
robert autenrieth

I L L U S T R AT I V E V I S I B I L I T Y E N H A N C E M E N T
O F F L O W F E AT U R E S

ETH Diss No. 23244

I L L U S T R AT I V E V I S I B I L I T Y E N H A N C E M E N T
O F F L O W F E AT U R E S

A thesis submitted to attain the degree of
Doctor of Sciences of ETH Zurich

(Dr. sc. ETH Zurich)

presented by
Robert Autenrieth

MSc Computational Science and Engineering,
ETH Zurich

born on July 1st, 1982

citizen of Dietikon, Switzerland

accepted on the recommendation of

Prof. Dr. Ronald Peikert, examiner
Prof. Dr. Petros Koumoutsakos, co-examiner

Prof. Dr. Helwig Hauser, co-examiner

2015

Robert Autenrieth: Illustrative visibility enhancement of flow
features, © April 2015

A B S T R A C T

The use of computers and digital technology has allowed
researchers to study our environment through simulations
or measurements of ever-increasing complexity. However,
the resulting amount of raw data is difficult to understand.
The focus of the field of visualization is therefore to take
this abstract data and present it in a form that conveys im-
portant information and offers insight about the underlying
processes to human observers. In a recent trend, visualiza-
tion methods have been using techniques inspired by hand-
drawn illustrations, emphasizing the use of abstraction and
non-photorealistic depiction.

One area of application for visualization is fluid dynam-
ics. When dealing with the time-dependent motion of a
fluid through a volume, it is impossible to display all of
the data at once. Flow visualization methods therefore of-
ten extract interesting surfaces (e.g., isosurfaces or integral
surfaces) and display only those. However, such surfaces
can still form folds and twists or suffer from occlusion and
cluttering, which makes them difficult to understand.

In this thesis, we present several techniques that address
this issue by using illustrative visualization. In a first part,
we focus on higher-level abstractions. We study the use of
the proper orthogonal decomposition (POD) for the visu-
alization of noisy 4D magnetic resonance imaging (MRI)
blood flow data. By discarding high-frequency scales, we
seek to improve the visualization of large-scale vortices. Fur-
thermore, we propose a method for automatically placing
cutaway primitives for the visualization of arbitrary three-

v

dimensional data suffering form occlusion. The method uses
a Monte Carlo algorithm, as the optimal placement of such
primitives is suspected to be infeasible.

In a second part, we focus on lower-level improvements
of the perception of flow surfaces. We present a 2.5D screen
space data stucture and a framework that can be used for
illustrative enhancements of surfaces forming multiple lay-
ers due to occlusion. Using this framework, we propose a
method for improving the shape perception of multi-layered
transparent surfaces, inspired by findings from perception
theory. Finally, we study the use of dense flow visualiza-
tion to additionally highlight the flow direction along multi-
layered surfaces.

Z U S A M M E N FA S S U N G

Die fortschreitende Entwicklung von Rechnern und digita-
ler Technik erlaubt es vielen Forschern unsere natürliche
Umgebung durch immer komplexer werdende Simulatio-
nen und Messungen zu studieren. Diese liefern allerdings
eine unüberschaubare Menge an Daten und sind schwer zu
interpretieren. Das Forschungsfeld der Visualisierung hat
sich deshalb zur Aufgabe gemacht, solche abstrakten Daten
zu nehmen und diese in einer Weise zu präsentieren, wel-
che wichtige Informationen und Erkentnisse über die zu-
grundeliegenden Prozesse an den menschlichen Betrachter
liefert. Inspiriert von handgezeichneten Illustrationen ha-
ben viele Methoden in letzter Zeit die starke Abstraktion
und eine nicht-fotorealistische Darstellung der Daten her-
vorgehoben und haben damit das Gebiet der illustrativen
Visualisierung gegründet.

vi

Visualisierung findet unter anderem in der Fluiddynamik
eine Anwendung. Da man alle Daten einer zeitabhängigen,
dreidimensionalen Strömung nicht direkt darstellen kann,
werden daraus oft nur interessante Stromflächen extrahiert
und angezeigt. Besonders bei turbulenten Strömungen sind
diese aber so kompliziert und verdreht, so dass sie immer
noch schwer zu verstehen sind.

In dieser Arbeit stellen wir deshalb einige neue illustra-
tive Visualisierungsmethoden vor, um dieses Problem an-
zugehen. Der erste Teil der Arbeit konzentriert sich auf
Abstraktionen auf hoher Ebene. Dabei wird erst die POD
für die Visualisierung von verrauschten 4D MRI Blutströ-
mungsdaten angewandt, wobei durch Unterdrückung der
hochfrequentigen Skalen die Darstellung von Wirbeln ver-
bessert wird. Danach stellen wir eine auf Monte Carlo ba-
sierte Methode vor, welche automatisch Cutaway-Primitiven
plaziert um verdeckte Daten besser darzustellen.

Im zweiten Teil beschreiben wir eine neuartige 2.5D Da-
tenstruktur und ein dazugehörendes System, mit welchem
sich Flächen mit mehreren überlappenden Schichten illus-
trativ darstellen lassen. Basierend auf diesem System stel-
len wir eine Methode vor, mit welcher sich die Formwahr-
nehmung von Flächen mit mehreren Schichten verbessern
lässt. Schliesslich untersuchen wir noch die Verwendung
von globaler Visualisierung, um zusätzlich die Strömungs-
richtung auf mehrschichtigen Flächen darzustellen.

vii

P U B L I C AT I O N S

This thesis is based on the following publications:

[1] Stephan Sigg, Raphael Fuchs, Robert Carnecky, and
Ronald Peikert. “Intelligent Cutaway Illustrations”.
In: Proceedings of IEEE Pacific Visualization Symposium.
2012, pp. 185–192.

[2] Robert Carnecky, Benjamin Schindler, Raphael Fuchs,
and Ronald Peikert. “Multi-layer Illustrative Dense
Flow Visualization”. In: Computer Graphics Forum 31.3
(2012), pp. 895–904.

[3] Robert Carnecky, Raphael Fuchs, Stephanie Mehl,
Yun Jang, and Ronald Peikert. “Smart transparency
for illustrative visualization of complex flow surfaces”.
In: IEEE Trans. Vis. Comput. Graph. 19.5 (2013), pp. 838–
851.

[4] Robert Carnecky, Thomas Brunner, Silvia Born, Jür-
gen Waser, Christian Heine, and Ronald Peikert. “Vor-
tex Detection in 4D MRI Data: Using the Proper Or-
thogonal Decomposition for Improved Noise-Robustness”.
In: EuroVis – Short Papers. 2014, pp. 127–131.

ix

http://dx.doi.org/10.1109/PacificVis.2012.6183590
http://dx.doi.org/10.1111/j.1467-8659.2012.03082.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03082.x
http://dx.doi.org/10.1109/TVCG.2012.159
http://dx.doi.org/10.1109/TVCG.2012.159
http://dx.doi.org/10.2312/eurovisshort.20141169.127-131
http://dx.doi.org/10.2312/eurovisshort.20141169.127-131
http://dx.doi.org/10.2312/eurovisshort.20141169.127-131

During my PhD program at ETH Zurich, I have also con-
tributed to several other publications:

[5] Andrea Brambilla, Robert Carnecky, Ronald Peik-
ert, Ivan Viola, and Helwig Hauser. “Illustrative Flow
Visualization: State of the Art, Trends and Challenges”.
In: EG 2012 - State of the Art Reports. Cagliari, Sar-
dinia, Italy: Eurographics Association, 2012, pp. 75–
94 (cit. on p. 9).

[6] Raphael Fuchs, Benjamin Schindler, Robert Carnecky,
Jürgen Waser, Yun Jang, and Ronald Peikert. “Adap-
tive Treelet Meshes for Efficient Streak-Surface Visu-
alization on the GPU”. In: VMV 2012: Vision, Model-
ing & Visualization. 2012, pp. 119–126.

[7] Ronald Peikert, Benjamin Schindler, and Robert Car-
necky. “Ridge Surface Methods for the Visualization
of Lagrangian Coherent Structures”. In: Proc. Ninth
International Conference on Flow Dynamics, Sendai, Japan.
2012, pp. 206–207.

[8] Bernhard Sadransky, Hrvoje Ribičić, Robert Carnecky,
and Jürgen Waser. “Visdom Mobile: Decision Sup-
port On-site Using Visual Simulation Control”. In:
Spring Conference on Computer Graphics. SCCG ’13.
2013, pp. 99–106.

[9] Benjamin Schindler, Raphael Fuchs, Stephan Barp,
Jürgen Waser, Armin Pobitzer, Robert Carnecky, Krešimir
Matković, and Ronald Peikert. “Lagrangian Coher-
ent Structures for Design Analysis of Revolving Doors”.
In: IEEE Transactions on Visualization and Computer
Graphics 18.12 (2012), pp. 2159–2168 (cit. on p. 5).

x

http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.2312/PE.VMV.VMV12.119-126
http://dx.doi.org/10.2312/PE.VMV.VMV12.119-126
http://dx.doi.org/10.2312/PE.VMV.VMV12.119-126
http://dx.doi.org/10.1145/2508244.2508257
http://dx.doi.org/10.1145/2508244.2508257
http://dx.doi.org/10.1109/TVCG.2012.243
http://dx.doi.org/10.1109/TVCG.2012.243

[10] Jürgen Waser, Artem Konev, Bernhard Sadransky,
Zsolt Horváth, Hrvoje Ribičić, Robert Carnecky, Patrick
Kluding, and Benjamin Schindler. “Many Plans: Mul-
tidimensional Ensembles for Visual Decision Sup-
port in Flood Management”. In: Computer Graphics
Forum 33.3 (2014), pp. 281–290.

xi

http://dx.doi.org/10.1111/cgf.12384
http://dx.doi.org/10.1111/cgf.12384
http://dx.doi.org/10.1111/cgf.12384

A C K N O W L E D G M E N T S

I would like to express my gratitude to my supervisor Ronny
Peikert, for his constant support, openness and patience.
I am also grateful to Petros Koumoutsakos and Helwig
Hauser for agreeing to be my co-examinators, and Helwig
Hauser inviting me to Bergen.

My colleagues at the SciVis group have contributed im-
mensely to my personal and professional time at the ETH.
I would like to thank Raphael Fuchs, Benjamin Schindler,
Christian Heine, Yun Jang, Thomas Brunner, and Stephan
Sigg for the many fruitful discussions and making my time
at the ETH a very positive experience.

Furthermore, I would like to thank Jürgen Waser and
Hrvoje Ribičić from the Visdom [112] team for our close col-
laboration on the framework which accompanied me through-
out my PhD studies, and Silvia Born, Armin Pobitzer, and
Ivan Viola for their input and support.

Last but not least, I would like to thank my family, my
parents Robert and Lida, and my brother Tom, for always
being there for me, and my wife Chrissy for her uncondi-
tional love and encouragement.

This work was supported by ETH Independent Investi-
gators’ Research Awards (ETHIIRA) grant 12 09-3 Swiss
National Science Foundation (SNF) grant 200021_127022,
as well as Future and Emerging Technologies (FET) pro-
gramme grant 226042

xiii

C O N T E N T S

1 introduction 1

1.1 Visualization 1

1.2 Illustrative Visualization 2

1.3 Fluid Dynamics 2

1.4 Flow Visualization 3

1.5 Contributions and Layout of this Thesis 5

i high level abstraction 7

2 overview 9

3 intelligent cutaway illustrations 13

3.1 Method Overview 14

3.2 Simulated Annealing 22

3.3 Interactivity 25

3.4 Implementation Details 26

3.5 Results 28

3.6 Evaluation 32

3.7 Difficulty of Optimal Cutaways 37

4 vortex detection in 4d mri data 43

4.1 4D PC-MRI 44

4.2 Vortex detection 47

4.3 Proper Orthogonal Decomposition 50

4.4 Results 52

5 conclusion 65

ii low level abstraction 67

6 overview 69

6.1 Definitions and symbols 71

7 illustration buffer 75

7.1 Buffer layout 78

xv

xvi contents

7.2 Buffer filling 79

7.3 Neighbor search 81

7.4 Operators 84

8 smart transparency for illustrative vi-
sualization 91

8.1 Method overview 94

8.2 Non-local transparency enhancement 96

8.3 Results 103

8.4 Evaluation 105

8.5 User Study 115

9 multi-layer illustrative dense flow vi-
sualization 125

9.1 Method Overview 127

9.2 Results 140

10 conclusion 147

iii appendix 151

a user study 153

b bibliography 167

L I S T O F F I G U R E S

Figure 1 Flow visualization examples. 5

Figure 2 High level abstractions. 10

Figure 3 Cutaway image. 15

Figure 4 Computer assisted illustrations. 16

Figure 5 Primitives for cutaways. 17

Figure 6 Objective function images. 20

Figure 7 Integration in the renderer. 28

Figure 8 Piston gas engine. 29

Figure 9 Colliding vortex tubes. 31

Figure 10 Transparency and objective functions. 32

Figure 11 LES cylinder flow. 33

Figure 12 Volumetric dataset. 34

Figure 13 Evaluation results. 36

Figure 14 CUTPOINTS is NP-hard. 40

Figure 15 A slice of a 4D MRI dataset. 45

Figure 16 Singular values in POD data. 52

Figure 17 Approximate segmentations. 54

Figure 18 Spectrum of singular values. 54

Figure 19 Filtering the healthy aorta dataset. 56

Figure 20 Isosurfaces of λ2 = −100. 59

Figure 21 Blood flow in the aorta. 60

Figure 22 Isosurfaces of λ2 = −80. 61

Figure 23 Isosurfaces of λ2 = −3000. 62

Figure 24 Streamlines around features. 63

Figure 25 Vortex detection methods. 64

Figure 26 Low level abstractions. 70

Figure 27 Definition of a silhouette. 71

Figure 28 The illustration buffer. 75

xvii

xviii List of Figures

Figure 29 Illustration buffer layout. 88

Figure 30 Neighbor search (1). 89

Figure 31 Neighbor search (2). 89

Figure 32 Artistic drawing. 93

Figure 33 XT junctions. 96

Figure 34 Overview of our method. 97

Figure 35 Boundary conditions. 101

Figure 36 Transparency diffusion parameters. 108

Figure 37 A close-up comparison. 109

Figure 38 Transparency assignment methods. 110

Figure 39 Transparent flow surfaces. 111

Figure 40 Jet engine model. 112

Figure 41 Rendering time vs. fragments. 113

Figure 42 Rendering time vs. triangles. 113

Figure 43 Fragment list lengths. 114

Figure 44 User study tasks. 121

Figure 45 User study rendering. 122

Figure 46 Overview of our method. 128

Figure 47 Simplex noise. 131

Figure 48 Discretizations of the gradient. 135

Figure 49 Boundary conditions. 136

Figure 50 Number of iterations. 136

Figure 51 Exoplanet. 141

Figure 52 Revolving door cutaway. 143

Figure 53 Revolving door. 144

Figure 54 Flow along a stream surface. 145

Figure 55 Using colors. 149

L I S T O F TA B L E S

Table 1 Simulated annealing. 24

Table 2 Simulated annealing settings. 37

Table 3 Overview of MRI datasets. 53

Table 4 Definitions of variables. 73

Table 5 Sociodemographic data. 118

Table 6 Normal variation vs. alpha blend-
ing. 120

Table 7 Smart transp. vs. alpha blending. 120

Table 8 Smart transp. vs. normal variation. 123

xix

A C R O N Y M S

CFD Computational fluid dynamics

CT Computed tomography

DOI Degree of interest

LIC Line integral convolution

MC Monte carlo

MRI Magnetic resonance imaging

POD Proper orthogonal decomposition

SA Simulated annealing

SNR Signal-to-noise ratio

xx

1
I N T R O D U C T I O N

This thesis deals with the illustrative visualization of data
derived from fluid dynamics simulations or measurements.
The following sections give a short introduction into the
relevant topics, in order to provide the necessary context.

1.1 visualization

The term visualization is used in many different contexts.
Although the exact meaning differs, it most often describes
processes creating (mental or physical) images of some ab-
stract input. In computer science, visualization is a process
which takes data or knowledge and presents them in a form
that gives insight about the data, or conveys a message con-
tained therein.

A central aspect in visualization is the human observer
– visualization uses our brain to find interesting patterns,
draw conclusions, or learn information. It is therefore use-
ful in situations where an automatic search for answers
(e.g., machine learning) is not feasible. Another important
aspect of visualization is the abstraction of data. A realistic
depiction of the data (e.g., through a photo-realistic image)
is often overwhelming and important information is lost in
the detail. By omitting non-important parts and replacing
complex data with simple, abstract objects, visualizations
can increase the amount of information conveyed to the hu-
man observer.

1

2 introduction

The above definition of visualization is still rather broad,
and there are many sub-fields and applications. Examples
include visualizing the network of metro stations for easy
navigation, illustrations of the human body in medical text
books that teach anatomy, or 3D renderings of molecules
that help predict their properties by highlighting chemically
relevant regions.

1.2 illustrative visualization

Illustrative visualization is a category of approaches that
use techniques from hand drawn illustrations [94]. These
approaches follow the same goal as visualization in gen-
eral, and the term illustrative is mainly used to emphasize
the focus on non-photorealistic depiction and abstraction
of the data, extensively used by human illustrators. In a
recent work, Brambilla et al. [22] survey illustrative visu-
alization methods in flow visualization and classify them
into two major categories: High level visual abstractions deal
with what to draw, and use methods such as selective vi-
sualization, cutaways, or exploded views. Low level visual
abstractions on the other hand deal with how to draw, and
use non-photorealistic rendering techniques that enhance
shape or depth perception. We adapt this classification for
the structure of this thesis, as detailed in Section 1.5.

1.3 fluid dynamics

Fluid dynamics is the scientific discipline that deals with
the motion of fluids (liquids and gases). Such motion is rel-
evant to many science and engineering applications, such
as building more efficient hydroelectric plants by under-

1.4 flow visualization 3

standing the flow of water through its turbines, predicting
weather by computing the flow of air through our atmo-
sphere, or diagnosing cardiovascular diseases by analyzing
the flow of blood through vessels. Traditionally, the motion
of fluids was studied through real life experiments. While
these can still be relevant in cases where properly mod-
elling the physical process is difficult, many applications
are simple enough to be accurately simulated with the use
of computers. computational fluid dynamics (CFD) simula-
tions have the advantage that they produce large amounts
of data. They allow us to precisely inspect all physical val-
ues at every point in space and time – something generally
not possible with measured experiments.

The amount of data produced by CFD simulations is how-
ever also a challenge. Simulations are often three-dimen-
sional, time dependent, multi-variate (e.g., measuring ve-
locity and pressure at the same time), and very finely re-
solved. They produce a huge number of plain numerical
values, which cannot easily be interpreted by humans. Sim-
ulations are therefore usually followed up by a postprocess-
ing phase, where the raw data is transformed into a form
that provides insight about the underlying process.

1.4 flow visualization

Flow visualization deals with the visualization of processes
that define a concept of a flow. Although it can be used
to visualize abstract flows, such as the “flow” of humans
during an evacuation, the most common data source for
flow visualization are CFD simulations. A typical example
would be visualizing the simulated flow of water through a
turbine in order to find undesired vortices and thereby gain

4 introduction

ideas for improving the design of the machine. There are
many different approaches to visualizing flow data. Most
of the methods fall into one of the following categories [92]:

direct These techniques visualize the data directly, with-
out much preprocessing. Examples are simple color-coding
or visualizing a dataset through a grid of arrows (see Fig-
ure 1a).

dense or texture based These techniques usually start
with a noise image which is then smeared along the flow.
The resulting image gives a dense visualization of the flow,
i.e., the user can see the flow direction at every point of the
domain (see Figure 1b). A survey of related approaches is
given by Laramee et al. [67].

geometric These techniques usually start with a set of
seeding points, from which particles are inserted into the
flow. The particle trajectories form lines or surfaces, which
are then visualized. (see Figure 1c). A survey of related ap-
proaches is given by McLoughlin et al. [82].

feature based These techniques extract features from
the data and visualize those. Features are interesting or
physically meaningful objects, such as shock waves, vor-
tices, vector field topology [50], or lagrangian coherent struc-
tures [46] (see Figure 1d). A survey of related approaches is
given by Post et al. [92].

Most flow visualization applications deal with complex
three-dimensional data, which is difficult to visualize in an
image. Common problems of all approaches are therefore
cluttering, occlusion, and limited depth perception. One of
the most powerful tools to alleviate these problems is inter-

1.5 contributions and layout of this thesis 5

(a) (b)

(c) (d)

Figure 1: Flow visualization examples. (a) direct visualization [9]
(b) texture based visualization [67] (c) geometry based
visualization [81] (d) feature based visualization [97].

action. By manipulating the view and visualization param-
eters, users can explore datasets and gain information that
would be impossible to get from a static image.

1.5 contributions and layout of this thesis

In this thesis, we propose four methods that improve differ-
ent aspects of illustrative visualization:

6 introduction

• A method for automatically placing cutaways (Chap-
ter 3).

• A method for improving the visualizing of noisy MRI
data using the proper orthogonal decomposition (Chap-
ter 4).

• A method for improving the perception of complex,
multi-layered transparent surfaces (Chapter 8).

• A method for computing the line integral convolution
(LIC) on multi-layered surfaces (Chapter 9).

The thesis is organized in two parts: high level abstraction
and low level abstraction.

Part I

H I G H L E V E L A B S T R A C T I O N

In this part, we present two methods based on
higher-level abstractions. These methods hide,
deform, or otherwise modify features in order
to improve the amount of information conveyed
by the visualization.

2
O V E RV I E W

High level abstractions hide or deform displayed features
in order to increase the communicative intent of an illustra-
tion [5]. Figure 2 shows examples of such abstractions used
in traditional hand-crafted illustrations.

One important paradigm in illustrative visualization is
focus emphasis (or focus and context), which is based on the
assumption that some parts of the data are more important
than others. The important data is therefore highlighted,
while the less important data is displayed in a simplified
form to provide context [48]. The importance can be ex-
pressed using a degree of interest (DOI) function, which
maps data items to a dimensionless importance value. There
are many approaches for the speficifation of DOI functions,
including explicit selection in a 3D view, analytical expres-
sions using physical quantities, or interactive brushing of
scatterplots [34].

On the other hand, the goal of visibility management (or
smart visibility) techniques is to improve the visibility of the
data by hiding or deforming features such that they opti-
mally use the available space [110].

A very popular abstraction in illustrative visualization is
the hiding of features in order to show occluded parts of the
data. This can be achieved using cutaways and ghosting [38,
33], where surfaces are rendered transparently or virtual
objects are used to clip parts of the data. These techniques
can be applied interactively [41, 28] or using heuristics [32,
111]. In chapter 3 we present an approach for computing

9

10 overview

(a) (b)

(c) (d)

Figure 2: Examples of high level abstractions in traditional illus-
trations. (a) A ghosted view hiding occluding skin lay-
ers. (b) An exploded view of a smart phone. (c) Cutout
view revealing the inner structure of Earth. (d) Seman-
tic simplification of blood vessels.

the optimal positioning of clipping objects directly from a
DOI function.

Apart from being hidden or removed, displayed features
may also be simplified or generalized. Removing less im-

overview 11

portant high frequency details may help the user concen-
trate on the important high-level concepts. This can be eas-
ily achieved through simple noise removal or smoothing.
More sophisticated approaches might use information about
the underlying process in order to produce simple struc-
tures that capture the important semantics of the actual
data (see Figure 2d). A typical example for generalization
is digital cartography, where geographical features are pro-
gressively simplified as the user zooms in or out [83]. In
Chapter 4 we study the use of the proper orthogonal decom-
position (POD) in order to extract large scale flow behavior
and detect vortices in noisy blood flow data.

3
I N T E L L I G E N T C U TAWAY I L L U S T R AT I O N S

With the increasing amount of complexity in 3D datasets,
it gets more and more difficult to locate and visualize im-
portant features. Occlusion becomes a problem as soon as
the features of interest are not located right at the front.
Rendering the data with high transparency could show ev-
erything at once, but then, the image is hard to under-
stand. Especially in flow visualization this problem arises
frequently, because salient structures often exhibit complex
folding and twisting. In this paper, we tackle the problem
of occlusion with cutaways, a method originating from sci-
entific illustration.

Scientific illustrators have been dealing with the prob-
lem of occlusion for a long time. Occluding geometry is
retained where it clarifies the spatial structure but it is re-
moved where it covers important features. A good cutaway
illustration has to meet certain requirements. First of all, it
should maximize the visibility of important features. Fur-
thermore, the amount of omitted data – even if it is consid-
ered not to be important – has to be minimized in order to
provide context for the important regions. The cutaway has
to respect the user’s specification of importance. Finally, the
shape of the cutaway has to be comprehensible and the user
should be able to understand which parts of the dataset are
omitted.

