Diss. ETH No. 24006

Seamless Heterogeneous
Computing: Combining GPGPU
and Task Parallelism

A thesis submitted to attain the degree of
DOCTOR OF SCIENCES or ETH ZURICH
(Dr. sc. ETH ZuRICH)

presented by
Alexey Kolesnichenko
Specialist in Mathemathics and System Programming, Lomonosov Moscow State University, Russia

born on
January 17th, 1989

citizen of
Russia

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Dr. Judith Bishop, co-examiner
Prof. Dr. Torsten Hoefler, co-examiner
Dr. Christopher M. Poskitt, co-examiner

2016






ACKNOWLEDGMENTS

I want to thank all the people who supported me through my PhD studies
and helped me to finish this work.

My family, my parents, Sergey and Galina, who supported my decision
to pursue a PhD study abroad and never doubted me, and my wife, Ksenia,
who was always there for me.

Bertrand Meyer, who welcomed me to the Chair of Software Engineering,
helped me with invaluable guidance and gave me a lot of freedom to pursue
my ideas.

I want to thank Judith Bishop for an interesting collaboration and new
inspirations and Torsten Hoefler who provided me with a place to finish my
thesis and kindly agreed to be my second supervisor.

A special thanks to all colleagues (past and present) and friends. Se-
bastian Nanz, who mentored me and always had a great advises to share.
Chris Poskitt, for being a terrific collaborator and always supporting me dur-
ing the most tough deadlines. Andrey Rusakov, for interesting discussions
and helpful insights. And to Nadia Polikarpova, Marco Trudel, Yu Pei, Yi
Wei, Cristiano Calcagno, Georgiana Caltais, Claudia Giinthart, Benjamin
Morandi, Purica Nikolic, Martin Nordio, Marco Piccioni, Mischael Schill,
Jiwon Shin, Scott West, Christian Estler, Chandrakana Nandi, Stephan van
Staden, Nikolai Tillmann, M. Purves.

Lastly, I want to thank committee members, who agreed to read and
evaluate this thesis.

Financing

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework



Programme (FP7/2007-2013) / ERC Grant agreement no. 291389

i



CONTENTS

1 __Introductionl 1
(1.1  Background and Motivation| . . . . . . . ... ... ... ... 1
(1.1.1  GPGPU Computing: Background|. . . ... .. .. .. 3

[1.1.2  Task Parallelism: Background| . . . . . .. ... .. .. 4

(1.2 Hypothesis|. . . . . .. .. ... .. ... ... 5)
(.3 Contributions| . . . . . . . ... . oL 6
.4  Structurel . . . . . . . Lo 8
(1.5 Publication History| . . . . . .. .. .. .. ... ... ..... 8

2 SateGPU: Overview and Background| 11
2.1 ~ Programming Style[ . . . . . .. .. .. 0000000 11
[2.1.1 CUDA Integration| . ... ... ............. 12

2.2 Related Workl . . . . ... ... .. ... ... 0. 13
[2.2.1  GPU Programming and Code Generation|. . . . . . . . 13

[3 Implementation and API| 17
[3.1 Design of the API|. . . .. ... ... ... ... ....... 17
[3.1.1 CUDA Binding| . . . .. ... ... ... ........ 18

3.1.2 Collections|. . . . . . .. ... ... ... ... ..... 19

B3.1.3 Vectors|. . ... ... .. ... ... . 21

3.1.4 Matrices . . . . ... 23

[3.2  ITransferring Primitive and Class-Based |
CDatal - - v v e e 26
[3.3  'Translating Customized Program Logic| . . . . . .. ... ... 27
[3.4  Deterministic Memory Management in Languages with Garbage |

[ Collectionl . . . . . . . . . . 29
[3.5  Kernel Generation and Optimization| . . . . ... ... .. .. 30
3.5.1 Kernel Generation and Data ranster] . . . . . . . ... 30

[3.5.2  Execution Plans and Kernel Optimization| . . . . . .. 31

[3.5.3  Example: Gaussian Elimination| . . . . . . . .. .. .. 33

il



4__Contracts and Performancel 37
[4.1  Design-by-Contract| . . . . . . . ... ... ... ... ..... 37
4.2 Design-by-Contract in GPGPU| . .. ... .. ... .. ... 39

4.2.1 Contracts in SafeGPUl . . . . . . ... ... ... ... 39
[4.2.2  Example: Quicksort in pateGPU|. . . ... .. .. ... 41
4.3 FEwvaluationl . . . . ... .. ... o 42
[4.3.1  Performancel . . . . .. ... .. .. L. 43
432 Codebizel . . . . . . . .. 44
4.3.3 Contract Overheadl . . .. ... ... ... ....... 46
44  Related Workl . . . . . .. .. ... o 49
4.4.1 Correctness of GPU Kernels . . . . .. ... ... ... 49

51
.l Overview of SCOOP Processorsl . . . ... ... ... ... .. 02
(0.2 Separate Calls| . . . . . .. ... ... ... 52

[p.2.1  Reasoning in SCOOP|. . . ... ... ... ... .... 53
[5.2.2  Passive Regions| . . . . .. . ... ... ... ... ... 5H
(5.3 Design-by-Contract in SCOOP|. . . . . ... ... .. .. ... 5h

[6 Task Parallelism Integration| 57
6.1 Introduction to Task Cancellation| . . . . . . ... .. .. ... 57
6.2 Classification of Task Cancellation |

| Techniques|. . . . . . . . .. o8

) - cancellationl . . . . ..o oL 60

[6.2.2  Supplier-Based Cancellation| . . . . . ... .. .. ... 62
(6.2.3  Client/Supplier Combination| . . . .. .. .. .. ... 62

6.3 Cooperative Cancellation in SCOOP| . . . . .. ... ... .. 64
[6.3.1 Choosing a cancellation mechanism for SCOOP| . . . . 64
[6.3.2  SCOOP with cooperative cancellation|. . . . . . . . .. 65

[6.4 Asynchronous Event-Based Programming/. . . . . . . .. ... 68
[6.4.1 Background| . . . . .. ... ... 0oL 68
[6.4.2  Asynchronous events in SCOOP|. . . . . ... ... .. 69
(6.4.3 Example| . . . . ..o 72

6.5 Task Parallelism and GPGPUl . . ... ... ... .. ... .. 74
6.6 Related Workl . . . . ... .. .. ... ... 7
(7__Conclusions| 79

iv



ABSTRACT

Concurrent and parallel computing is ubiquitous today. Modern comput-
ers are shipped with multicore CPUs and often equipped with powerful
GPUs, which can be used for general-purpose computing (GPGPU) as well.
CPUs have evolved into highly sophisticated devices, with many intricate
performance-enhancing optimizations, that are targeted for task-parallel com-
putations. However, the number of CPU cores is usually quite limited, and
using CPU-based computations may not be the best fit for the data-centric
parallelism. GPUs, on the other hand, feature hundreds and thousands of
simpler cores, providing a viable alternative to CPUs for data-centric com-
putations. In order to write efficient applications, programmers should be
able to use these heterogeneous devices together.

The programming model for GPUs is quite different from traditional
CPU-based programs. While there are some solutions for using GPGPU
in high-level programming languages via various bindings by executing na-
tive code blocks, these solutions lack many aspects of high-level languages
and are error-prone.

Task parallel computing on CPUs is much more challenging than sequen-
tial computing, with new kinds of bugs, both related to correctness and
performance. Many of these issues are caused by programming models based
on low-level concepts, such as threads, and lack of documentation on impor-
tant aspects, such as task cancellation and subtle differences in semantics for
similar APIs across languages.

In this thesis we explore two complementary approaches, which allow
software developers to solve these problems within a flexible and general
framework. We investigate how programmers can benefit from the advan-
tages of CPUs and GPUs together, and within a high-level programming
language.

For data-centric problems, we propose SafeGPU, a high-level library that
abstracts away the technicalities of low-level GPU programming, while re-
taining the speed advantage. Our approach is modular: the user benefits
from combining low-level primitives into high-level code. This modularity al-



lows us to introduce an optimizer, which analyzes code blocks and produces
optimized GPU routines. SafeGPU also integrates the design-by-contract
methodology, which increases confidence in functional program correctness
by embedding executable specifications into the program text. Finally, we
show that with SafeGPU contracts can be monitored at runtime without
diminishing the performance of the program, even with large amounts of
data.

For task parallel problems, we propose an extension of SCOOP, a con-
current object-oriented programming model, in order to leverage its strong
safety and reasoning guarantees. Our extension includes a safe mechanism
for task cancellation and asynchronous event-based programming. We ad-
dress the lack of documentation for task cancellation by providing a survey
on existing techniques and classify them based on use cases. Finally, we show
how our extended version of SCOOP cooperates with SafeGPU to provide a
seamless heterogeneous experience for programmers.

vi



ZUSAMMENFASSUNG

Parallelrechner sind heute allgegenwirtig. Moderne Computer sind mit Multi-
core-CPUs und oft mit leistungsstarken GPUs ausgestattet, welche ebenfalls
fiir Allzweck-Berechnungen auf Grafikprozessoreinheiten (GPGPU) verwen-
det werden konnen. Die CPUs sind heute hochentwickelte Instrumente mit
unzahligen leistungsverbessernden Optimierungen. Die Anzahl CPU Kerne
ist jedoch normalerweise eher limitiert und CPU-basierte Rechnungsprozesse
sind moglicherweise nicht die beste Losung fiir datenzentrische Parallelver-
arbeitungen.

GPUs hingegen beinhalten Tausende von einfacheren Verarbeitungsker-
nen und stellen hiermit fiir datenzentrische Parallelverarbeitungen eine ge-
eignete Alternative zu CPUs dar. Das Programmiermodell fiir GPUs unter-
scheidet sich von traditionellen CPU-basierten Programmen. Zwar existieren
verschiedene Losungen fiir die Anwendung von GPGPU in héheren Program-
miersprachen durch das Binding von ausfiihrenden nativen Code-Blécken,
jedoch sind bei diesen viele Aspekte hoherer Programmiersprachen vorent-
halten. Dazu sind die meisten Losungen fehleranfillig. Eine andere Quel-
le fiir Fehler sowie Performance-Probleme konnte der schlecht organisierte
Task-Parallelismus sein.

In dieser Arbeit behandeln wir zwei komplementiare Ansitze, welche es
Softwareentwicklern erlauben, diese Probleme zu 16sen und ihnen eine flexi-
ble Methode zur Verfiigung stellt, die in vielen unterschiedlichen Situationen
anwendbar sein kénnte. Wir untersuchen, wie Programmierer von den Vor-
teilen von CPUs und GPUs im Zusammenspiel und innerhalb einer héheren
Programmiersprache profitieren kénnen. Weiter erweitern wir unser Modell
mit einem Task Cancellation-Verfahren, welches eine sichere und transparen-
te Art darstellt, einen Task abzubrechen.

Wir beginnen damit, datenzentrische Probleme aufzugreifen und fiihren
die SafeGPU ein, eine High-Level Library, welche die technischen Einzel-
heiten des low-level GPU Programmierens wegabstrahiert und gleichzeitig
den Geschwindigkeitsvorteil beibehilt. Unser Ansatz ist modular aufgebaut:
der Benutzer profitiert von der Integration von low-level Primitiven in einen

vii



Hochsprachen-Code. Diese Modularitédt erlaubt es uns, einen Optimierer ein-
zufithren, welcher Code Blocks analysiert und optimierte GPU-Abldufe pro-
duziert.

SafeGPU integriert zudem die Design-By-Contract Methodologie, welche
das Vertrauen in die funktionsgemésse Richtigkeit des Programms erhéht, in-
dem ausfiihrbare Spezifikationen im Programmtext eingebettet werden. Zu-
letzt zeigen wir, dass Runtime Contract-Checking in SafeGPU realisierbar
wird, da die Contracts in der GPU ausgefiihrt werden kénnen.

Als weiteren Aspekt unserer Doktorarbeit diskutieren wir die Task-basier-
ten Probleme und untersuchen den wichtigen Fall der Task Cancellation, wel-
cher fiir das gleichzeitige Ausfithren mehrerer Tasks sehr bedeutsam ist. Wir
schlagen eine Erweiterung fiir SCOOP vor (Simple Concurrent Object Ori-
ented Programming Modell, als Teil der Eiffel Programmiersprache), welche
einen sicheren und einfachen Weg fiir Task Cancellation darstellt und wir zei-
gen, dass dieser Mechanismus zusammen mit SafeGPU angewendet werden
kann, um das Strukturieren rechnerischer Prozesse zu vereinfachen.



CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Modern day applications are very different from the ones that were written
years before. They are operating with increasingly large volumes of data,
development is shifting to Web and Mobile platforms, and users are very
demanding when it comes to responsiveness and performance.

Since the requirements for performance are increasing, no modern appli-
cation can afford to be single-threaded anymore. CPUs are no longer getting
faster cores over time — instead they are being packed with more cores. Us-
ing parallel and concurrent computing is hence imperative for achieving these
goals. Multiple CPU cores can help multi-threaded applications run faster (in
the presence of heavy computations) and achieve a smoother user experience
by offloading long computations from the UI thread and/or by processing
another task while waiting for a long 10 request.

CPU cores are highly sophisticated devices, featuring many intricate opti-
mizations (multi-level caching, branch predictors, and vectorisation to men-
tion a few) that are targeted for general-purpose computing, but they are no
longer the only devices that can be used to achieve high performance these
days. An alternative has emerged in the form of general-purpose comput-
ing on graphics processing units (GPGPU). GPUs have evolved into efficient
computing devices, with many more cores than CPUs.

Using GPGPU for the right task (a canonical example is matrix-matrix
multiplication) can lead to a massive performance boost compared to par-
allel computation on a CPU. These gains are so impressive that many new
application domains are starting to use GPGPU. One of the most notable
examples of GPGPU adoption can be found in mainstream frameworks for
deep learning [2, [54].



CHAPTER 1. INTRODUCTION

Despite the need for concurrent and parallel applications on modern hard-
ware architectures, writing them can still be challenging. The techniques that
are widely used, such as threads, have been around for a long time and have
not seen much evolution since their invention.

Many software developers are still using threads (or slight variations),
even in major languages such as Java [55] and Python [I6]. Not every de-
veloper knows the details of POSIX threads in C or their counterpart in
their language of choice. But these details can be crucial for writing cor-
rect and performant programs: concurrent and parallel programming bring a
whole new set of correctness and performance bugs, which were not present
in the case of sequential programming. Concurrency bugs such as race con-
ditions, atomicity violations, deadlocks, starvation, performance degradation
can be hard to detect (unlike sequential case, bug occurrence can be non-
deterministic), to debug (there is little to no support from the tooling) and
to fix (one has to take concurrent aspects into account).

As for computing on graphical cards, despite the advantages, it does
not come for free: the computation model is quite different from that for
CPUs, mainly because GPUs are inherently single instruction, multiple data
(SIMD) devices. Therefore, tools (compilers and debuggers), programming
practices, and previous experience in programming languages cannot be ap-
plied to GPGPU computing. One has to use a special C-like language, such
as CUDA, OpenCL or AMP [14] 311, [50], that exposes the SIMD computation
model. GPGPU can also suffer from concurrency-like bugs, but specific to
the context of the model. Errors such as incorrect barrier synchronization
can make performance even worse — and performance is the principal reason
for using the model.

In this thesis we explore how these two vastly different devices with their
respective computing models can be used together to help developers achieve
good performance of their programs and have reasonable guarantees for their
correctness in a high-level language. Moreover, we attempt to push the
usage of GPGPU computing beyond well-established domains, such as matrix
math, into more general software engineering problems. We believe that a
good solution should be modular in a sense that it allows to build more
complex program block via combining primitive blocks — the property that
is absent when using threading or CUDA programs. Another important
idea behind our work is that programmers should be able to reason about
their parallel programs as if they were sequential, and have confidence that
programs are doing what they should and without paying too much attention
to where the execution is actually happening (CPU or GPU). Lastly, the
performance of our solution should be on par with a reasonable counterpart
developed in a low-level languages. However, we do not expect to have an



1.1. BACKGROUND AND MOTIVATION

optimal performance in all cases, since we are not focusing on a single domain.

There is a need for a simple and modular approach which will help to
implement these things in high level languages by bringing together all fea-
tures of modern concurrency, but making it transparent and user friendly.
The main goal of this approach should be to express all concepts in terms
which high level developers are used to.

We focus on two contrasting, but complementary, approaches which help
us to achieve the goals of allowing a wide spectrum of software developers
(not necessary experts in parallel computing) to benefit from heterogeneous
concurrency in their applications, expressed in a high-level language.

First, we develop a framework, SafeGPU, to simplify GPU computing,
backed up by NVIDIA’s CUDA, and make it more accessible to a wide range
of software developers that would like to benefit from potential performance
gains without investing additional effort to learn low-level device-dependent
intricacies. The framework can be used alone or can benefit from integration
with a task-based framework, for ease of orchestration and structuring com-
putations. Second, we take advantage of SCOOP [49] to leverage its safety
guarantees and simple reasoning for concurrent programming. We extend
SCOOP with a task cancellation mechanism that is crucial for orchestrat-
ing non-trivial programs and solving a problem that arises frequently during
concurrent programming.

We will show later in this thesis we can use aspects of task cancellation
and GPGPU together to solve problems with heterogeneous concurrency.

We provide more background on these two approaches in the following.

1.1.1 GPGPU Computing: Background

Graphics Processing Units (GPUs) are being increasingly leveraged as sources
of inexpensive parallel-processing power, with application areas as diverse as
scientific data analysis, cryptography, and evolutionary computing [52} [72].
Consisting of thousands of cores, GPUs are throughput-oriented devices that
are especially well-suited for realizing data-parallel algorithms—algorithms
performing the same tasks on multiple items of data—with potentially sig-
nificant performance gains to be achieved.

The CUDA [50] and OpenCL [31] languages support the programming
of GPUs for applications beyond graphics in an approach now known as
General-Purpose computing on GPUs (GPGPU). They provide program-
mers with fine-grained control over hardware at the C++ level of abstrac-
tion. This control, however, is a double-edged sword: while it facilitates
advanced, hardware-specific fine-tuning techniques, it does so at the cost of
working within rather restrictive and low-level programming models. Recur-



CHAPTER 1. INTRODUCTION

sion, for example, is among the standard programming concepts prohibited.
Furthermore, automatic memory management is not there, meaning that pro-
grammers themselves must explicitly manage the allocation and de-allocation
of memory and the movement of data, the potential source of many faults.
While possibly acceptable for experienced GPU programmers, these issues
act as a significant obstacle to the general programming public, less skilled
in CUDA intricacies, preventing the wide adoption of GPGPU.

Such challenges have not gone unnoticed: there has been a plethora of
attempts to reduce the burden on programmers. Several algorithmic skele-
ton frameworks for C-++ have been extended—or custom built—to support
the orchestration of GPU computations, expressed in terms of programming
patterns that leave the parallelism implicit |21} 22, 25, 43, 65]. Furthermore,
higher-level languages have seen new libraries, extensions, and compilers that
allow for GPU programming at more comprehensible levels of abstraction,
with various degrees of automatic device and memory management or the
ability to auto-heterogenize [20, 29, 4T, 42 53, [58| 26].

These advances have made strides in the right direction, but the burden
on the programmer can be lifted further. Some approaches (e.g., [53]) still
require considerable understanding of relatively low-level GPU concepts such
as barrier-based synchronization between threads; a mechanism that can
easily lead to perplexing concurrency faults such as data races, atomicity
violations or barrier divergence.

Such concepts can stifle the productivity of programmers and remain an
obstacle to broadening the adoption of GPGPU. Other approaches (e.g., [20])
successfully abstract away from them, but require programmers to migrate to
dedicated languages. Furthermore, to our knowledge, no existing approach
has explored the possibility of integrating mechanisms or methodologies for
specifying and monitoring the correctness of high-level GPU code, missing
an opportunity to support the development of reliable programs. Our work
has been motivated by the challenge of addressing these issues within a high-
level language without depriving programmers of the potential performance
boosts for data-parallel problems [59].

