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Abstract—The problem of key reconciliation based on Low-
Density Parity-Check (LDPC) codes and Slepian-Wolf coding for
physical layer key generation is investigated. When using the
channel-state-information (CSI) of a reciprocal wireless channel
for key generation between two legitimate users, independent
noise components, quantization, and synchronization errors at
the end nodes give rise to key differences that need to be corrected
by sending side information. We provide a comparison of three
different quantization schemes in terms of key disagreement
rate and output probability distributions and present the log-
likelihood formulations required by a soft decision LDPC decoder
to perform key reconciliation, for the investigated quantization
methods.

I. INTRODUCTION

While computational security algorithms usually reside in
upper protocol layers and rely on the assumption of limited
processing capabilities of a potential eavesdropper, physical-
layer key generation aims at providing secrecy in the more
information-theoretic sense, as introduced by Shannon [1].
Thus, by sharing a previously known secret key, such as
a one-time pad, two legitimate users, Alice and Bob, are
able to exchange an encrypted message through an unsafe
public channel, without leaking any information to a potential
eavesdropper, Eve. As long as Alice and Bob share a secret
common source of randomness from which they can generate
a long uniformly distributed secret key, perfect secrecy is
achieved, meaning that Eve has the same chances of guessing
the original message with or without the ciphertext, or, in more
theoretical terms, the eavesdropper’s equivocation is equal to
the entropy of the message. It soon became clear that such
a common source of randomness could be provided by the
fluctuating and reciprocal nature of the wireless medium and
that the channel-state information (CSI) can be measured by
both Alice and Bob and used to generate one-time pads, thus
eliminating the problem of previous key distribution.

Since most wireless transmission standards, such as 802.11,
Bluetooth, WiMAX, ZigBee, employ time division duplexing
(TDD), probing in consecutive short time slots the forward
and the reverse channel provides the possibility of obtaining
nearly identical CSI on both sides. Such a method of key
generation, solely based on the reciprocity property of wireless
TDD systems, besides solving the problem of key distribution,
comes with the significant benefit that it does not require the

Fig. 1. System model - key reconciliation based on LDPC codes

legitimate channel between Alice and Bob to have an SNR
advantage over the eavesdropper’s channels, such as [8], [9],
nor does it assume Alice and Bob to have information about
the channels to Eve. However, one important aspect that we
address here is that due to independent noise on both ends,
different transceiver circuitry, and quantization errors, key
mismatches are very likely to occur, leading to the necessity
of a key reconciliation scheme.

The current paper is structured as follows: Section II offers
an overview of the system model along with channel charac-
terization aspects. In Section III, the impact of codebook sizes
and possible quantization schemes is discussed in terms of key
disagreement rates for the case when no key reconciliation
takes place between the users. An exact formulation of the
log-likelihood ratios as required, e.g., by LDPC decoding, is
detailed in Section IV, for the quantization schemes analyzed
in the previous section.

II. SYSTEM DESCRIPTION

A point from the channel distribution is measured by both
Alice and Bob, disturbed by different noise components. The
analog value obtained by Alice, is quantized and assumed
to be correct. Employing Slepian-Wolf coding [13], Alice
compresses her vector of quantized key symbols and sends
Bob additional side information (parity or syndrome bits), as
illustrated in Fig. 1. Bob obtains his own vector of channel
estimates, along with the side information, possibly corrupted,
sent by Alice, and proceeds to computing the log-likelihood
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ratios required, e.g., for an LDPC decoder, in order to obtain
the exact same key Alice generated after her quantization step.
Although the reconciliation scheme presented in Fig. 1 shows
an implementation with LDPC codes, the log-likelihood ratios
presented in Section IV can be utilized by any soft decision
non-binary decoder.

For key generation based on the channel-state information
(CSI), a few conditions must be ensured. First, the channel has
to be reciprocal, that is, if we denote by hB a forward channel
sample from Alice to Bob, and by hA the corresponding
reverse channel sample from Bob to Alice, then hA = hB .
However, their estimates of the channel, ĥA and ĥB , might
differ due to independent noise. Reciprocity can be assumed
in the case of TDD systems when the channel is quasi-static,
i.e., the coherence time of the channel is larger than the
measurement time. Thus, the vectors of estimates, ĥA and
ĥB can be obtained during an initial measurement phase by
sending pilot signals in consecutive TDD time slots.

