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Abstract—This paper is about deriving lower bounds on the
error exponents for the two-user interference channel under
the random coding regime for several ensembles. Specifically,
we first analyze the standard random coding ensemble, where
the codebooks are comprised of independently and identically
distributed (i.i.d.) codewords. For this ensemble, we focus on
optimum decoding, which is in contrast to other, suboptimal
decoding rules that have been used in the literature (e.g., joint
typicality decoding, treating interference as noise, etc.). The
fact that the interfering signal is a codeword, rather than an
i.i.d. noise process, complicates the application of conventional
techniques of performance analysis of the optimum decoder.
Also, unfortunately, these conventional techniques result in loose
bounds. Using analytical tools rooted in statistical physics, as well
as advanced union bounds, we derive single-letter formulas for
the random coding error exponents. We compare our results with
the best known lower bound on the error exponent, and show
that our exponents can be strictly better. Then, in the second part
of this paper, we consider more complicated coding ensembles,
and find a lower bound on the error exponent associated with the
celebrated Han-Kobayashi (HK) random coding ensemble, which
is based on superposition coding.

Keywords—Random coding, error exponent, interference chan-
nels, superposition coding, Han-Kobayashi scheme, statistical
physics, optimal decoding, multiuser communication.

I. I NTRODUCTION

A. Previous Work

The two-user interference channel (IFC) models a general
scenario of communication between two transmitters and two
receivers (with no cooperation at either side), where each
receiver decodes its intended message from an observed signal,
which is interfered by the other user, and corrupted by channel
noise. The information-theoretic analysis of this model has
begun over more than four decades ago and has recently
witnessed a resurgence of interest. Most of the previous work
on multiuser communication, and specifically, on the IFC, has
focused on obtaining inner and outer bounds to the capacity
region (see, for example, [1, Ch. II.7]). In a nutshell, the
study of this kind of channel has started in [2], and continued
in [3], where simple inner and outer bounds to the capacity
region were given. Then, in [4], by using the well-known
superposition coding technique, the inner bound of [3] was
strictly improved. In [5], various inner and outer bounds were
obtained by transforming the IFC model into some multiple-
access or broadcast channel. Unfortunately, the capacity region
for the general interference channel is still unknown, although
it has been solved for some very special cases [6, 7]. The

best known inner bound is the Han-Kobayashi (HK) region,
established in [8], and which will also be considered in this
paper.

To our knowledge, [9, 10] are the only previous works
which treat the error exponents for the IFC under optimal
decoding. Specifically, [9] derives lower bounds on error
exponents of random codebooks comprised of i.i.d. codewords
uniformly distributed over a given type class, under maximum
likelihood (ML) decoding at each user, that is, optimal decod-
ing. Contrary to the error exponent analysis of other multiuser
communication systems, such as the multiple access channel
[11], the difficulty in analyzing the error probability of the
optimal decoder for the IFC is due to statistical dependencies
induced by the interfering signal. Indeed, for the IFC, the
marginal channel determining each receiver’s ML decoding
rule is induced also by the codebook of the interfering user.
This indeed extremely complicates the analysis, mostly be-
cause the interfering signal is a codeword and not an i.i.d.
process. Another important observation, which was noticed
in [9], is that the usual bounding techniques (e.g., Gallager’s
bounding technique) on the error probability fail to give tight
results. To alleviate this problem, the authors of [9], combined
some of the ideas from Gallager’s bounding technique [12]
to get an upper bound on the average probability of decoding
error under ML decoding, the method of types [13], and used
the method of distance enumerators, in the spirit of [14], which
allows to avoid the use of Jensen’s inequality in some steps.
Finally, another relevant work is [15], where lower bounds on
the error exponents of both standard and cognitive multiple-
access channels (MACs), were derived assuming suboptimal
successive decoding scheme.

