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Abstract

Given an En-algebra A we explicitly construct a fully extended n-dimensional topological
field theory which is essentially given by factorization homology. Under the cobordism
hypothesis, this is the fully extended n-TFT corresponding to the En-algebra A, con-
sidered as an object in a suitable Morita-p8, nq-category Algn. We first give a precise
definition of a fully extended n-dimensional topological field theory using complete n-fold
Segal spaces as a model for p8, nq-categories. This involves developing an n-fold Segal
space Bordn of n-dimensional bordisms and endowing it with a symmetric monoidal struc-
ture. Exploiting the equivalence between En-algebras and locally constant factorization
algebras proven by Lurie we use locally constant factorization algebras on stratified spaces
to construct an p8, nq-category with En-algebras as objects, (pointed) bimodules as 1-
morphisms, (pointed) bimodules between bimodules as 2-morphisms, etc. and endow it
with a symmetric monoidal structure. Finally, given an En-algebra we construct a mor-
phism of n-fold Segal spaces from Bordn to Algn given by a suitable pushforward of the
factorization algebra obtained by taking factorization homology. We show that this map
respects the symmetric monoidal structure and thus is a fully extended n-TFT.
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Zusammenfassung

Gegeben eine En-Algebra A konstruieren wir in expliziter Weise eine vollständig erweit-
erte n-dimensionale topologische Feldtheorie, die im Wesentlichen durch Faktorisierung-
shomologie gegeben ist. Unter Verwendung der Kobordismus-Hypothese entspricht diese
der vollständig erweiterten n-TFT, die durch die En-AlgebraA, als Objekt einer geeigneten
Morita-p8, nq-Kategorie Algn betrachtet, bestimmt ist. Als Modell für p8, nq-Kategorien
benutzen wir vollständige n-fache Segalräume und geben zunächst eine präzise Definition
einer vollständig erweiterten n-dimensionalen topologischen Feldtheorie. Diese benötigt
die Konstruktion eines n-fachen Segalraumes n-dimensionaler Bordismen Bordn und einer
symmetrisch monoidalen Struktur darauf. Motiviert durch die Äquivalenz zwischen En-
Algebren und lokal konstanten Faktorisierungsalgebren, die von Lurie bewiesen wurde,
verwenden wir lokal konstante Faktorisierungsalgebren auf stratifizierten Räumen um eine
p8, nq-Kategorie, deren Objekte En-Algebren, 1-Morphismen (punktierte) Bimoduln, 2-
Morphismen (punktierte) Bimoduln zwischen Bimoduln, etc. sind, und eine symmetrisch
monoidalen Struktur darauf zu definieren. Schließlich konstruieren wir, in Abhängigkeit
einer En-Algebra, einen Morphismus n-facher Segalräume von Bordn nach Algn, der
durch einen gewissen Pushforward der Faktorisierungsalgebra, die mittels Faktorisierung-
shomologie erhalten wird, gegeben ist. Wir zeigen, dass diese Abbildung die symmetrisch
monoidale Struktur respektiert und daher eine vollständig erweiterte n-TFT ist.
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Résumé

Étant donné une algèbre En, nous construisons explicitement une théorie des champs
topologiques pleinement étendue de dimension n, essentiellement donnée par l’homologie
de factorisation. D’après l’Hypothèse du Cobordisme il s’agit de la n-TFT pleinement
étendue qui correspond à l’algèbre En A, considérée comme un objet dans une p8, nq-
catégorie appropriée de Morita Algn. Nous donnons dans un premier temps une définition
précise d’une théorie des champs topologiques pleinement étendue de dimension n en util-
isant les espaces de Segal complets n-uples comme un modèle pour les p8, nq-catégories.
Pour cela nous construisons un espace de Segal complet n-uple Bordn de bordismes de
dimension n et lui donnons une structure monöıdale symétrique. En exploitant ensuite
l’équivalence, démontrée par Lurie, entre les algèbres En et les algèbres de factorisation
localement constantes, nous utilisons des algèbres de factorisation localement constantes
sur des espaces stratifiés pour construire une p8, nq-catégorie ayant les algèbres En pour
objets, les bimodules (pointés) pour 1-morphismes, les bimodules entre bimodules pour
2-morphismes, etc... lui donnons une structure monöıdale symétrique. Finalement, étant
donné une algèbre En, nous construisons un morphisme entre espaces de Segal n-uples
depuis Bordn vers Algn, donné par un pushforward de l’algèbre de factorisation obtenue
par l’homologie de factorisation. Nous montrons que cette construction préserve la struc-
ture monöıdale symétrique et donc ce morphisme est une n-TFT pleinement étendue.
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Introduction

Motivation

Topological field theories

Topological field theories (TFTs) arose as toy models for physical quantum field theories
and have proven to be of mathematical interest, notably because they are a fruitful tool for
studying topology. Inspired by Witten’s paper [Wit82] relating supersymmetry and Morse
theory and Segal’s axioms of conformal field theories in [Seg04], they were first axiomatized
by Atiyah in [Ati88]. An n-dimensional TFT is a symmetric monoidal functor from the
category of bordisms, which has closed pn ´ 1q-dimensional manifolds as objects and n-
dimensional bordisms as morphisms, to any other symmetric monoidal category, which
classically is taken to be the category of vector spaces or chain complexes. In particular it
assigns topological invariants to closed n-dimensional manifolds, which has turned out to
be very useful in the study of low-dimensional topology. Early results by Witten in [Wit89]
showed that the Jones polynomial of knot theory arises from 3-dimensional Chern-Simons
theory, which is a TFT. Interesting 4-dimensional examples are Donaldson invariants of
4-dimensional manifolds which arise from a twisted 4-dimensional supersymmetric gauge
theory, [Wit88], and the related Seiberg-Witten invariants [Wit94, SW94a, SW94b].

A classification of 1- and 2-dimensional TFTs follows from classification theorems for 1-
and 2-dimensional compact manifolds with boundary. In the 1-dimensional case, a 1-TFT
is fully determined by its value at a point, which is a dualizable object in the target
category and conversely, every dualizable object in the target gives rise to a 1-TFT. In the
2-dimensional case, a classification, given by the value at a circle, was proven by Abrams in
[Abr96]. The question of a classification result for larger values of n appears naturally and
raises the question of a suitable replacement of the classification of compact n-manifolds
with boundary used in the low-dimensional cases. In [BD95], Baez and Dolan explain
the need for higher categories of cobordisms for a classification of n-dimensional extended
topological field theories. Here extended means that we need to be able to evaluate the
n-TFT not only at n- and pn´1q-dimensional manifolds, but also at pn´2q-,..., 1-, and 0-
dimensional manifolds. In light of the hope of computability of the invariants determined
by an n-TFT, e.g. by a triangulation, it is natural to include this data. Furthermore,
Baez and Dolan conjectured that, similarly to the 1-dimensional case, extended n-TFTs
are fully determined by their value at a point, calling this the cobordism hypothesis. A
proof of a classification theorem of extended TFTs for dimension 2 and in particular a

xv
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definition of a suitable bicategory of 2-cobordisms was given in [SP09].

In his expository manuscript [Lur09c], Lurie suggested passing to p8, nq-categories for a
proof of the cobordism hypothesis in arbitrary dimension n and gave a detailed sketch
of such a proof using a suitable p8, nq-category of cobordisms, which, informally speak-
ing, has zero-dimensional manifolds as objects, bordisms between objects as 1-morphisms,
bordisms between bordisms as 2-morphisms, etc., and for k ą n there are only invert-
ible k-morphisms. Finding an explicit model for such a higher category poses one of the
difficulties in rigorously defining these n-dimensional TFTs, which are called “fully ex-
tended”. His result shows that evaluation at a point gives a bijection, or more precisely
an equivalence of 8-groupoids, between (isomorphism classes of) fully extended n-TFTs
with values in a target symmetric monoidal p8, nq-category C and (isomorphism classes
of) “fully dualizable” objects in C. Thus any fully dualizable object in the target category
determines a fully extended n-TFT. Full dualizability is a finiteness condition depending
on the top dimension n which generalizes the condition of being a dualizable object in the
1-dimensional case.

Factorization homology and factorization algebras

Inspired by Segal’s approach to conformal field theories in [Seg04] and Atiyah’s axioms
for TFTs mentioned above, there have been several approaches to describe (topological)
quantum field theories in an axiomatic way. Factorization homology and factorization
algebras are two such approaches which were developed and studied by many people,
among them Beilinson-Drinfeld, Costello-Gwilliam, Francis, and Lurie.

Factorization homology, also called topological chiral homology, was first defined by Jacob
Lurie in [Lur]. It is a homology theory for topological manifolds satisfying a generaliza-
tion of the Eilenberg-Steenrod axioms for ordinary homology, see [Fra12, AFT12]. The
construction depends on the data of an En-algebra in a suitable symmetric monoidal
p8, 1q-category S, which is an algebra in S for the operad En, which in turn is equivalent
to the little cubes operad in dimension n. In the case n “ 1, E1-algebras are equiva-
lent to associative algebras up to homotopy, i.e. A8-algebras, and in the case of n “ 2,
E2-algebras in the category of categories are braided monoidal categories. In the special
case that S is the p8, 1q-category of chain complexes, any commutative differential graded
algebra A is in particular also an En-algebra and it was shown in [GTZ10] that in this
case factorization homology recovers the (higher) Hochschild homology of A. Factoriza-
tion homology for n-dimensional manifolds with boundary yields an n-TFT, as was shown
by Ayala-Francis-Tanaka in [AFT12] and, with different techniques, by Horel in [Hor14b].
Moreover, Lurie stated in [Lur09c] that it should lead to a fully extended n-TFT.

Factorization algebras are algebraic structures encoding the structure of the observables
of a quantum field theory (henceforth QFT), as was shown in [CG] for perturbative QFTs.
One can think of them as a multiplicative, non-commutative version of cosheaves and they
turn out to be a tool useful for describing well-known algebraic structures such as En-
algebras ([Lur09c]) and bimodules between algebras ([Gin]). Factorization algebras and
factorization homology are related in a local-to-global way: in [GTZ10] it was shown that
considering factorization homology locally on a given manifold M yields a factorization
algebra on M whose global sections are the factorization homology of M .
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Overview of the thesis

Lurie’s cobordism hypothesis gives a “recipe” for producing a fully extended n-TFT.
Namely one first needs to find a suitable target, which is a symmetric monoidal p8, nq-
category, and then one needs to pick a fully dualizable object. However, this construction
is not explicit in the sense that one might like to be able to compute the values of the
n-TFT. The goal of this thesis was to, avoiding the use of the cobordism hypothesis,
explicitly construct a family of examples of fully extended n-dimensional TFTs, which
is essentially given by factorization homology with coefficients in a given En-algebra A.
Under the cobordism hypothesis this fully extended n-TFT corresponds to the En-algebra
A, which is a fully dualizable object in a suitable Morita-p8, nq-category Algn. Informally
it can be thought of as a higher category with En-algebras as objects, bimodules in En´1-
algebras as 1-morphisms, bimodules between bimodules as 2-morphisms, etc. In fact, this

p8, nq-category is the truncation of an p8, n`1q-category ĆAlgn whose pn`1q-morphisms
are morphisms in S. Our construction allows to compute the topological invariants given
by the TFT by taking global sections of a factorization algebra, and the gluing condition
(locality) of the factorization algebra allows this to be computed locally. This extends
the excision property of factorization homology proved by Ayala, Francis, and Tanaka in
[AFT12].

The first two chapters aim to give a precise definition of a fully extended n-dimensional
topological field theory. In the third chapter we define the target category of En-algebras
and the final chapter contains the construction of the fully extended n-TFT as a morphism
of n-fold Segal spaces. We now give a more detailed overview of the chapters.

Symmetric monoidal complete n-fold Segal spaces

First, in chapter 1 we recall the necessary tools from higher category theory needed to
define fully extended TFTs. We explain the model for p8, nq-categories given by complete
n-fold Segal spaces. Moreover, we give two possible definitions of symmetric monoidal
structures on complete n-fold Segal spaces, once as a Γ-object in complete n-fold Segal
spaces following [TV09] and once as a tower of suitable pn` kq-fold Segal spaces with one
object, 1-morphism,..., pk´1q-morphism for k ě 0 following the Stabilization Hypothesis.

Definition of a fully extended n-TFT

Chapter 2 deals with the symmetric monoidal p8, nq-category of bordisms. Lurie gives a
formal definition of this p8, nq-category using complete n-fold Segal spaces, however, as
we explain in section 2.4.2, this actually is not an n-fold Segal space. In our definition
2.3.1, we propose a stronger condition on elements in the levels of the Segal space and
show that this indeed yields a n-fold Segal space PBordn. Its completion Bordn defines
an p8, nq-category of n-cobordisms and thus is a corrigendum to Lurie’s n-fold simplicial
space of bordisms from [Lur09c].

Instead of using manifolds with corners and gluing them, Lurie’s idea was to conversely
use embedded closed (not necessarily compact) manifolds and to specify points where
they are cut into bordisms of which the embedded manifold is a composition. Whitney’s
embedding theorem ensures that every n-dimensional manifold M can be embedded into
some large enough vector space and suitable versions for manifolds with boundary can be
adapted to obtain an embedding theorem for bordisms, see 2.6.1. Moreover, the rough
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idea behind the definition of the levels of PBordn is that the pk1, . . . , knq-level of our n-fold
Segal space PBordn should be a classifying space for ki-fold composable n-bordisms in
the ith direction. Lurie’s idea was to use the fact that the space of embeddings of M into
R8 is contractible to justify the construction.

We base our construction of PBordn on a simpler complete Segal space Int of closed inter-
vals, which is defined in section 2.1. The closed intervals correspond to places where we
are allowed to cut the manifold into the bordisms it composes. The fact that we prescribe
closed intervals instead of just a point corresponds to fixing collars of the bordisms.

In section 2.2 we study a version of a time-dependent Morse lemma which serves as a
motivation for our definition of the spatial structure of the levels of PBordn. As we explain
in 2.3.2, the spatial structure we define is almost obtained by taking differentiable simplices
of the space of embeddings, but we add the data of a semi-group of diffeomorphisms
between bordisms along a simplex. The time-dependent Morse lemma shows that this
yields the same paths.

Section 2.3 is the central part of this chapter and consists of the construction of the
complete n-fold Segal space Bordn of cobordisms. We discuss variants of this construction
in section 2.4 and compare our definition to Lurie’s sketch.

In section 2.5 we endow Bordn with a symmetric monoidal structure, both as a Γ-object
and as a tower. The construction of the tower requires the construction of p8, lq-categories
of bordisms for arbitrary l.

In section 2.6 we show that its homotopy (bi)category is what one should expect, namely
the homotopy category of its pn ´ 1q-fold looping Ln´1pBordnq gives back the classical
cobordism category nCob and the homotopy bicategory of Bord2 is Schommer-Pries’ bi-
category 2Cobext from [SP09].

Finally, in section 2.7 we consider bordism categories with additional structure such as
orientations, denoted by Bordorn , and framings, denoted by Bordfrn , which allows us to
define fully extended n-dimensional topological field theories in section 2.8.

The target: En-algebras

In chapter 3 we define the target of our fully extended n-TFT, namely a symmetric
monoidal Morita-p8, nq-category Algn “ AlgnpSq of En-algebras. By an En-algebra,
we mean an En-algebra object in a suitable symmetric monoidal p8, 1q-category S. By
suitable, we mean that it satisfies the following assumption.

Assumption 1. Let S be a symmetric monoidal p8, 1q-category which is b-sifted cocom-
plete.

Main examples we will be interested in are the category of chain complexes over a ring R,
S “ ChR, or the category of (Lagrangian) correspondences S “ pLagqCorr.

To define this as a complete n-fold Segal space, we exploit the equivalence of p8, 1q-
categories between En-algebras and locally constant factorization algebras on Rn – p0, 1qn
(proven by Lurie in [Lur09c]) and define the objects of the n-fold Segal space to be locally
constant factorization algebras on p0, 1qn. Furthermore, following the observation that the
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data of a factorization algebra on p0, 1q which is locally constant with respect to a strati-
fication of the form p0, 1q Ą tpu for any p P p0, 1q are equivalent to the data of a pointed
(homotopy) bimodule, we model the “levels” of the n-fold Segal space as factorization
algebras on p0, 1qn which are locally constant with respect to certain stratifications.

As with Bordn, we base the construction on a simpler complete Segal space Covers which
we construct in section 3.1. The data given by Covers determine the stratification with
respect to which the factorization algebras are locally constant.

Section 3.2 contains the main construction of the p8, nq-category, i.e. the n-fold Segal

space, Algn. In fact, it is the truncation of an p8, n` 1q-category Algp8,n`1q
n given by an

n-fold Segal object in Segal spaces. These Segal spaces, i.e. the levels, are p8, 1q-categories
of locally constant factorization algebras on p0, 1q which are locally constant with respect
to a stratification of a particular form. The simplicial structure of Algn essentially comes
from the simplicial structure of the Segal space Covers and is given by the pushforward of
the factorization algebra along a suitable collapse-and-rescale map. With this definition
composition in the homotopy category corresponds to sending two bimodules AMB and

BNC to their tensor product pAMBq bB pBNCq.

The fact that factorization algebras naturally lead to pointed objects has an important
consequence. Namely, it implies that the n-fold Segal space Algn is complete. This is
shown in section 3.2.9.

In section 3.3 we endow Algn with a symmetric monoidal structure, both as a Γ-object
and as a tower.

Finally we show in section 3.4 that the homotopy category of Alg1 is the Morita category,
whose objects are (homotopy) algebras and whose morphisms are isomorphism classes of
pointed (homotopy) bimodules.

Construction of the fully extended n-dimensional topological field
theory

The final chapter, chapter 4 connects the two previous chapters. It contains the construc-
tion of the fully extended n-TFT as a morphism of n-fold Segal spaces.

The construction of the functor proceeds in two steps: we first define an auxillary sym-
metric monoidal complete n-fold Segal space Factn of factorization algebras on p0, 1qn in
section 4.2, which, like Bordn is based on the Segal space Int. It translates the proper-
ties of PBordfrn via a map given by factorization homology with coefficients in a fixed
En-algebra A,

ż

p´q

A : Bordfrn ÝÑ Factn,

M V ˆ p0, 1qn

p0, 1qn

ι

π ÞÝÑ π˚p
ş

M
Aq,

which is defined in section 4.3. However, this map is just a morphism of the underlying
n-fold simplicial sets as it fails to extend to the spatial structure of the levels.
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In a second step, in section 4.4, we define a map to an n-fold Segal space FAlgn Ě Algn of
factorization algebras on p0, 1qn which have certain locally constancy properties, but do
not lead to bimodules,

V : Factn ÝÑ FAlgn .

This map can be understood as “collapsing” parts of the factorization algebra and then
rescaling. It arises from a map v : Int Ñ Covers of the simpler Segal spaces on which Factn
and FAlgn are based, which determines a collapse-and-rescale map % : p0, 1qn Ñ p0, 1qn.
Then the map V is given by the pushforward of the factorization algebra along %.

One should think of this process as collapsing the part of the factorization algebra in which
the factorization algebra might change along a path, or an even higher simplex in Bordfrn .
The global sections of this part do not change, as the data of a higher simplex in Bordn
include diffeomorphisms between bordisms along this simplex. Following this argument
we show in section 4.5 that the composition of the two constructed maps V ˝

ş

p´q
A is a

morphism of n-fold Segal spaces and its image in fact lands in Algn,

FHnpAq : PBordfrn ÝÑ Algn .

By the universal property of the completion, this map extends to a map of complete n-fold
Segal spaces,

FHnpAq : Bordfrn ÝÑ Algn .

To conclude that FHnpAq is the desired fully extended topological field theory we show
in 4.6 that it extends to the symmetric monoidal structure for both structures.

PBordfrn Factn FAlgn

Bordn Algn

ş

p´q V

FHnpAq

Finally, our main theorem, which appears as corollaries 4.6.3 and 4.6.5 in chapter 4,
summarizes the construction.

Theorem. Let A be an En-algebra. Then the map

FHnpAq : Bordfrn ÝÑ Algn

is a fully extended topological field theory.

As can be seen in example 4.5.3, its value at a point is the given En-algebra A. So, by
the cobordism hypothesis, this is the fully extended topological field theory with values
in Algn exhibiting A as a fully dualizable object.

Guide to the reader

Parts of this thesis contain rather technical constructions of suitable (n-fold) Segal spaces,
so let us explain which parts can be left aside on a first reading.
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The first chapter mostly contains a recollection on complete n-fold Segal spaces as a model
for p8, nq-categories. The only original part in this section is that of the definition of a
symmetric monoidal structure on an n-fold Segal space following the Delooping Hypothesis
in subsection 1.6.2. We use the notion of k-hybrid n-fold Segal space, which is a suitable
interpolation between complete n-fold Segal spaces and Segal n-categories. The second
and third chapters are mostly independent of each other. In both, one can first brush over
the rather technical constructions of the underlying simpler Segal spaces Int and Covers
in sections 2.1 and 3.1 and go straight to the main constructions of the p8, nq-categories
Bordn and Algn in sections 2.3 and 3.2. The forth chapter contains the heart of this thesis.
The fully extended TFT is constructed within this chapter.

Warning. In chapter 1 we define an p8, nq-category to be a complete n-fold Segal space.
We try to be consistent with this definition throughout the thesis, but at times have to
switch to different models for p8, nq-categories, usually for p8, 1q-categories. We will state
this explicitly where necessary.

Conventions. We will use the following conventions throughout this thesis.

• By space, we will mean a simplicial set. This is to distinguish the n simplicial
“directions” of the n-fold Segal space from the simplicial set of the “levels”, which
we call spatial direction. The p8, 1q-category of spaces will be denoted by Space.

• We fix a diffeomorphism p0, 1q
χ
– R. This will endow p0, 1q with the structure of a

vector space. Whenever we write “p0, 1q – R” we will mean this fixed diffeomor-
phism.

• To simplify notation, if we write ra, bs Ď p0, 1q, we allow a “ 0 or b “ 1 and mean
ra, bs X p0, 1q.

• We denote t0, 1, . . . , nu by rns. They form the objects of the simplex category ∆
whose morphisms are (weakly) order-preserving morphisms.





Chapter 1

Preliminaries: symmetric monoidal
p8, nq-categories

A higher category, say, an n-category for n ě 0, has not only objects and (1-)morphisms,
but also k-morphisms between pk ´ 1q-morphisms for 1 ď k ď n. Strict higher categories
can be rigorously defined, however, most higher categories which occur in nature are not
strict. Thus, we need to weaken some axioms and coherence between the weakenings
become rather involved to formulate explicitly. Things turn out to become somewhat
easier when using a geometric definition, in particular when furthermore allowing to have
k-morphisms for all k ě 1, which for k ě n are invertible. Such a higher category is
called an p8, nq-category. There are several models for such p8, nq-categories, e.g. Segal
n-categories (cf. [HS98]), Θn-spaces (cf. [Rez10]), and complete n-fold Segal spaces, which
all are equivalent in an appropriate sense (cf. [Toë05, BS11]). For our purposes, the latter
model turns out to be well-suited and in this section we recall some basic facts about
complete n-fold Segal spaces as higher categories. This is not at all exhaustive, and more
details can be found in e.g. [BR13, Zha13].

1.1 The homotopy hypothesis and p8, 0q-categories

The basic hypothesis upon which higher category theory is based is the following

Hypothesis 1.1.1 (Homotopy hypothesis). Topological spaces are models for8-groupoids,
also referred to as p8, 0q-categories.

Given a topological space X, its points are thought of as objects of the p8, 0q-category,
1-morphisms as paths between points, 2-morphisms as homotopies between paths, 3-
morphisms as homotopies between homotopies, and so forth. With this interpretation, it
is clear that all n-morphisms are invertible up to homotopies, which are higher morphisms.

We take this hypothesis as the basic definition.

Definition 1.1.2. An p8, 0q-category is a space.

1
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1.2 Complete Segal spaces as models for p8, 1q-categories

A good overview of different models for p8, 1q-categories can be found in [Ber10]. Addi-
tionally to the model we will discuss below in more detail, we would like to mention one
particularly simple and quite rigid model, namely that of topologically enriched categories.

Definition 1.2.1. A topological category is a category enriched in topological spaces (or
simplicial sets, depending on the purpose).

Topological categories are discussed and used in [Lur09a, TV05]. However, for our appli-
cations, complete Segal spaces, first introduced by Rezk in [Rez01] as models for p8, 1q-
categories, turn out to be very well-suited. We recall the definition in this section.

1.2.1 Segal spaces

Definition 1.2.2. A (1-fold) Segal space is a simplicial space X “ X‚ which is level-wise
fibrant and satisfies the Segal condition, i.e. for any n,m ě 0,

Xm`n Xm

Xn X0

induced by the maps rms Ñ rm` ns, p0 ă ¨ ¨ ¨ ă mq ÞÑ p0 ă ¨ ¨ ¨ ă mq, and rns Ñ rm` ns,
p0 ă ¨ ¨ ¨ ă nq ÞÑ pm ă ¨ ¨ ¨ ă m` nq, is a homotopy pullback square. In other words,

Xm`n ÝÑ Xm

h
ˆ
X0

Xn,

is a weak equivalence.

Defining a map of Segal spaces to be a map of the underlying simplicial spaces gives a
category of Segal spaces, SSpaces “ SSpaces1.

Remark 1.2.3. Following [Lur09c] we omit the Reedy fibrant condition which often
appears in the literature. In particular, this condition would guarantees in particular that
the canonical map

Xm ˆ
X0

Xn ÝÑ Xm

h
ˆ
X0

Xn

is a weak equivalence. This explains the different appearance of the Segal condition.

Remark 1.2.4. Rezk showed in [Rez01] that Reedy fibrant Segal spaces are the fibrant
objects for a model structure on the category of simplicial spaces given by a suitable
localization of the injective model structure. However, Horel showed in [Hor14a] that for
a suitable localization of the projective model structure, fibrant objects are Segal spaces
which are level-wise fibrant instead of Reedy fibrant. Moreover, these two models are
Quillen equivalent. In the following text we will point out where these subtleties need to
be taken into account. Moreover, we will sometimes mean this model category (or the
8-category it represents) when writing SSpaces.

Example 1.2.5. Let C be a small topological category, i.e. a small category enriched over
topological spaces. Then its nerve NpCq is a Segal space.
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Segal spaces as p8, 1q-categories

The above example motivates the following interpretation of Segal spaces as models for
p8, 1q-categories. If X‚ is a Segal space then we view the set of 0-simplices of the space
X0 as the set of objects. For x, y P X0 we view

HomXpx, yq “ txu ˆ
h
X0

X1 ˆ
h
X0
tyu

as the p8, 0q-category, i.e. the space, of arrows from x to y. More generally, we view Xn

as the p8, 0q-category, i.e. the space, of n-tuples of composable arrows together with a
composition. Note that given an n-tuple of composable arrows, there is a contractible
space of compositions. Moreover, one can interpret paths in the space X1 of 1-morphisms
as 2-morphisms, which thus are invertible up to homotopies, which themselves are 3-
morphisms, and so forth.

Definition 1.2.6. We will later refer to the spaces Xn as the levels of the Segal space.

1.2.2 The homotopy category of a Segal space

To a higher category one can intuitively associate an ordinary category, its homotopy
category, having the same objects, with morphisms being 2-isomorphism classes of 1-
morphisms. For Segal spaces, one can realize this idea as follows.

Definition 1.2.7. The homotopy category h1pXq of a Segal space X “ X‚ has as set of
objects the set of vertices of the space X0 and as morphisms between objects x, y P X0,

Homh1pXqpx, yq “ π0 pHomXpx, yqq

“ π0

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

.

For x, y, z P X0, the following diagram induces the composition of morphisms, as weak
equivalences induce bijections on π0.

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

ˆ

ˆ

tyu
h
ˆ
X0

X1

h
ˆ
X0

tzu

˙

ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

X1

h
ˆ
X0

tzu

»
ÐÝ txu

h
ˆ
X0

X2

h
ˆ
X0

tzu

ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

tzu .

Example 1.2.8. Given a small (ordinary) category C, the homotopy category of its nerve,
viewed as a simplicial space with discrete levels, is equivalent to C,

h1pNpCqq » C.

1.2.3 Complete Segal spaces

In our interpretation of a Segal space X “ X‚ as an p8, 1q-category above several Segal
spaces give rise to the same p8, 1q-category: we can replace X0 by the 8-groupoid, i.e. the
space, obtained by discarding all non-invertible morphisms. To avoid this ambiguity, we
impose an extra condition which ensures that the space X0 is 8-groupoid, or p8, 0q-
category, obtained by discarding all non-invertible morphisms.
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Definition 1.2.9. An element f P X1 with source and target x and y, i.e. the two faces
of f are x and y, is invertible if its image under

txu ˆ
X0

X1 ˆ
X0

tyu ÝÑ txu
h
ˆ
X0

X1

h
ˆ
X0

tyu ÝÑ π0

ˆ

txu
h
ˆ
X0

X1

h
ˆ
X0

tyu

˙

“ Homh1pXqpx, yq ,

is an invertible morphism in h1pXq.

Denote by Xinv
1 the subspace of invertible arrows and observe that the map X0 Ñ X1

factors through Xinv
1 , since the image of x P X0 under X0 Ñ X1 Ñ Homh1pXqpx, xq is idx,

which is invertible.

Definition 1.2.10. A Segal space X‚ is complete if the map X0 Ñ Xinv
1 is a weak

equivalence. We denote the full subcategory of SSpaces whose objects are complete
Segal spaces by CSSpaces “ CSSpaces1.

Remark 1.2.11. Similarly to remark 1.2.4, Rezk showed in [Rez01] that complete Segal
spaces are the fibrant objects for a model structure on the category of simplicial spaces,
namely a suitable localization of SSpaces. Horel showed the analogous statement for the
projective model structure in [Hor14b]. We will usually mean this model category when
writing CSSpaces.

Complete Segal spaces are p8, 1q-categories

Rezk explained in [Rez01] that complete Segal spaces are a good model for p8, 1q-categories.
This justifies the following definition.

Definition 1.2.12. An p8, 1q-category is a complete Segal space.

Remark 1.2.13. The completeness condition says that all invertible morphisms essen-
tially are just identities up to the choice of a path. So strictly speaking, complete Segal
spaces should be called skeletal, or, according to [Joy], reduced p8, 1q-categories.

Completion of Segal spaces

Rezk showed in [Rez01] that Segal spaces can always be completed. He showed that there
is a completion functor which to every Segal space X associates a complete Segal space
pX together with a map iX : X Ñ pX, which is a Dwyer-Kan equivalence, which in turn is
defined below.

Even though the inclusion CSSpaces ãÑ SSpaces does not have a left adjoint, it does
when passing to the homotopy categories (see remarks 1.2.4 and 1.2.11). Thus, pX is
universal (in the homotopy category) among complete Segal spaces Y together with a
map X Ñ Y .

Definition 1.2.14. A map f : X Ñ Y of Segal spaces is a Dwyer-Kan equivalence if

1. the induced map h1pfq : h1pXq Ñ h1pY q on homotopy categories is an equivalence
of categories, and

2. for each pair of objects x, y P X0 the induced function on mapping spaces
HomXpx, yq Ñ HomY pfpxq, fpyqq is a weak equivalence.
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Relative categories and the classification diagram

In this section we recall a construction due to Rezk [Rez01] which produces a complete
Segal space from a simplicial closed model category. More generally, Barwick and Kan
proved in [BK11] that this construction also gives a complete Segal space for so-called
partial model categories.

Definition 1.2.15. Let pC,Wq be a relative category, i.e. a category C with a distinguished
subcategoryW. Consider the simplicial object in categories C‚ given by Cn :“ Fun

`

rns, Cq.
It has a subobject CW‚ , where CWn Ă Cn is the subcategory having the same objects and
morphisms consisting only of those fromW. Taking its nerve we obtain a simplicial space
NpC,Wq‚ with

NpC,Wqn “ NpCWn q.

It satisfies the Segal condition, but will not be level-wise fibrant unless we started with
an 8-groupoid. Its level-wise fibrant replacement is called the relative/simplicial nerve or
the classification diagram, which, by abuse of notation, we again denote by NpC,Wq.

Example 1.2.16. Let C be a small category. Then it is straightforward to see that
NpC, Iso Cq is a complete Segal space. Alternatively, if C has finite limits and colimits,
it can be made into a closed model category in which the weak equivalences are the
isomorphisms and all maps are fibrations and cofibrations. Then the above result also
shows that the classification diagram is a complete Segal space, cf. [Rez01].

1.2.4 Segal categories

A second way to avoid the problem that in a Segal space and its homotopy category
we do not use the topology on X0 is to impose that X0 is discrete. By this we obtain
the notion of Segal categories, which are another model for p8, 1q-categories and briefly
mention here. More details and references can be found in the above mentioned [Ber10].

Definition 1.2.17. A Segal (1-)category is a Segal space X “ X‚ such that X0 is discrete.

Segal categories also are the fibrant objects of a model category which is Quillen equivalent
to CSSpaces. For our purposes, complete Segal spaces turn out to be the more useful
model.

1.3 Complete n-fold Segal spaces as models for p8, nq-categories

As a model for p8, nq-categories, we will use complete n-fold Segal spaces, which were
first introduced by Barwick in his thesis and appeared prominently in Lurie’s [Lur09c].

1.3.1 n-fold Segal spaces

An n-fold Segal space is an n-fold simplicial space with certain extra conditions.

Definition 1.3.1. An n-fold simplicial space X‚,...,‚ is essentially constant if there is a
weak homotopy equivalence of n-fold simplicial spaces Y Ñ X, where Y is constant.

Definition 1.3.2. An n-fold Segal space is an n-fold simplicial space X “ X‚,...,‚ such
that
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(i) For every 1 ď i ď n, and every k1, . . . , ki´1, ki`1, . . . , kn ě 0,

Xk1,...,ki´1,‚,ki`1,...,kn

is a Segal space.

(ii) For every 1 ď i ď n, and every k1, . . . , ki´1 ě 0,

Xk1,...,ki´1,0,‚,...,‚

is essentially constant.

