
ETH Library

Direct State-to-Action Mapping for
High DOF Robots Using ELM

Conference Paper

Author(s):
Hwangbo, Jemin; Gehring, Christian; Bellicoso, Dario; Fankhauser, Péter; Siegwart, Roland; Hutter, Marco

Publication date:
2015

Permanent link:
https://doi.org/10.3929/ethz-a-010508287

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-4285-4990
https://doi.org/10.3929/ethz-a-010508287
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Direct State-to-Action Mapping for High DOF Robots Using ELM

Jemin Hwangbo1, Christian Gehring, Dario Bellicoso, Péter Fankhauser, Roland Siegwart and Marco Hutter

Abstract— Methods of optimizing a single trajectory are
mature enough for planning in many applications. Yet such op-
timization methods applied to high Degree-Of-Freedom robots
either consume too much time to be real-time or approximate
the dynamics such that they lack physical consistency. In
this paper, we present a method of precomputing optimized
trajectories and compressing the information to get a compact
representation of the optimal policy function. By varying
the initial configuration of a robot and optimizing multiple
trajectories, the controller gains knowledge about the optimal
policy function. Such computation can be performed on a
powerful workstation or even supercomputers instead of an on-
board computer of the robot. The precomputed optimal trajec-
tories are stored in a Single-hidden Layer Feedforward neural
Network (SLFN) using Optimally Pruned Extreme Learning
Machine (OP-ELM). This ensures minimal representation of
the model and fast evaluation of the SLFN. We first explain our
method using a simple time-optimal control problem with an
analytical solution. We then demonstrate how this method can
work even for high dimensional state by optimizing a foothold
strategy of a full quadruped robot in simulation.

I. INTRODUCTION

Typical robotic learning algorithms obtain a control policy
for a specific task represented by a set of parameters. These
parameters can be elements in a look-up table that map
states into actions, e.g. Q-learning [1], or numbers that
approximates a controller, e.g. spline parameters. There is
always a trade-off in parameterization. The more general
and less approximated the parameterization is, the higher the
number of parameters becomes. As the number of parameters
increases, storing and sometimes even evaluating the policy
function becomes problematic.

The common goal of typical robotic learning algorithms
is to find the optimal parameter set from a given parameteri-
zation. Our previous work on parameter optimization [2] has
shown that parameterized control policies can be optimized
with a limited number of rollouts even when we do not have
an analytical solution of the gradient. Policy gradient meth-
ods [3], sampling based methods [4] and other numerous
methods are designed to find policy parameters.

However, to generate a general state-to-action mapping for
a high dimensional system, optimizing the mapping using
‘trial and error’ basis has limitations due to the fact that a
single trajectory (i.e. one episode) only visits a very small
part of the state space. To address this issue, methods of
learning a policy based on optimized trajectories have been

This research was supported by the Swiss National Science Foundation
through the National Centre of Competence in Research Robotics.

All authors are associated with Autonomous Systems Lab (ASL), ETH
Zurich, Switzerland 1jhwangbo@ethz.ch

suggested [5], [6]. These methods accumulate multiple opti-
mized trajectories and learn the mapping using a supervised
learning algorithm.

The method proposed in the paper differs from them
in a few aspects. To learn a high dimensional policy, we
have to obtain an appropriate subset of the state space
that is likely to be visited. In many cases, the robot will
visit only a small fraction of it. Our method explores the
state space by disturbances. Along optimized trajectories,
we disturb the state and/or action to create a set of new
initial conditions and the system is deterministic thereafter.
By bounding the disturbance, we can conveniently define
the region of interest. After necessary post-processing, we
obtain a training data that evenly covers the region of interest.
Here we do not model the distribution of the action/state as
presented in [6] since the disturbances we are interested in
robotics is generally due to external causes (i.e. kicking a
robot, stepping on an unexpected object, etc). We cannot
model the distribution of such disturbances easily. In stead,
we define the region of interest and uniform distribution of
state within in. This assumption also completely decouples
regression from trajectory optimization such that we do not
have to solve them iteratively.

