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Abstract

T
his dissertation is devoted to the definition of distributed electricity storage scenar-

ios in a community consisting of lowExergy buildings.

Residential buildings are responsible for a substantial and steadily growing share

of the overall electricity consumption. The ability to control the timing and magnitude

of the aggregate buildings’ consumption is acquiring critical relevance. This importance

is justified in the pivotal role that buildings play in defining the shape and composition

of the final electricity demand, and the impact they have on the electrical system exist-

ing and projected infrastructure. Distributed electrical storage is an elegant, economical,

and technically-feasible way to introduce a degree of responsiveness with the residential

buildings’ demand without compromising the users’ comfort.

The fundamental constituents in the analyses presented in this dissertation are an

aggregation of lowExergy buildings and the electricity retailer with whom the buildings

have a commercial relation. This thesis comprises three main blocks: 1) the proposition of a

pricing policy aimed to stimulate a power-aware consumption, and consequently peak-shave

the total electricity profile. 2) The simulation of the electricity profile that a lowExergy

community will exhibit. And 3) the determination of the optimal amount of decentralized

electrical storage and PV necessary to meet the retailer’s objectives and allowing users to

obtain a profit from the dynamic electricity tariff.

The first part of the thesis is concerned with the simulation of the electricity profile that

a lowExergy community will exhibit. The simulation reflects a scenario in which thermal

space-conditioning and domestic hot water production have been completely electrified.

We followed a statistical approach to represent a variety of characteristics that buildings

pertaining to a lowExergy community are expected to implement. The electricity profile’s

shape and composition in those buildings was found to be dictated mainly by the occupancy

schedules. Each occupant was modelled as a stochastic agent, using a two-state Markov

process. This approach results in plausible electricity profiles that simultaneously account

for the heterogeneity found across different buildings and converge, in the aggregate view,

in a well-known, quasi-deterministic profile.

The second part of the thesis is dedicated to the determination of the optimal battery

and PV investment. The first model is formulated from the users’ perspective. A rational

user, facing a demand-based electricity tariff that separately penalizes energy and power,

can use this model as a strategic tool to find the optimal amount of battery and PV she has

to incur in order to minimize costs. The model revealed that the electricity tariff results
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viii Abstract

in an equilibrium, in which users invest between 20% and 25% of the total cost in battery

and PV. Battery and PV are both important and interdependent upon each other, but

the investment in battery is more than twice as large than the one in PV. The PV and

the battery input power were found to be mainly related to the objective of reducing the

energy cost. On the other hand, the battery capacity and output power were found to

be associated with the peak reduction objective. Users invest less than 10% of the total

battery investment share in the battery input power. This fact indicates that contrary to a

battery usage driven by the price volatility, which is proposed in many models, the battery

is used as a power to energy buffer. Energy is slowly stored in the battery and rapidly

released at critical peak hours.

The second model simultaneously addresses the users’ and the retailer’s perspectives.

This model has the form of a hierarchical bilevel optimization (BLP). The final equilib-

rium is not only determined by the electricity tariff and the user’s reaction to it, but is

additionally constrained by the retailer’s strategy and profit objectives. The retailer’s ac-

tive control on the prices results in a profit recovery of approximately 6%. The battery

investment is still larger than the one in PV, but the difference between the two shares

decreases when the retailer becomes an active player. The ratio between battery and PV

investments under this model was found to be approximately 1.8:1.

On the whole, the findings of this dissertation are a contribution to understanding

the role of buildings in the operation and planning of the electrical system. The results

suggest that a power-aware electricity tariff, in conjunction with a meaningful deployment

of distributed batteries and PV, is more favorable and can accrue more benefits for society

than the mere massive deployment of grid-tie PV.



Zusammenfassung

I
n dieser Dissertation werden Szenarios für die dezentrale elektrische Energiespeicherung

in einem Verbund von LowExergy-Gebäuden ausgearbeitet. Wohngebäude sind für

einen beträchtlichen und wachsenden Teil des Stromverbrauchs verantwortlich. Die

Beeinflussung der zeitlichen Verteilung und des aggregierten Ausmasses dieser Verbraucher

ist von kritischer Bedeutung für die gesamte Elektrizitätnachfrage und für die Anforderun-

gen an die existierende und zukünftige Infrastruktur. Die dezentrale Elektrizitätsspe-

icherung ist eine elegante, ökonomische und erprobte Technologie, die die Laststeuerung von

Wohngebäuden ohne Komforteinbussen ermöglicht. Die zentralen Aktoren in der Analyse

dieser Dissertation sind die einzelnen LowExergy-Gebäude und das Elektrizitätsversorgung-

sunternehmen (EVU) mit welchem eine Geschäftsbeziehung besteht.

Diese Arbeit ist in drei Teile gegliedert: 1) Die Definition einer Preispolitik, die darauf

abzielt die Spitzen des Gesamtverbrauchs zu brechen. 2) Die Simulation von Lastprofilen

eines Verbundes von LowExergy-Gebäuden. Und 3) die Ermittlung der optimalen Grösse

des dezentralen Speichers und der Photovoltaikanlage (PV) für das Erreichen der Ziele des

EVU bei gleichzeitiger Reduktion der Kosten seiner Kunden durch die neue Preispolitik.

Die Simulation der Lastprofile basiert auf einem Szenario, in dem die Erzeugung von

Raumwärme und Warmwasser komplett elektrifiziert ist. Variierende Eigenschaften der

einzelnen LowExeregy-Gebäude sind als stochastische Simulationsparameter eingebunden.

Es stellt sich heraus, dass der Lastverlauf dieser Verbraucher hauptsächlich vom Anwesen-

heitsverhalten der Bewohner abhängig ist. Die Bewohner werden einzeln, mit Hilfe von

Markowprozessen mit zwei Zuständen modelliert. Das Resultat dieser Methodologie sind

plausible Lastprofile, die gleichzeitig die Heterogenität der Gebäude abbilden und zu einem

vorhersehbaren, quasi-deterministischen aggregierten Profil konvergieren.

Der erste Teil des Optimierungsproblems ist aus der Sicht der Verbraucher formuliert.

Das resultierende Modell kann als strategisches Werkzeug zur optimalen Dimensionierung

von Batterie und PV-Anlage verwendet werden, um die Kosten im Umfeld eines dynamis-

chen Strompreismodells zu minimieren. Es wird gezeigt, dass die Elektrizitätspreise in

einem Equilibrium sind, wenn die Verbraucher zwischen 20% und 25% der Gesamtkosten

in Batterie und PV-Anlage investieren. Batterie und PV-Anlage sind beide wichtig und

abhängig voneinander, aber die optimale Investition in die Batterie ist mehr als doppelt

so gross wie in die PV-Anlage. Die Resultate zeigen, dass die Dimensionierung der PV-

Anlage und die Wahl der Einspeiseleistung der Batterie hauptsächlich das Ziel der En-

ergiekostenreduktion beeinflussen. Demgegenüber wird das zweite Ziel, die Reduktion der
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x Zusammenfassung

Lastspitzen, hauptsächlich durch die Optimierung der Kapazität und die Ausgabeleistung

des Speicherelements erreicht. Die optimale Investition in die Einspeiseleistung der Batterie

beträgt weniger als 10% der Gesamtinvestition in den Speicher. Dies deutet darauf hin,

dass die Batterie eine Pufferwirkung zwischen Leistung und Energie hat und ihr Betrieb,

nicht wie in vielen Modellen angenommen, durch Preisvolatilität bestimmt wird. Energie

wird langsam gespeichert und während den Spitzenzeiten schnell abgegeben.

Das zweite Model umfasst die Sicht der Verbraucher und des EVU gleichzeitig. In

diesem Fall wird das Gleichgewicht zusätzlich durch die Strategie und die Gewinnziele des

EVU beeinflusst und nicht nur durch den Stromtarif und die darauffolgende Reaktion der

Verbraucher bestimmt. Ein aktives Eingreifen des EVU in die Tarife steigert seine Gewinne

um etwa 6%. Auch wenn das EVU der aktive Akteur wird, bleibt die optimale Investition

in die Batterie grösser als in die PV-Anlage, aber dieser Unterschied schrumpft auf ein

Verhältnis von etwa 1.8:1.

Im Grossen und Ganzen sind die Erkenntnisse dieser Dissertation ein Beitrag zum

Verständnis der Rolle von Gebäuden im Betrieb und in der Planung des Elektrizitätsver-

sorgungssystems. Die Resultate zeigen, dass ein leistungsabhängiger Stromtarif in Kombi-

nation mit einem koordinierten Einsatz von dezentralen Batterien und PV-Anlagen vorteil-

hafter ist als ein blosser Ausbau von netzabhängigen PV-Anlagen.
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Chapter 1

Introduction

B
uildings are not isolated entities, they are constituents of larger and more complex

systems. The relation between a building and its environment can be characterized

in terms of the different interactions and synergies that take place at the building’s

boundaries. Buildings make up neighborhoods, urban landscapes, and are connected to a

wide range of district utilities. There is a constant interaction in the form of energy, mass,

and information between the building and its surroundings.

One such interaction is at the interface between the building and the electrical grid.

The electrical grid is a complex system connecting generators to consumers. Due to the

nature of electricity, generation and consumption have to be balanced on a per-second basis.

Historically, all operations necessary to keep the grid in balance were carried out from the

generation side. However, a series of developments that have taken place during the last

years have highlighted the pivotal role of flexible loads on balancing the grid [21, 67].

In the last decades, several socioeconomic, technological, and political events have re-

structured the energy scenario. The advent of renewables, the phasing out of nuclear power

plants, and a variety of policies favoring a low carbon society reshaped the energy land-

scape and imposed new challenges that emphasize the necessity of a flexible, controllable,

and responsive demand side.

The different operations, techniques, and approaches aimed at making buildings flex-

ible and controllable are collectively referred to as Demand Response (DR) [30, 32, 66].

Essentially, DR provides the possibility of shifting electricity consumption between peak

and off-peak periods and, more accurately, of matching the building’s load with the avail-

able generation on a real-time basis. There are multiple ways in which these objectives

can be met [19, 30, 48, 66]. This thesis focuses on the introduction of Distributed Storage

Elements (DSEs) only.1 A DSE provides the required flexibility and responsiveness, while

decoupling the DR objectives from the building operational requirements and constraints.

This thesis will explore several DR interactions between the electrical grid and buildings

implementing an electrical battery. The main focus of this thesis will be to determine the

optimal size of this battery. An extensive adoption of battery technologies in residential

buildings requires both a technical and an economic analysis, it has to consider the aggre-

gation of a plurality of buildings, their interaction with the grid, and the required policy

1Throughout this document, the terms ‘DSE’ and ‘battery’ are indistinctly used.

1
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and business framework.

A flexible electrical load is a very important aspect of the role of buildings in the

transition towards a clean energy society. It is not the only one though. If buildings

are going to contribute to paving the way towards a low carbon society, the form and

amount of the consumed energy have to be regarded as relevant factors as well. The

migration towards clean technologies will result in the electrification of several processes

formerly driven by fossil fuels, e.g., space conditioning. In this context, reducing the share

of electricity consumed, or increasing the share of electricity generated, is as well a goal of

great importance.

Photovoltaic (PV) modules on solar roofs are a widespread feature of today’s architec-

ture. The rooftop segment has experienced a sustained growth in recent years. In 2013,

the residential rooftop segment accounted for 22% of the total PV market in Europe, rep-

resenting more than 2.4GW of the total installations [20]. Simultaneously, reports, laws,

and recommendations stimulating or enforcing the installation of solar roofs continue to

emerge [25]. In the light of this context, some natural questions arise:

1. Is the dimension of a battery element affected by the available on-site generation?

2. Is the idea of deploying DSEs in line with a massive deployment of rooftop PV? Does

it pursue overlapping, complementary, or contradictory objectives?

Batteries and PV are not competing but complementary technologies; PV provides local

electricity generation, while batteries provide storage functionality. A policy enforcing a

massive adoption of PV might not necessarily be the best or the only way to tackle the

challenges that are inherent in the current and future energy scenario. On one hand,

electrical storage, or a combination between electrical storage and PV, offers a greater

load control potential than PV alone. On the other hand, there is still a seasonal energy

imbalance that neither PV nor batteries can alleviate.

Motivated by the complementary nature and the inter-dependencies between the bat-

tery selection and the amount of available on-site generation, the battery dimension prob-

lem will be tackled in tandem with the PV one. The following questions are relevant to

this research:

1. What is the optimal investment in batteries and PV in low exergy (lowEx ) residential

buildings?

2. What is the recommended organizational framework to coordinate a meaningful de-

ployment of batteries and PV?

3. What is the resulting interplay between the electrical grid and buildings implementing

DSEs?
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1.1 Problem Description

This thesis deals with the definition of an electricity scenario in which an aggregation of

buildings have adopted lowEx standards, including the electrification of space-conditioning

processes. This lowEx community will claim similar energy shares, but will exhibit a differ-

ent electrical consumption structure than today’s buildings using conventional heating and

cooling systems. Each of these buildings has a commercial relation with the aggregating

entity that supplies the electricity, hereinafter also referred to as ‘retailer’. The first part

of the problem basically consists in the extrapolation of the 2Sol (see Section 2.1) build-

ing paradigm to the concept of lowEx community, and the identification of the resulting

interaction with the retailer.

The interaction with the retailer is important given the increased share of electricity

claimed by buildings under the previously described scenario. It is also important in terms

of the accompanying challenges, such as coordination of the distribution infrastructure,

stability, and planning of future grid investments. The second part of the problem com-

prises the definition of a mechanism that allows the retailer to influence the aggregate

consumption pattern, i.e. to control, to some extent, the aggregate electricity profile. Un-

der the assumption that this objective can be achieved by combining a pricing policy and

the deployment of DSEs, this investigation deals with the definition of such policy and

deployment mechanisms.

This thesis is devoted to the definition of a mathematical model, aimed at calculating

the optimal power and energy of a DSE, as well as the optimal installed power of a PV

element, pertaining to a building implementing the 2Sol principles. The model has to

contemplate each building’s individual perspective as well as the perspective of the retailer

aggregating a community consisting of several such buildings. The goal of this model is

to find the optimal investment in battery and PV elements that have to be undertaken by

individual buildings and by the retailer.

1.2 Research Hypothesis

Hypothesis 1: Given a lowEx community, whose buildings are aggregate by an electricity

utility through a commercial relation, it is possible to introduce a level of control upon

the final electricity profile. This goal can be achieved by providing an adequate price

signal and by deploying DSEs.

Hypothesis 2: In the presence of a price signal explicitly addressing energy and the max-

imum daily power, a rational user will choose to install a combination of battery

capacity and PV, provided she can reduce costs or obtain an economic profit.

Hypothesis 3: It is possible to devise a Demand Response mechanism that brings eco-

nomic benefits to the final consumers, and simultaneously makes the retailer more
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competitive.

1.3 Thesis Objective

The main objective of this investigation is to devise the operative principles of a lowEx

community, in which the retailer’s DR objectives, namely responsiveness, peak-shaving,

and control of the aggregate electricity profile, are achieved by means of a pricing policy

and DSEs. The resulting mechanism has to contemplate both the individual buildings’ and

retailer’s perspectives. This objective involves several other complementary objectives.

1. To simulate the electricity profile of a community consisting of lowEx buildings.

2. To define a pricing policy allowing the aggregating entity to indirectly control the

final electricity consumption pattern.

3. To introduce an explicit differentiation between energy and power in the electricity

tariff.

4. To find the optimal battery and PV size implemented by each building as a response

to the pricing policy.

5. To determine the correlation between the dimension of PV and battery elements.

1.4 Thesis Methodology

LowEx
commu-
nities

Policy and
business
model

DSE and
PV optimal

size?

Load
generator

Price
structure

Optimization
models

Figure 1.1: Milestones and methodology
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The results presented in this thesis are based on the formulation of mathematical mod-

els. These models attempt to represent both the physical and the economic mechanism

governing the relation between lowEx residential buildings and the electricity retailer ag-

gregating them.

The methodology adopted in this work, illustrated in Figure 1.1, consists in the defini-

tion of three milestones: a policy-related one, relative to the construction of a price signal

explicitly addressing energy consumption and maximum power; a load generator attempt-

ing to represent the electricity pattern of a lowEx community; and a mathematical model

aimed at finding the dimension of the optimal PV and battery capacity from both the

individual buildings’ and the retailer’s viewpoint.

Milestone 1: from lowEx buildings to lowEx communities. The problem of an-

ticipating the resulting electricity profile that a lowEx community will exhibit is

approached by combining bottom-up and top-down methodologies. This approach

offers the possibility to model the heterogeneity displayed by individual buildings,

while simultaneously converging to the desired aggregate figures.

Milestone 2: commercial relation between the buildings and the retailer. The

formulation of the economic framework is approached by proposing a business model

defining the commercial relation between the users and the retailer. We assume that

the aggregating entity has a strong incentive to peak-shave, and in general control,

the total consumption pattern. The proposed pricing scheme favors the adoption of

DSEs and PV as a way to meet the DR objectives without compromising the user’s

comfort.

Milestone 3: distributed electrical storage as DR driver. Building on the first two

milestones, the final part of this dissertation is devoted to attaining a model to deter-

mine the optimal amount of PV and DSEs that has to be deployed. We consider both

the user’s and the aggregating entity’s perspective. The model follows a cost-based

approach. A cost-based approach constitutes a lower bound for further scenarios,

in which additional non-economic incentives, such as environmental awareness, are

considered.

1.5 Thesis Scope

The research presented in this thesis is formulated in the context of the temperate climatic

conditions predominant in Switzerland, Swiss building characteristics and standards, and

the composition and characteristics of the Swiss electrical system. The models and re-

sults are general enough to be extrapolated to different locations and conditions, but the

underlying assumptions apply mainly to the temperate climate of Central Europe.
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Figure 1.2: Distribution of residential and non-residential buildings in Switzerland [37]
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Figure 1.3: Definition of the problem’s boundary conditions

This thesis prioritizes one particular type of building paradigm; buildings are assumed

to comply, completely or to some extent, with the guides and principles dictated by the

2Sol methodology, described later in Section 2.1. The main focus is on residential buildings,

even if office buildings are considered as well. The majority of buildings in Switzerland are

residential (see Figure 1.2).

The fundamental block in the presented analyses is a residential building implement-

ing a DSE and, optionally, a PV element. The objectives pursued in this thesis require

considering a system larger than each individual building. This system must include the

aggregation of hundreds or thousands of buildings and consider their interplay with the

electrical grid. The electrical grid is not explicitly modelled. The interaction between the

buildings and the grid is accounted for in terms of the economic relation and the transac-

tions occurring between the individual buildings and the retailer. The boundary condition
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is thus selected to encompass a collection of buildings and one segment of the entity to

which the buildings are subordinated. The resulting system is illustrated in Figure 1.3.

1.6 Thesis Context and Energy Scenario

The ultimate goal of lowEx buildings and communities is to reduce the significant share

of the final CO2 emissions for which the building sector is responsible.2 Closely related to

this objective is the imperative necessity of replacing heating systems fired by fossil fuels.

Additionally, the current structure of the electrical system, the limited capacity reserves,

and the nature of several generation technologies impose the requirement that buildings be

controllable, such that the grid utility can better coordinate the dispatch of the available

power and energy resources to supply the buildings’ loads.

The role of DSEs as power and energy regulators acquires special relevance in the

context of a lowEx community. It has to be understood not only under the circumstances

of the current situation, but under those of a scenario in which room-heating processes

have been, partially or completely, electrified. The electrification of the room-conditioning

processes will substantially reduce the CO2 emissions produced in buildings, but will impose

additional challenges upon the electrical grid. These challenges will have the form of an

even larger seasonal energy imbalance, and a possibly higher instantaneous load power

during the critical peak hours. A DSE is not a generator, so it can do little or nothing

to alleviate the seasonal energy imbalance. The same applies for PV elements, as solar

radiation is scarce during the heating period. The main contribution of DSEs will be

to serve as a coordination tool, allowing a better match between the buildings’ load and

the grid instantaneous conditions. This matching can be achieved by differentiating and

independently controlling two variables: power and energy. Under the assumption that

users give a very high value to their comfort, this flexibility can only be introduced by

relying on a storage mechanism: a DSE.

This section hypothesizes different energy scenarios, in which the aforementioned elec-

trification of buildings’ heating and cooling systems has taken place. The construction of

this scenario is based on the Swiss national electricity statistics [11, 37].

1.6.1 LowEx Communities

A lowEx community is an agglomeration of buildings implementing practices and stan-

dards aimed at reducing their exergy consumption and their direct CO2 emissions. LowEx

buildings combine passive and active approaches to optimize the building’s exergetic perfor-

mance, and to balance the energy flows between the building and its environment. Achiev-

2The building sector accounts, in industrialized countries, for roughly one third of the final energy
consumption, and a similar proportion of CO2 emissions [44]. In Switzerland, for instance, the building
sector is responsible for 49% from the total fossil fuel consumption [27], and claims 31.6% of the total
electricity consumption [37].
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ing a ZeroEmission operation implies among others the electrification of fossil-fuel-driven

space-heating processes.

The core component in a lowEx building is a low temperature heating system, imple-

menting a Heat Pump (HP) with high Coefficient of Performance (COP). A high COP

results in a lower fraction of electrical energy required to supply the building heating de-

mand. LowEx buildings are further described in Section 2.1.

The following section explores the impact of a massive deployment of HPs in the context

of the current Swiss energy scenario and the accompanying challenges regarding the energy

and power resources.

1.6.2 Swiss Energy Scenario

Room heating

70.7 %

DHW
12.5%

Other
16.8%

(a) Total energy shares

Room heating 23.3 %

Additional appliances

11.5%

Processes

23.5%

DHW

12.8%

IT

7.3%

Kitchen and cooking

7.4%

Lighting

7.4%

Building automation and control

6.8%

(b) Electricity shares

Figure 1.5: Households total energy and electricity shares in Switzerland in 2013. Data
source: [37].

