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Abstract

In this thesis, we consider the question of whether Fourier coefficients of modular forms correlate
with functions of algebraic origin. For a big class of cusp forms f, we show that there is no
correlation with many algebraic functions often encountered in number theory. This question
was studied before by E. Fouvry, E. Kowalski und Ph. Michel in [22] and our results are a
generalisation of the ones in [22].

For a squarefree number ¢, we consider the correlation sums

S(f.Ka)= Y pr(n)K(n),

n<Pq

also called “algebraic twists”, where the py(n)’s denote the Fourier coefficients of the cusp
form f, P > 0 is a parameter and K denotes a function of algebraic origin defined modulo
q. Examples of such functions K for which we can prove the non-correlation include Dirichlet
characters to the modulus ¢, K(n) = x(n), as well as Hyper-Kloosterman sums

K(n) = Kl (n: q) = ¢~ "7 3 e<$1+”m>

q
1 ~~~7$mE(Z/qZ)X
T1 T ="

These functions share the property that they can be written as a product of trace functions
and we show in general that for every such product K,

S(f,K;9) <j5.pcond(ic) € °

for all § < 7z, where cond(K) denotes the conductor of K.

As an application, we consider sums over primes and show the upper bound

Z K(p)<pq"?

p<Pq
p prime

for all n < i, K as above.






Zusammenfassung

In dieser Arbeit gehen wir der Frage nach, wann Fourierkoeffizienten von Modulformen mit
Funktionen algebraischen Ursprungs korrelieren. Wir zeigen fiir eine grosse Klasse von Spitzen-
formen f, dass viele in der Zahlentheorie verwendete Funktionen nicht mit den Fourierkoef-
fizienten von f korrelieren. Diese Frage wurde zuvor bereits von E. Fouvry, E. Kowalski und
Ph. Michel in [22] untersucht und unsere Ergebnisse stellen eine Verallgemeinerung der in [22]
enthaltenen Resultate dar.

Konkret betrachten wir fiir eine quadratfreie Zahl ¢ die Korrelationssummen

S(f,K;q) = Z pf(n)K(n)7

n<Pq

welche auch als “algebraische Verdrehungen” (“algebraic twists” auf Englisch) bezeichnet wer-
den. Dabei bezeichnen die ps(n)’s die Fourierkoeffizienten der Spitzenform f, P > 0 ist
ein Parameter und K ist eine Funktion algebraischen Ursprungs, welche modulo ¢ definiert
ist. Beispiele solcher Funktionen K, fiir welche wir die Nicht-Korrelation zeigen konnen, sind
Dirichlet-Charaktere zum Modulus ¢, K(n) = x(n) oder Hyper-Kloostermansummen

—m=1 1+ + Ty,
K(n)=Kl,(n;q) =q 2 e().
(n) (n;q) > ) .
Ty €(Z/qL)
T1 Ty ="
Diesen Funktionen ist gemeinsam, dass sie als Produkt von Spurfunktionen geschrieben werden
konnen. Wir zeigen allgemein fiir alle solche Produkte von Spurfunktionen K, dass

S(fa Ka q) <<f,5,P,cond(K) ql_é
fiir alle § < 1% gilt, wobei cond(K) den Fiihrer von K bezeichnet.
Als Anwendung davon betrachten wir Summen iiber Primzahlen und beweisen die obere

Schranke
n
> Kp)<pq?
p<Pq

p prime
fir n < i und fiir gewisse Funktionen K algebraischen Ursprungs, welche modulo ¢ definiert
sind. Fur K(n) = Kla(na, q) stellt dies in gewissen Féllen eine Verbesserung eines Ergebnisses
(Lemma 6.1 in [16]) von H. Iwaniec, W. Luo und P. Sarnak dar.
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1. Introduction

Let (an)nen be a sequence of complex numbers and consider the sum

S(z) =Y an. (1.1)

neN
n<x

Such sums are ubiquitous in analytic number theory and very often, if the sequence (ay)nen is
bounded and “random enough”, one hopes for some cancellation, i.e., one expects that the sum
is relatively small compared to x. By heuristic arguments based on the central limit theorem,
the best one normally can hope for is squareroot cancellation, i.e., that S(z) < /z. A famous
example is a,, = pu(n) the Mobius function, where one can show that

> uln) <. ab e
n<x
for every € > 0, is equivalent to the Riemann hypothesis. The best known bound is

Z pu(n) < xexp ( — c(log x)

n<x

3
5

(log logx)_%),

coming from the analogous (best known) bound in the prime number theorem [17, p. 227 and
p. 124]. This example already illustrates, that even though one expects very often squareroot
cancellation, what one actually can prove is much less. Even though the bounds we can prove
are far from what is conjectured to be true, they are still sufficient for many applications.

A slightly more general setting often encountered is the case where one has two bounded
sequences of complex numbers (b, )nen and (¢, )nen and one is interested in the twisted sum or

“inner product”
g bnCr.

neN
n<x

If the sequences b, and ¢, do not “correlate”, one expects that the sequence (b,¢,)nen behaves
“randomly” and hence the twisted sum should be small due to cancellation. On the other hand,
if the sequences “correlate”, such a cancellation can not be expected. As an example, consider
by, = ¢, = p(n). In this case, the sum

Y bntn=> pn)?= Y 1:%x+o(ﬁ)

neN neN n<x

n<x n<x n squarefree
is large. The idea is now, that if the sequence (b,)neny comes from “a certain world”, as
for example the Mobius function g comes from the arithmetic world, and the other sequence
(¢n)nen comes from “another world”, as for example the automorphic world where the Fourier
coefficients of modular forms reside, then the two sequences should not correlate and the twisted
sum should be small. Heuristically, one argues that the sequence (¢;)nen is too different to be
able to correlate with the sequence (b, )nen and hence the resulting twisted sequence (b,¢,)nen
should behave randomly, which should imply cancellation.

11
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In this thesis, we will consider twisted sums, where the intricate algebraic information is
given by Fourier coefficients of modular forms. Modular forms are well used in number theory
as well as other parts of mathematics. One reason why they are so useful is, that there are
many modular forms whose Fourier coefficients contain useful arithmetic information. Many
nice examples can be found in part one of Zagier’s article in “The 1-2-3 of Modular Forms”,
see [4]. An application is given by Fouvry, Kowalski and Michel in [23, p. 1695], where one uses
that the twisted divisor function s

ab=n

is (up to normalization) the Fourier coefficient of the nonholomorphic Eisenstein series

E(z,s):% Z y

25
(cd)e1 lez + d|

S

for s = 1 +it.
2
Therefore we may ask in general, whether a bounded sequence K(n) correlates with the
sequence (ps(n))n>1 of Fourier coefficients of some modular form f. To make this precise, we
say that (K (n))n>1 does not correlate with the Fourier coefficients of f if we have

> pr(n)K(n) <4 z(loga) ™

n<x

for all A > 1. As explained before, heuristically, one expects that a function K does not
correlate if it is of “algebraic nature” and not too complex. A special class of such functions K
which do not correlate are trace functions with small conductor as introduced in Section 2.3.
In this thesis, we will actually consider a slightly more general class of functions K, which we
call (g, M)-good (see Definition 2.2.7). Concretely, we will consider sums of the form

Y pr(n)K(n)

n<z

or more precisely smoothed versions thereof

> pmEmV(2),

n>1 q

where V' is a smooth compactly supported function on ]0, +00[. Such sums were already exten-
sively studied by Fouvry, Kowalski and Michel in [22] and [23] for trace functions K : Z/pZ —
C, with p prime. For example, they show the non-trivial bound

> _prE(n) < p'=?
nel

for any interval I C [1,p] and any 6 < %, where the implied constant depends only on f, § and

the conductor of K. In this thesis, we will consider the more general case where the function
K is given by
K(n) =[] Ky(n),

plg

where ¢ is a squarefree integer and K,,: Z/pZ — C are suitable functions, i.e., trace functions
with small conductor.
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As an example of such a function K, consider the normalized hyper-Kloosterman sum in
m — 1 variables given by

Kl (a;q) = ¢~ % > €<x1—|—-~—|—xm)
15, ®m €(Z/qZ)™ 9
T Tm=a
for a € (Z/qZ)* and some squarefree modulus ¢q. As is shown in [22, Section 10.3], such
hyper-Kloosterman sums are functions of the type described above. As we will see later, an
application is the bound for a sum over primes

1
Z Kly(np; q)logp <5, X(l + %) Py (1.2)
p<X
p prime

for ever 0 < 1 < %, every X > 2 and every integer n coprime with ¢. This bound is a
generalisation of [23, Corollary 1.13] to squarefree modulus and an improvement of Luo, Iwaniec
and Sarnak’s result [16, Lemma 6.1] for ¢ = ¢ squarefree and X < q. We will present some
other examples of trace functions in Section 7.

More simple examples of trace functions include K (n) = e(an/q) an additive character mod-
ulo ¢ and K(n) = x(n), where x is a Dirichlet character modulo ¢ as in Example 2.3.4. As
explained in [22, Section 1.1], these special cases have been studied already much earlier by
several people, see e.g. [15, Theorem 5.3] and [14, Theorem 8.1] for K an additive character
and [10], [5], [2] and [6] for K a Dirichlet character.

Based on this thesis, various results that were proved only for prime moduli using the results
of [22] should be easy to extend to squarefree moduli. Examples of such results can be found
in [11] and [1].

1.1. Outline

In Section 2.6 we will state the main results of this thesis, which is that Fourier coefficients
of modular forms or Eisenstein series do not correlate with some special functions defined on
Z/qZ for q squarefree. Furthermore, we present a similar result for sums over primes. For this,
we will first give all definitions necessary and then state the precise results.

In Section 3 we will use the amplification method to reduce the main result to an estimate of
amplified second moments. We follow closely [22], and embed the holomorphic form f in the
space of forms of level ¢/N. The amplification method itself is a well known tool and was well
used before, e.g., by H. Iwaniec, V.A. Bykovsky, V. Blomer, G. Harcos and others (see [13], [6],
[5], [2] and [3]). The amplifier used in [22] which we will adopt, goes back to Venkatesh.

In Section 4 and 5 we estimate the amplified second moments. The general strategy is based
on [22]. However, especially the estimate of the number of correlation matrices (Section 5.7) is
different from the method used in [22], as the original method does not generalize well to the
squarefree case. Since this section is also quite intricate, we present in Section 5.7.3 a simplified
version, where we assume that the only correlation matrix is the identity matrix, a case which
is also common in applications.

In Section 6 we consider sums over primes to squarefree moduli, which is a generalisation of
[23]. As the proofs of the results in this section are based on previous results in this thesis and
otherwise closely follow the proofs in [23] with only minor adaptions, we are quite brief in this
section, but give detailed references.

Finally, in Section 7, we present as an application a proof of (1.2) mentioned in the intro-
duction.



14 1.3. NOTATION

1.2. Acknowledgements

I thank my advisor Emmanuel Kowalski for supporting me throughout my doctorate in many
ways: by suggesting me interesting problems, by answering my questions, by giving advice on
how to approach problems. I also thank professor Etienne Fouvry for examining my thesis.

I would also like to thank my fellow doctoral students for interesting mathematical discussions.

1.3. Notation

We write e(z) = e*™* for any z € C. We denote the greatest common divisors of two integers
a and b by (a,b). Furthermore we write

(a,b>) = max (a,b™).

Concerning modular arithmetic, for @ € Z and n > 1 with (a,n) = 1, we write @ for the inverse
of a modulo n. The modulus n is always clear in context. On the other hand, for a | b, we write
g for the ordinary division in Z. For example, if

b=an mod n?

we know that the integer b is divisible by n and hence we can rewrite this congruence as

— =a mod n.
n

The notation n ~ N means that n € Z satisfies N <n < 2N.



2. Statement of Main Results

2.1. Preliminary definitions

We define a cusp form f: H — C as in [22]: By saying that f is a cusp form we will mean
that f is either

(i) a non-zero holomorphic cusp form of some even weight k& > 2 and some level N > 1 or
(ii) a non-zero Maass cusp form of weight 0, level N and Laplace eigenvalue written i +t2,

where we assume in both cases that f has trivial Nebentypus. Furthermore, by saying that a
cusp form f of level N is a Hecke eigenform we will mean that f is an eigenfunction of the
Hecke operators T,, with (n, N) =

Let now f be a cusp form. We denote by py(n) the (normalized) Fourier coefficients of f.
The Fourier expansion at co reads then

Z pr(n)n e (nz)
n>1
if f is holomorphic of weight k& and
=" ps(n) [nl~* Wae, (47 [n] y)e(nx)
n#0
if f is a Maass form with Laplace eigenvalue i + tfc where

e % & T\ it—3
Wi = —V—— < / e *x Zt77 <1 + ) dxr
‘W=D J, y
is a Whittaker function (see Equation (3.8) in [22]).

Definition 2.1.1. Lef f be a cusp form. We say that the sequence (¢7(n)),>1 does mot
correlate with another bounded (or essentially bounded) sequence (K (n))nen if

ng ) <a z(logx)™4

n<x
for all A > 1. Otherwise, we say that (g;(n)),>1 correlates with (K(n))nen.

In practice it is often useful to work with smoothed sums instead of sharp ones. Apart from
the fact that it is often easier to work with smoothed sums, the bounds one can obtain for the
smoothed sums are often better than the bounds for the sharp sums.

Definition 2.1.2. Let ¢ be a squarefree integer, K: Z/qZ — C an arbitrary function, ex-
tended to all of Z by periodicity, f: H — C a cusp form and V' a smooth compactly supported
function on [0, +oo[— R. Then we write

S(f.K:q)=Sv(f,K;q9) =Y 0s(n)K(n)V(n/q).

n>1

15



16 2.1. PRELIMINARY DEFINITIONS

Proposition 2.1.3 (Trivial bound for Sy (f, K;q)). Letq, K, f and V be as in Definition 2.1.2.
We have the bound
Sv(f, K;q) <ypv q max |[K(n)|.
1<n<q

Proof. By Rankin-Selberg theory,

S lprn)fP = cpz+O(a?) (2.1)

n<z

for some c; > 0. Since V has compact support, there exists a constant ¢; € N such that
V(z) =0 for all x > ¢;. Hence V(%) = 0 for all n > gcy. Therefore

Sv(f. Kiq)=)_ Pf(")K(n)V(g) = ipf(n)K(")V(Z)

n

;pﬂn)mn)v(q)

<

which is by Cauchy’s inequality
2 c1q %
2
)| > 1K) )
n=1 n=1

1

c1q 9 c19q ) 2
< (3o 3 o)

n=1 n=1

g(z

oV (7

and hence by (2.1) this is

<pv (qz IK(n)|2>

n=1

and by using the periodicity of K, we can further simplify this to

Nl

n=1

<y v (fJZlK(n)IQ) < (q2 lrgggqlK(n)F)

< K(n)|.
<q 1213%2‘ (n)]

In this thesis, we will give in some cases a better bound of the form
Sv(f, Kiq) <q"°

for some 0 < § < %, where the implied constant only depends on §, f, V and some invariants
of K. Clearly, to prove such a bound on Sy (f, K;q) one has to make some assumptions about
f, K and V. We will now state the precise assumptions we need to make, so that we can state

our main result (Theorem 2.6.1).
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2.2. Assumptions on the function K

For the correlation sum to be small, it is natural to assume that the function K should be of “low
complexity”. The heuristic idea behind this is, that if K is a “simple function” (as opposite
to “complex”), the function K is not able to correlate with the Fourier coefficients p; well
enough. We will see later that a class of such functions are trace functions with small/bounded
conductor, where the conductor is the quantity which measures the complexity of the trace
function. Below, we will give the technical definitions necessary to exactly specify what we
mean by a “simple function” K — we will call such functions good (see Definition 2.2.7 below).

Definition 2.2.1. Let ¢ be a squarefree integer. For any function K: Z/qZ — C we define
its Fourier transform by

K(z) = \;@ ZGZZ/qZK(z)e(z;).

Definition 2.2.2. Let ¢ be a squarefree number. We call a function K: Z/qZ — C g-
primeperiodic if for every p | ¢ there exists a function K,: Z/pZ — C such that

K(z) =[] Kp(@).
plq
We extend the function to all of Z by periodicity.

Proposition 2.2.3. Let q be a squarefree integer and let K: Z/qZ — C be a g-primeperiodic
function, i.e.,

K(z) =[] Kp(@).

plg
Then . .
K(z) = H Kp(sp)
plg
where

Sp = H p € (Z/pZ)*.
p'lq
p'#p

Proof. We compute

K(z) = \}a Z K(z)e(%)

2€L/qL
1 2T
= — el — K,(z)
\/aZEZZ/qZ ( q ) g '

Now, for all p|q, let z, € Z be such that z, = z € Z/pZ. Then z can be written as
z = Zzpep € Z/qZ
plg
where e, = s, [[ /|, P’ € Z so that e, =1 mod p. Hence

p'#p

k=TT 3 o(*2) k()

q
plg 2p€L/pL
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L Y ()

plg Zpez/pZ
= HKP spx .
plg

Definition 2.2.4. Let ¢ be a squarefree integer and

= (1 5) e iz

For any x € Z/qZ such that cx + d is invertible in Z/qZ, we define the action

ar +b
‘T = € Z/qZ.
V=g €L/
We then define for a function K: Z/gqZ — C and a matrix v € M3(Z/qZ) the correlation
sum

CE;y)= > K(y-z)K(z).
x€Z/qZ
cx+de(Z/qZ)*

Proposition 2.2.5. Let q be a squarefree integer and let K: Z/qZ — C be a g-primeperiodic

function. Then
= H C(Kp§ 'Yp)
plq

where

a bs —
Vo = (c dp> Sp = H p’ mod p.

P'la
P #p

Proof. We have

C(K;y)= > K(y-2)K(z)
z€ZL/qZ
cx+d€e(Z/qZ)*

which is by Proposition 2.2.3 equal to

Z HK (spy - ) (spx)

x€Z/qZ  plg
cx+de(Z/qZ)*

Z HK (sp7 - xp) K (prp)

x€Z/qZ  plg
cx+de(Z/qZ)*

where we denote by x, the reduction of x modulo p. Hence, by the Chinese remainder theorem,

v) = H Z f(p(sp"Y ) xp)f(p(spxp)

plg  zp€Fp
cxp+deF )
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Since b b
aspTy +bs,  aspry + bsp
SpY - Ty = = =, - (spT
p7Y " Lp cp +d sty +d Yp - (8pTp)

we get by putting y, = s,z

Kivy) = H Z f(p('Yp ) yp)f( (Yp)

plg yp€Fp
cpyp+dEF )

= HC(KPQ'Vp)a

plg
which completes the proof. O

Lemma 2.2.6 (Trivial bound for C(K;~)). Let K: Z/qZ — C with |K|,, < M and let
v € GLo(Z/qZ). We then have the bound

IC(K;v)| < M?q.

Proof. By the Cauchy-Schwarz inequality, we can bound

2

A = ~ 2 N 2
el = ¥ keeake)] < X kool X |k
2€L/qL 2€Z/qL u€ZL/qL
(cz+d,q)=1 (cz+d,q)=1 (cu+d,q)=1
~ 2 R 2 R . 2
- Y ke[ X ke[ = X kel X kW)
z€Z/qZ u€Z/qL 2€Z/qL u€Z/qL
(cz—a,q)=1 (cutd,q)=1
2\?
:( 3 ‘K(z)) ) .
2€L/qZ

Recall Parseval’s formula

-z

5 > Kee(Z)[ -
_ 6 -
2€L/qL zEZ/qZ \/(j wEZ/qZ q

_ ZKKZZ( )ZK(x)K(z)

z,yEL/qZ TEZL/qZL
= Z K ()]
z€Z/qZ
Hence )
CEyI< Y K@ = Y |K(2)| <M

z€L/qL z€L/qL
O
This bound is not sufficient to prove our main result. The idea is, that in most cases C(K; )

should be much smaller according to the square-root cancellation philosophy. Unfortunately,
this is not always the case. Fortunately, for the K’s which we will consider! we have detailed

INamely the good K’s as defined in Definition 2.2.7.
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knowledge about the set of 4’s for which C(K;~) fails to be small, in particular this set turns
out to be small.

Note also the special case of K being constant and hence K (n) being proportional to e(%)
for some a € Z. In this case C(K; ) is never small and hence such a K will obviously not satisfy
the assumptions of our main theorem. However, this case can be treated directly by different
methods, see (1.3) in [22].

Notation. Given z # y in P}(F,), the pointwise stabilizer of z and y is denoted by 7% (F,)
(this is a maximal torus), and its normalizer in PGL(FF,) (i.e. the stabilizer of the set {z,y})
is denoted by N*¥(F)).

Definition 2.2.7 (Correlation matrices and good weights). Let M > 1 and let ¢ be a squarefree
number. For every p | ¢ let K,: F, — C be an arbitrary functions with ||K,|, < M. Define
K:7Z/qZ — C by K =], K,. Furthermore, for v € My(Z), we denote by -, its image in
PGLy(F,).

(i) We let

plg

Gr,.m = {7 € PGLy(F,) ‘ IC(Kp;vp)| > Mp%}7
the set of M -correlation matrices.

(ii) We say that K, is (p, M)-good if there exists some set D, of at most M pairs (z,y) of
distinct elements in P!(FF,) such that

Gru CA = A

i€,

o a-{(: )
(iv) A2 = {A € My(F,) | A is parabolic, i.e., has a single fixed point in P!(F,)},
(v) AP = T*u(F,), and
(vi) A" = N7U(E,) \ T2 (F,).
We call such a set A, a set of admissible correlation matrices modulo p.
(vii) We say that K is (¢, M)-good, if K, is (p, M )-good for every p | q.
The conditions stated so far are enough to state the main Theorems 2.6.1 and 2.6.2. However,

to successfully apply these main theorems to sums over primes to squarefree moduli, we need
some more assumptions on K, as stated below.

