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Abstract

The popularity of smartphones and other mobile devices has lead to a signif-
icant increase in the use of cellular mobile data. As this demand is predicted
to continue to grow exponentially in the future, providing sufficient and ubiq-
uitous cellular coverage becomes increasingly challenging and sometimes
even unfeasible. In addition to the generally increasing demand, unpredictable
crowds are even more challenging to accommodate with existing infrastruc-
ture. Even worse, natural or man-made disasters may break infrastructure,
thus disrupting connectivity. Also, a lack of economic incentives prevents re-
mote and rural regions from receiving sufficient connectivity.

Opportunistic networks are envisioned to mitigate many of those issues.
Mobile devices can leverage wireless capabilities (e.g. Bluetooth, WiFi ad-
hoc, WiFi direct) to communicate directly with each other, whenever two
devices are in mutual transmission range (in contact). State of the art oppor-
tunistic networks extract a stable structure (a contact graph) from all available
contacts. The contact graph can then be used to enable multi-hop communica-
tion to maintain connectivity and provide services in an opportunistic manner.

Within the context of opportunistic networks, there is a close relationship
between a device and its user. Thus, all communication of one device can be
attributed to its user. This highly personal relationship creates severe privacy
issues. What content the user consumes, which other users he or she meets
and where the user is located can all be easily determined by an interested
party. While some privacy aspects (e.g. location) are well investigated, the
privacy of social information (e.g. friendships, social structure) has not re-
ceived much attention. With the first two of the three contributions of this
thesis, we investigate the use of social information in the two fundamental
building blocks of opportunistic networking: routing and neighbor detection.
We find that state of the art solutions do not protect privacy relevant infor-
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mation. Therefore, we provide contributions in the area of privacy preserving
use of social information within opportunistic networking.

In the first contribution, we present an algorithm to protect the privacy
sensitive information associated with the social structure encoded by a con-
tact graph as it is used by state of the art routing algorithms for opportunis-
tic networks. A first straightforward approach to hide the social structure by
randomly modifying the contact graph quickly leads to wrong routing deci-
sions and thus diminishes opportunistic networking performance. By chang-
ing edges in the graph more selectively, we can maintain essential features
of the graph that are required for routing (e.g. centrality ranking) while still
effectively hiding the social structure encoded in the edges of the graph. We
design a step-wise optimal greedy algorithm and a heuristic variant that can
be calculated faster and for larger graphs. Eventually, we evaluate routing
performance by using privacy protected graphs in existing state-of-the-art op-
portunistic routing algorithms.

In an anonymous opportunistic network, even friends no longer can rec-
ognize each other. Thus, they no longer can rely on existing (real world) so-
cial links (e.g. friendships) for security and trust mechanisms. In the second
contribution, we present a protocol to detect once established social links in a
privacy protected manner while maintaining the anonymity provided by a per-
fectly anonymous opportunistic network. Our hash based protocol can recog-
nize pre-established social links among nodes without revealing private infor-
mation, hence protecting users identity and social information. We implement
our algorithm in a smartphone application and evaluate its performance.

Complementary to protecting the privacy of social information in the two
fundamental building blocks of opportunistic networks (routing and neighbor
detection), our third contribution investigates how current generation smart
phones impact the physical contact events and thus contact modeling. The
radio properties of smartphones (e.g. transmission range, directionality) are
an important factor that shape contact events between two devices. However,
in contrast to user mobility, which is well investigated, the impact of radio
properties of smartphones on wireless contacts has to our knowledge not been
investigated so far. We hence investigate the WiFi radio performance of smart-
phones for opportunistic networking. We start by revisiting the classical link
budget, later adding the impact of the phone’s carrier. We then perform ex-
tensive measurements to fully characterize all components of the link budget
between two smartphones. Our measurements also give a clear indication of
which of the existing propagation models is suited best for smartphones in
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a pedestrian outdoor setting. Finally, to assess the capacity of opportunistic
networking, we evaluate a simple scenario of two pedestrians crossing on a
path.





Kurzfassung

Durch die steigende Verbreitung und Populartiät von Smartphones hat sich
die Internetnutzung stark verändert. Dank der Mobilfunknetzte konsumie-
ren Menschen Internetinhalte nicht mehr nur zu Hause oder am Arbeitsplatz
sondern praktisch überall. Der stetige Ausbau der Mobilfunknetze hat auch
dazu geführt, das die Internetabdeckung heute bisher ungekannte Ausmas-
se erreicht hat. Das Internet der Dinge wird den Druck die Mobilfunknetze
auszubauen noch verstärken. Allerdings werden durch diese Ausdehnung die
Grenzen der Internetverfügbarkeit unschärfer und die Belastung durch stei-
gende Datenvolumen immer größer.

Opportunistische Netzwerke nutzen direkte, drahtlose Kommunikation
von Gerät zu Gerät um Informationen zwischen den Benutzern auszutau-
schen. Dank drahtloser Kommunikationstechnologien wie WLAN oder Blue-
tooth können von Smartphones direkt miteinander kommunizieren ohne auf
Infrastruktur angewiesen zu sein. Wenn die herkömmlichen Mobilfunknetze
überlastet oder nicht verfügbar sind, eröffnet opportunistische Kommunika-
tion neue Möglichkeiten für Anwender. Informationen werden immer dann
ausgetauscht, wenn zwei Benutzer gegenseitig in Funkreichweite kommen.
Zusätzlich tragen Benutzer die Daten auch physikalisch mit sich herum wenn
sich in ihrem Alltag bewegen. Obwohl theoretisch genug Potential besteht,
haben sich opportunistische Netzwerke wegen fehlender Geschäftsmodelle
bis jetzt noch nicht durchgesetzt. Wir untersuchen drei Themen von denen
wir glauben, daß sie die praktische Akzeptanz von opportunistischen Netz-
werkern erleichtern werden. Als erstes behandeln wir den Schutz der sozialen
Informationen die für Routing genutzt werden, als zweites machen wir sozia-
le Kontakte in einem anonymen Umfeld nutzbar und als drittes evaluieren
wir Smarphone WLAN Eigenschaften um besser zu verstehen wie Kontakte
durch die eingesetzte Technolgie beeinflusst werden.
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Zuerst behandeln wir soziale Informationen, die ein wichtiges Werkzeug
sind um opportunistische Netzwerke zu verbessern. Unter anderem kann man
mit einem Kontaktgraphen, der soziale Strukturen erfasst, die Erfolgsrate bei
Routing maximieren. Dabei untersuchen wir das Verhältnis von Schutz der
Privatsphäre und Routingerfolg im Kontaktgraphen. Durch kontrolliertes hin-
zufügen und entfernen von Kanten können wir den Schutz der echten sozialen
Verbindungen verbessern. Anhand von künstlichen und realen Kontaktgra-
phen zeigen wir erst, dass zufällige Änderungen am Graphen das Ranking
von Betweenness centrality (einer typischen Routingmetrik) schnell zerstört
wird und zu falschen Routingentscheiden führt. Unser Ansatz immer die Kan-
te mit dem kleinsten Einfluss auf das Ranking zu ersetzen führt dazu, dass
die Nutzbarkeit erhalten bleibt während gleichzeitig ein hohes Schutzniveau
erreicht wird. Die Skalierbarkeit unserer Lösung wird durch eine Heuristik
basierend auf der Ähnlichkeit von Knoten erreicht. Sie modelliert den Basi-
salgorithmus und ist für grosse Graphen gut einsetzbar. Daß Routing auch mit
den geschützten Graphen funktioniert können wir zeigen, in dem geschützte
Graphen für routing mit einem bekannten Algorithmus eingesetzt werden.

Im zweiten Teil bewegen wir uns im Spannungsfeld zwischen Anonymi-
tät und der Nutzbarkeit von sozialen Informationen. Einerseits müssen sozia-
le Informationen geschützt werden, andererseits können Sie genutzt werden
um die Leitung und Sicherheit in opportunistischen Netzwerken zu steigern.
Vollständig anonyme opportunistische Netze verhindern jedoch das Wieder-
erkennen von bestehenden sozialen Verbindungen (z.B. Freundschaften). Wir
entwerfen ein Protokoll, dass einen Ausweg aus diesem Dilemma darstellt. Es
ermöglicht, einmal erstellte soziale Verbindungen zwischen Benutzern wie-
derzuerkennen, ohne daß private Informationen einsehbar werden, wodurch
es möglich wird, Anonymität und Leistung und Sicherheit zu unterstützen.
Unser Protokoll nutzt mit Bloomfiltern eine Hash-basierte Konstruktion die
gleichzeitig dem Schutz der sozialen Informationen und einer zuverlässigen
und schnellen Erkennung bestehender sozialer Verbindungen in einem anony-
men Umfeld dient. Zusätzlich implementieren und evaluieren wir das Proto-
koll auf Android Smartphones.

Zuletzt wenden wir uns der Tatsache zu, dass (Funk)Kontakte bisher vor
allem vom Standpunkt der Benutzermobilität aus untersucht wurden. Aller-
dings hängen die Eigenschaften der Kontake zu einem großen Teil auch von
den involvierten Geräten (meistens Smartphones) ab. Unseres Wissens nach
hat sich bisher noch keine Studie mit dem Einfluss der Funkeigenschaften
moderner Smartphones auf opportunistische Kontake befasst. Darum unter-
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suchen wir in diesem Teil der Arbeit die Auswirkungen der WLAN Charakte-
ristik von Smartphones auf opportunistische Kommunikation. Wir beginnen
mit dem klassischen Linkbudget und erweitern diese Betrachtung um den
Einfluss des Menschen der das Gerät trägt. Des Weiteren führen wir Messun-
gen durch, die es uns erlauben alle Komponenten des Linkbudgets zwischen
zwei Smartphones zu charakterisieren. Das zwei Strahlen Ausbreitungsmo-
dell stellt sich als das beste Modell für Smartphones heraus. Zuletzt betrach-
ten wir ein Szenario in dem sich zwei Fussgänger begegnen und berechnen
die Datenübertragungskapazität der daraus resultierenden opportunistischen
Kontakts.
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Chapter 1

Introduction

Over the past years, smart mobile devices and data services have changed
the way people live and organize their lives. Always available information
and communication possibilities reshape many aspects of life, such as how
personal relationships develop, how political and social movements are or-
ganized and how businesses offer their services. Today, smartphones are
omnipresent. In 2014, for the first time, the number of smartphones sold
exceeded the 1 billion mark according to a market analysis by Gartner [37].
In addition to the increasing popularity of smartphones, the number of down-
loaded applications on smartphones accumulated to approximately 100 bil-
lion in 2013 while in 2015 this number was already reached by the Apple
App Store alone [88, 89]. This huge success drives the exponential growth
for mobile data [18] which is expected to exceed 24 exabytes per month in
2019. On the other hand, mobile networking technologies based either on
cellular networks (3G/4G/LTE) or on IEEE 802.11 WiFi technology have to
satisfy the data communication needs of smartphones and their applications.
However, those technologies have difficulties keeping up with the increasing
demand for mobile data in terms of coverage and capacity. Especially dur-
ing peak periods and events that attract many people, it is difficult or even
unfeasible to provide enough bandwidth with existing cellular infrastructure
networks. Additionally, failure of the communication infrastructure, as it can
be caused by natural or man-made disasters, leads to a complete communica-
tion breakdown. Finally, it sometimes is economically not feasible to deploy
expensive cellular network infrastructure in sparsely populated regions.



2 1 Introduction

For the foreseeable future, the areas that are uncovered by conventional
infrastructure will remain. Therefore, other communication paradigms can
provide means to fill the gaps. One possible solution is to utilize direct device
to device communication that does not require any infrastructure to transfer
data. Smartphones today, as well as other mobile devices, support a variety
of wireless standards with device to device communication capabilities such
as Bluetooth [12], WiFi Direct [104] or LTE Direct [80]. Utilizing those
technologies activates an additional potential for communication independent
of the range of centralized infrastructure such as cellular base stations or WiFi
access points. Whenever two devices come into mutual transmission range
(in contact), they can use this contact to exchange data. The range within
such a contact can occur depends on the wireless technology, as well as the
environment (e.g. indoor or outdoor) and can range anywhere from a few
meters to a few hundred meters.

Using a single contact to exchange data is simple, but providing services
where contacts are unpredictable and numerous is very challenging. Oppor-
tunistic networks are designed to provide services in such challenging envi-
ronments. Social information is a major factor that state of the art solutions
for opportunistic networks use to overcome the challenges. The social behav-
ior of users in opportunistic networks creates structure in contacts when users
follow their daily routines and they trust information from their friends more
than from strangers.

Social information is very closely linked to individuals and thus a privacy
sensitive topic. Especially in the post Snowden aera 1 privacy has become
a major topic of concern for the general public. In order to gain acceptance
of a broad audience for new electronic communication technologies such as
opportunistic networks, privacy needs to be protected by design. While pri-
vacy in general has a very broad scope, in this thesis we will focus on essential
features in opportunistic networks that make use of privacy sensitive informa-
tion. It turns out, that for essential features (like routing or neighbor detection,
see Section 1.4) social information plays an important role in state of the art
solutions.

With social information being used and therefore readily available for ev-
erybody, a number of questions about the sensitivity and use of social infor-
mation arise, such as What kind of social information is used in opportunistic

1Edward Snowden revealed documents that show how intrusive and powerful NSA methods
are and to what extent it collects and analyzes privacy sensitive information. The material has
been reviewed and partially released in cooperation with Glen Greenwald and The Guardian
newspaper http://www.theguardian.com/us-news/edward-snowden

http://www.theguardian.com/us-news/edward-snowden
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networks? How is social information used in opportunistic networks? Can
available social information be misused? Can the social information be pro-
tected? Does the protection of social information impact the performances
of opportunistic protocols or networks? In this dissertation we strive for an-
swers to some of those questions. In order to protect social information, we
need to understand what kind of social information is used in opportunistic
networks today, for which functions of the network it is used and whether or
not all of the currently collected information is critical to the operation of the
network.

We focus on two fundamental building blocks of opportunistic networks
(neighbor detection and routing) which are present in all implementations.
Solutions for those building blocks can be integrated into every opportunis-
tic network with minimal effect on the application running on top of it. The
challenges introduced by the focus on the fundamental building blocks rout-
ing and neighbor detection are

• maintaining routing performance while minimizing or removing social
information that is visible to attackers and doing so in a centralized as
well as distributed manner.

• to detect existing social links among two nodes in contact without re-
vealing the users identities or friendships to anybody else and doing so
in a fast and efficient way to preserve the scarce contact time for data
exchange.

The first contribution of this thesis addresses the privacy of social infor-
mation that is used by routing in opportunistic networks. We find, that state
of the art routing protocols base their decisions on a graph that encodes the
social structure of the users in its edges (see Section 1.4.2). Metrics from
complex networks analysis (e.g. centrality) are calculated on the graph and
then used to make forwarding decisions. A first approach to randomly modify
the graph fails to maintain correct routing decisions. Thus, we design an al-
gorithm that protects the social information encoded in the edges of the graph
while at the same time it maintains correct routing decisions in the network.

In the second contribution, we look at how social information is used in
neighbor detection of opportunistic networks. Connections to social links are
used to improve various communication aspects such as trusted sources of
information or spam prevention. In order to support those aspects without
sacrificing users privacy, we design a fast and efficient protocol to detect ex-
isting social links without revealing the users identities or information about



4 1 Introduction

their social links. This enables users to benefit from their social links even in
a situation where they want to otherwise act anonymously.

A central aspect of opportunistic networking are the contacts between
users smartphones. The third contribution of this thesis investigates how cur-
rent smartphone design impacts the opportunistic contacts. While mobility of
users is well investigated, the radio characteristics of smartphones, which is
the second important factor for when a contact occurs, has not received much
attention. Based on the link budget between two smartphones, we charac-
terize the individual elements of the link using multiple information sources
such as publicly available specifications and our own measurements. Based
on our measurements, we are also able to select the best matching available
propagation model for smartphone outdoor use. Finally, we use our results
to estimate the data transfer capacity of a contact between two pedestrians
crossing on a street.

The remaining sections of this introduction provide motivation for op-
portunistic networking in general in Section 1.1 and describe existing archi-
tectures and their commonalities in Sections 1.2 and 1.3. In Section 1.4 we
narrow the focus to how social information is used in opportunistic networks
and argue for the need for privacy in Section 1.5, before we specifically re-
view related work on the use of social information and privacy in Section 1.6.
The introduction concludes with the contributions made by this thesis and an
overview over the remaining chapters in Section 1.7.

1.1 Opportunistic network scenarios

The introduction of smartphones in the global market has changed how peo-
ple perceive and use mobile communication. Within a few years, smartphones
transformed from a luxury gadget for rich into an every day companion for ev-
erybody. The recent development of low cost smartphones has further pushed
smartphone adoption across the globe, especially in emerging countries such
as India, Russia and Mexico. Market research by Gartner [37] estimates the
number of smartphones sold in 2014 alone to exceed 1.24 billion devices (up
from 923 million in 2013). The evolving feature set and computing power
of smartphones also change how people access Internet services. Already
for 2015, an estimated 788 million people will access the Internet via mobile
devices only, without using any traditional fixed computing infrastructure at
all [90].

A consequence of the increasing popularity and versatility of smartphones
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is the rapidly rising demand for data over cellular networks. A study by
Cisco Inc. [18] indicates, that in the end of 2014 global mobile data traffic
was approximately 2.5 Exabyte per month, an increase of 69 percent from
2013. Specifically for smartphones, it estimates that data usage per individ-
ual smartphone has increased by 45 percent last year from 563 MB per month
in 2013 to 819 MB in 2014. The numbers are evidence for a worldwide adop-
tion of smartphones, which has led to the availability of information almost
any time and at any place. As smartphones connected to the mobile Internet
provide a vast amount of services, asking “why should smartphones connect
directly to each other?” is a valid question. The growth in data demand, as
well as the dependence of users on their smartphones, comes with its own
challenges. In situations where traditional cellular infrastructure struggle, fail
or simply can not deliver a sought after service, opportunistic networks may
provide what otherwise would not be available. The following subsections
outline some scenarios, where opportunistic networking provides benefits for
users. Such opportunistic networking use-cases can be separated into four
categories: (a) cellular data offloading, which may prevent overloading the
mobile Internet infrastructure; (b) communication where cellular infrastruc-
ture has broken down or is completely missing; (c) providing an additional
or alternative communication channel for security purposes, as opportunistic
networking can provide a means of communication that is much more diffi-
cult to intercept; (d) new applications, that become possible by opportunistic
communication, such as sharing information in a bounded area.

1.1.1 Cellular data offloading

The immense popularity of smartphones is driven by their increasing versatil-
ity which facilitates many aspects of peoples everyday lives. This versatility
of smartphones is caused by the staggering and ever increasing number of ap-
plications available [88] and provides more and more functionality for users
in every aspect of their lives. The main enablers for the variety of applica-
tions are continuously growing computing power and connection speed of
smartphones. Those two factors are essentially driving the demand for data,
as higher data volumes can be retrieved and processed within a shorter period
of time. Additionally, data intensive tasks such as video streaming account
for a growing share of mobile data traffic, which by 2014 represented ap-
proximately 55 percent [18] of the global mobile data traffic volume. Also,
high connection speeds allow to outsource computing intensive tasks to the
cloud (e.g. virtual personal assistants such as Apple Siri, Google Now or
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Microsoft Cortana). Finally, a significant portion of mobile Internet traffic
is already offloaded to the fixed network via 802.11 wireless networks. Ac-
cording to Cisco [18], 46 percent of the global mobile Internet traffic was
offloaded from the cellular infrastructure through WiFi networks and femto
cells in 2014. Without this effect, mobile data would have effectively grown
84 percent in 2014 instead of 69 percent.

Even with high investments in the networks, deploying new cellular tech-
nologies such as LTE [28] and the use of femto cells, there are situations
where the cellular infrastructure can not cope with the demand. Especially
during events with many people and other unpredictable crowds, demand
peaks exceed the available capacity by far. Those peaks can only partially be
anticipated, therefore installing additional infrastructure such as femto cells is
costly and sometimes even unfeasible. Offloading traffic by means of oppor-
tunistic networking [44, 62] can help handling peaks in demand. Offloaded
data is restricted to delay tolerant applications and best suited when multiple
users are interested in the data at the same geographic location. Offloading
reduces the required infrastructure bandwidth by downloading a piece of con-
tent once over the cellular infrastructure and then propagating it from device
to device using opportunistic networking. Thus, each additional user that is
interested in the content does not need to download it via its cellular connec-
tion any more.

1.1.2 Communication in the absence of infrastructure

Today, many people are used to being connected at all times. However, being
connected in this way is more a privilege than anything else, as the digital
divide [42] separates connected and unconnected areas of the world. Even
worse, the connected part of the world may experience disconnection events
caused by natural or man made disasters, which bring down the established
infrastructure. Bridging the digital divide by using device to device commu-
nication has been the focus of various initiatives [29, 43, 91].

In contrast to regions with limited or no coverage beyond the digital di-
vide, situations where natural or man made disasters cause an infrastructure
break down can not be limited to specific geographic areas. Furthermore,
the frequency of such events, already on a European scale with 137 events
in 2014 [17], is higher than one might expect. One prominent example is
the earthquake that caused a tsunami in Japan in 2011. In this event, com-
munication infrastructure was shut down or completely destroyed. Several
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regions remained without connectivity for several days [36]. In such a situa-
tion, communication is essential for first responders and people in the area to
quickly act and react properly. Opportunistic networks can help establish and
maintain communication in such a setting and thus aid in the efforts of rescue
services to bring help to the right places and people faster. Additionally, they
can allow people to organize themselves to help others, find missing relatives
or find safe escape routes. In such a case, information is transmitted from
device to device until it reaches one with cellular connectivity, from where it
can be sent on to the fixed infrastructure [47].

1.1.3 Alternative communication channel

Data transmitted over the Internet passes through numerous networks which
are controlled by different providers and countries. As such, data transmit-
ted is subject to commercial, criminal and national interests. Large Internet
companies (e.g. Yahoo, Google, Microsoft, . . . ) collect and analyze data to
increase their revenues [38], criminal efforts may eavesdrop, block, alter or
fake legitimate data traffic for its purposes [99] and national actors may do the
same for their own motivation (e.g. large scale surveillance [41], industrial
espionage or censorship). Opportunistic networks offer alternative commu-
nication channels that are out of reach of “traditional” Internet surveillance.
They can be used instead of, or additionally to the Internet and provide in-
creased privacy and security for the users. For example, users can distribute
and access content or opinions that would otherwise be censored via an op-
portunistic network. Nevertheless, opportunistic networks are not immune to
attacks themselves. However, those attacks can not be done with existing In-
ternet attack tools and typically incur a higher cost for the attacker due to the
local nature of opportunistic networks. Communication patterns and location
of users can still be tracked [85] from which locations of interest, such as
work or home, or social structures [26] can be derived.

1.1.4 New services

The properties of opportunistic network design, which is based on direct local
contacts also opens room for new services that exploit the local properties of
opportunistic networks. Two examples are geo-local (or “floating”) informa-
tion and local social networks.

geo-local information Street map tiles and temporary local advertisements
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are just two examples of information that has only limited geographic
utility. Such services, where information is only usable in a small local
area, can be provided by opportunistic networks. In contrast to existing
location based services, that determine the location via GPS and then
download relevant information from an Internet server, opportunistic
content can float [53] around in an area readily available for everybody
around. The floating content does neither depend on a GPS (satellite)
based location, nor on an available Internet connection. This makes it
suitable for indoor and underground settings as well as touristic places,
where roaming fees for data connections can incur significant charges
for tourists.

local social networks A large part of peoples lives is based on local interac-
tions. Being with family, co-workers or friends defines our mobility as
well as the other way round, as we may make new friends by visiting
new places. Opportunistic networks directly support this local social
interaction [78]. Opportunistic network based local social networks do
not have privacy relevant information stored on a central server. Fur-
thermore, presence awareness of friends nearby [98] and finding new
people with similar interests [1] is easily supported.

Be it enhancing existing services or providing alternatives and even new
services, the scenarios and applications described in this section show the po-
tential for opportunistic networking. While the potential is recognized, imple-
menting opportunistic networks in reality has experienced many challenges.
One major challenge was the lack of suitable architectures for opportunistic
networks. The following Section describes opportunistic networking archi-
tectures that have been proposed in research, as well as some examples of
commercial applications that use opportunistic networking techniques.

1.2 Opportunistic network architectures

The challenged nature of opportunistic networks, such as typically uncon-
nected paths, prevent the Internet architecture from being applied. Conse-
quently, a significant branch of research on opportunistic networks is dedi-
cated to designing suitable architectures. One of the early occasions, where it
became evident that the design decisions taken for the Internet are not suited
for all networking situations was the idea of the interplanetary Internet [15].
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In a scenario where a command center on earth communicates with a space
craft orbiting a planet and a probe on its surface, the connection between
the command center and the space craft is lost each time the probe orbits
around the far side of the planet and the space craft only has contact with
the probe on the surface when it passes over it. An architecture where dis-
connections are an error condition, like the Internet, is not suitable for such a
scenario. Therefore, an architecture that expects random and frequent parti-
tioning of the network, node disconnections and long data propagation delays
is required. To this end, opportunistic networks and related fields such as de-
lay tolerant networks (DTN) [23] and pocket switched networks (PSN) [16]
have been investigated for more than ten years. Solutions for challenges such
as sporadic connectivity, unknown neighbors and contact duration have been
developed. While architectures are not at the core of this work, we survey
some important opportunistic architectures that were proposed. To locate our
contributions in the context of opportunistic networking, we will then iden-
tify common features among all architectures, which we will call fundamental
building blocks.

