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A Converse for Lossy Source Coding
in the Finite Blocklength Regime

Lars Palzer and Roy Timo
Technische Universität München
{lars.palzer, roy.timo}@tum.de

Abstract—We present a converse bound for lossy source coding
in the finite blocklength regime. The bound is based on d-tilted
information, and it combines ideas from two different converse
techniques by Kostina and Verdú. When particularised to the
binary and Gaussian memoryless sources, the new bound gives
slightly tighter results in certain blocklength regimes.

I. INTRODUCTION AND MAIN RESULTS

Kostina and Verdú recently presented two general converse
bounds in [1] for the problem of lossy source coding at finite
blocklengths. These bounds were respectively based on d-
tilted information and binary hypothesis testing arguments.
Matsuta and Uyematsu [2] presented a converse at ISIT’15
that is tighter than Kostina and Verdú’s meta-converse, but,
unfortunately, this bound is not (yet) numerically computable.

The main purpose of this paper is to report a new converse
bound for general sources, and to particularise the bound to the
binary memoryless source (BMS) with Hamming distortions
and the Gaussian memoryless source (GMS) with squared-
error distortions. The new bound is simply stated and (we
believe) quite intuitive. Its proof combines ideas from Kostina
and Verdú’s d-tilted and meta-converse bounds, and it gives
slightly better numerical results for the BMS and GMS at
certain blocklengths.

A. Problem Statement & Basic Functions

Our presentation will follow the one-shot paradigm in [1]:
We first consider an abstract rate-distortion (RD) problem that
consists of compressing and reconstructing a single random
variable. We then specialise this one-shot problem setup to
the block encoding and decoding of memoryless sources.

Let X be the output of a general source with distribution
pX on an alphabet X . A (possibly stochastic) encoder

f : X →M := {1, 2, . . . ,M}

maps the source output X to an index T := f(X) from which
a (possibly stochastic) decoder

g :M→ X̂

outputs X̂ := g(T ) as its estimate of X . Let

d : X × X̂ → [0,∞)

denote the distortion function.

Definition. An (M,d, ε)-code consists of an encoder f and
decoder g, as described above, with P

[
d(X, X̂) > d

]
≤ ε.

In this paper, the main problem is to find lower bounds on
the smallest M for which there exists an (M,d, ε)-code.

The abstract problem formulation above can be specialised
to block encoding/decoding of memoryless sources as follows.

Definition. An (n,M, d, ε) code for a memoryless source with
distribution pX = pnX := pX × . . . × pX putting out strings
X of length n from Xn = X × . . . × X and reconstruction
alphabet X̂n consists of an encoder f : Xn → M and a
decoder g :M→ X̂n satisfying P

[
d(X, X̂) > d

]
≤ ε.

Let

R(d) := inf
pX̂|X : E[ d(X,X̂)]≤d

E
[
ıX;X̂(X; X̂)

]
, (1)

denote the usual RD function, where

ıX;X̂(x; x̂) := log
dpX̂|X=x

dpX̂
(x̂),

is the information density of pXX̂ = pX̂|XpX . As in [1], we
make the following two basic assumptions:
A1. The distortion constraint d satisfies R(d) <∞.
A2. The infimum in (1) is achieved by a unique1 p∗

X̂|X .

Let p∗
X̂

denote the X̂-marginal on X̂ induced by p∗
X̂|X and

pX , and define λ := −R′(d) to be the negative slope of the
RD function at distortion d. Let

X(x, d) := log
1

Ep∗
X̂
[exp(λ(d− d(x, X̂))]

,

where the expectation is taken with respect to p∗
X̂

. The function
X(x, d) is called d-tilted information, and, intuitively, it
corresponds to the number of bits required to represent a
particular source realisation x to within distortion d. For
example, one can show [3], [4] that R(d) = E[X(X, d)]. We
now summarise the main results of the paper. These results
are proved in Sections II, III and IV.

B. General Sources

We start with a converse for general sources.

Theorem 1. Any (M,d, ε) code must satisfy

M ≥ sup
β∈R

 P
[
X(X, d) ≥ β

]
− ε

sup
x̂∈X̂

P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
 . (2)

1We make this assumption for clarity of presentation. As mentioned in [1,
Remark 9], it can be relaxed.
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C. Binary Memoryless Sources (BMS)

The next corollary specialises Theorem 1 to the special
case of a BMS with Hamming distortions. Let X = (X1, X2,
. . . , Xn) be a string of n iid instances of X ∼ Bernoulli(p),
and choose the distortion function to be

d(X, X̂) =
1

n

n∑
i=1

1{Xi 6= X̂i}.