Defining a map of n-fold Segal spaces to be a map of the underlying n-fold simplicial
spaces gives a category of n-fold Segal spaces, SSpacesn.

Remark 1.3.3. Alternatively, one can formulate the conditions iteratively. First, an n-
iterated Segal space is a simplicial object Y‚ in pn´1q-fold Segal spaces which satisfies the
Segal condition. Then, an n-fold Segal space is an n-iterated Segal space such that Y0 is
essentially constant (as an pn´ 1q-fold Segal space). To get back the above definition, the
ordering of the indices is crucial: Xk1,...,kn “ pYk1qk2,...,kn .

Remark 1.3.4. Similarly to remark 1.3.4 there is a model structure on the category of
n-fold simplicial spaces obtained as a localization of the injective model structure whose
fibrant objects are Reedy fibrant n-fold Segal spaces, see [Lur09b] or [BS11]. Similarly
to the aforementioned [Hor14a], there is a model structure obtained by localizing the
projective model structure and whose fibrant objects are complete Segal spaces which are
level-wise fibrant instead of Reedy fibrant, see remark 1.5.6 in [Lur09b]. We will sometimes
mean this model category (or the 8-category it represents) when writing SSpacesn.

Interpretation as higher categories

An n-fold Segal space can be thought of as a higher category in the following way.

The first condition means that this is an n-fold category, i.e. there are n different “di-
rections” in which we can “compose”. An element of Xk1,...,kn should be thought of as a
composition consisting of ki composed morphisms in the ith direction.

The second condition imposes that we indeed have a higher n-category, i.e. an n-morphism
has as source and target two pn ´ 1q-morphisms which themselves have the “same” (in
the sense that they are homotopic) source and target.

For n “ 2 one can think of this second condition as “fattening” the objects in a bicategory.
A 2-morphism in a bicategory can be depicted as

ó

The top and bottom arrows are the source and target, which are 1-morphisms between
the same objects.
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In a 2-fold Segal space X‚,‚, an element in X1,1 can be depicted as

X
0,0
Q

P
X

0,
0

X
0,
0
Q

P
X
0,0

ó

X1,0

P
Q

X1,0

X0,0 » X0,1 Q P X0,1 » X0,0

The images under the source and target maps in the first direction X1,1 Ñ X1,0 are 1-
morphisms which are depicted by the horizontal arrows. The images under the source and
target maps in the second direction X1,1 Ñ X0,1 are 1-morphisms, depicted by the dashed
vertical arrows, which are essentially just identity maps, up to homotopy, since X0,1 »

X0,0. Thus, here the source and target 1-morphisms (the horizontal ones) themselves do
not have the same source and target anymore, but up to homotopy they do.

The same idea works with higher morphisms, in particular one can imagine the corre-
sponding diagrams for n “ 3. A 3-morphism in a tricategory can be depicted as

V

whereas a 3-morphism, i.e. an element in X1,1,1 in a 3-fold Segal space X can be depicted
as

V

Here the dotted arrows are those in X0,1,1 » X0,0,1 » X0,0,0 and the dashed ones are
those in X1,0,1 » X1,0,0.

Thus, we should think of the set of 0-simplices of the space X0,...,0 as the objects of our
category, and elements of X1,...,1,0,...,0 as i-morphisms, where 0 ă i ď n is the number
of 1’s. Pictorially, they are the i-th “horizontal” arrows. Moreover, the other “vertical”
arrows are essentially just identities of lower morphisms. Similarly to before, paths in
X1,...,1 should be thought of as pn` 1q-morphisms, which therefore are invertible up to a
homotopy, which itself is an pn` 2q-morphism, and so forth.

1.3.2 Complete and hybrid n-fold Segal spaces

As with (1-fold) Segal spaces, we need to impose an extra condition to ensure that invert-
ible k-morphisms are paths in the space of pk ´ 1q-morphisms. Again, there are several
ways to include its information.
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Definition 1.3.5. Let X be an n-fold Segal space and 1 ď i, j ď n. It is said to satisfy

CSSi if for every k1, . . . , ki´1 ě 0,

Xk1,...,ki´1,‚,0,...,0

is a complete Segal space.

SCj if for every k1, . . . , kj´1 ě 0,
Xk1,...,kj´1,0,‚,...,‚

is discrete, i.e. a discrete space viewed as a constant pn´ j ` 1q-fold Segal space.

Definition 1.3.6. An n-fold Segal space is

1. complete, if for every 1 ď i ď n, X satisfies (CSSi).

2. a Segal n-category if for every 1 ď j ď n, X satisfies (SCj).

3. m-hybrid for m ě 0 if condition (CSSi) is satisfied for i ą m and condition (SCj)
is satisfied for j ď m.

Denote the full subcategory of SSpacesn of complete n-fold Segal spaces by CSSpacesn.

Remark 1.3.7. Note that an n-hybrid n-fold Segal space is a Segal n-category, while an
n-fold Segal space is 0-hybrid if and only if it is complete.

For our purposes, the model of complete n-fold Segal spaces is well-suited, so we define

Definition 1.3.8. An p8, nq-category is an n-fold complete Segal space.

Model structure and weak equivalences

As in remarks 1.2.4, 1.2.11, and 1.3.4, there is a model structure on the category of n-fold
simplicial spaces sSpacesn whose fibrant objects are complete n-fold Segal spaces, see
[Lur09b] or [BS11]. Moreover, iterating the construction of Segal categories enriched in
a suitable model category and the construction of complete Segal objects for so-called
absolute distributors in [Lur09b] should give a model in which m-hybrid n-fold Segal
spaces are the fibrant objects.

Since SSpacesn and CSSpacesn are localizations of sSpacesn, they inherit a subcategory
of weak equivalences. One can prove that they are exactly the Dwyer-Kan equivalences,
the analogous notion to definition 1.2.14 for n “ 1. More details can be found e.g. in
[Zha13].

Completion

In light of the iterative definition of an n-fold Segal space, i.e. viewing an n-fold Segal space
as an pn ´ 1q-fold Segal space, condition (CSSi) above means that the ith iteration is a
complete Segal space object. Thus, given an n-fold Segal space X‚,...,‚, one can apply the

completion functor iteratively to obtain a complete n-fold Segal space pX‚,...,‚, its (n-fold)
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completion. This yields a map X Ñ pX, the completion map, which is universal among
all maps (in the homotopy category) to complete n-fold Segal spaces. It is a left adjoint
to the inclusion of the homotopy category of CSSpacesn into the homotopy category of
SSpacesn.

If an n-fold Segal space X‚,...,‚ satisfies (SCj) for j ď m, we can apply the completion

functor just to the last pn´mq indices to obtain an m-hybrid n-fold Segal space pXm
‚,...,‚,

its m-hybrid completion.

1.4 The homotopy bicategory of a 2-fold Segal space

To any higher category one can intuitively associate a bicategory having the same objects
and 1-morphisms, and with 2-morphisms being 3-isomorphism classes of the original 2-
morphisms.

Definition 1.4.1. The homotopy bicategory h2pXq of a 2-fold Segal space X “ X‚,‚ is
defined as follows: objects are the points of the space X0,0 and

Homh2pXqpx, yq “ h1

`

HomXpx, yq
˘

“ h1

ˆ

txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tyu

˙

as Hom categories. Horizontal composition is defined as follows:

ˆ

txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tyu

˙

ˆ

ˆ

tyu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu

˙

ÝÑ txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu

Ð̃Ý txu
h
ˆ
X0,‚

X2,‚

h
ˆ
X0,‚

tzu

ÝÑ txu
h
ˆ
X0,‚

X1,‚

h
ˆ
X0,‚

tzu .

The second arrow happens to go in the wrong way but it is a weak equivalence. Therefore
after taking h1 it turns out to be an equivalence of categories, and thus to have an inverse
(assuming the axiom of choice).

1.5 Constructions of n-fold Segal spaces

We describe several intuitive constructions of p8, nq-categories in terms of (complete)
n-fold Segal spaces.

1.5.1 Truncation

Given an p8, nq-category, for k ď n its p8, kq-truncation is the p8, kq-category obtained
by discarding the non-invertible m-morphisms for k ă m ď n.

In terms of n-fold Segal spaces, there is a functor of n-fold Segal spaces sending X “ X‚,...,‚
to its k-truncation, the k-fold Segal space

τkX “ X‚, . . . , ‚
loomoon

k times

,0, . . . , 0
loomoon

n´k times

.
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Remark 1.5.1. Note that if X is m-hybrid then so is τkX by the definition of the
conditions (CSSi) and (SCj).

Warning. Truncation does not behave well with completion, i.e. the truncation of the
completion is not the completion of the truncation. However, we get a map in one direc-
tion.

τkpXq τkp pXq

{τkpXq

In general, we do not expect this map to be an equivalence.

Thus in general one should always complete an n-fold Segal space before truncating it, as

X 1,...,1
loomoon

k

,0,...,0 ãÑ X 1,...,1
loomoon

m

,0,...,0

are the invertible m-morphisms for k ă m ď n if and only if X satisfies (1.3.5) for
k ă i ď n. For example, if X “ X‚ is a (1-fold) Segal space then X0 is the underlying
8-groupoid of invertible morphisms if and only if X is complete.

1.5.2 Extension

Any p8, nq-category can be viewed as an p8, n`1q-category with only identities as pn`1q-
morphisms.

In terms of iterated Segal spaces, any n-fold Segal space can be viewed as a constant
simplicial object in n-fold Segal spaces, i.e. an pn` 1q-fold Segal space which is constant
in the first index. Explicitly, if X‚,...,‚ is an n-fold Segal space, then εpXq‚,...,‚ is the
constant pn` 1q-fold Segal space such that for every k ě 0,

εpXqk,‚,...,‚ “ X‚,...,‚

with identities as face and degeneracy maps.

Lemma 1.5.2. If X is complete, then εpXq is complete.

Proof. Since X is complete, it satisfies (CSSi) for i ą 1. For i “ 0, we have to show that
εpXq‚,0,...,0 is complete. This is satisfied because

pεpXq1,0,...,0q
inv “ εpXq1,0,...,0 “ X0,...,0 “ εpXq0,0,...,0,

since morphisms between two elements x, y in the homotopy category of εpXq‚,k2,...,kn
are just connected components of the space of paths in Xk2,...,kn , and thus are always
invertible.

We call ε the extension functor, which is left adjoint to τ1. Moreover, the unit id Ñ τ1 ˝ ε
of the adjunction is the identity.
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1.5.3 The higher category of morphisms and loopings

Given two objects x, y in an p8, nq-category, morphisms from x to y should form an
p8, n´ 1q-category. This can be realized for n-fold Segal spaces, which is one of the main
advantages of this model for p8, nq-categories.

Definition 1.5.3. Let X “ X‚,¨¨¨ ,‚ be an n-fold Segal space. As we have seen above one
should think of objects as vertices of the space X0,...,0. Let x, y P X0,...,0. The pn´ 1q-fold
Segal space of morphisms from x to y is

HomXpx, yq‚,¨¨¨ ,‚ “ txu
h
ˆ

X0,‚,¨¨¨ ,‚

X1,‚,¨¨¨ ,‚

h
ˆ

X0,‚,¨¨¨ ,‚

tyu .

Remark 1.5.4. Note that if X is m-hybrid, then HomX‚px, yq is pm´ 1q-hybrid.

Example 1.5.5 (Compatibility with extension). Let X be an p8, 0q-category, i.e. a space,
viewed as an an p8, 1q-category, i.e. a constant (complete) Segal space εpXq‚, εpXqk “ X.
For any two objects x, y P εpXq0 “ X the p8, 0q-category, i.e. the topological space, of
morphisms from x to y is

HomεpXqpx, yq “ txu
h
ˆ

εpXq0

εpXq1
h
ˆ

εpXq0

tyu “ txu
h
ˆ
X
tyu “ PathXpx, yq ,

the path space in X, which coincides with what one expects by the interpretation of paths,
homotopies, homotopies between homotopies, etc. being higher invertible morphisms.

Definition 1.5.6. Let X be an n-fold Segal space, and x P X0 an object in X. Then the
looping of X at x is the pn´ 1q-fold Segal space

LpX,xq‚,...,‚ “ HomXpx, xq‚,...,‚ “ txu ˆ
h
X0,‚,...,‚

X1,‚,...,‚ ˆ
h
X0,‚,...,‚

txu.

In the following, it will often be clear at which element we are looping, e.g. if there
essentially only is one element, or at a unit for the monoidal structure. Then we omit the
x from the notation and just write

LX “ LpXq “ LpX,xq.

Note that even if there is not a unique unit, this will be independent of the choice of unit.

We can iterate this procedure as follows.

Definition 1.5.7. Let L0pX,xq “ X. For 1 ď k ď n, let the k-fold iterated looping be
the pn´ kq-fold Segal space

LkpX,xq “ LpLk´1pX,xq, xq,

where we view x as a trivial k-morphism via the degeneracy maps, i.e. an element in
Lk´1pX,xq0...,0 Ă X1,...,1,0,...,0, with k 1’s.

Remark 1.5.8. We remark that looping commutes with taking the ordinary or the m-
hybrid completion, since completion is taken index per index.
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1.6 Symmetric monoidal n-fold Segal spaces

1.6.1 Symmetric monoidal n-fold Segal spaces as a Γ-object

Following [Toe, TV09], we define a symmetric monoidal n-fold Segal space in analogy to
so-called Γ-spaces.

Definition 1.6.1. Segal’s category Γ is the category whose objects are the finite sets

xmy “ t0, . . . ,mu,

for m ě 0 which are pointed at 0. Morphisms are pointed functions, i.e. for k,m ě 0,
functions

f : xmy ÝÑ xky, fp0q “ 0.

For every m ě 0, there are m canonical morphisms

γβ : xmy ÝÑ x1y, j ÞÝÑ δβj

for 1 ď β ď m, called the Segal morphisms.

Remark 1.6.2. Segal’s category Γ is the skeleton of the category of finite pointed sets.

We would now like to define a symmetric monoidal (complete) n-fold Segal space to be
an 8-functor from Γ to the p8, 1q-category of n-fold complete Segal spaces which satisfies
certain properties. Recall from remark 1.3.4 and section 1.3.2 that the p8, 1q-category of
n-fold (complete) Segal spaces is presented by a model category pCqSSpacen. Using the
strictification theorem of Toën-Vezzosi from [TV02] every such functor can be represented
by a strict functor from Γ to pCqSSpacen. Moreover, the p8, 1q-category of p8, 1q-
functors can be computed using the model category ppCqSSpacenq

Γ of Γ-diagrams in
pCqSSpacen. Thus the following definition suffices.

Definition 1.6.3. A symmetric monoidal (complete) n-fold Segal space is a (strict) func-
tor from Γ to the (strict) category of complete n-fold Segal spaces pCqSSpacen,

A : Γ ÝÑ pCqSSpacen

such that for every m ě 0, the induced map

A
`

ź

1ďβďm

γβ
˘

: Axmy ÝÑ pAx1yqm

is an equivalence of n-fold (complete) Segal spaces.

The (complete) n-fold Segal space X “ Ax1y is called the (complete) n-fold Segal space
underlying A, and by abuse of language we will sometimes call a (complete) n-fold Segal
space X symmetric monoidal, if there is a symmetric monoidal (complete) n-fold Segal
space A such that Ax1y “ X.

Remark 1.6.4. Note that in particular, for m “ 0, this implies that Ax0y is a point,
viewed as a constant n-fold Segal space.
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Definition 1.6.5. The p8, 1q-category, i.e. Segal space, of functors from Γ to pCqSSpacen,
which as mentioned above can be computed using the model category of Γ-diagrams in
pCqSSpacen, has a full sub-p8, 1q-category of symmetric monoidal (complete) n-fold Se-
gal spaces. A 1-morphism in this category is called a symmetric monoidal functor of
p8, nq-categories.

Since the completion map X Ñ pX is a weak equivalence and preserves finite products of
Segal spaces up to weak equivalence, we obtain the following

Lemma 1.6.6. If A : Γ ÝÑ SSpacen is a symmetric monoidal n-fold Segal space, then

pA : Γ ÝÑ CSSpacen,

xmy ÞÝÑ {Axmy

is a symmetric monoidal complete n-fold Segal space.

Remark 1.6.7. Similarly, one can define Ek-monoidal (complete) n-fold Segal spaces as
certain p8, 1q-functors from Ek to pCqSSpacen, where Ek denotes the p8, 1q-category
obtained from the topological category of little-k-disks, see [Zha13] for more details on
this definition.

Example 1.6.8. Let A : Γ ÝÑ SSpace1 be a symmetric monoidal Segal space. Consider
the product of maps γ1 ˆ γ2 and the map induced by the map γ : x2y Ñ x1y; 1, 2 ÞÑ 1,

Ax1y ˆAx1y
»

ÐÝÝÝÝÝÝÝÝ
Apγ1qˆApγ2q

Ax2y
Apγq
ÝÑ Ax1y.

Passing to the homotopy category, we obtain a map

h1pAx1yq ˆ h1pAx1yq ÝÑ h1pAx1yq.

Toën and Vezzosi showed in [TV09] that this is a symmetric monoidal structure on the
category h1pAx1yq. Roughly speaking, this uses functoriality of A. Associativity uses the
Segal space Ax3y, Ax0y corresponds to the unit, and the map c : x2y Ñ x2y; 1 ÞÑ 2, 2 ÞÑ 1
induces the commutativity constraint.

Example 1.6.9. Truncations and extensions of symmetric monoidal p8, n)-categories
again are symmetric monoidal. Let A be a symmetric monoidal n-fold Segal space. Then
we can define

τkpAqxmy “ τkpAxmyq, εpAqxmy “ εpAxmyq.

Note that τk and ε are functors of n-fold Segal spaces which preserves weak equivalences.
Thus, these assignments can be extended to functors τkpAq and εpAq, and the images of
A
`
ś

1ďβďm γβ
˘

are again weak equivalence.

Example 1.6.10. For every m ě 0 there is a unique map x0y Ñ xmy, and since Ax0y
is the point as a constant (complete) n-fold Segal space, this induces, for every m ě 0,
a distinguished object 1xmy P Axmy. The looping of a symmetric monoidal n-fold Segal
space A with respect this object also is symmetric monoidal, with

LpAqxmy “ LpAxmy,1xmyq,

which extends to an appropriate functor similarly to in the previous example.
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Example 1.6.11. Important examples come from the classification diagram construction.
Let C be a small symmetric monoidal category and let W “ Iso C. As we saw in section
1.2.3, this gives a complete Segal space C‚ “ NpC,Wq. The symmetric monoidal structure
of C endows C‚ with the structure of a symmetric monoidal complete Segal space:

First note that Wˆm “ IsopCˆmq for every m. On objects, let A : Γ ÝÑ CSSpace1 be
given by Axmy “ NpCˆm,Wˆmq‚. We explain the image of the map x2y Ñ x1y; 1, 2 ÞÑ 1,
which should be a map Ax2y Ñ Ax1y. The image of an arbitrary map xmy Ñ xly can be
defined analogously.

An l-simplex in Ax2y 0 “ NpC ˆ C,W ˆWq0 is a pair

C0
w1
ÝÝÑ ¨ ¨ ¨

wl
ÝÑ Cl, D0

w11
ÝÝÑ ¨ ¨ ¨

w1l
ÝÑ Dl,

and is sent to

C0 bD0
w21
ÝÝÑ . . .

w2l
ÝÝÑ Cl bDl,

where w2i : Ci´1 bDi´1

wibidDi´1
ÝÝÝÝÝÝÝÑ Ci bDi´1

idCibw
1
i

ÝÝÝÝÝÑ Ci bDi is in W. More generally,
an l-simplex in

Ax2yk “ NpC ˆ C,W ˆWqk
is a pair of diagrams

C0,0 C1,0 . . . Ck,0 D0,0 D1,0 . . . Dk,0

C0,1 C1,1 . . . Ck,1 D0,1 D1,1 . . . Dk,1

...
...

...
...

...
...

C0,l C1,l . . . Ck,l D0,l D1,l . . . Dk,l

f10

w01

f20

w11

fk0

wk1

g10

v01

g20

v11

gk0

vk1

f11

w02

f21

w21

fk1

wk2

g11

v02

g21

v21

gk1

vk2

w0l w1l wkl v0l v1l vkl

f1l f2l fk,l g1l g2l gk,l

which is sent to the diagram

C0,0 bD0,0 C1,0 bD1,0 . . .

C0,1 bD0,1 C1,1 bD1,1 . . .

...
...

f10bg10 f20bg20

f11bg11 f21bg21

where the vertical maps are defined as for the objects.

Finally, we need to check that A
`
ś

1ďβďm γβ
˘

is a weak equivalence. This follows from
the fact that

pAxmyqk “ NpCˆm,Wˆmqk “
`

NpC,Wqk
˘ˆm

“
`

Ax1yk
˘m
.
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Remark 1.6.12. If we start with a symmetric monoidal relative category pC,Wq (a
definition can e.g. be found in [Cam14]) such that all NpCˆm,Wˆmq are (complete) Segal
spaces, then the above construction for pC,Wq yields a symmetric monoidal (complete)
Segal space NpC,Wq.

1.6.2 Symmetric monoidal n-fold Segal spaces as a tower of
pn` iq-fold Segal spaces

Our motivation for the following definition of a (k-)monoidal complete n-fold Segal space
comes from the Delooping Hypothesis, which is inspired by the fact that a monoidal
category can be seen as a bicategory with just one object. Similarly, a k-monoidal n-
category should be a pk ` nq-category (whatever that is) with only one object, one 1-
morphism, one 2-morphism, and so on up to one pk ´ 1q-morphism.

Hypothesis 1.6.13 (Delooping Hypothesis). k-monoidal p8, nq-categories can be identi-
fied with pk´jq-monoidal, pj´1q-simply connected p8, n`jq-categories for any 0 ď j ď k,
where pj´1q-simply connected means that any two parallel i-morphisms are equivalent for
i ă j. In particular, monoidal p8, nq-categories can be identified with p8, n`1q-categories
with (essentially) one object.

Monoidal n-fold complete Segal spaces

We use the last statement in the delooping hypothesis as the motivation for the following
definition. However, first we need to explain what “having (essentially) one object” means.

Definition 1.6.14. An n-fold Segal space X is called pointed or 0-connected, if

X0,‚,...,‚,

is weakly equivalent to the point viewed as a constant n-fold Segal space.

Definition 1.6.15. A monoidal complete n-fold Segal space is a 1-hybrid pn ` 1q-fold
Segal space Xp1q which is pointed. We say that this endows the n-fold complete Segal
space

X “ LpXp1q, ˚q

with a monoidal structure and that Xp1q is a delooping of X.

Remark 1.6.16. Note that as Xp1q is 1-hybrid, X
p1q
0,‚,...,‚ is discrete. Thus, to be pointed

implies that X
p1q
0,‚,...,‚ is equal to the point viewed as a constant n-fold Segal space.

Without the completeness condition, we could define a monoidal n-fold Segal space as
an pn ` 1q-fold Segal space Xp1q which is pointed. Then LpXp1q, ˚q “ HomXp1qp˚, ˚q is
independent of the choice of point ˚ P X0,...,0 and we can say that this endows the n-fold
Segal space X “ LpXp1qq “ LpXp1q, ˚q with a monoidal structure.

However, a complete Segal space will not have a contractible space as X0,...,0. Thus, we
need to introduce a model for p8, n ` kq-categories which can have a point as the set of
objects, 1-morphisms, et cetera, which motivates our use of hybrid Segal spaces.

Remark 1.6.17. Let X be an m-hybrid n-fold Segal space with m ą 0 which is pointed.
Then X0,‚,...,‚ “ ˚, and the looping is

LpXq‚,...,‚ “ t˚u
h
ˆ
˚
X1,‚,...,‚

h
ˆ
˚
t˚u “ X1,‚,...,‚.
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A similar definition works for hybrid Segal spaces.

Definition 1.6.18. A monoidal m-hybrid n-fold Segal space is an pm`1q-hybrid pn`1q-
fold Segal space Xp1q which is pointed. We say that this endows the m-hybrid n-fold Segal
space

X “ LpXp1qq

with a monoidal structure and that Xp1q is a delooping of X.

Example 1.6.19. Let C be a small monoidal category and let W “ Iso C. As we saw in
section 1.2.3, this gives a complete Segal space C‚ “ NpC,Wq. The monoidal structure of
C endows C‚ with the structure of a monoidal complete Segal space:

Let Cm,n “ Cbmn be the category which has objects of the form

C01 b ¨ ¨ ¨ b C0m ¨ ¨ ¨ Cn0 b ¨ ¨ ¨ b Cnm
c1 cn

and morphisms of the form

C01 b ¨ ¨ ¨ b C0m ¨ ¨ ¨ Cn0 b ¨ ¨ ¨ b Cnm

D01 b ¨ ¨ ¨ bD0m ¨ ¨ ¨ Dn0 b ¨ ¨ ¨ bDnm,

c1

f0

cn

fn

d1 dn

where c1, . . . , cn, d1, . . . , dn, and f0, . . . , fn are morphisms in C.

Consider its subcategory CWm,n Ă Cm,n which has the same objects, and vertical morphisms
involving only the ones in W “ Iso C, i.e. f0, . . . , fn are morphisms in W.

Now let
Cp1qm,n “ NpCWm,nq,

the (ordinary) nerve. By a direct verification one sees that the collection Cp1q‚,‚ is a 2-fold
Segal space. Moreover,

1. Cp1q0,n “ NpCb0
n q “ ˚, so Cp1q0,‚ is discrete and equal to the point viewed as a constant

Segal space, and

2. for every m ě 0, Cp1qm,‚ “ NpCWm,‚q “ NppCbm‚ qWq, which is a complete Segal space.

Summarizing, Cp1q is a 1-hybrid 2-fold Segal space which is pointed and endows LpCp1qq‚ “
C‚ with the structure of a monoidal complete Segal space.

k-monoidal n-fold complete Segal spaces

To encode braided or symmetric monoidal structures, we can push this definition even
further.

Definition 1.6.20. An n-fold Segal space X is called j-connected if for every i ă j,

X 1,...,1,
loomoon

i

0,‚,...,‚

is weakly equivalent to the point viewed as a constant n-fold Segal space.



1.6. Symmetric monoidal n-fold Segal spaces 17

Definition 1.6.21. A k-monoidal m-hybrid n-fold Segal space is an pm`kq-hybrid pn`kq-
fold Segal space Xpkq which is pk ´ 1q-connected.

Remark 1.6.22. Note that as Xpkq is pm`kq-hybrid, X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ is discrete. Thus, to

be pk´1q-connected implies that X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ is equal to the point viewed as a constant

pn´ i` 1q-fold Segal space.

By the following proposition this definition satisfies the delooping hypothesis. In practice
this allows to define a k-monoidal n-fold complete Segal space step-by-step by defining a
tower of monoidal i-hybrid pn` iq-fold Segal spaces for 0 ď i ă k.

Proposition 1.6.23. The data of a k-monoidal n-fold complete Segal space is the same
as a tower of monoidal i-hybrid pn ` iq-fold Segal spaces Xpi`1q for 0 ď i ă k together
with weak equivalences

Xpjq » LpXpj`1qq

for every 0 ď j ă k ´ 1.

Remark 1.6.24. We say that these equivalent data endow the complete n-fold Segal
space

X “ Xp0q » LpXp1qq

with a k-monoidal structure. The pn ` i ` 1q-fold Segal space Xpi`1q is called an i-fold
delooping of X.

Before we prove this proposition, we need some lemmas:

Lemma 1.6.25. If X is a k-monoidal m-hybrid n-fold Segal space, and 0 ď l ď k, then
X is also an l-monoidal pm` k ´ lq-hybrid pn` k ´ lq-fold Segal space.

Proof. Since X is a k-monoidal m-hybrid n-fold Segal space, X is a pm`kq-hybrid pn`kq-
fold Segal space such that for every 0 ď i ă k,

X 1,...,1,
loomoon

i

0,...,0 “ ˚,

so in particular, this also holds for 0 ď i ă l.

Lemma 1.6.26. Let X be a k-monoidal m-hybrid n-fold Segal space. Then HomXp˚, ˚q
is a pk ´ 1q-monoidal pm´ 1q-hybrid n-fold Segal space.

Proof. This follows from

pHomXp˚, ˚qq‚,...,‚ “ t˚u ˆ
h
X0,‚,...,‚

X1,‚,...,‚ ˆ
h
X0,‚,...,‚

t˚u “ X1,‚,...,‚,

since X0,‚,...,‚ is a point.
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Proof of Proposition 1.6.23. Let X be a k-monoidal n-fold complete Segal space. By
Lemma 1.6.25 Xpkq “ X is a monoidal pk ´ 1q-hybrid pn` k ´ 1q-fold Segal space.

Now let Xpk´1q “ LpXpkqq. By Lemmas 1.6.26 and 1.6.25, this is a monoidal pk´2q-hybrid
pn` k ´ 2q-fold Segal space.

Inductively, define Xpiq “ LpXpi`1qq for 1 ď i ď k ´ 1. Similarly to above, by Lemmas
1.6.26 and 1.6.25, this is a monoidal pi´ 1q-hybrid pn` i´ 1q-fold Segal space.

Conversely, assume we are given a tower Xpiq as in the proposition. Since X “ Xpkq is a
monoidal pk ´ 1q-hybrid pn` k ´ 1q-fold Segal space,

X0,‚,...,‚ “ X
pkq
0,‚,...,‚ “ ˚. (1.1)

Since Xpk´1q is a monoidal pk ´ 2q-hybrid pn` k ´ 2q-fold Segal space and by (1.1),

X1,0,‚,...,‚ “ X
pkq
1,0,‚,...,‚ “ t˚u ˆ

h

X
pkq
0,0,‚,...,‚

X
pkq
1,0,‚,...,‚ ˆ

h

X
pkq
0,0,‚,...,‚

t˚u

“

´

Hom
pkq
X p˚, ˚q

¯

0,‚,...,‚

» X
pk´1q
0,‚,...,‚ “ ˚.

(1.2)

Since Xpkq is k-hybrid, X1,0,‚,...,‚ is discrete and so X1,0,‚,...,‚ “ ˚.

Inductively, for 0 ď i ă k, since Xpk´iq is a monoidal pk´ i´1q-hybrid pn`k´ i´1q-fold
Segal space and by (1.1), (1.2),. . .

X 1,...,1,
loomoon

i

0,‚,...,‚ “ X
pkq
1,...,1,
loomoon

i

0,‚,...,‚

“ t˚u ˆh
X
pkq
0, 1,...,1,
loomoon

i´1

0,‚,...,‚

X
pkq
1,...,1,
loomoon

i

0,‚,...,‚ ˆ
h

X
pkq
0, 1,...,1,
loomoon

i´1

0,‚,...,‚

t˚u

“

´

Hom
pkq
X p˚, ˚q

¯

1,...,1,
loomoon

i´1

0,‚,...,‚

» X
pk´1q
1,...,1,
loomoon

i´1

0,‚,...,‚ “ . . . » X
pk´iq
0,‚,...,‚ “ ˚.

Again, since Xpkq is k-hybrid, X 1,...,1,
loomoon

i

0,‚,...,‚ is discrete and so

X 1,...,1,
loomoon

i

0,‚,...,‚ “ ˚.

Symmetric monoidal n-fold complete Segal spaces

The Stabilization Hypothesis, first formulated in [BD95], states that an n-category which
is monoidal of a sufficiently high degree cannot be made “more monoidal”, and thus it
makes sense to call it symmetric monoidal, see e.g. [Sim98] for a proof for Tamsamani’s
weak n-categories.



1.6. Symmetric monoidal n-fold Segal spaces 19

Hypothesis 1.6.27 (Stabilization Hypothesis). For k ě n` 2, a k-monoidal n-category
is the same thing as an pn` 2q-monoidal n-category.

In the world of p8, nq-categories this statement must be false, otherwise, any En-algebra,
which can be thought of as an n-monoidal, n-connected p8, nq-category would already be
symmetric monoidal, i.e. commutative.

However, in light of Proposition 1.6.23, we can require that a symmetric monoidal p8, nq-
category is k-monoidal for every k ě 0 to encode that it is “monoidal enough”.

Definition 1.6.28. A symmetric monoidal structure on a complete n-fold Segal space X
is a tower of monoidal i-hybrid pn ` iq-fold Segal spaces Xpi`1q for i ě 0 such that if we
set X “ Xp0q, for every i ě 0,

Xpiq » LpXpi`1qq.

Remark 1.6.29. This definition and definition 1.6.3 given in the previous section should
be equivalent. Indeed, we should be able to switch between the definitions by setting

Xxmy‚,...,‚ “ Xp1qm,‚,...,‚.

Using the fact that Np∆, Iso ∆q and E1 are equivalent as p8, 1q-categories and Dunn’s
additivity theorem (“En is E1 in E1 in . . . in E1, n times”), k-monoidal (complete) n-fold
Segal spaces in the sense of this section should equivalent to k-monoidal (complete) n-fold
Segal spaces in the sense of remark 1.6.7.

Furthermore, since NpΓ, Iso Γq and E8 are equivalent as p8, 1q-categories, this leads to
the desired equivalence. There are certainly details to be worked out about to make these
statements precise.





Chapter 2

The p8, nq-category of cobordisms

To rigorously define fully extended topological field theories we need a suitable p8, nq-
category of cobordisms, which, informally speaking, has zero-dimensional manifolds as
objects, bordisms between objects as 1-morphisms, bordisms between bordisms as 2-
morphisms, etc., and for k ą n there are only invertible k-morphisms. Finding an explicit
model for such a higher category, i.e. defining a complete n-fold Segal space of bordisms,
is the main goal of this chapter. We endow it with a symmetric monoidal structure and
also consider bordism categories with additional structure, e.g. orientations and framings,
which allows us, in section 2.8, to rigorously define fully extended topological field theories.

We build a rather explicit model suitable for our purposes, which will allow us to later
define a functor to the desired target category. We will construct a variant of this con-
struction, which is perhaps more conceptual and less adhoc, in subsequent publications.

