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Channel Detection in Coded Communication
Nir Weinberger and Neri Merhav

Dept. of Electrical Engineering, Technion - Israel Institute of Technology
{nirwein@campus, merhav@ee}.technion.ac.il

Abstract—We consider the problem of block-coded commu-
nication, where in each block, the channel law belongs to one
of two disjoint sets. The decoder is aimed to decode only
messages that have undergone a channel from one of the sets,
and thus has to detect the set which contains the underlying
channel. We begin with the simplified case where each of the
sets is a singleton. For any given code, we present the optimum
detection/decoding rule in the sense of the best trade-off among
the probabilities of decoding error, false alarm, and misdetection.
Then, we derive the exact single-letter characterization of the
random coding exponents for the optimal detector/decoder, as
well as an expurgated bound for low rates. We then extend the
random coding analysis to general sets of channels, and derive
the optimal detector/decoder under a worst case formulation of
the error probabilities, and derive its random coding exponents.

I. INTRODUCTION

Consider communicating over a channel with input X and
output Y , for which the underlying channel law PY |X is
supposed to belong to a family of channelsW , but the receiver
would also like to examine an alternative hypothesis, in which
the channel PY |X actually belongs to a different set V , disjoint
from W . Examples for which such a detection procedure is
useful are: (i) Detection of an abrupt change in the channel
statistics, e.g., a deep fading event in wireless communication
[1], the presence of excessively large number of interferers,
or loss of tracking in adaptive equalization or timing recovery
algorithms [2]. (ii) Detection of an imposter, which transmits
the same codewords as the authorized transmitter, but
via a significantly different channel. The distinctive channel
statistics of the authorized transmitter could be used to identify
such intrusions, which is crucial, if, e.g., the messages are
used to control a sensitive equipment at the receiver side,
(iii) detection of the active user in a sparse multiple access
channel (with no collisions between the two users). Even if
both users use the exact same codebook (as might be dictated
by practical considerations), and even if no header is used
to identify each of the users, the receiver could still identify
the sender with high reliability, utilizing the different channel
of each user. Thus, beyond the ordinary task of decoding the
message, the receiver would also like to perform hypothesis
testing between the null hypothesis PY |X ∈ W and the
alternative hypothesis PY |X ∈ V . For example, if the channel
quality is gauged by a single parameter, say, the crossover
probability of a binary symmetric channel (BSC), then W
and V could be two disjoint intervals of this parameter.

This problem of joint detection/decoding belongs to a larger
class of hypothesis testing problems, in which after performing

the test, another task should be performed, depending on the
chosen hypothesis, e.g. Bayesian estimation [3], and lossless
source coding [4]. More recently [5], we have studied the re-
lated problem of joint detection and decoding for sparse com-
munication [6], which is motivated by strongly asynchronous
channels [7]. In these channels the transmitter is either com-
pletely silent or transmits a codeword from a given codebook.
The task of the detector/decoder is to decide whether trans-
mission has taken place, and if so, to decode the message. The
performance is judged by: (i) the false alarm (FA) probability -
deciding on a message when the transmitter was silent, (ii) the
misdetection (MD) probability - deciding that the transmitter
was silent when it transmitted some message, and (iii) the
probability of inclusive error (IE) - namely, not deciding on the
correct message sent (either misdetection or erroneous decod-
ing). We have then found the optimum detector/decoder that
minimizes the IE probability subject to given constraints on the
FA and the MD probabilities for a given codebook, and also
provided single-letter expressions for the exact random coding
exponents. While this is a joint detector/decoder, we have
also observed that an asymptotic separation principle holds,
in the following sense: A detector/decoder which achieves the
optimal exponents may be comprised of an optimal detector in
the Neyman-Pearson sense for the FA and MD probabilities,
followed by ordinary maximum likelihood (ML) decoding.

In case of two simple hypotheses, W = {W} and
V = {V }, the problem of [5] is a special case of the problem
studied here, for which the the output of the channel V is
completely independent of its input, and plays the role of
noise. It turns out that the optimal detector/decoder and its
properties for the problem studied here are straightforward
generalizations of [5]. However, the analysis of the random
coding detection exponents is much more intricate here than
in [5]. The detector in [5] compares a likelihood which
depends on the codebook with a likelihood that depends on
the noise. So, when analyzing the performance of random
coding, the random choice of codebook only affects the
distribution of the likelihood of the ‘codebook hypothesis’.
By contrast, here, since we would like to detect the channel,
the random choice of codebook affects the likelihood of both
hypotheses, and consequently, they may be highly dependent.

In this paper, we study the problem of joint channel detec-
tion between two disjoint sets of memoryless channels W,V ,
and decoding. We begin by considering the case of simple
hypotheses, namely W = {W} and V = {V } (Section II).
As in [5], we derive the detector/decoder which achieves the
optimal trade-off between the FA, MD and IE probabilities,
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where here too, an asymptotic separation principle holds
(Section III). Then, we derive single-letter expressions for
the exact random coding exponents, as well as improved
(expurgated) bound for low rates (Section IV). Afterwards, we
discuss a generalization to composite hypotheses, i.e., W, V
that are not singletons (Section V), and finally, we discuss the
archetype example for which (W,V ) are a pair BSCs (Section
VI). Due to the space limitation, some details and full proofs
are omitted, but can be found in [8].

II. PROBLEM FORMULATION

We begin with the following notation conventions. Alpha-
bets and other sets will be denoted by calligraphic letters,
e.g. X . Random variables and vectors will be denoted by
capital letters, e.g. X = (X1, . . . , Xn), (n - positive in-
teger), and specific values for them by lower case letters,
x = (x1, . . . , xn) in Xn, the n-th order Cartesian power
of X . A joint distribution of a pair of random variables
(X,Y ) on X × Y , the Cartesian product alphabet of X
and Y , will be denoted by QXY and similar forms, e.g.
Q̃XY . We will usually abbreviate this notation by omitting
the subscript XY , and denote, e.g, QXY by Q. The X-
marginal (Y -marginal), induced by Q will be denoted by QX
(respectively, QY ), and the conditional distributions will be
denoted by QY |X and QX|Y . The joint distribution induced
by QX and QY |X will be denoted by Q = QX ×QY |X . The
mutual information of a joint distribution Q will be denoted
by I(Q). The conditional information divergence between the
conditional distributions QY |X and PY |X , averaged over QX ,
will be denoted by D(QY |X‖PY |X |QX). The probability of
an event A will be denoted by P{A}, and the expectation
operator will be denoted by E{·}. The complement of a set
A will be denoted by Ac. Logarithms and exponents will be
understood to be taken to the natural base, and we will denote
[t]+ , max{t, 0}. We adopt the standard convention that
when a minimization (respectively, maximization) problem is
performed on an empty set the result is∞ (respectively, −∞).

Consider a discrete memoryless channel, characterized
by a finite input alphabet X , a finite output alphabet Y ,
and a given matrix of single-letter transition probabilities
{PY |X(y|x)}x∈X ,y∈Y . Let Cn = {x1,x2 . . . ,xM} ⊂ Xn,
denote a codebook for blocklength n and rate R, for which
the transmitted codeword is chosen with a uniform probability
distribution over the M =

⌈
enR

⌉
codewords. The conditional

distribution PY |X may either satisfy PY |X = W (the null
hypothesis), or PY |X = V (the alternative hypothesis). It is re-
quired to design a detector/decoder which is oriented to decode
messages only arriving via the channel W . Formally, such a
detector/decoder φ is a partition of Yn into M + 1 regions,
denoted by {Rm}Mm=0. If y ∈ Rm for some 1 ≤ m ≤M then
the m-th message is decoded. If y ∈ R0 (the rejection region)
then the channel V is identified, and no decoding takes place.

For a codebook Cn and a detector/decoder φ, we define1

1The meaning of FA and MD here is opposite to their respective meaning
in [5], as sanctioned by the motivating applications.

PFA(Cn, φ) ,
1

M

M∑
m=1

W (R0|xm), (1)

PMD(Cn, φ) ,
1

M

M∑
m=1

V (Rc0|xm), (2)

PIE(Cn, φ) ,
1

M

M∑
m=1

W (Rcm|xm) (3)

as the false alarm (FA) probability, misdetection (MD) proba-
bility, and inclusive error (IE) probability, respectively. Thus,
the IE event is the total error event, i.e., when the correct
codeword is not decoded either because of a FA or an ordinary
erroneous decoding. When possible, we will omit the notation
of the dependence of these probabilities on Cn and φ.

For a given code Cn, we are interested in achievable trade-
offs between PFA, PMD and PIE. Consider the following problem:

minimize PIE

subject to PFA ≤ εFA, PMD ≤ εMD (4)

where εFA and εMD are given prescribed quantities, and it
is assumed that these two constraints are not contradictory.
Indeed, there is some tension between PMD and PFA as they are
related via the Neyman-Pearson lemma [9, Theorem 11.7.1].
For a given εFA, the minimum achievable PMD is positive, in
general. It is assumed then that the prescribed value of εMD is
not smaller than this minimum. In the problem under consid-
eration, it makes sense to relax the tension between the two
constraints to a certain extent, in order to allow some freedom
to minimize PIE under these constraints. While this is true
for any finite blocklength, as we shall see (Proposition 2), an
asymptotic separation principle holds, and the optimal detector
in terms of exponents has full tension between the FA and MD
exponents. The optimal detector/decoder for the problem (4)
will be denoted by φ∗. Our goal is to find the optimum detec-
tor/decoder for the problem (4), and then analyze the achiev-
able exponents associated with the resulting error probabilities.

III. THE OPTIMAL JOINT DETECTOR/DECODER

Let a, b ∈ R, and define the detector/decoder φ∗ =
{R∗m}Mm=0, where R∗0 is defined as{
y : a

M∑
m=1

W (y|xm) + max
m

W (y|xm) ≤ b
M∑
m=1

V (y|xm)

}
(5)

and

R∗m , [R∗0]
c
⋂{

y : W (y|xm) > max
k 6=m

W (y|xk)
}
. (6)

Lemma 1. Let a codebook Cn be given, let φ∗ be as above,
and let φ be any other partition of Yn into M +1 regions. If
PFA(Cn, φ) ≤ PFA(Cn, φ∗) and PMD(Cn, φ) ≤ PMD(Cn, φ∗) then
PIE(Cn, φ) ≥ PIE(Cn, φ∗).

Note that this detector/decoder is optimal (in the Neyman-
Pearson sense) for any given blocklength n and codebook
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Cn. Thus, upon a suitable choice of a and b, it solves the
problem (4) exactly. As common, to assess the achievable
performance, we resort to large blocklength analysis of error
exponents. For a given sequence of codes C , {Cn}∞n=1 and
a detector/decoder φ, the FA exponent is defined as

EFA (C, φ) , lim inf
n→∞

− 1

n
logPFA (Cn, φ) , (7)

and the MD exponent EMD (C, φ) and the IE exponent
EIE (C, φ) are defined similarly. The asymptotic version of (4)
is then stated as finding the detector/decoder which achieves
the largest EIE under constraints on EFA and EMD. To affect
these error exponents, the coefficients a, b in (5) need to
exponentially increase/decrease as a functions of n, and so
we set a , enα and b , enβ . Evidently, for α > 0, the ML
term on the right-hand side (r.h.s.) of (5) is negligible w.r.t.
the left-hand side (l.h.s.), and the obtained rejection region is
asymptotically equivalent to

R′0 ,

{
y : enα

M∑
m=1

W (y|xm) ≤ enβ
M∑
m=1

V (y|xm)

}
(8)

which corresponds to an ordinary Neyman-Pearson test be-
tween the hypotheses that the channel is W or V . Thus,
unlike the fixed blocklength case, asymptotically, we obtain a
complete tension between the FA and MD probabilities. The
resulting detector (8) is indeed quite intuitive: It compares the
likelihoods of each of the channels, assuming nothing on the
transmitted message. The ‘max’ term in the optimal detector
(5), is, however, more difficult to intuitively explain, but it
naturally arises in the proof of Lemma 1.

Consequently, as the next proposition shows, there is no loss
in error exponents when using the φ′, whose rejection region
is as in (8), and if y /∈ R′0 then ordinary ML decoding for
W is used, as in (6). This implies an asymptotic separation
principle between detection and decoding: the optimal detector
can be used without considering the subsequent decoding,
and the optimal decoder can be used without considering the
preceding detection. As a result, asymptotically, there is only a
single degree of freedom to control the exponents. Thus, when
analyzing error exponents in Section IV, we will assume that
φ′ is used, and since (8) depends on the difference α − β
only, we will set henceforth β = 0 for φ′. The parameter α
will be used to control the trade-off between the FA and MD
exponents, just as in ordinary hypothesis testing.

Proposition 2. For any given sequence of codes C =
{Cn}∞n=1, and given constraints on the FA and MD exponents,
the detector/decoder φ′ achieves the same IE exponent as φ∗.

Proposition 2 is proved by noticing that conditioned on the
mth codeword, the IE probability (3) is the union of the FA
event and the event {W (Y|xm) < maxk 6=mW (Y|xk)}, i.e.,
an ordinary ML decoding error. So, as the union bound is
asymptotically exponentially tight for a union of two events

EIE (C, φ∗) = min {EO (C, φ∗) , EFA (C, φ∗)} , (9)

which implies that the best IE exponent is obtained for the
best FA exponent.

The achievable exponent bounds will be proved by random
coding over some ensemble of codes. Letting over-bar denote
an average w.r.t. some ensemble, we will define the random
coding exponents, as

EFA (φ) , lim
l→∞

− 1

nl
logPFA (Cnl , φ) , (10)

where {nl}∞l=1 is a sub-sequence of blocklengths. When we
assume a fixed composition ensemble with distribution PX ,
this sub-sequence will simply be the blocklengths such that the
type class associated with PX is not empty. To comply with
definition (7), one can obtain codes which are good for all
sufficiently large blocklength by slightly modifying the input
distribution. The MD exponent EMD (φ) and the IE exponent
EIE (φ) are defined similarly, where the three exponents share
the same sequence of blocklengths.

Now, if we provide random coding exponents for the FA,
MD and ordinary decoding exponents, then the existence of
a good sequence of codes can be easily shown. Indeed, the
Markov inequality implies that

P (PFA(Cnl , φ) ≥ exp [−nl (EFA (φ)− δ)]) ≤ e−nl
δ
2 , (11)

for all l sufficiently large. Thus, with probability tending to 1,
the chosen codebook will have FA probability not larger than
exp [−n (EFA (φ)− δ)]. As the same can be said on the MD
probability and the ordinary error probability, then one can
find a sequence of codebooks with simultaneously good FA,
MD and ordinary decoding error probabilities, and from (9),
also good IE probability. For this reason, henceforth we will
only focus on the FA and MD exponents. The IE exponent
can be simply obtained by (9) and the known bounds of
ordinary decoding, namely, the random coding bounds [10,
Theorem 10.2] (and its tightness [10, Problem 10.34]) and the
expurgated bound [10, Problem 10.18].

IV. ACHIEVABLE ERROR EXPONENTS

Let Q̃ represent the joint type of the true transmitted
codeword and the output, and Q is some type of a competing
codeword. We denote the normalized log-likelihood ratio of a
channel W by

fW (Q) ,
∑

x∈X ,y∈Y
Q(x, y) logW (y|x), (12)

with the convention fW (Q) = −∞ if Q(x, y) > 0 ⇒
W (y|x) = 0. We define the set

QW , {Q : fW (Q) > −∞} (13)

and for γ ∈ R,

s(Q̃Y , γ) , min
Q∈QW :QY =Q̃Y

I(Q) + [−α− fW (Q) + γ]+ .

(14)
Further, define the sets

J1 ,
{
Q̃ : fW (Q̃) ≤ −α+ fV (Q̃)

}
, (15)
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J2 ,
{
Q̃ : s

(
Q̃Y , fV (Q̃)

)
≥ R

}
, (16)

the exponent

EA , min
Q̃∈∩2

i=1Ji
D(Q̃Y |X‖W |PX), (17)

the sets
K1 ,

{
(Q̃,Q) : QY = Q̃Y

}
, (18)

K2 ,
{
(Q̃,Q) : fW (Q) ≤ −α+ fV (Q)

}
, (19)

K3 ,
{
(Q̃,Q) : fV (Q) ≥ α+ fW (Q̃)−

[
R− I(Q)

]
+

}
,

(20)
K4 ,

{
(Q̃,Q) : s

(
Q̃Y , fV (Q) +

[
R− I(Q)

]
+

)
≥ R

}
,

(21)
and the exponent

EB , min
(Q̃,Q)∈∩4

i=1Ki

{
D(Q̃Y |X‖W |PX) +

[
I(Q)−R

]
+

}
.

(22)
In addition, let us define the type-enumeration detection ran-
dom coding exponent as

ERC
TE (R,α, PX ,W, V ) , min {EA, EB} . (23)

Theorem 3. Let PX andα ∈ R be given. Then, there exists a
sequence of codes C = {Cn}∞n=1 of rate R such that for any
δ > 0

EFA (C, φ∗) ≥ ERC
TE (R,α, PX ,W, V )− δ, (24)

EMD (C, φ∗) ≥ ERC
TE (R,α, PX ,W, V )− α− δ. (25)

The proof of Theorem 3 relies on the type-enumeration
method, and omitted due to space limitations. For the FA expo-
nent, the exponent EA (EB , respectively) pertains to the event
that the scaled likelihood of the true codeword (sum of scaled
likelihoods of all competing codewords, respectively) under
V is larger than

∑M
m=1W (Y|Xm). The MD exponent is ob-

tained by proving that the difference between the FA and MD
exponents of φ′ is always α. The main challenge in analyzing
the random coding FA exponent, is that the likelihoods of both
hypotheses, namely

∑M
m=1W (Y|Xm) and

∑M
m=1 V (Y|Xm)

are very correlated due to the fact the once the codewords
are drawn, they are common for both likelihoods. This is
significantly different from the situation in [5], in which
the likelihood

∑M
m=1W (Y|Xm) was compared to the noise

likelihood Q0(Y), of a completely different distribution.
We next turn to derive expurgated exponents. Throughout,

PXX̃ will represent a joint type of a pair of codewords. Let
us define

ds(x, x̃) , − log[
∑
y∈Y

W 1−s(y|x)V s(y|x̃)] (26)

and the set

L , {PXX̃ : PX̃ = PX , I(PXX̃) ≤ R} . (27)

In addition, let us define the type-enumeration detection ex-
purgated exponent EEX

TE (R,α, PX ,W, V ) as

max
0≤s≤1

min
PXX̃∈L

{
αs+ E

[
ds(X, X̃)

]
+ I(PXX̃)−R

}
. (28)

Theorem 4. Let a distribution PX and a parameter α ∈ R be
given. Then, there exists a sequence of codes C = {Cn}∞n=1 of
rate R such that for any δ > 0

EFA (C, φ∗) ≥ EEX
TE (R,α, PX ,W, V )− δ, (29)

EMD (C, φ∗) ≥ EEX
TE (R,α, PX ,W, V )− α− δ. (30)

We summarize this section with the following discussion.
1) Monotonicity in the rate: Unlike the ordinary random

coding exponent, the detection exponents do not necessarily
decrease with the rate R. Thus, the required detection does
not necessarily cause a rate loss, i.e. nulls the IE exponent at
rates below I(PX ×W ).

2) Choice of input distribution: Thus far, the input dis-
tribution PX was assumed fixed, but it can obviously be
optimized. Nonetheless, there might be a tension between the
optimal choice for channel coding versus the optimal choice
for detection, and so a compromise should be made.

3) Simplified Detectors: The optimal detector (5) is rather
difficult to implement, as it requires computations of the form∑M
m=1W (y|xm), which involve the sum of exponentially

many likelihood terms, and each likelihood term is exponen-
tially small. For low rates, a plausible approximation in (5)
is
∑M
m=1W (y|xm) ≈ max1≤m≤M W (y|xm) (and the same

for V ), and in [8] we have shown that the random coding ex-
ponents of th resulting approximated detector, denoted by φL,
can be derived just as for the optimal detector. For high rates,
the output distribution of a capacity achieving code tends to be
close to a memoryless distribution W̃ , (PX ×W )Y , and an
appropriate approximation is 1

M

∑M
m=1W (y|xm) ≈ W̃ (y).

The random coding FA and MD exponents of such a detector
follow directly from standard results [9, Section 11.7].

4) Gallager/Forney style exponents: In [8], we also derived
Gallager/Forney-style lower bounds on the exponents. While
these bounds can be strictly loose, it is indeed useful to
derive them since: (i) They are simpler to compute, as they
require solving at most two-dimensional (four-dimensional)
optimization problems when there are no input constraints
(with input constraints, respectively), irrespective of the in-
put/output alphabet sizes. (ii) The bounds are translated almost
verbatim to memoryless channels with continuous input/output
alphabets, like the AWGN channel.

V. COMPOSITE DETECTION

Up until now, we have assumed that detection is performed
between two simple hypotheses, W and V . Next, we discuss
the generalization of the random coding analysis to composite
hypotheses, i.e., a detection between a channel W ∈ W
and a channel V ∈ V , where W and V are some disjoint
compact sets. Due to the nature of the problems outlined in the
introduction (Section I), we adopt a worst case approach. For
a codebook Cn and a given detector/decoder φ, we generalize
the FA probability to

PFA(Cn, φ) , max
W∈W

1

M

M∑
m=1

W (R0|xm), (31)
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and analogously, the MD and IE probabilities are obtained by
maximizing over V ∈ V and W ∈ W , respectively. Then,
the trade-off between the IE probability and the FA and MD
probabilities in (4) is defined exactly the same way.

Just as we have seen in (9), for any sequence of codebooks
C and decoder φ

EIE(Cn, φ) = min {EO(Cn, φ), EFA(Cn, φ)} (32)

where here, EO(Cn, φ) is the exponent achieved by an ordinary
decoder, which is not aware of W . Thus, the asymptotic sep-
aration principle holds here too, in the sense that the optimal
detector/decoder may first use a detector which achieves the
optimal trade-off between the FA and MD exponents, and then
a decoder which achieves the optimal ordinary exponent.

We next discuss the achievable random coding exponents.
As is well known, the maximum mutual information [10,
Chapter 10, p. 147] universally achieves the random coding
exponents for ordinary decoding. So, as in the simple hypothe-
ses case, it remains to focus on the optimal trade-off between
the FA and MD exponents, namely, solve

minimize PFA

subject to PMD ≤ e−nEMD (33)

for some given exponent EMD > 0. The next lemma shows that
the following universal detector/decoder φU, whose rejection
region RU

0 is defined as{
y : enα ·

M∑
m=1

max
W∈W

W (y|xm) ≤
M∑
m=1

max
V ∈V

V (y|xm)

}
,

(34)
solves (33). The universality here is in the sense of (33), i.e.,
achieving the best worst-case (over W ) FA exponent, under
a worst case constraint (over V ) on the MD exponent. There
might be, however, a loss in exponents compared to a detector
which is aware of the actual pair (W,V ) (cf. Corollary 6).

Lemma 5. Let C be a sequence of codebooks, let φU be
as above, and let φ be any other detector/decoder. Then, if
EFA(C, φ) ≥ EFA(C, φU) then EMD(C, φ) ≤ EMD(Cn, φU).

It remains to evaluate the random coding exponents for
some (W,V ) ∈ W×V when φU is used. Fortunately, this is a
simple corollary to Theorem 3. Let us define the generalized
normalized log-likelihood ratio of the set of channels W as

fW(Q) , max
W∈W

∑
x∈X ,y∈Y

Q(x, y) logW (y|x). (35)

Corollary 6. Let PX and α ∈ R be given. Then, there exists
a sequence of codes C = {Cn}∞n=1 of rate R, such that for
any δ > 0

EFA (C, φU) ≥ ERC
TE,U (R,α, PX ,W, V )− δ, (36)

EMD (C, φU) ≥ ERC
TE,U (R,α, PX ,W, V )− α− δ (37)

where ERC
TE,U (R,α, PX ,W, V ) is defined as

ERC
TE (R,α, PX ,W, V ) of (23), but replacing fW (Q) (fV (Q))

with with fW(Q) (fV(Q), respectively) in all the definitions
preceding Theorem 3.
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Figure 1. Achievable MD and FA exponents for φ′ .

VI. AN EXAMPLE

Let W and V be a pair of BSCs with crossover probabilities
w = 0.1 and v = 0.4, respectively, and assume that PX =
( 12 ,

1
2 ), which results a capacity of CW , I(PX × W ) ≈

0.37 (nats). Interestingly, the output distributions (PX ×W )Y
and (PX × V )Y are both uniform, and so a detector which
assumes a memoryless output distribution is useless, whereas
the optimal decoder φ′ produces strictly positive exponents.

We have plotted the the trade-off between the FA exponent
and the MD exponent. Figure 1 shows that at zero rate, the
expurgated bound significantly improves the random coding
bound, and that in this case the exponents decrease as the
rate increases to R = 0.5 · CW . Following the discussion
at the end of Section IV, in this example, the simplified
low-rate detector/decoder φL performs as well as the optimal
detector/decoder φ′ for all rates less than R ≈ 0.8 · CW . In
addition, the Gallager/Forney-style random coding exponents
turn out to be strictly loose when R = 0.5 · CW , which
exemplifies the importance of the ensemble-tight bounding
technique of the type enumeration method used here.
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Abstract—We present a converse bound for lossy source coding
in the finite blocklength regime. The bound is based on d-tilted
information, and it combines ideas from two different converse
techniques by Kostina and Verdú. When particularised to the
binary and Gaussian memoryless sources, the new bound gives
slightly tighter results in certain blocklength regimes.

I. INTRODUCTION AND MAIN RESULTS

Kostina and Verdú recently presented two general converse
bounds in [1] for the problem of lossy source coding at finite
blocklengths. These bounds were respectively based on d-
tilted information and binary hypothesis testing arguments.
Matsuta and Uyematsu [2] presented a converse at ISIT’15
that is tighter than Kostina and Verdú’s meta-converse, but,
unfortunately, this bound is not (yet) numerically computable.

The main purpose of this paper is to report a new converse
bound for general sources, and to particularise the bound to the
binary memoryless source (BMS) with Hamming distortions
and the Gaussian memoryless source (GMS) with squared-
error distortions. The new bound is simply stated and (we
believe) quite intuitive. Its proof combines ideas from Kostina
and Verdú’s d-tilted and meta-converse bounds, and it gives
slightly better numerical results for the BMS and GMS at
certain blocklengths.

A. Problem Statement & Basic Functions

Our presentation will follow the one-shot paradigm in [1]:
We first consider an abstract rate-distortion (RD) problem that
consists of compressing and reconstructing a single random
variable. We then specialise this one-shot problem setup to
the block encoding and decoding of memoryless sources.

Let X be the output of a general source with distribution
pX on an alphabet X . A (possibly stochastic) encoder

f : X →M := {1, 2, . . . ,M}

maps the source output X to an index T := f(X) from which
a (possibly stochastic) decoder

g :M→ X̂

outputs X̂ := g(T ) as its estimate of X . Let

d : X × X̂ → [0,∞)

denote the distortion function.

Definition. An (M,d, ε)-code consists of an encoder f and
decoder g, as described above, with P

[
d(X, X̂) > d

]
≤ ε.

In this paper, the main problem is to find lower bounds on
the smallest M for which there exists an (M,d, ε)-code.

The abstract problem formulation above can be specialised
to block encoding/decoding of memoryless sources as follows.

Definition. An (n,M, d, ε) code for a memoryless source with
distribution pX = pnX := pX × . . . × pX putting out strings
X of length n from Xn = X × . . . × X and reconstruction
alphabet X̂n consists of an encoder f : Xn → M and a
decoder g :M→ X̂n satisfying P

[
d(X, X̂) > d

]
≤ ε.

Let

R(d) := inf
pX̂|X : E[ d(X,X̂)]≤d

E
[
ıX;X̂(X; X̂)

]
, (1)

denote the usual RD function, where

ıX;X̂(x; x̂) := log
dpX̂|X=x

dpX̂
(x̂),

is the information density of pXX̂ = pX̂|XpX . As in [1], we
make the following two basic assumptions:
A1. The distortion constraint d satisfies R(d) <∞.
A2. The infimum in (1) is achieved by a unique1 p∗

X̂|X .

Let p∗
X̂

denote the X̂-marginal on X̂ induced by p∗
X̂|X and

pX , and define λ := −R′(d) to be the negative slope of the
RD function at distortion d. Let

X(x, d) := log
1

Ep∗
X̂
[exp(λ(d− d(x, X̂))]

,

where the expectation is taken with respect to p∗
X̂

. The function
X(x, d) is called d-tilted information, and, intuitively, it
corresponds to the number of bits required to represent a
particular source realisation x to within distortion d. For
example, one can show [3], [4] that R(d) = E[X(X, d)]. We
now summarise the main results of the paper. These results
are proved in Sections II, III and IV.

B. General Sources

We start with a converse for general sources.

Theorem 1. Any (M,d, ε) code must satisfy

M ≥ sup
β∈R

 P
[
X(X, d) ≥ β

]
− ε

sup
x̂∈X̂

P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
 . (2)

1We make this assumption for clarity of presentation. As mentioned in [1,
Remark 9], it can be relaxed.
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C. Binary Memoryless Sources (BMS)

The next corollary specialises Theorem 1 to the special
case of a BMS with Hamming distortions. Let X = (X1, X2,
. . . , Xn) be a string of n iid instances of X ∼ Bernoulli(p),
and choose the distortion function to be

d(X, X̂) =
1

n

n∑
i=1

1{Xi 6= X̂i}.

Corollary 2 (BMS). Fix p ∈ (0, 1/2) and d ∈ [0, p). Any
(n,M, d, ε) code must satisfy

M ≥ max
0≤b≤n

(∑n
k=b

(
n
k

)
pk(1− p)n−k − ε
αn,d,p(b)

)
, (3)

where

αn,d,p(b) = max
n̂1

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
· pn̂1+k−2l(1− p)n−n̂1−k+2l1

{
n̂1 + k − 2l ≥ b

}
and the maximisation is taken over all n̂1 ∈ N satisfying

max
{

0, b− bndc
}
≤ n̂1 ≤ min

{
n, b+ bndc

}
.

It is worth noting that Corollary 2 does not weaken Theo-
rem 1; that is, the right hand sides of (2) and (3) are equal for
the BMS with Hamming distortions.

Remark: For p = 1/2, X(X, d) does not depend on X [1,
Example 1]. In this case, Theorem 1 coincides with [1, Thm.
20] which is derived from the meta-converse bound.

D. Gaussian Memoryless Sources (GMS)

Now let X = (X1, X2, . . . , Xn) be a string of n iid instances
of X ∼ N (0, 1), and consider the squared-error distortions

d(X, X̂) =
1

n

n∑
i=1

|Xi − X̂i|2.

A slight weakening of Theorem 1 yields the next corollary.
Here fχ2

n
(·) denotes the χ2

n probability density function.

Corollary 3 (GMS). Fix d ∈ (0, 1). Any (n,M, d, ε) code
must satisfy

M ≥ sup
γ≥nd

( ∫∞
γ
fχ2

n
(w) dw − ε

1
2Ind/γ

(
n−1
2 , 12

) ∫ γ?

γ
fχ2

n
(w) dw

)
, (4)

where I(·)(·, ·) is the regularized incomplete beta function and

γ? :=

[
2(nd)n/2

Ind/γ
(
n−1
2 , 12

) + γn/2
]2/n

. (5)

E. Comparions to Existing Bounds

We now compare Theorem 1 and Corollaries 2 and 3 to
Kostina and Verdú’s d-tilted information and meta-converse
bounds in [1]. Let us first recall the d-tilted information bound.

Theorem KV-1. Any (M,d, ε) code must satisfy [1, Thm. 7]

ε ≥ sup
γ≥0

(
P[X(X, d) ≥ logM + γ]− e−γ

)
. (6)

To compare Theorem 1 with Theorem KV-1, it is helpful
to first rewrite (2) as a lower bound on ε:

ε ≥ sup
β∈R

(
P
[
X(X, d) ≥ β

]
−M sup

x̂∈X̂
P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

])
. (7)

Given the similarities between (6) and (7), one might guess
that Theorem KV-1 can be recovered as a special case of
Theorem 1 by choosing β appropriately in (7). We now show
that this is indeed the case, and, therefore, Theorem KV-1
cannot be stronger than Theorem 1.

Choose β = logM + γ and consider the rightmost term
in (7). We have2

M sup
x̂∈X̂

P
[
X(X, d) ≥ logM + γ, d(X, x̂) ≤ d

]
a
= M sup

x̂∈X̂
E
[
1

{
1

M
eX(X,d)−γ ≥ 1, eλ(d− d(X,x̂)) ≥ 1

}]
b
≤M sup

x̂∈X̂
E
[

1

M
eX(X,d)−γ 1

{
eλ(d− d(X,x̂)) ≥ 1

}]
c
≤ e−γ sup

x̂∈X̂
E
[
eX(X,d)+λ(d− d(X,x̂))

]
d
≤ e−γ , (8)

where (a) follows because the RD function R(d) is non-
increasing in d and therefore λ ≥ 0; (b) and (c) follow from
Markov’s inequality; and (d) applies the next lemma3.

Lemma 4 (Csiszár). For all x̂ ∈ X̂ [3, Eq. (1.22)],

E
[
eX(X,d)+λ(d− d(X,x̂))

]
≤ 1,

with equality for pX̂? -almost all x̂.

The second converse result from Kostina and Verdú that we
will consider is based on binary hypothesis testing. Let

βα(p, q) = min
pW |X

P[W=1]≥α

Q
[
W = 1

]
, (9)

denote the optimal performance achievable among all ran-
domised tests pW |X : X → {0, 1} between probability
distributions p and q on X where 1 indicates that the test
chooses p and Q[·] is the probability of an event if X has
distribution q.

Theorem KV-2. Any (M,d, ε) code must satisfy [1, Thm. 8]

M ≥ sup
qX

inf
x̂∈X̂

β1−ε(pX , qX)

Q
[
d(X, x̂) ≤ d

] , (10)

where the supremum is taken over all distributions on X .

Remark: After submitting this paper, we found that one can
derive Theorem 1 by making a (suboptimal) choice for qX
in Theorem KV-2; see the Appendix. This also shows that
Theorem KV-2 is never weaker than Theorem KV-1.

2The following arguments are based on the proof of Theorem KV-1 in [1].
3See also Property 2 in [1, p. 3311].
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Fig. 1. BMS, d = 0.11, p = 2/5, ε = 10−2.

F. Numerical Results

Consider the BMS under Hamming distortions with the
following parameters: p = 2/5, d = 0.11 and ε = 10−2.
Figure 1 plots the lower bound (3) from Corollary 2. For
comparison, the best converse bound from in [1, Thm. 20] is
also plotted. For this particular setup, [1, Thm. 20] is tighter
for n < 173, but weaker for n ≥ 173. For completeness, we
have also plotted the Gaussian approximation [1, Thm. 23] and
an achievability result based on random coding [1, Theorem
10]. There, we chose pX̂ = pn

X̂
and set pX̂(1) = p−d′

1−2d′
with d′ := bndc/n, which is slightly better than choosing
pX̂(1) = p−d

1−2d . Computations with other parameters indicate
that the crossing point moves to smaller n when increasing d
or ε and to larger n otherwise.

Now consider the GMS under squared error distortions
with the following parameters: d = 0.25, σ2 = 1 and
ε = 10−2. Figure 2 plots the bound in (4) and, for comparison,
the converse bound [1, Theorem 36], which can be derived
from (10). Our result is tighter for n ≥ 12. We also included
the Gaussian approximation [1, Theorem 40]. Here, choosing
small values for d shifts the crossing point to larger n whereas
varying ε does not seem to have a significant influence.

II. GENERAL SOURCES: PROOF OF THEOREM 1

For ease of notation, we assume that X and X̂ are finite sets
but note that the result applies to general abstract sources.

Let β ∈ R be arbitrary. In the same manner as the proof of
Theorem KV-1 in [1], we start by bounding

P
[
X(X, d) ≥ β

]
= P

[
X(X, d) ≥ β, d(X, X̂) > d

]
+ P

[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
≤ ε+ P

[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
. (11)

Now consider the second probability of the RHS. Using
similar arguments as the proof of Theorem KV-2 in [1],
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Fig. 2. GMS, d = 0.25, σ2 = 1, ε = 10−2.

P
[
X(X, d) ≥ β, d(X, X̂) ≤ d

]
=
∑
x∈X

pX(x)
∑
t∈M

pT |X(t|x)︸ ︷︷ ︸
≤1∑

x̂∈X̂

pX̂|T (x̂|t) 1
{
X(x, d) ≥ β, d(x, x̂) ≤ d

}
≤
∑
t∈M

∑
x̂∈X̂

pX̂|T (x̂|t)
∑
x∈X

pX(x)

1
{
X(x, d) ≥ β, d(x, x̂) ≤ d

}
=
∑
t∈M

∑
x̂∈X̂

pX̂|T (x̂|t)P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
≤
∑
t∈M

sup
x̂∈X̂

P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
=M sup

x̂∈X̂
P
[
X(X, d) ≥ β, d(X, x̂) ≤ d

]
. (12)

To complete the proof, combine (11) and (12) and take the
supremum over β to get (2) or (7). �

III. BMS: PROOF OF COROLLARY 2

Fix p ∈ (0, 1/2), d ∈ [0, p) and β ∈ R. Let h2(·) denote
the binary entropy function. We have [1, Eqn. (21)]

X(x, d) = N(1|x) log
1

p
+ (n− N(1|x)) log

1

1− p
− nh2(d),

where

N(1|x) :=
n∑
k=1

1{xi = 1}.

Since p ∈ (0, 1/2), it follows that p < 1 − p and X(x, d)
grows linearly in N(1|x) for fixed n. Let

b := min

{
n′ ∈ {0, . . . , n} :

n′ log
1

p
+ (n− n′) log

1

1− p
− nh2(d) ≥ β

}
,
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and note that{
x ∈ Xn : X(x, d) ≥ β

}
=
{

x ∈ Xn : N(1|x) ≥ b
}
.

Hence,

P[X(X, d) ≥ β] = P
[
N(1|X) ≥ b

]
=

n∑
k=b

(
n

k

)
pk(1− p)n−k. (13)

Now consider the denominator of (2). Let n̂1 := N(1|x̂).
Using Vandermonde’s identity, the number of binary sequences
in a Hamming ball of size bndc centered at a sequence of
Hamming weight n̂1 is given by

bndc∑
k=0

(
n

k

)
=

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
,

where, in each summand,
(
n̂1

l

)(
n−n̂1

k−l
)

is the number of se-
quences of Hamming weight n̂1 + k − 2l. We can thus write

sup
x̂∈X̂n

P
[
X(X, d) ≥ β, d(X, x̂) ≤ nd

]
*
= max

n̂1

P
[
N(1|X) ≥ b, d(X, x̂) ≤ nd

]
= max

n̂1

∑
x

pX(x)1
{
N(1|x) ≥ b, d(x, x̂) ≤ nd

}
= max

n̂1

bndc∑
k=0

k∑
l=0

(
n̂1
l

)(
n− n̂1
k − l

)
pn̂1+k−2l

· (1− p)n−n̂1−k+2l1
{
n̂1 + k − 2l︸ ︷︷ ︸

=N(1|x)

≥ b
}
, (14)

where (*) follows since, by symmetry, the probability depends
on x̂ only through n̂1.

In fact, we only need to consider b−bndc ≤ n̂1 ≤ b+bndc
for the maximisation. This is because for n̂1 < b− bndc, we
have 1

{
n̂1 + k − 2l ≥ b

}
= 0 for all summands and for

n̂1 > b + bndc, 1
{
n̂1 + k − 2l ≥ b

}
= 1 for all summands

in which case the sum is monotonically decreasing in n̂1 (we
omit the proof of this fact). �

IV. GMS: PROOF OF COROLLARY 3

The d-tilted information for the GMS with d < σ2 = 1 is
given by [1, Example 2]

X(x, d) =
n

2
log

1

d
+
‖x‖2 − n

2
log e,

which grows linearly in ‖x‖2. Hence, we can rewrite (2) as

M ≥ sup
γ≥0

(
P
[
‖X‖2 ≥ γ

]
− ε

sup
x̂∈Rn

P
[
‖X‖2 ≥ γ, d(X, x̂) ≤ d

]). (15)

We will lower bound (15) using a geometric argument for the
denominator. By the circular symmetry of the GMS, we only
need to consider those x̂ ∈ Rn for the supremum that lie on
an arbitrary straight line through the origin. Denote

A :=
{

x ∈ Rn : ‖x‖2 ≥ γ
}
,

L

A

√
γ

Sn(
√
γ)

An(
√
γ, θd)

θd

Cn(θd)

B(x̂)

Fig. 3. Intersection of A with possible distortion balls.

B(x̂) :=
{

x ∈ Rn : ‖x− x̂‖2 ≤ nd
}
,

and observe that

sup
x̂∈Rn

P
[
‖X‖2 ≥ γ, d(X, x̂) ≤ d

]
= sup

x̂∈Rn

P
[
X ∈ A ∩ B(x̂)

]
= sup

x̂∈L
P
[
X ∈ A ∩ B(x̂)

]
, (16)

where L denotes the set of points lying on a straight line
through the origin, see Figure 3.

Denote the surface area of an n-dimensional sphere of
radius r by Sn(r) and the surface area of a n-dimensional
spherical cap of radius r and half angle θ by An(r, θ). The
following relation holds [5]:

An(r, θ) :=
1

2
Sn(r)Isin2(θ)

(
n− 1

2
,

1

2

)
,

where I(·)(·, ·) is the regularized incomplete beta function.
Using the law of sines and taking γ ≥ nd, we can determine
the half angle θd such that An(

√
γ, θd) is the largest spherical

cap at radius
√
γ contained in some B(x̂):

θd = sin−1
√
nd/γ.

Let Cn(θd) be the n-dimensional infinite cone of half angle θd
that passes through An(

√
γ, θd). Clearly, A∩B(x̂) ⊂ Cn(θd),

for any x̂ ∈ L. This setup is visualized in Figure 3. Next,
denote the volume of B(x̂) for any x̂ ∈ Rn by

Vn
(√
nd
)

:=
πn/2

Γ
(
n+2
2

) (nd)n/2,

with Γ(·) being the gamma function. To upper bound (16),
we consider the largest probability of any set in A ∩ Cn(θd)
(the shaded area in Figure 3) that has the same volume as a
distortion ball. We denote this set by

K? := arg max
K⊂A∩Cn(θd):

Vol(K)=Vn(
√
nd)

P
[
X ∈ K

]
(17)
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Fig. 4. Geometry of K?.

The geometry of the arg max problem is depicted in Fig-
ure 4. By the circular symmetry, K? is the slice of the
cone Cn(θd) that lies on the surface of Sn(

√
γ, θd) and has

volume Vn
(√
nd
)
. More precisely, we can describe K? as the

difference between spherical sectors of half angle θd whose
volumes differ by exactly Vn(

√
nd), see Figure 4. The volume

of a hypershperical sector of half angle θ and radius r is given
by [5]

V sec
n (r, θ) :=

1

2
Vn(r)Isin2(θ)

(
n− 1

2
,

1

2

)
.

Now let γ? be the solution to

V sec
n (
√
γ?, θd)− V sec

n (
√
γ, θd) = Vn(

√
nd), (18)

which, using sin2(θd) = nd/γ, can be rewritten as (5).
Now, we can use the tools developed in (16)–(18) to bound

sup
x̂∈L

P
[
X ∈ A ∩ B(x̂)

]
≤ P

[
X ∈ K?

]
(19)

= P
[
γ ≤ ‖X‖2 ≤ γ?,X ∈ Cn(θd)

]
(20)

= P
[
γ ≤ ‖X‖2 ≤ γ?

]
P
[
X ∈ Cn(θd)

]
, (21)

= P
[
γ ≤ ‖X‖2 ≤ γ?

]An(
√
γ, θd)

Sn(
√
γ)

(22)

=
1

2
Ind/γ

(
n− 1

2
,

1

2

)∫ γ?

γ

fχ2
n
(w) dw (23)

where (19) follows from the definition of K? (17), (20) follows
from the definition of γ? (18), and the geometry of K?, (21)–
(22) are a result of the circular symmetry of the multivariate
Gaussian and fχ2

n
(·) is the χ2

n probability density function.
Combining (23) and (15) then yields (4).
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APPENDIX

As noted in [1, Rem. 5], Theorem KV-2 can be strengthened
by relaxing the requirement that qX be a probability measure
in (9): Instead, we may allow qX to be any σ-finite measure
to obtain the following bound.

Theorem KV-3. Any (M,d, ε)-code must satisfy

M ≥ sup
qX

inf
x̂∈X̂

β1−ε(pX , qX)

Q
[
d(X, x̂) ≤ d

] , (24)

where the supremum is taken over all σ-finite measures qX .

We will now recover Theorem 1 from Theorem KV-3.
Choose qX such that

Q[X ∈ A] = P[X ∈ A, X(X, d) ≥ β], ∀A ⊆ X .

An optimal randomised test between pX and qX is

pW |X(1|x) :=


1, if X(x, d) < β

P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β]

, if X(x, d) ≥ β,

The probability that this test succeeds under pX is

P[W = 1] = P[X(X, d) < β] P[W = 1|X(X, d) < β]

+ P[X(X, d) ≥ β] P[W = 1|X(X, d) ≥ β]

= 1− ε.

Moreover, the probability that the test fails under qX is

Q[W = 1] = P[X(X, d) ≥ β,W = 1]

= P[X(X, d) ≥ β] · P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β]

= P[X(X, d) ≥ β]− ε.

Substituting qX into Theorem KV-3 gives

M ≥ inf
x̂∈X̂

P[X(X, d) ≥ β]− ε
P[X(X, d) ≥ β, d(X, x̂) ≤ d]

.

Taking the supremum over β gives Theorem 1.

Remark: The above discussion together with that in Sec-
tion I-E demonstrates that the d-tilted converse in Theo-
rem KV-1 cannot be tighter than the (generalised σ-finite
measure) meta converse in Theorem KV-3. To the best of our
knowledge, this fact has not been observed in the literature
before.
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Abstract—The effectiveness of frequency hopping for anti-
jamming protection of wireless channels is analyzed from an
information-theoretic perspective. The sender can input its sym-
bols into one of several frequency subbands at a time. Each
subband channel is modeled as an additive noise channel. No
common randomness between sender and receiver is assumed.
It is shown that capacity is positive, and then equals the
common randomness assisted (CR) capacity, if and only if the
sender power strictly exceeds the jammer power. Thus compared
to transmission over any fixed frequency subband, frequency
hopping is not more resilient towards jamming, but it does
increase the capacity. Upper and lower bounds on the CR
capacity are provided.

I. INTRODUCTION

A wireless channel is open to inputs from anybody oper-
ating on the same frequency. Therefore communication has
to be protected against deliberate jamming. This means that
communication protocols have to be devised whose applica-
tion enables reliable data transmission even if attacked by a
jammer.

If a sufficiently broad frequency band is available, and if the
jammer does not have simultaneous access to the complete
band, a method which suggests itself is frequency hopping
(FH). The frequency spectrum is divided into subbands. In
each time slot, the sender chooses a subband in a random way
and uses only that frequency to transmit data in that time slot.
In some models [4], [6], the receiver hops over frequencies,
too, and only listens to one subband at a time. The idea is that
in this way, the channel will not be jammed all the time with
positive probability, and some information will go through.

To succeed, the basic FH idea requires common randomness
known to sender and receiver, but unknown to the jammer. A
careful analysis of that situation has been performed in [4]. It
is clearly necessary that the common randomness realization
be known before transmission starts. As the channel cannot be
used to distribute this knowledge, this leads to a circle called
anti-jamming/key-establishment dependency in [6].

In [6] it has been investigated for the first time whether
FH can be used for data transmission without the availability
of common randomness. Moreover, the jammer is allowed to
distribute its power arbitrarily over all frequency subbands
and use these simultaneously. It is assumed that whether the
jammer inserts, modifies or jams messages only depends on
the relation of its own and the sender’s power. A protocol

is found which achieves a positive throughput whose value
depends on the jammer’s strategies, e.g. whether or not it can
listen to the sender’s signals.

We take a different perspective in this work. The central
figure of merit for our communication system is the message
transmission error incurred under a jamming attack. A good
FH protocol should make this error small. We assume that
the jammer cannot listen to symbols sent through the channel
(this in particular differs from [6]), that it knows the channel
and the code, but not the specific message sent, and that it
knows when the transmission of a new codeword begins. It
can input symbols into any frequency subset of a given size.
We also assume that the receiver listens to all frequencies
simultaneously.

Within these boundaries, any jammer strategy is allowed.
The jammer is successful if no coding strategy can be found
making the transmission error vanish with increasing coding
blocklength for any jamming strategy. This is an operational
approach to measure the success of jamming, in contrast to
the approach of [6] described above.

Using the information-theoretic model of an additive Arbi-
trarily Varying Channel (AVC) and the analysis in [2], we
find that the success of a jammer indeed depends on the
relation between its own and the sender’s power. In fact, if
the sender power is strictly larger than the jammer power,
the same, positive capacity is achieved as in the case where
sender and receiver have access to common randomness which
is unknown to the jammer. If the converse relation between
sender and jammer power holds, then no data transmission
at all is possible. This is independent of the number J of
subchannels the jammer can influence at the same time.

On the other hand, it is known that for each frequency
subband the same holds: If the jammer has more power than
the sender, no communication is possible over this band,
whereas the common randomness assisted capacity is achieved
in case the sender power exceeds the jammer power. Thus
in the case that no single frequency subband has a positive
capacity without common randomness, then no FH scheme
achieves a positive capacity either. Seen from this perspective,
FH does not provide any additional protection against jamming
compared to schemes which stick to one single frequency.
However, FH does in general increase the common random-
ness assisted capacity compared to the use of one single

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

20



subchannel, and hence also the capacity without common
randomness if positive – the FH sequence may depend on
the message and thus reveal additional information. (In [9],
[8] this is called message-driven frequency hopping.)

The common randomness assisted capacity will in general
depend on the number J of subchannels the jammer can
simultaneously influence. Thus the capacity achievable without
common randomness, if positive, also depends on J . We give
a lower bound for the common randomness assisted capacity.
If the noise is Gaussian and J is sufficiently large, we also
provide an upper bound which differs from the lower bound
by the logarithm of the number of frequency subbands. The
bounds involve a waterfilling strategy for the distribution of
the jammer’s power over the frequencies.

Due to space limitations, some parts of the proofs will be
omitted or only sketched. The full version of this paper is
available online [7].

Organization of the paper: Section II presents the channel
model and the main results. Sections III-IV contain the proofs
of these results. A discussion concludes the paper in Section
V.

II. SYSTEM MODEL AND MAIN RESULTS

The total frequency band available for communication is
divided into K frequency subbands. These are modeled as
parallel channels with additive noise. The receiver listens to all
frequencies simultaneously. Frequency hopping (FH) means
that the sender at each time instant chooses one of the K
subchannels into which it inputs a signal. For a fixed number
J with 1 ≤ J ≤ K, the jammer can at each time instant
choose a subset I of the K subchannels with |I| = J and
input its own signals in subchannels belonging to this subset.

The overall channel, called FH channel in the following,
can be described as an additive Arbitrarily Varying Channel
(AVC) with additive noise. For any k ∈ K = {1, . . . ,K}, we
set (ek1, . . . , ekK)> = ek to be the vector with ekk = 1 and
ekl = 0 for l 6= k. Further for any I with |I| = J , we set
(eI,1, . . . , eI,K)> = eI to be the vector satisfying eI,l = 1 if
l ∈ I and eI,l = 0 else.

If the sender chooses symbol x ∈ R to transmit over
subchannel k, it inputs xek into the channel. We denote the
set R × K by X . The jammer choooses a subset I ⊂ K
of subchannels for possible jamming (|I| = J) and a vector
(s1, . . . , sK)> = s ∈ RK of real numbers satisfying sl = 0
if l /∈ I. Then it inputs s ◦ eI into the channel, where the
symbol ◦ denotes component-wise multiplication. We denote
the set of possible jammer choices by S.

The noise on different frequencies is assumed to be indepen-
dent. For subchannel k, let Nk be the noise random variable.
Its mean is assumed to be zero and its variance is denoted by
σ2
k. The random vector (N1, . . . , NK)> is denoted by N.
Given sender input xek and jammer input s◦eI , the receiver

obtains a real K-dimensional output vector (y1, . . . , yK)> =
y through the FH channel which satisfies

y = xek + s ◦ eI + N.

In particular, on frequencies without sender or jammer inputs,
the output is pure noise. The channel is memoryless over
time, i.e. outputs at different time instants are independent
conditional on the sender and jammer inputs. Note that this is
an additive AVC, but as its input alphabet is a strict subset of
RK , the special results of [2] on additive-noise AVCs do not
apply here. The general theory developed in [2] is applicable,
though: All alphabets involved are complete, separable metric
spaces1, the channel output distribution continuously depends
on the sender and jammer inputs, and the constraints on sender
and jammer inputs to be defined below are continuous. Hence
the central hypotheses (H.1)-(H.4) of [2] are satisfied.

The protocols used for data transmission are block codes. A
blocklength-n code is defined as follows. We assume without
loss of generality that the set of messages Mn is the set
{1, . . . , |Mn|}. An encoder is a mapping fn from Mn into
the set of sequences of sender channel inputs of length n,

{(x1ek1
, . . . , xnekn) : (xi, ki) ∈ X (1 ≤ i ≤ n)}.

Note that this means that the sequence of frequency bands
used by the sender may depend on the message to be sent.
Every codeword can be considered as a K × n-matrix whose
i-th column is the i-th channel input vector. The decoder at
blocklength n is a mapping ϕn : RK×n −→Mn.

Additionally, for some Γ > 0, the sender has the power
constraint

∑n
i=1‖fn(m)i‖2 ≤ nΓ for all m ∈ Mn, where

fn(m)i denotes the i-th column of the K × n-matrix fn(m)
and ‖·‖ denotes the Euclidean norm on RK . A code (fn, ϕn)
with blocklength n which satisfies the power constraint for Γ
is called an (n,Γ)-code.

We are interested in the transmission error incurred by
a code (fn, ϕn). This error should be small for all pos-
sible jammer input sequences. Thus we first define the
transmission error for a given length-n jamming sequence
((I1, s1), . . . , (In, sn)). This sequence can be given matrix
form as well. We denote by S̃ the K × n-matrix whose i-
th column equals si. By Ẽ ∈ RK×n, we denote the matrix
with columns eI1

, . . . , eIn . Of course, S̃ ◦ Ẽ = S̃. We
keep Ẽ explicit because S̃ itself does not in general uniquely
determine the sequence (I1, . . . , In), as some components of
si could be zero (1 ≤ i ≤ n).

Just like the sender, the jammer has a power constraint. We
require that

∑n
i=1‖si‖2 ≤ nΛ for some Λ > 0 and denote

the set of S̃ ◦ Ẽ satisfying this power constraint by JΛ. It
is clear that a realistic jammer cannot transmit at arbitrarily
large powers, so this is a reasonable assumption. Note that
the jammer is free to distribute its power over the subchannel
subset it has chosen for jamming. In particular, the power can
be concentrated on one single frequency no matter what J is.

Now let (fn, ϕn) be a blocklength-n code and S̃ ◦ Ẽ ∈
RK×n a jammer input. Then the average error incurred by

1Giving a discrete set K the metric ρ(k, l) = 1 if k 6= l and ρ(k, k) = 0
for all k, l ∈ K makes K a complete metric space whose Borel algebra is its
complete power set.
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(fn, ϕn) under this jamming sequence is defined to equal

ē(fn, ϕn, S̃ ◦ Ẽ)

=
1

|Mn|
∑

m∈Mn

P[ϕn(fn(m) + S̃ ◦ Ẽ + Ñ) 6= m],

where Ñ is a matrix whose columns are n independent copies
of the noise random vector N. The overall transmission error
for (fn, ϕn) under jammer power constraint Λ is given by

ē(fn, ϕn,Λ) = sup
S̃◦Ẽ∈JΛ

ē(fn, ϕn, S̃ ◦ Ẽ).

This error criterion makes the FH channel an AVC.
A nonnegative real number is said to be an achievable rate

under sender power constraint Γ and jammer power constraint
Λ if there exists a sequence of codes ((fn, ϕn))∞n=1, where
(fn, ϕn) is an (n,Γ)-code, satisfying

lim inf
n→∞

1

n
log|Mn| ≥ R, lim

n→∞
ē(fn, ϕn,Λ) = 0.

The supremum C(Γ,Λ) of the set of achievable rates under
power constraints Γ and Λ is called the (Γ,Λ)-capacity of the
channel.

Now we ask under which conditions the (Γ,Λ)-capacity of
the FH channel is positive, and in case it is positive, how
large it is. A precise statement can be made upon introduction
of the common randomness assisted capacity Cr(Γ,Λ). This
is the maximal rate achievable if sender and receiver have
a common secret key unknown to the jammer. The key size
is not restricted. As noted in the introduction, the presence
of a certain amount of common randomness is a frequent
assumption in the literature on frequency hopping.

For given power constraint Γ > 0, we describe a com-
mon randomness assisted (n,Γ)-code as a random variable
(Fn,Φn) on the set of (n,Γ)-codes with common message size
and (Fn,Φn) independent of channel noise. The error it incurs
under jamming sequence S̃ ◦ Ẽ is defined to equal the mean
E[ē(Fn,Φn, S̃ ◦ Ẽ)] over all possible realizations of (Fn,Φn),
and the overall transmission error under jammer power con-
straint Λ > 0 is set to equal supS̃◦Ẽ∈JΛ

E[ē(Fn,Φn, S̃ ◦ Ẽ)].
The definition of common randomness assisted achievable rate
under power constraints Γ and Λ is now a straightforward
extension of the corresponding notion for the deterministic
case. The supremum of all common randomness assisted
rates under power constraints Γ and Λ is called the common
randomness assisted (Γ,Λ)-capacity and denoted by Cr(Γ,Λ).

Theorem 1. C(Γ,Λ) is positive if and only if Γ > Λ. If it is
positive, it equals Cr(Γ,Λ).

Corollary. 1) If C(Γ,Λ) > 0, then every fixed-frequency
subchannel also has a positive capacity. In this sense FH
is not necessary to achieve a positive rate.

2) If C(Γ,Λ) > 0, then common randomness does not
increase the maximal transmission rate.

For Γ > Λ, it is thus desirable to have bounds on Cr(Γ,Λ).
These can be provided for all pairs (Γ,Λ). Note that the choice
of Λ1, . . . ,ΛK below is a waterfilling strategy.

Theorem 2. 1) Let Λ1, . . . ,ΛK be nonnegative numbers
satisfying {

σ2
k + Λk = c if σ2

k < c,

Λk = 0 if σ2
k ≥ c

with c such that Λ1 + · · ·+ ΛK = Λ. Then

Cr(Γ,Λ) ≥ 1

2
log

(
1 +

Γ

c

)
. (1)

In particular, Cr(Γ,Λ) > 0.
2) If the noise is Gaussian and J ≥ |{k ∈ K : σ2

k < c}|,
then

Cr(Γ,Λ) ≤ 1

2
log

(
1 +

Γ

c

)
+ logK. (2)

Remark. 1) Set K′ := {k ∈ K : σ2
k < c}. As comparison

with (2) shows, (1) is a good bound if J ≥ |K′| and the
noise is Gaussian. The lack of a similar bound for the case
J < |K′| can be explained by the fact that the jammer
in this case has to leave some of the highest-throughput
subchannels unjammed. Cr(Γ,Λ) in general depends on
J , and should increase for decreasing J .

2) The proof of Theorem 2 shows that the 1
2 log(1+ Γ

c ) terms
in (1), (2) are achievable without frequency hopping,
whereas frequency hopping contributes at most logK bits
to capacity. According to the lower bound, the common
randomness assisted capacity grows to infinity as Λ is
kept fixed and Γ tends to infinity. Thus asymptotically
for large Γ, the relative contribution to Cr(Γ,Λ) of in-
formation transmitted through the FH sequence vanishes.

3) Non-trivial frequency hopping will in general be neces-
sary both to achieve Cr(Γ,Λ) and C(Γ,Λ). Although
we will not prove this, this is implied by the mutual
information characterization of Cr(Γ,Λ) (see the proof
of Theorem 2).

III. PROOF OF THEOREM 2
Although Theorem 1 and its corollary are our main results,

we first prove Theorem 2, which is needed for the proof of
Theorem 1. From [2, Theorem 4] it follows that

Cr(Γ,Λ) = min
(ι,S):

E[‖S‖2]≤Λ

sup
(X,κ):

E[X2]≤Γ

I(Xeκ;Xeκ + S ◦ eι + N).

Here Xeκ is a random variable on the possible sender inputs
determined by an X -valued random pair (X,κ). Similarly,
S ◦ eι is the jammer’s random channel input determined by a
random S-valued pair (ι,S) independent of (X,κ).

Define Y = Xeκ + S ◦ eι + N. The expression I(Xeκ; Y)
is concave in the distribution Pκ of κ and convex in the
distribution Pι of ι. Therefore the sender will in general have
to use frequency hopping to approach capacity and likewise,
the jammer will not stick to one constant frequency subset I
for jamming.

The mutual information term appearing in the above formula
for Cr(Γ,Λ) can be written as

I(Xeκ; Y) = I(Xeκ, κ; Y)− I(κ; Y|Xeκ)

= I(X; Y|κ) + I(κ; Y), (3)
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upon application of the chain rule in each of the equalities and
observing that the sequence κ↔ Xeκ ↔ Y is Markov.

The second term in (3) is between 0 and logK. Thus to
bound Cr(Γ,Λ), it remains to bound

min
(ι,S):E[‖S‖2]≤Λ

sup
(X,κ):E[X2]≤Γ

I(X; Y|κ) (4)

= min
(ι,S):

E[‖S‖2]≤Λ

sup
(κ,Γ)

K∑
k=1

Pκ(k) sup
X:E[X2|κ=k]≤Γk

I(X; Y|κ = k),

where the supremum over (κ,Γ) is over κ and nonnegative
vectors Γ = (Γ1, . . . ,ΓK) satisfying

∑
Pκ(k)Γk ≤ Γ.

We now sketch the proof of the lower bound. For any k ∈ K,
one has I(X; Y|κ = k) ≥ I(X;Yk|κ = k). Fix any (ι,S)
with E[‖S‖2] ≤ Λ. Then the k-th coordinate output conditional
on the event κ = k has the form

yk = x+ Zk, (5)

where Zk is a real-valued random variable of variance σ2
k+Λk

for some nonnegative Λ1, . . . ,ΛK summing up to at most Λ.
As (5) is an additive channel with the real numbers as input
and output alphabet, it is a well-known fact [5, Theorem 7.4.3]
that

sup
X:E[X2|κ=k]≤Γk

I(X;Yk|κ = k) ≥ 1

2
log

(
1 +

Γk
σ2
k + Λk

)
.

Hence the right-hand side of (4) can be lower-bounded by

min
Λ

max
(κ,Γ)

1

2

K∑
k=1

Pκ(k) log

(
1 +

Γk
σ2
k + Λk

)
, (6)

where the minimum is over vectors Λ = (Λ1, . . . ,ΛK) with
nonnegative components satisfying Λ1 + · · ·+ ΛK ≤ Λ. It is
now straightforward to show that waterfilling for the jammer
is the optimal choice of Λ. This lower bound on (4) together
with (3) proves (1). The proof of the upper bound is omitted
due to space limitations. The full proof of Theorem 2 can be
found in [7].

IV. PROOF OF THEOREM 1 AND ITS COROLLARY

The proof of Theorem 1 bases on the sufficient criterion for
C(Γ,Λ) = Cr(Γ,Λ) provided by the corollary to [2, Theorem
4]. To formulate this criterion, we first have to say what it
means for the FH channel to be symmetrized by a stochastic
kernel.

A stochastic kernel U with inputs from X and outputs in S
gives, for every (x, k) ∈ X , a probability measure U(·|x, k)
on the Borel algebra of S such that for every Borel-measurable
A ⊂ S , the mapping (x, k) 7→ U(A|x, k) is measurable.
U(·|x, k) is specified by its values on all pairs (I,B), where
|I| = J and B is a Borel set on RK such that for all b ∈ B,
it holds that l /∈ I implies bl = 0. One can thus write

U(I,B|x, k) = U1(I|x, k)U2(B|x, k, I).

U1(·|x, k) determines a random variable ιU (x, k) on the set
of subsets of K with cardinality J . U(·|x, k) then deter-
mines a random variable SU (x, k) which, conditional on

the event ιU (x, k) = I, has the distribution U2(·|x, k, I).
These random variables give rise to a random jammer input,
ZUx,k := SU (x, k) ◦ eιU (x,k). Thus any pair (x′, k′) ∈ X
together with U defines the following channel:

y = xek + ZUx′,k′ + N,

where (x, k) ∈ X is the sender input, the output set is RK ,
and the noise is ZUx′,k′ + N.

By definition, the FH channel is symmetrized by U if all
sender input pairs (x, k) and (x′, k′) satisfy

xek + ZUx′,k′ + N
D
= x′ek′ + ZUx,k + N,

where D= means that the left-hand and the right-hand side have
the same distribution. In particular, as the noise is mean-zero,
this implies

xek + E
[
ZUx′,k′

]
= x′ek′ + E

[
ZUx,k

]
. (7)

To state the criterion for the equality of the (Γ,Λ)-capacities
with and without common randomness, some more definitions
are necessary. Let U0 be the class of stochastic kernels U
that symmetrize the FH channel and for which ZUx,k has finite
variance for all (x, k). Let X̃ ⊂ X be finite and (X,κ) be
concentrated on X̃ . Assume that for every (x, k) ∈ X , the
conditional distribution of the random variable ZUX,κ given
{X = x, κ = k} equals that of ZUx,k. Then define

τX̃ (X,κ,Λ) =
1

Λ
inf
U∈U0

E
[
‖ZUX,κ‖2

]
.

We also write Cr,X̃ (Γ,Λ) for the common randomness assisted
capacity of the FH channel with the same power constraints,
but whose inputs are restricted to the finite subset X̃ of X .

By the corollary of [2, Theorem 4], C(Γ,Λ) = Cr(Γ,Λ) if
there exists a family F of finite subsets of X satisfying that
every finite subset of X is contained in some member of F
and that for every X̃ ∈ F , there is an (X,κ) concentrated on
X̃ and satisfying E[X2] ≤ Γ with I(Xeκ; Y) = Cr,X̃ (Γ,Λ)
and τX̃ (X,κ,Λ) > 1.

We will now closely follow the proof of [2, Theorem 5] to
prove that the above criterion is satisfied for the FH channel
if Γ > Λ. Fix Γ,Λ > 0. Let X̃0 be a finite set satisfying
Cr,X̃0

(Γ′,Λ) > Cr(Γ,Λ) for some Γ′ > Γ. Such a set exists
by the fact ([2, Theorem 4]) that for all Γ,Λ,

Cr(Γ,Λ) = sup
X̃⊂X finite

Cr,X̃ (Γ,Λ)

and by the lower bound on Cr(Γ,Λ) of Theorem 2 showing
that Cr(Γ,Λ) tends to infinity as Λ is fixed and Γ tends to
infinity. We choose F as the family of finite subsets X̃ of X
satisfying X̃0 ⊂ X̃ and

X̃ =
K⋃
k=1

X̃k × {k},

where X̃k is symmetric about the origin. Obviously, every
finite subset of X is contained in some X̃ ∈ F . We first need
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that for every finite input set X̃ ∈ F there exist Cr,X̃ (Γ,Λ)-
achieving channel input distributions which exhaust all the
power and are symmetric on every frequency subband.

Lemma. Let X̃ ∈ F . Then there exists a pair (X,κ) of
random variables with values in X̃ satisfying

min
(ι,S):

E[‖S‖2]≤Λ

I(Xeκ;Xeκ + S ◦ eι + N) = Cr,X̃ (Γ,Λ) (8)

and

E
[
X2
]

= Γ, (9)
PX|κ(·|k) = P−X|κ(·|k) (1 ≤ k ≤ K) (10)

Here PX|κ denotes the conditional probability of X given κ,
and P−X|κ is defined analogously.

The proof of the lemma is very similar to that of (4.42) in
[2] and omitted here, but can be found in [7]. Let X̃ ∈ F and
(X,κ) as in the Lemma. We now show that τX̃ (X,κ,Λ) >
1 if Γ > Λ. To do so, choose any U ∈ U0. Then for any
(x′, k′) ∈ X , using Jensen’s inequality,

E
[
‖ZUX,κ‖2

]
≥

∑
(x,k)∈X̃

P(X,κ)(x, k)
∥∥E[ZUx,k]∥∥2

. (11)

As U symmetrizes the FH channel, we can apply (7) and
lower-bound (11) by∑

(x,k)∈X̃

P(X,κ)(x, k)
∥∥xek − x′ek′ + E[ZUx′,k′ ]

∥∥2
(12)

≥
∑
k

Pκ(k)
∑
x∈X̃k

PX|κ(x|k)|x− x′ek′k + E[ZUx′,k′(k)]|2,

where we denote by ZUx,k(k) the k-th component of ZUx,k. By
(10), PX|κ(·|k) is symmetric for every k, so its mean equals 0.
Hence with (9) the right-hand side side of (12) can be lower-
bounded by ∑

(x,k)∈X̃

P (x, k)|x|2 = E[X2] = Γ.

We conclude that τX̃ (X,κ,Λ) > 1 for all X̃ ∈ F
and the corresponding (X,κ) if Γ > Λ, implying that
C(Γ,Λ) = Cr(Γ,Λ). As the common randomness assisted
(Γ,Λ)-capacity is positive for positive Γ, this further implies
that C(Γ,Λ) > 0 if Γ > Λ, and the proof of the direct part of
Theorem 1 is complete. The proof of the converse is analogous
to the proof of the converse of [3, Theorem 1], so we omit it
here, but it can be found in [7].

The second claim of the corollary of Theorem 1 is obvious.
The first statement follows from [2, Theorem 5], which says
that an additive-noise channel with R as sender, jammer
and output alphabet has positive capacity (then equal to the
common randomness assisted capacity) if and only if the
sender power exceeds the jammer power. So if both the sender
and the jammer in the FH channel concentrate their power on
any frequency band k ∈ K and Γ > Λ, already a positive
capacity lower-bounded by log(1 + Γ

σ2
k+Λ

)/2 > 0 will be

achievable. In particular, this rate can be obtained without
frequency hopping. On the other hand, if no transmission is
possible over the subchannels, then Γ ≤ Λ, and the FH channel
also has zero capacity.

V. DISCUSSION

For non-discrete AVCs, there is no general statement that
capacity without common randomness always equals 0 or
the common randomness assisted capacity like the Ahlswede
dichotomy in [1] for discrete AVCs. Thus it is not possible to
justify Theorem 1 just by observing that the capacity of every
subchannel is positive if Γ > Λ.

Like [9], [8] we assume here that the receiver simulta-
neously listens on all frequencies. A different approach is
taken in [6], [4], where the receiver listens randomly on only
one frequency band at a time. The above analysis can be
performed in a similar way for this situation and leads to
analogous results: The capacity without common randomness
shared between sender and receiver is positive if and only if
the sender power exceeds the jammer power. Of course, the
capacity will in general be smaller than if the receiver listens
on all frequencies.

The converse in [3, Theorem 1] shows that in order to find
a good jamming sequence, the jammer needs knowledge of
the channel and the transmission protocol. Further, it should
know when the transmission of a codeword starts, so it has
to be synchronized with the sender. If this is given, then the
successful jamming strategy in the case Γ ≤ Λ is to confuse
the receiver: There exists a legitimate codeword such that if
the jammer inputs this into the FH channel, the receiver cannot
distinguish the sender’s messages.

The case of a jammer listening to the sender’s input into
the channel like in [6], [4] was not treated here because there
exist few results on AVCs in this direction.
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Abstract—We consider the problem of tracking, in realtime, an
unstable autoregressive (AR) source over a discrete memoryless
channel (DMC). We present computable achievable bounds on the
optimal tracking error for general DMCs, and we particularise
these bounds to the binary erasure and packet erasure channels.

I. PROBLEM SETUP

Consider the scalar unstable AR source

Wn := λWn−1 + Vn, n = 1, 2, . . . , (1)

where W0 = 0, λ > 1 and V1, V2, . . . is iid and uniform on
the real interval [−vmax, vmax] for some positive vmax. Suppose
that a transmitter causally encodes and communicates (1) over
a DMC to a receiver, and suppose that the receiver attempts
to track (1) while operating with a finite decoding delay ∆.

More formally, let us fix ∆ to be any non-negative integer.
Let X denote the DMC’s input alphabet, Y its output alphabet
and TY |X : X → Y its transition probabilities. A ∆-code for
tracking (1) consists of a sequence of mappings

(F1, G1), (F2, G2), . . . ,

where Fn : Rn → X and Gn : Yn+∆ → R. The n-th channel
symbol sent by the transmitter over the channel is

Xn := Fn(W1,W2, . . . ,Wn),

The receiver estimates the n-th source symbol Wn by

Ŵn := gn(Y1, Y2, . . . , Yn+∆).

Fix ρ ≥ 1, and let

MEρ(∆, N) := E
1

N

N∑

n=1

∣∣Ŵn −Wn

∣∣ρ (2)

denote the mean error in tracking. We call N the blocklength,
and we are interested in determining the following quantities.

Definition 1:
(i) The optimal MEρ for a given ∆ and N ,

ME∗ρ(∆, N) := inf
∆-codes

MEρ(∆, N).

(ii) The optimal MEρ for a given ∆ and all N ,

ME∗ρ(∆) := sup
N∈{1,2,...}

ME∗ρ(∆, N).

The purpose of this paper is to report some useful achievable
(upper) bounds on ME∗ρ(∆, N) and ME∗ρ(∆).

Remark 1: It can be shown that

sup
N∈{1,2,...}

ME∗ρ(∆, N) = lim sup
N→∞

ME∗ρ(∆, N).

Consequently, ME∗ρ(∆) measures the worst case tracking error
as N →∞, and it is an appropriate engineering benchmark for
problems where N is large, varies or is otherwise unknown.

Remark 2: If ∆ = 0, then for each n = 1, 2, . . . the receiver
is required to output its estimate Ŵn of Wn immediately upon
observing the first n channel outputs Y1, Y2, . . . , Yn. Here
we have instantaneous communications in the sense that any
“new information” in Wn can only be communicated over the
channel using Xn. If ∆ > 0, then the receiver delays making
an estimate of Wn by ∆ channel symbols. The transmitter now
has more channel symbols from which to communicate each
source symbol, and the receiver’s estimates can therefore be
improved. In essence, one can trade tracking reliability against
decoding timeliness by varying ∆.

Remark 3: The reader will have noticed that the unstable
AR source in (1) does not fit within classical rate-distortion
(RD) theory [1] (e.g., the AR source is non-stationary and non-
ergodic), and ∆-codes and Definition 1 do not fit within the
classical joint source-channel coding framework [2, Sec. 9.6].
Indeed, channels with the same capacity often behave quite
differently under Definition 1, and the standard RD function,
channel capacity and separation theorem offer little guid-
ance on how to best approximate ME∗ρ(∆, N) and ME∗ρ(∆).
Such behaviour has been observed throughout the realtime
communications literature and is by no means unique to
this paper, see, for example, the early work of [3]. A more
complete literature review can be found in the longer version
of this paper [4], and excellent literature reviews of realtime
communications can be found in [5]–[7].

II. EXAMPLES: TRACKING OVER ERASURE CHANNELS

Let us first demonstrate the usefulness of this work by
specialising the following achievable bound to the binary
erasure channel (BEC) and packet erasure channel (PEC).
(The extended paper [4] also considers the binary symmetric
channel.) In this section, we restrict attention to mean absolute
errors (MAEs); that is, we fix ρ = 1 in (2).

Theorem 1:

ME∗ρ(∆, N)
∣∣∣
ρ=1
≤ min

M

[
α(M) + β(M)

]
,
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Fig. 1. The achievable bound on ME∗
ρ(∆, N)|ρ=1 given in Proposition 1

(grey lines) and the achievable bound on ME∗
ρ(∆)|ρ=1 given in Proposition 2

(black lines). The bounds are plotted for λ = 1.01, 1.1 and 1.5 with
bandwidth expansion κ = 5, zero decoding delay ∆ = 0 and vmax = 1.

where the minimisation is over all integers M ≥ max{2, λ},
α(M) :=

vmax

M − λ
and

β(M) :=
2vmax(M − 1)

N(M − λ)

N∑

n=1

n∑

k=1

λn−k min
{

1,

k−1∑

i=0

τM (n+ ∆− i)
}
.

Theorem 1 follows from Lemma 1 and Theorem 3, which
will be presented later in the paper. The upper bound depends
on the channel law TY |X via the function τM (·), and we
particularise τM (·) to the BEC and PEC in the next two
subsections1. Intuitively, α(M) can be understood as the
quantisation error associated with discretising the source (it is
the average error induced by an adaptive M level scalar quan-
tiser); and β(M) can be understood as the channel distortion
associated with streaming this M -level discrete approximation
over the DMC TY |X . In general, a small M will induce a large
quantiser error and a small channel distortion, while a large
M will induce a small quantisation error and a large channel
distortion. We now particularise τM (·) to the BEC and PEC.

A. Binary Erasure Channel (BEC)
Suppose that the DMC consists of κ independent BECs,

each with the same erasure probability 0 < ε < 1. Let

X = {0, 1}κ and Y = {0, 1, e}κ,
where e represents the erasure event; and

TY |X(y|x) =





εN(y)(1− ε)κ−N(y) if x and y agree on
unerased positions,

0, otherwise,

1We defer giving a formal definition of τM (·) for general DMCs until
Section IV, because this definition requires additional notation and ideas that
are not needed for the BEC and PEC.
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Fig. 2. The achievable bound in Proposition 2 for tracking (1) over a BEC
with erasure probability ε = 0.1 and bandwidth expansion κ. The bound is
plotted as a function of κ for λ = 1.1, 1.5, 2 and 3 with zero decoding delay
∆ = 0 and vmax = 1.

where N(y) denotes the number of erased symbols in y. We
call κ the bandwidth expansion factor.

Proposition 1: For the BEC with erasure probability ε and
bandwidth expansion κ, Theorem 1 holds with

τM (k) =
κk∑

t=0

(
κk

t

)
εt(1−ε)κk−t2−[(κk−t)−k logM−log(M−1)]+ .

Proof: A proof can be found in [4, Appendix F-B].
A slight weakening of Proposition 1 yields the next propo-

sition.
Proposition 2: For the BEC with erasure probability ε and

bandwidth expansion κ, we have

ME∗ρ(∆)
∣∣∣
ρ=1
≤ min

M

[
α(M) + γ(M) 2−∆(κR0(ε)−logM)

]
,

where
R0(ε) := 1− log(1 + ε)

is the cutoff rate2 of the BEC,

γ(M) :=

(
2vmax (M − 1)2 M

2κR0(ε) (M − λ)

)(
1

1−M2−κR0(ε)

)

(
1

1− λM2−κR0(ε)

)
,

and the minimisation is taken over all integers M satisfying

max{λ, 2} ≤M < (1/λ) 2κR0(ε).

Proof: A proof can be found in [4, Appendix F-B].
The bounds in Propositions 1 and 2 are plotted in Figure 1

as a function of the blocklength N for three different values

2With a slight abuse of terminology, we use cutoff rate to refer to the
standard R0 parameter (see [12, Eqn. 14] or [11, p. 628]). The operational
cutoff rate, which concerns the computational complexity of sequential
decoding [12], does not appear to be related to this work.
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Fig. 3. The achievable bound in Proposition 2 for tracking (1) over a BEC
with erasure probability ε = 0.1 and bandwidth expansion κ. The bound is
plotted as a function of κ for λ = 1.1, 1.5, 2 and 3 with ∆ = 0 and vmax = 1
fixed. The lower bound in Proposition 3 is also shown.

of λ. Figure 2 plots the bound in Proposition 2 as a function
of the bandwidth expansion factor κ for four different values
of λ. Figure 3 illustrates the role of decoding delay ∆ in
Proposition 2. As ∆→∞ the bound tends to

vmax

d 1
λ2κR0(ε)e − 1− λ ≈ λvmax 2−κR0(ε),

so the cutoff rate R0(ε) governs its asymptotic accuracy. To
help get a feel for how useful Proposition 2 is, we now give a
simple lower bound. This lower bound is shown in Figure 3.

Proposition 3: For the BEC with erasure probability ε,
bandwidth expansion κ and zero decoding delay ∆ = 0,

ME∗ρ(0)
∣∣∣
ρ=1
≥ vmax

2
2−κR0(ε).

Proof: A proof can be found in [4, Appendix F-C].

B. Packet Erasure Channel (PEC)
Now imagine that the transmitter communicates with the

receiver over a network that can be modelled3 by a κ bit PEC.
Fix 0 < ε < 1, and let

X := {0, 1}κ and Y := {0, 1}κ ∪ {e}
and

TY |X(y|x) :=





1− ε if y = x
ε if y = e
0 otherwise.

Proposition 4: For the κ bit PEC with erasure probability ε,
Theorem 1 holds with

τM (k) =

k∑

t=0

(
k

t

)
εt (1−ε)k−t 2−[κ(k−t)−k logM−log(M−1)]+ .

3Here we assume that bit-level errors within a packet are handled on a
link-by-link basis using physical layer error-correction techniques, and packets
arrive at the receiver promptly or they are lost to, for example, congestion
and buffer overflows.
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Fig. 4. The achievable bound on ME∗
ρ(∆)|ρ=1 in Proposition 5 for

tracking (1) with λ = 1.1 and vmax = 1 over a κ bit packet erasure channel
with erasure probability ε = 0.1. The bound is plotted as a function of κ for
decoding delays ∆ = 0, 1, 10 and 100. The lower bound in Proposition 6 is
also shown.

Proof: A proof can be found in [4, Appendix G-A].
Proposition 5: For the κ bit PEC with erasure probability ε,

ME∗ρ(∆)
∣∣∣
ρ=1
≤ min

M

[
α(M) + γ(M) 2−∆(R0(κ,ε)−logM)

]
,

where

γ(M) :=

(
2vmax (M − 1)2 M

2R0(κ,ε)(M − λ)

)(
1

1−M2−R0(κ,ε)

)

(
1

1− λM2−R0(κ,ε)

)
,

the minimisation is over all integers M satisfying

max{2, λ} ≤M < (1/λ) 2R0(κ,ε)

and
R0(κ, ε) = κ− log

(
ε(2κ − 1) + 1

)

is the cutoff rate of the κ-bit PEC.
Proof: A proof can be found in [4, Appendix G-B].

Proposition 6: For the κ bit PEC with erasure probability ε
and zero decoding delay (∆ = 0),

ME∗ρ(0)
∣∣∣
ρ=1
≥ vmax

2
2−R0(κ,ε).

Proof: A proof can be found in [4, Appendix G-C].
Figure 4 illustrates the role of decoding delay in Proposi-

tion 5. Each curve exhibits a tracking ‘error floor’ because

lim
κ→∞

R0(κ, ε) = − log ε,

so M cannot grow without bound in κ. Interestingly, this error
floor is intrinsic to the problem, because, for example, it also
appears in Proposition 6.
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C. Discussion

Propositions 1 to 6 give computable upper and lower bounds
for tracking (1) over two basic erasure channels. To the best of
our knowledge, no computable bounds have appeared before
in the literature4. Although we do not believe that the bounds
are tight, we do believe that they provide useful performance
benchmarks for practitioners in code design. For example,
Figure 3 illustrates that the optimal MAE for the BSC im-
proves exponentially fast with the bandwidth expansion factor
κ; therefore, one might consider optimising κ against the
symbol error probability ε on a system level. While, on the
other hand, Figure 4 suggests that it does not make sense
to use large packets over a PEC (unless one can decrease
the erasure probability with increasing packet length). Finally,
Theorem 1 is proved using a method that partially separates
source quantisation from channel coding. Separation is often
necessary in practice, and these bounds illustrate what one
might achieve with such an approach.

III. BOUNDS ON MAE VIA CHANNEL CODING WITH AN
AR-DISTORTION FUNCTION

The upper bounds on ME∗ρ(∆, N)|ρ=1 and ME∗ρ(∆)|ρ=1

presented in Section II all follow from the method outlined
in this section, which can be applied to any DMC and ρ ≥ 1.
The key idea here will be to partially separate channel coding
from quantisation, and to optimise the channel code with
respect to an AR Hamming (ARH) distortion function that is
determined by the source statistics. This section extends our
earlier work [13] on streaming discrete AR sources with a
MAE criterion to continuous AR sources with ρ ≥ 1 in (2).

Arbitrarily fix an integer M ≥ 2, and suppose that a discrete
memoryless source (DMS) emits a sequence U1, U2, . . . , of
independent and uniformly distributed random variables on

U := {0, . . . ,M − 1}.
An (M,∆)-channel code for streaming U1, U2, . . . over the
DMC TY |X consists of a sequence of mappings

(f1, g1), (f2, g2), . . . ,

where

fn : Un → X and gn : Yn+∆ → Un.
The n-th symbol sent over the channel by the transmitter is

Xn := fn(U[1,n]),

where we let
U[1,n] = (U1, U2, . . . , Un)

denote the first n symbols output by the DMS (we will also
employ this notation for other random vectors). The receiver
estimates the first n DMS symbols U[1,n] from the first (n+∆)-
channel outputs Y[1,n+∆] = (Y1, Y2, . . . , Yn+∆) by

Û(n)

[1,n] := gn(Y[1,n+∆]).

4Previous works, e.g., [7]–[10], appear to exclusively focus on checking
whether or not certain tracking error measures are finite for a given channel.

A key point here is that the receiver initially estimates the
first n DMS symbols U[1,n] immediately upon observing the
first (n + ∆)-channel outputs. The receiver then revisits and
(hopefully) improves this estimate as more channel outputs
become available. The speed at which these estimates improve
can be partially quantified by the following AR Hamming
(ARH) distortion function. This distortion function will be our
doorway to computable bounds on MEρ

∗(∆, N).
We define the ARH distortion between a source output

u[1,n] ∈ Un and reconstruction û[1,n] ∈ Un by

dn(û[1,n], u[1,n]) :=
n∑

k=1

λn−k1
{
û[1,k] 6= u[1,k]

}
,

where

1
{
û[1,k] 6= u[1,k]

}
:=

{
1 if û[1,k] 6= u[1,k]

0 otherwise.

For a given (M,∆)-code, let

Dρ,M (∆, N) := E
1

N

N∑

n=1

(
dn(Û(n)

[1,n], U[1,n])
)ρ
.

We say that a distortion D is (ρ,M,∆, N)-achievable if there
exists an (M,∆)-channel code with Dρ,M (∆, N) ≤ D. Let

D∗ρ,M (∆, N) := min
{
D :D is (ρ,M,∆, N)-achievable

}

denote the optimal ARH distortion for a given ∆ and N . The
key result of this section is the next lemma, which demon-
strates that any achievable bound on D∗M (∆, N) automatically
gives an achievable bound on ME∗ρ(∆, N).

Lemma 1: For every integer M ≥ max{λ, 2}, we have

ME∗ρ(∆, N) ≤
( 2vmax

M − λ
)ρ(1

2
+

2ρ−1(M − 1)ρ D∗ρ,M (∆, N)
)
.

Proof: A proof can be found in [4, Appendix A].

IV. RANDOM CODING UNION BOUND ON D∗M (∆, N)

We now present an achievable bound on D∗M (∆, N) that
is motivated by the random coding union bound for block
codes [14, Thm. 17]. We need the following notation. Given
a pair of discrete random variables (A,B) on A × B with
joint pmf PAB(a, b) and marginals PA(a) and PB(b), the
information density ıA;B : A× B → [−∞,∞] is

ıA;B(a; b) := log
PAB(a, b)

PA(a) PB(b)
.

Let PX denote the set of all pmfs on the channel input
alphabet X . For each k ∈ {1, 2, . . .} and PX ∈ PX , let

τM (PX , k) := E
[

min
{

1,

Mk−1(M − 1) ζk(X[1,k], Y[1,k], X̃[1,k])
}]
, (3)

where

(X[1,k], Y[1,k], X̃[1,k]) = (X1, Y1, X̃1), . . . , (Xk, Yk, X̃k)
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is a string of k iid tuples

(X,Y, X̃) ∼ PX(x) TY |X(y|x) PX(x̃)

on X ×Y ×X ; the expectation in (3) is taken with respect to
(X[1,k], Y[1,k]); and

ζk(X[1,k], Y[1,k], X̃[1,k]) := P
[ k∑

i=1

ıX;Y

(
X̃i;Yi

)
≥

k∑

i=1

ıX;Y

(
Xi;Yi

)∣∣∣
(
X[1,k], Y[1,k]

)]
.

Theorem 2:

D∗ρ,M (M,∆) ≤ RCU∗ρ,M (∆, N),

where

RCU∗ρ,M (∆, N) := inf
PX∈PX

1

N

N∑

n=1

(
n∑

k=1

(
λn−k+1 − 1

λ− 1

)ρ

min

{
1,
k−1∑

i=0

τM (PX , n+ ∆− i)
})

.

Proof: A proof can be found in [4, Appendix D].
Theorem 2 generalises our previous RCU achievable bound

in [13, Thm. 1], which is summarised below in Theorem 3,
from ρ = 1 to arbitrary ρ ≥ 1.

Theorem 3:

D∗M (∆, N) ≤ RCU∗M (∆, N),

where

RCU∗M (∆, N) := inf
PX∈PX

1

N

N∑

n=1

( n∑

k=1

λn−k min
{

1,

k−1∑

i=0

τM (PX , n+ ∆− i)
})
.

Theorem 3 is a little stronger than Theorem 2 for ρ = 1, so
we used this bound to prove Theorem 1 and the propositions
in Section II.

V. BOUNDEDNESS OF ME∗ρ(∆) FOR GENERAL DMCS

The achievable bounds on ME∗ρ(∆)|ρ=1 presented in Sec-
tion II-A for the binary erasure and packet erasure channels
followed by carefully bounding the function τM (·) in Theo-
rem 3. In this section, we consider arbitrary DMCs and give a
sufficient condition for ME∗ρ(∆) to be finite. To proceed, we
first need the following definitions and notation.

Let us denote the capacity of the DMC TY |X (in nats per
channel use) by

C := max
PX∈PX

I(X;Y ).

For rates 0 ≤ R < C, the random-coding exponent of the
DMC TY |X is [2, p. 139]

Er(R) := max
ρ∈[0,1]

max
PX∈PX

[
Eo(ρ, PX)− ρR

]
,

where

Eo(ρ, PX) := − ln


∑

y∈Y

(∑

x∈X
PX(x)

(
TY |X(y|x)

) 1
1+ρ

)1+ρ

 .

Theorem 4:

sup
N∈{1,2,...}

RCU∗M (∆, N)

≤ inf
R

(
(1− e−R)

eEr(R) (1− e−Er(R)) (1− λe−Er(R))

)
e−∆Er(R),

where the infimum is taken over all R > ln 2 such that lnλ <
Er(R). If no such R exists, then we take the bound to be
infinite.

Proof: A proof can be found in [4, Appendix I].
Corollary 4.1: Suppose that the DMC satisfies Er(R) > 0

for all 0 ≤ R < C and Er(C) = 0. If

lnλ < Er(ln 2) < C,

then ME∗ρ(∆)|ρ=1 is finite for all ∆ ∈ {0, 1, . . .}.
Proof: A proof can be found in [4, Appendix I].
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Strong Converse for General Compound Channels
Sergey Loyka, Charalambos D. Charalambous

Abstract—A general compound channel is considered, where
no stationarity, ergodicity or information stability is re quired.
Following the recent result on the capacity of this channel under
the full Rx CSI, sufficient and necessary conditions are obtained
for the strong converse to hold. In a nutshell, even though no
information satiability is required upfront, the conditio ns imply
that there exists a sub-sequence of (bad) channel states (indexed
by the blocklength) for which the respective information density
rates converge in probability to the compound channel capacity,
i.e. this sub-sequence is information stable.

I. I NTRODUCTION

It is well-known that channel state information (CSI) af-
fects significantly system performance and respective channel
capacity. It can be rather limited in many scenarios, especially
for wireless systems, where low SNR, interference and channel
dynamics are significant, and where the feedback (if any) is
also limited [1]. A popular approach to model the impact of
limited CSI is to assume that the receiver (Rx) and transmitter
(Tx) know that the unknown channel is fixed and belongs to a
certain class of channels (uncertainty set), which is known
as the compound channel model [2]-[6]. The capacity of
compound channels has been extensively studied since late
1950s [2]-[5]; see [6] for an extensive literature review upto
late 1990s, and [9] for more recent results.

All of these studies assume that each channel in the uncer-
tainty set is information-stable (in the sense of Dobrushin[10]
or Pinsker [11]), e.g. stationary and ergodic. However, there
are many scenarios (especially in wireless communications)
where the channels are not stationary, ergodic or information-
stable. This setting was recently studied in [14], where the
capacity of general (information-unstable) compound channels
was established under the full Rx CSI using the information
density (spectrum) approach of [7][8]. The assumption of full
Rx CSI is motivated by the fact that channel estimation is
done at the Rx so that full Rx CSI may be available if the
SNR is high enough but limited (if any) feedback to the Tx
makes full Tx CSI unfeasible.

While the channel capacity theorem ensures the achiev-
ability of any rate below the capacity with arbitrary low
error probability, there exists a hope to achieve higher rates
by allowing slightly higher error probability, since the tran-
sition from arbitrary low to high error probability may be
slow. Strong converse ensures that this transition is very
sharp (for any rate above the capacity, the error probability
converges to 1) and hence dispels the hope. In this paper,
we extend the study in [14] by establishing the sufficient
and necessary conditions for the strong converse to hold for

S. Loyka is with the School of Electrical Engineering and Computer Sci-
ence, University of Ottawa, Ontario, Canada, e-mail: sergey.loyka@ieee.org

C.D. Charalambous is with the ECE Department, University ofCyprus,
Nicosia, Cyprus, e-mail: chadcha@ucy.ac.cy

the general compound channel. In a nutshell, the conditions
require the existence of an information-stable sub-sequence of
(bad) channel states (indexed by the blocklength) such thatthe
respective sub-sequence of information densities converges in
probability to the compound channel capacity. No assumptions
of stationarity, ergodicity or information stability are made for
the members of the uncertainty set.

II. CHANNEL MODEL

Let us consider a generic discrete-time channel model where
Xn = {X1...Xn} is a (random) sequence ofn input symbols,
X = {Xn}∞n=1 denotes all such sequences, andY n is the
corresponding output sequence;s ∈ S denotes the channel
state (which may also be a sequence) andS is the (arbitrary)
uncertainty set;ps(yn|xn) is the channel transition probability;
p(xn) andps(yn) are the input and output distributions under
channel states.

Let us assume that the full CSI is available at the receiver
(Rx) but not the transmitter (Tx) (see e.g. [1] for a detailed
motivation of this assumption; when the channel is quasi-
static, this assumption is not necessary) and that the channel
input X and states are independent of each other. Following
the standard approach (see e.g. [1]), we augment the channel
output with the state:Y n → (Y n, s). The information density
[10]-[13] between the input and output for a given channel
states and a given input distributionp(xn) is

i(xn; yn, s) = ln
ps(x

n, yn)

p(xn)ps(yn)
= i(xn; yn|s) (1)

where we have used the fact that the inputXn and channel
states are independent of each other. Note that we make no
assumptions of stationarity, ergodicity or information stability
in this paper, so that the normalized information density
n−1i(Xn;Y n|s) does not have to converge to the respective
mutual information rate asn → ∞. There is no need for the
consistency assumption onps(yn|xn) either (e.g. the channel
may behave differently for even and oddn).

For future use, we give the formal definitions of information
stability following [10]-[12] (with a slight extension to the
compound setting).

Definition 1. Two random sequencesX and Y are
information-stable if

i(Xn;Y n|s)

I(Xn;Y n|s)

Pr
→ 1 asn → ∞ (2)

i.e. the normalized information density converges in probabil-
ity to the respective mutual information rate1

n
I(Xn;Y n|s).
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Definition 2. Channel states is information stable if there
exists an inputX such that

i(Xn;Y n|s)

I(Xn;Y n|s)

Pr
→ 1,

I(Xn;Y n|s)

Cns

→ 1 asn → ∞, (3)

whereCns = supp(xn) I(X
n;Y n|s) is the information capac-

ity.

Note that the 2nd definition requires effectively the channel
to behave ergodically under the optimal input only, and tells us
nothing about its behaviour under other inputs (e.g. a practical
code) and, in this sense, is rather limiting. To characterize the
channel behaviour under different inputs (not only the optimal
one), we will consider the information stability of its input X
and the induced outputY following Definition 1. Further note
that, for the compound channel, some channel states may be
information stable while others are not.

III. C APACITY OF THE GENERAL COMPOUND CHANNEL

We define an (n, rn, εn)-code for a compound channel in
the standard way, wheren is the blocklength,rn = lnMn/n
is the code rate andMn is the number of codewords, andεn
is the compound error probability,

εn = sup
s∈S

εns (4)

whereεns is the error probability under channel states. Rate
R is achievable iflim infn→∞ rn ≥ R and limn→∞ εn = 0,
which ensures arbitrary low error probability for any channel
in the uncertainty set for sufficiently largen [1]-[6]. The
capacity is the supremum of all achievable rates. Codebooks
are required to be independent of the actual channel states
while the decision regions are allowed to depend ons (due to
full Rx CSI).

Below, we briefly review the relevant results in [14], which
are instrumental for further development here.

Theorem 1 ([14]). Consider a general compound channel
where the channel states ∈ S is known to the receiver but
not the transmitter and is independent of the channel input;
the transmitter knows the (arbitrary) uncertainty setS. Its
compound channel capacity is given by

Cc = sup
p(x)

I(X;Y ) (5)

where the supremum is over all sequences of finite-dimensional
input distributions and I(X;Y ) is the compound inf-
information rate,

I(X;Y ) = sup
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≤ R} = 0

}

(6)

whereZns = n−1i(Xn;Y n|s) is the normalized information
density under channel states.

This theorem was proved using the Verdu-Han and Feinstein
Lemmas properly extended to the compound channel setting.

Lemma 1 (Feinstein Lemma for compound channels [14]).
For arbitrary input Xn and uncertainty setS and anyrn,

there exists a(n, rn, εn)-code (where the codewords are inde-
pendent of channel states), satisfying the following inequality,

εn ≤ sup
s∈S

Pr
{
n−1i(Xn;Y n|s) ≤ rn + γ

}
+ e−γn (7)

for any γ > 0.

Lemma 2 (Verdu-Han Lemma for compound channels [14]).
For any uncertainty setS, every(n, rn, εn)-code satisfies the
following inequality,

εn ≥ sup
s∈S

Pr
{
n−1i(Xn;Y n|s) ≤ rn − γ

}
− e−γn (8)

for any γ > 0, whereXn is uniformly distributed over all
codewords andY n is the corresponding channel output under
channel states.

IV. STRONG CONVERSE FOR THEGENERAL COMPOUND

CHANNEL

Strong converse ensures that slightly larger error probability
cannot be traded off for higher data rate (since the transition
from arbitrary low to high error probability is sharp).

Definition 3. A compound channel is said to satisfy strong
converse if

lim
n→∞

εn = 1 (9)

for any code satisfying

lim inf
n→∞

rn > Cc (10)

To obtain conditions for strong converse, letǏ(X;Y ) be
the ”worst-case” sup-information rate,

Ǐ(X;Y ) = inf
R

{

R : lim
n→∞

inf
s∈S

Pr {Zns > R} = 0

}

(11)

whereZns = n−1i(Xn;Y n|s) is the information density rate,
andIns(a) be the truncated mutual information,

Ins(a) = E{Zns1[Zns ≤ a]}, Ins = lim
a→∞

Ins(a) (12)

where1[·] is the indicator function andIns = I(Xn;Y n|s) is
the mutual information under channel states. The compound
sup-information rateI(X;Y ) and the sup-information rate
Ī(X;Y |s) under channel states are defined as

I(X;Y ) = inf
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≥ R} = 0

}

(13)

Ī(X;Y |s) = inf
R

{

R : lim
n→∞

Pr {Zns ≥ R} = 0
}

(14)

The following Proposition establishes an ordering of various
information rates.

Proposition 1. The following inequalities hold for any input

I(X ;Y ) ≤ Ǐ(X;Y )

≤ inf
s
Ī(X;Y |s)

≤ sup
s

Ī(X;Y |s)

≤ I(X;Y ) (15)
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Proof. see the Appendix.

It can be shown, via examples, that all inequalities can
be strict. Using this Proposition, sufficient and necessary
conditions for the strong converse to hold can be established.

Theorem 2. A sufficient and necessary condition for the
general compound channel to satisfy strong converse is

sup
p(x)

I(X;Y ) = sup
p(x)

Ǐ(X ;Y ) (16)

If this holds and the convergenceIns(a) → Ins is uniform
in n, s for any inputX∗ satisfyingI(X∗;Y ∗) > Cc − δ for
someδ > 0 (i.e. the inputX∗ is δ-suboptimal), then

Cc = sup
p(x)

Ǐ(X;Y ) = lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn;Y n|s) (17)

The condition(16) is equivalent to:
1) for anyδ > 0 and any inputX∗ satisfyingI(X∗;Y ∗) >

Cc − δ,

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 (18)

whereZ∗
ns = 1

n
i(Xn∗;Y n∗|s) is the normalized information

density under inputX∗.
2) for any inputX and anyδ > 0,

lim
n→∞

inf
s
Pr{Zns > Cc + δ} = 0 (19)

Proof. see the Appendix.

Remark 1. In the case of a single-state channel,

I(X;Y ) = I(X ;Y ), Ǐ(X;Y ) = I(X;Y ) (20)

whereI(X;Y ), I(X;Y ) are inf and sup-information rates
for the regular (single-state) channel, and Theorem 2 reduces
to the corresponding Theorem in [7][8].

Remark 2. Note that, under the conditions of Theorem 2 that
lead to (17), the compound channel behaves ergodically even
though no assumption of ergodicity (or information stability)
was made upfront.

Below, we consider a special case when the supremum in
(5) is achieved.

Corollary 1. If the channel satisfies strong converse and the
supremum insupp(x) I(X ;Y ) is achieved, i.e.

∃X∗ : I(X∗;Y ∗) = Cc (21)

thenǏ(X∗;Y ∗) = Cc and there exists such sequence of chan-
nel statess(n) that the corresponding sequence of normalized
information densitiesZ∗

ns(n) (under inputX∗) converges in
probability to the compound channel capacityCc,

lim
n→∞

Pr{|Z∗
ns(n) − Cc| > δ} = 0 ∀δ > 0 (22)

i.e. this sequence (which represents worst-case channels in the
uncertainty set) is information-stable.

Proof. Observe thatI(X∗;Y ∗) = Cc implies

Cc = I(X∗;Y ∗) ≤ Ǐ(X∗;Y ∗) ≤ sup
p(x)

Ǐ(X;Y ) = Cc (23)

so thatǏ(X∗;Y ∗) = Cc follows, which also implies that

lim
n→∞

inf
s
Pr {Z∗

ns > Cc + δ} = 0 ∀ δ > 0 (24)

On the other hand,I(X∗;Y ∗) = Cc implies

lim
n→∞

sup
s

Pr {Z∗
ns < Cc − δ} = 0 ∀ δ > 0 (25)

and hence

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 ∀δ > 0 (26)

follows. Next, we need the following technical Lemma.

Lemma 3. Let {xns} be a non-negative compound sequence
such that

lim
n→∞

inf
s
xns = 0 (27)

Then, there exists such sequence of statess(n) that

lim
n→∞

xns(n) = 0 (28)

Proof. Wheninfs is achieved, the statement is trivial. To prove
it in the general case, observe that, from the definition ofinfs
and for anyn, there always exists suchs(n) that

xns(n) < inf
s
xns + 1/n (29)

so that takinglimn→∞ of both sides, one obtains (28)1.

Using this Lemma, (26) implies the existence of a sequence
of channel statess(n) such that (22) holds.

Remark 3. Note that, under the conditions of Corollary 1,
the sequences(n) of worst-case channel states is information-
stable even though no assumption of information stability was
made upfront.

Remark 4. In light of Lemma 3, condition(19) means that
there exists such sequence of (bad) channel statess(n) that
the information spectrum of the corresponding sequence of
normalized information densitiesZns(n) does not exceedCc

under any input, i.e.

