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Abstract

In this thesis, we consider the question of whether Fourier coefficients of modular forms correlate
with functions of algebraic origin. For a big class of cusp forms f , we show that there is no
correlation with many algebraic functions often encountered in number theory. This question
was studied before by É. Fouvry, E. Kowalski und Ph. Michel in [22] and our results are a
generalisation of the ones in [22].

For a squarefree number q, we consider the correlation sums

S(f,K; q) =
∑
n<Pq

ρf (n)K(n),

also called “algebraic twists”, where the ρf (n)’s denote the Fourier coefficients of the cusp
form f , P > 0 is a parameter and K denotes a function of algebraic origin defined modulo
q. Examples of such functions K for which we can prove the non-correlation include Dirichlet
characters to the modulus q, K(n) = χ(n), as well as Hyper-Kloosterman sums

K(n) = Klm(n; q) = q−
m−1

2

∑
x1,...,xm∈(Z/qZ)×

x1···xm=n

e

(
x1 + · · ·+ xm

q

)
.

These functions share the property that they can be written as a product of trace functions
and we show in general that for every such product K,

S(f,K; q)�f,δ,P,cond(K) q
1−δ

for all δ < 1
16 , where cond(K) denotes the conductor of K.

As an application, we consider sums over primes and show the upper bound∑
p<Pq
p prime

K(p)�P q
1− η2

for all η < 1
24 , K as above.
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Zusammenfassung

In dieser Arbeit gehen wir der Frage nach, wann Fourierkoeffizienten von Modulformen mit
Funktionen algebraischen Ursprungs korrelieren. Wir zeigen für eine grosse Klasse von Spitzen-
formen f , dass viele in der Zahlentheorie verwendete Funktionen nicht mit den Fourierkoef-
fizienten von f korrelieren. Diese Frage wurde zuvor bereits von É. Fouvry, E. Kowalski und
Ph. Michel in [22] untersucht und unsere Ergebnisse stellen eine Verallgemeinerung der in [22]
enthaltenen Resultate dar.

Konkret betrachten wir für eine quadratfreie Zahl q die Korrelationssummen

S(f,K; q) =
∑
n<Pq

ρf (n)K(n),

welche auch als “algebraische Verdrehungen” (“algebraic twists” auf Englisch) bezeichnet wer-
den. Dabei bezeichnen die ρf (n)’s die Fourierkoeffizienten der Spitzenform f , P > 0 ist
ein Parameter und K ist eine Funktion algebraischen Ursprungs, welche modulo q definiert
ist. Beispiele solcher Funktionen K, für welche wir die Nicht-Korrelation zeigen können, sind
Dirichlet-Charaktere zum Modulus q, K(n) = χ(n) oder Hyper-Kloostermansummen

K(n) = Klm(n; q) = q−
m−1

2

∑
x1,...,xm∈(Z/qZ)×

x1···xm=n

e

(
x1 + · · ·+ xm

q

)
.

Diesen Funktionen ist gemeinsam, dass sie als Produkt von Spurfunktionen geschrieben werden
können. Wir zeigen allgemein für alle solche Produkte von Spurfunktionen K, dass

S(f,K; q)�f,δ,P,cond(K) q
1−δ

für alle δ < 1
16 gilt, wobei cond(K) den Führer von K bezeichnet.

Als Anwendung davon betrachten wir Summen über Primzahlen und beweisen die obere
Schranke ∑

p<Pq
p prime

K(p)�P q
1− η2

für η < 1
24 und für gewisse Funktionen K algebraischen Ursprungs, welche modulo q definiert

sind. Für K(n) = Kl2(na, q) stellt dies in gewissen Fällen eine Verbesserung eines Ergebnisses
(Lemma 6.1 in [16]) von H. Iwaniec, W. Luo und P. Sarnak dar.
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1. Introduction

Let (an)n∈N be a sequence of complex numbers and consider the sum

S(x) =
∑
n∈N
n<x

an. (1.1)

Such sums are ubiquitous in analytic number theory and very often, if the sequence (an)n∈N is
bounded and “random enough”, one hopes for some cancellation, i.e., one expects that the sum
is relatively small compared to x. By heuristic arguments based on the central limit theorem,
the best one normally can hope for is squareroot cancellation, i.e., that S(x)�

√
x. A famous

example is an = µ(n) the Möbius function, where one can show that∑
n<x

µ(n)�ε x
1
2 +ε

for every ε > 0, is equivalent to the Riemann hypothesis. The best known bound is∑
n<x

µ(n)� x exp
(
− c(log x)

3
5 (log log x)−

1
5

)
,

coming from the analogous (best known) bound in the prime number theorem [17, p. 227 and
p. 124]. This example already illustrates, that even though one expects very often squareroot
cancellation, what one actually can prove is much less. Even though the bounds we can prove
are far from what is conjectured to be true, they are still sufficient for many applications.

A slightly more general setting often encountered is the case where one has two bounded
sequences of complex numbers (bn)n∈N and (cn)n∈N and one is interested in the twisted sum or
“inner product” ∑

n∈N
n<x

bncn.

If the sequences bn and cn do not “correlate”, one expects that the sequence (bncn)n∈N behaves
“randomly” and hence the twisted sum should be small due to cancellation. On the other hand,
if the sequences “correlate”, such a cancellation can not be expected. As an example, consider
bn = cn = µ(n). In this case, the sum∑

n∈N
n<x

bncn =
∑
n∈N
n<x

µ(n)2 =
∑
n<x

n squarefree

1 =
6

π2
x+O

(√
x
)

is large. The idea is now, that if the sequence (bn)n∈N comes from “a certain world”, as
for example the Möbius function µ comes from the arithmetic world, and the other sequence
(cn)n∈N comes from “another world”, as for example the automorphic world where the Fourier
coefficients of modular forms reside, then the two sequences should not correlate and the twisted
sum should be small. Heuristically, one argues that the sequence (cn)n∈N is too different to be
able to correlate with the sequence (bn)n∈N and hence the resulting twisted sequence (bncn)n∈N
should behave randomly, which should imply cancellation.

11
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In this thesis, we will consider twisted sums, where the intricate algebraic information is
given by Fourier coefficients of modular forms. Modular forms are well used in number theory
as well as other parts of mathematics. One reason why they are so useful is, that there are
many modular forms whose Fourier coefficients contain useful arithmetic information. Many
nice examples can be found in part one of Zagier’s article in “The 1-2-3 of Modular Forms”,
see [4]. An application is given by Fouvry, Kowalski and Michel in [23, p. 1695], where one uses
that the twisted divisor function

du(n) =
∑
ab=n

(a
b

)u
is (up to normalization) the Fourier coefficient of the nonholomorphic Eisenstein series

E(z, s) =
1

2

∑
(c,d)=1

ys

|cz + d|2s
,

for s = 1
2 + it.

Therefore we may ask in general, whether a bounded sequence K(n) correlates with the
sequence (ρf (n))n≥1 of Fourier coefficients of some modular form f . To make this precise, we
say that (K(n))n≥1 does not correlate with the Fourier coefficients of f if we have∑

n≤x

ρf (n)K(n)�A x(log x)−A

for all A ≥ 1. As explained before, heuristically, one expects that a function K does not
correlate if it is of “algebraic nature” and not too complex. A special class of such functions K
which do not correlate are trace functions with small conductor as introduced in Section 2.3.
In this thesis, we will actually consider a slightly more general class of functions K, which we
call (q,M)-good (see Definition 2.2.7). Concretely, we will consider sums of the form∑

n≤x

ρf (n)K(n)

or more precisely smoothed versions thereof∑
n≥1

ρf (n)K(n)V
(n
q

)
,

where V is a smooth compactly supported function on ]0,+∞[. Such sums were already exten-
sively studied by Fouvry, Kowalski and Michel in [22] and [23] for trace functions K : Z/pZ −→
C, with p prime. For example, they show the non-trivial bound∑

n∈I
ρf (n)K(n)� p1−δ

for any interval I ⊂ [1, p] and any δ < 1
16 , where the implied constant depends only on f , δ and

the conductor of K. In this thesis, we will consider the more general case where the function
K is given by

K(n) =
∏
p|q

Kp(n),

where q is a squarefree integer and Kp : Z/pZ −→ C are suitable functions, i.e., trace functions
with small conductor.
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As an example of such a function K, consider the normalized hyper-Kloosterman sum in
m− 1 variables given by

Klm(a; q) = q−
m−1

2

∑
x1,...,xm∈(Z/qZ)×

x1···xm=a

e

(
x1 + · · ·+ xm

q

)

for a ∈ (Z/qZ)× and some squarefree modulus q. As is shown in [22, Section 10.3], such
hyper-Kloosterman sums are functions of the type described above. As we will see later, an
application is the bound for a sum over primes∑

p<X
p prime

Kl2(np; q) log p�η X
(

1 +
q

X

) 1
12

q−η (1.2)

for ever 0 < η < 1
48 , every X ≥ 2 and every integer n coprime with q. This bound is a

generalisation of [23, Corollary 1.13] to squarefree modulus and an improvement of Luo, Iwaniec
and Sarnak’s result [16, Lemma 6.1] for c = q squarefree and X ≤ q. We will present some
other examples of trace functions in Section 7.

More simple examples of trace functions include K(n) = e(an/q) an additive character mod-
ulo q and K(n) = χ(n), where χ is a Dirichlet character modulo q as in Example 2.3.4. As
explained in [22, Section 1.1], these special cases have been studied already much earlier by
several people, see e.g. [15, Theorem 5.3] and [14, Theorem 8.1] for K an additive character
and [10], [5], [2] and [6] for K a Dirichlet character.

Based on this thesis, various results that were proved only for prime moduli using the results
of [22] should be easy to extend to squarefree moduli. Examples of such results can be found
in [11] and [1].

1.1. Outline

In Section 2.6 we will state the main results of this thesis, which is that Fourier coefficients
of modular forms or Eisenstein series do not correlate with some special functions defined on
Z/qZ for q squarefree. Furthermore, we present a similar result for sums over primes. For this,
we will first give all definitions necessary and then state the precise results.

In Section 3 we will use the amplification method to reduce the main result to an estimate of
amplified second moments. We follow closely [22], and embed the holomorphic form f in the
space of forms of level qN . The amplification method itself is a well known tool and was well
used before, e.g., by H. Iwaniec, V.A. Bykovsky, V. Blomer, G. Harcos and others (see [13], [6],
[5], [2] and [3]). The amplifier used in [22] which we will adopt, goes back to Venkatesh.

In Section 4 and 5 we estimate the amplified second moments. The general strategy is based
on [22]. However, especially the estimate of the number of correlation matrices (Section 5.7) is
different from the method used in [22], as the original method does not generalize well to the
squarefree case. Since this section is also quite intricate, we present in Section 5.7.3 a simplified
version, where we assume that the only correlation matrix is the identity matrix, a case which
is also common in applications.

In Section 6 we consider sums over primes to squarefree moduli, which is a generalisation of
[23]. As the proofs of the results in this section are based on previous results in this thesis and
otherwise closely follow the proofs in [23] with only minor adaptions, we are quite brief in this
section, but give detailed references.

Finally, in Section 7, we present as an application a proof of (1.2) mentioned in the intro-
duction.
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1.3. Notation

We write e(z) = e2πiz for any z ∈ C. We denote the greatest common divisors of two integers
a and b by (a, b). Furthermore we write

(a, b∞) = max
n∈N

(a, bn).

Concerning modular arithmetic, for a ∈ Z and n ≥ 1 with (a, n) = 1, we write a for the inverse
of a modulo n. The modulus n is always clear in context. On the other hand, for a | b, we write
b
a for the ordinary division in Z. For example, if

b ≡ an mod n2

we know that the integer b is divisible by n and hence we can rewrite this congruence as

b

n
≡ a mod n.

The notation n ∼ N means that n ∈ Z satisfies N < n ≤ 2N .



2. Statement of Main Results

2.1. Preliminary definitions

We define a cusp form f : H −→ C as in [22]: By saying that f is a cusp form we will mean
that f is either

(i) a non-zero holomorphic cusp form of some even weight k ≥ 2 and some level N ≥ 1 or

(ii) a non-zero Maass cusp form of weight 0, level N and Laplace eigenvalue written 1
4 + t2f ,

where we assume in both cases that f has trivial Nebentypus. Furthermore, by saying that a
cusp form f of level N is a Hecke eigenform we will mean that f is an eigenfunction of the
Hecke operators Tn with (n,N) = 1.

Let now f be a cusp form. We denote by ρf (n) the (normalized) Fourier coefficients of f .
The Fourier expansion at ∞ reads then

f(z) =
∑
n≥1

ρf (n)n
k−1
2 e(nz)

if f is holomorphic of weight k and

f(z) =
∑
n 6=0

ρf (n) |n|−
1
2 Witf

(
4π |n| y

)
e(nx)

if f is a Maass form with Laplace eigenvalue 1
4 + t2f where

Wit(y) =
e−

y
2

Γ(it+ 1
2 )

ˆ ∞
0

e−xxit−
1
2

(
1 +

x

y

)it− 1
2

dx

is a Whittaker function (see Equation (3.8) in [22]).

Definition 2.1.1. Lef f be a cusp form. We say that the sequence (%f (n))n≥1 does not
correlate with another bounded (or essentially bounded) sequence (K(n))n∈N if∑

n≤x

%f (n)K(n)�A x(log x)−A

for all A ≥ 1. Otherwise, we say that (%f (n))n≥1 correlates with (K(n))n∈N.

In practice it is often useful to work with smoothed sums instead of sharp ones. Apart from
the fact that it is often easier to work with smoothed sums, the bounds one can obtain for the
smoothed sums are often better than the bounds for the sharp sums.

Definition 2.1.2. Let q be a squarefree integer, K : Z/qZ −→ C an arbitrary function, ex-
tended to all of Z by periodicity, f : H −→ C a cusp form and V a smooth compactly supported
function on [0,+∞[−→ R. Then we write

S(f,K; q) = SV (f,K; q) =
∑
n≥1

%f (n)K(n)V (n/q).

15
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Proposition 2.1.3 (Trivial bound for SV (f,K; q)). Let q, K, f and V be as in Definition 2.1.2.
We have the bound

SV (f,K; q)�f,V q max
1≤n≤q

|K(n)| .

Proof. By Rankin-Selberg theory,∑
n≤x

|ρf (n)|2 = cfx+O
(
x

3
5

)
(2.1)

for some cf > 0. Since V has compact support, there exists a constant c1 ∈ N such that
V (x) = 0 for all x ≥ c1. Hence V

(
n
q

)
= 0 for all n ≥ qc1. Therefore

SV (f,K; q) =
∑
n≥1

ρf (n)K(n)V
(n
q

)
=

c1q∑
n=1

ρf (n)K(n)V
(n
q

)

≤

∣∣∣∣∣
c1q∑
n=1

ρf (n)K(n)V
(n
q

)∣∣∣∣∣
which is by Cauchy’s inequality

≤

(
c1q∑
n=1

∣∣∣∣ρf (n)V
(n
q

)∣∣∣∣2 c1q∑
n=1

|K(n)|2
) 1

2

�V

(
c1q∑
n=1

|ρf (n)|2
c1q∑
n=1

|K(n)|2
) 1

2

and hence by (2.1) this is

�f,V

(
q

c1q∑
n=1

|K(n)|2
) 1

2

and by using the periodicity of K, we can further simplify this to

�f,V

(
q

q∑
n=1

|K(n)|2
) 1

2

≤
(
q2 max

1≤n≤q
|K(n)|2

) 1
2

≤ q max
1≤n≤q

|K(n)| .

In this thesis, we will give in some cases a better bound of the form

SV (f,K; q)� q1−δ

for some 0 < δ < 1
8 , where the implied constant only depends on δ, f , V and some invariants

of K. Clearly, to prove such a bound on SV (f,K; q) one has to make some assumptions about
f , K and V . We will now state the precise assumptions we need to make, so that we can state
our main result (Theorem 2.6.1).
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2.2. Assumptions on the function K

For the correlation sum to be small, it is natural to assume that the function K should be of “low
complexity”. The heuristic idea behind this is, that if K is a “simple function” (as opposite
to “complex”), the function K is not able to correlate with the Fourier coefficients ρf well
enough. We will see later that a class of such functions are trace functions with small/bounded
conductor, where the conductor is the quantity which measures the complexity of the trace
function. Below, we will give the technical definitions necessary to exactly specify what we
mean by a “simple function” K – we will call such functions good (see Definition 2.2.7 below).

Definition 2.2.1. Let q be a squarefree integer. For any function K : Z/qZ −→ C we define
its Fourier transform by

K̂(x) =
1
√
q

∑
z∈Z/qZ

K(z)e
(zx
q

)
.

Definition 2.2.2. Let q be a squarefree number. We call a function K : Z/qZ −→ C q-
primeperiodic if for every p | q there exists a function Kp : Z/pZ −→ C such that

K(x) =
∏
p|q

Kp(x).

We extend the function to all of Z by periodicity.

Proposition 2.2.3. Let q be a squarefree integer and let K : Z/qZ −→ C be a q-primeperiodic
function, i.e.,

K(x) =
∏
p|q

Kp(x).

Then
K̂(x) =

∏
p|q

K̂p(spx)

where
sp ≡

∏
p′|q
p′ 6=p

p′ ∈ (Z/pZ)×.

Proof. We compute

K̂(x) =
1
√
q

∑
z∈Z/qZ

K(z)e
(zx
q

)
=

1
√
q

∑
z∈Z/qZ

e
(zx
q

)∏
p|q

Kp(z)

Now, for all p|q, let zp ∈ Z be such that zp ≡ z ∈ Z/pZ. Then z can be written as

z =
∑
p|q

zpep ∈ Z/qZ

where ep = sp
∏

p′|q
p′ 6=p

p′ ∈ Z so that ep ≡ 1 mod p. Hence

K̂(x) =
∏
p|q

1
√
p

∑
zp∈Z/pZ

e
(zpepx

q

)
Kp(zp)
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=
∏
p|q

1
√
p

∑
zp∈Z/pZ

e
(zpspx

p

)
Kp(zp)

=
∏
p|q

K̂p(spx).

Definition 2.2.4. Let q be a squarefree integer and

γ =

(
a b
c d

)
∈M2(Z/qZ).

For any x ∈ Z/qZ such that cx+ d is invertible in Z/qZ, we define the action

γ · x =
ax+ b

cx+ d
∈ Z/qZ.

We then define for a function K : Z/qZ −→ C and a matrix γ ∈ M2(Z/qZ) the correlation
sum

C(K; γ) =
∑

x∈Z/qZ
cx+d∈(Z/qZ)×

K̂(γ · x)K̂(x).

Proposition 2.2.5. Let q be a squarefree integer and let K : Z/qZ −→ C be a q-primeperiodic
function. Then

C(K; γ) =
∏
p|q

C
(
Kp; γp

)
where

γp =

(
a bsp
csp d

)
sp ≡

∏
p′|q
p′ 6=p

p′ mod p.

Proof. We have

C(K; γ) =
∑

x∈Z/qZ
cx+d∈(Z/qZ)×

K̂(γ · x)K̂(x)

which is by Proposition 2.2.3 equal to

=
∑

x∈Z/qZ
cx+d∈(Z/qZ)×

∏
p|q

K̂p(spγ · x)K̂p(spx)

=
∑

x∈Z/qZ
cx+d∈(Z/qZ)×

∏
p|q

K̂p(spγ · xp)K̂p(spxp),

where we denote by xp the reduction of x modulo p. Hence, by the Chinese remainder theorem,

C(K; γ) =
∏
p|q

∑
xp∈Fp

cxp+d∈F×p

K̂p(spγ · xp)K̂p(spxp).
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Since

spγ · xp =
aspxp + bsp
cxp + d

=
aspxp + bsp
cspspxp + d

= γp · (spxp)

we get by putting yp = spxp

C(K; γ) =
∏
p|q

∑
yp∈Fp

cpyp+d∈F×p

K̂p(γp · yp)K̂p(yp)

=
∏
p|q

C(Kp; γp),

which completes the proof.

Lemma 2.2.6 (Trivial bound for C(K; γ)). Let K : Z/qZ −→ C with ‖K‖∞ ≤ M and let
γ ∈ GL2(Z/qZ). We then have the bound

|C(K; γ)| ≤M2q.

Proof. By the Cauchy-Schwarz inequality, we can bound

|C(K; γ)|2 =

∣∣∣∣ ∑
z∈Z/qZ

(cz+d,q)=1

K̂(γ · z)K̂(z)

∣∣∣∣2 ≤ ∑
z∈Z/qZ

(cz+d,q)=1

∣∣∣K̂(γ · z)
∣∣∣2 ∑

u∈Z/qZ
(cu+d,q)=1

∣∣∣K̂(u)
∣∣∣2

=
∑

z∈Z/qZ
(cz−a,q)=1

∣∣∣K̂(z)
∣∣∣2 ∑

u∈Z/qZ
(cu+d,q)=1

∣∣∣K̂(z)
∣∣∣2 ≤ ∑

z∈Z/qZ

∣∣∣K̂(z)
∣∣∣2 ∑
u∈Z/qZ

∣∣∣K̂(u)
∣∣∣2

=

( ∑
z∈Z/qZ

∣∣∣K̂(z)
∣∣∣2)2

.

Recall Parseval’s formula∑
z∈Z/qZ

∣∣∣K̂(z)
∣∣∣2 =

∑
z∈Z/qZ

∣∣∣∣ 1
√
q

∑
x∈Z/qZ

K(x)e
(zx
q

)∣∣∣∣2 =
1

q

∑
z∈Z/qZ

∑
x,y∈Z/qZ

K(x)K(y)e

(
z(x− y)

q

)

=
1

q

∑
x,y∈Z/qZ

K(x)K(y)
∑

z∈Z/qZ

e

(
z(x− y)

q

)
=

∑
x∈Z/qZ

K(x)K(x)

=
∑

x∈Z/qZ

|K(x)|2 .

Hence

|C(K; γ)| ≤
∑

z∈Z/qZ

|K(z)|2 =
∑

z∈Z/qZ

∣∣∣K̂(z)
∣∣∣2 ≤M2q.

This bound is not sufficient to prove our main result. The idea is, that in most cases C(K; γ)
should be much smaller according to the square-root cancellation philosophy. Unfortunately,
this is not always the case. Fortunately, for the K’s which we will consider1 we have detailed

1Namely the good K’s as defined in Definition 2.2.7.
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knowledge about the set of γ’s for which C(K; γ) fails to be small, in particular this set turns
out to be small.

Note also the special case of K̂ being constant and hence K(n) being proportional to e
(
an
q

)
for some a ∈ Z. In this case C(K; γ) is never small and hence such a K will obviously not satisfy
the assumptions of our main theorem. However, this case can be treated directly by different
methods, see (1.3) in [22].

Notation. Given x 6= y in P1(Fp), the pointwise stabilizer of x and y is denoted by T x,y(Fp)
(this is a maximal torus), and its normalizer in PGL2(Fp) (i.e. the stabilizer of the set {x, y})
is denoted by Nx,y(Fp).

Definition 2.2.7 (Correlation matrices and good weights). Let M ≥ 1 and let q be a squarefree
number. For every p | q let Kp : Fp −→ C be an arbitrary functions with ‖Kp‖2 ≤ M . Define
K : Z/qZ −→ C by K =

∏
p|qKp. Furthermore, for γ ∈ M2(Z), we denote by γp its image in

PGL2(Fp).
(i) We let

GKp,M =
{
γ ∈ PGL2(Fp)

∣∣∣ |C(Kp; γp)| > Mp
1
2

}
,

the set of M-correlation matrices.

(ii) We say that Kp is (p,M)-good if there exists some set Dp of at most M pairs (x, y) of
distinct elements in P1(Fp) such that

GK,M ⊂ Ap =
⋃
i∈Ip

Aip

where
Ip = {1, 2, 3, 4} ∪ {(5, x, y) | (x, y) ∈ Dp} ∪ {(6, x, y) | (x, y) ∈ Dp}

and

(i) A1
p =

{(
∗ ∗
0 ∗

)}
,

(ii) A2
p =

{(
0 ∗
∗ ∗

)}
,

(iii) A3
p =

{(
∗ ∗
∗ 0

)}
,

(iv) A4
p =

{
A ∈M2(Fp)

∣∣A is parabolic, i.e., has a single fixed point in P1(Fp)
}

,

(v) A(5,x,y)
p = T x,y(Fp), and

(vi) A(6,x,y)
p = Nx,y(Fp) \ T x,y(Fp).