2.1 The complete n-fold Segal space of closed intervals in p0, 1q

In this section we define a Segal space Int‚ of closed intervals in p0, 1q which will form the
basis of the n-fold Segal space of cobordisms. First we define the sets of vertices, i.e. of
0-simplices, of the levels. Then we define the spatial structure of the levels. Next we
endow the collection of sets pIntkqk with a simplicial structure which we then extend to
the l-simplices of the levels in a compatible way, giving the simplicial structure. Finally,
we show that this construction yields a Segal space.

Definition 2.1.1. For an integer k ě 0 let

Intk “ tI0 ď ¨ ¨ ¨ ď Iku

be the set consisting of ordered pk`1q-tuples of intervals Ij Ď p0, 1q with left endpoints aj
and right endpoints bj such that Ij has non-empty interior, is closed in p0, 1q, and a0 “ 0,
bk “ 1. By “ordered”, i.e. Ij ď Ij1 , we mean that the endpoints are ordered, i.e. aj ď aj1

and bj ď bj1 for j ď j1.

21
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2.1.1 The spatial structure of the levels Intk

The l-simplices of the space Intk

The l-simplices do not just consist of the data of a smooth family of intervals, but we add
an extra rescaling datum which records how the intervals are deformed into each other
along the simplex. This is given by a suitable family of order-preserving diffeomorphisms.

Definition 2.1.2. Let pI0psq ď ¨ ¨ ¨ ď Ikpsqq P Intk be a smooth family of intervals over
|∆l|, i.e. denoting the left endpoints by ajpsq and the right endpoints by bjpsq, the maps
|∆l| Ñ R, s ÞÑ ajpsq, bjpsq are smooth maps. A smooth family of strictly monotonically
increasing diffeomorphisms

pϕs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|

is said to intertwine with the composed intervals if the following condition is satisfied for
every morphism f : rms Ñ rls in the simplex category ∆.

Let |f | : |∆m| Ñ |∆l| be the induced map between standard simplices. For every 0 ď j ă k
such that

• either for every s P |f |p|∆m|q the intersection Ijpsq X Ij`1psq is empty

• or for every s P |f |p|∆m|q the intersection IjpsqX Ij`1psq contains only one element,

we require that for every s P |f |p|∆m|q,

bjpsq
ϕs,t
ÞÝÝÑ bjptq, aj`1psq

ϕs,t
ÞÝÝÑ aj`1ptq;

s

t

10

ϕ0,1

ϕs,t

10 b0p0q

b0p1q

a1p0q

a1p1q

b1p0q

b1p1q

a2p0q

a2p1q

b2p0q

b2p1q

a3p0q

a3p1q

Remark 2.1.3. Note that it is enough to check this condition for m ď l.

Definition 2.1.4. An l-simplex of Intk consists of

1. a smooth family of underlying 0-simplices, i.e. for every s P |∆l|,

pI0psq ď ¨ ¨ ¨ ď Ikpsqq P Intk,

depending smoothly on s;
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2. a rescaling datum, which is a smooth family of strictly monotonically increasing
diffeomorphisms

pϕs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|

such that

a) ϕs,s “ id for every s P |∆l|,

b) ϕs,t “ ϕ´1
t,s for every s, t P |∆l|, and

c) pϕs,tqs,tP|∆l| intertwines with the composed intervals.

Remark 2.1.5. Note that in particular for l “ 0 an l-simplex in this sense is an underlying
0-simplex together with ϕs,s “ id : p0, 1q Ñ p0, 1q, so, by abuse of language we call both
a 0-simplex.

Remark 2.1.6. The third condition will imply both that the simplicial structure is well
defined (we can cut off intervals at the end) and that the spatial structure is well defined
(the family of diffeomorphisms restricts well), as we will see in the next sections.

The space Intk

The spatial structure arises similarly to that of the singular set of a topological space.

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆, i.e. a (weakly)
order-preserving map. Then let |f | : |∆m| Ñ |∆l| be the induced map between standard
simplices and let f∆ be the map sending an l-simplex in Intk given by

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|,
`

ϕs,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|
,

to
I0p|f |psqq ď . . . ď Ikp|f |psqqsP|∆m|,

`

ϕ|f |psq,|f |ptq : p0, 1q ÝÑ p0, 1q
˘

s,tP|∆m|
.

Lemma 2.1.7. This assignment gives a functor ∆op Ñ Set and thus Intk is a space, i.e. a
simplicial set.

Proof. We need to verify that

I0p|f |psqq ď . . . ď Ikp|f |psqqsP|∆m|,
`

ϕ|f |psq,|f |ptq : p0, 1q ÝÑ p0, 1q
˘

s,tP|∆m|

is an m-simplex in Intk. To see this, we need to check that the smooth family of diffeomor-
phisms pϕ|f |psq,|f |ptqqs,tP|∆m| intertwines with the composed intervals. Let g : rm1s Ñ rms,

and |g| : |∆m1 | Ñ |∆m|. Let 0 ď j ă k such that one of the two conditions on
Ijp|f |psqqX Ij`1p|f |psqq in definition 2.1.2 is satisfied for every s P |g|p|∆m1 |q. Then f ˝ g :

rm1s Ñ rls and the same condition is satisfied on Ijps̃q X Ijps̃q for every s̃ P |f ˝ g|p|∆m1 |q.

Since pϕs,tqs,tP|∆l| intertwines with the composed intervals, for every s̃ P |f ˝ g|p|∆m1 |q,

bjps̃q
ϕs,t
ÞÝÝÑ bjpt̃q, aj`1ps̃q

ϕs,t
ÞÝÝÑ aj`1pt̃q,

so for every s P |g|p|∆m1 |q, since s̃ “ |f |psq P |f ˝ g|p|∆m1 |q,

bjp|f |psqq
ϕ|f|psq,|f|ptq
ÞÝÝÝÝÝÝÝÑ bjp|f |ptqq, aj`1p|f |psqq

ϕ|f|psq,|f|ptq
ÞÝÝÝÝÝÝÝÑ aj`1p|f |ptqq.

Functoriality follows from the functoriality of the geometric realization.



24 Chapter 2. The p8, nq-category of cobordisms

Notation 2.1.8. We denote the spatial face and degeneracy maps of Intk by d∆
j and s∆

j

for 0 ď j ď l.

We will need the following lemma later for the Segal condition.

Proposition 2.1.9. Each level Intk is a contractible Kan complex. Moreover, the inclu-
sion ˚ ãÑ Int‚ given by degeneracies, where ˚ is seen as a constant complete Segal space,
is a weak equivalence of complete Segal spaces.

Proof. We first prove the contractibility. For every k ě 0, consider the composition of
degeneracy maps, which is the inclusion of the point pp0, 1q ď ¨ ¨ ¨ ď p0, 1qq P Intk, which
we will by abuse of notation again denote by p0, 1q. Given an l-simplex, we need to find
an pl ` 1q-simplex with one l-dimensional face the given l-simplex and additional vertex
p0, 1q lying opposite that face.

Let h : |∆l`1| Ñ R be the coordinate giving the distance from the given l-dimensional
face and let p : |∆l`1| Ñ |∆l| be the projection forgetting that coordinate,

hpsq

0

1

|∆l`1|

ãÑ

|∆l|

h
p

|∆l`1|

ãÑ

|∆l|

For s P |∆l`1| let

ajpsq “ p1´ hpsqqajpppsqq, bjpsq “ p1´ hpsqqbjpppsqq ` hpsq.

This is a smooth family of intervals and this construction commutes with the simplicial
structure of Int‚.

To obtain the desired pl ` 1q-simplex we need to add a rescaling datum which restricts
to the given rescaling datum on the given l-dimensional face. The condition for it to
intertwine with the composed bordisms is non-trivial only on that face since every other
face and the whole l-simplex itself contain the point p0, 1q and thus all pairs of intervals
will start to intersect along the face or the whole l-simplex.

Thus it is enough to find a smooth family of order-preserving diffeomorphisms
`

ϕs,t :

p0, 1q Ñ p0, 1q
˘

s,tP|∆l`1|
which restricts to the given one on |∆l| ãÑ |∆l`1| and satisfies

ϕs,s “ id and ϕs,t “ ϕ´1
t,s , and in a way commuting with the simplicial structure. This

follows from the fact that Diff`pRq is contractible.

Then Kan condition follows similarly from the contractibility of R and Diff`pRq.
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2.1.2 The simplicial set Int‚

In this subsection, the collection of sets Intk is endowed with a simplicial structure by
extending the assignment

rks ÞÝÑ Intk

to a functor from ∆op.

Let f : rms Ñ rks be a morphism in ∆. Then, let

Intk
f˚

ÝÑ Intm,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ ρf pIfp0q ď ¨ ¨ ¨ ď Ifpmqq,

where the rescaling map ρf is the unique affine transformation RÑ R sending afp0q to 0
and bfpmq to 1.

Lemma 2.1.10. The collection of sets pIntkqk is a simplicial set.

Proof. Given two maps rms
f
Ñ rks

g
Ñ rps, and I0 ď ¨ ¨ ¨ ď Ip, the rescaling map ρg˝f and

the composition of the rescaling maps ρg ˝ ρf both send ag˝fp0q to 0 and bg˝fpmq to 1 and,
since affine transformations R Ñ R are uniquely determined by the image of two points,
this implies that they coincide. Thus, this gives a functor ∆op Ñ Set.

Notation 2.1.11. We denote the (simplicial) face and degeneracy maps by dj : Intk Ñ
Intk´1 and sj : Intk Ñ Intk`1 for 0 ď j ď k.

Explicitly, they are given by the following formulas. The jth degeneracy map is given by
inserting the jth interval twice,

Intk
sj
ÝÑ Intk`1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ I0 ď ¨ ¨ ¨ ď Ij ď Ij ď ¨ ¨ ¨ ď Ik.

The jth face map is given by deleting the jth interval and, for j “ 0, k, by rescaling the
rest linearly to p0, 1q. For j “ 0, the rescaling map is the affine map ρ0 sending pa1, 1q to
p0, 1q, ρ0pxq “

x´a1
1´a1

and for j “ k, it is the affine map ρk : p0, bk´1q Ñ p0, 1q, ρkpxq “
x

bk´1
.

Explicitly,

Intk
dj
ÝÑ Intk´1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ

$

’

&

’

%

I0 ď ¨ ¨ ¨ ď Îj ď ¨ ¨ ¨ ď Ik, j ‰ 0, k,

p0, b1´a11´a1
s ď ¨ ¨ ¨ ď r

ak´a1
1´a1

, 1q, j “ 0,

p0, b0
bk´1

s ď ¨ ¨ ¨ ď r
ak´1

bk´1
, 1q, j “ k.

2.1.3 The Segal space Int‚

The simplicial space Int‚

We first extend the assignment f ÞÑ pf˚ : Intk Ñ Intmq to l-simplices in a compatible way.
Essentially, f˚ arises from applying f˚ to each of 0-simplices underlying the l-simplex.

Let f : rms Ñ rks be a morphism in ∆. Recall that given pI0 ď ¨ ¨ ¨ ď Ikq P Intk
we have an affine rescaling map ρf : R Ñ R which sends afp0q to 0 and bfpmq to 1.
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Given a smooth family pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, denote by ρf psq the rescaling map
associated to the sth underlying 0-simplex pI0psq ď ¨ ¨ ¨ ď Ikpsqq. Moreover, denote by
Djpsq “ pafp0qpsq, bfpmqpsqq.

Let f˚ send an l-simplex of Intk

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l| pϕs,tqs,tP|∆l|

to the following l-simplex of Intm.

1. The underlying 0-simplices of the image are the images of the underlying 0-simplices
under f˚, i.e. for s P |∆l|,

f˚ pI0psq ď ¨ ¨ ¨ ď Ikpsqq ;

2. its rescaling datum is

f˚pϕs,tq “ ρf ptq ˝ ϕs,t|Djpsq ˝ ρf psq
´1 : p0, 1qn Ñ p0, 1qn.

Note that pf˚pϕs,tqqs,tP|∆l| again intertwines well with the composed intervals since it is
a restriction of a rescaling datum.

Using the fact that the rescaling maps behave functorially, we obtain the following lemma.

Lemma 2.1.12. The collection of spaces pIntkqk is a simplicial space.

The complete Segal space Int‚

Proposition 2.1.13. Int‚ is a complete Segal space.

Proof. We have seen in lemma 2.1.9 that every Intk is contractible. This ensures the Segal
condition, namely that

Intk
»
ÝÑ Int1

h
ˆ

Int0
¨ ¨ ¨

h
ˆ

Int0
Int1,

and completeness.

Definition 2.1.14. Let

Intn‚,...,‚ “ pInt‚q
ˆn.

Lemma 2.1.15. The n-fold simplicial space Intn‚,...,‚ is a complete n-fold Segal space.

Proof. The Segal condition and completeness follow from the Segal condition and com-
pleteness for Int‚. Since every Intk is contractible by lemma 2.1.9, pInt‚q

ˆn satisfies
essential constancy, so Intn is an n-fold Segal space.
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2.2 A time-dependent Morse lemma

2.2.1 The classical Morse lemma

The following theorem is classical Morse lemma, as can be found e.g. in [Mil63].

Theorem 2.2.1 (Morse lemma). Let f be a smooth proper real-valued function on a
manifold M . Let a ă b and suppose that the interval ra, bs contains no critical values of
f . Then Ma “ f´1pp´8, asq is diffeomorphic to M b “ f´1pp´8, bsq.

We repeat the proof here since later on in this section we will adapt it to the situation we
need.

Proof. Choose a metric on M , and consider the vector field

V “
∇yf
|∇yf |2

,

where ∇y is the gradient on M . Since f has no critical value in ra, bs, V is defined in
f´1ppa ´ ε, b ` εqq, for suitable ε. Choose a smooth function g : R Ñ R which is 1 on
pa´ ε

2 , b`
ε
2 q and compactly supported in pa´ ε, b` εq. Extend g to a function g : M Ñ R

by setting gpyq “ gpfpyqq. Then

V “ g
∇yf
|∇yf |2

is a compactly supported vector field on M and hence generates a 1-parameter group of
diffeomorphisms

ψt : M ÝÑM.

Viewing f ´ pa ` tq as a function on R ˆ M , pt, yq ÞÑ fpyq ´ pa ` tq, we find that in
f´1ppa´ ε

2 , b`
ε
2 qq,

Btpf ´ pa` tqq “ 1 “
∇yf
|∇yf |2

¨ pf ´ pa` tqq “ V ¨ pf ´ pa` tqq,

and so the flow preserves the set

tpt, yq : fpyq “ a` tu.

Thus, the diffeomorphism ψb´a restricts to a diffeomorphism

ψb´a|Ma : Ma ÝÑM b.

2.2.2 The time-dependent Morse lemma

In Lemma 3.1 in [GWW] Gay, Wehrheim, and Woodward prove a time-dependent Morse
lemma which shows that a smooth family of composed cobordisms in their (ordinary)
category of (connected) cobordisms gives rise to a diffeomorphism which intertwines with
the cobordisms. We adapt this lemma to a variant which will be suitable for our situation
in the higher categorical setting.
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Proposition 2.2.2. Let M be a smooth manifold and let pfs : M Ñ p0, 1qqsPr0,1s be
a smooth family of smooth functions which give rise to a smooth proper function f :
N “ r0, 1s ˆM Ñ p0, 1q. Let pI0psq ď ¨ ¨ ¨ ď IkpsqqsPr0,1s be a smooth family of closed
intervals in p0, 1q such that for every s P r0, 1s, the function fs has no critical value
in I0psq Y ¨ ¨ ¨ Y Ikpsq. Then there is a rescaling datum pϕs,t : p0, 1q Ñ p0, 1qqs,tPr0,1s
which makes pI0psq ď ¨ ¨ ¨ ď IkpsqqsPr0,1s into a 1-simplex in Intk, and a smooth family of
diffeomorphisms pψs,t : M ÑMqs,tPr0,1s such that for

tjpsq P Ijpsq : ϕs,tptjpsqq P Ijptq, and
tlpsq P Ilpsq : ϕs,tptlpsqq P Ilptq,

ψs,t restricts to diffeomorphisms

ψs,t|f´1
s prtj ,tlsq

: f´1
s prtj , tlsq ÝÑ f´1

t prϕs,tptjq, ϕs,tptlqsq.

Proof. The main strategy of the proof is the same as for the classical Morse lemma.
Namely, we will construct a suitable vector field whose flow gives the desired diffeomor-
phisms.

Step 1: disjoint intervals

First assume that for all 0 ď j ď k and for every s P r0, 1s we have

Ijpsq X Ij`1psq “ H.

Fix a metric on M . Denote the endpoints of the intervals by ajpsq, bjpsq as before, which
yield smooth functions aj , bj : r0, 1s Ñ p0, 1q, and let

Aj “
ď

sPr0,1s

tsu ˆ f´1
s pajpsqq, Bj “

ď

sPr0,1s

tsu ˆ f´1
s pbjpsqq.

Now for 0 ď j ď k consider the vector fields

Vj “

ˆ

Bs, Bspajpsq ´ fsq
∇yfs
|∇yfs|2

˙

, Wj “

ˆ

Bs, Bspbjpsq ´ fsq
∇yfs
|∇yfs|2

˙

,

where ∇y is the gradient on M . Since fs has no critical value in Ijpsq, the vector fields
Vj and Wj are defined on f´1pUjq, where Uj is a neighborhood of

Ť

sPr0,1stsu ˆ Ijpsq.

Moreover, viewing aj : ps, yq ÞÑ ajpsq as a function on N ,

Vjpf ´ ajq “ Bspf ´ ajq ` Bspaj ´ fq
∇yf
|∇yf |2

pf ´ ajq “ Bspf ´ ajq ` Bspaj ´ fq “ 0,

So the vector field Vj is tangent to Aj and similarly, Wj is tangent to Bj .

We would now like to construct a vector field V on N which for every 0 ď j ď k, at Aj
restricts to Vj and at Bj restricts to Wj , and such that there exists a family of functions
`

cx : r0, 1s Ñ p0, 1q
˘

xPIjp0q
such that

- cxp0q “ x, cxpsq P Ijpsq,
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- the graphs of cx for varying x partition
Ť

sPr0,1stsu ˆ rajpsq, bjpsqs, and

- V is tangent to Cx “
Ť

sPr0,1stsu ˆ f
´1
s pcxpsqq.

We will use cx to define ϕ0,spxq “ cxpsq and ϕs,t “ ϕ0,t ˝ ϕ
´1
0,s. Moreover, the diffeomor-

phisms ψs,t will arise as the flow along V.

Fix smooth functions gj , hj : r0, 1s ˆ p0, 1q Ñ R which satisfy the following conditions:

1. gj , hj are compactly supported in Uj ,

2. gj “ 1 in a neighborhood of graph aj “ tps, ajpsqq : s P r0, 1su,
hj “ 1 in a neighborhood of graph bj

3. gj ` hj “ 1 in
Ť

sPr0,1stsu ˆ Ijpsq, and the supports of the gj ` hj are disjoint.

By abuse of notation, extend the functions gj , hj to functions gj , hj : N “ r0, 1sˆM Ñ R
by setting gjps, yq :“ gjps, fspyqq. Then consider the following vector field on N :

Vj “
ˆ

Bs, pgjBspajq ` hjBspbjq ´ Bspfqq
∇yf
|∇yf |2

˙

This vector field is supported on the support of gj`hj and thus extends to a vector field on
N . Note that for ps, yq P Aj , Vjps, yq “ Vjps, yq, and for ps, yq P Bj , Vjps, yq “Wjps, yq.

Now let V be the vector field on N constructed by combining the above vector fields as
follows:

V “

˜

Bs,
ÿ

0ďjďk

pgjBspajq ` hjBspbjq ´ Bspfqq
∇yfs
|∇yfs|2

¸

.

Note that in
Ť

sPr0,1stsu ˆ f
´1
s pIjpsqq, it restricts to Vj .

In order for V to be tangent to Cx, the functions cx must satisfy the following equation
at points in Cx.

0
!
“ Vjpf ´ cxq

“ Bspf ´ cxq ` pgjBspajq ` hjBspbjq ´ Bspfqq
∇f
|∇f |2

pf ´ cxq

“ ´Bspcxq ` gjBspajq ` hjBspbjq.

This leads to the ordinary differential equation with smooth coefficients on r0, 1s,

Bspcxqpsq “ gjps, cxpsqqBspajqpsq ` hjps, cxpsqqBspbjqpsq,

cxp0q “ x.

By Picard-Lindelöf, it has a unique a priori local solution. To see that it extends to
s P r0, 1s, consider the smooth function F : N Ñ r0, 1s ˆ p0, 1q, F ps, yq “ ps, fps, yqq “
ps, fspyqq. Since f is proper, so is F . Moreover, Cx “ F´1pgraph cxq. For fixed x, we can
show that Cx lies in a compact part of N “ r0, 1s ˆM similarly to the argument given in
example 2.3.2, and thus the local solution exists for all s P r0, 1s.
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We now define our rescaling data essentially by following the curve cx. Explicitly, let
ϕ0,s : p0, 1q Ñ p0, 1q be defined on rajp0q, bjp0qs by sending x0 to cx0

psq. Note that
by construction, it sends ajp0q, bjp0q to ajpsq, bjpsq. Since the solution cx of the ODE
varies smoothly with respect to the initial value x this map is a diffeomorphism. So we
can define ϕs,t : p0, 1q Ñ p0, 1q on rajpsq, bjpsqs by sending xs “ cx0psq to cx0ptq. We
extend ϕs,t to a diffeomorphism in between these intervals in the following way. Let

g̃j , h̃j : rbjp0q, aj`1p0qs Ñ R be a partition of unity such that g̃j is strictly decreasing,

g̃jpbjpsqq “ 1, and h̃jpaj`1psqq “ 1. Then, for x0 P rbjp0q, aj`1p0qs set

cx0psq “ g̃jpx0qcbjp0qpsq ` h̃jpx0qcaj`1p0qpsq and ϕs,tpcx0psqq “ cx0ptq.

As mentioned above, we obtain the diffeomorphisms ψs,t by flowing along the vector field
V. Since V is tangent to the sets Cx “

Ť

sPr0,1stsuˆ f
´1
s pcxpsqq for x P I0p0qY ¨ ¨ ¨ Y Ikp0q,

the flow preserves Cx, and
Ť

sPr0,1stsu ˆ f´1
s prbjpsq, aj`1psqsq in between. Again, this

implies that the flow exists for all s P r0, 1s. It is of the form Ψpt´ s, ps, yqq “ pt, ψs,tpyqq
for 0 ď s ď t ď 1, where pψs,tqs,tPr0,1s is a family of diffeomorphisms and intertwines with
the composed bordisms with respect to the rescaling data ϕs,t.

Step 2: common endpoints

Now consider the case that for 0 ď j ď k we have that either for every s P r0, 1s,
Ijpsq X Ij`1psq “ H as in the previous case or for every s P r0, 1s we have

|Ijpsq X Ij`1psq| “ 1.

In this case, one can modify the above argument. We explain for the case of two intervals
with one common endpoint, i.e. bjpsq “ aj`1psq.

Instead of choosing smooth functions gj , hj , gj`1, hj`1 : r0, 1s ˆ p0, 1q Ñ R such that the
supports of gj ` hj and gj`1 ` hj`1 are disjoint (which now is not possible), we fix three
smooth functions fj , gj , hj : r0, 1s ˆ p0, 1q Ñ R which satisfy the following conditions:

1. fj , gj , hj are compactly supported in Uj Y Uj`1,

2. fj “ 1 in a neighborhood of graph aj “ tps, ajpsqq : s P r0, 1su,
gj “ 1 in a neighborhood of graph bj “ graph aj`1,
hj “ 1 in a neighborhood of graph bj`1,

3. fj`gj`hj “ 1 in
Ť

sPr0,1stsuˆpIjpsqY Ij`1psqq, and the support of the fj`gj`hj
is disjoint to the sums associated to the other intervals.

Now continue the proof similarly to above.

Step 3: overlapping intervals

It remains to consider the case when for some 0 ď j ď k and some s P r0, 1s,

Ijpsq X Ij`1psq

has non-empty interior.
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Intervals always overlap. First, if Ijpsq X Ij`1psq has non-empty interior for every
s P r0, 1s, then one can do the above construction with the intervals Ijpsq, Ij`1psq replaced
by the interval Ijpsq Y Ij`1psq.

Intervals do not always overlap. If IjpsqXIj`1psq sometimes has non-empty interior,
but not for every s P r0, 1s, we can combine the cases treated so far.

We explain the process in the case that there is an s̃ such that for s ă s̃, IjpsqXIj`1psq “ H
and for s ě s̃, Ijpsq X Ij`1psq ‰ H. In this case, x̃ “ bjps̃q “ aj`1ps̃q, which is a regular
value of fs̃. Since f is smooth, there is an open ball Uj centered at ps̃, x̃q in r0, 1s ˆ p0, 1q
such that for ps, xq P U , x is a regular value of fs. Let ˜̃s ă s̃ be such that for every
˜̃s ď s ď s̃, the set tsuˆrajpsq, bj`1psqs is covered by U Y

`

tsuˆpIjpsqY Ij`1psqq
˘

. Choose

s0 and t0 such that ˜̃s ď s0 ă t0.

s0
t0

bjp0q

bjp1q

aj`1p0q

aj`1p1q

In r0, t0s, we are in the situation of disjoint intervals and can use the first construction to

obtain c
p2q
x psq and Vp2qps, yq for s ď t0.

In rs0, 1s, we apply the construction from step 1 to the intervals Ijpsq and Ij`1psq replaced

by the interval rajpsq, bj`1psqs to obtain c
p2q
x psq and Vp2qps, yq for s ě s0.

Now choose a partition of unity G,H : r0, 1s Ñ R such that G|r0,s0s “ 1, H|rt0,1s “ 1, and
G is strictly decreasing on rs0, t0s. For s ă t define

cxpsq “ Gpsqcp1qx psq `Hpsqc
p2q
x psq, Vps, yq “ GpsqVp1qps, yq `HpsqVp2qps, yq.

Then define ϕs,t and ψs,t as before.

2.3 The p8, nq-category of bordisms Bordn

In this section we define an n-fold Segal space PBordn in several steps. However, it will
turn out not to be complete. By applying the completion functor we obtain a complete
n-fold Segal space, the p8, nq-category of bordisms Bordn.

Let V be a finite dimensional vector space. We first define the levels relative to V with
elements being certain submanifolds of the (finite dimensional) vector space V ˆp0, 1qn –
V ˆ Rn. Then we let V vary, i.e. we take the limit over all finite dimensional vector
spaces lying in some fixed infinite dimensional vector space, e.g. R8. The idea behind
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this process is that by Whitney’s embedding theorem, every manifold can be embedded
in some large enough vector space, so in the limit, we include representatives of every
n-dimensional manifold. We use V ˆ p0, 1qn instead of V ˆ Rn as in this case the spatial
structure is easier to write down explicitly.

2.3.1 The level sets pPBordnqk1,...,kn

For S Ď t1, . . . , nu denote the projection from p0, 1qn onto the coordinates indexed by S
by πS : p0, 1qn Ñ p0, 1qS .

Definition 2.3.1. Let V be a finite dimensional vector space. For every n-tuple k1, . . . , kn ě
0, let pPBordVn qk1,...,kn be the collection of tuples pM, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq, satisfying
the following conditions:

1. M is a closed n-dimensional submanifold of V ˆ p0, 1qn and the composition π :
M ãÑ V ˆ p0, 1qn � p0, 1qn is a proper map.

2. For 1 ď i ď n,

pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki .

3. For every S Ď t1, . . . , nu, let pS : M
π
ÝÑ p0, 1qn

πS
ÝÝÑ p0, 1qS be the composition of

π with the projection πS onto the S-coordinates. Then for every 1 ď i ď n and
0 ď ji ď ki, at every x P p´1

tiupI
i
ji
q, the map pti,...,nu is submersive.

Remark 2.3.2. For k1, . . . , kn ě 0, one should think of an element in pPBordnqk1,...,kn
as a collection of k1 ¨ ¨ ¨ kn composed bordisms, with ki composed bordisms with collars in
the ith direction. They can be understood as follows.

• Condition 3 in particular implies that at every x P p´1
tnupI

n
j q, the map ptnu is sub-

mersive, so if we choose tnj P I
n
j , it is a regular value of ptnu, and so p´1

n pt
n
j q is

an pn´ 1q-dimensional manifold. The embedded manifold M should be thought of
as a composition of n-bordisms and p´1

n pt
n
j q is one of the pn ´ 1q-bordisms in the

composition.

• At x P p´1
tn´1upI

n´1
j q, the map ptn´1,nu is submersive, so for tn´1

l P In´1
l , the preim-

age

p´1
tn´1,nu

´

ptn´1
l , tnj q

¯

is an pn´2q-dimensional manifold, which should be thought of as one of the pn´2q-
bordisms which are connected by the composition of n-bordisms M . Moreover, again
since ptn´1,nu is submersive at p´1

tn´1upI
n´1
l q, the preimage p´1

tn´1upt
n´1
l q is a trivial

pn´ 1q-bordism between the pn´ 2q-bordisms it connects.

• Similarly, for ptkjk , . . . , t
n
jn
q P Ikjk ˆ ¨ ¨ ¨ ˆ I

n
jn

, the preimage

p´1
tk,...,nu

´

ptkjk , . . . , t
n
jnq

¯

is a pk´ 1q-dimensional manifold, which should be thought of as one of the pk´ 1q-
bordisms which is connected by the composition of n-bordisms M .
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• Moreover, the following proposition shows that different choices of “cutting points”
tij P I

i
j lead to diffeomorphic bordisms. One should thus think of the n-bordisms

we compose as π´1p
śn
i“1rb

i
j , a

i
j`1sq, and the preimages of the specified intervals as

collars of the bordisms along which they are composed.

We will come back to this interpretation in section 2.6 when we compute homotopy
(bi)categories.

10 b0a1 b1 a2 b2 a3
t3t2t1t0

Proposition 2.3.3. For 1 ď i ď n let uij , v
i
j P I

i
j and uij`1, v

i
j`1 P I

i
j`1. Then there is a

diffeomorphism

p´1
tiupru

i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , v

i
j`1s.

Proof. Since the map ptiu is submersive in Iij and Iij`1, we can apply the Morse lemma
2.2.1 to ptiu twice to obtain diffeomorphisms

p´1
tiupru

i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , u

i
j`1sq ÝÑ p´1

tiuprv
i
j , v

i
j`1sq.

Applying the proposition successively for i “ 1, . . . , n yields

Corollary 2.3.4. Let B1, B2 Ď p0, 1q
n be products of closed intervals with endpoints lying

in the same Iij’s. Then there is a diffeomorphism

π´1pB1q ÝÑ π´1pB2q.

2.3.2 The spaces pPBordnqk1...,kn

The level sets pPBordVn qk1,...,kn form the underlying set of 0-simplices of a space which we
construct in this subsection.

The l-simplices of the space pPBordVn qk1...,kn

Let |∆l| denote the standard geometric l-simplex.

Definition 2.3.5. An l-simplex of pPBordVn qk1,...,kn consists of the following data:
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1. A smooth family of underlying 0-simplices, which is a smooth family of elements

`

Ms Ď V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

P pPBordVn qk1,...,kn

indexed by s P |∆l|. By this we mean that
Ť

sP|∆l|tsuˆMs Ď |∆
l| ˆ V ˆ p0, 1qn is a

smooth submanifold with corners, and that the endpoint maps aij , b
i
j of the intervals

are smooth;

2. For every 1 ď i ď n, a rescaling datum
`

ϕis,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|
which together

with
`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

is an l-simplex in Intki ;

3. A smooth family of diffeomorphisms

pψs,t : Ms ÝÑMtqs,tP|∆l|,

such that ψs,s “ idMs
and ψs,t “ ψ´1

t,s , which intertwine with the composed bordisms

with respect to the product of the rescaling data ϕs,t “ pϕ
i
s,tq

n
i“1 : p0, 1qn Ñ p0, 1qn.

By this we mean the following. Denoting by πs the composition Ms ãÑ V ˆp0, 1qn �
p0, 1qn, for 1 ď i ď n and 0 ď ji, li ď ki let

tijipsq P I
i
ji
psq such that ϕs,tpt

i
ji
psqq P Iijiptq, and

tilipsq P I
i
li
psq such that ϕs,tpt

i
li
psqq P Iiliptq.

Then ψs,t restricts to a diffeomorphism

π´1
s

˜

n
ź

i“1

rtijipsq, t
i
lipsqs

¸

ψs,t
ÝÝÑ π´1

s

˜

n
ź

i“1

rϕs,tpt
i
jipsqq, ϕs,tpt

i
lipsqqs

¸

,

i.e. denoting B “
śn
i“1rt

i
ji
psq, tilipsqs,

Mt π´1
t pϕs,tpBqq

Ms π´1
s pBq ϕs,tpBq

p0, 1qn B

πtψs,t

πs πs

ψs,t

ϕs,t

Remark 2.3.6. The condition that the diffeomorphisms ψs,t intertwine with the com-
posed bordisms in the elements of the family means that ψs,t induces diffeomorphisms of
the composed bordisms in the family and the rescaling data remembers to which choice
of cutoffs the specified diffeomorphism restricts.

Remark 2.3.7. In the above definition we let the intervals vary as s P |∆l| varies. In
practice, when dealing with a fixed element of an l-simplex, we can assume that these
intervals are fixed as s varies by choosing a fixed vertex t0 P |∆

l|0 and composing each ιs
with ϕs,t0 : p0, 1qn Ñ p0, 1qn and keeping the intervals constant at Iijpt0q. This new path
is connected by a homotopy to the original one.
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The space pPBordnqk1,...,kn

We now lift the spatial structure of Intnk1,...,kn to pPBordnqk1,...,kn .

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆, i.e. a (weakly)
order-preserving map. Then let |f | : |∆m| Ñ |∆l| be the induced map between standard
simplices.

Let f∆ be the map sending an l-simplex in pPBordVn qk1,...,kn to the m-simplex which
consists of

1. for s P |∆m|,
M|f |psq Ď V ˆ p0, 1qn;

2. for 1 ď i ď n, the m-simplex in Intki obtained by applying f∆,

f∆
´

Ii0psq ď ¨ ¨ ¨ ď Iikipsq, ϕ
i
s,t

¯

;

3. for s, t P |∆m|,
ψ|f |psq,|f |ptq : M|f |psq ÝÑM|f |ptq.