To achieve comprehensibility of the cutaway, we suggest
to restrict the approach to fixed, user-defined, parameter-
ized geometric objects such as cuboids, spheres, or cylin-

13

14 intelligent cutaway illustrations

ders. The goal of this paper is to develop a method which
places parameterized cutaway objects automatically and op-
timally with respect to the aforementioned requirements,
because in many cases, this cannot be done manually. For
example in Fig. 3a, there is no hint for an important region
on the left side, but it is revealed nevertheless by our al-
gorithm in Fig. 3c. There is one problem though: placing
cutaways optimally is NP-hard in the number of cutting
objects and therefore we cannot hope to find an algorithm
which solves this problem directly. Instead we suggest a
Monte Carlo (MC) method which can find very good solu-
tions by directed, randomized search.

3.1 method overview

The proposed method consists of an interactive step where
the user selects interesting parts of the data based on in-
sight or background knowledge, and a non-interactive step
where the computer automatically finds an optimal place-
ment of cutaway primitives based on the user selection, as
illustrated in Fig. 4. First, the user defines a DOI function
that assigns an importance value to each vertex (for polygo-
nal meshes) or voxel (volumetric data). In addition, the user
can select the shape and maximum number of geometric
primitives that will be used to cut out parts of the visual-
ized object. To achieve comprehensibility of the cutaway, we
suggest to restrict the approach to fixed user-defined prim-
itives – in this paper, we use cuboids, spheres, and cylin-
ders. An example of a cutaway for each of those primitives
is given in Fig. 5.

After the importance is specified, the computer finds the
approximation for the best size and position of the primi-

3.1 method overview 15

Figure 3: Cutaway image from a flow visualization. (a) Features
of interest are colored orange. (b) The algorithm deter-
mines the positions of the cutting objects in order to
reveal as much of the features as possible. (c) The re-
sulting cutaway.

16 intelligent cutaway illustrations

Figure 4: Computer assisted creation of cutaway illustrations.
The user knows which features are relevant and can un-
derstand a rendering of the data. To place the cutaway
geometry optimally in the illustration, an optimization
algorithm based on a MC method interacts with the ren-
dering system.

tives without the user’s help by cycling through the three
stages displayed in Fig. 4: (A) An image of the cutaway is
rendered, (B) a quality measure is calculated from the gen-
erated image, and (C) the primitives are repositioned and
resized. This iterative optimization process is repeated in
order to maximize the quality measure.

One key idea is that, based on the feature selection of
the user, the rendering system can immediately produce an
image that encodes which pixels show important features.
This information is used to evaluate the current cutaway po-
sitioning and to perform the optimization algorithm. This

3.1 method overview 17

Importance

0 1
(c)(b)(a)

Figure 5: Three primitives used to produce cutaways: (a) cuboid,
(b) cylinder, and (c) sphere. Unlike in the real results,
primitives are rendered here in order to get an impres-
sion of how the method works.

process layout enables a seamless integration in an exist-
ing rendering framework because only the resulting image
from the renderer is used. By using the appropriate render-
ers, the method is able to produce cutaways for example for
volumetric data or polygonal meshes.

The presented approach has several benefits: First, the
cutaway shapes are less complex than the regions of inter-
est and are therefore easier to comprehend. Second, all ren-
dering settings such as transparency and shading are pre-
served. One can think of the renderer as a black box. This
way, cutaway illustrations can be generated from both vol-
umetric data and polygonal meshes. The only change re-
quired is to add the ability to take the cutaway objects into
account.

3.1.1 Example: Collision of Two Vortex Tubes

In order to illustrate the structure and the implementation
of the algorithm, a vorticity isosurface of the collision of

18 intelligent cutaway illustrations

two vortex tubes simulated by van Rees et al. [95] is used.
We extract the isosurface with ω = 0.1 using the algorithm
of Schindler et al. [99] and select a range of curvatures to
define the region of interest. The examples in Fig. 5 are
created using this dataset.

3.1.2 Multivariate Degree of Interest

During an initial analysis step, attributes of the data are pre-
sented to the user in information visualization views. We
use interactive visual analysis based on derived attributes [24]
to present feature selection in an abstract way. This method
allows us to combine flow features such as vorticity or λ2
with data attributes such as velocity or pressure or with
geometry attributes such as curvature. Based on these at-
tributes, the user can specify what he or she is currently
interested in.

3.1.3 Discretized Configuration Space

One source of complexity in the cutaway problem is the size
of the discretized configuration space. It consists of all pos-
sible placements and sizes of the selected primitives in the
bounding box of the dataset. For the definition of the dis-
cretized configuration space, each dimension of the bound-
ing box is split into n pieces. Doing so, a grid is created
on which the primitives will be placed. The configuration
space size can be influenced directly by the coarseness of
the grid and it does not depend on the complexity of the
dataset. More precisely, because an interval can be placed
in
∑n
i=1 i different ways on a grid with n places, the size

3.1 method overview 19

of the configuration space when placing one primitive is
|D| = (

∑n
i=1 i)

3, which grows with n6.
The algorithm searches for the optimum in the discretized

configuration space D, which is not the same as the opti-
mum in the continuous space. D contains many local op-
tima which may be located wide apart. During optimiza-
tion, it is not clear if a local optimum or the global opti-
mum is currently hit. Additionally, because of its size, it is
not possible to traverse the whole discretized configuration
space. The placement of the primitives is defined by the
location and the size of their axis-aligned bounding box.
Because two corners are sufficient to determine an axis-
aligned bounding box, we get no more than 6 degrees of
freedom per primitive.

3.1.4 Objective Function

When generating cutaways, perspective plays an important
role. A cutaway from one direction may look good and suit
the needs of the viewer perfectly. However, from a differ-
ent perspective, the same cutaway can become meaningless.
The objective function has therefore to take into account
the camera position and measure the quality of the current
solution for further optimization. In order to find the ob-
jective function value, the data is colored according to the
importance. Then, the data is projected on the image plane
and the resulting image is transformed to a single number
by averaging the values of a color channel over all pixels.
Therefore we allow positive and negative selection using
two color channels pos and neg. As illustrated in Fig. 6, the
image is produced using an off-screen renderer that draws
an image with the objective function values at each pixel as

20 intelligent cutaway illustrations

Objective function images

DatasetCutaway primitive

-1 1

Importance

(a)

(b)

Figure 6: Composition of the objective function images. From the
viewpoint of the user, the objective function images
are produced by coloring the data according to the im-
portance. Objective function images resulting from the
dataset defined in Section 3.1.1 are displayed on the
right side. (a) Without cutaway. Most of the important
parts (green) are occluded while unwanted parts are vis-
ible (red). (b) After subtraction of a cutaway primitive,
the important regions become visible and the unwanted
regions vanish.

color. The background color is set to black so that it does
not influence the quality measurement. The alpha channel
is not influenced by this method and hence, transparency
in the rendered data can be taken into account as well.

In addition to the requirement given by the user’s selec-
tion discussed above, the amount of omitted data has to be
minimized in order to provide the context for the important
regions. A user-defined parameter controls the weighting
of the omitted data against the image-based quality defined

3.1 method overview 21

above. Based on these requirements, we can write down the
definition of the objective function to be maximized:

f(A,P) :=
1

d

n∑
i=1

(
α ·Ai,pos − Ai,neg

)
−β · V(P) (1)

A is the image as a pixel array of length d = width · height.
Each pixel has the properties pos and neg, encoded in the
green and in the red color channel, respectively. P is the
set of primitives and V(P) measures the amount of omitted
data. In our applications, we use either V(P) = |P| or we
limit the number of primitives and use their total volume
for V(P). The parameters α and β are used for weighting: α
balances positive and negative selections while β indicates
how much the size of the cutaway geometry is penalized.
This objective function has many local optima, for example
if revealing important regions requires to clip other impor-
tant regions.

3.1.5 Environment of a Configuration

When implementing an iterative optimization process, it
is important to define how the configuration space is tra-
versed. The environment E(x) of a configuration x defines
all configurations which are reachable in one step. In our
case, the configurations are of spatial nature, and the en-
vironment can therefore be defined quite intuitively using
the Euclidean distance. Each primitive is defined by its axis-
aligned bounding box which can be deformed in 12 ways:
For each dimension, either the minimum or the maximum
corner is moved one step in positive or negative direction
along one axis. However, two rules have to be fulfilled by
these deformations: First, the bounding boxes should inter-
sect the bounding box of the data, and second, the signed

22 intelligent cutaway illustrations

volume of the bounding box must be positive. Therefore,
the algorithm can select from at most 12 moves per primitive.
In many cases, there will be less than 12 possible moves be-
cause one of the restrictions would not be fulfilled by one or
several deformations. The deformation step size is defined
by the grid of the possible placements of the corners.

3.2 simulated annealing

Simulated annealing (SA) is a MC method to solve com-
plex optimization problems. The inspiration to this algo-
rithm comes from statistical mechanics where the process
of heating up and controlled cooling down in metallurgy
is modeled. Defects in crystals are reduced by slow cool-
ing and this can be seen as an optimization of the internal
energy. Kirkpatrick et al. [62] showed that SA is applicable
to general optimization problems and also pointed out that
the method performs well for hard to solve optimization
problems [62].

At each step, the configuration is changed with a proba-
bility depending on the quality difference between the cur-
rent and the new configuration. To avoid getting stuck at
local optima, even configurations that decrease the quality
of the result can get accepted. Kirkpatrick et al. proposed
to use the acceptance probability introduced by Metropolis
et al. for their simulation of atoms in equilibrium at a given
temperature T [84]:

px→xnew = min
{
1, exp

[
1

T
(f(xnew) − f(x))

]}
(2)

where x is the current configuration and xnew is a ran-
domly selected configuration from the environment E(x),
defined in Section 3.1.5. SA can therefore be seen as an ex-

3.2 simulated annealing 23

tension to Metropolis’ algorithm originating from the begin-
nings of computer simulation.

3.2.1 A Single Optimization Step

We describe now the algorithm in more detail and provide
an overview of the definitions in Table 1. First of all, we
explain what happens during a single optimization step. A
configuration x in the configuration space D is considered
as the start configuration. Then, a new configuration xnew
is taken randomly from the environment E(x). The transi-
tion probability from x to xnew is defined in Eq. 2.

As we can see in Eq. 2, if the solution gets better (f(xnew) >
f(x)), it will be accepted immediately because px→xnew = 1;
if it gets worse, the acceptance probability decays exponen-
tially with the decrease of the quality, but never reaches
zero. This is needed to fulfill ergodicity: Any configuration
has to be reachable in a finite number of steps.

3.2.2 Temperature Regime

The temperature T used in the acceptance probability px→xnew
has no physical meaning in our case and is used as control
parameter. In the beginning, it asserts that even steps that
lower the objective function substantially can be accepted.
This is needed to leave local optima in order to find the
global optimum.

The temperature is controlled by an adaptive schedule.
During initialization, the system is heated up as proposed

24 intelligent cutaway illustrations

Name Description

D Discretized configuration space.

x Configuration in D.

px→xnew Transition probability from x to xnew.

f(x) Objective function.

E(x) Environment of x.

T Temperature.

mT Temperature factor.

R Acceptance rate.

SH Number of steps per temperature during heat-
ing phase.

ST Number of steps before the cooling process
starts.

SS Number of successful steps that has to be
reached at a temperature.

Smax Maximum number of steps at a temperature.

Table 1: Definitions used in the description of the SA algorithm.

by Kirkpatrick [62]. For each temperature, SH steps are ex-
ecuted and the acceptance rate R is measured:

R =
accepted steps

SH
(3)

As long as R does not exceed a melting threshold (we
use 0.8), the temperature is doubled and the procedure is
repeated. When the acceptance rate exceeds this value, the
system is considered to be melted because the objects are
able to float around freely. After having thermalized the
system for ST steps, the cooling process starts. At each tem-
perature, the number of successful steps is counted. When

3.3 interactivity 25

a fixed value SS is reached, the temperature is multiplied
with a constant factor mT (0 < mT < 1), leading to an
exponential decreasing temperature regime. If the number
of acceptances does not reach SS, the temperature is low-
ered after Smax steps nevertheless (Smax > SS). If SS is not
reached three times in a row, the system is considered to be
frozen and the algorithm stops.

3.3 interactivity

Interactive exploration of the data while using a cutaway is
achieved by a repositioning of the primitives. As a starting
point, the optimal position from the initial optimization pro-
cess described in Section 3.2 can be used. Considering that
changes of the cutaway position have to be smooth in order
not to confuse the user, the distances between the primitive
positions before and after the update should not be large.
In order to fulfill this requirement, the grid defined in Sec-
tion 3.1.3 is refined by increasing n. This leads to smaller
steps and hence, to a smoother cutaway repositioning.

Camera movements and time-dependent dataset explo-
ration are handled by the same algorithm even if they are
different problems. What they have in common is the smooth-
ness of the changes they induce. This allows us to modify
the original optimization result instead of searching for a
new global optimum from scratch. For each frame, one step
of a hillclimbing optimization is used. In combination with
the refined grid, this provides interactivity because it uses
a minimal number of objective function evaluations which
are the most time intensive part of the optimization pro-
cess. Hillclimbing traverses the whole environment defined
in Section 3.1.5 and compares the qualities of the configura-

26 intelligent cutaway illustrations

tions against each other. Then, either the best among them
is picked and the cutaway is repositioned, or the cutaway re-
mains at the same place when no neighboring configuration
is better than the current one. Although the configuration
space grows with the grid refinement, the performance is
not affected because the environment is not dependent on
the configuration space size.

At first glance, the selection of a less powerful optimiza-
tion method might look confusing as the problem to be
solved has been described to be hard to solve. However,
in the case of interactivity, a different problem is arising: A
solution suitable for a similar situation has to be transferred
so that its change is not large but nevertheless goes into the
direction the optimum takes.

Because the hillclimbing optimization is stopped after
one step, we have at most 12 possibilities per primitive (see
Section 3.1.5 for justification), meaning 12 evaluations of the
objective function and one execution of the rendering step
when using one primitive. This leads to an upper bound
of 13 rendering steps per frame and enables us to perform
updates at interactive speed for many datasets, since the
objective function image can be rendered with inexpensive
rendering settings such as flat shading.

3.4 implementation details

While implementing a new approach for the problem of cut-
away generation, we pay attention to seamless integration
into any rendering framework. In this section, we explain
how the most important step of the algorithm, the objective
function evaluation, is implemented and we explain how
we integrate it into our existing rendering framework.

3.4 implementation details 27

3.4.1 Objective Function Evaluation

In a first implementation, rendering was performed on the
GPU and the evaluation of the objective function was im-
plemented on the CPU. Although a profiling revealed that
evaluating Eq. 1 for a rendering on the CPU is no perfor-
mance problem, it turned out that communication between
CPU and GPU took the most time during the objective
function evaluation. Because this evaluation is the most of-
ten executed part of the algorithm, this issue prevented us
from having a fast optimization process. Interactivity was
not possible even if we used a single step of a hillclimbing
optimization.

The solution is to avoid sending back the image from
GPU to CPU by calculating the mean values directly on
the GPU. The image is not copied into main memory after
rendering but is processed directly on the device. Nvidia
CUDA [88] provides an OpenGL interoperability feature
which enables CUDA to directly process the data produced
by OpenGL. As a starting point, the image post-processing
example from the CUDA SDK can be used. After register-
ing the image for access by CUDA, the sum of all pixels has
to be calculated. The CUDA data parallel primitives library
(CUDPP) is a small toolkit that provides basic operations
like a parallel prefix sum for vectors of arbitrary length [47].
Using this feature, the dataset has to be uploaded to the
GPU only once in the beginning. In the consecutive steps,
only the primitives will be uploaded to, and only the cur-
rent objective function value (one float) will be downloaded
from the GPU. In addition to the speedup by avoiding com-
munication, the parallel prefix sum on the GPU performs
also faster than evaluating the objective function on the
CPU.

28 intelligent cutaway illustrations

3.4.2 Integration in an Existing Rendering Framework

Because the objective function is calculated using only an
image of the data, the algorithm can easily be integrated
in any rendering framework. The renderer has to take the
data, its color, and the primitives to be cut out of the data
as input values and it should be able to produce the result-
ing image without taking into account lights and shadows.
Fig. 7 illustrates the dataflow through the algorithm. This
means that the method is not dependent on which sort of
renderer is used. It can therefore be applied to meshes as
well as to volumetric data and it does make sense in both
cases to apply it.

Geometry /
Volume Data

Selection Transfer function
DOI

colors

Renderer Optimizer
image

primitives

Figure 7: Integration in the rendering framework. The renderer
processes the usual inputs (geometry or volume data
and colors) plus a list of primitives to be clipped. The
optimization process takes an image as input and mea-
sures its quality. Then, a new placement of the cut ob-
jects is proposed and transmitted to the renderer which
produces a new image.

3.5 results

Because of its straightforward integration into existing ren-
dering pipelines, the algorithm can be applied on differ-
ent data types. First, we demonstrate the algorithm using

3.5 results 29

a simple example of a piston gas engine in order to get
an intuition of its impact. Then, a more complex example
originating from a flow simulation output is presented as
a demonstration of its performance. As a third example, a
volumetric dataset is treated, so that the integration in a
volume renderer can be shown.

3.5.1 Piston Engine Dataset

The Piston Engine dataset [107] has parts (polygon meshes)
which can be selected by the user. A cuboid and a sphere
should be used to generate the cutaway displayed in Fig. 8c.
This example shows that a cutaway is superior to the trans-
parency based solution when it comes to structure and con-
text of the selected parts.

Figure 8: Piston gas engine dataset. (a) Orange parts are selected
by the user. (b) Making the unwanted parts transparent
makes the important parts visible whereas (c) a cutaway
provides more information about spatial structure. In
this example, a cuboid and a sphere are used to produce
the cutaway shape.

30 intelligent cutaway illustrations

3.5.2 Colliding Vortex Tubes

As stated earlier, positive and negative importance can be
selected concurrently. The example of the colliding vortex
tubes introduced in Section 3.1.1 is used to demonstrate a
case where the enclosing geometry has a negative impor-
tance and should be removed. At the same time, the ge-
ometry inside has a positive importance and should not
be removed. The algorithm successfully finds a cutaway by
subtracting two cuboids (see Figure 9).

In a second example with the same dataset, we demon-
strate the difference induced by transparency. As Figure 10

shows, taking transparency into account leads to a smaller
amount of data removed by the cutaway.

3.5.3 LES Cylinder Flow

As a realistic case to apply the developed algorithm in flow
visualization, the result of a Large-Eddy Simulation (LES)
of flow behind a cylinder created by Frederich et al. [39] is
used. We are interested in understanding and illustrating
the vortex structures emanating from the cylinder. The ge-
ometry of the vortex structures is extracted from the data
using the method proposed by Jeong and Hussain [57]. In
the case study, we use λ2 = −3 to create the isosurfaces.

Once the isosurfaces are extracted, we would like to un-
derstand the properties of the vortices behind the obsta-
cle. Therefore we want to analyse the pressure p, veloc-
ity magnitude |u| and vorticity magnitude |ω| distributions
throughout the volume. As a first step, we select the respec-
tive regions by brushing scatterplots. Fig. 11 illustrates two
different selection cases where the locations of the impor-

3.5 results 31

-1 1

Importance

(a) (b)

(c)

Figure 9: Colliding vortex tubes dataset. (a) Positive (green) and
negative (red) importance are used concurrently. (b)
The enclosing geometry is removed completely while
the parts with positive importance are retained. (c) The
cutaway is constructed using two cuboids.

tant regions do not appear to be located at the surface of
the data and hence, the algorithm has to find cutaways to
reveal them to the user.

32 intelligent cutaway illustrations

Importance

0 1
(a) (b)

Figure 10: Transparency is taken into account when calculat-
ing the objective function. (a) Colliding vortex tubes
dataset without transparency. (b) For the same dataset
with enabled transparency, a smaller amount of data
is clipped.

3.5.4 Volumetric Data

In order to show that the algorithm also supports volumet-
ric datasets, an example of a cutaway using the computed
tomography (CT) study of a cadaver head from the Stan-
ford volume data archive [105] is provided in Fig. 12. Even
though the volume renderer is just a prototype implemen-
tation, we can see how the amount of visible data is opti-
mized independent of the rendering algorithm.

3.6 evaluation

In MC algorithms such as SA, evaluation plays an impor-
tant role because they are based on randomness and a sta-
ble and reliable solution often needs many steps to estab-
lish. Convergence has to be checked and in the case of

3.6 evaluation 33

(b)

(a) |u|

p

0.52

-0.92
0 1.55

(d)

(c)

|u|

p

0.52

-0.92
0 1.55

Importance

0 1

Figure 11: LES cylinder flow. (a) The user selects regions with dif-
ferent physical properties. (b) The data contains the
selected features (orange) but they are occluded by
other parts of the isosurface. (c) Parts of the data are
removed by the cutaway in order to reveal the selected
regions. In the right image, the cutting lines are high-
lighted blue. (d) The resulting cutaway.

34 intelligent cutaway illustrations

(a) (b) (c) (d)

Figure 12: Volumetric dataset. (a) Direct volume rendering. (b)
Example of a spherical cut-away. (c-d) Even a rough
DOI with the highest values inside the brain leads to
the clean cutaway in (d), which maximizes the brain
cross-section.

the developed algorithm, it is especially interesting to see
whether it can find the global optimum or gets stuck at a lo-
cal one. We performed several measurements, each of them
consisting of a number of runs, and evaluated them statisti-
cally. The results of these evaluations are discussed in this
section.

3.6.1 Reference Run

In order to get reference values, a naïve optimization pro-
cess has been implemented by traversing the whole config-
uration space and remembering the best configuration for
a very small example. The values calculated using SA are
then compared to the outcomes of the naïve process.

Producing the reference values is only possible for small
configuration spaces. On the hardware used (2.4GHz Quad
CPU, 4GB RAM, NVIDIA GeForce GTX 470), the objective

3.6 evaluation 35

function evaluation rate was approximately 150 evaluations
per second for the colliding vortex tubes example intro-
duced in Section 3.1.1 and around 15 evaluations per sec-
ond for the LES cylinder example discussed in Section 3.5.3.
As the configuration space defined in Section 3.1.3 grows
with n6, we use an example with one cuboid and n = 10 to
perform the evaluation.

3.6.2 Convergence

The quality of the result can be seen as a combination of the
reached objective function value and the convergence of the
algorithm to a fixed configuration. To measure the conver-
gence of the algorithm, the spatial overlap of the primitive
sets of different runs is calculated. In order to get a reliable
measurement, the same setup is optimized 50 times. The
resulting primitive sets are compared pairwise and the av-
erage of the overlap values is taken as the measure for the
convergence of the algorithm.

Because this measurement is implemented only to eval-
uate the algorithm, it is not executed every time the pro-
gram is run. The viewing direction and the zooming factor
of the camera are not changed among the different evalu-
ations. This is particularly important because the objective
function is view-dependent.

3.6.3 Evaluation Results

In Fig. 13, the result of a measurement run is shown. We
can see that the algorithm converges with perfect overlap
as soon as the search becomes wide enough. All results are
normalized with the results from the reference task in order

36 intelligent cutaway illustrations

to show the convergence to the global optimum. The most
important result is that for Smax > 500, SA converges to
the optimal solution. The values of the constant parameters
can be found in Table 2.

Smax

Q
ua

lit
y

(a)

0.
97

1.
0

300 500 700

0.
0

1.
0

(b)

S
pa

tia
l o

ve
rla

p

Smax
300 500 700

(c)

0.
06

0.
03

T
im

e

Smax
300 500 700

Figure 13: Evaluation results, normalized with respect to the ref-
erence run. (a) The objective function approaches the
value obtained by the reference run. (b) The conver-
gence measurement shows that the global optimum is
reached consistently. (c) SA performs magnitudes bet-
ter than searching the best position in the whole config-
uration space. Each data point is produced by taking
the mean of 50 samples. The mean time for the sam-
ples with Smax = 550 is 158s, compared to 3388s for
the reference run. For all plots, the error bars denote
the borders of the 95% confidence interval.

3.6.4 Parametrization

Evaluation results from different runs were used to find op-
timal parameters for SA. It turned out that the maximum
number of steps Smax and the number of successful steps
SS at a temperature influence the behavior most. In addi-
tion, they are related: we have achieved best results with a
rate of SmaxSS

≈ 10. The increasing consistency with a grow-

3.7 difficulty of optimal cutaways 37

Name Description Value

SH Heating steps 100

ST Thermalizing steps 100

SS Successful steps per temperature 75

n Grid cells per dimension 10

mT Temperature factor 0.9

α Positive/negative balance factor 1.0

β Volume penalty 0.001

Table 2: SA settings for the evaluation run. The results of the mea-
surements can be found in Fig. 13.

ing Smax can be explained by the design of the algorithm:
the lower and upper limits for the number of steps s at a
constant temperature are defined by SS and Smax, respec-
tively: SS 6 s 6 Smax. Hence, if both of them increase,
more samples are taken to find the equilibrium at each tem-
perature and it is reached more likely.