We call such a set Ap a set of admissible correlation matrices modulo p.

(vii) We say that K is (q,M)-good, if Kp is (p,M)-good for every p | q.

The conditions stated so far are enough to state the main Theorems 2.6.1 and 2.6.2. However,
to successfully apply these main theorems to sums over primes to squarefree moduli, we need
some more assumptions on K, as stated below.

Definition 2.2.8. For a function K : Z/qZ −→ C and (m,h) ∈ (Z/qZ)××Z/qZ, we define the
correlation sum

C′
(
K; (m,h)

)
=

∑
z∈Z/qZ

K(mz)K(z)e
(hz
q

)
.



2.2. Assumptions on the function K 21

Proposition 2.2.9. Let q be a squarefree integer and K : Z/qZ −→ C a q-primeperiodic func-
tion given by

K(z) =
∏
p|q

Kp(z).

Then
C′
(
K; (m,h)

)
=
∏
p|q

C′
(
Kp; (m, sph)

)
where

sp ≡
∏
p′|q
p′ 6=p

p′ mod p.

Proof. We compute

C′
(
K; (m,h)

)
=

∑
z∈Z/qZ

K(mz)K(z)e
(hz
q

)
=

∑
z∈Z/qZ

e
(hz
q

)∏
p|q

Kp(mz)Kp(z)

=
∏
p|q

∑
zp∈Z/pZ

e
(zpeph

q

)
Kp(mzp)Kp(zp)

=
∏
p|q

∑
zp∈Z/pZ

e
(zpsph

p

)
Kp(mzp)Kp(zp)

=
∏
p|q

C′
(
Kp; (m, sph)

)
,

where we defined ep = sp
∏
p′ 6=p p

′ ∈ Z.

Lemma 2.2.10 (Trivial bound for C′
(
Kp; (m,h)

)
). We have for Kp : Z/pZ −→ C with ‖K‖∞ ≤

M the bound ∣∣C′(Kp; (m,h)
)∣∣ ≤M2p.

Proof. This can be seen by∣∣C′(Kp; (m,h)
)∣∣ ≤ ∑

z∈Z/pZ

∣∣∣K(mz)
∣∣∣ |K(z)|

∣∣∣∣e(hzp )
∣∣∣∣ ≤ ∑

z∈Z/pZ

M2 ≤M2p.

Definition 2.2.11. Let q be a squarefree number and Kp : Fp −→ C be arbitrary functions for
all p | q. Let M ≥ 1 be such that ‖Kp‖2 ≤M . Define K : Z/qZ −→ C by K =

∏
p|qKp.

(i) We let

HKp,M =
{

(m,h) ∈ F×p × Fp
∣∣∣ ∣∣C′(Kp; (m,h)

)∣∣ > Mp
1
2

}
be the set of (p,M)-exceptional vectors.

(ii) We say that Kp is (p,M)-non-exceptional if∣∣HKp,M

∣∣ ≤M.

(iii) We say that K is (q,M)-non-exceptional if Kp is (p,M)-non-exceptional for every p | q.
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2.3. Trace functions on `-adic sheaves

For Theorem 2.6.1 to be useful, we need to check that it actually applies to functions

K : Z/qZ −→ C

which appear in practice. As shown in [22], trace functions as defined below turn out to be
(p,M)-good functions. The exact definition of trace functions is given in [22, Section 1.3] and
we will repeat it here for completeness only. Since we will not need to work with the definition of
a trace function in this thesis, we will be relatively brief in what follows, but provide references
where more details can be found. If one is only interest in applying the results of this thesis to
concrete problems, it is often enough to know that certain special functions of interest are trace
functions (with some small conductor). We will give some examples of such functions below.

We make the following definitions (compare Definition 1.11 in [22]):

(i) A constructible Q̄`-sheaf F on A1
Fp is a trace sheaf if it is a middle-extension sheaf whose

restriction to any non-empty open subset U ⊂ A1
Fp where F is lisse and pointwise ι-pure

of weight 0.

(ii) A trace sheaf F which is also a Fourier sheaf in the sense of Katz [18, Definition 8.2.2] is
called a Fourier trace sheaf.

(iii) A trace sheaf is an isotypic trace sheaf if it is a Fourier sheaf and if, for any open set U
as in (i), the restriction of F to U is geometrically isotypic when seen as a representation
of the geometric fundamental group of U : it is the direct sum of several copies of some
(necessarily non-trivial) irreducible representation of the geometric fundamental group of
U [18, Section 8.4].

Let p be a prime number and ` 6= p be an auxiliary prime. Consider an `-adic constructible
sheaf F on A1

Fp and fix an isomorphism ι : Q̄` −→ C. For x ∈ Fp, we define as in [19, 7.3.7]

K(x) = ι
(
(trF)(Fp, x)

)
. (2.2)

A function K : Fp −→ C is a trace function (resp. Fourier trace function, isotypic trace function)
if there is some trace sheaf (resp. Fourier trace sheaf, resp. isotypic trace sheaf) F on A1

Fp
such

that K is given by (2.2).
As already mentioned in the introduction, we want a measure for the complexity of a trace

function. It turns out, that the conductor as defined below is the right notion.

Definition 2.3.1. Let F be an `-adic constructible sheaf F on A1
Fp . We denote the rank of F

by rank(F) and the (finite) number of singularities in P1 of F by n(F). We define

Swan(F) =
∑
x

Swanx(F),

the (finite) sum being over all singularities of F . The (analytic) conductor of F is then defined
by

cond(F) = rank(F) + n(F) + Swan(F).

The conductor of a trace function K : Z/pZ −→ C is defined as the smallest conductor of a
trace sheaf F with trace function K.

A nice introduction to trace functions is [20]. We refer to the books of Katz, namely [18] and
[19], for readers interested in full details.
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In addition to the definitions above, which correspond to the definitions made in [22], we
would like to extend the notion of trace functions to squarefree integers q. Hence, we will call
a q-primeperiodic function K : Z/qZ −→ C a trace function (resp. Fourier trace function, resp.
isotypic trace function) if

K(x) =
∏
p|q

Kp(x)

and for every p|q, Kp is a trace function (resp. Fourier trace function, resp. isotypic trace
function) as defined above. By extending the definition of a trace function in this way to
squarefree integers q, Theorem 1.14 in [22] becomes:

Theorem 2.3.2 (Trace functions are good). Let q be a squarefree number, N ≥ 1 and F =
(Fp)p|q be a family of isotypic trace sheaves Fp on A1

Fp , with cond(Fp) ≤ N for all p | q. Let

K be the corresponding isotypic trace function. Then K is (q, aNs)-good for some absolute
constants a ≥ 1 and s ≥ 1.

Proof. Note that

K =
∏
p|q

Kp

where Kp is the trace function of Fp, p|q. By Theorem 1.14 in [22] we get that for every p|q, Kp

is (p, aNs)-good for some absolute constants a ≥ 1 and s ≥ 1. Hence K is (q, aNs)-good.

Hence Theorem 2.6.1 applies to isotypic trace functions. We list now some examples of trace
functions, taken from [22, Section 10].

Example 2.3.3. For q squarefree, a ∈ (Z/qZ)× and m ≥ 2, (normalized) hyper-Kloosterman
sums in m− 1 variables defined by

Klm(a; q) = q−
m−1

2

∑
x1,...,xm∈(Z/qZ)×

x1···xm≡a mod q

e
(x1 + · · ·+ xm

q

)

are irreducible trace functions with conductor ≤ 2m+ 1.
We first have to check that Klm(a; q) is a q-primeperiodic functions. For every p|q and every

i ∈ {1, . . . ,m}, let xi,p ∈ Z be such that xi,p ≡ xi mod p. Then xi can be written as

xi =
∑
p|q

xi,pep ∈ Z/qZ

where ep = sp
∏

p′|q
p′ 6=p

p′ ∈ Z so that ep ≡ 1 mod p. Hence

Klm(a; q) =
∏
p|q

p−
m−1

2

∑
x1,p,...,xm,p∈F×p

x1,p···xm,p≡a mod p

e
(x1,pep + · · ·+ xm,pep

q

)

=
∏
p|q

p−
m−1

2

∑
x1,p,...,xm,p∈F×p

x1,p···xm,p≡a mod p

e
(x1,psp + · · ·+ xm,psp

p

)

=
∏
p|q

p−
m−1

2

∑
x1,p,...,xm,p∈F×p

x1,p···xm,p≡asmp mod p

e
(x1,p + · · ·+ xm,p

p

)
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=
∏
p|q

Klm(asmp ; p).

Thus, Klm(a; q) is a q-primeperiodic and it remains to check that all the Klm(asmp ; p)’s are
irreducible trace functions (with conductor ≤ 2m + 1). But this was already shown [22, Sec-
tion 10.3].

Example 2.3.4. Let q be a squarefree number and χ a Dirichlet character modulo q. Define

K(n) = χ(n).

By the Chinese remainder theorem, we have a ring isomorphism

ϕ : Z/qZ −→
⊕
p|q

Z/pZ, n 7−→ (np)p|q,

where np is the reduction of n modulo p. Denote now by n′p ∈
⊕

p|q Z/pZ the element given by

n′p,p′ =

{
np if p′ = p,

1 otherwise.

for p′|q. Hence

ϕ(n) =
∏
p|q

n′p.

Hence
χ(n) =

∏
p|q

χ
(
(ϕ−1(n′p)

)
=
∏
p|q

χp(np)

where χp(np) = χ
(
(ϕ−1(n′p)

)
. It is an easy exercise to check that χp is a Dirichlet character

modulo p. If all χp are non-trivial, we have by Section 10.1 of [22] that K(n) = χ(n) is an
irreducible trace function with conductor ≤ 3.

To deal with sums over primes, we need the following analogous result to Theorem 2.3.2.

Theorem 2.3.5. Let q be a squarefree number, N ≥ 1 and F = (Fp)p|q be a family of irreducible
and non-p-exceptional trace sheaves Fp on A1

Fp , with cond(Fp) ≤ N for all p | q. Let K be the

corresponding isotypic trace function. Then K is (q, aNs)-non-exceptional for some absolute
constants a ≥ 1 and s ≥ 1.

Proof. Note that

K =
∏
p|q

Kp

where Kp is the trace function of Fp, p|q. By Proposition 3.1 in [23] we get that for every
p|q, Kp is (p, aNs)-non-exceptional for some absolute constants a ≥ 1 and s ≥ 1. Hence K is
(q, aNs)-non-exceptional.

2.4. Assumptions on f

We quickly review some standard definitions

Definition 2.4.1. Let Γ be a finite index subgroup of the modular group SL2(Z). A modular
form of weight k for the group Γ is a function f : H −→ C satisfying the following three
conditions:
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(i) f is holomorphic;

(ii) for all z ∈ H and every

(
a b
c d

)
∈ Γ, f

(
az + b

cz + d

)
= (cz + d)kf(z);

(iii) f is holomorphic at the cusps (of Γ\H∗).

Definition 2.4.2. Let Γ be a finite index subgroup of the modular group SL2(Z). A holo-
morphic cusp form of weight k for the group Γ is a modular form of weight k for the group
Γ which vanishes at all cusps.

We define

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
,

which is a subgroup of SL2(Z).

Definition 2.4.3. A modular form of weight k and level D is a modular form of weight
k for the group Γ0(D).

Definition 2.4.4. A holomorphic cusp form of weight k and level D is a holomorphic
cusp form of weight k for the group Γ0(D).

Definition 2.4.5. A Maass form (or Maass waveform) of weight k for the group Γ is a
smooth function f : H −→ C satisfying the following conditions:

(i) for all z ∈ H and every

(
a b
c d

)
∈ Γ, f(az+bcz+d ) = (cz + d)kf(z);

(ii) f is an eigenvector of the Laplace-Beltrami operator ∆ = −y2
( ∂2

∂x2
+
∂2

∂y2

)
, i.e., ∆f = λf

for some λ ∈ C;

(iii) f grows at most polynomially at the cusps of Γ, i.e., if γ · ∞ is a cusp of Γ, there exists
C > 0 and n ∈ N such that |f(γ · z)| ≤ Cyn for y →∞ uniformly in x, where z = x+ iy.

Definition 2.4.6. Let Γ be a finite index subgroup of the modular group SL2(Z). A Maass
cusp form of weight k for the group Γ is a Maass form of weight k for the group Γ which
vanishes at all cusps.

Definition 2.4.7. A Maass form of weight k and level D is a Maass form of weight k for
the group Γ0(D).

Definition 2.4.8. A Maass cusp form of weight k and level D is a Maass cusp form of
weight k for the group Γ0(D).

Definition 2.4.9. In this thesis, by a cusp form f we will mean either

(i) a non-zero holomorphic cusp form of some even weight k ≥ 2 and some level N ≥ 1; or

(ii) a non-zero Maass cusp form of weight 0, level N and Laplace eigenvalue written 1
4 + t2f .

In both cases, we assume f has trivial Nebentypus for simplicity.

Definition 2.4.10. Let Mk be the space of entire modular forms of weight k and Sk the space
of cusp forms of weight k. The mapping 〈·, ·〉 : Mk × Sk −→ C, given by

〈f, g〉 =

ˆ
F

f(z)g(z)yk
dxdy

y2
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is called Petersson inner product, where z = x+ iy and

F =

{
z ∈ H

∣∣∣∣ |Re z| ≤ 1

2
, |z| ≥ 1

}
is a fundamental region of the modular group Γ.

Definition 2.4.11. For a cusp form g of level D, we define the Petersson norm by

‖g‖2D =

ˆ
Γ0(D)\H

|g(z)|2 ykg dxdy
y2

where kg is the weight for g holomorphic and kg = 0 if g is a Maass form.

Definition 2.4.12. Let q ≥ 1 be an integer and k ≥ 2 an even integer. We make the following
definitions:

(i) we denote by Sk(D) the Hilbert space (with respect to the Petersson inner product) of
holomorphic cusp forms of weight k, level D and trivial Nebentypus;

(ii) we denote by L2(D) the Hilbert space (with respect to the Petersson inner product) of
Maass forms of weight 0, level D and trivial Nebentypus;

(iii) we denote by L2
0(D) ⊂ L2(D) the Hilbert space (with respect to the Petersson inner

product) of Maass cusp forms of weight 0, level D and trivial Nebentypus;

These spaces are endowed with the action of the commutative algebra T generated by the
Hecke operators {Tn | n ≥ 1}, where

Tng(z) =
1√
n

∑
ad=n

(a,D)=1

(a
d

) kg
2
∑

0≤b<d

g

(
az + b

d

)
,

where kg = 0 if g ∈ L2(q) and kg = k if g ∈ Sk(D).

Definition 2.4.13. We say that a cusp form f is admissible, if it satisfies the following
properties:

(i) f is an eigenform of all Hecke operators Tn with (n, qN) = 1, where N denotes the level
of f ;

(ii) f is L2-normalized with respect to the Petersson inner product.

Lemma 2.4.14. The operators Tn with (n,D) = 1 are self-adjoint.

Proof. We have to show that 〈Tng, h〉 = 〈g, Tnh〉 for all g, h ∈ L2(D) or Sk(D). We compute
for g, h ∈ Sk(D)

〈Tng, h〉 =

ˆ
F

Tng(z)h(z)yk
dxdy

y2

=

ˆ
k

1√
n

∑
ad=n

(a,D)=1

(a
d

) k
2
∑

0≤b<d

g

(
az + b

d

)
h(z)yk

dxdy

y2

=

ˆ
k

1√
n

∑
ad=n

(a,D)=1

(a
d

) k
2
∑

0≤b<d

dkg(z)h(z)yk
dxdy

y2
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=

ˆ
k

g(z)
1√
n

∑
ad=n

(a,D)=1

(a
d

) k
2
∑

0≤b<d

h

(
az + b

d

)
yk
dxdy

y2

= 〈g, Tnh〉.

Definition 2.4.15. The operators {Tn | (n,D) = 1} generate a subalgebra of T, which we
denote by T(D). A (Hecke) eigenform of T(D) is a modular form which is an eigenvector for
all Hecke operators in T(D).

Therefore, the spaces Sk(D) and L2
0(D) have an orthonormal basis made of eigenforms of

T(D) which contain all L2-normalized Hecke newforms. Such bases are denoted by Bk(D) and
B(D), respectively.

Lemma 2.4.16. For `1 6= `2 prime numbers, we have that T`1T`2f = T`1`2f and hence
λf (`1)λf (`2) = λf (`1`2), where f ∈ Sk(D) or f ∈ L2

0(D).

Proof. We compute for f ∈ Sk(D)

T`1T`2f(z) =
1√
`1

∑
a1d1=`1
(a1,D)=1

(a1

d1

) kf
2

∑
0≤b1<d1

1√
`2

∑
a2d2=`1
(a2,D)=1

(a2

d2

) kf
2

∑
0≤b2<d2

dk1d
k
2f(z)

=
1√
`1`2

∑
a1d1=`1
(a1,D)=1

∑
a2d2=`1
(a2,D)=1

(a1a2

d1d2

) kf
2

∑
0≤b1<d1

∑
0≤b2<d2

(d1d2)kf(z)

and by using that (`1, `2) = 1, this is

=
1√
`1`2

∑
ad=`1`2
(a,D)=1

(a
d

) kf
2
∑

0≤b<d

dkf(z)

= T`1`2f(z),

and analogous for f ∈ L2
0(D).

We denote by E(D) the Eisenstein spectrum. The spectral expansion for ψ ∈ E(q) can be
written

ψ(z) =
∑
χ

∑
g∈B(χ)

ˆ
R

〈ψ,Eχ,g(z, t)〉Eχ,g(z, t)
dt

4π
.

This and the following proposition are explained in more detail in [22] in Section 3.1.1.

Proposition 2.4.17. For (n, q) = 1 and Tn ∈ T(q), we have that the Eχ,g(t) are eigenvectors
of Tn with eigenvalue

λχ(n, t) =
∑
ab=n

χ(a)χ(b)
(a
b

)it
,

i.e.,

TnEχ,g(t) = λχ(n, t)Eχ,g(t).
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2.5. Assumptions on V

Definition 2.5.1. Let P > 0 and Q ≥ 1 be real numbers and let C = (Cν)ν≥0 be a sequence
of non-negative real numbers. A smooth compactly supported function V on [0,+∞[ satisfies
Condition (V (P,Q,C)) if

(i) The support of V is contained in the interval [P, 2P ];

(ii) For all x > 0 and all integers ν ≥ 0 we have the inequality

∣∣∣∣xν dνdxν V (x)

∣∣∣∣ ≤ CνQν .

In the remainder of this thesis and we will often simply write V (P,Q) instead of V (P,Q,C)
and not mention the dependence on C at all. Also note that later on, we will introduce another
quantity denoted C, which should not be confused with the one used in the above definition.
Following this convention makes the notation more consistent with the one in [22].

2.6. The main theorems

We will prove the following results, which are a generalisation of [22, Theorem 1.9] and [23,
Theorem 1.15].

Theorem 2.6.1 (Bounds for good twists of cusp forms). Let P > 0, Q ≥ 1 and M ≥ 1 be real
numbers. Let f be an admissible cusp form, q ≥ 1 a squarefree number and V a function satis-
fying Condition (V (P,Q,C)). Let K : Z/qZ −→ C be a (q,M)-good q-primeperiodic function.
Then

SV (f,K; q)�Mω(q)q1−δ(PQ)
1
2 (P + 1)

1
2 + 1

8−δQ,

for any δ < 1
8 , where the implied constant depends only on (f, δ, C).

Theorem 2.6.2 (Bounds for good twists of Eisenstein series). Let P > 0 and Q ≥ 1 be real
numbers and let V be a functions satisfying condition (V (P,Q,C)). Let q be a squarefree integer
and let Kp : Fp −→ C be a function for every p | q. Define K : Z/qZ −→ C by

K(z) =
∏
p|q

Kp(z).

Assume that K is (q,M)-good. Then

SV (Eχ,f (t),K; q) =
∑
n≥1

dit(n)K(n)V
(n
q

)
�η,C,M (1 + |t|)AQP

(
1 +

1

P

) 1
2

q1−η

for any η < 1
8 and for some A ≥ 1 possibly depending on η.

In this thesis, we will focus on the proof of Theorem 2.6.1 and only sketch the proof of Theo-
rem 2.6.2. Concerning applications, we are interested in sums over primes. By Theorem 2.3.5,
the following theorem is a generalization of Theorem 1.5 in [23].

Theorem 2.6.3 (Trace weights vs. primes). Let P > 0 and Q ≥ 1 be real numbers and
let V be a functions satisfying condition (V (P,Q,C)). Let q be a squarefree integer and let
K : Z/qZ −→ C be a q-primeperiodic function. Assume that K is (q,M)-good and (q,M)-non-
exceptional. Then ∑

n

Λ(n)K(n)V
(n
q

)
�η,M,C QP

(
1 +

1

P

) 1
6

q1−η

for any η < 1
24 .

The proof of this theorem is carried out in Section 6. An application of this result is presented
in Section 7.



3. Proof of Theorem 2.6.1

To give the proof of Theorem 2.6.1, we need some technical results presented in the next
subsection. The actual proof is then carried out in Section 3.2.

3.1. Statement of the main technical results

By viewing f as being of level 2 or 3 if N = 1, we can assume that N ≥ 2.

Lemma 3.1.1. Let f be an admissible form. Then f is a cusp form with respect to the smaller
congruence subgroup Γ0(qN) and the function

f(z)

[Γ0(N) : Γ0(qN)]
1
2

=
f(z)

(q + 1)
1
2

may therefore be embedded in a suitable orthonormal basis of modular cusp forms of level D =
qN , which we denote either B(D) or Bkf (D).

Definition 3.1.2. For coefficients (b`)L≤`≤2L and any modular form h, we define the amplifier
B(h) by

B(b`)(L;h) =
∑

L≤`≤2L

b`λh(`).

We also use the notation B(b`),χ(L; g, t) = B(b`)(L;Eg,χ(t)), where χ is a Dirichlet character
modulo N and g ∈ B(χ).

Definition 3.1.3. We define for any even integer k ≥ 2

M(L; k) =
(k − 2)!

π(4π)k−1

∑
g∈Bk(D)

|B(L; g)|2 |S(g,K, q)|2

and

M(L) = MHol(L) +MMaa(L) +MEis(L)

where

MHol(L) =
∑
k>0
k even

φ̇a,b(k)(k − 1)M(L; k)

MMaa(L) =
∑

g∈B(D)

φ̃a,b(tg)
4π

cosh(πtg)
|B(L; g)|2 |S(g,K, q)|2

MEis(L) =
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃a,b(t)
1

cosh(πt)
|B(L; g, t)|2 |S(Eχ,g(t),K, q)|2 dt

where φa,b is given by Definition A.0.8. MHol(L), MMaa(L) and MEis(L) are called the holo-
morphic, Maass and Eisenstein contributions of M(L).

29
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Proposition 3.1.4 (Bounds for the amplified moment). Let P > 0 and Q ≥ 1 be real numbers,
let f : H −→ C be an admissible cusp form and let V : (0,∞) −→ R be a smooth compactly
supported function satisfying Condition (V (P,Q)). Further, let q ≥ 1 be a squarefree integer
and let K : Z/qZ −→ C be a (q,M)-good q-primeperiodic function. Then for any ε > 0 and any
L > 0 with

qεLQ < q
1
4 ,

we have that for all sequences of complex numbers (b`) supported on primes ` with L ≤ ` ≤ 2L
and such that |b`| ≤ 2 for all `, the following holds: There exists k(ε) ≥ 2, such that for all
k ≥ k(ε) and all integers a > b > 2 satisfying

a− b ≥ k(ε), a ≡ b ≡ 1 mod 2,

we have that

M(L), k−3M(L; k)�ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

The implied constants depend on (ε, a, b, f), but they are independent of k. Note that M(L)
depends also on V , K, q and f .

3.2. Back to the proof of Theorem 2.6.1

We now give a proof of Theorem 2.6.1. So assume P , Q, f , q, V and K are given as in
Theorem 2.6.1. Set

b` =

{
sign(λf (`)) if ` - qN is a prime with L ≤ ` ≤ 2L and λf (`) 6= 0,

0 otherwise,
(3.1)

where λf denotes the Hecke eigenvalues of f . Hence b` ∈ {−1, 0, 1} and we get for all ` the
trivial bound |b`| ≤ 1. Fix ε > 0. Now, Proposition 3.1.4 gives us a k(ε) ≥ 2.

