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Abstract

In this dissertation, we study trade-offs between computational complexity
and information content of problems arising in different facets of theoretical
computer science.

In the first part of the dissertation, we study the information content of
online problems. For the online Steiner tree problem, we give matching upper
and lower bounds on the advice complexity of the problem for the entire range
of advice bits and thus resolve the problem. Then, we continue to study the
randomness complexity of the disjoint path allocation problem. Our result
shows that, in some cases, it is possible to use random bits instead of advice
bits, while maintaining the same performance of the algorithm. In light of
previous work on the power of advice bits for this problem, our algorithm is
optimal.

The second part of the dissertation is devoted to constructions of cryp-
tographic primitives, focusing on constructions of a universal one-way hash
function from a one-way function. First, we relate the regularity assumptions
made about the one-way function to the efficiency of the construction, mea-
sured by the number of calls it makes to the one-way function. Qualitatively
speaking, the stronger the assumptions about the structure of the underlying
one-way function are, the better the performance of the construction is. We
then study the limits of black-box constructions for this task, which, loosely
speaking, are constructions that only use the functionality of the one-way
function, but not its description. Since their introduction by Naor and Yung
(STOC, 1989) twenty-five years ago, no lower bound on the number of calls to
the one-way function such a construction has to make was known other than
the trivial one of a single call. We give a first lower bound of an almost-linear
number of calls. Moreover, if the function is regular, our bound is tight.

Finally, in the last part of the dissertation, we continue the study of a
recently introduced model of communication complexity with advice. We
establish that the equality problem admits a protocol of polylogarithmic
communication, provided a laconic advice of just one bit. For the divisibility
problem, we design a protocol with sublinear communication and advice.
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Zusammenfassung

In dieser Dissertation untersuchen wir das Verhältnis zwischen der Berech-
nungskomplexität und dem Informationsgehalt von Problemen, die in verschie-
denen Zusammenhängen innerhalb der theoretischen Informatik auftreten.

Im ersten Teil der Dissertation untersuchen wir den Informationsgehalt von
Online-Problemen. Für das Online-Steinerbaum-Problem geben wir überein-
stimmende obere und untere Schranken für die Advice-Komplexität an, für
das gesamte mögliche Spektrum von verwendeten Advice-Bits. Damit haben
wir die Advice-Komplexität dieses Problems abschliessend geklärt. Weiterhin
untersuchen wir die Anzahl von Zufallsbits, die notwendig und hinreichend ist,
um ein Problem aus dem Bereich der Kommunikationsalgorithmen in Netz-
werken, das sogenannte Disjoint-Path-Allocation-Problem, zu lösen. Unsere
Ergebnisse zeigen, dass in einigen Fällen Zufallsbits anstelle von Advice-Bits
verwendet werden können, ohne die Qualität der berechneten Lösung zu
beeinträchtigen. Unter Berücksichtigung vorangegangener Arbeiten über die
Ausdrucksstärke von Advice-Bits für dieses Problem ist unser Algorithmus
optimal.

Der zweite Teil dieser Dissertation widmet sich Konstruktionen von kryp-
tographischen Grundfunktionen, mit dem Schwerpunkt auf Konstruktionen
einer universellen Einweg-Hashfunktion aus einer Einwegfunktion. Zunächst
bringen wir die Regularitätsannahmen für die Einwegfunktion in Verbindung
zur Effizienz der Konstruktion, gemessen in der Anzahl von Aufrufen der
Einwegfunktion. Qualitativ gesprochen wird die Konstruktion umso effizienter,
je stärker die Annahmen über die Struktur der zugrundeliegenden Einwegfunk-
tion sind. Wir untersuchen dann die Grenzen von Black-Box-Konstruktionen
für diese Aufgabe. Dies sind grob gesagt Konstruktionen, die nur die Funktio-
nalität der Einwegfunktion verwenden, aber nicht deren Beschreibung. Seit
der Einführung dieses Konzepts durch Naor und Yung (STOC, 1989) vor
25 Jahren ist keine bessere untere Schranke für die Anzahl der Aufrufe der
Einwegfunktion bekannt als die triviale Schranke, dass ein Aufruf nötig ist.
Wir geben eine erste nichttriviale untere Schranke an von einer fast linearen
Anzahl benötigter Aufrufe. Weiterhin ist unsere Schranke bestmöglich für den
Fall regulärer Funktionen.

Abschliessend setzen wir im letzten Teil der Dissertation die Untersuchung
eines kürzlich eingeführten Modells der Kommunikationskomplexität mit
Advice fort. Wir zeigen, dass für das Gleichheitsproblem ein Protokoll mit
polylogarithmischer Kommunikation existiert, das einen lakonischen Advice
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von nur einem Bit erhält. Für das Teilbarkeitsproblem entwerfen wir ein
Protokoll mit sublinearer Kommunikation und sublinearem Advice.
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Chapter 1

Introduction

3 x 3 macht 6 - widdewidde
Wer will’s von uns lernen?
Alle gross und klein
trallalala lad’ ich zu uns ein.

– Pippi Langstrumpf

A general phenomenon common perhaps to all areas of engineering and
prominent when dealing with computational problems is the following: The
more we know about a problem a-priori, the better we can perform when
solving it. The research area of theoretical computer science allows to address
such problems in a rigorous manner, using abstract mathematical models
in which precise statements can be made. In a nutshell, this dissertation is
concerned with studying this phenomenon in three different computational
settings: online computing, constructions of cryptographic primitives and
distributed computing.

In the setting of online computing, the algorithm receives its input in a
piece-wise manner over time and must commit to its partial output before
receiving the next part of the input. Here, the performance of the algorithm
is measured with respect to the quality of the solution it computes. A-priori
information about the problem instance can be quantified using a model,
where some function of the entire input (called advice) is available to the
algorithm. Trying to characterize the information content of the problem, one
studies trade-offs between the availability of information and the quality of
the solution.

In the context of cryptography, the current state-of-the-art allows only
conditional results. Specifically, the existence of efficient secure cryptographic
primitives (e.g., a secure encryption scheme) is established under unproven
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assumptions (e.g., the existence of some hard computational tasks, such as
inverting an easily computable function). One usually considers different
computational assumptions and studies their cryptographic consequences
(e.g., secure encryption), where a typical problem is to come-up with such
construction. These are algorithms that implement a cryptographic primitive
from a more basic one, while establishing the security of the former assuming
only that of the latter. The performance of the construction is usually
measured either by its complexity in some parameter, e.g., the number of
invocations of the basic cryptographic primitive or its running time, or in
the tightness of its security, which measures how well the security of the
constructed primitive relates to that of the basic one.

In this case, one can consider the following two forms of a-priori information
about the problem: One the one hand, it is possible to impose further
structural requirements on the class of primitives considered. Effectively, we
would now only require a construction that is guaranteed to implement a secure
primitive for a sub-class of the basic primitive that satisfies the additional
properties. On the other hand, we could allow the construction some auxiliary
information about every instance that implements the primitive, which is now
instance-dependent, in a form of a non-uniform advice. As we shall see, in
some cases such assumptions lead to a dramatic improvement in the quality
of the construction.

The last setting we consider is that of distributed computing, where some
input is distributed among two parties and their goal is to compute some
known function of it. Here one studies the efficiency of the interaction, namely,
the minimal amount of communication required to compute the function. In
this case, one studies trade-offs between auxiliary information in the form of
advice given to one of the parties, and the quality of the obtained protocol.

Before we introduce each of the considered models in more detail, we first
give an overview of the dissertation.

1.1 Overview of the Dissertation

In this dissertation we study trade-offs between information about a compu-
tational problem and its computational complexity. We study aspects of such
trade-offs in three different computational models.

In the first part of the dissertation we continue the study of the information
content of online problems. Using the model of Hromkovič et al. [HKK10],
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we study different trade-offs of information resources and the performance of
the algorithm: In Chapter 2 we focus on the well-known Steiner tree problem
in the online setting and give a full characterization of its advice complexity.
In Chapter 3 we study the online disjoint path allocation problem. Here we
characterize the exact power of random bits. We show that in some cases it is
possible to replace advice bits with random bits while maintaining the same
performance of the algorithm.

In the second part of the dissertation, we study constructions of cryp-
tographic primitives. Focusing on constructions of universal one-way hash
functions from one-way functions, we study the relation between the efficiency
of the construction and the assumption made about the one-way function and
the possible gain from auxiliary information about these assumptions.

In Chapter 4, we relate the regularity assumptions made on the one-way
function to the overall performance of the construction. For the special case
where the one-way function is regular, that is, a one-way function for which
each image has the same number of preimages, we observe that very little
information about the function, namely, its regularity parameter, leads to an
exponential improvement in the efficiency of the construction, reducing the
number of calls to the one-way function made by the construction from linear
to logarithmic.

Next, we fully explain this gap: In Chapter 5, we develop a framework for
proving lower bounds on constructions of cryptographic primitives and in
Chapter 6 we give our main application of the framework: An almost linear
lower bound on the number of calls made by a construction of a universal
one-way hash function from a one-way function. Our bound holds already for
the cases considered in Chapter 4 and thus completely settles the question
for constructions from regular one-way functions.

In the last part of the dissertation, we consider a relatively new model
of communication complexity with advice, where we study trade-offs of
information versus efficiency of communication. In Chapter 7, we focus
on divisibility and equality. For equality, we show that a laconic advice of
one bit already allows a protocol with only polylogarithmic communication.
Finally, we give lower and upper bounds for the communication complexity
of divisibility with advice.

Most of the results explained in this dissertation have already been published.
The results on the online Steiner tree problem from Chapter 2 were presented at
SOFSEM 2014 [Bar14]. At this conference a joint paper [BBF+14] containing
the results on the online disjoint path allocation problem from Chapter 3 was
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presented. The construction of a universal one-way function from a one-way
function depicted in Chapter 4 was presented at LATINCRYPT 2012 [BM12].
A paper based on the results presented in Chapters 5 and 6 was published at
TCC 2013 [BH13], and a full version of it is available as a technical report
[BH12].

The rest of this chapter is organized as follows. In the next three sections, we
give a general introduction to the three corresponding parts of the dissertation
and in Section 1.5 we present some mathematical preliminaries.

1.2 Online Problems and their Advice
Complexity

Many important practical computational problems are best formulated in an
online scenario, where the input arrives piecewise over time and an online
algorithm has to irrevocably compute a part of the output for any given
part of the input. Thus, online algorithms are a realistic model for making
decisions under uncertainty.

As opposed to classical computational problems, in the online setting the
full input to the problem is not known in advance, but is revealed in a step-
wise manner, and after each step the algorithm has to commit to a part of its
solution.

More formally, an online problem is a triplet U = (I,S, cost). I is the
set of instances to the problem, where an instance to an online problem is a
vector I = (x1, . . . , xn), where its i’th component, xi is the part of the input
revealed at time-step i. The set S is a relation1 on I × Y, where Y is the set
of all possible output vectors that describes for each instance its admissible
answer vectors, and cost : S → R is a function that assigns a value for every
instance and a possible solution it.

An online algorithm is a machine A that interacts with an instance I of an
online problem U in a step-wise manner as follows: In time step i, the input
part xi is revealed to the machine, and it proceeds with its computation and
outputs yi. The output sequence of the algorithm A(I) = (y1, . . . , yn) is a

1More precisely, we require that S contains only pairs of vectors of matching size, has at
least one solution for every instance and moreover, it should satisfy the following condition
on prefixes of instances: For every instance (I, Y ) ∈ S and every I′, let p denote the size of
the maximal common prefix of I and I′. Then we require that there exists a solution to I′
such that maximal common prefix of Y and Y ′ is at least p.
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solution to I if (I,A(I)) ∈ S. An online algorithm solves U (or is an online
algorithm for U) if its output sequence on every instance is a solution.

We shall consider the problem of optimizing U with respect to minimization
(or maximization) of the cost function. In the discussion that follows, we
shall focus on minimization problems, but maximization problems are treated
analogously in a straightforward manner.

We consider a choice function Opt : I → Y that assigns for each instance
a solution of minimal value. Note that the online problems that are usually
considered are reasonable online formulations of classical offline problems. In
this case it will be convenient to think of Opt as an (offline) computationally
unbounded algorithm that has access to the entire input sequence in advance
and for every instance outputs an optimal solution.

Classically, the performance of online problems is measured using the so-
called competitive analysis introduced by Sleator and Tarjan [ST85], where
the cost of the solution computed by the online algorithm is compared to that
of an optimal (offline) algorithm that knows the complete input beforehand
in a worst-case sense. Formally, let c ≥ 1.

Definition 1 (c-competitive online algorithm). An online algorithm A is
c-competitive for the minimization problem U if there exists a constant α such
that, for every instance I,

cost(A(I)) ≤ c · cost(Opt(I)) + α . (1.1)

If α = 0, then A is strictly c-competitive.

In general, c = c(·) is a function of some parameter of the instance.

In the case we consider a maximization problem, Opt assigns a solution
of maximal value to every instance, and the inequality in (1.1) becomes
cost(A(I)) ≥ cost(Opt(I))/c− α.

For a very good introduction to online algorithms, we refer to the textbook
by Borodin and El-Yaniv [BEY98].

1.2.1 Online Algorithms with Advice

In recent years, motivated among other reasons by the fact that for some
problems (e.g., Knapsack [BKKR12]) no deterministic algorithm can admit
any competitive ratio, the natural question, “how much information about the
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future is needed in order to produce a competitive solution?”, was posed by
Dobrev et al. [DKP08] and Böckenhauer et al. [BKK+09], and independently
by Emek et al. [EFKR11]. In this dissertation we use the framework of
Hromkovic et al. [HKK10], that unifies the models and allows to study the
information content of an online problem, and poses the question in its full
generality: “What is the exact power of advice bits for some specific online
problem?”.

In online computation with advice, the algorithm’s machine has access to a
special infinite advice string φ, produced by an oracle that has access to the
entire input. The general goal is to try to characterize the dependence of the
achievable competitive ratio on the maximal number of advice bits read from
the advice tape.

An online algorithm A with advice computes the output sequence as before,
but additionally may access a special advice tape. For some fixed advice φ,
we denote by Aφ the algorithm with advice φ.

The dependence of the quality of the solution on the number of advice bits
read is formalized by the following definition: Let c > 0 and b ≥ 0:

Definition 2. The algorithm A is c-competitive with b bits of advice if there
is a constant α such that, for every instance I, there exists an advice φ such
that cost(Aφ(I)) ≤ c · cost(Opt(I)) + α holds, and at most the first b bits of φ
are accessed during the computation of Aφ on I.

In general, c = c(·) and b = b(·) are functions that depend on some
parameter of the instance, typically its length.

We observe that in all cases considered in the literature, the advice function
is a computable function of the input, although this is not required from the
definition.

In general, the design of online algorithms with advice requires an under-
standing of the information content of the problem considered, and offers a
characterization of the b most relevant bits of information of the instance I.

A number of online problems have already been analyzed within this
model, such as paging [BKK+09], buffer management [DHZ12], job shop
scheduling [BKK+09, KK11], the k-server problem [BKKK11], online set
cover [KKM12], string guessing [BHK+14], metrical tasks systems [EFKR11],
graph exploration [DKM12], independent set [DKK12], knapsack [BKKR12],
and graph coloring problems [FKS12, SSU13, BBHK12, BBH+13].
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For further introduction to the advice complexity of online problems, see
[BKK+09, HKK10].

1.3 Complexity-Based Cryptography

Complexity-based cryptography is the research field that studies the possibility
of basing cryptography on complexity-theoretic assumptions. The current
state of knowledge in theoretical computer science is such that we do not
know how to formally prove (using only “standard” mathematical axioms)
the existence of any practical cryptographic primitive (for example, a secure
encryption system). At the same time, some specific assumptions are widely
believed to hold, and in fact, have become an integral part of our every-day
life: Buying a book on-line from a website or reading our email privately are
just two such examples. Yet, it is possible that in the future the cryptographic
constructions, which are based on those assumptions, will be broken, and the
underlying assumption disproved.

Consequently, over the last few decades this has led to the development
of a complexity-based cryptographic theory that is independent of specific
assumptions. On the one hand, this theory studies the minimal assumptions
needed to allow certain primitives, and on the other hand, the implications
of the existence of those primitives. Instead of basing the security of a
cryptographic primitive (e.g., a symmetric encryption system) on a specific
mathematical assumption (e.g., the assumption that factoring a large number
is not algorithmically feasible), the idea is to model the general hardness
assumptions made about such a function, and then to prove the security of
some cryptographic construction using only those general properties (which
are common to a large class of functions).

A key concept that models an abstract hard function is a one-way function.
Loosely speaking, these are functions that are easy to compute but hard
to invert. The “easy-to-compute” part essentially means that there is an
efficient procedure that evaluates the function, whereas the “hard-to-invert”
requires that any efficient computational procedure when given input y such
that y = f(x) for a “typical” x, fails to invert it (to compute an x′ such that
f(x′) = y) except with negligible probability (e.g., the algorithm can always
guess such an input, but the probability that it guesses correctly is small). A
typical input for f is modeled as one chosen uniformly at random from its
domain {0, 1}n. For each security parameter ρ, the domain and range of the
function are {0, 1}n and {0, 1}m, respectively, where n = n(ρ) and m = m(ρ)
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are functions of the security parameter. Formally, we define:

Definition 3 (OWF). A family of functions {fρ}ρ∈N+ , where fρ : {0, 1}n(ρ) →
{0, 1}m(ρ) is a one-way function if:

1. There exists an efficient algorithm that given 1ρ and x, outputs fρ(x).
2. For any efficient randomized algorithm A, the function that maps ρ to

Pr
x
r←{0,1}n(ρ),A

[
A(1ρ, fρ(x)) ∈ f−1

ρ (fρ(x))
]

is negligible2.

That is, finding any element x′ that maps to f(x) should be difficult, and
note that the probability is taken over both the randomness of A and a
uniform argument to f (denoted under the Pr sign). The reason we need to
give A access to 1ρ is two-fold: First note that it may be possible that for
ρ 6= ρ′ it is the case that m(ρ) = m(ρ′), in which case we orient the algorithm
towards a specific one. The second reason being that for a shrinking f , an
efficient algorithm on input from {0, 1}m(ρ) may not have enough time to
output any string from {0, 1}n(ρ), and we want to rule out this case.

As noted above, one-way functions are of fundamental importance in
complexity-based cryptography. Their existence implies the existence of other
fundamental primitives. Pseudo-random generators (algorithms that are able
to extend a random string such that their output “looks” random to any
feasible distinguishing algorithm), symmetric-key encryption systems, digital
signatures and universal one-way hash functions (UOWHFs) are just a few
such examples. The latter (a UOWHF) is a shrinking function for which
finding a second preimage is infeasible.

Loosely speaking, a UOWHF is an efficiently computable, compressing,
and keyed function, with the property that it is infeasible for an adversary
to win the following game: First, it commits to some input value v from the
domain. Next, a random key is chosen and given to the adversary. Finally,
the adversary “wins” the game if it outputs v′ different from v such that they
both map to the same value under the function (using the chosen random
key). Such an v′ is called a non-trivial collision for v. Note that since
the function is length-decreasing, there exist many inputs with non-trivial
collisions. A function that enjoys this property is sometimes called a second-
preimage collision-resistant function. For each security parameter ρ, the key

2Recall that a function g is negligible if it vanishes faster than the inverse of any
polynomial. That is if for every c and all sufficiently large n, g(n) < n−c holds.
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space, domain and range of the function are {0, 1}κ, {0, 1}m and {0, 1}m′ ,
respectively, which depend on the security parameter ρ.

Formally, we have:

Definition 4 (UOWHF). A family of functions h = {hρ}ρ∈N+ , where hρ :
{0, 1}κ(ρ) × {0, 1}m(ρ) → {0, 1}m′(ρ) is a universal one-way hash function if

1. There exists an efficient algorithm that given 1ρ, k and v outputs hρ(k, v).

2. m′(ρ) < m(ρ).

3. For any pair of efficient randomized algorithms (B1, B2) the function
mapping ρ to

Pr
(v,σ) r←B1(ρ)
k
r←{0,1}κ(ρ)

v′
r←B2(k,v,σ)

[hρ(k, v) = hρ(k, v′) ∧ v 6= v′]

is negligible.

The second output σ of the algorithm B1 allows it to save its state, to be
used by B2 after the key is chosen.

Two important cryptographic primitives of significant practical importance
that can be obtained [NY89] directly from any UOWHF are digital fingerprints
and digital signatures.

For a comprehensive introduction to modern cryptography, we refer to the
textbook of Goldreich [Gol01].

1.3.1 Cryptographic Constructions and Black-Box
Constructions

In its most general sense, a construction of a cryptographic primitive P
from another primitive Q is a mathematical proof of ∃Q ⇒ ∃P . Of course,
whereas from a purely theoretical point of view such a proof is satisfactory, in
cryptography, a field with a vast practical impact, explicit and constructive
constructions are sought. A constructive proof would provide an algorithm
that implements P using an algorithm that implements Q, along with a
security proof that P is secure assuming the security of Q for their respective
security notions.
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While a priori such a construction (which is actually an algorithm along
with its security proof) may assume an arbitrary structure, it turns out that
the vast majority of constructions of primitives found in the literature follow
a very specific pattern known as fully black-box. Informally, an algorithm A
makes black-box usage of some algorithm B, if it only uses its functionality.
That is, its only interaction with B’s code is executing it on some inputs. An
algorithm A is a black-box implementation of primitive P (using primitive
Q) if it efficiently implements P using Q only in a black-box manner. The
term implements refers to the syntactical properties (for example, computing
a function with the correct domain and range). Moreover, almost all security
proofs given for cryptographic constructions are black-box security reductions
from the problem of breaking P to that of breaking Q. That is, they show
an efficient algorithm for breaking Q that only makes black-box usage of a
potential adversary for P with an analysis that relates the performance of the
adversary of P to the one constructed for Q. A fully-black-box construction
of a primitive P from a primitive Q is a black-box implementation of P from
Q along with a black-box security reduction. Reingold et al. [RTV04] were
the first to formally define the notion of a fully-black-box construction and
study the various nuances of such constructions.

1.3.2 Impossibility Results and Lower Bounds

Failing to come up with constructions of some primitives from others has led
researchers to study the impossibility of such constructions. In such a case, a
proof that primitive P cannot be implemented efficiently from primitive Q
is sought. However, if one assumes that primitive P does exist, then P can
be implemented from Q in a trivial manner (by simply ignoring it). Thus,
when considering impossibility proofs, we need to be more careful. Using the
notion of a black-box construction, the impossibility results considered are
those that actually use Q (both in the construction and the security proof).
A black-box separation of P from Q is a proof that primitive P cannot be
fully-black-box constructed from primitive Q.

In the literature, we identify two main types of impossibility results: Black-
box separation of a cryptographic primitive P from a primitive Q and lower
bounds on a complexity measure for any black-box construction of a primitive
P from a primitive Q. Bounds of the former type are usually sought after
unsuccessful attempts to construct P from Q were made. Bounds of the latter
type are sought when some construction that implements P from Q is known,
but is not optimal in some complexity parameter (i.e., running-time, number
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of queries to Q, seed length). In this case, a possible result would yield that
any black-box construction of P from Q must make at least q queries to the
underlying primitive Q. Of course, q may depend on the specific parameters
required from P , or the assumptions made about Q.

As two important examples, we mention the work of Impagliazzo and Rudich
[IR89], who ruled out a black-box construction of a secret key-agreement from
a one-way permutation3 and that of Simon [Sim98], who proved that there
is no black-box construction of a collision-resistant hash function4 from a
one-way function.

1.4 Communication Problems with Advice

The research field of communication complexity concerns with the efficiency of
interaction. The theory of communication complexity quantifies and studies
the amount of communication required for different settings of distributed
computing between two entities that are allowed to communicate over some
channel. In this case, local computations are assumed to be unbounded, i.e.,
we do not limit the entities with respect to the time and space complexities of
their local computations, and are solely interested in the amount of information
exchanged during the computation, measured usually by the total number
of bits exchanged by the parties. The communication between the parties is
guided by a protocol which specifies how each message sent depends on the
input and the messages sent previously.

More formally, two computationally unbounded players Bob and Charlie
hold partial inputs x ∈ X and y ∈ Y , respectively, to a function f : X × Y →
{0, 1} known to both of them. The parties interact according to a protocol
π, which is modeled as a finite sequence of functions (M1, . . . ,Mr), where
Mi : X × ({0, 1}+)i−1 → {0, 1}+ for an odd i and Mi : Y × ({0, 1}+)i−1 →
{0, 1}+ for an even i, specifying the i’th message of the protocol. The
computation proceeds as follows: In the first round, the message m1 = M1(x)
is sent by Bob, in the second round m2 = M2(y,M1(x)) is sent by Charlie,
and in general, in the i’th round message Mi(x,m1, . . . ,mi−1) (respectively,
Mi(y,m1, . . . ,mi−1)) for odd (resp., even) i is sent.

3A one-way function that is additionally a permutation on its domain.
4These cryptographic hash-functions require that no collision to a randomly chosen

function can be found, where the adversary has the freedom to choose both inputs to the
function after receiving the key. This implies that every collision-resistant hash function is
in particular a universal one-way hash function.
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The transcript of a protocol on inputs x and y is π(x, y) def= (m1, . . . ,mr).
The length of the transcript |π(x, y)| is defined as the total length of all the
messages exchanged.

A protocol is correct if, for all x ∈ X and y ∈ Y, there exists a referee
function eval, such that eval(π(x, y)) = f(x, y). Put differently, if it is
possible to compute f(x, y) only by looking at the transcript.

Finally, the communication complexity of a protocol π is maxx,y |π(x, y)|
and the deterministic communication complexity of a function f : X×Y → {0, 1}
is defined as CC(f) def= minπ maxx,y |π(x, y)|, where the minimum is taken
over all correct protocols for f .

Observe that for every function there exists a trivial protocol: Bob sends
his entire input to Charlie, who locally computes f(x, y) and announces the
output. The question one is usually interested in, is “What is the minimal
amount of communication between the parties required to compute f?”.

For example, the equality function, Eq : {0, 1}n × {0, 1}n → {0, 1} de-
fined by Eq(x, y) = 1 iff x = y, can be shown to require a deterministic
communication complexity of at least n+ 1 bits.

In the literature many variations of this model are studied, and in partic-
ular various models that involve randomness and non-determinism. For a
thorough introduction to communication complexity we refer to the textbooks
of Hromkovič [Hro97] and Kushilevitz and Nisan [KN97].

1.4.1 Communication Complexity with Advice

First observe that simply adding an advice, which depends on the inputs, of
even just one bit to the classical model of communication complexity does
not seem to make sense, as the advice bit f(x, y) immediately yields a trivial
protocol for the problem.

However, motivated by the problem of proving polynomial lower-bounds
on the efficiency of dynamical data structures, Pǎtraşcu [Pat10] has recently
suggested the following model, where Bob has input x ∈ X (just as before),
but Charlie is given as input k elements y1, . . . , yk from Y. Then, a third
party Alice, the advisor, receives both inputs and computes an advice string
which she sends to Bob and then remains silent. Finally, Bob and Charlie
are presented an index i and are allowed to interact by exchanging messages,
where their goal is to compute f(x, yi).
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More formally, a protocol π with m advice bits for the k-instance problem
is π = (πa,M1, . . . ,Mr), where πa : X × Yk → {0, 1}m is the advice function
of the protocol and

Mi : X × [k]× {0, 1}m × ({0, 1}+)i−1 → {0, 1}+

for an odd i and

Mi : Yk × [k]× ({0, 1}+)i−1 → {0, 1}+

for an even i.