3.7 difficulty of optimal cutaways

In this section we show that finding an optimal cutaway ge-
ometry is a difficult problem. We will show the proof for
cutaway boxes with an objective function that minimizes
the number of boxes. The construction for other convex
shapes and objective functions is essentially the same. The
proof is divided into two parts. First, we start with a simple,
two-dimensional problem without occlusion.

38 intelligent cutaway illustrations

CUTPOINTS: Given a n × n array A of numbers with
aij ∈ N, find a set of boxes B that maximizes the objective
function

f(A,B) =
∑

(i,j)/∈B

aij −
∑

(i,j)∈B

aij − |B| (4)

where the notation (i, j) ∈ B stands for the set of all array
cells (i, j) for which there is a box b ∈ B such that the cell
(i, j) lies in b. The problem of finding the optimal set of
boxes B is NP-hard.

Proof. The proof reduces PLANAR-3SAT to CUTPOINTS.
Reduction of geometric problems to PLANAR-3SAT is a
common strategy. For a more detailed discussion we refer
the reader to proofs for similar problems, such as the rect-
angle tiling by Khanna et al. [60] or special segmentation
and scene analysis by Cooper [29].

Lichtenstein [68] has shown that PLANAR-3SAT is NP-
complete. We use the terminology from his paper: In the
PLANAR-3SAT problem we are given a 3CNF (conjunctive
normal form with at most 3 variables per conjunct) formula
F with the additional property that the following graph GF
is planar. The bipartite graph GF has the variables as one
vertex set and the clauses as the other. An edge corresponds
to each occurrence of a variable or its negation in a clause.
Fig. 14a shows an example of such a graph.

The reduction is now performed as follows: For any for-
mula in 3CNF for which GF is planar we construct an array
AF and a number mF with the following property: F is sat-
isfiable if and only if the optimal set of boxes BF maximizes
the objective function with f(AF, BF) = mF. We use the in-
put matrix AF as a “drawing table” onto which we embed
variable loops and clause gadgets. More precisely, for every

3.7 difficulty of optimal cutaways 39

variable in F we create a closed loop of matrix cells with
certain values (described below) and for every clause we
create a clause gadget, consisting of a block of matrix cells
with certain values. Each variable loop intersects a clause
gadget precisely if the variable is part of the given clause.
All remaining cells are labeled as background cells. Since
the graph GF is planar, we can draw the variable loops such
that they do not intersect. The layout of this construction is
illustrated in Fig. 14b.

The value of the background cells is set to a large positive
number b = n2 and the variable loops are covered by pairs
of cells with value −1 interleaved by cells with value 0 as
shown in Fig. 14c. This leaves exactly two ways to maximize
the objective function value for a single variable loop, with
boxes covering either odd or even pairs of negative cells.
Each of these layouts corresponds to a truth assignment of
the variable.

The values of clause gadget cells are shown in Fig. 14d.
The gadget contains parts of the three affected variable loops
and a single negative cell in the middle. Only loops with
the correct layout (and therefore the correct truth assign-
ment) can extend one of their boxes to cover the central cell
without using an additional box, thereby increasing the ob-
jective function value. Therefore, the formula F is satisfiable
if and only if the optimal solution for Eq. 4 does not use
any additional boxes in any clause gadget.

Corollary 1. The problem defined in Section 3.1.4 with V(P) =
|P| is NP-hard.

Proof. Given an instance of CUTPOINTS, we create a regu-
lar quad mesh in the xy-plane with mesh points correspond-
ing to array cells. The view point is now chosen along the

40 intelligent cutaway illustrations

(a)

atomic fomulae clauses

C

B

D

A

E

-1

-1 -1

-1

-1 -1

-1

-1 -1

-1-1

-1

-1-1

-1

-1

-1-1

-1 -1

-1

-1

-1

-1

-1

box loops clause gadgets

(b)

A

B

C

D

E

reduction

(d)

A OR B OR D

odd pairs (true)

even pairs (false)

(c)

-1

-1

0

0

b b b b b b b b00

0

0

0 0

0

0

-1 -1

-1

-1 -1

-1-1

-1

b b b bbbb

bb

b

b

b b b b b b b

bb b b b b b

b

b

b b b b b

-1

-1

0

0

b b b b b b b b00

0

0

0 0

0

0

-1 -1

-1

-1 -1

-1-1

-1

b b b bbbb

bb

b

b

b b b b b b b

bb b b b b b

b

b

b b b b b

Figure 14: (a) An instance of PLANAR-3SAT. (b) An instance of
CUTPOINTS. The array A is used as a drawing board
to draw one closed loop per variable and one clause
gadget per clause. (c) Part of a variable loop. There are
only two ways to cover all negative cells in the loop
with a minimal number of boxes, such that no box in-
cludes a background cell. The square element contain-
ing the two orange cells is used to swap the layout of
the boxes along the loop to account for negations. (d)
A clause gadget for the expression A OR B OR D. In
this example, A is false and B and D are true. Only
loops with the correct box layout can extend one of
their boxes to collect the additional black cell in the
middle.

3.7 difficulty of optimal cutaways 41

z-axis such that every mesh point is uniquely projected onto
a screen pixel. If the scene consists only of the quad mesh,
there is no occlusion and every pixel is directly related to
a point in the scene. Optimizing now the objective function
Eq. 1 leads to a set of axis-aligned cutting boxes, and their
intersection with the xy-plane solves the CUTPOINTS prob-
lem.

4
V O RT E X D E T E C T I O N I N 4 D M R I D ATA :
U S I N G T H E P R O P E R O RT H O G O N A L
D E C O M P O S I T I O N F O R I M P R O V E D
N O I S E - R O B U S T N E S S

In a healthy cardiovascular system, morphology and hemo-
dynamics are attuned to one another. The specific geometry
of the heart and vessels allows an efficient blood circulation
through the body. The blood flow exerts mechanical forces
on the vessel walls and triggers a continuous renewal of
the tissue. However, if either morphology or hemodynam-
ics develop anomalies, their synchronized interplay gets out
of balance and cardiovascular diseases may develop [96].

In this process of disease development, vortices play an
important role. Vortices are not per se an indicator for a
cardiovascular dysfunction since healthy blood flow also
comprises recirculation and vortices — especially in curved
regions or at bifurcations [61, 30]. Still, vortices often oc-
cur abnormally because of morphological alterations, e.g.,
in vessel widenings or after narrowings (stenosis, calcified
heart valves). In these cases, the vortical flow alters the pres-
sure and shear forces on the vessel walls (in direction, fre-
quency, or magnitude) and triggers cellular processes lead-
ing to aneurysms or atherosclerosis [30]. Also, in slowly
rotating vortices the thrombogenesis risk is increased, since
the blood may come to a halt and start to clot. These thrombi
can cause stroke or heart attacks [40].

Altogether, pathologies are indicated when vortices ap-
pear in unusual regions, persist exceptionally long, or show

43

44 vortex detection in 4d mri data

very low blood velocities. Therefore, a strong research inter-
est exists in the more detailed relationship between vortical
flow and specific diseases and their progression [40]. For
this, vortices are examined in 4D MRI blood flow data. 4D
MRI is a flow-sensitive imaging technique, which allows
to measure time-resolved blood flow velocities in three di-
mensions. In these data, automatic vortex detection has so
far been done with algorithms commonly used with simu-
lation data [104, 20, 63]. However, the results are not satis-
factory yet because 4D MRI has lower resolution and signal-
to-noise ratio as well as different noise characteristics than
simulation data. Since the vortex detection algorithms rely
on first- and second-order derivatives, they are especially
sensitive to lower-quality flow data like 4D MRI.

Our approach is therefore to preprocess the 4D MRI data
to improve vortex detection. In particular, we propose the
use of the proper orthogonal decomposition (POD), which
decomposes the velocity field into different scales of motion.
Its use is motivated by the fact that vortices in blood flow
are medium- to large-scale phenomena, while noise is a
small-scale phenomenon. By discarding the high-frequency
scales, we seek to improve the quality of the detected vor-
tices.

4.1 4d pc-mri

“4D PC-MRI” is a technical name for time-resolved three di-
mensional phase-contrast magnetic resonance imaging, which
is a method capable of acquiring a time-dependent vector
field of a patient’s blood flow [78]. In general, a 4D PC-
MRI dataset consists of several time steps spanning a single
heart beat, where each time step contains one magnitude

4.1 4d pc-mri 45

and three phase difference images The magnitude image
shows anatomical features, while the phase difference im-
ages contain the velocity components A slice of a 4D PC-
MRI dataset is shown in Fig. 15.

Figure 15: A slice of a 4D MRI dataset with (from left to right)
magnitude channel and u,v and w velocities.

4.1.1 MRI-related error and noise

Due to the nature of MRI measurements, the resulting blood
flow data contains a high amount of noise and inaccura-
cies [113]. Partly, these are systematic errors, such as:

motion artifacts Due to long acquisition times (up to
20 minutes), respiration and heart contraction are a
source of motion artifacts. These can be countered by
respiratory gating approaches [79].

eddy currents Fast switching of the magnetic field gra-
dient may induce currents in the patient or the equip-
ment, resulting in a background phase distortion. This
distortion field can be estimated and corrected for [66].

phase wrapping PC-MRI requires the user to set a ve-
locity encoding parameter, which defines the maximum
measurable velocity magnitude along one axis. If the

46 vortex detection in 4d mri data

actual velocity exceeds this threshold, the measured
value will simply wrap around, resulting in artifacts.
A large number of methods exist for phase unwrap-
ping [69].

Even after correction for systematic errors, the resulting
data still contains a high amount of noise. Noise in the raw
measurements is often modeled as independent Gaussian
noise. Since MRI acquires complex-valued frequency space
raw data, noise in the resulting magnitude and phase off-
set images follow complicated distributions, which, how-
ever, can be approximated by Gaussian distributions if the
signal-to-noise ratio (SNR) is high enough [44]. Apart from
generic image processing algorithms, specialized methods
have been proposed for the denoising of magnitude images,
focusing on the reconstruction of anatomical features and
often considering the Rician distribution of the noise [76]. In
flow fields, noise can be reduced by imposing a divergence-
free condition inside the blood vessel [25] or comparing
measured data with a database of numerically simulated
datasets [80]. Unlike these methods, our approach does not
require a precise segmentation of the vessel or any a-priori
knowledge about the data.

4.1.2 Vessel segmentation

A segmentation of blood vessels is mainly required to vi-
sualize the vessels themselves, in order to provide anatomi-
cal context information. However, several flow visualization
methods use this information internally, e.g., to clip stream-
and pathlines when they leave the vessel due to noise and
numerical errors.

4.2 vortex detection 47

While there are sophisticated methods for a precise seg-
mentation [65, 89], approximate segmentations can be eas-
ily obtained by thresholding a scalar field derived from the
measured data. Popular choices for the scalar field include
the temporal maximum intensity projection of the velocity
magnitude or the PCMRA field, defined as

PCMRA =

√√√√ 1

N

N∑
t=1

m2(t) (u2(t) + v2(t) +w2(t)), (5)

where u = (u, v,w) is the velocity vector and m is the mag-
nitude image [19].

Note that some blood vessels, like the aorta, show consid-
erable movement during each heart cycle. A static segmen-
tation should therefore be used with caution when masking
the initial dataset or clipping features like streamlines.

4.2 vortex detection

A large number of methods for detecting vortices in a flow
have been proposed in the field of flow visualization. Re-
cently, Köhler at al. [63] have compared several of these
methods in the context of blood flow visualization. In ac-
cordance to their findings, we have chosen the λ2 method
by Jeong and Hussain [57] to visualize vortices in the de-
noised flow fields. In addition we consider the residual vor-
ticity method recently introduced by Kolář [64, 101].

4.2.1 The λ2 method

The λ2 method defines a vortex in an incompressible flow
in terms of the eigenvalues of the symmetric tensor S2 +

48 vortex detection in 4d mri data

Ω2, where S is the symmetric and Ω is the antisymmetric
part of the velocity gradient ∇u. S and Ω are called the
strain rate tensor and the vorticity tensor. A vortex is then
defined as a maximally connected fluid region with two
negative eigenvalues of the symmetric tensor S2+Ω2. Due
to the symmetry of S2 +Ω2, the eigenvalue decomposition
is guaranteed to result in real eigenvalues. In other words,
the vortex identification criteria is defined as λ2 < c, where
λ2 is the second largest eigenvalue and c 6 0 a user-defined
constant.

4.2.2 Residual vorticity

Like λ2, residual vorticity is defined in terms of S and Ω.
Since S has real, orthogonal eigenvectors, the coordinate
frame can be rotated to become aligned with the eigenvec-
tors of S, called the strain basis. The vorticity matrix Ω does
not change when transformed to the strain basis. In the 2D
case, the strain rate matrix can be further decomposed into
mean and deviatoric strain rate, sm and sd, and we have:

∇u =

[
sm 0

0 sm

]
+

[
sd 0

0 −sd

]
+

[
0 −ω

ω 0

]
(6)

The divergence-free terms in Eq. 6 can be rearranged to
give a decomposition into pure shear and a second part,
which is either residual vorticity or residual straining.

In the “corotation case” |ω| > sd, we can decompose[
sd −ω

ω −sd

]
=

[
sd ∓sd
±sd −sd

]
+

[
0 −ω± sd

ω∓ sd 0

]
(7)

where the upper sign applies if ω > 0 and the lower sign if
ω < 0. The first matrix on the right hand side describes a

4.2 vortex detection 49

velocity field with all vectors parallel to the positive (nega-
tive) diagonal and with zero velocity on this diagonal. The
second matrix is the residual vorticity matrix. In the “con-
trarotation” case |ω| < sd, there is nonzero residual strain-
ing, while residual vorticity is zero.

In terms of the velocity gradient (in both original and
strain basis!), magnitude of residual vorticity can be com-
puted as

max(|vx − uy|−
√
(ux − vy)

2 + (vx + uy)
2, 0) (8)

where the subscripts denote differentiation.
In 3D, Kolář et al. [64] define residual vorticity (magni-

tude) at a given point x as the maximum of residual vortic-
ity magnitude over the 2D slices through x taken in all pos-
sible directions. They approximate this maximum by taking
slices at one-degree steps in longitude and latitude. This
means that 1+ 90 ∗ 360 = 32401 calculations of 2D residual
vorticity have to be made per point.

Rather than using this brute-force approach, we propose
to find the maximum using local optimization. There are
two easy-to-handle degenerate cases, namely if the (3D) vor-
ticity vector is zero and if the two smaller principal strains
(eigenvalues of S) are equal. In all other cases, both |ω| and
−sd have a maximum on a single direction per hemisphere.
Unfortunately, this does not imply that the sum of the two
terms is a convex function, which would guarantee that lo-
cal optimization finds the global optimum. As a heuristic,
we use the mean of the two directions as the initial value
for the optimization process. For a practical verification, we
compared our results with those of the brute-force method.
For this comparison, we sampled the space of velocity gra-
dients, which has four dimensions after transformation to

50 vortex detection in 4d mri data

strain basis, subtraction of the mean strain, and normaliza-
tion of scaling. We tested on 336000 samples and found the
same maximum in all cases. Our method needed on aver-
age 189.9 evaluations on 2D slices, as compared to the 32401

of the brute-force method, and does not quantize the result.

4.3 proper orthogonal decomposition

The POD [70] approximates each of N outcomes S(n)(x) of
a random scalar field variable by a “best fit” linear combi-
nation of M 6 N uncorrelated modes Ŝi. The nth field is
approximated by

Ŝ(n)(x) = Ŝ0(x) +
M∑
i=1

a
(n)
i Ŝi(x), (9)

where Ŝ0(x) is the mean of all outcomes and Ŝi are eigen-
functions to the M largest eigenvalues of the two-point spa-
tial correlation operator [70]. Because random noise has a
low spatial correlation, it tends to reside in modes of low
eigenvalues. Hence, if M < N, POD removes noise.

POD was originally defined for scalar fields, Lumley [74]
extended it to vector fields and showed that the modes
decompose a vector field into large-scale and small-scale
phenomena. Sirovich [103] proposed what is now known
as snapshot POD. The N outcomes are simply taken to
be snapshots of a time-dependent vector field at different
times, therefore the approximations give a new time-dependent
field. Furthermore, he showed that because fields resulting
from numerical simulation can be described as linear com-
bination of interpolation polynomials, the coefficients a(n)i

can be directly computed from the eigensystem of a matrix
built directly from the values at grid positions. In the case

4.3 proper orthogonal decomposition 51

of a time-dependent velocity field, the data consists of N
3D vector fields, each given on a grid with L nodes Thus,
each sample consists of a 3D vector field, whose L velocity
vectors are lined up to one feature vector. The sample ma-
trix then becomes a 3L×N when we fill up X column-wise.
Eq. 10 illustrates the shape of the data matrix X.

X =

x x · · · x y y · · · y z z · · · z
x x · · · x y y · · · y z z · · · z
...

... · · ·
...

...
... · · ·

...
...

... · · ·
...

x x · · · x y y · · · y z z · · · z

T

(10)

Once the POD is computed, a question remains how to
choose an appropriate number of modes M. A commonly
used option is to require that the contribution of the se-
lected eigenfunctions to the total variance exceeds a fixed
percentage, e.g., 90%. Another option is to analyze the scree
graph, which is a plot of the eigenvalues in decreasing or-
der. One may then choose M as the point where the graph
starts to level off. This is very subjective, but can be useful if
some a-priori information about the distribution of relevant
eigenvalues is known.

Since there is no noise-free ground truth for 4D MRI, we
tested the noise suppression capability of POD on synthetic
data of a circular flow in a torus. The flow varies over time
only by a factor and thus contains a single POD mode. A
constant amount of white noise has been added to all (17)
time steps, see Fig. 16. While in the full data, the noise ac-
counts for 65.9% of the total energy, this is reduced to 10.2%
if data are reconstructed from a single POD mode.

52 vortex detection in 4d mri data

0 2 4 6 8 10 12 14 16
0

200

400

Figure 16: Singular values (proportional to the square root of the
energy) in POD of synthetic data, plotted per mode.

4.4 results

In this section, we compare the POD method with simple
Gaussian smoothing for the visualization of vortices in aor-
tic blood flow. In accordance with the findings of Köhler
et al. [63], we have chosen the λ2 method [57] for extract-
ing vortices from 4D MRI data. Note that Pobitzer et al. ar-
gue that the POD is incompatible with the λ2 method since
POD extracts large-scale features, whereas λ2 is related to
small-scale features [91]. In our application however, we
are interested in large-scale vortices. Disjoint vortex core
regions are obtained by using negative isosurface levels [58,
35]. Both methods were implemented in the Visdom visual-
ization framework [112].

4.4.1 Datasets

All tests are performed on one of the following three datasets,
summarized in Table 3: a healthy aorta from a volunteer

4.4 results 53

(Fig. 17a), a dataset with an aneurysm in the descending
aorta (Fig. 17b), and an aorta with a pathologically distorted
shape (Fig. 17c). The datasets are preprocessed as described
in [19, 77].

Name Resolution

192× 144× 26
Healthy (1.7× 1.7× 2.2 mm)

17 time steps

192× 144× 28
Aneurysm (1.77× 1.77× 2.6 mm)

20 time steps

192× 144× 26
Distorted (1.66× 1.66× 2.2 mm)

22 time steps

Table 3: Overview of used datasets. The resolution is given in vox-
els, values in parentheses indicate voxel size.

4.4.2 POD of blood flow data

Fig. 18 shows the spectrum of singular values when apply-
ing POD to our datasets. The energy of the modes decays
fast, but does not reach zero. Note that a white noise ran-
dom vector field has a perfectly flat spectrum. It is therefore
likely that the first few modes have a high SNR, while the
last few modes contain mostly noise.

Because the noise is distributed among all modes, the
POD-filtered data will still be slightly noisy, even if using a

54 vortex detection in 4d mri data

(a) Healthy (b) Aneurysm (c) Distorted

Figure 17: Approximate segmentations of datasets, computed as
isosurfaces of the PCMRA field [19]. Models were man-
ually cleaned to improve visual quality.

0 5 10 15 20

0

100

200
Healthy

Aneurysm
Distorted

Figure 18: Spectrum of singular values in the POD. The horizon-
tal axis shows the index of the mode, the vertical axis
shows the eigenvalue of the mode.

very low number of modes. A way to further reduce noise
is to do gradient estimation using a Gaussian derivative
kernel instead of finite differences.

4.4 results 55

4.4.3 Comparing POD and Gaussian smoothing

Gaussian smoothing and the POD are fundamentally dif-
ferent methods. However, they both have one parameter (σ
and the number of modes, respectively) which controls the
strength of the filtering effect. In order to select compara-
ble values of these parameters, we compute the amount of
change introduced to the original data by

change(t) =
√∑

i

‖v̂(xi, t) − v(xi, t)‖22, (11)

where v̂(x, t) is the filtered and v(x, t) the original vector
field. This corresponds to the L2 norm of the difference be-
tween the two vector fields.

Given two filtered datasets with comparable change(t),
we can now perform a qualitative comparison of detected
vortices.

4.4.4 Results

Fig. 20 shows the detected vortices in the healthy aorta
dataset. Filtering methods were performed on the original
dataset, but the resulting λ2 isosurfaces were clipped to
only include the relevant part of the aorta. Depicted in
yellow is the isosurface of the PCMRA field [19], show-
ing an approximate static segmentation of the aorta for
context purposes. The number of modes was chosen sub-
jectively after inspecting the spectrum of singular values
(Fig. 18). The corresponding value of σ for the Gaussian
filtering was chosen such that both methods modify the
original data approximately by the same amount (Fig. 19).
Fig. 20 shows several combinations of preprocessing meth-

56 vortex detection in 4d mri data

0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

60
Gauss σ = 0.5
POD 10 modes
Gauss σ = 1.0
POD 3 modes
Gauss σ = 2.0
POD 1 mode

Figure 19: Change in the healthy aorta dataset introduced by fil-
tering methods. change(t) is plotted against the time
step.

ods (POD and Gaussian filtering) and methods for com-
puting derivatives (finite differences and convolution with
Gaussian derivatives). Further results are shown in the ac-
companying video.

The time step chosen for Fig. 20 is at the end of the di-
astole, where the blood flows slowly and the SNR is small.
Medical literature tells us that the blood forms rotational
flow patterns at this time (see Fig. 21), which is consistent
with the tube-like structures of the λ2 isosurfaces. Note that
naïvely using finite differences without any preprocessing
does not produce useful results. A POD reconstruction with
3 modes shows considerably less noise and vortical struc-
tures start to become visible. In comparison, Gaussian fil-
tering yields smoother results at the cost of finding fewer

4.4 results 57

features. After using Gaussian derivatives, results are com-
parable in visual quality, while the POD method shows
more features. In order to verify that features visible in the
POD-processed dataset correspond to a vortical flow, we
seed streamlines of the original dataset around the features
(Fig. 24).

Similar results can be observed in the distorted aorta
dataset in Fig. 22, again at the end of the diastole. As be-
fore, the POD reconstruction with 3 modes and Gaussian
filtering are comparable in strength, with a difference in
err(t) of less than 5%. In order to check that the features
found in the POD-preprocessed dataset are not false posi-
tives, we have seeded streamlines around the isosurfaces of
λ2, as shown in Fig. 24.

A slightly different result can be seen in Fig. 23, show-
ing the aneurysm aorta dataset near the end of the systole,
The time step chosen here is near the end of the systole,
where the blood flows faster and the vortices are stronger.
The isovalue of λ2 is therefore chosen significantly smaller
than in the previous figures. Note that the signal-to-noise
ratio is higher than previously and even a weak smooth-
ing filter already gives nice results. Nevertheless, the POD
method produces consistent results and does not miss fea-
tures when compared to the Gaussian filtered data. Differ-
ence in change(t) ≈ 15%. The blood flows fast at this time
step and the signal to noise ratio is high.

4.4.5 Comparison of vortex detection methods

Vortex detection in 4D MRI data is typically done using the
λ2 method [63, 104]. We also implemented residual vortic-
ity as described in Sec. 4.2.2, using the Polak-Ribière op-

58 vortex detection in 4d mri data

timization method from the GNU Scientific Library [43].
Fig. 25 compares results for the healthy aorta and aneu-
rysm datasets. The time steps with highest average velocity
were chosen, and no POD filtering was used. The two meth-
ods turned out to be highly consistent in general. A differ-
ence can be seen in the ascending part of the healthy aorta,
where there is a pair of roughly parallel vortices. Here, the
vortex appearing more prominently in the residual vorticity
isosurface is the stronger of the two, as can be concluded
from the streamline pattern and the Sujudi-Haimes vortex
core lines. These two means of verification are valid since
we have longitudinal vortices here. We found that residual
vorticity is a valid, though computationally slightly more
expensive, alternative. The average number of 2D slices to
be evaluated per 3D residual vorticity computation was 43.4
and 40.6 for the two datasets.