Lemma 3.2.1. For a cusp form f which is a Hecke eigenform, we have

(q + 1)−1 |B(f)|2 |S(f,K; q)|2 � (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q). (3.2)

For a Eisenstein series Eχ,h which is a Hecke eigenform, we have

ˆ ∞
−∞

min
(
|t|2 , |t|−2−2b ) |B(h, t)|2 |SV (Eχ,f (t),K, q)|2 dt

� q(q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Proof. We will apply Proposition 3.1.4. Let ε > 0 and let

L =
1

2
q

1
4−εQ−1. (3.3)

Then

qεLQ =
1

2
q

1
4 < q

1
4 .

Furthermore, let k(ε) as in Proposition 3.1.4 and let a > b ≥ 2 be odd integers, large enough
(depending on ε), such that a − b ≥ k(ε). Hence the assumptions of Proposition 3.1.4 are
satisfied and we get that

M(L), k−3M(L; k)�ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q). (3.4)
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By Proposition A.0.9, we see that all summands of M(L) are non-negative, except that for
a− b < k ≤ a+ b, where some of the φ̇(k) may be negative. By adding

2
∑

a−b<k≤a+b

φ̇(k)>0

∣∣∣φ̇(k)
∣∣∣ (k − 1)M(L; k)

to M(L), we get a sum with only non-negative summands, i.e., we have

M(L)+2
∑

a−b<k≤a+b

φ̇(k)>0

∣∣∣φ̇(k)
∣∣∣ (k − 1)M(L; k)

=
∑
k>0
k even

∣∣∣φ̇a,b(k)
∣∣∣ (k − 1)M(L; k) +

∑
g∈B(D)

φ̃a,b(tg)
4π

cosh(πtg)
|B(g)|2 |S(g,K, q)|2

+
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃a,b(t)
1

cosh(πt)
|B(g, t)|2 |S(Eχ,g(t),K, q)|2 dt

On the other hand, we have by Proposition A.0.9 that

M(L)+2
∑

a−b<k≤a+b

φ̇(k)>0

∣∣∣φ̇(k)
∣∣∣ (k − 1)M(L; k)

�M(L) + 2
∑

a−b<k≤a+b

φ̇(k)>0

k − 1

k2b+2
M(L; k)

�M(L) + 2
∑

a−b<k≤a+b

φ̇(k)>0

k−3M(L; k)

which, using Proposition 3.1.4, can be estimated as

�ε,a,b,f

1 +
∑

a−b<k≤a+b

1

 (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q)

�ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Hence ∑
k>0
k even

∣∣∣φ̇a,b(k)
∣∣∣ (k − 1)M(L; k) +

∑
g∈B(D)

φ̃a,b(tg)
4π

cosh(πtg)
|B(g)|2 |S(g,K, q)|2

+
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃a,b(t)
1

cosh(πt)
|B(g, t)|2 |S(Eχ,g(t),K, q)|2 dt

� (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q) (3.5)

with all terms non-negative. In particular∑
g∈B(D)

φ̃a,b(tg)
4π

cosh(πtg)
|B(g)|2 |S(g,K, q)|2 �ε,a,b,f (q1+εL1+ε+q

1
2 +εL3Q2)P (P+1)1+εQ2M2ω(q),
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and if f̃ = f√
q+1
∈ B(D),

φ̃a,b(tf̃ )
4π

cosh(πtf̃ )

∣∣∣B(f̃)
∣∣∣2 ∣∣∣S(f̃ ,K, q)

∣∣∣2 �ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Consequently, since (q + 1)−
1
2S(f,K, q) = S(f̃ ,K, q) and B(f) = B(f̃),

φ̃a,b(tf )
4π

cosh(πtf )
(q + 1)−1 |B(f)|2 |S(f,K, q)|2

�ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Furthermore, because tf ∈ R∪ (−i/4, i/4), we have that cosh(πt) ≥ 1
2 and by Proposition A.0.9

that φ̃a,b(tf ) � (1 + |t|)−2b−2. Thus

(q + 1)−1 |B(f)|2 |S(f,K, q)|2 �ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q),

which is equation (3.2) in the case where f is a Maass cusp form. If f̃ = f√
q+1
∈ Bkf (D), we

analogously argue that∑
k>0
k even

∣∣∣φ̇a,b(k)
∣∣∣ (k − 1)

(k − 2)!

π(4π)k−1

∑
g∈Bk(D)

|B(g)|2 |S(g,K, q)|2

�ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q)

and a fortiori∣∣∣φ̇a,b(kf )
∣∣∣ (kf − 1)

(kf − 2)!

π(4π)kf−1

∣∣∣B(f̃)
∣∣∣2 ∣∣∣S(f̃ ,K, q)

∣∣∣2
�ε,a,b,f (q1+εL1+ε + q

1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Again, this is

(q + 1)−1 |B(f)|2 |S(f,K, p)|2 �ε,a,b,f (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q),

which also gives us equation (3.2) in the case where f is a holomorphic cusp form.
It remains to check the case where h̃ = h√

q+1
is in the Eisenstein spectrum E(q). Then there

exists a characeter χ such that h ∈ B(χ). By Proposition A.0.9, we get that
ˆ ∞
−∞

min
(
|t|2 , |t|−2b−2 ) |B(h, t)|2 |S(Eχ,h(t),K, q)|2 dt

= (q + 1)

ˆ ∞
−∞

min
(
|t|2 , |t|−2b−2 ) ∣∣∣B(h̃, t)

∣∣∣2 ∣∣∣S(Eχ,h̃(t),K, q)
∣∣∣2 dt

� q

ˆ ∞
−∞

(1 + |t|)−2b−2
∣∣∣B(h̃, t)

∣∣∣2 ∣∣∣S(Eχ,h̃(t),K, q)
∣∣∣2 dt

� q

ˆ ∞
−∞

φ̃a,b(t)
1

cosh(πt)

∣∣∣B(h̃, t)
∣∣∣2 ∣∣∣S(Eχ,h̃(t),K, q)

∣∣∣2 dt
which is by (3.5)

� q(q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

This completes the proof.
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Lemma 3.2.2. For L < q and (b`) given by (3.1), we have for B(f) as in Definition 3.1.2,

B(f)�f
L

(logL)4

where the implied constant depends on f .

Proof. By the definition of B(f), we have

B(f) =
∑

L≤`≤2L
`-qN

λf (`) 6=0

sign(λf (`))λf (`) =
∑

L≤`≤2L
`-qN

|λf (`)| .

If we let
L =

{
` ∼ L

∣∣ ` - qN, |λf (`)| > (logL)−1
}

,

then
L

logL
�
∑
`∼L
`-qN

|λf (`)|2 � L

(logL)3
+ |L|

1
2

(∑
`∼L

|λf (`)|4
) 1

2

by the Prime Number Theorem for the Rankin-Selberg L-function L(f ⊗ f, s) (see e.g. [17,
Theorem 5.44 and Theorem 5.13]) and the Cauchy-Schwarz inequality. By [21, (3.4)],∑

`∼L

|λf (`)|4 �f L logL

and hence
L

logL
�f

√
|L|
√
L logL.

Therefore

B(f) ≥ |L|
logL

�f
L

(logL)4
.

We can now complete the proof of Theorem 2.6.1. By (3.2) we have that

|S(f,K; q)|2 �ε,a,b,f (q + 1)(q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q) |B(f)|−2

which is by Lemma 3.2.2 and the definition of L

�ε,a,b,f q
7
4 +εQP (P + 1)1+εQ2M2ω(q)(logL)8, (3.6)

where we renamed ε.
Recall the definition of L by (3.3). We consider now the cases where L ≥ 1 and L < 1

separately. First, if L ≥ 1, we get by (3.6) that

S(f,K; q)�ε,a,b,f q
7
8 +ε(PQ)

1
2 (P + 1)

1
2 + ε

2QMω(q)

since

log(L) = log

(
1

2
q

1
4−εQ−1

)
= − log(2)− log(Q) +

(
1

4
− ε
)

log(q)
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≤ log(q)�ε q
ε
2 .

In the case L < 1, we have Q > 1
2q

1
4−ε and hence q

1
8−

ε
2 � Q

1
2 . Consequently, by the trivial

bound for S(f,K; q),

S(f,K; q)�f,V q max
1≤n≤q

|K(n)| �f,V qMω(q) �f,V Mω(q)q
7
8 + ε

2Q
1
2

�f,V Mω(q)q
7
8 +ε(PQ)

1
2 (P + 1)

1
2 + ε

2Q.

This completes the proof of Theorem 2.6.1.

3.3. Sketch of the proof for Theorem 2.6.2

The proof of Theorem 2.6.2 is analogous to the proof of [23, Theorem 1.15]. In [23], the proofs
of Theorem 1.15 and 1.16 are carried out simultaneously. Hence, we will now also state the
generalized version of Theorem 1.16, which is actually the theorem which we will need later on,
when we consider some applications.

Definition 3.3.1. We say that a test function V satisfies condition V (Q) if it is compactly
supported in [ 1

2 , 2] such that

xjV (j)(x)� Qj

for some Q ≥ 1 and for any integer j ≥ 0, where the implicit constant depends on j.

Theorem 3.3.2. Let q be a squarefree number and let K : Z/qZ −→ C be a q-primeperiodic
function. Assume that K is (q,M)-good. Let P ≥ 0 be a parameter and define X = Pq. Let
M,N ≥ 1 be parameters with X

4 ≤ MN ≤ X. Let U , V , W be smooth functions satisfying
conditions V (QU ), V (QV ) and V (QW ) respectively, with QU , QV , QW ≥ 1. Then, if q is big

enough such that q
3
4 ≤ X ≤ q 3

2 , we have∑
m,n

K(mn)
(m
n

)it
U
(m
M

)
V
( n
N

)
W
(mn
X

)
�
(
1 + |t|

)A
(QU +QV )BQWX

(
1 +

q

X

) 1
2

q−η

for t ∈ R and for any η < 1
8 and for some constants A, B ≥ 1 depending on η only. The implicit

constant depends only on η, on the implicit constants in Definition 3.3.1, and polynomially on
M .

We adapt the notation of [23] and define

P = (U, V,W,M,N,X)

and

SP(it,K) =
∑
m,n

K(mn)
(m
n

)it
U
(m
M

)
V
( n
N

)
W
(mn
X

)
as well as

SV,X(it,K) =
∑
n

K(n)dit(n)V
( n
X

)
.

Furthermore, one should keep in mind that X = Pq. To prove Theorem 2.6.2 and Theorem 3.3.2
we follow the proof of Theorem 1.15 and 1.16 in [23] which is carried out there in section 2.

Lemma 2.1 of [23] holds without any modification for q squarefree instead of p prime as the
proof is completely analytic. Furthermore, Lemma 2.2 is not needed in our case, as for q large
enough compared to P , we have q

3
4 ≤ X ≤ q

3
2 , where X = Pq. Hence by assuming this, we

can continue the proof following section 2.2 of [23]. Hence we define the amplifie
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Definition 3.3.3. For τ ∈ R, L ≥ 1 and u ∈ C we define the amplifier of length 2L adapted
to the Eisenstein series E(z, 1

2 + iτ) by

Biτ (u) =
∑
`∼L
`-qN
` prime

sign
(
diτ (`)

)
du(`).

Lemma 3.3.4. For L large enough, we have

Biτ (it)� L

(logL)6
,

uniformly for t and τ ∈ R satisfying

|t− τ | � 1

(logL)7
and |τ | ≤ L 1

3 .

For a proof, see [23, Lemma 2.4]. Since B(h, t) = Biτ (it) for h = E(z, 1
2 + it) and f =

(z, 1
2 + iτ), Lemma 3.2.1 is a generalized version of Lemma 2.3 in [23]. We can then complete

the proof of Theorem 2.6.2 completely analogous to the proof of [23, Theorem 1.15] as described
on page 1706 – 1709 in [23].





4. Proof of Proposition 3.1.4

The aim of this section is to give a proof of Proposition 3.1.4. Recall that M(L; k) and M(L)
are given by Definition 3.1.3. By defining

ck =
(k − 2)!

π(4π)k−1

we get that

M(L; k) = ck
∑

g∈Bk(D)

∣∣∣∣∑
`∼L

b`λg(`)

∣∣∣∣2∣∣∣∣ ∞∑
n=1

%g(n)K(n)V
(n
q

)∣∣∣∣2,

where D = qN . Since λg(`1) and λg(`2) are real, we have

M(L; k) = ck
∑

g∈Bk(D)

∣∣∣∣∑
`∼L

b`λg(`)

∣∣∣∣2∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2

= ck
∑

g∈Bk(D)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L

b`1λg(`1)b`2λg(`2)

and hence we can split up M(L; k) into a diagonal and a non-diagonal term, i.e.,

M(L; k) = M∆(L; k) +M 6∆(L; k)

where

M∆(L; k) = ck
∑

g∈Bk(D)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2∑
`∼L

|b`|2 |λg(`)|2

M 6∆(L; k) = ck
∑

g∈Bk(D)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λg(`1)b`2λg(`2).

Similarly, expanding M(L) using Definition 3.1.2 and Definition 2.1.2 yields

M(L) = MHol(L) +MMaa(L) +MEis(L)

where

MHol(L) =
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L

b`1λg(`1)b`2λg(`2)

MMaa(L) =
∑

g∈B(D)

φ̃(tg)
4π

cosh(πtg)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L

b`1λg(`1)b`2λg(`2)

MEis(L) =
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)

∣∣∣∣ ∑
n∼qP

%g(n, t)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L

b`1λχ(`1, t)b`2λχ(`2, t)dt.

37
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We can split up MHol(L), MMaa(L) and MEis(L) into diagonal and non-diagonal terms,
i.e.,

MHol(L) = M∆,Hol(L) +M 6∆,Hol(L)

MMaa(L) = M∆,Maa(L) +M 6∆,Maa(L)

MEis(L) = M∆,Eis(L) +M 6∆,Eis(L)

where

M∆,Hol(L) =
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2∑
`∼L

|b`|2 |λg(`)|2

M∆,Maa(L) =
∑

g∈B(D)

φ̃(tg)
4π

cosh(πtg)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2∑
`∼L

|b`|2 |λg(`)|2

M∆,Eis(L) =
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)

∣∣∣∣ ∑
n∼qP

%g(n, t)K(n)V
(n
q

)∣∣∣∣2∑
`∼L

|b`|2 |λχ(`, t)|2 dt

and

M 6∆,Hol(L) =
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λg(`1)b`2λg(`2)

M 6∆,Maa(L) =
∑

g∈B(D)

φ̃(tg)
4π

cosh(πtg)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λg(`1)b`2λg(`2)

M 6∆,Eis(L) =
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)

∣∣∣∣ ∑
n∼qP

%g(n, t)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λχ(`1, t)b`2λχ(`2, t)dt.

Similarly, we write
M(L) = M4(L) +M 64(L)

where

M∆(L) = M∆,Hol(L) +M∆,Maa(L) +M∆,Eis(L)

M 6∆(L) = M 6∆,Hol(L) +M 6∆,Maa(L) +M 6∆,Eis(L).

4.1. Estimate of the diagonal terms M∆(L; k) and M∆(L)

Proposition 4.1.1. Assume that |K| ≤M . For any ε > 0 we have

M∆(L; k)�ε,N qL1+εP (P + 1)M2

where the implied constant depends only on N and ε.

Proof. Since |b`| ≤ 2, we have for any g ∈ Bk(D)∑
L≤`≤2L

|b`|2 |λg(`)|2 ≤ 4
∑

L≤`≤2L

|λg(`)|2
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which is by Deligne’s bound (Proposition B.0.17)

�ε

∑
L≤`≤2L

`ε �ε L
1+ε.

Hence

M∆(L; k)�ε ckL
1+ε

∑
g∈Bk(D)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2

and since V satisfies condition (V (P,Q)), this is

�ε ckL
1+ε

∑
g∈Bk(D)

∣∣∣∣ ∑
n∼qP

K(n)%g(n)

∣∣∣∣2. (4.1)

Hence we get by the large sieve inequality (Theorem B.0.12)

M∆(L; k)�ε ckL
1+ε
(

1 +
qP

qN

) ∑
n∼qP

|K(n)|2

which is

�ε ckL
1+ε(1 + PN−1)qPM2

�ε,N ckqL
1+εP (P + 1)M2.

For the other diagonal terms, the analogous result to Proposition 4.1.1 is

Proposition 4.1.2. Assume that |K| ≤M . For any ε > 0 and b = dε−1e we have

M∆,Hol(L), M∆,Maa(L), M∆,Eis(L)�ε,N qL1+εP (P + 1)M2 (4.2)

where the implied constant depends only on N and ε.

Proof. The proof is completely analogous to the one of Lemma 5.1 in [22], except that we have
to replace p by q.

Corollary 4.1.3. We have

M∆(L)� qL1+εP (P + 1)M2.

4.2. Estimate of the non-diagonal term M 6∆(L; k)

Now, we deal with the non-diagonal part, where `1 6= `2. We have by Proposition B.0.11 and
Proposition B.0.10 that

λg(`1)λg(`2)%g(n1) = λg(`1`2)%g(n1) =
∑

d|(`1`2,n1)
(d,qN)=1

%g

(
`1`2n1

d2

)
.
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By this, we get,

M 6∆(L; k) = ck
∑

g∈Bk(D)

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λg(`1)b`2λg(`2)

= ck
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP
K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)

·
∑

g∈Bk(D)

λg(`1)λg(`2)%g(n1)%g(n2)

= ck
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)

·
∑

g∈Bk(D)

%g

(
`1`2n1

d2

)
%g(n2).

By the Petersson formula (Proposition A.0.3), we have that

∑
g∈Bk(D)

%g

(
`1`2n1

d2

)
%g(n2) =

(4π)k−1

(k − 2)!

(
δ

(
`1`2n1

d2
, n2

)

+ 2πi−k
∑
c>0
D|c

1

c
S

(
`1`2n1

d2
, n2; c

)
Jk−1

(
4π
√
`1`2d−2n1n2

c

))

=
1

πck

(
δ
(`1`2n1

d2
, n2

)
+ ∆D,k

(
`1`2n1

d2
, n2

))
.

Thus

M 6∆(L; k) =
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)

·

(
δ
(`1`2n1

d2
, n2

)
+ ∆D,k

(
`1`2n1

d2
, n2

))
= M 6∆,δ(L; k) +M 6∆,6δ(L; k),

where

M 6∆,δ(L; k) =
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)
δ
(`1`2n1

d2
, n2

)

M 6∆,6δ(L; k) =
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)
∆D,k

(
`1`2n1

d2
, n2

)
.
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Lemma 4.2.1. We have

M 6∆(L; k)� k3q
1
2 +εP (P + 1)1+εQ4M2ω(q)L3 + k3q1+εP (P + 1)Q2M2ω(q)L.

Proof. We will see in Lemma 4.2.2 that

M 6∆,δ(L; k)�B qLPM2ω(q)

and in Lemma 4.2.3 that

M 6∆,6δ(L; k)� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L.

Hence, we have by renaming ε

M 6∆(L; k)�ε,N k3q
1
2 +εP (P + 1)1+εQ4M2ω(q)L3 + k3q1+εP (P + 1)Q2M2ω(q)L.

4.2.1. Estimate of M 6∆,δ(L; k)

Lemma 4.2.2 (Estimate of M 6∆,δ(L; k)). Let K(n) be such that |K| ≤M for some M ≥ 1 and
b` be such that |b`| ≤ B for some B > 0. Assume that qP ≥ L. Then we have

M 6∆,δ(L; k)�B qLPM2.

Proof. We compute

M 6∆,δ(L; k) =
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)
δ
(`1`2n1

d2
, n2

)

=
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

n1∼qP

∑
d|(`1`2,n1)
(d,qN)=1
`1`2n1
d2

∼qP

K(n1)K

(
`1`2n1

d2

)
V

(
n1

q

)
V

(
`1`2n1

d2q

)

=
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

∑
n1∼qP
d|n1

en1
d ∼qP

K(n1)K

(
en1

d

)
V

(
n1

q

)
V

(
en1

dq

)

which is by setting m = n1d
−1 equal to

=
1

π

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

∑
m

m∼ qPd
m∼ qPe

K(dm)K(em)V

(
dm

q

)
V

(
em

q

)
.

Hence ∣∣M 6∆,δ(L; k)
∣∣ ≤ 1

π

∑
`1,`2∼L
`1 6=`2

|b`1 |
∣∣b`2∣∣ ∑

de=`1`2
(d,qN)=1

∑
m

m∼ qPd
m∼ qPe

M2
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≤ 1

π

∑
`1,`2∼L
`1 6=`2

|b`1 |
∣∣b`2∣∣ ∑

de=`1`2
(d,qN)=1

M2 min
(qP
d
,
qP

e

)
.

Since de = `1`2 with `i ∼ L, we have that max(d, e) ≥ L and hence

≤ 4

π

∑
`1,`2∼L
`1 6=`2

|b`1 |
∣∣b`2∣∣M2qPL−1

≤ 4

π
L2B2M2qPL−1 =

4

π
B2qLPM2

�B qLPM2.

This completes the proof.

4.2.2. Estimate of M 6∆, 6δ(L; k)

Lemma 4.2.3. We have that

M 6∆,6δ(L; k)� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L.

To prove this Lemma, we define

M [φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑
d|`1`2

(d,qN)=1

∑
n1,n2

d|n1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)

·
∑
c>0
D|c

1

c
S

(
`1`2n1

d2
, n2; c

)
φ

(
4π

c

√
`1`2n1n2

d2

)
(4.3)

=
1

D

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑
d|`1`2

(d,qN)=1

∑
n1,n2

d|n1

K(n1)K(n2)V

(
n1

q

)
V

(
n2

q

)

·
∑
c≥1

1

c
S

(
`1`2n1

d2
, n2; cD

)
φ

(
4π

cD

√
`1`2n1n2

d2

)

for an arbitrary function φ. Then we have

M 6∆,6δ(L; k) = M [φk]

with

φk = 2i−kJk−1.

Proof of Lemma 4.2.3. We have by Proposition 5.0.1 below that

M 6∆,6δ(L; k) = M [φk]� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L.
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4.3. Estimate of the non-diagonal term M 6∆(L)

By using Proposition B.0.10 and Proposition B.0.11, we get that

λg(`1)λg(`2)%g(n1) = λg(`1`2)%g(n1) =
∑

d|(`1`2,n1)
(d,qN)=1

%g

(`1`2n1

d2

)
.

Consequently, we have for the holomorphic part

M 6∆,Hol(L) =
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1

∣∣∣∣ ∑
n∼qP

%g(n)K(n)V
(n
q

)∣∣∣∣2 ∑
`1,`2∼L
`1 6=`2

b`1λg(`1)b`2λg(`2)

=
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP
K(n1)K(n2)V

(n1

q

)
V
(n2

q

)

·
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1
λg(`1)λg(`2)%g(n1)%g(n2)

=
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)

·
∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1
%g

(`1`2n1

d2

)
%g(n2)

and similarly for the Maass part

M 64,Maa(L) =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)

·
∑

g∈B(D)

φ̃(tg)
4π

cosh(πtg)
%g

(`1`2n1

d2

)
%g(n2)

as well as for the Eisenstein part

M 6∆,Eis(L) =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)

·
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)
%g

(`1`2n2

d2
, t
)
%g(n2, t)dt.

Therefore, we get

M 6∆(L) =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)

·

( ∑
k>0
k even

∑
g∈Bk(D)

φ̇a,b(k)
(k − 1)!

π(4π)k−1
%g

(`1`2n1

d2

)
%g(n2)
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+
∑

g∈B(D)

φ̃(tg)
4π

cosh(πtg)
%g

(`1`2n1

d2

)
%g(n2)

+
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)
%g

(`1`2n1

d2
, t
)
%g(n2, t)dt

)

=
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)
∆D,φ

(
n2,

`1`2n1

d2

)

which is by Kuznetsov’s formula (Theorem A.0.7)

=
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

n1,n2∼qP

∑
d|(`1`2,n1)
(d,qN)=1

K(n1)K(n2)V
(n1

q

)
V
(n2

q

)

·
∑
c>0
D|c

1

c
S
(
n2,

`1`2n1

d2
; c
)
φa,b

(
4π

c

√
`1`2n1n2

d2

)
.

