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Pairwise Secret Key Agreement based on
Location-derived Common Randomness

Somayeh Salimi, Panos Papadimitratos
Networked Systems Security Group, School of Electrical Engineering, KTH, Stockholm, Sweden

somayen@kth.se, papadim@.kth.se

Abstract—A source model of key sharing between three users
is considered in which each pair of them wishes to agree on a
secret key hidden from the remaining user. There are rate-limited
public channels for communications between the users. We give an
inner bound on the secret key capacity region in this framework.
Moreover, we investigate a practical setup in which localization
information of the users as the correlated observations are exploited
to share pairwise keys between the users. The inner and outer
bounds of the key capacity region are analyzed in this setup for
the case of i.i.d. Gaussian observations.

I. INTRODUCTION

Secret key sharing at the physical layer is a promising approach

for deriving shared secret keys. Ahlswede and Csiszar [1] and

Maurer [2] introduced source and channel models of key sharing

between two legitimate users in the presence of an eavesdropper

using source and channel common randomness along with an

unlimited public channel. Various extensions considered a lim-

ited public channel [3], sharing of one secret key in a network

of users [4], and more than one secret key in different scenarios

[5]– [11].

Pairwise key sharing first introduced in [11], is a specific

problem in this area, requiring that each pair of users shares

a secret key concealed from the remaining user(s). In a basic

setup including three users with access to correlated source

observations and communication over an unlimited public chan-

nel, inner and outer bounds on the secret key capacity region

were derived. In this paper, we extend the pairwise key shar-

ing framework in [11] to the rate-limited public channel for

communications. The public channel is full duplex and each of

the users can simultaneously send/receive information over/from

the public channel. Based on the correlated observations, users

communicate over the rate-limited public channel. Then, each

user generates the respective keys as functions of its source

observations and the information received over the rate-limited

public channel. We derive an inner bound on the key capacity

region in this framework; the explicit outer bound given in [11]

holds here for the rate-limited public channel case.

We consider location-derived common randomness here be-

cause it is a promising, towards practical applications, approach.

This is so because a multitude of emerging wireless systems are

location-aware and devices can and need to perform distance

measurements over RF communication, notably for security

reasons, for example [12], [13].

Location-derived common randomness was considered in [14]

in a different setup, with a key established between a mobile

node and a wireless infrastructure. In a setup closer to the one

considered here, [15] considered two users that move according
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Fig. 1: Pairwise secret key sharing in the source model

to a discrete time stochastic mobility model and measure their

respective distance, after exchanging messages, in the presence

of an eavesdropper. In this paper, leveraging the latter approach,

we generalize location-derived key sharing to the “pairwise

secret key”setting, notably with three users. We present inner

bounds of the pairwise key capacity region for both unlimited

and limited public channels. Furthermore, the explicit outer

bound in [11] is analyzed in this i.i.d. Gaussian setup. Some

numerical results are given for the Gaussian setup as well.

The proposed scheme can be extended to the case of more than

three users as the future work in which collusion of curious users

needs to be investigated. Here we consider simply users curious

about the keys their peers derive. But they do not otherwise

deviate from the specification and disrupt the protocol.

The rest of the paper is organized as follows: in Section II,

the preliminaries of the key sharing setup are given. An inner

bound of the pairwise key capacity region with rate-limited

public channel is given in Sections III. Deriving pairwise keys

from localization information along with the respective inner and

outer bounds are presented in Section IV. Numerical results and

concluding remarks are given in Sections V and VI, respectively.

Proofs of the results are presented in Appendices.

II. PRELIMINARIES

Users 1, 2 and 3, respectively, have access to n i.i.d. obser-

vations X1, X2 and X3 according to Fig. 1. The observations

are correlated according to distribution PX1X2X3
. The random

variable Xi takes values from the finite set Xi for i = 1, 2, 3.

Furthermore, there exists a noiseless public channel of limited

capacity for communication between the three users where user

i is subject to rate constraint Ri for its transmission. Each pair of

the three users intends to share a secret key concealed from the

remaining user. Ki,j denotes the shared key between users i and

j, hidden from user m, for i, j,m ∈ {1, 2, 3}, i < j, m �= i, j.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

69



We represent the formal definition of the described secret key

sharing setup.

