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Abstract—This paper is about deriving lower bounds on the
error exponents for the two-user interference channel under
the random coding regime for several ensembles. Specifically,
we first analyze the standard random coding ensemble, where
the codebooks are comprised of independently and identically
distributed (i.i.d.) codewords. For this ensemble, we focus on
optimum decoding, which is in contrast to other, suboptimal
decoding rules that have been used in the literature (e.g., joint
typicality decoding, treating interference as noise, etc.). The
fact that the interfering signal is a codeword, rather than an
i.i.d. noise process, complicates the application of conventional
techniques of performance analysis of the optimum decoder.
Also, unfortunately, these conventional techniques result in loes
bounds. Using analytical tools rooted in statistical physics, as well
as advanced union bounds, we derive single-letter formulas for
the random coding error exponents. We compare our results with
the best known lower bound on the error exponent, and show
that our exponents can be strictly better. Then, in the second pa
of this paper, we consider more complicated coding ensembles,
and find a lower bound on the error exponent associated with the
celebrated Han-Kobayashi (HK) random coding ensemble, which
is based on superposition coding.

Keywords—Random coding, error exponent, interference chan-
nels, superposition coding, Han-Kobayashi scheme, statistical
physics, optimal decoding, multiuser communication.

I. INTRODUCTION

A. Previous Work

best known inner bound is the Han-Kobayashi (HK) rec
established in [8], and which will also be considered in
paper.

To our knowledge, [9, 10] are the only previous wc
which treat the error exponents for the IFC under opt
decoding. Specifically, [9] derives lower bounds on e
exponents of random codebooks comprised of i.i.d. codey
uniformly distributed over a given type class, under maxim
likelihood (ML) decoding at each user, that is, optimal di«
ing. Contrary to the error exponent analysis of other ms#i
communication systems, such as the multiple access ct
[11], the difficulty in analyzing the error probability of &
optimal decoder for the IFC is due to statistical depends
induced by the interfering signal. Indeed, for the IFC,
marginal channel determining each receiver's ML deco
rule is induced also by the codebook of the interfering 1
This indeed extremely complicates the analysis, mostly
cause the interfering signal is a codeword and not an
process. Another important observation, which was no
in [9], is that the usual bounding techniques (e.g., Gala
bounding technique) on the error probability fail to givghti
results. To alleviate this problem, the authors of [9], comed
some of the ideas from Gallager's bounding technique
to get an upper bound on the average probability of decc
error under ML decoding, the method of types [13], and |
the method of distance enumerators, in the spirit of [14]ctv
allows to avoid the use of Jensen’s inequality in some s