∃s(n) : lim
n→∞

Pr{Zns(n) > Cc + δ} = 0 ∀δ > 0 (30)

V. A PPENDIX

A. Proof of Proposition 1

The 1st inequality is proved by contradiction. LetI =

I(X;Y ), Ǐ = Ǐ(X ;Y ), assumeI − Ǐ = 2δ > 0 and set

R = (I + Ǐ)/2 = I − δ = Ǐ + δ (31)

so that

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= lim
n→∞

sup
s

Pr{Zns < R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ Ǐ + δ} = 1 (32)

1this way of proof was suggested by a reviewer.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

32



4

i.e. a contradiction.
The 2nd inequality is also proved by contradiction. LetĪ =

infs Ī(X ;Y |s), assuměI − Ī = 2δ > 0 and set

R = (Ī + Ǐ)/2 = Ī + δ = Ǐ − δ (33)

so that, from the definition of̌I,

0 < ǫ = lim sup
n→∞

inf
s
Pr{Zns > Ǐ − δ}

≤ inf
s
lim sup
n→∞

Pr{Zns > Ǐ − δ}

= inf
s
lim sup
n→∞

Pr{Zns > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī(X ;Y |s∗) + δ/2} = 0 (34)

i.e. a contradiction, wheres∗ is such channel state that

Ī(X ;Y |s∗) ≤ inf
s
Ī(X;Y |s) + δ/2 (35)

The last inequality can be proved in a similar way.

B. Proof of Theorem 2

To prove sufficiency, let the equality in (16) to hold and
select a code satisfying

lim inf
n→∞

rn = R = Cc + 3δ (36)

for someδ > 0, so that

rn ≥ R− δ = Cc + 2δ = sup
p(x)

Ǐ(X;Y ) + 2δ (37)

for sufficiently largen. Using Lemma 2 for this code, one
obtains:

lim
n→∞

εn ≥ lim
n→∞

sup
s

Pr {Zns ≤ rn − δ}

≥ lim
n→∞

sup
s

Pr

{

Zns ≤ sup
p(x)

Ǐ(X;Y ) + δ

}

≥ lim
n→∞

sup
s

Pr
{
Zns ≤ Ǐ(X ;Y ) + δ

}

= 1− lim
n→∞

inf
s
Pr

{
Zns > Ǐ(X ;Y ) + δ

}

= 1 (38)

so that (9) holds, where the last equality is due to

lim
n→∞

inf
s
Pr

{
Zns > Ǐ(X ;Y ) + δ

}
= 0 (39)

which follows from (11).
To prove the necessary part, assume that (9) holds and, using

Lemma 1, select a code satisfying

lim
n→∞

rn = R = Cc + δ (40)

for someδ > 0. This implies that

rn ≤ Cc + 2δ (41)

for any sufficiently largen. Applying Lemma 1, one obtains

1 = lim
n→∞

εn ≤ lim
n→∞

sup
s

Pr {Zns ≤ rn + δ}

≤ lim
n→∞

sup
s

Pr {Zns ≤ Cc + 3δ}

= 1 (42)

from which it follows that

lim
n→∞

inf
s
Pr {Zns > Cc + 3δ} = 0 (43)

which implies (19) anďI(X;Y ) ≤ Cc (under any input) so
that, from Proposition 1,

Cc = sup
p(x)

I(X;Y ) ≤ sup
p(x)

Ǐ(X;Y ) ≤ Cc (44)

from which (16) follows.
To establish the sufficiency of (19), observe that it implies

the 2nd inequality in (44) from which (16) follows, which is
sufficient.

To establish (18), observe thatCc = supp(x) I(X;Y ) im-
plies that there exists such inputX

∗ thatI(X∗;Y ∗) > Cc−2δ
so that, for any suchX∗,

0 = lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗;Y n∗|s) < I(X∗;Y ∗)− δ

}

≥ lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗;Y n∗|s) < Cc − 3δ

}

= 0 (45)

Combining this with (43) applied to inputX∗, one obtains

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > 3δ} ≤ lim
n→∞

inf
s
Pr{Z∗

ns > Cc + 3δ}

+ lim
n→∞

sup
s

Pr{Z∗
ns < Cc − 3δ} = 0 (46)

from which (18) follows.
To establish last equality in (17), leťI = Ǐ(X;Y ) and

observe that

Ins(a) =E{Zns1[Zns ≤ Ǐ + δ]}
︸ ︷︷ ︸

e1

+ E{Zns1[Ǐ + δ < Zns ≤ a]}
︸ ︷︷ ︸

e2

(47)

for someδ > 0, where1[·] is the indicator function. The two
expectation terms can be upper bounder as

e1 ≤ (Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

e2 ≤ a · Pr{Zns > Ǐ + δ} (48)

so that

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) = lim inf

n→∞
inf
s

lim
a→∞

Ins(a)

= lim
a→∞

lim inf
n→∞

inf
s
Ins(a)

≤ lim
a→∞

lim inf
n→∞

inf
s
((Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

+ a · Pr{Zns > Ǐ + δ})

≤ lim
a→∞

((Ǐ + δ) lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

+ a · lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ})

= Ǐ + δ (49)

where the 2nd equality is due to uniform convergence and the
last equality is due to

lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 0 (50)

lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

= 1− lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 1 (51)
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Since (49) holds for arbitrary smallδ > 0, it follows that

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) ≤ Ǐ (52)

for any input. Takingsupp(x) on both sides, one obtains:

Cc = sup
p(x)

I(X;Y )

≤ lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn;Y n|s)

≤ sup
p(x)

Ǐ(X;Y ) = Cc (53)

from which the desired result follows, where the 1st inequality
is due to Proposition 2 below.

Proposition 2. Consider the general compound channel. Its
compound inf-information rate is bounded as follows:

I(X,Y ) ≤ lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s) ≤ Ǐ(X ;Y ) (54)

Proof. Let Zns =
1
n
i(Xn;Y n|s) and observe that

1

n
I(Xn;Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]}+ E{Zns1[Zns ≥ I − δ]} (55)

for any0 < δ < I, where1[·] is the indicator function andI =
I(X,Y ). The 1st termt1 can be lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}

=
1

n

∑

xn,yn:zns≤0

ps(y
n)p(xn)wns lnwns

≥ −
1

ne

∑

xn,yn:zns≤0

ps(y
n)ps(x

n)

≥ −
1

ne
(56)

wherewns = ps(y
n|xn)/ps(y

n) and the 1st inequality follows
from w lnw ≥ −1/e. The 2nd termt2 can be lower bounded
as follows:

t2 = E{Zns1[Zns ≥ I − δ]}

=
∑

xn,yn:zns≥I−δ

znsps(y
n|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ} (57)

Combining these two bounds, one obtains:

lim inf
n→∞

inf
s

1

n
I(Xn;Y n|s)

≥ (I − δ) lim
n→∞

inf
s
Pr{Zns ≥ I − δ}

= I − δ (58)

where the equality follows from

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ I − δ} (59)

Since the inequality in (58) holds for eachδ > 0, one obtains
the 1st inequality in (54) by takingδ → 0; the 2nd one has
been already established in (52).
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Abstract—This paper considers the transmission of codewords
over a quasi–static binary erasure channel, where the erasure
probability changes independently at each transmitted codeword.
An approximation to the random–coding union bound suggests
that the error probability exceeds the outage probability by a
quantity that is inversely proportional to the blocklength.

I. INTRODUCTION

A quasi–static channel is a good model for delay–
constrained communication over slow–varying channels [1].
The outage capacity has been emphasized as the most impor-
tant information–theoretic measure in quasi–static channels.
However, little attention has been given to the error probability.
In [2], the performance of the quasi–static fading channel is
described by means of Gallager–type random–coding bounds.
Malkamäki et al. [3] proposed a tighter bound, and showed
that the average error probability is asymptotically given by
the outage probability in the limit of infinite codeword block-
length [3, Th. 2]. However, for finite codeword blocklength,
this tighter bound has to be evaluated numerically, as the
optimization of the bound involves the fading coefficients.

This paper considers the random–coding union (RCU)
bound [4] to the error probability in the simple quasi–static
binary erasure channel (BEC). By writing the RCU bound as
a tail probability, we propose two saddlepoint approximations
[5] that build upon the techniques of [2], [3]. By inspecting the
asymptotic behavior of the saddlepoint with the blocklength,
we finally derive an expansion of the RCU bound in inverse
powers of the blocklength that suggests that the error proba-
bility converges to the outage probability as δ(R)

n , where n is
the codeword blocklength, R is the rate of the code, and δ(R)
is a rate–dependent constant.

II. PRELIMINARIES

Consider the transmission of codewords of blocklength n
symbols, where each codeword spans a single BEC with
uniformly distributed erasure probability ε, that changes in-
dependently from codeword to codeword. Given the erasure

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme under grant agreement 303633 and by the Spanish Ministry of
Economy and Competitiveness under grants RYC-2011-08150, TEC2012-
38800-C03-03, and FJCI-2014-22747.

probability ε, the transition probability during the transmission
of a codeword can be factorized as

Wn
ε (y|x) =

n∏
i=1

Wε(yi|xi), (1)

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are the channel
input and channel output sequence, respectively, and Wε(y|x)
denotes the transition probability of a single BEC of erasure
probability ε [6].

We study the transmission of equiprobable messages
m ∈ {1, . . . ,M}, where each message is mapped onto a
codeword x(m), and the collection of all codewords is a code
of rate R = 1

n logM . For a fixed erasure probability ε, the
average error probability of the code is denoted as Pe(n, ε).
Here, we are mostly interested in the error probability averaged
over the erasure probability, i.e.,

Pe(n) = E [Pe(n, ε)] . (2)

Random–coding arguments show the existence of a code
whose error probability is, at least, as good as that of the
ensemble average. In this work, we consider such a code.

Two random–coding upper bounds to the error probability
for the block–fading channel were reported by Malkamäki et
al. in [3]. Particularized for the quasi–static BEC, the first
bound is based on a conditional Gallager bound [7] given the
erasure probability [3, Eq. (16)–(17)], i.e.,

Pe(n, ε) ≤


1 ρ̂ε < 0

e−n(E0(ρ̂ε,ε)−ρ̂εR) 0 ≤ ρ̂ε ≤ 1

e−n(E0(1,ε)−R) ρ̂ε > 1.

(3)

Then, the average over the erasure probability is applied. In
(3), ρ̂ε is the argument that maximizes E0(ρ, ε)− ρR, closely
related to (15) later derived in the paper. As ρ̂ε is a function
of the erasure probability, the expectation of (3) with respect
to ε has to be numerically evaluated for a finite blocklength.
Asymptotically, the Gallager bound (3) shows that the error
probability converges to the outage probability, denoted as
Pout(R) and given as

Pout(R) = P [I(ε) < R] , (4)

where I(ε) is the mutual information of a single BEC with
erasure probability ε maximized over the input distribution.
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For the quasi–static BEC with uniformly distributed error
probability, we have that

I(ε) = (1− ε) log 2, (5)

Pout(R) =
R

log 2
. (6)

A simpler bound was also proposed in [3, Eq. (22)] by
first averaging the erasure probability and then optimizing a
parameter that does not depend on ε:

Pe(n) ≤


1 ρ̂ < 0

e−n(E0(ρ̂)−ρ̂R) 0 ≤ ρ̂ ≤ 1

e−n(E0(1)−R) ρ̂ > 1.

(7)

Here, ρ̂ is the argument that maximizes E0(ρ)− ρR, closely
related to (30) later derived in the paper. As pointed out in
[3], (7) is a weaker bound to the error probability, as ρ̂ will
be only optimal for some realizations of ε.

In summary, Gallager arguments lead to a tighter bound
that needs to be numerically evaluated, and a simpler bound
that is especially loose in quasi–static channels (see [3, Fig.
2]). In this work, we discuss whether the performance gap
between (3) and (7) is a genuine issue of quasi–static channels
by studying more refined expressions of the error probability
based on the random–coding union bound. We further study
the convergence of the error probability to the outage proba-
bility. For a different perspective, the dual problem, i.e., the
convergence of the achievable rate to the outage capacity, see
the recent work by Yang et al. [8].

III. SADDLEPOINT APPROXIMATIONS

A. Saddlepoint Approximation of RCU(n, ε)

For a fixed BEC realization of the erasure probability ε, the
RCU bound to the average error probability [4] is given by

Pe(n, ε) ≤ E [min {1,
MP

[
Wn
ε (Y |X) ≥Wn

ε (Y |X)|X,Y
]}]

, (8)

where X , Y are the random variables for channel input and
channel output sequences, respectively, and X is distributed
as X but independent of Y . As noted in [9], we can apply
Markov’s inequality and weaken the RCU bound as

Pe(n, ε) ≤ RCU(n, ε) (9)

where RCU(n, ε) is the tail probability

RCU(n, ε) = P [Φn(X,Y , ε) ≤ 0] . (10)

In (10), the random variable Φn(X,Y , ε) is

Φn(X,Y , ε) =
n∑
i=1

is(Xi, Yi, ε) + logU − nR, (11)

where U is a uniform (0, 1) random variable, and the symbol
s–information density is defined as

is(X,Y, ε) = log
Wε(Y |X)s

E[Wε(Y |X)s|Y ]
. (12)

For the quasi–static BEC, we note that (12) is independent on
s, and that the bounds (8) and (10) coincide [9].

As noted in [10], the tail probability (10) can be expressed
in terms of the inverse Laplace transformation [11] as

RCU(n, ε) =
1

2πj

∫ ν+j∞

ν−j∞

E
[
e−tΦn(X,Y ,ε)

]
t

dt, (13)

where we assume that ν is within the range of convergence,
i.e., ν ∈ (0, 1). The evaluation of the expectation term in (13),
using (11) and (12), leads to

E
[
e−tΦn(X,Y ,ε)

]
=
eκn,ε(t)

1− t
, (14)

where κn,ε(t) is given as

κn,ε(t) = ntR+ n log

(
1

2t
(1− ε) + ε

)
. (15)

We note that the former expression can be written in terms
of the Gallager function E0(t, ε) that appears in (3) through
κn,ε(t) = −n(E0(t, ε) − tR). The critical points of (13) are
two poles at t = 0 and t = 1, and a saddlepoint at t = tn,ε,
the absolute minimum of κn,ε(t) in the real axis, i.e.,

tn,ε = arg min
−∞<t<∞

κn,ε(t). (16)

If 0 ≤ tn,ε ≤ 1, it is safe to set ν = tn,ε in (13). Yet, whenever
tn,ε < 0 and tn,ε > 1, the poles at t = 0 and t = 1 introduce
additional terms due to the Cauchy’s residue theorem [11].

Since no closed–form solutions to the complex–integration
(13) are available in general, we propose a Taylor expansion
of κn,ε(t) around tn,ε, i.e.,

κn,ε(t) ≈ κn,ε(tn,ε) + κ′n,ε(tn,ε)(t− tn,ε)

+
1

2
κ′′n,ε(tn,ε)(t− tn,ε)2, (17)

where κ′n,ε(t) and κ′′n,ε(t) denote, respectively, the first and
second derivatives of κn,ε(t) with respect to t. Finally, fol-
lowing the footsteps of [10], we obtain that the RCU bound
for the quasi–static BEC can be approximated as

RCU(n, ε) ≈ γn,ε + σn,εe
κn,ε(tn,ε). (18)

Here, the additive term γn,ε can be expressed as

γn,ε =


1 tn,ε < 0

0 0 ≤ tn,ε ≤ 1

eκn,ε(1) tn,ε > 1,

(19)

whereas the pre–exponential term σn,ε is given by

σn,ε = Q
(
tn,ε

√
κ′′n,ε(tn,ε)

)
+Q

(
(1− tn,ε)

√
κ′′n,ε(tn,ε)

)
,

(20)
where

Q(x) = sign(x)
1

2
erfc

(
|x|√

2

)
e
x2

2 . (21)

The proposed approximation of the RCU involves determining
the saddlepoint of (15), given by

tn,ε = log2

(
1− ε
ε

log 2−R
R

)
. (22)
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It is straightforward to show that, asymptotically, the sad-
dlepoint approximation (18) satisfies

lim
n→∞

RCU(n, ε) = 1{I(ε) < R} , (23)

where 1{·} is the indicator function. As n→∞, the saddle-
point approximation (18) approaches a Bernoulli random vari-
able with probability of success Pout(R). Since this random
variable is bounded, we can apply the Lebesgue dominated
convergence theorem [12] to prove that

lim
n→∞

E [RCU(n, ε)] = Pout(R). (24)

Therefore, the average of the saddlepoint approximation to
the RCU given the erasure probability, shows that the error
probability converges to the outage probability, but gives no
direct information about the rate of this convergence.

B. Saddlepoint Approximation of RCU(n)

For symmetry with the work by Malkamäki et al. [3], we
now study the RCU bound to the error probability averaged
over the erasure probability, i.e.,

Pe(n) ≤ E [min {1,
MP

[
Wn
ε (Y |X) ≥Wn

ε (Y |X)|X,Y , ε
]}]

. (25)

Similarly to (9), we can apply the Markov’s inequality and
further weaken (25) as

Pe(n) ≤ RCU(n), (26)

where now the erasure probability ε is treated as a ran-
dom variable in the evaluation of the tail probability of
Φn(X,Y , ε), i.e.,

RCU(n) = P [Φn(X,Y , ε) ≤ 0] . (27)

We can again express the tail probability (27) in terms of
the inverse Laplace transformation as

RCU(n) =
1

2πj

∫ ν+j∞

ν−j∞

E
[
e−tΦn(X,Y ,ε)

]
t

dt, (28)

where ν is within the region of convergence, i.e., ν ∈ (0, 1).
Taking into account the erasure probability ε in the following
expectation

E
[
e−tΦn(X,Y ,ε)

]
=
eκn(t)

1− t
, (29)

now κn(t) is defined as

κn(t) = ntR+ log
2t − 2−nt

(2t − 1)(n+ 1)
. (30)

Again, (30) is related to the Gallager function E0(t) involved
in (7) through κn(t) = −n (E0(t)− tR). The saddlepoint to
RCU(n) is defined as the absolute minimum of κn(t) over the
real axis, i.e.,

tn = arg min
−∞<t<∞

κn(t). (31)

Similarly to (17), we approximate (28) by expanding κn(t)
around tn, and obtain that the averaged RCU bound for the
quasi–static BEC can be approximated as

RCU(n) ≈ γn + σne
κn(tn) (32)

where now

γn =


1 tn < 0

0 0 ≤ tn ≤ 1

eκn(1) tn > 1,

(33)

and

σn = Q
(
tn
√
κ′′n(tn)

)
+Q

(
(1− tn)

√
κ′′n(tn)

)
. (34)

Even though closed-form expressions for the saddlepoint
tn are not available in this case, we further investigate its
relation to the outage probability by proposing a saddlepoint
approximation to the outage probability.

C. Saddlepoint Approximation of Pout(R)

We note that the outage probability (4) can be seen as a tail
probability of the random variable

Φout(R) = I(ε)−R. (35)

Therefore, it is natural to express the outage probability as the
inverse Laplace transformation

Pout(R) =
1

2πj

∫ ν+j∞

ν−j∞

E
[
e−tΦout(R)

]
t

dt, (36)

where now the expectation is only with respect to the erasure
probability, and ν ∈ (0,∞). This leads to

E
[
e−tΦout(R)

]
= eκout(t), (37)

where κout(t) is given as

κout(t) = tR+ log
1− 2−t

t log 2
. (38)

Now, (36) has only one pole at t = 0 and a saddlepoint at

tout(R) = arg min
−∞<t<∞

κout(t). (39)

Mimicking (17) with (38), we may hence approximate the
outage probability as

Pout(R) ≈ γout(R) + σout(R)eκout(tout(R)). (40)

In this case, we have that the additive term γout(R) and the
pre–exponential term σout(R) are given, respectively, as

γout(R) =

{
1 tout(R) < 0

0 tout(R) ≥ 0
(41)

σout(R) = Q
(
tout(R)

√
κ′′(tout(R))

)
. (42)
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IV. AN ASYMPTOTIC EXPANSION OF RCU(n)

One advantage of the complex–integration expression of
the RCU (28) is that the average with respect to the erasure
probability is naturally incorporated in the definition of κn(t).
By further inspecting the behavior of the saddlepoint to the
RCU as the codeword blocklength n → ∞, we numerically
notice that the saddlepoint tn → 0. This motivates to study
the behavior of the product ntn, illustrated in Fig. 1 for three
different rates. Remarkably, ntn converges to tout(R). This
suggests that it is safe to make the change of variable nt = α
and integrate with α, i.e.,

RCU(n) =
1

2πj

∫ ν+j∞

ν−j∞

eκn(αn )

α
(
1− α

n

) dα, (43)

where now the region of convergence is ν ∈ (0, n). From (30),
we note that κn

(
α
n

)
has the form

κn

(α
n

)
= αR+ log

2
α
n − 2−α

(2
α
n − 1)(n+ 1)

. (44)

For sufficiently large codeword blocklength n, we derive a
Taylor expansion in inverse powers of the codeword block-
length n, i.e.,

eκn(αn )

α
(
1− α

n

) = θ0(α) +
θ1(α)

n
+O

(
1

n2

)
, (45)

where O
(

1
n2

)
is a term that vanishes at least as fast as 1

n2 ,
and the coefficients θ0(α) and θ1(α) are given by

θ0(α) =
eαR(1− 2−α)

α2 log 2
, (46)

and

θ1(α) =
eαR(1− 2−α)

α log 2
− eαR(1− 2−α)

α2 log 2
+
eαR(1 + 2−α)

2α
,

(47)
respectively. Comparing (38) and (46), we first observe that
in fact θ0(α) is related to κout(t) as

θ0(α) =
eκout(α)

α
. (48)

Hence, we may identify θ0(α) with the evaluation of the
outage probability

1

2πj

∫ ν+j∞

ν−j∞

eαR(1− 2−α)

α2 log 2
dα = Pout(R). (49)

Regarding θ1(α), we identify that the first term of θ1(α) is
actually eκout(α), and therefore that the complex–integration
of this term is the probability density function of Φout (35)
evaluated at the origin (see [11]). Since ε is uniformly dis-
tributed, Φout is then uniformly distributed in the interval
[−R, log 2−R], and we have that

1

2πj

∫ ν+j∞

ν−j∞

eαR(1− 2−α)

α log 2
dα =

1

log 2
. (50)

Likewise, we identify the second term of θ1(α) as θ0(α) in
(48), again leading to the outage probability as in (49). Finally,
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Fig. 1. Convergence of ntn to tout(R), versus the blocklength n, for several
rates.

the last term in (47) can be be split into two additive terms
that are identified as tail probabilities of two random variables.
The first one is a random variable whose probability density
function is a Dirac delta of mass one located at −R. Hence,
we have that

1

2πj

∫ ν+j∞

ν−j∞

eαR

2α
dα =

1 {R > 0}
2

. (51)

Similarly, the second one is a random variable whose proba-
bility density function is a Dirac delta of mass one located at
and −R+ log 2 that evaluates as

1

2πj

∫ ν+j∞

ν−j∞

eαR2−α

2α
dα =

1 {R > log 2}
2

. (52)

Defining δ(R) as

δ(R) =
1

2πj

∫ ν+j∞

ν−j∞
θ1(α) dα, (53)

within 0 < R < log 2 we have that

δ(R) =
1

log 2
− R

log 2
+

1

2
. (54)

As a consequence, the expansion of the RCU is given by

RCU(n) =
R

log 2
+

1

n

(
1

log 2
− R

log 2
+

1

2

)
+O

(
1

n2

)
.

(55)
The former expansion suggests that the error probability
converges to the outage probability as δ(R)

n , where δ(R) is
a monotonically decreasing function of the rate.

V. NUMERICAL RESULTS

In this section, we compare the proposed error probability
approximations with the Gallager bounds (3) and (7), and
the simulated RCU (27). More specifically, we numerically
evaluate the saddlepoint approximations (18), (32), and (40),
as well as the expansion (55).
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In Fig. 2, we observe that the saddlepoint approximation
(18) is an accurate approximation of the RCU. As n → ∞,
the error probability converges to the outage probability (4),
numerically confirming (24). Comparing the Gallager bound
(3) with the saddlepoint approximation (18), and the Gallager
bound (7) with the saddlepoint approximation (32), we note
that in both cases the additive and the pre–exponential terms
of the saddlepoint approximation provide a more refined
characterization of the error probability. The contribution of
these terms cannot be neglected in the quasi–static channel,
since the exponential term of the error probability is not a
dominant term when the error probability saturates.

A second observation from Fig. 2 is that, compared to the
Gallager bound (7), the saddlepoint approximation (32) is
tighter for small codeword blocklength. However, since the
randomness of the erasure probability is considered in the
approximation of the tail probability (27), this approximation
exhibits a misadjustment for large blocklength, as it converges
to the saddlepoint approximation of the outage probability
(40), rather than to the actual outage probability (6).

Finally, we are interested in the convergence of the error
probability to the outage probability. In particular, Fig. 3
depicts the convergence rate δn(R), defined as

δn(R) = n (Pe(n)− Pout(R)) , (56)

where Pe(n) is a placeholder for the bounds and approxima-
tions of Fig. 3. Remarkably, Fig. 2 numerically illustrates that
the Taylor expansion of the RCU (55) is a good approxima-
tion even for small codeword blocklength. Moreover, Fig. 3
illustrates that the error probability indeed exceeds the outage
probability in a quantity that vanishes proportionally to 1

n .
That is,

lim
n→∞

δn(R) = δ(R). (57)

As expected, none of the Gallager bounds provide the con-
vergence in 1

n , as the bounds are only tight for sufficiently
large n. Contrarily, the saddlepoint approximation (32) does
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Fig. 3. Rate of convergence of the error probability to the outage probability
versus codeword blocklength at R = 1

5
log 2.

exhibit, although misadjusted, a convergence coefficient as
1
n , whereas the saddlepoint approximation (18) leads to the
correct convergence rate of the RCU (27).

VI. CONCLUSIONS

In this paper, we have derived refined approximations of
the random–coding union bound in quasi–static binary erasure
channels with uniformly distributed erasure probability. An
expansion of the random–coding union bound in inverse
powers of the codeword blocklength suggests that the error
probability exceeds the outage probability by a quantity that
is inversely proportional to the codeword blocklength.
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Abstract—Generalized product codes (GPCs) are extensions of
product codes (PCs) where code symbols are protected by two
component codes but not necessarily arranged in a rectangular
array. In this tutorial paper, we review a deterministic construc-
tion for GPCs that has been previously proposed by the authors
together with an accompanying density evolution (DE) analysis.
The DE analysis characterizes the asymptotic performance of
the resulting GPCs under iterative bounded-distance decoding
of the component codes over the binary erasure channel. As an
application, we discuss the analysis and design of three different
classes of GPCs: spatially-coupled PCs, symmetric GPCs, and
GPCs based on component code mixtures.

I. INTRODUCTION

Several authors have proposed modifications of the classical
product code (PC) construction by Elias [1], typically by con-
sidering non-rectangular code arrays. These modifications can
be regarded as generalized low-density parity-check (GLDPC)
codes [2]. In particular, they are GLDPC codes where the un-
derlying Tanner graph consists exclusively of degree-2 variable
nodes (VNs) (i.e., each bit is protected by two component
codes). We refer to such codes as generalized PCs (GPCs).

In practice, the component codes of a GPC are typically
Bose–Chaudhuri–Hocquenghem or Reed–Solomon codes,
which can be efficiently decoded via algebraic bounded-
distance decoding (BDD). The overall GPC can then be
suboptimally decoded using iterative hard-decision decoding,
i.e., by iteratively performing BDD of all component codes.
This makes GPCs particularly suited for high-speed applica-
tions due to their significantly reduced decoding complexity
compared to “soft” message-passing decoding of low-density
parity-check (LDPC) codes [3]. For example, GPCs have been
investigated by many authors as practical solutions for high-
speed fiber-optical communications [3]–[7].

A standard tool to analyze the performance of iteratively
decoded codes is density evolution (DE) [8], [9], which is
based on an ensemble argument. That is, rather than analyzing
a particular code directly, one considers a set of codes defined
via suitable randomized edge connections in the Tanner graph.
While this approach can be applied to GPCs, many classes of
GPCs have a very regular Tanner graph structure. Therefore,
the performance of such codes is not necessarily well pre-
dicted by using an ensemble analysis. In general, it would be

This work was partially funded by the Swedish Research Council under
grant #2011-5961.

desirable to make precise statements about the performance
of sequences of deterministic codes without resorting to an
ensemble argument.

In this tutorial paper, we discuss some recent results about
the performance of deterministically constructed GPCs over
the binary erasure channel (BEC) presented in [10]–[12]. We
start in Section II by reviewing the deterministic construction
for GPCs proposed in [10]. The resulting GPCs are defined by
Tanner graphs that consist of a fixed arrangement of (degree-
2) VNs and constraint nodes (CNs). In Section III, it is shown
that the asymptotic performance of these GPCs is rigorously
characterized by a recursive DE equation. Finally, in Section
IV, we present a high-level overview of different results
presented in [10]–[12]. In particular, we discuss the analysis
and design of spatially-coupled PCs, symmetric GPCs, and
GPCs based on component code mixtures.

Notation. We use boldface to denote column vectors and
matrices (e.g., x and A). The symbols 0m and 1m denote the
all-zero and all-one vectors of length m, respectively, where
the subscript may be omitted. The tail-probability of a Poisson
random variable is defined as Ψ≥t(x) , 1 −

∑t−1
i=0

xi

i! e
−x.

We use boldface to denote the element-wise application of a
scalar-valued function to a vector. For example, if x is a vector,
then Ψ≥t(x) applies the function to each element. For vectors
x = (x1, . . . , xm)ᵀ and y = (y1, . . . , ym)ᵀ, we use x � y if
xi ≥ yi for all i. We also define [m] , {1, 2, . . . ,m}. Lastly,
the indicator function is denoted by 1 { · }.

II. A DETERMINISTIC CONSTRUCTION FOR GENERALIZED
PRODUCT CODES

A. Motivation

Recall that a PC is defined as the set of n× n arrays such
that every row and every column is a codeword in some binary
linear component code B of length n. The corresponding
Tanner graph has a fixed deterministic structure that resembles
a complete bipartite graph: There exists two types of CNs (n
CNs corresponding to “row codes” and n CNs corresponding
to “column codes”) and each CN of one type is connected to
all CNs of the other type through a VN. This gives rise to
exactly n2 VNs, where each VN corresponds to one element
in the array. An illustration is shown for example in [2, Fig. 3].

Consider now the code arrays shown in Fig. 1. We will
discuss these arrays (and the resulting GPCs) in more detail
in the next section. For now, we note that one can almost apply
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Fig. 1. Code arrays for C12(η), where in (a) γ = 1/2 and in (b) γ = 1/3.
Numbers indicate the position indices in the code construction.

the exact definition of a PC to these arrays. In particular, fill
the array with bits such that every row and every column is
a codeword in some component code. The underlying Tanner
graph that results from this definition is again easily seen to
be very structured. We essentially seek a general and flexible
way to directly construct the Tanner graphs corresponding to
the GPCs defined by these arrays.

B. Code Construction

We denote a GPC by Cn(η), where n is proportional to
the number of CNs in the underlying Tanner graph and η
is a binary, symmetric L × L matrix that defines the graph
connectivity. Due to the natural representation of GPCs in
terms of two-dimensional code arrays, one may alternatively
think about η as specifying the array shape. We will see in
the following that different choices for η recover well-known
code classes.

Let γ > 0 be some fixed and arbitrary constant such that
d , γn is an integer. To construct the Tanner graph that defines
Cn(η), assume that there are L classes of CNs, here called
“positions”. Then, place d CNs at each position and connect
each CN at position i to each CN at position j through a VN
if and only if ηi,j = 1.

Example 1. A PC is obtained for L = 2 and η = ( 0 1
1 0 ). The

two positions correspond to “row codes” and “column codes”.
If we choose γ = 1, then the code array is of size n×n. 4

Example 2. For L ≥ 2, the matrix η describing a staircase
code [3] has entries ηi,i+1 = ηi+1,i = 1 for i ∈ [L − 1] and
zeros elsewhere. For example, for L = 6, we have

η =


0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 . (1)

The corresponding code array is exactly the one shown in
Fig. 1(a), where n = 12 and γ = 1/2. 4
Example 3. For even L ≥ 4, the matrix η for a particular
instance of a block-wise braided code [13] has entries ηi,i+1 =

ηi+1,i = 1 for i ∈ [L − 1], η2i−1,2i+2 = η2i+2,2i−1 = 1 for
i ∈ [L/2− 1], and zeros elsewhere. For example, we have

η =



0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


(2)

for L = 8. The corresponding code array is the one shown in
Fig. 1(b), where n = 12 and γ = 1/3. 4

For a fixed n, the constant γ scales the number of CNs in
the graph. This is inconsequential for the asymptotic analysis
(where we assume that n → ∞) and γ manifests itself in
the DE equations merely as a scaling parameter. The scaling
parameter γ in the previous two examples is chosen such that
the component codes have length n in both cases, except at
the array boundaries, see Fig. 1.

From the code construction, it follows that the total number
of VNs (i.e., the length of the code Cn(η)) is given by

m =

(
d

2

) L∑
i=1

ηi,i + d2
∑

1≤i<j≤L
ηi,j . (3)

By construction, all of these VNs have degree two. Moreover,
the total number of CNs is dL. In general, CNs at position
i have degree d

∑
j 6=i ηi,j + ηi,i(d − 1), where the second

term arises from the fact that we cannot connect a CN to
itself if ηi,i = 1. The CN degree specifies the length of the
component code associated with the CN. We assume in the
following that each CN corresponds to a t-erasure correcting
component code. This assumption is relaxed in Section IV-C.

III. DENSITY EVOLUTION ANALYSIS

A. Iterative Decoding

Suppose that a codeword of Cn(η) is transmitted over the
BEC with erasure probability p. The decoding is performed
iteratively assuming ` iterations of BDD for the component
codes associated with all CNs. This means that in each
iteration, if the weight of an erasure pattern associated with a
CN is less than or equal to t, the pattern is corrected. If the
weight exceeds t, we say that the component code declares a
decoding failure in that iteration.

The decoding can be represented by applying the following
peeling procedure to the so-called residual graph [4], [14]. The
residual graph is obtained by deleting known VNs and their
adjacent edges. Furthermore, erased VNs are collapsed into
edges between CNs. In each iteration, determine all vertices
that have degree at most t and remove them, together with
all adjacent edges. The decoding is successful if the resulting
graph is empty after (at most) ` iterations.
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B. Density Evolution

We wish to characterize the decoding performance in the
limit as n → ∞. The first important observation is that with
the assumptions given so far (in particular the finite erasure-
correcting capability of the component codes), this problem is
ill-posed for a fixed erasure probability p. The reason is that
for n→∞, with high probability there will be a large number
of erasures associated with each component code. Even if we
choose p very small, eventually, the number of erasures will
exceed the (assumed) finite erasure-correcting capability of
each component code. In other words, for any fixed p and
n→∞, the decoding will fail with high probability.

In order to allow for a meaningful analysis, the natural
choice is to let the erasure probability decay slowly as p = c/n
for some c > 0. Since now p → 0 as n → ∞, one may
(falsely) conclude that the decoding will always be successful
in the limit. As we will see, however, the answer depends
crucially on the choice of c, which may thus be interpreted as
the effective channel quality in this regime. Its operational
meaning (assuming an appropriate choice for γ, see [10,
Sec. VI-A]) is given in terms of the expected number of initial
erasures per component code.

Now, assume that we compute

z(`) = Ψ≥t+1(cBx(`−1)),with x(`) = Ψ≥t(cBx
(`−1)), (4)

where x(0) = 1L and B , γη. The main technical result
is that the fraction of component codes that declare decoding
failures in iteration ` converges almost surely to 1

L

∑L
i=1 z

(`)
i

as n→∞. In other words, the code performance concentrates
around a deterministic value computed by the recursion (4)
for sufficiently large n. This result is analogous to the DE
analysis for LDPC codes [9, Th. 2]. The proof exploits the
above peeling representation of the decoding and is based
on a convergence result for so-called inhomogeneous random
graphs in [15], see [10] for details.

For notational convenience, we define h(x) , Ψ≥t(cx), so
that the recursion in (4) can be succinctly written as

x(`) = h(Bx(`−1)). (5)

Furthermore, the decoding threshold is defined in terms of the
effective channel quality as

c̄ , sup{c ≥ 0 |x(∞) = 0L}. (6)

Remark 1. For component codes with fixed erasure-correcting
capabilities, one can show that the code rate of Cn(η) ap-
proaches 1 as n → ∞. The studied setup is sometimes also
referred to as the high-rate regime or high-rate scaling limit
[16]. It turns out that the regime that can be analyzed is also
the regime that is relevant in practice: It is at high rates where
GPCs are competitive in terms of performance and complexity
compared to other code families, e.g., LDPC codes [3]–[5].

IV. APPLICATIONS

In this section, we discuss the analysis and design of three
different classes of GPCs: spatially-coupled PCs, symmetric

GPCs, and GPCs based on component code mixtures. This
section is based on results presented in [10]–[12], [17].

A. Spatially-Coupled Product Codes

Of particular interest are cases where the matrix η has a
band-diagonal “convolutional-like” structure. The associated
GPC can then be classified as a spatially-coupled PC. For ex-
ample, the GPCs discussed in Examples 2 and 3, i.e., staircase
and braided codes, are particular instances of spatially-coupled
PCs. The matrix B is referred to as an averaging matrix in this
case. Spatially-coupled codes have attracted a lot of attention
in the literature due to their outstanding performance under
iterative decoding [18], [19].

Spatially-coupled PCs have been previously analyzed using
ensemble-based methods in [6], [16]. In [12], we compare
the obtained DE recursion in (5) for deterministic spatially-
coupled PCs to the DE recursion for the spatially-coupled PC
ensemble in [16]. Without going into the details, the ensemble
performance is described by the recursion (see [16, eq. (9)]
and [12, Sec. III])

x(`) = h(B̃x(`−1)), (7)

where x(0) = 1L, B̃ , AᵀA, and A is an L − w + 1 × L
matrix with entries Ai,j = w−1

1 {1 ≤ j − i+ 1 ≤ w} for i ∈
[L − w + 1] and j ∈ [L]. The parameter w is referred to as
the coupling width. For example, for L = 6, the matrix B̃ for
w = 2 and w = 3 is given by

1

4


1 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 1

 ,
1

9


1 1 1 0 0 0
1 2 2 1 0 0
1 2 3 2 1 0
0 1 2 3 2 1
0 0 1 2 2 1
0 0 0 1 1 1

 , (8)

respectively. The ensemble DE recursion (7) has evidently the
same form as (5). The difference lies in the averaging due to
the matrix B̃. This is illustrated in the following example.
Example 4. For the braided codes in Example 3, one can
simplify (5) by exploiting the inherent symmetry in the code
construction which implies x(`)

i = x
(`)
i+1 for odd i and any `. It

is then sufficient to retain odd (or even) positions in (5). With
this simplification, the effective averaging matrix is given by

B′ =
1

3


1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

 (9)

for L = 12. The matrix B′ may be used to replace B in
(5). Moreover, B′ differs from both matrices B̃ in (8). In
general, the effective averaging matrices for the randomized
and deterministic constructions are not the same. 4

It is shown in [12] that there exists a different but related
family of (deterministic) braided codes that has the same ef-
fective averaging matrix as the spatially-coupled PC ensemble,
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Fig. 2. Illustrations for an HPC with n = 5. In the array, “*” means “equal
to the transposed element”. The highlighted array elements illustrate one
particular code constraint, which is also highlighted in the Tanner graph.

i.e., we have B′ = B̃. This implies that the resulting DE
recursions are identical and certain ensemble-properties proved
in [16] (in particular lower bounds on the decoding threshold)
also apply to certain deterministically constructed spatially-
coupled PCs.

B. Symmetric Generalized Product Codes

All examples for Cn(η) discussed so far share the property
that the corresponding matrix η does not contain any ones on
the diagonal, i.e., ηi,i = 0 for all i ∈ [L]. In this section, we
discuss the implications of choosing ηi,i = 1. In other words,
we discuss the implications of connecting CNs to other CNs
at the same position in the deterministic GPC construction.

The simplest case is obtained when there is only one
position (i.e., L = 1) and we have η = 1 with γ = 1. The
resulting Tanner graph can be described as a “complete Tanner
graph”: There exist n CNs in total and each CNs is connected
to all other CNs through a VN. All CNs have degree n − 1
and the total number of VNs, i.e., the length of the resulting
code Cn(η), is given by m =

(
n
2

)
. Tanner already used such

a construction as one of the first examples in [2, Fig. 6].
While the graph structure appears to be appealing due to

its simplicity, it is not immediately clear if Cn(η) has a
corresponding interpretation in terms of a code array. Such an
interpretation was later provided by Justesen in [4, Sec. III-B].
In particular, assume that we start with a conventional (square)
PC based on a component code with length n. Then, form a
subcode of this PC by retaining only symmetric codeword
arrays (i.e., arrays that are equal to their transpose) with a
zero diagonal. After puncturing the diagonal and the upper (or
lower) triangular part of the array, one obtains a code of length
m =

(
n
2

)
. Justesen termed the resulting codes half-product

codes (HPCs), emphasizing the fact that they have roughly
half the length of the PCs from which they are derived.

Example 5. Figs. 2(a) and (b) show the code array and Tanner
graph of an HPC for n = 5 and m = 10. The highlighted array
elements show the code symbols participating in the second
row constraint, which, due to the enforced symmetry, is also
the second column constraint. Effectively, each component
code acts on an L-shape in the array, i.e., both a partial row
and column, which includes one diagonal element. The degree
of each CN is n−1 = 4, due to the zeros on the diagonal. 4

The definition of an HPC as a (punctured) symmetric
subcode of a conventional PC extends without much difficulty
to other GPCs. This leads to the class of symmetric GPCs
which can be seen as a subclass of GPCs [17]. In general,
symmetric GPCs use symmetry to reduce the block length of
a GPC while employing the same component code [17].
Example 6. Consider again the code array in Fig. 1(b) corre-
sponding to the braided code in Example 3. Similar to an HPC,
we can form a half-braided code by enforcing the additional
constraint that the array should be equal to its transpose and
the array diagonal is zero (see [11, Fig. 1] for an illustration).
After puncturing, we find that this GPC is defined by a matrix
η where ηi,j = 1 if and only if |i − j| < 3. For example, if
we start with a braided code where L = 12, then the matrix η
for the corresponding half-braided code is given by η = 3B′,
where B′ is given in (9). 4

An interesting question is how symmetric PCs perform
when compared to their nonsymmetric counterparts. Partial
answers to this question are given in [17] and [11]. For
example, it is shown in [17] that, depending on the parameters,
HPCs can have a larger normalized minimum distance than the
PC from which they are derived. For the half-braided codes
discussed in Example 5, a comparison with staircase codes and
regular braided codes can be found in [11]. The comparison
is based on the derived DE equations and supplemented with
an error floor analysis. It is shown that half-braided codes can
outperform both staircase codes and regular braided codes in
the waterfall region, at a lower error floor and decoding delay.
In general, symmetric PCs appear to be interesting candidates
for further theoretical investigation and also implementation
in practical communication systems.

C. Component Code Mixtures
In the construction of Cn(η), it is assumed that each CN

corresponds to a t-erasure correcting component code. More
generally, one may wish to assign different erasure-correcting
capabilities to the component codes associated with the CNs.
One example is given by a PC where the row and column
codes can correct a different number of erasures. If the erasure-
correcting capabilities also vary across the row (or column)
codes, one obtains a so-called irregular PC [20], [21].

In order to formalize this concept in the context of the deter-
ministic GPC construction, assume that τ = (τ1, . . . , τtmax)

ᵀ

is a probability vector (i.e., 1ᵀτ = 1 and τ � 0). We let
τt be the fraction of CNs at each position that can correct
t erasures, where tmax is the maximum erasure-correcting
capability. We further define the average erasure-correcting
capability as t̄ ,

∑tmax
t=1 tτt. The assignment of the erasure-

correcting capabilities to the component codes can be done
in different ways. For example, we can do the assignment
deterministically if τtd is an integer for all t, or independently
at random according to the distribution τ . In both cases,
τ manifests itself in the DE equation (5) by changing the
function h to h(x) =

∑tmax
t=1 τtΨ≥t(cx), see [10] for details.

The resulting GPCs now depend on τ and this change is
reflected in our notation by writing Cn(η, τ ). For a fixed η, we
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Fig. 3. Simulation results (dashed) for regular and optimized irregular HPCs
for two values of n and ` = 100. DE results (solid) are shown for ` = 100.

are interested in finding “good” distributions τ , in the sense
that they lead to large decoding thresholds for Cn(η, τ ).
Example 7. For L = 1, η = 1, and γ = 1, we refer to
the resulting code Cn(η, τ ) as an irregular HPC. This case
is considered in detail in [10]. It is shown that the perfor-
mance of HPCs can be improved by employing component
codes with different strengths. Using an approach based on
linear programming and fixing the average erasure-correcting
capability to be t̄ = 7, we obtain the optimized distribution

τ4 = 0.495, τ9 = 0.029, τ10 = 0.476. (10)

The decoding threshold is given by c̄ ≈ 12.88 compared to
c̄ ≈ 11.34 for a regular HPC with τ7 = 1. Fig. 3 shows
simulation results for n = 1000 and n = 3000 together with
the DE prediction, where we used ` = 100. The performance
gain predicted by DE is similar to what is achieved for finite
lengths. Note that the figure shows a scaled bit error rate (BER)
plotted against the effective channel quality c in order to better
illustrate the convergence of the simulation results towards the
asymptotic DE curve for increasing n, see [10, Sec. II-D] and
[10, Sec. VII-E] for details. 4
Example 8. For spatially-coupled PCs, one may use the
approach described in [19] to study iterative decoding thresh-
olds. In particular, the decoding thresholds for the braided
code family mentioned in the last paragraph of Section IV-A
coincides with the so-called potential threshold defined in [19],
provided that the coupling width is sufficiently large. This
result is useful since it is typically easier to characterize the
potential threshold (both numerically and theoretically) than
the actual decoding threshold. Now, assume that we employ
different component codes according to τ . In this case, the
potential threshold depends on τ . In [12, Th. 2], it is proved
that for a fixed t̄ ∈ {2, 3, . . . }, the potential threshold is
maximized by a regular distribution where τt̄ = 1. From this,
we can conclude that employing component code mixtures
for spatially-coupled PCs is not beneficial from an asymptotic
point of view. 4

V. CONCLUSION

A deterministic construction of GPCs is reviewed along with
a DE analysis for code sequences. As an application, these
results are used to design and analyze spatially-coupled PCs,
symmetric GPCs, and GPCs with component code mixtures.
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Abstract—Recent research on distributed storage systems
(DSSs) has revealed interesting connections between matroid
theory and locally repairable codes (LRCs). The goal of this paper
is to illustrate these as well as some new — rather technical in
nature — results via simple examples. The examples embed all
the essential features of LRCs, namely locality, availability, and
hierarchy alongside with related generalized Singleton bounds.

I. INTRODUCTION

The need for large-scale data storage is continuously in-
creasing. Within the past few years, distributed storage systems
(DSSs) have revolutionized our traditional ways of storing,
securing, and accessing data. Storage node failure is a frequent
obstacle in large-scale DSSs, making repair efficiency an im-
portant objective. A bottle-neck for repair efficiency, measured
by the notion of locality [1], is the number of contacted nodes
needed for repair. The key objects of study in this paper
are locally repairable codes (LRCs), which are, informally
speaking, storage systems where a small number of failing
nodes can be recovered by boundedly many other (close-by)
nodes. Repair-efficient LRCs are already in use for large-scale
DSSs used by, for example, Facebook and Windows Azure
Storage [2].

Another desired attribute, measured by the notion of avail-
ability [3], is the property of having multiple alternative
ways to repair nodes. This is particularly relevant for nodes
containing so-called hot data that is frequently and simulta-
neously accessed by many users. Moreover, as failures are
often spatially correlated, it is valuable to have each node
repairable at several different scales. This means that if a node
fails simultaneously with the set of nodes that should normally
be used for repairing it, then there still exists a larger set of
helper nodes that can be used to recover the lost data. This
property is captured by the notion of hierarchy [4], [5] in the
storage system.

In this paper, we consider the hierarchical availability of
linear LRCs. Our main mathematical tools for analyzing
linear LRCs come from matroid theory. A matroid is an
abstract structure in algebraic combinatorics. Matroids have
been successfully used to solve problems in many areas in
mathematics and computer science [6], [7], [8], [9], [10].

This work was partially supported by the Academy of Finland grants
#276031, #282938, #283262. The support from the European Science Foun-
dation under the COST Action IC1104 is also gratefully acknowledged.

a) Related Work: Network coding techniques for large-
scale DSSs were considered in [11]. Since then, a plethora of
research on DSSs with a focus on linear LRCs and various
localities has been carried out, see [12], [1], [13], [14], [15]
among many others. Availability for linear LRCs was defined
in [3]. The notion of hierarchical locality was first studied in
[4], where bounds for the global minimum distance were also
obtained.

Let us denote by (n, k, d, r, δ, t), respectively, the code
length, dimension, global minimum distance, locality, local
minimum distance, and availability. Bold-faced parameters
(n,k,d, t) will be used in the sequel to refer to hierarchical
locality and availability. It was shown in [2] that the (r, δ = 2)-
locality of a linear LRC is a matroid invariant. The connection
between matroid theory and linear LRCs was examined in
more detail in [17]. In addition, the parameters (n, k, d, r, δ)
for linear LRCs were generalized to matroids, and new results
for both matroids and linear LRCs were given therein. Even
more generally, the parameters (n, k, d, r, δ, t) were gener-
alized to polymatroids, and new results on the parameters
(n, k, d, r, δ, t) for matroids and nonlinear LRCs were derived
in [16].

b) Contributions and Notation: The main purpose of this
paper is to give an overview of the connection between matroid
theory and linear LRCs with availability and hierarchy via
examples. In particular, we are focusing on how the parameters
(n,k,d, t) of a LRC can be analyzed using the lattice of cyclic
flats of an associated matroid, and on a construction derived
from matroid theory that provides us with linear LRCs. The
results reviewed here were mostly derived in [17], [16]. In
addition, we provide a glance at our recently submitted work
[5]. The following notation will be used throughout the paper:

F: a field;
Fq: the finite field of prime power size q;
E: a finite set;
G: a matrix over F with columns indexed by E;
G(X): the matrix obtained from G by the columns

indexed by X , where X ⊆ E;
C(G): the vector space generated by the columns of G;
R(G): the vector space generated by the rows of G;
C: linear code C = R(G) over F generated by G;
CX : the punctured code of C on X , i.e.,

CX = R(G(X)), where X ⊆ E;
2S : the collection of all subsets of a finite set S;
[j]: the set {1, 2, . . . , j} for an integer j.
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The motivation to study punctured codes arises from hier-
archy; the locality parameters at the different hierarchy levels
correspond to the global parameters of the related punctured
codes. This further leads to so-called restricted matroids.

We also point out that G(E) = G and CE = C. We will
often index a matrix G by [n], where n is the number of
columns in G.

Example 1.1: Let E = [7] and C the linear code
generated by the matrix G over F2, with columns in-
dexed by [7]. Then, for X = {5, 6, 7}, we have CX =
{(000), (110), (101), (011)} with the generator matrix G(X).

G =

1 2 3 4 5 6 7
1 0 0 0 0 1 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 1 0 1

, G(X) =

5 6 7
0 1 1
0 1 1
1 1 0
1 0 1

II. PRELIMINARIES

a) Linear Codes as Distributed Storage Systems: A
linear code C can be used to obtain a DSS, where every
coordinate in C represents a storage node in the DSS, and
every point in C represents a stored data item. While one often
assumes that the data items are field elements in their own
right, no such assumption is necessary. However, the alphabet
(to which the data items belong) must be acted upon freely by
the field, for example as a vector space. Therefore, if the data
items are measured in, e.g., kilobytes, then we are restricted
to work over fields of size not larger than about 21000. Beside
this strict upper bound on the field size, the complexity of
operations also makes small field sizes — ideally even binary
fields — naturally desirable.

Example 2.1: Let C be the linear code generated by the
following matrix G over F3:

G =

1 2 3 4 5 6 7 8 9
1 0 0 0 1 1 1 1 1
0 1 0 0 1 0 1 2 2
0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 0 1 2

Then, C corresponds to a 9 node storage system, storing four
files (a, b, c, d), each of which is an element in an alphabet on
which F3 acts freely. In this system, node 1 stores a, node 5
stores a+ b, node 9 stores a+ 2b+ 2d, and so on.

Two very basic properties of any DSS are that every node
can be repaired by some other nodes and that every node
contains some information. We therefore give the following
definition.

Definition 2.1: A linear [n, k, d]-code C over a field is a
non-degenerate storage code if d ≥ 2 and there is no zero
column in a generator matrix of C.

b) Linear LRCs with Hierarchical Availability: The very
broad class of linear LRCs with h-hierarchical availability will
be defined next.

Definition 2.2: Let G be a matrix over F indexed by E and
C the linear code generated by G. Then, for X ⊆ E, CX is

a linear [nX , kX , dX ]-code where

nX = |X|,
kX = rank(G(X)),
dX = min{|Y | : Y ⊆ X and kX\Y < kX}.

Example 2.2: Consider the storage code C from Exam-
ple 2.1. Let Y1 = {1, 2, 3, 5, 6, 7}, X1 = {1, 2, 5} and
X2 = {2, 6, 7}. Then CY1

, CX1
and CX2

are storage codes
with

[nY1
, kY1

, dY1
] = [6, 3, 3] ,

[nX1 , kX1 , dX1 ] = [3, 2, 2] ,
[nX2 , kX2 , dX2 ] = [3, 2, 2] .

The parameter dX is the minimum (Hamming) distance
of CX . We say that C is an [n, k, d]-code with [n, k, d] =
[nE , kE , dE ].

Definition 2.3: Let h ≥ 1 be an integer, and let

(n,k,d, t) = [(n1, k1, d1, t1), . . . , (nh, kh, dh, th)]

be a h-tuple of integer 4-tuples, where ki ≥ 1, ni, di ≥ 2,
and ti ≥ 1 for 1 ≤ i ≤ h. Then, a coordinate x of a
linear [n, k, d] = [n0, k0, d0]-LRC C indexed by E has h-level
hierarchical availability (n,k,d, t) if there are t1 coordinate
sets X1, . . . , Xt1 ⊆ E such that

(i) x ∈ Xi for i ∈ [t1],
(ii) i, j ∈ [t1], i 6= j ⇒ Xi ∩Xj = {x},
(iii) nXi

≤ n1, kXi
= k1 and dXi

≥ d1 for the punctured
[nXi , kXi , dXi ]-code CXi , for i ∈ [t1],

(iv) for i ∈ [t1], x has (h− 1)-level hierarchical availa-
bility [(n2, k2, d2, t2), . . . , (nh, kh, dh, th)] in CXi

.

The code C above as well as all the related subcodes CXi

should be non-degenerate. For consistency of the definition,
we say that any symbol in a non-degenerate storage code has
0-level hierarchical availability.

Example 2.3: Let C be the code generated by the matrix
G in Example 2.1 and x = 2. Then x has 2-level hierarchical
availability

(n,k,d, t) = [(6, 3, 3, 1), (3, 2, 2, 2)] .

This follows from Example 2.2 where CY1 implies the
(6, 3, 3, 1)-availability, and the (3, 2, 2, 2)-availability is im-
plied by CX1

and CX2
.

Definition 2.4: A subset X ⊆ E has h-level hierarchical
availability (n,k,d, t) in C, if every x ∈ X has h-level
hierarchical availability (r, δ, t) in C.

An information set of a linear [n, k, d]-code C is defined
as a set X ⊆ E such that kX = |X| = k. Hence, X is an
information set of C if and only if there is a generator matrix
G of C such that G(X) equals the identity matrix, i.e., C
is systematic in the coordinate positions indexed by X when
generated by G. In terms of storage systems, this means that
the nodes in X together store all the information of the DSS.

Example 2.4: Two information sets of the linear code C
generated by G in Example 1.1 are {1, 2, 3, 4} and {1, 2, 6, 7}.
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III. MATROIDS AND LINEAR CODES

In this section we give some basics about matroids and their
connection to linear codes. For more information on matroids
we refer the reader to [18].

a) Matroid Fundamentals: Matroids were introduced by
Whitney in 1935 [19] in order to capture fundamental proper-
ties of independence common to various areas of mathematics.

Definition 3.1: A (finite) matroid M = (I, E) is a finite set
E and a collection of subsets I ⊆ 2E such that

(I.1) ∅ ∈ I,
(I.2) Y ∈ I, X ⊆ Y ⇒ X ∈ I,
(I.3) For all pairs X,Y ∈ I with |X| < |Y |, there exists

y ∈ Y \X such that X ∪ {y} ∈ I.
The subsets in I are the independent sets of the matroid.

Any matrix G is associated with a matroid M [G] = (I, E),
where the columns of G are indexed by E and a subset X of
E is independent if and only if the column vectors indexed
by X in G are linearly independent.

Example 3.1: Let G be the matrix given in Example 2.1.
Then, when M [G] = (I, [9]), we have

{3, 4, 6}, {1, 2, 3, 8}, {2, 3, 4, 6} ∈ I,

and {1, 2, 3, 7} /∈ I.
A matroid M is linear if there exists a matrix G such that

M = M [G]. If a matroid M can be represented by a matrix
over a specific field F then M is F-linear.

Example 3.2: The matroid that arises from the matrix G in
Example 2.1 is linear. In particular, it is F-linear for any field
F with characteristic 6= 2, ensuring that 2 6= 0 in F.

The F-linearity of a matroid may depend on the field F.
Further, many matroids are not linear over any field, and
it is strongly believed (but not proven) that this is true for
asymptotically almost all matroids.

An alternative, but equivalent definition of a matroid is the
following.

Definition 3.2: A (finite) matroid M = (ρ,E) is a finite
set E together with a function ρ : 2E → Z such that for all
subsets X,Y ⊆ E

(R.1) 0 ≤ ρ(X) ≤ |X|,
(R.2) X ⊆ Y ⇒ ρ(X) ≤ ρ(Y ),
(R.3) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

The rank function ρ and the independents sets I of a matroid
on a ground set E are linked as follows: For X ⊆ E,

ρ(X) = max{|Y | : Y ⊆ X and Y ∈ I},

and X ∈ I if and only if ρ(X) = |X|.
For a linear matroid M [G] = (ρ,E), the rank ρ(X) equals

the rank of G(X) over the ground field F.
Example 3.3: Let G be the matrix given in Example 1.1.

Then, ρ(3, 4, 6) = 3, ρ({3, 4, 5}) = 2 and ρ([7]) = 4 for the
linear matroid M [G] = (ρ, [7]).

The restriction of M = (ρ,E) to a subset X of E is the
matroid M |X = (ρ|X , X), where

ρ|X(Y ) = ρ(Y ), for Y ⊆ X. (1)

Obviously, M |E =M .
For any linear matroid M [G] = (ρ,E) and subset X ⊆ E,

the restriction of M [G] to X equals the linear matroid on
G(X), i.e.,

M [G]|X =M [G(X)].

An important property of M [G]|X is that

M [G]|X =M [GX ]

for every matrix GX whose row space equals the row space
of G(X).

Example 3.4: Let G be the matrix given in Example 1.1.
Then, for X = {5, 6, 7}, M [G]|X =M [GX ] where

GX =
1 1 0
1 0 1

.

Indeed, observe that the row (0, 1, 1) is obtainable as the sum
of these two rows, as G is a matrix over F2.

We need a few more concepts from matroid theory. Let
M = (ρ,E) be a matroid and X a subset of E. The subset
X is a circuit if it is dependent and all proper subsets of X
are independent, i.e., ρ(X) = |X| − 1 and ρ(Y ) = |Y | for all
Y ( X . A cyclic set is a (possibly empty) union of circuits.
Equivalently, X is cyclic if for every x ∈ X

ρ(X \ {x}) = ρ(X).

Let us define the operation cyc : 2E → 2E by

cyc(X) = X \ {x ∈ X : ρ(X \ {x}) < ρ(X)}.

Then X is cyclic if and only if cyc(X) = X .
Dually, we define the closure of X to be

cl(X) = X ∪ {y ∈ E \X : ρ(X ∪ {y}) = ρ(X)}

and say that X is a flat if cl(X) = X . Therefore, X is a cyclic
flat if

ρ(X \ {x}) = ρ(X) and ρ(X ∪ {y}) > ρ(X)

for all x ∈ X and y ∈ E \X . The set of circuits, cycles and
cyclic flats of M are denoted by C(M), U(M) and Z(M),
respectively. For the ease of notation, we will also use the
nullity function η : 2E → Z on M , where

η(X) = |X| − ρ(X) for X ⊆ E.

A maximal independent set of M is called a basis, i.e., X is
a basis if ρ(X) = |X| = ρ(E).

Let M [G] = (ρ,E) be a linear matroid. Then X ⊆ E is
a cyclic flat if and only if the following two conditions are
satisfied

(i) C(G(X)) ∩ C(G(E \X)) = 0, where 0 is the
zero column,

(ii) x ∈ X ⇒ C(G(X \ {x})) = C(G(X)).

Example 3.5: Let G be the matrix given in Example 1.1.
Then, with C = C(M [G]), U = U(M [G]) and Z = Z(M [G]),

{3, 4, 5}, {3, 4, 6, 7}, {5, 6, 7} ∈ C, {3, 4, 5, 6, 7} /∈ C,
{3, 4, 5}, {3, 4, 6, 7}, {5, 6, 7}, {3, 4, 5, 6, 7} ∈ U ,
{3, 4, 5}, {5, 6, 7}, {3, 4, 5, 6, 7} ∈ Z , {3, 4, 6, 7} /∈ Z.
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b) Linear Matroids and Codes: There is a straightfor-
ward connection between linear codes and matroids. Indeed,
let C be a linear code generated by a matrix G. Then C
is associated with the matroid M [G] = (ρ,E). As two
different generator matrices of C have the same row space,
they will generate the same matroid. Therefore, without any
inconsistency, we denote the associated linear matroid of C
by MC = (ρC , E). In general, there are many different codes
C 6= C ′ with the same matroid structure MC =MC′ .

A property of linear codes that depends only on the matroid
structure of the code is called matroid invariant. For example,
the collection of information sets and the parameters [n, k, d]
of a code are matroid invariant properties.

In addition to the parameters [n, k, d] of a linear code C, we
are also interested in the length, rank and minimum distance
of the punctured codes, since these corresponds to the locality
parameters at the different hierarchy levels. A punctured code
can be analyzed using matroid restrictions, since MC|X =
MC |X for every coordinate subset X . Thus, the parameters
[nX , kX , dX ] of CX are also matroid invariant properties forC.

Proposition 3.1: Let C be a linear [n, k, d]-code and X ⊆ E.
Then for MC = (ρC , E),

(i) nX = |X|,
(ii) kX = ρC(X),
(iii) dX = min{|Y | : Y ⊆ X , ρC(X \ Y ) < ρC(X)},
(iv) X is an information set of C ⇐⇒

X is a basis of MC ⇐⇒ ρ(X) = |X| = k.

Example 3.6: Let C denote the [n, k, d]-code generated by
the matrix G given in Example 2.1. Then [n, k, d] = [9, 4, 3],
where the value of d arises from the fact that ρC([9]\{i, j}) =
4 for i, j = 1, 2, . . . , 7, and ρC([9] \ {4, 8, 9}) = 3. Two
information sets of C are {1, 2, 3, 4} and {1, 2, 6, 8}.

Not every property of a linear code is matroid invariant, an
important counter-example being the covering radius [20].

IV. CYCLIC FLATS AND LINEAR (n,k,d, t)-LRCS

Our main matroid theoretical tool in this paper for analyzing
linear LRCs is the lattice of cyclic flats, together with the rank
function restricted to this lattice.

a) The Lattice of Cyclic Flats: A collection of sets P ⊆
2E ordered by inclusion defines a poset (P,⊆). Let X and
Y denote two elements of P . The elements X and Y have a
join if there is an element Z ∈ P , denoted by X ∨ Y , such
that X ⊆ Z, Y ⊆ Z, and if W ∈ P , X ⊆ W , Y ⊆ W, then
Z ⊆W .

Dually, the elements X and Y have a meet if there is an
element Z ∈ P , denoted by X∧Y , such that Z ⊆ X , Z ⊆ Y ,
and if W ∈ P , W ⊆ X , W ⊆ Y, then W ⊆ Z.

The poset (P,⊆) is a lattice if every pair of elements in P
has a join and a meet. The bottom and top elements of a finite
lattice (P,⊆) always exist, and are denoted by 1P =

∨
X∈P X

and 0P =
∧

X∈P X , respectively.
Now, recall that for a matroid M = (ρ,E) and X ⊆ E,

the collection of cyclic flats of M is denoted by Z(M), and

consists of all X ⊆ E such that ρ(X \ {x}) = ρ(X) for all
x ∈ X and ρ(X ∪ {y}) > ρ(X) for all y ∈ E \X .

Two basic properties of the cyclic flats of a matroid are
given in the following proposition.

Proposition 4.1 ([21]): Let M = (ρ,E) be a matroid and
Z the collection of cyclic flats of M . Then,

(i) ρ(X) = min{ρ(F ) + |X \ F | : F ∈ Z}, for X ⊆ E,
(ii) (Z,⊆) is a lattice, X ∨ Y = cl(X ∪ Y ) and

X ∧ Y = cyc(X ∩ Y ) for X,Y ∈ Z .

Proposition 4.1 (i) shows that a matroid is uniquely deter-
mined by its cyclic flats and their ranks.

Example 4.1: Let MC = (ρC , E) be the matroid associated
to the linear code C generated by the matrix G given in
Example 2.2. The lattice of cyclic flats (Z,⊆) of MC is given
in the figure below, where the cyclic flat and its rank are given
at each node.

0Z

X1 X2 X3 X4 X5

Y1 Y2

1Z

(∅, 0)

({1, 2, 5}, 2)

({2, 6, 7}, 2)

({3, 5, 7}, 2)

({1, 3, 6}, 2)

({4, 8, 9}, 2)

({1, 2, 3, 5, 6, 7}, 3) ({1, 3, 4, 6, 8, 9}, 3)

([9], 4)

In [21], Theorem 3.2 gives an axiom scheme for matroids
via cyclic flats and their ranks. This gives a compact way to
construct matroids with prescribed local parameters, which we
have exploited in [17].

b) Properties of Linear LRCs via the Lattice of Cyclic
Flats: The results given in this section can be found in [17],
[5].

For a linear [n, k, d]-code C with MC = (ρC , E) and Z =
Z(MC), and for a coordinate x, we have

(i) d ≥ 2 ⇐⇒ 1Z = E,
(ii) C{x} 6= {0F} for every x ∈ E ⇐⇒ 0Z = ∅.

Hence, by Definition 2.1, the following propositions are
straightforward.

Proposition 4.2: Let C be a linear [n, k, d]-code and Z
denote the collection of cyclic flats of the matroid MC =
(ρC , E). Then C is a non-degenerate storage code if and only
if 0Z = ∅ and 1Z = E.

Proposition 4.3: Let C be a non-degenerate storage code
and MC = (ρC , E). Then, for X ⊆ E, CX is a non-
degenerate storage code if and only if X is a cyclic set ofMC .
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If X is a cyclic flat1 of a matroid M , then Z(M |X) =
{F ∈ Z(M) : F ⊆ X}. Therefore, studying the parameters
(n,k,d, t) of the punctured codes CXi amounts to studying
the order ideals {F ∈ Z(M) : F ⊆ Xi} in the lattice of
cyclic flats Z(MC).

c) Constructions of Linear (n,k,d, t)-LRCs: In [17],
a construction of a broad class of linear LRCs is given via
matroid theory. This is generalized in [16] and[5] to account
for availability and hierarchy, respectively. Here, we only
sketch the key elements of the construction.

First, let F1, . . . , Fm be a collection of subsets of a finite
set E. Assign a function ρ : {Fi} ∪ {E} → Z satisfying

(i) 0 < ρ(Fi) < |Fi| for i ∈ [m],
(ii) ρ(E) ≤ |F[m]|+

∑
i∈[m](ρ(Fi)− |Fi|),

(iii) j ∈ [m]⇒ |F[m]\{j} ∩ Fj | < ρ(Fj).

Now, denoting FI = ∪i∈IFi, we can extend ρ to {FI} → Z,
by

ρ(FI) = min(|FI |+
∑
i∈i

ρ(Fi)− |Fi|, ρ(E)).

Ignoring the sets FI with I 6= [m] and ρ(FI) = ρ(FI) = ρ(E),
we have thus constructed a lattice of cyclic flats with pre-
scribed parameters, following the axiomatic scheme from [21].

d) Some Classes of Linear LRCs: The class of linear
(n,k,d, t)-LRCs is a very general class. Almost all existing
literature on linear LRCs focuses on the case where one or
more of the parameters are specialized. Two well studied sub-
classes are 1-level linear (n1 = r+1, k1 = r, d1 = δ = 2, t1)-
LRCs and (n1 = r + δ − 1, k1 = r, d1 = δ, t1 = 1)-LRCs
over an information set or over all code symbols. Cases with
t ≥ 2 or h ≥ 2 are not as well studied as of yet. However,
matroid theory and especially the lattice of cyclic flats seem
to provide the required tools for the whole class of linear
(n,k,d, t)-LRCs.

In particular, the class of 1-level linear (n, k, d, r, δ, t =
1)-LRCs was examined in [17], and h-level linear
(n, k, d, r, δ, t = 1)-LRCs in [4]. The h-level case was later
generalized to matroids in [5], and generalised Singleton
bounds were given for matroids. This implies, as special cases,
the same bounds on linear LRCs and other objects related
to matroids, e.g. graphs, almost affine LRCs, and matchings.
By generalized Singleton bounds we mean results that upper
bound the minimum distances di in terms of the other pa-
rameters (n,k,d, t). The most general Singleton bound for
matroids with hierarchy in the case t = 1 are the following
given for linear codes in [4] and for matroids in [5]:

di(M) ≤ ni − ki + 1−
∑
j>i

(dj − dj+1)

(⌈
ki
kj

⌉
− 1

)
,

where we say dh+1 = 1.
Moreover, results on nonlinear 1-level (n1, k1, d1, t1)-LRCs

over arbitrary alphabets is given in [16], where generalizations

1In addition, looking at cyclic sets X′ within a cyclic flat X can give us
repair groups with n′

X ≤ nX , r′X = rX , d′X = dX . This will be of use
when looking at information set locality instead of all-symbol locality.

of matroids, in particular polymatroids, are used to derive
corresponding results for matroids and linear LRCs. The most
general Singleton bound in the regime t 6= 1, h = 1, with
all-symbol locality and information-symbol availability is

d1 ≤ n− k + 1−
(⌈

t1(k − 1) + 1

t1(r1 − 1) + 1

⌉
− 1

)
(δ1 − 1),

also given in [16].
As a natural next step, the notions of hierarchy and avail-

ability should be studied further from the matroid theoretic
perspective, and the related level-specific generalized Single-
ton bounds should follow. Moreover, adaptions of our methods
to account for field size should be studied.
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Reed-Muller Codes: Thresholds and Weight
Distribution

M. Mondelli, S. Kudekar, S. Kumar, H. D. Pfister, E. Şaşoğlu, and R. Urbanke

Abstract

We describe a new method to compare the bit-MAP and block-MAP decoding thresholds
of Reed-Muller (RM) codes for transmission over a binary memoryless symmetric channel.

The question whether RM codes are capacity-achieving is a long-standing open problem
in coding theory and it has recently been answered in the affirmative for transmission over
erasure channels. Remarkably, the proof does not rely on specific properties of RM codes,
apart from their symmetry. Indeed, the main technical result consists in showing that any
sequence of linear codes, with doubly-transitive permutation groups, achieves capacity on
the memoryless erasure channel under bit-MAP decoding.

A natural question is what happens under block-MAP decoding. If the minimum distance
of the code family is close to linear (e.g., of order N/ log(N)), then one can combine an
upper bound on the bit-MAP error probability with a lower bound on the minimum distance
to show that the code family is also capacity-achieving under block-MAP decoding. This
strategy is successful for BCH codes. Unfortunately, the minimum distance of RM codes
scales only as

√
N , which does not suffice to obtain the desired result. Then, one can exploit

further symmetries of RM codes to show that the bit-MAP threshold is sharp enough so
that the block erasure probability also tends to 0. However, this technique relies heavily on
the fact that the transmission is over an erasure channel.

We present an alternative approach to strengthen results regarding the bit-MAP threshold
to block-MAP thresholds. This approach is based on a careful analysis of the weight
distribution of RM codes. In particular, the flavor of the main result is the following: assume
that the bit-MAP error probability decays as N−δ , for some δ > 0. Then, the block-MAP
error probability also converges to 0. This technique applies to the transmission over any
binary memoryless symmetric channel. Thus, it can be thought of as a first step in extending
the proof that RM codes are capacity-achieving to the general case.
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Abstract—This paper contains a summary of the arguments
used to show how to achieve capacity of the AWGN channel with
Voronoi constellations of LDA lattices under lattice decoding. No
dithering is required in the tranmission scheme and capacity
is achievable with LDA lattices whose parity-check matrices
have constant row and column degrees. Although most of the
technical details of the proof cannot be treated here, the reader
is introduced to the fundamentals and novelties of the authors’
approach to the problem. The random capacity-achieving LDA
ensemble is presented and the definition of D-goodness of a
bipartite graph is given. As an example of the power of this tool
for investigating LDA lattices, a lemma about their minimum
Hamming distance is provided.

I. INTRODUCTION

This paper addresses the problem of communication over
the Additive White Gaussian Noise (AWGN) channel with
lattice codes and lattice decoding. This decoding strategy is
suboptimal with respect to the maximum likelihood (ML)
decoder, but its easier algorithmic nature makes it appealing
for both theoretical analysis and practical implementation.

Erez and Zamir [11], [18] were the first to provide a
full proof that capacity can be achieved in this context.
Their solution is based on the Modulo-Lattice Additive Noise
(MLAN) channel and Voronoi constellations with Construction
A lattices. More recently, Belfiore and Ling [15] proposed
a solution that involves a non-uniform distribution on the
channel inputs and a probabilistically finite codebook.

Once the theoretical problem of non-constructively achiev-
ing capacity was solved, it left the place to the challenge of
designing some constructive families of lattices adapted to
iterative decoding with close-to-capacity performance. Most of
the proposed families are inspired by LDPC and turbo codes
[1], [21]–[23] and an interesting work about lattices based
on polar codes exists [25]; the latter are also shown to be
capacity-achieving.

The authors of this paper have contributed to this research
domain with the introduction of two lattice families: the most
recent are the Generalized Low-Density (GLD) lattices [3],
[4]. They show great performance under iterative decoding
and numerical simulations have been run in remarkably high
dimensions (up to one million). Moreover, [10] provides a the-
oretical analysis about the possibility of achieving the so called
Poltyrev capacity with infinite GLD-lattice constellations.

The second family is the one of Low-Density Construction
A (LDA) lattices, to which this paper is entirely devoted. LDA
lattices put together the strength of Construction A and LDPC
codes, and their corresponding parity-check matrix is sparse.
This is the key idea to reconduct their decoding to well-
performing, implementable LDPC decoding algorithms. LDA
lattices were referred to with this name by di Pietro et al. [6],
who also proposed an efficient iterative decoding algorithm
which yields very good performance. A theoretical analysis
of the Poltyrev-capacity-achieving qualities of infinite LDA
constellations was carried on by the same authors [7], [8],
whereas the “goodness” properties of LDA lattices are studied
in [24]. The problem of attaining capacity of the AWGN
channel with finite LDA constellations was approached and
solved in [9]. The main purpose of this work is to recall and
partially improve the latter result. Defoliated of all technical
hypotheses, our main accomplishment can be stated as follows:

Theorem 1. For every SNR > 1, there exists a random
ensemble of LDA lattices that achieves capacity of the AWGN
channel under lattice encoding and decoding.

Notice that the restriction SNR ≤ 1 is not very constraining:
for very small SNR there is no need of using lattice con-
stellations for communications over the AWGN channel and
classical coded binary modulations are already known to work
in a more than satisfactory way [20].

For lack of space, this paper cannot contain the technical
proofs that lead to our result. Its aim is only to depict the
strategies and the theoretical tools that underlie them. A longer
and detailed version of this paper will be published soon and
a substantial part of this work is contained in [9].

A. Structure of the paper

Section II recalls some definitions about lattice constella-
tions. Section III presents the D-goodness of bipartite graphs.
Our LDA ensemble is depicted in Section IV, which also
describes the information transmission scheme. Section V
is a summary of the main features of the proof that LDA
lattices are capacity-achieving. It also contains a lemma on
their minimum Hamming distance.
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B. Notation

A crucial parameter of our analysis is the prime number p
that underlies Construction A. We are interested in describing
its growth as a function of the lattice dimension n. For this
reason, p is defined as p = nλ for some positive constant λ.
Clearly, this is a slight abuse of notation that means, without
any undesired consequence, that p = p(λ) is the closest prime
number to nλ.

II. LATTICE CONSTELLATIONS FOR THE AWGN CHANNEL

We assume that the reader is familiar with lattices as
mathematical objects and constellations for the transmission
of information; excellent references are [5], [26]. We repeat
here some definitions, mainly for fixing our notation.

We exclusively deal with real lattices, i.e. discrete additive
subgroups of the Euclidean vector space Rn. Also, we suppose
that they are always full-rank and n indicates both the lattice
dimension and the dimension of the Euclidean space. The
Voronoi region of a point x of a lattice Λ is the set

V(x) = {y ∈ Rn : ‖y − x‖ ≤ ‖y − z‖, ∀z ∈ Λ r {x}}.

We call Voronoi region of the lattice, and denote it V(Λ), the
Voronoi region of 0. The volume of Λ is Vol(Λ) = Vol (V(Λ))
and its effective radius is the radius of the ball whose volume is
equal to Vol(Λ). Consider two lattices Λ and Λf ; we say that
they are nested if Λ ⊆ Λf . We call Voronoi constellation [12]
of two nested lattices the lattice code C = Λf ∩ V(Λ). In this
context, Λ is often called the shaping lattice and Λf the fine
lattice. We can deduce that the Voronoi constellation has car-
dinality Vol(Λ)/Vol(Λf ); its elements are the represantatives
of the congruence classes of Λf/Λ with minimum norm.

Definition 1. Let C = C[n, k]p ⊆ Fnp be a p-ary linear code
of length n and dimension k and let us naturally embed C
into Zn. If H is a parity-check matrix of C, we say that the
lattice Λ ⊆ Rn is built with Construction A from C when

Λ = C + pZn = {x ∈ Zn : HxT ≡ 0T mod p}.

H is called a parity-check matrix of Λ as well. Λ is called a
Low-Density Construction A (or briefly LDA) lattice if it is
built with Construction A from an LDPC code.

We recall that LDPC codes are linear codes whose parity-
check matrix has a great majority of zero entries [14], [20].

Definition 2. Let C be the capacity of our channel. A family
of lattice codes is capacity-achieving if for every δ > 0 and
for every ε > 0 there exists a lattice code in the family with
rate at least C− δ and decoding error probability at most ε.

Let x be the AWGN channel input and let y = x + w
be its random output, then the Wiener coefficient is α =
arg minβ∈R E[‖x − βy‖2]. The minimum in the previous
formula is usually called Minimum Mean Squared Error and
the Wiener coefficient is also called MMSE coefficient. It is
well known that, if E[‖x‖2] = nP and wi ∼ N (0, σ2) for
every i, then α = P

P+σ2 . We denote QΛ(·) the quantizer of a
lattice Λ associated with V(Λ): QΛ(y) = arg minx∈Λ ‖y−x‖.

Definition 3. A MMSE lattice decoder returns x̂ = QΛ(αy)
as the channel input guess.

Multiplication by α is essential for us to achieve capacity
with a lattice decoder, as it was for Erez and Zamir [11], [18].
We will give a geometrical explanation of this in Section V.

III. EXPANSION PROPERTIES OF BIPARTITE GRAPHS

Let G = (VL, VR, E) be an undirected bipartite graph; VL∪
VR is its set of (left and right) vertices and E its set of edges.
Let |VL| = n and |VR| = fn, for some constant non-zero
fraction f ∈ Q (that can be bigger than 1). If S is a subset
of vertices of a graph G, its neighborhood N(S) is defined as
the set of vertices of the graph that are incident to a vertex of
S. In a bipartite graph, N(S) ⊆ VR for every S ⊆ VL and,
vice versa, N(T ) ⊆ VL for every T ⊆ VR. We will consider
only biregular graphs: the neighborhood of any vertex of VR
(resp. VL) has cardinality exactly ∆ (resp. f∆). Let us denote
by F(n, f,∆) the family of graphs just defined.

Definition 4. Let D be a positive constant. A graph of
F(n, f,∆) is D-good from left to right if

∀S ⊆ VL s.t. |S| ≤ n

D + 1
, then |N(S)| ≥ fD|S|. (1)

Analogously, it is D-good from right to left if

∀T ⊆ VR s.t. |T | ≤ fn

D + 1
, then |N(T )| ≥ D|T |

f
.

We say that a graph of F(n, f,∆) is D-good if it is good both
from left to right and from right to left.

Lemma 1. Let G be a graph chosen uniformly at random
in F(n, f,∆), and let h(·) be the binary entropy function. If
D ≥ 1 and

∆ > max

{(
1 +

1

f

)1−
Dh

(
1
D

)
(D + 1)h

(
1

D+1

)
−1

,

D2 +
1

f
,
D2

f
+ 1

}
,

then limn→∞ P{G is D-good} = 1.

The proof of the previous lemma uses the same main ideas
that Bassalygo applies in [2]. The reader may also be interested
in comparing this lemma with Theorem 8.7 of [20, p. 431] and
reading therein about the construction of expander codes.

The D-goodness of the Tanner graphs [20] associated with
LDA lattices plays an essential role in the proof of Lemma 3
and Theorem 2. The way it is exploited to adapt some random-
coding arguments to the LDA case is definitely one of the most
novel tools of this work.

IV. THE RANDOM LDA ENSEMBLE AND THE
TRANSMISSION SCHEME

Our lattice codes are given by Voronoi constellations of
nested LDA lattices. First, let us fix two constants R and Rf
such that 0 < R < Rf < 1. Also, let us fix the constant
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∆P , which is the number of non-zero entries per row of the
LDPC parity-check matrices. Our random shaping lattice Λ is
the LDA lattice generated by the following p-ary parity-check
matrix of dimension n(1−R)× n:

H =

(
H′

Hf

)
.

Its lower submatrix Hf , formed by its last n(1−Rf ) rows, is
the parity-check matrix of the random LDA fine lattice Λf . By
construction, we impose that H has exactly ∆P random entries
per row and ∆V = ∆P (1 − R) random entries per column.
Also, each column of Hf has exactly ∆P (1 − Rf ) random
entries per column. All the other entries are deterministically
fixed to 0 and their position is fixed once for all, as well.
The random entries of H are i.i.d. random variables with
equiprobable values in Fp. Of course, Λ ⊆ Λf and the random
Voronoi constellation is given by Λf/Λ. Lemma 1 guarantees
that the Tanner graph associated with the fine LDA lattice Λf
is D-good for every D ≥ 1 such that:

∆P > max

{
2−Rf
1−Rf

1−
Dh

(
1
D

)
(D + 1)h

(
1

D+1

)
−1

,

D2

1−Rf
+ 1

}
.

(2)

It can be shown that (2) suffices to claim that the graph
associated with the shaping LDA lattice Λ is D-good, too.

The points of the LDA-lattice constellation are in-
dexed by the pn(Rf−R) different syndromes of the form
(s1, s2, . . . , sn(Rf−R), 0, . . . , 0) associated with the matrix H,
with si ∈ Fp. More explicitly, let F(Rf−R)

p be the set of the
messages; the bijection

ϕ : Λf ∩ V(Λ)→ Fn(Rf−R)
p

x 7→ H′xT mod p

makes a constructive encoding possible. Our transmission
scheme works as follows: the sender pairs up a message and
a syndrome and transmits x, the corresponding constellation
point obtained via ϕ−1, over the AWGN channel. The receiver
gets the channel output y = x+w; by MMSE lattice decoding
of y, he gets x̂ = QΛf

(αy). The decoded message is the one
associated with ϕ(x̂). For every s′ ∈ Fn(Rf−R)

p , let x ∈ Λf be
any solution of the linear system H ′xT ≡ s′T mod p. Then,
ϕ−1(s′) = x−QΛ(x) and encoding can be done substantially
thanks to a lattice decoder, too.

Notice that our scheme differs from the others traditionally
proposed in the literature about lattices. We do not transform
the AWGN into a MLAN channel [11], [18] and, in particular,
we do not assume that the sender and the receiver share
the common randomness known as dither. The possibility of
avoiding dithering in this context had already been pointed
out by Forney [13], but no proof had ever been provided, to
the best of our knowledge. Furthermore, we keep an a priori
uniform disitribution on the lattice constellations and do not
introduce the random Gaussian coding proposed in [15], [25].

y

w

αy

0

x

h

Figure 1. Geometric interpretation: x is the channel input; ‖x‖2 = nP . The
AWG noise is w, with norm ‖w‖2 = nσ2. The channel output is y = x+w.
The Wiener coefficient α = P

P+σ2 is used for the MMSE scaling of y and
αy is the lattice decoder input. h is the effective noise after MMSE scaling.

V. OVERVIEW AND DISCUSSION ON OUR PROOF

We give here a general description of our proof, by the
means of a heuristic argument that does not take into account
all the probabilistic and asymptotic aspects of the rigorous
demonstration. With the use of the adverb “typically”, we will
mean “with probability tending to 1 when n tends to infinity”.

Our result is based on the following facts: first, the points
of the LDA constellation typically lie very close to the surface
of a sphere whose radius is essentially the effective radius of
the shaping LDA lattice. Then, the AWG noise is typically
almost orthogonal to the sent vector, in the sense that, if x
is our transmitted constellation point and w is the noise, then
|xwT | is “small enough”. Furthermore, the “effective noise”
due to MMSE scaling and the sent point are not decorrelated.
Consequently, it is not possible to show that MMSE lattice
decoding works independently of the sent point. Nevertheless,
Theorem 2 is based on the fact that the number of points
for which this does not happen is not big enough to perturb
the average error probability of the family. Finally, we look
for lattice points inside a sphere centered at the MMSE-scaled
channel output with a very specific radius. Basically, there will
be no decoding error if the only lattice point in this decoding
sphere is the transmitted one.

Now, let us try to understand the geometric sense of the
elements that we have just listed. So, suppose that the channel
input is a point x whose norm is fixed to be ‖x‖ =

√
nP , for

some P > 0 (Lemma 3 specifies this value). Suppose also that
xwT = 0 (this is a stronger hypothesis than what the actual
noise allows to assume, but it helps to understand the more
general scenario); if y = x + w is the channel output, then
‖y‖2 = ‖x‖2 +‖w‖2. We call σ2 the Gaussian noise variance
per dimension. Basic Euclidean geometry (see Figure 1) tells
us that multiplying y by the Wiener coefficient α helps in
bringing the decoder input closer to the sent point.

The receiver decodes αy and there is no decoding error if
the closest lattice point to αy is x. We can show that this
typically happens if SNR = P

σ2
> 1 and ‖αy − x‖2 <

np2(1−Rf )/(2πe). Notice that the latter bound defines what
we called the decoding sphere before. It concretely means
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that our constellation tolerates an effective noise after MMSE
scaling whose variance per dimension is less than σ2

Pol =
p2(1−Rf )/(2πe). This value is far from being fortuitous: it
is precisely the so called Poltyrev limit or Poltyrev capacity
of the random infinite constellation Λf [9], [16], [19]. We
intuitively understand that this is the good condition on the
maximum bearable noise, admitting that no problem comes
from the fact that the effective noise and the sent point x are
not decorrelated (this would be the case if we used dithering).

The condition on the signal-to-noise ratio can be simply
understood with the following argument: let us call h = αy−x
and suppose that it takes the maximum value allowed by the
Poltyrev limit: ‖h‖2 = nσ2

Pol (which also can be shown to
correspond to the rate of the constellation that equals capacity).
If we want good decoding, we need αy to be closer to x than
to 0, because the latter deterministically belongs to any lattice;
in other terms, it is necessary that ‖αy‖2 > ‖h‖2. An easy
computation based on Figure 1 shows that this holds true if
and only if P > σ2 or, equivalently, SNR > 1. This gives a
first explanation why we do not treat the case SNR ≤ 1.

We prove that MMSE decoding works by a probabilistic
approach, showing that almost always the only lattice point
inside the decoding sphere B centered at αy is the sent
point x. The average argument that we apply leads to the
estimation of (a more elaborated version of) the following
sum:

∑
z∈Br{x} P{z ∈ Λf | x ∈ Λf}. Decoding without

errors corresponds to a sum which converges to 0. The easiest
situation to deal with is when the two events {z ∈ Λf} and
{x ∈ Λf} are independent, but they may not be, because the
multiplication by α adds some correlation between x and the
effective noise αy − x. Erez and Zamir’s dithering technique
is a method to eliminate this correlation. In our case, there is
a priori some x for which the probability in the previous sum
turns out to be “bigger” than desired, while at the same time
we need to show that the whole sum is “small”. The originality
of our analysis consists of deducing that the proportion of this
kind of points in the constellation is very small.

Some considerable difficulties in estimating P{z ∈ Λf | x ∈
Λf} arise because the parity-check matrices of LDA lattices
are sparse. These difficulties have to be treated with much care
and the D-goodness of the associated Tanner graphs is of great
help. As an example of the techniques used in the proofs of
Lemma 3 and Theorem 2, we propose the following lemma:

Lemma 2. Let Λf be our random n-dimensional LDA fine
lattice with p = nλ, D > (1−Rf )−1, and λ > (D(1−Rf )−
1)−1. Suppose also that (2) holds true. For every x ∈ Λf ,
let w(x) = |{i : xi 6= 0}|. Then, for every constant δ <
D(1−Rf )/(D + 1),

lim
n→∞

P
{
x ∈ Λf r pZn

∣∣w(x) ≤ δn
}

= 0.

Hence, the minimum Hamming distance of the LDPC code
underlying Λf is typically lower bounded by D(1−Rf )

(D+1) n−o(1).

Proof: Let Λf = Cf + pZn, where Cf is the random
LDPC code defined by Hf . For x ∈ Fnp r {0}, consider the

random variables

Xx =

{
1, if x ∈ Cf
0, otherwise

and X =
∑
x∈Fn

p

1≤w(x)≤δn

Xx.

Thus, X counts the number of points of Cf of Hamming
weight 1 ≤ w(x) ≤ δn. To conclude, it suffices to prove that

lim
n→∞

E[X] = lim
n→∞

∑
x∈Fn

p

1≤w(x)≤δn

P {x ∈ Cf} = 0.

We will split the previous sum into two smaller sums and show
that both of them converge to 0.

Case 1: w(x) ≤ n/(D + 1). If Supp(x) = {xj 6= 0}
and N(Supp(x)) is its neighborhood in the Tanner graph
associated with Hf , notice that

P {x ∈ Cf} = P
{
Hfx

T ≡ 0T mod p
} (a)
≤
(

1

p

)|N(Supp(x))|

(b)
≤
(

1

p

)D(1−Rf )| Supp(x)|

;

(a) comes from the fact that for every parity-check equation hi
with i = 1, 2, . . . , n(1−Rf ), the events {hixT ≡ 0T mod p}i
are independent; moreover, parity-check equations connected
to only-0 variables are trivially satisfied. (b) is a consequence
of the D-goodness of the Tanner graph: simply apply (1) to
S = Supp(x) with f = 1−Rf . Therefore,∑

x∈Fn
p

1≤w(x)≤n/(D+1)

P {x ∈ Cf}

≤
bn/(D+1)c∑

w=1

∑
x∈Fn

p

w(x)=w

(
1

p

)D(1−Rf )w

≤
bn/(D+1)c∑

w=1

(
n

w

)(
p− 1

pD(1−Rf )

)w

≤
bn/(D+1)c∑

w=1

(
n1−λ(D(1−Rf )−1)

)w
→ 0,

because of the conditions on λ and D.
Case 2: n/(D + 1) < w(x) ≤ δn. Applying (1) to any

S ⊆ Supp(x) of size n/(D+1), the D-goodness of the Tanner
graph implies that |N(Supp(x))| ≥ D(1−Rf )

D+1 n. Therefore,∑
x∈Fn

p

n/(D+1)<w(x)≤δn

P {x ∈ Cf}

≤
bδnc∑

w=bn/(D+1)c+1

(
n

w

)
(p− 1)w

(
1

p

)D(1−Rf )n

(D+1)

≤ n2np
n
(
δ−

D(1−Rf )

(D+1)

)
→ 0,

because δ < D(1−Rf )/(D + 1) by hypothesis.
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A. Our two main results

The next lemma formally states that our Voronoi LDA con-
stellation points have a very precise typical norm or, similarly,
that our LDA shaping lattice has a “spherical” Voronoi region.

Lemma 3. Consider a non-zero syndrome s associated with
a constellation point: s = (s1, s2, . . . , sn(Rf−R), 0, . . . , 0).
Suppose that p = nλ for some λ > 0 and let 0 < ω < 1. Fix
the constant D to be D > max

{
(1−Rf )−1, 2

}
and suppose

that (2) holds true. Let ρeff denote the effective radius of the
shaping LDA lattice Λ. If x is the random LDA constellation
point whose syndrome is s and if

λ > max

{
1

D(1−Rf )− 1
,

1

2R
,

1

1−R
,

1

D − 2
,

(
1− 1

D2 − 1
− 1

D(1−R)

)−1
}
,

then

lim
n→∞

P
{
ρeff

(
1− 1

nω

)
≤ ‖x‖ ≤ ρeff

(
1 +

1

nω

)}
= 1.

Theorem 2. Suppose that 1 > Rf > R > 1
2 . Fix D >

(1−Rf )−1 and ∆P that satisfies (2). If p = nλ, with

λ > max

{
1

D(1−Rf )− 1
,

1

1−Rf
,

(
1− 1

D2 − 1
− 1

D(1−Rf )

)−1
}
,

then the random ensemble of nested LDA lattices presented
in Section IV achieves capacity of the AWGN channel under
MMSE lattice decoding, when SNR > 1.

We emphasize the fact that ∆P , D,R, and Rf are constant,
therefore the parity-check matrices associated with our LDA
lattices have constant row and column degree. For binary
LDPC codes to achieve capacity of the binary symmetric
channel, logarithmic row degrees are required [14], [17].
Surprisingly, in our LDA scenario this hypothesis can be
relaxed.

VI. CONCLUSION

We have stated the capacity-achieving properties of a par-
ticular ensemble of LDA lattices based on non-binary LDPC
lattices. Our solution is innovative because it does not require
the tools of the MLAN channel and of dithering. Furthermore,
it is based on Voronoi lattice constellations and we do not
need to introduce Gaussian coding, keeping an a priori uniform
distribution over the lattice constellation.

Also, the row and column degree of the parity-check
matrices that underlie our construction are reasonably small
constants. The Tanner graphs associated with these matrices
have some particular expansion properties that, qualitatively
speaking, say that all “small enough” sets of nodes have “big
enough” neighborhoods. These properties turn out to be one
of the most important theoretical pillars of our analysis.
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Abstract

Construction C (also known as Forney’s multi-level code formula) forms an Euclidean
code for the additive white Gaussian noise (AWGN) channel from L binary code
components. If the component codes are linear, then the minimum distance and kissing
number are the same for all the points. However, while in the single level (L = 1) case it
reduces to lattice Construction A, a multi-level Construction C is in general not a lattice.

We show that a two-level (L = 2) Construction C satisfies Forney’s definition for a
geometrically uniform constellation. Specifically, every point sees the same configuration
of neighbors, up to a reflection of the coordinates in which the lower level code is equal to
1. In contrast, for three levels and up (L ≥ 3), we construct examples where the distance
spectrum varies between the points, hence the constellation is not geometrically uniform.

Joint work with Maiara Bollauf.
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Abstract—It is almost an axiom that every cellular wireless sys-
tem, including the upcoming 5G systems, should be based on data
transmissions organized in frames. The frame design is based on
heuristics, consisting of a frame header and data part. The frame
header contains control information that specifies the sizes of the
data packets and provides pointers to their location within the data
part. In this paper we show that this design heuristics is subopti-
mal when the messages in the data part are short. We consider
a downlink scenario represented by an AWGN broadcast chan-
nel with K users, while the sizes of the messages to the users are
random variables. Each data packet encodes a message to one
user. However, if the message sizes are small, there is a signifi-
cant overhead caused by the header and the data packets can not
be encoded efficiently. This calls for revision of the established
heuristics for framing control information and data. We show that
grouping messages of multiple users allows more efficient encod-
ing from a transmitter perspective. On the other hand, it has the
undesirable implication that it requires each user to decode the
messages for a whole group of users. We assume that the power
spend by each user is proportional to the number of channel uses it
needs to decode. Using recent results in finite blocklength analysis,
we investigate the trade-offs between total transmission time from
the transmitter perspective and the average power spend at each
user. Our approach shows that the space of feasible protocols is
significantly enlarged and thereby allows the designer to trade-off
between average total transmission time and the average power
spend by each user.

I. INTRODUCTION

Modern high-speed wireless networks heavily depend on reli-
able and efficient transmission of large data packets through the
use of coding and information theory. The advent of machine-
to-machine (M2M), vehicular-to-vehicular (V2V), and various
streaming systems has spawned a renewed interest in developing
information theoretical bounds and codes for communication of
short packets [1][2]. Additionally, these applications often have
tight reliability and latency constraints compared to a typical
wireless systems today. Communication at shorter blocklengths
introduces several new challenges which are not present when
considering communication of larger data packets. For example,
the overhead caused by control signals and header data is in-
significant if large data packets are sent, and hence this overhead
is often neglected in the analysis of protocols. However, more
stringent latency requirements lead to shortened blocklengths
for transmission, such that the size of the control information
and header data may approach, or even exceed, the size of the
actual data in the packet. This is especially true for multiuser
systems such as broadcast channels, two-way channels, or mul-
tiple access channels, where the header data must include in-

formation about the packet structure, security, and user address
information for identification purposes.

The fundamentals of communication of short packets have
recently been addressed by Polyanskiy, Poor, and Verdú (2010)
[3]. Here, it was shown that the maximal coding rate of a fixed-
length block code in a traditional point-to-point setting is tightly
approximated by

R∗(n, ε) = C −
√
V

n
Q−1(ε) +O

(
log n

n

)
(1)

where C is the Shannon capacity, V is the channel dispersion,
n is the blocklength, ε is the desired probability of error, and
Q−1(·) denotes the inverse Q-function. Approximations such as
(1) are useful in the design of modern communication problems
because the specifics of code selection can be neglected in the
optimization of protocol parameters.

In this paper, we consider downlink transmission with an
AWGN broadcast channel that consists of a transmitter and K
users. There is a message from the transmitter to the k-th user
with a certain probability q (in this case user k is active). The
size of the message is itself a random variable which implies
that the transmitter needs to convey information about which
users are active, the structure of the transmission, and sizes
of the messages. An interesting observation from (1) is that
larger data packets are encoded more efficiently. This introduces
an interesting trade-off with two extremes: (1) in a broadcast
setting one can either encode all messages in one large packet
which is efficiently encoded or (2) one can encode each message
separately as is the norm in modern wireless protocols. In (1) ,
the average total transmission time seen from the transmitter
is minimized. However, all users need to receive for the whole
period to be able to decode their message, which is undesirable
for devices that are power-constrained. The latter approach (2),
depicted on Fig. 1, uses codes which are less efficient, and thus
the average total transmission time is larger. On the other hand,
each user only needs to decode the information intended for that
user. The key point, however, is that these design considerations
enlarge the design space and enable the designer to trade-off
between transmitter resources and user resources. Despite this,
practically all wireless systems solely use the approach (2).
The purpose of this paper is to explore this design trade-off.
Specifically, by grouping multiple users together, we encode
larger amount of information bits jointly, which implies that the
rate at which the information bits of the groups can be encoded
is larger. The disadvantage of grouping users is that each user
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control 
information

encoded messages

Fig. 1. Conventional approach to downlink broadcasting. An initial packet
contains control information that defines the structure of the remaining part of
the transmission. Each message are encoded separately.

needs receive for larger proportion of the total transmission
time.

This paper is organized as follows. The next section describes
the system model. Section III briefly addresses the approxima-
tions of the finite blocklength bounds, Section IV discusses de-
sign considerations for protocol design for downlink broadcast
for short packets and describes our proposed protocol. Finally,
we evaluate the proposed protocol in Section V and conclude
the paper in Section VI.

II. SYSTEM MODEL

We consider an AWGN broadcast channel with one transmit-
ter and K users. In the t-th time slot, the k-th user receive

Yk,t ,
√
γkXt + Zk,t. (2)

where Zk,t ∼ N (0, 1) and Xt ∈ R is the channel input.
Throughout the paper, we assume γk = γ. The message Mk

destined to the k-th user is nonempty with probability q ∈ (0, 1),
and we say that the k-th user is active if there is a message des-
tined to that user. The size of the message Mk in bits is denoted
by Dk ∈ Z+, which is a discrete random variable distributed
i.i.d. according to the probability mass function PD(·) given by

PD(d) =

{
q if d = 0
1−q
S if d ∈ {α, · · · , αS} . (3)

for some α ∈ N and S ∈ N. The average message size is
therefore E[Dk] = α(S + 1)/2.

Based on the message sizes Dk, the transmitter computes
the total transmission time T which is also a random variable.
The transmitter encodes the message {Mk} into a sequence
of channel inputs using the encoder function ft(M1, · · · ,MK)
such that

Xt , ft(M1, · · · ,MK) (4)

for t ∈ {1, · · · , T} and Xt = 0 for t ∈ {T + 1, · · · }.
At user k, we define the ON-OFF function gk,t : (R ∪
{e})t−1 → {0, 1} that in turn defines the sequence

Ȳk,t ,

{
Yk,t, gk,t(Ȳ

t−1
k ) = 1

e, otherwise
. (5)

The ON-OFF function defines stopping times
Tk , min

{
n ≥ 1 : ∀t > n, gk,t(Ȳ

t−1
k ) = 0

}
for which

we require Tk < ∞. Additionally, we define the decoding
function hk,t(Ȳ tk ) which estimates the message Mk based on
Ȳ tk . The intuition is that a certain user can only use the channel
outputs if the corresponding user is ON. This is modeled by the
ON-OFF function which replaces t-th channel output with an
erasure if the user is OFF at that time. The ON-OFF functions
are causal in the sense that the decision of whether the users
are ON at time t depends on previous channel outputs, Ȳ t−1k .
The stopping times Tk represent the time index of the last
nonerasure channel output in the sequence Ȳk,t. For our and
all practical applications, the stopping times Tk are less than or
equal T . We merely define Tk to emphasize that T is a random
variable which is not known by the users, and hence the users
need to obtain this information through the sequence Ȳk,t. In a
conventional system, control information in the initial packet
defines the structure of the remaining transmission. Hence,
after decoding the control information in the initial packet
successfully, the user knows Tk and when to be ON and OFF
to receive the message intended for that user.

The ON-OFF function also defines the average power con-
sumption of the k-th user which we define by

Pk , E

[
Tk∑
i=1

1
{
gk,i(Ȳ

i−1
k ) = 1

}]
(6)

where 1 {condition} denotes the indicator function. Note that
E[P1] = E[Pk], for k ∈ {1, · · · ,K}, since the message sizes
Dk are distributed identically. Finally, the active users need to
decode the their messages with reliability larger than or equal
1− ε such that

P
[
hk,Tk

(Ȳ Tk

k ) 6= Mk|Dk > 0
]
≤ ε (7)

for k ∈ {1, · · · ,K} and ε ∈ (0, 1).
Our objective is to explore trade-offs between the competing

goals of minimizingE[T ] andE[Pk]. We do this by investigating
a class of feasible protocols.

III. FINITE BLOCKLENGTH APPROXIMATION

In the analysis of the proposed protocol, we apply recent re-
sults in finite blocklength information theory. Polyanskiy, Poor,
and Verdú [3] showed that the maximal achievable coding rate
of a code with fixed blocklength n and reliability 1−ε′ ∈ (0, 1)
over an AWGN channel is tightly approximated by

R∗(n, ε′) ≈ C −
√
V

n
Q−1(ε′) +

1

2
log2 n (8)

where the channel capacity C and the channel dispersion V are
given by

C ,
1

2
log2(1 + P ) (9)

V ,
P (P + 2)

2(P + 1)2
log2(exp(1))2 (10)

respectively. One can obtain tight upper and lower bounds for
R∗(n, ε′) using the achievability and converse bounds in [3].
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Fig. 2. Proposed protocol for K = 30, LB = 10, and L = 2. In this case
{11, 12, 15, 16} ⊆ U are among the active users. Grey separators means that
data on both sides are encoded jointly. The red shaded regions correspond to the
packets that the users 15 and 16 need to decode.

Implementations of these bounds are accessible in the short-
packet communication toolbox SPECTRE for MATLAB [4]. In
present paper, however, we resort to the approximation (8). An
important property is that (8) is concave which implies that long
packets are encoded more efficient than short packets.