The computation on inputs x, y1, . . . , yj , i proceeds similarly to before: First,
the advice a = πa(x, y1, . . . , yk) is given to Bob, and then the interaction
continues as follows: Bob sends message m1 = M1(x, i, a) to Charlie, who
replies with message m2 = M2(y1, . . . , yk, i,m1) and so forth.

We stress that it is essential that only Bob receives the advice. Otherwise,
for example, whenever m > log(X ), the advice could already encode Bob’s
input, and Charlie could locally compute the answer.

Also, note that the problem is only interesting in the case where m < k.
Otherwise, a trivial protocol always exists, where the advice just encodes the
answer vector (f(x, y1), . . . , f(x, yk)).

As before, for y(k) def= (y1, . . . , yk), the transcript π(x, y(k), i) of π for inputs
x, y(k) and i is is the list (m1, . . . ,mr) of all messages exchanged during
its computation on inputs x, y(k). As before, a protocol is correct if it is
possible to compute f(x, yi) only by looking at its transcript. We define the
communication complexity of f for k inputs with m bits of advice as

CCk
m(f) def= min

π
max
x,y(k),i

∣∣∣π(x, y(k), i)
∣∣∣ ,

where the minimum is over all protocols π that correctly compute f(x, yi)
for every input (x, y(k), i).

As mentioned, Pǎtraşcu offered a plausible approach for lower bounds to
a host of dynamic data structure problems via a series of reduction from
the problem of set-disjointness in the communication complexity with advice
model on which super-polynomial lower bounds are conjectured. In particular,
one such problem is subgraph connectivity, where, after a preprocessing of an
undirected graph, the data structure supports on/off operation for vertices
and queries for pair of vertices u, v asking whether there is a path using only
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“on” vertices from u to v. Another problem is Langerman’s problem, where it
is required to maintain updates on an array of length n and support answering
the zero-partial-sum question, namely, does there exist a non-empty subset of
indices that sum to zero. We refer to Section 1.1 in [Pat10] for a complete
taxonomy.

Thus, the communication complexity with advice model is well-motivated,
whose study offers a promising approach towards polynomial lower bounds
on the aforementioned problems.

1.5 Mathematical Preliminaries

Throughout the thesis we use standard notations from the literature, which
we assume the reader is familiar with. For the sake of completeness, we bring
a short overview.

We denote by N def= {0, 1, 2, . . .} the set of natural numbers and by N+ def=
N\{0}. Similarly, we denote by R and R+ the set of real numbers and positive
real numbers, respectively. For two integers n,m ∈ N+, we denote by [n] the
set {1, . . . , n} and by gcd(n,m) and lcm(n,m) their greatest common divisor
and least common multiplier, respectively. All logarithms considered in this
dissertation are to the base 2. For two bit-strings x and y we denote by x‖y
their concatenation, by (x)q the q’th bit of x, and by (x)1,...,q the first q bits
of x.

We use the standard Landau notation O,Ω, o and ω. Additionally, for a
function f : N → R, we denote by Õ(f) the set of all functions that are
asymptotically dominated by f ignoring logarithmic factors, i.e., g ∈ Õ(f)
if and only if there exist c, d ∈ N such that g(n) ≤ cf(n) logd(n) for all
sufficiently large n.

We shall introduce more specific notations in the relevant chapters as
needed.

1.5.1 Notions of Efficiency of Computation

A function p = p(ρ) is polynomial if there exists a c such that p(ρ) = ρc. A
machine M is efficient if there exists a polynomial p such that on every input
x ∈ {0, 1}∗, M(x) halts after at most p(|x|) steps. We shall use the terms
machine and algorithm synonymously. A function s : N+ → N+ is a security
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function if for every ρ ∈ N+ it holds that s(ρ+ 1) ≥ s(ρ), and s is efficiently
computable (i.e., there exists an efficient machine M that on input 1ρ outputs
s(ρ)). For a security function s we define 1

s : N+ → R+ as 1
s (ρ) def= 1

s(ρ) . A
function f : N+ → R+ is negligible if it vanishes faster than the inverse of
any polynomial, i.e., if for all polynomial security functions p it holds that
f(ρ) < 1

p(ρ) for all sufficiently large ρ. Sometimes we shall denote negl(n) to
denote some specific negligible function that is clear from the context.

1.5.2 Probability Theory

We use capital letters to denote random variables and small letters for specific
values they assume. For a random variable X we denote by E[X] and
V[X] = E[(X −E[X])2] its expectation and variance, accordingly. We recall
a few of their properties: Let X and Y be two random variables, and let
a, b ∈ R. The expectation is linear, i.e., E[aX + Y ] = aE[X] + E[Y ]. The
variance of a random variable satisfies V[aX + b] = a2 V[X]. If additionally
X and Y are independent, we have V[X + Y ] = V[X] + V[Y ].

For an event A, we denote its indicator random variable (which assumes
the value 1 whenever A happens and 0 otherwise) by 1lA, and its complement
event by A. We implicitly make use of the fact that E[1lA] = Pr[A]. The
support of a random variable X is defined as Supp(X) = {x : Pr[X = x] > 0}.
For a non-empty set S we denote by x r← S choosing an element x uniformly
at random from S and for a random variable X we denote x r← X for choosing
x according to X.

When we want to emphasize the considered random experiment with
some fixed partial randomness, we describe the random experiment under
the Pr (respectively, E or V) symbol. For example, when X and Y are
two independent random variables and we consider the random experiment
where Y is fixed for some value y, we shall write Pr

x
r←X [x = 2y] (instead of

Pr[X = 2y]) to stress that we consider the random experiment of choosing a
random x.

For further introduction to probability theory, we refer to the textbook
of Ross [Ros10]. Throughout the dissertation, we make extensive use of the
probabilistic method. We bring next some probabilistic inequalities about
concentration of a random variable around its expected value.
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Markov’s Inequality. Let X be a non-negative random variable with finite
expectation. Let a > 0. Then:

Pr[X ≥ aE[X]] ≤ 1
a
. (1.2)

As a corollary from Markov’s inequality we immediately obtain Chebyshev’s
inequality:

Chebyshev’s Inequality. Let X be a random variable with finite expec-
tation and variance. Let a > 0. Then:

Pr[|X −E[X]| ≥ a] ≤ V[X]
a2 . (1.3)

Next we bring two useful inequalities about the sum of independent random
variables:

The Chernoff Bound. Let {Xi}ti=1 be independent identically distributed
random variables with Pr[Xi = 1] = Pr[Xi = 0] = 1

2 , and let a > 0. Set
X

def=
∑t
i=1Xi. Then

Pr[X > E[X]− a],Pr[X < E[X]− a] < exp
(
−2a2

t

)
. (1.4)

Finally, we present a more general version of the Chernoff bound for bounded
independent random variables.

The Hoeffding Bound. Let {Xi}ti=1 be independent random variables,
where Xi ∈ [ai, bi], and let k > 0. Set X def=

∑t
i=1Xi. Then

Pr [X −E[X] ≥ k] ≤ exp
(

−2k2

Σti=1(bi − ai)2

)
and

Pr [X −E[X] ≤ k] ≤ exp
(

−2k2

Σti=1(bi − ai)2

)
.

The proofs of the inequalities can be found in Appendix D.1 in [Gol08] and
in [Hoe63].
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1.5.3 Combinatorial Hash Functions

In Chapter 4, we shall make use of the following combinatorial hash functions.

t-wise Independent Hashing. Let Gmn
def= {gk}k∈K be a family of func-

tions, where gk : {0, 1}n → {0, 1}m.

Gmn is t-wise independent if for all range elements y1, . . . , yt ∈ {0, 1}m and
all distinct domain elements x1, . . . , xt ∈ {0, 1}n it holds that

Pr
k
r←K

[gk(x1) = y1 ∧ · · · ∧ gk(xt) = yt] = 2−tm .

Put differently, for any distinct t domain elements, the distribution of their
images on the range under a uniform key from the family is perfectly uniform.

The family is called constructible if, for all y1, . . . , ys and distinct x1, . . . , xs
where s ≤ t, it is possible to sample a function uniformly subject to gK(x1) =
y1, . . . , gK(xs) = ys.

There exist t-wise independent hash functions where the description of a
function is linear in the logarithm of the domain size.

Specifically, taking K = {0, 1}n×{0, 1}n×{0, 1}n, for k = (a2, a1, a0) ∈ K
the family Gnn = {gk : {0, 1}n → {0, 1}n}K defined by gk(x) = a2·x2+a1·x+a0,
where the operations and a2, a1, a0 and x are understood as operations and
elements, respectively, in the finite field of cardinality 2n, is a constructible
three-wise independent family.

It is easy to check that if Gnn is a t-wise independent family, then by
truncating the last n− l bits of Gnn one gets a t-wise independent family Gln.
Moreover, if Gnn is constructible, then so is Gln.

We will also need the following fact: If Gln is a constructible t-wise indepen-
dent family, then for any x 6= y ∈ {0, 1}n it is possible to sample a uniform
gk from Gln subject to the condition that gk(x) = gk(y).

For further introduction to t-wise independent hashing we refer to Appendix
D.2 in [Gol08].
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Part I

Randomness and Advice
Complexity Trade-Offs in

Online Algorithms





Chapter 2

Steiner Trees

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I-
I took the one less traveled by,
And that has made all the difference.

from “The Road Not Taken” by R. Frost

2.1 Introduction

In this chapter, we focus on the advice complexity of the online version of the
well-studied minimum Steiner tree problem (ST). In the offline setting, an
instance I to ST is a graph G = (V,E) endowed with a weight function on the
edges w : E → R+ and a set T ⊆ V of vertices called terminals. A subgraph
σ of G is a solution to the instance if every pair of terminals is connected in
it. The cost of a solution σ, denoted cost(σ), is the sum of the weights of the
edges in it, and a solution is optimal if there exists no other solution with
smaller cost.

Following previous work of Imase and Waxman [IW91], we consider the
following natural online version of the minimum Steiner tree problem. Given
a (known) weighted graph G, the terminals appear in a step-wise manner, and
the algorithm maintains a subset of the edges as its solution. Upon receiving
a new terminal, the algorithm extends the current solution so that the new
terminal is connected to the old ones. The entire graph is known in advance,
and only the specific subset of terminal vertices (and an ordering on it) is
part of the instance.



22 Steiner Trees

More formally, given a ground graph G with a weight function w, an instance
to ST(G,w) is an ordered list of vertices called terminals [v1, v2, . . . , vN ], where
vi ∈ V . At time step i, the algorithm receives terminal vi and extends its
current solution by choosing additional edges from G. The augmented solution
computed by the algorithm by the end of step i is a solution to the offline
problem on G with {v1, . . . , vi}. As in the offline case, the cost of the
solution is the total weight of edges chosen by the algorithm. An instance
for ST(G,w) with N terminals is encoded canonically as a binary string of
length N · dlog(|V |)e.

An online algorithm with advice for ST(G,w) is strictly c-competitive using
b advice bits if, for every instance, there exists an advice string φ such that the
total weight of edges chosen by the algorithm during its computation with φ
is at most c times the weight of the edges of an optimal solution to the offline
problem, and at most b bits are read from φ. In general, c = c(·) and b = b(·)
are function of some parameter of the input, typically the input length.

2.1.1 Contributions of this Chapter

We obtain a complete and exact characterization of the power of advice bits
for the online Steiner tree problem.

In Section 2.2, we first give a variant of the greedy algorithm of [AA92] (with-
out advice), which is O(log(N))-competitive on an input with N terminals,
and then show that our modified algorithm, which we call terminal-greedy
algorithm, is O(log(Nq ))-competitive, utilizing an advice of size q · log(|V |).
Informally, the advice we employ is a description of the q most expensive
terminals, namely, the q terminals for which the terminal-greedy algorithm
added the largest total weight of edges during its execution without advice.

In Section 2.3, we complement our algorithm with a matching lower bound,
for the full range of advice bits.We revisit the construction of [IW91], that
shows a matching lower bound of Ω(log(N)) for the competitive ratio in the
standard online setting (without advice). Inspired by their construction, we
introduce diamond graphs and study their properties. The construction they
use can be viewed as a degenerated diamond graph. Our analysis takes a new
approach using probabilistic arguments and requires a more general class of
graphs in order to handle algorithms that use advice.

For every q such that 0 ≤ q ≤ N − 1 and an online algorithm taking
advice of size q · log(|V |), we construct a different instance distribution on a
suitable diamond graph. We then employ the mechanism developed earlier
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in order to show that for this graph there exists an instance for which the
algorithm is Ω(log(Nq ))-competitive. Our lower bound here holds already for
the unweighted case, where w(e) = 1 for every e ∈ E.

We observe that a partial and weaker result of a matching lower bound
for some values of advice size q log(|V |) can be obtained using the original
construction presented in [IW91], albeit using a different analysis. We empha-
size that our new construction is essential for the proof of a matching lower
bound for the full range 0 ≤ q ≤ N − 1 of online algorithms using q · log(|V |)
advice bits.

2.1.2 Related Work

Imase and Waxman [IW91] were the first to study the Steiner tree problem in
the online setting and showed a tight bound of Θ(log(N)) for its competitive-
ratio. Alon and Azar [AA92] show that almost the same lower bound holds
also for the case, where the vertices are points in the Euclidean plane. Berman
and Coulston [BC97] and Awerbuch et al. [AAB04] study a generalized version
of the problem and related problems. More recently, Garg et al. [GGLS08]
considered a stochastic version of the online problem.

2.1.3 Further Notation

For two understood objects a and b, (i.e., instances, paths, etc.) we denote
their concatenation by a◦ b. For a graph G = (V,E) and two vertices s, t ∈ V ,
we denote by s t a simple path from s to t in G.

2.2 The Terminal-Greedy Algorithm

In this section we present an O(log(Nq ))-competitive algorithm that utilizes

q′
def= q · log(|V |) advice bits, for any q ∈ [N − 1].

Observe that an advice of size (N − 1) log(|V |) is always sufficient in order
to obtain an optimal solution, since the algorithm is required to make its
first decision only upon receiving the second vertex. Therefore, one could
canonically encode the rest of the input using (N − 1) log(|V |) bits.
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Recall that the online greedy algorithm that connects the current terminal
vi using the shortest weighted path to a vertex from the current solution is
O(log(N))-competitive. Our algorithm is obtained by a modification of the
greedy algorithm. Whereas the greedy algorithm connects the next vertex to
the current solution by using the shortest path to any vertex of the current
solution, the terminal-greedy algorithm connects a new vertex using a shortest
path to one of the terminals of the current input, ignoring possible shorter
paths connecting to some non-terminal vertices already chosen by the solution.

A version of the following lemma was used in the proof of [AA92] for the
standard greedy algorithm and still holds for our terminal-greedy algorithm.

Lemma 5. Let OptVal denote the value of the optimal solution to an instance.
Let k ∈ N. The number of steps in which the terminal-greedy algorithm
(without advice) adds edges of total weight greater than 2 ·OptVal/k is at most
k − 1.

Proof: Let S denote the set of such terminals, that is a vertex v ∈ S if and
only if, at the point v presented to the algorithm, the algorithm added a total
edge-weight of at least 2 · OptVal/k. Observe that in particular, the distance
between any two vertices in S is greater than 2 · OptVal/k. Now, consider T ′,
an optimal Steiner tree for the vertices in S. Its cost is at most OptVal, since
S is a subset of the terminal set of the instance. Let us double the edges in T ′
and direct them according to some depth first search traversal of T ′ starting
at one of the vertices in S. The depth first search traversal of T ′ can be
decomposed to |S| paths between the vertices of S (according to their order of
appearance on the traversal). Now, on the one hand, by the first observation
the total edge weight of these paths is greater than 2 · |S| · OptVal/k, but on
the other hand, their total weight is at most 2 ·OptVal. It follows that |S| < k.

The terminal-greedy algorithm utilizes its advice as a list of q vertices from
the instance. Intuitively, the vertices given as advice are the q most expensive
ones for the input when given in an online fashion (without advice). The
challenge is to show that no further costs are incurred by the algorithm using
this approach.

Next, we describe the terminal-greedy algorithm with advice of size q ·
log(|V |):1 When the algorithm receives its first terminal vertex v1 from the

1Fomally, recall that the advice string is infinite, and therefore another 2 log(|V |) advice
bits are given at the beginning of the input, encoding the value q. In our setting this can
be ignored, incurring an additive constant imprecision of at most 1.
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instance it computes the optimal (offline) Steiner Tree for the terminal set
that consists of the q vertices given as advice along with v1. Then, it sets the
computed tree for this terminal set (which consists of q + 1 vertices) as the
current solution.

For i ≥ 2, upon receiving a terminal vi, the algorithm proceeds as follows:
If vi has already appeared in the advice, it does nothing. Otherwise, the
algorithm computes the shortest path (in G) from vi to all the terminals that
have previously appeared as part of the instance (v1, . . . , vi−1) and connects vi
using the shortest path among those i− 1 paths (and to the lexicographically
first in case that there is more than one).

Theorem 6. Let 1 ≤ q ≤ N − 1. The terminal-greedy algorithm with
q · log(|V |) advice bits is O(log(Nq ))-competitive.

Proof: Using induction one shows that, in every step, the chosen subgraph
is a solution to the current instance. The rest of the proof is concerned with
showing the bound on the cost of the algorithm.

We show that, for every q > 0, there exists a set of size q such that, for every
instance with N terminals with optimal (offline) solution of value OptVal, the
solution computed by the algorithm has cost at most O(OptVal · log(Nq )).

For any vi ∈ {v1, . . . , vN} we denote by c(vi) the cost incurred when adding
vertex vi according to the terminal-greedy algorithm (without advice). That
is, c(vi) is the sum of the weights of all the edges chosen at step i in order to
connect vi to the solution. Let us sort the vertices of the instance according
to their costs. That is, let [v′1, v′2, . . . , v′N ] be the sorted permutation of
[v1, . . . , vN ], where c(v′1) ≥ c(v′2) ≥ · · · ≥ c(v′N ).

We claim that the terminal-greedy algorithm with advice [v′1, . . . , v′q] is
log(Nq )-competitive. Indeed, the tree computed by the algorithm after v1 is
received has cost at most OptVal, as the optimal tree is one possible solution
to it. Now, whenever a vertex vi is received, it behaves exactly2 as the
greedy-terminal algorithm without advice would, and therefore its cost for
this vertex is c(vi).

By Lemma 5, we know that for every i ∈ [n] it holds that c(v′i) ≤ (2 ·
OptVal)/i as otherwise, since the vi’s are sorted, we get i vertices that each
incurs a cost of more than (2 · OptVal)/i. Since c(v1) = c(v′n) = 0, the total
cost of the algorithm is bounded by

2Note that in general this does not hold for the ’standard’ greedy-algorithm.
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OptVal +
N−1∑
i=q+1

c(v′i) ≤ OptVal + 2 · OptVal
N−1∑
i=q+1

1
i

= OptVal
(

1 + 2(
N−1∑
i=1

1
i
−

q∑
i=1

1
i
)
)

< OptVal
(

1 + 2
log(e) · log(N − 1

q
) + 1

q

)
,

where in the last inequality we used the fact that
∑k
i=1

1
i = ln(k)+γ+ 1

2k±o(
1
k ),

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Finally, recall that a
subset of the vertices of size q can be described using q · log(|V |) bits. The
bound follows.

2.3 A Matching Lower Bound

In this section we show a lower bound matching the competitive ratio guarantee
of the algorithm presented in Section 2.2. As mentioned, our construction
holds already for the unweighted case where w(e) = 1, thus we omit w from
our notation.

2.3.1 Edge-Efficient Algorithms

It will be useful for us to analyze the performance of algorithms that enjoy a
canonical structure and have some guarantees on their behavior. We identify
such a class of algorithms next. An online algorithm A for ST is edge-efficient
if, for every instance I, when removing any edge from the solution A(I),
the resulting graph is not a solution. That is, removing any edge from A(I)
disconnects two terminals v, v′ ∈ I.

The next lemma shows that edge-efficient algorithms are as powerful as
general algorithms and therefore we can focus our analysis on them.

Lemma 7. For every deterministic online algorithm A for ST there ex-
ists an edge-efficient algorithm A′ such that, for every instance I, we have
cost(A′(I)) ≤ cost(A(I)).
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Proof: Let A be an algorithm for ST. We describe the behavior of the
corresponding algorithm A′ and denote its current solution by σ′.

The algorithm A′ maintains a simulation of the run of A. Each time a
new vertex v is received, A′ forwards v to A and receives from A an updated
solution σ.

Now, A′ computes the shortest distances on σ from v to all the vertices
of its current solution σ′ and chooses a vertex w from σ′ that attains the
minimal distance. Next, it connects v to w using the corresponding shortest
path on σ. That is, it adds to σ′ all the vertices and edges from σ along the
path.

Using induction, one proves that σ′ computed by A′ is contained in σ and
hence cost(A′(I)) ≤ cost(A(I)). Furthermore, in every step, the solution σ′
is a tree, where all its leaves are vertices from the instance I and therefore
removing any edge from σ′ disconnects the solution.

2.3.2 Diamond Graphs and Our Instance Distribution

For vertices s and t and a list of natural numbers [`1, `2, . . . , `n], we define
the diamond graph of level n on vertices s and t, denoted Dn[`1, . . . , `n](s, t),
recursively as follows:

1. The graph D0[ ](s, t) (of level n = 0 with an empty list) consists of the
vertices s and t and the single edge (s, t).

2. Given G(s′, t′) def= Dn[`1, . . . , `n](s′, t′), a diamond graph of level n on
vertices s′, t′, the graph Dn+1[z, `1, `2, . . . , `n](s, t) is constructed as
follows: We start with the vertices: s, t and m1, . . . ,mz. Next, we con-
struct the following 2z copies of G(s′, t′): G(s,m1), . . . , G(s,mz) and
G(m1, t), . . . , G(mz, t), where G(x, y) is a copy of the graph G(s′, t′),
where the vertices s′ and t′ are identified with x and y. Finally, the result-
ing graph is the union of the 2z diamond graphs G(s,m1), . . . , G(s,mz),
G(m1, t), . . . , G(mz, t).

We call the parameter `i the width of level i of the graph, and the vertices
m1, . . . ,m`1 the middle vertices of Dn[`1, . . . , `n](s, t). Note that the graphs
in the union are almost disjoint, that is, any two of them share at most one
vertex (and no edges).
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Figure 2.1: Diamond Graphs

For a fixed n ∈ N our instance distribution generates simultaneously an
instance I that contains N + 1 = 2n+ 1 terminals, and a path P from s to t of
length N = 2n, which is an optimal solution to it.3 The first two vertices are
always s and t, and vertices along the path are chosen level by level, where
choosing the vertices of level i+ 1 can be thought of as a refinement of the
path along the vertices of level i. The idea is that the algorithm has to connect
all the level-i vertices before level-(i+ 1) vertices are revealed. Formally, the
instance of ST(Dn[`1, . . . , `n](s, t)) is generated according to Process 1.

The following propositions follow by simple induction and the definitions
of Dn[`1, . . . , `n](s, t), GenerateInstance and GeneratePath.

Proposition 8. The graph Dn[`1, . . . , `n](s, t) contains 2n ·
∏n
i=1 `i edges.

Proposition 9. Let n ≥ 1. A simple path s  t on Dn[`1, . . . , `n](s, t) is
of the form s x t for some x ∈ {m1, . . . ,m`1} and contains exactly 2n
edges.

Proposition 10. The path P computed during the execution of
GenerateInstance(Dn[`1, . . . , `n](s, t)) is a solution to the generated in-
stance that contains exactly 2n edges.

Proposition 11. During the run of GeneratePath(Dk[`′1, . . . , `′k](u, v)),
when the algorithm adds a vertex x as the next vertex of the instance I

3For simplicity of presentation, we use an instance of N + 1 instead of N terminals.
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Process 1 GenerateInstance
Input: A graph Dn[`1, . . . , `n](s, t)
Output: An instance I of ST(Dn[`1, . . . , `n](s, t))
1: I ← [s] . Every instance starts with the vertex s
2: I ← I ◦ [t] . followed by the vertex t.
3: P ← GeneratePath(Dn[`1, . . . , `n](s, t))
4:
5: procedure GeneratePath(Dk[`′1, . . . , `′k](u, v))
6: if k = 0 then
7: return e = (u, v)
8: else
9: Choose x r← {m1, . . . ,m`′1

} . m1, . . . ,m`′1
are the middle vertices

of Dk[`′1, . . . , `′k](u, v)
10: I ← I ◦ [x]
11: P1 ← GeneratePath(Dk−1[`′2, . . . , `′k](u, x))
12: P2 ← GeneratePath(Dk−1[`′2, . . . , `′k](x, v))
13: return P1 ◦ P2
14: end if
15: end procedure

(Line 10), both u and v have already appeared in I and no other vertex from
Dk[`′1, . . . , `′k](u, v) is contained in I.

Lemma 12. Let A be an edge-efficient algorithm, and consider an execution
of GenerateInstance(Dn[`1, . . . , `n](s, t)). The number of edges added to
the solution by A during every call to GeneratePath(Dk[`′1, . . . , `′k](u, v))
is at least Wk

def=
∑k
i=1

(
2k
2i
∑2i−1

j=1 Xi,j

)
, where the Xi,j’s are independent

Bernoulli random variables with Pr[Xi,j = 0] = 1/`′i = 1− Pr[Xi,j = 1].

Before proving the lemma, we prove the following proposition on the
structure of the current solution restricted to the subgraph Dk[`′1, . . . , `′k](u, v)
when GeneratePath(u, v) is called.

Proposition 13. Let k ∈ {1, . . . , n} and let A be an edge-efficient algorithm.
Consider an execution of GeneratePath(Dn[`1, . . . , `n](s, t)). Whenever
a call GeneratePath(Dk[`′1, . . . , `′k](u, v)) is made, either (1) the current
solution chosen by A restricted to the subgraph Dk[`′1, . . . , `′k](u, v) contains
no edges, or, (2) Dk[`′1, . . . , `′k](u, v) contains a simple path of the form
u  y  v for some y ∈ {m1, . . . ,m`′1

}, where m1, . . . ,m`′1
are the middle

vertices Dk[`′1, . . . , `′k](u, v), and no other edges.
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Proof: By Proposition 11, we know that the vertices u and v have already
appeared in the instance, and therefore they are connected in the current
solution, and, in particular, by some simple path u v. Consider the first
edge (u, z) of this path. If z is contained in Dk[`′1, . . . , `′k](u, v), then, since the
only way to reach a vertex outside ofDk[`′1, . . . , `′k](u, v) is through the vertices
u and v, the entire path is contained in Dk[`′1, . . . , `′k](u, v). Conversely, if z
is not contained in Dk[`′1, . . . , `′k](u, v), by the same argument, it follows that
the path u v does not contain any inner vertex of Dk[`′1, . . . , `′k](u, v).

We argue that in both cases no other edges of the current solution
are incident to Dk[`′1, . . . , `′k](u, v). Assume the contrary, and let e ∈
Dk[`′1, . . . , `′k](u, v) be such an edge (not in u  v in the first case and
any edge in Dk[`′1, . . . , `′k](u, v) in the second case).