The two-user interference channel (IFC) models a generdfinally, another relevant work is [15], where lower bound
scenario of communication between two transmitters and twehe error exponents of both standard and cognitive muH
receivers (with no cooperation at either side), where eaclhccess channels (MACs), were derived assuming suboy
receiver decodes its intended message from an observed,signsuccessive decoding scheme.
which is interfered by the other user, and corrupted by calnn
noise. The information-theoretic analysis of this mode$ ha Contributi
begun over more than four decades ago and has recentﬁ/ ontributions
witnessed a resurgence of interest. Most of the previoukwor  The main purpose of this paper is to extend the stuc
on multiuser communication, and specifically, on the IFG ha achievability schemes to the more refined analysis of
focused on obtaining inner and outer bounds to the capacit¥xponents achieved by the two users, similarly as in
region (see, for example, [1, Ch. I1.7]). In a nutshell, theSpecifically, we derive single-letter expressions for then
study of this kind of channel has started in [2], and contihue exponents associated with the average error probabiby
in [3], where simple inner and outer bounds to the capacityhe finite-alphabet two-user IFC, under several randomng
region were given. Then, in [4], by using the well-known ensembles. The main contributions of this paper are asifs}
superposition coding technique, the inner bound of [3] was
strictly improved. In [5], various inner and outer boundsreve e Similarly as in recent works (see, e.g., [11, 16-19]
obtained by transforming the IFC model into some multiple-references therein) on the analysis of error exponents
access or broadcast channel. Unfortunately, the capagjtgm  derive single-letter lower bounds for the random codingnr
for the general interference channel is still unknown,@itgh  exponents. For the standard random coding ensemble,
it has been solved for some very special cases [6, 7]. Theidered in Subsection 1I-B, we analyze the optimal dec
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for each receiver, which is interested solely in its intehde e Recently, in [15], the authors independently suggestee
message. This is in contrast to usual decoding techniqudsounds on the error exponents of both standard and c
analyzed for the IFC, in which each receiver decodes, irtive multiple-access channels (MACs), assuming subop
addition to its intended message, also part of (or all) thesuccessive decoding scheme, and using the standard ri
interfering codeword (that is, the other user's message), occoding ensemble (considered in Subsection II-B). Althc
other conventional achievability arguments [1, Ch. llwhich  the motivation in [15] is different, the codebook constio
are based on joint-typicality decoding, with restrictimmsthe and the decoding rule are the same as in the first pe
decoder (such as, “treat interference as noise” or to “decodthis paper, and thus, essentially, their results apply &s
the interference”). This enables us to understand whelteget the IFC. Now, despite the fact that the analysis in our p
is any significant degradation in performance due to the subis not the same as in [15], for the standard random cc
optimality of the decoder. Also, since [9] analyzed themati ~ ensemble, our lower bound coincides with that of [15]. M
decoder as well, we compare our formulas with those of [9]jmportantly, as was mentioned above, we consider alsi
and show that our error exponent can be strictly better, kvhic more complicated ensemble pertaining to the HK sch
implies that the bounding technique in [9] is not tight. It is Accordingly, the derivation of the lower bound on the e
worthwhile to mention that the analytical formulas of ouroer ~ exponent of this ensemble is built upon the derivation of
exponents are simpler than the lower bound of [9]. lower bound on the error exponent of the standard rar
e As was mentioned earlier, in [9] only random codebookscoding ensemble, and thus it makes useful and convenit
comprised of i.i.d. codewords (uniformly distributed over start with the analysis of the latter ensemble. We emph
type class) were considered. These ensembles are much sithat the techniques used in [15] are not sufficient to analye
pler than the superposition codebooks of [8]. Unfortunatel ensemble pertaining to the HK scheme. Finally, we mer
it very tedious to analyze superposition codebooks usieg ththat the focus in [15] was on achievable rate region, r:
methods of [9], and even if we do so, the tightness is questiorthan the error exponents, and thus no comparison to [9
able. In this paper, however, the new tools that we have e@riv provided.

enable us to analyze more involved random coding ensemblee. We believe that by using the techniques and tools de
Indeed, we can consider the coding ensemble used in tha this paper, other multiuser systems, such as the IFC
HK achievability scheme [8] and derive the respective erromismatched decoding, the MAC [11], the broadcast cha
exponents. We also discuss an ensemble of hierarchieal/trehe relay channel, etc., and accordingly, other codingreels:
codes [20]. such as binning [16], and hierarchical codes [20], cat
e The analysis of the error exponents, carried out in thisanalyzed.

paper, turns out to be much more difficult than in previ-
ous works on point-to-point and multiuser communication
problems, see, e.g., [11, 16-19]. Specifically, we encaunte

two main difficulties in our analysis: First, typically, whe Throughout this paper, scalar random variables (RVs)
analyz[ng the probability of error, the flrst step is to apply pe denoted by capital letters, their sample values wil
the union bound. Usually, for point-to-point systems, unde genoted by the respective lower case letters, and theiahét
the random coding regime, the average error probability cagij pe denoted by the respective calligraphic letters, &g,
be written as a union of pairwise independent error eventsang x| respectively. A similar convention will apply to rand
Accordingly, in this case, it is well known that the trun@hte ectors of dimensiom and their sample values, which will
union bound is exponentially tight [21, Lemma A.2]. This genoted with the same symbols in the boldface font. We

is no longer the case, however, when considering multiusglisa the notatior? (j > i) to designate the sequence of F
systems, and in particular, the IFC. For the IFC, the event%Xi Xi ¢
) 9.

o - ; .., X;). The set of alln-vectors with componen
comprising the union are strongly dependent, especiakiytdu aying values in a certain finite alphabet, will be denotetha

the fact that we are considering the optimal decoder. Indeeq 5o alphabet superscripted loye.g., X™. Generic channe
recall that the optimal decoder for the first user, for exampl will be usually denoted by the Ietteé@ Q, or W. We shal
declares that a certain message was transmitted if thisa@ess mainly consider joint distributions of two RVEX,Y) over
maximizes the likelihood pertaining to the marginal chdnne 1o Cartesian product of two finite alphabetsand ). For
This marginal channélis t_he average of the actual channel brevity, we will denote any joint distribution, e.@.y-, simply
over the messages of the interfering user, and thus depends By Q. the marginals wili be denoted b§x and Qy, anc
the whole codebook of the that user. Accordingly, the oVeralyye congitional distributions will be denoted b9 xy and
error event is the union of an exponential number of errorﬁ \x. The joint distribution induced by)x and Qyx wil

events where each event depends on the marginal channel denoted by i ; ;
) , 3 ! x X Qy|x, and a similar notation will be us
thus on the codebook of the interfering user. To alleviai® th \yhan the roles ofX andY are switched.