A second assumption is that the channel follows a bivariate
normal distribution. A Gaussian channel distribution, as shown
in [2], [3], minimizes the number of vulnerable bits. If the
wireless channel is static or a line-of-sight (LOS) channel, the
randomness present is not sufficient such that the central limit
theorem holds, leading to a normal distribution of the CSI,
which would be ideal for key generation. However, since the
wireless channel is also dependent on the radiation patterns of
the antennas, random variations in the channel can be induced
by using reconfigurable aperture antennas (RECAPs) and
changing the capacitive loads at the reconfigurable elements.
It has been shown that for a high number of RECAP antenna
elements (e.g. 24), and a large number of states as discussed
in [2], [7], the channel distribution is very close to a complex
Gaussian, with the real and imaginary parts independent and
identically distributed. Further details on the the validity of this
assumption, RECAP configuration, as well as measurements
description can be found in [4], [5]. For the rest of this
paper, we will assume a circular symmetric Gaussian channel
distribution with zero mean and variance σ2

ch.
A third assumption refers to the antenna separation. Herein,

we assume a sufficient separation between Eve and Alice and
Bob such that the legitimate and the eavesdropper channels
are not correlated. Recent studies [12] have shown that an
antenna separation of half a wavelength is not sufficient, and
that for the rate of the number of vulnerable key bits to the total
number of key bits to go to zero, an eavesdropper separation
of several wavelengths is necessary [15].

III. QUANTIZATION

In order to study the effects of different quantization meth-
ods on the overall key disagreement rate, we first consider the
case when no reconciliation is performed, and each legitimate
user obtains a key by independently quantizing its own analog
noisy CSI measurements. We will refer here to the symbol
mismatch rate as the probability that given one sample mea-
surement ĥA at Alice and the corresponding measurement ĥB

at Bob, they are not quantized to the same region by both
users.

Points from the channel distribution that are very close
to quantization boundaries are very likely to result in a
key mismatch. If a channel value h falls within a certain
region Ri, but very close to a quantization boundary, its
noisy measurements ĥA and ĥB might simply jump across
the quantization threshold to a neighboring region. Both the
quantization algorithm and the size of the codebook Nq ,
greatly impact the overall symbol agreement rate between
Alice and Bob.

(a) (b) (c)

Fig. 2. Three quantization methods - (a) concentric quantization regions; (b)
circles and slices; (c) Linde-Buzo-Gray algorithm, Nq = 4

0 5 15 35
10

−3

10
−2

10
−1

10
0

S
y
m

b
o
l 
M

is
m

a
tc

h
 P

ro
b
a
b
ili

ty

SNR(dB)

20 25 30 4010

Concentric circles quantization (N
q
=4)

Circles and slices quant. (N
q
=4)

LBG quantization (N
q
=4)

Concentric circles quantization (N
q
=32)

LBG quantization (N
q
=32)

Fig. 3. Symbol mismatch probability between Alice and Bob for different
quantization methods (no reconciliation)

We consider three vector quantizations schemes, the first
based on concentric circles, as illustrated in Fig. 2-(a), the
second based on concentric circles and slices, as shown
in Fig. 2-(b), and the third based on the Linde-Buzo-Gray
algorithm [5], [14], leading to the quantization areas shown
in Fig. 2-(c), all for a codebook size of Nq = 4. The radii
of the concentric circles in the first method are computed
such that the number of measurement points end up uniformly
distributed across all regions. The exact values are provided
in Table I. While such a method leads to a simplification of
the LLR formulation, as it will be explained in Section IV,
when the codebook size is increased, a severe performance
degradation in terms of symbol-error-ratio (SER), or symbol
mismatch rate, is noticed. This is a direct consequence of
the shape of the quantization regions. The narrower a region
is, the more likely it is that noisy measurements will end
up quantized to neighboring regions. Increasing the number
of regions Nq in the first quantization example will lead to
even narrower regions, thus, such quantization method will be
highly sensitive in terms of noise, leading to a high number
of errors even at high signal-to-noise (SNR) ratios.
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TABLE I
QUANTIZATION LIMITS; Nq = 4; σ =