Observe that, since e is an internal edge of Dk[`′1, . . . , `′k](u, v) not on the
path u v and since by Proposition 11 at this point no other internal vertex
is chosen to the current instance, the vertices of the current instance remain
connected after removing e. This contradicts the edge-efficiency property of
the current solution chosen by A.

Proof: [of Lemma 12] We use induction on k, the parameter of the diamond
subgraph. For k = 0, the claim holds trivially since W0 = 0 and at least
zero edges are added. Let k > 0, and assume that the claim holds for all
k′ < k. Let GeneratePath(Dk[`′1, . . . , `′k](u, v)) be a call made during the
execution of GenerateInstance(Dn[`1, . . . , `n](s, t)). By Proposition 13,
the solution chosen limited to Dk[`′1, . . . , `′k](u, v) either (1) has no edges, or,
(2) has exactly one simple path between u and v, which by Proposition 9 has
the form u  y  v, for y ∈ {m1, . . . ,m`′1

}. Without loss of generality, we
assume that the path is of the form u m1  v. In the first case, after lines
9 and 10, the algorithm connects the vertex x to the graph, which must be
via the vertex u or v, in which case 2k

2 edges are added. In the second case,
with probability 1− 1/`′1 the vertex x is chosen from m2, . . . ,m`′ , in which
case as before, it must be connected using a path from u or v, which adds 2k

2
edges.

We conclude that the number of edges added to the solution due to the
choice of the vertex x is at least 2k

2 X1,1, where X1,1 is distributed according
to Pr[X1,1 = 0] = 1/`′1 = 1− Pr[X1,1 = 1].

Additionally, using the inductive hypothesis, the algorithm adds
W ′k−1 =

∑k−1
i=1

(
2k−1

2i
∑2i−1

j=1 X
′
i,j

)
and W ′′k−1 =

∑k−1
i=1

(
2k−1

2i
∑2i−1

j=1 X
′′
i,j

)
edges during GeneratePath(Dk−1[`′2, . . . , `′k](s, x)) and
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GeneratePath(Dk−1[`′2, . . . , `′k](x, t)), respectively, where X ′i,j
and X ′′i,j are Bernoulli random variables distributed according to
Pr[X ′i,j = 0] = Pr[X ′′i,j = 0] = 1/`′i+1 = 1− Pr[X ′′i,j = 1] = 1− Pr[X ′i,j = 1].

Moreover, since the random choices of GeneratePath are independent, we
have that the Bernoulli random variables are independent. Setting Xi+1,j

def=
X ′i,j and Xi+1,2i−1+j

def= X ′′i,j for all i ∈ {1, . . . , n} and j ∈ {1, . . . , 2i−1}, we
obtain that during the execution of GeneratePath the algorithm adds at
least 2k

2 X1,1 +W ′k−1 +W ′′k−1 =
∑k
i=1

(
2k
2i
∑2i−1

j=1 Xi,j

)
edges to the solution.

The lemma is proved.

Corollary 14. Any deterministic algorithm A for ST, when given an instance
generated by GeneratePath(Dn[`1, . . . , `n](s, t)), outputs a solution that
contains at least

log(N)∑
i=1

N
2i

2i−1∑
j=1

Xi,j


edges, where the Xi,j’s are as in Lemma 12.

Proof: By Proposition 7, we may assume that A is an edge-efficient algorithm.
The corollary follows by Lemma 12.

We refer to an edge added due to some Xi,j = 1 as an edge of level i and
say that in this case the algorithm made a wrong choice on Xi,j . Indeed, in
this case it was possible to connect some vertices u and v through a middle
vertex m such that the algorithm would not have had to add edges due to
Xi,j .

2.3.3 Deriving the Lower Bound

In this section, we show that for every algorithm with advice size q · log(|V |)
the terminal-greedy algorithm is best possible.

The input distribution we use is a diamond graph with parameters that
depend on the advice length of the specific algorithm it seeks to fail. Consider
an algorithm taking N ·2−j(N) · log(|V |) advice bits, where log(N) ≥ j(N) ≥ 0.

We can assume that log(N) ≥ j(N) > 10 and, furthermore, that j(N) is
an even integer number. The first assumption is trivial to satisfy, since every
algorithm is at most strictly 1-competitive and so for a constant j(N) the
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asymptotic bound already holds. The second assumption incurs an additive
term of 2 (recall that the bound we show is logarithmic). Therefore, both
assumptions are made without loss of generality.

Set j′(N) def= j(N)
2 and consider the diamond graph with log(N) levels

Dn[`1, . . . , `n](s, t), where the first log(N)− j′(N) levels are of width 2 and
the last j′(N) levels are of width N2. That is, `1 = · · · = `log(N)−j′(N) = 2
and `log(N)−j′(N)+1 = · · · = `log(N) = N2. For the rest of this section we refer
to this graph as G.

We can show that for every online algorithm with q · log(|V |) advice bits
there exists an input on which it does not perform better than Ω(log(Nq ))
compared to an optimal offline solution:

Theorem 15. Let A be an online algorithm for ST taking q′ def= q · log(|V |)
advice bits, where q def= N · 2−j(N) and log(N) ≥ j(N) ≥ 0. Then A has a
competitive ratio of at least Ω(log(Nq )).

We present an overview of the proof. Recall that for a fixed advice string φ ∈
{0, 1}q′ , the algorithm A “hard-wired” with φ (denoted Aφ) is a deterministic
online algorithm and therefore Corollary 14 establishes that on a random
instance of GenerateInstance(Dn[`1, . . . , `n](s, t)) it chooses at least Wn

edges.

We show that an instance chosen by GenerateInstance contains roughly
N · log(Nq ) edges with very high probability, and then use the union bound to
show that there exists an instance that makes all of the 2q′ algorithms choose
this number of edges.

Using the machinery developed for general diamond graphs and the prop-
erties of GenerateInstance we show that, by our choice of j′(N), it holds
that log(|V |) is not too large, and for each of the last j′(N) levels of the graph,
a fixed deterministic algorithm chooses a linear (in N) number of edges with
probability roughly 2−q′ = 2−q·log(|V |).

Finally, we use the probabilistic method and show that there exists an
instance on G, such that every Aφ chooses many edges on every level τ of the
last j′(N) levels in G.

Proof: Using Proposition 8 we have that the number of edges in G is
2n · 2(n−j′(N)) · (N2)j′(N) < 4n · (N2)j′(N). Since the number of vertices
in a graph is at most twice the number of its edges, we obtain that |V |,
the number of vertices in G, is at most 2 · 4n · (N2)j′(N), and therefore
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log(|V |) < 4 · log(N) · j′(N). Therefore, we can bound the advice size by

q′ = 2n−j(N) · log(|V |) < 2n−j(N) ·4 · log(N) · j′(N) = 4 ·2n−2·j′(N) ·n · j′(N) .

By Lemma 12 and Corollary 14, for every level τ , where n− j′(N) < τ ≤ n,
the probability that an edge-efficient deterministic algorithm is correct on at
least 2τ−1

4 of its choices for level τ (i.e., at least this number of X ′τ,js are 0)
can be computed as

Pr
[
∃S ⊂

[
2τ−1] : |S| = 2τ−1

4 ∧ ∀p ∈ S : Xτ,p = 0
]

<

(
2τ−1

2τ−1

4

)
·
(

1
N2

) 2τ−1
4

≤
(
2τ−1) 2τ−1

4

(
1
N2

) 2τ−1
4

=
(

2τ−1

22n

) 2τ−1
4

≤
(

1
2n

) 2τ−1
4

= 2−
(
n·2τ−1

4

)
≤ 2
−
(
n·2n−j

′(N)
4

)
.

Next we apply the union bound twice: The probability p that there exists
a level n− j′(N) < τ ≤ n for which one of the 2q′ deterministic algorithms
makes more than 2τ−1

4 correct choices can be bounded as follows:

p < 2q
′
· j′(N) · 2

−
(
n·2n−j

′(N)
4

)
(2.1)

< 2
(

4·2(n−2·j′(N))·n·j′(N)
)
· 2log(j′(N)) · 2

−
(
n·2n−j

′(N)
4

)
(2.2)

< 2
(

5·2(n−2·j′(N))·n·j′(N)
)
· 2
−
(
n·2n−j

′(N)
4

)
(2.3)

= 2
((
n·2n−j

′(N)
)(

5·2−j
′(N)·j′(N)− 1

4

))
< 1 (2.4)
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In turn, observe that this implies that there exists a fixed instance I ′ such
that the algorithm A, for every choice of advice of length q′, and for every level
τ in the range, makes at least 3·2τ−1

4 incorrect choices, each of which results
in an addition of N

2τ edges by the algorithm. Therefore, for this instance, the
algorithm chooses a solution that contains at least

log(N)∑
τ=log(N)−j′(N)+1

N

2τ ·
3 · 2τ−1

4 = 3
8 ·N ·j

′(N) ∈ Ω(N ·j(N)) = Ω
(
N · log(N

q
)
)

edges.

On the other hand, recall that, by Proposition 10, since I ′ is just one of the
possible instances generated by GenerateInstance, there exists a solution
that consists of N edges. The lower bound of Ω(log(Nq )) on the competitive
ratio follows.



Chapter 3

Disjoint Path Allocation

3.1 Introduction

An important example of an online problem which models a real-life scenario
is call admission in communication networks, where a central authority has
to admit or reject requests for communication between certain pairs of nodes
in the network. We shall focus on the special case called the Linear Disjoint
Path Allocation Problem.

Here, the communication network is simply modeled by a path of length L,
where the L+ 1 vertices correspond to the nodes of the network which might
want to communicate with each other using the links modeled by the edges of
the path. We assume that a communication request between two vertices is
issued at some point in time, but is of unbounded duration. Moreover, we
assume that any link of the path is only capable of serving one communication
request. Thus, admitting a request between two vertices on the path prevents
any vertex in between from participating in any communication. The goal is
to admit as many requests as possible.

More formally, the online linear disjoint path allocation problem (LDPA)
is the following maximization problem. At the first time step, the number
L is revealed, describing the path P = (v0, . . . , vL). In every successive time
step, a subpath of P , called a request, is presented to the algorithm. An
algorithm maintains a solution to the problem as follows: At the beginning,
the solution is empty. At every step, if the edges of the path presented do
not intersect with those of any of the subpaths chosen to the current solution,
the algorithm may choose the path to the current solution. A path that was
not chosen by the end of step i may not be added at a later step.

In this case, the cost of a solution is the number of subpaths chosen to it
and it is optimal if no other solution is of a larger cost.
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At times, when the input sequence I is clear from the context, we omit the
explicit dependence on it and write Opt and OptVal instead of Opt(I) and
cost(Opt(I)), respectively.

The disjoint path allocation problem can be analyzed with respect to two
different parameters: the number n of requested subpaths and the length
L of the path. For the parameter n, the randomized setting was analyzed
in [BEY98] and the advice complexity in [BKK+09].

Lastly, we recall that an O(log(L))-competitive algorithm for LDPA can
be implemented using dlog log(L)e random bits, and this matches the lower
bound on the competitive ratio that can be obtained by any randomized
online algorithm for the problem (Theorems 13.7 and 13.8 in [BEY98]).

3.1.1 Contributions of this Chapter

We continue the study of the exact power of randomness in online algorithms
(focusing on LDPA) and establish a trade-off between the number of random
bits available to the online algorithm and its competitive ratio.

We prove that any number b ≤ log logL of advice bits can be replaced by the
same number of random bits while achieving (almost) the same competitive
ratio in expectation. Thus, in some sense, a small number of random bits is
as powerful as a small number of advice bits for this problem.

Specifically, we obtain an online algorithm that uses only b random bits
and enjoys a competitive ratio of (L

1
2b ·2b+1) for any b ∈ {0, . . . , dlog log(L)e}.

Indeed, for b = 0, we obtain the greedy algorithm (without advice), and for
b = dlog log(L)e, we obtain the randomized algorithm from [BEY98]. We
mention that in light of the results presented in [BBF+14], this is essentially
best possible, even when using advice bits for this range of the parameter b,
recalling that advice bits are always at least as strong as bits.

3.2 A Barely Random Algorithm

3.2.1 Partitioning Edges and Intervals

In this section, we identify the edge (vt, vt+1) with its right vertex and call it
edge t+ 1. That is, a request [i, j] contains the edges {i+ 1, . . . , j}. Requests
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intersect if they contain a mutual edge. A set of requests covers a request if
every edge in the request is contained in some request from the set.

It will be useful to think of an edge t as the bit string of length log(L+ 1)
that denotes its binary expansion. For simplicity of presentation, for the rest
of this section, we assume that L = 2` − 1 for some integer `, but our results
here hold for any L (just think of the natural embedding of the path to the
first L vertices in a path of length L′ − 1, where L′ is the smallest power of 2
larger than L).

We partition the edges into ` levels, where an edge e belongs to level λ(e),
where λ : E → N is given by λ(e) def= max { t : 2t divides e }. Alternatively,
λ(e) is the largest t such that, in the binary representation of e, the t right-
most bits of e are zero. That is, the edge 10`−1 is the only edge of level `− 1,
the edges 10`−2 and 110`−2 are the only edges of level `− 2, and in general,
there are exactly 2`−j−1 edges of level j.
It will be useful to consider a coarser partition to blocks of B levels. To

this end, for every B ∈ N+, we define the B-block of an edge λB : E → N
by λB(e) def= bλ(e)

B c. It is immediate that λB(e) = i if and only if λ(e) ∈
{iB, iB + 1, . . . , (i+ 1)B − 1}. We extend λ (respectively, λB) to any request
r by setting λ(r) = maxe∈r λ(e) (resp., λB(r) = maxe∈r λB(e)). We call a
request a level-t (resp., B-block i) request if λ(r) = t (resp., λB(r) = i).

3.2.2 The B-Block-Greedy Algorithm

Let Opt be an optimal solution for an LDPA instance with value OptVal. We
denote by ot the number of requests in Opt for which λ(r) = t. Similarly, we
set o′i

def=
∑B−1
j=0 oiB+j , the number of requests in Opt for which λB(r) = i.

It holds that OptVal =
∑d`/Be−1
i=0 o′i =

∑`−1
t=0 ot. We shall make use of the

following proposition and the corollary that follows it.

Proposition 16. If a request contains two different edges of level t, then it
contains an edge of level at least t+ 1.

Proof: Let e < e′ be two edges of level t in r. It holds that e = x10t and
e′ = y10t for some x, y ∈ {0, 1}`−t. Now, observe that the edge e+ 10t is of
level at least t + 1, and is contained in the request since e < e + 10t ≤ e′.

Corollary 17. Every request r has exactly one edge of level λ(r).
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Proof: Towards contradiction, let e, e′ ∈ r be two edges of maximal level
λ(r). By Proposition 16, r contains an edge of level at least λ(r) + 1, which
contradicts the maximality of the levels of e and e′.

Corollary 17 asserts that every request has exactly one edge of maximal
level. We call this edge the level-edge of the request. Additionally, for any
edge e, any solution to an LDPA instance contains at most one request with
e as its level edge (this is true for any edge, and in particular for the level
edges).

Proposition 18. Let r be a level-t request. Then, for any solution of a LDPA
instance and any t′ ≥ t, the solution contains at most one level-t′ request that
intersects with r.

Proof: Suppose that some solution contains two level-t′ requests, r′ and r′′,
that intersect with r. Let e′ and e′′ be their level-edges of level t′, respectively.
It must hold that e′ 6= e′′, as otherwise r′ and r′′ overlap and cannot both
be contained in the solution, and, without loss of generality, we assume that
e′ < e′′. Observe that, by Proposition 16, the request [e′ − 1, e′′] contains an
edge f of level at least t′ + 1. Now, since r intersects with both requests, the
request [e′ − 1, e′′] is covered by the union of the three requests, and therefore
f is contained in at least one of r, r′ and r′′, which is a contradiction to the
fact that all three requests are of level at most t′.

We are now ready to present and analyze the i-th B-block greedy algorithm
for LDPA. The algorithm B-Block-Greedyi takes all the requests offered from
B-block i as long as they do not intersect with requests already chosen to the
current solution.

Proposition 19. For any instance of LDPA, B-Block-Greedyi chooses at
least 2−B · o′i requests.

Proof: We show that, for every edge that the algorithm chooses, at most 2B
requests chosen by Opt from block i intersect with it. Let r be a request of level
λ(r) = t = iB+ j for some j ∈ {0, . . . , B− 1} chosen by B-Block-Greedyi and
let e, an edge of level t, be its level-edge. That is, the binary representation
of e is of the form e = x10j0iB for some x ∈ {0, 1}`−1−j−iB .

Applying Proposition 18 to Opt yields the following.

Claim 20. for any level t′ ≥ t, Opt contains at most one level-t′ request that
intersects with r.
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e = x10j0iB

e + 10j0iB

x00j0Bi

x010j−10Bi x110j−10Bi

Figure 3.1: A block-i request of level t = iB + j. The request on line 3 is the
longest possible request with level-edge e. The edge e is of the form x10j0Bi
for some x ∈ {0, 1}`−Bi−j−1. The blue requests are chosen by Opt.

Moreover we need the following claim.

Claim 21. For any level t′ < t, Opt contains at most 2(t−t′) level-t′ requests
that intersect with r.

The second claim can be shown as follows. Let r′ be a level-t′ request that
intersects with r, and let e′ be its level-edge. We argue that e′ is of the form
xy10t′ for some y ∈ {0, 1}t−t′ and x as before. Assuming otherwise, without
loss of generality that e′ < x0t−t′10t′ (the case where e′ > x1t−t′10t′ is handled
similarly), it holds that e′ is of the form x′10t′ as it is a level-t′ edge, and
therefore x′ < x0t−t′ . Now, consider the request [e′−1, e]. It is covered by the
requests r′ and r (as they intersect and contain both edges), and additionally,
contains the edge x0t+1, since e′ < x0t+1 < e. Therefore, one of the requests
(without loss of generality r′) contains the edge x0t+1. This immediately leads
to a contradiction, since it now holds that λ(r′) ≥ λ(x0t+1) ≥ t+1 > t′ = λ(r′).
The claim follows using Corollary 17 and the fact that there are 2(t−t′) edges
of the form xy10t′ , where y ∈ {0, 1}t−t′ .

Combining both claims, we observe that the bound on the total number
of requests in B-block i that intersect with r and are contained in Opt is
(B − j + 1) +

∑j−1
k=1 2(j−k), and is maximized when the request is chosen

from the uppermost level of the block, in which case it holds that at most
1 +

∑B−1
j=1 2j ≤ 2B requests in Opt intersect with r. It follows that the

algorithm chooses at least 2−B · o′i requests.
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3.2.3 A Competitive Algorithm using Blocks of Size B

Let B ∈ {1, . . . , `}. We define the (randomized) B-Block-Greedy algorithm as
the algorithm that chooses uniformly at random a block i r← {0, . . . , d`/Be−1},
and behaves according to B-Block-Greedyi. The worst-case expected value of
this algorithm is

E
i
r←{0,...,d`/Be−1}

[
cost(B-Block-Greedyi)

]

≥
d`/Be−1∑
i=0

2−B

d`/Be
· o′i

= 2−B

d`/Be

`−1∑
t=0

ot

= 2−B

d`/Be
· OptVal.

Put differently, we obtain a (d`/Be · 2B)-competitive algorithm. Note that
choosing a random B-block out of the d`/Be possible blocks is the only
random choice of the algorithm and can be done using dlog(d`/Be)e random
bits.1

3.2.4 A Competitive Algorithm Using b Random Bits

So far our analysis was made in terms of the block size B. Next, we present
our main theorem for this section, which delineates explicitly the competitive
ratio obtained as a function of the number of available random bits b.

Theorem 22. The randomized B-Block-Greedy algorithm that uses b random
bits is (L

1
2b · 2b+1)-competitive.

Proof: Observe that the smaller the block size B is, the better is the
competitive ratio of the algorithm. Using b bits it is possible to randomly
choose of one of 2b blocks. Therefore, we can use any B ∈ N such that

1In fact, in general, an implementation that uses only dlog(d`/Be)e bits obtains a
(d`/B) · 2B+1e-competitive ratio (that is, it incurs an additional factor of 2). However,
whenever d`/Be is a power of two (as is the case in the next subsection) we can save this
factor while still using dlog(d`/Be)e random bits.
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2b ·B ≥ ` holds. Setting a block size of B = d`/2be levels in (d`/Be · 2B), we
obtain a competitive ratio of 2d`/2be · d`/d `2b ee ≤ L

1/2b · 2b+1 using b random
bits.
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Chapter 4

A Universal One-Way Hash
Function from a One-Way
Function with Regularity
Assumptions

Now will I sing to my wellbeloved a song
of my beloved touching his vineyard. My
wellbeloved hath a vineyard in a very
fruitful hill: And he fenced it, and
gathered out the stones thereof, and
planted it with the choicest vine, and
built a tower in the midst of it, and also
made a winepress therein: and he looked
that it should bring forth grapes, and it
brought forth wild grapes.

Isaiah 5 : 1-2

4.1 Introduction

A main task in cryptographic research is to construct a (strong) cryptographic
primitive P from a (weaker) cryptographic primitive Q, for example to
construct a pseudo-random generator from a one-way function (OWF). This
chapter is concerned with constructing a universal one-way hash function
(UOWHF), a fundamental cryptographic primitive, from a OWF.

The term “construct” means that one gives an efficient reduction of the
problem of breaking the underlying primitive Q to the problem of breaking
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the constructed primitive P . For two primitives P and Q, the most basic
question is whether P can be constructed in principle from Q, meaning that
the construction and the reduction must be efficient (i.e., polynomial-time)
and that the reduction translates a non-negligible probability of breaking P
into a non-negligible probability of breaking Q.

The principle possibility of constructing a UOWHF from a OWF was proved
by Rompel [Rom90], using a highly inefficient construction and reduction.
When trying to improve the construction, one can choose two orthogonal
routes. Either one improves the construction for a general OWF, or one
makes specific assumptions about the OWF allowing for special-purpose
constructions that do not necessarily work in general, and can hence be
more efficient. Of course, a key issue is how restrictive or how plausible the
assumption one has to make is.

The best known general construction of a universal one-way hash func-
tion from any one-way function f : {0, 1}n → {0, 1}m, due to Haitner
et al. [HHR+10], has output length Õ(n7) and Õ(n5) for the uniform and
non-uniform cases, respectively. The best known special-purpose construction
is due to Naor and Yung [NY89] and makes a single call to f (per argument
to the constructed UOWHF), and the output length is linear in n, but the
assumption one needs to make is that f is injective, which is a very strong
assumption.

In this chapter we investigate the middle grounds between completely
general constructions and those requiring such a very specific assumption.
Concretely, we investigate the trade-off between the regularity assumption for
f and the efficiency of the construction. The regularity is characterized by how
concentrated the preimage size spectrum, the random variable |f−1(f(X))|
corresponding to the preimage size of the function value f(X) for a uniformly
random argument X, is. For injective functions, the preimage size spectrum
is constant 1. Prior to our work, we do not know of any specific construction
for a function which is anywhere between regular and arbitrary.

We relate the assumptions made about the spectrum of f to the efficiency
of the overall construction. Qualitatively speaking, the more is assumed about
the regularity of f , the more efficient is the resulting construction.

4.1.1 Contributions of this Chapter

A first result on the way to fully utilizing an assumption about the regularity
of a function is an almost optimal construction of a universal one-way hash
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function from a regular (or almost regular) one-way function. Recall that a
function is 2r-regular if for every image there are 2r preimages.

Following previous work, for simplicity of presentation, we assume that for a
one-way function f the input length n is the security parameter. For this case,
we get a construction with output length and key length O(n · α(n) · log(n)),
where the construction makes O(α(n) · log(n)) invocations to f for any super-
constant function α(n). This improves on [SY90] by a factor of log(n) (see
Section 4.1.2 for comparison with previous work).

We introduce a natural relaxation of the notion of regularity:

Definition 23 (roughly-regular function). A function f : {0, 1}n → {0, 1}m is
called (r, s)-roughly-regular, if for every x in {0, 1}n it holds that |f−1(f(x))|
lies in the interval [r, rs]. A family of functions f = {fn}n>0 is called (r, s)-
roughly-regular, where (r, s) = (r(n), s(n)), if for every n it holds that fn is
(r(n), s(n))-roughly regular.

We call r and s the regularity and the roughness parameters of f , respectively.
Indeed, whenever the roughness parameter is trivial, that is, s(n) = 1 for all n,
this definition coincides with the standard definition of an r-regular function.
This definition, we argue, is both intuitive and quantifies the irregularity of a
function.

In Section 4.4 we utilize the ideas developed in Section 3 and improve
on [HHR+10] with the most general version (Theorem 37). We establish
a trade-off between the regularity assumption made about the underlying
one-way function and the overall efficiency of the construction. When f is a
(2r(n), 2s(n))-roughly regular one-way function, we show a construction with
output length and key length of Õ(n · s4) for the non-uniform model and of
Õ(n · s6) for the uniform model. Indeed, our construction ties up both ends
of the existing constructions: When s is constant, we get an almost linear
construction, and when s = O(n) our construction matches that of [HHR+10].

The analysis of the construction presented in Section 4.3 improves by
a factor of O(log2(n)) on the construction presented in Section 4.4 when
instantiated with a 2r-regular function. A very recent subsequent work by
Yu et al. [YGLW14] improves on the result presented in Section 4.3, where
they give a construction that makes only a super-constant number of calls.
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4.1.2 Related Work

Inaccessible Entropy.

Our work uses the framework of [HHR+10] for constructing UOWHFs from
OWFs using the notion of inaccessible entropy. Inaccessible entropy was
first introduced in [HRVW09] and along with work done in [HNO+09] and
[HRV10], it completes the construction of the fundamental cryptographic
primitives: universal one-way hash functions, pseudo-random generators and
commitment schemes using this notion.

A Regularity-Efficiency Trade-Off for the Construction of a
UOWHF.

In [SY90] it was first shown how to construct a UOWHF for the almost-regular
case. Our construction achieves the same query complexity to the underlying
one-way function (O(α(n) · log(n)) calls), but is superior in two aspects: It
makes its queries to the underlying one-way function in a non-adaptive manner,
and our resulting primitive has an output (and seed) length of n · log(n) ·α(n)
whereas the construction from [SY90] has an additional log(n) factor.

While for the almost-regular case the improvement is not dramatic, we
believe that our analysis, which extends the approach suggested in [HHR+10],
sheds more light on what is achieved at each step. The way the almost-
regularity property of the underlying one-way function is utilized later allows
to generalize it to any level of regularity. This is in contrast to the construction
in [SY90] which is more ad-hoc.

4.2 Preliminaries

4.2.1 Notations and Basics

For a function f : X → Y , we define the preimage spectrum function πf : X →
N, where πf (x) = |f−1(f(x))|. For understood Y1 × · · · × Yn we denote by
φi : Y1×· · ·×Yn → Yi the projection onto the i’th component. We extend this
to a set S ⊆ Y1 × · · · × Yn with φi(S) def= {φi(s) : s ∈ S}. A non-decreasing
function f : N → N is called super-constant if for all c ∈ N there exists an
n ∈ N, such that f(n) > c.
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The next lemma shows that ignoring an unlikely event of a random variable
that takes a value in some limited range, does not change much its expected
value.

The standard proof is omitted.