Recalling (4.3), the definition of M [φ], we can write M 6∆(L) as

M 6∆(L) = M [φa,b]

with
φa,b(x) = ib−aJa(x)x−b.

Lemma 4.3.1. We have that

M 6∆(L)� q
1
2 +11εP 2+εQ4M2ω(q)L3 + q1+6εP 2Q2M2ω(q)L.

Proof. We have by Proposition 5.0.1 below that

M 6∆(L) = M [φa,b]� q
1
2 +11εP 2+εQ4M2ω(q)L3 + q1+6εP 2Q2M2ω(q)L.

4.4. Completion of the proof of Proposition 3.1.4

By Proposition 4.1.1 and Lemma 4.2.1,

M(L; k) = M∆(L; k) +M 6∆(L; k)� k3(q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

Moreover, by Corollary 4.1.3 and Lemma 4.3.1,

M(L) = M∆(L) +M 6∆(L)� (q1+εL1+ε + q
1
2 +εL3Q2)P (P + 1)1+εQ2M2ω(q).

This completes the proof of Proposition 3.1.4.



5. Estimate of M [φ] for φ = φk and φ = φa,b

In this section, we examine M [φ] for an arbitrary function φ. We rewrite M [φ] as

M [φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M [φ; d, e],

where

M [φ; d, e] =
1

qN

∑
c≥1

1

c
Eφ(c, d, e)

and

Eφ(c, d, e) =
∑
n1

∑
n2

S(en1, n2; cqN)K(dn1)K(n2)φ

(
4π
√
en1n2

cqN

)
V

(
dn1

q

)
V

(
n2

q

)
=
∑
n1≥1

∑
n2≥1

S(en1, n2; cqN)K(dn1)K(n2)Hφ(n1, n2; e) (5.1)

with

Hφ(x, y; z) = φ

(
4π
√
zxy

cqN

)
V

(
dx

q

)
V

(
y

q

)
.

We define a parameter C = C(d, e) ≥ 1 depending only on d and e. We then decompose

M [φ; d, e] = M c>C [φ; d, e] +M c≤C [φ; d, e]

where

M c>C [φ; d, e] =
1

qN

∑
c>C(d,e)

1

c
Eφ(c, d, e)

M c≤C [φ; d, e] =
1

qN

∑
1≤c≤C(d,e)

1

c
Eφ(c, d, e).

Accordingly, we decompose

M [φ] = M c>C [φ; d, e] +M c≤C [φ]

where

M c>C [φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c>C [φ; d, e]

M c≤C [φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C [φ; d, e].

45
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In what follows, we will choose

C = C(d, e) = max

(
1

2
, qεP

√
e

d

)
. (5.2)

Note that then C � qεLP .

Proposition 5.0.1. We have

M [φk]� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L

and

M [φa,b]� q
1
2 +11εP 2+εQ4M2ω(q)L3 + q1+6εP 2Q2M2ω(q)L.

To give a proof of this proposition, we need estimates for M c>C [φ] and M c≤C [φ]. We will
give an estimate for M c>C [φ] in Section 5.1 (Proposition 5.1.1) and an estimate for M c≤C [φ] in
Section 5.2 (Proposition 5.2.1). With these estimates at our disposal, the proof is very simple.

Proof. Since

M [φ] = M c>C [φ] +M c≤C [φ]

and Proposition 5.1.1 tells us that M c>C [φ; d, e] is negligible, we get by Proposition 5.2.1

M [φk]� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L

and analogously for M [φa,b].

5.1. Estimate of M c>C [φ]

The goal of this section is to prove the following proposition.

Proposition 5.1.1. Let ε > 0 and d, e be given. Define C as in (5.2). Let k(ε) = 12ε−1.
Then

(i) for all k ≥ k(ε),

M c>C [φk]� q−10L3M2P 3,

(ii) for all a > b > 2 such that a− b ≥ k(ε),

M c>C [φa,b]� q−10L3M2P 3.

5.1.1. Estimate of Eφ(c, d, e)

Lemma 5.1.2. Let φ : [0,+∞[ −→ C be a function such that for some B ≥ 0, κ ≥ 0 and all
x > 0

|φ(x)| ≤ Bxκ. (5.3)

Further, assume that |K(n)| ≤M and that V satisfies condition (V (Q,P )). Then

Eφ(c, d, e)�B,κ,N M2c1−κ
( e
d

)κ
2

q3P 2+κ. (5.4)
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Proof. Using the trivial bound for Kloosterman sums (Proposition A.0.4) and the bound |K(n)| ≤
M , we get

|Eφ(c, d, e)| ≤
∑
n1

∑
n2

cqNM2 |Hφ(n1, n2; e)|

= cqNM2
∑
n1

∑
n2

∣∣∣∣φ(4π
√
en1n2

cqN

)∣∣∣∣V (dn1

q

)
V

(
n2

q

)

and since V satisfies condition (V (Q,P )), this is

≤ cqNM2
∑

n1∼ qPd

∑
n2∼qP

∣∣∣∣φ(4π
√
en1n2

cqN

)∣∣∣∣ .
Furthermore, by (5.3), this becomes

Eφ(c, d, e)�B,κ,N (cq)1−κM2
∑

n1∼ qPd

∑
n2∼qP

(en1n2)
κ
2

�B,κ,N (cq)1−κM2
( e
d

)κ
2

qκPκ
∑

n1∼ qPd

∑
n2∼qP

1

�B,κ,N (cq)1−κM2
( e
d

)κ
2

qκPκq2P 2 1

d

which is

�B,κ,N M2c1−κ
( e
d

)κ
2

q3P 2+κ.

5.1.2. Proof of Proposition 5.1.1

Recall that

φk(x) = 2i−kJk−1(x). (5.5)

and by Definition A.0.8,

φa,b(x) = ib−aJa(x)x−b. (5.6)

First, we derive the following lemma.

Lemma 5.1.3. With notation as above, assuming that |K| ≤M , a− b ≥ 2, we have

M c>C [φa,b, d, e]� q2M2P 2C

(
P

C

√
e

d

)a−b
M c>C [φk, d, e]� q2M2P 2C

(
P

C

√
e

d

)k−1

where C = C(d, e) and the implied constant depends on f .



48 5.1. Estimate of Mc>C [φ]

Proof. Note that for the Bessel function Jk−1, we have the upper bound

Jk−1(x)� min(1, xk−1) (5.7)

where the implied constant is absolute [12, Equation 8.402 and 8.411]. Combining (5.6) and
(5.7) yields

|φa,b(x)| ≤ B1i
b−a min(1, xa)x−b,

for some absolute constant B1. By setting κ = a− b this is

= B1i
−κ min(1, xκ+b)x−b = B2 min(x−b, xκ) ≤ B2x

κ

So, assumption (5.3) is satisfied for φa,b and hence by (5.4),

Ẽφa,b(c, d, e)�B2,κ,N M2c1−κ
(
e

d

)κ
2

q3P 2+κ.

Consequently

M c>C [φa,b; d, e] =
1

qN

∑
c>C

1

c
Ẽφa,b(c, d, e)

�B2,κ,N
1

N
M2

(
e

d

)κ
2

q2P 2+κ
∑
c>C

c−κ

�B2,κ,N M2

(
e

d

)κ
2

q2P 2+κC1−κ

= M2q2CP 2

(
P

C

√
e

d

)κ
= M2q2CP 2

(
P

C

√
e

d

)a−b
,

since κ ≥ 2.
For φk, the procedure is similar. By combining (5.5) and (5.7), we analogously obtain

|φk(x)| ≤ Bxk−1 = Bxκ,

for some B ≥ 0, where we put κ = k − 1 ≥ 0. Now, we get analogously

M c>C [φk; d, e]�M2q2CP 2

(
P

C

√
e

d

)κ
= M2q2CP 2

(
P

C

√
e

d

)k−1

.

This completes the proof.

Proof of Propositon 5.1.1. By the definition of C(d, e) and Lemma 5.1.3, we have

M c>C [φk, d, e]� q2M2P 2C

(
P

C

√
e

d

)k−1

= q2M2P 2Cq−ε(k−1) � q2−ε(k−1)M2P 2qεLP

= q2−εkM2P 3L ≤ q−10LM2P 3.

Similarly, we obtain
M c>C [φa−b, d, e]� q−10LM2P 3.
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5.2. Estimate of M c≤C [φ]

It remains to estimate M c≤C [φ]. Recall that

M c≤C [φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C [φ; d, e]

with

M c≤C [φ; d, e] =
1

qN

∑
1≤c≤C

c−1Eφ(c, d, e),

where C is given by (5.2). In particular, we can assume that C ≥ 1 as otherwise the above sum
is zero. Precisely, we are going to prove the following proposition. The proof is carried out at
the end of Section 5.4.

Proposition 5.2.1. Assume that 2qεP < L. Then we have that

M c≤C [φk]� k3q
1
2 +11εP 2+εQ4M2L3 + k3q1+6εP 2Q2M2L

and
M c≤C [φa,b]� q

1
2 +11εP 2+εQ4M2L3 + q1+6εP 2Q2M2L.

5.3. Transformation of Eφ(c, d, e)
Definition 5.3.1. For n1n2 ≡ e mod cN and (cN, q) = 1, the integral matrix γ(c, d, e, n1, n2)
defined by

γ(c, d, e, n1, n2) =

(
n1

n1n2−e
cN

cdN dn2

)
∈M2(Z) ∩GL2(Q)

is called a resonating matrix.

Remark 5.3.2. Observe that the determinant of γ(c, d, e, n1, n2) is de.

We will transform each of the sums Eφ(c, d, e) so that we can connect them with the correlation
sums C(K; γ) for suitable matrices γ. Concretely, we are going to prove the following theorem.

Theorem 5.3.3. Let q, c, N be a positive integers, let d, e be positive integers such that
(de, q) = 1 and let n1, n2 ∈ Z. Then we have

Eφ(c, d, e) =
1

q

∑
(n1,n2)∈Z2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)
.

There is a remark in order concerning modular inverses. If a is an integer with (a, q) = 1, we
denote its modular inverse with respect to the modulus q by a, i.e., a is the unique integer in
{0, 1, . . . , q − 1} such that aa ≡ 1 mod q. Clearly, if (q, cN) = 1, we have

n1n2 − e
cN

≡ (n1n2 − e)cN mod q.

However, when (q, cN) 6= 1, the expression on the right hand side does not make sense anymore,
as cN does not posses an inverse modulo q, whereas the expression on the left hand side may
still make sense. More precisely, the expression

n1n2 − e
cN

mod q
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makes sense as long as n1n2 − e is divisible by cN . For the matrix γ(c, d, e, n1, n2) this is the
case, whence γ(c, d, e, n1, n2) ∈M2(Z) and a reduction modulo every q makes sense.

The subsequent proof of Theorem 5.3.3 which is a squarefree version of Equation (5.16) in
[22] is the first place in this thesis where the proof differs significantly from the one given in [22].
So far, we almost always dealt with q as an “analytic variable” and thus the proofs from the
prime case carried over without much difficulty. However, the proof of Theorem 5.3.3 as well
as the proofs of many subsequent Theorems makes use of algebraic properties of q and hence
it can not be expected that the same proofs which worked in the case of q being prime will
also work in the case of q being only squarefree. In particular, to derivation of Equation (5.16)
in [22] starts with using the twisted multiplicativity of Kloosterman sums which leads there to
Equation (5.12). However, in the case of q squarefree, this does not work anymore and therefore
in the subsequent proof we circumvent the use of the twisted multiplicativity of Kloosterman
sums.

Proof of Theorem 5.3.3. Recall that Eφ(c, d, e) is defined in (5.1). Therefore

Eφ(c, d, e) =
∑
n1≥1

∑
n2≥1

S(en1, n2; cqN)K(dn1)K(n2)Hφ(n1, n2; e)

=
∑

0≤x1<cqN

∑
0≤x2<cqN

∑
y1∈Z

∑
y2∈Z

S
(
e(y1cqN + x1), y2cqN + x2; cqN

)
·K(d(y1cqN + x1))K(y2cqN + x2)Hφ(y1cqN + x1, y2cqN + x2; e)

=
∑

0≤x1<cqN

∑
0≤x2<cqN

S(ex1, x2; cqN)K(dx1)K(x2)

·
∑
y1∈Z

∑
y2∈Z

Hφ

(
(y1, y2)cqN + (x1, x2); e

)
which is by the Poisson summation formula (Theorem B.0.20)

=
1

(cqN)2

∑
0≤x1<cqN

∑
0≤x2<cqN

S(ex1, x2; cqN)K(dx1)K(x2)

·
∑
n1∈Z

∑
n2∈Z

Ĥφ

( n1

cqN
,
n2

cqN
; e
)
e
(x1n1 + x2n2

cqN

)
=

1

(cqN)2

∑
n1∈Z

∑
n2∈Z

Ĥφ

( n1

cqN
,
n2

cqN
; e
)

·
∑

0≤x1<cqN

∑
0≤x2<cqN

K(dx1)K(x2)S(ex1, x2; cqN)e
(x1n1 + x2n2

cqN

)
.

Furthermore, we have

∑
0≤x1,x2<cqN

K(dx1)K(x2)S(ex1, x2; cqN)e

(
x1n1 + x2n2

cqN

)
=

∑
0≤v1,v2<q

K(dv1)K(v2)
∑

0≤u1,u2<cN

S
(
e(u1q + v1), u2q + v2; cqN

)
· e
(

(u1q + v1)n1 + (u2q + v2)n2

cqN

)
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=
∑

0≤v1,v2<q

K(dv1)K(v2)
∑

0≤u1,u2<cN

∑
0≤z<cqN
(z,cqN)=1

e

(
e(u1q + v1)z + (u2q + v2)z

cqN

)

· e
(

(u1q + v1)n1 + (u2q + v2)n2

cqN

)
=

∑
0≤v1,v2<q

K(dv1)K(v2)
∑

0≤z<cqN
(z,cqN)=1

e

(
(ez + n1)v1

cqN

)
e

(
(z + n2)v2

cqN

)

·
∑

0≤u1<cN

e

(
(eqz + n1q)u1

cqN

) ∑
0≤u2<cN

e

(
(qz + qn2)u2

cqN

)

=
∑

0≤v1,v2<q

K(dv1)K(v2)
∑

0≤z<cqN
(z,cqN)=1

e

(
(ez + n1)v1

cqN

)
e

(
(z + n2)v2

cqN

)

·
∑

0≤u1<cN

e

(
(ez + n1)u1

cN

) ∑
0≤u2<cN

e

(
(z + n2)u2

cN

)

= (cN)2
∑

0≤v1,v2<q

K(dv1)K(v2)
∑

0≤z<cqN
(z,cqN)=1

ez+n1≡0 mod cN
z+n2≡0 mod cN

e

(
(ez + n1)v1

cqN

)
e

(
(z + n2)v2

cqN

)

and since (d, q) = 1, this is (note that here, d is only modulo q and not modulo cqN)

= (cN)2
∑

0≤v1,v2<q

K(v1)K(v2)
∑

0≤z<cqN
(z,cqN)=1

ez+n1≡0 mod cN
z+n2≡0 mod cN

e

(
(ez + n1)dv1

cqN

)
e

(
−(z + n2)v2

cqN

)

=



(cN)2
∑

0≤v1,v2<q

K(v1)K(v2)

∑
0≤z<cqN
(z,cqN)=1

z+n2≡0 mod cN

e

(
(ez + n1)dv1

cqN

)
e

(
−(z + n2)v2

cqN

) if (n2, cN) = 1 and
e ≡ n1n2 mod cN ,

0 otherwise.

because

ez + n1 ≡ 0 mod cN z + n2 ≡ 0 mod cN

is equivalent to (n2, cN) = 1 and

e ≡ n1n2 mod cN z + n2 ≡ 0 mod cN.

Thus, we assume that (n2, cN) = 1 and e ≡ n1n2 mod cN . We define

Z =
{
z ∈ (Z/cqNZ)×

∣∣ z + n2 ≡ 0 mod cN
}
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and
W =

{
w ∈ Z/qZ

∣∣ wcN + n2 ∈ (Z/qZ)×
}
.

We claim that the map f : Z −→W, given by

f(z) =
−z − n2

cN

is a bijection with inverse
f−1(w) = (−wcN − n2),

where the modular inverse is computed modulo cqN . First note, that since z+n2 ≡ 0 mod cN ,
we know that

w =
−z − n2

cN
∈ Z.

and since z ∈ (Z/cqNZ)×, we get that

f(z)cN + n2 = −z + n2

cN
cN + n2 = −z ∈ (Z/cqNZ)×.

Hence the map f is well-defined. Since wcN + n2 ∈ (Z/cqNZ)×, it is clear that f−1(w) ∈
(Z/cqNZ)× and since

f−1(w) + n2 ≡ −wcN − n2 + n2 ≡ −wcN mod cqN

we get that f−1(w) + n2 ≡ 0 mod cN . Thus the map f−1 is well-defined. One also easily
checks that f−1

(
f(z)

)
= z and f

(
f−1(w)

)
= w, which shows that f is a bijection.

By this bijection, we see that for (n2, cN) = 1 and e ≡ n1n2 mod cN ,

∑
0≤z<cqN
(z,cqN)=1

z+n2≡0 mod cN

e

(
(ez + n1)dv1

cqN

)
e

(
−(z + n2)v2

cqN

)
=

∑
0≤w<q

wcdN−dn2∈(Z/qZ)×

e
( w̃v1

q

)
e
(wv2

q

)

where w̃ = (ef−1(w)+n1)d
cN . We hence would like to express w̃ in terms of w (modulo q). Since

w ≡ −z + n2

cN
mod q

w̃ ≡ (ez + n1)d

cN
mod q

we get that

wcNz + n2z ≡ −1 mod qcN

ez ≡ w̃cNd− n1 mod qcN

and hence

ze(wcN + n2) ≡ −e mod qcN

ze(wcN + n2) ≡ (dw̃cN − n1)(wcN + n2) mod qcN.

Hence
dω̃ωc2N2 + dw̃n2cN − n1wcN − n1n2 + e ≡ 0 mod qcN
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and since e− n1n2 ≡ 0 mod cN , we get

w̃(wcdN + dn2) ≡ n1w +
n1n2 − e
cN

mod q.

So,
w̃ ≡ γ · w mod q

where

γ =

(
n1

n1n2−e
cN

cdN dn2

)
.

With this, we can continue the computation from above and get∑
0≤x1,x2<cqN

K(dx1)K(x2)S(ex1, x2; cqN)e

(
x1n1 + x2n2

cqN

)

= (cN)2
∑

0≤v1,v2<q

K(v1)K(v2)
∑

0≤w<q
wcdN−dn2∈(Z/qZ)×

e
( (γ · w)v1

q

)
e
(wv2

q

)

= q(cN)2
∑

0≤w<q
wcdN−dn2∈(Z/qZ)×

(
1
√
q

∑
0≤v1<q

K(v1)e
( (γ · w)v1

q

))( 1
√
q

∑
0≤v2<q

K(v2)e
(wv2

q

))

= q(cN)2
∑

0≤w<q
wcdN−dn2∈(Z/qZ)×

K̂(γ · w)K̂(w)

= q(cN)2C(K; γ).

So, we finally obtain

Eφ(c, d, e) =
1

q

∑
(n1,n2)∈Z2

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

(
n1

cqN
,
n2

cqN
; e

)
C
(
K; γ(c, d, e, n1, n2)

)
.

To prove Theorem 5.3.3, it remains to show that we also can include the condition n1n2 6= 0.
Since n1n2 ≡ e mod cN , we also have that n1n2 ≡ e mod N . Suppose n1n2 = 0. Then e ≡ 0
mod N , i.e., N | e which is not possible. So we are done.

5.4. Decomposition of M c≤C [φ]

Recall that

M c≤C [φ; d, e] =
1

qN

∑
1≤c≤C

c−1Eφ(c, d, e)

where C = C(d, e) is given by (5.2) and

Eφ(c, d, e) =
1

q

∑
(n1,n2)∈Z2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)
.
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by Theorem 5.3.3. For positive numbers N1 and N2, we consider the square

� = [−N1, N1]× [−N2, N2] ⊂ R2. (5.8)

We then split up Eφ(c, d, e) in a term with n = (n1, n2) ∈ � (i.e., |n1| ≤ N1 and |n2| ≤ N2) and
a term with n = (n1, n2) /∈ �. Thus, we write

Eφ(c, d, e) = En∈�φ (c, d, e) + En/∈�φ (c, d, e),

where

En∈�φ (c, d, e) =
1

q

∑
(n1,n2)∈Z2∩�

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)

En/∈�φ (c, d, e) =
1

q

∑
(n1,n2)∈Z2\�

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)
.

Analogously, we write

M c≤C [φ; d, e] = M c≤C,n∈�[φ; d, e] +M c≤C,n/∈�[φ; d, e]

where

M c≤C,n∈�[φ; d, e] =
1

qN

∑
1≤c≤C

c−1En∈�φ (c, d, e)

M c≤C,n/∈�[φ; d, e] =
1

qN

∑
1≤c≤C

c−1En/∈�φ (c, d, e).

and
M c≤C [φ] = M c≤C,n∈�[φ] +M c≤C,n/∈�[φ]

where

M c≤C,n∈�[φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C,n∈�[φ; d, e]

M c≤C,n/∈�[φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C,n/∈�[φ; d, e].

In what follows, we fix ε > 0 and choose N1 and N2 to be

N1 = qε
cd(Q+ Z)

P
N2 = qε

c(Q+ Z)

P
.

We proceed as follows. In Section 5.5 we give some general estimates of Ĥφ which are needed to
prove the estimates forM c≤C,n∈�[φ; d, e] in Section 5.7 (Proposition 5.7.1) and forM c≤C,n/∈�[φ; d, e]
in Section 5.6 (Proposition 5.6.1). Assuming this results, we can give a proof of Proposi-
tion 5.2.1.
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Proof of Proposition 5.2.1. Since

M c≤C [φ] = M c≤C,n∈�[φ] +M c≤C,n/∈�[φ]

and Proposition 5.6.1 shows that M c≤C,n/∈�[φ; d, e] is negligible compared to M c≤C,n∈�[φ; d, e]
we get by Proposition 5.7.1 that

M c≤C [φk]�M c≤C,n∈�[φk]� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L,

and that

M c≤C [φa,b]�M c≤C,n∈�[φa,b]� q
1
2 +11εP 2+εQ4M2ω(q)L3 + q1+6εP 2Q2M2ω(q)L.

5.5. Estimates for Ĥφ

In this section, we give estimates for Ĥφ which are independent of whether (n1, n2) ∈ � or not.
First of all, we introduce a new parameter:

Z =
P

cN

√
e

d
. (5.9)

Now, we can state the following two lemmas.

Lemma 5.5.1. Assume that V satisfies (V (P,Q)) and that n1n2 6= 0. Then

(i) For φ = φa,b, we have

1

(qN)2
Ĥφa,b

( n1

cqN
,
n2

cqN

)
� P 2

d

Za−b

(1 + Z)a+1/2

(cdP−1(Q+ Z)

|n1|

)µ(cP−1(Q+ Z)

|n2|

)ν
for all µ, ν ≥ 0, where the implied constant depends on (N,µ, ν, a, b).

(ii) For φ = φk, we have

1

(qN)2
Ĥφk

( n1

cqN
,
n2

cqN

)
� P 2

d

(cdP−1(Q+ Z)

|n1|

)µ(cP−1(Q+ Z)

|n2|

)ν
for all µ, ν ≥ 0, where the implied constant depends on (N,µ, ν), but not on k.

Lemma 5.5.2. Assume that V satisfies (V (P,Q)) and that n1n2 6= 0. Then

(i) For φ = φa,b, we have

1

q2
Ĥφa,b

( n1

cqN
,
n2

cqN

)
� qε

P 2

d
min

( 1

Z1/2
,
Q

Z

)
,

where the implied constant depends on (a, b,N).

(ii) For φ = φk, we have

1

q2
Ĥφk

( n1

cqN
,
n2

cqN

)
� k3qε

P 2

d
min

( 1

Z1/2
,
Q

Z

)
,

where the implied constant depends on N .
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Lemma 5.5.1 and Lemma 5.5.2 correspond to Lemma 5.7 and Lemma 5.9 in [22] respectively,
where p needs to be replaced by q. Since both lemmas are completely analytic, replacing p by
q does not make any difference, as no assumptions on the primality of p are made. Also note
that in the statements of Lemma 5.7 and Lemma 5.9 in [22] there is the assumption that (d, e)
needs to be of Type (L,L) or of Type (1, L2). However, this assumption is never used in the
proofs and hence can be dropped.