Proposition 2.3.8. pPBordVn qk1,...,kn is a space. Moreover, it is a Kan complex, i.e. fi-
brant in the category of simplicial sets with Quillen model structure.

Proof. The above assignment indeed is well-defined since the underlying assignment for
the underlying intervals is well-defined and the conditions on ψ|f |psq,|f |ptq are a special
case of those on ψs,t. Moreover, since this structure essentially comes from the spatial
structure of Intki and the simplicial structure of Np∆q, the assignment is functorial.

It remains to show that this space is a Kan complex. A morphism Λlk Ñ PBordVn is the
data of, for s, t P |Λlk|,

`

Ms Ď V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

P pPBordVn qk1,...,kn ,

`

ϕis,t : p0, 1q Ñ p0, 1q
˘

, and
`

ψs,t : Ms ÝÑMt

˘

.

We have seen in 2.1.9 in particular that every Intk is a Kan complex. The proof is com-
pleted by the fact that the inclusions of spaces SubsmpM,V ˆp0, 1qn ãÑ SubpM,V ˆp0, 1qn

and Diffsm,`pMq ãÑ Diff`pMq are weak equivalences (see e.g. ), and both SubpM,V ˆ
p0, 1qn and Diff`pMq are Kan complexes by an argument similar to that of showing that
the singular complex of a manifold is a Kan complex.

Notation 2.3.9. We denote the spatial face and degeneracy maps of pPBordVn qk1,...,kn by
d∆
j and s∆

j for 0 ď j ď l.

So far the definition depends on the choice of the vector space V . However, in the bordism
category we need to consider all (not necessarily compact) n-dimensional manifolds. By
Whitney’s embedding theorem any such manifold can be embedded into some V ˆ p0, 1qn

for some finite dimensional vector space V , so we need to allow big enough vector spaces.
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Definition 2.3.10. Fix some (countably) infinite dimensional vector space, e.g. R8. Then

PBordn “ lim
ÝÑ
VĂR8

PBordVn .

Example: Cutoff path

We now construct an example of a path which will be used several times later on. It shows
that cutting off part of the collar of a bordism yields an element which is connected to
the original one by a path.

Let pMq “ pM Ď V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pPBordnqk1,...,kn . We show that
cutting off a short enough piece at an end of an element of pPBordnqk1,...,kn leads to an
element which is connected by a path to the original one. Explicitly, for ε small enough,
we show that there is a 1-simplex with underlying 0-simplices

`

ιs : Ms ãÑ V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
n
i“1

˘

P pPBordVn qk1,...,kn

such that Ms “ p´1
i ppsε, 1qq and Iijpsq “ ρspI

i
jq, where ρs : psε, 1q Ñ p0, 1q is the affine

rescaling map x ÞÑ x´sε
1´sε , and

ιs : Ms Ď V ˆ p0, 1qn´1 ˆ psε, 1q
idˆρs
ÝÝÝÝÑ V ˆ p0, 1qn.

Fix 1 ď i ď n and let ε ă bi0. LetN be the manifold r0, 1sˆM Ď r0, 1sˆV ˆp0, 1qn endowed
with the induced metric, and view pi as a function on N by setting pips, yq “ pipyq. Choose
a smooth cutoff function g : r0, 1s ˆ p0, 1q Ñ R such that g “ 1 in a neighborhood Uε of
tps, zq : z P rsε, sε ` 1´ε

3 qu and g “ 0 on U1 “ r0, 1s ˆ p2`ε
3 , 1q and extend g to N by

setting gps, yq “ gps, pipyqq.

ε

sε sε ` 1´ε
3

2`ε
3

g “ 1 g “ 0

Consider the vector field on N given by

V “ pBs, εg
∇ypi
|∇ypi|2

q,

where ∇y denotes the gradient on M . Note that over Uε, V “ pBs, ε
∇ypi
|∇ypi|2 q and over U1,

V “ 0. We now show that the flow along the vector field V exists for ps, yq such that
sε ă pipxq ă 1,
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For ξ ă 1´ε
3 , ps, sε`ξq P Uε, and, defining pi´sε`ξ to be the function ps, yq ÞÑ pipyq´sε`ξ

on N ,

V ¨ ppi ´ psε` ξqq “ ´ε` ε
∇ypi
|∇ypi|2

ppi ´ psε` ξqq “ 0. (2.1)

For α ‰ i and ξα P p0, 1q, since all components of V except for the ith are 0,

V ¨ ppα ´ ξαq “ 0, (2.2)

where again we view pα ´ ξα as a function on N . Let

~ξ : r0, 1s Ñ r0, 1s ˆ p0, 1qn, s ÞÑ ps, ξ1, . . . , ξi´1, sε` ξ, ξi`1, . . . , ξnq.

Equations 2.1 and 2.2 imply that the flow of V preserves the sets

Ξ~ξ “ tps, yq : πpyq “ ~ξpsqu “ pidr0,1s ˆ πq
´1pgraph ~ξq.

The graph of ~ξ is closed and therefore compact as it is a closed subset of r0, 1sˆ tξ1u ¨ ¨ ¨ˆ
rξ, ε` ξs ˆ ¨ ¨ ¨ ˆ tξnu. Since π is proper, idˆ π is proper, and thus Ξ~ξ is compact. Hence
in

tps, yq : sε ă pipyq ă ε`
1´ ε

3
u

the flow exists for all s P r0, 1s.

In U1, the flow is of the form Ψpt´ s, ps, yqq “ pt, yq and so it also exists for s P r0, 1s.

For points ps0, yq P N such that pipyq P rs0ε`
1´ε

3 , 2`ε
3 s, the flow preserves the set

Ξ~ξ “ pidr0,1s ˆ πq
´1pgraph ~ξq,

where ~ξ : s ÞÑ ps, ξ1, . . . , ξi´1, ξipsq, ξi`1, . . . , ξnq, and ~ξps0q “ y, and ξipsq is a solution at
points in Ξξ of the ordinary differential equation with smooth coefficients

0
!
“ V ¨ ppi ´ ξiq

“ ´Bsξi ` εgBsξi
∇ypi
|∇ypi|2

ppi ´ ξiq

“ ´Bsξi ` εg.

By Picard-Lindelöf, this ordinary differential equation has a unique, a priori local, solution.
Similarly, the flow exists locally. Furthermore, the preimage of the proper map pidr0,1sˆπq

of the compact set r0, 1s ˆ r 1´ε3 , 2`ε
3 s is compact. Since Ξ~ξ is a subset of this preimage,

we are looking for solutions of the above differential equation on this compact manifold.
By compactness, they exist globally and therefore the flow exists for all s P r0, 1s.

Piecing this together, the flow takes on the form

Ψpt´ s, yq “ pt, ψs,tpyqq

for sε ă pipyq and exists for all s P r0, 1s. This gives the desired family of diffeomorphisms
ψs,t : p´1

i ppsε, 1qq Ñ p´1
i pptε, 1qq. The rescaling data ϕs,t : p0, 1qn Ñ p0, 1qn is the identity

on coordinates except for the ith, where it is given by

ϕis,tpxsq “

$

’

&

’

%

ρspxs ` pt´ sqεq, forxs ă sε` 1´ε
3 ,

ρspxsq, forxs ą
2`ε

3 ,

ρspξiptqq, for sε` 1´ε
3 ď xs ď

2`ε
3 ,
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where ξi is the integral curve through xs, which is the solution to the differential equation
above.

Remark 2.3.11. In the above example we constructed a path from an element in
pPBordVn qk1,...,kn to its “cutoff”, where we cut off the preimage of p´1

i pp0, εsq for suitably
small ε. Note that the same argument holds for cutting off the preimage of p´1

i pr1´ δ, 1qq
for suitably small δ. Moreover, we can iterate the process and cut off εi, δi strips in all

i directions. Choosing εi “
bi0
2 , δi “

aiki
2 yields a path to its “cutoff” with underlying

submanifold

cutpMq “ π´1
´

n
ź

i“1

p
bi0
2
,
aiki
2
q

¯

.

The map π : M Ñ p0, 1qn is proper, which implies that π´1p
śn
i“1r

bi0
2 ,

aiki
2 sq Ą cutpMq

is compact and thus bounded in the V -direction. Thus, any element in pPBordVn qk1,...,kn
is connected by a path to an element whose underlying submanifold is bounded in the
V -direction.

Variants of the spatial structure

Following [Lur09c], one could define the spatial structure of pPBordVn qk1,...,kn as follows
to obtain classifying spaces of bordisms:

1. One could make pPBordVn qk1,...,kn into a topological space (instead of a simplicial
set) by endowing it with the following topology coming from the Whitney topology.

On the set SubpV ˆ p0, 1qnq of closed (not necessarily compact) submanifolds M Ď

V ˆ p0, 1qn, a neighborhood basis at M is given by

tN ãÑ V ˆ p0, 1qn : N XK “ jpMq XK, j PW u,

where K Ď V ˆp0, 1qn is compact and W Ď EmbpM,V ˆp0, 1qnq is a neighborhood
of the inclusion M ãÑ V ˆ p0, 1qn in the Whitney C8-topology (see [Gal11]). Using
the standard topology on R and the product topology gives a topology on

SubpV ˆ Rnq ˆ
n
ď

i“1

k1
ď

j“1

taij , b
i
j´1 P r0, 1s : aij ă biju.

We take the quotient topology of this topology with respect to the relation iden-
tifying elements pM0, I

i
jp0q’s), pM1, I

i
jp1q’sq if the preimages of the boxes Bplq “

rb10plq, a
1
k1
plqs ˆ ¨ ¨ ¨ ˆ rbn0 plq, a

n
kn
plqs for l “ 0, 1, respectively, under their composition

with the projection to p0, 1qn coincide, i.e.

π´1
1 pBp0qq “ π´1

2 pBp1qq,

where for l “ 0, 1, πl : M ãÑ V ˆ Rn � Rn. Finally, pPBordVn qk1,...,kn is a subspace
thereof.

However, the reason for our choice of using simplicial sets instead of spaces is that we
eventually want to construct a fully extended topological field theory and the levels
of our target which we construct in the next chapter will be naturally modelled as
simplicial sets. Thus it is more natural to also model the levels of our source category,
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the bordism category, as simplicial sets. If one would rather have topological spaces
as the spatial structure of the levels, one can apply geometric realization to the
simplicial sets.

2. To model the levels of the bordism category as simplicial sets, we could start with the
above version as a topological space and take singular or, even better, differentiable
chains of this space to obtain a simplicial set. Then, the l-vertices would consist of
smooth submanifolds

I : ∆l ˆM ãÑ ∆l ˆ V ˆ p0, 1qn,

where I commutes with the projections to ∆l, such that @s P |∆l|,

pMs “ ImpIps,´qq Ď V ˆ p0, 1qn, pIi0psq ď . . . ď Iikipsqqi“1,...,nq P pPBordVn qk1,...,kn .

Note that as abstract manifolds, Ms “ M , but as submanifolds, they are diffeo-
morphic images of the same abstract manifold along the path. Thus, there are
diffeomorphisms

ψs,t : Ms ÝÑMt

as in our definition. Moreover, for l “ 1, proposition 2.3.12 below, which is a
corollary of proposition 2.2.2, the time-dependent Morse lemma, implies that there
exists such a family of diffeomorphisms and some rescaling data which intertwine.
So paths in this simplicial set yield paths in ours.

It also implies that for l ą 0, given any two fixed points s, t P |∆l|, we obtain a
diffeomorphism ψs,t and a rescaling function ϕs,t, by applying the lemma to any
path between s and t and defining ψs,t “ ψ0,1 and ϕs,t “ ϕ0,1. Choosing the
same (shape of) partitions of unity in this process we get a smooth family of such
diffeomorphisms, so l-simplices in this simplicial set yield l-simplices in ours.

Moreover, the diffeomorphisms appearing are all isotopic to the identity and there-
fore arise as the flow of a (time-dependent) vector field [Thu74], which however may
not be of the form of the ones we considered. We nevertheless believe that the two
simplicial sets are weakly equivalent under the map simply forgetting the family of
diffeomorphisms.

Proposition 2.3.12. Consider a smooth one-parameter family of embeddings

pI : r0, 1s ˆM ãÑ r0, 1s ˆ V ˆ p0, 1qn, r0, 1s Q s ÞÑ pIi0psq ď . . . ď Iikipsqqi“1,...,nq,

which gives rise to

pMsq “ pM
Ips,´q
ãÝÝÝÝÑ V ˆ p0, 1qn, pIi0psq ď . . . ď Iikipsqqi“1,...,nq

in pPBordnqk1,...,kn . Then there is a rescaling data pϕs,t : p0, 1qn Ñ p0, 1qnqs,tPr0,1s and
a family of diffeomorphisms pψs,t : M Ñ Mqs,tPr0,1s which intertwines with the rescaling
data.

Proof. For 1 ď i ď n, let 0 ď ji ď ki ´ 1. Let

πs : M
Ips,´q
ãÝÝÝÝÑ V ˆ p0, 1qn � p0, 1qn

and denote by ppiqs : M Ñ p0, 1q the composition of πs with the projection to the ith
coordinate. Note that by condition 3 in definition 2.3.1, the function ppiqs does not have
a critical point in Ii0psq Y . . .Y I

i
ki
psq.
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We cannot quite apply the the time-dependent Morse lemma 2.2.2 to ppiqs, because we
only have properness of the individual πs, and moreover, this would ensure intertwining
only in the ith direction. However, we can adapt the proof to our situation.

Choosing the metric on M coming from Ip0,´q, and following the proof of the proposition
2.2.2, for each i we get a vector field

Vi “

˜

Bs,
ÿ

0ďjďk

pgjBspajq ` hjBspbjq ´ Bsppiqq
∇yppiqs
|∇yppiqs|2

¸

“:

ˆ

Bs,Πips, yq
∇yppiqs
|∇yppiqs|2

˙

.

We combine them to obtain a new vector field on r0, 1s ˆM ,

Ṽ “

˜

Bs,
n
ÿ

i“1

Πips, yq
∇yppiqs
|∇yppiqs|2

¸

.

The projections ppiq0 and ppjq0 are orthogonal with respect to the metric on M induced by
the embedding Ip0,´q, and moreover, ppiqs, ppjqs stay orthogonal along the path, because
the change of metric on M induced by the change of embedding respects orthogonality on
p0, 1qn. This implies that

∇yppiqs
|∇yppiqs|2

pj “ δij ,

and so Ṽ still is tangent to the respective Cix in each direction and thus its flow, if it exists
globally, will give rise to the desired diffeomorphisms and rescaling data.

The global existence follows from the special form of the vector field. Given a point
pt, ytq P N , the flow will preserve a set of the form

tps, yq : πspysq “ pc
1
x0
psq, . . . , cnx0

psqq “ pξ1psq, . . . , ξnpsqqu,

where the right hand side is in the notation of example 2.3.2, and ~cx0
ptq “ ~ξptq “ yt.

Similarly to in the example, one can show that this set lies in a compact part of N and
thus the flow exists globally.

2.3.3 The n-fold simplicial set pPBordnq‚,¨¨¨ ,‚

In the next two subsections we will make the collection of spaces pPBordnq‚,...,‚ into an
n-fold simplicial space by lifting the simplicial structure of Intˆn‚,...,‚. In this section we
define the structure on 0-simplices, which makes pPBordnq‚,...,‚ into an n-fold simplicial
set. In the next subsection we extend the structure to l-vertices of the levels to obtain an
n-fold simplicial space pPBordnq‚,...,‚.

Fixing 1 ď i ď n, we first need to extend the assignment

rkis ÞÝÑ pPBordnqk1,...,kn

to a functor from ∆op. Let f : rmis Ñ rkis be a morphism in the simplex category ∆,
i.e. a (weakly) order-preserving map. Then we need to define the map

pPBordnqk1,...,ki,...kn
f˚

ÝÑ pPBordnqk1,...,mi,...kn .
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Notation 2.3.13. Recall that the map f˚ : Intki Ñ Intmi is defined using an affine
rescaling map ρf : R Ñ R which sends aifp0q to 0 and bifpmq to 1 and thus restricts to a

diffeomorphism ρf : Df “ pa
i
fp0q, b

i
fpmqq Ñ p0, 1q. By abuse of notation, we again denote

by ρf the map

ρf : V ˆ
ź

α‰i

p0, 1q ˆ paifp0q, b
i
fpmqq Ñ V ˆ p0, 1qn,

which is ρf in the ith component of p0, 1qn and the identity otherwise.

Definition 2.3.14. Let f : rmis Ñ rkis be a morphism in ∆. Then

pPBordnqk1,...,ki,...kn
f˚

ÝÑ pPBordnqk1,...,mi,...kn .

applies f˚ to the ith tuple of intervals and perhaps cuts the manifold and rescales. Ex-
plicitly, it sends an element

pMq :“ pι : M ãÑ V ˆ p0, 1qn, pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q

to

´

ρf ˝ ι|p´1
i pDf q

: p´1
i pDf q ãÑ V ˆ p0, 1qn, pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, f

˚pIi0 ď ¨ ¨ ¨ ď Iikiq
¯

.

Remark 2.3.15. In the following, we will omit explicitly writing out the restriction of ι
to p´1

i pDf q for readability.

Notation 2.3.16. We denote the (simplicial) face and degeneracy maps by
dij : pPBordnqk1,...,kn Ñ pPBordnqk1,...,ki´1,...,kn and sij : pPBordnqk1,...,kn Ñ
pPBordnqk1,...,ki`1,...,kn for 0 ď j ď ki.

Proposition 2.3.17. pPBordnq‚,...,‚ is an n-fold simplicial set.

Proof. This follows from the fact that Int‚ is a simplicial set and rescalings behave func-
torially.

Remark 2.3.18. Recall from remark 2.3.2 that for k1, . . . , kn ě 0, one should think of an
element in the set pPBordnqk1,...,kn as a collection of k1 ¨ ¨ ¨ kn composed bordisms with ki
composed bordisms with collars in the ith direction. These composed collared bordisms
are the images under the maps

Dpj1, . . . , jkq : pPBordnqk1,...,kn ÝÑ pPBordnq1,...,1

for p1 ď ji ď kiq1ďiďn arising as compositions of face maps, i.e. Dpj1, . . . , jkq is the map
determined by the maps

r1s Ñ rkis, p0 ă 1q ÞÑ pji ´ 1 ă jiq

in the category ∆ of finite ordered sets. This should be thought of as sending an element
to the pj1, . . . , jkq-th collared bordism in the composition.
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2.3.4 The full structure of pPBordnq‚,¨¨¨ ,‚ as an n-fold simplicial space

In this subsection, we show that the maps defined in the previous paragraph are compatible
with the structure of the levels as simplicial sets, i.e. for a morphism f : rmis Ñ rkis in the
simplex category ∆, we will define compatible maps f˚ for l-simplices of the simplicial set
pPBordnqk1,...,kn . They will be defined similarly as on vertices, namely by applying the
map f˚ to each underlying 0-simplex and by perhaps restricting the rescaling data and
the diffeomorphisms. For the face and degeneracy maps, this will amount to the following.

• Degeneracy maps arise from the degeneracy maps of Intn‚,...,‚ by repeating one of the

families of intervals Iijpsq.

Fix 1 ď i ď n.

• For 0 ă j ă ki the jth face map dij arises from the face map of Intn‚,...,‚ by deleting

the jth family of intervals Iijpsq in the ith direction.

• Face maps for j “ 0, ki require cutting and rescaling:

Notation 2.3.19. Recall that for a morphism f of the simplex category ∆, we have
a rescaling map ρf : R Ñ R which restricts to a diffeomorphism ρf : Df Ñ p0, 1q,
with Df “ pafp0q, bfpmqq. By abuse of notation, we also denote by ρf the diffeomorphism
ρf :

ś

α‰ip0, 1qˆDf Ñ p0, 1qn which is ρf in the ith coordinate and the identity otherwise.
Moreover, denote by ρf psq be the analog of the map ρf associated to the sth underlying
0-simplex pIi0psq ď ¨ ¨ ¨ ď Iikipsqq P Intki .

Definition 2.3.20. Let f : rmis Ñ rkis be a morphism in the simplex category ∆.
Consider an l-simplex of pPBordnqk1,...,kn consisting of

`

ιs : Ms ãÑ V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
n
i“1

˘

sP|∆l|
,

pϕs,t : p0, 1qn ÝÑ p0, 1qnqs,tP|∆l|
, and pψs,t : Ms ÝÑMtqs,tP|∆l|

.

Let f˚ send it to the l-simplex of pBordnqk1,...,ki´1,...,kn consisting of the following data.

1. The underlying 0-simplices of the image are the images of the underlying 0-simplices
under f˚, i.e. for s P |∆l|,

f˚
`

Ms Ď V ˆ p0, 1qn, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

“

“

´

ρf psq ˝ ιs|Ns : Ns ãÑ V ˆ p0, 1qn,

pIα0 ptq ď ¨ ¨ ¨ ď Iαkαptqqα‰i, f
˚pIi0ptq ď ¨ ¨ ¨ ď Iikiptqq

¯

,

where Ns “ ppsq
´1
i pDf psqq.

2. The underlying l-simplex in Intki is sent to its image under f˚, i.e. its rescaling data
is f˚pϕs,tq. Recall from section 2.1.3 that this is

f˚pϕs,tq “ ρf psq ˝ ϕs,t|Df psq ˝ ρf psq
´1 : p0, 1qn Ñ p0, 1qn.
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3. Since the diffeomorphisms ψs,t intertwine with the composed bordisms with respect
to the rescaling data ϕs,t, for every s, t P ∆l we have diffeomorphisms

ψs,t|Ns : Ns Ñ Nt,

which intertwine with the (new) composed bordisms with respect to with the (new)
rescaling data.

Proposition 2.3.21. The spatial and simplicial structures of pPBordnq‚,...,‚ are compat-
ible, i.e. for g : rls Ñ rps, fα : rmαs Ñ rkαs, and fβ : rmβs Ñ rkβs, for 1 ď α ă β ď n, the
induced maps

g∆, f˚α , and f˚β

commute. We thus obtain an n-fold simplicial space pPBordnq‚,¨¨¨ ,‚.

Proof. By construction, g∆ commutes with the simplicial structure. Moreover, the maps
f˚α , f

˚
β commute since they modify different parts of the structure.

2.3.5 The complete n-fold Segal space Bordn

Proposition 2.3.22. pPBordnq‚,...,‚ is an n-fold Segal space.

Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition in the
following case. The general proof works similarly. We will show that

pPBordnqk1,...,2,...,kn
„
ÝÑ pPBordnqk1,...,1,...,kn

h
ˆ

pPBordnqk1,...,0,...,kn

pPBordnqk1,...,1,...,kn .

We will omit the indices and corresponding intervals for α ‰ i for clarity. Our goal
is to construct a map glue such that glue ˝ pd0 ˆ d2q „ id, pd0 ˆ d2q ˝ glue „ id,

pPBordnq1
h
ˆ

pPBordnq0

pPBordnq1 pPBordnq2

glue

d0 ˆ d2

Since every level set pPBordnqk1,...,kn is a Kan complex by proposition 2.3.8, i.e. fi-
brant, the homotopy fiber product consists of triples consisting of two points and a
path between them. Choose such an element given by

pMq “ pι : M ãÑ V ˆ p0, 1qn, p0, bs ď ra, 1qq,

pM̃q “ pι̃ : M̃ ãÑ V ˆ p0, 1qn, p0, b̃s ď rã, 1qq
P pPBordnq1

h
ˆ

pPBordnq0

pPBordnq1.

We will construct their image under glue, which is an element in pPBordnq2, essen-
tially by gluing them.

We saw in example 2.3.2 that cutting off a short enough piece at an end of an element
of pPBordnq1 leads to an element which is connected by a path to the original one,
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i.e. pι : M ãÑ V ˆ p0, 1qn, p0, bs ď ra, 1qq „ pι : p´1
i pp0, 1´ εqq ãÑ V ˆ p0, 1qn, p0, bs ď

ra, 1´ εqq, composed with suitable rescalings, for 0 ă ε ă a. So if the source of our
glued element is such a “cutoff”, there is a path to the original pMq.

Since we started with an element in the homotopy fiber product, there is a path
between the target of the first, N “ tppMqq, and the source of the second, Ñ “

sppM̃qq. Composing this path with the inverse of the path connecting tppMqq and
its cutoff as described above gives a path between the “cutoff” and pÑq.

Let us now assume that we have rescaled the embeddings and intervals such that
they fit into p0, dq respectively pc, 1q, and moreover, pa, 1q and p0, bq are sent to pc, dq.
Now we glue the embeddings along pd´ε, dq for ε “ 1

2 pd´cq using a partition of unity
subordinate to the cover tp0, d´ ε

2 q, pd´ ε, 1qu. This gives a new embedded manifold

˜̃ι : ˜̃M ãÑ V ˆ p0, 1qn and together with the intervals p0, bs ď rc, 1
2 pd ´ cqs ď rã, 1q

they form an element in pPBordnq2.

10 b c d ãd ´ ε “ 1
2
pd ` cq

d ´ ε
2

This construction extends to l-simplices: by construction, this procedure depends
smoothly on the parameter for a smooth family of manifolds and intervals. It remains
to see that given an l-simplex in the homotopy fiber product we can obtain a family
of diffeomorphisms intertwining with the composed bordisms. This follows because
the data of a path between l-simplices includes the data of diffeomorphisms which
we can use to patch together the given diffeomorphisms of the source and target.

2. For every i and every k1, . . . , ki´1, the pn´iq-fold Segal space pPBordnqk1,...,ki´1,0,‚,¨¨¨ ,‚

is essentially constant.

We show that the degeneracy inclusion map

pPBordnqk1,...,ki´1,0,0,...,0 ãÝÑ pPBordnqk1,...,ki´1,0,ki`1,...,kn

admits a deformation retraction and thus is a weak equivalence.

For s P r0, 1s, consider the map γs sending an element in pPBordnqk1,...,ki´1,0,ki`1,...,kn

represented by

pMq :“ pM Ď V ˆ p0, 1qn,
´

Iβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqiăαďn

¯

to

pMqs :“
´

M Ď V ˆ p0, 1qn, pIβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q,

pIα0 psq ď ¨ ¨ ¨ ď Iαkαpsqqiăαďn

¯

,



2.4. Variants of Bordn and comparison with Lurie’s definition 45

where for α ą i, aαj psq “ p1´ sqa
α
j and bαj psq “ p1´ sqb

α
j ` s. Note that for s “ 0,

Iα0 p0q “ Iα0 , Iαj p0q “ Iαj and for s “ 1, Iαj p1q “ p0, 1q.

The maps γs form a homotopy between the degeneracy inclusion and the iden-
tity on pPBordnqk1,...,ki´1,0,ki`1,...,kn provided that every γs indeed maps to this
space. It suffices to check condition (3) in definition 2.3.1 for pMqs. Since pMq P
pPBordnqk1,...,ki´1,0,ki`1,...,kn , this reduces to checking

For every i ă α ď n and 0 ď j ď kα, at every x P p´1
tαupI

α
j psqq, the map

ptα,...,nu is submersive.

Condition (3) on pMq for i implies that pti,...,nu is a submersion in p´1
tiupp0, 1qq “

M Ą p´1
tαupI

α
j psqq, so ptα,...,nu is submersive there as well.

Again, this construction extends to l-simplices since it only involves moving the
intervals.

Remark 2.3.23. An interesting property of PBordn is that it also satisfies the strict
Segal condition,

pPBordnqk
»
ÝÑ pPBordnq1 ˆ

pPBordnq0

¨ ¨ ¨ ˆ
pPBordnq0

pPBordnq1,

where as above, we omit all indices except for the ith. This follows from the fact that we
can glue the embedded manifolds along open sets. In fact, the maps

pPBordnqk ÝÑ pPBordnq0

are fibrations and therefore the homotopy fiber product and the fiber product are weakly
equivalent.

The last condition necessary to be a good model for the p8, nq-category of bordisms is
completeness, which PBordn in general does not satisfy. However, we can pass to its
completion Bordn.

Definition 2.3.24. The p8, nq-category of cobordisms Bordn is the n-fold completion
{PBordn of PBordn, which is a complete n-fold Segal space.

Remark 2.3.25. For n ě 6, PBordn is not complete, see the full explanation in [Lur09c],
2.2.8. For n “ 1 and n “ 2, by the classification theorems of one- and two-dimensional
manifolds, PBordn is complete, and therefore Bordn “ PBordn.

2.4 Variants of Bordn and comparison with Lurie’s definition

2.4.1 Bounded submanifolds, cutting points, and R as a parameter
space

Bounded submanifolds

Recall from 2.3.11 that for every element in pPBordVn qk1,...,kn , we constructed a path to
its cutoff, whose underlying submanifold

cutpMq “ π´1
´

n
ź

i“1

p
bi0
2
,
aiki
2
q

¯
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is bounded in the V -direction. This construction extends to l-simplices and yields a map
of n-fold simplicial spaces

cut : PBordn ÝÑ PBordn,

sending an element to its “cutoff”. Its image lands in PBordbdn Ď PBordn, the sub n-
fold Segal space of elements for which the underlying submanifold is bounded in the
V -direction. Moreover, it induces a strong homotopy equivalence between PBordbdn and
PBordn.

Cutting points

Another variant of an n-fold Segal space of cobordisms can be obtained by replacing
the intervals Iij in definition 2.3.1 of PBordn by specified “cutting points” tij P p0, 1q,
which correspond to where we cut our composition of bordisms. Equivalently, we can
say that in this case the intervals are replaced by intervals consisting of just one point,
i.e. aij “ bij “: tij . The levels of this n-fold Segal space PBordtn can be made into spaces
as we did for PBordn, but we now need to impose the extra condition that elements
of the levels are connected by a path if they coincide inside the “box” of t’s, i.e. over
rt10, t

1
k1
s ˆ ¨ ¨ ¨ ˆ rtn0 , t

n
kn
s. However, for PBordtn the Segal condition is more difficult to

prove, as in this case we do specify the collar along which we glue. Since the space of
collars is contractible, sending an interval I “ ra, bs X p0, 1q to its midpoint t “ 1

2 pa ` bq

induces a level-wise weak equivalence from PBordn to PBordtn.

R as a parameter space

There also is a version of PBordn replacing the closed intervals Iij Ď p0, 1q by closed
intervals in R. We impose conditions on elements in this n-fold Segal space PBord8n
which are analogous to (1)–(3) in definition 2.3.1 of PBordn. This amounts to using the

identification p0, 1q
χ
– R. However, in this case the face and degeneracy maps dij , s

i
j for

j “ 0, ki are more complicated to write down since they require the use of rescaling maps
ρ0 : pai1,8q Ñ R, respectively ρki : p´8, biki´1q Ñ R. In this case, sending an interval to
its midpoint as above leads to an variant with cutting points and R as a parameter space
PBordt,8n .

2.4.2 Comparison with Lurie’s definition of cobordisms

In [Lur09c], Lurie defined the n-fold Segal space of cobordisms as follows:

Definition 2.4.1. Let V be a finite dimensional vector space. For every n-tuple k1, . . . , kn
ě 0, let pPBordV,Ln qk1,...,kn be the collection of tuples pM, pti0 ď . . . ď tikiqi“1,...nq, where

1. M is a closed n-dimensional submanifold of V ˆ Rn and the composition π : M ãÑ

V ˆ Rn � Rn is a proper map.

2. For 1 ď i ď n,

ti0 ď ¨ ¨ ¨ ď tiki

is an ordered pki ` 1q-tuple of elements in R.

3̃. For every S Ď t1, . . . , nu and for every collection tjiuiPS , where 0 ď ji ď ki, the
composition pS : M

π
Ñ Rn Ñ RS does not have ptjiqiPS as a critical value.
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4̃. For every x P M such that ptiupxq P tt
i
0, . . . , t

i
ki
u, the map pti`1,...,nu is submersive

at x.

It is endowed with a topology coming from the Whitney topology similar to what we
described in remark 2.3.2, which we will not repeat here. Similarly to before, we define

PBordLn “ lim
ÝÑ
VĂR8

PBordV,Ln

Comparing this definition with definition 2.3.1 and PBordt,8n from above, note that our
condition (3) on PBordt,8n is replaced by the two strictly weaker conditions p3̃q and p4̃q
on PBordLn , which are implied by (3):

Lemma 2.4.2. Let M be a closed n-dimensional manifold and π : M Ñ Rn. Moreover,
for 1 ď i ď n let pti0 ď . . . ď tikiq be an ordered pki ` 1q-tuple of elements in R. Denote

for S Ď t1, . . . , nu the composition M
π
Ñ Rn � RS by pS. Assume that condition (3)

from definition 2.3.1 holds, i.e. for every 1 ď i ď n and 0 ď ji ď ki for x P M such that
ptiupxq “ tiji the map pti,...,nu is submersive at x. Then,

3̃. For every S Ď t1, . . . , nu and for every collection tjiuiPS, where 0 ď ji ď ki, the
composition pS : M

π
Ñ Rn Ñ RS does not have ptjiqiPS as a critical value.

4̃. For every x P M such that ptiupxq P tt
i
0, . . . , t

i
ki
u, the map pti`1,...,nu is submersive

at x.

Proof. Let i0 “ inf S. Consider the following diagram

M Rti0,...,nu

RS

pti0,...,nu

pS
proj

For 3̃. let x P p´1
S pptjiqiPSq. Then pti0upxq “ ti0ji0

, so by assumption the map pti0,...,nu is

submersive at x. Since proj is submersive, pS “ proj ˝ pti0,...,nu also is submersive at x.

For 4̃. note that pti,...,nu being submersive at x implies that pti`1,...,nu is submersive at
x.

