 

( ) hxM
2/12/11 P=  Eq. (3.7) 

xM = (11/2)1.221/230 = 182.2 m.  
 
As the two radial distances r to the reservoir bed in front of point B and to point C on 
the dam exceed 182.2 m (Table 5-2), the wave parameters have to be determined using 
Eqs. (3.13), (3.14) and (3.15) and not Eqs. (3.6), (3.8) and (3.9). 
 

Section A-B 
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Ha )5/4(=  Eq. (3.4) 
a = (4/5)13.5 = 10.9 m 
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( ) ( ) ( )γγγ ,,, rcrTrL =  Eq. (3.15) 
L = 22.0[9.81(33 + 10.9)]1/2 = 457.0 m 

 

Section A-C 
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)59(2cos22.12/3 3/225/4 −⎟
⎠
⎞

⎜
⎝
⎛ °−=H  = 7.1 m 

Ha )5/4(=  Eq. (3.4) 
a = (4/5)7.1 = 5.7 m 

( ) ( ) 2/1
4/1

/15, gh
h
HrT ⎟
⎠
⎞

⎜
⎝
⎛=γ  Eq. (3.14) 

( ) 2/1
4/1

81.9/50
50

1.715 ⎟
⎠
⎞

⎜
⎝
⎛=T  = 20.8 s 

( ) ( ) ( )γγγ ,,, rcrTrL =  Eq. (3.15) 
L = 20.8[9.81(50 + 5.7)]1/2 = 486.2 m 

 

The greater wave height is to be expected on the opposite shore, on the slide axis γ = 0°. 
Laterally to the slide axis γ = 0°, the wave height decreases (Figure A-4 in Appendix A). 
At point B, the wave height is with H = 13.6 m noticeably greater than at point C, where 
H = 7.1 m, even though the radial distances r are not significantly different. 

To determine the wave celerity c between the points A and B and between A and C 
(Figure 5-1), the maximum wave amplitude aM in the impact zone has to be known. 
This can be determined from the maximum wave height HM using the relationship 
aM = (4/5)HM, and is thus 
 

hHa MM
5/4)9/5)(5/4()5/4( P==  Eqs. (3.6) and (3.4) 

aM = (4/5)(5/9)1.224/530 = 15.6 m. 
 

With a mean still water depth of (30 + 33)/2 = 31.5 m (Figure 5-3a) and a mean wave 
amplitude of (15.6 + 10.9)/2 = 13.3 m between point A and the base of the slope, in 
front of point B, it follows that 
 

( )[ ] 2/1ahgc +=  Eq. (3.3) 
c = [9.81(31.5 + 13.3)]1/2 = 21.0 m/s. 
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The impulse wave covers the distance r = 230 m in roughly r/c = 230/21.0 = 11 s. The 
remaining quarter of the total distance, i.e. from the base of the slope to point B, will be 
covered in (1/3)·11 ≈ 4 s. The total time for the wave to travel from A to B is, therefore, 
15 s. 

The wave celerity between A and C may be calculated in the same way. The mean 
still water depth is equal to (30 + 50)/2 = 40 m (Figure 5-3b) and the mean amplitude is 
(15.6 + 5.7)/2 = 10.7 m, therefore 
 

( )[ ] 2/1ahgc +=  Eq. (3.3) 
c = [9.81(40 + 10.7)]1/2 = 22.3 m/s. 

 
The impulse wave takes about r/c = 280/22.3 = 13 s to travel the 280 m from point A to 
the arch dam (point C).  
 
c) Wave run-up including limitations control 
With help of the wave parameters calculated in b), the dimensionless parameters for the 
arch dam as well as the run-up height R may be calculated. Equation (3.16) is valid only 
for the run-up calculation on dams. As on the opposite shore the run-up angle β = 27° 
satisfies the limitation 1.0 ≤ 90°/β ≤ 4.9 for Eq. (3.16), this equation may anyway be 
used to estimate the run-up height. As distinct from the case when waves run-up dams, 
the neglected governing parameters in Eq. (3.16), i.e. the permeability and roughness of 
the shore, are relevant, as they attenuate the run-up height R. The value obtained with 
Eq. (3.16) for point B thus tends to over-estimate the run-up height R. In Tables 5-4 and 
5-5 compliance with the limiting parameters is verified and then the run-up height R is 
computed.  
 

Section A-B 
 

Table 5-4 Dimensionless parameters and limitations control for the calculation of wave run-up at 
point B. 

 
 

h
L
H

h
HR

5/120/34/5 9025.1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ °
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

−

β
 Eq. (3.16) 

33
27
90

0.457
6.13

33
6.1325.1

5/120/34/5

⎟
⎠
⎞

⎜
⎝
⎛

°
°

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

−

R  = 29.4 m 

 



5 Computational examples 

63 

Section A-C 
 

Table 5-5 Dimensionless parameters and limitations control for the calculation of wave run-up at 
point C. 
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As only the wave steepness H/L breaches the limitations for sections A-B and A-C, this 
may have a small effect on the results. The impulse waves will, according to the preced-
ing calculations, overtop a dam with a freeboard of f = 7 m at point C, since R > f.  
 
d) Wave overtopping 
As the freeboard of f = 7 m is smaller than the run-up height of R = 10.3 m at point C, a 
part of the impulse wave will overtop the dam. New limitations govern the determina-
tion of the overtopping volume (Subsection 3.3.3): 
 

Point C 
 

Table 5-6 Dimensionless parameters and limitations control for the calculation of wave overtopping at 
point C. 

 
 

In order to determine the overtopping volumes V the corresponding volume V0 for f = 0 
has first to be calculated as 
 

V0 
2
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/
45.1 h

gh
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in which κ q = 0.41, as β = 90°, κ b = 0.88, from Figure 3-6(a) with aMax,T /bK = 7.1/5 = 
1.42 (aMax,T  ≈ H after Subsection 3.3.3) and κ w = 1.3. The overtopping volume V0 for 
f > 0 is thus equal to 
 

V
5/11

1 ⎟
⎠
⎞

⎜
⎝
⎛ −=

R
f V0 Eq. (3.18) 

V
5/11

3.10
71 ⎟

⎠
⎞

⎜
⎝
⎛ −= 385.3 = 31.5 m3/m. 

 
The duration of overtopping t0 for the overtopping volume V0 = 385.3 m3/m for f = 0 
can be determined as 
 

( ) 2/19/4

0 )/(/4 ghhgTt =  Eq. (3.19) 

( ) 2/19/4

0 )81.9/50(50/81.98.204=t  = 24.2 s. 
 
The average discharge per unit length dam crest for f = 0 is thus 
 

q0m = V0 /t0 Eq. (3.20) 
q0m = 385.3 /24.2 = 15.9 m2/s. 

 
The maximum discharge per unit length dam crest for f = 0 is according to Subsec-
tion 3.3.3 q0M ≈ 2·q0m = 2·15.9 = 31.8 m2/s, but this occurs for only a few seconds (Fig-
ure B-4b in Appendix B). From Table 3-5 it may be seen that the first limitation crite-
rion 14 < T(g/h)1/2 < 22 is not satisfied as 20.8(9.81/50)1/2 = 9. However, the second 
criterion 10.5 < t0(g/h)1/2 < 13.5 equal to 24.2(9.81/50)1/2 = 10.7 is satisfied. The fact 
that one of the criteria is not met reduces the dependability of the calculation. The val-
ues q0m = 15.9 m2/s and q0M = 31.8 m2/s are upper limits of the unknowns for f = 7.  
 
e) Force effect on the arch dam during overtopping 
Firstly, the wave type is determined with the wave type product S1/3Mcos[(6/7)α]: 
 

( )[ ] ( ) 5/73/1 5/47/6cos −≥ FαMS  Eq. (3.29) 
0.401/30.92·cos[(6/7)40°] = 0.56 
(4/5)2.16−7/5 = 0.27 
0.56 ≥ 0.27 

 
Hence, the force effect will be calculated using the method for the remaining wave 
types, as detailed in Subsection 3.4.4. The total horizontal force component at point C 
with a/h = 0.11 is 
 

[ ] hhshtot KhaK ,)/(5.11, 6/1−=    Eq. (3.30) 

Ktot,h = [1 − 1.5(5.7/50)]1/6(1/2)1,000·9.81(2·5.7 + 50)2 = 17.9·106 N/m. 
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As some of the impulse wave will overtop the arch dam, the structure does not receive 
the full horizontal force component, as shown in Figure 3-13(b). Firstly the pressure at 
dam crest pK is determined as 
 

)2(
)2(

,2
2 fa

ha
K

p htot
K −

+
=    Eq. (3.32) 

)77.52(
)507.52(

109.172
2

6

−⋅
+⋅
⋅⋅=Kp = 41,783 N/m2. 

 

The reduced total horizontal force component Ktot,h,abg per unit length dam crest result-
ing from an impulse wave and hydrostatic pressure is 
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abghtotK  = 17.8·106 N/m. 

 

The elevation zK,tot,h,abg of the resultant of Ktot,h,abg is 
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If Ktot,h,abg is reduced by the horizontal force component KRW,h resulting from hydro-
static pressure then the additional horizontal force component resulting only from the 
impulse wave is obtained as 
 

abghtothRWabghtoth KKKK ,,,,, =−=Δ  − 2/2ghwρ  Eq. (3.33) − Eq. (3.21) 

ΔKh = 17.8·106 − (1/2)1,000·9.81·502 = 5.5·106 N/m. 
 

The additional horizontal force component ΔKh resulting only from the impulse wave is 
relative to the hydrostatic effect 5.5·106/[(1/2)1,000·9.81·502] = 45%. This additional 
impulse wave force component acts on the arch dam for only a short time, typically for 
a few seconds (Figure B-8b in Appendix B). The total horizontal force component K tot,h 
is only marginally reduced by the overtopping depth over the dam crest, which is 2a – f 
= 4.4 m. Furthermore, no vertical force component is created as the upstream dam face 
is vertical (Subsection 3.4.2). 
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f) Required freeboard to prevent overtopping 
The required freeboard f sufficient to ensure that the arch dam is not overtopped by the 
impulse wave, can now be determined. The run-up height at point C is equal to R = 
10.3 m, whereas the freeboard is 7 m. Whether emergency drawdown of the reservoir 
by the difference R − f = 3.3 m will be adequate to prevent overtopping, is difficult to 
judge before a new calculation is made. This is because, when the reservoir level is 
lowered, certain governing parameters such as the slide impact velocity Vs may change 
in an unfavourable sense. In this example, lowering the reservoir level by 5 m is as-
sumed, giving a new freeboard of f = 12 m, and all calculations for section A-C have 
then to be repeated. 
 

 
Figure 5-4 Section A-C after 5 m emergency drawdown of the reservoir and still water depth h = 25 m 

on the slide axis; the broken line indicates the idealised geometry for the 1st step. 

 
The new slide impact velocity is 
 

)cottan1(22 αδ−Δ+= scsNKs zgVV  Eq. (3.2) 

=°°−⋅⋅+= )40cot20tan1(6581.921.26 2
sV 37.5 m/s. 

 
New dimensionless parameters (step a): 
F = 2.39, S = 0.48, D = 1.70, V = 0.78, M = 1.33, n = 35%, B = 1.50, α = 40°, P = 1.62, 
r/h = 11.2 and γ = −59°. The limitations of the parameters in the impact zone are there-
fore still satisfied. 
 
New wave parameters (step b): 

( ) ( ) hhrrH 3/225/4 )/(
3

2cos2/3, −⎟
⎠
⎞

⎜
⎝
⎛=
γγ P  Eq. (3.13) 
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⎜
⎝
⎛ °−

=H  = 6.6 m 

Ha )5/4(=  Eq. (3.4) 
a = (4/5)6.6 = 5.3 m 
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( ) ( ) ( )γγγ ,,, rcrTrL =  Eq. (3.15) 
L = 19.9[9.81(45 + 5.3)]1/2 = 442.1 m 

 
New wave run-up height (step c): 
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Table 5-7 Dimensionless parameters and limitations control for the calculation of wave run-up at point 
C, following drawdown by 5 m. 

 
 
Wave overtopping (step d): 
For R = 9.6 m < f = 12 m, overtopping by an impulse wave after the 1st step is improb-
able. The assessment of the 2nd step is given in Subsection 5.1.3. 
 
New force effect (step e): 
The wave type has not changed as 
 

( )[ ] ( ) 5/73/1 5/47/6cos −≥ FαMS  Eq. (3.29) 
0.481/31.33·cos[(6/7)40°] = 0.86 
(4/5)2.39−7/5 = 0.24 
0.86 ≥ 0.24 

 

The horizontal force components Ktot,h and ΔKh are 
 

[ ] hhshtot KhaK ,)/(5.11, 6/1−=    Eq. (3.30) 

Ktot,h = [1 − 1.5(5.3/45)]1/6(1/2)1,000·9.81(2·5.3 + 45)2 = 14.7·106 N/m, 
 

htothRWhtoth KKKK ,,, =−=Δ  − 2/2ghwρ   Eq. (3.30) – Eq. (3.21) 

ΔKh = 14.7·106 − (1/2)1,000·9.81·452 = 4.8·106 N/m. 
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The elevation zK,tot,h of the resultant of Ktot,h is located at (2a + h)/3 = (2·5.3 + 45)/3 = 
18.5 m (Subsection 3.4.4). The additional horizontal force component ΔKh resulting 
from impulse wave is 4.8·106/[(1/2)1,000·9.81·452] = 48% relative to the hydrostatic 
effect. 

The equations used in this section are based on laboratory test results some of which 
have a high degree of scatter (Section 4.4). When drawing down the reservoir, therefore, 
a safety allowance should be allowed for. Decisive is now the 2nd step, described in 
Subsection 5.1.3. 
 

5.1.3 2nd step 

Basically the characteristics of an impulse wave can be relatively well predicted from 
the reservoir geometry shown in Figure 5-1 with the help of generally applicable equa-
tions, as the reservoir geometry allows freely, radial wave propagation in 3D according 
to extreme case (b) (Subsection 3.2.1). 

In the following section, the parameters after reservoir drawdown are applied. The 
deviations discussed below relate to the wave height H, the wave amplitude a or directly 
to the run-up height R. As the wave height H is related almost linearly as H 

11/10 in 
Eq. (3.16) for the calculation of the run-up height, and in this manual the linear relation-
ship a = (4/5)H is applied, the changes for H and a will be carried over without modifi-
cation to the run-up height R. Compared with the 1st step as shown in Figure 3-1, the 
following phenomena could lead to deviations: 
 

• Exceeding of the limitations 
• Solid body movement instead of granular slide 
• Ice cover 
• Volumetric displacement due to rockfall 
• Reflection 
• Shoaling 
• Constriction 

 
The limitations relating to the wave steepness H/L for points B and C, as well as 

those for the calculation of the overtopping discharge, are not satisfied. As the effect of 
this is not known, the uncertainty of the results will increase. 

How big will be an impulse wave if the slide impacts into the reservoir as a solid 
body? This will result in a higher impulse wave, compared with the modelled granular 
slide in the 1st step. The increase in height may be estimated from Figure 4-6. The 
Froude number for an impacting solid body after drawdown is F = 2.39. If Figure 4-6 is 
applied not only for the maximum amplitude aM but also for any given amplitude a in 
the reservoir, it follows with the amplitude a = 5.3 m in front of the arch dam that 
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−
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a
a

 = 0.38. 

 
Solved for the amplitude aMb as result of a solid body, it follows that aMb = 8.5 m and 
hence 8.5/5.3 = 1.60. This corresponds to an increase of about 60% compared with the 
calculation in the 1st step. 

The ice cover of 0.25 m thickness will be pierced by the slide. As the ice sheet is 
lifted by the wave crest it will break up under its own weight, so that resulting damping 
of the impulse wave will only be insignificant (Section 4.2). 

The reservoir surface area is about 2·105 m2 (Figure 5-1). The reservoir water level 
will rise as a result of the volumetric displacement by the bulk slide mass of 
Vs = 22,000 m3 by only about 22,000/200,000 = 0.11 m, if the bulk slide porosity n is 
neglected. 

Wave reflections also have no effect in Figure 5-1, as aR ≤ a (Figure 4-2a), which is 
also valid for the wave height. In addition, the wave will be reflected vertically at point 
B (angle of incidence equals angle of reflection) and is not directed against the dam. 

The relative wave length L/h shows whether the impulse wave propagates as deep, 
intermediate or shallow-water wave. At point C, L/h = 442.1/45 = 9.8 and, therefore, the 
impulse wave behaves accordingly as an intermediate-water wave (2 ≤ L/h ≤ 20; Sec-
tion 2.1), and is partly influenced by the reservoir bed. An increase of the water depth 
leads to a decrease of the height of intermediate-water waves. This effect may be esti-
mated for section A-C in Figure 5-3(b) by assuming a constant energy flux for shallow 
and intermediate-water waves (Section 4.2). The value of H = 6.6 m was determined in 
partial step c), providing h = 25 m remains constant as far as the arch dam. These values 
are marked with index 1. If the still water depth h is greater, some of the wave energy 
will be needed for the additional water depth, and the wave height will be reduced. 
Index 2 denotes the condition when h = 25 m (indicated by a broken line in Figure 5-4b) 
changes to h = 45 m. As the widths b1 = b2 remain identical, the new wave height H2 at 
point C is given by 
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Due to the increase of the still water depth from 25 m to 45 m, the wave height close to 
the shore decreases from 6.6 m to 5.7 m, or by 15%. Close to the shore by point B 
(Figure 5-3a) the opposite occurs as the impulse wave height increases as a consequence 
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of the shallower still water (Figure 4-2b). This effect is already accounted for in the run-
up formula, as the shallower still water corresponds to the lengthening of the shore with 
an identical run-up angle of β = 27°. 

Constriction of the dam abutments leads to an increase of the wave height and hence 
also of the run-up height. If, furthermore, the lateral flank near the abutments is inclined 
this leads to an additional increase of the run-up height. The narrowing and inclination 
of the flank, as shown in Figure 4-4, have an effect of about 30%. 

In summary an increase of the still water depth h towards the arch dam results in a 
decrease of H and thus of R; on the other hand, however, constriction and the lateral 
flank inclination in the dam abutments, as well as the slide behaving as a solid body, 
may lead to a significant increase. The constriction (≈ +30%) and the influence of the 
solid body (≈ +60%) are dominant compared with the effect of the decrease of the still 
water depth (≈ −15%). In total, these effects lead to an additional run-up height of 
(30% + 60% − 15%)R = 0.75·9.6 = 7.3 m. Together with the run-up height R = 9.6 m as 
calculated in the 1st step, a total of 9.6 m + 7.3 m = 16.9 m is obtained. Even when the 
freeboard f = 12 m is deduced, the impulse wave would still overtop the dam crest by 
4.9 m. Hence, to prevent any overtopping, the reservoir drawdown of 5 m has to be 
increased by a further 4.9 m. The calculation has, therefore, to be repeated for the 
greater estimated drawdown value of about 10 m and the corresponding parameters. 
 

5.1.4 Conclusions 

The reservoir shape shown in Figure 5-1 is ideal for the computation procedure shown 
in Figure 3-1. The run-up height at the arch dam, as determined in the 1st step, is 
R = 10.3 m, and exceeds the freeboard of f = 7 m (Table 5-2). An impulse wave will 
therefore overtop the dam crest. Following reservoir drawdown of 5 m (Figure 5-4) to 
give a freeboard of f = 12 m, the calculated run-up height according to the 1st step is 
R = 9.6 m. 

The use of the 2nd step, as per Figure 3.1, leads to a run-up height R which is 75% 
greater than that calculated in the 1st step. The reason for this is above all the fact that, 
as distinct from the 1st step, the slide behaves as a solid body, but also the greater run-
up height in the dam abutments. In order to prevent dam overtopping, the reservoir level 
must be lowered a further 5 m, to give a total freeboard of f = 17 m. Whether overtop-
ping will be avoided with the new value of f = 17 m has to be proven with a new calcu-
lation as well as the choice of suitable safety allowance (Section 4.4). 

The additional horizontal force component on the dam resulting from impulse wave 
is of the order of 50% of the force component due to hydrostatic pressure. However, this 
additional force only acts for a few seconds (Figure B-8b in Appendix B). 
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5.2 Example 2 

5.2.1 Problem description and governing parameters 

Figure 5-5 shows the reservoir geometry for example 2. An icefall threatens to impact 
into an artificial reservoir at point A. The effects on the embankment dam of the im-
pulse wave generated by the ice mass and the extent to which the reservoir should be 
drawn down to avoid dam overtopping have to be determined. On impact with the 
reservoir the icefall will consist of granular material. The freeboard is f = 10 m. The 
reservoir sections, which are shown in Figure 5-5 as broken lines, are presented in 
Figure 5-7. 
 