User i sends stochastic function Fi = fi(X
n
i ) over the rate-

limited public channel for i = 1, 2, 3 subject to

1

n
H(Fi) ≤ Ri (1)

Upon receiving the information over the public channel, key

generation is performed at the users. Key generation function

gi is used by user i for i = 1, 2, 3 as:

g1 : F2 ×F3 ×Xn
1 → K1,2 ×K1,3 (2)

g2 : F1 ×F3 ×Xn
2 → K1,2 ×K2,3 (3)

g3 : F1 ×F2 ×Xn
3 → K1,3 ×K2,3. (4)

Thus, user 1 calculates K1,2 and K1,3 to share with users 2

and 3, respectively. Similarly, user 2 calculates K̂1,2 and K2,3

to share with users 1 and 3 and user 3 calculates K̂1,3 and K̂2,3

to share with users 1 and 2.

Definition 1: In the pairwise secret key sharing over public

channels of limited rates (R1, R2, R3) at the respective users 1,

2, 3, the rate triple (R12, R13, R23) is an achievable key rate pair

if for every ε > 0 and sufficiently large n, we have:

∀i < j ∈ {1, 2, 3} 1

n
H(Ki,j) ≥ Rij − ε (5)

∀i < j ∈ {1, 2, 3} Pr{Ki,j �= K̂i,j} < ε (6)

∀i<j,m∈{1, 2, 3},m /∈{i, j} I(Ki,j ;Fi, Fj , X
n
m) < ε (7)

∀i∈{1, 2, 3} 1

n
H(Fi) ≤ Ri. (8)

Equation (5) means that rate Rij is the rate of the secret key

between users i and j. Equation (6) means that each user can

correctly estimate the respective keys. Equation (7) means that

each user effectively has no information about the remaining

users’ secret key. Equation (8) denotes that the key sharing is

subject to the constraint of the public channel.

Definition 2: The region containing the entire achievable secret

key rate triples (R12, R13, R23) is the secret key capacity region.

III. MAIN RESULT

In the following, an inner bound on the pairwise key capacity

region of the source model with rate-limited public channel is

given. First, we define:

r12 = [I(S12;X2 |S23S32) − I(S12;X3, S13 |S23, S32) ]
+,

r21 = [I(S21;X1 |S13S31) − I(S21;X3, S23 |S13, S31 )]
+,

r13 = [I(S13;X3 |S23S32) − I(S13;X2, S12 |S23, S32) ]
+,

r31 = [I(S31;X1 |S12S21) − I(S31;X2, S32 |S12, S21 )]
+,

r23 = [I(S23;X3 |S13S31) − I(S23;X1, S21 |S13, S31) ]
+,

r32 = [I(S32;X2 |S12S21) − I(S32;X1, S31 |S12, S21 )]
+,

I12 = I(S12;S21 |X3, S13, S23) ,
I13 = I(S13;S31 |X2, S12, S32) ,
I23 = I(S23;S32 |X1, S21, S31) , I1 = I(S21;S31 |X1) ,
I2 = I(S12;S32 |X2) , I3 = I(S13;S23 |X3) .

Theorem 1: In the described setup, all rates in the closure of

the convex hull of the set of all key rate triples (R12, R13, R23)

that satisfy the following region, are achievable:

R12 > 0, R13 > 0, R23 > 0,

R12 ≤ r12+r21 − I12,

R13 ≤ r13+r31 − I13,

R23 ≤ r23+r32 − I23,

R12 +R13 ≤ r12+r21+r13+r31 − I12 − I13 − I1,

R12 +R23 ≤ r12+r21+r23+r32 − I12 − I23 − I2,

R13 +R23 ≤ r13+r31+r23+r32 − I13 − I23 − I3,

R12 +R13 +R23 ≤ r12+r21+r13+r31+r23+r32−
I12 − I13 − I23 − I1 − I2 − I3 (9)

for random variables taking values in sufficiently large finite sets

and according to the distribution:

p(s12, s13, s21, s23, s31, s32, x1, x2, x3) = p(x1, x2, x3).
p(s12|x1)p(s13|x1)p(s21|x2)p(s23|x2)p(s31|x3)p(s32|x3)

and subject to the constraints:

I(S12;X1|X2,S32)+I(S13;X1|X3,S23)≤R1, (10)

I(S21;X2|X1,S31)+I(S23;X2|X3,S13)≤R2, (11)

I(S31;X3|X1,S21)+I(S32;X3|X2,S12) ≤R3, (12)

I(S12;X1|X2,S32)+I(S21;X2|X1,S31)+I(S13,S23;X1,X2|X3)

≤R1+R2, (13)

I(S13;X1|X3,S23)+I(S31;X3|X1,S21)+I(S12,S32;X1,X3|X2)

≤ R1 +R3, (14)

I(S23;X2|X3,S13)+I(S32;X3|X2,S12)+I(S21,S31;X2,X3|X1)

≤ R2 +R3. (15)

I(S21,S31;X2,X3|X1) +I(S12,S32;X1,X3|X2) +I(S13,S23;X1,X2|X3)

≤ R1 +R2 +R3. (16)

Proof: The proof of Theorem 1 is given in Appendix A in

the extended version [18].

The rate region in Theorem 1 is achieved by double random

binning as well as Wyner-Ziv coding [16] and rate splitting. In

the achievability scheme, the rate of the key between users i and

j consists of two parts. A part is rate of the key generated by

user i to share with user j (rij) and the other part is the rate

of the key generated by user j to share with user i (rji). The

auxiliary random variable Sij stands for the former key while

Sji is associated with the latter key. The total rate of the key

between users i and j is the sum of rij and rji in which term Iij
is subtracted to avoid revealing any information about one of the

key to the remaining user (as the eavesdropper) in the case that

the other key is disclosed. The limitation of the public channel

at the users is reflected in (10)-(16).

Remark 1: The region in Theorem 1 reduces to key rate regions

in [7] by considering subset of keys and assuming unlimited

public channel. It also reduces to the key rate region in [11] by

removing public channel limitations.

We do not present a new outer bound on the key capacity

region. The explicit outer bound in [11] with unlimited public

channel holds in this new setup.
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Fig. 2: Using location information for Pairwise secret key sharing

IV. A REAL-WORLD EXAMPLE OF THE PAIRWISE KEY

SHARING

In this section, we consider pairwise key sharing between

three users who move in two-dimensional space according to

a discrete time stochastic mobility model. The idea of using

localization information to share a secret key between two users

in the presence of an eavesdropper was first introduced in [15].

Here, we extend this idea to the pairwise key sharing between

three users. The users are mobile in continuous space according

to a discrete time stochastic mobility model, independent of each

other. Each pair of the three mobile users exploits the distance

between themselves as a source of common randomness to share

a key while the remaining user tries to make an estimate of

that distance as precise as possible. We borrow some notations

from [15]. We assume the considered time is divided into n
discrete time slots where time slot l includes the time interval

[lT, (l+1)T ]. The users’ locations are assumed constant during a

time slot. As shown in Fig. 2, at time slot l, the distance between

users i and j is dij [l] = |xi[l] − xj [l]| in which xi[l] ∈ R
2 is

the random variable which denotes user i location at time slot

l. In the same figure, φi[l] shows the angle of the triangle at

user i at time slot l. Each pair first exchanges beacon signals

(e.g., using propagation delay) to make correlated observations

and then, they communicate over the (limited) public channel to

share a key hidden from the remaining user. This is performed

in two phases as follow.

Localization phase: User i broadcast some beacons (as a

short signal bearing localization information on the initiating

node) at the beginning of time slot l and users j and m
obtain noisy observations of dji[l] and dmi[l], respectively, for

i ∈ {1, 2, 3}, j �= m ∈ {1, 2, 3} − i. We assume the users are

equipped to directional antenna and hence, user i obtain φ̂i[l] as

the noisy version of the angle between the remaining two users.