1.1.2  Task Parallelism: Background

When talking about complex tasks which require CPU and GPU processing
it is important to keep in mind the benefits and perils of task parallelism.
Task parallelism frameworks are now flourishing on the market, but properly
utilizing them requires considerable work and learning for developers: doc-
umentation is sometimes lacking and the APT is not always clear, providing
subtly ambiguous functions that may look similar, but feature very different



1.2. HYPOTHESIS

runtime behavior.

We shall use SCOOP, a concurrent object-oriented programming model
based on message-passing, which abstracts away low-level concepts of parallel
programming such as threads, semaphores, monitors etc. Such an abstrac-
tion allows us to create a high level modular design which is one of our
architectural goals.

The SCOOP model is based on the high-level concept of processors that
own a number of objects, which may communicate within and across the
boundaries of handlers. Concurrency happens only when there is communi-
cation across regions, which simplifies reasoning, compared to the threading
model, because thread interference is limited. A set of call validity rules also
guarantees freedom from atomicity violations and low-level data-races. We
describe the model in more detail later in the thesis.

However, the SCOOP model lacks some aspects, important for efficient
concurrent programming. One of these is task cancellation. Proper task
cancellation contributes to the overall performance and safety of applica-
tions, allowing tasks to be ended in a consistent state, so one application can
continue execution.

To choose an appropriate mechanism, we provide an overview of existing
cancellation methods, analyzing techniques from different programming lan-
guages and concurrency libraries. This knowledge is then applied to provide
a novel task cancellation technique for SCOOP that aligns with its design.
The technique implemented is based on the idea of cooperative cancellation
where both the canceling and the canceled task must cooperate in order to
succeed.

1.2 Hypothesis

Programmers should easily benefit from the benefits of GPU and CPU based
computations, depending on the problem.

GPGPU suits well for inherently parallel problems such as matrix compu-
tations, while CPUs can leverage its advanced optimizations such as branch
predictions or caching to deal with task-based problems with complex con-
trol flow. Using both computational approaches appropriately should bring
a noticeable performance gain to modern applications. Hence our research
hypotheses:

e GPGPU can be done in a high-level language, without compromising
too much performance compared to a native implementation, and with
better safety guarantees. The programming experience can be made
uniform with the language, encapsulating low-level aspects.



CHAPTER 1. INTRODUCTION

e Task-parallelism models can be extended to facilitate modern applica-
tion design, allowing them to be used to complement GPGPU for a
broad class of problems.

We prove the first hypothesis by introducing SafeGPU, describing its
API and showing that performance is on par with CUDA. We prove the
second hypothesis by extending SCOOP with a task cancellation model and
asynchronous events, then using it together with SafeGPU.

1.3 Contributions

This thesis proposes SafeGPU, a programming approach that aims to make
GPGPU accessible through high-level libraries for object-oriented languages,
while maintaining the performance benefits of lower-level code. Our ap-
proach aims to enable users to focus entirely on functionality: programmers
are provided with primitive data-parallel operations (e.g., sum, max, map) for
collections that can be combined to express complex computations, with data
synchronization and low-level device management all handled automatically.
We present a prototype of SafeGPU for Eiffel [61], built upon a new binding
with CUDA, and show that it leads to modular and concise code that is acces-
sible for GPGPU non-experts, as well as providing performance comparable
with that of hand-written CUDA code. This performance gain is achieved by
deferring the generation of CUDA kernels such that the execution of pending
operations can be optimized by combining them. We also present a report of
our first steps towards porting SafeGPU to C#, highlighting some challenges,
solutions, and insights for implementing the approach in different managed
languages.

Furthermore, to support the development of safe and functionally cor-
rect GPU code, we integrate the design-by-contract [44] methodology that
is native to Eiffel (and provided by the Code Contracts library [24] for C#).
In particular, SafeGPU supports the annotation of high-level GPU programs
with executable preconditions, postconditions, and invariants, together speci-
fying the properties that should hold before and after the execution of meth-
ods. In languages supporting design-by-contract, such annotations can be
checked dynamically at runtime, but the significant overhead incurred means
that they are often disabled outside of debugging. With SafeGPU, contracts
can be constructed from the data-parallel primitives, allowing for them to be
monitored at runtime without diminishing the performance of the program,
even with large amounts of data

Secondly, this thesis addresses the the challenges of task cancellation in
task-parallel languages. Cancellable tasks are mainly used for interrupting



1.3. CONTRIBUTIONS

long-running or outdated tasks, but the pattern can also be used as a building
block for more high-level patterns, such as MapReduce, or it can be used
directly to orchestrate building blocks in SafeGPU.

In this thesis we provide an overview of existing cancellation approaches,
extracting techniques from different programming languages and concurrency
libraries, classifying them, and discussing their strong and their weak points.
This knowledge is then applied to provide a novel task cancellation technique
for SCOOP [44] [49], an object-oriented concurrency model. The technique is
based on the idea of cooperative cancellation where both the canceling and
the canceled task must cooperate in order to succeed.

We further improve task cancellation in SCOOP by enhancing basic skele-
ton with event support, another important technique from the world of asyn-
chronous programming, used in many applications, such as user interface
programming or robotics systems[60]. We modify the synchronous event
mechanism so that it can be used in the SCOOP environment and demon-
strate by example combining the use of events and task cancellation.

Finally, we show how SafeGPU can benefit from the task cancellation
and event-based programming: the flexibility of this combined approach is
greatly increased, and the advantages of both approaches are maintained.

The contributions of this work therefore advance the state-of-the-art in
approaches for task-based and data-centric parallel programming with the
following:

e we created a library that embraces the object-oriented paradigm, shield-
ing programmers from the low-level requirements of the CUDA model
without depriving them of the performance benefits;

e the library is modular and efficient, supporting the programming of
compound computations through the composition of primitive opera-
tions with a dedicated kernel optimization strategy;

e our framework supports the writing of safe and functionally correct
code via contracts, monitored at runtime with little overhead;

e our approach offers initial support for transferring class-based data (i.e.,
beyond primitive data) to the GPU;

e we port the SafeGPU approach to C# and enhance it with Code Con-
tracts, a library-based contract framework (in contrast to the natively
supported contracts of Eiffel);



CHAPTER 1. INTRODUCTION

e we describe how the implementation of SafeGPU could be adopted to
other managed languages, focusing on data transfer, translating cus-
tomized program logic, and obtaining deterministic memory manage-
ment;

e we survey task cancellation — a key aspect of task parallelism— and
provide a novel taxonomy of task cancellation patterns across several
major languages and concurrent libraries;

e we develop a novel approach for task cancellation for the SCOOP pro-
gramming model, extend it with asynchronous event support, and show
how it can be used together with SafeGPU

1.4 Structure

The rest of the thesis is organized as follows.

Chapter [2| provides an overview of the SafeGPU approach and its capa-
bilities.

Chapter [3| discusses key aspects and challenges of the prototype imple-
mentation and explores the CUDA bindings and library API in more detail.
This chapter also presents our kernel generation and optimization strategies.

Chapter [4] describes how design-by-contract is integrated into SafeGPU
and evaluates performance, code size, and contract checking across a selection
of benchmark programs.

Chapter [5| introduces the basics of SCOOP, a simple concurrent object
oriented programming model.

Chapter [6] explores task cancellation and event-based programming in the
context of SCOOP, and how they can be used together with SafeGPU.

Finally, Chapter [7, draws conclusions and proposes some future work.

1.5 Publication History

The results described in the thesis are based on the following publications.
The author of the thesis is the first author, unless mentioned otherwise:

e SafeGPU: Contract-and Library-Based GPGPU for Object-Oriented
Languages [35]

e Contract-Based General-Purpose GPU Programming [36]

e How to Cancel a Task [33]



1.5. PUBLICATION HISTORY

e Concurrency patterns in SCOOP (Master thesis supervisor) [64]



10

CHAPTER 1.

INTRODUCTION




CHAPTER 2

SAFEGPU: OVERVIEW AND
BACKGROUND

In this Chapter we provide an overview of the programming style supported
by SafeGPU, present a simple example, and explain how the integration with
CUDA is achieved (see Section |3 for an extended discussion on implementa-
tion issues).

2.1 Programming Style

CUDA kernels—the functions that run on the GPU—are executed by an
array of threads, with each thread executing the same code on different data.
Many computational tasks fit to this execution model very naturally (e.g.,
matrix multiplication, vector addition). Many tasks, however, do not, and
can only be realized with non-trivial reductions. This difficulty increases
when writing complex, multistage algorithms: combining subtasks into a
larger kernel can be challenging, and there is little support for modularity.
In contrast, SafeGPU emphasizes the development of GPU programs in
terms of simple, compositional “building blocks.” For a selection of com-
mon data structures including collections, vectors, and matrices, the library
provides sets of built-in primitive operations. While individually these op-
erations are simple and intuitive to grasp (e.g., sum, max, map), they can also
be combined and chained together to generate complex GPU computations,
without the developer ever needing to think about the manipulation of ker-
nels. The aim is to allow developers to focus entirely on functionality, with
the library itself responsible for generating kernels and applying optimiza-
tions (e.g., combining them). This focus on functionality extends to correct-
ness, with SafeGPU supporting the annotation of programs with contracts



12

CHAPTER 2. SAFEGPU: OVERVIEW AND BACKGROUND

that can be monitored efficiently at runtime.

Before we expand on these different aspects of the library, consider the
simple example for Eiffel in Listing which illustrates how a SafeGPU
program can be constructed in practice.

matrix_transpose_vector_mult (matrix: G_MATRIX|[DOUBLE]; vector: G_VECTOR]|
DOUBLE]): G_MATRIX[DOUBLE |

require
matrix.rows = vector.count
do
Result := matrix.transpose.right_multiply (vector)
ensure
Result.rows = matrix.columns
Result.columns = 1
end

Listing 2.1: Transposed matrix-vector multiplication in SafeGPU for Eiffel

The method takes as input a matrix and a vector, then returns the result
of transposing the matrix and multiplying the vector. The computation is
expressed in one line through the chaining of two compact, primitive opera-
tions from the API for matrices—transpose and right_multiply—from which
the CUDA code is automatically generated. Furthermore, because the latter
of the operations is only defined for inputs of certain sizes (N x M matrix;
M dimension vector), the method is annotated with a precondition in the
require clause, expressing that the size of the input vector should be equal
to the number of rows in the matrix (rows, not columns, since it will be
transposed). Similarly, the postcondition in the ensure clause expresses the
expected dimensions of the resulting matrix. Both of these properties can
be monitored at runtime, with the precondition checked upon entering the
method, and the postcondition checked upon exiting.

2.1.1 CUDA Integration

SafeGPU provides two conceptual levels of integration with CUDA: a binding
and a library level. The binding level provides a minimalistic API to run
raw CUDA code within the high-level language, similar to bindings such as
PyCUDA [32] and JCUDA [71], and is intended for experienced users who
need more fine-grained control over the GPU. The library level is built on
top of the binding, and provides the data structures, primitive operations,
contracts, and kernel-generation facilities that form the focus of this thesis.

In Eiffel, the runtime integration of SafeGPU with CUDA (Figure is
achieved using Eiffel built-in mechanisms for interfacing with C++, allowing
SafeGPU to call the CUDA-specific functions it needs for initialization, data
transfers, and device synchronization. These steps are handled automatically
by SafeGPU for both the binding and library levels, minimizing the amount of




2.2. RELATED WORK

13

Programmer’s view CUDA CH+
Eiffel program SafeGPU Cuda program nvece
C++
SafeGPU externals CUDA .ptx

Figure 2.1: Runtime integration of CUDA with SafeGPU for Eiffel

boilerplate code. Given a source kernel, whether handwritten at the binding
level or generated from the library one, the nvcc compiler generates a .ptx
file containing a CUDA module that the library can then use to launch the
kernel.

In languages such as C#, which have existing CUDA bindings, the inte-
gration of SafeGPU is simplified as the kernels the library generates can be
passed to those bindings directly.

2.2 Related Work

There is a vast and varied literature on general-purpose computing with
GPUs. We review a selection of it, focusing on work that particularly re-
lates to the overarching theme of SafeGPU: the generation of low-level GPU
kernels from higher-level programming abstractions.

2.2.1 GPU Programming and Code Generation

At the C++ level of abstraction, there are a number of algorithmic skeleton
and template frameworks that attempt to hide the orchestration and syn-
chronization of parallel computation. Rather than code it directly, program-
mers express the computation in terms of some well-known patterns (e.g.,
map, scan, reduce) that capture the parallel activities implicitly. SkePU [21],
Muesli [22], and SkelCL [65] were the first algorithmic skeleton frameworks to
target the deployment of fine-grained data-parallel skeletons to GPUs. While
they do not support skeleton nesting for GPUs, they do provide the pro-
grammer with parallel container types (e.g., vectors, matrices) that simplify
memory management by handling data transfers automatically. Arbitrary
skeleton nesting is provided in FastFlow [25] (resp. Marrow |43]) for pipeline
and farm (resp. pipeline, stream, loop), but concurrency and synchroniza-
tion issues are exposed to the programmer. NVIDIA’s C++ template library
Thrust [51], in contrast, provides a collection of data-parallel primitives (e.g.,



14

CHAPTER 2. SAFEGPU: OVERVIEW AND BACKGROUND

scan, sort, reduce) that can be composed to implement complex algorithms
on the GPU. While similar in spirit to SafeGPU, Thrust lacks a number of
its abstractions and container types; data can only be modeled by vectors,
for example.

Higher-level programming languages benefit from a number of CUDA and
OpenCL bindings (e.g., Java [71], Python [32]), making it possible for their
runtimes to interact. These bindings typically stay as close to the original
models as possible. While this allows for the full flexibility and control of
CUDA and OpenCL to be integrated, several of the existing challenges are
also inherited, along with the addition of some new ones; Java programmers,
for example, must manually translate complex object graphs into primitive
arrays for use in kernels. Rootbeer [58|, implemented on top of CUDA,
attempts to alleviate such difficulties by automatically serializing objects
and generating kernels from Java code. Programmers, however, must still
essentially work in terms of threads—expressed as special kernel classes—
and are responsible for instantiating and passing them on to the Rootbeer
system for execution on the GPU.

There are several dedicated languages and compilers for GPU program-
ming. Lime [20] is a Java-compatible language equipped with high-level
programming constructs for task, data, and pipeline parallelism. The lan-
guage allows programmers to code in a style that separates computation and
communication, and does not force them to explicitly partition the parts
of the program for the CPU and the parts for the GPU. CLOP [42] is an
embedding of OpenCL in the D language, which uses the standard facilities
of D to generate kernels at compile-time. Programmers can use D variables
directly in embedded code, and special constructs for specifying global syn-
chronization patterns. The CLOP compiler then generates the appropriate
boilerplate code for handling data transfers, and uses the patterns to pro-
duce efficient kernels for parallel computations. Nikola [41] is an embedding
of an array computation language in Haskell, which compiles to CUDA and
(like SafeGPU) handles data transfer and other low-level details automati-
cally. Other languages are more domain-specific: Streamlt [69], for example,
provides high-level abstractions for stream processing, and can be compiled
to CUDA code via streaming-specific optimizations [29]; and VOBLA [9],
a domain-specific language (DSL) for programming linear algebra libraries,
restricts what the programmer can write, but generates highly optimized
OpenCL code for the domain it supports. Finally, Delite [67] is a compiler
framework for developing embedded DSLs themselves, providing common
components (e.g., parallel patterns, optimizations, code generators) that can
be re-used across DSL implementations, and support for compiling these
DSLs to both CUDA and OpenCL.



2.2. RELATED WORK

15

A key distinction of SafeGPU is the fact that GPGPU is offered to the
programmer without forcing them to switch to a dedicated language in the
first place: both the high-level API and the CUDA binding are made avail-
able through a library, and without need for a special-purpose compiler.
Firepile [53] is a related library-oriented approach for Scala, in which OpenCL
kernels are generated using code trees constructed from function values at
runtime. Firepile supports objects, higher-order functions, and virtual meth-
ods in kernel functions, but does not support programming at the same level
of abstraction as SafeGPU: barriers and the GPU grid, for example, are
exposed to developers.



16

CHAPTER 2. SAFEGPU: OVERVIEW AND BACKGROUND




CHAPTER 3

IMPLEMENTATION AND API

In this chapter, we provide a detailed description of the SafeGPU API, fo-
cusing on design choices and highlighting the most important interfaces and
methods.

After that we discuss three of the most important issues for implement-
ing the SafeGPU approach in a managed language. First, how primitive and
class-based data can be transferred to the GPU. Second, how customized,
functional computations can be expressed and supported. Finally, how to
achieve deterministic memory management in the presence of garbage col-
lection.

These issues are discussed in both the context of our principal SafeGPU
implementation for Eiffel as well as our initial port of the library for C+#,
in the hope that comparing the challenges and solutions between them pro-
vides some general insights for implementing the library in other managed
programming languages.

Finally, we describe how SafeGPU translates individual API methods into
CUDA kernels, how data is managed and how the the framework generates
optimized code for compound operations.

3.1 Design of the API

In the following section, we describe in more detail the two levels of SafeGPU’s
API. First, we consider the binding level, which allows expert users to run
CUDA code from within an object-oriented language. Then we turn to the
library level, and in particular, its three basic classes for collections, vec-
tors, and matrices. The operations provided by the API are described in the
context of our principal implementation for Eiffel.



18

CHAPTER 3. IMPLEMENTATION AND API

3.1.1 CUDA Binding

The binding API provides handles to access the GPU and raw memory. Pro-
gramming with this API requires effort comparable to plain CUDA solutions,
so it is therefore not a user-level API; its main purpose is to provide func-
tionality for the library API built on top of it.

Table provides details about the APT’s classes. The two main classes
are CUDA_KERNEL and CUDA DATA HANDLE. The former encapsulates a CUDA
kernel; the latter represents a contiguous sequence of uniform objects, e.g., a
single-dimensional array.

Table 3.1: Binding API
class description

CUDA_DATA_HANDLE Represents a handle to a de-
vice memory location.  Sup-
ports scalar, vector, and multi-
dimensional data. Can be cre-
ated from (and converted to)
standard ARRAYs.

CUDA_INTEROP Encapsulates low-level device
operations, such as initializa-
tion, memory allocation, and
data transfer.

CUDA_KERNEL Represents a CUDA kernel,
ready for execution. Can
contain an arbitrary number
of CUDA_DATA_HANDLE kernel in-
puts, one of which is used as
output. Can be launched with
configurable shared memory.

LAUNCH_PARAMS Encapsulates the grid setup
and shared memory size re-
quired to launch a CUDA_KERNEL.

KERNEL_LOADER Responsible for loading CUDA
kernels into the calling process.
If necessary, performs a kernel
compilation. Can load kernels
from a file or from a string.




3.1. DESIGN OF THE API

19

3.1.2  Collections

Collections are the most abstract container type provided by SafeGPU: the
majority of bulk operations—operating on an entire collection—are defined
here. Collections are array-based, i.e., they have bounded capacity and count,
and their items can be accessed by index. Collections do not automatically
resize, but new ones with different sizes can be created using the methods of
the class.

The key methods of the collection API are given in Table and de-
scribed in the following. Note that in Eiffel, 1ike Current denotes the type of
the current object.

A SafeGPU collection can be created using the method from_array, which
creates its content from that of an Eiffel array: as an array’s content is
contiguous, a single call to CUDA’s analogue of memcpy suffices. This is the
main method to initialize the device memory with the data residing in RAM.
Once the data resides on the device memory, copy_from_separate can be used
to create inexpensive copies of the collection (or its descendants).

Unlike from_array, this method doesn’t perform expensive memcpy-like copy
internally (only pointer the device data is effectively copied), resulting in
sharing the device data between two objects. This method parameter has
separate type — serving to the purpose of SCOOP integration — enabling
inexpensive construction of SafeGPU objects across processor boundaries.
We discuss SCOOP integration in more detail in Section

Individual elements of the collection can then be accessed through the
method item, and the total number of elements is returned by count. The
method concatenate is used to join the elements of two containers and the
method subset resizes a given collection to a subset.

The core part of the API design consists of methods for transforming,
filtering, and querying collections. All of these methods make use of Eiffel’s
functional capabilities in the form of agents, which represent operations that
are applied in different ways to all the elements of a collection (in the C#
port, we use delegates—see Section . Agents can be one of three types:
procedures, which express transformations to be applied to elements (but do
not return results); functions, which return results for elements (but unlike
procedures, are side-effect free); or predicates, which are Boolean expressions.