Definition 2.2.8. For a function K: Z/qZ — C and (m, h) € (Z/qZ)* x Z/qZ, we define the
correlation sum

C'(K;(m,h)) = Z WK(Z)@(%)

2€L/qZ
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Proposition 2.2.9. Let q be a squarefree integer and K : Z./qZ — C a q-primeperiodic func-

tion given by
= H Kp(z)

pla
Then
C'(K; (m, b)) =[] €' (Kp; (m, s,h))
la
where

Sp = H p  mod p.
p'lq
p'#p

Proof. We compute

¢ (ki mm) = Y Kmak(e(")

2€L/qL q

= Z e(%) K,(mz)K,(2)

2€L/qL plg

:H Z (Zpep ) Ky (mzp) Kp(2p)

pla zp€Z/pZ

_H Z (Zpsp> Kp(mzp) Kp(zp)

pla 2p€Z/pZ

:HC’ Ky (m, sph)),

plg

p e Z. O

where we defined e, = s, [,

Lemma 2.2.10 (Trivial bound for C'(Kp; (m, h))). We have for K,: Z/pZ — C with | K ||, <
M the bound
C'(Kp; (m, h))| < M.

Proof. This can be seen by

|C' (Kp; (m, h))| < Z ’K(mz)

z€EL/pZ

(2)

hZ)‘ 5 9
el — )| < M= < M*p.
)= X

2€L/PL
0

Definition 2.2.11. Let ¢ be a squarefree number and K, : F,, — C be arbitrary functions for
all p | g. Let M > 1 be such that ||K,||, < M. Define K: Z/qZ — Cby K =]]

(i) We let

plq

HKpJVI = {(m,h) € ]F;; X Fp

((Kypi (m,h))| > Mp? |
be the set of (p, M)-exceptional vectors.

(ii) We say that K, is (p, M )-non-exceptional if
Hy, m| < M.

(i) We say that K is (¢, M)-non-exceptional if K, is (p, M)-non-exceptional for every p | g.
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2.3. Trace functions on /-adic sheaves
For Theorem 2.6.1 to be useful, we need to check that it actually applies to functions
K:7/q7 — C

which appear in practice. As shown in [22], trace functions as defined below turn out to be
(p, M)-good functions. The exact definition of trace functions is given in [22, Section 1.3] and
we will repeat it here for completeness only. Since we will not need to work with the definition of
a trace function in this thesis, we will be relatively brief in what follows, but provide references
where more details can be found. If one is only interest in applying the results of this thesis to
concrete problems, it is often enough to know that certain special functions of interest are trace
functions (with some small conductor). We will give some examples of such functions below.
We make the following definitions (compare Definition 1.11 in [22]):

(i) A constructible Qp-sheaf F on A%p is a trace sheaf if it is a middle-extension sheaf whose
restriction to any non-empty open subset U C A%Fp where F is lisse and pointwise ¢-pure
of weight 0.

(ii) A trace sheaf F which is also a Fourier sheaf in the sense of Katz [18, Definition 8.2.2] is
called a Fourier trace sheaf.

(iii) A trace sheaf is an isotypic trace sheaf if it is a Fourier sheaf and if, for any open set U
as in (i), the restriction of F to U is geometrically isotypic when seen as a representation
of the geometric fundamental group of U: it is the direct sum of several copies of some
(necessarily non-trivial) irreducible representation of the geometric fundamental group of
U [18, Section 8.4].

Let p be a prime number and ¢ # p be an auxiliary prime. Consider an ¢-adic constructible
sheaf F on A%p and fix an isomorphism ¢: Q; — C. For x € F,,, we define as in [19, 7.3.7]

K(z) = ((trF)(Fp, x)). (2.2)

A function K : Fj, — C is a trace function (resp. Fourier trace function, isotypic trace function)
if there is some trace sheaf (resp. Fourier trace sheaf, resp. isotypic trace sheaf) F on A},p such
that K is given by (2.2).

As already mentioned in the introduction, we want a measure for the complexity of a trace
function. It turns out, that the conductor as defined below is the right notion.

Definition 2.3.1. Let F be an f-adic constructible sheaf F on AIle. We denote the rank of F
by rank(F) and the (finite) number of singularities in P! of F by n(F). We define

Swan(F) = Z Swan, (F),

the (finite) sum being over all singularities of F. The (analytic) conductor of F is then defined
by
cond(F) = rank(F) + n(F) + Swan(F).

The conductor of a trace function K: Z/pZ — C is defined as the smallest conductor of a
trace sheaf F with trace function K.

A nice introduction to trace functions is [20]. We refer to the books of Katz, namely [18] and
[19], for readers interested in full details.
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In addition to the definitions above, which correspond to the definitions made in [22], we
would like to extend the notion of trace functions to squarefree integers q. Hence, we will call
a g-primeperiodic function K: Z/qZ — C a trace function (resp. Fourier trace function, resp.
isotypic trace function) if

K(x) =[] K,(2)
plg
and for every plg, K, is a trace function (resp. Fourier trace function, resp. isotypic trace

function) as defined above. By extending the definition of a trace function in this way to
squarefree integers ¢, Theorem 1.14 in [22] becomes:

Theorem 2.3.2 (Trace functions are good). Let q be a squarefree number, N > 1 and F =
(Fp)plq be a family of isotypic trace sheaves F, on A]}p, with cond(F,) < N for all p | q. Let
K be the corresponding isotypic trace function. Then K is (q,aN?®)-good for some absolute
constants a > 1 and s > 1.

Proof. Note that

K=]][X,

pla
where K, is the trace function of F,,, p|¢. By Theorem 1.14 in [22] we get that for every plq, K,
is (p, alN*®)-good for some absolute constants ¢ > 1 and s > 1. Hence K is (¢,aN?®)-good. O
Hence Theorem 2.6.1 applies to isotypic trace functions. We list now some examples of trace
functions, taken from [22, Section 10].

Ezample 2.3.3. For q squarefree, a € (Z/qZ)* and m > 2, (normalized) hyper-Kloosterman
sums in m — 1 variables defined by

Kl (a;q) = ¢~ 7 > e(7x1+~--+xm)

q
T1,em €(Z/qL) "
z1-Tm=a mod q

are irreducible trace functions with conductor < 2m + 1.
We first have to check that Kl,,(a; q) is a g-primeperiodic functions. For every p|g and every
ie{l,...,m}, let z; , € Z be such that z; , = x; mod p. Then z; can be written as

x; = in,pep €Z/qZ

plg

where e, = s, [[ /|, P’ € Z so that e, =1 mod p. Hence
p'#p

_m—1 T1pp + "+ T pe
Klnb(a;Q):Hp 2 Z 6( PP m.p p)

q
p\q xl,p7"'7xWL,PeF;
T1,pTm,p=a mod p

_ Hp_m"’_l Z e(x17psp+-~-+xm7psp)

b

- X
plg IlYp“..,‘LynypEFp
Ti,pTm,p=a mod p

B PR S S CoEEaa e

« p
p‘q wl.p)-“7w7n,per
— .m
T1,p Tm,p=as, mod p
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= H Kl (asy';p).

plg

Thus, Kl,,(a;q) is a g-primeperiodic and it remains to check that all the Kl,,(asy';p)’s are
irreducible trace functions (with conductor < 2m + 1). But this was already shown [22, Sec-
tion 10.3].

Ezample 2.3.4. Let g be a squarefree number and y a Dirichlet character modulo ¢q. Define
K(n) = x(n).
By the Chinese remainder theorem, we have a ring isomorphism
v: 2/q7 — EBZ/pZ, n = (Np)plgs
plq

where n, is the reduction of n modulo p. Denote now by n;, € @, Z/pZ the element given by

,_ Jnp ifp =p,
n. ;) = )
pp 1  otherwise.

plg

for p’|q. Hence
p(n) = -
plg
Hence
x(n) = [Tx((e () = [T xo(m)
plg plg

where x,(n,) = X((go’l(n;)). It is an easy exercise to check that x, is a Dirichlet character

modulo p. If all x, are non-trivial, we have by Section 10.1 of [22] that K(n) = x(n) is an
irreducible trace function with conductor < 3.

To deal with sums over primes, we need the following analogous result to Theorem 2.3.2.
Theorem 2.3.5. Let q be a squarefree number, N > 1 and F = (F,)p|q be a family of irreducible
and non-p-exceptional trace sheaves F, on Alle, with cond(F,) < N for allp | q. Let K be the

corresponding isotypic trace function. Then K is (q,aN®)-non-exceptional for some absolute
constants a > 1 and s > 1.

Proof. Note that
K =[]k,
plg

where K, is the trace function of F,, p|g. By Proposition 3.1 in [23] we get that for every
plg, K, is (p, aN*®)-non-exceptional for some absolute constants a > 1 and s > 1. Hence K is
(¢, alN®)-non-exceptional. O

2.4. Assumptions on f

We quickly review some standard definitions

Definition 2.4.1. Let I be a finite index subgroup of the modular group SLs(Z). A modular
form of weight k for the group I' is a function f: H — C satisfying the following three
conditions:
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(i) f is holomorphic;
(ii) for all z € H and every (CCL Z) el f (

(iii) f is holomorphic at the cusps (of T'\H*).

az+b
cz+d

) = (s + 0¥ 1o

Definition 2.4.2. Let ' be a finite index subgroup of the modular group SL2(Z). A holo-
morphic cusp form of weight k for the group I' is a modular form of weight k for the group
I" which vanishes at all cusps.

To(N) = {(? Z) € SLy(Z)

which is a subgroup of SLy(Z).

We define

c=0 modN},

Definition 2.4.3. A modular form of weight k and level D is a modular form of weight
k for the group I'o(D).

Definition 2.4.4. A holomorphic cusp form of weight k and level D is a holomorphic
cusp form of weight & for the group I'g(D).

Definition 2.4.5. A Maass form (or Maass waveform) of weight k for the group I is a
smooth function f: H — C satisfying the following conditions:

. a b az
(i) for all z € H and every (c d) €T, f(&5) = (cz+ d)F f(2);

9?2 32
( 8x2 Oy

(ii) f is an eigenvector of the Laplace-Beltrami operator A = — ) e, Af =\f

for some A € C;

(iii) f grows at most polynomially at the cusps of I, i.e., if v - 0o is a cusp of I, there exists
C > 0 and n € N such that |f(y - 2)| < Cy" for y — oo uniformly in z, where z = x + iy.

Definition 2.4.6. Let I' be a finite index subgroup of the modular group SLy(Z). A Maass
cusp form of weight k for the group I' is a Maass form of weight k for the group I' which
vanishes at all cusps.

Definition 2.4.7. A Maass form of weight k and level D is a Maass form of weight k for
the group I'g(D).

Definition 2.4.8. A Maass cusp form of weight k and level D is a Maass cusp form of
weight k for the group T'o(D).

Definition 2.4.9. In this thesis, by a cusp form f we will mean either
(i) a non-zero holomorphic cusp form of some even weight k& > 2 and some level N > 1; or
(ii) a non-zero Maass cusp form of weight 0, level N and Laplace eigenvalue written i + tfc.

In both cases, we assume f has trivial Nebentypus for simplicity.

Definition 2.4.10. Let M, be the space of entire modular forms of weight k and Sy the space
of cusp forms of weight k. The mapping (-, -): My x Sy — C, given by

/ (2 S dxdy
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is called Petersson inner product, where z = = + iy and
1
F:{ZEH‘ [Re 2| S?M 21}

is a fundamental region of the modular group I'.
Definition 2.4.11. For a cusp form g of level D, we define the Petersson norm by

dxdy
w%=/ l9(2) 2o LY
To(D)\H Yy

where £k, is the weight for g holomorphic and k, = 0 if ¢ is a Maass form.

Definition 2.4.12. Let ¢ > 1 be an integer and k > 2 an even integer. We make the following
definitions:

(i) we denote by Si(D) the Hilbert space (with respect to the Petersson inner product) of
holomorphic cusp forms of weight &, level D and trivial Nebentypus;

(ii) we denote by £2(D) the Hilbert space (with respect to the Petersson inner product) of
Maass forms of weight 0, level D and trivial Nebentypus;

(iii) we denote by £3(D) C L£%*(D) the Hilbert space (with respect to the Petersson inner
product) of Maass cusp forms of weight 0, level D and trivial Nebentypus;

These spaces are endowed with the action of the commutative algebra T generated by the
Hecke operators {T,, | n > 1}, where

Too(z \F a;n ( )50;@9(&2;[))’

(a,D)=1

where k, = 0 if g € £?(q) and k, = k if g € Si(D).

Definition 2.4.13. We say that a cusp form f is admissible, if it satisfies the following
properties:
(i) f is an eigenform of all Hecke operators T, with (n,qN) = 1, where N denotes the level
of f;
(ii) f is L?-normalized with respect to the Petersson inner product.

Lemma 2.4.14. The operators T,, with (n, D) =1 are self-adjoint.

Proof. We have to show that (T,,g,h) = (g, Tnh) for all g,h € L2(D) or S,(D). We compute
for g, h € Sk(D)

& dasdy

a H az+ b\ —— . dxd
) Zg( p )h(Z)y’“ 2y

w2 @ E,
/

a 5 —— dxdy
ﬁ2§jMWM@w ;
0<b<d Yy

m%m—/nmmmy

H§
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:/kg(z)% Z () Z (az—i—b) . drdy

2
ad=n <b< Yy
(a,D)=1

= <gaTnh>'
O

Definition 2.4.15. The operators {7, | (n, D) = 1} generate a subalgebra of T, which we
denote by TP). A (Hecke) eigenform of T(P) is a modular form which is an eigenvector for
all Hecke operators in T(P),

Therefore, the spaces S,(D) and £Z(D) have an orthonormal basis made of eigenforms of
T(P) which contain all L?-normalized Hecke newforms. Such bases are denoted by By (D) and
B(D), respectively.

Lemma 2.4.16. For ¢y # {3 prime numbers, we have that Tp,Te,f = Ty0,f and hence
Ar(C)Af(le) = Np(0162), where f € Si(D) or f € LE(D).

Proof. We compute for f € Si(D)

k k
1 a <+ as +
To, Ty, f(2) = N ;e (671) bz: T ;e (d:) 0<b§;d dyds f(z)
(an,D)=1 (amaD)=1 s
kg
ajaz\ 2
\/5152 Z Z (dldz) Z Z (d1d2)kf(z)

ardi=L1 azxda={; 0<b1<dy 0<ba<d2
(a1,D)=1 (az,D)=1

and by using that (¢1,¢2) = 1, this is

1 a ka
-y e
Vil ?dé);_% (d) ogzb;d

= Théz f(Z),
and analogous for f € £L(D). O

We denote by £(D) the Eisenstein spectrum. The spectral expansion for ¢ € £(g) can be

written "
E:Z/w7 Eyg(2,1)) xg(Zt)4

X g€B(x)
This and the following proposition are explained in more detail in [22] in Section 3.1.1.

Proposition 2.4.17. For (n,q) =1 and T, € T\9, we have that the E\ 4(t) are eigenvectors
of T,, with eigenvalue

M) = 32 xap® (5)"
ab=n

ToEy g(t) = A(n, ) Ex 4(t).
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2.5. Assumptions on V

Definition 2.5.1. Let P > 0 and @ > 1 be real numbers and let C' = (C,),>0 be a sequence
of non-negative real numbers. A smooth compactly supported function V' on [0, +oo] satisfies
Condition (V(P,Q,(C)) if

(i) The support of V' is contained in the interval [P, 2P];

17

(ii) For all z > 0 and all integers v > 0 we have the inequality x”d ~V(z)] < C,Q".
x

In the remainder of this thesis and we will often simply write V(P, Q) instead of V(P,Q, C)
and not mention the dependence on C' at all. Also note that later on, we will introduce another
quantity denoted C', which should not be confused with the one used in the above definition.
Following this convention makes the notation more consistent with the one in [22].

2.6. The main theorems

We will prove the following results, which are a generalisation of [22, Theorem 1.9] and [23,
Theorem 1.15].

Theorem 2.6.1 (Bounds for good twists of cusp forms). Let P >0, Q@ > 1 and M > 1 be real
numbers. Let f be an admissible cusp form, ¢ > 1 a squarefree number and V' a function satis-
fying Condition (V(P,Q,C)). Let K: Z/qZ — C be a (q, M)-good q-primeperiodic function.
Then

Sv(f.K;q) < Mg 2 (PQ)* (P +1):+37°Q,
for any 6 < %, where the implied constant depends only on (f,6,C).

Theorem 2.6.2 (Bounds for good twists of Eisenstein series). Let P > 0 and Q > 1 be real
numbers and let V' be a functions satisfying condition (V(P,Q,C)). Let q be a squarefree integer
and let Kp,: F,, — C be a function for every p | q. Define K: Z/qZ — C by

K(z) =[] Kp(2).
plg

Assume that K is (q, M)-good. Then
5 = n A 1 % 1—1]
Sv(Exs(t). K;q) =) du(n)K(n)V(g) <nen (L+t) QP(l n P) g

n>1
for any n < é and for some A > 1 possibly depending on 7).
In this thesis, we will focus on the proof of Theorem 2.6.1 and only sketch the proof of Theo-

rem 2.6.2. Concerning applications, we are interested in sums over primes. By Theorem 2.3.5,
the following theorem is a generalization of Theorem 1.5 in [23].

Theorem 2.6.3 (Trace weights vs. primes). Let P > 0 and Q > 1 be real numbers and
let V be a functions satisfying condition (V(P,Q,C)). Let q be a squarefree integer and let
K:7/qZ — C be a g-primeperiodic function. Assume that K is (q, M)-good and (q, M )-non-

exceptional. Then
1

S AmK@V(2) <are @P(1+5) ¢

1
for any n < 5.

The proof of this theorem is carried out in Section 6. An application of this result is presented
in Section 7.



3. Proof of Theorem 2.6.1

To give the proof of Theorem 2.6.1, we need some technical results presented in the next
subsection. The actual proof is then carried out in Section 3.2.

3.1. Statement of the main technical results

By viewing f as being of level 2 or 3 if N =1, we can assume that N > 2.

Lemma 3.1.1. Let f be an admissible form. Then f is a cusp form with respect to the smaller
congruence subgroup I'o(qgN) and the function

f(z) __[f(3)

[Co(N) :To(gN)]z  (q+1)3

may therefore be embedded in a suitable orthonormal basis of modular cusp forms of level D =
gN, which we denote either B(D) or By, (D).

Definition 3.1.2. For coefficients (bs) <¢<2r, and any modular form h, we define the amplifier
B(h) by

By (Lih) = > bedn(0).
L<¢<2L

We also use the notation B,)\(L;g,t) = B,)(L; Egx(t)), where x is a Dirichlet character
modulo N and g € B(x).

Definition 3.1.3. We define for any even integer k > 2

k—2)!
M(L:F) = W((M)) S BLig)P S(g, K. q)
g€BL(D)
and
M(L) = M"Y (L) + MM (L) + M™S(L)
where

MYNL) = > ap(k)(k — 1)M(L; k)

k>0
k even

MMda Z (ba b(t

geB(D)

L =Y Y / Fan(t COSh(M)| (L g.8) 2 |S(Ey o (8), K. ) dt

X ge€B(x)

cosh(ﬂ't ] IB(L; 9)° 1S (g, K, q)|?

where ¢, 5 is given by Definition A.0.8. MH°l(L), MMa2(L) and M®*®(L) are called the holo-
morphic, Maass and Eisenstein contributions of M(L).

29
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Proposition 3.1.4 (Bounds for the amplified moment). Let P > 0 and Q > 1 be real numbers,
let f: H — C be an admissible cusp form and let V: (0,00) — R be a smooth compactly
supported function satisfying Condition (V(P,Q)). Further, let ¢ > 1 be a squarefree integer
and let K: Z/qZ — C be a (q, M)-good g-primeperiodic function. Then for any e > 0 and any
L > 0 with
¢°LQ < q7,

we have that for all sequences of complex numbers (by) supported on primes £ with L < ¢ < 2L
and such that |bg| < 2 for all £, the following holds: There exists k(e) > 2, such that for all
k > k(e) and all integers a > b > 2 satisfying

a—b>k(e), a=b=1 mod 2,
we have that
M(L), kiBM(L, k) <<€,a,b,f (q1+€L1+€ + q%+EL3Q2)P(P + 1)1+€Q2M2w(q)'

The implied constants depend on (g,a,b, ), but they are independent of k. Note that M (L)
depends also on' V, K, q and f.

3.2. Back to the proof of Theorem 2.6.1

We now give a proof of Theorem 2.6.1. So assume P, Q, f, ¢, V and K are given as in
Theorem 2.6.1. Set

; {sign()\f(f)) if £ 4N is a prime with L < £ < 2L and Af(£) # 0, (31)
e = .

0 otherwise,

where Ay denotes the Hecke eigenvalues of f. Hence b, € {—1,0,1} and we get for all ¢ the
trivial bound |bs| < 1. Fix € > 0. Now, Proposition 3.1.4 gives us a k(g) > 2.