 
Figure 5-5 Reservoir geometry for example 2 with impacting icefall at point A; the reservoir is im-

pounded by an embankment dam. 

 

 
Figure 5-6 Parameters for the calculation of the slide impact velocity Vs. 

 
For the reservoir geometry shown in Figure 5-5 the dam is not visible from the im-

pact zone of the icefall. In the zone of the reservoir farthest from the dam the impulse 
waves may, however, propagate almost freely and radially (case b in Figure 3-2). There-
fore, the wave parameters for point C will be determined using the 3D equations (Sub-
section 3.2.3.3). Between points C and D the reservoir geometry resembles that of a 
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laboratory wave channel (case a in Figure 3-2). Therefore, between these two latter 
points, the analysis accounts for 2D wave damping, on the assumption that the waves 
will move parallel to the bank. This assumption is on the safe side (Subsection 5.2.3). 

Using Eq. (3.1), the slide impact velocity Vs can be calculated for a drop height of 
the centre of gravity of the slide of Δzsc = 110 m, a dynamic bed friction angle of 
δ = 20° and a hill slope angle of α = 35°, as 
 

)cottan1(2 αδ−Δ= scs zgV  Eq. (3.1) 

=°°−⋅⋅= )35cot20tan1(11081.92sV 32.2 m/s. 
 
The slide impact velocity Vs as well as all the other governing parameters such as those 
for wave generation and for the determination of the effects on the embankment dam 
and on the reservoir shore, are given in Table 5-8. The parameter b indicates the mean 
slide width and s the mean slide thickness, both in the impact zone. The bulk slide 
density ρs and the bulk slide volume Vs are also relative to the impact zone (Subsec-
tion 3.2.2). The governing still water depth h lies on the slide axis (γ = 0°; Figure 3-3b). 
 

 
Figure 5-7 Sections for example 2, according to Figure 5-5: (a) section A-B with icefall and still water 

depth h = 100 m on the slide axis, (b) section A-C and (c) section C-D; the broken lines in-
dicate the idealised geometries for the 1st step. 
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Table 5-8 Governing parameters for impulse wave generation, the effects on the opposite reservoir 
shore and on the embankment dam. 

 
 

5.2.2 1st step 

The 1st step will now be carried out according to Figure 3-1. Firstly, the wave parame-
ters for point C are calculated using the 3D equations given in Subsection 3.2.3.3. Then 
their variation between C and D is determined with the 2D damping terms, as given in 
Subsection 3.2.3.2. This calculation proceeds in the following partial steps: 
 
a) Dimensionless parameters and limitations control on the calculation of the wave 
generation and propagation 
The dimensionless parameters relevant for wave generation are given in Table 5-9. 
 

Table 5-9 Dimensionless parameters and limitations control for the calculation of wave generation and 
propagation. 
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Therefore, all limitations for wave generation are satisfied, with the exception of the 
bulk slide porosity n = 45% and the relative slide density D = 0.50. This will be dis-
cussed in Subsection 5.2.3, where the 2nd step is described. To verify the limitations on 
the relative distance x/h between points C and D, the distances A-C and C-D were added 
in Table 5-9. 
 
b) Calculation of wave generation and propagation 
Of interest for this calculation are the wave height H, wave amplitude a, wave period T 
and the wave length L. These parameters will be determined in front of point B and at 
point C using the 3D method, as per Subsection 3.2.3.3. Firstly, however, it has to be 
determined whether the wave parameters have to be calculated using the equations for 
the maxima or with these which also contain the damping terms. The streamwise dis-
tance xM of the maximum wave height HM is 
 

( ) hxM
2/12/11 P=  Eq. (3.7) 

xM = (11/2)0.421/2100 = 356.4 m.  
 

The radial distances r to points B and C are greater than xM = 356.4 m, hence the wave 
parameter has to be computed with the Eqs. (3.13), (3.14) and (3.15), and not with 
Eqs. (3.6), (3.8) and (3.9). 
 

Section A-B 
 

( ) ( ) hhrrH 3/225/4 )/(
3

2cos2/3, −⎟
⎠
⎞

⎜
⎝
⎛= γγ P  Eq. (3.13) 

( ) 100)100/730(
3
02cos42.02/3 3/225/4 −⎟
⎠
⎞

⎜
⎝
⎛ °⋅=H  = 19.9 m 

Ha )5/4(=  Eq. (3.4) 
a = (4/5)19.9 = 15.9 m 

( ) ( ) 2/1
4/1

/15, gh
h
HrT ⎟
⎠
⎞

⎜
⎝
⎛=γ  Eq. (3.14) 

( ) 2/1
4/1

81.9/60
60

9.1915 ⎟
⎠
⎞

⎜
⎝
⎛=T  = 28.2 s 

( ) ( ) ( )γγγ ,,, rcrTrL =  Eq. (3.15) 
L = 28.2[9.81(60 + 15.9)]1/2 = 769.5 m 

 
Section A-C 

 

( ) ( ) hhrrH 3/225/4 )/(
3

2cos2/3, −⎟
⎠
⎞

⎜
⎝
⎛= γγ P  Eq. (3.13) 

( ) 100)100/100,1(
3
802cos42.02/3 3/225/4 −⎟

⎠
⎞

⎜
⎝
⎛ °⋅=H  = 5.4 m 
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Ha )5/4(=  Eq. (3.4) 
a = (4/5)5.4 = 4.3 m 

( ) ( ) 2/1
4/1

/15, gh
h
HrT ⎟
⎠
⎞

⎜
⎝
⎛=γ  Eq. (3.14) 

( ) 2/1
4/1

81.9/125
125

4.515 ⎟
⎠
⎞

⎜
⎝
⎛=T  = 24.4 s 

( ) ( ) ( )γγγ ,,, rcrTrL =  Eq. (3.15) 
L = 24.4[9.81(125 + 4.3)]1/2 = 869.0 m 

 
Next the damping of the wave height H = 5.4 m and the increase of the wave period 
T = 24.4 s from point C to the embankment dam base in front of point D will be deter-
mined using the 2D damping terms. According to Eq. (3.10), an impulse wave is attenu-
ated in the wave channel (Figure 3-2a) in proportion to (x/h)− 

4/15, and the wave period 
increases, according to Eq. (3.11), in proportion to (x/h)5/16. The wave parameters at the 
dam foot are given by: 
 

Section C-D 
 

15/4~)( −XxH   after Eq. (3.10) 
H = 5.4(1,550/100)−4/15 = 2.6 m 

Ha )5/4(=  Eq. (3.4) 
a = (4/5)2.6 = 2.1 m 

16/5~)( XxT   after Eq. (3.11) 
T = 24.4(1,550/100)5/16 = 57.5 s 

)()()( xcxTxL =  Eq. (3.12) 
L = 57.5[9.81(150 + 2.1)]1/2 = 2,221.1 m 

 
The wave parameters H = 2.6 m, a = 2.1 m, T = 57.5 s and L = 2,221.1 m are therefore 
governing for the determination of the run-up height R on the slope of an embankment 
dam. 

How long does it take the first impulse wave to reach the opposite shore of the res-
ervoir or the embankment dam? For the estimation of the wave celerity c, the maximum 
wave amplitude aM in the impact zone is required. This is determined from the maxi-
mum wave height as aM = (4/5)HM  and hence 
 

hHa MM
5/4)9/5)(5/4()5/4( P==  after Eqs. (3.6) and (3.4) 

aM = (4/5)(5/9)0.424/5100 = 22.2 m. 
 
For section A-B (Figure 5-7a) the mean still water depth (100 + 60)/2 = 80.0 m and the 
mean wave amplitude (22.2 + 15.9)/2 = 19.1 m are governing. The mean wave celerity 
is hence 
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( )[ ] 2/1ahgc +=  Eq. (3.3) 
c = [9.81(80 + 19.1)]1/2 = 31.2 m/s. 

 

The impulse wave covers the distance r = 730 m in r/c = 730/31.2 = 23 s and a few 
seconds later reaches point B on the opposite shore of the reservoir. 

The impulse wave takes somewhat longer to reach the embankment dam. For a 
mean still water depth of (100 + 125)/2 = 112.5 m and mean wave amplitude of 
(22.2 + 4.3)/2 = 13.3 m between points A and C, it follows 
 

( )[ ] 2/1ahgc +=  Eq. (3.3) 
c = [9.81(112.5 + 13.3)]1/2 = 35.1 m/s. 

 

The impulse wave will propagate the radial distance of r = 1,100 m (Table 5-8) to the 
point C in about r/c = 1,100/35.1 = 31 s. For the distance C-D, a mean still water depth 
of (125 + 150)/2 = 137.5 m and a mean wave amplitude of (4.3 + 2.1)/2 = 3.2 m are the 
relevant parameters, for which 
 

( )[ ] 2/1ahgc +=  Eq. (3.3) 
c = [9.81(137.5 + 3.2)]1/2 = 37.2 m/s. 

 

The impulse wave propagates the distance of x = 1,550 m in x/c = 1,550/37.2 = 42 s, 
hence the total time required to move from the impact zone A to the embankment dam 
equals 31 + 42 = 73 s. 
 

c) Wave run-up including limitations control 
With the aid of the wave parameters determined in b), the dimensionless parameters in 
front of the embankment dam as well as, subsequently, the run-up height R can be cal-
culated. Equation (3.16) is valid only for run-up on the dam. As for the run-up angle 
β = 45° on the opposite shore the limitation 1.0 ≤ 90°/β ≤ 4.9 for Eq. (3.16) is satisfied, 
it may anyway be used to estimate the run-up height. However, as distinct from run-up 
on the dam, those governing parameters neglected in Eq. (3.16), namely the permeabil-
ity and the roughness of the shore, become relevant, as they reduce the run-up height R. 
The values calculated with Eq. (3.16) for point B hence tend rather to over-estimate the 
run-up height R. Verification of limitations is shown in Table 5-10 and Table 5-11. 
Subsequently, the run-up height R is calculated. 
 

Point B 
 

Table 5-10 Dimensionless parameters and limitations control for the calculation of wave run-up at 
point B on the opposite shore. 
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R  = 37.5 m 

 
Point D 

 

Table 5-11 Dimensionless parameters and limitations control for the calculation of wave run-up on the 
dam at point D. 
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R  = 3.8 m 

 
d) Wave overtopping 
As the dam freeboard f = 10 m at point D is greater than the wave run-up height 
R = 3.8 m the situation analysed in the 1st step does not result in overtopping. Evalua-
tion of the 2nd step has still to be considered (Subsection 5.2.3). 
 
e) Force effect on the embankment dam 
Firstly the wave type is determined by calculating the wave type product 
S1/3Mcos[(6/7)α]: 
 

( )[ ] ( ) 5/73/1 5/47/6cos −< FαMS  Eq. (3.23) 
0.401/30.25·cos[(6/7)35°] = 0.17 
(4/5)1.02−7/5 = 0.78 
0.17 < 0.78 

 
The force effect may then be calculated using the method for Stokes-like waves, as 
described in Subsection 3.4.3. The corresponding pressure distribution is shown in 
Figure 3-10(b). The pressure p1 on dam foundation, the average water level rise Δh, the 
pressure p2 at still water level, as well as the additional horizontal force component ΔKh 
per unit length dam crest resulting from impulse wave may be calculated, according to 
Sainflou (1928), as 
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)/π2cosh(1 Lh
gH

p wρ
=  Eq. (3.24) 

)1.221,2/15014.32cosh(
6.281.9000,1

1 ⋅⋅
⋅⋅=p  = 23,372 N/m2, 

⎟
⎠
⎞

⎜
⎝
⎛=Δ

L
h

L
Hh π2cothπ 2

 Eq. (3.25) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅⋅=Δ
1.221,2
15014.32coth

1.221,2
6.214.3 2

h  = 0.02 m, 

hhH
Hhpgh

p w

+Δ+
+Δ+

=
))(( 1

2
ρ

 Eq. (3.26) 

15002.06.2
)6.202.0)(372,2315081.9000,1(

2 ++
++⋅⋅=p  = 25,662 N/m2 and 

2
)(

2
)( 212 hppHhpK h

+
+

+Δ
=Δ  Eq. (3.27) 

2
150)662,25372,23(

2
)6.202.0(662,25 +++=Δ hK  = 3.7·106 N/m. 

 

The elevation zΔK,h of the resultant of ΔKh is 
 

( )

( )Hhphphp

HhhHhphphp
z hK

+Δ++

⎥⎦
⎤

⎢⎣
⎡ +Δ++Δ++

=Δ

222

3236,
2
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2
2

2

2

1

 Eq. (3.28) 

( )

( )6.20.0
2
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2
150662,25

2
150372,23

3
6.20.01506.20.0

2
662,25

3
150662,25

6
150372,23

,

22

+++

⎥⎦
⎤

⎢⎣
⎡ +++++

=Δ hKz  = 102.8 m. 

 

The horizontal force component ΔKh results only from the impulse wave. In addition, 
the horizontal force component resulting from hydrostatic pressure acts on the dam with 
 

2/, 2ghK whRW ρ=  Eq. (3.21) 

2/15081.9000,1, 2⋅⋅=hRWK  = 110.4·106 N/m. 

 
The additional horizontal force component due to the impulse wave, relative to the 
horizontal force component due to hydrostatic pressure, is equal to 
(3.7·106/110.4·106)100 = 3.4%. The total horizontal force component Ktot,h per unit 
length dam crest resulting from impulse wave and hydrostatic pressure is therefore 
 

Ktot,h = 3.7·106 + 110.4·106 = 114.1·106 N/m. 
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The upstream dam face is inclined at an angle of β = 40°. The forces so far computed 
describe the horizontal force components when β = 90°, but they do not change if 
β < 90°. However, an additional total vertical force component Ktot,v also acts on the 
inclined dam face (Subsection 3.4.2). This component can be determined for the effects 
of the impulse wave including hydrostatic pressure as 
 

βtan/,, htotvtot KK =  after Eq. (3.22) 

Ktot,v  = 114.1·106/tan40° = 136.0·106 N/m. 
 

5.2.3 2nd step 

The deviations determined in this subsection, which referred to the wave height H or the 
wave amplitude a, will be applied unchanged to the run-up height R (Subsection 5.1.3). 
The following phenomena may lead to variations as compared with the 1st step as 
shown in Figure 3-1: 
 

• Exceeding of the limitations 
• Volumetric displacement due to icefall 
• Shoaling 
• Reflection 
• Constriction of the radial wave propagation and in the dam abutments 

 
The following limitations are not satisfied: bulk slide porosity n = 45% 

(30.7% ≤ n ≤ 43.3%), bulk slide density ρs = 500 kg/m3 (590  kg/m3 ≤ ρs ≤ 1,720 kg/m3) 
and wave steepness at point B for H/L = 0.026 (0.001 ≤ H/L ≤ 0.013). These will in-
crease the uncertainty of the results. 

The water level increase, as a result of the volumetric displacement by the icefall, 
for the reservoir surface area of 2.5·106 m2 (Figure 5-5) and for a bulk slide volume of 
Vs = 600,000 m3, is 600,000/2.5·106 = 0.24 m. Considering a value of bulk slide poros-
ity of n = 45% and the bulk slide density ρg = 900 kg/m3 (i.e. < 1,000 kg/m3) the reser-
voir surface rise would be even less. For this reason, volumetric displacement may be 
neglected.  

A further effect is shoaling (Section 4.2). Using the ratio of wave length to still wa-
ter depth, the waves can be grouped as shallow (L/h ≥ 20), intermediate (2 < L/h < 20) 
and deep-water waves (L/h ≤ 2). Approaching the dam intermediate-water waves are 
formed as L/h = 2,221.1/150 = 14.8. These will be partly influenced by the reservoir 
bed. The still water depth of h = 100 m used in the 1st step is constant up to the em-
bankment dam, as shown by the broken lines in Figure 5-7(b) and (c). As some of the 
wave energy is used to bring into motion the 50 m water column below the broken line 
in Figure 5-7(c), the wave height H at point D will be correspondingly smaller than that 
calculated in Subsection 5.2.2. This effect may be calculated according to Green’s law 
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using Eq. (4.1). In doing this, values with the index 1 are denominated as idealised 
geometry with h = 100 m = constant, whilst the index 2 denotes the condition with 
change from h = 100 m to h = 150 m (Figure 5-7). As the widths b1 = b2 are for both 
cases identical, the new wave height H2 at point D may be determined as 
 

4/1
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1

1

2
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⎠

⎞
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⎝

⎛
=

h
h
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⎝

⎛
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h
h

HH  = 2.3 m. 

 
This corresponds to a reduction from 2.6 m to 2.3 m, or about 10% compared with the 
1st step. 

Next, possible reflections are discussed. If a wave encounters an obstruction the an-
gle of incidence is equal to the angle of reflection (Figure 5-8). The reflection of the 
largest waves on the slide axis is not relevant for the dam, as they remain in the far end 
of the reservoir. The governing reflection is shown in Figure 5-8. From the calculation 
in the 1st step (Subsection 5.2.2) the wave movement from point C was assumed verti-
cal to the shore line, in order to minimise the distance and remain on the safe side, 
therefore. In reality, the impulse waves follow a polygonal zig-zag course. The distance 
will thus be about 2,200 m, i.e. longer than the straight-line distance of x = 1,550 m 
between C and D (Table 5-8). In addition, at every reflection, the waves decrease in 
height (Section 4.2). From H = 5.4 m at point C, the wave height decreases to less than 
2.6 m at point D. 

A final effect is constriction. The free, radial wave propagation on section A-C is to 
a large extent fulfilled. Only by the last portion is it somewhat restricted (Figure 5-5). 
This effect is classed as slight. At the dam abutments, the constriction may lead to an 
increase of the run-up height by about 20-30%, compared with the values calculated in 
the 1st step for the centre of the embankment dam (Section 4.2). 
 

 
Figure 5-8 Wave reflection at point B has no consequences for the embankment dam. The wave depart-

ing towards point C reaches the embankment dam. Angles of incidence and reflection at the 
run-up points are in each case the same. 

 



5 Computational examples 

81 

In summary, the phenomena of shoaling leads to a slight decrease (≈ −10%), the 
longer distance and the two reflections to a clear reduction of the wave height and the 
constriction to an increase (≈ +20-30%) of the wave and run-up heights. These increases 
and decreases in the 2nd step are more or less balanced. The freeboard of f = 10 m is 
sufficient to ensure that, with a run-up height R = 3.8 m, any overtopping is prevented. 
 

5.2.4 Conclusions 

In order to assess the effects of an impulse wave in a reservoir of the geometry shown in 
Figure 5-5, a calculation for the proximity of the impact zone, as far as point B on the 
opposite shore as well as to point C, is made by the 3D method. Between Points C and 
D the reservoir geometry resembles the geometry of a wave channel (Figure 5-5). 
Changes of the wave parameters between C and D will thus be determined with the 2D 
damping terms. According to the 1st step, this method gives a run-up height of 
R = 3.8 m on the embankment dam. Use of the 2nd step, shown in Figure 3.1, may 
change this result slightly, as the deviations from the idealised conditions of the 1st step 
effect the run-up height R in both positive and negative senses. The available freeboard 
of f = 10 m is sufficient to prevent overtopping. The additional horizontal force compo-
nent due to impulse wave acting on the dam is only about 3% of the force component 
resulting from hydrostatic pressure.  
 

5.3 Application of spread sheets 

5.3.1 Introduction 

The files with the spread sheets can be down-loaded from the VAW-Website 
www.vaw.ethz.ch under “News & Events”, “Latest VAW Reports”. In this section, the 
application of these spread sheets in Excel is explained. With these sheets, the effects of 
impulse waves on both dams and shores can be evaluated. The spread sheet facilitates 
the 1st step of the computation procedure (Figure 3-1) but the 2nd step must be carried 
out afterwards, without electronic help, as described in Chapter 4. 