1.2.1 DTN

In 2003, the first architecture designed for challenged Internets, called DTN
(delay tolerant networking) [30] was proposed. Since then, this effort was
continued by the IRTF DTN research group [23]. The research group has
published a series of RFC documents that further specify this architecture. Its
main element is a bundle protocol, which organizes and exchanges messages
in bundles that are specifically designed to cope with long delays and dis-
connections without data loss. The DTN architecture is designed for generic
networking situations with long delays and disconnections. It thus does not
take advantage of context specific knowledge for its proposed routing solution
Prophet [64], such as the human mobility of nodes in opportunistic networks.
Furthermore, it defines generic categories of contacts mainly based on their
predictability, but deferring the detection of a contact to technologies below
the DTN overlay.

1.2.2 Haggle

The Haggle architecture [81] organizes messages in application data units
(ADU) which, similar to bundles in DTN, contain all required information to
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be forwarded independently of other ADUs. More specialized than DTN, it is
specifically designed for mobile device based opportunistic networking and
to additionally utilize infrastructure networks. It supports different routing
solutions, among one of them, BubbleRap [52], uses social information in its
routing decision. Haggle also explicitly requires neighbor discovery, which
includes finding opportunistic neighbors (e.g. by Bluetooth scanning) as well
as fixed Infrastructure (e.g. by scanning for WiFi APs).

1.2.3 PodNet

PodNet [59] is an opportunistic architecture designed for content sharing
based on a publish-subscribe paradigm. Content is organized in channels
that users can subscribe to or create new channels themselves. Data forward-
ing decisions are based on the subscriptions and are controlled by the users
seeking content (i.e. content is not pushed to other nodes without request).
Neighbor discovery is also an integral part of the PodNet architecture and can
rely on available technologies (e.g. Bluetooth and WiFi scanning) as well
as an integrated beacon mechanism that is used in case the wireless technol-
ogy used does not provide a neighbor detection mechanism. An extension of
the PodNet architecture introduces additional security elements which limit
access to the content channels [92] to publishing by authorized users only
or to completely closed groups of users and a reputation system for content
creators.

1.2.4 Scampi

The SCAMPI architecture [79] is designed as a service platform for oppor-
tunistic networks. It contains elements of the three aforementioned architec-
tures and combines them to make flexible services (e.g. content or resources)
available to opportunistic nodes. It routes self-contained messages similar to
DTN bundles with a flexible selection of routing mechanisms along oppor-
tunistic contacts detected by the neighbor discovery.

1.2.5 Commercial applications

While the mentioned architectures did not successfully spread into practi-
cal use as general purpose opportunistic networking enablers, there are some
applications available that use opportunistic networking based or enhanced
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services for smartphones. One of the best known is FireChat [68], a mes-
saging application by Open Garden that was used by the protesters in Hong
Kong in 2014 [10]. Twimight [27], a twitter client that is able to propagate
tweets opportunistically if the infrastructure network fails, is available for
Android phones. An opportunistic VoIP application has been developed in
the Serval project [91] to enable telephony in areas lacking cellular coverage.
Uepaa [97] created an alpine safety application that maintains communication
among users even if they venture beyond the reaches of cellular connectivity,
which is available for iOS and Android. Tracking way points and rescue
alerts are propagated opportunistically until they reach an area with cellu-
lar connectivity to aid in and speed up the rescue operation. More recently,
Uepaa also provides its opportunistic technology as platform service for use
in other applications [98]. Leaving the software only domain, goTenna [39]
has developed an external device with a dedicated radio for opportunistic net-
working. The goTenna device works in combination with a smartphone to
which it is paired using Bluetooth LE. The device contains a second radio
interface that can detect and communicate with other goTenna devices up to a
distance of several miles. This range is mainly due to its operating frequency
at approximately 150 MHz [31], at which it benefits from different propaga-
tion properties than the typically used 2.4 GHz radios (Bluetooth, WiFi). As
a consequence, goTennas opportunistic communication is exclusive to users
with goTenna devices (the devices are sold in pairs only).

1.3 Fundamental building blocks in
opportunistic network architectures

The architectures described in the previous section all have two significant
features in common. The first, neighbor detection, establishes the basic unit
of communication in the opportunistic network, the contact, by detecting
other nodes within transmission range. In the second common feature, rout-
ing, a strategy to exploit the individual contacts to propagate messages from a
source to a destination is defined. Thus, the two fundamental building blocks
of opportunistic networks, neighbor detection and routing, provide the basic
opportunistic networking features which enable the users to run the oppor-
tunistic application of their choice. Each of the contributions of this thesis is
related to one of those fundamental building blocks. In the following, we give
a brief overview about the fundamental building blocks before we will focus
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on the use of social information in those blocks in the following Section 1.4.

1.3.1 Neighbor detection

Neighbor detection is the building block that provides all the functionality in
order to detect other devices in vicinity and thus make contacts available for
opportunistic communication. Neighbor detection mechanisms can broadly
be separated into three categories. First, some wireless technologies (e.g.
Bluetooth) come with an integrated neighbor detection that can be exploited.
Second, specialized beaconing and scanning schemes are designed on top of
wireless technologies without built in neighbor detection, or when the built
in detection is for some reason not suitable for opportunistic networking (e.g.
too slow). For example, WLAN Opp [93] uses 802.11 access point and station
roles dynamically for each node to detect and establish connections to other
devices in the vicinity. Also, PodNet uses its own beaconing scheme to de-
tect other nodes connected to the same access point. A major challenge with
neighbor detection mechanisms is the energy consumption or other resources,
which may differ significantly across roles (e.g. WiFi AP and station [93]) or
sent packets (e.g. broadcast and unicast). Third, mainly due to energy con-
straints on mobile devices, the use of additional, low power radios has been
proposed [54]. This allows to optimize neighbor detection with minimal im-
pact on the overall device run time. Either, existing radios in smartphones
are used, such as a combination of Bluetooth (short range, low bandwidth,
low power) and WiFi (long range, high power, high bandwidth), or a new low
power radio that has similar range to the high power radio is used. Since this
approach may require additional hardware, it is not within reach for oppor-
tunistic networks using off the shelf smartphones, until device manufacturers
have an incentive to agree on a technology and implement it in their products.

1.3.2 Routing

Once a device is aware of other contacts, a strategy to transport information
across devices is required to support data exchange. Traditional Internet rout-
ing does not fit the unpredictable and time varying nature of opportunistic
networks. Even protocols that are designed for frequent disconnections (but
where connectivity is the norm) such as AODV [75] or OLSR [19] do not
perform well in opportunistic networks where disconnection is the predomi-
nant state. Thus, new routing algorithms are required. To route messages in
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opportunistic networks, two strategies in its routing protocols can be identi-
fied. The first is to distribute multiple copies of a message and the second is
to exploit structure in the contacts. Distributing multiple copies (flooding)
has been proposed with epidemic routing [100], which creates a copy of each
message for all nodes that are encountered. The amount of messages created
by flooding puts a strain on the resources of the network (e.g. bandwidth,
storage), therefore, various ways to limit the number of message copies while
maintaining message delivery rates were proposed (e.g. Spray and Wait [86]).
More relevant for this thesis is the strategy to exploit structure within the con-
tacts. The structure in opportunistic contacts is caused by the social behavior
of people carrying the smartphones. How the social information is used for
opportunistic routing is described in Section 1.4.2.

1.4 Social information

In the context of this work, social information is information about the rela-
tionships, interactions and behavior of its users that is made available, is used
or collected by the operation of an opportunistic network, implicitly or ex-
plicitly. Furthermore, we narrow the focus to the use of social information in
the two fundamental building blocks of opportunistic networks. In this sense,
social information consists of information about who is in a social relation-
ship with a given user, such as family, friendships, co-workers or familiar
strangers. The operation of an opportunistic network makes this information
available, so that network operations such a routing can benefit from it. In
general, social information used in neighbor detection or routing can be of
two different origins:

• Self-reported by the users.

• Implicit information (e.g. contacts) gathered during the operation of
the opportunistic network.

Self reported social information requires the user to mark social links and
potentially even assigning them to categories (such as friend, family, loose
contact, . . . ). Implicit information is derived from observation of networking
events (contact frequencies, times, patterns, . . . ) which have their origin in the
social behavior of the users. For example, a frequent encounter with another
node during office hours on work days indicates a contact to a coworker, while
contacts in the morning or evening may relate to family members.
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Social information is successfully used in the fundamental building blocks
of opportunistic networks to improve networking performance and security,
which we will survey in sections 1.4.1 and 1.4.2. In general, the social infor-
mation is readily available for all potential networking mechanisms to make
use of it. Unfortunately, it therefore is also available to any other interested
party who can use it in any way it wants.

1.4.1 Social information in neighbor detection

In traditional opportunistic networks, nodes participate using their real iden-
tity. As opportunistic networking absolutely requires neighbor detection for
its operation, the nodes identity is permanently broadcast. In such an op-
portunistic network, every node is aware of the identities of the other users
around. While social information is not required for the purpose of neighbor
detection itself, the availability of nodes identities is the basis for several se-
curity and performance improvements in opportunistic networks. Examples
for those improvements are Sybil defense [94], spam prevention [95] and so-
cial based routing (see Section 1.4.2). In [107] the authors build on explicitly
available social links to improve location privacy in a location based service.
The principle idea behind the mechanisms based on social information are ex-
plicitly set up social connections (sometimes also called friendships). Once
a social link has been created by two users, they can easily recognize each
other based on the identities discovered during neighbor detection. By analyz-
ing aggregated contact information, social structure can be reconstructed [9].
Therefore, the neighbor detection process is a source of social information
in the opportunistic network. If neighbor detection does not deliver identity
information about other nodes (e.g. they act anonymously), the mechanisms
based on social links fail. Section 1.6.1 we will discuss consequences and
strategies to protect identities and still benefit from social links.

1.4.2 Social information in routing

Opportunistic routing can greatly benefit from exploiting structure within hu-
man mobility and social behavior to route messages. As human mobility
is influenced by people’s social behavior, also the contact events in an oppor-
tunistic networks inherit the properties of the social behavior. Thus, the social
information is used to predict, which node is better suited to carry a message
towards a destination.
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Social information consists of information about who is in a social rela-
tionship with a given user, such as family, friendships, co-workers or familiar
strangers. Furthermore, social information about individual users can be ag-
gregated into a graph [48] that gives more information about the social struc-
ture of a group of users. This aggregated information is even more useful to
make routing decisions, as a user’s utility to carry a message can be evaluated
beyond one single hop in the graph. Such an approach can for example iden-
tify users that are part of two different communities and thus are well suited
to carry a message from one community to the other. Section 1.6.2 gives a
more detailed description of how this information is used by state of the art
routing algorithms for opportunistic networks.

1.5 Privacy of social information

The most prevalent and successful business model for Internet services is
free-of-charge services for the users, financed by advertising. Advertisement
revenues make up the largest fraction of Internet revenues and the more tar-
geted specific ads can be placed, the higher their impact and thus the revenue.
To deliver ads specifically to a target audience, information about Internet
users is collected in order to classify them into groups. Gender, age and
other information used for this classification (up to 50 criteria or more) is
privacy relevant. Thus, private information becomes the currency that Inter-
net users pay for “free” services [57]. Furthermore, the rising popularity of
social networks has launched a debate about freely giving away privacy rele-
vant information online. This debate has raised user awareness and a growing
number of users actively manage privacy settings on websites like Facebook,
Twitter or Flickr. Also, events around the publication of NSA documents by
Edward Snowden have shed light on the possibilities of Internet surveillance
and the question what information should be private in general has become
an important part of the public discussion.

Users today evaluate new technologies more critically than ever regarding
privacy. Since opportunistic networks are not widespread in use today, pri-
vacy concerns need to be addressed from the beginning when introducing this
technology. [63] gives an overview over privacy challenges for opportunistic
networks. In opportunistic networks, the relationship between a device and its
user is very close, in some respects even almost identical. This increases the
scope of privacy concerns beyond what is typically found in Internet applica-
tions, as information made available by the user and information created by
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the operation of the opportunistic network can combine in a way that reveals
much more about users than in the traditional Internet setting.

Privacy in general is a broad topic where networking is only one element.
Already for opportunistic networks, there are many privacy aspects that come
into play. Opinions and preferences of the users or personal data contained in
content that is exchanged are just two examples. As opportunistic networks
are driven by user mobility, the users location is another aspect of privacy that
is also related to neighbor detection. Announcing the devices presence also
reveals a users location, which creates an additional incentive to act anony-
mously and unpredictably.

1.6 Related research

This section discusses existing research related to social information and pri-
vacy of social information in the fundamental building blocks of opportunistic
networks. In Section 1.6.1 we discuss existing work that is related to privacy
of social information in the process of neighbor detection as well as com-
puting techniques that are available to use social information in a privacy
preserving way. Section 1.6.2 describes how social information is used in
state of the art opportunistic routing and graph modification techniques that
are used in this work to implement privacy protection for routing. The two
sections following discuss and compare an existing privacy protected routing
approach with this work.

1.6.1 Privacy protected social link detection

With the introduction of privacy protection in neighbor detection, nodes es-
sentially act anonymously. While this protects the nodes identities, it has
consequences on networking mechanisms that are based on social informa-
tion provided by the neighbor detection (already described in Section 1.4.1).
A basic solution idea is, that the two nodes that come into contact somehow
determine if they share an existing social link (e.g. the have established a
friendship earlier) without revealing information about their identity or social
links if this is not the case. To solve this dilemma, two basic tool sets are
available. The first, privacy preserving matching, is based on cryptographi-
cal computations that allow the nodes to determine if they share a common
attribute (e.g. a social link) without revealing their attributes to each other.
The second, hash based compression and comparison, uses hash algorithms
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to obfuscate the nodes attributes (e.g. their social links) and determine with a
certain likelihood if they share a common attribute.

Finding common information among two nodes in a privacy protected
way is achieved by research in the domain of privacy preserving matching
or privacy preserving set intersection. A client-server based mechanism that
allows only the client to learn the result of a computation that involves input
from both was proposed in [34]. However, this mechanism requires a role
determination for the client and the server, which increases its cost for appli-
cation within opportunistic neighbor detection. It would also need to be run
in both directions, which further increases its time and resource consumption.
Efficient private set intersection is proposed in FindU [102] to determine the
best matching user given a group of users and their attributes, without re-
vealing the attributes of each user. The authors also propose a variant called
private cardinality set intersection, where only the number of common at-
tributes of the best matching user is revealed instead of the attribute values.
The main limitation for such an approach in neighbor detection is, that it re-
quires more than two users for the computation which can not be satisfied if
only two users in an opportunistic network meet. Finding new friends by cal-
culating social proximity instead of detecting existing social links is proposed
in [21]. The authors define social coordinates for each user and calculate the
distance between two users to determine whether or not they should become
new friends. Their scheme however, relies on a central trusted server that
computes the social coordinates for each user in regular intervals. Privacy
preserving matching in general has a high computational demand that makes
it unsuitable for a situation such as neighbor detection, where social link de-
tection has to be done frequently at the beginning of each data exchange and
the contact time is a scarce resource.

The second tool is the Bloom filter [11], which is a hash based struc-
ture that serves as a compacted representation of a set of attributes. Bloom
filters are used as a tool in various scenarios. We focus here on the use of
Bloom filters used for privacy preservation or in the context of opportunistic
networking. For E-SmallTalker [106], Yang et al. use iterative Bloom filters
for common interest detection. They use the Bloom filter as a compression
tool to fit a list of the user’s interests into Bluetooth service discovery packets
that are size limited. Cryptographically secure bloom filters have been pro-
posed by Nojima and Kadobayashi [67]. Unfortunately, the computational
complexity of their approach is too high for implementation on smartphones,
which are the typical opportunistic networking devices.



18 1 Introduction

1.6.2 Social information based routing

When users explicitly provide social information to the routing process, they
make available who they are friends with. This information may be taken
from existing online social network accounts. Self-reported social network
routing (SRSN) [8] uses Facebook friendships to route information in an op-
portunistic network. People Rank [65] also supports self reported social links
to assign a utility value to nodes for forwarding messages. With SSNR and
OSNR [73] Parris and Henderson present opportunistic routing based on self
reported social links. Specifically, the authors obfuscate the self reported
friendships to protect users privacy. We discuss the relationship of their work
with ours in more detail in Section 1.6.3.

The largest part of available state of the art routing protocols for oppor-
tunistic networks use information about contacts [20, 24, 52, 64]. Contact
information is analyzed to extract the implicit social structure. Based on the
extracted social information a utility value is calculated for each node. The
utility value is then used to make the forwarding decision. Simple contact
statistics such as the time since the last contact is used in the FRESH rout-
ing [24], where the utility of a node decreases as the time since the last contact
increases. Thus, the node which was in contact with the destination more re-
cently has the higher utility. While FRESH only looks at individual contacts,
with PRoPHET [64] the implicit social structure of contacts was exploited for
the first time. In PRoPHET, each node maintains a vector of utility values for
all known destinations, called the delivery predictability. The delivery pre-
dictability is calculated based on the number of past encounters (frequency
property), the duration since the last encounter (age property) and the values
reported by other nodes for a given destination (transitivity property). This
is already a first step to aggregate implicit social information for routing pur-
poses, even though it exploits generic non-randomness in contacts and not
human mobility and social structure in particular.

A direct analysis of the available social information in the contacts is
made by Bubble Rap [52] and SimBet [20]. Those routing protocols aggre-
gate contact information obtained from multiple nodes into a contact graph
[48]. The contact graph consists of the nodes representing the users and the
edges connecting the nodes encode the social structure. The performance of
graph analysis based protocols such as SimBet or Bubble Rap depends to a
large extent on how well the contact graph captures social information. How
the contact graph can be created was investigated in [48, 50] and the authors
showed that the contact graph can very accurately represent the social struc-
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ture in an opportunistic network. The routing decisions are then based on
utility values that are obtained by calculating graph metrics on the contact
graph, such as degree centrality, betweenness centrality or similarity. Rout-
ing protocols such as PRoPHET, SimBet or Bubble Rap present the state of
the art in routing for opportunistic networks. For example in Bubble Rap,
each node is part of a densely connected community and the communities in
turn are connected by bridge links, which is based on the idea that people
are part of different social groups and the social mobility across groups is
less than the connectivity within a group. Messages are first routed towards
high betweenness centrality nodes, which allows the message to traverse the
bridge links until it reaches the destination community. Once the message
arrived in the destination community, it is forwarded to high degree centrality
nodes, which are very well connected within the group and thus more likely
to deliver the message to its destination.

Compared to routing based on user provided or device data, where social
information is either provided freely by the user or not considered at all, con-
tact graph based approaches reveal social information without user consent.
Since contact graph based routing approaches have proven to provide the best
performance, they are considered as state of the art by the opportunistic net-
working community. Consequently, we focus on protecting privacy of social
information in contact graph based routing.

Relationship between routing and privacy protection

The process of contact graph based routing in opportunistic networks can be
conceptually structured into three steps. First, collecting contact information
on a single node. Second, exchanging this information with other nodes and
building the contact graph. Third, making forwarding decisions using com-
plex network analysis metrics of the contact graph (e.g. betweenness cen-
trality). Our approach modifies the contact graph before it is exchanged with
other nodes, after step 1. It is also applied after each exchange to allow for
incrementally building the contact graph among nodes in a privacy protected
way. This prevents other nodes from learning who is friends with whom (as
would be visible in the real contact graph). To achieve this, we have to ask the
question: is it possible to modify (privacy protect) the contact graph without
impact on the routing success?
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Graph modification

To answer the question raised in the previous section, the general research
domain of graph modification supplies a set of tools that may be applicable
to our problem. This section gives an overview over privacy protection and
anonymization for social graphs, since it provides the background for our
work presented in Chapter 2. For a more detailed discussion of social graphs
and privacy related techniques, the reader is referred to Chapter 14 in [105]
and Chapter 3 in [4].

The contact graph used by state of the art opportunistic routing is by de-
sign a social graph. The exchange of this graph with other nodes releases
the graph, which therefore needs to be privacy protected. Generally, privacy
breaches can affect three different elements of a graph: the nodes identities,
their attributes and the links between the nodes. The contact graph is built
to reflect the social links, therefore we will focus on the privacy protection
of the links between the nodes. As the link structure is often also used to
identify nodes, protecting the nodes identity is an implicit secondary goal. In
our work, we do not consider node attributes and thus will not further discuss
techniques related to attribute privacy.

The purpose of the privacy protected graph defines what properties of the
graph should be preserved and which ones can be neglected. Properties to be
preserved can either be of aggregated (e.g. sub graphs), spectral (e.g based
on adjacency matrix eigenvalues) or topological (e.g. shortest paths) nature.
The review of social information based routing in Section 1.6.2 shows that
topological properties of the contact graph are exploited (as can be expected
for the purpose of routing). Specifically, information such as node degree,
betweenness centrality or similarity are often used. We therefore now focus
on privacy protection for topological features of social graphs.

There are two basic approaches to preserve topological graph features for
the purpose of this work. The first, k-anonymity, modifies the graph in such
a way, that a given node can not be distinguished from at least k-1 other
nodes in the graph, regarding a given feature. This represents a node centric
approach to graph modification. The second, edge randomization, modifies
the graph structure by randomly adding and deleting edges, which provides
a probabilistic protection against re-identification. As our goal is to protect
the social links (edges) in the graph, we use edge randomization as a starting
point to protect the contact graph.

Random edge modification does not always satisfy the requirements of
utility preservation in graphs. To this end, selective edge switches have been
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investigated [45], where the sequence of switches is represented as a Markov
chain. One switch operation takes two pairs of nodes that are connected and
rewires the edges so that one node of each pair is part of one of the new links.
After the switch, the original node pairs are no longer connected to each other.
For our work, we relax the edge switching constraint to a free redistribution
of a single edge in the graph.

1.6.3 Privacy protected social information based routing

With privacy-enhanced social network routing, Parris and Henderson first
identify privacy issues related to using social information for opportunistic
network routing. This subsection gives an overview about their approach and
a detailed comparison with our work presented in Chapter 2 is given in Sec-
tion 2.7. They define social network routing as “one method to inform routing
decisions. Making the underlying assumption that encounters between mobile
devices are more likely to occur within groups of people who are connected
to each other, for instance through friendship or co-location, than between
random strangers, messages may be source-routed – forwarded selectively
only between friends of the original sender.” [73]. Parris and Henderson de-
fine their own routing mechanism that works according to their definition of
social information based routing. The sender sends a message to one of his
friends and attaches a list of his friends to the message. The message is then
passed on as soon as one of the friends (from the attached list) is met, until
it reaches its destination. Thus, a message can be transferred over multiple
hops, but all hops have to be part of the message attached friend list. In their
scenario, messages that are sent have a friend list (represented by hardware
addresses) attached, which is used to route the message towards the destina-
tion. The authors identify this as a privacy issue, as the friend list is sent out
in clear together with the message. They propose two solutions to prevent the
friend list from being revealed: Statisticulated social network routing (SSNR)
and obfuscated social network routing (OSNR). SSNR varies the size of the
friend list that is sent out together with the message in order to hide the full
real list from an attacker. It either adds non-existent friends or removes ex-
isting friends from the list. Thus, a local attacker can not learn the entire
(correct) friend list from a single or few observed messages. OSNR aims at
hiding the entire message-attached friend list from an attacker by inserting
the hardware addresses of the friend devices into a Bloom filter with a salt.
Forwarding nodes can query the Bloom filter for membership in the friend list
of any node that they encounter. Both SSNR and OSNR can be combined.
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The authors evaluate the routing performance by routing messages on
three different traces, which are all available at Crawdad. The SASSY data
set, which was collected using Bluetooth devices that were carried by 27 users
at University of St Andrews in [8]. A sampled subset of the MIT reality min-
ing data set [25] and a sampled subset of the data set collected at the Uni-
versity of Singapore [87]. The evaluation considers delivery cost, delay and
ratio for the three data sets and the two approaches. They find that the OSNR
obfuscation does not impact the SSNR results as long as the friend list is not
increased to a size that exceeds the Bloom filter’s maximum size for a given
false positive rate. Varying the size of the friend list with SSNR does im-
pact delivery ratio, where reduced list size increasingly reduces the message
delivery rate. Messages are only forwarded according to the sender defined
list, thus no further social properties (e.g. similarity) are considered by the
forwarding nodes. The evaluation does not take messages into account, that
are delivered directly from the sender to the receiver.

Parris and Henderson also discuss the security of their approach. Their
attacker model assumes an attacker with limited resources that can only over-
hear communication sporadically. They state that “the bar for an attacker
has been raised significantly for reversing a single sender’s friends list” [73].
The authors evaluation of reconstructing the friend list gives an almost 100%
probability of identifying a friend node after 9 intercepted messages. Accord-
ing to their analysis around 5 messages are required to brute force the Bloom
filter as it is used in OSNR with Bluetooth hardware addresses.

1.7 Contributions and outline

In this work we investigate the use of social information in opportunistic net-
works from two different angles. First, we analyze how state of the art social
based routing uses the available social information. Based on the analysis
we show that the social based routing mechanisms collect and reveal more
social information about its users than is required for the correct operation
of routing. We therefore design and evaluate a mechanism to remove excess
social privacy information in a way that does not impact the correct func-
tioning of social based routing. Second, we show that increasing levels of
privacy and anonymity negatively impact other features that are based on so-
cial links in the opportunistic network (e.g. security). To support interaction
among friends that can improve security and user experience in an anony-
mous environment, we design a social link detection algorithm that works
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in such an environment. The algorithm provides strong probabilistic protec-
tion of the existing social links and places only a small additional workload
on the devices. Third, during the course of this work, we cooperated with a
startup to implement a commercial opportunistic networking application on
current generation smartphones. In this phase, we discovered that contacts
we observed had a significant deviation from what was predicted by available
research on mobility. We found that most studies considered the radio range
to be a circle around a node. Effectively, only very little insight on how con-
tacts are influenced by the smartphone design and the user body was available
in literature. Both of those factors seemed to significantly impact the radio
range. We therefore characterized all elements involved in the radio contacts
from the smartphones components and design to the users’ body in order to
understand how contacts are influenced by those parameters.