B. Contributions

The main purpose of this paper is to extend the study of
achievability schemes to the more refined analysis of error
exponents achieved by the two users, similarly as in [9].
Specifically, we derive single-letter expressions for the error
exponents associated with the average error probability, for
the finite-alphabet two-user IFC, under several random coding
ensembles. The main contributions of this paper are as follows:

• Similarly as in recent works (see, e.g., [11, 16-19] and
references therein) on the analysis of error exponents, we
derive single-letter lower bounds for the random coding error
exponents. For the standard random coding ensemble, con-
sidered in Subsection II-B, we analyze the optimal decoder
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for each receiver, which is interested solely in its intended
message. This is in contrast to usual decoding techniques
analyzed for the IFC, in which each receiver decodes, in
addition to its intended message, also part of (or all) the
interfering codeword (that is, the other user’s message), or
other conventional achievability arguments [1, Ch. II.7],which
are based on joint-typicality decoding, with restrictionson the
decoder (such as, “treat interference as noise” or to “decode
the interference”). This enables us to understand whether there
is any significant degradation in performance due to the sub-
optimality of the decoder. Also, since [9] analyzed the optimal
decoder as well, we compare our formulas with those of [9],
and show that our error exponent can be strictly better, which
implies that the bounding technique in [9] is not tight. It is
worthwhile to mention that the analytical formulas of our error
exponents are simpler than the lower bound of [9].
• As was mentioned earlier, in [9] only random codebooks
comprised of i.i.d. codewords (uniformly distributed overa
type class) were considered. These ensembles are much sim-
pler than the superposition codebooks of [8]. Unfortunately,
it very tedious to analyze superposition codebooks using the
methods of [9], and even if we do so, the tightness is question-
able. In this paper, however, the new tools that we have derived
enable us to analyze more involved random coding ensembles.
Indeed, we can consider the coding ensemble used in the
HK achievability scheme [8] and derive the respective error
exponents. We also discuss an ensemble of hierarchical/tree
codes [20].
• The analysis of the error exponents, carried out in this
paper, turns out to be much more difficult than in previ-
ous works on point-to-point and multiuser communication
problems, see, e.g., [11, 16-19]. Specifically, we encounter
two main difficulties in our analysis: First, typically, when
analyzing the probability of error, the first step is to apply
the union bound. Usually, for point-to-point systems, under
the random coding regime, the average error probability can
be written as a union of pairwise independent error events.
Accordingly, in this case, it is well known that the truncated
union bound is exponentially tight [21, Lemma A.2]. This
is no longer the case, however, when considering multiuser
systems, and in particular, the IFC. For the IFC, the events
comprising the union are strongly dependent, especially due to
the fact that we are considering the optimal decoder. Indeed,
recall that the optimal decoder for the first user, for example,
declares that a certain message was transmitted if this message
maximizes the likelihood pertaining to the marginal channel.
This marginal channel1 is the average of the actual channel
over the messages of the interfering user, and thus depends on
the whole codebook of the that user. Accordingly, the overall
error event is the union of an exponential number of error
events where each event depends on the marginal channel, and
thus on the codebook of the interfering user. To alleviate this
difficulty, following the ideas of [11], we derived new upper
bounds on the probability of a union of events, which take
into account the dependencies among the events. The second
difficulty that we have encountered in our analysis is that in
contrast to previous works, applying the type class enumerator
method [14] is not simple, due to the reason mentioned above.
Using some methods from large deviations theory, we were
able to tackle this difficulty.

1The precise definition will be given in the sequel.