√
σ2
ch + σ2

A

METHOD (a) METHOD (b)
Region rmini rmaxi rmini rmaxi θmini θmaxi
R1 0 0.758 σ 0 0.758 σ 0 2π
R2 0.758 σ 1.177 σ 0.758 σ ∞ 0 2π

3
R3 1.177 σ 1.665 σ 0.758 σ ∞ 2π

3
4π
3

R4 1.665 σ ∞ 0.758 σ ∞ 4π
3

2π

The second quantization method introduces the so-called
“slices” as a way to mitigate this effect and counteract the error
performance degradation. This quantization method also leads
to a uniform distribution of the key symbols, which is desirable
for secrecy concerns, i.e., not to provide any redundancy to
a potential eavesdropper. The boundaries for the four regions
Ri illustrated in Fig. 2-(c) are also provided in Table I, in
terms of radii (rmini , rmaxi) and angles (θmini , θmaxi), in
polar coordinates. As seen in Fig. 3, this method shows a
better performance in terms of symbol mismatch probability,
as compared to the previous one, with an error reduction from
17% to 9% at an SNR of 20 dB, and from 1.78% to 0.95%
at 40 dB, for the case of four quantization regions.

The third algorithm for channel quantization is the Linde-
Buzo-Gray (LBG) vector quantization scheme, as described in
[14]. The LBG algorithm is a sample version of the Lloyd-
Max quantizer that does not require a closed form pdf of the
channel distribution, but only the measurement samples. Given
a length M sequence of 2-dimensional channel samples and
the desired number of code vectors Nq , the algorithm delivers
the final codebook and the corresponding quantization region
for each codeword vector.

The difference in mismatch rate between the first and
third quantization method also becomes much more significant
when increasing the size of the codebook vector. For an
SNR of 20 dB and Nq = 32 quantization regions, we
notice a probability of 75% that Alice and Bob quantize to
different regions when using first method (concentric circles),
as compared to 24% when using the LBG algorithm.

Once such partitioning boundaries have been determined, a
Gray-like bit mapping can be assigned to the regions.

A. Key Probability Distribution

The one-time pad perfect secrecy is achieved under two
important assumptions, namely that the pad length is at least
the size of the message to be encrypted, and that the key
is selected at random with a uniform distribution. Thus,
achieving a low SER is not sufficient, provided the uniform
distribution requirement is not entirely satisfied. Since the key
distribution is a parameter that is assumed to be known to the
eavesdropper, a non-uniform distribution will result in some
keys being more probable than others, facilitating potentially
successful analytical attacks. When the output distribution
provided by the quantizer is not uniform, the perfect secrecy
condition requiring the eavesdroppers equivocation to be equal
to the entropy of the message is not satisfied. While the first
two quantization methods are constructed with a circularly
symmetric zero-mean Gaussian input distribution in mind,
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Fig. 4. Distribution of measurement points across Nq = 32 Voronoi regions
resulting from concentric circles quantization and LBG quantization
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Fig. 5. Distribution of measurement points across Nq = 4 Voronoi regions
resulting from concentric circles quantization and LBG quantization

with variance σ, and, by construction, deliver a uniform output
distribution of the symbols, regardless of the codebook size1,
the LBG algorithm can be used for any arbitrary distribution.
However, we show in Fig. 5 that the LBG quantization fails
to deliver an exact uniform output distribution, even for small
codebook lengths, i.e., Nq = 4. The non-uniformity of the
distribution becomes even more pronounced for higher alpha-
bets. Figure 4 shows the distribution of measurement points
across 32 Voronoi regions delivered by the LBG algorithm.
The non-uniformity can be expressed as a rate loss which we
have taken into account in Fig. 3 by a corresponding right shift
of the LBG curves. The rate loss corresponds to ideal source
coding to make the distribution uniform. Overall, the best error
performance among the three cases analyzed is provided by
the second quantization method for the case of four regions,
with only a slight advantage over the LBG algorithm.