In detail, we make the following contributions:

• We take a close look at state of the art social information-based routing
using contact graphs. We find that the contact graph contains signif-
icant privacy relevant information that is not required for the correct
operation of the routing. Thus, we design an algorithm that is able to
remove surplus privacy relevant information from the graph and quan-
tify the resulting impact on correct forwarding decision. The algorithm
achieves this by selectively adding and removing edges in the graph.
Even if the nodes only know a part of the graph, the privacy preser-
vation provides good performance. We also introduce a variant of the
algorithm that is able to effectively handle large graphs. Using pri-
vacy protected graphs to drive social routing, the message delivery is
maintained very well. This part of the work was published in Distl,
B.; Hossmann, T., Privacy in opportunistic network contact graphs,
IEEE, 15th International Symposium on A World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 2014

• Privacy protection can have a negative impact, as social connections
are hidden from the neighboring nodes themselves. We design a proto-
col that allows friends to recognize each other fast and efficiently in an
anonymous environment. The protocol is based on a novel privacy pre-
serving use of Bloom filters to prevent disclosure of a friendship “fin-
gerprint”. As contact opportunities are a scarce resource, the protocol
is very lightweight and only consumes little contact time. We also im-
plement and test the protocol successfully on the android platform. The
research conducted in this part was published in Distl, B.; Neuhaus, S.,
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Social power for privacy protected opportunistic networks, IEEE, 7th
International Conference on Communication Systems and Networks
(COMSNETS), 2015

• Contacts are an essential source of information. The impact of mo-
bility on contacts is already well investigated. We take a new look at
contacts from a point of view that was only little investigated so far.
We characterize the effects of using smartphones as base opportunis-
tic networking devices. That is why we ask the question “How well
are smartphones suited for WiFi based opportunistic networking?”. In-
stead of putting the focus on mobility and contacts, we focus on the
properties of smartphones and the users that carry them. To answer
the question, we look at all factors that influence the WiFi link budget
in realistic scenarios. Our investigation gives clues about the mini-
mum and maximum ranges for opportunistic contacts. This includes
the effects of smartphone design and a simple body model. Based on
available data, measurements and our model we also estimate the data
transmission capacity of two pedestrians crossing in an outdoor area.
This part of the work was published in Distl, B.; Legendre, F., Are
Smartphones suited for DTN networking? A Methodological teardown
of smartphones’ WiFi performance, International Workshop on Wire-
less Networks: Measurements and Experimentation (WINMEE), 2015

1.7.1 Outline

The remainder of the thesis is structured into two parts. The first part con-
tains two contributions for privacy preserving use of social information in
opportunistic networks. The second part contains a contribution towards un-
derstanding how the radio properties of smartphones influence the contact
events and thus opportunistic neighbor detection.

In Chapter 2 we present our algorithm to protect social privacy in con-
tact graph based social routing. We first review the contact graph as state of
the art routing information in Section 2.3. Next, we introduce the metrics
we use to quantify privacy and the impact on routing accuracy. With random
graph changes as a reference, we then present a step-wise optimal algorithm
to change the graph with global as well as only restricted local knowledge
about the graph in Section 2.4. As the contact graph size increases, we in-
troduce an adapted algorithm that overcomes size constraints imposed on the
step-wise optimal algorithm in Section 2.5. Eventually, we use the privacy
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protected graphs to drive routing decisions on existing traces and evaluate the
message delivery compared to using the original graph in Section 2.6.

How existing friends in an anonymous environment can be recognized is
presented in Chapter 3. We review the privacy challenges in Section 3.2 and
present our system and attacker model in Section 3.3. Afterwards, we design
a protocol that detects existing friendships in an anonymous environment in
Section 3.4 and give an estimation of the probabilistic privacy protection ef-
ficiency in Section 3.5 before looking at its performance on smartphones in
Section 3.6.

In Chapter 4 in the second part of the thesis, we leave the topic of privacy
and investigate the effects of smartphones and the people carrying them on the
WiFi link characteristics. Motivated by significant differences between ex-
pected and measured contact distances we look at the smartphone link budget
in Section 4.2 and the physical properties of current generation smartphones
in Section 4.3. After revisiting the two-ray ground propagation model in Sec-
tion 4.4 we present the results of our outdoor measurement in Section 4.5
and estimate the remaining elements of the link budget. Finally, we present a
body model and its effects in Section 4.6 before investigating the range, data
rates and possible data transfer volume of two pedestrians crossing outdoors
in Section 4.7.
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Chapter 2

Social link privacy for the
contact graph

2.1 Introduction

The dynamic and random nature of opportunistic contacts poses many net-
working challenges. Problems like routing, resource allocation or service and
content placement require rethinking the solutions designed for connected
wireless networks. Also, different opportunistic networking applications are
driven by different requirements. A first requirement may be to distribute in-
formation to all people within a geographic area, for example in the case of
disaster communication. Flooding messages with the desired information for
the opportunistic users can be an effective solution in that case. While flood-
ing information is effective in such situations, other opportunistic networking
scenarios can increase performance by exploiting further information for data
distribution. In addition to optimize flooding, information based on the users
of the opportunistic network can be employed to improve data distribution.
Type of content and content popularity is an example that can be used in
scenarios like cellular offloading. Above data distribution, routing in oppor-
tunistic networks can benefit from observing information available from the
operation of the opportunistic network.

While social information is very useful, the implications of collecting and
using this information on users privacy has not received much attention. The
social information used, such as information about friendships and other so-
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cial links, is often collected and distributed among the nodes. This leads to
a situation, where privacy sensitive information about users is communicated
throughout (parts of) the network. Each node then distills out the information
required to make forwarding decisions. We investigate social graph based
routing in opportunistic networks with regard to privacy sensitive informa-
tion. We consider the individual friendships of users to be privacy relevant.
The question that we will address in this chapter is: “How much information
about social links can be removed without compromising social based rout-
ing?” This question can also be phrased differently: “How much accurate
social information is required for social routing?”

The study of wireless contacts has become a popular field of research with
interesting results [16, 56]. It was found that, since the contacts are driven by
human mobility, they exhibit patterns akin to other social networks: contacts
happen in communities [52] of people who see each other often (friends, col-
leagues, familiar strangers) with bridges between them [50]. To exploit these
structural feature of contacts, it was proposed that nodes aggregate the his-
tory of observed contacts to a contact graph, which represents the structure of
who is in contact with whom frequently, and use tools from complex network
analysis [66] on this contact graph to make networking decisions exploiting
its social structure. At the time of meeting, nodes exchange their views of the
contact graph and hence get a more and more complete view of the structure
of contacts.

For the example of routing, research results have shown that protocols
that use centrality metrics computed on the contact graph show good perfor-
mance. These protocols, which route messages greedily towards more and
more central nodes towards the destination community show promising per-
formance [20, 52]. In these approaches, when two nodes meet, they decide
based on their centrality who has the higher utility, i.e., who is more likely to
deliver the message or bring it closer to the destination. It is thus the ranking
of the nodes with respect to their utility (e.g., centrality) that drives the rout-
ing decisions. Similarly, for the example of content placement, it was found
that centrality can be used to efficiently distribute a limited number of content
copies among the nodes [77].

Unlike routing in traditional connected networks, opportunistic networks
do not allow for end to end routing decisions at a single point in time, due
to the intermittent connectivity among nodes. Rather, upon node contact, an
informed forwarding decision is taken by the involved nodes. The forwarding
decision decides which node is better suited to carry on the data. The rout-
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ing process is thus typically executed on each node and yields a forwarding
decision for the current contact. While executing the routing process, nodes
take various information into account, as required by the routing algorithm
used. Social based routing on the contact graph uses the this graph as its
main source of information. As links in the contact graph represent (stable)
social connections, current contact might not be represented by a link in the
graph. By evaluating the social structure regarding the current contact and the
intended receiver, the graph can still be used to make a forwarding decision.
There is thus no direct dependence between a contact used to forward data
and a link in the contact graph. There is, however, a direct correspondence
between the users of the network and the nodes in the contact graph.

While the contact graph is a promising tool to solve many challenges in
opportunistic networking, it also poses serious privacy risks to the user. The
contact graph encodes the history of who meets whom and how frequently,
a good predictor of sensitive information like social ties, shared interests or
personal communication [49]. Since the contact graph must be available lo-
cally at the nodes to decide which node has the higher utility in a meeting,
this information is available to all nodes participating in the network, benign
or malicious. We hence ask the question: How can we prevent disclosure of
links in the contact graph, while maintaining its utility?

We therefore study graph change approaches that greedily modify edges
in the contact graph, such that the ranking of nodes in terms of routing utility
is maintained (thus not interfering with routing decisions). Using synthetic
and measured contact graphs, we show that, assuming global knowledge, we
can maintain the ranking of nodes for a large percentage of transformed links,
thereby offering high levels of privacy. Yet, a characteristic property of op-
portunistic networks is that nodes only have access to local knowledge. In
a second step, we propose and analyze heuristics by which the nodes can
modify their local view of the contact graph and show that the global ranking
is still largely maintained. To overcome scalability issues of this greedy ap-
proach in large contact graphs, we further propose a heuristic that selects the
edges to modify, which is based on similarity values of two nodes.

Eventually we are interested in the impact of our privacy protection ap-
proach on real routing decisions. Thus, we route messages using real contact
traces and existing routing protocols with the original and our privacy pro-
tected contact graphs and compare the results. Our evaluation shows that the
routing performance even in the presence of our privacy protection scheme is
good, while random changes have a significant negative impact on the routing
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performance.
Summarizing, our contributions in this chapter are the following.

1. We show that the social information encoded in the contact graph can
be protected with little impact on the ranking of the nodes regarding a
routing metric.

2. A stepwise optimal greedy algorithm that performs very well, but does
not scale to larger graphs.

3. A heuristic that approximates the greedy algorithm which performs
well and is a scalable approach.

4. Even with only limited local knowledge, a distributed version of our
algorithm still works well.

5. An analysis of routing performance indicates, that message delivery is
very good, even if our privacy protected graphs are used to drive the
routing decision.

The remainder of this chapter is organized as follows. In section 2.2 we
survey related work in opportunistic networks privacy in general and social
privacy in routing in particular. Section 2.3 introduces the contact graph as
state of the art social routing information source as well as the metrics we use
to capture social privacy and its impact on routing performance. Our algo-
rithm is presented in section 2.4 and we evaluate the impact of our algorithm
on our routing utility metric in section 2.5. Eventually we use the privacy pro-
tected graph to drive routing decisions with an existing social routing protocol
in section 2.6 and present our conclusions in section 2.8.

2.2 Related work

Security and privacy issues in opportunistic networks have already been ad-
dressed from different angles. The authors in [14] exploit user mobility and
thus contact patterns to set up security associations among users who are in
contact. For this work, mobility (and the social structure within) is a key
element, as it is also used to periodically renew the established security as-
sociations. To set up the security associations, communication over a secure
side channel is used. In [83] the authors target content privacy directly. In the
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context of content-based opportunistic networking, where source and desti-
nation are related to content instead of users directly, the authors define three
privacy levels. The increasing privacy requirements of these levels are met by
employing multi-layer commutative encryption.

In secure discovery of neighbors [71] the authors survey different neigh-
borhood detection approaches and their security properties. While much of
the survey is focused on physical effects and propagation, the authors point
out the need for a more general approach towards neighbor detection and its
security evaluation. Preserving privacy regarding the interests of users is pro-
posed by the authors in [7]. They propose to use private matching of shared
interests to detect new friends with common interests in a mobile social net-
working scenario. On another aspect, privacy of context information [70]
the authors acknowledge and address user-centric context information. They
propose to take the current user context into account when deciding which
information to reveal and also to exploit contacts to privacy protect the infor-
mation. Another approach to protect the identity of the sources and destina-
tion in an ad hoc network is proposed in [2]. Based on packet coding, which
allows to combine the properties of multicasting and onion routing into one
approach, the authors maintain sender and receiver anonymity. Obfuscating
the relationship between sender and receiver is also done by [58], in which the
authors use groups of users to reroute messages in combination with crypto-
graphic tools to provide communication privacy in an opportunistic network
setting.

Unlike these approaches, we look at the privacy of information used for
routing. There are many examples where social information of some form is
used in opportunistic networking, such as [8,13, 64,65]. Privacy of the infor-
mation used for routing has not received much attention. Parris and Hender-
son [73] investigate the case of social network routing, where friend lists are
exchanged among nodes to inform routing decisions. The authors obfuscate
the friend lists and similarly to Statisticulated Social Network Routing (SSNR)
proposed in [73], we aim at obfuscating the links in the contact graph. Par-
ris and Henderson [73] analyze random addition and removal of links and its
impact on routing performance for simple routing protocols.

Here, we take this a step further and investigate the impact when using
complex routing metrics like betweenness centrality (often used to route be-
tween communities [20, 52]) in realistic graphs with community structure.
For such metrics, we show that random addition and removal of links affects
routing decisions already for far smaller percentages of changed links than
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for simple routing protocols that are not based on social information. Thus,
we need more sophisticated mechanisms for transforming the contact graph.

2.3 Algorithm elements

In this section we explain the three key elements in our approach: oppor-
tunistic contact graphs, routing utility ranking and privacy. Contact graphs
are a powerful tool to capture a reliable link structure within an opportunis-
tic network. Opportunistic routing compares utility values to decide whether
data should be passed on to a node in range, so absolute values can be re-
duced to a ranking without impact on the routing. The contact graph contains
information about social links that must be protected. Otherwise this social
information is available in clear, compromising the privacy of opportunistic
network users. To find a trade off between privacy and routing utility, all
three elements (contact graph, utility ranking and privacy) need to be consid-
ered together.

2.3.1 Opportunistic network contact graphs

Opportunistic networks are formed by mobile devices with wireless capabil-
ities (e.g. WLAN, Bluetooth). Whenever two of those devices come into
communication range, they can exchange data directly without the require-
ment for any infrastructure (e.g. WLAN access points). The contacts are
guided by the movement of the nodes and their radio range. Contact dura-
tion, sequence and frequency are stochastic and unpredictable. To make best
use of the opportunistic network, a tool allows to identify a reliable struc-
ture within the stochastic contact events. The construction of contact graphs
is well accepted as a tool and has proven to be useful in many challenges
regarding opportunistic networks. The contact graph G consists of a set of
nodes V that are connected by a set of edges E. Edges are stable links that
were selected during the generation of the contact graph [50]. Those edges
are used by routing algorithms to properly transport packets in the network.

In figure 2.1 an example of how an opportunistic contact graph could look
like is shown. The edges indicate, that there seem to be stable links which can
be used to route packets.

Contact graphs are an accepted and useful tool to perform various tasks
in opportunistic networking. Using contact graphs, our approach relies on
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Figure 2.1: Contact graph with (a) original structure and (b) with 30% edges
changed by greedy privacy protection. Node colors reflect the betweenness
centrality ranking of the nodes (darker is higher ranked).

a proven tool and additionally, the remaining two elements of our approach,
routing utility ranking and privacy, are directly related to the contact graph.

2.3.2 Routing utility ranking

One use for contact graphs are routing mechanisms in opportunistic networks.
Often routing decisions are based on metrics of the contact graph. We argue
that in most cases, only a ranking of the nodes regarding a metric is important
for the routing decision instead of absolute metric values.

The nature of opportunistic networks make routing packets to a destina-
tion challenging. In classical routing, an end-to-end route can be determined
by analyzing the connectivity graph of a network. In opportunistic networks,
links are often only available for unpredictable and short periods of time Thus,
it is impossible to calculate an end-to-end route. Routing decisions are made
on each node encounter based on the information encoded in the contact graph
edges (e.g social links). The metric used for this decision captures the proba-
bility of a node to be in the “correct direction” towards the destination.

Without additional information about the graph, a common approach is
to forward packets to nodes with a higher node degree, with the assumption
that those nodes have a higher chance of meeting the destination node. For
example node 5 in figure 2.1 wants to send a packet to node 10. Node 5 meets
either nodes 3, 4 or 6. It compares its degree with the respective node. In the
case of meeting nodes 3 or 4 its own degree is higher so it does not forward the
packet to any of them. When it meets node 6, which has a higher degree, the
packet is forwarded. Node 6 keeps the packet until it meets node 7, which has
an equal node degree and since node 6 did not meet node 10 itself, the packet
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is passed on to node 7. Node 7 does not meet another node with higher node
degree, so it keeps the packet until it meets node 10 and delivers the packet to
its destination.

Several measures are used in proposed routing algorithms like centrality
and betweenness. The next hop node is determined by comparing the met-
ric (utility) values for each encountered node. Thus, the actual value of the
metric is not taken into account by the routing algorithm, only the compari-
son results. In our example, node 5 has a node degree of 3. Nodes 3 and 4
both have a node degree of 1, so it does not forward them the packet, because
3 > 1. Reducing the numerical values to a ranking does not influence routing
utility but allows for more flexible changes in the graph, as only the> relation
among all nodes needs to be maintained.

Opportunistic routing mechanisms exploit the contact graph to achieve
better performance by making use of edges that represent reliable connections
based on social links. A ranking of the nodes regarding their utility in the
graph is sufficient for the routing decision process. While contact graphs
improve routing decisions, the encoded social link information also reveals
privacy sensitive information about users, which is detailed in the following
subsection.

2.3.3 Privacy of social links

So far we have considered mobile devices interacting with each other. In
practice, most mobile devices are personal devices and a device and a user
can be regarded as one combined entity. As a consequence, data sent by a
specific device can be attributed to a specific user. Due to the graph generation
process, edges in G now represent social links. In this subsection we will
define our notion of privacy for the contact graph and detail an attacker model.

Social link privacy in our model is the ability to give users plausible de-
niability for the edges in the contact graph. That is randomizing their set of
social links. Thus, in our attacker model, the attacker wants to guess, whether
or not an edge between two given nodes in the visible (protected) graph exists
in the original contact graph. For this the attacker knows:

• The privacy protected graph G′ = {V ′, E′}.

• The privacy protection algorithm.

That is, given the privacy protected graphG→ G′ and a node pair n1, n2 ∈ V
with e〈n1, n2〉 ∈ E′ the attacker wants to find out whether e〈n1, n2〉 ∈ E.
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Our attacker acts on a graph level and is not able to:

• Track the users movements.

• Use any additional background knowledge.

Given the attacker classification in [105] our attacker falls into the link dis-
closure problem category.

In the context of contact graph based routing, two main goals need to be
addressed in a trade off. On the one hand, the social routing metric used to
make decisions must be maintained in order to keep routing possible. On
the other hand, as much of the encoded social information as possible should
be protected. This is why plausible deniability for the edges in the graph is
the goal of our algorithm. Attacks that aim at identifying the top ranking
nodes regarding the routing metric will still succeed, as this is exactly the
feature of the graph that our algorithm tries to maintain. The routing metric
graph feature is at the core of contact graph based routing and therefore has
to be available to the nodes. We can thus put the goal of our algorithm as
a question: “How can the excess privacy relevant information be removed
from the graph”. Therefore, we strive at minimizing the privacy relevant
information available to the attacker from the graph.

To measure link disclosure probability in a simple way, our privacy met-
ric expresses how many of the originally existing links in the graph still exist
after applying the privacy protection mechanism. Without additional informa-
tion, this metric expresses the probability for the attacker to guess correctly
whether two nodes have a link in the real graph or not. The goal of our algo-
rithm is to preserve the routing utility ranking for the graph for a given metric.
As metric values are only used in comparisons, our algorithm tries to main-
tain the correct ranking of the nodes instead of their absolute values. In that
case the comparison gives the same results as before. Based on the classifica-
tion in [105] our algorithm falls into the category that tries to achieve feature
preservation in the graph with edge randomization, where our algorithm tries
to find a trade off between randomization and successful feature preservation.
From the threat analysis done in [73], our attacker wants to:

• Discover structural information about the contact graph.

– learn if a friendship link exists between two users.

– learn how many friendship links a particular user has.
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Our privacy protection approach does not attempt to be ready for imple-
mentation in a real system. The goal is to understand the characteristics and
trade off involved when changing the contact graph to increase privacy, while
at the same time keep the graph usable for opportunistic routing.

Figure 2.2: Random edge changes for all graphs

After introducing all metrics and the idea of the algorithm, we can first
look at what happens to the metrics if changes in the contact graph are done
randomly. Figure 2.2 shows the result for random edge changes for all graphs
described and used later in the evaluation in section 2.5. The curves shown
are the mean of multiple runs (100-1000 depending on the graph size). The
x axis shows the increasing privacy protection towards the right. The y axis
shows the corresponding routing utility rank correlation for a given privacy
level. Note that at a correlation of 0, the the routing decision of two nodes
will only be as good as guessing. Goal of our algorithm is to provide higher
than random utility rank correlation for all privacy protection levels.

In this section we have shown how opportunistic contact graphs capture
the social links of users to provide a basis for routing decisions. On this
graph nodes can be ranked according to their utility for routing packets in
the opportunistic network. While correct routing is required for opportunistic
networks, without intervention the social links of each user are directly visible
to anyone. This privacy issue can be addressed by changing links in the graph
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in a selective way that maintains the routing utility ranking of the nodes but
makes it difficult for an attacker to discover real social links between the
nodes.

2.4 Approach

This section describes our approach to changing the contact graphs in a con-
trolled way. Our basic idea is to add and remove edges in a sequence that
maintains the routing utility ranking in the graph. Different edge selection
strategies, greedy and heuristic, that can be used to determine this sequence
are introduced. They differentiate in effectiveness as well as computational
complexity. Both strategies can operate on either the entire graph or only a
local subgraph (i.e. the direct friends of a node), which reflects the fact that
individual nodes usually do not know the entire graph.

2.4.1 Metrics

There are two metrics that are used during the evaluation of the algorithm
variants. One metric, utility rank correlation, is used to measure the impact on
the routing decisions of the graph. Another metric, edge change percentage,
quantifies the privacy of the graph.

Routing utility metric

One aspect of the algorithm is to maintain routing utility ranking in the graph.
The algorithm itself is defined independently of any specific routing metric.
For the evaluation, betweenness centrality is selected as the base routing met-
ric on the contact graphs [35]. If every node is connected to every other node
via the shortest possible path, betweenness centrality for a node indicates how
many of those shortest paths go through this node. The more shortest paths a
given node is part of, the higher its betweenness centrality will be. Between-
ness centrality is used as metric for forwarding in [20, 52] and is defined for
node v as in equation 2.1.

g(v) =
∑
s6=v 6=t

σst(v)

σst
(2.1)
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Where s and t are two nodes in a graph, σst is the total number of shortest
paths between the nodes and σst(v) the number of shortest paths that pass
through node v.

As described in the introduction, the usual routing decision on a contact
graph is done when two nodes meet (come in contact) and have to decide
which one of them is better suited to transport a packet towards a destination.
The two nodes will compare their (possibly estimated) utility, which in the
case of the evaluation is their betweenness centrality value. The result of the
comparison is the decision which node will continue to transport the data. To
maintain the correctness of this decision, only an ordinal ranking regarding
the nodes betweenness centrality values is required.

Since our privacy protection algorithm (described in Section 1) operates
stepwise, an evaluation needs to quantify the change in the routing perfor-
mance for each step. As only the ranking of the nodes regarding the base
metric are of interest, the original ranking and the ranking after each change
need to be compared. The effect on the ranking is measured by the correlation
of the utility rankings before and after an edge add-and-remove step. Since
we only consider rankings, Kendall correlation, which is a rank correlation,
is used. It is defined as in equation 2.2.

τB =
nc − nd√

(n0 − n1)(n0 − n2)
(2.2)

Where nc is the number of concordant and nd the number of discordant pairs.
n0 is the number of all possible edges and n1 and n2 are counts for tied
(equal) values in the rankings. The values for the utility rank correlation are
between -1 and 1 where 1 means perfect match of the rankings and -1 a com-
pletely reversed ranking. A correlation of 0 means that the two rankings are
independent from each other. The best result is a ranking correlation that stays
at 1 or as close to it as possible. For our purpose of maintaining the routing
performance, we are interested in the ratio of correct to incorrect routing de-
cisions. Intuitively that means that at a correlation of 1 the routing decisions
even in the presence of the privacy protection mechanism will always be cor-
rect. When the correlation decreases, there will be more and more mistakes
in the decisions. At a correlation value of 0 the decision process is as good
as guessing (for two nodes that want to compare their utility values) and at -1
the decision will always be wrong.

Note that the evaluation of the utility ranking takes place for every edge
selection strategy used within the algorithm. Only the greedy algorithm (Al-
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gorithm 3 in Section 2.2) additionally uses the utility metric in the edge se-
lection process itself. That means that, while random and heuristic changes
do not require specific knowledge about the utility metric, the greedy edge
selection needs to take this information into account.

Privacy metric

The attacker’s goal is to find out, whether two nodes have a friendship con-
nection, represented by a link in the contact graph. Privacy in this context can
be defined as the difficulty for the attacker to determine whether the link in the
graph really exists or not. Another way to look at this is the probability for an
attacker to guess correctly whether a link that she sees in the graph actually
reflects a friendship connection. For the unchanged graph, this probability
is always 1, as the attacker always sees the correct contact graph. The algo-
rithm now changes edge after edge, making it increasingly difficult for the
attacker to determine whether a link in the current graph has a corresponding
link in the original graph. A simple measure to quantify this uncertainty for
the attacker is the edge change percentage as compared to the original graph.

Note that as defined in section 2.4.2 the algorithm maintains the edge
density, so the attacker always sees the same amount of edges in the graph.
Furthermore, contact graphs generally are rather sparse graphs. That means
that the attacker basically can ask two different questions:

• Does an observed edge also exist in the original graph?