Our method optimizes the paramters as well as the under-
ying parameterization. Optimizing a parameterization means
that we find an approximation of the policy function with
a low memory requirement and fast evaluation time of the
function. A simple parameterization of a policy function such
as locally weighted regression, e.g. [7], requires the number
of parameters exponential to the dimension of the state.
A good parameterization method can bypass this problem
by exploiting the underlying structure of the optimal policy
function.

We approximate the optimal control policy using Single-
hidden Layer Feedforward neural Network (SLFN) and min-
imize the size of the model using Optimally Pruned Extreme
Learning Machine (OP-ELM) [8]. OP-ELM is based on
Extreme Learning Machine (ELM) [9] and Multi-Response
Sparse Regression (MRSR) [10]. ELM converts a nonlin-
ear regression problem to a linear problem by randomly
sampling all the variables except the hidden node weights.
Following ELM, MRSR chooses a subset of the hidden nodes
that best predicts the target variables. MRSR is a multi-
variable version of Least Angle Regression [11].

To demonstrate our method, we first optimize a control
strategy of a simple time-optimal problem. Then we apply
the same method for optimization of foothold selection pol-
icy for a full quadruped robot with 18 Degrees-Of-Freedom
(DOF) and compare it to the commonly used Inverted

Pendulum (IP) -based model. The resulting controller is a
direct mapping from state to the desired foothold for each
foot.

II. METHOD

Since this section refers to works from different research
areas, different words might convey the same meaning.1

A. Problem Definition

The dynamical system with state x(t) ∈ X ⊂ Rd, control
input u(t) ∈ U ⊂ Rm (m ≤ d) has the form

ẋ(t) = f(x(t),u(t)), x(0) = x0, (1)

where f is an arbitrary nonlinear time independent function.
We define the control input as u(x(t),a(t)) where a ∈

A ⊂ Rn is reduced to as action. a∗ is the optimal action that
minimizes the expected value of a cost function J , which is
defined over a finite time horizon [0, te] as

J = E[h(x(te)) +
∫ te

0

g(x(t),u(x(t),a(t)), C)dt]. (2)

h is a terminal cost and g is a cumulative cost. u is a control
input and C is a higher level command to the controller. For
example, a can be a reference trajectory of a joint position
and u can be a set of joint torques commanded to the motors
to follow that trajectory. C is the command or task variable
which can be either a command from a different controller
or a command from a human operator. It is important to
note that we consider J as a function of C. In case the robot
cannot follow the command from the human perfectly, it
should balance the degree of violation of the command and
the rest of the cost function. For this reason, we define the
command as a soft constraint.

Due to the presence of C, our optimal action is no longer
defined by the state x only. To avoid a confusion, we
introduce another variable X = [xT , CT]T ∈ Xt. The
optimal action is now a function of X only.

In existing optimal control methods, the goal is to find an
optimal policy π∗ :X → a∗. Our goal is to find π† :X →
a† which satisfies

π† = argmin
π

∫
x

4aTM 4 a dX,

4a = a(X|π∗)− a(X|π),
subject to S < τS

(3)

where S is the size of the memory required to store the
policy and τS is the threshold for memory size. M is a
positive definite constant metric tensor that defines distance
in the action space.

It is most likely we cannot express a(X|π∗) with common
elementary functions. If we can, it is probably due to the fact
that a(X|π∗) has an analytical solution. We want to express
a(X|π∗) with high accuracy in a limited memory space.

1”Basis function” in regression can also be referred as ”kernel”, ”activa-
tion function” or ”feature”. We use ”kernel” since it is used in [8]. ”Artificial
neural network” can be shortened as ”neural network” in this paper and a
few others. SLFN is sometimes referred as ELM network when it works
with ELM.