4.4 results 59

Isosurface of λ2 = −100 Filter Derivatives

None
Finite

differences

Gauss
(σ = 1)

Finite
differences

POD
(3 modes)

Finite
differences

Gauss
(σ = 1)

Gauss
(σ = 1)

POD
(3 modes)

Gauss
(σ = 1)

Figure 20: Isosurfaces of λ2 = −100. Comparison of filtering
methods for the healthy aorta dataset at the end of
the diastole.

60 vortex detection in 4d mri data

(a) (b) (c)

Figure 21: Illustrative visualization of the blood flow in the aorta.
(a) Early systole, accelerating axial flow. (b) Mid sys-
tole, secondary helical flows develop. (c) Late systole,
rotational and recirculating secondary flows. Image
reprinted with permission from [61].

4.4 results 61

Isosurface of λ2 = −80 Filter Derivatives

None
Finite

differences

Gauss (σ = 1)
Finite

differences

POD (3
modes)

Finite
differences

Gauss (σ = 1) Gauss (σ = 1)

POD (3
modes)

Gauss (σ = 1)

Figure 22: Isosurface of λ2 = −80. Comparison of filtering meth-
ods for the distorted aorta dataset at the end of the
diastole.

62 vortex detection in 4d mri data

Isosurface of λ2 = −3000 Filter Derivatives

None
Finite

differences

Gauss (σ = 1)
Finite

differences

POD (4
modes)

Finite
differences

Gauss (σ = 1) Gauss (σ = 1)

POD (4
modes)

Gauss (σ = 1)

Figure 23: Isosurface of λ2 = −3000. Comparison of filtering
methods for the aneurysm aorta dataset at the end of
the systole.

4.4 results 63

(a) (b) (c)

Figure 24: Streamlines around features found in the POD-filtered
distorted aorta dataset, showing that those are not
false positives. (a) Streamlines in the original dataset.
(b) Streamlines after Gaussian smoothing with σ = 1.
(c) Corresponding region with expected helical flow.

64 vortex detection in 4d mri data

(a) Healthy

(b) Aneurysm

Figure 25: Vortices in a late systole time step of the healthy aorta
(top) and aneurysm (bottom) datasets. Images show
isosurfaces of λ2 (red) and residual vorticity (blue),
Sujudi-Haimes vortex core lines (yellow), and some
manually seeded streamlines (black).

5
C O N C L U S I O N

In this part we have presented two flow visalization meth-
ods based on higher-level abstractions and targeting clutter
and occlusion problems.

In the first method, we have presented a fully automatic
approach to position cutaways based on a degree of inter-
est specified by the user. Even though we only apply the
method to automatic cutaway placement, the approach is
general enough to solve a wide range of view-dependent
optimization problems.

One benefit of our approach is the fact that rendering
parameters such as the position of cutaway boxes does not
need to be specified by the user, avoiding thus tedious user
interaction. In contrast to this, we do not suggest to take
the specification of semantics out of the hands of the user:
Specification of importance is what the user is interested in
and we suggest to use interactive visual analysis for this
task.

A limitation of the method is that the type of primitives
has to be chosen by the user, however we argue that using
known geometries eases perception.

We also show that the problem of placing cutaways op-
timally is NP-hard. Some approaches solve this by using
heuristics and hoping that a good solution will arise for
many relevant inputs. In this paper we suggest a solution
based on a randomization strategy and show that it quickly
converges to the optimal solutions for a problem which is
small enough. In general, the presented approach created

65

66 conclusion

good solutions for all datasets presented in this paper and
we have experienced it to work robustly during evaluation.

This can be a sign that simulated annealing can be a good
starting point for other optimization problems in visualiza-
tion. However, it is important to realize that not all instances
of a problem that is NP-hard are difficult to solve, and an-
other route for future research might be to see if the prob-
lems that appear in practice can be solved quickly by a po-
tentially exponential algorithm.

In the second method, we have analyzed the use of the
POD method for the preprocessing of PC-MRI blood flow
dataset and its effect on the detection of vortices using the
λ2 method. Our results show that data processed with the
POD method yields better results than the unprocessed data.

A simple Gaussian filtering with the same filtering strength
as POD produced smoother results, but resulted in fewer
vortices being detected. As some amount of noise is con-
tained in all POD modes, the standard gradient estimation
based on finite differences does not produce sufficiently
smooth results. By using instead a Gaussian derivative ker-
nel, we achieved good results.

Note that Pobitzer et al. argue that the POD is incompat-
ible with the λ2 method since POD extracts large-scale fea-
tures, whereas λ2 is related to small-scale features of their
turbulent flow [91]. In our application however, we are in-
terested in large-scale vortices and found the POD method
to be applicable.

As there is no ground truth for measured MRI data, we
did not perform a rigorous quantitative analysis of the POD
method. Such an analysis could be performed on numeri-
cally simulated data with a physically correct model for PC-
MRI noise, which is an interesting topic for future work.

Part II

L O W L E V E L A B S T R A C T I O N

In this part, we present a 2.5D illustrative ren-
dering framework and two methods based on
lower-level abstractions. These methods use non-
photorealistic rendering in order to improve the
perception of shape or direction on multi-layered
transparent surfaces.

6
O V E RV I E W

The use of non-photorealistic techniques to enhance the
perceptual effectiveness of hand drawings has been used
for a long time by illustrators [52]. Their list of tricks and
techniques for adding shape, depth, material, or directional
cues is long and many techniques have been adopted into
visualization algorithms. Figure 26 shows examples of such
low level abstractions.

An important technique for enhancing shape perception
is adding depth cues. While a realistic illumination model
(including shadows and global illumination effects like am-
bient occlusion) greatly improves the depth perception, some-
times it is too expensive or incompatible with other tech-
niques. In this case, additional depth cues like unsharp
masking [72] or volumetric halos [23] may be useful.

When rendering objects with many occluding surface lay-
ers, transparency may be used to show multiple layers in
one image. However, using a constant surface transparency
tends to produce images where understanding individual
layers is difficult. Some techniques therefore use an adap-
tive transparency [32, 53, 45], add additional cues to im-
prove the shape perception [54, 55, 73], or try to minimize
the difference between actual and perceived transparency [27].
Instead of using traditional transparency based on alpha
blending, multiple layers may also be visualized using color
weawing [71] or overlaying different visualization techniques [108].

Several techniques seek to convey the shape and struc-
ture of rendered objects by using lines, such as silhouettes

69

70 overview

(a) (b)

(c) (d)

Figure 26: Examples of low level abstractions. (a) A non-
photorealistic lighting model [42]. (b) Conveying
shape using Laplacian lines [116]. (c) Depth cues us-
ing volumetric haloes [23]. (d) Shape enhancing sur-
face transparency [53].

or contours [31, 59, 116]. Line-based techniques are impor-
tant because they use pixels very economically without oc-
cluding inner structures. The drawback is though that it is
difficult to apply proper shading. Complex objects also of-
ten produce a dense set of feature lines which is difficult
to understand. If the lines occlude each other, a haloed line
effect may be used to improve the perception of the relative
depth ordering [14, 36].

6.1 definitions and symbols 71

surface surface boundarytraditional silhouette our silhouette

Figure 27: Silhouette lines for two open concentric cylinders.

Another approach for improving the shape perception
is using a non-photorealistic shading model. Gooch shad-
ing uses model that uses both luminance and hue to in-
dicate surface orientation [42]. Light warping locally com-
presses patterns of reflected lighting to enhance shape de-
piction [109].

6.1 definitions and symbols

6.1.1 Silhouettes and contours

As discussed above, artists often enhance silhouette lines of
the illustrated surfaces. Since there is a significant variabil-
ity in terminology, we give here our definition of a silhouette,
as illustrated in Figure 27. Traditionally in computer graph-
ics, the silhouette is defined as the set of points where the
surface normal is perpendicular to the view direction (blue
lines) [56]. However, this definition does not capture the
surface boundary (red lines), which intuitively belongs to
the silhouette as well. Therefore, we define a silhouette as
the union of the two aforementioned sets (black lines).

72 overview

6.1.2 Pixels and fragments

For the purpose of this work, we define a pixel as the small-
est addressable image element and a fragment as an inter-
section of the rendered surface with a ray going through
the pixel center. Typically, surfaces are rendered as trian-
gle meshes. Large triangles that cover multiple pixels in the
image will therefore consists of multiple fragments. Con-
versely, small triangles that cover an area far smaller than a
pixel might not generate any fragment at all. Some applica-
tions use multiple fragments for each pixel for the purpose
of anti-aliasing (e.g., the supersampling technique). For the
sake of simplicity, we do not discuss this case here, how-
ever, it would be straightforward to extend our methods to
handle multiple fragments per pixel.

6.1.3 Symbols

Table 4 shows a list of important variables used in the fol-
lowing chapters. As the methods presented in those chap-
ters work in screen space, coordinates are generally given
in screen space, unless otherwise noted.

6.1 definitions and symbols 73

Name Description

x Screen (pixel) coordinates of a surface point.

xe Eye coordinates of a surface point.

xw World coordinates of a surface point.

u The vector field at a surface point (in screen
coordinates).

n The surface normal at a surface point (in screen
coordinates).

ρ The grayscale color of a surface point

α The transparency of a surface point

Ω The screen space computational domain, i.e., all
pixels that contain some part of the surface.

k The current iteration for iterative methods.

t Time.

Table 4: Definitions of variables used throughout this part.

7
I L L U S T R AT I O N B U F F E R

The illustration buffer is a novel 2.5D image space repre-
sentation of a rendered scene. For each pixel of the image,
it provides access to all surface fragments that intersect a
viewing ray through that pixel. Additionally, for each frag-
ment, it provides access to neighboring fragments along the
surface. This flexible representation can not only be used to
implement a wide range of existing transparency assign-
ment techniques, but serves also as a base for novel 2.5D
image filters.

fragment
pixelba

Figure 28: The illustration buffer. (a) A cross section of a surface
with three layers. Dashed lines indicating view rays
(one for each pixel). (b) The corresponding buffer lay-
out. Horizontal lines between fragments indicate ex-
plicit links to geodesically neighboring fragments.

Before describing the illustration buffer, we review the
conventional way of generating images. Traditionally, graph-

75

76 illustration buffer

ics cards use two buffers to store the rendered image: the
color buffer (or frame buffer) stores the color of each pixel
and the z-buffer stores its distance to the viewer. Whenever
an object is rendered, its polygons are projected onto the
screen and rasterized into fragments. Each fragment then
checks in an atomic way if it is closer to the viewer than the
currently stored distance at the given pixel. If the fragment
passes the z-buffer test, it updates both the color and depth
information.

If the scene contains transparent surfaces rendered with
alpha blending, the surfaces need to be rendered from back
to front. Simply sorting objects by their distance to the cam-
era does not work since triangles can intersect each other.
Guaranteeing correct results in this case is the goal of so-
called order-independent transparency rendering methods.
Early appoaches are based on the depth peeling technique
by Mammen [75]. In this technique, the front-most frag-
ments for each pixel are extracted and processed as a flat
2D image. This depth peeling layer is illustrated by the dark
blue fragments in Figure 28. After that, the next layer (light
blue fragments) is extracted and blended with the previous
layer. This is repeated until no more fragments are available.
A disadvantage of this technique is that it requires multiple
rendering passes and that some of the depth peeling layers
contain very few non-empty pixels (in Figure 28, the first
layer contains 8 pixels, while the third layer contains only
3).

A different approach is followed by the A-buffer, intro-
duced by Carpenter [26]. In this technique, the color buffer
is replaced by a linked list of fragments for each pixel. After
all surfaces have been rendered, each linked list is sorted
individually, guaranteeing a correct order for each pixel.
Early GPU implementations of the A-buffer are presented

illustration buffer 77

by Bavoil et al. [17], and Myers and Bavoil [85]. However,
both implementations can only store a limited number of
fragments in each list. Yang et al. [115] present an unbounded
GPU implementation of the A-buffer by exploiting recent
advances in graphics hardware. This work is a major inspi-
ration for the implementation of our technique.

Similar to the A-buffer, our illustration buffer stores an
unbounded linked list of all surface layers for each pixel.
Unlike existing implementations, however, each fragment
stores an arbitrary number of surface properties for de-
ferred computations, as well as explicit links to geodesi-
cally neighboring fragments. The illustration buffer is im-
plemented on the GPU and can be used at interactive frame
rates.

Having simultaneous access to all fragments along a view-
ing ray as well as neighboring fragments along the surface
makes our representation very flexible. It can not only be
used to implement a wide range of existing transparency
assignment techniques, but serves also as a base for novel
2.5D image filters. Note that for filters where surface frag-
ments need to exchange information along the surface (such
as solving a differential equation on the surface using finite
differences), a naïve depth peeling approach is not appro-
priate. The depth peeling layers contain adjacent fragments
from different surfaces, and surfaces may pass through dif-
ferent depth peeling layers. The filter would therefore need
to exchange information with other depth peeling layers,
effectively creating a 2.5D data structure similar to the illus-
tration buffer.

78 illustration buffer

7.1 buffer layout

The illustration buffer data structure consists of several sep-
arate buffers, which are all stored in graphics memory. Each
buffer represents an array, whose elements store a fixed
number of values. There are three types of buffers: those
that contain a constant number of elements, those that con-
tain one element per screen pixel, and those that contain
one element per surface fragment. The following list de-
scribes the individual buffers. Their basic layouts are illus-
trated in Figure 29.

• fragData contains the data for all fragments. Each el-
ement in this buffer stores a number of application
dependent properties of one fragment, such as the
fragment position, normal direction, and color. This
buffer is implemented as a 1D four channel texture
object, with one buffer element spanning N consecu-
tive texels, leaving room for 4N properties for each
fragment.

• fragData2 has the same layout as fragData and is
used in ping-pong computation schemes.

• fragNext contains for each fragment the index of the
next fragment belonging to the same pixel. This is sim-
ilar to a “next” pointer in a linked list.

• pixelHead contains for each pixel the index of first
fragment belonging to that pixel. This is similar to a
“head” pointer in a linked list.

• pixelCount contains for each pixel the number of frag-
ments belonging to that pixel.

7.2 buffer filling 79

• fragCount contains one single element, storing the to-
tal number of fragments written so far. This is also the
index of the next free cell in the fragData array.

• fragCountMax is a constant number storing the size of
the fragData buffer.

7.2 buffer filling

As in conventional rendering, polygons are first rasterized
into fragments. This is done automatically by the graphics
hardware. Each fragment is then simply inserted into the
fragment list, using a fragment shader described in Algo-
rithm 1. The shader consists of three important steps: First,
fragCount is increased by one to get the index of a free cell
in fragData (line 1). Next, the previous value of pixelHead
is stored and replaced by the new index (line 3). After this
step, prevHeadId and newFragId contain the old and the
new fragment list heads, respectively. Finally, these two list
elements are linked (line 4). The return value of this func-
tion is then the index of a free element that can be used to
store all fragment properties.

The above algorithm needs several non-standard fragment
shader operations, all of which are available in current graph-
ics hardware: atomic operations for protection against con-
current access, and read and write from arbitrary mem-
ory locations in a buffer. In our implementation, we ac-
cess this functionality through OpenGL with the extension
GL_EXT_shader_image_load_store.

Note that fragData can only store a limited number of
fragments and any additional fragments are simply ignored.
After each rendering, we check if the number of generated

80 illustration buffer

Algorithm 1 Inserting a fragment into the illustration buffer

1: newFragId← add(fragCount, 1)
2: if newFragId < fragMaxCount then
3: prevHeadId←

exchange(pixelHead[x,y], newFragId)
4: fragNext[newFragId]← prevHeadId
5: return newFragId
6: else
7: return -1
8: end if

fragments was larger than the buffer size. If this was the
case, we resize the buffer to the required size and repeat
the whole rendering process. This approach might be seen
as wasteful of resources. However, we regard this limita-
tion as temporary since current graphics hardware already
contains specific constructs for dynamically sized buffers,
available, e.g., in DirectX 11 as append/consume buffers.

7.2.1 Fragment sorting

In the second step, the fragment lists are sorted by depth.
This is implemented with a full-screen render pass, where a
single quad covering the whole image is rendered. The frag-
ment shader for this pass uses selection sort to construct
the sorted sequence. This sort needs to repeatedly traverse
the input fragment list. However, unlike previous methods
based on insertion sort [115], it only uses one write opera-
tion per output list element and does not need a fixed-size
local array. In our experiments, we have found no perfor-
mance difference to the insertion sort method, presumably
because repeated read operations benefit from caching.

7.3 neighbor search 81

At this point, the sorted elements could be used to com-
pute the final pixel color. Unlike existing A-buffer imple-
mentations, however, we use the sorted lists in multiple sub-
sequent passes and therefore we copy them back to global
memory. For efficient access, the list elements are stored
in consecutive buffer elements. Since this reordering can-
not be done in-place, the second buffer fragData2 is used
to store the sorted lists. Similar to Algorithm 1, the cor-
responding shader program first reserves a block of free
buffer elements. The index of the first element as well as
the number of elements in the block are stored in pixelHead

and pixelCount, respectively.

7.3 neighbor search

In the third step, we connect each fragment to its four geodesic
neighbors. More precisely, for a fragment with pixel coor-
dinates (x,y), we search and store the index of the four
nearby fragments with pixel coordinates (x + dx,y + dy)

with (dx,dy) ∈ {(−1, 0), (1, 0), (0,−1), (0, 1)} in the fragData

buffer. This information is used later to access the surface
neighborhood of a fragment. Since fragments at the bound-
ary or silhouette of a surface have fewer than four neigh-
bors, a special value is used to indicate missing neighbors.

The problem of finding the correct neighbors with screen
space information only is inherently difficult: in the situa-
tion depicted in Figure 30(a), one cannot decide how the
fragments are connected. One difficulty is that during the
rasterization of the triangle mesh into fragments, all connec-
tivity information is lost. Additionally, using object space
information is not simple: for finely triangulated surfaces,
or for surfaces which are almost parallel to the viewing di-

82 illustration buffer

rection, neighboring fragments may lie on triangles which
are very far apart (see Figure 30(b)). Since we cannot afford
a global object space search for each fragment, we use a
heuristic screen space method to decide which fragments
are connected.

In practice, the visualized surfaces are often locally smooth
and continuous. We therefore use a heuristic measure ε for
the continuity of a fragment pair, as shown in Figure 31(a).
This measure will be small for neighboring fragments along
a continuous surface, and large for two fragments belong-
ing to different surface layers. Given such a measure, a nec-
essary condition for two fragments i and j being geodesic
neighbors is that ε(i, j) is smaller than the measure between
i or j and any of the other neighbor candidates, i.e., that
both fragments think of each other as the best candidates
among the fragment list of the adjacent pixel (see Figure
31(b)).

Our neighbor search is based upon the above observa-
tions and is again implemented in a full-screen render pass.
The fragment shader traverses the fragment list of the cur-
rent pixel and for each fragment, uses Algorithm 2 to find
the corresponding geodesic neighbor. This search is repeated
for each adjacent pixel.

The continuity measure ε(i, j) used in our neighbor search
is given by

εz(i, j) =
1

r

[
(ze)i + (xj − xi) ·

(
dze

dx

)
i

− (ze)j

]
(12)

εn(i, j) = 1− ni · nj (13)

εuv(i, j) =
∥∥uvi − uvj

∥∥ (14)

ε(i, j) = wz · εz(i, j) +wn · εn(i, j) +wuv · εuv (15)

7.3 neighbor search 83

Algorithm 2 Finding geodesic neighbors.

1: fragNeighbor← -1 {current neighbor candidate}
2: eNeighbor←∞ {measure ε for fragNeighbor}
3: {find the best candidate for A among all B’s}
4: for all fragB ∈ fragListB do
5: eB← ε(fragA, fragB)
6: if eB < eNeighbor then
7: eNeighbor← eB
8: fragNeighbor← fragB
9: end if

10: end for
11: {check if there is a better candidate among all A’s}
12: for all fragA2 ∈ fragListA do
13: eA← ε(fragA2, fragNeighbor)
14: if eA < eNeighbor then
15: return -1
16: end if
17: end for
18: return fragNeighbor

Here r is the radius of the bounding sphere of the rendered
object and xi, ni, uvi, (ze)i, and (dzedx)i are the pixel coor-
dinates, normal vector, texture coordintes, eye space z co-
ordinate, and z coordinate gradient of fragment i, respec-
tively. Note that the gradient corresponds to the slope of
the triangle that produces the fragment and can be com-
puted efficiently with the GLSL shader instruction dFdx. In
our measure, εz is a second-order difference in the normal-
ized fragment z coordinate, and εn a function of the angle
between the fragment normals. Both components are small
for densely sampled neighboring fragments on a smooth
surface. However, due to noise and discretization errors,

84 illustration buffer

none of them is reliable on its own. Additionally, εuv is the
difference in texture coordinates, which may be useful if a
low-distortion surface parametrization is available. In our
applications, we have achieved best results with a weighted
average error with wz = wn and wuv = 0. With this choice
of parameters, normals pointing in opposite directions have
the same weight as fragments lying on opposite sides of the
rendered object. For objects with multiple connected com-
ponents, we additionally store the component ID for each
fragment and set ε to infinity if the two fragments belong
to different components.

Note that our algorithm for the neighbor search can po-
tentially introduce errors. The first type of error results from
the loss of geometric information during the rasterization:
if there is a sub-pixel size surface gap between two neigh-
boring fragments, Algorithm 2 will still connect the frag-
ments as if the surface was continuous. The second type
of error is introduced by our heuristic measure. For very
noisy surfaces, the measure could classify the wrong frag-
ment pair as being closest along the surface. In this case,
other measures can be used, such as the fragment distance
in parameter space. This measure is particularly interest-
ing for integral surfaces, which often have a natural global
parametrization. In practice, we have found our neighbor
search to be robust enough for the practical use, demon-
strated by the absence of artifacts or flickering in animated
scenes.

7.4 operators

After the neighbor search, the illustration buffer contains
a complete and general screen-space representation of the

7.4 operators 85

rendered surface, where each fragment has access to its
geodesic neighbors along the surface as well as its neigh-
boring fragments along the viewing ray. This representa-
tion can be processed by any number of pointwise, local, or
global operators, as discussed below. The choice of opera-
tors depends on the application and is discussed in Chap-
ters 8 and 9. The following paragraphs therefore only give
a definition of the three operator types.

7.4.1 Pointwise operator

A pointwise operator is a function that takes the fragment
list of a single pixel and computes new values for some
properties for each fragment in that list. In other words, this
operator may only access the properties of all fragments as-
sociated with a given pixel. For example, a pointwise op-
erator could implement angle-based transparency [53] by
setting the fragment transparency to the angle between sur-
face normal and viewing direction. Such an operator can
again be implemented in a full-screen render pass with an
appropriate fragment shader.

7.4.2 Local operator

A local operator is similar to a pointwise operator, except
that it uses information from neighboring fragments, as de-
scribed in Section 7.3. In other words, this operator may
only access the properties of all fragments associated with a
given pixel, plus the geodesic neighbors of those fragments.
Since updating the fragment properties could affect the in-
put of other concurrently processed fragments in an unpre-
dictable way, the two fragment data buffer fragData and

86 illustration buffer

fragData2 are used in a ping-pong computation scheme.
Examples of local operators include image filters such as
the Sobel operator. Local operators can also be used for iter-
ative implementations of global operations, such as image
diffusion, and can therefore be repeated for a user-specified
number of iterations.

7.4.3 Global operator

A global operator is a function that takes as input all frag-
ment lists in the illustration buffer. Similar to a local oper-
ator, two fragment data buffers have to be used in a ping-
pong computation scheme. Since memory bandwidth and
latency are the two major bottlenecks in our method, care
must be taken to limit the actual amount of input data con-
sumed by such an operator. We do not use global operators
in our visualization, however, they could be useful in other
methods such as a multilayered screen space global illumi-
nation.

7.4.4 Fragment compositing

The last step in our method takes the fragment list of each
pixel and computes the final pixel color. The details of this
operation are application dependent. For example, opaque
rendering sets the pixel color to the color of the first frag-
ment in the list. Another very common example is alpha
blending, where the final color is a linear combination of
all fragment colors. Similar to a local operator, this step is
implemented in a full-screen render pass with an appro-
priate fragment shader. Note that having simultaneous ac-
cess to all surface layers in a single shader pass enables

7.4 operators 87

compositing operations that can not be easily implemented
using conventional rendering and depth peeling. Addition-
ally, since depth peeling renders the whole geometry each
time a surface layer is extracted, compositing operations
that traverse the fragment list multiple times might result
in a large rendering overhead.

88 illustration buffer

color bu�er

z-bu�er

fragment count
(fragCount)

head pointers
(pixelHead)

fragment data
(fragData)

next pointers
(fragNext)

head pointers
(pixelHead)

fragment data
(fragData2)

list lengths
(pixelCount)

1 0 2 3 0 0 2 0

per-pixel data per-fragment data global data

Illustration bu�er Fill pass

Traditional rendering

Illustration bu�er Sort pass

{4 �oats

{
1 �oat

{1 int

{4N �oats

{4N �oats

{1 int

{
1 int

{
1 int

Figure 29: The illustration buffer layout. Each red cell stores data
of one pixel in the image, each blue cell stores data of
one fragment. Green cells are global data.