Lemma 24. Let X be a random variable with Supp(X) ⊂ [0, l] and A an
event that happens with probability at most ε. Then:∣∣E [X]−E

[
X|A

]∣∣ ≤ 2 · l · ε . (4.1)

As noted, we focus on families of functions where the input domain pa-
rameter n equals to the security parameter, i.e., n(ρ) = ρ, in which case
we parameterize the family by n. Additionally, we slightly abuse nota-
tion when referring to a function f : {0, 1}n → {0, 1}m(n), where formally
f = {fn : {0, 1}n → {0, 1}m(n)}n∈N is a parametrized family of functions,
and often we omit the security parameter when referring to fn or other
parametrized values.

4.2.2 Entropy Measures

For a random variable X and x ∈ Supp(X) the point-wise entropy of X is
HX(x) def= − log(Pr[X = x]). The Shannon entropy H(X) and min-entropy
H∞(X) of X are defined as:

H(X) def= E [HX(X)] , H∞(X) def= − log
(

max
x∈ Supp(X)

Pr[X = x]
)

.

These measures extend naturally to the case of a joint distribution of two
random variables X,Y . Namely, the conditional point-wise entropy for (x, y) ∈
Supp(X,Y ) is HX|Y (x, y) def= − log(Pr[X = x|Y = y]) and the conditional
Shannon entropy is

H(X|Y ) = E
(x,y) r←(X,Y )

[HX|Y (x, y)] = E
y
r←Y

[H(X|Y = y)] = H(X,Y )−H(Y ).

The next definition measures the average and absolute guarantees as for
the preimage-size of f in terms of entropy bits.
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Definition 25 (preimage entropy measures). For a function f : {0, 1}n →
{0, 1}m(n), define its real preimage-entropy as Hp(f) def= H(X|f(X)), where
X is uniformly distributed on {0, 1}n. f has min-preimage-entropy at least
k = k(n) (and denote this by Hp,min(f) ≥ k), if there is a negligible function
ε = ε(n) such that

Pr
x
r←{0,1}n

[HX|f(X)(x, f(x)) ≥ k] ≥ 1− ε.

As the argument X in the definition is uniform, we have that for all x it
holds that HX|f(X)(x, f(x)) = log(πf (x)).

4.2.3 Collision Finders and Accessible Entropy

Definition 25 captures the average and absolute preimage set size guarantees
for f . Clearly, when f is shrinking it has high preimage-entropy. Recall that
our goal is to build a universal one-way hash function, namely, a shrinking
function for which there exist many preimages, but at the same time any
efficient algorithm, when given an x, cannot compute a different preimage
from f−1(f(x)).

Definition 26 (f -collision-finder). Let f : {0, 1}n → {0, 1}m(n) be a function.
An f -collision-finder is a randomized algorithm A such that A(x) ∈ f−1(f(x))
for every x ∈ {0, 1}n.

The requirement that A(x) outputs a preimage of f(x) can be made without
loss of generality, as every algorithm A can be changed to one that outputs x
whenever A(x) /∈ f−1(f(x)).

Using the notion of an f -collision-finder, one can define a computational
analog of the definitions of real- and min-preimage-entropy of f . The analogous
definitions capture the maximal, average, and absolute size of the preimage
sets that are accessible to any efficient algorithm.

Definition 27. A function f : {0, 1}n → {0, 1}m(n) has accessible max-
preimage-entropy at most k = k(n) if there exists a family of sets {Sx}x∈{0,1}n
such that for any efficient randomized f-collision-finder A, there exists a
negligible function ε = ε(n) such that for all sufficiently large n:

1. Pr
x
r←{0,1}n,A

[A(x) ∈ Sx] ≥ 1− ε.
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2. log(|Sx|) ≤ k for all x.

Definition 28. A function f : {0, 1}n → {0, 1}m(n) has accessible average
max-preimage-entropy at most k = k(n) if it satisfies Definition 27 where
instead of (2.) we have:

2. E
x
r←{0,1}n

[log(|Sx|)] ≤ k.

We stress that these two definitions1 are different from the classical defi-
nitions of Shannon entropy. As they capture the inputs accessible only to
efficient algorithms, both definitions only bound from above the performance
of such algorithms. Specifically, for an arbitrary function, we do not know
how to compute exactly (as in the standard definition of entropy) these
bounds. Nevertheless, as we see next, these bounds are a useful tool (see also
[HRVW09]). We use the notation Heff

p,max(f) ≤ k and Heff
p,avg−max(f) ≤ k to

denote that the corresponding bound holds.

The next two definitions are used to distinguish between two types of
‘entropy gaps’:

Definition 29. A function f : {0, 1}n → {0, 1}m(n) has an average inacces-
sible preimage-entropy gap ∆ = ∆(n), if there exists some k = k(n) such
that:

Heff
p,avg−max(f) ≤ k ≤ k + ∆ ≤ Hp(f) . (4.2)

That is, there is a gap of ∆ between its average accessible max-preimage-
entropy and its preimage-entropy. At times we will refer to this gap as an
average entropy gap or a weak type of gap.

Definition 30. A function f : {0, 1}n → {0, 1}m(n) has an absolute inac-
cessible preimage-entropy gap ∆ = ∆(n), if there exists some k = k(n) such
that:

Heff
p,max(f) ≤ k ≤ k + ∆ ≤ Hp,min(f) . (4.3)

At times we will refer to this gap as an absolute or strong gap.
1In fact, one may consider a weaker notion of algorithm-dependent accessible max-preimage-

entropy and algorithm-dependent accessible average max-preimage-entropy where the sets
{Sx} may also depend on the algorithm. Such a definition would only require that for every
algorithm there exist sets {SA,x}. This weaker variant of Definitions 27 and 28 is enough
for the purpose of constructing a universal one-way hash function and potentially may be
easier to satisfy. In this work we do not make use of the weaker definition.
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An important observation is that UOWHFs are just length-decreasing
functions with accessible max-preimage-entropy 0, and an appropriate absolute
entropy gap. Haitner et al. observed that it is possible to achieve a noticeable
gap of inaccessible entropy as an intermediate step, and then amplify it and
transform it into a UOWHF.

4.2.4 Entropy Measures for t-fold Parallel Repetitions

For a function f : X → Y we define its t-fold parallel repetition f t : Xt →
Y t as f t(x1, . . . , xt) = (f(x1), . . . , f(xt)). It is well-known that using the
definition of conditional entropy, properties of log()̇ and noting that choosing
a random xt ∈ Xt can be done by t independent choices of x,

Hp(f t) = H(X1, . . . , Xt|f(X1), . . . , f(Xt)) = H(X1|f(X1)) + . . .

+H(Xt|f(Xt)) = t ·Hp(f) . (4.4)

The corresponding computational bound is given by the following claim
and its corollary. Namely, the accessible preimages of the t-fold repetition of
f come from the product set of the accessible preimages set of f :

Lemma 31. Let f : X → Y with accessible max-preimage-entropy at most
k(n), with sets Sx (as in Definition 27). Then for t = poly(n) any efficient
f t-collision-finder A′ outputs a collision (except with negligible probability)
from the set Sxt

def= Sx1 × · · · × Sxt .

Proof: Let A′ be an f t-collision-finder algorithm with probability ε to output
a collision x′1, . . . , x

′
t outside of Sxt . Observe that this implies that for a

randomly chosen coordinate i r← [t] it holds that Pr[φI(f t(Xt)) /∈ SφI(Xt)] ≥
ε/t. This calls for the following f -collision-finder A: on input x choose
uniformly at random a location i from [t] and uniformly at random inputs
x1, x2, . . . , xi−1, xi+1, . . . , xt fromX. Set xi = x and return φi(A′(x1, . . . , xt)).
It follows that A outputs a collision for f outside of Sx with probability greater
than ε/t. The lemma follows.

Using linearity of expectation, the union bound, Definitions 27 and 28, and
the fact that log(|Sxt |) = Σti=1log(|Sxi |), we get:

Corollary 32.

1. If Heff
p,max(f) ≤ k then Heff

p,max(f t) ≤ t · k.
2. If Heff

p,avg−max(f) ≤ k then Heff
p,avg−max(f t) ≤ t · k.
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4.2.5 An Overview of the Construction of Haitner et al.

The construction consists of two independent parts. First they show how to
get a function with a noticeable gap of average inaccessible entropy from any
one-way function. Specifically, they show that a prefix of a random length of
a three-wise independent hashing of the output already has some weak form
of an average entropy gap. Namely, on average over the inputs to the new
construction, there is a noticeable gap of ∆ = Ω(logn/n) between the real
preimage-entropy and the average accessible max-preimage-entropy.
The second part of the construction starts with any function with some

noticeable gap ∆ and shows how to obtain a UOWHF. This is achieved using
the following steps:

1. Gap amplification and transformation of an average type gap into an
absolute type of gap.

2. Entropy reduction.
3. Output length reduction.
4. Random inputs collision-resistance to a UOWHF.
5. Removing the non-uniformity.

The composition of Steps 2 through 5 of their construction2 is summarized
in the following theorem, which we later use in a black-box manner:
Theorem 33.

1. There exists an explicit black-box construction taking parameters a
function ψ = {ψn}n∈N, where ψn : {0, 1}λ(n) → {0, 1}m(n), and a
number τ = τ(n) such that if ∆ def= Hp,min(ψn)−Heff

p,max(ψn) ∈ ω(log(n)),
and τ ∈ [Hp,min(ψn), Hp,min(ψn) + ∆

2 ], the construction implements a
UOWHF with output length and key length O(λ(n)) making a single call
to ψ.

2. Moreover, for all efficiently computable l = l(n) there exists an explicit
black-box construction taking parameters ψ (as before) and sets of num-
bers τ = τ(n) = {τn,i}l(n)

i=1 , such that if one of {(ψn, τn,i)}l(n)
i=1 satisfies

the condition of part (1.), the construction implements a UOWHF with
output length O(λ(n) · l(n)) and key length of O(λ(n) · l(n) · log(l(n))).

Here, τ is a “good enough” estimation of the real-min preimage entropy of
f .

2Lemmas 5.3− 5.4, 5.6 in [HHR+10].
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4.3 UOWHF from a 2r-Regular OWF

Let f : {0, 1}n → {0, 1}m be a 2r-regular one-way function. Our construction
also works in two steps: First we obtain an entropy gap of O(log(n)) applying
f only once and use a variant of the Naor-Yung construction. Next, we show
that the type of gap that we get by our first step is almost of the required
absolute type. Namely, the average entropy gap is essentially concentrated on
a smaller interval of size almost O(log(n)), and in this case the structured gap
can be transformed to an absolute type of gap and increased to ω(logn) via
taking only a super-logarithmic number of independent samples. The main
result of this section is:

Theorem 34. Let f : {0, 1}n → {0, 1}m(n) be a 2r-regular one-way function,
where r = r(n) is efficiently computable. Then there exists an explicit black-
box construction of a universal one-way hash function based on f with output
length and key length of O(n · log(n) · α(n)) that makes O(α(n) · log(n)) calls
to f for any super-constant function α(n).

4.3.1 Inaccessible Entropy from 2r-Regular One-Way
Functions

In this case f has exactly 2n−r different images. If we randomly distribute
the images among b buckets, we expect to have roughly 2n−r

b images in each
bucket. Consider the composed function, F (x, g) = (g(f(x)), g) where g is
the description of a three-wise independent hash-function from some family G.
We show that an appropriate choice of the family G allows us to reduce the
preimage inaccessibility of F to the hardness of the underlying function f .

For injective one-way functions this was already observed in [NY89]. The
difference is that for an injective f , the resulting F is already a universal
one-way hash function, whereas in the case where f is regular we get:

Lemma 35. Let f : {0, 1}n → {0, 1}m(n) be a 2r-regular one-way function,
where r = r(n) is efficiently computable. Let d > 0 and let G = G(n) def=
G(n−r)−4d log(n)
n be a family of constructible three-wise independent hash func-

tions. Then the function F : {0, 1}n × G → {0, 1}(n−r)−4d log(n) × G given by:
F (x, g) = (g(f(x)), g) satisfies the following properties:

1. Hp(F ) ≥ r + 3d log(n).
2. Heff

p,max(F ) ≤ r.
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Proof:

1. Recall that when the input is chosen uniformly at random from the input
space the preimage-entropy of F is just the expected log-value of the size of
the preimage set. We first compute the expected number of preimages for a
fixed x with some random g from G. Since F (x, g) already determines g it
follows that any potential preimage must have the same g component.

For all fixed x, g we have the set equality:

F−1(F (x, g)) =
⋃

y′:g(f(x))=g(y′)

(
f−1(y′)× {g}

)
(4.5)

and the union is over disjoint sets. We get that:

πF (x, g) = πf (x) +
∑

y′ 6=f(x)

1lg(f(x))=g(y′) · |f−1(y′)|

= 2r ·

1 +
∑

y′ 6=f(x)

1lg(f(x))=g(y′)

 , (4.6)

where due to the regularity it holds that πf (x) = |f−1(y)| = 2r.

Now we observe that for every fixed x ∈ {0, 1}n and y′ 6= f(x)

E
g
r←G

[
1lg(f(x))=g(y′)

]
= 2−(n−r−4d log(n)) , (4.7)

where the equality is due to due to the pair-wise independence of G.

Using (4.6), (4.7) and linearity of expectation we have that

E
g
r←G

[πF (x, g)] = 2r ·

1 +
∑

y′ 6=f(x)

E
g
r←G

[1lg(f(x))=g(y′)]

 > 2r+4d·log(n) , (4.8)

where again due to the regulariry the summation is over 2n−r − 1 indicators.

Furthermore, as the family is three-wise independent, we also have that
for different f(x), y′, y′′ it holds that the random variables 1lg(f(x))=g(y′) and
1lg(f(x))=g(y′′) are independent (and in particular, uncorrelated) and therefore
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V
g
r←G

[πF (x, g)] = (2r)2 ·
∑

y′ 6=f(x)

V
g
r←G

[
1lg(f(x))=g(y′)

]
≤
(

2r+2·d·log(n)
)2

. (4.9)

where the equality holds for the sum of uncorrelated random variables and
the the inequality holds as for all indicator random variables V[1lA] ≤ E[1lA]
and using (4.7). Now, the Chebyshev inequality establishes that for all α > 0:

Pr
g
r←G

[∣∣∣∣∣πF (x, g)− E
g
r←G

[πF (x, g)]

∣∣∣∣∣ > α · 2r+2·d·log(n)

]
<

1
α2 . (4.10)

Whenever the event in (4.10) does not happen plugging (4.8) we obtain

πF (x,G) ≥ 2r+4·d·log(n) − α · 2r+2·d·log(n) ≥ 2r+3.5·d·log(n) ,

for all fixed α and sufficiently large n.

Finally, recall that due to the regularity we always have πF (x, g) ≥ 2r and
so using conditional expectation on the event from (4.10) with α = 5 and
plugging (4.8) we obtain:

E
g
r←G

[log(πF (x, g))] > r + 24
25 · (3.5 · d · log(n)) ≥ r + 3 · d · log(n) . (4.11)

As this holds for every fixed x, it also holds for a random one, and we are
done.

2. We show that any efficient algorithm that finds a collision for a random
input (X,G) outside of f−1(X)×{G} leads to one that inverts f . Let AF be
an F -collision-finder. We denote the randomness taken by AF explicitly (as
an additional argument) by r, and for some fixed randomness r and a fixed
input x, denote by εx,r

def= Pr
g
r←G [AF (x, g, r) /∈ f−1(f(x))× {g}].

We show3 that the algorithm B inverts y = f(x′), where
x′

r← {0, 1}n uniformly at random, with probability at least ε/n−4d.
3In similar manner to [NY89] and [HHR+10].
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Algorithm B(y) (on input y ∈ {0, 1}n)
.

. Choose x uniformly at random from {0, 1}n.

. Choose randomness r for AF uniformly at random.

. Choose g uniformly at random subject to g(f(x)) = g(y).

. return φ1(AF (x, g, r)).

It holds that

εx,r =
∑

y 6=f(x)

Pr
g
r←G

[
φ1(AF (x, g, r)) ∈ f−1(y)

]
(4.12)

=
∑

y 6=f(x)

Pr
g
r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
· Pr
g
r←G

[g(f(x)) = g(y)]

=
∑

y 6=f(x)

Pr
g
r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
· 2−(n−r−4d log(n)) .

It follows that conditioned on the random choices X = x and R = r of the
algorithm B, for X ′ uniform on {0, 1}n and Y = f(X ′) we obtain:

Pr
x′

r←{0,1}n
[B(f(x′)) ∈ f−1(f(x′)) | X = x ∧R = r]

= Pr
y
r←f(X′)

[B(y) ∈ f−1(y) | X = x ∧R = r]

≥
∑

y 6=f(x)

Pr[Y = y] · Pr
g
r←G

[
φ1(AF (x, g, r)) ∈ f−1(y) | g(f(x)) = g(y)

]
≥ 2−4d log(n) · εx,r . (4.13)

As X and R are chosen uniformly at random, and by the fact that ε =
E[εX,R] we get that the algorithm inverts f with probability at least n−d · ε.
Thus we have shown that AF ’s output on input (x, g) is limited to f−1(f(x))×
{g}. By the regularity of f we have that its size is exactly 2r. Thus F has
accessible max-preimage-entropy at most r.

We next show that by a more careful analysis of the amplification results
in an almost-linear construction.
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4.3.2 Amplifying the Entropy Gap and Converting
Average to Absolute Entropy Gaps

Lemma 36 (Fast gap amplification and real- to min- preimage-entropy con-
version). Let f and F be as in Lemma 35, F t be the t-fold application of F
and α(n) be any super-constant function. Then for t = α(n) · log(n), F t has
a strong inaccessible entropy gap of α(n) · log2(n). Moreover, the following
entropy-gap holds:

1. Hp,min(F t) ≥ t(r + 2d log(n)).

2. Heff
p,max(F t) ≤ t · r.

Proof:

1. We first show that by Markov’s inequality, the probability that the point-
wise entropy exceeds its expected value by more than α(n) · log(n) bits is
negligible. Specifically, from Equation (4.8) in the analysis of Lemma 35 we
find that the expected value of the preimage size of inputs to F is at most
2r+4d log(n)+1. Markov’s inequality asserts that the probability we get an input
with more than 2α(n)·log(n) · 2r+4d log(n)+1 preimages is at most negligible, and
let us denote this event by A. Whenever this event does not happen, the
point-wise real-entropy of the preimage set is limited to an interval of size
O(α(n) · log(n)), as we always have a at least r bits of point-wise entropy due
to the regularity of f . I.e.,

r < log(πF (X,G)) | Ā < r + (α(n) + 4d) log(n) + 1 .

By Lemma 24, we known that

E[log(πF (X,G)) | Ā] > E[log(πF (X,G))]− negl(n)
≥ r + 3d log(n)− negl(n)
≥ r + 2.75d log(n) .

Now, the Hoeffding bound for t independent samples from the probability
space (X,G) | Ā (with k = 0.75d · logn · t) asserts that a super-logarithmic
number of repetitions suffice to bound from below the min-preimage-entropy
of the t-fold application of F . Using the union bound we have that for a
polynomial number of repetitions, the probability that A happens in any of
the repetitions is negligible, and find that
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Pr
(x,g)t r←({0,1}n×G)t

[
log
(
πF t((x, g)t)

)
< t(r + 2d log(n))

]
≤ exp

(
−Ω(t)
α2(n)

)
+ negl(n). (4.14)

The choice of t = O(α3(n) · log(n)) ensures that this happens with negligible
probability.

2. This is just the t-fold accessible max-preimage-entropy we get by the
second part of Lemma 35 and Corollary 32.

Proof: [Theorem 34] By Lemma 36, F t already has the required strong
type of entropy gap between its accessible max-preimage-entropy and its real
min-preimage-entropy. Moreover, it tells us exactly where this gap is (there
are at most t · r bits of accessible max-preimage-entropy, and τ = t(r+ 2 logn)
is a good estimation of Hp,minF

t. Now, note that if α(n) is a super-constant
function, then so is α′(n) = α1/3(n). Finally, utilizing Theorem 33 yields
a UOWHF with output length and key length O(α(n) · log(n) · n) making
O(α(n) log(n)) calls.

4.4 A Construction from a OWF with
Arbitrary Regularity Assumptions

The main theorem proved in this section is:
Theorem 37. Let f : {0, 1}n → {0, 1}m(n) be a (2r, 2s)-roughly-regular one-
way function, where r = r(n) and s = s(n) are efficiently computable. Then
there exists an explicit construction of a UOWHF with output length and
key length of Õ(n · s6(n)) (respectively, Õ(n · s4(n))) in the uniform (resp.,
non-uniform) model.

4.4.1 Ω(log(n)/s(n)) Bits of Average Inaccessible Entropy

Haitner et al. showed that for a general one-way function f , a random
truncation of a hashing of f(x) using a three-wise independent family of hash
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functions yields an average entropy gap of Ω(log(n)/n) entropy bits. We
observe that a modification of their first step achieves an average inaccessible
entropy gap of Ω(log(n)/s(n)) bits from any (2r(n), 2s(n))-roughly-regular
one-way function.

The idea is to divide the images f(x) (and respectively, the inputs x) into
buckets, such that every bucket contains images with roughly the same number
of preimages. Let d > 0. We set m def= s(n)/d log(n) and J def= {j0, . . . , jm−1},
where ji

def= n− r(n)− s(n) + i · d log(n), and show that truncating the output
of the application of a three-wise independent hashing of f(x) to the random
length J − d logn yields a function with the required gap. Recall that

Hf(X)(f(x)) ∈
[
ji, ji+1

)
⇐⇒ πf (x) ∈

(
2r+s−(i+1)(d log(n)), 2r+s−i(d log(n))

]
.

Let us denote qi
def= Pr

[
Hf(X)(f(X)) ∈ [ji, ji+1)

]
for i ∈ {0, . . . , q − 2} and

qm−1
def= Pr

[
Hf(X)(f(X)) ∈ [jm−1, jm]

]
.

By the roughly-regularity assumption about f , it holds that
∑m
i=1 qj = 1.

Now, we set G def= Gnn , a family of three-wise independent hash functions,
X def= {0, 1}n and define

F : X × G × J → X × G × J

as
F (x, g, j) = (g(f(x))1,...,j−d logn‖0n−j+d logn, g, j) ,

where we denote the domain and range of F by Z def= X × G × J . Note that
without loss of generality, we implicitly assumed that r + s < n− d log(n). It
is easy to check that any one-way function must satisfy this, as otherwise,
the algorithm that guesses a random preimage on input y, inverts f with
non-negligible probability.

Lemma 38. The function F as defined above has an average preimage-entropy
gap of Ω(s(n)/log(n)) bits.

Proof: Recall that our goal in this step is to achieve an average inaccessible
entropy gap of Ω(log(n)/s(n)) bits. That is, we need to show that for each
z = (x, g, ji) there exists a set Sz, such that: (1) any efficient collision-finder
outputs an element of Sz (except for an event that happens with negligible
probability) and (2) E

z
r←Z [log(πF (z))− log(|Sz|)] ∈ Ω(log(n)/s(n)).
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In a similar manner to the regular case, the set of inputs accessible by an
efficient algorithm is limited only to those with relatively few images, where
“few” corresponds to the length of the random truncation. Essentially, we show
that when we hash to length ji, any preimages an efficient algorithm finds
are either already preimages of f(x) (we refer to these as ‘trivial’ collisions) 4

or stem from some non-trivial collision, that is F (x′, g, ji) = F (x, g, ji) but
f(x) 6= f(x′). For the latter, we further distinguish between those x that
have significantly fewer preimages than expected for a random function with
output length ji, and the rest. More precisely, we consider those preimages
z′ = (x′, g, ji) for which πf (x′) ≤ 2n−ji+1 and call these ‘ji+1-light’ preimages
of f(x). The remaining ‘heavy’ collisions stem from inputs z′ for which
πf (x′) > 2n−ji+1 . We define:

Tz
def= T(x,g,ji) = f−1(f(x))× {g} × {j},

Lz
def= L(x,g,ji) = {x′ ∈ {0, 1}n | g(f(x))1,...,ji−d logn = g(f(x′))1,...,ji−d logn

∧Hf(X)(f(x′)) ≥ ji+1 ∧ x′ /∈ f−1(f(x))} × {g} × {j}
and
Hz

def= H(x,g,ji) = {x′ ∈ {0, 1}n|g(f(x))1,...,ji−d logn = g(f(x′))1,...,ji−d logn

∧Hf(X)(f(x′)) < ji+1 ∧ x′ /∈ f−1(f(x))} × {g} × {j} ,
where T, L and H stand for ‘trivial’, ‘light’ and ‘heavy’, respectively. It follows
that for every z,

F−1(F (z)) = Tz ∪ Lz ∪Hz , (4.15)
where the union is over disjoint sets.

The rest of the proof is involved with proving that indeed the only accessible
sets to any efficient algorithm are Tz ∪ Lz, and that they constitute a large
fraction of the preimage set F−1(F (z)). The analysis follows the construction
from [HHR+10] and is brought for completeness in Section 4.6.

4.4.2 Faster Amplification of the Inaccessible Entropy
Gap of F

Our goal in this section is to amplify the entropy gap of F from the previous
section. We show how to construct a function F ′ with ω(log(n)) bits of

4Note that the definition of a one-way function does not rule out the possibility that
given a preimage it is difficult to compute other preimages from f−1(f(x)).
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inaccessible entropy with an absolute type of gap.

Haitner et al. [HHR+10] assert that independent repetitions of F achieve
both these goals. They show that Õ(n4) repetitions are enough for getting
this gap from an arbitrary one-way function. We are able to utilize the
information about the underlying f (and in turn about that of F ) and get a
faster convergence, using the roughly-regularity assumption.

Set ∆ def= (c · log(n)/s(n)) as the entropy gap of F , where c is the constant
corresponding to the Ω notation, and fix k, such that F has preimage-entropy
Hp(F ) = k + ∆. Lemma 38 asserts that Heff

p,avg−max(F ) ≤ k. Using (4.4) and
Corollary 32 we know that for the t-fold parallel repetition of F it holds that

Hp(F t) = t · (k + ∆) , (4.16)
Heff
p,avg−max(F t) ≤ t · k . (4.17)

Thus for F t we obtain an average entropy gap of t ·∆ bits.

Using the analysis of Lemma 38 and Lemma 31 we get that for an input
zt = (z1, . . . , zt) to F t, the only accessible inputs to F t are those that are
contained in Sz = (Tz1 ∪Lz1)×· · ·× (Tzt ∪Lzt), and that the set of preimages
of zt is just F t

−1(F t(zt)) = (Tz1 ∪ Lz1 ∪ Hz1) × · · · × (Tzt ∪ Lzt ∪ Hzt),
except for an event B1 that occurs with negligible probability. Next, we
would like to apply the Hoeffding bound to get the required gap. Similarly to
Lemma 36, we show that although for some inputs the preimage size of F
may be very large (a priori there may be inputs with up to 2n preimages, but
not more, since F (x, g, ji) determines (g, ji) uniquely as part of its output),
this is not likely. First observe that log(πF (z)) ∈ [r, n] for all z. This is
due to the fact that every image of f(x) contains at least 2r(n) preimages.
We show that we can bound this also from above: except with negligible
probability we have that for any super-constant function α(n): log(|Tz∪Lz|) ≤
log(πF (z)) < r(n) + s(n) + d log(n) + α(n) log(n) . Consider πF (Z) for a
uniformly chosen random input Z = (X,G, J). This value is maximized for
J = j0 because of the inclusion φ1(F−1(F (x, g, j′i))) ⊂ φ1(F−1(F (x, g, ji)))
for ji ≤ j′i. It follows that in order to bound E

[
πF (X,G, J)

]
it is sufficient

to bound E
[
πF (X,G, j0)

]
.