B. Approximation of the Reconstruction Error

Evaluation of4a requires a(X|π∗) which is not available
in our problems. We approximate this quantity using optimal
trajectories. It is easier to find a∗k(t), which is the optimal
action sequence from a given initial condition X(0) = Xk

and 0 < t < tf . There exists many methods of optimizing a
single trajectory [12]. These methods give us pairs of a∗k(t)
and X∗k(t) which satisfies a∗k(t) = a(X(t)|π∗). Then we
numerically approximate the minimization in (3) as

π† ≈ π̃† ≡ argmin
π

∑
L

εTMε,

ε = a∗k(t)− a(X(t)|π),
subject to S < τS ,

(4)

where L is a subset of D = {(X∗k(t),a∗k(t))|k ∈ K, 0 <
t < tf} and K is a set of initial conditions where we obtain
optimal trajectories. In order for π̃† to be a good numerical
approximation of π†, at least in the region of interest, we
need training points uniformly distributed over either Xt or
the region of interest. It is likely that the points are densely
located near a certain manifold (e.g. limit cycle). Therefore,
using D directly for learning the mapping will likely result
in unsatisfactory results. Assuming sufficiency of training
points, we sparsify the data by rejecting one of two points
that are closer than a given threshold. We use Mahalanobis
metric to define the distance of two points.

If the dimension of the state space is low, we can sub-
sample K to get a low-discrepancy set in Xt. However, if
that is not the case, it might be too time-consuming to do
so. Alternatively, we define a disturbance space O = E×A,
where E is a space of possible external disturbances and
the symbol × represents a Cartesian product. We sample
a disturbance o ∈ O and apply it to already optimized
trajectories to get new initial conditions. Here we make an
assumption that the state can be disturbed only by external
disturbances and mistakes in commanding actions. This
method is simplified for systems with a unique optimal limit
cycle (e.g. legged locomotion on a flat terrain) since all
trajectories will approach to the limit cycle.

C. Policy Representation

In this work, we choose SLFN to store our policy. The
structure of our SLFN can be mathematically modeled as

aj =

N∑
i=1

βijzi(wix+ bi), (5)

where βij is the connection weight between ith hidden
node and jth output layer, wi = [w1i, w2,i, ..., wdi] is the
connection weights between input layer and ith hidden node
and zi is the ith hidden node. Following the SLFN format,
we can redefine the problem as minimizing the reconstruction
error of SLFN with a given number of hidden layer nodes.

D. Optimization of SLFN

Suppose that we have obtained some of the optimal actions
a∗k(t) and their corresponding states X∗k(t), MRSR [10] first

normalizes a∗k(t) and X∗k(t) to unit normal distributions.
Then, given a pool of the hidden layer kernel G, MRSR
sequentially selects an kernel from G and adds it to a SLFN,
which is initialized to zero hidden node. The added kernel
is the one which has the highest sum of absolute correlation
with the residuals from the previous SLFN prediction. Con-
sequently, if we stop the algorithm at pth step, we obtain
a smaller pool of kernels H ⊂ G with |H| = p that
accurately predicts the action. The expression |H| represents
the cardinality of H .

To obtain G, we sample w, b and types of z. For this step,
we are free to use a different regression model. However, as
Miche et. al. [8] suggested, SLFN structure can successfully
reconstruct many different types of functions.

We dropped the Leave-One-Out validation method of OP-
ELM since we have a fixed memory size and it is computa-
tionally expensive to rank the whole G. This modification
leads to a larger G and consequently a lower average
reconstruction error for the same number of kernels. Over-
fitting is generally not a problem since |D| � |H| but we
check the quality of the regressor with a separate training
set.

III. DEMONSTRATION WITH A SIMPLE TASK

To illustrate our method, we introduce a simple problem.
We want to find time-optimal control of

ẋ1 = x2 + u1, ẋ2 = u2

x1(T) = x2(T) = 0

U = {(u1, u2), u21 + u22 ≤ 1}.
(6)

This problem was originally introduced by Pontryagin et.
al. [13] and the numerical solution is described in [14]. We
want to find the time-optimal trajectory and its corresponding
action trajectory. Problem (6) can be converted to boundary
value problem using Pontryagin’s minimum principle as,

ẋ1 = x5(x2 +
x3√
x23 + x24

),

ẋ2 = x5
x4√
x23 + x24

,

ṗ1 = 0, ṗ2 = −x5x3, ẋ5 = 0,

x1(1) = 0, x2(1) = 0, x3(1)
2 + x4(1)

