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Abstract

Individuals are seldom completely independent and should be conside-
red as part of their social surroundings. Their actions both influence their
social network and are influenced by the network. This phenomenon can
be seen in online social networks formed on online platforms as well as
in offline social networks formed, for example, by a group of scholars. In
order to understand the fundamental effects of influence in social systems,
we model social networks by the means of a well understood mathematical
model, a graph.

The first part of this dissertation focuses on the impact of gender on
the formation of a network of PhD students and their supervisors. We
find evidence for homophilic behavior as well as for the existence of a
glass ceiling in a network from the data of co-authorship. From over 1.3
millions of authors of scientific articles in computer science, we extract
the student-supervisor relationship graph and analyze its properties.

Furthermore, we introduce mathematical formulations for the occur-
rence of a glass ceiling and an influence inequality in a network. We esta-
blish a network forming process integrating three observed characteristics
of this network, namely a smaller entry rate for women, preferential at-
tachment, and homophilic behavior. We prove that these three conditions
are sufficient to produce a glass ceiling in the network. We also show, that
if one of these three characteristic is missing, the glass ceiling according
to the mathematical definition does not occur.

In the second part of this dissertation we examine how opinions evolve
in networks. Every node in the network has an initial opinion and the
nodes can observe the opinions of their neighbors. We assume a simplistic
setting where the nodes are influenced by the opinions of their neighbors
and always change their opinion to the opinion of the majority of their
neighbors. We study several different variations of this model and investi-
gate how long the system takes to reach a stable state. For asynchronous
networks we find unweighted graphs which take Ω(n2) steps until con-
vergence. For unweighted synchronous networks we show graphs with a
convergence time of Ω̃(n2), where the Ω̃(·) notation hides polylogarithmic
factors. Additionally we show that allowing the influence to be weighted
increases the convergence time dramatically to Ω(2n).



Zusammenfassung

Menschen sind selten komplett unabhängig und sollten als Teil ih-
rer sozialen Umgebung betrachtet werden. Ihre Handlungen beeinflussen
einerseits Ihre soziale Umgebung und sind andererseits selbst durch das
soziale Netz der betreffenden Person beeinflusst. Man findet dieses Phäno-
men sowohl in sozialen Netzwerken welche auf online Plattformen geformt
werden, als auch in herkömmlichen sozialen Netzwerken, wie man sie zum
Beispiel unter Schülern findet. Um die fundamentalen Effekte von Ein-
fluss in sozialen Systemen besser zu verstehen, modellieren wir soziale
Netzwerke mit einem in der Mathematik gut bekannten Werkzeug, dem
Graph.

Der erste Teil dieser Dissertation beschäftigt sich hauptsächlich mit
den Auswirkungen welches das Geschlecht von Studenten auf die Bil-
dung des Netzwerkes von Doktoranden/Doktorandinnen und ihrer Dok-
torväter/Doktormütter hat. In einem Netzwerk, aus Daten über Koauto-
renschaft, zeigen wir sowohl Hinweise für homophiles Verhalten als auch
für die Existenz einer gläsernen Decke. Aus diesem Datenset, welches
über 1.3 Millionen Autoren von wissenschaftlichen Artikeln aus dem Be-
reich Informatik enthält, haben wir einen Graph extrahiert, welcher die
Studenten-Leiter Beziehung darstellt und studieren dessen Eigenschaften.

Ausserdem führen wir mathematische Formulierungen für die Erschei-
nung einer gläsernen Decke und einer ungleichen Verteilung von Einfluss in
einem Netzwerk ein. Wir konstruieren einen Netzwerkbildungsprozess wel-
cher drei beobachtete Eigenschaften, nämlich weniger Frauen, bevorzugte
Anschliessung und homophiles Verhalten integriert. Zusätzlich beweisen
wir, dass diese drei Eigenschaften ausreichend sind um eine gläserne Decke
in einem Netzwerk hervorzurufen. Wir zeigen auch, dass falls eine dieser
drei Eigenschaften wegfällt, sich keine gläserne Decke nach mathemati-
scher Definition bildet.

Im zweiten Teil dieser Dissertation untersuchen wir, wie sich Mei-
nungen in Netzwerken entwickeln. Jeder Knoten im Netzwerk hat eine
ursprüngliche Meinung und die Knoten können die Meinung ihrer Nach-
barn sehen. Wir nehmen ein einfaches Modell an, in welchem die Knoten
beeinflusst sind von den Meinungen ihrer Nachbarn und ihre Meinung
immer an die Meinung der Mehrheit Ihrer Nachbarn anpassen. Wir ana-



lysieren verschiedene Varianten dieses Modells und erforschen wie lange
ein solches System braucht, um einen stabilen Zustand zu erreichen. In
asynchronen Netzwerken finden wir ungewichtete Graphen welche Ω(n2)
Schritte benötigen um sich zu stabilisieren. Für ungewichtete, synchrone
Netzwerke zeigen wir Graphen welche eine Stabilisierungszeit von Ω̃(n2)
benötigen, wobei die Ω̃(·) Notation polylogarithmische Faktoren versteckt.
Zusätzlich zeigen wir, dass wenn der Einfluss zwischen den Knoten gewich-
tet sein kann, sich die Stabilisierungszeit tiefgreifend erhöht zu Ω(2n).





Acknowledgements

Being a PhD student has its ups and downs and I want to thank all
the people who contributed to the ups and helped me over the downs.
First of all my gratitude goes to my supervisor Roger Wattenhofer, who
made this thesis possible. I enjoyed his openness and interest in all kinds
of research questions. No matter if the topic concerned movies or same
sex dating, he supplied me with interesting discussions and insights. Even
insane sounding ideas, such as throwing your smartphone into the air to
take aerial pictures, were welcomed. Among the many things he taught
me, I appreciate the skills and courage to give good talks the most.

Then, I would like to thank my co-referee Eric Goles who did not only
provide me with an upper bound for a research problem that caused many
sleepless nights, but who was also fun and charming.

Next, I would like to thank Chen Avin, Zvi Lotker, and David Peleg,
my supervisors during my exchange in Israel, for giving me the great
opportunity to work on an exciting topic and to get to know a different
way of life. I fondly remember the many ideas and the enthusiasm of
Zvi, the many skills and interests of Chen, and the impressive knowledge
and kindness of David. A very special thank you goes to Yvonne-Anne
Pignolet, who helped me at so many stages during my studies and my
PhD. Both, actively with her support as well as a role model of a successful
and wonderful woman in computer science

My time would have had way fewer ups, if it was not for the DISCO
members. I want to thank Georg Bachmeier for not drinking my whiskey
away, Pascal Bissig for combining disgusting jokes with a cute interest in
babies, Philipp Brandes for letting us use his compass on the road trip to
Finland, Sebastian Brandt for his awesome hair (which is most likely the
secret behind his genius), Friederike Bruetsch for helping to organize the
KING summer school, Christian Decker for letting me use his crawling
skills and his huge amount of memory, Raphael Eidenbenz for his en-
couraging words, Yuval Emek for his awesome teachings in spectral graph
theory, Klaus-Tycho Förster for being always available at the office in any
case of emergency, Silvio Frischknecht for his barefeet contributions to the
long lost lower bound, Monica Fricker for her kind help in administration,
Beat Futterknecht for solving every possible problem with a single phone



call and always lending a helping hand, Benny Gächter for solving all my
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1
Introduction

Society is an interesting and mysterious construct exhibiting many funny,
tragic, obvious and fascinating phenomena. Already the ancient Greeks
were interested in studying the behavior of humankind. Since these times,
when the terms society and state were used interchangeably, the research
area of sociology has come a long way. Many different subareas such
as sociology of knowledge, military sociology and gender studies, to just
name a few, evolved. The methods used to investigate various aspects
of societies also became more and more elaborate. Nowadays, the meth-
ods of sociology can be roughly divided into qualitative and quantitative
methods. Qualitative methods traditionally include questionnaires with
free form answers, interviews and first hand observations. These methods
are suitable to analyze the motivation and (hidden) reasons for a certain
behavior. In general, they are often used to deliver a descriptive analy-
sis. Quantitative methods, on the other side, measure characteristics and
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behavior in numbers and therefore provide a good basis for statistical ar-
guments and classifications. This makes it easier to generalize statements
and to compare them among different societies.

Clearly, both methods deserve researchers’ attention and in particular
thrive when their virtues are combined. While quantitative data can
show particularities that should be investigated further, numbers rarely
give a reason or an explanation. They, however, can help to understand
what the important question is and where qualitative methods can assist
to find explanations later on. Qualitative and quantitative methods also
have a lot in common. Data is in the center of both approaches: gathering
and analyzing it as well as drawing conclusions from it is the main goal.
This is where the much younger research area of computer science comes
into play. In computer science, data analysis is a well-studied subfield.
Appropriately, sociology and computer science started flirting with each
other, resulting in the research area of computational sociology.

For the first time in the history of mankind, we have the means and
the data to analyze sociological phenomena in large scale networks with
large scale data. As computers are designed to efficiently process masses
of numbers, the focus lies on quantitative data. Today, we are able to scan
gigantic text corpora for interesting patterns, which would take more than
a life time to process manually. Also the available data grew enormously.
Social online networks such as Facebook, Twitter and Wikipedia provide
plenty of research material. On the one hand, they serve as data pool to
investigate the online behavior of people. Sociologists study for example
how people manage their privacy in social online networks or how they
treat males and females differently in online games. On the other hand,
the newly gained data is used to confirm long standing social theories in
a larger environment, such as which factors favor segregation in a society
or how people tend to (often subconciously) manage their relationships
by preferring to associate with friends of friends rather than with friends’
fiends. Computers can also contribute to facilitating qualitative methods.
They can help to store data efficiently, preprocess transcripts and ease the
input methods for qualitative data. With current technology, it is even
possible to collect qualitative data more conveniently. Smartphones, for
example, can be used to gather information about who is speaking in a
meeting and already annotate the collected data accordingly.
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Graph theory, a tool often used in computer science, proved itself par-
ticularly powerful in computational sociology. People are represented as
nodes and their bonds are modeled as edges. Such a bond can represent
friendship, collaboration, love interest, hate or whatever funny relation-
ship scientists come up with. This, in turn, means that society is nothing
but a graph (coincidentally the title of this thesis)!

In this work, we first shed light on a network forming process. As a
female PhD student in the male dominated field of computer science, the
most interesting network to study is the network of PhD students and
their supervisors. Here, we focused particularly on the influence of gender
on the formation of the network and the resulting consequences for the
network. We modeled this process mathematically as a preferential at-
tachment process, where the gender affects the attachment probabilities.
During the formation process, the joining nodes show homophilic behav-
ior and thereby influence the network structure. We rigorously analyze
networks resulting from this process, and find that these networks exhibit
a so-called glass ceiling, an invisible barrier preventing women from mov-
ing up the ladder. To evaluate how well our model captures reality, we
analyze data sets of supervisors and their PhD students. Our biggest data
set is extracted from a large publication data set on computer science, in
which we reveal evidence for homophilic behavior as well as a glass ceiling.

In the second part of this work, we investigate how opinions evolve in
existing networks if nodes try to influence each other’s opinions. We con-
sider a simple world with two alternative opinions spread over a network
of opportunistic nodes. Each node adopts the opinion of the majority
in its neighborhood. This leads to a process where the opinions of the
nodes change until the network reaches a certain stable state. We ana-
lyze the convergence time of various kinds of influence networks, such as
synchronous and asynchronous, as well as weighted, symmetric and asym-
metric networks. We show that depending on the model, the convergence
behavior of the network can change drastically. Interestingly, the simplest
model where each edge represents an influence of weight 1, requires the
most challenging analysis.





2
Homophily and the Glass Ceiling
Effect in Social Networks

Attaining equality of opportunity is a fundamental value in democratic so-
cieties, therefore existing inequalities present us with a major concern. A
particularly sore example is that many highly-qualified women and mem-
bers of minority groups are unable to realize their full potential in society
(and specifically in the workforce) due to a phenomenon commonly re-
ferred to as the glass ceiling, a powerful visual image for an invisible barrier
blocking women and minorities from advancing past middle management
levels [31]. A concern raised in a US Federal commission report [27]:

The “glass ceiling”... is the unseen, yet unbreakable barrier
that keeps minorities and women from rising to the upper
rungs of the corporate ladder, regardless of their qualifications
or achievements.

5
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The existence of the glass ceiling effect is well documented [16,25,60]. In
academia, for example, gender disparities have been observed in the num-
ber of professors [67], earnings [22, 67, 82] funding [59] and patents [18].
A recent study [53] analyzed gender differences in research output, re-
search impact and collaborations based on Thomson Reuters Web of
Science databases. When prominent author positions were analyzed by
sole authorship, first-authorship and last-authorship, it was discovered
that papers with women in those leading roles were less frequently cited.
The question we focus on in this article concerns the causes of this phe-
nomenon. What are the invisible mechanisms that combine to create the
glass ceiling effect, and in particular, what is the role of the social network
in creating this effect? Many papers discuss possible causes of the glass
ceiling effect and potential solutions to it, e.g., [17, 24, 51, 57], but to the
best of our knowledge, this work is the first attempt to define the glass
ceiling mathematically, study it in the context of the social network struc-
ture, and to propose a mathematical model capturing this phenomenon.

In order to talk about the glass ceiling we have to agree on a measure
of success in a social network. Following the traditional approach that sees
network edges as the “social capital” of the network, we define successful
members of a social network to be high degree vertices, namely, the ver-
tices that maintain a large number of connections, corresponding to high
influence. Based on this we propose formal definitions for glass ceiling
effects as a first contribution. Note that it is not clear how to capture the
nature of a delicate dynamic mechanism like the glass ceiling in a concise
yet precise way. To represent the dynamic nature we examine sequences
of networks and their behavior when the number of vertices grows.

We take into account the following three well-accepted observations
on human behavior related to forming networks, namely (i) the “rich
get richer” mechanism, (ii) minority-majority partition (slower growth
rate of a minority group in the network), and (iii) homophily (affinity
towards those similar to oneself). The main result of this chapter is that
under these three simple and standard assumptions the glass ceiling effect
naturally arises in social networks. Let us first briefly describe these three
social phenomena.
The “rich get richer” mechanism. This mechanism describes and explains
the process of wealth concentration. It follows the basic idea that newly
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created wealth is distributed among members of society in proportion to
the amount they have already amassed. In our setting, where the degree
of the vertex captures its level of social wealth, this mechanism predicts
that people may try to connect more often to people who already have
many connections. In order to profit from their social wealth or because
they are more visible in the network.

Minority-majority partition. Many social groups exhibit unequal pro-
portions of certain characteristics of their group members, one of them
being gender. Even though we focus in this work on gender, the results
can be applied to other characteristics as well. Certain occupations, such
as construction, law enforcement, politics and computer science, tend to
have a higher proportion of men. For example, the ratio of women taking
up studies in the computing discipline varies per year and region between
10% and 35% [9, 38, 78, 86]. Other professions, such as elementary school
teaching, nursing, and office administration, are occupied by a higher
proportion of women. In fact, it is difficult to find an occupation with a
balanced ratio of genders (this also holds for many other social partitions,
e.g., ones based on ethnicity or family background). This imbalance is
the second phenomenon underlying our model.

Homophily. It is a well established social phenomenon that people tend
to associate with others who are similar to themselves. Characteristics
such as gender, ethnicity, age, class background and education influence
the relationships among human beings [54] and similarities make commu-
nication and relationship formation easier.

Based on these phenomena we propose a model obtained by applying
the classical preferential attachment model (see Barabasi and Albert [6])
to a bi-populated minority-majority network augmented with homophily.
The resulting model is hereafter referred to as the Biased Preferential
Attachment Model. We prove that networks generated by this model
exhibit a glass ceiling structure.

As a running example serving to illustrate the issue, let us consider the
social network of mentor-student relationships in academia. With time,
new (male and female) PhD students arrive and join the network. Upon
arrival, each student needs to select a mentor. Over time, graduated stu-
dents may become mentors themselves and some mentors become more
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successful than others (e.g., in terms of the number of students they ad-
vise). How can one determine that there is a glass ceiling effect in this
network? And if such an effect exists, what are the roots of its emergence?
Is it merely a result of the females being a minority in the network, or
is it some sort of discriminatory process? To complement our theoret-
ical analysis with data from real networks we study these questions on
a mentor-student network derived from vast data from publications in
computer science. Using the definitions and insights from the model we
observe the three earlier mentioned social phenomena as well as the mod-
els predictions of their effects on the network. Namely we find evidence for
homophily, minority-majority partition, the “rich get richer” mechanism
and the existence of glass ceiling effects.

2.1 Related Work

Homophily in social networks
Different characteristics such as gender, ethnicities, age, class background
and education influence the relationships human beings form with each
other [54]. McPherson et al. [64] survey a variety of properties and how
they lead to particular patterns in bonding. Gender-based homophily can
already be observed in play patterns among children at school [61, 83].
Eder and Hallinan [21] discovered that young girls are more likely to
resolve intransitivity of friendships by deleting friendship choices, while
young boys are more likely to add them. Overall, children are significantly
more likely to resolve intransitivity by deleting a cross-sex friendship than
by adding another cross-sex friendship [87]. These results show that gen-
der influences the formation of cliques and of larger evolving network
structures. These trends displaying homophily and gender differences
in resolving problems in the structure of relationships mean that boys
and girls gravitate towards different social circles. As adults, homophilic
behavior persists, and men still tend to have networks that are more ho-
mophilic than women do. This behavior is even more pronounced in areas
where men form the majority and in relationships exchanging advice and
based on respect, e.g., mentoring [11, 40, 41, 81]. A homophilic network
evolution model was studied in [10]. In this model new nodes connect to
other nodes in two phases. First they choose their neighbors with a bias
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towards their own type (the model allows a positive as well as a negative
bias). In a second phase they choose their neighbors unbiased from the
neighbors of their biased neighbors. The authors show, that the second
phase overcomes the bias in the first phase and if the second phase is un-
biased, the network ends up in an integrated state. They illustrate their
model with data on citations in physics journals.

Gender disparity in science and technology
Gender disparities have been observed in the number of professors [22,67],
earnings [82], funding [59] and patenting [18]. A related aspect is the
“productivity puzzle”: men are more successful when it comes to number
of publications and name position in the author list [89], for reasons yet
unclear. Some conjectures raised involve (unknown) biased perceptions
related to pregnancy/child care [13]. E.g., it was observed in [67] that
science faculty members of both sexes exhibit unconscious biases against
women. Simulations showed that even small male-female differences in
work performance ratings can lead to substantially lower promotion rates
for women, resulting in proportionately fewer women than men at the
top levels of the organization [63]. Gender differences in research output,
research impact and collaborations was analyzed in a study based on
Thomson Reuters Web of Science databases [53]. It was not only revealed
that papers with women in prominent author positions (sole authorship,
first-authorship and last-authorship) were cited less frequently but the
authors also found that age plays an important role in collaborations,
authorship position and citations. Thus many of the trends observed
therein might be explained by the under-representation of women among
the elders of science. In other words, fixing the “leaky pipeline” [85] is
key for a more equal gender distribution in science.

Minority of women in Computer Science
In the computing discipline, the ratio of women taking up studies varies by
year and region between 10% and 35% [9, 38, 78, 86] (except in Malaysia,
where women form a narrow majority [70]). This under-representation
has been investigated [28, 84, 90] and remedial strategies have been pro-
posed [26, 76]. There is a positive feedback loop [52]: the lack of women
leads to a strong male stereotype which drives away even more women.
Thus the increase of the relative number of women in computer science
is argued to be the best of the investigated strategies, up to a “critical
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mass” of women. However, as pointed out by Etzkowitz [23], even achiev-
ing a critical mass of 15% women might not guarantee that the effects of
a critical mass come into play.

2.2 The Model and Definitions

2.2.1 Biased preferential attachment model

We start by proposing a simple bi-populated preferential attachment mod-
el. In a gist, our model is obtained by applying the classical preferential at-
tachment model (see Barabasi and Albert [6]) to a bi-populated minority-
majority network augmented with homophily. The resulting model is
hereafter referred to as the Biased Preferential Attachment Model. For-
mally, for r ≤ 1/2 and 0 ≤ ρ ≤ 1 let G(n, r, ρ) be a variant of the
preferential attachment model in which r represents the relative arrival
rate of the minority vertices(to which we will refer to as the red vertices).
Note that the expected fraction of red vertices in the network converges
to r as well, as the relative size of the initial population becomes smaller
over time. We define ρ to represent the level to which homophily, incor-
porated by using rejection sampling, is expressed in the system: for ρ = 1
the system is uniform and exhibits no homophily, whereas for ρ = 0 the
system is fully segregated, and all added edges connect vertex pairs of the
same color.

Let us describe the model in more detail. Denote the social network
at time t by Gt = (Vt, Et), where Vt and Et, respectively, are the sets
of vertices and edges in the network at time t, and let δt(v) denote the
degree of vertex v at time t. The process starts with an arbitrary initial
(connected) network G0 in which each vertex has an arbitrary color, red
or blue. (For simplicity we require that a minimal initial network consists
of one blue and one red vertex connected by an edge, but this requirement
can be removed if ρ > 0). This initial network evolves in time as follows.
In every time step t a new vertex v enters the network. This vertex is red
with probability r and blue with probability 1− r. On arrival, the vertex
v chooses an existing vertex w ∈ Vt to attach to with probability p pro-
portional to w’s degree at time t, i.e., P [w is chosen] = δt(w)/

∑
u∈Vt

δt(u).
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Next, if w’s color is the same as v’s color, then an edge is inserted between
v and w; if the colors differ, then the edge is inserted with probability ρ,
and with probability 1 − ρ the selection is rejected, and the process of
choosing a neighbor for v is restarted. This process is repeated until some
edge {v, w} has been inserted. Thus in each time step, one new vertex
and one new edge are added to the existing graph.