7.4 operators 89

(a) (b)

Figure 30: Four neighboring viewing rays intersect the rendered
surface at fragments (black circles). (a) Given these
fragments alone, one cannot decide which ones are
neighbors along the surface. Two possible cross sec-
tions of the original surface are indicated in red and
green. (b) For finely triangulated objects and surfaces
almost parallel to the viewing direction, two neighbor-
ing fragments might be separated by an arbitrary num-
ber of polygons.

ɛz

ɛn

(a) (b)

Figure 31: (a) The difference between the fragment normal and
eye distance gives a measure for how likely the frag-
ments are neighbors along a continuous surface. (b)
Arrows indicate the most likely neighbor according
to the continuity measure. Fragments are marked as
neighbors only if this relationship is mutual.

8
S M A RT T R A N S PA R E N C Y F O R
I L L U S T R AT I V E V I S U A L I Z AT I O N O F
C O M P L E X F L O W S U R FA C E S

The shape of a complex surface can be very hard to un-
derstand from a single image. The difficulties arise from
a wide range of sources: a rendering on the screen does
not have binocular depth cues, the lighting is very differ-
ent from what we are used to, and the often unfamiliar
shape does not allow the human visual system (HVS) to
apply context knowledge as it often does for real-world
objects. Examples of such complex surfaces include inte-
gral surfaces, which are an important tool to visualize the
behavior of time-dependent flows, and which can contain
complex twists and self-intersections. Other examples are
Lagrangian coherent structures as used in flow visualiza-
tion, which are often non-orientable and non-manifold, or
nested technical designs for industrial prototypes created
in computer aided design (CAD) applications.

For all these examples it is critical to provide users with
the capability to see through all surface layers to reveal in-
terior parts of the object. If users need to understand the
whole object at once, opaque rendering is not an option.
Cutting away parts of the object can be a good approach,
however, for many geometries the important structures are
layered in a way that a cutaway would remove important
information.

Even though transparency can show more information
about the object, transparent surfaces are generally more

91

92 smart transparency for illustrative visualization

difficult to understand. The aim of this work is to develop
a method for assigning transparency in illustrations that
improves the understanding of transparent surfaces. In fact,
this approach has been adopted by illustrators for a long
time [52]. In Figure 32 we can see an example of illustrative
transparency as applied in a hand-crafted illustration. In
this drawing, the opacity of the outer object is high near the
silhouette and decreases smoothly toward the inner part of
the object in order to create a strong depth ordering cue.

The goal of illustrative visualization is not to render im-
ages in a physically correct way, but to convey information.
On the other hand, the HVS is accustomed to perceive phys-
ically correct images most of the time. In this part, we do
not want to create purely non-photorealistic (NPR) render-
ings since this rendering style tends to remove much of the
visible features. For example, we are not interested in ap-
proaches that reduce the shape to a set of important lines.
We believe it is important to retain the information avail-
able from shading. Based on these conditions, we discuss
relevant findings from perception research, where the im-
portance of so-called X- and T-junctions for the perception
of transparency is known for a long time. Recent results
were even able to find neurons with specific response pat-
terns to a display of squares that form a X-junctions in the
image [93]. Therefore, the motivation for our approach is
two-fold: it is inspired by hand-drawn illustrations and also
motivated by positive results from perception research.

8.0.1 Perception

Apart from being motivated by hand drawn illustrations,
our method is also supported by the findings of percep-

smart transparency for illustrative visualization 93

Figure 32: Example of artistic drawings. The occluded object is
hidden near the edge and its visibility increases with
the distance to the edge. This effect is combined with
four different shading styles. ©Gerald P. Hodge

tion research. In particular, Wilson and Keil [114] explain
that the perception of transparency relies, as does visual
perception in general, upon context to determine the most
likely interpretation. Figure 33 illustrates the importance of
X- and T-junctions, which are the single most important
monocular cue for transparency [114]. Albert [11] shows
that also the perception of lightness is based on the relation
of contours forming X- or T-junctions and that the HVS
does not compute layered decompositions of luminance.
Nakayame et al. [86] explain that the HVS functions effec-
tively by employing “crude tricks” or heuristics, rather than
performing a detailed and/or exhaustive interpretation of
the scene with all of the information available. They show
that transparency is not coupled strongly to real-world chro-
matic constraints since combinations of luminance and color
that would be unlikely to arise in real-world scenes still
give rise to the perception of transparency. From this we
are motivated to apply non-local changes to the rendering
of transparent surfaces even though such a configuration

94 smart transparency for illustrative visualization

is unlikely to occur in reality. The approach suggested in
this paper is also supported by work of Beck [18], who ex-
plains that the visual system appears to incorporate an as-
sumption of balanced transparency. In cases of unbalanced
transparency the visual system is able to choose an interpre-
tation that in some sense is the simplest. Anderson [13] dis-
cusses the importance of perceived contours to understand
depth relations in transparent surfaces. He states evidence
that the HVS employs rules that combine contrast magni-
tude and contour continuity to decide the depth ordering
of surfaces. This insight serves as an additional motivation
for the contour enhancement as illustrated in Figure 33. In
other words, he conjectures that the HVS treats the highest
contrast portion of a contour as a region in plain view. This
relationship is exaggerated by our non-local transparency
approach.

8.1 method overview

From the discussed results of perception research we can
draw some conclusions: First, the heuristics applied by the
HVS are robust even under non-realistic conditions as long
as contrast relations are kept intact. Second, X-junctions
(Figure 33a) are important cues for transparency. Third, T-
junctions (Figure 33b) are good for understanding which
surface is above which. The strength of the depth-ordering
cue provided by transparent occlusion is directly propor-
tional to the degree of contrast reduction. In the limit case
the depth-ordering cue is maximal for fully opaque sur-
faces, as in the case of a T-junction. Therefore, we can in-
fer from perception research a motivation to keep the T-
junction property of layered surfaces. X-junctions, on the

8.1 method overview 95

other hand, give rise to the perception of transparency, there-
fore we suggest to depict crossings as a fusion of both cues
(Figure 33c).

Illustrators use similar rules as we can see in Figure 32.
We can see that the illustrators modify the transparency
to improve the perception of layers behind. Transparency
is decreased where shading is important, for example for
boundary enhancement. To further improve the perception
of the silhouettes, we enhance these further by not only de-
creasing the transparency on the boundary, but also by in-
creasing the transparency behind a boundary such that the
background becomes visible. This results in a halo-like ef-
fect (Figure 33d). The final result is illustrated in Figure 33e.

Based on the concept of XT-junctions, we design a novel
transparency enhancement method for the rendering of layered
surfaces. First, we define three transparency fields on the
surface: one for the base transparency, one for the silhou-
ette enhancement and one for the halos. The values for the
two latter fields are fixed at the surface silhouette and a dif-
fusion process is used to spread the information along the
surface to the local neighborhood of the silhouettes. Finally,
all three fields are combined and a modified alpha blend-
ing procedure is used to compute the final image color. The
details of this method are described in Section 8.2.

The implementation of the transparency enhancement re-
quires view-dependent and non-local information at each
image point. In order to achieve interactive performance
while maintaining full flexibility, we use our illustration
buffer data structure (Chapter 7). The work flow of our ap-
proach is illustrated in Figure 34.

In order to objectively assess the effectiveness of our method,
we designed and conducted a rigorous user study measur-
ing the understanding of complex surfaces from transpar-

96 smart transparency for illustrative visualization

X-junction T-junction

non-local transparency silhouette enhancement result: XT-junction

(a) (b)

(c) (d) (e)

Figure 33: The perception of transparency in the HVS is cru-
cially dependent on the distinction between X- and
T-junctions. (a) X-junctions evoke the perception of
transparency. (b) T-junctions are best cues for depth-
ordering. (c) Non-local enhancements to improve the
perception of depth-layers. (d) Silhouette enhancement
is important in the case of crossings. (e) We suggest
a visual cue which combines properties of X- and T-
junctions.

ent renderings. In this study, three different tasks are used
to quantitatively measure the task performance related to
understanding of complex surfaces. The task scores are then
used to compare our method to two other transparency as-
signment techniques. The study is described in Section 8.5.

8.2 non-local transparency enhancement

This section describes how we use the illustration buffer
data structure to implement an illustrative transparency as-
signment method that improves the understanding of trans-

8.2 non-local transparency enhancement 97

Rasterize

Geometry Image

Sort Connect Boundary Compose

Di�usion

Figure 34: Overview of our method. The input geometry is first
rasterized into fragments which are then stored in our
illustration buffer. This 2.5D image space representa-
tion is implemented on the GPU. All fragments are
then sorted by depth and connected with geodesic
neighbors. In the next step, we set boundary con-
ditions and apply a transparency diffusion process
based on results from perception research. Finally, all
fragments in the illustration buffer are composed into
the output image.

parent surfaces. Based on the result of previous perception
research, we have extracted a set of simple rules for the sur-
face transparency:

1. The transparency of the surface is set to zero at the
silhouette and increases slowly with the distance to
the contour. This enhances all surface silhouettes.

2. The opacity of the surface is set to zero wherever it is
occluded by another surface silhouette and increases
rapidly with the distance. This will create narrow ha-
los around occluding surfaces. The increased contrast
further enhances the perception of T-junctions.

3. The transparency should be a smooth function of the
surface, except at the points described above. A dis-
continuity could easily be mistaken for a surface con-
tour.

The first two rules are a straightforward application of
our concept of the XT-junction (see Figure 33). Note that

98 smart transparency for illustrative visualization

the first rule also corresponds to the rules postulated by
Hodges (see Figure 32). The third rule was chosen to pre-
vent high frequency changes in the transparency to be mis-
taken for shading details or surface shape.

These rules can be implemented with our illustration buffer
approach. We use a pointwise operator to set initial and
boundary conditions for the transparency of individual frag-
ments and then use a local operator to apply transparency
diffusion. Similar to the solution of the heat equation after
a finite time, we use the transparency diffusion with a fixed
number of iterations to spread the boundary enhancement
to the neighborhood of each silhouette.

8.2.1 Transparency fields

Because of the non-linear behavior of the transparency near
junctions, we define three scalar fields on the surface:

• The initial transparency of the surface α

• A silhouette highlight field β, used to implement rule
1. This field will have high values at surface silhou-
ettes and fall off with the distance to the silhouette.

• A halo highlight field γ, used to implement rule 2.
This field will have high values near occluding edges
and fall off with the distance to those edges.

In order to identify boundary fragments for each of the
above fields, we also store binary fields bα, bβ and bγ with
values of 0 for boundary fragments and 1 for all other frag-
ments.

The values of the three fields α, β, and γ are stored as cus-
tom fragment properties (see Section 7.1). Since the scalar

8.2 non-local transparency enhancement 99

fields only take values from zero to one and b is a binary
value, we can store both values in one scalar with minimal
precision loss, e.g., as 2 · bα +α.

8.2.2 Initial conditions

All fragments are first initialized with β = 0, γ = 0, bα = 1,
bβ = 1, and bγ = 1. For the initial value of α, we let the user
choose among two different styles, defined by one of the
following equations, where i is the index of the fragment in
the sorted fragment list, n the number of fragments at the
given pixel, and s ∈ [0, 1] a user-specified parameter:

αi = s (16)

αi = 1− (1− s)
1
n (17)

Equation 16 assigns a constant initial transparency to each
fragment and therefore produces results most similar to tra-
ditional alpha blending. A disadvantage of this approach
is that regions with many layers will appear too opaque,
while regions with only a few layers will appear washed
out. Therefore, we additionally provide an adaptive trans-
parency defined by Equation 17. This approach initializes
the transparency so that the accumulated color intensity in
the final image remains constant regardless of the number
of layers, i.e., it solves the following problem:

n∑
i=1

(1−α)i−1α = s (18)

100 smart transparency for illustrative visualization

8.2.3 Boundary conditions

After the initial transparency values are set, a local operator
classifies the fragments to find fragments at the boundary
of the surface. Since this operator does not depend on the
output of the previous step, it can be implemented in the
same rendering pass as the operator that sets the initial con-
ditions. The boundary conditions are set according to the
following rules, illustrated in Figure 35:

• If the fragment has fewer than four neighbors, it is a
boundary fragment (red cell). Set β = 1 and bβ = 0.

• If the fragment layer index is smaller than the index
of one of its neighbors, it is adjacent to a silhouette
fragment (blue cell). Set γ = 1 and bγ = 0.

• If the fragment layer index is greater than the index of
one of its neighbors, it lies directly underneath some
silhouette fragment (green cell). Set β = 0 and bβ = 0.

• Otherwise, it is an ordinary fragment (gray cells). No
changes to the initial values are made in this case.

These boundary conditions are required for the subsequent
diffusion step.

8.2.4 Transparency diffusion

In order to smooth the initial transparency α according to
rule 3, we apply a homogeneous diffusion defined by

∂

∂t
α = λα∆α (19)

8.2 non-local transparency enhancement 101

Figure 35: Cross-section of the rendered surface. Boundary con-
ditions for the transparency are set at the red, green
and blue fragments.

with a diffusion coefficient λα. We do not reach the steady
state of the diffusion process, but instead stop after a given
time. The diffusion process is implemented as a local oper-
ator using a forward discretization of Equation 19:

αk+1 = αk + bαλα∆α
k (20)

with a 2
nd order central finite difference approximation of

∆α. In our default configuration, we use 10 to 50 iterations
with a diffusion coefficient of λα = 1.

The same diffusion process could be used to spread the
initial values of β and γ to the neighborhood of silhouettes
and occluding edges. However, the homogeneous diffusion
transports values very inefficiently. Instead, we use a non-
physical process

βk+1 = max{βk, max{βkneighbor}− λu} (21)

where βneighbor are the values of β for the neighboring
fragments. The same process is used for γ. Using this pro-
cedure, the values of 1−β and 1− γ will be approximately
proportional to the distance to the nearest boundary.

After the diffusion process, transparency fields β and γ
will have a characteristic profile with high values near a

102 smart transparency for illustrative visualization

boundary and values falling off with the distance to the
boundary. For artistic reasons, we apply one of the follow-
ing functions to the transparency fields in order to modify
this profile:

u← 1

1− e−p

[
e−p(1−u)

2

− e−p
]

(22)

u← up (23)

where u is a transparency field and p a user-defined param-
eter.

For p < 1, the apparent width of the silhouette highlight
and halos increases, while for p > 1, the apparent width de-
creases. Note that both functions are bijective on the range
[0, 1]. Figure 36 shows results of different configurations of
parameters described in this section.

8.2.5 Fragment compositing

The three transparency fields α, β, and γ are combined in
the final stage using a modified front-to-back alpha blend-
ing procedure. In this procedure, the transparency of a frag-
ment is first initialized with α. The edge highlight field β is
then multiplied with the remaining transparency 1−α and
added to the base value. Finally, the transparency is mul-
tiplied with 1− γ in order to account for halos. Note that
since all input fields are smooth and we do not produce
values outside of the acceptable range [0, 1], the resulting
fragment transparency will be smooth along the surface.

Algorithm 3 illustrates our blending procedure, where n
is the number of fragments for this pixel, c is the final pixel
color, ci is the color of i-th fragment and αi, βi, and γi are
the values of the three fields as defined above. A close-up

8.3 results 103

Algorithm 3 Calculate the final pixel color
1: α← 1

2: c← 0

3: for i ∈ [1..n] do
4: α̂i ← (1− γi)(αi + (1−αi)βi)

5: c← c +αα̂ici
6: α← α(1−αi)

7: end for
8: c← c +αcbackground
9: return c

comparison with constant transparency alpha blending is
given in Figure 37.

8.3 results

In this section we present images generated with our tech-
nique and compare our method with previous work.

Figure 38 shows a simple scene rendered with several
common transparency assignment techniques [53]. While
existing techniques only use local surface properties and
are therefore very fast, they show various disadvantages.
Opaque rendering (Figure 38a) has strong depth ordering
cues, however does not show occluded objects. Constant
transparency (Figure 38b) shows all occluded parts, but
lacks depth ordering cues. Additionally, the transparency
has to be made very high if one is to see all surface lay-
ers, which leads to a low contrast in the resulting image.
Angle based transparency (Figure 38c) nicely highlights the
silhouettes of curved objects, but not those of the flat cube.
Similarly, normal variation transparency (Figure 38d) com-
pletely fails for the flat cube. Moreover, it is sensitive to

104 smart transparency for illustrative visualization

noise and irregular tessellation due to the use of deriva-
tives of the surface normal. Finally, our method (Figure 38e)
properly highlights all silhouettes and maintains a high con-
trast while giving view of all surface layers.

Figures 39 and 44 show several examples from flow vi-
sualization. Such visualizations often contain complex sur-
faces for which one has to rely on the expressiveness of the
rendering as it is difficult to apply context knowledge. Fig-
ure 39 shows a stream surface as well as an isosurface of
vorticity in the simulation of two colliding vortex rings. Fig-
ures 44a and 44c show two different stream surfaces of a
turbulent flow rendered with our method. A rendering of
an entangled parametric surface is shown in Figure 44b.

Figure 40 shows the visualization of a jet engine. Sim-
ilar to blueprint rendering [87], Figure 40a was rendered
with low constant transparency and enhanced with silhou-
ette and crease lines. Figure 40b was rendered with normal
variation transparency enhanced with haloed lines for in-
creased depth ordering cues. Finally, Figure 40c was ren-
dered with our method. Since the density of silhouettes
is very high for this model, halos have been omitted to
reduce visual clutter. Instead the same feature lines as in
Figure 40a have been used. Even though all three methods
show the overall structure of the engine and haloed lines
provide strong depth ordering queues, our method addi-
tionally features unique stylistic elements such as a more
uniform image brightness and a more visible surface shad-
ing around silhouettes due to increased opacity. All feature
lines in these figures have been computed in object space
and rendered as alpha blended triangle strips.

8.4 evaluation 105

8.4 evaluation

We have implemented our method as a custom render-
ing subsystem in the Visdom visualization toolkit [112].
Our implementation uses OpenGL 4.0 and its exten-
sion GL_EXT_shader_image_load_store for the concurrent
global memory access as required for the illustration
buffer. This extension is available on all consumer
level hardware starting with the NVIDIA GeForce 400

and AMD Radeon 5000 series. Alternatively, OpenGL
4.2 core extensions GL_ARB_shader_image_load_store and
GL_ARB_shader_atomic_counters could be used.

Figures 41 and 42 show the performance of our method
in various settings. All tests were performed on a desktop
computer with a NVIDIA GeForce 470 graphics card. The
rendering time is broken down to the individual rendering
passes fill (Section 7.2), sort (7.2.1), connect (7.3, 8.2.2, and
8.2.3), solve (8.2.4) and compose (8.2.5). The clear rendering
pass is used to clear the contents of the illustration buffer.
Each line represents the average time it takes to finish the re-
spective rendering pass, including all previous passes. The
measurements were performed by taking averages among
1000 images with a random camera position, so that the
bounding sphere of the rendered object fills the entire im-
age. Note that the solve pass corresponds to one iteration
of our transparency diffusion. In practice, this pass will be
repeated for a user specified number of iterations (typically
10 to 50), depending on the artistic preference and the res-
olution of the image. A comparison of different settings is
shown in Figure 36.

Figure 41 presents the rendering time of the toroid sur-
face as a function of the total number of fragments in the il-
lustration buffer. The corresponding image resolutions range

106 smart transparency for illustrative visualization

from 128× 128 to 2048× 2048. As expected from a screen-
space method, our implementation scales linearly with the
number of fragments in the scene. Note that for a square
image, the number of fragments scales quadratically with
the image width. This makes our method highly output
sensitive: a 1024× 1024 image with 50 iterations will take
20 times longer to compute than a 512 × 512 image with
10 iterations. In practice, applications should adapt the im-
age resolution and/or the number of iterations to the de-
sired level of interactivity. As an example, the scene from
Figure 39b with a resolution of 512× 512 pixels and 20 iter-
ations runs at around 15 frames per second.

Figure 42 presents the rendering time of the toroid sur-
face as a function of the total number of triangles in the
surface mesh. The image resolution is set constant to 1024×
1024 in this case. As seen from the timings of the fill pass, its
run time has a constant component (indicated by the non-
zero intercept) and increases approximately linearly with
the number of triangles in the mesh. All other passes are
independent of the input geometry.

For most images, the lengths of the fragment lists will
vary across the image. The distribution of the list lengths
depends on the shape of the input geometry and obviously
influences the performance. However, we do not try an
extensive evaluation of this effect since the distribution is
hard to control without changing other parameters at the
same time. In our examples, we have found the maximal list
length (the number of passes required for depth peeling) to
be usually several times higher than the average list length.
In Figure 40c, the average list length across the image is 5.64
while the maximal length is 95 (34 layers of geometry and
61 layers of feature lines). A similar variation was present
in the toroid surface with a mesh resolution of 500K tri-

8.4 evaluation 107

angles. Even though most fragment lists contain only 1 or
2 elements, the average maximal list length (averaged over
1000 random camera settings) is surprisingly as high as 8.94.
This can be explained by the fact that some isolated pixels
depict parts of the surface which are almost parallel to the
viewing direction and contain many fragments of the very
fine and slightly uneven surface mesh.

108 smart transparency for illustrative visualization

Result Parameters

Diff.: Equation 21

n = 20, λβ = 0.05, λγ = 0.1

Diff.: Equation 21

n = 20, λβ = 0.05, λγ = 0.1
Mod.: Equation 22

p = 3

Diff.: Equation 20

n = 20, λβ = 1, λγ = 0.1

Diff.: Equation 20

n = 20, λβ = 1.0, λγ = 0.1
Mod.: Equation 23

p = 0.3

Diff.: Equation 20

n = 100, λβ = 1.0, λγ = 0.1

Figure 36: Different parameter configurations for the trans-
parency diffusion. Diff is the equation used for the
diffusion process, Mod is the equation used for mod-
ifying the field (if any), n is the number of iterations,
and λβ, λγ and p are the parameters for the diffusion,
as described in Section 8.2.4

8.4 evaluation 109

(a) (b)

Figure 37: A close up comparison of our method (left) with con-
stant transparency (right).

110 smart transparency for illustrative visualization

(a) (b)

(c) (d)

(e)

Figure 38: A comparison of different transparency assignment
methods: (a) opaque rendering, (b) constant trans-
parency, (c) angle based transparency, (d) normal vari-
ation transparency, and (e) our method.

8.4 evaluation 111

(a) (b)

(c) (d)

Figure 39: A stream surface and an isosurface of two different
turbulent flows. (a,c) Constant transparency. (b,d) Our
method. Note the improved depth ordering cues at
object silhouettes as well as an adaptively increasing
transparency at points with many depth layers.

112 smart transparency for illustrative visualization

(a)

(b)

(c)

Figure 40: Visualization of a jet engine model: (a) constant trans-
parency, (b) normal variation transparency, and (c) our
method. All methods have been enhanced with silhou-
ette and crease lines.

8.4 evaluation 113

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

re
nd

er
in

g
tim

e
(m

s)

number of fragments (x1000)

Compose

Solve

Connect

Sort

Fill

Clear

Figure 41: Rendering time vs. number of fragments. Lines depict
cumulative rendering times.

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000 6000

re
nd

er
in

g
tim

e
(m

s)

number of triangles (x1000)

Compose

Solve

Connect

Sort

Fill

Clear

Figure 42: Rendering time vs. number of triangles. Lines depict
cumulative rendering times.

114 smart transparency for illustrative visualization

0

100

200

300

400

500

1 2 3 4 5+

nu
m

be
r o

f p
ixe

ls
(x

10
00

)

fragment list length

Figure 43: Average number of pixels having a given fragment list
length.

8.5 user study 115

8.5 user study

In this section we discuss the design and results of a user
study performed to analyze the effectiveness of our illus-
trative transparency. The goal of this case study is to eval-
uate whether using the illustrative transparency presented
in this work instead of alpha blending or normal variation
helps with the understanding of a three-dimensional flow
surface.

8.5.1 Study Design

One important question in our study design is how to oper-
ationalize the concept of “understanding the visualization
of a surface” so as to make it measurable [15].

tasks One problem is that other factors such as general
intelligence or visual memory of the participants may con-
stitute the main cause for variations in the test scores. There-
fore, it is important to have multiple different tasks to bal-
ance such effects. In the present example we have selected
the following tasks (see also Figure 44):

• Task 1 – layer index: The participant is asked to spec-
ify on which layer the surface silhouette at the given
point is located. For example in Figure 44a, the correct
solution for A is two, since A is on the second layer.

• Task 2 – follow the boundary: The participant is asked
to follow the shortest path on the boundary of the
surface from a given start point to a given end point.
The participant is asked to mark all other points en-
countered on the way. For example in Figure 44b, the
correct solution for the path from A to B is Y.