• Does an observed nonexistent edge also not exist in the real graph?

The privacy metric we use directly corresponds to the first question and quan-
tifies the probability for the attacker to guess correctly whether an observed
edge also exists in the unchanged graph. We evaluate edge change percent-
ages from 0 up to 75% of the original edges. For each edge that is removed,
a non-existing edge insertion is required. This leads to a restriction of the
edge density that the original graph can have, which is dependent on the tar-
get edge change percentage (tecp). The maximum edge density d for a given
target edge change percentage tecp is: d ≤ 1

1+tecp

2.4.2 Basic algorithm

The algorithm takes a contact graphGwhich is unweighted and undirected as
input, and outputs a modified contact graphG′ with a predefined edge change
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percentage. The algorithm transforms the set of Edges G = {V,E} → G′ =
{V,E′} with |E| = |E′|.

The algorithm always combines two operations in one step:

• remove an existing edge from the real graph;

• introduce a new edge between two nodes which have not yet been
linked by an edge.

That also means our algorithm will never add back an edge that existed
originally in the graph. This makes guessing an existing social link in the
real graph harder for the attacker with each step. Given the attackers goal to
identify real edges in the obtained graph, allowing edge reuse would fail to
reduce the attackers change to guess correctly. In the worst case, the algo-
rithm would keep removing and re-adding real edges, which would result in
no privacy protection at all. Pseudo code is given in algorithm 1.

The algorithm does not indicate any “ideal” edge change percentage, but
leaves the choice of the target percentage to the application. This trade off
decision will depend on the application requirements for routing utility vs.
privacy. The evaluation of our algorithm in section 2.5 will provide insight in
how to set the edge change percentage to achieve the desired characteristic.

Algorithm 1: Basic algorithm
Data: E = set of existing edges in real graph
Data: E = set of non-existing edges in real graph
Data: E′ = set of existing edges in changed graph
Data: E′ = set of non-existing edges in changed graph
Data: ecp = percentage of real edges changed
Data: tecp = target edge change percentage

0.1 while ecp < tecp do
0.2 e,e = selectEdgePair;
0.3 E′ = E′ − e;
0.4 E′ = E′ − e;
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2.4.3 Edge selection strategies

How the edges e and e that will be added and removed in each step are se-
lected is the crucial decision for the success or failure of the algorithm itself.
This subsection describes three edge selection strategies with different prop-
erties. Random selection serves as a reference for comparison, greedy selec-
tion tries to achieve the best possible result and heuristic selection aims at
larger graphs, where more intricate strategies fail due to their computational
cost.

Random edge selection

Random edge selection serves as a reference point to compare the other edge
selection strategies with. In each step, the random edge selection chooses
one edge e to remove that exists in the original edge set E and has not been
removed in a previous step (see Section 2.4.2). The edge e to add is chosen
from all non-existing edges in the original set E minus the edges that have
been added in the previous steps. Algorithm 2 shows simplified pseudo code
for the random edge change selection algorithm.

Algorithm 2: Random edge selection

1.1 select random edge e from E ∩ E′;
1.2 select random edge e from E ∩ E′;

Stepwise optimal greedy edge selection

In contrast to random edge changes, greedy edge selection tries to stepwise
optimize the combination of edges to add and remove. In order to achieve this
goal, the greedy selection strategy needs an additional piece of information.
It needs to know which metric is used in the routing process.

Knowing the metric used, the stepwise optimal greedy selection strategy
can evaluate all possible options for the next step. From this evaluation it
selects the edge add and remove combination that has the smallest impact on
the ranking of nodes with regard to the routing metric. To assess the impact,
the stepwise optimal greedy selection evaluates the ranking of all possible
edge combinations against the ranking of the original graph and picks the
best match.
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Algorithm 3 shows the pseudo code for greedy edge change. Since the
algorithm generally does not depend on a specific metric, the generic function
utilityMeasure is a place holder for the effective metric function used.

Algorithm 3: Greedy edge selection

2.1 for edge e in E ∩ E′ do
2.2 for edge e in E ∩ E′ do
2.3 E′ = E′ − e;
2.4 E′ = E′ − e;
2.5 utilityMeasure(G, G′);
2.6 E′ = E′ + e;
2.7 E′ = E′ + e;

2.8 e,e = max(all utilityMeasure);

Depending on the utility measure used, the greedy algorithm shown here
does not scale well to larger networks for two reasons: First, for each existing
edge all possible edges that can be inserted must be evaluated. The final
decision is done based on the best measure of the forwarding utility with the
real graph from all edge combinations. That means the utility measure for
each edge remove/insert combination has to be calculated which increases
drastically with more nodes in the graph. Second, with betweenness centrality
as routing metric for the evaluation, shortest paths calculation is involved.
While it is known which shortest paths will be affected by removing a given
edge, it is impossible to decide which paths will be shortened by inserting a
new edge in a graph. As a consequence it is not possible for this measure to
precalculate or differentially calculate the changes to the graph.

Heuristic edge selection for betweenness centrality routing

Depending on the utility measure used and the size of the graph, it is not al-
ways feasible to calculate the prospective change in utility for all edge com-
binations. A heuristic that captures some of the information and provides a
faster way of deciding on an edge add-and-remove combination is required
especially for larger graphs. This metric will need to make some assumptions
about the nature of the utility measure used and the structure of the graph it is
applied to.
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The routing metric used for evaluation in section 2.5 is betweenness cen-
trality, hence the heuristic developed in this section tries to heuristically ap-
proximate the edge selection as it would be done based by the greedy selec-
tion with betweenness centrality.

Often contact graphs have a community structure where groups of well
connected nodes are connected with fewer bridge links to each other. In our
definition of social privacy, an attacker wants to guess social links / friend-
ships. As communities are by definition well connected (but not fully con-
nected), changing links within a group can to some extent obscure the social
links without influencing overall forwarding performance in the graph ex-
tensively. One possible heuristic that can be calculated easily and allows to
model this concept of social links in well connected groups of nodes is node
similarity.

Node similarity is a measure that indicates how many neighbors two
nodes have in common. Similarity for a node pair thus is given by their com-
mon neighbors and the total aggregated number of neighbors those two nodes
have. Two nodes A,B with neighbor sets Na, Nb have a similarity defined
by equation 2.3.

S =
|Na ∩Nb|
|Na ∪Nb|

(2.3)

If a node pair does not have any common neighbors their similarity is
defined to be 0. With this definition, the similarity is normalized to a value
between 0 and 1 and can be easily compared. Based on the previous notion
of well connected groups, it can be expected, that similar nodes will often be
found within the same well connected group. Using similarity as the heuristic
we can now define a new algorithm that uses this heuristic as metric.

The algorithm that makes use of the similarity heuristic first calculates
the similarity for all node pairs in the graph. As the similarity only requires
knowledge of the direct neighbors of each node, this can be done for large
graphs. Then, the algorithm will select a node pair which has the highest sim-
ilarity. In the real graph this node pair has to be connected and this connection
must not yet have been removed by an earlier step in the algorithm. Next, a
node pair which has the highest similarity and which is unconnected, is cho-
sen. Unconnected in this context means that the node pair is not connected in
the real graph and that no link between the two nodes has been inserted by a
previous step in the algorithm.
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Algorithm 4: Heuristic edge selection
Data: L = all node pairs
Data: sC = similarities of connected nodes
Data: sD = similarities of disconnected nodes

3.1 for all l ∈ L do
3.2 if l ∈ E ∩ E′ then
3.3 sC(l) = getSimilarity(l);
3.4 if l ∈ E ∩ E′ then
3.5 sD(l) = getSimilarity(l);

3.6 e = max(sC);
3.7 e = max(sD);
3.8 return e,e;

2.4.4 Global and local knowledge

The algorithm defined so far is able to operate on any graph. Whatever graph
is fed to the algorithm might depend on the requirements but also on the
available knowledge of the graph. In some situations the entire graph, in
others only a part of the actual graph might be available.

Global knowledge

With global knowledge the entire graph with all nodes and links can be used
by the algorithm to determine the next best step. This is the maximum infor-
mation the algorithm can have.

Local knowledge

With local graph knowledge, the available information approximates what
nodes in real opportunistic networks know about the contact graph. This
knowledge consists of a local subgraph of the entire contact graph centered
around a given node. The subgraph contains only the first and second degree
neighbors of the center node together with all the edges between those nodes.
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2.4.5 Approach summary

The approach to change the contact graph in a controlled manner is mainly in-
fluenced by two aspects. First, the strategy to select edges to add and remove
depends on the computational complexity of the selection strategy. The com-
putational complexity will set a limit to the size of the contact graph that the
strategy can be applied to. In general, more demanding (e.g. greedy) selec-
tion strategies will only be applicable to smaller graphs, though are expected
to yield better results. The larger the contact graphs become, the simpler the
selection strategy needs to be. This allows for edge selection in large graphs,
but is expected to come at the expense of effectiveness regarding the routing
utility ranking of the graph compared to a greedy approach.

Second, the contact graph that the algorithm operates on is either the
global (full knowledge) graph or only a local subset of the nodes and edges
of the entire graph. Global graph knowledge is expected to provide better
decisions for each algorithm step, as the absolute impact of each step can
be measured accurately. Local knowledge more reflects the situation of real
nodes in the network. They will know only a subset of the contact graph
centered around them. With this limited knowledge, it becomes more chal-
lenging to make “correct” decisions for each step, as only the local effects
can be evaluated for each step.

2.5 Evaluation

In this section we present the evaluation of our algorithm to improve contact
graph privacy. First, we detail the graphs that we used during our evaluation,
which include trace- and model-based graphs, and state our expectations to-
wards the algorithm. Next we run all algorithm variants on each graph and
present one plot per graph that includes all algorithm variants. We then dis-
cuss the plots for each edge selection strategy, to observe if the strategy yields
consistent results with the different graphs. Not all edge selection strategies
are feasible (computable) for all chosen graphs. Wherever feasible, all vari-
ants of edge selection are evaluated with global as well as local knowledge.

2.5.1 Model and trace graphs

The algorithm in general accepts any undirected graph, but is tailored towards
giving a good solution for graphs that have properties that are expected from
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contact graphs as described in 2.3.1. This section gives an overview of the
models and traces used to generate the contact graphs for the evaluation. All
graphs used were unweighted and undirected.

Small-world model

Contacts in opportunistic networks happen as users roam around, which they
do according to their routines and habits. Thus, they tend to meet some
users more frequently than others, which introduces structure in the graph.
To model this structure we use a graph model that reflects the structure in
contact graphs. The small-world graph model connects each node to a given
number of its direct neighbors. From this first structure, a certain percentage
of links are rewired to random nodes in the graph. Those rewired links ef-
fectively provide shortcuts in the graph that model shortcuts created by social
links of users (e.g. when a user has two groups of friends). Such shortcuts
can be used to improve forwarding and are thus an important structural factor
in the contact graph. Small and large graphs were configured to approximate
the corresponding trace graph edge densities. Small graphs were constructed
with 20 nodes, where 4 neighbors are connected and a rewire probability of
0.2. Large graphs were constructed with 482 nodes, 19 neighbors connected
and a rewire probability of 0.15. Per size, 500 graphs were created with the
model.

Traces

The second source of contact graphs we can use are contact graphs that are
generated by traces. Traces are a collection of contact events, indicating the
involved nodes and the time and duration of the contact. Such a trace can be
transformed into a contact graph as described in [50]. In contrast to model
generated graphs, traces are always collected within a predefined setting, us-
ing a specific communication or data collection technology and are also prone
to errors in the collection process. Nevertheless, they are a valuable source
of information as traces try to capture what is really happening including all
practical issues that arise during the collection. Another drawback is, that
traces only allow to generate one (or very few) contact graphs and thus a sta-
tistical evaluation is limited. For our evaluation, only the local graph knowl-
edge case allows for multiple runs on the same graph, as different sequences
of center nodes for the local evaluation can be evaluated. In the global case,
only ties in the ranking or similarity can be evaluated in different sequences.
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As the observed variation in that case is very small, it is not shown in the
plots.

Two traces are used in the evaluation to generate contact graphs. A smaller
trace collected at Infocom 2005 recording Bluetooth contacts of 41 partici-
pants of the Infocom conference in 2005. This trace contains a total of more
than 22′000 contacts [16]. A second trace is derived from WLAN access
point associations at the ETH campus [96] during almost 15 weeks between
Oct. 25th 2006 and Feb. 3rd 2006. We choose the 482 users which associate
at least 5 out of 7 days on average and pre-process the trace for short discon-
nections as well as the ping-pong effect, where devices jump back and forth
between different APs in reach. We assume that two nodes are in contact
when they are associated to the same AP at the same time.

2.5.2 Evaluation results

Changing the contact graph will have an impact on the routing utility. The
goal of the evaluation is to assess, whether the greedy and heuristic edge se-
lection variants can outperform the random edge selection. It is expected that
a greedy edge selection algorithm with global knowledge will provide for
a significantly better result than random. The impact of reducing the knowl-
edge from global to local is expected to result in a stronger impact on the node
ranking and thus on the evaluation metric. The design goal of the heuristic
is to approximate the greedy outcome with a significantly reduced computa-
tional burden. Therefore, the heuristic is not expected to produce results that
are as good as the greedy selection. Simulation was done in Matlab and all
PRNG settings were documented.

General plot structure

Figures 2.3, 2.4, 2.5, 2.6 show the results for all algorithm and knowledge
variants per graph source. The plots of all graphs have the same structure. The
x-axis shows the privacy protection level that increases up to 75 percent of
graph edges changed. In general the range for the privacy protection can range
from 0 (no protection) to 100 percent (all edges changed). However, we limit
our evaluation to a maximum edge change percentage of 75 percent. Selecting
a desired privacy protection level is up to the designer of a system that uses
the algorithm. The y-axis shows the utility value (utility rank correlation,
see Section 2.4.2) that indicates how well the modified graph still reflects
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the original ranking regarding the routing metric. Values for the utility rank
correlation range between +1 and -1, but for visibility, we only plot the range
from 0 to +1, as we want the modified graphs to have a utility that is as high
as possible.

All graphs show the results for random edge changes as well as the heuris-
tic with local and global knowledge (see Section 2.4.4). Due to the computa-
tional complexity, we can show the results for the greedy edge selection only
for the smaller graphs.

All curves have different colors and marker symbols as indicated by the
legend in the plots. Furthermore, the algorithm variants that are not determin-
istic (random and local knowledge) have error bars at ±1 standard deviation.
The sole reason for different locations of the error bars of different curves is
to prevent overlapping for better visibility. Note that algorithm variants with
global knowledge are deterministic and therefore do not show error bars.

Greedy edge selection

First, we concentrate on the greedy edge selection variant. As the greedy al-
gorithm uses betweenness centrality as utility metric, it can only be applied
to small graphs. We will therefore look at Figures 2.3 and 2.4 which show the
results for the small-world model based graph and the Infocom trace based
graph respectively. In both graphs, the greedy algorithm with global knowl-
edge has excellent performance with a utility correlation close to 1 over the
entire range of edge change percentages. That means, that routing decisions
will almost always be correct in that case. The greedy selection strategy with
only local knowledge also provides good results with a utility correlation be-
tween 0.9 and 1 over most of the privacy protection range.

Due to the properties of the stepwise greedy algorithm, which only looks
at one step after the other, it sometimes makes ”mistakes” from a wider point
of view. Since each step consists of one edge removal and one edge addi-
tion, it is possible that some steps end up with a higher correlation value than
before, if the structure with the newly introduced link creates a better utility
ranking than before. This is expected behavior of a stepwise greedy algo-
rithm. The variations can be seen in the small up and down changes of the
correlation values, which are superimposed on the general trend.
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Figure 2.3: Small-world model (20 nodes)

Heuristic edge selection

With increasing graph size, the heuristic edge selection remains the only vi-
able option, as the greedy selection can not be calculated any longer. The plots
for all graphs (Figures 2.3, 2.4, 2.5 and 2.6) include results for the heuristic
edge selection. However, we first focus on the results for the larger graphs
of the small-world model and the ETH trace, as this is what the heuristic was
designed for. The results for the small-world graph (Figure 2.5) and the ETH
trace (Figure 2.6) show, that the utility rank correlation stays significantly
above random changes for both graphs even for large edge change percent-
ages. At the point where half of all original edges have been changed, the
heuristic keeps the utility at approximately 0.75 for both graphs, whereas the
random changes lower the utility to approximately 0.35 for the ETH trace
and 0.1 for the small-world model. Note how close together the performance
of the local and global knowledge heuristics are for the small-world model.
This indicates that there is no difference in the ranking correlation errors in-
troduced by local and global heuristic for large small-world graphs. In the
case of the ETH trace, the local knowledge variant does not achieve a perfor-
mance that is so close to the global knowledge, but still significantly above
random graph changes.



54 2 Social link privacy for the contact graph

Figure 2.4: Infocom trace (41 nodes)

The almost equal performance of local and global knowledge for small-
world model based graphs is caused by the properties of the graph model.
The model creates explicit local structures first before rewiring some of the
intra community links to bridges between communities. Since only few links
from each community are rewired, the most similar nodes that are picked by
the heuristic are within communities and only rarely are bridges. This means
that the difference between maximal similar nodes picked by global and local
knowledge mainly only differ in the community they are taken from. Since
the local knowledge variant randomly chooses center nodes, the changes are
roughly evenly spread across all communities. This is roughly the same effect
as choosing node pair similarity globally from communities that all have al-
most equal similarity rankings among their nodes (caused by the same rewire
probability for all communities). Intuitively, the model generates a graph
where the most similar nodes of each community have a higher similarity
than the second most similar nodes of all communities and so on. The global
selection picks the most similar nodes from each community before picking
the second most similar nodes from each community and so on. The local
knowledge selection will pick center nodes randomly. The local graph will
contain the entire community of the node and maybe a few nodes connected
by bridges. From this local graph, the most similar node pair will be the the
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Figure 2.5: Small-world (482 nodes)

same as from a global point of view. The random choice of center nodes
for each step spreads this effect equally among all available communities.
So while some communities might be selected through center nodes multiple
times before, another so far unchanged community is selected, only a few
“mistakes” are made.

For the smaller graphs in Figures 2.3 and 2.4, the result for the heuristic is
not as good as for the larger graphs and a flattening of the curve can be noticed
for both at some point. In smaller graphs, the distinction between communi-
ties and bridge links becomes more and more difficult, up to the point where
the graph consists of only one community. In that case the routing utility and
the corresponding ranking is more heavily influenced by the intra-community
links (with less explicit structure) than bridges. Isolating only one commu-
nity, as often caused by small graphs, causes the evaluation metric to only
evaluate intra-community structure. Only evaluating one single community
has the effect, that similarity among nodes no longer satisfies the assumptions
about the graph structure that was originally made when devising the heuris-
tic. I.e. the heuristic tries to keep bridge links, which are by definition not
present within a single community. At some point, any existing community
structure is fully removed by the algorithm. As a consequence, the curve flat-
tens out, as the routing utility for all nodes is now very close to each other and
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Figure 2.6: ETH trace (482 nodes)

further changes by the algorithm do not impact the ranking very much. For
the small graphs, the algorithm, as it continues running, eventually acciden-
tally creates a community structure. From that point on, the utility decreases
further, as the artificially introduced community structure is different than the
original structure, which leads to incorrect edge selection by further running
the algorithm.

While heuristic selection does not perform as well for small graphs than
for large graphs, it still performs better than random. Furthermore, small
graphs can be processed by a greedy selection which makes the use of a
heuristic less required. For large graphs, the heuristic performs much bet-
ter than for small graphs and also than random edge selection.

2.5.3 Evaluation summary

The evaluation results show, that both edge selection variants outperform ran-
dom edge selection under the assumption of global graph knowledge as well
as with only local graph knowledge. For smaller graphs, greedy edge selec-
tion performs very well and as the graphs get larger, a heuristic is available
that trades of some accuracy with computational load and delivers good re-
sults with minimal computational effort over a wide range of edge change
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percentages.

2.6 Routing performance

In the previous section we showed, that contact graph privacy can be im-
proved while maintaining important graph metrics. The question we will an-
swer in this section is: Does routing using a privacy protected graph work?
To answer this question we take a graph-metric based routing algorithm and
execute it using our privacy protected graphs.

2.6.1 Routing evaluation methodology

To answer the question how well routing with a privacy protected graph still
works, we evaluate the routing algorithm on two traces. Instead of the model
based graph of size 20 we use a trace collected at the communication system
group at ETH Zurich where the members were carrying mobile devices which
used WiFi to detect each other [60]. We also use the Infocom trace already
presented in section 2.5.

This evaluation always uses the real contact traces to generate the oppor-
tunistic contact events that are presented to the routing algorithm. The deci-
sion of the routing algorithm, whether to forward a message or not is based on
a contact graph. This contact graph is either the original (real) graph, or a pri-
vacy protected version of it. We use the SimBet routing algorithm presented
in [20] for our evaluation. Since we do not propose a new routing algorithm,
we are not interested in the absolute performance of the routing. We are only
interested in the change caused by our proposed privacy protection mecha-
nism as compared to using the original (unprotected) graphs.

In order to quantify the impact of the privacy protection, we use the per-
formance of the routing algorithm using the real graph as a baseline. This
allows us to express the impact of the privacy protection as a relative factor
to the baseline performance. The metrics we use to evaluate routing perfor-
mance are number of delivered messages and mean delivery delay. We gen-
erate messages from all nodes to all nodes in regular intervals and measure
the time it takes for the messages to arrive at the destination nodes. Messages
not delivered after a predefined amount of time are discarded and classified
as undelivered.
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For each privacy protection type (greedy/heuristic and local/global knowl-
edge) the privacy protection is evaluated from zero to 75 percent and the re-
sults are normalized by the performance of the algorithm using the real graph.
Thus, values of 1 express that there is no loss in routing performance as com-
pared to using the real graph. Values below one indicate a decrease in routing
performance. A value of 0.5 for messages delivered for example means that
only half of the messages are delivered when using this privacy protected
graph as compared to using the real graph. Values above 1 would indicate an
increase in the routing performance metric (either caused by a real improve-
ment or a measurement artifact as will be explained later).

2.6.2 Routing results

Figures 2.7 and 2.9 show the routing evaluation result for the CSG trace and
Figures 2.8 and 2.10 show the result for the Infocom trace. All figures show
the increasing privacy protection (fraction of changed edges) on the x-axis,
the higher the value, the more edges were modified compared to the real
graph.

Figure 2.7: CSG trace # msgs delivered

Figures 2.7 and 2.8 show the relative number of successfully delivered
messages for the privacy protected CSG and Infocom graphs respectively.
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Figure 2.8: Infocom trace # msgs delivered

The performance of the randomly modified graphs are presented again as
reference. The routing performance on both traces remains high for a large
range of edge change fraction values. That means that for the CSG trace,
up to 45 percent of the edges can be changed and still more than 90 percent
of the original messages are delivered correctly. For the randomly modified
graph, this value drops down to 70 percent already after 15 percent of changed
edges. In both traces, the performance of the randomly modified graph does
not drop to zero. This is expected as the modified graph only influences
routing decisions and not the contact events themselves. Whenever a node
that carries a message encounters the message’s destination node, the message
is delivered without considering the routing process. Dense direct contacts in
the traces provide for a basic level of message exchanges, that largely does not
depend on the routing decisions, regardless of the random changes introduced
by our algorithm.

Since the number of successfully delivered messages is well maintained,
the next question is, whether it takes longer for the messages to arrive at
their destinations. Figures 2.9 and 2.10 show the relative change in the mean
delivery delay in our routing evaluation. A relative delay of 1 means, that the
messages are delivered within the same time as using the original graph for
the routing decisions. A relative delay above 1 indicates, that the messages
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Figure 2.9: CSG trace mean delivery delay

take more time for delivery when using the privacy protected graphs and a
delay below 1 means, that the messages are delivered faster. For both traces,
the delivery delays remain close to 1, which indicates that using our privacy
protected graphs does not significantly delay message delivery.

It is important to consider both, the delivery ratio and delay at the same
time, as neither delivering all messages over a huge time span (perfect deliv-
ery ratio) nor delivering only one message within moments (perfect delay) is
a desirable outcome. For example a high delivery rate and a high delay would
mean that most messages are delivered, but delivery takes much longer. On
the other hand a low delivery rate with a low delay would mean, that only a
few messages are delivered, but those are delivered very fast. In our case, the
combination of the high relative delivery ratio and about equal delays (values
around 1), we can conclude that the average delivery delay remains at a high
level compared to the original graph. With increasing privacy protection, the
relative delivery ratio decreases and the relative mean delay slightly increases,
in other words, fewer messages are delivered and the delivery of those mes-
sages takes longer. This is explained by longer paths being cut and thus fewer
messages with long delays transmitted. The remaining delivered messages
will sometimes be subject to incorrect routing decisions, which then causes
longer delays.
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Figure 2.10: Infocom trace mean delivery delay

In this section we showed, that our privacy protection approach does not
impact routing performance notably. Neither the number of delivered mes-
sages, nor the average delivery delay are significantly impacted by using pri-
vacy protected graphs for routing decisions.

2.7 Comparison of contact graph obfuscation
with the SSNR approach

In this section, we compare statisticulated social network routing as proposed
by Parris and Henderson [73] with our approach described in this Chapter.
SSNR is designed to protect privacy of individual friend lists attached to each
message in opportunistic routing. state of the art opportunistic routing uses
contact graphs, which are a more powerful information source and we will
show that the SSNR methodology can not be applied to the contact graph
based routing algorithms we are addressing in this work. We will first look
at the source of social information and the analysis techniques used by the
two approaches. Then, we will compare the privacy preserving algorithm and
evaluation before looking at the consequences and applicability within state
of the art opportunistic networking.
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Source and analysis of social information: Parris and Henderson only
support explicitly self reported friend lists, whereas our approach supports
contact graphs. We do not place any restrictions on how the contact graph is
generated. Within SSNR, messages can only be sent to friends and also only
friends may forward the message. Thus, contacts with nodes that are not in
the friend list are unavailable to forward the message, even though the contact
might be able to deliver the message faster than friends. Aggregating infor-
mation across multiple messages or senders to improve routing performance
is not supported.