2 = 1,

(7)

By solving the converted problem with a given initial con-
dition, we obtained the sequence of actions as

u1 =
x3√
x23 + x24

, u2 =
x4√
x23 + x24

. (8)

We generated 1,000 trajectories by solving this boundary
value problems with initial condition for both x1 and x2
(i.e. K) sampled from U(−2.0, 2.0), which is a continuous
uniform distribution in the given interval. Note that these
trajectories are numerically optimized even though they are
very close to the true optimal solution due to the simplicity
of the problem.

We extract about 10,000 state-action pairs (i.e. L) from all
the trajectories and sample 20,000 random kernels consists
of linear, sigmoid and Gaussian kernels for regression. We

−0.5 0 0.5 1−1

−0.5

0

0.5

1

x2

x1

ELM
MDP+VI

Opt

Initial
Goal

Fig. 1: Trajectories generated by the ELM-based controller
and the controller obtained from MDP+VI are plotted.
Optimal trajectories obtained using Pontryagin’s minimum
principle (Opt) are plotted as a reference.

additionally generate 100 trajectories with random initial
states and extract about 1,000 state-action pairs as a testing
set. Using MRSR, we choose the best 300 kernels which
results in 0.08 error from the testing set. Higher number
of kernels resulted in lower testing error but we picked a
reasonable number to demonstrate low memory requirement
of our method. We will call this policy πELM . We simulate
the system with 5 different initial points sampled from
U(−1.5, 1.5) and with both policies. We also find the optimal
trajectory obtained from boundary value problem solver,
bvp4C function in MATLAB. Even though this trajectory
is not the true optimum due to the fact that it is a numerical
solution, it is very close to the true optimum and we call
it an optimal trajectory for simplicity. Since none of the
methods can reach the final point perfectly, we terminate
the simulation if ||x|| < 0.01 or t > 5.0.

We also tested a common method which is modeling the
system as a Markov Decision Process (MDP) and solving it
by Value Iteration (VI). To model the system as MDP, we
need to convert it to a discrete system with bounded state.
We build the discrete set of states S, discrete set of possible
actions A, the transition matrix T and the transition cost R.
We force bounding of the states simply by projecting it to
the surface when it is outside the state bounds, (−2.0, 2.0).
We used discretization level n = 85, which means that there
are 85 × 85 discrete states and 85 × 85 possible actions.
We obtain discrete mapping π∗MDP using value iteration and
linearly interpolate it for control.

The summary of the result can be found in Tab. I and
Fig. 1. Note that none of the trajectories from MDP ap-
proached the terminal state close enough to terminate. πELM
generates much better solutions with less memory space. The
biggest problem of MDP is the discretization of the system
dynamics. The value function is formed by small groups
in where the cost-to-go’s are the same. Consequently, the
controller simply finds the first one it sees as the optimal

Fig. 2: StarlETH model responds to an Impulse (Ix = 20, Iy = 15 kgm/s) following a command (vx = 0.6 m/s, ωz = 0.0
rad/s) with optimized footholds (Top) and with IP based controller (Bottom). Red arrows represent the ground reaction
forces.

TABLE I: Quality of Trajectories
N. to store Avg. time taken Avg. time to compute

Our method 906 1.047 s 0.005 s
MDP 14,450 5.0 s N/A

Optimal N/A 0.990 s 0.52 s

control and becomes biased to one direction. Such weakness
is manifested in the trajectory in Fig. 1. This problem can be
solved with much finer discretization level but n = 85 case
already takes too long to be practical. Note that the size of
the transition matrix T is already 2×852. We only have two
rows since the system is deterministic and we only store
the indices of the states. Computation time to build a SLFN
takes a couple of minutes including the generation of optimal
trajectories whereas the computation time to solve MDP
with VI is several hours. Computation time to evaluate the
SLFN is two magnitudes lower than generating an optimal
trajectory for this particular problem but the gap is generally
bigger for high dimensional systems.