The same as in [15], we assume the sent information by the

users is corrupted by Gaussian noises. We have:

d̃ij [l] = dij [l] +Nij [l] (17)

φ̃i[l] = φi[l] +Ni[l] (18)

where Nij [l] and Ni[l] are zero-mean Gaussian noises with

variances σ2
ij and σ2

i , respectively. All the noises are independent

of each other. In the rest of the paper, we consider the case of

i.i.d. locations and additive noises. Thus, we drop index l in

equations (17)-(18). If the number of broadcast beacons by each

user is J ≥ 1, then σ2
ij and σ2

i are divided by J [15]. We assume

that users are perfectly clock synchronized (it is shown in [15]

that clock mismatch does not affect the theoretical bounds of

secret key rates).

Key generation by public channel communications: At the

beginning of this phase, user i has access to its observations

oi={d̃ij={d̃ij [l]}nl=1, d̃im={d̃im[l]}nl=1, φ̃i={φ̃i[l]}nl=1}
(19)

The users communicate over a (rate-limited) public channel to

share secret keys in the pairwise manner. Users i and j exploit

the reciprocity of the distance between themselves to share a key

based on their noisy observations d̃ij and d̃ji, respectively:

d̃ij = dij +Nij (20)

d̃ji = dji +Nji, (21)

where dij = dji is the real distance and Nij ∼ N (0, σ2
ij/J),

Nji ∼ N (0, σ2
ji/J) assuming each user broadcasted J beacons

at the localization phase. On the other hand, the remaining

user m tries to estimate dij to obtain information about the

key between users i and j as much as possible with access to

(d̃mi, d̃mj , φ̃m).
Due to simplicity, we assume σij = σji between each pair i

and j. In continue, we consider unlimited and rate-limited public

channels separately.

A. unlimited public channel

Since the observation between pair i and j is symmetric

(because of σij = σji) and the public channels at both sides

are unlimited, we choose one-way communication between each

pair. Without loss of generality, it is assumed that user 1

communicates to user 2, user 2 communicates to user 3 and

user 3 communicates to user 1. According to the directions of

communications between users, we choose S12 = d̃12, S23 =
d̃23, S31 = d̃31, S21 = S32 = S13 = φ in Theorem 1. Then the

rate region in Theorem 1 is reduced to:

R12 > 0, R13 > 0, R23 > 0, (22)

R12 ≤ I(d̃12;d̃21)−I(d̃12; d̃31, d̃32, φ̃3) (23)

R13 ≤ I(d̃31;d̃13)−I(d̃31; d̃21, d̃23, φ̃2) (24)

R23 ≤ I(d̃23;d̃32)−I(d̃23; d̃12, d̃13, φ̃1) (25)

Each potential eavesdropper combines its available observations

to estimate the distance between the other two users to enlarge

the subtracted mutual information terms in (23)-(25). Thus, user

m as a potential eavesdropper of the key between users i and j
makes estimate of dij as:

d̂ij =
√

d̃2mi + d̃2mj − 2d̃mid̃mj cos(φ̃m) (26)

where the parameters inside the square root are defined as (17)

and (18). For J 	 1, σ2
ij/J 
 d2ij and σ2

i /J ≈ 0, ∀i �= j ∈
{1, 2, 3} with high probability and (26) can be approximated as

[15]:

d̂ij = dij +N (0,
σ̂2
ij

J
) (27)

Substituting (27) as the estimate of dij in (23)-(25) results in the

following rate region (it can be shown that this is the best that

each potential eavesdropper can do):
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Theorem 2: Using unlimited public channel in the pairwise key

sharing from the localization information, all rates in the closure

of the convex hull of the set of all key rate triples (R12, R13, R23)
that satisfy the following region, are achievable:

R12 > 0, R13 > 0, R23 > 0, (28)

R12 ≤ 1

2
E([log(1 +

d412J
2(σ̂2

12 − σ2
12)