difficulty, following the ideas of [11], we derived new upper

bounds on the probability of a union of events, which take The expectation operator will be denoted By -}, and
into account the dependencies among the events. The secomtien we wish to make the dependence on the under
difficulty that we have encountered in our analysis is that indistribution @ clear, we denote it byEg {-}. Information
contrast to previous works, applying the type class enutbera measures induced by the generic joint distribut@@gy-, will
method [14] is not simple, due to the reason mentioned abovée subscripted by, for example,l(X;Y") will denote the
Using some methods from large deviations theory, we wereorresponding mutual information, etc. The divergence

. Notation Conventions

able to tackle this difficulty. Kullback-Liebler distance) between two probability meas
@ and P will be denoted byD(Q||P). The conditiona
1The precise definition will be given in the sequel. information divergence between the conditional distiidug
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Qy|x and Py x, averaged overPyx, will be denoted by

E{P.,(C,)}, where the average is over the code enser

D(Qy x||Py|x|Px). Logarithms are defined with respect to that is,

(w.r.t.) the natural basis, that i&g (-) = In(-), and finally,
for a real number;, we denotefz], = max{0,z}.

Il.  PROBLEM FORMULATION AND MAIN RESULTS
A. The IFC Model

Consider a two-user interference channel of two sender
two receivers, and a discrete memoryless channel (DMC
defined by a set of single-letter transition probabilities,

Wy, v, x: x> (Y1y2|122), with finite input alphabetst;, Ao
and finite output alphabet¥,,)>. Here, each sendek €
1,2}, wishes to communicate an independent mesddgec
%1,2,...,2"’“’%} at rate Ry, and each receivel, € {1,2},

wishes to decode its respective message. Specifically,

(2nfta onf2 ) codeC,, consists of:

e Two message setdt; = {0,...,2"% —1} and M, £

{o,...,27%2 — 1} for the first and second users, respectively.

e Two encoders, where for eaéhe {1, 2}, the k-th encoder
assigns a codeword} ; £ (T4 1, %k,i2,---,Tkin) tO €aCh
message € M. '

e Two decoders, where each decodet {1,2} assigns an
estimate)M; to M;.

We assume that the message pg@id,, Ms) is uniformly
distributed overM | x M. It is clear that theoptimal decoder
of the first user, for this problem, is given by

M, = arg max P (?/?‘T?z) 1
My—1

=ergmax e 3 P(leteci,) @
j=1

where P (yﬁx?’i,x’ij) is the marginal channel defined as

n
P (yrlat a5 ;) 2 1] Wajxoxe Wiklzixezin),  (3)
k=1

and

WYl\XlXQ (yl,k 901,1:,1«372,j,k)

23 Wyivaixxe Wistenlrrinmasn).  (4)

Y2,k EV2

E(Ry, Ry) 2 liminf — log P, ®)
n—oo n ’

and similarly for the second user. Before stating the |
result, we define some quantities. Given a joint distriln
Qx,x,y, over X; x Xy x Y, consider the definitions
7), shown at the top of the next page. Our main rest
he following. Due to space limitation, the proofs of all
ollowing results are omitted and can be found in [22].

Theorem 1 Let Ry and Ry be given, and letE*(R;, R2) be
defined as in (6). Consider the ensemble of fixed compo:
codes of typesPx, and Px,, for the first and second use
respectively. For a discrete memoryless two-user IFC, we:

E;(Ry,Ry) > E1(Ry, Ry), (8)
for any Ry, Ry > 0.