We assume that a user is able to detect whether an error occurs
during decoding of a packet. This assumption is suggested by
the results in [5] (although this result only applies to discrete
memoryless channels), and it is crucial to ensure the integrity
of our protocols. In practical systems, one can use CRC checks
to ensure integrity of packets. We also assume that a user needs
to receive all channel uses of a packet to allow for decoding. In
other words, if k bits are encoded into n channel uses, the user
needs to receive all n channel uses to decode any of the k bits.

In the design of our protocol, we rely on the approxima-
tion of R∗(n, ε′). Specifically, the transmitter divides the total
transmission time T into several smaller packets, each encoded
separately at the maximal coding rate approximated by (8). We
also defineN(k, ε′) , min{n ≥ 0 : nR∗(n, ε′) ≥ k} for k ≥ 1
andN(0, ε′) , 0, which is smallest number of channel uses that
allows the encoding of k bits with reliability 1− ε′.

One can easily obtain lower bounds on E[T ] and E[Pk] by
assuming the messages sizes are large:

E[T ] ≥ 1

C
E

[
K∑
k=1

Dk

]
=
Kα(1− q)(S + 1)

2C
(11)

and

E[Pk] ≥ 1

C
E[Dk] =

α(1− q)(S + 1)

2C
. (12)

For sufficiently large α, the control information becomes neg-
ligible, and hence for the conventional approach both E[T ] and
E[Pk] simultanously approach the lower bounds in (11) and
(12).

IV. PROTOCOL DESIGN

There are various ways in which the messages {Mk} can be
conveyed to the respective users. Our approach is to design a
protocol in which the transmitter forms multiple packets which
are encoded separately. For each of these packets, we apply the

finite blocklength approximation in (8) to find the optimal rate
at which they can be encoded. We assume that the users are
not provided with any control information such as the active
users and {Dk}. Thus, the transmitter needs to encode packets
about which users are active, the packet sizes of Mk, Dk, and
the structure of the transmission. Clearly, this leaves us with a
large space of feasible protocols. Here we introduce one class
of protocols.

We first discuss what information, the transmitter needs to
convey:

1) Messages {Mk}: The message Mk only needs to be re-
ceived by the k-th user, but as discussed previously, mes-
sages can be grouped and encoded jointly.

2) Message sizes {Dk}: The k-th user needs to know the
message size Dk before attempting to decode the actual
message Mk (otherwise, the user does not know how many
channel uses the message Mk takes).

3) Reciever activity U : It is necessary to convey whether the
k-th user is active. In total, it requiresK information bits to
convey this information to all users.1 AsK information bits
may represent a significant overhead, it may be beneficial
to encode user activity bits in multiple packets such that
each user only needs to decode one such packet.

In the proposed protocol, depicted in Fig. 2, users are grouped
into dK/LBe user groups with at most LB users in each user
group. User acitivity, messages, and message sizes associated
to each of these user groups are conveyed sequentially in user
group frames (UGF). A transmission is initiated by a packet
that jointly encodes the total transmission time (equivalent to
the an end of transmission pointer) along with the dK/LBe− 1
time indices that points to the time indices where the 2-th, 3-
th, ..., and dK/LBe-th UGF begin. This packet is transmitted
with a reliability 1− ε4. The first UGF trivially begins after the
initiating packet.

Let K , {1, · · · ,K} and let the users in the u-th user
group be Ku ⊆ K. Then, the UGF for the u-th user group
is constructed as follows. Initially, the transmitter divides the
active users Uu ⊆ Ku of the u-th user group into subgroups
Uu,i ⊆ Uu, i ∈ {1, · · · , d|Uu|/Le} of at most L users. The
transmitter and users can agree on how to partition the users
into subgroups for every set Uu. The set of users Uu,i ⊆ Uu is
referred to as the i-th subgroup of the u-th user group. The main
idea of our protocol is to jointly encode each of the subgroups.

A UGF consists of the following types of packets
1) Bit field packet: A bit field, encoding the the information
{1 {Dk = 0}}k∈Ku . Hence, the packet consists of |Ku|
information bits which are encoded with reliability ε1.

2) Size packets: After grouping the active users of the u-th
user group, Uu, into d|Uu|/Le subgroups, the transmit-
ter constructs a packet for each subgroup. For the i-th
subgroup, the transmitter conveys a packet consisting of∑
k∈Uu,i

Dk along with a pointer to the packet that jointly
encodes {Mk}k∈Uu,i . Since

∑
k∈Uu,i

Dk can take at most

1For the case q 6= 1/2, one can apply compression to reduce the number of
information bits. This is, however, left for future work.
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L(S − 1) + 1 distinct values, the size packet for the i-
th subgroup needs to convey dlog2(L(S − 1) + 1)e + ptr
information bits which are encoded with reliablity ε2. Here,
ptr denotes the number of bits needed to convey a pointer to
a time index. The size packets are transmitted sequentially.

3) Message packets: Next, the transmitter encodes the mes-
sages of each subgroup, {Mk}k∈Uu,i

, along with the mes-
sages sizes of |Uu,i| − 1 of the messages. We only need
|Uu,i| − 1, since the sum of the sizes,

∑
k∈Uu,i

Dk, is
already successfully received in the size packet described
above. This requires

∑
k∈Ui Dk + (|Ui| − 1)dlog2 Se in-

formation bits. These information bits are encoded with
reliability ε3.

In order to decode the packet destined to user k, it needs to
decode four packets successfully. If one or more of these packets
are not successfully decoded, the user can not decode the packet
containing the message destined to that user. Thus, the reliabili-
ties need to be chosen such that (1−ε1)(1−ε2)(1−ε3)(1−ε4)
is kept above or equal to 1− ε to fulfill the reliability constraint
in (7). If the k-th user is inactive, it only needs to decode the
initial packet containing pointers to the UGFs and the bit field
packet. It thereby achieves a reliability of (1− ε4)(1− ε1). We
also point out that the described protocol reduces to a variant of
the conventional protocol when L = 1.

We remark that the protocol specified above is one class
among a large space of feasible protocols. For small q is may
be beneficial to use a different approach for conveying user
activity. For example, one could encode the number of active
users in an initial packet and encode an additional packet with
the user identification numbers. Regarding the size packets, one
can also encode all size packets jointly in each UGF jointly to
enhance encoding efficiency at the expense of higher average
power consumption at the users.

Assuming that LB divides K, we may sum up the block-
lengths of all the packets

TL,LB

=
K

LB
N(LB , ε1) +N

(
K

LB
ptr, ε4

)
+

K

LB

dUi/Le∑
i=1

(
N(dlog2(L(S − 1) + 1)e+ ptr, ε2)

+N

( ∑
k∈Ui

Dk + (|Ui| − 1)dlog2 Se, ε3
))

.(13)

For the expected power, we obtain

PL,LB

= N(LB , ε1) +N

(
K

LB
ptr, ε4

)
+

dUi/Le∑
i=1

(
N(dlog2(L(S − 1) + 1)e+ ptr, ε2)

+N

( ∑
k∈Ui

Dk + (|Ui| − 1)dlog2 Se, ε3
))

. (14)
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Fig. 3. Trade-off between average transmission time and average power for the
caseK = 64, q = 0.5, α = 1000, and S = 2. Red dots are simulation points.
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Fig. 4. Trade-off between average total transmission time and average power
for the parameters are N = 128, q = 0.5 and S = 4.

The specified protocol leaves the parameters ε1, ε2, ε3, ε4, L,
and LB to be specified. Now, we can trace the optimal trade-off
between TL,LB

and PL,LB
by solving the optimization problem

min
L,LB ,ε1,ε2,ε3,ε4:∏4

j=1(1−εj)≥1−ε

E[TL,LB
] + βE[PL,LB

] . (15)

for a range of values of β ≥ 0. The optimization problem is
clearly not convex, and hence we find an approximate solution
in the next section using a grid search for practical values of K,
ε, q, and PD.

V. NUMERICAL RESULTS

In order to solve the optimization problem in (15), we com-
pute E[TL,LB

] and E[PL,LB
] using 5000 Monte Carlo simula-
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tions of the protocol for L ∈ {1, 2, · · · ,K} and LB equal to
all powers of two between 1 and K. We evaluate ε1, · · · , ε4
over the four-dimensional grid 10 × 10 × 10 × 10 grid. The
average total transmission time E[TL,LB

] and average power
E[PL,LB

] are normalized according to the lower bounds in
(11) and (12), respectively. The normalization implies that any
simulation point must be in the square [1,∞) × [1,∞). The
trade-off between average total transmission and average power
is computed as the lower convex envelope of the simulation
points. This is depicted in Fig. 3, where the simulations points
are shown as red dots and the lower convex envelope is the black
curve. For the computation, we use ptr = 16 bits. Although
the lower convex envelope is not directly achievable using our
protocol, it can be achieved by time sharing between two sets of
protocol parameters. Note that the lower-most point of the trade-
off curve corresponds to the conventional extreme case where
the messages of each user are encoded separately. The gap to 1
is thus due overhead from control information.

Our results are depicted in Fig. 4 for the parametersK = 128,
q = 0.5, S = 4, and α ∈ {50, 100, 500, 1000}. We observe that
one can reduce the average total transmission time by grouping
users as proposed. Smaller values of α implies that messages
are encoded less efficient, and hence grouping becomes an in-
teresting option.

VI. CONCLUSIONS

In this paper, we have addressed the problem of downlink
transmission of short packets toK users. Our main objective has
been to highlight some of the challenges faced when the mes-
sages are small. Specifically, we used recent finite blocklength
approximations to visualize the trade-offs between the average
power of the each user and the average total transmission time
seen from the transmitter. To show this trade-off, we have de-
signed a practical protocol that groups messages and thereby
achieves more efficient coding rates. The key element in the
protocol design is the encoding of control information.
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Abstract—We study the second-order asymptotics of informa-
tion transmission using random Gaussian codebooks and nearest
neighbor (NN) decoding over a power-limited additive stationary
memoryless non-Gaussian channel. We show that the dispersion
term depends on the non-Gaussian noise only through its second
and fourth moments. We also characterize the second-order
performance of point-to-point codes over Gaussian interference
networks. Specifically, we assume that each user’s codebook is
Gaussian and that NN decoding is employed, i.e., that interference
from unintended users is treated as noise at each decoder.

I. SYSTEM MODEL

Consider the point-to-point additive-noise channel

Y n = Xn + Zn, (1)

where Xn is the input and Zn is the noise over n scalar
channel uses. Throughout, we shall focus exclusively on
Gaussian codebooks. More precisely, we consider shell codes
for which Xn is uniformly distributed on the sphere

Xn ∼ f
(shell)
Xn (x) := δ(‖x‖2 − nP )/Sn(

√
nP ). (2)

Here, δ(·) is the Dirac delta and Sn(r) = 2πn/2rn−1/Γ(n/2)
is the surface area of a radius-r sphere in Rn. The noise
Zn is assumed to be a stationary and memoryless process
that does not depend on the channel input: Zn ∼ PZn(z) =∏n

i=1 PZ(zi). The distribution PZ is non-Gaussian; the only
assumptions are:

E[Z2] = 1, ξ := E[Z4] <∞, E[Z6] <∞. (3)

Given a shell code consisting of M ∈ N random codewords
C := {Xn(1), . . . , Xn(M)}, we consider an nearest neighbor
decoder that returns the message Ŵ whose corresponding
codeword is closest in Euclidean distance to Y n, i.e.,

Ŵ := arg min
w∈[1:M ]

‖Y n −Xn(w)‖. (4)

This decoder is optimal if the noise is Gaussian, but may not
be so in the more general setup considered here.

We define the average probability of error as p̄e,n :=
Pr[Ŵ 6= W ]. This probability is averaged over the uniformly
distributed message W , the random codebook C and the
channel noise Zn. Note that in traditional channel-coding
analyses [1], [2], the probability of error is averaged only over
W and Zn. Similar to [3], the additional averaging over the

codebook C is required here to establish an ensemble converse
for the class of Gaussian codebooks considered in this paper.

Let M∗shell(n, ε, P ; PZ) be the maximum number of mes-
sages that can be transmitted using a shell codebook over
the channel (1) with average error probability no larger than
ε ∈ (0, 1), when the noise is distributed according to PZ

Lapidoth [3] showed that for all ε ∈ (0, 1),

lim
n→∞

1

n
logM∗shell(n, ε, P ; PZ) = C(P ). (5)

independent of PZ .
In Theorem 1 below, we provide the second-order term in

the asymptotic expansion of logM∗shell(n, ε, P ; PZ).

Theorem 1. Consider a noise distribution with statistics as
in (3). For shell codes,

logM∗shell(n, ε, P ; PZ)

= nC(P )−
√
nVshell(P, ξ)Q

−1(ε) +O(log n), (6)

where the shell dispersion is

Vshell(P, ξ) :=
(
P 2(ξ − 1) + 4P

)
/
(
4(P + 1)2

)
. (7)

The proof together with an extension to Gaussian interfer-
ence networks can be found in [4]. One of the main tools
in our second-order analysis is the Berry-Esseen theorem
for functions of random vectors (see, e.g., [5, Prop. 1]).
The second-order term in the asymptotic expansions of
logM∗shell(n, ε, P ; PZ) depends on the distribution PZ only
through its second and fourth moments. If Z is standard
Gaussian, then the fourth moment ξ = 3 and we recover
from (7) the Gaussian dispersion [2, Eq. (293)]. Comparing (7)
with [2, Eq. (293)] we see that noise distributions PZ with
higher fourth moments than Gaussian (e.g., Laplace) result in
a slower convergence to C(P ).
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Abstract—This paper reviews recent results from the UCLA
Communication Systems Laboratory on the use of incremental
redundancy. For channels with ACK/NACK feedback, this paper
reviews how the transmission lengths used for communicating in-
cremental redundancy should be optimized under the constraint
of a limited number of incremental redundancy transmissions.
For broadcast channels, this paper reviews optimization of the
trade-off between packet-level erasure coding and physical-layer
channel coding in the context of block fading with diversity that
grows with bocklength.

I. INTRODUCTION

This invited talk reviews two results [1], [2] optimizing
the use of incremental redundancy. In systems with feedback,
incremental redundancy adapts the coding rate to the the ac-
cumulated information density (the "instantaneous capacity")
of the channel allowing the Shannon limit to be approached
at much shorter average blocklengths than those required for
the accumulated information density to concentrate around the
Shannon capacity [3], [4], [5], [6], [7], [8]. In systems without
feedback, incremental redundancy can provide a "fountain" of
information from which a receiver need only "drink" what
is needed to reliably identify the desired message [9], [10],
[11]. For each of these two scenarios, this paper reviews
optimization techniques that improve performance.

II. TRANSMISSION LENGTHS FOR ACK FEEDBACK

ACK/NACK feedback is non-active in the sense that the
feedback does not change what is transmitted but rather only
indicates whether additional transmissions are needed. For
channels with ACK/NACK feedback, the sequential differen-
tial optimization (SDO) approach of [1] optimizes the trans-
mission lengths used to communicate incremental redundancy.
This optimization maximizes throughput under the constraint
of a limited number of incremental redundancy transmissions.

A. The Normal Approximation

SDO utilizes the power of the normal approximation intro-
duced in [3] that characterizes the behavior of the rate that a

This material is based upon work supported by the National Science
Foundation under Grant Numbers 1162501 and 1161822. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. This research was carried out in part at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with NASA
JPL Task Plan 82-17473.
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Fig. 1. Empirical complementary cumulative distribution function (c.d.f.)
and the Gaussian approximation (Q-function) corresponding to the rate RS
at which the NB-LDPC code of [1] was able to decode successfully.

channel can support at finite blocklength. Following [3], define
information density i(X,Y ) as

i(X,Y ) = log2

fY |X(y|x)

fY (y)
. (1)

The expected value of i(X,Y ) is the capacity of the chan-
nel. For the example of a BI-AWGN channel with noise
zk, i(X,Y ) = 1 − log2(1 + e−2(zk+1)/σ2

) = i(zk). The
accumulated information density In at the receiver after n
symbols is

In =
n∑
k=1

i(zk). (2)

As pointed out by [3], (2) is a sum of independent random
variables that will converge quickly to a normal distribution
according to the central limit theorem, leading to the normal
approximation of [3].

A key result of [1] is that a normal approximation also
accurately describes the rate at which actual variable-length
codes with incremental redundancy will successfully decode.
Fig. 1 shows that for the NB-LDPC code used in [1] the
empirical complementary cumulative distribution function on
the rate at which decoding is successful is very closely
approximated by a normal distribution for this example of
the BI-AWGN channel with SNR of 2 dB. We have similarly
confirmed the accuracy of the normal approximation to predict
the rate at which decoding is successful for NB-LDPC codes in
higher-SNR AWGN channels that require larger constellations
and in fading channels with channel state information known
at the receiver.
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Fig. 1 shows that RS is well-approximated by a Gaussian
with mean µS = E(RS) and variance σ2

S = Var(RS):

fRS (r) =
1√

2πσ2
S

e
− (r−µS)

2

2σ2
S . (3)

The c.d.f. of the blocklength NS at which decoding is success-
ful is FNS (n) = P (NS ≤ n) = 1 − FRS (k/n). Taking the
derivative of FNS using the Gaussian approximation of FRS
produces the following “reciprocal-Gaussian" approximation
for p.d.f. of NS :

fNS (n) =
k

n2
√

2πσ2
S

e
− (kn−µS)2

2σ2
S . (4)

B. Sequential Differential Optimization

SDO uses the tight Gaussian approximation discussed above
to optimize the sequence of blocklengths {N1, N2, . . . , Nm}
to maximize the throughput. Suppose that the number of
incremental transmissions is limited to m. An accumulation
cycle (AC) is a set of m or fewer transmissions and decoding
attempts ending when decoding is successful or when the
mth decoding attempt fails. If decoding is not successful after
the mth decoding attempt, the accumulated transmissions are
forgotten and the process starts over with a new transmission
of the first block of N1 symbols. From a strict optimality
perspective, neglecting the symbols from the previous failed
AC is sub-optimal. However, the probability of an AC failure
is sufficiently small that the performance degradation is neg-
ligible. Neglecting these symbols greatly simplifies analysis.

The cumulative blocklength Nj at the jth stage is simply
the sum of the first j increment lengths. Using the p.d.f. of NS
from (4) we can compute the probability that the decoder will
need a particular incremental transmission. For Nj < Nj+1,
the probability of a successful decoding attempt at blocklength
Nj+1 but not at Nj is∫ Nj+1

Nj

fNS (n)dn =

∫ Nj+1

Nj

k

n2
√

2πσ2
S

e
− (kn−µS)

2

2σ2
S dn (5)

= Q

(
rj+1 − µS

σS

)
−Q

(
rj − µS
σS

)
, (6)

where rj = k/Nj .
Define the throughput as RT = E[K]

E[N ] , where E[N ] repre-
sents the expected number of channel uses and E[K] is the
effective number of information bits transferred correctly over
the channel. The expression for E[N ] is

E[N ] = N1Q

(
k
N1
− µS
σS

)
(7)

+

m∑
j=2

Nj

[
Q

(
k
Nj
− µS
σS

)
−Q

(
k

Nj−1
− µS

σS

)]
(8)

+Nm

[
1−Q

(
k
Nm
− µS
σS

)]
. (9)

The first term (7) shows the contribution to the expected
blocklength from successful decoding on the first attempt.

Q

(
k
N1
−µS
σS

)
is the probability of decoding successfully with

the initial block of N1. Similarly, the terms in the summation
of (8) are the contributions to the expected blocklength from
decoding that is first successful at total blocklength Nj for
j ≥ 2 (at the jth decoding attempt). Finally, the contribution
to expected blocklength from not being able to decode even at
Nm is (9). Even when the decoding has not been successful
at Nm, the channel has been used for Nm channel symbols.
The expected number of successfully transferred information
bits E[K] is

E[K] = kQ

(
k
Nm
− µS
σS

)
, (10)

where Q
(

k
Nm
−µS
σS

)
is the probability of successful decoding.

Note that E[K] depends only on k and Nm. In fact, E[K] ≈ k
and is not sensitive to the specific choice of Nm for reasonably
large values of Nm.

The initial blocklength is N1 and we seek the optimal
blocklengths {N1, N2, . . . , Nm} to maximize the throughput.
Over a range of possible N1 values, the SDO technique
introduced in [1] selects {N2, . . . , Nm} to minimize E[N ]
for each fixed value of N1 by setting derivatives to zero as
follows:

∂E[N ]

∂Nj
= 0, ∀j = 1, . . . ,m−1 . (11)

For each j ∈ {2, . . . ,m}, the optimal value of Nj is found
by setting ∂E[N ]

∂Nj−1
= 0, yielding a sequence of relatively simple

computations. In other words, we select the Nj that makes our
previous choice of Nj−1 optimal in retrospect.

For j > 2, ∂E[N ]
∂Nj−1

= 0 depends only on {Nj−2, Nj−1, Nj}
as follows:

∂E[N ]

∂Nj−1
=Q

( k
Nj−1

−µ
σ

)
+(Nj−1−Nj)Q′

( k
Nj−1

−µ
σ

)
−Q

( k
Nj−2

−µ
σ

)
.

Thus we can solve for Nj as

Nj =

Q

( k
Nj−1

−µ

σ

)
+Nj−1Q

′
( k
Nj−1

−µ

σ

)
−Q

( k
Nj−2

−µ

σ

)
Q′
( k
Nj−1

−µ

σ

) . (12)

For each possible value of N1, SDO can be used to produce
an infinite sequence of Nj values that solve (11) for any choice
of m. The sequence does not depend on m, only N1. Each
such sequence is an optimal sequence of increment lengths for
a given density of decoding attempts on the time axis. As N1

increases, the density of decoding attempts decreases, lowering
system complexity. Using SDO to compute the optimal m
decoding points is equivalent to selecting the most dense SDO-
optimal sequence that when truncated to m points still meets
the frame-error-rate target.
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Fig. 2. Throughput as a function of the number m of incremental transmis-
sions permitted.

C. Approaching Capacity at Short Blocklengths with Feedback

Fig. 2 shows the resulting throughputs obtained by using
SDO to find the optimal increment lengths for values of m
in the range of 2 < m < 20 for the target FER of 10−3 for
the NB-LDPC code of [1] for k = 96 message bits. Fig. 2
illustrates that with m = 10 decoding points, a system can
closely approach the performance of a system that has m =∞,
which is the limiting case where decoding is attempted and
feedback of an ACK/NACK is required after every received
symbol.

Using SDO, variable-length codes with average block-
lengths of around 500 symbols can closely approach capacity
in theory and in practice as demonstrated in [1]. Fig. 3
illustrates the example of a binary-input (BI) additive white
Gaussian noise (AWGN) channel with frame error rate (FER)
required to be less than 10−3. For a system transmitting k
symbols at an average blocklength of λ, the throughput Rt is
defined by Rt = k/λ. For reference, Fig. 3 shows the curves of
possible throughput Rt as a function of λ for some values of k.
The performance characterization for fixed-blocklength codes
is from [3] and is based on the normal approximation, which
is shown in [3] to be accurate for blocklengths as small as 100
symbols. The computation of the random coding lower bound
on the performance of variable-length codes with feedback is
based on the analysis in [4].

Fig. 3 shows curves from [1], [5], [6] that show simulation
results that approach or exceed the performance promised by
[4] in the range of average blocklengths below 500 bits. For
values of k = 16, k = 32, k = 64, and k = 89 these
throughput results exceed Polyanskiy’s random coding lower
bound. As the average blocklength becomes larger, the random
coding lower bound is more predictive.

Note that variable-length codes with feedback approach
capacity at very short blocklengths. In Fig. 3, the random-
coding lower bound for a system with feedback is 0.27 dB
from the Shannon limit for k = 280 with a blocklength of
less than 500 bits. Looking at implemented codes for k = 280
in Fig. 3, the m = ∞ non-binary LDPC (NB-LDPC) code
is 0.53 dB from Shannon limit. Using SDO, the NB-LDPC
non-active feedback system in Fig. 3 that uses ten rounds of
single-bit feedback to operate within 0.65 dB of the Shannon
limit with an average blocklength of less than 500 bits.
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Fig. 3. Approaching capacity at short blocklengths using feedback.

III. PACKET-LEVEL VS. PHYSICAL LAYER REDUNDANCY

Consider a broadcast setting that uses a hybrid of packet-
level erasure coding and physical layer coding to provide a
stream of information with the goal of each receiver decoding
the desired message at the earliest opportunity. There is a
trade-off between using available redundancy for additional
packets in a packet-level erasure code or simply for additional
physical-layer code symbols.

As the amount of available redundancy grows, the work of
[12] shows that in several different block fading scenarios the
physical layer coding rate decreases ultimately to zero while
the packet-level erasure coding rate does not. This indicates
that at some point incremental redundancy should be directed
to the physical layer rather than additional packet-level erasure
coding. This paper reviews the recent work [2] that studies
the this hybrid coding approach using a proportional diversity
block fading model (in which diversity increases linearly with
blocklength).

A. The Channel Model and Optimization Problem

Consider a transmitter and a receiver communicating over a
fading channel [13]. The one-dimensional channel is modeled
as Y = HX+Z where X is the transmitted symbol, Y is the
received symbol, H is the fading coefficient, and Z is i.i.d.
additive white Gaussian noise (AWGN) with variance σ2 and
mean 0. We assume the channel is Rayleigh with E

[
H2
]

= 1,
Z has unit variance, i.e. σ2 = 1. Let the average transmit
power be E

[
X2
]

= P . Then, the instantaneous signal-to-
noise ratio (SNR) when H = h is h2P . For this Rayleigh
fading channel, SNR (denoted γ) is exponentially distributed
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with parameter 1
P that depends only on the average transmit

power. Note that, γ has a mean of P .
A message consisting of m packets with k nats of informa-

tion per packet is to be transmitted with a low probability of
message error q; this is the probability that the receiver fails
to recover all the m packets. The transmitter uses the channel
for T units of time for an overall code rate of mk

T . It performs
erasure coding across the m packets at a rate RE and codes
each resultant packet at a channel-coding rate RC such that

mk

T
= RERC . (13)

That is, the m packets are first coded using an erasure code
at rate RE to yield m

RE
packets. Note that, for erasure coding,

RE has to satisfy RE ≤ 1. To transmit each packet, the
transmitter uses a channel code at rate RC [nats/channel-use]
so that the resultant codeword block-length of each packet
is k

RC
. For a fixed average transmit power, our objective is to

pick the value of RC (and thus RE) that optimizes an objective
function. The unit of channel-coding rate is “nats/channel-use"
for convenience. The receiver is assumed to know the fading
coefficient H while the transmitter does not.

The proportional diversity (PD) model introduce a pa-
rameter lf , which describes the length of a fade. With the
block-length being k

RC
, the number of block fades FP in a

transmitted codeword of a system with PD block fading of
fade lengths lf is

FP =

⌈
k

RC lf

⌉
. (14)

With PD block fading, long codewords benefit from an inher-
ent increase in diversity. For this work, we assume that each
block-fading event is independent, i.e. H assumes i.i.d. values
across different block fades.

The receiver sees m
RE

= RCTk
−1 packets from the channel.

The number of packets that the decoder of the erasure code
requires to recover the message, denoted m̂ ≥ m, depends
upon the erasure code. For Reed-Solomon erasure codes, m̂ =
m; for fountain codes such as a Raptor code, m̂ > m typically.
Thus, the probability of message error q can be written using
the binomial distribution as

q =
m̂−1∑
i=0

(
RCTk

−1

i

)
(1− pe)i p

(RCTk−1−i)
e . (15)

In the above expression, pe denotes the probability that a
packet is not decoded successfully (and declared an erasure)
upon reception from the channel; this is called the probability
of packet erasure. Owing to our assumption that the channel
codes in the system operate close to capacity with zero block-
error probability when the Shannon capacity exceeds the
attempted rate, pe constitutes only one event: fading outage
[14].

The binomial sum in (15) can be computed numerically
only for small values of RCTk−1. Hence, we approximate
the random variable that denotes the number of packets
successfully decoded by the channel decoder using the Central

Limit Theorem (CLT), and obtain the Gaussian approximation
for q [12] as

q ≈ Φ

[
(m̂− 1)−RCTk−1(1− pe)√

RCTk−1pe(1− pe)

]
, (16)

where Φ(x) is the value of the c.d.f. of the standard normal
random variable at x ∈ R.

To summarize, the objective is to minimize the message-
error probability q in (15) via (16), where pe is also a function
of RC . Writing the minimization problem in terms of RC ,
RE can be obtained as RE = mk

TRC
. Hence, the optimization

problem is as follows:

min
RC

Φ

[
(m̂− 1)−RCTk−1(1− pe)√

RCTk−1pe(1− pe)

]
,

s.t. pe (RC) = P

 1
k

RC lf

⌊
k

RClf

⌋∑
i=1

C (γi) +

k
RC lf

−
⌊

k
RC lf

⌋
k

RC lf

C (γlast) < (1 + ε)RC

 ,
km̂

T
≤ RC ≤

k

lf
, RCTk

−1 ∈ N.
(17)

Note that, minimizing Φ(·) is equivalent to minimizing its
argument, and the value of q need not be explicitly computed.
We have specified the dependence of pe on RC here for clarity.

As noted in [12], [15], and many previous works, the
evaluation of pe for the block-Rayleigh fading channel (or
for its PD version) is not a straightforward task. One can use
[15] or similar works for the block-Rayleigh fading channel
to compute the outage probability pe with a minuscule error.
But, our fading model complicates it further as we have a sum
of two random variables that are not identically distributed in
the expression for pe in (17). We first expand and rearrange
the terms in pe for our one-dimensional PD block-Rayleigh
fading channel with capacity-achieving codes to obtain

pe = P


⌊

k
RClf

⌋∑
i=1

Wi +

(
k

RC lf
−
⌊

k

RC lf

⌋)
Wlast <

ck

lf

 ,
(18)

where c = 2(1 + ε), Wi = log(1 + γi), Wlast = log(1 + γlast).

B. Gaussian Approximations of the Optimization Problem
Based on Gaussian approximations of pe in (18), as inspired

by [12], [2] presents four approximations to the optimization
problem (17). For numerical-search based results, [2] uses a
very low value of the margin, say ε = 0.05, to obtain c.

1) Gaussian Approximation 1 (Approx. 1): Ignoring the
contribution of Wlast in (18), we get

pe = P


⌊

k
RClf

⌋∑
i=1

Wi <
ck

lf

 . (19)
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The above can be approximated using the Gaussian CDF as

pe = Φ

 ck
lf
−
⌊

k
RC lf

⌋
µ(P )√⌊

k
RC lf

⌋
Var(P )

 . (20)

The values of µ(P ) and Var(P ), which denote the mean and
variance of log(1 + γ) with γ ∼ Exponential

(
1
P

)
, can be

computed as stated in [12]. By ignoring the flooring function,
we get Gaussian approximation 1 (Approx. 1), which is an
adaptation of (19) in [12] to PD block-Rayleigh fading:

pe = Φ

[√
k

RC lf

cRC − µ(P )√
Var(P )

]
. (21)

2) Gaussian Approximation 2 (Approx. 2): For Approx. 2,
we evaluate (20) directly. The approximation to pe that is being
made here is imprecise in the sense that, (20) evaluates to the
same value for a range of RC values; the reason being the
presence of the flooring function.

3) Gaussian Approximation 3 (Approx. 3): This approx-
imation is the evaluation of (18) with a constrained search
space that limits RC such that both m

RE
and k

RC lf
are positive

integers.
4) Gaussian Approximation 4 (Approx. 4): The Gaussian

approximation that we make here considers both the terms
in (18), making it the most appropriate. Once we find out

µ(P ) and Var(P ), we assume that
∑⌊

k
RClf

⌋
i=1 Wi is Gaussian

and also that
(

k
RC lf

−
⌊

k
RC lf

⌋)
Wlast is Gaussian. Thus, their

linear sum is another Gaussian random variable denoted WG,
which stands for Gaussian approximation of weighted average
mutual information, with

mean(WG) =
k

RC lf
µ(P ),

Var(WG) = Var(P )

[⌊
k

RC lf

⌋
+

(
k

RC lf
−
⌊

k

RC lf

⌋)2
]
.

(22)
Thus, pe for this approximation (Approx. 4) is

pe = Φ

[
ck
lf
−mean(WG)√

Var(WG)

]
. (23)

C. Results and conclusions

Fig. 4 shows an example of the optimal values of RC and
RE obtained from Approximations 1 and 4 as the overall code
rate mk

T goes to 0. As observed by Courtade and Wesel [12] for
the (fixed diversity) block-fading channel, for the PD block-
fading model that the optimal channel-coding rate goes to 0.
However, where the optimal value of RE approached a non-
zero constant less than 1 for fixed diversity in [12], under
PD block-fading it is approaching 1. With sifficient overall
redundancy, packet-level erasure coding is unnecessary in a
block fading channel with proportional diversity. Note that
rate-compatibility in this scenario is challenging because the
rate RE increases for a sufficiently low overall rate.
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Fig. 4. Result of optimization problem (17) as a function of overall code rate
for an example system with m = 10, k = 20, lf = 10 and P = 5 dB.
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A Beta-Beta Achievability Bound with Applications
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We consider an abstract channel that consists of an in-
put set A, an output set B, and a random transformation
PY |X : A → B. An (M, ε) code for the channel (A, PY |X ,B)
comprises a message set M , {1, . . . ,M}, an encoder
f : M → A , and a decoder g : B → M ∪ {e},
where e denotes an error event, that satisfies the average error
probability constraint

1

M

M∑
j=1

(
1− PY |X

(
g−1(j) | f(j)

))
≤ ε. (1)

Here, g−1(j) , {y ∈ Y : g(y) = j}. In Theorem 1 below,
we provided a novel lower bound (i.e., achievability bound)
on the largest number of codewords for which an (M, ε) code
exists.

Theorem 1 (ββ achievability bound): For every 0 < ε < 1
and every input distribution PX , there exists an (M, ε) code
for the channel (A, PY |X ,B) satisfying

M

2
≥ sup

0<τ<ε
sup
QY

βτ (PY , QY )

β1−ε+τ (PXY , PXQY )
. (2)

Here, PY , PY |X ◦ PX , and βα(P,Q) is defined as

βα(P,Q) , min

∫
PZ |W (1 |w)Q(dw) (3)

where the minimum is over all conditional probability distri-
butions PZ |W :W → {0, 1} satisfying∫

PZ |W (1 |w)P (dw) ≥ α (4)

and W denotes the support of P and Q.
The proof of Theorem 1, which can be found in [1],

relies on Shannon’s random coding technique and on a
suboptimal decoder that is based on the Neyman-Pearson
test [2] between PXY and PXQY . Hypothesis testing is used
twice in the proof: to relate the decoding error probability to
β1−ε+τ (PXY , PXQY ), and to perform a change of measure
from PY to QY .

The bound (2) is the dual of a converse bound recently
established by Polyanskiy and Verdú [3, Th. 15]. Furthermore,
both (2) and [3, Th. 15] can be viewed as a finite-blocklength
analog of the following identity for mutual information (also

The work of H. V. Poor and W. Yang was supported in part by the US
National Science Foundation under Grants CCF-1420575 and ECCS-1343210.
The work of G. Durisi was partly supported by the Swedish Research Council,
under grant 3222452.

known as the golden formula) [4, Eq. (8.7)], which is exceed-
ingly useful for computing or bounding capacity [5]–[8]:

I(X;Y ) = D(PXPY |X‖PXQY )−D(PY ‖QY ). (5)

The connections between (2) and existing achievability bounds
in the literature are discussed in [1].

The bound (2) is useful in situations where PY is not
a product distribution (although the underlying channel law
PY |X is stationary memoryless), for example due to cost
constraints, or structural constraints on the channel input,
such as orthogonality or constant composition. In such cases,
traditional achievability bounds such as Feinstein’s bound [9]
and the dependence testing bound [10, Th. 18], which are
explicit in dPY |X/dPY , become difficult to evaluate. In con-
trast, the ββ bound (2) requires the evaluation of dPY |X/dQY ,
which factorizes for product QY . This allows for an ana-
lytical computation of the bound (2). Furthermore, the term
βτ (PY , QY )—which captures the cost of the change of meas-
ure from PY to QY —can be evaluated or bounded even when
a closed-form expression for PY is not available. Applications
of the bound (2), which illustrate these properties, are provided
in [1].
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Abstract—A source model of key sharing between three users
is considered in which each pair of them wishes to agree on a
secret key hidden from the remaining user. There are rate-limited
public channels for communications between the users. We give an
inner bound on the secret key capacity region in this framework.
Moreover, we investigate a practical setup in which localization
information of the users as the correlated observations are exploited
to share pairwise keys between the users. The inner and outer
bounds of the key capacity region are analyzed in this setup for
the case of i.i.d. Gaussian observations.

I. INTRODUCTION

Secret key sharing at the physical layer is a promising approach

for deriving shared secret keys. Ahlswede and Csiszar [1] and

Maurer [2] introduced source and channel models of key sharing

between two legitimate users in the presence of an eavesdropper

using source and channel common randomness along with an

unlimited public channel. Various extensions considered a lim-

ited public channel [3], sharing of one secret key in a network

of users [4], and more than one secret key in different scenarios

[5]– [11].

Pairwise key sharing first introduced in [11], is a specific

problem in this area, requiring that each pair of users shares

a secret key concealed from the remaining user(s). In a basic

setup including three users with access to correlated source

observations and communication over an unlimited public chan-

nel, inner and outer bounds on the secret key capacity region

were derived. In this paper, we extend the pairwise key shar-

ing framework in [11] to the rate-limited public channel for

communications. The public channel is full duplex and each of

the users can simultaneously send/receive information over/from

the public channel. Based on the correlated observations, users

communicate over the rate-limited public channel. Then, each

user generates the respective keys as functions of its source

observations and the information received over the rate-limited

public channel. We derive an inner bound on the key capacity

region in this framework; the explicit outer bound given in [11]

holds here for the rate-limited public channel case.

We consider location-derived common randomness here be-

cause it is a promising, towards practical applications, approach.

This is so because a multitude of emerging wireless systems are

location-aware and devices can and need to perform distance

measurements over RF communication, notably for security

reasons, for example [12], [13].

Location-derived common randomness was considered in [14]

in a different setup, with a key established between a mobile

node and a wireless infrastructure. In a setup closer to the one

considered here, [15] considered two users that move according

User 1

User 2 User 3

Public channel

1,2K

1,2K

1,2K̂

1,3K

1,3K

1,3K̂

2,3K
2,3K 2,3K̂

1
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2
NX

3
NX

1F

3F2F

Fig. 1: Pairwise secret key sharing in the source model

to a discrete time stochastic mobility model and measure their

respective distance, after exchanging messages, in the presence

of an eavesdropper. In this paper, leveraging the latter approach,

we generalize location-derived key sharing to the “pairwise

secret key”setting, notably with three users. We present inner

bounds of the pairwise key capacity region for both unlimited

and limited public channels. Furthermore, the explicit outer

bound in [11] is analyzed in this i.i.d. Gaussian setup. Some

numerical results are given for the Gaussian setup as well.

The proposed scheme can be extended to the case of more than

three users as the future work in which collusion of curious users

needs to be investigated. Here we consider simply users curious

about the keys their peers derive. But they do not otherwise

deviate from the specification and disrupt the protocol.

The rest of the paper is organized as follows: in Section II,

the preliminaries of the key sharing setup are given. An inner

bound of the pairwise key capacity region with rate-limited

public channel is given in Sections III. Deriving pairwise keys

from localization information along with the respective inner and

outer bounds are presented in Section IV. Numerical results and

concluding remarks are given in Sections V and VI, respectively.

Proofs of the results are presented in Appendices.

II. PRELIMINARIES

Users 1, 2 and 3, respectively, have access to n i.i.d. obser-

vations X1, X2 and X3 according to Fig. 1. The observations

are correlated according to distribution PX1X2X3
. The random

variable Xi takes values from the finite set Xi for i = 1, 2, 3.

Furthermore, there exists a noiseless public channel of limited

capacity for communication between the three users where user

i is subject to rate constraint Ri for its transmission. Each pair of

the three users intends to share a secret key concealed from the

remaining user. Ki,j denotes the shared key between users i and

j, hidden from user m, for i, j,m ∈ {1, 2, 3}, i < j, m �= i, j.
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We represent the formal definition of the described secret key

sharing setup.

User i sends stochastic function Fi = fi(X
n
i ) over the rate-

limited public channel for i = 1, 2, 3 subject to

1

n
H(Fi) ≤ Ri (1)

Upon receiving the information over the public channel, key

generation is performed at the users. Key generation function

gi is used by user i for i = 1, 2, 3 as:

g1 : F2 ×F3 ×Xn
1 → K1,2 ×K1,3 (2)

g2 : F1 ×F3 ×Xn
2 → K1,2 ×K2,3 (3)

g3 : F1 ×F2 ×Xn
3 → K1,3 ×K2,3. (4)

Thus, user 1 calculates K1,2 and K1,3 to share with users 2

and 3, respectively. Similarly, user 2 calculates K̂1,2 and K2,3

to share with users 1 and 3 and user 3 calculates K̂1,3 and K̂2,3

to share with users 1 and 2.

Definition 1: In the pairwise secret key sharing over public

channels of limited rates (R1, R2, R3) at the respective users 1,

2, 3, the rate triple (R12, R13, R23) is an achievable key rate pair

if for every ε > 0 and sufficiently large n, we have:

∀i < j ∈ {1, 2, 3} 1

n
H(Ki,j) ≥ Rij − ε (5)

∀i < j ∈ {1, 2, 3} Pr{Ki,j �= K̂i,j} < ε (6)

∀i<j,m∈{1, 2, 3},m /∈{i, j} I(Ki,j ;Fi, Fj , X
n
m) < ε (7)

∀i∈{1, 2, 3} 1

n
H(Fi) ≤ Ri. (8)

Equation (5) means that rate Rij is the rate of the secret key

between users i and j. Equation (6) means that each user can

correctly estimate the respective keys. Equation (7) means that

each user effectively has no information about the remaining

users’ secret key. Equation (8) denotes that the key sharing is

subject to the constraint of the public channel.

Definition 2: The region containing the entire achievable secret

key rate triples (R12, R13, R23) is the secret key capacity region.

III. MAIN RESULT

In the following, an inner bound on the pairwise key capacity

region of the source model with rate-limited public channel is

given. First, we define:

r12 = [I(S12;X2 |S23S32) − I(S12;X3, S13 |S23, S32) ]
+,

r21 = [I(S21;X1 |S13S31) − I(S21;X3, S23 |S13, S31 )]
+,

r13 = [I(S13;X3 |S23S32) − I(S13;X2, S12 |S23, S32) ]
+,

r31 = [I(S31;X1 |S12S21) − I(S31;X2, S32 |S12, S21 )]
+,

r23 = [I(S23;X3 |S13S31) − I(S23;X1, S21 |S13, S31) ]
+,

r32 = [I(S32;X2 |S12S21) − I(S32;X1, S31 |S12, S21 )]
+,

I12 = I(S12;S21 |X3, S13, S23) ,
I13 = I(S13;S31 |X2, S12, S32) ,
I23 = I(S23;S32 |X1, S21, S31) , I1 = I(S21;S31 |X1) ,
I2 = I(S12;S32 |X2) , I3 = I(S13;S23 |X3) .

Theorem 1: In the described setup, all rates in the closure of

the convex hull of the set of all key rate triples (R12, R13, R23)

that satisfy the following region, are achievable:

R12 > 0, R13 > 0, R23 > 0,

R12 ≤ r12+r21 − I12,

R13 ≤ r13+r31 − I13,

R23 ≤ r23+r32 − I23,

R12 +R13 ≤ r12+r21+r13+r31 − I12 − I13 − I1,

R12 +R23 ≤ r12+r21+r23+r32 − I12 − I23 − I2,

R13 +R23 ≤ r13+r31+r23+r32 − I13 − I23 − I3,

R12 +R13 +R23 ≤ r12+r21+r13+r31+r23+r32−
I12 − I13 − I23 − I1 − I2 − I3 (9)

for random variables taking values in sufficiently large finite sets

and according to the distribution:

p(s12, s13, s21, s23, s31, s32, x1, x2, x3) = p(x1, x2, x3).
p(s12|x1)p(s13|x1)p(s21|x2)p(s23|x2)p(s31|x3)p(s32|x3)

and subject to the constraints:

I(S12;X1|X2,S32)+I(S13;X1|X3,S23)≤R1, (10)

I(S21;X2|X1,S31)+I(S23;X2|X3,S13)≤R2, (11)

I(S31;X3|X1,S21)+I(S32;X3|X2,S12) ≤R3, (12)

I(S12;X1|X2,S32)+I(S21;X2|X1,S31)+I(S13,S23;X1,X2|X3)

≤R1+R2, (13)

I(S13;X1|X3,S23)+I(S31;X3|X1,S21)+I(S12,S32;X1,X3|X2)

≤ R1 +R3, (14)

I(S23;X2|X3,S13)+I(S32;X3|X2,S12)+I(S21,S31;X2,X3|X1)

≤ R2 +R3. (15)

I(S21,S31;X2,X3|X1) +I(S12,S32;X1,X3|X2) +I(S13,S23;X1,X2|X3)

≤ R1 +R2 +R3. (16)

Proof: The proof of Theorem 1 is given in Appendix A in

the extended version [18].

The rate region in Theorem 1 is achieved by double random

binning as well as Wyner-Ziv coding [16] and rate splitting. In

the achievability scheme, the rate of the key between users i and

j consists of two parts. A part is rate of the key generated by

user i to share with user j (rij) and the other part is the rate

of the key generated by user j to share with user i (rji). The

auxiliary random variable Sij stands for the former key while

Sji is associated with the latter key. The total rate of the key

between users i and j is the sum of rij and rji in which term Iij
is subtracted to avoid revealing any information about one of the

key to the remaining user (as the eavesdropper) in the case that

the other key is disclosed. The limitation of the public channel

at the users is reflected in (10)-(16).

Remark 1: The region in Theorem 1 reduces to key rate regions

in [7] by considering subset of keys and assuming unlimited

public channel. It also reduces to the key rate region in [11] by

removing public channel limitations.

We do not present a new outer bound on the key capacity

region. The explicit outer bound in [11] with unlimited public

channel holds in this new setup.
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Fig. 2: Using location information for Pairwise secret key sharing

IV. A REAL-WORLD EXAMPLE OF THE PAIRWISE KEY

SHARING

In this section, we consider pairwise key sharing between

three users who move in two-dimensional space according to

a discrete time stochastic mobility model. The idea of using

localization information to share a secret key between two users

in the presence of an eavesdropper was first introduced in [15].

Here, we extend this idea to the pairwise key sharing between

three users. The users are mobile in continuous space according

to a discrete time stochastic mobility model, independent of each

other. Each pair of the three mobile users exploits the distance

between themselves as a source of common randomness to share

a key while the remaining user tries to make an estimate of

that distance as precise as possible. We borrow some notations

from [15]. We assume the considered time is divided into n
discrete time slots where time slot l includes the time interval

[lT, (l+1)T ]. The users’ locations are assumed constant during a

time slot. As shown in Fig. 2, at time slot l, the distance between

users i and j is dij [l] = |xi[l] − xj [l]| in which xi[l] ∈ R
2 is

the random variable which denotes user i location at time slot

l. In the same figure, φi[l] shows the angle of the triangle at

user i at time slot l. Each pair first exchanges beacon signals

(e.g., using propagation delay) to make correlated observations

and then, they communicate over the (limited) public channel to

share a key hidden from the remaining user. This is performed

in two phases as follow.

Localization phase: User i broadcast some beacons (as a

short signal bearing localization information on the initiating

node) at the beginning of time slot l and users j and m
obtain noisy observations of dji[l] and dmi[l], respectively, for

i ∈ {1, 2, 3}, j �= m ∈ {1, 2, 3} − i. We assume the users are

equipped to directional antenna and hence, user i obtain φ̂i[l] as

the noisy version of the angle between the remaining two users.

The same as in [15], we assume the sent information by the

users is corrupted by Gaussian noises. We have:

d̃ij [l] = dij [l] +Nij [l] (17)

φ̃i[l] = φi[l] +Ni[l] (18)

where Nij [l] and Ni[l] are zero-mean Gaussian noises with

variances σ2
ij and σ2

i , respectively. All the noises are independent

of each other. In the rest of the paper, we consider the case of

i.i.d. locations and additive noises. Thus, we drop index l in

equations (17)-(18). If the number of broadcast beacons by each

user is J ≥ 1, then σ2
ij and σ2

i are divided by J [15]. We assume

that users are perfectly clock synchronized (it is shown in [15]

that clock mismatch does not affect the theoretical bounds of

secret key rates).

Key generation by public channel communications: At the

beginning of this phase, user i has access to its observations

oi={d̃ij={d̃ij [l]}nl=1, d̃im={d̃im[l]}nl=1, φ̃i={φ̃i[l]}nl=1}
(19)

The users communicate over a (rate-limited) public channel to

share secret keys in the pairwise manner. Users i and j exploit

the reciprocity of the distance between themselves to share a key

based on their noisy observations d̃ij and d̃ji, respectively:

d̃ij = dij +Nij (20)

d̃ji = dji +Nji, (21)

where dij = dji is the real distance and Nij ∼ N (0, σ2
ij/J),

Nji ∼ N (0, σ2
ji/J) assuming each user broadcasted J beacons

at the localization phase. On the other hand, the remaining

user m tries to estimate dij to obtain information about the

key between users i and j as much as possible with access to

(d̃mi, d̃mj , φ̃m).
Due to simplicity, we assume σij = σji between each pair i

and j. In continue, we consider unlimited and rate-limited public

channels separately.

A. unlimited public channel

Since the observation between pair i and j is symmetric

(because of σij = σji) and the public channels at both sides

are unlimited, we choose one-way communication between each

pair. Without loss of generality, it is assumed that user 1

communicates to user 2, user 2 communicates to user 3 and

user 3 communicates to user 1. According to the directions of

communications between users, we choose S12 = d̃12, S23 =
d̃23, S31 = d̃31, S21 = S32 = S13 = φ in Theorem 1. Then the

rate region in Theorem 1 is reduced to:

R12 > 0, R13 > 0, R23 > 0, (22)

R12 ≤ I(d̃12;d̃21)−I(d̃12; d̃31, d̃32, φ̃3) (23)

R13 ≤ I(d̃31;d̃13)−I(d̃31; d̃21, d̃23, φ̃2) (24)

R23 ≤ I(d̃23;d̃32)−I(d̃23; d̃12, d̃13, φ̃1) (25)

Each potential eavesdropper combines its available observations

to estimate the distance between the other two users to enlarge

the subtracted mutual information terms in (23)-(25). Thus, user

m as a potential eavesdropper of the key between users i and j
makes estimate of dij as:

d̂ij =
√

d̃2mi + d̃2mj − 2d̃mid̃mj cos(φ̃m) (26)

where the parameters inside the square root are defined as (17)

and (18). For J 	 1, σ2
ij/J 
 d2ij and σ2

i /J ≈ 0, ∀i �= j ∈
{1, 2, 3} with high probability and (26) can be approximated as

[15]:

d̂ij = dij +N (0,
σ̂2
ij

J
) (27)

Substituting (27) as the estimate of dij in (23)-(25) results in the

following rate region (it can be shown that this is the best that

each potential eavesdropper can do):
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Theorem 2: Using unlimited public channel in the pairwise key

sharing from the localization information, all rates in the closure

of the convex hull of the set of all key rate triples (R12, R13, R23)
that satisfy the following region, are achievable:

R12 > 0, R13 > 0, R23 > 0, (28)

R12 ≤ 1

2
E([log(1 +

d412J
2(σ̂2

12 − σ2
12)

(d212J + σ̂2
12)(2d

2
12Jσ

2
12 + σ4

12)
)]+) (29)

R13 ≤ 1

2
E([log(1 +

d413J
2(σ̂2

13 − σ2
13)

(d213J + σ̂2
13)(2d

2
13Jσ

2
13 + σ4

13)
)]+))

(30)

R23 ≤ 1

2
E([log(1 +

d423J
2(σ̂2

23 − σ2
23)

(d223J + σ̂2
23)(2d

2
23Jσ

2
23 + σ4

23)
)]+) (31)

in which E is the expectation with respect to (d12, d13, d23) and

σ̂2
ij�σ2

im+σ2
jm+Constd12,d13,d23

(
σ2
m

4d2ij
− σ2

im

4d2ijd
2
im

− σ2
jm

4d2ijd
2
jm

)

(32)

for Constd12,d13,d23 = (d12 + d13 + d23)(d12 + d13 − d23)(d13 +
d23 − d12)(d12 + d23 − d13).

Proof: The proof is given in Appendix B in [18].

In the following, we give an outer bound on the key capacity

region in the described setup for unlimited public channel based

on the explicit outer bound in [11].

Corollary 1: Using unlimited public channel in the pairwise

key agreement from localization information, the following is an

outer bound on the pairwise key capacity region:

R12 > 0, R13 > 0, R23 > 0, R12 ≤ 1

2
log(1 +

E(σ̂2
12)

σ2
12

) (33)

R13 ≤ 1

2
log(1 +

E(σ̂2
13)

σ2
13

) (34)

R23 ≤ 1

2
log(1 +

E(σ̂2
23)

σ2
23

) (35)

in which E is expected value with respect to (d12, d13, d23) and

σ̂2
ij is defined as (32).

Proof: The proof is given in Appendix C [18].

B. rate-limited public channel

In this case, the information sent by the users over the public

channel should be subject to the respective rate constraints. In

particular, a noisy version of the observation at each user can be

considered for the key generation. To apply this constraint, we

set:

Sij = d̃ij +Dij (36)

in Theorem 1 where Dij ∼ N (0, σ′2
ij). The noises Dij are

independent of each other and of all the observations. In fact

Sij is a noisy version of d̃ij where its related information can be

sent by user i through the public channel with rate constraint Ri.

It should be noted that in the case of rate-limited public channel,

we can not assume one-way communication between each pair

and we need to consider the general two-way communications

to derive the largest rate region. By considering all the auxiliary

random variables of Theorem 1 as (36) and applying the rate

constraints in (10)-(16) in Theorem 1, we deduce:

12
2
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Fig. 3: inner and outer bounds on R12 and R13

Theorem 3: Using public channels with rates (R1, R2, R3),
respectively, at users 1,2,3 in the pairwise key sharing from
localization information, the pairwise key rate region on the top
of the next page is achievable which is subject to the constraints:

1

2
E(log(1 +

(2d212J + σ2
12)σ

2
12

(d212J + σ2
12)σ

′2
12

) + log(1 +
(2d213J + σ2

13)σ
2
13

(d213J + σ2
13)σ

′2
13

)) ≤ R1

1

2
E(log(1 +

(2d212J + σ2
12)σ

2
12

(d212J + σ2
12)σ

′2
21

) + log(1 +
(2d223J + σ2

23)σ
2
23

(d223J + σ2
23)σ

′2
23

)) ≤ R2

1

2
E(log(1 +

(2d213J + σ2
13)σ

2
13

(d213J + σ2
13)σ

′2
31

) + log(1 +
(2d223J + σ2

23)σ
2
23

(d223J + σ2
23)σ

′2
32

)) ≤ R3

(37)

Proof: The proof is given in Appendix B in [18].

V. NUMERICAL RESULTS

In this section, numerical evaluation of the results in Sections

IV-A and IV-B is given. We assume that at each time slot, all

users’ locations are characterized by i.i.d. circularly symmetric

zero mean, unit variance Gaussian random variables. First we

consider unlimited public channel case. We set σ2
13 = σ2

23 =
σ2
1 = σ2

2 = σ2
3 = 0.1 and plot the key rates as functions of

σ2
12. Because of symmetry, the bounds on the rates R13 and R23

are the same and hence, we analyse one of them. In Fig. 3, the

inner and outer bounds on key rates R12 and R13 are shown

as functions of σ2
12. Clearly the bounds on R12 decrease as σ2

12

increases, while the bounds on R13 increase with the growth of

σ2
12. However, for small values of σ2

12, the bounds on R12 are

more affected compared to the bounds on R13.

Then, we analyse the key rate region in the rate-limited public

channel case. We set R1 = .5, R2 = .2, R3 = .8 and σ2
12 =

σ2
13 = σ2

23 = σ2
1 = σ2

2 = σ2
3 = 0.1. In order to clarify the

rate region, we project the 3-D region into three 2-D regions. As

we discussed in Section IV-B, in the case of rate-limited pubic

channel, we have two-way communication between each pair.

Each user splits its available public channel rate to share keys

with the other users while the public channel rates of the other

users affect this splitting. As shown in Fig. 4–6, the rate regions

are not necessarily rectangular in contrast to the case of unlimited

public channel. Obviously, the achievable rates are significantly

smaller than the corresponding values in Fig. 3 where unlimited

public channel is assumed (respective rates at Fig. 3 for σ2
12 =

0.1).

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

72



R12 > 0, R13 > 0, R23 > 0, (38)

R12 ≤
1

2
E([log(1 +

d412J2(σ̂2
12 − σ2

12)

(d212J + σ̂2
12)(d212J(2σ2

12 + σ
′2
12) + (σ2

12 + σ
′2
12)σ2

12)
)]
+

+ [log(1 +
d412J2(σ̂2

12σ
′2
12 − σ2

12(σ2
12 + σ

′2
12))

(d212J(σ̂2
12 + σ2

12 + σ
′2
12) + σ̂2

12(σ2
12 + σ

′2
12))(d212J(2σ2

12 + σ
′2
21) + (σ2

12 + σ
′2
21)σ2

12)
)]
+

)

R13 ≤
1

2
E([log(1 +

d413J2(σ̂2
13 − σ2

13)

(d213J + σ̂2
13)(d213J(2σ2

13 + σ
′2
13) + (σ2

13 + σ
′2
13)σ2

13)
)]
+

+ [log(1 +
d413J2(σ̂2

13σ
′2
13 − σ2

13(σ2
13 + σ

′2
13))

(d213J(σ̂2
13 + σ2

13 + σ
′2
13) + σ̂2

13(σ2
13 + σ

′2
13))(d213J(2σ2

13 + σ
′2
32) + (σ2

13 + σ
′2
31)σ2

13)
)]
+

)

R23 ≤
1

2
E([log(1 +

d423J2(σ̂2
23 − σ2

23)

(d223J + σ̂2
23)(d223J(2σ2

23 + σ
′2
23) + (σ2

23 + σ
′2
23)σ2

23)
)]
+

[log(1 +
d423J2(σ̂2

23σ
′2
23 − σ2

23(σ2
23 + σ

′2
23))

(d223J(σ̂2
23 + σ2

23 + σ
′2
23) + σ̂2

23(σ2
23 + σ

′2
23))(d223J(2σ2

23 + σ
′2
32) + (σ2

23 + σ
′2
32)σ2

23)
)]
+

)

(39)

Fig. 4: R12 −R13 with R1 = .5, R2 = .2,R3 = .8

Fig. 5: R12 −R23 with R1 = .5, R2 = .2,R3 = .8

VI. CONCLUSION

The source model of pairwise secret key sharing was investigated

with rate-limited pubic channel between three users. An inner

bound on the key capacity region was derived for the general

case of discrete memoryless source observations. We considered

a setup in which the users exploited the distance between

themselves as correlated observations to generate keys. Inner and

Fig. 6: R13 −R23 with R1 = .5, R2 = .2,R3 = .8

outer bounds on the key capacity region were analyzed for the

case of i.i.d. Gaussian observations. As a future work, we analyze

the problem of pairwise key sharing between arbitrary number

of users who access to limited public channel.
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Abstract—The broadcast channel (BC) with one confidential
message and where the decoders cooperate via a one-sided link is
considered. A messages triple with one common and two private
messages is transmitted. The private message to the cooperative
user is kept secret from the cooperation-aided user. An inner
bound on the strong-secrecy-capacity region of the BC is derived.
The inner bound is achieved by a channel-resolvability-based
Marton code construction that double-bins the codebook of the
secret message. Both the resolvability and the BC codes use
the likelihood encoder to choose the transmitted codeword. The
protocol uses the cooperation link to convey information on a
portion of the non-confidential message and the common message.
The inner bound is shown to be tight for the semi-deterministic
and physically degraded cases.

Index Terms—Broadcast channel, resolvabiliy, cooperation,
physical-layer security, secrecy.

I. INTRODUCTION

We study broadcast channels (BCs) with one-sided decoder
cooperation and one confidential message (Fig. 1). Coopera-
tion is modeled as conferencing, i.e., information exchange via
a rate-limited link that extends from one receiver (referred to
as the cooperative receiver) to the other (the cooperation-aided

receiver). The cooperative receiver possesses confidential in-
formation that should be kept secret from the other user.

By extending the coding schemes of Wyner [1] and Csiszár-
Körner [2], multiuser settings with secrecy were extensively
treated in the literature (e.g., cf. [3], [4] and references therein).
These extensions use the so-called weak-secrecy metric, i.e.,
a vanishing information rate leakage to the eavesdropper.
Observe that although the rate leakage vanishes with the block-
length, the eavesdropper can decipher an increasing number
of bits from the confidential message. This drawback was
highlighted in [5], which instead advocated a secrecy measure
referred to as strong-secrecy. We consider strong-secrecy by
relying on work by Csiszár [6] and Hayashi [7] to relate the
coding mechanism for secrecy to channel-resolvability rather
than channel-capacity (see also [8]).

We first consider a state-dependent channel over which an
encoder with non-causal access to the channel state sequence
transmits a codeword and aims to make the conditional
probability mass function (PMF) of the output given the
state resemble a conditional product PMF. The underlying
codebook coordinates the transmitted codeword with the state
sequence by means of multicoding, i.e., by associating with
every message a bin that contains enough codewords to ensure
joint encoding (similar to a Gelfand-Pinsker codebook). Most
encoders use joint typicality tests to determine the transmitted

(!0,!1,!2)
Enc.

X #!1,!2∣#

Channel
Y1

Y2

Dec. 1

Dec. 2
!1

(

!̂ (1)
0 , !̂1

)

(

!̂ (2)
0 , !̂2

)

!12

Fig. 1: Cooperative BCs with one confidential message.

codeword. We instead adopt the likelihood encoder recently
proposed in [9].

Our code ensures that the relation between its codewords
correspond to the relation between the channel states and the
input in the corresponding resolvability problem. A double-
binning of the confidential message codebook allows joint
encoding (outer bin layer) and preserves confidentiality (inner
bin layer). The sizes of the inner bins are determined by
conditions on the rates in our resolvability lemma. To match
the conditions of the lemma, we use the likelihood encoder as
the multicoding mechanism. Our protocol uses the cooperation
link to convey information on a public message that is assem-
bled from portions of the non-confidential message and the
common message. The inner bound is shown to be tight for
semi-deterministic (SD) and physically-degraded (PD) BCs.
As a special case, our results captures the strong-secrecy-
capacity region of the SD-BC (without cooperation) where the
message to the deterministic user is confidential - an unsolved
problem that has merit on its own.

We focus on the cooperative scenario to shed light on
the interaction between user cooperation and secure com-
munication. Without secrecy constraints, the public message
comprises parts of both private messages [10]. This difference
is fundamental when coding for secrecy because a cooperation
protocol that shares information about the confidential mes-
sage violates the secrecy constraint. Since the protocol relies
on the cooperative user decoding the public message before
sharing it, this difference results in an additional loss in the
rate of the confidential message (on top of the loss due to
secrecy). The restricted cooperation protocol encapsulates the
tension between secrecy and cooperation.

To the best of our knowledge, we present here the first
resolvability-based Marton code. This is also a first demon-
stration of the likelihood encoder’s usefulness in the context
of secrecy for channel coding problems. From a broader
perspective, our resolvability lemma is a tool for upgrading
weak-secrecy to strong-secrecy in settings with Marton coding.
The reader is referred to [11] for discussion and examples that
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$
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V∣S0,S
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#$
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Fig. 2: Coding problem for approximating !
(ℬ!)

V∣S0,S0
≈ ""

# ∣$0,$
.

are not presented here due to space limitations.

This paper is organized as follows. Sections II and III
provide preliminaries and state a central lemma, respectively.
In section IV we introduce the cooperative BC and state
our inner bound and capacity results. Proofs are given in
Section V.

II. NOTATIONS AND PRELIMINARIES

We use notation from [11, Section II]. The total variational
(TV) distance between two PMFs % and # is

∣∣% −#∣∣ =
1

2

∑

(∈$

∣

∣% (&)−#(&)
∣

∣ (1)

and the corresponding relative entropy is

'(% ∣∣#) =
∑

(∈supp() )

% (&) log

(

% (&)

#(&)

)

. (2)

Remark 1 Pinsker’s inequality shows that relative entropy is

larger than TV distance. The reverse relation is not generally

true, but there is a “reverse” Pinsker inequality for long

sequences of independently and identically distributed (i.i.d.)

random variables. That is, if % ≪ # (i.e., % is absolutely

continuous with respect to #), and # is an i.i.d. discrete

distribution of variables, then1

'(% ∣∣#) ∈ '

([

)+ log
1

∣∣% −#∣∣

]

∣∣% −#∣∣

)

, (3)

as ∣∣% − #∣∣ goes to zero and ) goes to infinity (see [12,

Equation (29)]). In particular, (3) implies that an exponential

decay of the TV distance produces an exponential decay of the

informational divergence with the same exponent.

III. CONDITIONAL RELATIVE ENTROPY APPROXIMATION

Consider a state-dependant discrete memoryless channel
(DMC) over which an encoder with non-causal access to
the i.i.d. state sequence transmits a codeword (Fig. 2). Each
channel state is a pair (*0, *) of random variables drawn
according to #'0,' . The encoder superimposes its codebook
on *0 and then uses the likelihood encoder with respect to *
to choose the channel input sequence. The conditional PMF
of the channel output, given the states, should approximate
a conditional product distribution in terms of unnormalized
relative entropy.

1!(") ∈ "
(

#(")
)

means that !(") ≤ $ ⋅ #("), for some $ independent
of " and sufficiently large ".

As shown in Section V-B, we construct a channel-
resolvability-based Marton code for the cooperative BC in
which the relations between the codewords correspond to those
between the channel states and its input in the resolvability
setup. The Marton code combines superposition coding and
binning, hence the different roles the the state sequences S0

and S play in the subsequent resolvability codebook. Lemma 1
is then invoked to achieve strong-secrecy.

A. Problem Definition

The random variable $ is uniformly distributed over ( =
[1 : 2$*̃] and is independent of (S0,S) ∼ #$

'0,'
. For any

fixed #& ∣'0,' , consider the following coding scheme.
Codebook Construction: For every s0 ∈ )$

0 gener-

ate a codebook ℬ$(s0) that comprises 2$*̃ bins, each as-
sociated with a different message + ∈ ( and contains
2$*

′

,-codewords that are drawn according to #$
& ∣'0=s0

≜
∏$

+=1 #& ∣'0
(⋅∣-0,+). Let ℬ$ =

{

ℬ$(s0)
}

s0∈%!
0

denote this

collection of codebooks and denote the codewords in the
bin associated with + ∈ ( by

{

u(s0, +, .,ℬ$)
}

+∈ℐ
, where

ℐ = [1 : 2$*
′

].
Encoding and Induced PMF: The encoding uses the

likelihood encoder described by conditional PMF

/ (LE)(.∣+,s0,s,ℬ$)=
#$

'∣&,'0

(

s
∣

∣u(s0, +, .,ℬ$), s0
)

∑

+′∈ℐ
#$

'∣&,'0

(

s
∣

∣u(s0,+,.′,ℬ$),s0
) .

(4)
Upon observing (+, s0, s), an index . ∈ ℐ is drawn according
to (4). The codeword u(s0, +, .,ℬ$) is passed through the
DMC #$

% ∣&,'0,'
. The distribution induced by the resolvability

codebook ℬ$ is

% (ℬ!)(s0,s,+,.,u,v)=#$
'0,'(s0, s)2

−$*̃/ (LE)(.∣+, s0, s,ℬ$)

× 1{u(s0,,,+,ℬ!)=u}#
$
% ∣&,'0,'

(v∣u, s0, s). (5)

Furthermore, we use !$ to denote a random codebook that
adheres to the above construction .

Lemma 1 (Sufficient Conditions for Approximation) For

any #'0,' , #& ∣'0,' and #% ∣&,'0,' , if (0̃, 0′) ∈ ℝ
2
+ satisfies

0′ > 2(3 ;*∣*0) (6a)

0′ + 0̃ > 2(3 ;*, 4 ∣*0), (6b)

then

#!!
'
(

% (!!)
V∣S0,S

∣

∣

∣

∣

∣

∣
#$

% ∣'0,'

∣

∣

∣
#$

'0,'

)

−−−−→
$→∞

0. (7)

The proof of Lemma 1 shows that the TV distance decays
exponentially fast with the blocklength ). By Remark 1 this
implies an exponential decay of the desired relative entropy.
See Section V-A for details.

Another useful property is that the chosen ,-codeword is
jointly letter-typical with (S0,S) with high probability.

Lemma 2 (Typical with High Probability) If (0̃,0′) ∈ ℝ
2
+

satisfies (6), then for any +∈( and 5> 0, we have

#!!
ℙ

(

(

S0,S,U(S0,+,2,!$)
)

/∈. ($)
- (#'0,',& )

∣

∣

∣
!$

)

−−−−→
$→∞

0,
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where 2 is a random variable that represents the index chosen

by the likelihood encoder / (LE).

The proof of Lemma 2 relies on [9, Property 1]: for any
5 > 0 and / :/ →ℝ bounded by 7 > 0, if

∣

∣

∣

∣Π−Λ
∣

∣

∣

∣<5 then
∣

∣

∣
#Π/(9)−#Λ/(9)

∣

∣

∣
<57. The proposition follows by taking

/(S0,S,U) ≜ 1{
(S0,S,U)/∈- (!)

" (/#0,#,% )
} and using (7).

IV. COOPERATIVE BROADCAST CHANNELS WITH ONE

CONFIDENTIAL MESSAGE

A. Problem Definition

The discrete memoryless broadcast channel (DMBC) with
cooperation and one confidential message is illustrated in
Fig. 1. The channel has one sender and two receivers. The
sender chooses a triple (:0,:1,:2) of indices uniformly and
independently from the set [1 : 2$*0 ] × [1 : 2$*1 ] × [1 : 2$*2 ]
and maps them to a sequence x ∈ /$, which is the channel
input. The sequence x is transmitted over a BC with transition
probability #!1,!2∣# . If #!1,!2∣# factors as 1{!1=0(#)}#!2∣#

or #!1∣##!2∣!1
then we call the BC SD or PD, respectively.

The output sequence y1 ∈ 0$
1 , where ; = 1, 2, is received by

decoder ;. Decoder ; produces a pair of estimates
(

:̂(1)
0 , :̂1

)

of (:0,:1). Furthermore, the message :1 is to be kept secret
from Decoder 2. There is a one-sided noiseless cooperation
link of rate 012 from Decoder 1 to Decoder 2. By conveying
a message :12∈ [1 :2$*12 ] over this link, Decoder 1 can share

with Decoder 2 information about y1,
(

:̂(1)
0 , :̂1

)

, or both.

Definition 1 (Code) An (),012, 00, 01, 02) code 1$ for the

BC with cooperation and one confidential message has: (i)

Four message sets ℳ12=[1:2$*12 ] and ℳ1=[1:2$*& ], for

;=0, 1, 2; (ii) A stochastic encoder described by a stochastic

matrix / (ℰ)
X∣20,21,22

on /$; (iii) A decoder cooperation

function /12 : 0$
1 → ℳ12; (iv) Two decoding functions

<1 : 0$
1 → ℳ0 ×ℳ1 and <2 : 0$

2 ×ℳ12 → ℳ0 ×ℳ2.

Definition 2 (Error Probability) The average error proba-

bility for an (),012, 00, 01, 02) code 1$ is

%3(1$)=ℙ/!

(

(!̂ (1)
0 ,!̂ (2)

0 ,!̂1, !̂2) ∕=(!0,!0,!1,!2)
)

,

where ℙ/!
(⋅) means that the probability is calculated with

respect to the joint PMF induced by 1$. Furthermore,

(!̂ (1)
0 ,!̂1)=<1(Y1) and (!̂ (2)

0 ,!̂2)=<2

(

Y2,/12(Y1)
)

.

The information leakage at receiver 2 is measured by
%(1$) = 2/!

(!1;!12,Y2), which is also calculated with
respect to PMF induced by 1$.

Definition 3 (Achievability) A rate tuple (012,00,01,02)∈
ℝ

4
+ is achievable if for any 5 > 0 there is an

(),012,00,01,02) code 1$ with %3(1$)≤ 5 and %(1$)≤ 5,
for any ) sufficiently large.

The strong-secrecy-capacity region 1S is the closure of the
set of the achievable rates.

B. Strong-Secrecy-Capacity Bounds and Results

We state an inner bound on the strong-secrecy-capacity
region 1S of a cooperative BC with one confidential message.

Theorem 3 (Inner Bound) Let ℛI be the closure of the

union of rate tuples (012, 00, 01, 02) ∈ ℝ
4
+ satisfying:

01 ≤ 2(31;=1∣30)− 2(31;32, =2∣30)

00 +01 ≤ 2(30, 31;=1)− 2(31;32, =2∣30)

00 +02 ≤ 2(30, 32;=2) +012
∑

1=0,1,2

01 ≤ 2(30, 31;=1)+2(32;=2∣30)−2(31;32, =2∣30),

(8)

where the union is over all PMFs #&0,&1,&2,##!1,!2∣# . Then

the inclusion ℛI ⊆ 1S holds.

The proof of Theorem 3 relies on a channel-resolvability-based
Marton code and is given in Section V-B. The inner bound in
Theorem 3 is tight for SD and PD BCs.

Theorem 4 (Secrecy-Capacity for SD-BC) The strong-

secrecy-capacity region 1(SD)
S of a cooperative SD-BC with

one confidential message is the closure of the union of rate

tuples (012, 00, 01, 02) ∈ ℝ
4
+ satisfying:

01 ≤ >(=1∣$,4, =2)

00 +01 ≤ >(=1∣$,4, =2) + 2($ ;=1)

00 +02 ≤ 2($,4 ;=2) +012
∑

1=0,1,2

01 ≤ >(=1∣$,4, =2)+2(4 ;=2∣$ )+2($ ;=1), (9)

where the union is over all #4,%,!1,##!2∣# with =1 = /(9).

The direct part of Theorem 4 follows from Theorem 3 by
setting 30 = $ , 31 = =1 and 32 = 4 .

Theorem 5 (Secrecy-Capacity for PD-BC) The strong-

secrecy-capacity region 1(PD)
S of a cooperative PD-BC with

on confidential message is the closure of the union of rate

tuples (012, 00, 01, 02) ∈ ℝ
4
+ satisfying:

01 ≤ 2(9;=1∣$ )− 2(9;=2∣$ )

00 +02 ≤ 2($ ;=2) +012
∑

1=0,1,2

01 ≤ 2(9;=1)− 2(9;=2∣$ ), (10)

where the union is over all #4,##!1∣##!2∣!1
.

The achievability of 1(PD)
S follows by setting 30 = $ , 31 =

9 and 32 = 0 in Theorem 3.

Remark 2 (Converse) The converse proofs for Theorems 4

and 5 are omitted due to space limitations (see [11] for

details). We remark that we used two distinct converse proofs.

In the converse of Theorem 4, the fourth bound in (9) does

not involve 012 since the auxiliary random variable $+

contains !12. With respect to this choice of $+, showing that

$ −9− (=1, =2) forms a Markov chain relies heavily on the

SD property of the channel. For the PD-BC, however, such
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an auxiliary is not feasible as it violates the Markov relation

$ −9−=1−=2 induced by the channel. To circumvent this,

in the converse of Theorem 5 we define $+ without !12 and

use the structure of the channel to keep 012 from appearing in

the third rate bound in (10). Specifically, this argument relies

on the relation !12 = /12(Y1) and that =2 is a degraded

version of =1, implying that all three messages (!0,!1,!2)
are reliably decodable from Y1 only.

V. PROOFS

A. Proof of Lemma 1

Note that the factorization of % (ℬ!) from (5) implies that

% (ℬ!)
S0,S

= #$
'0,'

. Therefore, to establish Lemma 1 we show that

#!!
'
(

% (!!)
S0,S,V

∣

∣

∣

∣

∣

∣
#$

'0,',%

)

−−−−→
$→∞

0. (11)

For every fixed codebook ℬ$, % (ℬ!)
S0,S,V

is absolutely continuous
with respect to #$

'0,',%
. Combining this with Remark 1, a

sufficient condition for (11) is that

#!!

∣

∣

∣

∣

∣

∣
% (!!)
S0,S,V

−#$
'0,',%

∣

∣

∣

∣

∣

∣
−−−−→
$→∞

0. (12)

To evaluate the TV distance in (12), define the ideal PMF
of (S0,S,$, 2,U,V) as

Γ(ℬ!)(s0, +, .,u, s,v) = #$
'0
(s0)2

−$(*̃+*′)
1{u(s0,,,+,ℬ!)=u}

×#$
'∣&,'0

(s∣u, s0)#
$
% ∣&,'0,'

(v∣u, s0, s)

with respect to the same codebook ℬ$ as % (ℬ!). Note,
however, that Γ describes an encoding process where the
choice of the ,-codeword from a certain bin is uniform, as
opposed to % that uses the likelihood encoder. Furthermore,
the structure of Γ implies that the sequence s is generated by
feeding s0 and the chosen ,-codeword into a DMC #$

'∣&,'0
.

Using the TV distance triangle inequality, we upper bound
the left-hand side of (12) by

#!!

[
∣

∣

∣

∣

∣

∣
% (!!)
S0,S,V

− Γ(!!)
S0,S,V

∣

∣

∣

∣

∣

∣
+
∣

∣

∣

∣

∣

∣
Γ(!!)
S0,S,V

−#$
'0,',%

∣

∣

∣

∣

∣

∣

]

(13)

By [12, Corollary VII.5], the second expected TV distance
decays exponentially fast as ) → ∞ if (6b) holds.

For the first term in (13), we use the following relations
between Γ and % . For every fixed codebook ℬ$, we have

Γ(ℬ!)
5∣4,S0,S

= / (LE)
5∣4,S0,S,!!=ℬ!

= % (ℬ!)
5∣4,S0,S

Γ(ℬ!)
U∣5,4,S0,S

= 1{
U=U(S0,4,5,ℬ!)

} = % (ℬ!)
U∣5,4,S0,S

Γ(ℬ!)
V∣U,5,4,S0,S

= #$
% ∣&,'0,'

= % (ℬ!)
V∣U,5,4,S0,S

.

Consequently, basic properties of the TV distance and the
symmetry in constructing ℬ$ give

#!!

∣

∣

∣

∣

∣

∣
% (!!)
S0,S,V

− Γ(!!)
S0,S,V

∣

∣

∣

∣

∣

∣
≤ #!!

∣

∣

∣

∣

∣

∣
#$

'0,' − Γ(!!)
S0,S∣4=1

∣

∣

∣

∣

∣

∣
.

Invoking [12, Corollary VII.5] once more, (6a) implies that

#!!

∣

∣

∣

∣

∣

∣
#$

'0,' − Γ(!!)
S0,S∣4=1

∣

∣

∣

∣

∣

∣
−−−−→
$→∞

0 (14)

exponentially fast.

B. Proof of Theorem 3

Codebook Generation: Split !2 into two independent
parts (!20,!22) with rates 020 and 022 that satisfy 02 =
020+022, and alphabets ℳ20 and ℳ22, respectively. !6 ≜

(!0,!20) is referred to as a public message while !22

denotes private message number 2. We also use ℳ6 ≜

ℳ0×ℳ20 and 06 ≜ 00+020. Let $ be a random variable

uniformly distributed over ( = [1 : 2$*̃] and independent of
(!0,!1,!2).

Generate a public message codebook2 10 that comprises
2$*' ,0-codewords u0(:6, 10), :6 ∈ ℳ6, drawn according
to #$

&0
. Randomly and uniformly partition 10 into 2$*12 bins

ℬ(:12), where :12 ∈ ℳ12.

For each u0(:6, 10), :6 ∈ ℳ6, generate a code-

book 11(:6) that comprises 2$(*1+*′

1+*̃) codewords u1,
each drawn according to #$

&1∣&0

(

⋅
∣

∣u0(:6, 10)
)

independent
of all the other ,1-codewords. Label these codewords as
u1(:6,:1, ., +, 11), where (:1, ., +) ∈ ℳ1 × ℐ × ( and

ℐ ≜ [1 : 2$*
′

1 ].
For each u0(:6, 10), :6 ∈ ℳ6, also generate a code-

book 12(:6) that comprises 2$*22 ,2-codewords, each as-
sociated with a private message :22 ∈ ℳ22. Each ,2-
codeword is drawn according to #$

&2∣&0

(

⋅
∣

∣u0(:6, 10)
)

in-

dependent of all the other ,2-codewords. Denote 12(:6) ≜
{

u2(:6,:22, 12)
}

722∈ℳ22
.

The channel input x associated with a triple (u0,u1,u2) is
generated according to #$

#∣&0,&1,&2

(

⋅
∣

∣u0,u1,u2

)

.

Encoding: To transmit a triple (:0,:1,:2), the encoder
transforms it into the triple (:6,:1,:22), and draws $
uniformly over ( . Then, an index . ∈ ℐ is chosen by the
likelihood encoder described in (15) at the top of the next
page. The corresponding x is transmitted over the BC.

Decoding and Cooperation: Decoder 1: Searches
for a unique triple (:̂6, :̂1, +̂) ∈ ℳ6 × ℳ1 × ( ,
for which there is an index .̂ ∈ ℐ such
that

(

u0(:̂6, 10),u1(:̂6, :̂1, .̂, +̂, 11),y1

)

are in

. ($)
- (#&0,&1,!1

). If such unique triple is found, (:̂0, :̂1) is
declared as the decoded message pair.
Cooperation: Having (:̂20, :̂1, .̂, +̂), Decoder 1 sends the bin
number of u0(:̂6, 10) to Decoder 2 via the cooperation link.
Decoder 2: Upon receiving (:̂12,y2), Decoder 2 searches
for a unique pair ( ˆ̂:6, ˆ̂:22) ∈ ℳ6 × ℳ22 such that
(

u0( ˆ̂:6, 10),u2( ˆ̂:6, ˆ̂:22, 12),y2

)

is in . ($)
- (#&0,&2,!2

),
where u0( ˆ̂:20) ∈ ℬ(:̂12). If such a unique pair is found,
then ( ˆ̂:0, ˆ̂:2) is declared as the decoded message.

The error probability analysis, which we omit due to space
limitations, uses Lemma 2 to first show that the above en-
coding process result in ,0-, ,1-, ,2- and &-sequences that
are jointly typical. Then, by standard joint-typicality decoding
arguments, reliability is established provided that

0′ > 2(31;32∣30)

0′ + 0̃ > 2(31;32, =2∣30)

2The subsequent notations for codebooks omit the blocklength ".
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/ (LE)
BC

(

.
∣

∣+,u0(:6, 10),u2(:6,:22, 12), 11
)

=
#$

&2∣&1,&0

(

u2(:6,:22, 12)
∣

∣u1(:6,:1, ., +, 11),u0(:6, 10)
)

∑

+′∈ℐ #$
&2∣&1,&0

(

u2(:6,:22, 12)
∣

∣u1(:6,:1, .′, +, 11),u0(:6, 10)
) .

(15)

2(!1;!12,Y2∣ℂ)
(8)
≤ #ℂ'

(

% (ℂ)
Y2∣2',21,222,U0,U2

∣

∣

∣

∣

∣

∣
#$

!2∣&0,&2

∣

∣

∣
% (ℂ)
2',21,222,U0,U2

)

(9)
= #ℂ'

(

% (ℂ)
Y2∣2'=1,21=1,222=1,U0,U2

∣

∣

∣

∣

∣

∣
#$

!2∣&0,&2

∣

∣

∣
% (ℂ)
U0,U2∣2'=1,21=1,222=1

)

(:)
=

∑

u0,u2

#ℂ1

[

'
(

% (ℂ1)
Y2∣2'=1,21=1,222=1,U0=u0,U2=u2

∣

∣

∣

∣

∣

∣
#$

!2∣&0=u0,&2=u2

)

#ℂ0,ℂ2

[

1{(
U0(1,ℂ0),U2(1,1,ℂ2)

)

=(u0,u2)
}

]

]

(;)
= #ℂ1

'
(

% (ℂ1)
Y2∣2'=1,21=1,222=1,U0,U2

∣

∣

∣

∣

∣

∣
#$

!2∣&0,&2

∣

∣

∣
#$

&0,&2

)

(17)

01 +0′ + 0̃ < 2(31;=1∣30)

00 +020 +01 +0′ + 0̃ < 2(30, 31;=1)

022 < 2(32;=2∣30)

00 +02 −012 < 2(30, 32;=2). (16)

Security Analysis: Let ℂ0 be random variables that repre-
sents a random public message codebook. Furthermore, let
11 ≜ {11(:6)}7'∈ℳ'

, for ; = 1, 2, be the private message
codebooks 1 and 2, and ℂ1 and ℂ2 be the corresponding
random codebooks. With some abuse of notation, we also use
1 ≜ (10, 11, 12) and ℂ ≜ (ℂ0,ℂ1,ℂ2). Moreover, when clear
from the context, we omit the functional dependencies of the
,1-codewords, ; = 0, 1, 2, on the corresponding indices and
codebooks, e.g., we write U2 instead of U2(!6,!22, 12).

We start with the upper bound in (17) at the top
of the page. Step (a) uses the independence of the
messages (!6,!1,!22), the deterministic dependence of
(!12,U0,U2) on (!6,!22) and the relative entropy chain
rule; (b) follows by the symmetry of the code construction
with respect to the messages. To justify (c), first note that for
any ℂ = 1, the conditional relative entropy is an expectation
of unconditional relative entropies with respect to

% (/)(u0,u2∣1, 1, 1) = 1{
(u0(1,/0),u2(1,1,/2)=(u0,u2)

}. (18)

Combining (18) with the law of total expectation (con-
ditioning the inner expectation on ℂ1) and noting that
(

U0(1,ℂ0),U2(1, 1,ℂ2)
)

is independent of ℂ1, gives (c);
finally, (d) relies on the coding PMF being #$

&0,&2
.

Note that the code construction and the RHS of (17) fall
within the framework of Lemma 1. Invoking the lemma, the
first two rate bounds in (16) ensure that the RHS of (17)
converges to 0 as ) → ∞, which establishes strong secrecy. By
standard existence arguments and Fourier-Motzkin elimination
applied to (16), the achievability of ℛ5 is established.

Remark 3 The main differences between the coding schemes

for the cooperative BC with one confidential message and

the same channel without secrecy [10] are threefold. First,

a randomizer $ is used in the secrecy-achieving scheme.

Second, the cooperation message !12 depends on !20 rather

than on the pair (!10,!20) (!10 refers to the public part of

the message !1). The second difference is because conveying

an !12 that holds any !1 (in the form of its public part !10)

violates the secrecy requirement. Finally, a prefix channel

##∣&0,&1,&2
is used to optimize randomness and, in turn, to

conceal !1 from the 2nd receiver.
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Abstract—In this work, we use context trees for privacy-
preserving modeling of genetic sequences. The resulting esti-
mated models are applied for functional comparison of genetic
sequences in a privacy preserving way. Here we define privacy
as uncertainty about the genetic source sequence given its model
and use equivocation to quantify it. We evaluate the performance
of our approach on publicly available human genomic data. The
simulation results confirm that the context trees can be effectively
used to detect similar genetic sequences while guaranteeing high
privacy levels. However, a trade-off between privacy and utility
has to be taken into account in practical applications.

I. INTRODUCTION

With recent advances in genome sequencing technologies,
genetic data is increasingly being used in everyday applica-
tions. Genes are studied to better understand inherited dis-
eases, such as cancer; personalized medicine based on genetic
analysis is used to determine the most effective medicine for
patients; genetic material is used to identify individuals in
forensic investigations. Therefore, more and more genetic se-
quences are being collected for research and analysis purposes.
Several projects [1], [2], [3] have been initiated to identify and
catalog similarities and differences between genetic sequences
and relate these findings to medical conditions. The human ref-
erence genome has been reconstructed as a general reference
and is a representative example of the human genome.

Disclosing one’s genetic data is often beneficial for medical
purposes, however, this information is also considered to be
privacy sensitive. Genetic sequences contain health-related
information as well as information about one’s ancestry. Fur-
thermore, genetic sequences are unique identifiers of human
beings. Therefore privacy concerns are raised as this infor-
mation can be misused by insurance companies, employers
and forensic institutions. Remarkably, one’s genome is unique
inherited information, of which disclosure is irreversible, thus
affecting not only its owner but also the owner’s family
members for many generations. As such, in modern society
protection of genetic data becomes a crucial problem.

A. Related work

Traditionally, privacy-sensitive information (e.g. in medi-
cal profiles) is protected by data anonymization techniques
through removing or aggregating the information that can be
used to identify the corresponding individual (e.g. a name,

birth date or address). Uniqueness of genetic data makes tradi-
tional anonymization techniques insufficient, as the data itself
uniquely identifies its owner. Therefore, recently, privacy-
preserving approaches for genome analysis became the focus
of a research community. These approaches aim at analysis of
genetic data while protecting the privacy of individuals that
are involved.

Erlich et al. provided an overview of possible privacy
breaches based on the information that can be derived from
genetic databases, and reviewed a number of techniques for
their prevention [9]. These techniques range from access
control and data anonymization techniques to cryptographic
solutions. There is also a large branch of research focusing
on privacy-preserving sequence comparison. Works in this di-
rection focus on privacy-preserving edit-distance computation
between genetic sequences, and typically deploy secure multi-
party computation and homomorphic encryption techniques
[5], [11]. This approach has however a number of problems.
First, due to computational complexity, these algorithms do
not scale well to large sequences, while genetic sequences
can reach three billion base pairs in length. Therefore, to
implement these techniques, outsourcing of the expensive
computations to the cloud is used, examples of the correspond-
ing secure protocols can be found in [6], [7]. Moreover, since
these approaches are based on cryptographic techniques, their
security relies on hardness of the underlying problems and
attacker’s computational power limitations. However, advances
in computer power do not guarantee that such cryptographic
techniques remain secure in the future. Therefore, given that
the data is unique and inherited, information theoretic security
is a desirable property for genomic data protection. Finally,
edit-distance does not provide sufficient information to draw
conclusions about functional similarity of genetic data to be
used in genetic analysis.

B. Our contribution

In this paper we study generative statistical modeling of
genetic sequences applied to sequence comparison and the
privacy-preserving properties of these models. Note that ge-
netic sequences can be seen as a natural code that sequentially
encodes amino acids and proteins. Therefore models that take
into account source memory, such as e.g. hidden Markov
models, have been successfully used in genetic sequence
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analysis [20]. Here we focus on the context-tree models,
proposed and studied by Willems et al. [19]. These models
are a special case of Markov chains and are closely related to
the concept of k-mers1 used in Bioinformatics for statistical
analysis of genetic data [4].

Application of context-tree models for genetic sequence
comparison was proposed in [10]. Furthermore, it was shown
in [12] that context trees can be applied to model coding
and non-coding parts of genetic sequences. Following the
Minimum Description Length (MDL) principle [15], in both
[10] and [12] compression rate of genetic sequences given an
estimated genetic sequence model was used to assess similarity
of the compressed and modeled sequences.

In our setting, we assume that a genetic database is
composed of genetic sequence models and some associated
relevant metadata. This database can be used to search genetic
sequences that are functionally similar to a query sequence.
Here genetic models are the only genetic information that
an attacker can deduce from the database, and therefore, we
analyze privacy as the privacy of an underlying genetic source
sequence given its model. Such models in general do not corre-
spond to a single sequence but to a class of sequences. Clearly,
the larger the class is, the better the privacy guaranties are. The
privacy-preserving properties of the models are characterized
by the uncertainty about the underlying source sequence and
thus correspond to the entropy of the source model. Hence our
approach provides information-theoretic security guarantees.

II. BACKGROUND AND NOTATION

Genetic sequences are described in terms of four symbols
from the alphabet A = {A,C,G, T} that correspond to the
DNA building blocks, called nucleobases, i.e. Adenine, Cyto-
sine, Guanine and Thymine. Although genomes of different
individuals are similar, each individual genome is unique.
Differences between genetic sequences result from genetic
variations that include substitution of one nucleotide with
another one and insertion or deletion of a subsequence of
nucleotides.

In the following, we denote by xN1 = x1x2x3 . . . xN ∈ AN

a genetic sequence of length N . Furthermore, a sequence of
arbitrary length is denoted by x, and a source sequence for
which we construct the statistical model is denoted by x̃.

III. SEQUENCE MODELING

In this section we first introduce the concept of context trees,
see e.g. [19], that we apply to model genetic sequences. Then,
we describe our approach to estimate the model corresponding
to a given sequence.

A. Context tree model for genetic sequences

A context tree is a tree structure whose nodes represent the
memory of the source. Given an observed source sequence,
each node in the tree is associated with a specific context
that represents the past of the current symbol in the observed

1Typically, k-mers refer to all subsequences of length k occurring in the
genetic sequence.

sequence. The leafs of the tree represent the contexts of maxi-
mum memory and have associated conditional probabilities,
characterizing probability of generating a symbol from the
source alphabet given its observed context.

More precisely, a genetic tree source is described in terms
of a context-tree model 〈ST , PT 〉 represented by a quaternary-
tree structure (resulting from the quaternary alphabet for
genetic sequences), see e.g. Figure 1. The tree model 〈ST , PT 〉
defines the leafs or contexts s ∈ ST and the conditional
probability distribution PT = {pT (x|s) : x ∈ A, s ∈ ST },
associated with occurrence of a symbol given its context.
For an observed sequence x, the context of a symbol xi
is defined by its at most D preceding symbols in reversed
order, i.e. xi−1xi−2 . . . xi−D. Therefore, given a tree model,
we can define a mapping ωST

(xi−1i−D) → s ∈ ST that maps
D preceding symbols of xi to a leaf in the tree model and
thus retrieve pT (xi|s), the probability of occurrence of symbol
xi after context s was observed. Then, given a tree source
model, we can determine the probability of sequence x being
generated by this source as follows:

Pr(x|〈ST , PT 〉) =
∏
i

pT (xi|ωST
(xi−1i−D)). (1)

In general, for a given sequence, we do not know the actual
source model that has generated this sequence. Therefore, we
have to find a good estimate for it, i.e. given this sequence we
have to estimate the corresponding contexts in the tree and
the associated conditional distribution. In the following, we
present the algorithm to estimate such models.

B. Model estimation

In order to estimate a tree model corresponding to sequence
x, we assume the model depth (or memory) to be D. Now
to estimate the sequence statistics, we process the sequence x
in a sequential way. For each symbol in the sequence we find
its context, defined by its D preceding symbols, and count
the total number of occurrences nas(x) of a symbol a ∈ A
with each observed context in the sequence. Here each distinct
observed context becomes a leaf in the tree. Moreover, for the
first symbol we assume some initial context s1. Now, given the
contexts and the counts, the conditional probability distribution
pT (x|s) is estimated as follows:

pT (x|s) =
nxs(x) + 1/2∑

a∈A n
a
s(x) + |A|/2

x ∈ A, s ∈ ST . (2)

λ

AA
pT (.|AA)

AC
pT (.|AC)

AG
pT (.|AG)

AT
pT (.|AT )

C
pT (.|C)

G
pT (.|G)

T
pT (.|T )

Fig. 1. An example of the context-tree model 〈ST , PT 〉 of depth 2, with root
λ and set of leafs ST = {T,G,C,AT,AG,AC,AA} with corresponding
conditional probabilities, given by PT = {pT (·|s) : ∀s ∈ ST }.
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The source model of the sequence x is now defined by
〈ST , PT 〉x, where ST corresponds to the distinct contexts
observed in the processed sequence x and represents the leafs
of the tree model, and PT = {pT (x|s), x ∈ A, s ∈ ST } cor-
responds to the conditional probability distribution associated
with each of these leafs.

IV. SEQUENCE COMPARISON

In order to apply our context-tree models for sequence
comparison, we need to define a measure to evaluate similarity
of an arbitrary genetic sequence x to a source sequence x̃,
given only its model 〈ST , PT 〉x̃. The MDL principle [15]
states that the model that describes the data in the shortest
possible way is the model that most probably generated this
data. Observe that compression rate characterizes the amount
of bits required to describe data in a concise way. Furthermore,
the techniques presented in the previous section originally
aimed at finding good source coding distributions, and are
characterized by asymptotically optimal performance. Thus
based on the MDL principle and the fact that a model that
closely relates to an observed sequence also results in a low
compression rate, we use compression rate to characterize
sequence similarity.

The compression rate of a sequence xM1 , given a tree model
〈ST , PT 〉 is estimated as the logarithm of the probability of
the sequence being generated by this model:

R(xM1 |〈ST , PT 〉) = − 1

M

M∑
i=1

log2(pT (xi|ωST
(xi−1i−D)). (3)

For our problem, we use parameter pT equals 1/4, when there
is no leaf in ST associated with a subsequence in xM1 .

Clearly, compression rate of a sequence given its model
depends on both accuracy and complexity of this model.
Therefore, to take into account model complexity we will use
compression rate of a sequence x̂ given a source model of x̃
relative to the compression rate of this sequence given its own
model. Thus in this work we use the normalized information
gain as a similarity measure, defined as

∆R(x̂)

Rx̂
=
R(x̂|〈ST , PT 〉x̃)−Rx̂

Rx̂
, (4)

where Rx̂ = R(x̂|〈ST , PT 〉x̂) is the compression rate of the
sequence x̂ given its own model.

Note that while estimating the compression rate for the
query sequence, the best (lowest) compression rate is achieved
with the model that corresponds to the query sequence itself.
Furthermore, the more similar the query sequence is to the
source sequence, the more similar their models are, and
thus the better the compression that is achieved using the
model corresponding to the source sequence. Therefore, for
statistically similar sequences the resulting information gain
will be small. Also the opposite is true, and for sequences
with very distinct models, the information gain achieved with
the correct model will be high.

We will use information gain estimates based on the context-
tree models to determine whether the genetic sequences are

(functionally) similar or not. The utility of our approach is
tested on the publicly available genetic data to which mutations
are introduced, in Section VI.

V. PRIVACY ANALYSIS

Another aspect of genetic sequence modeling that we study
in this paper is privacy. Here we regard privacy as uncertainty
about the source sequence x̃, given its corresponding model
〈ST , PT 〉x̃. For the attack model we assume that an attacker
only has access to the sequence models. Note that the sequence
models actually correspond to a class of sequences, therefore
the attacker’s best strategy is to reconstruct the most probable
sequence that can be generated by the given sequence model.
However, the context-tree models correspond to a class of
sequences that are all generated by this model with equal
probability. Thus the attacker cannot distinguish the original
sequence x̃ from the other sequences that can be generated by
the model.

In order to measure the privacy level of our models, we
define privacy as a function of the number of sequences
corresponding to the model of the underlying source sequence.
This measure of privacy is known as equivocation [16] and is
given by

E(x̃) = H(x̃|〈ST , PT 〉x̃) = log2(K), (5)

where K is the number of sequences that are generated by the
model 〈ST , PT 〉x̃. The next step is to estimate the equivocation
of our context-tree models.

A. Type-class cardinality

The type-class T , see [8] and [14], of a sequence x̃ with
respect to a tree model is defined as the set of sequences that
have the same symbol counts nas in the leafs of their tree model
as the source sequence x̃, i.e.:

TST
(x̃) = {x̂ ∈ AN : nas(x̂) = nas(x̃),∀s ∈ ST , a ∈ A}. (6)

Note that our context-tree model only contains conditional
probabilities and no symbol counts in its leafs. Therefore, to
construct the type-class, one first needs to estimate the counts
from the available conditional probabilities. This requires
knowledge of the length of the original sequence used to
construct the model. While this information is in general
not available, we can assume that one (e.g. the attacker)
can approximate or make an assumption about the sequence
length N̂ , approximate the counts, and then construct the type-
class. Clearly, since all the sequences from the type-class are
equiprobable from an attacker point of view, the cardinality of
the type-class provides us with the number of sequences K
that are generated by the corresponding model, and thus can
be used to get the equivocation estimate.

We use Whittle’s formula [18] to calculate the cardinality
of a type-class, given the transition frequency matrix FS (see
the next subsection for the details) and the initial s1 and final
sL contexts corresponding to the source sequence:

K = |TS(x̃)| = CS

∏
s∈S FS(s, ∗)!∏
t,v∈S FS(t,v)!

, (7)
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where FS(s, ∗) =
∑

v∈S FS(s,v) is the number of symbols
emitted with context s, and CS is the cofactor of entry (sL, s1)
of I− F̂S , with F̂S being the transition frequency matrix with
normalized rows.

B. Transition frequency matrix

Given the context-tree model and the symbol counts in its
leafs, an element of the transition frequency matrix FS(t,v)
gives the number of times context t is being followed by
context v in the source sequence, i.e.

FST
(t,v) = | {i : 1 ≤ i ≤ N, si = t, si+1 = v} |, t,v ∈ ST ,

(8)
where the context sequence sL1 = {s1, . . . , sL} is the con-
catenated set of contexts that occur successively in the source
sequence.

For the context-tree models described in Section III, the next
context si+1 follows from the current context si and current
(ith) symbol xi in the sequence: si+1 = xisi

D−1
1 , where D is

the depth of the tree. Therefore, the transition frequency matrix
can be constructed directly from the model counts nas, s ∈ ST

as

FST
(t,v) =

{
nat , v = atD−11 , a ∈ A, t,v ∈ ST

0, otherwise
.

(9)
In order to apply Whittle’s formula and evaluate the type-
class size, besides the transition frequency matrix FS , we also
need to know the initial and final contexts that occurred in
the source sequence. We assume that the initial context s1 is
predefined and that it is known. The final context sL can then
be derived from the transition frequency matrix and the initial
context using the flow conservation equations:

FS(∗, s) + δs,s1 = FS(s, ∗) + δs,sL
, s ∈ S, (10)

δs,t =

{
1 if s = t
0 otherwise , (11)

where FST
(∗, s) =

∑
t∈S FS(t, s) is the number of transitions

into context s. Now, given the transition frequency matrix
and initial and final contexts, the privacy-preserving properties
of our context-tree models are given by equivocation (5)
estimated with the help of Whittle’s formula (7).

VI. EXPERIMENTAL RESULTS

In order to evaluate the performance of context trees for
privacy-preserving sequence modeling, we apply our method

Fig. 2. Average compression rate of sequences based their own models.

to subsequences of the human reference genome [17]. We use
a set of distinct genomic subsequences, each corresponding to
a different gene. Moreover, for each gene we have generated
a set of similar sequences by applying a predefined number
of mutations. It is well-known that on average the genomes
of human individuals are 99.5% similar [13]. These 0.5% of
genetic variations come from different types of mutations, such
as single nucleotide variants, indels (insertions or deletions
of a block of nucleotides of length < 100 ), and large-scale
structural variants. Furthermore, most genetic variation occurs
in a limited region of the human genome. In this work, we use
a simplified mutation model, where we apply single nucleotide
mutations of 1 per 1000, 1 per 100, and 1 per 10 base-pairs,
as well as indels of length 10, occurring once per 1000 base-
pairs, in order to simulate a set of similar sequences.

A. Utility performance

First, we evaluate the utility performance of the models
for genetic sequence comparison as a function of tree-depth
(characterizing model complexity) and sequence length. We
start with estimating the compression rate of the source
sequence, see Figure 2. Note that as the compression rate is
measured in bits per base-pair (bp), a compression rate smaller
than 2 corresponds to actual compression of the sequence.
On average the compression performance of the context-
tree models improves when larger tree-depth is used. Since
compression rate indicates how well the model fits the data,
we may conclude that including larger memory in the models
and thus increasing its complexity helps to better describe
the gene data. This can be supported by data interpretation,
since genes correspond to coding regions of the genomes.
However, compression rate of individual sequences does not
provide information about the specificity of the model when
distinguishing between different sequences.

Next, we evaluate the performance of the context-tree
models in distinguishing whether the sequences are similar
or not. We have evaluated the normalized information gain
for sequences with various rates of mutation in comparison
to the source sequence, see Figure 3. Furthermore, we have
also applied the context-tree models to estimate the normal-
ized information gain corresponding to the other genes, see
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Fig. 3. Histograms of the distributions of the normalized information gain
for sequences with different mutation rates.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

82



Fig. 4. Performance of context-tree models in distinguishing between se-
quences with similar (limited number of mutations) and distinct (other genes)
functionalities.

Figure 3. Based on our results, we conclude that the context-
tree models can be applied to efficiently distinguish between
similar (sequences with mutation rate smaller than 1/100) and
non-similar sequences by defining an appropriate threshold.
Note that models with higher complexity perform better in
distinguishing between similar and distinct sequences. This is
not surprising given the compression results discussed above.

