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Abstract—This paper reviews recent results from the UCLA
Communication Systems Laboratory on the use of incremental
redundancy. For channels with ACK/NACK feedback, this paper
reviews how the transmission lengths used for communicating in-
cremental redundancy should be optimized under the constraint
of a limited number of incremental redundancy transmissions.
For broadcast channels, this paper reviews optimization of the
trade-off between packet-level erasure coding and physical-layer
channel coding in the context of block fading with diversity that
grows with bocklength.

I. INTRODUCTION

This invited talk reviews two results [1], [2] optimizing
the use of incremental redundancy. In systems with feedback,
incremental redundancy adapts the coding rate to the the ac-
cumulated information density (the "instantaneous capacity")
of the channel allowing the Shannon limit to be approached
at much shorter average blocklengths than those required for
the accumulated information density to concentrate around the
Shannon capacity [3], [4], [5], [6], [7], [8]. In systems without
feedback, incremental redundancy can provide a "fountain" of
information from which a receiver need only "drink" what
is needed to reliably identify the desired message [9], [10],
[11]. For each of these two scenarios, this paper reviews
optimization techniques that improve performance.

II. TRANSMISSION LENGTHS FOR ACK FEEDBACK

ACK/NACK feedback is non-active in the sense that the
feedback does not change what is transmitted but rather only
indicates whether additional transmissions are needed. For
channels with ACK/NACK feedback, the sequential differen-
tial optimization (SDO) approach of [1] optimizes the trans-
mission lengths used to communicate incremental redundancy.
This optimization maximizes throughput under the constraint
of a limited number of incremental redundancy transmissions.

A. The Normal Approximation

SDO utilizes the power of the normal approximation intro-
duced in [3] that characterizes the behavior of the rate that a
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Laboratory, California Institute of Technology, under a contract with NASA
JPL Task Plan 82-17473.
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Fig. 1. Empirical complementary cumulative distribution function (c.d.f.)
and the Gaussian approximation (Q-function) corresponding to the rate RS
at which the NB-LDPC code of [1] was able to decode successfully.

channel can support at finite blocklength. Following [3], define
information density i(X,Y ) as

i(X,Y ) = log2

fY |X(y|x)

fY (y)
. (1)

The expected value of i(X,Y ) is the capacity of the chan-
nel. For the example of a BI-AWGN channel with noise
zk, i(X,Y ) = 1 − log2(1 + e−2(zk+1)/σ2

) = i(zk). The
accumulated information density In at the receiver after n
symbols is

In =
n∑
k=1

i(zk). (2)

As pointed out by [3], (2) is a sum of independent random
variables that will converge quickly to a normal distribution
according to the central limit theorem, leading to the normal
approximation of [3].

A key result of [1] is that a normal approximation also
accurately describes the rate at which actual variable-length
codes with incremental redundancy will successfully decode.
Fig. 1 shows that for the NB-LDPC code used in [1] the
empirical complementary cumulative distribution function on
the rate at which decoding is successful is very closely
approximated by a normal distribution for this example of
the BI-AWGN channel with SNR of 2 dB. We have similarly
confirmed the accuracy of the normal approximation to predict
the rate at which decoding is successful for NB-LDPC codes in
higher-SNR AWGN channels that require larger constellations
and in fading channels with channel state information known
at the receiver.
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Fig. 1 shows that RS is well-approximated by a Gaussian
with mean µS = E(RS) and variance σ2

S = Var(RS):

fRS (r) =
1√

2πσ2
S

e
− (r−µS)

2

2σ2
S . (3)

The c.d.f. of the blocklength NS at which decoding is success-
ful is FNS (n) = P (NS ≤ n) = 1 − FRS (k/n). Taking the
derivative of FNS using the Gaussian approximation of FRS
produces the following “reciprocal-Gaussian" approximation
for p.d.f. of NS :

fNS (n) =
k

n2
√

2πσ2
S

e
− (kn−µS)2

2σ2
S . (4)

B. Sequential Differential Optimization

SDO uses the tight Gaussian approximation discussed above
to optimize the sequence of blocklengths {N1, N2, . . . , Nm}
to maximize the throughput. Suppose that the number of
incremental transmissions is limited to m. An accumulation
cycle (AC) is a set of m or fewer transmissions and decoding
attempts ending when decoding is successful or when the
mth decoding attempt fails. If decoding is not successful after
the mth decoding attempt, the accumulated transmissions are
forgotten and the process starts over with a new transmission
of the first block of N1 symbols. From a strict optimality
perspective, neglecting the symbols from the previous failed
AC is sub-optimal. However, the probability of an AC failure
is sufficiently small that the performance degradation is neg-
ligible. Neglecting these symbols greatly simplifies analysis.