The development of the energy consumption claimed by the building sector exhibits a

strong correlation with different socioeconomic factors, including population and economic

growth, and the accompanying increment in the total constructed area. Figure 1.4 illus-

trates the evolution of the building sector energy consumption in Switzerland since 2000.

The total consumption figures do not increase monotonically, mainly due to the depen-

dence of heating on weather variables. Figure 1.4b evidences that no significant change in

the buildings characteristics and technology has taken place in the periods 2007-2010 and

2011-2013.
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Current consumption and generation data for reference year 2013 [11, 37].

Even if DSEs cannot contribute to balancing out the seasonal energy imbalance imposed

by heating requirements, they can play a significant role in adequately using the available

power resources. Understanding the future role of buildings, and their interaction with the

electrical system, requires extrapolating the current state of both the electrical grid and

the buildings technology to the future, and hypothesizing about possible developments.

The dominating energy driver in residential buildings in Switzerland, as can be appre-

ciated in Figure 1.5a, is room heating, claiming 70.7% of the total energy consumed (182.4

PJ), followed by Domestic Hot Water (DHW) preparation with 12.5% (32.2 PJ) [37]. If

all the heating provided today by fossil fuels were going to be immediately replaced by

HPs, the resulting monthly energy consumption would look like the one depicted in Figure

1.6. The seasonal pattern in the generation (indicated by the bars) is governed by the

economic optimization of the water reservoirs. The lower COP considered in the scenarios

depicted in Figure 1.6 corresponds to the current average (COP=3.2). The heating demand

is distributed over the year using the average monthly Heating Degree Days (HDDs) of 40

different locations in Switzerland.

Figure 1.7 illustrates the evolution of installed HPs in Switzerland and their correspond-

ing average COP. In 2013, the number of HPs reported in the Swiss office of statistics

was 224657, which provide 5519 GWhth, with an installed power of 3325 MWth and 891

MW [11]. This corresponds to an average installed power of 3.96 kW (14.8 kWth) and 1659
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The total electricity share claimed by buildings has increased in average 1.3% per

year [11]. Assuming the same growth and considering the projections from [11], it is

possible to extrapolate the scenarios presented in Figure 1.8. Figure 1.8 hypothesizes, both

in terms of energy production and available installed power, how a HP adoption scenario is

likely to be. The scenarios displayed in Figure 1.8 assume that the heat amount correspond-

ing to room heating —50600 GWhth (182.4PJ)— is gradually converted to HP systems,

and deployed within the depicted 8-year period. This additional energy corresponds to

approximately 30.5 GWth, if 1659 full-load hours are considered. In this scenario, neither

DHW preparation nor the existing HPs, which already provide 5519 GWhth, are included.

The power scenario corresponds to a situation in which the additional power is added on

top of the current instantaneous load without considering any kind of coordination or load

time-shift.

1.7 Literature Review

This section provides a concise overview of the state of the art in different topics related to

this dissertation. Besides enumerating relevant literature in the fields that constitute this

dissertation’s background, a parallel is established between some selected references and
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this work. This section ends with a summary of the dissertation’s contribution to the field.

‘DR’ is the general term encompassing all strategies aimed at controlling the electrical

system’s demand side. The terms DR and Demand Side Management (DSM) are related

concepts, on occasion used interchangeably. Over the years, the term DR has become a

buzzword; the conveyed concept can be very vague and refer to a broad range of definitions.

References [30,32] are early compendiums defining the basic DR ideas. Reference [30],

in particular, highlighted the importance and potential of residential buildings in DR plan-

ning. Reference [48] is a more recent and comprehensive survey on existing DR programs;

the paper elaborates on the concept of demand elasticity and presents a model to calculate

the elasticity of different DR programs. Reference [12] further develops in the concept

of demand elasticity and presents a study on the increment in economic efficiency result-

ing from the use of Real Time Prices in a competitive electricity market. Reference [66]

explores different DR strategies, challenges, and opportunities in the context of the UK elec-

tricity market; the paper elaborates on drivers enabling adoption, barriers, and the effect

of load curtailment programs on transmission and distribution grid investments. Chap-

ters [14, 51, 61] provide DR case studies and business experiences from industry experts.

Reference [8] documents a DR program, a demand-based Time of Use (TOU) electricity

tariff in Sweden, under which, “households pay a given price per kilowatt on the average of

their three highest instances of demand in peak hours”. The work reports that households

received positively the demand-based tariff. The user’s reaction consisted in an adjustment

in their consumption habits.

Reference [18] provides a comprehensive review of electrical energy storage technologies

for stationary applications. A considerable amount of battery-related literature has recently

appeared, mainly in the context of Electric Vehicles (EVs), e.g., [16], and microgrids,

e.g., [34]. Reference [9] presents a study on Li-ion batteries price development. Reference

[10] explores the possibility of recycling EVs batteries in commercial buildings microgrids;

the paper proposes an optimization model based on DER-CAM to find the dimension of

the battery capacity. DER-CAM is a Mixed Integer Program written in the GAMS [15]

language.

The idea of using DSEs in residential buildings is not new, the topic is already addressed

in [40]. Reference [22] calculates the amount of electrical storage required to cope with a

high penetration of variable renewables. Reference [41] presents a model aimed at finding

the dimension of a battery for load peak-shaving in residential buildings; the model uses

a high temporal resolution of 5 min. The proposed model is a scoping one that selects

the battery based on simulation. Reference [58] presents a heuristic method to determine

the optimal battery capacity in lowEx buildings located in the Zurich area. The method

presented in the paper is based on the marginal peak reduction achieved by an incremental

fixed battery storage capacity; it assumes an input and output power equal in magnitude

to the storage capacity.

References [1–3] propose an arbitrage accommodation model for decentralized storage.
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Reference [2] provides an exhaustive analysis on the impact of electricity price’s forecast

errors, and the impact of aggregate storage on the electricity prices. The work investigates

the cost reduction potential of a demand-responsive consumption side under hourly prices,

as well as the feasible amount of operable storage in a market. The model compares

different scenarios with variable capacity, power, and technologies to identify potential cost

reductions.

The literature related to the use of batteries in PV systems is copious. Reference [65]

provides a detailed description of characteristics and differences across battery technolo-

gies; the paper addresses the importance of selecting the adequate battery in PV systems.

Reference [26] provides another comprehensive list of storage options for PV. Reference [31]

studies the economic viability of electrical energy storage, used in conjunction with PV,

in residential buildings; the paper assumes a combination of constant battery, PV, and

electricity prices scenarios.

There exist numerous references in the field of optimization and operations research.

Concretely, references [57,59] provide the necessary background for formulating stochastic

programs. In the field of bilevel optimization, or Mathematical Problems with Complemen-

tarity Constraints, there also exists a broad range of literature, but only a small fraction

of recent works provide concrete applied cases [7, 29, 35, 36]. These applications are for-

mulated in the context of electricity markets. In the typical formulation, the lower level

optimization corresponds to the market clearing, and the upper level to the strategy of

some profit-maximizing agent.

1.7.1 Positioning of this Work

This dissertation constitutes a further step in the definition of the 2Sol system, and in

general of lowEx zeroEmission buildings [42,43,47]. Specifically, this dissertation provides

the framework for the introduction of short-term electrical storage, complementing and

building on former works that already approached the seasonal storage problem [33, 56].

This work is the first attempt to explicitly study the interface between 2Sol buildings

and the electrical grid, and the first to approach electrical storage within this building

paradigm.

In contrast to direct load DR strategies [66], or approaches stimulating user’s change

in consumption habits [8], the approach adopted in this work strives to be independent

from user’s comfort. The responsiveness in the demand is introduced by means of DSEs,

as in [1–3,10,41,58]. In contrast to the models presented in [1–3,31,58], and as in [10], the

DSE and PV are endogenous variables in the optimization, and therefore optimum values.

In the model presented in [41], the battery capacity and inverter size are calculated

based on diminishing returns of energy vs. demand limit plots, for a set of fixed battery

energy and power combinations. Data are not directly measured but estimated using a

bottom-up approach. The battery is triggered based on a fixed peak, defined at 5kW,
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which is part of a TOU tariff. The model simulates system failures as well. Reference [58]

combines a stochastic optimization with a heuristic decision-making process to identify

the most suitable battery capacity. The battery input and output power are assumed

to be equal in magnitude to the battery capacity. In this dissertation, the battery-related

variables and the amount of PV are the optimum result of an equilibrium, which constitutes

the best response of a final consumer to the proposed price policy. This dissertation does

not contemplate system failures. The evolution in the prices, or equivalently in the costs,

are analysed by means of cost scenarios. The battery is sized as three independent variables,

namely capacity, input, and output power.

The methodology used for calculating the battery costs in this dissertation is extracted

from [3], and the battery costs for different battery technologies are taken from [1]. Our

model does not consider PV electricity flowing from the building to the grid; therefore,

feed-in tariffs or incentives are not relevant, as they are in [31]. This work proposes a

demand-based dynamic tariff, using the price elements proposed in [50], but explicitly

addressing energy and power. The main difference, regarding the costs, between this work

and other battery dimension models, is that power is explicitly accounted for, and the

elements selection does not entirely depend on the volatility of the prices or the feed-in

tariffs as in [1–3,31].

The pricing policy proposed in this dissertation is novel and constitutes a step towards a

power-driven distribution business model. The tariff’s two components provide two control

dimensions, namely intraday and seasonal. The model presented in Chapter 4 implements

a structure that superimposes daily and annual objectives in a single optimization, which

constitute another contribution to the demand-based tariff analysis. The relationships

found between DSE and PV are a contribution to understanding the autonomous use of

locally-generated electricity.

The model presented in Chapter 5 is novel in the context of residential buildings and

stationary battery applications. The models introduced in [7,29,35,36] focus on the gener-

ation side and do not consider storage. In those models, the strategic investments belong

to the upper level, while the lower level provides the nodal prices, as the result of a dc

Optimal Power Flow (OPF). In this dissertation, the investments take place at the lower

level, even though the policy maker is the upper one. The electrical grid is not explicitly

modelled, mainly due to the temporal relation that is inherent to the battery operation.

1.8 Thesis Organization

The rest of this document is organized as follows: Chapter 2 introduces the necessary back-

ground and assumptions on which the subsequent chapters build on. The load generator

simulating the electricity profile of a lowEx community is described in Chapter 3. Chapter

4 details the model formulated to determine the optimal battery and PV capacity from the

individual user’s perspective. The combined perspective of the users and the aggregating



16 Chapter 1. Introduction

entity is detailed in Chapter 5. Chapter 6 is devoted to the final discussion, remarks, and

conclusions.

Additional material is provided at the end of this document. Appendix A describes in

detail some aspects of the building simulation model presented in Chapter 3.
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Chapter 2

Assumptions and Background

T
his chapter is a primer on the concepts that form the theoretical background of

this dissertation. We introduce all the blocks that support our assumptions and

that are necessary to develop the models presented in the subsequent chapters.

Each assumption is enunciated and contextualized in the frame of a particular subject.

The subjects discussed in this chapter include mathematical tools, technologies, as well as

theoretical aspects.

The chapter is organized as follows: Section 2.1 describes the main ideas of the 2Sol

system. Section 2.2 covers the basics of electrical energy storage. Section 2.3 provides a

brief introduction to the power markets elements that are relevant to this investigation.

Section 2.4 is a short introduction to the topic of Demand Response. Electricity prices are

discussed in Section 2.5 and the assumed costs in Section 2.6. Section 2.7 introduces the

basics of hierarchical optimization problems. Section 2.8 describes the structure of the time

series used in the analyses. This chapter concludes with a summary of the assumptions.

2.1 LowEx Buildings

The 2Sol system defines guidelines and components for lowEx ZeroEmission buildings

[42, 47]. This building paradigm is in line with the 2050 IPCC1 CO2 reduction objectives

[43]. The ultimate goal of the 2Sol system is that lowEx buildings be operated emission-

free during the coldest hour of the year without imposing a significant additional stress on

the electrical grid (max 10-15% increment in the consumption), and respecting economics

and aesthetics constraints [43].

Residential buildings can be characterized in terms of their thermal energy demand;

primarily, space conditioning and DHW preparation. The main components in buildings

complying with the 2Sol system are depicted in Figure 2.1. The HP operates in conjunc-

tion with the Membrane Borehole Heat Exchanger (MBHE) to provide a low temperature

heating system. This topology results in a high COP and, consequently, a low fraction of

electrical energy required to supply the buildings’ heating and DHW demand.

We assume our buildings to comply, even if not thoroughly, with the topology defined by

the 2Sol system. This assumption implies that we consider electrified heating and cooling

1Intergovernmental Panel on Climate Change

17
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MBHE

HP

PVT

Figure 2.1: LowEx buildings as defined by the 2Sol system [43]

systems only. The regeneration of the MBHE is not explicitly considered in the models

presented in this dissertation. The resulting electricity profile consists of the electricity due

to lighting, appliances, and the HPs consumption.

2.2 Electrical Energy Storage

Electricity storage is a major driver for electricity markets, and a key component in the

provision of electrical energy and in the reliability of the electrical system. Electricity stor-

age allows decoupling the generation and consumption sides, by making the coordination

between generation and consumption schedules much more flexible.

Figure 2.2 exemplifies the wide range of available storage technologies, with decentral-

ized and centralized storage possibilities appearing at opposite extremes of this spectrum.

Each technology has a different niche and characteristics that make it suitable for specific

applications. These technologies can be classified according to their size, performance,

efficiency, cost, availability, and so forth. A comprehensive list of the currently available

electricity storage technologies is provided in [18].

Pumped Hydro Storage (PHS) dominates the energy storage scenario in some countries,

among them Switzerland. This storage mechanism provides large amounts of energy and

power, and has long deployment times and high investment costs associated with it. Despite

the large volumes of energy that can be stored, this technology exhibits a great dependence

on the geographical conditions and offers little or no room for further expansion. We

argue that distributed electricity storage is better suited and more in line with a dynamic

and controllable demand side, and with a grid scenario featuring micro grids and a high
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Figure 2.2: Application range for different energy storage technologies. Figure adapted
from [46] and [56].

penetration of renewables. We consider decentralized storage systems only.

Our analyses focus mainly on Li-ion batteries, but can be applied to the electrochemical

technologies depicted in Figure 2.3. We regard batteries as energy receptacles without

explicitly modelling the intricate physical and chemical details of their operation. Our

battery model comprises the energy, input power, and output power dimensions, the overall

efficiency, and parameters that are known to play an important role in the battery aging,

such as the number of complete cycles and the maximum Depth of Discharge (DOD) [3].

2.3 Power Markets

Despite the fact that the periodicity and seasonality observed in the electricity consumption

can also be observed in other “conventional goods” [38], electricity exhibits characteristics
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Electrochemical

batteries

Lead acid
batteries

Nickel metal
hybrid
batteries

Li-ion
batteries

Flow cell
batteries
(redox)

Figure 2.3: Electrochemical battery technologies. The analyses presented in this thesis
focus mainly on Li-ion batteries.

that make it unique in many regards [5]:

• The flow of electricity is dictated by physical laws. Electricity flows can neither be

controlled nor tracked. Additionally, losses occur in the delivery of electricity.

• Electricity cannot easily and economically be stored.2 Electricity cannot be stored

seasonally in the volume and scale required. As a consequence of this inability, prices

exhibit seasonal and intra-day differences.

• Generation and consumption must match on a per-second basis. The electrical system

is built in a way that a frequency deviation from the nominal value is virtually

unacceptable.

• Users depend on the network to effectuate transactions. The fixed costs of the in-

frastructure are high, but the marginal costs are low, sometimes nearly zero.

In spite of the aforementioned characteristics, electricity is a commodity that can be

traded. The place, real or virtual, at which the electricity transactions occur, is called a

2Different electricity storage technologies are discussed in Section 2.2.
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power or electricity market. According to the mechanism used between the parties to trade

electricity, power markets can be classified as follows [38]:

1. Bilateral trading

2. Electricity pools

3. Managed spot market

In a free, open market, producers submit offers and consumers submit bids. The market

dynamics converge to a clearing price guaranteeing that all energy required is provided at

the lowest possible cost. Once an offer or a bid gets accepted, the producer or consumer

becomes liable, meaning that they have to meet their obligations, or otherwise incur finan-

cial penalties. In this work we assume a perfect competition market. In reality, however,

market players can behave strategically and influence the market clearing outcome.

Among the different types of markets, two are relevant to this research: the day-ahead

market and the balancing or intra-day market. The day-ahead market is cleared on a daily

basis, one day in advance, and provides hourly prices. The intra-day market exists to

compensate all deviations between scheduled production and consumption.

We differentiate between two related concepts: price formation and price structure.

Price formation refers to the market participants interactions that result in the market

clearing, while price structure refers to the tariff that final electricity consumers pay. The

price structure is discussed in Section 2.5.2.

We consider an underlying electricity price formation mechanism with similar character-

istics to those of an electricity pool. In our model, however, prices depend on the aggregate

load level only. We regard this type of market as a partial equilibrium market, meaning

that the merit order curve is assumed constant and known. This assumption is supported

in that the changes in the generation technology are relatively slow. This assumption ig-

nores the shifting effect of renewables on the price formation. Given the aggregate load

level, a merit order curve is assumed that corresponds to the different segments of the load

duration curve, as exemplified in Figure 2.4.

The second important assumption is in regard to the hierarchy in the supply chain.

We assume users to have an economic relation with a retailer and not with the wholesale

market directly, as depicted in Figure 2.5.

Traditionally, retailers buy electricity either through long-term contracts or at the spot

market, but sell electricity at constant tariffs. These constant tariffs are the result of long-

term forecasts and risk assessments. In our model, the retailer issues in advance hourly

electricity prices, which are decoupled from the wholesale clearing prices and have the

structure described in Section 2.5.2.

The reason for introducing the intermediate figure of a retailer is that users implement-

ing DSEs will react to prices and accommodate their profiles in order to minimize costs.
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Figure 2.5: Assumed electricity market hierarchy

In other words, consumption is expected to be anti-correlated with the price signal when

DSEs are present. This fact would result in a mismatch between scheduled generation and

consumption. Having into account the aforementioned reasons, we propose the following

mechanism:

1. The retailer issues hourly prices in advance. Those prices are structured according

to the expected consumption without considering storage.

2. The retailer can anticipate how users implementing storage will react to the price

signal and, accordingly, estimate the actual consumption.

3. The retailer trades electricity at the wholesale market according to its prediction. We

are not interested in whether the retailer buys electricity only at the day-ahead or at
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the intra-day market as well.

An alternative approach is to allow users to directly interact with the wholesale market.

Due to the limitations exposed before, namely the necessity of keeping the balance between

the generation and consumption, users have to declare in advance the amount of energy

and the price they are willing to pay each hour, and meet these commitments in case their

bids get accepted. In this scenario, users can anticipate that the price they will pay is

proportional to their consumption and, consequently, solve a quadratic optimization. This

approach is not considered, among other reasons, because the retailer figure guarantees

risk insulation for the users.

2.4 Demand Response

In the classic microeconomics theory, the social optimum is attained when producers make

their offers at a price that equals their Marginal Cost (MC) and consumers make their bids

at a price that equals their Marginal Benefit (MB). Following this reasoning, electricity

consumers will accommodate their demands to match their MB [38]. In reality, however, in

the short term, residential buildings loads are inelastic. The elasticity is defined in terms

of the quantity q and the price π as in (2.1). A good is considered inelastic if |ǫ| < 1, and

elastic if |ǫ| > 1.

ǫ =

dq
q

dπ
π

=
dq

dπ

π

q
(2.1)

DR is a general term encompassing a wide variety of approaches, aimed to control to

different extents the demand side. When indirect load control is assumed, the nature of this

control is closely related to the electricity prices structure. Figure 2.6 provides an overview

of different DR programs [48] whose pricing schemes are further explained in Section 2.5.

Even under Real Time Prices (RTPs), residential buildings display low elasticity [12].

The low elasticity exhibited by buildings is in part due to the high value that users give

to electricity, i.e. the value that consumers place on the availability of electrical energy is

greater than the price of electricity, but is also due to the fact that electricity is inexpensive.

DSEs provide a way in which residential buildings can become flexible, i.e. elastic,

without compromising users’ comfort. This idea is illustrated in Figure 2.7. We regard

the implementation of DSEs as a DR enabler and assume that the necessary infrastructure

for coordinating the control actions is or is soon to be available. It has been claimed that

there is little or any incentive for residential buildings to take part in the electricity market,

mainly due to the costs of the associated Advanced Meter Infrastructure (AMI), as this

cost would absorb all resulting benefits [38]. Nevertheless, we assume that as the result of

the convergence of different DR and smart grid approaches, and the integration of power

and IT companies, the AMI infrastructure will be ubiquitous.
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Figure 2.6: DR price schemes [48]

2.5 Electricity Prices

Our premise is that the main motivation for electricity consumers to take part in a DR

program is the possibility of reducing their electricity costs or obtaining any other economic

benefit.3 This economic incentive is closely linked to the electricity prices’ structure. This

section explores the different pricing schemes that electricity consumers could face. Each

one of these schemes addresses particular objectives and offers different advantages.

Residential buildings have historically paid a plain electricity tariff accounting mainly

for the bulk energy consumed. The liberalization of the electricity market brought about

almost no changes in this scheme, as final consumers continue to pay a plain tariff that

insulates them from the market’s dynamics. A plain electricity tariff provides no incentive

to modify or time-shift the energy consumption, but offers consumers a shield against

volatility and risk.

Figure 2.6 provides a summary of different dynamic pricing mechanisms. The most

commonly used are the so called Time of Use (TOU) tariffs, which establish two or more

price regions during the day or the week, and intend to address periods of critical load [48].

RTPs vary continuously on an hourly or sub-hourly basis, accounting for the wholesale

price or for a combination between the market price and the instantaneous load level [50].