To construct a new collection from an existing one, the API provides the
transformation methods for_each and map. The former applies a procedure
agent to each element of the collection, whereas the latter applies a function
agent. For example, the call

c.for_each (agent (a: INT) do a := a * 2 end)



20

CHAPTER 3. IMPLEMENTATION AND API

from_array (array: ARRAY[T])
Creates an instance of a collection, containing items from the standard
Eiffel array provided as input.

copy_from_separate (other: separate like Current)
Creates a shallow copy of the other collection (or its descendant).

item (i: INT): T
Access to a single element.

count: INT
Queries the number of elements in the collection.

concatenate (other: like Current): like Current
Creates a new container consisting of the elements in the current object
followed by those in other.

subset (start, finish: INT): like Current
Creates a subset of the collection that shares the same memory as the
original.

for_each (action: PROCEDURE|T]): like Current
Applies the provided procedure to every element of the collection.

map (transform: FUNCTION|T, U]): COLLECTION[U]
Performs a projection operation on the collection: each element is trans-
formed according to the specified function.

filter (condition: PREDICATE[T|): like Current
Creates a new collection containing only items for which the specified
predicate holds.

for_all (condition: PREDICATE|T]): BOOLEAN
Checks whether the specified predicate holds for all items in the collec-
tion.

exists (condition: PREDICATE|T|): BOOLEAN
Checks whether the specified predicate holds for at least one item in the
collection.

new_cursor: ITERATION_CURSOR |[T]
Implementation of ITERABLE[T|; called upon an iteration over the collec-
tion.

update
Forces execution of all pending operations associated with the current
collection. The execution is optimized whenever possible.

Table 3.2: Collection API



3.1. DESIGN OF THE API

21

represents an application of for_each to an integer collection ¢, customized
with a procedure that doubles every element. In contrast, the call

c.map (agent (a: INT): DOUBLE do Result := sqrt (a) end)

creates from an integer collection c a collection of doubles, with each element
the square root of the corresponding element in c.

To filter or query a collection, the API provides the methods filter,
for_all, and exists, which evaluate predicate agents with respect to every
element. An example of filtering is

c.filter (agent (a: INT) do Result := a < 5 end)

which creates a new collection from an integer collection c, containing only
the elements that are less than five. The method for_all on the other hand
does not create a new collection, but rather checks whether a given predicate
holds for every element or not; the call

c.for_all (agent (i: T) do Result := pred (i) end)

returns True, for example, if some (unspecified) predicate pred holds for every
element of the collection c¢ (and False otherwise). The method exists is
similar, returning True if the predicate holds for at least one element in the
collection (and False otherwise).

The queries for_all and exists are particularly useful in contracts, and
can be parallelized effectively for execution on the GPU. We discuss this use
further in Section

Collections are embedded into Eiffel’s container hierarchy by implement-
ing the ITERABLE interface, which allows the enumeration of their elements in
foreach-style loops (acress in Eiffel terminology). Enumerating is efficient:
upon a call to new_cursor, the collection’s content is copied back to main
memory in a single action.

Finally, the special method update forces execution of any pending kernel
operations (see Section [3.5).

3.1.3 Vectors

Vectors are a natural specialization of collections. Besides the inherited op-
erations of collections, they provide a range of numerical operations.

The API for vectors is presented in Table[3.3] It enables the computing of
the average value avg and the sum of the elements of arbitrary vectors, as well
as computing the minimum min and maximum max elements. Furthermore,
is_sorted will check whether the elements are sorted. These functions are all
implemented by multiple reductions on the device side (we remark that these
computations via reduction do not do more work than their corresponding



22

CHAPTER 3. IMPLEMENTATION AND API

sum: T
Computes the sum of the vector elements.

min: T
Computes the minimum of the vector elements.

max: T
Computes the maximum of the vector elements.

avg: T
Computes the average of the vector elements.

is_sorted: BOOLEAN
Checks whether the vector is sorted.

plus (other: VECTOR|T|): VECTOR|T]
Adds the provided vector to the current vector and returns the result.

minus (other: VECTOR|T|): VECTOR|T|
Subtracts the provided vector from the current vector and returns the
result.

in_place_plus (other: VECTOR|T])
Adds the provided vector to the current vector and modifies the current
vector to contain the result.

in_place_minus (other: VECTOR|[T])
Subtracts the provided vector from the current and modifies the current
vector to contain the result.

multiplied_by (factor: T): VECTOR|T]
Multiplies the current vector by the provided scalar.

divided_by (factor: T): VECTOR|T|
Divides the current vector by the provided scalar. The scalar should not
be zero.

compwise_multiply (other: VECTOR[T]): VECTOR[T]
Multiplies the current vector by another component-wise.

compwise_divide (other: VECTOR[T|): VECTOR|T]
Divides the current vector by another component-wise. No zero elements
are allowed in the second vector.

Table 3.3: Vector API: vector-only operations




3.1. DESIGN OF THE API

23

sequential computations).

All the numerical operations such as plus and minus (alongside their
in-place variants), as well as multiplied by and divided by (alongside their
component-wise variants) are defined as vector operations on the GPU, e.g.,
a call to plus performs vector addition in a single action on the device side.
Note that operator aliases can be used for value-returning operations, e.g.,
v * n instead of v.multiplied_by (n).

An important requirement in using and composing vector operations is
keeping the dimensions of the data synchronized. Furthermore, certain arith-
metic operations are undefined on certain elements; divided_ by, for example,
requires that elements are non-zero. Such issues are managed through con-
tracts built-in to the API that can be monitored at runtime, shielding devel-
opers from inconsistencies. We discuss this further in Section [4]

3.1.4 Matrices

The matrix API is strongly tied to the vector API: the class uses vectors
to represent rows and columns. On the device side, a matrix is stored as a
single-dimensional array with row-wise alignment. Thus, a vector handle for
a row can be created by adjusting the corresponding indices. The column
access pattern is more complicated, and is implemented by performing a copy
of corresponding elements into new storage.

The matrix-only methods of the API are given in Table Table [3.5
provides the specialized operations inherited from the collection API, and
describes how they are tailored to matrices.

In the API, the queries rows and columns return the dimensions of the
matrix, whereas item, row, and column return the part of the matrix specified.
Single-column or single-row matrices can be converted to vectors simply by
making the appropriate call to row or column.

Similar to vectors, the API provides both conventional and in-place meth-
ods for addition and subtraction. Beyond these primitive arithmetic oper-
ations, the API provides built-in support for matrix-matrix multiplication
(method multiply) since it is a frequently occurring operation in GPGPU.
The implementation optimizes performance through use of the shared device
mMemory.

Also supported are left and right matrix-vector multiplication (respec-
tively left_multiply and right multiply), component-wise matrix multipli-
cation and division (compwise multiply and compwise divide), matrix trans-
position (transpose), and submatrix creation.

Like the other API classes, matrix methods are equipped with contracts
in order to shield the programmer from common errors, e.g., mismatching



24

CHAPTER 3. IMPLEMENTATION AND API

rows: INT
Queries the total number of rows in the matrix.

columns: INT
Queries the total number of columns in the matrix.

row (i: INT): VECTOR[T|
Queries a live view of the elements in i-th row of the current matrix.
Changes in the view will affect the original matrix.

column (j: INT): VECTOR[T]
Queries a live view of the elements in j-th column of the current matrix.
Changes in the view will affect the original matrix.

multiply (matrix: MATRIX[T]): MATRIX|T]|
Performs matrix-matrix multiplication between the current matrix and
the provided one. Creates a new maftrix to store the result.

left_multiply (vector: VECTOR|T|): MATRIX|T|
Multiplies the provided row-vector with the current matrix.

right_multiply (vector: VECTOR|T]): MATRIX|T]|
Multiplies the current matrix with the provided column-vector.

transpose: MATRIX|T]
Returns a transposition of the current matrix. Creates a new matrix to
store the result. An in-place version is also available.

compwise_multiply (scalar: T): MATRIX|T]
Multiplies each element in the matrix by the provided scalar. Creates a
new matrix to store the result. An in-place version is also available.

compwise_divide (scalar: T): MATRIX|T|
Divides each element in the matrix by the provided scalar. Creates a
new matrix to store the result. An in-place version is also available.

submatrix (start_row, start_column, end_row, end_column: INTEGER):
MATRIX|T|

Creates a submatrix, starting at (start row, start column) and
ending at (end row, end column). A new matrix is created to store
the result.

Table 3.4: Matrix API: matrix-only operations



3.1. DESIGN OF THE API

25

from_array (array: ARRAY[T]; rows, columns: INTEGER)
Creates an instance of a matrix, containing items from the standard Eiffel
array provided as input. The number of rows and columns is specified
in the constructor.

item (i, j: INT): T
Access to a single element in a matrix.

count: INT
Queries the total number of elements in the matrix.

for_each (action: PROCEDURE[T]): like Current
Applies the provided procedure to every element of the matrix.

map (transform: FUNCTION[T, U]): MATRIX[U]
Performs a projection operation on the matrix: each element is trans-
formed according to the specified function.

filter (condition: PREDICATE[T|): like Current
Creates a new matrix containing only items for which the specified pred-
icate holds.

for_all (condition: PREDICATE|T]): BOOLEAN
Checks whether the specified predicate holds for all items in the matrix.

exists (condition: PREDICATE|T]|): BOOLEAN
Checks whether the specified predicate holds for at least one item in the
matrix.

new_cursor: ITERATION_CURSOR [T]
Implementation of ITERABLE[T]; called upon an iteration over the matrix.
The iteration is row-wise.

update
Forces execution of all pending operations associated with the current
matrix. The execution is optimized whenever possible.

Table 3.5: Matrix API: specialized collection operations



26

CHAPTER 3. IMPLEMENTATION AND API

dimensions in matrix multiplication.

3.2 Transferring Primitive and Class-Based
Data

Transferring data from the host to the device is a necessary precursor to
performing GPU computations. In C++ with raw CUDA, managing these
transfers is relatively straightforward, albeit low-level and laborious. Opera-
tions such as cudaMemcpy, cudaMalloc, and cudaFree are provided to allocate,
copy, and free memory.

SafeGPU handles this programming overhead for the user, but in lan-
guages such as Eiffel and C##, data transfer is made more complicated by
the presence of a managed heap. In a naive implementation, two steps—
and thus additional overhead—are required to realize it. First, the data is
transferred from the managed heap into some fixed and contiguous structure.
Second, this structure is then transferred to the device using low-level CUDA
operations via the binding API.

The first step and its additional overhead, however, can be skipped en-
tirely if the managed language provides a mechanism to directly access raw
memory (e.g., via pointer-like constructs), and the representation of the data
already has some known contiguous structure. This is often the case for ar-
rays of primitive numerical type, e.g., integers, and floating points. A memcpy
counterpart is typically available since their representation in memory is fixed
across languages. In the C# port, we use a language mechanism that pro-
vides “unsafe” access to the memory of arrays of primitives. In our Kiffel
implementation, direct access is also provided to the contents of arrays, but
with the caveat that the array must be fixed during the memcpy call. If the
array is not fixed, Eiffel’s garbage collection mechanisms can interfere with
the transfer and affect the consistency of the data.

Data typed according to custom classes is much more challenging to trans-
fer. The CUDA implementation must be able to match the representation in
memory, despite not have supporting definitions for custom classes. Further-
more, in general, classes can point to other classes, potentially requiring the
(impractical) transfer of the whole object graph. Many classes of interest for
GPU computing, however, are not sophisticated structures, but are rather
more simple and just organize primitive data into a structure more suitable
for the problem. SafeGPU thus focuses its support for class-based data on
that which has a simple structure, i.e., based on primitives and value types.

Currently, our support for class-based data transfer has only been intro-



3.3. TRANSLATING CUSTOMIZED PROGRAM LOGIC

27

duced into the C# port of SafeGPU, as the language provides convenient
built-in mechanisms for managing the data. We support simple classes, i.e.,
those containing primitives and value types from this definition. Using the
P /Invoke feature of C#, the memory layout of such data is copied to un-
managed memory, where it is no longer typed. Then, we use reflection to
collect meta-information about the structure being transferred, in particu-
lar, the number and types of fields (we do not translate methods at this
point). Finally, a C++ counterpart of the C# structure is generated that
can be handled by CUDA. We remark that while reflection in general can
have some overhead, we attempt to minimize it by using the technique in a
limited way, i.e., once per class, and without reflections in cycles.

Listing exemplifies a simple application of class-based data transfer in
SafeGPU. The method DoStuff operates on collections of Complex numbers,
which are defined by a custom struct consisting of two doubles for the real
and imaginary components of the numbers. The method chains together
some Map transformations on the input collection and returns the result. To
transfer the contents of the collection to the device, SafeGPU first copies
its contents to unmanaged memory (no memcpy operation is available here,
so it must loop across the elements), then copies this data from unmanaged
memory to the device. Finally, it uses reflection to collect meta-information
about the fields (Re and Im) in order to generate a counterpart in C++ to
the original C# struct.

struct Complex

{ // omitting constructor and getters/setters for simplicity
Double Re;
Double Im;

}

GCollection<double> DoStuff(GCollection<Complex> collection )
{
return collection. // any number of tranformations can be chained
Map(c => new Complex {Re = c.Re + c.Im, Im = c.Im}).
Map (complex => Math.Abs(complex.Re));

}

Listing 3.1: A SafeGPU for C# method operating on data typed to a custom
structure

3.3 Translating Customized Program Logic

Providing a library of common operations for common collections is an im-
portant first step towards providing GPGPU capabilities at the abstraction
level of an object-oriented language. In the SafeGPU approach, however,
we do not want programmers to be strictly limited to the operations that
we have provided. An important aspect of our approach is the ability to



28

CHAPTER 3. IMPLEMENTATION AND API

express customized computations in a functional style and apply them to
whole collections.

As discussed in Section [3.1.2] the SafeGPU API provides programmers
with methods that operate on the contents of entire collections. Methods
such as map are generic transformations: their actual behavior on the con-
tents of collections is customizable. This customization is achieved by pass-
ing a user-defined function abstraction (i.e., a typed function pointer) as a
parameter of the transformation. In Eiffel, we support agents as function
abstractions; in the C# port, we support delegates. By translating these
function abstractions to C++ and CUDA, our framework supports the exe-
cution of customized program logic on the GPU.

In the following we illustrate how function abstractions can be translated
to the GPU using the example of delegates in our C# port of SafeGPU.
Our solution relies on the powerful support provided by C# and .NET for
runtime introspection and analysis, and in particular, the expression trees
framework [23]. With this support, it is possible to dynamically access and
modify arbitrary C# expressions during program execution, which allows
SafeGPU to capture the customized program logic that the user wishes to
use in a collection transformation.

Listing shows how simple expressions can be created in the expression
tree framework. The first expression captures a double constant; the second,
a mathematical expression over variables; and the third, a function taking an
integer input and returning a string (expressed by the first and second generic
arguments, respectively). The string is generated in-place by a lambda-
expression, which creates a formal variable a and calls the ToString operation
on it. The variable is implicitly typed as an integer, which helps to keep the
expression syntactically simple. All three expressions are represented in the
framework as tree-like data structures (the nodes being expressions), and can
be compiled and modified at runtime.

{

Expression<double> exl = 5.2;
Expression<double> ex2 = a + b / 5.0;

Expression<Function<int, string>> strExpr = (a) => a.ToString();

}

Listing 3.2: Example expression trees in C#

SafeGPU uses the framework to extract tree’s representations of dele-
gates. Consider the signature of Map in the C# APIL:

GCollection<T> Map (Expression<Func<T,T>> transformer);

When a call to Map is processed by SafeGPU, the expression trees framework




3.4. DETERMINISTIC MEMORY MANAGEMENT IN LANGUAGES WITH GARBAGE
COLLECTION 29

is used to extract an AST representation of transformer, which in turn can
be translated to C++ / CUDA.

There are some restrictions on what can be translated and the types of
functional expressions that can be created. The expression tree framework,
for example, does not support lambdas with statement bodies. Furthermore,
methods must operate on either primitive types or the types that SafeGPU
can translate itself (we cannot translate any arbitrary .NET method to C++
/ CUDA).

Support for customizable program logic can be generalized to other man-
aged languages if analogous mechanisms exist for runtime analysis of pro-
gram code. Unfortunately, such mechanisms are lacking in Eiffel, meaning
that agent expressions (i.e., Eiffel’s function objects) are translated much
less elegantly by SafeGPU: at present, we treat them as strings and must
manually parse them. (Note that example usages of Eiffel’s agents can be

found in Sections and Chapter [4])

3.4 Deterministic Memory Management in Lan-
guages with Garbage Collection

In C++ / CUDA, the programmer has full and explicit control over the
device memory. In languages with managed memory such as Eiffel and C#,
one must consider how to deterministically dispose of external resources in
the presence of garbage collection, which can occur at (seemingly) random
time intervals, or perhaps not happen at all (e.g., if the garbage collector
assesses that there is enough memory). Since the host and device memories
are disjoint, the garbage collector might not become aware when the device
no longer has enough memory.

A closely related problem is the avoidance of leaking memory between al-
location and deallocation in the presence of exceptions. We investigated how
this problem was solved in an unmanaged language, and used the solution
as inspiration.

C++ avoids leaking resources by adopting the RAII (Resource Acquisi-
tion Is Initialization) idiom [66]. The essential idea is to use stack allocation
and variable scope to ensure safe resource management. For example, in List-
ing [3.3] locker is called whenever the thread of execution leaves the scope
encompassing it, e.g., during exception propagation. RAII is a very common
idiom in C+-: dynamic memory, file system descriptors, and concurrency
primitives can all be managed using it.



30

CHAPTER 3. IMPLEMENTATION AND API

{

MutexLocker locker(new Mutex());

} /7 locker is called whenever the execution leaves the scope, whether
during a normal execution or during an exception propagation

Listing 3.3: A possible RAII idiom usage

The guarantees provided by RAII would be useful for implementing a
translation to C++ / CUDA, but unfortunately, RAII is not directly appli-
cable to languages with managed memory and garbage collection. However,
managed languages often provide substitute mechanisms that are similar. For
these substitutes to work, the runtime must be aware that some managed
objects store handlers (e.g., memory addresses, descriptors) of resources in
unmanaged memory. Typically, this awareness is achieved by implementing
a special interface or inheriting from a special base class.

In C+#, the IDisposable interface is used to denote that an object imple-
menting it might contain some unmanaged resource, and the language has
special support for it: if a class or interface implements it, then their objects
can be used in so-called “using-blocks” which emulate C+- scoping. Such a
block is given in Listing disposal is called whenever execution leaves the
scope of the block. Java has java.lang.AutoCloseable and try-with-resources,
which are very similar to the using-blocks of C#. Eiffel has the Disposable
base class.

using (new ResourceHandler()) {

} // Disposal is called whenever the execution leaves the scope, whether
during a normal execution or during an exception propagation

Listing 3.4: A using-block in C#

3.5 Kernel Generation and Optimization

In this section we describe how SafeGPU translates individual methods of the
APT to CUDA kernels, how data is managed, and how the library optimizes
kernels for compound computations.

3.5.1 Kernel Generation and Data Transfer

Generating CUDA kernels for calls of individual library methods is straight-
forward. Each method is associated with a kernel template, which the library
instantiates with respect to the particular collection and parameters of the

method call. The SafeGPU runtime (as described in Section [2.1.1]) then han-




3.5. KERNEL GENERATION AND OPTIMIZATION

31

dles its execution on the GPU via Eiffel’s mechanisms for interfacing with
C++ or the existing CUDA binding for C#.

Transferring data to and from the GPU is expensive, so the library at-
tempts to minimize the number of occurrences. The only time that data
is transferred to the GPU is upon calling the method from_array, which
creates a GPU collection from a standard Eiffel or C# array (Note that
copy_from_separate does not perform an expensive copy: it only copies the
pointer to the data, already residing in the device memory). Once the data is
on the GPU, it remains there for arbitrarily many kernels to manipulate and
query (including those corresponding to contracts). Operations that create
new collections from existing ones (e.g., filter, map) do so without transfer-
ring data away from the GPU; this occurs only for methods that specifically
query them.

