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Abstract

Algorithmic thinking is increasingly recognized as a vital skill and schools across Switzerland
are widely adopting Computer Science in their curriculum. Teachers are now having to expand
their lessons and are in need of informative and educational teaching materials. A difficulty they
face, however, is how to teach programming in their classrooms, especially to young children
who are both newcomers to the digital world and also need to understand and practice new and
abstract concepts. Visual aids have been shown to greatly support this learning process because
pupils are rewarded by appealing images and immediately see the effect of their changes, which
makes exploration fun. We borrow on these ideas and in this thesis we present XLogo online,
a web-based and graphical programming environment which features a turtle and a small set
of drawing commands. Our solution is tailored to fit a widely-deployed curriculum, which has
already been in use for more than nine years and is taught in in hundreds of courses spread
around Switzerland. The contemporary circumstances ask for an intuitive and stable program-
ming environment which is easily accessible from anywhere and which serves the pupils during
their learning. Our system meets all these needs and can be deployed at the click of a button
using only a web browser and, thanks to its reactive design, can be run on a broad set of devices
with different screen sizes and platforms. A distinguishing feature from comparable IDEs is
that our application is uncluttered and easy to use; everything is shown on a single page and the
number of visual contents have been reduced to a bare minimum. This structure was proven to
be intuitive and generally approved by primary school pupils in a user study. Comprehensive
experiments with over 80 programs confirmed that our implementation works as expected, gen-
erates correct results and is sufficiently fast to render even complex drawings with thousands of
lines within only a few seconds. Our system eases the learning process thanks to, among other
things, immediate feedback shown directly in the editor. We implemented an on-the-fly syntax
checking mechanism by smartly re-running the interpreter after keystrokes. Syntax checking
eases the understanding of code, because of the direct feedback, which reduces the cognitive
load.
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1
Introduction

We experience a technological paradigm shift from a single computer (which was usually a
desktop computer and used as a single point of data-storage) to a world, where every person
possesses and uses many devices, from desktop computers, to laptops, netbooks, tablets, smart-
phones, smartwatches and many more. Today data is no longer stored on a single device, but
rather shared among the many devices people own. As a means of connecting the devices, we
make heavily use of the Internet. It provides a platform which is tailored for our needs: Sharing
information, getting connected and being interactive on a global scale is now possible, due to
the existence of the Internet. Browsers have become very convenient, universally usable and
powerful eg. with modern technologies like HTML5 and others. We introduce a new program-
ming environment, which uses these state-of-the-art web-technologies to give primary school
pupils an understanding of the basic concepts in Computer Science and to let them practice
algorithmic thinking by programming in a visual appealing and fun environment. We stand out
against other programming platforms by supporting a wide variety of different devices, screen
sizes and resolutions, on various operating systems and, beyond that, without the need of in-
stalling any software to the client’s device. Using the browser offers possibilities, which go
beyond the capabilities of enhancing the experience and learning process, by using supported
technologies like 3D animations, video, audio or by providing a platform, which can be used in
an interactive fashion. Our programming IDE was designed to accompany a curriculum whose
main purpose it is to convey the basic concepts of programming to primary school pupils and
which uses Logo as the underlying programming language.

1



1. Introduction

1.1. Problem Statement

In a recent dispute about the Swiss educational system, a vast majority of politicians claimed an
amendment of the current curriculum. In a draft proposal, known as Lehrplan 21, they state the
new requirements, which have to be met by Swiss schools. One modification is that Computer
Science has become a more central role and is henceforth included in the curriculum on all
school levels. This inflicts lots of teachers to create a new curriculum, which serves their pupils
understanding about basic concepts in Computer Science. They are in need of good teaching
material and programming platforms for their courses. We built a programming IDE which is
tailored around an existing curriculum which may be used in primary schools. It is based on
web-technologies, is designed to be stable, intuitive and extensible. We will discuss the prob-
lem now in a more thorough and detailed way by first explaining the characteristics about Logo.
Later we will continue by demonstrating the main features about the existing curriculum, we
built our web application for. We will continue with a short explanaition about the dialect we
used, our prior experience with the curriculum and a conclusion about our project:

Logo in general
When teaching Computer Science, there are different opinions on what and how to teach the
basic concepts. The Center for Computer Science Education (german acronym ABZ) 1 decided
to offer a programming course for children and their teachers using a programming language
called Logo. Logo is a programming language invented by Seymour Papert and his team at
the massachusetts institute of technology (MIT), designed to be used by novice programmers
[Papert ]. We implemented the dialect XLogo, whose language specification is given in the Ap-
pendix.

ABZ course
ABZ organizes courses for Swiss primary school pupils since 2005 [Matter 2011]. The organi-
zation strives for a broad motivation of pupils for Computer Science. Swiss schools can register
for a Logo course, which typically lasts for either five or ten weeks, with two or four hours per
week. During the course the pupils are taught the basic concepts of Computer Science, like
repetition, modular development, programs and subprograms, parameters and others.

XLogo dialect
Loïc Le Coq, a french mathematics professor wrote a software called XLogo, which was used in
the course in the beginning [le Coq 2014, le Coq 2009]. XLogo is also the name of the dialect
used in the course. Three theses were written by former bachelor students at ETH to improve
XLogo and to produce a portable software for mobile devices and robots. The teaching mate-
rial for these courses is available online [ABZ 2016]. We encounter a predominantly positive
feedback by the pupils and their teachers, who obviously enjoy the programming courses a lot.

Prior experience
The course is organized strictly problem oriented by instructing the children to solve problems

1Ausbildungs- und Beratungszentrum für Informatikunterricht der ETH Zürich

2



1.2. Goals

to the current topic directly on their computers. Most of the time is used for programming,
while the teacher or instructor occasionally gives direct instructions to the whole class, explain-
ing new concepts [Reusser 2005]. The course introduces the children to the concepts of loops,
methods and parameters on the basis of a minimal set of commands. The pupils learn to pro-
gram step-by-step, writing code with an increasingly versatile set of commands. The teacher
has the opportunity to support the children in a different way than usual: He does not need to
teach the children, but simply to support them whenever they need help. The job of judging
whether a solution is correct or not can easily be performed by the children themselves. The
children usually help each other and enjoy the interaction a lot. A manifold of tasks helps the
pupils to learn the concepts of repetition, modular design and parameters. After the course, the
children are able to solve tasks involving any of the above mentioned concepts.

Our project
In this project we focused on the usage of web-technologies, while pursuing at least the same
functionality as the previous software used in the class room. The Internet offers a few advan-
tages over the previous systems: On the one hand we can argue that every modern computer has
at least one browser installed and people know how to work with it. If a child does not know
how to handle a browser, it is a great opportunity for him to get in touch with the Internet, since
working on the web is considered a crucial skill nowadays. As every browser comes along with
JavaScript already built-in, the installation of our program is as simple as it can be. No addi-
tional program is required in order for our XLogo online programming IDE to work. Schools
which do not provide an Internet access for every computer are provided with an offline version
of our website, which is run on a local web-server. It behaves the same as the online version,
with a few minor differences in the functionality provided.

1.2. Goals

The goals of this project are to develop a web-application with state-of-the-art web-technologies
for XLogo. The product should be usable online and offline 2 and it should translate and detect
the user’s language and integrate it into some sort of support for multiple languages in the UI.
The programming IDE must support basic commands to perform arithmetic, iteration, methods,
conditionals and variables used in the teaching material provided by ABZ, the course book
Einführung in die Programmierung mit Logo by Juraj Hromkovic [Hromkovic 2010] and few
addition commands which were introduced for increased convenience in the class-room setting.
The website should work on all modern browsers and should be performant. A complete list of
all requirements can be found in Section 3. In summary, we pursued the following goals in this
project:

1. Development of a programming IDE for XLogo as a web-solution

2. State-of-the-art technology

3. Universally usable among different browsers

2including a few extra requirements for the offline version, namely to install the client which runs the website on
a local web-server

3



1. Introduction

4. Multilingual graphical user interface support

5. Online-Offline support

1.3. Related Work

In this section we are going to present related work to our field. We will begin with the most
closely related work, which also uses XLogo and thus has the same audience and the same
environment as we do. In this section we present the work of three Bachelor students, who
developed prototypes with similar aims as this project on different platforms or with different
technologies. We will describe their findings as well as the difficulties they faced.

1. XLogo4Schools [Zivkovic 2013]: Marko Živković thoroughly inspected the features and
the implementation of the application XLogo by Loïc Le Coq. The student found several
flaws in the design and the implementation of the software XLogo and proposed improve-
ment strategies for those deficiencies. He found, that in its specification the core of the
dialect XLogo was not complete in regard of the language constructs used, which made
it impossible to correctly highlight errors in the code. From those insights he concluded
that, in order to implement an error highlighting mechanism, the language needs to be
redefined. He refactored XLogo and reengineered the core of the application. Further-
more, he was able to enhance the interpreter to be more efficient and created a simpler
user interface with several new features (automatic saving and multiple editor sheets).

2. XLogo Mobile [Haefliger 2014]: Lukas Häfliger implemented a programming IDE for
XLogo on mobile devices. For this purpose he used Unity, which is an engine to de-
velop code, which can be ported to a series of different platforms, Android and Apple
devices among them. He mastered the problem of the incomplete language specification
by separating the language into two parts, which each on their own, are complete. This
comes along with the obvious drawback that he needs to manage twice the number of
interpreters, which are actually needed. He faced some difficulties with ANTLR, which
forced him to implement the interpreter by hand. In our project we use ANTLR and we
did not encounter the bug in our project.

3. XLogo Robot [Pietra 2015]: Priska Pietra enlarged the work from XLogo4Schools to not
just program a turtle on the screen of a computer, but to program a robot which executes
the previously written routines directly on an Arduino Robot. The usage of robots has a
motivating effect on the children and thus serves their learning progress. The code written
in Logo is transpiled to C++, which then can be loaded onto the robot to execute.
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1.3. Related Work

In the following list we present some recent projects in which state-of-the-art web-technologies
have been used with an objective related to ours:

4. Web-based IDE for IDP [Ingmar Dasseville 2015]: IDP is a declarative language. For
IDP a web-based IDE was built. They support code sharing, as well as an offline-online
mode. Also they support a tutorial-mode, which can be used to learn the language and
to get some information on how to use the application ie. a live tutorial. They used
Bootstrap as one of their key-technologies which lead to a clear and visually appealing
overall structure.

5. Cloud9 [Cloud9 2016]: Cloud9 is an online IDE for JavaScript which runs in the cloud. It
supports the access to a virtual machine and a lot of other features, like code completion
and error highlighting. It has a debugger, and allows communication among multiple
developers in form of a chat functionality. This is helpful for people who work on the
same code-base.

6. Codiad and ICEcoder [Codiad 2016, ICEcoder 2016]: Codiad and ICEcoder are general-
purpose online IDEs which can be used to code in any programming language. Both of
them have an online as well as an offline mode. They are not able to run the documents,
though, since their purpose is to write code which then can be compiled and executed in
a separate step. They use PHP on the server and an editor called ACE in the front-end.

7. Atom [Atom 2016]: Atom is a purely offline programming IDE, which is based on state-
of-the-art web technologies, which allows the software to be used across platforms. It is
built using HTML, CSS and JavaScript and runs on Electron, which is a framework to
build cross-platform apps.

We did not choose one of the above-mentioned approaches because they are not suited for the
special needs of children, who are exposed to programming concepts for the first time and whose
skills in typing might not yet have been developed. There are other programming languages
which can be used to teach children to program. We would like to present some of those
languages and highlight the differences of those languages to Logo and why they are considered
to be good languages for a novice programmer, who might be a child.

8. Scratch and Alice [John et al. 2010] are two programming languages for children, which
use a block-based programming approach. This means that the user is typically not typing
code but dragging and dropping boxes which have a certain meaning in the program. This
kind of programming experience is particularly suited for young children who might still
struggle to type text on a keyboard. All of the following environments have been tested
in classroom settings and have shown good usability with children.

9. Droplet [Bau 2015]: One drawback of Scratch and other visual programming languages
is that they do not scale well for large programs or when multiple developers need to
collaborate. Recognizing this limitation, Bau et. al developed an environment, which has
both a text and visual representation. The transition is seamless and this helps the children
to learn how to create their own text-based programs.

10. JavaKara [Raimond Reichert and Hartmann 2001]: JavaKara is a programming editor
designed for learning Java. It is text-based with a syntax similar to Java. The language
used is strongly typed and therefore useful as a preparation for learning a strongly typed
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1. Introduction

language like Java or C#. Different versions of Kara have been created. They can be used
as a preparation to learning JavaScript, Python or Ruby among others. JavaKara has a
wide variety of different applications. In MultiKara the user has the opportunity to learn
about parallel programming. TuringKara provides a platform to learn the concept of a
turing-machine.

11. IPython/Jupiter [Pérez and Granger 2007] : They provide the programmer with code or
text visualization plots, which provide additional support during the programming pro-
cess. These programming environments also run in the browser and have a server, which
runs every language in a server back-end environment.

This list of related work is not comprehensive and other introductory programming languages
exist such as Lego Mindstorms, App Inventor and others. Broadly, these are all visual languages
and the main interaction is clicking rather than typing. They all differ in that the IDE needs dif-
ferent widgets, which can usually be clicked and dragged into a distinctive part of the program,
which is executable.

1.4. Structure of this Document

Before proceeding with our approach we first give a short overview of this document:

In chapter 2 we will discuss the relevant background for this project. Therefore we will present
some facts about teaching and learning new concepts in general and in regards of teaching and
learning Computer Science. We will make a statement why learning Computer Science is essen-
tial for general education and why every pupil should be educated in Computer Science early
on. We will conclude this chapter by telling some of the experience we gained in the Logo
courses we held so far and what impact the previous projects had.

In chapter 3 we will give a formal statement on the requirments we had when starting the
project. These requirements affected the design choices and the technologies we decided for.

Chapter 4 shows every aspect of the design choices we made during the development of the
project. A short summary of the milestones in web development history will be given. We will
show some of the prototypes we designed when starting the project and describe the factors
which lead the design choices we made.

In chapter 5 finally an insight on the development of the project will be given with a few code
snippets and explanations of how the IDE was realized from a technical perspective.

Chapter 6 is about the evaluation of the project we developed. We will demonstrate the results
of a user study which we conducted as a usability study, we will demonstrate a benchmark we
created for this evaluation and we will give some qualitative measures on how performant our
system runs.

6



1.5. Conventions

In chapter 7 we conclude our work and state a few possibilities for extending our work in the
future.

1.5. Conventions

In the remainder of this section we will introduce a few conventions. Those were made for the
sake of readability and briefness of this document. Throughout this report, we will adhere the
following conventions:

• Code examples will be given in TypeScript (is a statically-typed programming language
which is a superset of JavaScript) if not specified otherwise, (due to the fact that the
project was written in TypeScript mainly).

• We sometimes use the term screen size for the effective size of the screen but more often
as the resolution in pixels. The intended use should be clear from the context.

• To reduce redundancy and increase readability, we refer to the user or other pronouns as
a male person. We do not intend to discriminate anybody, though.
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2
Background

In this chapter we will discuss a few background topics, which will be useful in later chap-
ters for understanding the choices we made in our project. We will first present the current
research topics on teaching Computer Science and state why these topics are important for a
good educational background. Later we will follow up with a short introduction to our tech-
nical preliminaries. We will introduce the most important keywords and concepts which have
been used in our project.

2.1. Research on Learning

The mechanics of the human brain are highly sophisticated; after more than a century of ex-
tensive research on the topic, we still do not understand the complex interactions taking place
in the brain while learning. We would like to present the four most prominent and influential
theories in the area of Psychology of memory from the 19th and 20th century as well as their
impacts.

• Theories around 1900
Two German psychologists, Wilhelm Wundt and Hermann Ebbinghaus, were the first
researchers who concentrated on the processes in the brain in self-experiments. They
founded the basis of psychology of memory in the years around 1879. In their experi-
ments Wundt and Ebbinghaus set themselves the task to learn a list of meaningless sylla-
bles by heart. After a certain time they tried to recall as many syllables as possible. Their
key findings were the following [Seel 2012]:
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2. Background

1. Ebbinghaus effect:
Ebbinghaus stated the theory that the number of repetitions influences the recall
sucess rate: The more repetitions a test subject faces the better the recall.

2. Learning curve:
Apparently the amount of subject matter correlates with the recall success rate. To
achieve the same success rate while facing more learning content, considerably more
effort had to be undertaken by the test subject.

3. Primary-Recency-Effect:
Subject matter, which was learned in the beginning or the end of a learning phase are
remembered best by the test subject. It is the hardest to remember contents which
were learned in the middle of a learning phase.

• Behaviorism
In behaviorist theories the human mind is analyzed as a black box. A few psychologists
(lead by John B. Watson) started the theory of behaviorism in the USA as a reaction on
the findings of Wundt and Ebbingshaus. Rather than carrying out self-experiments, they
performed their experiments on animals. Basically their experiments involved animals
whose behavior was analyzed after rewarding or punishing the animal. In behaviorist
learning theories this is often referred to as a concept called reinforcement. Iwan Pawlow
invented a theory named classical conditioning. He showed that neutral stimuli (which
are defined as stimuli that do not lead to a distinctive reaction) can become conditioned
stimuli, by connecting the neutral stimulus to a certain object of interest for the animal
(eg. food) which induces a certain behavior by nature (eg. barking).

B.F. Skinner proposed another theory called operant conditioning, in which he describes
that the behavior of a test subject can be manipulated by treating the subject differently.
It is possible to reinforce the subject by rewarding it for good behavior or by removing
an unpleasant situation. Punishment on the other hand (which can be realized by directly
applying a penalization or by removing a pleasant situation) will induce the destruction
of a certain behavior. [Anderson 2000]

• Congnitive revolution
In the year 1960 a new approach was suggested by Swiss psychologist Jean Piaget, who
approached the problem in a white-box approach. His theory, which lead to an area called
the cognitive revolution, was out to analyze the mind directly, which contrasts with the
black-box-approach in behaviorist theories. Piaget pointed out, that it is not appropriate to
examine the human mind as a black box. The existence of learning by imitation was found
and research started focusing on the various processes involved in learning. [Piaget 1952]

• Constructivism:
Constructivism is the latest movement in Psychology of memory. In this theory, the
cognitive process of learning is assumed to be constructive meaning that the learner has a
prior knowledge or experience, on which he bases theories. Whenever a new construct is
to be learned, it has to be built into the net of already known facts and constructs. In that
sense new concepts have to be composed from existing experiences. Leading researchers
promoting this theory were John Dewey, Maria Montessori and Jean Piaget among others.
[Perkins 1999]
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2.2. Why is Computer Science a good Educational Background?

2.2. Why is Computer Science a good Educational
Background?

Computer Science is rather young compared to other topics taught at universities. A retrospec-
tive view of the last twenty years shows how much it has grown in importance in such a short
time span. Computers have become omnipresent, they are used in various topics like biology,
chemistry, mathematics and many more. We can expect Computer Science to grow to an even
bigger importance in the future. The aspect of automation has a huge impact on today’s industry.

So far Computer Science was not part of an official Swiss school curriculum. There were a few
fears, which caused this, namely: Computer Science is evolving too fast making it useless to
learn programming languages, for example, since they change too often and therefore are not
useful anymore a decade after the concepts were taught. Most people will not become computer
scientists, so why should we address a large audience with knowledge, which may be obsolete
and might only be used by a few percent of them anyway? We would like to counter with a few
examples of why Computer Science deserves its place in a modern school curriculum:

Agreeably, computers are of high importance in the industry and most private aspects of our
lives. Everyone uses them, but only few know how they work. Most people treat computers
as black-boxes, which they can use to do amazing things. Yet, most people just know how
to operate mainstream applications and as a problem arises, they think the problem cannot be
solved at all. What can a technology be useful for, if only a tiny fraction of it is understood?

Computer Science has a stable core, which has existed for a very long time and will stay per-
sistent. This core is called algorithmics and is the science of solving problems. We try to find
ideas and to formulate them as concise that even an unintelligent machine can execute the idea
and find a solution. There will always be problems, which have to be solved. Thus Computer
Science will never become old. The key ideas can be taught even to very young children, since
solving problems is not necessarily bound to words and numbers and it can be used in lots of
different topics.

Computer Science can be used to learn how to think, and how to tackle a problem in a productive
way. Also, Computer Science is a very broad topic, which can be correlated to many different
topics like: Mathematics, Electrical engineering, Physics, Communication, languages and even
Psychology. Computer Science can be used to improve our understanding in those topics better
too.

In contrast to other school topics which are very abstract, Computer Science is much more
hands-on. It can be seen as a practical compensation to the other topics. It is allowed and
even wished-for to learn by making mistakes and just putting hands-on. By making mistakes,
children can learn a lot about how to approach a problem.

Computer Science also helps us to judge ideas. In search of efficient solutions, children are
forced to judge their approaches. If they find a way to calculate the right solution to a mathe-
matical problem, they are happy. But they do not think ahead, trying to find better solutions.
Also, they do not learn to judge problems. In Computer Science they learn to compare solutions
and to distinguish good and clever solutions from those which might not be optimal and still
could be improved.
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2.3. Teaching Computer Science

In this section, we would like to discuss how Computer Science can be taught on a primary
school level and the impacts we expect from the proposed approaches.

When learning to think algorithmically, we can choose to learn the concepts themselves, as
proposed already by a few sources [Bell 2016]. We argue, that it can be achieved to learn Com-
puter Science without learning to code, but if someone learns Computer Science while coding,
he really understands the topics and can explain them to everyone (since they already proved
to be able to explain their idea to someone as unintelligent as a computer). Therefore the ABZ
decided to teach pupils the basic concepts of Computer Science by teaching them to program.
Of course there are several programming languages, each designed with different purposes. It
might not be best to start learning to program in a programming language with thousands of
commands, a large standard library and complex semantics, as usually found in object-oriented
programming. It might be better to start with a smaller language, which is designed to be sim-
ple and educational. One of those languages which are designed to be simple, especially for
newcomers, is Logo. The ABZ decided to use a dialect of this language called XLogo for the
courses. The concepts we teach them are (among others): Commands, Arguments, iterative
programming, iteration, modular design, abstraction as well as parameters. For more advanced
pupils further exercises build upon this and introduce more advanced topics including lists,
variables and recursion.