(d212J + σ̂2
12)(2d

2
12Jσ

2
12 + σ4

12)
)]+) (29)

R13 ≤ 1

2
E([log(1 +

d413J
2(σ̂2

13 − σ2
13)

(d213J + σ̂2
13)(2d

2
13Jσ

2
13 + σ4

13)
)]+))

(30)

R23 ≤ 1

2
E([log(1 +

d423J
2(σ̂2

23 − σ2
23)

(d223J + σ̂2
23)(2d

2
23Jσ

2
23 + σ4

23)
)]+) (31)

in which E is the expectation with respect to (d12, d13, d23) and

σ̂2
ij�σ2

im+σ2
jm+Constd12,d13,d23

(
σ2
m

4d2ij
− σ2

im

4d2ijd
2
im

− σ2
jm

4d2ijd
2
jm

)

(32)

for Constd12,d13,d23 = (d12 + d13 + d23)(d12 + d13 − d23)(d13 +
d23 − d12)(d12 + d23 − d13).

Proof: The proof is given in Appendix B in [18].

In the following, we give an outer bound on the key capacity

region in the described setup for unlimited public channel based

on the explicit outer bound in [11].

Corollary 1: Using unlimited public channel in the pairwise

key agreement from localization information, the following is an

outer bound on the pairwise key capacity region:

R12 > 0, R13 > 0, R23 > 0, R12 ≤ 1

2
log(1 +

E(σ̂2
12)

σ2
12

) (33)

R13 ≤ 1

2
log(1 +

E(σ̂2
13)

σ2
13

) (34)

R23 ≤ 1

2
log(1 +

E(σ̂2
23)

σ2
23

) (35)

in which E is expected value with respect to (d12, d13, d23) and

σ̂2
ij is defined as (32).

Proof: The proof is given in Appendix C [18].

B. rate-limited public channel

In this case, the information sent by the users over the public

channel should be subject to the respective rate constraints. In

particular, a noisy version of the observation at each user can be

considered for the key generation. To apply this constraint, we

set:

Sij = d̃ij +Dij (36)

in Theorem 1 where Dij ∼ N (0, σ′2
ij). The noises Dij are

independent of each other and of all the observations. In fact

Sij is a noisy version of d̃ij where its related information can be

sent by user i through the public channel with rate constraint Ri.

It should be noted that in the case of rate-limited public channel,

we can not assume one-way communication between each pair

and we need to consider the general two-way communications

to derive the largest rate region. By considering all the auxiliary

random variables of Theorem 1 as (36) and applying the rate

constraints in (10)-(16) in Theorem 1, we deduce:
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Fig. 3: inner and outer bounds on R12 and R13

Theorem 3: Using public channels with rates (R1, R2, R3),
respectively, at users 1,2,3 in the pairwise key sharing from
localization information, the pairwise key rate region on the top
of the next page is achievable which is subject to the constraints:

1

2
E(log(1 +

(2d212J + σ2
12)σ

2
12

(d212J + σ2
12)σ

′2
12

) + log(1 +
(2d213J + σ2

13)σ
2
13

(d213J + σ2
13)σ

′2
13

)) ≤ R1

1

2
E(log(1 +

(2d212J + σ2
12)σ

2
12

(d212J + σ2
12)σ

′2
21

) + log(1 +
(2d223J + σ2

23)σ
2
23

(d223J + σ2
23)σ

′2
23

)) ≤ R2

1

2
E(log(1 +

(2d213J + σ2
13)σ

2
13

(d213J + σ2
13)σ

′2
31

) + log(1 +
(2d223J + σ2

23)σ
2
23

(d223J + σ2
23)σ

′2
32

)) ≤ R3

(37)

Proof: The proof is given in Appendix B in [18].