3There is, however, evidence suggesting that environmental concern is increasingly earning awareness [8].
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Figure 2.7: Expected effect of electricity storage on the elasticity of demand. s is the
supply curve, di is the initial demand without storage, and de is the resulting demand with
storage. The resulting elasticity is assumed to be a function of the storage energy be and
the battery input and output power, binp and boutp , respectively.

Critical Peak Pricing (CPP) on the other hand makes use of RTPs during critical periods

only [48].

Dynamic electricity prices play a twofold role in DR or conservation programs. For the

electricity consumers, dynamic prices offer a saving potential or similar economic incentive

to take part in control programs. For the electricity utility, dynamic prices constitute a

versatile control signal.

2.5.1 Composition of the Electricity Prices in Europe

Even if the wholesale electricity prices across Europe have declined by 35-40% during

the last 7 years, the electricity prices that households face have increased in average 4%

during the same period [68]. This contradictory fact is mainly due to market imperfections

that allow the retailers to avoid passing the price reduction to the final consumers. Final

electricity prices are expected to steadily grow until 2020 [68].

Figure 2.8 illustrates the composition of the electricity prices that final consumers pay

across Europe. The energy costs comprise wholesale and retail costs. The wholesale costs

are due to generation costs, construction of new power plants, maintenance, decommission-

ing, and so forth. The retail costs are associated with the sale of energy. The network costs

encompass the cost of the transmission and distribution grid: maintenance, expansion, and

Ancillary Services (AS).4 The distribution grid claims most of the network costs, with

4Voltage and frequency control, compensation of losses, black start, among others.
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Figure 2.8: Electricity price components in Europe. Source: [68]

an average value greater than 80% across Europe [68]. The strong penetration of wind

and solar generation has had a major impact in the grid utilization and energy production

costs, the grid utilization component for households has increased by 18.5% [68].

We do not consider the tax element, which is not harmonized throughout Europe. This

component tends to be higher in countries with high penetration of renewables such as

Germany and Spain [68]. The resulting assumed cost structure is detailed in the following

section.

2.5.2 Electricity Prices Structure

As stated in the previous section, final electricity prices account for both the energy con-

sumption and the electrical grid utilization, i.e. energy and network costs. A modified

version of the model proposed in [50] is introduced in (2.2), where c′gi is the resulting in-

stantaneous price, cspotgi is the instantaneous spot market price, xtotalgi
is the instantaneous

load level, and c
spot
g and xtotal

g are the mean values of the spot market prices and the load

levels, respectively. 0 ≤ α ≤ 1 is a weighting factor. We consider 0.4 ≤ α ≤ 0.6. For

comparison purposes, the value reported in [50] is α = 0.537.

c′gi = α ·
cspotgi

c
spot
g

+ (1− α) ·
xtotalgi

xtotal
g

, ∀c′gi ∈ c′g, ∀c
spot
gi

∈ cspotg , ∀xtotalgi
∈ xtotal

g (2.2)

In general, end electricity consumers will pay a tariff with the structure illustrated in
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Figure 2.9.
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Figure 2.9: Price structure including energy and grid utilization components

There is evidence suggesting that demand-based tariff schemes represent a stronger eco-

nomic incentive than conventional tariffs for electricity consumers to adjust their demand

profiles [8]. In this dissertation we adopt a pricing model that explicitly addresses both

the integral energy consumption and the maximum daily peak, irrespective of whether the

prices are constant or dynamic.

We assume that users pay a tariff that reflects both energy consumption and grid

utilization, as sketched in Figure 2.9. Given a price element c′gi , it can be split into energy

consumption αc′gi and grid utilization (1 − α)c′gi components. The reasoning behind our

assumption is that the grid utilization component, integrated over one day, can be mapped

to an element accounting for the maximum daily peak. This scheme results in hourly

electricity cg and daily peak cmax
g price vectors. For one particular day d, with prices

cd
′

g and total load x
d,total
g , there correspond a vector of hourly energy prices cdg, given by

(2.3a), and a peak price cmax
gd

, given by (2.3b). The hourly prices account for the electrical

energy component, while the daily peak price is chosen to approximate the grid utilization

contribution. This equivalence is illustrated in Figure 2.10, for a 1-day period.
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plot, and the equivalent daily peak component in the bottom plot.

cdg = αcd
′

g (2.3a)
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cmax
gd

= (1− α) ·

h24
∑

j=h1

cd
′

gj
xd,totalgj

maxxd,total
g

(2.3b)

The electricity fee incurred by a particular building on day d is given by (2.4), where

xd
g is the vector of hourly electricity consumption, and cdg is the vector containing the

corresponding prices (energy component). It is worth clarifying that cdg and cmax
gd

are

calculated using the total load levels, i.e. the aggregation of all building loads, and that

the cmax
gd

is only an approximation of the grid utilization component.

Total daily cost = cmax
gd

maxxd
g +

h24
∑

j=h1

cdgjx
d
gj

(2.4)

Finally, a remark is worth mentioning here, the proposed price is not a two-part tariff

(a tariff consisting of per-unit price plus lump-sum fee). Instead, penalizing the peak

represents a demand charge, i.e. our price structure constitutes a demand-based electricity

tariff.

2.6 Costs Assumed in the Models

This section describes the structure and range of the costs used as inputs for the models

developed in the subsequent chapters.

2.6.1 Definition

Table 2.1 introduces the parameters involved in the different cost calculations. Parameters

labeled “input” are given or known, while parameters labeled “output” are calculated.

It is convenient to formulate both the battery and PV costs in terms of the Equivalent

Annual Cost (EAC) (2.5), which in turn is defined in terms of the Net Present Value (NPV)

and the annuity Aτ,r. This metric allows comparing investments with different life spans τ .

The life span considered for the battery and PV components is τy = 10 [1] and τφ = 25 [31]

years, respectively.

EAC =
NPV

Aτ,r
(2.5a)

Aτ,r =
1− 1

(1+r)τ

r
(2.5b)

The costs calculated in this section and used in the models introduced in the subsequent

chapters are conveniently expressed on a per-day basis. The PV costs in (2.6) are based
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Description Symbol Type Units

Cost per battery capacity unit cke Input e/kWh
Cost per battery power unit ckp Input e/kW

Battery maximum number of cycles γ Input cycle
Battery calendar life τy Input year

Daily per-unit battery energy fixed cost cfbe Output e/kWhday

Daily per-unit battery power fixed cost cfbp Output e/kWday

Battery marginal cost cmbe Output e/kWh

PV calendar life τφ Input year
Cost per PV power unit ckφ Input e/kW

Daily per-unit PV power fixed cost cfφ Output e/kWday

Length of the analysis period τd Input day
Discount rate r Input %
Maintenance rate m Input %

Table 2.1: Parameters involved in the battery and PV costs calculation

on the EAC metric.

cfφ =
1

365 day

( 1

Aτφ,r
· ckφ

)

(2.6)

The EAC cannot be directly applied to the battery cost because the battery depreciation

depends on both its calendar and cycling life. Additionally, the battery dimension process

involves three independent variables instead of one: energy plus input and output power.

The battery costs are then calculated on a slightly different way, according to the model

derived in [3]. The battery costs are split according to the topology depicted in Figure

2.11, where the input and output powers can be ac/dc, dc/dc, or a combination of both.

DC

AC
binp be

DC

AC
boutp

(a) ac/dc conversion

DC

DC
binp be

DC

DC
boutp

(b) dc/dc conversion

Figure 2.11: Battery topology. be: battery capacity, binp : input power, b
out
p : output power.

Equation (2.7a) defines the MC of storage, which is intended to account for the battery

cycling life. Equations (2.7b) and (2.7c) define the fixed costs of the energy and power

modules, respectively. The first two terms in these equations account for the maintenance

and capital costs, while the additional term in (2.7c) is the depreciation of the input and

output power modules. We assume that the input and output power modules have identical
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costs.

cmbe =
cke
γ

(2.7a)

cfbe =
1

365 day

(

m · cke + r · cke

)

(2.7b)

cfbp =
1

365 day

(

m · ckp + r · ckp +
1

τy
· ckp

)

(2.7c)
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Figure 2.12: PV system costs [28]

2.6.2 Assumed Costs

Figure 2.12 depicts the PV system cost structure [28]. The PV costs ckφ are extracted from

the projections presented in [31], whose figures are summarized in Table 2.2a. The cost

reductions for 2017 and 2022, relative to 2013, correspond to a 15% and 30% decrease,

respectively, which agrees with the figures reported for Switzerland in Table 2.2b [28].

Year ckφ
2013 1700
2017 1430
2022 1190

(a) Projected PV costs in e/kW [31]

Year Reduction [%]

2014 7
2016 12
2018 17

(b) Projected reduction in the PV costs relative
to 2013 in Switzerland [28]

Table 2.2: PV cost development

The battery capital costs, i.e. cke and ckp, are taken from the scenarios summarized in [1].

These figures are presented in Table 2.3 for three different electrochemical technologies.

Even if the battery markets for stationary and mobile applications have different dy-

namics, and the requirements of stationary applications are different from those of EVs,
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Scenario Technology cke ckp γ bη

Average
Lead-acid 175 175 2100 82
Ni-Cd 550 177 7500 65
Li-ion 650 315 7000 92

Best
Lead-acid 100 120 3000 85
Ni-Cd 400 120 10000 70
Li-ion 130 130 10000 95

Table 2.3: Battery costs in e/kWh and e/kW as reported in [1], where bη is the overall
efficiency.
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Figure 2.13: Battery system costs [9]

the developments in those two fields are complementary rather than diverging. For in-

stance, a model presented in [10] proposes the use of recycled EVs batteries in microgrid

applications. A survey, in which the cost structure depicted in Figure 2.13 is considered,

presents the scenarios for Li-ion battery cost development shown in Table 2.4 [9].

2009 2020 Reduction [%]

OEM 990-1200 360-440 36.6
Consumers 1400-1800 570-700 40

Table 2.4: Expected cost ($/kWh) reduction in Li-ion battery technologies [9]

Table 2.5 summarizes the range of parameters considered in the models presented in the

following chapters. The DSE technology parameters are mainly focused on Li-ion batteries,

which we assume to be the dominant, market leading technology. These values will be used

in conjunction with the ones displayed in Table 2.3.

2.7 Bilevel Problems

The model presented in Chapter 5 is a hierarchical or bilevel optimization problem, from

here onwards referred to as Bilevel Program (BLP). This section describes the basics of

this formulation. A BLP is essentially an optimization problem constrained by other(s)
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Description Symbol Range Units

From to

Cost per battery capacity unit cke 300 1200 e/kWh
Cost per battery power unit ckp 0.3 · |cke | 0.6 · |cke | e/kW

Battery maximum number of cycles γ 5000 16250 cycle
Battery calendar life τy 10 10 year
Cost per PV power unit ckφ 800 1700 e/kW

PV calendar life τφ 25 25 year
Discount rate r 5 7 %
Maintenance rate m 5 8 %

Table 2.5: Range of parameters considered in the models presented in the following chapters
[1]

Optimization Problem

min
x∈X

F (x,y)

subject to G(x,y) ≤ 0

Optimization Problem

min
y∈Y

f(x,y)

subject to g(x,y) ≤ 0

Figure 2.14: Bilevel problem struc-
ture

min
x∈X

F (x,y)

subject to G(x,y) ≤ 0

min
y∈Y

f(x,y)

subject to g(x,y) ≤ 0

(2.8)

optimization problem(s). This situation is described in (2.8) and illustrated in Figure 2.14.

A BLP consists of one leader, or upper level player, and one or several followers, or low

level players. The BLP can be viewed as a non-iterative version of the non-cooperative

perfect-information Stackelberg game [6].

Decision makers at both levels can influence but not completely control decision makers

at the other level [6]. The payoffs and actions at both levels are interdependent upon each

other. In general, the objective functions at each level are a combination of variables

controlled by that level and variables coming from the other level [6, 29]. The game’s

sequential dynamics are as follows:

1. The leader makes the first move. The leader tries to anticipate the followers’ reactions

and adjusts its controls in order to minimize its objective function.

2. The followers react to the leader’s move, assuming that it is not going to readjust its

controls.
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Leader

min
x∈X

fUL(x,y1,y2, · · · ,yn)

subject to gUL(x,y1,y2, · · · ,yn) ≤ 0

Follower 1

min
y1∈Y1

fLL
1 (x,y1)

subject to gLL
1 (x,y1) ≤ 0Follower 2

min
y2∈Y2

fLL
2 (x,y2)

subject to gLL
2 (x,y2) ≤ 0Follower n

min
yn∈Yn

fLL
n (x,yn)

subject to gLL
n (x,yn) ≤ 0

Figure 2.15: Bilevel problem structure with several followers

We use the superscript UL for referring to variables pertaining to the upper level, i.e.

to the leader, and the superscript LL for variables pertaining to the lower level, i.e. to the

follower(s). The resulting formulation is illustrated in Figure 2.15.

The traditional approach for solving a BLP consists in substituting the lower levels

for their Karush-Kuhn-Tucker (KKT) conditions and solving the resulting Mixed Integer

Program (MIP). The BLP is closely related to the concepts of Mathematical Problems

with Equilibrium Constraints (MPEC) and Mathematical Problems with Complementarity

Constraints (MPCC), mainly due to the complementary conditions arising when the lower

levels are replaced by their KKT conditions. A complementarity problem for a function

F : R
n → R

n is defined as 0 ≤ F (x) ⊥ x ≤ 0 [29]. Solving the resulting MIP often

requires the use of decomposition techniques [7,29,35,36]. An alternative approach consists

in substituting the followers for their strong duality conditions [29], which results in a

Nonlinear Program (NLP). The latter approach is implemented in Chapter 5.

2.8 Time Resolution

A resolution of 1h is adopted for all the models and analyses introduced in this thesis.

This value is a compromise between granularity and problem tractability, and captures

both the daily and seasonal variations. This value is as well in line with the majority of

simulation software, the analysed spot market and load levels data (2007-2012), and the

national standards [62–64].

Our analysis is based on time series. These time series are vectors with domains defined
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Set Definition Description

D {d1, . . . , dυ, . . . , dτd} Days in the analysis period
H {h1, . . . , hj , . . . , h24} Hours in each day
Ω = D ×H {d1h1, d1h2, . . . , dυh24, dυ+1h1, . . . , dτdh24} All hours in all days consid-

ered
Ω0 {d1h1, d1h2} The first 2 periods

Ω0̄ = Ω− Ω0 {d1h3, d1h4, . . . , dυh24, dυ+1h1, . . . , dτdh24} All hours except the first 2
periods

Ω+1 {d1h2, d1h3, . . . , dυh24, dυ+1h1, . . . , dτdh24} All hours except the first
period

Table 2.6: Sets used in the models formulation

in Table 2.6. The analysis period encompasses τd days, e.g., 365 days of 24h each. Sets D

and H correspond to the total number of days and hours within each day, respectively. The

total number of hours in the analysis period is defined as the Cartesian product of the sets

D and H, Ω = D ×H. We used the simplified index notation a(dυ, hj) = adυ ,hj
= ai for

denoting elements in vectors that are a mapping from Ω into R. Finally, Ω0, Ω0̄, Ω+1 ⊂ Ω.

2.9 Summary of Assumptions

This section summarizes the underlying assumptions upon which the following chapters

build. Some assumptions omitted in this chapter are included in this list for the sake of

completeness.

1. The most important assumption is that the retailer has an economic incentive, or

perceives a profit, resulting from the ability to control the load that is greater or

equal to the incentive it offers to the final electricity consumers to implement PV and

DSEs.

2. Each building is assumed to comply, completely or partially, with the principles

dictated by the 2Sol system. Buildings are assumed to implement electrified space-

conditioning and DHW-production systems. The building’s total electricity profile

consists of the electricity due to lighting, appliances, and the HPs consumption, as

illustrated in Chapter 3.

3. Each building is assumed to implement two HPs, one for space conditioning and one

for DHW production.

4. The seasonal COPs are assumed constant for each building. Each building features

a constant COP during the whole year. The assumed COP encompasses both the

Carnot and the machine efficiency.
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5. All DR objectives have to be implemented without diminishing users’ comfort. The

resulting electricity profile is assumed to be closely linked to comfort.

6. Buildings are assumed to have an economic relation with a retailer and not with the

wholesale market directly. This relation is depicted in Figure 2.5.

7. We assume a price structure explicitly addressing the integral energy consumption

and the maximum daily power, as elaborated in Section 2.5.2.

8. Decentralized storage is assumed, as explicitly stated in the term DSE.

9. Batteries are modelled on a high, systemic level. We consider electrochemical bat-

teries only, and among them Li-ion batteries mainly.

10. Electricity is assumed to flow in the direction of the building only.

11. Neither subsidies nor feed-in tariffs are considered.

12. The electricity grid is not explicitly modelled, mainly due to the time dependence in

the nodal analysis. Traditional OPF is static.

13. We assume that users behave rationally, in the economic sense, and will try to reduce

costs or, equivalently, to maximize their profits.

14. We assume that users pursue an economic incentive only, as non-economic incen-

tives are difficult to quantify. The economic incentive constitutes a lower bound or

conservative approach.

15. We assume that the IT infrastructure necessary for transmitting data is available and

do not consider its costs. The underlying assumption is that electricity utilities are

horizontally integrated with IT services and that the so-called smart-grid programs

will converge to a ubiquitous AMI.

16. All the models and time series have a time resolution of 1 h.





Chapter 3

Load Generator

M
odels are representations, simplifications, or abstractions of reality. This chap-

ter is devoted to the development of a model encapsulating the most relevant

and characteristic aspects of the electricity profile that a lowEx community will

exhibit.

The objective of this module is not to accurately model the uniqueness of each build-

ing’s thermal and electrical dynamics, but to create plausible electricity profiles, represen-

tative of both the heterogeneity displayed by electrical loads in individual households, and

of the resulting aggregate consumption pattern. Even if some buildings display atypical

consumption patterns, the aggregate consumption converges to well-known and, to great

extent, predictable profiles. LowEx communities will exhibit different electricity profiles

than other agglomerations of buildings featuring traditional heating and cooling systems.

In these communities, the electricity required for thermal conditioning is not necessarily

the dominant component.

The aim of the load generator developed in this chapter is to obtain realistic electric-

ity profiles using a configurable, scalable, and computationally efficient procedure. The

requirement of simultaneously accounting for both the individual profiles and the aggre-

gate levels is approached by combining the bottom-up methodology implemented by SIA

norms [62–64] with a top-down strategy that allows designing the aggregate figures. The

load generator constitutes then a design or synthesis tool, rather than mere analysis soft-

ware. Given a set of objective figures, for instance, the national statistics, it is possible

to find a distribution of parameters that on the aggregate level converges to the design

objectives.

Section 3.1 describes the load generator’s structure. Section 3.2 deals with the building

thermal modelling. Section 3.3 is dedicated to the occupancy modelling. The dispatch

of the HP, presented in Section 3.4, is an attempt to model some aspects of the control.

Section 3.5 describes the composition of the aggregate load that will be used in the price

modelling in the subsequent chapters. This chapter concludes with a brief enumeration of

the computational issues in Section 3.6, and a general summary in Section 3.7.

37



38 Chapter 3. Load Generator

Unit Room Kitchen

Scenario 0 1 2 0 1 2
sap W/m2 2 1 3 40 30 50
sli W/m2 6.3 3 10 12 6 18
sdhw l/(P day) 40 30 50 30 10 50

Table 3.1: Scenarios employed in the building simulation. The appliances sap and DHW
sdhw scenarios are as defined in [63]. The lighting scenario values sli are modified in order
to account for LED lighting.

3.1 Model’s Structure

The load generator mainly focuses on residential buildings. The different calculations are

based on the profiles and scenarios defined in the SIA norms [62–64]. Office buildings are

as well taken into account for the construction of the aggregate electricity profile, described

later in Section 3.5. However, office buildings are loosely modelled, without considering

multiple thermal zones nor the intricate mobility patterns and occupancy regimes that are

characteristic in non-residential buildings. We simulate office buildings in a determinis-

tic way, using the profiles and scenarios as defined in [63]. Hereinafter, unless otherwise

clarified, we refer to residential buildings only.

Our calculations are based on the scenarios presented in Table 3.1, and on the normal-

ized profiles displayed in Figures 3.1 and 3.2. The appliances sap and DHW sdhw scenarios

are as defined in [63]. The lighting scenario sli is modified to account for state-of-the-art,

more efficient technologies; namely, LED lighting. We use the occupancy profile as a prob-

ability rather than as a deterministic value. Therefore, the evening values are modified in

order to reflect a non-deterministic, though high probability of presence (pt < 1).

The lighting and appliances profiles are modulated with the occupancy profile. In

addition, the daylight hours, illustrated in Figure 3.3, are superimposed to the final lighting

schedule.

The load generator’s structure is depicted in the block diagram in Figure 3.4. The

scalars and configuration parameters involved in the calculations are listed in Tables 3.2

and 3.3, respectively. Correspondingly, the vectors are presented in Table 3.4, with sets

defined in Table 2.6 on page 34. The most important blocks are the “Random Occupancy”

block, described in Section 3.3, and the “HP scheduler” block, described in Section 3.4.