Figure 2.1 presents four examples of parameters for our model in the
case of a 300-vertex bi-populated social network. First, Figure 2.1(a)
provides an example for the minority & homophily case with r = 0.3
and ρ = 0.7 so the red vertices are a strict minority in the network and
there is some homophily in the edge selection. The next three sub-figures
present special cases. Figure 2.1(b) illustrates the no minority case (equal-
size populations, i.e., r = 0.5) with homophily (ρ = 0.7). Figure 2.1(c)
considers the no homophily case (ρ = 1) with minority (r = 0.3). The last
extreme case, shown in Figure 2.1(d), is absolute homophily, where ρ = 0,
and the red vertices are still in the minority (r = 0.3). This case results in
fully segregated societies, namely, societies where members connect only
to members of their own color. In this extreme case, the society in effect
splits into two separate networks, one for each of the two populations
(except for the single edge connecting the initial red and blue vertices).
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minority & homophily: no minority:
r = 0.3, ρ = 0.7 r = 0.5, ρ = 0.7

(a) (b)

no homophily: absolute homophily:
r = 0.3, ρ = 1 r = 0.3, ρ = 0

(c) (d)

Figure 2.1: Examples of the Biased Preferential Attachment (BPA) model
with various parameters. All examples depict a 300-vertex bi-populated network
generated by our BPA model starting from a single edge connecting a blue
and a red vertex (with vertex size proportional to its degree). (a) Minority &
homophily: r = 0.3 (resulting in about 30% red vertices) and ρ = 0.7 (meaning
that a new edge that connects red-blue vertices (i.e., a “mixed” edge) is accepted
with probability 0.7 and otherwise rejected and sampled again, according to
Preferential Attachment). (b) No minority & homophily: r = 0.5 and ρ = 0.7.
(c) Minority & no-homophily: r = 0.3 and ρ = 1. (d) Minority & absolute
homophily: r = 0.3 and ρ = 0 (indicating complete homophily in edge selection
which results in two separate networks, one for the red vertices and the second
for the blue vertices, plus a single initial connecting edge).
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Consider as an example for our model the social network of mentor-
student relationships in academia. With time, new PhD students arrive,
but for some fields female students arrive at a lower rate than male stu-
dents. Upon arrival, each student needs to select exactly one mentor,
where the selection process is governed by the mechanisms of preferential
attachment and homophily. Initially the student selects the mentor ac-
cording to the rules of preferential attachment and then homophily takes
its role, rejecting the selection with some probability if their gender dif-
fers, enforcing a re-selection. Over time, graduated students may become
mentors and some mentors become more successful than others (in terms
of the number of students they advise). Such a network exhibits a glass
ceiling effect if, after a long enough time interval, the fraction of females
among the most successful mentors tends to zero.

We would like to emphasize that the homophily effect sounds minor
and “seemingly harmless”, in two ways. First, it is “symmetric”, i.e., it
applies both to male students with respect to female mentors and to female
students with respect to male mentors. Second, it does not adversely
affect the student, in the sense that the student always gets admitted in
our model. The only tiny (but ominous) sign for the potential danger of
this homophilic effect is that it does affect the professor: a male professor
who rejects (or is rejected by) some fraction of the female candidates
risks little, whereas a female professor who rejects (or is rejected by)
some fraction of the male candidates will eventually have fewer students
overall, since most of the applicants are male. In fact, as we show later
on, this homophily-based consequence will only impact her if her future
potential students use preferential attachment to select their mentors.

2.2.2 Influence inequality and glass ceiling

Our second contribution is to propose formal definitions of the glass ceiling
effect in social networks. Consider a bi-populated network G(n) consisting
of m edges and n nodes of two types, the group R and the group B. We
assume that the network size n tends to infinity with time. Let n(R)
and n(B), respectively, denote the number of red and blue nodes, where
n(R)+n(B) = n. The red nodes are assumed to be a minority in the social
network, i.e., denoting the percentage of red nodes in the network by r, we
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assume 0 ≤ r < 1
2 . For a node v in G, let δ(v) denote its degree. Let d(R)

and d(B) denote the sum of degrees of the red and blue nodes, respectively,
where d(R)+d(B) = 2m. As the degree of a node corresponds to its power,
the sum of the degrees of a certain kind of nodes represents the power of
this group in the network. Let topk(R) (respectively, topk(B)) denote
the number of red (resp., blue) nodes that have degree at least k in G.
When G(n) is a random graph, we replace variables by their expectations
in the definitions below, e.g., we use E[n(R)], E[d(R)], and E[topk(R)].
Next we provide formal definitions for the social phenomena discussed in
the introduction. Influence inequality for the minority is defined in the
following way.

Definition 2.1 (Influence inequality). A graph sequence G(n) exhibits a
influence inequality effect for the red nodes if the average power of a red
node is lower than that of a blue (or a random) node, i.e., there exists a
constant c < 1 such that

lim
n→∞

1
n(R)

∑
v∈R δ(v)

1
n(B)

∑
v∈B δ(v)

= d(R)/n(R)
d(B)/n(B) ≤ c . (2.1)

The definition of the glass ceiling effect is more complex. We interpret
the most powerful positions as those held by the highest degree nodes, and
offer two alternative definitions. The first tries to capture the informal,
“dictionary” definition, which describes a decreasing fraction of women
among higher degree nodes, i.e., in the tail of the graph degree sequence.
Formally:

Definition 2.2 (Tail glass ceiling). A graph sequence G(n) exhibits a tail
glass ceiling effect for the red nodes if there exists an increasing function
k(n) (for short k) such that limn→∞ topk(B) =∞ and

lim
n→∞

topk(R)
topk(B) = 0 .

The second definition considers a more traditional, distribution-ori-
ented measure, the second moment of the two degree sequences. Formally:
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Definition 2.3 (Moment glass ceiling). A graph sequence G(n) exhibits
a moment glass ceiling g for the red nodes where

g = lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2 .

When g = 0, we say that G(n) has a strong glass ceiling effect. The
intuition behind this definition is that a larger second moment (and as-
suming a similar average degree, i.e., no influence inequality) will result
in a larger variance and therefore a significantly larger number of high
degree nodes. As we show later, the above two definitions for the glass
ceiling are independent, in the sense that neither of the effects implies the
other.

Note that these definitions are very general and do not rely on any
assumptions of the degree distribution. In particular it is not necessary
for networks that exhibit a glass ceiling effect to follow a power law degree
distribution.

In order to investigate if a network reflects homophilic behaviour, we
need to test define a test. Testing for homophily in a bi-populated network
is based on checking whether the number of mixed (i.e., red-blue) edges is
significantly lower than to be expected if neighbors were picked randomly
and independently of their color. Formally:

Definition 2.4 (Homophily Test). [20] A bi-populated social network
exhibits homophily if the fraction of mixed edges is significantly less than
2r(1− r).

The above definition implicitly assumes that there is power equality
between the colors and therefore is not always accurate. A more careful
test should take the average degree of each gender into account.

Definition 2.5 (Normalized Homophily Test). A bi-populated social net-
work exhibits homophily if the fraction of mixed edges is significantly less
than 2 d(R)

2m

(
1− d(R)

2m

)
.

An illustration of these definitions can be found in Figure 2.2.
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Figure 2.2: (a) An example bi-populated social network with blue and red pop-
ulations of 6 and 4 vertices respectively. (b) The degree sequences of both pop-
ulations (i.e., the sequence specifying for each vertex its degree in the network).
Considering the tail glass ceiling definition, there are four blue vertices of degree
greater or equal to 4, but only two such red vertices so top4(R)/top4(B) = 1/2.
For the moment glass ceiling definition, the second moment for the blue ver-
tices is 1

6 (82 + 72 + 52 + 42 + 32 + 32) = 28.6, while for the red vertices it is
1
4 (72+52+32+32) = 23 and the ratio is 23/28.6. To exhibit a glass ceiling, these
ratios should converge to zero as the network size increases. The average degree
of the blue vertices in the network is 5 while the average for the red vertices is
4.5. It is possible that this numbers remain (almost) the same while the network
size increases and the network exhibits a glass ceiling. Regarding homophily, in
a random network with the same population, i.e., 60% blue vertices and 40%
red vertices, one expects to find 36% blue-blue edges, 16% red-red edges and
48% mixed edge. If we take the degree sequences into account we would expect
to see 46.8% mixed edge. In the above example network we observe only about
33% mixed edges, which indicates the effect of homophily.
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2.3 Theoretical Results

2.3.1 Influence inequality and glass ceiling
Our main theoretical result (Thm. 2.1) is that in the biased preferential
attachment model, G(n, r, ρ), the glass ceiling effect emerges naturally.
Additionally, this process generates a influence inequality, an independent
property that is weaker than the glass ceiling effect. Influence inequality
describes the situation where the average degree of the minority is lower
than that of the majority (although their members possess the same qual-
ifications). Moreover, we also show (Thm. 2.2) that all three ingredients
(unequal entry rate, homophily, preferential attachment) are necessary
to generate what we call a strong glass ceiling effect, i.e., removing any
one of them will prevent the appearance of a glass ceiling effect. One
may suspect that the glass ceiling effect is in fact a byproduct of influence
inequality or unequal qualifications; we show that this is not the case. Mi-
norities can have a smaller average degree without suffering from a glass
ceiling effect. We also note that our results are independent of the start-
ing condition. Even if the network initially consisted entirely of vertices
of one color, if a majority of the vertices being added are of the opposite
color, then eventually the vertices that rise to the highest positions will
be of the new color.

Theorem 2.1. Let 0 < r < 1
2 and 0 < ρ < 1. For G(n, r, ρ) produced by

the Biased Preferential Attachment Model the following holds:

(i) G(n, r, ρ) exhibits influence inequality, and

(ii) G(n, r, ρ) exhibits both a tail and a strong glass ceiling effect.

Moreover, all three ingredients are necessary to generate a strong glass
ceiling effect.

Theorem 2.2. (i) G(n, r, ρ) will not exhibit a glass ceiling effect in the
following cases:

(a) If the rate r = 1
2 (no minority).

(b) If ρ = 1 (no homophily)
(c) If ρ = 0 (no heterophily).
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(ii) G(n, r, ρ) will not exhibit a strong glass ceiling effect if the attach-
ment process is uniform rather than preferential, i.e., a new vertex
at time t selects an existing vertex to attach to uniformly at random
from all vertices present at time t − 1 (and for any value of r and
ρ).

Let us graphically illustrate the above results. Figure 2.3 presents the
degree distributions of both the red and blue populations (as well as of
the entire population) for four 1,000,000-vertex networks with parameters
identical to the examples in Figure 2.1. The plots clearly show (and
we prove this formally) that in all cases the degree distribution of both
populations follows a power law. (A subset W of vertices in a given
network obeys a power law degree distribution if the fraction P (k) of
vertices of degree k in W behaves for large values of k as P (k) ∼ k−β for
parameter β.) All figures present (in log-log scale) the cumulative degree
distributions, so a power law degree distribution corresponds to a straight
line (we present the samples together with the best-fit line). Theorem 2.1
corresponds to Figure 2.3(a) with the minority & homophily settings of
0 < r < 1

2 and 0 < ρ < 1. In this case (and only in this case), the power
law exponents of the red and blue populations, β(R) and β(B) respectively,
are different, where β(R) > β(B); we prove that this will eventually lead to
both a tail and a strong glass ceiling effect for the red vertices. Theorem
2.2 corresponds to Figures 2.3(b) and 2.3(c). The figures show that in
the case of no minority (i.e., r = 0.5) or no homophily (i.e., ρ = 1),
both β(R) and β(B) are the same (in particular they are equal to 3 as in
the classical preferential attachment model), and therefore there will be
no glass ceiling effect. Figure 2.3(d) considers the last extreme case of
absolute homophily. Perhaps surprisingly, in this case a glass ceiling effect
also does not occur, as each sub-population forms an absolute majority
in its own network (see again Figure 2.1(d)). The case of no preferential
attachment (which does not lead to a glass ceiling) is more delicate and
presented in Section 2.3.4.
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(c) no homophily: (d) absolute homophily:
r = 0.3, ρ = 1 r = 0.3, ρ = 0

Figure 2.3: Graphical illustrations of our formal claims concerning the glass
ceiling effect in the Biased Preferential Attachment model. Each figure presents
the degree distribution (on a log-log scale) of the red and blue populations from a
1,000,000-vertex network generated by the BPA model with the same parameters
as the corresponding figure in Figure 2.1. (a) Minority & homophily: r = 0.3
and ρ = 0.7. Both populations exhibit a power law degree distribution but with
different exponents. Since β(R) > β(B), there is a glass ceiling effect for the
red vertices. (The “noise” on the right-hand side of the graph stems from the
fact that there are much fewer samples at the high-end of the range.) (b) No
minority & homophily: r = 0.5 and ρ = 0.7. Both populations exhibit a power
law degree distribution with β = 3, which indicates no glass ceiling effect. (c)
Minority & no-homophily: r = 0.3 and ρ = 1. Again, the distributions indicate
no glass ceiling effect. (d) Minority & absolute homophily: r = 0.3 and ρ = 0.
Again, the distributions indicate no glass ceiling effect.
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Proof Overview of Theorem 2.1. The basic idea behind the proof of The-
orem 2.1 is to show that both populations in G(n, r, ρ) have a power law
degree distribution but with different exponents. Once this is established,
it is simple to derive the glass ceiling effect for the population with a
higher exponent in the degree distribution. To study the degree distribu-
tion of the red (and similarly the blue) population, we define αt to be the
random variable denoting the ratio of the total degree of the red nodes
(i.e., the sum of degrees of all red nodes) to sum of all degrees (i.e., twice
the number of edges). We show that the expected value of αt converges to
a fixed ratio independently of how the network started. The proof of this
part is based on tools from dynamic systems, giving us directly a proof
for 2.1 Part (i). Basically, we show that there is only one fixed point for
our system. However, determining the expectation of αt is not sufficient
for analyzing the degree distribution, and it is also necessary to bound the
rate of convergence and the concentration of αt around its expectation.
We used Doob martingales for this part. Using the high concentration of
the total degree, we were able to adapt standard techniques to prove the
power law degree distribution. Next we give an overview of the proofs
and the helping lemmas.

2.3.2 Proof of Theorem 2.1 Part (i)

An urn process. The biased preferential attachment model G(n, r, ρ)
process can also be interpreted as a Polya’s urn process, where each edge
in the graph corresponds to two balls, one for each endpoint, and the
balls are colored by the color of the corresponding vertices. When a new
(red or blue) ball y arrives, we choose an existing ball c from the urn
uniformly at random; if c is of the same color as y, then we add to the
urn both y and another ball of the same color as c; otherwise (i.e., if c
is of a different color), with probability ρ we still add to the urn both y
and another ball of the same color as c, and with probability 1 − ρ we
reject the choice of c and repeat choosing an existing ball c′ from the urn
uniformly at random. Note that in any case c is put back into the urn.To
analyze influence inequality, there is no need to keep track of the degrees
of individual vertices; the sum of the degrees of all vertices of R is exactly
the number of red balls in the urn.
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Denote by ut(R) (respectively, ut(B)) the number of red (resp., blue)
balls present in the urn at time t ≥ 0. Altogether, the number of balls
at time t is ut = ut(R) + ut(B). Initially, the system contains u0 balls.
Noting that exactly two balls join the system in each time step, we have
ut = u0 + 2t. Note that while ut(R) and ut(B) are random variables, ut
is not. Denote by αt the random variable equal to ut(R)/ut, the fraction
of red balls in the system at time t.
Convergence of expectations. We first claim that the process of biased
preferential attachment converges to a ratio of α red balls in the system.
More formally, we claim that regardless of the starting condition, there
exists a limit

α = lim
n→∞

E[αt] . (2.2)

We prove our claim step by step and start with presenting a function
F (x). The function F (αt) describes the expected percentage growth of
red balls at time t+ 1 given the ratio of red balls at time t.

Lemma 2.6. E[αt+1|αt] = αt + F (αt)− αt
t+ 1 , where

F (x) =
(

1− (1− r) (1− x)
1− x(1− ρ) + r

x

1− (1− x)(1− ρ)

)
/2.

Proof. We start from an arbitrary ratio α0 = u0(R)/u0.Observe that given
that the new vertex is blue, the probability p that it attaches to a blue
vertex satisfies p = (1−αt)+αt(1−ρ)p, hence p = (1−αt)/(1−αt(1−ρ)).
Given that the new vertex is red, the probability p′ that it attaches to a red
vertex satisfies p′ = αt+(1−αt)(1−ρ)p′, hence p′ = αt/(1−(1−αt)(1−ρ)).
We know that in each step the sum of the degrees increases by 2 in total
so ut+1 = ut+2 and if Xt is the random variable that denotes the number
of new red balls at time t, we obtain:

Xt+1 =



0 with probability (1− r) (1−αt)
1−αt(1−ρ) ,

(a blue ball entered and chose a blue ball)
2 with probability r αt

1−(1−αt)(1−ρ) ,

(a red ball entered and chose a red ball)
1 with the remaining probability,

(a blue ball chose a red ball or vice versa)
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Figure 2.4: Function F (x) with the parameters r = 1/3 and ρ = 1/2, with
its only fixed point in the interval [0, 1] and y = x . The arrows represent the
iterations of applying F (x) repetitively onto itself, converging to its fixed point.

and we have ut(R) =
∑t

0 Xi. We now define:

E[ut+1(R)− ut(R)|αt] = 1− (1− r) (1− αt)
1− αt(1− ρ) + r

αt
1− (1− αt)(1− ρ)

= 2F (αt).

Substituting ut+1(R) = 2(t + 1)αt+1 and ut(R) = 2tαt and rewriting
yields the Lemma.

We now have a function for the expected value of αt+1 given αt. To
prove that at actually converges to α we have to analyze the function
F (x) in more detail. We prove the following properties of this function:
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Lemma 2.7. (i) F (x) is monotonically increasing.

(ii) F (x) has exactly one fixed point, denoted α∗, in [0, 1].

(iii) The image of the unit interval by F (x) is contained in the unit in-
terval:
F ([0, 1]) =

[
r
2 ,

1+r
2

]
⊂ [0, 1]

(iv) If x < α∗ then x < F (x) < α∗ and if x > α∗ then x > F (x) > α∗.

(v) α∗ < r.

Proof. With a little bit of algebra, we can, and for some reason we prefer,
to rewrite F (x) as

F (x) = 1
2

(
r + rx

x+ (1− x)ρ + (1− r) xρ

xρ+ (1− x)

)
.

For the first property, using simple algebra we compute

∂F (x)
∂x

= 1
2

(
ρ− ρr

(1 + (ρ− 1)x)2 + ρr

(ρ+ x− ρx)2

)
> 0

for each x, r, ρ ∈ [0, 1].
For the second property, we define the function G(x) = F (x)−x. The

roots of G(x) correspond to the fixpoints of F (x) so it is enough to show
that G(x) has exactly one real root in the interval [0, 1]. Using simple
algebra it follows that ∂G(x)

∂x
> 0 for each x, r, ρ ∈ [0, 1]. Setting G(x) = 0

we get the following equation:

(2−4ρ+2ρ2)x3+(5ρ−2−3ρ2−2r+2rρ)x2+(2r−2ρ−2rρ+ρ2)x+rρ = 0.
(2.3)

We observe that G(x) = −∞ when x → −∞ for each ρ ∈ [0, 1) and
that G(0) = rρ ≥ 0. Which induces that there are 1 or 3 roots in the
interval (−∞, 0). Observing that G(x) =∞ when x→∞ and evaluating
G(1) = rp−p ≤ 0 for each ρ, r ∈ [0, 1] we see that there are 1 or 3 roots in
the interval (1,∞). Knowing that G(x) has exactly 3 roots concludes the
claim that G has exactly one root in [0, 1] which leads to the conclusion
that the function F (x) has exactly one fixed point,α∗, in [0, 1].
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The third property follows from the fact that the function F (x) is
strictly monotonically increasing and by evaluating the function F (x) for
the two extreme values x = 0, and x = 1.

The fourth property follows from the fact that the function is strictly
monotonically increasing, that there is only one fixed point and that F (x)
maps [0, 1] inside [0, 1].

Finally, to show that α∗ < r, since we know that F (x)− x is positive
for x < α∗ and negative for x > α∗, it suffices to show that F (r) < r.
This is equivalent to

r + r2

r + (1− r)ρ + (1− r) rρ

rρ+ (1− r) < 2r,

which is true for all r < 1/2.

Now assume αt < α∗. By Lemma 2.7, αt < F (αt) < α∗, so by Lemma 2.6
we obtain αt < E[αt+1|αt] < α∗.

With that we have shown that the expected value of αt does converge
to the fixed point α∗ of F (x). Figure 2.4 shows an instance of F (x) with
the parameters r = 1/3 and ρ = 1/2. You can see its only fixed point in
the interval [0, 1] on the intersection of F (x) with the line y = x. If the
function F (x) is applied repetitively it will converge to its fixed point, no
matter if the initial value was larger or smaller than the fixed point. We
still need to bound the rate of convergence of F (x).
Auxiliary Lemma. In order to bound the rate of convergence we will need
the following lemma. It states that for any r/2 ≤ α∗ ≤ r, the straight line
joining the points (0, r/3) and (α∗, F (α∗)) is below the function F (x) for
all x ∈ [0, α∗].