The cumulative blocklength Nj at the jth stage is simply
the sum of the first j increment lengths. Using the p.d.f. of NS
from (4) we can compute the probability that the decoder will
need a particular incremental transmission. For Nj < Nj+1,
the probability of a successful decoding attempt at blocklength
Nj+1 but not at Nj is∫ Nj+1

Nj

fNS (n)dn =

∫ Nj+1

Nj

k

n2
√

2πσ2
S

e
− (kn−µS)

2

2σ2
S dn (5)

= Q

(
rj+1 − µS

σS

)
−Q

(
rj − µS
σS

)
, (6)

where rj = k/Nj .
Define the throughput as RT = E[K]

E[N ] , where E[N ] repre-
sents the expected number of channel uses and E[K] is the
effective number of information bits transferred correctly over
the channel. The expression for E[N ] is

E[N ] = N1Q

(
k
N1
− µS
σS

)
(7)

+

m∑
j=2

Nj

[
Q

(
k
Nj
− µS
σS

)
−Q

(
k

Nj−1
− µS

σS

)]
(8)

+Nm

[
1−Q

(
k
Nm
− µS
σS

)]
. (9)

The first term (7) shows the contribution to the expected
blocklength from successful decoding on the first attempt.

Q

(
k
N1
−µS
σS

)
is the probability of decoding successfully with

the initial block of N1. Similarly, the terms in the summation
of (8) are the contributions to the expected blocklength from
decoding that is first successful at total blocklength Nj for
j ≥ 2 (at the jth decoding attempt). Finally, the contribution
to expected blocklength from not being able to decode even at
Nm is (9). Even when the decoding has not been successful
at Nm, the channel has been used for Nm channel symbols.
The expected number of successfully transferred information
bits E[K] is

E[K] = kQ

(
k
Nm
− µS
σS

)
, (10)

where Q
(

k
Nm
−µS
σS

)
is the probability of successful decoding.

Note that E[K] depends only on k and Nm. In fact, E[K] ≈ k
and is not sensitive to the specific choice of Nm for reasonably
large values of Nm.

The initial blocklength is N1 and we seek the optimal
blocklengths {N1, N2, . . . , Nm} to maximize the throughput.
Over a range of possible N1 values, the SDO technique
introduced in [1] selects {N2, . . . , Nm} to minimize E[N ]
for each fixed value of N1 by setting derivatives to zero as
follows:

∂E[N ]

∂Nj
= 0, ∀j = 1, . . . ,m−1 . (11)

For each j ∈ {2, . . . ,m}, the optimal value of Nj is found
by setting ∂E[N ]

∂Nj−1
= 0, yielding a sequence of relatively simple

computations. In other words, we select the Nj that makes our
previous choice of Nj−1 optimal in retrospect.

For j > 2, ∂E[N ]
∂Nj−1

= 0 depends only on {Nj−2, Nj−1, Nj}
as follows:

∂E[N ]

∂Nj−1
=Q

( k
Nj−1

−µ
σ

)
+(Nj−1−Nj)Q′

( k
Nj−1

−µ
σ

)
−Q

( k
Nj−2

−µ
σ

)
.