Lemma 3.2.1. For a cusp form f which is a Hecke eigenform, we have
(a+ 1) BUAPISU K )l < (@ L +q2 L@ P(P+ 1) @PM™ . (3.2)
For a Fisenstein series E,. j which is a Hecke eigenform, we have

[ i () 1B OO S (B 0. K. )

) < q(q1+sL1+€ + q%JrEL?’QQ)P(P + 1)1+5Q2M2“’(q)-
Proof. We will apply Proposition 3.1.4. Let € > 0 and let
L= %q%-fcz—l. (3.3)
Then 1, )
¢LQ = 5¢% <g*.
Furthermore, let k(¢) as in Proposition 3.1.4 and let a > b > 2 be odd integers, large enough

(depending on ¢), such that a — b > k(). Hence the assumptions of Proposition 3.1.4 are
satisfied and we get that

ML), k3 M(L; k) <cans (¢ LY + 2T L3Q?)P(P + 1) Q> M>(@ . (3.4)
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By Proposition A.0.9, we see that all summands of M (L) are non-negative, except that for
a —b < k <a+b, where some of the ¢(k) may be negative. By adding

23 || (k- VML)
afl')<k§a+b
¢(k)>0

to M (L), we get a sum with only non-negative summands, i.e., we have

MD+2 > [oR)| (k= )M(L:k)

a—b<k<a+b
d(k)>0
= (Z.Sa, k ¢a g ? 897K7q ?
3 [éu )| (- QEBZ(D ot Cosh(ﬂ)\ (9) S(g. K. )
k even
SN [ sl 1Bl 0P IS (B0, Koo
X g€B(x)

On the other hand, we have by Proposition A.0.9 that

M@I+2 Y ’d)(k)‘(kq)M(L;k)

a—b<k<a-+b
é(k)>0
k—1
<M(IL)+2 Y ravrs ML k)
a—b<k<a+b
H(k)>0
<M@IL)+2 Y kTPM(L;k)
a—b<k<a+b
b(k)>0

which, using Proposition 3.1.4, can be estimated as

Lcapf |1+ Z 1| ("L + B+ L3Q%) P(P + 1)1+ Q2 M@
a—b<k<a-+b

<<57a7b,f (q1+EL1+E + q%+6L3Q2)P(P + 1)1+6Q2M2W(Q)_

Hence
bap(k P 9I*18(g. K, q)]?
3 [éu )| (- QEBZ(D Wt Cosh(ﬂ)\ (9) S(g. K. )
k even
22 / 3u(0) iy 1B (B 1), Ko )
X g€B(x)
< (q1+5L1+5+q§+€L3Q )P(P+1)1+5Q2M2w(q) (3.5)

with all terms non-negative. In particular

S Gualty) s 1B IS0, ) ey (0L g LGN PP QM)
geB(D)
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ﬁga,b(tf)

47 ~ 12 ~ 2 1 <
B ’ ‘S 7K, ‘ " 1+5L1+5 —+€L3 2 P(P 1 1+e 2M2w(q)'
Cosh(mf)\ D [S7 K. 0| <eans (@ + g ELQ)P(P+1)17Q

Consequently, since (¢ + 1)"2S(f, K, q) = S(f, K, q) and B(f) = B(f),

(@+ 1) B IS(f. K, q))?

Leab,f (g+eLi+e +q%+sL3Q2)P(P+ 1)1+5Q2M2w(q).

~ 47
Gap(ty) cosh(nt;)

Furthermore, because ¢ty € RU(—i/4,i/4), we have that cosh(rt) > 1 and by Proposition A.0.9
that ¢a () =< (14 [t[)~2~2. Thus

(a+ D)7 IBUAPIS( K0 Sy (7L +gHEL2Q2) PP+ 1)HHQ2M10),

which is equation (3.2) in the case where f is a Maass cusp form. If f= \/% € By, (D), we
analogously argue that

: k—2)!
S [ua| k- 0L S B IS0
kke?zgn 9€Bk(D)
<<£,a,b,f (q1+5L1+€ + q%+EL3Q2)P(P + 1)1+€Q2M2w(q)
and a fortiori
. kr—2) | a2 2
Busliy)| (k=L 2E ([ [s(7, K,0)

(4m)ke=t
eans (@D + GELAQ?) P(P 4+ 1)+ Q2 M (@),
Again, this is
(@ + 1) B ISU K D) Coans (¢ LY + gEHLQR)P(P + 1)1+ Q2 M@,

which also gives us equation (3.2) in the case where f is a holomorphic cusp form.
It remains to check the case where h = \/qhﬁ is in the Eisenstein spectrum £(g). Then there

exists a characeter x such that h € B(x). By Proposition A.0.9, we get that

/OO min (¢%, [¢7%7%) [B(h,t)|* |S(Ey a(t), K, q)|” dt
o o0 ~ 2 2

:(q+1)[m min (]t ]¢7272) ‘B(h,t)‘ ’S(EX’E(t),K,q)‘ dt
<<q/°° (1+|t|)_2b—2’B(ﬁ,t)‘z‘S(Ex,ﬁ(t),K,q)‘th

— 00

2
‘dt

< Q/_OO émb(t)Wl(m) ’B(h,t)‘2 ‘S(Ele(t),](’ q)
which is by (3.5)

< q(q1+aL1+s +q%+EL3Q2)P(P+ 1)1+5Q2M2w(q)_

This completes the proof. O
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Lemma 3.2.2. For L < q and (by) given by (3.1), we have for B(f) as in Definition 3.1.2,

B(f) >y @

where the implied constant depends on f.

Proof. By the definition of B(f), we have

B(f)= Y sign(A(O)A(0)= D A0

L<¢<2L L<¢<2L
tqN tqN
Ar(0)#0
If we let
£={t~L|01aN, |\ ()] > (log) '}
then

N

L 2 L % 4
T < 2 WO < g+t (S o)
lgN

by the Prime Number Theorem for the Rankin-Selberg L-function L(f ® f,s) (see e.g. [17,
Theorem 5.44 and Theorem 5.13]) and the Cauchy-Schwarz inequality. By [21, (3.4)],

> (@] <5 Llog L

¢~
and hence I
—— < V|£]V/LlogL.
log L
Therefore ) I
B > .
() z log L >1 (log L)*
O
We can now complete the proof of Theorem 2.6.1. By (3.2) we have that
S(f, K q)* <coans (q+ 1)(q LM + q2 2 L3Q*) P(P + 1)1 72 Q* M> @ | B(f)| 7>
which is by Lemma 3.2.2 and the definition of L
Leabf q%-‘rsQP(P + 1)1+8Q2M2w(q) (log L)S, (36)

where we renamed e.
Recall the definition of L by (3.3). We consider now the cases where L > 1 and L < 1
separately. First, if L > 1, we get by (3.6) that

S(f, K3 q) <eoaps a3 T(PQ)E (P +1):H5QM“@

since

log(L) = log (;qi‘EQ”) = —log(2) —log(Q) + (i - 6) log(q)
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<log(q) <. q%.

In the case L < 1, we have Q > %q%_s and hence qé_% < Q%. Consequently, by the trivial
bound for S(f, K;q),

1

S(f,K;q) <fvq max |K(n)| <fv gM“@ L5 v M‘“(Q)qur%Qf

<<fvzww>qs+E<PQ>%< 1)2+5Q.

This completes the proof of Theorem 2.6.1.

3.3. Sketch of the proof for Theorem 2.6.2

The proof of Theorem 2.6.2 is analogous to the proof of [23, Theorem 1.15]. In [23], the proofs
of Theorem 1.15 and 1.16 are carried out simultaneously. Hence, we will now also state the
generalized version of Theorem 1.16, which is actually the theorem which we will need later on,
when we consider some applications.

Definition 3.3.1. We say that a test function V satisfies condition V(Q) if it is compactly
supported in [2, 2] such that

ij(j)(x) < @Q
for some @ > 1 and for any integer 7 > 0, where the implicit constant depends on j.

Theorem 3.3.2. Let g be a squarefree number and let K: Z/qZ — C be a q-primeperiodic
function. Assume that K is (q, M)-good. Let P > 0 be a parameter and define X = Pq. Let
M,N > 1 be parameters with % < MN < X. Let U, V, W be smooth functions satisfying
conditions V(Qu), V(Qv) and V(Qw) respectively, with Qu,Qv,Qw > 1. Then, if q is big
enough such that q% <X <L q%, we have

1

Z K(mn)(%)ZtU(%>V<%)W(TZ(n) < (14 |t\) (Qu + QV)BQWX(l + %) Eq_n

fort € R and for anyn < % and for some constants A, B > 1 depending on n only. The implicit
constant depends only on n, on the implicit constants in Definition 3.3.1, and polynomially on
M.

We adapt the notation of [23] and define
= (U,V,W,M,N, X)

elit ) = S Ktn) () "0 (7)Y ()W (5)

Sy, x (it, K) ZK (;l()

Furthermore, one should keep in mind that X = Pq. To prove Theorem 2.6.2 and Theorem 3.3.2
we follow the proof of Theorem 1.15 and 1.16 in [23] which is carried out there in section 2.

Lemma 2.1 of [23] holds without any modification for ¢ squarefree instead of p prime as the
proof is completely analytic. Furthermore Lemma 2.2 is not needed in our case, as for ¢ large
enough compared to P, we have q4 <X<L q27 where X = Pq. Hence by assuming this, we
can continue the proof following section 2.2 of [23]. Hence we define the amplifie

and

as well as
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Definition 3.3.3. For 7 € R, L > 1 and u € C we define the amplifier of length 2L adapted
to the Eisenstein series E(z, & + i7) by

Bir(u)= Y sign(di-(£))du(0).
I~L
UqN
¢ prime

Lemma 3.3.4. For L large enough, we have

L
Bi‘r 2 )
(it) > (log L)°
uniformly for t and T € R satisfying
< d Il <Ld
T (los L) an 7| < Ls.

For a proof, see [23, Lemma 2.4]. Since B(h,t) = B;,(it) for h = E(z,% + it) and f =
(z, % +i7), Lemma 3.2.1 is a generalized version of Lemma 2.3 in [23]. We can then complete
the proof of Theorem 2.6.2 completely analogous to the proof of [23, Theorem 1.15] as described
on page 1706 — 1709 in [23].






4. Proof of Proposition 3.1.4

The aim of this section is to give a proof of Proposition 3.1.4. Recall that M (L; k) and M (L)
are given by Definition 3.1.3. By defining

_ (k—2)!
&= m(4m)k—1
we get that
o |2
M(L:k) = o Z 3 bedg (6) v(®)],
geBL(D) ' ~L q

where D = ¢N. Since A\y(¢1) and /\9(62) are real, we have

2 2
MLk =a Y [0 | Y gg(n)K(n)V<%)
geBL(D) ' {~L n~qP
—a > | Y gg(n)K(n)V(g) 3 b A ()b Ay (62)
gEBK(D) ' n~qP 01,05~ L

and hence we can split up M(L; k) into a diagonal and a non-diagonal term, i.e.,

M(L; k) = M2 (L; k) + MA(L; k)

where
2
n
MALR) = Y | Y emEm@V(2)] D el (0
geBL(D) ' n~qP q I~L
n
MALik) = Y Zgg(n)K(n)V(7> 37 be A (0B A (£).
gEBL(D) ' n~qP q @/;;L

Similarly, expanding M (L) using Definition 3.1.2 and Definition 2.1.2 yields
M(L) = MYY(L) + MM**(L) + M™5(L)

where

ML) = 3 S b

D b Ag(61)be, Mg (£2)

> @g<n>K<n>v(g)

k>0 gEBL(D) n~qP lq,0o~L
- 41 n
Maa — —
ML) = 32 dlt) | 2 @g<n>K<n>v(q) D7 budg(t)bi (t2)
9eB(D) n~qP b, €2~L
Els Q
MEL) =3 % / H— m)‘ 3 gg(n,t)K(n)V<q) 37 be Al B A (e, ) dt.
X geB(x n~qP £y,8o~L

37
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We can split up ML), MM*3(L) and M®(L) into diagonal and non-diagonal terms,
ie.,

MHOI(L) — MA,HOI(L) + MA7H01(L)

MMaa(L) — MA,Maa(L) + Mﬁ,Maa(L)

MEiS(L) — MA,EiS(L) + Mﬁ,EiS(L)

where

MAHeL(T, Z Z ¢ab )1) Z 0q(n) K ( ) Z|b8| Mg (£ 2

ke?/gn gEBK (D) n~qP {~L

MEME Z oty cosh cosh(mty) Z 29 (MK ( ) Z‘bél Aol
geB(D) n~gqP (~L

MAE ) =3 3 / (1) Cosh e S 0y(n, K (n ( ) Z|bg| I\ (61 dt
X geB(x) n~qP e~L

and

‘1\44&1{01 Z Z (ba b )1)

> eg<n>f<<n>v(ﬁ)

q

Z bfl 61 b52 (£2)

k>0 gEBL(D) n~qP 01,05~L
even 01#0s
AM n
M2 Z Pty cosh cosh(y) Z Qg(n)K(n)V(g) Z bey Ag(£1)bey Mg (£2)
gEB(D) ne~qP 01,02~
Zﬁéfg
is n
Mﬁ’E Z Z / ¢ COSh 7Tt) Z Qg(n7t)K(n)V(—) Z bfl ‘€17 b@z (€27t)dt
X geB(x) n~qP 4 1316 Z;JL
1742

Similarly, we write

M(L) = M*(L) + M#(L)
where

MA(L) — MA,HOI(L) + MA,Maa(L) + MA,EiS(L)
M#*(L) = M#AHNL) + MAMa(L) + MAFS(L).

4.1. Estimate of the diagonal terms M“(L; k) and M*>(L)

Proposition 4.1.1. Assume that |K| < M. For any e > 0 we have
MA(L; k) <.y qL* S P(P + 1) M?
where the implied constant depends only on N and €.

Proof. Since |be| < 2, we have for any g € By(D)

Db <4 > A

L<0<2L L<0<2L
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which is by Deligne’s bound (Proposition B.0.17)

< Y < LM
L<<2L
Hence

2
MA(L; k) <. cp LT Z
gEBL(D)

> o mEmv (%)

n~qP q

and since V satisfies condition (V (P, Q)), this is

2

<<5 CkLl+€ Z
g€BL(D)

Y K(n)oy(n)

n~qP

(4.1)

Hence we get by the large sieve inequality (Theorem B.0.12)

MA(Li k) <. ckL“s(l + Z—;) > IKm))?

n~qP
which is

< e L'(1 + PN~ YHgPM?
<o N ckqLTEP(P + 1) M2,

For the other diagonal terms, the analogous result to Proposition 4.1.1 is

Proposition 4.1.2. Assume that |K| < M. For any e > 0 and b = [¢71] we have
MA’HOI(L)7 MA,Maa(L)’ MA,Eis(L) <<5,N qL1+5P(P + 1)M2 (42)
where the implied constant depends only on N and €.

Proof. The proof is completely analogous to the one of Lemma 5.1 in [22], except that we have
to replace p by gq. O

Corollary 4.1.3. We have

MA(L) < qL**P(P +1)M>.

4.2. Estimate of the non-diagonal term M#(L; k)

Now, we deal with the non-diagonal part, where ¢; # f5. We have by Proposition B.0.11 and
Proposition B.0.10 that

l1lom
Mty (m) = Ny(ato i) = 30 o).
dl(éléz,nl)
(d,gN)=1



40 4.2. ESTIMATE OF THE NON-DIAGONAL TERM M#(L; k)

By this, we get,

MALik)=c Y Zgg(n)K(n)V(n)

geBL(D) ' n~qP q

Z bf1 gl bfz (62)

l1,05~L
L1742
PR R n n
=k Y, buby, Y K(”l)K(W)V(l)V(Q)
01,62~ L ni,na~qP ¢ 1
L1#£Lo
Z Ag(L1)Ag(£2)04(n1)04(12)
g€BL(D)
_ ni n2
£1,0a~L ni,na~qP d|(£1£2,n1) 1 1
L1#£Lo (d,qgN)=1
6162’[7,1 —
Z 99\ — 2 2q(n2)-
gEBK(D)

By the Petersson formula (Proposition A.0.3), we have that

l1lomg \ —— (47T)k_1 {10511
Z th d2 Qg(’n‘Q) (k—2)' 5 d2 y 2
9€B(D) '

C
c>0
Djc

. 1 {10amn1 l109m4
_m<(5< PR ,n2>+AD7k< 2 ,’I’Lg)).

_ Vi lad =2
T omi kz <£1€27’L1’ ng; ¢ )Jk 1(47T 5162 n1n2>

Thus
A 1 — ’I'Ll U»)
MA(Lik) == > byby, Y > K(n)K(na)V 1
& fl,szL YL1,7L2N(]P d|(€1€2,n1) q q
biFLls (d,gN)=1
2230 l1lon
(6( 1d22 17”2)+AD,/€< 1d22 17”2))
= MA(L; k) + M*7(L; k),
where

21 Lo~ L

MAS(L k) = Z b >y K(nﬁK(m)V(m)V(m)é(zl&nl,ng)

2
ni,n2~qP d|(£1£2,n1) q q d
L7y (d,gN)=1
1 n n l1lom
2V k)= — 2: Z Z 1 n2 1£2m1
M (ka) - p b£1b£2 K(nl)K( )V< q >V< q >AD,7€( 42 ,712).
1, 4o~L ni,n2~qP d|(£162,m1)
020, (d,gN)=1
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Lemma 4.2.1. We have
MA(L;k) < KPqE e P(P + 1) QIM* D L3 4 k¢ e P(P + 1)Q2 MW L,
Proof. We will see in Lemma 4.2.2 that
MA3(Ly k) <p qLPM*(@
and in Lemma 4.2.3 that
MA*‘Y(L; k:) < k3q%+118P2+6Q4M2w(q)L3 + k3q1+65P2Q2M2w(q)L'
Hence, we have by renaming e

Mﬁ(L; /{) <N kSq%JrEP(P + 1)1+6Q4M2w(q)L3 + k3q1+ap(P + 1)Q2M2w(q)L.

4.2.1. Estimate of M#°(L; k)

Lemma 4.2.2 (Estimate of M#9(L;k)). Let K(n) be such that |K| < M for some M > 1 and
by be such that |by| < B for some B > 0. Assume that P > L. Then we have

M#A%(L; k) <p qLPM?.

Proof. We compute

Mﬁa‘S(L;k):% ootk > Y K(nl)K(ng)V<nl)V<n2)6<glf;2m,ng)

£1,6a~L ni,na~qP d|(L142,n1) a 1
b#Ly (d,gN)=1
1 — flfgﬂl ni1 flfgnl
= ; E bglbgz E E K(N1)K< d2 Vv ? 14 d2q
Zl,ZQNL n1~qP d\(21€2,n1)
L1 #Lo (d,gN)=1

L1fany
Tqu

2 S whe XX wer(G)v(2)v(5)

21 ,ZQNL de:[lfg ny ~qP q
l17#0o (d,qN)=1 d|nq
e:;l ~qP

which is by setting m = n;d~! equal to

:% S b YYD K(dm)K(em)V(dm>V<6m).

21 ,ZQNL de:[lfg anP q q
Zl#gg (d,qN):lmNT
2P

e

Hence

|M4A’5(L;k)|§% Z |bé1||@| Z Z M?

fl,ZQNL de:elfg qu
L17#Ls (d,qgN)=1 mea
q

moy-——
e
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42
1 — . /qP qP
<o 2 balfl 3 M (0.
£1 0o~ L de=01 02
£1F£L2 (d,gN)=1

Since de = ¢1¢5 with ¢; ~ L, we have that max(d,e) > L and hence

4 _
- > lbe| [bey | MPqPLT

£y,82~L
Ly #Llo

4 4
< —L?B*M?*qPL™' = —B*qLPM?
™ T

IN

<p qLPM?.
This completes the proof. O
4.2.2. Estimate of M*9(L; k)
Lemma 4.2.3. We have that
Mﬁ,&’(L, If) < k3q%+11€P2+6Q4M2w(q) LS + k3q1+6€P2Q2M2w(q)L.
To prove this Lemma, we define
_ — (n n
Migl= 3 beb, >, > K<n1>K<n2>V(1)V(2)
ll,ZQNL d|£1€2 n1,n2 q q
O£ (d,gN)=1 dlm
1 flfg’nl 47 flfznlng
ZCS< d2 ,No, C (b ? T (4.3)
c>0
Dlc
1 — — n n
=5 IRATED DY K(nl)K(ng)V<l>V<2>
el,egNL d‘eleQ n1,m2 q q
Ol (d,gN)=1 dlm
1 £1£27L1 47 €1€2n1n2
. Zo( 2220 . eD i Bt )
§c < 2 "' ¢ cD d?

for an arbitrary function ¢. Then we have

M*9(L; k) = M|¢x]

with
b =2 " Jp_1.