Lemma 2.8. For all r ∈ (0, 1/2), ρ ∈ [0, 1], r/2 ≤ α∗ ≤ r, and x ∈
[0, α∗]

F (x) ≥ r

3 + x
F (α∗)− r/3

α∗

Proof. We need to show that ψ(x) ≡ F (x)− F (α∗)−r/3
α∗ · x− r

3 ≥ 0. Note
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that ψ(x) can be rewritten as

ψ(x) = r

6

(
x
(

3(w − 1
α∗(−ρ) + α∗ + ρ

)− 1
α∗

)
+ 1
)

(2.4)

+ ρx

2

(
1

α∗(−ρ) + α∗ − 1 + 1
(ρ− 1)x+ 1

)
(2.5)

where w = ρ
( 1
α∗(ρ− 1) + 1 + 1

−ρx+ x− 1

)
+ 1
ρ− ρx+ x

.

We arrange ψ(x) as N(x)
D(x) , then the denominator can be written as:

D(x) = 6α∗(α∗ρ− α∗ + 1)(α∗ρ− α∗ − ρ)(ρx− x+ 1)(−ρ+ ρx− x)

which is positive, so the sign of ψ(x) is determined by the numerator N(x).
The advantage of working with the numerator is that it is a polynomial.
Some calculations yield that

N(x) = (x− α∗)rρ(1 + α∗(ρ− 1))(−ρ+ α∗(ρ− 1))

+ (x− α∗)r(ρ− 1)2x2
(

2(α∗ − 1)α∗(ρ2 + ρ− 2) + ρ
)

− (x− α∗)r(ρ− 1)x2α∗2(ρ3 − 3ρ+ 2)

− (x− α∗)r(ρ− 1)x
(

(ρ− 1)ρ− α∗(ρ(ρ(2ρ+ 3)− 3) + 4)
)

− (x− α∗)3α∗(ρ− 1)ρx(α∗(ρ− 1)− ρ)((ρ− 1)x− ρ) .

Clearly N(x) has a root at α∗, i.e., N(α∗) = 0. Since the degree of N(x)
is 3 it follows that it has at most three real roots λ1 ≤ λ2 ≤ λ3. Assume
that λ2 = α∗. A simple calculation shows that the leading coefficient of
the polynomial N(x) is α∗ρ(−r)(α∗(ρ−1)+1)(α∗(ρ−1)−ρ) and therefore
it is positive. This implies that

lim
x→−∞

N(x) = −∞

and that
lim
x→∞

N(x) = ∞.
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Next we claim that N [0] > 0. Setting x = 0 in N(x) we get that N(0) =
α∗ρ(−r)(α∗(ρ − 1) + 1)(α∗(ρ − 1) − ρ), which is positive in the range of
the variables r, α∗, ρ. This shows that some root of N is less than 0, i.e.,
λ1 < 0.

Next we show that there is one root of N that is greater than 1/2, i.e.,
λ3 > 1/2. To do this, we consider N(1/2) and show that it is negative,
i.e., N(1/2) < 0. A simple calculation shows that

N(1/2) = (1
2 − α

∗)r 1
2(1− ρ)

(
(ρ− 1)ρ− α∗(ρ(ρ(2ρ+ 3)− 3) + 4)

)
+ rα∗

2(1
2 − α

∗)(1− ρ)(ρ3 − 3ρ+ 2)

+ (1
2 − α

∗)r
(1

4(ρ− 1)2(2(α∗ − 1)α∗(ρ2 + ρ− 2) + ρ)
)

+ (1
2 − α

∗)rρ(α∗(ρ− 1) + 1)(α∗(ρ− 1)− ρ)

− (1
2 − α

∗)3
2α
∗(ρ− 1

2 − ρ)(ρ− 1)ρ(α∗(ρ− 1)− ρ).

ViewingN(0) as a function of r, we notice thatN(0) is a monotonically
linear descending function of r and therefore one can assume that r = α∗.
In this case, i.e., r = α∗, we get that

N(1/2) < (1
2 − α

∗)α∗ 1
2(1− ρ)

(
(ρ− 1)ρ− α∗(ρ(ρ(2ρ+ 3)− 3) + 4)

)
+ α∗

3(1
2 − α

∗)(1− ρ)(ρ3 − 3ρ+ 2)

+ (1
2 − α

∗)α∗
(1

4(ρ− 1)2(2(α∗ − 1)α∗(ρ2 + ρ− 2) + ρ)
)

+ (1
2 − α

∗)α∗ρ(α∗(ρ− 1) + 1)(α∗(ρ− 1)− ρ)

− (1
2 − α

∗)3
2α
∗(ρ− 1

2 − ρ)(ρ− 1)ρ(α∗(ρ− 1)− ρ).

Now a simple calculation shows that this is a monotonically descending
function of ρ. Setting ρ = 0, we get

N(1/2) <
(1

2 − α
∗
)
α∗
(1

2
(
4α∗2 − 4α∗

)
+ (1− α∗)α∗

)
,
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which is less than 0 for all 0 < α∗ < 1/2 so λ2 > 1/2. This in turn implies
that ψ(x) ≥ 0 when x ∈ [0, α∗].

Now we can bound the rate of convergence of F (x).
Lemma 2.9. |α∗ − E[αt]| = O(1/ 3√t).

Proof. Assume that αt < α∗ (the other case is similar).

E[αt+1] = E[αt] + E[F (αt)− αt]
t+ 1 (2.6)

Let ∆ = α∗−r/3
α∗ and the line L(x) = ∆ · x+ r/3. Note that L shares

the point (α∗, F (α∗)) with F (x) but is strictly below F (x) in the range
[0, α∗] it (See Lemma 2.8). Thus

E[F (αt] ≥ E[α∗ − εt∆],

where εt = α∗ − αt.
Substituting into Equation (2.6), we get

E[αt+1] ≥ E[αt] + E[α∗ − εt∆− αt]
t+ 1

= E[αt] + E[εt](1−∆)
t+ 1 = α∗ − E[εt] + E[εt](1−∆)

t+ 1 ,

so the expected error at time t+ 1 is

E[εt+1] ≤ E[εt](1−
1−∆
t+ 1 ).

Solving for E[εt] we have

E[εt] = ε0(1− 1−∆
2 )(1− 1−∆

3 ) · · · (1− 1−∆
t

)

= ε0 exp(−
t∑
i=1

1−∆
i

) = O( ε0
t1−∆ ),

Note that since r/2 ≤ α∗ < r we have ∆ < 2/3, and so E[εt] =
O(1/ 3√t).
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With the previous steps we have proven both, the convergence of E[αt]
to α∗ as well as we have bound the convergence rate. We now investigate
the fixed point α∗.

Theorem 2.3. For any initial configuration, as t goes to infinity, the
expected fraction of red balls in the urn, E[α∗t ], converges to the unique α∗
in [0, 1] satisfying the equation

2α∗ = 1− (1− r) (1− α∗)
1− α∗(1− ρ) + r

α∗

1− (1− α∗)(1− ρ) . (2.7)

Reformulating Equation 2.7 shows that the limit α∗ is the solution of
the following cubic equation.

0 = (4ρ− 2ρ2 − 2)(α∗)3 + (2 + 3ρ2 − 5ρ+ 2r − 2rρ)(α∗)2

+ (2ρ− 2r + 2rρ− ρ2)α∗ − rρ
(2.8)

Note that this α∗ is independent of the initial values u0 and α0 of the
system. From Lemma 2.7 Part (ii) we know that α∗ exists and that α∗
satisfies the Equations 2.7 and 2.8. Recall that in Equation 2.2 we defined
the limit of E[αt] as α. Combining this with Lemma 2.9 we know that
αt converges to α∗. From that we can conclude that α exists and that
α = α∗.

Having shown the independence of α of the initial configuration of the
urn we make the following observation. The expected degree of a red
node tends to 2α/r, which is strictly less than 2, the expected degree of a
random node, because of Lemma 2.7 Part (v). This concludes the proof
for Theorem 2.1 Part (i) and we have shown that G(n, r, ρ) exhibits an
influence inequality.

2.3.3 Proof of Theorem 2.1 Part (ii)

Concentration. To prove the glass ceiling effect we first bound the degree
distribution. To do this we need to bound the rate by which ut(R) converge
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to α · t. Let Xi ∈ {0, 1, 2} be the number of new red balls in the system
at time i. Note that ut(R) =

∑t

0 Xi. Let

X̄i = (X1, X2, . . . , Xi)

be a tuple that captures all random variables X1, X2, . . . , Xi and let

Ψi = EXi+1,Xi+2,...,Xt

[ t∑
j=0

Xj |X̄i
]
.

Observe that (Ψi)i is a Doob Martingale [66], and note that we already
know that Ψ0 = E

[∑t

i=0 Xi

]
= E
[
ut(R)

]
.

Theorem 2.4 (Azuma’s inequality [3]). Let Ψt be a martingale such that
for all i, almost surely |Ψi − Ψi−1| < ci. Then for all positive t and all
positive reals x,

Pr(Ψt −Ψ0 ≥ x) ≤ exp
(
−x2

2
∑

i
c2i

)
.

Lemma 2.10. Let Ci = |Ψi −Ψi−1|. Then Ci = O(
√
t/i).

Proof. Observe that for c = 0, 1, 2,

Ψi −Ψi−1 = EXi+1,...,Xt

[(
E(

t∑
j=i

Xj |Xi = c)− EXi(
t∑
j=i

Xj)

)
|X̄i

]
.

To bound Ci = |Ψi−Ψi−1|, since each additional ball creates an indepen-
dent effect on its descendents (the red balls that are connected to it), we
have: E(Ci) ≤ 2zi, where

zi = E
[
ai,t | bi

]
where ai,t = number of additional red balls at times [i, t], and bi = one
additional red ball at time i. We have the recurrence: zt = 1, and for
i < t

zi = 1 + γ

2(i+ 1)zi+1 + γ

2(i+ 2)zi+2 + · · ·+ γ

2t zt
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where γ/(2i) is the probability of selecting a particular marked red ball at
time i: we always have γ ≤ 1, and γ depends on the homophily parameter
ρ.

We apply some algebraic changes and let yi = zi/2i. It is easy to see
that the recurrence becomes yt = 1/(2t), and yi = (1 + (2 + γ)/(2i))yi+1.
Solving the recurrence yields

yi =
(

1 + 2 + γ

2i

)(
1 + 2 + γ

2(i+ 1)

)
· · · 1

2t

= O

(
1
2t exp

(
t∑
j=i

2 + γ

2j

))

= O

(
1
2t

(
t

i

) 2+γ
2
)
. (2.9)

Since γ ≤ 1, we obtain that yi = O((1/i)
√
t/i) and we also obtain

|Ci| = O(zi) = O(
√
t/i).

Recall that αt = ut(R)/(2t). By Theorem 2.4 and Lemma 2.10 then

Lemma 2.11. Pr
[
|ut(R)− 2tE(αt)| > O(2

√
t log t)

]
≤ 1
t4

.

Proof. By Lemma 2.10
t∑
i=1

C2
i ≤ O(

t∑
i=1

t

i
) ≤ ct log t.

We now use Theorem 2.4 for x = Θ(2
√
ct log t), note that Ψt = ut(R) and

Ψ0 = E[ut(R)], and obtain:

Pr
[
|ut(R)− E[ut(R)]| > O(

√
4t log t)

]
≤ 2 exp

(
−4t log2 t

t log t

)
= O

( 1
t4

)
.

Combining Lemmas 2.9 and 2.11 yields:
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Corollary 2.12.

Pr
[
|αt − α| > max

{
2 log t√

t
,

1
3√t

}]
<

1
t4
.

We have shown that the ratio of red balls converts fast enough to a
certain α and is concentrated around the expected value of α. With this
knowledge we can investigate the degree distribution of the red nodes.

Degree distribution

We investigate the degree distribution of the red and blue vertices in a
graph generated by the biased preferential attachment process, following
the analysis outline of [15] for the basic preferential attachment model.

Let mk,t(B) (resp., mk,t(R)) denote the number of blue (resp., red)
vertices of degree k at time t. For x ∈ {R, B}, define

Mk(x) = lim
t→∞

E[mk,t(x)]
t

. (2.10)

Theorem 2.5. The expected degree distributions of the blue and red ver-
tices follow a power law, namely, Mk(B) ∝ k−β(B) and Mk(R) ∝ k−β(R). If
0 < r < 1/2 and 0 < ρ < 1 then β(R) > 3 > β(B).

As next we will prove Theorem 2.5. Note that m0,0(B) = u0(B). We
derive a recurrence for E[mk,t(B)]. A blue vertex of degree k at time t
could have arisen from three scenarios: (s1) at time t− 1 it was already a
blue vertex of degree k and no edge was added to it at time t. (s2) at time
t− 1 it was a blue vertex of degree k − 1 and an edge was added to it at
time t. (s3) in the special case where k = 1, at time t− 1 it did not exist
yet and it has arrived as a new blue vertex at time t. Thus letting Ft be
the history of the process up to time t, for any k > 1, the expectation of
mk,t+1(B) conditioned on Ft satisfies
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E[mk,t+1(B)|Ft] = mk,t(B)

(
1−

rut(B)ρ k
ut(B)

ut(R) + ut(B)ρ −
(1− r)ut(B) k

ut(B)

ut(R)ρ+ ut(B)

)

+mk−1,t(B)

(
rut(B)ρ k−1

ut(B)

ut(R) + ut(B)ρ +
(1− r)ut(B) k−1

ut(B)

ut(R)ρ+ ut(B)

)
.

For k = 1 we similarly have

E[m1,t+1(B)|Ft] = m1,t(B)
(

1− ρr

ut(R) + ut(B)ρ −
1− r

ut(R)ρ+ ut(B)

)
+1−r.

(2.11)
Recalling again that αt = ut(R)/(2t), the E[mk,t+1(B)|Ft] term from above
can be rewritten as

mk,t(B)
(

1− rρk

2t(αt + (1− αt)ρ) −
(1− r)k

2t(αtρ+ (1− αt))

)
+ mk−1,t(B)

(
rρ(k − 1)

2t(αt + (1− αt)ρ) + (1− r)(k − 1)
2t(αtρ+ (1− αt))

)
.

and for the case of k = 1, the term E[m1,t+1(B)|Ft] can be written as

m1,t(B)
(

1− ρr

2t(αt + (1− αt)ρ) −
1− r

2t(αtρ+ (1− αt))

)
+ (1− r) .

This can be expressed as

E[mk,t+1(B)|Ft] = mk,t(B)
(

1−At
k

t

)
+mk−1,t(B)At

k − 1
t

,

E[m1,t+1(B)|Ft]f = m1,t(B)
(

1− At
t

)
+ (1− r), (2.12)

using the notation

At = rρ

2αt + 2(1− αt)ρ
+ (1− r)

2αtρ+ 2(1− αt)
.
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Similar calculations hold for the red vertices. Substituting r by (1 − r)
and αt by (1 − αt) respectively leads to the corresponding factor for the
red vertices. Note that At is a random variable so we next bound its
divergence. Denoting by CB the factor for the blue vertices and by CR the
factor for the red vertices. Let

CB = rρ

2α+ 2(1− α)ρ + (1− r)
2αρ+ 2(1− α) (2.13)

CR = (1− r)ρ
2αρ+ 2(1− α) + r

2α+ 2(1− α)ρ . (2.14)

We have

Lemma 2.13. Pr
[
|At − CB| > max

{
2 log t√

t
,

1
3√t

}]
<

1
t4

.

To understand the degree distribution in our model we will make use
the following lemma.
Lemma 2.14. [15] Let (at), (bt), (ct) be three sequences such that at+1 =
(1− bt

t
)at + ct, limt→∞ bt = b > 0 and limt→∞ ct = c. Then limt→∞ at/t

exists and its value is
lim
t→∞

at
t

= c

1 + b
. (2.15)

Lemma 2.15.
• M1(B) exists and equals (1− r)/(1 + CB),

• For k ≥ 2, Mk(B) exists and equals Mk−1(B) · (k − 1)CB/(1 + kCB),

• M1(R) exists and equals r/(1 + CR), and

• For k ≥ 2, Mk(R) exists and equals Mk−1(R) · (k − 1)CR/(1 + kCR),

Proof. To prove the base case, we start from Equation (2.12) for m1,t(B),
use Lemma 2.13 and note that in the worst case m1,t(B) can never exceed
t, and write:

E[m1,t(B)] ≤ (1− 1
t4

)[E[m1,t(B)]
(

1− CB ± o(1)
t

)
+ (1− r)] + 1

t4
t

= E[m1,t(B)]
(

1− CB ± o(1)
t

)
+ (1− r) +O

( 1
t3

)
.
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It only remains to apply Lemma 2.14 with at = E[m1,t(B)], bt = CB±o(1),
and ct = (1− r) +O(1/t3).

To prove the general case, we similarly start from Equation (2.12) for
mk,t(B), use Lemma 2.13, note that in the worst case mk,t(B) can never
exceed t, and upper bound the expectation of mk,t+1(B) by

E[mk,t+1(B)] ≤ (1− 1/t4)E[mk,t(B)]
(

1− (CB ± o(1))k
t

)
+ (1− 1/t4)E[mk−1,t(B)](CB ± o(1))k − 1

t
+ (1/t4)t .

It remains to apply Lemma 2.14 again, with the following three sequences:
at = E[mk,t(B)], bt = k(CB ± o(1)), ct = E[mk−1,t(B)](CB ± o(1)) k−1

t
+

O(1/t3), and use induction to conclude the proof.
By applying the same techniques for the red vertices, we get the other

two statements of the Lemma.

With that we have shown that the distribution of the red and blue
nodes follow this recurrence. It is left to show that this recurrence formula
leads to a power law distribution and the emergence of the glass ceiling.
To show this we will need the following lemma. Using Equations 2.8 and
2.13 and lengthy algebraic conversions it is possible to show the following
about CB and CR:

Lemma 2.16. If 0 < r < 1/2 and 0 < ρ < 1 then CR <
1
2 < CB

To show that the degree distributions of both the red and the blue
vertices follow power laws we recall that a power law distribution has the
following property: Mk ∝ k−β for large k, where β is independent of k.
If Mk ∝ k−β , then

Mk

Mk−1
= k−β

(k − 1)−β =
(

1− 1
k

)β
= 1− β

k
+O

( 1
k2

)
.

Solving for the blue vertices, Mk(B) and the blue exponent β(B), and using
Lemma 2.15, we get:

Mk(B)
Mk−1(B) = (k − 1) · CB

1 + k · CB
= 1− CB + 1

k · CB + 1 = 1−
1 + 1

CB

k
+O

( 1
k2

)



2.3. THEORETICAL RESULTS 35

hence β(B) = 1+1/CB. Similarly, for red vertices of degree k, Mk(R) decays
according to a power law with exponent β(R) = 1+1/CR. Note that when
CR <

1
2 < CB we have β(R) > 3 > β(B) thus proving Theorem 2.5.

Now we have all the pieces to prove the occurrence of a glass ceiling for
the biased preferential attachment process. Equipped with Theorem 2.5,
Part (ii) of Theorem 2.1 follows easily. Indeed, for the tail glass ceiling
effect, let k(n) = n

1
β(R) . Then

E[topk(R)] = n(R)
∑
k′≥k

Mk′(R) ,

E[topk(B)] = n(B)
∑
k′≥k

Mk′(B).

For k′ = n
1
β(R) we have nMk′(R) = O(n·n−

β(R)
β(R) ) = O(1) while it holds that

nMk′(B) = Ω
(
n · n−

β(B)
β(R)

)
= Ω(n1− β(B)

β(R) ) = Ω(nε) for ε > 0. The result
then follows since n(R) < n(B) andMk′(R) < Mk′(B) for k′ > k. Informally
this means that looking at the nodes of degree at least k(n) = n

1
β(R) the

number of women is vanishingly small, even though there are many men
found with a degree at least k.

For the moment glass ceiling effect we can show similarly:

g = lim
n→∞

∑
k2Mk(R)∑
k2Mk(B)

= lim
n→∞

O(n3−β(R))
Ω(n3−β(B)) = lim

n→∞
O
( 1
nε′

)
= 0

for some ε′ > 0. These results conclude the proof for Theorem 2.1
Part (ii).

2.3.4 Proof of Theorem 2.2

In this section we prove that the glass ceiling does not emerge in our model
if one of the three assumptions (a minority-majority partition, homophily,
the “rich get richer” mechanism) is not met.
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No Minority

No minority means that the entry rate of the red nodes is the same as
the entry rate of the blue nodes, namely r = 1/2. We prove the following
lemma:

Lemma 2.17. If r = 1/2 then CR = CB = 1/2.

Proof. Setting r = 1/2 in Equations 2.13 we get the following equations:

CB = 1
2
( ρ

2α+ 2(1− α)ρ + 1
2αρ+ 2(1− α)

)
CR = 1

2
( ρ

2αρ+ 2(1− α) + 1
2α+ 2(1− α)ρ

)
.

Substituting α with the solution to Equation 2.8 with r = 1/2 yields
the claim.