Corollary 2 (BMS). Fix p ∈ (0, 1/2) and d ∈ [0, p). Any
(n,M, d, ε) code must satisfy

M ≥ max
0≤b≤n

(∑n
k=b

(
n
k

)
pk(1− p)n−k − ε
αn,d,p(b)

)
, (3)

where

αn,d,p(b) = max
n̂1

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
· pn̂1+k−2l(1− p)n−n̂1−k+2l1

{
n̂1 + k − 2l ≥ b

}
and the maximisation is taken over all n̂1 ∈ N satisfying

max
{

0, b− bndc
}
≤ n̂1 ≤ min

{
n, b+ bndc

}
.

It is worth noting that Corollary 2 does not weaken Theo-
rem 1; that is, the right hand sides of (2) and (3) are equal for
the BMS with Hamming distortions.

Remark: For p = 1/2, X(X, d) does not depend on X [1,
Example 1]. In this case, Theorem 1 coincides with [1, Thm.
20] which is derived from the meta-converse bound.

D. Gaussian Memoryless Sources (GMS)

Now let X = (X1, X2, . . . , Xn) be a string of n iid instances
of X ∼ N (0, 1), and consider the squared-error distortions

d(X, X̂) =
1

n

n∑
i=1

|Xi − X̂i|2.

A slight weakening of Theorem 1 yields the next corollary.
Here fχ2

n
(·) denotes the χ2

n probability density function.

Corollary 3 (GMS). Fix d ∈ (0, 1). Any (n,M, d, ε) code
must satisfy

M ≥ sup
γ≥nd

( ∫∞
γ
fχ2

n
(w) dw − ε

1
2Ind/γ

(
n−1
2 , 12

) ∫ γ?

γ
fχ2

n
(w) dw

)
, (4)

where I(·)(·, ·) is the regularized incomplete beta function and

γ? :=

[
2(nd)n/2

Ind/γ
(
n−1
2 , 12

) + γn/2
]2/n

. (5)

E. Comparions to Existing Bounds

We now compare Theorem 1 and Corollaries 2 and 3 to
Kostina and Verdú’s d-tilted information and meta-converse
bounds in [1]. Let us first recall the d-tilted information bound.

Theorem KV-1. Any (M,d, ε) code must satisfy [1, Thm. 7]

ε ≥ sup
γ≥0

(
P[X(X, d) ≥ logM + γ]− e−γ

)
. (6)

To compare Theorem 1 with Theorem KV-1, it is helpful
to first rewrite (2) as a lower bound on ε:

ε ≥ sup
β∈R

(
P
[
X(X, d) ≥ β

]
−M sup

x̂∈X̂
P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

])
. (7)

Given the similarities between (6) and (7), one might guess
that Theorem KV-1 can be recovered as a special case of
Theorem 1 by choosing β appropriately in (7). We now show
that this is indeed the case, and, therefore, Theorem KV-1
cannot be stronger than Theorem 1.

Choose β = logM + γ and consider the rightmost term
in (7). We have2

M sup
x̂∈X̂

P
[
X(X, d) ≥ logM + γ, d(X, x̂) ≤ d

]
a
= M sup

x̂∈X̂
E
[
1

{
1

M
eX(X,d)−γ ≥ 1, eλ(d− d(X,x̂)) ≥ 1

}]
b
≤M sup

x̂∈X̂
E
[

1

M
eX(X,d)−γ 1

{
eλ(d− d(X,x̂)) ≥ 1

}]
c
≤ e−γ sup

x̂∈X̂
E
[
eX(X,d)+λ(d− d(X,x̂))

]
d
≤ e−γ , (8)

where (a) follows because the RD function R(d) is non-
increasing in d and therefore λ ≥ 0; (b) and (c) follow from
Markov’s inequality; and (d) applies the next lemma3.

Lemma 4 (Csiszár). For all x̂ ∈ X̂ [3, Eq. (1.22)],

E
[
eX(X,d)+λ(d− d(X,x̂))

]
≤ 1,

with equality for pX̂? -almost all x̂.