As in Lemma 35, using the three-wise independence of G, and the roughly-
regularity of f we have that for fixed x it holds that:

E
g
r←G

[πF (x, g, j0)] ≤ 2r(n)+s(n)+d log(n)+2 .
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Next, fix any super-constant function α(n). Markov’s inequality asserts
that

Pr
g
r←G

[
πF (x, g, j0) ≥ 2r(n)+s(n)+d log(n) · 2α(n) log(n)

]
≤ negl(n) .

Denote the event that this happens in any of the repetitions by B2 and note
that it happens only with negligible probability (as t is polynomial in n and
using the union bound). Let us summarize: Whenever B2 does not occur,

r(n) ≤ log(|TZ ∪ LZ |) ≤ log(πF (Z)) ≤ r(n) + s(n) + (d+ α(n)) log(n) .

When this is the case, both quantities are within an interval of size s′ def=
3 ·max {s(n), α(n) · log(n)}.

By Lemma 24 we know that the preimage-entropy and the average accessible
max-preimage-entropy values change by at most a negligible quantity when
ignoring an event of negligible probability. Specifically, we get that whenever
B1 ∧B2 happen we have:

k′
def= E

z
r←Z

[
log(|Sz|) |B1 ∧B2

]
≤ E
z
r←Z

[log(|Sz|)] + negl(n) (4.18)

and

k′′
def= E

z
r←Z

[
log(πF (z)) |B1 ∧B2

]
≥ E
z
r←Z

[log(πF (z))]− negl(n) (4.19)

with a gap of ∆′ def= k′′ − k′ ≥ ∆− negl(n).

The Hoeffding bound yields that setting t def= O( s
′2(n)·s2(n)

log(n) ) assures that
the inaccuracies due to the sampling of the independent inputs to F are
already smaller than the accumulated gap. By the union bound we have

Pr
zt

r←Zt

[
log (|Szt |) > t · k′ + c

6 · s
′(n) ·

√
t · α(n) · log(n)

]
≤ negl(n) (4.20)

and

Pr
zt

r←Zt

[
log
(
πF t(zt)

)
<t·(k′+∆′))− c6 ·s

′(n)·
√
t·α(n)·log(n)

]
≤ negl(n).(4.21)

Plugging (4.18) and (4.19) we get that except with negligible probability there
is an absolute entropy gap of at least

t ·∆− t · negl(n)− c

3 · s
′(n) ·

√
t · α(n) · log(n) ∈ ω(log(n)) . (4.22)
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4.4.3 A UOWHF in the Non-Uniform Model

To finish the construction we would like to apply the first part of Theorem
33. We use the preimage-entropy of F from Section 4.4.1 (in the form of
a non-uniform advice), which equals k + ∆. By what we have shown in
Section 4.4.2 it holds that F t has a strong gap ω(log(n)) bits. The first
part of Theorem 33 with parameters (F t, τ), where τ is a good estimation
of Hp,min(F t) (given as a non-uniform advice) yields a UOWHF with output
length and key length O(n · s′2(n) · s2(n)/ log(n)).

4.4.4 An Efficient Non-Uniform to Uniform Reduction

As explained, the construction obtained requires a non-uniform advice (i.e.,
the Shannon preimage-entropy of f). Following previous constructions, as
in [Rom90] and [HHR+10], we remove the non-uniformity by ‘trying all
possibilities’. However, as opposed to the case of a general one-way function,
where we need to try O(n2) different values, we show that using the roughness
regularity assumption O(s2(n)) tries suffice.

Using the roughly-regularity assumption on f , it follows that the preimage-
entropy of F lies in the interval [r + d log(n), r + s + d log(n)]. Now, for
i ∈ [d4 · s(n)/c log(n)e] set ki

def= r + d log(n) + i · 1
4·s(n) . It holds that one

of the ki is within an additive distance of ∆
4 from the real value k + ∆.

Accordingly, set τi
def= t · (ki + ∆) − c

4 · s
′(n) ·

√
t · α(n) · log(n). It follows

that for the same i, (Ft, τi) satisfies the premise of the first part of Theorem
33, and thus the second part of the theorem yields a construction of a
UOWHF with output length of O(n · s′2(n) · s4(n)/ log3(n)) and key length
of O(n · s′2(n) · s4(n)/ log2(n)).

4.5 Reflection

We demonstrated how to obtain more efficient constructions of a UOWHF
from different assumptions on the structure of the underlying OWF. For the
case of known regularity the resulting construction is very efficient and makes
an almost logarithmic number of calls to the underlying OWF.

In particular, our construction for a 2r-regular OWF is very efficient. It
requires only Õ(log(n)) calls to the underlying OWF, whereas the general
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construction of Haitner et al. makes polynomially many calls to the OWF.
The next plausible extension to our construction, which is probably the
“simplest” extension of the class of functions considered here is the following:
Let r1 = r1(n) and r2 = r2(n), and suppose that we know that the underlying
OWF is either 2r1-regular or 2r2-regular, but we do not know which is the
case, i.e., we want a single construction to handle both cases. Using standard
techniques we observe that one obtains a construction that makes O(n) calls
(combining our construction for the regular case with the second part of
Theorem 33). That is, already for this case, which is a special case of OWFs
of general “unknown” regularity, we observe an exponential gap in the number
of calls made to the underlying OWF. The natural question that arises is:
“Does there exist a more efficient construction of a UOWHF from a OWF
from the aforementioned class?”. The next two chapters answer this question
negatively.

4.6 Deferred Proofs

4.6.1 Proof of Lemma 38, continued.

Our next goal is to show that the sets {Tz ∪ Lz}z∈Z satisfy the needed
requirements. Claim 4.9 in [HHR+10] shows that any efficient collision-finder
cannot (except with negligible probability) output a preimage of F (z) in Hz,
as such an algorithm can be used to invert f . Specifically, they show (again,
using the constructibility of the three-wise independent hash family as in the
second part of Lemma 35) how to efficiently convert any F -collision-finder
that outputs a preimage from Hz with probability ε to one that inverts a
random input of f with probability ε/n2d.

As the preimage sets {Hz}z∈Z are inaccessible, it remains to show that
they constitute a noticeable part of the preimage sets. In order to complete
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the proof, we need to bound:

E
z
r←Z

[πF (z)]− E
z
r←Z

[log(|Tz ∪ Lz|)] = E
z
r←Z

[
log
(

πF (z)
|Tz ∪ Lz|

)]
(4.23)

= E
z
r←Z

[
log
(
|Tz|+ |Lz|+ |Hz|
|Tz|+ |Lz|

)]
(4.24)

= E
z
r←Z

[
log
(

1 + |Hz|
|Tz|+ |Lz|

)]
(4.25)

≥ 1
2 E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

]
(4.26)

where the second equality is due to the partition in (4.15) and the inequality
uses the fact that log(1 + x) ≥ x/2 for x ∈ [0, 1). Thus, it is left to show that
indeed |Hz| constitutes a noticeable part of πF (z).

Proposition 39. Conditioned on X = x and J = ji, define the events:

E1
ji

def=
{
|Hz|+ |Lz| ≤ 3 · 2n−(ji−d logn)

}
E2
ji

def=
{
|Hz| ≥

(
qi − 4 ·

√
1/nd

)
· 2n−(ji−d logn)−1

}
.

Then Pr
g
r←G

[E1
ji

] > 2/3 and Pr
g
r←G

[E2
ji

] > 3/4 hold.

The proof follows the analysis of Claim 4.11 from [HHR+10]. Thus, we
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obtain:

E
z
r←Z

[log(πF (z))]− E
z
r←Z

[log(|Tz ∪ Lz|)] (4.27)

≥ 1
2 E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

]
(4.28)

= 1
2

m−1∑
i=0

Pr
z
r←Z

[J = ji] · E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ J = ji

]
(4.29)

≥ 1
2m

m−1∑
i=0

Pr
z
r←Z

[Hf(X)(f(X)) ≥ ji]·

E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ Hf(X)(f(X)) ≥ ji, J = ji

]
(4.30)

≥ 1
2m

m−1∑
i=0

(qi + · · ·+ qm) · Pr[E1
ji ∧ E

2
ji | J = ji, Hf(X)(f(X)) ≥ ji]·

E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ E1
ji , E

2
ji , Hf(X)(f(X)) ≥ ji, J = ji

]
(4.31)

≥ 1
2m

m−1∑
i=0

(qi + · · ·+ qm) · (1− 1
3 −

1
4)·

E
z
r←Z

[
|Hz|

|Tz|+ |Lz|+ |Hz|

∣∣∣∣ E1
ji , E

2
ji , Hf(X)(f(X)) ≥ ji, J = ji

]
(4.32)

≥ 1
2m

m−1∑
i=0

(qi + · · ·+ qm) · 5
12 ·

(qi − 4/(nd/2)) · 2n−(ji−d logn)−1

2n−(ji−d logn)+2 (4.33)

≥

 5
2 · 8 · 12 · 2 ·m

∑
0≤i≤k≤m−1

(qi · qk)

−O ( m

nd/2

)
(4.34)

≥ 1
96m −O(n−d/2+1) (4.35)

≥ 1
200m , (4.36)

where we used conditional expectations, the union bound, the fact that
Hf(X)(f(x)) ≥ ji is equivalent to |Tz| ≤ 2n−ji and the roughness-regularity
assumption that

∑m
i=1 qi = 1.

We conclude that the log-size of the set of the accessible inputs to an efficient
collision-finder is, on average, bounded away from the point-wise entropy.
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Put differently, we obtain a noticeable fraction of Ω(1/m) = Ω(log(n)/s(n))
average inaccessible entropy bits.



Chapter 5

A Framework for Black-Box
Separations

5.1 Introduction

An important question in complexity-based cryptography is understanding
which cryptographic primitives (e.g., one-way functions, pseudo-random gen-
erators) are implied by others. In principle, an implication between two
primitives can be proved as a logical statement (e.g., the existence of one-way
functions implies the existence of pseudo-random generators). However, most
proofs of such implications (with very few exceptions, e.g., [Bar01]) are in
fact so-called fully black-box constructions.

Informally, a black-box construction of a primitive Q from a primitive P is
a pair of algorithms, called construction and reduction, such that the construc-
tion, using only the functionality of P, implements Q and the reduction, using
only the functionality of P and that of a potential breaker algorithm, breaks
P whenever the breaker algorithm breaks Q. As a corollary, such a black-box
construction establishes that the existence of P implies the existence of Q.
One of many such examples is the construction of a one-way function from a
weak one-way function [Yao82].

After futile attempts to prove that the existence of one-way functions
implies that of key agreement, Impagliazzo and Rudich [IR89] proved the
first black-box separation result: They showed that there is no fully black-
box construction of key agreement protocol from a one-way function. Their
seminal work inspired a plethora of similar results and nowadays one identifies
two main types of black-box separation results: Black-box separations of
a primitive Q from a primitive P and lower bounds on some complexity
parameter (e.g., seed length, number of calls to the underlying primitive,
etc.) in the construction of Q from P. Besides [IR89], the work of Simon
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[Sim98], where he shows that there is no fully black-box construction of a
collision-resistant hash function from a one-way function, is an example of
the former. As an example of the latter, Kim et al. [KST99] established a
lower bound of Ω(

√
k/ log(n)) on the number of queries of any construction

of a universal one-way hash function that compresses k bits from a one-way
permutation on n bits. This was later improved by Gennaro et al. [GGKT05]
to Ω(k/ log(n)).

Reingold et al. [RTV04] were the first to formalize a model for and study
the relations between different notions of “black-boxness” of cryptographic
constructions.

A key property of a fully black-box construction of Q from P is the require-
ment that it constructs Q efficiently even when given black-box access to a
non-efficient implementation of P. A proof technique utilizing this property,
which is implicit in many black-box separations, involves an (inefficient) ora-
cle instantiation of the primitive P and an appropriate (inefficient) breaker
oracle B. The separation is usually proved by showing that B breaks the
security of the candidate construction for Q, but at the same time no efficient
oracle algorithm that has black-box oracle access to both the breaker and the
primitive (in particular, the potential reduction) breaks the security property
of the underlying instantiation of P.

In [HR04], Hsiao and Reyzin introduce the “two-oracle” paradigm, referring
to the oracle implementations of P and the breaker B. The separation in
[MM11] also makes explicit use of this paradigm.

5.1.1 Contributions of this Chapter

In constructions based on one-way functions (or permutations), i.e., when
P = OWF, the oracle that implements OWF is usually set to be a random
permutation, which is one-way with very high probability even in the presence
of a non-uniform algorithm. On the other hand, the proof that the breaker
algorithm for the constructed primitive Q does not help invert the permutation
is repeated in an “ad-hoc” manner in many separation proofs, e.g., in [Sim98,
HHRS07] and also in a recent result on lower bounds on the number of calls
made by any construction of a pseudo-random generator from a one-way
function [HS12].

Thus, while in many separation proofs the task of finding the right breaker
oracle is different (this is inherent, as each time it is required to break the
security of a different primitive), we observe that the proof that it does not
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help in inverting the underlying one-way function can be facilitated and unified
to a large extent. To that end, we prove a general theorem that facilitates
the proof of black-box separations (Theorem 57). In particular, we show that
any circuit with access to an oracle that satisfies two local properties, does
not help to invert many functions.

Our framework allows proving separation results that exclude the existence
of reductions with very weak security requirements. In this work we focus
on the important case where the black-box construction is so-called fixed-
parameter. That is, for a security parameter ρ, both the construction algorithm
and the reduction access the primitive and breaker of security ρ only. All
black-box constructions found in the literature are in fact fixed-parameter
constructions. We believe that adapting the approach of [HS12], it is possible
to extend our results to the most general case.

Our proof uses the encoding technique from [GGKT05], which was already
adapted to the special cases in [HHRS07] and [HS12]. We also use the bending
technique that originated in [Sim98] and was subsequently used in [HH09]
and [HS12].

5.2 Preliminaries

5.2.1 A Non-Uniform Computational Model

A boolean circuit A : {0, 1}m → {0, 1}m′ is a directed acyclic graph in which
every node (called gate) is either an input node of in-degree 0 labeled as one
of the m input bits, an output node labeled by one of the m′ output bits,
an AND gate, an OR or a NOT gate. A circuit A implements the function
f : {0, 1}m → {0, 1}m′ that corresponds to its evaluation on its inputs. The
converse also holds: For every function f : {0, 1}m → {0, 1}m′ it is always
possible to define canonically1 a circuit A that implements f .

Let n, n′ ∈ N+. An (n, n′)-oracle circuit C(?) is a circuit that additionally
has special “oracle” gates, each having in-degree n and out-degree n′. A
circuit C(?) is an oracle circuit if it is an (l, l′)-oracle circuit for some l, l′ ∈ N+.
Let C(?) be an (n, n′)-oracle circuit and let A be a circuit with n input gates
and n′ output gates (in this case we say that A is compatible with C(?)). The
circuit C(A) is defined as the circuit C(?) where each oracle gate is substituted

1E.g., the circuit that implements the DNF of f .
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by a copy A. For a function f : {0, 1}n → {0, 1}n′ define C(f) as the circuit
C(?) where each oracle gate is substituted by a copy of the canonical circuit
that evaluates f . Similarly, let n1, n

′
1, n2, n

′
2 ∈ N+. An (n1, n

′
1, n2, n

′
2)-two

oracle circuit C(?,?) is a circuit that has two types of oracle gates, where a
gate of the first type has n1 inputs and n′1 outputs and a gate of the second
type has n2 inputs and n′2 outputs. As before, for compatible functions
and circuits that evaluate compatible functions f1 : {0, 1}n1 → {0, 1}n′1 and
f2 : {0, 1}n2 → {0, 1}n′2 the circuit C(f1,f2) is defined similarly.

A non-uniform algorithm A = {Aρ}ρ∈N+ is a parameterized family of circuits
Aρ. A non-uniform algorithm A implements the parametrized functions family
f = {fρ}ρ∈N+ , if each Aρ implements fρ.

A non-uniform oracle algorithm A(?) = {A(?)
ρ}ρ∈N+ is a parameterized family

of oracle circuits. For an oracle algorithm A(?) and a family of functions f
we define A(f) def= {Afρρ } (resp., A(B) def= {ABρρ }) whenever for every ρ the
function is compatible with the oracle-circuit.

Uniform generation of oracle algorithms.

The construction and reduction algorithms in fully black-box constructions are
assumed to work for any2 input/output lengths of the primitive and breaker
functionalities, and therefore are modeled in the following way: In addition to
the security parameter ρ, both the construction and the reduction algorithms
take as input information about the input/output lengths of the underlying
primitive fρ and the breaker algorithm Bρ.

A uniform oracle algorithm is a machine M that on input M(1ρ, n(ρ), n′(ρ))
outputs an (n(ρ), n′(ρ))-oracle circuit A

(?)
ρ . For a uniform oracle al-

gorithm M and a parameterized family of functions f = {fρ :
{0, 1}n(ρ) → {0, 1}n′(ρ)}ρ∈N+ , define M (f) def= {A(fρ)

ρ }ρ∈N+ , where A(?)
ρ

def=
M(1ρ, n(ρ), n′(ρ)). For a non-uniform algorithm A, the family M (A) is de-
fined analogously.

Let s = s(ρ) be a security function. An s-non-uniform two oracle algorithm is
a machineM such that for every ρ, n1, n

′
1, n2, n

′
2 ∈ N+ and every a ∈ {0, 1}s(ρ),

it holds that M(1ρ, n1, n
′
1, n2, n

′
2, a) outputs an (n1, n

′
1, n2, n

′
2)-two oracle

circuit A(?,?)
ρ,a with at most s(ρ) oracle gates. Note that the last requirement

2 A-priori, for a fixed security parameter ρ there is no bound on the input length the
construction is expected to work, as long as the series of the input-output lengths is bounded
by some polynomial.
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is essential and is implicit in the case of an efficient uniform oracle algorithm,
where the number of oracle gates is bounded by the polynomial that bounds
the running time of the algorithm. For an s-non-uniform two oracle algorithm
M , a non-uniform algorithm B and a family of functions f , we formally define
M [B,f ] def= (M,B, f).

5.2.2 Modeling Cryptographic Primitives

In order to state our results in their full generality, and in particular to
exclude reductions that are allowed to use non-uniformity and are considered
successful in inverting the one-way function even if they invert only a negligible
fraction of the inputs of the function, the following two definitions are very
general, and extend Definitions 2.1 and 2.3 from [RTV04]. The example of
modeling a one-way function follows the definition.
Definition 40 (Cryptographic Primitive). A primitive Q is a pair 〈FQ, RQ〉,
where FQ is a set of parametrized families of functions f = {fρ}ρ∈N+ and RQ
is a relation over triplets 〈fρ, C, ε〉 of a function fρ ∈ f (for some f ∈ FQ), a
circuit C and a number ε > 0. We define that C (Q, ε)-breaks fρ if and only
if 〈fρ, C, ε〉 ∈ RQ.

The set FQ specifies all the correct implementations (not necessarily effi-
cient) of Q and the relation RQ captures the security property of Q, that is,
it specifies for every concrete security parameter implementation, how well
a breaker algorithm performs with respect to the security property of the
primitive.

Finally, let s = s(ρ) be a security function, B = {Bρ}ρ∈N+ be a non-uniform
algorithm, and f ∈ FQ. We say that B (Q, 1

s )-breaks f if 〈fρ, Bρ, 1
s(ρ) 〉 ∈ RQ

for infinitely many values ρ. Let us fix an s-non-uniform two oracle algorithm
R. We say that R[B,f ] (Q, 1

s )-breaks f if for infinitely many values ρ there
exists an a ∈ {0, 1}s(ρ) (called advice) such that 〈fρ, R

(Bρ,fρ)
ρ,a , 1

s(ρ) 〉 ∈ RQ,
where R(?,?)

ρ,a = R(1ρ, n, n′, b, b′, a).
The usual notion of polynomial security of a primitive is captured by the

following definition: B Q-breaks f if there exists a polynomial p = p(ρ) such
that B (Q, 1

p )-breaks f .
A primitive Q exists if there exists an efficient uniform algorithm M that

implements an f ∈ FQ, and for every efficient uniform algorithm M ′ that, on
input 1ρ outputs a circuit, it holds that {M ′(1ρ)}ρ∈N+ does not Q-break f .
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Observe that the requirement thatM ′ outputs a circuit is made without loss
of generality and captures the standard definition of an efficient randomized
machine M ′ that breaks a primitive. Given such an M ′ that tosses at most
r = r(ρ) random coins, there exists3 a (now deterministic) efficient uniform
machine M ′′ that on input 1ρ outputs a circuit Cρ with m(ρ) + r(ρ) input
gates and n(ρ) output gates that computes the output of M for all strings of
length m(ρ), and therefore Q-breaks the primitive.

5.2.3 One-Way Functions

Our model for describing a primitive is very general and captures the security
properties of many cryptographic primitives. As an example, we recall the
definition of a one-way function and then explain how it can be described in
our model.

Definition 41 (One-Way Function). A one-way function f = {fρ}ρ∈N+ is
an efficiently uniformly computable family of functions fρ : {0, 1}n(ρ) →
{0, 1}m(ρ), such that for every efficient randomized machine A, the function
that maps ρ to

Pr
x
r←{0,1}m(ρ),A

[
A(1ρ, fρ(x)) ∈ f−1

ρ (fρ(v))
]

is negligible.

In order to model a one-way function (OWF), we set f = {fρ}ρ∈N+ ∈
FOWF, where fρ : {0, 1}n(ρ) → {0, 1}m(ρ), if and only if n = n(ρ) and
m = m(ρ) are polynomial security functions. We say that FOWF contains
a collection of sets of functions F = {Fρ}ρ∈N+ , if for every family f ′ =
{f ′ρ}ρ∈N+ , where f ′ρ ∈ Fρ for every ρ, it holds that f ′ ∈ FOWF.

In this case, for a function fρ ∈ f ∈ FOWF, a circuit C that inverts
fρ on an ε-fraction of its inputs, and ε′ > 0, set 〈f, C, ε′〉 ∈ ROWF if and
only if ε ≥ ε′. The definition is general, and allows for the circuit C to
implicitly use randomness. In such a case, for fρ as before, a circuit with
C with m(ρ) + r(ρ) input bits that computes an output x ∈ {0, 1}n(ρ), and
a value ε′ > 0, define 〈fρ, C, ε′〉 ∈ ROWF if and only if ε ≥ ε′, where ε is
the probability over uniform z ∈ {0, 1}r(ρ) and x ∈ {0, 1}n(ρ) that C(fρ(x), z)
outputs an x′ ∈ f−1

ρ (fρ(x)).
3For example, by the canonical encoding of an efficient machine as in the Cook-Levin

Theorem.
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5.2.4 Fully Black-Box Cryptographic Constructions

Finally, we bring the standard definition of a fixed-parameter fully black-box
construction of a primitive Q from a primitive P, which is usually implicit
in the literature. The construction algorithm G is an efficient uniform oracle
algorithm and the security reduction R is an efficient uniform two-oracle
algorithm. For every security parameter ρ and a function fρ : {0, 1}n(ρ) →
{0, 1}n′(ρ), G’s output on (1ρ, n, n′) is an (n, n′)-oracle circuit g(?)

ρ such that
{g(fρ)
ρ }ρ∈N+ implements Q. The reduction algorithm works as follows: For

a security parameter ρ and f as before, and additionally a breaker circuit
B : {0, 1}b(ρ) → {0, 1}b′(ρ), the reduction R on input (1ρ, n, n′, b, b′) outputs an
(n, n′, b, b′)-two-oracle circuit R(?,?)

ρ . The security property property requires
that indeed the series of circuits {R(Bρ,fρ)

ρ }ρ∈N+ P-breaks f . We emphasize
that the vast majority (if not all) of the constructions of primitives from
a one-way function found in the literature are in fact fixed-parameter fully
black-box constructions. Formally:

Definition 42 (fixed-parameter fully black-box construction of Q from P).
An efficient uniform oracle algorithm G and an efficient uniform two oracle
algorithm R are a fixed-parameter fully-BB construction of a primitive Q =
〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every f ∈ FP:

1. (correctness) G(f) implements f ′ ∈ FQ.

2. (security) For every algorithm B: If B Q-breaks G(f) then R(B,f)

P-breaks f .

For a super-polynomial security function s = s(ρ) (e.g., s(ρ) = 2
√
ρ), the

following definition of a fully black-box construction is significantly weaker
than the standard one in the following three aspects: First, it requires that
reduction only mildly breaks the one-way property of the function f (whenever
the breaker breaks the constructed primitive in the standard polynomial sense).
Second, the reduction algorithm does not have to be efficient or uniform (but
the non-uniformity is limited to an advice of length s). Lastly, it allows the
reduction to make s calls to its oracles4.

Definition 43 (s-weak fixed-parameter fully black-box construction of Q
from P). A uniform oracle algorithm G and an s-non-uniform two oracle

4In Definition 42 the limitation on the number of queries made to the oracles is implicit
as R is an efficient algorithm, and so its output circuit has at most a polynomially number
of oracle gates.
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algorithm R are an s-weak fixed-parameter fully-BB construction of a primitive
Q = 〈FQ, RQ〉 from a primitive P = 〈FP, RP〉 if for every f ∈ FP:

1. (correctness) G(f) implements an f ′ ∈ FQ.

2. (security) For every non-uniform algorithm B: If B Q-breaks G(f)

then R[B,f ] (P, 1/s)-breaks f .

5.2.5 Random Permutations and Regular Functions

Let n and i be two integers such that 0 ≤ i ≤ n. We denote the set of all
permutations on {0, 1}n by Pn. Let X ,Y be sets. We denote by (X → Y)
the set of all functions from X to Y. A function f : X → Y is regular
if |{x′ : f(x) = f(x′)}| is constant for all x ∈ X . A family of functions
f = {fρ}ρ∈N+ is a regular function if for every ρ the function fρ is regular.
We denote by Rn,i the set of all regular functions from {0, 1}n to itself such
that the image of f contains 2i values. E.g., Rn,n = Pn is the set of all
permutations, and Rn,0 is the set of all constant functions.

5.2.6 Bending a Function and Image Adaptation

It will be useful for us to compare the run of a circuit with oracle access to a
function f to a run that is identical except that the output of one specific
value is altered.

For a fixed function f : {0, 1}n → {0, 1}n and y′, y′′ ∈ {0, 1}n, set

f(y′,y′′)(x) def=
{
y′′ if f(x) = y′

f(x) otherwise.

Similarly, for two fixed functions f, f ′ : {0, 1}n → {0, 1}n and a set S ⊂
{0, 1}n, we define the image adaptation 5 of f to f ′ on S to be the function

f(S,f ′)(x) def=
{
f ′(x) if x ∈ f−1(f(S))
f(x) otherwise.

5We mention that if f is a permutation, the condition f(x) = y can be replaced by
x = f−1(y), and similarly for f(S,f ′) check whether x ∈ S, which is what one may expect
initially from such a definition.
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5.3 A General Theorem for Proving Strong
Black-Box Separations

5.3.1 Deterministic Parametrized Oracles and Local
Sets

The following definition allows to model general parameterized oracles, that
is, oracles that, for any function f from some set of functions and any q from
some query domain, return a value a from some answer set. We observe that
many of the oracles used for black-box separations found in the literature
could be described in such a way.