Having the same exponent for both of the subpopulations we get:

β(B) = β(R) = 1 + 1
1/2 = 3 (2.16)

This leads to the same degree distribution of the two sub-populations and
no glass ceiling effect emerges.

No Homophily

Assuming no homophily, namely ρ = 1, means, that new nodes accept
their first choice independent of the color of the chosen node. Setting
ρ = 1 in Equation 2.13 we get the following equation:

CB = CR = 1/2, (2.17)

hence the exponent is the same for both of the subpopulations. As our
model without homophily is equal to the original Barabasi-Albert model
(with two different colors) it is not surprising, that this leads for both
subpopulations to the same exponent found for the original model. Since
the degree distribution is the same for men and for women, there is no
glass ceiling effect.
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No Heterophily

No heterophily, meaning new nodes attach themselves only to nodes with
the same color, leads to a completely segregated network. Setting ρ = 0
in Equation 2.13 we get the following:

CB = 1− r
2(1− α)

CR = r

2α
Using again Equation 2.8 with ρ = 0, we find that α = r. Plugging these
values into equation 2.18 we get the same results as without homophily.

CB = CR = 1/2, (2.18)

This leads to the same degree distribution which induces that the glass
ceiling effect does not emerge.

No Preferential Attachment

Let U(n, r, ρ) be a random graph model similar to G(n, r, ρ) except that
when a new vertex z arrives at time t it chooses its neighbor v ∈ Vt
uniformly at random (with probability 1/t). For simplicity we start at
time t = 0 with a single vertex (with arbitrary color). Let M̃k(R) and
M̃k(B) denote, respectively, the expected number of red and blue vertices
of degree k in U(n, r, ρ). First we prove the following Lemma.

Lemma 2.18. For any 0 < r < 1/2 and any 0 ≤ ρ ≤ 1, the expected
number of red and blue vertices of degree k in a random graph U(n, r, ρ)
follows a geometric distribution. In particular:

M̃k(R) = r · pr · (1− pr)k−1

and
M̃k(B) = (1− r) · pb · (1− pb)k−1,

where pr = 1
1+p∗r

, pb = 1
1+p∗

b
, p∗r = r

1−(1−r)(1−q) + q(1−r)
1−r(1−q) and p∗b =

rq
1−(1−r)(1−q) + 1−r

1−r(1−q) .
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Proof. As before, let m̃k,t(B) (resp., m̃k,t(R)) denote the number of blue
(resp., red) vertices of degree k at time t. Again, we will derive a recur-
rence for E[m̃k,t(B)]. Consider a red vertex v and let prr be the probability
that v is selected given that the new arrived vertex is a red vertex. Then
prr = 1

t
+ t−1

t
(1 − r)(1 − q)prr, so prr = 1

1−(1−r)(1−q)+(1−r)(1−q)/t
1
t
. If

the new arrived vertex is blue then the probability that v will be selected
is pbr = q

t
+ t−1

t
r(1 − q)pbr, so pbr = q

1−r(1−q)+r(1−q)/t
1
t
. Similarly, if

v is blue then the probability it is selected if the new vertex is red is
prb = q

1−(1−r)(1−q)+(1−r)(1−q)/t
1
t

and pbb = 1
1−r(1−q)+r(1−q)/t

1
t

is the new
vertex is blue.

Let Ft be the history of the process up to time t. Thus for any k > 1,

E[m̃k,t+1(B)|Ft] = m̃k,t(B)(1− rprb − (1− r)pbb)
+ m̃k−1,t(B)(rprb + (1− r)pbb).

For k = 1 we have

E[m̃1,t+1(B)|Ft] = m̃1,t(1− rprb − (1− r)pbb) + (1− r).

Taking the expectation on both sides we have

E[m̃k,t+1(B)] = E[m̃k,t(B)](1− rprb − (1− r)pbb)
+ E[m̃k−1,t(B)](rprb + (1− r)pbb).

E[m̃1,t+1(B)] = E[m̃1,t](1− rprb − (1− r)pbb) + (1− r).
Let

M̃k(B) = lim
t→∞

E[m̃k,t(B)]
t

. (2.19)

and

p∗b = lim
t→∞

(rprb − (1− r)pbb)t = rq

1− (1− r)(1− q) + 1− r
1− r(1− q) .

Then using Lemma 2.14 and setting at, bt and ct accordantly we have

• M̃1(B) = 1−r
1+p∗

b

• M̃k(B) = M̃k−1
p∗
b

1+p∗
b

= M̃k−1(1− 1
1+p∗

b
) = M̃1(1− 1

1+p∗
b

)k−1.
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Similarly, letting

p∗r = lim
t→∞

(rprr − (1− r)pbr)t = r

1− (1− r)(1− q) + q(1− r)
1− r(1− q)

we get

• M̃1(R) = r
1+p∗r

• M̃k(R) = M̃k−1
p∗r

1+p∗r
= M̃k−1(1− 1

1+p∗r
) = M̃1(1− 1

1+p∗r
)k−1

Setting pb = 1
1+p∗

b
and pr = 1

1+p∗r
the result follows.

Theorem 2.6. For any 0 < r < 1/2 and any 0 ≤ ρ ≤ 1, the random
graph U(n, r, ρ) does not exhibit a strong glass ceiling effect.

Proof. Since both degree distributions follow a geometric distribution we
have:

g = lim
n→∞

∑
k2M̃k(R)∑
k2M̃k(B)

= r(1− 2pr)/p2
r

(1− r)(1− 2pb)/p2
b

= Ω(1).

2.3.5 Testing Competing Explanations: Unequal Qualifi-
cation

Another possible competing explanation to the glass ceiling effect may be
based on the conjecture that the effect occurs in areas where women have
lower qualifications and skills than men. As we interpret the degree of a
vertex as representing its power, unequal qualifications can be modeled
by assuming that when a red (minority) vertex joins the network, it does
so with a lower degree (fewer new edges) than does a blue vertex. This
provides a “trivial” explanation to influence inequality, but will it cause
a glass ceiling effect? We show that this is not the case: assuming no
homophily, even if the minority has lower average degree, no glass ceiling
effect emerges.

To formally model unequal qualifications, consider a random model
similar to the unbiased preferential attachment model G(n, r, ρ = 1) that
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we denote by G∆(n, r), operating as follows. At each time t a new ver-
tex w joins the graph. Its color is red with probability r and blue with
probability (1− r). If w is red, then it generates one new edge according
to preferential attachment as before. If w is blue then it generates ∆ new
edges, one at a time, according to preferential attachment.

We prove the following.
Theorem 2.7. Let 0 < r < 1

2 and ∆ be a constant integer. Then
G∆(n, r) does not exhibit a tail glass ceiling effect. Formally, for every k
s.t. limn→∞ topk(B) =∞,

lim
n→∞

topk(R)
topk(B) > c,

where c > 0 is a constant that depends only on r and ∆.

Proof. Instead of G∆(n, r), let us consider an equivalent process G∆
1 (n, r)

defined as follows. First generate G1(∆n, r) without coloring the vertices,
according to the preferential attachment model. Then, consider the ver-
tices of G1(∆n, r) in order of arrival, v1, v2, . . . , v∆n. Generate G∆

1 (n, r)
and its vertices v1, v2, . . . , vn as follows. Initially j = i = 0. Assume by
induction that vertices v1, v2, . . . , vi were already generated by processing
vertices v1, v2, . . . , vj . With probability r, vi+1 is red, in which case set
the neighbors of vi+1 to be the vertices of G∆

1 corresponding to the neigh-
bors of vj+1 and increment j by 1. With probability 1− r vertex vi+1 is
blue, in which case set vi+1 to be the “merging” of vj+1, vj+2, . . . , , vj+∆

into a single blue vertex. That is, the set of neighbors of vi+1 is taken to
be the union the sets of vertices of G∆

1 corresponding to the neighbors of
vj+1, vj+2, . . . , , vj+∆; then increment j by ∆. Once n vertices are gener-
ated in this way, we ignore all remaining vertices vj′ that were not used,
as well as their edges. This defines G∆

1 (n, r).
For the analysis, let n∗ denote the number of vertices used from

G1(∆n, r) and note that n ≤ n∗ ≤ ∆n. Let G1(∆n, r)[n∗] denote the
induced subgrapgh of G1(∆n, r) from vertices v1, v2, . . . , vn

∗ . We prove
that G∆

1 (n, r) does not exhibit a glass ceiling effect and therefore G∆(n, r)
doesn’t either.

Let topk(R, G) denote the expected number of red vertices of degree
at least k in the graph G. Consider a red vertex of degree k in G∆

1 (n, r).
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The expected number of red vertices of degree at least k in G∆
1 (n, r) is

the same as in G1(∆n, r)[n∗].
Let M̂k(R) and M̂k(B) denote, respectively, the expected number of red

and blue vertices of degree k in G1(∆n, r)[n∗]. Note that G1(∆n, r)[n∗]
follows a power law for both the red and blue vertices, and with the
same β, namely, M̂k(R) ∝ k−β and M̂k(B) ∝ k−β for large k. Hence for
constants c′ and c′′ we have:

topk(R, G∆
1 (n, r)) = topk(R, G1(∆n, r)[n∗])

= r

r + ∆(1− r) topk(G1(∆n, r)[n∗])

≥ r

r + ∆(1− r) topk(G1(∆n, r)[n])

= r

r + ∆(1− r)

∫ n

k

n · c′ · i−βdi

= r

r + ∆(1− r)
c′′ · n
β − 1k

−(β−1).

Similarly, the number of blue vertices of degree at least k in G∆
1 (n, r) can

be upper bounded by the number of blue vertices of degree at least k/∆
in G1(∆n, r)[n∗], since merging ∆ blue vertices of degree less than k/∆
cannot yield a blue vertex of higher degree than k. For constants c′ and
c′′ we have:

topk(B, G∆
1 (n, r)) ≤ top k

∆ +(B, G1(∆n, r))

= ∆(1− r)
r + ∆(1− r) top k

∆ +(G1(∆n, r))

= ∆(1− r)
r + ∆(1− r)

∫ ∆n

k
∆

∆n · c′ · i−βdi

= ∆(1− r)
r + ∆(1− r)

c′′ ·∆n
β − 1 k−(β−1)∆β−1.

Putting it all together, we have that in G∆
1 (n, r) there is no tail glass

ceiling effect:
top(R)k
top(B)k

≥ r

(1− r)∆β+1 .
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A similar argument shows that there is also no strong glass ceiling effect.

2.3.6 Independence of tail and moment glass ceiling effects
To establish the independence of the two definitions of the glass ceiling
effect, consider two sets of degree sequences, denoted A and B, where each
set contains two degree sequences, for the red and blue vertices respec-
tively. For simplicity, each degree sequence is of size n and the combined
graph has 2n vertices. For each such set it is easy to construct a graph
with the given degree sequences, for example by the random configuration
model (which generates a random graph for every given degree sequence).
Set A exhibits a tail glass ceiling effect but not a strong moment glass
ceiling effect, whereas set B exhibits a strong glass ceiling effect but not
a tail glass ceiling effect.
Set A. Let the degree sequence of the red vertices consist of n −

√
n

vertices of degree 1 and
√
n vertices of degree h = blognc. The degree

sequence of the blue vertices consists of n −
√
n vertices of degree 1 and√

n vertices of degree 3h.
Taking k = 2h, we get limn→∞ topk(B) =∞ and

lim
n→∞

topk(R)
topk(B) = 0√

n
= 0.

However, the network does not exhibit a strong moment glass ceiling
effect, as

lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2 = lim

n→∞

n−
√
n+
√
nh

n−
√
n+ 9

√
nh

= 1− o(1) ≥ 1
2 .

Set B. Let the degree sequence of the red vertices consist of n vertices of
degree 2 (e.g., a ring). The degree sequence of the blue vertices consists
of n − 1 vertices of degree 1 and one vertex of degree n − 1 (e.g., a star
graph).

Taking k > 1, we get limn→∞ topk(B) = 1 and the condition does not
hold. If we take k = 1 then

lim
n→∞

topk(R)
topk(B) = n

n
= 1.
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Hence there is no tail glass ceiling effect. However, the network does
exhibit a strong moment glass ceiling effect, as

lim
n→∞

1
n(R)

∑
v∈R δ(v)2

1
n(B)

∑
v∈B δ(v)2 = lim

n→∞

∑n

1 22

n− 1 + (n− 1)2 = lim
n→∞

4n
n(n− 1) = 0.

2.4 Empirical Results

To provide empirical evidence illustrating the results of our analysis in
real-life, we studied a mentor-student network of researchers in computer
science. We extracted this data from DBLP [58], a dataset recording most
of the publications in computer science. A filtering process creates a list
of edges connecting students to mentors. For each edge we determined
the gender of the student and of the mentor and the year in which the
connection was established. The resulting network spans over 30 years and
has 434232 authors and 389296 edges. In the remainder of this section
we describe the data collection and the assignment of gender to names
followed by a temporal analysis of the minority-majority partition, the
influence inequality and the glass ceiling effects.

2.4.1 Data Collection and Gender Assignment
Assigning Gender to Names

Unfortunately, the DBLP dataset (as well as the genealogy dataset) does
not include direct information about the gender of the authors. In order
to determine the gender of the authors, we made use of the fact that in
most languages the first name also encodes the gender. Difficulties arise
with unisex names, names that lose their gender information while be-
ing translated to the Latin alphabet (such as Chinese names), as well as
single letter abbreviations (such as “A. Smith”). In order to match first
names with their corresponding gender we built a dictionary including
first names, their corresponding gender and a number between [0, 1] de-
scribing the probability of the person with this first name being assigned
the correct gender.

In order to build our {name:gender} dictionary we used four different
datasets.
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Dataset 1: US Birth Names (85547 names)
This dataset includes all names from Social Security card applications for
newly borns in the United States between 1879 and 20121. For each year
exists a list of names and the respective count of each gender. We summed
up the counts over all years, i.e., we produced an entry for the total count
of each name for each gender. From this list a name was assigned to be
female or male respectively if its gender’s count was more than 90% of the
total. Otherwise the name was assumed to fit both gender. The female
score of a name would thus be countf/(countf + countm).

Dataset 2: US Census 1990 Data (5163 names)
This dataset has been composed by the Census Bureau in the US2 and
contains the names and the frequency of names for the sample male and
female population respective according to the 1990 census. As an exam-
ple: If, in the population of the 1990 census, 2000 people were named
“Patricia” and 1900 were female, we assign it the gender “female” with
probability 0.95 (score).

Dataset 3: Popular US Baby Names (4411 names)
This dataset stems from from the US Social Security Administration’s
statistics3 for popular baby names and contains for every year between
1960 and 2010 the 100 most popular baby names. For each year and name
the average probability of usage between 1960 and 2010 was calculated.
In order to assign a name its gender, we compared the male probabiltiy
to the female probability and assigned the conditional probability to the
gender with the higher probability.

Dataset 4: Baby Name Lists for Parents (19833 names)
The last dataset used is based on the gender information on a homepage
collecting information on names made to help parents to choose a name
for their baby4. This site notes for each name whether it is used as a
female, male or unisex name. However, there is no information on the
frequency of its use for each gender. The score for a female only or male
only name is hence set to 1.

The datasets mentioned above were unified via the following protocol.
1http://www.ssa.gov/OACT/babynames/limits.html
2http://www.census.gov/genealogy/www/data/1990surnames/names files.html
3http://www.ssa.gov/cgi-bin/popularnames.cgi
4http://www.behindthename.com
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First, generate a list L based on Dataset 1. Each entry of the list consists
of the tuple (name, gender, score). Second, process Dataset 2: for each
name of Dataset 1 that is already in L, check if the gender assignment is
equivalent in both data sets. If so, the list is not modified. If the gender
differs, then the name is declared to be unisex. If the name is not in L,
add it together with the score of Dataset 2. Repeat the same process with
Datasets 3 and 4.

In total, these sources led to a collection of 96,314 distinct names,
including 36,316 names with a score of more than 0.9 for males and 58,827
names with a score of more than 0.9 for females. To assign a gender to
the authors in DBLP we looked up their first name in our dictionary.
If the probability of the name being female or male was over 90%, then
the corresponding gender was assigned to the author. We refer to the
resulting dictionary as version v0.

Cross Checking and Validation of Influential Authors
To make sure that the very active authors are identified correctly and to
prevent a case where a name is representing several authors with the same
name (a known problem in DBLP), we carried out a number of heuristic
cross checks and validations. In particular, for the top 1000 authors in the
dataset, we ran a script that filtered out potentially problematic nodes.
This resulted in excluding 452 (0.03%) nodes from the dataset. We refer
to the resulting dictionary version v1. We believe that our version v1
dictionary is a cleaner and more accurate one, and therefore we present
in this work results that are based on it. But in fact, the overall results
of versions v0 and v1 are very similar. Table 2.1 summarizes the numbers
of the gender assigning process.

Construction of Mentorship Graph

The empirical part of this article focuses on mentor relationships, as
they are significantly influenced by homophily, as described in [40]. Ac-
cording to the Oxford Dictionary, a mentor is “an experienced person
in a company or educational institution who trains and counsels new
employees or students”. In a scientific context, this typically includes
guidance on writing research articles, especially for the first publica-
tions. Thus, mentors are often co-authors of young researchers in the
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Total Number of Authors in DBLP 1359616 100%
Female 172532 12.69%
Male 618830 45.52%

Names fits both 53330 3.92%
Excluded from top 1000 452 0.03%
Not found in name list 514472 37.84%

Table 2.1: The numbers of authors identified as female or male, or as having
a name that fits both genders in the dictionary version v1. Also listed is the
number of authors that have been excluded from the top 1000 authors. Note
that this leads to an gender ratio of 21.08% females for the names with a gender
assigned to them.

first few years of their career. Clearly, a mentor has to have some ex-
perience, i.e., the mentor has started publishing a few years earlier than
the mentee. Apart from websites such as the Mathematics Genealogy
Project (“http://genealogy.math.ndsu.nodak.edu/”), which collects data
on PhD students and their advisors in the field of mathematics, we are
unaware of databases on scientific mentoring5. Therefore, we base our
empirical findings on a mentoring graph constructed from the publication
data base DBLP, an on-line reference for bibliographic information on
major computer science publications. It has evolved from an early small
experimental web server to a popular open-data service for the computer
science community. The entire DBLP dataset is freely available as a large
XML file containing all bibliographic records. For each publication, this
database provides the authors, the year, and the journal or conference,
among other data.

For each author in DBLP, we looked at the set of co-authors to find po-
tential mentors. More precisely, we considered all people that co-authored
an article in the first four years of a young researcher (we only considered
papers with up to 20 authors) . In addition we relied on the assumption
that the mentor has significantly more experience than the mentee. We
looked at the years when the researchers wrote their first article. A person
was only considered as a potential mentor of a mentee if the difference

5we empirically studied the Mathematics Genealogy Project, with similar results,
but do not report it here since the network size is much smaller.
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in the number of years between the dates of their first articles exceeded
four. Like this we computed a set of eligible mentoring candidates for
each author in DBLP. Among these candidates, we selected the one with
the highest number of early papers written (if there are several authors
competing for this position, we picked one at random).

The DBLP snapshot from December 23, 2013 contains 8,867,408 ar-
ticles with two or more authors, written by a total of 1,282,790 people.
Among them 871,839 have a set of at least one mentor candidate, i.e.,
68.01 % of the authors in DBLP can be assigned a mentor with this
method.

When using the same procedure but requiring an experience difference
of at least 5 or 6 years, the percentage of authors than can be assigned
an author decreases to 65% and 62% respectively. The changes in our
observations however is negligible. Table 2.2 gives general statistics on
the mentor graph. Note that any author with degree 2 or above is a
mentor.

2.4.2 Temporal Analysis

As may be expected based on previously reported studies, our mentor-
student network exhibits a minority-majority partition (namely, a low
proportion of up to 21% females), homophily, power law distribution and
a glass ceiling effect.

Figure 2.5(a) reveals that over time, the fraction of females in the
network (n(R)/n, the shaded red area) has increased, but it is still below
21%. Also the average degree for females vertices is lower (1.48 vs 1.87).
Figure 2.5(b) presents an indication for homophily in the mentoring selec-
tion process. This is done by the homophily test of [20], which compares
the expected number of “mixed” (female-male) edges to the observed one
(see also Section 2.2.2).