The spread sheet file includes unsigned macros, i.e. programs which contain a pre-
defined sequence of instructions, actions or key combinations. By clicking on a given 
button, the corresponding macro is instructed to carry out the desired calculation. In 
Excel, when a file is opened with a macro, one is asked whether the macro in question 
should be activated, provided the medium security level has been chosen. The spread 
sheets function only when the macros have been activated. The security level can be 
adjusted in the menu listing under “Tools”, “Macro”, “Security…”. The security ques-
tion refers only to the macros. Any possible macro viruses will as a result be neither 
identified nor deleted. The original file, which cannot be manipulated by third-parties, 
should therefore always be used. 
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5.3.2 Structure of the sheets 

The file with the spread sheets contains three sheets. A sheet can be selected by clicking 
on the sheet name in the lower, left-hand corner of the screen. The most important 
functions of the three sheets are now explained. The names of the sheets are: 
 

a) Input and output 
b) Computation 
c) Limitations 

 
a) Input and output 
 
First the project name, the computational point, the operator’s name and the date are 
specified. In the space “Governing parameters”, the parameters in the orange cells 
are entered. More details can be found on the governing parameters under the re-
ferred subsections. On the right are control buttons as well as definition sketches 
(Figure 3-2 and Figure 3-3). After completion of the calculations, the main results 
will be shown in the green cells. The number of limitations which have not been sat-
isfied is also shown. A print-out of this sheet contains all important information and 
results of a calculation (Figure 5-9).  
 
b) Computation 
 
At the top, the computation procedure is shown (Figure 3-1). It has three buttons, 
with which the calculations are carried out and the results are given. The labels must 
be activated in order, from top to bottom, as certain calculations require results from 
those preceding them. 
 
c) Limitations 
 
This sheet contains all limitations on the use of the spread sheets as explained in 
Chapter 3. The dimensionless parameters are shown in the green cells and it is also 
shown whether each limitation is “Satisfied” or “Not satisfied”. The more of the 
limitations are not satisfied, the greater will be the uncertainty of the calculated re-
sults (Section 4.1). 

 

5.3.3 Application 

The three sheets described in Subsection 5.3.2 should be used in order, from Input and 
output, to Computation, to Limitations and then back to Input and output. The required 
sheet can be selected by clicking on to the corresponding sheet name on the lower left of 
the screen. Input cells and buttons for calculations are highlighted in orange, the result 
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cells in light green. There is no access to any other cells. The calculation takes place in 
the following seven steps. The name of each corresponding sheet is thereby given in 
brackets. 
 

(i) Input of project name, computational point, operator and date (upper part of 
Input and output). 

 
(ii) Input of all governing parameters. For wave generation all governing pa-

rameters must be introduced, for wave propagation only the 3D (r, γ ) or the 
2D (x) parameters. In the Wave run-up and overtopping section parameters 
must always be given for the still water depth h and the run-up angle β . Val-
ues for the freeboard f and crest width bK are needed only when the effects of 
the impulse wave on a dam have to be determined. If these effects have to be 
determined for the shore of the reservoir, these two cells have to be left 
empty. Empty orange cells must be shown with a hyphen (middle Input and 
output). 

 
(iii) The button “Input control” has to be activated and the instructions or any er-

ror messages have to be followed. Firstly, it must be indicated whether the 
wave effects have to be determined for a dam (input “1”) or for the shore 
(input “2”). This selection determines whether the values for freeboard f and 
crest width bK are necessary. Error messages must not be ignored, otherwise 
the calculation will be erroneous. Only if no error message is received, after 
clicking on “Input control”, the inputs are correct (right Input and output). 

 
(iv) Change to the Computation sheet and activate the three buttons on the com-

putation procedures, from top to bottom. Then it has to be indicated whether 
2D (input “2”) or 3D (input “3”) calculations are to be made. The results will 
appear below. Cells which may not contain any data are indicated by “No 
value”. The calculation of the wave parameters H, a, T and L is done for two 
distinct cases, as described in Chapter 3: for X ≤ XM or r/h ≤ XM, the calcula-
tion is done with the equations for the maximum values (Eqs. 3.6, 3.4, 3.8, 
3.9), whereas for X > XM or r/h > XM the equations with damping terms are 
applied (Eqs. 3.10, 3.4, 3.11, 3.12 for 2D and Eqs. 3.13, 3.4, 3.14, 3.15 for 
3D cases, respectively). That is the reason, for example, why both symbols 
for wave height H and HM are indicated in the identical cell (Computation). 

 
 (v) Change to the sheet Limitations and determine the dimensionless parameters 

with the button “Computation”. The values of the dimensionless parameters 
will appear, together with “Satisfied” or “Not satisfied”. “No value” appears 
if a limitation is not relevant, for example for x/h in a 3D calculation. The 
number of limitations not met is shown at the bottom (Limitations). 
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(vi) Change to the Input and output sheet and activate the button “Prepare to 
Print”. The most important results and the number of Limitations not satis-
fied are carried over into the print area (Figure 5-9). If more than one sheet is 
required for the area to be printed the Menu list “File”, “Page setup…”, 
“Margins” should be used to adjust the page margins. Here also some cells 
contain “No value”. At the beginning of each line giving values relating to 
forces it is indicated whether they were determined with the method for 
Stokes-like waves (Stokes), or that for the remaining wave types (Remain-
ing). The printing procedure itself is initiated in the usual way with “File” 
and “Print…” (right Input and output). 

 
(vii) To calculate the wave parameters for a new point on the same prototype 

(governing parameters do not change) the button “Delete all governing pa-
rameters except slide parameters” has to be activated. For calculations with 
other values of the governing variables or with a different reservoir still wa-
ter depth (governing parameters change) use the button “Delete all governing 
parameters”. The button “Delete all” deletes all input data. For a new calcu-
lation, start again by (i) (Input and output).  

 
Afterwards, an assessment of the effects from the 2nd step, as shown in Figure 3-1, has 
to be carried out but without electronic help (Subsection 5.3.3). 
 

5.3.4 Example 1 

In this example the effects of the impulse waves from example 1 for point C         
(Figure 5-1), according to Section 5.1, are determined using the spread sheets. The 
relevant print-out page is presented in Figure 5-9. The procedure consists of the seven 
steps explained in Subsection 5.3.3: 
 

(i) The input data for the project are as shown in Figure 5-9. 
 

(ii) The governing parameters are taken from Table 5-2 and the calculation is 
3D. Hence, the cells for the streamwise distance x [m] contains no value, i.e. 
only a hyphen (Figure 5-9).  

 
(iii) After activating the button “Input control”, indicate whether the effects of 

the impulse wave should be determined for a dam (input “1”) or on the shore 
(input “2”). For input “1” the data will be checked with regard to the calcula-
tion for a dam. No error messages appear, therefore the input is correct. 

 
(iv) On the sheet Computation the three buttons “Computation” will be activated 

from top to bottom and in order. The results are shown in the lower part of 
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the sheet. As the calculation will be made in 3D and impulse waves will be 
computed with the method for the remaining wave types, the 2D cells and 
those for Stokes-like waves give “No value”. 

 
(v) With the sheet Limitations, using the button “Computation” the dimen-

sionless parameters are calculated and it can be checked if they satisfy the 
limitations. In this example, 2 of the limitations are not satisfied. 

 
(vi) By clicking the button “Prepare to print” on the Input and output sheet, the 

most important results are given, together with the number of limitations not 
satisfied. Only the area shown in Figure 5-9 will be printed. Apart from 
small rounding-up variations, the results agree with those from example 1 
(Section 5.1). 

 
(vii) With the button “Delete all”, all values in the spread sheets are removed. 

 
The assessment of the 2nd step, in accordance with Figure 3-1, has now to be carried 
out without electronic help (Subsection 5.1.3). 
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Figure 5-9 Print area of the spread sheets with project data, governing parameters, the main results as 

well as the number of limitations not satisfied; abbreviations: ad. = additional, comp. = 
component, hor./Hor. = Horizontal, p.u.l. = per unit length, S/r = Stokes/remaining, Vert. = 
Vertical. 
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5.3.5 Troubleshooting 

Table 5-12 shows possible errors which may arise with the use of spread sheets with 
their possible cause and ways to correct them. 
 

Table 5-12 Possible errors arising from the use of spread sheets with their causes and means to correct 
them. 
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6 Conclusions 

6.1 Summary 

This manual describes the present state of research on subaerial landslide generated 
impulse waves (Figure 1-1). The most important conclusions may be summarised as 
follows: 
 

• Landslide generated impulse waves occur typically in oceans, bays, lakes or 
reservoirs as a result of landslides, rock falls, shore instability, avalanches or 
glacier calvings. Various distinct theoretical wave types are considered when 
describing the impulse wave spectrum (Section 2.2). 

 

• A complete procedure (Figure 3-1) has been developed for the assessment of 
the effects on dams of landslide generated impulse waves; this takes into con-
sideration parameters such as run-up height, overtopping volume and force ef-
fect, and is based on the use of generally applicable, semi-empirical equations. 

 

• The analysis of the wave generation, as well as wave propagation and the over-
topping of dams, considers all important governing parameters over a wide 
range. However, the procedure is limited to slide volumes that are significantly 
smaller than the volume of the reservoir or lake. For the cases described, the 
rise of the water surface level resulting from volumetric displacement by the 
slide is negligible compared with the wave height created by the slide impact. 

 

• The procedure is based on the technical literature which is summarised in the 
Appendices A and B. 

 

• The user of the procedure can estimate, for example, the run-up height on the 
dam face, both at little cost and in a short time (Section 1.2). 

 

• In the 1st step of the procedure, generally applicable equations are used under 
idealised conditions; principally by considering granular slide material as well 
as a channel-shaped (Figure 3-2a) or a rectangular-shaped (Figure 3-2b) reser-
voir, with a horizontal bed. 

  

• In the 2nd step of the procedure, the effects of deviations from the idealised 
conditions assumed in the 1st step are discussed. These relate above all to the 
reservoir shape and associated effects such as wave reflection, constriction or 
shoaling (Section 4.2), as well as the mass movement as a solid body rather 
than as a granular slide (Section 4.3). 
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• The procedure was successfully applied on two notional examples, as described 
in Chapter 5. A spread sheet facilitates the 1st step, but the 2nd step must be 
carried out without electronic aids. 

 

• The procedure is based on laboratory test results, many of which exhibit sig-
nificant scatter and may only be used approximately for complex reservoir ge-
ometries. The results have, therefore, to be considered only as estimates. Safety 
allowances must be provided; these depend on the damage potential and the 
dam type, but cannot be generally formulated (Section 4.4). More precise re-
sults, also for cases where the geometry is complex, may be obtained from a 
prototype-specific model test (Section 1.2). 

 

• Potential exists for further research on landslide generated impulse waves, and 
the most important points in this respect are discussed in Section 6.2. 

 

6.2 Research gaps 

It is not possible today to analyse in a dependable manner, using generally applicable 
equations, each particular case of impulse wave generation. The reliability of predic-
tions needs, therefore, still be improved and work on the questions given below would 
contribute to this. There is also a need for more research into the use of numerical simu-
lations. The preparation of this manual revealed research gaps in the following fields: 
 

• The methods of the future for the analysis of landslide generated impulse waves 
are numerical simulations. The aim should be to develop a generally applicable 
program into which it is only necessary to introduce data on the reservoir and 
slide geometries. This will enable the effects of landslide generated waves on 
dams to be determined with relatively high precision and only moderate effort 
(Section 1.2). Numerical methods already yield good results for individual ex-
periments (Figure 1-5). Some experiments covering slide and wave profiles, as 
well as velocity vector fields in the slide impact zone, have been documented 
by Heller (2007a). In a subsequent step, such data could be used to develop this 
generally applicable program. 

 

• The computation procedure presented in Figure 3.1 is based on a granular slide, 
although a natural slide may behave as a solid body (Cruden and Varnes 1996). 
Numerous investigations have been conducted on impulse waves generated by a 
solid body. A procedure to transform impulse waves resulting from granular 
slides to waves resulting from solid bodies would be useful. To date, however, 
only the findings of Zweifel (2004) are available and these have a limited range 
of use. 
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• The two extreme cases (a) a wave channel with confined longitudinally wave 
propagation and (b) a wave basin with free, radiating wave propagation, have 
already been studied several times (Figure 3-2). The wave parameters for more 
general reservoir geometries can only be estimated with the help of the parame-
ters derived from analysing these two extreme geometric cases. Easier predic-
tion of impulse waves for more general reservoir geometries would be possible 
by the investigation of the influence of the reservoir side angle γ. In addition to 
the values already studied (γ = 0 and γ = ±90°), it would be interesting to ana-
lyse e.g. values of γ = ±15°, γ = ±30° (Figure 6-1), γ = ±45°, γ = ±60° and 
γ = ±75°. 

 

 
Figure 6-1 Reservoir geometry with side angles γ  = ± 30° in addition to those already investigated, 

namely wave basin with γ  = ± 90° and wave channel with γ  = ± 0°. 

 
• Several points in the computation procedure are based on theoretical assump-

tions which have not been tested experimentally. Examples are the transforma-
tion of the wave height from that in the wave channel to that in the wave basin 
(Appendix A.3.2.2), or Eq. (3.14), which was defined for 2D and converted for 
3D, but still has to be verified. 
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• Irrespective of reservoir geometry, the force effect was calculated based on the 
wave type classification procedure according to Heller (2007a). This is based 
on the results obtained from tests in a wave channel. In a wave basin, basically 
similar wave types were observed, for example by Huber (1980) or Panizzo et 
al. (2005), even though some of these had different designations. The 2D wave 
type defined by Heller (2007a) was used, because a clear classification for the 
3D type is not available. A final wave type allocation in 3D or the relationship 
between the allocation in 2D (Figure A-8 in Appendix A) and 3D would be use-
ful. 
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Notation 

a [m] = wave amplitude 

aM [m] = maximum wave amplitude 

aMax,T [m] = maximum overtopping depth over a dam 

aMb [m] = maximum wave amplitude as result of a solid body 

aR [m] = wave amplitude of a reflected wave 

a1 [m] = wave amplitude at cross-section 1 of Figure 4-2(b) 

a2 [m] = wave amplitude at cross-section 2 of Figure 4-2(b) 

A [-] = relative wave amplitude; A = a/h 

AM [-] = relative maximum wave amplitude; AM = aM /h 

b [m] = slide or reservoir width in the prototype; channel width in the 

model 

bK [m] = crest width 

b1 [m] = reservoir width at cross-section 1 of Figure 4-2(b) 

b2 [m] = reservoir width at cross-section 2 of Figure 4-2(b) 

B [-] = relative slide width; B = b/h 

BMhs,h [Nm/m] = bending moment per unit length dam crest about the foundation 

resulting from the horizontal force of the hydrostatic pressure 

and a still water level displaced upwards by 2a, according to 

Ramsden (1996) 

BMtot,h [Nm/m] = bending moment per unit length dam crest about the foundation 

resulting from the horizontal force of an impulse wave and hy-

drostatic pressure, according to Ramsden (1996) 

c [m/s] = wave celerity 

d [-] = differential 

db [m] = block diameter 

dg [m] = grain diameter 

D [-] = relative slide density; D = ρs /ρw 

e [-] = logarithmic constant; e = 2.72 

f [m] = freeboard 

F [-] = slide Froude number; F = Vs /(gh)1/2 

g [m/s2] = gravitational acceleration; g = 9.81 m/s2 

G [-] = combination of the governing parameters according to Huber 

and Hager (1997); G = 0.88(sinα)( ρg /ρw)1/4[Vg /(bh2)]1/2 

h [m] = still water depth 
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h1 [m] = still water depth at cross-section 1 of Figure 4-2(b) 

h2 [m] = still water depth at cross-section 2 of Figure 4-2(b) 

H [m] = wave height 

Hst [m] = stable wave height according to Kamphuis and Bowering 

(1972) 

HM [m] = maximum wave height 

H1 [m] = wave height at cross-section 1 of Figure 4-2(b) 

H2 [m] = wave height at cross-section 2 of Figure 4-2(b) 

I [-] = Iribarren number; I = tanβ /(H/L)1/2  

kD [-] = reduction factor to allow for permeability 

kR [-] = reduction factor to allow for roughness 

Khs,h [N/m] = horizontal component of hydrostatic force per unit length dam 

crest resulting from a still water level displaced upwards by 2a, 

according to Ramsden (1996)  

Ktot,h [N/m] = total horizontal force component per unit length dam crest 

resulting from an impulse wave and hydrostatic pressure 

Ktot,v [N/m] = total vertical force component per unit length dam crest result-

ing from an impulse wave and hydrostatic pressure   

Ktot ,h,abg [N/m] = reduced total horizontal force component per unit length dam 

crest resulting from an impulse wave and hydrostatic pressure 

Ktot ,v,abg [N/m] = reduced total vertical force component per unit length dam 

crest resulting from an impulse wave and hydrostatic pressure  

KRW,h [N/m] = horizontal force component per unit length dam crest resulting 

only from hydrostatic pressure 

KRW,v [N/m] = vertical force component per unit length dam crest resulting 

only from hydrostatic pressure 

l [m] = coordinate along dam crest 

ls [m] = slide length 

lF [m] = width of reservoir flank 

lK [m] = crest length 

L [m] = wave length 

LM [m] = wave length of HM 

L1 [m] = wave length at cross-section 1 of Figure 4-2(b) 

L2 [m] = wave length at cross-section 2 of Figure 4-2(b) 

mg [kg] = slide grain mass identical to slide mass; mg = ms 

ms [kg] = slide mass identical to slide grain mass; ms = mg 

M [-] = relative slide mass; M = D·V = ms /( ρw bh2) = ρsVs/( ρw  bh2) 



Notation 
 

99 

n [%] = bulk slide porosity 

p [N/m2] = pressure on dam 

pd [N/m2] = dynamic pressure according to Minikin (1950) 

ps [N/m2] = static pressure according to Minikin (1950) 

pK [N/m2] = pressure at dam crest 

p1 [N/m2] = pressure on dam foundation according to Sainflou (1928) 

p2 [N/m2] = pressure at still water level according to Sainflou (1928) 

P [-] = impulse product parameter; P = FS1/2M 1/4{cos[(6/7)α]}1/2 

q0m [m2/s] = average discharge per unit length dam crest for f = 0 

q0M [m2/s] = maximum discharge per unit length dam crest for f = 0 

r [m] = radial distance from the impact location in the wave basin 

R [m] = run-up height 

R2 [-] = coefficient of determination 

Rm [m] = run-up height at the dam centre 

Rγ  ≠ 0° [m] = run-up height for oblique flow against a dam 

s [m] = slide thickness 

s1 [m] = slide thickness in Figure A-5(a) of Appendix A 

s2 [m] = slide thickness in Figure A-5(b) of Appendix A 

S [-] = relative slide thickness; S = s/h 

t [s] = time from slide impact; time 

ts [s] = time of underwater slide motion 

t0 [s] = duration of overtopping for f = 0 
T [s] = wave period 

TM [s] = wave period of HM 

u [divers] = product for determining the scatter of a product 

V [-] = relative slide volume; V = Vs /(bh2) 

Vs [m/s] = slide impact velocity 

VsNK [m/s] = slide velocity at point of slope change (Figure 3-4b) 

Vs1 [m/s] = slide impact velocity in Figure A-5(a) in Appendix A 

Vs2 [m/s] = slide impact velocity in Figure A-5(b) in Appendix A  

V [m3/m] = overtopping volume per unit length dam crest 

Vg [m3] = slide grain volume 

Vs [m3] = bulk slide volume 

V0 [m3/m] = overtopping volume per unit length dam crest for f = 0 

x [m] = streamwise coordinate in longitudinal channel direction and 

distance in 2D 

x’ [divers] = parameter for determining scatter 
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xM [m] = streamwise distance of the maximum wave amplitude from the 

impact location 

X [-] = relative streamwise distance; X = x/h 

XM [-] = relative streamwise distance of aM (or HM) from the impact 

location; XM = xM /h 

y [-] = rational number in the hyperbolic function 

Y [-] = relative wave height; Y = H /h 

YM [-] = relative maximum wave height; YM = HM /h 

z [m] = vertical coordinate 

zK,tot,h [m] = elevation of the resultant of Ktot,h 

zK,tot,h,abg [m] = elevation of the resultant of Ktot,h,abg 

zΔK,h [m] = elevation of the resultant of ΔKh 

 

Greek symbols 

 

α [°] = slide impact angle equal to hill slope angle 

αN [°] = hill slope angle for a hill slope section (Figure 3.4b) 

β [°] = run-up angle equal to dam face slope 

γ [°] = wave propagation angle; reservoir side angle 

δ [°] = dynamic bed friction angle 

δN [°] = dynamic bed friction angle for a hill slope section (Figure 3.4b) 

Δ h [m] = average water level rise according to Sainflou (1928) 

ΔKh [N/m] = additional horizontal force component per unit length dam crest 

resulting from impulse wave 

ΔKv [N/m] = additional vertical force component per unit length dam crest 

resulting from impulse wave  

Δ u [-] = scatter of u 

Δ x’ [-] = scatter of x’ 

Δzsc [m] = drop height of the centre of gravity of the slide 

ΔzscN [m] = drop height of the centre of gravity of the slide between any 

two slide positions 

η [m] = water surface displacement 

κ [-] = overfall coefficient for overtopping; κ = κ qκ bκ w
3/2  

κ b [-] = overfall coefficient for the crest width 

κ q [-] = overfall coefficient for the steady case 
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κ w [-] = overfall coefficient for the increased flow energy compared 

with the steady case 

π [-] = circular constant; π = 3.14 

ρg [kg/m3] = grain density 

ρs [kg/m3] = bulk slide density 

ρw [kg/m3] = water density 

ϕ [-] = parameter of Ikeno et al. (2001) for the conversion of the 

pressure distribution of an intermediate sine wave to the distri-

bution of a bore 

φ [°] = slide front angle 

 

Subscripts 

 

abg  = reduced (German abgemindert) 

b  = dam crest width; block 

c  = centre of gravity; centroid 

d  = dynamic 

D  = permeability (German Durchlässigkeit) 

F  = flank 

g  = grain 

h  = horizontal 

hs  = hydrostatic 

K  = crest (German Krone) 

m  = middle; averaged 

M  = maximum 

Max  = maximum (on dam crest) 

n  = whole number  

NK  = slope change (German Neigungsknick) 

R  = reflection; roughness 

RW  = still water (German Ruhewasser) 

s  = static; slide 

st  = stable 

tot  = total 

T  = dam (German Talsperre) 

v  = vertical 

w  = water 
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0  = for f = 0 

1  = cross-section 1 in Figure 4-2(b) 

2  = cross-section 2 in Figure 4-2(b) 

 

Abbreviations 

 

ad.  = additional 

blw  = bore-like waves 

comp.  = component 

cosh( y)   = hyperbolic cosine; cosh( y) = (e y + e−y )/2 

coth( y)  = hyperbolic cotangent; coth( y) = (e  y + e−y )/(e  y − e−y ) 

cslw = cnoidal and solitary-like waves 

d.  = dam 

hor./Hor.   = horizontal/Horizontal 

H. & H. (1997) = Huber and Hager (1997) 

i.  = impact zone 

K. & B. (1972) = Kamphuis and Bowering (1972) 

p.u.l.  = per unit length 

P. et al. (2005) = Panizzo et al. (2005) 

Slw  = Stokes-like waves 

SPH  = Smoothed Particle Hydrodynamics 

S/r  = Stokes/remaining 

unk.  = unknown 

VAW  = Laboratory of Hydraulics, Hydrology and Glaciology 

   (German Versuchsanstalt für Wasserbau, Hydrologie und 

Glaziologie) 

Ver.  = Vertical 

2D  = two-dimensional (in a wave channel or in a lake having the 

form of a wave channel) 

3D  = three-dimensional (in a wave basin or in a lake having the form 

of a wave basin) 
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Glossary 

The following definitions apply to terms used in this manual. 
 