Finally, we evaluate the performance of the context-tree
models for distinguishing sequences with different function-
alities. In this experiment we use sequences corresponding
to different genes (or functionalities). Furthermore, we have
simulated a set of sequences with similar functionalities by
introducing the following mutations: 1 mutation per 1000, 1
mutation per 100, and 10 indels per 1000 base-pairs in com-
parison to the source sequences. Figure 4 shows the resulting
ROC curves demonstrating the performance of models with
different complexity. We conclude that a perfect distinction
can be achieved with the models of depth 3 or larger, but also
the models of depth 2 achieve an acceptable performance.

B. Privacy performance

Finally, we evaluate the privacy-preserving properties of
our models in terms of equivocation. We plot equivocation
as a function of sequence length in Figure 5. We see that
with our models we can achieve very high privacy levels.
In contrast to the information gain, improved equivocation
is achieved for smaller tree-depth. Therefore there exists a
trade-off between privacy and utility that should be taken into
account when selecting models for privacy-preserving genetic
sequence comparison.

VII. CONCLUSIONS

In this paper we have studied the use of context-tree
models for privacy-preserving modeling of genetic sequences
in application to sequence comparison. We have focused on
functional sequence similarity that can be expressed as statis-
tical similarity of compared sequences, and used normalized
information gain as a similarity measure. Furthermore, privacy
of the context-tree models is given in terms of equivocation,
that characterizes uncertainty about the source sequence given
its model. Based on the experimental results, we can con-
clude that context-tree models can be successfully applied
for privacy-preserving sequence comparison resulting in both
good discriminating and privacy performance. However, since

Fig. 5. The privacy and utility properties for tree models of various depths.

there is a trade-off between privacy and utility, model complex-
ity has to be adjusted meeting the requirements of a specific
application.
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Abstract—In this paper, we maximize the expected achievable
rate of buffer-aided relaying by using a hybrid scheme that
combines three transmission strategies, which are decode-and-
forward (DF), compress-and-forward (CF) and direct transmis-
sion (DT). The proposed hybrid scheme is dynamically adapted
based on the channel state information. This includes adjusting
the data rate and compression when compress-and-forward is
selected. We apply this scheme to three different models of the
Gaussian block-fading relay channel, depending on whether the
relay is half or full duplex and whether the source and the
relay have orthogonal or non-orthogonal channel access. The
integration and optimization of these three strategies provide a
more generic and fundamental solution and give better achievable
rates than the known schemes for buffer-aided relaying. We
compare the achievable rates to the upper-bounds of the ergodic
capacity for each one of the three channel models.

I. INTRODUCTION

As well-known, important capacity theorems were estab-

lished for the physically degraded and reversely degraded

discrete memoryless full-duplex relay channel in [1]. This

topic has emerged as an important research area in the

wireless communication field as well [2], [3]. Achievable rates

and capacity upper-bound results for half-duplex relays in

fixed-gain Gaussian channels were provided in the literature

assuming non-orthogonal channel access of the source and

relay [4], and also assuming orthogonal channel access [5],

[6]. More recent results were provided in [7]. We know

from these references that, similar to the full-duplex case [1],

[8], the best known upper bounds on the capacity are the

max-flow min-cut bounds, and that there are three different

coding strategies that maximize the achievable rates, which

are decode-and-forward (DF), compress-and-forward (CF) and

direct transmission (DT) from the source to the destination.

None of these three strategies is globally dominant over the

other two, but rather each one of them can achieve higher rates

than the others in specific scenarios depending on the qualities

of the source-relay, source-destination and relay-destination

channels. Furthermore, there are other contributions in the

literature that consider fading relay channels. For example,

the quasi-static (block-fading) half-duplex relay channel was

studied, and it was shown that dynamic adaptation of the

transmission strategies using DF and DT is needed in order to

maximize the expected achievable rates [9]. However, CF was

not considered and channel allocation was fixed beforehand

and not subject to optimization therein. It is obvious that mak-

ing channel allocation dynamic and subject to optimization

would add to the degrees of freedom in the system design

and enable achieving higher rates. Optimal channel allocation

for Gaussian (non-fading) orthogonal and non-orthogonal relay

channels was considered in a number of papers, and the

obtained results for the best achievable schemes were based on

DF only [5], [10], [4]. Recently, “buffer-aided relaying” was

proposed and studied for the cases when there is no direct

link from the source to the destination [11], [12], [13], and

also when the direct link is available and utilized [14]. We are

interested in the latter case in this work.

Having gone through many of the most important works in

the literature that considered block-fading relay channels, we

still believe that there is room for improvement since they all

focus on dynamic adaptation of decode-and-forward relaying

strategies and they do not consider compress-and-forward as

well, although there are certain scenarios over which CF can

be better than DF as we know from the case of fixed-gain

channels. So, in this work, we consider a buffer-aided hybrid

scheme that combines DF, CF and DT and switches among

them dynamically based on the channel conditions, and we

consider optimizing the resource allocation for this hybrid

scheme to maximize the expected achievable rates. We believe

that this is an important contribution to the literature since it

is more generic than the known schemes and, hence, it can

achieve higher rates when optimized properly.

Before we end this section, we want to mention that the

concept of “buffer-aided relaying” was also considered for

dual-hop broadcast channels and it was called “joint user-and-

hop scheduling” since the buffering capabilities are actually

needed to enable dynamic and flexible scheduling (i.e. channel

allocation) among multiple users (destination nodes) and the

relay [15]. Also, it was also applied to other channel models

that involve relaying such as the bi-directional relay channel

[16], [17], the shared relay channel [18] and overlay cognitive

radio networks [19]. The list of references on buffer-aided

relaying provided here is not exhaustive.

II. BLOCK-FADING RELAY CHANNEL MODELS

We consider a three-node network that consists of a source

(S) that wants to send information to a destination (D) with the

assistance of a relay (R). We assume a Gaussian block-fading

model for the channels between the nodes. We also assume

that all channel blocks have the same duration (T in seconds)

and bandwidth (W in Hz) and that they are large enough to
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Fig. 1. Channel Models

achieve the instantaneous capacity1. Furthermore, we assume

that the source and relay transmit using a constant (maximum)

power per unit bandwidth (in Jouls/sec/Hz). We investigate

three different models for the relay channel that are shown in

Fig 1. We call them; (a) half-duplex – orthogonal access, (b)

full-duplex – non-orthogonal access, and (c) orthogonal access.

In the figure, XS[k] and XR[k] are the transmitted (complex

field) source signal and relay signal, respectively, in channel

block k. Similarly, YR[k] and YD[k] are the received signals at

the relay and destination, respectively, and ZR[k] and ZD[k]
are the added Gaussian noise at these two nodes, which are

mutually independent and have circularly symmetric, complex

1As well-known, achieving the capacity requires infinite code length.
However, with sufficiently long codewords, we can transmit at channel
capacity with negligible probability of error.

Gaussian distribution with unit variance. Furthermore, hSD[k],
hSR[k] and hRD[k] are the channel complex coefficients, which

stay constant during one channel block k and change randomly

afterwards. The corresponding signal-to-noise-ratio (SNR) of

these channels, in a given channel block k, are denoted γSR[k],
γSD[k] and γRD[k], respectively, where γ[k] = |h[k]|2P̄ . The

probability density function (PDF) of the channel gain (|h|2)

over each one of the three links is a continuous function. Over

each link, the receiver knows the channel complex coefficient

h[k] perfectly, but the corresponding transmitter2 knows only

the channel gain |h|2.

The controllable switch in channel model (a) makes only

one of the two nodes (source or relay) transmit (subject to

optimization). In channel model (c), YD1
[k] and YD2

[k] are the

received signals from the source and the relay, respectively,

over orthogonal channels. Both ZD1
[k] and ZD2

[k] are added

Gaussian noise with unit variance. We assume that the two

orthogonal channels have the same size (TW ).

The instantaneous (i.e. in a given channel block k) channel

capacities are denoted be CSD[k], CSR[k] and CRD[k] for the

source-destination, source-relay and relay-destination links,

respectively. For channel models (a) and (c), where we have

orthogonal access, the channel capacities (per unit bandwidth)

follow the well-known capacity of AWGN channels Cx[k] =
log (1 + γx[k]), ∀x ∈ {SD, SR,RD}. For channel model (b),

where we have non-orthogonal access, the source-relay link

will still be an AWGN channel. On the other hand, the source-

destination and relay-destination links form a multiple-access

channel (MAC). It can be proven3 that for optimality, the desti-

nation should decode the relay’s message first and then process

the source’s message. Thus, CSD[k] = log (1 + γSD[k]) and

CRD[k] = log
(

1 + γRD[k]
1+γSD[k]

)

.

III. COMMUNICATION SYSTEM DESCRIPTION

A. System Requirements

We investigate a hybrid communication scheme that com-

bines three different strategies; direct transmission (DT),

decode-and-forward (DF) and compress-and-forward (CF).

These schemes are adapted dynamically and optimally based

on the channel conditions in order to maximize the expected

achievable rate. When the source transmits a new codeword,

it decides (subject to optimization) if the codeword will be

used for DT, DF or CF, and it adjusts the data rate (denoted

by RDT[k], RDF[k] and RCF[k]) of the codeword accord-

ingly. As an optimization framework, we assume that the

proposed hybrid scheme uses orthogonal time-sharing of the

three transmission strategies in the same channel block. The

time sharing ratios are subject to optimization. For notation,

θDT[k], θDF[k] and θCF[k] denote the time sharing ratio in a

given channel block k for the DT, DF and CF transmission

2This assumption is stemmed from practical system design considerations.
As a consequence of it, beamforming of the source and relay signals towards
the destination is not feasible, and, hence, β in formulas (5) and (7) in [4]
equals zero under our assumptions.

3The proof is omitted here for brevity. It is available in the full-version of
this paper, which is available online [20].
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strategies, respectively. They refer to the source transmission

phase of all of these strategies.

In the DF case, the relay fully decodes the source message

and it generates and stores an amount of information, denoted

by R∗
DF

[k] that would be sufficient for the destination to

decode the source message reliably (given that the destination

utilizes both the source and relay signals to decode the source

codeword). For example, the relay can store a bin index (in the

sense of Slepian-Wolf coding [21]) of the source message that

indicates the partition at which the source codeword lies. In the

CF case, the relay encodes and stores a quantized version of

the received signal using, e.g. Wyner-Ziv lossy source coding

[22]. The data rate of this generated message by the relay is

denoted by R∗
CF
[k].

In addition to the availability of the channel state informa-

tion, another important requirement to support the adaptivity

of the system is having unlimited buffering capability at the

relay and the destination. This is because when the source

transmits a new codeword and the relay decodes or compresses

it, it does not forward it directly to the destination in the

same or the following channel block, but it rather stores it and

it adjusts its transmission rate based on the relay-destination

channel quality. Thus, the relay might send the information

bits that corresponds to one codeword of the source over

multiple channel blocks or combine the information bits that

corresponds to more than one codeword of the source. This

was properly explained in [14].

B. Data Rates of CF

In CF, the data rate of the source codeword is bounded

by the capacity of the single-input multiple-output (SIMO)

channel assuming that the relay and destination are two

antennas of the same receiver.

RCF[k] < θCF[k] log (1 + γSR[k] + γSD[k]) (1)

Notice that if RCF[k] ≤ θCF[k]CSD[k], then the destination

can decode the source message via direct transmission and

the relay does not need to forward anything. For notation,

we define γCF[k] = exp
(

RCF[k]
θCF[k]

)

− 1, where the data rate is

measured in nats/sec/Hz.

Theorem 1 (Rate of compressed signal at the relay):

Given that γSD[k] < γCF[k] < γSR[k]+γSD[k], the data rate

of the encoded compressed signal by the relay must satisfy

R∗
CF
[k]

θCF[k]
≥ log

(

1 +
(γCF[k]− γSD[k]) (1 + γSD[k] + γSR[k])

(γSD[k] + γSR[k]− γCF[k]) (1 + γSD[k])

)

(2)

in order to enable the destination to decode the source message

reliably.

The proof is omitted here due to space constraint. It is

available in [20].

C. Optimization Problem Formulation

We write the main optimization problem in a generic form

that is applied to the three channel models in Fig. 1. We want

to maximize the average total achievable rate of the relay

channel, which is the sum of the rates achieved by the three

transmission strategies. The relay should transmit sufficient

amount of rate to enable the destination to decode the source

messages reliably.

max
ζ[k] ∀k

R̄DT + R̄DF + R̄CF (3a)

subject to R̄RD ≥ R̄∗
DF + R̄∗

CF, (3b)

RDT[k] = θDT[k]CSD[k], (3c)

RDF[k] = θDF[k]CSR[k], (3d)

R∗
DF[k] = θDF[k]

(

CSR[k]− CSD[k]
)+

, (3e)

RRD[k] = min (θRD[k]CRD[k], Q[k]) (3f)

in addition to (1) and (2) (at equality).

In (3), X̄ = limK→∞
1
K

∑K
k=1 X [k], ∀X ∈ {RDT, RDF,

RCF, RRD, R∗
DF

, R∗
CF
}. Furthermore, Q[k] is the normalized

total amount of information stored in the relay’s buffers

at the start of channel block k, and (x)+ = max(x, 0).
ζ[k] = {θDT[k], θDF[k], θCF[k], RCF[k], θRD[k]} is the set of

optimization variables for channel model (a). They are con-

strained by

θDT[k] + θDF[k] + θCF[k] + θRD[k] = 1 (4)

Eq. (4) only applies to channel model (a). In channel models

(b) and (c), θRD[k] = 1 over all channel blocks, and

θDT[k] + θDF[k] + θCF[k] = 1 (5)

IV. OPTIMAL SOLUTION

We go through the main steps to be able to obtain the

solution of (3).

Lemma 1 (Queue at edge of non-absorption):

A necessary condition for the optimal solution of (3) is

that the queue in the buffer of the relay is at the edge of non-

absorption. Consequently, for K → ∞, the impact of the event

Q[k] < θRD[k]CRD[k], k = 1, · · · ,K is negligible. Therefore,

the optimal solution will have

R̄RD = lim
K→∞

1

K

K∑

k=1

θRD[k]CRD[k] (6)

and the constraint (3b) will be satisfied at equality.

The proof follows the same steps that are given in [11,

Theorem 1 and Theorem 2].

By using the Lagrangian dual problem of (3), we get

max
ζ[k] ∀k

R̄DT + R̄DF + R̄CF − λ
(
R̄∗

DF + R̄∗
CF − R̄RD

)
(7)

where λ ≥ 0 is the Lagrangian multiplier. A direct conse-

quence of Lemma 1, in particular (6), is that the achievable

rates in a given channel block k are only dependent on their

respective optimization variables ζ[k]. Therefore, (7) can be

transformed into a number K of independent optimization

problems that are solved independently.

max
ζ[k]

RDT[k]+RDF[k]+RCF[k]−λ (R∗
DF[k] +R∗

CF[k]−RRD[k])

(8)
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and λ in all K optimization problems should be adjusted

globally such that the constraint (3b) is satisfied at equality.

Therefore, the optimal value of λ depends on the channel

statistics of the three links SD, SR and RD.

Based on the new defined notations, we can show that (8)

can be written as

max
ζ[k]\{RCF[k]}

θDT[k]φDT[k] + θDF[k]φDF[k]

+θCF[k]φCF[k] + θRD[k]φRD[k]
(9)

where

φDT[k] = CSD[k] (10a)

φDF[k] = RDF[k]/θDF[k]− λR∗
DF[k]/θDF[k] (10b)

φCF[k] = max
RCF[k]/θCF[k]

(RCF[k]/θCF[k]− λR∗
CF[k]/θCF[k])

(10c)

φRD[k] = λCRD[k] (10d)

Consequently, the optimization of RCF[k]/θCF[k] is inde-

pendent of the optimal value of the channel access ratios. It

depends on the value of λ, which is a global variable that

is not a function of the instantaneous channel capacities in

a given channel block k. This is valid for all three channel

models under consideration.

Theorem 2 (Optimal RCF allocation):

Given that 0 ≤ λ ≤ 1, then the optimal RCF[k] allocation

is given by

RCF[k]

θCF[k]
= max

(

log ((1− λ)(1 + γSD[k] + γSR[k])) , CSD[k]
)

(11)

The proof can be obtained by solving the optimization

problem (10c). The solution steps are omitted for brevity. They

are available in [20].

A direct consequence of Theorem 2 is that in all channel

blocks k that have RCF[k] > θCF[k]CSD[k], we will have

φCF[k] = log (1 + γSR[k] + γSD[k]) + λ log

(
1 + γSD[k]

γSR[k]

)

+λ log(λ) + (1− λ) log(1− λ)
(12)

Theorem 3 (Selecting transmission strategy):

Given that λ < 1, the optimal solution will have only one

transmission strategy (DF, CF or DT) selected per channel

block k, and in channel model (a), either the source or the

relay transmits and not both of them. The transmission strategy

is selected according to

ξ[k] = argmax
x

φx[k] (13)

where x ∈ {DT,DF,CF,RD} (for channel model (a)), or x ∈
{DT,DF,CF} (for channel models (b) and (c)). Thus, we get

θx[k] = 1 if ξ[k] = x, and θx[k] = 0 if ξ[k] 6= x.

The proof is straightforward by solving (9). Notice that

we assume that the channel gains are random variables with

continuous probability distribution. Therefore, φ of each trans-

mission strategy will also be random, and the probability that
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Fig. 2. Achievable rates for channel model (a).

two different strategies maximize (13) in a given channel block

is zero. Consequently, the solution of (9) is always unique

when λ < 1.

We can also prove that we have strong duality since the

time-sharing condition (refer to [23]) is satisfied in our prob-

lem. Furthermore, we can prove that, regardless of the channel

statistics, the optimal value of λ that maintains the constraint

(3b) at equality will satisfy 0 ≤ λ ≤ 1. At the special case

when λ = 1, which happens when the SR link is very strong,

the solution will not be unique since φDT[k] = φDF[k] for all

values of k at which γSR[k] ≥ γSD[k]. However, we can show

that in this case, the optimal achievable rate will equal the

capacity upper-bound. All of these proofs and extra details,

including the characterization of upper bounds, can be found

in [20].

V. NUMERICAL RESULTS

We make our numerical results assuming that the distance

between the source and the destination is dSD, and the relay

is located on the straight line between the source and the

destination such that the distance between the source and

the relay is dSR, and the distance between the relay and

the destination is dRD = dSD − dSR. The channels between

the nodes are Rayleigh block-faded, and the average channel

qualities are given by this formula

γ̄x = ε

(
dx
dSD

)−α

, (14)

where x ∈ {SR,RD, SD}, α = 3 is the path loss exponent,

and ε is a constant that is related to the transmission power,

antenna gains and total distance. We use two cases in the

simulation, ε = 100.5 ≈ 3.1623, which gives γ̄SD = 5 dB, and

ε = 1, which gives γ̄SD = 0 dB.

In the simulations (Figs. 2,3,4), we plot the expected achiev-

able rates versus the normalized distance of the relay to the

source dSR

dSD
. Also, we compare the optimal hybrid scheme to

the upper-bounds and to sub-optimal schemes that use DF and

DT without CF, or use CF and DT without DF.
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VI. CONCLUSIONS

We showed in this paper how to integrate compress-and-

forward with decode-and-forward in buffer-aided relaying sys-

tems, and we have applied that to three different models of the

relay channel. For optimality, only one transmission strategy

is selected in a given channel block based on the channel

conditions. The optimization of the data rate for compress-

and-forward is obtained using a simple closed-form formula.

The numerical results demonstrated the gains of the proposed

scheme.
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Abstract—Cognitive radio transceiver can opportunistically
access the underutilized spectrum resource of primary systems
for new wireless services. With interweave implementation,
secondary packet transmission may be interrupted by the pri-
mary user’s transmission. To complement previous work on the
resulting extended delivery time (EDT) [1], we consider sec-
ondary packet transmission with non-work-preserving strategy,
i.e. interrupted packets will be re-transmitted. Both continuous
sensing and periodic sensing cases are considered, for which
EDT distributions are derived. Selected numerical and simulation
results are presented to verify the mathematical formulation.

Index Terms—Cognitive radio, opportunistic spectrum access,
packet delivery time, queuing analysis.

I. INTRODUCTION

Radio spectrum scarcity is one of the most serious problems

nowadays faced by the wireless communications industry.

Cognitive radio is a promising solution to this emerging

problem by exploiting temporal/spatial spectrum opportunities

over the existing licensed frequency bands [2], [3]. Different

implementation strategies exist for opportunistic spectrum

access (OSA). In underlay cognitive radio implementation,

the primary and secondary users simultaneously access the

same spectrum, with a constraint on the interference that

secondary user (SU) may cause to primary transmission. With

interweave implementation, the SU can access a primary user

(PU) channel only when the channel is not used by PUs, and

must vacate the occupied channel when the PU appears. The

secondary transmission of a given amount of data may involve

multiple transmission attempts, resulting in extra transmission

delay. When the secondary transmission is interrupted by PU

activities, the secondary system can adopt either non-work-

preserving strategy, where interrupted packets transmission

must be repeated [4], or work-preserving strategy, where the

secondary transmission can continue from the point where it

was interrupted, without wasting the previous transmission [5].

In our previous work [1], we carried out a thorough statistical

analysis on the extended delivery time (EDT) [4] of secondary

packet transmission with work-preserving strategy, and then

applied these results to the secondary queuing analysis. Typi-

cally, work-preserving packet transmission requires packets to

be coded with certain rateless codes such as fountain codes,

which may not be available in the secondary system.

There has been a continuing interest in the delay and

throughput analysis for secondary systems [6]–[11]. There

has been little previous work on delay analysis with periodic

spectrum sensing. [12] discusses periodic sensing, focusing

on a single secondary transmission slot. Design of periodic

sensing parameters has been discussed in [13], [14]. [8] derives

expressions for average delay for continuous and periodic

sensing. A framework of Markov decision processes is pre-

sented by [15] to derive the optimal policy for channel access

under periodic sensing assumption.

In this paper, we investigate the statistical characteristics of

the EDT with non-work-preserving strategy, and apply them

to evaluate the delay performance of secondary transmission

considering a high SNR regime. Analysis with non-work-

preserving strategy is, in general, more challenging as the

transmission of a secondary packet will involve an interweaved

sequence of wasted transmission slots and waiting time slots,

both of which can have random time duration, followed by

the final successful transmission slot. Note that with work-

preserving strategy, these are no wasted transmission slots. To

the best of our knowledge, the complete statistics of the EDT

for non-work-preserving strategy has not been investigated in

literature. In this work, we first derive the exact expressions

for the distribution function of EDT assuming a fixed packet

transmission time in terms of moment generating function

(MGF) and probability density function (PDF). Two spectrum

sensing scenarios are considered – continuous sensing and

periodic sensing. The generalization to random packet trans-

mission time, due to the effect of fading wireless channel and

noise, can be addressed in a similar manner as in [1], and

is omitted here due to space limitation. We then apply the

results on EDT to the secondary queuing analysis. Numerical

and simulation results are presented to verify the analytical

approach and illustrate secondary queuing performance.

The rest of this paper is organized as follows. In section II,

we introduce the system model and the problem formulation.

In section III, we analyze the EDT of a single packet for both

continuous sensing case and periodic sensing case. In section
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Fig. 1. Illustration of PU and SU activities and SU sensing for periodic
sensing case.

IV, we present the average queuing delay of the secondary

system in a general M/G/1 queuing set-up. Finally, this paper

is concluded in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the opportunistic access of a single channel of

the primary system. The PU occupies that channel according

to a homogeneous continuous-time Markov chain with an

average on-time of λ and an average off-time of µ. The SU

opportunistically accesses the channel for data transmission.

Specifically, the SU can use the channel only after PU stops

transmission. As soon as the PU restarts transmission, the SU

instantaneously stops its transmission.

The SU monitors PU activity through spectrum sensing1.

With continuous sensing, the SU senses the channel for

availability with a very small sensing period. Thus, the SU can

start its transmission soon after the channel becomes available,

with a negligible time delay. With periodic sensing, the SU

senses the channel with an interval of Ts. On each sensing

instance, if the PU is sensed busy, the SU will wait for Ts
time period and re-sense the channel. With periodic sensing,

there is a small amount of time when the PU has stopped its

transmission, but the SU has not yet acquired the channel, as

illustrated in Fig. 1. During transmission, the SU continuously

monitors PU activity and discontinues its transmission as soon

as the PU restarts. The continuous period of time during which

the PU is transmitting is referred to as a waiting slot. Similarly,

the continuous period of time during which the PU is off and

the SU is transmitting is referred to as a transmission slot. For

periodic sensing case, the waiting slot also includes the time

duration when the PU has stopped transmission, but the SU

has not sensed the channel yet.

In this work, we analyze the packet delivery time of sec-

ondary system, which comprises of an interleaved sequence of

the wasted transmission times and the waiting times, followed

by a successful transmission time. Note that a transmission

slot is wasted if its duration is less than the time required

to transmit the packet. The resulting EDT for a packet is

mathematically given by TED = Tw + Ttr, where Tw is the

1We assume perfect spectrum sensing here. The effect of imperfect sensing
[16], [17] will be considered in future work.

total of the waiting time and wasted transmission times for the

SU, and Ttr is the packet transmission time. In what follows,

we first derive the distribution of the EDT TED for continuous

sensing and periodic sensing cases, which are then applied to

the secondary queuing analysis in section IV.

III. EXTENDED DELIVERY TIME ANALYSIS

A. Continuous Sensing

The EDT for packet transmission by the SU consists of

interweaved waiting slots and wasted transmission slots, fol-

lowed by the final successful transmission slot of duration Ttr.
The distribution of waiting time Tw depends on whether the

PU was on or off at the instant of packet arrival. We denote

the PDF of the waiting time of the SU for the case when PU is

on at the instant of packet arrival, and for the case when PU is

off at that instant, by f
(c)
Tw,pon

(t) and f
(c)
Tw,poff

(t), respectively.

The PDF of the EDT TED for the SU is then given by

f
(c)
TED

(t) =
λ

λ+ µ
f
(c)
Tw,pon

(t− Ttr) +
µ

λ+ µ
f
(c)
Tw,poff

(t− Ttr),

(1)

where λ
λ+µ and µ

λ+µ are the stationery probabilities that the

PU is on or off at the instant of packet arrival, respectively. The

two probability density functions fTw,pon(t) and fTw,poff
(t)

above are calculated independently as follows.

Let Pk be the probability that the SU was successful in

sending the packet in the kth transmission slot. This means

that each of the first (k − 1) slots had a time duration of

less than Ttr, while the kth transmission slot had a duration

more than Ttr. Thus, Pk can be calculated, while noting that

the duration of secondary transmission slots is exponentially

distributed with mean µ, as

Pk = e−
Ttr
µ ·

(

1− e−
Ttr
µ

)k−1

. (2)

For the case when PU is off at the instant of packet arrival, if a

certain packet is transmitted completely in the kth transmission

slot, then the total wait time for that packet includes (k − 1)
secondary waiting slots and (k−1) wasted transmission slots.

Note that the duration of each of these (k − 1) waiting slots,

denoted by the random variable Twait, which is equal to PU

on time, follows an exponential distribution with PDF given

by f
(c)
Twait

(t) = 1
λ
e

−t
λ u(t), while the duration of each of the

previous (k−1) wasted secondary transmission slots, denoted

by the random variable Twaste, follows a truncated exponential

distribution, with PDF given by

fTwaste(t) =
1

1− e−
Ttr
µ

1

µ
e

−t
µ · (u(t)− u(t− Ttr)), (3)

where u(t) is the unit step function. The MGF of Tw,poff
for

the continuous sensing case, M
(c)
Tw,poff

(s) can be calculated

as

M
(c)
Tw,poff

(s) =

∞∑

k=1

Pk ·
(

M
(c)
Twait

(s)
)k−1

· (MTwaste(s))
k−1

,

(4)
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where M
(c)
Twait

(s) is the MGF of Twait for the continuous

sensing case, given by

M
(c)
Twait

(s) =
1

1− λs
, (5)

and MTwaste(s) is the MGF of Twaste, given by

MTwaste(s) =
1− eTtr(s−

1

µ )

(1− µs)(1− e−
Ttr
µ )

. (6)

After substituting Eqs. (2), (5), and (6) into Eq. (4), performing

some manipulation, using the following general formula for

partial fractions,

1

[x(x− a)]n
=

n−1∑

j=0

(−1)n
(
2n− j − 2

n− 1

)
1

a2n−j−1

×

[
1

xj+1
+

(−1)j+1

(x− a)j+1

]

, (7)

the proof of which is given in the appendix of [18], and taking

the inverse MGF, we obtain Eq. (8) as the PDF of Tw,poff

for continuous sensing case, where 1F1(., ., .) is the gener-

alized Hypergeometric function [19]. Note that the impulse

corresponds to the case that the packet is transmitted without

waiting. Further simplification of Eq. (8) is not evident.

For the case when PU is on at the instant of packet

arrival, the MGF of Tw,pon for the continuous sensing case

M
(c)
Tw,pon

(s) can be similarly calculated as

M
(c)
Tw,pon

(s) =

∞∑

k=1

Pk ·
(

M
(c)
Twait

(s)
)k

· (MTwaste(s))
k−1

.

(9)

Using similar manipulations used for the PDF of Tw,poff
, the

PDF of Tw,pon is obtained after simplification as shown in Eq.

(10).
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Fig. 2. Simulation verification for the analytical PDF of TED with continuous
sensing (Ttr = 4 ms, λ = 3 ms, and µ = 2 ms).

Fig. 2 plots the analytical expression for the PDF of the EDT

with continuous sensing as given in Eq. (1). The corresponding

plot for the simulation results is also shown. The perfect match

between analytical and simulation results verify our analytical

approach.

B. Periodic Sensing

For the periodic sensing case, the PDF of the EDT TED for

the SU packet transmission is given by

f
(p)
TED

(t) =
λ

λ+ µ
f
(p)
Tw,pon

(t− Ttr) +
µ

λ+ µ
f
(p)
Tw,poff

(t− Ttr),

(11)

where f
(p)
Tw,pon

(t) and f
(p)
Tw,poff

(t) denote the PDFs of the

waiting time of the SU with periodic sensing, for the case

when PU is on at the instant of packet arrival, and for the

case when PU is off at that instant, respectively. We again

derive the PDF of waiting time through MGF approach. The

MGF of Tw,poff
for the periodic sensing case, M

(p)
Tw,poff

(s),
can be calculated as

M
(p)
Tw,poff

(s) =

∞∑

k=1

Pk ·
(

M
(p)
Twait

(s)
)k−1

· (MTwaste(s))
k−1

,

(12)

where Pk is given in Eq. (2), MTwaste(s) is the MGF of the

time duration of a wasted transmission slot Twaste, which is,

noting that the PDF of Twaste remains the same as given in Eq.

(3) due to the memoryless property of exponential distribution,

given in Eq. (6), and M
(p)
Twait

(s) denotes the MGF of the wait

time in a single waiting slot. With periodic sensing, Twait
consists of multiple Ts, and follows a geometric distribution.

The MGF can be obtained as

M
(p)
Twait

(s) =

∞∑

n=1

(1− β)βn−1ensTs , (13)

where β denotes the probability that the primary user is

on at a given sensing instant provided that it was on at

the previous sensing instant Ts time units earlier, given by

β = λ
λ+µ+

µ
λ+µe

−( 1

λ+ 1

µ )Ts [1]. Note that β is a constant again

due to the memoryless property of exponential distribution.

Substituting Eqs. (2), (6), and (13) into Eq. (12), performing

some manipulation, and taking the inverse MGF, we obtain

the expression for f
(p)
Tw,poff

(t) as shown in Eq. (14).

For the case when PU is on at the instant of packet

arrival, the PDF of Tw,pon for the periodic sensing case can

be similarly calculated as shown in Eq. (15). Note that the

sequence of impulses corresponds to the case that the packet

is transmitted in the first transmission attempt on acquiring the

channel after a random number of sensing intervals/attempts.

Fig. 3 plots the cumulative distribution function (CDF)

of the EDT with periodic sensing, F
(p)
TED

(t), obtained by

numerical integration of the analytical PDF expression given

by Eq. (11). The corresponding plot for the simulation results

is also shown. The perfect match between analytical and

simulation results verify our analytical approach.

IV. APPLICATION TO SECONDARY QUEUING ANALYSIS

In this section, we consider the average transmission delay

for the secondary system in a queuing set-up as an application

of the analytical results in previous section. In particular, the

secondary traffic intensity is high and, as such, a first-in-first-

out queue is introduced to hold packets until transmission.
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f
(c)
Tw ,poff

(t) = e
−

Ttr
µ δ(t) +

e
−

Ttr
µ

λ+ µ
(1− e−αt)u(t) −

e
−

2Ttr
µ

λ+ µ
(1− e−α(t−Ttr))u(t − Ttr) +

∞
∑

i=1

(λµ)i

(λ+ µ)2i+1

(2i

i

)

×

[

1F1 (−i;−2i;−α(t− iTtr))e
−(i+1)

Ttr
µ u(t− iTtr)− 1F1 (−i;−2i;−α(t − (i+ 1)Ttr))e

−(i+2)
Ttr
µ u(t− (i+ 1)Ttr)

−1F1 (−i;−2i;α(t − iTtr))e
−αte

−(i+1)
Ttr
µ u(t− iTtr) + 1F1 (−i;−2i;α(t − (i+ 1)Ttr))e

−αte
−(i+2)

Ttr
µ u(t − (i+ 1)Ttr)

]

, (8)

f
(c)
Tw ,pon

(t) =
e
−

Ttr
µ

λ+ µ
(1 +

µ

λ
e−αt)u(t) +

∞
∑

i=1

(λµ)i

(λ+ µ)2i+1
e
−(i+1)

Ttr
µ

[

(2i

i

)

1F1 (−i;−2i;−α(t− iTtr)) · u(t − iTtr)

−
(2i

i

)µ

λ
e−α(t−iTtr)

1F1 (−i;−2i;α(t − iTtr)) · u(t− iTtr)−
(2i− 1

i

)(

1 +
µ

λ

)

1F1 (1− i; 1− 2i;−α(t − iTtr)) · u(t− iTtr)

+
(2i− 1

i

)(

1 +
µ

λ

)

e−α(t−iTtr)
1F1 (1− i; 1− 2i;α(t − iTtr)) · u(t − iTtr)

]

. (10)

f
(p)
Tw ,poff

(t) = e
−

Ttr
µ δ(t) +

∞
∑

n=1

[

(1− β)βn−1

µ
e
−

(t−nTs)

µ e
−

Ttr
µ 1F1

(

1− n; 1;−
1− β

β

t− nTs

µ

)

+
n
∑

i=1

[

(−1)ie
−(i+1)

Ttr
µ

(n− 1

i− 1

) 1

(i− 1)!

(t − iTtr − nTs)i−1

µi
(1 − β)iβn−ie

−(t−nTs−iTtr)

µ × 2F2

(

i+ 1, i− n; i, i;−
1− β

β

(t− nTs − iTtr)

µ

)]

]

.

(14)

f
(p)
Tw,pon

(t) = e
−

Ttr
µ

∞
∑

n=2

(n− 1)
(1 − β)2βn−2

µ
e
− t−nTs

µ 1F1

(

2− n; 2;−
1− β

β
·
t − nTs

µ

)

+ e
−

Ttr
µ

∞
∑

n=1

(1− β)βn−1δ(t − nTs)

+
∞
∑

n=1

n−1
∑

i=1



(−1)ie
−(i+1)

Ttr
µ

(n− 1

i

)

(1 − β)i+1βn−i−1 ×
ti−1e

−
t−nTs−iTtr

µ

(i− 1)!µi 1F1

(

i+ 1− n; i;−
1− β

β
·
t − nTs − iTtr

µ

)



 . (15)
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Fig. 3. Simulation verification for the analytical CDF of TED with periodic
sensing (Ttr = 4 ms, λ = 3 ms, µ = 2 ms, and Ts = 0.5 ms).

We assume that equal-sized packet arrival follows a Poisson

process with intensity 1
ψ

[1]. For the sake of simplicity,

transmission time Ttr of all packets is assumed to be a fixed

constant. As such, the secondary packet transmission can be

modelled as a general M/G/1 queue, where the service time

is closely related to the EDT studied in the previous section.

Following the similar approach in Sec. IV-B of [1], we can

analyze the queuing delay for non-work-preserving strategy.

We focus on the periodic sensing case in the following while

noting the analysis for the continuous sensing scenarios

can be similarly solved. Note the service time of a packet

depends on whether the PU is on or off when the packet is

available for transmission. To facilitate queuing analysis, we

now calculate the first and second moments of the service

time for these two types of packets.

First moments. The service time for packets seeing PU off is

denoted by STpoff
. Noting that STpoff

= Tw,poff
+Ttr, due to

the memoryless property of the non-work-preserving strategy,

we can calculate its first moment E[STpoff
] by following the

conditional expectation approach as

E[STpoff
] = e−

Ttr
µ ·Ttr+(1−e−

Ttr
µ )·E[(Twaste+Twait+STpoff

)].
(16)

Here the first addition term corresponds to the case that

the complete packet is successfully transmitted in the first

transmission slot, and the second addition term refers to the

case when the complete packet is not successfully transmitted.

For periodic sensing, it can be shown, from Eqs. (6) and (13),

that E[Twait] =
Ts

1−β and E[Twaste] = µ − Ttr
e
−

Ttr
µ

1−e
−

Ttr
µ

. The

first moment of STpoff
can be calculated from Eq. (16) as

E[STpoff
] =

(

e
Ttr
µ − 1

)(

µ+
Ts

1− β

)

. (17)

Since the case with PU on at the instant of packet arrival is

precisely the same as the case of PU off at the instant of packet

arrival preceded by a waiting slot, we can calculate E[STpon ],
the first moment of the service time for packets seeing PU on,

as

E[STpon ] = E[STpoff
]+

Ts
1− β

=
(

e
Ttr
µ − 1

)

·µ+e
Ttr
µ ·

Ts
1− β

.

(18)
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Fig. 4. Average queuing delay with periodic sensing (Ts = 0.5 ms, λ = 10
ms, and µ = 6 ms)

Second moments. It can be shown from Eqs. (6) and

(13) that E[T 2
wait] = T 2

s
1+β

(1−β)2 and E[T 2
waste] = 2µ2 +

e
−

Ttr
µ

1−e
−

Ttr
µ

(−T 2
tr−2µTtr). Using a similar equation as Eq. (16)

for second moment, and simplifying, we obtain

E[ST 2
poff

] = e
Ttr
µ

[

−2Ttr
Ts

1− β
− 2µTtr

]

+
(

e
Ttr
µ − 1

)(

e
Ttr
µ

[

2µ
Ts

1− β
+ 2µ2

]

+ T 2
s

1 + β

(1 − β)2

)

+
(

e
Ttr
µ − 1

)2
[

2
T 2
s

(1 − β)2
+ 2µ

Ts
1− β

]

. (19)

Similarly, the second moment of the service time for packets

seeing PU on can be defined as E[ST 2
pon

] = E[(Twait +
STpoff

)2], and calculated as

E[ST 2
pon

] = e
Ttr
µ

[

−2Ttr
Ts

1− β
− 2µTtr + T 2

s

1 + β

(1 − β)2

]

+ 2
(

e
Ttr
µ − 1

)

e
Ttr
µ

(

µ+
Ts

1− β

)2

. (20)

Finally, these moments can be substituted into Eqs. (45)-(55)

of [1] to calculate the average queuing delay.

Fig. 4 shows the average delay including the queuing delay

against the rate of arrival of data packets, for various values of

Ttr, both for work-preserving and non-work-preserving strate-

gies. It can be seen that as expected, work-preserving strategy

always performs better than non-work-preserving strategy.

Also, the performance difference between the two strategies

reduces as the packet transmission time Ttr decreases, as

shown by the vertical lines in the figure.

V. CONCLUSION

This paper studied the extended delivery time of a data

packet appearing at the secondary user in an interweave

cognitive setup assuming non-work-preserving strategy. Exact

analytical results for the probability distribution of the EDT

for a fixed-size data packet were obtained for continuous

sensing and periodic sensing cases. These results were then

applied to analyze the expected delay of a packet at SU in a

queuing setup. Simulation results were presented to verify the

analytical results.
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Abstract—We show how a beamforming technique for analyt-
ical spatial filtering, called flexibeam, can be applied to mobile
phone mast broadcasting so as to result in concentrations of
power where most devices are.

To that end, flexibeam is interpreted as transmission beam-
forming. An analytically described radiation pattern is extended
from a sphere to Euclidean space. A continuous beamforming
function is then obtained by the Fourier transform of the extended
radiation pattern. We then show how a Gaussian filter can be
approximately achieved using beamforming.

The method is then expanded by means of an example of a
collection of mobile phone masts covering an area of Zurich city
so as to concentrate energy where devices are concentrated.

I. INTRODUCTION

Beamforming has been deployed in mobile phone standards
starting already with 2G. The techniques have become ever
more sophisticated with each iteration. 4G/LTE, for example,
deploys MIMO-based beamforming.

In general, direct multi-user beamforming [1], [2] – creating
beams for each individual devices from mobile phone masts
– is a gargantuan task. There are simply too many users, and
a steady stream of accurate channel feedback [3] would be
required to account people and vehicles moving around.

Yet algorithms deployed to date are variations on a theme
within the MIMO framework: steering the beam towards a
single point [4], [5], [6]. In practise, one would like to be
able to concentrate energy in a way commensurate with the
locations of devices, namely target areas of interest not single
points, all the while building in tolerance for movement and
imprecise location information.

To increase received power, LTE devices can receive signal
from multiple base stations. This is a complex coordination
protocol in general, and one key component to its efficiency
is to have base stations target areas of importance. In this
paper, we apply a technique called flexibeam, which deter-
mines beamforming weights that when applied approximate
an optimal radiation pattern, so as to enable base stations
to jointly concentrate energy where most devices are. The
analytic framework allows tractable, numerically stable de-
termination of beamforming weights. Aiming for areas rather
than points minimises the required update rate, and reduces
the communication requirement.

To this end, Section II derives flexibeam from an explicit
transmit beamforming perspective. We then, in Section III,
illustrate its application using a Gaussian approximation to

track an object in the presence of uncertainty. Afterwards,
in Section III, we illustrate how energy can be concentrated
around a certain area. There we take an example of devices
concentrated around an area of Zurich city, and show how
the target radiation pattern can be approximated by a series
of Gaussian filters. We then illustrate how to determine each
base station’s beamforming weights so as to concentrate energy
where most devices are.

II. FLEXIBEAM FROM THE TRANSMIT PERSPECTIVE

In [7], we derived the receiving case for flexibeam. As a
consequence of the reciprocity theorem [8], beam-shapes so
designed can be used to receive or transmit. However, to gain
insight into its operation and application, we now derive the
transmission case directly.

Consider an array of L omni-directional receiving antennas,
with unit gains and positions p1, . . . ,pL ∈ Rn. Each antenna
emit an identical narrow-band signal s(t) ∈ C. Without loss
of generality, let the wavelength of this signal be λ = 1. The
signals originating from each antenna will sum coherently,
producing a radiation pattern, also called beam-shape of the
antenna array. To control this radiation pattern, different delays
and gains are introduced at each antenna:

xi(t) = γie
jφis(t), (1)

where γi > 0 and φi ∈ [0, 2π] are respectively the gain and
phase delay for antenna i. The signal seen at a far field target
with position r ∈ Sn−1 is given by [8], [9]

y(t, r) = s(t)

(
L∑
i=1

γie
jφie−j2π〈r,pi〉

)
,

= s(t)

(
L∑
i=1

w∗i e
−j2π〈r,pi〉

)
,

= s(t)b∗(r), (2)

where b(r) =
∑L
i=1 wie

j2π〈r,pi〉 is the array beam-shape, and
wi = γie

−jφi ∈ C are the beamforming weights. We observe
that beamforming is here the result of the physical summation
of the signals emitted by each antenna.

For matched beamforming (cf. Fig. 1), the beamforming
weights are chosen by

wi = e−j2π〈r0,pi〉, i = 1, . . . , L,
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Fig. 1: Example beam-shape obtained with matched beam-
forming.

where r0 ∈ Sn−1 is the steering direction. Thus, the gains
and delays at each antenna are respectively γi = 1 and φi =
2π〈r0,pi〉.

Now consider a notional continuous field of antennas cov-
ering Rn, over which we define a broadcast function x(t,p) ∈
L2(Rn,C). This describes the signal that would be broadcasted
by an antenna located at position p, and extends (1) to cover
all points in Rn:

x(t,p) = γ(p)ejφ(p)s(t) = w∗(p)s(t),

where w ∈ L2(Rn,C) is the beamforming function, that
generalises the concept of beamforming weights, and describes
the gains and delays to be applied at each position p ∈ Rn. The
signals emitted by this continuous field of antennas generate
constructive interference, and Eq. (2) becomes

y(t, r) = s(t)

(∫
Rn
w∗(p)e−j2π〈r,p〉dp

)
,

= s(t)ŵ∗(r). (3)

The beam-shape for the notional antenna field is then ŵ(r) ∈
L2(Sn−1,C). It describes the radiation strength of the beam-
formed antenna field towards various directions, and as such
acts as a spatial filter. The link to the beamforming function
is as follows:

ŵ(r) =

∫
Rn
w(p)ej2π〈r,p〉dp.

The beamforming function was defined thus far only over
the sphere Sn−1. To enable sampling at any point in the
plane, and to have a realisable n-dimensional Fourier transform
relationship, the filter needs to be extended to Rn. Let then
ω̂ : Rn → C be a function whose nD Fourier transform exists,
and on the hypersphere Sn−1 is equal to the target radiation
pattern we would like to achieve. We call ω̂(r) thus designed
the extended radiation pattern.

The actual choice of extension is application dependent,
and part of the design. The beamforming function can now
be computed by the Fourier transform

w(p) =

∫
Rn
ω̂(r)e−j2π〈r,p〉dr. (4)
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(a) Extended radiation pattern. Over
the unit circle it approximates well the
target radiation pattern.
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(d) Beam-shape obtained with
matched beamforming.

Fig. 2: Filtering a range of directions with flexibeam for Θ =
40◦ and 96 antennas. The beam-shape covers a much wider
range of directions than matched beamforming.

which, for an arbitrary target radiation pattern, would be
calculated numerically. However, the target and extended ra-
diation pattern can be designed so that an analytical Fourier
transform exists. In particular, and relevant for the example
we show in the next section, the n-dimensional symmetric
Gaussian

ω̂(r) =
1

(2π)n/2σn
e
− ‖r−r0‖

2

2σ
2 , (5)

with mean r0 ∈ Sn−1 and standard deviation σ has Fourier
transform

w(p) = (2π)ne−2π
2
σ

2‖p‖2e−j2π〈p,r0〉. (6)

Consider now L antennas with positions pi, i = 1 . . . L.
The beamforming weight for antenna i is then

w(pi)√∑L
i=1 |w(pi)|

2
=
w(pi)

β
.

Hence, the gains γi and phase delays φi for antenna i are given
by

γi =
|w(pi)|
β

, φi = arg (w(pi)) , i = 1, . . . , L.

The normalisation β prevents antennas from having too high
diversity in magnitude, which would magnify their response
to channel noise.
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Fig. 3: Evolution of the flexibeam beam-shape for various
angles and number of antennas.

How closely the beamforming achieves the target radiation
filter over the sphere Sn depends strongly on the number and
position of the antennas. This effectively is the ability of an
FIR filter to approximate an IIR filter using a given number
of taps (antennas).

III. TRACKING WITH FLEXIBEAM

Suppose we wish to track the direction of a target moving
on the plane. We initially think it is located at θ̂0 = 45◦, but
are uncertain. If we try to target it using too narrow a beam we
could miss the target altogether. We thus calculate beamform-
ing weights using flexibeam so as to obtain a radiation pattern
with a wide enough main lobe, centred around our estimate
θ̂0 = 45◦. This wider beam permits tracking for a longer period
of time, which avoids having to refresh the beam too often as
the target moves.

From experimental conditions, the optimal radiation pattern
ŵ(θ) was estimated to be

ŵ(θ) =
1√
2πΘ

e
− (θ−θ̂0)

2

2Θ
2 , (7)

where θ is an angle on the unit circle S1 measured in degrees,
and Θ = 40◦ is the desired width of the main lobe. For
practical purposes, we propose to extend ŵ(θ) to R2 by the 2D
symmetric Gaussian function (5), with r0 = (1, 1)/

√
2 ∈ S1,

σ =
√

2− 2 cos Θ. Strictly speaking, this is only an approx-
imate extension of Eq. (7). However, for reasonable beam
widths Θ, this approximation is accurate enough (see Fig. 2a),
and conveniently provides us with an analytical expression for
the beamforming function, shown on Fig. 2b.

The beamforming weights are determined by sampling the
beamforming function at the antennas’ positions (see Fig. 2b).
The resultant beam-shape in Fig. 2c can be seen in general to
be a good approximation. In contrast, matched beamforming
would require steering towards many directions to cover the
same area, and hence would be more likely to miss the moving
target if the refresh rate is not high enough.

For a fixed number of antennas Fig. 3a shows that for very
small Θ the beam-shape is essentially identical to the one

Fig. 4: Density function of pedestrians in Bellevueplatz,
Zurich. The black dots are sampled positions from which
the density has been inferred. The coloured dots are the
transmitters.

from matched beamforming, while for larger Θ, the beam-
shape struggles to cover the whole range (because the 2D
Gaussian extension does not approximate well enough the
target radiation filter over the sphere). For fixed Θ, Fig. 3b
shows that the beam-shape becomes increasingly accurate as
the number of antennas increases.

IV. EXAMPLE USING MOBILE BASE STATIONS

We now illustrate an example for beamforming a collection
of 3G/4G transmitters, in order to cover optimally Belle-
vueplatz, a portion of the city of Zurich, given probable
client positions. Bellevueplatz has an approximate area of 0.08
km2, and welcomes one of the biggest tram stations with
correspondingly dense pedestrian traffic. For this experiment,
we gathered positions of pedestrians in this area (black dots
on Fig. 4), and inferred a continuous density function (the
coloured regions). This density function is called the prefer-
ence function. It describes where the power is most needed.
The goal is then to beamform from each of the 10 transmitters
(the coloured dots), so that they, based on pedestrian density,
jointly cover the area well.

We assume devices are in the far-field and that the channel
has a narrow bandwidth. For simplicity, we neglect signal
attenuation. Each transmitter has 27 antennas arranged on
three concentric circles of radii 5, 15 and 25cm respectively.
Moreover, they are assumed to have an emission range of
approximatively 100m. Hence, each transmitter only sees a
circular cut of a 100m radius of the density function, which
defines the individual transmitter preference function fi ∈
L2(R2), i = 1, . . . , 10.

The beam determination problem for each transmitter con-
sists then of four steps:

1) Compute the target radiation pattern by taking the radial
projection of the individual preference functions from
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Fig. 5: Circular cuts of the density function in Fig. 4 based on
the range of each transmitter.
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(a) Target radiation patterns for each transmitter plotted over a segment
of length 2π.
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Fig. 6: Target radiation patterns for each transmitter and their
approximation by a sum of weighted Gaussian functions.
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Target Radiation Pattern

Beamformed Radiation Pattern

Fig. 7: Comparison between the target radiation pattern
(coloured lines) and the actual achieved beam-shape (dashed
grey lines) for each transmitter.

Fig. 8: The transmitters cover more areas with a high density
of pedestrian (compare with Fig. 5).

Fig. 9: The summation of the beam-shapes from each transmit-
ter gives the joint coverage. Joint coverage achieved by all the
transmitters after choosing the beamforming weights. Areas
with high pedestrian density are better covered.
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Fig. 5,

ŵi(θ) =

∫ 100

0

fi(r cos θ, r sin θ)dr,

with θ ∈ [0, 2π].
2) Approximate this target filter by a sum of weighted

Gaussian functions (see Fig. 6b),

ŵi(θ) '
Ni∑
k=1

α
(i)
k√

2πΘ
(i)
k

e
−

(
θ−µ(i)

k

)2

2Θ
(i)
k

2

,

where Ni ∈ N, α(i)
k ,Θ

(i)
k > 0 and µ

(i)
k ∈ [0, 2π] are

respectively the least squares estimates of the number
of Gaussian components and their associated weights,
standard deviations and means.

3) Extend this filter to the plane with the same technique as
described in Section III and compute its Fourier transform
analytically using Eq. (6). We get

ω̂i(x, y) =

Ni∑
i=1

α
(i)
k Φ

(
x− cos(µ

(i)
k )

σ
(i)
k

,
y − sin(µ

(i)
k )

σ
(i)
k

)
,

where (x, y) ∈ R2, Φ ∈ L2(R2) is the standard 2D

Gaussian function and σ(i)
k =

√
2− 2 cos(Θ

(i)
k ).

4) Compute the weights to be applied to each antenna com-
posing the transmitter by sampling the Fourier transform
at the locations of the antennas.

Most of the transmitter beam-shapes, shown in Fig. 7,
approximate the associated target filter well, despite unavoid-
able side-lobes due to the finite number of antennas. Fig. 9
shows that areas with higher pedestrian density are better
covered than before, giving them better signal, as less power
is dissipated in unnecessary areas.

V. CONCLUSIONS

We took the flexibeam technique to determine beamforming
weights for a target spatial filter, and explained it from the
transmit beamforming perspective. We then showed on an
example how it can be used by groups of mobile base stations
to concentrate energy where devices are concentrated.

We argued the case for targeting regions rather than single
points, and showed that this could be achieved. One inter-
esting effect is that the MIMO optimisation tradeoff between
(focused) beamforming and spatial diversity (multiple replicas
of the radio signal from different directions) [10] can be
circumvented.

Of course in practise real-life data transfer and the resul-
tant communications protocol is far more complicated, and
beamforming is just one component in the mix. Future work
includes incorporating these together, and adding cooperation
between the stations to maximise throughput and minimise
latency.
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Abstract— For communications at sea and underwater, Very 
Low Frequency (VLF) telecommunications are typically used. 
These exist in a channel that is subject to highly impulsive 
noise, primarily due to the effects of worldwide lightning 
activity. There is currently a drive to increase range and depth 
of these communications and as such there is a need for novel 
energy efficient error correction schemes to be trialled and 
developed in these environments. This paper aims to use EXIT 
chart analysis to understand the performance of the Universal 
Mobile Telecommunications System (UMTS) Turbo code in 
these environments. 

I. INTRODUCTION 

VLF (3 - 30 kHz) electromagnetic waves are used for 
long range communication from shore infrastructure to 

submarines or ships due to low path attenuation, of the order 
of 2 - 3 dB per 1000 km [1] by utilising the ionosphere as a 

waveguide. VLF channels are greatly impacted by  
atmospheric noise, primarily due to the propagation of the 

impulsive noise created by lightning strikes, which can be 

observed around the globe [2].  

Communications at VLF are assigned very little 
bandwidth due to electrically short antenna and frequency 

limitations therefore the majority of channels have a 3 dB 
bandwidth of approximately 120 Hz [3].  

The VLF channel offers a non-trivial engineering 

challenge for information theory and communications as it 
does not conform to a traditional noise model, exhibiting a 

high level of kurtosis and as such can provide unusual 
results on communications through this channel.  

The channel also exhibits characteristic properties that are 

hugely variant upon geographic location and diurnal 
conditions, due to variations in the ionosphere affecting 

propagation and the frequency of impulsive noise due to 

lightning activity. 

In addition to this the effects of sea state can create large 
phase variations into a phase modulated communications 

system. These phase variations, provide a significant 
limitation in underwater reception, and tracking methods are 

currently under investigation at QinetiQ. 

Current VLF systems use MSK modulation combined 
with a Wagner parity check [4] , the next generation will use 

iterative LDPC Forward Error Correction (FEC) in order to 
achieve as low a Bit Error Rate (BER) as possible, the 

details of this FEC and frame size for VLF communications 
is defined in various military interoperability standards.  For 

the purpose of simulation these will be modelled as frames 
of 1000 bits of length. 

Previous analytical methods used to provide evidence to 

support the decision to use a LDPC were based on simple 

BER analysis. However in recent years, advances by Ten 
Brink [5] and Hanzo et al. [6] and their contemporaries have 

facilitated a deeper understanding of turbo and turbo like 
codes by observing the message passing and the transfer of 

extrinsic information within the decoder itself. 

II. METHODOLOGY 

  
In order to simulate the VLF channel it is necessary to 

understand the effects of impulsive noise in the VLF 
channel. In order to do that off air recordings at VLF were 

taken. Within these recordings the impulsive noise was 
measured at a frequency clear of any other communications, 

in this case 27 kHz.  

These recordings then allowed a hard decision mask to be 
created dependent on the noise power which directly relates 

back to the Signal to Noise Ratio that will be observe by the 

submarine. This mask or error profile could then be applied 
to a frame, in order to represent where bits would be erased, 

effectively creating a Binary Erasure Channel (BEC). 

An example of the VLF noise spectrum can be seen in 
Fig. 1  

EXIT Chart Analysis of the UMTS Turbo Code 
in VLF Channels

Alexander Hamilton 
QinetiQ Portsdown Technology Park & University of Portsmouth 

Maritime Systems 
PO6 3RU Portsmouth, UK 

Email: ajhamilton2@qinetiq.com

Fig 1 - VLF Spectrum
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Using an off air recording taken at VLF frequencies, it is 

possible to create an erasure mask, representing when 
information is unable to pass through the VLF channel due 

to the presence of impulsive noise spikes. An example of 
this can be seen in Fig. 2 which shows the error distribution 

(where a 1 represents an erasure and a 0 represents a symbol 

being received intact) 

This mask could then be applied to the transmitted 

information in the channel simulation in order to understand 
the impact that this VLF noise will have on the received 

signal, and how it will affect the decoder. 

For the UMTS decoder to decode the information a 

Gaussian distributed set of Logarithmic Likelihood Ratios 
(LLRs) of the information was generated to represent the 

transmitted encrypted information. 

For the modelling the erasure mask was applied with 
varying levels of AWGN, this is a rudimentary technique 

used to simulate VLF noise - a future implementation will 
aim to have statistically generated ‘soft’ error masks which 

will be validated against off air recordings. 

The UMTS decoder has been built according to the 
specification in ETSI TS 125 212. 

Concurrent analysis [7] has identified that a LDPC code  

with a degree of 4 will require a signal to noise ratio greater 
than 0 dB for full convergence. in an impulsive noise 

channel.  

All modelling assumes link encryption and that all error 

correction will be conducted on cipher text. 

III. RESULTS 

Gaussian distributed Logarithmic Likelihood Ratios 

(LLRS) were generated and passed through the channel 
model at varying SNRs in order to generate the following 

EXIT charts. 

As can be seen from the results the EXIT tunnel closes at 
-7 dB SNR (referenced to a 1 kHz Bandwidth), suggesting 

that at higher SNRs the error rate will exist in the error floor 
region of the BER curve [6] due to full convergence of the 

code. 

Fig 2 - VLF Erasure Mask

Fig 3 - EXIT chart of UMTS Turbo code in simulated VLF 

Atmospheric Noise at -8 dB SNR

Fig 4 - EXIT chart of UMTS Turbo code in simulated VLF 

Atmospheric Noise at -7 dB SNR

Fig 5 - EXIT chart of UMTS Turbo code in simulated VLF 

Atmospheric Noise at -6 dB SNR
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The EXIT tunnel closure can be seen in Fig. 4 at -7 dB 

SNR whereas in Fig. 3 taken at -8 dB SNR the EXIT tunnel 
remains firmly closed preventing the passage of information 

through the iterative decoding process. 

Conversely it can be observed that at higher SNRs such as 

can be seen in Fig. 5 at -6 dB SNR the EXIT tunnel is large 
enough to provide information transfer for all possible 

information trajectories, suggesting a high level of 
convergence for the Turbo code. 

IV. DISCUSSION 

As can be seen from the prior analysis the UMTS turbo 
code offers a performance advantage of 7 dB SNR over the 

current implementation of the LDPC error correction code  
which can only operate up to 0 dB SNR for full 

convergence. 

In order to demonstrate the performance advantage that 
this provides the Long Wavelength Propagation Capability 

(LWPC) tool was used to produce of Fig. 6. The input 
parameters for this plot are as follows: 

Transmitter Location - Cutler, Maine 
Transmitter Power - 200 kW 

Transmit Frequency - 24 kHz 
Time and Date - July 15 2015, 0300 hrs 

As can be seen the benefit that the UMTS code offers is 
rather significant, and can vastly increase the area of 

operations that VLF communications can cover. 

The hard erasure mask used in this modelling will force 
an erasure, however this may cause the modelled UMTS 

code to function at pessimistic SNRs. In the future it is 

intended for a statically generated ‘soft’ mask to be 
produced which will not force an erasure due to impulsive 

noise, and instead permit the signal through with a reduced 
LLR, allowing for further analysis of a coding scheme. 

V. CONCLUSION 

The analysis has shown that the UMTS turbo code is 
resilient to VLF noise to a far greater degree than an LDPC 

code as is currently implemented. However it may be that 
the LDPC code which at this moment is of degree 4 may be 

a sub-optimal design for the VLF channel. 

For this reason it is recommended that further research 
must be conducted on the optimal LDPC design for 

resilience to noise in VLF channels, before any conclusive 
proof is put forward for the proposed error correction 

scheme for use in VLF channels. 

Fig 6 - VLF coverage plot showing the difference in coverage area 

between a LDPC (d=4) coded signal and a UMTS Turbo coded signal

LDPC (d=4) 
UMTS Turbo Code
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Abstract—In this paper, we propose efficient algorithms for
estimating the signal subspace of mobile users in a wireless
communication environment with a multi-antenna base-station
with M antennas. When M is large, because of the high angular
resolution of the receiver, any realization of the random channel
vector of any given user is approximately contained in a user-
specific subspace of dimension p�M . Efficient multiuser MIMO
schemes can be obtained from such subspace information, which
is stable in time and can be accurately estimated even in the
presence of fast fading (e.g., for mm-Wave channels). We are
interested in the massive MIMO regime of M � 1. In order to
reduce the RF front-end complexity and overall A/D conversion
rate, the M -antenna base-station transmitter/receiver is split into
the product of a baseband linear projection (digital) and an RF
reconfigurable beamforming network (analog) with only m�M
RF chains. Hence, only m-dimensional analog observations can be
obtained for subspace estimation. We develop efficient algorithms
that estimate the dominant signal subspace of the users from
sampling only m = O(2

√
M) specific array elements according

to a coprime scheme. For a given target dimension of the
signal subspace p ≤ M , our algorithms return a p-dimensional
beamformer with a performance comparable with the best p-
dim beamformer designed by knowing the exact covariance
matrix of the received signal. We assess the performance of
our proposed estimators both analytically and empirically via
numerical simulations, and compare it with that of the other
state-of-the-art methods in the literature.

1 INTRODUCTION

Consider a multiuser MIMO channel formed by a base-
station with M antennas and K single-antenna mobile users
in a cellular network. We focus here on a flat-fading channel
in which the bandwidth of the signal is less than the channel’s
coherence bandwidth. Following the current massive MIMO
approach [1, 2], we assume that the uplink and the downlink
are organized in Time Division Duplexing (TDD), where the
base-station estimates the channel vectors of the users from
orthogonal pilots that are sent by the users in the uplink in
the same channel coherence time [1]. It turns out that for
isotropically distributed channel vectors it is optimal to devote
half the coherence time to estimate the channel, and to devote
the remaining half to serve the users.

In the massive MIMO setup, the number of antennas M is
large, and the receiver antenna at the base-station has a high
angular resolution. Consequently, in many relevant scenarios,
the channel is far from isotropic. Indeed, as the propagation
for a user occurs only through a small set of Angles of Arrivals
(AoAs), its channel vectors in consecutive coherence blocks lie
on very low-dimensional subspaces. This underlying structure

can be exploited to improve the system multiplexing gain via
decreasing the training overhead. For example, one approach
would be to cluster the users based on the dominant subspace
of their channel vectors, and apply the classical channel esti-
mation on a per-group basis, on the low-dimensional projected
channels [3]. This requires estimating the dominant signal
subspace of each individual user. Although the channel vector
changes in every coherence time, in many practical scenarios,
the signal subspace remains stationary across many coherence
blocks, thus, it can be reliably estimated.

A direct naive approach for estimating the signal subspace
is to first estimate the M × M covariance matrix of the
channel coefficient of each user via sampling the whole array
elements, and then identify the signal subspace by applying the
singular value decomposition (SVD). This requires sampling
the whole array elements which requires M RF chains. Since
in massive MIMO setup M � K, this is inefficient and very
difficult to implement. Different architectures such as Hybrid
Digital Analog (HDA) have been proposed to reduce hardware
complexity (notably, the A/D overall bit-rate and the number
of RF modulation/demodulation chains). The main idea is to
implement the M ×K beamforming matrix as the product of
two matrices: an M × m beamforming matrix implemented
in the RF analog domain, and an m × K precoding matrix
implemented in the digital baseband domain, so that only
m � M A/D converter and RF chains be used. This implies
that exploiting the subspace information is possible only when
it can be extracted (estimated) from m-dimensional sketches
(m�M ) of the received signal.

In this paper, we aim to design suitable subspace estima-
tors from low-dimensional sketches of the input signal for
a uniform linear array (ULA). The geometry of the array
and the scattering channel is shown in Fig. 1. Array ele-
ments have a uniform distance d = λ

2 sin(θm) , and scan the
angular range [−θm, θm] for some θm ∈ (0, π/2). We use
a coprime sampling scheme, introduced in [4], that samples
only O(2

√
M) specific array elements. We propose several

algorithms for estimating the signal subspace and cast them as
convex optimization problems that can be solved efficiently.
We also analyze the performance of our estimators in terms
of the dimension of the desired signal subspace p, array size
M , training length T , and signal-to-noise ratio (SNR).

2 RELATED WORK

Several works in the literature are related to the problem
addressed in this paper, which can be summarized in the
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Fig. 1: Scattering channel with discrete angles of arrivals.

following four categories: Subspace tracking, Low-rank matrix
recovery, Direction-of-arrival (DoA) estimation, and Multiple
Measurement Vectors (MMV) problem in compressed sensing
(CS). Let us consider a simple model in which the transmission
between a user and the base-station occurs through p scatterers
(see Fig. 1). One snapshot of the received signal is given by

y =

p∑
`=1

a(θ`)w` x+ n, (1)

where x is the transmitted (training) symbol, w` ∼ CN (0, σ2
` )

is the channel gain of the `-th multipath component, n ∼
CN (0, IM ) is the additive white Gaussian noise of the receiver
antenna, and where a(θ) ∈ CM is the array response at AoA
θ, whose k-th component is given by

[a(θ)]k = ejk
2πd sin(θ)

λ = ejkπ
sin(θ)

sin(θm) . (2)

According to the WSSUS model, the channel gains for differ-
ent paths, i.e., {w`}p`=1, are uncorrelated, and since they are
(jointly) Gaussian, they are statistically independent. Without
loss of generality, we suppose x = 1 in all training snapshots.
Letting A = [a(θ1),a(θ2), . . . ,a(θp)], we have

y(t) = Aw(t) + n(t), t ∈ [T ], (3)

where w(t) = (w1(t), w2(t), . . . , wp(t))
T for different t ∈

[T ] := {0, 1, . . . , T − 1} are statistically independent. We
assume that the AoAs {θ`}p`=1 remain invariant over a long
time T . From (3), the covariance of y(t) is given by

Cy = AΣAH + IM =

p∑
`=1

σ2
`a(θ`)a(θ`)

H + IM . (4)

Let Cy = UΛUH be the singular value decomposition (SVD)
of Cy , where Λ = diag(λ1, λ2, . . . , λM ) denotes the diagonal
matrix of singular values. We always assume that the singular
values are sorted in a non-increasing order. If we denote by
Up the M × p matrix consisting of the first p columns of
U, it is not difficult to see that the columns of Up span
the signal space. In particular, span(A) = span(Up). We
need to identify this subspace from noisy low-dimensional
sketches x(t) = By(t), where B is the sampling matrix.
This problem for the noiseless case was studied by Chi et. al.
in [5] where they developed PETRELS algorithm to estimate
the underlying subspace. Another algorithm named GROUSE
was proposed by Balzano et. al. in [6] which uses a low-
complexity stochastic gradient update over the Grassmanian

manifold. Both algorithms mainly optimize the computational
complexity rather than the data size, and principally suit
situations in which the dimension is high (very large M and
T ). We empirically compare the performance of our proposed
algorithms with PETRELS for a fixed data size in Section 5.

For p � M and for a high SNR, the covariance matrix
Cy in (4) is nearly low-rank. Recovery of low-rank matrices
from a collection of a few possibly noisy samples is of
great importance in signal processing and machine learning.
Recently, it has been shown that this can be done via nuclear
norm minimization, which is a convex optimization and can
be efficiently solved [7]:

X∗ = arg min
M

‖M‖∗ subject to MΩ = XΩ, (5)

where the nuclear norm ‖M‖∗ is given by the sum of the
absolute value of the eigen-values of M, and reduces to Tr(M)
when M is positive semi-definite (PSD). In practice, we have
only a collection of T snapshots of sketches x(t) = By(t),
t ∈ [T ], rather than the whole covariance matrix or even the
sketches thereof. Let

Ĉy =
1

T

T∑
t=1

y(t)y(t)H, Ĉx = BĈyB
H (6)

be the sample covariance of the full and subsampled signal. We
compare the performance of our algorithms with the following
extension of the nuclear norm minimization

min
M

Tr(M) subject to M ∈ T+, ‖Ĉx −BMBH‖ ≤ ε, (7)

where T+ is the space of M ×M PSD Toeplitz matrices, and
where ε is an estimate of the `2-norm of the error.

From (3), it is seen that the received signal y(t) is a noisy
superposition of p independent Gaussian sources arriving from
p different angles. This is the same model studied for direction-
of-arrival (DoA) estimation. There are two main categories of
algorithms for DoA estimation: classical algorithms such as
MUSIC and ESPRIT that use subspace methods to locate the
AoAs, and more recent compressed sensing based algorithms
that use the angular sparsity of the signal over a prespecified
grid (see [8, 9] and refs. therein). Recently, Candès and
Fernandez-Granda [10] developed an off-grid super-resolution
(SR) technique using total-variation (TV) minimization. This
algorithm was extended by Tan et. al. in [11] to DoA esti-
mation with coprime arrays when the sources are sufficiently
separated. In a wireless environment the AoAs are clustered.
This implies that the separation requirement for the super-
resolution setup may not be met. Since in this paper we aim
at estimating the subspace of the signal rather than DoAs, in
section 4.2.3 we extend the super-resolution method to develop
a new algorithm for estimating the signal subspace.

It is seen from (3) that, neglecting the measurement noise
n(t), the signal y(t) has typically a sparse representation
over the continuous dictionary {a(θ), θ ∈ [−θm, θm]}, i.e.,
only p atoms of the dictionary, i.e., {a(θi)}pi=1, are needed
to represent the signal. Thus, x(t) = By(t) can be seen as
identifying a sparse vector from a collection of sketches, which
coincides with the traditional CS problem. An extension of
this problem involves Multiple Measurement Vectors (MMV).

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

104



The underlying assumption is that y(t), for different snapshots
t ∈ [T ], have the same sparsity pattern or support over the
underlying dictionary even though they might have different
coefficients w(t) for each t. This problem has been widely
studied in the literature (see [9, 12, 13] and refs. therein),
where two main approaches have been proposed for estimating
the common support of the signals: using a greedy algorithm
or convex optimization via a regularizer promoting group
sparsity; and using covariance matrix of data and subspace
techniques. Once the support is identified, the standard Least-
Squares method can be used to find the coefficients. Since the
underlying dictionary is continuous, both classes exploit either
grid-based or more recently developed off-grid techniques. We
will compare the performance of our algorithm with grid-based
approach in [13], and the grid-less one in [14–16].

3 STATEMENT OF THE PROBLEM

In (3), we introduced the channel model given by y(t) =
Aw(t)+n(t), t ∈ [T ], where A contains the array response for
the AoAs. Let Σ = diag(σ2

1 , . . . , σ
2
p) be the matrix containing

the channel strengths for the AoAs {θ`}p`=1. We can prove the
following simple result.

Proposition 3.1: Let Ĉx = 1
T

∑T
t=1 x(t)x(t)H be the sam-

ple covariance of the sketches x(t) = By(t), t ∈ [T ]. Then
Ĉx is a sufficient statistics for estimating A and Σ. �

For a more practical scenario, we consider the following
continuum model

y(t) =
√
snr

∫ 1

−1

√
f(u)a(u)z(u, t)du+ n(t), t ∈ [T ], (8)

where snr is the SNR and z(u, t) is a circularly symmetric
Gaussian process with E

{
z(u, t)z(u′, t′)∗

}
= δ(u − u′)δt,t′ .

The measure f(u) models the distribution of the received
signal’s power over u ∈ [−1, 1), where u = sin(θ)

sin(θm) for
θ ∈ [−θm, θm]. With some abuse of notation, we denote the
array vector in the u domain by a(u) where [a(u)]k = ejkπu.

Let C(f) = S(f) + IM be the covariance matrix of the
received signal, where S(f) = snr

∫ 1

−1
f(u)a(u)a(u)Hdu is

the covariance of the signal of the user with power distribution
f(u). We define the best p-dim beamformer for S(f) as Vp =
arg maxV∈H(M,p) 〈S,VVH〉, where H(M,p) is the space of
all M×p matrices U with UHU = Ip. We assess the efficiency
of Vp for capturing the signal’s power by

δp =
〈S,VpV

H
p 〉

Tr(S)
=

Tr{VH
pSVp}

Tr(S)
, (9)

where δp ≈ 1 implies that a significant amount of signal’s
power is concentrated in a p-dim subspace. Let S̃ be an
estimate of S and let Ṽp be its best p-dim beamformer. We
can use Ṽp as an estimate of the optimal beamformer Vp. We
define the following metric for the efficiency of Ṽp

Γp =
〈S, ṼpṼ

H
p 〉

〈S,VpVH
p 〉

= 1−
〈S,VpV

H
p 〉 − 〈S, ṼpṼ

H
p 〉

〈S,VpVH
p 〉

, (10)

where 〈S,VpV
H
p 〉 − 〈S, ṼpṼ

H
p 〉 ≥ 0 is the amount of power

lost due to the mismatch between Vp and the estimate Ṽp.

Note that Γp ∈ [0, 1], and the aim is to design an estimator
with a Γp as close to 1 as possible.

4 SAMPLING OPERATOR, ALGORITHMS AND RESULTS

4.1 Coprime Subsampling Operator

In this section, we introduce our coprime sampling scheme,
which samples only m ≈ 2

√
M carefully selected array ele-

ments. Suppose q1, q2 are coprime numbers, i.e., gcd(q1, q2) =
1, with q1q2 ≈ M and q1 ≈ q2 ≈

√
M . Let D be the set of

all nonnegative integer combinations of q1 and q2 less than or
equal to M − 1, i.e., D = ∪i=1,2{k ∈ [M ], mod(k, qi) = 0},
where [M ] = {0, 1, . . . ,M − 1}. Note that |D| ≈ 2

√
M .

Since q1 and q2 are coprime, for sufficiently large M , we
have D −D ∼= [M ]. Suppose the elements of D are sorted in
an increasing order with di ∈ D being the i-th largest element
in the list. Also, let m = |D| be the number of elements in
D and let B be the m×M binary matrix with Bi,di = 1 for
i ∈ {1, 2, . . . ,m} and zero otherwise. We can simply check
that BBH = Im. We also prove the following result, which
shows the efficiency of the coprime matrix B for sampling
Hermitian Toeplitz matrices.

Proposition 4.1: Let S be an M ×M Hermitian Toeplitz
matrix and let B be the coprime sampling matrix. Then the
mapping S→ BSBH is a bijection. �

4.2 Proposed Algorithms for Subspace Estimation

4.2.1 Algorithm 1: Approximate Maximum Likelihood (AML)
Estimator: Let S = snr

∫ π
−π f(u)a(u)a(u)Hdu be the covari-

ance matrix of a user with power distribution f(u). It is easy
to check that for the coprime sampling matrix B, we have

p(x(1 : T )|S) =
exp

{
− T Tr

(
Ĉx(Im + BSBH)−1

)}
πTmdet(Im + BSBH)T

where Ĉx = 1
T

∑T
t=1 x(t)x(t)H is the sample covariance of

the sketches x(t). The ML estimator for S can be written
as S∗ = arg minS∈T+

L(S), where T+ is the space of PSD
Toeplitz matrices and where L(S) is given by

L(S) = log det(Im +BSBH) + Tr
(
Ĉx(Im +BSBH)−1

)
. (11)

Proposition 4.2: Let L(S) be as in (11). Then, L(S) is the
sum of the concave function Lcav(S) = log det(Im + BSBH)

and the convex one Lvex(S) = Tr
(
Ĉx(Im + BSBH)−1

)
. �

As L(S) is not convex, the ML estimation is generally in-
tractable. However, since the signal covariance matrix S scales
linearly with snr, it is possible to obtain a convex (indeed,
linear) approximation of Lcav(S), which is tight especially for
low SNR.

Proposition 4.3: Let Lcav(S) = log det(Im + BSBH).
Then, Lcav(S) ≤ Tr(BSBH) for all S ∈ T+. Moreover, for
low SNR, Lcav(S) = Tr(BSBH) + o(snr). �
From Proposition 4.3, we define the AML cost function by

Lapp(S) = Tr(BSBH) + Tr(Ĉx(Im + BSBH)−1), (12)

as the best convex upper bound for L(S), which is tight for
very low SNR. In particular, AML can be formulated as a
semi-definite program (SDP) that can be solved efficiently.
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Proposition 4.4: Let Lapp(S) be as in (12). Suppose that
UΛUH is the SVD of Ĉx and set ∆ = Ĉ

1/2
x = UΛ1/2.

Then the AML estimate is obtained from the following SDP

(S∗,W∗) = arg min
S∈T+,W

Tr(BSBH) + Tr(W) (13)

subject to
[

Im + BSBH ∆
∆H W

]
� 0. (14)

4.2.2 Algorithm 2: MMV with Reduced Dimensionality
(RMMV): One of the main problems with grid-based and off-
grid MMV optimizations is that their complexity increases
fast with the sample size T . Here, we develop an SVD-based
algorithm as in [9] to reduce the computational complexity and
obtain an efficient algorithm. Let D = [a(θ1), . . . ,a(θG)] be
a grid-based dictionary with G points, and let Y = DW + N
be the whole data during the training period of length T ,
where W = [w(1), . . . ,w(T )] is a G × T matrix whose
columns correspond to the random channel gains for different
AoAs belonging to the grid. Recall that the common support
or the position of nonzero channel gains in w(t), t ∈ [T ],
corresponds to the AoAs. Let X = BY be the subsampled
signal. It is not difficult to see that subsampling still keeps the
MMV format. Let UΣVH be the SVD of X. We assume that
T � m = 2

√
M , thus, we have X = UΣmVH

m, where Vm

denotes the T ×m matrix consisting of the first m columns
of V and Σm is the m×m matrix consisting of only nonzero
singular values. We define the new data X̃ = XVm = UΣm.
Notice that X̃ can be simply computed from the sample covari-
ance matrix of the data Ĉx = 1

T XXH = 1
T

∑T
t=1 x(t)x(t)H,

thus, it is not necessary to store the whole data X during the
training time. Moreover, Ĉx can also be computed from X̃,
thus, similar to Proposition 3.1, it is possible to show that Ĉx

is a sufficient statistics for subspace estimation which implies
that X̃ is also a sufficient statistics. We also have

X̃ = BDWVm + BNVm = BDW̃ + Ñ, (15)

where W̃G×m and Ñm×m are the modified channel gains
and array noises. It is not difficult to check that the reduced
problem in (15) is still in the MMV format in the sense
that the matrix W̃ has nonzero rows only on the grid points
corresponding to the channel AoAs, but now the dimension of
the problem is fixed and does not scale with T . The drawback
is that W̃ and Ñ lose their independence and Gaussianity since
Vm depends on the channel gains and received noise.

Our second algorithm for subspace estimation, which is
called Reduced MMV (RMMV), simply extends the off-grid
atomic norm minimization for the MMV problem in [15, 16]
to the low-dimensional data X̃. It can be cast as the following
SDP

(S∗,W∗,Z∗) = arg min
S∈T+,W∈Cm×m,Z∈CM×m

Tr(S) + Tr(W)

subject to
[

S Z
ZH W

]
� 0, ‖X̃−BZ‖ ≤ δ,

where δ is an estimate of the `2-norm of Ñ. For sufficiently
large m, the optimal δ is give by δ∗ = σ

√
m2 = mσ ≈

2σ
√
M , where σ2 is the noise variance in each array element,

which can be estimated during the system’s operation.

4.2.3 Algorithm 3: Super Resolution (SR): Consider a user
with a power distribution f(u) and let S(f) be its signal
covariance matrix. Note that S is a Toeplitz matrix whose first
column is given by f = 〈f,a〉 :=

∫
f(u)a(u)du ∈ CM , where

[〈f,a〉]k =
∫
f(u)ejkπudu is the k-th Fourier coefficient of f .

In this section, we assume that f is merely a positive measure
and not necessarily a normalized one. Since S is Toeplitz, from
Proposition 4.1, it is seen that for the coprime sampling matrix
B introduced in Section 4.1, all the elements of S, and as a
result the vector of Fourier coefficients f can be identified from
BSBH. This implies that for a sufficiently large T , we can esti-
mate f accurately using the elements of the sample covariance
matrix Ĉx = BĈyB

H. Let Xk = {(i, i′) : i ≥ i′, di−di′ = k},
where D and di ∈ D are as in Section 4.1. Let ck = |Xk|, and

define the estimator f̂k =
∑

(i,i′)∈Xk
[Ĉx]i,i′

ck
for fk. We propose

the following TV-minimization to recover the subspace of the
signal from the estimates f̂

min ‖f‖TV subject to ‖〈f,a〉 − f̂‖ ≤ ε, (16)

where ε is an estimate of the `2-norm of the noise in the data.
Since f is a positive measure, ‖f‖TV is given by f{[−1, 1)} =∫ 1

−1
f(u)du = f0, thus, we obtain the following result.

Proposition 4.5: Consider the TV-minimization in (16).
Then, (16) can be equivalently written as

S∗ = arg min
T

Tr(T) subject to T ∈ T+,

‖T e1 − f̂‖ .
√
M

T
(σ2 + [T]11), (17)

where e1 = (1, 0, . . . , 0)T is an M × 1 vector, where [T]11 is
the diagonal element of the Toeplitz matrix T (equivalent to
f0), and where the σ2 is an estimate of noise variance. �
Algorithm (17) is a convex optimization that can be efficiently
solved to recover the signal covariance matrix S. In particular,
no prior knowledge of SNR is necessary.

4.2.4 Algorithm 4: Covariance Matrix Projection (CMP):
Let B be the m ×M subsampling matrix as in Section 4.1,
where m = O(2

√
M). Let Ĉx be the sample covariance of

the subsampled signal. In order to recover the dominant p-dim
subspace of the signal, we first find an estimate of the signal
covariance matrix by

C∗y = arg min
R∈T+

‖LT(Ĉx)− LT(BRBH)‖, (18)

where LT keeps the lower-diagonal elements of Ĉx. Then, an
estimate of signal subspace is obtained from C∗y . The following
theorem shows the resulting performance.

Theorem 4.6: Consider the optimization problem (18).
Then, for a given p with 1 ≤ p ≤ M , the CMP estimator
recovers a p-dim subspace of the signal, and has a performance
measure Γp satisfying

E(Γp) ≥ max
{

1−
2
√
p

δp
√
T

(1 +
1

snr
), 0
}
, (19)

Var(Γp) ≤
4p

Tδ2
p

(1 +
1

snr
)2, (20)
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where δp is defined as in (9), and where snr is the received
SNR in one snapshot t ∈ [T ]. �

5 SIMULATIONS

In this section, we assess the performance of our proposed
estimators via numerical simulations. We use the CVX package
[17] for running all the convex optimizations. We assume that
the AoAs are uniformly distributed in Θ = [40, 50]∪[100, 110]
with an angular spread of 20 degrees. We use an array of size
M = 80, and a coprime sampling with q1 = 7, q2 = 9, where
we sample only 19 out of 80 array elements that are located
at D = {0, 7, . . . , 77} ∪ {0, 9, . . . , 72}.

Fig. 2 compares the performance of our proposed algorithms
with PETRELS, nuclear norm minimization (NucNorm) in (7),
grid-based (GBMMV) in [13], and grid-less MMV (GLMMV)
in [14–16].
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Fig. 2: Comparison of the performance of the estimators versus SNR
for the training length T = 100. It is seen that AML, RMMV,
and SR perform comparably with the GLMMV but they have lower
computational complexity which does not scale with T . The CMP is
as good as GBMMV and better than NucNorm especially for higher
SNR but its complexity is much lower than GBMMV since it does
not scale with T . PETRELS does not perform very well for the fixed
data size, e.g., its performance even for T = 800 is worse than that
of the other algorithms for T = 100.

Fig. 3 compares the scaling performance of our algorithms
with Nuclear norm minimization for different training lengths
T . As the performance of AML and RMMV is comparable
with the GLMMV and better than GBMMV and since for large
training length T , these algorithms are really time-consuming
to run, we have not included them in this figure.
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Abstract—In this paper, lattice-reduction-aided and integer-
forcing equalization are contrasted. In both approaches, the
determination of an integer matrix is essential. The different
criteria for this calculation available in the literature are sum-
marized in a unified way. A new factorization algorithm for
obtaining the integer matrix is proposed. Via extensive numerical
simulations the gains of the respective optimization criterion and
the gain of the new algorithm over the classical Lenstra-Lenstra-
Lovász algorithm are assessed. In particular, the gains achieved
by dropping the constraint that the integer matrix has to be
unimodular are identified.

I. INTRODUCTION

The design of joint receivers for signals transmitted in parallel,

e.g., in multi-user uplink scenarios, is still an important topic

in research. The simplest approach for handling the interfer-

ence in the underlying multiple-input/multiple-output (MIMO)

channels is to use linear equalization (either optimized accord-

ing to the zero-forcing (ZF) or the minimum-mean squared

error (MMSE) criterion). Via a (pseudo left) inverse of the

channel matrix, the interference is eliminated at the cost

of noise enhancement. However, as the users are perfectly

decoupled, individual channel decoding can be performed and

individual codes can be used. Some improvement can be

gained by utilizing decision-feedback equalization (DFE), also

known as successive interference cancellation (SIC) and as

Bell Laboratories space-time (BLAST). The optimum receive

strategy is maximum-likelihood decoding, which, however, for

coded transmission has infeasible complexity.

Since more than one decade, low-complexity but well-

performing approaches are of particular interest. Lattice-re-

duction-aided (LRA) techniques, e.g., [19], [16], [18], were

proven to achieve the optimum diversity behavior [15]. Re-

cently, the concept of integer-forcing (IF) receivers [20]

was proposed. Both strategies are tightly related; the term

“LRA” can be interpreted as a channel-oriented view—it puts

emphasis on the mathematical tool applied to the channel

matrix. In contrast, the denomination “IF” is signal-oriented—

it highlights the main operation on the signals.

In this paper, a brief comparison of both approaches is

given and the advantages and disadvantages of the respective

procedures are enlightened. Moreover, the different criteria for

selecting the integer matrix—which is central in both fields—

available in the literature are summarized in a unified way. A

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
within the framework COIN under grant FI 982/4-3.

new factorization algorithm for determining this matrix in an

optimum way is presented. Using this algorithm, via extensive

numerical simulations, the gains of the respective optimization

criterion and the gain of the new algorithm over the classical

Lenstra-Lenstra-Lovász algorithm are assessed.

The paper is organized as follows: In Sec. II the system

model is introduced and in Sec. III LRA and IF strategies are

contrasted and the different factorization criteria are summa-

rized. A new factorization algorithm is presented in Sec. IV

followed by numerical examples in Sec. V. Sec. VI briefly

summarizes the paper.

II. SYSTEM MODEL

We assume a classical MIMO channel model with K non-

cooperating transmitters (single-antenna users) and a joint

receiver with N antennas. Fig. 1 shows the block diagram

of the system model.

CFp

n

y
H

ENC

MENC

M
q1

qK

c1 x1

cK xK

Fig. 1. System model of the MIMO communication scheme.

Each user k, k = 1, . . . ,K , wants to communicate its

source symbols qk drawn from a finite field Fp. Blocks of

source symbols are encoded via some channel code; the

coded symbols ck are then mapped to complex-valued transmit

symbols xk , drawn from some signal constellation A. Via

a suited choice of the code (including interleaving where

required) and the mapping this generic model includes all

types of coded modulation schemes, lattice-coding approaches,

as well as uncoded transmission.

The symbols xk are then radiated over the users’ antennas.

Denoting the transmit vector (dimension K) as x, the N ×K
channel matrix as H , and the N -dimensional noise vector as

n, the receive vector y is given by

y = Hx+ n . (1)

The transmit symbols (per user) have variance σ2
x and the

zero-mean Gaussian noise has variance σ2
n per dimension.

Noteworthy, all signals and channel coefficients are complex-

valued in the equivalent complex baseband domain.
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Fig. 2. System model of the receiver. Top: lattice-reduction-aided equaliza-
tion; Bottom: integer-forcing receiver.

At the receiver side, the N components of the receive vector

y can be processed jointly in order to produce estimates of the

source symbols qk. To this end, some form of equalization has

to take place and suited channel decoding has to be performed.

In the next section, we will have a closer look at the low-

complexity, well-performing LRA and IF strategies.

III. LATTICE-REDUCTION-AIDED EQUALIZATION

AND INTEGER-FORCING EQUALIZATION

Lattice-reduction-aided (LRA) and integer-forcing (IF) re-

ceivers share the same fundamental principle. The main idea

is to factorize the channel matrix as

H = C Z . (2)

The receive vector can then be written as

y = Hx+ n = CZx+ n = C x̄+ n . (3)

Then, not the transmit vector x itself (blocks of vectors in

the coded case) is recovered but the vector x̄
def

= Zx. If Z

is chosen suitably, this may be done with much less noise

enhancement. Taking into account that the symbols of the

vector x̄ are correlated (due to Z), the respective MMSE linear

equalizer calculates to [5], [20] (inverse SNR ζ
def
= σ2

n/σ
2
x)

F =
(

CHC + ζZ−HZ−1
)−1

CH (4)

= Z
(

HHH + ζI
)−1

HH . (5)

Hence, detection/decoding is done w.r.t. some changed

basis. Having the decoding results, this basis change (the

matrix Z) is reversed. The LRA and IF strategies differ in the

way this final step is done and how the matrix Z is chosen.

The block diagrams of the respective receivers are depicted in

Fig. 2.

A. Lattice-Reduction-Aided Equalization

LRA equalization has its roots in the field of lattice reduc-

tion, i.e., the question of finding a suited basis for a given

lattice; here the lattice spanned by the columns of the channel

matrix H . Consequently, Z is chosen as an integer unimodular

matrix. In the complex case, the coefficients of Z are drawn

from the Gaussian integers G
def
= Z + jZ and | det(Z)| = 1,

such that Z−1 is also an (complex) integer unimodular matrix.

Using lattice-reduction algorithms, most prominently the LLL

algorithm [10] or its complex-valued generalization [6], a

solution can readily be found.

Decoding and resolution of the interference via Z−1 is done

over the complex numbers; the linear combinations x̄ of the

transmit symbols have to be estimated by the decoders. Then,

an estimate of the transmit symbols is obtained via x̂ = Z−1ˆ̄x.

Finally, via the encoder inverses, estimates q̂k of the source

symbols are obtained.

LRA equalization only1 works if the signal constellation

A is a subset2 of G, i.e., x ∈ GK , such that any (complex)

integer linear combination of the points is again drawn from G.

Moreover, in the coded case, the codes have to be linear, such

that any (complex) integer linear combination of codewords

is again a valid codeword. It is true that in the vast majority

of the literature, LRA equalization is treated uncoded. This,

however, is justified as equalization and decoding can simply

be cascaded; coding can straightforwardly be put on top of the

uncoded LRA scheme. No further specific restrictions have to

be obeyed.

B. Integer-Forcing Equalization

Recently, originating from compute-and-forward relaying

schemes [11], an integer-forcing linear equalization scheme

was proposed in [20]. The main difference, see Fig. 2, is

that the integer interference is resolved over the finite field

rather than over the complex numbers. To this end, linear

combinations q̄k of the source symbols are delivered by the

decoders and the integer matrix is inverted over Fp. Put simply,

the order of encoder inverse and inverse of Z is reversed.

However, this imposes much stronger constraints on the

codes and the mapping as in the LRA case. Basically,

arithmetic over the complex numbers (modulo p) has to be

isomorphic to the arithmetic of the finite field Fp. In the

simplest version this is achieved by restricting to real-valued

signaling and A is a one-dimensional p-ary constellation where

p is a prime. Generalization to complex-valued Gaussian prime

constellations [9] or other algebraic structures [4] is possible.

Since the integer interference is resolved over the finite field,

the matrix Z has to be invertible over Fp. Since p is a prime

this is possible as long as Z has full rank; no restriction on the

determinant is required. This gives rise to a new factorization

problem: not a shortest basis problem as in LRA has to be

solved but a shortest independent vector problem [20].

C. Comparison

Even though LRA and IF are tightly related, the constraints

and restrictions are different. IF imposes strong constraints

on the signal constellation and its cardinality and in turn on

the applicable codes. In LRA only linearity in signal space is

required. Contrary, here unimodularity of Z is forced.

1Generalization to other lattices, e.g., the Eisenstein integers [2], are
possible. In each case, the signal constellation and the entries of Z have
to be taken from the same lattice/algebraic structure, cf. [4].

2If an offset is present as in usual QAM constellations, LRA equalization
still works if this offset is adequately taken into account, e.g., [17].
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The presentation of the IF schemes has sparked a rethinking

of the LRA approach—indeed, unimodularity is not required.

If3 | det(Z)| > 1 the vector x̄ = Zx, with x ∈ GK , is not

taken from GK but a sublattice thereof.4 Given the points from

this sublattice, Z−1—which has a determinant smaller than

one—will recover the original transmit vector x. Hence, the

LRA equalizer structure can be used with any full-rank integer

matrix Z, enabling the same gains as in IF but without the

restrictions on the signal constellation and the codes.

IF schemes have their main justification not in central but

in decentralized receivers. In a distributed antenna system,

the partial equalization via F cannot be applied; the residual

interference is taken as it is and the decoders produce estimates

on linear combinations. In IF schemes, only symbols from Fp

have to be communicated over the backhaul. The integer inter-

ference is resolved in some central processing unit. Conversely,

using the LRA structure, complex numbers would have to be

sent. In a central receiver the LRA structure is preferable.

In summary, LRA and IF have its individual advantages and

constraints. However, the calculation of the integer matrix can

be done in the same way for both approaches. For that we have

to distinguish between the different criteria the optimization

is based on and between different factorization algorithms.

D. Factorization Criteria

We now give an overview on the different criteria the

factorization task (2) is usually based on.
C-I Based on H: In the initial publications [19], [16],

lattice reduction is directly applied to the channel matrix H

H = CI ZI . (6)

Any lattice reduction algorithm may be used, e.g., minimizing

the orthogonality defect of C .
C-II Based on H−H: In [15], the factorization

H−H = FH

II Z
−H

II (7)

has been proposed. As for square matrices FH = C−H =
H−HZH follows from (6), F is immediately the (ZF) equal-

ization matrix and Z is the required integer matrix. Here, lat-

tice reduction is applied to H−H instead of H (for non-square

channel matrices the Hermitian of the left pseudoinverse has

to be used). Since the squared lengths of the columns of F H

give the noise enhancement (in case of ZF linear equalization),

this criterion directly optimizes the performance of the scheme

instead of a substitute measure as above.
C-III Based on H: In [18], an MMSE version to LRA

equalization has been given. The main idea is to calculate the

ZF solution for the augmented5 channel matrix; the result is

exactly the MMSE solution. The factorization here reads
[

H√
ζI

]

def
= H = CIIIZIII =

[
CIII√
ζZ−1

III

]

ZIII . (8)

3As Z ∈ GK×K , |det(Z)| < 1 is not possible for full-rank matrices.
4The individual decoding/detection of the components of x̄ is suboptimal,

as non-valid points can be delivered. This is anyway the case as the actual
boundary region of the constellation cannot be taken into account in separate
decoding, cf. [17]. For sufficiently large SNR this fact is irrelevant.

5Augmented matrices are typeset in calligraphic font.

TABLE I
OVERVIEW ON FACTORIZATION STRATEGIES.

based on
channel matrix H

(“ZF solution”)

augmented matrix H

(“MMSE solution”)

H H = CZ H = CZ

(H+l)H (H+l)H = FH Z−H (H+l )H = FH Z−H

Interestingly, the left pseudoinverse6 C
+l of C, immediately

gives the augmented receive matrix, as a comparison with (4)

shows [5].

C-IV Based on (H+l)H: In [20] a criterion for directly

minimizing the noise variance after MMSE linear equalization

of the part C has been given. With ZH = [z1, . . . , zK ] it reads

ZH

IV = argmin
Z∈GK×K,

rank(Z)=K

max
m

||LHzm||2 , (9)

LLH =
(
HHH + ζI

)−1
=

(
H

H
H

)−1
. (10)where

Since L can be any “square root” of the right-hand-side matrix,

as straightforward calculations show, we can set

LH =
(
H

+l
)H

=
(
H

H
)+r

(11)

and the respective factorization task can thus be written as
(
H

+l
)H

= F
H

IV Z−H

IV . (12)

Noteworthy, for all optimization criteria a respective factor-

ization task7 can be stated in which Z has to be chosen such

that the squared lengths of the column of the matrix CI, F
H

II,

CIII, or FH

IV, respectively, are as short as possible.

Table I gives an overview on the different criteria for the

factorization problem.

IV. FACTORIZATION ALGORITHM

The above overview has shown that regardless which opti-

mization criterion is used, a factorization problem has to be

solved in order to obtain the required integer matrix Z. If

we follow the original LRA approach and restrict Z to be

unimodular, any lattice reduction algorithm, in particular the

LLL algorithm [10], can be used. For the complex-valued

setting at hand, the CLLL [6] may be applied.

If the unimodularity is dropped, an algorithm for solving

the shortest independent vector problem (SIVP) has to be

applied. Unfortunately, in the literature, only a few approaches

are available. In [20], the optimization problem (9) or (12)

is solved via a brute-force search with some restrictions to

the search space. In [13], [14], low-complexity factorization

approaches, all directly based on the CLLL and hence resulting

in a unimodular matrix, are given. An algorithm to solve the

successive minima problem has been published in [3]. For

the distributed antenna setting, in [8] a suited factorization is

given, taking into account that no joint feedforward equaliza-

tion via F is possible.

6A+l = (AHA)−1AH denotes the left pseudoinverse of A and A+r =
AH(AAH)−1 the right pseudoinverse. A−H = (AH)−1 = (A−1)H.

7We hence denote the corresponding procedure factorization algorithm.
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Alg. 1 Pseudocode of the factorization algorithm.

function Z = factorize(H, ζ)

1 G =
(
HHH + ζI

)−1/2
// generator matrix

2 [GLLL,ZLLL] = LLL(G) // reduced basis

3 R2
max = maxi ||gi,LLL||

2 // search radius

4 U = getlist(GLLL, R
2
max) // get list of short vectors

5 {i1, . . . , iK} = getindices(U ) // indices of lin. indep. vectors

6 Z = ZLLL ·U(:, [i1, . . . , iK ]) // integer matrix

We now present an algorithm which is feasible for MIMO

scenarios typically of interest; a pseudocode description is

given in Alg. 1. Via numerical simulations we can then study

the gain possible by the respective criteria and the loss when

restricting Z to be unimodular. To have a compact notation,

we rewrite (10), (12) as

Gopt = GZH , (13)

with G = LH, ZH = [z1, . . . , zK ] ∈ GK×K , rank(Z) = K ,

and the columns of Gopt as short as possible. This means that

given the basis G of a lattice, find K linearly independent

vectors (lattice points) Gui, ui ∈ GK , which are as short as

possible. We do this via performing the following steps:

LLL Reduction:

First, the LLL reduced basis GLLL =
[
g1,LLL, . . . , gK,LLL

]

is calculated. Since the SIVP is more relaxed than the shortest

basis problem, the LLL basis gives an upper bound R2
max =

maxi ||gi,LLL||
2 on the norms of the vectors possible in the

SIVP. We denote this step as [GLLL,ZLLL] = LLL(G).
List of Lattice Points:

Then, a (sorted) list of vectors (lattice points) with squared

norms bounded by R2
max is calculated. Let the list be writ-

ten as matrix U =
[
u1,u2, . . . ,uℓ

]
, with ||GLLLui||

2 ≤
||GLLLui+1||

2, ∀i. Since for complex lattices the volume is

given by the squared magnitude of the determinant of the gen-

erator matrix [2, Eq. (87)]), the list size can be approximated

by ℓ = (πR2
max)

K/(K!| det(G)|2). We denote this step as

U = getlist(GLLL, R
2
max).

This step can be implemented efficiently using the idea

of the list sphere decoder, Alg. ALLCLOSESTPOINTS in

[1]. In principle, this calculation has exponential complexity,

however, if the LLL basis is used and R2
max is small and, thus,

the number ℓ of points within the search sphere is small, still

an efficient search is obtained.

Select Points:

Among the vectors in the list (matrix U ) the best combina-

tion of vectors, i.e., indices i1, . . . , iK , has to be found such

that Z =
[
ui1 , . . . ,uiK

]
has full rank and GLLLuiK is as

small as possible.

The last step can be solved by performing Gaussian elim-

ination on the matrix U , i.e., transforming it to row echelon

form. Since the list is sorted according to increasing (squared)

norms ||GLLLui||
2, the best choice is to select the vectors

ui, which first define a new dimension; in row echelon form

these are the vectors at the steps. We denote this step as

{i1, . . . , iK} = getindices(U).

Please note, if some restrictions (e.g., on the determinant) of

Z have to be obeyed, a search over combinations of candidates

can be performed instead of the simple Gaussian elimination.

This step can efficiently be implemented by the sphere decoder

and offers degrees of freedom not present in other algorithms.

V. NUMERICAL RESULTS

The factorization algorithm has been implemented and exten-

sive numerical simulations have been performed. Thereby, H

is an N ×K i.i.d. random zero-mean unit-variance complex

Gaussian matrix. The aim is to assess which gains can be

attributed to which factorization criterion or algorithm. The

proposed straight-forward algorithm gives the same results as

the recent one in [3]. For K up to 8 our strategy is faster

for most of the realizations; however for a few matrices it

requires significant higher complexity. A detailed complexity

evaluation is beyond the scope of the present paper.

First, in Fig. 3 the cumulative distribution function of the

list size (number of columns in U ) is plotted. Please note,

all apparently linearly dependent vectors (those multiplied by

−1, j, and −j) are not added to the list in getlist. It can

be seen that for practical values of K the list size is small

to moderate and can easily be handled. The chosen SNR is

almost the worst case; for large SNR LLH ≈
(
HHH)−1. For

small SNRs smaller list sizes are obtained as LLH ≈
σ2
x

σ2
n
I

and thus Z = I is optimum.

Second, Tab. II summarizes the distribution of the determi-

nant of Z over 106 channel realizations. As the dimension of

the channel matrix increases, the number of channels where
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Fig. 3. Cumulative distribution function (cdf) of the list size. I.i.d. channel
matrix H with K = N . σ2

x/σ
2
n =̂ 20 dB.

TABLE II
DISTRIBUTION OF |det(Z)|. σ2

x/σ
2
n =̂ 20 dB.

|det(Z)| = 1
√
2 2

√
5

K = N = 2 100 % — — —

K = N = 3 99.8 % 0.2 % — —

K = N = 4 99.0 % 1.0 % — —

K = N = 5 97.5 % 2.4 % 0.005 % —

K = N = 6 95.4 % 4.5 % 0.03 % 0.003 %

K = N = 7 92.7 % 7.1 % 0.15 % 0.02 %

K = N = 8 89.3 % 10.2 % 0.39 % 0.06 %
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mission. Variation of the optimization criterion (colors) and the factorization
algorithm (dashed vs. solid).

| det(Z)| > 1 increases. However, only for K > 6 non-

unimodular matrices are optimum for a significant portion of

channels.

Finally, bit-error-rate curves for uncoded transmission are

depicted in Fig. 4. 16QAM signaling is used and the SNR

is normalized to Eb

N0
=

σ2
a

σ2
n log2(16)

. The factorization criterion

and the factorization algorithm are varied; in each case the

linear receiver frontend F is adjusted according to the MMSE

criterion. For reference, ML detection is included.

Obviously, C-I together with the LLL algorithm has the

worst performance. Using C-II gives better results (cf. [15]),

best performance is obtained when applying C-IV; still the

LLL is used, thus Z is unimodular. Using the proposed

algorithm which relaxes the constraint on the determinant of Z

some additional gain is possible. This gain, as already can be

deduced from Tab. II, increases when K gets larger. Compared

to classical LRA equalization using C-I and the LLL, gains in

the order of 5 dB are possible for K = N = 8 by replacing the

criterion and the factorization algorithm. Thereby, however, the

LRA receiver structure can be utilized as it is—the constraints

on the constellation and the code design in IF can be avoided.