Several remarks on Theorem 1 are in order.

e Due to symmetry, the error exponent for the second
that is, E5(R1, R2) is simply obtained from Theorem 1
swapping the roles ok, Y7, and Ry, with X5, Y5, and R,
respectively.

e An immediate byproduct of Theorem 1 is finding the
of rates(Ry, Rg) € ]Rﬁ for which E;(R1, R2) > 0, namely
for which the probability of error vanishes exponentialls
n — oo. It is not difficult to show that this set is given by

, Ry < I(X1:Y:1|X
Rordinary1 = R U {(R“ Ra)ip +1R2 <(1 (1X11‘X;')Y1)} ’
(

evaluated withPx, x,y, = Px, X Px, x Wy,|x,x,, Where
Ri1 2 {R,: Ry, <I(X1;Y1)}. Fig. 1 demonstrates a quali
tive description of this region. The interpretation is akofws:
The corner point( (X1;Y1|X2), I (X2;Y1)) is achieved b
first decoding the interference (the second user), cangél
and then decoding the first user. The sum-rate constraine
achieved by joint decoding the two users (similarly to M#
and thus, obviously, also by our optimal decoder. Finaltg
region Ry < I (X1;Y1) and Ry > I (X»;Y1|X;1) means th:
we decode the first user while treating the interference
Evidently, from the perspective of the first decoder, whis

The optimal decoder of the second user is defined similarlyinterested only in the message that is emitted from the
Since there is no cooperation between the two receivers, thsender, the second sender can use any rate, and thus |

error probabilities for the codé,,, are defined as:
Pe,i (Cn) £ 2—n(R1+R2).
3 IP’{Mi (V) # m| My = my, My = mz} L i=1,2.
m1,mo
(%)

B. The Ordinary Random Coding Ensemble

no bound onR; wheneverR; < I(X;;Y1). Note that thi
region was also obtained in [9], but from a lower bounc
the error exponent. Accordingly, this means that accorda
[9], the achievable rate could be larger. Our results, hew
show that one cannot do better when standard random c
is applied. Notice thaR orginary1 IS Well-known to be containe
in the HK region [10, 23].

e Existence of a single code: our result holds true on tl
average, where the averaging is done over the random ¢

In this subsection, we consider the ordinary random codingf codebooks. It can be shown (see, for example, [24, p. 3

ensemble: For each € {1,2}, we select independently/;

codewordsz} ;, for i € My, under the uniform distribution

across the type clast (Px,), for a given distributionPx,
on X},. Our goal is to assess the exponential ratef’é’f £

that there exists deterministic sequence of fixed compn
codebooks of increasing block lengthfor which the sam
asymptotic error performance can be achievedbimh user:
simultaneously.
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F(Qx,xov1) = Eq [log Wy, x, x, (V1| X1 Xa) ], (7a)

to(@xiv) 2 Rat o max [£(@) — 152 %1, 1) (7b)
Q: Qxy=Px,, Qx;v,=Qx, vy, 15(X2;X1,Y1)<R2

L(Qx, x:v1, Qx1 X0y, ) = {Q : max [to(Qx, x.v1)s f(Qx, X211 )]

< max {f(@xl)(ﬂl),f(@) + [Rz - IQ(X2§X17Y1)]J } : (7c)
EI(QX1X2Y17QX1X2Y1) £ A N - min R - ]Q(XQ;XLYI) - RQ} ; (7d)
Q: Qx,=Px,, Qx;v; =Qx;1vy, QEL(QX, X5v7 QX1 X5v7) +
By@xixavio B2) 2 min [16(X1: X2, 1) + B (@xyxavs @xixavs)] (7€)
Q: Qx,=Px,, Qx,v,=Qx,v,
Ei(Ri,Ry) & min |:D(QY1|X1X2||WY1\X1X2|PX1 x Px,) + [E1(QX1X2Y1~,32) - 31} } . (70
Qyyx, x5! @x;=Px,,Qx,=Px, +

My—1 | M>—1 Ms—1
P = Pr S P(YIXTLXE) > Y P (YN XS o (10)
i=1 j=0 Jj=0
Mi—1 Msy—1 Ms—1
—ulpr| | P(YPIXT X35) > Y P (YIXT0. XE) ¢ Fol o (11)
i=1 =0 §=0

which is a useful result when assessing the exponentiavb

ior of such probabilities. Equation (12) is one of the builg

blocks of tight exponential analysis of previously consédi
point-to-point systems (see, e.g., [16-19], and many eeies:

therein). However, it is evident that in our case the var

events are not pairwise independent, and therefore thist

cannot be applied directly. Indeed, since we are intereist

the optimal decoder, each event of the union in (11), def

on the whole codebook of the second user. One may spe

that this problem can be tackled by conditioning on
codebook of the second user, and then (12). However, thi