2.4. Swiss Schools and Computer Science

For a very long time Computer Science was not a part of any official curriculum in Swiss pri-
mary school. An extensive study among Swiss high-school teachers and pupils (as well as
secondary school teachers and pupils) showed that in 2008 a vast majority thought of Computer
Science in terms of applying prominent software products like for example Microsoft’s Office
Suite [Stiftung 2008]. Only about 50% acknowledge Computer Science as a scientific topic in
the field of engineering and basic research. Most pupils stated an interest in Computer Science,
but when being asked to choose their topics, they chose text and image processing. Moreover
there existed massive stereotypes about computer scientists causing school girls not to choose
the topic [Pöpper and Altenhoff ]. Recognizing this deficiency, ABZ decided to counter this
trend in the year 2004 and started to create teaching material for primary schools and to visit
school classes on-site introducing to them some of the most basic concepts of Computer Sci-
ence. Doing so, they tried to counteract the wrong image people had about Computer Science.
ABZ decided to address young pupils, so they could engage with girls and boys, while they are
still children and motivated to learn. In the next section we would like to tell about experience
we had in previous XLogo projects.
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2.5. Prior Experience Teaching XLogo

Having more than ten years of experience, the ABZ has subsequently improved a few things in
their learning material and was able to gain a lot of experience. Their impression was, that a very
high percentage of the pupils greatly appreciate the project and love to solve the assignments
on a computer. With the teaching material the ABZ are able to keep every child busy all the
time, working most of the time on assignments in a booklet. Every pupil has the chance to
work at their own pace. This has a positive impact on the motivation of the children, since
no one is bored at any moment. Especially very heterogeneous classes can profit from such a
setup. Girls are just as motivated as boys and as successful as boys. The course motivates both
genders equally, which is great, since we can expect those girls to be less afraid of Computer
Science later on, which might have a positive impact on the percentage of females studying
Computer Science in a few years. The children learn to work individually and to judge their
own programs, which is a skill they are supposed to learn at that age (nine to twelve year old
pupils). Also we encountered a positive impact on the teachers. They take on the role of a
supporter as opposed to an active lecturing role. He is there to help the children overcoming
problems, while the computer (indirectly the children themselves) impersonate the judge, who
decides whether a program is correct or not.

2.6. Technical Background

In this chapter we are going to introduce the frameworks and libraries we used in this project.
We will talk about Angular2 first, and explain how it works and what it is good at. Afterwards
we will present TypeScript, which is a language transpilable to JavaScript. We will explain
the main characteristics of TypeScript and how it relates to and in what ways it differs from
JavaScript. Later, we present ANTLR4, which is a tool to help developers generating parsers
from grammars. We will explain how ANTLR works, what it is and how to interact with it.

2.6.1. Angular2 Core Concepts

Angular2 is a client-side framework, which is designed to facilitate the implementation of
single-page web-applications. On September 15th an announcement about Angular2’s alpha
release was published. For the entire project we worked on beta version 17, due to the fact that
the alpha release came out just at about the same time as this report was submitted. Its strongest
features are the following: Angular2 enforces a clear structure using the MVC and Compos-
ite design patterns. We will explain more about the general structure in the next section. Its
core programming language is TypeScript, which is a statically typed superset of JavaScript.
TypeScript code is transpiled to JavaScript at compile-time. Angular2 provides a way to ensure
two-way data binding as well as a completely modular approach of the web-page’s setup, using
components. We are now going to explain a few of these core concepts shortly. This will be
useful to understand our web-application and design choices. More information is available
online [Savkin 2016].
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2. Background

Components

In the very core of Angular2 we find a concept called components. They replace the controllers
and allow a more modular design in general. Instead of having a single controller, we implement
several smaller functional and visual parts of the application, which we call components. Each
of which has an individual controller instance. components are used to represent semantically
distinct parts of a website, like headers, navigation-bars, independent sections and paragraphs,
which do not share too much information with other parts of the website. The developer is free
to decompose the website into components as he wishes. A component holds the information
about how the respective part of the website should be rendered (in the component’s template
markup) and the according business logic in the component’s class. We describe the rendering
procedure and relevant aspects of this process in the component’s so-called decorator. The
decorator can easily be identified by the keyword @Component. A component might look like
this:

� �
1 import {Component} from ’angular2/core’;
2

3 @Component({
4 selector: ’my-app’,
5 styleUrls: [’mystyle.css’],
6 template:
7 ‘
8 <h1>Hello World!</h1>
9 ‘

10 })
11

12 export class AppComponent {
13

14 }� �
In line 12 to 14 we see a usual TypeScript class. In this case it is a class called AppComponent,
but it might have any other name too. The export keyword is used by the module loader. Sim-
ilar to JavaScript we encapsulate functionality into independent modules, which can be loaded
into other modules. We use modules to not pollute the global namespace, used by window for
example, instead. In line 1 another module is imported, namely the one used by Angular to
make a class become a component. In lines 3 to 10 we find the component’s decorator. Within
the decorator we have a selector, which declares the tag-name that can be used in order to in-
stantiate a component, a reference to a style sheet as well as the template itself, which indicates
what the component will look like and what HTML-elements (or probably other components)
it will contain. If we decide to add a component to the current component’s template, we build
a component tree.

There always needs to be a root component. Which one we use as root is declared in our main.ts
file. We call the bootstrap-method on a particular component. This component is our root in the
tree.
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Component Trees

Components can contain other components. This is a useful mechanism to engage in creating a
higher level of abstraction. If we had another component which contained a text paragraph, it
might look as follows:� �

1 import {Component} from ’angular2/core’;
2

3 @Component({
4 selector: ’my-paragraph’,
5 styleUrls: [’paragraphstyle.css’],
6 template:
7 ‘
8 <p>This is a paragraph and it contains some text.</p>
9 ‘

10 })
11

12 export class ParagraphComponent {
13

14 }� �
This component has the same structure as AppComponent did, except for the different name
and the different selector. If we decided to include the paragraph into our AppComponent, we
would end up with the following changed AppComponent:� �

1 import {Component} from ’angular2/core’;
2 import {ParagraphComponent} from ’./paragraph.component’
3

4 @Component({
5 selector: ’my-app’,
6 styleUrls: [’mystyle.css’],
7 template:
8 ‘
9 <h1>Hello World!</h1>

10 <my-paragraph></my-paragraph>
11 ‘,
12 directives: [ParagraphComponent]
13

14 })
15

16 export class AppComponent {
17

18 }� �
Line 2 imports the ParagraphComponent as a module, on line 10 we use the tag declared in
the ParagraphComponent in our own template and on line 12 we state that we use Paragraph-
Component as a directive. A directive is another Angular2 concept and as such defined as a
component with or without a template, which may be used by the current component.
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Lifecycle Hooks

Angular2 provides the programmer with lifecycle hooks. These are callback functions, which
notify the programmer whenever a certain stage in the development of a component is reached.
A few examples for available lifecycle hooks are the following: OnInit, AfterViewInit, After-
ViewChecked and AfterViewChanges. The lifecycle hooks are available as modules in the core
library of Angular2. In the following example we demonstrate how to use lifecycle hooks:

� �
1 import {Component, AfterViewChanges, AfterViewInit, OnInit, ←↩

↪→ AfterViewChecked} from ’angular2/core’;
2

3 @Component({
4 selector: ’my-app’,
5 styleUrls: [’mystyle.css’],
6 template:
7 ‘
8 <h1>hello World!</h1>
9 ‘

10 })
11

12 export class AppComponent implements AfterViewInit, OnInit, ←↩
↪→ AfterViewChecked, AfterViewChanges{

13

14 ngOnInit() {
15 }
16

17 ngAfterViewInit() {
18 }
19

20 ngAfterViewChecked() {
21 }
22

23 ngAfterViewChanges() {
24 }
25 }� �

In general we distinguish lifecycle hooks, which trigger just before some event, from such which
trigger just after an event. Usually the child-components are checked first and as a result, the
parent component is checked afterwards. We have a few hooks, which trigger once only, and a
few which trigger several times. Have a look at table 2.1, which states all lifecycle hooks and
the circumstances under which they apply.

Lifecycle hooks are a handy way of manipulating change detection and reducing the amount of
code necessary to catch a certain point in the lifecycle of a component.
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Lifecycle Hook When does it trigger

OnInit Called once directly after the constructor finishes.

OnChanges Called whenever the value of a bound property changes.

OnDestroy Called once just before the component is definitely destroyed.

DoCheck Called whenever the Input properties are checked.

AfterContentInit Called once directly after the content is initialized.

AfterContentChecked Called whenever the content was checked.

AfterViewInit Called once just after the view is initialized.

AfterViewChecked Called whenever the view is checked.

Table 2.1.: Lifecycle hooks in Angular2

Services and Dependency Injection

In Angular2 data is supposed to stay separated from the components, since various components
might try to access the same data. Therefore we use services. A service provides a component
with data. Usually a service is passed to a component through its constructor. Thus, the com-
ponent already has the data when it is initialized. The following example shows how to inject a
service into a component:

� �
1 import {Component} from ’angular2/core’;
2 import {MyService} from ’./my.service’;
3

4 @Component({
5 selector: ’my-app’,
6 styleUrls: [’mystyle.css’],
7 template:
8 ‘
9 <h1>Hello World!</h1>

10 ‘,
11 providers: [MyService]
12 })
13

14 export class AppComponent{
15

16 service: MyService;
17

18 constructor(s: MyService) {
19 this.service = s;
20 }
21 }� �
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If we include a service into a component, it can be used by the component itself as well as all
of its children recursively. To use a service in a component and we add a parameter of the cor-
responding type in the component’s constructor. Everything which happens between passing
the service as an argument to the constructor to really getting a reference is taken care of by
Angular itself. We do not need to instantiate the service by hand. Instead we can just inject the
service as an argument to the component’s constructor. After initialization we can request data
through the public interface of the service. The service is an ordinary TypeScript class, like the
following:

� �
1 export class MyService{
2

3 private text: string[] = ["a", "b", "c"];
4

5 constructor() {
6 }
7

8 addString(value: string) {
9 this.text.push(value);

10 }
11

12 getTextAt(index: number):string {
13 return this.text[index];
14 }
15

16 getAllData(): string[] {
17 return this.text;
18 }
19

20 }� �
Since a service is no component per se, we do not need to import the component module. The
service is but a simple class with three public methods: addString, getTextAt and getAllData.
These signatures are visible to the components and thus may be used from the outside.

Data Binding

Data binding is a means of synchronizing the component’s view with the underlying model.
Whenever the virtual machine finished one turn, all property bindings are checked and updated
if it is necessary. We can profit from the support we get from the Angular2 framework, because
it tremendously reduces the code length. Angular uses the Zone.js library to perform change
detection. With this library it is possible to write wrappers for the built-in directives, like for
example the setTimeout function, which creates a function handle, that can be executed after
some time. If we want to dynamically change the text in the header tag of our AppComponent
we write the following code:
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� �
1 import {Component} from ’angular2/core’;
2

3 @Component({
4 selector: ’my-app’,
5 styleUrls: [’mystyle.css’],
6 template:
7 ‘
8 <h1>{{mytext}}</h1>
9 ‘

10 })
11

12 export class AppComponent {
13 private mytext = "hello World";
14

15 constructor(){
16 this.changeText("show new Text!");
17 }
18

19 changeText(newText: string){
20 this.mytext = newText;
21 }
22 }� �

Calling the method changeText results in an automatic update of the component’s view, due to
the changed property binding in the h1-tag.

2.6.2. TypeScript

TypeScript is a state-of-the-art programming language, which can be used, among others, for
web development. It is a super-set of JavaScript, which means that any valid JavaScript program
is a valid TypeScript program. In addition to all the features offered by JavaScript, TypeScript
is statically type-safe. This means, that in addition to all the flexibility we get from JavaScript,
we are given the safety from static types. The compiler supports the programmer and issues
warning whenever his type inference algorithm is not sure whether a certain operation is valid
or not.

We are going to explain the TypeScript basics in the following sections using a few examples.
We will explore classes, constructors and methods, modules and interfaces.

Classes

One main improvement over JavaScript is, that TypeScript allows for classes. Within a class
we can offer fields and methods. Once a class is instantiated, all of the class’ public interface
becomes usable by the client class. A class in TypeScript might look as follows:
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� �
1 export class ExampleClass {
2

3 private a: number;
4 b: string;
5

6 constructor(){
7 this.a = 1;
8 this.b = "hello world!";
9 }

10

11 }� �
The class ExampleClass contains two fields and one constructor. One of the fields, a, is private
and thus not visible from the outside, while the other field, b, is publicly available in every
context. For both fields we declared a static type. TypeScript has a type checker, which informs
the programmer whenever the expected and actual types do not match.

Constructors, Methods and nullable Types

As seen in the previous section, we can add constructors to classes in TypeScript. One special
feature, which is offered by TypeScript is the one of optional parameters. This type is called
nullable, which means that its type is either the static type itself or null. An example of a
TypeScript class with constructors, nullable parameters and usual methods is shown here:� �

1 export class Employee {
2

3 salary? : number;
4 name: string;
5

6 constructor(age? : number, myName: string){
7 this.name = myName;
8 }
9

10 myMethod(wert1:number, wert2: number): number{
11 return wert1 + wert2;
12 }
13

14 }� �
In the example above we find a nullable field, which actually stays null in this case, because we
do not assign to it in the constructor. Another nullable type can be found in the constructor. In
this case the paramter is used as if it were a private field. In method myMethod you see that we
require two parameters, which may not be null in the strict mode and that we return.
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Modules

TypeScript works, similar to JavaScript, with modules, in order not to pollute the global names-
pace. You may see this in the previous examples whenever you find the keyword export. This
keyword is used by the module loader to recognize which parts of the class to export.

2.6.3. ANTLR4

ANTLR4 is a tool for language recognition. In particular it is used to generate parsers, lexer,
tokenizer and visitors for structured texts. The only thing which ANTLR needs in order to gen-
erate a functional parser is a grammar. A very simple example for an arithmetic grammar is the
following:

� �
1 grammar MyGrammar;
2

3 prog: (expr)+ ’=’ number;
4 expr: expr ’+’ expr | expr ’-’ expr | number;
5 number: NUMBER;
6 NUMBER: [0-9]+;� �

This grammar (with main rule prog) identifies every equation, which is built from one or more
expressions followed by an equals sign and a number. An expression is either a plain number
or two expressions connected by a plus or minus sign. A number is any sequence of positive
digits from 0 to 9.

In the next section we are going to explore the different use cases, requirements and features,
which are important to our project.
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3
Requirements and Feature Analysis

In this chapter we would like to analyze the features and requirements, which we declare as
scope of this thesis. We will start explaining the main setting of the Logo projects, which
are carried out by ABZ and we will give a formal explanation of our use cases in general.
Afterwards we will discuss the required features as well as a few statistical facts, which affected
our design choices. Finally we will conclude the chapter by stating a few constraints which are
imposed on our solution by the browser environment we are building upon.

3.1. Use Cases

ABZ carries out Logo courses in primary schools since 2004. In these courses classes of size
10 to 25 pupils are taught the principles of programming. In a smaller setting ABZ sends
out just a single teaching assistant, who teaches the class and supports the children during
programming with their teacher assisting him. In classes with many students, usually a teaching
assistant is assigned one or two assistants an they teach the courses and support the pupils
together. Teachers who already carried out the project a few times with different classes are
encouraged to teach the children themselves, without any external help. In order for a teacher
to be independent enough to teach a programming course, even if he is not experienced in
programming himself, requires for a programming interface with a simple and comprehensive
user interface, which can be easily used by novice students, who might not even be familiar in
using the computer, mouse and keyboard at all. The programming IDE should provide the user
with feedback which is comprehensive and sufficiently meaningful for a student to find errors
himselves. A set of meaningful error messages and preferrably some kind of error highlighting
should be available.
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The children aged 10 to 12 usually are not familiar in using the computer and sometimes lack the
fine motor skills for clicking the mouse, and typing on the keyboard. Hence a short language,
that is to say a language whose commands can be written compactly) is helpful, so the children
do not get frustrated and are able to make fast progress. The graphical user interface should
adapt to the fact that the target audience’s fine and gross motor skills are not yet fully developed
and assist them by providing a larger size for text for example.

A vast majority of the children taught by the ABZ so far had no prior experience in programming
whatsoever. Hence the cognitive load imposed on them by our curriculum was rather high. In
order to reduce the cognitive load and to facilitate writing code without being hindered by a
too complex system, we decided for a user interface, shows every functional component at all
times.

3.2. Functionality and Requirements

In this section we would like to discuss the desired functionality and requirements we were aim-
ing for in this project. We will begin with an explanation of the core features, before discussing
some additional functionalities, which add to the project nicely.

3.2.1. Core Functionality

We will address the supported command set, discuss requirements for the drawing, the editor
and the history.

Command-Set

The original language specification for Logo allowed to define lists containing either strings or
code. This is problematic because executing a list either works or not, depending on the list’s
content. If we try to execute a string, we might (quite rightly) fail. Executing a list containing
syntactically correct code on the hand should work. This discrepancy makes it difficult to
provide the user with a good error highlighting. More on this topic can be found in the thesis
by Marko Živković, who proposed to solve the issue by either not allowing having lists with
strings or code, which look syntactically the same or by changing the language specification. We
decided to resolve the problem by using only a subset of the available commands. Nevertheless
a core requirement is that all exercises in the teaching material (namely the textbook and all the
concepts in the textbook by Dr. Prof. Juraj Hromkovič) can still be run by our interpreter. We
use the same subset of commands as used in the thesis by Lukas Häfliger. A comprehensive list
of all commands can be found in Appendix A.1.

Drawing

Our platform is based on a graphical user interface which includes elements like an input field,
a canvas, a small text field as command history and a larger text field as editor. An important

24



3.2. Functionality and Requirements

question regarding the requirement analysis is the positioning of these elements on the screen.
The positioning might have an influence on the user experience and could depend on the screen
size, resolution and orientation of the target device. A more detailed analysis of this topic will
follow in section 3.2.3.

Editor

The editor is a text area, which can be used to declare new methods, which then can be invoked
from the input text field. After first learning the most basic commands as well as handling
the graphical user interface, pupils learn how to write new commands which can be used to
build more complex drawings in a modular manner. We implement a feature to create multiple
editors, which can all be used simultaneously and whose purpose it is to store the methods
from the booklet in a orderly fashion. For every chapter in the booklet a new editor entry can
be created. Similar to the approach chosen in the previous projects, we also decided to use
one large file, which can be separated into multiple editors and thereby creating the illusion of
multiple files.

Moreover we propose to keep the editor at a position, where it can stay open all times, in order
to reduce the cognitive load imposed on the children. In case the screen is rather small, there
needs to be a mechanism to maximize or minimize parts of the website on demand. A good user
interface design takes care that no key element is not visible at any time [DONALD A 1983,
Vaniea et al. 2012]. Out of sight, out of mind - i.e. we reduce the cognitive load by keeping all
parts of the user interface visible all times. The ability to recognize errors in the editor increases
if the editor, input area and history are visible at the same time. This was not possible before
(see 3.1).

Figure 3.1.: Xlogo online, editor on the left visible at all times

Some school computers have small screen sizes. In those cases it is desirable to be able to hide
the editor. For this reason we decided for a layout where the editor can be resized by the user.
The pupils may maximize it on demand.
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History

The last core element is the command history. While working with children, the ABZ found,
that children quickly start using the history element to reuse code they wrote recently and that
it may be helpful to find repeating patterns. The command history enables the teacher to recon-
struct the chain of thought a child has gone through and provides the pupil with a more concrete
and personalized advice. Moreover we may use the command history to give feedback to the
user, telling about errors, their possible sources and giving hints.

3.2.2. Optional Functionality

Next, we would like to address some additional functionality beyond the requirements, which
we added in order to make the programming IDE more supportive for pupils in their learning
process. We will talk about syntax highlighting, error highlighting, cooperative mode as well as
the graphical user interface.

Syntax Highligting

A first feature we wanted to implement was to provide a simple means of syntax highlighting.
Children could profit from it by visually recognizing which of their commands are keywords,
which are arguments and which are names. This may be helpful for the children to understand
to structure and to spot errors and typos based on the color of the code, even before executing a
sequence of commands.

Error Highlighting and Interactivity

With a good error highlighting we can provide the user with feedback directly at the loca-
tion of the error. A consequence is that it is possible to spot errors quickly and to fix them,
without any help from a teacher or teaching assistant. On the other hand we need to be care-
ful not to use too many error types, so the user does not get confused, especially since we
are working which children. Moreover we need to be careful to formulate the error mes-
sages as simple and understandable as possible. We used the same approach of error handling
as in the thesis of Lukas Häfliger, which is based on the idea of a primitive error resolution
[ARUNKUMAR PALANISAMY 2014]. We analyze an erroneous program for the following
attributes:

• Missing token at the end:
Do we end up with a working program if we insert the token END at the end of the current
method?

• Missing token at the beginning:
Do we end up with a working program if we insert the token TO at the beginning of the
current method?
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• No such method name:
Is the current token interpreted as a method name but we lack a method with such a name?

• Extraneous token:
Do we end up with a working program if we delete or alter the current token?

• Generic error:
None of the above applied.

Once our parser ends up at a token and detects an error, it attempts each of the above-mentioned
diagnoses. If one of them applies we inform the user of the error and suggest an approach to
resolve the error. If none of them applies, we issue a generic error message and show that to the
user.

Cooperative Mode

Cooperative coding mode would allow pupils to work together in groups and force them to or-
ganize and to identify chunks of independent tasks. This helps their development by allowing
them to practice communication and diagnosing errors in a group. The core feature in a co-
operative mode would be, to let children submit their code to a shared document which holds
all the code. Children could then load the shared document into their editor and choose which
methods they want to include in their personal editor. In one use case, the teacher might decide
to produce code which writes text onto the canvas in Logo with the whole class. Every pupil
should write his name on the canvas and implement methods to write individual letters of the
alphabet. Normally we experience massive speed differences among the pupils in the class.
Children with short names and fast learners make faster progress than their classmates. In order
to guarantee the success of every child we could distribute the work among all students. The
children will immediately see, that there is no need to implement several programs which write
the letter E for example. Instead they could work together, organize themselves, distribute the
letters and reassemble their names once all letters are available. This way we can assure that all
students will be finished at roughly the same time, no matter how long their names are and we
can profit from positive social dynamics.

3.2.3. Responsive Graphical User Interface

The graphical user interface is of course another part of our project which heavily influences
the experience the children have. A good UI might affect children to be more motivated, less
confused and more successful. A bad UI affects the children to be less motivated, to be con-
fused and to dislike the topic per se. A desirable feature of a user interface reacts to changing
screen sizes, device types and orientation. In order to prevent the latter from happening, we
explored a few prototypes, which can be compared against each other for varying screen sizes
and orientations. When working with web-technologies we can expect our application to be run
on various platforms and devices, the website can be accessed from desktop computers, laptops
or even smart phones and tablets. In the normal case we will see the application in landscape
mode, but since it is easy to resize the browser window or to rotate a smart phone or tablet, we
have to be prepared that in some cases the website might be accessed in portrait mode. For this
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reason we listed a few options for different layouts, which will be presented in the next two
sections.