However, Lurie’s n-fold simplicial space PBordLn is not an n-fold Segal space as we will
see in the example below. Thus, our PBordt,8n is a corrigendum of Lurie’s PBordLn from
[Lur09c].
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Example 2.4.3.

t10

Consider the 2 dimensional torus T in R ˆ R2, and consider the tuple
pT ãÑ R ˆ R2, t10, t

2
0 ď . . . ď t2k2q, where t10 is indicated in the picture of the

projection plane R2 below. Then, because of condition p3̃q, t20 ď . . . ď t2k2 can
be chosen everywhere such that any pt10, t

2
j q is not a point where the vertical

(t10-)line intersects the two circles in the picture. Thus, the space of these
choices is not contractible. However, it satisfies the conditions (1), (2), p3̃q,
and p4̃q in the definition of pPBordL2 q0,k2 , so pPBordL2 q0,‚ is not essentially
constant.

2.4.3 The n-fold category Borduplen

Condition p3̃q in definition 2.4.1 ensures that the fibers p´1
S pptjiqiPSq are pn´ |S|q-dimen-

sional smooth manifolds, i.e. that a k-morphisms, which is an k-dimensional cobordism,
indeed goes from a pk ´ 1q-dimensional cobordism to another one.

Our condition (3) ensures in addition the globularity condition, i.e. essential constancy,
namely that we have an “n-category” instead of an “n-fold category” (unfortunately the
use of “fold” here does not match up with the conventions for “fold” and “uple” for Segal
spaces). This difference for n “ 2 is the same as the difference between a “bicategory”
and a “double category”.

Consider the following interval version of condition p3̃q

3̃. For every S Ď t1, . . . , nu and for every collection tjiuiPS , where 0 ď ji ď ki, the
composition pS : M

π
Ñ Rn Ñ RS does not have any critical value in pIjiqiPS .

Relaxing our condition (3) in definition 2.3.1 to this p3̃q gives an n-uple Segal space
PBorduplen . Completing gives a complete n-uple Segal space Borduplen .

Example 2.4.4 (The torus as a composition). The difference between the n-fold and the
n-uple Segal spaces can be seen when decomposing the torus, viewed as a 2-morphism in
the respective n-(fold) categories. We will omit drawing the intervals outside of the torus
and just draw the “cutting lines”, which should be understood as actually extending to
small closed intervals around them.

The torus as a 2-morphism in Borduple2 can be decomposed simultaneously in both direc-
tions. One possible decomposition into in some sense elementary pieces is the following:
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However, similar to the argument in example 2.4.3, this decomposition is not a valid
decomposition in Bord2, as condition 3 in definition 2.3.1 is violated.

The torus as a 2-morphism in Bord2 can only be decomposed “successively”, so we first
decompose it in the first direction, i.e. the first coordinate, e.g. as

which is an element in pBord2q4,1 and then decompose the two middle pieces, the images
under the face maps d1, d2 : pBord2q4,1 Ñ pBord2q1,1, as

and

Altogether a possible decomposition of the torus into elementary pieces in Bord2 is

This of course also is a valid decomposition in the 2-fold category Borduple2 .

2.5 The symmetric monoidal structure on Bordn

The p8, nq-category Bordn is symmetric monoidal with its symmetric monoidal structure
essentially arising from taking disjoint unions. In this section we endow Bordn with
a symmetric monoidal structure in two ways. In section 2.5.1 the symmetric monoidal
structure arises from a Γ-object. In section 2.5.2 a symmetric monoidal structure is defined
using a tower of monoidal i-hybrid pn` iq-fold Segal spaces.
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2.5.1 The symmetric monoidal structure arising as a Γ-object

We construct a sequence of n-fold Segal spaces pBordVn rmsq‚,...,‚ which form a Γ-object
which endows Bordn with a symmetric monoidal structure as defined in section 1.6.1.

Definition 2.5.1. Let V be a finite dimensional vector space. For every k1, . . . , kn, let
pPBordVn rmsqk1,...,kn be the collection of tuples

pM1, . . . ,Mm, pI
i
0 ď . . . ď Iikiqi“1,...,nq,

where M1, . . .Mm are disjoint n-dimensional submanifolds of V ˆ p0, 1qn and each
pMβ , pI

i
0 ď . . . ď Iikiqi“1,...nq is an element of pPBordVn qk1,...,kn . It can be made into a

simplicial set similarly to PBordVn . Moreover, similarly to the definition of Bordn, we take
the limit over all V Ă R8 and complete to get an n-fold complete Segal space Bordnrms.

Proposition 2.5.2. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Bordnrms

extends to a functor and endows Bordn with a symmetric monoidal structure.

Proof. By lemma 1.6.6 it is enough to show that the functor sending rms to PBordnrms
and a morphism f : rms Ñ rks to the morphism

PBordnrms ÝÑ PBordnrks,

pM1, . . . ,Mm, I
1sq ÞÝÑ p

ž

βPf´1p1q

Mβ , . . . ,
ž

βPf´1pkq

Mβ , I
1sq,

is a functor Γ Ñ SSpacen with the property that

ź

1ďβďn

γβ : PBordnrms ÝÑ pPBordnr1sq
m

is an equivalence of n-fold Segal spaces.

The map
ś

1ďβďn γβ is an inclusion of n-fold Segal spaces and we show that level-wise it is

a weak equivalence of spaces. Let
´

pM1q, . . . , pMnq

¯

P pPBordnr1sq
m. We construct a path

to an element in the image of
ś

1ďiďn γβ which induces a strong homotopy equivalence
between the above spaces. First, there is a path to an element for which all pMαq have
the same specified intervals by composing all except one with a suitable smooth rescaling.
Secondly, there is a path with parameter s P r0, 1s given by composing the embedding
Mα ãÑ V ˆp0, 1qn with the embedding into RˆV ˆp0, 1qn given by the map V Ñ RˆV ,
v ÞÑ psα, vq.

2.5.2 The monoidal structure and the tower

Our goal for this section is to endow Bordn with a symmetric monoidal structure arising
from a tower of monoidal l-hybrid pn` lq-fold Segal spaces Bordplqn for l ě 0.
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The p8, n` lq-category of n-bordisms for l ě ´n

We now define an pn ` lq-fold Segal space whose pn ` lq-morphisms are n-bordisms for
l ě ´n.

Definition 2.5.3. Let V be a finite dimensional vector space and let n ě 0, l ě ´n.
For every n-tuple k1, . . . , kn`l ě 0, we let pPBordl,Vn qk1,...,kn`l be the collection of tuples
pM ãÑ V ˆ p0, 1qn`l, pIi0 ď . . . ď Iikiqi“1,...,n`lq satisfying conditions analogous to (1)-(3)
in definition 2.3.1, i.e.

1. M is a closed n-dimensional submanifold of V ˆ p0, 1qn`l, and Iij Ď p0, 1q are closed

intervals in p0, 1q with endpoints aij ă bij , a
i
0 “ 0, biki “ 1, and Iij ď Iil iff aij ď ail,

bij ď bil,

2. the composition π : M ãÑ V ˆ p0, 1qn`l � p0, 1qn`l is a proper map,

3. for every S Ď t1, . . . , n` lu let pS be the composition pS : M
π
Ñ p0, 1qn`l Ñ p0, 1qS .

Then for every 1 ď i ď n ` l and 0 ď ji ď ki, at every x P p´1
tiupI

i
ji
q, the map

pti,...,n`lu is submersive.

We make pPBordl,Vn qk1,...,kn`l into a space similarly to pPBordVn qk1,...,kn , and again we take
the limit over all finite dimensional vector spaces in a given infinite dimensional vector
space, say R8:

PBordln “ lim
VĂR8

PBordl,Vn .

Proposition 2.5.4. pPBordlnq‚,¨¨¨ ,‚ is an pn` lq-fold Segal space.

Proof. The proof is completely analogous to the proof of Proposition 2.3.22.

Definition 2.5.5. For l ď 0 let Bordln be the pn ` lq-fold completion of PBordln, the
p8, n` lq-category of n-bordisms.

Remark 2.5.6. For l ą 0, the underlying submanifold of objects of PBordln, i.e. ele-
ments in pPBordlnq0,...,0, are n-dimensional manifolds M which have a submersion onto
p0, 1qn`l. This implies that M “ H. Thus, the only object is pH, p0, 1q, . . . , p0, 1qq. Simi-
larly, pPBordlnq0,k2,...,kn`l has only one element, which is the image of compositions of the

degeneracy maps. Thus, pPBordlnq0,‚,...,‚ is the point viewed as a constant pn ´ 1q-fold

Segal space. Similarly, pPBordlnq1,...,1,0,‚,...,‚, with pl ´ 1q 1’s, is the point viewed as a
constant pn´ lq-fold Segal space. Thus for l ą 0 it makes sense and is more useful to use
the l-hybrid completion of PBordln.

Definition 2.5.7. For l ą 0 let Bordplqn be the l-hybrid completion of PBordln.

Loopings of PBordln

In any PBordln, there is the distinguished object H “ pH, p0, 1qq in PBordln, the unit for
the monoidal structure. Recall from definition 1.5.7 the k-fold iterated loopings of PBordln
for k ď n` l,

LkpPBordlnq “ LpLk´1pPBordln,Hq,Hq, LkpBordlnq “ LpLk´1pBordln,Hq,Hq.
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Proposition 2.5.8. For n` l ě k ě 0, there are weak equivalences

LkpPBordlnq PBordl´kn .

u

`

Proof. We show that LpPBordlnq “ HomPBordln
pH,Hq » PBordl´1

n . The statement for
general k follows by induction.

We define a map
u : LpPBordlnq

»
ÝÑ PBordl´1

n

by sending an element in HomPBordln
pH,Hqk2,...,kn`l ,

pMlq “
`

M Ď V ˆ p0, 1qn`l, p0, b10s ď ra
1
1, 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

P pPBordlnq1,k2,...,kn`l

to
pMl´1q “ pM Ď pV ˆ p0, 1q

loooomoooon

“Ṽ

q ˆ p0, 1qn`l´1, pIi0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`lq,

so it “forgets” the first specified intervals. First of all, we need to check that this map is
well-defined, that is, that pMl´1q P pPBordl´1

n qk2,...,kn`l . Note that in the above, we view

Ṽ “ V ˆp0, 1q as a vector space using the identification p0, 1q
χ
– R. The condition we need

to check is the second one, i.e. we need to check that M ãÑ Ṽ ˆ p0, 1qn`l´1 � p0, 1qn`l´1

is proper. We know that M Ñ p0, 1qn`l is proper, and moreover, since p´1
1 pp0, b10qq “

p´1
1 ppa1

1, 1qq “ H, we know that M is bounded in the direction of the first coordinate,
since M “ p´1

1 prb10, a
1
1sq. Together this implies the statement. Note that the map u we

just constructed actually is defined by a system of maps

uV : LpPBordl,Vn q ÝÑ PBordl,Ṽn ,

where Ṽ “ V ‘ xvy.

To construct a map in the other direction we will also need to change the vector space
V , but this time we need to ”delete” a direction. To make this procedure precise, we
fix the following notations. In the definition of PBordl,Vn we let V vary within a fixed
countably infinite dimensional space. Choose R8 with a countable basis consisting of
vectors v1, v2, . . . In taking the limit is enough to consider the finite dimensional subspaces
Vd spanned by the first d vectors v1, . . . , vd. Then the map u we constructed above was
defined as an inductive system of maps

ud : LpPBordl,Vdn q ÝÑ PBordl,Vd`1
n ,

´

M Ď Vd ˆ p0, 1q ˆ p0, 1q
n`l´1

¯

ÞÝÑ

´

M Ď
`

xv1y
loomoon

–p0,1q

‘xv2, . . . , vd`1y
looooooomooooooon

–Vd

˘

ˆ p0, 1qn`l´1
¯

,

where we use the canonical morphisms p0, 1q – R – xv1y and xv2, . . . , vd`1y Ñ Vd, vβ ÞÑ
vβ´1.

In remark 2.3.11, we constructed a path from an element in PBordn to its “cutoff”, whose

underlying submanifold is π´1p
śn
i“1p

bi0
2 ,

aiki
2 qq, which is bounded in the V -direction. We
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saw in section 2.4.1 that this map gives rise to a strong homotopy equivalence

cut : PBordn ÝÑ PBordbdn .

Similarly, we obtain equivalences of n-fold Segal spaces

cut : PBordl´1
n ÝÑ PBordl´1,bd

n , cut : LpPBordlnq ÝÑ LpPBordl,bdn q.

Note that ud restricts to a map between the bounded versions,

ubdd : LpPBordl,Vd,bdn q ÝÑ PBordl,Vd`1,bd
n

It suffices to show that this map induces a strong homotopy equivalence, with homotopy
inverse given by the following inductive system of maps

`bdd : PBordl´1,Vd`1,bd
n ÝÑ LpPBordl,Vdn q.

Start with an element pMl´1q “
`

M Ď Vd`1 ˆ p0, 1q
n`l´1, pIi0 ď ¨ ¨ ¨ ď Iikiqi“2,...,n`l

˘

P

PBordl´1,Vd`1,bd
n . Since it is bounded in the V -direction, there are A,B such that

B ă πv1pMq ă A,

where πv1 : M Ď
`

xv1y ‘ xv2, . . . , vd`1y
˘

ˆ p0, 1qn`l´1 � xv1y “ Rv1. Let B̃ be the

supremum of such B and let Ã be the infimum of such A. Let ˜̃B “ B̃
2 ,

˜̃A “ Ã`1
2 . Now let

b, a P p0, 1q – R correspond to ˜̃B, ˜̃A,B. Finally, we send pMl´1q to

pMlq “

´

M Ď xv2, . . . , vd`1y
looooooomooooooon

–Vd

ˆ p0, 1q
loomoon

–xv1y

ˆp0, 1qn`l´1, p0, bs ď ra, 1q, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2

¯

.

By construction,
`bdd ˝ ud „ id, ud ˝ `

bd
d “ id,

where `bdd ˝ud just changes the first two intervals I1
0 ď I1

1 and thus is homotopy equivalent
to the identity.

Definition 2.5.9. The map ` in the proof is called the looping and u the delooping map.

Recall from remark 1.5.8 that looping commutes with completion. Taking the appropriate
completions, we obtain the following corollary.

Corollary 2.5.10. Let k ě 0.

1. If l ´ k ą 0,
LkpBordplqn q » Bordpl´kqn . (2.3)

2. If k ě l ą 0 and n` l ´ k ě 0,

LkpBordplqn q » Bordl´kn . (2.4)

3. If l ď 0 and For n` l ě k ě 0, n` l ´ k ě 0,

LkpBordlnq » Bordl´kn . (2.5)
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The tower and the symmetric monoidal structure

Recall from definition 2.5.7 that Bordplqn is the l-hybrid completion of PBordln. By remark
2.5.6 and (2.3) in corollary 2.5.10, proposition 2.5.8 has an immediate corollary.

Corollary 2.5.11. The pn ` lq-fold Segal spaces Bordplqn are l-hybrid and endow Bordn
with the structure of a symmetric monoidal n-fold Segal space.

2.6 The homotopy (bi)category

2.6.1 The homotopy category h1pLn´1pBordnqq

The symmetric monoidal structure on h1pLn´1pBordnqq

The pn´1q-fold looping Ln´1pBordnq » Bord´pn´1q
n is a p8, 1q-category with a symmetric

monoidal structure defined in two ways similarly to that of Bord1. Both induce a symmet-
ric monoidal structure on the homotopy category h1pLn´1pBordnqq » h1pBord´pn`1q

n q.

...coming from a Γ-object We can either obtain the symmetric monoidal structure as
a Γ-object on Ln´1pBordnq » Bord´pn´1q

n by iterating the construction of the symmetric
monoidal structure on the looping from example 1.6.10 or by constructing a functor from
an assignment rms ÞÑ Bord´pn´1q

n rms. In the second case, Bord´pn´1q
n rms arises, similarly

to Bordnrms, from the spaces pPBordV,´pn´1q
n rmsqk1,...,kn , which as a set is the collection

of tuples
pM1, . . . ,Mm, pI0 ď . . . ď Ikqq,

where M1, . . .Mm are disjoint n-dimensional submanifolds of V ˆ p0, 1qn and each

pMβ , pI0 ď . . . ď Ikqq P pPBordV,´pn´1q
n qk1,...,kn .

We saw in example 1.6.8 that a Γ-object endows the homotopy category of its underlying
Segal space with a symmetric monoidal structure. Explicitly, in the second case, it comes
from the following maps.

Bord´pn`1q
n r1s ˆ Bord´pn`1q

n r1s
»

ÐÝÝÝÝ
γ1ˆγ2

Bord´pn`1q
n r2s

γ
ÝÑ Bord´pn`1q

n r1s,

pM1, I’sq, pM2, I’sq ÐÝÝÝÝp pM1,M2, I’sq ÞÝÑ pM1 >M2, I’sq

...coming from a tower The understand the symmetric monoidal structure on
h1pLn´1pBordnqq coming from a symmetric monoidal structure as a tower, we use that

Ln´1pBordnq » Bord´pn´1q
n and that Bord´pn´1q

n has a symmetric monoidal structure
coming from the collection of l-hybrid pl ` 1q-fold Segal spaces given by the l-hybrid
completion of PBordl´n`1

n , the completion in the last index. This symmetric monoidal

structure induces one on the homotopy category h1pBord´pn´1q
n q » h1pLn´1pBordnqq,

which we will explain explicitly. Since completion is a Dold-Kan equivalence, see 1.2.3, it
is enough to understand the symmetric monoidal structure on h1pPBord´pn´1q

n q.

Essentially, the monoidal structure is given by composition in PBord1´pn´1q
n , the next

layer of the tower PBord2´pn´1q
n gives a braiding and the higher layers show that it is

symmetric monoidal. Consider the diagram

pPBord1´pn´1q
n q1,‚ ˆ pPBord1´pn´1q

n q1,‚
»

ÐÝÝÝÝ
d10ˆd

1
2

pPBord1´pn´1q
n q2,‚

s11
ÝÑ pPBord

n´pn´1q
1 q1,‚.
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Using the fact from remark 1.6.17 that LpPBord1´pn´1q
n q‚ “ pPBord1´pn´1q

n q1,‚, we find

that pPBord1´pn´1q
n q1,‚ » pPBord´pn´1q

n q‚, which induces a map

h1pPBord´pn´1q
n q ˆ h1pPBord´pn´1q

n q ÝÑ h1pPBord´pn´1q
n q.

This is a monoidal structure on h1pPBord´pn´1q
n q. We can explicitly construct this map.

Consider two objects or 1-morphisms pMq and pNq in pPBord´pn´1q
n qk for k “ 0 or k “ 1,

pMq “ pM Ď V ˆ p0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Ṽ ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq.

Without loss of generality V “ Ṽ “ Vd, and pMq, pNq P pBordbd1 qk.

Under the map `bdd : Bordbd1 Ñ LpBord1,bd
1 q from proposition 2.5.8, pMq and pNq are sent

to
pM1q “ pM Ď Vd´1 ˆ p0, 1q

2, p0, bs ď ra, 1q, I0 ď ¨ ¨ ¨ ď Ikq,

pN1q “ pN Ď Ṽd´1 ˆ p0, 1q
2, p0, b̃s ď rã, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq.

In the proof of the Segal condition for PBordn proposition 2.3.22 we explicitely constructed
a homotopy inverse glue to d1

0ˆ d
1
2. Similarly one can obtain such a homotopy inverse for

PBordln, which applied to pM1q and pN1q gives
´

M >N ãÑ Ṽd´1 ˆ p0, 1q
2, p0, b10s ď ra

1
1, b

1
1s ď ra

1
2, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

,

since d1
1ppM1qq “ d1

0ppN1qq “ H. The third face map sends it to
´

M >N ãÑ Ṽd´1 ˆ p0, 1q
2, p0, b10s ď ra

1
2, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

which by ubdd : LpBord1,bd
1 q Ñ Bordbd1 is sent to

´

M >N ãÑ Ṽd ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

.

The homotopy category and nCob

The homotopy category of Bord1 turns out to be what we expect, namely 1Cob. We
can show even more, namely that our higher categories of cobordisms also give back the
ordinary categories of n-cobordisms, as we see in the following proposition.

Proposition 2.6.1. There is an equivalence of symmetric monoidal categories between the
homotopy category of the pn´ 1q-fold looping of Bordn and the category of n-cobordisms,

h1pLn´1pBordnqq » nCob .

Proof. We first show that there is an equivalence of categories h1pLn´1pBordnqq » nCob
and then show that it respects the symmetric monoidal structures.

Rezk’s completion functor is a Dwyer-Kan equivalence of Segal spaces, and thus by defini-
tion induces an equivalence of the homotopy categories. Moreover, completion commutes
with looping, so it is enough to show that

h1pLn´1pPBordnqq » nCob .

We define a functor
F : h1pLn´1pPBordnqq ÝÑ nCob

and show that it is essentially surjective and fully faithful.
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Definition of the functor By definition,

pLn´1pPBordnqqk “ tHu
h
ˆ

pLn´2pPBordnqq0,k

pLn´2pPBordnqq1,k
h
ˆ

pLn´2pPBordnqq0,k

tHu,

and, iterating this process, we find that an element in Ln´1pPBordnqk is an element pMq
of pPBordnq1,...,1,k such that for every i ‰ n, dijppMqq has H as its underlying manifold,
i.e. in every direction except for the nth direction, the source and target both have H as
its underlying manifold.

So an object in h1pLn´1pPBordnqq is an element pMq P pPBordnq1,...,1,0 such that for
i ‰ n, the underlying manifold ofdijppMqq is H. We let the functor F send pMq to

π´1prb10, a
1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ t
1

2
uq.

Since 1
2 is a regular value of ptnu, F ppMqq is an pn ´ 1q-dimensional manifold, and since

π is proper, it is compact. Moreover its boundary is empty. This follows from

F ppMqq ãÑ V ˆ rb10, a
1
1s ˆ ¨ ¨ ¨ rb

n´1
0 , an´1

1 s ˆ t
1

2
u

which implies that

BF ppMqq “ F ppMqq X B

ˆ

V ˆ rb10, a
1
1s ˆ ¨ ¨ ¨ rb

n´1
0 , an´1

1 s ˆ t
1

2
u

˙

and since for every i ‰ n, the underlying manifold of dijppMqq is H.

So, as an abstract manifold, F ppMqq is a closed compact pn ´ 1q-dimensional manifold,
i.e. an object in nCob.

Similarly, the functor F sends a morphism in h1pLn´1pPBordnqq, which is an element in
π0pLn´1pPBordnq1q which is represented by an element pMq P pPBordnq1,...,1,1 such that
for i ‰ n, the underlying manifold of dijppMqq is H, to the isomorphism class of

M̄ “ π´1prb10, a
1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ rbn0 , a
n
1 sq.

This is an n-dimensional manifold with boundary

π´1prb10, a
1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ tbn0 uq > π
´1prb10, a

1
1s ˆ ¨ ¨ ¨ ˆ rb

n´1
0 , an´1

1 s ˆ tan1 uq.

This is well-defined, since a path in Ln´1pPBordnq1 by definition gives diffeomorphism
ψ0,1 : M0 Ñ M1 which intertwines with the composed bordisms and thus restricts to
diffeomorphisms of the images defined above.

The functor is an equivalence of categories Whitney’s embedding theorem shows
that F is essentially surjective. Moreover, it is injective on morphisms: Let ι0 : M0 ãÑ

V ˆ p0, 1qn and ι0 : M1 ãÑ V ˆ p0, 1qn be representatives of two 1-morphisms which
have diffeomorphic images. This means that there is a diffeomorphism ψ : M̄0 Ñ M̄1,
which can be extended to their collars, i.e. we get a diffeomorphism ψ : M0 ÑM1. Since
EmbpM1,R8 ˆ p0, 1qnq is contractible, the quotient EmbpM1,R8 ˆ p0, 1qnq{DiffpM1q is
path-connected, so there is a path of embedded submanifolds ι̃s : M1 ãÑ R8 ˆ p0, 1qn
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such that ι̃1 “ ι1 is the given one and ι̃0 “ ι0 ˝ ψ. Note that ι̃0 and ι0 give the same
submanifold. By lemma 2.3.12, this family ιs determines a rescaling data and a family of
diffeomorphisms ψs,t which intertwine and thus a path in PBordn, which by construction
lies in Ln´1pBordnq. It remains to show that F is full.

In the case n “ 1, 2 this is easy to show, as we have a classification theorem for 1- and
2-dimensional manifolds with boundary. In the 1-dimensional case it is enough to show
that an open line, the circle and the half-circle, once as a bordism from 2 points to the
empty set and once vice versa, lie in the image of the map, which is straightforward.
In the two dimensional case, the pair-of-pants decomposition tells us how to embed the
manifold.

For general n we first embed the manifold with boundary into R` ˆ R2n using a variant
of Whitney’s embedding theorem for manifolds with boundary, cf. [Lau00]. Then the
boundary of the halfspace is BpR` ˆ R2nq “ R2n. We want to transform this embedding
into an embedding into p0, 1qˆR2n such that the incoming boundary is sent into tεuˆR2n

and the outgoing boundary is sent into t1´ εu ˆ R2n.

We first show that the boundary components can be separated by a hyperplane in R2n.
The boundary components are compact so they can be embedded into balls B2n. By
perhaps first applying a suitable “stretching” transformation, one can assume that these
balls do not intersect. Now, since 2n ą 1, π0pConfpB2n,R2nqq “ ˚, there is a transforma-
tion to a configuration in which the boundary components are separated by a hyperplane,
without loss of generality given by the equation tx1 “ 0u Ă R2n.

Consider the (holomorphic) logarithm function on pR` ˆ Rqztp0, 0qu – Hz0 Ď C with
branch cut ´iR`. It is a homeomorphism to tpx, yq P R2 : 0 ď y ď πu. We can apply
logˆidR2n´1 to pR` ˆRx1q ˆR2n´1 and, composing this with a suitable rescaling, obtain
an embedding into pε, 1´ εq ˆ R2n. Now choose a collaring of the bordism to extend the
embedding to p0, 1q ˆ R2n.

The functor is a symmetric monoidal equivalence Explicitly analyzing the two
symmetric monoidal structures on h1pBord´pn´1q

n q, one sees that they both send two
elements (represented by)

pMq “ pM Ď Vd ˆ p0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Vd ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq

for k “ 0 or k “ 1 to an embedding of M >N into Vd`1, which sends M and N to different
heights in the extra pd` 1qst direction.

In the case of the structure coming from a Γ-object, one can similarly to in the previous
paragraph define an equivalence of categories

F rms : Bord´pn´1q
n rms ÝÑ nCobm .

Then one can easily check that the following diagram commutes.

Bord´pn´1q
n r1s ˆ Bord´pn´1q

n r1s Bord´pn´1q
n r2s Bord´pn´1q

n r1s

nCobˆnCob nCobˆnCob nCob

FˆF F r2s

»

F

>
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For the case of the structure coming from a tower, we explicitly saw that the symmetric
structure on h1pBord´pn´1q

n q sends two objects or 1-morphisms determined by

pMq “ pM Ď V ˆ p0, 1q, I0 ď ¨ ¨ ¨ ď Ikq, pNq “ pN Ď Ṽ ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩkq

to
pM >Nq “

´

M >N ãÑ Ṽd ˆ p0, 1q, Ĩ0 ď ¨ ¨ ¨ ď Ĩk

¯

,

where the embedding of M is changed by a rescaling. This change of rescaling is precisely
such that under the functor F the element pM >Nq is sent to F ppMqq > F ppNqq.

2.6.2 The homotopy bicategory h2pBord2q and comparison with
2Cobext

C. Schommer-Pries defined a symmetric monoidal bicategory nCobext of n-dimensional
cobordisms in his thesis [SP09]. In this section we show that the homotopy bicategory of
our p8, 2q-category of 2-dimensional bordisms is symmetric monoidally equivalent to this
bicategory.

The bicategory 2Cobext

We first briefly recall the definition of 2Cobext.

Definition 2.6.2. The bicategory 2Cobext has

• 0-dimensional manifolds as objects,

• 1-morphisms are 1-bordisms between objects, and

• 2-morphisms are isomorphism classes of 2-bordisms between 1-morphisms,

where

1. a 1-bordism between two 0-dimensional manifolds Y0, Y1 is a smooth compact 1-
dimensional manifold with boundary W with a decomposition and isomorphism

BW “ BinW > BoutW – Y0 > Y1;

2. a 2-bordism between two 1-bordisms W0,W1 between objects Y0, Y1 is a compact
2-dimensional ă2ą-manifold S equipped with

- a decomposition and isomorphism

B0S “ B0,inS > B0,outS
„
ÝÑW0 >W1,

- a decomposition and isomorphism

B1S “ B1,inS > B1,outS
„
ÝÑ Y0 ˆ r0, 1s > Y1 ˆ r0, 1s.

Recall that a ă 2 ą-manifold is a manifold with faces X with a pair of faces
pB0X, B1Xq such that

B0X Y B1X “ BX, B0X X B1X is a face.
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3. Two 2-bordisms S, S1 are isomorphic if there is a diffeomorphism h : S Ñ S1 com-
patible with the boundary data.

Vertical and horizontal compositions of 2-morphisms are defined by choosing collars and
gluing. This is well-defined because 2-morphisms are isomorphism classes of 2-bordisms,
and thus the composition doesn’t depend on the choice of the collar. However, composition
of 1-morphisms requires the use of a choice of a collar, which requires the axiom of choice,
and then composition is defined by the unique gluing. However, this gluing is associative
only up to non-canonical isomorphism of 1-bordisms which gives a canonical isomorphism
class of 2-bordisms realizing the associativity of horizontal composition in the axioms of
a bicategory.

It is symmetric monoidal, with symmetric monoidal structure given by taking disjoint
unions. For the exact details we refer to the above mentioned thesis [SP09].

The symmetric monoidal structure on h2pBord2q

The symmetric monoidal structure on Bord2 arising as a Γ-object gives us

Bord2r1s ˆ Bord2r1s
»
ÐÝ Bord2r2s ÝÑ Bord2r1s

which induces

h2pBord2q ˆ h2pBord2q ÝÑ h2pBord2q.

This makes h2pBord2q into a symmetric monoidal bicategory, where the associativity fol-
lows from the equivalence Bord2r3s

„
ÝÑ Bord2r1s

ˆ3.

The homotopy bicategory and 2Cobext

In this section we show that our p8, 2q category of 2-cobordisms indeed gives back the
bicategory 2Cobext as its homotopy bicategory.

Proposition 2.6.3. There is an equivalence of symmetric monoidal bicategories between
h2pBord2q and 2Cobext.

Proof. By Whitehead’s theorem for symmetric monoidal bicategories, see [SP09], theorem
2.21, it is enough to find a functor F which is

1. essentially surjective on objects, i.e. F induces an isomorphism
π0ph2pBord2qq – π0p2Cobextq,

2. essentially full on 1-morphisms, i.e. for every x, y P Ob h2pBord2q, the induced func-
tor Fx,y : h2pBord2qpx, yq Ñ 2CobextpFx, Fyq is essentially surjective, and

3. fully-faithful on 2-morphisms, i.e. for every x, y P Ob h2pBord2q, the induced functor
Fx,y : h2pBord2qpx, yq Ñ 2CobextpFx, Fyq is fully-faithful.

First of all, recall from remark 2.3.25 that for n “ 2, PBord2 is a complete 2-fold Segal
space, so Bord2 “ PBord2.
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Definition of the functor Let

F : h2pBord2q ÝÑ 2Cobext

be the functor defined as follows:

On objects,

pM Ď V ˆ R2, p0, 1q, p0, 1qq P pBord2q0,0
F
ÞÝÑ π´1

ˆ

p
1

2
,

1

2
q

˙

,

where the image is thought of as an abstract manifold. This is well-defined, because as
π is proper and p 1

2 ,
1
2 q is a regular value of π, the preimage π´1

`

p 1
2 ,

1
2 q
˘

is compact and
0-dimensional, so it is a finite disjoint union of points. Note that because of condition (3)
in the definition of Bord2 “ PBord2, we could have taken the fiber over any other point
in p0, 1q2 and would have gotten a diffeomorphic image.

On 1-morphisms,

pM Ď V ˆ R2, p0, b10s ď ra
1
1, 1q, p0, 1qq P pBord2q1,0

F
ÞÝÑ π´1

ˆ

rb10, a
1
1s ˆ t

1

2
u

˙

.

The point 1
2 is a regular value of the projection map p2 : M ãÑ V ˆ p0, 1q2 � p0, 1q, so

π´1
`

rb10, a
1
1s ˆ t

1
2u
˘

is a 1-dimensional manifold with boundary. Moreover, the decompo-
sition of the boundary of the image is given by

π´1

ˆ

pb10,
1

2
q

˙

> π´1

ˆ

pa1
1,

1

2
q

˙

.

Note that again, we could have taken the preimage π´1 prc, ds ˆ ttuq for any t P r0, 1s,
c P p0, b10s, and d P ra1

1, 1q and would have gotten a diffeomorphic image.

On 2-morphisms, the functor F comes from the assignment

pM Ď V ˆ R2, p0, b10s ď ra
1
1, 1q, p0, b

2
0s ď ra

2
1, 1qq

F
ÞÝÑ π´1

`

rb10, a
1
1s ˆ rb

2
0, a

2
1s
˘

“: S.

As π is proper, S is a compact 2-dimensional manifold with corners and moreover has the
structure of a x2y-manifold coming from the decomposition of the boundary coming from
the inverse images under π of the sides of the rectangle rb10, a

1
1s ˆ rb

2
0, a

2
1s,

B0S “ π´1
`

rb10, a
1
1s ˆ tb

2
0u
˘

> π´1
`

rb10, a
1
1s ˆ ta

2
1u
˘

,

and
B1S “ π´1

`

tb10u ˆ rb
2
0, a

2
1s
˘

> π´1
`

ta1
1u ˆ rb

2
0, a

2
1s
˘

.

By condition (3) in definition 2.3.1,

π´1
`

tb10u ˆ rb
2
0, a

2
1s
˘

– π´1
`

pb10, b
2
0q
˘

ˆ rb20, a
2
1s

and
π´1

`

ta1
0u ˆ rb

2
0, a

2
1s
˘

– π´1
`

pa1
0, b

2
0q
˘

ˆ rb20, a
2
1s.

This makes S into a 2-bordism between the images under F of the source and target of
our 2-bordism.