Proof of Lemma 4.2.3. We have by Proposition 5.0.1 below that

‘1\44&,(5/(‘[/7 k) _ M[(bk] < k3q%+116P2+EQ4M2w(q)L3 =+ k3q1+68P2Q2M2w(q)L.
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4.3. Estimate of the non-diagonal term M# (L)

By using Proposition B.0.10 and Proposition B.0.11, we get that

l1lom
N (A (E2)eg(nn) = Ag(lalo)eg(m) = D7 og(=2)-
d|(£1€2,m1)
(d,gN)=1

Consequently, we have for the holomorphic part

WA = 3 S Gt B Zgg(n)K(n)V(n)’ > bk,

q

k>0 geB(D) n~qP 01,85~ L
k even 417552
— ny na
Yo obube Y Km)Kma)v (v ()
£1,€a~L ny,na~qP 4 q
L1#Lo

X DA A ey )2, (2]

F>0 geBy (D)

Z be, be, Z Z K(m)WV(@)V(@)

01, o~L n1,n2~qP d|(€142,m1) q q
5175Z2 (d qN)=1

Z Z ¢ab 471.)11)199(61222”1)99(”2)

k>0 geBy(D)
k even

and similarly for the Maass part

MA@ = 3T bk, Y. Y Km)Kmav (S v (T

Zl,éQNL nl,TLquP dl(flfz,nl) q
01#0o (d,gN)=1
47 61827“)
Z Wty cosh mt )Q ( d? 09(n2)
geB(D)

as well as for the Eisenstein part

MA’EiS(L) _ Z b&@ Z Z K(n1)K(n )V(nl)v<
£y, la~L ni,n2~qP d|(£14z,n1) ?
G #L (dqu) 1
glgg’flg —F
XX:QG%:X) / 3(t) Cosh e o - ) 0 (na, Dt

Therefore, we get

Sobnbe > Y KKV (2 )v(™2)

£1,6a~L n1,m2~qP d|(£1£2,m1) q q
by #Ly (d,gN)=1
1) £1£2’n1
(z > s o (MY
k>0 g€By(D

k even

(£1)bg A

43

g(£2)
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£ 3 3t e (P o)
T T [ a0 M )
- Sowin XS KRy (v () a0s ()

£y,82~L n1,m2~qP d|(£1£2,m1)
L1#£L> (d,qN)=1

which is by Kuznetsov’s formula (Theorem A.0.7)

=3 b Y Y KeKm)v(2)v(2)

01, 0o~L ni,n2~qP d|(£1£2,m1) q q
L1748 (d,qN)=1

1 6162711 47 Elﬂgnlng
‘ZES(TQ:T,C)Q%,E; Va2 )
c>0
Dic

Recalling (4.3), the definition of M[¢], we can write M# (L) as
M#(L) = Ml¢a,]

with
Gap(z) = ib_aJa(as):C_b.

Lemma 4.3.1. We have that
MA(L) < q%+11€P2+€Q4M2w(q)L3 + q1+6€P2Q2M2w(q)L.
Proof. We have by Proposition 5.0.1 below that

MA(L) _ M[¢a,b] < q%+11£P2+EQ4M2w(q)L3 + q1+6aP2Q2M2w(q)L_

4.4. Completion of the proof of Proposition 3.1.4
By Proposition 4.1.1 and Lemma 4.2.1,
M(L;k) = MA(L; k) + M2 (L k) < k(gL' 4 g2 T°L°Q*)P(P + 1) F=Q° >,
Moreover, by Corollary 4.1.3 and Lemma 4.3.1,
M(L) = MA(L) + MA(L) < (q"F5 LY + g2 L3Q2) P(P + 1) T2 Q? M@,

This completes the proof of Proposition 3.1.4.



5. Estimate of M|¢| for ¢ = ¢ and ¢ = ¢,

In this section, we examine M[¢] for an arbitrary function ¢. We rewrite M|[¢] as

Y buben, Y, Mlgidel,

ly,bo~L de=10105
00 (d.gN)=1
where
Mp;d,e] = NZ 5¢cde)
c>1
and
4./ d
(c,d,e) ZZS’ (en1,n2;cqN)K (dny)K(n )q&(ﬂeW)V(nl)V(m)
i cgN q q
Z Z S(eny,ng; cgN)K (dny ) K (ng) Hy(n1, na;e) (5.1)
ni>1ny>1
with

Hy(z,y;2) = ¢<4ﬁcﬁ> ( ; )V(Z)

We define a parameter C' = C(d, e¢) > 1 depending only on d and e. We then decompose
M(p;d,e] = M C[¢;d, €] + M=C[¢; d, €]

where

1 1
M=Clgide] = — D7 —Elcdye)

e>C(dye)

W= Y Zeede).

N 1<e<C(d,e)
Accordingly, we decompose
Mig] = M [¢:d, ] + M=[g]
where

M= = Y beby, Y, MTCpide

£y,la~L de=10105
01705 (d,gN)=1
<C 7 <Cr 4.
M=Y[¢] = E be, by, E M=%[¢;d, e].
fl,fz'\/L de={103
Zl 7%2 (d,qN):l

45
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In what follows, we will choose
1 e
C =C(d,e) = max <2, qu\/;). (5.2)

Proposition 5.0.1. We have

Note that then C' <« ¢°LP.

M) < k3q§+11sp2+sQ4M2w(q)L3 + k3q1+6sP2Q2M2w(q)L

and

Mpap] < q%+116p2+sQ4M2w(q)L3 + q1+65P2Q2M2w(q)L.

To give a proof of this proposition, we need estimates for M*>C[¢] and M°<C[¢]. We will
give an estimate for M>“[¢] in Section 5.1 (Proposition 5.1.1) and an estimate for M°¢<%[¢] in
Section 5.2 (Proposition 5.2.1). With these estimates at our disposal, the proof is very simple.

Proof. Since
Mg = M [¢] + M*=“[¢]

and Proposition 5.1.1 tells us that M°>[¢;d, €] is negligible, we get by Proposition 5.2.1
Mor] < kSq%+1lsP2+sQ4M2w(q)L3 1 k3gi e p2Q2 N 2@ ],

and analogously for Mg, 5] O

5.1. Estimate of M“C[¢)]

The goal of this section is to prove the following proposition.

Proposition 5.1.1. Let € > 0 and d, e be given. Define C as in (5.2). Let k() = 12e~1.
Then

(i) for all k > k(e),
MC>C[¢I€] < q_10L3M2P3,

(ii) for all a > b > 2 such that a — b > k(e),

MC>C[¢a,b] < q_10L3M2P3.

5.1.1. Estimate of &,(c,d, e)

Lemma 5.1.2. Let ¢: [0,+00[ — C be a function such that for some B > 0, k > 0 and all
z >0

|p(z)| < Ba". (5.3)
Further, assume that |K(n)| < M and that V satisfies condition (V(Q, P)). Then

Eslerd, €) Ko M2 (5) P PHm, (5.4)
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Proof. Using the trivial bound for Kloosterman sums (Proposition A.0.4) and the bound | K (n)| <
M, we get

Es(cd )| <D egNM? [Hy(ny, nase)

47, /ening dnq Mo
_ 2
= caNM*D ) ( caN )Mq)V(q)

ny no
and since V satisfies condition (V(Q, P)), this is

< cqNM? Z Z

q(f na~qP

cqN

(e

ni~

Furthermore, by (5.3), this becomes

Es(c,dye) <p N (cq)' ™ M? Z Z (ening)?

N1~ q(f na~qP

< )02 () P 3 Y0
nquP na~qP
s

K,Pfi 2P2

om0 () e

which is

2oy

<B AN M201—K(2)% 3 p2+r

O
5.1.2. Proof of Proposition 5.1.1
Recall that
br(z) =20 T _1(2). (5.5)
and by Definition A.0.8,
bap(x) =T, (x)2z 0. (5.6)

First, we derive the following lemma.

Lemma 5.1.3. With notation as above, assuming that |K| < M, a —b > 2, we have

a—b
P
MClgy,.dye] < q2M2P20<C Z)

k—1
M€ gy, d,e] < q2M2P2C<g Z)

where C = C(d, e) and the implied constant depends on f.
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Proof. Note that for the Bessel function Ji_1, we have the upper bound
Jr_1(x) < min(1, 2" 1) (5.7)

where the implied constant is absolute [12, Equation 8.402 and 8.411]. Combining (5.6) and
(5.7) yields

|pap(x)] < Byi®~%min(1,z%)z°,
for some absolute constant B;. By setting k = a — b this is
= Byi " min(1, 2" )27% = By min(z~?, 2%) < Bya"®

So, assumption (5.3) is satisfied for ¢, and hence by (5.4),

~ e\ ?
5¢a,b (C, da 6) <<Bg,n,N MzCI " <d) q3P2+K,
Consequently

1 1
MC>C[¢a,b; da 6] = 7N Z Eg(ba,b(c’ da 6)
q c>C

1 2 € % 2 p2+k —K
v 2(5) P T

KBy N M2 (Z) FPHrol-~
P [e\" P [e\"
_ M2 2 P2 R _ M2 2 P2 R
e (c d) CeP\EVa) o

since k > 2.
For ¢y, the procedure is similar. By combining (5.5) and (5.7), we analogously obtain

|pr ()| < BzF~! = Ba*,
for some B > 0, where we put kK = k — 1 > 0. Now, we get analogously

K k—1
M>Clgd o) < M2ep? (L. [9) = s (2 ]S
o cVd c\d

This completes the proof. O
Proof of Propositon 5.1.1. By the definition of C(d, e) and Lemma 5.1.3, we have

p k—1
M pr,d,e] < q2M2P20<C 2)
— q2M2P2Cq—€(k—l) < qQ—E(k—l)MQPQqaLP
_ qQ—EkM2P3L < q_loLMQPS.
Similarly, we obtain
MY po_p,d,e] < ¢ P LM*P3.
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5.2. Estimate of M“=C[¢)]
It remains to estimate M°<[¢]. Recall that

M=Clgl = > bub, Y, M=C[¢;d,e]
ly,lo~L de=/{103
£y1#Lo (d,gN)=1

with

1
]\4—c§6‘[¢;d7 €] = —~ Z 0*18¢(C, d,e),
1<e<C

where C' is given by (5.2). In particular, we can assume that C' > 1 as otherwise the above sum
is zero. Precisely, we are going to prove the following proposition. The proof is carried out at
the end of Section 5.4.

Proposition 5.2.1. Assume that 2¢° P < L. Then we have that
MCSC[qSk.] < kgq%+1lsp2+6Q4M2L3 + k3q1+65P2Q2M2L

and
Mcgc[% b] < q§+115P2+5Q4M2L3 + q1+6‘5P2Q2M2L.

5.3. Transformation of £,(c,d, e)

Definition 5.3.1. For nyny = e mod ¢N and (¢N, q) = 1, the integral matrix y(c, d, e, n1,n2)
defined by

7(07 d, e,ny, TLQ) = <CZ]1\7 CE’I]’:; > S MQ(Z) N GLQ(Q)

is called a resonating matriz.

Remark 5.3.2. Observe that the determinant of v(c,d, e, ny,na) is de.

We will transform each of the sums £, (¢, d, ) so that we can connect them with the correlation
sums C(K;~) for suitable matrices v. Concretely, we are going to prove the following theorem.

Theorem 5.3.3. Let q, ¢, N be a positive integers, let d, e be positive integers such that
(de,q) =1 and let ny,ny € Z. Then we have

1 . niy N9
& 7d» = - H (7,7)6 K; ada ’ ) .
s(c.d,e) Z . ® cqN’ cqN ( v(c,d,e,nq nz))
(n1,n2)€EZ

TL1’I’L2¢0
nins=e mod cN
(ng,eN)=1
There is a remark in order concerning modular inverses. If a is an integer with (a,q) = 1, we
denote its modular inverse with respect to the modulus ¢ by @, i.e., @ is the unique integer in
{0,1,...,q— 1} such that a@ =1 mod q. Clearly, if (¢,cN) = 1, we have

ning — e
cN
However, when (g, ¢N) # 1, the expression on the right hand side does not make sense anymore,

as c¢IN does not posses an inverse modulo g, whereas the expression on the left hand side may
still make sense. More precisely, the expression

= (ninz —e)cN  mod q.

ning — e

d
N mod ¢
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makes sense as long as ning — e is divisible by ¢N. For the matrix v(c,d, e,ny,ng) this is the
case, whence y(c,d, e,n1,n2) € M3(Z) and a reduction modulo every g makes sense.

The subsequent proof of Theorem 5.3.3 which is a squarefree version of Equation (5.16) in
[22] is the first place in this thesis where the proof differs significantly from the one given in [22].
So far, we almost always dealt with ¢ as an “analytic variable” and thus the proofs from the
prime case carried over without much difficulty. However, the proof of Theorem 5.3.3 as well
as the proofs of many subsequent Theorems makes use of algebraic properties of ¢ and hence
it can not be expected that the same proofs which worked in the case of ¢ being prime will
also work in the case of ¢ being only squarefree. In particular, to derivation of Equation (5.16)
in [22] starts with using the twisted multiplicativity of Kloosterman sums which leads there to
Equation (5.12). However, in the case of ¢ squarefree, this does not work anymore and therefore
in the subsequent proof we circumvent the use of the twisted multiplicativity of Kloosterman
sums.

Proof of Theorem 5.3.3. Recall that £y(c,d, e) is defined in (5.1). Therefore

Epled ) = Z Z S(eny, n2;cgN)K (dni) K (n2)H¢(nlan27 €)

ny1>1ne>1

Z Z Z Z S(e(yrcqN + x1),y2cqN + x2;cqN)

0<z1<cgN 0<z2<cqN y1EZ y2€Z
- K(d(y1cgN + 1)) K (y2cqgN + 22) Hy (y1cqN + 21, y2cqgN + 225 €)
Yo Y S(ear, ma3cqN) K (day) K (w2)

0<z1<cgN 0<z2<cqN

Y Hy((y1,y2)egN + (a1, 22)5€)

Y1€EL Y2€L

which is by the Poisson summation formula (Theorem B.0.20)

:(cq;\f)z > > Slewy,wacqN)K (do) K(z2)

0<z1<cgN 0<z2<cqN

Z Z ( N2 )e($1n1+$2n2)
cgN’ ch cqN

n1 EZ no €7

- ch2 Z Z (ch cq?\/' )

ni1€Zno €L

Z Z K(dml)MS(exl,mg;ch)e(w).

cqN
0<z1<cgN 0<z2<cqN

Furthermore, we have

Z K(dx1)K(x2)S(ex1, x2;cqN)e <

r1ny + xzﬂz)
0<z1,22<cqN

cqN

0<uy,us<cN

= Z K (dvy)K (v2) Z S(e(urq + v1), u2q + v2; cqN)

(u1q + v1)ng + (uzq + v2)ne
cqgN
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Z K (dvy)K (vg) Z Z . (e(ulq + m);—ij-v(uzq + 02)z>

0<v1,v2<q 0<uy,u2<cN 0<z<cqgN
(z,cqN)=1
e (u1q + vi)ny + (u2q + va)no
cqN
B —_ (ez+mnq1)v1 (Z + ng)ve
= Z K(dvi)K (v9) Z e ( N e N
0<v1,v2<q 0<z<cgN
(z,cqN)=1
(eqz + n1q)uy (gZ + qna)ua
Y (et (e
cqN cqgN
0<u;<cN 0<uz<cN
B — (ez 4+ nq)vq (Z+ n2)vs
= > K(dv)K() > e ( N e N
0<v1,v2<q 0<z<cqN
(z,cqN)=1
(ez +m1)uy (Z + no)us
> () v (B
0<u; <cN 0<uzs<cN
—_— (ez +mn1)vy (Z + na)ve
= (cN)? Z K(dvi)K(v9) Z e < e
0<v1,v2<q 0<z<cqN CqN CqN
(z,cqN)=1

ez+n1=0 mod cN
Z+n2=0 mod cN

and since (d,q) = 1, this is (note that here, d is only modulo ¢ and not modulo cgN)

— (ez +ny)dvy —(Z+ ng)ve
=(eN)? > K(w)K(v) > e( o e N
0<vy,v2<q 0<z<cqN q q
(z,eqN)=1
ez+n1=0 mod cN
Z+n2=0 mod cN

(N Y K(v1)K(w)

0<wi,v2<q

Z . ((ez+n1)dv1> . (—(2+n2)v2> if (ny,cN) =1 and

cqN cqN e=nine mod cN,

= 0<z<cqN
(z,cqN)=1
Z+n2=0 mod cN

0 otherwise.
because

ez+n; =0 modeN Z+ny =0 modcN
is equivalent to (ng2,cN) =1 and

e =niny mod cN Z+ny =0 mod cN.
Thus, we assume that (ns,¢N) =1 and e = nins mod ¢N. We define

Z={z€(Z/cqNZ)* }E—l—ng =0 mod cN}
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and
W = {w € Z/qZ | weN +ny € (Z/qZ)* } .

We claim that the map f: Z — W, given by

—Z — Ny

1) = =5

is a bijection with inverse
fHw) = (~weN —n),

where the modular inverse is computed modulo cqN. First note, that since Z+ns = 0 mod cN,
we know that B
—Z — Ny
w=——-€Z.
cN

and since z € (Z/cqNZ)*, we get that

§+Tl2
cN

f(z)eN 4+ ng = — c¢N +ng=—-%z € (Z/cqNZ)*.
Hence the map f is well-defined. Since weN + ny € (Z/cgNZ)*, it is clear that f~1(w) €
(Z/cgNZ)* and since

f~H(w) + na = —weN — ng +ng = —weN  mod cgN
we get that f~1(w) +no = 0 mod ¢N. Thus the map f~! is well-defined. One also easily
checks that f~!(f(z)) =z and f(f~!(w)) = w, which shows that f is a bijection.
By this bijection, we see that for (ns,¢N) =1 and e = nyng mod ¢N,

I e LG EED S C SN Ry
0<z<cgN cqN cqN 0<w<q 4 q

(2z,cqN)=1 wedN —dno €(Z/qZ) ™
Z4+n2=0 mod cN

where w = W. We hence would like to express @ in terms of w (modulo ¢). Since
Z+ no d
w=— mo
cN 1
d
W= % mod ¢
we get that
weNz+noz=—1 mod gecN
ez =wcNd —n; mod gcN
and hence
ze(weN +ng) = —e  mod gcN
ze(weN + ng) = (dweN — ny)(weN +ny) mod geN.
Hence

dowc®N? + dionaeN — nqweN — ning +e =0 mod qcN
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and since e —nine =0 mod cN, we get

ning — e

w(wedN + dng) = njw + N

mod gq.

So,
=~-w mod q

_(m ME
T=\edN  dny )

With this, we can continue the computation from above and get

IS

where

Z K(dxy)K(x2)S(ex1, x2;cqN)e <

0<w1,z2<cqN
_ (CN)2 Z K(U1)K(U2) Z e(M)@

0<v1,02<q 0<w<q q q
wedN —dno€(Z/qZ)*

I VI A DR C ) I CAD IR C S )

1Ny + Tone
cqN

0<w<gq 0<v1<q 0<v2<q
wedN —dno€(Z/qZ)
= g¢(cN)? > K(y-w)K(w)
0<w<q

wedN—dno€(Z/qZ)
= q(cN)*C(K; ).

So, we finally obtain

1 ~ niy N9
Esle,de) = — Hy| —,——;¢e |C(K;~v(c,d,e,n1,n2)).
s(c,d,e) . > e\ SN (K;( 1,m2))
(n1,m2)€Z
ning=e mod cN
(n2,eN)=1

To prove Theorem 5.3.3, it remains to show that we also can include the condition ning # 0.
Since niny = e mod c¢N, we also have that nins, =e mod N. Suppose ning, =0. Then e =0
mod N, i.e., N | e which is not possible. So we are done. O

5.4. Decomposition of M“=C[¢]

Recall that )
M=Clpid,e] = — 3 ¢ 'Ey(e.d.e)

1<c<C

where C = C(d, e) is given by (5.2) and

1 ~ n U
Esle,de) = — H (—,—)C K;~(c,d,e,ny,nz)).
dedo=1 ¥ (e el d e )
(n1,m2)€Z
nl’l’LQ;ﬁO
nins=e mod cN
(n2,eN)=1
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by Theorem 5.3.3. For positive numbers N; and N, we consider the square
O = [Ny, Ni] x [-Na, N3] € R2. (5.8)

We then split up €4(c, d, e) in a term with n = (n1,n2) € O (i.e., |n1| < Ny and |na| < N3) and
a term with n = (n1,n2) ¢ 0. Thus, we write

Es(c,d,e) = 39 (c,d ) + E5%7(c, d,e),

where

ned — g (M M2 .
€¢ (Cvdve) - Z Hd)(chvCqN)C(Kv’V(Cvd,eanlanQ))

(n1 ,ng)GZzﬂD
nlng;éo
nins=e mod cN
(n2,eN)=1

n 1 (M n
€¢¢D(c7d7e)=* Z H¢(Cq—;\[,a]—j\/_)C(K;’y(c,d,e,nl,ng)).

(n1,m2)€z?\0
77,1712#0
nins=e mod cN
(n2,eN)=1

Analogously, we write

]\4C§C[¢;d7 6] — MCSC,7L€D[¢; d, 6] + MCSC,n¢D[¢; d, 6]

where
1
MCSC’"GD[¢;CZ, e] - Z C_lggED(C, d, 6)
1<c<C
1
]\/[<2§C',71¢|:|[¢;d7 6] — 7N Z Cflggﬁ:l(c, d7 6).
1<e<C
and
MCSC[¢] _ MCSC’TLED[QS] + MCSC,TLQEI[(M
where

MesCneDg) — Z be,be, Z MeSCneDg g ]

01,05~ L de=0,05
0 #ly (d,qN)=1
<C,n¢l _ <C,n¢0 4.
MesCnetig] = E: be, by, § MesEOnED g q el
el,ézwL de:flfg
b0y (d,gN)=1

In what follows, we fix ¢ > 0 and choose Ny and N5 to be

cd(Q+ Z) (Q+2)
Ny =¢° Ny =¢° .
1=4 P 2 =4 2
We proceed as follows. In Section 5.5 we give some general estimates of ]EI¢ which are needed to
prove the estimates for M°<¢"€H[¢: d, ¢] in Section 5.7 (Proposition 5.7.1) and for M¢=C¢"#0[¢: d, ]
in Section 5.6 (Proposition 5.6.1). Assuming this results, we can give a proof of Proposi-
tion 5.2.1.
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Proof of Proposition 5.2.1. Since
MCSCM)] _ MCSC’nGD[(b] + McSC,n¢D[¢]

and Proposition 5.6.1 shows that M°=¢"#0[¢: d, ¢] is negligible compared to M¢=¢"€H[¢: d, ]
we get by Proposition 5.7.1 that

McSC[(bk] < Mcgc,neljw)k] < k3q%+115P2+6Q4M2w(q)L3 + k3q1+66P2Q2M2w(Q)L,
and that

Mcgc[¢a7b] < MCSC’”GD[an,b] < q%+116P2+6Q4M2w(q)L3 + q1+66P2Q2M2w(q)L.