Bore A theoretical, non-linear wave type, characterised by a 

dominant peak with a steep front and gradually-falling 
back slope (Figure 2-6; Figure A-15b in Appendix A). 
Certain impulse waves or broken waves near the shore 
approximate to this type of wave (Figure A-8 in Appen-
dix A). 

Breaking Unstable condition of a wave when air is entrained into 
the crest or the crest collapses forwards. This happens 
with deep-water waves when the wave steepness H/L, 
with shallow-water waves when the relative wave height 
H/h or with intermediate-water waves when both these 
parameters exceed a given limiting value. 

Capillary water wave A surface wave principally influenced by capillary 
forces; it has a wave length L < 1.7 cm. 

Clapotis Also known as standing wave: this results from the 
superimposition of two wave groups which approach 
each other with the same wave celerity and the waves 
are of identical height and length. The wave nodes al-
ways remain in the same position. 

Cnoidal wave A theoretical, non-linear wave type; it includes both 
linear as well as solitary waves as limiting cases (Fig-
ure 2-4). Certain impulse waves approximate to this 
wave type (Figure A-8 in Appendix A). 

Dam break wave This is the gravity wave which results from the failure 
of a dam. In model tests such a wave may be simulated 
by the sudden removal of an impounding wall. 

Deep-water wave A wave which does not mobilise the water column 
down to the full depth to the bed and is therefore not in-
fluenced by this. After the linear wave theory a wave is 
classified as a deep-water wave if L/h < 2. The opposite 
is a shallow-water wave. 
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Diffraction A wave moving towards and past an obstacle gives up 
some of its energy laterally into the area of the wave 
shadow (Figure 4-1a). 

Far field Typically, this is several wave lengths from the slide 
impact zone beyond where the generated impulse wave 
undergoes no further significant change of shape (except 
due to friction and frequency dispersion). A constant re-
lationship has established itself between kinetic and po-
tential wave energy. The opposite is the near field. 

Freeboard The distance, measured vertically, between the current 
still water level of a reservoir and the crest level of the 
dam. 

Froude similitude The relationship of inertia to gravity forces (Froude 
number) in the model corresponds to that in the proto-
type. However, the relation of inertia to surface tension 
force (Weber number), to friction force (Reynolds num-
ber) and to compressibility force (Cauchy number) can-
not be satisfied at the same time. This leads to scale ef-
fects when the model scale is not 1:1, but these are often 
negligible. 

Generally applicable equation A generally applicable equation is one that can be ap-
plied for any slide or reservoir parameters, provided that 
the dimensionless limitations are satisfied. Such an 
equation is developed from the evaluation of the results 
of tests carried out on the basis of systematic and inde-
pendent variation of all important governing parameters. 

Geometric similarity The similar shape of prototype and model, which differ 
only in their size; this is a basic requirement for the ex-
trapolation of model test results to the prototype. 

Granulate properties Properties related to the granular material of the slide 
mass; they are indicated with the subscript g (Vg, ρg). 

Gravity water wave A water wave that is influenced principally by gravity 
force. 

Impulse product parameter The parameter P = FS 
1/2M 

1/4{cos[(6/7)α]}1/2, which 
contains only governing parameters, with which Heller 
(2007a) and Heller and Hager (2009a) describe the pre-
diction of most wave parameters such as the maximum 
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amplitude, height and period, the wave volume as well 
as the wave amplitude and height decay. The parameter 
refers to the streamwise slide momentum flux compo-
nent. 

Impulse waves Individual or groups of waves generated by mass 
movements into water bodies. 

Intermediate-water wave A wave whose movement is slightly affected by the bed. 
According to the linear wave theory its relative length is 
between that of a deep and shallow-water wave 
(20 ≤ L/h ≤ 2). 

Iribarren number The number I = tanβ /(H/L)1/2 is used to classify the 
breaking type of a wave, on the basis of the wave height 
and length as well as the run-up angle. 

Kinetic wave energy Energy stored in the water particle movement. 

Linear wave Theoretical wave type in the form of a sine curve for 
which, in addition, H/h < 0.03 and H/L < 0.006 (Fig-
ure 2-1). 

Mass movement A pronounced mass location change at the ground sur-
face; The mass may consist of material such as rock, 
earth, ice or snow propagating e.g. as slide or fall (Sec-
tion 4.3). 

Model effects Deviations of results between a hydraulic model and the 
corresponding prototype due to non-identical geometry. 

Navier-Stokes equations Differential equations describing the three velocity 
components, the density and the pressure at any point in 
a fluid (water). Analytic solutions only exist for simpli-
fied cases but, with the required effort, the equations can 
be completely solved by numerical means (Direct Nu-
merical Simulation). 

Near field Typically extending up to several wave lengths from the 
slide impact zone, this zone is where large changes in 
the form of the generated impulse wave take place. The 
potential wave energy is normally greater than the ki-
netic energy. A constant relationship of potential to ki-
netic wave energy has not established itself. The oppo-
site is far field. 



Glossary 
 

106 

Non-periodic wave An individual wave. 

Oscillatory wave The water particles follow elliptical paths and, over 
time, stay in the same position. There is transport of en-
ergy but not of fluid mass. 

Periodic wave A wave in a group of waves. 

Plunging breaker Form of wave breaking when the crest collapses for-
ward and, for a short time, with the wave front forms an 
“air tube”, as is often seen on photographs of surfing 
(Figure B-10a of Appendix B). 

Potential theory Mathematically idealised description of a fluid as fric-
tionless and irrotational. The streamlines in the fluid are 
so aligned that they possess a potential field. Many phe-
nomena in hydraulics are analysed using the potential 
theory, for example water waves, ground water flow or 
pipeline flow.  

Potential wave energy Energy expended in the displacement of water from its 
mean position. 

Reflection After striking the shore, a wave moves back with the 
same (total reflection) or reduced wave height. 

Refraction A wave experiences a change of direction in shallow-
water due to the shoaling effect and finally moves 
mostly frontally towards the shore. 

Run-up height The vertical distance between the still water level and 
the highest point reached by the wave during run-up. 

Scale effect Deviation of the relative results in hydraulic model 
testing from those in the prototype as a result of those 
force ratios (Weber number, Reynolds number, Cauchy 
number) which cannot be correctly represented in the 
model. 

Shallow-water wave A wave which mobilises the entire water depth, down to 
the bed and therefore is influenced by the bed due to the 
phenomenon of shoaling. According to linear wave the-
ory, L/h > 20 for such waves. The opposite type is the 
deep-water wave. 

Shoaling Wave transformation in the vicinity of the shore due to 
the decrease of the still water depth. 
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Sine wave See linear wave. 

Slide properties Properties which relate to the slide mass including the 
porosity; they are indicated by the subscript s (Vs, ρs). 

Solitary wave Theoretical, non-linear wave type consisting only of a 
wave crest but no wave trough (Figure 2-5). This wave 
type is used as approximation for certain impulse waves 
(Figure A-8 in Appendix A). 

Standing wave See Clapotis. 

Stokes wave Theoretical, non-linear wave type which is somewhat 
steeper than a sine wave but has a rather flatter and 
longer trough (Figure 2-3). This wave type approxi-
mates to certain impulse waves (Figure A-8 in Appen-
dix A). 

Total reflection A wave is reflected by a vertical shore and moves back 
without any loss of height. 

Translatory wave The water particles move in the direction of movement 
of the wave and both energy and fluid mass are trans-
ported.  

Tsunami From the Japanese “Tsu” for harbour and “Nami” for 
wave. Caused by a sudden movement of a large volume 
of water, as a result of earthquakes (seismic sea waves) 
but also subaerial or underwater slides, meteorite im-
pacts, volcanic explosions, releases of natural gas etc. 

Wave breaking See breaking. 

Wave crest The highest point of a wave. 

Wave peak That part of a wave above the original still water level.  

Wave trough That part of the wave which is below the original still 
water level. 

Wave type product The product S 
1/3Mcos[(6/7)α], composed only of gov-

erning parameters, which Heller (2007a) and Heller and 
Hager (2009b) use to distinguish the four observed 
wave types from each other. 

2D tests Two-dimensional: tests carried out in a prismatic wave 
channel, with the wave parameters measured only in the 
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centre of the channel. The impulse waves propagate 
longitudinally and may therefore be considered 2D. 

3D tests Three-dimensional: tests carried out in a rectangular 
wave basin in which the wave parameter measurements 
can be conducted over the whole water surface area. 
The impulse waves propagate freely, radiating from the 
slide impact location, and may therefore be considered 
3D. 
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A Literature review on wave generation 

A.1 Introduction 

This appendix presents generally applicable equations for the determination of landslide 
generated impulse wave generation. Their advantages and disadvantages are discussed 
and the selection of the methods in Figure 3-1 and in Section 3.2 is justified. Heller 
(2007a; 2008) presents literature studies on the subject of the generation of landslide 
generated impulse waves in physical models covering some 30 and 20 publications, 
respectively. In this report only those publications most relevant for practical use are 
discussed. This is work which provides generally applicable results, i.e. several parame-
ters such as slide impact velocity or bulk slide volume were varied. Only generally 
applicable approaches can be used for any given prototype. Studies based on only one 
prototype are not therefore given priority. For practical applications, the estimation of 
the wave height in front of the shore or dam is of interest, as this is the most important 
parameter in the wave run-up height equation (Section 3.3). A few studies present only 
one equation for the maximum wave height in the impact zone, but not its transforma-
tion with the distance. These studies are also not considered in this appendix. Applying 
these limitations reduces the number of publications considered from the 20 to 30 re-
viewed by Heller (2007a; 2008) to four which are examined herein. 

All generally applicable investigations are based on a wave channel or basin with a 
horizontal bed. Effects such as refraction (Section 4.2), resulting from variable water 
depths, are not considered. The most important differences between the hydraulic model 
studies are the way in which the slide is modelled (as solid body or as granular slide) as 
well as whether the wave is created in a channel or in a basin (2D or 3D). These differ-
ences are discussed in Appendix A.2. In order that the results can be transformed from a 
specific hydraulic model to the prototype, their geometrical forms must be similar. 
Effects such as energy concentration at a constriction or diffraction (Section 4.2) are, 
therefore, also not considered by generally applicable equations, which are based on 
simplified geometries. 

In Appendix A.2, the relevant parameters and the parameter ranges of the individual 
investigations are defined and the most important differences between the hydraulic 
models are discussed. A literature review in Appendix A.3 covers investigations with 
solid bodies (Appendix A.3.1) and granulate slides (Appendix A.3.2). The investiga-
tions are further classified into those conducted in wave channels (2D) and those in 
wave basins (3D). Conclusions are given in Appendix A.4, together with the justifica-
tion for the selection of the methods for the computation procedure covered by       
Figure 3-1 and Section 3.2. 
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A.2 Parameter definitions 

Figure A-1(a) and (b) shows definition sketches of the relevant parameters for impulse 
wave generation in a wave channel (2D) and in a wave basin (3D). As distinct from 
Subsection 3.2.2, those governing parameters found to have a negligible effect in the 
test results are also discussed here. The following parameters have an effect on the 
maximum wave amplitude aM and the maximum wave height HM both in 2D and 3D: 
 

• Slide impact velocity Vs 
• Bulk slide volume Vs or slide grain volume Vg 
• Slide thickness s 
• Slide width or channel width b 
• Bulk slide density ρs or grain density ρg 
• Bulk slide porosity n 
• Slide impact angle α 
• Still water depth h 

 
Figure A-1 Sketches defining the governing parameters on impulse wave generation and the most 

important wave parameters in (a) 2D and (b) 3D. 

 
Few researchers have investigated the effects of the slide front angle φ and the slide 
length ls, however, these governing parameters were always found to have a negligible 
effect. Heller (2007a) also found that the effect of the grain size distribution could be 
neglected. Panizzo et al. (2005) used the time of underwater slide motion ts as a further 
governing parameter for the maximum wave height HM. As the value of ts, prior to an 
incident, is difficult to estimate, Panizzo et al. (2005) deduced it as a function of the 
remaining governing parameters. 

An impulse wave changes as it propagates in a horizontal wave channel or wave ba-
sin, as a function of the following parameters: 
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• Streamwise distance x (2D) 
• Radial distance r (3D) 
• Wave propagation angle γ  (3D) 

 
Figure A-2 shows schematically the classification of the investigations to generate 

generally applicable impulse waves for solid bodies and granular slides for both 2D and 
3D models. The tests illustrated are discussed in Appendix A.3. Zweifel (2004) also 
satisfies most of the criteria given in Appendix A.1 for inclusion in this literature re-
view. However, only the amplitude decrease was evaluated, yet not the wave height 
decrease which is relevant for the calculation of the run-up height. The work of Heller 
(2007a) (Appendix A.3.2.1) includes the data of Fritz (2002) as well as that of     
Zweifel (2004). Therefore, to be concise, only the definitive equations of Heller (2007a) 
are discussed. 

In Figure A-2 two basic criteria must be taken into consideration when using the 
equations: 
 

a) Was the test carried out with a solid body or with granulate? 
b) Was the test conducted in a wave channel (2D) or in a wave basin (3D)? 

 

 
Figure A-2 Classification of the tests for the generation of generally applicable impulse waves and the 

corresponding research studies as discussed in Appendix A.3. 

 
a)  Figure A-3(a) shows the modelling of the slide with granulate and Figure A-3(b) 

as a solid body, respectively. Generally, solid bodies and granulate slides are de-
fined by the same parameters; for solid bodies, however, the number of test pa-
rameters is reduced by the assumption of constant porosity n = 0 and neglecting 
the granulometry. A solid body with the same governing parameters tends to 
generate larger waves than a granular slide. For the former, the water can only 
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be displaced forward or over the solid body whereas with a granular slide some 
of the water enters its voids. Zweifel (2004) compared granular and solid slides 
(Section 4.3). He showed that for identical governing parameters the waves cre-
ated by a solid body were up to seven times larger applying a slide Froude num-
ber of F = 0.51 (Figure 4-6). The comparison was based on 11 tests for a rela-
tively small parameter range. Further publications on this topic are not known. It 
is therefore only to a limited extent possible to convert data for waves created by 
solid bodies to those resulting from granular slides.  

When considering granular slides it must also be differentiated between the 
granulate properties and slide properties (Figure A-2). The granulate has, for ex-
ample, a density of ρg, whereas the slide density is designated as ρs. As distinct 
from the granulate parameters, the slide parameters also include the bulk slide 
porosity n. The same is the case for the slide grain volume Vg and the bulk slide 
volume Vs. The slide mass and the granular mass are on the other hand identical 
(ms = mg). For block models, furthermore, ρg = ρs and Vg = Vs, as the porosity n 
is equal to zero. In Table 3-1, the conversion equations from slide to granulate 
parameters, and vice versa, are indicated, taking account of Vs = ms /ρs and 
Vg = mg /ρg. 

 

 
Figure A-3 Most important governing slide parameters modelled in a wave channel with either            

(a) granulate or (b) a solid body. 

 
 

b) Generation of impulse waves in a wave basin depends on the same governing 
parameters as in a wave channel. In addition there is little difference in the 
maximum wave heights HM in the slide impact zone (Huber 1980). However, 
impulse waves in a rectangular wave basin lose height, as a function of the radial 
distance r and the wave propagation angle γ , much more quickly than in a pris-
matic wave channel. The reason for this is the distribution of the wave energy 
over a larger area in the wave basin. Equations based on 2D can only be applied 
on certain reservoir geometries. An example is Lituya Bay in Alaska where, in 
1958, the wave propagation was restricted on one side by a glacier. The calcula-
tion of this with the 2D model of Heller (2007a) agrees well with the field ob-
servations. Conversion of the wave height generated in 2D to 3D was implicitly 
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carried out by Huber and Hager (1997) and is now applied on the 2D data of 
Heller (2007a) (Appendix A.3.2.2). 

 

Table A-1 Range of dimensionless parameters in the studies of Kamphuis and Bowering (1972) (K. & 
B. (1972)), Huber and Hager (1997) (H. & H. (1997)), Panizzo et al. (2005) (P. et al. 
(2005)) and Heller (2007a); unk. = unknown specifies parameter ranges which are not tested 
or mentioned. 

 
 

In order to be able to compare the governing parameters with a prototype, they must 
be expressed in dimensionless form. The relative wave parameters in the model are 
identical with those of a prototype, providing that each of these dimensionless parame-
ters is identical. In the four investigations presented in Appendix A.3, not always the 
same governing parameters are varied and analysed, and this leads to different dimen-
sionless parameters. Table A-1 gives an overview of the investigated ranges of dimen-
sionless parameters of Kamphuis and Bowering (1972) (K. & B. (1972)), Huber and 
Hager (1997) (H. & H. (1997)), Panizzo et al. (2005) (P. et al. (2005)) and Heller 
(2007a). The parameter ranges that were not studied or mentioned are indicated as unk., 
i.e. unknown. Huber and Hager (1997) considered for the relative grain density ρg /ρw, 
comprised of the grain density ρg and the water density ρw, compared with Huber 
(1980) who investigated only ρg /ρw = 2.7, additional snow and glacier investigations 
from prototype-specific model tests with relative grain densities of up ρg /ρw = 0.92 
(Huber 2008). The relative slide width B = b/h resulted in 2D models only from change 
of the still water depth h, as the slide width b was always constant and identical with the 
channel width. Dimensionless parameters are abbreviated with a new symbol whenever 
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they appear in the work of Heller (2007a). The dimensionless parameters and their 
ranges, as shown in Table A-1, will be discussed in Appendix A.3. 
 