This assignment descends to 2-morphisms which are elements in π0ppBord2q1,1q, as any
path in pBord2q1,1 by definition induces a diffeomorphism ψ0,1 : M0 Ñ M1 which inter-
twines with the composed bordisms and thus induces an isomorphism of the images under
F defined above.
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The functor is an equivalence of bicategories We check (1)-(3) of Whitehead’s
theorem.

For (1), the point is the image of the plane pM “ p0, 1q2
id
ãÑ p0, 1q2, p0, 1q, p0, 1qq. For k

points, we can take k disjoint parallel planes in p0, 1q ˆ p0, 1q2 which intersect V “ R in k
different points, e.g. 0, . . . , k ´ 1 and the intervals I1

0 “ I2
0 “ p0, 1q.

For (2), we use the classification of 1-dimensional manifolds with boundary. Any connected
component can be cut into pieces diffeomorphic to straight lines and left and right half
circles. These all lie in the image of F in a very simple way, e.g. a straight line is the
image of

ˆ

M “ p0, 1q2
id
ãÑ p0, 1q2, p0,

1

3
s ď r

2

3
, 1q, p0, 1q

˙

,

and the right and left half circles are the images of the following embeddings p0, 1q2 ãÑ

Rˆ p0, 1q2 with suitable choices of intervals.

By gluing these preimages in a suitable way, we get an element whose image is diffeomor-
phic to the connected component we started with.

For (3), to show that it is full on 2-morphisms, we use the classification theorem 3.33
of Schommer-Pries in [SP09]. He gives a set of generating 2-morphisms of 2Cobext for
which one easily sees that they all are the image of an element in pBord2q1,1. Moreover,
the preimages can be glued. For faithfullness, a similar argument as in the proof of
proposition 2.6.1 works: we use the fact that EmbpM,R8 ˆ p0, 1qnq is contractible, so
EmbpM,R8 ˆ p0, 1qnq{DiffpMq is path connected. Using lemma 2.3.12, an isomorphism
of 2-bordisms will give rise to a path in pBord2q1,1.

The functor is a symmetric monoidal equivalence Similarly to in the previous
subsection, the equivalence of bicategories

F : h2pBord2q
»
ÝÑ 2Cobext

respects the symmetric monoidal structures. This can been seen by explicitly writing out
the symmetric monoidal structure for h2pBord2q.

Remark 2.6.4. In [SP09], Schommer-Pries also defined a bicategory nCobext with ob-
jects being pn ´ 2q-dimensional manifolds, 1-morphisms being pn ´ 1q-cobordisms, and
2-morphisms being equivalence classes of 2-bordisms, which are suitable n-dimensional
x2y-manifolds. A similar argument should show that h2pLn´2pBordnqq » nCobext. How-
ever, one would need a suitable embedding theorem for cobordisms between cobordisms.
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One should be able to adapt the embedding theorem for x2y-manifolds from [Lau00],
similarly to how we adapted the embedding theorem for manifolds with boundary.

2.7 Cobordisms with additional structure: orientations and
framings

In the study of fully extended topological field theories, one is particularly interested in
manifolds with extra structure, especially that of a framing. In this section we explain
how to define the p8, nq-category of structured n-bordisms, in particular for the structure
of an orientation or a framing.

2.7.1 Structured manifolds

We first need to recall the definition of structured manifolds and the topology on their
morphism spaces making them into a topological category. In the next subsection we will
see that the simplicial set of chains on these topological spaces essentially will give rise to
the spatial structure of the levels of the n-fold Segal space of structured bordisms similarly
to the construction in section 2.3.2.

Throughout this subsection, let M be an n-dimensional (smooth) manifold.

Definition 2.7.1. Let X be a topological space and E Ñ X a topological n-dimensional
vector bundle which corresponds to a (homotopy class of) map(s) e : X Ñ BGLpRnq from
X to the classifying space of the topological group GLpRnq. More generally, we could also
consider a map e : X Ñ BHomeopRnq to the classifying space of the topological group
of homeomorphisms of Rn, but for our purposes vector bundles are enough. An pX,Eq-
structure or, equivalently, an pX, eq-structure on an n-dimensional manifold M consists
of the following data:

1. a map f : M Ñ X, and

2. an isomorphism of vector bundles

triv : TM – f˚pEq.

Denote the set of pX,Eq-structured n-dimensional manifolds by ManpX,Eqn .

An interesting class of such structures arises from topological groups with a morphism to
Opnq.

Definition 2.7.2. Let G be a topological group together with a continuous homomor-
phism e : G Ñ Opnq, which induces e : BG Ñ BGLpRnq. As usual, let BG “ EG{G
be the classifying space of G, where EG is total space of its universal bundle, which is
a weakly contractible space on which G acts freely. Then consider the vector bundle
E “ pRn ˆ EGq{G on BG. A pBG,Eq-structure or, equivalently, a pBG, eq-structure
on an n-dimensional manifold M is called a G-structure on M . The set of G-structured
n-dimensional manifolds is denoted by ManGn .

For us, the most important examples will be the following three examples.
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Example 2.7.3. If G is the trivial group, X “ BG “ ˚ and E is trivial. Then a
G-structure on M is a trivialization of TM , i.e. a framing.

Example 2.7.4. Let G “ Opnq and e “ idOpnq. Then, since the inclusion Opnq Ñ
Diff pRnq is a deformation retract, an Opnq-structured manifold is just smooth manifolds.

Example 2.7.5. Let G “ SOpnq and e : SOpnq Ñ Opnq is the inclusion. Then an
SOpnq-structured manifold is an oriented manifold.

Definition 2.7.6. Let M and N be pX,Eq-structured manifolds. Then let the space of
morphisms from M to N be

MappX,EqpM,Nq “ EmbpM,Nq
h
ˆ

Map{BHomeopRnqpM,Nq
Map{XpM,Nq.

Taking (singular or differentiable) chains leads to a space, i.e. a simplicial set of morphisms

from M to N . Thus we get a topological (or simplicial) category ManpX,Eqn of pX,Eq-

structured manifolds. Disjoint union gives ManpX,Eqn a symmetric monoidal structure.

Remark 2.7.7. For G “ Opnq we recover EmbpM,Nq, and for G “ SOpnq, the space of

orientations on a manifold is discrete, so an element in MapSOpnqpM,Nq is an orientation
preserving map.

If G is the trivial group we saw above that a G-structure is a framing. In this case, the
above homotopy fiber product reduces to

MappX,EqpM,Nq “ EmbpM,Nq
h
ˆ

MapGLpdqpFrpTMq,FrpTNqq
MappM,Nq.

Thus, a framed embedding is a pair pf, hq, where f : M Ñ N lies in EmbpM,Nq and h is
a homotopy between between the trivialization of TM induced by the framing of M and
that induced by the pullback of the framing on N .

2.7.2 The p8, nq-category of structured cobordisms

Fix a type of structure given by the pair pX,Eq. In this subsection we define the n-fold

(complete) Segal space of pX,Eq-structured cobordisms BordpX,Eqn .

Compared to definition 2.3.1 we add an pX,Eq-structure to the data of an element in a
level set.

Definition 2.7.8. Let V be a finite dimensional vector space. For every n-tuple k1, . . . , kn ě
0, let

`

PBordpX,Eq,Vn

˘

k1,...,kn
be the collection of tuples pM,f, triv, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

where

1. pM, pIi0 ď ¨ ¨ ¨ ď Iikiq
n
i“1q is an element in the set pPBordVn qk1,...,kn , and

2. pf, trivq is an pX,Eq-structure on the (abstract) manifold M .

Remark 2.7.9. Note that there is a forgetful map

U :
`

PBordpX,Eq,Vn

˘

k1,...,kn
Ñ pPBordVn qk1,...,kn

forgetting the pX,Eq-structure.
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Definition 2.7.10. An l-simplex of
`

PBordpX,Eq,Vn

˘

k1,...,kn
consists of the following data:

1. A family of elements

pMs, fs, trivsq “
`

Ms Ď V ˆ p0, 1qn, fs, trivs, pI
i
0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

in
`

PBordpX,Eq,Vn

˘

k1,...,kn
indexed by s P |∆l|, which are called the underlying

pX,Eq-structured 0-simplices;

2. For every 1 ď i ď ki,
`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

is an l-simplex in Intki with rescaling datum ϕis,t : p0, 1q Ñ p0, 1q;

3. A family of elements in ManpX,Eqn pMs,Mtq with underlying diffeomorphisms

ψs,t : Ms ÝÑMt,

indexed by s, t P |∆l|;

such that the triple

UpMs, fs, trivsq, pϕs,tqs,tP|∆l|, pψs,tqs,tP|∆l|

is an l-simplex in pPBordVn qk1,...,kn .

Similarly as for PBordn the levels can be given a spatial structure with the above l-
simplices and then the collection of levels can be made into a complete n-fold Segal space
BordpX,Eqn .

Moreover, BordpX,Eqn has a symmetric monoidal structure given by pX,Eq-structured ver-
sions of the Γ-object and of the tower giving Bordn a symmetric monoidal structure.

2.7.3 Example: Objects in Bordfr2 are 2-dualizable

In dimension one, a framing is the same as an orientation. Thus the first interesting case
is the two-dimensional one. In this case, the existence of a framing is a rather strong
condition. However, we will see that nevertheless, any object in Bordfr2 is 2-dualizable.
Being 2-dualizable means that it is dualizable with evaluation and coevaluation maps
themselves have adjoints, see [Lur09c].

Consider an object in Bordfr2 , which, since in this case Bordfr2 “ PBordfr2 by remark
2.3.25, is an element of the form

`

M Ď V ˆ p0, 1q2, F, p0, 1q, p0, 1q
˘

,

where F is a framing of M . By the submersivity condition 3 in the definition 2.3.1 of
PBord2, M is a disjoint union of manifolds which are diffeomorphic to p0, 1q2. Thus, it
suffices to consider an element of the form

`

p0, 1q2 Ď p0, 1q2, F, p0, 1q, p0, 1q
˘

,
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where F is a framing of p0, 1q2. Depict this element by

1

2

One should think of this as a point together with a 2-framing,

1

2

We claim that its dual is the same underlying unstructured manifold together with the
opposite framing

1

2

1

2

An evaluation 1-morphism ev
1

2
between them is given by the element in pBordfr2 q1,0

which is a strip, i.e. p0, 1q2, with the framing given by slowly rotating the framing by 180˝,
and is embedded into Rˆ p0, 1q2 by folding it over once as depicted further down.

1

2 1

2 1

2 1

2

1

2

1

2

1

2

A coevaluation coev
1

2
is given similarly by rotating the framing along the strip in the

other direction, by -180˝.
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The composition

1

2

1

2

1

2

1

2

1

2

is connected by a path to the flat strip with the following framing given by pulling at the
ends of the strip to flatten it.

1

2 1
2 1

2 1

2

1

2

1

2

1
2 1

2

1

2

This strip is homotopic to the same strip with the trivial framing. Thus the composition
is connected by a path to the identity and thus is the identity in the homotopy category.
Similarly,

`

ev
1

2
b id

1
2

˘

˝
`

id
1

2
b coev

1
2

˘

» id
1

2
.

In the above construction, we used ev
1

2
and coev

1
2

which arose from strips with

framing rotating by ˘180˝. A similar argument holds if you use for the evaluation any
strip with the framing rotating by απ for any odd integer α and for the coevaluation
rotation by βπ for any odd β. Denoting these by evpαq and coevpβq, they will be adjoints
to each other if α` β “ 2.

The counit of the adjunction is given by the cap with the framing coming from the trivial
framing on the (flat) disk.

evcoev
1

2

1

21

2

1

2

1

2

1

2

1

2 1

2

1

2

1

2

1

2

1

2
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Similarly, the unit of the adjunction is given by a saddle with the framing coming from
the one of the torus which turns by 2π along each of the fundamental loops.

Then the following 2-bordism also is framed and exhibits the adjunction.

=

2.8 Fully extended topological field theories

Now that we have a good definition of a symmetric monoidal p8, nq-category of bor-
disms modelled as a symmetric monoidal complete n-fold Segal space, we can define fully
extended topological field theories à la Lurie.

2.8.1 Definition

Definition 2.8.1. A fully extended unoriented n-dimensional topological field theory is a
symmetric monoidal functor of p8, nq-categories with source Bordn.

Remark 2.8.2. Consider a fully extended unoriented n-dimensional topological field the-
ory

Z : Bordn ÝÑ C,

where C is a symmetric monoidal complete n-fold Segal space. We have seen in section
2.6 that h1pLn´1pBordnqq » nCob. The Z induces a symmetric monoidal functor

nCob » h1pLn´1pBordnqq ÝÑ h1pLn´1pC, Zp˚qqq,

i.e. an ordinary n-dimensional topological field theory. The converse for n ą 1 is not
always true and poses interesting questions whether a theory can be “extended down”.

Similarly, a fully extended unoriented 2TFT with target C yields an extended 2TFT

2Cobext » h2pBord2q ÝÑ h2pCq.
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Additional structure Recall from the previous section that there are variants of Bordn
which require that the underlying manifolds of their elements to be endowed with some
additional structure, e.g. an orientation or a framing. These variants lead to the following
definitions.

Definition 2.8.3. Fix a type of structure given by the pair pX,Eq. A fully extended
n-dimensional pX,Eq-topological field theory is a symmetric monoidal functor of p8, nq-

categories with source Bord
pX,Eq
n .

In particular, the most interesting cases are the following:

Definition 2.8.4. A fully extended n-dimensional framed topological field theory is a
symmetric monoidal functor of p8, nq-categories with source Bordfrn .

Definition 2.8.5. A fully extended n-dimensional oriented topological field theory is a
symmetric monoidal functor of p8, nq-categories with source Bordorn .

Remark 2.8.6. We will sometimes be imprecise when specifying the type of fully extended
TFT. From now on, if we do not specify explicitly that it is unoriented or oriented, we
will usually mean that it is framed.

2.8.2 n-TFT yields k-TFT

We will see that every fully extended n-dimensional (unoriented, oriented, framed) TFT
yields a fully extended k-dimensional (unoriented, oriented, framed) TFT for any k ď n
by truncation from subsection 1.5.1.

Note that for k ă n, we have a map of k-fold Segal spaces

PBordk ÝÑ τkpPBordnq “ pPBordnq‚, . . . , ‚
loomoon

k times

,0, . . . , 0
loomoon

n´k times

induced by sending
`

M ãÑ V ˆ p0, 1qk, pIij ’sq
k
i“1

˘

P PBordk to

`

M ˆ p0, 1qn´k ãÑ V ˆ p0, 1qn, pIij ’sq
k
i“1, p0, 1q, . . . , p0, 1q

˘

.

The completion map PBordn Ñ Bordn induces a map on the truncations. Precomposition
with the above map yields a map of (in general non-complete) n-fold Segal spaces

PBordk ÝÑ τkpPBordnq ÝÑ τkpBordnq.

Recall from 1.5.1 that since τkpBordnq is complete, by the universal property of the com-
pletion we obtain a map Bordk Ñ τkpBordnq. This ensures that any fully extended
n-dimensional (unoriented, oriented, framed) TFT with values in a complete n-fold Segal
space C, Bordn Ñ C leads to a k-dimensional (unoriented, oriented, framed) TFT given
by the composition

Bordk ÝÑ τkpBordnq ÝÑ τkpCq

with values in the complete k-fold Segal space τkpCq.
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2.8.3 Cobordism Hypothesis à la Baez-Dolan-Lurie and outlook

In his seminal paper [Lur09c], Lurie gave a detailed sketch of proof of the Cobordism
Hypothesis, which in its simplest form says that a fully extended framed TFT is fully
determined by its value at the object given by a point which will be denoted by ˚. Con-
versely, any object in the target category which satisfies a suitable finiteness condition can
be obtained in this way. The finiteness condition in question is called fully dualizability,
which we will not explain here. For a full definition, we refer to [Lur09c].

Theorem 2.8.7 (Cobordism Hypothesis, [Lur09c] Theorem 1.4.9). Let C be a symmet-
ric monoidal p8, nq-category. The evaluation functor Z ÞÑ Zp˚q determines a bijection
between (isomorphism classes of) symmetric monoidal functors Bordfrn Ñ C and (isomor-
phism classes of) fully dualizable objects of C.

Thus to construct a fully extended n-dimensional framed TFT, it suffices to find a fully
dualizable object in the target C, and the cobordisms hypothesis does the rest for us. How-
ever, fully dualizability is a condition which in general is not completely straightforward
to check. Moreover, even though the proof of the cobordism hypothesis tells you that the
p8, nq-category Bordn of cobordisms is freely generated by the point, it does not give you
a simple algorithm with which one can compute all values of the fully extended n-TFT.

Our goal in this thesis is precisely this, namely, for a very special fully extended TFT, to
explicitly construct it without invoking the cobordism hypothesis. In the next chapter we
will construct our target, a symmetric monoidal p8, nq-category Algn of En-algebras, and
in the last chapter we will, given any object A in Algn, build a fully extended n-TFT by
defining a strict functor of n-fold Segal spaces

FHnpAq : Bordfrn ÝÑ Algn,

whose evaluation at the point is A. By the cobordism hypothesis, this in particular shows
that any object in Algn is fully dualizable.





Chapter 3

The Morita p8, nq-category of
En-algebras

In this chapter, we define the target category for our fully extended n-dimensional topolog-
ical field theory, which is a symmetric monoidal Morita p8, nq-category Algn “ AlgnpSq
of En-algebras. By an En-algebra, we mean an En-algebra object in a suitable sym-
metric monoidal p8, 1q-category S. In [Lur], Lurie proved that there is an equivalence
of p8, 1q-categories between En-algebras and locally constant factorization algebras on

p0, 1qn
χ
– Rn, see theorem 3.2.21. We will use this equivalence to define the objects of our

p8, nq-category of En-algebras as a suitable space of locally constant factorization alge-
bras on p0, 1qn. As (higher) morphisms we essentially use factorization algebras which are
locally constant with respect to a certain stratification to model the Morita category of
En-algebras as a complete n-fold Segal space Algn “ AlgnpSq. Informally speaking, Algn
is the p8, nq-category with En-algebras as objects, pointed pA,Bq-bimodules in En´1-
algebras as 1-morphisms in HompA,Bq, and so on.

For the interpretation of our n-fold Segal space as the Morita p8, nq-category of En-
algebras we need the following assumption on S.

Assumption 1. Let S be a symmetric monoidal p8, 1q-category which is b-sifted cocom-
plete.

3.1 The complete n-fold Segal space of closed covers in p0, 1q

In this section, we construct a (1-)fold Segal space Covers‚ of covers of p0, 1q by closed
intervals, which we will later enhance by suitable spaces of factorization algebras to give the
desired complete n-fold Segal space of En-algebras. Before we begin with its construction,
we introduce a family of collapse-and-rescale maps %ba which will be used to define the
simplicial structure.

3.1.1 Collapse-and-rescale maps

We first define collapse-and-rescale maps %ba : r0, 1s Ñ r0, 1s which delete the interval pb, as
and rescale the rest back to r0, 1s.

71
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Definition 3.1.1. Let 0 ď b, a ď 1 such that pb, aq ‰ p0, 1q. If a ď b, let %ba “ idr0,1s. If

b ă a, let %ba : r0, 1s Ñ r0, 1s,

%bapxq “

$

’

&

’

%

x
1´pa´bq , x ď b,

b
1´pa´bq , b ď x ď a,
x´pa´bq
1´pa´bq , a ď x.

10
b a

10
b

1´pa´bq

%ba

10 a

10

%0a

110 b

10

%b1

To simplify notation, we define the following composition of collapse-and-rescaling maps.

Definition 3.1.2. Let 0 ď d, c, b, a ď 1. Then let

%dc ˚ %
b
a “ %

%bapdq

%bapcq
˝ %ba.

Remark 3.1.3. Note that if pb, aq Ď pd, cq, %dc ˚ %
b
a “ %dc .

The following lemma shows that if the intervals pd, cq and pb, aq are disjoint, the composi-
tion of the respective collapse-and-rescale maps is independent of order in which we delete
and rescale and so is determined by the data of the intervals which are collapsed.

Lemma 3.1.4. Let 0 ď d, c, b, a ď 1 such that pd, cq ‰ p0, 1q ‰ pb, aq. Furthermore, let
pd, cq X pb, aq “ H. Then

%dc ˚ %
b
a “ %ba ˚ %

d
c .

Moreover, if b “ c or a “ d, the above composition is equal to %
minpd,cq
maxpb,aq.

Proof. Note that %ba and %dc are monotonically increasing and piecewise linear functions.
We first consider the cases in which one of the functions in the composition is the identity.

1. If d ě c, %bapdq ě %bapcq and so %dc “ id “ %
%bapdq

%bapcq
. Thus,

%
%bapdq

%bapcq
˝ %ba “ %ba “ %

%dc pbq

%dc paq
˝ %dc .

If b “ c, %
minpd,cq
maxpb,aq “ %cmaxpb,aq “ %bmaxpb,aq “ %ba, since if maxpb, aq ‰ a, a ď b, and

%ba “ id “ %bb.
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2. If b ě a, similarly, %ba “ id “ %
%dc pbq

%dc paq
and

%
%bapdq

%bapcq
˝ %ba “ %dc “ %

%dc pbq

%dc paq
˝ %dc .

If b “ c, %
minpd,cq
maxpb,aq “ %

minpd,cq
b “ %

minpd,cq
c “ %dc , since if minpd, cq ‰ d, c ď d, and

%dc “ id “ %cc.

Since %ba and %dc are piecewise linear functions their composition again is piecewise linear.
Thus in the remaining case it suffices to compute their value at the “break points”. The
computation of the composition in between the break points is essentially the same so we
include it as well.

3. In the remaining case we can assume wlog that c ď b and thus d ă c ď b ă a. This
implies that

%bapdq “
d

1´pa´bq , %bapcq “
c

1´pa´bq ,

%dcpbq “
b´pc´dq
1´pc´bq , %dcpbq “

b´pc´dq
1´pc´bq .

If x ď d,

%
%bapdq

%bapcq
˝ %bapxq “

x

1´ pa´ bq

1

1´ c´d
1´pa´bq

“
x

1´ pa´ bq ´ pc´ dq

“
x

1´ pc´ dq

1

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.

If d ď x ď c,

%
%bapdq

%bapcq
˝ %bapxq “

d

1´ pa´ bq ´ pc´ dq
“ %

%dc pbq

%dc paq
˝ %dcpxq.

If c ď x ď b,

%
%bapdq

%bapcq
˝ %bapxq “

x
1´pa´bq ´

c´d
1´pa´bq

1´ c´d
1´pa´bq

“
x´ pc´ dq

1´ pa´ bq ´ pc´ dq

“

x´pc´dq
1´pc´dq

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.
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If b ď x ď a,

%
%bapdq

%bapcq
˝ %bapxq “

b´ pc´ dq

1´ pa´ bq ´ pc´ dq
“ %

%dc pbq

%dc paq
˝ %dcpxq.

If a ď x,

%
%bapdq

%bapcq
˝ %bapxq “

x´pa´bq
1´pa´bq ´

c´d
1´pa´bq

1´ c´d
1´pa´bq

“
x´ pa´ bq ´ pc´ dq

1´ pa´ bq ´ pc´ dq

“

x´pc´dq
1´pc´dq ´

´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

1´
´

a´pc´dq
1´pc´dq ´

b´pc´dq
1´pc´dq

¯

“ %
%dc pbq

%dc paq
˝ %dcpxq.

If b “ c,

d

1´ pa´ bq ´ pc´ dq
“

d

1´ pa´ dq
“

b´ pc´ dq

1´ pa´ bq ´ pc´ dq
,

so the composition reduces to

%da “ %
minpd,cq
maxpb,aq.

In the following, since the intervals we consider lie in p0, 1q we often use the restriction of
%ba to the domain Dp%baq, which is defined as follows.

Definition 3.1.5. Let 0 ď b, a ď 1 such that pb, aq ‰ p0, 1q. Let

Dp%baq “

$

’

&

’

%

p0, 1q, 0 ď b, a ď 1,

pa, 1q, b “ 0,

p0, bq, a “ 1.

We might like to restrict to an even smaller domain to get a partial inverse.

Definition 3.1.6. The restriction of the collapse-and-rescale map %ba to Db
a “ p0, bs Y

pa, 1q Ă Dp%baq,

%ba|p0,bsYpa,1q : Db
a ÝÑ p0, 1q,

is injective. We call Db
a its domain of injectivity. In the following, let p%baq

´1 be the inverse
of this restriction, p%ba|Dbaq

´1 : p0, 1q Ñ Db
a.
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3.1.2 The level sets Coversk

We first define 0-simplices of the levels Coversk as sets.

Definition 3.1.7. For an integer k ě 0 let

Coversk “ tI0 ď ¨ ¨ ¨ ď Iku

be the set consisting of ordered pk ` 1q-tuples of intervals Ij Ď p0, 1q such that Ij has

non-empty interior, is closed in p0, 1q and
Ťk
j“0 Ij “ p0, 1q. As in the definition of Intk in

2.1, by “ordered” we mean that the left endpoints, denoted by aj , and the right endpoints,
denoted by bj , are ordered.

Remark 3.1.8. Note that the condition that the intervals form a cover,
Ťk
j“0 Ij “ p0, 1q,

implies that a0 “ 0 and bk “ 1.

3.1.3 The spatial structure of Coversk

The l-simplices of the space Coversk

Similarly to the definition of Intk, the l-simplices of Coversk do not just consist of the
data of a continuous family of covers. We add a rescaling datum which remembers how
the intervals were deformed.

Definition 3.1.9. Let pI0psq ď ¨ ¨ ¨ ď Ikpsqq P Coversk be a continuous family of covers by
closed intervals over |∆l|, i.e. denoting the left endpoints by ajpsq and the right endpoints
by bjpsq, the maps |∆l| Ñ R, s ÞÑ ajpsq, bjpsq are continuous maps. A continuous family
of orientation-preserving homeomorphisms

pφs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|

is said to intertwine with the composed covers if the following condition is satisfied for
every morphism f : rms Ñ rls in the simplex category ∆.

Let |f | : |∆m| Ñ |∆l| be the induced map between standard simplices. The homeomor-
phism φs,t should send the common endpoint at s to the corresponding endpoint at t
for intervals which do not overlap along |f |p∆m|q. Explicitly, this means that for every
0 ď j ă k such that for every s P |f |p|∆m|q the intersection Ijpsq X Ij`1psq consists of
exactly one element, namely bjpsq “ aj`1psq, we require that for every s P |f |p|∆m|q,

bjpsq “ aj`1psq
φs,t
ÞÝÝÑ bjptq “ aj`1ptq,

s

t

10

φ0,1

φs,t

10 b0p0q

b0p1q “ a1p1q

a1p0q b1p0q “ a2p0q

b1p1q “ a2p1q

b2p0q “ a3p0q

b2p1q “ a3p1q
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Remark 3.1.10. Note that as with Intk, it is enough to check this condition for m ď l.

Definition 3.1.11. An l-simplex of Coversk consists of

1. a continuous family of underlying 0-simplices, i.e. for every s P |∆l|,

pI1psq ď ¨ ¨ ¨ ď Ikpsqq P Coversk,

depending continuously on s;

2. a rescaling datum, which is a collection of strictly monotonically increasing homeo-
morphisms

pφs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|

such that

a) φs,s “ id for every s P |∆l|,

b) φs,t “ φ´1
t,s for every s, t P |∆l|, and

c) pφs,tqs,tP|∆l| intertwines with the composed covers.

Remark 3.1.12. Note that in particular for l “ 0 an l-simplex in this sense is an under-
lying 0-simplex together with φs,s “ id : p0, 1q Ñ p0, 1q, so, by abuse of language we call
both a 0-simplex.

The space Coversk

The spatial structure arises similarly to that on Intk.

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆ and |f | : |∆m| Ñ

|∆l| the induced map between standard simplices. Then let f˚ be the map sending an
l-simplex in Coversk given by

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|,
`

φs,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|

to

I0p|f |psqq ď . . . ď Ikp|f |psqqsP|∆m|,
`

φ|f |psq,|f |ptq : p0, 1q ÝÑ p0, 1q
˘

sP|∆m|
.

Analogous to lemma 2.1.7 we have

Lemma 3.1.13. This gives a functor ∆op Ñ Set and thus Coversk is a space, i.e. a
simplicial set.

Notation 3.1.14. We denote the spatial face and degeneracy maps by δ∆
j and σ∆

j for
0 ď j ď l.

We will need the following lemma later for the Segal condition. Its proof is similar to that
of lemma 2.1.9

Lemma 3.1.15. Each level Coversk is contractible.
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3.1.4 The simplicial set Covers‚

In this section, we make the collection of sets Covers‚ (ignoring the spatial structure we
just constructed) into a simplicial set by defining degeneracy and face maps, which use
the family of collapse-and-rescale maps %ba : p0, 1q Ñ p0, 1q defined in subsection 3.1.1.

Definition 3.1.16. The jth degeneracy map is given by inserting the jth interval twice,

Coversk
σj
ÝÑ Coversk`1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ I0 ď ¨ ¨ ¨ ď Ij ď Ij ď ¨ ¨ ¨ ď Ik.

The jth face map is given by deleting the jth interval, collapsing what now is not covered,
and rescaling the rest linearly to p0, 1q. Explicitly,

Coversk
δj
ÝÑ Coversk´1,

I0 ď ¨ ¨ ¨ ď Ik ÞÝÑ %bj´1
aj`1

pI0q X p0, 1q ď ¨ ¨ ¨ ď
{

%
bj´1
aj`1pIjq ď ¨ ¨ ¨ ď %bj´1

aj`1
pIkq X p0, 1q,

where %
bj´1
aj`1 is the collapse-and-rescale map associated to bj´1, aj`1 from the previous

section.

Proposition 3.1.17. Covers‚ is a simplicial set.

Proof. We need to show that the simplicial relations are satisfied. Two conditions are
obviously fulfilled, namely σlσj “ σj`1σl for l ď j and

δlσj “

$

’

&

’

%

id, l “ j, j ` 1,

σj´1δl, l ă j,

σjδl´1 l ą j ` 1.

It remains to check that
δjδl “ δl´1δj for j ă l.

Let I0 ď ¨ ¨ ¨ ď Ik be an element in Coversk. Since the same intervals are deleted in both
compositions, it is enough to show that the compositions of the respective collapse-and-
rescale maps coincide on both sides. This follows from lemma 3.1.4 with

d “ bj´1, c “ aj`1, b “ bl´1, a “ al`1,

given that pbj´1, aj`1q X pbl´1, al`1q “ H, which requires that

aj`1 “ c ď b “ bl´1.

Assume the opposite, that is, that bl´1 ď aj`1. By definition, aj`1 ă bj`1 ď bα for α ą j,
so this implies that l ´ 1 ď j. Since we need to check the identity for j ă l, this implies
that l “ j ` 1. The intervals pIjqj must form a cover of p0, 1q, so bl´1 ě al “ aj`1 and
therefore aj`1 “ bl´1. So in any case

aj`1 “ c ď b “ bl´1.
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3.1.5 The Segal space Covers‚

Face and degeneracy maps on l-simplices

We first need to extend the (simplicial) face and degeneracy maps δj , σj to l-simplices in a
compatible way. They essentially arise from applying the face and degeneracy maps δj , σj
to each of the 0-simplices underlying the l-simplex.

Notation 3.1.18. Let
´

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, pφs,tqs,tP|∆l|

¯

be an l-simplex of Coversk. For s P |∆l|, denote by %
bj´1
aj`1psq “ %

bj´1psq

aj`1psq
the collapse-and-

rescale map associated to the sth underlying 0-simplex pI0psq ď ¨ ¨ ¨ ď Ikpsqq of the above
l-simplex, and by Db

apsq “ p0, bj´1psqs Y paj`1psq, 1q its domain of injectivity.

Degeneracy maps on l-simplices For 0 ď j ď k the jth degeneracy map σj sends an
l-simplex of Coversk

´

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, pφs,tqs,tP|∆l|

¯

to the l-simplex of Coversk`1 given by
´

σjpI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, pφs,tqs,tP|∆l|

¯

This is well-defined, since the conditions on the φs,t stays the same.

Face maps on l-simplices For 0 ď j ď k the jth face map δj sends an l-simplex of
Coversk

´

pI0psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l|, pφs,tqs,tP|∆l|

¯

to the following l-simplex of Coversk´1.

1. The underlying 0-simplices of the image are the images of the underlying 0-simplices
under δj , i.e. for s P |∆l|,

δj pI0psq ď ¨ ¨ ¨ ď Ikpsqq ;

2. Its rescaling datum is

δjpφs,tq “ %bj´1
aj`1

ptq ˝ φs,t|Dbapsq ˝ %
bj´1
aj`1

psq´1 : p0, 1qn Ñ p0, 1qn.

The complete Segal space Covers‚

Proposition 3.1.19. Covers‚ is a complete Segal space.

Proof. That the simplicial and spatial face and degeneracy maps commute follows directly
from the definition. Furthermore, we have seen in lemma 3.1.15 that every space Coversk
is contractible. This ensures the Segal condition, namely that

Coversk
»
ÝÑ Covers1

h
ˆ

Covers0
¨ ¨ ¨

h
ˆ

Covers0
Covers1,

and completeness.
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Definition 3.1.20. Let
Coversn‚,...,‚ “ pCovers‚q

ˆn.

Lemma 3.1.21. The n-fold simplicial space Coversn‚,...,‚ is a complete n-fold Segal space.

Proof. The Segal condition and completeness follow from the Segal condition and com-
pleteness for Covers‚. Since every Coversk is contractible by lemma 3.1.15, pCovers‚q

ˆn

satisfies essential constancy, so Coversn is an n-fold Segal space.

3.2 The Morita p8, nq-category of En-algebras Algn

This section contains the main construction of the complete n-fold Segal space AlgnpSq.
To shorten notation, we will abbreviate Algn “ AlgnpSq throughout. We first recall the
definition of an En-algebra.

3.2.1 Structured disks and En-algebras

As in section 2.7.1, let X be a topological space and E Ñ X a topological n-dimensional
vector bundle which corresponds to a (homotopy class of) map(s) e : X Ñ BGLpRnq from
X to the classifying space of the topological group GLpRnq.