In landscape mode as well as in portrait mode we have to decide where to put the editor, where
to put new editor entries on the editor, where to put the history and whether or not it should be
resizable or not.

Landscape Mode

When deciding where to put the editor, we have essentially only two options in landscape mode:
Either right or left.

a) A: Editor on the left b) B: Editor on the right

New editor entries may be added horizontally to the editor or vertically.

a) C. Post-its on top b) D: Post-its on the right

The history element could either be resizable or not:
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a) E: History fixed b) F: History resizable

Portrait Mode

In portrait mode we can distinguish the same options as before. We may choose where to put
the editor:

a) G: Editor on the bottom b) H: Editor on top

New editor entries may either be added horizontally or vertically. Note that in theory there
are multiple ways of positioning the new editor entries. For example if we decide to add them
horizontally, we still have to decide whether to put them on the inner or the outer side of the
screen.
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a) I: New editor entries on the bottom b) J: New editor entries on top

The history element may be resizable or not:

a) K: History fixed b) L: History resizable

In this scenario one might also discuss whether it is truly the best decision to put the input field
on top.

3.3. Restrictions

In this section we would like to discuss a few restriction we had to keep in mind when choosing
technologies and implementing the website. The two main restrictions we had to keep in mind
were that the website needed to be runnable either online and offline. Secondly we had to make
a decision about which browsers to support.

3.3.1. Offline-Mode

Most primary schools in Switzerland do not have the facilities to provide internet access to
laptops for the whole class. Some do, but others do not. We need to provide a suitable solution
for both of them. Websites in general can be downloaded and executed on a local web-server
too. Of course any communication to a server is impossible if there is no internet connection.
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a) M: Input on top b) N: Input on the bottom

But the browser is still able to execute code on the client-side. For this reason we decided to
implement our website using only client-side technologies.

3.3.2. Mobile

A web-application can be accessed from various devices. Some of them are mobile. The differ-
ence between mobile devices and desktop or laptop computers are:

• Different screen resolutions: Newer devices have the same screen resolutions as TVs and
screens. But older versions might have significantly less pixels, which could have an
impact on the user experience, since the canvas will consequently be smaller.

• Different screen sizes: Most mobile devices are, for obvious reasons, significantly smaller
in size than desktop computers. We work on a solution, which is independent of the screen
size and the screen resolution.

• Input using touch events: Smaller screens are harder to handle. Very precise gross motor
skill are required to hit a small button. We are not implementing any special features
to facilitate the handling on smaller devices. Also we do not implement any gestures
like swiping or similar, which are often used on mobile applications. Our intention is
to implement a software targeting desktop computers. We try to achieve a nice visual
experience on mobile devices, but we cannot guarantee a good user experience on mobile
devices.

• No hardware keyboard: Last but not least mobile devices often do not come along with
an external keyboard. Therefore an on-screen keyboard is shown whenever the user has
the option to give input. The keyboard might occupy a lot of space and thereby create a
bad user experience. We do not implement any additional feature to counter this problem.
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3.3.3. Browser Statistics

When writing a website, it is important to think about browsers. Not all browsers support
all features and all technologies. For our web-application to be usable on as many browsers
as possible, we inspected statistics about the usage of web browsers (the results are shown in
3.2). We found the following results which are calculated with the statistics for March 2016
[w3schools 2016]:

Figure 3.2.: Browser usage statistics

From the chart we see that today’s most used browsers are: Chrome, Firefox and Internet Ex-
plorer. Keep in mind that the new browser, called Edge, is too new to appear on any of those
statistics, introducing a little uncertainty for the evolution in future. When inspecting the three
most used web browsers we analyzed which versions were used the most and found the re-
sults shown on the next page. Note that Apple devices are disproportionally strongly present
in Swiss school rooms. Some of the schools using Apple devices use an iPad, others use Mac-
Books. The default browser on those devices is Safari, which is why we explored this browser
too, even though it is currently (April 2016) not among the three most used browsers.

From these statistics we decided to focus on Chrome (C48 and above). Developing a web-
solution, which is guaranteed to work on all browsers is rather cumbersome and we did lets us
to ensure that the website will be properly working for 70% (state: March 2016) of users who
use some sort of browser to access the internet.

In a statistical evaluation (depicted in 3.3), we found that 43% of all internet users are accessing
from a Windows 7 platform. Another 20% are Windows 10 users and 15% are Windows 8 users.
The remaining 22% are users accessing from a Windows XP, Linux, Mac or Mobile device
[w3schools 2016]. These values represent the statistics for the overall usage of the internet. In
our Logo projects the statistical distribution of different platforms is different. Windows is used
in most projects. The percentage of Linux users is drastically lower and the percentage of Mac
users is drastically higher.

Safari is, besides Windows, one of the most used platforms in our project. Therefore we inves-
tigated on the distribution of users on the different versions of this browser. The results (shown
in 3.4) makes clear, that most users access the internet with the most up-to-date safari browser,
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Figure 3.3.: Operating System Statistics

namely version 9. In March 2016 up to 75% of all Safari users were accessing the browser
version 9. Only 8% were using the browser version 8. The remaining 17% were using version
7 or below:

Figure 3.4.: Safari usage statistics
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Most Chrome users access the internet with a browser version 48 or 49. Only 10% of all internet
accesses using a Chrome browsers do not use version 48 nor version 49 (see 3.5):

Figure 3.5.: Chrome usage statistics

Firefox users access the internet with browser versions 47, 54 and 44 the most. Those three
versions make up 85% of all internet accesses using Firefox (depicted in 3.6):

Figure 3.6.: Firefox usage statistics
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Windows used Internet Explorer as default browser until Windows 10 was released in July 2015.
In Windows 10 the default browser was set to be Edge. We combined the statistics for those two
browsers. We observed that 67% of all users accessing the internet through Internet Explorer
and Edge in March 2016 were using Internet Explorer version 11. Another 17% are using Edge
version 13 (values visible in 3.7).

Figure 3.7.: IE/Edge usage statistics

To conclude the contents of this chapter we state, that there are many different browsers, on dif-
ferent operating systems on different devices. We decided to focus on Chromes most frequently
used versions in our project but we were constantly checking on various browsers (Firefox,
Internet Explorer and Edge) too.
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In the last chapter we argued that web technologies provide a suitable platform for programming
environments. The core concepts of our web programming IDE rely on the principles of web
technology. For this reason we will explore the history of web technology and web program-
ming IDEs and explain several design choices for our programming environment in this chapter.
A few possible alternatives to our final prototype have been designed and we will discuss the
trade-offs we were confronted with in terms of the system design.

4.1. History of Web Development Technology

The internet has grown a lot in the last twenty-five years, leaving a huge connected net of web-
sites and web-apps which can be used on a wide variety of browsers, operating systems and
machines with different settings and behaviors. Thanks to a continuous development of the
available technologies to the web and a perpetual adjustment of the capabilities of browsers we
encountered a massive progress in possibilities with web technologies. We would like to give a
short overview of the key milestones during the development of web technologies to the point
we know currently:

In the year 1991 the hyper text transfer protocol was invented, providing the basis for a new
kind of communication on a network of distributed computers, which represent nodes in a
global network. Shortly thereafter the first version of HTML (hypertext markup language) was
created, enabling web-developers to describe the contents which should be displayed to the user
via a browser. HTML is, along with JavaScript and CSS, a cornerstone technology used in web
development. By 1995 five browsers were invented, namely: Mosaic, Netscape, Opera and
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Internet Explorer. By 1997 cookies, SSL, Java, Flash and JavaScript enabled us to send tiny
data packages from the server to the client. In order to keep information about the user even
after a page refresh we have three possibilities: Either we encode Information in the URL, in a
cookie or in a session on the server. The former two are visible to the client, whereas the latter
consumes memory on the server.

Cookies allowed us to store the users activity on the web. The DOM (document object model) is
a programming interface for HTML an XML, which holds all elements, which are presented on
the website. JavaScript is a programming language which can access the elements on a website
and change their state by accessing the DOM. JavaScript was a cornerstone technology used to
manipulate the DOM of a website.

By the year 2000 a few new technologies came along: XML (which is a superset of HTML)
provides a broader way to represent and interlace data, which can be used in various ways
to transmit data over the internet. CSS is the third cornerstone which became an almost om-
nipresent technology used predominantly in web-apps and websites to define the style of the
view. AJAX is a technology used to retrieve data asynchronously when reloading some part
of the website. Being asynchronous is a crucial attribute when reloading data, because being
unresponsive would be an unsuitable burden for the user. Web-fonts allowed the browser to
display a wider variety of fonts. This (together with the invention of CSS) was the first step
towards a more visual appearance on the web.

Two new browsers were created in the years 2003 and 2004, namely Apple’s Safari and Mozilla’s
Firefox. In the same year as the latter was published, HTML’s newest element was added, the
canvas. The canvas was another big step towards a more graphical web appearance. In the year
2008 the last, currently well-known browser was published, Google’s Chrome. Since then a lot
has happened: HTML5 came out, bringing web technologies closer to the hardware, allowing
for example accessing the geolocation of a device. In the same time mobile phones became
more powerful, leading to a completely new marked for web-apps. A technology for web-apps
to be used in a offline mode, was introduced, as well as support for touch-events as well as
drag-and-drop.

In the year 2012 Microsoft announced the first version of a new programming language called
TypeScript [S. Tobin-Hochstadt 2008, TypeScript 2016]. TypeScript aims to becoming the next
version of JavaScript, supporting classes, inheritance, generics, interfaces, while being a strongly
typed programming language. For JavaScript being no strongly typed language it was difficult
to create correctly working large code bases in JavaScript. At the moment Microsoft’s Type-
Script is transpiled to JavaScript before being executed on the browser. Only last year, 2015,
Microsoft exchanged its default browser on Windows 10 from Internet Explorer to Edge, leav-
ing us with the following five most used browsers at the time of writing: Chrome, Firefox,
Internet Explorer, Safari and Edge.

Based on this evolution of web technologies [Bonk 2009] we had to decide for a concrete set of
technologies to use in this project. We will present the available choices in the next section.
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4.2. Design Choices

In this section we would like to present the key design decisions we made in order to implement
our Logo programming IDE. First, we will discuss several alternatives in the design of various
aspects of the application. Later, we will proceed by presenting our actual design choices and
the trade-offs which lead to our decisions.

4.2.1. Overview

The design choices we intend to discuss in more detail in the following subsections are design
patterns, implementation language, code editors as well as rendering. In Figure 4.1 you find
an overview over the mentioned design options, their central role in the application and a few
alternatives we had to decide upon.

Figure 4.1.: High-level Overview: Design Choices

4.2.2. Frameworks and Design Patterns

The choice for or against a specific design pattern for the system design is coupled with the
decision for a particular framework. Usually these frameworks (i.e. toolsets or libraries, which
provide skeletons to build larger programs on top) are built with a concrete intention and thus
force the use of a set of design pattern which are well suited for their particular purpose. In the
context of web-applications a multitude of frameworks are available, each of which has different
properties and uses different design patterns. Their implementation impacts the architecture in
the high-level perspective. We explored the most popular frameworks:

1. AngularJS
AngularJS is a framework by Google for creating single-page-apps with MVC. It supports
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some innovative ideas like two-way data binding (for connecting model and view) or
templating for creating custom HTML-tags with a certain behavior. The basic language in
AngularJS is JavaScript. It is a framework supporting most of the well-known JavaScript
libraries like jQuery or CoffeeScript. This framework can be used to create standalone
web apps too.

2. Angular2.0
Angular2 is an improved new version of AngularJS and is thus also used mostly for gen-
erating single-page-applications in a MVC fashion. In spite of being the successor of
AngularJS, Angular2.0 differs from its predecessor in various aspects. The most promi-
nent difference is, that the core language in Angular2 is TypeScript (a statically typed
superset of JavaScript), not JavaScript. Moreover it is completely component-based. The
code for controllers, models and views are all written in the Composite design pattern.

3. ReactJS
ReactJS is a framework published by Facebook. Its purpose it to simplify handling the
view part in a MVC designed piece of code. So in contrast to AngularJS and Angular2.0,
which handle the model, the controller and the view, React provides support for writing
the view in a comfortable way. Its main advantage is, that it is able to reduce the overhead
working on the DOM if it is not necessary, due to the fact that data may stay unaffected by
some internal operations. It uses a virtual DOM, so thinking about implications to DOM
for every operation is not necessary anymore with ReactJS.

4. Polymer
Polymer is a tool made by Google, which can be used in JavaScript for building custom
components. Web components are a new design philosophy to keeping the view modular.
Instead of just having one HTML file containing everything, custom HTML-tags can be
instantiated, which are tailored for a specific purpose in our application. This framework
makes use of the Composite design pattern.

5. Meteor
Meteor is a fullstack (client-side and server-side) JavaScript platform for building web-
applications, which are designed to be simple. Meteor is built on top of Node.js in the
back-end. It uses two-way data-binding by default, which means that any changes in the
data in the database will be displayed on the website immediately.

Of course using no framework at all is always another option, which is possible. When not
using any frameworks (or when deciding to use Angular2.0, as we did), we find in general two
very prominent design patterns. We use a combination of the following two patterns in our
system design which was enforces by the Angular2.0 framework:

• For applications with a graphical user interface (which is usually the case in web-development),
the MV* architectures are very popular and well-established choices for the system de-
sign. The reason for their popularity is an idea called separation of concerns. This means
that the graphical part, the system model and the controller should be as well separated
from each other as possible. Solely the controller is supposed to interact with the model
and the view. It manages the whole application and processes the user’s input.
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• Beside the MV* design architecture there is another design pattern which is of interest
in web development, especially when working with hierarchical structures: The so-called
Composite design pattern. It structures hierarchies as trees. Using trees allows us to
structure the internal communication between independent components differently. In-
formation can be forwarded to components selectively.

We combined the two design patterns in our web-application. Using a concept called templating
we started to group visual components of the graphical user interface into components, which
were then interconnected into a tree. Figure 4.2 depicts the components and their interaction in
the tree. At the root of our tree structure we find a component called App. This component is the
most general one and it simply includes the whole windows. Its children are three components,
namely the header part, the editor and another component including the input area, the canvas
and the history, which in turn are components on their own.

(a) Visual Components (b) Components-tree

Figure 4.2.: Composite pattern in our web-application

On every component (i.e. every node in the tree) we apply the MVC design pattern paradigms.
That is, we handle the view, the model and the controller in a component-wise fashion. Ob-
viously it is not always possible to provide separation of concerns, especially in the commu-
nication between parent- and children-nodes in the tree structure. This question is handled
by Angular2.0, the framework we used in our web-application, in a way such that the root
component is informed whenever an event is triggered. The root component may forward the
information to its children, who in turn forward it to their children.
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4.2.3. Implementation Language

Before exploring the spectrum of different implementation languages, we would like to discuss
the trade-offs of working on a server or rather directly on the client. We state a few properties
which characterize the two cases:

• Server-sided web development:
Working in a server-side environment means, that the client is provided with whatever he
needs from a server. The communication between server and client is based on HTTP
requests, which can be triggered upon user inputs (e.g. interaction with the user interface
on the client-side). The underlying communication is subject to some physical band-
width limitations. Also the server can become a bottleneck in case he has to handle many
requests by several clients at the same time. Also this solution works only under the
premise, that the connection to the server is given at all times, which means that an In-
ternet connection needs to be available. A few advantages of working on the server are,
that there are quite few restrictions towards the programming language, which is used
on the server. For this reason there are a plethora of different programming languages,
which may be user on a server. The most common ones are: Java, C#, Python, php, and
JavaScript (Node). Also working on a server allows us to store the user’s data persistently,
which is not really possible when working on the client exclusively. The code cannot be
seen or manipulated by the user.

• Client-sided web development:
Working on the client directly means, that we use a programming language, which can
be parsed by the browser directly. At the moment of writing JavaScript is de-facto the
only programming language which is fully supported on (almost) all modern browsers
[Flanagan 2014]. Most browsers understand JavaScript itself, and all frameworks, which
are transpiled to JavaScript, natively. The whole DOM (e.g. all components on the web-
site, their properties and handlers) is directly available in JavaScript and thus it is possible
to react to user inputs without a detour via server. The fact that every client is able to op-
erate on his own with almost no interaction with the server, implies, that this solution
scales better with a large amount of users. There is no risk of bandwidth issues in this
scenario. Moreover, it is even possible to run the application without a web server and
Internet at all, as long as the code is physically available on the client’s machine. On the
downside, having the code on the client’s machine implies, that the user is able to see
and manipulate it. Also it is not possible to store data persistently in the website, beyond
the point of a page refresh. A few alternatives to the mainstream programming language
JavaScript for client-side web development are TypeScript and CoffeeScript.

We decided for a client-side web development approach. The reasons for this decision are, first
of all that we cannot ensure the availability of a stable Internet connection in all use cases. Since
we intend to create a web-application which can be used in an online and offline manner, we
are on the safe side to work directly on the client. In addition to that we want the web applica-
tion to scale even with a possibly very large amount of clients, who try to run the application
simultaneously. In this category we have three prominent programming languages, which could
be used to implement the application, namely: JavaScript, TypeScript and CoffeeScript. In the
next section we are going to present the implications of using either of these three languages.
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Client-side programming languages

When speaking about client-side web development, the first thing which pops up is JavaScript.
That’s because JavaScript is the only programming language which is built into most mod-
ern browsers. Besides JavaScript there are a few frameworks and other languages, which are
transpiled to JavaScript and can then be run in the browsers. We would like to present the advan-
tages and disadvantages of choosing JavaScript, TypeScript or CoffeeScript as implementation
language.

• JavaScript
JavaScript is a structural, dynamically typed programming language, which is widely
known as the programming language designed for web development [Flanagan 2014].
By definition a structural language does not feature static type declarations, or classes,
but rather groups objects at runtime according to their functionality. Each object has a
dynamic type, but at compile time there is no information about the types available. This
can be very handy, when working with the DOM - we are able to do duck-typing, which is
a very convenient, flexible way of programming. At the same time it is quite insecure and
(especially for larger projects) error-prone to work with a dynamically typed language.
Static types are a means of ensuring more structured and clearer code. JavaScript operates
on the DOM model directly. The DOM provides a prewritten set of basic functionality,
event handlers and properties for all its elements. Due to the fact, that JavaScript runs
locally it comes along with a few security issues. In principle JavaScript could be used to
exploit the user’s system. The browsers try to suppress possibly malicious behavior by not
allowing a few operations, like for example overwriting local files or loading local files
directly into the website. Different browsers react differently, which is another issue with
JavaScript. We cannot guarantee that the rendering and basic behavior will be the same
across all platforms and browsers. In addition to that, JavaScript is single-threaded,which
makes it more difficult to run code asynchronously.

• TypeScript
TypeScript is a new programming language, which is transpiled to JavaScript. It is based
on the ECMAScript6 syntax standards, and will, once all browsers apply the new stan-
dards be directly executable on browsers. At the moment TypeScript can be used al-
ready, because ECMAScript6 is a superset of ECMAScript5. TypeScript is, in contrast
to JavaScript, statically typed. This allows for a more safe way of programming, which
is useful especially in larger projects. TypeScript supports polymorphism, inheritance
and generics. Those features are very helpful to create a better abstraction. A disadvan-
tage is, that TypeScript is currently not able to integrate pure JavaScript code as is. It
needs to infer the static types, which is not possible, because all non-trivial variable types
are inferred to ANY, the most generic type. This is problematic, because the TypeScript
compiler is not able to find the methods used on those objects. In order to prevent this,
declaration files need to be created. Declaration files state about the shape of a JavaScript
library, e.g. methods which are available, their parameters and return types. An example
for such a declaration file is the following:
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Original file:� �
1 myVar;
2

3 class MyClass {
4 method1(){
5 myVar = method2(true, "World");
6 return "hello!";
7 }
8

9 method2(p1, p2){
10 return 0;
11 };
12

13 }� �
In the original file we do not find any static type annotations, thus TypeScript needs to
infer their types, which may be fairly complex. There are times, when the compiler simply
assumes the type to be ANY.

declaration file:� �
1 declare module "SomeClass.js" {
2

3 myVar: number;
4

5 class SomeClass {
6 method1(): string;
7 method2(p1: boolean, p2:string): number;
8 }
9 }� �

In this declaration file we added to the method and variable declarations additionally the
type information about argument types, return types and variable types.

• CoffeeScript
CoffeeScript is a language that compiles into JavaScript. The language itself is based
heavily on JavaScript, which makes it necessary that the programmer is already famil-
iar with JavaScript when writing CoffeeScript. It improves on a few flaws, which were
known from JavaScript (like for example the lack of a construct to create objects in a clean
and intuitively understandably way, an object existence check or array comprehension).
It has a some drawback too, though. First there is no proper support for linters (which
is used to mark suspicious usage in system software, which is likely to be a bug). Also,
the language is single threaded, as JavaScript is, and thus does not provide a means of
executing code asynchronously. And lastly, it is not clear, whether CoffeeScript will be
continued, because most of the JavaScript flaws, which were solved in CoffeeScript have
been solved in ES6 (a new syntax standard from 2015 which is used by JavaScript) too.
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4.2.4. Code Editor

In this section we would like to discuss a few alternatives we had when choosing a web com-
ponent for code editing. It is a central part for our application and will be used by the user
intensively. It should allow as much support for user feedback as possible. There is a very
wide range of libraries which provide text editors with additional functionality. We found the
following three editors to be the most interesting. And we are going to explain their properties
and the reason why we find these the most interesting ones now:

• Plain text area
The plain text area is the option, when no library is available. In a first prototype we
implemented the web application using a plain text area. In Figure 4.2 (a) you see a plain
text editor on the left. It provides the most basic features like displaying (possibly multi-
line) text and scrolling. Everything beyond this (like line number, text highlighting, text
formatting and error highlighting) is not available.

• ACE editor
The ACE editor is on open source JavaScript library, which is a Sublime/Microsoft Visual
Studio clone, which can be integrated into basically any JavaScript web project. It is free
and underlies the New BSD License which imposes minimal restrictions on the redistri-
bution of their library. It is supported by Firefox 3.5+, Safari 4+, Chrome, IE 8+ and
Opera 11.5+. And last argument, which makes this text editor interesting is, that another
library, called Firebug, uses ACE as their basis to implement a cooperativ text editor. This
is a feature, which we would like to implement in the future, see Section 7.2.2.

• Code monkey editor
Code Monkey is a free, open source, JavaScript library as well and its appearance is based
on a plain text area. It underlies the MIT license, which is also very permissive and thus
complies very well with other licenses. It provides support for Firefox 3+, Chrome, Safari
3+, IE8+ and Opera 9+. Therefore it is compatible with older browsers than ACE editor
does. But on the downside, there is no library for cooperative text editors, which uses
Code Monkey.

We decided to use the ACE text editor, due to its good compatibility with other libraries and as
a basis to implement cooperative coding on top in the future.