Let X ,Y,D and R be sets. A deterministic parametrized oracle for a class
of functions (X → Y) is an indexed collection O = {Of}f∈X→Y , where
Of : D → R. We call f , D, and R the function parameter, the domain, and
the range of the oracle, respectively.

Our first example of a deterministic parametrized oracle is the evaluation
oracle E for functions on {0, 1}n, which on a query q returns the evaluation of
f on q. In this case we have that X = Y = D = R = {0, 1}n and Ef (q) def= f(q).

The next two definitions capture two important local properties of
parametrized oracles. We believe that they are natural and observe that
many of the oracles devised for separation results satisfy them.

Intuitively, a determining set is an indexed collection of sets that determine
the output of the oracle for every function f and query q in the following
sense: If for two functions f and f ′ it holds that their corresponding oracle
outputs differ for some q, then for one of them (f or f ′) it holds that the local
change of an image adaptation of one of the functions to agree with that of
the other on its determining set changes the output of the oracle. Formally:

Definition 44. Let O be a deterministic parametrized oracle. A determining
set IO for a class of functions F ⊂ (X → Y) is an indexed collection
{IOf,q}f∈F,q∈D of subsets of X , such that for every f, f ′ ∈ F and every query
q ∈ D: If Of (q) 6= Of ′(q), then it holds that either the image adaptation of
f to f ′ on IOf ′,q changes Of (q) (i.e., Of(

IO
f′,q

,f′
)(q) 6= Of (q)), or the image

adaptation of f ′ to f on IOf,q changes Of ′(q). IO is a t-determining set if for
every function f ∈ F and query q ∈ D it holds that

∣∣IOf,q∣∣ ≤ t.
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In the example of the evaluation oracle, we observe that it has a 1-
determining set. Indeed, setting IEf,q

def= {q} satisfies the required defini-
tion, since if for any f, f ′ ∈ {0, 1}n → {0, 1}n and x ∈ {0, 1}n for which
f(x) 6= f ′(x) it holds that f({x},f ′)(x) = f ′(x) 6= f(x).

Consider an oracle O with a determining set IO for some class of permu-
tations F . Fix f, f ′ ∈ F and q ∈ D. The following two propositions are
immediate from the definition of determining sets:

Proposition 45. If Of (q) 6= Of ′(q) and f(x) = f ′(x) for all x ∈ IOf ′,q (in
this case we say that f agrees with f’ on IOf ′,q), then adapting f ′ to agree with
f on IOf,q changes Of ′(q).

Proposition 46. If for all x ∈ IOf,q ∪ IOf ′,q it holds that f(x) = f ′(x) (in
this case we say that the functions agree on their determining sets), then
Of (q) = Of ′(q).

Proposition 46 establishes that determining sets indeed determine the
output of the oracle in the following sense: If we know the value Of (q) for a
query q and a function f , and, moreover, we know that functions f ′, f agree
on their determining sets for q, then this information already determines for
us the value Of ′(q).

The next local property of an oracle captures the fact that it is in some
sense “stable”. For a function f and query q as before, and a value y in the
image set of f , a bending set for f, q, and y is a set of all potentially “sensitive”
y′ values: For any value y which is not in the image of f on its determining
set, and for any value y′ which is not in the bending set, the oracle’s answer
to query q does not change for the local adaptations of f from y′ to y. That
is, it holds that Of(y′,y)(q) = Of (q). Formally:

Definition 47. Let O be a deterministic parametrized oracle. A bending set
BO for F is an indexed collection {BOf,q,y}f∈F,q∈D,y∈Y of subsets of Y, such
that for every function f ∈ F , query q ∈ D, for every target image y ∈ Y,
and for every source image y′ /∈ BOf,q,y, it holds that Of (q) = Of(y′,y)(q). We
say that BO is a t-bending set if for every function f ∈ F , query q ∈ D and
y ∈ Y it holds that |BOf,q,y| ≤ t.

For the example of the evaluation oracle, we observe that it also has a
1-bending set. Setting BEf,q,y

def= {f(q)} (for the relevant f, q and y) satisfies
the required definition. Indeed, for any y′ 6= f(q) and y′′ ∈ Y, it holds that
Ef(y′,y′′)(q) = f(y′,y′′)(q) = f(q) = Ef (q).
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Finally, a deterministic parametrized algorithm O is t-stable for a class
of functions F if there exist (IO,BO) that are a t-determining set and a
t-bending set for F , respectively, and at least one of them is not empty.

We note that determining and bending sets always exist unconditionally
(just choose the entire domain and range of f , for every determining and
bending set, respectively). The challange is finding an oracle that allows to
break a primitive and at the same time is t-stable.

Exhaustive-search oracles.

We identify that all the parametrized oracles in the literature are in fact of a
special type, which we call exhaustive-search oracles. We say that an oracle is
an exhaustive-search oracle if there is an oracle circuit Φ(?) : D ×R → {0, 1}
(called a predicate) such that for every function f and query q the computation
of Of (q) can be computed by a loop (according to an understood enumeration)
over the values v ∈ R, where in each step the current value v is checked to
satisfy a predicate Φ(f)(q, v). If the predicate is satisfied, i.e., Φ(f)(q, v) = 1,
the algorithm outputs v, and if no such v exists it returns a special bottom
value ⊥.

Formally, a deterministic parameterized oracle O is an exhaustive-search
oracle if there exists Φ (as before) such that following algorithm outputs Of (q)
for every function parameter f and every query q ∈ D:

Exhaustive Search Algorithm Of (q) (on function f ∈ X → Y and
input q ∈ D)
.

for all v ∈ R do
. if Φ(f)(q, v) = 1 then
. return v
return ⊥

Observe that the range of an exhaustive-search algorithm is the set R∪ {⊥}.
Of special interest are exhaustive-search oracles that make relatively few
queries to their oracles (e.g., a polynomial number of queries). We note that
most parameterized oracles in the literature are in fact of this type. The
following lemma shows that an exhaustive-search oracle O : D → R∪{⊥} for
which Φ makes t queries has a t-determining set.
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Lemma 48. Let O be an exhaustive-search oracle with predicate Φ(?) : D ×
R → {0, 1} that makes t queries to its oracle. Denote by X(f)

Φ (q, v) the list of
queries issued by the predicate during the evaluation of Φ(f)(q, v). Then

IOf,q
def=


X

(f)
Φ (q, v) v is the first value for which Φ(f)(q, v) = 1

X
(f)
Φ (q, vlast) if Of (q) = ⊥, where vlast is the last value in the

enumeration of R

is a t-determining set for O.

The proof follows by inspection of the algorithm and the definition of
determining sets.

Proof: The bound on the size of the set is immediate and so we check
that IOf,q is indeed a determining set. Suppose that for two functions f, f ′
and a query q it holds that Of (q) 6= Of ′(q). It follows that for at least one
of the functions, there is an iteration v for which the predicate Φ(f)(q, v)
holds (otherwise both return ⊥). W.l.o.g. assume that this happens for f ,
i.e., that Of (q) = v, and that v is the minimal of the returned values, i.e.,
that Of ′(q) = v′, where either v′ > v or v′ = ⊥. Now, observe that after
adapting f ′ to agree with f on IOf,q = XΦ(f, q) it holds that with the adapted
function oracle the predicate circuit returns v (or some value that appears in
the enumeration before v), as the answer of the predicate depends only on
the answers of the function to the query set.

The choice of vlast (for the case Of (q) = ⊥) is somewhat arbitrary, but it
will be useful for us to have the queries involved with q on some arbitrary
evaluation of the predicate as part of the bending set. We note that this is
not needed for the proof of the lemma.

5.3.2 A t-Stable Oracle Of Inverts Only a Few Functions

The next lemma, which first appeared in [GGKT05] and was subsequently
adapted to many other separation results, e.g., [HHRS07, RS10, HS12], es-
tablishes an information-theoretic bound on the number of functions an
oracle-aided algorithm can invert from a set F if the oracle is t-stable for
F . Essentially, it shows that given an oracle circuit A(?) with access to such
an oracle O, it is possible to encode a function f ∈ F that A inverts well
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using significantly fewer bits than log(|F|), such that f can still be fully
reconstructed, or equivallently, that the encoding is injective.

Lemma 49 (Encoding Lemma). Let A(?) be an oracle circuit making at
most c calls to its oracle, and let O = {Of}f∈{0,1}n→{0,1}n be a deterministic
parameterized oracle such that for a class of permutations F ⊆ Pn it is
t-stable with sets (IO,BO). Then, for at most dn = dn(c, t) =

((2n
b

))2
·

((2n − b)!), where b
def= 2n

3·c2·t , of the permutations f in F , it holds that
Pr

x
r←{0,1}n

[
AOf (f(x)) = x

]
> 1

c .

The proof is a generalized version of the encoding technique of [GGKT05].

Proof: We describe an injective canonical mapping from the set of all
functions f ∈ F which AOf inverts well (i.e., inverts more than a 1

c -fraction
of the inputs to f) into a small set.

Denote by Queries(AOf (y)) the list of at most c of queries made by A to
Of during its computation on input y. Consider the following algorithm:

Algorithm Buildimage(f):

1. S := ∅
2. T := {y : AOf (y) ∈ f−1(y)}
3. while T 6= ∅ do :
4. y′ := miny∈T
5. S := S ∪ {y′}
6. R := f

(⋃
q∈Queries(AOf (y′)) I

O
f,q

)
7. R := R ∪

⋃
q∈Queries(AOf (y′)) B

O
f,q,y′

8. R := R ∪ {y′}
9. T := T \R

10. end

Define the mapping M that maps every function f which AOf inverts
well to a list of its action on f−1(Y \ S) as a list of pairs, i.e., f 7→(
x1, f(x1), x2, f(x2), . . . , x|Y\S|, f(x|Y\S|)

)
, where x1 < x2 < · · · < x|Y\S|.

We show thatM is injective. Suppose that for f1, f2 ∈ F , AOf1 and AOf2

invert well f1 and f2, respectively.

Claim 50. IfM(f1) =M(f2) then f1 = f2.
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X = {0, 1}n

IO
f1,q

IO
f2,q

Y = {0, 1}n

x∗

y = y1

y2

BO
f2,q,y

f2

f1

Figure 5.1: An illustration of the proof of Lemma 49. The functions f1 and
f2 agree on IOf1,q

\ {x∗}, f1(x∗) = y = y1 6= y2 = f2(x∗) and adapting f2 to
f1 on IOf1,q

changes Of2(q).

Proof: Assume towards contradiction that f1 6= f2. We first observe
that both functions agree on the sets {y : AOf1 (y) /∈ f−1

1 (y)} and on {y :
AOf2 (y) /∈ f−1

2 (y) }. This holds as these images are explicitly given byM(·)
since they are in Y \ S. Therefore, there must be a value y, which they both
invert, such that

AOf1 (y) = f1
−1(y) 6= f2

−1(y) = AOf2 (y) . (5.1)

Let y be the lexicographically first element for which (5.1) holds. Define
x1

def= AOf1 (y) and x2
def= AOf2 (y).

Proposition 51. For both f1 and f2 there is an iteration during the run
of the algorithm Buildimage(f1) (resp., Buildimage(f2)) during which y is
added to S.

Proof: Otherwise, we reach a contradiction to the assumption thatM(f1) =
M(f2) as the value of y is explicitly given byM.

Any difference in the computation of AOf1 (y) and AOf2 (y) may only stem
from different answers to some oracle query. Let q be an oracle query on which
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the computations differ, that is, for a query q made in both computations
and a1 6= a2 ∈ R we have:

a1 = Of1(q) 6= Of2(q) = a2 . (5.2)

By Proposition 46 (for f1, f2 and their corresponding determining sets IO),
we have that there exists a value x∗ ∈ IOf1,q

∪ IOf2,q
for which

y1 = f1(x∗) 6= f2(x∗) = y2 , (5.3)

as otherwise, (5.2) cannot hold.

The next two propositions yield that for such an x∗ ∈ IOf1,q
∪ IOf2,q

if
x∗ ∈ IOf1,q

(resp., x∗ ∈ IOf2,q
) it holds that f1(x∗) = y (resp., f2(x∗) = y). In

particular, combining this with Equation (5.3) and the fact that f1 and f2
are permutations asserts that in each of the sets IOf1,q

and IOf2,q
there is at

most one such x∗ . Let us assume that x∗ ∈ IOf1,q
.

Proposition 52. It holds that y1 ≤ y.

Proof: Assuming otherwise (that y1 > y), consider the execution of the
algorithm Buildimage(f1). In such a case, recall that by Proposition 51 y is
added to the set S, and in line (6) of the algorithm y1 is added to R (as it
is in the image of the determining set for query q). Subsequently, in line (9)
y1 is removed from T . Since at this point of the execution of Bulidimage(f1)
y1 is not in S, it is never added to S, henceM(f1) contains (x∗, y1), which
contradictsM(f1) =M(f2).

Proposition 53. It holds that y1 ≥ y and y2 ≥ y.

Proof: We prove that y1 ≥ y and observe that the proof for y2 ≥ y follows
from symmetry. Assuming otherwise (that y1 < y), we consider two cases:
If (x∗, y1) appears in M(f1) or (f−1

2 (y1), y1) appears in M(f2), then since
both are permutations, combining with (5.3) we reach a contradiction for
M(f1) = M(f2). Otherwise, both AOf1 (y1) = x∗ and AOf2 (y1) = f−1

2 (y1)
must hold, and moreover y1 is added to S at each of the corresponding
Buildimage runs. Observe now that this contradicts the minimality of y.

It follows that: For any element x in IOf1,q
∪ IOf2,q

on which f2 and f1 do
not agree it holds that f1(x) = y if x ∈ IOf1,q

and that f2(x) = y if x ∈ IOf2,q
.
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Moreover, since f1, f2 are permutations, we know that there is at most one
such element in each of the sets, and in at least one of them such an element
exists.

Next, if there exists exactly one such element, then, as before, without loss
of generality we assume that there exists x∗ ∈ IOf1,q

for which f1(x∗) = y. If
there are two elements, i.e., x∗ ∈ IOf1,q

and x∗∗ ∈ IOf2,q
, then by the definition

of determining sets we know that adapting one of the functions to agree with
the other changes the value of the oracle on it.

In both cases we get that (without loss of generality) we may assume that
adapting f2 to agree with f1 on IOf1,q

changes Of2(q). Recall that if there is
exactly one such element, this follows from Proposition 45.

Now, note that the image adaptation of f2 to f1 on IOf1,q
is just f2(y2,y) and

therefore Of2(y2,y)(q) 6= Of2(q), and by defintion of the bending sets it must
hold that y2 = f2(x∗) ∈ BOf2,q,y

. Observe that at step (4) of the execution of
Buildimage(f2), after y′ is set to y from T , in line (7) y2 is added to R (by
the definition of the determining sets and in line (9) y2 is removed from T .
Propositions 52 and 53 establish that y2 > y = y1. Therefore, at this point of
the execution y2 is not in S and hence never added to S. Finally, this means
that (x∗, y2) appears inM(f2) which contradictsM(f1) =M(f2).

Claim 54. The set S generated by the algorithm Buildimage(f) contains at
least b elements.

Proof: We start by showing that for all the functions f which the circuit
inverts well, the generated set S in algorithm Buildimage(f) is large. Let f
be a function for which Pr

x
r←X [AOf inverts f(x)] > 1

c . By the definition of
the set T at the begining of the run of Buildimage(f), T is of size at least |X |c .
Observe that during each iteration of the algorithm one element is added to S
and at most (c · t+ c · t+ 1) elements are removed from T , where the first two
summands correspond the size of the relevant bending set and determining
set for each of the c potential calls to the oracle, and the third to the element
y (lines 6 - 9 in the algorithm). It follows that when the algorithm terminates,
the set S contains at least |X |

c2·(2·t+1) >
2n

3·c2·t = b elements.

We note that it is possible to encode M(f) by describing the set S, the
set Y \ f(S), and an ordering on the set Y \ f(S), which by what we have
shown has size at most 2n− b. Therefore, the size of the range of the mapping
M is at most

((2n
b

))2
· ((2n − b)!). Combining this with the first claim, we
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{0, 1}n {0, 1}n

I

{0, 1}i {0, 1}i

f = rI ◦ h ◦ πP

πP

h

rI

Figure 5.2: Decomposition of a regular function f : πP is a regular function
onto {0, 1}i induced by a partition P of {0, 1}n, h is a permutation on {0, 1}i,
and rI is injective from {0, 1}i into I.

infer that there are at most
((2n

b

))2
· ((2n − b)!) such functions. The lemma

is proved.

Our next goal is to extend the encoding lemma to the case where F ⊆ Rn,i.
We observe that the following process, which consists of 3 independent random
choices, samples a uniform random f from from Rn,i:

1. Partition of the domain: Sample a random uniform partition P
of the domain into subsets of size 2n−i. The partition P is chosen
in an unordered manner, and then we use some order relation6 φ on
all the subsets of size 2n−i. For x ∈ Pi, where Pi ∈ P , we define
πP : {0, 1}n → {0, 1}i by πP (x) as the order function of Pi in P
according to φ 7 .

2. A permutation on {0, 1}i: Sample a random permutation h from Pi.

3. Image determination: Sample a set I ⊂ {0, 1}n of size 2i and set
rI : {0, 1}i → {0, 1}n as the inverse function of the lexicographical order
function8 of I.

4. Finally, set f def= rI ◦ h ◦ πP .

6 For example, the order relation induced by the minimal element of the sets. That is,
S1 < S2 if and only if minx∈S1 < minx∈S2 .

7Continuing the example, for the relation described in Footnote 6, we always have that
for all x ∈ S, where S ∈ P contains the all zero string 0n, that πP (x) is the all zero string
0i.

8Of course, any order relation would work just as well.
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Indeed, the reader can verify that the mapping (P, h, I) 7→ rI ◦ h ◦ πP
is an injective function onto Rn,i. In particular, it holds that |Rn,i| =(

(2n)!
((2n−i)!)2i ·(2i!))

)
· ((2i)!) ·

(2n
2i
)
, where the factors in the product correspond

to the number of partitions of {0, 1}n to sets of size 2i, the number of
permutations on {0, 1}i and the number of subsets of size 2n−i from {0, 1}n,
respectively.

For a fixed P and I (of the matching size), we denote byRn,i(P, I) the subset
of Rn,i with partition P and image set I. The sampling process establishes a
natural bijection f : Pi → Rn,i(P, I), where f [h] def= rI ◦ h ◦ πP . Similarly, we
denote the inverse transformation by h[f ]. We extend the definition of f [h]
to the entire set {0, 1}i → {0, 1}i with f [h] : ({0, 1}i → {0, 1}i)→ Fn,i(P, I)
given by f [h] def= rI ◦ h ◦ πP , where Fn,i(P, I) def= {πP ◦ h ◦ rI}h∈{0,1}i→{0,1}i .
That is, Fn,i(P, I) is the set of all functions f on n bits with image set
contained in I, such that if for x, x′ ∈ {0, 1}n it holds that πP (x) = πP (x′)
then f(x) = f(x′).

Therefore, it is not surprising that any oracle circuit A(?) with access to
a t-stable deterministic parameterized oracle for a class of functions F ⊂
Rn,i(P, I) does not invert many functions from F . This is formalized in the
next lemma:

Lemma 55. Let n ≥ i ≥ 0, P be a fixed partition of {0, 1}n into subsets
of size 2n−i, and I ⊂ {0, 1}n an image set of size 2i. Let A(?) be an oracle
circuit making at most c calls to its oracle, and let O = {Of}f∈Fn,i(P,I)
be a deterministic parameterized oracle such that for a class of functions
F ⊆ Rn,i(P, I) it is t-stable with sets (IO,BO). Then for at most di(c, t)
of the functions f ∈ F , where di is as9 in Lemma 49, it holds that
Pr

x
r←{0,1}n

[
AOf (f(x)) ∈ f−1(f(x))

]
> 1

c .

The proof works by reduction to the setting of Lemma 49. To this end, we
define a deterministic parameterized oracle Õ, a set F̃ ⊂ Pi of permutations
with corresponding determining and bending sets, and show how to use A(?)

to derive an algorithm Ã(?) that inverts many permutations from F̃ which
contradicts Lemma 49.

Proof: Towards contradiction, let O be a deterministic parametrized
oracle, where Of : D → R defined for all f ∈ {0, 1}n → I, such that for
F ⊂ Rn,i(P, I) it is t-stable with sets (IO,BO), and A(?) an oracle circuit

9Note that here we substitute n for i.
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that inverts well (as before inverts well f means inverting at least a 1
c -fraction

of the inputs to f) more than di functions from F .

We define Õ = {Õh}h∈{0,1}i→{0,1}i , a deterministic parameterized oracle,
where Õh : D → R is given by Õh(q) def= Of [h](q), F̃

def= {h[f ] : f ∈ F}, and
for every h ∈ F̃ , q ∈ D and every y′ ∈ {0, 1}i set IÕh,q

def= πP

(
IOf [h],q

)
and

BÕh,q,y′
def= rI

−1
(
BOf [h],q,rI(y′)

)
.

By the construction, the definition of determining sets, bending sets and
the definition of image adapting a function to agree with another function on
a set, one can check that the new constructed sets are indeed determining sets
and bending sets for Õ. Moreover, as rI is an injective function it holds that
BÕ is a t-bending set for F̃ . For every h ∈ {0, 1}i and q ∈ D it holds that∣∣πP (IOf,q)

∣∣ ≤ ∣∣IOf,q∣∣ ≤ t,
and so IÕ is a t-determining set10. Therefore, the oracle is t-stable for F̃ .

We construct a circuit Ã(?) such that for every function h ∈ F̃ and
and every image y′ ∈ {0, 1}i it holds that Ã(Õh)(y′) = h−1(y′) whenever
A(Of[h])(rI(y′)) ∈ (f [h])−1(rI(y′)).

The circuit Ã stores the complete descriptions of πP and rI . On input
y′ ∈ {0, 1}i it computes y def= rI(y′) and simulates the run of A(Of )(y).
Whenever in the simulation A issuses a query q to its oracle, Ã queries
its oracle and uses the answer as an answer for the simulation. When the
simulation terminates with output x = A(y), Ã outputs x′ = πP (x).

By the construction of the oracle Õ it follows that Ã inverts well exactly
the same number of functions as A, and so we reach a contradiction to Lemma
49.

We next show that any two oracle circuit making few queries to two
deterministic parametrized oracles, where both oracles are t-stable for some
set of functions F , does not invert well many functions from F .

Lemma 56. Let n ≥ i ≥ 0, P be a fixed partition of {0, 1}n into subsets
of size 2n−i, and I ⊂ {0, 1}n an image set of size 2i. Let A(?,?) be an
oracle circuit making a total number of at most c calls to its oracles, and
let O(0) = {O(0)

f }f∈Fn,i(P,I) and O(1) = {O(1)
f }f∈Fn,i(P,I) be deterministic

10Note that in both inequalities an equality may hold.
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parameterized oracles such that for a class of functions F ⊆ Rn,i(P, I) both
oracles are t-stable with sets (IO(0)

,BO(0)) and (IO(1)
,BO(1)), respectively.

Then for at most di(c, t) of the functions f ∈ F , where di is as in Lemma 49,
it holds that Pr

x
r←{0,1}n

[
AO

(0)
f
,O(1)
f ∈ f−1(f(x))

]
> 1

c .

The proof is straight forward and very similar to the proof of Lemma
55. We show how to reduce this case to the setting of Lemma 55.
In this case we define a new parametrized oracle Õf that on query
q′ = (b, q) ∈ ({0} × D(0)) ∪ ({1} × D(1)), where b ∈ {0, 1} and
O(b)
f : D(b) → R(b), answers Õf (q′) def= O(b)

f (q). It follows readily
that Õ is t-stable. As before, any oracle circuit A(?,?) that inverts well more
that di functions from F when plugged with O(0) and O(1) can be used to
construct a circuit Ã(?) that inverts well more than di functions when plugged
with Õ.

We are now ready to prove the main theorem of this section:

Theorem 57 (Black-Box Separation Factory). Let s = s(ρ) be a security
function, and p = p(ρ) be a polynomial function. Let (G,A) = (G(?), A(?,?))
be a uniform oracle algorithm and an s-non-uniform two-oracle algorithm,
respectively. Let F = {Fρ}ρ>0, where Fρ ⊂ Rn(ρ),i(ρ)(Pρ, Iρ), be contained
in FOWF, and O = {Oρ}ρ>0, where Oρ = {Oρ,f}f∈Fn(ρ),i(ρ)(Pρ,Iρ), such that
for all large enough ρ:

1. Oρ,f (Q, 1
p(ρ) )-breaks g(f)

ρ for every f ∈ Fρ, where g(?)
ρ

def= G(1ρ, n, n′).

2. Oρ is t-stable with sets (IO,BO) for Fρ such that 2s(ρ) ·di(s(ρ), t) < |Fρ|
holds, where di is as in Lemma 49.

Then (G,A) is not an s-weak fixed-parameter fully black-box construction
of Q from OWF.

Proof: Towards contradiction, assume that (G,R) is an s-non-uniform fixed-
parameter fully black-box construction of Q from OWF. We explain how to
construct a family of functions f ′ that will be used to contradict the security
assumption on our construction. As before, we set Eρ is the evaluation oracle
for Rn(ρ),i(ρ), and recall that we have shown that Eρ is 1-stable for Rn(ρ),i(ρ).
Combining this with the first condition and using Lemma 56 we have that
for every fixed advice a ∈ {0, 1}s(ρ), the two-oracle circuit R(?,?)

ρ,a inverts
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with probability greater than 1
s(ρ) at most di(s(ρ), t) of the functions in Fρ.

Therefore, by the union bound there are at most 2s(ρ) · di(s(ρ), t) functions
f ∈ Fρ, for which there exists an advice a, such that the circuit inverts more
than a 1

s -fraction of the inputs to f . The condition on the size of Fρ gives a

a function f ′ρ ∈ Fρ, such that for every a ∈ {0, 1}s(ρ) it holds that R
(Of′ρ ,Ef′ρ )
ρ,aρ

does not (OWF, 1
s(ρ) )-break f ′ρ. The first condition, which holds for all the

functions in Fρ, gives that Oρ,fρ (Q, 1
p(ρ) )-breaks f ′ρ.

Now, set f ′ = {f ′ρ}ρ∈N+ and B = {Oρ,f ′ρ}ρ∈N+ . By the fact that F is
contained in FOWF, we have that f ′ ∈ FOWF. By our assumption on
(R,G) it holds that G(f ′) ∈ Q, and by what we have shown, it also holds that
B Q-breaks G(f ′). Lastly, (again) by our construction of f ′, it holds that
R[B,f ′] does not (OWF, 1

s )-break G(f ′), which contradicts our assumption on
(G,R).
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Chapter 6

On the Limits of Black-Box
Constructions of a Universal
One-Way Hash Function

6.1 Introduction

UOWHFs are a fundamental cryptographic primitive, most notably used
for obtaining digital signatures. They were studied extensively since their
introduction by Naor and Yung [NY89], who showed a simple construction that
makes only one call to the underlying one-way function whenever, additionally,
the function is a permutation. Rompel [Rom90] showed a construction based
on any one-way function, and the most efficient construction based on general
one-way functions is due to Haitner et al. [HHR+10]. Their construction
makes Õ(n6) calls to a one-way function f : {0, 1}n → {0, 1}n.