Definition 3.2.1. The symmetric monoidal topological category Disk pX,Eqn of pX,Eq-

structured disks is the full topological subcategory ofManpX,Eqn whose objects are disjoint
unions of pX,Eq-structured n-dimensional Euclidean disks Rn.

Example 3.2.2. Recall from section 2.7.1 that interesting examples of pX,Eq-structures
arise from a topological group G together with a continuous homomorphism e : GÑ Opnq
by setting X “ BG and e : BGÑ BGLpRnq. In this case, we refer to pBG, eq-structured

disks as G-structured disks and use the notation Disk Gn “ Disk pBG,eqn .

Definition 3.2.3. Let S be a symmetric monoidal p8, 1q-category. The p8, 1q-category

Disk pX,Eqn -AlgpSq of Disk pX,Eqn -algebras is the p8, 1q-category of symmetric monoidal func-

tors FunbpDisk pX,Eqn ,Sq.

Remark 3.2.4. Recall from section 1.2 that topological categories are a model for p8, 1q-
categories. By perhaps changing to a different, suitable, model of p8, 1q-categories, the
above definition makes sense.

The most common examples are the following three special cases.

Example 3.2.5. If G is the trivial group, then X “ BG “ ˚, and the topological

category Disk Gn is denoted by Disk frn . Using the fixed diffeomorphism χ : p0, 1q – R it is
equivalent to the topological category Cuben whose objects are disjoint unions of p0, 1qn

and whose spaces of morphisms are the spaces of embeddings
š

Ip0, 1q
n Ñ

š

Jp0, 1q
n

which are rectilinear on every connected component. As Cuben-algebras are equivalent to

En-algebras, the category Disk frn -AlgpSq is equivalent to the usual category of En-algebras
in S.

Remark 3.2.6. Note that morphisms in the category Disk frn -AlgpSq are morphisms of
En-algebras, i.e. natural transformations of functors. In the Morita category we will
construct in this section morphisms will be bimodules of En-algebras.
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Example 3.2.7. If G “ Opnq, the topological category Disk Gn is denoted by Disk unn . We
call Disk unn -algebras unoriented En-algebras. Similarly to in the previous example Disk unn
is equivalent to the topological category Cubeunn whose objects are disjoint unions of p0, 1qn

and whose spaces of morphisms are the spaces Cubenp
š

Ip0, 1q
n,
š

Jp0, 1q
nq ˙OpnqˆJ .

Example 3.2.8. If G “ SOpnq and X “ BG, the topological category Disk pX,Eqn is

denoted by Disk orn . We call Disk pX,Eqn -algebras oriented En-algebras. Again similarly to
above Disk orn is equivalent to the topological category Cubeorn whose objects are disjoint
unions of p0, 1qn and whose spaces of morphisms are the spaces Cubenp

š

Ip0, 1q
n,
š

Jp0, 1q
nq˙

SOpnqˆJ .

3.2.2 Factorization algebras

We recall the definition of factorization algebras and basic facts. Factorization algebras
were first introduced by Beilinson-Drinfeld in the algebro-geometric context for curves in
[BD04]. Inspired by this, Lurie first coined the term factorizing cosheaf in [Lur]. They
were further studied and developped in [CG], [GTZ10], and others. We mainly follow the
conventions in [Gin]. The other main reference is [CG]. Note that all our factorization
algebras will be non-lax homotopy (i.e. derived) factorization algebras in the language of
[CG]. For simplicity, let us assume that S is given by a relative category pS,Wq.

Definition 3.2.9. Let X be a topological space. A prefactorization algebra on X with
values in S is a functor

F : OpenpXq ÝÑ S

together with structure maps

fU1>...>UnĎV : FpU1q b ¨ ¨ ¨ b FpUnq ÝÑ FpV q

for every finite disjoint union of open sets Ui (independent of the ordering of the Ui)
included in another open set V such that

1. for U Ď V ,
FpU Ď V q “ fUĎV ,

2. the following coherence (or associativity) condition is satisfied: for any finite collec-
tion of pairwise disjoint open subsets pVjqjPJ lying in an open set W and for every
j P j, a finite collection of open subsets pUi,jqiPJi lying in Vj , the following diagram
induced by the structure maps commutes:

W
V1

V2

U1

U2

U3

U4

ù

Â

jPJ

Â

iPJi

FpUi,jq
Â

jPJ

FpVjq

FpW q

Remark 3.2.10. The inclusion of the empty set induces map FpHq Ñ FpUq for every
open set U . Thus prefactorization algebras are pointed objects.
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Remark 3.2.11. Prefactorization algebras on X are algebras over the colored operad
with open sets in X as colors and

PreFactXpU1, . . . , Un;V q “

#

t˚u if U1 > . . . > Un Ď V ;

H otherwise.

The 8-operad associated to this operad was denoted by NpDiskpXqq in [Lur].

Definition 3.2.12. Let U be an open cover of U . Then the Čech complex of U with
values in a prefactorization algebra F on U is the simplicial object in S constructed as
follows:

Let PU be the set of finite pairwise disjoint open subsets tU1, . . . , Un : Ui P U , n ě 0u.
For i ě 0, let

ČipU ,Fq “
à

αPPU i`1

â

UjPαj

F

˜

i
č

j“0

Uj

¸

.

To define the face maps for 0 ď j0 ď i

Bj0 : Či`1pU ,Fq ÝÑ ČipU ,Fq,

consider the structure maps of the inclusions of open sets

i
č

j“0

Uj ãÑ
i
č

k“0
k‰j0

Uj .

Then the j0th face map is given by the direct sum of their tensor products

â

UjPαj

F

˜

i
č

j“0

Uj

¸

ÝÑ
â

UkPαk,
k‰j0

F

¨

˚

˝

i
č

k“0
k‰j0

Uj

˛

‹

‚

.

Degeneracy maps are given by repeating one of the αj ’s. Summarizing we obtain a sim-
plicial diagram is S,

Č‚pU ,Fq “

˜

à

αPPU

â

UPα

F pUqÐ
à

αPPU 2

â

UjPαj

F pU0 X U1q ¨ ¨ ¨

¸

.

Remark 3.2.13. Note that the structure maps associated to the inclusions
Şi
j“0 Uj Ď U

give maps Fp
Şi
j“0 Ujq Ñ FpUq and thus ČipU ,Fq ÝÑ FpUq which commute with the

simplicial maps by coherence. We obtain a map of simplicial objects in S

Č‚pU ,Fq ÝÑ FpUq.

Definition 3.2.14. An open cover U of U is said to be factorizing if for every finite set
of pairwise distinct points tx1, . . . , xnu Ď U there is a finite subset U1, . . . , Uk Ď U of
pairwise disjoint open sets such that

tx1, . . . , xnu Ď U1 > . . . > Uk.
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A (homotopy) factorization algebra on X with values in S is prefactorization algebra on
X with values in S for which the following gluing condition holds: for every open U Ď X
and every factorizing cover U of U the map

Č‚pU ,Fq ÝÑ FpUq

is a weak equivalence.

Remark 3.2.15 (Unitality). If F is a factorization algebra on X with values in S, then
FpHq » 1 the monoidal unit in S: Consider the Čech complex for the empty cover
U “ H of U “ H. There is exactly one α P PU , namely α “ H and thus every factor
Â

UjPαj
F
´

Şi
j“0 Uj

¯

“
Â

H “ 1. Thus the gluing condition requires the map

p¨ ¨ ¨ 1 Ñ 1q ÝÑ FpHq

to be a weak equivalence.

Remark 3.2.16 (Comparison with [CG]). Let U “ U1>¨ ¨ ¨>Un. Then U “ tU1, ¨ ¨ ¨ , Unu
is a factorizing open cover. Then gluing condition implies that the structure map

FpU1q b ¨ ¨ ¨ b FpUnq
»
ÝÑ FpUq. (3.1)

Thus we do not consider lax factorization algebras in the sense of [CG].

Moreover, they require a gluing condition for covers with a stronger property, namely
being a Weiss cover, named after Michael Weiss. However, every factorizing open cover
U generates a Weiss open cover V “ tU1 > ¨ ¨ ¨ >Un : Ui P U u. Then the gluing condition
for Weiss covers together with (3.1) is equivalent to the gluing property in our sense.

Definition 3.2.17. A morphism of prefactorization algebras F Ñ G is a collection of
maps

FpUq ÝÑ GpUq

for every open set U which commutes with the structure maps. Since S was a symmetric
monoidal p8, 1q-category this gives a symmetric monoidal p8, 1q-category of prefactor-
ization algebras PFactXpSq: e.g. if we start with a symmetric monoidal relative category
pS,Wq, then define weak equivalences of prefactorization algebras to be the morphisms
with values in W. The symmetric monoidal structure is defined level-wise.

The category FactXpSq of factorization algebras on X with values in S is the symmetric
monoidal full sub-p8, 1q-category of the p8, 1q-category of prefactorization algebras on X
with values in S.

3.2.3 Stratifications and locally constant factorization algebras

The full definition of locally constant factorization algebras on a (stratified) space can
be found in [Gin]. In this paper, we will only deal with stratifications of a very special
type, so we recall the definition in an easier setting suitable for the factorization algebras
appearing in this thesis here.

Definition 3.2.18. Let X be an n-dimensional manifold. By a stratification of X we
mean a filtration

H “ X´1 Ă X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X,
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where Xα is an α-dimensional closed submanifold of Xα`1. The connected components
of XαzXα´1 are called the dimension α-strata of X. An open disk D in X is said to have
index α, if D XXα ‰ H and D Ă XzXα´1. We say that a disk D is a good neighborhood
at Xα if α is the index of D and D X pXαzXα´1q is connected.

Definition 3.2.19. Let H “ X´1 Ă X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn “ X be a stratification of
an n-dimensional manifold X. A factorization algebra F on X is called locally constant
with respect to the stratification if for any inclusion of disks U ãÑ V such that both U and
V are good neighborhoods at Xα for the same index α P t0, . . . , nu, the structure map
FpUq Ñ FpV q is a weak equivalence.

A factorization algebra F on X is called locally constant if it is locally constant with
respect to the stratification given by Xα “ H for every α ‰ n, i.e.

H Ă X.

Notation 3.2.20. We denote by Fact lcX the full sub-p8, 1q-category of FactXpSq whose
objects are locally constant factorization algebras.

En-algebras as locally constant factorization algebras We will base our construc-
tion on factorization algebras which are locally constant with respect to certain stratifi-
cations. That our objects, which will be locally constant factorization algebras on p0, 1qn,
indeed are En-algebras as defined in the previous section follows from the following theo-
rem due to Lurie.

Theorem 3.2.21 (Lurie, [Lur], Theorem 5.3.4.10). There is an equivalence of p8, 1q-
categories

Disk frn -AlgpSq »
ÝÑ Fact lcRn .

Remark 3.2.22. In fact, the equivalence in the proof is given by factorization homology,
which we will construct in the next section, in section 4.1. That is, the image of an
En-algebra A is its factorization homology

ş

Rn A.

The choice of diffeomorphism χ : p0, 1q – R yields the following corollary, see also [Gin],
Remark 23, or [Cal].

Corollary 3.2.23. There is an equivalence of p8, 1q-categories

En-AlgpSq »
ÝÑ Fact lcp0,1qn .

Bimodules as locally constant factorization algebras

Our second motivation for using factorization algebras is the following. For more details,
see [Gin].

Let A,B be associative algebras in S, M a pointed pA,Bq-bimodule, with pointing 1
m
Ñ

M . Then the following assignment extends to a factorization algebra FM on p0, 1q: Let
0 ă s ă 1. For open intervals U, V , and W in p0, 1q as in the picture

10
VU

W

s
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we set

U ÞÝÑ FM pUq “ A, V ÞÝÑ FM pV q “ B,

p PW ÞÝÑ FM pW q “M.

The structure maps of the factorization algebra are given by the bimodule structure and
by

AbB – Ab 1bB
m
ÝÑM.

This special case comes from the fact that factorization algebras naturally are pointed,
as we can always include the empty set into any other open set. The inclusion H Ď W
induces a map

1 ÝÑM.

In the case where S “ Chk is the p8, 1q-category of chain complexes over a field k, the
pointing is a map k ÑM which is determined by the image of 1 P k,

1 ÞÝÑ m PM.

In this case the structure map of U > V Ă p0, 1q is given by

AbB ÝÑM, pa, bq ÞÝÑ amb.

The factorization algebra FM defined by a bimodule M as above is locally constant with
respect to the stratification

H Ă tsu Ă p0, 1q.

Conversely, any factorization algebra F which is locally constant with respect to a strat-
ification of the above form determines a homotopy bimodule M over homotopy algebras
A,B as we show in the following lemma.

Lemma 3.2.24. Let 0 ă s ă 1 and let F be a factorization algebra on p0, 1q which is
locally constant with respect to the stratification

H Ă tsu Ă p0, 1q.

Then M “ Fpp0, 1qq is, up to homotopy, a pointed pA,Bq-bimodule for the (E1-)algebras
A “ Fpp0, sqq and B “ Fpps, 1qq and pointing 1 Ñ M induced by the structure map for
the inclusion H Ă p0, 1q.

Proof. Since U Ă p0, sq and V Ă ps, 1q are weak equivalences, the structure map of the
factorization algebra associated to the inclusion of open sets U > V Ă p0, 1q as in the
picture above induces the homotopy bimodule structure.

Corollary 3.2.25. The data of a homotopy bimodule over E1-algebras is the same as
the data of a factorization algebra on p0, 1q which is locally constant with respect to a
stratification of the form

H Ă tsu Ă p0, 1q

for some 0 ă s ă 1.
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Locally constant factorization algebras on products

We will need the following theorem later on, which is proposition 18 and corollary 6 in
[Gin].

Theorem 3.2.26. Let X, Y be stratified manifolds with finitely many dimension α-strata
for every α.

1. The pushforward along the projection pr1 : X ˆ Y Ñ X induces a functor

pr1˚
: PFactXˆY ÝÑ PFactXpPFactY q,

which restricts to a functor

pr1˚
: FactXˆY ÝÑ FactXpFactY q.

2. Consider the stratification on the product X ˆ Y given by

pX ˆ Y qk :“
ď

i`j“k

Xi ˆ Yj Ă X ˆ Y.

The functor from 1 induces a functor

pr1˚
: Fact lcXˆY ÝÑ Fact lcXpFact lcY q

between the subcategories of factorization algebras which are locally constant with
respect to the stratifications of the respective spaces.

3.2.4 The level sets pAlgnqk1,...,kn

For S Ď t1, . . . , nu we denote the projection from p0, 1qn onto the coordinates indexed by
S by πS : p0, 1qn Ñ p0, 1qS and for 1 ď i ď n, we abbreviate πtiu to πi.

Definition 3.2.27. For every k1, . . . , kn ě 0, let pAlgnqk1,...,kn be the collection of tuples

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,
pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski .

3. F is locally constant with respect to the stratification defined inductively by

Xn “ p0, 1q
n and Xn´i “ Xn´i`1 X Yi

for 1 ď i ď n, where, denoting by pIijq
˝ “ paij , b

i
jq the interior of the interval Iij ,

Yi “ π´1
i

`

p0, 1qz
ki
ď

j“0

paij , b
i
jq
˘

“ p0, 1qnz
ki
ď

j“0

π´1
i

`

pIijq
˝
˘

.
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Remark 3.2.28. Given an element in pAlgnqk1,...,kn , let 0 ă si1 ď . . . ď sili ă 1 be the
points such that

Si “ tsi1, . . . , s
i
liu “ p0, 1qz

ki
ď

j“0

paij , b
i
jq.

Then Yi “ π´1
i pS

iq is a disjoint union of parallel hyperplanes and

Xn´i “ Yn X ¨ ¨ ¨ X Yi

“
ď

p1ďjαďkαqiα“1

π´1
t1,...,iups

1
j1 , . . . , s

i
jiq

“ S1 ˆ ¨ ¨ ¨ ˆ Si ˆ p0, 1qti`1,...,nu.

The stratification has the form

p0, 1qn Ą
ď

1ďjďk1

π´1
1 ps1

j q Ą
ď

1ďj1ďk1
1ďj2ďk2

π´1
t1,2ups

1
j1 , s

2
j2q Ą ¨ ¨ ¨ Ą

ď

p1ďjiďkiqni“1

π´1ps1
j1 , . . . , s

n
jnq.

Remark 3.2.29. In fact, the data of the points in Si is the essential one in the sense
that they are the information of pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski we use. It might thus seem
more natural to basing our construction on a Segal space of points instead of Covers‚.
However, the points alone do not form a simplicial space because degeneracy maps cannot
be defined. The extra information coming from the fact that points come from endpoints
of intervals allows to define the missing structure.

Example 3.2.30. For n “ 1, objects, which are elements in pAlg1q0, are locally con-
stant factorization algebras on p0, 1q – R, which in turn by the above mentioned equiv-
alence 3.2.21 are E1-algebras. Morphisms, i.e. elements in MappA,Bq “ tAu ˆh

pAlg1q0

pAlg1q1 ˆ
h
pAlg1q0

tBu, are pointed homotopy pA,Bq-bimodules as we have seen in lemma

3.2.24. For example, an element in pAlg1q4 could have a cover of the form

1

b4

0

a0 b0 “ a1 a2 b1 b2 “ a3 b3 “ a4

and therefore factorization algebras F which are locally constant with respect to a strat-
ification of the following form

10
s1 s2 s3

Since F |p0,s1q is locally constant on p0, s1q » p0, 1q it equivalent to the data of an E1-
algebra A0. Similarly, F determines E1-algebras A1, . . . , A3. Moreover, the restriction
F |p0,s2q determines a pointed homotopy pA0, A1q-bimodule M1 and similarly, F determines
bimodules M2,M3:

10
M1 M2 M3

A0 A1 A2 A3
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One may think of the overlapping intervals as also giving a point of the stratification, but
one which is “degenerate”, and thus gives a “degenerate” bimodule, by which we mean
an E1-algebra viewed as a bimodule over itself.

10
M1 A1 M2 M3

A0 A1 A1 A2 A3

Remark 3.2.31. One should be a bit careful with the interpretation of the degenerate
points of the stratification, as this data does not behave well with respect to the simplicial
structure. As we explained above, this is the reason we do not use this as a definition,
but keep track of the intervals instead.

Example 3.2.32. For n “ 2, stratifications which appear in the definition of Alg2 give
pictures as in the left picture below. A 2-morphism, i.e. an element in pAlg2q1,1, leads to
a bimodule C between bimodules M and N of E2-algebras A and B which are the images
of open disks as in the right picture below.

s1
1 s1

2 s
1
3 s1

4s
1
5

s2
1

s2
2

s2
3

s2
4

C

M

N

A

B

For n “ 3, stratifications which appear in the definition of Alg3 give pictures of the
following type:

s1
1 s1

2 s1
2

s2
1

s2
2

s3
1
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3.2.5 The spaces pAlgnqk1...,kn

The level sets pAlgnqk1,...,kn form the underlying set of 0-simplices of a space which we
construct in this section.

The space of factorization algebras

We first need suitable spaces of factorization algebras.

Recall from 3.2.17 that the category FactXpSq of factorization algebras on X with values
in S is a symmetric monoidal p8, 1q-category. Thus it has a space of objects, which is the
space of factorization algebras we are interested in.

If we start with a symmetric monoidal relative category pS,Wq, then FactXpSq again
is a symmetric monoidal relative category. The classification diagram as explained in
section 1.2.3 of FactXpSq with its level-wise weak equivalences gives a symmetric monoidal
complete Segal space NpFactXpSq,Wq of factorization algebras.

The objects of this Segal space form a space, i.e. a simplicial set, of factorization algebras.
Explicitly, if we begin with a relative category, this space of factorization algebras is the
nerve of the category of factorization algebras with weak equivalences as morphisms, i.e. a
k-simplex is a sequence

F0
w1
ÝÝÑ F1

w2
ÝÝÑ ¨ ¨ ¨

wk
ÝÝÑ Fk.

However, it will not be a Kan complex unless S was an 8-groupoid. Thus, we use a
modification of this definition which seems to be close to a Kan fibrant replacement of
the above construction. We will give a more conceptual construction using families of
factorization algebras in a subsequent paper.

The spatial structure of pAlgnqk1...,kn

Definition 3.2.33. An l-simplex of pAlgnqk1,...,kn consists of the following data:

1. A family of underlying 0-simplices, which is a collection of elements

`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
n
i“1

˘

P pAlgnqk1,...,kn

indexed by s P |∆l|;

2. For every 1 ď i ď n, a rescaling datum
`

φis,t : p0, 1q Ñ p0, 1q
˘

s,tP|∆l|
making

`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

into an l-simplex in Coverski ;

3. A collection of weak equivalences

pφs,tq˚Fs
ws,t
ÝÑ Ft

for s, t P |∆l|, where φs,t “ pφ
i
s,tq

n
i“1 : p0, 1qn Ñ p0, 1qn is the product of the rescaling

data.
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Remark 3.2.34. This space can be thought of as a “rescaled” version of the space of
factorization algebras explained above, namely, we compare factorization algebras after
rescaling using the diffeomorphisms φs,t. When the context is clear we will sometimes
omit writing the pushforwards along the rescaling maps and simply write Fs Ñ Ft.

Similarly to the construction of PBordn, the spatial structure on pAlgnqk1,...,kn extends
the one on Coversnk1,...,kn .

Fix k ě 0 and let f : rms Ñ rls be a morphism in the simplex category ∆, i.e. a (weakly)
order-preserving map. Then let |f | : |∆m| Ñ |∆l| be the induced map between standard
simplices.

Let f∆ be the map sending an l-simplex in pAlgnqk1,...,kn to the m-simplex which consists
of

1. for s P |∆m|,
F|f |psq;

2. for 1 ď i ď n, the m-simplex in Coverski obtained by applying f∆,

f∆
´

Ii0psq ď ¨ ¨ ¨ ď Iikipsq, φ
i
s,t

¯

;

3. for s, t P |∆m|,
w|f |psq,|f |ptq : F|f |psq ÝÑ F|f |ptq.

Proposition 3.2.35. pAlgnqk1,...,kn is a space. Moreover, it is a Kan complex, i.e. fibrant
in the category of simplicial sets with Quillen model structure.

Proof. The spatial structure essentially comes from the spatial structure of Coversnk1,...,kn
and the simplicial structure of Np∆q, so the assignments above are well-defined and behave
functorially.

The proof of the Horn filling condition is similar to that of the singular set of a topological
space. A morphism Λlk Ñ Algn is the data of, for s, t P |Λlk|,

`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqqi“1,...,n

˘

P pAlgnqk1,...,kn ,

`

φis,t : p0, 1q Ñ p0, 1q
˘

, and
`

ws,t : Fs ÝÑ Ft
˘

.

Now choose a retraction p : |∆l| Ñ |Λlk|. Then for s̃, t̃ P |∆l|, consider

`

Fpps̃q, pIi0ppps̃qq ď ¨ ¨ ¨ ď Iikippps̃qqqi“1,...,n

˘

P pAlgnqk1,...,kn ,

`

φipps̃q,ppt̃q : p0, 1q Ñ p0, 1q
˘

, and
`

wpps̃q,ppt̃q : Fpps̃q ÝÑ Fppt̃q
˘

.

This defines an l-simplex in pAlgnqk1,...,kn whose restriction to the kth horn is the given
one.

Notation 3.2.36. We denote the spatial face and degeneracy maps of pAlgnqk1,...,kn by
δ∆
j and σ∆

j for 0 ď j ď l.
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3.2.6 The n-fold simplicial set Algn

In the next two sections, we make the collection of spaces pAlgnq‚,...,‚ into an n-fold
simplicial space by defining suitable face and degeneracy maps. They essentially arise
from the face and degeneracy maps of the n-fold simplicial set Coversn‚,...,‚ of covers of
p0, 1qn by products of closed intervals. In this section we define faces and degeneracies
on 0-simplices, which makes pAlgnq‚,...,‚ into an n-fold simplicial set, ignoring the spatial
structure of the levels. We will lift the n-fold simplicial set to an n-fold simplicial space
using the spatial structure of the levels in the next section.

Before giving the full definition of the face and degeneracy maps of the n-fold simplicial
set Algn, we first demonstrate them for n “ 1.

Example 3.2.37. For n “ 1, elements in pAlg1q1 consist of a factorization algebra F
on p0, 1q and two intervals p0, bs and ra, 1q such that a ď b. The source and target maps
pAlg1q1 Ñ pAlg1q0 are given by restricting the factorization algebra which then is rescaled
back to p0, 1q. Explicitly, the source map pushes forward the restriction of the factorization
algebra F to p0, bq by the collapse-and-rescale map %b0 to p0, 1q, which is the unique affine
bijection p0, bq Ñ p0, 1q. Similarly the target map pushes forward the restriction of the
factorization algebra F to pa, 1q by the collapse-and-rescale map %0

a to p0, 1q. We saw in
example 3.2.30 that elements in pAlg1q1 can be viewed as pairs pA,Bq of E1-algebras and
a pointed homotopy pA,Bq-bimodule M . The source and target maps pAlg1q1 Ñ pAlg1q0

map M to the source A, respectively the target B.

The degeneracy map pAlg1q0 Ñ pAlg1q1 sends a pair pF , p0, 1qq consisting of a locally
constant factorization algebra F on p0, 1q to the element pF , p0, 1q ď p0, 1qq. In the
language of algebras and bimodules, it sends an E1-algebra A to itself, now viewed as an
pA,Aq-bimodule.

Two of the face maps, δ0, δ2 : pAlg1q2 pAlg1q1 are defined similarly, by “forgetting” part
of the data, i.e. by restricting the factorization algebra and rescaling. In the language of
modules, the map δ2, which corresponds to the “source map”, sends an element consisting
of a triple pA,B,Cq of E1-algebras and a pair pAMB ,B NCq of bimodules to pA,Bq and

AMB . The “target map” δ0 sends the same element to pB,Cq and BMC . The third
map δ1, which corresponds to composition, sends an element pF , I0 ď I1 ď I2q to the
pushforward along the collapse-and-rescale map %b0a2 : p0, 1q Ñ p0, 1q, illustrated in the
following picture for the case b0 “ a1.

b2 “ 1a0 “ 0 b0 “ a1 a2 b1

10

b0
1´pa2´b0q

%
b0
a2

If b0 ě a2, then %b0a2 “ id. Moreover, either A “ B and AMB “ BBB , or B “ C and

BNC “ B (or both). In the first case δ1 sends pBBB ,BMCq to just BMC . In the second
case δ1 sends pAMB ,B BBq to just AMB .
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If b0 ă a2, the gluing axiom of factorization algebras implies that the homotopy bimodule
associated to image under δ1 of the pair of homotopy bimodules pAMB ,B NCq is the tensor
product pAMBq bB pBNCq, i.e. composition sends an element consisting of E1-algebras
A,B,C and bimodules AMB and BNC to A,C and the bimodule pAMBq bB pBNCq.

The two degeneracy maps σ0, σ1 : pAlg1q1 Ñ pAlg1q2 send pF , I0 ď I1q to σ0pF , I0 ď
I1q “ pF , I0 ď I0 ď I1q, σ1pF , I0 ď I1q “ pF , I0 ď I1 ď I1q. In the language of modules,
they send an pA,Bq-bimodule AMB to the pairs pAAA,AMBq respectively pAMB ,B BBq.

10

M

A B

10
MA

BAA

σ0

10

M

A B

10
M B

A B B

σ1

Notation 3.2.38. Before we start defining the face and degeneracy maps, recall that
we used collapse-and-rescale maps %ba to define the simplicial structure on Covers‚. More

precisely, the jth face map was defined using %
bj´1
aj`1 . For simplicity of notation, we will

denote this map by %j in the following and its domain of injectivity by Dj .

Since 1 ď i ď n will be fixed throughout the constructions, by abuse of notation, we

also denote by %j the map %
bij´1

aij`1
used for the jth face map in the ith direction of the

n-fold simplicial structure of Coversn‚,...,‚ and its domain of injectivity by Dj “ p0, b
i
j´1qY

paij`1, 1q.

By even more abuse of notation we again denote by %j the map

%j : p0, 1qn Ñ p0, 1qn,

which is %j in the ith coordinate and the identity otherwise. By %´1
j we mean the inverse

of
%j |π´1

i pDjq
: π´1

i pDjq “
ź

α‰i

p0, 1q ˆDj Ñ p0, 1qn.

Degeneracy maps Fix 1 ď i ď n. For 0 ď j ď ki the jth degeneracy map

σij : pAlgnqk1,...,kn Ñ pAlgnqk1,...,ki`1,...,kn

applies the jth degeneracy map of Covers‚ to the ith tuple of intervals, i.e. it repeats the
jth specified interval in the ith direction, Iij ,

pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q ÞÝÑ

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, σjpI
i
1 ď ¨ ¨ ¨ ď Iikiq

˘

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, I
i
1 ď ¨ ¨ ¨ ď Iij ď Iij ď ¨ ¨ ¨ ď Iiki

˘

.

Since this does not change the stratification with respect to which F must be locally
constant this map is well-defined.

Face maps Fix 1 ď i ď n. For 0 ď j ď ki the jth face map

δij : pAlgnqk1,...,kn Ñ pAlgnqk1,...,ki´1,...,kn
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applies the jth face map δj of Covers‚ to the ith tuple of intervals, which forgets the jth
interval Iij and applies the collapse-and-rescale map %j to the other intervals, and pushes

the factorization algebra, restricted to π´1
i pDjq, forward along the map %j . Explicitly,

pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q is sent to

´

p%jq˚F |π´1
i pDjq

, pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, δjpI
i
1 ď ¨ ¨ ¨ ď Iikiq

¯

.

This is well-defined since the restriction of the factorization algebra and the stratification
with respect to which it must be locally constant are rescaled by the same rescaling map.

Remark 3.2.39. In the following, we will omit explicitly writing out the restriction of F
to π´1

i pDjq for readability.

Proposition 3.2.40. The face and degeneracy maps defined above define an n-fold sim-
plicial set pAlgnq‚,...,‚.

Proof. This follows from the fact that Covers‚ is a simplicial set and pushforward of
factorization algebras is a functor.

3.2.7 The full structure of Algn as an n-fold simplicial space

In this section we “extend” the simplicial face and degeneracy maps δij , σ
i
j to the l-simplices

of pAlgnqk1,...,kn in a way that they commute with the spatial structure of pAlgnqk1,...,kn .
This gives Algn the structure of an n-fold simplicial space.

Degeneracy maps on l-simplices. Fix 1 ď i ď n. For 0 ď j ď ki the jth degeneracy
map σij sends an l-simplex of pAlgnqk1,...,kn to the l-simplex of pAlgnqk1,...,ki`1,...,kn defined

by applying the degeneracy map σij to each underlying 0-simplex,

σij
`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

P pAlgnqk1,...,ki`1,...,kn ,

and keeping the same rescaling data φs,t and weak equivalences pφs,tq˚Fs
ws,t
ÝÑ Ft.

Face maps on l-simplices. Fix 1 ď i ď n.

For 0 ď j ď ki the jth face map δij sends an l-simplex of pAlgnqk1,...,kn consisting of
`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

sP|∆l|

pφs,t : p0, 1qn ÝÑ p0, 1qnqs,tP|∆l|
, and

`

pφs,tq˚Fs
ws,t
ÝÑ Ft

˘

s,tP|∆l|

to the l-simplex of pAlgnqk1,...,ki´1,...,kn consisting of the following data.

Denote by %jpsq be the analog of the above map %j associated to the sth underlying
0-simplex pIi0psq ď ¨ ¨ ¨ ď Iikipsqq P Coverski .

1. The underlying 0-simplices of the image are the images of the underlying 0-simplices
under δij , i.e. for s P |∆l|,

δij
`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

“
`

%jpsq˚Fs|..., pIα0 psq ď ¨ ¨ ¨ ď Iαkαpsqqα‰i, δjpI
i
0psq ď ¨ ¨ ¨ ď Iikipsqq

˘

,
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where we omit writing down the precise restriction domain from now on. It can be
checked easily that they match up where needed.

2. The underlying l-simplex in Coverski is sent to its image under δij , i.e. its rescaling

data is δijpφs,tq. Recall from section 3.1.5 that this is the map

δijpφs,tq “ %jptq ˝ φs,t|... ˝ %jpsq
´1 : p0, 1qn Ñ p0, 1qn.

3. Pushforward along %jpsq is an endofunctor of the category of factorization algebras
on p0, 1qn which preserves weak equivalences, so for every s P |∆l| we have the
following weak equivalences

δijpφs,tq˚

´

%jpsq˚Fs|...
¯

“ %jptq˚pφs,t|...q˚Fs|...
%jptq˚ws,t
ÝÝÝÝÝÝÝÑ %jptq˚Ft|....

Proposition 3.2.41. pAlgnq‚,¨¨¨ ,‚ is an n-fold simplicial space.

Proof. The degeneracy and face maps σij , δ
i
j defined above satisfy the simplicial relations

since we showed in lemma 3.1.21 that Coversn‚,...,‚ is an n-fold Segal space, in particular, we
proved that the rescaling maps commute in the appropriate way. Moreover, they commute
with each other since they modify different parts of the structure and they commute with
the spatial structure maps f∆ of the spaces pAlgnqk1,...,kn .

3.2.8 The n-fold Segal space Algn

Proposition 3.2.42. pAlgnq‚,...,‚ is an n-fold Segal space.

Proof. We need to prove the following conditions:

1. The Segal condition is satisfied. For clarity, we explain the Segal condition in the
following case. The general proof works similarly. We will show that

pAlgnqk1,...,2,...kn
„
ÝÑ pAlgnqk1,...,1,...,kn

h
ˆ

pAlgnqk1,...,0,...,kn

pAlgnqk1,...,1,...,kn .

To simplify notation, we omit the indices and the specified points in all directions
except for the ith one, as this procedure only depends on this specified direction.
We construct a map

pAlgnq1
h
ˆ

pAlgnq0

pAlgnq1
glue
ÝÝÝÑ pAlgnq2

which is a deformation retraction, i.e. glue ˝ pδ0 ˆ δ2q “ id, pδ0 ˆ δ2q ˝ glue „ id.