IV. DEMONSTRATION WITH A HIGH DIMENSIONAL
SYSTEM

In this section, we will show an example of optimization
of foothold strategy of a quadruped robot. The system
we have chosen is a model of StarlETH [15]. StarlETH
has 4 legs and 3 actuators per leg forming hip abduc-
tion/adduction (HAA), hip flexion/extension (HFE), and knee
flexion/extension (KFE) joints. It is about 25 kg in weight
and 60 cm in height.

The human operator gives a velocity command to the robot
C = [vx, ωz] which is a set of heading velocity and turning
rate. The robot should learn how to follow the command
from the human and decide where to step while considering
its current state. In this way, the controller can also work
with a high level planner which plans the global path of the
robot.

Our work will be built on top of a locomotion controller
described in [16]. The controller decides where to step
using an IP model which is a standard model in legged
robot control [17], [18]. The parameters of the IP model

is hand tuned to work the best for StarlETH. Our goal is to
develop a new foot placement strategy that is more robust in
disturbance.

The gait chosen for this task is walking trot. The gait
pattern generation defines the contact timing and virtual
model controller [19] stabilizes the torso.

All the simulations for optimization and testing are per-
formed in MULE [20] and ODE [21] environment. In this
work, MULE is used for optimization mainly due to its speed
and accuracy in dynamics and ODE is used for validating the
final controller.

A. Task

The task of a single trajectory optimization is to trot
for 5.0 seconds while maintaining stable torso height and
orientation. The cost function which can be written as

J =
∑

0≤i≤Nc

wiCi(θ, q, q̇, τ , C). (9)

It consists of four different cumulative costs which are energy
consumption, control command violation, height instability
and orientation instability. There are also three limit costs
that penalize the violation of the hard limits joint position,
joint velocity and power output. These costs are acting as
constraints to guide the optimizer to a feasible solution.
Lastly, there is one failure cost which penalizes the robot
falling.

B. Optimization of Individual Trajectories

We use the optimization framework used in [22]. The
framework is rollout-based and requires many forward simu-
lation of the dynamics. Currently it is running on four cores
of an Intel i7-3740QM and the total optimization time is 3
days.

Generating a good set of initial condition K is very
important for the final result. Since the dimensionality of O is
very large and our computation power is limited, we picked
impulses on the main body as our disturbances. The intuition
is from the IP-based controllers, which only considers the
main body velocity and still shows a great performance

in many robots. We apply −20 < Ix < 20 kgm/s and
0 < Iy < 15 kgm/s randomly where x is the heading axis
and y is the lateral axis. Note that we apply only positive
impulses in y axis since the robot is symmetric but both
negative and positive impulses in x axis since the robot is
only running forward in the training. This is not the only
correct combination but a correct combination is important
not to have a redundant data set.

We use the symmetry of the robot to speed up the training.
The optimized footholds for all four feet can be transfered
to all other feet by changing the coordinate system of x and
a. Consequently, we only have to train one model.

For optimizing such a highly unstable system, it is im-
portant to have a good initial policy. We will set the initial
policy using IP-based controller which is known to be stable
in most cases. We then optimize the correction vector to the
IP-based controller.

Starting from no impulse case, we gradually increase the
magnitude of the impulse. To speed up the convergence, we
get the initial guess of the optimal footholds by averaging
previously optimized footholds with similar impulse cases.
Therefore, computation time is sub-linear to the number of
trajectories. Optimization of one of the impulse cases is
depicted in Fig. 2. The optimized policy on the top is able
to avoid falling whereas the IP-based controller cannot.

Figure. 3 shows scatter plot of the obtained data projected
on a 2D plane formed by y-component of the torso velocity
and y-component of the foothold position. It can be clearly
observed that these two variables are highly correlated. This
result shows the same trend as in IP-based controller when
the yaw rate of the torso is zero. However, by varying the yaw
rate, we can obtain very dramatic change in the action. This
shows that our policy incorporates the effect of all variables.

C. Building π†

The last step of our method is compressing the previously
optimized actions. 880 different trajectories were used to
extract a set of 60,000 state-to-action tuples L.