A.3 Literature review 

A.3.1 Solid body models 

A.3.1.1 Wave channel (2D)  

Impulse waves generated by solid bodies are generally somewhat higher than waves 
resulting from granular slides (Section 4.3). The wave height decay in 2D is larger than 
that for the 3D model (Appendix A.2). Kamphuis and Bowering (1972) conducted 
experiments in a channel 45 m long and 1 m wide, with still water depths in the range 
h = 0.23 m and 0.46 m. The slide was modelled as a solid body having a constant den-
sity ρg = 2,700 kg/m3 and a porosity n = 0. The still water depth, the slide impact angle 
α, the slide dimensions s and ls, the slide impact velocity Vs and the slide front angle 
φ were also varied. The slide front angle φ  had a negligible effect on the impulse wave 
generation, as was later confirmed by Heller (2007a). 

The dimensionless parameters used by Kamphuis and Bowering (1972) were the 
slide Froude number F = Vs /(gh)1/2, the relative slide thickness S = s/h, the grain or bulk 
slide density D = ρs /ρw, the slide impact angle α, the relative width B = b/h, the two-
dimensional slide volume per unit width (ls /h)(s/h) and the relative streamwise distance 
X = x/h (Table A-1). The ranges studied, which are also given in Table A-1, were 
0.9 ≤ F ≤ 3.1, 0.25 ≤ S ≤ 0.88, 20° ≤ α ≤ 90°, 2.17 ≤ B ≤ 4.35, 0.05 ≤ (ls/h)(s/h) ≤ 1.0, 
10 ≤ X ≤ 74.3, and D = 2.7 = constant. The data from Kamphuis and Bowering (1972) 
showed a great number of dependences of the wave characteristics on the test parame-
ters. Hence, tests were excluded and only in certain ranges of parameters were generally 
applicable equations derived. These authors found that, from a given relative distance, 
the wave heights mostly decreased only slightly. This stable wave height Hst was always 
reached if X < 80 and, for the parameter limitations 0.05 < (ls /h)(s/h) < 1.0, S ≥ 0.5, 
(α + φ) ≥ 90° and α ≈ 30°, could be calculated as 
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This stable wave height Hst was further used to determine the wave height decay in the 
parameter ranges 0.1 < (ls /h)(s/h) < 1.0 and 10 ≤ X ≤ 48 as 
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The wave height decay has an exponential character, therefore. The effect of the slide 
impact angle α is negligible. 

Kamphuis and Bowering (1972) also determined that the impulse wave celerity c 
may be described with the solitary wave celerity (Section 2.2), which is given by 

 
( )[ ] 2/1ahgc += . (A.3) 

 
Whilst Eq. (A.3) was later verified for landslide generated impulse waves, for example 
by Huber (1980) or Heller (2007a), the concept with a stable wave height Hst is not 
confirmed. The advantage and disadvantages of the investigation of Kamphuis and 
Bowering (1972) are:  

 
+ Most relevant governing parameters were varied. 
− The wave decay is large in comparison with other tests. 
− The slide was modelled as a solid body (n = 0). 
− The work is based on an outdated measurement system (wire gauges). 
− The tests were conducted in a wave channel (2D). 
− Only one grain density of ρg = 2,700 kg/m3 was tested. 
− Equation (A.2) covers only some of the conducted tests. 
− A diagram with the measurement points for Eq. (A.2), for optical control, is 

only available for a few of the tests. 
− The number of tests is relatively small (probably < 50). 

 

A.3.1.2 Wave basin (3D) 

The heights of impulse waves generated by a solid body tend to be overestimated com-
pared with those due to granular slide material (Section 4.3; Appendix A.2). In a wave 
basin the radial distance r replaces the streamwise distance x in the wave channel. The 
wave propagation angle γ is an additional parameter as distinct from 2D. Panizzo et al. 
(2005) modelled the slide with a solid body of constant density ρg = 2,200 kg/m3 which 
generated impulse waves in a wave basin. Hence, the block slides into a corner on a 
ramp in the 6 m × 12 m wave basin. By combining several tests it was possible on 
grounds of symmetry to simulate a wave basin with a surface area four times as large, in 
which the solid body impacted in the middle of one side of the basin. In total, 288 tests 
were conducted. Panizzo et al. (2005) used the following dimensionless parameters: the 
slide Froude number F = Vs /(gh)1/2, the relative slide thickness S = s/h, the relative grain 
or slide density D = ρs /ρw, the slide impact angle α, the relative width B = b/h, the 
relative time of underwater slide motion ts(g/h)1/2, the parameter (s/h)(b/h), the relative 
radial distance r/h and the wave propagation angle γ (Table A-1). The relative slide 
length ls /h, which was also investigated, had no effect in any of the equations presented.  
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Table A-1 shows further the ranges studied by Panizzo et al. (2005) as 
1.00 ≤ F ≤ 2.22, 0.11 ≤ S ≤ 0.45, D = 2.2 = constant, 16° ≤ α ≤ 36°, 0.38 ≤ B ≤ 1.50, 
0.39 ≤ ts(g/h)1/2 ≤ 5.11, 0.04 ≤ (s/h)(b/h) ≤ 0.68, 1.3 ≤ r/h ≤ 15.1 and −90° ≤ γ  ≤ +90°.  
Of special interest in the investigation of Panizzo et al. (2005) is the use of the time of 
underwater slide motion ts. It lasts from the moment of impact to when the slide comes 
to rest. It is difficult to predict prior to an event and it was, therefore, developed empiri-
cally as a function of the other known dimensionless governing parameters as 
 

( )( )( ) ( ) 32.166.027.0 sin//43.0)/( −−−= αFhbhshgts . (A.4) 

 
The relative wave height Y(r/h, γ ) = H(r, γ )/h is given, with a coefficient of determina-
tion R2 = 0.79, as 
 

( )
( )( ) ( ) ( )( ) 44.088.0

45.0

/cos6.0expsin
//

)/(
07.0, −−

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= hr

hbhs
hgt

h
rH s γαγ . (A.5) 

 
An impulse wave in a wave basin of constant depth h will only change as a result of the 
decay term exp(0.6cosγ )(r/h)−0.44. This term is presented in Figure A-4(a) as a function 
of the relative wave height H(r, γ )/h and the wave propagation angle γ. The individual 
lines represent constant relative radial distances r/h. The wave height is greatest in the 
slide impulse direction (γ = 0°; Figure A-1b) but decreases with increasing or decreas-
ing wave propagation angle γ . It reaches a minimum at γ  = ±90°. 

The relative wave period T (r, γ )(g/h)1/2 of the wave height H(r, γ ) was determined, 
with a coefficient of determination R2 = 0.64, as 
 

( ) ( ) ( ) 17.025.022.0
/sin)/(50.2/),( hrhgthgrT s

−−
= αγ . (A.6) 

 
The influence of the wave propagation angle γ  on T (r, γ )(g/h)1/2 was negligible and was 
not considered in Eq. (A.6). According to Eq. (A.6) the wave period increases only 
slightly as a function of the relative distance r/h. The advantages and disadvantages of 
the tests conducted by Panizzo et al. (2005) are: 

 
+ An equation for both H(r, γ ) and T (r, γ ) is available. 
+ The results are valid for 3D which, compared with a 2D-limitation, more often 

represents a prototype. 
+ The number of tests, 288, is large. 
+ The effects of the governing parameters appear to be physically comprehensible. 
− The slide was modelled with a solid body (n = 0). 
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− The relative wave height H/h depends on the relative time of underwater slide 
motion ts(g/h)1/2, which is unknown and therefore has to be determined empiri-
cally from Eq. (A.4) as a function of the remaining governing parameters. 

− Only one bulk slide density (ρs = 2,200 kg/m3) was investigated. 
− The slide impact angle range of 16° ≤ α ≤ 36° is too small for an Alpine envi-

ronment. 
 

 
Figure A-4 Comparison of the effects of the decay terms (a) Panizzo et al. (2005) with 

exp(0.6cosγ )(r/h)−0.44 and (b) Huber and Hager (1997) with cos2(2γ /3)(r/h)−2/3. Point (○) 

with Y(r/h = 5, γ = 0°) = 0.25 (Heller 2007a) is taken as comparison point. 
 

A.3.2 Granular slide models 

A.3.2.1 Wave channel (2D) 

The equations for wave height developed by Huber and Hager (1997) were based on the 
data set of Huber (1980). The 2D results are available for about 1,000 tests conducted in 
a wave channel 30.4 m long and 0.50 m wide. The 3D equations of Huber and Hager 
(1997) are discussed in Appendix A.3.2.2. Huber (1980) used a constant grain density 
of ρg = 2,700 kg/m3. However, Huber and Hager (1997) included further tests with 
snow avalanches and glacier calving from prototype specific model tests, with relative 
densities of up to ρg /ρw = 0.92 (Huber 2008). The granular slide consisted of grains 
with various sizes but these were always in the same composition. The slide mass was 
varied in the range 5 kg ≤ ms ≤ 50 kg and the range of still water depths considered was 
0.12 m ≤ h ≤ 0.36 m. Huber and Hager (1997) worked with the granulate properties Vg 
and ρg (Appendix A.2). The slide Froude number F = Vs /(gh)1/2, the relative grain den-
sity ρg /ρw, the relative slide grain volume Vg /(bh2), the slide impact angle α, the relative 
width B = b/h and the relative streamwise distance X = x/h served as dimensionless 
governing parameters. The ranges for which the dimensionless parameters were deter-
mined were 0.5 ≤ F ≤ 3.69, 0.9 ≤  ρg /ρw ≤ 2.7, 0.03 ≤ Vg /(bh2) ≤ 2.57, 28° ≤ α ≤ 60°, 
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1.39 ≤ B ≤ 4.17 and 5 ≤ X ≤ 100 (Table A-1). The relative wave height H(x)/h is calcu-
lated as 
 

( ) 4/1

)(sin88.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

w

g

h
xH

ρ
ρ

α [Vg/(bh2)]1/2X 
−1/4. (A.7) 

 

The slide impact velocity does not appear in Eq. (A.7) and has only a negligible effect 
on the relative wave decay. The advantages and disadvantages of the Eq. (A.7) of Huber 
and Hager (1997) are discussed in Appendix A.3.2.2, together with the 3D results. 

 
The work of Heller (2007a) is a continuation of that of Fritz (2002) and Zweifel 

(2004), and completes the project on impulse wave generation at VAW. These two 
authors developed equations to determine the maximum wave amplitude aM, and in 
addition Zweifel (2004) developed one for the wave amplitude decay a(x). However, 
not all governing parameters for wave generation were considered. In addition, Heller 
(2007a) deduced a relationship for the wave height decay H(x). As he also took into 
account, in addition to his own tests, those of Fritz (2002) and Zweifel (2004), only the 
final equations of Heller (2007a) are discussed hereafter. They are based on a total of 
434 tests. 

Heller’s (2007a) work was carried out in the 11.0 m long and 0.50 m wide test facil-
ity designed by Fritz (2002). The granulate slide is accelerated to the required impact 
velocity Vs by means of a pneumatic landslide generator. As distinct from other tests 
based on granulate, such as for example those reported by Huber and Hager (1997), the 
governing parameters could be varied independently from one another. Figure A-5 
shows the dependence of the slide thickness s on the slide impact velocity Vs, for the 
tests of Huber (1980), who stored the granulate slide in the starting position behind a 
vertical wall. On removing this wall upwards, the slide started to move under the effect 
of gravity. As the starting position in Figure A-5(a) is nearer to the impact location than 
in Figure A-5(b), the slide impact velocity will be lower, namely Vs1 < Vs2. Hence, in 
Figure A-5(b), the slide thickness decreases more, due to the longer distance to the 
impact zone, because s1 > s2. The higher the slide impact velocity Vs, the smaller is the 
slide thickness s. These two important governing parameters s and Vs cannot therefore 
be varied independently. If, for instance, the maximum wave height HM changes this is 
not to be definitely attributed to the change of one governing parameter. The interpreta-
tion of the results is, therefore, more difficult. The pneumatic landslide generator de-
scribed by Heller (2007a) makes possible, in addition to the independent parameter 
variation, also a high degree of test reproducibility; this is shown by the relatively small 
scatter of the test results seen in Figure A-6 and Figure A-7. 
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Figure A-5 Dependence of slide thickness s and slide impact velocity Vs, for the tests of Huber and 

Hager (1997): Vs1 < Vs2 but s1 > s2. 

 
In the equations of Heller (2007a) the following dimensionless governing parame-

ters were varied (Table A-1): the slide Froude number F = Vs /(gh)1/2, the relative slide 
thickness S = s/h, the relative slide mass M = ms /( ρwbh2), the relative grain D =ρg /ρw 
and slide D = ρs /ρw densities, respectively, the relative slide volume V = Vs /(bh2), the 
bulk slide porosity n, the slide impact angle α, the relative width B = b/h and the relative 
streamwise distance X = x/h. The ranges studied were 0.86 ≤ F ≤ 6.83, 0.09 ≤ S ≤ 1.64, 
0.11 ≤ M ≤ 10.02, 0.59 ≤ D ≤ 1.72, 0.96 ≤ ρg /ρw ≤ 2.75, 0.05 ≤ V ≤ 5.94, 
30.7% ≤ n ≤ 43.3%, 30° ≤ α ≤ 90°, 0.74 ≤ B ≤ 3.33 and 2.7 ≤ X ≤ 59.2 (Table A-1). 

The slide parameters Vs, Vs, s and ρs refer to the slide impact zone, not to the initial 
position of the slide. In addition, the effect of the granulometry was investigated by 
using various grain diameters between 0.002 m and 0.008 m. However, their effect on 
the wave characteristics, for instance on the wave height, was found to be negligible. 
The slide mass ms = Vs·ρs and the bulk slide porosity n were not systematically investi-
gated, but were determined subsequently, with the help of the remaining governing 
parameters. 

In the slide impact zone, above all the relative maximum wave height YM = HM /h, 
its relative streamwise distance XM = xM /h and wave period TM are relevant.          
Figure A-6(a) shows the relative maximum wave height YM = HM /h as a function of the 
impulse product parameter P = FS1/2M 

1/4{cos[(6/7)α]}1/2. This parameter consists of 
slide or water parameters, which can be estimated prior to an event. In Figure A-6(a), all 
tests conducted by Fritz (2002), Zweifel (2004) and Heller (2007a) are taken into ac-
count. The data points ( ) were measured at small still water depth of h = 0.150 m. As 
they could be affected by scale effects, corresponding to distortion of the measured 
values in the model, as compared with the respective values in the prototype (Heller 
2007b), they are specially marked. Were the scale effects to be corrected, these points 
would move upwards by about 15% at most, relative to the ordinate. The character of all 
data points and hence of Eq. (A.8) would thus only change insignificantly. The work of 
Huber and Hager (1997) also included many tests conducted in the range of non-
negligible scale effects. However, these were not studied in detail. The data points in 
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Figure A-6(a) for the relative maximum wave height YM = HM /h may be expressed, with 
a coefficient of determination R2 = 0.85, as 
 

5/4)9/5( P=MY . (A.8) 
 

The relative streamwise distance XM = xM /h of the relative maximum wave ampli-
tude AM = aM /h is shown on Figure A-6(b), also as a function of the impulse product 
parameter P. As the location at which the relative maximum wave amplitude AM was 
measured coincides in more than 90% of the cases with the location of relative maxi-
mum wave height YM, the following Eq. (A.9) may also be used to determine the dis-
tance YM. The coordinate system is double logarithmic. It is not possible to estimate 
whether a test point ( ), with non-negligible scale effects, is too near or too far from the 
coordinate origin. The relative streamwise distance XM may, with a coefficient of deter-
mination of R2 = 0.13, be defined as 
 

( ) 2/12/11 P=MX . (A.9) 
 
The parameter XM can, therefore, only be predicted with relatively low accuracy in the 
range 2.67 ≤ XM ≤ 17.13. 
 

 
Figure A-6 (a) Relative wave height YM as a function of the impulse product parameter P with 

(−) Eq. (A.8) and (- -) ±30% deviation (R2 = 0.85); the data ( ) are as a result of scale effects 
relative to the ordinate at most 15% too low and (b) double logarithmic diagram for the rela-
tive streamwise distance XM of the relative maximum wave height YM as a function of the 
impulse product parameter P, with (−) Eq. (A.9) and (- -) ±50% deviation (R2 = 0.13); The 
influence of scale effects on ( ) cannot be estimated (after Heller 2007a). 

 
The relative wave period TM (g/h)1/2 corresponding to the maximum wave height HM  

can, with a coefficient of determination of R2 = 0.39, be calculated as 
 

2/12/1 9)/( P=hgTM . (A.10) 
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Figure A-7 Wave height decay Y(X ) as a function of the parameter PX −1/3 with (−) Eq. (A.11) and       

(- -) ±30% deviation (R2 = 0.84); for each test the six measured values of wave height are 
connected with a line; due to scale effects the data points ( ) are rather low, relative to the 
ordinate and the wave decay is too large (after Heller 2007a). 

 
In the wave propagation zone, above all the relative wave height decay Y(X ) is of 

importance. The corresponding diagram is shown in Figure A-7. It shows the unknown 
relative wave height Y(X ) = H(x)/h as a function of the parameter PX 

−1/3. The meas-
urement points of each test are connected with a line. As the relative streamwise dis-
tance X has a negative exponent, X = ∞ is located at the origin in Figure A-7, where the 
wave height must be equal to zero. The waves at the data points ( ) are subject to scale 
effects and are too quickly damped as compared with tests with negligible scale effects. 
Their influence on the subsequent Eq. (A.11) is again small. Equation (A.11) considers 
above all the overall decay character, but to a lesser extent the maximum relative wave 
height YM. The worst-case scenario for the greatest wave height occurring in the impact 
zone should, therefore, be estimated using Eq. (A.8). The decay of relative wave height 
Y(X ) = H(x)/h, based on Figure A-7, is expressed with R2 = 0.84 as 
 

( )( ) 5/43/14/3)( −= XXY P . (A.11) 
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After Heller (2007a) or Heller and Hager (2009a), the relative wave amplitude 
A(X ) = a(x)/h may be determined from the relative wave height Y(X ) = H(x)/h as 
A(X ) = (4/5)Y(X ). This result was found on average for both the comparison of the 
maximum wave heights with the maximum wave amplitudes as well as for the wave 
height and amplitude decays, respectively. The water volume of the impulse wave thus 
moves mainly above the original water level and the wave trough is only one fifth of the 
wave height (Figure A-1). Therefore, similarity to the profile of the theoretical solitary 
wave exists. A perfect solitary wave has no trough as the wave consists only of a crest 
(Section 2.2).  

The classification of impulse waves into different wave types is important for the de-
termination of the run-up characteristics when the wave reaches a dam. A Stokes-like 
wave results in a different force effect on the dam than a solitary wave (Section 2.2). In 
addition, the properties of these theoretical waves are relatively well known. In hydrau-
lic model tests on wave run-up it was usually attempted to generate exactly these waves, 
so that the model results could be compared with theoretical data. Hence, a tsunami is 
usually modelled as a solitary wave. Possible wave classifications were already pre-
sented in earlier research studies such as that of Huber (1980) or Panizzo et al. (2005). 
Similar wave types to those described by Heller (2007a) were observed. New in the 
study of Heller (2007a) is the clear differentiation of the wave types. 

Impulse waves may be classified as Stokes, cnoidal, solitary and bore-like waves, as 
discussed in Section 2.2. Figure A-8 differentiates these four wave types. The slide 
Froude number F is plotted on the abscissa against the wave type product 
S1/3Mcos[(6/7)α] on the ordinate. Figure A-8 indicates the three zones in which, with a 
few exceptions, only the following wave types occur: 
 

[ ] 5/73/1 )54()7/6(cos −< F/MS α  Stokes-like waves, (A.12) 
 

[ ] 2/53/15/7 11)7/6(cos54 −− ≤≤ F)F( αMS/  cnoidal or solitary-like waves (A.13) 
 and 

 
[ ] 2/53/1 11)7/6(cos −> FαMS  bore-like waves. (A.14) 

 
The cnoidal and solitary-like waves appear in the same area of Figure A-8; this is 

due to the similarity of these two wave types. The equation of the profile of the solitary 
wave is a limiting case of the cnoidal wave equation, if a wave period T → ∞ is consid-
ered (Section 2.2). 
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Figure A-8 Classification of wave types with the axes S1/3Mcos[(6/7)α] and F with (–) Eq. (A.12) and 

„=“ instead of „<“ and (--) Eq. (A.14) with „=“ instead of „>“; in the dark grey area almost 
only Stokes-like waves occur, in the light grey area almost only cnoidal and solitary-like 
waves and in the white area practically only bore-like waves (after Heller 2007a). 