3.2 Thermal Modelling

There exists a very high correlation between HDDs and the energy required for heating [54];

Figure 1.4b on page 8 confirms this observation. In addition, due to the expected high

COP featured by HPs implemented in lowEx communities, heating and cooling are not the

dominant component in the total electricity shares. Based on these facts, we formulate a
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Figure 3.3: Daylight hours for Zurich, Switzerland

Description Symbol Units

Number of persons P P
Constructed area As m2

Facade area Af m2

Glazing area Aw m2

Shape factor H —
U-value U kWth/(m

2K)
Room area Ar

s %
Kitchen area Ak

s %
HP electrical power hp kW
DHW HP electrical power hpdhw kW
COP cop —
Thermal capacity C kWhth/K

Table 3.2: Scalars involved in the definition of the load generator depicted in Figure 3.4
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Description Symbol

Building type btype ∈ {residential,office}
Location loc
Markov type markov ∈ {deterministic,random}
Mechanical shading factor sdmec ∈ [0, 1]
Shading factor for the shade polygon sdpol ∈ [0, 1]
Equivalent orientation and solar transmission geq ∈ [0, 0.25]
DHW consumption scenario sdhw ∈ {0, 1, 2}, see Table 3.1
Lighting scenario sli ∈ {0, 1, 2}, see Table 3.1
Room appliances scenario srap ∈ {0, 1, 2}, see Table 3.1

Kitchen appliances scenario skap ∈ {0, 1, 2}, see Table 3.1

Table 3.3: Additional configuration parameters involved in the definition of the load gen-
erator depicted in Figure 3.4

Description Symbol Set {·} Units

Ambient temperature Tamb Ω Tambi
◦C

Indoor temperature Tind Ω Tindi
◦C

CDDs cdd Ω cddi
◦Cday

HDDs hdd Ω hddi
◦Cday

Normalized occupancy p Ω pi —
Infiltration losses Qinfl Ω Qinfli kWhth
Internal gains due to appliances and lighting Qap+li Ω Qap+lii kWhth
Internal gains due to persons Qper Ω Qperi kWhth
Transmission losses Qtrans Ω Qtransi kWhth
Ventilation losses Qvent Ω Qventi kWhth
Normalized solar radiation on a vertical surface Q′

sol Ω Q′
soli

kWhth/m
2

Equivalent total solar gains Qsol Ω Qsoli kWhth
Normalized solar irradiance on a horizontal plane E′

e Ω E′
ei

kWh/m2

Normalized corrected solar irradiance Ee Ω Eei kWh/m2

Normalized shades sd Ω sdi —
HP electricity consumption xhp Ω xhpi kWh
DHW HP electricity consumption xhp,dhw Ω xhp,dhwi

kWh
Appliances and lighting consumption xap+li Ω xap+lii kWh
Appliances electricity consumption (rooms) xr

ap Ω xrapi kWh

Appliances electricity consumption (kitchen) xk
ap Ω xkapi kWh

Lighting electricity consumption (rooms) xr
li Ω xrlii kWh

Lighting electricity consumption (kitchen) xk
li Ω xklii kWh

DHW daily consumption dhw D dhwd kWhth
Daylight hours (from,to) dl D dld h

Table 3.4: Vectors involved in the definition of the load generator depicted in Figure 3.4
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Figure 3.4: Load generator block diagram. All the variables and configuration parameters
are defined in Tables 3.2, 3.3, and 3.4.
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Figure 3.5: Lumped elements model used in the thermal simulation

simplified thermal model with the structure depicted in Figure 3.5. There is a broad range

of software, e.g., ESP-r [69], that can be used to calculate the buildings’ thermal loads. We
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opted for a simplified model, for we are not interested in accurately modelling the thermal

load of a particular object, but in profiling the thermal load of a group of buildings in a fast

and computationally efficient way. The calculations of the thermal conditioning module

are further described in Appendix A.

When modelling a building’s thermal behavior, the main source of uncertainty is the

weather. A common practice is to use a Typical Reference Year (TRY), which encapsulates

the features and patterns found in multi-year datasets. There exist many libraries providing

TRYs for different locations. If these libraries are not available, a statistical year can be

generated from a given set of weather records (See Appendix on [58]).

In contrast to the thermal behavior, the modelling of the electricity consumption result-

ing from the users’ interaction is less standardized. Some simulation platforms approach

this problem by using diversity profiles [52]. This methodology, however, does not cap-

ture the stochastic nature of occupancy. The following section describes our approach for

modelling uncertainty in the occupancy.

3.3 Occupancy Modelling

DHW
Production

Lighting
Windows
Control

Ventilation

Heat gains
Appliances

Use

Figure 3.6: Occupants’ interaction with the building

Occupants interact with the building producing heat gains, consuming resources, emit-

ting pollutants, and carrying out control actions, among others [52]. As sketched in Fig-

ure 3.6, we consider the interaction between occupants and the building regarding ventila-

tion, heat gains, lighting, appliances, DHW consumption, but not control actions, such as

window-opening.
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Figure 3.7: Electricity consumption for a reference household. A period of 50-day was
considered. The upper figure is the overlapping of the z-normalized hourly time series, and
the bottom one are the boxplots for the same set. Data source: [23].

As mentioned in the introduction of this chapter, despite the fact that the aggregate

consumption pattern is quasi-deterministic, the electricity consumption that individual

residential buildings exhibit can be highly heterogeneous. We analysed the electricity con-

sumption data of 30 households located in Switzerland and South Germany, provided by

a home automation company [23], and a set of 6 houses with very high time resolution,

located in Boston, which are part of an electricity disaggregation project [39]. Figure 3.7

shows that it is possible to identify daily consumption patterns within a particular house-

hold. However, as depicted in Figure 3.8, these patterns can greatly vary among different

households.

In order to represent the randomness inherent to occupants’ mobility and presence,
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Figure 3.8: Daily electricity consumption pattern displayed by 3 different households. Data
Source: [23].
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A

P

t01 t10

t00

t11

Figure 3.9: Two-state
DTMC used to model oc-
cupancy, with probability
matrix given by (3.1).

PB =

[

t11 t10
t01 t00

]

=

[

t11 1− t11
t01 1− t01

]

(3.1)

µ =
t01 + t10
t00 + t11

(3.2a)

t01 = min

{

1,
µ− 1

µ+ 1
pt + pt+1

}

(3.2b)

t11 = min

{

1,
pt − 1

pt

(

µ− 1

µ+ 1
pt + pt+1

)

+
pt+1

pt

}

(3.2c)

we model each occupant by means of a two-state Discrete Time Markov Chain (DTMC),

using the methodology proposed in [52]. The DTMC is illustrated in Figure 3.9, where the

two states are Presence (P) and Absence (A), respectively. The transition probabilities are

given by the Bernoulli distribution in (3.1) [4,52]. t10 is the probability of going from P to

A, i.e. the probability that an occupant who is present leaves home, t11 is the probability

of staying at home, t01 is the probability that an occupant who is absent arrives home, and

t00 is the probability of staying away.

The probability of an occupant being present at one particular hour is given by pt.

The probability that she is present at the immediately consecutive time step is denoted

by pt+1. These probabilities correspond to the occupancy profile values depicted in Figure

3.1. In [52], the probabilities are expressed in terms of a mobility parameter µ, defined in

(3.2a). A value µ < 1 means that the probability of transition from A to P t01 is less or

equal than the probability of being present at the next time step: t01 ≤ pt+1. We calculate

t01 and t11 as in (3.2b) and (3.2c), respectively. The normalized occupancy profile used in

the calculations is the average of all individual random profiles.

3.4 Heat Pump Schedule

We consider some elements of the control without explicitly modelling it. For instance, we

assume a constant shading factor during the heating period, specified by the 0 ≤ sdmec ≤ 1

parameter. The HP scheduler block is another attempt to account for such control element.

If final consumers behave rationally, in the economic sense, they will orient their in-

vestments and actions to reducing costs. Following this reasoning, and recalling that final

consumers pay an electricity tariff that explicitly penalizes the maximum daily peak, it is
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possible to infer that the building administrator, or the automatic building control, has an

incentive to dispatch the HPs in a way that does not contribute to an increase in the daily

peak.

For the sake of simplicity, we assume that the HP is operated in cycling mode.1 We

assume as well that the building can be modelled as a volume with a thermal capacity

C. The building control can use this thermal capacity as a thermal battery, and dispatch

the HP avoiding the coincidence with the electricity peaks due to lighting and appliances.

The HP schedule constitutes thus a decision variable than can be controlled to reduce the

overall electricity costs. However, as we are not considering the HP investment costs, we

assume this dispatch to be part of a pre-optimization step, rather than including it among

the decision variables in the models developed later in this dissertation. The output of

the HP scheduler constitutes the starting point for the models presented in the subsequent

chapters.

It is possible to store heat in the building by increasing the temperature of its thermal

mass. We impose the restriction |∆T | ≤ 3◦C. The stored heat Qsto is related to C as

in (3.3a). By increasing the temperature of the thermal mass, additional thermal losses

Qadd
trans, given by (3.3b), are incurred.

Qsto = C∆T = C (Tint − Tamb) (3.3a)

Qadd
trans = UHAs∆T = UHAs

Qsto

C
(3.3b)

The two HPs (space conditioning and DHW production) are modelled as binary vari-

ables. The MIP used to obtain the HPs schedules is described in Section A.1. The output

of this module are the HP schedules, xhp and xhp,dhw, respectively. These two time se-

ries, together with the electricity profile corresponding to lighting and appliances xap+li,

thoroughly define the building electricity consumption profile.

3.5 Load Aggregation

The price structure defined in Section 2.5.2 is a function of the aggregate load level. This

section is devoted to the construction of a lowEx community and of the corresponding

aggregate electricity consumption profile. The total electricity profile has to be representa-

tive of the distribution of physical and operational parameters, and has to converge to the

intended design figures. This process comprises the definition of all buildings constituting

the target lowEx community, the simulation of each building in order to obtain the indi-

vidual electricity profiles, and the aggregation of the total load. Based on the total load,

we obtain the electricity prices that will be used in the subsequent chapters.

1Two states: off and maximum power.
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The distribution of parameters that are used to construct the aggregate load responds

to a twofold objective. On one hand, we are interested in defining characteristics of existing

buildings, such as area distribution, area per occupant, ratio between single family houses

and apartment blocks, or characteristics that lowEx communities will —or are likely to—

implement, such as high COPs, relatively high U-values, particular lighting technologies,

among others. On the other hand, the resulting total electricity profile has to exhibit the

desired shape and composition specified by the design parameters. Besides emulating the

consumption patterns that can be identified in the aggregate national load levels [49], we

are interested in reproducing realistic energy and electricity shares, and ratios between

shares, such as appliances to lighting, or heating to DHW energy ratios.

We approach this twofold objective by following an iterative heuristic procedure. The

deterministic equivalent of each building can be represented in terms of linear equations.

By using these equations, it is possible to choose parameters that in the aggregate view

converge to the target design figures.

The distribution of parameters is based on our own assumptions and on general Eu-

ropean statistics [13]. Some parameters are coupled, e.g., the glazing area Aw and the

U-values U , or the constructed area As and the shape factor H. A particularly important

parameter is the COP. The 2Sol methodology strives to achieve a high COP (COP = 10);

however, as we only consider an average seasonal COP, we define it as a normal distribution

centered at 6, which is a more conservative and realistic value for the average. Figure 3.10

depicts some of the distributions used to obtain a lowEx community of 3000 buildings.

We simulate 3000 buildings, which is a number large enough to converge to the figures

observed in the aggregate load levels. On top of these buildings, and in order to account for

the share of non-residential buildings in the aggregate profile,2 we add a number of office

buildings, simulated with deterministic profiles according to [63]. The resulting duration

curves are shown in Figure 3.11.

3.6 Computational Details

All simulations and optimizations ran on an 8-core Intel(R) Core(TM) i7-3720QM com-

puter. Each processor core clocks at 2.60GHz. The system has 8Gb of RAM and runs on

the GNU/Linux (kernel 3.x.) operating system.

The building simulations were implemented using a combination of python [55] and

shell scripts. The MIP used to obtain the HP dispatch, described in Section A.1, was

implemented in GAMS [15].

The generation of each building (before the HP dispatch) takes approximately 1.7s.

The building generator includes, additionally, an initialization time for the generation of

the weather and location-related files. Depending on the resolution of the weather files,

2See Figure 1.2b on page 6.
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the elapsed time can be between 10s and 50s per location.

The MIP takes approximately 10s per building, with times ranging between 4s and

several minutes. The optimization time was in general found to be longer for buildings

with high UH products, e.g., UH > 1.5.

3.7 Summary

This chapter presented a methodology aimed at simulating the aggregate electrical load of

a lowEx community and, correspondingly, at providing the inputs for the demand-based

price calculation. The total load is obtained on the basis of a distribution of parameters

that are representative of the characteristics that a lowEx community will —or is expected

to— implement. The load generator is a design tool that combines bottom-up and top-

down approaches to achieve a dual objective. On one side, it is able to realistically represent

the heterogeneity and randomness found in individual buildings’ consumption profiles. On

the other side, the sum of all loads produced by the load generator (3000 buildings in

this particular case) converge to a pattern, whose shape and composition can be partially

influenced by the design objectives. In other words, the total aggregate load can be designed
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to resemble certain pattern or to have a predetermined structure.

The load generator presented in this chapter allows for the profiling of several buildings

in a computationally efficient way. It follows a statistical rather than physical approach.

The model focuses on generating plausible and credible electricity profiles, instead of ac-

curately modelling a particular building or group of buildings.

In general, it is possible to accurately simulate a building’s thermal response, and

there exists a wide range of software for this purpose. On the other hand, modelling the

final electricity consumption greatly depends on how accurately occupancy is modelled.

Modelling occupancy by using only diversity profiles, e.g., daily profiles that are repeated

every day, might be a good approach for simulating individual buildings, but not when

the objective is to simulate a plurality of buildings and their aggregate behavior, as those

diversity profiles do not necessarily take into account top-down considerations.

The main focus of our simulations is on residential buildings, but office buildings are also

included in the construction of the total electricity profile. Office buildings are, however,

modelled in a deterministic way without considering multiple zones nor random occupancy

regimes. The office buildings are inserted to account for characteristic office patterns.

These additional patterns result in a reduced standard deviation in the total consumption,

and introduce a differentiation between weekdays and weekends.

The load generator is implemented as a collection of software libraries, each one corre-

sponding to one of the blocks in Figure 3.4. Traditional simulation software focuses mainly

on thermal modelling. Given the energy and electricity shares exhibited by lowEx build-

ings, thermal modelling is not the most important component in our analysis. Other factors

contribute more significantly to the final consumption’s shape and composition. The main

driving factor defining each building’s electricity consumption profile is occupancy. In order

to realistically represent the randomness associated with occupancy schedules, each occu-

pant is modelled as a two-state DTMC. The final occupancy profile is the average of all

random realizations. This strategy results in an aggregate consumption that converges to

the quasi-deterministic pattern observed in real profiles. The random occupancy generator

is additionally used to generate different occupancy scenarios for each building.

Another important element in the analysis is the HP operation. The HPs’ schedules

are modelled as an MIP. The objective of this block is to emulate an element of the

control, namely the user’s reaction to an electricity tariff that explicitly penalizes the daily

peak. Under such tariff, users have an incentive to dispatch the HPs in a way that does not

contribute to an increase in the daily peaks. The HP schedule block models the building as a

thermal battery with capacity C. The output of this block completely defines the building’s

electricity profile, which is formed by the electricity due to lighting and appliances, and

the HPs schedules.
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Chapter 4

Battery and PV Selection Model,
the User’s Perspective

T
he determination of the optimal battery and PV installation size depends upon the

intended application and operative objectives. “What is the optimal battery and

PV capacity that a user is willing to install?” is, naturally, an incomplete question

if the intended objectives, conditions, and constraints are not enunciated. As discussed

in Chapter 2, we assume that users have, primarily, an economic incentive. If consumers

behave rationally, in the economic sense, and face an electricity tariff with the structure

proposed in Section 2.5.2, then they are encouraged to time-shift their consumption, reduce

their maximum daily peak and, in general, become responsive to demand-based prices.

This chapter approaches the question of optimal battery and PV selection from the

individual user’s perspective. The proposed strategy builds on the data and model obtained

in Chapter 3.

Our intuition is that in the presence of a demand-based tariff, which splits the electricity

price into hourly and daily peak components, final electricity consumers have an economic

incentive to reshape their electricity profile. The final electricity consumption pattern is

assumed to be mainly linked to comfort. Our premise is that users value comfort very

highly and do not want to deviate from their comfort levels. In this scenario, a battery

provides a mechanism to accommodate the electricity profile without deviating from the

comfort objectives.

The energy generated on-site with a PV installation increases the profit possibilities

when the PV is operated in conjunction with a DSE, at least, during the months when solar

radiation is relatively abundant. A DSE offers on its own the possibility for time-shifting

energy and consequently profiting from the demand-based tariff. As we are interested in

exploring the interplay between battery and PV, a model aiming to size these two elements

has to consider them simultaneously in the context of the building’s electricity profile and

the price dynamics.

We formulate the problem of sizing the battery and PV elements as a stochastic linear

optimization model. The resulting stochastic Linear Program (LP) is an arbitration model,

in which the user’s objective is to minimize costs. This model is presented in Section 4.1.

Section 4.2 describes how to account for uncertainty. Section 4.3 is devoted to a detailed

53
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analysis of the results, including the sensitivity analysis and the evaluation of different costs-

development scenarios. Section 4.4 is a brief compendium of the computational issues. This

chapter concludes with a comprehensive summary and conclusions in Section 4.5.

4.1 Optimal Battery Selection Model

Description Symbol Type Units

Power conversion factor ξ Exogenous kW/kWh

Length of the analysis period τd Exogenous day

Minimum SOC bmin
soc Exogenous %

Battery energy capacity be Endogenous kWh

Battery input power binp Endogenous kW

Battery output power boutp Endogenous kW

PV peak power φp Endogenous kW

PV effective area and efficiency φa Endogenous m2

Battery marginal cost cmbe Exogenous e/kWh

Daily per-unit battery energy fixed cost cfbe Exogenous e/kWhday

Daily per-unit battery power fixed cost cfbp Exogenous e/kWday

Daily per-unit PV power fixed cost cfφ Exogenous e/kWday

Table 4.1: Scalars involved in the definition of model (4.1). Exogenous variables affect the
model but are not in turn affected by the model. Endogenous variables are created within
the model.

Table 4.1 introduces the scalar quantities involved in the model calculations. Exoge-

nous variables are parameters affecting the model without being in turn modified, while

endogenous variables are produced by the model.

Reshaping the electricity consumption pattern by means of a DSE has inherently a

time-dependent nature. The user is interested in the overall cost reduction during the

entire analysis period spanning τd days. This time dependence supposes the use of time

series, hereinafter also and indistinctly referred to as vectors, whose domains are given by

the sets defined in Table 2.6 on page 34.

The different vectors involved in the model calculations are summarized in Table 4.2.

For each instance of the model, and only for that particular instance, each one of the vectors

is a R-valued function, whose domain is the associated set in Table 4.2. For instance, the

electricity withdrawn from the grid xg is defined as a function:
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f : Ω → R

d, h 7→ xg(d, h) = xgd,h = xgi

The price structure imposes the requirement that the model be traversed on a daily

basis, which is equivalent to having τd different optimization problems of length 24. On

the other hand, the conservation equations describing the energy balance in the battery

constitute a continuous system with memory. This system requires that the model be

navigated as a linear space and not on a daily basis. Vectors defined with domain set Ω

can be navigated either as a linear space or as matrix in R
τd×24. The following elements

are identical xg(d, h) = xg(dh) = xgd,h = xgi . Superscripts 0,0̄, or +1 indicate that the

vectors are defined for the domains Ω0, Ω0̄, and Ω+1, respectively. For instance,

b0̄
soc = {bsoc(d1h3),bsoc(d1h4), . . . , bsoci , . . . ,bsoc(dτdh24)}

Description Symbol Type Set {·} Units

Electrical load xl Exogenous Ω xli kWh
Stochastic version of the electrical load x̃l Exogenous Ω x̃li kWh
Electricity withdrawn from the grid xg Endogenous Ω xgi kWh
Electricity flowing into the battery xin

b Endogenous Ω xinbi kWh

Electricity flowing out of the battery xout
b Endogenous Ω xoutbi

kWh

Normalized corrected solar irradiance Ee Exogenous Ω Eei kWh/m2

Battery State of Charge (SOC) bsoc Endogenous Ω bsoci kWh
Electricity prices (energy component) cg Exogenous Ω cgi e/kWh
Daily peak prices (power component) cmax

g Exogenous D cmax
gd

e/kW

Electricity withdrawn from the grid per days x∆
g Endogenous D xd

g kWh

Electricity withdrawn from the grid for day d xd
g Endogenous H xdgj kWh

Electricity prices (energy component) per days c∆g Exogenous D cdg e/kWh

Electricity prices (energy component) for day d cdg Exogenous H cdgj e/kWh

Maximum daily peaks k∆
g Endogenous D κdg kW

Table 4.2: Vectors involved in the definition of model (4.1). Exogenous variables affect the
model, but are not in turn affected by the model. Endogenous variables are created within
the model.

Vector x∆
g in Table 4.2 contains the clustered-by-day subsets of electricity values with-

drawn from the grid: x∆
g ⊆ xg. All the elements in x∆

g are of length 24. Each of the

24h-vectors in x∆
g is denoted xd

g, where the superscript d indicates the corresponding day.

For instance, xd3
g is the vector of grid electricity values containing the 24 values in day d3.

The same applies to the clustered-by-day electricity prices c∆g .