The second converse result from Kostina and Verdú that we
will consider is based on binary hypothesis testing. Let

βα(p, q) = min
pW |X

P[W=1]≥α

Q
[
W = 1

]
, (9)

denote the optimal performance achievable among all ran-
domised tests pW |X : X → {0, 1} between probability
distributions p and q on X where 1 indicates that the test
chooses p and Q[·] is the probability of an event if X has
distribution q.

Theorem KV-2. Any (M,d, ε) code must satisfy [1, Thm. 8]

M ≥ sup
qX

inf
x̂∈X̂

β1−ε(pX , qX)

Q
[
d(X, x̂) ≤ d

] , (10)

where the supremum is taken over all distributions on X .

Remark: After submitting this paper, we found that one can
derive Theorem 1 by making a (suboptimal) choice for qX
in Theorem KV-2; see the Appendix. This also shows that
Theorem KV-2 is never weaker than Theorem KV-1.

2The following arguments are based on the proof of Theorem KV-1 in [1].
3See also Property 2 in [1, p. 3311].
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Fig. 1. BMS, d = 0.11, p = 2/5, ε = 10−2.

F. Numerical Results

Consider the BMS under Hamming distortions with the
following parameters: p = 2/5, d = 0.11 and ε = 10−2.
Figure 1 plots the lower bound (3) from Corollary 2. For
comparison, the best converse bound from in [1, Thm. 20] is
also plotted. For this particular setup, [1, Thm. 20] is tighter
for n < 173, but weaker for n ≥ 173. For completeness, we
have also plotted the Gaussian approximation [1, Thm. 23] and
an achievability result based on random coding [1, Theorem
10]. There, we chose pX̂ = pn

X̂
and set pX̂(1) = p−d′

1−2d′
with d′ := bndc/n, which is slightly better than choosing
pX̂(1) = p−d

1−2d . Computations with other parameters indicate
that the crossing point moves to smaller n when increasing d
or ε and to larger n otherwise.

Now consider the GMS under squared error distortions
with the following parameters: d = 0.25, σ2 = 1 and
ε = 10−2. Figure 2 plots the bound in (4) and, for comparison,
the converse bound [1, Theorem 36], which can be derived
from (10). Our result is tighter for n ≥ 12. We also included
the Gaussian approximation [1, Theorem 40]. Here, choosing
small values for d shifts the crossing point to larger n whereas
varying ε does not seem to have a significant influence.

II. GENERAL SOURCES: PROOF OF THEOREM 1

For ease of notation, we assume that X and X̂ are finite sets
but note that the result applies to general abstract sources.

Let β ∈ R be arbitrary. In the same manner as the proof of
Theorem KV-1 in [1], we start by bounding

P
[
X(X, d) ≥ β

]
= P

[
X(X, d) ≥ β, d(X, X̂) > d

]
+ P

[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
≤ ε+ P

[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
. (11)

Now consider the second probability of the RHS. Using
similar arguments as the proof of Theorem KV-2 in [1],
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Fig. 2. GMS, d = 0.25, σ2 = 1, ε = 10−2.

P
[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
=
∑
x∈X

pX(x)
∑
t∈M

pT |X(t|x)︸ ︷︷ ︸
≤1∑

x̂∈X̂

pX̂|T (x̂|t) 1
{
X(x, d) ≥ β, d(x, x̂) ≤ d

}
≤
∑
t∈M

∑
x̂∈X̂

pX̂|T (x̂|t)
∑
x∈X

pX(x)

1
{
X(x, d) ≥ β, d(x, x̂) ≤ d

}
=
∑
t∈M

∑
x̂∈X̂

pX̂|T (x̂|t)P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
≤
∑
t∈M

sup
x̂∈X̂

P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
=M sup

x̂∈X̂
P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
. (12)

To complete the proof, combine (11) and (12) and take the
supremum over β to get (2) or (7). �

III. BMS: PROOF OF COROLLARY 2

Fix p ∈ (0, 1/2), d ∈ [0, p) and β ∈ R. Let h2(·) denote
the binary entropy function. We have [1, Eqn. (21)]

X(x, d) = N(1|x) log
1

p
+ (n− N(1|x)) log

1

1− p
− nh2(d),

where

N(1|x) :=
n∑
k=1

1{xi = 1}.