Figure 2.6 presents indications for the glass ceiling effect. Figure 2.6(a)
shows that the fraction of females among the vertices of degree k or higher,
namely, topk(R)/topk(B), decreases continuously as k increases. The first
major decrease occurs when moving from the group of “students” (i.e.,
degree 1 vertices) to the group of researchers of degree 2 or higher: the
fraction of females drops from top1(R) ≈ 21% to top2(R) < 15%. It is
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Parameter Value %
Number of Females 90035 20.73
Number of Males 344197 79.27
Sum of Females and Males 434232 100.00
Mixed Edges 101607 26.09
Female-Female edges 16074 4.12
Male-Male Edges 271615 69.77
Total number of edges 389296 100.00
Sum of Female degrees 133755 17.18
Sum of Male degrees 644837 82.82
Sum of edges 778592 100.00
Number of Female Mentors 10819 14.34
Number of Male Mentors 64638 85.66
Sum of Female and Male Mentors 75457 100.00
Females Avg. Degree 1.48
Males Avg. Degree 1.87
Avg Degree 1.79
Female Mentors Avg. Degree 4.60
Male Mentors Avg. Degree 5.25
Mentors Avg. Degree 5.16

Table 2.2: DBLP mentor graph statistics
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Figure 2.5: Female rate and normalized power in the computer science mentor
graph. (a) The rate (i.e., percentage in the population) of females over time,
compared with their normalized power, defined as d(R)/(2m). Males have more
power than expected by their rate, while females have less power than expected
by their rate. (b) Evidence for homophily: a comparison of the observed num-
ber of “mixed” edges to the expected value assuming there is no homophily. We
consider two cases: (i) the expected number of mixed edges ignoring the dif-
ference between the male and female average degree (expected: 127963.09 std:
293.08) and (ii) the expected number of mixed edges while considering the dif-
ferent degree sequences for males and females (expected: 110777.11 std: 281.52).
In both cases the observed value (101607 edges) significantly deviates from the
expectation (the error bars indicate the expected value ± 10 times the standard
deviation) with extremely low p-values.

important to note that the data indicates that even at the high end of the
graph, a few female researchers with very high degrees are still present;
however, our definitions for the glass ceiling ignore this extremal effect,
which is caused by a few individuals, and concentrate on the averages
over large samples. Indeed, when the sample size is large enough, the
fraction of the female researchers decreases. Figure 2.6(b) shows a strong
indication that the degree distribution of the vertices (females, males and
combined) follows a power law. This in turn is associated with a pref-
erential attachment mechanism that is known to result in a power law
degree distribution. Note that the power law exponent β for the graph
of the female researchers is β = 2.91 (in the best fit), which is higher
than the corresponding exponent in the graph for the male researchers,
β = 2.58. Our analysis (presented in 2.3.2 and 2.3.3) establishes that if
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Figure 2.6: Glass ceiling effect in mentor graph: (a) percentage of females
in the mentor population of degree at least k. Female start with 21% in the
population and drop to below 15% when considering degree at least 2 (faculty
members). It continues to decrease (ignoring small samples at the end, see text).
Vertex size and darker color represent larger sample space. (b) The power law-
like degree distribution for both females and males. The exponent β for females
is higher than for males, demonstrating the glass ceiling effect.

the degree distribution of both sub-populations follow a power law and
the exponent for the minority sub-population is higher than that of the
majority sub-population, then a strong moment glass ceiling effect will
appear.

2.5 Conclusion

One obvious limitation of our model is that it is somewhat simplistic and
captures only one possible mechanism for generating a glass ceiling effect.
It ignores many important aspects of life (such as attraction, unequal
distributed family responsibilities, and different expectations, to name a
few) and alternative (co-existing) mechanisms that contribute to the ef-
fect. For instance, our model cannot be used to explain the occurrence
of a glass ceiling effect in contexts where pairwise individual interactions
play a less dominant role than in academia. To account for the glass
ceiling effect in such contexts as well as others, one may consider alter-
native explanations. In particular, a common possible explanation is the
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“leaky pipeline” phenomenon, namely, the phenomenon that women tend
to quit or slow down their careers in order to invest more time in their
families. This phenomenon can be modeled mathematically in several dif-
ferent ways. One such way is by introducing vertex departures in addition
to vertex arrivals, with a bias in the form of increased departure rate of
the minority group. But in fact, such a dynamic “leaky pipeline” model
allows several reasonable sub-models that will not generate a glass ceiling
effect, as well as some other sub-models that do. Moreover, the cause and
effect relationship between the glass ceiling and the leaky pipeline are not
necessarily one-directional; while the glass ceiling effect may indeed be the
outcome of the “leaky pipeline” phenomenon in certain settings, there are
other settings where it may be its (partial) cause. An interesting direc-
tion for future work would be to describe a more complete model, most
likely combining a number of different mechanisms contributing jointly
to the glass ceiling effect. In any case, we find it remarkable that the
simple mathematical mechanism presented here (based on homophily) is
sufficient to explain (at least parts of) the glass ceiling effect, despite the
fact that it does not utilize the “leaky pipeline”.

Our findings may suggest ways to deal with the glass ceiling phe-
nomenon. By better understanding the roots of the glass ceiling effect,
one can address each of the elements and attempt to mitigate them or deal
with those elements that are easier to manage. Our research indicates
that for certain mechanisms involved in the formation of a glass ceiling,
removing one element may eliminate the glass ceiling effect. Hence, while
it might be difficult to modify the human tendencies of homophily and
preferential attachment one could attempt to balance the proportions of
minorities within the population or impose a proportional representation
of successful women at the top level. Both of these options may be classi-
fied as variants of affirmative action, but the latter, even if more common,
seems to avoid the roots of the problem. In particular, a more equally
represented society could be created by encouraging minorities to enter
the system, as our findings indicate that increasing the ratio of minorities
at the entry stage may mitigate the glass ceiling effect at least partially.
This conclusion is in line with a common view [74, 85], which states that
fixing the “leaky pipeline” is key for a more equal gender distribution in
science. By determining and examining the causes of the glass ceiling
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effect, we can work on alleviating the glass ceiling effect, resulting in a
richer and more diverse community.



3
Influence in a Social Network

In the last chapter we took a closer look of what effects can be observed in
social networks which are built upon the inherent preferences of people.
In this chapter we shed light on influence dynamics inside already exist-
ing networks. We are interested how opinions propagate through society
if the opinion of people is constantly influenced by the opinion of their
friends. In this chapter we abstract people as nodes in a network and their
influences onto each other as edges. We call networks, in which entities of
the network are continuously influenced by the states of their respective
neighors, influence networks (IN). One can find many such networks in
different areas such as in social networks, belief propagation, spring em-
bedders, cellular automata, distributed message passing algorithms, traffic
networks, the brain, biological cell systems, and ant colonies, just to name
a few. All of these examples of influence networks (INs) are known to be
difficult to analyze. Some of the applications mentioned are notorious to

53
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have long-standing open problems regarding convergence.
In this chapter we deal with a generic version of such networks: The

network is given by an arbitrary graph G = (V,E), and nodes of the graph
switch their state to the state of the majority of their respective neighbors.
We are interested in the stability of such INs with each node having a bi-
nary state. We investigate synchronous state switching as well as iterative
state switching. Specifically, we would like to determine whether an IN
converges to a stable situation or not. We are interested in how to specify
such a stable setting, and in the amount of time needed to reach such a
stable situation. We study several models how the nodes take turns, syn-
chronous, asynchronous, adversarial, benevolent and several graph classes,
unweighted, weighted, undirected and directed graphs.

The most surprising result is for synchronous INs: Each node is as-
signed an initial state from the set {R,B}, and in every round, all nodes
switch their state to the state of the majority of their neighbors simul-
taneously. This specific problem is commonly referred to as “Democrats
and Republicans”, see e.g. Peter Winkler’s CACM column [91]. It is
well known that this problem stabilizes in a peculiar way, namely that
each node eventually is in the same state every second round, which was
proven by Goles and Olivos in [35]. This result can be shown by using a
potential bound argument, i.e., until stabilization, in each round at least
one more edge becomes “more stable”. This directly gives a O(n2) up-
per bound for the convergence time. On the other hand, using a slightly
adapted linked list topology, one can see that convergence takes at least
Ω(n) rounds. But what is the correct bound for this classic problem?
Most people that worked on this problem seem to believe that the linear
lower bound should be tight, at least asymptotically. Surprisingly, in the
course of our research, we discovered that this is not true. In this chapter
we show that the upper bound is in fact tight up to a polylogarithmic
factor. Our new lower bound is based on a novel graph family, which has
interesting properties by itself. We hope that our new graph family might
be instrumental to research concerning other types of INs, and may prove
useful in obtaining a deeper understanding of some of the applications
mentioned above.

We extend this model with different model variations. In particular,
we look at asynchronous networks where nodes update their states se-
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quentially. We show that in such a sequential setting, convergence may
take Θ(n2) time if given an adversarial sequence of steps, and Θ(n) if
given a benevolent sequence of steps.

We also investigate the convergence of different graph classes such as
weighted and directed graphs. We will show that in the case of weighted
graphs the convergence time can grow exponentially in the number of
nodes and allowing directed edges finally changes the number of possible
stable states dramatically.

3.1 Related Work

Influence networks have become a central field of study in many sciences.
In biology, to give three examples from different areas, [77] study net-
works in the context of brain science, [2] study cellular systems and their
relation to distributed algorithms, and [1] study networks in the context
of ant colonies. In optimization theory, believe propagation [8,71] has be-
come a popular tool to analyze large systems, such as Bayesian networks
and Markov random fields. Nodes are continuously being influenced by
their neighbors; repeated simulation (hopefully) quickly converges to the
correct solution. Belief propagation is commonly used in artificial intel-
ligence and information theory and has demonstrated empirical success
in numerous applications such as coding theory. A prominent example
in this context are the algorithms that classify the importance of web
pages [12, 48]. In physics and mechanical engineering, force-based me-
chanical systems have been studied. A typical model is a graph with
springs between pairs of nodes. The entire graph is then simulated, as
if it was a physical system, i.e. forces are applied to the nodes, pulling
them closer together or pushing them further apart. This process is re-
peated iteratively until the system (hopefully) comes to a stable equilib-
rium, [32,42,44,49]. Influence networks are also used in traffic simulation,
where nodes (cars) change their position and speed according to their
neighboring nodes [68]. Traffic networks often use cellular automata as
a basic model. A cellular automaton [69, 92] is a discrete model studied
in many fields, such as computability, complexity, mathematics, physics,
and theoretical biology. It consists of a regular grid of cells, each in one of
a finite number of states, for instance 0 and 1. Each cell changes its state
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according to the states of its neighbors. In the popular game of life [34],
cells can be either dead or alive, and change their states according to the
number of alive neighbors.

Our synchronous model is related to cellular automata, on a general
graph; however, nodes change their opinion according to the majority of
their neighbors. As majority functions play a central role in neural net-
works and biological applications this model was already studied during
the 1980s. Goles and Olivos [35] have shown that a synchronous binary
influence network with a generalized threshold function always leads to
a fixed point or to a cycle of length 2. This means that after a certain
amount of synchronous rounds, each participant has either a fixed opin-
ion or changes its mind in every round. Poljak and Sura [75] extended
this result to a finite number of opinions. In [36], Goles and Tchuente
show that an iterative behavior of threshold functions always leads to a
fixed point. Sauerwald and Sudholt [80] study the evolution of cuts in the
binary influence network model. In particular, they investigate how cuts
evolve if unsatisfied nodes flip sides probabilistically. To some degree, one
may argue that we look at the deterministic case of that problem instead.

The exact same model as presented here, is used to study a dynamic
monopoly [29, 62, 72], abbreviated dynamo. A dynamo is an initial set
of vertices in an influence network, all with the same opinion, such that
after a finite number of steps all nodes in the network share that opinion.
The minimum size of a dynamo was studied in [73], where it is shown
that Ω(

√
n) nodes are needed for a monotone dynamo (assuming no node

ever changes back its state) and for 2-round dynamos (where the network
stabilizes after exactly 2 rounds). Berger [7] extends these results by
proving that a constant number of nodes may suffice to convert a network
of size at least n for arbitrary n. In contrast, in the current work we
ignore the final opinions of the network, and focus on stabilization time.

In sociology, understanding social influence (e.g. conformity, socializa-
tion, peer pressure, obedience, leadership, persuasion, sales, and market-
ing) has always been a cornerstone of research, e.g. [45]. More recently,
with the proliferation of online social networks such as Facebook, the area
has become en vogue, e.g. [4, 65]. Leskovec et al. [56] for instance verify
the balance theory of Heider [37] regarding conformity of opinions; they
study how positive (and negative) influence links affect the structure of
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the network. Closest to our paper is the research dealing with influence,
for instance in the form of sales and marketing. For example, [55] in-
vestigate a large person-to-person recommendation network, consisting of
four million people who made sixteen million recommendations on half a
million products, and then analyze cascades in this data set. Cascades
can also be studied in a purely theoretical model, based on random graphs
with a simple threshold model which is close to our majority function [88].
Rumor spreading has also been studied algorithmically, using the random
phone call model, [19, 43, 79]. Using real data from various sources, [5]
show that networks generally have a core of influential (elite) users. In
contrast to our model, nodes cannot change their state back and forth,
once infected, a node will stay infected. Plenty of work was done focusing
on the prediction of influential nodes. One wants to find subset of influ-
ential nodes for viral marketing, e.g. [14,46]. In contrast, [50] studies the
case of competitors, which is closer to our model since nodes can have
different opinions. However, also in [50] nodes only change their opinion
once. However, in all these social networks the underlying graph is fixed
and the dynamics of the stabilization process takes place on the chang-
ing states of the nodes only. An interesting variant changes the state of
the edges instead. A good example for this is matching. A matching is
(hopefully) converging to a stable state, based on the preferences of the
nodes, e.g. [30,33,47]. Hoefer takes these edge dynamics one step further,
as not only the state of the edge changes, but the edge itself [39].

3.2 Model

We model an influence network (IN) as a graph G = (V,E, ω, µ0). The
set of nodes V is connected by an arbitrary set of edges E. Each edge
is assigned a weight ω(e) ∈ N. In Sections 3.3, 3.4, and 3.5 where we
talk about unweighted graphs we assume each edge having a weight of
one and leave out the weight function in the description. We refer to an
edge between nodes u and v with weight ω as (u, v, ω). Usually we talk
about undirected edges, except in Section 3.7 about asymmetric graphs,
where we consider directed edges. In said section (u, v, ω) means there
is an edge from node u towards node v with weight ω. The weight of a
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graph G is defined as ω(G) =
∑
e∈E

ω(e). Each node has an initial opinion

(or state) µ0(v) ∈ {R(ed), B(lue)} (graphically interpreted as the Red
and Blue colors respectively). The opinions of the nodes at every time t
are also represented in the same way by a function µt : V 7→ {R,B}.

We define the “red neighborhood” of node v by ΓR,t(v) = {u ∈ Γ(v) |
µt(u) = R} at time t and similarly for the “blue neighborhood” of v as
ΓB,t(v). A node changes its opinion on time step t if a weighted majority
of its neighbors has a different opinion. One can consider different actions
in case of a tie. We chose the nodes own opinion as a tie breaker because
of two reasons. First it seems to be a natural choice and secondly one can
build an equivalent graph with the same behavior in asymptotic running
time by cloning the graph and connecting each node with its clone and
the neighbors of its clones. More formally the state of a node at time t+1
is defined as

µt+1(v) =


R, if

∑
u∈ΓR,t(v)

ω(u, v) >
∑

u∈ΓB,t(v)
ω(u, v)

B, if
∑

u∈ΓB,t(v)
ω(u, v) >

∑
u∈ΓR,t(v)

ω(u, v)

µt(v), otherwise .

We study both synchronous and asynchronous INs. A synchronous IN
evolves over a series of rounds. In each round the nodes simultaneously
update their opinion to the weighted majority of their neighbors according
to the above rule.

As will be explained in Section 3.3, the only interesting asynchronous
model is the sequential model. In this model, we call the change of opinion
of one node a step. The opinion of node v after t steps is defined as µt(v).
In general, more than one node may be ready to take a step. Depending on
whether we want convergence to be fast or slow, we may choose different
nodes to take the next step. If we aim for fast convergence, we call this
the benevolent sequential model. Slow conversion on the other hand we
call the adversarial sequential model.

As INs are deterministic, they necessarily enter a cyclic pattern after
a certain number of rounds. We call an IN stable with a cycle of length
q if each node changes its opinion in a cyclic pattern with cycle length k
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q
c

c’

c”
Figure 3.1: An IN with a certain starting assignment converges after certain
number of rounds/steps (c, c′, c′′) to a stable state with a cycle length of q

for some k ≤ q. In other words, a state can be stable even though some
nodes still change their opinion, see Figure 3.1 for an illustration.

Definition 3.1. An IN G = (V,E, ω, µ0) is stable at time t with cycle
length q, if for all vertices v ∈ V : µt+q(v) = µt(v). A fixed state of an IN
G is a stable state with cycle length 1. The stabilization time c of an IN
G is the smallest t for which G is stable.

Note that since INs are deterministic an IN which has reached a stable
state will stay stable.

We investigate the stability, the convergence time c and the periodicity
q of INs in the described models. An IN and its convergence process can be
represented by a finite state machine as illustrated in Figure 3.1. Clearly,
the convergence process depends not only on the graph structure, but also
on the initial opinions of the nodes. We investigated graphs and initial
opinions that maximize convergence time. In the benevolent sequential
model in particular, we investigate graphs and sets of initial opinions
leading to the worst possible convergence time, given the respectively
best sequence of steps.
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3.3 Sequential Influence Network

For simplicity we start to analyze a unweighted graph where the nodes
change opinions asynchronously. In an asynchronous setting, nodes can
take steps independently of each other, i.e. subsets of nodes may reassess
and change their opinion concurrently. Unfortunately, in such a setting,
convergence time is not well defined. To see this, consider a star-graph
where the center has a different initial opinion than the leaves. An ad-
versary may arbitrarily often chooses the set of all nodes to reassess their
opinion. After r such rounds the adversary chooses only the center node.
Now this IN stabilizes, after r rounds for an arbitrary r → ∞. In other
words, asynchrony in its most general form is not well defined in this set-
ting, and we restrict ourselves to sequential steps only, whereas a step is
a single node changing its opinion. The sequence of steps is chosen by an
adversary which tries to maximize the convergence time. Note that the
convergence upper bound presented in Lemma 3.2 implies immediately
that the IN stabilizes in a fixed state.

Lemma 3.2. A sequential IN reaches a fixed state after at most O(n2)
steps.

Proof. Divide the nodes into the following two sets according to their
current opinion: SR = {v | µ(v) = R} and SB : {v | µ(v) = B}. If a node
changes its opinion, it has more neighbors in the opposite set than in its
current set. Therefore the number of edges X = {{u, v} | u ∈ SR, v ∈ SB}
between nodes in set SR and set SB is strictly decreasing. Each change
of opinion reduces the number of edges of X by at least one. Therefore
the number of steps is bounded by the number of edges in X. In a graph
G with n nodes |X| is at most n2/4, therefore at most O(n2) steps can
take place until the IN reaches a fixed state.

It is more challenging to show that this simple upper bound is tight.
We show a graph G and a sequence of steps in which way an adversary
can provoke Ω(n2) convergence time.

Lemma 3.3. There is a family of INs with n vertices such that a fixed
state is reached after Ω(n2) steps.
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S ← ()
for i = 0 to n/3 do
S = reverse(S);
S ← (i, S);
for all x ∈ S do

take step x;
end for

end for
Algorithm 3.1: Adversarial Sequence
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Figure 3.2: In this graph an adversary can provoke Ω(n2) changes of opinion.
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Proof. Consider the following graph G with n nodes. The nodes are num-
bered from 0 to n−1, whereas nodes with an even id are initially assigned
opinion B and nodes with an odd id are assigned opinion R. See also Fig-
ure 3.2. All even nodes with id ≤ n/3 are connected to all odd nodes.
All odd nodes with id ≤ n/3 are connected to all even nodes respec-
tively. In addition an even node with id ≤ n/3 is connected to nodes
{0, 2, 4, . . . , n − 2 · id − 2}, respectively an odd node with id ≤ n/3 is
connected to nodes {1, 3, 5, . . . , n − 2 · id − 3}. For example, node 0 is a
neighbor of all nodes, whereas node 1 is neighbor of all nodes except the
nodes n− 1 and n− 3. Note that each node i with i ≤ n/3 is connected
to all other nodes with id ≤ n/3. For each node v the change poten-
tial indicates of how much a node would like to change its opinion. It
is the number of neighbors with a different opinion minus the number of
neighbors who share the opinion. Formally P (v) is defined as:

P (v) = |Γ6=µ(v),t(v)| − |Γµ(v),t(v)|

Put differently, if the change potential of a node is larger than 0, and
it is requested to reassess its opinion, it takes a step. A large change
potential of a node v, means that many neighbors of v have the opposite
opinion from v. If a neighbor of v with the same opinion takes a step, v′s
change potential P (v) is increased by 2. On the other hand, if a neighbor
changes from the opposite opinion to the same opinion as node v, P (v) is
decreased by 2. If v itself changes its opinion, its change potential turns
from p to −p. The change potential of v is basically the number of edges
by which the total number of edges between set SB and set SR is reduced
if v changes its opinion. As the total amount of steps is bounded by the
number of edges between set SB and SR, a node v with P (v) = p reduces
the remaining number of possible changes by p if it takes a step. E.g.
in the previously constructed graph G, the first nodes have the following
change potential: P (0) = 1, P (1) = 3, P (2) = 3, P (3) = 5. Generally,
node i has a change potential P (i) = n/2 − (n/2 − i − 1) = i + 1 if i is
even respectively P (i) = i + 2 if i is odd. In order to provoke as many
steps as possible, the adversary selects the nodes which have to reassess
their opinion according to the following rule: He chooses the node with the
smallest id for which P (v) = 1. Therefore each step reduces the remaining
number of possible steps by 1. G is constructed in such a way, that a step
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from a node triggers a cascade of steps from nodes which have already
changed their opinion whereas each change reduces the overall potential
by 1.

The adversary chooses the nodes in phases according to algorithm 3.1.
Phase i starts with the selection of node i followed by the selections of all
nodes with id < i, where the adversary chooses the nodes in the reverse
order than it did in round i− 1. Phase 0 consists of node 0 changing its
opinion, in phase 1 node 1 and then node 0 make steps, and in phase 2
the nodes change in the sequence 2, 0, 1. As a node v can only change its
opinion if P (v) > 0, we need to show that this is the case for each node v
which is selected by the adversary. It is sufficient to show that each node
which is selected has a change potential of 1.