R, of this conditioning is a very complicated (if not intracka)
1(X1;71) I(X1; 11| X2) large deviations analysis of some quantities. To alleviats
problem, we derived new upper bounds on the probabili
union of events, which takes into account the depende
among the events. This was done using the techniques of
Another difficulty that arises in the error exponent ana

of the IFC model, is that in contrast to previous wo

I(X2; Y1)

Fig. 1. Rate regiorRacn1 for which Ef (R1, R2) > 0.

e On the proof: it is instructive to discuss (in some more

detail than earlier) one of the main difficulties in proving ; ; X .
Theorem 1, which is customary to multiuser systems, sucl’?lpplylng the distance enumeratonethod [14], is not a simp

as the IFC. Without loss of generality, we assume throughouf2Sk: Again, our optimal decoder compares two guantities,
i o B v e el T g o e e o
the average probability of error associated with the delcoden order to anal Ze‘ the robab(i]lit of error. it is re uir’ed
(2) is given by (11), shown at the top of the next page, wheré 7o the io >t/ st F; p ty ey qt for
Fo & (XﬁO7X§07Y1”). By the union bound and Shulman’s analyze the joint distrioution of ype class enumerato

inequality [21, Lemma A.2], we know that for a sequence ofnot just rely on their marginal distributions, as usuallyné
T N . e.g., [16-19].
pairwise independent events4;};_;, the following holds:

e Comparison with [9]: Similarly to [9], we present resul

N N
1 . 2For a giveny™ € Y™, and a given joint probability distributiof® xy- on
2 min { L, Z Pr {Al}} <Pr { U A’} X x Y, thedistance enumerator (or, type class enumerator), N(Qxy ), is the
i=1 i=1 number of codeword#a:?} in C,, whose conditional empirical joint distrib

N . . . .

. tion with 3™ is Qxy, namely,N(Qxy) = ’;n €Cn: Qunyn = Qxvy|,

< min {1’ ZPr {A’}} , (12) where sz is the empirical joint distribution ofz™ and y™, and |.A|
i=1 designates the cardinality of a finite sdt
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—o—E, forR,=0.139, le(l) =0.6, sz(l) =0.9 [1]

I E1,LB for R, =0.139, le(l) =0.6, sz(l) =0.9 [2]
—=—E, for R,=0.277, le(l) =0.6, sz(l) =07
- — = El,LB for R, =0.277, le(l) =0.6, sz(l) =07

[3]

4

Error Exponents

[5]
6]
(7]

0.4 0.5

0.3
Rl [nats/channel use]

0.6 18]

Fig. 2. Comparison between our error expongtt(R1, R2) and the lower £
bound E\g(R1, R2) of [9], as a function ofR; for two different values of
R and fixed choices oPx, and Px,.

[10]

for the binary Z-channel model defined as followd; =
X -XopZ andY2 = Xo, WhereXl,Xz,YhYé S {O,].},
Z ~ Bern(p), “-" is multiplication, and %" is modulo-2
addition. In the numerical calculations, we fix= 0.01. Fig. 2
presents the lower bound on the error exponent under optimél2]
decoding, derived in this paper, compared to the lower bound
Eig(R1, Ry) of [9], as a function ofR;, for different values (23]
of Px,, Px,, and R,. It can be seen that our exponents can
be strictly better than those of [9].

e Generalization to other ensemble: As was mentioned before,
in [9] only random codebooks comprised of i.i.d. codewords 15]
were considered. These ensembles are much simpler than
the superposition codebooks of [8]. Unfortunately, it very
tedious to analyze superposition codebooks using the mgtho[16]
of [9], and even if we do so, the tightness is questionable.
However, the new tools that we have derived enable us to
analyze more involved random coding ensembles. Due to spaé¥!
limitations, we do not present the error exponents achieved
by the following schemes. All the details can be found in[18]
[22, Subsection III.C]. For example, we can derive the error
exponents for the HK scheme, which gives the best known
inner bound. The idea in this scheme is to split the messageg]
M, into “private” and “common” message8/,; and M, at
ratesRy; and Rys, respectively, such thak, = Ry; + Rio.
Similarly M, is split into My, and My, at ratesRy; and
R, respectively, such thak, = Ry + Raos. Then, receiver
k = 1,2, recovers its intended messagig,, and the common
message from the other sender (although it is not requiregy
to) each decoder. Also, using the same techniques, we can
analyze the error exponents resulting from thierarchical

code ensemble [20], in which the case has a tree structure[22]
with two levels, where the first serves for “cloud centersida

the second for the “satellites”.

[11]

[14]

[20]

[23]
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