Our approach protects the privacy sensitive information associated with
the social structure encoded by a contact graph and does not have the limita-
tions of SSNR. The contact graph is privacy protected independent of how the
graph was generated. In general, our proposal only assumes that the routing
input information is given as a graph. It then removes excess information that
is not required for the routing decision from the graph, and thus increases pri-
vacy of the social information encoded in the graph. In order to achieve this,
we apply graph transformation techniques that preserves specific features of
the graph. To decide which features we preserve, we survey what features
the state of the art opportunistic routing protocols Bubble Rap [52] and Sim-
Bet [20] use. They rely on (betweenness) centrality and similarity as main
features of the graph. Therefore those are the features we select to preserve
in the graph. While this enables the state of the art routing protocols, our ap-
proach is not limited to those two features and can be adapted to many other
graph features with ease (i.e. node degree).

Privacy protection algorithms comparison: SSNR attaches a friend list
to each message, which is privacy protected independently from other mes-
sages. The algorithm takes the original friend list as input and adds or re-
moves entries (defined by a system parameter). The authors do not clarify
how the nodes to add or to remove are selected. Because the friend list for
each message is processed individually, a correlation of protected friend lists
of the same sender will reveal the friend list to the attacker. This also means
that only local knowledge is taken into account. The authors analysis of the
attack resistance against correlation attacks reveals, that an attacker has to in-
tercept 9 messages from the same source before he can reconstruct the real
friend list.

In contrast our algorithm rewires edges in the contact graph under the
constraint that a given graph feature (e.g. betweenness centrality) has to be
preserved. In each step, one edge is rewired in the graph. Thus, the pres-
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ence and number of nodes in the graph is decoupled from the social structure,
which is represented by the edges in the contact graph. There are no restric-
tions on which part of the graph is modified, so it operates with local or global
information about the contact graph. Thus, the graph could be provided as a
global view by some oracle or built up by exchanging local graph knowl-
edge among nodes. The algorithm also maintains a history of modifications
to the graph and thus can be executed incrementally whenever the real graph
is updated by the external source.

Graph-based comparison One can imagine the friend list in SSNR as a
very simple star shaped graph with the sender in the center. The graph only
contains links from the sender to the friends and there are no other nodes
except the friend nodes. There are no links between friend nodes. This graph
will always have a simple star shape. The effect of adding or removing nodes
from the friend list is that the star gets or looses one ray. So a node and a link
between the center and the node are added (or removed) simultaneously.

Our approach does not modify the nodes in the graph, but only changes
edges. As the entire known graph is available to rewire edges, an attacker has
to decide whether or not a given edge has been rewired, which can happen
throughout the graph and not only centered around a single node. Further-
more, by only preserving the ranking of the nodes regarding a feature, our
approach has more liberty in modifying the graph and thus can remove ex-
cess social information more effectively. On the one hand, our approach is
computationally more expensive than SSNR, but on the other hand our algo-
rithm does not need to be executed for every single message that is sent.

Evaluation summary and conclusion: We evaluate our algorithm first
regarding the feature preservation on the graph. With the understanding how
rewiring edges impacts the desired feature, we proceed to evaluate our algo-
rithm with an existing routing protocol (SimBet) on available traces without
modification. Parris and Henderson directly proceed to evaluate their pro-
posal with their own routing algorithm that is designed to execute their defi-
nition of social information based routing. They evaluate routing on available
traces, where they are sampling subsets of two trace sets to fulfill the require-
ment of having enough explicitly reported friend links in the subset to make
routing with their approach possible.

We conclude that our approach can be applied to a family of state of the
art contact graph based routing algorithms, whereas SSNR has a significantly
smaller scope of routing algorithms it supports. SSNR supports routing along
predefined node lists, our approach supports routing between any node pair in
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the network. Both mechanisms can work with local knowledge, our algorithm
additionally supports global knowledge of the contact graph.

2.8 Conclusion

Privacy in opportunistic networks has many aspects. In this chapter, a pri-
vacy protection approach for contact graphs of opportunistic networks was
presented. Adding and removing edges from the contact graph intelligently
allows to maintain the ranking of the nodes regarding a routing metric with
few errors. At the same time, it makes it increasingly difficult for an attacker
to guess correctly whether an observed link in the contact graph corresponds
to a link in the real contact graph. Thus, the social (friendship) structure of the
graph is obfuscated while the graph’s utility for routing is maintained. This
is achieved by careful selection of edges to change, for which we introduce
a greedy and a heuristic approach in addition to a random selection of edges.
The evaluation showed that the ranking of the nodes regarding a given routing
metric can be maintained well for different graphs sizes as well as global and
local knowledge. The evaluation of the privacy protected graphs in a routing
protocol showed that there is only little impact on the routing performance
caused by the privacy protection scheme over a wide range of privacy protec-
tion strength. Thus, the privacy protected graphs have excess privacy relevant
information removed, while keeping the minimal information set required to
allow the chosen routing algorithm to work properly. Future research on this
topic could focus on the trade-off of optimizing for certain routing metrics
against a general purpose metric that applies to a broader range of routing
strategies. This would require to evaluate different routing algorithms based
on contact graph metrics as well as more and larger traces. An extended
attacker model and the privacy metric can be developed further to cover dif-
ferent attackers and notions of privacy. This would allow to assess, whether
the general approach presented here can be successfully applied to an even
broader range of privacy threats.
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Chapter 3

Privacy preserving social
link detection for
anonymous opportunistic
networks

3.1 Introduction

The previous chapter provided information about how to protect social pri-
vacy in the presence of contact-graph-based routing. In detail, the individual
social links were obfuscated from the attacker. As such, privacy relevant in-
formation about a users social structure is separated and removed from the
routing relevant information in the graph. While it is reasonable to remove
detailed social link information in cases where it is publicly available, some-
times exact knowledge of social links provide a benefit for other aspects of
opportunistic networking.

In most opportunistic solutions in use today, devices each have a single,
permanent identifier, which enables routing and other functions, but at the
cost of the users’ privacy: when an identifier is reused, it was from the same
device, and hence the same user, that used that identifier before. If, on the
other hand, all users in an opportunistic network are anonymous (and so fully
privacy protected), each contact between two nodes is a new contact, since
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the privacy protection takes away all information that is required to recog-
nize known nodes. Consequently, recognizing trusted friends is no longer
possible, which is a requirement for social-based interaction and cooperation.

Privacy and anonymity are sometimes intertwined concepts. While pri-
vacy deals with the protection of personal information about users, anonymity
is concerned with protecting a user’s identity. As such is is possible to provide
anonymity while providing privacy relevant data as well as communicating in
a privacy preserving way without being anonymous. The distinction depends
on the specific aspect of privacy that is of concern. Especially, privacy pro-
tecting the user’s identity (providing anonymity) can be seen as one aspect of
privacy protection in general. Ideally, if all aspects of privacy are addressed
successfully, an attacker can no longer uncover the users identities and as
such, full anonymity is achieved. For the purpose of this chapter, we assume
such a system that protects all aspects of privacy in opportunistic networks.

The goal of our algorithm is to detect existing social links upon contact,
not to find new friends or discover people with similar interests. Instead,
we develop an efficient and reliable algorithm that can detect pre-established
social links with minimal impact on computing and networking resources.
Our algorithm requires a previously established relation between the devices,
for which we will use the term social link, even though that link might have a
different meaning in real life (friendship, familiar stranger, . . . ).

The same goal can be achieved by using privacy-preserving matching (see
also section 3.7). However, privacy-preserving matching has a much higher
computation and communication overhead and also takes longer than our pro-
posed algorithm. Since social link detection in an anonymous opportunistic
network needs to be performed on every contact, when contact times are usu-
ally short, our solution is preferable for our use case.

This chapter provides three contributions.

1. We show that existing privacy protection mechanisms directly affect
the usability of social links in the opportunistic network that otherwise
could be exploited to improve security or performance of the network.

2. We present a mechanism to detect and maintain social connections
among the users of the opportunistic network. This allows the network
to use additional social-based mechanisms to increase network security
or performance. At the same time an eavesdropper can not learn any
information about the involved users.
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3. We implement our mechanism in a smartphone application and show
that its performance is better than privacy-preserving matching, which
makes it suitable for deployment in opportunistic networks.

Given these three contributions, this work shows that it is possible to en-
able generic social interaction even in a fully privacy protected opportunistic
networking environment.

After reviewing the privacy challenges in opportunistic networks (Sec-
tion 3.2), we present our privacy-protected opportunistic networking model
as well as the attacker model (Section 3.3). Next, we introduce our algorithm
(Section 3.4) and describe possible attacks on it (Section 3.5). We describe
our implementation and performance evaluation (Section 3.6) and end with
related work (Section 3.7) and conclusions and future work (Section 3.8).

3.2 Privacy challenges for opportunistic
networks

Users are at the heart of opportunistic networking: they provide the com-
munication device (typically a smartphone or another personal mobile device
carried by the user), the contact opportunities, the bandwidth, and they pro-
duce and consume the content. Because these devices are personal, they are
used exclusively by their users, and are in close physical proximity to them
most of the time. There is thus a strong association between users and their
devices.

This close relationship impacts opportunistic networking: how and when
devices come into contact is determined by their users, whose movement pat-
terns follow their daily routines and habits. Similarly, the content each user
consumes and produces depends on that user’s interests (as well as the avail-
ability of that content at the time of contact). Device, contacts, and con-
tent: these are very powerful sources of information for anyone interested in
privacy-relevant data about users. It thus is crucial to know what information
needs to be protected and how this protection can be put into place. With
growing user sensibility towards privacy, protecting it will become a critical
factor in the adoption of opportunistic networking.

The privacy-relevant data that can be revealed about users can be broadly
attributed to three categories:
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Location consists of the users’ geographical locations. This for example in-
cludes the place where they live and work as well as the routes they use
to commute.

Social information covers all social relationships among users: who is friends
with whom, which users meet regularly, for how long and how often,
and to which social groups does a user belong.

Content is about users’ interests, in this context typically expressed as sub-
scriptions, but also what content is produced by a user.

We concentrate on the social-privacy aspect of opportunistic networking,
and specifically on exploiting social links for improving networking services
without compromising privacy.

Existing social links are typically independent of any particular applica-
tion. Therefore, our detection algorithm can be incorporated into the base
layer of the opportunistic network. This base layer provides basic application
independent opportunistic networking services, such as neighbor detection,
subscription matching and content exchange. Privacy relevant information
that can be leaked by the base system concerns location and social informa-
tion about the users. Furthermore, social links, once established, can be used
automatically without user intervention which also makes it more convenient
for the users. The integration into the base layer makes the social links avail-
able to all applications in the opportunistic network.

3.3 System and attacker model

3.3.1 Opportunistic system model

An opportunistic networking system that provides full privacy protection for
the user currently does not exist in practice; we therefore assume a system that
uses existing protection mechanisms to address all privacy aspects mentioned
in section 3.2. This includes anti-location tracking as well as handling exist-
ing lower layer identification options such as MAC and IP addresses. Addi-
tionally, it would need to use different identifiers for the base layer (neighbor
detection, content exchange, etc) and content authoring (generation).

We assume that privacy protection mechanisms can be added to oppor-
tunistic networking such that it allows every user to stay anonymous while
using the system. For our application we equate privacy protection with full
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anonymity; thus, a privacy protected system does not allow permanent or at-
tributable identifiers for data transmission or relay tasks. The effect of full
privacy protection is that the user is operating anonymously at any time. One
effect, already alluded to in Section 3.1, is that friends can no longer recognize
each other. Unfortunately, this also prevents the use of powerful features that
build on existing social links to improve networking reliability, performance,
security or user experience. Furthermore, this means that it is impossible to
“learn” new reliable links based on past contact events and as such automati-
cally extend the social structure (i.e. as could be used for routing).

An example system that would still work in such a perfectly anonymous
environment is PodNet [59]. This is an opportunistic content distribution sys-
tem where publish/subscribe-based user-driven downloads are at the core of
the distribution process. Upon contact, nodes offer all available content to
the encountered node. The encountered node in turn selects which content it
wants and requests and downloads it from its peer. The subscriptions of each
device (the users interests) are not explicitly exchanged among the nodes.
This way of distributing content does not require routing, and full anonymity
would not impact content distribution, as relaying content and generating
content are handled independently. Of course, PodNet could benefit from
available social links, for example by using them to communicate trusted or
reliable content producer identifiers among friends.

3.3.2 Attacker model

Typical attackers can listen to network traffic and try to use the algorithm to
learn something about network users, but cannot modify messages in tran-
sit (man-in-the-middle) or inject malicious messages that do not follow the
algorithm. We do not pretend to be able to defend against attacks from well-
funded adversaries of the nation-state type. We therefore consider two differ-
ent types of attackers.

• The passive eavesdropper who can listen and collect opportunistic net-
working data. In particular she can collect all protocol messages that
are exchanged among nodes. An analysis of these messages should not
reveal any information about the social links present in the exchange or
the identities of the nodes involved in the exchange.

• The honest but curious attacker who follows the algorithm but tries to
gain additional insight by controlling or modifying its own messages.
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This attacker has the same capability as the passive eavesdropper but
can additionally interact with other nodes in the network. She can mod-
ify the content of her own messages to try to extract additional infor-
mation from the nodes it encounters. Apart from changing message
content she still follows the algorithm and all other nodes obey the al-
gorithm as described. The additional capabilities for the attacker lead to
control over the social link identifiers that are presented to other nodes
as well as “unlimited” retries with every node that is encountered.

Ideally, our algorithm should make it impossible for the attacker to learn
anything about the social links in the network. Thus, contacts between two
devices would be impossible to attribute to a meeting of specific users. Sim-
ilarly, relating multiple contacts to the same user(s) is prevented, to avoid
detection of friendship or group relationships. In section 3.5, we discuss how
well our algorithm achieves these goals.

3.4 Social link detection algorithm for an
anonymous environment

In this section, we first introduce secure pairing, a secure method to exchange
identity information (Section 3.4.1) , before describing our social link detec-
tion algorithm proper (Section 3.4.2).

3.4.1 Secure pairing

Recall that the main goal of our mechanism is to detect existing social links
between nodes that come in contact with each other. This requires that a social
link is already present to be detected upon contact. Similar to establishing a
friendship in real life, every social link in our opportunistic network needs to
be established once.

As our mechanism only detects social links, we consider setting up the
social links out of scope of our work. Any social link establishment procedure
can be used, as long as it securely generates the following two (optionally
three) pieces of information per social link:

• a random social link (friendship) identifier;

• a symmetric key associated with this identifier; and
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• optionally, the identity of the user corresponding to the social link iden-
tifier

One option to achieve those pieces of information is an implementation
of secure pairing, which works as follows:

1. Establish a secure association between the two devices. This can be
done with an out-of-band channel (e.g. code displayed and entered on
both devices).

2. Create a social link identifier (random) and a corresponding symmetric
key.

3. Store social link identifier and key for later use (optionally also identity
of the corresponding user)

Alternatively, the social links could be bootstrapped using existing social
networks (e.g. Facebook, Twitter,. . . ). As this is only required once, it is
acceptable if an online connection would be used to set up the social links.
Once the social links are set up in that way, they can be used by the system to
later recognize friends as described in the next subsection.

3.4.2 Link detection algorithm overview

Our social link establishment, detection and maintenance algorithm is illus-
trated in Figure 3.1 and given as pseudo-code in algorithm 5. Whenever con-
tact opportunities are available, a node picks a contact partner at random,
since all are anonymous. Both start the social link detection mechanism by
constructing a Bloom filter [11] containing all social link identifiers each de-
vice has accumulated by secure pairing. Devices exchange the Bloom filters
and locally query the other’s Bloom filter against all social link identifiers
they own (Figure 3.1 (a)). If there is a match, the devices will challenge each
other using an encrypted message that contains the social link identifier and a
challenge nonce. This allows the devices to mutually authenticate each other
and thus confirm the social link (Figure 3.1 (b)). A new social link identifier
is created to replace the existing one (Figure 3.1 (d)). If there is no match in
the Bloom filter, there is no social link between the two users. Devices can
still continue making the connection available to all running opportunistic ap-
plications if they wish. In that case the communication partner is anonymous
(and probably untrusted).
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Algorithm 5: Social link detection algorithm

4.1 connect_to_random_neighbor();
4.2 exchange_bloomfilter();
4.3 query_bloomfilter();
4.4 attempt_authentication();
4.5 if authentication successful then
4.6 optional_data_exchange();
4.7 mutate_identifier();
4.8 else
4.9 . . .

4.10 disconnect();
4.11 create_new_bloomfilter();

The mechanism can optionally be extended to provide more functionality.
After successful authentication the social link key can be used to provision a
secure data exchange option to the applications running on the node (Fig-
ure 3.1 (c)). We thus have an easy and application-transparent way to encrypt
information that flows along the social links. Also, new social link keys can
be constructed regularly, in order to prevent a single key to be used for a
prolonged period of time. This further increases the security of the algorithm.

We can now go into the details of the algorithm that are relevant for the
privacy protection and performance.

3.4.3 Bloom filter details

We use Bloom filters as the main component to achieve privacy for the users.
They are used to make the social link identifiers untraceable. If we were using
the social link identifiers in their clear form and announce lists for detection,
it would be easy to track specific social relations, as always only one identifier
will change at any one contact. This is circumvented by using Bloom filters.
Using them, it is possible to test whether a specified social link identifier is
present in the filter or not. Still it remains impossible to extract the inserted
social link identifiers from the filter.

However in its standard form, the Bloom filter creates a “fingerprint” of
the currently used social link identifiers, which might already be enough to
break user privacy. The hash functions used are known and false positives
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need to be kept at a small number for performance reasons (otherwise one
could test for all possible social link identifiers without using a Bloom fil-
ter). So the Bloom filter itself might be unique enough (even if some small
variation is allowed) to track a user over multiple contacts.

In order to prevent user tracking, we use Bloom filters differently. First,
the size of the Bloom filter must be the same for all nodes in the system to
prevent size-based identification or tracking. Second, to circumvent the filter
fingerprinting, we combine three additional measures:

• We use two independent Bloom filters (with different hash functions);

• The set of social link identifiers of a node is randomly distributed across
the two different Bloom filters.

• Both Bloom filters are randomly filled with noise up to a defined amount,
so that the real fingerprint is hidden in the noise.

Two Bloom filters with independent hash functions are the base to avoid
fingerprinting by an attacker. If the same set of hash functions would be
used, it would be possible to just add the two Bloom filters and obtain a total
Bloom filter containing all social links (and thus the fingerprint). By using
more Bloom filters, the number of required hash functions increases as well.
An effective way of reducing the number of independent hash functions for
a Bloom filter is proposed in [3]. Using this approach, the scheme could if
necessary be extended to more than 2 Bloom filters.

The random distribution of the social link identifiers across the Bloom
filters for each contact enlarges the set of possible fingerprints. Intuitively,
with this measure there are now as many fingerprints for one individual user
as there are ways to distribute a node’s social link identifiers into two sets
(which depends on the number of social links a given user has). As we will
show in the next section, if a node has n social links, there are 2n possible
fingerprints.

Filling up each Bloom filter with noise up to a predefined amount further
increases the confusion of the attacker, as now all the possible fingerprints
are additionally mixed with noise and even harder to detect. Effectively that
means that all Bloom filters in the system have the same false positive proba-
bility (roughly the same number of bits set).

As a consequence of this construction of the Bloom filter, there is a system-
wide maximum number of social links that can be added (for a given false
positive rate for the Bloom filter). Exceeding this maximum number will
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result in performance degradation as more false positives will appear in the
system. Thus, this maximum needs to be large enough so that enough so-
cial relations can be accommodated without spending too much time on false
positive resolution.

3.4.4 Social link authentication

If the devices match a social link identifier in the received Bloom filter, they
need to make sure that it is not a false positive, caused by this particular
Bloom filter. To check this, a further step is required that uses the social link
identifier and associated key to authenticate the other node. Generally many
existing authentication schemes can be used for this purpose.

One option with good performance is a digest authentication scheme sim-
ilar to the http digest scheme [32]. For this, the first node sends a nonce to
the communication partner (to prevent replay attacks). The communication
partner uses the nonce, the social link identifier and the key to create a digest
answer and sends it back to the initiator. The initiator compares the digest an-
swer with the locally calculated answer. If there is a match, the authentication
was successful. In case there are multiple matching social link identifiers, the
node sends back multiple digest answers. The number of answers checked
by the initiator should be limited in order to prevent authentication digest
exhaustion attacks (brute force).

To prevent brute force authentication completely, another authentication
scheme that relies on encryption using the social link key would need to be
employed. The social link identifier could be encrypted together with the
nonce to have a precise authentication check upon decryption of the received
answer by the initiator.

While we propose a digest authentication here, this is not a specific re-
quirement for our mechanism and could be replaced by another authentication
method as required by the opportunistic networking system.

After an initial social link setup, this mechanism detects existing associ-
ations in an anonymous environment. This is achieved by probing for social
link identifiers in a Bloom filter that is created from all social links of a user.
Proper maintenance of the social link identifiers makes it hard for an attacker
to derive useful information from what is exchanged. While the social link
detection mechanism comes at a cost, it makes the social structure available
for use in the opportunistic environment without compromising privacy.
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3.5 Privacy estimation and attacks

3.5.1 Passive attacker

With Bloom filters constructed as described in the previous section, we now
look at how difficult it becomes for the attacker to re-identify a given user
based on the exchanged Bloom filters. For this analysis, we assume that
a given node does not meet any friends at all and no noise is added to the
Bloom filters. This is a worst case for our algorithm, as the set of friendship
identifiers will remain constant throughout all contacts and is the only case
where an exact duplicate of a Bloom filter would be transmitted.

For the passive attacker, we are interested in how many Bloom filter ex-
changes she has to capture before she is expected to learn anything about the
information being exchanged. The best the attacker can hope is for the ex-
act same Bloom filter to be sent in two exchanges. In this case, the attacker
knows that the same node is communicating again. As each node sends its
own Bloom filter, this does not depend on the node’s communication partner.
Still, the attacker does not learn about the identity of the node. Given enough
such recorded duplicates, the attacker will eventually be able to reconstruct
the social link structure within the opportunistic network. This is possible,
because the attacker can observe a successful social link authentication, even
if it does not know the identities that are involved. Whenever an attacker ob-
serves a duplicate in combination with a successful authentication, it learns
about one social link. As the attacker continues to observe such events, it can
puzzle together the social link structure without knowing the users identities.
It then is faced with the task of deanonymizing a known social network, which
is a research field of its own. Collecting enough of those events is extremely
unlikely, difficult and time consuming but not impossible. This probabilistic
protection is the cost of the high performance and small overhead of our al-
gorithm. In order to determine how likely such a privacy breaching event is,
we look at the probability for the attacker to capture such an event under the
worst case assumption for our algorithm as described above. The notation we
use for this analysis is as follows

sl number of established social links
N total number of Bloom filter mutations
n expected number of eavesdrops for attacker

The less variation in the construction of the Bloom filters, the higher the
chance for the attacker to capture a duplicate. The worst case for our algo-
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rithm additionally distributes the existing social links evenly over both Bloom
filters. Thus, both filters contain the same number of elements. In this case
there are sl IDs to be distributed into two sets of equal size sl/2 . Thus, there
are N =

(
sl
sl
2

)
ways to distribute sl IDs among the two filters.

For a given number of N possible Bloom filter variations, we will see
on the average about n =

√
(2 ln 2)N exchanges before a specific variation

of the filter is exchanged twice. We compute new Bloom filters for each
exchange, therefore the problem of duplicates is the same problem as the one
known as the birthday problem. In the generalized version of this problem,
there are N possible birthdays and we compute p(n), the probability that out
of n randomly selected people, at least two have identical birthdays. We then
ask, for what n is p(n) > 0.5.

Let us first compute q(n), the probability that all n birthdays are differ-
ent. Assuming that birthdays are uniformly distributed and that the draws are
independent, we have:

q(n) =

n−1∏
k=0

(
1− k

N

)
. (3.1)

Using the Taylor approximation e−x ≈ 1− x for x� 1, we get

q(n) ≈
n−1∏
k=0

e−k/N = e−n(n−1)/2N ≈ e−n
2/2N . (3.2)

Now we want to know for which n we expect two or more people to share
a birthday, in other words, for which n we have 1− q(n) > 0.5:

1− q(n) > 0.5⇔ 1− e−n
2/2N > 0.5

⇔ e−n
2/2N < 0.5

⇔ −n2 < −2N ln 2

⇔ n >
√

(2 ln 2)N.

If we relax the restriction of the equal distribution of social links among
the two Bloom filters, the number of possible combinations increases slightly,
as does the required number of eavesdrops for the attacker, since now there
are N = 2sl possible combinations and the expected number of exchanges
would therefore be on the order of 2sl

2 .
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Keep in mind that this is a worst case analysis for our algorithm. In prac-
tice, the social link identifiers inserted into the Bloom filter will change as
social link identifiers change each time a social link is met and authenticated.
Furthermore, the addition of noise to the Bloom filter (non existing social link
identifiers) is not considered in this analysis. The addition of those two ad-
ditional protection mechanisms further increases the difficulty for an attacker
to even re-identify one single user for one time.