5.5. Estimates for [,

In this section, we give estimates for H, which are independent of whether (n;,n2) € O or not.
First of all, we introduce a new parameter:

7= jv\/g. (5.9)

Now, we can state the following two lemmas.

Lemma 5.5.1. Assume that V satisfies (V(P,Q)) and that ning # 0. Then
(i) For ¢ = ¢ap, we have

5 2 gab 4 ) )
(q]if)2 Hos (CZZl\f’ CZJQV) == (ch |75?| * Z))”<CP |(ncg|+ Z))

d (1 + Z)a+1/2
for all i, v > 0, where the implied constant depends on (N, p,v,a,b).
(ii) For ¢ = ¢y, we have

A ’ ! p -1 ,
v G ) < 7 () ()

for all p, v > 0, where the implied constant depends on (N, u,v), but not on k.

Lemma 5.5.2. Assume that V satisfies (V(P,Q)) and that niny # 0. Then
(i) For ¢ = ¢, we have

]_ A~ ny ) P . ]- Q
i () < 1 9).
2 %\ cgN’ cqN <4q a M\ Zie 7
where the implied constant depends on (a,b, N).
(ii) For ¢ = ¢y, we have

1 - ny ) 3 P2 . 1 Q
b ) < (1 ).
@ "\ cgN’ cgN <R a "\ Zz12 7

where the implied constant depends on N.
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Lemma 5.5.1 and Lemma 5.5.2 correspond to Lemma 5.7 and Lemma 5.9 in [22] respectively,
where p needs to be replaced by ¢. Since both lemmas are completely analytic, replacing p by
q does not make any difference, as no assumptions on the primality of p are made. Also note
that in the statements of Lemma 5.7 and Lemma 5.9 in [22] there is the assumption that (d, e)
needs to be of Type (L, L) or of Type (1, L?). However, this assumption is never used in the
proofs and hence can be dropped.

Having this two lemmas at hand, we can continue to estimate M=% [¢;d,e]. We estimate
Me=CneH[p:d e] in Section 5.6 and M=C"€D[¢: d, ¢] in Section 5.7.

5.6. Estimate of 1/°=C"#U[¢]

As it turns out, M°<¢"#H[4] is negligible. Precisely, we get:

Proposition 5.6.1 (Estimate of M°<¢"¢0(c d,e)). Let € > 0 and be fired. Let C be defined
by
1 . e
C = max (571) P\/;>
and let O be given by (5.8). Then for ¢ = ¢qp or ¢r, we have
MesCnE0 (gl < n LAPPM?(Q +1)%¢™" (negligible) .
Proof. By the trivial bound (see (2.1.3))

IC(K;v)| < M?q

we get
1 ~ n1 n9
gn¢d c,d,e) = — H ( , )C K;~(c,d,e,ni,n
é ( ) Z ¢ cqN’ cqgN ( 7( 1 2))
(n1,n2)€Z*\0
’nl’ILQ;é(]
nins=e mod cN
(ng,eN)=1
2 n1 n2
< M? H (— —)
- Z *\egN’ cqN
(n1,m2)€z\0
nina#0
ning=e mod cN
(n2,eN)=1
2 n 12
= M? a (——)
Z Z *\cgN’ cqN
n1<—Ni n2
’I’Ll’ng?fo
nins=e mod cN
(n2,eN)=1
; n 12
= (2 2)
Z Z *\cgN’ cgN
—N1<n1<N; na<—Na2
nin27#0
ning=e mod cN
(n2,cN)=1
a n N2
o (2 2)
Z Z ¢ cgN " cgN
—N1<n1<N; na>No
nlnr_»;ﬁ()

nins=e mod cN
(n2,eN)=1
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~ ny )
DY Y ()
WS ¢ cqgN " cqgN
n1n27é0

ning=e mod cN
(n2,eN)=1

We now consider this four summands separately. For p1, 1 > 0, we have by Lemma 5.5.1

w oY gy

m<-M n17?22;£0
nins=e mod cN
(ng,('N)*l
v 1 1
< MPPNT (ch HQ+2)" (ePTHQ+2)" Y Y. Tmm
sits e [na ™" [na|
nlnz;é()
nine=e mod cN
(na, CN):
p?
< M2 PN?—(cdP71(Q + 2))" (eP7HQ + 2))
d( ( )) ( Z ; |’I”L1"u1 |’I7,2‘
n1<—Ni 2
n1n2;£0
By defining X = cP~}(Q+ Z) and Y = M2q2]\721:)727 this can be rewritten as
v Yy Lo
s T \nl\ [na]” \
nan;ﬁO
Analogously, we get
A~ nl
M? iy (5 50 ) < Y (X X L
ZN Z cqgN’ cqN ZN nZZ ‘m‘m 2 ‘ '
n1>Ny n1n27$0 e ' nina#£0
nins=e mod cN

(n2,eN)=1

and for o, vo > 0,

~ ni n2 v
My > () €Y@0Exe 3T S |m|“2|n|”2’

—N1<n1<N; n2<771é\/(')2 —N1<n1<N1 n2< ;é\(f)
ning ninz
ning=e mod cN
(n2,eN)=1
2 ] n1 H2 YV2
M E E Hy N N <Y dX)* X E E —
Ci cq
—N1<n1 <Ny na>Na q —N1<n1<N1 na>N» ‘nll ‘an
n1n2#0 n1mna#0
nins=e mod cN
(ng,eN)=1

Hence, by setting 11 = 2, we can compute

T Bk, 2 T H1 T M1
n1<—Ni n177zL§ 0 ‘n1| 3 n1=-—00 |7’L1| 3 n1=Ni+1 ™
< w2 /°° 1 p w2 1
el n el
=3 Ny ;11«1 1 3 (/.L1 - 1)Np,1 1
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Hence,
2 dX)m
Y (dX)* X Z Z — <YX2£¥#—1
ni<—Np nQ;éO ‘TL1| ‘TL2| 3 (:ul - 1)N1 !
ning
_yxT ax

3 (= 1gEm—b

2
_ £M2q27€(#1*1)N2P7163(Q + Z)B

3 H1 — 1
which is, by choosing p; > 3¢~ ! + 5,
2 2p 2 1.4 1
< N2p LP)Y’M*q="7°¢
<3 @+ LP)? o1

Because ¢ < C = ¢°LP, this can be rewritten as

1

pr—1

872 1

< %NQP_I(QLP +LPP3M2 e
pr—1

<<5NL3P2M2(Q+ )3 —1— E

2
— %NQP—I(qEQLP+LP)3M2q—1—4E

A

Analogously, we get

ydxymxm oy i ‘M " ‘,,1 <N LPPPM*(Q+1)%¢7 1%
1

n1 >N 2
! ! ’nl’ILQ;éO

Furthermore, for po = 0, we get

o0
u 3 1
Y(dxyex: > = |H2 o |U2 =YX Y
“N1<nmi <Nina<—Ny 'L na=Not+1 2

ning ?50

S QquXYXV2 W
2= 2

1

=2¢°dX?Y —
I (vy — 1)gsv2—1)
_ 2N2C2(Q + Z)2M2q2+€—6(l/2—1) 1
Vo — 1
< 2N2(CQ + LP)2M2q2+€7E(V271) 1 -
Vg —

which is, since ¢ < C < ¢°PL,

<2N2L2P2(Q+1) M2 2+4be— 5(1/2 1) 1
Vg —

<<8,N LQPQ(Q+ 1)2]\42q—17
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where we choose 15 > 713 + 6. Combining all this estimates gives
E3%(c,d,e) <ocv LPP2M*(Q +1)%¢7 "

Thus, by assuming that € < 1, we get

McSC,n%D[QS; d, 6] — LN Z 0715;1@:‘(03 d, 6)

1<c<C

<<{-:,N L4P3M2(Q+ 1)3q—1

5.7. Estimate of 1/°=Cn<U[g)]

The goal of this section is to estimate M CSC’"ED[QS]. Concretely, we will show the following
proposition.

Proposition 5.7.1 (Estimate of M<C"€0[¢]). Let ¢ > 1 be a squarefree integer and let
K:Z/qZ — C be a (q, M)-good g-primeperiodic function. Let e > 0 be fixed. Let C be defined

by
C = max (1 ‘P E)
N 27\
and let O be given by (5.8). Then, we have
MCSC,nGD[qSk} < kBq%+llep2+€Q4M2w(q)L3 + k3q1+66P2Q2M2w(q)L,

and
MCSC’HED[(ﬁa b] < q%+1lap2+6Q4M2w(q)L3 + q1+66P2Q2M2w(q)L.

First, note that

MEOneDg) — Z be, be, Z MeSCneD g g o]
01 ,6o~L de=/{1/05

O£l (d,qN)=1
with
Me<One0[g: g o] — LN S lem€9(e d,e)
1<e<C
and that by Theorem 5.3.3, Egem(c, d,e) is a sum over products of the form Hg(...)C(K; 7).

Consequently, we derive our estimate by estimating fI¢ and C(K;~) separately. The estimate
of Hy was done in Lemma 5.5.2. However, the estimate of C(X;~y) turns out to be a bit tricky.
More precisely

1 .
Ege‘j(c, d,e) = - Z H¢(cn—]1v, Cn—jv)C(K;fy(c, d,e,n1,n2)).
q (nl,n2)€Z2ﬂD q q

n1n27é0
ning=e mod cN
(n2,eN)=1
with
C(K;7y) =[] C(Kpim)-

plg
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by Proposition 2.2.5, where

nl nlg]i]_eg‘;p _ -~ d
Yo = cdNs, dns Sp = ];[ p° mod p.
?'lg
p'#p

We separate the terms in Egem(c, d, e) according as to whether

|C(Kp;'yp(c,d,6,n1,n2))| < Mp2. (5.10)

When (5.10) fails, v, is in the set Gk, as of M-correlation matrices (see Definition 2.2.7) and
otherwise v, ¢ Gr,,um-

Definition 5.7.2. Fix a squarefree number g. Then we associate to every matrix y(c, d, e, ny, n2)
its type T[y] which is a vector T[y] = (Th]p)plq given by

Tl =2 o # G
1 if Yp € GKP,JM-

Of course, the type depends on q. We denote the space of all possible types by H = {%, 1}w(q),
so |H| = d(q) < ¢°. For h € H, we define

g = [] .

plg
p=1

From the definition of T[y] we immediately get the following lemma.

Lemma 5.7.3. If T[y] = h for some h € H, then

|C(K7’Y(Cv da €,ny, n?))| S HMthphp.

plg
We write
1 (e doe) = Y €35 (e de)
heH
where
nel,h 1 5o M1 Mo )
&y (c,d,e)—g Z H¢(cq—N,C(]—N)C(K,'y(c,d,emhng)).
(n1,m2)€2*N0O

n1na#0, (n2,cN)=1
ning=e mod cN
T[y(c,d,e,n1,n2)]=h

Similarly, we write
MCSC’HGD[gﬁ] _ Z MCSC,HED,h[¢] (511)

hecH

where

Mch,nED,h[(b] _ Z bﬁ@ Z MCSC’nED’h[¢; d, 6]

ZhZzNL de:élég
5175€2 (d,qN):l
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with
1 1
c neld nellh

MeSEnORgid o) = — 37 €5 (e d,e).

1<e<C

We have the following bound for Mc=Cn€Bh(g. g ¢].
Proposition 5.7.4. Let g be a squarefree integer. Then for any € > 0,

Mch,neD,hw)k] < k3q%+105P2+6Q4M2w(q)L3 + k3q1+55P2Q2M2“’(‘1)L

and
McSC,nED,h[(z)a b] < q%+105P2+8Q4M2w(q)L3 + q1+5sP2Q2M2w(q)L.

We will prove this bound soon, but first we derive Proposition 5.7.1 from it.

Proof of Proposition 5.7.1. By (5.11)

MCSC’nED[¢k] — Z McSC,nGD,h[¢]
heH

which is by Proposition 5.7.4
< Z k3q%+108P2+6Q4M2w(q)L3 + Z k3q1+58P2Q2M2w(q)L
heH heH
< kSq%+115P2+€Q4M2w(q)L3 + k3q1+65P2Q2M2w(q)L

and analogously for M¢<Cn€0[g, 1 d e]. O

5.7.1. Continuation of argument

Definition 5.7.5. For h € H and for a positive integer a, we define

a® = H (a,p™).

hp=1
Definition 5.7.6. We define
if (ng,eN) =1, n1ny =e (mod ¢N)
xn(c, d,e,n1,n2) = and T[y(c,d,e,n1,n3)] = h,
0 otherwise.

S[h] = Z Z Z Z Xh(cv d767n17n2)'

Lo~ L de=L1l 1<c<C(d,e) (ny,nq)€Z?N0
L1#£Ls (dqu):l ning#0

and

Lemma 5.7.7. Let q be a squarefree integer and suppose that (d,q) = 1. Then for everyh € H
and for any € > 0, we have

P
McSC,neD,h[(ﬁk} <N k3qETQS[h} HMthphp
plq

as well as PO
c<Cneldh 1/ 2h,  hp
M [fap] <N ¢° T S[h}HM phe.
plg
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Proof. Recall that

_r
"~ ¢N
By Lemma 5.5.2, we have
2
3 non2 3 94 L°Q
i1 ( , ) k 12
*\egN’ cqgN < kg dz (5-12)
p2?
. ny  ng P=Q
A ( ) N . 1
P\ egN’ cqN apn g dZ (5.13)
We compute
1 ~ ny no
L (R Hy (— C(K;~(c,d
o (C7 76) q Z ¢k(ch7 CqN) ( 77(07 7e>n17n2))

(n1,n2)€2*NO
nin2#0, (ng2,cN)=1
nins=e mod cN
T[y(c,d,e,n1,n2)]=h

1
<« = ( 11 M2hpphp> 3
! pla (n1,n2)€Z?N0
nin2#0, (n2,cN)=1
ning=e mod cN
T[v(c,d,e;n1,m2)]=h

o ny N9
o (ca¥ aqv)
o\ cqgN’ cgN ’

which is by (5.12)

<<N k3 1+£ <HM2hpp > Z 1
plg (n1,n2)€z?n0
n1na#0, (n2,eN)=1
ning=e mod cN
T[y(c,d,e,n1,n2)]=h

P
— gt (HMthph > Z Xn(c,d, e, n1,nz).

plg (n1,n2)€z?n0
nlng;éO
Hence
Me=EnEN gy d, e]

1 1 Oh

= — Z S (N D)
¢. »
aN 1§cgcc '
P

£1.3 2h,, hp

<<quQ<HM P > Z N7 Z Xxn(c, d,e,n1,n2)
plg 1<e<C (n1,n2)€z?n0
ning7#0

which is by the definition of Z

<HM2hpph ) ) > xnlede,ni,ng).

plg 1<e<C (ny,n9)ez?n0
711712#0
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Therefore

<C O.h — <C,neldh .
wes ,nell, [(Zsk} — E bhbb E M= ne [¢k7dae]
l1,8o~L de=/{1/5
Ly #Lo (d,gN)=1

< Z Z |MCSC7HED,h[¢k; d, 6”

él,égNL d€:€1E2
z17$€2 (d,qN):l

< quSPQ < H M2hpphp> Z Z \/%
€

plq l1,8o~L de=l142
317522 (d,qN):l

. Z Z Xh(cv d767n17n2)

1<e<C (nl,nz)EZ2ﬂD
TL1TL2¢0

and since vde > L, this is

P
< qfk?’TQ ( 11 M2hvphp> S[h].
plg

Analogously we get the result for ¢g p. O

5.7.2. Estimate of S[h]

Recall that
S[h] = Z Z Z Z Xn(c, d,e,n1,n2) (5.14)

Ly,lo~L de=L1ly 1<c<C(d,e) (ny,n2)€2?N0
L1#Ly (d,gN)=1 nina#0

and that we factor the product of distinct primes ¢1¢s (with ¢; ~ L) as {105 = de. Hence we
have three types of factorization of completely different nature, which we denote as follows
(i) Type T(L?,1): this is when d = ¢1/5 and e = 1, so that L? < d < 4L?;
(i) Type T(1, L?): this is when d = 1 and e = £1/5, so that L? < e < 4L?;
(iii) Type T(L, L): this is when d and e are both # 1 (so d = ¢; and e = {5 or conversely), so
that L < d#e <2L.
Therefore, we split up S[h] as

S[h] = STE D) 4 257D p] 4 ST R,

where

ST(LQ’l)[h] _ Z Z Z Xh(qflfg,thnz)

li,82~L 1<e<C(81l2,1) (ny,ny)€Z2N0
@1;&(2 nlng;éo
(£142,qN)=1

STEL) ] = Z Z Z Xn(¢, 1,02, 1n1,12)

£1,bo~L 1<e<C(£1,02) (ny,np)€Z2NO
L1#£Lo nina#0
(£1,qN)=1

ST(l,L2)[h] _ Z Z Z Xn(c, 1, 01la,n1,n2).

£1,a~L1<e<C(1,01£2) (ny,n2)€Z2n0
£1#£L2 ni1ne#0
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Lemma 5.7.8. Let ¢°P < L, then
STED m] = 0.

Proof. Recall that

Hence if (d, e) is of type T'(L?,1), 1/2 > L and hence

by the assumption ¢° P < L. Hence the sum over c is empty and thus STL*1) [h] = 0. O

Hence, for ¢°* P < L, we have
S[h] = 28T E)[h] 4+ §T0E) ),
Definition 5.7.9. For T'(L, L), we define

cz{cez‘1gc§¢§qu}
D={deZ|L<d<2L, dprime, (d,¢N) =1}
No={ny € Z|1 < |na] < 4¢%Q)}
N ={n €Z|1<|ni| <4¢*QL}
E={e€Z|L<e<2L, eprime, (e,gN) =1}
and for T(1, L?), we define
C={ceZ|1<c<2¢°PL}
D={1}
No={nz €Z|1<|ny| <4¢*QL}
N ={n €Z|1<|ni| <4¢*QL}
E={ecZ|1<e<AL’ w(e)=0Q(e) =2, (e,qN)=1}.
As we will see later, the order in which we are summing over these sets is crucial. Changing
the order of summation from equation (5.14) to the one as in Lemma 5.7.10 below massively
simplifies the analysis of the resonating matrices in Section 5.8 compared to the analysis done

in Section 6 of [22]. This simplification is the basis for generalizing the analysis of resonating
matrices to squarefree moduli.

Lemma 5.7.10. We have

ST(LL) [ <<ZZ Z Z ZXh(c,d,e,nl,ng),

c€C deD na €N ni €Ny e€E

STALY) (R <<ZZ Z Z ZXh(C,d,&nl,nz),

c€C deD na €N n1EN; e€€
where the sets C, D, Na, N1 and € are defined as in Definition 5.7.9.

and
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Proof. Since by (5.2)

C(d,e) < qEP\/g

C(l1,45) < V2P
C(1,0,05) < 2¢°PL.

we have that for £1,05 ~ L,

Note that for (d,e) of type T(L, L),

N1=qw cd(Q+ N\[) <ch \F)QEL(CQ N>

and since c < C < \/inP, this is

1
< QqEL(\/ﬁqEQ + N) <4¢*QL,

since ¢°@ > 1. Furthermore,
Ny _ N
d

For (d,e) of type T(1,L?),

and since ¢ < C' < 2¢°*PL, this is

1
< 2qEL(q€Q + N) < 44*°QL,
and
Ny = Ny < 4¢*°QL.
Therefore we can rewrite ST(L*)[h] as

ST(I’L2)[h] _ Z Z Z Xn(c, 1, 010a,n1,m9)

£y ,63~L 1<c<C(1,£1£2) (ny,n2)€22n0
L1#£L2 nins#0

< Z Z Z Z Z Xn(c, 1,162, m1,m2)

L<,<2L L<05<2L c€C —N1<n1<N; —N3<ny<Ns

¢1 prime {2 prime n1#0 na#0
Ly #Lo
S E d(e) E E 5 Xh(cv 1,6,7?,1,7?,2)
1<e<4L2 c€C —N1<n1 <N1 —N2<nz<N»
w(e)=0(e)= n17#0 n27#0

where d(e) denotes the number of divisors of e and thus

< 42 Z Z Z Xn(c, 1,e,m1,n9)

c€C —N2<na<N3; —N1<n1<N1 1<e<4L?
n2#0 m#E0  y(e)=0(e)=2



66 5.7. ESTIMATE oF M°S¢m€l[g]

§4ZZ Z Z th(c,d,anhng).

c€C deED na €N ni €N e€€

For ST(E-L)[h] we get

Fem- Y Y Y Y wedonn

l1,bo~L de=Ft102 1<(,<C(d (i) (n17n2)€ZQOD
G2 (dgN)=1

Z Z Z Z Z Xn(c, d,e,ny,ng)

b1, la~L de={1L2 1<C<C —N1<n1<N; —Na<ns<Ny
617552 (d,qN) 1

IN

M
M
M
M

> xnle i, ba,m1,m0)

£2<2L 1<c< N1<n1<N; —N2<n2<N»

Z Z Z Xh(cv d767n17n2)
1<7L1

<Ni —No<na <Ny L<e<2L

MI/\

1<c<C L<d<2L —N

:Z;z; 2%[ Z Zthdenl,nQ)

2 n1ENT e€E

where C' = \/inP. O

5.7.3. A simplified version of Proposition 5.7.4

The proof in the general case is quite technical, as for every prime p|q, the correlation matrix
modulo p may be of a different type, e.g., for one p, 7, may be parabolic while for some other
D, Yp may be a torus. This is carried out in full detail in Section 5.7.4. Here, we will give the
proof of the simple case where all correlation matrices v, are identity matrices. This should
give a flavour of how the proof in the general case works.