3.5.2  Execution Plans and Kernel Optimization

While the primitive operations in isolation already support many useful com-
putations (e.g., matrix multiplication, vector addition), the heart of SafeGPU
is in its support for combining and chaining such operations to implement
multistage algorithms on the GPU. The main challenge for a library aiming
to provide this support is to do so without performance becoming incom-
mensurate with that of manually written CUDA kernels. A naive solution
is to generate one kernel per method call and launch them one after the
other. With SafeGPU, however, we adopt a deferred execution model, ana-
lyze pending kernels, and attempt to generate more efficient CUDA code by
combining them.

By default, a method call is not executed, but rather added to a list of
pending actions for the corresponding collection. There are three ways to
trigger its execution: (1) perform a function call that returns a scalar value,
e.g., sum; (2) perform a call to to_array which creates a standard Eiffel or C#
array from the GPU collection; or (3) perform a call of the special method
update, which forces the execution of any pending kernels.

Consider for example the problem of computing the dot product (or inner
product) of two vectors, which can be solved by combining vector multipli-
cation and vector summation as in Listing Here, the result is obtained
by chaining the a.compwise multiply (b) method—which produces an anony-
mous intermediate result—with vector.sum. In this example, the computation
is deferred until the call of sum, which returns the sum of the elements in the
vector.

The benefit of deferring execution until necessary is that the kernel code



32

CHAPTER 3. IMPLEMENTATION AND API

dot_product (a, b: G_VECTOR[DOUBLE]): DOUBLE
require
a.count = b.count
do
Result := a.compwise_multiply (b).sum
- component -wise vector multiplication, followed by summing the
elements
end

Listing 3.5: Combining primitives to compute the dot product in SafeGPU
for Eiffel

cmult| H@H sum H@

(a) Before optimization

1
cmult] é{}>
sum

(b) After optimization

X

Y

Figure 3.1: Execution plans for the dot product method

can be optimized. Instead of generating kernels for every method call,
SafeGPU uses some simple strategies to merge deferred calls and thus handle
the combined computation in fewer kernels. Before generating kernels, the
optimizer constructs an execution plan from the pending operations. The
plan takes the form of a DAG, representing data and kernels as two differ-
ent types of nodes, and representing dependencies as edges between them.
The optimizer then traverses the DAG, merging kernel vertices and collaps-
ing intermediate dependencies where possible. Upon termination, the kernel
generation takes place on the basis of the optimized DAG.

We illustrate a typical optimization in Figure 3.1, which shows the execu-
tion plans for the dot product method of Listing [3.5] The plan in Figure [3.1a
is the original one extracted from the pending operations; this would generate
two separate kernels for multiplication and summation (cmult and sum) and
launch them sequentially. The plan in Figure 3.1b] however, is the result of
an optimization; here, the deferred cmult kernel is combined with sum. The
combined kernel generated by this optimized execution plan would perform




3.5. KERNEL GENERATION AND OPTIMIZATION

33

component-wise vector multiplication first, followed by summation, with the
two stages separated using barrier synchronization. This simple optimization
pattern extends to several other similar cases in SafeGPU.

The optimizer is particularly well-tuned for computations involving vec-
tor mathematics. In some cases, barriers are not needed at all; the optimizer
simply modifies the main expression in the kernel body, leading to more effi-
cient code. For example, to compute aX +Y where a is a scalar value and X,
Y are vectors, the optimizer just slightly adjusts the vector addition kernel,
replacing X[i] + Y[i] with axX[i] + Y[i]. Such optimizations also change the
number of kernel arguments, as shown in Figure [3.2]

Y

a plus ~>

smult aX

(a) Before optimization

Y
a smult b
plus gx+
X

(b) After optimization
Figure 3.2: Execution plans for vector mathematics

At present, all our optimizations are of these simple forms. The execution
plan framework, however, could provide a foundation for applying more spec-
ulative and advanced optimizations to improve the performance of SafeGPU
further still. Investigating such optimizations remains an important piece of
future work.

3.5.3  FExample: Gaussian Elimination

To illustrate the usefulness of the optimizer on a larger example, consider
Listing which provides an implementation of Gaussian elimination (i.e.,
for finding the determinant of a matrix) in SafeGPU. Note in particular the
inner loop, which applies two transformations in sequence to a given row of
the matrix:



34

CHAPTER 3. IMPLEMENTATION AND API

matrix.row (i).divided_by (pivot)
matrix.row (i).in_place_minus (matrix.row (step))

First, every element in the row is divided by a pivot (which an earlier check
prevents from being zero); following this, another row of the matrix is sub-
tracted from it in a component-wise fashion. The optimizer is able to combine
these two steps into a single modified component-wise subtraction kernel,
applying the transformation (A[i] / pivot) — A[step] in one step (here, A[x]
denotes row x of matrix A). This optimization is depicted in Figure

gauss_determinant (matrix: G_MATRIX|[DOUBLE]): DOUBLE
require
matrix.rows = matrix.columns
local
step, i: INTEGER
pivot: DOUBLE

do
Result := 1
from
step := 0
untitl
step = matrix.rows
loop
pivot := matrix (step, step)
Result := Result *x pivot
if not double_approx_equals (pivot, 0.0) then
matrix.row (step).divided_by (pivot)
else
step := matrix.rows
end
from
i = step + 1
until
i = matrix.rows
loop
pivot := matrix (i, step)
if not double_approx_equals (pivot, 0.0) then
matrix.row (i).divided_by (pivot)
matrix.row (i).in_place_minus (matrix.row (step))
end
i:=1i+4+1
end
step := step + 1
end
end

Listing 3.6: Gaussian elimination in SafeGPU for Eiffel




3.5. KERNEL GENERATION AND OPTIMIZATION

35

divided by |

in_place_minus

(a) Before optimization

divided by Ali]/pivot
_aviged by L
in_place minus — Alstep]

(b) After optimization

Ali] /pivot
— Alstep]

Figure 3.3: Execution plans for the inner loop of Gaussian elimination



36

CHAPTER 3.

IMPLEMENTATION AND API




CHAPTER 4

CONTRACTS AND PERFORMANCE

To support the development of safe and functionally correct code, SafeGPU
integrates the design-by-contract methodology [44]. This methodology uses
preconditions and postconditions to document (or programmatically assert)
the change in state caused by a piece of a program.

In the context of GPU programs, in which very large amounts of data
might be processed, “classical” (i.e., sequential) contracts take so long to
evaluate that they need to be disabled outside of debugging. With SateGPU,
however, contracts can be expressed using the primitive operations of the
library itself, and thus can be executed on the GPU.

4.1 Design-by-Contract

The idea of design-by-contract is simple: if the execution of a task relies
on a routine call to handle one of its subtasks, it is necessary to specify
the relationship between the client (the caller) and the supplier (the called
routine) as precisely as possible. This specification is done with assertions
which can be any be of following types: preconditions, postconditions, class
invariants.

Preconditions are conditions that must be true prior to running a method.
Each method should have its own precondition. These conditions can apply
to one of two things: data members or parameters. Usually, they apply to
parameters.

While preconditions serve to let the caller of a method know when it’s
safe to call a method, postconditions let the caller of a method know what
happened after calling the method. Postconditions typically indicate how the
data members have changed, how the parameters passed in have changed and
what the value of the return type is.



38

CHAPTER 4. CONTRACTS AND PERFORMANCE

Preconditions and preconditions are parts of routine declarations as shown

in Listing [4.2]

deposit (amount: INTEGER)
Header comment
require
amount > 0 -- precondition
do
implementation omitted
ensure
Postcondition
end

Listing 4.1: A routine equipped with assertions.

In this Eiffel notation, the require and ensure clauses (as well as the
header comment) are optional. Each assertion is a list of Boolean expressions,
separated by semicolons: here a semicolon is equivalent to a Boolean "and"
but allows individual identification of the assertion clauses. These assertions
can be monitored at runtime to help ensure the correctness of programs.

Class invariants are conditions that are true before and after running a
routine (except constructors and destructors). Class invariants are useful
because they help to avoid writing unnecessary code, and also help the pro-
grammer to think about what kind of behavior a class ought to have. A class
invariant is a property that applies to all instances of the class, transcending
particular routines.

initial—deposit: INTEGER;
deposits, withdrawals: TRANSACTION_LIST

record_deposit (d: INTEGER) is
do
Update the deposits 1list
end -- record_deposit

balance: INTEGER is
Current balance

do
balance := initial_deposit +
deposits.sum —
withdrawals.sum
end --balance

invariant
balance := initial_deposit + deposits.sum
— withdrawals.sum

Listing 4.2: A routine equipped with assertions.

In practice, the question of when class invariants should hold can become
quite complicated for certain object-oriented patterns [56]. Hence, we focus
on preconditions and postconditions for the rest of the chapter.




4.2. DESIGN-BY-CONTRACT IN GPGPU

39

4.2 Design-by-Contract in GPGPU

In the context of GPU programs, in which very large amounts of data might
be processed, “classical” (i.e., sequential) contracts take so long to evaluate
that they need to be disabled outside of debugging. With SafeGPU, however,
contracts can be expressed using the primitive operations of the library itself,
and thus can be executed on the GPU—where the data resides—without
diminishing the performance of the program (see our benchmarks in Sec-
tion [4.3.3)).

Contracts are supported by several object-oriented languages. Our prin-
cipal implementation of SafeGPU for Eiffel takes advantage of the fact that
the specification and runtime checking of contracts is supported natively by
the language. For our port to C#, contracts are instead supported via a
library—Code Contracts [24]—which provides a number of advanced speci-
fication features including contracts for interfaces, abstract base classes, in-
heritance, and methods with multiple return statements (which is not per-
mitted in Eiffel). Most importantly for SafeGPU, the library also provides
runtime contract checking via a post-compilation step. A number of other
object-oriented languages provide varios degrees of contract support, either
via libraries (e.g., JML for Java 1.0 [13]), or natively (e.g., Spec# [8] or
D [1).

4.2.1 Contracts in SafeGPU

Contracts are utilized by SafeGPU programs in two ways. First, they are
built-in to the library API; several of its methods are equipped with pre-
and postconditions, providing correctness properties that can be monitored
at runtime “for free” (i.e., without requiring additional user annotations).
Second, when composing the methods of the API to generate more com-
plex, compound computations, users can define and thus monitor their own
contracts expressing the intended effects of the overall computation.

The API’s built-in contracts are motivated easily by vector and matrix
mathematics, for which several operations are undefined on input with in-
consistent dimensions or input containing zeroes. Consider for example List-
ing which contains the signature and contracts of the library method for
component-wise vector division. Calling v1.compwise_divide (v2) on vectors
vl and v2 of equal size results in a new vector, constructed from v1 by divid-
ing its elements by the corresponding elements in v2. The preconditions in
the require clause assert that the vectors are of equal size (via count, from
the collection APT) and that all elements of the second vector are non-zero
(via for_all, customized with a predicate agent). The postcondition in the



40

CHAPTER 4. CONTRACTS AND PERFORMANCE

ensure clause characterizes the effect of the method by asserting the expected
relationship between the resulting vector and the input (retrieved using the
old keyword).

compwise_divide (other: VECTOR[T]|): VECTOR[T]

require

other.count = count

other.for_all(

agent (el: T) do Result := el /= {T}.zero end)

ensure

Current = old Current

Result * other = Current
end

Listing 4.3: Contracts for component-wise vector division in SafeGPU for
Eiffel

Built-in and user-defined contracts for GPU collections are typically clas-
sified as one of two types. Scalar contracts are those using methods with
execution times independent of the collection size. A common example is
count, which records the number of elements a collection contains. Range
contracts are those using methods that operate on the elements of a collec-
tion and thus have execution times that grow with the collection size. These
include library methods such as sum, min, max, and is_sorted. The CUDA pro-
grams generated for such operations usually perform multiple reductions on
the GPU. Other common range contracts are those built from for_all and
exists, equipped with predicate agents, expressing properties that should
hold for every (resp. at least one) element of a collection. These are easily
parallelized for execution on the GPU, and unlike their sequential counter-
parts, can be monitored at runtime for very large volumes of data without
diminishing the overall performance of the program (see Section [4.3.3).

The FEiffel implementation of SafeGPU provides a straightforward way
to monitor user-defined contracts on the GPU: simply express them in the
native require and ensure clauses of methods, using the primitive operations
of the library. This design is analogous to classical design-by-contract, in
which methods are used in both specifications and implementations.

The C# port requires contracts to be expressed via library calls—Contract
.Requires and Contract.Ensures—rather than in native clauses. It is important
that the preconditions are called at the beginning of the method body (since
they are executed as normal function calls), but for postconditions, the binary
is rewritten to ensure they are executed at the exit point(s) of the body, hence
they can be expressed anywhere in the method. It is conventional however
to list them immediately after the preconditions.




4.2. DESIGN-BY-CONTRACT IN GPGPU

4.2.2  Ezample: Quicksort in SafeGPU

In the following, we will consider SafeGPU implementations of quicksort
(in both Eiffel and C#), since the example demonstrates built-in and user-
defined contracts, as well as scalar and range contracts.

quicksort (a: G_VECTOR[REAL_32]): G_VECTOR[REAL_32]
require
a.count > 0
local
pivot: DOUBLE
left, mid, right: G_VECTOR|[REAL_32]

do
if (a.count = 1) then
Result := a
else
pivot := al[a.count // 2]
left := a.filter (agent (item: REAL_32; a_pivot: REAL_32): BOOLEAN do
Result := item < a_pivot end (7, pivot))
right := a.filter (agent (item: REAL_32; a_pivot: REAL_32): BOOLEAN do
Result := item > a_pivot end (7, pivot))
mid := a.filter (agent (item: REAL_32; a_pivot: REAL_32): BOOLEAN do
Result := item = a_pivot end (?, pivot))
Result := quicksort (left).concatenate (mid).concatenate (quicksort (
right))
end
ensure
Result.is _sorted
Result.count = a.count
end

Listing 4.4: Quicksort in SafeGPU for Eiffel

Listing contains the implementation and contracts of quicksort in
Eiffel SafeGPU. The implementation utilizes two methods provided by the
collection API: concatenate, to efficiently concatenate two vectors; and
filter, to find items less than, greater than, or equal to the pivot. The
three calls to filter are customized with predicate agents expressing these
relations. We remark that since inline agents cannot access local variables in
Eiffel, the pivot is passed as an argument. This is denoted by (? | pivot) at
the end of each agent expression: here, the ? corresponds to item, express-
ing that it should be instantiated with successive elements of the collection;
pivot corresponds to a_pivot, expressing that the latter should always take
the value of the former. At runtime, the built-in contracts of these two
library methods can be monitored, but they only express correctness condi-
tions localized to their use, and nothing about their compound effects. The
overall postcondition of the computation can be expressed as a user-defined
postcondition of quicksort, here asserting—using the is_sorted and count
methods of the vector API—that the resulting vector is sorted and of the




42

CHAPTER 4. CONTRACTS AND PERFORMANCE

same size. This can be monitored at runtime to increase confidence that the
user-defined computation is correct.

Listing contains the implementation and contracts (as library calls)
of Quicksort in the C# port of SafeGPU. Note that this implementation is
more general in that it uses collections instead of vectors, and can work with
any struct in which values can be compared and translated by SafeGPU (see
Section [3.3)). Note also that we use delegates, the C# counterpart to Eiffel’s
agents, as well as lambda expressions to create these delegates in-place (since
lambda expressions in C# are allowed to access local variables, the syntax
is slightly more compact). As the program operates on generic collections,
we have to provide a comparison function to IsSorted so that it is able to
compare two arbitrary objects in a collection. Again, this is achieved by
using lambda expressions to create a delegate in-place.

public static GCollection<T> Quicksort<T>(GCollection<T> data) where T :
struct, IComparable<T>

Contract.Requires(data.Count > 0);
Contract.Ensures(Contract.Result<GCollection<T>>().Count == data.Count);
Contract.Ensures(Contract.Result<GCollection<T>>().IsSorted((a, b) => a.
CompareTo(b)));
if (data.Count == 1) {
return data;

}

T pivot = data[data.Count / 2];
GCollection<T> left = data.Filter(d => d.CompareTo(pivot) — —1
GCollection<T> right = data.Filter(d => d.CompareTo(pivot)
GCollectionr<T> mid = data.Filter(d => d.CompareTo(pivot)

return Quicksort(left).Concat(mid).Concat(Quicksort{right));

Listing 4.5: Quicksort in SafeGPU for C#

4.3 FEvaluation

To evaluate SafeGPU, we prepared a set of benchmark problems to solve on
the GPU, each with functionally equivalent implementations in sequential
Eiffel, SafeGPU for Eiffel, and raw CUDA in C++. To establish a base-
line, we covered some problems that have well-established implementations
available in the NVIDIA SDK, such as vector addition and matrix multipli-
cation. Beyond this baseline, we also considered larger examples constructed
by chaining the primitive operations of our library, such as Gaussian elim-
ination and quicksort. Across our benchmark set, we made three different
comparisons (which we expand upon in the following subsections):

1. the performance of SafeGPU against CUDA and sequential Eiffel;




4.3. EVALUATION

43

2. the conciseness of SafeGPU against sequential Eiffel;

3. the performance overhead of runtime contract checking in SafeGPU
against checking traditional sequential contracts in Eiffel.

The six benchmark programs we considered were vector addition, dot
product, matrix multiplication, Gaussian elimination, quicksort, and matrix
transposition. We implemented the benchmarks ourselves for SafeGPU and
sequential Eiffel (both with contracts, wherever possible). We did not im-
plement but rather relied on a selection of sources for the plain CUDA code:
vector addition and matrix multiplication were taken from the NVIDIA SDK;
dot product and quicksort were adapted from code in the same repository;
Gaussian elimination came from a parallel computing research project [40];
and finally, matrix transposition came from a post [28] on NVIDIA’s Parallel
Forall blog.

The SafeGPU implementation and all the benchmarks are available to
download online [61]. Listings for the SafeGPU implementations of quicksort
and Gaussian elimination are also provided in this thesis (Listings [4.4)and [3.6]
respectively).

We remark that we use our principal, Eiffel implementation of SafeGPU
in these experiments, given that at the time of writing, our C# port remains
an early prototype. Given the (intended) similarities of the two implemen-
tations, any significant differences in performance might bring about some
interesting insights into language-specific overheads (but would not other-
wise affect the investigation here, which asks whether one can provide the
functionality of SafeGPU in some object-oriented library without paying a
large price in performance).

4.3.1 Performance

The primary goal of our first experiment was to assess the performance over-
head caused by SateGPU’s higher level of abstraction. To measure this, we
compared the execution times of benchmarks in SafeGPU against those in
plain CUDA for increasingly large sizes of input. Furthermore, we compared
our benchmarks against functionally equivalent solutions in sequential Fif-
fel, allowing us to ascertain the input sizes necessary for GPU solutions to
outperform them. We remark that since performance was the focus of this
first experiment, runtime contract checking was completely disabled across
all benchmarks. In the next experiment, we show the effect of keeping it. on.

All experiments were performed on the following hardware: Intel Core
i7 8 cores, 2.7 GHz; NVIDIA QUADRO K2000M (2 GB memory, compute



44

CHAPTER 4. CONTRACTS AND PERFORMANCE

capability 3.0). In our measurements, we are reporting wall time. Further-
more, we measure only the relevant part of the computation, omitting the
time it takes to generate the inputs.

The results of our performance comparison are presented in Figure 4.1
The problem size (x-axis) is defined for both vectors and matrices as the total
number of elements they contain (our benchmarks use only square matrices,
hence the number of rows or columns is always the square root). The times
(y-axis) are given in seconds, and are the medians of ten runs.

While sequential Eiffel is faster than SafeGPU and plain CUDA on rela-
tively small inputs (as expected, due to the overhead of launching the GPU),
it is outperformed by both when the size of the data becomes large. This
happens particularly quickly for the non-linear algorithm (e) in comparison
to the others. For matrix-matrix multiplication and Gaussian elimination,
sequential Eiffel took far too long to terminate on inputs of size 107 and
above, and hence these data points are omitted.