VI. SUMMARY AND CONCLUSIONS

The tight relation between LRA and IF schemes has been high-

lighted and a new, optimum factorization algorithm has been

proposed. We have restricted ourselves to linear equalization

of the residual part. The extension to successive equalization

and decoding (DFE/SIC, cf. [12]) is immediately possible.

Moreover, the transformation to transmitter-side precoding,

dual to receiver-side equalization, is also directly possible, cf.

[8], [7].
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ABSTRACT

Recent information theoretic results on a class of broadcast
channels with layered decoding and/or layered secrecy are
overviewed. Designs for different models are compared and
applications of these results to fading wiretap channels and
secret sharing are briefly discussed. An outlook, focusing on
theoretical challenges concludes the overview.

1. INFORMATION THEORETIC MODELS
We briefly introduce four models all belonging to the class
of degraded broadcast channels with layered decoding and/or
layered secrecy. More details can be found in [1].

The first model is the degraded broadcast channel with
layered decoding and non-layered secrecy, in which a trans-
mitter sendsK messagesW1, . . . ,WK to K receivers with
each receiverk, decoding the firstk messages, and the eaves-
dropper ignorant of all messages. The capacity achieving
scheme superposes multiple layers together with each layer
carrying one more message than its previous layer. Further-
more, each layer applies random binning to secure not only
the message in this layer but also all higher-layer messages.

The second model is the degraded broadcast channel with
non-layered decoding and layered secrecy, in which a trans-
mitter sendsK messagesW1, . . . ,WK to one legitimate re-
ceiver, and each eavesdropperk, needs to be kept ignorant of
the messagesWk, . . . ,WK , for k = 1, . . . ,K. The capac-
ity achieving scheme encodes each codeword with multiple
messages so that lower-layer messages can serve as a random
source to protect higher-layer messages.

The third model is the degraded broadcast channel with
layered decoding and layered secrecy, in which a transmitter
sendsK messagesW1, . . . ,WK to K receivers. Receiverk
is required to decode the firstk messagesW1, . . . ,Wk, and
is kept ignorant of messagesWk+1, . . . ,WK . The capacity
achieving scheme is similar to that for the first model except

The work of S. Zou and Y. Liang was supported by a National Science
Foundation CAREER Award under Grant CCF-10-26565 and by theNational
Science Foundation under Grant CNS-11-16932. The work of L.Lai was
supported by the National Science Foundation under Grant CCF-1318980
and Grant CNS-1457076. The work of H. V. Poor was supported inpart
by the National Science Foundation under Grant CMMI-1435778 and Grant
CNS-1456793. The work of S. Shamai (Shitz) was supported in part by the
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that random binning within one layer only protects the mes-
sage corresponding to the same layer.

The fourth model is the degraded broadcast channel with
layered decoding and layered secrecy and with secrecy out-
side a bounded range. We focus on the case in which the
transmitter has four messagesW1, . . . ,W4 intended for the
four receivers. Receiverk is required to decode the messages
W1, . . . ,Wk. Furthermore,W3 needs to be kept secure from
receiver 1, andW4 needs to be kept secure from receivers
1 and 2. Hence, each message is secured from a receiver
with two-level worse channel quality. The capacity achieving
scheme applies the joint design of superposition, embedded
coding, random binning, and rate splitting and sharing.

2. APPLICATIONS
We discuss two applications of the broadcast models de-
scribed in Section 1. The first application is to the fading
wiretap channel, in which the legitimate and eavesdropping
channels are corrupted by multiplicative random fading gains.
In the case that the transmitter does not know the fading gains,
the legitimate and eavesdropping channels can be viewed as
having multiple states. A layered transmission scheme can
be designed so that more layers can be decoded if the le-
gitimate channel has better quality, and more layers can be
made secure if the eavesdropper channel has lower quality.
Thus, such an approach naturally yields a degraded broadcast
channel with layered decoding and secrecy requirements as
discussed in Section 1, and the secrecy capacity results for
such models can be applied.

The second application is to the secret sharing problem
with multiple secrets, which can be shown to be equivalent to
the broadcast channel with secrecy requirements. Namely, the
groups of participants that are required to determine secrets
should be viewed as legitimate receivers and the groups of
participants that are required to be ignorant of secrets should
be viewed as eavesdroppers.
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Semantic Security using a

Stronger Soft-Covering Lemma

Paul Cuff, Ziv Goldfeld, and Haim Permuter

I. SOFT COVERING

A soft-covering theorem was introduced by Wyner [1,
Theorem 6.3] and is the central analysis step for achievability
proofs of information theoretic security, resolvability, and
channel synthesis. It can also be used for simple achievabil-
ity proofs in lossy source coding. Recently in [2] we have
sharpened the claim of soft-covering by moving away from an
expected value analysis. Instead, a random codebook is shown
to achieve the soft-covering phenomenon with high probability.
The probability of failure is doubly-exponentially small in the
block-length, enabling many applications through the union
bound. In particular, it can be used to achieve semantic
security in wiretap channels without loss of communication
rate efficiency, as we demonstrate in [3].

The soft-covering concept says that the distribution induced
by selecting an Xn sequence at random from a codebook
of sequences and passing it through the memoryless channel
QY n|Xn will be a good approximation of QY n in the limit of

large n as long as the codebook is of size greater than 2nR

where R > I(X;Y ). The codebook can even be constructed
randomly, drawing each sequence independently from the
distribution QXn .

The soft-covering lemmas in the literature claim that the
distance (commonly total variation or relative entropy) be-
tween the induced distribution PY n and the desired distribution
QY n vanishes in expectation over the random selection of
the codebook. This phenomenon has been studied and refined
numerous times in the literature (see references in [2]). Some-
times it is referred to as ”resolvability” or simply as a covering
lemma. But always expected distance is analyzed.

In [2] we give a stronger claim. With high probability with
respect to the codebook construction, the distance will vanish
exponentially quickly with the block-length n. The negligible
probability of the random set not producing this desired result
is doubly-exponentially small.

Let us define precisely the induced distribution. Let C =
{un(m)}Mm=1 be the set of sequences, which will be referred
to as the codebook. The size of the codebook is M = 2nR.
Then the induced distribution is:

PV n|C = 2−nR
∑

un(m)∈C

QV n|Un=un(m). (1)

Lemma 1 ([2]). For any QU , QV |U , and R > I(U ;V ), where
V has a finite support V , there exists a γ1 > 0 and a γ2 > 0
such that for n large enough

P
(
d(PV n|C , QV n) > e−γ1n

)
≤ e−eγ2n

, (2)

where d(·, ·) is the relative entropy.

II. SEMANTIC SECURITY

Wyner’s soft-covering lemma has become a standard tool
for proving that strong perfect secrecy is achieved in the wire-
tap channel (see e.g. [4]). Coincidentally, Wyner introduced
both the idea of soft covering [1] and the wiretap channel [5]
in the same year, but he didn’t connect the two together.

According to the usual definition, strong perfect secrecy is
achieved if the mutual information (unnormalized) between the
message and the eavesdropper’s channel output can be made
arbitrarily small.

An even stronger notion of near-perfect secrecy is se-
mantic security. This requires that any two messages cannot
be distinguished, usually measured by total variation. This
is not implied by the above strong secrecy because mutual
information is an average quantity. Since there are so many
messages, the mutual information can be small even if a
few of the messages are perfectly distinguishable. In [6] a
connection between mutual information and semantic security
is established by maximizing over message distributions.

Lemma 1 allows us to show that the random codebook
construction of Wyner actually achieves semantic security. This
is argued by claiming that for every message, due to the
randomization at the encoder, the soft-covering phenomenon
causes the output distribution at the eavesdropper to be close to
an i.i.d. output distribution. The union bound establishes that
the probability that even a single message produces an output
far from i.i.d. is vanishing quickly with n.

In [3] we use this technique to establish semantic security
even for a wiretap channel setting with an active adversary.
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The wiretap channel (WTC), introduced by Wyner [1],
is composed of a sender (“Alice”) who wishes to convey
data to a legitimate user (“Bob”), such that the eavesdropper
(“Eve”) cannot recover any information of this data. In the
multiple-input multiple-output (MIMO) Gaussian WTC, Alice
is connected to Bob and Eve bi a MIMO broadcast channel.
The capacity of this channel was found in [2]–[4].

Although the capacity of WTCs is well understood, con-
struction of practical codes is still a challange. For the scalar
Gaussian case, various approaches have been suggested. The
recent work of Tyagi and Vardy in [5] is particularly appealing,
since it uses a black-box approach: it takes any code that is
good for the ordinary (non-secrecy) AWGN channel, and turns
it into a good wiretap code using a hashing procedure.

However, assuming that we have such a code for the scalar
case, how do we extend it to the vector case? Do we need
to construct different codes for every channel matrix? In [6]
we have presented a scheme based on scalar random-binning
wiretap codes, in conjunction with a linear encoder and
a successive interference cancellation (SIC) decoder, which
approaches the MIMO wiretap capacity. In fact, it can be
described as a variant of VBLAST/GDFE schemes, used in
MIMO communication without secrecy [7], [8]. Interestingly,
the proof that Eve cannot extract information also hinges on
the optimality of the SIC procedure, this time in a “genie-
aided” setting: after Eve extracts all possible information from
a stream, the content of that stream is revealed to her for the
sake of trying to decode the next streams.

Given the optimal SIC scheme for the MIMO WTC, it is
natural to consider an explicit code construction, where the
random-binning codes are replaced by ordinary AWGN codes,
combined with some structured binning procedure, e.g. the
hashing of [5]. Indeed, in [9] we have pursued this idea. The
key point is that, as with random-binning codes, when any
good set of codes is used, a “genie-aided” Eve cannot do
better than follow a SIC process. Since at any stage of a SIC
decoding process, the decoder sees a multiple-access channel
(MAC) where the inputs are the streams that are not decoded
yet, the optimality of the scheme is intimately related to that of
a scheme for the MAC WTC [10]. However, the construction
of good MAC WTC codes is also not immediate.

Even without secrecy, not any collection of good AWGN
codes is good for any Gaussian MAC, see e.g. [11]: if
the codebooks have structure (as they should, in a practical
construction), the signal resulting from one codebook may not

look as noise in the process of decoding the other, as for some
channel coefficients the codes may align. This compromises
MAC decoding, whose optimality is needed both for the
“Bob” and “Eve” parts of the secrecy proofs. This effect can
be circumvented by a dithering process, which makes sure
that codewords play the part of “independent noise” when
decoding a different codebook. We thus define a class of
MAC WTC codes that have both good individual secrecy
properties, and mutual independence; such codebook sets can
be obtained from any set of good AWGN codebooks by a
two-stage process of hashing and then dithering. However, this
still does not yield a practical code construction, as dithering,
which must be performed modulo a shaping region to retain
optimality, inflicts decoding complexity that may be higher
than that of the original code. Thus, in order to obtain a
practical construction, we need to find a “simpler” procedure
to perturb any given set of codebooks, such that the resulting
codes are good for the MAC WTC. It is worth noting, that
such a construction will also be theoretically significant in
communication without secrecy constraints, as the problem of
alignment already arises in VBLAST/GDFR schemes.
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Abstract—The broadcast channel with independent secret keys
models a communication scenario in which a common message
has to be securely broadcast to two legitimate receivers keeping
an eavesdropper ignorant of it. The transmitter shares an
independent secret key of arbitrary rate with each legitimate
receiver. Depending on the channel qualities of the legitimate
receivers and the eavesdropper, these secret keys must be used
as one-time pads to encrypt the message, as fictitious messages
for randomization in wiretap coding, or a combination of both
to achieve the secrecy capacity. In this paper, communication
takes place over independent parallel subchannels and the secrecy
capacity is established for these cases, in which all parallel
channels follow the same order of degradation.

I. INTRODUCTION

Security is traditionally implemented at higher layers of
the communication protocol such as the application layer and
usually based on cryptographic principles. Recently, informa-
tion theoretic approaches to security have drawn consider-
able attention, especially for wireless communication systems,
where it provides a promising complement to cryptographic
approaches; see for example [1, 2] and references therein.

Information theoretic approaches realize security directly at
the physical layer by exploiting the noisy properties of the
underlying communication channel. This line of research was
initiated by Wyner who studied the so-called wiretap channel
in which a sender wants to securely transmit information over
a noisy channel to a receiver keeping an eavesdropper in the
dark [3]. In [4–7] this has been extended to the wiretap channel
with a shared secret key.

While the basic wiretap channel with secret key is well
understood, multi-user communication scenarios involving
multiple secret keys have received much less attention. This
is insofar surprising as the optimal use of the secret keys
is no longer obvious in such scenarios. A transmitter and a
receiver can use a shared secret key for encryption to securely
transmit a certain message, but this might harm other receivers
(of this particular message) that are not aware of this key.
Accordingly, multiple secret keys can result in conflicting
payoffs at different receivers making the optimal use of the
secret keys a challenging and non-trivial problem.

The underlying phenomenon is captured by the broadcast
channel (BC) with independent secret keys which has been

This research was supported in part by the U. S. National Science
Foundation under Grant CMMI-1435778.

studied in [8] and [9]. Here, a transmitter wishes to broadcast
a common message to two legitimate receivers while keeping
an eavesdropper ignorant of it. The transmitter shares indepen-
dent secret keys of arbitrary rates with both receivers. Now,
secure communication can be realized by different approaches.
Secret keys can be used as one-time pads to encrypt the
common message as in [10]. The drawback of this is that
each receiver knows only its own secret key. Thus, the more
one secret key is used, the more the other receiver is hurt
as the encrypted message becomes useless for it. Another
approach is to interpret the secret keys as fictitious messages
used as randomization resources for wiretap codes [1, 2]. The
drawback of this approach is that allocating certain resources
for randomization reduces the available resources for the
actual message transmission. Both approaches are conceptu-
ally different and surprisingly neither of them is superior to
the other one. In fact, depending on the channel qualities
of the legitimate receivers and the eavesdropper, either the
one-time pad approach, the fictitious message approach, or a
combination of both is needed to achieve capacity [8, 9].

In this paper we study the parallel BC with independent
secret keys. In this model, the transmitter communicates with
the legitimate receivers (and the eavesdropper) via multiple
independent subchannels. We establish the secrecy capacity
for the special cases of degraded subchannels, in which all
subchannels follow the same order of degradation. The general
model of parallel channels is of particular interest as it includes
fading channels as a special case. Secure communication over
parallel and fading channels for the BC (without secret keys)
has been studied in [11] and [12].1

II. BC WITH INDEPENDENT SECRET KEYS

Let X , Y1, Y2, and Z be finite input and output sets.
For input and output sequences xn ∈ Xn, yn1 ∈ Yn

1 ,
yn2 ∈ Yn

2 , and zn ∈ Zn of length n, the discrete memoryless
broadcast channel is described by the transition probability
Pn
Y1Y2Z|X(yn1 , y

n
2 , z

n|xn) =
∏n

i=1 PY1Y2Z|X(y1,i, y2,i, zi|xi).
The BC with independent secret keys models the commu-

nication scenario in which a transmitter broadcasts a common
message M to legitimate receivers 1 and 2, while keeping

1Notation: The set of non-negative integers {1, 2, ..., L} is denoted by
[1, L]; Xn

[1,L]
denotes the group of length n vectors Xn

1 , X
n
2 , ..., X

n
L where

Xn
l = (Xl,1, Xl,2, ..., Xl,n), l ∈ [1, L].
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Fig. 1. Broadcast channel with independent secret keys.

an eavesdropper ignorant of it. The transmitter shares secret
keys K1 and K2 of arbitrary rates with receivers 1 and 2 as
shown in Fig. 1. The message M and the secret keys K1

and K2 are assumed to be independent of each other and
uniformly distributed over the sets M := {1, ...,Mn} and
Ki := {1, ...,Ki,n}, i = 1, 2. This has been studied in [8] and
[9] and the secrecy capacity has been established for several
cases.

Depending on the channel qualities of the legitimate re-
ceivers and the eavesdropper, the optimal use of the secret keys
varies: Either they must be used as one-time pads to encrypt
the message, must be interpreted as fictitious messages used as
randomization resources for wiretap coding, or a combination
of both. If the eavesdropper has the “strongest” channel in the
sense that the Markov chain relationship X −Z − Y1 − Y2 is
satisfied, the secret keys are used as one-time pads to create
two encrypted messages based on a bit-wise XOR operation.
Capacity is then achieved by superposition coding of these
two messages.

Theorem 1 ([8]). The secrecy capacity C of the BC with
independent secret keys and reversely degraded channels
X − Z − Y1 − Y2 is

C = max
PUX

min
{
I(X;Y1|U), I(U ;Y2)

}
(1)

where the max is over all input distributions PUX(u, x) such
that U −X −Z −Y1−Y2 form a Markov chain. Further, the
cardinality of the range of U can be bounded by |U| ≤ |X |+1.

If the eavesdropper has the “weakest” channel in the sense
that X − Y1 − Z and X − Y2 − Z are satisfied, then the
secret keys are used as fictitious messages playing the role of
randomization resources for wiretap codes.

Theorem 2 ([8]). The secrecy capacity C of the BC with
independent secret keys and degraded channels X − Y1 − Z
and X − Y2 − Z is

C = max
PX

min

 I(X;Y1)
I(X;Y2)
1
2 [I(X;Y1)+I(X;Y2)−I(X;Z)]

. (2)

If the eavesdropper has neither the strongest nor the weakest
channel, a combination of both approaches is needed.

Theorem 3 ([9]). The secrecy capacity C of the BC with
independent secret keys for X − Y1 − Z − Y2 is

C = max
PUX

min

{
I(U ;Y2)
1
2

[
I(X;Y1) + I(U ;Y2)− I(U ;Z)

] } (3)

where the max is over all input distributions PUX(u, x) such
that U−X−Y1−Z−Y2 form a Markov chain. The cardinality
of the range of U can be bounded by |U| ≤ |X |+ 1.

III. PARALLEL CHANNELS

In the following we consider a parallel BC with L indepen-
dent subchannels and each of them is a BC as introduced
above. Now the transmitter wants to transmit the common
message over these L subchannels. Accordingly, the parallel
BC consists of L finite input alphabets X[1,L] and 3L finite
output alphabets Y1,[1,L], Y2,[1,L], and Z[1,L]. The transition
probability is then

Pn
Y1,[1,L]Y2,[1,L]Z[1,L]|X[1,L]

(yn1,[1,L], y
n
2,[1,L], z

n
[1,L]|x

n
[1,L]) (4)

=
L∏

l=1

Pn
Y1,lY2,lZl|Xl

(yn1,l, y
n
2,l, z

n
l |xnl ) (5)

=
L∏

l=1

n∏
i=1

PY1,lY2,lZl|Xl
(y1,l,i, y2,l,i, zl,i|xl,i) (6)

where xnl ∈ Xn
l , yn1,l ∈ Yn

1,l, y
n
2,l ∈ Yn

2,l, and znl ∈ Zn
l are

the input and output sequences of length n on subchannel
l ∈ [1, L].

Definition 1. An (n,Mn,K1,n,K2,n)-code for the parallel BC
with independent secret keys consists of a (stochastic) encoder

E :M×K1 ×K2 → P(Xn
1 × ...×Xn

L ) (7)

with P(·) the set of all probability distributions, and decoders

ϕ1 : Yn
1,1 × ...× Yn

1,L ×K1 →M (8)

ϕ2 : Yn
2,1 × ...× Yn

2,L ×K2 →M. (9)

We denote the average probability of decoding error at
receiver i by ēi,n, i = 1, 2. The secrecy criterion is

I(M ;Zn
[1,L]) = I(M ;Zn

1 , Z
n
2 , ..., Z

n
L) ≤ δn (10)

for δn > 0 with M the random variable uniformly distributed
over the set of messagesM and Zn

l = (Zl,1, Zl,2, ..., Zl,n) the
output at the eavesdropper on subchannel l. This condition is
termed strong secrecy.

Definition 2. A rate R > 0 is an achievable secrecy rate
for the parallel BC with independent secret keys if for
any τ > 0 there exist an n(τ) ∈ N and a sequence of
(n,Mn,K1,n,K2,n)-codes such that for all n ≥ n(τ) we
have 1

n logMn ≥ R − τ and I(M ;Zn
[1,L]) ≤ δn while

ē1,n, ē2,n, δn → 0 as n → ∞. The secrecy capacity C is
the supremum of all achievable rates R.
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A. Strongest Eavesdropper

We start with the scenario in which the eavesdropper is the
“strongest” receiver for all parallel subchannels, i.e., we have
the Markov chain relationships Xl − Zl − Y1,l − Y2,l for all
l ∈ [1, L].

Theorem 4. The secrecy capacity C of the parallel BC with
independent secret keys for reversely degraded channels is

C = max min

{ ∑L
l=1 I(Xl;Y1,l|Ul)∑L
l=1 I(Ul;Y2,l)

}
(11)

where the max is over all input distributions
∏L

l=1 PUlXl
(u, x)

such that Ul − Xl − Zl − Y1,l − Y2,l, l ∈ [1, L], form
Markov chains, i.e., superposition coding on each subchannel
is optimal. Further, the cardinality of the range of Ul can be
bounded by |Ul| ≤ |Xl|+ 1, l ∈ [1, L].

Proof: The achievability is based on [8, Theorem 2]
by using superposition coding on each subchannel. More
specifically, the secret keys K1 and K2 are used as one-time
pads to encrypt the common message M into two individual
messages M1 = M ⊕K1 and M2 = M ⊕K2. Both messages
are split up into L submessages M1 = (M1,1,M1,2, ...,M1,L)
and M2 = (M2,1,M2,2, ...,M2,L).

Now, on each subchannel l ∈ [1, L] the message pair
(M1,l,M2,l) is individually encoded and transmitted using
superposition coding. Thereby, subchannel l ∈ [1, L] is a
degraded BC supporting the rates R1,l = I(Xl;Y1,l|Ul) and
R2,l = I(Ul;Y2,l). In total, we achieve with this strategy rates
R1 =

∑L
i=1R1,l and R2 =

∑L
i=1R2,l yielding the desired

achievable rate as in (11).
It remains to show the converse. At receiver i, i = 1, 2, we

have the following version of Fano’s inequality:

H(M |Y n
i,[1,L],Ki) ≤ nεi,n (12)

with εi,n → 0 as n → ∞. We define the auxiliary random
variables

Ul,i = (M,K2, Y
n
1,[1,l−1], Y

i−1
1,l ) (13)

for all l ∈ [1, L]. For the weaker receiver we obtain

nR = H(M) = H(M |K2) (14)
= I(M ;Y n

2,[1,L]|K2) + nεi,n (15)

≤ I(M,K2;Y n
2,[1,L]) + nεi,n (16)

=

L∑
l=1

I(M,K2;Y n
2,l|Y n

2,[1,l−1]) + nεi,n (17)

=

L∑
l=1

n∑
i=1

I(M,K2;Y2,l,i|Y n
2,[1,l−1], Y

i−1
2,l ) + nεi,n (18)

≤
L∑

l=1

n∑
i=1

I(M,K2, Y
n
2,[1,l−1], Y

i−1
2,l ;Y2,l,i) + nεi,n (19)

≤
L∑

l=1

n∑
i=1

I(M,K2, Y
n
1,[1,l−1], Y

i−1
1,l ;Y2,l,i) + nεi,n (20)

=

L∑
l=1

n∑
i=1

I(Ul,i;Y2,l,i) + nεi,n (21)

where (15) follows from Fano’s inequality (12), (20) from the
degradedness Xl−Y1,l−Y2,l for all l ∈ [1, L], and (21) from
the definition of Ul,i, cf. (13).

With the same definition for Ul,i we obtain for the stronger
receiver

nR ≤ I(M,K1;Y n
1,[1,L]) + nεi,n (22)

= I(K1;Y n
1,[1,L]|M) + I(M ;Y n

1,[1,L])

− I(M ;Zn
[1,L]) + nεi,n + nδn (23)

≤ I(K1;Y n
1,[1,L]|M) + nε′i,n (24)

≤ I(K1;Y n
1,[1,L]|M,K2) + nε′i,n (25)

=

L∑
l=1

I(K1;Y n
1,l|M,K2, Y

n
1,[1,l−1]) + nε′i,n (26)

=

L∑
l=1

n∑
i=1

I(K1;Y1,l,i|M,K2, Y
n
1,[1,l−1],Y

i−1
1,l )+nε′i,n (27)

≤
L∑

l=1

n∑
i=1

I(K1, Xl,i;Y1,l,i|M,K2, Y
n
1,[1,l−1],Y

i−1
1,l )+nε′i,n

(28)

=

L∑
l=1

n∑
i=1

I(Xl,i;Y1,l,i|M,K2, Y
n
1,[1,l−1],Y

i−1
1,l )+nε′i,n (29)

=

L∑
l=1

n∑
i=1

I(Xl,i;Y1,l,i|Ul,i) + nε′i,n (30)

with ε′i,n = εi,n+δn. Here, (23) follows from the secrecy crite-
rion (10) and (24) follows from the fact that I(M ;Y n

1,[1,L]) ≤
I(M ;Zn

[1,L]) due to the degradedness.
Now, let Q be a time-sharing random variable independent

of all others and uniformly distributed over {1, ..., n}. We set
Ul = (Ul,Q;Q), Xl = Xl,Q, Y1,l = Y1,l,Q, and Y2,l = Y2,l,Q
for all l = 1, ..., L and obtain for the rate of the weaker receiver
in (21)

R ≤
n∑

i=1

I(Ul,Q;Y2,l,Q|Q) + εi,n (31)

≤
n∑

i=1

I(Ul;Y2,l) + εi,n (32)

and for the rate of the stronger receiver in (30)

R ≤
L∑

l=1

I(Xl,Q;Y1,l,Q|Ul,Q, Q) + ε′i,n (33)

=

L∑
l=1

I(Xl;Y1,l|Ul) + ε′i,n. (34)

This yields the desired bounds in (11) proving the desired
converse. The cardinality bounds follow then immediately
from [8, Theorem 2].
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B. Weakest Eavesdropper

Now we look at the scenario in which the eavesdropper is
the “weakest” receiver for all parallel subchannels, i.e., we
have the Markov chain relationships Xl− Y1,l−Zl and Xl−
Y2,l − Zl for all l ∈ [1, L].

Theorem 5. The secrecy capacity C of the parallel BC with
independent secret keys and degraded channels Xl−Y1,l−Zl

and Xl − Y2,l − Zl is

C=max min


∑L

l=1I(Xl;Y1,l)∑L
l=1I(Xl;Y2,l)∑L
l=1

1
2 [I(Xl;Y1,l)+I(Xl;Y2,l)−I(Xl;Zl)]


(35)

where the max is over all input distributions
∏L

l=1 PXl
(x).

Proof: The achievability follows from [8, Theorem 3]
by extending this coding scheme to the vector-valued case
here, specifically, by setting X = (X1, X2, ..., XL), Y1 =
(Y1,1, Y1,2, ..., Y1,L), Y2 = (Y2,1, Y2,2, ..., Y2,L), and Z =
(Z1, Z2, ..., ZL) with X having independent components.

For the converse we observe that the first two bounds in
(35) are single-user bounds. The more interesting bound is
the third, sum-rate-like bound which is as follows:

n2R = H(M) +H(M) (36)
= H(M |K1) +H(M |K2) (37)
≤ I(M ;Y n

1,[1,L]|K1) + I(M ;Y n
2,[1,L]|K2) + nεn (38)

≤ I(M ;Y n
1,[1,L]|K1) + I(M ;Y n

2,[1,L]|K2)

− I(M ;Zn
[1,L]) + nε′n (39)

≤ I(M,K1;Y n
1,[1,L]) + I(M,K2;Y n

2,[1,L])

− I(M ;Zn
[1,L]) + nε′n (40)

≤ I(M,K12;Y n
1,[1,L]) + I(M,K12;Y n

2,[1,L])

− I(M,K12;Zn
[1,L]) + nε′n (41)

with ε′n = εn + δn = εi,n + ε2,n + δn. Here, (38) follows from
Fano’s inequality, (39) from the secrecy criterion (10), and
(41) follows from the same steps used in [8, Eqs. (26)-(27)].
Due to the degradedness we can write the first and third term
in (41) as

I(M,K12;Y n
1,[1,L])− I(M,K12;Zn

[1,L])

= I(M,K12;Y n
1,[1,L]|Z

n
[1,L]) (42)

= H(Y n
1,[1,L]|Z

n
[1,L])−H(Y n

1,[1,L]|M,K12, Z
n
[1,L]) (43)

≤ H(Y n
1,[1,L]|Z

n
[1,L])−H(Y n

1,[1,L]|X
n
[1,L], Z

n
[1,L]) (44)

= H(Y n
1,[1,L]|Z

n
[1,L])−

L∑
l=1

H(Y n
1,l|Xn

l , Z
n
l ) (45)

≤
L∑

l=1

H(Y n
1,l|Zn

l )−
L∑

l=1

H(Y n
1,l|Xn

l , Z
n
l ) (46)

=
L∑

l=1

I(Xn
l ;Y n

1,l|Zn
l ). (47)

Similarly we get for the second term

I(M,K12;Y n
2,[1,L]) ≤

L∑
l=1

I(Xn
l ;Y n

2,l) (48)

so that we can upper bound (41) by

n2R ≤
L∑

l=1

[
I(Xn

l ;Y n
1,l|Zn

l ) + I(Xn
l ;Y n

2,l)
]

+ nε′n (49)

≤ n
L∑

l=1

[
I(Xl;Y1,l|Zl) + I(Xl;Y2,l)

]
+ nε′n (50)

= n
L∑

l=1

[
I(Xl;Y1,l) + I(Xl;Y2,l)− I(Xl;Zl)

]
+ nε′n

(51)

which gives the desired sum-rate-like bound in (35). This
completes the converse.

C. Eavesdropper in the Middle

Finally, we study the scenario in which the eavesdropper is
neither the strongest nor the weakest receiver for all parallel
subchannels. In particular, we assume that the Markov chain
relationships Xl − Y1,l − Zl − Y2,l hold for all l ∈ [1, L].

Theorem 6. The secrecy capacity C of the parallel BC with
independent secret keys for Xl − Y1,l − Zl − Y2,l is

C=max min

{∑L
l=1I(Ul;Y2,l)∑L
l=1

1
2 [I(Xl;Y1,l)+I(Ul;Y2,l)−I(Ul;Zl)]

}
(52)

where the max is over all input distributions
∏L

l=1 PUlXl
(u, x)

such that Ul −Xl − Y1,l − Zl − Y2,l, l ∈ [1, L], form Markov
chains. Further, the cardinality of the range of Ul can be
bounded by |Ul| ≤ |Xl|+ 1, l ∈ [1, L].

Proof: The achievability follows from [9, Theorem
4] by extending this coding scheme to the vector-valued
case here, specifically, by setting U = (U1, U2, ..., UL),
X = (X1, X2, ..., XL), Y1 = (Y1,1, Y1,2, ..., Y1,L), Y2 =
(Y2,1, Y2,2, ..., Y2,L), and Z = (Z1, Z2, ..., ZL) with U and
X having independent components.

For the converse we define the auxiliary random variables

Ul,i = (M,K2, Z
n
[1,l−1], Z

i−1
l ) (53)

for all l ∈ [1, L]. For the first bound in (52) we obtain

nR = H(M) = H(M |K2) (54)
= I(M ;Y n

2,[1,L]|K2) + nεi,n (55)

≤ I(M,K2;Y n
2,[1,L]) + nεi,n (56)

=
L∑

l=1

I(M,K2;Y n
2,l|Y n

2,[1,l−1]) + nεi,n (57)

=
L∑

l=1

n∑
i=1

I(M,K2;Y2,l,i|Y n
2,[1,l−1], Y

i−1
2,l ) + nεi,n (58)
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=

L∑
l=1

n∑
i=1

I(M,K2, Y
n
2,[1,l−1], Y

i−1
2,l ;Y2,l,i) + nεi,n (59)

≤
L∑

l=1

n∑
i=1

I(M,K2, Z
n
[1,l−1], Z

i−1
l ;Y2,l,i) + nεi,n (60)

=

L∑
l=1

n∑
i=1

I(Ul,i;Y2,l,i) + nεi,n (61)

where (55) follows from Fano’s inequality, (60) from the
degradedness Xl − Y1,l − Zl − Y2,l for all l ∈ [1, L], and
(61) from the definition of Ul,i.

For the second bound we proceed as follows. We know from
the proof of Theorem 5, in particular (40), that

n2R ≤ I(M,K1;Y n
1,[1,L]) + I(M,K2;Y n

2,[1,L])

− I(M ;Zn
[1,L]) + nε′n (62)

≤ I(M,K12;Y n
1,[1,L]) + I(M,K2;Y n

2,[1,L])

− I(M,K2;Zn
[1,L]) + nε′n (63)

with ε′n = ε1,n+ε2,n+δn, where the last step follows similarly
as in [9, Eqs. (25)-(27)]. Using the chain rule for mutual
information we obtain

n2R ≤ I(M,K12;Y n
1,[1,L]) + I(M,K2;Y n

2,[1,L])

− I(M,K12;Zn
[1,L]) + I(K1;Zn

[1,L]|M,K2) + nε′n.

(64)

From the proof of Theorem 5 we know that we can bound the
first and third term as

I(M,K12;Y n
1,[1,L])− I(M,K12;Zn

[1,L])

≤ n
L∑

l=1

[
I(Xl;Y1,l)− I(Xl;Zl)

]
, (65)

cf. (42)-(51). The second term is upper bounded by

I(M,K2;Y n
2,[1,L]) ≤

L∑
l=1

n∑
i=1

I(Ul,i;Y2,l,i) (66)

which follows as in (56)-(61). It remains to bound the last
term as follows:

I(K1;Zn
[1,L]|M,K2)

≤
L∑

l=1

I(K1;Zn
l |M,K2, Z

n
[1,l−1]) (67)

≤
L∑

l=1

n∑
i=1

I(K1;Zl,i|M,K2, Z
n
[1,l−1], Z

l−1
l ) (68)

≤
L∑

l=1

n∑
i=1

I(K1, Xl,i;Zl,i|M,K2, Z
n
[1,l−1], Z

l−1
l ) (69)

=

L∑
l=1

n∑
i=1

I(Xl,i;Zl,i|M,K2, Z
n
[1,l−1], Z

l−1
l ) (70)

=

L∑
l=1

n∑
i=1

I(Xl,i;Zl,i|Ul,i). (71)

Now by inserting (65), (66), (71) into (64) and introducing
a time-sharing random variable independent of all others
and uniformly distributed over {1, ..., n}, it is straightforward
to obtain the desired bounds in (52), thereby proving the
converse. The cardinality bounds follow then immediately
from [9, Theorem 4]

IV. CONCLUSION

In this paper we have studied the parallel BC with inde-
pendent secret keys. Here, the transmitter sends a common
message to two legitimate receivers via multiple independent
subchannels. Parallel channels are of particular interest as they
include fading channels as a special case. We have established
the secrecy capacity of the parallel BC with independent secret
keys for the cases in which the channels of the legitimate
receivers and the eavesdropper all follow the same order of
degradation.

If the eavesdropper is weakest receiver for all subchannels,
the optimal coding scheme is the vector-valued extension of
the single-channel case. The same is true for the case in which
the eavesdropper is neither the weakest nor the strongest for
all subchannels. However, if the eavesdropper is the strongest
receiver for all subchannels, the optimal coding scheme is
based on individual superposition coding on each subchannel.
All considered cases have in common that independent inputs
for all subchannels are optimal which does not immediately
follow from [8] and [9]. Moreover, for all considered cases the
secrecy capacity of the parallel BC is in general larger than the
sum of the secrecy capacities of all individual subchannels.
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Abstract—We consider a setup where a rechargeable battery
is used to partially mask the load profile of a user from the
utility provider in a smart-metered electrical system. We focus
on the case of i.i.d. load profile, use mutual information as our
privacy metric, and characterize the optimal policy as well as
the associated leakage rate.

Our approach is based on obtaining single-letter expression
for the leakage rate for a class of battery policies and providing
a converse argument for establishing the optimality.

I. INTRODUCTION

Smart meters are becoming a critical part of modern elec-
trical grids. They deliver fine-grained household power usage
measurements to utility providers. This information allows
them to implement changes to improve the efficiency of the
electrical grid. However, despite the promise of savings in
energy and money, there is potentially a loss of privacy.
Anyone with access to the load profile may employ data
mining algorithms to infer details about the private activities
of the user [1]–[4].

In this paper, we investigate one possible solution to the
privacy problem. Using a rechargeable battery, the user can
distort the load profile generated by the appliances by charg-
ing and discharging the battery. Due to the proliferation of
rechargeable batteries, energy harvesting devices and electric
vehicles, the strategy of using these devices to partially ob-
fuscate the user’s load profile is becoming more feasible. As
we discuss below, a number of recent works have studied this
approach in the literature.

A. Related Works

We consider a similar setup to [7] which introduces using
mutual information as a privacy metric then considers an
instance of the problem with binary alphabets. The setup
is extended in [8], [9] where the multi-letter mutual infor-
mation optimization problem is reformulated as a Markov
Decision Process. The results in this paper mirror that of [10]
where the optimal single-letter information leakage rate and
policy is characterized using Markov Decision Theory. In
this paper, we provide the proofs using purely information
theoretic arguments which may be of interest in its own right.
In other related works, rate-distortion type approaches for

studying privacy-utility tradeoffs in smart grid systems have
been studied in [11]–[14]. These works are not directly related
to the present setup.

II. PROBLEM DEFINITION

We consider a smart metering system as shown in Fig. 1
where at each time a residence generates an aggregate de-
mand that must either be satisfied by charges in the battery
or by drawing power from the grid. {Xt}t≥1, Xt ∈ X
where X := {0, 1, 2, . . . ,mx} denotes the (exogeneous) i.i.d.
power demand process distributed according to QX . {Yt}t≥1,
Yt ∈ Y , denotes the energy consumed from the grid where
Y := {0, 1, 2, . . . ,my} and {St}t≥1, St ∈ S denotes the
energy stored in the battery where S := {0, 1, 2, . . . ,ms} and
the initial charge S1 of the battery is distributed according to
probability mass function PS1

.
We assume that mx ≤ my so that the system is guaranteed

to be able to satisfy the demand at any time by drawing solely
from the grid i.e. Yt = Xt, ∀t. While in general, the alphabets
X and Y can be any finite subset of the integers – where
negative values of X and Y would model a situation where
energy (possibly generated from an alternative energy source)
is sold back to the utility provider – it is more realistic to for
them to be a contiguous interval. In this case, without further
assumptions on the battery size, the alphabets would have to
satisfy X ⊂ Y in order to guarantee that energy is not wasted
and the power demand can always be satisfied. Nonetheless,
our results generalize to these cases.

We assume an ideal battery that has no conversion losses
or other inefficiencies. Therefore, the following conservation
equation must be satisfied at all time instances:

St+1 = St −Xt + Yt. (1)

The energy management system observes the power demand
and battery charge and consumes energy from the grid ac-
cording to a randomized charging policy q = (q1, q2, . . . ).
In particular, at time t, given (xt, st, yt−1), the history of
demand, battery charge, and past consumption, the battery
policy chooses the level of current consumption Yt to be
y with probability qt(y | xt, st, yt−1). For a randomized
charging policy to be feasible, it must satisfy the conservation
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Home
Appliances

Battery Policy
St+1 = St + Yt −Xt

qt(Yt|Xt, St, Y t−1)

Power
Grid

Xt Yt

Fig. 1: System Diagram. The user demand is denoted by Xt, the grid
consumption by Yt, and the battery state by St. The battery policy
is denoted by the conditional distribution q(Yt|Xt, St, Y t−1). The
battery policy effectively defines a channel with memory from the
residence to the utility provider.

equation (1), so given the current power demand and battery
charge (xt, st), the feasible values of grid consumption are
defined by

Y◦(st − xt) = {y ∈ Y : st − xt + y ∈ S}.

Thus, we require that

qt(Y◦(st − xt) | xt, st, yt−1)

:=
∑

y∈Y◦(st−xt)

qt(y | xt, st, yt−1)

= 1.

The set of all such feasible strategies is denoted by QA.
A battery policy effectively defines a channel with memory
between a residence and the utility provider (as portrayed in
Fig. 1).

The quality of a charging policy depends on the amount of
information leaked under that policy. This notion is captured
by mutual information Iq(S1, X

T ;Y T ) evaluated according
to the joint probability distribution on (ST , XT , Y T ) induced
by the sequence q:

Pq(ST = sT , XT = xT , Y T = yT )

= PS1
(s1)PX1

(x1)q1(y1 | x1, s1)

×
T∏

t=2

[
1st{st−1 − xt−1 + yt−1}

Q(xt)qt(yt | xt, st, yt−1)

]
.

(2)

Given a policy q = (q1, q2, . . . ) ∈ QA, we define the worst
case information leakage rate as follows:

L∞(q) := lim sup
T→∞

1

T
Iq(S1, X

T ;Y T ). (3)

Remark II.1. The random variable S1 in the mutual informa-
tion terms do not affect the asymptotic rate. It will be clear in
the sequel that this simplifies the analysis.

We are interested in the following optimization problem:

Problem A. Given the alphabet X and distribution QX of
the power demand, the alphabet S of the battery, the initial
distribution PS1

of the battery state, and the alphabet Y of the
demand: find a battery charging policy q = (q1, q2, . . . ) ∈ QA

that minimizes the leakage rate L∞(q) given by (3).

III. STATIONARY POSTERIOR POLICIES

The simplest class of policies are stationary and memory-
less, conditioning only on the current battery state and power
demand:

q(y|x, s). (4)

As such evaluating the leakage rate (3) even for this simplified
class of policies requires numerical approaches, see e.g., [7],
[13]. Our key insight is that if we further impose a certain
invariance condition we can obtain a closed form expression
for the leakage rate. Interestingly we will see that this class of
policies also includes a globally optimal policy. Our proposed
class preserves the following property:

P(S2 = s2|Y1 = y1) = P(S1 = s2), ∀s2 ∈ S, y1 ∈ Ŷ (5)

where Ŷ := {y : PY1(y1) > 0} for some initial battery state
distribution PS1 . This invariance condition implies that St ⊥
Yt−1 and also that PSt

= PS1
, ∀t. By exploiting this property,

we can obtain single-letter achievable leakage rates as follows:

Lemma III.1. Given an instance of Problem A with i.i.d.
power demand QX(x) and initial battery state distribution
PS1

, if the stationary memoryless policy q = (q, q, . . .) ∈ QA

satisfies the invariance property (5), then

L∞(q) = Iq(S1, X1;Y1),

where (S1, X1, Y1) ∼ PS1
(s1)Q(x1)q(y1|x1, s1).

Proof. The invariance property and the memorylessness of q
implies that (Yt, Xt, St) ⊥ Y t−1, ∀t. Therefore we have

1

T
Iq(S1, X

T ;Y T )
(a)
=

T∑
t=1

1

T
Iq(St, XT ;Yt|Y t−1)

(b)
=

T∑
t=1

1

T
Iq(St, Xt;Yt|Y t−1)

(c)
= Iq(S1, X1;Y1), ∀T

where (a) is due to the chain rule of mutual information and
the fact that St is a deterministic function of (S1, X

t−1, Y t−1)
given by the battery update equation (1), (b) is due to the
memoryless condition (4), and (c) is due to the invariance
property (5).

We will next develop some further properties of the invari-
ance condition (5). Let us define an auxillary random variable
Wt := St−Xt where Wt ∈ W := S −X and for w ∈ W , let

D(w) := {(x, s) ∈ X × S : s− x = w}.
Lemma III.2. An initial battery distribution PS1

and a
stationary memoryless policy q = (q, q, . . . ) satisfies the
invariance property (5) iff for each (s2, y1) ∈ S × X , we
have

PS1
(s2)Q(y1) =

∑
(x̃,s̃)∈D(s2−y1)

q(y1|x̃1, s̃1)Q(x̃1)PS1
(s̃1).

(6)

2
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Proof. (If) Note that since the rhs is equal to the joint
Pq(S2 = s2, Y1 = y1), the systems of equations in the Lemma
implies that S2 ⊥ Y1 and Pq

S2
= PS1 which is the invariance

property (5).
(Only if) Assuming the invariance property to be true, since

S1−X1 = S2−Y1 given by the battery update equation (1) we
must have Pq

Y1
(y1) = Q(y1), ∀y1 ∈ X . Using Bayes rule and

the definition of the joint distribution we recover the statement
in the Lemma.

Lemma III.2 implies that the alphabet for {Yt}t>0 must
be limited to X and Pq

Yt
= Q. In addition, Eq. (6) provides

an explicit condition that must be satisfied by the stationary
memoryless policies for any fixed PS1

∈ PS . Note that
these are essentially |W| linear constraints. It should be clear
that these constraints are always feasible. For example, using
the policy Yt = Xt, any PS1 will satisfy the invariance
property (5). However, this will maximize the leakage rate.
We next discuss a policy that turns out be optimal.

A. Optimal Policy

Lemma III.3. Given a fixed PS1
and W1 = S1 − X1,

the optimal policy q∗ = (q∗, q∗, . . . ) satisfying the invariance
property III.2 is

q∗(y|x, s) =
{

Q(y)PS1
(y+s−x)

PW1
(s−x) if y ∈ X ∩ Y◦(s− x)

0 otherwise

achieving a leakage rate of

L∞(q∗) = I(S1 −X1;X1)

where (S1, X1) ∼ PS1
(s1)Q(x1).

Proof. By definition, q∗(y|x, s) ≥ 0, ∀s ∈ S, x ∈ X , y ∈
X ∩Y◦(s−x). Next, we show that q∗ is properly normalized.∑

ỹ∈X∩Y◦(s−x)
Q(ỹ)PS1

(ỹ + s− x)

=
∑

(x̃,s̃)∈D(s−x)
Q(x̃)PS1(s̃)

= Denominator of q∗(Y◦(s− x)|x, s),

where the second step follows by substituting x̃ = ỹ and s̃ =
ỹ+ s−x and observing that s̃− x̃ ∈ D(s−x). Therefore, q∗

is admissible. The invariance property can be verified using
Lemma III.2 or as follows:

Pq∗
(S2 = s2, Y1 = y1)

(a)
= Pq∗

(S2 = s2, Y1 = y1,W1 = s2 − y1)

(b)
= Pq∗

(Y1 = y1,W1 = s2 − y1)

= Pq∗
(Y1 = y1|W1 = s2 − y1)P(W1 = s2 − y1)

(c)
= Pq∗

(Y1 = y1|X1 = y1, S1 = s2)P(W1 = s2 − y1)

= q(y1|y1, s2)P(W1 = s2 − y1)

= Q(y1)PS1
(s2)

where (a) and (b) use the fact that S2−Y1 = W1 holds from the
battery update equation, (c) is because q∗(y|x, s) only depends
on (x, s) via s − x and the last equality follows from the
definition of q∗. The last equality shows that the invariance
property is satisfied.

To show optimality, fix PS1
and let q be any policy

satisfying Lemma III.2 and consider the following inequalities:

L∞(q)
(a)
= I(S1, X1;Y1)

(b)

≥ I(W1;Y1)

= H(W1)−H(W1 + Y1|Y1)

(c)
= H(W1)−H(S2)

(d)
= H(W1)−H(S1)

(e)
= H(S1 −X1)−H(S1 −X1|X1)

= I(S1 −X1;X1)

(a) is due to Lemma III.2, (b) is due to the data processing
inequality, (c) and (d) are due to the battery update equation (1)
and the invariance property of q, and (e) is by definition.

The achievability proof is completed by noting that under
q∗, we have Yt −Wt − (Xt, St) and so the lower bound is
obtained.

Proposition III.1. Minimizing over the initial battery distri-
bution PS1

in Lemma III.3 we obtain the optimal leakage rate
in the class of policies satisfying the invariance property III.2.

Remark III.1. The limitation of this achievability scheme
requires that the battery have a specific distribution over
the battery’s initial states. However, this loss of generality
is operationally insignificant since the user can start off by
randomly charging the battery from an external source.

B. Converse

So far we have shown that the policy in Lemma III.3, is opti-
mal for the class of invariance policies that satisfy (5). We will
now prove an information theoretic converse that establishes
that the stated policy is globally optimal among all policies
in QA. This provides the counterpart of the result in [10],
but avoids the use of the dynamic programming framework.
Consider the following inequalities: for any admissible policy
q ∈ QA we have

I(S1, X
T ;Y T ) ≥

T∑
t=1

I(St, Xt;Yt|Y t−1) ≥
T∑

t=1

I(Wt;Yt|Y t−1)

= H(W1)−H(W1|Y1) +H(W2|Y1)−H(W2|Y 2) + · · ·
(a)
= H(W1)−H(S2|Y1) +H(S2 −X2|Y1)−H(S3|Y 2) + · · ·

= H(W1) +
T∑

t=2

I(Wt;Xt|Y t−1)−H(WT |Y T )

3
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where (a) is because St+1 is an invertible function of Wt given
Yt. Now, taking the limit T →∞ to obtain a lower bound to
the leakage rate we have

L∞(q) = lim
T→∞

1

T
I(S1, X

T ;Y T )

≥ lim
T→∞

1

T

[
H(W1) +

T∑
t=2

I(Wt;Xt|Y t−1)−H(WT |Y T )

]
(a)
= lim

T→∞
1

T

[
T∑

t=2

I(Wt;Xt|Y t−1)

]
(b)
≥ min

PS∈PS

I(S −X;X).

(a) is because the entropy of any discrete random variable
is bounded and (b) follows from the observation that every
term in the summation is only a function of the posterior
P (St|Y t−1). Therefore, minimizing each term over a PS ∈
PS results in a lower bound to the optimal leakage rate which
is achievable using Proposition III.1.

IV. CONCLUSIONS

In this paper, we provide a single-letter characterization of
the optimal private information leakage rate using information
theoretic arguments. While the result was already established
in [10], the proof provided in this paper is based on more
elementary arguments and avoids the use of the dynamic
programming framework. Our proof shows that the optimal
leakage rate is achieved using a class of stationary memoryless
policies that preserve the posterior distribution of the battery
state. We believe that the techniques discussed here also extend
to continuous valued input and output alphabets.
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Abstract—This paper takes a rate-distortion approach to the
caching problem of Maddah-Ali and Niesen. We characterise
the optimal tradeoffs between compression rate, reconstruction
distortion and cache capacity for a single-user problem and spe-
cial cases of a two-user problem. These tradeoffs illustrate some
interesting connections between optimal caching strategies, Gács-
Körner common information, and Wyner’s common information.

I. INTRODUCTION AND SETUP

We address a communication scenario where users request
files from a server during peak-traffic periods. The server
reduces the peak-traffic by pre-placing information in cache
memories close to the users during prior periods of low
traffic. In these low-traffic periods, communication rate is not
a limiting resource and the amount of pre-placed information
is mainly restricted by the cache memory sizes.

More specifically, in this paper we consider the scenario in
Figure 1. The server has access to a library with L files:

Library X := (Xn
1 , X

n
2 , . . . , X

n
L),

where each file is a sequence of n symbols

Xn
` := (X`,1, X`,2, . . . , X`,n)

taking value in a finite alphabet X`. For simplicity, we assume
that each file is a sequence of independent and identically dis-
tributed (i.i.d.) symbols, where symbols pertaining to different
files can be correlated:

(X1,1, . . . , XL,1), . . . , (X1,n, . . . , XL,n) i.i.d. ∼ PX, (1)

for some given joint law PX over X := X1 × · · · × XL.
Assume that there is a single user, which selects an index

` ∈ L := {1, 2, . . . , L}

arbitrarily and requests the corresponding file Xn
` from the

server. The user has a local cache memory of size nC bits
where the server can pre-place information Mc, and which
the user can access to reconstruct its requested file Xn

` . A
central assumption in our work is that the server has to place
the information in the cache before it learns the user’s request.
The information Mc stored in the cache should thus be chosen
such that it is useful for (or common to) as many files as
possible.

Once the server learns the user’s request ` ∈ L, it sends an
nR-bit delivery message M to the user. Based on this message
M and the cache content Mc, the user attempts to reconstruct
its requested file Xn

` . Hence, the delivery message M should

Library
Server

Cache

User

Mc

M
(Xn

1 , . . . , Xn
L) X̂n

`

Fig. 1. Single-user RD cache problem.

contain all the information about Xn
` that is relevant to the

user and that is not yet stored in the cache memory.
Such a cache-aided setup was first considered by Maddah-

Ali and Niesen in [1, 2] and triggered a series of fruitful
results [3]–[9]. The works in [1]–[7] studied the problem
where independent files Xn

1 , . . . , X
n
L had to be reconstructed

losslessly by multiple users. More specifically, these works
presented various upper and lower bounds on the minimum
required delivery-rate R for given cache capacity C. While we
limit ourselves to a single user with cache memory, we extend
the analysis to lossy reconstruction of potentially correlated
files, cf. (1). We furthermore analyse the problem when a
second user without cache memory is present, see the setup
in Figure 4.

The main problem of interest in this paper is thus the
optimal tradeoff between the delivery rate R, the cache
capacity C, and the user’s reconstruction distortion. Notice
that the delivery rate R is a worst-case rate (or a compound
rate) in the sense that it has to be sufficiently large so that
the user can reconstruct every file Xn

` , ` ∈ L, with desired
accuracy. The problem setup by Wang, Lim and Gastpar [9],
can be considered as an ergodic average-case equivalent of our
worst-case (or compound) setup.

II. SINGLE USER

A. Formal Problem Definition

Let X̂1, . . . , X̂L be given reconstruction sets. A joint rate-
distortion-cache (RDC) code for a given blocklength n con-
sists of (2L+ 1)-mappings:

(i) A cache encoder fc : Xn →Mc, where Mc is finite.
(ii) A file encoder f` : Xn →M for each ` ∈ L, where M

is finite.
(iii) A file decoder g` :M×Mc → X̂n` for each ` ∈ L.
For brevity, we will call the above collection of encoders
and decoders an (n,M,Mc)-code. Given demand ` ∈ L, the
cache content and the delivery message are

Mc := fc(X
n) and M := f`(X

n);
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and the user’s reconstruction is

X̂n
` := g`(M,Mc) ∈ X̂n` .

As per the usual rate-distortion (RD) paradigm, let us
assume that the quality of X̂n

` can be meaningfully mea-
sured using average per-letter distortions. Specifically, for each
` ∈ L, let

δ` : X̂` ×X` → [0,∞)

be a bounded distortion function. For simplicity, we assume
that for each symbol x` ∈ X` there always exists an x̂` in X̂`
such that δ`(x̂`, x`) = 0.

Definition 1: Let D := (D1, D2, . . . , DL) and C be arbi-
trary nonnegative reals. We say that a delivery rate R ≥ 0 is
(D, C)-admissible if for every ε > 0 there exists a sufficiently
large blocklength n and an (n,M,Mc)-code such that

∀ ` ∈ L: E

[
1

n

n∑
i=1

δ`(X̂`,i, X`,i)

]
≤ D` + ε,

and
|Mc| ≤ 2n(C+ε) and |M| ≤ 2n(R+ε). (2)

We call C the cache capacity and D the distortion con-
straints. The optimal RDC tradeoff for blocklengths n → ∞
is characterised by the following function.

Definition 2: The RDC function is

R(D, C) := inf
{
R ≥ 0 : R is (D, C)-admissible

}
.

B. Main Results

The RDC function has the following properties:

Proposition 1:

(i) R(D, C) is jointly convex and non-increasing in D and
C.

(ii) If C ≥ H(X), then R(D, C) = 0 for all D.
(iii) If C = 0, then

R(D, 0) = max
`∈L

RX`
(D`),

where RX`
(D`) is the usual RD function for X`,

RX`
(D`) := min

pX̂`|X`
: X`→X̂`

s.t. E[δ`(X̂`,X`)]≤D`

I(X`; X̂`).

Let
R∗(D, C) := minmax

`
I(X`; X̂`|U), (3)

where the minimum is taken over all (U, X̂1, X̂2, . . . , X̂L)
jointly distributed with X such that I(X;U) ≤ C and
E[δ`(X̂`, X`)] ≤ D` for all ` ∈ L.

Theorem 1:

R(D, C) = R∗(D, C).

Transmitter

Receiver 1

Receiver 2

Rc

R1

R2

(Xn
1 , Xn

2 )

X̂n
2

X̂1

Fig. 2. Lossy Source Coding for a Simple Network.

C. Connections to the Gray-Wyner Network

For the case of L = 2 files, Xn = (Xn
1 , X

n
2 ), there is a close

connection between the RDC function and Gray and Wyner’s
classic “source coding for a simple network” problem [10].
The Gray-Wyner network is illustrated in Figure 2: A trans-
mitter is connected to two different receivers via a common
link of rate Rc and two private links of rates R1 and R2.
The set of all achievable rate tuples (Rc, R1, R2) for which
receivers 1 and 2 can respectively reconstruct Xn

1 and Xn
2 to

within distortions D1 and D2 is given by [10, Thm. 8]

RGW(D1, D2) :=
⋃(Rc, R1, R2) :

Rc ≥ I(X1, X2;U)

R1 ≥ I(X1; X̂1|U)

R2 ≥ I(X2; X̂2|U)

 ,

where the union is over all tuples (X1, X2, U, X̂1, X̂2) satisfy-
ing E[δ`(X̂`, X`)] ≤ D`, for ` ∈ {1, 2}. The next proposition
can be proved by associating the common rate Rc of the
Gray-Wyner problem with the rate of the caching message
Mc, and the two private rates R1 and R2 of the Gray-Wyner
problem with the rates of our delivery message M when the
user demands Xn

1 and Xn
2 , respectively.

Proposition 2:

R((D1, D2), C) = min
(C,R1,R2)∈RGW(D1,D2)

max
{
R1, R2

}
.

D. Almost Lossless Compression

Let us now restrict attention to the case where the user wants
to reconstruct Xn

` (almost) losslessy. Specifically, suppose that
X̂` = X` and δ`(x̂`, x`) = 1{x̂` 6= x`} for all ` ∈ L are
Hamming distortion functions; and 0 := (0, . . . , 0) is a tuple
of L zeros. Given these assumptions, define the rate-cache
(RC) function

R0(C) := R(0, C).

From Theorem 1 we have the next corollary.
Corollary 1.1:

R0(C) = R∗(0, C) = min
U

max
`
H(X`|U),

where the minimum is taken over all auxiliary random vari-
ables U , jointly distributed with X, satisfying I(X;U) ≤ C.

Figure 3 shows the typical behaviour of R0(C). To obtain
better understanding, we propose two lower bounds and study
conditions when they are tight.
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max
`2L

H(X`)

Cgen
ie

Csup
er

R ⇤
genie (C

)

R⇤
super(C)

H(X
)

1

L
H(X)

max
`2L

H(X`)
C

R0(C)

Fig. 3. An illustration of a typical RC function R0(C) and the lower bounds
in Propositions 3 and 6.

1) Lower Bound R∗0,Genie(C) on R0(C): Imagine that, be-
fore the caching phase, a genie tells the server which ` ∈ L the
user will select in the future. The optimal caching strategy for
this hypothetical genie-aided problem is obvious, because for
each ` ∈ L we have a standard RD problem: The server uses
an optimal code to losslessly compress the source Xn

` , stores
the first nC bits produced by this code in the user’s cache
memory, and sends the remaining bits as the delivery message.
The user assembles the bits from the cache memory and the
delivery message and reconstructs the requested file. The RC
function of this genie-aided system, R0,Genie(C), hence equals1

R0,Genie(C) = R∗0,Genie(C) := max
{
0, max

`∈L
H(X`)− C

}
.

Since the server can always choose to ignore the genie-
information, the RC function of the genie-aided system cannot
exceed the RC function of the original scenario:

Proposition 3:

R0(C) ≥ R0,Genie(C).

For degraded file sets, above lower bound is tight.
Example 1: Let the DMS X be given by X` := (A1, . . . ,

A`) for all ` ∈ L, where (A1, . . . , AL) have an arbitrary joint
distribution. Then,

R0(C) = R∗0,Genie(C) = max{0, H(XL)− C}.

2) Connection to the Gács-Körner Common Information:
The lower bound R∗0,Genie(C) is also trivially tight at zero
cache capacity, C = 0; for example, see Assertion (ii) in
Proposition 1. It is therefore natural to define

CGenie := sup
{
C ≤ H(X) : R0(C) = R∗0,Genie(C)

}
to be the largest cache capacity for which there is no rate loss
with respect to the optimal genie-aided system.

Define the subset L∗ ⊆ L as

L∗ := arg max
`∈L

H(X`).

1The maximum over ` ∈ L is needed because we again consider a worst-
case (compound) setup over all possible demands ` ∈ L.

Further, let
C∗Genie := max

U
I(X;U),

where the maximum is taken over all auxiliary random vari-
ables U jointly distributed with X for which the following
statements hold:

(i) For every `∗ ∈ L∗, we have U ↔ X`∗ ↔ XL\`∗ , where
XL\`∗ :=

(
X1, X2, . . . , X`∗−1, X`∗+1, . . . , XL

)
.

(ii) For every `∗ ∈ L∗,

H(X`∗ |U) = max
`∈L

H(X`|U),

(iii) U is defined on an alphabet U with |U| ≤ |X |+ |L∗|+L.
Proposition 4:

CGenie = C∗Genie.

The critical cache capacity C∗Genie is related to the natural
L-variable generalisation [12] of Gács and Körner’s common
information:

K∗GK := max
U : H(U |X`)=0, ∀ `∈L

H(U).

Proposition 5:
C∗Genie ≥ K∗GK. (4)

If H(X1) = · · · = H(XL), then (4) holds with equality.

3) Lower Bound R∗0,Super(C) on R0(C): Now imagine a
situation where we have a superuser that requests all the L
sources Xn

1 , . . . , X
n
L and that obtains L delivery messages of

rate R each. Moreover, suppose that as before this superuser
has a local cache memory of size nC bits that can be filled by
the server. The optimal strategy for this superuser problem is
again obvious, since it is equivalent to a standard RD problem
with a single compression message of rate LR+C: The server
takes an optimal code to compress the entire library Xn and
distributes the produced bits in the cache memory and over
the L delivery messages. The RC function of this superuser
system, R0,Super(C), hence is:

R0,Super(C) = R∗0,Super(C) := max

{
0,

1

L

(
H(X)− C

)}
.

If one limits the superuser to reconstruct each source Xn
` ,

` ∈ L, solely based on the content in the cache memory and
the `-th delivery message, one obtains our original setup. The
RC function of the superuser system thus can not exceed the
RC function of the original setup:

Proposition 6:

R0(C) ≥ R0,Super(C).

For independent and identically distributed files, above lower
bound is tight:

Example 2: Let the DMS X follow the product distribution
PX =

∏L
`=1 PX . In this case,

R0(C) = R∗0,Super(C) = max

{
0, H(X)− C

L

}
.
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Fig. 4. Two-user RD cache problem.

4) Connection to Wyner’s Common Information: The supe-
ruser lower bound is trivially tight when C ≥ H(X). So it is
natural to consider the smallest cache capacity for which there
is no rate loss with respect to the optimal superuser system,

CSuper := inf
{
C ≥ 0 : R0(C) = R0,Super(C)

}
.

Let
C∗Super := min

U
I(X;U),

where the minimum is taken over all auxiliary random vari-
ables U jointly distributed with X such that

(i) X` ↔ U ↔ XL\` for all ` ∈ L;
(ii) H(X1|U) = · · · = H(XL|U); and

(iii) U is defined on U with |U| ≤ |X |+ 2L.
Proposition 7:

CSuper = C∗Super.

The critical cache capacity C∗Super is related to the natural L-
variable generalisation [11] of Wyner’s common information:

K∗W(X) := min
U

I(X;U),

where the minimum is taken over all U jointly distributed with
X for which

(i) X` ↔ U ↔ XL\` for all ` ∈ L; and
(ii) U is defined on an alphabet U with |U| ≤ |X |+ L.

Proposition 8:
C∗Super ≥ K∗W.

If the source X is sufficiently symmetric, above inequality
holds with equality.

III. TWO-USERS WITH ONE CACHE

A. Setup

We now consider a two-user extension of the problem in
Section II. Let us assume that user 1 has a cache with capacity
C, while user 2 does not have a cache; see Figure 4. The
library consists of the same L files Xn := (Xn

1 , . . . , X
n
L)

used in Section II, and communication again takes place in two
phases — a caching phase and a delivery phase. Let L1,L2 ⊆
L denote those indices that can be potentially selected by users
1 and 2, respectively. That is, user k (for k = 1, 2) will request
a file from

{
Xn
`k
: `k ∈ Lk

}
. Let L1 := |L1| and L2 := |L2|.

A two-user joint RDC code with blocklength n consists of
(i) A cache encoder

fc : Xn →Mc.

(ii) A file encoder

f(`1,`2) : X
n →M, (`1, `2) ∈ L1 × L2.

(iii) A user-1 file decoder

g
(1)
`1,`2

:M×Mc → X̂ (1),n
`1

, (`1, `2) ∈ L1 × L2.

(iv) A user-2 file decoder

g
(2)
`1,`2

:M→ X̂ (2),n
`2

, (`1, `2) ∈ L1 × L2.

Notice that we allow the decoders to depend on the demands
of both users. We call the above collection of encoders and
decoders an (n,M,Mc)-two-user-code.

During the caching phase, the server pre-places the message
Mc := fc(X

n) in the cache of user 1. After the demands
(`1, `2) ∈ L1 × L2 are revealed to the server and both users,
the server sends the message M := f(`1,`2)(X

n) to both users.
Users 1 and 2 respectively output

X̂
(1),n
`1

:= g
(1)
`1,`2

(M,Mc) and X̂
(2),n
`2

:= g
(2)
`1,`2

(M).

For convenience, we index user 1’s reconstruction sequence
only with its own demand `1; it can however also depend on
user 2’s demand `2. Similarly, for user 2’s reconstruction.

The users might have differing exigencies regarding the files
in the library. To account for this, we admit both users to
measure reconstruction accuracy with different bounded per-
letter distortion functions δ

(1)
`1

: X̂ (1)
`1
× X`1 → [0,∞) and

δ
(2)
`2

: X̂ (2)
`2
×X`2 → [0,∞) (for indices `1 ∈ L1 and `2 ∈ L2).

Definition 3: Let C be a nonnegative real number, and let
D(1) :=

{
D

(1)
`1

}
`1∈L1

and D(2) :=
{
D

(2)
`2

}
`2∈L2

be L1- and
L2-tuples of nonnegative real numbers.

We say that a compression rate R ≥ 0 is (D(1),D(2), C)-
admissible if for any ε > 0 there exists a sufficiently large
blocklength n and an (n,M,Mc)-code satisfying (2) and

∀ k ∈ {1, 2}: ∀ ` ∈ Lk:

E

[
1

n

n∑
i=1

δ
(k)
`k

(
X̂

(k)
`,i , X`,i

)]
≤ D(k)

` + ε. (5)

Definition 4: The two-user RDC function is

R2user(D
(1),D(2), C)

:= inf
{
R ≥ 0 : R is

(
D(1),D(2), C

)
-admissible

}
.

B. Genie-Aided Lower Bound on the RDC Function

If both users’ demands were revealed by a genie to the
server even before the caching phase, our setup would coin-
cide with a “worst-case” (or compound) successive-refinement
setup. The rate-distortions function of this worst-demands
successive refinement problem thus forms a lower bound on
R2user(D

(1),D(2), C).
Definition 5: Let R∗SuccRef(D

(1),D(2), C) be the RDC func-
tion defined in (6) on top of the next page, where the
minimum is taken over all tuples (X, X̂(1), X̂(2)) such that
for k ∈ {1, 2}:

∀ ` ∈ Lk: E
[
δ
(k)
`

(
X̂

(k)
` , X`

)]
≤ D(k)

` . (7)
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R∗SuccRef

(
D(1),D(2), C

)
:= max

(`1,`2)∈L1×L2

min
P

X,X̂(1),X̂(2)

max
{
I
(
X; X̂

(2)
`2

)
, I
(
X; X̂

(1)
`1
, X̂

(2)
`2

)
− C

}
(6)

R2user,Ach
(
D(1),D(2), C

)
:= min max

(`1,`2)∈L1×L2

max
{
I
(
X; X̂

(2)
`2

)
+ I
(
X; X̂

(1)
`1
|U, X̂(2)

`2

)
, I
(
X;U, X̂

(1)
`1
, X̂

(2)
`2

)
− C

}
(8)

R2user(0,0, C) ≤ min
PU|X

max
(`1,`2)∈L1×L2

max
{
H(X`2) +H(X`1 |U,X`2), H(U,X`1 , X`2)− C

}
(9)

Theorem 2:

R2user
(
D(1),D(2), C

)
≥ R∗SuccRef

(
D(1),D(2), C

)
.

C. Upper Bound on the RDC Function

We have the following upper bound on the RDC function.
Definition 6: Let R2user,Ach(D

(1),D(2), C) be defined as
in (8) on top of the next page, where the minimum is taken
over all tuples

(
U, X̂(1):={X̂(1)

`1
}`1∈L1 , X̂

(2):={X̂(2)
`2
}`2∈L2

)
jointly distributed with X such that (7) holds for k ∈ {1, 2}.

Theorem 3:

R2user
(
D(1),D(2), C

)
≤ R2user,Ach

(
D(1),D(2), C

)
.

Theorem 3 can equivalently be stated as follows: a rate
R > 0 is (D(1),D(2), C)-admissible whenever there is a tuple(
U, X̂(1), X̂(2)

)
and a collection of auxiliary rates {R̃`2}`2∈L2

such that for every pair (`1, `2) ∈ L1 × L2:

C + R̃`2 ≥ I
(
U ;X, X̂

(2)
`2

)
− I
(
U ; X̂

(2)
`2

)
= I
(
U ;X

∣∣X̂(2)
`2

)
R− R̃`2 ≥ I

(
X; X̂

(2)
`2

)
+ I
(
X; X̂

(1)
`1
|U, X̂(2)

`2

)
.

These rates are achieved by the following scheme. The
server compresses the entire library Xn into Un using the
adaptive conditional RD code for side-information X̂n

`2
that we

describe in the next paragraph. Our adaptive RD code produces
a first message of nC bits which the server stores in user 1’s
cache, and a second message of nR̃`2 bits which the server
sends as part of the delivery message. In the delivery message
it also sends a standard RD message that allows both users to
reconstruct X̂(2),n

`2
, and a standard conditional RD message

that allows user 1 to reconstruct X̂(1),n
`1

given that it al-
ready knows (Un, X̂(2),n

`2
). Both users first reconstruct X̂(2),n

`2
.

User 1 subsequently reconstructs Un and X̂(1),n
`1

, always using
previously reconstructed sequences as side-information.

Our adaptive conditional RD code uses a codebook C :=
{Un(mu)} with a nested binning structure: it contains ≈ 2nC

outer bins that each consist of ≈ 2nR̃`2 inner bins. The outer
binning rate C is fixed in advanced; the inner binning rate
however adapts to the quality of the side-information X̂

(2),n
`2

and is fixed only after the demand `2 is revealed. Encoding
is in two steps. In a first step the server picks the unique
codeword Un(m∗u) that for every `2 ∈ L2 is jointly typical
with the pair

(
Xn, X̂

(2),n
`2

)
. The outer bin index of Un(m∗u)

is immediately available and the server stores the nC bits
representing this index in user 1’s cache. Once the demand `2
is fixed, also the inner bin index is available and the server

sends it as part of the delivery message. Decoding is standard
using both bin indices and the side-information X̂(2),n

`2
.

D. Almost Lossless Reconstructions
Let now both users reconstruct their demanded files Xn

`1
and Xn

`2
(almost) losslessy. From Theorem 3:

Corollary 3.1: The RC-function for the lossless setup satis-
fies the upper bound in (9) on top of this page.

Corollary 3.2: Bound (9) holds with equality when
1) L1 = L2 = {`, `′} for `, `′ ∈ L;
2) L1 = {`} for some ` ∈ L; or
3) L2 = {`} for some ` ∈ L.

Proof: To prove cases 1.) and 2.), specialise the lower
bound in Theorem 2 to the lossless case and to U = (X`, X`′)
and U = X`, respectively. For case 3.) a new converse is
required.

Interestingly, in the first two cases there is no penalty for
not knowing the demands during the caching phase.
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Abstract—We consider the discrete memoryless symmetric
primitive relay channel, where, a source X wants to send
information to a destination Y with the help of a relay Z
and the relay can communicate to the destination via an error-
free digital link of rate R0, while Y and Z are conditionally
independent and identically distributed given X . We develop
two upper bounds on the capacity of this channel that are
tighter than existing bounds, including the celebrated cut-set
bound. Our approach significantly differs from the standard
information-theoretic approach for proving upper bounds on the
capacity of multi-user channels. We build on the blowing-up
lemma to analyze the probabilistic geometric relations between
the typical sets of the n-letter random variables associated with
a reliable code for communicating over this channel. These
relations translate to new entropy inequalities between the n-
letter random variables involved.

I. INTRODUCTION

Characterizing the capacity of relay channels [1] has been
a long-standing open problem in network information theory.
The seminal work of Cover and El Gamal [2] has introduced
two basic achievability schemes: Decode-and-Forward and
Compress-and-Forward, and derived a general upper bound on
the capacity, now known as the cut-set bound. Over the last
decade, significant progress has been made on the achievability
side: these schemes have been extended and unified to multi-
relay networks [3]–[4] and many new relaying strategies have
been discovered, such as Amplify-and-Forward, Compute-and-
Forward, Noisy Network Coding etc. [5]–[7]. However, the
progress on developing upper bounds that are tighter than the
cut-set bound has been relatively limited. In particular, in most
of the special cases where the capacity is known, the upper
bound is given by the cut-set bound [2], [8]–[10].

In general, however, the cut-set bound is known to be
not tight. Specifically, consider the primitive relay channel
depicted in Fig. 1, where the source’s input X is received by
the relay Z and the destination Y through a channel p(y, z|x),
and the relay Z can communicate to the destination Y via
an error-free digital link of rate R0. When Y and Z are
conditionally independent given X , and Y is a stochastically
degraded version of Z, Zhang [11] used the blowing up lemma
to show that the inequality between the capacity and the cut-
set bound is indeed strict in certain regimes of this channel.

This work was supported in part by the NSF CAREER award 1254786
and by the Center for Science of Information (CSoI), an NSF Science and
Technology Center, under grant agreement CCF-0939370.

However, Zhang’s result does not provide any information
regarding the gap or suggest a way to compute it. For a special
case of the primitive relay channel where the noise is modulo
additive and Z is a corrupted version of the noise for the X-
Y link, Aleksic, Razaghi and Yu characterize the capacity and
show that it is strictly lower than the cut-set bound [12]. While
this result provides an exact capacity characterization for a
non-trivial special case, it builds strongly on the peculiarity of
the channel model and in this respect its scope is more limited
than Zhang’s result.

Fig. 1. Primitive relay channel.

More recently, a new upper bound demonstrating an explicit
gap to the cut-set bound was developed by Xue [13] for
general primitive relay channels. Xue’s bound relates the gap
of the cut-set bound to the reliability function of the X-Y
link. Unlike Zhang’s result, Xue’s bound can be numerically
computed. While it is strictly tighther than the cut-set bound in
certain regimes of the primitive relay channel, with an explicit
computable gap, it can also be looser than the cut-set bound.

In [14], we presented two new upper bounds on the capacity
of the primitive relay channel. The first of these bounds can
be regarded as a direct improvement of Xue’s bound. It is
indeed strictly tighter than both Xue’s bound and the cut-set
bound and like Xue’s bound involves the reliability function
of the X-Y link. Our second bound was based on a new set of
arguments and is structurally different than the first one. It can
be significantly tighter than our first bound as demonstrated in
[14] for the binary symmetric relay channel, however it can
be also looser than it for some other channel models.

The current paper is a continuation of our work in [14].
We present a new bound which is strictly tighter than our
first bound in [14] and is also structurally different from it. In
particular, it does not involve the reliability function of the X-
Y link but is structurally closer to our second bound in [14].
The more important contribution of this paper is to distill a
new proof technique which significantly differs from existing
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converse approaches in the literature and can be potentially
useful for other multi-user problems. In general, proving an
upper bound on the capacity of a multi-user channel involves
dealing with entropy relations between the various n-letter
random variables induced by the reliable code and the channel
structure (together with using Fano’s inequality). In order to
prove the desired relations between the entropies of the n-letter
random variables involved, in this paper we consider their B-
letter i.i.d. extensions (leading to length B i.i.d. sequences of
n-letter random variables). We then use the blowing up lemma
to analyze the geometry of the typical sets associated with
these B-letter sequences. We present two different ways to
translate the (probabilistic) geometric relations between these
typical sets into new entropy relations between the random
variables involved. This leads to two different bounds on the
capacity of the primitive relay channel which do not include
each other in general. As pointed out before, the first of these
bounds is new to this paper, the second one recovers the second
bound we presesented in [14].

II. PRELIMINARIES

Consider a primitive relay channel as depicted in Fig. 1. The
source’s input X is received by the relay Z and the destination
Y through a channel

(ΩX , p(y, z|x),ΩY × ΩZ)

where ΩX ,ΩY and ΩZ are finite sets denoting the alphabets
of the source, the destination and the relay, respectively, and
p(y, z|x) is the channel transition probability; the relay Z can
communicate to the destination Y via an error-free digital link
of rate R0.

For this channel, a code of rate R for n channel uses,
denoted by

(C(n,R), fn(zn), gn(yn, fn(zn))), or simply, (C(n,R), fn, gn),

consists of the following:
1) A codebook at the source X ,

C(n,R) = {xn(m) ∈ ΩnX ,m ∈ {1, 2, . . . , 2nR}};

2) An encoding function at the relay Z,

fn : ΩnZ → {1, 2, . . . , 2nR0};

3) A decoding function at the destination Y ,

gn : ΩnY × {1, 2, . . . , 2nR0} → {1, 2, . . . , 2nR}.

The average probability of error of the code is defined as

P (n)
e = Pr(gn(Y n, fn(Zn)) 6= M),

where the message M is assumed to be uniformly drawn
from the message set {1, 2, . . . , 2nR}. A rate R is said to
be achievable if there exists a sequence of codes

{(C(n,R), fn, gn)}∞n=1

such that the average probability of error P (n)
e → 0 as n→∞.

The capacity of the primitive relay channel is the supremum
of all achievable rates. The well-known cut-set bound on
the capacity of the primitive relay channel is stated as the
following.

Proposition 2.1 (Cut-set Bound): For the general primitive
relay channel, if a rate R is achievable, then there exists some
p(x) such that {

R ≤ I(X;Y,Z) (1)
R ≤ I(X;Y ) +R0. (2)

Inequalities (1) and (2) are generally known as the broadcast
bound and multiple-access bound, since they correspond to the
broadcast channel X-Y Z and multiple-access channel XZ-Y ,
respectively.

A. Symmetric Primitive Relay Channel

To simplify the exposition, in this paper, we only concen-
trate on the symmetric case of the primitive relay channel,
that is, when Y and Z are conditionally independent and
identically distributed given X , however our results can be
extended to the asymmetric case by using channel simulation
arguments. Formally, a primitive relay channel is said to be
symmetric if

1) p(y, z|x) = p(y|x)p(z|x),
2) ΩY = ΩZ := Ω, and Pr(Y = ω|X = x) = Pr(Z =

ω|X = x) for any ω ∈ Ω and x ∈ ΩX .
In this case, we also use p(ω|x) to denote the transition
probability of both the X-Y and X-Z channels.

III. MAIN RESULTS

This section presents two new upper bounds on the capacity
of symmetric primitive relay channels that are generally tighter
than the cut-set bound. Before stating our main theorems, in
the following section we first explain the relation of our new
bounds to the cut-set bound.

A. Improving on the Cut-Set Bound

Let the relay’s transmission be denoted by In = fn(Zn).
Let us recall the derivation of the cut-set bound. The first step
in deriving (1)–(2) is to use Fano’s inequality to conclude that

nR ≤ I(Xn;Y n, In) + nε.

We can then either proceed as

nR ≤ I(Xn;Y n, In) + nε

≤ I(Xn;Y n, Zn) + nε

≤ nI(X;Y, Z) + nε

to obtain the broadcast bound (1), where the second inequality
follows from the data processing inequality and the single
letterization in the third line can be either done with a time-
sharing or fixed composition code argument1; or we can

1Note that the time-sharing or the fixed composition code argument for
single letterization is needed to preserve the coupling to the second inequality
in (4) via X .
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proceed as

nR ≤ I(Xn;Y n, In) + nε

≤ I(Xn;Y n) +H(In|Y n)−H(In|Xn) + nε (3)
≤ nI(X;Y ) + nR0 + nε (4)

to obtain the multiple-access bound (2), where to obtain the
last inequality we upper bound H(In|Y n) by nR0 an use the
fact that H(In|Xn) is non-negative.

Instead of simply lower bounding H(In|Xn) by 0 in the
last step, our bounds presented in the next two subsections
are based on letting H(In|Xn) = nan, and prove a third
inequality that forces an to be strictly positive. Intuituvely, it
is easy to see that an cannot be arbitrarily small. Specifically,
suppose an ≈ 0, then roughly speaking, this implies that given
the transmitted codeword Xn, there is no ambiguity about In,
or equivalently, all the Zn sequences jointly typical with Xn

are mapped to the same In. Since Y n and Zn are statistically
equivalent given Xn (they share the same typical set given
Xn) this would further imply that In can be determined based
on Y n and therefore the transmitted codeword can be decoded
based solely on Y n, which forces the rate to be even smaller
than I(X;Y ). In general, there is a trade-off between how
close the rate can get to the multiple-access bound I(X;Y )+
R0 and how much it can exceed the point-to-point capacity
I(X;Y ) of the X-Y link.

In our new bounds, we capture this trade-off by leaving an
as it is in (3), yielding

R ≤ I(X;Y ) +R0 − an + ε

and proving a new constraint on the rate involving an. This
new constraint is obtained by writing

nR ≤ I(Xn;Y n, In) + nε

= H(Y n, In)−H(Y n|Xn)−H(In|Xn) + nε, (5)

and upper bounding H(Y n, In) in terms of an. We do this in
two different ways corresponding to the two different ways of
expanding H(Y n, In), i.e.

H(Y n, In) = H(Y n) +H(In|Y n)

= H(In) +H(Yn|In).

Our first bound attacks the first conditional entropy term and
is based on proving that

H(In|Y n) ≤ H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|Ω| − 1), (6)

while our second bound attacks the second conditional entropy
term and is based on proving that

H(Yn|In)

≤ H(Xn|In)−H(Xn|Zn) + n(H(Z|X) + ∆(p(x), an)),

where ∆(p(x), an) is a quantity that depends on the input
distribution p(x) and an, which we formally define in Sec-
tion III-C. Once these entropy relations are proved, it is not
difficult to plug them in (5) and see how they lead to the

theorems stated in the next two sections. The heart of our
argument is therefore to prove these two entropy inequalities.
To accomplish this, we suggest a new set of proof techniques.
In particular, we look at the B-letter i.i.d. extensions of the
random variables Xn, Y n and In and study the geometric
relations between their typical sets by using the generalized
blowing-up lemma. While we use this same general approach
for bounding the two entropy terms, we build on different
arguments in each case, which eventually leads to two different
bounds on the capacity of the relay channel that do not include
each other in general.

B. Bounding H(In|Y n)

Our first bound builds on bounding H(In|Y n) and it is
given by the following theorem that will be proved in Section
IV. This bound is new and in particular strictly tighter than
our first bound in [14].

Theorem 3.1: For the symmetric primitive relay channel, if
a rate R is achievable, then there exists some p(x) and

a ∈

[
0,min

{
R0, H(Z|X),

2

ln 2

(
|Ω| − 1

|Ω|

)2
}]

(7)

such that

R ≤ I(X;Y,Z) (8)
R ≤ I(X;Y ) +R0 − a (9)

R ≤ I(X;Y ) +H

(√
a ln 2

2

)

+

√
a ln 2

2
log(|Ω| − 1)− a. (10)

Clearly our bound in Theorem 3.1 implies the cut-set bound
in Proposition 2.1. In fact, it can be checked that our bound
is strictly tighter than the cut-set bound for any R0 > 0. For
this, note that (9) will reduce to (2) only if a = 0; however, if
a = 0 then (10) will constrain R by the rate I(X;Y ) which
is lower than the cut-set bound.

C. Bounding H(Y n|In)

Before presenting our second upper bound, we first define a
parameter ∆(p(x), a) that will be used in stating the theorem.
This bound is equivalent our second bound in [14], however
we provide an alternative definition for ∆(p(x), a) in terms of
information-theoretic quantitites.

Definition 3.1: Given a fixed channel transition probability
p(ω|x), for any p(x) and a ≥ 0, ∆(p(x), a) is defined as

∆(p(x), a) := max
p̃(ω|x)

H(p̃(ω|x)|p(x)) +D(p̃(ω|x)||p(ω|x)|p(x))

−H(p(ω|x)|p(x)) (11)

s.t.
∑
(x,ω)

|p(x)p̃(ω|x)− p(x)p(ω|x)| ≤ 2

√
a ln 2

2
. (12)

In the above, we adopt the notation in [16]. Specifically,
D(p̃(ω|x)||p(ω|x)|p(x)) is the conditional relative entropy
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defined as

D(p̃(ω|x)||p(ω|x)|p(x)) :=
∑
(x,ω)

p(x)p̃(ω|x) log
p̃(ω|x)

p(ω|x)
,

H(p̃(ω|x)|p(x)) is the conditional entropy defined with re-
spect to the joint distribution p(x)p̃(ω|x), i.e.,

H(p̃(ω|x)|p(x)) := −
∑
(x,ω)

p(x)p̃(ω|x) log p̃(ω|x),

and H(p(ω|x)|p(x)) is the conditional entropy similarly de-
fined with respect to p(x)p(ω|x).

It can be easily seen that ∆(p(x), a) ≥ 0 for all p(x) and
a ≥ 0, and ∆(p(x), a) = 0 when a = 0. Moreover, for any
fixed p(x) and a > 0, ∆(p(x), a) = ∞ if and only if there
exists some x with p(x) > 0, and some ω and ω̃ such that
p(ω|x) = 0 and p(ω̃|x) > 0. Thus, a sufficient condition for
∆(p(x), a) < ∞ for all p(x) and a > 0 is that the channel
transition matrix is fully connected, i.e., p(ω|x) > 0,∀(x, ω) ∈
ΩX ×Ω. In this case, ∆(p(x), a)→ 0 as a→ 0 for any p(x).

We are now ready to state our second new upper bound,
which is proved by bounding H(Y n|In).

Theorem 3.2: For the symmetric primitive relay channel,
if a rate R is achievable, then there exists some p(x) and
a ∈ [0,min {R0, H(Z|X)}] such that

R ≤ I(X;Y, Z) (13)
R ≤ I(X;Y ) +R0 − a (14)
R ≤ I(X;Y ) + ∆(p(x), a) (15)

Theorem 3.2 also implies the cut-set bound in Propositions
2.1. In particular, when the channels X-Y and X-Z have a
fully connected transition matrix, our new bound is strictly
tighter than the cut-set bound since ∆(p(x), a)→ 0 as a→ 0
for any p(x) in this case.

In the remaining space we provide the proof of Theorem
3.1.

IV. PROOF OF THEOREM 3.1

Based on the discussion in Section III-A, to show Theorem
3.1, it suffices to prove the entropy inequality (6) between
various n-letter random variables. For this, we go to the
higher dimensional, say nB dimensional space, to invoke the
concepts of typical sets, and resort to a result on measure
concentration, namely, the generalized blowing-up lemma.

Specifically, consider the B-length i.i.d. extensions of the
random variables Xn, Y n, Zn and In, i.e.,

{(Xn(b), Y n(b), Zn(b), In(b))}Bb=1, (16)

where for any b ∈ [1 : B], (Xn(b), Y n(b), Zn(b), In(b))
has the same distribution as (Xn, Y n, Zn, In). For no-
tational convenience, in the sequel we write the B-
length vector [Xn(1), Xn(2), . . . , Xn(B)] as X and sim-
ilarly define Y,Z and I; note here we have I =
[fn(Zn(1)), fn(Zn(2)), . . . , fn(Zn(B))] =: f(Z).

The following lemma is critical for establishing inequality
(6). Its own proof is given at the end of the paper.

Lemma 4.1: Let f−1(i) := {ω ∈ ΩnB : f(ω) = i} and
Γ
nB(
√

an ln 2
2 +δ)

(f−1(i)) be its blown-up set defined as

Γ
nB(
√

an ln 2
2 +δ)

(f−1(i)) :=

{
ω ∈ ΩnB : ∃ ω′ ∈ f−1(i)

s.t. d(ω, ω′) ≤ nB

(√
an ln 2

2
+ δ

)}
where d(ω, ω′) denotes the Hamming distance between ω and
ω′. Then for any δ > 0 and B sufficiently large,

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +δ)

(f−1(I))) ≥ 1− δ.

With the above lemma, we now upper bound H(I|Y). Let

E = I(Y ∈ Γ
nB(
√

an ln 2
2 +δ)

(f−1(I)))

where I(·) is the indicator function defined as

I(A) =

{
1 if A holds
0 otherwise.

We have

H(I|Y) ≤ H(I, E|Y)

= H(E|Y) +H(I|Y, E)

≤ H(I|Y, E) + 1

= Pr(E = 1)H(I|Y, E = 1) + Pr(E = 0)H(I|Y, E = 0) + 1

≤ H(I|Y, E = 1) + δnBR0 + 1. (17)

To bound H(I|Y, E = 1), consider a Hamming ball2 cen-

tered at Y of radius nB

(√
an ln 2

2 + δ

)
. The condition

E = 1, i.e., Y ∈ Γ
nB(
√

an ln 2
2 +δ)

(f−1(I)), ensures that

there is at least one point ω ∈ f−1(I) belonging to this
ball, and therefore, given E = 1 and Y there are at most∣∣∣∣Ball

(
nB

(√
an ln 2

2 + δ

))∣∣∣∣ possibilities of I, leading to the

following upper bound on H(I|Y, E = 1),

H(I|Y, E = 1) ≤ log

∣∣∣∣∣Ball

(
nB

(√
an ln 2

2
+ δ

))∣∣∣∣∣
≤ nB

[
H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|Ω| − 1) + δ1

]
(18)

for some δ1 → 0 as δ → 0, where (18) follows from the
characterization of the volume of a Hamming ball. Plugging
(18) into (17), we have

H(I|Y) ≤ nB

[
H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|Ω| − 1) + δ1

]
+ δnBR0 + 1.

2A Hamming ball centered at c of radius r, denoted by Ball(c, r), is defined
as the set of points that are within Hamming distance r of c. The center c
can be omitted in the notation when it becomes irrelevant.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

133



Dividing B at both sides of the above inequality and noting
that

H(I|Y) =

B∑
b=1

H(In(b)|Y n(b)) = BH(In|Y n),

we have

H(In|Y n) ≤ n

[
H

(√
an ln 2

2

)
+

√
an ln 2

2
log(|Ω| − 1)

+ δ1 + δR0 +
1

nB

]
. (19)

Since δ, δ1 and 1
nB in (19) can all be made arbitrarily small

by choosing B sufficiently large, we obtain (6).
We next prove Lemma 4.1.

Proof of Lemma 4.1: Consider any (x, i) ∈
T (B)
ε (Xn, In), where T (B)

ε (Xn, In) denotes the ε-jointly typ-
ical sets3 with respect to (Xn, In). From [17, Sec. 2.5], we
have for some ε1 → 0 as ε→ 0,

p(i|x) ≥ 2−B(H(In|Xn)+ε1) ≥ 2−nB(an+ε1),

i.e.,
Pr(Z ∈ f−1(i)|x) ≥ 2−nB(an+ε1).

We now apply the generalized blowing-up lemma as stated
in the following.

Lemma 4.2 (Generalized Blowing-Up Lemma): Let
U1, U2, . . . , Un be n independent random variables taking
values in a finite set U . Then, for any A ⊆ Un with
Pr(Un ∈ A) ≥ 2−nan ,

Pr(Un ∈ Γ
n(
√

an ln 2
2 +r)

(A)) ≥ 1− e−2nr
2

,∀r > 0.

With Lemma 4.2, we have

Pr(Z ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(i))|x)

= Pr(Z ∈ Γ
nB(

√
(an+ε1) ln 2

2 +[
√

an ln 2
2 +2

√
ε1−

√
(an+ε1) ln 2

2 ])

(f−1(i))|x)

≥ Pr(Z ∈ Γ
nB(

√
(an+ε1) ln 2

2 +[
√

an ln 2
2 +2

√
ε1−
√

an ln 2
2 −

√
ε1 ln 2

2 ])

(f−1(i))|x)

≥ Pr(Z ∈ Γ
nB(

√
(an+ε1) ln 2

2 +
√
ε1)

(f−1(i))|x)

≥ 1− e−2nBε1

≥ 1−
√
ε1

for sufficiently large B. Noting that Y and Z are identically
distributed given X, we obtain

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(i))|x) ≥ 1−
√
ε1,

3This paper adopts the same definitions and notations for typical sets as
those in [17].

and thus,

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(I)))

=
∑
(x,i)

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(i))|x, i)p(x, i)

=
∑
(x,i)

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(i))|x)p(x, i) (20)

≥
∑

(x,i)∈T (B)
ε (Xn,In)

Pr(Y ∈ Γ
nB(
√

an ln 2
2 +2

√
ε1)

(f−1(i))|x)p(x, i)

≥ (1−
√
ε1)

∑
(x,i)∈T (B)

ε (Xn,In)

p(x, i)

≥ (1−
√
ε1)2

≥ 1− 2
√
ε1

for sufficiently large B, where (20) follows due to the Markov
chain: Y ↔ X ↔ Z ↔ I. Finally, choosing δ to be 2

√
ε1

concludes the proof of Lemma 4.1.
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Department of Electrical Engineering
Stanford University, CA 94305, USA
Email: {rkolte,aozgur}@stanford.edu

Haim Permuter
Dept. of Electrical and Computer Engineering

Ben-Gurion University, Beer-Sheva 84105, Israel
Email: haimp@bgu.ac.il

Abstract—The capacity region of the semideterministic relay
channel has been characterized using the idea of partial-decode-
forward. However, the requirement to explicitly decode part of
the message at the relay can be restrictive, for example, when
nodes have different side information regarding the state of the
channel. In this paper, we generalize this scheme to cooperative-
bin-forward by building on the observation that explicit recover-
ing of part of the message is not needed to induce cooperation.
Instead, the relay can bin its received signal and the bin index is
cooperatively forwarded to the decoder. The main advantage of
this new scheme is illustrated by considering a state-dependent
extension. While partial-decode-forward is suboptimal in the new
setup, cooperative-bin-forward continues to achieve capacity.

Index Terms—Cooperative-bin-forward, Relay channel, State,
Semideterministic

I. INTRODUCTION

The capacity region of the semideterministic relay channel,
depicted in Figure 1, is characterized in [1] using the partial-
decode-forward scheme. In this scheme, the source splits its
message into two parts and encodes them using superposition
coding. The relay decodes one part of the message, and maps
this to a codeword to be transmitted in the next block. The
codebooks at the source are generated conditioned on the
relay’s transmission, which results in coherent transmissions
from the source and the relay.

M Encoder
xi(M)

Relay Encoder

YipY,Z|X,Xr Decoder m̂(Y n)

Zi = z(Xi, Xr,i) xr,i(Z
i−1)

Fig. 1: Semideterministic Relay Channel

Consider now the extension of this model depicted in
Figure 2, which corresponds to a state-dependent semideter-
ministic relay channel where the state information is causally
available only at the source and the destination. This model
captures the natural cellular downlink scenario, in which train-
ing enables the source and the destination to learn the channel
gain between them (state = channel gain), while a relay could
be potentially available to assist the communication, e.g. a
wifi access point. In this scenario, it is typically unrealistic to
assume that the relay is also able to obtain timely information
about the channel state between the source and the destination.

As such, requiring the relay to decode part of the source
message, without any state information, is unduly restrictive
and to the best of our knowledge, the capacity has not been
characterized previously.

M Encoder
xi(M,Si)

Relay Encoder

YipY,Z|X,Xr,S Decoder m̂(Y n, Sn)

Si

Zi = z(Xi, Xr,i, Si) xr,i(Z
i−1)

Fig. 2: State-dependent Semideterministic Relay Channel with Causal State
Information at Source and Destination

The main contribution of this paper is to develop a new
scheme which we call cooperative-bin-forward. This new
scheme does not require the relay to decode part of the
message; instead, the relay simply bins its received signal and
maps the bin-index to a codeword to be transmitted in the
next block. As in partial-decode-forward, the codebooks at the
source are generated conditioned on the relay’s transmission,
resulting in coherent cooperation. This cooperative aspect of
the scheme distinguishes it from bin-forward (a.k.a. hash-
forward) that has been considered previously for primitive
relay channels in [2]. For the vanilla semideterministic relay
channel in Figure 1, cooperative-bin-forward recovers the
capacity achieved by partial-decode-forward. However, while
partial-decode-forward is suboptimal for the state-dependent
semideterministic relay channel in Figure 2, cooperative-bin-
forward continues to achieves the capacity.

Another setup we consider, motivated by the relay-without-
delay channel considered in [3], is the “without-delay” varia-
tion of the state-dependent setup described above, depicted in
Figure 3. In this setup, the transmission of the relay is allowed
to depend on its past and current received signal. The capacity
region for this setup without state is characterized in [3],
using partial-decode-forward combined with instantaneous re-
laying (a.k.a. codetrees or Shannon strategies). We show that
cooperative-bin-forward combined with instantaneous relaying
achieves the capacity regions of this setup too, while partial-
decode-forward suffers from the same shortcoming mentioned
in the previous paragraphs.
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M Encoder
xi(M,Si)

Relay Encoder

YipY,Z|X,Xr,S Decoder m̂(Y n, Sn)

Si

Zi = z(Xi, Si) xr,i(Z
i)

Fig. 3: State-dependent Semideterministic Relay-Without-Delay Channel with
Causal State Information at Source and Destination. Since the current trans-
mission of the relay is allowed to depend on its current received signal, we
need to specify the model so that the latter does not depend on the former,
in contrast to Figure 2.

Related Work

Various cases of state-dependent relay channels have been
considered in [4]–[10]. The achievability schemes in these
works combine well-known block-Markov relaying ideas such
as partial-decode-forward and compress-forward with Shannon
strategies or (Gelfand-Pinsker) multicoding. A class of state-
dependent orthogonal relay channels with state information
only at decoder was considered in [11], and optimality of
a partial-decode-compress-forward scheme was proved. To
the best of our knowledge, the state-dependent relay channel
considered in this paper has not been previously studied, and
as mentioned previously, standard combinations of available
ideas are not sufficient to obtain good achievability schemes.

Organization

The following section describes the models and notation.
Section III contains the formal statements of the main results
described in the introduction. A toy example is considered in
Section IV for the purpose of explicitly illustrating the advan-
tage of cooperative-bin-forward over partial-decode-forward.
The following sections contain the proof of the main result.
We conclude by describing some open problems in section VI.

II. SYSTEM MODELS

As standard, capital letters denote random variables, small
letters denote realizations, and calligraphic letters denote the
alphabet of the corresponding random variable. The notation
T (n)
ε stands for the ε-strongly typical set of sequences for the

random variables in context.

A. State-Dependent Semideterministic Relay Channels

The state-dependent semideterministic relay channel
is depicted in Figure 2, and described by the pmf
pS(s)pY |X,Xr,S(y|x, xr, s) and Z = z(X,Xr, S). The
encoder and decoder have causal state information. So a
(n, 2nR, ε) code for the above channel consists of the source
encoding, relay encoding and decoding functions:

xi : [1 : 2nR]× Si → X , 1 ≤ i ≤ n,
xr,i : Zi−1 → Xr, 1 ≤ i ≤ n,
m̂ : Yn × Sn → [1 : 2nR],

such that
Pr {m̂(Y n, Sn) 6=M} ≤ ε,

where M ∈ [1 : 2nR] denotes the transmitted message. A rate
R is said to be achievable if for every ε > 0, there exists
a (n, 2nR, ε) code for sufficiently large n. The capacity is
defined to be the supremum of achievable rates.

The state-dependent semideterministic relay-without-delay
channel is depicted in Figure 3, and described by the pmf
pS(s)pY |X,Xr,S(y|x, xr, s) and Z = z(X,S). The difference
from the previous setup is that the relay encoding function is
now allowed to depend also on Zi:

xr,i : Zi → Xr, 1 ≤ i ≤ n.

Note that here we need to restrict Z to be z(X,S), instead of
z(X,Xr, S).

III. MAIN RESULTS

The first result provides an expression for the capacity of
the state-dependent semideterministic relay channel.

Theorem 1. The capacity of the state-dependent semideter-
ministic relay channel, shown in Figure 2, is given by

min {I(X,Xr;Y |S), H(Z|S,Xr) + I(X;Y |S,Xr, Z)} , (1)

maximized over distributions that can be factorized as
pXr (xr)pX|Xr,S(x|xr, s).

The proof of the achievability part is presented in the next
section. We refer the reader to the longer version of this
paper [12] for all the missing proofs (including converses).

The difference between the capacity expression in Theo-
rem 1 and the capacity of the semideterministic relay chan-
nel [13, Eq. (16.8)] is that the mutual information and en-
tropy terms involve a conditioning on S. Such an expression
would also characterize the capacity if the relay is provided
with the state information, and it would be achievable by
performing partial-decode-forward while treating the state as
a time-sharing sequence. It is quite interesting then that the
capacity expression remains the same even when the relay
does not have state information. However, the limitation is
reflected in the fact that the choice of pmf is restricted to be
pXr

(xr)pX|Xr,S(x|xr, s), instead of pX,Xr|S(x, xr|s). So, the
cost of not having state information at the relay is reflected
entirely in the limited choice of pmf.

The following theorem states the capacity of the without-
delay variation of the above case. The expression involves an
auxiliary random variable, which allows the relay to perform
instantaneous relaying on top of the binning.

Theorem 2. The capacity of the state-dependent semideter-
ministic relay-without-delay channel, shown in Figure 3, is
given by

min {I(U,X;Y |S), H(Z|U, S) + I(X;Y |U,Z, S)} , (2)

maximized over distributions of the form pU (u)pX|U,S(x|u, s)
and Xr = xr(U,Z), and |U| ≤ |S| (|X ||Xr| − 1) + 2.

The capacity region for the setup of Theorem 2 in the
absence of states is characterized in [3, Proposition 7]. Setting
S to be the empty random variable in Theorem 2 recovers this
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result. Note that the objective in (2) is the same as that in (1)
with Xr being replaced by U . However, the optimization in
(2) is over a different domain since the dependence of Xr on
Z can now be chosen and is not specified by the channel.

IV. ILLUSTRATIVE EXAMPLE

Consider the following special case of Figure 2. Let the
state S be the ternary random variable

pS(s) =


p/2, if s = 0,

p/2, if s = 1,

1− p, if s = 2,

where p < 1/2. The other variables are all binary. The
channel z(X,S) is the memory-with-stuck-at-faults channel
considered in [13, Figure 7.7], while the channel pY |X,Xr,S is
specialized to be a noiseless channel from Xr to Y . Formally,

z(X,S) =


0, if S = 0,

1, if S = 1,

X, if S = 2,

Y = Xr.

Recall that the source and the destination know the state
information causally while the relay has no state information.

If, motivated by the optimality of decode-forward in the case
of a line network with no state, the relay is required to decode
the message, then the achievable rate is limited to be no more
than the capacity of the memory-with-stuck-at-faults channel
when the state is known causally only to the source, which
is 1−H2

(
p
2

)
. We point out that this cannot be improved by

using partial-decode-forward, because the absence of a direct
link between the source and destination means that any part
of the message that is not forwarded by the relay cannot be
communicated to the destination in any manner. However, a
higher rate can be achieved if the relay simply forwards its
received signal, resulting in an effective channel between the
source and the destination that is the memory with stuck-at
faults channel with state known causally both to the source and
the destination. The capacity of this channel is 1 − p, which
is achieved by multiplexing at the source and demultiplexing
at the destination according to the observed state. Thus, a rate
1− p, which is higher than 1−H2

(
p
2

)
, can be achieved.

What if the channel from the relay to destination is not a
noiseless bit-pipe, but a general noisy channel with capacity at
least 1−p? The rate 1−p can still be achieved if the operation
at the relay is changed from simply forwarding to randomly
binning its received signal into ≈ 2n(1−p) bins and forwarding
a codeword corresponding to the chosen bin. To recover the
message, the destination can first decode the bin-index. Since
the destination has state information, it can reconstruct the
state-multiplexed codebook at the source. Hence, it can recover
the message by finding the unique source codeword, if any,
that results in the received signal at the relay falling in the
correct bin.