• Recently, in [15], the authors independently suggested lower
bounds on the error exponents of both standard and cogni-
tive multiple-access channels (MACs), assuming suboptimal
successive decoding scheme, and using the standard random
coding ensemble (considered in Subsection II-B). Although
the motivation in [15] is different, the codebook construction
and the decoding rule are the same as in the first part of
this paper, and thus, essentially, their results apply alsofor
the IFC. Now, despite the fact that the analysis in our paper
is not the same as in [15], for the standard random coding
ensemble, our lower bound coincides with that of [15]. More
importantly, as was mentioned above, we consider also the
more complicated ensemble pertaining to the HK scheme.
Accordingly, the derivation of the lower bound on the error
exponent of this ensemble is built upon the derivation of the
lower bound on the error exponent of the standard random
coding ensemble, and thus it makes useful and convenient to
start with the analysis of the latter ensemble. We emphasize
that the techniques used in [15] are not sufficient to analyzethe
ensemble pertaining to the HK scheme. Finally, we mention
that the focus in [15] was on achievable rate region, rather
than the error exponents, and thus no comparison to [9] was
provided.
• We believe that by using the techniques and tools derived
in this paper, other multiuser systems, such as the IFC with
mismatched decoding, the MAC [11], the broadcast channel,
the relay channel, etc., and accordingly, other coding schemes,
such as binning [16], and hierarchical codes [20], can be
analyzed.

C. Notation Conventions

Throughout this paper, scalar random variables (RVs) will
be denoted by capital letters, their sample values will be
denoted by the respective lower case letters, and their alphabets
will be denoted by the respective calligraphic letters, e.g. X, x,
andX , respectively. A similar convention will apply to random
vectors of dimensionn and their sample values, which will be
denoted with the same symbols in the boldface font. We also
use the notationXj

i (j > i) to designate the sequence of RVs
(Xi, Xi+1, . . . , Xj). The set of alln-vectors with components
taking values in a certain finite alphabet, will be denoted asthe
same alphabet superscripted byn, e.g.,Xn. Generic channels
will be usually denoted by the lettersP , Q, or W . We shall
mainly consider joint distributions of two RVs(X,Y ) over
the Cartesian product of two finite alphabetsX and Y. For
brevity, we will denote any joint distribution, e.g.QXY , simply
by Q, the marginals will be denoted byQX and QY , and
the conditional distributions will be denoted byQX|Y and
QY |X . The joint distribution induced byQX andQY |X will
be denoted byQX×QY |X , and a similar notation will be used
when the roles ofX andY are switched.

The expectation operator will be denoted byE {·}, and
when we wish to make the dependence on the underlying
distribution Q clear, we denote it byEQ {·}. Information
measures induced by the generic joint distributionQXY , will
be subscripted byQ, for example,IQ(X;Y ) will denote the
corresponding mutual information, etc. The divergence (or,
Kullback-Liebler distance) between two probability measures
Q and P will be denoted byD(Q||P ). The conditional
information divergence between the conditional distributions
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QY |X and PY |X , averaged overPX , will be denoted by
D(QY |X ||PY |X |PX). Logarithms are defined with respect to
(w.r.t.) the natural basis, that is,log (·) = ln (·), and finally,
for a real numberx, we denote[x]+ , max {0, x}.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. The IFC Model

Consider a two-user interference channel of two senders,
two receivers, and a discrete memoryless channel (DMC),
defined by a set of single-letter transition probabilities,
WY1Y2|X1X2

(y1y2|x1x2), with finite input alphabetsX1,X2

and finite output alphabetsY1,Y2. Here, each sender,k ∈
{1, 2}, wishes to communicate an independent messageMk ∈{
1, 2, . . . , 2nRk

}
at rateRk, and each receiver,l ∈ {1, 2},

wishes to decode its respective message. Specifically, a
(2nR1 , 2nR2 , n) codeCn consists of:

• Two message setsM1 ,
{
0, . . . , 2nR1 − 1

}
and M2 ,

{
0, . . . , 2nR2 − 1

}
for the first and second users, respectively.

• Two encoders, where for eachk ∈ {1, 2}, thek-th encoder
assigns a codewordxn

k,i , (xk,i,1, xk,i,2, . . . , xk,i,n) to each
messagei ∈ Mk.
• Two decoders, where each decoderl ∈ {1, 2} assigns an
estimateM̂l to Ml.