We assume that the state of the stance legs are well
described by the body states due to the fact that the robot
operates relatively close to the limit cycle. Therefore, we
simplified the leg states to the swing phase. The human
operator is commanding velocities in body frame so there
are only nine relevant states from the main body, namely
six velocities and three positions (height, roll and pitch).
Including the command C = [vx, ωz] and the gait phase in
X , we get X ∈ R12. The action we get is the location of the
desired foothold relative to the hip, which gives us a ∈ R2.
It is also possible to model each axes of a separately but
it will results in a bigger model. By having a single model,
many of the hidden nodes are reused for different variables.

OP-ELM requires predefined kernel types. We use linear
and sigmoid kernels for this problem. Gaussian, trigonomet-
ric and polynomial kernels are all good choices in general
due to their simplicity and low cost of computation. We
sample 30,000 kernels that best fit to the testing set. We
obtain testing set by optimizing 100 trajectories with initial

−1 −0.5 0 0.5 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Torso Velocityy
(m/s)

F
oo

th
ol

d
 p

o
si

ti
o
n

y
(m

)

wz=0.5

wz=0.25

wz=0.0

wz=-0.25

wz=-0.5

IP

Optimized state-action pair

ELM based policy

IP based policy

(in rad/s)

Fig. 3: Training data projected on 2D plane formed by y-axis
of the torso velocity and y-axis of the foothold position is
plotted (blue dots). IP-based foothold position is plotted in
dark green dotted line. In the case of our optimized policy,
we vary both yaw rate and lateral velocity and plot the output
with solid lines with different colors.

condition generated with random impulses. The average
reconstruction error from the testing set with 1,000 kernels
is 7 mm.

D. Result and Discussion

The resulting SLFN is stored in a single XML file which
takes less than 600 kB. Evaluation time of SLFN is around
68µs on one core of an Intel i7-3740QM.

The resulting controller reads the continuous velocity
command of xcom = [vx, ωz] from an operator and state
xint from the robot and outputs a foothold for each foot
accordingly. We first tested our controller with a joystick
command while the robot is free to move. Fig 4 shows
how the controller responds when it is disturbed with a 4
kg ball thrown at 6 m/s while following velocity command
of vx =0.4 m/s and ωz=0.25 rad/s. The related video demon-
stration can be found at: http://youtu.be/9h17wxgaIlM

More quantitative analysis is done with impulses. We test
our controller and the IP-based controller for 1,000 randomly
sampled disturbances and measured the failure rate (torso
hitting the ground) and the average cost for the successful
cases for both controllers. The disturbances are sampled in a
uniform distribution as Ix ∼ U(−20, 20) and Iy ∼ U(0, 15)
in a unit of kgm/s. We also randomly sample the impact
timing to make sure that we measure the robustness for
the entire gait cycle. The result of the simulation is shown
in Fig. 5. The optimized controller fail only 19.1% of the
time whereas the IP-based controller fail 29.3%. The average
costs for successful cases are 905.0 and 1202.2 respectively.

V. CONCLUSIONS

We presented a method of compressing optimized trajecto-
ries in a form of direct mapping from states to action. Since

Fig. 4: The final foothold controller responds to the disturbance by a 4 kg ball thrown at 6 m/s in ODE environment. vx = 0.6
m/s and ωz = 0.25 rad/s is commanded by the human operator.

−20 0 20
0

5

10

−20 0 20
0

5

10

Impulsex (kgm/s)

Im
p

u
ls

e
y

(k

g
m

/s
)

Robot fall Robot Stable

Fig. 5: The robot is disturbed at 1,000 different impulse cases
with both IP-based controller (left) and optimized controller
(right) with the failure rate of 29.3% and 19.1% respectively.

this method allows to precompute the optimal trajectories,
more computational power and time were available. This
allowed us to use more accurate model for optimization
which was not possible for controllers that run in real time
on real robots. To overcome ”the Curse of dimensionality” of
the current policy representation methods, we employed OP-
ELM to learn and compress the policy. The resulting map-
ping from states to action is compact and can be evaluated
in very short time. We first demonstrated our method with
a simple time-optimal control problem. It worked almost as
well as the optimum trajectories with very little computation
time. Our method also successfully built a controller that
outputs desired foothold locations for a high DoF quadruped
robot. The resulting controller file was less than 600 kB in
XML format and its computational cost was also very low.