In this chapter we prove our main application of our framework from Chapter
5. We show a lower bound on the number of calls made by the construction
algorithm G in any fully black-box construction (G,R) of UOWHF from
OWF. Our bound is achieved by showing a sequence of efficient fixed-
parameter fully black-box constructions, where each primitive is constructed
from the one that precedes it, and by proving the lower bound on the number
of calls a construction makes on the last primitive. A diagram of the reduction
sequence is depicted in Figure 6.1.

6.1.1 Contributions of this Chapter

In Section 6.3 we prove a lower bound of Ω(n/ log3(n)) on the number of calls
made by any fully black-box construction of a universal one-way hash function
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(UOWHF) from a one-way function f : {0, 1}n → {0, 1}n. The bound is
improved in Section 6.4 to Ω(n/ log(n)). Prior to our work it would have been
possible to conjecture that there exists a construction of a UOWHF from a
general one-way function that makes only one call to the underlying one-way
function. Our bound matches up to a log factor the number of calls made by
the constructions of [BM12] and [AGV12], and exactly the number of calls
made by the very recent construction of [YGLW14].

Our result can be understood as an analog to that of Holenstein and Sinha,
who show a bound of Ω(n/ log(n)) on the number of calls to a one-way function
that are made by a construction of a pseudo-random generator. We observe
(details are omitted) that the recent result of [HS12] can be explained in our
framework.

6.2 Preliminaries

We would make use of the following well-known lemma on probability spaces:

Lemma 58. Let (X,Y ) be jointly distributed random variables taking
values from some set (X ,Y), and let A : X × Y → {0, 1} such that
Pr

x
r←X,y r←Y [A(x, y) = 1] ≥ p > 0. Then for all α, β > 0 satisfying

α+ (1− α · p) · β < 1 it holds that

Pr
x
r←X

[
Pr
y
r←Y

[A(x, y) = 1] ≥ β · p
]
≥ α · p . (6.1)

Proof: Assume otherwise, we have that

Pr
X,Y

[A(X,Y )]

= Pr
X,Y

[
A(X,Y ) | Pr

Y
[A(X,Y )] < β · p

]
· Pr
X

[
Pr
Y

[A(X,Y )] < β · p
]

+ Pr
X,Y

[
A(X,Y ) | Pr

Y
[A(X,Y )] ≥ β · p

]
· Pr
X

[
Pr
Y

[A(X,Y )] ≥ β · p
]

< (β · p) · (1− α · p) + 1 · (α · p) < p ,

where we write A(X,Y ) for the event that A(X,Y ) = 1, which contradicts
the assumption on (α, β).
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6.3 A Lower Bound on the Number of Calls of
a Fixed-Parameter Fully Black-Box
Construction of UOWHF from OWF

6.3.1 A Characterization of Universal One-Way Hash
Functions

Loosely speaking, a universal one-way hash function is a keyed compressing
function for which the probability that an adversary wins the following game
is very small: First the adversary chooses a preimage v. Then a random key
for the UOWHF is chosen. Finally, the adversary “wins” the game he finds
a different preimage v′ that maps to the same value under the chosen key.
Formally:

Definition 59 (UOWHF). A universal one-way hash function h = {hρ}ρ∈N+ is
a family of uniformly efficiently computable keyed functions hρ : {0, 1}κ(ρ) ×
{0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ) such that for any pair of efficient
randomized algorithms (B1, B2) the function mapping ρ to

Pr
(v,σ) r←B1(ρ)
k
r←{0,1}κ(ρ)

v′
r←B2(k,v,σ)

[hρ(k, v) = hρ(k, v′) ∧ v 6= v′]

is negligible. The family h is an `-bit compressing UOWHF, where ` = `(ρ), if
m(ρ)−m′(ρ) ≥ `(ρ) for all large enough ρ.

The primitive UOWHF = (FUOWHF, RUOWHF) is defined implicitly
analogously to the way OWF was defined for one-way functions (see Section
5.2.3). In this case, for every security parameter, the breaker (B1, B2) can
be modeled as one combined circuit that corresponds to the Cook-Levin
encoding of their relevant circuits, with an extra input bit that determines
which one is actually computed. Similarly, for every ` = `(ρ) the primitive
`-UOWHF = 〈F`-UOWHF, R`-UOWHF〉 corresponds to `-bit compressing
universal one-way hash functions.

Domain extension of a UOWHF.

The definition of a UOWHF only guarantees that hρ is compressing (i.e., it
is possible that `(ρ) = 1). The first reduction we use is a domain extension
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of a UOWHF, that allows to construct an `-bit compressing UOWHF from
a UOWHF. Shoup [Sho00] shows a fully-black box construction of a `-bit
compressing UOWHF from one that compresses only one bit, which is the
minimal requirement from any UOWHF.

Lemma 60 (UOWHF domain extension). There exists a fixed-parameter fully
black-box construction of an `-bit compressing UOWHF h′ρ : {0, 1}log(`)·κ(ρ) ×
{0, 1}m+` → {0, 1}m from a one-bit compressing UOWHF hρ : {0, 1}κ(ρ) ×
{0, 1}m+1 → {0, 1}m. In order to evaluate h′ρ the construction makes exactly
`(ρ) calls to hρ. The security reduction Rhρ,Bρ makes ` calls to its hρ oracle,
and exactly one call to the breaker Bρ = (B1, B2)ρ oracle. Furthermore, if
Bρ (`-UOWHF, ε)-breaks h′ρ, then the reduction (UOWHF, ε` )-breaks hρ.

We observe that the security definition for UOWHFs involves an interaction,
and allows the adversary to save its state using σ. It will be more convenient
for us to work with an equivalent non-interactive version. The following
definition of collision resistance is tightly related to that of a UOWHF by the
lemma that follows it, where we denote by a‖b the concatenation of a and b.

Definition 61 (RP-CRHF). A random preimage collision resistance hash
function is an efficiently uniformly computable family of functions hρ :
{0, 1}m(ρ) → {0, 1}m′(ρ) with m′(ρ) < m(ρ), such that for every efficient
randomized machine B the function mapping ρ to

Pr
v
r←{0,1}m(ρ)

v′
r←B(ρ,v)

[hρ(v) = hρ(v′) ∧ v 6= v′]

is negligible. The family h is an `-bit compressing RP-CRHF, where ` = `(ρ),
if additionally it holds that m(ρ)−m′(ρ) ≥ `(ρ) for all large enough ρ.

The primitives RP-CRHF and log2(ρ)-RP-CRHF are defined analogously.

Lemma 62 (UOWHF to RP-CRHF, folklore). Let h = {hρ}ρ∈N+ be a
UOWHF. Then the family h′ρ : {0, 1}κ(ρ)+m(ρ) → {0, 1}κ(ρ)+m′(ρ) given by
h′ρ(k‖v) def= (k‖hρ(k, v)) is an RP-CRHF.

Proof: The security definition of an RP-CRHF is trivially implied by that
of a UOWHF. Suppose that we have an breaker Bρ that finds a collision for a
random preimage of h′ρ(k‖v). The reduction outputs the algorithms (B1, B2)ρ
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as follows: B1 is the algorithm that chooses a uniform random v ∈ {0, 1}m(ρ).
Upon receiving a random key k, the reduction B2 returns Bρ(k‖v). It is
immediate that (B1, B2)ρ break the security of h as a UOWHF whenever Bρ
breaks the security of h′ as a RP-CRHF.

In particular, we observe that the proof of the lemma implies the existence of
a fixed-parameter fully black-box construction of RP-CRHF from UOWHF
that for every security parameter makes exactly one call to the universal
one-way hash function. Additionally, the construction is security preserving in
the strongest possible sense: If Bρ (RP-CRHF, ε)-breaks the constructed h′ρ
(i.e., returns a collision on a uniform input v′ with probability ε) then it holds
that the reduction (UOWHF, ε)-breaks the underlying hρ. We mention that
both the construction and the security reduction are uniform and efficient,
and both make exactly one query to their oracles.

Pseudo-injective Functions.

Our last reduction establishes that padding the output of a log2(ρ)-RP-CRHF
yields a primitive that is both a one-way function, and behaves like an injective
function. A pseudo-injective function is an efficiently uniformly computable
family g = {gρ}ρ∈N+ of length preserving functions gρ : {0, 1}m(ρ) → {0, 1}m(ρ)

such that for a uniformly chosen input v ∈ {0, 1}m(ρ) it is impossible to find
another input v′ 6= v such that both map to the same value under gρ. We
stress that pseudo-injective functions exists unconditionally: Any permutation
is a pseudo-injective function. Formally:

Definition 63 (Pseudo-Injectivity). A pseudo-injective function g = {gρ}ρ∈N+

is a uniformly efficiently computable family of functions gρ : {0, 1}m(ρ) →
{0, 1}m(ρ), such that for all uniform efficient algorithms A the function map-
ping ρ to

Pr
v
r←{0,1}m(ρ)

v′
r←A(1ρ,v)

[gρ(v′) = gρ(v) ∧ v′ 6= v]

is negligible.

Similarly to before, the primitive PI = 〈FPI, RPI〉 corresponds to a pseudo-
injective function. Next, we consider the primitive OWF∧PI that corresponds
to all functions which are both a one-way function and a pseudo-injective
function. Formally, it holds that f ∈ FOWF∧PI if and only if f ∈ FOWF
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and f ∈ FPI. For a breaker circuit C, a function fρ ∈ f ∈ FOWF∧PI, and
a number ε it holds that 〈fρ, C, ε〉 ∈ ROWF∧PI if and only if 〈fρ, C, ε〉 ∈
ROWF or 〈fρ, C, ε〉 ∈ RPI.
It turns out that padding any log2(n)-RP-CRHF to a length-preserving

function, yields a function which is both a one-way function and a pseudo-
injective function.
Lemma 64 (log2(ρ)-RP-CRHF to OWF∧PI). Let h = {hρ}ρ∈N+ be an
RP-CRHF that compresses `(ρ) def= m(ρ)−m′(ρ) bits, where `(ρ) ≥ log2(ρ).
Then the family {h′ρ}ρ∈N+ , where h′ρ(v) def= hρ(v)‖0`(ρ), is a one-way function
and a pseudo-injective function.

Proof: By the construction h′ρ is always length-preserving and so h′ imple-
ments a pseudo-injective and a one-way function. It is also clear that the
construction is uniformly efficiently computable.

As for the security reduction, OWF∧PI-breaking h′ implies either inverting
h′ on a uniformly random input, or finding a collision for one, for infinitely
many security parameters ρ. This implies that for infinitely many security
parameters ρ it is possible to break at least one of the properties.
First observe that any breaker B that breaks the pseudo-injectivity of h′

immediately leads to one that RP-CRHF-breaks h with the same probability:
On input v′ ∈ {0, 1}m return the output of B(h′(v′)) = B(h(v)‖0`(ρ)).
On the other hand, if B OWF-breaks h′, we have that B inverts h′ for

infinitely many ρ’s. We show that in this case, the algorithm, that on input
v ∈ {0, 1}m(ρ) returns B(hρ(v)), is the required reduction.
By our assumption B inverts h′ on a random input with probability at

least 1
p , where p is a polynomial, for infinitely many security parameters.

As h′ρ compresses at least log2(ρ) bits, we have that for a random v, the
probability that h′ρ(v) has only one preimage is at most 2− log2(ρ). Therefore,
with probability at least 1

p(ρ) −
1

ρlog(ρ) >
1

2p(ρ) (for sufficiently large ρ) we have
that B inverts h′ρ(v) and that h′ρ(v) has at least two preimages, in which case
v is still uniform among h−1

ρ (hρ(v)). Conitioned on this event it holds that
with probability at least 1

2 B returns a v′ 6= v that collides with v. Therefore
we conclude that the reduction finds a random collision with probability at
least 1

4·p(ρ) for all sufficiently large ρ.

The composition of the constructions depicted in Lemmas 60, 62 and 64 es-
tablishes a fixed-parameter fully black-box construction of an h′ ∈ FOWF∧PI
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from any h ∈ FUOWHF that makes log2(ρ) calls to the underlying UOWHF.
The security reduction makes log2(ρ) calls (to both its oracles) in order to
break the security of the underlying UOWHF, and if B (OWF∧PI, 1

p )-breaks
the constructed h for some polynomial p and breaker B, then the reduc-
tion (UOWHF, 1

p′ )-breaks h, where p
′ is a different polynomial such that

p′(ρ) > 4 · p(ρ) · log2(ρ). Thus we obtain:

Corollary 65. Suppose that (G,R) is an s′-weak fixed-parameter fully black-
box construction of UOWHF from OWF that makes at most r′ = r′(ρ)
queries to OWF. Then there exists an s-weak fixed-parameter fully black-box
construction of OWF∧PI from OWF that makes r′(ρ) · log2(ρ) calls to the
underlying one-way function, where s(ρ) def= s′(ρ) · log2(ρ).

Proof: The composition of G with the constructions described in Lemmas
60, 62 and 64 implements a fixed-parameter fully black-box construction of
an h′ ∈ FOWF∧PI from any h ∈ FOWF. The composition of the reduction
algorithms described in the lemmas with the s′-non-uniform reduction makes
at most s calls to both its oracles. It follows that for every B that OWF∧PI-
breaks the constructed h′, the reduction R[B,h] (OWF, 1

s(ρ) )-breaks h.1

Therefore, in order to show that there is no s′-weak fixed-parameter fully
black-box construction of UOWHF from OWF, where the construction makes
r′ calls to the one-way functions, it is sufficient to show that there is no s-weak
fixed-parameter fully black-box construction of OWF∧PI from OWF that
makes r calls, where s(ρ) def= s′(ρ) · log2(ρ) and r(ρ) def= r′(ρ) · log2(ρ). This is
the goal of the next section.

6.3.2 A Lower Bound on the Number of Calls for an s-
Weak Fixed-Parameter Fully Black-Box Construc-
tion of OWF∧PI from OWF

As explained, a lower bound on a construction of OWF∧PI from OWF yields
a very good (up to a log2-factor) bound on the construction of UOWHF.
Our proof utilizes the machinery from Section 5.3. Let us introduce some

1Note that for a large enough security parameter it still holds that it inverts h with
probability 1

s′(ρ) , however, as each query in the reduction algorithm of the assumed s-weak
construction results in up to log2(ρ) queries to the composed one, we get a total number of
at most s queries.
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OWF UOWHF log2(ρ)-UOWHF log2(ρ)-RPCRHF OWF∧PI
Lemma 60 Lemma 62 Lemma 64?

/
No s-weak construction making r ∈ o

(
n(ρ)

log(s(ρ))

)
calls to f .

Figure 6.1: Fully Black-Box Constructions Diagram.

notation. For an (n, n)-oracle circuit g(?) : {0, 1}m → {0, 1}m, a function
f : {0, 1}n → {0, 1}n and a value v ∈ {0, 1}m, denote by Xg(f, v) and Yg(f, v)
the sets of queries and answers made to and received from f during the
evaluation of g(f)(v), respectively.

For any potential construction (G,R) denote by r = r(ρ) the number of
queries gρ makes when instantiated for security parameter ρ with a one-way
function fρ : {0, 1}ρ → {0, 1}ρ, that is we set n(ρ) def= n′(ρ) def= ρ. Additionally,
let s = s(ρ) be a super-polynomial security function smaller than 2

ρ
10 . I.e.,

for all polynomials p and all large enough ρ it holds that p(ρ) < s(ρ) < 2
ρ

10 .
We prove that if r(ρ) < n(ρ)

2000·log(s(ρ))) holds for all large enough ρ, then (G,R)
is not an s-weak fixed-parameter fully black-box construction of OWF∧PI
from OWF.

Theorem 66. For all super-polynomial security functions s = s(ρ) < 2
ρ

10

and r = r(ρ) there is no s-weak fixed-parameter fully black-box construction of
OWF∧PI from OWF such that g(?)

ρ : {0, 1}m(ρ) → {0, 1}m(ρ) makes at most
r(ρ) calls to the underlying one-way function, where n(ρ) def= n′(ρ) def= ρ and
g

(?)
ρ

def= G(1ρ, n, n′), and r(ρ) ≤ n(ρ)
2000·log(s(ρ)) holds for all large enough ρ.

Proof: Without loss of generality, we assume that the construction g makes
exactly r(ρ) def= n(ρ)

2000·log(s(ρ)) different queries. Whenever this is not the case,
it is always possible to amend G so that it behaves exactly as before, but on
input (1ρ, n, n′) it outputs an (n, n′)-oracle circuit with r(ρ) oracle gates, and
additionally, all queries are different.

Let s and r be a pair of security functions such that s is super-polynomial,
that is, for every polynomial p and large enough ρ it holds that s(ρ) > p(ρ),
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and that r(ρ) = n(ρ)
2000·log(s(ρ)) holds for all sufficiently large ρ.

We now explain how to construct the oracle O = {Oρ}ρ∈N+ and the
collection of sets of functions F = {Fρ}ρ∈N+ . For each security paramter
ρ we define the oracle Oρ and the set Fρ independently of the oracles and
function sets chosen for other security parameters. It will always hold that
Fρ ⊂ {0, 1}n → {0, 1}n, and so the constructed F is contained in FOWF.

Therefore, from now on we omit the security parameter in our notation, but
formally all our parameters depend on the security parameter ρ. In particular,
g(?) is the construction that the uniform construction algorithm G outputs
for security parameter ρ = n = n′ with a function fρ : {0, 1}ρ → {0, 1}ρ.

Analogously to [HS12], for every security parameter we break either the
one-wayness property of the constructed function, or its pseudo-injectivity.
For the oracle circuit g(?) : {0, 1}m → {0, 1}m, we check whether when
g is evaluated with a random permutation f

r← Pn and a random input
v

r← {0, 1}m, the output gf (v) is significantly correlated with any subset of
the set of oracle answers returned by f on the calls made to it during the
evaluation of gf (v) (recall that these are denoted by Yg(f, v)). To this end,
we bring the procedure STA (for safe to answer), which returns true if and
only if there is no such correlation:

Procedure STA(w,Q) (on w ∈ {0, 1}m and Q ⊂ {0, 1}n of size r)
.

for all B ⊆ Q do
. if Pr

f ′
r←Pn,v′

r←{0,1}m

[
g(f ′)(v′) = w

∣∣∣B ⊆ Yg(f ′, v′)] ≥ 2−m+ n
30

. return false
return true

We set p(g), the probability that for a random permutation f and a
random input v, the output gf (v) is correlated with some subset of the
answers Yg(f, v). Define

p(g) def= Pr
f
r←Pn,v

r←{0,1}m

[
STA(g(f)(v), Yg(f, v))

]
. (6.2)

We stress that both the output of STA (for any value y and a set Q), and
the value p(g) do not depend on any specific permutation, but rather on a
combinatorial property of the construction as a whole, which averages over
all permutations.
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As explained, we set the oracle O and the set F based on the value
p(g). In case that p(g) > 1

2 we set the oracle O def= BreakOWg
def=

{BreakOWg,f}f∈{0,1}n→{0,1}n , where we use the oracle BreakOWg from
[HS12], which is described next. In [HS12] it is implicitly proved that there
exists a set F ⊂ Pn of size |F| > |Pn|

5 , such that BreakOWg,f (OWF, 1
4 )-

breaks gf for all f ∈ F , and that BreakOWg is 2n5 -stable for F , in which case
condition (2) in Theorem 57 is satisfied.

Algorithm BreakOWg,f (w) (on input w ∈ {0, 1}m)
.

for all v ∈ {0, 1}m do
. if g(f)(v) = w then
. if STA(w, Yg(f, v)) then
. return v
return ⊥

In the case p(g) ≤ 1
2 we show that when f is chosen uniformly at random

from a set of regular degenerate functions, it is often the case that the
construction g(f) is not injective, and therefore there exists an oracle which
breaks the pseudo-injectivity of g(f). The challenge is to find a breaker oracle
that is t-stable. The next lemmas establish that the oracle BreakPI satisfies
the required conditions in this case.

Formally, for a construction circuit g we define the oracle
BreakPIg = {BreakPIg,f}f∈{0,1}n→{0,1}n that for a function f is given by:

Algorithm BreakPIg,f (v) (on input v ∈ {0, 1}m)
.

for all v′ ∈ {0, 1}m do
. if g(f)(v) = g(f)(v′) and v′ 6= v then
. if Yg(f, v) = Yg(f, v′) then
. return v′

return ⊥

Now, we fix i def= n
200·r = 10 · log(s). We show that for a 1

6 -fraction of the
functions f in Rn,i it holds that BreakPIg,f breaks the pseudo-injectivity of
g(f).

Lemma 67. Let g : {0, 1}m → {0, 1}m be an r-query oracle construction
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with p(g) ≤ 1
2 . Then for a 1

6 -fraction of the functions in Rn, n
200·r

it holds that

Pr
v
r←{0,1}m

[
BreakPIg,f (v) outputs v′ s.t. v 6= v′ ∧ g(f)(v) = g(f)(v′)

]
≥ 1

24 .

(6.3)

Proof:

By inspection of the algorithm BreakPI it holds that whenever
BreakPIg,f (v) 6= ⊥ it outputs a value v′ 6= v such that g(f)(v) = g(f)(v′), and
so it breaks the pseudo-injectivity of g(f)(·). By the assumption, it holds that a
random evaluation STA(g(f)(v), Yg(f, v)) on a random permutation f returns
false with probability (1− p(g)) ≥ 1

2 . Next, as for every (n, n)-oracle circuit
D(?) that does not take an input and has one output bit (called distinguisher)
making at most r queries, it holds that∣∣∣∣∣ Pr

f
r←Pn

[D(f) = 1]− Pr
f
r←Rn,i

[D(f) = 1]

∣∣∣∣∣ ≤ r2

2i ,

we obtain

Pr
f
r←Rn, n

200·r
,v

r←{0,1}m

[
¬STA(g(f)(v), Yg(f, v))

]
≥ (1− p(g)) ·

(
1− r2

2 n
200·r

)
.

(6.4)

The following counting argument shows that for every f ∈ Rn, n
200·r

there
exists a set Wf =Wf (Im (f)) of size |Wf | ≤ 2m− n

100 such that

Pr
f
r←Rn, n

200·r
,v

r←{0,1}m

[
g(f)(v) ∈ Wf

]
≥ (1− p(g)) ·

(
1− r2

2 n
200·r

)
>

1
3 , (6.5)

for sufficiently large n.

Define Wf
def=

{
g(f)(v) : v ∈ {0, 1}m ∧ ¬STA(gf (v), Yg(f, v))

}
. Equa-

tion (6.5) follows readily from the definition of Wf and (6.4). As for
|Wf |, we have that there are less than |Im (f) |r = 2 n

200 different possi-
bilities for Yg(f, v) sets. For each of these sets there are 2r subsets, and
for each such subset S there are at most 2m− n

30 values w that satisfy
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Pr
f
r←Pn,v

r←{0,1}m
[
gf (v) = w|S ⊆ Yg(f, v)

]
> 2−m+ n

30 . In total, we have that
|Wf | ≤ 2m− n

30 · 2 n
200 · 2r < 2m− n

100 . The existence of such a set Wf was
observed in [HS12].

Now, By Lemma 58 (with p = 1
3 , α = 1

2 and β = 1
2 ) it holds that a

1
6 -fraction

of the functions f ∈ Rn, n
200·r

satisfy:

Pr
v
r←{0,1}m

[
g(f)(v) ∈ Wf

]
>

1
6 . (6.6)

Fix a function f ∈ Rn, n
200·r

for which (6.6) holds. We show that in this
case BreakPIg,f returns a collision with probability at least 1

30 for a randomly
chosen v.

Define W ′f
def=
{
w ∈ Wf : |

(
g(f))−1(w)| > 1

12 · 2
n

100

}
. We claim that

Pr
v
r←{0,1}m

[
g(f)(v) ∈ W ′f

∣∣∣ g(f)(v) ∈ Wf

]
≥ 1

2 . (6.7)

Equation (6.6) asserts that there are at least 1
6 · 2

m elements v that are
mapped to fewer than 2m− n

100 images. It follows that there are at most
1
12 · 2

n
100 · 2m− n

100 = 1
12 · 2

m elements in
(g(f))−1(Wf )\(g(f))−1(W ′f ), which asserts the claim. Finally, for any w ∈ W ′f ,
we claim that

Pr
v
r←{0,1}n

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) = w
]
>

1
2 . (6.8)

Conditioned on g(f)(v) = w, we have that v is still uniform among
(g(f))−1(w). Now, recall that BreakPIg,f fails to return a collision only when v
is such that Yg(f, v) differs from the sets Yg(f, v′), for all v′ ∈ (g(f))−1(w)\{v}.
Since f is degenerate, there are at most |Im (f) |r = 2 n

200 different Yg(f, v)
sets2. Therefore, BreakPIg,f (v) fails for at most 2 n

200 of the elements of
(g(f))−1(w), as for at most 2 n

200 − 1 of them it can be the case that there
is no other v′ for which Yg(f, v) = Yg(f, v′). Since w ∈ W ′f we have that

2 In fact, this shows that we could also require that BreakPI returns a value v′ 6= v
such that the vector (now differentiating two y-answer sets according to the ordering of the
answers) of query answers in the computation of g(f)(v) matches that of g(f)(v′), but this
is not needed in order to prove that BreakPI is t-stable.
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|(g(f))−1(w)| > 2 n
100 and so BreakPIg,f 6= ⊥ with probability at least 1

2 . The
claim follows. Combining our claims we obtain:

Pr
v
r←{0,1}m

[BreakPIg,f (v) 6= ⊥]

≥ Pr
v

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) ∈ W ′f
]

· Pr
v

[
g(f)(v) ∈ W ′f

∣∣∣ g(f)(v) ∈ Wf

]
· Pr
v

[
g(f)(v) ∈ Wf

]
≥ 1

12
∑
w∈W′

f

(
Pr
v

[
BreakPIg,f (v) 6= ⊥

∣∣∣ g(f)(v) = w
]

· Pr
v

[
g(f)(v) = w

∣∣∣ g(f)(v) ∈ W ′f
] )

>
1
24 .

The lemma follows.

We conclude from Lemma 67 that if p(g) ≤ 1
2 , there exists a partition P of

{0, 1}n to sets of size 2n−i and an image-set I of size 2i, such that (6.3) holds
for at least a 1

6 -fraction of the functions f ∈ Rn,i(P, I). Set F ⊂ Rn,i(P, I)
to be the set of all functions for which (6.3) holds. It follows that |F| ≥ 1

6 · 2
i,

as |Rn,i(P, I)| = |Pi|.
We next show that for the class of functions Rn,i(P, I) the oracle can be

implemented such that it is stable.

Lemma 68. Let i ∈ N+ and I ⊂ {0, 1}n of size 2i and P a partition of
{0, 1}n to sets of size 2n−i. Then there exists an implementation of the oracle
BreakPIg that is n-stable for Rn,i(P, I).

Proof: As we show next, when we limit the oracle to a fixed partition
P and a fixed image I, it can be implemented such that it makes only few
queries to f on every call to BreakPI and therefore enjoys stable sets.

We begin by describing the parsimonious implementation of the algorithm,
i.e., an implementation that makes very few queries to f .

The parsimonious algorithm will have a description of the partition P and
the image mapping I. On input v it simulates BreakPIg as follows: In every
iteration the BreakPIg queries only g(f)(v). The algorithm records action
of the f on the inputs of Xg(f, v). That is, it records the values of h[f ] on
πP (Xg(f, v)).
It then tries to emulate the value g(f)(v′) while assuming that f is in

Rn,i(P, I). Whenever gf (v′) issues a query x, the algorithm checks whether
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it is mapped under the partition function πP to the same value as one of
the x queries issued before. I.e., it checks whether πP (x) = πP (x′) for
some x′ ∈ Xg(P, I). In such a case it uses the recorded value of f(x′)
and the emulation continues. If the algorithm gets stuck it decides that
Yg(f, v) 6= Yg(f, v′) and continues to the next iteration. We first note that
the algorithm is well defined for all f ∈ Fn,i(P, I).