We assume that the message pair(M1,M2) is uniformly
distributed overM1×M2. It is clear that theoptimal decoder
of the first user, for this problem, is given by

M̂1 = arg max
i∈M1

P
(
yn1 |x

n
1,i

)
(1)

= arg max
i∈M1

e−nR2

M2−1∑

j=1

P
(
yn1 |x

n
1,i, x

n
2,j

)
(2)

whereP
(
yn1 |x

n
1,i, x

n
2,j

)
is the marginal channel defined as

P
(
yn1 |x

n
1,i, x

n
2,j

)
,

n∏

k=1

WY1|X1X2
(y1k|x1,i,kx2,j,k), (3)

and

WY1|X1X2
(y1,k|x1,i,kx2,j,k)

,
∑

y2,k∈Y2

WY1Y2|X1X2
(y1,ky2,k|x1,i,kx2,j,k). (4)

The optimal decoder of the second user is defined similarly.
Since there is no cooperation between the two receivers, the
error probabilities for the codeCn, are defined as:

Pe,i (Cn) , 2−n(R1+R2)·
∑

m1,m2

P

{

M̂i (Y
n
i ) 6= mi|M1 = m1,M2 = m2

}

, i = 1, 2.

(5)

B. The Ordinary Random Coding Ensemble

In this subsection, we consider the ordinary random coding
ensemble: For eachk ∈ {1, 2}, we select independentlyMk

codewordsxn
k,i, for i ∈ Mk, under the uniform distribution

across the type classT (PXk
), for a given distributionPXk

on Xk. Our goal is to assess the exponential rate ofP̄
(n)
e,1 ,

E {Pe,1 (Cn)}, where the average is over the code ensemble,
that is,

E∗
1 (R1, R2) , lim inf

n→∞
−
1

n
log P̄

(n)
e,1 , (6)

and similarly for the second user. Before stating the main
result, we define some quantities. Given a joint distribution
QX1X2Y1

over X1 × X2 × Y1, consider the definitions in
(7), shown at the top of the next page. Our main result is
the following. Due to space limitation, the proofs of all the
following results are omitted and can be found in [22].

Theorem 1 Let R1 andR2 be given, and letE∗(R1, R2) be
defined as in (6). Consider the ensemble of fixed composition
codes of typesPX1

andPX2
, for the first and second users,

respectively. For a discrete memoryless two-user IFC, we have:

E∗
1 (R1, R2) ≥ Ẽ1(R1, R2), (8)

for anyR1, R2 ≥ 0.

Several remarks on Theorem 1 are in order.

• Due to symmetry, the error exponent for the second user,
that is, E∗

2 (R1, R2) is simply obtained from Theorem 1 by
swapping the roles ofX1, Y1, andR1, with X2, Y2, andR2,
respectively.
• An immediate byproduct of Theorem 1 is finding the set
of rates(R1, R2) ∈ R

2
+ for which Ẽ1(R1, R2) > 0, namely,

for which the probability of error vanishes exponentially as
n → ∞. It is not difficult to show that this set is given by:

Rordinary,1 = R̂1 ∪

{

(R1, R2) :
R1 < I (X1;Y1|X2)

R1 +R2 < I (X1, X2;Y1)

}

,

(9)

evaluated withPX1X2Y1
= PX1

× PX2
× WY1|X1X2

, where
R̂1 , {R1 : R1 < I (X1;Y1)}. Fig. 1 demonstrates a qualita-
tive description of this region. The interpretation is as follows:
The corner point(I (X1;Y1|X2) , I (X2;Y1)) is achieved by
first decoding the interference (the second user), canceling it,
and then decoding the first user. The sum-rate constraint canbe
achieved by joint decoding the two users (similarly to MAC),
and thus, obviously, also by our optimal decoder. Finally, the
regionR1 < I (X1;Y1) andR2 ≥ I (X2;Y1|X1) means that
we decode the first user while treating the interference as noise.
Evidently, from the perspective of the first decoder, which is
interested only in the message that is emitted from the first
sender, the second sender can use any rate, and thus there is
no bound onR2 wheneverR1 < I (X1;Y1). Note that this
region was also obtained in [9], but from a lower bound on
the error exponent. Accordingly, this means that accordingto
[9], the achievable rate could be larger. Our results, however,
show that one cannot do better when standard random coding
is applied. Notice thatRordinary,1 is well-known to be contained
in the HK region [10, 23].
• Existence of a single code: our result holds true on the
average, where the averaging is done over the random choice
of codebooks. It can be shown (see, for example, [24, p. 2924])
that there exists deterministic sequence of fixed composition
codebooks of increasing block lengthn for which the same
asymptotic error performance can be achieved forboth users
simultaneously.
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f (QX1X2Y1
) , EQ