Across most of the six benchmarks, the performance of SafeGPU is very
close to that of plain CUDA, adding support to our argument that using our
library does not lead to performance incommensurate with that of handwrit-
ten CUDA code. The Gaussian elimination benchmark displays the largest
difference between SafeGPU and plain CUDA, on inputs of size 10° and
above. This is due to the need for the SafeGPU implementation to use
nested loops, which have the effect of additional kernel launches. This could
be addressed in the future by API extensions, or the introduction of more
speculative optimization strategies designed for loops. Note that in some
benchmarks (especially on smaller inputs), SafeGPU sometimes slightly out-
performs plain CUDA, which we believe is due to differences between the
memory managers of Eiffel and C++.

4.3.2 Code Size

The goal of our second experiment was to assess the conciseness of SafeGPU
programs. To measure this, we compared the lines of code (LOC) required for
the main methods of these programs (and any auxiliary methods) against the
LOC of functionally equivalent sequential Eiffel methods. Note that we do
not compare against plain CUDA programs, because this is not a particularly
interesting comparison to make: it is known that higher-level languages are
more compact than those at the C/C++ level of abstraction [48], and CUDA
programs in particular are dominated by explicit memory management that
is not visible in SafeGPU or Eiffel. Our CUDA benchmarks are typically
around 200 LOC code long (and sometimes more).

Our results are presented in Table The programs written using our



Time (seconds)

Time (seconds)

10°

1072

1074

10!

1071

103

—m— CUDA

(d) Gaussian Elimination

—+— Eiffel
| —A— SafeGPU
| | | I I I
102 10* 105 10® 107 108
(a) Vector Addition
B | | | | | |
102 10* 10° 10 107 108

10° -

10!

1071

103

108

10* 105 108

107

(c) Matrix-Matrix Multiplication

101 —

10—2 |
10—4 |
| | | | | |
102 10* 10° 10® 107 108
(b) Dot Product
102 |
10° [~
1072 |
| | | | | |
102 10* 10° 10% 107 108
(e) Quicksort

Figure 4.1: SafeGPU performance evaluation (z-axis

1073

102

10*

(f) Matrix Transpose

10°

: input size in no. of elements)

106

107

108




46

CHAPTER 4. CONTRACTS AND PERFORMANCE

library are quite concise (as expected for a high-level API); more interestingly,
they are more compact than traditional sequential Eiffel programs. This
difference is explained by the usage of looping constructs. In sequential Eiffel,
loops are frequently used to implement the benchmarks. With SafeGPU,
however, loops are often avoided due to the presence of bulk operations in the
API, i.e., operations that apply function abstractions to all the data present
in a collection. We should note that this is not always the case, as loops
were required to implement the library version of the Gaussian elimination
benchmark.

We remark that while these results suggest that SafeGPU programs are
more compact, we do not yet know whether typical programmers can write
them more productively. In future work, we would like to perform a study
on users themselves in order to determine whether the abstractions and pro-
gramming style of our approach allow for users to write programs produc-
tively, regardless of their conciseness.

4.3.83  Contract Overhead

The goal of our final experiment was to compare the cost of checking SafeGPU
contracts on the GPU against the cost of checking traditional sequential Eif-
fel contracts. To allow a more fine-grained comparison, we measured the
contract checking overhead in three different modes: (1) preconditions only;
(2) pre- and postconditions only; and finally, (3) full contract checking, i.e.,
additionally checking class invariants at method entry and exit points. Note
that our SafeGPU benchmarks were annotated only with pre- and postcon-
ditions; invariants, however, are present in the core Eiffel libraries that were
required to implement the sequential programs (these libraries also include
some additional pre- and postconditions, making a full like-for-like compari-
son with SafeGPU challenging). Across the benchmarks and for increasingly
large sizes of input, we computed ratios expressing the performance overhead
resulting from enabling each of these three modes against no contract check-
ing at all. The ratios are based on medians of ten runs (an effect of using
medians is that some ratios can be less than 1).

Our data is presented in Table where a ratio X can be interpreted
as meaning that the program was X times slower with the given contract
checking mode enabled. The comparison was unable to be made for some
benchmarks with the largest inputs (indicated by dashes), as it took far too
long for the sequential Eiffel programs to terminate. We remark that vector
addition, dot product, and matrix-matrix multiplication have only scalar
contracts; Gaussian elimination, quicksort, and matrix transposition have
a combination of both scalar and range contracts (see Section | for their



Table 4.1: LOC comparison

problem Eiffel SafeGPU ratio
Vector Addition 18 8 2.3
Dot Product 16 6 2.7
Matrix-Matrix Multiplication 32 6 5.3
Gaussian Elimination 98 47 2.1
Quicksort 63 22 2.9
Matrix Transpose 27 8 3.4



Table 4.2: Contract checking overhead comparison

problem 103 104 105 106 107 108
Eiffel SafeGPU | Eiffel SafeGPU | Eiffel SafeGPU | Eiffel SafeGPU | Eiffel SafeGPU | Eiffel SafeGPU
pre 1.00 0.92 1.42 0.96 | 3.50 096 | 3.92 0.95| 3.98 1.02 | 4.12 1.06
Vector Addition pre & post | 1.00 0.92 | 1.42 0.96 | 3.66 0.96 | 3.93 0.95| 3.98 1.02 | 4.29 1.06
full 1.00 0.92 | 2.86 0.96 | 7.00 0.96 | 7.81 0.95| 7.82 1.02 7.97 1.06
pre 1.00 1.02 1.25 0.99 | 4.00 0.97 | 3.95 1.01 | 4.00 1.10 | 4.01 0.95
Dot Product pre & post | 1.00 1.02 | 1.25 0.99 | 4.00 0.97 | 3.95 1.01 | 4.15 1.10 | 4.10 0.98
full 1.00 1.02 1.88 099 | 7.25 0.97 | 7.33 1.01 7.46 1.10 7.48 0.98
pre 4.00 1.05 | 4.47 1.01 | 4.55 0.99 | 4.54 0.99 - -
Matrix-Matrix Multiplication pre & post | 4.00 1.05 | 4.47 1.01 | 4.59 0.99 | 4.57 0.99 - -
full 5.00 1.05 | 6.73 1.01 6.79 1.01 6.76 0.99 - -
pre 2.22 0.99 | 4.50 0.97 | 4.70 1.01 | 4.71 1.01 - -
Gaussian Elimination pre & post | 2.77 0.99 | 4.50 0.97 | 4.70 1.04 | 4.73 1.09 - -
full 4.44 0.99 | 6.67 0.97 | 6.96 1.04 | 6.96 1.09 - -
pre 2.14 1.02 | 2.26 1.05| 2.64 1.00 | 3.03 1.01 | 3.03 1.02 -
Quicksort pre & post | 2.28 1.02 | 2.27 1.05 | 2.70 1.02 | 3.02 1.07 | 3.04 1.08 -
full 3.64 1.02 | 4.14 1.05 | 5.07 1.02 | 6.38 1.07 | 6.49 1.09 -
pre 2.00 1.05 | 2.06 1.01 2.40 1.02 | 3.71 1.01 | 3.86 1.02 | 4.02 1.01
Matrix Transposition pre & post 2.00 1.05 | 2.06 1.01 2.40 1.03 | 3.96 1.11 | 4.05 1.12 | 4.27 1.14
full 4.15 1.03 | 5.60 1.01 6.10 1.03 | 7.88 1.10 | 8.12 1.12 | 10.44 1.13




4.4. RELATED WORK

49

definitions).

There is an encouraging difference between the contract-checking over-
head in sequential Eiffel and SafeGPU: while the former cannot maintain
reasonable contract performance on larger inputs (the average slowdown for
the “full” mode across benchmarks with input size 10%, for example, is 7.19),
SafeGPU has for the most part little-to-no overhead. Disabling invariant-
checking leads to improvements for sequential Eiffel (which, unlike SafeGPU,
relies on invariant-equipped library classes), but the average slowdown is still
significant (now 4.03, for input size 10°). Across these benchmarks, post-
condition checking adds little overhead to sequential Eiffel above checking
preconditions only (which has an average slowdown of 3.98 for input size
10%). SafeGPU performs consistently well in all modes of the experiment,
with slowdown close to 1 across the first three benchmarks. The other three
benchmarks perform similarly for precondition checking, but as they include
more elaborate postconditions (e.g., “the vector is sorted”), checking both
pre- and postconditions can lead to a small slowdown on large data (1.14
in the worst case for this experiment). Overall, the results lend support to
our claim that SafeGPU contracts can be monitored at runtime without di-
minishing the performance of the program, even with large amounts of data.
Unlike sequential Fiffel programs, contract checking need not be limited to
periods of debugging.

4.4 Related Work

There is a vast and varied literature on general-purpose computing with
GPUs. We review a selection of it, focusing on work that particularly relates
to the overarching theme of SafeGPU: the correctness of the kernels to be
executed, and the maintenance of acceptable performance.

4.4.1 Correctness of GPU Kernels

To our knowledge, SafeGPU is the first GPU programming approach to in-
tegrate the specification and runtime monitoring of functional properties di-
rectly at the level of an API. Other work addressing the correctness of GPU
programs has tended to focus on analyzing and verifying kernels themselves,
usually with respect to concurrency faults (e.g., data races, barrier diver-
gence).

PUG [38] and GPUVerify [10, 11] are examples of static analysis tools
for GPU kernels. The former logically encodes program executions and uses
an SMT solver to verify the absence of faults such as data races, incorrectly



20

CHAPTER 4. CONTRACTS AND PERFORMANCE

synchronized barriers, and assertion violations. The latter tool verifies race-
and divergence-freedom using a technique based on tracking reads and writes
in shadow memory, encoded in Boogie [7].

Blom et al. [I2] present a logic for verifying both data race freedom and
functional correctness of GPU kernels in OpenCL. The logic is inspired by
permission-based separation logic: kernel code is annotated with assertions
expressing both their intended functionality, as well as the resources they
require (e.g., write permissions for particular locations).

Other tools seek to show the presence of data races, rather than verify
their absence. Examples include GKLEE [39] and KLEE-CL [15], both based
on dynamic symbolic execution.



CHAPTER 5

SCOOP

So far we have explored how data-centric computations can utilize GPGPU
to their benefit. We were using mostly sequential code that was running
in parallel on graphical cards. Now we explore how to turn sequential bits
of code (like in SafeGPU), into concurrent tasks by adopting a model for
task-centric concurrency in an object-oriented setting. This compliments
SafeGPU, by providing means to orchestrate executions with more flexibility
(e.g. enabling cancellation of still running computations, or asynchronous
progress notifications), that would not be possible within a pure data-centric
model.

SCOOP [44, 49, [70], Simple Concurrent Object Oriented Programming
model, is a concurrency model, based on message passing in the context of an
object-oriented language. An extension, b—sCo0P [63] generilizes the model
for distributed systems.

SCOOP aims to provide simple reasoning about concurrent execution,
similar to sequential programming: inference-free reasoning over multiple
(concurrent) objects, pre- and post-condition guarantees for blocks of code.
SCOOP achieves this by encapsulating low-level aspects of concurrency pro-
gramming (threads, semaphores, etc.), similar to how SafeGPU encapsulates
CUDA code. With a minimal language change (only one new keyword —
separate), SCOOP provides a higher-level API and strong reasoning guaran-
tees which are ensured by the underlying implementation.

There are are two major execution models for SCOOP: backed by a sin-
gle request queue (RQ) [47] or by a queue of queues (QoQ) [70]. While the
QoQ implementation provides some noticeable gains in the case of heavy
contention for objects, the reasoning behind this SCOOP variant is more
involved. Since we are using the SCOOP model mainly for task-centric com-
puting (with no heavy contentions for locks), we use the RQ variant in this



02

CHAPTER 5. SCOOP

chapter and for the rest of the thesis to simplify the discussion.

This chapter presents an overview of its most important aspects, focus-
ing on the non-distributed version. We describe SCOOP’s fundamental ab-
stractions, reasoning guarantees, and show how they are applied to express
concurrency in some simple examples.

5.1 Overview of SCOOP Processors

In order to achieve safe multitasking, SCOOP restricts concurrent access to
shared memory. Thus the heap memory is partitioned into regions, which
are individual sets of objects in the process memory.

Each object in SCOOP is associated with a processor (usually imple-
mented as a thread). A processor is always attached to exactly one region,
and is responsible for performing operations on all the objects it handles.
Features of objects that reside on different processors can be executed in
parallel.

Objects, potentially residing on different processors, must explicitly spec-
ify this possibility via the type system, using the keyword separate. To
request method calls on objects of separate type, programmers must make
the calls within so-called separate blocks. These blocks exist in one of the
following forms:

e Method bodies that have at least one separate object as a formal ar-
gument

e An explicit separate block: separate x as y do ... end

Splitting the heap into several regions, where each region by itself is
sequential and direct access from one region into another is not allowed (no
uncontrolled communication via shared memory), gets rid of data races and
atomicity violations.

5.2 Separate Calls

Regions in a concurrent SCOOP program can communicate via a variant of
message passing: separate calls. Separate call is a feature call whose target
is of a separate type. Listing shows an example of simple separate calls.

In concurrent systems it is important to control resource accesses that
can be shared among simultaneously executing processors. SCOOP, instead
of using "critical sections", where only one thread is allowed to be executing



5.2. SEPARATE CALLS

do_call (foo: separate F00; bar: separate BAR)
do
foo.do_something_async (11)
foo.do_something_else_async
end

Listing 5.1: Example of separate calls in SCOOP

the critical section at a time, relies on the mechanism of argument passing to
assure exclusive access. As a result, there is a restriction placed on separate
calls. A separate call on object x is valid if it is happening inside a separate
block as defined above:

e inside a method body where x is a formal argument.

e inside a explicit separate block, listing x as a parameter.

In either of these cases we call the argument controlled. FExamples of
invalid and valid calls are shown in Listing [5.2]

my_separate_attribute: separate SOME_TYPE
another_separate_attribute: separate SOME_TYPE

calling_routine
-- One routine
do

my_separate_attribute.some_feature -- Invalid call: Feature
call on separate attribute, which is not controlled

enclosing_routine (my_separate_attribute) -- Separate attribute
passed as argument

separate another_separate_attribute as x

do
Xx.another_feature -- Valid call : inside a separate block.
my_separate_attribute -- Invalid call: not a parameter of this
separate block.
end
end

enclosing_routine (a_arg: separate SOME_TYPE)
-- Another routine
do
a_arg.some_feature -- Valid call: Feature call on separate
argument , which is controlled
end

Listing 5.2: Example of valid and invalid separate calls

5.2.1 Reasoning in SCOOP

SCOOP restricts the order in which calls in separate blocks are executed, in
order to help programmers reason about concurrency in their code and avoid




54

CHAPTER 5. SCOOP

subtle concurrency errors. Concretely, within a separate block (as defined
above), method calls requested on separate objects are logged by their pro-
cessors in the order that they appear in the program text, and no intervening
requests will be logged from other processors. These guarantees are effective
regardless of the number of separate objects and processors appearing within
a separate block. Hence, SCOOP programs simplify reasoning about concur-
rency: the sequential reasoning applies to separate blocks, independently of
the rest of the program.

SCOOP guarantees can be ensured via different runtime implementations.
As stated before, we are using the RQ variant here for the sake of simplicity.
In the RQ runtime each processor is associated with a single request queue.
For a processor to be able to log a request on the queue of another proces-
sor, it must first acquire the lock protecting that queue. Once the lock is
acquired, requests can be added to the queue without interference. Upon
entering a separate x, y, ... block, the processor simultaneously acquires
locks on the request queues associated with the processors of x, y and only
releases them after the execution leaves the separate block. This solution
successfully prevents interference from other processors that are not the part
of the separate block. The canonical problem of the dining philosophers
— where concurrent processes (philosophers) must acquire exclusive use of
shared resources (forks) without causing cyclic deadlock — provides an exam-
ple (in Listing of how R(Q guarantees can be used to write deadlock-free
code.

eat (left, right: separate FORK)
- Eat, having acquired “left' and “right' forks.
do
- Take forks.
left.pick (Current)
right.pick (Current)
- Eat.
- Put forks back.
left.put (Current)
right.put (Current)
end

Listing 5.3: Dining philosophers in SCOOP

This code snippet solves the problem of dining philosopher without dead-
locking because the locks on the request queues of the processors for left
and right forks are acquired atomically, and no partial resource holding is
possible.




5.3. DESIGN-BY-CONTRACT IN SCOOP

%)

5.2.2  Passive Regions

Regions can be made passive [46], meaning that there is no active processor
associated with it. One can think of passive processors as a form of controlled
shared memory, that doesn’t violate SCOOP’s reasoning guarantees.

Different processors can own this region by calling an object in it, but
only one processor at the time (after acquiring control). The calling processor
assumes the identity of the passive processor during the execution and ceases
the identity once it is finished with the execution. After the region is adopted
by a processor, calls become synchronous, which can help to reduce the
number of threads and minimize runtime overhead.

One can declare an object with a passive region by using a specialized
form of creation routine: create <\NONE> foo.make.

5.3 Design-by-Contract in SCOOP

An important part of SCOOP is design-by-contract: preconditions, postcon-
ditions, and class invariants are frequently used to extend software interfaces
into software specification.

The role of the precondition is somewhat different in SCOOP than in tra-
ditional sequential Eiffel. In non-concurrent Eiffel we view the precondition
of a routine as defining a set of obligations on potential callers of the routine.
That is, it is the set of conditions that must be true before correct execution
of the routine can be expected. So, we could look at the precondition clauses
in sequential Fiffel as correctness conditions. In SCOOP preconditions ad-
ditionally take the role of a wait condition. Wait conditions are useful for
cases where the caller can’t guarantee that a property on an object is true at
the time of the call, but it knows that it will eventually become true. In the
case of a wait condition failure, the current processor will stall its execution,
release the locks on its arguments, and wait until the precondition is fulfilled.
The supplier processor signals to it once the condition could be re-checked.

The producer-consumer problem serves as an illustration of all aforemen-
tioned ideas. The main entities producer, consumer, and buffer are shown
in Listing The keyword separate specifies that the referenced objects
may be handled by a processor different from the current one. A creation
instruction on a separate entity such as producer will create an object on
another processor; by default the instruction also creates that processor.

producer: separate PRODUCER
consumer: separate CONSUMER
buffer: separate BUFFER [INTEGER]

consume (a_buffer: separate BUFFER [INTEGER])



o6

CHAPTER 5. SCOOP

- consume an item from the buffer
require

not (a_buffer.count = Q)
local

consumed_item: INTEGER
do

consumed_item := a_buffer.item
end

Listing 5.4: Producer-consumer example in SCOOP

A consumer accesses an unbounded buffer in a feature call a_buffer.item.
To ensure exclusive access, the consumer must lock the buffer before accessing
it. Such locking requirements of a feature must be expressed in the formal
argument list: any target of separate type within the feature must occur as
a formal argument; the arguments’ processors are locked for the duration of
the feature execution, thus preventing data races. Such targets are called
controlled. For instance, in consume, a_buffer is a formal argument; the
consumer has exclusive access to the buffer while executing consume.

Condition synchronization relies on preconditions (after the require key-
word) to express wait conditions. Any precondition makes the execution of
the feature wait until the condition is true. For example, the precondition of
consume delays the execution until the buffer is not empty.




CHAPTER 6

TASK PARALLELISM INTEGRATION

Task parallelism is ubiquitous in modern applications for event-based, dis-
tributed, or reactive systems. In this type of programming, the ability to
cancel a running task arises as a critical feature. Although a variety of can-
cellation techniques exist, a comprehensive account of their characteristics is
missing. This thesis provides a classification of task cancellation patterns,
as well as a detailed analysis of their advantages and disadvantages. One
promising approach is cooperative cancellation, where threads must be con-
tinuously prepared for external cancellation requests. Based on this pattern,
we propose an extension of SCOOP, an object-oriented concurrency model.

We further improve on the proposed technique by proposing a combina-
tion of cancellable tasks with asynchronous events and illustrate the useful-
ness of the combined usage of two models.

Finally, we illustrate how SafeGPU-based implementation can benefit
from task parallelism to provide better control over the computation.