Concretely, we will prove Proposition 5.7.4 in the simplified case where for every p | ¢

erne{(} )

As already mentioned in the introduction, even though this is a massive simplification of the
problem, there are many applications where already this case is sufficient. For example for a
non-trivial additive character ¢ of Fy, ¢ prime, the function K (x) = (%) satisfies G, nr = {1}
as shown in [22, Section 11.1].

We introduce the set

(ne,cN) =1, n1n2 =e mod cN and

B={(c,d,ng,ni,e)eCxDxNyx Ny x& Lo
Vp|Q[h]: ’VP(C) d,@,nl,n2) = (0 1)

Hence
ZZZ ZZthdenl,ng ZZZZ Z Z L.
ceC deD na€Na2 n1EN7 e€€ 1€ZL4m) c€C deD n2 €Nz mEN (e,d n27n1,e)65
and thus

STOm <> > > X

c€C dED na N2 ni €N ec&
(c,d,n2,n1,e)EB
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as well as

ZIES 35 30 D SN D!

ceC deD na€N2 n1 €N ee€
(¢,d,n2,n1,e)EB

Suppose that (¢, d, na,ny,e) € B. Hence
¢dN =0 mod g[h]
and since (dN,q) = 1, we get that
¢c=0 mod ¢fh]. (5.15)
First we estimate ST(L)[h]. Since in this case
C={ceZ|1<c<2¢°PL}

we get by equation (5.15) that the ST(LLQ)[h] = 0 if ¢[h] > 2¢° PL. Hence we can assume that
q[h] < 2¢°PL. Thus we can estimate

STEm< S 3 N 3 1

ceC deD nzyeN2 n1 €N ecE
¢=0 mod gq[h] e=niny mod cN
I€]
1
< Y Ly v (5

ceC deD na€N2 ni EN;
¢=0 mod g[h]

E
« ¥ ||D||||N2||N1||(” +1)

ceC
¢=0 mod g[h]

< q4EQ2< > CL—; + > L2)

1<c<2¢*PL 1<c<2¢*PL
¢=0 mod g[h] ¢=0 mod g[h]

q55P6Q2L4+5 q55PQ2L3

<N
q[h] q[h]

55Pa 2L4+£

& PRI
qfh]

Now, we estimate ST(“-L)[h]. Since in this case
Cz{cEZ’lgcgﬁan}

we get by equation (5.15) that the ST(%E)[h] = 0 if g[h] > v/2¢° P. Hence we can assume that
q[h] < v/2¢°P. Thus we can estimate

seome Y Y Y Y X

ceC deD na€Na n1ENY ecé
¢=0 mod g[h] e=nins mod cN
H5||
<
ceC deD na€N2 ni €N,

¢=0 mod g[h]
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E
« ¥ www@u)

ceC
¢=0 mod g[h]

< q4EQ2< > f—; + > L2>

1<e<V/2¢° P 1<c<V2¢° P
c=0 mod g[h] c=0 mod g[h]
q55P5Q2L3 q55PQ2L2
<N
q[h] q[h]
58P€ 2L3
o PR
q[h]
Therefore . o as
S[h] = 25700 ] 4 STOL) ) T LT ﬁl]L
q
Consequently, by Lemma 5.7.7,
MesE, nel, h[¢ d, 6] < k3 s HMthph
plg
PQ q55P5Q2L4+5 b
< k3q677 M2 Pp
L q[h] 11
plg
5 274
< k‘3 sPQq cPEQ°L +5M2w(q) [h]%q%
L g[h] =

which is the bound of Proposition 5.7.4 in this simplified case.

5.7.4. Proof of Propsition 5.7.4

Recall Definition 2.2.7. If T[y] = h and K is (p, M)-good for every prime p, then we have that
for every p | q[h],

,YP(Ca d7ean1an2) S Ap = U A;

€T,

Zgm) = H Zp.

plq[h]

we get, that if T[y] = h and K is (p, M)-good for every prime p, then there is some i € Zy
such that for every p | g[h],

By defining

vp(e,d,e,n1,n2) € A;P.

We introduce the short notation (¢, d, e, n1,n2) € Af;[h] for this. In addition, we introduce the
set

Ben = {(c,d,no,ny,e) €C XD x Ny x N1 XE|(n2,eN)=1and nin, =e mod cN}.

Hence
202 2 D omledemm)< 3y d > > L
c€C deD na €Ny n1 €Ny e€E 1€Z,m) c€C dED n2eN2 n1ENY eel

(e, d,nz,ni,e)EBen
v(e,d,e,n1,m2) €AYy
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Thus we get

Lemma 5.7.11. If K is (p, M)-good for every prime p, then

AR D 3 3D D DS

1€Zgn) c€C dE€D nz N2 n1 €N, e€€
(¢,d,nz,n1,e)EBcN

v(c,d,e,n1 7712)6-'42[11]

—_

and

STLDh] « Z Z Z Z Z 1,

lEIq[h] cEC deED na €N ni ENY ecé
(c,d,n2,m1,e)EBen

’y(c,d,e,nl,nz)eAZ[h]
where C, D, No, N1 and £ are defined as in Definition 5.7.9.

Lemma 5.7.11 indicates, that one difficulties which arises in the general case is, that we have
to deal with “mixed cases”, e.g., for one prime p|q[h] dividing -, may be parabolic while for
some other prime p[q[h], 7, is a torus. This is the reason, why we introduced the sum over Z,y
in Lemma 5.7.11. Also note that the formulas for ST(LLQ)[h] and ST(“-H)[h] in Lemma 5.7.11
look the same. However, they are not, as the sets C, D, N, N1 and £ are not the same for
T(L,L) as for T(1, L?) (see Definition 5.7.9).

5.7.5. Restriction sets

We start with a definition of the restriction value.

Definition 5.7.12. For a subset
R CZ

and some integer m > 1 we define the restriction value of R modulo m
rm(R) = [
plm

where for every prime p | m, w, € Zx( is the biggest non-negative integer such that R is
contained in a congruence class modulo p“r, i.e., such that there exists y € Z with

{reR|z=y modp**} =R.

Let us consider some properties of the restriction value. First note that if m and n are two
coprime moduli, then

Tm(R)Tn(R) = rmn(R).

Moreover, for a modulus m, by the Chinese remainder theorem, there exists an integer y € Z
such that for every x € R,
x=y mod r,(R).

It also follows directly from the definition, that if R, Ro C Z are two subsets of the integers,
then for the intersection
R =TRi1NR2

holds that
Tm(R) > max{r,(R1), rm(R2)}.
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Consequently, for two coprime moduli m; and ms, we have then

T'myms (R) =Tm, (R)T’m2 (R) > Tm,y (Rl)rﬂn (RQ)
If S is an interval in Z and R C S, the size of R can be bounded by

517 s
Tm(R) | = rm(R)
More generally, if S is some arbitrary subset of Z and R C S, we can bound the size of R by

ISl ] o _lISll
Tm(R) | = rm(R)
where ||S]| = maxS — minS + 1. From this it is clear that if we want good bounds on the size
of R, it is useful if the restriction value r,,(R) is big. However, this is not the only issue. If

the interval S is short (compared to r,,(R), then the error in (5.16) may be huge compared to

p “?k), which is often not desirable. So, we would like to have better estimates in this case.

Definition 5.7.13. Let p be a prime and i, € Z,. We call sets (R ; ,Rg i Ry Ryl Rpi,)
with

R| <

+1. (5.16)

IR| < +1,

c
Ry, CC

Ry, CR;, xDCCxD
R CRz}iPXNQCCX'DXNQ

p:tp

Ryh CRy: X N1 CCxDxNyx N

Psip
Rpi, CRy XxECCXxD XNy x Ny x &
locally admissible at p, if

vp(c,d,e,n1,m2) € A;P implies (¢,d,n1,ng,e) € R;’ip.

Additionally, we define

1eD|(cdeR;, }cD

R"2

-{
{n2 €N, ‘ c,d,ng) € R;;fip} C Ny
’RZ} ¢, d,ms] {

ni 6./\/1 ‘ c, d,’I’LQ,Tll) S Rz’lzp} CNl

RS, le,dyna,ni) =qe €& | (¢c,d,na,n1,e) ERE, ¢+ CE.
D Dytp

Pt

Furthermore, for i € Z,), we call (R}, i ,Rg i ,RZ"’I ,Rzl Ry, Zp)p‘q ] admissible, if for every

p dividing g[h], (Ry; , R, i R, ,R;“l ,R;ylp) is locally admissible at p.
Definition 5.7.14. Let i € Z,,) and p | g[h]. Let (R, ,RgZ RyG Ryh, Ry,) be sets
locally admissible at p. We say that they are locally good at p, if the correspondlng restriction

values modulo p depend at most on ¢, i.e., if

Tovip = "0(Rypi,) T el = rp(Ry 4, [c]) Tl = 1p(Ry5 e, d))
oyl = 1p (R lesdimal) vy, el = rp(Ry 5, e, dy g, mal).
where 77 ; rgﬂ-p [c], 3, le], rp% [e] and 1 ; [] do not depend on d, n2, ny or e, and if one of

the followmg five properties holds:
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(i) we have that
Ry, ={c€C|c=0 mod p}
and therefore
Tpi, = P
as well as
r;ip > (eN,p™);
(ii) we have that

no ni € 2 o0 na ni na e o0
Tty Tpa 2 PO(CNp™) % vl > p Tty oy 2 P(EN,P%)
na ny e (o] ny
Tpiy = 1 TpinTpsip = p(eN,p>) Tpip = 1
e e’} c .
Tp71'p Z (Cva ) rp,ip Z p7

(iii) we have that
Ry5 e dl = {ns € No|na =0 mod p}

and thus
Tpiy = D>
as well as

7";71'? > (eN,p™);

(iv) we have that
Rg,lip [e,d,n2] ={n1 €N1|n1 =0 mod p}

and therefore
ny

’rp,ip > D,

as well as
vy > (N, p™);
(v) we have that
p
T;L,lipr;,ip > p(CNv poo) pz,lip 2 (pv CN) T;,ip 2 W(CNv poo)
and
(c;d,n2,n1,e) €RY ;= (n1 + dny)? = 4de  mod p.

Depending on which of the properties (i) to (v) holds, we say that p is of type R1 to R5.
Furthermore, for i € Zy), we call (R RE. R RM Rf;,ip)p\q[h] good, if for every p

p,i,;’ pﬂ’p’ Pyip” Pyip?
dividing ¢[h], (R¢, ,R%, ;R ,R™ ,R3.;,) is locally good at p.

Pyip? TVPyip? T VD,ip Dyip

For some good sets (R;7ip,Rg7iP, RyG Ryl Ry, Jplam) We define
g;r1}= [ » gh;rR2= [ »
plq[h] pla[h]
p is of type R1 p is of type R2
g;r3l= [ gh;ra = [ »
plq[h] plq[h]
p is of type R3 p is of type R4
q[h; R5] = I »
p|q[h]

p is of type R5
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Note that
q[h] = q[h; R1]q[h; R2]q[h; R3]q[h; R4]q[h; R5].

To simplify notation, we write

Rimi= (] Rps,
plg[h]

where * = ¢, d,n; or ny and

Rimi= [) Res, N Ben- (5.17)
plqlh]

Definition 5.7.15. In the case T(L, L), we define the threshold values
= V2¢°P ty = 44*Q ty = 4V20*QL ts = 144¢*°Q°L’

and in the case T(1, L?), define

tl = QqEPL t3 — 4q2EQL t4 — 4q28QL t5 _ 64q4€Q2L2_
Lemma 5.7.16. Let i € Iy and let (Rj; 77321 ,Rzrip R;“zp R Vplatn] be good sets. We
have
(i) if g[b; R1] > t1, then Rey, , =0
(i) if qlh; R3] > t3, then Ry, ; =0;
(iii) if g[h; R4] > ta, then Rep, ;= 0;
(iv) if q[h; R5] > then RZ[h],i = 0.

Proof. Consider first the case T'(L, L).
(i) t1 = V2¢°P. Let t; < q[h; R1]. Then

Rip C [ Rei, ={ceClc=0 mod g[h;R1]} = 0.
plg[h; R1]
Hence Ry, ; C Ry X D % No x Ny x E=0.
(i) t3 = 4¢*Q. Let t3 < glh; R3]. Then, for all (c,d) € Rg[h])i,

Rz led c () Ry [e,dl ={ns € Na|na =0 mod g[h; R3]} = 0.

plq[h; R3]

Consequently R;fh] ;=0and RY,, ; C R”Z’h] ;XN xE=0.

(iii) t4 = 4¢*°QL. Let t4 < qh; R4]. Then for all (c,d,n2) € R7G, ;.

R”[h] [e,d,na] C ﬂ Ry led,no] ={n1 € Ni[n1 =0 mod glh; R4]} = 0.
pla[h; R3]

Consequently R4, ; = = and R C Ry X € = 0.

(iv) t5 = 144¢**Q?L?. First note that

Ing + dna| < |ni| 4 d|ne| < 4¢*°QL + 2L4¢*Q = 12¢**QL
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and hence
(nq + dny)? < 144¢*Q*L? = t;.

Furthermore
4de < 16L° < 144¢* Q?L? = ts.

Now suppose that g[h; R5] > t5. Then the condition (n; + dng)? = 4de mod qlh; R5)
implies the equation
(n1 + dny)? = 4de

in Z. However, since 4de is not a square, this equation has no solution and therefore
RE. .. =1
q[h],i

Now consider the case T(1, L?).
(i) t1 =2¢°PL. Let t; < g[h; R1]. Then

Rom C© [ Roi, ={c€Clc=0 mod g[h; R1]} = 0.
plg[h; R1]
Hence R¢ [h]zCRq[h XD x Ny x Ny xE=0.
(ii) t3 = 4¢**QL. Let t3 < q[h; R3]. Then, for all (¢,d) € Rg[h],iv

REledc () RE [ed ={n2 €Na|na=0 mod qlh; R3]} = 0.
plg[h; R3]
Consequently Rth] ,=0and Ry C anh] XN X E=0.

(iii) t4 = 4¢**QL. Let t4 < qh; R4]. Then for all (¢,d,nq) € Rgfh i

Ry ile; dyna] © ﬂ Ry ledino] ={n1 € Ni[n1 =0 mod glh; R4]} = 0.
plg[h; R3]
Consequently R4, ; = ) and R C Ry X € = 0.
(iv) t5 = 64¢**Q*L2. First note that
Ing + dng| < |ni| +d|na| < 4¢**QL + 4¢** QL = 8¢** QL
and hence
(n1+ dng)2 < 64¢*Q%L? = ts.
Furthermore
4de < 16L% < 64¢**Q*L? = t5.

Now suppose that g[h; R5] > t5. Then the condition (ny + dn2)?> = 4de mod q[h; R5)
implies the equation
(ny + dny)? = 4de

in Z. However, since 4de is not a square, this equation has no solution and therefore
€ J—
Rimy.i =0
O

Theorem 5.7.17. Leti € Zyn). Then there exist good sets (R, ; ,Rg i Ry Rl Ry, Jplathl -

We will prove this theorem in Section 5.8.
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Notation. In what follows, we will denote by 7.5 the restriction value
TeN = Tm(RZ[h],i)

where m = W and Ry, ; is defined by equation (5.17). Hence

S cN
TeN > ————.
7 (eN,g[h]>®)
Furthermore, we define
o) = Talw) (Rigmy o6 &2, ) oty = Tl (R le: . m2))
2 _ 2 d _ d
T;L[h] = T4[h (Rs[h],i[c7 dJ) Tqn] = Tq[h) (Rq[h],i[c])

Tqlb] = Tq[h] (RZ[h],i)-

Note that by the properties of the restriction value, we have that

= rib > 11 ol > H]rﬁ"‘[c]

plq[h] plq[h] plglh
> H > H r
plq[h] plq[h]

Lemma 5.7.18. Suppose that K is (¢, M)-good. Then
3

L
ST(L,L) [h] < qGEPEQQm + q6€PQ2L2.

Proof. By Lemma 5.7.11 we get that

ST« 30D D D D) >, L

ZGIq[h] cEC deD na N> ni ENY ec&
(¢,d,n2,m1,e)EBen

’Y(C7d7€>nl»n2)€Ai[h]

By Theorem 5.7.17, there exist good sets (R, ; 7722,% Rgi ,RZ i Ry, )p|q[h], whence

Seome Y YY Y Y Y

iGIq[h] ceC deDnaeNa nieENy ecf
(c,dn2,n1,e)€ERY, ;

<<ZZZZZ > 1

i€Z4m) cERGp) ; dERY,, [l na€RIZ el ni€RYL | [e.dina] €€RGy, ;[o,dina,ma]

Yy oy x 0y (won

i€ZL4n) C€ERG) dERY [c] n2€RZ [e.d] nmi€RG [e.d,no]

<y >y ¥y (o))

(€T, cE€RGp, R[] na€R2 [ed] "qn]

SRR C ([

i€Zgm) c€RGyy, dERE, [c] q[h] q[h]
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By multiplying out, we get
(W ) (W0 ) (B ) WAGIILIEL | LGy e

o] Tqlh] "o TeN ath] o) g "N Tqin)Tgtal g gn <N
N M E N &
Hmzll 7\l|1 1l| €] JFIITL}IIJr e|| I ey
Tam)  Tqm"gm)"eN  Tgm) Tgm)TeN
Since
IN2HINA INRIHIEN NI INAL IENT T < ¢** QL
we get
£ £ £
<N2||+1><IIN1II+1)< €l +1> < |LJ2\/2|LUN16” €] L JLWI” €]l QL.
"qlh] Tq[ih] Tl "eN alh) o) gm) "N Tq(h) g[n)TeN
Note that because of the threshold values, either
qlh; R1] < t; q[h; R3] < t3
qlh; R4] <ty q[h; R5] < t5

or the sum is empty. If the sum is empty, there is nothing to do, so we can assume these bounds.
We therefore get

qlh; R3] < t3 = 4¢°°Q < || N2

and hence obtain

G
k3 !

Let g[h; R25] = ¢[h; R2]q[h; R3]q[h; R4]q[h; R5]. Because

S |

plqlh]
> ’I’CN( H TZ%ZWE)( H TZ%"ZU’E)( H 7’;27";“1";)
plg[h; R1] plglh; R2] plqlh; R3]
(I ) (I )
plq[h; R4] plq[h; R5)]
cN
> ———(cN, ¢[h; R1]*®)q[h; R2]*(cN, qlh; R2]>°)q[h; R3
(o iy Nl B )alhs B2 e s B2 )l £

- (eN, q[h; R3]>)q[h; R4|(cN, q[h; R4]> )q[h; R5](cN, q[h; R5]™)
qlh; R2J*q[h; R3]q[h; R4]q[h; R5]cN

q[h; R2]q[h; R3]q[h; R4]q[h; R5]cN

q[h; R2]q[h; R4]q[h; R5]cN

ni

>
e
Tglh]"qh)TeN =

we get
IV IIMLTEN N2l IIVAITTE _ N[l IME

T i "l q[h]rcN = g[h; R2)q[h; R3]q[h; R4]q[h; R5]cN ~ g[h; R25]cN
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IVilEN [INA[HIE
Tat o Teny  alh; R2]q[h; R4]q[h; R5]cN
[N ML HIE] _ Ve[l IMALTIE N

~ qlh; R2]q[h; R3]q[h; R4]q[h; R5]cN — g[h; R25]cN

Hence
N N £ ATNANE:
(II 2||+ )(I 1| 1)( CH | +1><<H2””1||||H+q45Q2L
Q[h] [h] 7nq[h] TeN q[h; R25]CN
4e 272
Q7L 4e A2
oo L
<N q[h;R25}c+q Q
and thus

T(L,L) q*Q*L? de )2
STEPh < Y Y Y (q[hm”QL)

iGIq[ h] CGRC[h] dERd aln] [e]

48Q2L3 4e 2712
<X 3 (fwmg e er)

i€, [ ]CERr[h]
4e M2 713
qQ°L 1 5¢ p2 72
i - PQ“L
<D ummm 2 ot 2 47PQ
i€Tq[n] 1<c<V2¢° P 1€ g1n]

¢=0 mod g[h;R1]

4e M2 713 E 5

¢*Q°L P 5¢ P2 T2

<<Z qlh; R25) ¢ hR1+ZqPQL
1€L,( 1€ZL4n]

< qGEP£Q2 4 q65PQ2L2

[h]

Lemma 5.7.19. Suppose that K is (q, M)-good. Then

ST(l,Lz)[h] 95P1+5Q3 L + q45PQL2

Valh]
Proof. By Lemma 5.7.11 we get that

GRS S5 3 3 D YD S

1€Zgn) c€C dE€D nz €Nz n1 €N e
(c,d,n2,n1,e)EBeN
"/(C;d;&nl:le)eAZ[h]

—_

By Theorem 5.7.17, there exist good sets (R, ; ,Rg i Ry Ryl Ry i Jplainls

ST < 3033 > > >, 1

iGIq[h] ceC deD naeNsy n1 €Ny

whence

eef
(e,d;n2,m1,€) €R Gy

<<ZZZZZ >, !