The battery and PV selection model is given by (4.1).
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min
χ∗

dτd
∑

d=d1

h24
∑

h=h1

cgixgi

+

dτd
∑

d=d1

cmax
gd

· κdg

+
1

2
cmbe

dτd
∑

d=d1

h24
∑

h=h1

(xinbi + xoutbi
)

+ τd
(

cfbebe + cfbpb
in
p + cfbpb

out
p

)

+ τd · c
f
φ · φp,

(4.1a)

subject to

be − bsoci ≥ 0, ∀bsoci ∈ bsoc (4.1b)

bsoci − bmin
soc · be ≥ 0, ∀bsoci ∈ b0̄

soc (4.1c)

bsoci − bmin
soc · be = 0, ∀bsoci ∈ b0

soc (4.1d)

xoutbi
= 0, ∀xoutbi

∈ xout0

b (4.1e)

binp − ξxinbi ≥ 0, ∀xinbi ∈ xin
b (4.1f)

boutp − ξxoutbi
≥ 0, ∀xoutbi

∈ xout
b (4.1g)

xoutbi
+ φaEei + xgi − xinbi − x̃li ≥ 0, ∀xgi ∈ xg, ∀x

in
bi
∈ xin

b , ∀x
out
bi

∈ xout
b , (4.1h)

∀x̃li ∈ x̃l, ∀Eei ∈ Ee

∆bsoci − bηcx
in
bi
+

1

bηd
xoutbi

= 0, ∀bsoci ∈ b+1
soc, ∀x

in
bi
∈ xin+1

b , ∀xoutbi
∈ xout+1

b (4.1i)

φp − ξφaEei ≥ 0, ∀Eei ∈ Ee (4.1j)

κdg − ξxdgj ≥ 0, ∀κdg ∈ k∆
g , ∀x

d
gj

∈ xd
g, ∀x

d
g ∈ x∆

g (4.1k)

be ≥ 0, binp ≥ 0, boutp ≥ 0, φa ≥ 0, φp ≥ 0 (4.1l)

xoutbi
≥ 0, ∀xoutbi

∈ xout0̄

b ; xinbi ≥ 0, ∀xinbi ∈ xin
b ; xgi ≥ 0, ∀xgi ∈ xg (4.1m)

The objective function is defined in (4.1a), with controls given by:

χ∗ = {xg,x
in
b ,x

out
b ,k∆

g ,bsoc, be, b
out
p , binp , φa, φp}

The first two terms in the objective function (4.1a) represent the total electricity fee

under the demand-based tariff described in Section 2.5.2. The first term is the cost of the

integral energy consumption, while the second term addresses the daily peaks cost.

The second term in (4.1a), in combination with (4.1k), is the linear recast of the non-
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linear term

ξ

dτd
∑

d=d1

cmax
gd

·maxxd
g

The quantity ξ is used as a power conversion factor. All the models presented in this

thesis have a time resolution of 1h; therefore, ξ = 1kW/kWh. If the time resolution is

15-min, ξ = 4kW/kWh.

The third term in the objective function (4.1a) penalizes the battery cycling life. The

fourth term represents the cost of the selected battery energy and power. The last term

accounts for the PV cost.

Constraints (4.1b) and (4.1c) impose upper and lower limits for the State of Charge

(SOC),1 while constraints (4.1d) and (4.1e) define the battery’s initial conditions. Con-

straints (4.1f) and (4.1g) indicate that the energy flowing into and out of the battery cannot

be greater than the respective input and output powers. Constraint (4.1h) is the building’s

balance equation. Constraint (4.1i) is the differential equation modelling the battery SOC.

The term ∆bsoci represents the change in the SOC with respect to the previous time step.

Finally, (4.1j) indicates than the generated PV electricity must be less or equal than the

selected PV capacity.

4.2 Accounting for Uncertainty

The model formulated in the previous section can be regarded as a strategic tool that a final

electricity consumer, facing a demand-based electricity tariff, can use to decide whether

or not to invest in a DSE and PV. For a user confronted with this strategic decision,

the electricity consumption connected to occupancy is the only uncertain variable. As

mentioned in Section 3.2, the weather uncertainty is accounted for by using a TRY or a

statistical year. Given that the electricity prices, and the PV and battery costs are known

beforehand, the only remaining source of uncertainty is the occupancy.

In order to account for this uncertainty, the electrical load vector xl is modelled as a

random variable, denoted x̃l, with elements x̃li . Model (4.1) is a stochastic LP, in which

the x̃l vector assumes the form of a discrete distribution with 10 different scenarios, each

with probability ps = 1/10. These realizations, or scenarios, correspond in turn to 10

realizations of the random DTMC documented in Section 3.3.

A stochastic LP can be modelled as a 2-stage program [45]. At the first stage, without

knowing the future, “here and now” decisions are made. Afterwards, when the random

variables unfold, “wait and see” decisions react to compensate the effect of the random

variables outcome. The reaction of the decision maker to this outcome is referred to as

recourse [45, 57, 59]. The new objective function is the expected value of the cost.

1SOC = be −DOD. Minimum SOC = Maximum DOD
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In our model, as all the costs are known beforehand, the battery-dimension variables:

be, b
out
p , and binp , as well as the PV size —φp and φa— are first stage variables, i.e. they are

determined before the random variables become known. On the other hand, the vectors

bsoc,k
∆
g ,x

in
b ,x

out
b , and xg, as well as their associated equations, are second stage or recourse

variables. The number of scenarios was chosen to be 10 as a compromise between accuracy

and tractability.

4.3 Experiments and Results

This section is dedicated to the analysis of the battery and PV selection model introduced

in Sections 4.1 and 4.2. The different analyses are conducted by defining a case study and

establishing a parallel between two different electricity tariffs.

The price structure discussed in Section 2.5.2 explicitly addresses the total electricity

consumption and the maximum peak on a daily basis. Both the energy and the power

components are normalized to a value of 0.2e/kWh, resp. 0.2e/kW, which is the reference

value used in the definition of the costs summarized in Table 2.3 on page 31. The daily

peak components are directly derived from the aggregate load levels obtained in Section

3.5.

The two tariffs feature the same power components cmax
g , but different energy com-

ponents cg. We consider a constant tariff, denoted p1, and a 4-level tariff, denoted

p4. Both tariffs are normalized to a mean value of 0.2e/kWh; consequently, in p1

cgi = 0.2e/kWh, ∀cgi ∈ cg. p4 is defined as a function of the duration curve d(hy)

depicted in Figure 3.11 on page 50, including office buildings. Each element xtotalli
of

the aggregate load xtotal
l is mapped to a price element cgi using the function d(hy) as

follows: cgi = p41 if xtotalli
< d(4000), or cgi = p42 if d(4000) ≤ xtotalli

< d(1500), or

cgi = p43 if d(1500) ≤ xtotalli
< d(330), or cgi = p44 if xtotalli

≥ d(330). Consequently,

cgi ∈ {p41, p42, p43, p44}, ∀cgi ∈ cg.

The profit that users can obtain is, as can be easily inferred, proportional to the stan-

dard deviation of p4.2 We select values for the p41−4 levels that result in a standard

deviation σ = 0.6.3 The selected values are p41 = 0.5, p42 = 1.0, p43 = 1.5, and p44 = 2.5.

Values are normalized to 0.2e/kWh by dividing them by their average and multiplying by

0.2.

The results presented within the following sections are alternately discussed for the two

tariffs p1 and p4.
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bytpe=residential

As=700.0
Ar

s=0.7
Aw=0.3
loc=Zurich

cop=6.0
U = 5.6× 10−4

H=0.9
C=105
P=18
ori=0.1
sdpol=0.4
sdmec=0.8
sli=1
srap=0

skap=0
sdhw=0

Figure 4.1: Reference building b0’s input pa-
rameters for the load generator

Parameter Value Units

hp 3.1 kW
hpdhw 3 kW
HDDs 3695 ◦Cday
CDDs 83 ◦Cday

Thermal losses 48.4 kWhth/m
2 year

Heating energy 33.0 kWhth/m
2 year

Cooling energy 10.5 kWhth/m
2 year

Solar gains 12.4 kWhth/m
2 year

DHW energy 20.9 kWhth/m
2 year

fload 0.23 —

Table 4.3: Reference building b0’s statistics.
Figures are the expected values of the 10
stochastic realizations.

Lighting

3.7 %

Appliances

23.6 %

Heating

40.12%

Cooling

10.62%

DHW

21.93 %

(a) Energy

Lighting

9.4 %

Appliances

59.87 %

Heating

16.97%

Cooling

4.5%

DHW

9.3%

(b) Electricity

Figure 4.2: Building b0’s electricity and energy shares. Figures are the expected values of
10 stochastic realizations.
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4.3.1 Case Study

The results and sensitivity analyses presented in the following sections refer to the test

building “b0”, whose parameters are given in Figure 4.1 and statistics in Table 4.3. The

vectors defining this building’s electricity profile are in reality 10 sets of time series, each

representing a different realization of the stochastic occupancy. The energy and electricity

shares for the test building are depicted in Figure 4.2, these shares correspond to the

expected value of all stochastic realizations.

We introduce here an important metric used in the following discussions. The load fac-

tor fload (4.2) is the quotient between the average and the maximum electricity withdrawn

from the grid.

fload =
xg

maxxg
(4.2)

4.3.2 Sensitivity to the Model’s Parameters

In this section, the model’s sensitivity to economic and technical —not building-related—

parameters is measured. The sensitivity analysis can be carried out using the One at a

Time (OAT) methodology because the model is linear. An additional consequence of the

model’s linearity is the fact that changing the costs is equivalent to changing the electricity

prices, as long as the ratio between costs and prices remains constant. In our analysis, the

mean value of the electricity prices is kept constant.

The sensitivity analyses are displayed in the form of “tornado plots” in Figures 4.3

and 4.4, corresponding to tariffs p1 and p4, respectively. Each tornado plot illustrates the

sensitivity of one particular endogenous parameter, e.g., the battery energy capacity be, to

the OAT variation of some selected exogenous parameters. The bars indicate how much

the endogenous parameter changes, when the exogenous parameter associated with each

bar changes by ±10%.

Factors such as α and the battery efficiency —bηc and bηd— are referred to as non-

economic, as they are not subject to a direct economic penalization or cost. The smaller

the α component, the bigger the daily peak component, and smaller the energy contribution

(See Figure 2.9 on page 27). The following observations are derived from the inspection of

Figures 4.3 and 4.4.

The most sensitive variable is the PV peak power φp and the least sensitive is the

battery output power boutp .

Following an overall inspection of Figures 4.3, it can be conjectured that the selection

of the battery components is associated with the goal of reducing the daily peaks, while

2This fact was corroborated by running the model under different combinations resulting in the same
standard deviation values.

3The ratio between the dual tariff’s high and low values in the Zurich area in 2013 was between 1.5 and
2.0. Source: EWZ.



4.3. Experiments and Results 61

-20 -15 -10 -5  0  5  10  15
%

+
10%

-10%

α

bηd

cf
be

cm
be

cf
bp

bηc

cφ
f

bmin
soc

(a) Transit energy

-4 -3 -2 -1  0  1  2  3  4  5
%

+
10%

-10%

bηd

α

cf
be

bηc

cφ
f

cf
bp

cm
be

bmin
soc

(b) Average peak

-20 -15 -10 -5  0  5  10  15  20
%

+
10%

-10%

cφ
f

α

cf
be

bηd

cf
bp

cm
be

bηc

bmin
soc

(c) PV peak power φp

-15 -10 -5  0  5  10
%

+
10%

-10%

α

cf
be

bηc

cm
be

cφ
f

cf
bp

bηd

bmin
soc

(d) Battery energy capacity be

-10 -8 -6 -4 -2  0  2  4  6
%

+
10%

-10%

α

cf
bp

cf
be

bηc

cφ
f

cm
be

bηd

bmin
soc

(e) Battery input power binp

-6 -4 -2  0  2  4  6
%

+
10%

-10%

α

bηd

bηc

cf
bp

cf
be

cm
be

cφ
f

bmin
soc

(f) Battery output power boutp

Figure 4.3: Sensitivity to the model’s parameters for building b0 under tariff p1
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Figure 4.4: Sensitivity to the model’s parameters for building b0 under tariff p4
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the dimension of the PV element is associated with the goal of reducing the energy fee.

The size of the battery components is inversely proportional to α, while the size of the

PV element is in direct proportion with it. When α increases, i.e. when the peak element

becomes less important, the PV element increases as well.

The situation is similar under tariff p4 (Figures 4.4), except that the influence of α on

the battery input power binp is almost negligible. This fact, together with the comparatively

larger influence of the PV cost ckφ on binp , suggests a coupling between φp and binp . In fact,

the results for the 4-level tariff p4 in Figures 4.4 reveal that φp and binp are coupled and

relate to the goal of reducing the energy fee. Analogously, it can be inferred that be and

boutp are related to the goal of reducing the peak component fee.

The battery capacity costs —cfbe and cmbe— affect not only be, but binp , and to a lesser

extent boutp . The particularly large sensitivity of binp to cmbe (Figure 4.4e) confirms the exis-

tence of a link between binp and the goal of reducing the energy component fee. The battery

power costs cfbp have a lower impact on the battery capacity selection.

The sensitivity analyses depicted in Figures 4.3 reflect a scenario in which the only cost

reduction possibility is the manipulation of the daily peaks. In this scenario, all battery

components exhibit the largest sensitivity to changes in α. The dynamic tariff p4 introduces

an additional cost reduction possibility. In the sensitivity analyses depicted in Figure 4.4,

α is not any longer the dominant component. It is still the case for be, but not for binp or

boutp . This fact indicates that the peak and energy components come closer in importance.

In general, the battery components are less sensitivity to changes in the parameters under

tariff p4 than under the constant tariff p1.

4.3.3 Sensitivity to the Building’s Parameters

This section explores the model’s sensitivity to building parameters. The configuration

parameters defining building b0 are summarized in Figure 4.1. The tornado plots in Fig-

ures 4.5 and 4.6 illustrate the model’s sensitivity to some selected building’s parameters

under tariffs p1 and p4, respectively. The results presented in this section are to be read

carefully, as some parameters have non-linear relations with quantities such as the thermal

energy or the solar gains.

In general, the model is less sensitive to the building’s parameters than it is to the

exogenous parameters described in the previous section. The quantity UH, which is linearly

related to the thermal energy and to the electricity consumption, has a larger impact on the

PV size φp and on the battery input power binp , both of them regarded as energy variables

in the previous section. The energy variables and the transit energy are anti-correlated

with the COP. On the other hand, the power variables, i.e. the battery capacity be and

the battery output power boutp , are correlated with the COP.

Under tariff p4, most building parameters provoke positive changes on be, binp , and

φp, but negative changes on boutp . This fact indicates that the energy component acquires
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relevance upon the peak component. This observation is corroborated by comparing the

transit energy’s sensitivities under both tariffs in Figures 4.3a and 4.4a, respectively.

Finally, Tables 4.4 and 4.5 provide extended results for different scenarios in which the

building’s parameters are varied with respect to the reference initial values summarized

in Figure 4.1. The reference values and the corresponding results are highlighted at the

tables’ left and top, respectively. Two additional scenarios are included per each reference

value. Each cell displays the relative variation between the corresponding scenario and the

reference results.



4
.3
.

E
x
p
erim

en
ts

a
n
d
R
esu

lts
67

Ref Value be binp boutp φp C Cg Cmax
g Trs peak fload

Ref — 4.9 0.9 3.7 3.5 6145.2 2319.1 2588.1 1483.9 4.7 0.4

3.2 -28.6 -22.9 -20.5 -15.2 19.7 22.0 30.0 -65.8 31.8 13.8
cop 6

10 0.9 -11.2 0.5 -6.4 -12.5 -14.3 -17.5 11.4 -17.7 -9.0

4.4E-4 -2.7 -7.2 -5.6 -7.3 -2.9 -2.4 -2.7 4.3 -2.3 -5.0
U 5.6E-4

8E-4 3.3 1.1 12.7 -9.4 6.8 6.7 9.2 -5.1 9.0 -1.9

loc Zurich Kloten -4.8 -8.9 -4.1 -17.2 0.3 2.0 2.6 -9.0 2.9 0.3

30 4.0 2.6 5.9 1.5 3.4 3.8 3.1 -2.6 2.9 0.8
As/P 40

50 -3.3 -5.5 3.0 -0.9 -2.0 -3.2 -1.5 -0.4 -1.4 -3.6

94.5 0.2 0.0 -1.8 -5.2 0.5 0.9 1.2 -0.1 1.5 2.3
C 105

115.5 -1.0 -5.0 -3.4 -6.5 0.3 0.8 1.7 -6.2 1.8 0.3

0.6 -0.6 -11.3 -2.5 -5.8 0.4 1.1 1.4 -0.8 1.3 -7.8
sdpol 0.4

1.0 -0.4 -1.6 -0.3 -6.8 0.9 1.7 1.7 -1.8 1.6 0.5

0.6 2.8 -5.7 1.9 12.2 0.8 -0.5 -0.4 6.3 -0.8 -9.3
sdmec 0.8

0.1 -1.2 -12.7 -2.7 -17.7 -0.5 0.6 1.3 -7.0 1.7 1.8

0.15 3.3 -0.3 0.5 9.2 -1.5 -4.1 -2.4 8.0 -3.0 -5.3
geq 0.1

0.2 0.3 2.4 1.4 17.0 -3.1 -7.5 -4.7 9.2 -5.5 -6.8

1 -6.4 -19.1 -4.5 -9.3 -4.3 -4.5 -2.6 -8.4 -2.6 -9.6
sdhw 0

2 4.5 13.6 7.6 5.8 3.7 3.5 3.0 0.5 3.2 1.3

0 10.5 -12.8 9.3 -19.7 11.3 11.9 14.9 4.1 15.2 -17.6
sli 1

2 25.3 -12.1 23.2 -28.4 22.0 20.9 27.1 13.3 27.2 -29.8

1 -5.6 -14.4 -4.2 -17.3 -4.3 -3.1 -3.0 -9.5 -3.0 0.8
srap 0

2 5.2 -1.2 3.3 5.9 4.1 3.9 4.0 8.2 4.0 -3.3

1 -20.9 -17.1 -9.4 -30.7 -15.2 -13.4 -13.8 -38.5 -13.2 7.4
skap 0

2 13.1 14.7 15.7 19.3 11.4 10.3 9.8 21.5 10.0 -13.3

Table 4.4: Per cent variation on the model’s outcome for different building b0 parameter scenarios under tariff p1. C is the
total cost, Cg is the energy component fee, Cmax

g is the peak component fee, Trs is the transit energy, peak is the average
peak, and fload is the load factor. Highlighted values on the left are the reference parameters, and highlighted values on top
are the model results under the reference parameters. All other values are percentages. Location Kloten has values hdd=3678
and cdd=98.
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Ref Value be binp boutp φp C Cg Cmax
g Trs peak fload

Ref — 6.0 1.2 4.2 4.0 6525.1 2539.9 2401.5 3063.5 4.3 0.4

3.2 -34.1 -15.1 -22.4 -11.2 18.3 19.2 32.6 -32.0 34.6 0.5
cop 6

10 5.2 -1.6 4.0 -4.9 -12.6 -14.9 -22.7 7.9 -23.2 -6.9

4.4E-4 0.9 0.8 -2.7 1.1 -2.7 -3.1 -4.9 4.7 -4.6 -8.0
U 5.6E-4

8E-4 0.8 8.8 11.7 -6.8 6.3 5.2 9.8 2.4 9.5 -4.1

loc Zurich Kloten -3.8 -5.7 -3.0 -14.2 0.4 2.2 2.6 -5.4 2.9 2.2

30 2.5 7.8 4.7 3.9 2.9 2.0 3.2 3.1 3.1 -1.3
As/P 40

50 2.3 4.6 7.7 6.2 -1.7 -3.5 -4.6 5.4 -4.9 -6.6

94.5 2.1 7.3 -0.6 -0.1 0.3 -0.5 0.1 4.2 0.3 0.7
C 105

115.5 0.0 -3.5 -2.7 -2.7 0.4 0.9 1.5 -2.8 1.4 -1.3

0.6 -0.6 -0.9 -1.5 -2.0 0.7 1.3 1.1 -0.3 0.9 -6.1
sdpol 0.4

1.0 1.0 1.5 0.9 -3.3 1.0 1.7 1.0 0.4 0.8 -5.8

0.6 4.6 3.5 3.0 19.5 1.0 -1.3 -2.1 5.6 -2.8 -16.1
sdmec 0.8

0.1 -2.6 -4.6 -4.1 -15.9 -0.7 0.4 1.8 -4.8 2.3 0.5

0.15 7.4 6.2 2.0 17.0 -1.0 -4.5 -5.3 8.7 -6.5 -4.4
geq 0.1

0.2 6.2 7.2 5.3 22.5 -2.7 -8.2 -8.6 10.8 -10.0 -6.1

1 1.8 -0.4 1.2 2.8 -3.6 -4.8 -6.3 2.4 -6.9 -7.5
sdhw 0

2 1.2 11.6 4.0 7.8 3.0 1.2 4.0 2.7 4.4 -6.6

0 15.3 3.1 12.9 -8.0 11.6 11.9 13.3 12.1 13.6 -10.4
sli 1

2 30.5 10.0 27.8 -10.9 22.5 21.4 25.0 23.5 25.1 -21.8

1 -7.0 -9.4 -3.9 -14.2 -4.4 -3.7 -2.7 -8.8 -2.7 -2.0
srap 0

2 5.3 2.9 3.3 11.6 4.5 3.9 3.5 6.8 3.3 -4.4

1 -25.7 -17.2 -12.4 -31.7 -16.1 -15.3 -12.0 -27.4 -11.3 0.2
skap 0

2 17.1 20.5 17.1 22.9 11.5 9.6 7.4 21.7 7.2 -3.1

Table 4.5: Per cent variation on the model’s outcome for different building b0 parameter scenarios under tariff p4. C is the
total cost, Cg is the energy component fee, Cmax

g is the peak component fee, Trs is the transit energy, peak is the average
peak, and fload is the load factor. Highlighted values on the left are the reference parameters, and highlighted values on top
are the model results under the reference parameters. All other values are percentages. Location Kloten has values hdd=3678
and cdd=98.
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4.3.4 Battery and PV Cost Scenarios

In order to study the model’s response to the developments in the battery and PV costs, we

formulate 5 PV and 28 battery cost scenarios. The 28 battery cost scenarios correspond to

the combinations between 7 battery capacity and 4 battery power scenarios. The battery

power cost ckp is assumed to be a percentage of the battery energy cost cke as follows:

ckp ∈ {0.3, 0.4, 0.5, 0.6} · ξ · cke [e/kW]. These costs are based on the values presented in

Table 2.3 on page 31. This section is concerned with the description of the technical results,

while Section 4.3.5 is dedicated to describe the different investment shares.

For Li-ion batteries, the efficiency —bηc and bηd— and the maximum number of cycles

γ are assumed to increase linearly as a function of the cost, i.e. the higher the cost, the

closer the efficiency to 1.0 and the higher γ. The assumed functions are bηc = bηd =

7.5× 10−5cke + 0.88 and γ = 12.5cke + 1250, respectively.