 
The following photographs show the four wave types observed by Heller (2007a) 

both in the impact zone during wave generation and in the wave propagation zone. 
Figure A-9 shows Stokes-like waves, Figure A-11 a cnoidal-like wave, Figure A-13 a 
solitary-like wave and Figure A-15 a bore-like wave. In addition, two profiles for each 
wave are shown in Figure A-10, Figure A-12, Figure A-14 and Figure A-16, respec-
tively. The relative wave profiles η/h are shown for each as a function of relative time 
t(g/h)1/2, as measured with fixed wave gauges at various relative streamwise distances X. 
The value t indicates the time after slide impact and the zero value on the ordinate cor-
responds to the undisturbed water surface. The grey areas in Figures A-10 and A-16 are 
each distorted by wave reflection close to the channel end. 

The Stokes waves were presented in Section 2.2. Stokes-like waves occur if 
Eq. (A.12) is satisfied. The dimensionless parameters the relative slide thickness S and 
relative slide mass M are small and the slide impact angle α tends to be large. As shown 
in Figure A-9, several small and symmetrical water waves occur. This wave type is in 
the range of the deep to intermediate-water waves (Section 2.1). 
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Figure A-9 Stokes-like impulse waves with h = 0.600 m, ρs = 608 kg/m3, α = 60°, F = 1.36, S = 0.23 

and M = 0.11 in (a) slide impact zone and (b) wave propagation zone with X = 6.1 - 10.7 
(Heller 2007a). 

 

 
Figure A-10 Relative wave profiles η/h of a Stokes-like impulse wave as a function of relative time 

t(g/h)1/2 with h = 0.600 m, ρs = 608 kg/m3, α = 45°, F = 1.18, S = 0.17 and M = 0.29:         
(a) measured at X = 2.88 and (b) at X = 4.55 (Heller 2007a). 

 
Cnoidal and solitary waves, which are generated if Eq. (A.13) is satisfied, are dis-

cussed in Section 2.2. The dimensionless parameters such as the relative slide thickness 
S, relative slide mass M and slide impact angle α are medium-sized. As shown in Fig-
ures A-11 and A-13, the wave height is larger than of the Stokes-like waves. In addition, 
the wave trough amplitude is significantly smaller than the positive wave amplitude and 
for the solitary waves in Figure A-13 the trough amplitude is nearly equal to zero. The 
two wave types are in the range of the intermediate to shallow-water waves (Section 
2.1). 
 

 
Figure A-11 Cnoidal-like impulse waves with h = 0.300 m, ρs = 610 kg/m3, α = 30°, F = 2.27, S = 0.40 

and M = 0.45 in (a) slide impact zone and (b) wave propagation zone with X = 10.3 - 17.6 
(Heller 2007a). 
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Figure A-12 Relative wave profiles η/h of a cnoidal-like impulse wave as a function of relative time 

t(g/h)1/2 with h = 0.300 m, ρs = 610 kg/m3, α = 45°, F = 2.70, S = 0.34 and M = 1.11:         
(a) measured at X = 4.77 and (b) at X = 8.10 (Heller 2007a). 

 

 
Figure A-13 Solitary-like impulse wave with h = 0.300 m, ρs = 609 kg/m3, α = 90°, F = 3.77, S = 0.81 

and M = 0.90 in (a) slide impact zone and (b) wave propagation zone for X = 15.3 - 24.3 
(Heller 2007a). 

 

 
Figure A-14 Relative wave profiles η/h of a solitary-like impulse wave as a function of relative time 

t(g/h)1/2 for the test in Figure A-13: (a) measured at X = 4.37 and (b) at X = 8.57 
(Heller 2007a). 

 
The bore was also discussed in Section 2.2. Bore-like waves are formed if 

Eq. (A.14) is satisfied. The dimensionless parameters: relative slide thickness S, relative 
slide mass M and slide Froude number F are all relatively large and the slide impact 
angle α tends to be small. Figure A-15(b) shows this wave type which consists of a sort 
of water roller which entrains and transports a large air volume. As seen from        
Figure A-16, the wave profile consists practically only of a wave crest. This wave type 
is grouped in the intermediate to shallow-water wave range (Section 2.1). 
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Figure A-15 Bore-like impulse wave with h = 0.300 m, ρs = 1,664 kg/m3, α = 60°, F = 4.22, S = 0.61 and 

M = 2.47 in (a) slide impact zone and (b) wave propagation zone for X = 14.9 - 24.3 
(Heller 2007a). 

 

 
Figure A-16 Relative wave profiles η/h of a bore-like impulse wave as a function of relative time t(g/h)1/2 

for the test in Figure A-15: (a) measured at X = 4.81 and (b) at X = 8.34  (Heller 2007a). 

 
The wave type may change during a test as the relative streamwise distance X in-

creases. Hence, a bore loses ever more air and tends to change into a cnoidal or solitary-
like wave. Up to now, a reliable wave type classification in 3D does not exist. 
 

 
Figure A-17 (a) Decay of the relative wave period T(x)(g/h)1/2 as a function of PX 5/4 with (−) Eq. (A-15) 

and (--) ±50% deviation (R2 = 0.64) and (b) relative wave period T(g/h)1/2 as a function of 
the relative wave height H/h with (−) Eq. (A-16) and (--) ±50% deviation (R2 = 0.10). 

 
For determining the effect of impulse waves on dams, Heller (2007a) does not give 

a relationship for the wave period decay T(x). However, the wave period T is required 
for example in Eq. (3.17) and T is herein analysed and shown in Figure A-17(a) from 
the test data of Heller (2007a). Figure A-17(a) shows the relative wave period 
T(x)(g/h)1/2 as a function of PX 

5/4. The data (×) were measured in the range h < 0.200 m 
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of non-negligible scale effects. The data points in Figure A-17(a) can, with a coefficient 
of determination R2 = 0.64, be described as 
 

( ) 4/14/52/1 9)/)(( XhgxT P= . (A.15) 
 
Heller and Hager (2009a) confirmed Eq. (A.15) with a larger data set than shown in 
Figure A-17(a). 

In Appendix A.3.2.2, Eq. (A.11) for determining wave heights H(x) in a wave chan-
nel is transformed to wave basins H(r, γ ). In order that in the wave basin the wave 
period T(r, γ ) can be determined, based on the known values H(r, γ ), Figure A-17(b) 
shows the relative wave period T(g/h)1/2 as a function of the relative wave height H/h for 
the data of Heller (2007a). These are described with R2 = 0.10 as 
 

4/1
2/1 15)/( ⎟

⎠
⎞

⎜
⎝
⎛=

h
HhgT . (A.16) 

 

Also shown in Figure A-17(b) are the data points (×) for tests with h < 0.200 m, with 
non-negligible scale effects. The rather large scatter in Figure A-17 does not have a 
great influence on the effect of the impulse waves on dams, as the influence of the wave 
period T in Eq. (3.17) is substantially less than that of the more exactly predicted wave 
height H according to Figure A-6(a). The investigation of Heller (2007a) has the follow-
ing advantages and disadvantages: 
 

+ It covers a large range of governing parameters, e.g. rock or ice masses, or slide 
impact angles in the range 30° ≤ α  ≤ 90° (Table A-1). 

+ The number of tests, 434, is large. 
+ It is based on data from three mutually-consistent dissertations. 
+ There is relatively little scatter of data. 
+ The equations are easy to use because the impulse product parameter P accounts 

for several wave parameters. 
+ It contains the most practice-relevant wave parameters and a wave type classifi-

cation. 
+ It includes a systematic and independent governing parameter variation. 
+ The governing parameters seem to act in a physically meaningful manner. 
+ Granular material was used for the tests and this, compared with a solid body, 

corresponds more often to typical prototype conditions.  
+ Diagrams are available with which the accuracy of the calculation equations 

may be followed visually. 
− The tests were conducted in a wave channel (2D) but Eq. (A-11), as described in 

Appendix A.3.2.2, is converted to 3D. 
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− The wave period TM is introduced by Heller (2007a) only for the maximum 
wave height HM, but its decrease or increase with the relative streamwise dis-
tance X is now belatedly determined in Figure A-17(a). 

 

A.3.2.2 Wave basin (3D) 

In addition to the work using the wave channel, Huber (1980) carried out about 150 
tests in a 10.0 m × 6.0 m wave basin, and these were re-analysed by Huber and Hager 
(1997). The governing parameters were selected in a similar way to that already used 
for the 2D investigation (Appendix A.3.2.1). In addition, in 3D the radial distance r 
replaces the streamwise distance x, with the wave propagation angle γ as a further gov-
erning parameter (Figure A-1b). The ranges of the dimensionless parameters are 
1.06 ≤ F ≤ 1.84, 0.9 ≤  ρg /ρw ≤ 2.7, 0.09 ≤ Vg /(bh2) ≤ 2.57, 30° ≤ α ≤ 60°, 
1.39 ≤ B ≤ 4.17, 5 ≤ r/h ≤ 30 and −90° ≤ γ  ≤ +90° (Table A-1). The relative wave height 
H(r, γ )/h is determined, with a scatter of about ±30%, from 
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Equation (A.17) for 3D and Eq. (A.7) for 2D are similar. The only difference is the 

change of the decay term from X 
−1/4 in Eq. (A.7) to cos2(2γ /3)(r/h)−2/3 in Eq. (A.17), as 

well as a constant factor of 2 in Eq. (A.17). This allows the results from the wave chan-
nel to be transformed to the wave basin. Figure A-4(b) shows the effects of the decay 
parameter cos2(2γ /3)(r/h)−2/3 on the relative wave height decay H(r, γ )/h, in proportion 
to the wave propagation angle γ. The lines indicate constant relative radial distances r/h. 
The influence of the decay parameter cos2(2γ /3)(r/h)−2/3 of Huber and Hager (1997) in        
Figure A-4(b) is compared directly with the decay parameter exp(0.6cosγ )(r/h)−0.44 of 
Panizzo et al. (2005) in Figure A-4(a). As basis of comparison the reference point (○) is 
selected at Y(r/h = 5, γ  = 0°) = 0.25. Both decay terms agree well from a qualitative 
point of view. In Figure A-4(b), the wave height decreases more rapidly, both with the 
relative radial distance r/h as well as with the wave propagation angle γ , than in    
Figure A-4(a).  

The advantages and the disadvantages of the investigation of Huber and Hager 
(1997) and of Huber (1980) are: 
 

+ Both 2D and 3D tests are included, allowing for direct comparisons. 
+ The numbers of tests, 150 (3D) and 1,000 (2D), is large. 
+ Granular material was used for the tests, corresponding more often to the condi-

tions in the prototype as compared with a solid body. 
+ The grain densities in the range 920 kg/m3 ≤ ρg ≤ 2,700 kg/m3 cover snow ava-

lanches, glacier calving as well as rock masses. 
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− The effects of the governing parameters are sometimes physically difficult to 
follow so the parameter limitations should be strictly considered. 

− The governing parameters could not be investigated independently from one an-
other (s depends on Vs, and Vs on α). 

− Diagrams for the visual control of Eqs. (A.7) and (A.17) are not available. 
− A substantial proportion of the tests are in the range in which scale effects can-

not be neglected. 
 

The wave height decrease according to Eq. (A.11) of Heller (2007a) for the wave 
channel (2D) is converted here for use in a wave basin (3D), using the procedure devel-
oped by Huber and Hager (1997). They considered both 2D and 3D tests (Appendi-
ces A.3.2.1 and A.3.2.2). Huber and Hager (1997) deduced the wave height decay with 
Eq. (A.7) for the wave channel and with Eq. (A.17) for the wave basin, for an identical 
combination of governing parameters G = 0.88(sinα)(ρg /ρw)1/4[Vg /(bh2)]1/2, as 
 

( ) 4/1−= GX
h
xH  for 2D (A.18) 

 

and as 
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The parameter G consists only of non-variable governing parameters for the wave 
propagation and Eqs. (A.18) and (A.19) differ only in the pre-factor 2 and the decay 
terms. These are, according to Figure A-1(a), the relative streamwise distance X = x/h 
for 2D in Eq. (A.18) and, according to Figure A-1(b), the relative radial distance r/h and 
the wave propagation angle γ   for 3D in Eq. (A.19). 

The composition of Eq. (A.19) may be explained with Figure A-18, showing the 
wave height decay in the wave basin of Huber and Hager (1997) and the parameter 
definition sketch according to Figure A-1(b). The relative wave height on the ordinate 
H(r/h, γ)/H(r/h = 5, γ = 0°) consists of the wave height H(r/h, γ ) and a wave height 
reference H(r/h = 5, γ = 0°) on the radial relative distance r/h = 5 and the wave propaga-
tion angle γ = 0°. On the abscissa of Figure A-18 the radial relative distance r/h is plot-
ted. For different wave propagation angles of −90° ≤ γ   ≤ +90° after Figure A-18 differ-
ent functions are observed of the form 
 

( )
( )

3/22 )/(
3

2cos3
0,5/

,/ −⎟
⎠
⎞

⎜
⎝
⎛=

°==
hr

hrH
hrH γ

γ
γ . (A.20) 

 
Equation (A.20) contains the applied decay terms for the impulse waves, as shown in 
Eq. (A.19), although with a constant factor of 3 rather than 2. Equations (A.18) and 



A Literature review on wave generation 

A-22 

(A.19), for the following reason, were coupled by Huber and Hager (1997) near to the 
impact zone. 
 
“Near to the impact zone, the heights of the 2- and 3-dimensional waves deviate little 
from each other” (Huber 1980). 
 
If Eqs. (A.18) and (A.19) are applied near to the impact zone at X = r/h = 5 and γ = 0°, 
they both result in an identical wave height, namely Eq. (A.18) in GX 

–1/4 = G5–1/4 ≈ 
(2/3)G and Eq. (A.19) in 2Gcos2(2γ /3)(r/h)–

 
2/3 = 2Gcos2(2·0/3)5–

 
2/3 ≈ (2/3)G. Equa-

tion (A.18) may therefore be converted into Eq. (A.19) provided that the 2D damping 
term X 

−1/4 is replaced by the 3D damping term cos2(2γ /3)(r/h)−2/3 and the additional 
pre-factor of 2. 
 

 
Figure A-18 Wave height decay in a wave basin with parameter definition sketch after Figure A-1(b): 

relative wave height H(r/h, γ )/H(r/h = 5, γ = 0°) as a function of the relative radial distance 
r/h for various wave propagation angles γ  (after Huber and Hager 1997). 

 
Equation (A.11) of Heller (2007a) contains an almost identical 2D damping term 

X 
−4/15, like Eq. (A.18) of Huber and Hager (1997) with X −1/4, which at the position 

X = 5 again yields X 
−4/15 ≈ 2/3. Equation (A.11) may therefore similarly be converted to 

3D, as reported by Huber and Hager (1997), in that the 2D decay term X 
−4/15 is replaced 

by the 3D decay term cos2(2γ /3)(r/h)−2/3 and the additional factor 2. Hence, the wave 
height decay for wave basins is obtained, based on Eq. (A.11) of Heller (2007a), as 
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Besides the limitations of the governing parameters according to Heller (2007a) in 
Table A-1, the limitations of 3D decay parameters of Huber and Hager (1997) given as 
5 < r/h < 30 and −90° ≤ γ  ≤ +90° are relevant for the application of Eq. (A.21).  
 

The advantage and disadvantage of Eq. (A.21) are: 
 

+ It is based on data of Heller (2007a) and has most of the advantages of this 
work, for instance the extensive variation of the governing parameters (Appen-
dix A.3.2.1). 

− It is theoretically deduced, analogously to the method of Huber and 
Hager (1997), but experimental proof is lacking to date. 

 

A.4 Summary and literature used in the computation procedure 

The description of the wave celerity c of landslide generated impulse waves with 
Eq. (A.3) has been confirmed by several studies. The investigation of Kamphuis and 
Bowering (1972), however, is by now rather unsuitable as a modern computation 
method as a solid body in a wave channel was investigated using outdated measurement 
methods. 

The investigation of Panizzo et al. (2005) in 3D, with a solid body, do not corre-
spond to conditions in the Alpine environment, above all because of the small slide 
impact angles of α  ≤ 36° and the constant slide density based on rock and not on ice. 

The investigation of Huber and Hager (1997) was based both on granular slides and 
a wave basin (3D). A disadvantage is that the governing parameters were not varied 
independently, resulting in physically difficult to follow effects of the governing pa-
rameters in Eq. (A.17). Hence, for example, the slide impact velocity Vs has no influ-
ence on the wave height H. The parameter limitations of Huber and Hager (1997) must 
therefore be strictly adhered to. 

The investigation of Heller (2007a) was based on granular slides. Practically all 
governing parameters were systematically varied in a large spectrum, independent from 
each other (Table A-1). The tests of Heller (2007a) may therefore be considered the 
most generally applicable 2D tests presently available. A further advantage is the wave 
type classification shown in Figure A-8. A definite disadvantage is that the tests were 
carried out in a wave channel (2D), which is seldom representative of prototype condi-
tions, and not in a wave basin (3D). The transformation of the wave height from 2D in 
Eq. (A.11) to 3D in Eq. (A.21) was therefore made using the procedure of Huber and 
Hager (1997). For the reasons mentioned, in the computation procedure in Figure 3-1 
and in Section 3.2, the investigation of Heller (2007a) was therefore applied. 
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B Literature review on effects of impulse waves on dams 

B.1 Introduction 

This Appendix B reviews the relevant literature on the effects of impulse waves on 
dams and explains which methods and why they are selected in the computation proce-
dure shown in Figure 3-1 and in Sections 3.3 and 3.4. When considering wave run-up a 
basic differentiation between periodic and non-periodic waves must be made (Sec-
tion 2.1). Wind waves are periodic; their run-up will be influenced by the run-down of 
the preceding wave. Impulse waves are mostly non-periodic and, with respect to run-up, 
they can best be compared with that of a classic tsunami, resulting from a tectonic plate 
movement (Müller 1995). The first wave is usually the largest and therefore the govern-
ing wave, whose run-up is not affected by the run-down of a previous wave. An excep-
tion are small Stokes-like waves (Section 2.2; Appendix A.3.2.1) as these are periodic 
and consist of several waves of the same size in which the first is not necessarily the 
largest. 

As already for the impulse wave generation, this literature review is restricted to 
generally applicable equations, i.e. studies conducted specifically for a prototype are not 
discussed. Dam break wave studies, where the wave flows against a vertical wall, are 
not relevant with regard to the force effect as they approach the dam over either a dry or 
only slightly wetted reservoir bed. Impulse waves discussed herein already encounter an 
impounded volume of water behind the dam. 

In Appendix B.2 the governing parameters for run-up, overtopping and the force ef-
fect are introduced, and an overview is given of the herein presented studies. Depending 
on their type, the run-up behaviour of waves differs. Therefore, the literature review on 
wave run-up and overtopping (Appendix B.3) as well as on wave force effect (Appen-
dix B.4) is presented for three categories: Stokes-like waves, cnoidal and solitary-like 
waves as well as bore-like waves. These wave types were introduced in Section 2.2 and 
Appendix A.3.2.1. With respect to the force effect, a fourth case has to be considered, 
namely waves that break as plunging breaker directly on a dam (Figure B-10a). In Ap-
pendix B.5 conclusions are given on the technical literature considered together with a 
justification of why the methods were selected for the computation procedure given in 
Figure 3-1 and in Sections 3.3 and 3.4, respectively. 
 

B.2 Parameter definitions 

Figure B-1 shows the definition sketch for wave run-up and overtopping with the rele-
vant parameters. As distinct from Subsection 3.3.2, those governing parameters whose 
effects, although investigated, could not be integrated in generally applicable 2D equa-
tions are discussed. The following parameters affect the run-up height R and the over-
topping volume V per unit length dam crest: 
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• Wave height H (2D and 3D) 
• Wave amplitude a (2D and 3D) 
• Wave length L (2D and 3D) 
• Wave period T (2D and 3D) 
• Still water depth h (2D and 3D) 
• Run-up angle or dam face slope β (2D and 3D) 
• Freeboard f (2D and 3D) 
• Crest width bK (2D and 3D) 
• Dam surface characteristics: roughness, permeability (2D and 3D) 
• Wave breaking type (2D and 3D) 
• Reservoir geometry (3D) 
• Incidence wave angle (3D) 

 

 
Figure B-1 Definition sketch for wave run-up and overtopping. 