6.1 Introduction to Task Cancellation

Task parallelism has become part of a professional developeraAZs toolbox,
and programming frameworks for this domain are sprouting up to help them
express their intentions in a safe and concise manner. At the same time,
learning to proficiently use such frameworks is far from easy. They offer a
confusing variety of abstractions and constructs, often providing similar but
subtly different functionality. Frequently, the only source of information is
code examples where the relevance of the constructs cannot be sufficiently
discussed. Too little research is spent on consolidating the various approaches
by explaining commonalities and differences which would help developers



o8

CHAPTER 6. TASK PARALLELISM INTEGRATION

learn to use new frameworks more quickly and aid designers in developing
their frameworks further.

This thesis strives to address these deficiencies, focusing on a central
problem in task parallelism: task cancellation techniques. Cancellable tasks
are mainly used for interrupting long-running or outdated tasks, but the
pattern can also be used as a building block for more high-level patterns, such
as MapReduce. We provide an overview of existing cancellation approaches,
extracting techniques from different programming languages and concurrency
libraries, classifying them, and discussing their strong and their weak points.
This knowledge is then applied to provide a novel task cancellation technique
for SCOOP [44] [49], an object-oriented concurrency model. The technique is
based on the idea of cooperative cancellation where both the canceling and
the canceled task must cooperate in order to succeed.

We improve task cancellation in SCOOP by enhancing the basic skeleton
with event support, another important technique from the world of asyn-
chronous programming, used in many applications, such as user interface
programming or robotics systems (Roboscoop [60], for example uses a com-
bination of asynchronous events and task cancellation, inspired by this work).
We modify the synchronous event so that they can be used in SCOOP en-
vironment and demonstrate on example the usefulness of combined use of
events with task cancellation.

Finally, we show how SafeGPU can benefit from the task cancellation and
event-based programming: the flexibility of combined approach is greatly
increased, while keeping the advantages of both elements in the blend.

6.2 Classification of Task Cancellation
Techniques

A task denotes the abstraction of an execution, such as a CPU thread, a
thread pool, or a remote machine. The design of a programming model for
task parallelism has to deal with the cancellation of tasks, a highly reusable
pattern which can be applied to stand-alone applications, client-server sys-
tems, and distributed clusters alike. Without proper support for task can-
cellation, the developer has to write the synchronization code by hand, an
task activity to subtle errors.

Various approaches to canceling a running task have been implemented
in programming languages and libraries and described in theory. However,
so far there is little evaluation and comparison of the proposed techniques.
To provide a foundation for discussing them, we have examined a number of



6.2. CLASSIFICATION OF TASK CANCELLATION

TECHNIQUES
How to cancel a task?
in the client in the supplier in combination
Forceful Passive Failing Cooperative Hostile
e ~
Abortive Interruptive

Figure 6.1: Execution plans for the dot product method

popular languages (Java, Python, C# TPL, Pthreads, etc.) and provide a
taxonomy in Figure [6.1]

Client-based cancellation describes techniques where the control over the
cancellation process lies entirely with the client (the canceling task):

e Forceful cancellation The client forces the supplier (the canceled
task) to stop without the possibility to resist:
— Abortive cancellation The supplier is terminated immediately.
— Interruptive cancellation The supplier is allowed to reach a
safe point before being terminated.

e Passive cancellation The client stops waiting for the result of a
supplier, allowing it to continue on its own.

Supplier-based cancellation describes techniques where the control over
the cancellation process lies entirely with the supplier:

e Failing The supplier encounters an unrecoverable error and needs
to inform its clients.

Client /supplier combination describes techniques where client and sup-
plier must act together in order to succeed with the cancellation:

e (Cooperative cancellation The client asks the supplier to terminate,
which decides itself how and when it should terminate.

e Hostile cancellation The supplier may resist a cancellation request
of the client, and interrupt the client instead.

In the following, we discuss each of the approaches and provide examples
of languages where they are employed.



60

CHAPTER 6. TASK PARALLELISM INTEGRATION

6.2.1 Client-Based Cancellation

Abortive cancellation. Immediate termination does not give the can-
celed thread a chance to respond. As an example, consider the Java code in
Listing [6.1] where t.stop() aborts the thread.

Thread t = new Thread(){ @override void run(){...} }
t.start();

t.stop(); // aborts the running thread

Listing 6.1: Aborting a thread-based task in Java

The advantage of the approach is clearly its simplicity. However, the
approach is unsafe because aborting a running thread can leave a program
in an inconsistent state. Consider the money transfer example in Listing [6.2]

void transfer(Account from, Account to, int amount) {
synchronized {
from.withdraw(amount); // if stopped here, money is lost
to.deposit (amount);

}
}

Listing 6.2: Unsafe cancellation using abortion

In this example, a synchronized block is used to guarantee that no thread
interferes with the transfer. However, if a running thread is aborted during
execution and is forced to unlock all of the monitors that it has locked,
the transferred money may be lost and the remaining execution started in an
inconsistent state. The Pthreads library [57] with set_cancellalation mode set
to PTHREAD_CANCEL_ASYNCHRONOUS is a further example of abortive cancellation.

Interruptive cancellation. Using this technique, a running task is aware
of potential interruption and usually cannot ignore it. However, a task can-
not be canceled in every execution state, but only at so-called safe points:
places where certain program invariants hold such that the execution may
be interrupted safely. Usually a programmer must specify these places by
hand, either by calling a library function, or handling a specific type of ex-
ception [19]. A special case of this technique allows interrupting a task at
only one point in its lifetime: when the task has not been started yet. While
it may seem not very useful, in some languages (Scala [62], Python [16]) this
is the only built-in cancellation mechanism.
Consider the example in the Pthreads library! in Listing

!Pthreads supports two cancellation modes: Deferred (as in the example) and Asyn-
chronous. The latter one is an example of aborting tasks, with no safety guarantees.




6.2. CLASSIFICATION OF TASK CANCELLATION
TECHNIQUES

// setting the cancellation mode to interruption
pthread,setcanceltype(PTHREAD,CANCEL,DEFERRED, NULL);

void+ CancellablePthread(void* argument){

pthread_testcancel(); // the execution can be safely canceled here

}

Listing 6.3: Cancellation points in Pthreads

At a safe point for cancellation, the call pthread_testcancel() checks on
potential cancellation requests. Additionally, some of the blocking system
calls are also considered to be cancellation points in Pthreads [57]. Java’s
thread interruptions? and thread.Abort() in C# (unlike the method’s name is
suggesting) are another examples of interruptive cancellation [30, [3].

Its potential safety guarantees are a benefit of this approach: if the ap-
proach is applied correctly, a program can be considered to be in a consistent
state after a cancellation. Writing correct interruption-aware code is how-
ever difficult [55], B] as a programmer has to remember subtle rules (e.g. in
Pthreads some I/O calls are interruptible, others are not) and maintain a
program’s invariants by hand.

Passive cancellation. This technique is different from the forceful meth-
ods in that a canceling task does not need to become active: it simply stops
waiting for a task result, while the running task is still being executed.

As an example, consider downloading a file over a network, illustrated in
Listing 6.4 with C#’s Task Parallel Library (TPL). The call to a
StartDownload() is asynchronous and returns only a handle to a future (an
object, representing a computation that is still being computed [6]), repre-
sented by the Task class. After some time the downloader’s result might not
be needed anymore, i.e. the execution is abandoned (in the if branch).

void PassiveCancellation(string url){
Downloader downloader = new Downloader (url);
Task<byte[]> bytesFuture = downloader.StartDownload();

if(noNeedToDownload) {
// the download is not needed anymore
return; // data is still being downloaded ...

}
else {
// the download is still needed
var result = bytesFuture.Result; // fetching the result
}

Listing 6.4: Passive cancellation in the Task Parallel Library (TPL) of C#

2User-defined code may ignore interruption [55], but only between calls to library
methods (which will not ignore it).




62

CHAPTER 6. TASK PARALLELISM INTEGRATION

Obviously, this approach is not uniformly applicable; for example, we
might still want to cancel a state-changing procedure. It is important to
know in advance that the task will eventually be completed, i.e. listening
to a TCP-socket cannot be canceled in this way. Another disadvantage is
that the running task continues to consume machine resources. However,
in a distributed setting this approach can find its application: consider a
framework for a distributed computing, such as MapReduce. Often for the
last piece of work several tasks are spawned [I8] but only a single result will
be used. In this case, there is no need to write sophisticated cancellation
code, and it is valid to “forget” about the remaining executing tasks.

6.2.2 Supplier-Based Cancellation

This class of techniques deals with the special case that cancellation is not
requested by a client but that a failure happens in the supplier, i.e. it cannot
fulfill its obligations to clients; the supplier therefore needs to terminate. To
indicate a failure, exceptions are typically used in object-oriented program-
ming environments. Hence, this case boils down to the problem of exception
handling in concurrent environments [45], which is not the focus of this thesis.

6.2.3 Client/Supplier Combination

Cooperative cancellation. A gentle way to stop a task is to cooperate
and ask it to do so. The rationale for this approach is simple: a task is the
abstraction of an execution, and hence should contain the information about
how and when it should be stopped.

In other words, a task must be ready to be canceled at any time by exter-
nal request. C#’s Task Parallel Library (TPL) follows this pattern, where a
single point of cooperation is denoted by two classes: CancellationTokenSource,
a generator of CancellationToken, which itself is a concrete request to cease
the execution. An example is given in Listing [6.5]

This technique provides solid general structure for writing a cancellable
tasks (see Listing , with a guarantee that no invariants will be violated.
Unlike in interruptive cancellation, the programmer does not need to remem-
ber subtle rules of a concrete library or language. Cooperative cancellation
also does not require any runtime support. Unfortunately, one cannot use
the true power of this technique unless libraries support this pattern too (as
far as we know, to date only limited support is introduced in C#). As an-
other disadvantage, the latency between a cancellation request and actual
cancellation is increased.



6.2. CLASSIFICATION OF TASK CANCELLATION
TECHNIQUES

void Client(){
var cts = new CancellationTokenSource(); // create the token source
// pass the token to the cancelable operation
Task.Run(() => Supplier(cts.Token));

cts.Cancel(); // request cancellation
}
void Supplier(CancellationToken token) {
for (int i = 0; i < 100000; i++) {
// some work
if (token.IsCancellationRequested) {
break; // potentially perform cleanup, terminate
}

Listing 6.5: Cooperative cancellation in TPL

void function run(CancelRequest cancel)
while(not is_done){
if cancel is requested
exit
loop_once
}
//need to be specified for concrete task.
void function loop_once;
boolean function is_done;

Listing 6.6: General structure of a cancellable task in cooperative cancellation

Hostile cancellation. While in the previous paragraph client and supplier
are cooperating in order to succeed, in hostile techniques there is a struggle
between the canceling and the canceled task. We describe these techniques on
the example of duels, a mechanism which was theoretically described in [44].
We use the terminology from [44] in the rest of this chapter.

The key insight in this approach is that a canceling task (a “challenger”; in
the original) might not be strong enough to request an actual cancellation.
If the canceling task is worthy enough, its request is fulfilled (the task is
“killed”); if not, it gets an exception itself (therefore the approach is named
a duel). In other words, dueling is a two-way interruption, where the result
depends on which of the tasks is stronger.

To specify its preferences, a supplier can be in one of the two modes:
either retain or yield. The former means that the task refuses to be canceled,
and the latter specifies that it is OK to be interrupted. On the side of the
client, there are also two options available: demand and insist. The first is
more impatient, the second more gentle. The complete set of rules is shown
in Table 6.1

The dueling mechanism is useful in environments where executions are
prioritized. For example, one can imagine a robotics system that needs to




64

CHAPTER 6. TASK PARALLELISM INTEGRATION

retain yield
demand | the client is inter- | the supplier is inter-
rupted rupted
insist the client waits the supplier is inter-
rupted

Table 6.1: Dueling rules

handle simultaneously a variety of different tasks: route planning, controlling
the motors, etc. These tasks can arise non-deterministically and compete
for processing units, attempting to cancel other activities. However, it is
completely unacceptable that a low priority task succeeds in canceling a
more important one (for example, the data collection routine should not be
able to cancel a task that adjusts the speed of the motors). In this case, a
proper setup of dueling rules could both permit a cancellation request from
high priority challengers and provide security from cancellation for important
computational tasks.

6.3 Cooperative Cancellation in SCOOP

6.3.1 Choosing a cancellation mechanism for SCOOP

The main goal of SCOOP is to provide an easy-to-use model for expressing
concurrency, with a focus on the correctness of the resulting programs. Any
cancellation mechanism proposed for SCOOP must be designed in this spirit.

Clearly, abortive cancellation is an error-prone pattern, and it does not
go well with SCOOP’s focus on design-by-contract mechanisms. Interruptive
cancellation has no strict correctness guarantees and can be complicated to
use, which does not correspond to SCOOP’s simplicity principle. In other
concurrency models, where stricter techniques are not favored, interrupting
may be a viable option. As mentioned, passive cancellation does not need
to be explicitly implemented. As it is highly depended on particular usage
scenarios, and has no guarantees that it will succeed (the termination of a
passively canceled thread is not ensured), it also partly contradicts SCOOP
design principles.

A concurrent object-oriented language needs to have well-defined rules
about exception handling. The SCOOP implementation is discussed in [45]
70].

As a simple and safe approach, cooperative cancellation is a natural can-
didate to be implemented in SCOOP. It can be implemented using a library



6.3. COOPERATIVE CANCELLATION IN SCOOP

65

approach, thus even eliminating the need to modify the compiler. Dueling
could be considered as an alternative to cooperative cancellation. However,
while duels are only a good fit for specific scenarios, and less suitable in
others, we prefer cooperative cancellation as a general-purpose approach.

6.3.2 SCOOP with cooperative cancellation

It is instructive to try to directly implement the approach introduced in List-
ing[6.6/in SCOOP. One can start with an abstract® class CANCELLABLE_EXECUTOR
and introduce a CANCEL_REQUEST as a shared object that propagates a cancel-
lation request; the descendants need to define the termination criteria in
is_done and a single loop iteration loop_once.

An example of using this implementation of cooperative cancellation is
shown in Listing Unfortunately, this attempt does not work because
in SCOOP a cross-processor call of run would force the executing proces-
sor to block on executing the loop for the entire execution. Thus all sub-
sequent cancellation requests would be queued in the processor’s request
queue, effectively making CANCELLABLE EXECUTOR useless. This happens be-
cause CANCELLABLE_EXECUTOR is both responsible for listening to cancellation
requests and the execution itself.

executor: separate CONCRETE_CANCELLABLE_EXECUTOR
cancel: separate CANCEL_REQUEST --shared between two processors

- launching an execution
executor.run (cancel) -- execution started on different processor

cancel.request -- canceling an execution

Listing 6.7: Usage of CANCELLABLE_EXECUTOR

This problem can be solved by decoupling the listening and the execution
logic; the design is provided in Figure The CANCELLABLE_EXECUTOR is now
responsible only for listening for cancellation requests; the actual execution
is handled by a different processor. To represent a concrete execution, a con-
cretization of the deferred class EXECUTION_UNIT is needed. The CANCEL_REQUEST
may not be actually separate, but keeping it this way provides additional
flexibility for the case when a cancellation request is coming from a client
residing on processor separate from CANCELLABLE_EXECUTOR.

In this design, EXECUTION_UNIT is a deferred class, only responsible for
performing a single-loop iteration and termination criteria®. A task’s life
cycle is expressed in CANCELLABLE_EXECUTOR (see Listing [6.8] Listing [6.9), with
the following methods:

3deferred in Eiffel notation.
4This functionality could also be implemented with Eiffel agents (function objects).



66 CHAPTER 6. TASK PARALLELISM INTEGRATION

CANCELLABLE EXECUTOR Processor boundary

Optional boundary

run (unit : separate EXECU-

TION UNIT)
set_new_token (request : separate X - . -
CANCEL_REQUEST) <>——— «abstracty EXECUTION UNIT
: is_done : BOOLEAN
loop _once*

w

CANCEL_REQUEST

CONCRETE_UNIT1 CONCRETE_ UNIT2

is_done : BOOLEAN is_done : BOOLEAN
cancel : BOOLEAN loop_once loop_once

Figure 6.2: SCOOP cancellation design

e make creates an empty cancellation request. At this point, execution
cannot be canceled from the outside.

e set_new_token(a_token: separate CANCELLATION_REQUEST) sets a new
cancellation request, enabling a cancellation.

e run(a_unit: separate EXECUTION_UNIT) accepts the execution unit (where
execution details are encapsulated) and starts the cancellation-aware
execution, according to Listing

e loop_once(...), is_done(...) are wrapper methods® used to obtain con-
trol over separate objects, effectively preventing race conditions.

e live implements the listening for cancellation, from Listing [6.6]

As soon as a cancellation is requested, the loop body can be executed at
most once more. After one cancellation request, the instance of CANCEL_REQUEST
becomes useless, therefore we provide set_new_token to refresh a request as
many times as needed.

class
CANCELLABLE_EXECUTOR

create
make

feature
make
do

®One can also use inline separate, a syntactic sugar to avoid writing wrapper methods
like these.



6.3. COOPERATIVE CANCELLATION IN SCOOP

67

end

set_new_token(a_token : separate CANCELLATION_REQUEST)
do

end
run(a_unit: separate EXECUTION_UNIT)
do

live(a_unit)

end

end

Listing 6.8: Cancellable executor interface

class
CANCELLABLE_EXECUTOR

feature{NONE}

live(a_unit : separate EXECUTION_UNIT)
do
from
until
is_done(a_unit)
loop
if(check_cancel_requested(token)) then
cancel_requested := TRUE
else
loop_once(a_unit)
end
end

cancel_requested:= FALSE

end
check_cancel_requested(a_token : separate CANCELLATION_REQUEST)
do
Result := a_token.cancellation_requested
end

is_done(a_exec : separate EXECUTION_UNIT) : BOOLEAN
do
if(cancel_requested) then

Result := TRUE
else
Result := a_exec.is_done
end
end
loop_once(a_exec : separate EXECUTION_UNIT)
do
a_exec.action;
end

cancel_requested : BOOLEAN
token : separate CANCELLATION_REQUEST

end

BOOLEAN

Listing 6.9: Basic Cancellable executor implementation



68

CHAPTER 6. TASK PARALLELISM INTEGRATION

6.4 Asynchronous Event-Based Programming

The solution presented in the previous section solves the problem of reliable
task cancellation in SCOOP. In practice the clients of the
CANCELLABLE_EXECUTOR (potentially residing on different process) would benefit
from custom notifications, informing them about specific events of interest
during the execution, such as execution progress. Using events [4] is one of
the options to efficiently implement such notifications.

6.4.1 Background

Event-driven programming was introduced to provide a framework for writing
Graphical User Interfaces (GUI) in applications and reactive systems, found
for example in robotics. Contrary to classical console style when the main
routine is blocked until user inputs required information, in event-driven
application there is a main loop which listens to user produced events such
as a button click, mouse hover, keyboard key press, or even messages from
other threads or programs.

When an event is detected, the main loop triggers a callback function
(or its high-level counterpart, such as an agent or delegate) which contains
processing, specific to this event. This processing might be provided by
a software developer in the event handler. Code for the main loop and
event checking is not specific to any application and is frequently provided
by programming frameworks. Several programming environments provide a
number of event templates, allowing developers to concentrate their efforts
on writing the event handlers’ code.

Applications with event loops can be implemented in a single thread or
region, but this is sub-optimal: long processing time of an event handler stops
processing of the entire event queue (in the case of GUI program, which leads
to interface "freeze" and poor responsiveness); any error in the event handler
terminates the entire program. Introducing task parallelism into event loops
alleviates these problems: event handlers can be processed on a separate
region, in a non-blocking way, vastly improving the responsiveness of the
main event loop and application. Errors that happen in a separate region
become more localized and isolated, and in the case of non-fatal severity,
would allow execution to continue, instead of immediately terminating the
program.