Next, we observe that for a function f ∈ Rn,i(P, I) the parsimonious
algorithm simulates BreakPIg perfectly: If for some value v′ the evaluation
of g(f)(v′) gets stuck on some query x, we know that the output would not
return the value v′ since in this case the function h[f ] is a permutation and
rI is injective it holds that f(x) /∈ Yg(f, v). On the other hand, when the
simulation of an iteration succeeds it follows that for every x it holds that
f(x) is computed correctly (and accordingly g(f)(v) and Yg(f, v′)). Again,
this follows from the decomposition f = rI ◦ h ◦ πP .

We note that the algorithm is not guranteed to behave the same as BreakPIg
for an arbitrary f ∈ Fn,i(P, I), but we only care about its behavior for a
regular f . It is now immediate that the implementation is r-stable: In a
similar manner to the case of the evaluation oracle we set IOf,v

def= Xg(f, v) and
BOf,q,y

def= Yg(f, v) as determining and bending sets for BreakPI, respectively.

It is left to check that 2s · di(s, n) < |F|. We compute

di(s, n)
|F|

=
(2i
b

)2
· (2i − b)!

(1/6) · 2i =
(
s10

b

)
1

(1/6) · b! ≤
(
e2 · s10

b2

)b
, (6.9)

where

b = 2i

3 · s2 · n2 = 2 n
200·r

3 · s2 · n2 = 210·log(s)

3 · s2 · n2 > s7, (6.10)

since s > 3 · n2 for sufficiently large n. Combining (6.9) with (6.10) we
conclude that 2s·di(s,n)

|F| < 1.

We have shown that the conditions of Theorem 57 hold, and therefore we
conclude that there is no s-weak fixed-parameter fully black-box construction
of OWF∧PI from OWF. The theorem is proved.
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6.3.3 Deriving the Lower Bound

We are now ready to derive our lower bound for constructions of a universal
one-way hash function from a one-way function:

Corollary 69. Let s′ be a security function such that s(n) def= s′(n) · log2(n)
is a super-polynomial security function for which s(n) < 2 n

10 holds. Then
there is no s-weak fixed-parameter fully black-box construction of UOWHF
from OWF, where the construction makes at most r′(n) = n

2000·log(s(n))·log2(n)
calls to a one-way function f = {fn : {0, 1}n → {0, 1}n}n∈N+ .

Proof: We apply Corollary 65 with Theorem 66.

Corollary 70. There is no fixed-parameter fully black-box construction of
UOWHF from OWF, where the construction makes at most r = r(n) calls to
a one-way function f = {fn : {0, 1}n → {0, 1}n}n∈N+ , where r ∈ o

(
n

log3(n)

)
.

Proof: Let r ∈ o
(

n
log3(n)

)
. Then there exists a super-constant function

α = α(n), such that the function r′(n) given by r′(n) def= r(n) · α(n) is still in
o
(

n
log3(n)

)
. The bound follows immediately from Corollary 69 applied with

s(n) def= 2α(n)·log(n).

6.4 A Tight Lower Bound for Fully Black-Box
Constructions of UOWHF from OWF.

Corollary 70 establishes a lower bound of Ω(n/ log3(n)) calls for any fully
black-box construction of UOWHF from a OWF. We now explain how to
improve the lower bound by a log(n) factor.

Recall that the choice of log2(ρ) in Lemma 64 was made such that any
breaker for OWF∧PI can be translated to one that breaks the security of
the RP-CRHF, i.e., finds a collision for a random preimage. We observe
that the lemma is still correct if we start with a `(ρ)-RP-CRHF, for any
super-logarithmic function `(ρ) ∈ ω(log(ρ)). That is, a compression by a super-
logarithmic number of bits is sufficient for our proof to go through. In this case
(as in the proof of Lemma 64) it still follows that at most a negligible fraction
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of the inputs have at most one preimage, and therefore the reduction converts
a breaker with noticeable success probability for OWF∧PI is converted to a
breaker with a noticeable success probability for `(ρ)-RP-CRHF. Next, this
improves Corollary 65 by a log(ρ) factor, which consequently improves our
bound to Ω(n/ log2(n)) calls.

6.4.1 A Tight Lower Bound of Ω(n/ log(n)) Calls

In this section we present the most general version of our lower bound. We
consider once more the series of reductions used to derive Corollary 65. We
show that it is possible to get rid of the last log(n) factor used in Lemma 64,
which in turn results in a lower bound of Ω(n/ log(n)) calls.

We do not know of a reduction that transforms a breaker with an inverse
polynomial success probability of a OWF∧PI to a breaker with an inverse
polynomial success probability for O(1)-RP-CRHF (i.e., a UOWHF that
compresses a constant number of bits). Nevertheless, we can exploit the
fact that both breakers presented in Section 6.3 perform better than merely
breaking the primitive. That is, in order to derive the lower bound using
Corollary 65 it is sufficient that the breaker in Theorem 66 breaks (with some
inverse-polynomial probability). However, both BreakPI and BreakOW enjoy
a stronger property: They both break the security of the OWF∧PI with
constant probability (both break the candidate construction with probability
at least 1/100) rather than with inverse-polynomial probability.

We observe that in this case the reduction algorithm presented in Lemma
64 gives a breaker with a constant success probability for `(ρ)-RP-CRHF,
where `(ρ) = 10. Following the analysis in Lemma 64 we have that at most
a 2−10-fraction of the images have only one preimage, and using the union-
bound the reduction breaks the `(ρ)-RP-CRHF with probability at least
1/100− 1/210 > 1/200. In a similar manner to Section 6.4 this gives now a
version of Corollary 65, that asserts the existence of an s-weak fixed-parameter
fully black-box construction of OWF∧PI from OWF for breakers that are
considered successful only if they break the security property of the OWF∧PI
with constant probability:

Corollary 71. Suppose that (G,R) is an s′-weak fixed-parameter fully black-
box construction of UOWHF from OWF that makes at most r′ = r′(ρ)
queries to OWF. Then there exists an s-weak fixed-parameter fully black-
box construction of OWF∧PI from OWF that makes 10 · r′(ρ) calls to the
underlying one-way function, where s(ρ) def= 10 · s′(ρ) and additionally, a



6.4 A Tight Lower Bound 107

potential breaker for OWF∧PI is successful only if it breaks the security if
property of the primitive with probability at least 1/100.

We stress that the restriction with respect to the constant success prob-
ability of the potential breaker in the corollary does not propagate to the
constructions we rule out, and our lower bound holds with respect to the
‘standard’ (polynomial) security requirements. Applying Corollary 71 with
Theorem 66 we derive a lower bound of Ω(n/ log(n)) calls for a fully black-box
construction of a UOWHF from a OWF in the conditions of Corollaries 69
and 70.
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Part III

Advice in Communication
Complexity





Chapter 7

Equality and Divisibility

Все мы, все мы в этом мире тленны
Тихо льется с кленов листьев медь...
Будь же ты вовек благословенно,
Что пришло процвесть и умереть.1

из «Не жалею, не зову, не плачу»
– Сергей Есенин

7.1 Introduction

In this chapter, we study two natural problems in the model of communication
complexity with advice (CCwA): the equality of two bitstrings, where each of
the parties hold a bitstring and the goal is to decide whether they are equal
or not, and the problem of divisibility, where each party has a number, and
the goal is to decide whether one of them divides the other.
Recall that in the CCwA model, for any function f : {0, 1}n × {0, 1}n →

{0, 1}, the problem for k instances with k bits of advice becomes trivial,
i.e., CCk

k(f) = 1. Pǎtraşcu conjectured that, for all functions f (as before),
whenever the number of advice bits m is significantly smaller than k, i.e., for
m ∈ o(k), the communication complexity of f in the CCwA model is linearly
related to that in the classical model, i.e., that for all f , CCk

m(f) ∈ Ω(CC(f))
for m ∈ o(k).
However, Chattopadhyay et al. [CEEP12] refuted his conjecture, and

showed that in the CCwA model log k bits of advice and communication are
1 Somewhat freely translates as “In this world of ours we all are mortal \\Copper leaves

from maples gently slide. . . \\Ever blest was I to be accorded\\Time for blossoming before
I died.”, from a poem by Sergei Yesenin.
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sufficient to compute equality (recall that CC(Eq) = n+1) using the following
simple protocol: The advice encodes an index j of a yj such that x = yj , or 0
for the case that x 6= yj for all j. After the parties are presented an index i,
Bob forwards the advice to Charlie, who then answers with the result of the
comarison of yi and yj (or with no if the advice was 0).

An important problem in the CCwA model is set-disjointness, where the
inputs x, y ⊂ {0, 1}n are interpreted as characteristic vectors of a subset of [n].
The vectors x and y are disjoint, if and only if the sets they describe are disjoint.
That is, Disj : {0, 1}n×{0, 1}n → {0, 1} is given by Disj(x, y) =

∧n
i=1((x)i 6=

(y)i). Pǎtraşcu showed that proving a lower bound on set-disjointness in the
CCwA model for some specific parameters would imply a polynomial lower
bound on many problems of dynamic data-structures. Chattopadhyay et al.
studied set-disjointness in the CCwA model, and showed an upper bound
of Õ(

√
n) on its communication complexity, provided the same amount of

advice, and a matching lower bound in a more restricted setting.

7.1.1 Contributions of this Chapter

We first study the power of laconic advice for equality. Somewhat surprisingly,
we show that, in the CCwA model, a short communication of only a polyloga-
rithmic number of bits already suffices to deterministically compute equality,
provided a laconic advice of just one bit. Our result can be understood as
a trade-off between the number of advice bits the protocol utilizes and its
communication complexity.

Chattopadhyay et al. observed that for every k, n ∈ N+:

CCk
log(k)+1(Eq) ∈ O(log(k)) ,

where we prove that for every k, n ∈ N+:

CCk
1(Eq) ∈ O(log(k)(log(k) + log(n))) .

Our second main result in this chapter is a protocol for divisibility. We
give a protocol that uses roughly Õ(

√
n) bits of advice and communication,

which improves on the performance of the trivial protocol in the classical
model, where it is optimal. To see that CC(Div) ∈ Ω(n), note that any
protocol for divisibility could be used to compute equality, since x = y if
and only if x|y and y|x, and by applying the lower bound on equality. Our
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protocol here is inspired by that of Chattopadhyay et al. for set-disjointness.
Next, we explain how to reduce set-disjointness to divisibility, and employ
their lower-bound on set-disjointness to obtain a matching lower-bound for
divisibility in a restricted setting.

7.2 Preliminaries

We denote by P the set of prime numbers. For a natural number n and a
prime number p, we denote by νp(n) the multiplicity of p in n, i.e., the largest
exponent i such that pi|n. For a natural number n =

∏k
i=1 pi

νpi (n), where the
pi’s are the different prime factors of n, we denote by ‖n‖π

def=
∑k
i=1 νpi(n)

the total number of its prime factors including repetitions.

We shall use the following fact: Let a1, . . . , a`, b ∈ N. If b|aj for all
j ∈ {1, . . . , `} then b| gcd(a1, . . . , a`).

7.3 Equality with a Laconic Advice

In this section we continue the study of the Equality problem with advice. We
show that, when the advice A(x, y1, . . . , yk) answers the question “Is there an
index j such that x = yj?”, it is possible to compute equality while exchanging
only a polylogarithmic number of bits.

We start with a basic version of our protocol that computes equality using
O(k log(n)) bits of communication, which already improves on the trivial
protocol for the case k < n/log(n).

7.3.1 A Basic Protocol

After receiving the advice bit, Bob forwards it to Charlie, who maintains a
set S of inputs that are potentially equal to x. At the beginning, S is just the
entire set of inputs. Then, the protocol proceeds in a step-wise manner, where
at each step it asserts for at least one of the yi’s that x 6= yi. Eventually,
only one yi remains, and using the advice, it must hold that x = y and the
protocol outputs the index i. More precisely, the protocol proceeds as follows:

1. Bob forwards A(x, y1, . . . , yk) to Charlie. Charlie sets S ← {y1, . . . , yk}.
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While |S| > 1, repeat the following two steps:

2. Charlie chooses two strings y and y′ 6= y from S, and sends Bob an
index q of a bit on which y and y′ differ, i.e., (y)q 6= (y′)q.

3. Bob answers with (x)q, the q’th bit of x, and Charlie updates
S ← {z ∈ S : (z)q = (x)q}.

4. There is only one element y left in S, and Charlie outputs yes if y = yi
and no otherwise.

Correctness follows immediately, since we rule out only elements for which
we are sure that yj 6= x, and using the advice, we know that, at step 4, it
must hold that x = y. By the choice of q, the size of S reduces by at least
one in every iteration of steps 2 and 3, and so the protocol terminates after
at most k iterations of steps 2 and 3, and in every round log (n) + 1 bits are
communicated, amounting to a total communication complexity of O(k logn)
bits.

7.3.2 A Protocol Using A Polylogarithmic Number
of Communication Bits

As in the basic version of the protocol, the protocol now proceeds iteratively,
where at each step the protocol asserts for a constant fraction of the elements
in S that x 6= yj . It follows that after O(log k) rounds, only a constant number
of possible indices remains.

The idea of our protocol is as follows: Think of the messages of Charlie
in the basic version of the protocol as describing a predicate from a set of n
predicates of the form pi : {0, 1}n → {0, 1}, where pi(s) = 1 if and only if the
i’th bit of s is 1. In each round Charlie chose an appropriate predicate pi,
and Bob’s answer was pi(x).

This allowed in turn to rule out the equality of at least one of the remaining
yi’s to x. In contrast, we show next that for every k, there exists a single set of
O(n) predicates that allows to rule out the equality of x to a constant fraction
of the remaining yi’s, for any set of y1, . . . , yk. This allows to reduce the
number of rounds of the protocol to O(log(k)), while essentially maintaining
the same number of bits communicated in every round, since describing a
particular predicate would require only log(n) +O(1) bits. The next lemma
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establishes the existence of the aformentioned predicate set. We shall make
use of the following:

Let S ⊆ {0, 1}n. A predicate p : {0, 1}n → {0, 1} is good for S, if |{s ∈
S | p(s) = 1}| > |S|

4 and |{s ∈ S | p(s) = 0}| > |S|
4 .

Lemma 72. Let k > 17 and n > 0. Then there exists a set P = P (n, k) of
30n predicates such that, for any pair-wise different y1, . . . , yk ∈ {0, 1}n there
exists a predicate p ∈ P , which is good for {y1, . . . , yk}.

Proof: Consider first a fixed set Y def= {y1, . . . , yk} and a random subset
Z ⊆ {0, 1}n, where each string is chosen independently to Z with probability
1/2. Observe first, that the expected number of elements in Z ∩ {y1, . . . , yk}
is k/2.

For a fixed Y as before, let us define the event (over the random choice of
Z) that Z ∩ Y differs from its expected value by more than k

4 :

BY,Z
def= {|Z ∩ Y | > 3k

4 or |Z ∩ Y | < k

4} .

By the Chernoff bound, we have that

Pr
[
|Z ∩ Y | > 3k

4

]
< e−

k
12 ,

and similarly,

Pr
[
|Z ∩ Y | < k

4

]
< e−

k
12 .

and thus
Pr [BY,Z ] < 2 · e− k

12 < e−
k

24 ,

where the second inequality holds for all k > 17.

Consider now ` independent copies of Z, that is, the random subsets
Z1, . . . , Z`, and the corresponding events

BY,Zi
def= {|Zi ∩ Y | >

3k
4 or |Zi ∩ Y | <

k

4} .

Set BY
def= ∩`i=1BY,Zi . That is, BY is the event that for every i, BY,Zi

happens. Now, by the independence of the BY,Zi ’s we see that for a fixed set
Y , Pr[BY ] < e−

k`
24 .
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Finally, applying the union bound, we obtain that the probability that
there exists a set Y ⊂ {0, 1}n, where |Y | = k for which BY happens is at most
2nk · e− k`24 , as there are at most 2nk subsets of {0, 1}n of size k. The choice
of ` def= 30n ensures that this probability is strictly smaller than 1, which in
turn implies the existence of a single choice of 30n subsets of {0, 1}n which
satisfy the condition. By what we have shown, setting the predicate set as
the corresponding indicator functions completes the proof.

Lemma 72 guarantees the existence of a good predicate set for every n and
k > 17. Given such n and k both parties can explicitly agree on a specific
one without interaction. For example, we can assume that they can agree on
the lexicographically first 30n predicates and locally exhaustive search them.

We are now ready to describe the protocol:

1. Bob forwards A(x, y1, . . . , yk) to Charlie. Charlie sets S ← {y1, . . . , yk}.

While |S| > 17, repeat the following two steps:

2. Charlie sets k′ = |S|, computes locally a set P (n, k′), chooses a good
predicate for S, and sends its index q to Bob along with k′.

3. Bob computes locally P (n, k′), and answers with pq(x). Charlie updates
S ← {w ∈ S : pq(w) = pq(x)}.

4. Continue with the loop of the basic protocol.

Given the lemma, the correctness of the protocol follows readily. As for the
communication complexity, note that in every round of iterating steps 2 and
3, at most (log(k) + log(n) + 1) bits are communicated, describing |S| and the
index of the predicate. Since the chosen predicate is good, it follows that the
updated set in Step 4 has size of at most 3

4 |S|, and therefore after O(log(k))
rounds we continue with at most 17 rounds of the basic protocol, resulting in
a total communication complexity of O(log(k)(log(k) + log(n)).

Thus we have shown:

Theorem 73. For all k ∈ N+,

CCk
1(Eq) ∈ O(log(k)(log(k) + log(n))) .
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7.4 Divisibility

Here, Bob and Charlie have inputs x and y1, . . . , yk ∈ {0, 1}n, respectively,
interpreted as natural numbers in the inteval [1, 2n], identifying 2n with the
bitstring 0n. After receiving an advice A(x, y1, . . . , yk) they are presented an
index i and required to compute x|yi.

We show a protocol that communicates O(log(n)(log(k) + log(n))
√
n) bits,

provided an advice of similar size. First we shall describe our protocol using the
following simplifying assumption, and later we explain how to remove it. We
assume that the prime factors of all x, y1, . . . , yk are either within the interval
[22τ , 22τ+1) for some τ ∈ {0, . . . , log(n)/2− 1} or in the interval [22τ , 2n) for
τ = log(n)/2. Observe that this implies that each of the numbers x, y1, . . . , yk
has at most n/2τ distinct factors. Moreover, if τ ∈ {0, . . . , log(n)/2− 1}, each
factor can be described using at most 2τ+1 bits.
The main idea in our algorithm is to reveal information about x using

y1, . . . , yk. The advice consists in a subset of the inputs of Charlie for which
x|yi, and it is built by iterating over the inputs. The inputs that are added
are those which x divides, and that additionally, given all the indices added
so far, contribute enough additional information about x. Roughly speaking,
the index of an input yi is not added to the advice string for one of two
reasons: Either x does not divide it, or, it would not have contributed enough
information about x, given the previous positive inputs. If later an input not
added due to the latter condition is presented, it could be computed using
only Õ(

√
n) bits. In what follows we set

t
def=
√
n/2τ .

More precisely, the advice sent by Alice is a subset S of the indices {1, . . . , k},
which is constructed as follows:

Start with S = ∅ and add to S the minimum index j0 such that x|yj0 .
Then, loop on the elements yj0+1, . . . , yk: Let j0, . . . , j` be the current indices
of S. Add the index j of the current element yj to S if:

• x|yj and

• ‖gcd(yj0 , . . . , yj`)‖π − ‖gcd(yj0 , . . . , yj` , yj)‖π≥ t.

The second condition ensures that the gcd of the elements currently indexed
by S contains at least t more prime factors including repetition than the gcd
of those elements along with the number yj .
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We claim that during this process, at most n
2τ t elements are added to

S. Indeed, by our simplifying assumption, yj0 contains at most n
2τ different

factors and the second condition asserts that the number of prime factors
remaining in gcdj′∈S a′j after adding an element decreases by at least t.

Substituting for t, we have that |S| <
√
n, and therefore the advice sent by

Alice (a description of S) can be encoded using at most
√
n log(k) bits.

After Bob receives S from Alice, the parties are presented an index i and
need to determine whether x|yi. The protocol between Bob and Charlie
continues as follows:

1. If i ∈ S, Bob outputs yes.

2. Otherwise, Bob forwards S to Charlie.

3. Charlie computes the set S′ = {j′ ∈ S | j′ < i}, i.e., the constructed set
S as it was just before index i was processed.

4. If ‖gcdj′∈S′(yj′)‖π − ‖gcd(gcdj′∈S′ yj′), yi)‖π≥ t, he outputs no. Other-
wise, there are at most t− 1 distinct prime factors appearing in yi but
not in gcdj′∈S′(yj′). For each such factor p, Charlie sends (p, νp(yi)) to
Bob.

5. Bob outputs yes if, for every received pair (p, νp(yi)), it holds that
νp(x) ≤ νp(yi) and otherwise outputs no.

Let us now see that the protocol always outputs a correct answer. If it
outputs yes at step 1, by construction, for all indices in S, it holds that
x|yj . If the protocol outputs no at step 4, it cannot be the case that x|yi,
as otherwise both conditions during the construction of S had been satisfied
and i would have been added to S. Lastly, if no is output at step 5, it is
because the protocol witnesses a factor with higher multiplicity in x than in
yi. When this is not the case, we claim that x|yi. We show that for each
prime factor in x, it holds that νp(x) ≤ νp(yi). Let us distinguish two cases:
If p is one of the up to t − 1 factors not appearing in gcd(gcdj′∈S(yj′), yi),
then the inequality is asserted by Bob. For any other such factor p, we
have (1) νp(gcdj′∈S′(yj′)) ≤ νp(yi), and additionally, by construction of S it
holds that x|yj′ for all j′ ∈ S and therefore x| gcdj′∈S(yj′), and, in particular,
(2) νp(x) ≤ νp(gcdj′∈S(yj′)). The correctness in this case follows from (1) and
(2).
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Next, we analyze the communication complexity of our protocol. At step
1, S is forwarded and at most

√
n log(k) bits are sent, and at step 4 at most

t− 1 pairs are sent. This implies that, for the case that τ = log(n)/2, it holds
that t = 1 and therefore no pairs are sent. For τ ∈ {0, . . . , log(n)/2 − 1},
using the second part of the assumption, each prime can be described using at
most 2τ+1 bits. The multiplicity of every prime number is at most n, which
can be described using log(n) bits, and therefore at most t(2τ+1 + log(n)) ∈
O(
√
n log(n)) bits are communicated at this step. Thus, the total number of

bits communicated is O(
√
n(log(k) + log(n))).

Finally, in order to get rid of the assumption, note that x|yi if and
only if, x(τ)|yi(τ) for all τ ∈ {0, . . . , log(n)/2}, where for m ∈ N we
define m(τ) def=

∏
p∈[22τ ,22τ+1 )∩P p

νp(m) for τ ∈ {0, . . . , log(n)/2 − 1} and

m(τ) def=
∏
p∈[22τ ,2n)∩P p

νp(m) for τ = log(n)/2.

Thus, for the final protocol we run the protocol in parallel for each of the
log(n)/2 + 1 possible values of τ , and output yes in case all runs output yes,
and no otherwise. This results in an overhead of an O(log(n)) factor to the
original protocol. We summarize: Utilizing O(

√
n log(k) log(n)) advice bits

our protocol communicates O(
√
n log(n)(log(k) + log(n)) bits. Thus we have

shown:

Theorem 74. For all k ∈ N+,

CCk
log (n) log(k)

√
n(Div) ∈ O(

√
n log(n)(log(k) + log(n))) .

7.4.1 On the Asymmetry of Divisibility

We note that the communication complexity with advice model is inherently
asymmetric, and therefore a protocol for Div(x, y) = x|y does not yield
a protocol for Div′(x, y) = y|x, as is the case in the classical model of
communication complexity. In this section, we explain the changes needed
in our protocol to obtain a protocol for Div′. In our protocol from the
previous section, we used the advice to reveal information about x using the
yi’s. In particular, the number encoded by the gcd of the yi’s chosen to the
advice could be understood as a relatively tight upper bound on the prime
powers of x. The analogous advice information for y|x consists in a lower
bound on the prime powers of x. Analogously to before, observe that if a|x
and b|x then also lcm(a, b)|x. The advice is generated similarly to before,
where the set S first contains the minimal index j0 such that yj0 |x. Then,
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looping over the indices j0 + 1, . . . , k, index j is added if and only if yj |x and
‖lcm(yj0 , . . . , yj` , yj)‖π − ‖lcm(yj0 , . . . , yj`)‖π≥ t, where j0, . . . , j` are the
current elements of S. Steps (4) and (5) of the protocol now become:

4. If ‖ lcm(yj0 , . . . , yj` , yj) ‖π − ‖ lcm(yj0 , . . . , yj`) ‖π≥ t it outputs no.
Otherwise, there are at most t − 1 distinct prime factors appearing
in lcmj′∈S′(yj′) but not in yi. For each such factor p, Charlie sends
(p, νp(yi)) to Bob.

5. Bob outputs yes if, for every received pair (p, νp(yi)), it holds that
νp(x) ≥ νp(yi), and otherwise outputs no.

The correctness and analysis of the protocol follow analogously to before.

7.4.2 An Almost Matching Lower Bound in Restricted
Settings

The problem of set-disjointness consists in two n-bit inputs x and y, where
each is interpreted as the characteristic vector of a subset of a set of n
elements. Inputs x, y ∈ {0, 1}n are disjoint if (y)i = 0 whenever (x)i = 1.
Chattopadhyay et al. [CEEP12] studied the problem of set-disjointness in the
CCwA model, and showed that for k ≥

√
n, any protocol with advice of size

m ≤ α
√
n communicates at least β

√
n bits for some constants 0 < α, β < 1.

In what follows, we describe a reduction from set-disjointness to divisibility,
establishing an analogous lower bound for divisibility.

Given inputs a and b (characteristic vectors of some sets A and B) to set-
disjointness, we first observe that A and B are disjoint if and only if A ⊆ B.
Now, let p1, . . . , pn be the first n prime numbers, and set NA

def=
∏n
j=1 pi

ai

and NB
def=
∏n
j=1 pi

1−bi . It follows that A∩B = ∅ if and only if NA |NB . By
the prime number theorem, it holds that for all large enough n, the first n
prime numbers lie in the interval [1, 3n log(n)], and therefore both NA and
NB are described using at most n · log(3n log(n)) < 2n log(n) bits. Therefore,
any protocol in the CCwA model for k inputs of size 2n log(n) and m bits of
advice yields a protocol (with the same k and m values) for inputs of size n for
divisibility; the parties compute Nx and Ny1 , . . . , Nyk and run the protocol
for divisibility on these inputs. Setting f(n) = 2n log(n), the lower bound of
Chattopadhyay et al. (Theorem 5.2 in [CEEP12]) establishes that a protocol
for k ≥

√
f−1(n) inputs of size n with advice of size at most α

√
f−1(n)
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communicates at least β
√
f−1(n) bits. In view of our protocol from Section

7.4, it follows that this is best possible (up to a logarithmic factor) with advice
of size Õ(

√
n).
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