Having this two lemmas at hand, we can continue to estimate M c≤C [φ; d, e]. We estimate
M c≤C,n/∈�[φ; d, e] in Section 5.6 and M c≤C,n∈�[φ; d, e] in Section 5.7.

5.6. Estimate of M c≤C,n/∈�[φ]

As it turns out, M c≤C,n/∈�[φ] is negligible. Precisely, we get:

Proposition 5.6.1 (Estimate of M c≤C,n/∈�(c, d, e)). Let ε > 0 and be fixed. Let C be defined
by

C = max
(1

2
, pεP

√
e

d

)
and let � be given by (5.8). Then for φ = φa,b or φk, we have

M c≤C,n/∈�[φ]�ε,N L4P 3M2(Q+ 1)3q−1 (negligible) .

Proof. By the trivial bound (see (2.1.3))

|C(K; γ)| ≤M2q

we get

En/∈�φ (c, d, e) =
1

q

∑
(n1,n2)∈Z2\�

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)

≤M2
∑

(n1,n2)∈Z2\�
n1n2 6=0

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)

= M2
∑

n1<−N1

∑
n2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)

+M2
∑

−N1≤n1≤N1

∑
n2<−N2
n1n2 6=0

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)

+M2
∑

−N1≤n1≤N1

∑
n2>N2
n1n2 6=0

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
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+M2
∑

n1>N1

∑
n2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
.

We now consider this four summands separately. For µ1, ν1 ≥ 0, we have by Lemma 5.5.1

M2
∑

n1<−N1

∑
n2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)

�M2q2N2P
2

d

(
cdP−1(Q+ Z)

)µ1
(
cP−1(Q+ Z)

)ν1 ∑
n1<−N1

∑
n2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

1

|n1|µ1

1

|n2|ν1

≤M2q2N2P
2

d

(
cdP−1(Q+ Z)

)µ1
(
cP−1(Q+ Z)

)ν1 ∑
n1<−N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|ν1
.

By defining X = cP−1(Q+ Z) and Y = M2q2N2 P 2

d , this can be rewritten as

= Y (dX)µ1Xν1
∑

n1<−N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|ν1
.

Analogously, we get

M2
∑

n1>N1

∑
n2

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
� Y (dX)µ1Xν1

∑
n1>N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|ν1
,

and for µ2, ν2 ≥ 0,

M2
∑

−N1≤n1≤N1

∑
n2<−N2
n1n2 6=0

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
� Y (dX)µ2Xν2

∑
−N1≤n1≤N1

∑
n2<−N2
n1n2 6=0

1

|n1|µ2

1

|n2|ν2
,

M2
∑

−N1≤n1≤N1

∑
n2>N2
n1n2 6=0

n1n2≡e mod cN
(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
� Y (dX)µ2Xν2

∑
−N1≤n1≤N1

∑
n2>N2
n1n2 6=0

1

|n1|µ2

1

|n2|ν2
.

Hence, by setting ν1 = 2, we can compute

∑
n1<−N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|2
=
π2

3

−N1−1∑
n1=−∞

1

|n1|µ1
=
π2

3

∞∑
n1=N1+1

1

nµ1

1

≤ π2

3

ˆ ∞
N1

1

nµ1

1

dn1 =
π2

3

1

(µ1 − 1)Nµ1−1
1

.
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Hence,

Y (dX)µ1Xν1
∑

n1<−N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|ν1
≤ Y X2π

2

3

(dX)µ1

(µ1 − 1)Nµ1−1
1

= Y X2π
2

3

dX

(µ1 − 1)qε(µ1−1)

=
π2

3
M2q2−ε(µ1−1)N2P−1c3(Q+ Z)3 1

µ1 − 1

which is, by choosing µ1 ≥ 3ε−1 + 5,

≤ π2

3
N2P−1(cQ+ LP )3M2q−1−4ε 1

µ1 − 1
.

Because c ≤ C = qεLP , this can be rewritten as

=
π2

3
N2P−1(qεQLP + LP )3M2q−1−4ε 1

µ1 − 1

≤ 8π2

3
N2P−1(QLP + LP )3M2q−1−ε 1

µ1 − 1

�ε,N L3P 2M2(Q+ 1)3q−1−ε.

Analogously, we get

Y (dX)µ1Xν1
∑

n1>N1

∑
n2

n1n2 6=0

1

|n1|µ1

1

|n2|ν1
�ε,N L3P 2M2(Q+ 1)3q−1−ε.

Furthermore, for µ2 = 0, we get

Y (dX)µ2Xν2
∑

−N1≤n1≤N1

∑
n2<−N2
n1n2 6=0

1

|n1|µ2

1

|n2|ν2
= 2N1Y X

ν2

∞∑
n2=N2+1

1

nν22

≤ 2qεdXY Xν2
1

(ν2 − 1)Nν2−1
2

= 2qεdX2Y
1

(ν2 − 1)qε(ν2−1)

= 2N2c2(Q+ Z)2M2q2+ε−ε(ν2−1) 1

ν2 − 1

≤ 2N2(cQ+ LP )2M2q2+ε−ε(ν2−1) 1

ν2 − 1

which is, since c ≤ C ≤ qεPL,

≤ 2N2L2P 2(Q+ 1)2M2q2+5ε−ε(ν2−1) 1

ν2 − 1

�ε,N L2P 2(Q+ 1)2M2q−1,
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where we choose ν2 ≥ ε−13 + 6. Combining all this estimates gives

En/∈�φ (c, d, e)�ε,N L3P 2M2(Q+ 1)3q−1.

Thus, by assuming that ε ≤ 1, we get

M c≤C,n/∈�[φ; d, e] =
1

qN

∑
1≤c≤C

c−1En/∈�φ (c, d, e)

�ε,N L4P 3M2(Q+ 1)3q−1

5.7. Estimate of M c≤C,n∈�[φ]

The goal of this section is to estimate M c≤C,n∈�[φ]. Concretely, we will show the following
proposition.

Proposition 5.7.1 (Estimate of M c≤C,n∈�[φ]). Let q ≥ 1 be a squarefree integer and let
K : Z/qZ −→ C be a (q,M)-good q-primeperiodic function. Let ε > 0 be fixed. Let C be defined
by

C = max
(1

2
, qεP

√
e

d

)
and let � be given by (5.8). Then, we have

M c≤C,n∈�[φk]� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L,

and
M c≤C,n∈�[φa,b]� q

1
2 +11εP 2+εQ4M2ω(q)L3 + q1+6εP 2Q2M2ω(q)L.

First, note that

M c≤C,n∈�[φ] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C,n∈�[φ; d, e]

with

M c≤C,n∈�[φ; d, e] =
1

qN

∑
1≤c≤C

c−1En∈�φ (c, d, e)

and that by Theorem 5.3.3, En∈�φ (c, d, e) is a sum over products of the form Ĥφ(. . .)C(K; γ).

Consequently, we derive our estimate by estimating Ĥφ and C(K; γ) separately. The estimate

of Ĥφ was done in Lemma 5.5.2. However, the estimate of C(K; γ) turns out to be a bit tricky.
More precisely

En∈�φ (c, d, e) =
1

q

∑
(n1,n2)∈Z2∩�

n1n2 6=0
n1n2≡e mod cN

(n2,cN)=1

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)
.

with
C(K; γ) =

∏
p|q

C(Kp; γp).
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by Proposition 2.2.5, where

γp =

(
n1

n1n2−e
cN sp

cdNsp dn2

)
sp ≡

∏
p′|q
p′ 6=p

p′ mod p.

We separate the terms in En∈�φ (c, d, e) according as to whether∣∣C(Kp; γp(c, d, e, n1, n2)
)∣∣ ≤Mp

1
2 . (5.10)

When (5.10) fails, γp is in the set GKp,M of M -correlation matrices (see Definition 2.2.7) and
otherwise γp /∈ GKp,M .

Definition 5.7.2. Fix a squarefree number q. Then we associate to every matrix γ(c, d, e, n1, n2)
its type T[γ] which is a vector T[γ] =

(
T [γ]p

)
p|q given by

T [γ]p =

{
1
2 if γp /∈ GKp,M ,

1 if γp ∈ GKp,M .

Of course, the type depends on q. We denote the space of all possible types by H =
{

1
2 , 1
}ω(q)

,
so |H| = d(q)� qε. For h ∈ H, we define

q[h] =
∏
p|q
hp=1

p.

From the definition of T[γ] we immediately get the following lemma.

Lemma 5.7.3. If T[γ] = h for some h ∈ H, then∣∣C(K; γ(c, d, e, n1, n2)
)∣∣ ≤∏

p|q

M2hpphp .

We write
En∈�φ (c, d, e) =

∑
h∈H

En∈�,hφ (c, d, e)

where

En∈�,hφ (c, d, e) =
1

q

∑
(n1,n2)∈Z2∩�

n1n2 6=0, (n2,cN)=1
n1n2≡e mod cN

T[γ(c,d,e,n1,n2)]=h

Ĥφ

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)
.

Similarly, we write

M c≤C,n∈�[φ] =
∑
h∈H

M c≤C,n∈�,h[φ] (5.11)

where
M c≤C,n∈�,h[φ] =

∑
`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C,n∈�,h[φ; d, e]
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with

M c≤C,n∈�,h[φ; d, e] =
1

qN

∑
1≤c≤C

1

c
En∈�,hφ (c, d, e).

We have the following bound for M c≤C,n∈�,h[φ; d, e].

Proposition 5.7.4. Let q be a squarefree integer. Then for any ε > 0,

M c≤C,n∈�,h[φk]� k3q
1
2 +10εP 2+εQ4M2ω(q)L3 + k3q1+5εP 2Q2M2ω(q)L

and
M c≤C,n∈�,h[φa,b]� q

1
2 +10εP 2+εQ4M2ω(q)L3 + q1+5εP 2Q2M2ω(q)L.

We will prove this bound soon, but first we derive Proposition 5.7.1 from it.

Proof of Proposition 5.7.1. By (5.11)

M c≤C,n∈�[φk] =
∑
h∈H

M c≤C,n∈�,h[φ]

which is by Proposition 5.7.4

�
∑
h∈H

k3q
1
2 +10εP 2+εQ4M2ω(q)L3 +

∑
h∈H

k3q1+5εP 2Q2M2ω(q)L

� k3q
1
2 +11εP 2+εQ4M2ω(q)L3 + k3q1+6εP 2Q2M2ω(q)L

and analogously for M c≤C,n∈�[φa,b; d, e].

5.7.1. Continuation of argument

Definition 5.7.5. For h ∈ H and for a positive integer a, we define

ah =
∏
p|q
hp=1

(a, p∞).

Definition 5.7.6. We define

χh(c, d, e, n1, n2) =

1
if (n2, cN) = 1, n1n2 ≡ e (mod cN)

and T [γ(c, d, e, n1, n2)] = h,

0 otherwise.

and
S[h] =

∑
`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

∑
1≤c≤C(d,e)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, d, e, n1, n2).

Lemma 5.7.7. Let q be a squarefree integer and suppose that (d, q) = 1. Then for every h ∈ H
and for any ε > 0, we have

M c≤C,n∈�,h[φk]�N k3qε
PQ

L
S[h]

∏
p|q

M2hpphp

as well as

M c≤C,n∈�,h[φa,b]�N qε
PQ

L
S[h]

∏
p|q

M2hpphp .
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Proof. Recall that

Z =
P

cN

√
e

d
.

By Lemma 5.5.2, we have

Ĥφk

( n1

cqN
,
n2

cqN

)
�N k3q2+εP

2Q

dZ
(5.12)

Ĥφa,b

( n1

cqN
,
n2

cqN

)
�a,b,N q2+εP

2Q

dZ
. (5.13)

We compute

En∈�,hφk
(c, d, e) =

1

q

∑
(n1,n2)∈Z2∩�

n1n2 6=0, (n2,cN)=1
n1n2≡e mod cN
T [γ(c,d,e,n1,n2)]=h

Ĥφk

( n1

cqN
,
n2

cqN

)
C
(
K; γ(c, d, e, n1, n2)

)

� 1

q

(∏
p|q

M2hpphp
) ∑

(n1,n2)∈Z2∩�
n1n2 6=0, (n2,cN)=1
n1n2≡e mod cN
T [γ(c,d,e,n1,n2)]=h

∣∣∣∣Ĥφk

( n1

cqN
,
n2

cqN

)∣∣∣∣

which is by (5.12)

�N k3q1+εP
2Q

dZ

(∏
p|q

M2hpphp
) ∑

(n1,n2)∈Z2∩�
n1n2 6=0, (n2,cN)=1
n1n2≡e mod cN
T [γ(c,d,e,n1,n2)]=h

1

= k3q1+εP
2Q

dZ

(∏
p|q

M2hpphp
) ∑

(n1,n2)∈Z2∩�
n1n2 6=0

χh(c, d, e, n1, n2).

Hence

M c≤C,n∈�,h[φk; d, e]

=
1

qN

∑
1≤c≤C

1

c
En∈�,hφk

(c, d, e)

� qεk3PQ

(∏
p|q

M2hpphp
) ∑

1≤c≤C

P

cdNZ

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, d, e, n1, n2)

which is by the definition of Z

= qεk3 PQ√
de

(∏
p|q

M2hpphp
) ∑

1≤c≤C

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, d, e, n1, n2).
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Therefore

M c≤C,n∈�,h[φk] =
∑

`1,`2∼L
`1 6=`2

b`1b`2
∑

de=`1`2
(d,qN)=1

M c≤C,n∈�,h[φk; d, e]

�
∑

`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

∣∣M c≤C,n∈�,h[φk; d, e]
∣∣

� qεk3PQ

(∏
p|q

M2hpphp
) ∑
`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

1√
de

·
∑

1≤c≤C

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, d, e, n1, n2)

and since
√
de ≥ L, this is

� qεk3PQ

L

(∏
p|q

M2hpphp
)
S[h].

Analogously we get the result for φa,b.

5.7.2. Estimate of S[h]

Recall that
S[h] =

∑
`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

∑
1≤c≤C(d,e)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, d, e, n1, n2) (5.14)

and that we factor the product of distinct primes `1`2 (with `i ∼ L) as `1`2 = de. Hence we
have three types of factorization of completely different nature, which we denote as follows

(i) Type T (L2, 1): this is when d = `1`2 and e = 1, so that L2 < d ≤ 4L2;

(ii) Type T (1, L2): this is when d = 1 and e = `1`2, so that L2 < e ≤ 4L2;

(iii) Type T (L,L): this is when d and e are both 6= 1 (so d = `1 and e = `2 or conversely), so
that L < d 6= e ≤ 2L.

Therefore, we split up S[h] as

S[h] = ST (L2,1)[h] + 2ST (L,L)[h] + ST (1,L2)[h],

where

ST (L2,1)[h] =
∑

`1,`2∼L
`1 6=`2

(`1`2,qN)=1

∑
1≤c≤C(`1`2,1)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, `1`2, 1, n1, n2)

ST (L,L)[h] =
∑

`1,`2∼L
`1 6=`2

(`1,qN)=1

∑
1≤c≤C(`1,`2)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, `1, `2, n1, n2)

ST (1,L2)[h] =
∑

`1,`2∼L
`1 6=`2

∑
1≤c≤C(1,`1`2)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, 1, `1`2, n1, n2).



64 5.7. Estimate of Mc≤C,n∈�[φ]

Lemma 5.7.8. Let qεP < L, then

ST (L2,1)[h] = 0.

Proof. Recall that

C = max

(
1

2
, qεP

√
e

d

)
.

Hence if (d, e) is of type T (L2, 1),
√

d
e ≥ L and hence

C ≤ max

(
1

2
,
qεP

L

)
< 1

by the assumption qεP < L. Hence the sum over c is empty and thus ST (L2,1)[h] = 0.

Hence, for qεP < L, we have

S[h] = 2ST (L,L)[h] + ST (1,L2)[h].

Definition 5.7.9. For T (L,L), we define

C =
{
c ∈ Z

∣∣∣ 1 ≤ c ≤
√

2qεP
}

D = {d ∈ Z | L ≤ d ≤ 2L, d prime, (d, qN) = 1}
N2 =

{
n2 ∈ Z

∣∣ 1 ≤ |n2| ≤ 4q2εQ
}

N1 =
{
n1 ∈ Z

∣∣ 1 ≤ |n1| ≤ 4q2εQL
}

E = {e ∈ Z | L ≤ e ≤ 2L, e prime, (e, qN) = 1}

and for T (1, L2), we define

C = {c ∈ Z | 1 ≤ c ≤ 2qεPL}
D = {1}
N2 =

{
n2 ∈ Z

∣∣ 1 ≤ |n2| ≤ 4q2εQL
}

N1 =
{
n1 ∈ Z

∣∣ 1 ≤ |n1| ≤ 4q2εQL
}

E =
{
e ∈ Z

∣∣ 1 ≤ e ≤ 4L2, ω(e) = Ω(e) = 2, (e, qN) = 1
}
.

As we will see later, the order in which we are summing over these sets is crucial. Changing
the order of summation from equation (5.14) to the one as in Lemma 5.7.10 below massively
simplifies the analysis of the resonating matrices in Section 5.8 compared to the analysis done
in Section 6 of [22]. This simplification is the basis for generalizing the analysis of resonating
matrices to squarefree moduli.

Lemma 5.7.10. We have

ST (L,L)[h]�
∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2),

and
ST (1,L2)[h]�

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2),

where the sets C, D, N2, N1 and E are defined as in Definition 5.7.9.
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Proof. Since by (5.2)

C(d, e) ≤ qεP
√
e

d

we have that for `1, `2 ∼ L,

C(`1, `2) ≤
√

2qεP

C(1, `1`2) ≤ 2qεPL.

Note that for (d, e) of type T (L,L),

N1 = qε
cd(Q+ Z)

P
= qε

cd

P

(
Q+

P

cN

√
e

d

)
= qε

(
cdQ

P
+

√
ed

N

)
≤ 2qεL

(
cQ

P
+

1

N

)
and since c ≤ C ≤

√
2qεP , this is

≤ 2qεL

(√
2qεQ+

1

N

)
≤ 4q2εQL,

since qεQ ≥ 1. Furthermore,

N2 =
N1

d
≤ N1

L
≤ 4q2εQ.

For (d, e) of type T (1, L2),

N1 = qε
c(Q+ Z)

P
= qε

(
cQ

P
+

√
e

N

)
and since c ≤ C ≤ 2qεPL, this is

≤ 2qεL

(
qεQ+

1

N

)
≤ 4q2εQL,

and
N2 = N1 ≤ 4q2εQL.

Therefore we can rewrite ST (1,L2)[h] as

ST (1,L2)[h] =
∑

`1,`2∼L
`1 6=`2

∑
1≤c≤C(1,`1`2)

∑
(n1,n2)∈Z2∩�

n1n2 6=0

χh(c, 1, `1`2, n1, n2)

≤
∑

L≤`1≤2L
`1 prime

∑
L≤`2≤2L
`2 prime
`1 6=`2

∑
c∈C

∑
−N1≤n1≤N1

n1 6=0

∑
−N2≤n2≤N2

n2 6=0

χh(c, 1, `1`2, n1, n2)

≤
∑

1≤e≤4L2

ω(e)=Ω(e)=2

d(e)
∑
c∈C

∑
−N1≤n1≤N1

n1 6=0

∑
−N2≤n2≤N2

n2 6=0

χh(c, 1, e, n1, n2)

where d(e) denotes the number of divisors of e and thus

≤ 4
∑
c∈C

∑
−N2≤n2≤N2

n2 6=0

∑
−N1≤n1≤N1

n1 6=0

∑
1≤e≤4L2

ω(e)=Ω(e)=2

χh(c, 1, e, n1, n2)
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≤ 4
∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2).

For ST (L,L)[h] we get

ST (L,L)[h] =
∑

`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

∑
1≤c≤C(d,e)

∑
(n1,n2)∈Z2∩�

χh(c, d, e, n1, n2)

≤
∑

`1,`2∼L
`1 6=`2

∑
de=`1`2

(d,qN)=1

∑
1≤c≤C̃

∑
−N1≤n1≤N1

∑
−N2≤n2≤N2

χh(c, d, e, n1, n2)

≤
∑

L≤`1≤2L

∑
L≤`2≤2L

∑
1≤c≤C̃

∑
−N1≤n1≤N1

∑
−N2≤n2≤N2

χh(c, `1, `2, n1, n2)

≤
∑

1≤c≤C̃

∑
L≤d≤2L

∑
−N1≤n1≤N1

∑
−N2≤n2≤N2

∑
L≤e≤2L

χh(c, d, e, n1, n2)

=
∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2),

where C̃ =
√

2qεP .

5.7.3. A simplified version of Proposition 5.7.4

The proof in the general case is quite technical, as for every prime p|q, the correlation matrix
modulo p may be of a different type, e.g., for one p, γp may be parabolic while for some other
p, γp may be a torus. This is carried out in full detail in Section 5.7.4. Here, we will give the
proof of the simple case where all correlation matrices γp are identity matrices. This should
give a flavour of how the proof in the general case works.

Concretely, we will prove Proposition 5.7.4 in the simplified case where for every p | q

GKp,M ⊂
{(

1 0
0 1

)}
.

As already mentioned in the introduction, even though this is a massive simplification of the
problem, there are many applications where already this case is sufficient. For example for a
non-trivial additive character ψ of Fq, q prime, the function K(x) = ψ(x) satisfies GKp,M = {1}
as shown in [22, Section 11.1].

We introduce the set

B =

(c, d, n2, n1, e) ∈ C × D ×N2 ×N1 × E

∣∣∣∣∣∣∣
(n2, cN) = 1, n1n2 ≡ e mod cN and

∀p|q[h] : γp(c, d, e, n1, n2) =

(
1 0
0 1

)  .

Hence∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2) ≤
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈B

1.

and thus
ST (1,L2)[h]�

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈B

1,
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as well as
ST (L,L)[h]�

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈B

1.

Suppose that (c, d, n2, n1, e) ∈ B. Hence

cdN ≡ 0 mod q[h]

and since (dN, q) = 1, we get that

c ≡ 0 mod q[h]. (5.15)

First we estimate ST (1,L2)[h]. Since in this case

C = {c ∈ Z | 1 ≤ c ≤ 2qεPL}

we get by equation (5.15) that the ST (1,L2)[h] = 0 if q[h] > 2qεPL. Hence we can assume that
q[h] ≤ 2qεPL. Thus we can estimate

ST (1,L2)[h]�
∑
c∈C

c≡0 mod q[h]

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

e≡n1n2 mod cN

1

�
∑
c∈C

c≡0 mod q[h]

∑
d∈D

∑
n2∈N2

∑
n1∈N1

(
‖E‖
cN

+ 1

)

�
∑
c∈C

c≡0 mod q[h]

‖D‖ ‖N2‖ ‖N1‖
(
‖E‖
cN

+ 1

)

� q4εQ2

( ∑
1≤c≤2qεPL
c≡0 mod q[h]

L4

cN
+

∑
1≤c≤2qεPL
c≡0 mod q[h]

L2

)

�N
q5εP εQ2L4+ε

q[h]
+
q5εPQ2L3

q[h]

� q5εP εQ2L4+ε

q[h]
.

Now, we estimate ST (L,L)[h]. Since in this case

C =
{
c ∈ Z

∣∣∣ 1 ≤ c ≤
√

2qεP
}

we get by equation (5.15) that the ST (L,L)[h] = 0 if q[h] >
√

2qεP . Hence we can assume that
q[h] ≤

√
2qεP . Thus we can estimate

ST (L,L)[h]�
∑
c∈C

c≡0 mod q[h]

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

e≡n1n2 mod cN

1

�
∑
c∈C

c≡0 mod q[h]

∑
d∈D

∑
n2∈N2

∑
n1∈N1

(
‖E‖
cN

+ 1

)
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�
∑
c∈C

c≡0 mod q[h]

‖D‖ ‖N2‖ ‖N1‖
(
‖E‖
cN

+ 1

)

� q4εQ2

( ∑
1≤c≤

√
2qεP

c≡0 mod q[h]

L3

cN
+

∑
1≤c≤

√
2qεP

c≡0 mod q[h]

L2

)

�N
q5εP εQ2L3

q[h]
+
q5εPQ2L2

q[h]

� q5εP εQ2L3

q[h]
.