We postulate:

(i) At the beginning of phase i, the following holds: P (i) = 1 and
∀v < i : µ(v) = µ(i).

(ii) Each node the adversary selects has change potential 1 and each
node with id ≤ i is selected eventually in phase i.

(iii) At the end of phase i, all nodes with id ≤ i have opinion R if i is
even and opinion B if i is odd.

We prove (i), (ii) and (iii) by induction. Initially, part (i) holds, as
no node with id < 0 exists and as node 0 is connected to n/2 nodes with
opinion R and to n/2− 1 nodes with opinion B and therefore has change
potential 1. In phase 0 only node 0 is selected, therefore part (ii) holds as
well. Node 0 changed its opinion and has therefore at the end of phase 0
opinion R, therefore part (iii) holds as well.

Now the induction step: To simplify the proof of part (i) we consider
odd and even phases separately. Consider an odd phase i. At the start of
phase i, no node with id ≥ i has changed its opinion yet. Therefore node
i still has its initial opinion µ(i) = R. According to (iii), each node with
id ≤ i − 1 has at the end of phase i − 1 opinion R = µ(i). So (i + 1)/2
neighbors of i have compared to the initial state, changed their opinion
from B to R. If a neighbor u of a node v with a different opinion than
v changes it’s opinion, v′s change potential is decreased by 2. Therefore
node i′s initial change potential Pt0(i) = n/2 − (n/2 − i − 2) = i + 2 is
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decreased by 2 · (i+ 1)/2 = i+ 1 and is therefore P (i) = i+ 2− (i+ 1) = 1
at the beginning of phase i. Therefore (i) holds before an odd phase.

Now consider an even phase i. At its start, all nodes with id ≥ i
still have their initial opinion. Therefore node i has opinion µ(i) = B.
According to (iii) each node with id ≤ i − 1 has at the end of phase
i− 1 opinion B = µ(i). As node i′s initial change potential was Pt0(i) =
n/2− (n/2− i− 1) = i+ 1 and i/2 neighbors of i changed from opinion
R to opinion B compared to the initial state, i′s new change potential is
calculated as P (i) = i+ 1− 2 · i/2 = 1. Therefore (i) holds before an even
phase, hence (i) holds.

To prove part (ii) let v be the last node which was selected in phase
i − 1. As v was selected, it had according to (ii) a change potential
of 1. If a node changes its opinion, its change potential gets inversed.
Therefore node v had at the beginning of phase i a change potential of
−1. In addition, node v is by construction a neighbor of node i and has
according to (i) at the start of phase i the same opinion as node i. As
node i changes its opinion, node v′s change potential is increased by 2.
Therefore v′s new change potential is again −1+2 = 1, when it is selected
by the adversary. The same argument holds for the second last selected
node u. After it was selected in phase i− 1 its change potential was −1.
Then v has changed its opinion which led to P (u) = −3. As node i and
node v changed their opinions in phase i, P (u) was again 1. Hence if
the adversary selects the nodes in the inverse sequence as in phase i− 1,
each selected node has a change potential of 1 and is selected eventually.
Therefore (ii) holds.

As node i and all nodes with id ≤ i − 1 had at the beginning of
phase i the opinion µ(i) according to (iii) and all nodes have changed
their opinion in phase i according to (ii), all nodes with id ≤ i must have
the opposite opinion at the end of phase i, namely R if i is even or B
otherwise. Therefore (iii) holds as well.

We now have proven that in phase i, i nodes change their opinion. As
the adversary starts n/3 phases, the total number of steps is 1/2 · n/3 ·
(n/3− 1) ∈ Ω(n2).

Directly from Lemma 3.2 and Lemma 3.3, we get the following theo-
rem.
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Theorem 3.1. A worst case sequential IN reaches a fixed state after
Θ(n2) steps.

We have seen, that with an adapted graph and an adversary using
Algorithm 3.1 an IN takes up to Θ(n2) steps until it stabilizes. But how
bad can it get, if the process is benevolent instead?

Theorem 3.2. An IN with a benevolent sequential process reaches a fixed
state after Θ(n) steps.

Proof. A benevolent process needs Ω(n) steps to reach a stable state.
This can be seen by considering the complete graph Kn with initially
bn/2c − 1 red nodes and dn/2e + 1 blue nodes. Independently of the
chosen sequence this IN needs exactly bn/2c−1 steps to stabilize because
the only achievable stable state is all nodes being blue. To prove that the
number of steps is bounded by O(n) we define the following two sets: The
set of all red nodes which want to change: CR = {v | µ(v) = R∧P (v) > 0}
and the set of all blue nodes which want to change: CB = {v | µ(v) =
B ∧P (v) > 0}. A benevolent process chooses nodes in two phases. In the
first phase it chooses nodes from CB until the set is empty. During this
phase, it may happen that additional nodes join CB (e.g. a leaf of a node
v ∈ CB , after v made a step). However, no node which left CB will rejoin,
as those nodes turned red and can not turn blue again in this phase. In
the second phase, the benevolent process chooses nodes from CR until this
set is empty. The set CB will stay empty during the second phase since
nodes turning blue can only reinforce blue nodes in their opinion. Both
phases take at most n steps, therefore proving our upper bound.

3.4 Synchronous Influence Network

In this section we consider the synchronous model, sometimes also known
as “Democrats and Republicans”. In particular we investigate an un-
weighted graph, i.e., all the edges of the IN have weight exactly 1, and
the nodes reasses their opinions simultaneously in rounds. We hereafter
refer to such an IN as an unweighted influence network, or UIN in short.
A way to think of this is, that people express their opinion (voting for the
democrats party or the republican) every day by wearing either a blue or
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a red hat. At the end of each day they call their friends and ask which
hat their friends are wearing today. For the next day, they then choose
the color of the hat according to the opinion they heard the most. We
call these networks synchronous IN’s. Opposed to the sequential IN, a
synchronous IN may stabilize in a state where some nodes change their
opinion in every round. For example, consider the graph K2 (two nodes,
connected by an edge) where the first node has opinion B and the sec-
ond node has opinion R. After one round, both vertices have changed
their state, which leads to a symmetric situation. This IN remains in
this stable state forever with a period q of length 2. As has already been
shown in [35, 91], a synchronous IN always reaches a stable state with a
periodicity of at most 2 after O(n2) rounds.
Theorem 3.3 ( [35]). The cycle length of the stable state of a synchronous
unweighted influence network with symmetric weights is at most 2.
Theorem 3.4 ( [91]). An n-node unweighted synchronous influence net-
work stabilizes in O(n2) time steps.

The proof of the upper bound in Theorem 3.4 uses a bound argument
on the edges. Each edge (v, u) is substituted by two directed edges 〈v, u〉
and 〈u, v〉, with the same weight, referred to as the outgoing and incoming
edges of v, respectively. One can think of these edges as representing
“advice” given between neighbors. The outgoing edge from node v to
node u can be seen as the opinion that node v proposes to its neighbor u
and the incoming edge can be seen as the opinion that node u proposes
to v. In each time step t, each of these directed edges is declared to
either “succeed” or “fail”. The outgoing edge 〈v, u〉 succeeds on time step
t if the neighbor u accepts the opinion proposed by v during the round
leading from time step t to time step t+ 1, namely, µt+1(u) = µt(v), and
fails otherwise. The analysis is based on the initial observation that a
UIN starts with a certain number of failing edges f(0) at time 0, which is
naturally bounded by f(0) ≤ 2|E|. It is shown that as long as the UIN has
not stabilized, the number of failing edges f(t) decreases in every round
by at least one. Using the same arguments, the upper bound for a UIN
can be restated as 2|E|.
Theorem 3.5 ( [91]). An n-node unweighted influence network with edge
set E stabilizes in at most 2|E| time steps.
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Figure 3.3: A transistor T (4). The dotted lines indicate how the transistor
will be connected.

In this section, we prove this bound to be almost tight.

Theorem 3.6. There is a family of synchronous INs with convergence
time Ω

(
n2

(log logn)2

)
.

As the the technical proof of Theorem 3.6 is quite involved we do start
with a simpler IN with convergence time Ω

(
n3/2).

The basic idea is to construct a mechanism which forces vertices on a
simple path to change their opinion one after the other. Every time the
complete path has changed, the mechanism should force the vertices of the
path to change their opinions back again in the same order. To create this
mechanism, we introduce an auxiliary structure called transistor, which
is depicted in Figure 3.3.

Definition 3.4. A transistor of size s, denoted as T (s), is a graph con-
sisting of s collector vertices C = {vCi | 0 ≤ i ≤ s− 1}, s emitter vertices
E = {vEi | 0 ≤ i ≤ s − 1} and three base vertex B1 = vB1 , B2 = vB2
and B3 = vB3 . All edges between collector and emitter vertices, all edges
between any two base vertices, and all edges between collector vertices
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and the third base vertex exist. Formally:

T (s) =(V,E)
V =C ∪ E ∪ {B1,B2,B3}

E ={{u, v} | u ∈ C, v ∈ E} ∪ {{u,B3} | u ∈ C}∪

{{u, v} | u, v ∈ {B1,B2,B3}, u 6= v}

All vertices in the same transistor are initialized with the same opin-
ion X ∈ {R = 1, B = −1}. All collector edges that are not connected
to emitter vertices, the edges from B3 that are not connected to colletor
or other base vertices, as well as one edge for B1 and B2, represented by
dotted edges pointing to the top in Figure 3.3, are connected to vertices
with a constant opinion −X. We call all edges connecting the collector
nodes with the constant opinion collector edges. We also call the edges
from emitter vertices that are not connected to collector vertices emitter
edges. They are represented as dotted edges pointing to the bottom in
Figure 3.3 and may connect the emitter vertices to any vertex. We de-
nominate the two edges from base vertex B1 that neither connect to the
constant opinion nor to any other base vertex as base edges (see dotted
edges pointing to the left in Figure 3.3). As soon as both base edges ad-
vertise opinion −X, the transistor will completely flip to opinion −X in
4 rounds regardless of what is advertised over the emitter edges, i.e., the
following sets of vertices will all change their opinion to −X in the given
order: {B1}, {B2,B3}, C, E .

We now want to attach this transistor to a path in a way that the
transistor induces a step wise change of all the nodes in the path. Note
that T (k) contains only O(k) many vertices, yet its emitter vertices can
potentially be connected to Ω(k2) other vertices. Given a path graph of
length O(k2) and a transistor T (k), the emitter vertices of the transistor
are connected to the path in the following way: The first vertex in the path
is connected to exactly two emitter vertices, the last is connected to none
and each of the remaining nodes of the path is connected to exactly one
emitter vertex. Furthermore, the collector edges of transistors of opinion
X are always connected to constant reservoirs of opinion −X. Such a
reservoir can be implemented as a clique. An illustration of this graph
with k = 3 is given in Figure 3.4. Without loss of generality, we set the
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Figure 3.7: In this graph, every
time the path has run through com-
pletely the next transistor will flip,
causing the path to run again.
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Figure 3.8: Final graph in which the paths run 3 times.
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initial state of the nodes of the path to B, and that of the transistor
to R. As long as the transistor remains red, the path will turn red one
vertex at a time. As soon as the transistor flips its opinion to blue (as
a result of both base edges having advertised blue) the path will turn
blue again, one vertex at a time. To force the path to change k times,
k transistors are needed. Each of these transistors (note that we make
use of red as well as blue transistors) is connected with the path in the
same way as the first transistor. The resulting graph is given in Figure
3.5. A series of k switches of the complete path can now be provoked by
switching transistors of alternating opinions in turns. For the example
depicted in the figures, the switching order of the transistors is given by
their respective indices.

Now, a way is needed to flip the next transistor every time the last
vertex of the path has changed its opinion. Assume the last vertex has
changed to red. It is necessary to flip a red transistor to blue in order to
change the path to blue; however, the path changing to red can only cause
a blue transistor to turn red. To this end, the graph is extended by a copy
of itself with all opinions inverted. The resulting graph is given in Figure
3.6. As in every round each vertex in the copy has the opposite opinion
of the original vertex, the copy of the last vertex in the path enables us to
flip a red transistor to blue as desired. The edges necessary to achieve this
(highlighted in green in Figure 3.7) connect the end of a path to B1 of each
transistor in the other half of the graph. To ensure that the transistors flip
in the required order, additional edges (highlighted in magenta in Figure
3.7) are introduced, connecting an emitter node of each transistor TXi to
the node B1 of transistor TXi+1.

The green edges cause an unwanted influence on the last vertex of
the paths. This influence can be negated by introducing additional edges
(highlighted in cyan in Figure 3.8). These edges connect the last vertex
of each path with an emitter vertex of each transistor not yet connected
to that vertex.

The resulting graph contains O(k2) vertices, yet has a convergence
time of Ω(k3). In terms of the number of vertices n, the convergence time
is n3/2. The detailed proof in Section 3.4.3 shows that this technique
can be applied to run the entire graph repeatedly, just as the graph in
this section runs two paths repeatedly, which leads to a convergence time
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p n c
1 10 1
2 12 2
3 96 22
10 494 310
20 1614 3331
30 2010 5701
100 5518 45985

Figure 3.9: Overview of the exact convergence time c for some graphs from
our graph class, constructed with n nodes and path length p.

of Ω(n7/4). In this new graph, the transistors change back and fourth
repeatedly, always changing to the opinion advertised over the collector
edges, similar to real transistors. When applied recursively log logn times,
an asymptotic convergence time of Ω(n2/(log logn)2) is reached. As the
full proof is long and involved, we complement the formal proof with
simulating these recursively constructed networks for path lengths of up
to 100. Table 3.9 and Figure 3.10 show the outcomes of these simulations.

3.4.1 Transistor
In this section, we formally define how a transistor must be connected to
the rest of the graph and how it behaves in that case. The symbol T is
used to denote a particular graph as well as instances of that graph, which
are induced subgraphs; the symbols C(T ), E(T ),Bx(T ) are used to denote
the respective vertex sets of an instance T . In order to talk about how
a transistor should fit in a network, we introduce the outside influence
function, which specifies how an induced subgraph is influenced by the
rest of the graph.

Definition 3.5. For any vertex v ∈ V H , where H = (V H , EH) is an
induced subgraph of G = (V,E), we define an outside influence at time t
exerted on said vertex as: IHt (v) = µ0(v) ·

∑
u∈{u′|{v,u′}∈E\EH} µt(u).

As all the nodes inside the same transistor start with the same opinion,
the influence onto each other will be towards staying with this opinion.
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Figure 3.10: Here one can see the simulation results compared to a quadratic
curve. The point clusters arise when for several consecutive path lengths no
new transistor is created. Small jumps in the number of vertices indicate that
a new transistor was added; big jumps indicate that a new layer of transistors
was added.
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The only reason nodes change their opinion is, if the influence from outside
the transistor makes them to. So if IHt (v) is positive, node v will be
influenced by the rest of the graph to stick with its initial opinion or change
back to it; if IHt (v) is negative, v will be influenced towards changing away
from its initial opinion. The upper right indices are sometimes left out if
they are clear from the context. We are now able to formally specify an
outside influence range in which the transistor will operate correctly.

Definition 3.6. An instance T = (V T , ET ) of a transistor T (k) with
k ≥ 1 and with outside influence ITt (·) is correctly accessed with initial
opinion X if and only if the following conditions hold.

(i) µ0(v) = X for all v ∈ V T

(ii) It(v) = −k for all t and all v ∈ C(T )

(iii) |It(v) |≤ k − 1 for all t and all v ∈ E(T )

(iv) It(B1(T )) ∈ {−3,−1, 1} for all t

(v) It(B2(T )) = −1 for all t

(vi) It(B3(T )) = −(k + 1) for all t

Note that if all collector edges in Figure 3.3 advertise R, the conditions
(ii) through (vi) are fulfilled independent of what other edges connecting
the transistor to the rest of the graph advertise. Because of (ii) there is a
strong outside influence on the collector vertices to change their opinion.
The very first round t where It(B1(T )) = −3, (this means both base edges
in Figure 3.3 advertise R), will force all vertices of this transistor to flip
their opinion to (−X) eventually. We call this event t flip time tf (T ) of
T .

Lemma 3.7. If an instance T = (V T , ET ) of a transistor T (k) is correctly
accessed with initial opinion X, then the following statements hold.

(i) All vertices v ∈ V T have opinion µt(v) = X for all t ≤ tf (T )

(ii) All vertices v ∈ E(T ) have opinion µt(v) = X for all tf (T ) < t ≤
tf (T ) + 3



3.4. SYNCHRONOUS INFLUENCE NETWORK 75

(iii) All vertices v ∈ V T have opinion µt(v) = (−X) for all t ≥ tf (T )+4

Proof. First note that the vertices in E(T ) can not change their opinion
until at least one in C(T ) has done so since they each have an outside
influence of at most (k − 1) times (−X) after (iii) of definition 3.6 and
an inside influence of k times X from the k vertices in C(T ). Similarly,
the vertices in C(T ) can not change their opinion until B3(T ) and B2(T )
have done so and they in turn have to wait for B1(T ) to change. Fi-
nally, B1(T ) will only change after the flip time tf (T ). This induces (i)
and (ii). To see that (iii) is true note that after the flip event the sets
({B1(T )}, {B2(T ),B3(T )}, C(T ), E(T )) will indeed all change their opinion
in the given order. Also note that even if the outside influence of B1(T )
goes back to some number x > −3, the process started by the flip event
can not be stopped or reversed.

3.4.2 Counters

The final graph for our intended lower bound is a recursively defined
counter. In this section, we present the base case in form of a simple
2-Path graph as well as the recursive case. In the latter, a counter is com-
bined with a number of transistors to form a bigger counter as suggested
in the proof outline.

A counter K = (H = (V,E), I(·),RR,RB ,S(·)) consists of a graph
H = (V,E), a function I : V → Z, specifies the valid range of outside
influence, two special interest vertices RR,RB ∈ V , which indicate when
the graph has finished running, and an initial configuration S(·).

We will postpone the definition of the axioms a counter must satisfy,
and first describe how a counter is properly connected and accessed since
the behavior of a counter only needs to be defined if it is connected and
accessed correctly.

Definition 3.8. A counter K = (H = (V H , EH), I(·),RR,RB ,S(·)) is
correctly accessed and correctly initialized from t1 to t2 if and only if the
following condition holds.

(i) For all v in V H the initial state of v is set by µt1(v) = S(v).
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(ii) For all X and all t1 ≤ t ≤ t2 the outside influence is given by
IHt (v) = I(v)

We say a counter K is reversely initialized if definition (i) is changed
to µt1(v) = −S(v), and the counter is considered reversely accessed if (ii)
is changed to IHt (v) = −I(v). We sometimes add the keyword virtually
to indicate some deviations from the definition which do not result in an
altered behavior of H.

Definition 3.9. A tuple K = (H = (V H , EH), I(·),RR,RR,S(·)) is a
proper counter with convergence time c and supply edge number e if and
only if a correct access and a correct initialization from t1 to t2 imply that
the following statements hold.

(i) e =
∑
{v∈VK |I(v)·S(v)>0} I(v) · S(v) =

∑
{v∈VK |I(v)·S(v)<0}−I(v) ·

S(v)

(ii) d
√
e+ 2e+ 1 ≥ maxv∈VK |I(v)|

(iii) The vertices RX are of opinion X for all t ≤ min{t1 + c− 1, t2 + 1}

(iv) For all vertices v ∈ V H and all t1 + c ≤ t ≤ t2 + 1 the following is
true µt(v) = −µt1(v).

The edge supply number corresponds to the number of black edges
in Figure 3.4 and (i) satisfied if it is the same for blue and red. We will
need condition (ii) to make sure that we do not produce a multigraph, (iii)
indicates thatRX only change their opinion after l rounds when the graph
has finished running, and (iv) makes it possible to run the counter again
with reverse opinions. Note that if a counter is correctly initialized and
reversely accessed, or if it is reversely initialized and correctly accessed
from t1 to t2, µt(v) will be time-constant from t1 to t2 because of (iv).

2-Path graph The 2-Path graph counter will be the base case of our
final, recursively defined graph. It consists just of two simple paths one
of which is initialized with R and the other with B. If accessed correctly,
the following will happen on both paths simultaneously. All vertices will
change their opinion in the order in which they occur on their respective
paths.
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Definition 3.10. In the following we define a 2-Path graph of lenght l
as P2(l) = (H = (V H , EH), I(·),RR,RB ,S(·)), where

V H = {vRi | 0 ≤ i < l} ∪ {vBi | 0 ≤ i < l}

EH = {{vRi , vRi+1} | 0 ≤ i < l − 1} ∪ {{vBi , vBi+1} | 0 ≤ i < l − 1}

I(v) =


−2 if v = vX0

−1 if v ∈ {vXi | 1 ≤ i < l − 1}
0 otherwise

RX = vXl−1

S(vXi ) = X

Lemma 3.11. A 2-Path graph P2(l) is a valid counter with n = 2l ver-
tices, convergence time c = l and supply edge number e = l.

Proof. We have to prove the conditions in definition 3.9 under the as-
sumption that the conditions in the definition 3.8 hold.