For an example analysis we assume 400 friendships established and a
Bloom filter false positive ration of 5% for each individual (half) Bloom filter.
The Bloom filter information in this example is calculated as in [11]. In a
conservative approach (with a half-half split), each partial Bloom filter has
to accommodate 200 friendship identifiers which leads to a size of 1248 bits
per filter with the optimal number of 5 hash functions to maintain the chosen
false positive rate. In that there are

(
400
200

)
≈ 10119 variants of splitting the

friendship identifiers over the two Bloom filters. The attacker would have to

record an expected number of
√

2 ln 2
(
400
200

)
≈ 3.7 ·1059 friendship detections

to see a duplicate Bloom filter and thus re-identify a given node. If we relax
the restriction of the half-half split, then the number of possible combinations
would go up to 2400/2 ≈ 1.6 · 1060.

The general number of required eavesdrops is exponentially proportional
to the number of social links one user has. Already with a relatively low
number of social links the attacker has to collect a large number of exchanges
in order to re-identify one node. Adding noise to the Bloom filter further
increases this number significantly, as this virtually increases the number of
friendship identifiers present in the filter. This additional increase comes at
the cost of falsely detecting friendships that do not exist.

3.5.2 Active attacker

While a passive attacker can only hope to see a duplicate Bloom filter, the
honest but curious attacker has some more options at hand:

• Engage other nodes in additional exchanges, and to

• control the social link identifiers within its Bloom filter.

As all nodes are acting anonymously, an active attacker can connect to a
victim node as often as it wants to and pose as a new contact. By engaging
nodes in additional social link detection exchanges, the attacker is able to
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speed up the collection of transmitted Bloom filters. Doing this, she increases
her chances of seeing a duplicate Bloom filter and thus re-identifying a user.
Preventing this is helped by the number of expected Bloom filters that needs
to be captured before a duplicate is seen, as well as the mutating Bloom filter
as other nodes meet and authenticate social links.

Controlling the social link identifiers contained in its Bloom filter allows
the attacker to probe for specific friendship identifiers. This way, the attacker
can test whether or not its target has a given specific social link identifier in its
list. Probing is not limited to one single identifier, but also works for a group
of social link identifiers. This can also be achieved (though with a little less
precision) by the passive attacker testing the captured Bloom filter against the
given set of identifiers. Since the social link identifiers change after each use
and are generated randomly, it is impossible to predict them and thus trace a
given social link over multiple contacts.

Another active attack vector is the Sybill attack [22] where the attacker
generates a large number of non-existing nodes. Since social links are explic-
itly established by the involved users directly, additional (virtual) nodes can
not authenticate with real nodes. Even if the attacker has somehow created
a social link with a single user, there is no transitivity of trust and thus the
Sybill nodes do not benefit from it. It is however possible to mount a form
of denial of service attack by providing a large number of identities for the
detection phase. As the detection has to select one node at random, this can
effectively starve the real social contacts.

3.5.3 Bloom filter space

It is possible to relax the attackers goal from exactly re-identifying a user
to a probabilistic detection of “near-duplicate” Bloom filters under the worst
case assumption. Depending on the confidence required by the attacker to
classify two Bloom filters as “near-duplicate” the number of combinations to
distribute the set of social link identifiers over the two Bloom filters needs
to be reduced further. Our algorithm can easily be extended to integrate a
“near-duplicate” detection or prevention before sending out the Bloom filter
(e.g. check for a minimal amount of bit differences in the individual Bloom
filters). However, this would reduce the number of total combinations and
thus slightly increase the chance for the attacker to see an exact duplicate.
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3.5.4 Brute force attack on the Bloom filter

Another attack vector is to brute force the Bloom filter in order to extract
the list of friendship identifiers. Doing so successfully would allow an at-
tacker to later query an intercepted Bloom filter for an exact list of friendship
identifiers, thus re-identifying a node with a high probability. This subsec-
tion describes the attack and puts it into context with our system and attacker
model.

In general, a brute force attack on a Bloom filter starts with intercepting a
first filter and testing it against the entire space of possibly inserted elements.
This leaves the attacker with a subset of candidate elements, with a size re-
lated to the false positive rate of the Bloom filter. With every consecutively
intercepted filter, the attacker can further reduce the candidate set, until it is
left with a set of elements that are present in the filter with a high probability.

Initially, we focus on the difficulty for the attacker to brute force the
Bloom filter as is it used in our algorithm. The first step is to test an eaves-
dropped Bloom filter against the entire friendship identifier space. This will
yield a candidate set in the size of approximately 2 times the false positive rate
of the identifier space (as we are using two distinct Bloom filters to represent
the entire set). With every additionally intercepted Bloom filter, the attacker
can reduce the friendship identifier candidates to approximately 2 times the
false positive rate of the current candidate set, until the candidate set becomes
constant. Consequently, there are two parameters that control the amount of
work an attacker has to put into the attack: the size of the friendship identifier
space and the Bloom filter false positive rate. Both are system parameters
that can be chosen to meet a certain attack resistance. The higher the chosen
values, the more difficult it becomes for an attacker to brute force the Bloom
filter, both in terms of required computing power as well as the number of
required Bloom filter eavesdrops. The number of required eavesdrops starts
at approximately 10 for a friendship identifier space of 32 bit and a false pos-
itive rate of 1 percent and increases to 39 with a friendship identifier space
of 128 bit and a false positive rate of 5 percent. Those numbers are lower
bounds, as added noise to the Bloom filter is not taken into account.

Additionally, considering the properties of our algorithm and the system
model, there are further obstacles the attacker has to overcome. First, friend-
ship identifiers are changed whenever the two nodes that share this friendship
meet. Therefore, the attacker has to intercept enough Bloom filter variants
from a single node before this node meets one more more (depending on the
attackers desired accuracy) of his friends. To reconstruct an identifier after it
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was changed by the nodes, the attacker has to start the attack from scratch,
as the identifiers are generated randomly. Second, our algorithm operates in
an anonymous system model. Under anonymity, it becomes much more dif-
ficult or impossible for an attacker to collect multiple Bloom filter variants
from the same user, because it is unable to attribute multiple eavesdropped
Bloom filters to one single node. If an active attacker can use its abilities to
obtain enough Bloom filter variants from one single node (e.g. by fast and
repeatedly acting as new contact) depends on the properties of the anonymity
system and is thus out of scope of this work. However, the difficulty of an
active attack can be further increased by the size of the friendship identifier
space (which increases the computational load for the attacker). Furthermore,
an extension to our algorithm, where loosely synchronized nodes negotiate a
set of friendship identifiers instead of only one and rotate through this set can
restrict an attackers success to a limited window of opportunity. To sum it up,
our algorithm has two parameters that can be chosen based on the properties
of the anonymous opportunistic network environment. Doing so, it becomes
impossible for a passive attacker to collect enough Bloom filter variants from
one single node for a successful attack.

3.5.5 Attacks that bypass the algorithm

There are attacks that can be mounted against a fully privacy protected op-
portunistic networks that do not run our social link detection algorithm. Such
attacks can try to exploit the daily routines of users by combining location and
timing to recognize users (as they tend to be at the same locations at the same
times often). Our algorithm does not protect against such kinds of attacks,
but also does not add information that makes those attacks easier. Counter
measures against such attacks will in most cases be deployed in parallel to
our algorithm without interfering with it.

3.5.6 Inference attack

Listening to traffic, an eavesdropper could infer whether there is an exist-
ing friendship or not by the presence of friendship maintenance messages,
which are only sent among friends. Either this is not considered a privacy
problem, as both partners are anonymous and the exchange is encrypted, or
dummy messages could be sent by non friends to masque this information
(in a cooperative environment). Additionally, application specific data can
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be exchanged once a valid friendship is detected. This exchange is protected
by the friendship key and provides a generic protected channel for applica-
tions to exploit the existing social structure in the contacts. The mechanism
introduces additional overhead to the system. First, the selection of com-
munication partners has to happen randomly. Depending on the number of
contacts and friendships it may take some time until a connection to a friend
is established. However, the existing social structure works in favor of con-
necting to friends, as friends are usually met more frequently and thus have
a higher chance of connecting. Second, the additional creation and exchange
of protocol messages consumes time and resources.

3.5.7 Privacy estimation summary

Implementing our algorithm provides probabilistic privacy protection while
reliably identifying existing social links. However small, attacker gains the
chance to re-identify a user in two exchanges when our algorithm is used.
We showed, that the probabilities to re-identify a user are extremely small for
an attacker and thus we believe the benefit of our algorithm outweighs the
potential privacy loss.

3.6 Performance

In this section we investigate the load that our algorithm places on the system.
We first look at the basic algorithm load and then at the additional overhead
that may happen due to probabilistic collisions since our algorithm generates
identifiers randomly and the use of hashing.

3.6.1 Base load

There are four main elements in the algorithm that make up the base load:

• creating the Bloom filters,

• exchanging the Bloom filters,

• querying the Bloom filters,

• authenticating a social link.
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Preparing the Bloom filter involves distributing the existing social link
identifiers into two sets and calculating the hash values for all identifiers.
Creating the two Bloom filters is dominated by hashing each identifier with
a given number of hash functions. Preparing the Bloom filter can be done
before initiating an algorithm run. The new filter can be prepared right after
an algorithm run is finished. Thus, it does not add to the communication /
detection run time in practice. We implemented the Bloom filter creation for
Android smartphones and measured the creation times for different Bloom
filter properties and number of friendships on Google Nexus 4 phones. The
results can be seen in figure 3.2. The plot shows the mean and standard de-
viation for 1000 runs. The time to create the Bloom filter increases linearly
with the number of friendship identifiers inserted. We ran the same code on a
Samsung Galaxy S III which interestingly did the calculation almost twice as
fast as the (newer) Nexus 4.

Figure 3.2: Bloom filter creation times on Nexus 4 (false positive prob.: 1%)

If the Bloom filter is available, the algorithm just needs to embed it into a
network message and transfer it. So the load generated here is network data
transmission. As the Bloom filter size depends on the number of expected in-
serts and the desired false positive rate, the data volume also depends on those
factors. Generally the Bloom filter size for practical applications will be one
thousand to a few thousand bit, so it will fit into one single network packet.
Querying the Bloom filter depends on the number of social link identifiers
that need to be checked. Since querying can be stopped for each identifier as
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soon as one hash bit is not set in the filter, the query operation is faster than the
creation. The load of the authentication step depends on the specific authenti-
cation mechanism employed. In the case of the proposed simple digest based
authentication, a random nonce value is transmitted, one hash calculated and
the result transmitted back and compared to a locally generated hash value.

We measured the algorithm run time with our Android application. We
set a Bloom filter with 1000 insertions, a false positive probability of 1 per-
cent and one successful social link authentication was performed using our
proposed digest authentication. On a Nexus 4 phone the entire run took about
55 ms with a standard deviation of 35ms (caused by the network) over 200
measurements.

Most related work in section 3.7 does not include performance evalua-
tion. Only the authors of FindU [61] provide performance simulation for
smartphones. While the performance of their algorithm depends on multiple
parameters, their simulated protocol run time is ranging between .5 seconds in
the best case and 5 seconds in the worst case, for one specific scheme up to 50
seconds. FindU and our algorithm are not aimed at exactly the same problem,
but the run times for FindU give an idea about expected run times if privacy
preserving matching would be used to achieve the goal of our algorithm. The
expected run times would be 10 to 100 times longer.

3.6.2 False positives

Apart from the base load of generating and testing the Bloom filter for known
friendship identifiers, false positives (detecting nonexistent friendships) are
the second possible performance aspect we investigate. In short, a false pos-
itive makes a node temporarily think that it is connected to a friend when it
is not. Every false positive incurs an additional overhead due to the authen-
tication step that is performed and which fails in that case. A false positive
can only occur during one specific step of our algorithm. This step is, when
a node checks the received friendship identifier list that is represented as a
Bloom filter against its own local list of established friendships. If the local
node detects a matching friendship identifier in the received and local list that
is in reality not related to one of its pre established friendships, we call this a
false positive. Our mechanism has two possible independent sources of false
positives, the friendship identifier generation and the Bloom filter query.
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Friendship identifier generation

As friendship identifiers are generated randomly, it is possible that two inde-
pendent pairs of nodes generate the same friendship identifier for their own
distinct friendship relations. In this case, a matching friendship identifier is
detected during the Bloom filter query process. Consequently, the algorithm
will go to the friendship verification step (challenge - response) where the
corresponding keys are different for each node, the challenge - response au-
thentication fails and the false positive is detected. However, this creates an
additional challenge response exchange for each false positive caused by a
friendship ID duplicate. The expected number of this type of false positives
depends on the size of the space that the friendship identifiers are chosen
from as well as the total number of friendships in the system. As duplicate
friendship identifiers on nodes that are never meet will never cause a false
positive, the latter can be reduced to the total number of friendships within
all contacts of a node. The larger the friendship identifier space, the fewer
false positives are expected. The expected duplicate (and thus false positive)
probability for two nodes meeting is shown in Figure 3.3 for 16, 24 and 32
bit friendship identifiers and nodes having between 1 and 1000 independent
friendships each. It is assumed that friendship identifiers are drawn uniformly
random from the friendship identifier space.

Bloom filter

The Bloom filter guarantees no false negatives, so if we do not find one of our
friendship identifiers in the filter, we definitively are not connected to a friend.
False positives result when the Bloom filter query results in a match where
there is no matching entry in the friendship identifier list that was inserted into
the filter. Typically, a false positive query result will cause the involved nodes
to proceed to the authentication step, which consequently fails. Furthermore,
false positives can cause a node pair to detect more than one shared friendship
(which does not make sense, as two users can either have one social link
or none). In this case, the authentication step is performed each detected
friendship. The other party will try to decrypt all messages with the keys
that are associated with the friendship identifiers it found itself (which might
be one or multiple). Correct decryption can be verified since the friendship
identifier is contained in the encrypted message. The false positive rate of a
Bloom filter is controlled by the size of the filter, the number of hash functions
used in the generation process and the expected number of elements that are
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Figure 3.3: Duplicate friendship ID probability in node meeting for different
ID sizes

inserted into the filter. Therefore, the Bloom filter false positive rate can be
controlled in the system.

3.6.3 Application integration

In addition to evaluating the algorithm implemented as an Android applica-
tion, we also integrated the approach with a full-fledged opportunistic net-
working application. The Android implementation of the PodNet publish-
subscribe content distribution served as a basis for the integration of our algo-
rithm. While it does not operate in a perfectly privacy protected environment,
it is a complete content distribution application and allows for all steps of our
proposed mechanism to be executed in the context of a real application. The
privacy preserving friendship detection is implemented as a separate Android
service that is called whenever neighbors are in range. The integration with
the PodNet application has a slightly higher overhead than the stand alone
implementation we used to investigate the overhead caused by our algorithm
alone. This is caused by interaction with the PodNet application, which han-
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dles neighbor detection as well as all communication set up (e.g. establish
a TCP connection). We did not include the connection establishment in our
core performance, as this has to be done anyway to communicate in the oppor-
tunistic network. A further investigation of the additional overhead revealed,
that it is mainly caused by the Android Intent inter process communication
that was used. Using another IPC mechanism available in Android (Binder)
results in a significant drop of the additional overhead, to an almost negligible
value. This is confirmed by measurements performed by [51], who compared
various Android IPC mechanism properties.

3.7 Related work

In this section we look at related work in privacy protection that can be ap-
plied in the context of opportunistic networking.

Social privacy in opportunistic networks has mainly been studied under
the premise of routing information as in [72]. Privacy of social group mem-
bership has been investigated by [9]. The problem of finding common infor-
mation among two nodes in a privacy protected way is achieved by research
in the domain of privacy preserving matching or privacy preserving set inter-
section [34]. Freedman et al. propose a mechanism where only the “client”
learns the result of the computation (but not the server), which in our case
would require a client-server role negotiation beforehand to make it appli-
cable. Privacy preserving matching and private set intersection (also private
cardinality set intersection) are crypto-based techniques to calculate if two
(or more) parties share a common piece of information, without revealing
their respective entire information set. This can potentially solve our task to
find out, whether two communicating users have a social link identifier in
common, without revealing their entire set of social link identifiers to each
other. With FindU [102] the authors present an efficient privacy preserving
match making protocol. However, their goal is to find the best matching user
among a group of users, and thus the protocol does not work for an encounter
of only 2 nodes. Privacy preserving friend discovery is also done in [21].
The authors provide a solution for finding social proximity (detecting new
friends) given the social coordinates of the two users and not to detect exist-
ing friends. It also relies on a trusted central server that computes the social
coordinates for each user which is later used offline and needs to be updated
regularly. Privacy preserving matching has a high computational demand that
makes it unsuitable for a situation as ours, where social link detection has



90 3 Privacy preserving social link detection

to be done frequently at the beginning of each data exchange. Furthermore,
some schemes rely on multiple parties (nodes) being involved in the calcula-
tions, which is a requirement that can not be satisfied in all contact scenarios
in opportunistic networks.

For E-SmallTalker [106], Yang et al. use iterative Bloom filters for com-
mon interest detection. They use Bloom filter as a compression tool to fit
the interest list into size limited Bluetooth service discovery packets. There
is also a proposal for cryptographically secure Bloom filters by Nojima and
Kadobayashi [67]. While it basically satisfies the requirements to be used in
our mechanism, its computational complexity is too high for implementation
on smartphones, which are the typical opportunistic networking devices.

3.8 Conclusion

A major drawback of fully anonymous (privacy protected) opportunistic net-
working is the lack of any exploitable social structure. In this chapter we
present a mechanism that allows to make use of social links in an otherwise
perfectly privacy protected network. Thus, the social structure inherent to an
opportunistic network becomes available for reliability and security mecha-
nisms while maintaining the privacy and anonymity of the users. The social
link detection mechanism provides a generic, application independent way of
recognizing social links. It makes those links available for other applications
for encrypted and authenticated data transfer, so it can be incorporated in an
“opportunistic base-layer” as application independent service.

Our goal to design an application independent algorithm may imply some
limitations in certain scenarios which we briefly discuss now. The maximum
number of friendships any node may create is the same for all nodes and a
system wide parameter. This may be a limiting factor in special purpose ap-
plications outside of traditional opportunistic networking. We believe, that
this does not present a limitation for general purpose use in opportunistic net-
working, as the number of friends a user can be in contact with physically, is
naturally limited by everyday life. Since the maximum number of friendships
is not bound, but only needs to be set to a specific value, this value can be cho-
sen high enough to accommodate most users behavior. Furthermore, nothing
prevents a social link to be removed at any point in time (e.g. deleted from
the list). Generally, a deleted friendship can be replaced by a new one. De-
pending on the requirements of a special purpose scenario, various friendship
replacement strategies could be implemented whenever the maximum num-
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ber of friendships is reached (e.g. replacing the least recently used friendships
first).

In scenarios, where available computing power is lower than that of smart-
phones, which are typically used for opportunistic networking, or where con-
tact times are generally much shorter than in the opportunistic case, further
performance tuning of our algorithm could be required. One option that re-
duces the number of exchanged messages is, that only one node sends its list
of friendship identifiers to the other instead of a mutual exchange. Further-
more, the maximum number of friendships allowed can be set to a low value,
which reduces both, bloom filter size and creation time.

Due to the application independent approach, the presented attacker model
only operates with information that is produced by our algorithm. A more re-
alistic attacker model would include further background knowledge, which
makes an attack more effective. We believe, that our attacker model serves
as a good base for further attack scenarios that may take scenario specific
background knowledge into account.
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Chapter 4

Smartphone WiFi design
influence on opportunistic
contacts

The previous part has dealt with keeping opportunistic contacts and derived
information privacy protected. If contacts get in the focus of investigation,
this typically happens to extract statistical data about contact timing and fre-
quency. During a CTI funded knowledge transfer project to a startup, that was
conducted during this thesis, a different view on contacts in practical oppor-
tunistic networking was adopted. A contact is typically understood as a time
period, in which two mobile nodes are within each others radio propagation
range. In most cases, the propagation range is modeled as a disc centered
around a node, where the node itself does not occupy any space. This part
of the work questions this typical view and investigates the reality behind
smartphone based opportunistic contacts.

4.1 Introduction

Opportunistic networks are envisioned to provide communication in many
different scenarios. In all of those scenarios, such as emergency communica-
tion, cellular offloading or mobile social networking, users are a core element
of the network. The user is assumed to carry a mobile device that is capable
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of establishing wireless connections to other users carrying a similar device
in the vicinity. As such it is not surprising, that the characteristics of oppor-
tunistic contacts are attributed to the users’ properties, such as mobility, daily
routines and social connections. Therefore, mobility models and contact tim-
ing properties (e.g. inter contact times, frequencies) have contributed to ex-
panding our understanding of opportunistic networking. This again has lead
to numerous proposals and algorithms that improve various aspects of oppor-
tunistic networks, for example routing, trust or security. The mobile device
carried by the user is regarded as a mere enabler for opportunistic technology.
If at all, the maximum communication range is considered a limiting factor
for the contacts. Thus, rough range estimations are typically used, sometimes
two different communication technologies (e.g. Bluetooth and WiFi) are used
in evaluations, only distinguished by their maximum communication range.
The modeling and simulation techniques that are used often simplify mobile
device properties, which leads to significant deviations from the real commu-
nication properties of mobile devices.

Yet, the potential of opportunistic networking lies in extending the reach
of the Internet to rural and remote areas [43]. Facebook with the Internet.org
project and Google with its Project Loon are now rapidly developing Internet
connectivity for the still disconnected 4 billion human beings. They plan to
build novel infrastructures no longer relying on classical wireless cell infras-
tructure, which is very costly to deploy and maintain in remote areas. Instead,
balloons (at 32 km of altitude) or drones (at 18 to 27 km) will build a float-
ing mesh infrastructure supporting fixed ground WiFi AP stations or cellular
connectivity. As such stations will be costly to deploy, they will be located at
strategic points (e.g. building rooftops, villages). Connecting end users with
those stations is where opportunistic networks will play a key role as the "last
mile connectivity" solution to extend the reach of such stations beyond their
limited range.

The second and often neglected core element supporting opportunistic
networks is smartphones. Already smartphones in the 30$ range are real-
ity [84] are reaching emerging markets. While the potential for opportunistic
networking has already been demonstrated through the N4C project [29] or
apps such as Twimight [27], Uepaa [97] and Firechat [68], there is only lit-
tle evidence of the large-scale potential of opportunistic networking based on
smartphones. In practice, the contact opportunities – the building blocks of
opportunistic networks – depend to a large extent on the characteristics of the
mobile devices, typically smartphones, that are carried around. Up to now,
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no study has ever considered the radio characteristics of current smartphones
acting as opportunistic nodes and the radio impact of human beings carrying
these devices. Smartphones have their own characteristics (i.e. output power,
antenna gain) and the human body heavily impacts transmissions (e.g. by
absorbing a part of the emitted signal). The properties of smartphones have
not received the same amount of attention as the “user” part of opportunistic
networking. We noticed while running simulations with NS-3 a significant
discrepancy between the embedded models and preliminary tests with smart-
phones, which led us to this study aiming at fully characterizing smartphones’
WiFi performance for opportunistic networking.

In this chapter, we hence strive to answer a simple question: Is WiFi-based
opportunistic networking feasible with current smartphones? If yes, what is
the performance of WiFi-based opportunistic radio link with those devices in
a real-world environment? We start by revisiting the link budget between two
smartphones in Section 4.2. Next, we detail the internal characteristics of dif-
ferent smartphones (antenna type and gain, WiFi chip set and output power)
in Section 4.3. After a reminder on propagation models in Section 4.4, we re-
port about our line of sight (LoS) outdoor field measurements from which we
derive the best path loss model in Section 4.5. We evaluate the impact of the
body attenuation model in Section 4.6, assess the empirical maximum LoS
range in Section 4.7 and eventually derive the opportunistic WiFi link capac-
ity of crossing pedestrians. Eventually, we survey related work in Section 4.8
and discuss open points and future work in Section 4.9.

The main contributions and findings of this chapter are:

• A fully characterized smartphone link budget from smartphones’ out-
put power to their reception threshold.

• A calibrated Two-ray Ground model and a body model derived empir-
ically.

• Line-of-sight range measurements with different smartphones, evaluat-
ing practical communication range (up to 400m) and good-put of two
crossing pedestrians of at least 143 MB.

4.2 Smartphone link budget

The link budget generally reflects all gains and losses that RF signals are sub-
jected to while traveling from the transmitter to the receiver. Our methodolog-
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Figure 4.1: Radio communication chain.

ical teardown will follow the sequence of the individual items of the radio link
budget. This gives us a step-by-step understanding of the smartphone WiFi
properties for opportunistic networking. We start by detailing the WiFi link
budget between two smartphones. Link budgeting usually aims at setting the
transmitter output power PT such that the received power PR at the receiver
allows establishing a communication channel. In our case, we have no degree
of freedom since we cannot control any WiFi parameter on smartphones. Be-
sides, compared to traditional link budgeting, we must account for the impact
of the carrier’s body since smartphones are usually carried in pockets or used
in close proximity to the body.

A link budget accounts for all the gains and losses from the transmitter,
through the medium to the receiver as illustrated in Figure 4.1.