Therefore

S[h] = 2ST (L,L)[h] + ST (1,L2)[h]� q5εP εQ2L4+ε

q[h]
.

Consequently, by Lemma 5.7.7,

M c≤C,n∈�,h[φk; d, e]� k3qε
PQ

L
S[h]

∏
p|q

M2hpphp

� k3qε
PQ

L

q5εP εQ2L4+ε

q[h]

∏
p|q

M2hpphp

� k3qε
PQ

L

q5εP εQ2L4+ε

q[h]
1
2

M2ω(q)q[h]
1
2 q

1
2

which is the bound of Proposition 5.7.4 in this simplified case.

5.7.4. Proof of Propsition 5.7.4

Recall Definition 2.2.7. If T [γ] = h and K is (p,M)-good for every prime p, then we have that
for every p | q[h],

γp(c, d, e, n1, n2) ∈ Ap =
⋃
i∈Ip

Aip.

By defining

Iq[h] =
∏
p|q[h]

Ip.

we get, that if T [γ] = h and K is (p,M)-good for every prime p, then there is some i ∈ Iq[h]

such that for every p | q[h],
γp(c, d, e, n1, n2) ∈ Aipp .

We introduce the short notation γ(c, d, e, n1, n2) ∈ Aiq[h] for this. In addition, we introduce the
set

BcN = {(c, d, n2, n1, e) ∈ C × D ×N2 ×N1 × E | (n2, cN) = 1 and n1n2 ≡ e mod cN} .

Hence∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

χh(c, d, e, n1, n2) ≤
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈BcN
γ(c,d,e,n1,n2)∈Aiq[h]

1.
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Thus we get

Lemma 5.7.11. If K is (p,M)-good for every prime p, then

ST (1,L2)[h]�
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈BcN
γ(c,d,e,n1,n2)∈Aiq[h]

1,

and
ST (L,L)[h]�

∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈BcN
γ(c,d,e,n1,n2)∈Aiq[h]

1,

where C, D, N2, N1 and E are defined as in Definition 5.7.9.

Lemma 5.7.11 indicates, that one difficulties which arises in the general case is, that we have
to deal with “mixed cases”, e.g., for one prime p|q[h] dividing γp may be parabolic while for
some other prime p|q[h], γp is a torus. This is the reason, why we introduced the sum over Iq[h]

in Lemma 5.7.11. Also note that the formulas for ST (1,L2)[h] and ST (L,L)[h] in Lemma 5.7.11
look the same. However, they are not, as the sets C, D, N2, N1 and E are not the same for
T (L,L) as for T (1, L2) (see Definition 5.7.9).

5.7.5. Restriction sets

We start with a definition of the restriction value.

Definition 5.7.12. For a subset
R ⊂ Z

and some integer m ≥ 1 we define the restriction value of R modulo m

rm(R) =
∏
p|m

pωp

where for every prime p | m, ωp ∈ Z≥0 is the biggest non-negative integer such that R is
contained in a congruence class modulo pωp , i.e., such that there exists y ∈ Z with

{x ∈ R | x ≡ y mod pωp} = R.

Let us consider some properties of the restriction value. First note that if m and n are two
coprime moduli, then

rm(R)rn(R) = rmn(R).

Moreover, for a modulus m, by the Chinese remainder theorem, there exists an integer y ∈ Z
such that for every x ∈ R,

x ≡ y mod rm(R).

It also follows directly from the definition, that if R1,R2 ⊂ Z are two subsets of the integers,
then for the intersection

R = R1 ∩R2

holds that
rm(R) ≥ max{rm(R1), rm(R2)}.
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Consequently, for two coprime moduli m1 and m2, we have then

rm1m2
(R) = rm1

(R)rm2
(R) ≥ rm1

(R1)rm2
(R2).

If S is an interval in Z and R ⊂ S, the size of R can be bounded by

|R| ≤
⌈
|S|

rm(R)

⌉
≤ |S|
rm(R)

+ 1. (5.16)

More generally, if S is some arbitrary subset of Z and R ⊂ S, we can bound the size of R by

|R| ≤
⌈
‖S‖
rm(R)

⌉
≤ ‖S‖
rm(R)

+ 1,

where ‖S‖ = maxS −minS + 1. From this it is clear that if we want good bounds on the size
of R, it is useful if the restriction value rm(R) is big. However, this is not the only issue. If
the interval S is short (compared to rm(R), then the error in (5.16) may be huge compared to
|S|

rm(R) , which is often not desirable. So, we would like to have better estimates in this case.

Definition 5.7.13. Let p be a prime and ip ∈ Ip. We call sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)
with

Rcp,ip ⊂ C

Rdp,ip ⊂ R
c
p,ip ×D ⊂ C ×D

Rn2
p,ip
⊂ Rdp,ip ×N2 ⊂ C × D ×N2

Rn1
p,ip
⊂ Rn2

p,ip
×N1 ⊂ C × D ×N2 ×N1

Rep,ip ⊂ R
n1
p,ip
× E ⊂ C × D ×N2 ×N1 × E

locally admissible at p, if

γp(c, d, e, n1, n2) ∈ Aipp implies (c, d, n1, n2, e) ∈ Rep,ip .

Additionally, we define

Rdp,ip [c] =
{
d ∈ D

∣∣∣ (c, d) ∈ Rcp,ip
}
⊂ D

Rn2
p,ip

[c, d] =
{
n2 ∈ N2

∣∣∣ (c, d, n2) ∈ Rn2
p,ip

}
⊂ N2

Rn1
p,ip

[c, d, n2] =
{
n1 ∈ N1

∣∣∣ (c, d, n2, n1) ∈ Rn1
p,ip

}
⊂ N1

Rep,ip [c, d, n2, n1] =
{
e ∈ E

∣∣∣ (c, d, n2, n1, e) ∈ Rep,ip
}
⊂ E .

Furthermore, for i ∈ Iq[h], we call (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h] admissible, if for every

p dividing q[h], (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) is locally admissible at p.

Definition 5.7.14. Let i ∈ Iq[h] and p | q[h]. Let (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) be sets
locally admissible at p. We say that they are locally good at p, if the corresponding restriction
values modulo p depend at most on c, i.e., if

rcp,ip = rp(Rcp,ip) rdp,ip [c] = rp(Rdp,ip [c]) rn2
p,ip

[c] = rp(Rn2
p,ip

[c, d])

rn1
p,ip

[c] = rp(Rn1
p,ip

[c, d, n2]) rep,ip [c] = rp(Rep,ip [c, d, n2, n1]).

where rcp,ip , rdp,ip [c], rn2
p,ip

[c], rn1
p,ip

[c] and rep,ip [c] do not depend on d, n2, n1 or e, and if one of
the following five properties holds:



5.7. Estimate of Mc≤C,n∈�[φ] 71

(i) we have that
Rcp,ip = {c ∈ C | c ≡ 0 mod p}

and therefore
rcp,ip ≥ p,

as well as
rep,ip ≥ (cN, p∞);

(ii) we have that

rn2
p,ip

rn1
p,ip

rep,i ≥ p2(cN, p∞) rn2
p,ip

rn1
p,ip
≥ p rn2

p,ip
rep,ip ≥ p(cN, p

∞)

rn2
p,ip
≥ 1 rn1

p,ip
rep,ip ≥ p(cN, p

∞) rn1
p,ip
≥ 1

rep,ip ≥ (cN, p∞) rcp,ip ≥ p;

(iii) we have that
Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ 0 mod p}

and thus
rn2
p,ip
≥ p,

as well as
rep,ip ≥ (cN, p∞);

(iv) we have that
Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ 0 mod p}

and therefore
rn1
p,ip
≥ p,

as well as
rep,ip ≥ (cN, p∞);

(v) we have that

rn1
p,ip

rep,ip ≥ p(cN, p
∞) pn1

p,ip
≥ (p, cN) rep,ip ≥

p

(p, cN)
(cN, p∞)

and
(c, d, n2, n1, e) ∈ Rep,ip ⇒ (n1 + dn2)2 ≡ 4de mod p.

Depending on which of the properties (i) to (v) holds, we say that p is of type R1 to R5.
Furthermore, for i ∈ Iq[h], we call (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h] good, if for every p

dividing q[h], (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) is locally good at p.

For some good sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h] we define

q[h;R1] =
∏
p|q[h]

p is of type R1

p q[h;R2] =
∏
p|q[h]

p is of type R2

p

q[h;R3] =
∏
p|q[h]

p is of type R3

p q[h;R4] =
∏
p|q[h]

p is of type R4

p

q[h;R5] =
∏
p|q[h]

p is of type R5

p.
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Note that

q[h] = q[h;R1]q[h;R2]q[h;R3]q[h;R4]q[h;R5].

To simplify notation, we write

R∗q[h],i =
⋂
p|q[h]

R∗p,ip

where ∗ = c, d, n1 or n2 and

Req[h],i =
⋂
p|q[h]

Rep,ip ∩ BcN . (5.17)

Definition 5.7.15. In the case T (L,L), we define the threshold values

t1 =
√

2qεP t3 = 4q2εQ t4 = 4
√

2q2εQL t5 = 144q4εQ2L2

and in the case T (1, L2), define

t1 = 2qεPL t3 = 4q2εQL t4 = 4q2εQL t5 = 64q4εQ2L2.

Lemma 5.7.16. Let i ∈ Iq[h] and let (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h] be good sets. We
have

(i) if q[h;R1] ≥ t1, then Req[h],i = ∅;

(ii) if q[h;R3] ≥ t3, then Req[h],i = ∅;

(iii) if q[h;R4] ≥ t4, then Req[h],i = ∅;

(iv) if q[h;R5] ≥ t5, then Req[h],i = ∅.

Proof. Consider first the case T (L,L).

(i) t1 =
√

2qεP . Let t1 ≤ q[h;R1]. Then

Rcq[h],i ⊂
⋂

p|q[h;R1]

Rcp,ip = {c ∈ C | c ≡ 0 mod q[h;R1]} = ∅.

Hence Req[h],i ⊂ R
c
q[h],i ×D ×N2 ×N1 × E = ∅.

(ii) t3 = 4q2εQ. Let t3 ≤ q[h;R3]. Then, for all (c, d) ∈ Rdq[h],i,

Rn2

q[h],i[c, d] ⊂
⋂

p|q[h;R3]

Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ 0 mod q[h;R3]} = ∅.

Consequently Rn2

q[h],i = ∅ and Req[h],i ⊂ R
n2

q[h],i ×N1 × E = ∅.

(iii) t4 = 4q2εQL. Let t4 ≤ q[h;R4]. Then for all (c, d, n2) ∈ Rn2

q[h],i,

Rn1

q[h],i[c, d, n2] ⊂
⋂

p|q[h;R3]

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ 0 mod q[h;R4]} = ∅.

Consequently Rn1

q[h],i = ∅ and Req[h],i ⊂ R
n1

q[h],i × E = ∅.

(iv) t5 = 144q4εQ2L2. First note that

|n1 + dn2| ≤ |n1|+ d |n2| ≤ 4q2εQL+ 2L4q2εQ = 12q2εQL
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and hence
(n1 + dn2)2 ≤ 144q4εQ2L2 = t5.

Furthermore
4de ≤ 16L2 ≤ 144q4εQ2L2 = t5.

Now suppose that q[h;R5] ≥ t5. Then the condition (n1 + dn2)2 ≡ 4de mod q[h;R5]
implies the equation

(n1 + dn2)2 = 4de

in Z. However, since 4de is not a square, this equation has no solution and therefore
Req[h],i = ∅.

Now consider the case T (1, L2).

(i) t1 = 2qεPL. Let t1 ≤ q[h;R1]. Then

Rcq[h],i ⊂
⋂

p|q[h;R1]

Rcp,ip = {c ∈ C | c ≡ 0 mod q[h;R1]} = ∅.

Hence Req[h],i ⊂ R
c
q[h],i ×D ×N2 ×N1 × E = ∅.

(ii) t3 = 4q2εQL. Let t3 ≤ q[h;R3]. Then, for all (c, d) ∈ Rdq[h],i,

Rn2

q[h],i[c, d] ⊂
⋂

p|q[h;R3]

Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ 0 mod q[h;R3]} = ∅.

Consequently Rn2

q[h],i = ∅ and Req[h],i ⊂ R
n2

q[h],i ×N1 × E = ∅.

(iii) t4 = 4q2εQL. Let t4 ≤ q[h;R4]. Then for all (c, d, n2) ∈ Rn2

q[h],i,

Rn1

q[h],i[c, d, n2] ⊂
⋂

p|q[h;R3]

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ 0 mod q[h;R4]} = ∅.

Consequently Rn1

q[h],i = ∅ and Req[h],i ⊂ R
n1

q[h],i × E = ∅.

(iv) t5 = 64q4εQ2L2. First note that

|n1 + dn2| ≤ |n1|+ d |n2| ≤ 4q2εQL+ 4q2εQL = 8q2εQL

and hence
(n1 + dn2)2 ≤ 64q4εQ2L2 = t5.

Furthermore
4de ≤ 16L2 ≤ 64q4εQ2L2 = t5.

Now suppose that q[h;R5] ≥ t5. Then the condition (n1 + dn2)2 ≡ 4de mod q[h;R5]
implies the equation

(n1 + dn2)2 = 4de

in Z. However, since 4de is not a square, this equation has no solution and therefore
Req[h],i = ∅.

Theorem 5.7.17. Let i ∈ Iq[h]. Then there exist good sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h].

We will prove this theorem in Section 5.8.
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Notation. In what follows, we will denote by rcN the restriction value

rcN = rm(Req[h],i)

where m = cN
(cN,q[h]∞) and Req[h],i is defined by equation (5.17). Hence

rcN ≥
cN

(cN, q[h]∞)
.

Furthermore, we define

req[h] = rq[h]

(
Req[h],i[c, d, n2, n1]

)
rn1

q[h] = rq[h]

(
Rn1

q[h],i[c, d, n2]
)

rn2

q[h] = rq[h]

(
Rn2

q[h],i[c, d]
)

rdq[h] = rq[h]

(
Rdq[h],i[c]

)
rcq[h] = rq[h]

(
Rcq[h],i

)
.

Note that by the properties of the restriction value, we have that

req[h] ≥
∏
p|q[h]

rep[c] rn1

q[h] ≥
∏
p|q[h]

rn1
p [c] rn2

q[h] ≥
∏
p|q[h]

rn2
p [c]

rdq[h] ≥
∏
p|q[h]

rdp[c] rcq[h] ≥
∏
p|q[h]

rcp.

Lemma 5.7.18. Suppose that K is (q,M)-good. Then

ST (L,L)[h]� q6εP εQ2 L
3

q[h]
+ q6εPQ2L2.

Proof. By Lemma 5.7.11 we get that

ST (L,L)[h]�
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈BcN
γ(c,d,e,n1,n2)∈Aiq[h]

1.

By Theorem 5.7.17, there exist good sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h], whence

ST (L,L)[h]�
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈Req[h],i

1

�
∑
i∈Iq[h]

∑
c∈Rc

q[h],i

∑
d∈Rd

q[h],i
[c]

∑
n2∈R

n2
q[h],i

[c,d]

∑
n1∈R

n1
q[h],i

[c,d,n2]

∑
e∈Re

q[h],i
[c,d,n2,n1]

1

≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

∑
n2∈R

n2
q[h]

[c,d]

∑
n1∈R

n1
q[h]

[c,d,n2]

(
‖E‖

req[h]rcN
+ 1

)

≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

∑
n2∈R

n2
q[h]

[c,d]

(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)

≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
.
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By multiplying out, we get(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
=
‖N2‖ ‖N1‖ ‖E‖
rn2

q[h]r
n1

q[h]r
e
q[h]rcN

+
‖N2‖ ‖N1‖
rn2

q[h]r
n1

q[h]

+
‖N2‖ ‖E‖
rn2

q[h]r
e
q[h]rcN

+
‖N2‖
rn2

q[h]

+
‖N1‖ ‖E‖
rn1

q[h]r
e
q[h]rcN

+
‖N1‖
rn1

q[h]

+
‖E‖

req[h]rcN
+ 1.

Since

‖N2‖ ‖N1‖ , ‖N2‖ ‖E‖ , ‖N2‖ , ‖N1‖ , ‖E‖ , 1� q4εQ2L

we get(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
� ‖N2‖ ‖N1‖ ‖E‖

rn2

q[h]r
n1

q[h]r
e
q[h]rcN

+
‖N1‖ ‖E‖
rn1

q[h]r
e
q[h]rcN

+ q4εQ2L.

Note that because of the threshold values, either

q[h;R1] ≤ t1 q[h;R3] ≤ t3
q[h;R4] ≤ t4 q[h;R5] ≤ t5

or the sum is empty. If the sum is empty, there is nothing to do, so we can assume these bounds.
We therefore get

q[h;R3] ≤ t3 = 4q2εQ ≤ ‖N2‖

and hence obtain

‖N2‖
q[h;R3]

≥ 1.

Let q[h;R25] = q[h;R2]q[h;R3]q[h;R4]q[h;R5]. Because

rn2

q[h]r
n1

q[h]r
e
q[h]rcN ≥ rcN

∏
p|q[h]

rn2
p rn1

p rep

≥ rcN
( ∏
p|q[h;R1]

rn2
p rn1

p rep

)( ∏
p|q[h;R2]

rn2
p rn1

p rep

)( ∏
p|q[h;R3]

rn2
p rn1

p rep

)

·
( ∏
p|q[h;R4]

rn2
p rn1

p rep

)( ∏
p|q[h;R5]

rn2
p rn1

p rep

)

≥ cN

(cN, q[h]∞)
(cN, q[h;R1]∞)q[h;R2]2(cN, q[h;R2]∞)q[h;R3]

· (cN, q[h;R3]∞)q[h;R4](cN, q[h;R4]∞)q[h;R5](cN, q[h;R5]∞)

= q[h;R2]2q[h;R3]q[h;R4]q[h;R5]cN

≥ q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

rn1

q[h]r
e
q[h]rcN ≥ q[h;R2]q[h;R4]q[h;R5]cN

we get

‖N2‖ ‖N1‖ ‖E‖
rn2

q[h]r
n1

q[h]r
e
q[h]rcN

≤ ‖N2‖ ‖N1‖ ‖E‖
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

=
‖N2‖ ‖N1‖ ‖E‖
q[h;R25]cN
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‖N1‖ ‖E‖
rn1

q[h]r
e
q[h]rcN

≤ ‖N1‖ ‖E‖
q[h;R2]q[h;R4]q[h;R5]cN

≤ ‖N2‖ ‖N1‖ ‖E‖
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

=
‖N2‖ ‖N1‖ ‖E‖
q[h;R25]cN

.

Hence (
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
� ‖N2‖ ‖N1‖ ‖E‖

q[h;R25]cN
+ q4εQ2L

�N
q4εQ2L2

q[h;R25]c
+ q4εQ2L

and thus

ST (L,L)[h]�
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

(
q4εQ2L2

q[h;R25]c
+ q4εQ2L

)

�
∑
i∈Iq[h]

∑
c∈Rc

q[h]

(
q4εQ2L3

q[h;R25]c
+ q4εQ2L2

)

�
∑
i∈Iq[h]

q4εQ2L3

q[h;R25]

∑
1≤c≤

√
2qεP

c≡0 mod q[h;R1]

1

c
+
∑
i∈Iq[h]

q5εPQ2L2

�
∑
i∈Iq[h]

q4εQ2L3

q[h;R25]

qεP ε

q[h;R1]
+
∑
i∈Iq[h]

q5εPQ2L2

� q6εP εQ2 L
3

q[h]
+ q6εPQ2L2.

Lemma 5.7.19. Suppose that K is (q,M)-good. Then

ST (1,L2)[h]� q9εP 1+εQ3 L
4+2√
q[h]

+ q4εPQL2.

Proof. By Lemma 5.7.11 we get that

ST (1,L2)[h]�
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈BcN
γ(c,d,e,n1,n2)∈Aiq[h]

1.

By Theorem 5.7.17, there exist good sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h], whence

ST (1,L2)[h]�
∑
i∈Iq[h]

∑
c∈C

∑
d∈D

∑
n2∈N2

∑
n1∈N1

∑
e∈E

(c,d,n2,n1,e)∈Req[h],i

1

�
∑
i∈Iq[h]

∑
c∈Rc

q[h],i

∑
d∈Rd

q[h],i
[c]

∑
n2∈R

n2
q[h],i

[c,d]

∑
n1∈R

n1
q[h],i

[c,d,n2]

∑
e∈Re

q[h],i
[c,d,n2,n1]

1
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≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

∑
n2∈R

n2
q[h]

[c,d]

∑
n1∈R

n1
q[h]

[c,d,n2]

(
‖E‖

req[h]rcN
+ 1

)

≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

∑
d∈Rd

q[h]
[c]

∑
n2∈R

n2
q[h]

[c,d]

(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)

≤
∑
i∈Iq[h]

∑
c∈Rc

q[h]

(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
.

By multiplying out, we get(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
=
‖N2‖ ‖N1‖ ‖E‖
rn2

q[h]r
n1

q[h]r
e
q[h]rcN

+
‖N2‖ ‖N1‖
rn2

q[h]r
n1

q[h]

+
‖N2‖ ‖E‖
rn2

q[h]r
e
q[h]rcN

+
‖N2‖
rn2

q[h]

+
‖N1‖ ‖E‖
rn1

q[h]r
e
q[h]rcN

+
‖N1‖
rn1

q[h]

+
‖E‖

req[h]rcN
+ 1.

Note that because of the threshold values, either

q[h;R1] ≤ t1 q[h;R3] ≤ t3
q[h;R4] ≤ t4 q[h;R5] ≤ t5

or the sum is empty. If the sum is empty, there is nothing to do, so we can assume these bounds.
By defining

q[h;R5′] = (q[h;R5], cN) q[h;R5′′] =
q[h;R5]

q[h;R5′]

we get √
q[h;R5′′]cN ≤

√
q[h;R5]cN ≤

√
t52qεPLN = 16q3εPQNL2 = 4q3εPQN ‖E‖√

q[h;R5′]q[h;R4] ≤
√
cNt4 ≤

√
2qεPLNt4 =

√
8q3εPQNL2 ≤ 4q2εQL

√
PN

≤
√
PN ‖N1‖

q[h;R3] ≤ t3 = 4q2εQL ≤ ‖N2‖

and hence obtain

4q3εPQN
‖E‖√

q[h;R5′′]cN
≥ 1

√
PN

‖N1‖√
q[h;R5′]q[h;R4]

≥ 1

‖N2‖
q[h;R3]

≥ 1.