116 smart transparency for illustrative visualization

• Task 3 – nearest point: The participant is asked to
specify which point is geodesically closest to another
given point. For example in Figure 44c, the nearest
point to A is X.

These tasks were chosen among a set of candidate tasks that
test the participants ability to decide the depth ordering of
surface layers or the ability to follow the surface. Criteria
for selection were a precise yet simple definition in a paper-
based study, as well as a balance of tasks that require a
local or global understanding of the surface shape. Due to
the limited number of participants, we have restricted our-
selves to three tasks. Of course, each of these tasks could
be better solved by presenting a specialized visualization;
however, this affects their value as an operationalization for
the presented technique. For each task we present multiple
sets of given points (chosen manually such that the task is
sufficiently difficult) and calculate the score of a participant
in this task as the number of correct answers.

consideration of confounding factors Another
issue of a user study is the presence of confounding fac-
tors [21]. When multiple variables of the rendering such as
transparency, texturing, coloring, and shading vary at the
same time, it is impossible to understand the importance of
each variable in separation. Therefore we modify only the
transparency of the surfaces and keep other factors such as
viewing parameters, texturing, coloring, or shading fixed.

study execution To avoid surface shape training ef-
fects over the tasks, we use three different flow surfaces
“Pretzel”, “Bubble”, and “Toroid”, which are shown in Fig-
ure 44. This way each task can be performed on a different

8.5 user study 117

scene. The surfaces were selected among a set of candidate
surfaces such their shape is sufficiently complex and not
similar to each other. During the user study, tasks are in a
fixed order and each task is performed for one scene and
one transparency assignment method. For example, one par-
ticipant receives the first task on scene “Pretzel” rendered
with alpha blending, the second task on the scene “Bub-
ble” with normal variation, and the third task on the scene
“Toroid” with illustrative transparency. The order of the fac-
tors “rendering method” and “scene” is counterbalanced [21]
between the subjects. Figure 45 illustrates the three trans-
parency assignment methods.

Since time consumed to understand a complex surface
is an important factor, the time for solving each task was
strictly limited to two minutes. Additionally, the number
of points in each task was chosen so that it is realistically
impossible to answer all of them within the given time limit.
Missing answers were treated the same as wrong answers.

Partipants are recruited from local university students. To
estimate the required sample size, we use a power calcula-
tion using G-power [37]. For our study, the required mini-
mum sample size is 34 to find a correlation of large effect
size.

measures All participants were informed on the study
and signed informed consent. Participants answered a ques-
tionnaire on sociodemographic data (age, gender, school
education, years of education). We assess motivation us-
ing an item that asks the participants to estimate in per-
cent whether they are motivated to solve the task, and self-
efficacy [16] using an item that expects participants to rate
in percent whether they feel able to solve the tasks with re-
gard to their academic competency. We assess figural intel-

118 smart transparency for illustrative visualization

ligence using the subtest “Würfelaufgabe” (cube rotation)
of the German Intelligenzstrukturtest IST-2000-R, a task as-
sessing mental rotation [12]. To measure numerical intelli-
gence we use the subtest “Zahlenreihen” (number patterns)
of the IST-2000-R, a task that requires numerical reason-
ing. Table 5 shows mean and standard deviations of the so-
ciodemographic data, self-efficacy, motivation, and numeri-
cal and figural intelligence of the participants.

Mean
(Standard deviation)

Range

Age (yrs) 26.6 (4.87) 19–42

Gender 32 male 4 fem.

High school education 100 %

Years of education 17.54 (2.85) 11–24

Numerical intelligence 8.86 (4.16) 2–20

Figural intelligence 7.86 (3.96)

Self-efficacy 62.03% (23.46%) 20–90%

Motivation 74.78% (16.33%) 30–100%

Table 5: Means, standard deviations, and ranges of sociodemo-
graphic data in the student sample (n=36).

8.5.2 Study Results

The total sample includes 36 students (4 female, 32 male)
from the ETH Zürich, aged between 19 and 42. The most
important question for the user study is the difference in
the task performance that is attributable to the different
transparency assignment methods. Our starting hypothesis

8.5 user study 119

is that illustrative transparency allows participants to per-
form better than normal variation and alpha transparency.
In a first step, we check the data for outliers, but all scores
are within the acceptable range.

The data was analyzed using paired samples t-tests com-
paring the percentage of correct answers. Results of paired
samples t-tests [21] show that performance of subjects that
were presented with alpha blending is comparable to the
performance of subjects that were presented with normal
variation (p = 0.54). In other words, the user study does
not find a significant difference between alpha blending
and normal variation. On the other hand, the difference be-
tween subjects that were presented with illustrative trans-
parency compared to normal variation is highly significant
(p = 0.005). The performance difference between illustra-
tive transparency and alpha blending (p = 0.026) is signif-
icant as well. Tables 6, 7, and 8 give an overview of these
results, together with the average percentage of correct an-
swers and its variation. We repeated the analysis of group
differences using non-parametrical tests and obtained com-
parable results.

120 smart transparency for illustrative visualization

Normal Variation Alpha Blending

average 0.23379 0.26388

variance 0.03484 0.05099

degrees of
freedom

68

t-Statistics 0.616259

P(T < t) one-sided 0.26989

Critical t-value 1.99547

Table 6: The difference between normal variation and alpha
blending is not significant.

Alpha Blending Illustrative
Transparency

average 0.26388 0.38194

variance 0.05099 0.07674

degrees of
freedom

67

t-Statistics -1.98196

P(T < t) one-sided 0.025794

Critical t-value 1.667916

Table 7: Scores for illustrative transparency are significantly bet-
ter than for alpha blending.

8.5 user study 121

(a)

(b)

(c)

Figure 44: Examples of the three tasks of the user study. (a) Task
“layer index” with the “Pretzel” surface. (b) Task “fol-
low the boundary” with the “Toroid” surface. (c) Task
“nearest point” with the “Bubble” surface.

122 smart transparency for illustrative visualization

(a)

(b)

(c)

Figure 45: Rendering methods used in the user study. (a) Con-
stant transparency. (b) Normal variation transparency.
(c) Our method

8.5 user study 123

Normal Variation Illustrative
Transparency

average 0.23379 0.38194

variance 0.03484 0.07674

degrees of
freedom

61

t-Statistics -2.66099

P(T < t) one-sided 0.00497

Critical t-value 1.67021

Table 8: Scores for illustrative transparency are significantly bet-
ter than for normal variation.

9
M U LT I - L AY E R I L L U S T R AT I V E D E N S E F L O W
V I S U A L I Z AT I O N

The previous chapter presented a method for improving the
perception of complex transparent surfaces. This is useful
for flow visualizations based on integral surfaces, such as
the analysis of a streak surface evolving from a seed curve.
There are other applications where the user is not interested
in the surface itself, but rather in the flow along a given
surface of interest. This can be a physical object boundary,
but also a virtual surface, such a stream surface, pressure
isosurface, or Lagrangian coherent structure (LCS) [46].

Restricting the visualization to a surface allows us to use
2D flow visualization methods, which do not suffer from
the same clutter and occlusion problems as 3D flow visu-
alizations. However, occlusion still has to be handled care-
fully, especially if the surface of interest is deformed with
the flow. Twists and folds induced by turbulent flow will
almost always lead to multiple self-occluding layers in the
image.

One approach to solve this problem is to use cutaways
and focus the visualization of the flow to a specific layer
or part of the surface. This, however, requires tedious user
interaction for moving the cutaway primitives or manipu-
lating degree-of-interest functions. More importantly, cut-
ting away large parts reduces the usefulness of the method
for an explorative analysis of the data set without a pri-
ori knowledge of what the user is interested in. Another
approach is to sparsely place arrow glyphs on the surface,

125

126 multi-layer illustrative dense flow visualization

indicating the local flow direction. If the glyphs are sparse
enough and the surfaces transparent, all layers will be vis-
ible, but the glyphs will cause difficulties with depth per-
ception. Additionally, finding an optimal placement for the
glyphs is not trivial and even then, important features in
between the glyphs may be missed.

For 2D flows and single layer surfaces, this problem has
been solved by dense vector field visualization. Several of
these methods could be used for multi-layered surfaces, but
require a surface parametrization or the knowledge of the
entire vector field. In particular, the first requirement is not
always given: LCS surfaces are often topologically complex
and non-orientable, and a global parametrization might not
always exist.

We therefore propose a novel dense visualization method
that addresses the aforementioned shortcomings. The method
is designed for visualizing flows along multi-layered sur-
faces, where both the shape of the surface and the flow di-
rection at all layers is important. In contrast to previous
work, it only requires as input a triangle mesh with the
vector field values specified at the mesh vertices. The mesh
does not need to have a parametrization and both the mesh
and the vector field can undergo arbitrary changes over
time. This format is suitable for portable data sets and read-
ily available in many visualization frameworks. Moreover,
the method is output sensitive, i.e., its run time depends
mainly on the size and quality of the output. Additionally,
it is not limited to a fixed view point and produces patterns
of a constant screen space frequency, regardless of the cur-
rent view or zooming factor.

9.1 method overview 127

9.1 method overview

Our method targets the visualization of flow along multi-
layered surfaces. Our general approach consists of the fol-
lowing steps, illustrated in Figure 46.

1. A 2.5D screen space representation of the surface is
built. We use the illustration buffer data structure for
this purpose, as described in Chapter 7 All subse-
quent operations are performed on this representa-
tion.

2. A procedural noise function is used to assign a grayscale
color value to each surface point. The function de-
pends on both view-dependent and view-independent
properties, such that the noise pattern is coherent un-
der view changes and has a configurable, constant
screen space frequency. It is described in Section 9.1.1.

3. Anisotropic diffusion is performed simultaneously on
all surface layers. The diffusion process is guided by
the vector field, resulting in the surface being covered
by grayscale streaks that are aligned to local stream-
lines. A suitable finite difference discretization of this
process is presented in Section 9.1.2.

4. The surface color is converted into transparency, and
surface layers are composited using alpha blending.
This final step is described in Section 9.1.4.

The illustration buffer is filled in a first step by render-
ing the surface with a fragment shader that inserts data
into the illustration buffer data structure. Both the noise
generation and diffusion process are then implemented by
rendering a full screen quad with a fragment shader that

128 multi-layer illustrative dense flow visualization

input mesh

rasterization noise generation di�usion compositing

screen space (2.5D representation)

Figure 46: Overview of our method. All steps are performed on
a 2.5D screen space representation of the surface.

iterates through all fragments for that pixel. Note that we
do not need a special treatment for pixels with multiple sur-
face layers. Whenever a fragment at pixel coordinates (x,y)
needs to access the data from its neighboring fragment at
(x+ 1,y), it simply follows its right neighbor pointer. For
the sake of simplicity, we do not introduce a special nota-
tion for following fragment neighbor pointers and instead
use their pixel coordinates (x,y) and (x ± 1,y ± 1) in all
formulas in this chapter.

The illustration buffer is a very flexible data structure and
can be used to extend our method with various illustrative
effects, as described in Section 9.1.5.

9.1.1 Noise generation

In order to get an initial noise pattern that is invariant to
camera rotation, we want a noise that “sticks to the surface”.
In our case we use a procedural noise function that maps
the world coordinates of each surface point to a noise value
ρ0 ∈ [−1, 1], using the basic approach

ρ0(xw) = snoise3(s · xw) (24)

where snoise3 is the three-dimensional simplex noise func-
tion [90], xw the world coordinates, and s a parameter that

9.1 method overview 129

scales the input coordinates. This function has a number of
useful properties: it is reasonably fast, C2 continuous, visu-
ally isotropic, and produces spot noise like patterns, where
the size of the spots depends on s. An additional advantage
is that it can be extended to arbitrary dimensions. For ex-
ample, a fourth parameter can be used to include time and
create continuously animated noise patterns.

The above approach has the disadvantage that for a con-
stant s, the noise is uniquely determined by the world coor-
dinates of the surface and thus the screen space frequency
of the noise pattern changes when zooming in and out.
This is undesirable and can lead to aliasing. To fix this, we
would like to compute for each pixel the optimal value of
s, such that the screen space frequency of the noise is con-
stant. We first compute the ratio of the area of one pixel in
screen space to its projected area in world space using par-
tial derivatives of the surface world coordinates, which are
provided by the GPU. Then, since the frequency of the local
maxima for simplex noise is equal to one per spatial unit,
we set s to one times the square root of the inverse area
ratio. This value will result in a constant screen space fre-
quency of one white spot per pixel, which can then further
be scaled to the desired frequency. Note that this method of
computing s reduces the noise frequency for surface parts
that are almost parallel to the view direction and thus pre-
vents aliasing of the noise pattern. Depending on the appli-
cation requirements, other methods for computing s might
be more appropriate, such as methods based on the surface
distance to the camera.

Unfortunately, using the optimal value for s makes the
initial noise highly view dependent and would lead to a
noise pattern that moves along the surface as the view is
zoomed in or out. In order to retain coherency under chang-

130 multi-layer illustrative dense flow visualization

ing views, we instead define a fixed set of discrete scaling
values sl with sl+1 = 2sl. Then, for each pixel we first com-
pute the optimal value for s, choose the two closest scaling
values sl and sl+1, and linearly blend the two correspond-
ing noise patterns ρ0l and ρ0l+1. This approach is similar to
traditional mipmapping and trilinear filtering [49].

When blending two noise images, we should make sure
that the result has a similar appearance as a single noise
image. Figures 47a and 47b show the noise patterns for dif-
ferent values of s. By analyzing the histogram of the im-
ages, we can see that the noise values for different s follow
approximately the same distribution with some unknown
variance σ2. Assuming noise values for different s are unre-
lated, a linear combination of noise images ρ0 = (1−α)ρ0l +

αρ0l+1 will have the same distribution with a reduced vari-
ance ((1−α)2 +α2)σ2. In order to maintain a constant con-
trast, we scale the blended noise by 1/

√
(1−α)2 +α2. The

effect of this scaling is demonstrated in Figures 47c and 47d.

The whole algorithm for the initial noise is summarized
in Algorithm 4, where log2 and exp2 are the logarithm
and exponential to the base of 2, dFdx and dFdy derivatives
with respect to screen coordinates, and clamp a function
that clamps its first argument to the range given by the
last two arguments. The parameter spotsize is the desired
approximate diameter of the noise spots, given in screen
pixels. Note that the initial noise depends on the world co-
ordinates of each fragment. These coordinates are stored as
per-fragment data when filling the illustration buffer. All
subsequent operations operate in screen space and there-
fore only use the screen space coordinates of the fragments.

9.1 method overview 131

a b

c d

Figure 47: Simplex noise for x ∈ [−1, 1]2. (a) Noise for s = 5. (b)
Noise for s = 10. (c) The average of the two above im-
ages. (d) The average with applied contrast correction.

9.1.2 Anisotropic diffusion

Similar to many approaches in dense vector field visual-
ization, we “smear” the initial noise along the vector field,
so that the color of neighboring pixels along a streamline
is correlated, while the color of neighboring streamlines is
not. Since our 2.5D image representation contains multiple
layers and only allows access to neighboring fragments, we
formulate our smearing process as an anisotropic diffusion
where each fragment only exchanges data with neighbor-
ing fragments. Since we are interested in the flow along the
surface, we first project the original vector field onto the
surface and then transform it to screen space. The result-

132 multi-layer illustrative dense flow visualization

Algorithm 4 Computing the initial noise.

1: s← 1/(spotsize ·
√
‖dFdx(x)× dFdy(x)‖)

2: ls← blog2(s)c
3: s1 ← exp2(ls)

4: s2 ← exp2(ls+ 1)

5: ρ1 ← snoise3(s1xw)
6: ρ2 ← snoise3(s2xw)
7: α← (s− s1)/(s2 − s1)

8: c← 1/sqrt(α2 + (1−α)2)

9: return clamp(c((1−α)ρ1 +αρ2), 0, 1)

ing vector field u is used to guide the anisotropic diffusion,
given by the partial differential equation

∂ρ

∂t
= ∇ · (A∇ρ) (25)

with the initial and boundary conditions

ρ(x, 0) = ρ0(x), A∇ρ · n = 0 on ∂Ω (26)

where A is a diffusion tensor and n the screen space normal
to the surface silhouette ∂Ω. Expressing the diffusion tensor
in terms of diffusivity along and perpendicular to the local
vector field leads to

A(u) =

(
u û

v v̂

)(
a 0

0 â

)(
u v

û v̂

)
(27)

where u = (u, v)T is the local flow direction, û = (û, v̂)T a
vector normal to u, a the diffusivity along the flow direc-
tion, and â the diffusivity perpendicular to the flow direc-
tion. Using the above decomposition, Equation 25 can also
be written as

∂ρ

∂t
= ∇ · [au (u · ∇ρ) + âû (û · ∇ρ)] (28)

9.1 method overview 133

where u (u · ∇ρ) is the projection of the gradient onto the lo-
cal vector field direction. In our applications, we set â = 0 in
order to maintain a maximal contrast between streamlines.

We discretize Equation 28 using finite differences, more
precisely, using second order approximations for the gradi-
ent and the divergence, and an explicit forward time step-
ping scheme. In order to limit the stencil of the spatial dis-
cretization to the four neighboring fragments, we first com-
pute for each fragment the discrete gradient of ρ, multiply
it with the diffusion tensor, and store it inside the fragment.
In the next iteration, we compute the discrete divergence
of these gradient vectors and use it to update ρ using the
following explicit forward time scheme(

g

h

)k
x,y

=au

[
u ·

(
Dx(ρ)

k
x,y

Dy(ρ)
k
x,y

)]
(29)

ρk+1i,j =ρkx,y +∆t
[
Dx(g)

k
x,y +Dy(h)

k
x,y
]

(30)

where ρkx,y is the value of ρ at position (x,y) and time step
k, (g,h)T the gradient field, and Dx and Dy the discrete
derivatives given by the central difference operators

Dx(f)
k
x,y =

1

2

(
fkx+1,y − f

k
x−1,y

)
(31)

Dy(f)
k
x,y =

1

2

(
fkx,y+1 − f

k
x,y−1

)
(32)

A necessary condition for the stability of this scheme is
given by the Courant-Friedrichs-Lewy (CFL) condition ∆t 6
‖u‖2 /a [106]. In order to guarantee a fast convergence, we
normalize the vector field and use a = 1 and ∆t = 0.95.
Using the non-normalized field would require limiting the
time step to satisfy the CFL condition, leading to slow con-
vergence, or using a more sophisticated discretization method

134 multi-layer illustrative dense flow visualization

that does not have such a condition. Note that Equation 30

depends on gradients computed by Equation 29. This is im-
plemented by executing both equations in separate render
passes. One may be tempted to instead execute both equa-
tions in one pass and use the gradients from the previous
time step. This will however halve the maximal stable time
step, thus bringing no real improvement.

Instead of central differences, other discretizations could
be used. Figure 48a shows the result of a full 3x3 stencil,
as used in [98]. This operator is more precise at the cost of
accessing diagonal elements, which is expensive in the illus-
tration buffer, as it requires two indirect loading operations
(e.g., follow the left neighbor of the upper neighbor to get
the upper left diagonal element). Figure 48b shows the re-
sult of first order forward differences for the gradient and
backward differences for the divergence. Using this scheme,
Equations 29 and 30 can be implemented in a single pass,
however this scheme suffers from severe numerical diffu-
sion. The central differences, shown in Figure 48c, are a
good compromise between speed and quality. An analysis
of similar five point schemes [102] revealed that central dif-
ferences have the lowest numerical diffusivity at the cost
of checkerboard patterns appearing near large gradients.
A checkerboard has a constant zero gradient for the cen-
tral differences operator and thus will not be removed by
the diffusion process. Fortunately, our input noise is very
smooth. For smooth vector fields and spot sizes of at least
four pixels, these patterns are usually not noticeable. If nec-
essary, more sophisticated schemes as presented in [102]
could be used to avoid this problem.

A very important aspect of the discretization is the cor-
rect handling of boundary conditions. Since the computa-
tional domain Ω is the set of all connected fragments, we

9.1 method overview 135

a b c

Figure 48: Discretizations of the gradient. (a) Full 3x3 stencil. (b)
Forward and backward differences. (c) Central differ-
ences.

first have to find boundary fragments and estimate the do-
main normal n. We use the following numerical approxima-
tion for the outer normal

n = −
∑
∆u∈N

∆u (33)

where N ⊆ {(−1, 0), (1, 0), (0,−1), (0, 1)} is the set of offsets
for which pixel (i, j) contains valid neighbors. This is illus-
trated in Figure 49a, where the red cells are fragments out-
side of the surface and the blue cells are fragments inside
the surface. Note that this approach does not work for de-
generate fragments where the normal is not uniquely de-
fined, which we ignore since such fragments will already
have zero gradient across the domain boundary.

When accessing fragments outside of the domain in Equa-
tions 31 and 32, we use reflecting boundary conditions. These
conditions state that the function is virtually reflected at the
boundary, i.e., fkR = fkL andDx(f)kR = −Dx(f)

k
L in Figure 49a.

This guarantees∇ρ ·n = 0, but not D∇ρ ·n = 0. From Equa-
tion 28 we see that at a boundary, the projected gradient
must not have a component parallel to n. We enforce this
condition by modifying u at the boundary so that it is per-
pendicular to n. We have found this approach to be more
stable than using first order differences at the boundary
and removing the normal component from the flux D∇ρ.

136 multi-layer illustrative dense flow visualization

b c
n

L C R

U

D

Δi

Δi

a

Figure 49: Boundary conditions. (a) Estimating the boundary nor-
mal. (b) 2000 diffusion iterations with a complex sur-
face boundary. (c) Checkerboard pattern near bound-
aries.

a b c

Figure 50: Number of iterations on a 512× 256 pixel image. (a) 20

iterations. (b) 100 iterations. (c) 1000 iterations.

Figure 49b demonstrates that the diffusion produces cor-
rect results for arbitrary boundaries. The only numerical
difficulties we have encountered are checkerboard patterns
near boundaries, as shown in Figure 49c. We have not found
them to be disturbing enough to justify more sophisticated
discretizations as explained above.

The diffusion process is repeated for a number of iter-
ations chosen by the user. Higher numbers will result in
longer streaks and generally a higher image quality, how-
ever increase the run time proportionally. A comparison of
different diffusion times is shown in Figure 50. In practice,
the number of iterations should be adapted to the desired
level of interactivity, i.e., decreased for interactive data ex-
ploration and increased for still images.

9.1 method overview 137

9.1.3 Relation with line integral convolution

In this section we analyze how the anisotropic diffusion is
related to line integral convolution. Ignoring numerical dif-
fusion, Equation 25 with â = 0 can only transport infor-
mation along streamlines and thus corresponds to a one-
dimensional diffusion along a streamline. The analytic so-
lution of the one-dimensional diffusion equation is

ρ(x, T) =
1√
4πaT

∫∞
−∞ e

−(x−y)2

4aT ρ(y, 0)dy (34)

which closely resembles the one-dimensional line integral
convolution given by

ρ(x) =

∫L
−L
k(x− y)ρ0(y)dy (35)

where k(x) is the convolution kernel and L the convolution
length. This comparison shows that the anisotropic diffu-
sion after a time T corresponds to a line integral convolu-
tion with an infinite convolution length and a Gaussian ker-
nel k(x). Note that k(x) is equal to the probability density
function of the normal distribution with variance σ2 = 2aT .
Since 99.7% of the area of k(x) lies in the range [−3σ, 3σ], the
convolution length can be safely limited to L ≈ 3

√
2aT . This

relation can be used to express parameters for our method
in terms of parameters for existing LIC based visualizations
in order to obtain similar results.

9.1.4 Compositing

The last stage of our method is the compositing of the il-
lustration buffer into the final image. Our basic approach is

138 multi-layer illustrative dense flow visualization

to convert the fragment intensity ρ ∈ [−1, 1] into the frag-
ment transparency α ∈ [0, 1] and composite the fragments
using alpha blending. We do not change the color of the
fragments, leaving the choice of surface and background
color to the user. This will result in the surface being cov-
ered by opaque line-like streaks, interleaved by transparent
streaks. In order to facilitate the perception of the depth or-
dering for multiple layers, we want the streaks to be fully
transparent and fully opaque, respectively, i.e., we want the
image to have a high contrast. Since the diffusion process
reduces the contrast of the image, we perform a simple con-
trast stretching

α = min(max(r · 0.5 · ρ+ 0.5, 0), 1) (36)

with a stretching parameter r. In our applications, we use
values between 2 and 4.

When illustrating multiple layered surfaces, care has to
be taken when choosing the colors for the surfaces and
the background. Dense vector field visualization methods
only work well if there is sufficient contrast in the final im-
age. Since the image will contain streaks from all surface
layers interleaved by the background, we want the set of
all used colors to contain elements with pairwise high con-
trast. Example choices are white surfaces on a black back-
ground, or cyan, magenta, and yellow surfaces on black
background. The maximal number of layers that can be
visualized greatly depends on the data. In general, a free
choice of surface color and animated images increase the
number of layers.