4.2.5. Rendering

The web application is based on a graphical user interface with an input field, a canvas, a text
element for command history as well as a larger text element as editor. We implemented the
canvas using two HTML5 canvas elements. One canvas is used to display the direction and
position of the turtle, while the other one is used to display the drawing. Other options for
implementing the painting would be to use a div or a SVG element. We decided for a HTML5
canvas element due to following factors:

• Div: Divs are supported on all browsers and provide backwards compatibility. But they
are very clunky and their performance is bad when loading many elements. Moreover
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divs cannot scale, which is essential in our application, except when using a hardware ac-
celerated css engine and thereby offloading heavy graphical computations onto the GPU.
This would have a direct influence on the battery lifetime because it consumes much
more memory. This is not an option, since we are expecting to use the web-application
on laptops in classrooms, where it might not be possible to provide a socket for every
student.

• SVG: SVGs are vectorial and easier to implement. Still we decided for Canvas due to the
following drawback: SVG elements are used to describe 2D-pictures in XML. Therefore
every element in SVG is stored in the DOM, which implies massive DOM-manipulations
in case we write a large Logo program. Also we work towards a solution in which it is
possible to work on the same canvas in cooperative mode with the whole class. For such a
scenario it is inevitable to keep the DOM small, since we need to share its state, which is
very time-consuming and difficult if it is too large. Using SVG in such a scenario would
imply a massive performance issue, because it would take a lot of time to keep track
of all DOM-manipulations and to update them accordingly, in the right order, without
compromising the state of the DOM. This would increase the effort for rendering a lot.
In conclusion: SVGs are slow when rendering many elements and they pollute the DOM.
Also SVGs are vector-based, while logo programming is inherently pixel-based. The
resulting images might look better when using SVGs, but they behave counter-intuitively.
The images are supposed to be pixelated a little to convey the concept of pixels.

• Canvas: Canvas are useful when drawing pictures on a pixel base, without the need
for event handlers, text rendering or support for very large pictures. Depending on the
browser the maximum area we are allowed to fill is around 300 megapixels (which cor-
responds to roughly 17000 pixels in height and 17000 pixels in width). We do not use
anti-aliasing in this web-application, because it is an important aspect of the project to
experience pixels. Screens supporting 4K have 8.3 megapixels, with 8K we have images
with 44.2 megapixels, which is still far from 300 megapixels which is the limit of canvas.
Note also, that most schools are still using 720p or 1080p screens anyway. The canvas
itself is a single DOM element, no matter its content, it does not influence the DOM. This
is an important feature, when working towards a cooperative mode, in which the DOM is
shared. Also the application itself is inherently pixel-based rather than vector-based. In
that sense we can argue that it makes more sense to rely on canvas (which might lead to
slightly pixelated images sometimes), rather than on a vector-based version in SVG, be-
cause it behaves counter-intuitive in point of view of the learned concepts of pixels. The
application is supposed to use pixels since it is a part of the concept which is transferred
to the children. Additionally a canvas can be saved as a .png or .jpg image, which is
something the application needs to support. In our web application one step of the turtle
fills roughly one pixel.

4.2.6. Libraries, Tools and other frameworks

When it comes to libraries for web development you will find an extremely versatile spec-
trum of different technologies, which allow us to work in a smoother, less cumbersome way.
There are JavaScript libraries like jQuery, Dojo, Prototype, Mootools, which help us writing
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JavaScript code. We will not use any of those tools, due to the fact that we will use TypeScript
in our project, which makes any of those libraries obsolete. But there are other libraries with
interesting utility, which we will list below:

1. ANTLR4:
ANTLR (Another Tool for Language Recognition) is a tool which can be used to gen-
erate lexer, parser and visitor for a given grammar [Terence Parr 2016, Parr 2013]. In its
newest version 4 ANTLR can generate sourcecode for various languages. One of them
is JavaScript, which can be used in the web-application. Building and traversing a parse
tree is simplified by this tool a lot. ANTLR is used often when working on a project
containing a compiler or a transpiler [Gross 2012].

2. ReactJS:
ReactJS is a library published by Facebook, which can be used for real-time notifications.
Whenever there is new information available for the user, ReactJS pushes the updates to
the user. This might be useful especially when interaction between multiple users occur.

4.3. Prototoypes

Over the time a handful prototypes were developed with the purpose to deliver the advantages
and disadvantages of a certain technology while still being rather small and manageable. We
decided for a few of these technologies after developing three major prototypes with or without
the use of a additional framework. We will give a short overview in the following sections,
presenting the technologies we actively tested.

4.3.1. Pure HTML5, CSS3, JavaScript

The first prototype was a pure HTML-CSS-JavaScript solution, which was also used for the
authors to learn the basics in web development in general, since they were not familiar with any
of those technologies before.

The design involved a HTML5 document containing the information about HTML elements,
we used for this prototype. The structure of the website was quite simple. We had the following
setup in mind:
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Figure 4.3.: Mockup for XLogo Online

On top of the website a command-line waits for the user to enter a command. This element was
realized by a HTMLInput element. Once the user entered a command and confirmed by pressing
ENTER, the commands are stored in the command-history on the bottom of the website. Using
the arrow-key (UP, DOWN), it is convenient to retrieve earlier commands and to traverse the
list of previously committed commands. This element was realized as a HTMLAreaElement.
Browsing through previous commands was easily implemented using a bit of JavaScript code.
Upon pressing ENTER and committing a command a parse tree was built too. This parse tree
could be walked and simultaneously executed piece-wise. The parse tree can be built by hand,
since the language is rather small. Instead it is also possible (and this is what we decided to do
in the end) to use a tool called ANTLR, which generates the lexer, tokenizer and parser for us.

In the end our prototype looked like this:

Figure 4.4.: First prototype using HTML5, CSS3 and JavaScript only

48



4.3. Prototoypes

We encountered the following characteristics for this solution:

1. The pure HTML, CSS, JavaScript solution shines in terms of flexibility for the developer.
There are no restriction whatsoever. It is possible to put declarations of the appearance
of some element into the CSS part (where it belongs), or in the HTML part directly to
the declaration of the element itself. We are even able to change the appearance of some
element dynamically, in the JavaScript part. Also, JavaScript itself is excels in terms of
flexibility. Being a weakly typed, dynamic language, we are able to do whatever we want
in JavaScript.

2. The previous point can be seen in two ways. Either we can state the flexibility given to us
as an advantage, or we can argue that too much flexibility can affect the safety. We are in
favor of a language which is clear, flexible, expressive and safe. The second and the third
point are met by JavaScript for sure, whereas the first point depends on the experience of
the developer and the safety is clearly not met in JavaScript. We are not informed about
typing issues at compile time. We might be able to notice some issue at runtime if we are
lucky. This is a disadvantage especially for large projects.

3. JavaScript lacks static types, which affects the style of programming, which can be done
in JavaScript. Since an argument passed to a method cannot be distinguished in terms of
its type, we cannot use a language construct called method overloading, which is present
in other popular languages today. Method overloading is just syntactic sugar, since we
can always call a method a little different and then call whatever method we need. Still it
makes certain design patterns much less clear. One of those design patters is the visitor
pattern, which is very useful when traversing a parse tree for example.

4.3.2. Antlr4

ANTLR is a tools, which can be used to generate a parse tree from a given grammar. The
grammar we used in the prototypes was a small subset of commands, which can be used in
XLogo. XLogo features a few commands to steer a turtle around, leaving a drawing behind
it. The language knows several commands, which can be used interchangeably. For example
there are two commands FD (forward) as well as BK (back) for moving the turtle forwards and
backwards. For obvious reasons we can use one of these two commands (along with RT or LT)
exclusively, simulating the behavior of the other.

The same holds for the commands RT and LT (left), which induces the turtle to turn to the left or
to the right. These commands can be reduced to one another as well. The language XLogo has
a few control structures too, like the commands REPEAT, WHILE and IF. The control structure
of REPEAT works similar to a for loop. In our mini-grammar we included the REPEAT com-
mand only. Finally we allowed a command to clear the screen CS. This lead us to the following
mini-grammar for our prototypes:
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� �
1 grammar Logo;
2

3 prog
4 : (cmd)* EOL?;
5

6 cmd
7 : repeat
8 | fd
9 | rt

10 | cs;
11

12 repeat
13 : ’repeat’ number block;
14

15 block
16 : ’[’ cmd + ’]’;
17

18 fd
19 : (’fd’ | ’forward’) number;
20

21 rt
22 : (’rt’ | ’right’) number;
23

24 cs
25 : ’cs’
26 | ’clearscreen’;
27

28 number
29 : NUMBER;
30

31 NUMBER
32 : [0-9] +;
33

34 EOL
35 : ’\r’? ’\n’;
36

37

38 WS
39 : [ \t\r\n] -> skip;� �

This grammar can be used to generate a parse tree in ANTLR, which then can be traversed
by a visitor or a listener. ANTLR4 is capable of producing the parse tree in multiple target
languages, JavaScript being one of them. We examined the generated parse tree and included it
into the prototype explained in the previous section.
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4.3.3. Pure HTML5, CSS3, TypeScript

TypeScript is a language developed by Microsoft, with the purpose to replace JavaScript one
day. For backward-compatibility reasons TypeScript is a superset of JavaScript. This means that
JavaScript code is valid TypeScript code. The part which exceeds JavaScript involves quite a
few useful concepts. TypeScript is a strongly typed language, which helps us to develop correct
code, especially if the codebase is large. Among others, its set of novel features and syntactic
structures includes classes, interfaces, generics and mixins.

TypeScript itself can be used to replace JavaScript only, HTML5 and CSS3 still are needed
for the whole application to work. For this reason our prototype, which was implemented in
TypeScript, HTML and CSS looked the same as the prototype using JavaScript instead. The
HTML5 and CSS3 files could be reused from the prototype we presented earlier (see 4.3).

We would like to reflect on our experience with this prototype.

1. In comparison to the JavaScript prototype we encounter much more safety in this proto-
type. Due to TypeScript’s strong typing we get static safety, which is a great deal in a
larger project.

2. Also classes, interfaces and generics are very useful when developing a large application
which contains this kind of structure. The project we developed involved a few compo-
nents, which can be completely decoupled from each other. In JavaScript this decoupling
is cumbersome, but in TypeScript it is easy to establish such a decoupled structure. In
our prototype we have both classes and modules, which allow us to provide a nicely
decoupled model.

3. TypeScript is novel and thus still futuristic. In the future we will encounter a change
in web development technology and the improvement of the core language JavaScript
will be a part of this development. TypeScript (or another language related to it for this
matter) will take its place. In order to examine the newest web technologies TypeScript
is definitively a part of it.

4. In terms of performance we can expect this solution to be just as fast as a pure JavaScript
solution. Currently TypeScript is first transpiled to JavaScript and then executed in the
browser. After the compilation a TypeScript solution should not be much faster or slower
than a comparable JavaScript solution.

5. Choosing TypeScript does not make us suffer a lost in flexibility. We are able to use any
kind of design and implement it in TypeScript. For our prototype we chose the same
model as our JavaScript prototype and thus we encountered the same issues. We realized
that it would be better to keep unrelated concepts strictly apart. It is a good thing to
divide the website into multiple independent parts which can be developed and tested
individually and in isolation.

6. Another downside is, that including JavaScript files into a TypeScript project and using
it in a TypeScript file is critical. JavaScript has no types, whereas TypeScript variables
are strongly typed. If there is no type-declaration, type inference is applied to determine
the most precise type a variable can have. In JavaScript type inference cannot determine
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what kind of HTML-element we are interacting with, which is problematic since most
methods used on HTML elements are not applicable on a generic HTMLElement, so
TypeScript’s type checker will complain. In order to resolve these issues we need to
create a declaration file, containing type information for variables, arguments and return
types in a JavaScript file. This introduces a lot of effort, which cannot be avoided if we
wish to use the JavaScript files generated by ANTLR. An alternative would be to write
the parser ourselves.

4.3.4. Angular2

Angular2 is a new framework published by Google, which uses TypeScript. The framework
helps us to decouple various modules in the website from each other. Using component-based
design conceptions, we can create custom HTML-tags. Angular2 helps us to distinguish model,
controller and view. AngularJS is a framework, which does the same, based on JavaScript and
is the predecessor of Angular2. Since Angular was very popular we can expect Angular2 to
become a great deal as well. This new design paradigm forces us to connect HTML, CSS and
TypeScript files in another way then we did in the prototypes we had before. Therefore it is not
possible to reuse parts of the previous prototypes (especially the layout or HTML files) in this
prototype.

This is what the prototype looked like in the end:

Figure 4.5.: Prototype using Angular2

Now we would like to point out some of the characteristics of this solution. After this section
we will conclude this chapter by making a statement about the design choices we made:

1. AngularJS and Angular2 are frameworks to write single page applications. The key idea
is, that there is only one HTML file to be loaded. In case the user wants to create the
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illusion of multiple pages, we need to change the DOM to achieve the illusion of multiple
HTML files.

2. In regard of the issues using JavaScript files in TypeScript, we faced the same issues as
in the previous solution. If we want to use the generated JavaScript files containing the
parser, we need to create a declarations file, telling the TypeScript document what types
certain methods take and return, in order to help the process of type inference.

3. In this prototype we encountered a clear decoupling between model, controller and view.
We were able to create custom components, containing just a part of the functionality of
the whole website, which can be tested nicely. On the other side this feels like a larger
restriction in flexibility. While having a neatly decoupled structure, we cannot program
in as many ways we could if we didn’t use the framework.

4. With Angular2 it is easy to create a web-application as well as a mobile application. This
can be useful since we are independent of the platform and thus can the web-application
can be used on any devices (desktop computer, android phones, apple devices, windows
phones).

5. Angular2 features some powerful and neat concepts like for example dependency injec-
tion and data binding, helping us to maintain a large codebase, without the need of gluing
the parts together manually. It has been tested on the most popular browsers as well as
their earlier versions.

4.4. Final Design Choices

Now we would like to discuss the final design choices we made in our project. We will argue
what technologies we decided to use and we will explain the reasons for these decisions:

• TypeScript rather than JavaScript:
Rather than using JavaScript, we decided to use TypeScript. We decided in favor for static
safety, which can be very useful in larger projects. Also we chose in favor for classes
and interfaces, which helps to create a solution much more clear and understandable for
maintenance.

• Angular2:
Also we chose to use the framework Angular2. The decision for Angualr2 rather than
AngularJS was clear, since we already decided to use TypeScript, which is the language
used in Angular2. Also this decision helped us to create a clear, modular setup with
strictly decoupled components in the paradigm of MVC.

• ANTLR4:
ANTLR is a tool for creating parsers, lexers and tokenizers. We decided to use this tool
to create our interpreters. ANTLR creates JavaScript classes, which can be used in a
TypeScript document if either for every class a declaration file is added to the document
or if we declare every method in those classes to be arbitrarily (e.g. taking as many
arguments of any type and returning a result of any type). We decided to choose the
second option due to the fact the generated code is supposed to be type-correct and thus
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we do not need the static safety which is provided by TypeScript for this part of our
solution.

• No back-end:
In order to allow our web-application to be used in an offline-setting we decided to create
a heavy client, rather than a heavy server. Currently web-development turns out to make
a transition from previously heavy servers to currently heavy clients too.
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In this chapter we are going to present implementation-specific aspects in our project. We will
start by explaining the general structure, namely how we put the MVC and Composite design
paradigm into practice and how these individual parts communicate. We will demonstrate the
individual components, and list the most challenging problems we encountered in the respective
components. Later on we will explain the general work flow in our application after a enter
keystroke occurs. In the second part of this chapter we will focus on the above mentioned
problems and we will explain how we solved those problems. The problems are structured by
graphical user interface elements, namely history, canvas, editor and input text area.

5.1. General Structure

In Angular 2.0 projects are usually composed of several components. One component describes
the layout and functionality of one particular encapsulated part of the website. Everything in
Angular 2.0 can be seen as a component, including Directives and Services. Directives are
components without a layout, whereas Services are data collections, which can be used to feed
and retrieve information from components. In Figure 5.1 all the components we used in our
application are depicted with their according graphical representation.
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All eight components and their relation to the graphical user interface:

Figure 5.1.: Components in our web-application

As you can see in the figure above, we decided to divide our application into eight components,
which build a tree. The corresponding tree to our component setup can be seen in Figure 5.2.
The tree contains inner nodes and leaves. Inner nodes (App, InteractionArea and InputCanvas,
depicted in blue) are used as wrappers to provide the application with more structure, whereas
leaves (Header, History, Input, Canvas and Editor, depicted in purple) are visible components
with a user interface representation.

Figure 5.2.: Component-tree

Before explaining how information from a user input is forwarded through the system until it
is finally shown on the canvas or reported as an error, we will present and explain the five UI
components we used in our application, what they are used for and what interesting problems
we had in the respective components. We leave wrapper components away, since their main
purpose is to provide more structure in general.
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In the following list we present our five UI components:

• Header component:
In order to display the header of our website we use this component. It comprises a
DIV element, which in turn holds an <h2> element, used to represent the headline of the
website as well as a few setting and menu buttons. In this section the most interesting
problem was how to react to a user request to load or store the editor’s content from a
local file, independent of the platform we are working on.

• Editor component:
In this component we describe the editor’s behavior and view. We describe a few of
the special characteristics of this component in the controller. The editor features many
challenging problems. The most interesting and important one is how to implement error
highlighting in the text editor.

• History component:
The History component is used to display previous commands, which were committed
from the Input component. We use a service to store previous commands. This service
is fed by the InputCanvas component and it is used to retrieve data from the History
component.

• Input component:
The Input component is used as an interface for user input, which is then executed. The
effect of the user input (XLogo command) will be displayed on the canvas and the com-
mand will be registered in the service called commandsservice, from where the previous
commands are written to the History. If there is an error in the user input, the error is
reported to the user via History as well. In this sense the input is the starting point of
every user interaction. We are going to explain this process in more detail in the next
section (section 5.2).

• Canvas component:
In the Canvas component we render the results of any command which has a graphical im-
pact. The Canvas component holds two canvas elements. One is used to display the turtle.
The other is used for drawing. One of the most interesting problems in this component
was how to implement a canvas which allows panning in all directions in a continuous
manner.

The tree of components can be traversed from the root node (App) to the leaves. All components
in the tree are rendered are provided with data from top to bottom. This means, whenever
Angular’s change detection algorithm reports some change in the model, all components are
informed. The information is automatically propagated from the root to the leaves and can be
observed by the lifecycle event handlers.
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5.2. Information Flow

In this section we will explain what happens once the user hits ENTER on his keyboard in de-
tail. We will focus on the interaction and information flow between the following user interface
elements: Input, Editor, Canvas, and the History.

The whole process starts when the user presses ENTER on his keyboard. There are a few
plausible scenarios, depending on the state of the application. Either the user has a valid (i.e.
compiling) set of methods in his editor, or not. An invalid content of the editor can for instance
happen if a method declaration is still missing its END or TO keyword or if it contains too
many or too few arguments for one of the basic methods. If this is not the case, the application
is allowed to continue with syntax checking for the user’s input. But it might still be the case
that those commands do not compile or throw an error during execution.

For this we distinguish three cases: Either both the editor’s content and the user’s input are
valid XLogo programs, the editor is valid but the user’s input does not compile or not even the
editor’s content is a valid XLogo program and thus the user should not even be allowed to start
the execution of his program. We discuss the three cases now separately.

5.2.1. Case 1: Both the editor and the user input are valid

We present the following two-stage process of information flow after the ENTER key was hit in
case both the editor’s content and the user’s input are valid and thus will compile successfully:

Figure 5.3.: Information flow which happens whenever the user hits the ENTER key. Boxes show UI
components, arrows show the control flow

The Input component is the main component in this process and it is in charge of managing the
whole information flow. First it initiates a syntax checking of the current content in the editor
(arrow a). We need to check for syntax errors in the editor before executing the actual user
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input because it might contain a method invocation, thus we need to guarantee that whatever
method the user could invoke, the program behaves correctly. In order to ensure that we first
check the editor for syntax errors. We perform a syntax check by building up a parse tree of
the editor’s current content (using a separate grammar, specially designed for the editor) and by
traversing the according parse tree. We make sure the parse tree does not contain any wrong
parent-child-relationships and by checking for a positive response by the syntax checker (arrow
b) assure that the editor’s only contains valid XLogo programs.

Once the syntax checking is over we perform another syntax checking, but this time with the
user’s input (arrow c). Hence we start the lexer and tokenizer, we build the parse tree and
traverse it. Traversing the parse tree of the actual user program results in methods calls within
the Canvas component (arrow d). The user input is transpiled to graphical operations on the
canvas. Once the parse tree is fully traversed (arrow e), we pass the command itself to the
History component, where it is stored and annotated for the user (arrow f ). Executing the
command finished successfully (arrow g).

5.2.2. Case 2: The editor is valid, but the user’s input is not

Similar to the previous case we try to perform the above-mentioned two-step approach of first
checking the editor for syntax errors and later trying to execute the user input.

Figure 5.4.: Information flow with invalid user input but valid editor. Control flow interruption after
syntax checking the user input or executing it.

In this case we assume the editor contains a valid XLogo program. Thus initiating a syntax
check for the editor’s content (arrow a) should complete successfully (arrow b). However,
during the syntax check for the user’s program (arrow c) we will encounter an error because
of the invalid user input. Somewhere along the way of building lexer, tokenizer, parse tree and
traversing it, we observe an error, analyze it and report it back to the user via an annotation in
the history (arrows d). Then the execution is finished (arrow e).
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5.2.3. Case 3: The editor is invalid

In this case we assume that the editor does not compile properly. We cannot allow the execu-
tion of the user input to start if the editor’s text is invalid because this implies that at least one
method contains a syntactic error, which would lead to a runtime exception if the method would
be invoked by the user. We try to prevent this by disallowing the execution of any kind of user
input while the editor is still invalid. This is an over-approximation and it is possible that the
user input is harmless, but we still refuse the execution of those programs due to the fact that it
might lead to faulty behavior in some cases if we were to allow user input to be executed while
the editor contains syntactic errors.

We propose the following approach:

Figure 5.5.: Control flow interruption after performing syntax checking with invalid editor.

First, we initiate a check on the editor for syntactic errors (arrow a). If this check fails (arrow b),
we know that the editor contains errors, which need to be passed on to the user. We analyze the
error, create a more meaningful response from it and notify the user about the syntactic error
(arrow c) directly in the editor on the corresponding line where the syntactic error appeared
during the syntax check. Afterwards we conclude the current execution (arrow d).