By this and because

rn2

q[h]r
n1

q[h]r
e
q[h]rcN ≥ q[h;R2]2q[h;R3]q[h;R4]q[h;R5]cN

≥
√
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

rn2

q[h]r
n1

q[h] ≥ q[h;R2]q[h;R3]q[h;R4]q[h;R5′]

≥
√
q[h;R2]q[h;R3]q[h;R4]q[h;R5′]
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rn2

q[h]r
e
q[h]rcN ≥ q[h;R2]q[h;R3]q[h;R5′′]cN

≥
√
q[h;R2]q[h;R3]q[h;R5′′]cN

rn2

q[h] ≥ q[h;R3] ≥
√
q[h;R3]

rn1

q[h]r
e
q[h]rcN ≥ q[h;R2]q[h;R4]q[h;R5]cN

≥
√
q[h;R2]q[h;R4]q[h;R5]cN

rn1

q[h] ≥ q[h;R4]q[h;R5′] ≥
√
q[h;R4]q[h;R5′]

req[h]rcN ≥ q[h;R5′′]cN ≥
√
q[h;R5′′]cN

we get

‖N2‖ ‖N1‖ ‖E‖
rn2

q[h]r
n1

q[h]r
e
q[h]rcN

≤ ‖N2‖ ‖N1‖ ‖E‖√
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

=
‖N2‖ ‖N1‖ ‖E‖√
q[h;R25]cN

‖N2‖ ‖N1‖
rn2

q[h]r
n1

q[h]

≤ ‖N2‖ ‖N1‖√
q[h;R2]q[h;R3]q[h;R4]q[h;R5′]

≤ 4q3εPQN
‖N2‖ ‖N1‖ ‖E‖√

q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

= 4q3εPQN
‖N2‖ ‖N1‖ ‖E‖√
q[h;R25]cN

‖N2‖ ‖E‖
rn2

q[h]r
e
q[h]rcN

≤ ‖N2‖ ‖E‖√
q[h;R2]q[h;R3]q[h;R5′′]cN

≤
√
PN

‖N2‖ ‖N1‖ ‖E‖√
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

=
√
PN
‖N2‖ ‖N1‖ ‖E‖√
q[h;R25]cN

‖N1‖ ‖E‖
rn1

q[h]r
e
q[h]rcN

≤ ‖N1‖ ‖E‖√
q[h;R2]q[h;R4]q[h;R5]cN

≤ ‖N2‖ ‖N1‖ ‖E‖√
q[h;R2]q[h;R3]q[h;R4]q[h;R5]cN

=
‖N2‖ ‖N1‖ ‖E‖√
q[h;R25]cN

‖N2‖
rn2

q[h]

≤ ‖N2‖

‖N1‖
rn1

q[h]

≤ ‖N1‖

‖E‖
req[h]rcN

≤ ‖E‖
cN

Hence(
‖N2‖
rn2

q[h]

+ 1

)(
‖N1‖
rn1

q[h]

+ 1

)(
‖E‖

req[h]rcN
+ 1

)
≤ (2 + 4q3εPQN +

√
PN)

‖N2‖ ‖N1‖ ‖E‖√
q[h;R25]cN

+ ‖N2‖+ ‖N1‖+
‖E‖
cN

+ 1

�N q3εPQ
‖N2‖ ‖N1‖ ‖E‖√

q[h;R25]c
+ ‖N2‖+ ‖N1‖+

‖E‖
c

+ 1

� q7εPQ3 L4√
q[h;R25]c

+
L2

c
+ q2εQL
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and thus

ST (1,L2)[h]�
∑
i∈Iq[h]

∑
c∈Rc

q[h]

(
q7εPQ3 L4√

q[h;R25]c
+
L2

c
+ q2εQL

)

�
∑
i∈Iq[h]

(q7εPQ3 L4√
q[h;R25]

+ L2

) ∑
c∈Rc

q[h]

1

c
+ q2εQL

∑
c∈Rc

q[h]

1



�
∑
i∈Iq[h]

(q7εPQ3 L4√
q[h;R25]

+ L2

) ∑
1≤c≤2qεPL

c≡0 mod q[h;R1]

1

c
+ q3εQPL2


�

∑
i∈Iq[h]

((
q7εPQ3 L4√

q[h;R25]
+ L2

)
qεP εLε

q[h;R1]
+ q3εQPL2

)

�
∑
i∈Iq[h]

(
q9εP 1+εQ3 L

4+ε√
q[h]

+ q3εQPL2

)

� q9εP 1+εQ3 L
4+ε√
q[h]

+ q4εQPL2.

Proposition 5.7.20. Suppose that K is (q,M)-good. Then

S[h]� q9εP 1+εQ3 L
4+ε√
q[h]

+ q4εPQL2.

Proof. Recall that

S[h] = 2ST (L,L)[h] + ST (1,L2)[h].

By Lemma 5.7.18 and Lemma 5.7.19, we get that

S[h]� q6εP εQ2 L
3

q[h]
+ q6εPQ2L2 + q9εP 1+εQ3 L

4+ε√
q[h]

+ q4εPQL2

� q9εP 1+εQ3 L
4+ε√
q[h]

+ q4εPQL2.

Proof of Proposition 5.7.4. By Lemma 5.7.7,

M c≤C,n∈�,h[φk; d, e]�N k3qε
PQ

L
S[h]

∏
p|q

M2hpphp

which is by Proposition 5.7.20

� k3qε
PQ

L

(
q9εP 1+εQ3 L4√

q[h]
+ q4εPQL2

)(∏
p|q

M2hpphp
)
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�
(
k3q10εP 2+εQ4 L3√

q[h]
+ k3q5εP 2Q2L

)(∏
p|q

M2hpphp
)

� k3q
1
2 +10εP 2+εQ4M2ω(q)L3 + k3q1+5εP 2Q2M2ω(q)L

and analogously for φa,b.

5.8. Analysis of resonating matrices

The aim of this section is to prove Theorem 5.7.17, i.e., we will show that for i ∈ Iq[h], there

exist good sets (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip)p|q[h] as defined in Definition 5.7.14. Recall that

γ(c, d, e, n1, n2) =

(
n1

n1n2−e
cN

cdN dn2

)
and that

γp(c, d, e, n1, n2) ≡
(

n1
n1n2−e
cN sp

cdNsp dn2

)
mod p

where
sp ≡

∏
p′|q
p′ 6=p

p′ mod p.

Lemma 5.8.1. Let N ∈ Z≥1, p be a prime, and (d, p) = 1. Let x = [x1 : x2], y = [y1 : y2] ∈
P1(Fp), x 6= y and let γ(c, d, e, n1, n2) ∈ Nx,y(Fp) \ T x,y(Fp). Then

c2dN2spx1y1 + cn2dNx2y1 − n1cNx1y2 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞)

c2dN2spx1y1 + cn2dNx1y2 − n1cNx2y1 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞).

Proof. Let x = [x1 : x2], y = [y1 : y2] ∈ P1(Fp). Then

γ · x = γ ·
(
x1

x2

)
= α

(
y1

y2

)
for some α ∈ F×p . This implies

n1x1 +
n1n2 − e
cN

spx2 ≡ αy1 mod p

cdNspx1 + dn2x2 ≡ αy2 mod p,

and hence

cn1Nx1 + n1n2x2 − ex2 ≡ αcNy1 mod (pcN, p∞)

c2dN2x1 + cdNn2x2 ≡ αcNy2 mod (pcN, p∞).

Since y ∈ P1(Fp), at least one of y1 or y2 is invertible modulo p. If y1 is invertible modulo p,
then we get

cn1Nx1y1 + n1n2spx2y1 − espx2y1 ≡ αcN mod (pcN, p∞)

and consequently

c2dN2spx1 + cdNn2x2 ≡ αcNy2 ≡ cn1Nx1y1y2 + n1n2spx2y1y2 − espx2y1y2 mod (pcN, p∞)
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This can be rewritten as

c2dN2spx1y1 + cn2dNx2y1 − n1cNx1y2 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞).

If y1 is not invertible modulo p, then y2 has to be invertible modulo p. Hence

c2dN2spx1y2 + cdNn2x2y2 ≡ αcN mod (pcN, p∞)

and we get

cn1Nx1 + n1n2spx2 − espx2 ≡ αcNy1 ≡ c2dN2spx1y1y2 + cdNn2x2y1y2 mod (pcN, p∞).

This can be written again as

c2dN2spx1y1 + cn2dNx2y1 − n1cNx1y2 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞).

Therefore, we have for every y ∈ P1(Fp) the condition

c2dN2spx1y1 + cn2dNx2y1 − n1cNx1y2 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞) (5.18)

which completes the proof of the first equation. The second equation is obtained by interchang-
ing x and y.

Lemma 5.8.2. Let N ∈ Z≥1, p be a prime, and (d, p) = 1. Let x, y ∈ P1(Fp), x 6= y and let
γ(c, d, e, n1, n2) ∈ T x,y(Fp). Then

c2dN2spx
2
1 + cn2dNx1x2 − n1cNx1x2 − n1n2spx

2
2 ≡ −espx2

2 mod (pcN, p∞)

c2dN2spy
2
1 + cn2dNy1y2 − n1cNy1y2 − n1n2spy

2
2 ≡ −espy2

2 mod (pcN, p∞).

Proof. The proof is the same as the one of Lemma 5.8.1, except that in the first equation, y is
replaced by x and in the second equation, x is replaced by y.

Proposition 5.8.3. Let N ∈ Z≥1, let p be a prime with ip = 1. Then there exist locally good
(at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).

Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A1
p. Hence

cdNsp ≡ 0 mod p.

Since (dNsp, p) = 1, we get that
c ≡ 0 mod p.

Also
e ≡ n1n2 mod cN

and hence by defining

Rcp,ip = {c ∈ C | c ≡ 0 mod p}

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = N1

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we can check that (c, d, n2, n1, e) ∈ Rep,ip , that the corresponding restriction values satisfy

rcp,ip ≥ p(cN, p
∞) pep,ip ≥ (cN, p∞)

and that Rcp,ip is of the desired form so that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good

sets of type R1 (see Definition 5.7.14).
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Proposition 5.8.4. Let N ∈ Z≥1, let p be a prime with ip = 2. Then there exist locally good
(at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).

Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A2
p. Hence

n1 ≡ 0 mod p.

Also

e ≡ n1n2 mod cN

and hence by defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ 0 mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we see that (c, d, n2, n1, e) ∈ Rep,ip and by checking the conditions of Definition 5.7.14 we obtain

that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R4.

Proposition 5.8.5. Let N ∈ Z≥1, let p be a prime with ip = 3. Then there exist locally good
(at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).

Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A3
p. Hence

dn2 ≡ 0 mod p.

Since (d, p) = 1, we get

n2 ≡ 0 mod p.

Also

e ≡ n1n2 mod cN

and thus by defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ 0 mod p}

Rn1
p,ip

[c, d, n2] = N1

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we can check that (c, d, n2, n1, e) ∈ Rep,ip and that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally
good sets of type R3.

Proposition 5.8.6. Let N ∈ Z≥1, let p be a prime with ip = 4. Then there exist locally good
(at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).
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Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A4
p, i.e., γ is parabolic, so γp has a

single fixed point in P1(Fp). Hence γp ∈M2(Fp) is a matrix with a unique eigenvalue. Therefore,
the characteristic equation

λ2 − tr(γp)λ+ det(γp) ≡ 0 mod p,

has exactly one solution. Hence, the discriminant has to be zero, i.e.,

tr(γp)
2 − 4 det(γp) ≡ 0 mod p.

This can be rewritten as
(n1 + dn2)2 ≡ 4de mod p.

We distinguish two cases: If (p, cN) = 1, we have (pcN, p∞) = p and hence (since (d, q) = 1)

e ≡ 4d(n1 + dn2)2 mod (pcN, p∞).

By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = N1

Rep,ip [c, d, n2, n1] =
{
e ∈ E

∣∣ e ≡ 4d(n1 + dn2)2 mod (pcN, p∞)
}

we can check that (c, d, n2, n1, e) ∈ Rep,ip and that the corresponding restriction values satisfy

rn1
p,ip

rep,ip ≥ p(cN, p
∞) pn1

p,ip
≥ 1 = (p, cN) rep,ip ≥ p =

p

(p, cN)
(cN, p∞)

and that for all (c, d, n2, n1, e) ∈ Rep,ip

(n1 + dn2)2 ≡ 4de mod p.

Thus we have verified that in this case (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of
type R5.

If (p, cN) 6= 1, we have
(n1 + dn2)2 ≡ 4dn1n2 mod p

since
e ≡ n1n2 mod cN

and hence
n2

1 + 2dn1n2 + d2n2
2 ≡ 4dn1n2 mod p.

But this means
(n1 − dn2)2 ≡ n2

1 − 2dn1n2 + d2n2
2 ≡ 0 mod p.

Therefore
n1 ≡ dn2 mod p.

Together with
e ≡ n1n2 mod (cN, p∞)
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and by defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ dn2 mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we can check that (c, d, n2, n1, e) ∈ Rep,ip and that the corresponding restriction values satisfy

rn1
p,ip

rep,ip ≥ p(cN, p
∞) pn1

p,ip
≥ p = (p, cN) rep,ip ≥ (cN, p∞) =

p

(p, cN)
(cN, p∞)

and that for all (c, d, n2, n1, e) ∈ Rep,ip

(n1 + dn2)2 ≡ 4de mod p.

Thus we see that also in this case (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type
R5.

Proposition 5.8.7. Let N ∈ Z≥1, let p be a prime, let x, y ∈ P1(Fp), x 6= y and let ip =
(5, x, y). Then there exist locally good (at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).

Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A(5,x,y)
p . By Lemma 5.8.2, we have

that

c2dN2spx
2
1 + cn2dNx1x2 − n1cNx1x2 − n1n2spx

2
2 ≡ −espx2

2 mod (pcN, p∞)

c2dN2spy
2
1 + cn2dNy1y2 − n1cNy1y2 − n1n2spy

2
2 ≡ −espy2

2 mod (pcN, p∞).

We consider now different cases.

(i) If p | x2 and p - y2, then

c2dN2spx
2
1 + (e− n1n2)spx

2
2 ≡ 0 mod (pcN, p∞)

and since cN | (e− n1n2) we get (independent of whether p|cN or not)

cdNspx
2
1 ≡ 0 mod p.

Hence
c ≡ 0 mod p.

Furthermore

e ≡ n1n2 + n1cNspy1y2 − cn2dNspy1y2 − c2dN2sp
2y2

1y2
2 mod (pcN, p∞).

By defining

Rcp,ip = {c ∈ C | c ≡ 0 mod p}

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2
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Rn1
p,ip

[c, d, n2] = N1

Rep,ip [c, d, n2, n1] =
{
e ∈ E

∣∣ e ≡ n1n2 + n1cNspy1y2 − cn2dNspy1y2 − c2dN2sp
2y2

1 mod (pcN, p∞)
}

we can check that (c, d, n2, n1, e) ∈ Rep,ip and that the corresponding restriction values
satisfy

rcp,ip ≥ p pep,ip ≥ (cN, p∞)

hence (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R1.

(ii) If p | y2 and p - x2, then we get analogously to case (i) locally good sets of type R1.

(iii) If p - x2 and p - y2, we have

e ≡ n1n2 + cNspx1x2(n1 − n2d− cdNspx1x2) mod (pcN, p∞)

e ≡ n1n2 + cNspy1y2(n1 − n2d− cdNspy1y2) mod (pcN, p∞).

Hence

(x1x2 − y1y2)n1 ≡
(
dn2 + cdNsp(x1x2 + y1y2)

)
(x1x2 − y1y2) mod p

and thus
n1 ≡ dn2 + cdNsp(x1x2 + y1y2) mod p.

By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ dn2 + cdNsp(x1x2 + y1y2) mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 + cNspx1x2(n1 − n2d− cdNspx1x2) mod (pcN, p∞)}

we again can check all inequalities to see that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally

good sets of type R2 with (c, d, n2, n1, e) ∈ Rep,ip .

Proposition 5.8.8. Let N ∈ Z≥1, let p be a prime, let x, y ∈ P1(Fp), x 6= y and let ip =
(6, x, y). Then there exist locally good (at p) sets (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip).

Proof. Consider (c, d, n2, n1, e) such that γp(c, d, e, n1, n2) ∈ A(6,x,y)
p . By Lemma 5.8.1, we have

that

c2dN2spx1y1 + cn2dNx2y1 − n1cNx1y2 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞) (5.19)

c2dN2spx1y1 + cn2dNx1y2 − n1cNx2y1 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞). (5.20)

We consider now different cases.

(i) Let p | x1 and p | y2. Then (5.19) becomes

n2 ≡ 0 mod p

and (5.20) becomes
n1 ≡ 0 mod p.
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By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ 0 mod p}

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ 0 mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we can check that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R2 with

(c, d, n2, n1, e) ∈ Rep,ip .

(ii) Let p | x2 and p | y1. Then (5.19) becomes

n1 ≡ 0 mod p

and (5.20) becomes
n2 ≡ 0 mod p.

Hence we can define the same sets as in case (i) and analogously conclude that (Rcp,ip ,

Rdp,ip ,R
n2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R2 with (c, d, n2, n1, e) ∈ Rep,ip .

(iii) Let p | x1 and p - y1y2. Then (5.19) becomes

cn2dNx2y1 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞)

and (5.20) becomes

−n1cNx2y1 − n1n2spx2y2 ≡ −espx2y2 mod (pcN, p∞).

Hence

e ≡ n1n2 + n1cNspy1y2 mod (pcN, p∞),

n1 ≡ −dn2 mod p.

By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ −dn2 mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 + n1cNspy1y2 mod (pcN, p∞)}

we can check that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R2 with

(c, d, n2, n1, e) ∈ Rep,ip .

(iv) Let p | x2 and p - y1y2. Then (5.19) becomes

cdNspx1y1 − n1x1y2 ≡ 0 mod p

and (5.20) becomes
cdNspx1y1 + n2dx1y2 ≡ 0 mod p.
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Hence

e ≡ n1n2 mod (cN, p∞)

n1 ≡ cdNspy1y2 mod p

n2 ≡ −cNspy1y2 mod p.

By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = {n2 ∈ N2 | n2 ≡ −cNspy1y2 mod p}

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ cdNspy1y2 mod p}

Rep,ip [c, d, n2, n1] = {e ∈ E | e ≡ n1n2 mod (cN, p∞)}

we can check that (Rcp,ip ,R
d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R2 with

(c, d, n2, n1, e) ∈ Rep,ip .

(v) Let p - x1x2 and p - y1y2. Then (5.19) becomes

e ≡ n1n2 + n1cNspx1x2 − c2dN2sp
2x1x2y1y2 − cn2dNspy1y2 mod (pcN, p∞)

and (5.20) becomes

e ≡ n1n2 + n1cNspy1y2 − c2dN2sp
2x1x2y1y2 − cn2dNspx1x2 mod (pcN, p∞).

Hence

e ≡ n1n2 + n1cNspx1x2 − c2dN2sp
2x1x2y1y2 − cn2dNspy1y2 mod (pcN, p∞)

n1 ≡ −dn2 mod p.

By defining

Rcp,ip = C

Rdp,ip [c] = D
Rn2
p,ip

[c, d] = N2

Rn1
p,ip

[c, d, n2] = {n1 ∈ N1 | n1 ≡ −dn2 mod p}

Rep,ip [c, d, n2, n1] =
{
e ∈ E

∣∣ e ≡ n1n2 + n1cNspx1x2 − c2dN2sp
2x1x2y1y2 − cn2dNspy1y2 mod (pcN, p∞)

}
we can check that (Rcp,ip ,R

d
p,ip

,Rn2
p,ip

,Rn1
p,ip

,Rep,ip) are locally good sets of type R2 with

(c, d, n2, n1, e) ∈ Rep,ip .

This completes the proof.

Proof of Theorem 5.7.17. This is a direct consequence of Propositions 5.8.3, 5.8.4, 5.8.5, 5.8.6,
5.8.7 and 5.8.8.





6. Sums over Primes to Squarefree Moduli

In this section we sketch the proof of Theorem 2.6.3. To prove Theorem 2.6.3, it is enough
to follow the proof of Theorem 1.5 in [23] and make some minor adaptions, which includes
replacing results of [22] by results derived in this thesis. We will now give a quick outline of
the proof of [23, Theorem 1.5] and indicate what modifications need to be made to obtain the
slightly more general Theorem 2.6.3.

As explained on page 1693 in [23], one uses Heath-Brown’s identity as well as a smooth
partition of unity (see [23, Lemma 4.3]) to decompose∑

n

Λ(n)K(n)V
( n

Pq

)
into a linear combination, with coefficients bounded by Ok(log q), of O(log2k q) sums of the
shape∑
m1,...,mk

α1(m1) · · ·αk(mk)
∑

n1,...,nk

V1(n1) · · ·Vk(nk)V
(m1 · · ·mkn1 · · ·nk

Pq

)
K(m1 · · ·mkn1 · · ·nk)

for some integral parameter k ≥ 2, where

(i) M = (M1, . . . ,Mk), N = (N1, . . . , Nk) are k-tuples of parameters in [ 1
2 , 2Pq]

2k which
satisfy

N1 ≥ N2 ≥ · · ·Nk, Mi ≤ (Pq)
1
k , M1 · · ·MkN1 · · ·Nk �k Pq;

(ii) the arithmetic functions m 7−→ αi(m) are bounded and supported in [Mi/2, 2Mi];

(iii) the smooth functions Vi(x) are compactly supported in [Ni/2, 2Ni], and their derivatives
satisfy

y`V
(`)
i (y)� 1

for all y ≥ 1, where the implicit constant depends only on `.

Compare this to equation (4.1) in [23]. The ni’s are called the smooth variables and the mi’s
are called the nonsmooth variables. Normally, the only thing which one can exploit about the
functions αi is, that they are supported on short intervals. The smooth functions Vi on the
other hand may be supported on long intervals. The sums are categorized according to the
number of long smooth variables. If there is one very long smooth variable, the sum is of type
I, if there are two relatively long smooth variables, the sum is of type I2, if there are three
relatively long smooth variables, the sum is of type I3 and so on (see p. 1693 and 1694 in [23]).
The estimate of such sums Ir becomes harder, as r increases. Hence one treats this sums for
small r’s and the remaining sums are then called sums of type II.

For the proof of Theorem 2.6.3 it is enough to deal with sums of type I2 and to consider all
other sums as of type II. In [23], the estimate of sums of type I2 is done in Theorem 1.16,
while the estimate of the sums of type II is equation (1.6) in Theorem 1.17. Combining this
two results leads to [23, Theorem 1.5], the proof is carried out in [23, Chapter 4]. To prove
Theorem 2.6.3, we have to adapt the proof of Theorem 1.5 in [23] to K modulo q squarefree as
in the assumptions of Theorem 2.6.3. Since the part of the proof which is covered in Chapter 4
of [23] is purely analytic and does not rely on whether q is prime or squarefree, this part of

89
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the proof goes through without any modification. However, the proofs of Theorem 1.16 and
Theorem 1.17 in [23] need to be modified slightly to get analogous statements for a more general
function K. How one has to do this is explained in the next two sections.

6.1. Estimate of type I2 sums

To deal with type I2 sums for q squarefree, we need a slightly more general version of Theo-
rem 1.16 in [23], which is Theorem 3.3.2, which we proved already.

6.2. Estimate of type II sums

The estimate for type II sums which we need is a general version of equation (1.6) of Theo-
rem 1.17 in [23], which reads as follows.

Theorem 6.2.1. Let q be a squarefree number and let K : Z/qZ −→ C be a q-primeperiodic
function. Assume that K is (q,D)-non-exceptional. Let M,N ≥ 1 be parameters, and let
(αm)m, (βn)n be sequences supported on [M/2, 2M ] and [N/2, 2N ], respectively. Then we have
that ∑

m,n
(m,q)=1

αmβnK(mn)� ‖α‖ ‖β‖ (MN)
1
2

( 1

q
1
4

+
1

M
1
2

+
q

1
4 log

1
2 q

N
1
2

)
,

where

‖α‖2 =
∑
m

|αm|2 , ‖β‖2 =
∑
n

|βn|2 .

The proof of the original result is given in Chapter 3 of [23]. To prove Theorem 6.2.1, we
start analogously. We consider the bilinear form

T =
∑
m

(m,q)=1

∑
n

αmβnK(mn)

which, by taking the support of (αm) and (βn) into account, can be rewritten as

=
∑

N
2 ≤n≤2N

βn
∑

M
2 ≤m≤2M
(m,q)=1

αmK(mn).

Therefore, by the Cauchy-Schwarz inequality, we obtain

|T |2 ≤ ‖β‖2
∑

N
2 ≤n≤2N

∣∣∣∣∣ ∑
M
2 ≤m≤2M
(m,q)=1

αmK(mn)

∣∣∣∣∣
2

= ‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1
αm2

∑
N
2 ≤n≤2N

K(m1n)K(m2n). (6.1)

By the completion method (see (3.2) in [23]), we get that∑
N
2 ≤n≤2N

K(m1n)K(m2n) =
1

q

∑
N
2 ≤n≤2N

∑
m∈Z/qZ

K(m1m)K(m2m)
∑

h∈Z/qZ

e
( (n−m)h

q

)
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=
∑

h∈Z/qZ

1

q

∑
N
2 ≤n≤2N

e
(nh
q

) ∑
m∈Z/qZ

K(m1m)K(m2m)e
(−mh

q

)
=

1

q

∑
N
2 ≤n≤2N

∑
m∈Z/qZ

K(m1m)K(m2m)

+
∑

h∈Z/qZ\{0}

1

q

∑
N
2 ≤n≤2N

e
(−nh

q

) ∑
m∈Z/qZ

K(m1m)K(m2m)e
(hm
q

)

=
N

q
|C(m1,m2, 0,K)|+

∑
0<|h|≤ q2

1

q
|C(m1,m2, h,K)|

∣∣∣∣∣∣
∑

N
2 ≤n≤2N

e
(−nh

q

)∣∣∣∣∣∣ .
Clearly

1

q

∑
N
2 ≤n≤2N

e
(−nh

q

)
� N

q
.