Thus we can solve for Nj as

Nj =

Q

( k
Nj−1

−µ

σ

)
+Nj−1Q

′
( k
Nj−1

−µ

σ

)
−Q

( k
Nj−2

−µ

σ

)
Q′
( k
Nj−1

−µ

σ

) . (12)

For each possible value of N1, SDO can be used to produce
an infinite sequence of Nj values that solve (11) for any choice
of m. The sequence does not depend on m, only N1. Each
such sequence is an optimal sequence of increment lengths for
a given density of decoding attempts on the time axis. As N1

increases, the density of decoding attempts decreases, lowering
system complexity. Using SDO to compute the optimal m
decoding points is equivalent to selecting the most dense SDO-
optimal sequence that when truncated to m points still meets
the frame-error-rate target.
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Fig. 2. Throughput as a function of the number m of incremental transmis-
sions permitted.

C. Approaching Capacity at Short Blocklengths with Feedback

Fig. 2 shows the resulting throughputs obtained by using
SDO to find the optimal increment lengths for values of m
in the range of 2 < m < 20 for the target FER of 10−3 for
the NB-LDPC code of [1] for k = 96 message bits. Fig. 2
illustrates that with m = 10 decoding points, a system can
closely approach the performance of a system that has m =∞,
which is the limiting case where decoding is attempted and
feedback of an ACK/NACK is required after every received
symbol.

Using SDO, variable-length codes with average block-
lengths of around 500 symbols can closely approach capacity
in theory and in practice as demonstrated in [1]. Fig. 3
illustrates the example of a binary-input (BI) additive white
Gaussian noise (AWGN) channel with frame error rate (FER)
required to be less than 10−3. For a system transmitting k
symbols at an average blocklength of λ, the throughput Rt is
defined by Rt = k/λ. For reference, Fig. 3 shows the curves of
possible throughput Rt as a function of λ for some values of k.
The performance characterization for fixed-blocklength codes
is from [3] and is based on the normal approximation, which
is shown in [3] to be accurate for blocklengths as small as 100
symbols. The computation of the random coding lower bound
on the performance of variable-length codes with feedback is
based on the analysis in [4].

Fig. 3 shows curves from [1], [5], [6] that show simulation
results that approach or exceed the performance promised by
[4] in the range of average blocklengths below 500 bits. For
values of k = 16, k = 32, k = 64, and k = 89 these
throughput results exceed Polyanskiy’s random coding lower
bound. As the average blocklength becomes larger, the random
coding lower bound is more predictive.

Note that variable-length codes with feedback approach
capacity at very short blocklengths. In Fig. 3, the random-
coding lower bound for a system with feedback is 0.27 dB
from the Shannon limit for k = 280 with a blocklength of
less than 500 bits. Looking at implemented codes for k = 280
in Fig. 3, the m = ∞ non-binary LDPC (NB-LDPC) code
is 0.53 dB from Shannon limit. Using SDO, the NB-LDPC
non-active feedback system in Fig. 3 that uses ten rounds of
single-bit feedback to operate within 0.65 dB of the Shannon
limit with an average blocklength of less than 500 bits.
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Fig. 3. Approaching capacity at short blocklengths using feedback.

III. PACKET-LEVEL VS. PHYSICAL LAYER REDUNDANCY

Consider a broadcast setting that uses a hybrid of packet-
level erasure coding and physical layer coding to provide a
stream of information with the goal of each receiver decoding
the desired message at the earliest opportunity. There is a
trade-off between using available redundancy for additional
packets in a packet-level erasure code or simply for additional
physical-layer code symbols.

As the amount of available redundancy grows, the work of
[12] shows that in several different block fading scenarios the
physical layer coding rate decreases ultimately to zero while
the packet-level erasure coding rate does not. This indicates
that at some point incremental redundancy should be directed
to the physical layer rather than additional packet-level erasure
coding. This paper reviews the recent work [2] that studies
the this hybrid coding approach using a proportional diversity
block fading model (in which diversity increases linearly with
blocklength).