We are planning to work on building more memory
efficient and parallelizable algorithm to regress the function.
We will also investigate on building the whole robot control
using our method.

REFERENCES

[1] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[2] J. Hwangbo, C. Gehring, H. Sommer, R. Siegwart, and J. Buchli,
“Rock*-efficient black-box optimization for policy learning,” in Inter-
national Conference on Humanoid Robots. IEEE/RAS, 2014.

[3] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in In-
ternational Conference on Intelligent Robots and Systems. IEEE/RSJ,
2006, pp. 2219–2225.

[4] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary computation, vol. 9,
no. 2, pp. 159–195, 2001.

[5] I. Mordatch and E. Todorov, “Combining the benefits of function
approximation and trajectory optimization,” in Robotics: Science and
Systems (RSS), 2014.

[6] S. Levine and V. Koltun, “Learning complex neural network policies
with trajectory optimization,” in Proceedings of the 31st International
Conference on Machine Learning (ICML-14), 2014, pp. 829–837.

[7] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning for control,” in Lazy learning. Springer, 1997, pp. 75–113.

[8] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse,
“Op-elm: optimally pruned extreme learning machine,” Neural Net-
works, IEEE Transactions on, vol. 21, no. 1, pp. 158–162, 2010.

[9] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[10] T. Similä and J. Tikka, “Multiresponse sparse regression with appli-
cation to multidimensional scaling,” in Artificial Neural Networks:
Formal Models and Their Applications–ICANN 2005. Springer, 2005,
pp. 97–102.

[11] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., “Least angle
regression,” The Annals of statistics, vol. 32, no. 2, pp. 407–499, 2004.

[12] J. T. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of guidance, control, and dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[13] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko,
The Mathematical Theory of Optimal Processes. Interscience, 1962.

[14] S. Avvakumov and Y. N. Kiselev, “Boundary value problem for
ordinary differential equations with applications to optimal control,”
Spectral and Evolution Problems 2000, vol. 10, 2000.

[15] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. D. Remy,
and R. Siegwart, “Starleth: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion,” in Int. Conf. on Climbing and
Walking Robots (CLAWAR), 2012.

[16] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A. Hoepflinger, and
R. Siegwart, “Control of dynamic gaits for a quadrupedal robot,” in
International Conference on Robotics and Automation. IEEE, 2013,
pp. 3287–3292.

[17] T. Sugihara, Y. Nakamura, and H. Inoue, “Real-time humanoid motion
generation through zmp manipulation based on inverted pendulum
control,” in International Conference on Robotics and Automation,
vol. 2. IEEE, 2002, pp. 1404–1409.

[18] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by a simple three-
dimensional inverted pendulum model,” Advanced Robotics, vol. 17,
no. 2, pp. 131–147, 2003.

[19] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, “Virtual
model control: An intuitive approach for bipedal locomotion,” The
International Journal of Robotics Research, vol. 20, no. 2, pp. 129–
143, 2001.

[20] C. Gehring, R. Diethelm, R. Siegwart, G. Nützi, and R. I. Leine, “An
evaluation of moreaus time-stepping scheme for the simulation of a
legged robot,” in International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2014.

[21] E. Drumwright, J. Hsu, N. Koenig, and D. Shell, “Extending open
dynamics engine for robotics simulation,” in Simulation, Modeling,
and Programming for Autonomous Robots. Springer, 2010, pp. 38–
50.

[22] C. Gehring, S. Coros, M. Hutter, M. Bloesch, P. Fankhauser, M. A.
Hoepflinger, and R. Siegwart, “Towards automatic discovery of agile
gaits for quadrupedal robots,” in IEEE International Conference on
Robotics and Automation. IEEE, 2014, pp. 4243–4248.