But we have also

1

q

∑
N
2 ≤n≤2N

e
(−nh

q

)
� 1

q

1− e
(

2hN
q

)
1− e

(
h
q

) � 1

q

1

1− e
(
h
q

) � 1

q

q

h
=

1

h

since for 1 ≤ h ≤ q
2 ∣∣∣∣1− e(hq )

∣∣∣∣ =

∣∣∣∣e(−h2q

)
− e
( h

2q

)∣∣∣∣ =

∣∣∣∣sin(πhq )
∣∣∣∣� h

q
.

Therefore∑
N
2 ≤n≤2N

K(m1n)K(m2n)� N

q

∣∣C′(K; (m1m2, 0)
)∣∣+ ∑

0<|h|≤ q2

min
( 1

|h|
,
N

q

) ∣∣C′(K; (m1m2, hm2)
)∣∣ .

Combining this with (6.1) gives

|T |2 � ‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1
αm2

N

q

∣∣C′(K; (m1m2, 0)
)∣∣

+ ‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1αm2

∑
0<|h|≤ q2

min
( 1

|h|
,
N

q

) ∣∣C′(K; (m1m2, hm2)
)∣∣

= ‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1
αm2

N

q

∏
p|q

∣∣C′(Kp; (m1m2, 0)
)∣∣

+ ‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1αm2

∑
0<|h|≤ q2

min
( 1

|h|
,
N

q

)∏
p|q

∣∣C′(Kp; (m1m2, sphm2)
)∣∣

Now, in contrast to the case where q is a prime, to estimate the C′
(
K; (m,h)

)
’s, we also

need to consider mixed cases, where for some p|q, we can apply the bound � p
1
2 , while for

another p|q we may only by able to apply the trivial bound. To implement this idea, we make
a definition analogous to Definition 5.7.2.
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Definition 6.2.2. Fix a squarefree number q. Then we associate to every (m,h) ∈ (Z/qZ)××
Z/qZ its type T[(m,h)] which is a vector T[(m,h)] =

(
T [(m,h)]p

)
p|q given by

T [(m,h)]p =

{
1
2 if (m,h) /∈ HKp,M ,

1 if (m,h) ∈ HKp,M .

We denote the space of all possible types by H =
{

1
2 , 1
}ω(q)

.

We then write

‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1
αm2

N

q

∏
p|q

∣∣C′(Kp; (m1m2, 0)
)∣∣

= ‖β‖2
∑
h∈H

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

T [(m1m2,0)]=h

αm1
αm2

N

q

∏
p|q

∣∣C′(Kp; (m1m2, 0)
)∣∣

� ‖β‖2
∑
h∈H

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

T [(m1m2,0)]=h

|αm1
| |αm2

| N
q

∏
p|q

php

� ‖β‖2
∑
h∈H

(
N

q

∏
p|q

php
) ∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

T [(m1m2,0)]=h

(
|αm1

|2 + |αm2
|2
)

= ‖β‖2
∑
h∈H

(
N

q

∏
p|q

php
)( ∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

T [(m1m2,0)]=h

|αm1
|2 +

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

T [(m1m2,0)]=h

|αm2
|2
)

= ‖β‖2
∑
h∈H

(
N

q

∏
p|q

php
)( ∑

M
2 ≤m1≤2M
(m1,q)=1

|αm1 |
2

∑
M
2 ≤m2≤2M
(m2,q)=1

T [(m1m2,0)]=h

1

+
∑

M
2 ≤m2≤2M
(m2,q)=1

|αm2
|2

∑
M
2 ≤m1≤2M
(m1,q)=1

T [(m1m2,0)]=h

1

)

= ‖β‖2
∑
h∈H

(
N

q

∏
p|q

php
)( ∑

M
2 ≤m1≤2M
(m1,q)=1

|αm1
|2
(
M

q[h]
+ 1

)

+
∑

M
2 ≤m2≤2M
(m2,q)=1

|αm2 |
2

(
M

q[h]
+ 1

))

� ‖α‖2 ‖β‖2
∑
h∈H

(
N

q

∏
p|q

php
)(

M

q[h]
+ 1

)
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� ‖α‖2 ‖β‖2
(
N

q

∏
p|q

php
)(

M

q[h]
+ 1

)

� ‖α‖2 ‖β‖2
(
NM

q
1
2

+N

)
,

as well as

‖β‖2
∑

M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1
αm2

∑
0<|h|≤ q2

min
( 1

|h|
,
N

q

)∏
p|q

∣∣C′(Kp; (m1m2, sphm2)
)∣∣

= ‖β‖2
∑
h∈H

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

αm1αm2

∑
0<|h|≤ q2

T [(m1m2,sphm2)]=h

min
( 1

|h|
,
N

q

)∏
p|q

∣∣C′(Kp; (m1m2, sphm2)
)∣∣

� ‖β‖2
∑
h∈H

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

|αm1
| |αm2

|
∑

0<|h|≤ q2
T [(m1m2,sphm2)]=h

min
( 1

|h|
,
N

q

)∏
p|q

∣∣C′(Kp; (m1m2, sphm2)
)∣∣

� ‖β‖2
∑
h∈H

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

|αm1
| |αm2

|
∑

0<|h|≤ q2
T [(m1m2,sphm2)]=h

min
( 1

|h|
,
N

q

)∏
p|q

php

� ‖β‖2
∑
h∈H

(∏
p|q

php
) ∑

(a,b)∈F×
q[h]
×Fq[h]

∀p|q[h] : (a,b)∈HKp,M

∑
M
2 ≤m1,m2≤2M
(m1m2,q)=1

|αm1 | |αm2 |
∑

0<x≤ q2
m1m2≡a mod q[h]
±spxm2≡b mod q[h]

min
( 1

x
,
N

q

)

� ‖β‖2
∑
h∈H

(∏
p|q

php
) ∑

(a,b)∈F×
q[h]
×Fq[h]

∀p|q[h] : (a,b)∈HKp,M

∑
M
2 ≤m1,m2≤2M

m1m2≡a mod q[h]
(m1m2,q)=1

(
|αm1 |

2
+ |αm2 |

2 )( log(q)

q[h]
+
N

q

)

� ‖β‖2
∑
h∈H

(∏
p|q

php
) ∑

(a,b)∈F×
q[h]
×Fq[h]

∀p|q[h] : (a,b)∈HKp,M

‖α‖2
(
M

q[h]
+ 1

)(
log(q)

q[h]
+
N

q

)

� ‖α‖2 ‖β‖2
∑
h∈H

(∏
p|q

php
)(

M

q[h]
+ 1

)(
log(q)

q[h]
+
N

q

)
� ‖α‖2 ‖β‖2

∑
h∈H

(M + 1)
(
q

1
2 log(q) +N

)
� ‖α‖2 ‖β‖2

(
Mq

1
2 log(q) + q

1
2 log(q) +

MN

q
+
N

q

)
� ‖α‖2 ‖β‖2

(
Mq

1
2 log(q) +

MN

q

)
Hence

|T |2 � ‖α‖2 ‖β‖2
(
Mq

1
2 log(q) +

MN

q
+
MN

q
1
2

+N
)

� ‖α‖2 ‖β‖2
(
Mq

1
2 log(q) +

MN

q
1
2

+N
)
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which yields

T � ‖α‖ ‖β‖ (MN)
1
2

( 1

q
1
4

+
1

M
1
2

+
q

1
4 log

1
2 q

N
1
2

)
.

This completes the proof of Theorem 6.2.1.

6.3. Proof of Theorem 2.6.3

As explained before, based on the estimates of the type I2 and type II sums, Theorem 2.6.3 can
now be proven completely analogously to [23, Theorem 1.5], the proof being done in section 4
of [23]. Since this part of the proof is completely analytic, replacing the prime p by a squarefree
integer q does not make any difference.



7. Applications

As an application of our results, we consider the following proposition which is a generalisation
of Corollary 1.13 in [23] and an improvement of [16, Lemmas 6.1, 6.2, 6.3] for c = q squarefree.

Proposition 7.0.1. For every 0 < η < 1
48 there exists C(η) such that, for every q squarefree,

every X ≥ 2, and every integer n coprime with q, one has the inequalities∣∣∣∣ ∑
p<X
p prime

Kl2(np; q) log p

∣∣∣∣ ≤ C(η)X
(

1 +
q

X

) 1
12

q−η

and ∣∣∣∣ ∑
p<X
p prime

Kl2(n2p2; q)e
(2np

q

)
log p

∣∣∣∣ ≤ C(η)X
(

1 +
q

X

) 1
12

q−η.

Proof. By Example 2.3.3 and [22, Section 10.3], we know that

K1(a) = Kl2(na; q) K2(a) = Kl2(n2a2; q)e
(2na

q

)
are irreducible trace functions with conductor ≤ 5 and hence by (q,M)-good and (q,M)-non-
exceptional for some absolute constant M . Hence Theorem 2.6.3 is applicable and we obtain∑

n<Pq

Λ(n)K(n)� QP
(

1 +
1

P

) 1
12

q1−η

for all 0 < η < 1
48 . Deligne has shown [7, Sommes Trig., (7.1.3)] that

|Klm(a; p)| ≤ m

and hence K1(a),K2(a) ≤ 2ω(q). Therefore∑
p≤Pq

K1(p) log p =
∑
n<Pq

Λ(n)K1(n)−
∑

2≤m≤d logPq
log 2 e

∑
p≤(Pq)

1
m

K1(pm) log p

�
∑
n<Pq

Λ(n)K1(n) + q
1
2 +εP

� QP
(

1 +
1

P

) 1
12

q1−η

= QX
(

1 +
q

X

) 1
12

X−η,

for X = Pq and analogously for K2.
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A. The Kuznetsov Formula

Definition A.0.2. For non-negative integers a, b, c, we define the Kloosterman sum S(a, b; c)
by

S(a, b; c) =
∑

0≤x<c
(x,c)=1

e

(
ax+ bx

c

)
.

where x denotes the inverse of x modulo c.

Proposition A.0.3 (Petersson formula). For any n ≥ 1 and m ≥ 1,

(k − 2)!

(4π)k−1

∑
f∈Bk(D)

%f (n)%f (m) = δ(m,n) + 2πi−k
∑
c>0
D|c

1

c
S(m,n; c)Jk−1

(
4π
√
mn

c

)
.

Proof. This is Proposition 14.5 in [17]. Note that their F is our Bk(D).

Proposition A.0.4 (Trivial bound for Kloosterman sums). The trivial bound is

|S(a, b; c)| ≤ c.

Proposition A.0.5 (Weil’s bound for Kloosterman sums). Let a, b, c ∈ Z, c positive. Then

|S(a, b; c)| ≤ τ(c)
√

(a, b, c)
√
c

where τ denotes the divisor function and (a, b, c) the greatest common divisor of a, b and c.

Proposition A.0.6 (Twisted multiplicativity of Kloosterman sums). If (c, d) = 1, then

S(a, b; cd) = S(ac, bc; d)S(ad, bd; c),

where c and d denote integers such that cc ≡ 1 mod d and dd ≡ 1 mod c.

A proof of Proposition A.0.5 can for example be found in [17, Corollary 11.12]. Proposi-
tion A.0.6 is Equation (1.59) in [17].

The Kuznetsov formula is a generalization of the Petersson formula. The following statement
can be found in [22], Section 3.1.5.

Theorem A.0.7 (Kuznetsov formula). Let φ : [0,∞[−→ C be a smooth function satisfying

φ(0) = φ′(0) = 0,
dj

dxj
φ(x)�ε (1 + x)−2−ε for 0 ≤ j ≤ 3.

Let

φ̇(k) = ik
ˆ ∞

0

Jk−1(x)φ(x)
dx

x
,

φ̃(t) =
i

2 sinh(πt)

ˆ ∞
0

(J2it(x)− J−2it(x))φ(x)
dx

x
,
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φ̌(t) =
2

π
cosh(πt)

ˆ ∞
0

K2it(x)φ(x)
dx

x

be Bessel transforms. Then for positive integers m, n we have the following trace formula due
to Kuznetsov:

∆D,φ(m,n) =
∑
c>0
D|c

1

c
S(m,n; c)φ

(
4π
√
mn

c

)

where

∆D,φ(m,n) :=
∑
k>0

k≡0 mod 2

∑
g∈Bk(D)

φ̇(k)
(k − 1)!

π(4π)k−1
%g(m)%g(n) +

∑
g∈B(D)

φ̃(tg)
4π

cosh(πtg)
%g(m)%g(n)

+
∑
χ

∑
g∈B(χ)

ˆ ∞
−∞

φ̃(t)
1

cosh(πt)
%g(m, t)%g(n, t)dt.

Definition A.0.8 (Test function φa,b). Let a, b ∈ Z such that 2 ≤ b < a, b is odd and a− b ≡ 0
mod 2. Then we define

φa,b(x) = ib−aJa(x)x−b.

By [3, (2.21)], we get the following proposition (see also [22, p. 604]):

Proposition A.0.9. We have

φ̇a,b(k) =
b!

2b+1π

b∏
j=0

((
(1− k)i

2

)2

+

(
a+ b

2
− j
)2
)−1

�a,b ±k−2b−2,

φ̃a,b(t) =
b!

2b+1π

b∏
j=0

(
t2 +

(
a+ b

2
− j
)2
)−1

�a,b (1 + |t|)−2b−2.

In particular 
φ̇a,b(k) > 0 for 2 ≤ k ≤ a− b,
(−1)(k−(a−b))/2φ̇a,b(k) > 0 for a− b < k ≤ a+ b,

φ̇a,b(k) > 0 for a+ b < k,

φ̃a,b(t) > 0 for t ∈ R ∪ (−i/4, i/4).



B. Some Auxiliary Results

Proposition B.0.10 (Hecke relations). Let f be a Hecke eigenform. Then for (m,D) = 1 and
any n ≥ 1, we have

λf (m)%f (n) =
∑

d|(m,n)

%f

(mn
d2

)
,

and moreover, these relations hold for all m,n if f is a newform, with an additional factor
χ0(d), where χ0 denotes the principal Dirichlet character to modulus D. (Recall that λf are the
Hecke eigenvalues and %f are the Fourier coefficients.

Proposition B.0.11. Let g be a Hecke eigenform and let λg denote its Hecke eigenvalues.
Then, for primes `1 6= `2, we have that

λg(`1)λg(`2) = λg(`1`2).

Theorem B.0.12 (Large Sieve Inequality). For any sequence of complex numbers (an)0≤n≤N ,
we have ∑

f∈Bk(D)

∣∣∣ ∑
n≤N

an%f (n)
∣∣∣2 �k

(
1 +

N

q

)
‖a‖2 =

(
1 +

N

q

) N∑
n=0

|an|2

where the implied constant depends only on the weight k.

Proof. This is Theorem 7.26 in [17]. Recall, that for f ∈ Bk(D), we write the Fourier expansion
at ∞ in the form

f(z) =
∑
n≥1

n
k−1
2 %f (n)e(nz),

whereas in [17, page 187], the Fourier expansion is written in the form

f(z) =
∑
n≥1

af (n)e(nz).

Furthermore, where we denote an orthonormal (with respect to the Petersson norm) basis of
Sk(D) by Bk(D), in [17] such an orthonormal basis is denoted by F . At this point there occurs
no normalization issue, as our definition of the Petersson norm (Definition 2.4.10) coincides
with the one in [17] (equation (14.11) on page 357). Hence, for f ∈ Bk(D), the normalized
Fourier coefficient ψf (n) (equation (7.43) in [17]) becomes

ψf (n) =

(
q(k − 2)!

(4πn)k−1

) 1
2

af (n) =

(
q(k − 2)!

(4π)k−1

) 1
2

%f (n).

Hence, the statement of [17, Theorem 7.26] reads

q(k − 2)!

(4π)k−1

∑
f∈Bk(D)

∣∣∣ ∑
n≤N

an%f (n)
∣∣∣2 � (q +N) ‖a‖2

from where the theorem follows.
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Proposition B.0.13 (Duke, Friedlander and Iwaniec). Let f ∈ B(D). Then for any x ≥ 1
and any ε > 0, ∑

n≤x

|λf (n)|2 �ε x(xD(1 + |tf |))ε.

where 1
4 + t2f denotes the Laplace eigenvalue of f and the λf (n)’s denote the Hecke eigenvalues

of f .

Proof. This is Proposition 19.6 in [9]. Note that in [9], the Laplace eigenvalue is written
sf (1− sf ) = 1

4 − t
2
f . Hence

sf = ±tf i−
1

2

and hence

|sf | =
∣∣∣∣±tf i− 1

2

∣∣∣∣ ≤ |tf |+ 1.

So, for any x ≥ 1 and any ε > 0,∑
n≤x

|λf (n)|2 �ε x(xD |sj |)ε ≤ x(xD(1 + |tf |))ε.

Proposition B.0.14 (Deshouillers and Iwaniec). Let K ≥ 1, N ≥ 1
2 and ε > 0 be real numbers,

(an) a sequence of complex numbers and a a cusp of Γ0(D); each of the three expressions

∑
2≤k≤K
k even

(k − 1)!

(4π)k−1

∑
1≤j≤θk(q)

∣∣∣∣∣∣
∑

N<n≤2N

ann
− k−1

2 ψjk(a, n)

∣∣∣∣∣∣
2

∑
g∈B(D)
|tf |≤K

1

cosh(πtf )

∣∣∣∣∣∣
∑

N<n≤2N

anρfa(n)

∣∣∣∣∣∣
2

∑
c

ˆ K

−K

∣∣∣∣∣∣
∑

N<n≤2N

ann
irϕcan

(1

2
+ ir

)∣∣∣∣∣∣
2

dr

is majorized up to a constant depending on ε at most by

(K2 + (w,
D

w
)D−1N1+ε)

∑
n≤N

a2
n,

where ρfa(n) denotes the n-th Fourier coefficient at the cusp a.

Proof. See Theorem 2 in [8].

Lemma B.0.15. For every g ∈ B(D), we have that tf is either real or purely imaginary with
− 1

2 < itf <
1
2 . Hence, cosh(πtf ) > 0.

Proof. See remark after Theorem 2 in [8].

Corollary B.0.16. For all g ∈ B(D) with |tg| ≥ 1
2 , we have that cosh(πtg) >

5
2 .
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Theorem B.0.17 (Deligne’s bound on Hecke eigenvalues of holomorphic cusp forms (or
unitary Eisenstein series)). For a primitive cusp form f ∈ Sk(D), we have

|λf (n)| ≤ d(n)�ε n
ε,

where λf (n) denotes the Hecke eigenvalue of f and d(n) denotes the divisor function.

Remark B.0.18. This theorem is easy for coefficients of Eisenstein series, but very very deep
for general holomorphic cusp forms (based on the Riemann hypothesis over finite fields).

Theorem B.0.17 is also called the Ramanujan-Petersson conjecture for modular forms,
or simply the Ramanujan-Petersson bound. The conjecture is still open for Maass forms.

Proof. See, e.g., equation (14.54) in [17].

Theorem B.0.19 (Poisson summation formula). Suppose that both f , f̂ are in L1(R) and have
bounded variation. Further suppose that v ∈ R+ and u ∈ R. Then∑

m∈Z
f(vm+ u) =

1

v

∑
n∈Z

f̂
(n
n

)
e
(un
v

)
,

where both series converge absolutely.

Proof. This is Theorem 4.4 and formula (4.24) in [17].

Theorem B.0.20 (Poisson summation formula in several variable). Suppose f is in the Schwartz
class S(R`). Then ∑

m∈Z`
f(m) =

∑
n∈Z`

f̂(n).

Furthermore, for v ∈ R+ and u ∈ R`, we have∑
m∈Z`

f(vm+ u) =
1

v`

∑
n∈Z`

f̂
(n
v

)
e
(1

v
〈u, n〉

)
.

Proof. The first equality is Theorem 4.5 in [17]. The second equation follows by applying the
first equation to h(m) = f(vm+ u) and computing

ĥ(n) =

ˆ
R`
h(m̃)e(−〈m̃, n〉)dm̃ =

ˆ
R`
f(vm̃+ u)e(−〈m̃, n〉)dm̃

which is by setting m = vm̃+ u

=
1

v`

ˆ
R`
f(m)e

(
− 1

v
〈m− u, n〉

)
dm

=
1

v`
e
(1

v
〈u, n〉

)ˆ
R`
f(m)e

(
− 〈m,

n

v
〉
)
dm =

1

v`
e
(1

v
〈u, n〉

)
f̂
(n
v

)
.

The next theorem is Lemma 5.2 of an earlier version of F-K-M.
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Theorem B.0.21. Let Q(X,Y ) = aX2 +bXY +cY 2 be an integral quadratic form with ab 6= 0,
a > 0 and discriminant ∆. For n ≥ 1 and X ≥ 1, the number NX(n) of integral solutions to
the equation

Q(x, y) = n,

such that max(|x| , |y|) ≤ X satisfies

NX(n)� (nX |ac| (|b|+ 1))ε,

for any ε > 0, where the implied constant depends only on ε.
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[11] É. Fouvry, E. Kowalski, and Ph. Michel. On the exponent of distribution for the ternary
divisor function. Mathematika, 61:121–144, 2015.

[12] I.S. Gradshteyn and I.M. Ryzhik. Table of Integrals, Series and Products. Academic Press,
seventh edition, 2007.

[13] H. Iwaniec. Fourier coefficients of modular forms of half-integral weight. Invent. math.,
87:385–401, 1987.

[14] H. Iwaniec. Introduction to the spectral theory of automorphic forms. Biblioteca de la
Revista Matematica Iberoamericana. Revista Matematica Iberoamericana, 1995.

[15] H. Iwaniec. Topics in classical automorphic forms, volume 17 of Grad. Studies in Math.
A.M.S., 1997.

[16] H. Iwaniec, W. Luo, and P. Sarnak. Low lying zeros of families of L-functions. Publ. Math.
Inst. hautes Études Sci., 91:55–131, 2000.

103



104 BIBLIOGRAPHY

[17] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory. American Mathemat-
ical Society, 2004.

[18] N.M. Katz. Gauss sums, Kloosterman sums and monodromy groups, volume 116 of Annals
of Math. Studies. Princeton University Press, 1988.

[19] N.M. Katz. Exponential sums and differential equations, volume 124 of Annals of Math.
Studies. Princeton University Press, 1990.

[20] E. Kowalski. Trace functions over finite fields and applications, 2014. Available at
www.math.ethz.ch/∼kowalski.

[21] E. Kowalski, O. Robert, and J. Wu. Small gaps in coefficients of L-functions ond B-free
numbers in small intervals. Rev. Mat. Iberoamericana, 23:281–326, 2007.

[22] Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel. Algebraic twists of modular
forms and hecke orbits. eprint arXiv:1207.0617, 2012.

[23] Étienne Fouvry, Emmanuel Kowalski, and Philippe Michel. Algebraic trace functions over
the primes. Duke Math. J., (9)163:1683–1736, 2014.


	Introduction
	Outline
	Acknowledgements
	Notation

	Statement of Main Results
	Preliminary definitions
	Assumptions on the function K
	Trace functions on -adic sheaves
	Assumptions on f
	Assumptions on V
	The main theorems

	Proof of Theorem 2.6.1
	Statement of the main technical results
	Back to the proof of Theorem 2.6.1
	Sketch of the proof for Theorem 2.6.2

	Proof of Proposition 3.1.4 
	Estimate of the diagonal terms M(L;k) and M(L)
	Estimate of the non-diagonal term M(L;k)
	Estimate of M,(L;k)
	Estimate of M,(L;k)

	Estimate of the non-diagonal term M(L)
	Completion of the proof of Proposition 3.1.4

	Estimate of M[] for = k and = a,b
	Estimate of Mc > C[]
	Estimate of E(c,d,e)
	Proof of Proposition 5.1.1

	Estimate of Mc C[]
	Transformation of E(c,d,e)
	Decomposition of Mc C[]
	Estimates for 
	Estimate of Mc C, n -.25ex-.25ex-.25ex-.25ex[]
	Estimate of Mc C, n []
	Continuation of argument
	Estimate of S[h]
	A simplified version of Proposition 5.7.4
	Proof of Propsition 5.7.4
	Restriction sets

	Analysis of resonating matrices

	Sums over Primes to Squarefree Moduli
	Estimate of type I2 sums
	Estimate of type II sums
	Proof of Theorem 2.6.3

	Applications
	The Kuznetsov Formula
	Some Auxiliary Results
	Bibliography