9.1 method overview 139

9.1.5 Illustrative techniques

The core of our method is the solution of a partial differen-
tial equation on a screen space representation of the surface
with multiple layers. This framework is very flexible and
can be used to implement a number of extensions. In order
to enhance the perception of the surface shape and depth or-
dering, we use an illustrative method for the enhancement
of surface boundaries (see Chapter 8). This effect uses a
separate diffusion process to compute for each fragment its
screen space distance to the nearest surface silhouette. The
distance is then used to update the intensity ρ just before
compositing with

ρ← ρ+ k1e
−k2β

2

(37)

where β is the fragment distance to the nearest silhouette
and k1 ∈ [0, 2] and k2 > 0 user-defined parameters modify-
ing the strength and width of the illustrative enhancement.
An additional advantage of the illustration buffer is that
the number of surface layers is known for each pixel. We
use this information to adaptively lower the density of sur-
face streaks for image parts that contain many layers. This
is implemented by lowering and rescaling the initial noise
value ρ0 with

ρ0 ← ρ0 − (k3 + k4n)

1− (k3 + k4n)
(38)

where n is the number of layers and k3 and k4 user-defined
parameters. The effect of these enhancements is shown in
Figure 54.

140 multi-layer illustrative dense flow visualization

9.2 results

In this section, we will present results of our method ap-
plied to three different problems: simulated atmospheric
flow on an extrasolar planet, Lagrangian coherent struc-
tures in a revolving door simulation, and a stream surface
of a synthetic velocity field. For higher print quality, images
were rendered using a large number of iterations.

9.2.1 Exoplanet

In the first application, we visualize the results of a weather
simulation on an extrasolar planet [51]. The planet is roughly
the size of Jupiter and is tidally-locked, i.e., one side of
the planet is always facing the star. Due to the physical
nature of the problem, the atmospheric flow is mostly hor-
izontal and limited to near-spherical surfaces, which were
also used in the discretization of the computational domain.
Therefore, a visualization of the flow along these surfaces
is of great interest to the researchers.

Figure 51 illustrates the flow along two layers of the at-
mosphere. The lower layer, located about 2000 km above
the planetary surface, is where infrared light is escaping.
The upper layer, located about 7000 km above the surface,
is not visible to the eye. Since the temperature is an impor-
tant property in this problem, the surfaces were colored ac-
cording to the temperature, with values ranging from 600K
(blue) over 1300K (green) to 2000K (red). Note how the at-
mosphere on the left (day) side of the planet is warmer and
more bulgy than the atmosphere on the right (night) side.

In this application, we have chosen a high frequency ini-
tial noise and long diffusion times, resulting in long, thin

9.2 results 141

Figure 51: Two-layered dense visualization of the atmosphere of
a tidally-locked exoplanet. The streaks are colored us-
ing the temperature. 800×600 pixels, 500 iterations.

streaks. In order to achieve the highest quality for these thin
features, we have used the full 3× 3 stencil for the gradient
discretization instead of the central difference discretization
that was used in all other results. The planet surface was
rendered as an opaque black object in order to provide con-
trast for the atmosphere layers. When presented to domain
experts, our results have been assessed as extremely useful
because one can then get an idea of how the planetary flow
is reacting to the starlight at different layers.

142 multi-layer illustrative dense flow visualization

9.2.2 Revolving door

In the second application, we visualize Lagrangian coherent
structures (LCS) [46] in a simulation of a revolving door [100].
In order to minimize energy losses from cold air entering
through the revolving door, an air curtain was added, blow-
ing warm air upwards from the floor behind the door. LCS
have proved to be very useful in finding energy leaks in
this scenario and are therefore important to visualize. Since
by definition, the flux through the LCS is negligible, a vi-
sualization of the flow along these surfaces will provide
physically relevant information.

Figures 52 and 53 show the LCS, where blue color de-
notes repelling structures and red attracting ones. The main
problem with LCS-based visualizations is dealing with clut-
ter as LCS tend to have complicated structures. In [100],
cutaways were used to reveal the structure close to the air
curtain, as seen in Figure 52. Even though cutting away half
of the mesh does a very good job at revealing the struc-
ture of the LCS, cutting meshes is cumbersome and find-
ing proper cut locations takes time. In Figure 53, we can
see how our dense flow visualization helps understanding
the global structure of the LCS even without using any cut-
aways. Since understanding the shape of the LCS is very
important, we have chosen a sparse, low frequency initial
noise and have applied an illustrative, non-local silhouette
enhancement as described in Chapter 8. Note that our visu-
alization shows only the instantaneous flow direction and
care has to be taken when interpreting this information on
the time-dependent LCS surfaces.

9.2 results 143

Figure 52: LCS based visualization of the simulation of a revolv-
ing door with air curtain using cutaways. The air cur-
tain is modeled by an air outlet, as shown in green. On
both sides of the air curtain, air intakes are placed to
compensate for air blown in by the air outlet.

9.2.3 Stream surface

In the third application, we visualize a swirling flow. The
vector field is an analytic modification of Hill’s spherical
vortex, and the surface was produced using high quality
numerical integration. Since there is by definition no flow
through a stream surface, and recirculating flows produce
twisted and folded structures, this setting is suitable to ex-
plore the expressiveness of our visualization.

Figure 54 demonstrates four different variations of our
method. In Figure 54a, the method was applied without any
extensions. In Figure 54b, an illustrative cool-warm shad-
ing [42] and a non-local silhouette enhancement according
to Equation 37 with k1 = 0.5 and k2 = 30 was added. In
Figure 54c, the initial noise was adapted to the number of

144 multi-layer illustrative dense flow visualization

Figure 53: LCS based visualization of the simulation of a revolv-
ing door with an air curtain using our method. Even
without cutaways, the general structure of the LCS is
much more easily understood. 800×600 pixels, 250 it-
erations.

surface layers, according to Equation 38 with k3 = −0.4
and k4 = 0.4. In Figure 54d, the color of the surface was
computed from the geodesic distance to three uniformly
distributed points on the surface, resulting in a better color
difference between streaks that are geodesically far apart.

9.2 results 145

(a) (b)

(c) (d)

Figure 54: Visualization of the flow along a stream surface. (a)
Base result. (b) Cool-warm shading and silhouette en-
hancement. (c) Adaptively reduced noise density. (d)
Automatic surface coloring. 1024×1024 pixels, 1200 it-
erations.

10
C O N C L U S I O N

In this part we have introduced the illustration buffer, a novel
2.5D screen space data structure which provides explicit
links to neighboring fragments along the surface as well
as along the viewing ray, and thus allows us to implement
a wide range of visualization methods. The data structure
works with arbitrary triangle meshes and does not need
a surface parametrization, and can therefore be used to
visualize difficult surfaces such as non-manifolds with a
fast changing topology. The illustration buffer is used as
a framework for presenting two novel surface visualization
methods.

First, we present an illustrative transparency assignment
method which is motivated from two directions. Percep-
tion research suggests that X- and T-junctions are the most
important clue for the understanding of transparent sur-
faces. Therefore we suggest a hybrid cue which we call
XT-junction. This approach is also motivated by traditional
drawing methods of scientific illustrators, who use similar
halos and non-local transparency modulation in their illus-
trations. In a user study we have shown that our approach
may improve the understanding of complex surfaces.

Next, we present a dense flow visualization method that
is applicable to surfaces with multiple self-occluding layers,
where both the surface shape and the flow along the surface
is of importance. By using both view-dependent and object
space properties, the method generates patterns of constant

147

148 conclusion

screen space frequency configurable by an intuitive user pa-
rameter – the screen space diameter of the noise spots.

Since our methods use a non-local enhancement of sur-
face silhouettes, they are not suitable for highly fragmented
objects or surfaces with a dense set of silhouettes. This is-
sue could be adressed by applying an anisotropic diffusion
model that takes the local feature size into account. Another
limitation is the use of a heuristic error measure to find
geodesically neighboring fragments. Although we found it
to be robust enough for practical purposes, it is possible
to think of cases where it fails. A surface parametrization
could be used in this case to compute the geodesic dis-
tance between fragments in parameter space. Alternatively,
if a suitable surface parametrization is available, the trans-
parency distribution could be computed in object space,
eliminating the heuristic error measure. Günther et al. use
this approach to combine our method with a global opti-
mization of the initial surface transparency [45].

We employ an iterative screen space method to compute
the diffusion of transparency. While this method is quite
simple to implement, faster convergence could be achieved
with a more sophisticated multi-scale method which takes
the geometry topology and texture coordinates into account.
Since the core of our method is the solution of a partial
differential equation on multi-layered surfaces, other equa-
tions can easily be investigated as well. For example, our
method could be extended to advection-diffusion schemes
in order to visualize path lines or streak lines.

In our method we focus on transparency while keeping
other important cues such as texture, lighting, or color fixed
in order to allow a meaningful evaluation of transparency.
We believe a decoupling of these parameters is necessary to
develop a novel framework for transparency. On the other

conclusion 149

hand, this also forces us to limit the conclusions to the im-
portance of transparency alone; we cannot make any specu-
lations on the relative importance in relation to other prop-
erties, such as surface color (see Figure 55). An interesting
future research project would be to extend our approach to
a framework which takes multiple cues into account and
to perform a user study which can provide insight into the
relative importance of the different cues.

Figure 55: The perception of multi-layered surfaces could be en-
hanced by other visual cues, such as color or lighting.

Even though the user study used a small number of tasks,
we have obtained statistically significant results. This may
be due to the fact that we have used complex and diffi-
cult to understand surfaces in our tasks, since we suggest
our method specifically for the visualization of complex sur-
faces. Additionally, our paper-based study and the choice of
tasks was very general, and we do not claim that it is an op-
timal operationalization of the problem of understanding
complex surfaces. For practical evaluations, an interactive
study with application-specific tasks might be more appro-
priate.

Part III

A P P E N D I X

A
U S E R S T U D Y

Example of the user study as described in Section 8.5, ex-
cluding the leading intelligence test tasks (see Section 8.5.1).
The participants had 1:30min time to read each task descrip-
tion, after which they were allowed to continue to the actual
task.

153

Task: on which layer is the point located

For this task you are asked to specify on which layer a boundary or silhouette point is located.

DEFINITIONS AND EXAMPLES

For the examples, we will use a picture of two concentric open tubes.
The actual task will follow later and will use a different style of rendering.

Red highlighted are all surface boundaries. A surface boundary is where
the surface ends; if the surface was a piece of sharp paper, you could cut
yourself on the boundary.

Blue highlighted are all surface silhouettes. Silhouettes appear as edges
in the picture, but the surface does not end there.

In this picture, point A lies on the first surface layer, since there are no
other surfaces in front of the marked boundary.

In this picture, point B lies on the third surface layer, since there are two
other layers in front of the marked boundary.

In this picture, point C lies on the second surface layer, since there is one
surface layer in front of the marked silhouette.

Hint: there is always exactly one boundary or silhouette at each marked position.

Please specify the layer for each point. L1 is the front-most surface layer, L2 the second layer, and so

on. Cross one item per line.

Point L1 L2 L3 L4 L5 L6 L7

A

B

C

D

E

F

Please specify the layer for each point. L1 is the front-most surface layer, L2 the second layer, and so

on. Cross one item per line.

Point L1 L2 L3 L4 L5 L6 L7

A

B

C

D

E

F

Please specify the layer for each point. L1 is the front-most surface layer, L2 the second layer, and so

on. Cross one item per line.

Point L1 L2 L3 L4 L5 L6 L7

A

B

C

D

E

F

Task: follow the surface boundary

For this task you are asked to follow the boundary of the surface. You will be given two points on

the boundary and have to decide which of the other points lie on the shortest path between the two

points.

DEFINITIONS AND EXAMPLES

For the examples, we will again use a picture of two concentric open tubes.

In this picture, you are given two end points A and B. The shortest path along
the surface boundary between these points is highlighted blue.

In this picture, point C lies on the shortest path from A to B along the surface
boundary.

In this picture, point D does NOT lie on the shortest path from A to B along
the surface boundary, since the path from A to B over D is much longer than
the path in the previous example.

In this picture, point D does NOT lie on the shortest path from A to B along
the surface boundary, since D does not lie on a boundary at all.

Hint: there is always at most one boundary at each marked position.

Which of the following points lie on shortest path between the given end points? For each row, cross

all items where the crosshair marks a point on the shortest path along the surface boundary between

the given start and end.

Start End A B C D E F G H J

A B

B C

D B

A D

Which of the following points lie on shortest path between the given end points? For each row, cross

all items where the crosshair marks a point on the shortest path along the surface boundary between

the given start and end.

Start End A B C D E F G H J

A B

B C

D B

A D

Which of the following points lie on shortest path between the given end points? For each row, cross

all items where the crosshair marks a point on the shortest path along the surface boundary between

the given start and end.

Start End A B C D E F G H J

A B

A C

C D

A D

Task: find the nearest element when
moving on the surface

For this task you are asked to follow the surface as if walking on it. You will be given one point on

the surface and have to decide which of the other points is closest to it.

DEFINITIONS AND EXAMPLE

For the examples, we will again use a picture of two concentric open tubes.

In this task, you will also be given the layer at which a point is located. Point
“A(L2)“ means that the point is at the second layer under the position
labeled A. In this picture, this would be the back side of the smaller tube.

In this task, the points lie on both sides of the specified surface layer. In this
picture, A(L2) lies both on the inner and the outer side of the back of the
smaller tube. Always choose the side which results in the shorter path.

Similarly, point B(L1) is a point on the first surface layer at position B. In this
picture, this would be the front side of the smaller tube.

Consider the points A(L2) and B(L1) in this picture. The shortest path along
the surface between these points is highlighted blue.

In this picture, you are given the start point A(L2) and two candidates B(L1)
and C(L2). Point B(L1) is the closest point to A(L2); both B(L1) and C(L2) lie on
the front side of the smaller tube, but the path from A(L2) to B(L1) is much
shorter than the path from A(L2) to C(L2).

Which of the five given points is closest to the start point? Cross one item per line.

Start point Point 1 Point 2 Point 3 Point 4 Point 5

A (L2) B(L1) C(L4) C(L5) H(L1) J(L2)
B (L1) A(L2) C(L1) C(L3) E(L2) J(L2)
C (L2) C(L1) C(L4) D(L2) F(L1) G(L3)
D (L1) A(L2) B(L1) F(L2) H(L2) J(L2)

Which of the five given points is closest to the start point? Cross one item per line.

Start point Point 1 Point 2 Point 3 Point 4 Point 5

A (L2) C(L1) D(L1) E(L1) F(L1) H(L1)
B (L2) C(L1) E(L1) F(L1) G(L3) J(L2)
C (L1) B(L1) D(L1) G(L3) H(L1) H(L2)
D (L1) F(L1) G(L1) G(L2) G(L3) J(L2)

Which of the five given points is closest to the start point? Cross one item per line.

Start point Point 1 Point 2 Point 3 Point 4 Point 5

A (L2) B(L1) D(L1) E(L1) F(L1) K(L1)
B (L1) A(L3) C(L3) G(L3) H(L1) L(L2)
A (L3) C(L1) E(L1) F(L1) G(L1) K(L1)
C (L1) D(L1) E(L1) H(L1) G(L1) K(L1)

B
B I B L I O G R A P H Y

[11] Marc K. Albert. “Occlusion, transparency, and light-
ness”. In: Vision Research 47.24 (2007), pp. 3061–3069

(cit. on p. 93).

[12] R. Amthauer et al. “Intelligenzstruktur-Test-2000-R”.
In: Zeitschrift für Entwicklungspsychologie und Päda-
gogische Psychologie 32(3) (2001), pp. 166–169 (cit. on
p. 118).

[13] B. L. Anderson. “The Role of Occlusion in the Per-
ception of Depth, Lightness, and Opacity”. In: Psy-
chological Review 110.4 (2003), pp. 785–801 (cit. on
p. 94).

[14] Arthur Appel, F. James Rohlf, and Arthur J. Stein.
“The haloed line effect for hidden line elimination”.
In: SIGGRAPH Computer Graphics 13.2 (1979), pp. 151–
157 (cit. on p. 70).

[15] R. A. Bailey. Design of Comparative Experiments. Cam-
bridge University Press, 2008 (cit. on p. 115).

[16] A. Bandura. “Self-efficacy: Towards a unifying the-
ory of behavioral change”. In: Psychological Review
84 (2) (1977), pp. 191–215 (cit. on p. 117).

[17] L. Bavoil et al. “Multi-fragment effects on the GPU
using the k-buffer”. In: Proceedings of the 2007 Sym-
posium on Interactive 3D Graphics and Games. 2007,
pp. 97–104 (cit. on p. 77).

167

http://dx.doi.org/10.1016/j.visres.2007.06.004
http://dx.doi.org/10.1016/j.visres.2007.06.004
http://dx.doi.org/10.1037/0033-295X.110.4.785
http://dx.doi.org/10.1037/0033-295X.110.4.785
http://dx.doi.org/10.1145/965103.807437
http://dx.doi.org/10.1016/0146-6402(78)90002-4
http://dx.doi.org/10.1016/0146-6402(78)90002-4
http://dx.doi.org/10.1145/1230100.1230117
http://dx.doi.org/10.1145/1230100.1230117

168 B Bibliography

[18] J. Beck. “Perception of Transparency in Man and Ma-
chine”. In: Computer Vision, Graphics, and Image Pro-
cessing 31.2 (1985), pp. 127–138 (cit. on p. 94).

[19] Jelena Bock et al. “4D phase contrast MRI at 3T: Ef-
fect of standard and blood-pool contrast agents on
SNR, PC-MRA, and blood flow visualization”. In:
Magnetic Resonance in Medicine 63.2 (2010), pp. 330–
338 (cit. on pp. 47, 53–55).

[20] Silvia Born et al. “Visual Analysis of Cardiac 4D MRI
Blood Flow Using Line Predicates”. In: IEEE Transac-
tions on Visualization and Computer Graphics 19.6 (2013),
pp. 1–14 (cit. on p. 44).

[21] G. E. P. Box, J. S. Hunter, and W. G. Hunter. Statistics
for Experimenters: Design, Innovation, and Discovery.
Wiley-Interscience, 2005 (cit. on pp. 116, 117, 119).

[5] Andrea Brambilla, Robert Carnecky, Ronald Peik-
ert, Ivan Viola, and Helwig Hauser. “Illustrative Flow
Visualization: State of the Art, Trends and Challenges”.
In: EG 2012 - State of the Art Reports. Cagliari, Sar-
dinia, Italy: Eurographics Association, 2012, pp. 75–
94 (cit. on p. 9).

[22] Andrea Brambilla et al. “Illustrative Flow Visualiza-
tion: State of the Art, Trends and Challenges”. In: EG
2012 - State of the Art Reports. Eurographics Associa-
tion, 2012, pp. 75–94 (cit. on p. 2).

[23] Stefan Bruckner and Eduard Gröller. “Enhancing Depth-
Perception with Flexible Volumetric Halos”. In: IEEE
Transactions on Visualization and Computer Graphics 13.6
(2007), pp. 1344–1351 (cit. on pp. 69, 70).

http://dx.doi.org/10.1016/0734-189X(86)90031-9
http://dx.doi.org/10.1016/0734-189X(86)90031-9
http://dx.doi.org/10.1002/mrm.22199
http://dx.doi.org/10.1002/mrm.22199
http://dx.doi.org/10.1002/mrm.22199
http://dx.doi.org/10.1109/TVCG.2012.318
http://dx.doi.org/10.1109/TVCG.2012.318
http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.2312/conf/EG2012/stars/075-094
http://dx.doi.org/10.1109/TVCG.2007.70555
http://dx.doi.org/10.1109/TVCG.2007.70555

B Bibliography 169

[24] R. Bürger et al. “Integrating Local Feature Detectors
in the Interactive Visual Analysis of Flow Simulation
Data”. In: Proc. Eurographics/IEEE-VGTC Symposium
on Visualization 2007. 2007, pp. 171–178 (cit. on p. 18).

[25] Julia Busch et al. “Reconstruction of divergence-free
velocity fields from cine 3D phase-contrast flow mea-
surements”. In: Magnetic Resonance in Medicine 69.1
(2013), pp. 200–210 (cit. on p. 46).

[26] Loren Carpenter. “The A-buffer, an antialiased hid-
den surface method”. In: Proceedings of the 11th an-
nual conference on Computer Graphics and Interactive
Techniques. 1984, pp. 103–108 (cit. on p. 76).

[27] Ming-Yuen Chan et al. “Perception-Based Transparency
Optimization for Direct Volume Rendering”. In: IEEE
Transactions on Visualization and Computer Graphics 15

(2009), pp. 1283–1290 (cit. on p. 69).

[28] Cheng-Kai Chen, R. Thomason, and Kwan-Liu Ma.
“Intelligent Focus+Context Volume Visualization”. In:
Intelligent Systems Design and Applications, 2008. ISDA
’08. Eighth International Conference on. Vol. 1. 2008,
pp. 368–374 (cit. on p. 9).

[29] M. Cooper. “The Tractability of Segmentation and
Scene Analysis”. In: International Journal of Computer
Vision 30(1) (1998), pp. 27–42 (cit. on p. 38).

[30] Peter F Davies. “Flow-Mediated Endothelial Mechan-
otransduction”. In: Physiol. Rev. 75.3 (1995), pp. 519–
560 (cit. on p. 43).

[31] Doug DeCarlo et al. “Suggestive contours for con-
veying shape”. In: ACM Transactions on Graphics 22.3
(3 2003), pp. 848–855 (cit. on p. 70).

http://dx.doi.org/10.1002/mrm.24221
http://dx.doi.org/10.1002/mrm.24221
http://dx.doi.org/10.1002/mrm.24221
http://dx.doi.org/10.1145/964965.808585
http://dx.doi.org/10.1145/964965.808585
http://dx.doi.org/10.1109/TVCG.2009.172
http://dx.doi.org/10.1109/TVCG.2009.172
http://dx.doi.org/10.1109/ISDA.2008.232
http://dx.doi.org/10.1145/882262.882354
http://dx.doi.org/10.1145/882262.882354

170 B Bibliography

[32] J. Diepstraten, D. Weiskopf, and T. Ertl. “Transparency
in Interactive Technical Illustrations”. In: Computer
Graphics Forum 21.3 (2002), pp. 317–325 (cit. on pp. 9,
69).

[33] J. Diepstraten, D. Weiskopf, and T. Ertl. “Interactive
Cutaway Illustrations”. In: Computer Graphics Forum
22.3 (2003), pp. 523–532 (cit. on p. 9).

[34] Helmut Doleisch, Martin Gasser, and Helwig Hauser.
“Interactive Feature Specification for Focus+Context
Visualization of Complex Simulation Data”. In: Pro-
ceedings of the Symposium on Data Visualisation 2003.
VISSYM ’03. 2003, pp. 239–248 (cit. on p. 9).

[35] Y. Dubief and F. Delcayre. “On coherent-vortex iden-
tification in turbulence”. In: Journal of Turbulence 1

(2000), N11 (cit. on p. 52).

[36] M. H. Everts et al. “Depth-Dependent Halos: Illustra-
tive Rendering of Dense Line Data”. In: IEEE Transac-
tions on Visualization and Computer Graphics 15.6 (2009),
pp. 1299–1306 (cit. on p. 70).

[37] F. Faul et al. “Statistical power analyses using GPower
3.1: Tests for correlation and regression analyses”. In:
Behavior Research Methods 41 (2009), pp. 1149–1160

(cit. on p. 117).

[38] S. K. Feiner and D. D. Seligmann. “Cutaways and
ghosting: satisfying visibility constraints in dynamic
3D illustrations”. In: The Visual Computer 8(5) (5 1992),
pp. 292–302 (cit. on p. 9).

[39] O. Frederich et al. “Large-scale dynamics in the flow
around a finite cylinder with a ground plate”. In:
Fluid Dynamics Research 43(1) (2011), 015504:1–015504:22

(cit. on p. 30).

http://dx.doi.org/10.1007/978-3-540-85412-8_26
http://dx.doi.org/10.1007/978-3-540-85412-8_26
http://dx.doi.org/10.1111/1467-8659.t01-3-00700
http://dx.doi.org/10.1111/1467-8659.t01-3-00700
http://dx.doi.org/10.1088/1468-5248/1/1/011
http://dx.doi.org/10.1088/1468-5248/1/1/011
http://dx.doi.org/10.1109/TVCG.2009.138
http://dx.doi.org/10.1109/TVCG.2009.138
http://dx.doi.org/10.3758/BRM.41.4.1149
http://dx.doi.org/10.3758/BRM.41.4.1149
http://dx.doi.org/10.1007/BF01897116
http://dx.doi.org/10.1007/BF01897116
http://dx.doi.org/10.1007/BF01897116
http://dx.doi.org/10.1088/0169-5983/43/1/015504
http://dx.doi.org/10.1088/0169-5983/43/1/015504

B Bibliography 171

[40] Alex Frydrychowicz et al. “Multidirectional Flow Anal-
ysis by Cardiovascular Magnetic Resonance in Aneu-
rysm Development Following Repair of Aortic Coarc-
tation”. In: Journal of Cardiovascular Magnetic Reso-
nance 10.30 (2008) (cit. on pp. 43, 44).