A radio signal sent from one smartphone to another is emitted by the
senders WiFi chip set with power PT . A part of the emitted power LT is
lost in the feeder line that connects the chip set to the antenna built into the
sender’s smartphone. The antenna characteristics GT determine the emitted
power of the radio signal. The emitted signal power decreases by a certain
amount L depending on the distance to the receiver’s phone antenna as well
as due to any obstacles that it potentially travels through, such as the body of
the phone user BT . All the factors except the path loss have to be considered
for the receiver as well as for the sender until the final signal strength at the
receiver chip set can be determined. The link budget equation is given by:

PR = PT − LT +GT −BT − L−BR +GR − LR (4.1)

where:
(emitted and received power is given as absolute value in dBm,
all other factors are relative changes to this given in dB (or dBd for Anten-
nas))
PR = received power (dBm)



4.3 Inside smartphones 101

PT = transmitter output power (dBm)
LT = transmitter losses (cable, feeder/connector, . . . ) (dB)
GT = transmitter antenna gain (dBd)
BT = transmitter body attenuation (dB)
L = free space loss or path loss (dB)
BR = receiver body attenuation (dB)
GR = receiver antenna gain (dBd)
LR = receiver losses (cable, feeder/connector, . . . ) (dB)

The difference between the received signal power, PR, and the sensitivity
of the receiver is referred to as the link margin. The sensitivity of the receiver
depends on the signal bandwidth, the type of modulation and the noise level.
The WiFi 802.11b/g thermal noise power (or floor) with a channel bandwidth
∆f of 20 MHz is:

PdBm = 10 log10(kBT∆f × 1000) (4.2)

where kB = is Boltzmann constant (1.3806504×10−23J/K (Joule/Kelvin))
, ∆f is the bandwidth in Hz and T the room temperature t in Kelvins (T =
273.15 + t in Celsius). At 20◦C the thermal noise power is -100.9 dBm
and at -5◦C it is - 101.3 dBm and will hence be roughly the same what-
ever temperature (winter vs. summer) Thermal noise can be approximated by
−174 dBm+10 log10(∆f) resulting in an average noise power of 101 dBm.
The signal to noise ratio (SNR) must be at least 4 dB in order to achieve a
bit-error rate (BER) of 10−2 required for the lowest rate of 802.11b (DSSS -
DBPSK). This results in a reception threshold of -97 dBm.

In the remainder of this chapter, we will investigate all the above link
budget parameters through publicly available data, measurements and provide
models whenever possible.

4.3 Inside smartphones

Based on publicly available data (e.g. FCC), we report about the position and
type of the WiFi antenna and their gains. We then provide a few WiFi chip
set characteristics and the radiation patterns of smartphones.
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4.3.1 Antenna characteristics

All recent smartphones are equipped with Planar Inverted-F antennas (PiFa)
that belong to the family of patch antennas. A PiFa antenna is resonant at
a quarter-wavelength thus reducing the required space needed on the phone.
With PiFas the entire ground plane that supports the circuit board and touch
screen (i.e. the entire phone) makes up the antenna. Hence, the bigger the
phone, the better. Figure 4.2 shows the layout of the different antennas as
observed on most smartphones (rear view). The GPS antenna is located on
top for maximum reception and there are two cell antennas: one RX only at
the top and one at the bottom for TX and RX, so that the EM exposure is
reduced at the ear level. The WiFi PiFa is always located on the rear’s right
side and spans almost the whole phone length as shown by the dashed line.
Antenna gains reported by the FCC vary from 1.1 dBi for the HTC Nexus
One to -2.5 dBi on the the HTC One X and -1.5 dBi on the iPhone 4S.
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Figure 4.2: General layout of the different antennas. The dashed rectangle
indicates the typical position for the WiFi PiFa.
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4.3.2 WiFi chip-sets characteristics and emitted power

Table 4.1 lists the major smartphones with their WiFi chip sets and output
power at the chip. We can see that most smartphones use the same chip
set and that their average output power is between 16 dBm to 17 dBm for
802.11b. This is 3 dBm below the limit of 20 dBm (100 mW) defined by the
standard. The output power for 802.11g and 802.11n are lower than 802.11b
and between 10 dBm and 15 dBm.

Phone Model WiFi Chip set Average RF Output Power (dBm)
HTC BCM4329 802.11b: 16.85-17.40 dBm

Nexus One
Samsung BCM4330 802.11b: 15.5-16.5 dBm

Galaxy Nexus
Samsung BCM4330 802.11b: 17.15 dBm

Galaxy SII
Samsung BCM4330 802.11b: 16.0-17.12 dBm

Galaxy SIII
Apple BCM4330 802.11b: 17.05 dBm

iPhone 4S

Table 4.1: Smartphone WiFi characteristics (source: FCC test reports avail-
able at transition.fcc.gov/oet/ea/fccid).

The antenna gain will impact the emitted and received power. With PiFa
antennas the radiation is away from the ground plane (towards the rear of the
phone) and the energy is directed away from the head. This also means that
the maximum gain or energy (or best configuration for phones to communi-
cate) is when phones’ rear sides face one another.

The field intensity measurements performed by the FCC provides a visual
representation of the antenna radiation pattern. Figure 4.3 shows the front and
back measurements off the Nexus One phone.

Table 4.2 shows the surface area and the field intensity E measured by
the FCC at the level of the antenna. The Nexus One emits 13 V/m, 5.32 V/m
and 10 V/m at the rear, front and side, respectively. We can already see a
difference of more than 7 V/m (more than double) between the front and rear.
In order to translate the field intensity to the power density Pd, we compute

transition.fcc.gov/oet/ea/fccid
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PCTEST ENGINEERING LABORATORY, INC. 
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Test Date: 10-24-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.5°C 

 Probe: EX3DV4 - SN3561; ConvF(6.26, 6.26, 6.26); Calibrated: 7/27/2011 
 Sensor-Surface: 3mm (Mechanical Surface Detection) 

 Electronics: DAE4 Sn665; Calibrated: 4/20/2011 
 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 

 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 
 

Mode: IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side 

Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm 
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Figure 4.3: EM Radiation pattern for the Nexus One (source: FCC).

the power density from the field intensity by

Pd =
E2

Z0
=

E2

120π
=

E2

377
(Watts/m2) (4.3)

For E = 13 V/m (rear), we have Pd = 132

377 = 0.45 W/m2 which
translate to −3.5 dBW/m2. For E = 5.32 V/m (front), we have Pd =
−11.2 dBW/m2 and for the sideE = 10 V/m, we havePd = −5.76 dBW/m2.
This is a difference of almost 8 dB in power density between the rear and the
front of the phone and 1.6 dB between the rear and side. From Table 4.2, we
see that the power density on the side of the phone is usually very close to the
back since the antenna is on the side (except for the iPhone 4S). Between the
rear and the front (screen), differences in signal strength between 4.8 dB to
10.6 dB can be observed.

Another observation is that despite all phones having almost the same
WiFi chip set and RF output power, they have different effective radiated
power from the antenna depending on the side (i.e. rear vs. back. vs. side).
This is due to the different antennas used in the different phones, which have
different gains and different connector losses.

The still unknown feeder and connector losses between the WiFi chip and
the antenna (BT and BR) and the propagation loss L will be evaluated using
our outdoor measurement results. Before we present those measurements
in Section 4.5, we remind the reader about the propagation models we will
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Phone Surface area Back V/m Front V/m Side V/m
Model cm2 (∆dB) (∆dB)

Nexus One 71 13.0 5.32 (7.7) 10.8 (1.6)
Galaxy Nexus 92 8.44 (3.75) 4.60 (5.27) 7.3 (1.26)

Galaxy SII 71 8.97 (3.22) 4.82 (5.39) 7.84 (1.17)
Galaxy SIII 96 10.5 (1.85) 3.1 (10.6) 5.17 (6.15)
iPhone 4S 67 11.5 (1.06) 6.61 (4.8) 8.58 (2.54)

Table 4.2: Phone surface area and field intensity (back vs. front vs. side).
In blue, for a given phone, the loss on other sides compared to the back side.
In red, differences of the different phones compared to the Nexus One for the
back.

compare our measurement to in Section 4.4.

4.4 Propagation models

Propagation models fall into two categories: large-scale and small-scale mod-
els. Large-scale propagation models predict the mean signal strength for a
given transmitter-receiver separation distance. The most well-known models
are the Friis and the Log-Distance path loss models. Small-scale propagation
models characterize the rapid fluctuation of received signal strength over a
short time duration due to multi-path propagation (wave reflected by obsta-
cles such as the ground and walls) or to motion (Doppler effect). Here we
will not consider any slow or fast fading nor interference. We will however
consider the two-ray ground model, an extension of the Friis model, which
accounts for a direct wave and a ground reflected wave.

The Friis free space path loss model is described by Equation 4.4:

LFS(dB) = 10 log10

(
λ

4πd

)2

(4.4)

where:
λ: wavelength (m)
d: TX-RX distance (m).
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In the two-ray ground model, the total received energy is modeled as the
vector sum of the direct transmitted wave and one ground reflected wave as
illustrated by Figure 4.4. The model used for the propagation of the direct and
reflected wave is the Friis model. The two waves are added constructively or
destructively depending on their phase difference at the receiver. The mag-
nitude and phase of the direct transmitted wave varies with distance traveled.
The magnitude of the reflected wave depends on total traveled distance and
the reflection coefficient (Γ) relating the wave before and after reflection.

 Design Note   DN018 
 
 
3.3  Ground Reflection (2-ray) Model 

In a typical radio link transmission waves are reflected and obstructed by all objects illuminated by 
the transmitter antenna. Calculating range in this realistic environment is a complex task requiring 
huge computing recourses. Many environments include some mobile objects, adding to the 
complexity of the problem. Most range measurements are performed in large open spaces without 
any obstructions, moving objects, or interfering radio sources. This is primarily done to get 
consistent measurements. The Friis equation requires free space to be valid (section 3.1). Hand 
held equipment generally operates close to ground. This implies that ground influence has to be 
considered to do valid range calculations. 
 
Figure 1 illustrates the situation with an infinite, perfectly flat ground plane and no other objects 
obstructing the signal. The total received energy can then be modeled as the vector sum of the 
direct transmitted wave and one ground reflected wave. 

 

 
Figure 1.  Transmission with Ground 

The two waves are added constructively or destructively depending on their phase difference at the 
receiver. The magnitude and phase of the direct transmitted wave varies with distance traveled. 
The magnitude of the reflected wave depends on total traveled distance and the reflection 
coefficient (ī) relating the wave before and after reflection. 
 
3.3.1 Reflection Coefficient 
 
Whenever an incident radio signal hits a junction between different dielectric media, a portion of the 
energy is reflected, while the remaining energy is passed through the junction. The portion reflected 
depend upon signal polarization, incident angle and the different dielectrics (İr, µr and ı). Assuming 
that both substances have equal permeability µr = 1 and that one dielectric is free space, Equation 2 
and Equation 3 are the Fresnel reflection coefficients for the vertical and horizontal polarized 
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Figure 4.4: Two-ray ground transmission model with LoS and ground reflec-
tion.

Where the reflected wave hits the ground, only a portion of the energy is
reflected and it mainly depends on the incident angle (Θi) and the the dif-
ferent dielectrics i.e., permittivity (Er ), permeability (µr) and conductivity
(σ). Von Hippel [101] characterized a broad range of materials regarding
their electrical properties. Based on the determined characteristics for typical
ground, we will use εr = 12 for the relative permittivity (which includes Er
and µr) and σ = 1 for the ground reflection coefficient.

The Friis and two-ray ground models presented here will be used in the
following Section 4.5 to obtain the remaining unknown parameters for the
smartphone link budget.

4.5 A realistic smartphone propagation model

To obtain realistic values for the smartphone link budget elements, we use
extensive outdoor measurements that are presented in this section. The results
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of the different measurements are then used to derive the feeder and connector
losses as well as a realistic path loss model for opportunistic networking in
open (e.g. rural) spaces.

4.5.1 Experimental setup

The outdoor measurements took place in Dietikon (AG), Switzerland on a
road with 450m of LoS (line of sight) surrounded by fields with low WiFi
interference. A HTC Nexus One acting as an AP was mounted on a tripod at
1.25 m above ground with its rear side facing the LoS. An experimenter was
holding different smartphones at 1.35 m facing the AP (i.e. rear facing the
AP to have maximum antenna gain configuration). The experimenter walked
backwards until out of range and then walking forward on the reverse path
towards the AP. The experimenter phones acting as RX were receiving WiFi
probes sent by the AP acting as a TX and measuring the RSS.

To get precise measurements, we took measurements every 0.5m from
[0m,20m] using a tape measure and then every 10m from [20m,100m] and
every 30 to 50m from [100m,350m] using a laser rangefinder (+/ − 1m ac-
curacy). Our measurements were limited by the range of our laser rangefinder
to 355m although we still were within range of the AP beyond this distance
as we will see in the next Section.

4.5.2 Propagation model fitting

The Figures 4.7 show the empirical measurements and the best fit with the
Two-Ray model. They also show the Friis model with the parameters corre-
sponding to the Two-Ray fit.

Figure 4.7a shows the fit of the model for the short range behavior 0-50m
where d > hTX+hRX . The Two-Ray model was fitted with the following pa-
rameters: Er = 12, hRx = 1.25m, hTX = 1.35m,GTX = GRX = 1.1dBi.
The green plain line is the best fit with PTX = 7mW (8.45 dBm). The dashed
green line is the corresponding Friis model with the same parameter. We can
clearly see the impact of the ground and the difference between the RX signal
power predicted by the Friis model and the Two-Ray mode. At short ranges
the two-ray fit is striking. The signal experiences deep fades of up to 10 to 15
dB.

We look next at the long range behavior where d� hTX+hRX in Figure
4.7b. We can clearly see the impact of the reflected wave which drastically
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Figure 4.5: Measurement location in Dietikon countryside with open fields
and flat area. Position A is where the static AP is placed while B indicates
400m

limits the reception range. The horizontal line at -97 dBm indicates the RX
sensitivity threshold. This means that in ideal LoS free space conditions, one
could detect beacons up to 1200 or 1500 m.1 Due to the reflected wave on the
ground (in phase opposition) for a horizontal LoS, this range reduces to 380-
450m as we will see next. This is a radio range reduced by approximately 3
times compared to free space propagation.

The Two-Ray model does not however fit the empirical data for the long-
range part from 175m to 350m where one can observe a bump. This is due to
the road going slightly up from 200 to 300m, which increases the reflection
angle and the height of the carried phone. With the Two-Ray model, increas-
ing the height of either TX or RX drastically increases the range and allows
coming closer to free space propagation (Friis model). In the case at hand, we
are even above what Friis predicts. This is due to the height leading to a con-

1This was confirmed by a joint Uepaa/Rega experiment with a phone on the ground and
another hooked below a helicopter going up vertically.
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(a) Measurement setup

(b) Measurement line of sight

Figure 4.6: Measurement setup, procedure and line of sight (>400m).
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Figure 4.7: Line of sight measurements with two HTC Nexus Ones fitted with
the Two-Ray and Friis model.
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structive direct wave and reflected waves adding up at RX so that more power
is received than what Friis would predict. Similar to the deep fades observed
at short ranges due to destructive signals, this bump is due to constructive
signals.

4.5.3 Feeder and connector losses

Fitting the two-ray ground model to our measurements outputs a PT of 7 dBm
as opposed to 17 dBm reported by the FCC (see Table 4.1). The difference
of 10 dBm is due to the feeder and connector losses from the WiFi chip to
the PiFa antenna. Based on our output power estimation by the model fit-
ting, we conclude that the combined feeder and connector losses for sender
and receiver are on the order of 10 dB (LT+LR). Thus the combined feeder
and connector losses for the transmitter or receiver are 4-5 dB. The maximum
range measurements reported in section 4.7 confirm those losses. For these
range tests, we used a Samsung Galaxy Nexus as an AP and different phones
as stations. The different phones could detect the AP beacons until differ-
ent distances from the transmitter. Since TX was the same across all tests
(i.e. same Pt and Gt) and the WiFi chip set of all RX phones are the same
(i.e. BCM4330 - see Table 4.1), the observed range difference can only be
explained by different antenna gain GR and connector/feeder losses LR.

4.6 Body attenuation

In this section, we investigate the impact of the smartphone carrier’s body on
the link budget.

4.6.1 Body attenuation model and measurements

During our early field measurements, we noticed the impact of the body at-
tenuation on the received signal strength. The attenuation of the body block-
ing the LoS is often neglected when considering signal propagation involving
mobile devices. When computing the attenuation of human tissue, we see that
the attenuation is significant, as we will show in the following. To start off,
we need to take the electrical properties of human tissue into account, as this
defines how the wave will be influenced when it hits and traverses the body.
From RF dosimetry measurements at 2.4 GHz based on human tissue equiva-
lent material in [55], we use the dielectric constants reproduced in Table 4.3.
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α and β are the real and complex components of the propagation constant γ

Table 4.3: Dielectric properties of human tissue according to [55].

Relative permittivity Conductivity α β
Torso 39.2 1.8 53.5 320.7
Head 52.7 1.95 50.2 369.5

(γ = α+ jβ). Those values will be used in Equations 4.5 and 4.6.
In order to assess the impact of the body on the LoS propagation, we need

to consider three effects. First, the incoming wave will be partially reflected
by the body. Second, the remaining part will be attenuated due to the ve-
locity change over the air/body interface. Third, the wave will be attenuated
depending on the distance traveled through the body. A part of the incoming
wave is reflected by the body. The remaining part of the wave experiences
loss due to velocity change at the air/body interface according to Equation
4.5.

Lα = 20 log10

(
λ0
λ

)
= 20 log10

(
c
f
2π
β

)
= 20 log10

(
c

f

β

2π

)
(4.5)

where: c: speed of light.
f : frequency of the signal.
β: complex component of the propagation constant.

Once the wave traverses the body, Equation 4.6 defines the propagation
losses through the body tissue where dbody is the distance the signal travels
though the body..

Lβ = 20 log10

(
eαdbody

)
= 20

ln(eαdbody )

ln(10)
=

20

ln(10)
αdbody (4.6)

where: α: real component of the propagation constant.

A numerical evaluation of the resulting attenuation due to the propaga-
tion through the body gives 5 dB/cm of attenuation. Considering the highest
allowed WiFi output power level at 20 dBm and a typical receiver sensitivity
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between -90 and -95 dBm leaves a margin of approximately 110 dB for body
attenuation, without taking any other propagation effects into account. The
110 dB body attenuation margin is already reached after traversing approxi-
mately 22 cm of body tissue. In practice, path loss and reflection by the body
tissue further attenuate the waves, which causes the wave to be attenuated be-
low reception threshold after traveling through the body for an even shorter
distance. Therefore, we conclude that communication from the front to the
back of the body through the body itself is not possible.

Diffraction

As transmission through the body is ruled out, another additional propagation
effect comes into play: diffraction around the body. The rays traveling around
the body due to diffraction suffer a noticeably smaller attenuation. The atten-
uation of waves which are diffracted around the body has mainly been studied
in the context of body area networks, where antennas are placed on or near
the body. [33] reports an attenuation in the order of 2 dB/cm at 2.4 GHz.

For our model, the body is assumed to be a perfect cylinder with a radius
of 15 cm and with the dielectric properties of Table 4.3. It is illustrated in
Figure 4.8. The attenuation of the body with a source away from the body
and a receiver on or close to the body is then computed according to two
rays being diffracted around the body, one around the top and one around
the bottom of the body as shown in Figure 4.8 with the two dashed lines. We
hence consider the values in [33] to estimate the attenuation due to diffraction
according to Figure 4.8.

Body Phone on

body

Helium balloon

carrying phone

Diffraction

Figure 4.8: Diffraction body model
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Diffraction measurements

We carry out measurements to validate this model. The setup is illustrated in
Figure 4.9. We used two helium balloons to position the transmitting phone in
the air and measure the attenuation of the body with a receiving phone placed
on the experimenter’s body. The experimenter is lying on the ground, so that
the ground reflectionis negligible and only the diffraction can be measured.

Phone

Measured using
 rangefinder

Measured using
 rangefinder

Lying 
person

Figure 4.9: Diffraction measurement setup

The balloons were moved away from the body at a height of 15m to 20m.
For each measurement point the distance from the person lying on the ground
and the height of the balloon was measured.

As can be observed in Figure 4.10, the variations of the measurement are
very large. Due to the wind, the position of the balloon could not be con-
trolled perfectly. Therefore the measured distances do not exactly correspond
to the actual distances during the measurements. We hence accounted in the
model for a variation in transmitter position of 1m in each direction. Since
the body is not an actual cylinder, the placement on the model cylinder had to
be estimated, therefore a variation on the position of the phone on the model
cylinder of 15◦ was also taken into account for the model. This shows that the
body attenuation model is also strongly variable with small changes of posi-
tion. We can see that the model generally overestimates the measurements.

This is due to the neglected orientation and polarization mismatch because
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Figure 4.10: Body diffraction measurement results

of the relative position of the phones. Therefore we use an additional 10 dB of
attenuation in the model to account for the orientation losses due to the phone
being carried on the body in order to eventually match the measurements.
The bottom line is that we consider our measurements to confirm the 2 dB/cm
diffraction losses at 2.4 GHz.

4.6.2 LoS measurements with and without body
attenuation

These LoS measurements were performed at the same location as for the eval-
uation of the propagation model. The measurements were however not taken
at predefined intervals as before, but while slowly and continuously walking
away from the access point phone. Additionally to checking the distance with
the tape measure and the laser rangefinder, we were recording GPS data on
the phone. This is why we get more fine-grained empirical plots. Figure 4.11
shows the received signal strength with and without the body attenuation as
well as the difference between the two at the top. The plot without the body
had the experimenter walking away from the AP with the phone’s rear held
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Figure 4.11: LoS measurements w/ and w/o body.

towards the AP and no body between the AP and the phone. The plot with
body in-between had the experimenter walking away from the AP, holding
the phone in the same position as before, but with the experimenter’s body
between the AP and the phone. A first observation is that the body attenu-
ates the signal by a maximum of 20 dB and that the resulting measurements
follow almost the same trend as the measurements without the body. The
clear line-of-sight curve shows deep fades at short ranges as expected from
the two-ray ground model. The curve with the body blocking the line-of-sight
does not show the same explicit deep fades. This is caused by the interaction
of the body with the incident waves. The direct wave is reflected to a larger
extent than the ground reflected wave, due to the different incident angles on
the body surface. The direct wave hits the body almost perpendicularly and
most of the energy is reflected and less diffracted while the reflected wave
has a lower angle which results in more energy being diffracted around the
body. Regarding long ranges, we can observe that the difference between the
two measurements tends to zero with distance. This is due to the fact that the
further away from the AP, the less distance both waves (direct and reflected)
have to travel around the body. At 100m we observe almost a 20 dB differ-
ence, which suggests a distance of 10cm (at our estimated loss of 2 dB/cm,
see Section 4.6.1) traveled by the diffracted wave around the body. At 150m,
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we only have 10 dB difference suggesting that the distance traveled around
the body is half i.e., 5cm.

4.7 Maximum range and link capacity

Now that we have characterized all smartphone link budget elements, we will
try to answer the following question: “How much good put can be achieved in
a typical opportunistic networking scenario?”. To be precise, we will estimate
the good put of the contact when two pedestrians are walking past each other
in opposite directions. Following the same methodology, we carried further
measurements with different phones carried by the moving experimenter to
assess the maximum range between two smartphones and the achievable WiFi
transmission rates in this scenario. We will use those results to estimate the
achievable good put for different walking speeds. According to Figure 4.7b,
the Two-ray model predicts a maximum range of 415m for the HTC Nexus
One. As a visual comparison, the Eiffel tower’s last floor and the Empire state
building altitudes are 279m and 381m, respectively.

4.7.1 Maximum range

We first walked backwards (facing the AP) until we lost connectivity to the
AP and then walked back (forward) towards the AP. Table 4.4 gives the range
at which the different phones were still able to receive WiFi beacons.

Table 4.4: Beacon reception range.
Phone Out of range (backwards) Into range (forward)

Galaxy Nexus 420m 358m
Galaxy S II 300m 270m
Galaxy S III 435m 405m

We can observe two things:

• Range Heterogeneity over different phone models,

• Asymmetry of In- and Out-range Border for the same phone.

Range Heterogeneity over different phone models: The first observation is
the heterogeneity between the different devices. This is clearly due to the dif-
ference in antenna characteristics since all three devices in our measurements
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embed the same WiFi chip set with similar performances (see Table 4.1). An
additional important factor is the size of the phone and the antenna placement.
This is highlighted by the Galaxy SIII which exhibits the largest range despite
average values for its EM field on the different phone sides. Its size allows
to have a larger ground plane (i.e. entire phone comprising the board and
touchscreen) for the PiFa antenna coming close to the half-wavelength (6.1
cm) or wavelength (12.2 cm) of WiFi 2.4 GHz required to radiate EM with
maximal gain. Besides the WiFi PiFa antenna placement (top right), was not
obstructed by the experimenter fingers or palm. Also given its larger surface,
less surface was covered with the experimenters hand and hence more power
was received.

Asymmetry of In- and Out-range Border for the same phone: We can
observe the asymmetric behavior of walking backward vs. forwards i.e. the
range up to which we can communicate is much larger than the range at which
devices can start to communicate when initially out of range. This range
difference can be explained by the fact that when out of range, the device
has to discover the AP by active probing (scanning with probe requests). The
default period at which devices look for available APs is too large for our
opportunistic networking based scenario.

Besides, as explained earlier, different phone characteristics might create
asymmetric links i.e. one device can successfully send packets in one direc-
tion but the other way around might not be true. In the case at hand, our
mobile devices could receive UDP beacons to a large range using the same
PHY rate/modulation as AP MAC beacons so AP beacons should have been
received successfully even before we could reconnect in practice. We can
hence only explain the difference between the out of range border and within
range border by the default scanning period (or passive listening period).

We hence looked into the scanning behavior to reproduce the outdoor
measurements and understand the observed asymmetry. By reproducing the
experiment and looking at the behavior of a Nexus One, a SII and a SIII, we
found that phones only scan from time to time when they lost connection to
the current AP (table Table 4.5).