5.3. Realization on Selected Technical Features

Next we will discuss the implementation details of our user interface elements. We will explain
a few interesting problems related to those UI elements and how we solved them. Namely we
will present our approach of loading and storing the editor’s content if there are multiple tabs
open. Next we will discuss how to allow the user to manually pan the canvas in all directions.
Lastly we will explain how we did error highlighting in the editor and how to implement dy-
namic window resizing. We will close this section by a presentation of our most challenging
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problems. At this point we present the problem of working with multiple module loaders (eg.
more than one program, which resolves dependencies among the modules used by a module),
the problem how to implement the visitor pattern in a programming language, which does not
feature method overloading (like in JavaScript), how we handled the problem of JavaScript be-
ing single threaded in respect of an interrupted execution (using the XLogo command wait and
intercepted execution).

5.3.1. Loading and Storing Editors

Xlogo online offers the possibility to create new editors. This can be useful in our use cases
at primary schools to provide the pupils with a possibility to give their collection of programs
more structure. In our application we provide the option for any number of tabs, which each
may contain any number of methods. Internally we store each editor content as an entry in a
large hashmap, which uses the tab’s unique ID as a key and the content text as value. Whenever
the current tab is changed we need to save its content in the hashmap and load the text of the
according tab we are switching to.

In order to save the editor we use a library called FileSaver.js, which facilitates the task to write
to a local file. In the following code you see how we save the content of all tabs to a local file:� �

1 saveFile() {
2 //load current text
3 this.editorText[this.currentHighlightTab] = ←↩

↪→ AppComponent.editor.getValue();
4

5 //accumulate texts from all editors, separate with $
6 var filesaver = require(’lib/FileSaver.js’);
7 var text = "";
8 for (var key in this.editorText) {
9 let value = this.editorText[key];

10 text = text + value + " $";
11 }
12 var blob = new Blob([text], { type: ←↩

↪→ "text/plain;charset=utf-8" });
13

14 //create name for file (use current date)
15 var dateObj = new Date();
16 var month = dateObj.getUTCMonth() + 1;
17 var day = dateObj.getUTCDate();
18 var year = dateObj.getUTCFullYear();
19

20 //write file
21 var currDate = day + "/" + month + "/" + year;
22 filesaver.saveAs(blob, "Logo " + currDate + ".lgo");
23 }� �
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In line 8 to 11 we accumulate all texts from all editor tabs in one string. Individual tabs are
separated using the String $ so we can reconstruct the tabs and their content when loading a
file. We decided to use the character $ as a separator because it is not contained in the language
itself and it is a special character, which means that it is not allowed as a method or parameter
name, i.e. it is unique and thus fulfills the requirements as a suitable separator. In line 12 we
create a new blob which is based on the utf-8 encoding and which is then used on line 22 to
save the editor to. On lines 15 till 18 we determine the current date and then we use it on line
22 as file name for our new file with the file ending lgo.

When we decide to load a file from the local file system we do the following:� �
1 //... within initialisation phase:
2

3 var x = <HTMLInputElement>document.createElement("INPUT");
4

5 //load content of files on input file select
6 x.addEventListener("change", function (event) {
7 var file = x.files[0];
8 var reader = new FileReader();
9 reader.onload = readSuccess;

10 function readSuccess(evt) {
11 localRef.currentIndexTabs = 0;
12

13 //delete all editors and all texts
14 localRef.editorText = [];
15 var ul = document.getElementById("tabs");
16 while (ul.children.length > 1) {
17 ul.removeChild(ul.firstChild);
18 }
19

20 //read input, separate after $, distribute to tabs
21 var allText = evt.target.result;
22 allText = allText.split("$");
23 var j = 0;
24 localRef.addTab();
25 for (var j = 0; j < allText.length-2; j++) {
26 //add new tab with this content
27 AppComponent.editor.setValue(allText[j], 1);
28 localRef.addTab();
29 }
30 localRef.editorText[localRef.currentHighlightTab] = ←↩

↪→ allText[j];
31 AppComponent.editor.setValue(localRef.editorText ←↩

↪→ [localRef.currentHighlightTab], 1);
32 }
33 reader.readAsText(file);
34 }.bind(this), false);� �
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First, in line 3, we create a new input HTMLElement. This object is then manipulated to show
the filemanager and to allow file endings with lgo only (code omitted here). We define an event
listener which listens for events of type change only, in line 6. Whenever the file explorer is
used to choose a file this event listener is triggered and a new FileReader is instantiated which
reads the file (line 8). We create a new hashmap (line 14) and remove all tabs from the current
editor (lines 16 to 18). After reading the input, splitting a the character $ (lines 21 and 22),
we add a new tab for every entry in the hashmap (line 28) and finally we set the content of the
editor to the current tab ID (lines 30 and 31).

5.3.2. Error Highlighting

Error highlighting, or syntax checking, is an important mechanism to provide the user with
more information about his code. Without syntax checking it is much harder to find typos,
missing keywords and missing parameters for instance. We want to provide the user with a
real-time feedback about his code so he is able to evolve his code gradually, while knowing that
no syntax errors are present at every moment. Previous versions of XLogo IDEs did not feature
this attribute. We argue that the user experience is amended when using syntax checking due to
the fact that the user knows about the state of his program at all times. He learns that he needs
to fix syntax errors before executing a program. The knowledge about the state of a program is
not available if no syntax checking is used. Thus it might not be clear whether the reason for
the error lies within the editor or in the structure or form of the user input directly, if no syntax
checking in the editor is available.

We approached the problem checking for syntax errors in the editor by using our two-stage
approach described in section 5.2. Every keystroke in the editor schedules a callback, which
is executed after exactly one second of inactivity. We decided for a timeout of one second
because it is not really necessary to check for syntax errors after every keystroke. This would
result in many syntactically incorrect programs and thus too many notifications for the user. We
find an approximation by waiting for one second of inactivity. Hereby we reduce the number
of unneeded notifications (which are not interesting to the user since he is still working on
a method) tremendously compared to the approach where a syntax check is performed after
every keystroke. Newer keystrokes can cause an abort of the most recent callback and replaces
it with a new callback for the updated text in the next second. The callback itself analyzes
first the text in the editor in order to find all methods. Then it traverses each method using a
visitor (which was created on a grammar which defines a correct editor content). The visitor
searches for syntax errors by traversing the parse tree. Once a syntax error is found we throw
an exception in the parser, which is caught by the caller. With the error message we get the
exact position of the syntax error (line and column), which allows us to add an annotation to the
editors line numbers if an error appeared during syntax checking. We provide error messages
for the following kind of errors:

• Too few parameters:
no viable alternative at input X

• Too many parameters:
extraneous input X
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• Missing keyword to:
extraneous input X expecting ’to’

• Missing keyword end:
mismatched input X expecting ’end’

• No such method:
Missing STRING

The caller checks which kind of syntax error it is and looks up the error message (in the lan-
guage specified by the system), continues displaying it along with the error annotation directly
on the editor, in the according line. In the following code we demonstrate how we detect which
kind of syntax error we found:

� �
1 try {
2 //build parsetree for content and visit it
3

4 } catch (e) {
5 var extraneous;
6

7 //analyze input and change text accordingly
8 if (e.msg.indexOf("\’to\’") !== -1) {
9 //missing TO

10 e.msg = AppComponent.currentLang["missingTo"];
11 } else if (e.msg.indexOf("\’end\’") !== -1) {
12 //missing END
13 e.msg = AppComponent.currentLang["missingEnd"];
14 } else if (e.msg.startsWith("extraneous")) {
15 //too many parameters
16 extraneous = content.slice(e.start, content.length);
17 extraneous = extraneous.split(/[\s,]+/)[0];
18 e.msg = AppComponent.currentLang["extraneousInput"] + ←↩

↪→ extraneous;
19 } else if (e.msg.startsWith("no viable")) {
20 //too few paramteres
21 extraneous = content.slice(0, e.start + ←↩

↪→ 1).split(/[\s,]+/);
22 extraneous = extraneous[extraneous.length - 2];
23 e.msg = ←↩

↪→ AppComponent.currentLang["noViableAlternative"] ←↩
↪→ + extraneous;

24 } else if (e.msg.startsWith("missing STRING")){
25 e.msg = AppComponent.currentLang["noMethodName"];
26 }
27

28 this.errorIndizes.push({ row: e.line + offset, text: ←↩
↪→ e.msg, type: "error" });

29

30 }� �
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The general approach is, to build a parse tree for the editor’s content and to visit it (code omitted
here). If the visitor finishes successfully, the editor is valid. But if it throws an exception, we
know that some kind of syntax error is present in the editor. We catch the exception and deter-
mine whether it is a missing TO (line 8-10), missing END (line 11-13), too many parameters
(line 14-18), too few parameters (line 19-23) or an unknown method name which is used in the
program (line 25). In all cases we exchange the error message by something more meaningful
for the user and append it to a list of errors (line 28) in the systems language.

One drawback we have with this approach is, that we are only able to find the first occurrence
of a syntax error in a given method. If we wanted to find and annotate all syntax errors in a
method, we needed to remove the critical part from the method and reparse it searching for the
next syntax error. This would be highly inefficient for long programs with many syntax errors.
With our approach we only find the first syntax error per method and restart the parser once the
input changes and is not altered for one second. Once the first syntax error is resolved, we will
display the next and so on.

5.3.3. Canvas Panning

Sometimes it would be useful to have a mechanism to pan the canvas’ content within its view-
port. For example if we already know that some picture will take more space than usually (if
we write text for example or draw pixel images), then it would be of interest for the pupils to
have a mechanism of panning the canvas within its own viewport. We implemented a way of
panning in our application and we will now explain its core mechanism. We decided to tackle
the problem by creating an offscreen canvas which is nine times as large as the viewport visible
on the screen (see Figure 5.6).

(a) Offscreen canvas and viewport, initial state (b) Offscreen canvas and viewport, possible state

Figure 5.6.: Offscreen canvas with viewport, allows panning within viewport

Whenever the user draws something on one canvas it is automatically backed up on the off-
screen canvas too. If the user starts to pan the viewport, we measure the relative distance to
the original position and copy the respective part (of the same size as the viewport) from our
offscreen canvas to the viewport. We disallow the turtle to leave the viewport to ensure that we
do not need parts which lie beyond the range of our offscreen canvas.
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A few questions worth to discuss about this approach:

1. What happens if the turtle leaves the viewport programmatically?
We disallow the user to pan the turtle out of the viewport, because otherwise it is easy to
get lost. But what should happen if the user types a command which programmatically
transfers the turtle to a position which lies beyond both the viewport and the offscreen
canvas? One possibility would be to disallow those methods. For this to work we would
need to anticipate the effect of each method call and all basic operations. Another possi-
bility would be to always show the last part on the screen, such that the turtle stays in the
middle of the viewport, while the world moves around it. This approach contradicts with
the methodology of the teaching material, where it is clearly the case that we move the
turtle, not the world surrounding it. One last option is to keep everything as it is and to let
the user realize that he has to correct the mistake programmatically as well if we intends
to get the turtle back into his viewport. This solution might lack some intuition.

2. What happens if the viewport’s size changes?
Whenever the user pans his viewport, the according part of the offscreen canvas is copied
to the viewport. But our application allows the user to resize his viewport. Since we do
not want to see any stretched images in our viewport, we need to check the size of the
viewport before copying anything from the offscreen canvas to the viewport and make
sure the viewport and the copied area have the same size. Also we need to assure that the
initial size of the offscreen canvas matches with the maximum possible size of viewport
with panning. Our solution is to always copy an area of the exact same size as the view-
port and to initiate the offscreen canvas to be nine times as large as the largest possible
viewport.

3. Which part of the canvas contains interesting information, file download? We offer
the option to download the current content of the canvas on demand. What is supposed
to happen if the picture does not fit on the viewport but it uses a bit more that what is
available of the viewport. We could try to save the part from the offscreen canvas, which
contains all the information. But for that we need a notion of where the edges of the
interesting parts in the canvas are. We left it open to implement as a future work. At the
moment we allow the user to download the current viewport only.

4. How to implement an infinite canvas? If we were to implement an infinite canvas, we
would need to implement a manner of self-localization. If the turtle is lost, we need to
support a way to find it again. In a technical point of view we could store everything we
explored so far in some kind of buffer and then simply search through the buffer to find
the according entry.

Our web-application supports panning the canvas in a rudimentary way. We presented a few
option for improvement in the above list. The current implementation could be improved to an
infinite canvas, whose idea is described in Section 7.2.3.

5.3.4. Window Resizing

We implemented our web-application as a single-page app. On this page everything is visible
at the same time (see Figure 4.3 for instance). To ensure that the user experience does not suffer
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from ill-designed ratios between editor and right-hand side, we added a slider in between; the
respective window sized can be adjusted. The mechanics behind this are implemented by hand.
We added three event handlers for click, release and move gestures, whose implementation we
are going to present now:

� �
1 resizeStart() {
2 this.resizeOn = true;
3 }� �

This piece of code is the event handler for the mouseDown event on the divider between left-
and right-hand side. The only thing which happens here is that we set a flag, which will be used
in resizeStop and resize to determine, whether we are currently in a resize mode.

� �
1 resizeStop(e: MouseEvent) {
2 if (this.resizeOn) {
3 this.resizeOn = false;
4 this.width = e.clientX - this.padding + "px";
5

6 }
7 }� �

This method is the event hadler for the mouseUp event on the divider between left- and right-
hand side. If we are currently actually resizing the window and now the mouse button was
released, we calculate the ratios for left and right-hand side and update a variable width, which
is a bounded property with data binding. Once the value is adjusted, the ratio is changed by
Angular automatically.

� �
1 resize(e: MouseEvent) {
2 if (this.resizeOn) {
3 var value: number= e.clientX - this.padding;
4 this.width = value + "px";
5 if (value < this.padding * 10) {
6 this.editorused = false;
7 } else {
8 this.editorused = true;
9 }

10

11 if (value > window.innerWidth - window.innerWidth / 5) {
12 this.inputused = false;
13 } else {
14 this.inputused = true;
15 }
16

17 AppComponent.editor.resize();
18 }
19 }� �
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This method is the event handler for the mouseMove event on the divider. If we are actually
resizing the windows, we calculate the ratio which the two parts would have and then decide
whether we want to set the hidden flag for either of the two sides. We do so if the ratio of the
editor is smaller than 10% or if the right-hand side uses less than 5% of the available space.

5.3.5. Multiple Languages in XLogo Online

For a platform, which is specially designed to be widely accessible, it is important to provide
support for various languages. In our web application we decided to implement this feature
using a Service, which makes manages hashtables containing all strings visible in the GUI.
For every language a hashtable is available (at the moment German and English), all using the
same keys. A Service takes care of managing the hashtables. When requesting a string, we
use the Service as a proxy, which hides implementation details. In Figure 5.7 we illustrate the
information flow for string accesses:

Figure 5.7.: Upon requesting a string lang[C], the LanguageService checks the current language settings
and accesses the respective string from the responsive LanguageServiceHelper.

The Service has to suggest a language upfront. He does so by inspecting the system language
and loading the respective language (or English per default if the system language is not among
the available languages). Similarly, the user can change the UI-language manually, which re-
sults in an internal exchange of hashtables as well. Our system is extensible and designed to be
seamless for the end-user.

5.3.6. Colors

The dialect XLogo offers multiple representations for colors. One of the possible representation
involves the color-name as string, another representation is a mapping to numbers between 0
and 16 and the third is the notation as RGB values. All of the following commands have the
exact same effect:
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setpc red
setpc 1
setpc [0 0 255]

Internally we simplify this ambiguity by converting every color to its respective RGB value.
Color-names and numbers provide a way for the user to express colors in a shorter notation.
But Color-names and numbers are only a small subset of all possible colors we provide, thus in
our system we work with RGB values internally exclusively. For this reason we have a Service,
called ColorService, which transforms every color (in whatever representation it is) into the
equivalent RGB value and stores it.

5.3.7. Asynchronous Tasks in Single Threaded Environments

JavaScript is inherently single threaded. This means creating new threads and outsource time-
consuming actions to different worker-threads is not as easy as it is in other programming lan-
guages. We encountered a related problem, when implementing the wait keyword, used in the
XLogo dialect. This keyword leads to an interruption of the current execution, which is contin-
ued after a predefined amount of time. Since we need to execute everything on the main thread,
it is difficult to react to the command using a synchronous waiting, because it would result in
an unresponsive design, which is undesirable. The wait keyword itself is supposed to create
the effect of synchronous waiting. We simulated this effect with an asynchronous wait (using
the JavaScript setTimeout command). Whenever a wait command is visited by the visitor, a
timeout is set. After this timeout a method is invoked to resume the execution of the remaining
commands.

Figure 5.8.: Parsetree for program square with wait: repeat 4[fd 100 wait 100 rt 90 wait 100]

69



5. Implementation

In Figure 5.8 you see the parse tree for a Xlogo program repeat 4 [fd 100 wait 100 rt 90 wait
100]. We expect this program to draw a line, wait for a second, turn to the right, and wait
another second until the loop body reexecutes. If we simply check in the visitor whether the
current child is a wait instruction and then set a timeout for the requested amount of time until
we resume the execution of the other children, we do not end up with what we intended. Set-
Timeout initiates an asynchronous wait, which means that its content is pushed to the queue,
where it stays until the timeout is over and the main-thread is idle for the first time. But in the
meantime the visitor still continues with its execution. Thus, if we set the timeout for, let’s say,
4 seconds, we end up with a scenario, where the whole square is drawn first and afterwards
we wait for a long time. We fix the problem using the following approach: JavaScript works
asynchronously. Thus we disconnect any siblings of any ancestors to ensure that they are not
executed while the program is supposed to be waiting. After the timeout elapses, we reattach
and visit them, have look at Figure 5.9.

Figure 5.9.: Program square with wait, correctly implemented, after setTimout is invoked, we remove
all siblings of any of our ancestors. We make sure every method invocation is only made
once at exactly the time when it is intended, while staying synchronous and responsive at
all times.]

A second problem we would like to discuss is the problem of how to disrupt the execution once
it is started. One of the main issues we encountered were, that it is not possible to interrupt
the execution of the visitor once it is started, because this would require a second thread which
could interrupt the visitor thread. But how should we proceed if the user implemented an in-
finite loop or any other structure which does not terminate per se? We do not want to wait
until the browser announces, that the website is not responsive anymore and whether the user
wants to close the tab. Instead we decided to count the number of visited nodes in the parse tree
and issue a notification for the user that his program takes a very long time to terminate and
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whether he want’s to cancel. This notification is produced directly from the visitor himself. We
set a upper bound of the number of visited nodes to one million. If the user decides to continue
for a little bit longer, we double the threshold and continue with our work. One million is an
experimental number. We found out that this number allows all exercises from the book to be
completed without a message. If a message appears, we do not really want to use this help. In
the following code we present our approach:

� �
1 function visitChild(childnumber, ctx, ref) {
2

3 timeCounter++;
4

5 var operationConstructorString = ←↩
↪→ ctx.children[childnumber].constructor.toString().substr( ←↩
↪→ ’function ’.length);

6 operationConstructorString = ←↩
↪→ operationConstructorString.substr(0, ←↩
↪→ operationConstructorString.indexOf(’(’) - 7);

7 var operationName = "visit" + operationConstructorString;
8

9 //do we exceed the threshold?
10 if(timeCounter > threshold){
11 //ask user whether he wants to continue
12 if (confirm(lang.getLang()["timeout"])) {
13 //increase current threashold to be twice the current ←↩

↪→ number
14 threshold = threshold * 2;
15 } else {
16 stop = true;
17 return;
18 }
19 }
20

21 //invoke the next child
22 return ref[operationName](ctx.children[childnumber]);
23 }� �

First we increase the hop counter in line 3. Then we extract the method name fro the next child
(lines 5 to 7), then we check whtether the threshold of hop counters is already exceeded and
lastly we call the next child’s visit method.
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5.3.8. Integration of Multiple Module Loaders

The ANTLR4 solution for the parser of course involves a multitude of files, which build a large
tree of dependencies. In web-development it is important to make sure everything is available
(e.g. loaded) before it is used. For this reason module loaders exist. A module loader usually is
given the path to a file and it loads the file by searching for it at the respective path and giving
it a name. In JavaScript everything is an object. Loaded modules are too. It is possible to call
a method from an external module, by simply calling the method-name on the module’s object
name. It happens quite frequently that modules use other modules in their own code and thus
need to load other modules first. The module loaders take care of those dependencies whenever
they occur. Without module loaders, the programmer would need to know the exact order in
which modules need to be loaded, which is a very cumbersome task for larger applications with
a large number of modules, which are nested. This approach does not scale well.

Over the time several module loaders with the same functionality but different syntax have been
invented. Due to the fact, that the field is very diverse and a great number of different versions,
frameworks, tools and plugins exist, several module loaders became well known in the field of
web technology. One of them is called requireJS. It is used mostly be the NodeJS community.
RequireJS makes use of the Asynchronous Module Definition API (AMD) as opposed to the
older community of CommonJS participants. CommonJS was a format, which was designed
without keeping the limitations of the JS web environment in mind. Also in this format only one
module tag was allowed per file in order to break circular and nested dependencies. The AMD
format is designed to provide better debugging characteristics than CommonJS and it does not
need any server-specific tooling, as it is required by the CommonJS format and it works much
better across platforms.

ANTLR4 was implemented with RequireJS as module loader, whereas the Angular2 framework
uses SystemJS as module loader. SystemJS works both with AMD and CommonJS and it is im-
plemented for NodeJS too. In order to include the parser, we needed to include RequireJS into
our Angular2 framework. We declared the keyword require, which is used by the RequireJS
module loader on the most generic way, as a method with an arbitrary number of arguments of
any type and a return type of any type:

declare var require: (...any) => any;

This declaration can be found in various classes in our project. Whenever we work in a com-
ponent (which uses the Angular2 framework and thus the SystemJS module loader while still
using another library or framework which uses RequireJS).
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5.3.9. Visitor Pattern in JavaScript

JavaScript is by nature a language which does not support method overloading. This is an issue
when implementing the visitor pattern. Instead of just invoking a visit method with a specific
argument type (which covers all possible dynamic types of any argument which might come
along), we need to invoke a visitX method, where X corresponds to the name of the node.
Having method overloading is nothing but syntactic sugar and we can circumvent the problem
by introducing unique method names for every Argument type. But for this to work it is crucial
that every node in the parse tree knows the exact name of the children so it can invoke their visit
method. We inspected the current node, extracted the names of its children and built a function
call based on the string containing the name. Have a look at the following implementation of
this functionality (visitChild method from the EditorVisitor class):� �

1 function visitChild(childnumber, ctx, ref) {
2 var operationConstructorString = ←↩

↪→ ctx.children[childnumber].constructor.toString().substr( ←↩
↪→ ’function ’.length);

3 operationConstructorString = ←↩
↪→ operationConstructorString.substr(0, ←↩
↪→ operationConstructorString.indexOf(’(’) - 7);

4 var operationName = "visit" + operationConstructorString;
5 return ref[operationName](ctx.children[childnumber]);
6 }� �

We are given the child number, which indicates the index of the child we want to visit next. We
also know the context ctx in which the method is called. This context belongs to the current
node and its properties. As a last argument we are given a reference to a this object, which is
in case of the example code an element of type LogoEditorVisitor. In line two we extract the
full name of the child’s constructor method after the function keyword. In line 3 we truncate the
string even further to everything after function until the first occurrence of left parenthesis. In
line 4 we prepend the keyword visit and finally in line 5 we run a method-call to a method with
the name we assembled before.