The conditions (i) and (ii) from Definition 3.9 are trivially true. For
(iii) note that from condition (ii) of definition 3.8 and the definition of
I(·), it follows that the vertices in {vXi | 1 ≤ i < l− 1} all have one more
outside neighbor of the opinion −X than of the opinion X, the vertices vX0
has two more outside neighbors of the opinion (−X) than of the opinion
X, and vXl−1 has the same number of outside neighbors of the opinion
(−X) as of the opinion X. This means that the vertices vX0 will change
its opinion to (−X) in the first round, and cause vX1 to turn in the second
and so forth. In other words, µt(vXi ) will be X for all t ≤ i and (−X)
ever after. Therefore, µt(RX) = µt(vXl−1) is equal to X for all t ≤ l − 1,
and condition (iii) of definition 3.9 is satisfied.

Also note that at time l all vertices have changed thier opinion and
are not going to reverse back to their original opinion therefore satisfying
condition (iv).

Repeater A repeater is a function that takes a counter and uses tran-
sistors to repeatedly run that counter in order to produce a counter with
much higher convergence time at the expense of an only slightly increased
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number of vertices. However in addition to what was suggested earlier in
this section, we need two new vertices RR,RB to indicate when the new
graph has reached a stable state as displayed in Figure 3.11.

Definition 3.12. A repeater is a function R which when it is given a
number j and a counter K̃ = (H̃ = (Ṽ H , ẼH), Ĩ(·), R̃R, R̃B , S̃(·)) with
convergence time c̃, ñ vertices, and supply edge number ẽ, produces a
tuple R(K̃, j) = (H = (V H , EH), I(·),RR,RB ,S(·)) where

TXi = (V Xi , EXi ) for 0 ≤ i ≤ 2j,X ∈ {R,B},

are instances of transistors T (s) and

V H =

 j−1⋃
X∈{R,B},i=0

V Xi

 ∪ Ṽ H ∪ vR ∪ vB
EH =

 j−1⋃
X∈{R,B},i=0

EXi

 ∪ ẼH ∪ E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5

E1 = {{R̃X ,B1(T−X2i )} | 0 ≤ i ≤ 2j}
∪ {R̃X ,B1(TX2i+1)} | 0 ≤ i ≤ 2j − 1 (green in Figure 3.11)

E2 = {{R̃X ,RX}|X ∈ {R,B}} (orange in Figure 3.11)
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I(v) =



−2 if v = B1(TX0 )
−1 if v = B1(TXi ) for some 1 ≤ i ≤ 2j
−1 if v = B2(TXi ) for some 0 ≤ i ≤ 2j
−(s+ 1) if v = B3(TXi ) for some 0 ≤ i ≤ 2j
−s if v ∈ E(TXi )
1 if v = RX

−1 if v = R̃X

0 otherwise

RR = vR

RB = vB

S(v) =


S̃(v) if v ∈ Ṽ T
X if v ∈ V Xi
X if v = RX

s = d
√
ẽ+ 2e+ 1

The edge set E3 (black in Figure 3.11) consists of the following edges.
For every vertex v ∈ Ṽ H with k = |Ĩ(v)| and with X = sign(Ĩ(v)S(v)),
there are edges from v to k different emitter vertices of every T−X2i with
0 ≤ i ≤ j and of every TX2i+1 with 0 ≤ i ≤ j − 1 .

The edge set E4 (magenta in Figure 3.11) consists of the following
edges. For every 0 ≥ i ≥ 2j − 1 and X, there is an edge from B1(TXi+1) to
an emitter vertex of TXi and there is one edge from an emitter vertex of
TX2j to RX .

The edge set E5 (cyan in Figure 3.11) consists of the following edges.
For all X, there is an edge from R̃X to an emitter vertex of every TX2i
with 0 ≤ i ≤ j and of every T−X2i+1 with 0 ≤ i ≤ j − 1.

Lemma 3.13. The repeater R(K̃, j) does exist in a way that the emitter
vertices of Ti are connected to no more than (s− 1) vertices outside Ti.

Proof. We have to show that the edge sets E3, E4 and E5 exist, such that
the emitter vertices of the transistors do not have too many outside edges.
Every transistor’s emitter vertices have ẽ edges leaving the transistor in



80 CHAPTER 3. SOCIAL NETWORK DYNAMICS

TR
1

vR vBv
3
BvR

3
v
2
BvR

2
v
1
R v

1
Bv

0
Bv

0
R

T
1
B

TR
2

T
0
R

T
0
B T

2
B

C(4)

Figure 3.11: Full repeater graph R(1, P2(4)) with a P2(4) as graph which is
repeatedly run and six transistors to run P2(4) three times.
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E3 because of condition (i) of definition 3.8, one edge in E4 and one edge
in E5. This is a total of ẽ + 2 necessary edges. A transistor T (s) has s
collector vertices each of which should have no more than (s− 1) outside
edges where s = d

√
ẽ+ 2e+ 1. This makes a total of more than possible

ẽ+ 2 edges.

s(s− 1) = (d
√
ẽ+ 2e+ 1)(d

√
ẽ+ 2e+ 1− 1)

> d
√
ẽ+ 2e2

≥ ẽ+ 2

Additionally condition (ii) of definition 3.8 shows that |Ĩ(v)| ≤ s. This
is necessary because we could otherwise only realize the graph if we were
allowed multigraphs.

Lemma 3.14. The repeater R(K̃, j) has n = 2(2j + 1)(2s + 1) + ñ + 2
vertices and supply edge number e = (2j + 1)(s2 + s + 3) + 3 where s =
d
√
e+ 2e+ 1.

Proof. To obtain the number of vertices we add the number of vertices in
a transistor times the number of transistors to the number in the counter
K and two vertices RX .

|V H | = 2(2j + 1)|T (s)|+ |Ṽ H |+ 2
= 2(2j + 1)(2s+ 3) + n+ 2

To obtain the supply edge number we just the go through the cases in the
definition of S(·) and add them up.

e = 1 · 2 + 2j + (2j + 1) + (2j + 1) · (s+ 1) + (2j + 1)s2 + 1 · 1 + 1 · 1
= 2(2j + 1) + (2j + 1)(s+ 1) + (2j + 1)s2 + 3
= (2j + 1)(s2 + s+ 3) + 3

Lemma 3.15. For all 0 ≤ i ≤ 2j and all X, TXi is accessed correctly.
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Proof. Condition (i) of Definition 3.6 is trivially true. The collector ver-
tices as well as B2 and B3 of Ti have no edges to other parts of H so it
holds that ITit (v) = IHt (v) = I(v) for all v ∈ C(Ti)∪ {B2(Ti)} ∪ {B3(Ti)}.
Therefore, (ii),(v) and (vi) are fulfilled.

Condition (iii) is fulfilled because of Lemma 3.13.
For condition (iv) we distinguish between i = 0 and i 6= 0. If i is equal

to 0, then B1(TXi ) has 1 edge coming from outside V Xi but still inside
H and an outside influence of IH(B1(TXi )) = −2. If i is not equal to 0,
then B1(TXi ) has 2 edges coming from outside V Xi but still inside H and
an outside influence of IH(B1(TXi )) = −1. In both cases, the resulting
IT

X
i (B1(TXi )) will satisfy (iv).

Lemma 3.16. The transistors flip in order. That is, the following state-
ments must hold.

(i) If tf (TXi ) = t there must be a t′ ≤ t− 4 such that tf (TXi−1) = t′ for
all 1 ≤ i ≤ 2j.

(ii) If ORXt (RX) = −X there must be a t′ ≤ t−4 such that tf (TX2j ) = t′

Proof. The vertex RX has total influence Ivt (RX) = IHt (RX)+µt(R̃X)+
µt(E(TX2j )) which is equal to 1+X ·(µt(R̃X)+µt(E(TX2j ))). SoRX can only
change its opinion to (−X) if both µt(R̃X) and µt(E(TX2j )) are (−X). Sim-
ilarly IT

X
i

t (B(TXi )) which can be written as IHt (B(TXi ))+X(µt(E(TXi−1))+
µt(R̃)) = −1 +X(µt(E(TXi−1)) + µt(R̃)) can only be −3 if E(TXi−1) is −X
for all 1 ≤ i ≤ 2j. This together with statements (i) and (ii) of Lemma
3.7 we get the required statements.

Definition 3.17. We define 1IH̃(·), 2IH̃(·), 3IH̃(·) and 5IH̃(·) to be the
outside influence exerted on vertices in H̃ by E1, E2, E3 and E5 respec-
tively.

Note that IH̃t (v) = 1IH̃t (v) + 2IH̃t (v) + 3IH̃t (v) + 5IH̃t (v) + IHt (v). The
edges E4 are intentionally left out since they do not have endpoints in H̃.

Lemma 3.18. R(j, K̃) is indeed a counter of convergence time c = (2j+
1)(c̃+ 4) + 1.
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Proof. So assume that the constant outside influence of all vertices is given
by IH(·) = IH(·). We define c to be the smallest t with µt(RR) = B or
µt(RB) = R. By Lemma 3.16 all transistors have flipped at time c. For
all t < c and all vertices v ∈ H̃, the outside influences of 2IH̃t (v) and of
IHt (v) cancel each other out so we only need to care about 1IH̃(), 3IH̃()
and 5IH̃() until we reach time c.

To get a induction hypothesis we prove the following stronger state-
ment: tf (T 2l) = 2l(c̃+ 4) and µ2l(c̃+4)(v) = S(v) for all 0 ≤ l ≤ j and for
all vertices v in H̃.

The base case for l = 0 is trivial. For the induction step l → l + 1
assume tf (T 2l) = 2l(c̃ + 4) and µ2l(v) = S(v) is true for all vertices v in
H̃. Now we investigate how the graph evolves in the following intervals
[2l(c̃ + 4), 2l(c̃ + 4) + 3], [2l(c̃ + 4) + 4, (2l + 1)(c̃ + 4) − 1], [(2l + 1)(c̃ +
4), (2l + 1)(c̃ + 4) + 3] and [(2l + 1)(c̃ + 4) + 4, (2l + 2)(c̃ + 4) − 1]. I.e.,
we take the behavior during the interval [a, b] to investigate the influences
exerted in [a, b] and their outcomes in [a+ 1, b+ 1].

Interval [2l(c̃+4), 2l(c̃+4)+3]. We show that K̃ is correctly initialized
and virtually reversely accessed from 2l(c̃+ 4) to 2l(c̃+ 4) + 3. Therefore
and because of (iii) in definition 3.9, µ2l(c̃+4)+4(·) will still be equal to
S(·).

Let us start by considering 1IH̃(·) + 5IH̃(·). Using Lemma 3.16 we
can deduce the following statement. All transistors TXi with i < 2l have
already switched completely by 2l(c̃+ 4) (they are in the region specified
by (iii) of Lemma 3.7, similarly all such transistors with i > 2l can only
start switching after i(c̃ + 4) + 3 (they are in the region specified by (i)
of Lemma 3.7. So the contribution of TYi to 1IH̃() is canceled out by the
contribution of T−Yi to 5IH̃() for all i 6= 2l and vice versa. And for TX2l
we know that µi(E(TX2j )) = X for i ≤ 2l(c̃4) + 3 from (i), (ii) of Lemma
3.7. Therefore, 1IH̃i (v) + 5IH̃i (v) must be non-negative for R̃X and zero
for all other vertices.

3IH̃i (·) will be exactly −I(·) for 2l(c̃ + 4) ≤ i ≤ 2l(c̃ + 4) + 3 because
the transistors TYi with an even i 6= 2l cancel out each other and those
with i = 2l will have µt(E(TXi )) = X for t ≤ 2l(c̃ + 4) + 3 so TXi will
exactly contribute the required outside influence of −I(·). So ITt (v) =
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1IH̃t (v) + 3IH̃t (v) + 5IH̃t (v) will be −I(v) for all v except for RR and
RB . However RX is supposed to stick with o(RX) = X, in case of
correct initialization and reverse access and the deviation introduced by
1IH̃()+5IH̃() further encourages them to do so. Therefore K̃ is a correctly
initialized and virtually reversely accessed counter.

Interval [2l(c̃+4)+4, (2l+1)(c̃+4)−1]. We will use a proof of induction
over k to show that K̃ is accessed and initialized correctly from 2l(c̃+4)+4
to 2l(c̃ + 4) + 4 + k and that tf (TX2l+1) ≥ 2l(c̃ + 4) + k for all k < c̃.
Using (iv) of definition 3.9 the induction statement for k set to c̃ − 1
will imply that µ(2l+1)(c̃+4)(·) = −S̃(·). This in turn will imply that
tf (TX2l+1) = (2l + 1)(c̃+ 4).

Because of Lemma 3.16 and because µ2l(c̃+4)(R̃X) = X, tf (T e2l+1)
must be bigger than 2l(c̃+4)+4. Therefore, each transistor has a uniform
opinion at 2l(c̃+ 4), and therefore 1IH̃2l+4() + 5IH̃2l+4() will be 0. 3IH̃2l+4(v)
will be exactly I(v). This is because of the same reason as in the previous
interval. All transistors TXi with i 6= 2l cancel out the transistors i = 2l
that have already flipped completely. Hence, K̃ is accessed and initialized
correctly from 2l(c̃+ 4) + 4 to 2l(c̃+ 4) + 4. This covers the base case of
our induction.

Now assuming K̃ is accessed and initialized correctly from 2l(c̃+ 4) +
4 to 2l(c̃ + 4) + 4 + k and tf (TX2l+1) ≥ 2l(c̃ + 4) + k for some k < c̃.
Because of the first assumption and because k + 1 < c̃ we can apply (iii)
of definition 3.9. Hence µ2l(c̃+4)+k(R̃X) = X will still be true and as a
direct consequence tf (TX2l+1) ≥ 2l(c̃+4)+k+1 and we have proven the first
part of our induction statement. Now since tf (TX2l+1) ≥ 2l(c̃+ 4) + k + 1
TX2l+1 is still uniformly of opinion X at 2l(c̃+ 4) +k+ 1, so IH̃2l(c̃+4)+k+1(·)
is still equal to I(·). This also means that K̃ is still correctly accessed
and therefore proves our induction statement.

Interval [(2l + 1)(c̃ + 4), (2l + 1)(c̃ + 4) + 3] The graph K̃ is reversely
initialized and virtually correctly accessed from (2l + 1)(c̃ + 4) to (2l +
1)(c̃+4)+3. We know from the last interval that K̃ is reversely initialized
and that TX(2l+1) = (2l+1)(c̃+4) The proof of correct access is completely
analogous to the first interval. Therefore and because of (iii) in definition
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3.9, µ2l(c̃+4)+4(·) will still be equal to −S(·).

Interval [(2l+ 1)(c̃+ 4) + 4, (2l+ 2)(c̃+ 4)−1] The graph K̃ is accessed
and initialized reversely from (2l+ 1)(c̃+ 4) + 4 to (2l+ 2)(c̃+ 4)− 1 and
tf (TX2l+2) = 2l(c̃+ 4). We know from the last interval that K̃ is reversely
initialized. The rest of the proof is completely analogous to the second
interval. Therefore µ(2l+2)(c̃+4)(·) = S̃(·).

This concludes the proof of the induction step. Now we only need
to show that we can indeed derive the lemma from this induction result.
At time 2j(c̃+ 4) we basically have the same case as at the beginning of
the first interval and using the same technique as in the first and second
interval we can therefore deduce that the smallest time t with IH̃t (RX) < 0
is (2j + 1)(c̃+ 4) (this proves (iii) of definition 3.9). We can in the same
manner prove that µ(2j+1)(c̃+4)(v) = −S(v) for all v ∈ Ṽ H . And since
all transistors have already flipped completely and because K̃ is reversely
initialized and correctly accessed from (2j+1)(c̃+4) to infinity, (iv) is also
fulfilled. The conditions (i) are true because of Lemma 3.14 and finally
(ii) is true since

d
√
e+ 2e+ 1 = d

√
(2j + 1)(s2 + s+ 3) + 3 + 2e+ 1

≥ d
√
s2e+ 1

= s+ 1
= max
v∈VH

I(v).

3.4.3 Putting it all together
Lemma 3.19. For every l ≥ 1 and h ≥ 0, there exists a counter K

with n ≤ (h + 1)54
(

1 + 80√
l

)h
l vertices, supply edge number e ≤ l

2− 1
2h ·(

1 + 80√
l

)h
and convergence time c ≥ l2−

1
2h .

Proof. We prove this by induction over h. For h = 0, K is trivially given
by P2(l). Now given a counter K̃ with ñ ≤ (h+ 1)54

(
1 + 80√

l

)h
l vertices,
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convergence time c̃ ≥ l2−
1

2h and supply edge number

ẽ ≤ l2−
1

2h ·
(

1 + 80√
l

)h

we can construct

K = R(K̃, 1
2bl

1
2h+1 c) .

By Lemma 3.18 the convergence time c is at least (2 1
2bl

1
2h+1 c+1)(l2−

1
2h +

4) which is in turn at least l2−
1

2h+1 . To prove the bound on the supply
edge number, we first show a bound for the transistor size s by using the
definition of R. The required bound for the supply edge number of K can
be deduced using Lemma 3.14.

s = d
√
ẽ+ 2e+ 1 (3.1)

≤

√
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 2 + 2 (3.2)

≤

√(
1 + 2

l

)
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 2 (3.3)

≤
(

1 + 2
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 2 (3.4)

≤
(

1 + 2
l

+ 2√
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
(3.5)

≤
(

1 + 4√
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
(3.6)
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e = (2j + 1)(s2 + s+ 3) + 3 where j = 1
2bl

1
2h+1 c

≤
(

1 + 1
l

)
· l

1
2h+1 (s2 + s+ 3) + 3

≤
(

1 + 1
l

)
· l

1
2h+1

((
s+ 1

2

)2
+ 11

4

)
+ 3

≤
(

1 + 1
l

)
· l

1
2h+1

(1 + 4√
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 1

2

2

+ 11
4


+ 3

≤
(

1 + 1
l

)
· l

1
2h+1

(1 + 5√
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h2

+ 11
4

+ 3

≤
(

1 + 1
l

)
· l

1
2h+1

((
1 + 10√

l
+ 25

l

)
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 11

4

)
+ 3

≤
(

1 + 1
l

)
· l

1
2h+1

(
1 + 38√

l

)
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 3

≤
(

1 + 77√
l

)
· l2−

1
2h+1 ·

(
1 + 80√

l

)h
+ 3

=
(

1 + 80√
l

)h+1

l
2− 1

2h+1

When contracting terms in (3.3) and (3.5), we utilize the fact that

l
2− 1

2h ≥ l and
(

1 + 80√
l

)h
≥ 1. Using the same lemma, also gives the



88 CHAPTER 3. SOCIAL NETWORK DYNAMICS

needed bound for the number of vertices n.

n = 2(2j + 1)(2s+ 3) + ñ+ 2 where ñ = (h+ 1)54
(

1 + 80√
l

)h
l

≤ 2
(

1 + 1
l

)
l

1
2h+1 (2s+ 3) + ñ+ 2

≤
(

2 + 2
l

)
l

1
2h+1

2
(

1 + 4√
l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
+ 3

+ ñ+ 2

≤
(

2 + 2
l

)
l

1
2h+1

(
2 + 11√

l

)√
l
2− 1

2h ·
(

1 + 80√
l

)h
+ ñ+ 2

≤
(

4 + 48√
l

)
l

1
2h+1 · l1−

1
2h+1

(
1 + 80√

l

)h
2

+ ñ+ 2

≤
(

4 + 50√
l

)(
1 + 80√

l

)h
2

l + ñ

≤ 54
(

1 + 80√
l

)h
2

l + (h+ 1)54
(

1 + 80√
l

)h
l

≤ (h+ 2)54
(

1 + 80√
l

)h
l

≤ (h+ 2)54
(

1 + 80√
l

)h+1

l

We need one more additional tool from mathematics to prove our final
Theorem 3.6.

Lemma 3.20. For every x > 0 and all n > 0 the following inequality
holds

(
1 + x

n

)n ≤ ex
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Proof. It is well known that the sequence sn(x) =
(
1 + x

n

)n converges to
ex as n goes to infinity. So we need only prove that sn(x) is non-decreasing
in n. We achieve this by showing that all coefficients in the power series
sn(x) =

∑∞
k=0 c

k
nx

k =
∑∞

k=0

(
n
k

)(
x
n

)k are non decreasing.

ckn+1

ckn
=

(
n+1
k

)
1

(n+1)k(
n
k

)
1
nk

(3.7)

=
(n+1)!

k!(n+1−k)!
1

(n+1)k
n!

k!(n−k)!
1
nk

(3.8)

=
1

n+1−k
1

(n+1)k−1

1
nk

(3.9)

= nk

(n+ 1)k−1(n− (k − 1)) (3.10)

≥ nk

nk
(3.11)

= 1 (3.12)

In (3.10), the arithmetic mean of the factors in the denominator (numer-
ator respectively) is n. Since the geometric mean of positive numbers
can never be bigger than the arithmetic mean, the geometric mean of
the factors of the denominator has to be ≤ n and the product has to be
≤ nk.

Now we combine Lemma 3.19 and Lemma 3.20 to prove Theorem 3.6.