Since p ∈ (0, 1/2), it follows that p < 1 − p and X(x, d)
grows linearly in N(1|x) for fixed n. Let

b := min

{
n′ ∈ {0, . . . , n} :

n′ log
1

p
+ (n− n′) log

1

1− p
− nh2(d) ≥ β

}
,
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and note that{
x ∈ Xn : X(x, d) ≥ β

}
=
{

x ∈ Xn : N(1|x) ≥ b
}
.

Hence,

P[X(X, d) ≥ β] = P
[
N(1|X) ≥ b

]
=

n∑
k=b

(
n

k

)
pk(1− p)n−k. (13)

Now consider the denominator of (2). Let n̂1 := N(1|x̂).
Using Vandermonde’s identity, the number of binary sequences
in a Hamming ball of size bndc centered at a sequence of
Hamming weight n̂1 is given by

bndc∑
k=0

(
n

k

)
=

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
,

where, in each summand,
(
n̂1

l

)(
n−n̂1

k−l
)

is the number of se-
quences of Hamming weight n̂1 + k − 2l. We can thus write

sup
x̂∈X̂n

P
[
X(X, d) ≥ β, d(X, x̂) ≤ nd

]
*
= max

n̂1

P
[
N(1|X) ≥ b, d(X, x̂) ≤ nd

]
= max

n̂1

∑
x

pX(x)1
{
N(1|x) ≥ b, d(x, x̂) ≤ nd

}
= max

n̂1

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
pn̂1+k−2l

· (1− p)n−n̂1−k+2l1
{
n̂1 + k − 2l︸ ︷︷ ︸

=N(1|x)

≥ b
}
, (14)

where (*) follows since, by symmetry, the probability depends
on x̂ only through n̂1.

In fact, we only need to consider b−bndc ≤ n̂1 ≤ b+bndc
for the maximisation. This is because for n̂1 < b− bndc, we
have 1

{
n̂1 + k − 2l ≥ b

}
= 0 for all summands and for

n̂1 > b + bndc, 1
{
n̂1 + k − 2l ≥ b

}
= 1 for all summands

in which case the sum is monotonically decreasing in n̂1 (we
omit the proof of this fact). �

IV. GMS: PROOF OF COROLLARY 3

The d-tilted information for the GMS with d < σ2 = 1 is
given by [1, Example 2]

X(x, d) =
n

2
log

1

d
+
‖x‖2 − n

2
log e,

which grows linearly in ‖x‖2. Hence, we can rewrite (2) as

M ≥ sup
γ≥0

(
P
[
‖X‖2 ≥ γ

]
− ε

sup
x̂∈Rn

P
[
‖X‖2 ≥ γ, d(X, x̂) ≤ d

]). (15)

We will lower bound (15) using a geometric argument for the
denominator. By the circular symmetry of the GMS, we only
need to consider those x̂ ∈ Rn for the supremum that lie on
an arbitrary straight line through the origin. Denote

A :=
{

x ∈ Rn : ‖x‖2 ≥ γ
}
,

L

A

√
γ

Sn(
√
γ)

An(
√
γ, θd)

θd

Cn(θd)

B(x̂)

Fig. 3. Intersection of A with possible distortion balls.

B(x̂) :=
{

x ∈ Rn : ‖x− x̂‖2 ≤ nd
}
,

and observe that

sup
x̂∈Rn

P
[
‖X‖2 ≥ γ, d(X, x̂) ≤ d

]
= sup

x̂∈Rn

P
[
X ∈ A ∩ B(x̂)

]
= sup

x̂∈L
P
[
X ∈ A ∩ B(x̂)

]
, (16)

where L denotes the set of points lying on a straight line
through the origin, see Figure 3.

Denote the surface area of an n-dimensional sphere of
radius r by Sn(r) and the surface area of a n-dimensional
spherical cap of radius r and half angle θ by An(r, θ). The
following relation holds [5]:

An(r, θ) :=
1

2
Sn(r)Isin2(θ)

(
n− 1

2
,

1

2

)
,

where I(·)(·, ·) is the regularized incomplete beta function.
Using the law of sines and taking γ ≥ nd, we can determine
the half angle θd such that An(

√
γ, θd) is the largest spherical

cap at radius
√
γ contained in some B(x̂):

θd = sin−1
√
nd/γ.