The above example serves to illustrate the limitation
of partial-decode-forward when nodes have different side-
information. This example did not require cooperative trans-
missions from the source and the relay, because the source
transmission did not directly affect the received signal at the
destination. When there is also a direct link between the source
and the destination, as allowed in the general models that we
consider in this paper, the source and relay need to perform
the bin-forward operation in a cooperative fashion.

V. PROOF OF THEOREM 1

Due to the availability of causal state information at the
source encoder and the decoder, the source encoder constructs
codebooks for each state symbol and treats the state sequence
as a time-sharing sequence (i.e. it performs multiplexing). Note
that since the relay does not have state information, it might
not be able to decode part of the message. However, it can still
perform the bin-forward operation, allowing us to establish
coherence between the source and the relay transmissions
without sacrificing unnecessarily on the rate.

Proof:

Fix a pmf pXr
(xr)pX|Xr,S(x|xr, s) and ε > 0. Split R

as R′ + R′′, with the message M denoted accordingly as
(M ′,M ′′). Divide the total communication time into B blocks,
each of length n.

S = 0

S = 1

m′ = 1

m′ = 2

m′ = 3

m′ = 4

m′ = 1

m′ = 2

m′ = 3

m′ = 4

Fig. 4: The figure depicts the cribbed codewords generated for encoding m′

for a given xn
r (l). Each node corresponds to a z symbol that is generated

independently according to pZ|Xr,S(·|xr,i(l), s). The red circles show how
encoder 1 chooses the codeword if it wants to transmit m′ = 2 and observes
sn = (0, 0, 1, 0, 1, 0). This construction is not identical but equivalent to that
described in [13, Section 7.4.1].

Codebook Generation:
For each block b ∈ [1 : B], a codebook is generated

independently of the other blocks as follows.
- Cooperation codewords

Generate 2nR̃ codewords xnrb(lb−1), i.i.d. according to pXr
,

where lb−1 ∈ [1 : 2nR̃].
- Cribbed codewords

For each lb−1 and each s ∈ S , generate a codebook of
2nR

′
codewords. The ith symbol of such a codeword is

chosen independently according to pZ|Xr,S(·|xrbi(lb−1), s).
The result of this is that for each lb−1, each m′b ∈ [1 :
2nR

′
] and each snb = (sb1, sb2, . . . , sbn), the source encoder

can form an effective codeword znb (m
′
b|lb−1, snb ), whose ith
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symbol can be causally chosen as the ith symbol of the m′b-
th codeword from the codebook corresponding to lb−1 and
sbi. See Figure 4.

- Transmission codewords
For each lb−1, each m′b ∈ [1 : 2nR

′
] and each s ∈ S ,

generate a codebook of 2nR
′′

codewords. The ith symbol
of such a codeword is generated independently according
to pX|Xr,Z,S(·|xrbi(lb−1), zbi(m′b|lb−1, s), s). The result of
this construction is that for each lb−1, each m′b ∈ [1 : 2nR

′
],

each m′′b ∈ [1 : 2nR
′′
] and each snb , the source encoder can

form an effective codeword xnb (m
′′
b |lb−1,m′b, snb ), whose ith

symbol can be causally chosen as the ith symbol of the m′′b -
th codeword from the codebook corresponding to lb−1, m′b
and sbi.

- Binning
Partition the set Zn into 2nR̃ bins, by choosing a bin for
each zn independently and uniformly at random. Denote the
index of the chosen bin for zn by binb(zn).

Encoding:
Fix l0 = 1 and (m′B ,m

′′
B) = (1, 1). Since the message in

the last block is fixed, the effective rate of communication
is B−1

B R, which can be made as close as desired to R by
choosing a sufficiently large B.

In block b, lb−1 is known to the source encoder.
To communicate message mb = (m′b,m

′′
b ), it transmits

xnb (m
′′
b |lb−1,m′b, snb ). The relay transmits xnrb(lb−1). Due to

the deterministic link from source to relay and the codebook
construction, the received signal at the relay in block b is the
codeword znb (m

′
b|lb−1, snb ). The source and the relay set lb to

be the index of the bin containing znb (m
′
b|lb−1, snb ).

From the encoding operation described above, we can see
that the label lb depends on (lb−1,m

′
b, s

n
b ). We do not require

the relay to decode m′b, but the source and the relay can
still establish cooperation by directly performing a binning
on the znb codeword to agree on the unb+1 codeword to be
used in the next block, thus providing the scheme with the
title “cooperative-bin-forward”. The term cooperative is added
to emphasize that the source and the relay agree on the
binning and transmit coherently. Thus, the scheme achieves
cooperation by communicating lb via the relay, instead of m′b.
While the relay is not required to decode the partial message,
we still need the destination to be able to decode all parts of the
transmitted message successfully. In the following, appropriate
conditions are imposed so that the destination can utilize the
state information at its disposal to achieve successful decoding.

Decoding:
The decoder performs backward decoding, starting from

block B and moving towards block 1, performing the fol-
lowing two steps for each block b:
(1) Assuming that lb is known from previous operations, the

decoder, for each lb−1 ∈ [1 : 2nR̃], finds the unique m′b
such that

binb(znb (m
′
b|lb−1, snb )) = lb.

Whenever a unique m′b cannot be found for some lb−1, the
decoder chooses any m′b arbitrarily. So after this operation,
the decoder has chosen one m′b for each lb−1, given its
knowledge of lb and snb . We will signify this explicitly by
denoting the chosen message as m̂′b(lb−1, s

n
b , lb).

(2) Now it looks for the unique (l̂b−1, m̂
′′
b ) such that(

xnrb(l̂b−1) , z
n
b (m̂

′
b(l̂b−1, s

n
b , lb)|l̂b−1, snb ) ,

xnb (m̂
′′
b |l̂b−1, m̂′b(l̂b−1, snb , lb), snb ) , snb , ynb

)
∈ T (n)

ε . (3)

Probability of Error:
In the following error analysis, we will observe that in

order to achieve the largest rate, the scheme will set R′ ≈
H(Z|Xr, S). The causal multiplexing-demultiplexing strategy
proposed above effectively creates a different codebook for
m′b for each snb sequence. The total number of znb codewords
constructed by the source encoder considering only the typical
snb sequences is therefore ≈ 2nH(S) · 2nR′ ≈ 2nH(S,Z|Xr).
However, these codewords cannot be distinct since there are
only ≈ 2nH(Z|Xr) distinct typical sequences znb (conditioned
on lb−1). This implies that multiple (snb ,m

′
b) pairs will be

mapped to the same codeword znb and therefore, the relay
will be not be able to decode m′b due to the lack of state
information. In the absence of state, the scheme will set
R̃ ≈ R′ ≈ H(Z|Xr). In this case, it is easy to see that
given its knowledge of lb−1, the relay can indeed recover
m′b, since each message m′b is mapped to a different bin.
Thus, cooperatively communicating the bin index becomes
equivalent to cooperatively communicating the partial message
m′b, so cooperative-bin-forward for setup without states is
indeed equivalent to partial-decode-forward. When we have
states, even though we still set R̃ ≈ R′, the relay is not be
able to decode any part of the message, so the binning aspect
of the scheme is instrumental.

By symmetry, we can assume without loss of generality that
the true messages and bin-indices corresponding to the current
block are all 1, i.e.

(Lb−1,M
′
b,M

′′
b ) = (1, 1, 1).

We bound the probability of decoding error in block b condi-
tioned on successful decoding for blocks {B,B−1, . . . , b+1},
averaged over the randomness in the messages and codebook
generation. In particular, successful decoding in block b + 1
means that Lb has been decoded successfully, where we
remind ourselves that

Lb = Binb(Znb (1|1, Snb )).

An error occurs in block b only if any of the following
events occur:

(a) M̂ ′b(1, S
n
b , Lb) 6= 1,

(b) (L̂b−1, M̂
′′
b ) 6= (1, 1) given M̂ ′b(1, S

n
b , Lb) = 1.
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Event (a): M̂ ′b(1, S
n
b , Lb) 6= 1: We have

Pr
(
M̂ ′b(1, S

n
b , Lb) 6= 1

)
= Pr (Binb(Znb (m

′
b|1, Snb )) = Lb for some m′b > 1)

≤
∑
m′b>1

Pr (Znb (m
′
b|1, Snb ) = Znb (1|1, Snb ))

+
∑
m′b>1

Pr
(

Binb(Znb ) = Binb(Z̃nb )
∣∣∣Znb 6= Z̃nb

)
≤ 2nR

′
· 2−n(H(Z|Xr,S)−δ(ε)) + 2nR

′
· 2−nR̃,

where we use δ(ε) to denote any function of ε for which
δ(ε)→ 0 as ε→ 0. Hence, we get that

Pr
(
M̂ ′b(1, S

n
b , Lb) 6= 1

)
→ 0 as n→∞,

if the following two constraints are satisfied:

R′ < R̃, (4)
R′ < H(Z|Xr, S)− δ(ε). (5)

Event (b): (L̂b−1, M̂
′′
b ) 6= (1, 1) given M̂ ′b(1, S

n
b , Lb) =

1: For brevity, we do not mention the conditioning on
{M̂ ′b(1, Snb , Lb) = 1} in the following expressions. The
probability of this event is upper bounded by

Pr (Condition (3) not satisfied by (lb−1,m
′′
b ) = (1, 1))

+ Pr (Condition (3) satisfied by some (lb−1,m
′′
b ) 6= (1, 1)) .

The first term goes to zero as n → ∞ by the law of large
numbers. The second term can be analyzed as follows:

Pr (Condition (3) satisfied by some (lb−1,m
′′
b ) 6= (1, 1))

≤
∑

lb−1=1,m′′b>1

Pr (Condition (3) satisfied by (1,m′′b ))

+
∑

lb−1>1,m′′b≥1

Pr (Condition (3) satisfied by (lb−1,m
′′
b ))

≤ 2nR
′′
2−n(I(X;Y |Xr,Z,S)−δ(ε))

+ 2n(R̃+R′′)2−n(I(X,Xr,Z;Y |S)−δ(ε)),

which follows by applying the packing lemma. Note that when
lb−1 > 1, it so happens due to the codebook construction that
ynb is independent of all the other sequences for any value of
(m′b,m

′′
b ). So the joint distribution of the sequences has the

same factorization no matter what m′b is chosen for lb−1 > 1.
The only fact that matters for our analysis is that at most
one m′b has been chosen somehow for each lb−1 > 1. This
allows us to write the fourth event as the union of at most
2n(R̃+R′′) events, where each corresponds to a different value
of (lb−1,m′′b ). Thus, as n→∞, we get that

Pr
(
(L̂b−1, M̂

′′
b ) 6= (1, 1)

∣∣∣ M̂ ′b(1, Snb , Lb) = 1
)
→ 0,

if

R′′ < I(X;Y |Xr, Z, S)− δ(ε), (6)

R̃+R′′ < I(X,Xr;Y |S)− δ(ε). (7)

The proof is concluded by performing Fourier-Motzkin
elimination, and letting n→∞, B →∞ and ε→ 0.

VI. CONCLUDING REMARKS AND SOME OPEN PROBLEMS

We presented the cooperative-bin-forward scheme and
showed that it achieves the capacity region in a variety of
semideterministic setups. While partial-decode-forward has
been the scheme of interest in semideterministic setups,
we demonstrated the advantages of cooperative-bin-forward
by considering state-dependent setups, where partial-decode-
forward is suboptimal, but cooperative-bin-forward is optimal.
A number of interesting questions remain. Most importantly,
how can the cooperative-bin-forward scheme be extended to,
e.g. the model in Figure 2, when the source-relay link is not
deterministic, but a general noisy link? Another interesting
question is that of designing optimal achievability schemes for
all the state-dependent setups considered in this paper when
the state is known only to the source encoders, causally or
strictly causally. Finally, the semideterministic relay channel
with two state components, one known to the source and the
other to the relay, with an uninformed destination, is also an
interesting open question.
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Abstract—This paper is about deriving lower bounds on the
error exponents for the two-user interference channel under
the random coding regime for several ensembles. Specifically,
we first analyze the standard random coding ensemble, where
the codebooks are comprised of independently and identically
distributed (i.i.d.) codewords. For this ensemble, we focus on
optimum decoding, which is in contrast to other, suboptimal
decoding rules that have been used in the literature (e.g., joint
typicality decoding, treating interference as noise, etc.). The
fact that the interfering signal is a codeword, rather than an
i.i.d. noise process, complicates the application of conventional
techniques of performance analysis of the optimum decoder.
Also, unfortunately, these conventional techniques result in loose
bounds. Using analytical tools rooted in statistical physics, as well
as advanced union bounds, we derive single-letter formulas for
the random coding error exponents. We compare our results with
the best known lower bound on the error exponent, and show
that our exponents can be strictly better. Then, in the second part
of this paper, we consider more complicated coding ensembles,
and find a lower bound on the error exponent associated with the
celebrated Han-Kobayashi (HK) random coding ensemble, which
is based on superposition coding.

Keywords—Random coding, error exponent, interference chan-
nels, superposition coding, Han-Kobayashi scheme, statistical
physics, optimal decoding, multiuser communication.

I. I NTRODUCTION

A. Previous Work

The two-user interference channel (IFC) models a general
scenario of communication between two transmitters and two
receivers (with no cooperation at either side), where each
receiver decodes its intended message from an observed signal,
which is interfered by the other user, and corrupted by channel
noise. The information-theoretic analysis of this model has
begun over more than four decades ago and has recently
witnessed a resurgence of interest. Most of the previous work
on multiuser communication, and specifically, on the IFC, has
focused on obtaining inner and outer bounds to the capacity
region (see, for example, [1, Ch. II.7]). In a nutshell, the
study of this kind of channel has started in [2], and continued
in [3], where simple inner and outer bounds to the capacity
region were given. Then, in [4], by using the well-known
superposition coding technique, the inner bound of [3] was
strictly improved. In [5], various inner and outer bounds were
obtained by transforming the IFC model into some multiple-
access or broadcast channel. Unfortunately, the capacity region
for the general interference channel is still unknown, although
it has been solved for some very special cases [6, 7]. The

best known inner bound is the Han-Kobayashi (HK) region,
established in [8], and which will also be considered in this
paper.

To our knowledge, [9, 10] are the only previous works
which treat the error exponents for the IFC under optimal
decoding. Specifically, [9] derives lower bounds on error
exponents of random codebooks comprised of i.i.d. codewords
uniformly distributed over a given type class, under maximum
likelihood (ML) decoding at each user, that is, optimal decod-
ing. Contrary to the error exponent analysis of other multiuser
communication systems, such as the multiple access channel
[11], the difficulty in analyzing the error probability of the
optimal decoder for the IFC is due to statistical dependencies
induced by the interfering signal. Indeed, for the IFC, the
marginal channel determining each receiver’s ML decoding
rule is induced also by the codebook of the interfering user.
This indeed extremely complicates the analysis, mostly be-
cause the interfering signal is a codeword and not an i.i.d.
process. Another important observation, which was noticed
in [9], is that the usual bounding techniques (e.g., Gallager’s
bounding technique) on the error probability fail to give tight
results. To alleviate this problem, the authors of [9], combined
some of the ideas from Gallager’s bounding technique [12]
to get an upper bound on the average probability of decoding
error under ML decoding, the method of types [13], and used
the method of distance enumerators, in the spirit of [14], which
allows to avoid the use of Jensen’s inequality in some steps.
Finally, another relevant work is [15], where lower bounds on
the error exponents of both standard and cognitive multiple-
access channels (MACs), were derived assuming suboptimal
successive decoding scheme.

B. Contributions

The main purpose of this paper is to extend the study of
achievability schemes to the more refined analysis of error
exponents achieved by the two users, similarly as in [9].
Specifically, we derive single-letter expressions for the error
exponents associated with the average error probability, for
the finite-alphabet two-user IFC, under several random coding
ensembles. The main contributions of this paper are as follows:

• Similarly as in recent works (see, e.g., [11, 16-19] and
references therein) on the analysis of error exponents, we
derive single-letter lower bounds for the random coding error
exponents. For the standard random coding ensemble, con-
sidered in Subsection II-B, we analyze the optimal decoder
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for each receiver, which is interested solely in its intended
message. This is in contrast to usual decoding techniques
analyzed for the IFC, in which each receiver decodes, in
addition to its intended message, also part of (or all) the
interfering codeword (that is, the other user’s message), or
other conventional achievability arguments [1, Ch. II.7],which
are based on joint-typicality decoding, with restrictionson the
decoder (such as, “treat interference as noise” or to “decode
the interference”). This enables us to understand whether there
is any significant degradation in performance due to the sub-
optimality of the decoder. Also, since [9] analyzed the optimal
decoder as well, we compare our formulas with those of [9],
and show that our error exponent can be strictly better, which
implies that the bounding technique in [9] is not tight. It is
worthwhile to mention that the analytical formulas of our error
exponents are simpler than the lower bound of [9].
• As was mentioned earlier, in [9] only random codebooks
comprised of i.i.d. codewords (uniformly distributed overa
type class) were considered. These ensembles are much sim-
pler than the superposition codebooks of [8]. Unfortunately,
it very tedious to analyze superposition codebooks using the
methods of [9], and even if we do so, the tightness is question-
able. In this paper, however, the new tools that we have derived
enable us to analyze more involved random coding ensembles.
Indeed, we can consider the coding ensemble used in the
HK achievability scheme [8] and derive the respective error
exponents. We also discuss an ensemble of hierarchical/tree
codes [20].
• The analysis of the error exponents, carried out in this
paper, turns out to be much more difficult than in previ-
ous works on point-to-point and multiuser communication
problems, see, e.g., [11, 16-19]. Specifically, we encounter
two main difficulties in our analysis: First, typically, when
analyzing the probability of error, the first step is to apply
the union bound. Usually, for point-to-point systems, under
the random coding regime, the average error probability can
be written as a union of pairwise independent error events.
Accordingly, in this case, it is well known that the truncated
union bound is exponentially tight [21, Lemma A.2]. This
is no longer the case, however, when considering multiuser
systems, and in particular, the IFC. For the IFC, the events
comprising the union are strongly dependent, especially due to
the fact that we are considering the optimal decoder. Indeed,
recall that the optimal decoder for the first user, for example,
declares that a certain message was transmitted if this message
maximizes the likelihood pertaining to the marginal channel.
This marginal channel1 is the average of the actual channel
over the messages of the interfering user, and thus depends on
the whole codebook of the that user. Accordingly, the overall
error event is the union of an exponential number of error
events where each event depends on the marginal channel, and
thus on the codebook of the interfering user. To alleviate this
difficulty, following the ideas of [11], we derived new upper
bounds on the probability of a union of events, which take
into account the dependencies among the events. The second
difficulty that we have encountered in our analysis is that in
contrast to previous works, applying the type class enumerator
method [14] is not simple, due to the reason mentioned above.
Using some methods from large deviations theory, we were
able to tackle this difficulty.

1The precise definition will be given in the sequel.

• Recently, in [15], the authors independently suggested lower
bounds on the error exponents of both standard and cogni-
tive multiple-access channels (MACs), assuming suboptimal
successive decoding scheme, and using the standard random
coding ensemble (considered in Subsection II-B). Although
the motivation in [15] is different, the codebook construction
and the decoding rule are the same as in the first part of
this paper, and thus, essentially, their results apply alsofor
the IFC. Now, despite the fact that the analysis in our paper
is not the same as in [15], for the standard random coding
ensemble, our lower bound coincides with that of [15]. More
importantly, as was mentioned above, we consider also the
more complicated ensemble pertaining to the HK scheme.
Accordingly, the derivation of the lower bound on the error
exponent of this ensemble is built upon the derivation of the
lower bound on the error exponent of the standard random
coding ensemble, and thus it makes useful and convenient to
start with the analysis of the latter ensemble. We emphasize
that the techniques used in [15] are not sufficient to analyzethe
ensemble pertaining to the HK scheme. Finally, we mention
that the focus in [15] was on achievable rate region, rather
than the error exponents, and thus no comparison to [9] was
provided.
• We believe that by using the techniques and tools derived
in this paper, other multiuser systems, such as the IFC with
mismatched decoding, the MAC [11], the broadcast channel,
the relay channel, etc., and accordingly, other coding schemes,
such as binning [16], and hierarchical codes [20], can be
analyzed.

C. Notation Conventions

Throughout this paper, scalar random variables (RVs) will
be denoted by capital letters, their sample values will be
denoted by the respective lower case letters, and their alphabets
will be denoted by the respective calligraphic letters, e.g. X, x,
andX , respectively. A similar convention will apply to random
vectors of dimensionn and their sample values, which will be
denoted with the same symbols in the boldface font. We also
use the notationXj

i (j > i) to designate the sequence of RVs
(Xi, Xi+1, . . . , Xj). The set of alln-vectors with components
taking values in a certain finite alphabet, will be denoted asthe
same alphabet superscripted byn, e.g.,Xn. Generic channels
will be usually denoted by the lettersP , Q, or W . We shall
mainly consider joint distributions of two RVs(X,Y ) over
the Cartesian product of two finite alphabetsX and Y. For
brevity, we will denote any joint distribution, e.g.QXY , simply
by Q, the marginals will be denoted byQX and QY , and
the conditional distributions will be denoted byQX|Y and
QY |X . The joint distribution induced byQX andQY |X will
be denoted byQX×QY |X , and a similar notation will be used
when the roles ofX andY are switched.

The expectation operator will be denoted byE {·}, and
when we wish to make the dependence on the underlying
distribution Q clear, we denote it byEQ {·}. Information
measures induced by the generic joint distributionQXY , will
be subscripted byQ, for example,IQ(X;Y ) will denote the
corresponding mutual information, etc. The divergence (or,
Kullback-Liebler distance) between two probability measures
Q and P will be denoted byD(Q||P ). The conditional
information divergence between the conditional distributions
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QY |X and PY |X , averaged overPX , will be denoted by
D(QY |X ||PY |X |PX). Logarithms are defined with respect to
(w.r.t.) the natural basis, that is,log (·) = ln (·), and finally,
for a real numberx, we denote[x]+ , max {0, x}.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. The IFC Model

Consider a two-user interference channel of two senders,
two receivers, and a discrete memoryless channel (DMC),
defined by a set of single-letter transition probabilities,
WY1Y2|X1X2

(y1y2|x1x2), with finite input alphabetsX1,X2

and finite output alphabetsY1,Y2. Here, each sender,k ∈
{1, 2}, wishes to communicate an independent messageMk ∈{
1, 2, . . . , 2nRk

}
at rateRk, and each receiver,l ∈ {1, 2},

wishes to decode its respective message. Specifically, a
(2nR1 , 2nR2 , n) codeCn consists of:

• Two message setsM1 ,
{
0, . . . , 2nR1 − 1

}
and M2 ,

{
0, . . . , 2nR2 − 1

}
for the first and second users, respectively.

• Two encoders, where for eachk ∈ {1, 2}, thek-th encoder
assigns a codewordxn

k,i , (xk,i,1, xk,i,2, . . . , xk,i,n) to each
messagei ∈ Mk.
• Two decoders, where each decoderl ∈ {1, 2} assigns an
estimateM̂l to Ml.

We assume that the message pair(M1,M2) is uniformly
distributed overM1×M2. It is clear that theoptimal decoder
of the first user, for this problem, is given by

M̂1 = arg max
i∈M1

P
(
yn1 |x

n
1,i

)
(1)

= arg max
i∈M1

e−nR2

M2−1∑

j=1

P
(
yn1 |x

n
1,i, x

n
2,j

)
(2)

whereP
(
yn1 |x

n
1,i, x

n
2,j

)
is the marginal channel defined as

P
(
yn1 |x

n
1,i, x

n
2,j

)
,

n∏

k=1

WY1|X1X2
(y1k|x1,i,kx2,j,k), (3)

and

WY1|X1X2
(y1,k|x1,i,kx2,j,k)

,
∑

y2,k∈Y2

WY1Y2|X1X2
(y1,ky2,k|x1,i,kx2,j,k). (4)

The optimal decoder of the second user is defined similarly.
Since there is no cooperation between the two receivers, the
error probabilities for the codeCn, are defined as:

Pe,i (Cn) , 2−n(R1+R2)·
∑

m1,m2

P

{

M̂i (Y
n
i ) 6= mi|M1 = m1,M2 = m2

}

, i = 1, 2.

(5)

B. The Ordinary Random Coding Ensemble

In this subsection, we consider the ordinary random coding
ensemble: For eachk ∈ {1, 2}, we select independentlyMk

codewordsxn
k,i, for i ∈ Mk, under the uniform distribution

across the type classT (PXk
), for a given distributionPXk

on Xk. Our goal is to assess the exponential rate ofP̄
(n)
e,1 ,

E {Pe,1 (Cn)}, where the average is over the code ensemble,
that is,

E∗
1 (R1, R2) , lim inf

n→∞
−
1

n
log P̄

(n)
e,1 , (6)

and similarly for the second user. Before stating the main
result, we define some quantities. Given a joint distribution
QX1X2Y1

over X1 × X2 × Y1, consider the definitions in
(7), shown at the top of the next page. Our main result is
the following. Due to space limitation, the proofs of all the
following results are omitted and can be found in [22].

Theorem 1 Let R1 andR2 be given, and letE∗(R1, R2) be
defined as in (6). Consider the ensemble of fixed composition
codes of typesPX1

andPX2
, for the first and second users,

respectively. For a discrete memoryless two-user IFC, we have:

E∗
1 (R1, R2) ≥ Ẽ1(R1, R2), (8)

for anyR1, R2 ≥ 0.

Several remarks on Theorem 1 are in order.

• Due to symmetry, the error exponent for the second user,
that is, E∗

2 (R1, R2) is simply obtained from Theorem 1 by
swapping the roles ofX1, Y1, andR1, with X2, Y2, andR2,
respectively.
• An immediate byproduct of Theorem 1 is finding the set
of rates(R1, R2) ∈ R

2
+ for which Ẽ1(R1, R2) > 0, namely,

for which the probability of error vanishes exponentially as
n → ∞. It is not difficult to show that this set is given by:

Rordinary,1 = R̂1 ∪

{

(R1, R2) :
R1 < I (X1;Y1|X2)

R1 +R2 < I (X1, X2;Y1)

}

,

(9)

evaluated withPX1X2Y1
= PX1

× PX2
× WY1|X1X2

, where
R̂1 , {R1 : R1 < I (X1;Y1)}. Fig. 1 demonstrates a qualita-
tive description of this region. The interpretation is as follows:
The corner point(I (X1;Y1|X2) , I (X2;Y1)) is achieved by
first decoding the interference (the second user), canceling it,
and then decoding the first user. The sum-rate constraint canbe
achieved by joint decoding the two users (similarly to MAC),
and thus, obviously, also by our optimal decoder. Finally, the
regionR1 < I (X1;Y1) andR2 ≥ I (X2;Y1|X1) means that
we decode the first user while treating the interference as noise.
Evidently, from the perspective of the first decoder, which is
interested only in the message that is emitted from the first
sender, the second sender can use any rate, and thus there is
no bound onR2 wheneverR1 < I (X1;Y1). Note that this
region was also obtained in [9], but from a lower bound on
the error exponent. Accordingly, this means that accordingto
[9], the achievable rate could be larger. Our results, however,
show that one cannot do better when standard random coding
is applied. Notice thatRordinary,1 is well-known to be contained
in the HK region [10, 23].
• Existence of a single code: our result holds true on the
average, where the averaging is done over the random choice
of codebooks. It can be shown (see, for example, [24, p. 2924])
that there exists deterministic sequence of fixed composition
codebooks of increasing block lengthn for which the same
asymptotic error performance can be achieved forboth users
simultaneously.
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f (QX1X2Y1
) , EQ

[
logWY1|X1X2

(Y1|X1X2)
]
, (7a)

t0(QX1Y1
) , R2 + max

Q̂: Q̂X2
=PX2

, Q̂X1Y1
=QX1Y1

, I
Q̂
(X2;X1,Y1)≤R2

[

f(Q̂)− IQ̂(X2;X1, Y1)
]

, (7b)

L(Q̃X1X2Y1
, QX1X2Y1

) ,
{

Q̂ : max [t0(QX1X2Y1
), f(QX1X2Y1

)]

≤ max

[

f(Q̃X1X2Y1
), f(Q̂) +

[

R2 − IQ̂(X2;X1, Y1)
]

+

]}

, (7c)

E1(Q̃X1X2Y1
, QX1X2Y1

) , min
Q̂: Q̂X2

=PX2
, Q̂X1Y1

=Q̃X1Y1
, Q̂∈L(Q̃X1X2Y1

,QX1X2Y1
)

[

IQ̂(X2;X1, Y1)−R2

]

+
, (7d)

Ê1(QX1X2Y1
, R2) , min

Q̃: Q̃X1
=PX1

, Q̃X2Y1
=QX2Y1

[

IQ̃(X1;X2, Y1) + E1(Q̃X1X2Y1
, QX1X2Y1

)
]

, (7e)

Ẽ1(R1, R2) , min
QY1|X1X2

: QX1
=PX1

,QX2
=PX2

[

D(QY1|X1X2
||WY1|X1X2

|PX1
× PX2

) +
[

Ê1(QX1X2Y1
, R2)−R1

]

+

]

. (7f)

P̄
(n)
e,1 = Pr





M1−1⋃

i=1







M2−1∑

j=0

P
(
Y n
1 |Xn

1,i, X
n
2,j

)
≥

M2−1∑

j=0

P
(
Y n
1 |Xn

1,0, X
n
2,j

)









 , (10)

= E






Pr





M1−1⋃

i=1







M2−1∑

j=0

P
(
Y n
1 |Xn

1,i, X
n
2,j

)
≥

M2−1∑

j=0

P
(
Y n
1 |Xn

1,0, X
n
2,j

)







∣
∣
∣
∣
∣
∣

F0










, (11)

R1

R2

I(X1;Y1|X2)I(X1;Y1)

I(X2;Y1|X1)

I(X2;Y1)

Rordinary,1

Fig. 1. Rate regionRach,1 for which E∗

1 (R1, R2) > 0.

• On the proof: it is instructive to discuss (in some more
detail than earlier) one of the main difficulties in proving
Theorem 1, which is customary to multiuser systems, such
as the IFC. Without loss of generality, we assume throughout,
that the transmitted codewords arexn

1,0 andxn
2,0. Accordingly,

the average probability of error associated with the decoder
(2) is given by (11), shown at the top of the next page, where
F0 ,

(
Xn

1,0, X
n
2,0, Y

n
1

)
. By the union bound and Shulman’s

inequality [21, Lemma A.2], we know that for a sequence of
pairwise independent events,{Ai}

N
i=1, the following holds:

1

2
min

{

1,
N∑

i=1

Pr {Ai}

}

≤ Pr

{
N⋃

i=1

Ai

}

≤ min

{

1,

N∑

i=1

Pr {Ai}

}

, (12)

which is a useful result when assessing the exponential behav-
ior of such probabilities. Equation (12) is one of the building
blocks of tight exponential analysis of previously considered
point-to-point systems (see, e.g., [16-19], and many references
therein). However, it is evident that in our case the various
events are not pairwise independent, and therefore this result
cannot be applied directly. Indeed, since we are interestedin
the optimal decoder, each event of the union in (11), depends
on the whole codebook of the second user. One may speculate
that this problem can be tackled by conditioning on the
codebook of the second user, and then (12). However, the cost
of this conditioning is a very complicated (if not intractable)
large deviations analysis of some quantities. To alleviatethis
problem, we derived new upper bounds on the probability of
union of events, which takes into account the dependencies
among the events. This was done using the techniques of [11].

Another difficulty that arises in the error exponent analysis
of the IFC model, is that in contrast to previous works,
applying the distance enumerator2 method [14], is not a simple
task. Again, our optimal decoder compares two quantities (i.e.,
likelihoods) which are both depend on the whole codebook
of the second user. The consequence of this situation, is that
in order to analyze the probability of error, it is required to
analyze the joint distribution of type class enumerators, and
not just rely on their marginal distributions, as usually done,
e.g., [16-19].
• Comparison with [9]: Similarly to [9], we present results

2For a givenyn ∈ Yn, and a given joint probability distributionQXY on
X ×Y , thedistance enumerator (or, type class enumerator), N(QXY ), is the
number of codewords

{

xn
i

}

in Cn whose conditional empirical joint distribu-

tion with yn is QXY , namely,N(QXY ) =
∣

∣

∣
xn ∈ Cn : Q̂xnyn = QXY

∣

∣

∣
,

where Q̂xnyn is the empirical joint distribution ofxn and yn, and |A|
designates the cardinality of a finite setA.
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Fig. 2. Comparison between our error exponentE∗

1 (R1, R2) and the lower
boundELB(R1, R2) of [9], as a function ofR1 for two different values of
R2 and fixed choices ofPX1

andPX2
.

for the binaryZ-channel model defined as follows:Y1 =
X1 · X2 ⊕ Z and Y2 = X2, whereX1, X2, Y1, Y2 ∈ {0, 1},
Z ∼ Bern(p), “·” is multiplication, and “⊕” is modulo-2
addition. In the numerical calculations, we fixp = 0.01. Fig. 2
presents the lower bound on the error exponent under optimal
decoding, derived in this paper, compared to the lower bound
ELB(R1, R2) of [9], as a function ofR1, for different values
of PX1

, PX2
, andR2. It can be seen that our exponents can

be strictly better than those of [9].
• Generalization to other ensemble: As was mentioned before,
in [9] only random codebooks comprised of i.i.d. codewords
were considered. These ensembles are much simpler than
the superposition codebooks of [8]. Unfortunately, it very
tedious to analyze superposition codebooks using the methods
of [9], and even if we do so, the tightness is questionable.
However, the new tools that we have derived enable us to
analyze more involved random coding ensembles. Due to space
limitations, we do not present the error exponents achieved
by the following schemes. All the details can be found in
[22, Subsection III.C]. For example, we can derive the error
exponents for the HK scheme, which gives the best known
inner bound. The idea in this scheme is to split the message
M1 into “private” and “common” messages,M11 andM12 at
ratesR11 andR12, respectively, such thatR1 = R11 + R12.
Similarly M2 is split into M21 and M22 at ratesR21 and
R22, respectively, such thatR2 = R21 + R22. Then, receiver
k = 1, 2, recovers its intended messageMk, and the common
message from the other sender (although it is not required
to) each decoder. Also, using the same techniques, we can
analyze the error exponents resulting from thehierarchical
code ensemble [20], in which the case has a tree structure
with two levels, where the first serves for “cloud centers”, and
the second for the “satellites”.
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Abstract—The Shannon lower bound is one of the few lower
bounds on the rate-distortion function that holds for a large
class of sources. In this paper, it is demonstrated that its gap
to the rate-distortion function vanishes as the allowed distortion
tends to zero for all sources that have a finite differential entropy
and whose integer parts have a finite entropy. Conversely, it is
demonstrated that if the integer part of the source has an infinite
entropy, then its rate-distortion function is infinite for any finite
distortion. Consequently, the Shannon lower bound provides an
asymptotically tight bound on the rate-distortion function if, and
only if, the integer part of the source has a finite entropy.

I. INTRODUCTION

Suppose a source produces the sequence of independent and
identically distributed (i.i.d.), real-valued, random variables
{Xk, k ∈ Z} according to the distribution PX , and suppose
that we employ a vector quantizer that produces a sequence
of reconstruction symbols {X̂k, k ∈ Z} satisfying

lim
n→∞

1

n

n∑
k=1

E
[(
Xk − X̂k

)2] ≤ D. (1)

(We use lim to denote the limit superior and lim to denote
the limit inferior.) Rate-distortion theory tells us that if for
every blocklength n and distortion constraint D we quantize
the sequence of source symbols X1, . . . , Xn to one of enR(D)

possible sequences of reconstruction symbols X̂1, . . . , X̂n,
then the smallest rate R(D) (in nats per source symbol) for
which there exists a vector quantizer satisfying (1) is given by
[1], [2]

R(D) = inf
PX̂|X

I
(
X; X̂

)
(2)

where the infimum is over all conditional distributions of X̂
given X satisfying

E
[(
X − X̂

)2] ≤ D (3)

and where the expectation is computed with respect to the joint
distribution PXPX̂|X . Here and throughout the paper we omit
the time indices where they are immaterial. The rate R(D) as
a function of D is referred to as the rate-distortion function.

This work has been supported in part by a Marie Curie Career Integration
Grant through the 7th European Union Framework Programme under Grant
333680, by the Ministerio de Economía y Competitividad of Spain under
Grants TEC2013-41718-R, RYC-2014-16332, and TEC2015-69648-REDC,
and by the Comunidad de Madrid under Grant S2013/ICE-2845.

Unfortunately, the rate-distortion function is unknown ex-
cept in very few special cases. It therefore needs to be assessed
by means of upper and lower bounds. Arguably, for sources
with a finite differential entropy, the most important lower
bound is the Shannon lower bound [1], [2]

RSLB(D) = h(X)− 1

2
log(2πeD) (4)

where log(·) denotes the natural logarithm. While this lower
bound is tight only for some special sources, it converges to
the rate-distortion function as the allowed distortion D tends
to zero, provided that the source satisfies some conditions
[3]–[6]. Thus, in this case the Shannon lower bound provides
a good approximation of the rate-distortion function for small
distortions. A finite-blocklength refinement of the Shannon
lower bound has recently been given by Kostina [7].

To the best of our knowledge, the most general conditions
for the asymptotic tightness of the Shannon lower bound
are due to Linder and Zamir [6]. While Linder and Zamir
considered more general distortion measures, specialized to
quadratic distortion (3), they showed the following.

Theorem 1 (Linder and Zamir [6, Cor. 1]): Assume that X
has a probability density function (pdf) and h(X) > −∞. Fur-
ther assume that there exists an α > 0 such that E[|X|α] <∞.
Then the Shannon lower bound is asymptotically tight, i.e.,

lim
D↓0

{
R(D)−RSLB(D)

}
= 0. (5)

The theorem’s conditions are very mild and satisfied by
the most common source distributions. In fact, Theorem 1
demonstrates that the Shannon lower bound is asymptotically
tight even if there exists no quantizer with a finite number of
codevectors and of finite distortion, i.e., when E

[
X2
]

= ∞.
However, the conditions are more stringent than the ones
sometimes required for the analysis of the rate and distortion
redundancies of high-resolution quantizers. For example, in
[8] Gray et al. analyzed the asymptotic distortion of entropy-
constrained vector quantization in the limit as the rate tends
to infinity, thereby rigorously proving a theorem by Zador [9].
In their work, they considered source vectors X that have a
density, whose differential entropy is finite, and that satisfy

H(bXc) <∞ (6)

where bac denotes the integer part of a, i.e., the largest integer
not larger than a. Furthermore, Koch and Vazquez-Vilar [10]
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demonstrated that these assumptions are also sufficient to re-
cover the result by Gish and Pierce [11] that, among all scalar
quantizers, uniform quantizers are asymptotically optimal as
the allowed distortion tends to zero. In words, condition (6)
demands that quantizing the source with a uniform quantizer
of unit-length cells gives rise to a discrete random variable
of finite entropy. This ensures that the quantizer output can
be further compressed using a lossless variable-length code of
finite expected length.

The quantity H(bXc) is intimately related with the Rényi
information dimension [12], defined as

d(X) , lim
m→∞

H (bmXc /m)

logm
, if the limit exists (7)

which in turn coincides with the rate-distortion dimension
introduced by Kawabata and Dembo [13]; see also [14].
Indeed, the Rényi information dimension is finite if, and only
if, condition (6) is satisfied [14, Prop. 1]. Furthermore, a
sufficient condition for finite Rényi information dimension is
E[log(1 + |X|)] < ∞ [14, Prop. 1], which in turn holds for
any source for which E[|X|α] < ∞ for some α > 0. Thus,
(6) is weaker than the assumption that E[|X|α] <∞.

It is common to assume that the differential entropy of the
source is finite, since otherwise the Shannon lower bound
(4) is uninteresting. One may thus wonder how (6) and the
assumption of a finite differential entropy are related. As
demonstrated, for example, in the proof of Theorem 3 in [15],
condition (6) implies that h(X) < ∞. In fact, one can show
that if (6) holds and X has a pdf, then h(X) ≤ H(bXc)
[16, Cor. 1]. Conversely, one can find sources for which
the differential entropy is finite but H(bXc) is infinite. For
example, consider a source with pdf

fX(x) =
∞∑
m=2

pmm1

{
m ≤ x < m+

1

m

}
, x ∈ R (8)

where

pm =
1

Km log2m
, m = 2, 3, . . . (9a)

K =

∞∑
m=2

1

m log2m
(9b)

and 1{·} denotes the indicator function. It is easy to check
that for such a source

H(bXc) =

∞∑
m=2

pm log
1

pm

=
∞∑
m=2

logK + logm+ 2 log logm

Km log2m

=∞ (10)

and

h(X) = −
∫
R
fX(x) log fX(x) dx

=

∞∑
m=2

logK + 2 log logm

Km log2m

<∞. (11)

(See remark after Theorem 1 in [12, pp. 197–198].) Thus, for
sources satisfying h(X) > −∞, a finite Rényi information
dimension implies a finite differential entropy but not vice
versa.

In this paper, we demonstrate that for sources that have
a pdf and whose differential entropy is finite, the Shannon
lower bound (4) is asymptotically tight if (6) is satisfied. This
ensures the asymptotic tightness of the Shannon lower bound
under the most general conditions imposed in the analysis of
high-resolution quantizers. Conversely, we demonstrate that
for sources that do not satisfy (6) the rate-distortion function
is infinite for any finite distortion.

II. PROBLEM SETUP AND MAIN RESULT

We consider a one-dimensional, real-valued source X with
support X ⊆ R whose distribution is absolutely continuous
with respect to the Lebesgue measure, and we denote its pdf
by fX . We assume that x 7→ fX(x) log fX(x) is integrable,
ensuring that the differential entropy

h(X) , −
∫
X
fX(x) log fX(x) dx (12)

is well-defined and finite. We have the following result.
Theorem 2 (Main Result): Assume that the one-dimensional,

real-valued source X has a pdf and h(X) > −∞. If
H(bXc) < ∞, then the Shannon lower bound is asymptot-
ically tight, i.e.,

lim
D↓0

{
R(D)−RSLB(D)

}
= 0. (13)

Conversely, if H(bXc) =∞, then R(D) =∞ for D > 0.
Proof: See Section III.

Theorem 2 thus demonstrates that the Shannon lower bound
is asymptotically tight if, and only if, H(bXc) is finite.

III. PROOF OF THEOREM 2

The proof consists of two parts. In the first part, we show
that if H(bXc) < ∞, then the Shannon lower bound is
asymptotically tight (Section III-A). In the second part, we
show that if H(bXc) =∞, then R(D) =∞ for every D > 0
(Section III-B).

A. Asymptotic Tightness

In this section, we demonstrate the asymptotic tightness
of the Shannon lower RSLB(D) for sources that satisfy
H(bXc) <∞ and h(X) > −∞. The first steps in our proof
are identical to the ones in the proof of Theorem 1 in [6]. To
keep this paper self-contained, we reproduce the main steps.

To prove the asymptotic tightness of RSLB(D), we derive
an upper bound on R(D) whose gap to RSLB(D) vanishes as
D tends to zero. In view of (2), an upper bound on R(D)
follows by choosing X̂ = X+ZD, where ZD is a zero-mean,
variance-D, Gaussian random variable that is independent of
X . It follows that

R(D) ≤ I(X;X + ZD)

= h(X + ZD)− h(ZD). (14)
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Furthermore, using that h(ZD) = 1
2 log(2πeD), the Shannon

lower bound (4) can be written as

RSLB(D) = h(X)− h(ZD). (15)

Combining (14) and (15) gives

0 ≤ R(D)−RSLB(D) ≤ h(X + ZD)− h(X). (16)

Thus, the asymptotic tightness of RSLB(D) follows by proving
that

lim
D↓0

h(X + ZD) ≤ h(X). (17)

To this end, we follow the steps (17)–(21) in [6] but with
Y∆(D) and Y∆(0) replaced by the random variables YD and
Y0 with respective pdfs

fYD (y) =
∑
i∈Z

Pr
(
bX + ZDc = i

)
1{byc = i} (18a)

fY0(y) =
∑
i∈Z

Pr
(
bXc = i

)
1{byc = i} . (18b)

It follows that

D(fX+ZD‖fYD ) = H(bX + ZDc)− h(X + ZD) (19)

and
D(fX‖fY0

) = H(bXc)− h(X). (20)

The random variable ZD converges to zero almost surely as D
tends to zero and, hence, also in distribution. Since X and ZD
are independent, it follows that X + ZD → X in distribution
as D tends to zero. Furthermore, since by assumption the
distribution of X is absolutely continuous with respect to the
Lebesgue measure, for every i ∈ Z the interval [i, i+ 1) is a
continuity set of X , so

lim
D↓0

Pr
(
bX + ZDc = i

)
= Pr

(
bXc = i

)
, i ∈ Z. (21)

Thus, the pdf of YD (18a) converges pointwise to the pdf of
Y0 (18b), which by Scheffe’s lemma [17, Th. 16.12] implies
that YD → Y0 in distribution as D tends to zero.

By the lower semicontinuity of relative entropy (see, e.g.,
the proof of Lemma 4 in [18] and references therein),

lim
D↓0

D(fX+ZD‖fYD ) ≥ D(fX‖fY0). (22)

Combining (22) with (19) and (20) yields

lim
D↓0

{
H(bX+ZDc)−h(X+ZD)

}
≥ H(bXc)−h(X). (23)

Since h(X) > −∞ and H(bXc) < ∞, the claim (17)
(and hence the asymptotic tightness of RSLB(D)) follows by
showing that H(bX + ZDc) tends to H(bXc) as D tends to
zero. We present this result in the following lemma.

Lemma 1: Assume that X has a pdf and H(bXc) <∞. Let
ZD be a zero-mean, variance-D, Gaussian random variable
that is independent of X . Then

lim
D↓0

H(bX + ZDc) = H(bXc). (24)

Proof: Using basic properties of entropy, we obtain

H(bX + ZDc) ≤ H(bXc) +H
(
bX + ZDc

∣∣ bXc)
≤ H(bXc) +H(VD) (25)

and

H(bX + ZDc) ≥ H(bXc)−H
(
bXc

∣∣ bX + ZDc
)

≥ H(bXc)−H(VD) (26)

where VD , bX + ZDc − bXc. Lemma 1 follows therefore
by showing that H(VD) vanishes as D tends to zero.

We first show that

lim
D↓0

Pr(VD = i) = 1{i = 0} . (27)

Indeed, let X̄ , X − bXc, and recall that ZD → 0 in
distribution as D tends to zero. Noting that VD = bX̄ +ZDc,
the probability mass function of VD can be written as

Pr
(
VD = i

)
= Pr

(
bX̄ + ZDc = i

)
, i ∈ Z. (28)

Furthermore, the independence of X and ZD implies that
X̄ + ZD → X̄ in distribution as D tends to zero. Since the
distribution of X is absolutely continuous with respect to the
Lebesgue measure, so is the distribution of X̄ . Consequently,
for every i ∈ Z the interval [i, i+ 1) is a continuity set of X̄
and

lim
D↓0

Pr
(
bX̄ + ZDc = i

)
= Pr

(
bX̄c = i

)
= 1{i = 0} (29)

where the last step follows because the support of X̄ is [0, 1).
This proves (27).

We continue by expressing the entropy of VD as

H(VD) =
1∑

i=−1

Pr(VD = i) log
1

Pr(VD = i)

+
∑

i∈Z : |i|>1

Pr(VD = i) log
1

Pr(VD = i)
. (30)

The first sum on the right-hand side (RHS) of (30) con-
sists of finitely many terms, so (27) and the continuity of
x 7→ x log(1/x) give1

lim
D↓0

1∑
i=−1

Pr(VD = i) log
1

Pr(VD = i)

=

1∑
i=−1

lim
D↓0

Pr(VD = i) log
1

Pr(VD = i)

= 0. (31)

To show that the second sum on the RHS of (30) vanishes as
D → 0, it suffices to show that

lim
D↓0

∑
i∈Z : |i|>1

Pr(VD = i) log
1

Pr(VD = i)
≤ 0 (32)

since the summands are nonnegative. As observed above, the
distribution of X̄ is absolutely continuous with respect to the

1Here and throughout the paper we define 0 log(1/0) , 0.
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Lebesgue measure, so X̄ has a pdf which we shall denote by
fX̄ . Since ZD and X̄ are independent, the pdf of X̄ + ZD is
given by [19, Th. 4.10, p. 29]

fX̄+ZD (ξ) =

∫ 1

0

fX̄(x̄)
1√

2πD
e−

(ξ−x̄)2

2D dx̄, ξ ∈ R. (33)

Combining (28) and (33), we obtain

Pr
(
VD = i

)
= Pr

(
bX̄ + ZDc = i

)
=

∫ i+1

i

∫ 1

0

fX̄(x̄)
1√

2πD
e−

(ξ−x̄)2

2D dx̄ dξ

≥ 1√
2πD

e−
(|i|+1)2

2D , i ∈ Z (34)

where the inequality follows because for ξ ∈ [i, i + 1) and
x̄ ∈ [0, 1) we have |ξ − x̄| ≤ |i| + 1. Applying (34) to the
second sum on the RHS of (30) gives∑

i∈Z : |i|>1

Pr(VD = i) log
1

Pr(VD = i)

≤ 1

2
log (2πD)

∑
i∈Z : |i|>1

Pr(VD = i)

+
∑

i∈Z : |i|>1

Pr(VD = i)
(|i|+ 1)2

2D
. (35)

To demonstrate that the first term on the RHS of (35)
vanishes as D → 0, we use that any variable z satisfying
|bx̄+ zc| > 1 must also satisfy |z| > 1, irrespective of
x̄ ∈ [0, 1). Consequently,∑

i∈Z : |i|>1

Pr(VD = i) = Pr
(
|bX̄ + ZDc| > 1

)
≤ Pr

(
|ZD| > 1

)
≤ D (36)

where the last inequality follows from Chebyshev’s inequality
[20, Th. 4.10.7, p. 192]. Combining (36) with (35), we obtain∣∣∣∣∣∣12 log (2πD)

∑
i∈Z : |i|>1

Pr(VD = i)

∣∣∣∣∣∣ ≤ D

2

∣∣log (2πD)
∣∣ (37)

which tends to zero as D → 0.
We next consider the second term on the RHS of (35). To

this end, we write

Pr(VD = i)(|i|+ 1)2 =

∫ i+1

i

fX̄+ZD (ξ)(|i|+ 1)2 dξ. (38)

By Fubini’s theorem [20, Th. 2.6.4, p. 105], we obtain from
(38) and (33) that∑
i∈Z : |i|>1

Pr(VD = i)(|i|+ 1)2

=
∑

i∈Z : |i|>1

∫ i+1

i

∫ 1

0

fX̄(x̄)
1√

2πD
e−

(ξ−x̄)2

2D (|i|+ 1)2 dx̄ dξ

=

∫ 1

0

fX̄(x̄)
∑

i∈Z : |i|>1

∫ i+1−x̄

i−x̄

(|i|+ 1)2

√
2πD

e−
z2

2D dz dx̄. (39)

For every |i| = 2, 3, . . ., z ∈ [i− x̄, i+ 1− x̄), and x̄ ∈ [0, 1)
we have |i|+ 1 ≤ 3|z|. Hence,

∑
i∈Z : |i|>1

∫ i+1−x̄

i−x̄

(|i|+ 1)2

√
2πD

e−
z2

2D dz

≤
∑

i∈Z : |i|>1

∫ i+1−x̄

i−x̄

9z2

√
2πD

e−
z2

2D dz

≤ 9

∫
{|z|≥1}

z2

√
2πD

e−
z2

2D dz (40)

where the last inequality follows because, for every x̄ ∈ [0, 1),⋃
i∈Z : |i|>1

[i− x̄, i+ 1− x̄) ⊆ {z ∈ R : |z| ≥ 1}.

The RHS of (40) does not depend on x̄, so together with (39)
this yields∑
i∈Z : |i|>1

Pr(VD = i)(|i|+1)2 ≤ 9E
[
Z2
D1{|ZD| ≥ 1}

]
. (41)

Writing ZD as ZD =
√
DZ1, where Z1 is a zero-mean, unit-

variance, Gaussian random variable, the expected value on the
RHS of (41) can be written as

E
[
Z2
D1{|ZD| ≥ 1}

]
= DE

[
Z2

11
{
Z2

1 ≥ 1/D
}]
. (42)

Combining (42) and (41), we obtain

∑
i∈Z : |i|>1

Pr(VD = i)
(|i|+ 1)2

2D

≤ 9

2
E
[
Z2

11
{
Z2

1 ≥ 1/D
}]
. (43)

Since the function z 7→ z21
{
z2 ≥ 1/D

}
is dominated by

z 7→ z2, and since E
[
Z2

1

]
= 1, it follows from the Dominated

Convergence Theorem [20, Th. 1.6.9, p. 50] that

lim
D↓0

E
[
Z2

1 1
{
Z2

1 ≥ 1/D
}]

= 0. (44)

Together with (43) this demonstrates that the second term on
the RHS of (35) vanishes as D tends to zero.

Thus, (35), (37), (43), and (44) prove (32), which together
with (30) and (31) demonstrates that

lim
D↓0

H(VD) = lim
D↓0

∑
i∈Z

Pr(VD = i) log
1

Pr(VD = i)
= 0. (45)

This was the last step required to prove Lemma 1.
Combining Lemma 1 with (23) implies (17), which in turn

demonstrates that the Shannon lower bound is asymptotically
tight if H(bXc) <∞ and h(X) > −∞. This proves the first
part of Theorem 2.
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B. Infinite Rate-Distortion Function

To prove that H(bXc) =∞ implies R(D) =∞ for every
D > 0, we show that I(X; X̂) =∞ for every pair of random
variables (X, X̂) satisfying (3) and H(bXc) = ∞. To this
end, we follow along the lines of the proof of Theorem 6 in
[16, App. A]. Indeed, by the Data Processing Inequality [21,
Cor 7.16],

I(X; X̂) ≥ I
(
bXc; bX̂c

)
. (46)

The mutual information on the RHS of (46) can be written as

I
(
bXc; bX̂c

)
= H

(
bXc

)
−H

(
bXc

∣∣ bX̂c). (47)

Since H(bXc) = ∞ by assumption, the claim follows by
showing that the conditional entropy on the RHS of (47) is
bounded for every pair of random variables (X, X̂) satisfying
(3). Indeed, we have

H
(
bXc

∣∣ bX̂c) ≤ H(bX − X̂c)
+H

(
bXc

∣∣ bX̂c, bX − X̂c). (48)

Since E[log(1 + |X − X̂|)] < ∞ for (X, X̂) satisfying (3),
Proposition 1 in [14] yields that

H
(
bX − X̂c

)
<∞. (49)

Furthermore, denoting Y = X − X̂ , we obtain

H
(
bXc

∣∣ bX̂c, bX − X̂c) = H
(
bX̂ + Y c

∣∣ bX̂c, bY c)
≤ log 2 (50)

since, conditioned on bX̂c and bY c, the random variable
bX̂ + Y c can only take on the values bX̂c + bY c or
bX̂c+ bY c+ 1. Combining (48)–(50) yields

H
(
bXc

∣∣ bX̂c) <∞. (51)

Summing up, (46)–(51) demonstrate that I(X; X̂) = ∞ for
every pair of random variables (X, X̂) satisfying (3) and
H(bXc) = ∞. Hence, the rate-distortion function R(D) is
infinite for every finite D. This proves the second part of
Theorem 2.

IV. CONCLUSIONS

The Shannon lower bound is one of the few lower bounds
on the rate-distortion function that hold for a large class
of sources. We have demonstrated that this lower bound is
asymptotically tight as the allowed distortion vanishes for all
sources having a finite differential entropy and a finite Rényi
information dimension. Conversely, we have demonstrated that
if the source has an infinite Rényi information dimension, then
its rate-distortion function is infinite for any finite distortion.

Assuming a finite Rényi information dimension is tanta-
mount to assuming that quantizing the source with a uniform
scalar quantizer of unit-length cells gives rise to a discrete
random variable of finite entropy. The latter assumption is
natural in rate-distortion theory and often encountered. To this
effect, we have demonstrated that this assumption is not only
natural, but it is also a necessary and sufficient condition for
the asymptotic tightness of the Shannon lower bound.

Finally, the presented results can be generalized to
d-dimensional, real-valued sources and distortion measures of
the form ‖x− x̂‖r, where ‖ ·‖ is an arbitrary norm on Rd and
r > 0. For details, see our paper [22] on arXiv.
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Abstract—In this work, we establish the rate-distortion func-
tion R(D1, D2) of a Heegard-Berger Problem with two sources,
S1 and S2, under the assumption of degraded reconstruction
sets and common encoder-receivers reconstruction. Specifically,
the source S1 needs to be recovered at only Decoder 1, to within
some prescribed average distortion level D1; and the source S2

needs to be recovered at both decoders, to within some same
prescribed average distortion level D2. In addition, the encoder
and decoders must agree on a common reconstruction version of
S2.

I. INTRODUCTION

The Heegard Berger problem [1] is one of the most crucial
extensions of Wyner and Ziv’s result, on lossy source coding
with side information, to multi-terminal scenarios. In such a
setting, a memoryless source Sn has to be reconstructed at two
decoders 1 and 2, respectively to within prescribed distortion
levels D1 and D2 – Decoder 1 has access to side information
Y n
1 and Decoder 2 has access to side information Y n

2 . Heegard
and Berger derived in [1] an inner bound on the rate-distortion
function R(D1, D2) of the model that remains the best bound
known to date for the two-user case. This inner bound proves
to be optimal for many a setting, among which, degraded side
information and the wider class of conditionally less-noisy
side information as summarized by Timo et al. in [2], as well
as for some settings where the side information sequences
are not ordered, e.g. the complementary delivery investigated
by Kimura et al. in [3], and the unmatched product of two
degraded sources investigated by Watanabe in [4].

In this work, we investigate a wider class of Heegard-
Berger problems in which we assume that the source is
composed of two sources Sn

1 and Sn
2 arbitrarily correlated

between them, and to the side information sequences Y n
1

and Y n
2 . The source sequence Sn

1 has to be reconstructed at
only receiver 1 to with some prescribed distortion D1, while
the source Sn

2 has to be reconstructed at both receivers. As
such, we impose a degraded reconstruction set but we do, by
no means, impose any sort of hierarchy or ordering on the
side information sequences Y n

1 and Y n
2 . In previous works

[5] and [6], the authors derived the optimal rate-distortion
function R(D1) where Sn

2 had to be recovered losslessly at
both decoders. In this work, we investigate the more general
case where we allow the source Sn

2 to be reconstructed to

within a certain distortion D2, but impose however that the
reconstructions of Sn

2 at all terminals, including the source,
be almost equal. This model, as depicted in Figure 1, is
useful for applications in which the source component Sn

2

represents some critical information, such as sensitive medical
information, and each of the sender and the receivers need to
share a common compressed version of it. Such a common

Fig. 1. Heegard-Berger problem with two sources, side information and
degraded reconstruction sets.

reconstruction constraint was first investigated by Steinberg
in [7] for a Wyner-Ziv setting and it was shown that, under
a common source-receiver reconstruction constraint, the use
of side information was prevented in the estimation phase
and allowed only in the binning phase, as elaborated on in
Section II-A. Yet, the utility of side information is less easy
to understand in multi-terminal settings, such as the Heegard-
Berger problem with common reconstruction constraints. In-
deed, as an intuitive result for the Heegard-Berger problem
with a common source-receivers reconstruction constraint as
in Figure 2, [8] shows that side information is only useful
for binning since it is not known to the source and can be
of no use for estimation. However, for the Heegard-Berger
problem with common receivers reconstruction only shown in
Figure 3, Vellambi and Timo [8] observed that the common
part of the two side information sequences can still be used
at the estimation phase. ( The reader may also refer to
the related work in [9] where Ahmadi et al. investigate a
Heegard-Berger problem with degraded side information in
which the encoder is constrained to be able to produce each
of the receivers reconstructions, without imposing that these
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Fig. 2. Heegard-Berger problem with common source-receiver reconstruction

Fig. 3. Heegard-Berger problem with common receiver reconstruction only

Fig. 4. Heegard-Berger problem with distinct common source-receiver
reconstruction

decoders’ reconstructions be identical to each other with high
probability – see Figure 4, or to [10] where Timo et al.
investigate the Heegard-Berger problem with complimentary
delivery and common receivers’ reconstructions.)

In this work, we assume unlike previous works that we
are in the presence of two sources, and impose a common
source-receiver reconstruction constraints for source Sn

2 . Our
contribution is outlined as follows. In section II, we give
necessary definitions and briefly review and comment on some
related results on the role of side information for binning
and/or estimation. The main result, as stated in Section III, is a
full characterization of the rate-distortion function R(D1, D2)
of the model of Figure 1. Finally, Section IV is dedicated to
the proof of the main result.

Notations

We use the following notations. Upper case letters are used
to denote random variables, e.g., S; lower case letters are
used to denote realizations of random variables, e.g., s; and
calligraphic letters designate alphabets, i.e., S. S denotes the
cardinality of a set X . For random variables X , Y and Z, the
notation X −
− Y −
− Z indicates that X , Y and Z, in this

order, form a Markov Chain. For integers i ≤ j, we define
[i : j] := {i, i + 1, . . . , j}. p.m.f stands for probability mass
function while a.r.v. stands for auxiliary random variable.

II. PROBLEM SETUP AND DEFINITIONS

Let (S1 × S2 × Y1 × Y2, PS1,S2,Y1,Y2) be a discrete mem-
oryless four-source with generic variables S1, S2, Y1 and Y2.
Also, let Ŝ1 and Ŝ2 be two reconstruction alphabets and, for
i ∈ {1, 2}, di a distortion measure defined as

di : Si × Ŝi → R+

(si, ŝi) → di(si, ŝi) .
(1)

An (n,Mn, D1, D2) code for the lossy Heegard-Berger prob-
lem with degraded reconstruction sets and common recon-
struction consists of:
- A set of messages W , [1 : Mn].
- An encoding function f such that:

f : Sn1 × Sn2 → W
(Sn

1 , S
n
2 ) → W = f(Sn

1 , S
n
2 ) .

(2)

- Two decoding functions g1 and g2, one at each user:

g1 : W ×Yn
1 → Ŝn2 × Ŝn1

(W,Y n
1 ) → (Ŝn

2,1, Ŝ
n
1 ) = g1(W,Y n

1 ) ,
(3)

and
g2 : W ×Yn

2 → Ŝn2
(W,Y n

2 ) → Ŝn
2,2 = g2(W,Y n

2 ) .
(4)

- An additional encoder reconstruction function gs defined by

gs : W → Ŝn2
W → Ŝn

2,s = gs(W ).
(5)

The expected distortions of this code are given by

E
(
d1(Sn

1 , Ŝ
n
1 )
)
, E

1

n

n∑
i=1

d1(S1,i, Ŝ1,i) (6)

E
(
d2(Sn

2 , Ŝ
n
2,j)
)
, E

1

n

n∑
i=1

d2(S2,i, Ŝ2,ji), for j = 1, 2.(7)

The probability of error of this code is given by

P (n)
e , P

(
Ŝn
2,1 6= Ŝn

2,s or Ŝn
2,2 6= Ŝn

2,s

)
. (8)

N.B: Imposing that the probability of error of the source
S2’s reconstructions be arbitrarily small implies that the
three terminals, i.e. encoder and receivers, can not have
distinct distortion levels and thus, we only impose one common
distortion level for the source S2.

Definition 1. A rate R is said to be (D1, D2)-achievable
for the lossy HB problem with degraded reconstruction sets
and common source-receivers reconstruction if there exists a
sequence of codes (n,Mn, D1, D2) such that:

lim sup
n→∞

P (n)
e = 0 , (9)

lim sup
n→∞

E
(
d1(Sn

1 , Ŝ
n
1 )
)
≤ D1 , (10)

lim sup
n→∞

E
(
d2(Sn

2 , Ŝ
n
2,s)
)
≤ D2 , (11)
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lim inf
n→∞

log2(Mn) ≥ R . (12)

The rate-distortion R(D1, D2) of this problem is defined by

R(D1, D2) , inf {R : R is (D1, D2)-achievable} . (13)

A. Role of Side Information, Binning and/or Estimation

In source coding problems with side information at the
decoder, side information may be utilized for binning and/or
estimation, depending on the configuration. For example, in
the standard Wyner-Ziv setup [11] with source S and arbitrar-
ily correlated side information Y available non-causally only
at the decoder, the side information is utilized both for binning
and for the estimation of the reconstruction. This is reflected
through the following rate-distortion function,

RWZ = min
PV |SY

I(V ;S|Y ) (14)

where PV SY is such that:
1) V −
− S −
− Y (15)
2) ∃ Ŝ , φ(V ;Y ) s.t Ed(S, Ŝ) ≤ D. (16)

in which it is clear that the rate I(V ;S|Y ) = I(V ;S) −
I(V ;Y ) takes benefit from the binning against side infor-
mation, while the reconstructed sequence at the estimation is
allowed to depend on the side information sequence through
the function φ(·).
The side information plays a similar role, but with a generally
stronger binning leading to a better rate, if it is also given to the
encoder (i.e., the standard conditional rate-distortion problem
[12]); and it plays a less important role (only estimation) if it
is given only causally to the decoder but not to the encoder
[13]. If the encoder is constrained to produce an exact copy
of the decoder’s reconstruction, referred to as common source-
receiver reconstruction constraint in [7], side information can
be used for binning but not for estimation – as otherwise,
the encoder, which does not know the side information, can
not estimate the decoder’s reconstruction. This is reflected
through the associated rate-distortion function, which in this
case reduces to [7]

RCR = min
PŜ|SY

I(Ŝ;S|Y ) (17)

where PŜSY is such that:

1) Ŝ −
− S −
− Y (18)
2) Ed(S, Ŝ) ≤ D (19)

It is clear from the above equation that the reconstruction Ŝ
can not depend on the side information sequence Y due to the
Markov Chain Ŝ −
− S −
− Y while the transmission rate
still from the binning the binning.

III. RATE-DISTORTION FUNCTION

Recall the definitions of section II. The following theo-
rem characterizes the rate-distortion function of the Heegard-
Berger model with degraded reconstruction sets and common
reconstruction shown in Figure 1.

Theorem 1 (The rate-distortion function). The rate-distortion
function R(D1, D2) of the Heegard-Berger model with de-
graded reconstruction sets and common reconstruction shown
in Figure 1 is given by

R(D1, D2) = min
P

max
{
I(U0Ŝ2;S1S2|Y1), I(U0Ŝ2;S1S2|Y2)

}
+ I(U1;S1S2|Y1Ŝ2U0) (20)

where the minimization is over of the set P of joint conditional
p.m.fs PU0U1Ŝ2|S1S2

that satisfy i), ii), and iii) where:
i) (U0, U1, Ŝ2)−
− (S1, S2)−
− (Y1, Y2) forms a Markov chain,
ii) there exists a function Φ such that:

Φ : U0 × U1 × Ŝ2 × Y1 → Ŝ1
(U0, U1, Ŝ2, Y1)→ Ŝ1 = Φ(U0, U1, Ŝ2, Y1)

and E(d1(S1, Ŝ1)) ≤ D1 .
iii) The distortion constraint of source S2 is such that

E(d2(S2, Ŝ2)) ≤ D2. (21)

Proof: The proof of Theorem 1 is given in Appendix IV.

In the following remarks, we elaborate more on Theorem 1
and its connection to related results.

Remark 1. The result of Theorem 1 can be seen as a
generalization of that of [5, Theorem 1], in the sense that
setting D2 = 0 in Theorem 1, one recovers [5, Theorem 1].

Also, a characterization of the rate-distortion function for
the model of Figure 2 can be readily obtained from the result
of Theorem 1 by setting S1 = ∅. In this sense, Theorem 1
can also be seen as a generalization of [8, Theorem 1] to the
case in which one of the decoders also recovers an individual
description.

Remark 2. The coding scheme that we use for the proof of
achievability of Theorem 1 requires that for the encoding and
decoding of the source component sn2 , the side information
sequences yn1 and yn2 are used for the binning stage, but
not for the estimation stage. However, they are used for both
binning and estimation for the encoding/decoding of the source
component sn1 .

IV. PROOF OF THEOREM 1
A. Proof of converse

Let R be a (D1, D2)-achievable rate for our Heegard-Berger
problem with degraded reconstruction sets and common re-
construction of Figure 1. Let Φ be the associated encoding
function, and g1, g2, and gs the associated reconstruction
functions. That is, W = Φ(Sn

1 , S
n
2 ), Ŝn

1 = g(W,Y n
1 ),

Ŝn
2,1 = g1(W,Y n

1 ) and Ŝn
2,2 = g2(W,Y n

2 ) with

P (n)
e , P

(
Ŝn
2,1 6= Ŝn

2,s or Ŝn
2,2 6= Ŝn

2,s

)
≤ εn. (22)

First, note that the imposed common encoder-decoders
reconstruction constraint for the source component sn2 implies
the following Fano’s inequalities,

1

n
H(Ŝn

2,s|Ŝn
2,1) ≤ 1

n
+ log2(||Ŝ2||)P (n)

e (23)
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1

n
H(Ŝn

2,s|Ŝn
2,2) ≤ 1

n
+ log2(||Ŝ2||)P (n)

e . (24)

Combining (22) and (24), one gets that
1

n
H(Ŝn

2,s|Ŝn
2,1) ≤ ε′n and

1

n
H(Ŝn

2,s|Ŝn
2,2) ≤ ε′n , (25)

where limn⇒∞ ε′n = 0.
Next, for the first constraint on the rate R, we have

nR ≥ H(W |Y n
1 ) (26)

≥ I(W ;Sn
1 S

n
2 |Y n

1 ) (27)
= I(WŜn

2,1;Sn
1 S

n
2 |Y n

1 ) (28)
(a)

≥ I(WŜn
2,1Ŝ

n
2,s;S

n
1 S

n
2 |Y n

1 )− 2nεn (29)

≥ I(WŜn
2,s;S

n
1 S

n
2 |Y n

1 )− 2nεn (30)

Note then that:

I(WŜn
2,s;S

n
1 S

n
2 |Y n

1 )

=
n∑

i=1

I(WŜn
2,s;S1,iS2,i|Si−1

1 Si−1
2 Y1,iY

i−1
1 Y n

1,i−1) (31)

=
n∑

i=1

I(WŜn
2,sY

i−1
1 Y n

1,i+1S
i−1
1 Si−1

2 ;S1,iS2,i|Y1,i) (32)

(b)
=

n∑
i=1

I(WŜn
2,sY

i−1
1 Y n

1,i+1S
i−1
1 Si−1

2 Y i−1
2 ;S1,iS2,i|Y1,i)

≥
n∑

i=1

I(WŜi−1
2,s Ŝ

n
2,s,i+1Y

i−1
1 Y n

1,i+1Y
i−1
2 Ŝ2,s,i;S1,iS2,i|Y1,i)

where (a) holds using (25) and (b) holds using the following
Markov chain the justification of which will follow,

Y i−1
2 −
−(W, Ŝn

2,s, Y
i−1
1 , Y n

1,i+1, S
i−1
1 , Si−1

2 , Y1,i)−
−(S1,i, S2,i).
(33)

At this stage, we pause to justify (33). We have the following
list of Markov chains and implications,

(a) (Y i−1
2 , Y i−1

1 , Si−1
1 , Si−1

2 )

−
−Y1,i −
− (Y n
1,i+1, S

n
1,i+1, S

n
2,i+1, S1,i, S2,i)

⇒ Y i−1
2 −
− (Y1,i, Y

i−1
1 , Si−1

1 , Si−1
2 )

−
−(Y n
1,i+1, S

n
1,i+1, S

n
2,i+1, S1,i, S2,i) (34)

(b)⇒ Y i−1
2 −
− (Y1,i, Y

i−1
1 , Si−1

1 , Si−1
2 )

−
−(W, Ŝn
2,s, Y

n
1,i+1, S

n
1,i+1, S

n
2,i+1, S1,i, S2,i)(35)

⇒ Y i−1
2 −
− (Y1,i, Y

i−1
1 , Si−1

1 , Si−1
2 )

−
−(W, Ŝn
2,s, Y

n
1,i+1, S1,i, S2,i) (36)

⇒ Y i−1
2 −
− (Y1,i,W, Ŝ

n
2,s, Y

i−1
1 , Y n

1,i+1, S
i−1
1 , Si−1

2 )

−
−(S1,i, S2,i) . (37)

where (a) holds since the source is memoryless and (b) holds
since W , and so Ŝn

2,s, are deterministic functions of (Sn
1 , S

n
2 ).

Defining, for i ∈ [1 : n], the auxiliary random variables
U0,i = WŜi−1

2,s Ŝ
n
2,s,i+1Y

i−1
2 Y n

1,i+1 and U1,i = (U0,iY
i−1
1 ),

the inequality (33) given

nR ≥
n∑

i=1

I(U0,iU1,iŜ2,s,i;S1,iS2,i|Y1,i)− 2nεn. (38)

For the second constraint on the rate R, we have

nR ≥ H(W |Y n
2 ) (39)

≥ I(W ;Sn
1 S

n
2 |Y n

2 ) (40)
= I(WŜn

2,2;Sn
1 S

n
2 |Y n

2 ) (41)

≥ I(WŜn
2,2Ŝ

n
2,s;S

n
1 S

n
2 |Y n

2 )− 2nεn (42)

≥ I(WŜn
2,s;S

n
1 S

n
2 |Y n

2 )− 2nεn (43)

= H(Sn
1 S

n
2 |Y n

2 )−H(Sn
1 S

n
2 |WŜn

2,sY
n
2 )− 2nεn (44)

= H(Sn
1 S

n
2 |Y n

2 )−H(Sn
1 S

n
2 |WŜn

2,sY
n
2 )− 2nεn

+H(Sn
1 S

n
2 |WŜn

2,sY
n
1 )−H(Sn

1 S
n
2 |WŜn

2,sY
n
2 ).(45)

The term [H(Sn
1 S

n
2 |WŜn

2,sY
n
1 )−H(Sn

1 S
n
2 |WŜn

2,sY
n
1 )] on the

RHS of (45) can be written as

H(Sn
1 S

n
2 |WŜn

2,sY
n
1 )−H(Sn

1 S
n
2 |WŜn

2,sY
n
2 )

= I(Sn
1 S

n
2 ;Y n

2 |WŜn
2,s)− I(Sn

1 S
n
2 ;Y n

1 |WŜn
2,s) (46)

(a)
=

n∑
i=1

[
I(Sn

1 S
n
2 ;Y2,i|WŜn

2,sY
i−1
2 Y n

1,i+1)

−I(Sn
1 S

n
2 ;Y1,i|WŜn

2,sY
i−1
2 Y n

1,i+1)
]

(47)

(b)
=

n∑
i=1

[
I(S1,iS2,i;Y2,i|WŜn

2,sY
i−1
2 Y n

1,i+1)

−I(S1,iS2,i;Y1,i|WŜn
2,sY

i−1
2 Y n

1,i+1)
]

(48)

=
n∑

i=1

[
I(S1,iS2,i;Y2,i|U0,iŜ2,s,i)

−I(S1,iS2,i;Y1,i|U0,iŜ2,s,i)
]

(49)

=
n∑

i=1

[
H(S1,iS2,i|U0,iŜ2,s,iY1,i)

−H(S1,iS2,i|U0,iŜ2,s,iY2,i)
]

(50)

where (a) follows using Csiszár-Körner sum identity, applied
twice, and (b) holds since the following is a Markov chain,
the justification of which will follow,

(Si−1
1 , Sn

1,i+1, S
i−1
2 , Sn

2,i+1)−
− (U0,i, Ŝ2,s,i, S1,i, S2,i)

−
−(Y1,i, Y2,i). (51)

We pause to justify (51). This is obtained using the follow-
ing easy Markov chains and implications,

(Y i−1
2 , Y n

1,i+1, S
i−1
1 , Sn

1,i+1, S
i−1
2 , Sn

2,i+1)

−
−(S1,i, S2,i)−
− (Y1,i, Y2,i) (52)
(c)⇒ (W, Ŝn

2,s, Y
i−1
2 , Y n

1,i+1, S
i−1
1 , Sn

1,i+1, S
i−1
2 Sn

2,i+1)

−
−(S1,i, S2,i)−
− (Y1,i, Y2,i) (53)

⇒ (U0,i, Ŝ2,s,i, S
i−1
1 , Sn

1,i+1, S
i−1
2 , S2,i+1)

−
−(S1,i, S2,i)−
− (Y1,i, Y2,i) (54)
⇒ (Si−1

1 , Sn
1,i+1, S

i−1
2 , S2,i+1)

−
−(U0,i, Ŝ2,s,i, S1,i, S2,i)−
− (Y1,i, Y2,i) (55)

and where (c) follows since W , and so Ŝn
2,s, are deterministic

functions of (Sn
1 , S

n
2 ).
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Finally, we terminate the proof of converse of Theorem 1
by noticing that the reconstruction Ŝ1,i = g(W,Y n

1 ) clearly
satisfies Ŝ1,i = g′(U0,i, U1,i, Y1,i) for some function g′.

B. Proof of achievability

The proof of achievability of Theorem 1 is as follows.
First, we show the achievability of the following rate distortion
function,

R(D1, D2) = min max{I(U ;S1S2|Y1), I(U ;S1S2|Y2)}
+I(U1;S1S2|Y1U) (56)

where the minimization is over all conditionals PUU1|S1S2

satisfying that (U,U1) −
− (S1, S2) −
− (Y1, Y2) is a Markov
chain and there exist functions φ and ψ such that:

Ed1(S1, Ŝ1) ≤ D1Ed2(S2, Ŝ2)≤ D2 (57)

where

Ŝ2 = ψ(U) andŜ1 = φ(Y1, U, U1). (58)

Next, we evaluate the above region with the choice U =
(U0, Ŝ2) to recover the result of Theorem 1.

Codebook generation:
Generate 2nR0 sequences un(w0) following

∏n
i=1 PU where

w0 ∈ [1 : 2nR0 ] and set them in 2nR
′
0 bins Bn(w′0) with

w′0 ∈ [1 : 2nR
′
0 ]. Then, for each w0, generate 2nR1 sequences

un1 (w0, w1) following
∏n

i=1 PU1|U with w1 ∈ [1 : 2nR1 ] and
set them in 2nR

′
1 bins Bn(w′0, w

′
1) with w′1 ∈ [1 : 2nR

′
1 ]. Also,

fix a reconstruction function ψ such that: Ed2(S2, ψ(U)) ≤
D2 and denote ψn its n-letter extension such that ŝn2,s =
ψn(un(w0).

Encoding:
Upon observing Sn

1 and Sn
2 , find an index w0 ∈ [1 : 2nR0 ]

such that:
(un(w0), sn2 , s

n
1 ) ∈ T (n)

[US2S1]
, (59)

and an index w1 ∈ [1 : 2nR1 ] such that:

(un1 (w0, w1), un(w0), sn2 , s
n
1 ) ∈ T (n)

[UU1S2S1]
. (60)

The encoder transmits w′0 and w′1,i.e., the indices of the bins
in which un and un1 lie. This encoding step has small error as
long as n is large and

R0 ≥ I(U ;S1S2) , (61)
R1 ≥ I(U1;S1S2|U) (62)

Decoding:
Decoder 2 reconstructs the sequences ŝn2 . To this end, it first
looks for the unique sequence un(w0) ∈ Bn(w′0) such that

(un(w0), yn2 ) ∈ T (n)
[UY2]

. (63)

Then, it sets ŝn2,2 = ψn(un(w0)) as the final reconstruction.
(Note here that the reconstruction Ŝ2 can not depend on the
available side information sequence).
The error in this decoding step can be made arbitrarily small
as long as n is large and

R0 −R′0 ≤ I(U ;Y2) , (64)

Decoder 1 looks for a sequence un ∈ Bn(w′0) such that:

(un(w0), yn1 ) ∈ T (n)
[UY1]

, (65)

and then looks for a sequence un1 ∈ Bn(w′0, w
′
1) verifying:

(un(w0), un1 (w0, w1), yn1 ) ∈ T (n)
[UU1Y1]

, (66)

Then, from (un(w0), un1 (w0, w1), yn1 ) the decoder can recover
the reconstruction sequences ŝn2,1 = ψn(un(w0)) and ŝn1 =
φ(un(w0), un1 (w0, w1), yn1 ).
Similarly, the error in this decoding step can be made arbi-
trarily small as long as n is large and

R0 −R′0 ≤ I(U ;Y1) , (67)
R1 −R′1 ≤ I(U1;Y1|U) . (68)

Note that, in this scheme, if the encoding and decoding steps
are performed correctly are successful, then all terminals can
reconstruct ŝn2 with essentially no error.
The rest of the proof follows by a standard application of FME
to eliminate R0, R1 and R2 from inequalities (61) – (68) and
substituting R = R′2 +R′0 +R′1 to get the desired result.
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Abstract—Spatially-Coupled LDPC (SC-LDPC) ensembles
achieve the capacity of binary memoryless channels, asymptot-
ically, under belief-propagation decoding. In this work, we are
interested in the finite-length performance of these ensembles
on binary channels with memory. We study the average perfor-
mance of random regular SC-LDPC ensembles on single-burst-
erasure channels and provide tight bounds for the block erasure
probability. Further, we show the effect of expurgation on the
performance by analyzing the minimal stopping sets.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are widely used
due to their outstanding performance under low-complexity
belief propagation (BP) decoding. However, an error probabil-
ity exceeding that of maximum-a-posteriori (MAP) decoding
has to be tolerated with (sub-optimal) BP decoding. Recently,
it has been empirically observed for spatially coupled LDPC
(SC-LDPC) codes—first introduced by Jiminez Felström and
Zigangirov as convolutional LDPC codes [1]—that the BP
performance of these codes can improve dramatically to-
wards the MAP performance of the underlying LDPC code
under many different settings and conditions, e.g. [2]. This
phenomenon, termed threshold saturation, has been proven
rigorously in [3], [4]. In particular, the BP threshold of a
coupled LDPC ensemble tends to its MAP threshold on any
binary memoryless symmetric channel (BMS).

Besides their excellent performance on the BEC and AWGN
channels, much less is known about the burst error correctabil-
ity of SC-LDPC codes. In [5], the authors consider SC-LDPC
ensembles over a block erasure channel (BLEC) where the
channel erases complete spatial positions instead of individual
bits. This block erasure model mimics block-fading channels
frequently occurring in wireless communications. The authors
give asymptotic lower and upper bounds for the bit and block
erasure probabilities obtained from density evolution. In [6],
the authors construct protograph-based codes that maximize
the correctable burst lengths, while the authors in [7] apply
interleaving (therein denoted band splitting) to a protograph-
based SC-LDPC code to increase the correctable burst length.

This work was conducted while N. Rengaswamy was visiting Bell Labs as
a research intern funded by a scholarship of the DAAD-RisePro programme.
The work of L. Schmalen was funded by the German Government in the
frame of the CELTIC+/BMBF project SASER-SaveNet.

If windowed decoding is used, this approach results in an
increased required window length and thus complexity. Re-
cently, it has been shown that protograph-based LDPC codes
can increase the diversity order of block fading channels and
are thus good candidates for block erasure channels [8], [9];
however, they require large syndrome former memories if the
burst length becomes large.

In this paper, we consider the (dv, dc, w, L,M) code en-
semble introduced in [3] and derive tight lower bounds on the
correctability of a long burst of erasures. First, we consider
the case when a complete spatial position is erased and then
generalize the expression to the case where the burst can occur
at any position within a codeword. We show that estimating
the capability of correcting long burst erasures reduces to the
problem of finding small stopping sets in the code structure.
Also, we demonstrate that if we properly expurgate the en-
semble, then a random code from the ensemble has very good
average burst erasure capabilities. We focus on the general
(dv, dc, w, L,M) code ensemble as the common protograph-
based approach contains unavoidable small stopping sets in
each spatial position, which are not recoverable if erased [10].

II. PRELIMINARIES

A. The Regular (dv, dc, w, L,M) SC-LDPC Ensemble

We now briefly review how to sample a code from a random
regular (dv, dc, w, L,M ) SC-LDPC ensemble [3]. We first
lay out a set of positions indexed from z = 1 to L on a
spatial dimension. At each spatial position (SP), z, there are
M variable nodes (VNs) and M dv

dc
check nodes (CNs), where

M dv
dc
∈ N and dv and dc denote the variable and check

node degrees, respectively. Let w > 1 denote the smoothing
(coupling) parameter. Then, we additionally consider w − 1
sets of M dv

dc
CNs in SPs L + 1, . . . , L + w − 1. Every CN

is assigned with dc “sockets” and made to impose an even
parity constraint on its dc neighboring VNs. Each VN in SP
z is connected to dv CNs in SPs z, . . . , z+w− 1 as follows:
each of the dv edges of this VN is allowed to randomly and
uniformly connect to any of the wMdv sockets arising from
the CNs in SPs z, . . . , z +w− 1, such that parallel edges are
avoided in the resultant bipartite graph. This graph represents
the code so that we have n = LM code bits, over L SPs.
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Because of additional check nodes in SPs z > L, the code
rate r = 1− dv

dc
− δ, where δ = O(wL ). Throughout this paper,

we assume that dv ≥ 3 and wM > 2(dv + 1)dc.

B. Single-Burst-Erasure Channel Models

We introduce two channel models for computing the burst
erasure recoverability. First, the Single Position Burst Channel
(SPBC) erases all M VNs of exactly one SP in the transmitted
codeword and leaves all other bits undisturbed.

The second model is the more general Random Burst
Channel (RBC) whose burst pattern is denoted by RBC(`,s,b)
where s ∈ {1, . . . ,M} is the starting bit index of the burst in
SP ` ∈ {1, . . . , L}, indicating the offset from the first VN of
the SP `, and b is the length of the burst. Note that in general
0 < b ≤ (L−`)M−s. As for the SPBC, all VNs in the random
burst are erased while all other VNs are received correctly. We
sometimes omit the SP ` when referring to the RBC for the
following reason: neglecting boundary effects in the limit of
large enough L, all SPs are structured identically. With some
abuse of terminology, we will use the same notation to refer
to the channel itself, rather than the burst introduced by it.

While multiple models exist for a correlated erasure chan-
nel, like the Gilbert-Elliott model used in [6], we use this
model because it is sufficient to describe the scenarios that
we consider: for instance, the SPBC can be used to model
a slotted-ALOHA multiple access scheme where each user
transmits an SC-LDPC codeword over L time slots, but one
SP might be erased in the case of a collision. Additionally,
long burst erasures might occur in block fading scenarios, or
in optical communications with, e.g., polarization dependent
loss, where long burst erasures are common. Another scenario
is optical storage, where long erasure bursts may occur as well.

III. ERROR ANALYSIS ON THE SPBC

Let P SPBC
B (dv, dc, w, L,M) denote the average block era-

sure (decoding error) probability of the (dv, dc, w, L,M)
ensemble on the SPBC under BP decoding, i.e., the probability
that the iterative decoder fails to recover the codeword. For
large enough M , size-2 stopping sets (each of which also form
a codeword) are the dominant structures in the graph that cause
the BP decoder to fail [10]. Stopping sets are subsets A of the
VNs such that every neighbor of the VNs in A connects to A
at least twice [11, Def. 3.138]. A minimal stopping set is one
which does not contain a smaller size non-empty stopping set
within itself. Hence, the number of size-2 stopping sets per
SP, denoted NSP

2 , is a good starting point for analyzing the
performance of the ensemble. We have

P SPBC

B = Prob [At least one stopping set in a SP]
≥ Prob [NSP

2 ≥ 1]
(a)

≥ E[NSP
2 ]2

E[NSP2

2 ]

(b)

≥ E[NSP

2 ]

(
1− M2

( wdcM − 3)dv

)

= E[NSP

2 ]

(
1−O

(
1

Mdv−2

))
≈ E[NSP

2 ]
.
= λSP, (1)

v1 v2

c1 c2 c3Socket

Fig. 1. A size-2 stopping set from a (3, 6) random ensemble. CNs
{c1, c2, c3} and VNs {v1, v2} have been labeled for convenience. CNs have
been expanded to show all their dc = 6 sockets. The solid edges indicate
definite connections and the dashed edges complete one configuration to form
a stopping set. Parallel edges are not allowed in the ensemble.

where (a) is the application of the second moment method
and (b) can be shown as follows: Define Uij = 1 if VNs i
and j form a stopping set, otherwise Uij = 0. Then NSP

2 =∑
1≤i<j≤M Uij where the summation is over all

(
M
2

)
pairs of

VNs from a SP. We can see that λSP = E[NSP
2 ] =

(
M
2

)
p where

p = E[Uij ] is the probability of forming a size-2 stopping set.
Furthermore,

E
[
NSP

2

2

]
= E


 ∑

1≤i<j≤M

Uij

2


=
∑

1≤i<j≤M

E[U2
ij ] +

∑
(i,j) 6=(k,l)
i<j,k<l

E[UijUkl],

where in the last step,
∑

1≤i<j≤M E[U2
ij ] =

(
M
2

)
p as Uij ∈

{0, 1} and the second term is over the remaining
(
M
2

)
(
(
M
2

)
−1)

combinations. Using some combinatorial arguments, we can
show that E[UijUkl] = P(Uij = 1)P(Ukl = 1|Uij = 1) ≤
2p/
(wM dv

dc
−2dv

dv

)
. As a result, we have

E
[
NSP

2

2

]
< E[NSP

2 ]

1 +
2
(
M
2

)(wM dv
dc
−2dv

dv

)


< E[NSP

2 ]

(
1 +

M2

( wdcM − 3)dv

)
,

which eventually implies (1). Note that following standard
arguments [10], [11, Appendix C], we can also approximate
the bound on P SPBC

B by a Poisson distribution with mean λSP,
for a large M , so that

P SPBC

B ≈ 1− e−λSP ≈ λSP. (2)

Both (1) and (2) are very tight when w ≥ dv (which is a
prerequisite for constructing capacity-achieving codes [3]) as
otherwise, we have observed that the contribution of larger
stopping sets becomes non-negligible.

A. Calculation of p

We now calculate the probability p of finding a size-2
stopping set within an SP of a code uniformly sampled from
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Fig. 2. Monte Carlo simulations on the SPBC with a (3, 6) random ensemble
for w = 3 and w = 4, along with their respective theoretical lower bound (1).
The bound becomes tight very quickly with M .

an ensemble. As example, we randomly choose two VNs v1
and v2 from an SP of the (dv = 3, dv = 6, w, L,M) ensemble.
First, we connect the dv = 3 edges of v1 to randomly chosen
empty sockets of dv distinct CNs as described in Section II-A.
Let c1, c2, c3 denote the CNs adjacent to v1. A stopping set
(and in this case, also a low-weight codeword) is formed if
and only if the edges of v2 are connected to the same CNs,
i.e., c1, c2, c3. This situation is shown in Fig. 1: once we have
assigned dv CNs to v1, we have dc − 1 = 5 free distinct
sockets each for CNs c1, c2, c3. Thus, the first edge of v2 has
dv(dc − 1) = 15 ways to attach to these sockets, the second
edge has (dv − 1)(dc − 1) = 10 ways and the last edge has
(dv− 2)(dc− 1) = 5 ways. In general, the edges of v2 can be
connected to any of the wMdv − dv possible sockets.

By a counting argument, we can compute p = Tss

T where
Tss is the total number of combinations by which the edges of
v2 can form a stopping set with v1 and T is the total number
of combinations by which the edges of v2 can be fit to the
possible CN sockets without forming parallel edges.

Hence, for a general (dv, dc, w,M) ensemble we can cal-
culate p = Tss

T with

Tss =

dv−1∏
i=0

(dv − i)(dc − 1) = dv!(dc − 1)dv ,

T =

dv∑
i=0

(dc − 1)idv!

(dv − i)!

(
dv
i

)[dv−1−i∏
k=0

(wMdv − (dv + k)dc)

]
.

For large M , T can be well approximated by the dominating
summand (i = 0) leading to

p ≈
dv−1∏
i=0

(dv − i)(dc − 1)

(wMdv − (dv + i)dc)
≈ dv!(dc − 1)dv

((wM − dc)dv)dv
. (3)

We observe that λSP =
(
M
2

)
p ∼ O(M2−dv ).

B. Simulations
We performed Monte-Carlo simulations where we randomly

selected a spatial position from the middle of the graph (to

avoid boundary effects) to be erased, for each transmitted
codeword. At the receiver we performed BP decoding and av-
eraged over the ensemble. We counted 1000 decoding failures
for each M to assess the average block erasure probability
P SPBC

B . The simulation results for a (3, 6) random ensemble
with w = 3 and w = 4 are shown in Fig. 2 along with
their respective lower bounds calculated using (1) and (3). We
observe that the bound indeed becomes a good approximation
for large M , since large-size stopping sets (larger than 2)
vanish. The simulation curve is slightly unstable because
counting 1000 failures is not enough to keep the sample
variance small as P SPBC

B decreases by O(M2−dv ).

IV. ERROR ANALYSIS ON THE RBC

We now generalize our results to the RBC, where a burst can
span multiple spatial positions and can be of arbitrary length.
Besides the stopping sets within a single spatial position, we
first have to derive an expression for stopping sets that span
multiple SPs.

A. Size-2 Stopping Sets across Coupled SPs

The results from Sec. III can be extended when the channel
is a RBC, i.e., the burst occurs at arbitrary location and
is of arbitrary length. This means that size-2 stopping sets
formed across coupled SPs will also contribute to decoding
failures. Hence, we will now calculate the probability that two
VNs chosen each from two coupled spatial positions form a
stopping set.

Let us first consider two VNs chosen from two adjacent
SPs: w.l.o.g, call them v1 and v2 chosen from SPs 1 and 2,
respectively. We immediately notice that the check positions
adjacent to v1 are 1, 2, . . . , w and to v2 are 2, 3, . . . , w + 1.
Hence, to form a stopping set, v1 should not have any edge
connected to check position 1. This restricts the number of
favorable constellations [3] for v1 to be (w− 1)dv . Using the
same ideas as in Section III-A and restricting the constellations
for v1, we have

p(1,2) =
(w − 1)dv

wdv
p,

where p can be approximated by (3). This idea can now be ex-
tended to VNs chosen from positions (1, 3), (1, 4), . . . , (1, w)
by restricting the number of favorable constellations for v1.
Hereafter, we will refer to these as size-2 (1, i)-stopping
sets. Hence, a (dv, dc, w, L,M) ensemble can be completely
characterized, for large enough M , by the vector

p(dv, dc, w, L,M) = (p(1,1), p(1,2), . . . , p(1,w)) (4)

with p(1,i) =
(
w − (i− 1)

w

)dv
p.

The average number of size-2 stopping sets of each type,
λ(1,i), can be calculated as

λ(1,1) =

(
M

2

)
p(1,1) = λSP ; λ(1,i) =M2p(1,i), (5)

where i = 2, 3, . . . , w. Again, we see that λ(1,i) ∼ O(M2−dv ).
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Fig. 3. Monte Carlo simulations for a (3, 6, 3, 20,M) random ensemble
on the RBC with burst length b = 1.25M , along with the theoretical
approximation (6).

B. Performance on the RBC
Now let us see the effect of RBC(s, b) on the ensemble

in terms of the average block erasure probability, PRBC
B . For

keeping the expressions simple, let us assume in the example
that w = 3 and 0 < b ≤ 2M . This means that the burst can
span a maximum of 3 SPs. Applying the same argument as in
Section III and assuming all values for s are equally likely,

PRBC

B ≈
M∑
s=1

1− P(1,1)P(2,2)P(3,3)P(1,2)P(2,3)P(1,3)

M
;(6)

P(k,k) = 1−
(
mk

2

)
p(1,1) for k = 1, 2, 3,

P(k,k+1) = 1−mkmk+1p(1,2) for k = 1, 2,

P(k,k+2) = 1−mkmk+2p(1,3) for k = 1,

where m1 = (M − s),m2 = min(b − m1,M),m3 =
(b−m1 −m2) are the lengths of the burst in each SP that it
affects, progressing from left to right. If any of these lengths
is zero, all probabilities involving that length are 1, i.e., the
probability of forming no size-2 stopping sets involving the
SP corresponding to this (zero) length is 1. For general w and
longer bursts, this strategy can be extended for finding a very
good approximation for the average block erasure probability
for the ensemble.

To verify the tightness of (6), we again performed Monte-
Carlo simulations and counted 1000 decoding failures for
each M to assess the average block erasure probability PRBC

B .
For the sake of example, we fixed the burst length to be
b = 1.25M . We selected a value for s, uniformly from
{1, . . . ,M}, for each codeword. The simulation results for
the (3, 6, 3, 20,M) ensemble are shown in Fig. 3 along with
(6). We see that (6) is indeed a tight approximation.

V. EFFECTS OF EXPURGATION

A. Minimal Stopping Set Size
As the performance is mainly dominated by size-2 stopping

sets, we can improve the burst erasure correction capability

v1 v2 v3 v4

c1 c2 c3 c4 c5 c6

Fig. 4. A size-4 stopping set from an expurgated (3, 6, w, L,M) random
ensemble. CNs {c1, c2, c3, c4, c5, c6} and VNs {v1, v2, v3, v4} have been
labeled for convenience. The solid edges indicate definite connections and
the dashed edges complete one configuration to form a stopping set. Parallel
edges are not allowed in the ensemble.

by expurgating the ensemble and thereby removing all small
stopping sets. Observing that a size-2 stopping set, as shown
in Fig. 1, is built around 4-cycles, we can reduce the size
of the minimal stopping sets by removing small cycles from
the graph. For example, increasing the girth of the graph to 6
leads to minimal stopping sets (i.e., of smallest size) of size
dv + 1 [12].

B. Performance on the SPBC

We can use the same approach as in Section III-A to
calculate the probability of occurrence of the stopping set
shown in Fig. 4 within a spatial position of a code sampled
uniformly from the ensemble. Once again we have p = Tss

T ,
where Tss is the total number of combinations of the edges of
v1, v2, v3, v4 that form a stopping set and T is the total number
of combinations by which these edges can fit to the available
CN sockets. Since T is the total number of combinations in
which the edges of (dv + 1) VNs can be assigned to sockets
ensuring no 4-cycles, we can again approximate it by its
dominant term as

T ≈
dv(dv+1)−1∏

j=0

(wMdv − jdc).

For a general (dv, dc, w,M) random ensemble, the expression
for Tss can be calculated as

Tss =

dv∏
i=0

 i∏
j=1

j(dc − 1)(dv − i+ 1)


×

∑i−1
m=0(dv−m)+(dv−i−1)∏
k=

∑i−1
m=0(dv−m)

(wMdv − kdc)

(dv
i

)
.

It can be verified that the last value for k in the above
expression is k = dv(dv+1)

2 − 1. Then, we can simplify and
rearrange the expression as

Tss = T1/2

dv∏
i=1

[(dc − 1)(dv − i+ 1)]
i dv!

(dv − i)!
,
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Fig. 5. Monte Carlo simulations on the SPBC with an expurgated (3, 6)
random ensemble for w = 3 along with the theoretical approximation. The
approximation becomes tight very quickly with M .
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Fig. 6. The theoretical approximation (1) and (7) on P SPBC
B for various

ensembles in both the unexpurgated and expurgated scenarios.

where, T1/2 =
∏ dv(dv+1)

2 −1
k=0 (wMdv − kdc) is the first half of

the products in T which can be canceled while calculating p,
so that

T

T1/2
≈
dv(dv+1)−1∏
j=

dv(dv+1)
2

(wMdv − jdc).

Hence, for a general (dv, dc, w, L,M) ensemble, the proba-
bility of forming such a minimal stopping set of size (dv+1)
can be shown to be

p =
Tss
T
≈
∏dv
i=1 [(dc − 1)(dv − i+ 1)]

i dv !
(dv−i)!∏dv(dv+1)−1

j=
dv(dv+1)

2

(wMdv − jdc)
(7)

which means the expected number of such stopping sets within
a SP of the code is λSP =

(
M
dv+1

)
p. Using similar arguments

as in Section III, we have P SPBC
B,exp ≈ λSP .

C. Comparison of Ensembles

We now compare the average performance of different SC-
LDPC ensembles on the SPBC. We fix the asymptotic design
code rate as r = 1

2 , the smoothing parameter as w = dv and
plot the (tight) approximations on P SPBC

B of three ensembles,
namely (3, 6), (4, 8) and (5, 10), for both the unexpurgated
and the expurgated cases in Fig. 6.

For the unexpurgated case, the average block erasure prob-
ability varies as P SPBC

B ∼ O(M2−dv ). When the ensemble is
expurgated, the improvement is by an order of dv+1

2 in M and
we have P SPBC

B,exp ∼ O(M (dv+1)(2−dv)/2). Therefore, for a fixed
(asymptotic design) rate of 1

2 , a unit increase in dv improves
the performance by a factor of about M−dv .

VI. CONCLUSION

We have analyzed random regular SC-LDPC ensembles on
the burst erasure channel and provided insights into improving
the block erasure probability by increasing VN degree and
expurgating the code. We have shown, through these results,
that the vector in (4) completely characterizes the average
ensemble performance on the erasure channel.

Future work will focus on, among others, finding good
approximations for the expurgated ensembles in the case of
the RBC model and to extend the considerations to the case
where we have independent random erasures besides the burst
erasures. We note that the vector in (4) will play a significant
role in the analysis of random erasures too.
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Abstract—The generator matrix of a polar code is obtained
by selecting rows from the Kronecker product of a lower-
triangular binary square matrix. The selection is based on the
Bhattacharyya parameter of the row, which is closely related
to the error probability of the corresponding input bit under
sequential decoding. This work investigates the properties of the
index set pointing to those rows in the infinite blocklength limit.
In particular, the Lebesgue measure, the Hausdorff dimension,
and the self-similarity of this set will be discussed. It is shown
that these index sets fulfill several properties that are common
to fractals.

I. INTRODUCTION

Applying the polarization transform proposed by Arıkan [1]

to sufficiently many instances of a binary-input memoryless

channel, causes a portion of the resulting channels to have

a capacity close to one, while the remaining portion has a

capacity close to zero. These polarized channels can thus

be split into two sets: The set of “good” channels, and the

set of “bad” channels. Despite their importance for code

construction, very little is known about their structure. A recent

exception is the work by Renes, Sutter, and Hassani, stating

conditions under which polarized sets are aligned, i.e., under

which the good (bad) channels derived from one binary-input

memoryless channel are a subset of the good (bad) channels

derived from another [2].

Polar codes are Kronecker product-based codes. Such a code

of block-length 2n is based on the n-fold Kronecker product

G(n) := F⊗n, where

F :=

[
1 0
1 1

]

. (1)

Following the terminology of [3], a rate-K/2n Kronecker

product-based code is uniquely defined by a set F of K in-

dices: Its generator matrix is the submatrix of G(n) consisting

of the rows indexed by F . For polar codes, in which each row

of G(n) can be interpreted as a (partially polarized) channel,

F consists of rows corresponding to the K channels with the

lowest Bhattacharyya parameter [4] (see Section II).

That Kronecker product-based codes, such as polar

codes [1] or Reed-Muller codes, possess a fractal nature has

been observed in [3], where it was noted that G(n) resembles

a Sierpinski triangle. Much earlier, Abbe suspected that the set

of “good” channels has fractal nature [5]. Nevertheless, to the

best of the author’s knowledge, no definite statement regarding

this fractal nature has been made yet. In this paper, we try

to fill this gap and present results about the set of “good”

channels (Sections III). Specifically, we study the properties

of the set F for infinite blocklengths, i.e., for n → ∞.

To simplify analysis, we represent every infinite binary

sequence indexed in F by a point in the unit interval [0, 1].
Let Ω = {0, 1}∞ be the set of infinite binary sequences, and

let b := (b1b2 · · · ) ∈ Ω be an arbitrary such sequence. We

abbreviate bn := (b1b2 · · · bn). Let (Ω,B,P) be a probability

space with B the Borel field generated by the cylinder sets

S(bn) := {w ∈ Ω: w1 = b1, . . . , wn = b2} and P a probability

measure satisfying P(S(bn)) = 1/2n. The following function

f : Ω → [0, 1] permits us to convert these sequences to real

numbers:

f(b) :=
∞∑

n=1

bn
2n

(2)

Letting D := [0, 1] ∩ {p/2n: p ∈ Z, n ∈ N} denote the set

of dyadic rationals in the unit interval, we recognize that f is

not injective:

Example 1. f maps both b = (01111111 · · · ) and b =
(10000000 · · · ) to 0.5. We call the latter binary expansion

terminating.

However, as the following lemma shows, f is bijective if

we exclude the dyadic rationals:

Lemma 1 ([6, Exercises 7-10, p. 80]). Let B[0,1] be the Borel

σ-algebra on [0, 1] and let λ be the Lebesgue measure. Then,

the function f in (2) satisfies the following properties:

1) f is measurable w.r.t. B[0,1]

2) f is bijective on Ω \ f−1(D)
3) for all I ∈ B[0,1], P(f

−1(I)) = λ(I)

We believe that the results we prove in the following not

only improve our understanding of polar codes: Since its

introduction in 2009, the polarization technique proposed by

Arıkan has found its way into areas different from polar

coding. Haghighatshoar and Abbe showed in the context

of compression of analog sources that Rényi information

dimension can be polarized [7], and Abbe and Wigderson used

polarization for the construction of high-girth matrices [8].