6.4. ASYNCHRONOUS EVENT-BASED PROGRAMMING

69

6.4.2 Asynchronous events in SCOOP

We adapt the design of EVENT_TYPE from [4] [49] to enable asynchronous event-
driven programming in the presence of cancellable tasks in SCOOP. The
adapted version supports asynchronous subscription, cancelling a subscrip-
tion and event publishing. The updated EVENT_TYPE is shown in Listing [6.10]

class EVENT_TYPE [D —> TUPLE]

inherit ANY

redefine
default_create
end
feature {NONE} -- Initialization
default_create -- Create an object with an empty list of actions.
do

create actions.make
actions.compare_objects
end

feature -- Subscription
subscribe (an_action: separate PROCEDURE [ANY, D])
-- Add “an_action' to the subscription list.
require
an_action_not_void: an_action /= Void
an_action_not_already_subscribed: not has (an_action)

do
actions.extend (an_action)
ensure
an_action_added: actions.count = old actions.count 4+ 1 and has (
an_action)
index_at_same_position: actions.index = old actions.index
end

unsubscribe (an_action: separate PROCEDURE [ANY, D])
-- Remove “an_action' from the subscription 1list.
require
an_action_not_void: an_action /= Void
an_action_already_subscribed: has (an_action)

local
pos: INTEGER
do
pos := actions.index

actions.start
actions.search (an_action)
actions.remove
actions.go_i_th (pos)

ensure
an_action_unsubscribed: actions.count = old actions.count — 1 and not
has (an_action)
index_at_same_position: actions.index = old actions.index
end
unsubscribe_all -- Clear subscription 1list.
do

actions.wipe_out
actions.start
ensure
all_action_unsubscribed: actions.count = 0




CHAPTER 6. TASK PARALLELISM INTEGRATION

end

has (an_action: separate PROCEDURE [ANY, D]): BOOLEAN
-- Is “an_action' in the subscription 1list?

do
Result := actions.has (an_action)
end
feature -- Publication

publish (arguments: D)
-- Publish all actions from the subscription 1list
-- with ‘arguments ' argument list.

require
arguments_not_void: arguments /= Void
do
across actions as iterator
loop
call_async (iterator.item, arguments)
end
end
feature{NONE} -- Implementation

actions: LINKED_LIST|[separate PROCEDURE [ANY, D]]
-- List of subscribed actions.

call_async (an_action: separate PROCEDURE [ANY, D]; data:

Wrapper for calling “an_action' separately.
do
an_action.call(data)
end
end

D)

Listing 6.10: Asynchronous EVENT TYPE

With the help of asynchronous events, we can enhance the previously pre-
sented task cancellation technique with custom event support. We enhance
the CANCELLABLE_EXECUTOR with two new events, that are useful for its clients.

We highlight differences at Listing

class
CANCELLABLE_EXECUTOR
create
make

feature
--New section for events.

execution_cancelled : EVENT_TYPE [TUPLE| -- signals to its subscribers

that execution was cancelled.

execution_completed : EVENT_TYPE [TUPLE]-- signals to its subscribers that

execution was completed.

make
do
create token.empty
create execution_completed
create execution_cancelled
end

-- run, set_new_token are the same as in base version
feature {NONE}




6.4. ASYNCHRONOUS EVENT-BASED PROGRAMMING

71

live(a_unit : separate EXECUTION_UNIT)

do
from
until
is_done(a_unit)
loop
if(check_cancel_requested(token)) then
cancel_requested := TRUE
notifies all subsribers that execution was cancelled.
execution_cancelled.publish ([])
else
loop_once(a_unit)
end
end

if(not cancel_requested) then
notifies all subscribers that execution was successfully
completed.
execution_completed.publish ([])
end
cancel_requested:= FALSE
end

the rest is the same as in the base version.
end

Listing 6.11: Cancellable executor with events

In practice it is often needed to be informed about the progress of a task that
is still running. This is especially important if a task takes a long time to run,
so it is important to know whether it is progressing or has stalled for some
reason. We implemented progress reporting by extending the EXECUTION_UNIT

Listing |6.12, Note that the event arguments are defined by a template
argument; this allows sufficient flexibility when dealing with different setups,
potentially requiring different data for progress reporting.

deferred class
NOTIFYING_EXECUTION_UNIT|[D —> TUPLE|

inherit
EXECUTION_UNIT

feature
execution_progress_changed : EVENT_TYPE [D]
attribute
create Result
end

action
do
internal_action

execution_progress_changed.publish (progress_data)
end

feature{NONE}
progress_data : D
deferred
end




72 CHAPTER 6. TASK PARALLELISM INTEGRATION

internal_action
deferred
end
end

Listing 6.12: Execution unit with progress reporting

6.4.3 Ezrample

As an example of using cooperative cancellation in SCOOP, we present a
downloader application that requests a URL, starts a background download
process and provides progress reports. While still in progress, downloading
can be canceled by the user. See Figure for an illustration.

Downloader - O x

http://download.thinkbroadband.com/50MB.zip ‘

l Start download i ‘ ‘

| Cancel download ‘

Downloaded 41846 ouf of 51200Kb

Figure 6.3: Downloader application

The complete source code is available for download®; in the following
description, we focus on key aspects of this application.

The DOWNLOADER_UNIT, responsible for downloading a single portion of bytes
from a specified URL, is shown in Listing (some code is omitted for
brevity). Note that a separate STRING is required in the constructor to
obtain control over it, as DOWNLOADER UNIT resides on a different processor
than its clients. The implementation is straightforward otherwise. Launching

Shttps://github.com/xwat/tcl-eiffel


https://github.com/xwat/tcl-eiffel

6.4. ASYNCHRONOUS EVENT-BASED PROGRAMMING

73

an asynchronous download task is done in a pattern similar to Listing [6.7]
applying the design in Section One should create one CANCEL_REQUEST
per launch: the cancel requests are designed to be used only once.

class DOWNLOADER_UNIT
inherit NOTIFYING_EXECUTION_UNIT|[TUPLE[INTEGER, INTEGER]]
create
make
feature

make (a_url : separate STRING)
do
create http_downloder.make (create {HTTP_URL}.make(create {STRING}.
make_from_separate(a_url)) )
create parts.make
http_downloder.set_read_mode
http_downloder .open
http_downloder.initiate_transfer
end

is_done :BOOLEAN
do

Result := http_downloder.bytes_transferred = http_downloder.count;
end

feature {NONE}
http_downloder : HTTP_PROTOCOL
parts : LINKED_LIST|[STRING ]

progress_data : TUPLE[INTEGER, INTEGER]
do
Result:= [bytes_2_kb(http_downloder.bytes_transferred), bytes_2_kb(
http_downloder.count)]
end

internal_action
do
http_downloder.read

if attached http_downloder.last_packet as last_p then
parts.put_front(last_p)

end

if(is_done) then
http_downloder.close

end

end

bytes_2_kb(bytes : INTEGER) : INTEGER

require

non_negative : bytes >»>= 0
do

Result := bytes // 1024
Ensure

non_negative : Result >= 0
end

end

Listing 6.13: Example: Downloader unit



74

CHAPTER 6. TASK PARALLELISM INTEGRATION

6.5 Task Parallelism and GPGPU

In this section we provide an illustration of how GPGPU can be integrated
with task parallelism, resulting in a program that uses SafeGPU, task can-
cellation and asynchronous events jointly. We illustrate this combination
by extending the example of Gaussian elimination, introduced earlier in the
thesis (See Listing [3.6). The basic version of Gaussian elimination is defined
in a single function, useful for presentation but unfit for a task cancellation
framework.

We start by introducing a class, CANCELLABLE_GAUSS, that accepts a separate
G_MATRIX|DOUBLE| and sets up the initial state: initializing determinant and
step with initial values. We also have added extra post-conditions to ensure
the consistency of the state.

class CANCELLABLE_GAUSS
inherit NOTIFYING_EXECUTION_UNIT|[DOUBLE ]

create
make_with_matrix

feature
matrix : G_MATRIX|[DOUBLE |
determinant: DOUBLE
cur_step : INTEGER

make_with_matrix(a_matrix: separate G_MATRIX|DOUBLE|)

require

Cannot write a_matrix.rows = a_matrix.columns

since it would be a wait condition, not a correctness condition.
local

l_matrix : G_MATRIX[DOUBLE ]
do
-- internally copies a pointer to device memory, no actual copy 1is
happening.
create l_matrix.copy_from_separate (a_matrix)
init_state(l_matrix)

ensure
matrix = a_matrix -- this check is happening on GPU, and it is very fast
cur_step = 0
determinant = 1

end

feature{NONE}
init_state(a_matrix: G_MATRIX[DOUBLE])
require
a_matrix.rows = a_matrix.columns
-- determinant of an empty matrix is not what we want to compute
a_matrix.rows > 0

do
determinant := 1.0
cur_step := 0
matrix := a_matrix
end

Listing 6.14: Cancellable gaussian elimination: setting up the state




6.5. TASK PARALLELISM AND GPGPU

75

Note that in SCOOP preconditions on separate arguments act as wait
conditions and we can not write require a_matrix.rows = a_matrix.columns in
the require clause of the creation routine — that would block infinitely in the
case of non-square (or empty) matrix. Instead, we perform an inexpensive
copy of a_matrix and delegate to internal method init_state to perform the
correctness checks and initialization.

Next we need to implement event notification that would inform class
clients about the progress and set the termination condition:

feature
is_done
do
Result := step = matrix.rows
end

feature{NONE}
progress_data : DOUBLE
do
-- In Eiffel this is not integer division.
Result := step / matrix.rows
end

Listing 6.15: Cancellable gaussian elimination: termination

Finally, we implement the actual single-loop iteration for the Gaussian elim-
ination process:

-- processes a single row
internal_action
local
i: INTEGER
pivot: DOUBLE

do
loop
pivot := matrix (step, step)
determinant := determinant * pivot

if not double_approx_equals (pivot, 0.0) then
matrix.row (step).divided_by (pivot)

else
acts as premature exit.
step := matrix.rows
end
from
i = step + 1
until
i = matrix.rows
loop
pivot := matrix (i, step)

if not double_approx_equals (pivot, 0.0) then
matrix.row (i).divided_by (pivot)
matrix.row (i).in_place_minus (matrix.row (step))
end
i=1i+1
end




76

CHAPTER 6. TASK PARALLELISM INTEGRATION

step = step + 1
end

Listing 6.16: Cancellable gaussian elimination: inner loop

The implementation is stripped of the outer loop that is present at Listing[3.6]
as the NOTIFYING_EXECUTION_UNIT implements it instead: internal_action is be-
ing called by loop_once method in the CANCELLABLE_EXECUTOR (see Listing [6.11])
on each loop iteration. We defined the number of iterations by properly
defining is_done (see Listing[6.15)): "done" for this execution means that the
current step of the gaussian eliminiation process is equal to the total number
of rows in the matrix’.

Finally, Listing ties CANCELLABLE_EXECUTOR together with
CANCELLABLE_GAUSS in a heterogeneous sample that illustrates how to set up
event notification and launch the whole computation, that can be cancelled
at ones convenience.

class GAUSS_USER
feature {NONE}
executor : separate CANCELLABLE_EXECUTOR
token : separate CANCELLATION_REQUEST
feature
matrix: G_MATRIX[DOUBLE |
notify subscribed clients about corresponding events during the
execution.
on_cancelled : EVENT_TYPE [TUPLE]
on_completed : EVENT_TYPE [TUPLE]
on_progress_changed : EVENT_TYPE [TUPLE [DOUBLE |]

make (a_matrix: separate G_MATRIX|[DOUBLE])
do

create token.empty

create executor.make

subscribe_executor (executor)
create on_cancelled

create on_completed

create on_progress_changed

end

gauss_async

do

start_gauss (executor)
end
cancel
do

cancel_token(token)
end

feature{NONE}
start_gauss(a_executor : separate CANCELLABLE_EXECUTOR)
local

"We can also get to that state also in the case of non-invertible matrix.




6.6. RELATED WORK

77

new_token : separate CANCELLATION_REQUEST
a_unit : separate CANCELLABLE_GAUSS

do
create a_unit.make(matrix)
subscribe_unit(a_unit)
create new_token.make
token := new_token
a_executor.set_new_token (token)
a_executor.run(a_unit)

end
cancel_token(a_token : separate CANCELLATION_REQUEST)
do
a_token.request_cancellation
end
subscribe_unit(a_unit : separate DOWNLOADER_UNIT)
do

a_unit.execution_progress_changed.subscribe (agent on,progress,changed)
end

subscribe_executor(a_executor : separate CANCELLABLE_EXECUTOR)
do
a_executor.execution_cancelled.subscribe (agent on_cancelled)
a_executor.execution_completed.subscribe (agent on_completed)

end

on_cancelled
do
on_cancelled.publish (][])
end
on_completed is the same as on_cancelled

on_progress{progress: DOUBLE)
do
on_progress_changed.publish ([progress])
end
end

Listing 6.17: Cancellable gaussian elimination: usage example

The combination of task parallelism and data-parallelism facilitated an
elegant solution where the computationally-heavy parts are offloaded to the
graphical card, and the whole computation remains responsive, can be can-
celled at a safe point and is able to inform its clients about the progress.

6.6 Related Work

To the best of our knowledge, this work is the first to attempt a comprehen-
sive classification and evaluation of task cancellation techniques and com-
bined usage of GPGPU with task parallelism.

The work closest to task cancellation [55], Chapter 7, where some cancel-
lation techniques are discussed for Java. In particular, cooperative cancella-



78

CHAPTER 6. TASK PARALLELISM INTEGRATION

tion with a shared variable or future is presented, along with rules to write
a correct interrupt-aware code.

Further related work is also found in descriptions of individual techniques
as part of language and library designs. The degree of support of task can-
cellation varies in such approaches. C# natively supports interruptive can-
cellation, and since the release of TPL, cooperative techniques were intro-
duced [37]. C# also features an alternative to asynchronous events, in the
form of asyncronous programming [5] which internally relies on TPL and
method continuations, generated by the compiler.

Things get even more complicated when cancellation involves several tasks
that need to agree on shutting down and terminate in a safe order. One
approach that takes this into account is applied to OpenMP [68]. The authors
introduce an abortive cancellation of already launched OpenMP tasks (which
boils down to the cancellation mechanisms of Pthreads), with unrestricted
possibility to cancel unstarted tasks. Their techique works on task groups,
involving a child-parent relationship allowing cancellation of the whole group,
starting from the root.

Python supports interruptive cancellation of non-started tasks via execu-
tors [16] and abortive cancellation of already started ones. Similiarly, Scala
supports the Cancellable interface which allows canceling only non-started
tasks [62].

Java supports interruptive cancellations natively [55]. The Pthreads li-
brary supports both abortion and interruption, depending on the setup [57].



CHAPTER 7

CONCLUSIONS

Parallel programming is hard. In this thesis we made an attempt to make it
easier by exploring two different paths with a single goal in mind: a seam-
less heterogeneous experience, featuring both the flexibility of task-parallel
computing and the computational power of data-parallel devices.

We presented SafeGPU: a contract-based, modular, and efficient ap-
proach for library-based GPGPU in object-oriented languages, demonstrated
through a prototype implementation for Eiffel and an initial port for C#. The
techniques of deferred execution and execution plan optimization helped to
keep the library performance on par with raw CUDA solutions.

SafeGPU provides a set of high-level abstractions, centered around con-
cepts of generic collections and functional-style API, which facilitates mod-
ular design. Since SafeGPU exposes high-level API, the users are shielded
from the perils of low-level GPGPU computing. Unlike CUDA programs,
SafeGPU programs are concise and equipped with contracts, thereby con-
tributing to program safety. To give flexibility to experienced GPGPU pro-
grammers SafeGPU also provides an alternative, low-level Binding API. We
also found that GPU-based contracts can largely avoid the overhead of as-
sertion checking. In contrast to classical, sequential contracts, it is feasible
to monitor them outside of periods of debugging: data size is not an issue
anymore.

To bring SafeGPU into a task-parallel world, we used the SCOOP model,
that was extended in a number of ways to facilitate the development of
asynchronous programs.

We classified techniques found in mainstream languages and parallel li-
braries based on the source where cancellation is actually happening. We
extended SCOOP with a novel cancellation technique that does not com-
promise the safety guarantees of SCOOP and integrates. We adapted the



80

CHAPTER 7. CONCLUSIONS

synchronous version of events to SCOOP and enabled asynchronous event
subscription and publication. We used the introduced mechanisms to develop
several applications, such as non-blocking downloader GUT application, that
reports about its progress. Finally, we illustrated how task parallelism can
extend and complement SafeGPU with the example of cancellable Gaussian
elimination, enabling more flexible programming approach.

This work can be extended in a variety of directions. In the current
implementation, the optimizer in SafeGPU is tailored to linear algebra and
reduction/scan problems. Global optimizations could be introduced, such
as changing the order of operations, or handling loops in a more efficient
way. Furthermore, as shown in Section [£.3, GPU computing is not yet fast
enough on “small” data sets. This could be resolved by introducing a hybrid
computing model, in which copies of data are maintained on both the CPU
and GPU. This could allow for switching between CPU and GPU executions
depending on the runtime context. Some sort of latency hiding [27] might
also complement a hybrid computing model.

There is a need to evaluate SafeGPU further on a broader set of bench-
marks, to gain a better understanding of where the library is useful and where
further research is necessary. We also plan to investigate its use in larger
case studies, in particular, applying the library to speed up embarrassingly-
parallel evolutionary algorithms used in test data generation (as outlined
in [34]).

In the work presented, we focused on single-GPU systems. In practice,
however, multi-GPU systems are becoming increasingly ubiquitous. Inte-
grating (and thus benefiting from) multiple accelerator devices in future ver-
sions of the SafeGPU approach is hence a particularly important item of
future work. Multi-accelerator systems (possibly from different manufactur-
ers, with different computing capabilities) bring a a range of new challenges.
How do you, for example, distribute your computations? Simply transferring
your data—as we did—to a single-GPU system is no longer sufficient. How
do you manage the load? How do you deal with data dependencies across
several devices? And how do you choose the best device for the current
(sub-)problem?

A possible pathway to supporting multi-GPU systems is to work with
“data chunks”, representing parts of the original data. This would also al-
low for the processing of data arrays that are too large for just a single
device. Working with chunks, however, requires a more complex orchestra-
tion of computations: the framework must carefully manage partial transfers,
assemble data back from chunks, attempt to avoid inter-chunk data depen-
dencies, and manage the balance of work across devices (solutions to such
challenges might take inspiration from existing research in the setting of dis-



81

tributed computing). Furthermore, chunked data and multi-GPU systems
might lead to a new class of kernel optimizations not possible in the current
setting of single-GPU systems.

Cooperative cancellation in SCOOP could be further extended to support
task chaining (canceling an intermediate task causes all other tasks to be
canceled) and precondition-aware tasks (these could effectively be deferred
in the executing process). Another extension of this work could be to provide
a formal model, for example based on graph transformation techniques [17],
describing the control flow in different cancellation techniques.

In the thesis we used SafeGPU in combination with SCOOP, but inter-
nally, SafeGPU runs within a single SCOOP region. SafeGPU itself could
be enhanced with task-parallel capabilities, potentially enabling interesting
benefits such as wait-conditions evaluated on GPUs. With a recent exten-
sion, SCOOP supports distributed objects [63] which creates a possibility for
a distributed version of SafeGPU, operating in a cluster of nodes, with some
equipped with graphical cards, extending the proposed multi-GPU setup
even more.



82

CHAPTER 7. CONCLUSIONS




BIBLIOGRAPHY

1]

2]

131

4]

[5]

[6]

7]

Overview - D Programming Language. https://dlang.org/overview.
html, accessed: November 2016.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,
Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A.
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaogiang Zheng. Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems. CoRR, abs/1603.04467, 2016.

Joseph Albahari and Ben Albahari. C# 3.0 in a Nutshell: A Desktop
Quick Reference. O’Reilly Media, Incorporated, 2007.

Volkan Arslan, Piotr Nienaltowski, and Karine Arnout. Event Library:
An Object-Oriented Library for Event-Driven Design, pages 174-183.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

Asynchronous Programming with Async and Await. |https://msdn.
microsoft.com/library/hh191443(vs.110).aspx, accessed: November
2016.

Henry C. Baker, Jr. and Carl Hewitt. The incremental garbage collec-
tion of processes. In Artificial Intelligence and Programming Languages,
pages 55-59. ACM, 1977.