Proof. If we select h in Lemma 3.19 to be blog log lc we can get a counter
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with the following dimensions for every l.

n ≤ (blog log lc+ 1)54
(

1 + 80√
l

)blog log lc

l (3.13)

≤ 108 log log l
(

1 + 80
b
√
lc

)blog log lc

l (3.14)

≤ 108 log log l
(

1 + 80
b
√
lc

)b√lc
l (3.15)

≤ 108 · e80 log log l · l (3.16)

e ≤ l2 · l−
1

2blog log lc ·
(

1 + 80√
l

)blog log lc

(3.17)

≤ l2 · l−
1

log l · e80 (3.18)

= 1
2 l

2 · e80 (3.19)

c ≥ l2 · l−
1

2blog log lc (3.20)

≥ l2 · l−
1

2(log log l)−1 (3.21)

= l2 · l−
2

log l (3.22)

= l2 ·
(
l
− 1

log l

)2
(3.23)

=
(1

2

)2
l2 (3.24)

= 1
4 l

2 (3.25)

(3.16) and (3.18) are true because of Lemma 3.20, and (3.19) and
(3.24) are true because it holds that log

(
l
− 1

log l

)
= − 1

log l log l = −1 =
log 1

2 . We can also run this counter by creating a red and a blue clique of
size d

√
ee+ 1 and then connecting the vertices in the counter to vertices

in the cliques according to I(·). Since
√
e = O(n) this increases the

number of vertices only by a constant fraction. This concludes that our
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final network has n = O(l · log log l) vertices and a convergence time of
Ω(l2) = Ω

(
n2

(log log l)2

)
≥ Ω

(
n2

(log logn)2

)
.

3.5 Friends and Fiends

In some online networks, as well as in real life, one can be connected not
only to one’s friends but also to one’s fiends (e.g. Epinions, Slashdot).
This phenomenon is especially well known by parents of teenage kids,
trying to influence their offspring. We model such a network by allowing
not only positive but also negative influence between members. Infor-
mally, one can think of a negative link between u and v as u’s tendency
to adopt the opinion opposite to that of v.

The proof given in [91] for the upper bound, as well as the lower
bound construction shown in the last section, can be applied to this model.
The definition of a “failed edge” has to be updated to apply also for
negative edges. This is done in a straightforward manner by using the
same definition for successful and failed edges in the case of positive ties
and by using the opposite definition in case of negative ties. Namely, a
negative outgoing edge 〈v, u〉 fails on time step t if u adopts v’s opinion
on time step t+ 1, and succeeds otherwise.

We get the following results.

Lemma 3.21. There exists a family of n-node unweighted synchronous
influence networks with stabilization time Ω(n2/ log2 n).

Lemma 3.22. An n-node unweighted influence network with positive and
negative friendship ties stabilizes in O(n2) time steps.

3.6 Weighted Influence Network

In a social network it seldom happens that all ties have the exact same
interpretation. Considering, for instance, different acquaintance ties be-
tween people, one may observe that usually people listen to their best
friends more than to their colleagues. We model the influence between
a pair of nodes by assigning a weight to the corresponding edge. It is
then assumed that a node changes its opinion if the weighted majority of
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its neighbors have a different opinion. We are interested in the influence
of adding weights to our graph on the stabilization time. We start by
proving the following lemma.

Lemma 3.23. An n-node weighted influence network G with assigned
edge weights w ∈ N stabilizes in min{2ω(G), 2n} time steps.

Proof. Note that there is a bijective relation between weighted graphs
and multigraphs. A weighted graph can be modeled as a multigraph by
replacing each edge e of weight ω(e) = k by k edges of weight 1 each.
Conversely, each multigraph can be modeled as a weighted graph with
weights ω(e) ∈ N by substituting k multiedges by a single edge of weight
k. The transformation does not influence the behavior of the nodes as
in both situations the weight of the influence is not changed. For the
multigraph we can apply Theorem 3.5 to conclude that the multigraph
stabilizes in 2|E| time steps. As the number of edges in the multigraph
corresponds to the weight ω(G) of the weighted graph, we conclude that
a weighted IN stabilizes in 2ω(G) time. Moreover, this process is deter-
ministic, and the execution enters a cycle once some global state repeats
itself. Consequently, since the IN has 2n global states, it must stabilizes
in at most 2n time step.

The stabilization time of an IN can not be prolonged arbitrarily by
just setting the edge weights higher. A path network, for example, will
stabilize in O(n) rounds no matter how the edge weights are chosen. It is
an intriguing question if the weights do indeed have an influence on the
stabilization time or if there is another mechanism which may prevents
INs from having a higher stabilization time than O(n2). As we show in the
next paragraphs, edge weights can significantly increase the stabilization
time of INs. We do this by presenting a family of graphs with stabilization
time 2Ω(n)

Lemma 3.24. There is a family of n-node weighted influence networks
with stabilization time 2Ω(n).

To provoke as many changes as possible we build a graph consisting of
3 different component types: Two different colored paths of length l and
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several levels of a structure to which we refer as transistor lines. The tran-
sistor lines consist of 2 different colored lines of k transistors. The main
idea is that the paths, with a suitable initial coloring, get “discharged”
by a lengthy process during which they change their colors node by node
as often as possible, and once a path is completely discharged, it gets
recharged (i.e., reset to the original color pattern) by the transistor above
it. In turn, each transistor in the transistor lines recharges the levels
below it. So each level adds another multiplicative factor to the stabi-
lization time. (Let us remark that we have programmed the construction
and simulated the influence propagation process on this graph; the inter-
ested reader may find a program and a video tracing the simulation at
http://www.disco.ethz.ch/members/barkelle/FUN.zip) Let us now take a
closer look how the two paths work.

At round 0 all the nodes in path P 1 are blue and all the nodes in
path P 2 are red. The first nodes of the paths are denoted by F . When
they change their color they start a cascade of changes through the path.
To achieve this, the weights of the edges between the path nodes are
decreasing from the first to the last node. This ensures that the change of
the first node is cascaded through the path without any influence going
the opposite direction. The summed up influence to change the color of
the first node has therefore also to be higher than the weight of the edge
between the first and the second node. The paths are illustrated in Figure
3.12.

Definition 3.25. We define our path graph P = (VP , EP ) as an undi-
rected weighted graph, where VP = {p1, . . . , pk} and

EP = {(pi, pi+1, 2k + l − i) | i = 0, 1, . . . , k − 2}.

The levels above the paths consist of two transistor lines. At time
0, line L1 is blue and L2 is red. Each transistor line is composed of k
transistors. The basic function of the transistor is to change the color in
the level below it in a controlled manner. A transistor (see Figure 3.13)
consists of three nodes: A switch node (Sw), a collector node (Co) and
an emitter node (Em). The idea behind this is to control the color of the
transistor by the switch node. This is done by using the switch node to
change the color of the collector node which in return changes the color
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Figure 3.12: The path nodes are connected with decreasing weights from the
first node (F) to the last (L) in the path. This induces a cascade of color changes
through the path once the first node changes its opinion. The edge between the
last and second-to-last node has a weight larger than k ·2 where k is the number
of transistors in a transistor line, in order to prevent influence from evolving
along the wrong direction. The cascade of changes is triggered by changing the
color of one external node that is connected to F .

Figure 3.13: A transistor con-
sisting of the following three nodes:
switch (Sw), collector (Co) and an
emitter (Em). Its edge weights sat-
isfy the following equations:
(1) 2x >

∑
(u,Em)∈E

ω(u,Em),

(2) x < y < x+ 3.

Figure 3.14: These four nodes will
never change their color, as they
share an edge with a higher weight
than all the other adjacent edges
combined. With k transistors per
line, this weight is set to k · y + 1.
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Figure 3.15: A level of transistor lines, consisting of k blue and k red transis-
tors. Each switch is wired to the emitter of the transistor in front of it, so that
the transistors get activated in the order from left to right.

of the emitter node. To do so, the switch node shares an edge with the
collector node of weight 3 and the collector node is balanced in the way
that it will only change its color, if the summed up influence from the level
above is the opposite color and the switch node changes to this color. The
collector node shares an edge with the emitter node which is heavier than
all the other edges adjacent to the emitter node combined. This makes
sure that the emitter node changes its color exactly one round after the
collector node changed its color, no matter what the colors of the other
neighboring nodes are. The order in which the transistors are activated
is level by level, and in each level - transistor by transistor. To make sure
that a transistor is only activated when the transistor in front of it already
finished, we add an edge of weight 2 between the emitter node and the
switch node of the next transistor in the transistor line (the switch node
of the first transistor in each line is connected to the last emitter of the
opposite colored transistor line); see Figure 3.15.

Above the levels we have 4 special nodes, S1 − S4. These 4 nodes
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consist of two pairs of nodes, one (S1, S2) blue and the other (S3, S4) red.
Each pair is connected by an edge which is heavier than all the other
edges adjacent to these nodes combined (see Figure 3.14). This ensures
that these nodes never change their color and can be used as a stable color
reservoir.

Definition 3.26. A transistor T = (VT , ET ) is an undirected weighted
graph with

VT = {Sw,Co,Em}
ET = {(Sw,Co, 3), (Co,Em, x)} ,

where x depends on the level i of the transistor and the length l of the
path. Furthermore,

x0 = k · (k · 2 + l) + 2k + 3
xi = k · (xi−1 + 2k + 3) + 3 .

Definition 3.27. A transistor line Lj = (VLj , ELj ) is an undirected
weighted graph consisting of k transistors, where

VLj =
k−1⋃
i=0

VTi

ELj =
k−1⋃
i=0

ETi ∪ {(Emi, Swi+1, 2) | i = 0, 1, . . . , k − 1}.

Definition 3.28. A level L = (VL, EL) is an undirected weighted graph
consisting of two transistor lines L1, L2, where VL = VL1 ∪ VL2 and

EL = EL1 ∪ EL2 ∪ {(u, v) | u = Sw ∈ T0 ∈ L1 ∧ v = Em ∈ Tk−1 ∈ L2}

∪ {(u, v) | u = Sw ∈ T0 ∈ L2 ∧ v = Em ∈ Tk−1 ∈ L1}.
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We now show how the structures and different levels are wired. We
start with the two paths and the first transistor lines. We want the blue
path P 1 to turn alternately red and blue. As the blue transistors have the
potential to turn red we connect the emitter of the first blue transistor
with the first node of the blue path with weight w = 2 · k + l. Similarly,
we connect the first red transistor with the first node of the red path. In
order to turn them back to their original color we connect the emitter of
the second red transistor to the first node of P 1 and the emitter of the
second blue transistor to the first node of P 2. We continue this until the
first node of P 2 is connected with all the emitters of the even transistors
in L1 and all the emitters of the odd transistors in L2. To inhibit the
second transistor from changing P 1 back before the first cascade finished
we connect the last node in P 2 with the switch of the second transistor
in L2 with a weight w = 2. So the switch node can only switch if the
transistor in front of it and the last node of the opposite colored path did
switch. As P 1 and P 2 have the same length and start at the same time
they will also finish at the same time the cascade and will influence the
second transistors to switch. All these edges are added for the first node
F in P 2 and the last node L in P 2 respectively. Note that with k being
odd, there is always a summed up influence on the first node of the path
with value 2k+ l. The edges added between the paths and the first levels
can be summarized by:

EPL1 = {(u, v, k′) | u = F ∈ P 1 ∧ v ∈ {Emj ∈ L1
1 ∧ j even} ∪ {Emj ∈ L2

1 ∧ j odd}}

∪ {(u, v, k′) | u = F ∈ P 2 ∧ v ∈ {Emj ∈ L2
1 ∧ j even} ∪ {Emj ∈ L1

1 ∧ j odd}}

∪ {(u, v, 2) | u = L ∈ P 1 ∧ v ∈ {Swj ∈ L2
1 ∧ j even} ∪ {Swj ∈ L1

1 ∧ j odd}}

∪ {(u, v, 2) | u = L ∈ P 2 ∧ v ∈ {Swj ∈ L1
1 ∧ j even} ∪ {Swj ∈ L2

1 ∧ j odd}},

where k′ = 2k + l.
The different levels are wired similarly to the first level and the path.

The first node of the path corresponds to the collector nodes of the tran-
sistors one level below and the last node of the path corresponds to the
emitter node of the last transistor. Formally we add the following edges
between level Li and level Li+1.
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ELLi = {(u, v, xi) | u = Coj ∈ L1
i ∧ v ∈ {Emm ∈ L2

i+1 ∧ j,m even}}
∪ {(u, v, xi) | u = Coj ∈ L1

i ∧ v ∈ {Emm ∈ L2
i+1 ∧ j,m odd}}

∪ {(u, v, xi) | u = Coj ∈ L2
i ∧ v ∈ {Emm ∈ L1

i+1 ∧ j,m even}}
∪ {(u, v, xi) | u = Coj ∈ L2

i ∧ v ∈ {Emm ∈ L1
i+1 ∧ j,m odd}}

∪ {(u, v, 2) | u = Swj ∈ L1
i+1 ∧ j even ∧ v = Emk−1 ∈ L1

i−1}}

∪ {(u, v, 2) | u = Swj ∈ L1
i+1 ∧ j odd ∧ v = Emk−1 ∈ L2

i−1}}

∪ {(u, v, 2) | u = Swj ∈ L2
i+1 ∧ j even ∧ v = Emk−1 ∈ L2

i−1}}

∪ {(u, v, 2) | u = Swj ∈ L2
i+1 ∧ j odd ∧ v = Emk−1 ∈ L1

i−1}}.

The last level Lr is wired to the special nodes in the following way:

ESLr = {(u, v, xr + 2k + 2) | u = S1 ∧ v ∈ {Coj ∈ L2
r}}

∪ {(u, v, xr + 2k + 2) | u = S3 ∧ v ∈ {Coj ∈ L1
r}}.

The complete weigthed IN is a union of all these structures and can
be seen with k = 3 and l = 3 and 5 levels in Figure 3.16.

Definition 3.29. Our worst case IN is an undirected weighted graph
consisting of 2 paths, r levels and the 4 special nodes. Formally it is
defined as IN = (VIN , EIN ), where

VIN = VP1 ∪ VP2 ∪
r⋃
i=1

VLi ∪ {S1, S2, S3, S4}

EIN = EP1 ∪ EP2 ∪ EPL1 ∪
r−1⋃
i=1

ELLi ∪ ESLr
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Figure 3.16: This is an IN with stabilization time l · k(n−l)/k∗6 with k = 3,
l = 5 and r = 5.
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Stabilization Time
We analyze the stabilization time of the presented graph. Each time the
path is activated it takes l rounds to complete. As the transistors from
the first level are connected to the last nodes of the two paths they only
change when all the nodes in the path changed their color. As a transistor
needs 3 rounds to change (switch → collector → emitter) and nothing of
this happens in parallel, the first level takes k · (3 + l) rounds. Each
additional level adds a factor of k to the stabilization time which leads to
the following recursive function for the running time: Ti = ki · (3 + l) +
Ti−1 . Solving the recurrence formula gives

Ti = (l + 3)(ki+1 − 1)
k − 1 ∈ O(ki) .

The running time grows exponentially in the number of levels. Each level
consists of 2k̇ transistors and each transistor consists of 3 nodes. The
constant nodes consist of 2 ·2 nodes. The IN consists of n nodes, therefore
we can build an IN with i = n−l−4

6·k levels. Choosing l to be constant and
k = 3, we achieve a stabilization time of Ω(3n/18) = Ω(20.088n).

3.7 Asymmetric Influence Network

In real life, ties between people do not necessarily have the same weight
for both adjacent nodes. Although friendships are often symmetrically
perceived concerning how strong they are, there are a lot of examples
where this is not the case. One example is the student advisor relation.
Usually the advisor’s opinion has a larger influence on the student than
vice versa, hence the edge between advisor and student has a smaller
weight for the advisor than for the student. This is even more extreme
in the case of celebrities: A famous artist may influence people whom she
does not even know, who in return do not influence her at all. We extend
the model to allow asymmetric weights. Note that the weight can also be
0 on one side, which is then equivalent to a directed edge. Interestingly,
in this new model the “stable states” are not that simple anymore, as the
cycle length can be larger than 2. We are interested in the cycle length
which can be achieved. An easy lower bound on it is n. One can think
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of a circle with edges directed in one direction. Initially, one node is red
and all the others are blue. This red “token” cycles through the circle
with cycle length n. We are interested in how big the cycle length can get
in an IN with asymmetric weights. As asymmetric INs are deterministic
too, we have an upper bound of 2n. We show a family of graphs with a
cycle length of 2Ω(n)

Lemma 3.30. There are families of n-node influence networks with a
cycle length 2Ω(n).

We use the same IN as described in Section 3.6 as a basis for our
construction but substitute most of the symmetric edges by directed edges.
The main idea is to have the same process as the IN in Section 3.6, except
that in the round where the symmetric IN would stabilize, our IN gets
restarted by changing the colors of the special 4 nodes S1 − S4. This
leads to a cycle length for our asymmetric IN that’s twice as long, as the
stabilization time of the previous IN. In order to do so, we add directed
edges from the last emitter of each transistor line and each path to the
nodes S1 − S4 with a weight x that sums up to a weight higher than
the edge weight w(S1, S2) = w(S3, S4) but so that each subset of these
weights is smaller than w. This will change the special nodes exactly
when all the levels have switched. This is achieved by assigning the edges
w(S1, S2) = w(S3, S4) = 3(r + 1) − 1, where r is the number of levels.
Note that as directed edges can be used, we do not need an exponential
growth of the weights anymore which makes the graph simpler.

To build our AIN we change the edges in the IN from Sect. 3.6 in
the following way: The edges in the path graph are directed from the first
node (F ) to the last (L) and are assigned weight 1. The edges between the
emitter from the first level and F are directed towards F and have weight
4. For each transistor the two edges of the switch node with weight 2 are
now directed towards the switch node with weight 2. The edge between
the switch node and the collector node is substituted by a directed edge
to the collector node with weight 3. The edge between a collector and
an emitter in the same transistor stays symmetrical but its weight is now
4. All the edges between collector and emitter nodes from different levels
are substituted by directed edges from the emitter of the higher level to
the collector on the lower level with weight 4. All the edges between the
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special nodes and the collectors from level r are now directed towards
the collector nodes and have weight 4. The edge between S1 and S2 (as
well as between S3 and S4) is symmetric and has an assigned weight of
3(r + 1) − 1. Additionally we add the edges EAIN . The graph with the
added edges and new values is illustrated in Figure 3.17

Definition 3.31. The additional edges are formally described as:

EAIN = EIN ∪ {(u, v, 3) | u = L ∈ P 1 ∧ v = S1}

∪ {(u, v, 3) | u = L ∈ P 2 ∧ v = S3}

∪ {(u, v, 3) | u = L ∈ P 1 ∧ v = S2}

∪ {(u, v, 3) | u = L ∈ P 2 ∧ v = S4}

∪
r⋃
i=1

{(u, v, 3) | u = Emk ∈ L1
i ∧ v = S1}

∪
r⋃
i=1

{(u, v, 3) | u = Emk ∈ L2
i ∧ v = S3}

∪
r⋃
i=1

{(u, v, 3) | u = Emk ∈ L1
i ∧ v = S2}

∪
r⋃
i=1

{(u, v, 3) | u = Emk ∈ L2
i ∧ v = S4}.



3.7. ASYMMETRIC INFLUENCE NETWORK 103

Figure 3.17: This n-node asymmetric IN has a cycle length of 2Ω(n)





4
Conclusion

In this work, we presented simplified versions of the social phenomenon
of influence. On the one hand, we presented evidence that gender in-
fluences the choices in student-mentor networks and we showed that the
glass ceiling effect is one of the consequences of this behavior. We pre-
sented a simple model of a network formation process with three simple
characteristics: a smaller entry rate for women, preferential attachment,
and homophily. We proved that already these three characteristics are
sufficient to produce a glass ceiling in the formed network. We are aware
that this is a very abstract representation of a growing network and that
many more factors come into play when generating a student-mentor net-
work. A complex social phenomenon like the glass ceiling can never be
fully explained with such a simplified model but we are intrigued by the
fact, that a model with only these three characteristics already leads to
a glass ceiling, a prominent symptom of the gender stereotypes present
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in our society. We hope that the insights gained during our research
helps to further investigate this phenomenon and its reasons in order to
find appropriate counter measurements. We do believe that the work at
hand presents a good basis to compare different counter measurements.
Our research suggests, for example, that putting effort into increasing the
number of women starting a career in computer science is more fruitful
than defining a quota for women in leading positions. Of course, these
counter measurements are not independent of each other. We believe that
having role models in leading positions in computer science does increase
the sense of belonging to computer science for young women. This, in
turn, will increase the number of women starting a career in computer
science and therefore work towards the goal of increasing the entry rate
for women in the network.

On the other hand, we showed how long it can take until people con-
verge to their opinion if they are constantly influenced by other people.
We are aware that our model is not by itself suitable to explain every de-
tail of real world phenonema, but instead we aim to give a elementary and
above all mathematically tractable abstraction of reality. Surely, hardly
anyone is only interested in having the same opinion as the majority of her
friends, independently of the opinion itself. But the tendency to adapt
to the opinion of friends or other influential persons cannot be denied.
Parts of it happens during discussions with friends where new points of
view are encountered and opinions readjusted and other parts can be ex-
plained with the desire to be similar to ones friends. The asymmetric
social influence model is probably the best fit for society. Especially im-
portant leader figures have an asymmetric influence on people. So the
bad news is that in the worst case it takes exponentially long for people
to converge to their opinion. The good news is that, since people often
have symmetric relationships and tend to group themselves with people
with similar opinions, the presented worst case graph is very unlikely to
appear in practice.

All in all, our models are simplified versions of influence between peo-
ple but we hope that our findings help to better understand the conse-
quences influence can have in society and that we contribute in providing
a theoretical background for discussions about influence.
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