[41] Raphael Fuchs, Volkmar Welker, and Joachim Horneg-
ger. “Non-convex polyhedral volume of interest se-
lection”. In: Computerized Medical Imaging and Graph-
ics 34 (2 2009), pp. 105–113 (cit. on p. 9).

[42] Amy Gooch et al. “A non-photorealistic lighting model
for automatic technical illustration”. In: Proc. SIG-
GRAPH. ACM, 1998, pp. 447–452 (cit. on pp. 70, 71,
143).

[43] Brian Gough. GNU Scientific Library Reference Manual
- Third Edition. 3rd. 2009 (cit. on p. 58).

[44] Hákon Gudbjartsson and Samuel Patz. “The rician
distribution of noisy MRI data”. In: Magnetic Res-
onance in Medicine 34.6 (1995), pp. 910–914 (cit. on
p. 46).

[45] Tobias Günther et al. “Opacity Optimization for Sur-
faces”. In: Computer Graphics Forum 33.3 (2014), pp. 11–
20 (cit. on pp. 69, 148).

[46] George Haller. “Distinguished material surfaces and
coherent structures in three-dimensional fluid flows”.
In: Phys. D 149.4 (2001), pp. 248–277 (cit. on pp. 4,
125, 142).

[47] M. Harris, S. Sengupta, and J. D. Owens. “Parallel
Prefix Sum (Scan) with CUDA.” In: GPU Gems 3.
Addison Wesley, 2007. Chap. 39, pp. 851–876 (cit. on
p. 27).

http://dx.doi.org/10.1186/1532-429X-10-30
http://dx.doi.org/10.1186/1532-429X-10-30
http://dx.doi.org/10.1186/1532-429X-10-30
http://dx.doi.org/10.1186/1532-429X-10-30
http://dx.doi.org/10.1016/j.compmedimag.2009.07.002
http://dx.doi.org/10.1016/j.compmedimag.2009.07.002
http://dx.doi.org/10.1145/280814.280950
http://dx.doi.org/10.1145/280814.280950
http://dx.doi.org/10.1002/mrm.1910340618
http://dx.doi.org/10.1002/mrm.1910340618
http://dx.doi.org/10.1111/cgf.12357
http://dx.doi.org/10.1111/cgf.12357
http://dx.doi.org/10.1016/S0167-2789(00)00199-8
http://dx.doi.org/10.1016/S0167-2789(00)00199-8

172 B Bibliography

[48] Helwig Hauser. “Scientific Visualization: The Visual
Extraction of Knowledge from Data.” In: 2003. Chap. Gen-
eralizing focus+context visualization, pp. 305–327 (cit.
on p. 9).

[49] Paul Heckbert. “Texture mapping polygons in per-
spective”. In: NYIT Computer Graphics Lab Tech. Memo
13 (1983) (cit. on p. 130).

[50] J.L. Helman and Lambertus Hesselink. “Visualizing
vector field topology in fluid flows”. In: Computer
Graphics and Applications, IEEE 11.3 (1991), pp. 36–46

(cit. on p. 4).

[51] Kevin Heng, Kristen Menou, and Peter J. Phillipps.
“Atmospheric circulation of tidally locked exoplan-
ets: a suite of benchmark tests for dynamical solvers”.
In: Monthly Notices of the Royal Astronomical Society
413.4 (2011), pp. 2380–2402 (cit. on p. 140).

[52] Elaine R. S. Hodges. The Guild Handbook of Scientific
Illustration. Wiley, 2003, p. 656 (cit. on pp. 69, 92).

[53] Mathias Hummel et al. “IRIS: illustrative rendering
for integral surfaces.” In: IEEE Transactions on Visu-
alization and Computer Graphics 16.6 (2010), pp. 1319–
28 (cit. on pp. 69, 70, 85, 103).

[54] Victoria Interrante, Henry Fuchs, and Stephen Pizer.
“Enhancing Transparent Skin Surfaces with Ridge
and Valley Lines”. In: Proceedings of IEEE Visualiza-
tion 1995. 1995, pp. 52–60 (cit. on p. 69).

[55] Victoria Interrante, Henry Fuchs, and Stephen Pizer.
“Illustrating transparent surfaces with curvature-directed
strokes”. In: Proceedings of IEEE Visualization 1996.
1996, pp. 211–219 (cit. on p. 69).

http://dx.doi.org/10.1109/38.79452
http://dx.doi.org/10.1109/38.79452
http://dx.doi.org/10.1111/j.1365-2966.2011.18315.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18315.x
http://dx.doi.org/10.1109/TVCG.2010.173
http://dx.doi.org/10.1109/TVCG.2010.173
http://dx.doi.org/10.1109/VISUAL.1995.480795
http://dx.doi.org/10.1109/VISUAL.1995.480795
http://dx.doi.org/10.1109/VISUAL.1996.568110
http://dx.doi.org/10.1109/VISUAL.1996.568110

B Bibliography 173

[56] Tobias Isenberg et al. “A Developer’s Guide to Sil-
houette Algorithms for Polygonal Models”. In: IEEE
Computer Graphics and Applications 23.4 (2003), pp. 28–
37 (cit. on p. 71).

[57] J. Jeong and F. Hussain. “On the identification of
a vortex”. In: Journal of Fluid Mechanics 285 (1994),
pp. 69–94 (cit. on pp. 30, 47, 52).

[58] J. Jeong et al. “Coherent structures near the wall in a
turbulent channel flow”. In: Journal of Fluid Mechan-
ics 332 (1997), pp. 185–214 (cit. on p. 52).

[59] Tilke Judd, Frédo Durand, and Edward Adelson. “Ap-
parent ridges for line drawing”. In: ACM Transac-
tions on Graphics 26.3 (2007), pp. 19–26 (cit. on p. 70).

[60] S. Khanna, S. Muthukrishnan, and M. Paterson. “On
approximating rectangle tiling and packing”. In: Proc.
9th annual ACM-SIAM Symposium on Discrete Algo-
rithms. 1998, pp. 384–393 (cit. on p. 38).

[61] Philip J Kilner et al. “Helical and Retrograde Sec-
ondary Flow Patterns in the Aortic Arch Studied
by Three-Directional Magnetic Resonance Velocity
Mapping”. In: Circulation 88 (1993), pp. 2235–2247

(cit. on pp. 43, 60).

[62] Scott Kirkpatrick. “Optimization by simulated an-
nealing: Quantitative studies”. In: Journal of Statisti-
cal Physics 34.5 (1984), pp. 975–986 (cit. on pp. 22,
24).

[63] Benjamin Köhler et al. “Semi-Automatic Vortex Ex-
traction in 4D PC-MRI Cardiac Blood Flow Data us-
ing Line Predicates.” In: IEEE TVCG 19.12 (Dec. 2013),
pp. 2773–82 (cit. on pp. 44, 47, 52, 57).

http://dx.doi.org/10.1109/MCG.2003.1210862
http://dx.doi.org/10.1109/MCG.2003.1210862
http://dx.doi.org/10.1017/S0022112095000462
http://dx.doi.org/10.1017/S0022112095000462
http://dx.doi.org/10.1145/1276377.1276401
http://dx.doi.org/10.1145/1276377.1276401
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1007/BF01009452
http://dx.doi.org/10.1109/TVCG.2013.189
http://dx.doi.org/10.1109/TVCG.2013.189
http://dx.doi.org/10.1109/TVCG.2013.189

174 B Bibliography

[64] Václav Kolář, Pavel Moses, and Jakub Šístek. “Lo-
cal corotation of line segments and vortex identifi-
cation”. In: Proc. 17th Australasian Fluid Mech. Conf.
2010, pp. 638–652 (cit. on pp. 47, 49).

[65] Harinarayan Krishnan et al. “Analysis of Time-Dependent
Flow-Sensitive PC-MRI Data”. In: IEEE Transactions
on Visualization and Computer Graphics 18.6 (June 2012),
pp. 966–977 (cit. on p. 47).

[66] Jan-Willem Lankhaar et al. “Correction of phase off-
set errors in main pulmonary artery flow quantifica-
tion”. In: Journal of Magnetic Resonance Imaging 22.1
(2005), pp. 73–79 (cit. on p. 45).

[67] Robert S. Laramee et al. “The State of the Art in
Flow Visualization: Dense and Texture-Based Tech-
niques”. In: Computer Graphics Forum 23.2 (2004), pp. 203–
221 (cit. on pp. 4, 5).

[68] D. Lichtenstein. “Planar formulae and their uses”.
In: SIAM Journal on Computing 11(2) (1982), pp. 329–
343 (cit. on p. 38).

[69] Wentao Liu et al. “3D phase unwrapping using global
expected phase as a reference: Application to MRI
global shimming”. In: Magnetic Resonance in Medicine
70.1 (2013), pp. 160–168 (cit. on p. 46).

[70] Michel Loeve. Probability Theory. 3rd. D. Van Nos-
trand, 1963 (cit. on p. 50).

[71] Martin Luboschik, Axel Radloff, and Heidrun Schu-
mann. “A new weaving technique for handling over-
lapping regions”. In: Proceedings of the International
Conference on Advanced Visual Interfaces. 2010, pp. 25–
32 (cit. on p. 69).

http://dx.doi.org/10.2514/1.J052330
http://dx.doi.org/10.2514/1.J052330
http://dx.doi.org/10.2514/1.J052330
http://dx.doi.org/10.1109/TVCG.2011.80
http://dx.doi.org/10.1109/TVCG.2011.80
http://dx.doi.org/10.1002/jmri.20361
http://dx.doi.org/10.1002/jmri.20361
http://dx.doi.org/10.1002/jmri.20361
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1002/mrm.24448
http://dx.doi.org/10.1002/mrm.24448
http://dx.doi.org/10.1002/mrm.24448
http://dx.doi.org/10.1145/1842993.1842999
http://dx.doi.org/10.1145/1842993.1842999

B Bibliography 175

[72] Thomas Luft, Carsten Colditz, and Oliver Deussen.
“Image enhancement by unsharp masking the depth
buffer”. In: ACM Transactions on Graphics 25.3 (2006),
pp. 1206–1213 (cit. on p. 69).

[73] Eric B. Lum, Aleksander Stompel, and Kwan-Liu
Ma. “Using Motion to Illustrate Static 3D Shape–
Kinetic Visualization”. In: IEEE Transactions on Visu-
alization and Computer Graphics 9.2 (2003), pp. 115–
126 (cit. on p. 69).

[74] John L. Lumley. “The structure of inhomogeneous
turbulent flows”. In: Atmospheric turbulence and radio
wave propagation (1967), pp. 166–178 (cit. on p. 50).

[75] A. Mammen. “Transparency and antialiasing algo-
rithms implemented with the virtual pixel maps tech-
nique”. In: IEEE Computer Graphics and Applications
9.4 (1989), pp. 43–55 (cit. on p. 76).

[76] José V. Manjón et al. Diffusion Weighted Image Denois-
ing Using Overcomplete Local PCA. 2013 (cit. on p. 46).

[77] Michael Markl et al. “Time-resolved 3D MR veloc-
ity mapping at 3T: Improved navigator-gated assess-
ment of vascular anatomy and blood flow”. In: Jour-
nal of Magnetic Resonance 25.4 (2007), pp. 824–831 (cit.
on p. 53).

[78] Michael Markl et al. “4D flow MRI”. In: Journal of
Magnetic Resonance Imaging 36.5 (2012), pp. 1015–1036

(cit. on p. 44).

[79] M.V. McConnell et al. “Comparison of respiratory
suppression methods and navigator locations for MR
coronary angiography”. In: American Journal of Roentgenol-
ogy 168.5 (1997), pp. 1369–75 (cit. on p. 45).

http://dx.doi.org/10.1145/1179352.1142016
http://dx.doi.org/10.1145/1179352.1142016
http://dx.doi.org/10.1109/TVCG.2003.1196000
http://dx.doi.org/10.1109/TVCG.2003.1196000
http://dx.doi.org/10.1109/38.31463
http://dx.doi.org/10.1109/38.31463
http://dx.doi.org/10.1109/38.31463
http://dx.doi.org/10.1002/jmri.23632
http://dx.doi.org/10.2214/ajr.168.5.9129447
http://dx.doi.org/10.2214/ajr.168.5.9129447
http://dx.doi.org/10.2214/ajr.168.5.9129447

176 B Bibliography

[80] Robert McGregor et al. “Exploring the Use of Proper
Orthogonal Decomposition for Enhancing Blood Flow
Images Via Computational Fluid Dynamics.” In: Med-
ical Image Computing and Computer-Assisted Interven-
tion 2008. Vol. 5242. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2008, pp. 782–789

(cit. on p. 46).

[81] Tony McLoughlin, Robert S. Laramee, and Eugene
Zhang. “Constructing Streak Surfaces for 3D Unsteady
Vector Fields”. In: Proceedings of the 26th Spring Con-
ference on Computer Graphics. SCCG ’10. 2010, pp. 17–
26 (cit. on p. 5).

[82] Tony McLoughlin et al. “Over Two Decades of Integration-
Based, Geometric Flow Visualization”. In: Computer
Graphics Forum 29 (6 2010), pp. 1807–1829 (cit. on
p. 4).

[83] R.B. McMaster and K.S. Shea. Generalization in Dig-
ital Cartography. Resource Publications for College
Geography. Association of American Geographers,
1992 (cit. on p. 11).

[84] N. Metropolis et al. “Equation of State Calculations
by Fast Computing Machines”. In: Journal of Compu-
tational Physics 21 (1953), p. 1087 (cit. on p. 22).

[85] Kevin Myers and Louis Bavoil. “Stencil routed A-
Buffer”. In: ACM SIGGRAPH 2007 sketches. 2007 (cit.
on p. 77).

[86] Ken Nakayame, Shinsuke Shimojo, and Vilayanur
S Ramachandran. “Transparency: relation to depth,
subjective contours, luminance, and neon color spread-
ing”. In: Perception 19.4 (1990), pp. 497–513 (cit. on
p. 93).

http://dx.doi.org/10.1145/1925059.1925066
http://dx.doi.org/10.1145/1925059.1925066
http://dx.doi.org/10.1111/j.1467-8659.2010.01650.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01650.x
http://dx.doi.org/10.1145/1278780.1278806
http://dx.doi.org/10.1145/1278780.1278806
http://dx.doi.org/10.1068/p190497
http://dx.doi.org/10.1068/p190497
http://dx.doi.org/10.1068/p190497

B Bibliography 177

[87] Marc Nienhaus and Jürgen Döllner. “Blueprints: il-
lustrating architecture and technical parts using hardware-
accelerated non-photorealistic rendering”. In: Proceed-
ings of Graphics Interface 2004. 2004, pp. 49–56 (cit. on
p. 104).

[88] NVIDIA. CUDA: Compute Unified Device Architecture.
2011. url: https://developer.nvidia.com/about-
cuda (cit. on p. 27).

[89] Roy van Pelt et al. “Automated segmentation of blood-
flow regions in large thoracic arteries using 3D-cine
PC-MRI measurements”. In: International Journal of
Computer Assisted Radiology and Surgery 2 (2012), pp. 217–
224 (cit. on p. 47).

[90] Ken Perlin. “Noise Hardware.” In: SIGGRAPH 2001
Course Notes. Ed. by M. Olano. ACM, 2001. Chap. 9

(cit. on p. 128).

[91] A. Pobitzer et al. “Energy-scale aware feature extrac-
tion for unsteady flow visualization”. In: Computer
Graphics Forum 30.3 (2011) (cit. on pp. 52, 66).

[92] Frits H. Post et al. “The State of the Art in Flow Visu-
alisation: Feature Extraction and Tracking”. In: Com-
puter Graphics Forum 22.4 (2003), pp. 775–792 (cit. on
p. 4).

[93] Fangtu T Qiu and Rüdiger von der Heydt. “Neu-
ral representation of transparent overlay”. In: Nature
Neuroscience 10 (2007), pp. 283–284 (cit. on p. 92).

[94] Peter Rautek et al. “Illustrative visualization: new
technology or useless tautology?” In: ACM SIGGRAPH
Computer Graphics 42.3 (Aug. 2008) (cit. on p. 2).

https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
http://dx.doi.org/10.1007/s11548-011-0642-9
http://dx.doi.org/10.1007/s11548-011-0642-9
http://dx.doi.org/10.1007/s11548-011-0642-9
http://dx.doi.org/10.1111/j.1467-8659.2011.01926.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01926.x
http://dx.doi.org/10.1111/j.1467-8659.2003.00723.x
http://dx.doi.org/10.1111/j.1467-8659.2003.00723.x
http://dx.doi.org/10.1038/nn1853
http://dx.doi.org/10.1038/nn1853
http://dx.doi.org/10.1145/1408626.1408633
http://dx.doi.org/10.1145/1408626.1408633

178 B Bibliography

[95] W. M. van Rees et al. “A comparison of vortex and
pseudo-spectral methods for the simulation of pe-
riodic vortical flows at high Reynolds numbers”. In:
Journal of Computational Physics 230.8 (2011), pp. 2794–
2805 (cit. on p. 18).

[96] Yoram Richter and Elazer R Edelman. “Cardiology
is flow”. In: Circulation 113.23 (2006), pp. 2679–2682

(cit. on p. 43).

[97] Ari Sadarjoen and Frits H. Post. “Detection, quantifi-
cation, and tracking of vortices using streamline ge-
ometry”. In: Computers & Graphics 24.3 (2000), pp. 333

–341 (cit. on p. 5).

[98] Hanno Scharr and Joachim Weickert. “An anisotropic
diffusion algorithm with optimized rotation invari-
ance”. In: Proc. DAGM-symposium. 2000, pp. 460–467

(cit. on p. 134).

[99] B. Schindler et al. “Marching Correctors – Fast and
Precise Polygonal Isosurfaces of SPH Data”. In: Proc.
of the 6th International SPHERIC workshop. 2011, pp. 125–
132 (cit. on p. 18).

[100] B. Schindler et al. “Lagrangian Coherent Structures
for Design Analysis of Revolving Doors”. In: Visu-
alization and Computer Graphics, IEEE Transactions on
18.12 (2012), pp. 2159–2168 (cit. on p. 142).

[9] Benjamin Schindler, Raphael Fuchs, Stephan Barp,
Jürgen Waser, Armin Pobitzer, Robert Carnecky, Krešimir
Matković, and Ronald Peikert. “Lagrangian Coher-
ent Structures for Design Analysis of Revolving Doors”.
In: IEEE Transactions on Visualization and Computer
Graphics 18.12 (2012), pp. 2159–2168 (cit. on p. 5).

http://dx.doi.org/10.1016/j.jcp.2010.11.031
http://dx.doi.org/10.1016/j.jcp.2010.11.031
http://dx.doi.org/10.1016/j.jcp.2010.11.031
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.632687
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.632687
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(00)00029-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(00)00029-7
http://dx.doi.org/http://dx.doi.org/10.1016/S0097-8493(00)00029-7
http://dx.doi.org/10.1007/978-3-642-59802-9_58
http://dx.doi.org/10.1007/978-3-642-59802-9_58
http://dx.doi.org/10.1007/978-3-642-59802-9_58
http://dx.doi.org/10.1109/TVCG.2012.243
http://dx.doi.org/10.1109/TVCG.2012.243
http://dx.doi.org/10.1109/TVCG.2012.243
http://dx.doi.org/10.1109/TVCG.2012.243

B Bibliography 179

[101] Sohail Shafii et al. “Illustrative Rendering of Vortex
Cores”. In: EuroVis 2013 Short Papers. 2013, pp. 61–65

(cit. on p. 47).

[102] Prateek Sharma and Gregory W. Hammett. “Preserv-
ing monotonicity in anisotropic diffusion”. In: Jour-
nal of Computational Physics 227.1 (2007), pp. 123–142

(cit. on p. 134).

[103] Lawrence Sirovich. “Turbulence and the dynamics
of coherent structures”. In: Quarterly of applied math-
ematics 45 (1987), pp. 561–571 (cit. on p. 50).

[104] A F Stalder et al. “Vortex Core Detection and Visual-
ization using 4D Flow-sensitive MRI”. In: Proc. Intl.
Soc. Mag. Reson. Med. Vol. 18. 2010, p. 3708 (cit. on
pp. 44, 57).

[105] Stanford. The Stanford volume data archive. url: http:
//graphics.stanford.edu/data/voldata/ (cit. on
p. 32).

[106] John C. Strikwerda. Finite Difference Schemes and Par-
tial Differential Equations. SIAM, 2004, pp. 34–36 (cit.
on p. 133).

[107] Turbosquid. Model ID 369057. 2007. url: http : / /

www.turbosquid.com/3d-models/free-intake-3d-

model/369057 (visited on 2015) (cit. on p. 29).

[108] T. Urness et al. “Strategies for the visualization of
multiple 2D vector fields”. In: IEEE Computer Graph-
ics and Applications 26.4 (2006), pp. 74–82 (cit. on
p. 69).

[109] Romain Vergne et al. “Light warping for enhanced
surface depiction”. In: ACM Transactions on Graphics
28.3 (2009), 25:1–25:8 (cit. on p. 71).

http://dx.doi.org/10.1016/j.jcp.2007.07.026
http://dx.doi.org/10.1016/j.jcp.2007.07.026
http://graphics.stanford.edu/data/voldata/
http://graphics.stanford.edu/data/voldata/
http://www.turbosquid.com/3d-models/free-intake-3d-model/369057
http://www.turbosquid.com/3d-models/free-intake-3d-model/369057
http://www.turbosquid.com/3d-models/free-intake-3d-model/369057
http://dx.doi.org/10.1109/MCG.2006.88
http://dx.doi.org/10.1109/MCG.2006.88
http://dx.doi.org/10.1145/1576246.1531331
http://dx.doi.org/10.1145/1576246.1531331

180 B Bibliography

[110] Ivan Viola and Meister E. Gröller. “Smart Visibil-
ity in Visualization”. In: Proceedings of the First Euro-
graphics Conference on Computational Aesthetics in Graph-
ics, Visualization and Imaging. Computational Aesthet-
ics’05. 2005, pp. 209–216 (cit. on p. 9).

[111] Ivan Viola, Armin Kanitsar, and M. Eduard Groller.
“Importance-Driven Feature Enhancement in Volume
Visualization”. In: IEEE Transactions on Visualization
and Computer Graphics 11.4 (July 2005), pp. 408–418

(cit. on p. 9).

[112] Jürgen Waser et al. “World Lines”. In: IEEE Transac-
tions on Visualization and Computer Graphics 16.6 (2010),
pp. 1458–1467 (cit. on pp. xiii, 52, 105).

[113] Dominik Weishaupt, Victor D. Köchli, and Borut Mar-
incek. How Does MRI Work? Springer, 2008 (cit. on
p. 45).

[114] R. A. Wilson and F. C. Keil. MIT Encyclopedia of the
Cognitive Sciences. MIT Press, 2001 (cit. on p. 93).

[115] Jason C. Yang et al. “Real-Time Concurrent Linked
List Construction on the GPU”. In: Computer Graph-
ics Forum 29.4 (2010), pp. 1297–1304 (cit. on pp. 77,
80).

[116] Long Zhang et al. “Laplacian lines for real-time shape
illustration”. In: Proceedings of the 2009 Symposium on
Interactive 3D Graphics and Games. 2009, pp. 129–136

(cit. on p. 70).

http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/209-216
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/209-216
http://dx.doi.org/10.1109/TVCG.2005.62
http://dx.doi.org/10.1109/TVCG.2005.62
http://dx.doi.org/10.1109/TVCG.2010.223
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1145/1507149.1507170
http://dx.doi.org/10.1145/1507149.1507170

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Visualization
	1.2 Illustrative Visualization
	1.3 Fluid Dynamics
	1.4 Flow Visualization
	1.5 Contributions and Layout of this Thesis

	High level abstraction
	2 Overview
	3 Intelligent Cutaway Illustrations
	3.1 Method Overview
	3.2 Simulated Annealing
	3.3 Interactivity
	3.4 Implementation Details
	3.5 Results
	3.6 Evaluation
	3.7 Difficulty of Optimal Cutaways

	4 Vortex Detection in 4D MRI Data
	4.1 4D PC-MRI
	4.2 Vortex detection
	4.3 Proper Orthogonal Decomposition
	4.4 Results

	5 Conclusion

	Low level abstraction
	6 Overview
	6.1 Definitions and symbols

	7 Illustration Buffer
	7.1 Buffer layout
	7.2 Buffer filling
	7.3 Neighbor search
	7.4 Operators

	8 Smart Transparency for Illustrative Visualization
	8.1 Method overview
	8.2 Non-local transparency enhancement
	8.3 Results
	8.4 Evaluation
	8.5 User Study

	9 Multi-layer illustrative dense flow visualization
	9.1 Method Overview
	9.2 Results

	10 Conclusion

	Appendix
	A User Study
	B Bibliography