Figures 4.7 and 4.8 summarize the results for the scenarios with variable battery cke and

constant PV ckφ costs under tariffs p1 and p4, respectively. The different lines represent

the power cost scenarios. As expected, the PV size φp and the battery capacity be increase

with decreasing cke . However, it is interesting to notice that the ratio φp/be decreases

with decreasing cke . The same occurs for the ratio between the battery output power and

energy capacity boutp /be. These two ratios are approximately equal, and decrease in favor

of the ratio between the battery input power and energy capacity binp /be. The latter ratio

moderately increases with decreasing cke . The cost of the peripherals c
k
p seems to have only

a marginal impact on those ratios. The quotients φp/be and boutp /be are larger under tariff

p1, and binp /be is larger under tariff p4.

The transit energy per kWh of installed capacity is more than double under the p4

than under the p1 tariff, except for the lowest cke values. These results clearly indicate that

the energy component acquires importance with respect to the peak component, i.e. that

besides the peak reduction, it is also possible to attain a profit by shifting energy between

regions of high and low prices. The transit energy increases linearly with increasing cke in

the p1 case, and has a concave form in the p4 case.

Figure 4.9 illustrate the results for the scenarios with constant battery —cke and ckp— and

variable PV ckφ costs under tariffs p1 and p4. The be/φp, b
out
p /φp, and binp /φp ratios decrease

with decreasing ckφ, though the decrease in binp /φp is comparatively smaller. This behavior

is analogous to the one observed for ratios φp/be, b
out
p /be, and binp /be in the experiments

with variable battery costs.

Finally, Figure 4.10 depicts the load factors fload for the different battery and PV cost

scenarios. The increment in fload is larger under tariff p4, in part due to the larger peak

reduction, but also due to the increasing importance of the energy component. On the

other hand, fload factors decrease with decreasing PV cost. This fact indicates that despite

the average peak reduction, the standard deviation in the consumption increases, i.e. the

difference between the mean and maximum values grows larger.
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Figure 4.7: Battery cost (cke) scenarios for building b0 under tariff p1. Each line represent
a power cost (ckp) scenario, assumed proportional to cke . Some quantities are normalized
to the battery capacity be and expressed in kW/kWh or kWh/kWh. PV costs are kept
constant, ckφ = 1400 e/kW.
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Figure 4.8: Battery cost (cke) scenarios for building b0 under tariff p4. Each line represent
a power cost (ckp) scenario, assumed proportional to cke . Some quantities are normalized
to the battery capacity be and expressed in kW/kWh or kWh/kWh. PV costs are kept
constant, ckφ = 1400 e/kW.
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Figure 4.9: PV cost (ckφ) scenarios for building b0 under tariffs p1 and p4. Some quantities
are normalized to the PV capacity φp and expressed in kW/kW or kWh/kW. Battery
costs are kept constant, cke = 650 e/kWh and ckp = 315 e/kW.
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Figure 4.10: Per cent change in the load factor fload as a function of the battery costs (4
upper plots) and PV costs (2 lower plots), for building b0 under tariffs p1 and p4. The
different lines in the upper plots represent different scenarios of power cost ckp. In the lower
plots, the different lines represent the two tariffs.
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4.3.5 Investment Shares

This section is devoted to the analysis of the different investment shares incurred by a user

facing the cost scenarios enunciated at the beginning of Section 4.3.4. This section analyses

both battery and PV cost development scenarios, and concludes with a comparison between

different battery technologies.

Figures 4.11 and 4.12 depict the investment shares incurred throughout the battery

cost scenarios under tariffs p1 and p4, respectively. Analogously, Figure 4.13 illustrates

the case of constant battery and varying PV costs. Cg and Cmax
g reflect the total cost

of electricity: energy and power components, respectively. Cm
b,e is the total cost paid for

storing energy, i.e. the total marginal cost of storage, Cf
b,e is the investment in storage

capacity, Cin
b,p is the investment in input power, Cout

b,p is the investment in output power,

and Cφ is the investment in PV. Strictly speaking, Cg and Cmax
g are not investments, but

the electricity fee that the users incur. This electricity fee is referred to as an investment

and displayed together with the other shares for comparison purposes.

It is interesting to notice that for the whole range of battery costs cke the optimum

investment consist of a more or less constant share of battery-related costs, around 15%

for the p1, and around 20% for the p4 case, plus a PV investment amount that is inversely

proportional to cke . Figure 4.13 shows that in the scenarios with constant battery and vary-

ing PV costs, both the investment in battery and PV elements are inversely proportional

to the PV cost ckφ.

In all scenarios, Cin
b,p claims the lowest share and remains more or less constant. Through-

out the battery cost scenarios, the investments in battery capacity Cf
b,e and in battery

output power Cout
b,p decrease with decreasing cke , while the investment in transit energy Cm

b,e,

associated with the marginal cost of storage, increases. This fact is in line with the incre-

ment in the PV capacity and the fact that at lower costs the energy component comes closer

in importance to the peak component. In the variable battery cost scenarios, investments

are larger, both in absolute and per cent figures under tariff p4.

In the scenarios with variable PV costs, illustrated in Figure 4.13, the battery and PV

investment percentages are similar between the two tariffs, but Cm
b,e is larger under p4,

signaling that the energy component acquires more relevance than the peak one.

Regarding the fee paid for the energy component Cg, it can be observed that it is more

or less constant for the variable battery cost scenarios, while the fee paid for the peak

Cmax
g decreases with decreasing cke . On the other hand, when cke is kept constant and ckφ

changes, it is Cmax
g that remains constant, while Cg decreases with decreasing ckφ. This fact

confirms that the dimension of the PV element is associated with the objective of reducing

the electricity consumption, while the dimension of the battery, at least the capacity and

the output power, is associated with the objective of reducing the average peak.
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Figure 4.11: Investments as a function of the battery capacity cost cke for building b0 under tariff p1. Numbers on top of the
bars are the total cost in e.
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Comparison Between Different Battery Technologies

The analysis on the impact of the battery costs on the model’s outcome concludes with a

comparison between different battery technologies. Table 4.6 summarizes the results for

different model runs corresponding to the costs defined in Table 2.3 on page 31. The PV

cost is kept constant at ckφ = 1400e/kW.

Results are ranked according to the total cost C. For the constant tariff p1 case,

the largest costs correspond to the “Ni-Cd average”, “Li-ion average”, and “Ni-Cd best”

scenarios, respectively, which are the most expensive technologies. These scenarios feature,

additionally, the largest peak component fee Cmax
g and the lowest load factors fload. Lead

acid is the most competitive technology, mainly due to the profit possibilities offered by the

large peak reduction. This fact is clearly reflected in the largest fload factors, resulting from

the comparatively larger battery capacities. The greatest PV investment Cφ corresponds

as well to the lead acid technology scenarios. The relatively high PV value is linked to the

high battery capacity be and transit energy.

The results are similar for the p4 tariff. The biggest average peak reduction is achieved

by the “Lead best” technology, but the larger load factors correspond to the “Lead average”

and “Ni-Cd best” scenarios.

4.4 Computational Details

All optimizations ran on an 8-core Intel(R) Core(TM) i7-3720QM computer. Each proces-

sor core clocks at 2.60GHz. The system has 8Gb of RAM and runs on the GNU/Linux

(kernel 3.x.) operating system.

The stochastic LP was implemented in GAMS [15], using the EMP solver facilities [45].

The analysis period of each LP is 1-year, with hourly resolution. The stochastic version

includes 10 different realizations of the electrical load. The average time per each stochastic

run was 90s. For comparison purposes, the deterministic equivalent (comprising one single

scenario) is executed in 4.4s.

4.5 Summary and Conclusions

This chapter introduced a stochastic LP, aimed at determining the optimal investment in

DSE and PV incurred by a user facing a demand-based electricity tariff. The demand-

based tariff explicitly penalizes both the total energy consumed and the maximum power

on a daily basis. The daily peaks are a mapping of the grid utilization component, i.e. the

network costs that final consumers pay. The mapping between these two components is

not exact, but is an acceptable approximation. For instance, for the 3000 buildings used

to model the aggregate load level, the average error in this approximation was found to be

+5%.
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Scenario be binp boutp φp C Cg Cmax
g Cf

b,e Cm
b,e Cin

b,p Cout
b,p Cφ Trs peak fload

Tariff p1

Ni-Cd average 5.7 1.4 3.6 4.1 6118.8 2364.6 2727.9 316.7 121.3 51.7 127.8 408.6 1655.3 5.0 0.36
Li-ion average 5.8 1.0 4.1 3.7 5982.9 2300.7 2437.9 377.6 174.6 63.8 255.9 372.3 1879.7 4.4 0.38

Ni-Cd best 8.3 2.1 4.5 5.2 5789.5 2322.3 2349.0 331.0 114.1 50.5 109.1 513.5 2851.9 4.2 0.39
Lead average 10.2 1.8 4.9 5.2 5578.4 2265.0 2098.9 177.8 285.0 63.9 171.5 516.1 3421.8 3.8 0.40

Li-ion best 12.4 2.4 6.1 5.5 5204.8 2137.0 1789.3 372.7 135.5 62.4 157.8 550.2 4516.2 3.2 0.40
Lead best 19.4 3.3 6.2 7.0 5103.2 2126.7 1659.1 194.5 191.2 78.2 148.5 704.9 5740.9 2.9 0.42

Tariff p4

Ni-Cd average 7.3 1.7 4.1 4.6 6516.7 2727.1 2526.9 402.4 196.9 62.6 146.3 454.4 2687.0 4.6 0.40
Li-ion average 7.3 1.4 4.6 4.4 6322.7 2458.1 2226.1 475.4 343.8 90.1 289.7 439.4 3701.3 4.0 0.41

Ni-Cd best 10.6 2.7 5.2 5.6 6081.1 2599.4 2149.1 425.2 165.4 64.0 125.3 552.9 4134.0 3.8 0.43
Lead average 13.0 2.4 5.4 5.6 5828.5 2430.2 1923.3 227.6 414.5 83.6 190.5 558.8 4976.3 3.4 0.43

Li-ion best 12.6 3.0 6.1 5.6 5298.3 2133.4 1782.7 378.8 211.9 78.6 158.5 554.3 7065.2 3.1 0.41
Lead best 20.2 3.7 6.1 7.1 5249.6 2200.3 1674.5 201.9 225.4 89.5 147.3 710.5 6769.1 2.9 0.42

Table 4.6: Model evaluation for building b0 and different battery technologies. These technologies are described in Table 2.3
on page 31. All costs and investments are given in e. C is the total cost, Cg is the energy component fee, Cmax

g is the peak

component fee, Cm
b,e is the total cost paid for storing energy, Cf

b,e is the investment in storage capacity, Cin
b,p is the investment

in input power, Cout
b,p is the investment in output power, Cφ is the investment in PV, Trs is the transit energy, peak is the

average peak, and fload is the load factor.
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Tariff components

Energy

φpbinp

Peak

beboutp

Figure 4.14: Relation between the electrical tariff components and the model variables

The model described in this chapter is linear; consequently, superposition techniques like

the OAT methodology can be applied to analyse the model’s sensitivity. Additionally, as

a further consequence of the model’s linearity, changing the costs is equivalent to changing

the electricity prices, provided that the ratio between costs and prices remains constant.

Throughout the experiments presented in this chapter the mean value of the electricity

prices was kept constant.

The model was alternately evaluated under two electricity tariffs, a constant tariff p1,

and a 4-level tariff p4. The constant tariff p1 constitutes a base scenario for comparison

purposes. It allows studying separately the daily peak component in the demand-based

tariff, i.e. illustrating the efficiency of the proposed pricing policy. Tariff p4 is used to

illustrate an additional profit possibility; namely, the possibility to reduce the energy com-

ponent costs. This variability in the price’s energy component can also be viewed as an

additional control mechanism serving the retailer’s profit objectives.

The retailer’s ultimate goal is to have the ability to peak-shave the aggregate load level.

This objective was measured by means of the load factor metrics fload. It was found that

load factors are larger under tariff p4, in part due to the larger peak reduction, but also

due to the increasing importance of the energy component in the final equilibrium. Load

factors were found to decrease with decreasing PV cost, which indicates that despite the

average peak reduction, the difference between the mean and maximum values grows larger

with increasing PV size.

The various experiments and analyses were designed bearing in mind the following

recurrent questions. The subsequent discussion elaborates on the answers.

1. What is the optimal investment in batteries and PV in low exergy (lowEx ) residential

buildings?

2. Is the dimension of a battery element affected by the available on-site generation?

3. Is the idea of deploying DSEs in line with a massive deployment of rooftop PV? Does

it pursue overlapping, complementary, or contradictory objectives?

From the sensitivity analysis and model evaluation results, it can be conjectured that

the different dimension variables can be classified as depicted in Figure 4.14. The battery
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energy capacity be and output power boutp were found to be mainly related to the peak

reduction objective. Similarly, the battery input power binp and the PV power φp were

found to be mainly related to the electricity cost reduction objective. The PV power φp

was found to be the most sensitive variable in the model. There exists a significant influence

of the PV cost ckφ upon the battery input power binp , but the influence of the battery costs

upon φp is comparatively smaller.
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PV

(a) Investment shares, p1
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(b) Battery shares, p1
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Figure 4.15: Investment shares (left) and battery shares (right) for a reference building
and average battery costs (cke = 600, ckp = 240, and ckφ = 1400). Upper plots correspond to
the constant tariff p1 and lower plots to the 4-level tariff p4. Figures on the right are the
split of the battery component within the investment shares. Cg is the energy component

fee, Cmax
g is the peak component fee, Cm

b,e is the total cost paid for storing energy, Cf
b,e is

the investment in storage capacity, Cin
b,p is the investment in input power, and Cout

b,p is the
investment in output power.

Figure 4.15 exemplifies the investment shares structure for an average cost scenario

(cke = 600, ckp = 240, and ckφ = 1400). Figures 4.15a and 4.15c represent the investment

shares incurred under tariffs p1 and p4, respectively. By comparing these two figures, it
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can be inferred that the p4 tariff increases the importance of the energy component, i.e.

the peak component fee Cmax
g decreases in favor of the battery and PV investments.

The most important observation derived from the investment experiments is that the

retailer’s profit decreases by the same amount that users invest in battery and PV. The

overall investment in battery and PV, besides giving users the possibility to reduce costs,

offers the retailer the possibility to control the aggregate load. The main underlying as-

sumption in this dissertation is that the benefit that the retailer can obtain from the

ability to control the load is larger than the profit reduction in the sale of electricity. This

assumption is further analysed in Chapter 5.

Another important observation is that it is necessary to invest both in batteries and PV,

as there is an interplay between the two elements. Nevertheless, the battery component is

more than twice as large than the PV one in the investment shares.

From the p1 tariff results in Figure 4.15, where the only control that users have is the

possibility to reduce the daily peaks, it can be observed than the solution to the problem is

an equilibrium between the energy and peak fees: Cg ≈ Cmax
g . The investment in battery

and PV are the minimum necessary shares to achieve this equilibrium. This equilibrium

was found to have different forms in different experiments. In the scenarios with variable

battery costs, the cost associated with the energy component fee Cg is approximately

constant, while the cost associated with the peak component fee Cmax
g decreases with

decreasing battery costs. The situation was found to be the opposite in the scenarios with

variable PV cost.

Figures 4.15b and 4.15d are the exploded version of the battery share in Figures 4.15a

and 4.15c, respectively. They illustrate how the battery investment is split into different

components. The investment in battery capacity Cf
b,e claims the largest share, approxi-

mately one half. It is followed by the investments in output power Cout
b,p and transit energy

Cm
b,e. This is the situation in the p1 case, where the peak reduction is the primary objective.

In the p4 case, as the two tariff components come closer in importance, Cm
b,e becomes larger

than Cout
b,p . The investment in battery input power Cin

b,p claims always the lowest share.

This fact indicates that contrary to a battery usage driven only by the volatility in the

price signal, under the price structure proposed in this dissertation, the battery is used as

an energy to power buffer. Energy is slowly stored in the battery and rapidly released at

the critical peak hours. The size of the battery input power depends on the volatility, i.e.

the standard deviation, of the price signal’s energy component.

Finally, in the comparison between different battery technologies, lead-acid was found

to be the most competitive one. The comparatively larger amounts of installed battery

capacity and peripherals result in larger peak reductions. The less competitive technology

is Ni-Cd, mainly due to the high costs and low efficiency. Li-ion batteries were assumed

a priori to be the default technology, motivated mainly by the market situation, and the

greater compactness and versatility provided by this technology.
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Chapter 5

Battery and PV Selection Model,
the Retailer’s Perspective

T
he equilibrium presented in the previous chapter is entirely determined by the

battery and PV costs, the structure of the electrical load, and the users’ reaction to

the pricing policy. The pricing policy introduced by the retailer is effective, in that

it reduces the maximum peak. However, even though the retailer is the policy maker, it

lacks a mechanism to directly control the final electricity profile. In the model studied in

the previous chapter, it is implicitly assumed that from the retailer’s perspective, the peak

reduction is worth the decrease in profit. In that model, the profit reduction in the sale

of electricity depends on the equilibrium conditions only and cannot be influenced by the

retailer, simply because the retailer’s controls are not modelled.

This chapter is an attempt to explicitly account for the retailer’s objectives and view-

point. The mathematical model presented in this chapter provides an extra level of control

that allows the retailer to impact the final equilibrium. This extra level of control is

achieved by superimposing additional control signals on the price vectors. The resulting

problem is a hierarchical optimization, or BLP, which is reformulated as an NLP.

This chapter is organized as follows: Section 5.1 addresses the reduction of the problem’s

time horizon; the model presented in Chapter 4 has to be simplified in order to reduce the

number of variables and equations. Section 5.2 explores the retailer’s profit possibilities.

The BLP is defined in Section 5.3, and some details on its solution are illustrated in

Section 5.4. Section 5.5 is dedicated to discussing the results. Section 5.6 provides a brief

description of the computational issues. This chapter concludes with the summary and

conclusions in Section 5.7.

5.1 Clustering

The model presented in Chapter 4 is an LP, which is relatively easy to solve, even in its

stochastic form. This kind of problem can be scaled up to millions of variables and millions

of constraints [29]. Conversely, the problem presented in this chapter is an NLP, which can

be solved up to a few thousands of variables and constraints, provided it does not contain

binary variables, in which case it is hard to solve and requires the use of decomposition

83
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techniques [29].

Ideally, the BLP formulation should implement a structure in which the retailer is

the leader, or upper level player, and each building is a follower, or lower level player.

If the time horizon of model (4.1) is preserved (8760h), this formulation would result in

approximately 70000 · n additional variables and 36000 · n additional equations, where n is

the number of buildings. If the number of buildings is n > 500, it can be easily inferred

than the resulting NLP is hard to solve and becomes intractable.

The clustering methodology pursues a twofold objective. On one hand, we are interested

in representing a large number of buildings — n > 500 — without explicitly modelling

each. On the other hand, the problem’s time horizon has to be compressed, in a way

that the resulting NLP can be solved without recurring to decomposition techniques. The

compressed problem, however, has to be representative of the original one, encapsulate its

temporal and structural characteristics, and conduct to approximately the same results.

All in all, the clustering procedure consist in: first, reducing the number of days τd in

the analysis to a smaller number that still encapsulates the year dynamics. And second,

representing the total number of buildings in a simplified way.

We start by running model (4.1) for each of 700 buildings in a random subsample, which

is extracted from the 3000 buildings that were simulated to model the prices in Chapter

3. This number of buildings is large enough to be representative of the aggregate pattern

resulting from the distributions depicted in Figure 3.10 on page 49. The stochastic LP’s

results for each of the 700 buildings, for an average cost scenario1 and under the 4-level

tariff described in Section 4.3, are summarized in Figure 5.1. Figure 5.2 indicates that the

total electricity consumption without considering DHW production is the best predictor

for the model’s variables. These first results constitute the reference scenario against which

the clustering approach will be compared.

As it is not possible to represent each building individually in the BLP formulation, we

approximate the 700 buildings as a single superbuilding, whose load is the summation of

all individual buildings’ loads. All individual vectors are added linearly. The total solar

radiation Ee is the average of all radiation series, weighted by the respective buildings’

areas. Table 5.1 contrasts the results between the individual building model evaluation

and the aggregate one.

It can be observed that the aggregate equivalent constitutes a conservative represen-

tation of the individual building evaluations. The magnitude of all dimension variables is

approximately one half in the aggregate version. On the other hand, the cost structure

is accurately preserved. Variables C, Cg, and Cmax
g are very similar in all scenarios. It

is possible to exploit the relation between the different variables and the total consumed

electricity, illustrated in Figures 5.2, to bring these variables closer to the reference case.

The aggregation can be split into different building categories, each one corresponding to

a different range, e.g., the quantiles of the electrical load distribution. On the whole, the

1cke = 650,ckp = 315, and ckφ = 1400 e; and γ = 7000, ηd = ηc = 0.92.
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Figure 5.1: Model (4.1) evaluation results for a 700-building subsample

Scenario be binp boutp φp C Cg Cmax
g

MWh MW MW MW ke ke ke

Individual 2.88 0.52 1.88 1.38 2206.4 824.8 777.6
Aggregated stochastic 1.56 0.28 0.98 1.53 1907.1 840.7 648.3
Aggregated average 1.50 0.27 0.95 1.52 1901.2 844.0 647.7

Table 5.1: Comparison between the 700 buildings’ individual and aggregate model evalua-
tion results
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DHW preparation
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approximation given by the aggregate superbuilding is considered acceptable and is used

in the following analyses. We use the average approach, as there is not significant differ-

ence between the stochastic and the average case. The average case is the deterministic

evaluation of the average of all stochastic scenarios.

The second part of the clustering procedure consists in the reduction of the problem’s

time horizon. The dimension of the different variables in model (4.1) is determined by

the price dynamics and the load structure. As several days feature similar price and

load patterns, there is redundant information that can be removed. Some days are more

important than others in contributing to determine the decision variables. The classification

and subsequent reduction of the time horizon is based on the results and not on the input

vectors. The ranking is carried out using the aggregate superbuilding described above.