4.7.2 802.11 PHY data rates

In addition to the maximum range, we need information about the rates (mod-
ulation and coding schemes - MCS) at which data was sent depending on
the distance and SNR. Using the same measurement procedure as described
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Phone Scanning intervals Scanning intervals
w/ Screen On w/ Screen Off

Galaxy Nexus (2.3.6) Scanning every 15s 10s, 300s, stop
Galaxy S II (4.0.3) 10, 10, 15, 10, 30, 30, 30, 30,

20, 32, 60, . . . 10, 55, stop
Galaxy S III (4.0.4) 10, 10, 15, 32, 10, 10, 15,

65, 12, 25, 10, . . . 92, stop

Table 4.5: Smartphone scanning behavior.

above, we plot the 802.11 PHY rates vs. RSSI for a Samsung Galaxy S
III phone as shown in Figure 4.12. We used a Galaxy S III as it implements
802.11n and is currently one of the most widely spread Android smartphones.
We also plot the 802.11 PHY rates as implemented in NS-3 vs. RSSI (and ad-
ditionally the number of packets successfully decoded, i.e. with no bit errors,
per RSSI and data rate). Note that the NS-3 simulator was calibrated with
chip/bit error rate formulas relative to the different modulation as reported
in [74].

The overall behavior is as expected i.e. data rates correlate with the RSSI
and the better the RSSI, the higher the data rate. The empirical data rates show
similar behaviors across the different phones. The main difference is with the
Galaxy SII, although embedding the same chip as the others, which for a
given data rate operates at a higher RSSI compared to the Galaxy Nexus and
Galaxy SIII. This explains also why the SII lost connectivity earlier compared
to the others when walking out of range of the AP. The theoretical models of
the data rates as implemented in NS-3 are ordered according to the RSSI. The
empirical behavior as shown by the WiFi chip sets show less consistent and
predictable behaviors as the MCS sequence order is not always respected.

4.7.3 Opportunistic WiFi link capacity of crossing
pedestrians

Based on our evaluation, we are finally interested in the data transfer capacity
while two pedestrians are crossing. In order to reflect the currently typical
WiFi 802.11n standard implemented on smartphones, we base our capacity
estimation on the data rates that we measured with a Samsung Galaxy S III
phone. Measurements were taken using UDP unicasts (size 256 bytes) sent
from the moving phone to the fixed access point phone. The data rates of
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Figure 4.12: 802.11 PHY data rates vs. RSSI for Galaxy S III and NS-3.
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received packets were recorded at the access point phone. This was done
for approaching the access point (without body in between) and for walking
away from the access point (with two user bodies in LoS) and thus one data
rate series was obtained for each part of the crossing. To model the impact
of different walking speeds, we calculate the relative fraction of time spent
at each data rate for each part of the pedestrians crossing. The incoming
transmission range is based on our measurements set to 350m and the range
after the crossing is set to 80m. With the communication ranges obtained by
our measurements we can estimate the capacity for different walking speeds.
We assume that a variation of walking speed of +/- 0.2 m/s does not impact
the 802.11 rate adaption. For walking speeds of 0.8 m/s (2.88 km/h or 1.79
mph), 1 m/s (3.6km/h or 2.24 mph) and 1.2 m/s (4.32 or 2.68mph) we get
an estimated good put of 214, 171 and 143 MB respectively, taking the WiFi
overhead and the packet errors we measured into account.

4.8 Related work

In this section we complement the information about related work that is al-
ready given directly in the previous sections. In [5] the authors address the di-
rectionality of smartphone antennas by proposing a multi antenna system that
selects the best available antenna for the current transmission. Directional
antennas in simulations was investigated in [6]. There are many commonly
used propagation models that can also be applied to WiFi signals e.g. [46]. A
survey of propagation models is given in [76]. [40] specifically use a prop-
agation model based on Fresnel zones that takes the frequency and antenna
height of smartphones into account. However, it neglects the fluctuations
that we observed in our measurements which can be modeled by the two-ray
ground model. Smartphone-based WiFi behavior is of interest, as in [82] a
distance throughput model, that takes connection set up times into account
is presented, however the body attenuation is not considered. The authors
also show, that the DHCP discover process takes a significant time, which
confirms the observation in our own measurements, that the communication
range while walking towards an AP is lower than while walking away.
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4.9 Discussion and conclusion

In this chapter, we investigated the feasibility of opportunistic communica-
tions using modern smartphones. We conducted a methodological study to
evaluate WiFi performance of smartphones. First, we systematically char-
acterized the smartphone link budget elements (antenna, WiFi chip set). We
then focused on the case of two smartphones in outdoor LoS carried by pedes-
trians crossing in a low WiFi interference environment. We have found that
body attenuation, usually overlooked in classical link budget formulation, can
have an important impact since smartphones since are carried close to the
body or held in the hand. Furthermore, we have demonstrated empirically
and validated through the Two-ray propagation model that smartphones can
communicate from 300m to 450m. This results in a good put of 143 MB for
crossing of two pedestrians walking at 4.3 km/h. Eventually, an important
finding is that the WiFi range is limited by the destructive ground reflective
wave and that ideal LoS propagation could achieve more than 1km with cur-
rent smartphones.

We did not further investigate the impact of the phone’s relative orienta-
tion and the related antenna’s horizontal vs. vertical polarization. Imagine
two phones stacked on top of each other in the same orientation. In this case,
the sender and receiver antennas are perfectly aligned regarding the polar-
ization of the emitted and received wave. In general, the phones may be in
an arbitrary angle towards each other, which may cause additional loss, as
the emitted (polarized) wave is not aligned perfectly to the receiving phone’s
antenna. The mismatch prevents the receiving antenna from recovering all
of the energy of the received signal. This loss is called polarization mis-
match. Early measurements in a anechoic chamber did not provide consistent
results. However, a worst case was observed with a maximum of 5 dB loss
due to polarization mismatch. We did not investigate further the possibility
for asymmetric links to happen due to the heterogeneous characteristic and
performance of different smartphones.

Nonetheless, we believe our study already proves the feasibility of oppor-
tunistic networking in rural areas based on current smartphones’ capabilities.
Forthcoming standards such as LTE-Direct or 802.11ah will further extend
smartphones’ capabilities for such scenarios. LTE-Direct is a P2P extension
of 4G, which will enable a very low power peer discovery up to 500m in a
first release and data transfers in a second release. 802.11ah is an evolution
of 802.11ac with low throughput (100 kb/s) utilizing the 900MHz band with
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narrow bandwidth (from 1 to 16 MHz). The low frequency of 802.11ah aimed
at rural areas will allow ranges up to 1km and more and the lower frequency
band of 900 MHz will reduce the diffraction losses due to the carrier’s body.

Most opportunistic contacts in rural areas will happen in social places
such as villages or markets with a mid- to high-density of smartphones. There,
interference will play a higher role on impacting the capacity of opportunistic
networking. For future work we hence plan to evaluate high-density scenarios
through real-world experiments and simulations. We plan on integrating all
the findings of this work to improve the NS-3 simulator. Also, we plan to ex-
tend the Two-ray ground model to account for uneven or inclining terrain and
more diverse environments. For now, we only considered a LoS environment
i.e., path loss exponent of 2, and we plan to evaluate the path loss exponent of
different environments such as forest or villages. Eventually, NS-3 needs to
be fine-tuned to reproduce the rate adaption behavior of smartphones’ WiFi
chip set (here mostly BCM4330) as it is currently parametrized for the Prism
2.5 chip, which is quite outdated. We need to carry more experiments to bet-
ter understand the switching behaviors between the different possible rates
and further validate our capacity estimations empirically.
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The research challenges around opportunistic networking are manifold.
With this work, we believe to have contributed to better understanding of two
areas of those challenges. First, we believe that the social aspect of oppor-
tunistic networking can be an important driver behind increased performance
as well as commercialization. However, privacy is paramount as even on
closed platforms like Facebook today, privacy violations lead to unintended
and sometimes damaging consequences for users. A crashed party with 1000
instead of the originally intended 20 users is only one of the more harmless
examples. Second, the reality of smartphones and how they are used is an im-
portant aspect as opportunistic networking needs to blend in seamlessly with
the typical use of smartphones today.

Opportunistic networks should support the best available methodologies
for routing information. Currently, informing the forwarding decision in op-
portunistic networks with the analysis of a contact graph that encodes social
links is the most promising routing approach available. We have shown that
the performance of this routing approach can be maintained with significantly
less accurate information about the social links. Two observations led us to
our approach to change the contact graph. On the one hand, opportunistic
networks do not use end-to-end routing, but decide on each contact whether
to forward data or not based on a simple comparison of a utility value that is
calculated on the currently available graph. Second, with a properly designed
algorithm, the graph can be obfuscated to a large extent without interfering
with the utility calculation used in the forwarding decision. Based on those
two observations, we designed an algorithm that modifies a given contact
graph while maintaining the ranking of the nodes regarding a given routing
metric. This effectively removes correct and superfluous information about
social links. The algorithm even works with only limited graph knowledge, as
nodes in an opportunistic networks would in reality be able to collect. When
working with global graph knowledge, the graph size can become too large
for our stepwise optimal algorithm. Thus, we designed a heuristic that allows
the algorithm to process much larger graphs without a significant performance
impact.

Another observation in opportunistic networks is, that many aspects like
security, trust and rating can benefit from the inherent social structure and
sometimes even more from explicitly created trusted (social) links. This is
where privacy protection and utility of social information work against each
other. Thus, new mechanisms are required to have privacy protection and the
explicit use of social information coexist in one environment. With our pri-



5.1 Critical assessment 127

vacy preserving social link detection protocol, we introduced a practical way
of keeping social links private without sacrificing the scarce resource (con-
tacts) in opportunistic networks. In an anonymous environment, two nodes
can determine whether or not they share a pre-established social connection
with each other. An attacker can neither learn anything about the social links
of a single node, nor relate two friendship encounters with each other. We
achieve this strong probabilistic protection by using two Bloom filters with
different hash functions and randomly distributing the set of social link iden-
tifiers of each node across them. Additionally, the social link identifiers are
mutated over time and noise is added to the Bloom filter, such that an attacker
can fingerprint a user with negligible probability. Furthermore, the computa-
tional and communication overhead are kept at a minimum with typically 2 -
4 messages and a few kilobytes of data.

Finally, contacts are the base for any interaction in opportunistic net-
works. While mobility is a major and well investigated factor for contacts,
implementations of opportunistic networks have to deal with an additional
component. Smartphones are the predominant device for opportunistic net-
working. How smartphones are built and used does have a significant impact
on the radio contact. For example there is a significant difference in signal
level and thus data rate and communication range if two smartphone users are
walking towards or away from each other. We investigate the link budget and
body impact by collecting publicly available information about smartphones,
modeling and measurements. By combining those sources of information, we
are able to characterize all elements that are involved in the radio communica-
tion between two smartphones. This covers everything from the transmitter,
connection to and the antenna itself, a widely used propagation model and
also a simple body model to model the impact of the users body on the prop-
agation.

5.1 Critical assessment

5.1.1 Privacy for contact graph based routing

With social privacy and protecting social links in contact graph based rout-
ing, one has to put things into a larger perspective. The general approach that
we use in this part of work is graph transformation with feature preservation.
In other words, we aim at changing as many graph properties as possible
while keeping a specific graph feature present and accurate in the changed



128 5 Conclusions

graph. This is the price to pay for and the limit of supporting contact graph
based routing. Attacks that target the very nature of the routing utility cal-
culation can not be prevented in such a setting. A typical attack that can not
be prevented is to identify a given number of top ranking nodes regarding
the routing metric. The success of such an attack will degrade proportionally
to the correctness of the routing decisions. Nevertheless, our algorithm suc-
ceeds at hiding the real social links from the attacker and thus achieve its goal
of removing available but not explicitly required information from the graph.
Due to the sparse nature of contact graphs, it is also not trivial for an attacker
to invert the algorithm and thus reconstructing the original graph. For each
of the few real edges, there is a large selection of candidate edges to insert,
even if the ranking of the nodes has to be maintained. The algorithm can thus
for each edge choose from a large set of destination edges. Additionally to
maintaining the ranking of the nodes, the attacker has to pick the correct edge
from the set of edges that would result in the same ranking.

5.1.2 Privacy preserving social link detection

Detecting social links in an anonymous environment opens up a large field of
potential benefits for opportunistic networking services. The contacts them-
selves though are a scarce resource and as much contact time as possible
should be available for content transfer. Detecting friends takes away some
of the contact time. While a single detection is very efficient, there is another
drawback caused by the anonymous setting itself. If multiple contacts are
available, with the given proposal, a connection to each node must be estab-
lished and the protocol must be run to detect an existing social link. If a node
has many contact opportunities and a connection to a social link is preferred
for some reason, the protocol has to be run with one node after another (or
in parallel) until a social link is identified. In this case, the system is vulner-
able to a Sybill attack, where an attacker creates a large number of virtual
neighbors and thus decreases the chance of a legitimate node to connect to
another legitimate node. Furthermore, the Sybill nodes can have modified
Bloom filters (all bits set in the worst case) that cause a high number of false
positives. This in turn forces the legitimate nodes to move to the authentica-
tion phase for each Sybil node. A small change in the protocol could improve
the situation. If nodes broadcast their Bloom filter whenever they detect a
new neighbor, the legitimate nodes can save some time and pre test the avail-
able Bloom filters and only connect to potential social link nodes. Also, since
the average number of bits set in the Bloom filter is about constant for the
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system, malicious Bloom filters can simply be ignored. In a fully anonymous
environment, a sybil attack [22] (as sophisticated denial of service) can not
be fully mitigated. Finally, there is the possibility that advances in cryptog-
raphy, crypto protocols and smartphone computational capabilities reach a
point where solutions based on privacy preserving matching become feasible
to be run on smartphones. A solution that provides cryptographic guarantees
to the privacy protection at the same or similar performance of our probabilis-
tic protection is clearly preferable. Until that day comes, our protocol will
enable privacy preserving friendship detection for implementation in current
generation smartphone based opportunistic networking.

5.1.3 Smartphone WiFi contact properties

The study of contacts and their properties in opportunistic networking is tra-
ditionally focused on effects caused by mobility of the users. Since antenna
characteristics and propagation models are well known, one could ask what
insight the investigation of WiFi based smartphone to smartphone communi-
cation could bring. Some feedback we received left the impression, that there
is no room for research in this direction. Indeed, it is tempting to assume that
there is nothing to investigate, since everybody has a smartphone and WiFi
just works fine in most peoples experience. Thus, smartphones would be just
as well suited for opportunistic networking than for their traditional purpose.
While it is true that there is a fair amount of research about antenna design and
propagation models available, there are still many unknowns in the transmis-
sion chain. This is exactly what our work details out. The antenna placement
and directionality are subject to many optimizations, such as available space
on the phone, directed transmission away from the expected position of the
body (or head) of the user in order to minimize radiation exposure of human
tissue and at the same time optimize signal quality. Another argument is the
exemplary use of a few models of smartphones that are currently available.
The characteristics could change rapidly from one smartphone generation to
the next and our results would be worthless. While this could be true for
future smartphone generations, it turns out that the last few generations of
smartphones not only share a similar basic layout regarding antenna place-
ment, also the chip sets used are very few in number. This might be due
to design criteria such as directing radiation away from the head as well as
market forces (chip set manufacturers). Since we do not expect the general
smartphone design criteria to change for future smartphone generations, our
work will remain useful to understand contact properties. A simple exam-
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ple being a significant range difference from a few hundred meters when two
pedestrians are walking towards each other (with smartphones facing each
other back to back) to a few ten meters after having crossed and walking
away from each other (two bodies in between and smartphones facing screen
to screen).

5.2 Future work and outlook

5.2.1 Opportunistic network privacy

Due to the user device correspondence and the fact that mobile phones are al-
most always on the user, privacy in opportunistic networks is a complex topic.
The social privacy aspect that this work contributes to is the one aspect that
has received less attention than the other aspects so far. The social informa-
tion that is available in opportunistic networks is both a blessing and a curse.
Some say “ignorance is bliss” but for opportunistic networking technologies,
this is neither true for the social information itself, neither for privacy.

Many privacy issues have already been addressed and while a few pri-
vacy issues remain we believe that in order to further the development and
implementation of opportunistic networks we need to take a step back and
another look at the existing privacy protection proposals. While it is tempting
to address individual privacy problems in opportunistic networks, it seems
much more challenging to design a solution that reliably covers all privacy
needs. This requires to combine multiple of the existing solutions into one
privacy protection framework for general purpose opportunistic networking.
However, the interdependence, overlap and mutual influence of combining
multiple privacy protection solutions are largely unknown today. Questions
such as “how do a location privacy and social privacy solution interact with
each other?” need to be addressed. As this thesis filled a gap of privacy pro-
tection for social information in opportunistic networks, such questions may
now be addressed. It is easy to imagine a situation where a location privacy
solution prevents a contact graph from being built successfully, because mul-
tiple contacts can not be attributed to the same user. There are generally three
options how various privacy protection mechanisms can impact each other.
When two mechanisms work truly independently, then there might be no im-
pact at all. Otherwise, there is either a negative or a positive interaction. In the
case of a negative impact, one mechanism adversely effects another, reducing
overall privacy protection effectiveness. A positive interaction results in a sit-
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uation, where the mechanisms improve each others performance. The major
challenge for opportunistic network privacy protection will be how to protect
the maximum number of privacy aspects with a minimum number of protec-
tion mechanisms. And this without adverse effects and while still supporting
social links and interaction and all other envisioned services.

5.2.2 Where do opportunistic networks go?

Opportunistic networks are now a research topic for more than 10 years. The
expectations in the beginning were high, yet there is no killer application for
opportunistic networks. The focus now lies on how and where opportunistic
networks can be widely and successfully deployed. A real deployment also
has the potential to raise new research questions in the area. The develop-
ment of new technologies starts to make some of the envisioned scenarios
for opportunistic networks obsolete. One example is Internet for remote ar-
eas where Google and Facebook are venturing with balloons or drones to
provide cellular connections to uncovered areas. The good news about this
development is, that large companies do see a business case for such a sce-
nario. The bad news is that opportunistic networking is not their technology
of choice. The business model for the large companies depends on users ac-
cessing the Internet via their services. Opportunistic networks do not offer
the same amount of control as centralized approaches to implement such a
business model.

Circumventing censorship is a promising field where opportunistic net-
works can excel. Censorship in a fully decentralized environment is a much
harder problem than with a central infrastructure. A recent example are the
protest in Hong-Kong where the protesters used an application that oppor-
tunistically exchanged messages called FireChat. As those messages did not
traverse the government controlled Internet, the protesters were able to ex-
change messages without being subjected to censorship. While we believe
that opportunistic networks can provide a very strong solution, driving the
technology on this track presents a severe risk. When a technology becomes
predominantly known for avoiding censorship or other illegal uses, it risks to
be outlawed. First, another use of opportunistic networks has to drive their
popularity and circumventing censorship can sail through behind. Addition-
ally, there is no business model as of yet to make money by circumventing
censorship.

If rural areas and censorship are ruled out as driving forces, mainly safety
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and entertainment remain as candidate drivers. Safety applications, such as
disaster communication are hard to build business models around. Justifying
expenses for a just in case safety application is not always easy and once a
disaster strikes, it is too late to distribute the application to the target popula-
tion. Thus the currently most promising scenario is to integrate opportunistic
networking in the entertainment sector. Localized multi player gaming is one
obvious application, where opportunistic networks can provide connectivity.
Another one is opportunistic technology as enabler for art projects. There are
already art projects that work in a GPS based manner. Creating art projects
where interaction of the present users is part of the artwork (and thus always
in motion) can provide fascination results. Many of the applications that seem
to work on a specific location proximity today (e.g. Bump) are actually using
server based infrastructure to determine which users are close to each other
centrally. Such approaches are sometimes fooled by gps spoofing, especially
in gaming. With opportunistic networking technology backing local interac-
tions, cheating becomes much more difficult.

While the feasible application scenarios for opportunistic networks were
reduced over the last years, there are still enough potential and promising
scenarios where opportunistic networks can be established successfully. Ide-
ally, opportunistic networks are made popular in applications where they can
soft-fail, that means without causing significant financial or functional losses.

5.3 Uepaa - an attempt at commercializing
opportunistic networking

During the course of this work, the author had the opportunity to participate
in a collaboration with a startup company to build a smartphone application
with opportunistic communication during a 14 month period. The project
was sponsored by the Swiss government under the KTI/CTI1 grants to trans-
fer technology from universities to commercialization. The goal of the Uepaa
application was to create an application for alpine safety. The Swiss moun-
tains are only partially covered by cellular networks. However, the mountains
are a popular place for free time and sports activities for a large group of the
population. Especially hiking in summer and skiing and ski touring in winter
are very popular. Unfortunately, there are also accidents that happen while

1Kommission für Technologie und Innovation https://www.kti.admin.ch/kti/
de/home.html

https://www.kti.admin.ch/kti/de/home.html
https://www.kti.admin.ch/kti/de/home.html
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people follow their activities. Getting help in a mountain area without cellu-
lar coverage can be difficult. Usually users do not know where to go to get
into cellular coverage to call for help if they can move at all. This is where op-
portunistic communication, in this case based on WiFi-Opp [93] comes into
play.

The Uepaa application uses opportunistic communication to detect neigh-
bors as soon as the users leave the area with cellular coverage. When the
opportunistic communication kicks in, data about the users and their gps lo-
cations are exchanged opportunistically among all Uepaa users in vicinity.
As soon as any user regains a cellular data connection, the information about
who the user met and where is transmitted to the Uepaa servers. A web inter-
face allows to track registered users based on their own direct position reports
as well as the opportunistically relayed data. In the case of an emergency,
the opportunistic module is also used to broadcast an emergency beacon. As
soon as another user receives the emergency signal, the application alarms the
user and forwards the alarm to the Uepaa servers if an online connection is
available, where the rescue operation can be initiated and coordinated.

Coming from the research community, there were many challenges to
transfer the existing knowledge to the startup company. Many practical is-
sues were raised and had to be solved. There were also questions where we
did not find answers for in research literature and thus had to address them
ourselves. In order to prove the feasibility of the application, we investigated
how a smartphone WiFi based opportunistic network behaves in high density
scenarios. Think of a hut in a skiing resort in the mountains where 400 peo-
ple gather to eat and relax. This scenario easily overloads a single cell in a
cellular network, but how does this affect opportunistic networking? We con-
ducted a scalability study that takes the practical and technological features
into account that are relevant in this case. This ranged from the theoretical
WiFi capacity over all the restrictions of current Android and iOS versions to
beaconing size and intervals. Practical limitations for WiFi-Opp on current
Android and iOS are for example that the channel for the AP can not be se-
lected on Android, that iOS does not allow to programatically create an AP
or that the maximum number of clients for an Android AP ranges from 8-10
depending on the device.

Another task was to design a security architecture that prevents malicious
users from injecting or modifying information in the system (especially the
opportunistic part). Beyond what we presented in chapter 4 we also investi-
gated the WiFi signal propagation in different snow conditions (if somebody
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is buried under an avalanche) and from positions high up in the air, such as
from a rescue helicopter that is searching for opportunistic emergency bea-
cons to locate a victim more quickly.

Working at the interface between research and commercialization is not
always an easy task. There is often a conflict of research methodology and
time and financial constraints imposed by the business plan. From a busi-
ness point of view, a fast and approximate answer is often preferred to a real
understanding of the problem. On the other hand, the expectations are, that
the research has covered all important aspects and no (negative) surprises are
waiting down the road. Eventually, the Uepaa application was launched suc-
cessfully and is available for iOS and Android in multiple countries across
Europe.

Today, Uepaa is still maintaining the alpine safety application but is mov-
ing on towards providing an opportunistic communication platform that can
be integrated with other applications and used by other programmers. The
platform called p2pkit, draws from the experience gathered from the alpine
safety application and extends the message and media types that can be ex-
changed opportunistically. All the improvements to the opportunistic commu-
nication that resulted from this work are now not only limited to alpine safety,
but are available for a much wider set of use cases. The move away from ap-
plication specific integration of opportunistic technologies towards a general
purpose opportunistic framework underlines the potential expected of oppor-
tunistic communication in commercial settings. With Open Garden [69] there
is already competition on the horizon which also aims at providing an API for
opportunistic communication. Together with manufacturer pushed develop-
ments such as WiFi Aware [103] and LTE Direct [80] the potential for op-
portunistic networking on smartphones seems to gain momentum. Having an
opportunistic SDK and API available opens up opportunistic communication
to a large group of new users, that extends beyond classical app developers.
Groups such as artists and others might think of new uses for opportunistic
communication and drive its potential even further.

5.4 Publications

The course of this work led to the following publications:

• Distl, B., & Hossmann, T. (2014). Privacy in opportunistic network
contact graphs. In Proceeding of IEEE International Symposium on
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a World of Wireless, Mobile and Multimedia Networks 2014. IEEE.
doi:10.1109/WoWMoM.2014.6919020

• Distl, B., & Neuhaus, S. (2015). Social power for privacy protected
opportunistic networks. In Proceeding of Communication Systems &
Networks (COMSNETS) 2015.

• Distl, B., & Legendre, F. (2015). Are smartphones suited for DTN
Networking? In Proceeding of International Workshop on Wireless
Network Measurements and Experimentation (WiNMeE) 2015

• Under submission: Distl, B., & Hossmann, T. (2015). Privacy protect-
ing social links in contact graphs for opportunistic routing.

• Distl, B., & Csucs, G., & Trifunovic, S., & Legendre, F., & Anas-
tasiades, C. (2010). Extending the reach of online social networks to
opportunistic networks with PodNet. In Proceedings of the Second In-
ternational Workshop on Mobile Opportunistic Networking (MobiOpp
’10). DOI=10.1145/1755743.1755779

• Trifunovic, S., & Anastasiades, C., & Distl, B., & Legendre, F. (2010)
PodNetSec - Secure Opportunistic Content Dissemination. ACM Mo-
bisys, San Francisco, CA, USA, June 2010

• Trifunovic, S., Distl, B., Schatzmann, D., & Legendre, F. (2011, Septem-
ber). WiFi-Opp: ad-hoc-less opportunistic networking. In Proceedings
of the 6th ACM workshop on Challenged networks (pp. 37-42). ACM.
[The contribution of the author to this work was focused on energy
measurements and evaluation]
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