5.4. How the Project is Instantiated

The framework provided by Angular2 is designed for single-page websites, meaning that there
is supposed to be only one HTML file, which is loaded in the beginning. As usual this HTML
file contains a header, which is used to import Angular2 libraries which are used to start calling
the root component (have a look at lines 9 to 12 in the following code).
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� �
1 <html>
2 <head>
3 <title>XLogo Online</title>
4 <meta name="viewport" content="width=device-width, ←↩

↪→ initial-scale=1">
5 <link rel="stylesheet" href="app/styles/main.css">
6

7 <!-- 1. Load libraries... -->
8 <script src=".../angular2.dev.js"></script>
9

10 <!-- 2. Configure SystemJS -->
11 <script>
12 System.config({
13 packages: {
14 app: {
15 format: ’register’,
16 defaultExtension: ’js’
17 }
18 }
19 });
20 System.import(’app/main’).then(null, ←↩

↪→ console.error.bind(console));
21 </script>
22 </head>
23

24 <!-- 3. Display the application -->
25 <body>
26 <my-app></my-app>
27 </body>
28 </html>� �

Next (lines 14 to 23) we find some instructions, which are used to transpile TypeScript to
JavaScript. The HTML file contains a body too (lines 29 to 31), in which both usual HTML tags
and custom tags, which originate from our own components. On line 24 we see, that Angular2
is being told to execute main.ts when the configuration of the SystemJS module loader finishes.
In main.ts we find the following code:

� �
1 import {bootstrap} from ’angular2/platform/browser’;
2 import {AppComponent} from ’./app.component’;
3 import {enableProdMode} from ’angular2/core’;
4 enableProdMode();
5 bootstrap(AppComponent);� �

The only thing which happens here is, that we enable the production mode, which means that
less errors are reported and we are in silent mode, not bothering the user any longer. Secondly
we bootstrap our root-component, namely AppComponent on a browser setting. After App-
Component is created, the whole component tree is built and behaves as we explained earlier.
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In this chapter we will demonstrate the measurable characteristics we evaluated our program-
ming environment on. We present four benchmarks, which were chosen as representative pro-
grams to cover the teaching material for the booklet. We will analyze them in terms of perfor-
mance and calculate a measure of how many drawing instructions we have per second for an
average program. Based on those results we will make a comparative statement between the
two systems. We will conclude the chapter by presenting a user study we conducted in a Swiss
primary school class as a usability study.

6.1. Benchmarks

We will use four benchmark programs, which were designed to test different aspects of the
program. The four benchmarks have the following properties:

1. Small Test
The small test is supposed to check whether the basic functionality works properly and
can be used as a reference point for larger benchmark programs.

2. Loop Test
The loop test examines the program behavior with loops.

3. Large Test
The large test is intended to measure how the program reacts to large and time-consuming
programs which are supposed to run as fast as possible.

4. Timing Test
This test program can be used to determine how the program behaves in a setting with
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external interruptions (in terms of wait instructions which originate from the user).

For all the experiments mentioned in this chapter we used a Hewlett Packard EliteBook 840
G2 with Chrome version 53.0.2785.116. The computer has average computational power for a
computer which is one year old. We conducted for all benchmarks two experiments:

• Experiment 1
How long does it take to traverse the parse tree (including the time needed to draw to the
canvas) in average, over 1000 executions?

• Experiment 2
How long does it take to build and traverse the parse tree? This time includes the time
to build the lexer, tokenizer and parser, as well as the time required to draw) in average,
over 1000 executions?

The following two code segments illustrate the functional principle of our experiments.� �
1 //for testing purposes
2 for (var i= 0; i < 1000; i++){
3 var start = window.performance.now();
4

5 visitor.visitProg(tree);
6

7 var end = window.performance.now();
8 var time = end - start;
9 console.log(time);

10 }� �
The above code is found in the Input component within method executeCommand. We iterate
1000 times over the same method invocation. It the example above it is the method invocation
to start the visitor. Surrounding the tree traversing visitor we record the time. Using a simple
subtraction we figure out how long the execution of the commands in between took. The second
experiment is more or less the same, except that this time we record the time not only for the
visitor but also for the setup of lexer, tokenizer and parser:� �

1 //for testing purposes
2 for (var i= 0; i < 1000; i++){
3 var start = window.performance.now();
4 var chars = new this.antlr4.InputStream(content + ←↩

↪→ "\r\n");
5 var lexer = new this.LogoLexer.LogoLexer(chars);
6 var tokens = new this.antlr4.CommonTokenStream(lexer);
7 var parser = new this.LogoParser.LogoParser(tokens);
8 parser.buildParseTrees = true;
9 var tree = parser.prog();

10 this.lang.setLang(AppComponent.currentLang);
11 InputComponent.speed = ←↩

↪→ parseInt((<HTMLInputElement>document. ←↩
↪→ getElementById("speedRange")).value) * 100;
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12 var visitor = new this.LogoVisitor.LogoVisitor( ←↩
↪→ this.canvasComponent, this, this.editor, ←↩
↪→ InputComponent.speed, this.lang);

13 visitor.visitProg(tree);
14 var end = window.performance.now();
15 var time = end - start;
16 console.log(time);
17 }� �

In both cases we keep track of the runtimes for either the tree traversal and drawing exclusively
or the full process of building the parse tree, traversing it and reacting to its nodes. We show the
results in a box and whisker diagram. Outliers are shown as circles. The upper whisker shows
the 95% percentile, while the lower whisker shows the 5% percentile.

6.1.1. Benchmark: Small Test

The first program we use to analyze the performance of our system for is a small program with
only nine basic instructions, which draw a square and then clear the screen. (Remark on why
we clear the screen: In JavaScript’s canvas we use the method stroke to actually draw onto the
canvas. We point out, that the method stroke will actually redraw every line in the current seg-
ment and thus it will take more time if we do not clear the screen in the meantime):

� �
1 fd 100 rt 90
2 fd 100 rt 90
3 fd 100 rt 90
4 fd 100 rt 90
5 cs� �

This small test is translated to the following parse tree:

Figure 6.1.: Small benchmark program, which draws a square. Parsing it results in a tree with 92 nodes
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Experiment 1: Execution time for drawing and parse tree traversal

In experiment 1 we want to make a statement about the performance of our system. We focus
on the tree traversal and drawing part only. In our experiment we found the following results:

Figure 6.2.: Small benchmark results, Experiment 1

performance [ms]

upper whisker 0.74

3rd quartile 0.56

median 0.43

1st quartile 0.35

lower whisker 0.21

The results show, that all 1000 iterations were finished within 0 to 1 milliseconds. The smallest
data point traversed the tree and draw onto the canvas within 0.21ms, while the largest data
point took 0.74ms to finish. We found the median at 0.43ms with a 1st quartile of 0.35ms and a
3rd quartile of 0.56ms. We have quite a few outliers on both sides (in Figure 6.12 you see a few
data points to the left of the lower whisker around 0.2ms and a few others which lie beyond the
upper whisker, which is around 0.7ms) but none of them lie very far from the others.

Experiment 2: Cummulative execution time

In experiment 2 we are interested in getting to know the performance for the whole proess of
building up the parse tree, traversing it and interpreting it. In comparison to the first experiment
we had some additional tasks which were measured here too, namely build the lexer, tokenizer
and parse tree, whose composition was not counted for in the first experiment. We found the
following results:

Figure 6.3.: Small benchmark results, Experiment 2

performance [ms]

upper whisker 1.84

3rd quartile 0.81

median 0.63

1st quartile 0.54

lower whisker 0.48

The results show that most data points lie within 0.54ms and 0.81ms. In comparison the exper-
iment 1 most data points are shifted to the right, which is completely reasonable, since we are
doing more work in this experiment anyway. In this experiment we have more outliers which
lie farther away from the median, though. Especially large data points are more prominent.

78



6.1. Benchmarks

6.1.2. Benchmark: Loop Test

In the second benchmark we find a program which makes use of loops. Thus, in this experiment
we are going to examine how the system behaves with loops, in respect of its performance. The
benchmark is the following program:

� �
1 repeat 30[fd 100 bk 100 rt 360/30] cs� �

The parse tree for this program looks like this:

Figure 6.4.: Loop benchmark program, which draws a star. Parsing it results in a tree with 47 nodes

We will now discuss the two experiments for this benchmark. The parse tree itself contains less
nodes than the parse tree in the previous benchmark, but this time we re-traverse certain parts
of the tree, due to the control structure of a loop. Thus the visitor visits much more nodes after
all.
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Experiment 1: Execution time for drawing and parse tree traversal

In the first experiment we were again mostly interested in a performance measurement for
traversing the parse tree and drawing onto the canvas. We use the code presented for experiment
1 and found the following results:

Figure 6.5.: Loop benchmark results, Experiment 1

performance [ms]

upper whisker 3.91

3rd quartile 3.65

median 3.55

1st quartile 3.43

lower whisker 3.34

Due to the larger number of nodes which are visited in this benchmark program, we have in
general a longer runtime. Most data point lie within the range of 3.43ms and 3.65ms - only a
few lie beyond the the upper whisker and can take as long as up to 14ms for the shown program
to execute.

Experiment 2: Cummulative execution time

In experiment 2 we run the program and measure the elapsed time between instantiating the
parse tree (via building a lexer and a tokenizer) until the outcome is drawn onto the canvas. We
found the following results in this experiment:

Figure 6.6.: Loop benchmark results, Experiment 2

performance [ms]

upper whisker 8.74

3rd quartile 5.95

median 4.52

1st quartile 4.18

lower whisker 3.99

The thing which is most noticeable in those test results is the large variation. While the me-
dian takes around 4.52ms to finish building up the whole parse tree, visiting is and drawing
accordingly onto the canvas, we observe, that 25% of all data points lie below 4.18ms (and the
lower whisker is at 3.99ms, which is fairly close the the first quartile). At the same time we
notice that only 75% of all data points lie below 5.95ms which is surprisingly far away from the
upper whisker at 8.74ms. If we take a look at the outliers, we see immediately, that there is an
enormous variation in the upper part of the data points.

80



6.1. Benchmarks

6.1.3. Benchmark: Large Test

Our third benchmark is used to test our programming environment’s behavior for programs,
which take a long time to execute. We decided on a benchmark instance which draws skewed
circles.

� �
1 repeat 30[repeat 360[fd 1 rt 1] rt 360/30] cs� �

Have a look at the parse tree which belongs to this program:

Figure 6.7.: Large benchmark program, which draws skewed circles. Parsing it results in a tree with 52
nodes

In terms of its size, this benchmark is clearly the largest program of all our benchmarks. We find
nested loops in it, which result in a total of over 11000 nodes, which are visited in this program.
Due to the timeout which is usually used in browsers to determine whether web pages are still
responsive or not, we had to alternate the experiment to 10 rounds with 100 repetitions each.
This helped to stay responsive during the whole experiment. For this alternated procedure we
have to expect more outliers than in the other experiments. Usually the experiment starts with
outliers, for instance because of empty caches.
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Experiment 1: Execution time for drawing and parse tree traversal

In our first experiment we observed the time between starting the visitor on the already prepared
parse tree and finishing to draw on the canvas. The following box plots show the results to our
experiment:

Figure 6.8.: Large benchmark results, Experiment 1

performance [ms]

upper whisker 772.28

3rd quartile 758.35

median 752.65

1st quartile 748.34

lower whisker 736.50

We notice, that in this experiment we are only marginally slower than in the loop benchmark.
This contradicts our intuition since this time the visitor has to visit hugely more nodes than in
the other experiment. We explain this observation by the fact, that traversing the parse tree is
done on the CPU and is thus quite fast in terms of processing time. The drawing would take
longer if it were not for the fact that we do not render all changes individually, but all at once,
in the end of the computation.

Experiment 2: Cummulative execution time

In the second experiment we are interested in the performance overhead for building the parse
tree first, before visiting it and drawing to the canvas. The results are illustrated in the following
diagram:

Figure 6.9.: Large benchmark results, Experiment 2

performance [ms]

upper whisker 786.23

3rd quartile 777.91

median 772.55

1st quartile 766.12

lower whisker 750.24

In this experiment we observe drastically higher runtimes in general - around 750ms in most
cases. This performance drop cannot be due to the traversal of the parse tree and the drawing,
because those aspects were already covered by experiment 1. Thus it involves longer runtimes
to build the lexer, tokenizer, and to build the parse tree itself.
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6.1.4. Benchmark: Timing Test

So far all benchmarks were designed to run as fast as possible. Their command set did not
involve any kind of wait signal, which could be used by the user to enforce an interruption of
the execution. In this benchmark we test our system against this using the following benchmark
program:

� �
1 repeat 100[fd 100 rt 90 fd 1 rt 90 fd 100 rt 180 wait 1] cs� �

The according parse tree looks as follows:

Figure 6.10.: Timing benchmark program, which draws a filled square using the command wait. Parsing
it results in a tree with 81 nodes

In this experiment we work on a rather large tree with lots of nodes. The most special node in
this experiment is the one belonging to the wait command, because it causes the execution to
pause for one second before continuing. We expect all data points to lie beyond 1000ms due to
this. If a data point has a performance of exactly 1 second, it implies, that this particular data
point did not take any time other than the one used to wait.
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Experiment 1: Execution time for drawing and parse tree traversal

In this first experiment we focus on the time it takes to traverse the parse tree and to draw onto
the canvas in addition to the time the system spends waiting due to the users commands. In the
following plot you see the results of our experiments:

Figure 6.11.: Timing benchmark results, Experiment 1

performance [ms]

upper whisker 1266.22

3rd quartile 1247.47

median 1231.84

1st quartile 1224.78

lower whisker 1208.01

We notice, that all of our data points lie within a spectrum of 1100ms to 1300ms, which im-
plies that our system took roughly 100ms to 300ms to traverse the parse tree and to draw onto
the canvas. We cannot make a better statement due to the fact that we implemented the asyn-
chronous waiting using the JavaScript command setTimeout. This command adds operations
the the queue as soon as some timeout is over and it is executed as soon as the main thread
is idle. But it may happen that an operation stays in the queue even when the timeout is over,
because the main thread is still busy.

Experiment 2: Cummulative execution time

In the second experiment we measured the time to prepare and visit the parse tree as well as
drawing onto the canvas, in addition to the time we spend waiting due to the user’s input. We
observed the following results:

Figure 6.12.: Timing benchmark results, Experiment 2

performance [ms]

upper whisker 2568.97

3rd quartile 2331.56

median 2110.17

1st quartile 2051.98

lower whisker 2003.00

In this experiment we observed the worst performance. In addition to the one second we spend
waiting we also spend more than a second for building up the parse tree, traversing it and
drawing onto the canvas.
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These results comply with our expectations in terms of performance and overall correlation
between the runtimes for building the parse tree and actually visiting it. We found out, that even
the most elaborate programs in the booklet can be solved in under half a minute. We calculated
the average number of drawing instructions, which can be performed in one second and we
found values in the range of 18604 draw instructions per second for the small benchmark,
25352 draw instructions per second for our loop benchmark and 28739 draw instructions per
second for the large benchmark. Thus we have roughly 20000 draw instructions per second for
an average program. We saw that the building times for the parser vary in our benchmarks quite
heavily. We see that building up a parse tree is very cheap in comparison to traversing it and
drawing to the canvas. Only with small programs we even see a difference. We have to exclude
the timing benchmark from those statements, though, because we want to measure the actual
number of CPU cycles spent, rather than the wall-clock time (i.e. without waiting periods).

6.2. System Testing

In order to check for errors we implemented all 89 exercises in ABZs booklet. Some imple-
mentations were provided by Igo Schaller or Giovanni Serafini. For their support we are very
thankful. We tested against all those programs and ensured that all of them are working properly
in our system. A reference output is not needed due to the fact that solutions usually involve
a graphical output, which can be checked easily with the expected output, which is given in a
graphical form as well.

The test suit covers all topics from the booklet, which means the following topics:

• Basic commands

• Repetition

• modular design

• Polygons and circles

• Using parameters

• Passing parameters on to subprograms

• Animations

All concepts and basically all commands presented in the booklet are represented by at least
one test program in our test suit.

The most interesting errors we found during the integration testing are the following two. We
are shortly going to explain the errors and their implications for our system:

• Erasure mode leaves traces on canvas
Browsers are free how to implement the rendering of certain parts of the functionality
which is provided by JavaScript. Especially on the canvas we found massive variations
between different browsers. The following program turned out to leave a trace on the
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canvas even though it is not supposed to:

� �
1 rt 45 repeat 4[fd 100 rt 90] pe repeat 4[fd 100 rt 90] ppt� �

The problem is, that any pixel on the canvas can either be colored or not. If we draw a
line diagonally, we need to decide which pixels to touch. Some browser decide to repaint
pixels even if they are not perfectly covered by the line and thus those pixel traces are not
eliminated properly in erasure mode. We solved the issue by increasing the pen-width
by 1px when we are in erasure mode, and therefore guaranteeing that all old traces are
eliminated properly. The implication of this solution is, that whenever we use erasure
mode we are over-approximation and therefore sometimes deleting too much.

• Performance with stroke
We observed that drawing larger programs (like our large benchmark program) take a
very long time to terminate, much longer than anticipated. A very simple program like
the following took us 5741ms (almost 6 seconds) in average:

� �
1 repeat 12[repeat 360[fd 1 rt 1] rt 360/12]� �

Moreover we noted the re-executing the same program without resetting the canvas in
between increases the running time dramatically. In Figure 6.13 we demonstrate the
effect for the same program as before:

Figure 6.13.: Linear increase in runtime when re-executing the program without clearing the canvas

We observed that there was a linear increase in terms of runtime when re-executing the
same program without resetting the canvas in between. We expected to observe a constant
runtime, no matter how often the same program is executed. The reason for this surprising
behavior is that the command stroke, which is used to draw onto the canvas, reprints every
line in the current line-path on the canvas. Such a line-path is getting longer and longer
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if we don’t reset the canvas in between, which was the reason for the linear increase in
runtime. We solved the problem by ensuring, that the stroke command is only executed
once for every user input, in the end. If the user decided to run the program in slower
execution mode to observe the progress or if he uses the wait command, we are forced to
reprint the commands step by step however. Otherwise there would be no visible progress
on the screen.

We appended all 89 programs which we used to test our system to Appendix A.2. The programs
cover the vast majority of all XLogo commands. The system testing convinced us that the sys-
tem is reliable enough to be used in a class room setting. In the next section we will explain
what our usability study in a class room setting looked like and what results we got.

6.3. User study

Over the course of this thesis we conducted a user study at a primary school in Sempach. For
our user study we were allowed to use our system in a usual XLogo class-room setting with
18 pupils, which were all between 11 and 12 years old. In this section we are going to present
the goals, we had in mind when conducting the user study, as well as the setup, results and
conclusions we gained from its realization.

6.3.1. Goals

The goal of this user study was to get an understanding of the children’s reaction to the new
environment and to check it in a realistic setting. In addition, due to the large number of users,
we were able to use the pupils as indirect testers and we collected their feedback about design
flaws and proposals for improvement.

6.3.2. Setup

The user study was conducted in a class-room setting, i.e. 18 netbook in the same room, using
the same network and the same browser. The netbooks had a screen size of 10.1" and run
Windows 10. We expected no connection to the internet, which is why we prepared 10 USB
sticks with the offline version of our IDE. They used Microsoft’s new default browser, Edge.
The children themselves already knew XLogo, the predecessor version of the XLogo IDE,
due to a previous course, which they took one year ago. In addition to that they had another
session one week before our experiment to refresh their memories in terms of the language and
the handling of the predecessor IDE. We introduced them within a 10 minutes session to the
new environment and introduced the content of the day (chapter 4 in the ABZ booklet, about
polygons and circles). They used the IDE during a two-hour programming session and reported
bugs, if they found one. During the last 15 minutes we distributed a feedback form to check
whether they understood the general structure of the new IDE in comparison to the structure of
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the old IDE, to collect their feedback about individual components and a general measure for
their satisfaction using our new IDE. The feedback form can be found in Appendix A.3.

6.3.3. Evaluation

First, we were unpleasantly surprised by the fact that in the setup we found in Sempach, we did
not have write access to the file system on all the pupil’s computers. Thus we were only able to
run our offline version on 10 computers. But since we had 18 students in the class, we decided
to use the online version instead.

In terms of general understanding (which component corresponds to which graphical user in-
terface element) we got a 83.3% success rate. Only three pupils confused the purposes of some
of the components, while 15 pupils understood their purpose correctly. The three mistakes were
about which graphical user interface belongs to the editor and which belongs to the text input
line.

In the feedbacks they gave us about the individual UI components we found the following rec-
ommendations for improvements. The students think that the right hand side of the website
should be larger in comparison to the left hand side. They wish for a feature, which makes
entries in the history clickable, such that they would reappear in the input line when they are
clicked onto. They found a bug in the canvas. When moving the image around the canvas left a
trace. They did not realize the feature, that the website can be resized by hand, and they did not
figure out to use the arrow up key to pull old commands back up into the input line.

The following figure demonstrates the feedback in general terms about how they felt using our
IDE:

Figure 6.14.: Most students assessed the IDE to be between good or even very good

Out of 18 pupils, seven though the system was good, 5 thought it was very good and 6 thought
it was somewhere between good and very good.
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6.3.4. Conclusions

From this user study we conclude that the default ratio between the left and teh right hand
side of the website is not satisfactory. Moreover we need to provide some visual hint that the
website offers the feature to resize the two parts. Also they seem to like the entries in the history
to be clickable, which was not yet implemented in our systems. We offer only the usage of the
arrow up key with the same effect. In addition we found a few bugs, but in general the children
reported to feel comfortable using the IDE.
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Conclusion

7.1. Conclusion

We conduct programming courses for primary-school pupils using a dialect of the programming
language Logo. The programming IDEs which were used for this purpose so far no longer work
on a few platforms. Therefore we wrote a new programming IDE for XLogo, which is based
on newest web-technologies. The program works on the client side and can thus be used both
in online and offline mode. The system was designed to be platform-independent, easy to use,
intuitive and, most importantly, supportive for newcomers who are learning to program the first
time. Our programming IDE runs instantly in any web browser, without installation and offers
an uncluttered interface, with visual cues directly in the user interface to guide an help pupils
as they learn.