A. The Channel Model and Optimization Problem

Consider a transmitter and a receiver communicating over a
fading channel [13]. The one-dimensional channel is modeled
as Y = HX+Z where X is the transmitted symbol, Y is the
received symbol, H is the fading coefficient, and Z is i.i.d.
additive white Gaussian noise (AWGN) with variance σ2 and
mean 0. We assume the channel is Rayleigh with E

[
H2
]

= 1,
Z has unit variance, i.e. σ2 = 1. Let the average transmit
power be E

[
X2
]

= P . Then, the instantaneous signal-to-
noise ratio (SNR) when H = h is h2P . For this Rayleigh
fading channel, SNR (denoted γ) is exponentially distributed
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with parameter 1
P that depends only on the average transmit

power. Note that, γ has a mean of P .
A message consisting of m packets with k nats of informa-

tion per packet is to be transmitted with a low probability of
message error q; this is the probability that the receiver fails
to recover all the m packets. The transmitter uses the channel
for T units of time for an overall code rate of mk

T . It performs
erasure coding across the m packets at a rate RE and codes
each resultant packet at a channel-coding rate RC such that

mk

T
= RERC . (13)

That is, the m packets are first coded using an erasure code
at rate RE to yield m

RE
packets. Note that, for erasure coding,

RE has to satisfy RE ≤ 1. To transmit each packet, the
transmitter uses a channel code at rate RC [nats/channel-use]
so that the resultant codeword block-length of each packet
is k

RC
. For a fixed average transmit power, our objective is to

pick the value of RC (and thus RE) that optimizes an objective
function. The unit of channel-coding rate is “nats/channel-use"
for convenience. The receiver is assumed to know the fading
coefficient H while the transmitter does not.

The proportional diversity (PD) model introduce a pa-
rameter lf , which describes the length of a fade. With the
block-length being k

RC
, the number of block fades FP in a

transmitted codeword of a system with PD block fading of
fade lengths lf is

FP =

⌈
k

RC lf

⌉
. (14)

With PD block fading, long codewords benefit from an inher-
ent increase in diversity. For this work, we assume that each
block-fading event is independent, i.e. H assumes i.i.d. values
across different block fades.

The receiver sees m
RE

= RCTk
−1 packets from the channel.

The number of packets that the decoder of the erasure code
requires to recover the message, denoted m̂ ≥ m, depends
upon the erasure code. For Reed-Solomon erasure codes, m̂ =
m; for fountain codes such as a Raptor code, m̂ > m typically.
Thus, the probability of message error q can be written using
the binomial distribution as

q =
m̂−1∑
i=0

(
RCTk

−1

i

)
(1− pe)i p

(RCTk−1−i)
e . (15)

In the above expression, pe denotes the probability that a
packet is not decoded successfully (and declared an erasure)
upon reception from the channel; this is called the probability
of packet erasure. Owing to our assumption that the channel
codes in the system operate close to capacity with zero block-
error probability when the Shannon capacity exceeds the
attempted rate, pe constitutes only one event: fading outage
[14].

The binomial sum in (15) can be computed numerically
only for small values of RCTk−1. Hence, we approximate
the random variable that denotes the number of packets
successfully decoded by the channel decoder using the Central

Limit Theorem (CLT), and obtain the Gaussian approximation
for q [12] as

q ≈ Φ

[
(m̂− 1)−RCTk−1(1− pe)√

RCTk−1pe(1− pe)

]
, (16)

where Φ(x) is the value of the c.d.f. of the standard normal
random variable at x ∈ R.

To summarize, the objective is to minimize the message-
error probability q in (15) via (16), where pe is also a function
of RC . Writing the minimization problem in terms of RC ,
RE can be obtained as RE = mk

TRC
. Hence, the optimization

problem is as follows:

min
RC

Φ

[
(m̂− 1)−RCTk−1(1− pe)√

RCTk−1pe(1− pe)

]
,

s.t. pe (RC) = P

 1
k

RC lf

⌊
k

RClf

⌋∑
i=1

C (γi) +

k
RC lf

−
⌊

k
RC lf

⌋
k

RC lf

C (γlast) < (1 + ε)RC

 ,
km̂

T
≤ RC ≤

k

lf
, RCTk

−1 ∈ N.
(17)

Note that, minimizing Φ(·) is equivalent to minimizing its
argument, and the value of q need not be explicitly computed.
We have specified the dependence of pe on RC here for clarity.