Model (4.1) is run over 21 cost scenarios, first for the total length (τd = 365), and then for

each individual day. The results of each run are the same 7 variables presented in Table

5.1. The whole procedure results in 366 time series, one for the total length, referred to as

reference series, and one for each individual day. Each series has a length of 21 scenarios×

7 variables = 147 items. Each of the per-day 365 series is compared against the reference

series using the Euclidean distance. The selected days are those for which the quadratic

errors are the smallest. We found that the 7 most significant days are enough to encapsulate

the dynamics found in the whole year. In the subsequent analysis, the 10 most significant

days are used. The selected days are depicted in Figure 5.3.
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Figure 5.3: Clustering results. The selected days encapsulate the whole year dynamics.
The vertical lines represent the division between the different seasons.

Summing up, the 700 buildings used in the analysis are represented by an equivalent

superbuilding consisting of the aggregate load, and the time horizon is reduced from τd =

365 to τd = 10, resulting in vectors of length 10 × 24 = 240. The modified discontinuous

set D is redefined as D = d3, d23, d31, d73, d80, d83, d84, d85, d351, d357.
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5.2 Retailer’s Profit Possibilities

In order to incorporate the retailer’s viewpoint in the equilibrium construction, it is nec-

essary to identify its profit possibilities and to model its objective function. This section

explores different revenue possibilities and proposes an objective function.

Modelling the retailer’s profit function implies making assumptions and estimations

about its profit margin. This section does not provide a detailed analysis of the retailer’s

objective function, but a mere approximation that attempts to represent its goals and

revenue possibilities. The availability of electrical storage results in several benefits for

the retailer and, overall, for the electrical system. Among others, these benefits include:

avoided distribution outages, deferred transmission and distribution investments, produc-

tion cost saving, avoided capacity investments, line loss savings, avoided energy cost at the

wholesale market, grid security and reliability, and power system adequacy [17].

Contrary to the final electricity consumers, who can react to the electricity prices and

accommodate their consumption accordingly, the retailer has to make bids at the wholesale

market and agree in advance on the amount of energy traded and the corresponding price.

The retailer trades energy at two different markets: it buys electricity at the wholesale

market, and sells electricity to the final consumers.

There are two main drivers shaping the retailer’s revenues. The first one is the benefit

derived from the sale of electricity. As users react to the retailer’s prices, the retailer’s

objective is concerned with reducing the gap between the cost at the wholesale market and

the profit reduction in the sale of electricity. This reduction is the consequence of the user’s

investment in DSEs and PV. The second driver encompasses all possible benefits derived

from the ability to peak-shave the load, which amounts to assigning a value to the overall

peak reduction.

In order to represent the gap between the retailer’s costs and revenue, it is necessary

to model the cost paid by the retailer at the wholesale market. We assume that the

retailer pays a price that is proportional to the electricity consumed. In this approach, the

merit order curve is modelled as an affine function of the consumed power. The resulting

cost is then a quadratic function of the total electricity consumption. If the prices are

normalized to their mean value, the function’s slope is irrelevant. Following this approach

and considering the 700 buildings described in the previous section, the difference between

the costs at the wholesale market and the price paid by the users, if no investment in PV

and DSEs is incurred, is 3.4%. This number, which is equivalent to a profit of 83e/MWh,

is in line with the figures reported in [24].

Assigning a value to the peak reduction is less straightforward. The electrical grid is

a complex and highly interconnected system; it is very difficult to identify a unique figure

that characterizes the marginal cost of enhancing the installed capacity. There does not

exist a figure in e/kW expressing the cost of deferring the grid expansion investments.

Nevertheless, the benefit of future transmission investment deferrals can be approximated.
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For instance, it is possible to approximate this cost using the average annual transmission

costs, as suggested in [17]. We implement this latter approach.

Summing up, the retailer’s objective function consist of two terms. 1) The maximization

of the difference between the revenue and the costs, and 2) the minimization of the overall

peak.

5.3 Model Formulation

A model simultaneously accounting for the retailer’s and users’ objectives has the hierar-

chical BLP structure described in Section 2.7. The upper level represents the retailer’s

objectives and the lower levels represent the final consumers’ perspective. Each level influ-

ences the outcome of the other level. The lower level is equivalent to the model studied in

Chapter 4. This section describes the resulting BLP’s topology.

The lower level problem has identical structure with model (4.1). The notation is

slightly different though. The notation is modified to distinguish each follower’s variables

sets from one another. Each follower has its own and unique sets of variables. In order

to differentiate the variables pertaining to each follower, the subscript ω is introduced.

This subscript uniquely labels the variables according to the follower to which they belong.

ω ∈ {1, 2, · · · , nLL}, where nLL is the number of followers. For instance, vector xg,1 defines

the electricity withdrawn from the grid by follower 1. Equations (4.1) are recast in the

form of (5.1), where the new notation is incorporated. The scalars and vectors involved in

the definition of (5.1), despite the extended ω-notation, are the same defined in Tables 4.1

and 4.2. The ω subscript simply defines different instances of those variables sets for each

follower.

min
χ∗

ω

dτd
∑

d=d1

h24
∑

h=h1

cgixgi,ω +

dτd
∑

d=d1

cmax
gd

· κdg,ω +
1

2
cmbe

dτd
∑

d=d1

h24
∑

h=h1

(xinbi,ω + xoutbi,ω
)

+ τd
(

cfbebe,ω + cfbpb
in
p,ω + cfbpb

out
p,ω

)

+ τd · c
f
φ · φp,ω

(5.1a)

subject to

be,ω − bsoci,ω ≥ 0, ∀bsoci,ω ∈ bsoc,ω (5.1b)

bsoci,ω − bmin
soc · be,ω ≥ 0, ∀bsoci,ω ∈ b0̄

soc,ω (5.1c)

bsoci,ω − bmin
soc · be,ω = 0, ∀bsoci,ω ∈ b0

soc,ω (5.1d)

xoutbi,ω
= 0, ∀xoutbi,ω

∈ xout0

b,ω (5.1e)

binp,ω − ξxinbi,ω ≥ 0, ∀xinbi,ω ∈ xin
b,ω (5.1f)

boutp,ω − ξxoutbi,ω
≥ 0, ∀xoutbi,ω

∈ xout
b,ω (5.1g)

xoutbi,ω
+ φa,ωEei,ω + xgi,ω − xinbi,ω − xli,ω ≥ 0, (5.1h)
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∀xgi,ω ∈ xg,ω, ∀x
in
bi,ω

∈ xin
b,ω, ∀x

out
bi,ω

∈ xout
b,ω , ∀xli,ω ∈ xl,ω, ∀Eei,ω ∈ Ee,ω

∆bsoci,ω − bηcx
in
bi,ω

+
1

bηd
xoutbi,ω

= 0, ∀bsoci,ω ∈ b+1
soc,ω, ∀x

in
bi,ω

∈ xin+1

b,ω , ∀xoutbi,ω
∈ xout+1

b,ω (5.1i)

φp,ω − ξφa,ωEei,ω ≥ 0, ∀Eei,ω ∈ Ee,ω (5.1j)

κdg,ω − ξxdgj ,ω ≥ 0, ∀κdg,ω ∈ kd
g,ω, ∀x

d
gj ,ω

∈ xd
g,ω, ∀x

d
g,ω ∈ x∆

g,ω (5.1k)

be,ω ≥ 0, binp,ω ≥ 0, boutp,ω ≥ 0, φa,ω ≥ 0, φp,ω ≥ 0 (5.1l)

xoutbi,ω
≥ 0, ∀xoutbi,ω

∈ xout0̄

b,ω ; xinbi,ω ≥ 0, ∀xinbi,ω ∈ xin
b,ω; xgi,ω ≥ 0, ∀xgi,ω ∈ xg,ω (5.1m)

Leader

min
χUL

fUL(χUL, χLL
1 , χLL

2 , · · · , χLL
nLL

)

subject to gUL(χUL, χLL
1 , χLL

2 , · · · , χLL
nLL

) ≤ 0

Follower 1

min
χLL
1

fLL
1 (χUL, χLL

1 )

subject to (5.1b)− (5.1m), for ω = 1Follower 2

min
χLL
2

fLL
2 (χUL, χLL

2 )

subject to (5.1b)− (5.1m), for ω = 2Follower nLL

min
χLL
nLL

fLL
nLL

(χUL, χLL
nLL

)

subject to (5.1b)− (5.1m), for ω = nLL

Figure 5.4: Bilevel program (BLP) structure

The retailer’s controls are given by set χUL, and the followers’ controls by sets χLL
ω .

χLL
ω = {xg,ω,x

in
b,ω,x

out
b,ω ,k

d
g,ω,bsoc,ω, be,ω, b

out
p,ω, b

in
p,ω, φa,ω, φp,ω}, ω ∈ {1, 2, · · · , nLL}

χUL = {cUL
g , cUL,max

g }

The resulting BLP has to have the structure depicted in Figure 5.4. The retailer

plays the leader role and can influence the users’ outcome by modifying the χUL controls.

This ability to influence the resulting equilibrium, which model (4.1) lacks, is achieved by

extending the price signal definition. Vectors cUL
g and c

UL,max
g are superimposed on the

price’s energy and peak components, respectively, as illustrated in (5.2). The new prices,

c′′g for the energy component and cmax′′
g for the daily peaks, are passed down to the final
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consumers.

Table 5.2 summarizes the additional components added on top of the price signals.

Vector cUL
g,∆ is the clustered-by-day subset of hourly prices in the additional price’s energy

component cUL
g ; cUL

g,∆ ⊆ cUL
g . All the elements in cUL

g,∆ are of length 24. Each of the vectors

in cUL
g,∆ is denoted cUL

g,d , where the additional subscript d indicates the corresponding day.

For instance, cUL
g,d3

is the vector containing the 24 prices for day d3.

Description Symbol Set {·} Units

Extended prices (energy component) c′′g Ω c′′gi e/kWh

Extended prices (peak component) cmax′′
g D cmax′′

gd
e/kW

Additional prices’ energy component cUL
g Ω cUL

gi
e/kWh

Additional prices’ peak component c
UL,max
g D cUL,max

gd e/kW

Additional prices’ energy component per days cUL
g,∆ D cUL

g,d e/kWh

Additional prices’ energy component for day d cUL
g,d H cUL

gj ,d
e/kWh

Table 5.2: Additional vectors in the retailer’s extended price formulation. These signals
can be positive or negative.

.

c′′gi = cgi + cUL
gi

, ∀c′′gi ∈ c′′g , ∀cgi ∈ cg, ∀c
UL
gi

∈ cUL
g (5.2a)

cmax′′

gd
= cmax

gd
+ cUL,max

gd
, ∀cmax′′

gd
∈ cmax′′

g , ∀cmax
gd

∈ cmax
g , ∀cUL,max

gd
∈ cUL,max

g (5.2b)

The extended prices are incorporated into the resulting BLP formulation given by (5.3).

max
χUL

−
1

xg,Ω

dτd
∑

d=d1

h24
∑

h=h1

(

nLL
∑

ω=1

xgi,ω

)2

+

dτd
∑

d=d1

h24
∑

h=h1

nLL
∑

ω=1

c′′gixgi,ω +

ξ

dτd
∑

d=d1

nLL
∑

ω=1

cmax′′

gd
·maxxd

g,ω −

ξ · ι ·maxxg,Ω

(5.3a)

subject to
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h24
∑

j=h1

cUL
gj ,d

= 0, ∀cUL
g,d ∈ cUL

g,∆ (5.3b)

dτd
∑

d=d1

cUL,max
gd

= 0 (5.3c)

cUL
gi

+ cgi ≥ 0, ∀cUL
gi

∈ cUL
g , ∀cgi ∈ cgi (5.3d)

cUL,max
gd

+ cmax
gd

≥ 0, ∀cUL,max
gd

∈ cUL,max
g , ∀cmax

gd
∈ cmax

g (5.3e)
∣

∣cUL,max
gd

∣

∣ ≤ ρmax, ∀cUL,max
gd

∈ cUL,max
g (5.3f)

∣

∣cUL
gi

∣

∣ ≤ ρ, ∀cUL
gi

∈ cUL
g (5.3g)
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)
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f
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min
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LLnLL

dτd
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d=d1

h24
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h=h1

c′′gixgi,nLL
+

dτd
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d=d1

cmax′′
gd

· κdg,nLL

+1
2c

m
be

dτd
∑

d=d1

h24
∑

h=h1

(xinbi,nLL
+ xoutbi,nLL

)

+τd
(

cfbebe,nLL
+ cfbpb

in
p,nLL

+ cfbpb
out
p,nLL

)

+ τd · c
f
φ · φp,nLL

subject to

(5.1b)− (5.1m), for ω = nLL

(5.3i)

Equation (5.3a) is the objective function introduced in Section 5.2. The first term in

this equation represents the total cost paid by the retailer at the wholesale market. The

quantity xg,Ω, defined in (5.4), is the ratio between the aggregate electricity consumption’s

mean value and the prices’ average. The second and third terms are the revenue obtained

from the sale of electricity, they account for the energy and power components, respectively.

The fourth term is the cost associated with the maximum peak, and is used to estimate

the benefit resulting from the overall peak reduction. xg,Ω is the aggregate load vector,

whose elements are defined as xgi,Ω =
nLL
∑

ω=1
xgi,ω. The peak value factor ι is approximated

as the average grid utilization component costs: ι = 14 × (1 − α) × 0.2[e/kW], where 14

represents the average network costs and 0.2 is the average electricity price. The average
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network costs are calculated using the total load levels defined in Section 3.5.

xg,Ω =

dτd
∑

d=d1

h24
∑

h=h1

nLL
∑

ω=1
xgi,ω

τd · 24 · 0.2e/kWh
(5.4)

Equations (5.3b) and (5.3c) impose the constraint that the signals modulated on top of

the price’s energy and power components have mean value 0. The idea of these constraints

is to preserve the equilibrium structure and avoid that the retailer abuse the price controls.

Equations (5.3d) and (5.3e) ensure that the price’s energy and power components are

always positive. These constraints are intended to preserve the feasibility of the follower’s

dual formulation (see Section 5.4). Equations (5.3f) and (5.3g) set upper and lower caps

on the additional superimposed price signals. The caps are chosen to be approximately

two standard deviations of the respective signal, i.e ρ = 1.0 × α × 0.2 [e/kWh] and

ρmax = 4.0 × (1 − α) × 0.2 [e/kW]. Finally, (5.3h)-(5.3i) represent the BLP’s followers

defined in (5.1) and described in detail in Chapter 4.

5.4 Model Solution

Contrary to model (4.1), model (5.3) cannot be routinely solved. The model has to be first

transformed. As explained in Section 2.7, we opted for an approach in which the followers

are replaced by their dual representations and strong duality condition [29,35,36]. In order

to obtain the dual representation, it is convenient to write the followers in their canonical

matrix form, as illustrated in Tables 5.3 and 5.4. Essentially, the dual formulation is

obtained by transposing the matrix depicted in Table 5.3.

The followers in the BLP formulation can be used to represent different building cate-

gories, or to account for uncertainty [29]. We implement a single follower, obeying mainly

computational issues (see Section 5.6), but also because it was found that the PV value is

underestimated when several followers are considered. Uncertainty is indirectly taken into

account, as the vectors passed to the model are the average of all stochastic scenarios, and

the load itself is the summation of all buildings’ loads. As it can be appreciated in Table

5.1, the aggregate superbuilding’s stochastic and average solutions are virtually equivalent.

The resulting model is an NLP that for the size resulting from the reduced time horizon

can be routinely solved.

5.5 Experiments and Results

This section summarizes the main findings and results following the BLP’s evaluation. The

main focus of this section is on illustrating the retailer’s ability to influence the equilibrium

conditions.
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Table 5.4: Matrix representation of Equations (5.1k)

Scenario ρ ρmax ι
e/kWh e/kW e/kW

Scenario 1 0.0 0.0 0.0
Scenario 2 0.1 0.4 0.0
Scenario 3 0.1 0.4 0.7
Scenario 4 0.1 0.4 1.4
Scenario 5 0.1 0.4 2.1
Scenario 6 0.15 0.4 1.4
Scenario 7 0.1 0.6 1.4
Scenario 8 0.15 0.6 1.4

Table 5.5: Evaluation scenarios for model (5.3)

In order to study the effect of the retailer’s controls on the final equilibrium, we define

the 8 scenarios presented in Table 5.5. All scenarios correspond to an average cost: cke =

650, ckp = 315, and ckφ = 1400; and γ = 7000, ηd = ηc = 0.92. Scenario 1 is the reference

scenario. In this scenario, the retailer’s controls are disabled and no value is assigned to

the peak reduction. In Scenario 2, the retailer’s controls are enabled, but no value is given

to the peak reduction objective. In Scenarios 3-5, the retailer’s controls are enabled and a

value is assigned to the peak reduction; each scenario features a different peak reduction

value. Scenarios 6-8 keep the peak value constant and vary the cap on the price’s energy

and peak components. The cap values are incremented by 1σ.

Scenario 1 is supposed to resemble the LP formulation. This fact is confirmed by

comparing the investment shares resulting from this scenario with the LP’s evaluation. This

comparison is depicted in Figure 5.5, where both the complete and reduced LP versions

are included.

The results for the scenarios defined in Table 5.5 are presented in Figures 5.6 and
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Figure 5.5: Comparison between the total length LP problem, the reduced LP problem,
and the BLP without additional controls.

Profit

LL UL ∆ C Cg Cmax
g Cf

b,e Cm
b,e Cin

b,p Cout
b,p Cφ Peak↓

Scenario ke ke % ke % % % % % % % %

1 42.2 47.1 -10.4 54.1 43.7 34.3 6.2 5.7 1.0 2.7 6.3 32.9
2 46.5 48.6 -4.5 54.9 46.5 38.1 3.8 3.2 1.1 2.1 5.2 25.9
3 43.5 45.7 -4.9 54.8 44.1 35.3 5.5 4.3 1.7 2.5 6.5 31.5
4 44.0 46.2 -4.8 54.8 44.5 35.8 5.3 3.9 1.4 2.5 6.6 30.9
5 44.3 46.6 -5.1 54.9 44.9 35.8 5.1 3.8 1.5 2.7 6.2 33.5
6 44.4 46.3 -4.0 54.9 44.3 36.7 4.6 3.7 1.4 2.5 6.7 27.7
7 44.6 46.5 -4.0 54.8 44.4 37.0 4.7 3.4 1.0 2.2 7.3 31.6
8 44.4 46.0 -3.5 54.8 43.7 37.4 4.3 3.5 1.0 2.3 7.8 28.7

Table 5.6: Results of the scenarios presented in Table 5.5. All Costs are expressed as
percentages of the total cost C. Peak↓ is the peak reduction.

Table 5.6. LL represents the total electricity fee paid by the final consumers, i.e. the

retailer’s revenue, UL represents the retailer’s costs at the wholesale market, and ∆ is

the difference between them, i.e. the retailer’s profit. The different investment shares are

defined in Section 4.3.5. Figure 5.6a summarizes the investment shares incurred by the

final electricity consumers (lower level players). Figure 5.6b presents the costs incurred by

the retailer at the spot market, i.e. the upper level player’s costs, and the revenue obtained

from the sale of electricity, i.e. the lower level player’s costs. Figure 5.6c describes the

overall peak reduction achieved across the different scenarios.

The total investment in DSE and PV incurred by the users is more or less constant across

the scenarios, evidencing that the solution is indeed an equilibrium. The only exception is

Scenario 2, where no value is assigned to the peak reduction and the total investment is
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Figure 5.6: Results for the BLP (5.3) evaluation under the scenarios defined in Table 5.5
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correspondingly lower. Scenario 2 features, as expected, the lowest peak reduction. The

effect of the retailer’s control on the user’s costs can be appreciated by comparing Scenario

1 to the other scenarios in Figure 5.6b. The difference between the upper level cost and

the low level revenue becomes smaller when the superimposed controls are introduced on

top of the prices. In the scenarios with constant price caps and varying peak value, i.e.

Scenarios 3-5, the investment shares remain approximately constant, while the upper and

lower level costs increase proportionally to the peak value. The peak reduction does not

increase linearly with the peak reduction value ι even though a larger peak reduction is

evident in Scenario 5. Scenarios 6-7 are to be compared with Scenario 4. The peak value ι

is kept constant, and the price caps —ρ and ρmax— are increased. The overall observation

of these three scenarios evidences an increment in the cost paid by the users, i.e. higher

LL revenue in Figure 5.6b, and a larger PV share Cφ in Figure 5.6a. The increment in Cφ

seems to be proportional to the increment in the price’ peak component cap ρmax.

5.6 Computational Details

All optimizations and scripts ran on an 8-core Intel(R) Core(TM) i7-3720QM computer.

Each processor core clocks at 2.60GHz. The system has 8Gb of RAM and runs on the

GNU/Linux (kernel 3.x.) operating system.

The NLP was implemented in GAMS [15]. The analysis period of each NLP is 10-day,

with hourly resolution. The average time per run was between 1.2 and 5min, depending

on the input parameters.

The BLP is reformulated as an NLP by replacing the followers by their dual represen-

tation and strong duality equation. Building the dual matrix, which is the transpose of

the matrix displayed in Table 5.3, is error prone due to the large matrix’s size: 1921× 975.

We tackled this problem by creating a python [55] script that automatically generates the

GAMSmodels describing each follower. This approach is validated by comparing the primal

and dual solutions, which were found to be identical. By the theory of linear programming,

the primal and the dual solutions are identical, unless the problems are unfeasible [60].

We opted for modelling the aggregate consumption as a single follower, obeying mainly

the long time that takes to solve the BLP with more than one follower. For instance,

solving the BLP for two followers takes 45 min per run.