In comparison to previous versions of the programming IDE, which have multiple windows
that obstruct the users view, we implemented the website as a single-page application, where all
widgets are directly visible at a single glance. This reduces the cognitive load and facilitates the
interaction with the programming environment – both important considerations for our target
audience who have not been exposed to algorithmic thinking and programming before. The
website provides all basic features which were possible with our predecessors, including the in-
terpreter and the ability to load and store the editor’s contents. Moreover, we implemented our
canvas to be pannable for increased usability. To encourage interactive learning we developed
teaching material, which incorporates group work where students practice their communication
skills. As a further addition, we extend our IDE with a collaborative programming mode to
synchronize editors in real-time. Our page is reactive, the editor UI element is resizable, pro-
vides syntax checking as well as syntax highlighting, these are all useful. We used a framework
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called Angular2, which works on the basis of a composite and Model-View-Controller (MVC)
design pattern; the UI is decomposed into a tree of independent components, which reflect the
functional and visual structure of our website. Data and components are decoupled and are con-
nected only when needed using services. We used JavaScript and TypeScript as developmental
programming language and another library called ANTLR to generate the parser.

We conducted a user study with 18 pupils, which showed that the new programming environ-
ment is perceived positively and that the children feel at ease when working with the our soft-
ware. Feedback reflected that the structure of our IDE is intuitive and well-understood by most
of the pupils. Our solution is purpose-built to fit with a pre-existing curriculum; we tested it
against a master solution for all exercises in the booklet provided by ABZ. One limitation which
emerged is that our system is unresponsive on long-running computations due to limitations of
the browser. We resolved the issue by forcing the main thread to stop after a fixed number of
calculation steps and then ask explicitly whether to continue. In our opinion the project fulfills
its purpose as a system, which is intuitive, easily accessible, platform-independent and designed
using newest web-technologies.

With the introduction of ‘Lehrplan 21’, Swiss teachers are in need of teaching material. In this
thesis we tackle this problem by implementing a system, which integrates teaching material,
exercises and a drawing environment, all designed to guide pupils while they programming.
In the process of developing this work, several possibilities suggested themselves. The recent
popularity of MOOCs is one such direction; our platform already provides the basic functional-
ity to draw and include pre-defined programs; with the addition of a chat, the transition to and
from videos and an automated tutorial, it could be used to learn without the aid of a teacher.
A MOOC for Logo is ideally implemented on web-technologies, because they provide a good
basis for interactivity and they are easily accessible without the need for specialized software.
Our web-solution is accessible from anywhere, without installation and independent from the
operating system, device type and screen size. We offer an approach with a streamlined design,
which reduces the cognitive load, because everything the user needs is available on a single
page. The editor and its content are visible at the same time as the input area and the canvas are.
If the user decides not to use the editor, he can easily collapse it by resizing the corresponding
parts of the website. We implemented syntax highlighting as well as syntax checking on the
editor, which allows the user to see and correct his mistakes on the fly, which reduces the cog-
nitive load for the user due to the direct feedback about the syntactic correctness of the editor.
In addition, we improved on the usability of the canvas by allowing the user to pan it in any
direction. This feature would be helpful if the user decides to draw a large picture or fears to
waste space on the canvas otherwise.

7.2. Future Work

A programming environment is only one part of a CS curriculum; we will now propose fur-
ther additions which are possible continuations for our work. We see five main ways to go:
Improve the graphical user interface , implement cooperative programming, implement an in-
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finitely movable canvas, make history elements clickable and resolve the separation between
user interface and interpreter in a manner, which is more independent from the user.

7.2.1. Graphical user interface

The UI is the most vital component of a web application, due to its functionality of being the
only interface, with which the user interacts. It must be easy to use. We propose to conduct
a comprehensive user study focusing on the graphical user interface to determine whether it is
intuitive, how children react to it and how they are learning with it (e.g. using eye-tracking).
Web platforms allow easy instrumentation of such experiments. In our user study we found
a few desired on the pupil’s side, which could be further analyzed and implemented. Two of
those features are to make the history resizable and its entries clickable. This would improve
the usability and improve the graphical user interface to become even more intuitive.

We implemented a basic means of reactive design on our application, in terms of the turtle’s
size, which adjusts to the size of the window as well as the header component whose buttons
and text shrink and grow according to the windows size, similar to the absolute sizes of all basic
graphical user interfaces on our website. Though the implementation of this reactive design was
written manually, it might still contain design flaws. Some libraries (like Bootstrap) provide a
structure, which helps to build websites with a reactive design.

7.2.2. Cooperative Programming

Pupils learn more effective in groups [Gokhale 1995] and programming is less errorprone if it is
performed in groups. We have built a first prototype and added a cooperative coding feature into
our existing IDE. Cooperative coding would force the children to work together on one large
programming exercise. This leads the children to think about proactive problem managements
strategies, to break problems into smaller problems, to work in groups, to agree upon strategies
to finally reach a common goal of solving a large exercise as a team. To demonstrate how
group work might be used in a classroom we also developed a set of more challenging exercises
which feature an introduction to monospaced text and more sophisticated geometry A.4. We
implemented a prototype providing this feature using a library called firebase. This library
uses the ACE editor, shares the content of the editor with every user who uses the same id
and handles all the synchronization for us. We implemented a prototype with this library, but
currently encounter an issue. Sending and receiving messages from and to the firebase server
is not possible, because we are confronted with a problem in the firebase library. We receive a
silent error which is thrown in a library method (push) when we try to instantiate the editor’s
content in the ACE editor (see README.txt). We encapsulated the bug by building a minimal
non-working code sample, which can be found as a documented comment in our code. More
information about firebase itself can be found here: https://firebase.google.com/docs/web. For
this reason we disabled the feature at the moment.
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7.2.3. Movable Canvas

Using a canvas in web-browsers directly implies that we are given a fixed number of pixels
which can be manipulated. Logo programs are inherently infinitely-large; they offer commands
to draw arbitrarily large images, which is why we would like to give the user the impression of
an infinitely-large canvas. Towards this we implemented a prototype version which features a
movable canvas, but not an infinite one. The limitation of a movable canvas over an infinite one
is that we are still not able to show infinitely large images, but only a larger part of them. We
could implement the functionality using a backing buffer, onto which all the drawing operations
performed. A separate canvas is used to show a specific scene from the backing-buffer which
the user is currently looking at. Our use case is a bit more difficult than this simple illustration,
because we need to support resizable parts of the window and thus the actual size and the origin
of the coordinate system of the canvas may be dynamically changing.

7.2.4. Responsiveness

In a programming IDE the user can introduce heavy computational overheads to the program-
ming environment. It can even happen that he launches an infinitely-long running sequence of
commands, by running an infinite loop. Users who ‘break’ the program by doing so have an in-
terest in interrupting their program during its computation. For this reason we need a possibility
to interrupt a computational from the user interface directly. Unfortunately it is not possible to
statically analyze programs and detect infinite loops, because of the halting problem. A dynamic
approach is necessary. Browsers only offer a single main thread, which has exclusive access to
the DOM and coordinate all accesses to the graphical user interface. The UI is event-driven,
which means that the main UI thread runs an infinite loop which processes a queue of asyn-
chronous tasks, which is set up in advance in the form of a callback. Having only a single main
thread is problematic, especially if we have long computations, because the XLogo interpreter
is forced to share the same main thread which can block UI elements because interactions with
the user interface are queued up until the main thread is idle again (which might take a very long
time for long-running programs). The UI thread may become unresponsive, and thus the user
does not see any reaction to an interaction with the user interface. The main thread is blocked
by the long computation which blocks further pending callbacks unhandled until the potentially
long-running computation runs to completion.

We found the following three approaches to the above-mentioned problem:

1. Web workers:
Browsers already offer a limited form of parallelism. Web workers are background
threads, which are standardized in HTML5 and which can run simultaneously to the main
thread. If a long computation does not involve the user interface, we can pass the compu-
tation to a background thread. Workers and the main thread do not share memory and are
forced to communicate via messages. In our case this approach is not suitable because
our long tasks involve operations on the UI, furthermore XLogo programs are primarily
about drawing, which is UI-intensive. If we wanted to use workers, we would also need
to proxy all UI operations from the web worker to the main thread. Common libraries
such as Angular2 are not intended to be used in this way and would require extensive
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redesign to use messaging.

2. Chunking computations down into multiple small pieces:
The second approach is to break the single long computation down into many smaller
ones. This means each chunk is bounded to a limited number of node traversals in the
parse tree and so the XLogo program does not monopolize the main UI thread. Whenever
the main thread is not working on one of these smaller chunks of operations, it is re-
sponsive and reacts to the user. In JavaScript this is done using the settimeout command,
which takes a delay and a callback which will be executed at some point after this interval.
This strategy involves some redesign too due to the way settimeout forks one operation
into two. If we decide to use settimeout on a large operation which is supposed to be run
sequentially, we need to interrupt the whole operation and the restart the remaining part
after the timeout. This approach has an impact on the performance of our website and,
moreover, we need to find a good ratio between the amount of time we spend waiting
(and being responsive to the user) and executing our computation.

3. Set timeout and ask user how to proceed:
A last option is to actually block the user interface and let the main thread perform its
operations, but to set a maximum amount of time it is allowed to spend working on our
computation (by setting a threshold on the number of computation steps it is allowed to
perform in one chunk). After this timeout, the user is asked for a confirmation whether
the execution should still be continued or not. This solution is optimal in terms of its
performance but, on the downside, it is some of the time not responsiveness to interactions
on the user interface.

We think approaches 2 and 3 are promising. We decided to take solution 3. As a threshold
we chose one million operations, which is just about enough to complete every exercise from
ABZ’s booklet. If the user decides to continue with the computation, the threshold is increased
by a factor of two. Browsers have had limited support for parallelism; this is dealt with bet-
ter in Android’s asynTasks which shifts the burden of managing the communication between
background thread and main thread using messages away from the programmer by providing a
better framework, which takes care of this communication for us.
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A.1. XLogo grammar
� �

1 grammar Logo;
2

3 prog: (line? EOL) + line?;
4 line: cmd + comment?| comment| print comment?| procedureDeclaration;
5 cmd: repeat| fd| bk| rt| lt| cs| pu| pd| ht| st| pe| ppt| home| ←↩

↪→ setx| sety| setxy| setpc| setsc| make| procedureInvocation| ←↩
↪→ ife| stop| waite| whilee| wash| setpw| circle| setheading;

6 procedureInvocation: name expression*;
7 procedureDeclaration: ’to’ name parameterDeclarations* EOL? (line? ←↩

↪→ EOL) + ’end’;
8 parameterDeclarations: ’:’ name (parameterDeclarations)*;
9 func: random| sin| cos| tan| arcsin| arccos| arctan| abs| sqrt| ←↩

↪→ mod| power| log10;
10

11 repeat: ’repeat’ number block;
12 whilee: ’while’ ’[’ expression ’]’ block;
13 block: ’[’ cmd + ’]’;
14 ife: ’if’ expression block| ’if’ expression block block;
15 expression: sExpr (comparisonOperator sExpr)?;
16 comparisonOperator: ’<’| ’>’| ’=’| ’<=’| ’>=’| ’!=’;
17

18 sExpr : term ((’+’|’-’|’||’) term)*;
19 term: factor ((’*’|’/’|’&&’) factor)*;
20 factor: (’+’|’-’)? nsFact;
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21 nsFact: (number | deref | func)| LPAREN expression RPAREN| ’!’ ←↩
↪→ factor;

22 value: STRINGLITERAL| expression| deref;
23

24 deref: ’:’ name;
25 colorname: ’black’| ’red’| ’green’| ’yellow’| ’blue’| ’magenta’ | ←↩

↪→ ’cyan’| ’white’| ’gray’| ’lightgray’| ’darkred’| ←↩
↪→ ’darkgreen’| ’darkblue’| ’orange’| ’pink’| ’purple’| ’brown’;

26 rgb: ’[’ expression expression expression ’]’;
27 colornumber: expression;
28 make: ’make’ STRINGLITERAL value;
29

30 print: (’print’| ’pr’) value| (’print’| ’pr’) ’[’ value+ ’]’| ←↩
↪→ (’print’| ’pr’) quotedstring;

31 quotedstring: ’[’ (quotedstring | ~ ’]’)* ’]’;
32 name: STRING;
33

34 fd: (’fd’ | ’forward’) expression;
35 bk: (’bk’ | ’backward’) expression;
36 rt: (’rt’ | ’right’) expression;
37 lt: (’lt’ | ’left’) expression;
38 cs: ’cs’| ’clearscreen’;
39 pu: ’pu’| ’penup’;
40 pd: ’pd’| ’pendown’;
41 pe: ’pe’| ’penerase’;
42 ppt: ’ppt’| ’penpaint’;
43 ht: ’ht’| ’hideturtle’;
44 st: ’st’| ’showturtle’;
45 setpc: (’setpc’|’setpencolor’) colornumber| ←↩

↪→ (’setpc’|’setpencolor’) rgb | (’setpc’|’setpencolor’) ←↩
↪→ colorname;

46 setsc: (’setsc’ | ’setscreencolor’) rgb | (’setsc’ | ←↩
↪→ ’setscreencolor’) colorname| (’setsc’ | ’setscreencolor’) ←↩
↪→ colornumber;

47 home: ’home’;
48 stop: ’stop’;
49

50 setxy: ’setxy’ expression expression;
51 setx: ’setx’ expression;
52 sety: ’sety’ expression;
53

54 random: (’random’ | ’rnd’ | ’ran’) expression;
55 sin: ’sin’ expression;
56 cos: ’cos’ expression;
57 tan: ’tan’ expression;
58 arcsin: ’arcsin’ expression;
59 arccos: ’arccos’ expression;
60 arctan: ’arctan’ expression;
61
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62 abs: ’abs’ expression;
63 sqrt: ’sqrt’ expression;
64 mod: ’mod’ expression expression;
65 power: ’power’ expression expression;
66 log10: ’log’ expression expression;
67

68 waite: ’wait’ expression;
69 wash: ’wash’;
70 setpw: (’setpw’ | ’setpenwidth’) expression;
71 circle: ’circle’ expression;
72 setheading: ’setheading’ expression;
73

74 number: NUMBER| pie| ee;
75 comment: COMMENT;
76 pie: ’pi’;
77 ee: ’e’;
78

79 STRINGLITERAL: ’"’ STRING;
80 STRING: [a-zA-Z] [a-zA-Z0-9_]*;
81 LPAREN: ’(’;
82 RPAREN: ’)’;
83 NUMBER: [0-9] +;
84 COMMENT: ’;’ ~ [\r\n]*;
85 EOL: ’\r’? ’\n’;
86 WS: [ \t\r\n] -> skip;� �

A.2. Master Solution to the Exercises in ABZ Booklet

Aufgabe 1:� �
1 fd 100 rt 90 fd 150 rt 90 fd 50 lt 90 fd 150 rt 90 fd 50� �

Aufgabe 3:� �
1 a)fd 200 rt 90 fd 200 rt 90 fd 200 rt 90 fd 200 rt 90
2 b) rt 90 fd 100 lt 90 fd 50 rt 90 fd 100 rt 90 fd 500 lt 90 fd 100 ←↩

↪→ lt 90 fd 50 rt 90 fd 100 rt 90 fd 50 lt 90 fd 100
3 c) lt 90 fd 10 lt 90 fd 20 lt 90 fd 30 lt 90 fd 40 lt 90 fd 50 lt ←↩

↪→ 90 fd 60 lt 90 fd 70 lt 90 fd 80 lt 90 fd 90
4 d) fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 rt 90
5 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 rt 90
6 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 rt 90
7 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 fd 100 rt 90 rt 90� �

Aufgabe 4:� �
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1 ) fd 50 rt 90 fd 50 rt 270 fd 50 rt 90 fd 50 rt 270 rt 50 rt 90 fd ←↩
↪→ 50 rt 90 fd 50 rt 270 fd 50 rt 90 fd 50 rt 270 fd 50 rt 90 ←↩
↪→ fd 50� �

Aufgabe 5:� �
1 fd 50 rt 90 fd 50 rt 90 fd 50 rt 90 fd 50 rt 90 rt 90 rt 100 rt 90 ←↩

↪→ fd 50 bk 50 lt 90 fd 50 lt 90 fd 50 rt 90 fd 50 rt 90 fd 50 ←↩
↪→ rt 90 fd 50 rt 90� �

Aufgabe 6:� �
1 repeat 4[fd 75 lt 90]� �

Aufgabe 7:� �
1 repeat 6[fd 50 rt 60]� �

Aufgabe 8:� �
1 repeat 4[fd 200 rt 90]� �

Aufgabe 9:� �
1 repeat 3[fd 100 rt 120]� �

Aufgabe 10:� �
1 a) repeat 10[fd 20 rt 90 fd 20 lt 90]
2 b) repeat 5[fd 50 rt 90 fd 50 lt 90]
3 c) repeat 20[fd 10 rt 90 fd 10 lt 90]� �

Aufgabe 11:� �
1 a) repeat 8[fd 150 bk 150 lt 45]
2 b) repeat 16[fd 100 bk 100 lt 22.5]� �

Aufgabe 12:� �
1 a) repeat 10[repeat 4[fd 20 rt 90] rt 90 fd 20 lt 90]
2 b) repeat 4[repeat 4[fd 30 rt 90] fd 30]� �

Aufgabe 13:� �
1 repeat 4[repeat 4[fd 100 rt 90] fd 100 rt 90 fd 100 lt 90]� �

Aufgabe 14:� �
1 repeat 4[repeat 4[fd 100 rt 90] rt 90]� �

Aufgabe 15:
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� �
1 repeat 4[fd 100 bk 100 rt 90 pu fd 100 pd lt 90]� �

Aufgabe 16:� �
1 repeat 7[repeat 4[fd 20 bk 20 rt 90] rt 90 pu fd 70 lt 90 pd]� �

Aufgabe 17:� �
1 to quadrat30
2 repeat 4 [fd 30 rt 90]
3 end
4

5 to ausrichten30
6 bk 30
7 end
8

9 to reihe4
10 repeat 4 [QUADRAT30 AUSRICHTEN30]
11 end� �

Aufgabe 18:� �
1 to quadrat100
2 repeat 4 [fd 100 rt 90]
3 end
4

5 to ausrichten100
6 fd 100 rt 90 fd 100 lt 90
7 end
8

9 to afg18
10 repeat 4 [QUADRAT100 AUSRICHTEN100]
11 end� �

Aufgabe 19:� �
1 to treppe20
2 fd 20 rt 90 fd 20
3 end
4

5 to ausrichtentreppe
6 lt 90
7 end
8

9 to afg19
10 repeat 10 [TREPPE20 AUSRICHTENTREPPE]
11 end� �

Aufgabe 20:
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� �
1 to line
2 fd 150 bk 150
3 end
4

5 to afg20
6 repeat 8 [LINE lt 45]
7 end� �

Aufgabe 21:� �
1 to strahl
2 fd 100 bk 200 fd 100
3 end
4

5 to strahlausrichten
6 lt 60
7 end
8

9 to afg21
10 repeat 4 [STRAHL STRAHLAUSRICHTEN]
11 end� �

Aufgabe 22:� �
1 to line100
2 fd 100
3 end
4

5 to line100move
6 pu bk 100 rt 90 fd 100 lt 90 pd
7 end
8

9 to afg22a
10 repeat 4 [line100 line100move]
11 end� �� �

1 to kreuz
2 repeat 4 [fd 20 bk 20 lt 90]
3 end
4

5 to kreuzmove
6 pu rt 90 fd 70 lt 90 pd
7 end
8

9 to afg22b
10 repeat 7 [KREUZ KREUZMOVE]
11 end� �

Aufgabe 23:
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� �
1 to quadrat20
2 repeat 4 [fd 20 rt 90 ]
3 end
4

5 to ausrichten20
6 rt 90 fd 20 lt 90
7 end
8

9 to reihe10
10 repeat 10 [QUADRAT20 AUSRICHTEN20]
11 end
12

13 to afg23
14 REIHE10 fd 20 lt 90 fd 200 rt 90
15 end� �

Aufgabe 24:� �
1 to quadrat20
2 repeat 4 [fd 20 rt 90 ]
3 end
4

5 to ausrichten20
6 rt 90 fd 20 lt 90
7 end
8

9 to reihe10
10 repeat 10 [QUADRAT20 AUSRICHTEN20]
11 end
12

13

14 to afg23
15 REIHE10 fd 20 lt 90 fd 200 rt 90
16 end
17

18 to afg24
19 repeat 3 [afg23]
20 end� �

Aufgabe 25:� �
1 to quadrat50
2 repeat 4 [fd 50 rt 90]
3 end
4

5 to quadrat75
6 repeat 4 [fd 75 rt 90]
7 end
8
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9 to quadrat125
10 repeat 4 [fd 125 rt 90]
11 end
12

13 to quadrat150
14 repeat 4 [fd 150 rt 90]
15 end
16

17 to afg25
18 quadrat50 quadrat75 quadrat100 quadrat125 quadrat150
19 end� �

Aufgabe 27:� �
1 to haus
2 rt 90
3 repeat 4 [fd 50 rt 90]
4 lt 60 fd 50 rt 120 fd 50 lt 150
5 end
6

7 to hausreihe
8 repeat 5 [HAUS rt 90 pu fd 50 lt 90 pd]
9 end

10

11 to afg27
12 repeat 3 [hausreihe lt 90 pu fd 500 rt 90 fd 150 pd]
13 end� �

Aufgabe 29:� �
1 to fett
2 fd 100 rt 90 fd 1 rt 90 fd 100 rt 180
3 end
4

5 to afg29
6 repeat 100 [fett]
7 end� �

Aufgabe 31:� �
1 to fett40
2 fd 40 rt 90 fd 1 rt 90 fd 40 rt 180
3 end
4

5 to schwarz40
6 repeat 40 [fett40]
7 end� �

Aufgabe 32:
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� �
1 to fett40
2 fd 40 rt 90 fd 1 rt 90 fd 40 rt 180
3 end
4

5 to schwarz40
6 repeat 40 [fett40]
7 end
8

9 to afg32
10 repeat 4 [schwarz40 rt 90 fd 40 lt 90]
11 end� �

Aufgabe 33:� �
1 to fett40
2 fd 40 rt 90 fd 1 rt 90 fd 40 rt 180
3 end
4

5 to schwarz40
6 repeat 40 [fett40]
7 end
8

9 to afg33
10 repeat 4 [schwarz40 fd 40]
11 bk 40
12 repeat 3 [bk 40 schwarz40]
13 end� �

Aufgabe 34:� �
1 to fett40
2 fd 40 rt 90 fd 1 rt 90 fd 40 rt 180
3 end
4

5 to schwarz40
6 repeat 40 [fett40]
7 end
8

9

10 to afg34
11 repeat 4 [schwarz40 rt 90]
12 rt 90
13 schwarz40
14 end� �

Aufgabe 35:� �
1 to quad100
2 repeat 4 [fd 100 rt 90]
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3 end
4