IV. KEY RECONCILIATION

For notation simplicity, we will denote an analog complex
measurement estimate at Alice, ĥA, by a = xA + jyA, and a
channel estimate at Bob, ĥB , by b = xB + jyB , where (x, y)
denote the real and imaginary parts, respectively. These values
represent the AWGN-disturbed measurements of the ideal
channel sample c = xch+jych, at Alice and Bob, respectively.
The input to the LDPC decoder consists of two sets of log-
likelihood ratios (LLRs), one for the parity symbols received
from Alice, and one for Bob’s own estimates of the channel,
assuming Alice’s key bits as “correct” reference. In general,

1We only provide here a table of quantization boundaries for four quan-
tization regions, although the limits for higher codebook sizes can be easily
computed by integrating the complex Gaussian input distribution and imposing
equal ”volumes“ in each region, i.e, uniform output distribution.
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Fig. 9. Polar coordinates trans-
formation; Given channel mea-
surement c, b represents Bob’s
noisy measurement of c. In polar
coordinates c is represented by
(rch, θch).

the LLR for a measurement value at Bob can be computed
according to (1), where p(b|a ∈ Ri) is the probability density
function of Bob’s measurement b given that Alice quantized
its corresponding value a to region Ri.

LLR(b) = ln
p(b|a ∈ Ri)
p(b|a /∈ Ri)

(1)

Previous works, such as [13], consider a noiseless environment
for the transmission of side information, or simply consider
the same formulation for the information bits, as for the parity
(syndrome) bits that are transmitted over the physical channel.
This is, however, inaccurate, and leads to sub-optimum decod-
ing.

While the LLR computation for the parity bits is trivial (2),
since they might just experience a standard AWGN channel
with variance σ2

B , the calculation of the LLRs for Bob’s
information bits is much more problematic, due to the fact
that Bob’s decoding of the information bits is subject to what
Alice quantized to.

LLR parity(b) = ln

e
− (b−1)2

2σ2
B

e
− (b+1)2

2σ2
B

 =
2b

σ2
B

. (2)

The LLR formulation for the information bits at Bob has
to account for the fact that Alice measures the channel with
error determined by σ2

A, and then quantizes. Nevertheless,
Bob assumes that whatever Alice quantized to represents the
correct key and it has to reconcile with her values. In [6],
we have shown that the general formula for the LLR for the
information symbols, assuming a uniform distribution of the
quantized measurements across Nq regions, to be as follows

LLR(b) = ln
(Nq − 1)P (a ∈ Ri|b)

P (a /∈ Ri|b)
, (3)

where P (a ∈ Ri|b) represents the probability that Alice
quantized its value a to region Ri, given current measurement
value b at Bob. In more intuitive terms, Eq. (3) is a measure
of the log-likelihood that given a noisy value of the channel
at Bob, Alice quantized her noisy counterpart to a certain
region Ri and not the others. Now, by iterating through all the
possible regions and computing LLRs for b, a vector of LLRs
is produced for every variable node of the LDPC decoder
that is associated with the channel measurements (information
symbols). In [6] we provide a complete derivation of the exact
LLR formulation when the channel distribution is a circularly
symmetric Gaussian.

Equation (4) shows the LLR expression when the concentric
circles quantization is used. For this specific quantization
method, a transformation to polar coordinates, such as the
one shown in Fig. 9, allows us to express parts of the LLR
expression with modified Bessel functions of the first kind (J0)
as given by (4). Such a simplification leads to a significant re-
duction in the number of numerical integrations. However, this
is only possible for the concentric circles quantization, which
comes with the disadvantage of a worse SER performance
than any of the other two methods. The LLR for the slices
quantization is given in (5), while the one for arbitrary Voronoi
regions is given by (6). The LLRs in (4) – (6) are functions of
b that can be viewed as resulting from the convolution of the
noise and channel densities, and can be computed in advance
by numerical integration, and stored, for a wide range of values
of b values and SNRs, in order to speed up the LDPC decoder.

V. NUMERICAL RESULTS

In this section, we provide some numerical results for the
intrinsic LLRs required by the LDPC decoder on Bob’s side,
necessary for key reconciliation, given the three different types
of quantization discussed.