Recently, Nasser proved that a binary operation is polarizing

if and only if it is uniformity preserving and its inverse

is strongly ergodic [9], [10]. We believe that our results

might carry over to these areas as well and point to possible

extensions in Section IV.

II. PRELIMINARIES FOR POLAR CODES

We adopt the notation of [1]: Let W : {0, 1} → Y be

a binary-input memoryless channel with output alphabet Y ,

capacity 0 < I(W ) < 1, and with Bhattacharyya parameter

Z(W ) :=
∑

y∈Y

√

W (y|0)W (y|1). (3)
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That Z(W ) = 0 ⇔ I(W ) = 1 and Z(W ) = 1 ⇔ I(W ) = 0
is a direct consequence of [1, Prop. 1].

The heart of Arıkan’s polarization technique is that two

channel uses of W can be combined and split into one use of

a “worse” channel

W 0
2 (y

2
1 |u1) :=

1

2

∑

u2

W (y1|u1 ⊕ u2)W (y2|u2) (4a)

and one use of a better channel

W 1
2 (y

2
1 , u1|u2) :=

1

2
W (y1|u1 ⊕ u2)W (y2|u2) (4b)

where u1, u2 ∈ {0, 1} and y1, y2 ∈ Y . In essence, the combin-

ing operation codes two input bits by F in (1) and transmits

the coded bits over W via two channel uses, creating a vector

channel. The splitting operation splits this vector channel into

the two binary-input memoryless channels indicated in (4). Of

these, the better (worse) channel has a strictly larger (smaller)

capacity than the original channel W , i.e., I(W 0
2 ) < I(W ) <

I(W 1
2 ), while the sum capacity equals twice the capacity of the

original channel, i.e., I(W 0
2 ) + I(W 1

2 ) = 2I(W ) [1, Prop. 4].

The effect of combining and splitting on the channel capac-

ities I(W 0
2 ) and I(W 1

2 ) admits no closed-form expression; the

effect on the Bhattacharyya parameter at least admits bounds:

Lemma 2 ([1, Prop. 5 & 7]).

Z(W 1
2 ) = g1(Z(W )) = Z2(W ) < Z(W ) (5a)

Z(W ) < Z(W 0
2 ) ≤ g0(Z(W )) = 2Z(W )− Z2(W ) (5b)

with equality if W is a binary erasure channel.

Channels with larger blocklengths 2n, n > 1, can either be

obtained by direct n-fold combining (using the matrix G(n))
and n-fold splitting, or by recursive pairwise combining and

splitting. For bn ∈ {0, 1}n, we obtain
(

W bn

2n ,W
bn

2n

)

→
(

W bn0
2n+1 ,W bn1

2n+1

)

(6)

where bn0 and bn1 denote the sequences of zeros and ones

obtained by appending 0 and 1 to bn, respectively. Note that

g1 and g0 from Lemma 2 are non-negative and non-decreasing

functions mapping the unit interval onto itself, hence the

inequality in (5b) is preserved under composition:

Z(W bn

2n ) ≤ pbn(Z(W )) := gbn(gbn−1
(· · · gb1(Z(W )) · · · ))

(7)

The channel polarization theorem shows that, with proba-

bility one, after infinitely many combinations and splits, only

perfect or useless channels remain, i.e., either I(W b
∞) = 1 or

I(W b
∞) = 0 for b ∈ {0, 1}∞. This is made precise in:

Proposition 1 ([1, Prop. 10]). With probability one, the limit

RV I∞(b) := I(W b
∞) takes values in the set {0, 1}: P(I∞ =

1) = I(W ) and P(I∞ = 0) = 1− I(W ).

If the polarization procedure is stopped at a finite block-

length 2n for n large enough, it can still be shown that the vast

majority of the resulting 2n channels are either almost perfect

or almost useless, in the sense that the channel capacities

are close to one or to zero (or, that the corresponding Bhat-

tacharyya parameters are close to zero or to one). The idea of

polar coding is to transmit data only on those channels that are

almost perfect: n-fold combining, which employs the matrix

G(n), leads to 2n virtual channels, each corresponding to a

row of G(n). The channels with high capacity are indicated

by the set F , and the generator matrix of the corresponding

polar code is precisely the submatrix of G(n) consisting of

those indicated rows.

The difficulty of polar coding lies in code construction, i.e.,

in determining which channels/row indices are in the set F .

This immediately translates to the question which sequences

b ∈ {0, 1}∞ correspond to combinations and splits leading to

a perfect channel (or which finite-length sequences bn lead to

channels with capacity sufficiently close to one). Determining

the capacity of the virtual channels is an inherently difficult

operation, since, whenever W is not a binary erasure channel

(BEC), the cardinality of the output alphabet increases expo-

nentially in 2n [11, Ch. 3.3], [12, p. 36]. To circumvent this

problem, Tal and Vardy presented an approximate construction

method in [13], that relies on working with reduced output

alphabet channels that are either upgraded or degraded w.r.t.

the real channel. As these upgrading/degrading properties –

mentioned earlier in Korada’s PhD thesis [12] – will play a

fundamental role in this work, we present

Definition 1 (Channel Up- and Degrading). A channel

W−: {0, 1} → Z is degraded w.r.t. the channel W (short:

W− 4 W ) if there exists a channel P : Y → Z such that

W−(z|u) =
∑

y∈Y

W (y|u)P (z|y). (8)

A channel W+: {0, 1} → Z is upgraded w.r.t. the channel W
(short: W+ < W ) if there exists a channel P : Z → Y such

that

W (y|u) =
∑

z∈Z

W+(z|u)P (y|z). (9)

Moreover, W+ < W if and only if W 4 W+.

The upgraded (degraded) approximation remains upgraded

(degraded) during combining and splitting:

Lemma 3 ([12, Lem. 4.7] & [13, Lem. 3]). Assume that

W− 4 W 4 W+. Then,

I(W−) ≤ I(W ) ≤ I(W+) (10a)

Z(W−) ≥ Z(W ) ≥ Z(W+) (10b)

(W−)12 4 W 1
2 4 (W+)12 (10c)

(W−)02 4 W 0
2 4 (W+)02. (10d)

It can be shown that the better channel (4b) obtained

from combining and splitting is upgraded w.r.t. the original

channel (as already mentioned in [11, p. 9]). That the worse

channel (4a) is degraded holds at least for the BEC:

Lemma 4. W 4 W 1
2 . If W is a BEC, then W 0

2 4 W 4 W 1
2 .

Proof. The proof of the first part follows by choosing

P (y|y21 , u1) =

{

1, if y = y2

0, else.
(11)
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For the BEC, note that if W has erasure probability ǫ, then

W 1
2 is a BEC with erasure probability ǫ2 and W 0

2 is a BEC

with erasure probability 2ǫ − ǫ2 [1, Prop. 6]. The channel

W 1
2 is an upgrade of W , because it can be degraded to W

by appending a BEC with erasure probability ǫ/(1 + ǫ). The

channel W 0
2 is degraded w.r.t. W by appending a BEC with

erasure probability ǫ.

III. PROPERTIES OF THE SETS G AND B

In this section we develop the properties of the sets of good

and bad channels. For the sake of brevity, we only sketch the

proofs here; complete proofs are given in [14].

Definition 2 (The Good and the Bad Channels). Let G denote

the set of good channels, i.e.,

x ∈ G ⇔ ∃b ∈ f−1(x): I(W b
∞) = 1; (12)

let B denote the set of bad channels, i.e.,

x ∈ B ⇔ ∃b ∈ f−1(x): I(W b
∞) = 0. (13)

Proposition 2. For almost all x, there exists a value 0 ≤
ϑ(x) ≤ 1 such that Z(W ) < ϑ(x) implies x ∈ G. If W is a

BEC, then additionally Z(W ) > ϑ(x) implies x ∈ B.

Sketch of Proof: This proposition is an adaption of [15,

Lem. 11] to our setting: The lemma states that, for P-

almost every sequence b, there is a threshold θ(b) such that

limn→∞ pbn(z) converges to zero (one) if z is smaller (larger)

than θ(b). The rest follows from Lemma 2.

Note that if W is not a BEC, it may occur that Z(W ) >
ϑ(f(b)) while still I(W b

∞) = 1. This in turn opens the

question whether the set of good channels is (almost surely)

increasing with decreasing Bhattacharyya parameter: Are there

channels W and W ′ (from the same family) with good channel

sets G and G′, respectively, such that Z(W ) > Z(W ′) >
ϑ(f(b)), but I(W b

∞) = 1 and I(W ′b
∞) = 0? We leave this

question for future research but mention that Proposition 2

answers it negatively for BECs: The set of good channels for

a BEC is also good for any binary-input memoryless channel

with a smaller Bhattacharyya parameter [16].

Example 2. For x ∈ D, ϑ(x) = 1: If Z(W ) < 1, i.e.,

if the channel is not completely useless a priori, the non-

terminating expansion of x will make it a perfect channel

(cf. Proposition 3).

Example 3. Let x = 2/3, hence f−1(x) = 101010101 · · · .
The binary expansion is recurring. It thus suffices to consider

exactly one period of the recurring sequence and determine

its fixed points. In this case we get p10(z) = 2z2 − z4. Its

fixed point lies at the intersection of p10(z) and z; removing

the trivial intersections at z = 0 and z = 1 leaves two further

roots at (±
√
5 − 1)/2. One of these roots lies outside [0, 1]

and is hence irrelevant. The remaining root determines the

threshold: ϑ(2/3) = (
√
5− 1)/2. Now let W be a BEC with

erasure probability ǫ = Z(W ) = ϑ(2/3). Since ǫ = ϑ(2/3) is

a fixed point of the iterated function system corresponding to

the recurring binary expansion, one gets Z(W
f−1(2/3)
∞ ) = ǫ /∈

{0, 1}. This example illustrates why Proposition 1 holds only

almost surely.

Proposition 3. G ∩ B = D.

Sketch of Proof: The proof is based on the fact that

dyadic rationals admit two possible binary expansions (see Ex-

ample 1): The Bhattacharyya parameter of the non-terminating

expansion ak111 · · · , for ak ∈ {0, 1}k an appropriate prefix,

is driven down to zero by squaring Z(W ak

2k ) infinitely often.

The terminating expansion has the same prefix ak with

the last bit inverted. All binary sequences starting with this

prefix lead to a channel that is upgraded w.r.t. the one

corresponding to the terminating expansion (Lemmas 3 and 4).

By Proposition 1, some sequences with this prefix lead to bad

channels, hence the terminating expansion must lead to a bad

channel as well.

That the intersection of the sets of good and bad channels

is non-empty is a direct consequence of the non-injectivity of

f . Note further that this intersection cannot be larger, since

D is the only set to which f maps non-injectively. Since D,

a common subset of G and B, is dense in [0, 1], both the set

of good channels and the set of bad channels are dense in the

unit interval. But even if dyadic rationals are excluded, results

about denseness can be proved:

Proposition 4. G \ D is dense in [0, 1]. If W is a BEC, then

also B \ D is dense in [0, 1].

Sketch of Proof: We sketch only the first part of the

proof, the second part involving BECs follows along the same

lines. The proof is based on the polynomial pb(z). Let bn

be an arbitrary prefix (corresponding to a dyadic rational),

leading to a Bhattacharyya parameter Z(W bn

2n ). There exists

a sequence ak with one zero and sufficiently many ones such

that pak(z) < z for all z below a certain threshold z∗(ak) >

Z(W bn

2n ). It follows by Lemma 2 that Z(W bnakak···
∞ ) ≤

pakak···(Z(W bn

2n )) → 0, hence f(bnakak · · · ) ∈ G. Finally,

between any two dyadic rationals a rational can be found with

binary expansion bnakak · · · that satisfies these properties.

This proves that the good channels are dense even excluding

the dyadic rationals. The inequality in Lemma 2 is the reason

why denseness of bad channels can only be proved for BECs.

The proposition states that, at least for the BEC, there is no

interval which contains only good channels. Hence, given a

specific channel W bn

2n , it is not possible to assume that a well-

specified subset of channels (e.g., all W bna
∞ for a starting with

1) generated from this channel by combining and splitting

will be perfect. The construction algorithm for an infinite-

blocklength, vanishing-error polar code hence cannot stop at

a finite blocklength, as it can be done for a finite-blocklength

polar code, cf. [17].

Proposition 5. G is Lebesgue measurable and has Lebesgue

measure λ(G) = I(W ). B is Lebesgue measurable and

has Lebesgue measure λ(B) = 1 − I(W ). The Hausdorff

dimensions of G and B satisfy d(G) = 1 and d(B) = 1.

Sketch of Proof: The proof for the good channels follows
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Fig. 1. The polar fractal for a BEC. The center plot shows the thresholds ϑ(x) for x ∈ [0, 1], while the bottom and the top plots show these thresholds for
the scaled and shifted sets [0, 0.5] and [0.5, 1], respectively. Hence, the thresholds in the top plot are larger than the thresholds in the center plot, which are
larger than those in the bottom plot. The set G is obtained by setting each value in the plot to one (zero) if the erasure probability ǫ is smaller (larger) than
the threshold.

from the fact that λ(G) = λ(G \D), from Definition 2 stating

x /∈ D: x ∈ G ⇔ I(W f−1(x)
∞ ) = 1, (14)

and from Proposition 1; the proof for the bad channels follows

along the same lines. That the Hausdorff dimension of both

sets is unity follows from the fact that the one-dimensional

Hausdorff measure of a set equals its Lebesgue measure up to

a constant [18, eq. (3.4), p. 45].

Note that despite the fact that λ(G ∪B) = 1, G∪B ⊂ [0, 1].
The reason is that convergence to good or bad channels is only

almost sure, and that there may be channels W b
∞ which are

neither good nor bad (see Example 3).

We finally come to the claim that polar codes are fractal.

Following Falconer’s definition [18, p. xxviii], a set is fractal

if it is (at least approximately) self-similar and has detail on

arbitrarily small scales, or if its fractal dimension (e.g., its

Hausdorff dimension) is larger than its topological dimension.

Whether or not the result shown below will convince the

reader of this property is a mere question of definition; strictly

speaking, we can show only quasi self-similarity of G:

Proposition 6. Let Gn(k) := G ∩ [(k− 1)2−n, k2−n] for k =
1, . . . , 2n. G = G0(1) is quasi self-similar in the sense that,

for all n and all k, Gn(k) = Gn+1(2k − 1) ∪ Gn+1(2k) is

quasi self-similar to its right half:

Gn(k) ⊂ 2Gn+1(2k)− k2−n (15)

If W is a BEC, Gn(k) is quasi self-similar:

2Gn+1(2k − 1)− (k − 1)2−n ⊂ Gn(k) ⊂ 2Gn+1(2k)− k2−n

(16)

Sketch of Proof: We only prove the result for x /∈ D,

since the dyadic rationals are self-similar and since D ⊂ G.

If bnk = b1b2 · · · bn is the terminating binary expansion of

(k − 1)2−n, every value in [(k − 1)2−n, k2−n] has a binary

expansion bnka for some a ∈ {0, 1}∞, where bn = 1 if

and only if (k − 1) is odd. Similarly, and since (2k − 1)
is always odd, every value in [(2k − 1)2−n−1, k2−n] has a

binary expansion bnk1a
′ for some a′ ∈ {0, 1}∞. Assume that

a′ = a. Then, by Lemmas 3 and 4, W
bn
k
a

∞ 4 W
bn
k
1a

∞ for all

a. Hence, if f(bnka) ∈ Gn(k), then f(bnk1a) ∈ Gn+1(2k). The

proof follows by showing that 2f(bnk1a)−f(bnk+1) = f(bnka).
For the BEC, the proof follows from the fact that by Lemmas 3

and 4, W
bn
k
0a

∞ 4 W
bn
k
a

∞ for all a.

In other words, at least for the BEC, G is composed of two
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5

similar copies of itself (see Fig. 1). Along the same lines, the

quasi self-similarity of B can be shown.

Example 4. By careful computations we obtain ϑ(1/6) ≈
0.214, ϑ(1/3) ≈ 0.382, and ϑ(2/3) ≈ 0.618. Indeed, if we

consider 1/3 in G, then 1/6 and 2/3 are the corresponding

values in G1(1) and G1(2). Since ϑ(1/6) < ϑ(1/3) < ϑ(2/3),
for the BEC we have the inclusion indicated in Proposition 6.

IV. DISCUSSION & OUTLOOK

That polar codes satisfy fractal properties has long been

suspected: Every nontrivial, partly polarized channel W bn

2n

gives rise, by further polarization, to both perfect and useless

channels, regardless how close I(W bn

2n ) is to zero or one.

This fact is reflected in our Propositions 3 and 4, which state

that the good channels are dense in the unit interval (and so

are the bad channels for BECs): A partial polarization with

sequence bn corresponds to an interval with dyadic endpoints,

and denseness implies that in this interval there will be both

perfect and useless channels. Proposition 6, claiming the self-

similarity of the sets of good and bad channels, goes one step

further and gives these sets structure: If a channel polarized

according to the sequence bna is good, then so is the channel

polarized according to bn1a. Proposition 2 is also of interest

in this context: In [14, Prop. 3], we prove that the thresholds

ϑ(x) are symmetric, in the sense that ϑ(1− x) = 1− ϑ(x), a

fact that is also visible in Fig. 1.

An obvious extension of our work should deal with the

fractal properties of non-binary polar codes. If q is a prime

number, then every invertible ℓ × ℓ matrix with entries from

{0, . . . , q − 1} is polarizing, unless it is upper-triangular [11,

Thm. 5.2]. The n-fold Kronecker product of one of these

matrices generates ℓn channels. It should be easily possible to

design a function mapping {0, . . . , ℓ− 1}∞ to [0, 1] (cf. (2)),

admitting an analysis similar to the one presented in this paper.

Since choosing appropriate polarization matrices for non-

binary alphabets is not trivial, we propose to evaluate choices

based on the properties of the corresponding polar fractal

(see Fig. 1). This would, in addition to error probabilities or

polarization rates, present another objective for the design of

non-binary polar codes.

Whether binary or not, it is presently not clear if our infinite-

blocklength results can be carried over to practically relevant

finite-length codes. If this was the case, a possible application

of our results would be code construction, which requires

knowledge about the structure of the set of good channels.

Future work shall investigate this issue.
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Abstract—We consider the problem of sampling a discrete
Gaussian distribution whose support is an n-dimensional lattice.
Fast sampling algorithms for lattices decomposed as a finite
union of cosets are proposed. This includes the low dimensional
lattices with the best coding gains, their duals, and the 24
dimensional Leech lattice. Our methods are then applied to
assess the performance of recent sampling-based codes for the
AWGN channel, illustrating the gains of the discrete Gaussian
distribution.

In the derivation of our algorithms, a number of results
concerning the theta series of notable lattices will be discussed,
including relations between the theta series and its derivatives to
the power and rate of a lattice Gaussian code.

I. INTRODUCTION

In recent capacity achieving lattice coding schemes for the
AWGN channel [7] and for the semantically secure wiretap
channel [8], the sent vector is drawn from a discrete Gaussian
distribution whose support is a multidimensional Euclidean
lattice, as in Figure 1. Other applications of such a distribution
include some of the state-of-the-art lattice-based cryptographic
models (e.g. [11], [2]), and the generation of information
theoretic secure secret keys [9].

A worth element towards practical implementations of all
aforementioned schemes is the ability of sampling from the
lattice Gaussian distribution. This is not a trivial task, and
even unidimensional samplers for the lattice Z have been
object of research (see [5], [6] and [2, Sec. 5.1]) - in fact,
most multidimensional samplers use them as sub-routines. An
obstacle for these algorithms is sampling over Gaussians which
are not sufficiently flat, i.e., when the variance parameter σ is
small or moderate.

In this work we focus on specialized algorithms for lat-
tices commonly used for coding. We propose algorithms for
sampling on lattices obtained from constructions A, B, their
complex versions, and the density doubling construction. This
includes the low dimensional lattices with best coding gain,
their duals, and the 24 dimensional Leech lattice. In the deriva-
tion of our algorithms, a number of results concerning the theta
series of these lattices and their relations to coding parameters
will be discussed. Particularly interesting are closed form
expressions for the power and rate of a lattice Gaussian code
(Prop. 5) in terms of the theta series and its derivative.

Our algorithms output the correct distribution for the spe-
cific lattices and any σ, comparing favorably to universal
Markov Chain based algorithms like [14]. For a concrete

example, sampling within statistical distance 10−3 from the
centered discrete Gaussian over the Leech lattice Λ24 in the
worst case σ = 1/

√
2π requires 13434 iterations (cf. [14,

Eq. 26 and Lem. 3]), or 24 × 13434 = 322416 calls of an
unidimensional Z-sampler. In a huge contrast, the number
of calls of the Z-sampler for our tailor-made Leech lattice
sampler is 24. This is the same contrast between universal
decoders (e.g. the sphere decoder) and specialized decoders
for particular lattices (e.g., root lattices, etc.).

The rest of this paper is organized as follows. In Section III
we review unidimensional samplers for cosets of the lattice
Z + c. In Section IV, we describe a general principle for
lattices decomposed as the union of cosets, which is then
applied in Sections V-VII to several lattices obtained from
codes. In Section VIII, we apply our algorithm to assessing
the codeword error probability performance of lattice Gaussian
codes [7] for a code based on the Leech lattice Λ24.

Fig. 1. Distribution obtained from the A2 sampler (Sec V). Blue and red dots
correspond to points in Z⊕

√
3Z and Z⊕

√
3Z+(1/2,

√
3/2), respecitively.

II. PRELIMINARIES AND NOTATION

A. Lattices

We consider real and complex lattices. A real lattice Λ
is a discrete additive subgroup of Rn, whereas a complex

lattice is a discrete additive subgroup of Cn. A complex
lattice can be always identified with a real lattice in R2n in
a straightforward way by considering the real and imaginary
parts. For example, when ω = −1/2 +

√
3/2i, the lattice of

Eisenstein integers Z[ω] = {a+ bω : a, b ∈ Z} is identified
with the real hexagonal plane lattice denote by A2 [4].

There are classical ways of constructing lattices from error
correcting codes. Let C ⊂ Fn

2 be a linear code and Pn ⊂ Fn
2

be the parity-check code. By identifying the elements of F2
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as elements of Z we can write the constructions A and B of
C via the“code-formulas”:

ΛA(C) = 2Zn + C and ΛB(C) = 4Zn + 2Pn + C. (1)

Alternatively ΛB(C) = 2Dn + C, where Dn = ΛA(Pn). We
can write analogous formulas for complex lattices:

ΛA(C) = θZ[ω]n + C and ΛB(C) = θ2Z[ω]n + θPn + C, (2)

where θ ∈ Z[ω] is a prime with norm |θ|2 = p and C ⊂ Fp is a
linear code. Again, ΛB(C) = θΛn + C, where Λn = ΛA(Pn).

B. Jacobi Theta Functions

Let Λ be a lattice and c a vector in Rn. The theta series of
Λ+ c is defined as:

ΘΛ+c(τ) :=
∑

y∈Λ+c

e−πτ∥y∥
2

=
∑

x∈Λ

e−πτ∥x+c∥2

. (3)

The theta series provides useful information about a lattice,
such as its minimal norm, kissing number and determinant
(for undefined terms, see [4]). In Communications, the theta
series bounds the probability of error of a lattice code used for
the Gaussian channel (see, e.g. [4, Ch. 3, Eq. (35)]) and for
the Gaussian wiretap channel [10] among other applications.

The theta series of all lattices discussed in this paper can be
written in terms of the Jacobi theta functions (in what follows,
let q = e−πτ , τ > 0 and z = iτ ):

θ3(ξ|z) :=
∞∑

m=−∞

e2imξ+πizm
2

=
∞∑

m=−∞

cos(2mξ)eπizm
2

θ2(τ) :=
∞∑

m=−∞

q(m+1/2)2 , θ3(τ) :=
∞∑

m=−∞

qm
2

.

Notice that θ2(τ), and θ3(τ) are the theta series of the
unidimensional lattice Z and its shift Z + 1/2, respectively.
More generally (see Eq. (2.2.5) of [1]):

ΘZ+c(τ) =
∞∑

m=−∞

e−πτ(m+c)2 = τ−2
∞∑

m=−∞

e2πimc−πm2/τ

= τ−2θ3(πc|iτ−1).
(4)

For numerical aspects and efficient evaluations of the Jacobi
series the reader is referred to [1, Ch. 2-3].

C. Discrete Gaussian Distributions

Define the Gaussian function ρσ(x) = e
−∥x∥

2

2σ2 and, for a
discrete set S ⊂ Rn, let

ρσ(S) :=
∑

x∈S

ρσ(x).

The discrete Gaussian distribution over Λ+c is defined as the
distribution with support in Λ + c, such that the probability
of choosing a vector y ∈ Λ+ c is proportional to ρσ(y). We
denote the probability that a random vector drawn according
to the discrete Gaussian distribution is equal to y ∈ Λ+ c by

DΛ+c,σ(y) :=
ρσ(y)

ρσ(Λ+ c)
=

ρσ(x+ c)

ΘΛ+c

(
1

2πσ2

) (5)

Some simple but useful properties of DΛ+c,σ(y) are stated
next:

Proposition 1. The lattice Gaussian distribution satisfies:

(i) Dα(Λ+c),σ(αy) = DΛ+c,σ/α(y).
(ii) D(Λ1+c1)⊕(Λ2+c2)(y1,y2) = DΛ1+c1

(y1)DΛ2+c2
(y2).

A lattice Gaussian sampler is an algorithm that outputs a
point y ∈ Λ+ c with probability DΛ+c,σ(y).

III. BUILDING BLOCKS: GAUSSIANS OVER Z+ c

Unidimensional discrete Gaussians are the building blocks
for the main multi-dimensional samplers, including the ones
described in this paper. Efficient practical samplers over Z can
be found e.g., in [5], [6] and all these methods can be used
as subroutines our algorithms. A theoretical method described
in [2] shows that it is possible to output the exact distribution
DZ+c by calling a continuous Gaussian sampler and using a
rejection principle. The expected number of iterations is [2,
Sec. 5.1]) (consider 0 < c < 1 for simplicity):

ρσ(c) + ρσ(1− c) +
∫∞

c ρσ(x)dx+
∫ 1−c
−∞

ρσ(x)dx

ΘZ+c(
1

2πσ2 )
. (6)

Using Equation (4) we can prove that the expected number of
iterations tend to 1 as σ → 0 or σ → 1. Numericaly evalu-
ations for the probability of acceptance (inverse of expected
iterations) are shown in Fig. 2.
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Fig. 2. Acceptance probability as a function of σ for fixed l = 1 (left) and
fixed c = 0 (right). In the worst case, c = 0 and σ ≈ 0.412680, the average
number of iterations is no bigger than 1.426764

IV. COSET DECOMPOSITIONS

Suppose that the lattice Λ can be decomposed as the disjoint
union of cosets Λ =

⋃

c∈C Λ
′ + c. Let pc = DΛ,σ(c+ Λ′) be

the probability that a point drawn from a discrete Gaussian in
Λ lies in the coset Λ′+ c. A general principle for sampling Λ
is the following:

1) Pick a vector c at random, with probability pc.
2) Pick a vector from DΛ′+c,σ and output it.

The procedure outputs a point c+x ∈ c+Λ′ with the correct
probability pcDΛ′+c,σ(c + x) = DΛ,σ(c + x). To apply the
general principle we to calculate the probabilities pc, samplers
for shifts of the superlattice Λ′ and a systematic description
of the cosets.

The following table is a collection of results on the theta
series of some lattices constructed from codes. To facilitate
the statements, let

φ0(τ) := θ3(τ)θ3(3τ) + θ2(τ)θ2(3τ),
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φ1(τ) := θ2(τ)θ3(3τ)+θ3(τ)θ2(3τ) =
1

2
θ2(τ/4)θ2(3τ/4), and

φ2(τ) :=
φ0(τ/3)− φ0(τ)

2

(φ0 and φ1 differ from [4] by a change of variables).

Proposition 2. Let Λ = Λ′ + C be a lattice obtained from

Construction A, B, Ac (θ =
√
−3 or θ = 2) or Bc (θ =

√
−3).

The probability of each coset, DΛ,σ(Λ′ + c), depends only on

the Hamming weight of c.

Proof. See Table A. The result for Constructions A, B, and
Ac followsfrom [4, p. 184], [4, Thm. 15, p. 191] and [12].
The result for Construction Bc seems to be unpublished. For
Construction Bc, θ = 2, a result depending on the complete

weight of c is proved in [3].

Construction Theta Series of a Coset

A θ2(4τ)wθ3(4τ)n−w

B
(1/2)θ2(4τ)wθ3(4τ)n−w w ≥ 1

(1/2)θ3(4τ)n + (1/2)θ4(4τ)n w = 0

Ac, θ = 2 φ1(4τ)wφ0(4τ)n−w

Ac, θ =
√
−3 φ2(3τ)wφ0(3τ)n−w

Bc, θ =
√
−3

(1/3)φ2(3τ)wφ0(3τ)n−w w ≥ 1

(1/3)(φ0(3τ)n + 2(φ0(9τ)− φ2(9τ))n) w = 0

TABLE I
THETA SERIES OF A COSET Λ′ + c, WT(c) = w, FOR SEVERAL

CONSTRUCTIONS

In the constructions listed above, item 1) can be split in two
parts. Let Aw be the number of codewords of weight w in C.
Take any codeword cw and define pw = AwDΛ(Λ′ + cw).

1’) Choose w ∈ {0, 1, . . . , n} with probability pw.
1”) Choose a codeword in C uniformly at random over all

codewords of weight w.

If the code has small cardinality, item 1”) can be performed
by listing the codewords and organizing them by weight (this
process can be done ad-hoc, only once for any number of
samples). For some structured higher dimensional codes, we
can explore their symmetries to get around the listing (see
Section VII for the case of the binary Golay code).

V. BASE-LATTICES

Of course one can sample over Zn + c with complexity n
times the complexity of sampling over Z+ c. This is enough
to sample binary Construction A lattices. As it happens, for
sampling Construction B and Construction Ac lattices, we
need to know how to sample over shifts of the base lattices
A2 and Dn.

A. The lattice A2

An efficient sampler for the A2 lattice is based on the
decomposition of A2 as the disjoint union of two translates
of a rectangular lattice. This follows from noting that the

rectangular lattice Z ⊕
√
3Z is a sublattice of A2 of index

2. We can write

A2 =
(

Z⊕
√
3Z
)⋃

(

Z⊕
√
3Z+

(

1

2
,

√
3

2

))

From this:

DA2,σ(Z⊕
√
3Z) =

θ3(
1

2πσ2 )θ3(
3

2πσ2 )

θ3(
1

2πσ2 )θ3(
3

2πσ2 ) + θ2(
1

2πσ2 )θ2(
3

2πσ2 )
.

Note that if σ is small, all mass is concentrated in the origin,
hence DA2,σ(Z⊕

√
3Z) ≈ 1, and if σ is large, the distribution

is flat, therefore DA2,σ(Z⊕
√
3Z) ≈ 1/2.

B. The lattice Dn and the shift Dn + (α,β, . . . ,β)

Using Construction A, write Dn = 2Zn + C, where C is a
parity-check code (n, n − 1)2. For sampling Construction B
we need samplers over a shift of Dn lattice, by a vector of the
form (α,β, . . . ,β). We begin by calculating the theta series of
the shift via Construction A. Some of these calculations can
be found in [4] for (α,β) = (0, 0), (1/2, 1/2), and (1, 0).

Proposition 3. Let

We(X,Y ) =

⌊(n−1)/2⌋
∑

i=0

(
n− 1

2l

)

Y 2lXn−1−2l and

Wo(X,Y ) =

⌊(n+1)/2⌋
∑

i=1

(
n− 1

2l − 1

)

Y 2l−1Xn−2l

(7)

be the weight enumerators of the vectors in F
n−1
2 with even

and odd weights, respectively. We have

ΘDn+(α1,βn−1)(q) = ΘZ+α
2
(q4)We(ΘZ+ β

2

(q4),Θ
Z+ β+1

2

(q4))+

+Θ
Z+α+1

2
(q4)Wo(ΘZ+ β

2

(q4),Θ
Z+ β+1

2

(q4)).

The case β = α = 1/2 is very particular, since the theta
series of all cosets c+(1/2, . . . , 1/2)+2Zn are equal. Hence,
a simple sampler in this case is obtained by sampling a word
c uniformly at random over all codewords in C and then
sampling over the lattice c + (1/2, . . . , 1/2) + 2Zn. This
procedure was described in [7]. For α = β ̸= 1/2, let

p2l :=

(
n

2l

)Θ
Z+ β+1

2

(q4)wΘ
Z+ β

2

(q4)n−w

ΘDn+βe(q)
(8)

be the probability that a vector drawn from distribution
DDn,βe lies in the coset of a codeword of weight w. Algorithm
7 provides a sampling procedure for DDn,βe. In the algorithm
let In = {1, . . . , n}.

The case β ̸= α is very similar to the previous one, except
that we have to distinguish codewords with c1 = 0 and c1 = 1.
Given that a point lies in a coset of a codeword of weight w,
the probability that this codeword has c1 = 0 is given by:

pc =
ΘZ+α

2
(q4)Θ

Z+ β+1
2

(q4)

ΘZ+α
2
(q4)Θ

Z+ β+1
2

(q4) + 2l
n−2lΘZ+α+1

2
(q4)Θ

Z+ β
2

(q4)
.

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

167



SamplerDn(β,σ)

1: Choose a number l from 1 to ⌊n/2⌋ with probability p2l
2: Choose uniformly at random a set J ⊂ In, with size 2l
3: For j ∈ J
4: xj ← 2SamplerZ((β + 1)/2,σ/2)
5: For j ∈ In\J
6: xj ← 2SamplerZ(β,σ/2)
7: Output: x = (x1, x2, . . . , xn).

Thus a modification of Algorithm 7 can be done as follows.
After picking a weight 2l according to the right probability,
we throw a biased coin with probability pc of heads. If the
result is heads, then choose c1 = 0, choose a set J ⊂ In−1

with |I| = 2l to be the support of (c2, . . . , cn) and sample
over 2Zn + c, as in steps 3-6 of Algorithm 7. If the result is
tails, set c1 = 1 and choose J ⊂ In−1, with |J | = 2l − 1.

VI. CONSTRUCTION B

As in Construction A, the probability of a coset 2Dn + c

only depends on the Hamming weight of c, since any per-
mutation of coordinates is an automorphism of Dn. Let
Dn = Dn + (1, 0n−1). To calculate the probability of a coset
in a suitable way to sampling, consider the decomposition, for
1 ≤ w ≤ n:

Dn = (Dw ⊕Dn−w)
⋃

(Dw ⊕Dn−w), (9)

which we refer to as the even-even/odd-odd decomposition.
The theta series of 2(Dn + c/2) is

ΘDn+
c

2
(q4) = ΘDw+( 1

2

w)(q
4)ΘDn−w

(q4)

+ΘDw+( 3
2

1, 1
2

w−1)(q
4)ΘDn−w+(11,0n−w−1)(q

4)
(10)

But all the terms in the rhs of (9) are in the form of Section
V-B. Let pw = AwΘ2Dn+(1w0n−w)(q)/ΘΛ(q) and define
peven,w = D2Dn+c((2Dw + 1w)⊕ 2Dn−w).

A sampling procedure for Construction B lattices works as
follows. Draw a weight w according to the probabilities pw.
Draw a codeword c uniformly at random over all codewords
with weight w in C. Throw a biased coin with probability
peven,w of heads, and if the result is heads sample over the
even-even part of decomposition (9) (formally, if J be the
support of c, draw xJ as from the distribution over 2Dw+(1w)
and xIn\J from the distribution over 2Dn−w). Otherwise,
sample over the odd-odd part of Dn.

VII. THE LEECH LATTICE

We provide a sampling algorithm based on the density
doubling construction. Let G24 be the (24, 12, 8)2 Golay code.
We write half of the Leech lattice as H24 = 2D24 + G24. Let
a = ((−3/2)1, (1/2)23). The (scaled) Leech lattice is:

Λ24 = H24 ∪ (H24 + a) . (11)

The weight enumerator of G24 is given by

W (X,Y ) = X24+759X16Y 8+2576X12Y 12+759X8Y 16+Y 24.

The first half of the Leech is a construction B, hence its theta
series is

ΘH24
(q) = (1/2)W (θ2(q

4), θ3(q
4)) + (1/2)θ4(q

4)24.

and a sampler is provided by the techniques in Section V-B.
For the other half, an application of Prop. 3 gives us closed
forms. A simpler closed form can be derived from the auxiliary
series:

α(q) =
∞∑

m=−∞

(−1)mq(m+1/4)2 and (12)

β(q) = ΘZ+1/4(q) =
θ3(q1/16)− θ3(q)− θ2(q)

2
Proposition 4. All cosets 2D24 + c+ a have the same theta

series, given by:

Θ2D24+c+a(q) =
β(q4)24 − α(q4)24

2
. (13)

The other half of the Leech has theta series

211(β(q4)24 − α(q4)24) = 98304q8 + 8388608q12 + ...

.

Proof. First note that any permutation of coordinates is an
automorphism of 2D24 + a. Thus, by permuting coordinates,
we obtain a set isometric to 2D24+(1w, 024−w)+a ≃ 2D24+
a.For calculating the theta series of 2D24 + a, notice that
α(q)n takes negative sign in the terms associated to the vectors
x+(1/424) ∈ Z24+(1/424), where x has odd weight. Hence
ΘD24+(1/4)24(q) = (β(q)24 + α(q)24)/2. This, together with
the equality

(D24 + (−3/4)24) ∪ (D24 + (1/4)24) = Z
24 + a/2,

gives us the desired form.

Let DΛ24,σ(H24) = ΘH24
(q)/ΘΛ24

(q) be the probability
that a point sampled from the distribution in Λ24 lies in H24.
The following procedure outputs a point x ∈ Λ24 distributed
according to DΛ24,σ .

Sampler Λ24

1: Throw a biased coin with prob. DΛ24,σ(H24) of heads.
2: if the output is heads then

3: Sample x ∈ H24 from the Construction B sampler
4: else

5: Choose c ∈ G24 uniformly at random
6: Draw x ∈ 2D24 + a+ c using sampler in Sec. V-B.
7: end if

8: Output x.

Step 3 involves sampling the codewords of C according to
its weight and to probabilities pw (as in Sec.IV item (1’)).
In what follows we provide an alternative and more efficient
procedure than listing all the 212 codewords.

First, pick a number w ∈ {0, 8, 12, 16, 24} according to
probabilities pw. For w = 0 and 24 there is nothing to
do. For w = 12, a simple rejection algorithm works, since
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Abstract—This paper proposes a new method to reduce the
error rate of channel codes over an AWGN channel by renormal-
izing the codewords to a constant energy before transmission and
decoding with the original codebook. Evaluation of the random-
coding error exponent reveals that this normalization technique
approaches the constant-composition error exponent for certain
pairs of rate and signal-to-noise ratio.

I. INTRODUCTION

Given a general coded modulation scheme over an AWGN
channel, we investigate the effect on the error rate of rescaling
the transmitted codewords so that their energy is constant.
We compare the proposed technique with the standard coded
modulation scheme and with constant-composition codes [1],
[2] by means of the respective random-coding error exponents.

The comparison reveals that, for low to moderate SNRs,
codeword rescaling significantly improves the error exponent of
random codes and nearly matches the performance of constant-
composition codes. While constant-composition codes, which
inherently have fixed codeword energy and are known to
achieve the optimum exponent, are difficult to design in
practice, codeword rescaling can be applied to existing practical
codes without increasing their complexity.

In Sect. II we present the general channel coding model. In
Sect. III we add codeword rescaling to the model and derive an
achievable random-coding exponent. In Sect. IV we introduce
two other well known random-coding exponents and compare
them with the new one by numerical evaluation.

II. MODEL

The channel input sequence x = (x1, . . . , xn) consists of
n symbols x ∈ X , where X is the symbol constellation. We
denote the channel output sequence by y and the channel
law, that is, the conditional probability density of receiving
sequence y when the sequence x has been sent, by Wn(y |x).
We represent random variables by capital letters and their
realizations by lowercase letters, e.g. X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) denote random input and output vectors.
The channel is memoryless and Wn(y |x) =

∏n
i=1W (yi |xi),

where W (y |x) is the single-letter channel law.

This work has been funded in part by the European Research Council
under ERC grant agreement 259663, by the European Union’s 7th Framework
Programme (PEOPLE-2011-CIG) under grant agreement 303633 and by the
Spanish Ministry of Economy and Competitiveness under grants RYC-2011-
08150 and TEC2012-38800-C03-03.

We focus on a complex-valued additive white Gaussian noise
(AWGN) channel. The input alphabet X is a finite subset of
the complex numbers and the channel output is given by

yi =
√

SNRxi + zi , i = 1, . . . , n (1)

where xi are the symbols, yi the channel output values and
SNR is the signal-to-noise ratio. The noise values zi are drawn
from a circularly-symmetric complex-valued Gaussian random
variable with zero mean and unit variance. Therefore, the
symbol channel transition probability is given by

W (y |x) =
1

π
e−|y−

√
SNRx|2 . (2)

The empirical average symbol energy of channel input
sequence x is E(x) = 1

n

∑n
i=1|xi|

2. Let Q be a distribution
on the symbols in X . We require that the constellation X is
chosen such that the identities IE[X] = 0 and IE[|X|2] = 1
hold, where the expectations are with respect to Q.

We use P[A] to denote the probability of an event A, and
IE[·] is the expectation operator. We denote the Kullback-
Leibler Divergence as D(P‖Q), the set of all compositions
on length-n sequences drawn from X as Pn, the set of all
distributions on X as P and the image of set A under the
function f as f [A].

We denote the channel code by Cn. The code consists of M
codewords x, i.e. Cn = {x(1), . . . ,x(M)}, and the correspond-
ing code is said to be an (n,M) block code of block length
n. The encoder assigns to each message m ∈ {1, . . . ,M} a
codeword x(m) from the codebook Cn. We assume that the
message m is drawn according to a uniform distribution. The
rate of a code is defined as R , log2M

n .
The decoder outputs an estimated message m̂ according to

a maximum-metric rule

m̂ = arg max
i∈M

qn(x(i),y), (3)

where qn denotes the metric that the decoder uses to estimate
which message m has been sent. We focus on metrics qn

that can be expressed in terms of the letter metric q as in
qn(x,y) =

∏n
i=1 q(xi, yi). Further, we require q to be positive.

An error occurs if the decoder’s estimate differs from the
sent message, i.e. m̂ 6= m. The error probability of a code Cn is
pe(Cn) = 1

M

∑
m∈MP[m̂ 6= m |m], and we equivalently write

pe(n,M) = pe(Cn). Finally, an error exponent E(Q,R) is

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

170



said to be achievable if there exists a sequence of (n,M)-codes
Cn such that

lim inf
n→∞

− 1

n
log pe(Cn) ≥ E(Q,R). (4)

III. CODEWORD RESCALING

A. Rescaling setup

Let a rescaler η be a block that performs the operation

η(x) = E(x)−
1
2x (5)

on a codeword x; that is, it renormalizes the codeword x such
that the empirical codeword energy is E

(
η(x)

)
= 1.

We consider a coded modulation scheme that consists of
an encoder and a rescaler η. The encoder maps message m
into codeword x(m) = φ(m) using codebook C, the rescaler
outputs an energy-normalized version x̃(m) of the codeword
x(m). The rescaling operation can be thought as part of the
encoder’s codebook, so that we use a code C̃ with rescaled
codewords x̃ that consist of symbols x̃ from an expanded
constellation X̃ .

The decoder outputs the estimate m̂ under the original
codebook C by maximizing the metric qn. With the choice
of qn(x,y) = Wn(y |x), we have an instance of mismatched
decoding, since the decoder does not account for the rescaling
operation neither in the codebook C nor in the decoding
metric. We consider a slightly more general choice given
by qn(x,y) , Wn(y |βx), where β may be optimized to
minimize the error probability; however, it cannot depend on
the codeword, and hence it cannot be used to undo the rescaling.
Note that for a practical code, β is fixed before deployment and
such a decoding metric can be implemented without additional
computational complexity.

We can build an equivalent model for the rescaling setup
by removing the rescaling block from the transmitter and
reinterpreting it as a channel property. With this model, the
scaling function leads to a new channel law

W̃n(y |x) = Wn(y | η(x)). (6)

Note that W̃n does not represent a memoryless channel.

B. Scaling exponent

We study the i.i.d. random-coding error probability. We
consider an ensemble of codebooks with block length n and
M = 2nR codewords. The ensemble consists of codebooks
whose codewords x(i), i = 1, . . . ,M are randomly generated.
A codeword x(i) = (x1, . . . , xn) at entry i in the random
codebook is generated by drawing its n symbols according
to the distribution Q(x). We are interested in the achievable
random-coding exponent Escl

r (Q,R) of the ensemble average
of the error probability pe(n,M) =

∑
Cn P[Cn]pe(Cn).

Theorem 1 (Scaling random-coding exponent): The random-
coding error probability in a rescaling setup satisfies

lim
n→∞

− 1

n
log2 pe(n, 2

nR) ≥ Escl,β
r (Q,R), (7)

where the scaling exponent is defined as

Escl,β
r (Q,R) , sup

β≥0
min
P∈P

sup
ρ∈[0,1]
s≥0

{
Escl,β

0 (Q, ρ, s, P )− ρR
}
,

(8)
and the corresponding Escl,β

0 is defined as

Escl,β
0 (Q, ρ, s, P )

, D(P‖Q)− IE

log2 IE

[
IE[q(X̄, Y )s |Y ]

ρ

q(X,Y )ρs

∣∣∣∣∣X
] (9)

and the expectations are with respect to

(X,Y, X̄) ∼ P (x)W
(
y | E(P )−

1
2x
)
Q(x̄). (10)

Proof: For the ensemble of codebooks with M codewords
of length n, chosen according to random-coding distribution
Qn, transmitted over a channel described by the arbitrary
channel law Wn and decoded according to the metric qn, the
average ensemble error probability is bounded by the random-
coding union (RCU) bound [4], [5]

rcu(n,M)

= IE

min

{
1, (M − 1) P

[
qn(X̄,Y )

qn(X,Y )
≥ 1

∣∣∣∣X,Y

]},
(11)

where (X,Y , X̄) ∼ Qn(x)Wn(y |x)Qn(x̄).
Weakening (11) by replacing the function z 7→ min{1, z}

with the function z 7→ zρ(x) and using Markov’s inequality
with parameter s(x), leads to the definition of a parametrized
upper bound on the the RCU bound

rcuρ,s(n,M) , IE

[(
IE[qn(X̄,Y )s(X) |X,Y ]

qn(X,Y )s(X)(M − 1)−1

)ρ(X)
]

(12)

that holds for all pairs of functions
(
ρ(x), s(x)

)
such that

ρ[Xn] ⊆ [0, 1] and s[Xn] ⊆ [0,∞).
We further weaken (12) by applying M − 1 ≤ 2nR, use

the random-coding distribution Qniid =
∏n
i=1Q(xi) and the

equivalent scaling channel model (6), to obtain

pe(n,M) ≤
∑

x∈Xn
2nρ(x)RQniid(x)fn(ρ(x), s(x),x), (13)

where

fn(ρ, s,x)

,
∫
y

W
(
y | E(x)−

1
2x
)( ∑

x̄∈Xn
Qniid(x̄)

qn(x̄,y)s

qn(x,y)s

)ρ
dy.

(14)

We split the outer summation over the channel-input se-
quences in (13) into summations over sequences x of compo-
sition P = P̂x and obtain

pe(n,M) ≤
∑
P∈Pn

2nρ(P )R
∑

x∈T (P )

Qniid(x)fn(ρ(P ), s(P ),x).

(15)
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We also reduced the degrees of freedom for the parameters
ρ(x) and s(x) such that they only depend on the composition
P = P̂x. This simplifies the analysis.

The codeword average symbol energy only depends on the
codewords composition. Hence we write E(x) = E(P̂x) and
use it in (14) to obtain fn(ρ, s, P,x). This, together with the
product nature of decoding metric, channel law andQniid, allows
us to factor fn as fn(ρ, s, P,x) =

∏n
i=1 f(ρ, s, P, xi), where

f(ρ, s, P, x) ,
∫
y

W
(
y | E(P )−

1
2x
)(∑

x̄∈X
Q(x̄)

q(x̄, y)s

q(x, y)s

)ρ
dy,

(16)
by invoking the distributive law. For the product in fn, only
the composition of x is relevant, that is, it can be expressed
independent of x as fn(ρ, s, P ) =

∏
x∈X f(ρ, s, P, x)nP (x).

We use this form in (15) to obtain

pe(n,M)

≤
∑
P∈Pn

∑
x∈T (P )

2nρ(P )R
∏
x∈X f(ρ(P ), s(P ), P, x)nP (x)

2n
(
D(P‖Q)+H(P )

) ,

(17)

where we expressed the codeword probability in terms of its
composition as in Qniid(x) = 2−n(D(P̂x‖Q)+H(P̂x)) [6].

Since the summand is independent of the codeword x in
(17), we can upper-bound the summation over the codewords by
using the bound on the number of sequences in a composition
class |T (P )| ≤ 2nH(P ) [6]. Doing some rearrangements and
bringing all terms on a common exponent base, we obtain

pe(n,M) ≤
∑
P∈Pn

2−nξ(ρ(P ),s(P ),P,R), (18)

where

ξ(ρ, s, P,R) , D(P‖Q)−
∑
x∈X

P (x) log2 f(ρ, s, P, x)− ρR.

(19)
A simple upper bound on a sum is obtained by fixing its sum-

mands to the largest one, that is
∑
a∈A a ≤ |A|(maxa∈A a).

We weaken (18) with this bound and the fact that the number
of compositions is bounded by |Pn| ≤ (n+ 1)|X | [6] and get

pe(n,M) ≤ (n+ 1)|X | 2−n
[
minP∈Pn ξ(ρ(P ),s(P ),P,R)

]
. (20)

The bound (20) is achievable for any pair of parameters(
ρ(P ), s(P )

)
, which we exploit by choosing them such that

the bound gets as tight as possible. By definition of the min
and sup operators, this is the case when we replace ξ with

ξ∗(P,R) = sup
0≤ρ≤1,s≥0

ξ
(
ρ, s, P,R

)
. (21)

That is, place the supremum inside the minimum operator.
Finally, we observe the sub-exponential factor in (20) which

suggests to transform the inequality as

− 1

n
log2 pe(n, 2

nR) ≥ min
P∈Pn

ξ∗(P,R)− |X | log2(n+ 1)

n
(22)

and take the limit

lim
n→∞

− 1

n
log2 pe(n, 2

nR) ≥ min
P∈P

ξ∗(P,R). (23)

C. Swapped exponent

An inspection by example of the optimization parameters
in (8) shows that Escl,β

0 is not convex in P for fixed values
of ρ, s and R, which complicates its numerical computation.
Further, note that it is crucial to find the true P ∗ to guarantee
the achievability of Escl,β

r , since P ∗ is the result of a min-
imization over a variable that is not an arbitrary parameter.
For these reasons, we introduce a lower bound on (8) that is
computationally tractable.

Theorem 2 (Swapped scaling random-coding exponent): The
swapped random-coding error exponent, defined as

Eswp,β
r (Q,R) , sup

β≥0
min
ε∈S

sup
ρ∈[0,1]
s≥0

{
Eswp,β

0 (Q, ρ, s, ε)− ρR
}

(24)
with

Eswp,β
0 (Q, ρ, s, ε)

, min
P∈Pε

D(P‖Q)− IE

log2 IE

[
IE[q(X̄, Y )s |Y ]

ρ

q(X,Y )ρs

∣∣∣∣∣X
]
,

(25)

is a lower bound on Escl,β
r , where ε is optimized over

the interval S = [minx∈X |x|2,maxx∈X |x|2], the set Pε is
{P ∈ P | E(P ) = ε} and the expectations are according to
(X,Y, X̄) ∼ P (x)W (y | ε− 1

2x)Q(x̄).
Proof: First, let the energy level ε denote the expected

symbol energy with respect to P or equivalently ε = E(P ).
We observe that the probability simplex P can be partitioned
into disjoint subsets Pε, where a subset consists of all dis-
tributions P that obtain the energy level ε, that is, we have
P =

⋃
ε∈S Pε where Pε = {P ∈ P | E(P ) = ε} and

S = [minx∈X |x|2,maxx∈X |x|2]. The subsets Pε are compact
and convex since they are intersections of two hyperplanes and
the closed positive orthant [7]. In correspondence with these
observations, we rephrase the scaling exponent (8) in terms of
energy levels and subsets as

Escl,β
r (Q,R) = min

ε∈S
min
P∈Pε

sup
ρ∈[0,1]
s≥0

{
Escl,β

0 (Q, ρ, s, P )− ρR
}
.

(26)
We swap the order of the inner two optimization operators

and define Eswp,β
r and Eswp,β

0 as in (24) and (25) respectively.
Observing that the minimax inequality

sup
x

min
y
f(x, y) ≤ min

y
sup
x
f(x, y) (27)

holds we conclude that swapping the order of optimization
results in a lower bound on (8).
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Fig. 1. Random-coding error exponents for 16QAM and fixed SNRs of 5 dB
and 10 dB, respectively.

IV. NUMERICAL RESULTS

We are interested in how the error exponent of channel-
coding with rescaling performs with respect to setups with the
iid and constant-composition exponents [1], [2].

For a discrete-input continuous-output memoryless channel
with ML decoder and input distribution Q, the iid exponent is
given by [1]

Eiid
r (Q,R) = max

ρ∈[0,1]
Eiid

0 (ρ)− ρR, (28)

where

Eiid
0 (Q, ρ) , −log2

∫
y

IE
[
W (y |X)

1
1+ρ

]1+ρ

dy (29)

is the Gallager function [3]. The expectation is taken with
respect to Q.

For a discrete-input continuous-output memoryless channel
with ML decoder and input distribution Q, the constant-
composition exponent is given by [4]

Ecc
r (Q,R) = max

ρ∈[0,1]
Ecc

0 (ρ)− ρR, (30)

where

Ecc
0 (Q, ρ) , sup

a(·)
−log2

∫
y

IEQ

[
W (y |X)

1
1+ρ ea(X)−φa

]1+ρ

dy

(31)

and φa = IEQ[ a(X) ], and the optimization in (31) is over
all real-valued functions a. The expectations are taken with
respect to (X,Y, X̄) ∼ Q(x)W (y |x)Q(x̄).

Fig. 1 compares the error exponents (28), (30) and (24) at
SNRs 5 dB and 10 dB. It suggests that Eswp,β

r (R) approaches
the constant-composition exponent.
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Fig. 2. Relative constant-composition exponent E
¯
cc
r for 16QAM.

For a more detailed comparison, we introduce error exponent
ratios with the iid exponent as the baseline. We call these
the relative constant-composition exponent and the relative
swapped scaling exponent, respectively given by

E
¯

cc
r (R) ,

Ecc
r (R)

Eiid
r (R)

and E
¯

swp,β
r (R) ,

Eswp,β
r (R)

Eiid
r (R)

. (32)

Our figures show the relative random-coding exponents as
a function of both SNR and the rate R in a single contour
plot for coded modulation with a 16QAM constellation and
a uniform distribution Q. The figures also depict the mutual
information (MI) as a solid line and the critical rate1 Riid

cr of the
iid exponent (resp. Rcc

cr of the constant-composition exponent)
as a dashed (resp. dotted) line.

1) Constant-composition exponent: The constant-
composition exponent’s gain with respect to the iid
exponent provides a benchmark to assess the performance
of the codeword rescaling. The relative exponent is shown
in Fig. 2. The figure reveals that the constant-composition
exponent exhibits the largest gains for low to moderate SNRs.
At high SNRs above 12 dB, it is roughly equal to the iid
exponent. A similar tendency is seen at very low SNRs. For
our comparison, the most relevant part of the contour plot is
located between the critical rates and the MI, since below
the critical rate expurgated versions of the exponents lead
to better bounds. The maximal gain with respect to the iid
exponent is roughly 13 % and occurs around SNR = 5.5 dB
and R =1.25 bits per channel use.

2) Swapped exponent with β = 1: We discuss first the
relative swapped exponent with β = 1, which corresponds to

1The critical rate is defined as the largest rate R at which the optimal ρ in
the exponent optimization is one.
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Fig. 3. Relative swapped exponent E
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swp,β
r with β = 1 for 16QAM.
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Fig. 4. Relative swapped exponent E
¯
swp,β
r for 16QAM.

the standard decoding rule of maximizing Wn. Fig. 3 shows
this relative exponent. We observe two regimes in the relevant
region between the critical rate and the capacity. Below about
7 dB, there is a gain with respect to the iid exponent, whereas
above 7 dB the swapped exponent is worse.

In the low-SNR region and close to the capacity, the swapped
exponent achieves similar gains as the constant-composition
exponent, namely, about 10 % gain at 3 dB and 1.5 bits per
channel use. However, it falls short as the rate approaches the
critical rate. For example, there is no gain at 5.5 dB and 1.25 bits
per channel use, the point where the constant-composition
exponent achieves the highest gain. At high SNRs, especially
around 14 dB, Fig. 3 unveils a large loss compared to the iid
exponent. In this region, we observe not even at capacity a
gain and the loss is up to 35 % close to the critical rate.

3) Swapped exponent with optimal β: Optimizing over β
to adapt the mismatched metric leads to respectable gains in
some regions of the SNR-rate plane, as we can see in Fig. 4. At
high SNRs, the swapped exponent with optimized β exhibits a
considerable improvement compared to the swapped exponent
with β = 1, even though it is still below the iid exponent.

Most notably, for low SNRs, the swapped exponent with
optimized β achieves more than 90 % of the gain that the
constant-composition exponent achieves with respect to the iid
exponent. Especially in regions farther away from capacity,
the fully optimized exponent shows a large improvement with
respect to the one with β = 1.
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Abstract—The problem of key reconciliation based on Low-
Density Parity-Check (LDPC) codes and Slepian-Wolf coding for
physical layer key generation is investigated. When using the
channel-state-information (CSI) of a reciprocal wireless channel
for key generation between two legitimate users, independent
noise components, quantization, and synchronization errors at
the end nodes give rise to key differences that need to be corrected
by sending side information. We provide a comparison of three
different quantization schemes in terms of key disagreement
rate and output probability distributions and present the log-
likelihood formulations required by a soft decision LDPC decoder
to perform key reconciliation, for the investigated quantization
methods.

I. INTRODUCTION

While computational security algorithms usually reside in
upper protocol layers and rely on the assumption of limited
processing capabilities of a potential eavesdropper, physical-
layer key generation aims at providing secrecy in the more
information-theoretic sense, as introduced by Shannon [1].
Thus, by sharing a previously known secret key, such as
a one-time pad, two legitimate users, Alice and Bob, are
able to exchange an encrypted message through an unsafe
public channel, without leaking any information to a potential
eavesdropper, Eve. As long as Alice and Bob share a secret
common source of randomness from which they can generate
a long uniformly distributed secret key, perfect secrecy is
achieved, meaning that Eve has the same chances of guessing
the original message with or without the ciphertext, or, in more
theoretical terms, the eavesdropper’s equivocation is equal to
the entropy of the message. It soon became clear that such
a common source of randomness could be provided by the
fluctuating and reciprocal nature of the wireless medium and
that the channel-state information (CSI) can be measured by
both Alice and Bob and used to generate one-time pads, thus
eliminating the problem of previous key distribution.

Since most wireless transmission standards, such as 802.11,
Bluetooth, WiMAX, ZigBee, employ time division duplexing
(TDD), probing in consecutive short time slots the forward
and the reverse channel provides the possibility of obtaining
nearly identical CSI on both sides. Such a method of key
generation, solely based on the reciprocity property of wireless
TDD systems, besides solving the problem of key distribution,
comes with the significant benefit that it does not require the

Fig. 1. System model - key reconciliation based on LDPC codes

legitimate channel between Alice and Bob to have an SNR
advantage over the eavesdropper’s channels, such as [8], [9],
nor does it assume Alice and Bob to have information about
the channels to Eve. However, one important aspect that we
address here is that due to independent noise on both ends,
different transceiver circuitry, and quantization errors, key
mismatches are very likely to occur, leading to the necessity
of a key reconciliation scheme.

The current paper is structured as follows: Section II offers
an overview of the system model along with channel charac-
terization aspects. In Section III, the impact of codebook sizes
and possible quantization schemes is discussed in terms of key
disagreement rates for the case when no key reconciliation
takes place between the users. An exact formulation of the
log-likelihood ratios as required, e.g., by LDPC decoding, is
detailed in Section IV, for the quantization schemes analyzed
in the previous section.

II. SYSTEM DESCRIPTION

A point from the channel distribution is measured by both
Alice and Bob, disturbed by different noise components. The
analog value obtained by Alice, is quantized and assumed
to be correct. Employing Slepian-Wolf coding [13], Alice
compresses her vector of quantized key symbols and sends
Bob additional side information (parity or syndrome bits), as
illustrated in Fig. 1. Bob obtains his own vector of channel
estimates, along with the side information, possibly corrupted,
sent by Alice, and proceeds to computing the log-likelihood
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ratios required, e.g., for an LDPC decoder, in order to obtain
the exact same key Alice generated after her quantization step.
Although the reconciliation scheme presented in Fig. 1 shows
an implementation with LDPC codes, the log-likelihood ratios
presented in Section IV can be utilized by any soft decision
non-binary decoder.

For key generation based on the channel-state information
(CSI), a few conditions must be ensured. First, the channel has
to be reciprocal, that is, if we denote by hB a forward channel
sample from Alice to Bob, and by hA the corresponding
reverse channel sample from Bob to Alice, then hA = hB .
However, their estimates of the channel, ĥA and ĥB , might
differ due to independent noise. Reciprocity can be assumed
in the case of TDD systems when the channel is quasi-static,
i.e., the coherence time of the channel is larger than the
measurement time. Thus, the vectors of estimates, ĥA and
ĥB can be obtained during an initial measurement phase by
sending pilot signals in consecutive TDD time slots.

A second assumption is that the channel follows a bivariate
normal distribution. A Gaussian channel distribution, as shown
in [2], [3], minimizes the number of vulnerable bits. If the
wireless channel is static or a line-of-sight (LOS) channel, the
randomness present is not sufficient such that the central limit
theorem holds, leading to a normal distribution of the CSI,
which would be ideal for key generation. However, since the
wireless channel is also dependent on the radiation patterns of
the antennas, random variations in the channel can be induced
by using reconfigurable aperture antennas (RECAPs) and
changing the capacitive loads at the reconfigurable elements.
It has been shown that for a high number of RECAP antenna
elements (e.g. 24), and a large number of states as discussed
in [2], [7], the channel distribution is very close to a complex
Gaussian, with the real and imaginary parts independent and
identically distributed. Further details on the the validity of this
assumption, RECAP configuration, as well as measurements
description can be found in [4], [5]. For the rest of this
paper, we will assume a circular symmetric Gaussian channel
distribution with zero mean and variance σ2

ch.
A third assumption refers to the antenna separation. Herein,

we assume a sufficient separation between Eve and Alice and
Bob such that the legitimate and the eavesdropper channels
are not correlated. Recent studies [12] have shown that an
antenna separation of half a wavelength is not sufficient, and
that for the rate of the number of vulnerable key bits to the total
number of key bits to go to zero, an eavesdropper separation
of several wavelengths is necessary [15].

III. QUANTIZATION

In order to study the effects of different quantization meth-
ods on the overall key disagreement rate, we first consider the
case when no reconciliation is performed, and each legitimate
user obtains a key by independently quantizing its own analog
noisy CSI measurements. We will refer here to the symbol
mismatch rate as the probability that given one sample mea-
surement ĥA at Alice and the corresponding measurement ĥB

at Bob, they are not quantized to the same region by both
users.

Points from the channel distribution that are very close
to quantization boundaries are very likely to result in a
key mismatch. If a channel value h falls within a certain
region Ri, but very close to a quantization boundary, its
noisy measurements ĥA and ĥB might simply jump across
the quantization threshold to a neighboring region. Both the
quantization algorithm and the size of the codebook Nq ,
greatly impact the overall symbol agreement rate between
Alice and Bob.

(a) (b) (c)

Fig. 2. Three quantization methods - (a) concentric quantization regions; (b)
circles and slices; (c) Linde-Buzo-Gray algorithm, Nq = 4
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Fig. 3. Symbol mismatch probability between Alice and Bob for different
quantization methods (no reconciliation)

We consider three vector quantizations schemes, the first
based on concentric circles, as illustrated in Fig. 2-(a), the
second based on concentric circles and slices, as shown
in Fig. 2-(b), and the third based on the Linde-Buzo-Gray
algorithm [5], [14], leading to the quantization areas shown
in Fig. 2-(c), all for a codebook size of Nq = 4. The radii
of the concentric circles in the first method are computed
such that the number of measurement points end up uniformly
distributed across all regions. The exact values are provided
in Table I. While such a method leads to a simplification of
the LLR formulation, as it will be explained in Section IV,
when the codebook size is increased, a severe performance
degradation in terms of symbol-error-ratio (SER), or symbol
mismatch rate, is noticed. This is a direct consequence of
the shape of the quantization regions. The narrower a region
is, the more likely it is that noisy measurements will end
up quantized to neighboring regions. Increasing the number
of regions Nq in the first quantization example will lead to
even narrower regions, thus, such quantization method will be
highly sensitive in terms of noise, leading to a high number
of errors even at high signal-to-noise (SNR) ratios.
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TABLE I
QUANTIZATION LIMITS; Nq = 4; σ =

√
σ2
ch + σ2

A

METHOD (a) METHOD (b)
Region rmini rmaxi rmini rmaxi θmini θmaxi
R1 0 0.758 σ 0 0.758 σ 0 2π
R2 0.758 σ 1.177 σ 0.758 σ ∞ 0 2π

3
R3 1.177 σ 1.665 σ 0.758 σ ∞ 2π

3
4π
3

R4 1.665 σ ∞ 0.758 σ ∞ 4π
3

2π

The second quantization method introduces the so-called
“slices” as a way to mitigate this effect and counteract the error
performance degradation. This quantization method also leads
to a uniform distribution of the key symbols, which is desirable
for secrecy concerns, i.e., not to provide any redundancy to
a potential eavesdropper. The boundaries for the four regions
Ri illustrated in Fig. 2-(c) are also provided in Table I, in
terms of radii (rmini , rmaxi) and angles (θmini , θmaxi), in
polar coordinates. As seen in Fig. 3, this method shows a
better performance in terms of symbol mismatch probability,
as compared to the previous one, with an error reduction from
17% to 9% at an SNR of 20 dB, and from 1.78% to 0.95%
at 40 dB, for the case of four quantization regions.

The third algorithm for channel quantization is the Linde-
Buzo-Gray (LBG) vector quantization scheme, as described in
[14]. The LBG algorithm is a sample version of the Lloyd-
Max quantizer that does not require a closed form pdf of the
channel distribution, but only the measurement samples. Given
a length M sequence of 2-dimensional channel samples and
the desired number of code vectors Nq , the algorithm delivers
the final codebook and the corresponding quantization region
for each codeword vector.

The difference in mismatch rate between the first and
third quantization method also becomes much more significant
when increasing the size of the codebook vector. For an
SNR of 20 dB and Nq = 32 quantization regions, we
notice a probability of 75% that Alice and Bob quantize to
different regions when using first method (concentric circles),
as compared to 24% when using the LBG algorithm.

Once such partitioning boundaries have been determined, a
Gray-like bit mapping can be assigned to the regions.

A. Key Probability Distribution

The one-time pad perfect secrecy is achieved under two
important assumptions, namely that the pad length is at least
the size of the message to be encrypted, and that the key
is selected at random with a uniform distribution. Thus,
achieving a low SER is not sufficient, provided the uniform
distribution requirement is not entirely satisfied. Since the key
distribution is a parameter that is assumed to be known to the
eavesdropper, a non-uniform distribution will result in some
keys being more probable than others, facilitating potentially
successful analytical attacks. When the output distribution
provided by the quantizer is not uniform, the perfect secrecy
condition requiring the eavesdroppers equivocation to be equal
to the entropy of the message is not satisfied. While the first
two quantization methods are constructed with a circularly
symmetric zero-mean Gaussian input distribution in mind,
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resulting from concentric circles quantization and LBG quantization

with variance σ, and, by construction, deliver a uniform output
distribution of the symbols, regardless of the codebook size1,
the LBG algorithm can be used for any arbitrary distribution.
However, we show in Fig. 5 that the LBG quantization fails
to deliver an exact uniform output distribution, even for small
codebook lengths, i.e., Nq = 4. The non-uniformity of the
distribution becomes even more pronounced for higher alpha-
bets. Figure 4 shows the distribution of measurement points
across 32 Voronoi regions delivered by the LBG algorithm.
The non-uniformity can be expressed as a rate loss which we
have taken into account in Fig. 3 by a corresponding right shift
of the LBG curves. The rate loss corresponds to ideal source
coding to make the distribution uniform. Overall, the best error
performance among the three cases analyzed is provided by
the second quantization method for the case of four regions,
with only a slight advantage over the LBG algorithm.

IV. KEY RECONCILIATION

For notation simplicity, we will denote an analog complex
measurement estimate at Alice, ĥA, by a = xA + jyA, and a
channel estimate at Bob, ĥB , by b = xB + jyB , where (x, y)
denote the real and imaginary parts, respectively. These values
represent the AWGN-disturbed measurements of the ideal
channel sample c = xch+jych, at Alice and Bob, respectively.
The input to the LDPC decoder consists of two sets of log-
likelihood ratios (LLRs), one for the parity symbols received
from Alice, and one for Bob’s own estimates of the channel,
assuming Alice’s key bits as “correct” reference. In general,

1We only provide here a table of quantization boundaries for four quan-
tization regions, although the limits for higher codebook sizes can be easily
computed by integrating the complex Gaussian input distribution and imposing
equal ”volumes“ in each region, i.e, uniform output distribution.
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Fig. 9. Polar coordinates trans-
formation; Given channel mea-
surement c, b represents Bob’s
noisy measurement of c. In polar
coordinates c is represented by
(rch, θch).

the LLR for a measurement value at Bob can be computed
according to (1), where p(b|a ∈ Ri) is the probability density
function of Bob’s measurement b given that Alice quantized
its corresponding value a to region Ri.

LLR(b) = ln
p(b|a ∈ Ri)
p(b|a /∈ Ri)

(1)

Previous works, such as [13], consider a noiseless environment
for the transmission of side information, or simply consider
the same formulation for the information bits, as for the parity
(syndrome) bits that are transmitted over the physical channel.
This is, however, inaccurate, and leads to sub-optimum decod-
ing.

While the LLR computation for the parity bits is trivial (2),
since they might just experience a standard AWGN channel
with variance σ2

B , the calculation of the LLRs for Bob’s
information bits is much more problematic, due to the fact
that Bob’s decoding of the information bits is subject to what
Alice quantized to.

LLR parity(b) = ln

e
− (b−1)2

2σ2
B

e
− (b+1)2

2σ2
B

 =
2b

σ2
B

. (2)

The LLR formulation for the information bits at Bob has
to account for the fact that Alice measures the channel with
error determined by σ2

A, and then quantizes. Nevertheless,
Bob assumes that whatever Alice quantized to represents the
correct key and it has to reconcile with her values. In [6],
we have shown that the general formula for the LLR for the
information symbols, assuming a uniform distribution of the
quantized measurements across Nq regions, to be as follows

LLR(b) = ln
(Nq − 1)P (a ∈ Ri|b)

P (a /∈ Ri|b)
, (3)

where P (a ∈ Ri|b) represents the probability that Alice
quantized its value a to region Ri, given current measurement
value b at Bob. In more intuitive terms, Eq. (3) is a measure
of the log-likelihood that given a noisy value of the channel
at Bob, Alice quantized her noisy counterpart to a certain
region Ri and not the others. Now, by iterating through all the
possible regions and computing LLRs for b, a vector of LLRs
is produced for every variable node of the LDPC decoder
that is associated with the channel measurements (information
symbols). In [6] we provide a complete derivation of the exact
LLR formulation when the channel distribution is a circularly
symmetric Gaussian.

Equation (4) shows the LLR expression when the concentric
circles quantization is used. For this specific quantization
method, a transformation to polar coordinates, such as the
one shown in Fig. 9, allows us to express parts of the LLR
expression with modified Bessel functions of the first kind (J0)
as given by (4). Such a simplification leads to a significant re-
duction in the number of numerical integrations. However, this
is only possible for the concentric circles quantization, which
comes with the disadvantage of a worse SER performance
than any of the other two methods. The LLR for the slices
quantization is given in (5), while the one for arbitrary Voronoi
regions is given by (6). The LLRs in (4) – (6) are functions of
b that can be viewed as resulting from the convolution of the
noise and channel densities, and can be computed in advance
by numerical integration, and stored, for a wide range of values
of b values and SNRs, in order to speed up the LDPC decoder.

V. NUMERICAL RESULTS

In this section, we provide some numerical results for the
intrinsic LLRs required by the LDPC decoder on Bob’s side,
necessary for key reconciliation, given the three different types
of quantization discussed.

We show in Fig. 6 the numerical results obtained for the
log-likelihood ratios for the first type of quantization, for an
SNR=14 dB, where the SNR is defined as σ2

ch/σ
2
B . Figure 6

shows for every possible value of b, in Cartesian coordinates,
(xB , yB), the probability that Alice quantized to region R3

and not to any other regions. As expected, for values of b
that would be also in region R3 and fall sufficiently far away
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LLR(a)(rB) = ln

(Nq − 1)
∞∫
0

rmaxi∫
rmini

rArche
− r

2
ch+r2A
2σ2
A

− r
2
ch+r2B
2σ2
B

− r2ch
2σ2
ch · J0(− rchrAσ2

A
) · J0(− rchrBσ2

B
)drAdrch

∑
Rk,k 6=i

∞∫
0

rmaxk∫
rmink

rArche
−
r2
ch

+r2
A

2σ2
A

−
r2
ch

+r2
B

2σ2
B

−
r2
ch

2σ2
ch · J0(− rchrAσ2

A
) · J0(− rchrBσ2

B
)drAdrch

(4)

LLR(b)(rB , θB) = ln

(Nq − 1)
∞∫
0

2π∫
0

rmaxi∫
rmini

θmaxi∫
θmini

rArche
− r

2
ch+r2A−2rchrA cos(θch−θA)

2σ2
A

− r
2
ch+r2B−2rchrB cos(θch−θB)

2σ2
B

− r2ch
2σ2
ch dθAdrAdθchdrch

∑
Rk,k 6=i

∞∫
0

2π∫
0

rmaxk∫
rmink

θmaxk∫
θmink

rArche
−
r2
ch

+r2
A

−2rchrA cos(θch−θA)

2σ2
A

−
r2
ch

+r2
B

−2rchrB cos(θch−θB)

2σ2
B

−
r2
ch

2σ2
ch dθAdrAdθchdrch

(5)

LLR(c)(xB , yB) = ln

(Nq − 1)
∞∫
−∞

∞∫
−∞

∫
Riy

∫
Rix

e
− (xA−xch)2+(yA−ych)2

2σ2
A

− (xch−xB)2+(ych−yB)2

2σ2
B

− (x2ch+y2ch)

2σ2
ch dxA dyA dxch dych

∑
Rk,k 6=i

∞∫
−∞

∞∫
−∞

∫
Rky

∫
Rkx

e
− (xA−xch)2+(yA−ych)2

2σ2
A

− (xch−xB)2+(ych−yB)2

2σ2
B

−
(x2
ch

+y2
ch

)

2σ2
ch dxA dyA dxch dych

(6)

from any quantization boundaries, the LLR is maximum. As
b takes values closer to the quantization thresholds and into
other regions, the LLR decreases to a minimum. This is the
case for regions R1,R2, and R4. For the second quantization
method (b), Fig. 7 shows the log-likelihood plot for one of
the external slices. Figure 8 shows the log-likelihood for R3,
for the case of the arbitrary Voronoi quantization regions, as
provided by the LBG algorithm. The numbering of the regions
is the one provided in Fig. 2. For our simulations, we used a
discrete grid for b with incremental values of 0.05 between
[−3.5, 3.5] for both axes.

VI. CONCLUSION

We have investigated the problem of physical-layer key
generation and reconciliation with Slepian-Wolf coding and
Low-Density Parity-Check (LDPC) codes in a wireless sce-
nario when two users measure a reciprocal channel with
independent noise on both sides. We offered an analysis on
the effect of different quantization schemes on the overall
error rate performance, or key disagreement rate, assuming
imperfect channel measurements. Our results show that for
higher codebook sizes, the Linde-Buzo-Gray quantizer does
not output a uniform distribution of key symbols, which is
of paramount importance for the secrecy aspect, and show
a possible quantization scheme that guarantees a uniform
output distribution and also provides a slightly lower key
disagreement rate than the LBG quantizer. We have further
shown the log-likelihood (LLR) formulation required by a
soft-decision LDPC decoder for key reconciliation, for each of
the quantization schemes analyzed and a circularly symmetric
complex Gaussian channel distribution.
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Abstract—We consider the problem of estimating the partition
function of the two-dimensional ferromagnetic Ising model in an
external magnetic field. The estimation is done via importance
sampling in the dual of the Forney factor graph representing the
model. Emphasis is on models at low temperature (corresponding
to models with strong couplings) and on models with a mixture
of strong and weak coupling parameters.

I. INTRODUCTION

The problem of estimating the partition function of the
finite-size two-dimensional (2D) ferromagnetic Ising model in
a consistent external field is considered. Applying factor graph
duality to address the problem has been investigated in [1]–[4].
It was demonstrated in [1] that Monte Carlo methods based
on the dual factor graph work very well for the Ising model
at low temperature. In contrast, Monte Carlo methods in the
primal/original graph suffer from critical slowing down and
erratic convergence to estimate the partition function in the
low-temperature regime [5]. Monte Carlo methods (based on
uniform sampling and Gibbs sampling) in the dual factor graph
were also proposed in [1] to estimate the partition function of
the 2D Ising model without an external field.

In this paper, we continue this research to extend the
results of [1], [2] to models with a mixture of strong and
weak coupling parameters and in the presence of an external
magnetic field. After defining an auxiliary probability mass
function in the dual Forney factor graph of the model, we
propose an importance sampling algorithm that can efficiently
estimate the partition function. A similar importance sampling
algorithm, designed specifically for models in a strong external
field, was recently proposed in [2].

The paper is organized as follows. We review the Forney
factor graph representation of the 2D Ising model in an
external field in Section II. Section III discusses dual Forney
factor graphs and the normal factor graph duality theorem. The
importance sampling algorithm is described in Section IV. In
Section V, we report numerical experiments.

II. THE ISING MODEL IN AN EXTERNAL MAGNETIC FIELD

Let X1, X2, . . . , XN be a set of discrete binary random
variables arranged on the sites of a 2D lattice. We suppose
that interactions are restricted to adjacent (nearest-neighbor)
variables (see Fig. 1). The real coupling parameter Jk,` con-
trols the strength of the interaction between adjacent variables

(Xk, X`). The real parameter Hm corresponds to the presence
of an external field and controls the strength of the interaction
between Xm and the field. Each random variable takes on
values in X = {0, 1}. Let xi represent a possible realization
of Xi, x stand for a configuration (x1, x2, . . . , xN ), and X
stand for (X1, X2, . . . , XN ).

The energy of a configuration x is given by [6]

H(x) = −
∑

(k, `) ∈ B

Jk,` ·
(
[xk = x`]− [xk 6= x`]

)
−

N∑
m=1

Hm ·
(
[xm = 1]− [xm = 0]

)
(1)

where B contains all the unordered pairs (bonds) (k, `) with
non-zero interactions, and [·] denotes the Iverson bracket [7],
which evaluates to 1 if the condition in the bracket is satisfied
and to 0 otherwise.

In this paper, the focus is on ferromagnetic Ising models
characterized by Jk,` > 0 for each (k, `) ∈ B. The external
field is assumed to be consistent, i.e., it is either assigned to
all positive or to all negative values.

The probability that the model is in configuration x is given
by the Boltzmann distribution [6]

pB(x) =
e−βH(x)

Z
(2)

where the normalization constant Z is the partition function
Z =

∑
x∈XN e−βH(x) and β is the inverse temperature. In the

rest of this paper, we assume β = 1. With this assumption,
large values of J correspond to models at low temperature.
Boundary conditions are assumed to be periodic.

For each adjacent pair (xk, x`), let κ : X 2 → R>0

κk,`(xk, x`) = eJk,`·
(
[xk=x`]−[xk 6=x`]

)
(3)

and for each xm, let τ : X → R>0

τm(xm) = eHm·
(
[xm=1]−[xm=0]

)
(4)

We then define f : XN → R>0 as

f(x)
4
=

∏
(k, `) ∈ B

κk,`(xk, x`)

N∏
m=1

τm(xm) (5)
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The corresponding Forney factor graph (normal graph) for
the factorization in (5) is shown in Fig. 1, where the boxes
labeled “=” are equality constraints [8], [9]. In Forney factor
graphs variables are represented by edges.

From (5), Z in (2) can also be expressed as

Z =
∑

x∈XN

f(x) (6)

At high temperature (i.e., for small J), the Boltzmann
distribution (2) approaches the uniform distribution. In this
case, Monte Carlo methods for estimating Z usually perform
well in the primal factor graph. Estimating Z in the low-
temperature regime is more challenging [5], [10], [11].

In this paper, we consider models at low temperature (i.e.,
with large J) and models with a mixture of strong and weak
coupling parameters in an external magnetic field. To compute
an estimate of Z in this case, we propose an importance
sampling algorithm in the dual of the Forney factor graph of
the 2D Ising model.

III. THE DUAL FORNEY FACTOR GRAPH

We can obtain the dual of the Forney factor graph in Fig. 1,
by replacing each binary variable x with its dual binary
variable x̃, each factor κk,` with its 2D Discrete Fourier
transform (DFT), each factor τm with its one-dimensional (1D)
DFT, and each equality constraint with an XOR factor, cf. [8],
[12]–[14]. Fig. 2 shows the dual Forney factor graph of the 2D
Ising model, where boxes containing “ + ” symbols represent
XOR factors as

g(x̃1, x̃2, . . . , x̃k) = [x̃1 ⊕ x̃2 ⊕ . . .⊕ x̃k = 0] (7)

the small boxes attached to each XOR factor are given by

λm(x̃m) =

{
coshHm, if x̃m = 0
− sinhHm, if x̃m = 1

(8)

and the unlabeled normal-size boxes attached to each equality
constraint represent factors as

γk(x̃k) =

{
2 cosh Jk, if x̃k = 0
2 sinhJk, if x̃k = 1

(9)

Here, Jk is the coupling parameter associated with each
bond. See [1]–[3], for more details on constructing the dual
Forney factor graph of the 2D Ising model.

In the dual domain, we denote the partition function by Zd.
For the models that we study here, the normal factor graph
duality theorem states that (see [13, Theorem 2])

Zd = |XN |Z (10)

In order to design Monte Carlo methods in the dual Forney
graph, we require factors (8) and (9) to be non-negative. In a
2D Ising model, Z is invariant under the change of sign of the
external field [6]. Therefore, without loss of generality, we will
assume Hm < 0 for 1 ≤ m ≤ N . Under the ferromagnetic
assumption Jk,` > 0 for (k, `) ∈ B. With these assumptions,
(8) and (9) will be non-negative.
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Fig. 1: Forney factor graph of the 2D Ising model in an ex-
ternal field, where unlabeled normal-size boxes represent (3),
small boxes represent (4), and boxes containing “ = ” symbols
are equality constraints.
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Fig. 2: The dual Forney factor graph of the 2D Ising model
in an external field, where boxes containing “ + ” symbols
represent (7), small boxes represent (8), and unlabeled normal-
size boxes represent (9).

IV. THE IMPORTANCE SAMPLING ALGORITHM

The importance sampling algorithm is described on Fig. 2.
We partition X̃ into X̃A and X̃B , with the condition that X̃B

is a linear combination (involving the XOR factors) of X̃A. In
this set-up, a valid configuration in the dual factor graph can
be created by assigning values to X̃A, followed by computing
X̃B as a linear combination of X̃A.

An example of such a partitioning is shown in Fig. 3,
where X̃A is the set of all the variables associated with the
thick edges and X̃B the set of all the variables associated
with the remaining thin edges. Accordingly, let BA ⊂ B
contain the indices of the bonds marked by thick edges and
BB = B − BA. For a valid configuration x̃ = (x̃A, x̃B), let

International Zurich Seminar on Communications (IZS), March 2 – 4, 2016

181



x̃A = (ỹ, z̃), where ỹ contains all the thick edges attached to
the small unlabeled boxes (involved in (8)) and z̃ contains all
the variables associated with the thick bonds (involved in (9)).

We prove that wH(ỹ), the Hamming weight of ỹ, is always
even, where the Hamming weight of a vector is the number
of non-zero components of that vector [15].

Lemma 1. If x̃ is a valid configuration in the dual Forney
factor graph, then wH(ỹ) is even.

Proof. We consider c =
⊕N

t=1 ỹt the component-wise XOR of
ỹ. Each XOR factor imposes the constraint that all its incident
variables sum to 0 in GF(2). Each ỹt in c can thus be expanded
as the XOR of the corresponding variables associated with the
bonds, furthermore, the variables on the bonds each appear
twice in this expansion. Hence c = 0, i.e., wH(ỹ) is even. �

Lemma 1 implies that Zd, and thus Z itself, are invariant
under the change of sign of Hm. Indeed, regardless of the sign
of Hm, i.e., assigned to all positive or to all negative values∏N
m=1 λm(x̃m) takes the same positive value, cf. (8).
The importance sampling algorithm works as follows. To

draw x̃(`) at each iteration `, we first draw x̃
(`)
A according to

a suitably defined auxiliary probability mass function on the
bonds (see (13)). We then update x̃

(`)
B to create a valid con-

figuration x̃(`) = (x̃
(`)
A , x̃

(`)
B ). Updating x̃

(`)
B at each iteration

is easy as x̃B is a linear combination of x̃A.
Let us define

Λ(x̃B)
4
=

∏
k∈BB

γk(x̃k) (11)

Ψ(x̃A)
4
=

∏
k∈BA

γk(x̃k)

N∏
m=1

λm(x̃m) (12)

q(x̃A)
4
=

Ψ(x̃A)

Zq
, ∀ x̃A ∈ X |BA| (13)

where Zq in (13) is available as

Zq =
∑
x̃A

Ψ(x̃A) = 2|BA| exp
( ∑
k∈BA

Jk −
N∑
m=1

Hm

)
(14)

Here |BA| is the cardinality of BA. Note that Hm < 0.
The product form of (12) suggests that to draw a sample

x̃
(`)
A = (ỹ(`), z̃(`)) according to q(x̃A), two separate subrou-

tines are required, one for the ỹ(`)-part, and another for the
z̃(`)-part. To draw the ỹ(`)-part, we apply.

repeat
draw u

(`)
1 , u

(`)
2 , . . . , u

(`)
N

i.i.d.∼ U [0, 1]

for m = 1 to N
if u(`)m < 1

2 (1 + e2Hm)

ỹ
(`)
m = 0

else
ỹ
(`)
m = 1

end if
end for

until wH(ỹ(`)) is even
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= = = =
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Fig. 3: A partitioning of variables in the dual Forney factor
graph of the 2D Ising model. The thick edges represent X̃A

and the remaining thin edges represent X̃B .

The criteria to accept ỹ(`) is based on Lemma 1. The
quantity 1

2 (1 + e2Hm) is equal to λm(0)/
(
λm(0) + λm(1)

)
.

To draw the z̃(`)-part, the following subroutine is applied.

draw u
(`)
1 , u

(`)
2 , . . . , u

(`)
|BA|

i.i.d.∼ U [0, 1]

for k = 1 to |BA|
if u(`)k < 1

2 (1 + e−2Jk)

z̃
(`)
k = 0

else
z̃
(`)
k = 1

end if
end for

Here, 1
2 (1+ e−2Jk) is equal to γk(0)/

(
γk(0) + γk(1)

)
. We

can then create x̃
(`)
A as a concatenation of ỹ(`) and z̃(`).

It is possible to compute the probability of rejection in the
algorithm. E.g., if the model is in a constant external field H

P
(
wH(ỹ) is odd

)
= sinh(N |H|)e−N |H| (15)
≤ 0.5 (16)

The two previous subroutines will provide i.i.d. samples
x̃
(1)
A , x̃

(2)
A , . . . , x̃

(`)
A , . . . according to (13). Updating x̃

(`)
B is

easy after generating x̃
(`)
A . The created samples are then used

in the following importance sampling algorithm in order to
estimate Zd.

for ` = 1 to L
draw x

(`)
A according to q(x̃A)

update x̃
(`)
B

end for
compute

ẐIS =
Zq
L

L∑
`=1

Λ(x̃
(`)
B ) (17)
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Lemma 2. ẐIS is an unbiased estimator of Zd.

Proof.

Eq[ ẐIS ] = Eq

[ Zq
L

L∑
`=1

Λ(X̃
(`)
B )
]

= Zq · Eq
[

Λ(X̃B) ]

=
∑
x̃A

Ψ(x̃A) · Λ(x̃B)

= Zd

�

The estimate of Zd is then used to compute a Monte Carlo
estimate of Z, as in (6), via the normal factor graph duality
theorem (cf. Section III).

The accuracy of (17) depends on the fluctuations of Λ(x̃B).
If Λ(x̃B) varies smoothly, ẐIS will have a small variance. From
(9) and (11), we expect to observe a small variance if Jk is
large for k ∈ BB – as for large values of Jk, each factor (9)
tends to a constant factor. For more details, see [4].

We emphasize that our choice of partitioning in Fig. 3 is not
unique. Fig. 4 shows another example of a partitioning in the
dual Forney factor graph whose corresponding partitioning in
the primal factor graph is not cycle-free. A partitioning which
gives rise to a slightly different importance sampling algorithm
(with no rejections) is discussed in [4].

The proposed algorithm is applicable to the Ising model in
the absence of an external field as well. Indeed, partitionings
in Figs. 3 and 4 are valid even when the external field is not
present. We will consider Ising models without an external
field in our numerical experiments in Section V-A.

That being the case, to observe fast convergence in the dual
domain, not all the coupling parameters need to be strong, but
a restricted subset of them. The method of this paper can thus
be regarded as supplementary to the ones presented in [1]
and [2], where the focus is on models at low temperature
(corresponding to models in which all the coupling parameters
are strong) and on models in a strong external field.

V. NUMERICAL EXPERIMENTS

We apply the importance sampling algorithm to estimate the
log partition function per site, i.e., 1

N lnZ, of 2D Ising models.
All simulation results show 1

N lnZ vs. the number of samples
for one instance1 of the model with periodic boundaries.

We consider 2D ferromagnetic Ising models with spatially
varying (edge-dependent) coupling parameters without an ex-
ternal field in Section V-A We will also compare the efficiency
of the importance sampling algorithm with uniform sampling.
Comparisons with Gibbs sampling and the Swendsen-Wang
algorithm [16] are discussed in [4]. 2D ferromagnetic Ising
models in an external field with spatially varying model
parameters are considered in Section V-B.

1In statistical physics, estimating quantities for a fixed set of couplings
(generated according to some distribution) is called the “quenched average”.
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Fig. 4: Another example of a partitioning of variables in the
dual Forney factor graph of the 2D Ising model.
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Fig. 5: Estimated log partition function per site vs. the number
of samples for a 30× 30 Ising model, with Jk ∼ U [1.0, 1.25]
for k ∈ BA and Jk ∼ U [1.25, 1.5] for k ∈ BB . The plot
shows five different sample paths obtained from importance
sampling (solid black lines) and five different sample paths
obtained from uniform sampling (dashed blue lines) on the
dual factor graph.

A. 2D Ising models without an external field

We consider a 2D Ising model of size N = 30 × 30
without an external magnetic field. For k ∈ BA, we set
Jk

i.i.d.∼ U [1.0, 1.25] and for k ∈ BB , set Jk
i.i.d.∼ U [1.25, 1.5].

Fig. 5 shows simulation results obtained from importance
sampling (solid lines) and from uniform sampling (dashed
lines) in the dual Forney factor graph. From Fig. 5, the
estimated log partition function per site is about 2.503.

We observe that importance sampling outperforms uniform
sampling (with virtually the same amount of computation
time); see also [2], [4].
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Fig. 6: Estimated log partition function per site vs. the number of samples for a 50×50 Ising model, with Jk ∼ U [0.1, 1.0] for
k ∈ BA and Hm ∼ U [−0.8,−0.2] for 1 ≤ m ≤ N ; for k ∈ BB (left) Jk ∼ U [1.0, 1.2], (middle) Jk ∼ U [1.2, 1.4], and (right)
Jk ∼ U [1.4, 1.6]. Each plot shows ten different sample paths obtained from importance sampling on the dual factor graph.

B. 2D Ising models in an external field

We set N = 50 × 50, Jk
i.i.d.∼ U [0.1, 1.0] for k ∈ BA, and

Hm
i.i.d.∼ U [−0.8,−0.2] for 1 ≤ m ≤ N in all the experiments.

In the first experiment, Jk
i.i.d.∼ U [1.0, 1.2] for k ∈ BB .

Simulation results obtained from importance sampling in the
dual factor graph are shown in Fig. 6 (left). In the second
experiment, Jk

i.i.d.∼ U [1.4, 1.5] for k ∈ BB . Fig. 6 (middle)
shows simulation results. We set Jk

i.i.d.∼ U [1.4, 1.6] for k ∈ BB
in the third experiment. Simulation results are shown in Fig. 6
(right), where the estimated 1

N lnZ is about 2.5518. Notice
that in Fig. 6 from left to right, the range of the y-axis is
0.015, 0.008, and 0.006, respectively.

In agreement with our analysis in Section IV, we observe
that convergence improves as Jk becomes larger for k ∈ BB .

VI. CONCLUSION

An importance sampling algorithm was presented for esti-
mating the partition function of the 2D ferromagnetic Ising
model in a consistent external magnetic field. The algorithm
is described in the dual Forney factor graph representing
the model. After introducing a partitioning and an auxiliary
importance sampling distribution, the method operates by
first simulating a subset of the variables, followed by doing
computations over the remaining ones. The algorithm can
efficiently estimate the partition function when the model is
at low temperature or when the model contains a mixture of
strong and weak coupling parameters. The proposed algorithm
is applicable to the 3D Ising model and the q-state Potts model
in an external field as well. For duality results in the context
of statistical physics, see, e.g., [17], [18], [19, Chapter 10].
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Abstract—Future generations of cellular networks will have
higher node density, larger number of antennas per node, and
wider bandwidth. This paper develops capacity scaling laws
for such networks by explicitly incorporating the impact of
bandwidth on capacity. The main contribution is a capacity
scaling upper bound for a cellular-type network architecture
without base station cooperation. This upper bound is shown
to be tight, as it provides the same scaling as an infrastructure
multi-hop protocol introduced in previous work. The results
show that large cellular networks transition from bandwidth-
limited to power-limited capacities depending on the scaling of
the bandwidth compared to the scaling of the number of nodes
and that single hop protocols are suboptimal except when the
bandwidth scaling is small.

Index Terms—Wideband, capacity scaling, cellular network.

I. INTRODUCTION

Wireless standardization bodies have begun to consider
deployment of millimeter wave (mmWave) technology with
frequencies in the range 30 − 300GHz, leading to large
amounts of spectrum available for communication [1]. Other
technologies that increase available system bandwidth, such as
carrier aggregation across bands and opportunistic cognitive
reuse of occupied bands, are also being considered for future
generations of cellular networks.

The conventional analysis of a point-to-point wideband
channel exhibits a transition from a high-SNR regime where
rate grows with bandwidth to a low-SNR regime where rate
is power-limited [2]. However, since practical networking
protocols usually divide the available bandwidth among nodes
in some form, the fact that system bandwidth is increasing
does not necessarily imply that a network with large number
of nodes will experience the effects described in the wideband
point-to-point channel model.

While the exact capacity region of a large network is not
known, capacity scaling laws provide a useful framework that
characterizes the growth of the capacity region as the number
of nodes increases [3]. In order to quantify the impact of
increasing bandwidth on network capacity, considered in the
light of other resources that also increase the available degrees
of freedom, this paper provides a scaling law analysis of a
cellular network operating in the wideband regime.

Work supported in part by COINS, FPU2012/01319, NSF Grants # 1302336
and 1547332, and NYU WIRELESS.

From an information theoretic perspective, mmWave, carrier
aggregation, massive Multiple Input Multiple Output (MIMO)
and dense cellular deployments are all, in essence, various
ways to increase the fundamental degrees of freedom of the
network: bandwidth, antennas and infrastructure density. To
evaluate the potential value of each of these technologies,
this paper derives an upper bound on the scaling of per node
capacity of cellular networks under parametric scaling of these
dimensions. Our analysis follows along the lines of the classic
scaling laws results [3]–[9], but is applied to cellular networks
rather than ad-hoc networks. Specifically, we consider a large
cellular network with n mobile nodes, with various scalings
in n of parameters such as the bandwidth, area, number of
base stations (BSs) and number of BS antennas. In addition,
we consider that BSs do not cooperate and nodes communi-
cate with their closest BS, creating two traffic flows usually
found in cellular networks, consisting of uplink and downlink
transmissions. This produces different scaling properties than
those in ad-hoc networks with infrastucture assistance [7]–[9].

Considering a deterministic channel model, our main result
determines an upper bound to the throughput capacity scaling
using cut-set arguments, by separating each single BS from
the rest of the network. The cut of the network effectively
forms a combined point-to-point MIMO system that displays
a behavior resembling that of point-to-point channels. The
upper bound meets a lower bound achieved by an infrastruc-
ture multi-hop (IMH) protocol whose throughput scaling was
described for fading channels in [10], thereby establishing the
capacity of cellular networks without BS cooperation, with
two scaling regimes:

• In the bandwidth limited regime, bandwidth grows slower
than the power that can be delivered towards the aggre-
gate network, and throughput scales with the degrees of
freedom of the network.

• In the power limited regime, bandwidth grows faster than
the power transfer, and throughput scales at most with the
power delivered to the nodes.

The rest of the paper is organized as follows. In Section
II we provide a brief overview of the literature on capacity
scaling laws analysis. In Section III we describe our models for
a large cellular network with increasing number of users, and
the channel between terminals. In Section IV we describe the
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upper bound on the throughput capacity, establish the optimal
throughput scaling and discuss different operating regimes.
Finally, Section V concludes the paper.

II. OVERVIEW OF CAPACITY SCALING LAWS

Capacity scaling law analysis started with the seminal work
of Gupta and Kumar [3] where they studied the scaling of the
rate R(n) achieved by each node in an ad-hoc network with n
nodes distributed in a unit area (called dense network). Their
protocols exhibit a scaling of R(n) ∝ Θ( 1√

n
)1. This suggests

that using the protocols in [3] it is not possible to increase
the number of nodes in network arbitrarily without sacrificing
rates. Similar results exist for extended network models [4],
where n users spread over an area Θ(n) with constant user
density, instead of a fixed area with user density Θ(n).

Ozgur, Lévêque and Tse [4] introduced hierarchical coop-
eration (HC), and showed that HC achieves linear scaling
R(n) = Θ(1) in dense networks and improves the Gupta-
Kumar result to Θ(n2−α/2) in extended networks with a low
path-loss exponent α < 3. Under HC, nodes cooperate to
form virtual antenna arrays, and for a sufficiently high number
of layers of cooperation, it would be possible to break the
original limitation and grow the number of nodes arbitrarily
without incurring any rate penalty. However, Franceschetti,
Migliore and Minero [5] pointed out that the physical degrees
of freedom of a signal within a bounded area are finite. It
would be unrealistic to assume that as the number of nodes
increases, all channel coefficients remain independent. Thus
the result in [4] would be an artifact of optimistic indepen-
dence assumptions. Considering these constraints, [5] obtained
an ultimate limitation to scaling of R(n) as Θ( log(n)2√

n
).

In [6], Ozgur, Johary, Tse and Lévêque proposed an argu-
ment to harmonize the results of [4] and [5]. Even though
for very high n channels do become dependent, this occurs at
values of n so high that there would exist first a transitory
regime with high, but finite, values of n where the linear
scaling analysis holds. In [6] the same authors also introduced
the concept of operating regimes, by allowing area to scale
with an arbitrary exponent of n, A ∝ nν . A threshold
on exponent ν separates two regimes: for small ν network
capacity behaves similarly than the dense network model and
for ν above the threshold network capacity behaves as in the
extended network model.

Recently, the ability of HC to achieve linear scaling was put
into question in [12]. It was found that under practical limi-
tations, the optimal number of layers in a HC implementation
would be small, contradicting the theoretical analysis where
rate improves with the number of layers and for achieving the
linear scaling a very large number of layers is necessary.

There have been other extensions of scaling law analysis in
ad-hoc networks introducing cooperation, mobility, broadcast,

1We use the standard f(n) = O(g(n)), f(n) = Ω(g(n)) and f(n) =
Θ(g(n)) notations [11] to respectively represent that at sufficiently high n
function f(n) becomes less than or equal than g(n), greater than or equal to
g(n), and identical to g(n) up to a constant factor.

infrastructure or large bandwidth. Readers are referred to [13]
for a comprehensive review.

Most literature on scaling laws follows ad-hoc network
models, which have different traffic demand than a cellular
network. Even though [7]–[9] have modeled ad-hoc networks
with infrastructure support, the use of infrastructure in these
models is only as an intermediary to help the delivery of ad-
hoc type communications. In these works, data always flows
from one node to another, with destinations randomly picked
across the network. More importantly, in such models it is
always possible to fall back to pure ad-hoc protocols ignoring
the presence of infrastructure when this is beneficial.

A. Our Contributions
In this paper, rather than ad-hoc networks supported by

infrastructure, we consider the traffic flows typical in cellular
networks, where each node sustains uplink and downlink data
flows with its closest BS. On the one hand, this reduces the
typical distance between source-destination pairs; on the other
hand, this model may cause rates of many users to concentrate
at the same BS causing bottlenecks that cannot be avoided by
dropping the infrastructure and falling back to pure ad-hoc
protocols. Both our approach and that of [8] have in common
the presence of infrastructure with arbitrary scaling density,
but the difference in the traffic renders the ultimate scaling
limitations very different.

The main innovation of our analysis is including the impact
of very large bandwidths in capacity scaling. This provides
a characterization of a bandwidth threshold beyond which a
large network stops benefiting from the bandwidth increase
and experiences power limitations, mirroring the well-known
fact that point-to-point links become power-limited when
bandwidth is large.

Most scaling analyses [3]–[9] considered a fixed bandwidth.
However, a network with a fixed bandwidth would only
exhibit low SNRs in long-distance links with a high path loss,
scaling with the dimensions of the network and unrelated to
bandwidth. This occurs because it is always possible to slice
the constant bandwidth in small narrowband chunks as the
number of nodes n grows. In order to study large system
bandwidth W , one could have W →∞ and then let n grow,
as in [14]. Nonetheless, this method forces the network to be
always power-limited, rather than providing insights on the
bandwidth scaling necessary to enter power-limitation, and its
interplay with network architecture and rates. In our model, the
goal is to investigate what happens between the two extremes;
for this we take limits on W and n increasing to infinity at
the same time, following an exponential relation:

ψ := lim
n,W→∞

logW

log n
, (1)

and the cases in the literature correspond to ψ = 0 and ψ =∞.

III. NETWORK AND CHANNEL MODELS

A. Network Model
We consider a sequence of cellular wireless networks in-

dexed by n, where n is the number of single-antenna nodes
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uniformly distributed in an area A. The network is supported
by m BSs that do not cooperate, with ` antennas each, and
communication takes place over an increasing bandwidth W .

Table I defines the scaling relation between n and the
different network parameters. Here W0, A0, m0, l0, k0 are
fixed constants. The exponents of the number of BSs and BS
antennas are taken from [8]. The constraint β+γ ≤ 1 ensures
that the number of infrastructure antennas per node does not
grow without bound. The scaling of the network area is as
proposed by [6] to model a continuum of operating regimes
between dense (ν = 0) and extended (ν = 1) networks. We
introduce the bandwidth scaling exponent ψ as shown in (1).
Note that ψ < 1 represents that bandwidth per node decreases
as the number of nodes increases, while ψ > 1 represents
asymptotically infinite bandwidth per node.

We consider BSs that are placed at fixed distances of each
other, dividing the network area in regular hexagonal cells
around each BS with radius rcell with asymptotically n

m nodes
each. The downlink from the BS to the nodes and the uplink
from the nodes to the BS operate independently in alternate
time division duplex (TDD) frames. This imposes a 1

2 penalty
in rate but otherwise does not alter the scaling of capacity
with n. Note that BSs cannot receive in the downlink phase
or transmit in uplink, while nodes can do both.