As noted in [12], [15], and many previous works, the
evaluation of pe for the block-Rayleigh fading channel (or
for its PD version) is not a straightforward task. One can use
[15] or similar works for the block-Rayleigh fading channel
to compute the outage probability pe with a minuscule error.
But, our fading model complicates it further as we have a sum
of two random variables that are not identically distributed in
the expression for pe in (17). We first expand and rearrange
the terms in pe for our one-dimensional PD block-Rayleigh
fading channel with capacity-achieving codes to obtain

pe = P


⌊

k
RClf

⌋∑
i=1

Wi +

(
k

RC lf
−
⌊

k

RC lf

⌋)
Wlast <

ck

lf

 ,
(18)

where c = 2(1 + ε), Wi = log(1 + γi), Wlast = log(1 + γlast).

B. Gaussian Approximations of the Optimization Problem
Based on Gaussian approximations of pe in (18), as inspired

by [12], [2] presents four approximations to the optimization
problem (17). For numerical-search based results, [2] uses a
very low value of the margin, say ε = 0.05, to obtain c.

1) Gaussian Approximation 1 (Approx. 1): Ignoring the
contribution of Wlast in (18), we get

pe = P


⌊

k
RClf

⌋∑
i=1

Wi <
ck

lf

 . (19)
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The above can be approximated using the Gaussian CDF as

pe = Φ

 ck
lf
−
⌊

k
RC lf

⌋
µ(P )√⌊

k
RC lf

⌋
Var(P )

 . (20)

The values of µ(P ) and Var(P ), which denote the mean and
variance of log(1 + γ) with γ ∼ Exponential

(
1
P

)
, can be

computed as stated in [12]. By ignoring the flooring function,
we get Gaussian approximation 1 (Approx. 1), which is an
adaptation of (19) in [12] to PD block-Rayleigh fading:

pe = Φ

[√
k

RC lf

cRC − µ(P )√
Var(P )

]
. (21)

2) Gaussian Approximation 2 (Approx. 2): For Approx. 2,
we evaluate (20) directly. The approximation to pe that is being
made here is imprecise in the sense that, (20) evaluates to the
same value for a range of RC values; the reason being the
presence of the flooring function.

3) Gaussian Approximation 3 (Approx. 3): This approx-
imation is the evaluation of (18) with a constrained search
space that limits RC such that both m

RE
and k

RC lf
are positive

integers.
4) Gaussian Approximation 4 (Approx. 4): The Gaussian

approximation that we make here considers both the terms
in (18), making it the most appropriate. Once we find out

µ(P ) and Var(P ), we assume that
∑⌊

k
RClf

⌋
i=1 Wi is Gaussian

and also that
(

k
RC lf

−
⌊

k
RC lf

⌋)
Wlast is Gaussian. Thus, their

linear sum is another Gaussian random variable denoted WG,
which stands for Gaussian approximation of weighted average
mutual information, with

mean(WG) =
k

RC lf
µ(P ),

Var(WG) = Var(P )

[⌊
k

RC lf

⌋
+

(
k

RC lf
−
⌊

k

RC lf

⌋)2
]
.

(22)
Thus, pe for this approximation (Approx. 4) is

pe = Φ

[
ck
lf
−mean(WG)√

Var(WG)

]
. (23)

C. Results and conclusions

Fig. 4 shows an example of the optimal values of RC and
RE obtained from Approximations 1 and 4 as the overall code
rate mk

T goes to 0. As observed by Courtade and Wesel [12] for
the (fixed diversity) block-fading channel, for the PD block-
fading model that the optimal channel-coding rate goes to 0.
However, where the optimal value of RE approached a non-
zero constant less than 1 for fixed diversity in [12], under
PD block-fading it is approaching 1. With sifficient overall
redundancy, packet-level erasure coding is unnecessary in a
block fading channel with proportional diversity. Note that
rate-compatibility in this scenario is challenging because the
rate RE increases for a sufficiently low overall rate.

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

m = 50, k = 20, lf = 10, P = 5dB

O
p
ti
m
a
l
va
lu
es

R
∗ C
,R

∗ E

Overall code rate mk/T

 

 

R∗
C Approx. 1

R∗
E Approx. 1

R∗
C Approx. 4

R∗
E Approx. 4

Fig. 4. Result of optimization problem (17) as a function of overall code rate
for an example system with m = 10, k = 20, lf = 10 and P = 5 dB.
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