We show in Fig. 6 the numerical results obtained for the
log-likelihood ratios for the first type of quantization, for an
SNR=14 dB, where the SNR is defined as σ2

ch/σ
2
B . Figure 6

shows for every possible value of b, in Cartesian coordinates,
(xB , yB), the probability that Alice quantized to region R3

and not to any other regions. As expected, for values of b
that would be also in region R3 and fall sufficiently far away
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LLR(a)(rB) = ln

(Nq − 1)
∞∫
0

rmaxi∫
rmini

rArche
− r

2
ch+r2A
2σ2
A

− r
2
ch+r2B
2σ2
B

− r2ch
2σ2
ch · J0(− rchrAσ2

A
) · J0(− rchrBσ2

B
)drAdrch

∑
Rk,k 6=i

∞∫
0

rmaxk∫
rmink

rArche
−
r2
ch

+r2
A

2σ2
A

−
r2
ch

+r2
B

2σ2
B

−
r2
ch

2σ2
ch · J0(− rchrAσ2

A
) · J0(− rchrBσ2

B
)drAdrch

(4)

LLR(b)(rB , θB) = ln

(Nq − 1)
∞∫
0

2π∫
0

rmaxi∫
rmini

θmaxi∫
θmini

rArche
− r

2
ch+r2A−2rchrA cos(θch−θA)

2σ2
A

− r
2
ch+r2B−2rchrB cos(θch−θB)

2σ2
B

− r2ch
2σ2
ch dθAdrAdθchdrch

∑
Rk,k 6=i

∞∫
0

2π∫
0

rmaxk∫
rmink

θmaxk∫
θmink

rArche
−
r2
ch

+r2
A

−2rchrA cos(θch−θA)

2σ2
A

−
r2
ch

+r2
B

−2rchrB cos(θch−θB)

2σ2
B

−
r2
ch

2σ2
ch dθAdrAdθchdrch

(5)

LLR(c)(xB , yB) = ln

(Nq − 1)
∞∫
−∞

∞∫
−∞

∫
Riy

∫
Rix

e
− (xA−xch)2+(yA−ych)2

2σ2
A

− (xch−xB)2+(ych−yB)2

2σ2
B

− (x2ch+y2ch)

2σ2
ch dxA dyA dxch dych

∑
Rk,k 6=i

∞∫
−∞

∞∫
−∞

∫
Rky

∫
Rkx

e
− (xA−xch)2+(yA−ych)2

2σ2
A

− (xch−xB)2+(ych−yB)2

2σ2
B

−
(x2
ch

+y2
ch

)

2σ2
ch dxA dyA dxch dych

(6)

from any quantization boundaries, the LLR is maximum. As
b takes values closer to the quantization thresholds and into
other regions, the LLR decreases to a minimum. This is the
case for regions R1,R2, and R4. For the second quantization
method (b), Fig. 7 shows the log-likelihood plot for one of
the external slices. Figure 8 shows the log-likelihood for R3,
for the case of the arbitrary Voronoi quantization regions, as
provided by the LBG algorithm. The numbering of the regions
is the one provided in Fig. 2. For our simulations, we used a
discrete grid for b with incremental values of 0.05 between
[−3.5, 3.5] for both axes.

VI. CONCLUSION

We have investigated the problem of physical-layer key
generation and reconciliation with Slepian-Wolf coding and
Low-Density Parity-Check (LDPC) codes in a wireless sce-
nario when two users measure a reciprocal channel with
independent noise on both sides. We offered an analysis on
the effect of different quantization schemes on the overall
error rate performance, or key disagreement rate, assuming
imperfect channel measurements. Our results show that for
higher codebook sizes, the Linde-Buzo-Gray quantizer does
not output a uniform distribution of key symbols, which is
of paramount importance for the secrecy aspect, and show
a possible quantization scheme that guarantees a uniform
output distribution and also provides a slightly lower key
disagreement rate than the LBG quantizer. We have further
shown the log-likelihood (LLR) formulation required by a
soft-decision LDPC decoder for key reconciliation, for each of
the quantization schemes analyzed and a circularly symmetric
complex Gaussian channel distribution.
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