[
logWY1|X1X2

(Y1|X1X2)
]
, (7a)

t0(QX1Y1
) , R2 + max

Q̂: Q̂X2
=PX2

, Q̂X1Y1
=QX1Y1

, I
Q̂
(X2;X1,Y1)≤R2

[

f(Q̂)− IQ̂(X2;X1, Y1)
]

, (7b)

L(Q̃X1X2Y1
, QX1X2Y1

) ,
{

Q̂ : max [t0(QX1X2Y1
), f(QX1X2Y1

)]

≤ max

[

f(Q̃X1X2Y1
), f(Q̂) +

[

R2 − IQ̂(X2;X1, Y1)
]

+

]}

, (7c)

E1(Q̃X1X2Y1
, QX1X2Y1

) , min
Q̂: Q̂X2

=PX2
, Q̂X1Y1

=Q̃X1Y1
, Q̂∈L(Q̃X1X2Y1

,QX1X2Y1
)

[

IQ̂(X2;X1, Y1)−R2

]

+
, (7d)

Ê1(QX1X2Y1
, R2) , min

Q̃: Q̃X1
=PX1

, Q̃X2Y1
=QX2Y1

[

IQ̃(X1;X2, Y1) + E1(Q̃X1X2Y1
, QX1X2Y1

)
]

, (7e)

Ẽ1(R1, R2) , min
QY1|X1X2

: QX1
=PX1

,QX2
=PX2

[

D(QY1|X1X2
||WY1|X1X2

|PX1
× PX2

) +
[

Ê1(QX1X2Y1
, R2)−R1

]

+

]

. (7f)

P̄
(n)
e,1 = Pr





M1−1⋃

i=1







M2−1∑

j=0

P
(
Y n
1 |Xn

1,i, X
n
2,j

)
≥

M2−1∑

j=0

P
(
Y n
1 |Xn

1,0, X
n
2,j

)









 , (10)

= E






Pr





M1−1⋃

i=1







M2−1∑

j=0

P
(
Y n
1 |Xn

1,i, X
n
2,j

)
≥

M2−1∑

j=0

P
(
Y n
1 |Xn

1,0, X
n
2,j

)







∣
∣
∣
∣
∣
∣

F0










, (11)

R1

R2

I(X1;Y1|X2)I(X1;Y1)

I(X2;Y1|X1)

I(X2;Y1)

Rordinary,1

Fig. 1. Rate regionRach,1 for which E∗

1 (R1, R2) > 0.

• On the proof: it is instructive to discuss (in some more
detail than earlier) one of the main difficulties in proving
Theorem 1, which is customary to multiuser systems, such
as the IFC. Without loss of generality, we assume throughout,
that the transmitted codewords arexn

1,0 andxn
2,0. Accordingly,

the average probability of error associated with the decoder
(2) is given by (11), shown at the top of the next page, where
F0 ,

(
Xn

1,0, X
n
2,0, Y

n
1

)
. By the union bound and Shulman’s

inequality [21, Lemma A.2], we know that for a sequence of
pairwise independent events,{Ai}

N
i=1, the following holds:

1

2
min

{

1,
N∑

i=1

Pr {Ai}

}

≤ Pr

{
N⋃

i=1

Ai

}

≤ min

{

1,

N∑

i=1

Pr {Ai}

}

, (12)

which is a useful result when assessing the exponential behav-
ior of such probabilities. Equation (12) is one of the building
blocks of tight exponential analysis of previously considered
point-to-point systems (see, e.g., [16-19], and many references
therein). However, it is evident that in our case the various
events are not pairwise independent, and therefore this result
cannot be applied directly. Indeed, since we are interestedin
the optimal decoder, each event of the union in (11), depends
on the whole codebook of the second user. One may speculate
that this problem can be tackled by conditioning on the
codebook of the second user, and then (12). However, the cost
of this conditioning is a very complicated (if not intractable)
large deviations analysis of some quantities. To alleviatethis
problem, we derived new upper bounds on the probability of
union of events, which takes into account the dependencies
among the events. This was done using the techniques of [11].

Another difficulty that arises in the error exponent analysis
of the IFC model, is that in contrast to previous works,
applying the distance enumerator2 method [14], is not a simple
task. Again, our optimal decoder compares two quantities (i.e.,
likelihoods) which are both depend on the whole codebook
of the second user. The consequence of this situation, is that
in order to analyze the probability of error, it is required to
analyze the joint distribution of type class enumerators, and
not just rely on their marginal distributions, as usually done,
e.g., [16-19].
• Comparison with [9]: Similarly to [9], we present results

2For a givenyn ∈ Yn, and a given joint probability distributionQXY on
X ×Y , thedistance enumerator (or, type class enumerator), N(QXY ), is the
number of codewords

{

xn
i

}

in Cn whose conditional empirical joint distribu-

tion with yn is QXY , namely,N(QXY ) =
∣

∣

∣
xn ∈ Cn : Q̂xnyn = QXY

∣

∣

∣
,

where Q̂xnyn is the empirical joint distribution ofxn and yn, and |A|
designates the cardinality of a finite setA.
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Fig. 2. Comparison between our error exponentE∗

1 (R1, R2) and the lower
boundELB(R1, R2) of [9], as a function ofR1 for two different values of
R2 and fixed choices ofPX1

andPX2
.

for the binaryZ-channel model defined as follows:Y1 =
X1 · X2 ⊕ Z and Y2 = X2, whereX1, X2, Y1, Y2 ∈ {0, 1},
Z ∼ Bern(p), “·” is multiplication, and “⊕” is modulo-2
addition. In the numerical calculations, we fixp = 0.01. Fig. 2
presents the lower bound on the error exponent under optimal
decoding, derived in this paper, compared to the lower bound
ELB(R1, R2) of [9], as a function ofR1, for different values
of PX1

, PX2
, andR2. It can be seen that our exponents can

be strictly better than those of [9].
• Generalization to other ensemble: As was mentioned before,
in [9] only random codebooks comprised of i.i.d. codewords
were considered. These ensembles are much simpler than
the superposition codebooks of [8]. Unfortunately, it very
tedious to analyze superposition codebooks using the methods
of [9], and even if we do so, the tightness is questionable.
However, the new tools that we have derived enable us to
analyze more involved random coding ensembles. Due to space
limitations, we do not present the error exponents achieved
by the following schemes. All the details can be found in
[22, Subsection III.C]. For example, we can derive the error
exponents for the HK scheme, which gives the best known
inner bound. The idea in this scheme is to split the message
M1 into “private” and “common” messages,M11 andM12 at
ratesR11 andR12, respectively, such thatR1 = R11 + R12.
Similarly M2 is split into M21 and M22 at ratesR21 and
R22, respectively, such thatR2 = R21 + R22. Then, receiver
k = 1, 2, recovers its intended messageMk, and the common
message from the other sender (although it is not required
to) each decoder. Also, using the same techniques, we can
analyze the error exponents resulting from thehierarchical
code ensemble [20], in which the case has a tree structure
with two levels, where the first serves for “cloud centers”, and
the second for the “satellites”.
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