5 to fett100
6 fd 100 rt 90 fd 1 rt 90 fd 100 rt 180
7 end
8

9 to schwarz100
10 repeat 100 [fett100]
11 end
12

13 to afg35
14 repeat 2 [schwarz100 quad100 rt 90 fd 100 lt 90]
15 end
16

17 to afg35a
18 repeat 2 [schwarz100 quad100 rt 90 fd 100 lt 90]
19 end
20

21 to afg35b
22 repeat 2 [quad100 rt 90 fd 100 lt 90 schwarz100 ]
23 end� �

Aufgabe 36:� �
1 to unterteil
2 rt 90
3 repeat 4 [fd 50 rt 90]
4 lt 90
5 end
6

7 to dach
8 rt 30
9 repeat 3 [fd 50 rt 120]

10 lt 30
11 end
12

13 to haus1
14 unterteil
15 dach
16 end� �

Aufgabe 37:� �
1 to unterteil
2 rt 90
3 repeat 4 [fd 90 rt 90]
4 lt 90
5 end
6

7 to dach
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8 rt 30
9 repeat 3 [fd 90 rt 120]

10 lt 30
11 end
12

13 to tuer
14 repeat 2 [fd 70 rt 90 fd 30 rt 90]
15 end
16

17 to fenster
18 repeat 4 [fd 30 rt 90]
19 end
20

21 to haus2
22 unterteil
23 dach
24 bk 90 rt 90 fd 10 lt 90
25 tuer
26 rt 90 fd 40 lt 90 pu fd 40 pd
27 fenster
28 pu fd 50 rt 90 fd 80 lt 90 pd
29 end
30

31 to hauszeile2
32 repeat 4 [haus2]
33 end
34

35 to wohnsiedlung
36 repeat 3 [hauszeile2 pu fd 150 lt 90 fd 580 rt 90 pd]
37 end� �

Aufgabe 38:� �
1 to afg38a
2 repeat 5 [fd 180 rt 72]
3 end
4

5 to afg38b
6 repeat 12 [fd 50 rt 30]
7 end
8

9 to afg38c
10 repeat 4 [fd 200 rt 90]
11 end
12

13 to afg38d
14 repeat 6 [fd 100 rt 60]
15 end
16
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17 to afg38e
18 repeat 3 [fd 200 rt 120]
19 end
20

21 to afg38f
22 repeat 18 [fd 20 rt 20]
23 end
24

25 to afg38g
26 repeat 7 [fd 100 rt 360/7]
27 end� �

Aufgabe 39:� �
1 to afg39a
2 repeat 360 [fd 1 rt 1]
3 end
4

5 to afg39b
6 repeat 180 [fd 3 rt 2]
7 end
8

9 to afg39c
10 repeat 360 [fd 2 rt 1]
11 end
12

13 to afg39d
14 repeat 360 [fd 3.5 rt 1]
15 end� �

Aufgabe 40:� �
1 to afg40a
2 repeat 360 [fd 0.3 rt 1]
3 end
4

5 to afg40b
6 repeat 360 [fd 5 rt 1]
7 end� �

Aufgabe 41:� �
1 to afg41a
2 repeat 180 [fd 2 rt 1]
3 end
4

5 to afg41b
6 rt 180 repeat 180 [fd 1.5 rt 1]
7 end
8
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9 to afg41c
10 repeat 4 [afg41a rt 90]
11 end� �

Aufgabe 42:� �
1 to dreieck
2 repeat 3 [fd 200 rt 120]
3 end
4

5 to quadrat
6 repeat 4 [fd 200 rt 90]
7 end
8

9 to kreis
10 repeat 360 [fd 2.5 rt 1]
11 end
12

13 to afg42a
14 quadrat
15 fd 200
16 rt 30
17 dreieck
18 end
19

20 to afg42b
21 rt 30
22 dreieck
23 rt 60
24 fd 100
25 kreis
26 end� �

Aufgabe 43:� �
1 to eck12
2 repeat 12 [fd 70 rt 30]
3 end
4

5 to afg43
6 repeat 18 [eck12 rt 20]
7 end� �� �
1 to afg43pre
2 repeat 36 [repeat 7 [fd 100 rt 360/7] rt 10]
3 end� �

Aufgabe 45:� �
1 to kreis3
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2 repeat 360 [fd 3 rt 1]
3 end
4

5 to kreis1
6 repeat 360 [fd 1 rt 1]
7 end
8

9 to must3
10 repeat 36 [KREIS3 rt 10]
11 end
12

13 to must1
14 repeat 18 [KREIS1 rt 20]
15 end
16

17 to afg45pre
18 setpc 2
19 MUST3 rt 2
20 setpc 3
21 MUST3 rt 2
22 setpc 4
23 MUST3 rt 2
24 setpc 5
25 MUST3 rt 2
26 setpc 6
27 MUST1 rt 2
28 setpc 15
29 MUST1 rt 2
30 setpc 8
31 MUST1 rt 2
32 setpc 9
33 MUST1 rt 2
34 end
35

36 to afg45
37 setpc 13
38 MUST3
39 end� �

Aufgabe 46:� �
1 to kreis
2 repeat 360 [fd 2 rt 1]
3 end
4

5 to afg46
6 lt 180
7 setpc 15
8 kreis
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9 lt 180
10 setpc 13
11 kreis
12 end� �

Aufgabe 47:� �
1 to kreis
2 repeat 360 [fd 1 rt 1]
3 end
4

5 to afg47
6 repeat 4 [setpc 0 fd 200 lt 135 setpc 1 kreis lt 135]
7 end� �

Aufgabe 48:� �
1 to quadrat :gr
2 repeat 4[fd :gr rt 90]
3 end� �

Aufgabe 49:� �
1 to kreise :gr
2 repeat 360[fd :gr rt 1]
3 end� �

Aufgabe 50:� �
1 to fettelinie :gr
2 fd :gr rt 90 fd 1 rt 90 fd :gr lt 180
3 end� �

Aufgabe 51:� �
1 to dreieck :gr
2 repeat 3[fd :gr rt 360/3]
3 end� �

Aufgabe 52:� �
1 to reihe :anz
2 repeat :anz[repeat 4[fd 40 rt 90] rt 90 fd 40 lt 90]
3 end� �

Aufgabe 53:� �
1 to vierfachquad :gr
2 repeat 4[repeat 4[ fd :gr rt 90] rt 90]
3 end� �
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Aufgabe 54:� �
1 to sechseck :gr
2 repeat 6[fd :gr rt 60]
3 end� �

Aufgabe 55:� �
1 to haus :gr
2 repeat 4[fd :gr rt 90] fd :gr rt 90 repeat 3[fd :gr lt 120]
3 end� �

Aufgabe 56:� �
1 to muster :gr1 :gr2
2 rt 90 repeat 360[fd :gr1 rt 1] bk :gr2/2 repeat 3[fd :gr2 lt 120]
3 end� �

Aufgabe 57:� �
1 to recht :breite :hoehe
2 repeat 2[fd :breite rt 90 fd :hoehe rt 90]
3 end� �

Aufgabe 58:� �
1 to parallelogramm :gr1 :gr2
2 repeat 2[rt 45 fd :gr1 rt 45 fd :gr2 rt 90]
3 end� �

Aufgabe 60:� �
1 to fettelinie :gr
2 fd :gr rt 90 fd 1 rt 90 fd :gr lt 180
3 end� �

Aufgabe 61:� �
1 to aufgabe61 :anz
2 repeat :anz [kreise 1 rt 360/:anz]
3 end� �

Aufgabe 62:� �
1 to aufgabe62 :n
2 repeat :n [kreise 2 rt 360/:n]
3 end� �

Aufgabe 64:

112



A.2. Master Solution to the Exercises in ABZ Booklet

� �
1 to blumen :gr1 :gr2
2 #Aufgabe 64
3 setpc 3 blume :gr1
4 setpc 4 blume :gr2
5 end� �

Aufgabe 65:� �
1 to schoeneblume :n :gr
2 #Aufgabe 65: Weiterentwicklung des Programms blume
3 repeat :n [kreise :gr rt 360/:n]
4 end
5

6 to schoeneblumen :n :gr
7 #Aufgabe 65: Weiterentwicklung des Programms blumen
8 setpc 3 schoeneblume :n :gr1
9 setpc 4 schoeneblume :n :gr2

10 end� �
Aufgabe 66:� �

1 to aufgabe66
2 repeat 36 [blatt 100 rt 20]
3 end� �

Aufgabe 69:� �
1 QUAD100 wait 4 pe QUAD100 ppt� �

Aufgabe 70:� �
1 to QUADLAUF
2 repeat 50 [QUAD100 wait 4 pe QUAD100 fd 4 ppt]
3 end� �

Aufgabe 71:� �
1 to quadlauf
2 #Aufgabe 71
3 repeat 120 [quad100 rt 90 fd 4 lt 90]
4 end� �

Aufgabe 72:� �
1 to quadlauf2
2 #Aufgabe 72
3 repeat 120 [quad100 fd 4]
4 end� �

Aufgabe 73:
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� �
1 to aufgabe73
2 repeat 15 [fd 100 bk 100 rt 20]
3 end� �

Aufgabe 74:� �
1 #Aufgabe 74: Es wird kein Programm verlangt.� �

Aufgabe 76:� �
1 to aufgabe76
2 quad100 wait 4 pe quad100 ppt
3 end� �

Aufgabe 77:� �
1 to quadlauf4
2 #Aufgabe 77
3 repeat 120 [quad50 wait 4 pe quad50 fd 4 ppt]
4 end
5

6 to quadlauf3
7 #Aufgabe 77
8 repeat 120 [quad100 wait 4 pe quad100 rt 90 fd 4 lt 90 ppt]
9 end� �

Aufgabe 78:� �
1 to quadlauf5
2 #Aufgabe 78
3 repeat 120 [quad100 wait 2 pe quad100 rt 90 fd 4 lt 90 ppt]
4 end� �

Aufgabe 79:� �
1 to quadlauf6
2 #Aufgabe 79
3 repeat 120 [quad100 wait 8 pe quad100 rt 90 fd 4 lt 90 ppt]
4 end� �

Aufgabe 80:� �
1 to quadlauf7
2 #Aufgabe 80
3 repeat 120 [quad100 wait 2 pe quad100 lt 90 fd 4 rt 90 ppt]
4 end� �

Aufgabe 81:
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� �
1 to quadlauf81
2 #Aufgabe 81
3 ht
4 repeat 50 [quad100 wait 5 pe quad100 fd 3 rt 90 fd 3 lt 90 ppt]
5 quad100
6 st
7 end� �

Aufgabe 82:� �
1 to aufgabe82
2 #Aufgabe 82
3 ht
4 repeat 360 [quad100 wait 4 pe quad100 fd 5 rt 1 ppt]
5 quad100
6 st
7 end� �

Aufgabe 83:� �
1 to aufgabe83
2 #Aufgabe 83
3 ht
4 repeat 360 [quad100 wait 1 pe quad100 fd 5 rt 1 ppt]
5 quad100
6 st
7 end� �

Aufgabe 84:� �
1 to aufgabe84
2 repeat 6 [aufgabe83]
3 end� �

Aufgabe 85:� �
1 to erde
2 #Aufgabe85 (Erde ist kleiner)
3 repeat 45 [fd 1 rt 8]
4 end� �
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Fragebogen 
 

1. Im folgenden Bild sind vier Elemente 

(a,b,c und d) markiert. Wozu werden 

diese Elemente in Xlogo verwendet?  

 

Weise die folgenden Begriffe zu:  

 Programme definieren,  

 Zeichenfläche,  

 vorherige Befehle,  

 Eingabezeile für Befehle 

 

a)  

b)  

c)  

d)  

 

2. Im folgenden Bild sind vier Elemente 

(a,b,c und d) markiert. Wozu werden 

diese Elemente in Xlogo online 

verwendet?  

 

Weise die folgenden Begriffe zu:  

 Programme definieren,  

 Zeichenfläche,  

 vorherige Befehle,  

 Eingabezeile für Befehle 

 

a)  

b)  

c)  

d)  

 

 

 

 

 

 

 

 



3. Was passiert, wenn du den 

Befehl fd 100 ausführst? Wie 

sieht die Situation danach aus? 

Zeichne die Veränderung direkt 

ins untenstehende Bild. 

 

 

 

 

4. Was passiert, wenn du den 

Befehl fdd 100 ausführst? Wie 

sieht die Situation danach aus? 

Zeichne die Veränderung direkt 

ins untenstehende Bild. 

 

 

 

 

5. Was würdest du an Xlogo online ändern bezüglich… 

 

 Dein Kommentar Bewertung: 
+/- 

Aussehen des Editors   

Verhalten des Editors   

Aussehen des Canvas   

Verhalten des Canvas   

Aussehen des Felds für die 
vorherigen Befehle 

  

Verhalten des Felds für 
die vorherigen Befehle 

  

Aussehen der Eingabezeile   

Verhalten der 
Eingabezeile 

  

Allgemein   

 

6. Allgemeiner Eindruck von Xlogo online:  

Sehr schlecht schecht gut Sehr gut 
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Namen schreiben 

In den letzten Kapiteln haben wir viel darüber gelernt wie man mit Logo einfache Muster zeichnen 

kann. Nun möchten wir dieses Wissen verwenden um beliebige Wörter zu schreiben. Konkret geht es 

darum in Logo unseren Namen zu schreiben. Alle werden ihren eigenen Namen schreiben, daher 

werden wir am Schluss Bilder wie beispielsweise das folgende sehen: 

 

 

Bevor wir uns daran machen ganze Wörter zu schreiben, wollen wir uns jedoch zuerst mit den 

kleineren Komponenten eines Wortes beschäftigen - den Buchstaben. Wie du weisst, ist jedes Wort 

aus Buchstaben aufgebaut. Wenn wir für sämtliche Buchstaben des lateinischen Alphabets in Logo 

ein Programm hätten, wäre es kein Problem damit beliebige Wörter zu schreiben. 

 

Wir versuchen also zunächst einzelne Buchstaben zu zeichnen. Aber wie sollen diese Buchstaben 

denn aussehen? Wenn wir uns in der Welt umschauen, erkennen wir sofort, dass es sehr viele 

verschiedene Arten gibt, wie man einen Buchstaben schreiben kann. Betrachten wir nur einmal die 

folgenden drei Beispiele: 

ABC … XYZ 

ABC … XYZ 

ABC … XYZ 
 

1. Vergleiche die obigen drei Schriftarten und markiere fünf Eigenschaften, in 

welchen sich die Schriftarten voneinander unterscheiden. 



Wir erkennen, dass die Schriftarten für denselben Text manchmal mehr oder weniger Platz 

benötigen. Wie viel Platz er genau einnimmt hängt von der Breite der Buchstaben, 

 
und der Grösser der Lücke ab, die wir zwischen zwei benachbarten Buchstaben finden: 

 

Wir fordern von der Schriftart, die wir in diesem Kapitel entwickeln, dass alle Buchstaben gleich viel 

Platz einnehmen, dass die Lücke zwischen zwei Buchstaben immer dieselbe Breite hat und dass 

sämtliche Vorkommen eines Buchstabens identisch aussehen sollen. Wir setzen diese Forderung um, 

indem wir die folgenden Eigenschaften definieren, an welche sich unsere Schriftart halten muss: 

 Jeder Buchstabe darf maximal 100 breit sein 

 Jeder Buchstabe darf maximal 200 hoch sein 

 Die Lücke zwischen zwei Buchstaben ist 50 breit 

2.  Fülle die folgende Tabelle aus, in der du berechnen sollst, wie lange ein Wort mit 

einer gewissen Anzahl von Buchstaben wird: 

Anzahl Buchstaben Beispiel Wortlänge 

1 „A “ 100 + 50 = 150 

2 „W O “  

3 „I C H “  

4 „V O L L “  

 

Bei der Gestaltung der Buchstaben sind wir grundsätzlich frei, solange wir uns an diese Regeln halten. 

Die Buchstaben A und B könnten also eine beliebige der folgenden Formen annehmen: 

           



Nun ist es an der Zeit dein eigenes Design der Buchstaben zu entwerfen…  

3. Entwirf für jeden Buchstaben dein eigenes Design und zeichne es jeweils ins 

Feld rechts neben den Buchstaben: 

    

      

    

    

   

 

Da wir nun wissen, wie wir die einzelnen Buchstaben des Alphabets zeichnen wollen, ist es endlich 

möglich aus diesen Buchstaben ein Wort zusammen zu setzen. Achte darauf, dass du die Buchstaben 

so schreibst, wie sie in deiner selbst entworfenen Schriftart geschrieben werden. 



4. Schreibe die Worte HAWAII, XLOGO und SCHABERNACK in deiner selbst-

entwickelten Schriftart. 

a) HAWAII: 

 

b) XLOGO 

 

c) SCHABERNACK 

 

5. Schreibe deinen Namen in deiner selbst-gestalteten Schriftart. 

 

 

Nun geht es darum die von uns entworfenen Buchstaben auch in Logo zu programmieren. Wir 

erstellen für jeden Buchstaben ein neues Programm im Editor, wie zum Beispiel hier: 

to a 

     fd 100 rt 90 

     fd 100 bk 100 lt 90 

     fd 100 rt 90 

     fd 100 rt 90 

     fd 200 lt 90 

     pu fd 50 pd lt 90 

end 

 



Wichtig ist, dass wir uns nach vollständigem Zeichnen eines Buchstabens um 50 nach rechts 

bewegen, sodass wir uns anschliessend exakt an derjenigen Position befinden, an welcher wir den 

nächsten Buchstaben zeichnen können. 

 

6. Welcher buchstabe wird hier gezeichnet? 

 

to unbekannt 

 

     repeat 2[fd 200 rt 90 fd 100 rt 90] 

     rt 90 pu fd 150 pd lt 90 

 

end 

 

6. Schreibe je ein Programm für die ersten zwei Buchstaben deines Vornamens. 

 

  

 

 

 

 

 

 



Dein Name, wie auch der deiner Klassenkameraden ist aufgebaut aus maximal 26 verschiedenen 

Buchstaben. Da viele deiner Klassenkameraden dieselben Buchstaben programmieren wie du, 

werden wir die Arbeit ab hier aufteilen, sodass jeder am Schluss ein vollständiges Alphabet hat aber 

nicht sämtliche 26 Buchstaben programmieren muss. 

-Anleitung… 
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JOHN, M., MITCHEL, R., NATALIE, R., BRIAN, S., AND E, E., 2010. The scratch program-
ming language and environment. Trans. Comput. Educ. 10, 4, Article 16, November.

LE COQ, L., 2009. Xlogo: Reference manual: http://downloads.tuxfamily.org/xlogo/downloads-
en/manual-html-en/. Website, July.

LE COQ, L., 2014. Xlogo: http://xlogo.tuxfamily.org/de/index-de.html. website, February.

LEFRANCOIS, G., 2008. Psychologie des lernens. Springer.

MANDLER, G., 2007. A history of modern experimental psychology: From james and wundt
to cognitive science. MIT Press 2007.

MARCUS HASSELHORN, A. G. 2006. Paedagogische Psychologie. Verlag W. Kohlhammer.

MATTER, B., 2011. Kluger spass: Programmieren in der primarschule. Magazine.

MEYER, H. 2004. Was ist guter Unterricht? Cornelsen.

MICHAEL FELTEN, E. S. 2012. Lernwirksam unterrichten. Cornelsen.

PAPERT, S. Introduction: What is logo? and who needs it?

PARR, T. 2013. The Definitive ANTLR 4 Reference. The Pragmantic Booksheir.

PÉREZ, F., AND GRANGER, B. E. 2007. Ipython: a system for interactive scientific computing.
Computing in Science & Engineering 9, 3, 21–29.

PERKINS, D. 1999. The many faces of constructivism. Educational leadership 57, 3, 6–11.

128

http://www.google.com/search?q=Collaborative+learning+enhances+critical+thinking
http://www.google.com/search?q=Course+notes:+Compiler+design
http://www.google.com/search?q=A+checklist+for+a+mooc+activist
http://www.google.com/search?q=A+checklist+for+a+mooc+activist
http://www.google.com/search?q=xlogo+mobile
http://www.google.com/search?q=Mooc+on+human+factors+in+user+interface+design
http://www.google.com/search?q=Mooc+on+human+factors+in+user+interface+design
http://www.google.com/search?q=Homo+informaticus
http://www.google.com/search?q=https://icecoder.net/
http://www.google.com/search?q=Informatik+und+allgemeine+bildung
http://www.google.com/search?q=A+web-based+ide+for+idp
http://www.google.com/search?q=Reflections+on+the+teaching+of+programming.
http://www.google.com/search?q=Management,+structures+and+tools+to+scale+up+personal+advising+in+large+programming+courses.
http://www.google.com/search?q=Management,+structures+and+tools+to+scale+up+personal+advising+in+large+programming+courses.
http://www.google.com/search?q=The+scratch+programming+language+and+environment
http://www.google.com/search?q=The+scratch+programming+language+and+environment
http://www.google.com/search?q=Xlogo:+Reference+manual:+http://downloads.tuxfamily.org/xlogo/downloads-en/manual-html-en/
http://www.google.com/search?q=Xlogo:+Reference+manual:+http://downloads.tuxfamily.org/xlogo/downloads-en/manual-html-en/
http://www.google.com/search?q=Xlogo:+http://xlogo.tuxfamily.org/de/index-de.html
http://www.google.com/search?q=Psychologie+des+lernens
http://www.google.com/search?q=A+history+of+modern+experimental+psychology:+From+james+and+wundt+to+cognitive+science.
http://www.google.com/search?q=A+history+of+modern+experimental+psychology:+From+james+and+wundt+to+cognitive+science.
http://www.google.com/search?q=Kluger+spass:+Programmieren+in+der+primarschule
http://www.google.com/search?q=Introduction:+What+is+logo?+and+who+needs+it?
http://www.google.com/search?q=Ipython:+a+system+for+interactive+scientific+computing
http://www.google.com/search?q=The+many+faces+of+constructivism.


BIBLIOGRAPHY

PIAGET, J. 1952. When thinking begins, the origins of intelligence in children. New York:
International University press.

PIETERSE, V., 2013. Automated assessment of programming assignments. Paper, April.

PIETRA, P., 2015. An xlogo programming environment to steer a wheeled robot. Bachelor
Thesis, April.

PÖPPER, C., AND ALTENHOFF, A. What drives young women to study computer science
in switzerland?–experiences on promoting computer science studies for female high school
graduates. women 6, 8, 10.

RAIMOND REICHERT, J. N., AND HARTMANN, W., 2001. Programming in schools âĂŞ why,
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