1€Zgm) CER Yy deRq[h] [c] anR Lledna eER” [h] le,dina] e€RE ;lesdima,na)
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)SED VD VENEDS (1)

. - r TeN
1€14[m) CER ¢y dE’Rd[h] [c] n2eR” 2]1][0 d) nle’R Wy le,dma] alh]

SDID D DD (”Nﬂ 1>(e||f:| )

r TeN
(€Tom) €RGpy dERY [c] n2€RZ [c.d] "q[h] qlh]" ¢

£
<Y ¥ <|N2||+1><IN1II+1>< €] +1>.
i€ Ty c€REyy N alb] "q[n] Tqn]eN

By multiplying out, we get
<||Nz| +1)<||j7\£1| +1>( €] +1) _ INa VA E ||N2|| Vil IV ]

T qlh] Tqh] "o TeN Tq[thrq[lhﬂ”Z[hJTcN g glh] q[ZhJTS[hWN
N- M NE N £
Jr\|n22||Jr 7\l|1 1l| €l Jr||n11||Jr e|| I Ll
Tam)  Tqm"gm)"eN  Tgm]  TgmTeN

Note that because of the threshold values, either

qlb; R1] <ty qlh; R3] <'t3
qlh; R4] < t4 q[h; R5] < t5
or the sum is empty. If the sum is empty, there is nothing to do, so we can assume these bounds.

By defining

q[h; R5]

q[h; R5'] = (q[h; R5], cN) albs 5] = e

we get
q[h; R5"]ecN < /q[h; R5]cN < \/t52¢° PLN = 16¢** PQNL? = 4¢** PQN ||€||
Vq[h; R5')q[h; R4] < \/eNty < \/2¢° PLNt, = \/8¢3 PQNL? < 4¢*QLVPN
< VPN [M]|
qlh; R3] < t3 = 4¢°QL < | \a

and hence obtain

qlh; R5"]cN qlh; R5']q[h; RA]
NGl
qlh; R3] —

By this and because
gl TeN = qlh R2)?q[h; R3]q[h; R4]q[h; R5]cN

Tyl olh] g
> \/q[h; R2]q[h; R3]q[h; R4]q[h; R5]cN
> qlh; R2]q[h; R3]q[h; R]q[h; R5']

> \/q[h; R2]g[h; R3]q[h; R4]q[h; R5']

g glh]
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ri remren > qlh; R2q[h; R3)gh; R5"]eN
> \/q[h; R2]q[h; R3]q[h; R5"]cN
rady = alb; R3] > /g[h; R3]
m7en > q[h; R2)g[h; R4]q[h; R5]cN
> /q[h; R2]q[h; R4]q[h; R5]cN
Ty = alh; Rdlgh; R’ > \/q[h; RiJq[h; R5']

Tam)Ten = qlh; R5")eN > +/q[h; R5"]eN

ni
Tol)"q

we get
N2l ||N1H IISH [N IV IE N2l INALIE
Ty gl Mo TeN \/qh R2]q[h; R3]q[h; R4]q[h; R5]cN  \/q[h; R25]cN
[N ||N1H < [ N2 | [N
e Taly  V/a[h; R2]q[h; R3]q[h; R4Jq[h; R']
V/alh; R2]q[h; R3]q[h; R4Jq[h; R5]cN
_ 4q3€PQN”N2” [Nl [I€]]
q[h; R25]cN
[Nzl [I€]] < [Nzl [|€]]
e TamTeN — /a[h; R2]qh; R3]q[h; RSN
< VBN [N [INTIHIE \/I?HNzll [N
V/a[h; R2]q[h; R3]q[h; R4]q[h; R5]cN g[h; R25]cN
[V < INLILIEN
TalTam"eN — /q[h; R2]q[h; R4Jq[h; R5]cN
N2 N IE _ N[l IMAE]
~ Valh; R2]glh; R3]q(h; Rd]g[h; R5]eN  \/q[h; R25]cN
N
B < e
q[h}
N
q[h}
€1l < IEN
rg[h]rcN cN
Hence
& & &
(||N2||+1>(N1” )< PH || _|_1> (2—|—4q36PQN+\/7)”N2H ||N1H || H+||N H+||NH+|| ||_|_1
T qlh] q[h] Tqn)"eN q[h; R25]cN
[N [INTIE H5||
<N @FPQITE T [Ny + |V + —
N ¢ PQ oI K25 [Nz + |V ]
L4 L?
< qFPQ P —— + — +¢*QL

q[h; R25]c ¢
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and thus

2 L L?
ST(l,L ) h] < 76P 3 = 4 2e L
b < > > [d“PQ T Q

iGIq[h] CGRS[}]]

L* 1
« T (77 1) T pveer 3
€Zq[n] alb; 225} CER G ny R gy

L* 1.
< “p 3+L2> ~+¢*QPL?
Z (q ? q[h; R25] Z P Q

1€ZL4n] 1<c<2¢*PL
c=0 mod g[h;R1]

L4 qzsPeLE
< 76P 3 + L2) + 3e PL2
2 ((q © q[h; R25] gl R1] 1 N

1€Z4[n]

LAte
< q96P1+8Q3 + q3sQPL2
iE%:[h] ( Vv q[h]

[Ate
< q9€P1+5Q3 + q4sQPL2.
q[h]

Proposition 5.7.20. Suppose that K is (q, M)-good. Then

L4+5
S[h] < q95P1+5Q3 =+ q45PQL2.
q[h]
Proof. Recall that
S[h) = 28TEL) [h] 4+ STOL)h).
By Lemma 5.7.18 and Lemma 5.7.19, we get that
L3 . i L4+5
S[h] < q6€P5Q27 + q65PQ2L2 + q9€P1+EQd + q4€PQL2
q[h] q[h]

d+e

L
< q96P1+5Q3 + q4sPQL2

Vab]

Proof of Proposition 5.7.4. By Lemma 5.7.7,
MC<C neld, h[¢k;d 6] <N k3 5 HMthp
plq
which is by Proposition 5.7.20
LA

P
< kquLQ< 9€P1+€Q3 q[h] + q4sPQL2> (HMthphp)
plg
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L3
< <k3q105P2+6Q4 q[h] + k3q5€P2Q2L> <H M2hpphp>
plq

< k3q%+105P2+sQ4M2w(q)L3 + k3q1+5sp2Q2M2w(q)L

and analogously for ¢ . O

5.8. Analysis of resonating matrices

The aim of this section is to prove Theorem 5.7.17, i.e., we will show that for i € Z,;, there

exist good sets (’R;’JP, ngip , R;ﬁp, RZ}iP, R;’ip)p‘q[h] as defined in Definition 5.7.14. Recall that
n ningz—e
7(Ca d,e,’l’Ll,’l’Lg) = <Cd]1V dc?]I\; )
and that R
Yp(e,d,e,ny,ng) = "1 N S mod p
pAm T D cdNs, dns
where

Lemma 5.8.1. Let N € Z>1, p be a prime, and (d,p) = 1. Let x = [z1: 2],y = [y1: y2] €
PY(F,), = #y and let y(c,d,e,n1,n2) € N*Y(F,) \ T%Y(F,). Then
CQdN2$x1y1 + cnodNzoyr — nicNT1y2 — niNespTays = —espTays  mod (peN, p™)

c2dN2$x1y1 + cnadNz1y2 — nicNTay1 — ninespZays = —espTayz  mod (peN,p™).

Proof. Let x = [21 : @3],y = [y1 : y2] € P'(F,,). Then
RS (0 0 Y1
o= (@)= ()

ning — e
niry + Tspxg =ay; modp
c

cdNs 21 + dnoxs = oy mod p,

for some a € F;. This implies

and hence

enyNzy + ninsxs — exs = acNy; mod (peN, p™)
dN?z1 4+ cdNnsxy = acNys; mod (pcN, p™).

Since y € P}(F,), at least one of y; or ys is invertible modulo p. If y; is invertible modulo p,
then we get
eni N21g1 + ninespzali — esprayi = acN  mod (peN, p™)

and consequently

c2dN2$x1 + cdNngxe = acNys = cni Nz1Giyz + n1naspTaliys — espraliye  mod (peN, p™°)
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This can be rewritten as
chNzgxlyl + cnodNzoyr — n1cNT1ys — niNespTays = —espTays  mod (peN, p™).
If 41 is not invertible modulo p, then yo has to be invertible modulo p. Hence
dN?5,2175 + cdNnazots = acN  mod (peN, p™)
and we get
cni Nz + nines,Ts — espTa = acNy; = chNzgxlylyE + cdNnozoy15z  mod (peN,p™).
This can be written again as
chN2$x1y1 + cnodNzoyr — nicNT1ys — NiNeSpTays = —espTays  mod (peN, p™).
Therefore, we have for every y € P!(F,,) the condition
c2dN2§x1y1 + cnedNzoyr — n1cNT1ys — niNeSpTays = —esptays  mod (peN,p™)  (5.18)

which completes the proof of the first equation. The second equation is obtained by interchang-
ing x and y. O

Lemma 5.8.2. Let N € Z>1, p be a prime, and (d,p) = 1. Let z,y € P1(F,), z # y and let
v(e,d,e,n1,m2) € T"Y(F,). Then

—espra  mod (peN, p™)

chNQQx% + cnodNzx1x9 — nN1icNx122 — nlngspmg
cszQny + cnadNy1ys — nicNy1ys — nlngspyg = fespyg mod (peN, p™).

Proof. The proof is the same as the one of Lemma 5.8.1, except that in the first equation, y is
replaced by z and in the second equation, «x is replaced by y. O

Proposition 5.8.3. Let N € Z>1, let p be a prime with i, = 1. Then there exist locally good
(at p) sets (sz ,Rgl ,R;”Zp R;le ,’R;l-p).
Proof. Consider (c,d, n2,n1, ) such that v,(c,d, e,n1,ng) € .,4]19. Hence
cdN3s, =0 mod p.
Since (dNs,,p) = 1, we get that
c=0 mod p.

Also
e =niny mod cN

and hence by defining
={c€eC|c=0 modp}
[ ] D
Ry [ d] =
Ryl le;dyna) =
Ry, le.d, ng,nl] = {e €&le=ning mod (cN,p>)}

we can check that (¢, d,na,n1,e) € RS, , that the corresponding restriction values satisfy

Pip’
Tp.ip = P(EN, %) Ppi, = (eN,p™)
and that Ry ; is of the desired form so that (R} ,Rg iy Ry Ryl Ry, ) are locally good

sets of type R1 (see Definition 5.7.14). O
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Proposition 5.8.4. Let N € Z>1, let p be a prime with i, = 2. Then there exist locally good
(at p) sets (R, ,RL. \R™ R RS, ).

Dyip? "VDsip? TVPip? TP YD ip

Proof. Consider (¢, d,n2,n1,e) such that v,(c,d,e,n1,n2) € .AZQ). Hence
ny =0 mod p.

Also

e =niny mod cN

and hence by defining

RS, =C
d —
Re, =D

Ry, le,d] =
Ry le,d,mo] = {n1 €N |n1 =0 mod p}
R: ., e, d,ng,ny| =

P,tp

{e€&|e=mniny mod (c¢N,p™)}

we see that (¢, d,na,n1,e) € RE iy and by checking the conditions of Definition 5.7.14 we obtain
that (R¢, ,R%, ,R"™ | R"

piips Ropins Ry s Rpli, ,R;»Z—p) are locally good sets of type R4. O

Proposition 5.8.5. Let N € Z>1, let p be a prime with i, = 3. Then there exist locally good
(at p) sets (RS, ,RL. /R R RS

Dyip? " VDyip? TVpipd T,y p77’p)

Proof. Consider (c, d, n2,n1,e) such that v,(c,d, e, n1,n2) € .Af;. Hence
dns =0 mod p.

Since (d,p) = 1, we get
ny =0 mod p.

Also

e =niny mod cN

and thus by defining

Re. =C
d _
Ripiyld =D

Ry5 le.d] ={n2 € Na|na =0 mod p}
Ry lesd,na] = Ny
Ry le,d,na,na] ={e € &e=niny mod (cN,p>)}

we can check that (¢,d,ng,n1,e) € RS, and that (R, ,R%, ‘RI2 R RS, ,) are locally

Pyip Piip? YDy Vpiipt TVpiyo
good sets of type R3. O

Proposition 5.8.6. Let N € Z>1, let p be a prime with i, = 4. Then there exist locally good
(at p) sets (R, ,RL, \R™ /RM RS, ).

Pyip? VPyip? TPy TPy TP ip
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Proof. Consider (¢, d, na,nq,e) such that v,(c,d, e,n1,ng) € Afﬂ i.e., v is parabolic, so 7, has a
single fixed point in P*(F,). Hence 7, € M(F,) is a matrix with a unique eigenvalue. Therefore,
the characteristic equation

A — tr(y,)A + det(y,) =0 mod p,
has exactly one solution. Hence, the discriminant has to be zero, i.e.,

tr(y,)? —4det(y,) =0 mod p.

This can be rewritten as
(n1 + dn2)2 =4de mod p.

We distinguish two cases: If (p,¢N) = 1, we have (pcN,p>) = p and hence (since (d,q) = 1)

e = 4d(ny + dnz)?> mod (peN, p™).

By defining
R; ip =C
Ry, =D

Rpiyle:dl =
'R,nl- [C d ng] Nl
Ry e d,na,ma] = {e€ &|e=4d(ny + dns)> mod (pcN,p™)}

we can check that (¢, d,na,n1,€) € R;ip and that the corresponding restriction values satisfy

p
by ZAENT) B, 2 L= (eN) g, 2= (N )

and that for all (¢,d, na,n1,€) € Ry
(n1 + dny)? = 4de  mod p.

Thus we have verified that in this case (Rj; fR Rgip R;“Zp R} .,) are locally good sets of
type Rb5.
If (p,e¢N) # 1, we have
(nq + dny)? = 4dniny mod p

since

e =niny mod cN
and hence

n1 + 2dning + d2n2 = 4dnine, mod p.
But this means
(n1 — dng)? = n? — 2dniny + d’>n2 =0 mod p.

Therefore

ny =dngy mod p.

Together with
e=mniny mod (¢N,p™)
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and by defining

R;% =C
d _
Rpiylcl =D

Ry, le,d] =
Ry le,d,mo] = { n1 € N1 |ny =dny mod p}
| =

Ry le,d,na,m] ={e€&e=niny mod (cN,p>)}

we can check that (¢, d, ng,nq,e) € R;ip and that the corresponding restriction values satisfy

o Ty = PEN, D) pph >p=(p,cN) 1y, > (cN,p>™) = (eN, p™)

(p,cN)

and that for all (¢, d,na,n1,€) € RE

p’zp
(nq + dny)? = 4de  mod p.

Thus we see that also in this case (Rj,; . R i Ry Ry, Ry, ) are locally good sets of type

R5. O

Proposition 5.8.7. Let N € Z>1, let p be a prime, let x,y € PY(F,), x # y and let i, =
(5,2,y). Then there exist locally good (at p) sets (RS, ,R%, /R R"l RE. ).

Dyip? VPt TVDip? TVDsip? TYDyip

Proof. Consider (c,d,na,nq,e) such that v,(c,d, e, n1,ng) € AI(F’“T’y). By Lemma 5.8.2, we have
that

CQdNQQx% 4+ cnedNzi129 — nicNx1z9 — nlngspxg = fespxg mod (pcN, p™)
chN2$y% + cnadNy1ys — nicNy ys — nlngspyg = —espyg mod (pcN,p™).

We consider now different cases.
(i) If p | x2 and p 1 y2, then

dN?527 + (e — ning)spzs =0 mod (peN, p™)
and since ¢N | (e — ninz) we get (independent of whether p|cN or not)
ch@x% =0 mod p.

Hence
c=0 mod p.

Furthermore
e =mnmng + nicNSy1 2 — cnad NS,y 52 — cszzgzy%yff mod (peN, p™).
By defining
Ry, ={c€Clc=0 mod p}

Re, (=D

plp

R [e,d] = N
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Ry le.dino] = Ny

R;Z—p [e,d,ng,nq] {e e& | e =ning + nicNspy1Y2 — cnadNspy1yz — ¢ dN2$p y1 mod (ch,poo)}

we can check that (¢,d,na,n1,¢€) € R;)ip and that the corresponding restriction values

satisfy
Tpiy = P Pp,i, = (N, p>)
hence (R}, i ,Rg iy RZ";F Rzllp R;.i ) are locally good sets of type R1.

(ii) If p | y2 and p t 2, then we get analogously to case (i) locally good sets of type RI.
(iii) If ptz2 and pt yo2, we have

e =ning + cNSp21Z2(n1 — nod — cdNS,z1T3) mod (peN, p™)

e =nmng + cNSyy192(n1 — nad — cdN3S,y192) mod (peN, p™).

Hence

(x1T3 — Y1Y2)n1 = (d?’lg + cdN5, (2173 + ylyig)) (r17T2 —y172) mod p
and thus

ny = dng + cdN5,(21%2 + 1172) mod p.
By defining
Ry, =C
Rd [ =D
Ry [

d =
Rm [c d,no] = { n1 € N1 |ni = dng + cdNS, (2172 + y152) mod p}
R e, dyn2,nyi] =

Brin {e € &|e=mnins + cNs,z1T3(n1 — nad — cdN5,z1%z) mod (peN,p™)}

we again can check all inequalities to see that (RS, ,R%, ,R"> /R

Dyip? " VPsip? TUDip? TPy 7R;Z,ip) are IOCaHy
gOOd sets of type R2 with (Cv da nz,ni, 6) S RZ» ip’

O

Proposition 5.8.8. Let N € Zx1, let p be a prime, let x,y € P(F,), z # y and let i, =
(6,2,y). Then there exist locally good (at p) sets (Ry; JRE, i Ry R Rpi)-

Proof. Consider (c,d,na,nq,e) such that v,(c,d, e, n1,ng) € A;ﬁ’m’y). By Lemma 5.8.1, we have
that

chN2$m1y1 + cnodNzoys — n1cNT1ys — niNespTays = —espTays  mod (peN,p™)  (5.19)
chN2$x1y1 + cnodNz1y2 — nicNToy1 — niNespTays = —espTays  mod (peN,p™). (5.20)

We consider now different cases.
(i) Let p | 1 and p | y2. Then (5.19) becomes

ny =0 mod p

and (5.20) becomes
ny =0 mod p.
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By defining
Ry, =C
d _
Ripi,ld =D
Ry% lesd] ={n2 € Na|na =0 mod p}

d|
Ry le,ding] ={n1 € Ni[ny =0 mod p}
Ry le,dino,mi] ={e €& |e=niny mod (cN,p™)}
we can check that (R iy ,’R;‘f i ,Rzz;p RZ}% ,R;ip) are locally good sets of type R2 with
(Cv dv n2,ni, 6) € R;e;, ip*
(ii) Let p | z2 and p | y1. Then (5.19) becomes
ny =0 modp
and (5.20) becomes
ny =0 mod p.
Hence we can define the same sets as in case (i) and analogously conclude that (R

Pip’
Rg iy Rg"’z ,R;“Z s Ry;,) are locally good sets of type R2 with (c,d,na,n1,e) € R}, .

(iii) Let p | 1 and p 1 y1y2. Then (5.19) becomes

enodNzoys — ninespTays = —espTays  mod (peN,p™)

and (5.20) becomes

—n1cNToy1 — NiNespTays = —espTays  mod (peN,p™).
Hence
e =ning + nicNSyy1yz  mod (peN, p™),
ny = —dns mod p.
By defining
Ry, =C
Ry, =D
Rpi,le,

d =
Ry le,d,na] = {nl € Ni|ny =—dny mod p}
=

€
Ry, le dina,na

{e € &|e=nin2 +n1cNSy1yz  mod (peN,p™)}

we can check that (R} ; R, i Rya Ryl Ry, ) are locally good sets of type R2 with
(c,d;n2,n1,€) €RG; .

(iv) Let p | z2 and pt y1y2. Then (5.19) becomes
cdNs,z1y1 —nix1y2 =0 mod p

and (5.20) becomes
cdN3,z1Yy1 + nadriys =0 mod p.
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Hence
e =niny mod (cN,p™)
n1 = cdNSpy1y2 mod p
ng = —cN5,y1Y2 mod p.
By defining
Ry, =C
R, =D

Ry, le,d] =
Ry lesdino] = {n1 € N1 [n1 = cdNsy1 5 mod p}
| =

Ry le,d,no,m] ={e€&e=niny mod (cN,p>)}

={n2 E Ny | ny = —cNs,y172 mod p}

we can check that (R, ,’Rgz Ry Ry
(¢,d,ng,ny,e) € Ry

(v) Let ptaixe and p{yi1y2. Then (5.19) becomes

R;ip) are locally good sets of type R2 with

e =mning + nicNST1T3 — C2dN2%2$11'72y1y72 — cnadN35y172  mod (peN, p™)
and (5.20) becomes

e =ning + nicNSpy1y2 — CQdNQQQxlsTle@ — cnedN35,z1T2  mod (peN, p™).
Hence

e =ning + n1cNST1T2 — CQdN2$2x1@y1% — cnadN3S 1Yz mod (peN, p™)

ny = —dns  mod p.
By defining
Rfmp =C
Rd ,[c]=D
R”Q- [

d) =
Rm' [C d,na] = {nl € N1 |ny = —dny mod p}
R;, [e,d,ng,n] = {e eé | e =ning +n1cN5x1T2 — ¢ 2dN? sp T1T2y1Y2 — cnadN5,y1 72 mod (peN, p )}

we can check that (R ; ,Rg i Ry Ryl Ry, ) are locally good sets of type R2 with
(c;d,na,ma,e) €RG ;.
This completes the proof. O

Proof of Theorem 5.7.17. This is a direct consequence of Propositions 5.8.3, 5.8.4, 5.8.5, 5.8.6,
5.8.7 and 5.8.8. O






6. Sums over Primes to Squarefree Moduli

In this section we sketch the proof of Theorem 2.6.3. To prove Theorem 2.6.3, it is enough
to follow the proof of Theorem 1.5 in [23] and make some minor adaptions, which includes
replacing results of [22] by results derived in this thesis. We will now give a quick outline of
the proof of [23, Theorem 1.5] and indicate what modifications need to be made to obtain the
slightly more general Theorem 2.6.3.