Michael Barnett, Bor-Yuh Evan Chang, Robert Deline, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier for object-


https://dlang.org/overview.html
https://dlang.org/overview.html
https://msdn.microsoft.com/library/hh191443(vs.110).aspx
https://msdn.microsoft.com/library/hh191443(vs.110).aspx

84

BIBLIOGRAPHY

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

oriented programs. In Proceedings FMCO 2005, volume 4111 of LNCS,
pages 364-387. Springer, 2005.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec#
programming system: An overview. In Proceedings of the 2004 Inter-
national Conference on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, CASSIS’04, pages 49-69, Berlin, Heidel-
berg, 2005. Springer-Verlag.

Ulysse Beaugnon, Alexey Kravets, Sven van Haastregt, Riyadh Bagh-
dadi, David Tweed, Javed Absar, and Anton Lokhmotov. VOBLA: A
vehicle for optimized basic linear algebra. In Proceedings of the ACM
SIGPLAN Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES ’14), pages 115-124. ACM, 2014.

Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and
Paul Thomson. GPUVerify: A verifier for GPU kernels. In Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’12), pages 113-132.
ACM, 2012.

Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema,
Shaz Qadeer, Paul Thomson, and John Wickerson. The design and im-
plementation of a verification technique for GPU kernels. ACM Trans-
actions on Programming Languages and Systems, 37(3):10, 2015.

Stefan Blom, Marieke Huisman, and Matej Mihel¢i¢. Specification and
verification of GPGPU programs. Science of Computer Programming,
95:376-388, 2014.

Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. FErnst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7(3):212-232, 2005.

C++: AMP Overview. https://msdn.microsoft.com/en-us/library/
hh265136.aspx, accessed: November 2016.

Peter Collingbourne, Cristian Cadar, and Paul H. J. Kelly. Symbolic
crosschecking of data-parallel floating-point code. IEEE Transactions
on Software Engineering, 40(7):710-737, 2014.

Concurrent futures in Python. http://docs.python.org/dev/library/
concurrent. futures.html, accessed: November 2016.


https://msdn.microsoft.com/en-us/library/hh265136.aspx
https://msdn.microsoft.com/en-us/library/hh265136.aspx
http://docs.python.org/dev/library/concurrent.futures.html
http://docs.python.org/dev/library/concurrent.futures.html

BIBLIOGRAPHY

85

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Claudio Corrodi, Alexander Heufsner, and Christopher M. Poskitt. A
graph-based semantics workbench for concurrent asynchronous pro-
grams. In Proceedings International Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2016), volume 9633 of LNCS,
pages 31-48. Springer, 2016.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107-113,
2008.

Destroying Threads in C+£. http://msdn.microsoft.com/en-us/
library/cyayh29d.aspx, accessed: November 2016.

Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. Compiling a high-level language for GPUs: (via lan-
guage support for architectures and compilers). In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’12), pages 1-12. ACM, 2012.

Johan Enmyren and Christoph W. Kessler. SkePU: A multi-backend
skeleton programming library for multi-GPU systems. In Proceedings of
the 4th International Workshop on High-level Parallel Programming and
Applications (HLPP ’10), pages 5-14. ACM, 2010.

Steffen Ernsting and Herbert Kuchen. Algorithmic skeletons for multi-
core, multi-GPU systems and clusters. International Journal of High
Performance Computing and Networking, 7(2):129-138, 2012.

Expression Trees. https://msdn.microsoft.com/en-us/library/
bb397951.aspx, accessed: November 2016.

Manuel Fahndrich, Michael Barnett, and Francesco Logozzo. Embedded
contract languages. In Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, SAC 10, pages 2103-2110. Association for Computing
Machinery, Inc., 2010.

Mehdi Goli and Horacio Gonzalez-Vélez. Heterogeneous algorithmic
skeletons for FastFlow with seamless coordination over hybrid architec-
tures. In Proceedings of the 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing (PDP ’13), pages
148-156. IEEE, 2013.


http://msdn.microsoft.com/en-us/library/cyayh29d.aspx
http://msdn.microsoft.com/en-us/library/cyayh29d.aspx
https://msdn.microsoft.com/en-us/library/bb397951.aspx
https://msdn.microsoft.com/en-us/library/bb397951.aspx

86

BIBLIOGRAPHY

|26]

[27]

28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

T. Grosser and T. Hoefler. Polly-ACC: Transparent compilation to het-
erogeneous hardware. In Proceedings of the the 30th International Con-
ference on Supercomputing (ICS’16), ICS ’16, pages 1:1-1:13, Jun. 2016.

Tobias Gysi, Jeremia Bér, and Torsten Hoefler. dcuda: Hardware sup-
ported overlap of computation and communication. In The International

Conference for High Performance Computing, Networking, Storage and
Analysis (SCGAZ16), accepted, 2016.

Mark Harris. An efficient matrix transpose in CUDA
C/CH+. http://devblogs.nvidia.com/parallelforall/
efficient-matrix-transpose-cuda-cc/, accessed: November 2016.

Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and
Scott Mahlke. Sponge: Portable stream programming on graphics en-
gines. In Proceedings of the 16th International Conference on Architec-

tural Support for Programming Languages and Operating Systems (AS-
PLOS ’11), pages 381-392. ACM, 2011.

Paul Hyde. Java thread programming. Sams Pub., 1999.

Khronos OpenCL Working Group. The OpenCL specification: Version
1.2, |https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf,
2012.

Andreas Kléckner, Nicolas Pinto, Yunsup Lee, Bryan C. Catanzaro,
Paul Ivanov, and Ahmed Fasih. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel Computing,
38(3):157-174, 2012.

Alexey Kolesnichenko, Sebastian Nanz, and Bertrand Meyer. How
to cancel a task. In Proceedings of the 2013 International Con-
ference on Multicore Software Engineering, Performance, and Tools
(MUSEPAT’13), Lecture Notes in Computer Science, pages 61-72.
Springer, 2013.

Alexey Kolesnichenko, Christopher M. Poskitt, and Bertrand Meyer.
Applying search in an automatic contract-based testing tool. In Pro-

ceedings International Symposium on Search-Based Software Engineer-
ing (SSBSE 2013), volume 8084 of LNCS, pages 318-323. Springer, 2013.

Alexey Kolesnichenko, Christopher M. Poskitt, and Sebastian Nanz.
SafeGPU: Contract- and library-based GPGPU for object-oriented lan-
guages. Computer Languages, Systems € Structures, pages 1 — 21, 2016.


http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/
http://devblogs.nvidia.com/parallelforall/efficient-matrix-transpose-cuda-cc/
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

BIBLIOGRAPHY

87

[36]

[37]

38]

[39]

[40]

[41]

[42]

[43]

|44]

[45]

Alexey Kolesnichenko, Christopher M. Poskitt, Sebastian Nanz, and
Bertrand Meyer. Contract-based general-purpose GPU programming.
In Proceedings International Conference on Generative Programming:
Concepts and Experiences (GPCE 2015), pages 75-84. ACM, 2015.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design
of a task parallel library. Aem Sigplan Notices, 44(10):227-242, 2009.

Guodong Li and Ganesh Gopalakrishnan. Scalable SMT-based verifica-
tion of GPU kernel functions. In Proceedings of the 18th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE
’10), pages 187-196. ACM, 2010.

Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep
Ghosh, and Sreeranga P. Rajan. GKLEE: Concolic verification and
test generation for GPUs. In Proceedings of the 17th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
'12), pages 215-224. ACM, 2012.

Linear Algebra: Gaussian Elimination. http://www.cs.rutgers.edu/
~venugopa/parallel_summer2012/ge.html, accessed: November 2016.

Geoffrey Mainland and Greg Morrisett. Nikola: Embedding compiled
GPU functions in Haskell. In Proceedings of the 3rd ACM SIGPLAN
Symposium on Haskell (Haskell ’10), pages 67-78. ACM, 2010.

Dmitri Makarov and Matthias Hauswirth. CLOP: A multi-stage com-
piler to seamlessly embed heterogeneous code. In Proceedings of the

14th International Conference on Generative Programming: Concepts
and Fzperiences (GPCE ’15), pages 109-112. ACM, 2015.

Ricardo Marqués, Hervé Paulino, Fernando Alexandre, and Pedro D.
Medeiros. Algorithmic skeleton framework for the orchestration of GPU
computations. In Proceedings of the 19th International Conference on
Parallel Processing (Euro-Par ’13), volume 8097 of LNCS, pages 874—
885. Springer, 2013.

Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
2nd edition, 1997.

Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Who is ac-
countable for asynchronous exceptions? In APSEC’12, pages 462-471.
IEEE Computer Society, 2012.


http://www.cs.rutgers.edu/~venugopa/parallel_summer2012/ge.html
http://www.cs.rutgers.edu/~venugopa/parallel_summer2012/ge.html

88

BIBLIOGRAPHY

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Benjamin Morandi, Sebastian Nanz, and Bertrand Meyer. Safe and
efficient data sharing for message-passing concurrency. In Interna-
tional Conference on Coordination Languages and Models, pages 99-114.
Springer, 2014.

Benjamin Morandi, Mischael Schill, Sebastian Nanz, and Bertrand
Meyer. Prototyping a concurrency model. In 2018 13th International
Conference on Application of Concurrency to System Design, pages 170
179. IEEE, 2013.

Sebastian Nanz and Carlo A. Furia. A comparative study of program-
ming languages in Rosetta Code. In Proceedings of the 37th International
Conference on Software Engineering (ICSE ’15), pages 778-788. IEEE,
2015.

Piotr Nienaltowski. Practical framework for contract-based concurrent
object-oriented programming. PhD thesis, ETH Zurich, 2007.

NVIDIA: CUDA Parallel Computing Platform. http://www.nvidia.
com/object/cuda_home_new.html, accessed: November 2016.

NVIDIA: CUDA Toolkit Documentation — Thrust. http://docs.
nvidia.com/cuda/thrust/, accessed: November 2016.
NVIDIA: GPU Applications. http://www.nvidia.com/object/

gpu-applications.html, accessed: November 2016.

Nathaniel Nystrom, Derek White, and Kishen Das. Firepile: Run-time
compilation for GPUs in Scala. In Proceedings of the 10th International

Conference on Generative Programming and Component FEngineering
(GPCE ’11), pages 107-116. ACM, 2011.

Caffe Overview. http://caffe.berkeleyvision.org/, accessed:
November 2016.

Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea,
and David Holmes. Java Concurrency in Practice. Addison-Wesley,
2005.

Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and Bertrand
Meyer. Flexible invariants through semantic collaboration. In FM 201):
Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings, pages 514-530, 2014.


http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://docs.nvidia.com/cuda/thrust/
http://docs.nvidia.com/cuda/thrust/
http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
http://caffe.berkeleyvision.org/

BIBLIOGRAPHY

89

[57]

58]

[59]

[60]

[61]
[62]

[63]

|64]

[65]

6]

POSIX threads specification. http://man7.org/linux/man-pages/
man7/pthreads.7.html, accessed: November 2016.

Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. Root-
beer: Seamlessly using GPUs from Java. In Proceedings of the 14th
International Conference on High Performance Computing and Com-

munication € 9th International Conference on Embedded Software and
Systems (HPCC-ICESS ’12), pages 375-380. IEEE, 2012.

Tiark Rompf, Kevin J. Brown, HyoukJoong Lee, Arvind K. Sujeeth,
Manohar Jonnalagedda, Nada Amin, Georg Ofenbeck, Alen Stojanov,
Yannis Klonatos, Mohammad Dashti, Christoph Koch, Markus Piischel,
and Kunle Olukotun. Go meta! A case for generative programming and
DSLs in performance critical systems. In Proceedings of the 1st Summit
on Advances in Programming Languages (SNAPL ’15), volume 32 of
LIPlecs, pages 238-261. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2015.

Andrey Rusakov, Jiwon Shin, and Bertrand Meyer. Simple concurrency
for robotics with the roboscoop framework. In 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 1563-1569.
IEEE, 2014.

SafeGPU Repository. https://bitbucket.org/alexey_se/eiffel2cuda.

Scala Scheduler. http://doc.akka.io/docs/akka/snapshot/scala/
scheduler.html, accessed: November 2016.

Mischael Schill, Christopher M. Poskitt, and Bertrand Meyer. An
interference-free programming model for network objects. In Proceed-
ings of the 18th IFIP International Conference on Coordination Models
and Languages (COORDINATION ’16), volume 9686 of LNCS, pages
227-244. Springer, 2016.

Roman Schmocker and Alexey Kolesnichenko. Concurrency patterns in
SCOOP. Master’s thesis, ETH-Ziirich, 2014.

Michel Steuwer and Sergei Gorlatch. SkelCL: Enhancing OpenCL
for high-level programming of multi-GPU systems. In Proceedings of
the 12th International Conference on Parallel Computing Technologies
(PaCT ’13), volume 7979 of LNCS, pages 258-272. Springer, 2013.

Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley,
1994.


http://man7.org/linux/man-pages/man7/pthreads.7.html
http://man7.org/linux/man-pages/man7/pthreads.7.html
https://bitbucket.org/alexey_se/eiffel2cuda
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html
http://doc.akka.io/docs/akka/snapshot/scala/scheduler.html

90

BIBLIOGRAPHY

[67]

[68]

[69]

[70]

[71]

[72]

Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. Delite: A com-
piler architecture for performance-oriented embedded domain-specific
languages. ACM Transactions on Embedded Computing Systems,
13(4s):134, 2014.

Oussama Tahan, Mats Brorsson, and Mohamed Shawky. Introducing
task cancellation to OpenMP. In IWOMP’12, pages 73-87. Springer-
Verlag, 2012.

William Thies, Michal Karczmarek, and Saman P. Amarasinghe.
Streamlt: A language for streaming applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC ’02),
volume 2304 of LNCS, pages 179-196. Springer, 2002.

Scott West, Sebastian Nanz, and Bertrand Meyer. Efficient and rea-
sonable object-oriented concurrency. In Proceedings of the 10th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE ’15), pages 273-274. ACM, 2015.

Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A
programmer-friendly interface for accelerating Java programs with
CUDA. In Proceedings of the 15th International Euro-Par Conference
on Parallel Processing (Euro-Par '09), volume 5704 of LNCS, pages
887-899. Springer, 2009.

Shin Yoo, Mark Harman, and Shmuel Ur. GPGPU test suite minimisa-
tion: search based software engineering performance improvement using
graphics cards. Empirical Software Engineering, 18(3):550-593, 2013.



LIST OF TABLES

[3.1 Binding API}. . . . .. .. ... .o oo 18
3.2 Collection API] .. ... ... ... ... ... ......... 20
[3.3  Vector API: vector-only operations| . . ... ... ... .. .. 22
[3.4  Matrix API: matrix-only operations| . . . . . . ... ... ... 24
[3.5  Matrix API: specialized collection operations|. . . . . . . . .. 25
[4.1 LOC comparison| . . . .. .. ... ... ... ... ...... 47
[4.2  Contract checking overhead comparison|. . . . . . . . . . ... 48
[6.1 Dueling rules| . . . .. .. ... ... 0. 64




92

LIST OF TABLES




LISTINGS

[2.1 'Transposed matrix-vector multiplication in SateGPU for Eiffell 12
[3.1 A SateGPU for C# method operating on data typed to a cus- |

tom structurel . . . ... oL oo oL 27
[3.2  Example expression treesin C#| . . . . .. ... .. ... ... 28
[3.3 A possible RAIl idiom usage| . . . . . . ... ... ... .... 30
[3.4 A using-block in C# . . . ... ... ... ... .. ...... 30
[3.5  Combining primitives to compute the dot product in SateGPU |

for Faffell . . . . . . .. 32
[3.6 Gaussian elimination in SafeGPU for Faffell . . . . . . . .. .. 34
[4.1 A routine equipped with assertions.| . . . . . . ... ... ... 38
[4.2 A routine equipped with assertions.| . . . . . . . .. ... ... 38
[4.3  Contracts for component-wise vector division in SateGPU for |

) 40
[4.4  Quicksort in SateGPU for Eiftel| . . . . .. .. ... ... ... 41
[4.5  Quicksort in SateGPU tfor C# . . . . . .. ... ... ... 42
[5.1  Example of separate calls in SCOOP| . . . ... .. ... ... 53
[5.2  Example of valid and invalid separate calls| . . . . . . . .. .. 53
[5.3  Dining philosophers in SCOOP| . . . . ... ... ... .... 54
[5.4  Producer-consumer example in SCOOP|. . . .. .. ... ... 55
[6.1 Aborting a thread-based task in Javal . . . . . . .. ... ... 60
[6.2  Unsafe cancellation using abortion|. . . . . . . ... ... ... 60
[6.3 Cancellation points in Pthreads| . . . . .. ... ... ... .. 61
[6.4 Passive cancellation in the Task Parallel Library (IPL) of C#{ 61
[6.5 Cooperative cancellation in TPL. . . . .. .. ... ... ... 63
[6.6 General structure of a cancellable task in cooperative cancel- |

lationl. . . . . . . .. 63
[6.7 Usage of CANCELLABLE_EXECUTOR| . . . . . . . . . . . . . . .. .. 65
6.8 Cancellable executor interfacel . . . .. ... ... ... ... .. 66
[6.9 Basic Cancellable executor implementation| . . . . . . . . ... 67
[6.10 Asynchronous KVENT "T'YPE . ... ... ... ... .. 69

6.11 Cancellable executor with eventsl . . . ... .. .. ... ... 70



94 LISTINGS
[6.12 Execution unit with progress reporting| . . . . .. .. .. ... 71
6.13 Example: Downloader unit|. . . . . . . ... ... ... ... .. 73
[6.14 Cancellable gaussian elimination: setting up the state| . . . . . 74
[6.15 Cancellable gaussian elimination: termination . . . . . . . .. 75
[6.16 Cancellable gaussian elimination: mner loop| . . . . . . . . .. 75

[6.17 Cancellable gaussian elimination: usage example/. . . . . . . . 76




LIST OF FIGURES

[2.1  Runtime integration of CUDA with SafeGPU for Eiftel] . . . . 13
(3.1 Execution plans for the dot product method| . . . . . . . . .. 32
[3.2  Execution plans for vector mathematics|. . . . . . . .. . ... 33
[3.3  Execution plans for the inner loop of Gaussian elimination| . . 35

.1 SafeGPU performance evaluation (z-axis: input size in no. of

elements)| . . . ... 45
[6.1 Execution plans for the dot product method| . . . . . . . . .. 59
6.2 SCOOP cancellation design| . . . . .. ... ... ... .... 66

[6.3 Downloader application|. . . . . . .. ... ..o 72




	Introduction
	Background and Motivation
	GPGPU Computing: Background
	Task Parallelism: Background

	Hypothesis
	Contributions
	Structure
	Publication History

	SafeGPU: Overview and Background
	Programming Style
	CUDA Integration

	Related Work
	GPU Programming and Code Generation


	Implementation and API
	Design of the API
	CUDA Binding
	Collections
	Vectors
	Matrices

	Transferring Primitive and Class-Based Data
	Translating Customized Program Logic
	Deterministic Memory Management in Languages with Garbage Collection
	Kernel Generation and Optimization
	Kernel Generation and Data Transfer
	Execution Plans and Kernel Optimization
	Example: Gaussian Elimination


	Contracts and Performance
	Design-by-Contract
	Design-by-Contract in GPGPU
	Contracts in SafeGPU
	Example: Quicksort in SafeGPU

	Evaluation
	Performance
	Code Size
	Contract Overhead

	Related Work
	Correctness of GPU Kernels


	SCOOP
	Overview of SCOOP Processors
	Separate Calls
	Reasoning in SCOOP
	Passive Regions

	Design-by-Contract in SCOOP

	Task Parallelism Integration
	Introduction to Task Cancellation
	Classification of Task Cancellation  Techniques
	Client-Based Cancellation
	Supplier-Based Cancellation
	Client/Supplier Combination

	Cooperative Cancellation in SCOOP
	Choosing a cancellation mechanism for SCOOP
	SCOOP with cooperative cancellation

	Asynchronous Event-Based Programming
	Background
	Asynchronous events in SCOOP
	Example

	Task Parallelism and GPGPU
	Related Work

	Conclusions