 

Whilst the first ten governing parameters are relevant both for the wave channel (2D) 
and for the wave basin (3D), the last two are only considered in the wave basin. The 
first four parameters H, a, L and T are characteristics of the approaching impulse wave. 
The wave breaking type essentially describes whether a wave reaches the dam intact or 
as a bore. The influences of the dam surface characteristics, the reservoir geometry and 
of the incidence wave angle, although discussed in Appendix B, have not been generally 
assessed and are not therefore integrated in the corresponding generally applicable 
equations. According to the German Association for Water Management and Land 
Improvement [Deutscher Verband für Wasserwirtschaft und Kulturbau DVWK] (1997), 
the run-up angle β for embankment dams is usually in the range 1:5 ( β = 11.3°) to 1:1.6 
( β = 32.0°), whereas it is up to β = 90° for gravity dams. The wave parameters H, a, L 
and T refer to the cross-section in front of the dam (Figure B-1), where the wave is still 
unaffected by shoaling (Section 4.2). In addition, for the overtopping volume V per unit 
length dam crest, in Figure B-1, the freeboard f and the crest width bK are of signifi-
cance. 

If a slide mass succeeds in breaking through an ice layer on a lake or reservoir, the 
impulse waves are only slightly damped by the broken ice pieces (Huber 1987). Ne-
glecting an ice layer in the computation of an impulse wave is, according to Müller 
(1995), possible up to a thickness of 0.50 m. Dam curvature is often mentioned in the 
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technical literature as a further governing parameter, but no research quantifying its 
effect is available. 
 

 
Figure B-2 Schematic classification of the generally applicable studies presented in Appendix B for 

(a) wave run-up and overtopping and (b) force effect. 

 
Figure B-2 shows the schematic classification of the generally applicable studies on 

impulse wave effects on dams, as presented in Appendix B. In Figure B-2(a) the classi-
fication for wave run-up and overtopping is presented, as covered by Appendix B.3. The 
studies are further classified in the subsections on Stokes-like, cnoidal and solitary-like, 
as well as bore-like waves (Section 2.2; Appendix A.3.2.1). All equations are based on 
tests in wave channels (2D); 3D effects such as the reservoir geometry were indeed 
investigated, for example by Müller (1995), but could only be considered qualitatively 
and were not integrated in the generally applicable equations. 

Figure B-2(b) shows the classification of studies of waves force effect on dams, as 
presented in Appendix B.4. Such studies have mostly been conducted to investigate the 
force effect on breakwaters to protect the coast, the results of which are here trans-
formed to dams. Also, these studies consider only 2D effects; as general knowledge on 
3D effects is not yet available. In addition, all these studies consider wave effect on a 
vertical dam face ( β = 90°). The transformation of the resultant force into horizontal 
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and vertical components is shown for β < 90° in Subsection 3.4.2. In addition to the 
three categories: Stokes-like, cnoidal and solitary-like as well as bore-like waves, as 
shown in Figure B-2(b), waves breaking as plunging breaker directly on a dam exists as 
a fourth category. If, for example, a solitary wave impacts as a plunging breaker  
(Figure B-10a) directly on the dam, a large local force of short duration is generated at 
the site of the enclosed air pocket. This phenomenon, which may cause localised dam-
age, is discussed in Appendix B.4.4. 
 

B.3 Wave run-up and overtopping 

B.3.1 Stokes-like waves 

Stokes-like waves were described in Section 2.2 and Appendix A.3.2.1. When they run-
up the dam slope they most often do not break as the dam face slope β is too large 
and/or the wave height H is too small (Eq. B.28). For such non-breaking waves on a 
steep dam face which, moreover, move as deep-water waves, the run-up height R may 
be theoretically determined according to Miche (1951) from 
 

2/1
90
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⎛ °=
βH

R . (B.1) 

 
Should the wave nevertheless break, additional energy will be converted due to the air 
entrainment; as a result less energy is available for run-up. For breaking waves, the run-
up height R determined with Eq. (B.1) will therefore be overestimated. The advantage 
and disadvantages of Eq. (B.1) are: 
 

+ Only the wave height H and the run-up angle β need to be known. 
− The equation is deduced from theory. 
− It is only valid for non-breaking waves, but yields an upper limiting value 

for breaking waves. 
 

DVWK (1997) proposed reduction factors kD and kR for wind waves, accounting for 
the permeability and roughness of the dam surface. Stokes waves are similar to wind 
waves, as they also exhibit oscillatory characteristics (Chapter 2). The corresponding 
reduction factors are given in Table B-1. As an example, the run-up height R for rip-rap 
is only about 55% of that for a smooth dam surface. 

Other authors point out that on a flat shore the friction is more effective than on a 
steep shore. According to Hunt (1959), the run-up height R decreases for constant 
roughness, by 29% for a slope of 1:30, but by only 18% for a 1:10 slope, compared with 
a smooth bed. 
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Table B-1 Reduction factor (kD⋅kR) accounting for the permeability and roughness of the dam surface 
(DVWK 1997). 

 
 

No literature on wave overtopping for Stokes-like waves was found. This is proba-
bly because such waves are of relatively small wave height H and represent therefore 
only a relatively small danger. The overtopping of Stokes-like waves may, however, be 
described with the studies of Müller (1995) and Müller and Vischer (1996), as referred 
to in Appendix B.3.2. 
 

B.3.2 Cnoidal and solitary-like waves 

Cnoidal and solitary-like waves were described in Section 2.2 and Appendix A.3.2.1. 
Hall and Watts (1953) conducted experiments on the run-up of solitary waves, for run-
up angles in the range 5° ≤ β  ≤ 45° and for impermeable beds. Irrespective of whether a 
wave breaks or not, they determined for the range 20° ≤ β  ≤ 45° the empirical relation-
ship 
 

02.0)tan(15.1
13.0)tan(05.3

β

β ⎟
⎠
⎞

⎜
⎝
⎛=

h
H

h
R . (B.2) 

 
The advantages and disadvantages of this study are: 
 

+ Equation (B.2) is often referred to in the technical literature. 
+ Only the wave height H and the run-up angle β are required. 
− The run-up angle lies only in the range 20° ≤ β  ≤ 45°. 
− The experiments were conducted more than fifty years ago using old meas-

urement techniques and wave generation system. 
 

Synolakis (1987) conducted probably the most often cited work on the run-up of 
solitary waves. He deduced analytically a run-up equation for non-breaking solitary 
waves and subsequently confirmed it experimentally for a run-up angle β = 2.9°. This 
equation reads 
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Equation (B.3) is known in the technical literature as the “run-up law”. Furthermore, 
Synolakis (1987) showed experimentally that for β = 2.9° the run-up heights differ from 
one another for breaking and non-breaking waves. The former run less far up the dam 
slope, corresponding to their wave height H, than non-breaking waves. Figure B-6(a) 
shows the relative run-up height R/h as a function of the relative solitary wave height 
H/h, on a double logarithmic scale. Run-up heights from breaking and non-breaking 
waves do not follow the same trend. The advantages and disadvantage of the work of 
Synolakis (1987) are: 
 

+ Equation (B.3) is analytical and was confirmed experimentally for β = 2.9°. 
+ Equation (B.3) has established itself in the technical literature. 
− The run-up angle β selected for the experiments is too small as compared 

with typical dam slopes. 
 

Müller and Vischer (1996) investigated both the run-up height as well as the over-
topping volume of impulse waves on dams with systematic model tests. They conducted 
637 tests in the wave channel and 96 in the wave basin. The solitary waves were gener-
ated by dropping a solid body into the water at one end of the channel. Three dam 
slopes, namely vertical (β = 90°), 1:1 ( β = 45°) and 1:3 ( β = 18.4°) were tested. Most of 
the waves were non-breaking during run-up due to the relatively steep shore slope. The 
run-up height R was, with a deviation for most tests of less than ±10%, determined as 
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The original term (π /2β ) in Müller and Vischer (1996) was rewritten in Eq. (B.4) as 
(90°/β ), in order that β could be expressed in degrees. Maximum deviations of the 
measured values compared with Eq. (B.4) are +35% and −25%. The wave height H, the 
wave length L and the still water depth h relate as usual to the location in front of the 
dam. The parameter limitations to allow the application of Eq. (B.4) are relative wave 
height 0.011 < H/h < 0.521, waves steepness 0.001 < H/L < 0.013 and relative angle 
1.0 < 90°/β < 4.9 (Table 3-3). The overtopping volume V0 per unit length dam crest for 
a freeboard f = 0 is given by 
 

V0 /h2
44.03/4

/
45.1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛=

gh
T

h
Hκ . (B.5) 

 



B Literature review on effects of impulse waves on dams 

B-7 

Analogous to the equation of Poleni (e.g. Hager 1995), an overfall coefficient 
κ = κ qκ bκ w

3/2 was used in Eq. (B.5), with κ q as the overfall coefficient for steady flow, 
κ b accounts for the influence of the crest width of the dam and κ w takes account of the 
increased wave energy, as compared with steady flow and hence its higher flow velocity 
(Müller 1995). These three parameters are: 
 

(a) κ q = 0.41 ( β = 90°), κ q = 0.47 ( β = 45°) and κ q = 0.51 ( β = 18.4°), 
 

(b) κ b can be determined from Figure 3-6(a) as a function of the relative maximum 
overtopping depth aMax,T /bK and 

 
(c) κ w = 1.3 over the whole range 18.4° ≤ β ≤ 90°. 

 

 
Figure B-3 (a) Influence of the relative freeboard f /R on overtopping volume V/V0 and (b) influence of 

the incidence wave angle with the run-up height to the run-up height in the main impulse di-
rection Rγ  ≠ 0°/R as a function of the relative crest length l/lK [%] (from Müller and Vischer 
1996). 

 
The maximum overtopping depth over a dam aMax,T is shown in Figure 3-6(b). 

This is somewhat bigger than the wave amplitude a in front of the dam and can there-
fore be approximated with the wave height H (Figure B-1). The crest width bK is shown 
in Figure B-5. In the prototype the freeboard is normally f > 0, and the overtopping 
volume V0 per unit length dam crest for f = 0 from Eq. (B.5) is correspondingly reduced, 
as shown in Figure B-3(a). This shows on the ordinate, for f > 0, the overtopping vol-
ume V, relative to V0, and on the abscissa the parameter (1 − f /R). The required run-up 
height R can be calculated from Eq. (B.4). The overtopping volume per unit length dam 
crest is given, according to Figure B-3(a), as 
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The parameter limitations applying to the use of the Eqs. (B.5) and (B.6) are: 
0.019 < H/h < 0.488, 0.59 < a/H < 0.95, 0.001 < H/L < 0.023, 9.0 < T(g/h)1/2 < 21.0, 
0.83 < c2/(gh) < 1.40 and 6.0 < L/h < 24.0 (Table 3-4). 

In addition to V, Müller (1995) provides an equation for the average discharge q0m 
per unit length dam crest for f = 0 in the ranges 14 < T(g/h)1/2 < 22 and 
10.5 < t0(g/h)1/2 < 13.5. Müller (1995) also presented the relative overtopping duration 
t0(g/h)1/2 as a function of the relative wave period T(g/h)1/2, as shown in Figure B-4(a). 
The maximum deviation is −12% and the data points in Figure B-4(a) were described 
by Müller (1995) with 
 

( ) 9/42/1
0 /4)/( hgThgt = . (B.7) 

 
The average discharge q0m per unit length dam crest for f = 0 is obtained from the com-
bination of Eqs. (B.5) and (B.7) as q0m = V0 /t0. 

As well as the average discharge q0m, the maximum discharge q0M per unit length 
dam crest is important with regard to the erosion potential on embankment dams.  
Figure B-4(b) shows three typical normalised impulse wave profiles η/aMax,T as a func-
tion of the relative wave period t/T on the abscissa. The duration of overtopping t0, as 
determined from Eq. (B.7), allows to determine a mean discharge; this is shown by the 
line (--) η/aMax,T = 0.5 in Figure B-4(b), in which the grey areas lying above and below 
balance out for a chosen wave profile. The wave crest lies about 50% higher. The maxi-
mum discharge per unit length dam crest for f = 0 is, therefore, q0M ≈ 2·q0m, but occurs 
for only a short period. Müller (1995) gives no discharge data for f > 0. As V < V0, the 
values q0m and q0M for f = 0 are higher and hence overestimate the unknown values for 
f > 0. 

 

 
Figure B-4 (a) Relative overtopping duration t0(g/h)1/2 as a function of the relative wave period T (g/h)1/2 

with (─) Eq. (B.7) and (b) three normalised impulse wave profiles η /aMax,T as a function of 
the relative wave period t/T; the wave crest η /aMax,T = 1 and hence the maximum discharge 
q0M per unit length dam crest lie about 50% higher than the mean value (--) η /aMax,T = 0.5 
(after Müller 1995). 
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Figure B-5 Sketch of test layout to investigate the influence of the incidence wave angle, as shown 

in Figure B-3(b), on the run-up height R. 

 
In addition, Müller (1995) investigated 3D effects with 96 tests, but his results 

mainly resulted in qualitative conclusions without generally applicable quantitative 
statements. The first 3D effect tested was the incidence wave angle. For this the wave 
was generated asymmetrically, as shown in Figure B-5. The solid body was dropped at a 
corner of the wave basin. Figure B-3(b) shows the run-up height Rγ ≠ 0° at the dam rela-
tive to the run-up height R in the main impulse direction, as a function of the relative 
crest length l/lK. In this expression, l is the coordinate along the dam crest with the 
origin at the centre of the crest (Figure B-5). Generally, the run-up heights for oblique 
impulse waves at the reservoir shore are up to 13% less high than in the main impulse 
direction γ  = 0°. These effects are mainly accounted for by the wave propagation angle 
γ  in Eq. (3.13), for which the wave is largest in the main impulse direction. 

As second 3D effect, the influence of the reservoir geometry was investigated, by 
using a V-section rather than a rectangular valley (Figure 4-4a). The impulse wave 
thereby propagates in the sloping shore area as a shallow-water wave and is thus shoal-
ing (Section 4.2) due to the influence by the bed. Figure 4-4(b) shows for a lateral reser-
voir flank of 3:4, the relationship of the run-up height to the run-up height at the dam 
centre R/Rm, as a function of the relative flank width l/lF. In the vicinity of the inclined 
shore the wave run-up heights are about 20% to 30% greater than in the dam centre. 
Green’s law from Eq. (4.1) overestimates the run-up height at the dam flank. Müller 
(1995) gives two possible reasons: (i) the wave in the test does not move frontally to the 
lateral reservoir flank and (ii) the friction losses at the bed reduce the run-up height in 
the test compared with the theoretically deduced Green’s law. The advantages and 
disadvantages of the investigations of Müller (1995) and of Müller and Vischer (1996) 
are: 
 

+ Extensive investigation about run-up height R, overtopping volume V and 
estimates for the required freeboard f. 
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+ A large wave spectrum and range of dam face slopes from 18.4° ≤ β  ≤ 90° 
is covered. 

+ The data points in the diagrams show relatively little scatter and the dia-
grams themselves are available. 

+ The overtopping duration of the overtopping volume is known for f = 0, and 
hence also the discharge. 

+ They are based on many tests (733). 
+ In addition to 2D experiments, 3D tests were also conducted. 
− The results of the 3D tests could not be integrated into the generally appli-

cable 2D equations. 
 

Gedik et al. (2005) conducted experiments with solitary waves on a permeable 
sandy beach of constant slope 1:5 ( β = 11.3°). For a few tests, the sand surface was 
covered with blocks. The sand had a grain density of ρg = 2,630 kg/m3 and a grain size 
of dg = 0.00035 m. The still water depth was h = 0.33 m, the solitary wave height was in 
the range 0.012 m ≤ H ≤ 0.11 m and the wave was non-breaking during run-up. Based 
on about 60 tests the relative run-up height was expressed with a coefficient of determi-
nation R2 = 0.95 as 
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If the sand surface was covered with blocks of diameters db of 0.01 m to 0.0138 m the 
expression for the relative run-up height R/h, based on 20 tests, could be determined 
with a coefficient of determination R2 = 0.93 as 
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Figure B-6 Wave run-up with relative run-up height R/h to the relative solitary wave height H/h accord-

ing to (a) Synolakis (1987) with broken and non-broken waves and (b) Gedik et al. (2005) 
with the run-up law of Eq. (B.3) and own tests on smooth and rough sandy beach. 
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Equations (B.8) and (B.9) are shown in Figure B-6(b) as a function of the relative run-
up height R/h and the relative wave height H/h. Also indicated is the analytically de-
duced run-up law according to Eq. (B.3). This is well satisfied for H/h = 0.07 but devi-
ates for H/h = 0.19 by about 30% from the test results on a smooth bed (Eq. B.8). The 
reason is that in Gedik et al. (2005) a permeable sandy beach was considered, whereby 
Eq. (B.3) was deduced on the assumption of an impermeable beach. Further, Eqs. (B.8) 
and (B.9) are compared with each other in Figure B-6(b). The blocks reduce the run-up 
height R by about 50%, and this agrees well with Table B-1. However, with β = 11.3° 
only a relatively small run-up angle was investigated. The advantage and disadvantages 
of the investigation of Gedik et al. (2005) are: 
 

+ The effect of the roughness and the permeability were investigated. 
− A moderate number of tests was undertaken (60). 
− Only a small run-up angle β = 11.3° was tested. 

 
Teng et al. (2000) found also that the bed friction reduced the run-up height. They 

conducted tests with solitary waves for run-up angles of β = 10°, 15° and 20°, with both 
one smooth and two rough (Manning-Strickler coefficients 0.018 s/m1/3 and 
0.024 s/m1/3) surfaces. For β = 20°, the roughness had a negligible effect. For β = 15° 
the run-up height for a rough bed was about 30%, for β = 10° as much as 50% lower 
than for a smooth bed. Hence, the roughness effect for β  ≥ 20° seems to be negligible. 
The advantage and disadvantage of the investigation of Teng et al. (2000) are: 

 
+ The effect of both the roughness and the permeability were investigated. 
− Only 35 tests were conducted with, for a dam, only small run-up angles in 

the range 10° ≤ β  ≤ 20°. 
 

B.3.3 Bore-like waves 

Bore-like waves were described in Section 2.2 and Appendix A.3.2.1. These are gener-
ated by large and rapidly impacting slide masses already in the slide impact zone (Ap-
pendix A.3.2.1), but also by breaking waves in the run-up zone. The description of bore 
run-up was mostly considered analytically but more rarely in hydraulic models (Müller 
1995). The experimental study by Miller (1968), with run-up angles 2° ≤ β  ≤ 15° over-
lapping only with the lowest range for dams, is an exception. Therefore, the technical 
literature (e.g. Shen and Meyer 1963; Miller 1968; Müller 1995) often recommends the 
theoretical equation 
 

gcR 2/2= . (B.10) 
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In this equation, c is the horizontal component of the bore celerity at the point of inter-
section of the still water level with the dam face (the coordinate origin in Figure B-1). 
For landslide generated impulse waves, the celerity c can be determined with the soli-
tary wave celerity by using Eq. (3.3). The advantage and disadvantage of Eq. (B.10) are: 
 

+ It is easy to apply. 
− It has not been well proven by experiments. 

 

B.4 Wave force on dams 

B.4.1 Stokes-like waves 

A standing wave (Clapotis) is formed if a wave is reflected and is superimposed on an 
approaching wave of identical size. As reflection without wave height loss is only pos-
sible at a vertical wall, the force effect for a standing wave is only valid for β = 90°. 
Standing waves have been described by Minikin (1950), Morris and Wiggert (1972), 
Wiegel (1964), Novak et al. (2001) and Dean and Dalrymple (1991). As the standing 
wave results from the superimposition of oscillatory waves, only Stokes-like waves may 
be approximated with this theory. For standing waves the wave nodes always remain in 
the same position but the areas between the nodes move up and down. Hence, a run-up 
movement occurs at the dam. 

According to Sainflou (1928), the pressure distribution of a standing wave is not lin-
ear, but may be approximated as such. Figure 3-10(a) shows the definition sketch of the 
run-up of a standing wave. The most important assumptions of the theory of Sainflou 
(1928) are: 
 

• The mean water level of a standing wave during run-up is at a height Δh above 
the still water level, whereby Δh can be calculated from Eq. (B.12). 

 
• At a height of H + Δh above the still water level, with H as the wave height, the 

water pressure is zero. 
 

• The maximum pressure p2 due solely to wave action occurs at the still water 
level (Figure 3-10b). 