As explained on page 1693 in [23], one uses Heath-Brown’s identity as well as a smooth
partition of unity (see [23, Lemma 4.3]) to decompose

ZA(n)K(n)v(Piq)

into a linear combination, with coefficients bounded by Oy (loggq), of O(log% q) sums of the
shape
ml..'mknl...nk

S aulm)carm) Y Vilm) e Vi)V ( b VK (i )

M1, Mp

for some integral parameter k > 2, where
(i) M = (My,..., M), N = (Ny,...,Ny) are k-tuples of parameters in [,2Pg]?* which
satisfy
Ny >Ny >Ny, M; <(Pg)¥, M-+ MyNy--- Np =g Pg;

(ii) the arithmetic functions m — «;(m) are bounded and supported in [M;/2, 2M;];

(iii) the smooth functions V;(x) are compactly supported in [N;/2,2N;], and their derivatives
satisfy

vV <1

for all y > 1, where the implicit constant depends only on £.
Compare this to equation (4.1) in [23]. The n;’s are called the smooth variables and the m;’s
are called the nonsmooth variables. Normally, the only thing which one can exploit about the
functions «y; is, that they are supported on short intervals. The smooth functions V; on the
other hand may be supported on long intervals. The sums are categorized according to the
number of long smooth variables. If there is one very long smooth variable, the sum is of type
I, if there are two relatively long smooth variables, the sum is of type I, if there are three
relatively long smooth variables, the sum is of type I3 and so on (see p. 1693 and 1694 in [23]).
The estimate of such sums I,. becomes harder, as r increases. Hence one treats this sums for
small r’s and the remaining sums are then called sums of type I1.

For the proof of Theorem 2.6.3 it is enough to deal with sums of type I> and to consider all
other sums as of type II. In [23], the estimate of sums of type I3 is done in Theorem 1.16,
while the estimate of the sums of type IT is equation (1.6) in Theorem 1.17. Combining this
two results leads to [23, Theorem 1.5], the proof is carried out in [23, Chapter 4]. To prove
Theorem 2.6.3, we have to adapt the proof of Theorem 1.5 in [23] to K modulo ¢ squarefree as
in the assumptions of Theorem 2.6.3. Since the part of the proof which is covered in Chapter 4
of [23] is purely analytic and does not rely on whether ¢ is prime or squarefree, this part of

89
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the proof goes through without any modification. However, the proofs of Theorem 1.16 and
Theorem 1.17 in [23] need to be modified slightly to get analogous statements for a more general
function K. How one has to do this is explained in the next two sections.

6.1. Estimate of type I, sums

To deal with type Iy sums for g squarefree, we need a slightly more general version of Theo-
rem 1.16 in [23], which is Theorem 3.3.2, which we proved already.

6.2. Estimate of type // sums

The estimate for type II sums which we need is a general version of equation (1.6) of Theo-
rem 1.17 in [23], which reads as follows.

Theorem 6.2.1. Let q be a squarefree number and let K: Z/qZ — C be a q-primeperiodic
function. Assume that K is (q, D)-non-exceptional. Let M, N > 1 be parameters, and let
(m)m, (Bn)n be sequences supported on [M/2,2M] and [N/2,2N], respectively. Then we have
that

1 1
171 1 gilog?q

m nK < MN 2(71 1 1 )7
7; am fn K (mn) < || [|B]] (M N) qZ+M§+ NE
(m,q)=1

lal = el 1817 = 18aI"

The proof of the original result is given in Chapter 3 of [23]. To prove Theorem 6.2.1, we
start analogously. We consider the bilinear form

T= Z ZamBnK(mn)

(m,q)=1 "

where

which, by taking the support of (c,) and (f,,) into account, can be rewritten as

= Bn Z am K (mn).
<n<2N M <m<am
(m,q)=1

Therefore, by the Cauchy-Schwarz inequality, we obtain

T <1817 Y > amK(mn)

N <n<2N | M <m<oMm
(m,q)=1

=187 Y. @mam, >, K(mn)K(mon). (6.1)

%Sml,mgSQM %§n§2N
(mimz,q)=1

w2

<
m

By the completion method (see (3.2) in [23]), we get that

Z K(mln)K(an)zé Z Z K(mym)K (maom) Z e(@)

Y <n<2N N <n<2N m€Z/qL heZ/qZ
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nh _ —mh
= Z Z ( ) Z K(mlm)K(mgm)e< m )
hEZ/qZ %S <2N meZL/ql q
1 -
- - Z Z K(mim)K (mam)
1 5 cn<onmez/qz
1 —nh —_ hm
+ Z - Z e( ) Z K(mlm)K(mgm)e(—)
h€Z/qZ\{0} 9 %SnSQN q meZ/qL q
N 1 —nh
= = [Cm1,ma 0, K) [+ > —[COmma b K| D (=)
q 0<|h|<E N <n<2N q
Clearly
1 —nh N
N<n<on
But we have also
h
1 —nhy 11 @(QqN) 1 1gq
P 6(7) Py AN N Sqh Tk
R AR TR
since for 1 <h <
h —h h mh h
‘1‘6()‘ ‘e<2q> - <2)’ = o (q)‘ Z
Therefore
Z K(min)K(man) < — |C ( (mymz, 0 )|—|— Z min (|h| ) |C ( mlmg,hmg))‘
A <n<2N 0<|h|<2

Combining this with (6.1) gives

T < |87 Z Tmlamz ’Cl( (m1mz,0))]

M <mq,ma<2M
(mima,q)=1

/1 N -
I e, 0 win () €K (i, i)
M oy ma<2M 0<[hl<g q
(mima,q)=1

=181> > @am,— H\c p; (1713, 0)) |

M <mi,ma<2M P\q
(m1ima2,q)=1

B T, Y mm( )H|c o; (myiz, s, k) |

Y <my,ma<2M 0<|h|<d plg
(mima2,q)=1

Now, in contrast to the case where ¢ is a prime, to estimate the C’( ) s, we also

need to consider mixed cases, where for some p|g, we can apply the bound < pl, while for
another p|g we may only by able to apply the trivial bound. To implement this idea, we make

a definition analogous to Definition 5.7.2.
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Definition 6.2.2. Fix a squarefree number ¢. Then we associate to every (m,h) € (Z/qZ)*
Z./qZ its type T[(m, h)] which is a vector T[(m,h)] = (T[(m, h)]p)plq given by

% lf (m, h) iﬁ HKP,M7

T[(m,h)], = {1 if (m,h) € Hg, m-

We denote the space of all possible types by H = {%, 1}w(q).

We then write

||B||2 Z Qmy Omy — H ’Cl P m1m2,0))|

& <may,ma<2M 150
(m1ma2,q)=1

— ||/5H2 Z Z Qg Oy — H |C mlmg,O))‘

heH M <y my<2M plq
(mime,q)=1
T[(m1mz,0)]=h
2
NS R e o Hp
heH Y <y my<2M plq

(mima,q)=1
T[(m1m2,0)]=h

<<||ﬁ|22( Hp) S (o + laml?)

heH plq Y <myma<2M
mlmz,q) 1
T[(m1m3,0)
= 18I Z ( Jotm, |2 + > Iamzl2>
heH plq M <m1,m2<2M M <myma<oM
(mﬂm q)= (mima,q)=1
T[(m1m2,0)]= h T[(m1mz,0)]=h
=8I Z ( [trm, | > 1
heH plq %§m1<2M M <my<aM
(m1 (ma,q)=1

T[(mlmvo)]:h

D D S L 1)

M <my<2M M <my<2M

(m27Q):1 (ml,q):l
T[(m1m2,0)]=h

ENEG )( >l (g +1)

heH plg M <mi<o2M
(m1,9)=1
M
. |am22(+1)
9, q[h]
M <my<aM
(ma2,q)=1

<ttt 1ot ¥ (ST ) (o +1)

hcH plg



6.2. ESTIMATE OF TYPE Il SUMS 93

<l 117 I (1)

NM
< Jlaf 18] ( +N),
q2
as well as
B> Y e, Y mln(|h| )H|c’ »; (my7z, s,h)) |
M <my,ma<2M 0<|n|<2 plq

(m1ma,q)=1

= HBHQ Z Z Qg Oy Z min (|h| ) H ’C P mlmg,sphmg))‘

heH M <y my<2M 0<|h|<d plg
(m1ma,q)=1 T[(mimz,sphmz)]=h
<BPY X el Y (g )H|c i (ma7g, 5,h13))|
heH Y <y my<2M 0<|h|<4
(mima,q)=1 T[(m1mz,sphmz)]=h
2
SPPY X el X (o) T
heH A <m ,mo<2M 0<|h|<g plg
(mima,q)=1 T[(mimz,sphmz)]=h
1 N
2 , .
<y (II) % S lamllawl X win(57)
heH * plg (a,b)€F ) XFymy & <m1,ma<2M 0<z<g
Vplglhl: (a,b)€HK, »r (M1m2,¢)=1 mimz=a mod q[h]

tspamz=b mod q[h]

W R) E 5 et ()

heH * plg (a,b)€F n) XFain] M <myma<2M

Vplq[h]: (a b)EH, p M1M2=a mod q[h]
(m1ma,q)=1

M log(q) N
2 hyp 2 Z\q
< (I) X e () (a5
heH * plg (a,b)E€F )y XF ]
Vplg[h]: (a,b)€H K, M

< llal? 181 Y (Hp (k) (e X

heH q
< el 1817 D- (M + 1)(¢* log(q) + )
heH
1 1 MN N
< Jlall* 181 (Mo los(q) + g log(a) + =~ + ")
1 MN
< llall* 181 (Ma* los(a) + =)
Hence
MN MN
71" < Nall* 181 (Mo togla) + ==+ == + N)
1 N
< [l 1817 (Mq* logla) + == + N)
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which yields

1 1 1102
T < al 8] (N (S + L + L1082
qgr M= Nz

This completes the proof of Theorem 6.2.1.

6.3. Proof of Theorem 2.6.3

As explained before, based on the estimates of the type I and type I sums, Theorem 2.6.3 can
now be proven completely analogously to [23, Theorem 1.5], the proof being done in section 4
of [23]. Since this part of the proof is completely analytic, replacing the prime p by a squarefree

integer ¢ does not make any difference.



7. Applications

As an application of our results, we consider the following proposition which is a generalisation
of Corollary 1.13 in [23] and an improvement of [16, Lemmas 6.1, 6.2, 6.3] for ¢ = ¢ squarefree.

Proposition 7.0.1. For every 0 < n < 1 there exists C'(n) such that, for every q squarefree,
every X > 2, and every integer n coprzme wzth q, one has the inequalities

E Kl (np; q) logp’ <C(n)X (1 + %) g
p<X
p prime

and

=

2
> Klz(n2p2;q)e(ﬂ) logp‘ < C(n)X(l + %) Nl
p<X ¢
p prime

)

Proof. By Example 2.3.3 and [22, Section 10.3], we know that
2na
K1 (a) = Kly(na; g) Ka(a) = Kla(n’a”; )e (=7

are irreducible trace functions with conductor < 5 and hence by (¢, M)-good and (g, M)-non-
exceptional for some absolute constant M. Hence Theorem 2.6.3 is applicable and we obtain

1
T oy,
> AMK(n) < QP(1+ P) q
n<Pq
for all 0 < 7 < ;5. Deligne has shown [7, Sommes Trig., (7.1.3)] that
KL, (a;p)] <m

and hence K (a), K2(a) < 29, Therefore

Z Ki(p)logp = Z An)K;(n) — Z Z Ki(p™)logp

p<Pq n<Pq 2<m<{ ‘;fF; —ng(Pq)*
< Y Am)Ki(n) +¢2teP
n<Pq

sl

< QP(1+ 113) g

m"‘

—Qx(1+4) " x,

for X = Pq and analogously for Ks. O
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A. The Kuznetsov Formula

Definition A.0.2. For non-negative integers a, b, ¢, we define the Kloosterman sum S(a,b;c)

by
S(a,b;c) = Z e (a$+bl‘> .
&

0<z<c
(z,c)=1

where T denotes the inverse of x modulo c.

Proposition A.0.3 (Petersson formula). For anyn > 1 and m > 1,

(k —2)! —k 1 . 4m/mn
o X ep(mizglm) = 8(mn) + 200t S S (m ) ().
feBL(D) CD>|8
Proof. This is Proposition 14.5 in [17]. Note that their F is our By (D). O

Proposition A.0.4 (Trivial bound for Kloosterman sums). The trivial bound is
|S(a,b;c)| < ec.

Proposition A.0.5 (Weil’s bound for Kloosterman sums). Let a,b,c € Z, ¢ positive. Then

[S(a,b;c)| < 1(c)\/(a,b,c)ye
where T denotes the divisor function and (a,b,c) the greatest common divisor of a, b and c.

Proposition A.0.6 (Twisted multiplicativity of Kloosterman sums). If (¢,d) = 1, then
S(a,b;cd) = S(ag, be; d)S(ad, bd; c),
where € and d denote integers such that cc =1 mod d and dd =1 mod c.

A proof of Proposition A.0.5 can for example be found in [17, Corollary 11.12]. Proposi-
tion A.0.6 is Equation (1.59) in [17].

The Kuznetsov formula is a generalization of the Petersson formula. The following statement
can be found in [22], Section 3.1.5.

Theorem A.0.7 (Kuznetsov formula). Let ¢: [0,00[— C be a smooth function satisfying
/ &/ o ,
MO =0 =0, L o)< (1+a) for0< <3,
Let

k) = it /O ~ Jk_l(x)gb(x)df,

) : = dx
t) = m/o (Joit(z) — J—2t(2))p(2) —,

xT
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o(t) = %cosh(ﬁt) /OOO ‘KZZ't(fE)<Z5(iU)dﬁ

x
be Bessel transforms. Then for positive integers m, n we have the following trace formula due

to Kuznetsov:
4m/mn
A -5(
D ¢ m, ’I’L Z m n; C ( - )

c>0
Dic

where

Sosmn)= 32 5 o i)+ 3 dty) s gy mlay ()

e e B cosh(mt,
k=0 mod 2" F
t t)dt.
DD Sl B e = TR
X g€B(x)

Definition A.0.8 (Test function ¢, ). Let a,b € Z such that 2 < b < a,bisodd anda—b=0
mod 2. Then we define

bap(z) =T, (x)2 0.
By [3, (2.21)], we get the following proposition (see also [22, p. 604]):
Proposition A.0.9. We have

. B By 2 b 2\ !
Pap(k) = CYruwn H (((1 . )Z) 4 (a;— —j) ) =a,b 4202

7=0

b 2\ !
~ b! a+b . —2b—
Pap(t) = b H <t2 + < 9 ]) ) =ap (14 t]) 2b=2,
j=0

In particular

bap(k) > for2<k<a-b,
(—1)k=(am b>>/2¢ b(k) >0 fora—b<k<a+b,
bap(k) > fora+b<k,

bap(t) > fort € RU(—i/4,i/4).



B. Some Auxiliary Results

Proposition B.0.10 (Hecke relations). Let f be a Hecke eigenform. Then for (m,D) =1 and

any n > 1, we have
mn
A(morm) = Y- or(%):
d|(m,n)

and moreover, these relations hold for all m,n if f is a newform, with an additional factor
Xo(d), where xo denotes the principal Dirichlet character to modulus D. (Recall that Ay are the
Hecke eigenvalues and oy are the Fourier coefficients.

Proposition B.0.11. Let g be a Hecke eigenform and let A\, denote its Hecke eigenvalues.
Then, for primes €1 # fo, we have that

Ag(l1)Ag(l2) = Ag(£12).

Theorem B.0.12 (Large Sieve Inequality). For any sequence of complex numbers (an)o<n<n,

we have N
N N
> | X anesof o (1 ) el = (14 5) Yl
fEBL(D) n<N q 1/ 5720

where the implied constant depends only on the weight k.
Proof. This is Theorem 7.26 in [17]. Recall, that for f € By(D), we write the Fourier expansion

at oo in the form o1
z) = Z n 2 of(n)e(nz),
n>1

whereas in [17, page 187], the Fourier expansion is written in the form

f(z) = ag(n)e(n2).

n>1

Furthermore, where we denote an orthonormal (with respect to the Petersson norm) basis of
Sk(D) by Bi(D), in [17] such an orthonormal basis is denoted by F. At this point there occurs
no normalization issue, as our definition of the Petersson norm (Definition 2.4.10) coincides
with the one in [17] (equation (14.11) on page 357). Hence, for f € By(D), the normalized
Fourier coefficient 17(n) (equation (7.43) in [17]) becomes

s = (LD = (T2

Hence, the statement of [17, Theorem 7.26] reads

Tt ¥ [ S aw] <@rm

fe€BK(D) n<N

from where the theorem follows. O
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Proposition B.0.13 (Duke, Friedlander and Iwaniec). Let f € B(D). Then for any x > 1
and any € > 0,

> <e a(@D(1+ [tg]))*.

n<x

where i"’t?‘ denotes the Laplace eigenvalue of f and the Ay(n)’s denote the Hecke eigenvalues

of f.

Proof. This is Proposition 19.6 in [9]. Note that in [9], the Laplace eigenvalue is written

sp(1—s5) = — 1. Hence

1
=+t — =
Sf f 2
and hence
o1
|sfl = ’itfl— 2‘ < tpl+1.
So, for any x > 1 and any € > 0,
Y ())* <. (@D ;) < w(@D(1+ [t4]))".
n<x
O

Proposition B.0.14 (Deshouillers and Iwaniec). Let K > 1, N > % and e > 0 be real numbers,
(an) a sequence of complex numbers and a a cusp of T'o(D); each of the three expressions

2

k—1)! e
> E4ﬂ-)k)1 > > ann” 7 Pi(an)

2<k<K 1<j<0i(q) | N<n<2N
k even
2
> | X )
cosh(mty)
geB(D) N<n<2N
ltr|<K
2
K , 1
S| S ant e (grin)|
Lk 2
c N<n<2N

is magorized up to a constant depending on € at most by

D
K2 YN y—1ar1+e 2
(K2 + (w, =)D INY) Y a2,
n<N
where pa(n) denotes the n-th Fourier coefficient at the cusp a.
Proof. See Theorem 2 in [8]. O

Lemma B.0.15. For every g € B(D), we have that ty is either real or purely imaginary with
—1 <ty < 3. Hence, cosh(mts) > 0.

Proof. See remark after Theorem 2 in [8]. O

Corollary B.0.16. For all g € B(D) with |ty| > %, we have that cosh(mt,) > 3.
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Theorem B.0.17 (Deligne’s bound on Hecke eigenvalues of holomorphic cusp forms (or
unitary Eisenstein series)). For a primitive cusp form f € Si(D), we have

[Ar(n)] < d(n) <. n®,
where Ay(n) denotes the Hecke eigenvalue of f and d(n) denotes the divisor function.

Remark B.0.18. This theorem is easy for coefficients of Eisenstein series, but very very deep

for general holomorphic cusp forms (based on the Riemann hypothesis over finite fields).
Theorem B.0.17 is also called the Ramanugjan-Petersson conjecture for modular forms,

or simply the Ramanujan-Petersson bound. The conjecture is still open for Maass forms.

Proof. See, e.g., equation (14.54) in [17]. O

Theorem B.0.19 (Poisson summation formula). Suppose that both f, f are in L*(R) and have
bounded variation. Further suppose that v € RT and u € R. Then

> som = L A(2)e(2).
MmEZL nez

where both series converge absolutely.

Proof. This is Theorem 4.4 and formula (4.24) in [17]. O

Theorem B.0.20 (Poisson summation formula in several variable). Suppose f is in the Schwartz
class S(RY). Then

D fm)y=>" fn).

mezZr nezt
Furthermore, for v € R and u € RY, we have

Z flom +u) :U—IZ Z f(%)e(%(u,n})

meZt nezt

Proof. The first equality is Theorem 4.5 in [17]. The second equation follows by applying the
first equation to A(m) = f(vm + u) and computing

lAz(n):/R[ )e(— ()i = | i+ u)e(— (i)

which is by setting m = vm + u

é 8 (m)e(— %(m— u,n})dm

1 n

et [ S = )am = Zee(Gum) 1)

The next theorem is Lemma 5.2 of an earlier version of F-K-M.
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Theorem B.0.21. Let Q(X,Y) = aX?+bXY +cY? be an integral quadratic form with ab # 0,
a > 0 and discriminant A. Forn > 1 and X > 1, the number Nx(n) of integral solutions to

the equation

Qz,y) =n,
such that max(|z|, |y|) < X satisfies

Nx(n) < (nX ac| ([o| +1))%,

for any € > 0, where the implied constant depends only on €.
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