5.7 Summary and Conclusions

This chapter extended the results presented in Chapter 4 to incorporate the retailer’s view-

point. The retailer’s perspective is accounted for by introducing a new control mechanism,

which allows the retailer to influence the final equilibrium’s outcome. The new problem’s

dynamics results in a hierarchical BLP formulation.
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In a preparatory step, the data size and time horizon had to be reduced. The 700-

building subsample used in the analysis is represented by an equivalent superbuilding con-

sisting of the aggregate load. Our assumptions regarding the individual building modelling

are inferred based on the aggregate scenario. We used the average deterministic equivalent,

which was found to have very similar results with the stochastic representation. The time

horizon was reduced to a lower number of days that still encapsulate the dynamics of the

whole year. The reduced time horizon comprises winter days mainly. Interestingly, some of

them are located at the very threshold between winter and spring, and autumn and winter.

The most important assumption in this chapter is regarding the costs incurred by the

retailer at the wholesale market. We assumed that the wholesale market prices are an

affine function of the electricity transacted, which results in a quadratic cost function.

The retailer’s objective consists in the overall peak reduction, plus the reduction of the

gap between the costs at the wholesale market and the revenue obtained from the sale of

electricity to the final consumers. The maximum peak reduction objective accounts for all

benefits resulting from the ability to peak-shave the aggregate load level.

The additional controls that the retailer can use to influence the final equilibrium are

zero-mean capped signals, superimposed on top of the price vectors.

We presented 8 different scenarios to evaluate the effect of the additional controls.

When no investments are incurred by the users, the quadratic cost approach results in a

3.4% profit for the retailer, which is similar to the profits reported for retailers in countries

such as Germany and Norway [24]. Once the users invest in DSEs and PV to reduce their

costs, the retailer’s profit decreases to −10.4%. The additional controls provided in the

BLP formulation allow the retailer to increase this profit up to −3.5%.

By and large, we found that the cluster methodology used to reduce the problem’s

complexity is effective in that it captures the structure of the complete problem and leads

to very similar results. The scenarios used to evaluate the BLP’s outcome illustrate the

effectiveness of the retailer’s controls in bringing the equilibrium closer to the retailer’s

interests.
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Chapter 6

Final Conclusions and Remarks

T
he challenges appearing at the interface between the buildings and the electrical grid

are not only in regard to the availability of generation resources, but to the stringent

timing imposed by the supply-demand balance, and the limited capacity of the

transmission and distribution infrastructure. The only way to decouple the consumption

from the grid’s operational conditions without affecting users’ habits and comfort levels

is by introducing electrical storage. This thesis presented a distributed electricity storage

strategy consisting of three milestones. 1) The proposition of a pricing policy. 2) The

extrapolation of the 2Sol building paradigm to the aggregate view of a community, and

3) the formulation of mathematical models aimed at determining the optimal battery and

PV investments.

The pricing policy introduced in this dissertation is effective, in that users confronted

to it, conforming with the principles of rational economic behavior, decide to invest in a

DSE and PV in order to reduce their costs. The demand-based electricity tariff, and the

users’ reaction to it result in an equilibrium, in which the users’ and retailer’ objectives,

namely cost minimization and peak reduction, respectively, are met. Provided that the

overall peak reduction is worth the profit reduction perceived by the retailer in the sale

of electricity, the equilibrium is beneficial for both the retailer and the final electricity

consumers.

The two-component electricity tariff’s effectiveness was assessed by introducing a ref-

erence tariff with constant energy component. This tariff evidenced the importance of

splitting and separately accounting for energy and power. The mere differentiation of

these two products creates a scenario that is propitious for the adoption of DSEs and PV.

The reference constant tariff was compared against a 4-level tariff, which illustrates the

second profit possibility, namely the possibility of reducing the energy component costs.

A variable tariff’s energy component provides a more versatile control signal. This 4-level

tariff was exploited in the model that considers the retailer’s perspective. This model re-

vealed that the retailer can use the prices as a control signal, and influence, but not entirely

determine, the final equilibrium’s outcome.

The four variables sized in the model, namely PV size and battery energy capacity, input

and output power can be classified in two main categories. If the variables contribute to

reducing the energy component, they are referred to as energy variables. Analogously, if
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the variables contribute to mitigating the maximum peak, they are referred to as power

variables. The battery energy capacity and output power belong to the former, and the PV

power and the battery input power to the latter category. This division was established by

analysing the sensitivity of the parameters to the relative weights between the tariff’s energy

and the peak components. Battery and PV are interdependent upon each other. There

exists a significant influence of the PV cost upon the battery input power. The models’

results evidence that both battery and PV are necessary, but the battery investment was

found to be consistently larger than for PV.

The equilibrium between the fee paid for the energy and peak components was found

to have different forms under different conditions. When the battery costs are varied,

while the PV costs are fixed, the fee paid for the energy component remains approximately

constant, while the fee associated with the peak decreases with decreasing battery costs.

On the other hand, when the battery costs are kept constant, while the PV costs vary,

the situation is the opposite. This fact again evidences the coupling between PV and the

reduction in the energy component, or the inefficacy of the PV at actively controlling the

peak.

In the first model, formulated from the user’s perspective, the tariff alone provides equi-

librium conditions. The investments in battery elements and PV constitute the necessary

incurred costs to achieve this equilibrium. The retailer’s objective of reducing the peak

is automatically attained, at expenses of a profit reduction in the sale of electricity. The

retailer perceives a profit reduction in the sale of electricity proportional to the investment

incurred by the users. When users invest between 20% and 25% of the total cost in bat-

teries and PV, the retailer achieves 15% and 20% peak reductions under the constant and

4-level tariffs, respectively.

When the retailer objectives are specified and the two players simultaneously taken into

account in the equilibrium construction, the investment shares are similar. However, the

retailer can use the electricity prices to influence the final equilibrium. In this model, the

cost paid by the retailer at the spot market was approximated by a quadratic function. In

the base scenario, when no DSEs or PV are deployed, the difference between the retailer’s

costs and revenue is approximately between +3% and + 4%, that is, the retailer obtains

a 3% to 4% profit for delivering electricity to the final consumers. However, users facing

the demand-based tariff decide to invest in battery and PV. When the retailer exerts no

control upon the energy and power prices, the difference between the price paid at the spot

market and the revenue obtained from the demand-based tariff is approximately -10.5%,

that is, the investment incurred by the users, between 20% and 25%, results in a negative

profit for the retailer. The introduction of a superimposed signal in both the energy and

power tariff components allows the retailer to mitigate this negative profit and decrease

it to -4.0%. The underlying assumption is that this profit reduction is acceptable if the

benefit derived from the overall peak reduction is more valuable.

As the equilibrium resulting from the distributed adoption of DSEs and PV can accrue
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benefits for both the final electricity consumers and the retailer simultaneously, it can be

concluded that it is advantageous for society. Relying on a distributed electrical storage

capacity for grid regulation provides a previously non-existent level of controllability.

The electrical system seems to be following the path of the telecom companies, in

that it is likely that it converges to a scenario in which users are charged for power and

not for energy. This dissertation contributes to paving the path in that direction, by

providing an active and efficient mechanism to differentiate and individually control two

variables; namely, energy and power. The demand-based electricity tariff introduced in

this dissertation provides two superimposed control dimensions, an hourly and a seasonal

one.

Buildings are not isolated entities, they feature very many interfaces with larger and

more complex systems. The analysis and planning of the building’s exergetic performance

necessarily has to include these boundaries, especially when the ultimate goal is to mitigate

the environmental impact of buildings upon the largest system under consideration: the

Earth. The boundary condition considered in this dissertation is the one between the

buildings and the electrical grid. The challenges appearing at this interface are mainly

associated with the timing and magnitude of the aggregate consumption. This dissertation

showed —controverting the idea of a policy fostering a massive and general deployment of

rooftop PV— that an orchestrated deployment of DSEs and rooftop PV, together with a

power-aware pricing policy, can bring technical and economic benefits to society.

6.1 Implications of the Results and Findings for the 2Sol

System

The 2Sol system strives to secure the provision of the building’s thermal load without

increasing the instantaneous electrical power by more than 10-15% [43]. This dissertation

showed that a lowEx community can achieve this objective. The power addition can be

actually 0, or even negative. The HPs can be scheduled in such a way that their operation

does not exacerbate the maximum peak already imposed by the building. Once a DSE has

been integrated, the maximum power withdrawn by the building is considerably lower. The

electrification of the heating and cooling systems is expected to impact the electrical system

in terms of the additional energy required, but not in terms of the required instantaneous

power. Tackling the energy problem requires enlarging the boundary condition to consider

a global perspective.

The implicit assumption regarding the self-consumption of the PV electricity has im-

portant consequences for the distribution grid planning and operation. This assumption

also raises important questions in regard to the building operation; namely, how to better

utilize the battery and PV when, from the user’s perspective, they are idle. The DSE and

PV could be used, even during vacation periods, to inject heat into the MBHE.
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6.2 Future Work

There are several ways in which this dissertation can be continued or enhanced. This section

is very brief and is by no means exhaustive of the list of possibilities. The BLP’s formulation

and solution offer a large potential. The problem could be extended to represent a larger

variety of buildings’ characteristics, weather patterns, occupancy regimes, or operational

conditions. The use of advanced solution methods, like decomposition techniques, might

also be advisable. The single aspect that requires more attention is the modelling of the

retailer’s profit. The simulation of occupancy is another aspect that has to be further

developed and validated with real data. Another important aspect is the definition of the

ownership structure. Who owns the battery and PV? Who owns the electricity meter?

And other similar questions. Similar to the latter topic is the definition of the electrical

connection between the battery and the mains, the necessary power electronics, algorithms,

and so forth. The models presented in this dissertation can be incorporated in larger

systems; for instance, systems comprising representations of the electrical grid and district

facilities.

The price scheme used in this dissertation does not consider the impact of renewables

in the merit order curves. More elaborated price structures can be developed that better

reflect the real market and electrical system conditions.
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Appendix A

Load Generator Thermal Model

T
his appendix provides additional details on the simulations carried out within the

load generator described in Chapter 3. The different blocks are implemented as

a collection of software routines, which are designed for fast and computationally

efficient profiling of the different buildings’ electricity consumption patterns.

The load generator structure is depicted in Figure 3.4 on page 42. The parameters and

vectors are summarized in Tables 3.2, 3.3, and 3.4. Besides the building’s physical parame-

ters, the location-dependent parameters, i.e. temperature and solar radiation vectors, play

an important role in defining the building’s final electricity consumption. Solar gains are

calculated for a vertical surface facing south, and the specific solar radiation at the rooftop

is calculated for a 30-degree tilted surface also facing south. These calculations are based

on the equations derived in [53].

This appendix is organized as follows: Section A.1 describes the mathematical model

employed to dispatch the HPs in a way that contributes to reduce the building’s maximum

daily peaks. Section A.2 documents the constant values assumed in the load generator

calculations.

A.1 Heat Pump Dispatch Model

The HPs dispatch presented in Section 3.4 is based on the MIP described in this section.

In addition to the parameters and vectors presented in Tables 3.2, 3.3, and 3.4, the model

includes the vectors described in Table A.1. The underlying assumption is that the build-

ing’s thermal mass can be modelled as a thermal battery. Vectors thsoc, q
in
θ , and qout

θ

can be thought of as the thermal counterpart of vectors bsoc,x
in
b , and xout

b , respectively, in

model (4.1).

The HPs scheduling model is given by (A.1). Superscripts 0,0̄, or +1 indicate that the

vectors are defined for the domains Ω0, Ω0̄, and Ω+1, respectively, as defined in Table 2.6

on page 34. For instance, th0
soc = {thsoc(d1h1), thsoc(d1h2)}.
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Description Symbol Set {·} Units

Thermal capacity state of charge thsoc Ω θsoci kWhth
Heat injected into the building C qin

θ Ω qinθi kWhth
Heat extracted from the building C qout

θ Ω qoutθi
kWhth

Electrical load per days x∆
l D xd

l kWh
Electrical load in day d xd

l H xdlj kWh

DHW HP electricity per days x∆
hp,dhw D xd

hp,dhw kWh

DHW HP electricity in day d xd
hp,dhw H xdhp,dhwj

kWh

Table A.1: Additional vectors involved in the definition of model (A.1)

min
x∈χth

1

hp

dτd
∑

d=d1

h24
∑

h=h1

xhpi +
1

hpdhw

dτd
∑

d=d1

h24
∑

h=h1

xhp,dhwi
+ ν

dτd
∑

d=d1

maxxd
l (A.1a)

subject to

θsoci = 0, ∀θsoci ∈ th0
soc (A.1b)

qoutθi
= 0, ∀qoutθi

∈ qout0

θ (A.1c)

∆θsoci −
1

ξ
·
UHA

C
θsoci − qinθi + qoutθi

= 0, (A.1d)

∀θsoci ∈ th+1
soc, ∀q

in
θi

∈ qin+1

θ , ∀qoutθi
∈ qout+1

θ
∣

∣

∣

∣

1

C
θsoci

∣

∣

∣

∣

≤ 3, ∀θsoci ∈ thsoc (A.1e)

qoutθi
+ xhpicop− qinθi −Qventi −Qinfli −Qtransi +Qsoli +Qperi +Qap+lii ≥ 0, (A.1f)

∀xhpi ∈ xhp ∈ {0, hp}, ∀qinθi ∈ qin
θ , ∀q

out
θi

∈ qout
θ , ∀Qventi ∈ Qvent,

∀Qtransi ∈ Qtrans, ∀Qinfli ∈ Qinfl, ∀Qsoli ∈ Qsol, ∀Qap+lii ∈ Qap+li, ∀Qperi ∈ Qper

h24
∑

j=h1

xdhp,dhwj
cop ≥ dhwd, ∀xd

hp,dhw ∈ x∆
hp,dhw, ∀dhwd ∈ dhw (A.1g)

qoutθi
≥ 0, ∀qoutθi

∈ qout0̄

θ ; qinθi ≥ 0, ∀qinθi ∈ qin
θ ; θsoci ≥ 0, ∀θsoci ∈ thsoc; (A.1h)

xhp,dhwi
∈ {0, hpdhw}, ∀xhp,dhwi

∈ xhp,dhw; xhpi ∈ {0, hp}, ∀xhpi ∈ xhp

Equation (A.1a) is the objective function, it penalizes the maximum daily electricity

peak. The HPs’ electricity consumption are modelled as binary variables. The weighting

factor ν is necessary to assign the two objective terms, i.e. the HPs’ electricity consumption

and the appliances + lighting consumption, the same importance.

Equations (A.1b)-(A.1e) model the building thermal capacity C as a battery, which can

be charged to ±3◦C. The second term in (A.1d) represents the additional losses incurred
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Description Symbol Units Value

Standard From To

Area per person As/P m2/P 40 30 50
Air heat capacity Cair kWhth/(kgK) 2.811× 10−4 — —
Air density ρair kg/m3 1.225 — —
Water heat capacity Cwater kWhth/(kgK) 1.16× 10−3 — —
Water density ρwater kg/m3 1000 — —
Ventilation volume (day) Vvent m3/(P h) 30 — —
Ventilation volume (night) V n

vent m3/(P h) 15 — —
Infiltration volume Vinfl m3/(m2 h) 0.1 — —

Metabolic heat gains Q̇per W 70 — —
Lighting elec. power (rooms) prli W/m2 6.3 3 10
Lighting elec. power (kitchen) pkli W/m2 12 6 18
Appliances elec. power (rooms) prap W/m2 2 1 3

Appliances elec. power (kitchen) pkap W/m2 40 30 50

DHW consumption (rooms) V r
dhw l/P 40 30 50

DHW consumption (kitchen) V k
dhw l/P 30 10 50

Table A.2: Constants involved in the load generator calculation [62–64]

when increasing or decreasing the temperature of the building’s thermal mass.

The energy balance is enforced in (A.1f), and (A.1g) ensures that the DHW production

is satisfied.

A.2 Module Constants

Table A.2 describes the different constants assumed in the calculations. The different heat

components used in the thermal balance are given by (A.2), where t is the time in hours.

Qtrans = UHAs (hdd + cdd) t (A.2a)

Qvent = ρairCairVventP (hdd + cdd) t (A.2b)

Qinfl = ρairCairVinflAs (hdd− cdd) t (A.2c)





Nomenclature

Models’ Scalars

be Battery energy capacity

binp Battery input power

boutp Battery output power

bηc Battery charging efficiency

bηd Battery discharging efficiency

bη Battery roundtrip efficiency bηcbηd
bmin
soc Minimum SOC (maximum DOD)

φp PV peak power

φa PV effective area and efficiency

γ Battery maximum number of cycles

τy Battery calendar life

τφ PV calendear life

Models’ Costs and Parameters

ξ Power conversion factor

α Ratio between grid and peak costs

r Discount rate

m Maintenance rate

τd Length of the analysis period

cke Cost per storage capacity unit

ckp Cost per storage power unit

cfbe Daily per-unit battery energy fixed cost

cfbp Daily per-unit battery power fixed cost

cmbe Marginal cost of battery storage

ckφ Cost per PV power unit

cfφ Daily per-unit PV power fixed cost

Models’ Vectors

bsoc Battery SOC
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xin
b Electricity flowing into the battery

xout
b Electricity flowing out of the battery

xl Building’s electrical load

xd
l Building’s electrical load for day d

x̃l Stochastic version of the building’s electrical load

xg Electricity withdrawn from the grid

xd
g Electricity withdrawn from the grid for day d

c′g Electricity prices (energy and power components)

cg Electricity prices (energy component)

cdg Electricity prices (energy component) for day d

cmax
g Peak prices (power component)

k∆
g Maximum daily peaks

c
spot
g Spot market prices

xtotal
l Total electrical load (all buildings)

xtotal
g Total electricity withdrawn from the grid (all buildings)

x
d,total
g Total electricity withdrawn from the grid for day d

Models’ Investments

C Total cost

Cg Total fee due to grid electricity (energy component)

Cmax
g Total fee due to daily peaks (power component)

Cf
b,e Investment in battery storage ckebe

Cm
b,e Total cost of transit energy

Cin
b,p Investment in battery input power ckpb

in
p

Cout
b,p Investment in battery output power ckpb

out
p

Cφ Investment in PV power ckφφp

Bilevel Program’s scalars

nLL Number of followers

ι Yearly average power peak component cost

ρ Cap for the absolute value of the additional price’s energy com-

ponent

ρmax Cap for the absolute value of the additional price’s power com-

ponent

Bilevel Program’s vectors
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cUL
g Additional energy component prices

c
UL,max
g Additional peak component prices

cUL
g,∆ Additional energy component prices per days

cUL
g,d Additional energy component prices for day d

xg,Ω Aggregated load vector, summation of all followers

c′′g Extended price’s energy component

cmax′′
g Extended price’s power (grid utilization) component

Load Generator’s Configuration Parameters

btype Building type

loc Location

markov Markov type

sd Mechanical shading factor

sdpol Shading factor for the shades polygon

geq Equivalent orientation and solar transmission

sap Appliances consumption scenario

sli Lighting consumption scenario

sdhw DHW consumption scenario

srap Room appliances consumption scenario

skap Kitchen appliances consumption scenario

Load Generator’s Scalars

P Number of persons

As Constructed area

Af Facade area

Aw Glazing area

H Shape factor

U U-value

Ar
s Rooms area

Ak
s Kitchen area

hp HP electrical power

hpdhw DHW HP electrical power

cop COP

C Thermal capacity
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Load Generator’s Vectors

Tamb Ambient temperature

Tind Indoor temperature

cdd Cooling Degree Days

hdd Heating Degree Days

p Normalized occupancy

Qinfl Infiltration losses

Qap+li Internal gains due to appliances and lighting

Qper Internal gains due to persons

Qtrans Transmission losses

Qvent Ventilation losses

Q′
sol Normalized solar radiation on a vertical surface

Qsol Equivalent total solar gains

E′
e Normalized solar irradiance on a horizontal plane

Ee Normalized corrected solar irradiance

sd Normalized shades

xhp HP electricity consumption

xhp,dhw DHW HP electricity consumption

x∆
hp,dhw DHW HP electricity consumption per days

xd
hp,dhw DHW HP electricity consumption in day d

xap+li Total appliances plus lighting consumption

xr
ap Appliances consumption (rooms)

xk
ap Appliances consumption (kitchen)

xr
li Lighting consumption (rooms)

xk
li Lighting consumption (kitchen)

dhw DHW daily consumption

dl Daylight hours (from,to)

thsoc Thermal battery SOC

qin Heat injected into the building thermal capacity

qout Heat extracted from the building thermal capacity

Load Generator’s Markov Probabilities

A Absent state

P Present state

pt Probability that an occupant is present

µ Mobility parameter

t00 Transition probability: probability of staying away

t01 Transition probability: probability of arriving home
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t10 Transition probability: probability of leaving home

t11 Transition probability: probability of staying at home
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[57] Andrzej Ruszczyński and Alexander Shapiro. Handbooks in OR & MS, volume 10.

Elsevier, 2003.

[58] Diego Sandoval and Hansjürg Leibundgut. Introduction of electrical batteries in the

operation of lowex buildings. Energy and Buildings, 81(0):105 – 114, 2014.

[59] Suvrajeet Sen and Julia L. Higle. And introductory tutorial on stochastic linear pro-

gramming models. Interfaces, 29(2):36–61, 1999.

[60] Alexander Shapiro, Andrzej Ruszczyński, and Darinka Dentcheva. Lectures on

Stochastic Programming, Modelling and Theory. Society of Industrial and Applied

Mathematics, Philadelphia, 2009.

https://www.entsoe.eu/data/data-portal/Pages/default.aspx


120 Bibliography

[61] Fereidoon P. Sioshansi. Chapter 22 - the implications of distributed energy resources

on traditional utility business model. In Lawrence E. Jones, editor, Renewable Energy

Integration, pages 275 – 283. Academic Press, Boston, 2014.

[62] Swiss society of engineers and architects. Elektrische energie im hochbau, 1995.

[63] Swiss society of engineers and architects. Standard-nutzungsbediungungen für die
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