Let Cn(θd) be the n-dimensional infinite cone of half angle θd
that passes through An(

√
γ, θd). Clearly, A∩B(x̂) ⊂ Cn(θd),

for any x̂ ∈ L. This setup is visualized in Figure 3. Next,
denote the volume of B(x̂) for any x̂ ∈ Rn by

Vn
(√
nd
)

:=
πn/2

Γ
(
n+2
2

) (nd)n/2,

with Γ(·) being the gamma function. To upper bound (16),
we consider the largest probability of any set in A ∩ Cn(θd)
(the shaded area in Figure 3) that has the same volume as a
distortion ball. We denote this set by

K? := arg max
K⊂A∩Cn(θd):

Vol(K)=Vn(
√
nd)

P
[
X ∈ K

]
(17)
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The geometry of the arg max problem is depicted in Fig-
ure 4. By the circular symmetry, K? is the slice of the
cone Cn(θd) that lies on the surface of Sn(

√
γ, θd) and has

volume Vn
(√
nd
)
. More precisely, we can describe K? as the

difference between spherical sectors of half angle θd whose
volumes differ by exactly Vn(

√
nd), see Figure 4. The volume

of a hypershperical sector of half angle θ and radius r is given
by [5]

V sec
n (r, θ) :=

1

2
Vn(r)Isin2(θ)

(
n− 1

2
,

1

2

)
.

Now let γ? be the solution to

V sec
n (
√
γ?, θd)− V sec

n (
√
γ, θd) = Vn(

√
nd), (18)

which, using sin2(θd) = nd/γ, can be rewritten as (5).
Now, we can use the tools developed in (16)–(18) to bound

sup
x̂∈L

P
[
X ∈ A ∩ B(x̂)

]
≤ P

[
X ∈ K?

]
(19)

= P
[
γ ≤ ‖X‖2 ≤ γ?,X ∈ Cn(θd)

]
(20)

= P
[
γ ≤ ‖X‖2 ≤ γ?

]
P
[
X ∈ Cn(θd)

]
, (21)

= P
[
γ ≤ ‖X‖2 ≤ γ?

]An(
√
γ, θd)

Sn(
√
γ)

(22)

=
1

2
Ind/γ

(
n− 1

2
,

1

2

)∫ γ?

γ

fχ2
n
(w) dw (23)

where (19) follows from the definition of K? (17), (20) follows
from the definition of γ? (18), and the geometry of K?, (21)–
(22) are a result of the circular symmetry of the multivariate
Gaussian and fχ2

n
(·) is the χ2

n probability density function.
Combining (23) and (15) then yields (4).
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APPENDIX

As noted in [1, Rem. 5], Theorem KV-2 can be strengthened
by relaxing the requirement that qX be a probability measure
in (9): Instead, we may allow qX to be any σ-finite measure
to obtain the following bound.

Theorem KV-3. Any (M,d, ε)-code must satisfy

M ≥ sup
qX

inf
x̂∈X̂

β1−ε(pX , qX)

Q
[
d(X, x̂) ≤ d

] , (24)

where the supremum is taken over all σ-finite measures qX .

We will now recover Theorem 1 from Theorem KV-3.
Choose qX such that

Q[X ∈ A] = P[X ∈ A, X(X, d) ≥ β], ∀A ⊆ X .

An optimal randomised test between pX and qX is

pW |X(1|x) :=


1, if X(x, d) < β

P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β]

, if X(x, d) ≥ β,

The probability that this test succeeds under pX is

P[W = 1] = P[X(X, d) < β] P[W = 1|X(X, d) < β]

+ P[X(X, d) ≥ β] P[W = 1|X(X, d) ≥ β]

= 1− ε.

Moreover, the probability that the test fails under qX is

Q[W = 1] = P[X(X, d) ≥ β,W = 1]

= P[X(X, d) ≥ β] · P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β]

= P[X(X, d) ≥ β]− ε.

Substituting qX into Theorem KV-3 gives

M ≥ inf
x̂∈X̂

P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β, d(X, x̂) ≤ d]

.

Taking the supremum over β gives Theorem 1.

Remark: The above discussion together with that in Sec-
tion I-E demonstrates that the d-tilted converse in Theo-
rem KV-1 cannot be tighter than the (generalised σ-finite
measure) meta converse in Theorem KV-3. To the best of our
knowledge, this fact has not been observed in the literature
before.
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