 
Figure 3-10(b) shows the pressure distribution from a standing wave running-up a 

vertical dam. That part of the distribution resulting solely from the wave is represented 
by the area “abcd”, and the total pressure distribution, including hydrostatic pressure 
from Eq. (3.21), corresponds to the triangle “agd”. Calculation of the force resulting 
only from the running-up wave is done in several stages: 
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a) Computation of the additional pressure p1 on the dam foundation: 
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b) Computation of the average water level rise Δh: 
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c) Computation of the pressure p2 at the still water level: 
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d) Computation of the additional horizontal force component ΔKh per unit length 

dam crest resulting from impulse wave: 
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e) Computation of the additional horizontal force component ΔKh per unit length 

dam crest resulting from impulse wave, with Eqs. (B.11) and (B.13) directly ap-
plied (gives the same result as Eq. B.14): 
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For Eq. (B.15) the hyperbolic cosine function cosh(y) = (e y + e−y )/2 and the hyperbolic 
cotangent function coth( y) = (e y + e−y )/(e y − e−y ) are applied, with y as any given 
rational number. These functions are plotted in Figure 3-11. In addition to the horizontal 
force component ΔKh from Eq. (B.15), the hydrostatic pressure has to be taken into 
account from Eq. (3.21). The elevation zΔK,h of the resultant of ΔKh is given by 
Eq. (3.28). The advantage and disadvantages of Sainflou’s (1928) standing wave model 
are: 
 

+ It has established itself in the technical literature. 
− It can only be used for vertical dams. 
− It contains the relatively complicated terms cosh and coth, which are shown 

graphically in Figure 3-11. 
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B.4.2 Cnoidal and solitary-like waves 

Tanimoto et al. (1984) investigated the pressure distribution at a vertical wall resulting 
from a sine wave (Figure 2-1). They assumed a tsunami (caused by a tectonic plate 
movement) which corresponds to a shallow-water wave and mobilises the entire water 
column down to the sea bed (Section 2.1). Although the profile of a Stokes-like wave is 
similar to that of the sine wave, a Stokes-like wave generated by a slide does not behave 
in the same way as a shallow-water wave. For this reason, the study of Tanimoto et al. 
(1984) is better suited to this section on cnoidal and solitary-like waves than to the 
section on Stokes-like waves. The linear pressure distribution resulting only from the 
wave is given by 
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The pressure distribution as determined from Eqs. (B.16) and (B.17) is shown in   
Figure B-9(a), from which the additional horizontal force component ΔKh per unit 
length dam crest resulting from impulse wave can be determined as 
 

])2/3[(2.2 hagaK wh +=Δ ρ .  (B.18) 

 
The work of Tanimoto et al. (1984) has the following advantage and disadvantages: 
 

+ The calculation is simple. 
− The calculation is based on only a few tests. 
− The Eqs. (B.16) and (B.17) have been taken from Fuminori et al. (2003), as 

the original paper is not available and was probably written in Japanese. As 
a consequence, the limitations and boundary conditions of these tests are 
unknown. 

 
Ramsden (1996) generated solitary waves with a horizontal movable wall and inves-

tigated their effects on a vertical wall in a horizontal, 0.396 m wide, 36.6 m long wave 
channel with a water depth of about 0.175 m. A 0.0604 m wide strip of the wall, in the 
channel axis, was mounted on four force measurement sensors. With this strip, Rams-
den (1996) determined both the force component and the bending moment resulting 
from the solitary wave. In Figure B-7 the corresponding maximum measured values are 
shown as a function of the relative wave amplitude a/h; in Figure B-7(a) the maximum 
total horizontal force component Ktot,h per unit length dam crest resulting from an im-
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pulse wave and hydrostatic pressure, and in Figure B-7(b) the maximum bending mo-
ment BMtot,h per unit length dam crest about the foundation resulting from the horizontal 
force of an impulse wave and hydrostatic pressure. For the remaining procedures in 
Appendix B.4 only the effects resulting from the impulse wave alone are considered. 
The different procedures in Appendix B.4.5 can then be compared with each other, the 
values of Ktot,h are reduced below by the hydrostatic pressure effect, as determined from 
Eq. (3.21). Figure B-7 shows only a section of the original figure of Ramsden (1996). 
The rest of the data describe principally dam break waves or bores, which approach the 
wall over a dry bed or insufficient still water depth h. These data are not included in 
Figure B-7 and hence are not relevant for this manual. The measured total horizontal 
force component Ktot,h in Figure B-7(a) is normalised with the horizontal component of 
hydrostatic force Khs,h per unit length dam crest resulting from a still water level dis-
placed upwards by 2a, given as 
 

2)2()2/1(, hagK whhs += ρ . (B.19) 

 
Ramsden (1996) used the bending moment per unit length dam crest BMhs,h about the 
foundation resulting from the horizontal force of the hydrostatic pressure and a still 
water level displaced upwards by 2a from Eq. (B.19) to normalise the bending moment 
BMtot,h per unit length dam crest about the foundation resulting from the horizontal 
force of an impulse wave and hydrostatic pressure, as shown in Figure B-7(b). The 
equation for BMhs,h considers the lever arm (2a + h)/3 and is 
 

3)2()6/1(, hagBM whhs += ρ . (B.20) 

 
The ratio K tot,h /Khs,h and BM tot,h /BMhs,h in Figure B-7 are almost always less than unity, 
and hence the measured values of the horizontal force component K tot,h and the bending 
moment BMtot,h are practically always less than the corresponding hydrostatic value 
given by Eqs. (B.19) and (B.20). The measured points are empirically approximated in 
this manual as 
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The same function was used for both the force component according to Eq. (B.21) and 
for the bending moment given by Eq. (B.22). The values Ktot,h and BMtot,h therefore 
differ only by the lever arm, which is equal to (2a + h)/3. This lever arm is characteristic 
for a triangular pressure distribution. The pressure distribution of a solitary wave may, 
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therefore, be approximated by a triangular shape as shown in Figure 3-13(a). In order to 
conserve only the effect resulting from the solitary wave, the values from Eq. (B.21) are 
reduced by the effect of the hydrostatic pressure, as given in Subsection 3.4.2. The 
additional horizontal force component ΔKh per unit length dam crest is thus 
 

2)2/1(, ghKK whtoth ρ−=Δ . (B.23) 

 

 
Figure B-7 Effects of solitary waves on a vertical dam as a function of the relative wave amplitude a/h: 

(a) relative horizontal force component Ktot,h /Khs,h per unit length dam crest inclusive hydro-
static pressure and (b) relative bending moment BMtot,h /BMhs,h per unit length dam crest 
about the foundation resulting from the horizontal force of an impulse wave and hydrostatic 
pressure. 

 
The advantage and disadvantages of the work of Ramsden (1996) are: 

 
+ The pressure distribution may be reconstructed based on the measured 

bending moments. 
− Only about 10 tests were conducted. 
− Experiments were only carried out for vertical dams. 

 
Cooker et al. (1997) investigated mathematically the run-up of a solitary wave on a 

vertical wall. They concentrated on the run-up height R and the force on the wall. The 
maximum force and the run-up height agreed well with an earlier numerical study by 
Fenton and Rienecker (1982). A few intermediate results of the computation of Cooker 
et al. (1997) were confirmed with the experiments conducted by Maxworthy (1976). 

Figure B-8(a) shows the normalised maximum additional horizontal force compo-
nent ΔKh /( ρwgh2) per unit length dam crest resulting from an impulse wave as a func-
tion of the relative wave amplitude a/h. The ordinate values in Figure B-8 have, com-
pared with those presented by Cooker et al. (1997), been reduced by the hydrostatic 
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pressure, corresponding to a value of ΔKh /( ρwgh2) = 0.5 on the ordinate, so as to give 
the horizontal force component ΔKh resulting only from the impulse wave. Both the 
numerically computed values of Fenton and Rienecker (1982) (·) and the analytically 
deduced values of Cooker et al. (1997) (•) are shown. From Figure B-8(a) the maximum 
additional horizontal force component ΔKh per unit length dam crest resulting only from 
the approaching solitary wave may be approximated linearly as 
 

( )[ ]haghK wh /1.22ρ=Δ  for 0 ≤ a/h ≤  0.7. (B.24) 

 

 
Figure B-8 Additional horizontal force component ΔKh per unit length dam crest for a solitary wave 

against a vertical wall (a) as a function of the relative wave amplitude a/h and (b) as a func-
tion of relative time t(g/h)1/2 for various values of the relative wave amplitude a/h (after 
Cooker et al. 1997). 

 
Figure B-8(b) shows the horizontal force component ΔKh(t)/( ρwgh2) as a function of 

relative time t(g/h)1/2 for various values of the relative wave amplitude a/h. The abscissa 
value t(g/h)1/2 = 0 corresponds to the point in time of the maximum run-up height R. The 
ordinate value is again reduced by ΔKh(t)/( ρwgh2) = 0.5, corresponding to the hydro-
static pressure. Whilst for 0.1 ≤ a/h < 0.3 the horizontal force component continually 
increases and then decreases, the horizontal force components for relative wave ampli-
tudes 0.4 ≤ a/h ≤ 0.7 have two peaks which occur before and after the time of maximum 
run-up. It may be seen from Figure B-8(b) that the maximum horizontal force compo-
nent on the dam is of short duration. For the largest relative wave amplitude a/h ≈ 0.7 
(highest curve) and a typical prototype still water depth h = 100 m, the horizontal force 
component of the first peak, for example, is only t ≈ 4 s above the ordinate value 
ΔKh(t)/( ρwgh2) = 1.1. Cooker et al. (1997) give no information about the pressure distri-
bution. The advantages and disadvantage of the work of Cooker et al. (1997) are: 
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+ A simple equation determines the additional horizontal force component 
ΔKh resulting from a solitary wave. 

+ Equation (B.24) is deduced on the basis of analytically computed values and 
was confirmed with numerically determined results; several intermediate re-
sults, not discussed here, agreed well when compared with those of experi-
ments. 

− Equation (B.24) is based on only 7 calculated values. 
 

B.4.3 Bore-like waves 

Ikeno et al. (2001) investigated experimentally the run-up of a bore against a vertical 
wall standing in water. The bore represented thereby a broken tsunami (caused by a 
tectonic plate movement). Taking as basis Eqs. (B.16) and (B.17) of Tanimoto et 
al. (1984), Ikeno et al. (2001) formulated the pressure distribution with the additional 
parameter ϕ  as 
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The parameter is ϕ = 1.36 for 0 ≤ z /a ≤ 3, ϕ = 1.36(1 + 0.52z /a) for − 0.5 ≤ z /a ≤ 0 and 
ϕ = 1.0 for z /a < − 0.5. Figure B-9(b) shows the pressure distribution on a vertical wall 
based on Eqs. (B.25) and (B.26). As distinct from the approach of Tanimoto et 
al. (1984) the bore causes a pressure peak at still water level which is higher than that of 
the sine wave in Figure B-9(a). With the aid of Eqs. (B.25) and (B.26) or the pressure 
distribution in Figure B-9(b), the additional horizontal force component ΔKh per unit 
length dam crest resulting from impulse wave can be determined as 
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The advantage and disadvantages of the study of Ikeno et al. (2001) are: 
 

+ The computation is relatively simple. 
− The computation is based on only a few tests. 
− The Eqs. (B.16) and (B.17) have been taken from Fuminori et al. (2003), as 

the original paper is not available and was probably written in Japanese. As 
a consequence, the limitations and boundary conditions of these tests are 
unknown. 
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Figure B-9 Pressure distribution of tsunamis (caused by a tectonic plate movement) on a vertical wall: 

(a) for a shallow-water sine wave according to Eqs. (B.16) and (B.17) after Tanimoto et al. 
(1984) and (b) for a bore given by Eqs. (B.25) and (B.26) after Ikeno et al. (2001), based on 
the approach of Tanimoto et al. (1984). 

 

B.4.4 Breaking waves 

Sometimes an impulse wave breaks as a plunging breaker directly on the dam. If in such 
a case, as shown in Sequence (I) - (IV) in Figure B-10(a), an air pocket is trapped be-
tween the wave and the dam, a local but large force effect of short duration may develop 
and result in localised damage. This occurs, as shown in Figure B-10(a) in Sequence 
(IV), at the level of the air pocket. This force can, even if waves are breaking on the 
dam, only sometimes be measured in a physical model test. It is difficult to determine in 
an experiment under which conditions this large pressure occurs (Walkden and Bruce 
2000) and research is still in progress (Peregrine 2003). For the design of dams or other 
structures for coastal protection this force is governing, although the occurrence of such 
waves is rare. A wave breaks as a plunging breaker if the so-called Iribarren number 
I < 2.5. This number is defined, according to Thomas and Hall (1992), as 
 

2/1)//(tanI LHβ= . (B.28) 
 

For a dam with β = 45°, a wave height of H = 5 m and a wave length of L = 20 m, a 
value of, for example, I = 2 is obtained. If the wave breaks as a plunging breaker such a 
large localised force appears possible. 

In practice the force component so produced on the vertical dam will be computed 
using the method of Minikin (1950). The pressure distribution resulting from the break-
ing wave is shown in Figure B-10(b), and consists of a dynamic pressure peak at the 
still water level and a static pressure resulting from the run-up height R. The maximum 
value of the dynamic pressure is 
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LghHp wd /π2 ρ= . (B.29) 

 
On the assumption of a run-up height R = H/2, the additional static pressure is 
 

gHp ws ρ)2/1(= . (B.30) 

 
The dynamic pressure pd is typically several times larger than the static pressure ps. The 
additional horizontal force component ΔKh per unit length dam crest resulting from the 
plunging breaker is determined by the integration of the areas of dynamic and static 
pressure, as shown in Figure B-10(b), as 
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Figure B-10 Plunging breaker against a vertical wall (a) principle sketch with four stages of impact and 

(b) pressure distribution with the dynamic and static pressure components (after Minikin 
1950). 

 
If the dam is inclined at an angle β to the horizontal (Figure B-1), the proportion corre-
sponding to the dynamic pressure pd in Eq. (B.31) will be replaced with the term 
pd sin2β, in order to determine the horizontal force component. The model presented by 
Minikin (1950) has the following advantages: 
 

+ The computation is relatively simple. 
+ The model has proven itself in coastal protection, for instance it is recom-

mended by the Shore Protection Manual (USCE 1977). 
+ The horizontal dynamic force component can be converted with the term 

sin2β for any given dam face slope β. 
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B.4.5 Computation examples 

In Appendix B.4 six different procedures for the computation of the additional horizon-
tal force components ΔKh per unit length dam crest resulting from impulse waves were 
described. Each of these can be used for specific wave types considered. To demon-
strate the relations of the forces for the individual procedures, they are applied on two 
examples (i) and (ii). In doing so, the features of these example waves will be applied 
on all presented procedures, independent of which wave type they are developed for. 
 

Example (i): wave height H = 5 m, wave length L = 50 m, wave amplitude 
a = 2.5 m, dam face slope β = 90°, still water depth h = 100 m and freeboard greater 
than the run-up height f > R. 
 
Example (ii): wave height H = 50 m, wave length L = 200 m, wave amplitude 
a = 35 m, dam face slope β = 90°, still water depth h = 75 m and freeboard greater 
than run-up height f > R. 

 

Table B-2 Additional horizontal force component ΔKh per unit length dam crest for the computation 
examples (i) and (ii) and for the six studies presented in Appendix B.4; abbreviations: Slw = 
Stokes-like waves, cslw = cnoidal and solitary-like waves and blw = bore-like waves. 

 
 

How large will be the additional horizontal force component ΔKh per unit length 
dam crest resulting only from the wave? In Table B-2 the six studies are presented with 
the results of the two computation examples (i) and (ii). Against the wave type investi-
gated in the respective study, the impulse wave type according to Appendix A.3.2.1 is 
specified, to which the corresponding equation should approximate namely Stokes-like, 
cnoidal and solitary-like as well as bore-like waves. The fourth and thirteenth lines 
describe the equation reference in Appendix B. In the light coloured area of Table B-2 
the values for the additional horizontal force component ΔKh resulting only from im-
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pulse wave are included. For comparative purposes the values KRW,h, resulting from the 
static pressure according to Eq. (3.21), are also presented. The percentages in brackets 
refer to these values. 

Example (i): In the first example the forces ΔKh are relatively close for all six meth-
ods, in the range 3.2·106 N/m ≤ ΔKh ≤ 5.7·106 N/m (Table B-2). The additional horizon-
tal force component resulting from the impulse wave is thus equal to 7% to 12% of that 
of the hydrostatic pressure KRW,h. 

Example (ii): In the second example an impulse wave ten times larger than in exam-
ple (i) runs-up the dam. For the six studies, the values of ΔKh have a greater variation 
and, relative to the hydrostatic pressure, are in the range 146% and 409% (Table B-2). 

The two examples serve essentially for a comparison of the forces occurring in each 
of the models. It should be noted that the models for different wave types, and hence for 
different wave parameters, are deduced from different ranges of limitations, some of 
which are not satisfied in the examples. Therefore, the large differences between the 
models in example (ii) are not a cause of surprise. A further assumption was that the 
wave does not overtop. If this happens the force component is correspondingly smaller 
(Subsection 3.4.4). 
 

B.5 Summary and literature used in the calculation procedure 

For the run-up height R of unbroken waves, the empirical study of Müller and Vischer 
(1996) covers small Stokes-like waves and also cnoidal and solitary-like waves. As this 
study also allows the overtopping volume V and the freeboard f to be estimated, these 
computation equations are used for the run-up and overtopping in the computation 
procedure shown in Figure 3-1 and in Section 3.3. Müller and Vischer (1996) discussed 
only briefly bore-like waves, yet these are rare, extreme events whose occurrence is 
very unlikely. If, nevertheless, a bore is generated in the slide impact zone, it will after a 
relatively short relative streamwise distance X change into a solitary or cnoidal-like 
wave, as the bore entrains ever less air and the air already entrained will escape quickly 
(Figure A-15b). 

The roughness and the permeability of a dam reduce the run-up height R of Stokes-
like waves, as shown in Table B-1. The permeability may, however, be neglected. For 
larger impulse waves such as solitary waves the roughness reduces the run-up height, 
although, according to Teng et al. (2000), only for small run-up angles β < 20°. For 
bores, empirical data are lacking, but the reduction of the run-up height resulting from 
the roughness is considered small. As the roughness only partly reduces the wave run-
up height, its influence on the computation procedure shown in Figure 3-1 is not con-
sidered. 

3D effects such as the incidence wave angle on the dam or the reservoir basin ge-
ometry were studied by Müller (1995), but their influences could not be generally for-
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mulated. The 3D effects can thus not be considered and must, as explained in Sec-
tion 4.2, be estimated from case to case. 

According to Synolakis (1991) only about 25% of all tsunamis break when they 
reach the coast. As in addition the run-up angle β is large for a dam, the waves are 
unlikely to break according to Eq. (B.28). Hence, the case described in Appendix B.4.4 
is not considered in the computation procedure according to Figure 3-1. Furthermore, 
the additional horizontal force component ΔKh in the computation example, for a wave 
breaking directly on the dam, is rather low, compared with the values obtained by other 
methods (Table B-2). If, for a breaking wave, the force effect is determined with the 
methods of Sainflou (1928) or Ramsden (1996), the results are on the safe side com-
pared with those according to Minikin (1950). In other words, ignoring the method of 
Minikin (1950) does not involve any high risk. 

With the exception of Eq. (B.21), the forces considered in Appendix B relate only to 
the additional force resulting from the waves. The horizontal force component per unit 
length dam crest resulting only from hydrostatic pressure KRW,h, according to Eq. (3.21), 
has to be considered in addition. 

More exact information is lacking on the experimental boundary conditions and 
limitations for the work of Tanimoto et al. (1984), on shallow-water sinus waves, and of 
Ikeno et al. (2001) on bores. Much better founded are, however, the methods of Sain-
flou (1928) for Stokes-like waves and of Ramsden (1996) as well as Cooker et al. 
(1997) for solitary-like waves. The last two methods result practically in the same hori-
zontal force component ΔKh. From the results of Ramsden (1996) it is deduced that the 
pressure distribution may be approximated as linear. In practical applications, Stokes-
like waves are mostly expected. With regard to the force components, therefore, in the 
computation procedure in Figure 3-1, the Stokes-like waves will be described with the 
method of Sainflou (1928) and the remaining wave types with the method of Ramsden 
(1996). This differentiation between Stokes-like waves and the remaining wave types is 
possible with Eq. (3.23). 

Neither the method of Sainflou (1928) nor that of Ramsden (1996) give any infor-
mation on the separation of the force into static and dynamic components. The horizon-
tal component of a static force is, according to Figure 3-8, independent of the dam face 
slope β. In addition, there is a vertical component. Because at the time of maximum run-
up practically all kinetic wave energy is transformed into potential energy, the total 
force will be considered as static and the vertical component will be calculated using 
Eq. (3.22). Figure 3-1 summarises the selected methods for the computation procedure 
covered in Chapter 3. 
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