Due to random node placement, the rate achievable by any
individual user is a random variable which depends on the
particular downlink or uplink protocol used. The following
definitions are adapted from [3].

Definition 1. A downlink (uplink) rate of RDL(n) (RUL(n))
bits per second per node is feasible in a realization of the
cellular network if there exists a protocol that achieves in all
nodes.

The feasible rate is evaluated on a realization of the random
node locations, and feasibility of some rates will depend on
distances in a specific layout. In the following definition we
remove the randomness of Def. 1 by requiring a rate scaling
at the frontier of feasible rates with probability one.

Definition 2. The downlink (uplink) per node throughput
capacity scaling CDL(n) (CUL(n)) of a set of random cellular
networks is of the order Θ(f(n)) bits per second per node if
there are constants c1 < c2 such that.

lim
n→∞

P (RDL(n) = c1f(n)) = 1 (2)

lim
n→∞

P (RDL(n) = c2f(n)) < 1 (3)

Table I
SCALING EXPONENTS OF NETWORK PARAMETERS

Exponent Range Parameter (vs. no. of nodes n)
ψ [0,∞) Bandwidth W = W0nψ

ν [0, 1] Area A = A0nν

β [0, 1] No. of BSs m = m0nβ

γ [0, 1− β] No. of BS antennas ` = `0nγ

B. Channel Model

Between a transmitter t and receiver r, we consider a MIMO
additive white Gaussian noise channel with deterministic full
rank matrix Ht,r ∈ C`t×`r . Each entry of the channel matrix
has unit gain and an arbitrary phase, h(i,j)t,r = e2πjθi,j , so that
the channel squared norm satisfies |H|2 = `r`t. The distance
between transmitter and receiver, dt,r, defines the macroscopic
pathloss gain d−

α
2

t,r . Average transmission power constraints of
nodes and BSs are P , and PBS, respectively. Our results can
be extended to random fading models with moderate effort.
The signal at the receiver is given by

yr = d
−α2
t,r Ht,rxt + zr (4)

where xt is the signal transmitted by t with period Ts = 1/W ,
satisfying E

[
|xt|2

]
≤ Pt

W . Here Pt depends on the type of
transmitter and the fraction of its power dedicated towards r.
The thermal noise at the receiver is zr ∼ CN (0, N0I`r).

In practice it is expected that mmWave channels do not have
a rich enough scattering to display full rank channel matrices
in the physical arrays, but our results apply all the same to
these non-full rank channels by appropriately projecting the
dimensions of the antenna arrays to a smaller subspace and a
small-dimensional full rank matrix that captures the equivalent
effective array dimensions. Hereafter, we will use the term
“number of antennas `” to refer to the effective independent
antenna array dimensions and represent by `t and `r the
effective number of transmit and receive antennas.

The upper bounds developed in this paper consider cuts sep-
arating one transmitter from the rest of the network, applying
this channel model to one virtual transmitter and one virtual
receiver containing all the antennas on each side of the cut.
As we argue in Sec. IV, the upper bound is achievable in a
scaling law sense and, even though we do not consider full BS
cooperation, it represents the scaling with perfect interference
suppression. The achievable schemes that illustrate this were
presented originally for non-coherent fading channels in [10];
here they have been adapted to follow the channel model
(4) with proper modifications to incorporate interference from
other cells.

IV. CHARACTERIZATION OF CAPACITY SCALING

In this section we first present an upper bound to the
throughput capacity scaling of large cellular networks, and
we next illustrate that an adaptation of the multi-hop protocol
presented in [10] for fading channels to our channel model
achieves this scaling.

Theorem 1. The downlink throughput capacity scaling
CDL(n) of random cellular networks is upper bounded by

Θ
(
nβ+γ−1+min(ψ,(1−ν)α2 )

)
, (5)

and the uplink throughput capacity scaling CUL(n) by

Θ
(
nmin(ψ,(1−ν)α2 )

)
, (6)

both with probability 1 as n→∞.
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Proof. We introduce the detailed analysis for downlink. Up-
link follows similarly.

Since our network model assumes no cooperation between
BSs, we obtain an upper bound of the sum-rate of the users
served by each BS by considering a cut separating that BS
from the rest of the network. At the receiving side of the
cut there is perfect cooperation among n receiver nodes and
another m − 1 BS transmitters, resulting in perfectly-known
interference that can be canceled.

This reduces the communication problem into a point-to-
point MIMO channel consisting of a single transmitter-receiver
pair with dimensions `t = ` `r = n. We represent the distance
from each node r to BS t in a diagonal matrix Dt , {Dii

t =

d
−α2
t,i }, and write the signals from all BSs to all nodes by

extending (4) as

y = DtHtxt +
∑
t′ 6=t

Dt′Ht′xt′︸ ︷︷ ︸
known to all receivers

+ z (7)

where Ht refers to the small scale fading channel matrix
between BS t and all receivers. All nodes and the other BSs
cooperate perfectly, canceling the second term and leaving a
non-interfering point-to-point MIMO channel.

Hence, the DL sum rate on the cell of BS t ∈ [1,m], denoted
by TDL−t(n) is bounded by

TDL−t(n) ≤ max
Qxt

W log det

(
In +

1

WN0
DtHtQxtH

H
t DH

t

)
(8)

where we represent by Qxt the normalized covariance ma-
trix of the transmitted signal xt, with its power constraint
expressed as tr{Qxt} ≤ PBS.

By the assumption that channel matrices are full rank and
` ≤ n, following standard arguments in [2, (7.10)], it can be
shown that the upper bound in (8) can be expressed as a power
allocation over the eigenvalues λi of the matrix DtHt

TDL−t(n) ≤ max
Pi

W
∑̀
i=1

log

(
1 +

Piλ
2
i

WN0

)
(9)

We can use the trace of the matrix to upper bound each
eigenvalue separately λ2i ≤

∑`
i=1 λ

2
i = tr{DtHtH

H
t DH

t } ≤
`
∑n
r=1 d

−α
t,r . Due to the fact that all terms in this upper

bound are equal and the convexity of the logarithm, the power
allocation P ∗i = PBS

` maximizes this upper bound. Hence

TDL−t(n) ≤W` log

(
1 +

PBS

WN0

n∑
r=1

d−αt,r

)
(10)

Notice that if limn→∞
PBS

∑n
r=1 d

−α
t,r

WN0
= ∞, then the upper

bound in (10) becomes degrees-of-freedom-limited. In this
regime (10) scales as Θ(W`).

Conversely, only if all links produce a low power at
the same time, satisfying limn→∞

PBS

∑n
r=1 d

−α
t,r

WN0
= 0, the

network is in the power-limited regime and (10) scales as
Θ(`PBS

∑n
r=1 d

−α
t,r ).

The sum
∑n
r=1 d

−α
t,r can be calculated using the exponential

stripping method described in [15]. Consider a series of con-
centric rings centered at the BS t with inner radius ri = n

ν
2 e
−i
2

and outer radius ri−1. Recall that the user density scales as
n1−ν and network area as nν , thus the number of nodes
contained in each disc is Si ≤ ne1−i with high probability.
Using this, we can upper bound the sum over n by summing
over these discs and lower-bounding distance in each disc by
the inner radius. Moreover, we have that an area of nν−1 is
the smallest that contains one node w.h.p. so the sum ends
at i ≤ blog nc + 1, assigning distance r

ν−1
2 to the last term

instead.
n∑
r=1

d−αt,r ≤
blognc+1∑
i=1

Sir
−α
i

≤

blognc∑
i=1

ne1−in−ν
α
2 e+i

α
2

+ en(1−ν)
α
2

≤ n−ν α2
[
log ne1+

α
2 log(n)

]
+ n(1−ν)

α
2 e

≤ (log n+ 1)n(1−ν)
α
2 e

(11)

where the third inequality is due to e+i
α
2 ≤ emax(i)α2 .

Examining Table I this leads to

TDL−t(n) =

{
Θ
(
nγ+ψ

)
ψ ≤ α

2 (1− ν)

Θ
(
nγ+

α
2 (1−ν)) ψ > α

2 (1− ν)
(12)

Now, by symmetry, each of the m single-BS cuts gives the
same upper bound to the rate of the users served by that BS.
By the requirement that feasible rate is guaranteed to all users,
the throughput capacity of the network is upper bounded by

RDL(n) ≤ m

n
min
t
TDL−t(n) = Θ(nβ+γ−1+min(ψ,(1−ν)α2 ))

completing the proof of Theorem 1 for DL.
A similar set of arguments lead to the bound for the uplink.

In this case we consider n cuts, each separating one user node
from the rest of the network. In this cut, all the BSs and
the remaining n − 1 nodes are receivers, and their mutual
interference canceled. Due to the fact that the transmitting
node has a single antenna (eigenvalue), the degrees of freedom
are Θ(W ); and the sum term over all receiving devices
(equivalent of (11)) is

n−1∑
r=1

d−αt,r + `

m∑
r=1

d−αt,r = Θ(n(1−ν)
α
2 ).

Then the upper bound on uplink feasible rate becomes

RUL(n) ≤ min
t
TUL−t(n) = Θ

(
nmin(ψ,(1−ν)α2 )

)
(13)

The next theorem shows that, after adapting the throughput
scaling to the channel model in this paper, the Infrastructure
Multi-Hop (IMH) protocol introduced in [10, Th. 2] can
achieve the upper bound.
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Theorem 2. The IMH protocol achieves the upper bound in
Theorem 1 and characterizes downlink throughput capacity as

CDL(n) = Θ
(
nβ+γ−1+min(ψ,(1−ν)α2 )

)
(14)

and when β + γ = 1 the uplink throughut capacity as

CUL(n) = Θ
(
nmin(ψ,(1−ν)α2 )

)
(15)

The downlink rate of Infrastructure Single-Hop
(ISH) using direct transmissions [10, Th. 1] is only
Θ
(
nβ+γ−1+min(ψ,(β−ν)α2 )

)
for the channel model used in

this paper, and only achieves capacity if the single-receiver
power at cell edge is high, when ψ < (β − ν)α2 , or in
the particular case of maximum BS density β = 1. Both
achievable schemes and the capacity scaling upper bound
are compared in Fig. 1 for downlink transmission. A similar
relation between the protocols and the bound exists for
uplink.

Comparing the two cases of the capacity scaling on Theo-
rem 2, we can distinguish two operating regimes.

Bandwidth limited regime: If ψ < α
2 (1 − ν), the network

capacity grows with W . It must be noted that this regime
of the capacity scaling relies on the received power at all
nodes in the network at once, and does not guarantee that any
specific single node can receive a high-SNR in the absence of
receiver cooperation. Indeed, as we argue above, the use of
independent direct transmissions as in ISH protocol does not
always achieve capacity scaling.

Power limited Regime: If ψ > α
2 (1 − ν), the network

capacity does not grow with W . Network capacity scaling is
bounded by the power that can be transfered from one BS to
all nodes in the network at once. The distances between BSs
and the nodes are sufficiently far that the SNR in (10) goes to
zero. In this regime no node can receive degrees-of-freedom
limited rates even with cooperation.

Finally, note that these scaling laws make intuitive sense
because, with probability 1 as n → ∞, a disc with radius
Θ(n(

(ν−1)
2 )) around a BS contains one node, which combined

with array gain nγ gives the best-case transfer of power
between a single BS and the rest of the network. Also, the
degrees of freedom of the cellular network cannot exceed
Θ (Wm`).

V. CONCLUSIONS

As cellular networks evolve, the node density, number of BS
antennas and bandwidth increase. Wireless network capacity
scales with these increasing degrees of freedom only if re-
ceived power is not overspread. In this paper we have provided
a characterization of cellular capacity scaling that exhibits a
bandwidth-limited and a power-limited regime. Moreover, only
in a fraction of the first regime capacity is achievable using
independent non-cooperative direct transmission between the
BS and each node in its cell, whereas for sufficiently large
bandwidth cooperation or multi-hop is essential to achieve
throughput capacity scaling. While traditional cellular net-
works typically operate in the bandwidth-limited regimes,

IMH

ISH

Bandwidth limited Power limited

Upper Bound

Figure 1. Exponents of downlnk rates vs bandwidth.

future cellular networks with large bandwidth could experience
power-limited scaling regimes, therefore necessitating multi-
hop communications.
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Abstract—The two-user Z-interference channel with an ad-
ditional secrecy constraint is considered. The two transmitter-
receiver pairs wish to reliably transmit their messages; however
the transmission of the first pair both interferes with the
transmission of the second pair and is also required to be
completely secure from the second receiver. The focus here is
on the capacity region of the above Z-interference channel in
the Gaussian case under the standard power constraints. The
maximum rates of the two users in this setting are described, and
although the maximum rate of the transmission of the first pair
has a single-letter expression, due to Wyner’s secrecy capacity
expression, its maximization is non-trivial. The significance of a
stochastic encoder for the second transmitter, encoding a message
which is not required to comply with any secrecy constraints, is
noted. It is shown explicitly that constraining this encoder to
be deterministic reduces the capacity region. Finally, a Sato-
type outer bound on the capacity region is obtained under this
additional deterministic encoder constraint.

I. INTRODUCTION

The interference channel is a central open problem in
multi-user information theory. Understanding the effect of
interference is critical to the understanding of the limitations of
communication and essentially the interactions in any network.
The basic aspects of interference appear already in the simplest
setting - the two-user Z-interference channel. This channel
comprises two independent inputs (X1,X2) and two outputs
(Y 1,Y 2) (throughout the paper bold letters denote length n
random vectors) with a channel conditional distribution of the
following form:

PY 1,Y 2|X1,X2
= PY 1|X1

PY 2|X1,X2
. (1)

The open question for this channel is: given two independent
messages W1 ∈ [1, 2nR1 ] and W2 ∈ [1, 2nR2 ], what are the
rates R1 and R2 that can be reliably transmitted through this
channel? Due to the importance of this problem it had attracted
considerable attention throughout the years. Many results have
been obtained; however, in general, the problem is still open.
We refer the reader to recent overviews of the problem given
in the introductory sections of [1] and [2].

The difficulty of this problem lies in the fact that we do
not have a good understanding of the effect of a transmission

The work of R. Bustin was supported in part by the women postdoctoral
scholarship of Israel’s Council for Higher Education (VATAT) 2014-2015, in
part by the the U. S. Army Research Office under MURI Grant W911NF-11-
1-0036, and in part by the U. S. National Science Foundation under Grants
CMMI-1435778 and ECCS-1343210.

on other (unintended) users. Moreover, as can be seen in
the additive Gaussian white noise (AWGN) setting there is
a rivalry between the two users [3], meaning that when one
transmits at its maximum rate it also causes the maximum
disturbance on the other user (a phenomenon known as the
“worst additive noise” result [4]).

In this work we place an additional requirement on the in-
terfering signal. Beyond its reliable decoding at its receiver we
also require complete secrecy of this message at the interfered-
with receiver. This additional requirement is relevant to many
practical settings, in which our transmission can both be
received by other, unintended receivers, but still we would
like it to remain secure. As will be shown here this additional
requirement provides interesting observations and many open
questions.

We begin by formally stating the complete secrecy require-
ment:

lim
n→∞

1

n
I (W1;Y 2)→ 0 (2)

which assures complete secrecy of the interfering message at
Y 2. Note that due to this complete secrecy constraint we may
consider only “weak interference”. Figure 1 depicts the model.

Fig. 1. The Z-Interference channel with a complete secrecy constraint for
the interfering message at the interfered-with reciever.

This initial work focuses on the AWGN setting; however, as
will be evident, many of the claims can be extended to discrete
memoryless channels. Thus, we consider the following model
for a single use of the channel:

Y1 =
√
snr1X1 +N1

Y2 =
√
snr2X2 +

√
asnr1X1 +N2 (3)

where N1 and N2 are standard additive Gaussian noise terms
which can be assumed to be independent of each other and
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from channel use to channel use. They are also independent
of the transmissions of the two users X1 and X2 which
are independent of each other (no cooperation between the
transmitters). We assume a ∈ [0, 1) which is the “weak
interference” regime. There is also an average power constraint
of 1 on both channel inputs.

In this work we distinguish between two scenarios. First, we
do not limit either encoder, and allow stochastic encoders at
both transmitters. Under this assumption we first examine the
bounding box of the capacity region, that is, the maximum
possible rates either user can obtain. This proves to be an
interesting problem for which we can show, using the methods
in [3] and [5] that the rate of the interfering message can
increase beyond that obtained by simply having the interfered-
with transmitter transmit Gaussian noise. Second, we consider
a very probable case in which the interfered-with transmitter
which has no secrecy requirements of its own is limited to a
deterministic encoder. We observe that this limitation reduces
the capacity region and provide a Sato-type [6] outer bound
on its capacity region.

II. STOCHASTIC ENCODERS - CAPACITY REGION
BOUNDING BOX

The first question that comes to mind when considering
the above problem concerns the bounding box of its capacity
region. That is, we wish to know what is the maximum rate for
either W1 or W2 regardless of the rate of the other user. For
W2 if we take R1 = 0 we comply with the secrecy constraint in
the trivial sense (no information is transmitted), and in addition
there is no interference; thus R2 = 1

2 log(1 + snr2) can be
achieved, which is, of course, the maximum possible rate. On
the other hand, the maximum value of R1 is an open problem.
Examining (3) we can see that Y 2 is a degraded version of
Y 1 (since a ∈ [0, 1)), and thus we have that X1 − Y 1 − Y 2

is a Markov chain regardless of the distribution of X2. Using
the wiretap result for a degraded channel [7] we have a single-
letter expression

R1,max = max
PX1

PX2

{I (X1;Y1)− I (X1;Y2)} (4)

where the maximization is over both distributions, as Y2
depends on X2 as well.

Note that if PX1 is a Gaussian distribution then the optimal
choice for PX2 is also Gaussian due to the “worst additive
noise” lemma [4]. However, there is a dependence between
the two distributions and they must be optimized jointly. In
order to break this dependence one can invoke the entropy
power inequality (EPI), which provides an upper bound that
is attained with equality if and only if both X1 and X2 are
Gaussian. However, attempting to optimize this upper bound
results in a Gaussian distribution for X1 but not for X2. This
observation leads us to the next result following the approach
of Abbe and Zheng [5], a proof of which is given in the
appendix.

Theorem 1. For any snr1 > 0, snr2 > 0 and any a ∈ [0, 1),
R1,max is obtained by non-Gaussian distributions in (4),

meaning

R1,max >
1

2
log(1 + snr1)− 1

2
log

(
1 +

asnr1
1 + snr2

)
. (5)

III. DETERMINISTIC INTERFERED-WITH ENCODER

In this section we restrict the encoder of the interfered-
with transmitter to the class of deterministic encoders. Note
that this transmitter has no secrecy constraints on its message,
thus making this a very reasonable assumption. The advantage
of this restriction is in allowing us to follow the approach
of Sato [6] and Costa [8] and provide a good outer bound
on the capacity of this channel. However, as we will show,
this restriction, although reasonable from a practical viewpoint,
reduces the capacity region of this channel.

We begin this section with the following result that extends
the result of Costa [8] to our setting:

Lemma 1. The Gaussian Z-Interference channel with secrecy
constraint and a deterministic encoder for the message W2,
meaning H(X2|W2) = 0, is equivalent, in the sense that
they have the same capacity region, to the degraded Gaussian
interference channel:

Y ′1 =
√
snr1X1 +

√
snr2
a

X2 + N1

Y ′2 =
√
snr1X1 +

√
snr2
a

X2 + N1 + N ′2 (6)

where N1 is as defined above, standard additive Gaussian
noise, whereas N ′2 is additive Gaussian noise of variance
1−a
a .

Proof: Following the proof of Costa [8] we refer to
[8, Figure 6]. Note that the equivalence between [8, Figure
6-(a)] and [8, Figure 6-(c)] holds for the same reasons as
in [8]. The equivalence to [8, Figure 6-(d)], the degraded
Gaussian interference channel requires more delicacy. Note
that as claimed in [8, Appendix A] the capacity region of [8,
Figure 6-(a)] contains the capacity region of [8, Figure 6-(d)],
with the additional secrecy constraints. This is due to the fact
that Y 1 is a better version than the equivalent output in the
[8, Figure 6-(d)]. The reverse claim follows if we assume that
H(X2|W2) = 0 by following the proof in [8, Appendix A].

The above equivalence is limited to the case of deterministic
encoders for the interfered-with transmitter. This transmitter
is not the one transmitting a message that is required to be
completely secure. Nonetheless, we will now show that this
restriction limits the capacity region and is thus a sub-region
of the capacity region of the original problem.

Theorem 2. By restricting the encoder of the interfered-with
user to a deterministic encoder we strictly reduce the capacity
region.

Proof: In order to show the above we show that the
capacity region given the restriction to a deterministic encoder
for the interfered-with transmitter does not contain a point
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that can be achieved without this restriction. The point that
we consider is the one obtained by R2 = 0, where X2 is
simply Gaussian noise (random noise created ad-hoc in the
transmitter, which is an “empty” stochastic encoder). Given
that this is our choice of X2 it is evident that

R1 =
1

2
log(1 + snr1)− 1

2
log

(
1 +

asnr1
1 + snr2

)
(7)

is achievable using a standard optimal code sequence for the
Gaussian wiretap channel.

We now need to show that this is not attainable when
we limit the encoder of the interfered-with transmission to a
deterministic encoder. This observation also provides us with
the exact bounding box of the capacity region of this limited
case. Note that by limiting to a deterministic encoder and due
to the fact that we have reliable communication of W2 to
Y 2, we have the following equality in the limit, due to the
requirement of complete secrecy:

R1,max = lim
n→∞

[I (X1;Y 1)− I (X1;Y 2)] (8)

= lim
n→∞

[I (X1;Y 1)− I (X1;Y 2|X2)

+I (X2;Y 2|X1)− I (X2;Y 2)]

= lim
n→∞

[I (X1;Y 1)− I (X1;Y 2|X2)]

= lim
n→∞

[I (X1;
√
snr1X1 + N1)

−I (X1;
√
asnr1X1 + N2)]

where the second equality is due to reliable communication of
W2 and the deterministic encoder restriction W2 →X2. The
last transition is due to the independence of X1 and X2 (no
cooperation). Maximizing the above expression over PX1

(it
no longer depends on PX2

) gives us the maximum rate

R1,max =
1

2
log(1 + snr1)− 1

2
log(1 + asnr1) (9)

which is strictly less than (7). Thus, for this setting we know
the bounding box is defined by the above and R2 = 1

2 log(1 +
snr2). Moreover, according to the results in [2] R2 = 1

2 log(1+
snr2) is obtained when R1 = 0, since reliable decoding of X1

is required for the maximum R2, and thus complete secrecy
cannot be attained. In other words, the pair (0, 12 log(1+snr2))
is a corner point of the capacity region in this setting. This
concludes the proof.

Given the above equivalence we have a degraded Gaussian
interference channel. For this channel we wish to provide
a Sato-type outer bound, meaning we wish to follow the
approach in [6]. The approach in [6] was to observe that the
degraded Gaussian interference channel is upper bounded by
the Gaussian broadcast channel (BC) capacity since in the
Gaussian BC the two transmitters cooperate and only have
a general power constraint (may split the power between
themselves as they wish). Thus, the specific power split of
the degraded Gaussian interference channel is a special case
of the Gaussian BC.

Our approach is to follow the same logic and employ the

known results of the Gaussian BC with confidential messages
(BCC), for which we have the capacity region [9]. This leads
to the following result:

Theorem 3. The capacity region of the Gaussian Z-
interference channel with a secrecy constraint on the interfer-
ing message and a deterministic encoder at the interfered-with
transmitter is contained in the following region:

(R1,R2) =

(
1

2
log

(
1 + β(snr1 + snr2/a)

1 + βa(snr1 + snr2/a)

)
,

1

2
log

(
1 + a(snr1 + snr2/a)

1 + βa(snr1 + snr2/a)

))
R1 ≤

1

2
log (1 + snr1)− 1

2
log(1 + asnr1)

R2 ≤
1

2
log (1 + snr2) (10)

for some β ∈ [0, 1].

As discussed in the proof of Theorem 2, the point
(0, 12 log (1 + snr2)) is a corner point of the capacity region.
However this is not a point on the above outer bound. Assume
that

R2 =
1

2
log (1 + snr2) (11)

then

β =
asnr1

(asnr1 + snr2)(1 + snr2)
. (12)

Substituting the above in the bound on R1 we obtain

R1 =
1

2
log

(
1 +

snr1
1 + snr2

)
− 1

2
log

(
1 +

asnr1
1 + snr2

)
. (13)

The other corner point of the above outer bound is when

R1 =
1

2
log (1 + snr1)− 1

2
log(1 + asnr1) (14)

for which

β(asnr1 + snr2) = asnr1. (15)

Substituting the above in the bound on R2 we obtain

R2 =
1

2
log

(
1 +

snr2
1 + asnr1

)
. (16)

This, of course, is an attainable point by using for W1 a
Gaussian wiretap code sequence, and for W2 a Gaussian
point-to-point code sequence. At Y 2 we first consider X1 as
additive Gaussian noise and decode X2 (W2). After removing
it, we still have for W1 a Gaussian wiretap code sequence
designed for complete secrecy at Y 2.

In order to get a better feeling for the above outer bound,
we compare it with three possible inner bounds. The first most
basic inner bound is obtained by time-sharing between the two
schemes that attain the corner points of the capacity region
mentioned above. The second bound is the time/frequency
division multiplexing (TDM/FDM) bound given in Lemma
2 and the third bound, given in Lemma 3, improves on the
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TDM/FDM bound by allowing the interfered-with transmitter
to transmit over both subbands.

Lemma 2. The set of non-negative rate pairs (R1,R2) satis-
fying

R1 ≤
λ

2
log
(

1 +
snr1
λ

)
− λ

2
log
(

1 +
asnr1
λ

)
, (17)

R2 ≤
λ̄

2
log
(

1 +
snr2
λ̄

)
, (18)

in which 0 ≤ λ ≤ 1 and λ̄ = 1 − λ, is achievable for the
Gaussian Z-Interference channel with secrecy constraint and
a deterministic encoder.

Proof: This region is the TDM/FDM region. To achieve
this region we divide the available time/frequency into two or-
thogonal parts, respectively proportional to λ and λ̄. Then, let
user 1 be the only active user for λ fraction of time/frequency.
As a result, we will have a degraded Gaussian wiretap channel
and the achievable rate of secure communication is given by
(17). Note that the average SNR of transmitter 1 in the λ-
subband is equal to snr1

λ . Similarly, let user 2 transmit only for
λ̄ fraction of time/frequency. Then, (18) gives the achievable
rate.

We can improve the TDM/FDM inner bound of Lemma 2
by allowing the interfered-with transmitter to split its power
over both subbands.

Lemma 3. The set of non-negative rate pairs (R1,R2) satis-
fying

R1 ≤
λ

2
log
(

1 +
snr1
λ

)
− λ

2
log
(

1 +
asnr1
λ

)
, (19)

R2 ≤
λ

2
log
(

1 +
snr21

1 + a snr1
λ

)
+
λ̄

2
log
(

1 + snr22
)
, (20)

in which 0 ≤ λ ≤ 1, λ̄ = 1− λ, and λsnr21 + λ̄snr22 = snr2
is achievable for the Gaussian Z-Interference channel with
secrecy constraint and a deterministic encoder.

Proof: Similar to the TDM/FDM inner bound, we di-
vide the available time/frequency into two orthogonal parts
proportional to λ and λ̄. The main difference here is to split
snr2 into snr21 and snr22 such that λsnr21 + λ̄snr22 = snr2
and let user 2 consume them in the λ and λ̄ fraction of
time/frequency, respectively. However, user 1 transmits only
in the λ-subband. Therefore, in the λ-subband both users
are active. Clearly, (19) is still achievable for user 1 since
receiver 1 is free of interference. The achievable rate of
user 2 has two terms, each corresponding to one of the
subbands. In the λ-subband receiver 2 treats interference as
noise to achieve R21 = 1

2 log
(
1 + snr21

1+a
snr1
λ

)
. In the λ̄-subband

user 2 is the only active user and thus the interference-
free rate R22 = 1

2 log
(
1 + snr22

)
is achievable. Therefore,

R2 = λR21 + λ̄R22 is obtained for user 2 in (20).

Figure 2 depicts both the Sato-type outer bound (dashed)
and the three possible inner-bounds.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
2

R
1

 

 

Inner bound
TDM/FDM
Time−sharing
Outer bound

Fig. 2. The Sato-type outer bound (dash-dot line), the basic time-sharing
inner bound (dashed), the TDM/FDM inner bound (dotted) and the improved
TDM/FDM inner bound (solid).

APPENDIX

Sketch Proof of Theorem 1: We follow the approach
proposed by Abbe and Zheng in [5] which examines the
optimality of the Gaussian inputs by analysis of the infor-
mation theoretic equation in the vicinity of the Gaussian
input distributions using permutations depicted by Hermite
polynomials.

The single-letter expression which we are considering is the
following:

I (X1;Y1)− I (X1;Y2) =

I (X1;
√
snr1X1 +N1)−I (X1;

√
asnr1X1 +

√
snr2X2 +N2) .

Similar to [5] we denote the above function using

Sa,snr1,snr2,p(X1, X2) (21)
=h(
√
snr1X1 +N1)− h(N1)

−h(
√
asnr1X1 +

√
snr2X2 +N2) + h(

√
snr2X2 +N2),

where p is defined below. Now the idea is to examine the
following function:

Fk(a, snr1, snr2, p) = (22)

lim
δ→0

lim
ε→0

2

ε2
[
Sa,snr1,snr2,p(X1, X2)− Sa,snr1,snr2,p(XG

1 , X
G
2 )
]

where XG
1 ∼ gp, XG

2 ∼ gp, X1 ∼ gp(1 + εH̃k) and X2 ∼
gp(1−εH̃k) with H̃k defined in [5, Lemma 2] as a function of
H

[p]
k (and the δH [p]

4k correction term), the normalized Hermite
polynomials for the Gaussian distribution having variance p,
gp. Recall from [5] that {H [p]

k }k≥0 is an orthonormal basis
for L2(gp;<). Moreover, H [p]

1 and H
[p]
2 perturb a Gaussian

distribution into another Gaussian distribution with a different
first and second moments, respectively. For k ≥ 3 the
permutations move away from the Gaussian distribution. To
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simplify notation we denote the Hermite polynomials as Hk

whenever the variance p is clear from context.
Given the above we wish to analyze the behavior of the

function Fk(a, snr1, snr2, p) for k ≥ 3. We have three differ-
ential entropies to consider. We begin with h(

√
asnr1X1 +√

snr2X2 + N2). As shown in [5, Equation (20)] the density
of
√
asnr1X1 +

√
snr2X2 +N2 is given by

gasnr1p(1 + ε [Hk + δH4k]) ? gsnr2p(1− ε [Hk − δH4k]) ? g1
(23)

where ? denotes the convolution operator. From [5, Theo-
rem 1] the above is equal to

gasnr1p+snr2p+1

(
1 + ε

{[(
asnr1p

asnr1p+ snr2p+ 1

) k
2

Hk+

δ

(
asnr1p

asnr1p+ snr2p+ 1

)2k

H4k

]

−

[(
snr2p

asnr1p+ snr2p+ 1

) k
2

Hk

−δ
(

snr2p

asnr1p+ snr2p+ 1

)2k

H4k

]
− εL

})
(24)

where

L =
gasnr1p [Hk + δH4k] ? gsnr2p [Hk − δH4k] ? g1

gasnr1p+snr2p+1
. (25)

Using [5, Lemma 3] one can show that L is a linear
combination of several Hermite polynomials H` of power
asnr1p + snr2p + 1 with ` ≥ 2k. Thus, the density of√
asnr1X1 +

√
snr2X2 + N2 can be written as a Gaussian

gasnr1p+snr2p+1 perturbed by the direction Hk on the order of
ε and several H`’s with ` ≥ 2k on the order of ε2. Using [5,
Lemma 2] and denoting Y2 =

√
asnr1X1 +

√
snr2X2 + N2

and Y G2 =
√
asnr1X

G
1 +
√
snr2X

G
2 +N2, we have

h(
√
asnr1X1 +

√
snr2X2 +N2) = (26)

h(
√
asnr1X

G
1 +
√
snr2X

G
2 +N2)−D(Y2||Y G2 )

and using [5, Lemma 1] we have

D(Y2||Y G2 ) =
ε2

2
o(δ)

+
ε2

2

(
(asnr1)

k
2 − (snr2)

k
2

)2( p

asnr1p+ snr2p+ 1

)k
(27)

Following similar steps we have that h(
√
snr1X1 +N1) is

h(
√
snr1X

G
1 +N1)− ε2

2

(
snr1p

snr1p+ 1

)k
+
ε2

2
o(δ) (28)

and h(
√
snr2X2 +N2) is

h(
√
snr2X

G
2 +N2)− ε2

2

(
snr2p

snr2p+ 1

)k
+
ε2

2
o(δ). (29)

Putting everything together we have that

Sa,p(X1, X2)− Sa,p(XG
1 , X

G
2 ) (30)

=
ε2

2

[(
snr1p

snr1p+ 1

)k
+

(
snr2p

snr2p+ 1

)k
−
(

(asnr1)
k
2 − (snr2)

k
2

)2( p

asnr1p+ snr2p+ 1

)k]
+
ε2

2
o(δ).

As noted above, the condition for a non-Gaussian distribution
to improve on the Gaussian one is that there exists some k ≥ 3
for which(

snr1p

snr1p+ 1

)k
+

(
snr2p

snr2p+ 1

)k
−
(

(asnr1)
k
2 − (snr2)

k
2

)2( p

asnr1p+ snr2p+ 1

)k
> 0.

Moreover, since we have snr1 and snr2 we can take p = 1 in
the above. Examining this expression (with p = 1) we observe
that we can lower bound it with(

snr1
snr1 + 1

)k
+

(
snr2

snr2 + 1

)k
− aksnrk1 + snrk2

(asnr1 + snr2 + 1)k
.

Noticing that(
snr2

snr2 + 1

)k
− snrk2

(asnr1 + snr2 + 1)k
≥ 0 (31)

and for any a ∈ [0, 1] also(
snr1

snr1 + 1

)k
− aksnrk1

(asnr1 + snr2 + 1)k
≥ 0 (32)

as it is a monotonically decreasing function in a ∈ [0, 1] and
for a = 1 it is non-negative. Thus, we can conclude that for
any set of parameters snr1 > 0, snr2 > 0 and a ∈ [0, 1) a
non-Gaussian distribution would outperform the Gaussian one
in the maximization problem given in (4). This concludes the
proof.
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Abstract—We employ the Gaussian Poincaré inequality for
two tasks in the Shannon theory. First, we show that the
Gaussian broadcast channel admits a strong converse. Second,
we demonstrate that the empirical output distribution of a
delay-limited code for the AWGN channel with quasi-static
fading and with non-vanishing probability of error converges
to the maximum mutual information output distribution (in the
normalized relative entropy sense).

I. INTRODUCTION

The Poincaré inequality for Gaussian measures [1] is one
of the most prominent results in the theory of concentration
of measure. Roughly speaking, it states that if f : Rn → R
is a smooth function and φ(x) = 1√

2π
e−x

2/2 is the standard
Gaussian density, then the variance of f can be bounded in
terms of the expectation of the squared derivative of f , i.e.,

Varφ[f ] ≤ Eφ[‖∇f‖2]. (1)

In the present work, we employ a modification of the Gaussian
Poincaré inequality for two tasks in Shannon theory. These are
described briefly in the following sections.

II. GAUSSIAN BROADCAST CHANNELS

The Gaussian broadcast channel [2, Ch. 5] is a basic model
for the downlink of a communication system. Two messages
W1 ∈ [2nR1 ] and W2 ∈ [2nR2 ] are to be encoded into
a codeword Xn = f (n)(W1,W2). This codeword is power
constrained, i.e., ‖Xn‖22 ≤ nP . It is transmitted through two
AWGN channels with variances σ2

1 and σ2
2 respectively, i.e.,

Y n1 = Xn + Zn1 , and Y n2 = Xn + Zn2 . (2)

Decoder j, which observes Y nj , is required to estimate message
Wj where j = 1, 2. The average probability of error is defined
to be Pr((Ŵ1, Ŵ2) 6= (W1,W2)) where Ŵj is decoder j’s
estimate of Wj . The capacity region CBC is well known and
is given by

CBC =
⋃

α∈[0,1]



(R1, R2) ∈ R2

+

∣∣∣∣∣∣

R1 ≤ C
(
αP
σ2
1

)

R2 ≤ C
(

(1−α)P
αP+σ2

2

)



 , (3)

where C(x) := 1
2 log(1 + x). This region is achieved using

superposition coding [3]. Recall that the capacity region is the
set of all rate pairs for which the error probability vanishes.

The central question of our investigation in [4] is whether
the region in (3) is enlarged if we relax the condition that the
error probability vanishes. We allow the error probability to
be upper bounded by a non-vanishing constant ε ∈ (0, 1). We
show that the ε-capacity region is precisely the region in (3).
The main technicality in the proof involves bounding a certain
variance of the log-likelihood of the messages using (1).

III. GOOD DELAY-LIMITED CODES

In [5], we used (1) to investigate quasi-static fading channels
[6, Sec. 5.4.1] where the fading coefficient H is random but
remains constant during the course of transmission. We are
interested in the so-called delay-limited capacity [7], which
is the maximum achievable rate under the assumption that the
maximal error probability over all non-zero fading coefficients
vanishes as the blocklength grows.

We adopt a long-term power constraint [8] and the max-
over-messages error criterion for delay-limited decoding. It is
known (e.g., [7, Sec. III-B]) that the delay-limited capacity is
C(PDL) where PDL := P

E[1/H] . We show in [5] that for any
sequence of codes that is capacity-achieving and whose error
probability is upper bounded by some ε ∈ [0, 1) is such that
sequence of induced output distributions {pY n}∞n=1 satisfies

lim
n→∞

1

n
D(pY n‖pnY ∗) = 0 (4)

where pY ∗(y) = N (y; 0, 1 + PDL).
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Abstract—It has long been observed that cooperation between users
in a communication network can improve its performance and simplify
the coding schemes. In this talk I will describe recent results on
cooperation for the broadcast and multiple access channels, and discuss
few of the difficulties that arise when the number of users is large.
New results and insights will be presented for specific scenarios.

I. INTRODUCTION

Due to their potential advantage, coding schemes that employ
cooperation between users have attracted considerable attention in
recent years. Among the most studied models are the multiple
access channel (MAC) with cooperating encoders, and the broadcast
channel (BC) with cooperating decoders. For the MAC there are two
possible forms of cooperation - conference links and cribbing. In [9]
Willems introduced and studied a two users MAC model where the
encoders can communicate via conference links of limited capacity
before transmission begins, and derived its capacity region. In a
subsequent work [10], Willems and Van Der Meulen introduced
the MAC with cribbing encoders, and derived its capacity region
for all possible cribbing scenarios. In [1], Dabora and Servetto
introduced the two users degraded BC with conferencing decoders,
and derived its capacity region. The model of Dabora and Servetto
can be viewed as a special case of the relay-broadcast channel
(RBC) of Liang and Veeravalli [6], where the link from the relay
to the destination is replaced by a noiseless bit pipe. The model
of Dabora and Servetto was extended in [2], [3] to state-dependent
channels. A new coding scheme was introduced by Dikstein et. al.,
where binning replaces the block-Markov approach that was used
by Dabora and Servetto in [1].

The coding schemes developed in [1], [2], [3], [6], [9] and [10],
rely on the cooperation links, and cannot be used in their absence.
In many modern ad-hoc communication systems, the cooperation
resources are not allocated a priori, and their availability depends on
many factors of which the system designer does not have control -
e.g., weather conditions, presence of users that serve as relays, etc.
A typical situation is that a user who wishes to transmit messages
to a remote destination, is aware of the possibility that intermediate
nodes in the network will act as relays, but their help is not
guaranteed. Moreover, in most cases the transmitting user cannot
be informed whether the cooperation resources are indeed available
during transmission. It is therefore desired to devise coding schemes
that take advantage of the cooperation resources when they are
available, but can operate also when they are absent, although
possibly at reduced rates. This set of problems can be viewed as a
channel coding analog of some well known source coding problems,
like multiple description [11], [12] and rate distortion when side
information may be absent [4].

II. RECENT RESULTS

In [7] new models for the broadcast and multiple access channels
with uncertain cooperation were presented. Specifically, for the
broadcast channel, the model of [1] was extended to the case where
the cooperation link is unstable and may be absent. The capacity
region for this case was characterised. A model of a MAC with a
cribbing link that may be absent was presented, and an achievable
region derived based on a combination of super position coding and
the block-Markov construction of [10]. Recently, an outer bound
for the MAC model of [7] was derived, and the capacity region
fully characterised for special cases of interest [5]. In [8], the BC
with degraded message sets and conference link was presented, and
its capacity region fully characterised. In this talk I will describe
recent results on the MAC and BC with unstable cooperation, and
discuss a few of the difficulties that arise when extending the basic
cooperation models.
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Abstract—The setup of mismatched decoding is considered. By
analyzing multi-letter expressions and bounds on the mismatch
capacity of a general channel, several results pertaining to the
mismatched discrete memoryless channel W with an additive
metric q are deduced: it is shown that Csiszár and Narayan’s
“product-space" improvement of the random coding lower bound
on the mismatched capacity, C

(∞)
q (W ), is equal to the mis-

matched threshold capacity with a constant threshold level. It
is also proved that C(∞)

q (W ) is the highest rate achievable when
the average probability of error converges to zero at a certain
specified rate, which is o(1/n) in the case of q which is a bounded
rational metric. Finally a lower bound on the average probability
of error at rates above the erasures-only capacity of the DMC is
derived.

I. INTRODUCTION

In [1], the mismatch capacity of the DMC with decoding
metric q, denoted Cq(W ), is considered. It is shown that
the lower bound derived previously in [2] and [3] is not
tight in general. This is established by proving that the
random coding bound for the product channel WK , denoted
C

(k)
q (W ), referred to as the "product-space" lower bound, may

result in strictly higher achievable rates. The rate C
(k)
q (W )

is given by C
(k)
q (W ) = maxP

Xk
minP

Ỹ k|Xk

1
k I(Xk; Ỹ k) ,

where the minimization is over PỸ k = PY k ,E(q(Xk, Ỹ k)) ≥
E(q(Xk, Y k)) and (Xk, Y k) ∼ PXk × W k. Consequently,
C

(∞)
q (W ) = limsupk→∞C

(k)
q (W ) is an achievable rate as

well. In the special case of erasures-only capacity, C(∞)
q (W )

is shown to be a tight bound.

II. MULTILETTER EXPRESSIONS FOR THE MISMATCH
CAPACITY AND CONSEQUENT RESULTS FOR THE DMC

Consider a DMC with a finite input and output alphabets
X and Y , respectively, which is governed by the conditional
p.m.f. W . A rate-R block-code of length n consists of 2nR

n-vectors xn(m), m = 1, 2, ..., 2nR, which correspond to
2nR equiprobable messages. An additive mismatched de-
coder for the channel is defined by function qn(xn, yn) =
1
n

∑n
i=1 q(xi, yi) where q is a mapping, referred to as metric,

from X × Y to R. The decoder declares that message i was
transmitted iff qn(xn(i), yn) > qn(xn(j), yn),∀j 6= i, and if
no such i exists, an error is declared. The mismatch capacity
of the DMC is defined as the supremum of achievable rates
using the mismatched decoder.

In [4], general multi-letter expressions and bounds for the
mismatch capacity of general channel with a general metric
were derived. In this work we describe briefly results that were

deduced for the mismatched DMC, whose derivations rely on
these multi-letter expressions.

The first result refers to a threshold decoder. A (qn, τn)-
threshold decoder decides that i is the transmitted message iff
qn(xn(i), yn) ≥ τn and qn(xn(j), yn) < τn, ∀j 6= i.

In [5] we prove that for a bounded metric q, C(∞)
q (W ) is

equal to the constant-threshold capacity, that is, the supremum
of achievable rates with a threshold decoder of a constant
value τn = τ . An implication of this result is that Csiszár
and Narayan’s conjecture [1] that Cq(W ) = C

(∞)
q (W ) is

equivalent to the statement that Cq(W ) is equal to the constant
threshold capacity. In [4, Theorem 6] a multi-letter expres-
sion for the constant threshold capacity was derived for a
general channel and a general metric sequence. Specifying
this expression for the DMC case, we obtain an alternative
expression for C(∞)

q (W ) in [5]. In [6] we prove that for
a bounded metric q, every code-sequence of rate R, whose
average probability of error with a decoding metric q employed
on the output of a DMC vanishes faster than ηn, where
ηn = min

xn,x̃n,yn: qn(x̃n,yn)6=qn(xn,yn)
|qn(x̃n, yn)− qn(xn, yn)|,

must satisfy R ≤ C(∞)
q (W ). In particular, for rational metrics,

it identifies C
(∞)
q (W ) as the highest rate achievable with

average probability of error which is o(1/n). Since at rates
below C

(∞)
q (W ) exponential decay of the average probability

of error is feasible [1], one can deduce that for a bounded
rational metric q, Cq(W ) = C

(∞)
q (W ) iff for all R < Cq(W )

the error exponent is positive.
Finally it is shown in [7] that the erasures only capacity of

the DMC, Cqeo(W ), satisfies Eeo(R,Θ) ≥ 1− Cqeo (W )
R , where

Eeo(R) is the lowest achievable average probability of error at
rate R in the erasures-only setup.
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1 Abstract—We review the use of binary hypothesis testing for
the derivation of the sphere packing bound in channel coding,
pointing out a key difference between the classical and the
classical-quantum setting. In the first case, two ways of using
the binary hypothesis testing are known, which lead to the
same bound written in different analytical expressions. The first
method (historically) compares output distributions induced by
the codewords with an auxiliary fixed distribution, and naturally
leads to an expression using the Rényi divergence. The second
method compares the given channel with an auxiliary one and
leads to an expression using the Kullback-Leibler divergence.
In the classical-quantum case, due to a fundamental difference
in the quantum binary hypothesis testing, these two approaches
lead to two different bounds, the first being the “right” one.
We discuss the details of this phenomenon, which suggests the
question of whether auxiliary channels are used in the optimal
way in second approach.

I. CLASSICAL HYPOTHESIS TESTING

We start by recalling that in classical binary hypothesis
testing between two distributions P0 and P1 on some set V ,
based on n independent extractions, the trade-off of the best
possible exponents of error probabilities of the first and second
kind can be expressed parametrically, for 0 < s < 1, as

− 1

n
logPe|0 = −µ(s) + sµ′(s) + o(1)

− 1

n
logPe|1 = −µ(s)− (1− s)µ′(s) + o(1) ,

where
µ(s) = log

∑
v∈V

P0(v)
1−sP1(v)

s

is a scaled version of the Rényi divergence usually defined as

Dα(P‖Q) =
1

α− 1

∑
v∈V

Pα(v)Q1−α(v) ,

so that µ(s) = −sD1−s(P0‖P1). An explicit computation -
or just a different way of deriving the bound - shows that an
equivalent expression is

− 1

n
logPe|0 = D(Ps‖P0) + o(1)

− 1

n
logPe|1 = D(Ps‖P1) + o(1) ,

where D(·‖·) is the Kullback-Leibler divergence

D(P,Q) =
∑
v

P (v) log
P (v)

Q(v)

and Ps is the tilted mixture

Ps(v) =
P0(v)

1−sP1(v)
s∑

v′ P0(v)1−sP1(v)s
.

This second representation gives an intuitive interpretation of
the bound. Roughly speaking, the probability of error for the
optimal test is essentially due to those sequences in Vn with
empirical distribution close to Ps, whose total probabilities
under P0 and P1 vanish with exponents given by D(Ps‖P0)
and D(Ps‖P1) respectively. One can notice that the problem
of determining the trade-off of the error exponents in the test
between P0 and P1 is essentially reduced to the problem of
testing Ps against Pi, i = 0, 1, in the Stein regime where Pe|s
is bounded away from one.

II. CLASSICAL SPHERE-PACKING

Given a discrete memoryless channel W : X → Y with
capacity C, the sphere packing bound gives an exponential
lower bound on the probability of error of codes at rate R < C
in the form

Pe ≥ e−n(Esp(R)+o(n)) ,

where R is the coding rate, n the block length and Esp(R) is
the so called sphere packing exponent. Two proofs are known
for the classical version of the bound, which naturally lead
to two equivalent yet different analytical expressions for the
function Esp(R). A preliminary technical feature common to
both procedures is that they both focus on some constant-
composition sub-code which has virtually the same rate as the
original code, but where all codewords have the same empir-
ical composition P . In both cases, then, the key ingredient is
binary hypothesis testing (BHT).

A. The MIT proof

The first proof (see [1], [2]) is based on a binary hypoth-
esis test between the output distributions Wxm induced by
the codewords x1, . . . ,xM and an auxiliary output product
distribution Q = Q⊗n on Yn. Let Ym ⊆ Yn be the decision
region for message m. Since Q is a distribution, for at least
one m we have

Q(Ym) ≤ 1/M (1)

= e−nR. (2)
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Considering a binary hypothesis test between Wxm and Q,
with Ym as decision region for Wxm , equation (1) gives an
exponential upper bound on the probability of error under
hypothesis Q which implies a lower bound on the proba-
bility of error under hypothesis Wxm , which is Wxm(Ym),
the probability of error for message m. Here the BHT is
considered in the regime where both probabilities decrease
exponentially. The standard procedure uses the first form of
the bound mentioned in the previous section based on the
Rényi divergence. The bound can be extended to the case of
testing products of non identical distributions; for the pair of
distribution Wxm =Wxm,1⊗· · ·Wxm,n and Q = Q⊗· · ·⊗Q
it gives the performance of an optimal test in the form

− 1

n
logPe|Wxm

= −µ(s) + sµ′(s) + o(1) (3)

− 1

n
logPe|Q = −µ(s)− (1− s)µ′(s) + o(1) (4)

where

µ(s) =
∑
x

P (x)

log∑
y∈Y

Wx(y)
1−sQ(y)s

 .
At this point the arguments in [1] and [2] diverge a bit; while
the former is not rigorous, it has the advantage of giving the
tight bound for the arbitrary codeword composition P . The
latter is instead rigorous but only gives the tight bound for
the optimal composition P . In [3] we proposed a variation
which we believe to be rigorous and at the same time gives the
tight bound for an arbitrary composition P . The need for this
variation will be clear in the discussion of classical-quantum
channels in the next section.

For the test based on the decoding region Ym, the left
hand side of (4) is lower bounded by R due to (1). So, if we
choose s and Q in such a way that the right hand side of (4)
is roughly R − ε, then −(1/n) logPe|Wxm

must be smaller
than the right hand side of (3) computed for those same s and
Q (for otherwise the decision region Ym would give a test
strictly better than the optimal one).

This is obtained by choosing Q, as a function of s, as the
minimizer of −µ(s) and then selecting s which makes the
right hand side of (4) equal to R − ε (whenever possible).
Extracting µ′(s) from (4) in terms of µ(s) and R and using it
in (3), the probability of error for message m is bounded in
terms of R. After some tedious technicalities, cf. [3, Appendix
A], we get

− 1

n
logPe|Wxm

≤ sup
0<s<1

[
E0(s, P )−

s

1− s
(R− ε)

]
+o(1) ,

(5)
where

E0(s, P ) = min
Q

[
1

s− 1

∑
x

P (x) log
∑
y

Wx(y)
1−sQ(y)s

]
(6)

= min
Q

[
s

1− s
∑
x

P (x)D1−s(Wx‖Q)

]
(7)

=
s

1− s
I1−s(P,W ) , (8)

the minimum being over distributions Q and Iα(P,W ) being
the α-mutual information as defined by Csiszár [4]. We thus
find the bound, valid for codes with constant composition P

− 1

n
logPe,max ≤ sup

0<s<1

s

1− s
[I1−s(P,W )−R+ ε] + o(1) .

It is worth pointing out that the chosen Q, which achieves
the minimum in the definition of E0(s, P ), satisfies the set of
constraints (cf [1, eqs. (9.23), (9.24), (9.50)], [5, Cor. 3])

Q(y) =
∑
x

P (x)Vx(y) (9)

if we define Vx(y) as

Vx(y) =
W 1−s
x (y)Qs(y)∑

y′W
1−s
x (y′)Qs(y′)

. (10)

So, the chosen Q is such that its tilted mixtures with the
distributions Wx induce Q itself on the output set Y . Using the
second representation of the error exponents in binary hypoth-
esis testing mentioned in Section I (extended for independent
extractions from non-identical distributions), we observe thus
that the chosen Q induces the construction of an auxiliary
channel V such that I(P, V ) =

∑
x P (x)D(Vx‖Q) = R − ε.

The second proof of the sphere packing bound, which is
summarized in the next section, takes this line of reasoning as
starting point.

B. Haroutunian’s proof

In the second proof (see [6], [7]) one considers the perfor-
mance of the given coding scheme for channel W when used
for an auxiliary channel V such that I(P, V ) < R. Due to the
strong converse for channel coding, when used with channel
V the coding scheme will incur an error probability 1− o(1),
which means that for at least one codeword m we must have
Vxm(Ym) = 1−o(1). Applying the data processing inequality
for the Kullback-Leibler divergence one thus finds that

Vxm(Ym) log
Vxm(Ym)

Wxm(Ym)
+ Vxm(Ym) log

Vxm(Ym)

Wxm(Ym)

≤ nD(V ‖W |P ) ,

from which

logWxm(Ym) ≥ −nD(V ‖W |P ) + 1

1 + o(1)
.

So, the error exponent for channel W is bounded as

− 1

n
logPe|Wxm

≤ min
V :I(P,V )≤R

D(V ‖W |P )(1 + o(1)).

Note that, thanks to the use of the strong converse, the data
processing inequality is enough to get the desired result, but
any converse for V would work if followed by the more
powerful Stein lemma.

The bound derived is precisely the same as in the previous
section, and for the optimal choice of the channel V , if we
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define the output distribution Q = PV as in (9), then (10)
is satisfied for some s. So, we notice that the two proofs
really rely on a comparison between the original channel
and equivalent auxiliary channels/distributions. In the first
procedure we start with an auxiliary distribution Q, but we find
that the optimal choice of Q is such that the tilted mixtures
with the Wx distributions are the Vx which give PV = Q. In
the second procedure we start with the auxiliary channel V
but we find that the optimal V induces an output distribution
Q whose tilted mixtures with the Wx are the Vx themselves.
It is worth noticing that in this second procedure we use a
converse for channel V ; hidden in this step we are using the
output distribution Q induced by V .

These observations point out that while the MIT proof
follows the first formulation of the binary hypothesis testing
bound in terms of Rényi divergences, Haroutunian’s proof
exploits the second formulation based on Kullback-Leiblrer
divergences, but the compared quantities are equivalent. There
seems to be no reason to prefer the first procedure given the
simplicity of the second one.

III. QUANTUM HYPOTHESIS TESTING

In a binary hypothesis testing between two density operators
σ0 and σ1, based on n independent extractions (but with global
measurement), the error exponents of the first and second kind
can be expressed parametrically as (see [8])

− 1

n
logPe|σ0

= −µ(s) + sµ′(s) + o(1) (11)

− 1

n
logPe|σ1

= −µ(s)− (1− s)µ′(s) + o(1) , (12)

where, in complete analogy with the classical case,

µ(s) = logTrσ1−s
0 σs1 .

Upon differentiation, one finds for example for (11)

− 1

n
logPe|σ0

= − log Tr(σ1−s
0 σs1)

+ Tr

[
σ1−s
0 σs1

Trσ1−s
0 σs1

(log σs1 − log σs0)

]
+ o(1) .

When σ0 and σ1 commute, that is, in the classical case, we
can define the density operator

σs =
σ1−s
0 σs1

Trσ1−s
0 σs1

and use the property log σs1− log σs0 = log σ1−s
0 σs1− log σ0 to

obtain

− 1

n
logPe|σ0

= Trσs(log σs − log σ0) + o(1)

= D(σs‖σ0) + o(1) .

In a similar way we find

− 1

n
logPe|σ1

= D(σs||σ1) + o(1) .

This is indeed the second form of the bound as mentioned
already in Section I. However, if σ0 and σ1 do not commute,

the above simplification is not possible. Hence, the two error
exponents cannot be expressed in terms of the Kullback-
Leibler divergence. So, unlike in the classical binary hypothe-
sis testing, the problem of determining the trade-off of the error
exponents in the test between σ0 and σ1 cannot be reduced
to the problem of testing some σs against σi, i = 0, 1, in the
Stein regime.

To verify that this is really a property of the quantum
binary hypothesis testing and not an artificial effect of the used
procedure, it is useful to consider the case of pure states, that
is when operators σ0 and σ1 have rank 1, say σ0 = |ψ0〉〈ψ0|
and σ1 = |ψ1〉〈ψ1|, with non-orthogonal ψ0 and ψ1. In this
case, σ1−s

0 = σ0 and σs1 = σ1, so that one simply has

µ(s) = logTrσ0σ1

= log |〈ψ0|ψ1〉|2

and consequently the two error exponents both equal1

− log |〈ψ0|ψ1〉|2. These quantity cannot be expressed as
D(σs‖σi), i = 0, 1, for any σs because

D(ρ‖σi) =

{
0 ρ = σi

+∞ ρ 6= σi
, i = 0, 1 ,

since σ0 and σ1 are pure.

IV. CLASSICAL-QUANTUM SPHERE-PACKING

The different behavior of binary hypothesis testing in the
quantum case with respect to the classical has a direct impact
on the sphere packing bound for classical-quantum channels.
Both the MIT and Haroutunian’s approaches can be extended
to this setting, but the resulting bounds are different. In par-
ticular, since the binary hypothesis testing is correctly handled
with the Rényi divergence formulation, the MIT form of the
bound extends to what one expects as the right generalization
(in particular, it matches known achievability bounds for pure-
state channels), while Haroutunian’s form extends to a weaker
bound. It was already observed in [9] that the latter gives a
trivial bound for all pure state channels, which is a direct
consequence of what already shown for the simple binary
hypothesis testing in the previous section.

It is useful to investigate this weakness at a deeper level in
order to see clearly where the problem really is. Let Wx, x ∈
X , be now density operators, let Wx =Wx1

⊗ · · · ⊗Wxn be
the state associated to a sequence x and thus Wx1

, . . . ,WxM

the states associated to the M messages, where M = enR.
Let {Π1,Π2, . . . ,ΠM} be the POVM used at the receiver for
channel W , which means that the probability of decoding m′

when m is sent is TrΠm′Wxm . Consider then an auxiliary
classical-quantum channel with states Vx and with capacity
C < R. The strong converse still holds for channel V which
implies that for any decoding rule, for at least one message
the probability of error is 1− o(1). In particular for the given
POVM, for at least one m,

Tr(I −Πm)Vxm = 1− o(1) .
1More precisely, a correct formulation is that at least one of the two error

exponents is not larger than − log |〈ψ0|ψ1〉|2.
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Using again a data processing inequality for the quantum
Kullback-Leibler divergence one then finds as in the classical
case that

log Tr(I −Πm)Wxm ≥ −
nD(V ‖W |P ) + 1

1 + o(1)
,

and thus

− 1

n
logPe|Wxm

≤ min
V :I(P,V )≤R

D(V ‖W |P )(1 + o(1)).

The problem is that if W is a pure state channel, at rates R <
C any auxiliary channel V 6= W gives D(V ‖W |P ) = ∞,
so that the bound is trivial for all pure state channels. It is
important to observe that this is not due to a weakness in the
used data processing inequality. In a binary hypothesis test
between the the pure state Wxm and a state Vxm built from a
different channel V , one can notice that the POVM {A, I−A}
with A = Wxm satisfies

Tr(I −A)Vxm = 1− o(1), Tr(I −A)Wxm = 0.

So, it is really impossible to deduce a positive lower bound for
Tr(I−Πm)Wxm using only the fact that Tr(I−Πm)Vxm =
1− o(1).

It is also worth checking what happens with the MIT
procedure. All the steps can be extended to the classical-
quantum case (see [3] for details) leading to a bound which
has the same form as (5) where E0(s, P ) is defined in analogy
with (6) as

E0(s, P ) = min
Q

[
1

s− 1

∑
x

P (x) log TrW 1−s
x Qs

]

= min
Q

[
s

1− s
∑
x

P (x)D1−s(Wx‖Q)

]
,

the minimum being over all density operators Q, and
D1−s(·‖·) being the quantum Rényi divergence. However, as
far as we know, there is no analog of equations (9) and (10),
and the optimizing Q does not induce an auxiliary V such that
I(P, V ) = R− ε.

V. AUXILIARY CHANNELS AND STRONG CONVERSES

We have presented the two main approaches to sphere
packing as different procedures which are equivalent in the
classical case but not in the classical-quantum case. However,
it is actually possible to consider the two approaches as
particular instances of one general approach where the channel
W is compared to an auxiliary channel V , since the auxiliary
distribution/state Q can be considered as a channel with
constant Vx = Q. This principle is very well described in [10],
where it is shown that essentially all known converse bounds
in classical channel coding can be cast in this framework.

According to this interpretation, the starting point in
Haroutunian’s proof is general enough to include the MIT
approach as a special case. So, the weakness of the method
in the classical-quantum case must be hidden in one of the
intermediate steps. It is not difficult to notice that the key point
is how the strong converse is used in Haroutunian’s proof. The

general auxiliary channel V is only assumed to have capacity
C < R, and the strong converse for V which is used is of
the simple form Pe = 1− o(1), which is good enough in the
classical case. In the MIT proof, instead, the auxiliary channel
is such that C = 0, so that the strong converse takes another
simple form, Pe ≥ 1− e−nR. The critical point is that in the
classical-quantum setting a converse of the form Pe = 1−o(1)
for V does not lead to a lower bound on Pe for W in general.
What is needed is a sufficiently fast exponential convergence
to 1 of Pe for channel V , which essentially suggests that V
should be chosen with capacity not too close to R and that
the exact strong converse exponent for V should be used.

The natural question to ask at this point is what the optimal2

auxiliary channel is when the exact exponent of the strong
converse is used. At high rates the question is not really
meaningful for all those cases where the known versions of the
sphere packing bound coincide with achievability results, that
is, for classical channels and for pure state channels. However
in the remaining cases, that is, in the low rate region for the
mentioned channels or in the whole range of rates 0 < R < C
for general non commuting mixed-state channels, the question
is legitimate. In the classical case, since the choice of an
(optimal) auxiliary channel with C = 0 or C = R− leads to
the same result, one might expect that any other intermediate
choice would give the same result. However, to the best of our
knowledge this has never been clarified in the literature.

For classical-quantum channels, the question is perhaps not
trivial; it is worth pointing out that even the exact strong
converse exponent has been determined only very recently
[11]. What is very interesting is that while in the classical case
the strong converse exponent for R > C is expressed in terms
of Rényi divergence [12], [13], similarly as error exponents
for R < C, for classical-quantum channels the strong converse
exponents are expressed in terms of the so called “sandwiched”
Rényi divergence defined by

D̃α(ρ, σ) =
1

α− 1
log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
.

The problem to consider would thus be more or less as follows.
Consider an auxiliary channel V with capacity C < R and
evaluate its strong converse exponent in terms of sandwiched
Rényi divergences. Fix this exponent as the probability of error
under hypothesis Wxm in a test between Wxm and Vxm ,
where Πm is the operator in favor of Wxm and I −Πm is
the one in favor of Vxm . Then deduce a lower bound for the
probability of error under hypothesis Wxm using the standard
binary hypothesis testing bound in terms of Rényi divergences.
It is not entirely clear, to this author, that the optimal auxiliary
channel should necessarily always be one such that C = 0 as
used up to now. Since for non commuting mixed-state channels
the current known form of sphere packing bound is not yet
matched by any achievability result, one cannot exclude that
it is not the tightest possible form.

2Here we mean optimal memoryless channel for bounding the error
exponent in the asymptotic regime.
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Abstract—Finite blocklength converses for classical and quan-

tum channel coding can be obtained by relaxing the optimiza-

tion over independent encoding and decoding procedures to

procedures which are merely “non-signalling”. This approach,

inspired by quantum information theory, results in converses

which are closely related to the hypothesis testing-based converse

of Polyanskiy-Poor-Verdú. Indeed, in the classical case they are

equivalent. I will give an overview of the non-signalling codes

method and describe its relationship to the hypothesis testing

approach.

I. LINEAR TRANSFORMATIONS OF CONDITIONAL
DISTRIBUTIONS

Consider the following situation. Given a symbol M , Alice
applies some, possibly randomised, process to produce sym-
bols X and F . F is sent to Bob over a noiseless channel. Alice
uses X as the input to some discrete channel, from which Bob
receives output Y . Bob applies some process to F and Y to ob-
tain a symbol W . We assume that M�(F,X)�(F, Y )�W is
a Markov chain. Letting N(y|x) = P

Y |X(y|x), E(f, x|m) =

P

FX|M (f, x|m), and D(w|f, y) = P

W |FY

(w|f, y), we have

P

WYXM

(w, y, x,m) = Z(x,w|m, y)N(y|x)P
M

(m) (1)

where

Z(x,w|m, y) :=

X

f

D(w|f, y)E(f, x|m). (2)

The conditional distribution (2) is what one would have if
N(y|x) = Q

Y

(y) for some distribution Q. It is non-signalling

from Bob to Alice, which means that

8x,m, y, y

0
:

X

w

Z(x,w|m, y) =

X

w

Z(x,w|m, y

0
)

=: Z

X|M (x|m),

(3)

in particular

8x,m, y :

X

w

Z(x,w|m, y) =

X

f

E(f, x|m). (4)

Conversely, any bipartite conditional distribution which is non-
signalling from Bob to Alice has a (non-unique) decompo-
sition of the form (2) (see [9]). Operationally, this means
that it can be implemented by local operations and one-
way communication from Alice to Bob. Note that P

WYXM

depends on E and D only through the distribution Z.

The distribution of W given M in the present scenario is

P

W |M (w|m) =

X

x,y

Z(x,w|m, y)N(y|x). (5)

Clearly, any linear transformation which takes conditional
distributions for Y given X to conditional distributions for
W given M can be written in the form (5) if we allow
Z(x,w|m, y) to be arbitrary numbers. In fact, the map will
have the property that it transforms every conditional dis-
tribution to a conditional distribution if and only if Z is a
conditional distribution which is non-signalling from Bob to
Alice (see [9]).

Naturally, we can write

P

WYXM

(w, y, x,m) =

ˆ

Z(m,w|x, y)P
XY

(x, y) (6)

where, for x such that P
X

(x) > 0 we define

ˆ

Z(m,w|x, y) :=P

MW |XY

(m,w|x, y) (7)

=

P

WYXM

(w, y, x,m)

P

Y |X(y|x)P
X

(x)

(8)

=Z(x,w|m, y)

P

M

(m)

P

X

(x)

. (9)

The final equality follows from (1). Note that P

X

(x) =P
m

Z

X|M (x|m)P

M

(m), so ˆ

Z depends only on Z and P

M

(not on N

Y |X ). For x such that P
X

(x) = 0 we let

ˆ

Z(m,w|x, y) := P

M

(m)P

W

(w). (10)

It follows that

P

MW

(m,w) =

X

m,w

ˆ

Z(m,w|x, y)
X

x

N

Y |X(y|x)P
X

(x).

(11)
We will make use of this expression in the next section, and
give a quantum generalisation of it in Section V. Note that
ˆ

Z(m,w|x, y) is non-signalling from Bob to Alice.

II. NON-SIGNALLING CODES

We can regard channel coding as a special case of the
scenario described in the previous section. Let M and W

take values in the same set of size k. We can interpret
M as the message and W as the estimate of that message
made by the decoder. Let M be uniformly distributed. The
average probability of error is Pr(M 6= W ). With the arbitrary
noiseless communication from Alice to Bob allowed in the
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previous section one can obviously find zero-error codes of
arbitrary size for any channel N

Y |X . A conventional code
corresponds to the situation where

Z(x,w|m, y) = E(x|m)D(w|y). (12)

For these types of code, Z is non-signalling not only from
Bob to Alice but also from Alice to Bob, that is

8w, y,m,m

0
:

X

x

Z(x,w|m, y) =

X

x

Z(x,w|m0, y)

=: Z

W |Y (w|y).
(13)

We call any code with this property a non-signalling code [7].
The condition (13) implies that ˆ

Z satisfies
X

x

ˆ

Z(m,w|x, y)P
X

(x) = P

M

(m)Z

W |Y (w|y) (14)

and, if ˆ

Z satisfies this condition then the corresponding Z is
non-signalling from Alice to Bob. The success probability of
the code for channel N

Y |X is

Pr(M = W ) =

X

m,x,y

Z(x,m|m, y)N

Y |X(y|x)P
M

(m) (15)

=

X

m,x,y

ˆ

Z(m,m|x, y)N
Y |X(y|x)P

X

(x). (16)

Remark 1. Fixing N

Y |X , the success probability (15) is

a linear functional of Z and, since the constraints which

make Z non-signalling are linear, maximising the success

probability over all non-signalling codes is a linear program.

Using symmetry, this can be simplified to one whose size is

independent of k [9].

If we use a non-signalling code and take a channel R
Y |X

where Y and X are independent, i.e. R
Y |X(y|x) = Q

Y

(y)

then, using (14), the distribution of (M,W ) is

Q

MW

(m,w) =

X

x,y

ˆ

Z(m,w|x, y)P
X

(x)Q

Y

(y) (17)

=P

M

(m)

X

y

Z

W |Y (w|y)QY

(y), (18)

that is W and M are independent. In this situation, for any
choice of Q

Y

, Pr(M = W ) = 1/k, that is

8Q
Y

:

X

m,x,y

ˆ

Z(m,m|x, y)P
X

(x)Q

Y

(y) = 1/k. (19)

III. HYPOTHESIS TESTING CONVERSE

Consider the following hypothesis testing problem. The null
hypothesis is that X and Y are distributed according to P

XY

.
The alternative hypothesis is a composite hypothesis, which
states that X and Y are distributed according to P

X

Q

Y

for
some arbitrary Q

Y

. A hypothesis test is specified by

T [x, y] := Pr(Accept null|X = x, Y = y). (20)

The minimum type-II error which can be attained by a test
with type-I error no more than ✏ is

�

⇤
✏

(P

XY

) :=min

T

max

QY

X

xy

T [x, y]P

X

(x)Q

Y

(y) (21)

subject to (22)
X

yx

T [x, y]P

XY

(x, y) � 1� ✏. (23)

Let us define for distributions p and q,

�

✏

(pkq) := min

T

(
X

z

T [z]q(z) :

X

z

T [z]p(z) � 1� ✏

)
.

The set of distributions for Y and the set of tests are both
compact, convex sets and the objective function on the RHS
of (21) is a bilinear function of the distribution and test.
Therefore, by von Neumann’s minimax theorem

�

⇤
✏

(P

XY

) = max

QY

�

✏

(P

XY

kP
X

Q

Y

). (24)

Proposition 2. There is a non-signalling code of size k, input

distribution P

X

, and error probability ✏ for channel N

Y |X if

and only if there is a test T with

X

xy

T [x, y]N

Y |X(y|x)P
X

(x) = 1� ✏, and (25)

8Q
Y

:

X

xy

T [x, y]Q

Y

(y)P

X

(x) = 1/k. (26)

Proof. Suppose that we have a non-signalling code of size
k which attains error probability ✏ for channel N

Y |X . The
distribution of X is fixed by Z and the fact that M is
uniformly distributed. For the direct part, let Z be the bipartite
conditional distribution for a non-signalling code satisfying the
stated properties. If we let

T [x, y] =

kX

m=1

ˆ

Z(m,m|x, y), (27)

then using (16) we obtain (25) and, using (19) in addition, we
obtain (26).

For the converse, let T be a test satisfying (25) and (26),
and let

ˆ

Z(m,w|x, y) =1

k

�

mw

T [x, y]

+

1

k(k � 1)

(1� �

mw

)(1� T [x, y]).

(28)

This clearly satisfies (3). Using (26) we have
X

x

ˆ

Z(m,w|x, y)P
X

(x) =

1

k

�

mw

X

x

T [x, y]P

X

(x) (29)

+

1

k(k � 1)

(1�
X

x

T [x, y]P

X

(x))(1� �

mw

) = 1/k

2 (30)

so ˆ

Z also satisfies (14). It follows that Z satisfies (3) and (13),
so it is a non-signalling code. Furthermore, by (25),

Pr(M = W ) =

X

m,x,y

ˆ

Z(m,m|x, y)N
Y |X(y|x)P

X

(x)

=1� ✏.

(31)
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A constraint on tests of the form (26) is a rather unusual
in the context of hypothesis testing. In [10], tests with this
property (or more generally, property (35)) are called “P

X

-
balanced”), and as noted there, we may relax this condition
without changing the minimax type-II error probability: Sup-
pose we have a test T 0 which satisfies

X

xy

T

0
[x, y]N

Y |X(y|x)P
X

(x) � 1� ✏, and (32)

8Q
Y

:

X

xy

T

0
[x, y]Q

Y

(y)P

X

(x)  �. (33)

The later condition is equivalent to

8y :

X

x

T

0
[x, y]P

X

(x) =: c

y

 �. (34)

If we let
T [x, y] = (1� �

y

)T

0
[x, y] + �

y

,

where �

y

=

��cy
1�cy , then

8y :

X

x

T [x, y]P

X

(x) = �, (35)

and since T

0
[x, y]  T [x, y]  1 for all x, y
X

xy

T [x, y]N

Y |X(y|x)P
X

(x) � 1� ✏. (36)

It follows that there is a non-signalling code of size k and
input distribution P

X

with error probability ✏ for N
Y |X if and

only if
1/k � �

⇤
✏

(N

Y |X(y|x)P
X

(x)). (37)

Theorem 3. There is a non-signalling code of size k and input

distribution P

X

and error probability ✏ for N

Y |X if and only

if

k  min

QY

�

✏

(N

Y |XP

X

kQ
Y

P

X

)

�1
. (38)

There is a non-signalling code of size k and error probability

✏ for N

Y |X if and only if

k  max

PY

min

QY

�

✏

(N

Y |XP

X

kQ
Y

P

X

)

�1
. (39)

As an upper-bound this is exactly the “minimax” converse
given (for conventional codes) in [6] and further studied in
[10].

IV. A LITTLE BACKGROUND

For any two systems Q and Q̃ of equal dimension d we de-
fine |�+iQ̃Q :=

P
0j<d

|jiQ̃⌦|jiQ and �

+
Q̃Q

= |�+ih�+|Q̃Q.
The vector |�+iQ̃Q has the property that for any operator LQ̃

LQ̃|�+iQ̃Q = L

T
Q|�+iQ̃Q. (40)

where L

T
Q is the transpose of LQ := idQ Q̃

LQ̃ in the
computational basis (idQ Q̃ is the linear map which takes
the computational basis for operators on Q̃ to that for Q, i.e.
idQ Q̃

: |iihj|Q̃ 7! |iihj|Q). This fact is sometimes referred

to as the ‘transpose trick’. We also note that TrQ̃�
+
Q̃Q

= 1Q

and TrQ�
+
Q̃Q

= 1Q̃. From this property it follows that, for any

density operator ⇢A, ⇢1/2A �AÃ⇢
1/2
A is a purification of ⇢A. Let

HA and HB be Hilbert spaces of finite dimension. Any linear
map LB A from operators on HA to operators on HB, has an
operator representation LB A

�

+
ÃA

. We note that

LB A
: A 7! TrÃ

T
Ã
LB A

�

+
ÃA

. (41)

(This correspondence between linear maps between operators
and operators is known as the ‘Choi-Jamiołkowski isomor-
phism’.) Complete positivity of a map corresponds to its
operator representation being positive semidefinite. LB A is
trace preserving if and only if TrBLB A

�

+
ÃA

= 1Ã. A
quantum operation from system A to system B is a linear
map from HA to HB which is completely positive and trace-
preserving.

Given any density operator ⇢AB we can write

⇢AB = WB Ã
⇢AÃ (42)

where ⇢AÃ = ⇢

1/2
A �

+
AÃ

⇢

1/2
A and WB Ã is an operation

which we may specify explicitly in terms of its operator
representation: Let ⇢

�1/2
A denote the generalised inverse of

⇢

1/2
A , which is the unique operator such that ⇢

1/2
A ⇢

�1/2
A and

⇢

1/2
A ⇢

�1/2
A are equal to the orthogonal projection operator, ⇢0A,

onto the support of ⇢A. Then, for any state ⌧B, the operation

WB Ã
�AÃ = ⇢

�1/2
A ⇢AB⇢

�1/2
A + (1 � ⇢

0
A)⌦ ⌧B (43)

satisfies equation (42).

V. LINEAR TRANSFORMATIONS OF QUANTUM OPERATIONS

We will now develop the quantum generalisation of the
classical results given earlier, starting with Section I.

Alice has some system M to which she applies an operation
EFX M. System F is transferred noiselessly to Bob, while an
operation NY X is applied to X leaving Bob with system Y.
Bob applies an operation DW FY to FY, leaving him with
system W. The overall operation from M to W is

DW FYidF F ⌦NY XEFX M
. (44)

Fixing DW FY and EFX M, (44) is a linear function of NY X

which maps any operation NY X to an operation. In fact it
satisfies a strictly stronger property, which is that if NYY0 XX0

is an operation, then it will be mapped to an operation. As
shown in [5], any linear map from operations to operations
with this property can be written in the form (44).

We define a bipartite operation ZXW MY via

ZXW MY
:= DW FYEFX M

. (45)

This operation completely determines the map from operations
to operations discussed above (see [12]). Evidently this opera-
tion is implemented by local operations and one-way quantum
communication from Alice to Bob. Any operation of this form
is non-signalling from Bob to Alice [1], in the sense that

8⇢Y : TrWZXW MY1M ⌦ ⇢Y = ZX M
. (46)
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⇢X̃X !M̃W⇢M̃FX

Fig. 1. The systems, operations and states referred to in Section V.

In particular, ZX M
= TrFEFX M. Conversely, any bipartite

operation which satisfies (46) can be implemented by local
operations and quantum communication from Alice to Bob
[3]. That is, it can be written in the form (45).

Let M̃ have the same dimension as system M and suppose
that, initially, Alice has systems M̃M in the state

µM̃M := µ

1/2
M �

+
M̃M

µ

1/2
M = µ

1/2

M̃
�

+
M̃M

µ

1/2

M̃
(47)

where µM̃ := TrMµM̃M. The ‘transpose trick’ tells us that
µ

T
M̃
= idM̃ M

µM. Let

!M̃W := DW FYidF F ⌦NY XEFX M
µM̃M. (48)

After Alice applies E , the system M̃FX is in the state ⇢M̃FX =

µ

1/2

M̃

⇣
EFX M

�

+
M̃M

⌘
µ

1/2

M̃
. The situation is illustrated in the top

half of the figure. Let ˆE be an operation (see previous section)
such that ⇢M̃FX =

ˆEM̃F X̃
⇢X̃X where (for the remainder of this

article) ⇢X̃X is defined to be the state

⇢X̃X := ⇢

1/2
X �

+
X̃X

⇢

1/2
X . (49)

Note that ⇢X̃ := TrX⇢X̃X = idX̃ X
⇢

T
X . Then

!M̃W =DW FYNY X
⇢M̃FX =

ˆZM̃W X̃YNY X
⇢X̃X (50)

where
ˆZM̃W X̃Y

:= DW FY
ˆEM̃F X̃

. (51)

Note the analogy between the expression (50) for the final
state of M̃W and the expression (11) for the joint distribution

of M and W . In terms of the operator representations of ˆ

Z

and Z, we have

⇢

1/2
X (

ˆZM̃W X̃Y
�

+
XYX̃Ỹ

)⇢

1/2
X = µ

1/2

M̃
(ZXW MY

�

+
XYX̃Ỹ

)µ

1/2

M̃
.

VI. QUANTUM NON-SIGNALLING CODES

We can view block coding of classical (or quantum) in-
formation over a quantum channel as a special case of the
scenario described in the previous section. In this case M and
W are of the same dimension, k (which we call the size of
the code). If (as in the classical case) we are concerned with
the transmission of a uniformly distributed classical message,
then M stores a uniformly distributed classical message in
the computational basis. That is, µM = 1M/k. If M̃ is
measured in the computational basis then we obtain a copy
of the message that was sent. The probability of successful
transmission is, therefore, the probability of obtaining equal
results computational basis measurements are performed on
M̃ and W. The POVM element corresponding to this outcome
is

⇧M̃W :=

X

m

|mihm|M̃ ⌦ |mihm|W,

so the success probability of the code is

1� ✏ = Tr⇧M̃W
ˆZM̃W X̃YNY X

⇢X̃X. (52)

In a conventional code, there is no auxiliary forward com-
munication and the bipartite operation is of the form

ZXW MY
= EX M ⌦DW Y (53)

where EX M and DX M are the encoding and decoding
operations. The bipartite operation for such codes is not only
non-signalling from Bob to Alice, but also from Alice to Bob.
We call any forward-assisted quantum code whose bipartite
operation is non-signalling in both directions a quantum non-

signalling code [12]. In terms of the operation ˆZM̃W X̃Y this
condition is

ˆZM̃W X̃Y
⇢X̃ ⌦ 1Y = µM̃ ⌦ ZW Y

, (54)

and given any operation ˆZ which satisfies this condition the
corresponding Z is non-signalling from Bob to Alice.

Remark 4. In terms of the operator representation of Z , the

success probability is a linear functional, the non-signalling

and normalising constraints on Z are affine, while the com-

plete positivity of Z is equivalent to the operator represen-

tation being positive semidefinite. Therefore, maximising the

success probability over non-signalling quantum codes is a

semidefinite program (see [12]).

The quantum analog of a channel for which Y and X

are independent is for the operation NY X to have the
form NY X

= �YTrX. As one would expect, the success
probability of a quantum non-signalling code of size k for
any such channel is simply 1/k, that is

8�Y : Tr⇧M̃W
ˆZM̃W X̃Y

⇢X̃ ⌦ �Y = 1/k. (55)
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VII. QUANTUM HYPOTHESIS TESTING CONVERSE

Consider the quantum hypothesis testing problem where
the null hypothesis is that the state of X̃Y is ⇢X̃Y and the
(composite) alternative hypothesis is that that state of X̃Y is
of the form ⇢X̃ ⌦ �Y where ⇢X̃ = TrY⇢X̃Y and �Y is any
state. We can specific a quantum hypothesis test by giving the
POVM element TX̃Y corresponding to acceptance of the null
hypothesis. Let

�

⇤
✏

(⇢X̃Y) := min

0TX̃Y1
max

�Y

TrTX̃Y⇢X̃ ⌦ �Y (56)

subject to TrTX̃Y⇢X̃Y � 1� ✏. (57)

For any two states ⇢0 and ⇢1 of the same system we define

�

✏

(⇢0k⇢1) := min{TrT⇢1 : TrT⇢0 � 1� ✏, 0  T  1}.
By von Neumann’s minimax theorem

�

⇤
✏

(⇢X̃Y) = max

�Y

�

✏

(⇢X̃Yk⇢X̃ ⌦ �Y). (58)

We now give the quantum generalisation of Proposition 2.

Proposition 5. There is a quantum non-signalling code of size

k with input state ⇢X and error probability ✏ for operation

NY X
if and only if there is a quantum hypothesis test TX̃Y

satisfying

TrTX̃YNY X
⇢X̃X = 1� ✏, and (59)

8�Y : TrTX̃Y⇢X̃ ⌦ �Y = 1/k (60)

where ⇢X̃X = ⇢

1/2
X �

+
X̃X

⇢

1/2
X .

Proof. First the converse part: Suppose that there is a non-
signalling code Z with properties stated in (5). Consider the
test obtained by applying the operation ˆZM̃W X̃Y to system
X̃Y, measuring both M̃ and W in their computational bases,
and accepting (the null hypothesis) when the two results are
equal. By (52) and (55) this test has the required properties.

For the direct part, let TX̃Y be a test satisfying (59) and and
(60), and let

ˆZM̃W X̃Y
:AX̃Y 7! 1

k

⇧M̃WTrTX̃YAX̃Y

+

1

k(k � 1)

�
1 �⇧M̃W

�
Tr(1 � TX̃Y)AX̃Y

(61)

where ⇧M̃W :=

P
m

|mihm|M̃ ⌦ |mihm|W. It is easy to check
that this is non-signalling from Bob to Alice, and the property
(60) ensures that this ˆZM̃W X̃Y satisfies (54). That it has the
desired error probability follows from (52), (59) and ⇧M̃W(1�
⇧M̃W) = 0.

Corollary 6. If there is a non-signalling code of size k and

average input state ⇢X and error probability ✏ for NY X
then

k  min

�Y

�

✏

(NY X
⇢X̃Xk⇢X̃ ⌦ �Y)

�1
. (62)

If there is a non-signalling code of size k and error probability

✏ for NY X
then

k  max

⇢X

min

�Y

�

✏

(NY X
⇢X̃Xk⇢X̃ ⌦ �Y)

�1
. (63)

This converse applies to entanglement-assisted codes be-
cause they are non-signalling. For memoryless channels,
analysing the large block length limit of the upper bound on
rate that it gives recovers (see [11]) the known, single-letter
formula for the entanglement-assisted classical capacity of a
quantum channel [2].

As noted in [11], if we are dealing with codes of the form
(53), then the hypothesis test constructed in the direct part of
(5) can be implemented by local measurements and classical
post-processing of the results (to compare the outcomes). This
means that we can obtain a better converse for such codes
by restricting the optimisation over hypothesis tests to those
which can be implemented in this way. In [11] it was shown
that if we restrict to those which can implemented by local
operations and one-way classical communication from Alice
to Bob then the converse obtained is equivalent to the one
obtained in [8].

In Corollary 6 we do not have a quantum analog of
Theorem 3 because the implication is only one way. If we
could show that one can restrict to quantum tests satisfying
TrTX̃Y⇢X̃ ⌦ �Y = � for all �Y without changing the minimax
type-II error probability then we could add the other direction
of implication to Corollary 6. Whether this is true is open at
the time of writing.
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Combining Detection with Other Tasks of Information Processing

Neri Merhav, Department of EE, Technion, Haifa 3200003, Israel

Classical detection theory, based on the Neyman–Pearson theorem provides the optimal rule for
deciding between two hypotheses concerning the distribution or density of a given observation or
sequence of observations. It tells us that best trade-off between the two kinds of probability of error
is achieved by the likelihood ratio test (LRT). In certain situations, however, this decision between
the two hypotheses might be only one of the tasks to be carried out. For example, consider a
scenario where under hypothesis H0, the sequence of observations that we receive is just pure noise
(or useless/irrelevant for any other reason), which contains no useful information that may interest
us, whereas under hypothesis H1, the data that we have at hand has emerged from a desirable
information source, and in this case, further processing is called for, such as lossless or lossy data
compression, parameter estimation channel decoding encryption, further classification, etc.

The straightforward approach to this problem would be to first apply Neyman–Pearson hypoth-
esis testing, and then, if hypothesis H1 is accepted, perform the corresponding task using the best
strategy available. This approach separates between optimal decision and the optimality of the
subsequent task. A more sophisticated approach, however, is to solve the two problems jointly,
namely, to devise a decision rule that takes into account also the cost of the subsequent task (in
case it is to be carried out), and on the other hand, optimize the strategy of the following task,
taking into account that the data belongs to the decision region of H1.

In this talk, I will present a unified approach of optimally combining the detection problem
with the second information processing task, which is based on a simple extension of the Neyman–
Pearson lemma. It minimizes the relevant cost of the second task subject to constraints on the false
alarm and misdetection probabilities. We then apply this generalized Neyman–Pearson lemma to
three different problems: (i) joint detection and source coding [1], (ii) detection of codeword vs. pure
noise, followed by channel decoding in case a signal was detected [2], and (iii) combined channel
detection and channel decoding [3].

In all three problems, we derive the optimal solution and assess the asymptotic performance. It
turns out that in problems (ii) and (iii) there is an asymptotic separation principle in the sense
that the same error exponents are achieved by separating the detection from the second task. This
is not the case, however, in problem (i).
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Abstract—Hypothesis testing lower bounds to the channel
coding error probability are studied. For a family of symmetric
channels, block lengths and coding rates, the error probability of
the best code is shown to coincide with that of a binary hypothesis
test with certain parameters. The points in which they coincide,
are precisely the points at which perfect or quasi-perfect codes
exist. General conditions are given for a code to attain minimum
error probability.

I. INTRODUCTION

Consider the channel coding problem of transmitting a set of
messages over a binary symmetric channel (BSC). The sphere-
packing bound [1, Eq. (5.8.19)] establishes a lower bound on
the block error probability of a code with a given rate and
blocklength. This bound follows from counting the maximum
number of non-overlapping Hamming spheres that can be
packed in the output space. In certain cases the sphere-packing
bound is achievable. A binary code is said to be perfect if
non-overlapping Hamming spheres of radius t centered on
the codewords exactly fill out the space. Perfect codes are a
subset of the class of quasi-perfect codes. A quasi-perfect code
is defined as a code in which Hamming spheres of radius t
centered on the codewords are non-overlapping and Hamming
spheres of radius t+1 cover the space, possibly with overlaps.
Since quasi-perfect codes attain the sphere-packing bound for
a BSC, they achieve the minimum error probability among all
the codes with the same block length and rate [1, Sec. 5.8].
However, these codes are rare. For each rate R, 0 < R < 1,
there exists a block length beyond which neither perfect nor
quasi-perfect codes exist [2], [3].

A generalization of the definition of perfect and quasi-
perfect codes beyond the Hamming space was proposed by
Hamada in [4]. Using a variation of the Fano metric, Hamada
derived a lower bound to the channel coding error probability.
This bound is achievable by perfect and quasi-perfect codes
(defined with respect to the new metric), whenever they
exist. This result applies for a class of symmetric discrete
memoryless channels.

Binary hypothesis testing has been shown instrumental in
the derivation of converse bounds (see e.g. [5], [6]), one
prominent recent example being the the meta-converse bound

This work has been funded in part by the European Research Council under
ERC grant agreement 259663, by the Spanish Ministry of Economy and
Competitiveness under grants TEC2012-38800-C03-03, TEC2013-41718-R
and FPDI-2013-18602, by the US National Science Foundation under Grant
CCF-1016625, and by the Center for Science of Information, an NSF Science
and Technology Center under Grant CCF-0939370.

by Polyanskiy et al. [7, Th. 27]. Particularized for the BSC, the
meta-converse bound recovers the sphere-packing bound [1,
Eq. (5.8.19)] (see [7, Sec. III.H] for details). As a result, when
perfect or quasi-perfect codes exist, the the meta-converse
bound gives the minimum error probability in the BSC.

In this work, we generalize the definitions of perfect and
quasi-perfect codes for a class of symmetric channels and
we establish a connection between hypothesis testing lower
bounds and perfect or quasi-perfect codes. The results of this
paper are general enough to recover Hamada’s condition for
achieving minimum error probability [4, Th. 3].

II. GENERALIZED QUASI-PERFECT CODES

Consider the one-shot channel coding problem, where an
equiprobable message v ∈ {1, . . . ,M} is to be transmitted
over a random transformation PY |X , x ∈ X and y ∈ Y with
X and Y discrete alphabets. A channel code C is defined as the
set of M codewords C = {x1, . . . , xM} assigned to each of
the messages. We assume that the maximum likelihood (ML)
rule is used to choose the decoded message v̂ ∈ {1, . . . ,M}.
The error probability is given by

ε(C) = Pr[V̂ 6= V ] (1)

= 1− 1

M

∑
y

max
x∈C

PY |X(y|x). (2)

Definition 1: A discrete channel is symmetric if the rows
of the transition matrix of the channel (with inputs as rows
and outputs as columns), i. e., PY |X(·|x), are permutations of
each other.

This definition of symmetric channels coincides with that
of uniformly dispersive channels of Massey [8, Sec. 4.2]
and is less restrictive than those of Cover and Thomas [9]
and Gallager [1]. The definition in [9, Sec. 7.2] additionally
requires that the columns of the channel transition matrix be
permutations of each other, i.e., uniformly focusing according
to [8, Sec. 4.2]. The definition in [1, p. 94] requires the channel
transition matrix to be partitioned in submatrices such that
each submatrix fulfills the condition in [9, Sec. 7.2]. Relations
among these definitions are investigated in [10, Sec. VI.B].

We define Sx(θ) to be the set of output sequences y with a
likelihood given input x of at least θ ∈ [0, 1]., i. e.,

Sx(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) ≥ θ
}
. (3)
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We denote the interior and the shell of Sx(θ), respectively, as

S•x(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) > θ
}
, (4)

S◦x(θ) ,
{
y ∈ Y

∣∣PY |X(y|x) = θ
}
. (5)

Although we are not assuming that the input and output
alphabets are identical and PY |X(y|x) (or the related Fano
metric ∼ logPY |X(y|x)) do not fulfill the properties of a
mathematical distance in general, we refer to Sx(θ) as a sphere
of radius θ centered on x. For specific channels, such as the
binary symmetric channel, logPY |X(y|x) is an affine function
of the Hamming distance between x and y and hence Sx(θ)
becomes a sphere with respect to that distance.

Proposition 1: Let PY |X(y|x) be a symmetric channel de-
fined over input and output alphabets X ,Y . Then, cardinalities
(or “volumes”) |Sx(θ)|, |S•x(θ)|, |S◦x(θ)| are independent of x.

Then, for any symmetric channel, we define S(θ) ,
|Sx(θ)|, S•(θ) , |S•x(θ)|, S◦(θ) , |S◦x(θ)|. Obviously,
S(θ) = S•(θ) + S◦(θ).

Definition 2: A code is perfect if there exists θ ∈ [0, 1] such
that ⋃

x∈C
Sx(θ) = Y, (6)

where the union is disjoint. More generally, a code is quasi-
perfect if there exists θ ∈ [0, 1] such that (6) is satisfied and
the codeword-centered spheres {S•x(θ), x ∈ C} are disjoint.

This definition of perfect codes coincides with that in [4,
Def. 1] when the channel fulfills the Properties 1-4 in [4].
Definition 2 applies however to any symmetric channel ac-
cording to 1 (which corresponds to Property 4 in [4]). Also,
the definition of quasi-perfect code in Definition 2 includes
both perfect and quasi-perfect codes from [4, Def. 1].

III. THE META-CONVERSE BOUND

Let Ĥ ∈ {0, 1} be the random variable associated to the
output of a binary hypothesis test discriminating between
distributions P (hypothesis 0) and Q (hypothesis 1). Then,
the test can be described by the conditional distribution PĤ|Y .
Let πj|i denote the probability of deciding j when i is the true
hypothesis. More precisely, we define

π0|1 ,
∑
y

Q(y)PĤ|Y (0|y), (7)

π1|0 ,
∑
y

P (y)PĤ|Y (1|y). (8)

Let αβ
(
P,Q

)
denote the minimum error probability π1|0

among all tests T , PĤ|Y with π0|1 at most β, that is

αβ
(
P,Q

)
, inf
T :π0|1≤β

π1|0. (9)

In [11], Neyman and Pearson derived the explicit form of a
(possibly randomized) test T achieving the optimum trade-off

(9), given by

TNP(0|y) =


1, if P (y)

Q(y) > γ,

p, if P (y)
Q(y) = γ,

0, otherwise,

(10)

where γ ≥ 0 and p ∈ [0, 1] are parameters chosen such that
π0|1 = β.

Let P CX denote the channel input distribution induced by the
codebook C = {x1, . . . , xM}, i. e.,

P CX(x) ,
1

M

M∑
m=1

1{x = xm}, (11)

where 1{·} denotes the indicator function.
It has been shown in [12, Th. 1] that the exact error

probability ε(C) in (2) can be expressed as the best type-0 error
probability of an induced binary hypothesis test discriminating
between the original distribution P CX×PY |X and an alternative
product distribution P CX ×QY with type-1-error equal to 1

M ,
i. e.,

ε(C) = max
QY

{
α 1

M

(
P CX × PY |X , P CX ×QY

)}
. (12)

The right hand side of Eq. (12) is precisely the meta-
converse bound [7, Th. 26] after optimization over the auxil-
iary distribution QY . By choosing the auxiliary output distri-
bution Q̄Y (y) = |Y|−1 and minimizing over all distributions
defined over the input alphabet X , identity (12) can be
weakened to obtain

ε(C) ≥ inf
PX

{
α 1

M

(
PX × PY |X , PX × Q̄Y

)}
. (13)

For the class of symmetric channels considered in Defi-
nition 1, we resort to the Neyman-Pearson lemma to find
an alternative expression for right-hand side of (13). This
expression will be then shown to coincide with the exact error
probability ε(C) when C is a quasi-perfect code according to
Definition 2.

IV. OPTIMAL CODE STRUCTURE

We particularize the Neyman-Pearson test (10) with P ←
PX × PY |X and Q← PX × Q̄Y ,

TNP(0|x, y) =


1, if y ∈ S•x(θ),

p, if y ∈ S◦x(θ),

0, otherwise,
(14)

where θ = γ|Y|−1 and p ∈ [0, 1] are parameters that allow to
balance π1|0 and π0|1. We proceed to analyze the two error
types.

Substituting (14) in (7) we obtain

π0|1 =
∑
x,y

PX(x)Q̄Y (y)TNP(0|x, y) (15)

= |Y|−1
∑
x

PX(x)
(∣∣S•x(θ)

∣∣+ p
∣∣S◦x(θ)

∣∣) (16)

= |Y|−1
(
S•(θ) + pS◦(θ)

)
. (17)
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Given the constraint on π0|1 imposed by (13), and the struc-
ture of the Neyman-Pearson test, the parameters p, θ ∈ [0, 1]
are chosen such that π0|1 = 1

M , i.e.,

S•(θ) + pS◦(θ) =
|Y|
M

. (18)

Substituting (14) in (8) we obtain

π1|0 = 1−
∑
x,y

PX(x)PY |X(y|x)TNP(0|x, y) (19)

= 1−
∑
x

PX(x)

( ∑
y∈S•x(θ)

PY |X(y|x)

+ p
∑

y∈S◦x(θ)

PY |X(y|x)

)
. (20)

For an arbitrary x, let PY |X(yi|x), i = 1, . . . , |Y|, de-
note the output likelihoods indexed in decreasing order.
Given the symmetry condition in Definition 1, the vector(
PY |X(y1|x), . . . , PY |X(y|Y||x)

)
does not depend on the spe-

cific value of x. Then, for any x, we define ψi , PY |X(yi|x),
i = 1, . . . , |Y|, and rewrite (20) as

π1|0 = 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
. (21)

Using (18) and (21), it follows that the lower bound (13)
can be rewritten as

ε(C) ≥ 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
, (22)

where p, θ ∈ [0, 1] are such that S•(θ) + pS◦(θ) = |Y|
M .

The next result shows that for a quasi-perfect code C, (22)
holds with equality. That is, when they exist, quasi-perfect
codes attain the minimum error probability.

Theorem 1: Let PY |X be a symmetric channel according to
Definition 1 and let C be a quasi-perfect code according to
Definition 2. Then,

ε(C) = 1−

(
S•(θ)∑
i=1

ψi + p

S◦(θ)∑
i=1

ψi+S•(θ)

)
, (23)

where p, θ ∈ [0, 1] are such that S•(θ) + pS◦(θ) = |Y|
M .

Proof: Before showing that (23) holds with equality for
arbitrary quasi-perfect codes, we include the (simpler) proof
for the particular case of perfect codes.

a) Perfect codes: Consider a perfect code C according
to Definition 2. Then, the spheres Sx(θ) centered at the
codewords are disjoint and their union covers the output space,
thus, we have that MS(θ) = |Y|. These spheres are precisely
the ML decision regions for each of the codewords. Then, the
error probability (2) can be written as

ε(C) = 1− 1

M

M∑
m=1

∑
y∈Sxm (θ)

PY |X(y|xm). (24)

For symmetric channels, the set
{
PY |X(y|xm)

∣∣ y ∈ Sxm
(θ)
}

does not depend on the specific codeword xm. This set
coincides with {ψ1, . . . , ψS(θ)}, which are, by definition, the
S(θ) largest elements in {ψ1, . . . , ψ|Y|}. Then, we rewrite (24)
as

ε(C) = 1− 1

M

M∑
m=1

S(θ)∑
i=1

ψi (25)

= 1−
S(θ)∑
i=1

ψi. (26)

Since MS(θ) = |Y|, according to (18), we must have p = 1,
and (26) coincides with the right-hand side of (23).

b) Quasi-perfect codes: Consider now a quasi-perfect
code C according to Definition 2. The spheres S•x(θ) centered
at the codewords are disjoint. However, in general, the sets
S◦x(θ) centered at each of the codewords do overlap. These
overlaps correspond to ML decoding ties, and can be resolved
arbitrarily without affecting the error probability.

Let {Pm}, m = 1, . . . ,M , be any partition of the output
space such that Pm ⊆ Sxm

(θ), m = 1, . . . ,M . Let P ◦m ,
|Pm ∩ S◦xm

(θ)|. Following similar steps as in (25), we obtain

ε(C) = 1− 1

M

M∑
m=1

S•(θ)∑
i=1

ψi +

P◦m∑
i=1

ψi+S•(θ)

 (27)

= 1−

S•(θ)∑
i=1

ψi +
1

M

M∑
m=1

P◦m∑
i=1

ψi+S•(θ)

 . (28)

Since the total number of sequences in the output space is |Y|,
then it must hold that MS•(θ)+

∑M
m=1 P

◦
m = |Y|. Using (18)

we obtain

pS◦(θ) =
1

M

M∑
m=1

P ◦m. (29)

From the definition of S◦xm
, it follows that ψi = θ for

S•(θ) + 1 ≤ i ≤ S•(θ) + S◦(θ). Since by definition,
P ◦m ≤ S◦(θ), we have that

1

M

M∑
m=1

P◦m∑
i=1

ψi+S•(θ) =
θ

M

M∑
m=1

P ◦m (30)

= θpS◦(θ) (31)

= p

S◦(θ)∑
i=1

ψi+S•(θ), (32)

where (31) follows from (29). As a result, the right-hand side
of (23) and (28) coincide.

Eq. (12) shows that the meta-converse bound, after opti-
mization over the auxiliary distribution QY , coincides with
the exact error probability ε(C) of any code C (see [12]
for details). Theorem 1 shows that, for certain symmetric
channels, the relaxation (13) also coincides with the minimum
error probability for quasi-perfect codes, whenever they exist.
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Fig. 1. Error probability for the BSC with parameters δ = 0.1, M = 4.
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Fig. 2. Error probability for the BSC with parameters δ = 0.1, M = 3.

Theorem 1 recovers [4, Th. 3] in the same generality. The
hypothesis testing approach reported in this work is conceptu-
ally different to that in [4] and allows further extensions. For
example, in this work we have restricted ourselves QY = Q̄Y ,
although different QY are obviously possible.

Example: BSC
Figures 1 and 2 depict the minimal error probability for the

transmission of M messages over n channel uses of a BSC
with cross-over probability δ = 0.1. We plot the exact error
probability (2) and the meta-converse bound (12) computed for
the best code [13], compared with the lower bound in (13).

From Fig. 1 we can see that the three curves coincide for
M = 4 and n = 2, 3, 4, 5, 6, 8. According to Theorem 1, a
quasi-perfect code can be built for these values of n as follows.
The output sequences belonging to the decision regions of each
of the codewords must have the

⌈
2n

M

⌉
or
⌊
2n

M

⌋
largest likeli-

hoods in {ψi}. For instance, for M = 4 and n = 4, this implies
that the decision regions must include 1 output sequence at
Hamming distance 0 to the closest codeword, and 3 output
sequences at distance 1. This distance spectrum is achievable,
for example, by the code C = {0000, 0001, 1110, 1111}, that

therefore attains the smallest error probability. Note that this
code is not optimum in terms of minimum distance (see [13,
Sec. IV] for details).

Similarly, Fig. 2 shows the three curves for M = 3. We
can see that they coincide for M = 3 and n = 2, 3, 5. For
n = 4 the decision regions of a quasi-perfect code should
include 1 output sequence at Hamming distance 0 of the
corresponding codeword, 4 output sequences at distance 1, and
at most 1 output sequence at distance 2. However, there exists
no configuration of the codewords such that three of these
sets are packed in the output space. Therefore, there exists a
strictly positive gap between (12) and (13) and the bound in
(13) is not achievable.

Example: BEC
Since the binary erasure channel (BEC) is symmetric, quasi-

perfect codes according to Definition 2 attain the minimum
error probability. Unfortunately, these codes might not exist in
general. To see this, consider a BEC with erasure probability
0 < δ < 1

2 . For any input x ∈ Xn, the all-erasures sequence
is the least probable of the 2n output sequences with non-zero
probability. Therefore, for values of θ such that S(θ) < 2n,
the all-erasures sequence does not belong to any set Sx(θ),
x ∈ Xn. Since for any perfect code S(θ) ≈ 3n

M (see (18)),
even moderate values of M imply that (6) does not hold, and
neither perfect nor quasi-perfect codes exist.
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