V. NUMERICAL RESULTS

In this section, numerical evaluation of the results in Sections

IV-A and IV-B is given. We assume that at each time slot, all

users’ locations are characterized by i.i.d. circularly symmetric

zero mean, unit variance Gaussian random variables. First we

consider unlimited public channel case. We set σ2
13 = σ2

23 =
σ2
1 = σ2

2 = σ2
3 = 0.1 and plot the key rates as functions of

σ2
12. Because of symmetry, the bounds on the rates R13 and R23

are the same and hence, we analyse one of them. In Fig. 3, the

inner and outer bounds on key rates R12 and R13 are shown

as functions of σ2
12. Clearly the bounds on R12 decrease as σ2

12

increases, while the bounds on R13 increase with the growth of

σ2
12. However, for small values of σ2

12, the bounds on R12 are

more affected compared to the bounds on R13.

Then, we analyse the key rate region in the rate-limited public

channel case. We set R1 = .5, R2 = .2, R3 = .8 and σ2
12 =

σ2
13 = σ2

23 = σ2
1 = σ2

2 = σ2
3 = 0.1. In order to clarify the

rate region, we project the 3-D region into three 2-D regions. As

we discussed in Section IV-B, in the case of rate-limited pubic

channel, we have two-way communication between each pair.

Each user splits its available public channel rate to share keys

with the other users while the public channel rates of the other

users affect this splitting. As shown in Fig. 4–6, the rate regions

are not necessarily rectangular in contrast to the case of unlimited

public channel. Obviously, the achievable rates are significantly

smaller than the corresponding values in Fig. 3 where unlimited

public channel is assumed (respective rates at Fig. 3 for σ2
12 =

0.1).
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R12 > 0, R13 > 0, R23 > 0, (38)

R12 ≤
1

2
E([log(1 +

d412J2(σ̂2
12 − σ2

12)

(d212J + σ̂2
12)(d212J(2σ2

12 + σ
′2
12) + (σ2

12 + σ
′2
12)σ2

12)
)]
+

+ [log(1 +
d412J2(σ̂2

12σ
′2
12 − σ2

12(σ2
12 + σ

′2
12))

(d212J(σ̂2
12 + σ2

12 + σ
′2
12) + σ̂2

12(σ2
12 + σ

′2
12))(d212J(2σ2

12 + σ
′2
21) + (σ2

12 + σ
′2
21)σ2

12)
)]
+

)

R13 ≤
1

2
E([log(1 +

d413J2(σ̂2
13 − σ2

13)

(d213J + σ̂2
13)(d213J(2σ2

13 + σ
′2
13) + (σ2

13 + σ
′2
13)σ2

13)
)]
+

+ [log(1 +
d413J2(σ̂2

13σ
′2
13 − σ2

13(σ2
13 + σ

′2
13))

(d213J(σ̂2
13 + σ2

13 + σ
′2
13) + σ̂2

13(σ2
13 + σ

′2
13))(d213J(2σ2

13 + σ
′2
32) + (σ2

13 + σ
′2
31)σ2

13)
)]
+

)

R23 ≤
1

2
E([log(1 +

d423J2(σ̂2
23 − σ2

23)

(d223J + σ̂2
23)(d223J(2σ2

23 + σ
′2
23) + (σ2

23 + σ
′2
23)σ2

23)
)]
+

[log(1 +
d423J2(σ̂2

23σ
′2
23 − σ2

23(σ2
23 + σ

′2
23))

(d223J(σ̂2
23 + σ2

23 + σ
′2
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23(σ2
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′2
23))(d223J(2σ2

23 + σ
′2
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′2
32)σ2
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)]
+

)
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Fig. 4: R12 −R13 with R1 = .5, R2 = .2,R3 = .8

Fig. 5: R12 −R23 with R1 = .5, R2 = .2,R3 = .8

VI. CONCLUSION

The source model of pairwise secret key sharing was investigated

with rate-limited pubic channel between three users. An inner

bound on the key capacity region was derived for the general

case of discrete memoryless source observations. We considered

a setup in which the users exploited the distance between

themselves as correlated observations to generate keys. Inner and

Fig. 6: R13 −R23 with R1 = .5, R2 = .2,R3 = .8

outer bounds on the key capacity region were analyzed for the

case of i.i.d. Gaussian observations. As a future work, we analyze

the problem of pairwise key sharing between arbitrary number

of users who access to limited public channel.
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