Since every level set pAlgnqk1,...,kn is a Kan complex by proposition 3.2.35, i.e. fi-
brant, the homotopy fiber product consists of triples consisting of two points and
a path between them. Thus an element in pAlgnq1 ˆ

h
pAlgnq0

pAlgnq1 consists of

two factorization algebras G and G̃ on p0, 1qn, specified intervals p0, b0s ď ra1, 1q,
p0, b̃0s ď rã1, 1q in the i-th direction, and a path between their target and source.
The path in particular gives a weak equivalence δ1pG̃q

w
Ñ δ0pGq. Here again, we omit

the rescaling in the notation. We glue them to an element in pAlgnq2 in the following
way. By first applying a piecewise linear rescaling, we can assume that 1´ a1 “ b̃0.
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10 b0 “ a1

10 ã1 b̃0 “ 1 ´ a1

w

10 ã1
1`a1

b̃0
1`a1

“
1´a1
1`a1

b0
1`a1

“
a1

1`a1

Send the above data to the factorization algebra F on p0, 1qn defined by G on

p0, b̃0
1`a1

q ˆ
ś

α‰ip0, 1q and G̃ on p a1
1`a1

, 1q ˆ
ś

α‰ip0, 1q using rescaling maps which,
again, we will omit for clarity of notation. It remains to “glue” them together using

the weak equivalence w. On an interval pa, bq such that a1
1`a1

ă a ă b̃0
1`a1

ă b,
Fppa, bqq :“ Gppa, bqq. Moreover, we define the factorization algebra structure by

10

a1
1`a1

b̃0
1`a1

c d

Gppc, dqq

e f

G̃ppe, fqq

g h

=

G̃ppe, fqq

»
Ý
Ñ

w

G̃ppc, dqq b Ñ G̃ppg, hqq

Note that this way the factorization algebra is defined on a factorizing cover and
can be extended by the gluing condition.

This construction extends to the spatial structure since weak equivalences are defined
locally and thus can be glued along open sets. By construction, glue˝pδ0ˆδ2q “ id.
Moreover, the weak equivalence w coming from the path gives pδ0 ˆ δ2q ˝ glue „ id.

2. For every i and every k1, . . . , ki´1, pAlgnqk1,...,ki´1,0,‚,¨¨¨ ,‚ is essentially constant.

An element in pAlgnqk1,...,ki´1,0,ki`1,...,kn is of the form

pF , I1
0 ď . . . ď I1

k1 , . . . , I
i´1
0 ď . . . ď Ii´1

ki´1
, p0, 1q,

Ii`1
0 ď . . . ď Ii`1

ki`1
, . . . , In0 ď . . . ď Inknq,

so by definition the stratification with respect to which F is locally constant reduces
to

p0, 1qn “ Xn Ě Xn´1 Ě ¨ ¨ ¨ Ě Xi`1 Ě Xi “ Xi`1 X π
´1
n´i

´

p0, 1qzp0, 1qq
¯

“ H.

Since the stratification only depends on the first i´1 tuples of intervals we can freely
move the remaining intervals Iαj for α ą i and still have a well-defined element in
pAlgnqk1,...,ki´1,0,ki`1,...,kn . In particular, we can move them to Iα0 “ ¨ ¨ ¨ “ Iαkα “
p0, 1q, which is in the image of the composition of degeneracy maps S. We can chose
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the endpoints to move linearly (by setting aαj ptq “ p1´tqa
α
j and bαj ptq “ p1´tqb

α
j `t),

so this construction extends to a homotopy. Hence

S : pAlgnqk1,...,ki´1,0,...,0
»
ÝÑ pAlgnqk1,...,ki´1,0,ki`1,...,kn

is a weak equivalence.

Remark 3.2.43. One can alternatively show the Segal condition by showing that the
source and target maps s, t : pAlgnqk1,...,1,...kn Ñ pAlgnqk1,...,0,...kn are Serre fibrations and
then showing that

pAlgnqk1,...,ki,...kn
„
ÝÑ pAlgnqk1,...,1,...,kn ˆ

pAlgnqk1,...,0,...,kn

¨ ¨ ¨ ˆ
pAlgnqk1,...,0,...,kn

pAlgnqk1,...,1,...,kn .

One can show the homotopy lifting property for cubes Ik for s, t explicitly by constructing
a lift. This construction is similar to the construction of the map glue above. The second
“strict Segal” condition follows from the fact that factorization algebras satisfy a descent
condition, see e.g. 4.3.5 in [Gin].

3.2.9 Completeness of Algn and the Morita p8, nq-category of
En-algebras

Factorization algebras with values in a symmetric monoidal relative category with all
coproducts S are pointed in the sense that given a factorization algebra F , for any open
set U the inclusion of the empty set H ãÑ U gives a map 1Ñ FpUq, where 1 is the unit
for the monoidal product of the symmetric monoidal structure of S. In this subsection we
show that this pointing ensures completeness of Algn.

We will first explain the argument for n “ 1 using the language of algebras and bimodules
following corollary 3.2.25, and then give the general argument.

Proposition 3.2.44. The Segal space Alg1pSq is complete, i.e.

s0 : pAlg1pSqq0 ÝÑ pAlg1pSqqinv1

is a weak equivalence.

Proof. An element in pAlg1q
inv
1 is a pointed pA,Bq-bimodule 1

m
ÝÑ M such that there is

a pointed pB,Aq-bimodule 1
n
ÝÑ N and weak equivalences

A
»

ÝÝÝÑ
mbn

M bB N, and B
»

ÝÝÝÑ
nbm

N bAM,

of pA,Aq, respectively pB,Bq-bimodules. We need to show that A » B »M . This implies
that there is a path from AMB to AAA. This construction extends to a homotopy, since
a weak equivalence from AMB to a different bimodule CND includes the data of a weak
equivalence from A to C.

First note that
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A M M bB N A,

1 m mb n 1

idM b n »

are maps of pA,Aq-bimodules, and induce the identity A Ñ A in the homotopy category
h1S of S.

Consider all following maps in h1S, in particular the maps a : A Ñ B, b : B Ñ A given
by the following diagram:

A M »M bB B M bB N A M M bB N A

B M » AbAM N bAM B M N bAM B

m idb n » m idb n »

m nb id » m nb id »

= =

idA
idA

a
b

Their composition is equal to the composition of the dashed arrows, which are identities,
so b ˝ a “ idA. Similarly, a ˝ b “ idB , so A and B are weakly equivalent. Moreover,
AÑM ÑM bB N » A is the identity, so AÑM is a split monomorphism and M Ñ A
is a split epimorphism. Similarly, AÑ N is a split monomorphism.

Since tensoring with an object preserves split monomorphisms, M Ñ M bB N » A is a
monomorphism, and thus an isomorphism (all in h1S). Similarly for N .

Proposition 3.2.45. The n-fold Segal space AlgnpSq is complete.

Proof. The statement for general n follows from the statement for n “ 1, which is propo-
sition 3.2.44.

Let n “ t1, . . . , nu. Factorization algebras on p0, 1qnztiu form a relative category S satis-
fying the assumptions 1. Elements in pAlgnqk1,...,1,...,kn are modules in S over E1-algebra
objects in S, so we can apply proposition 3.2.44 which proves the statement.

Definition 3.2.46. The Morita p8, nq-category of En-algebras is the complete n-fold
Segal space Algn.

3.3 The symmetric monoidal structure on Algn

3.3.1 The symmetric monoidal structure arising as a Γ-object

Similarly to Bordn we can endow Algn with a symmetric monoidal structure arising as a
Γ-object. It essentially comes from the fact that factorization algebras have a symmetric
monoidal structure as a relative category.
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Definition 3.3.1. For every k1, . . . , kn, let pAlgnrmsqk1,...,kn be the collection of tuples

pF1, . . . ,Fm, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

where for every 1 ď β ď m, pFβ , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pAlgnqk1,...,kn . Similary to
Algn this can be made into a complete n-fold Segal space.

Proposition 3.3.2. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Algnrms

extends to a functor and endows Algn with a symmetric monoidal structure.

Proof. The functor sends a morphism f : rms Ñ rks to

Algnrms ÝÑ Algnrks,

pF1, . . . ,Fm, pIijqi,jq ÞÝÑ p
â

βPf´1p1q

Fβ , . . . ,
â

βPf´1pkq

Fβ , pIijqi,jq.

Here the tensor product is the tensor product of factorization algebras with values in the
given symmetric monoidal category (defined level-wise). This is well-defined as every Fβ ,
and therefore also the tensor product of several Fβ ’s are locally constant with respect to
the same stratification.

To show that
ź

1ďβďn

γβ : Algnrms ÝÑ pAlgr1sqm

is an equivalence of n-fold complete Segal spaces we need to show that for any element
in the right hand side we can rescale the intervals pIijqi,j by a smooth family of rescaling

maps φis,t so that they coincide. This follows from the fact that rescaling p0, 1qn by some
suitable rescaling data φs,t leads to weak equivalences of factorization algebras given by
pushforward along φs,t. This rescaling yields a path in the right hand space to an element
in the image of

ś

1ďβďn γβ and the collection of these paths form a homotopy.

3.3.2 The monoidal structure and the tower

Our goal for this section is to endow Algn with a symmetric monoidal structure arising

from a tower of monoidal l-hybrid pn` lq-fold Segal spaces Algplqn for l ě 0.

The deloopings Algplqn

Our construction of the p8, nq-category of En-algebras AlgnpSq relies on a symmetric
monoidal p8, 1q-category S. Independent of which model for symmetric monoidal p8, 1q-
categories we choose there is a distinguished object in S, the unit 1 for the symmetric
monoidal structure. This object naturally is an En-algebra, the constant factorization
algebra on Rn with value 1, which determines an object p1, p0, 1q, . . . , p0, 1qq in pAlgnq0,...,0.
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The first layer of the tower

Definition 3.3.3. Let Algp1qn be the fiber of Algn`1 over 10 “ 1 in the first direction,

i.e. pAlgp1qn qk1,...,kn`1
is the fiber over 1k1`1 P

`

pAlgn`1q0,k2,...,kn`1

˘k1`1
of the map

pAlgn`1qk1,...,kn`1
ÝÑ

`

pAlgn`1q0,k2,...,kn`1

˘k1`1
,

which is the product of the pk1 ` 1q different possible compositions of face maps

pAlgn`1qk1,...,kn`1

ÝÑ...ÝÑ pAlgn`1q0,k2,...,kn`1
.

Proposition 3.3.4. Algp1qn is a monoidal complete n-fold Segal space.

Proof. By construction the pn` 1q-fold Segal space Algp1qn is 1-hybrid and pointed.

Remark 3.3.5. It may seem unnatural to take the actual fiber here instead of a homotopy
fiber. This is needed as we need hybridness which requires certain spaces to be equal
to a point and not just contractible. As explained in remark 3.2.43, the maps s, t :
pAlgnqk1,...,1,...kn Ñ pAlgnqk1,...,0,...kn are fibrations. Thus, in this case, the homotopy
fiber and the fiber actually coincide.

The higher layers Similarly, we define the higher layers of the tower.

Assume that we have defined Algp0qn “ Algn,Algp1qn , . . . ,Algpl´1q
n for every n such that

Algpkqn is a k-hybrid pn`kq-fold Segal space which is pj´1q-connected for every 0 ă j ď k.

Note that, via the degeneracy maps, 1 can be viewed as a trivial l-morphism in any Algpkqn
for any 1 ď l ď n` k, i.e. an element

1l “ p1, p0, 1q ď p0, 1q, . . . , p0, 1q ď p0, 1q, p0, 1q, . . . , p0, 1qq P pAlgpkqn q 1,...,1,
loomoon

l

0,...,0.

Definition 3.3.6. Let Algplqn be the fiber of Alg
pl´1q
n`1 over 1l´1, i.e. pAlgplqn qk1,...,kn`l is

the fiber over 1l´1 P pAlgn`lq1,...,1,0,kl`1,...,kl`n of the product of all different possible
compositions of face maps

pAlg
pl´1q
n`1 qk1,...,kn`l

ÝÑ...ÝÑ
`

pAlg
pl´1q
n`1 q1,...,1,0,kl`1,...,kl`n .

Proposition 3.3.7. Algplqn is a k-monoidal complete n-fold Segal space.

Proof. Again by construction the pn ` lq-fold Segal space Algplqn is l-hybrid and pj ´ 1q-
connected for every 0 ă j ď l.

The tower and the symmetric monoidal structure

The monoidal complete n-fold Segal space Algp1qn turns out to be a delooping of Algn.
The following proposition shows that the collection of the l-monoidal complete n-fold

Segal spaces
´

Algplqn

¯

l
forms a tower which gives Algn a symmetric monoidal structure.
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Proposition 3.3.8. For n, l ě 0, there are weak equivalences

LpAlgplqn ,1q Algpl´1q
n ,

u

`

defined as follows.

1. The map u sends an element pFq “
`

F , p0, b10s ď ra1
1, 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

P LpAlgplqn q to
pupFqq “ pupFq, pIi0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2 q,

where upFq “ pπt2,...,n`1uq˚F is the pushforward of F along the projection

πt2,...,n`1u : p0, 1qt1,...,n`1u Ñ p0, 1qt2,...,n`1u.

2. The map ` sends an element pGq “ pG, pIi0 ď ¨ ¨ ¨ ď Iikiq
n`l
i“2 q P Algpl´1q

n to

p`pGqq “
`

`pGq, p0, 1
2 s ď r

1
2 , 1q, pI

i
0 ď ¨ ¨ ¨ ď Iikiq

n`l
i“2

˘

,

where `pGq “ ι˚pGq is the pushforward of G along the inclusion

ι : p0, 1qn`l´1 Ñ p0, 1qn`l, px2, . . . , xn`lq ÞÑ p1
2 , x2, . . . , xn`lq.

The map ` is called the looping and u the delooping map.

The main step in the proof of proposition 3.3.8 is the following observation, for which we
need factorization algebras which are supported on a subspace.

Definition 3.3.9. Let M be a topological space and N ĎM be a closed subspace. Then
a prefactorization algebra on M is said to be supported on N , if

F |MzN “ 1.

Lemma 3.3.10. Let X and Y be manifolds with the stratifications X Ą tsu Ą H for
s P X and Y “ Yn Ą Yn´1 Ą Y0 Ą Y´1 “ H. Consider the stratification on X ˆ Y given
by

X ˆ Y Ą tsu ˆ Y Ą tsu ˆ Yn´1 Ą ¨ ¨ ¨ Ą tsu ˆ Y1 Ą tsu ˆ Y0 Ą H.

Denoting by Fact lc,tsuˆYXˆY factorization algebras on X ˆ Y which are locally constant with
respect to this stratification and are supported on tsuˆY , there is a one-to-one correspon-
dence

Fact lc,tsuˆYXˆY ÝÑ Fact lcY
F ÞÝÑ ppr2q˚F

ι˚G ÐÝp G,

where ι : Y Ñ X ˆ Y sends y ÞÑ ps, yq.
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Proof. First we need to show that these maps are well-defined.

Note that the stratification on X ˆ Y given above is coarser than the one from theorem
3.2.26. Thus, if F is locally constant with respect to this coarser stratification, it will
also be locally constant with respect to the finer stratification from 3.2.26 and thus by
the theorem the above map factors through Fact lcXpFact lcY q followed by the global section
functor to Fact lcY ,

Fact lc,tsuˆYXˆY Ď Fact lc,fineXˆY ÝÑ Fact lcXpFact lcY q ÝÑ Fact lcY .

Conversely, let G P Fact lcY . If U Ď pX ˆ Y qzptsu ˆ Y q, then ι´1pUq “ H, so ι˚GpUq “ 1

and ι˚G is supported on tsu ˆ Y . To see that ι˚G is locally constant with respect to the
stratification above, it is enough to check this on a factorizing basis, , so it is enough to
check them on products of open sets.

Let U ˆ V Ă U 1ˆ V 1 be an inclusion of disks such that both U ˆ V and U 1ˆ V 1 are good
neighborhoods at α for the same index α P t0, . . . , n` 1u.

If α “ n` 1, then U ˆ V Ă U 1 ˆ V 1 Ă pX ˆ Y qzptsu ˆ Y q and by the above,

ι˚GpU ˆ V q “ GpHq “ 1 “ GpHq “ ι˚GpU 1 ˆ V 1q.

If 0 ď α ď n, then pU ˆV qX ptsuˆY q ‰ H and pU 1ˆV 1qX tsuˆY ‰ H, so we get that
both ι´1pU ˆ V q “ V and ι´1pU 1ˆ V 1q “ V 1 are disks of index α for the same α, so since
G is locally constant with respect to the stratification on Y ,

ι˚GpU ˆ V q “ GpV q » GpV 1q “ ι˚GpU 1 ˆ V 1q.

To see that these maps form a bijection, since pr2 ˝ ι “ idY , it is enough to check that
ι˚ ˝ ppr2q˚F “ F . Again it is enough to check this on a factorizing basis, which we will
choose to consists of open sets of the form U ˆ V , where U is a disk. Then,

ι˚ppr2q˚pFqpU ˆ V q “ Fppr´1
2 pι´1pU ˆ V qqq “

#

FpX ˆ V q, if s P U,

FpHq “ 1, otherwise.

Since F is locally constant with respect to the above stratification and is supported on
tsu ˆ Y , it agrees with the above.

Proof of Proposition 3.3.8. Setting X “ p0, 1q, Y “ p0, 1qt2,...,n`lu, and choosing s “ 1
2 in

lemma 3.3.10,
upFq “ pπt2,...,n`luq˚F “ ppr2q˚pFq,

and the maps u and ` are well-defined. Moreover, by definition, u ˝ ` “ id. It remains to
show that ` ˝ u » id.

Given an element pFq P pLpAlgplqn qq1,k2,...,kn`l , note that the associated stratification on
X “ p0, 1q is given by p0, 1qz

`

p0, b10q Y pa
1
1, 1q

˘

either is empty or is equal to a point
s “ b10 “ a1

1. This data is lost when applying u. By the lemma above, the factorization
algebra is recovered under ` ˝ u except for the data of s, which in the definition of ` we
chose to be s “ 1

2 . However, a homotopy from `˝u to the identity is given by the following
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construction. Let ξ P r0, 1s. Send an element pFq to its pushforward along fξ, which is
the (restriction to p0, 1q of the) unique piecewise affine map RÑ R such that

0 ÞÑ 0, s ÞÑ sξ ` p1´ sq
1

2
, 1 ÞÑ 1.

Corollary 3.3.11. The l-monoidal complete n-fold Segal spaces Algplqn endow Algn with
a symmetric monoidal structure.

3.4 The homotopy category of Alg1 and the Morita category

The idea behind our construction of Alg1 was to model an p8, 1q-category of algebras and
pointed bimodules between them. Indeed, the homotopy category of Alg1 turns out to be
what we expect.

Definition 3.4.1. Let Mor be the category whose objects are algebras and whose mor-
phisms from an algebra A to an algebra B are equivalences classes of pA,Bq-bimodules

AMB , where AMB is equivalent to A1M
1
B1 iff A » A1, B » B1, M »M 1.

Remark 3.4.2. Keep in mind that we are considering algebra and bimodule objects in
some symmetric monoidal relative category S, e.g. S “ Chk. If we choose S “ Vectk
with isomorphisms as weak equivalences, we get the classical category of algebras and
bimodules. If we want to specify which relative category the algebra and module objects
take values in, we write MorpSq. The symmetric monoidal structure comes from the
one on S, which sends pA,A1q to their tensor product A b A1 in S and pAMB , CNDq to

AbCM bNBbD.

Proposition 3.4.3. There is an equivalence of symmetric monoidal categories

h1pAlg1q » Mor .

Proof. We have seen in examples 3.2.30 and 3.2.37 using 3.2.21 that objects of Alg1, and
thus also of h1pAlg1q are equivalent to (homotopy) algebras. A (1-)morphisms in Alg1

from A to B is a factorization algebra F on R which gives the data of an pA,Bq-bimodule

AMB . The extra information it encodes is a choice of intervals p0, bs ď ra, 1q which
corresponds to choosing where on p0, 1q the module is located. The space of this extra
information is the space of s P p0, 1q and thus contractible. Moreover, paths from AMB to

A1M
1
B1 by definition give weak equivalences A » A1, B » B1, M »M 1. Thus, a connected

component of the space of (1-)morphisms in Alg1 from A to B is an equivalence class of
pA,Bq-bimodules M . Summarizing, there is an equivalence of categories

F : h1pAlg1q ÝÑ Mor,

which sends an object pF , p0, 1qq P pAlg1q0 to Fpp0, 1qq and a 1-morphism represented by

pF , p0, bs ď ra, 1qq to the
´

Fpp0, bqq,Fppa, 1qq
¯

-bimodule Fpp0, 1qq.

We saw in example 1.6.8 that the symmetric monoidal structure on Alg1 induces one on
the ordinary category h1pAlg1q coming from the diagram

Alg1r1s ˆAlg1r1s
»

ÐÝÝÝÝ
γ1ˆγ2

Alg1r2s
γ
ÝÑ Alg1r1s,
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where the first arrow is an equivalence of complete Segal spaces. By the definition of the
map γ, it is clear that the equivalence of categories F respects the monoidal structure.

3.5 Variants and extensions of Algn

3.5.1 The p8, n` 1q-category of En-algebras

As mentioned above, starting with a symmetric monoidal p8, 1q-category S with all prod-
ucts, factorization algebras on any space X with values in S again form a symmetric
monoidal p8, 1q-category. Thus, Algn can be extended to an n-fold complete Segal ob-

ject in p8, 1q-categories, and from this one can extract an p8, n` 1q-category Algp8,n`1q
n ,

which is moreover symmetric monoidal. It can also be explicitly constructed as a complete
pn ` 1q-fold Segal spaces using morphisms of stratified factorization algebras, which are
weak equivalences outside of the lowest dimensional stratum, as pn ` 1q-morphisms. In

the full p8, n ` 1q-category Algp8,n`1q
n every object is n-dualizable, but there are much

fewer fully dualizable objects.

In the case of n “ 1 we saw in the previous section that the homotopy category of Alg1

is just the Morita category Mor of algebras and equivalence classes of bimodules. This
equivalence can be extended to an equivalence of the homotopy bicategory of the p8, 2q-

category Alg
p8,2q
1 with the full bicategory of algebras, bimodules, and intertwiners, which

one might want to call the full “Morita bicategory Mor2 of E1-algebras”.

3.5.2 An unpointed version

Note that in our construction we use factorization algebras and weak equivalences to model
objects, 1-morphisms, and 2-morphisms. As we discussed in section 3.2.9, factorization
algebras are pointed, with pointing coming from the monoidal unit 1 of the underlying
category S. This pointing leads to pointed bimodules and intertwiners.

For applications one might be interested in an unpointed version to obtain a category with
unpointed bimodules as morphisms, which leads to the usual Morita category. For such
a construction an unpointed version of factorization algebras which are locally constant
with respect to the same stratifications is needed. Such “unpointed factorization algebras”
can be defined using an operad similar to the one used in the definition of factorization
algebras, see remark 3.2.11, but allowing only certain inclusions of empty sets. However,
there is no reason for such an unpointed version of an p8, nq-category of En-algebras to
be complete.

3.5.3 The n-fold category Alguplen

Similarly to the n-fold category version of the bordism category Borduplen from section
2.4.3, there also is an n-fold category Alguplen . The stratifications with respect to which
factorization algebras are constant in condition (2) in definition 3.2.27 are designed such
that Algn satisfies the essentially constancy condition of an n-fold Segal space. Relaxing
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this condition to allowing more general stratifications of the form

p0, 1qn Ą
ď

1ďiďn

ď

1ďjiďki

π´1
i ps

i
jiq Ą

ď

1ďi1,i2ďn

ď

1ďj1ďki1
1ďj2ďki2

π´1
ti1,i2u

psi1j1 , s
i2
j2
q Ą ¨ ¨ ¨

¨ ¨ ¨ Ą
ď

p1ďjiďkiqni“1

π´1ps1
j1 , . . . , s

n
jnq

gives a complete n-uple Segal space Alguplen .

For n “ 2, stratifications which appear in the definition of Alguple2 pSq give pictures as in
the left picture below. Now the interpretation is slightly different: the images of open
disks as in the right picture below now give:

• E2-algebras A1, A2, B1, and B2

• an pA1, B1q-bimodule M1, an pA2, B2q-bimodule M2, pA1, A2q-bimodule N1, and a
pB1, B2q-bimodule N2

• a pointed element C in S which is an pM1,M2q-bimodule and an pN1, N2q-bimodule.

s1
1 s1

2 s
1
3 s1

4s
1
5

s2
1

s2
2

s2
3

s2
4

C

M1

M2

N1 N2

A1 B1

A2 B2

For n “ 3, stratifications which appear in the definition of Alguple3 give pictures of the
following type:





Chapter 4

Factorization homology as a fully
extended topological field theory

Recall that the main task of this thesis is the following. Given any En-algebra A, i.e. any
object in Algn “ AlgnpSq, we would like to define a map of symmetric monoidal n-fold
Segal spaces

FHnpAq : Bordfrn ÝÑ Algn

essentially given by taking factorization homology of A. As complete n-fold Segal spaces
are models for p8, nq-categories, this defines a fully extended topological field theory with
values in C “ AlgnpSq.

This chapter deals with the construction of this functor. For better overview we split
the construction in two steps. First we construct a map, which is just a map of n-fold
simplicial sets, to an auxiliary complete n-fold Segal space of factorization algebras which
is essentially given by factorization homology. Then we construct a map which can be
understood as “collapsing” and then “rescaling” a factorization algebra. Their composition
yields the desired map of n-fold Segal spaces. The construction can be summarized in the
following diagram. We indicate in which section the individual maps are constructed.

PBordfrn Factn FAlgn

Bordn Algn

4.3

4.5

4.4

FHnpAq

4.4.2

This map extends to the symmetric monoidal structures and yields the desired fully ex-
tended topological field theory.

4.1 Factorization Homology

Inspired by an algebro-geometric version by Beilinson and Drinfeld in [BD04] and a similar
construction by Salvatore in [Sal01], Lurie introduced factorization homology in [Lur]
calling it topological chiral homology. It has been studied, amongst others, in [Fra12,

105
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Fra13, AFT12, GTZ10, GTZ12, Hor14b]. We briefly recall the definition and the most
important properties we will use in this chapter.

Again, as in sections 2.7.1 and 3.2.1, let X be a topological space and E Ñ X a topological
n-dimensional vector bundle which corresponds to a (homotopy class of) map(s) e : X Ñ

BGLpRnq from X to the classifying space of the topological group GLpRnq.

Recall from definition 3.2.3 that a Disk pX,Eqn -algebra in S is a symmetric monoidal (co-
variant) functor

A : Disk pX,Eqn ÝÑ S.

Now consider an pX,Eq-structured n-dimensional manifold M . Since Disk pX,Eqn Ď

ManpX,Eqn , it yields a contravariant functor

M : pDisk pX,Eqn qop ÝÑ Space,
ž

I

Rn ÞÝÑ EmbpX,Eqp
ž

I

Rn,Mq.

Definition 4.1.1. Let the factorization homology of M with coefficients in A be the

homotopy coend of the functor M ˆA ÝÑ Space ˆS b
ÝÑ S and denote it by

ż

M

A “M bDisk pX,Eqn
A.

Remark 4.1.2. By [AFT14], assumption 1 ensures the existence of factorization homol-
ogy.

Remark 4.1.3. Equivalently, the homotopy coend can be computed by the following
homotopy colimit,

ż

M

A “ hocolim
Ůn
i“1 UiÑM

n
â

i“1

ApUiq,

i.e. the homotopy colimit is taken over

pDisk pX,Eqn q{M “ Disk pX,Eqn bManpX,Eqn
pManpX,Eqn q{M .

Example 4.1.4. If M “ Rn, then
ş

Rn A » A.

In [GTZ10] it was proven that if we consider this construction locally on M for X “ BG,
where G is the trivial group, we obtain a locally constant factorization algebra on M .

Theorem 4.1.5 ([GTZ10], Proposition 13). Given an En-algebra A, i.e. a Disk frn -algebra,
the rule

U ÞÑ

ż

U

A

for open subsets U ĎM with the induced framing extends to a locally constant factorization
algebra on M .

Remark 4.1.6. By abuse of notation, we will denote this factorization algebra by
ş

M
A,

i.e. for an open subset U ĎM ,

`

ż

M

A
˘

pUq “

ż

U

A “ U bDisk frn
A P S.
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4.2 The auxiliary p8, nq-category Factn

The main idea for our functor is that, given an En-algebra A, we define a map , also called
ş

p´q
A, which should be given by first taking factorization homology to obtain a factor-

ization algebra on the manifold M and then pushing it forward to obtain a factorization
algebra on p0, 1qn, i.e.

M V ˆ p0, 1qn

p0, 1qn

ι

π

ş

p´q
A

ÞÝÝÝÝÑ π˚p

ż

M

Aq.

We define an auxiliary complete n-fold Segal space Factn by translating the properties
1.-3. in the definition of PBordn to conditions on the factorization algebra. We will show
that this is the correct translation in section 4.3.

Similarly as to in the definition of Algn, for S Ď t1, . . . , nu, denote by πS : Rn Ñ RS the
projection onto the coordinates indexed by S.

Definition 4.2.1. Let elements in pFactnqk1,...,kn be pairs

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,
pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki .

3. For 1 ď i ď n, the factorization algebra F is an En´i`1-algebra in factorization
algebras on p0, 1qt1,...,i´1u in a neighborhood of π´1

i pI
i
0 Y . . .Y I

i
ki
q Ă p0, 1qn.

Remark 4.2.2. In condition 3 we first use theorem 3.2.26 to view F as a factorization
algebra on p0, 1qti,...,nu in the p8, 1q-category of factorization algebras on p0, 1qt1,...,i´1u

and then require that this factorization algebra on p0, 1qti,...,nu is locally constant. This is
translated to saying that it is an En´i`1-algebra by using theorem 3.2.21.

4.2.1 The spaces pFactnqk1,...,kn

The spatial structure of pFactnqk1,...,kn is a mixture of that on Bordn, essentially coming
from the one on the spaces Intki , and that on Algn.

Definition 4.2.3. An l-simplex in pFactnqk1,...,kn is given by the data of

1. underlying 0-simplices, i.e. for every s P |∆l|,
`

Fs, pIi0psq ď ¨ ¨ ¨ ď Iikipsqq
˘

P pFactnqk1,...,kn ;

2. for every 1 ď i ď ki,
`

Ii0psq ď ¨ ¨ ¨ ď Iikipsq
˘

sP|∆l|

is an l-simplex in Intki with rescaling datum ϕis,t : p0, 1q Ñ p0, 1q;
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3. for every s, t P |∆l|, weak equivalences

pϕs,tq˚Fs
ws,t
ÝÑ Ft,

where ϕs,t “ pϕ
i
s,tq

n
i“1 : p0, 1qn Ñ p0, 1qn is the product of the rescaling data.

The spatial face and degeneracy maps δ∆
l , σ∆

l arise from the face and degeneracy maps
of p∆lq similarly to those of PBordn, and we obtain a space pFactnqk1,...,kn .

4.2.2 The n-fold Segal space Factn

We now define face and degeneracy maps on the 0-simplices of the levels of Fact‚,...,‚
essentially coming from those of the n-fold Segal space pIntqn‚,...,‚ “ Int‚ˆ¨ ¨ ¨ˆ Int‚. They
are similar to those of Algn, but use the rescaling maps ρj coming from Int‚ instead of
the collapse-and-rescale maps %ba coming from Covers‚. Recall that for j “ 0 orj “ k, in
the usual notation they are the linear rescaling maps

ρ0 : D0 “ pa1, 1q Ñ p0, 1q, x ÞÑ x´a1
1´a1

, ρk : Dk “ p0, bk´1q Ñ p0, 1q, x ÞÑ x
bk´1

.

Since 1 ď i ď n will be fixed throughout the following constructions, by abuse of notation
we define

ρj : π´1
i pDjq “

ź

α‰i

p0, 1q ˆDj Ñ p0, 1qn,

which is ρj in the ith coordinate and the identity otherwise.

Degeneracy maps on 0-simplices Fix 1 ď i ď n. For 0 ď j ď ki the jth degeneracy
map

sij : pFactnqk1,...,kn Ñ pFactnqk1,...,ki`1,...,kn

applies the jth degeneracy map of Int‚ to the ith tuple of intervals, i.e. it repeats the jth
interval in the ith direction,

pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq
n
α“1q ÞÝÑ

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, sjpI
i
0 ď ¨ ¨ ¨ ď Iikiq

˘

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkαqα‰i, I
i
1 ď ¨ ¨ ¨ ď Iij ď Iij ď ¨ ¨ ¨ ď Iiki

˘

.

Face maps on 0-simplices Fix 1 ď i ď n. For 0 ď j ď ki the jth face map

dij : pFactnqk1,...,kn Ñ pFactnqk1,...,ki´1,...,kn

applies the jth face map of Int‚ to the ith tuple of intervals, which forgets the jth interval,
and, if necessary, rescales them and pushes the factorization algebra forward along the
rescaling map ρj . Explicitly, for j ‰ 0, ki, the 0-simplex pFq “ pF , pIα0 ď ¨ ¨ ¨ ď Iαkαq

n
α“1q

is sent to

`

F , pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, djpI
i
0 ď ¨ ¨ ¨ ď Iikiq

˘

“

“
`

F , pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, I
i
0 ď ¨ ¨ ¨ ď Iij´1 ď Iij`1 ď ¨ ¨ ¨ ď Iiki

˘

.

For j “ 0 or j “ ki, the 0-simplex pFq is sent to

ppρjq˚F |π´1
i pDjq

, pIα0 ď ¨ ¨ ¨ ď Iαkiqα‰i, djpI
i
0 ď ¨ ¨ ¨ ď Iikiqq.
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The full structure as an n-fold Segal space Face and degeneracy maps on l-simplices
are defined analogous to for Algn, by which we obtain an n-fold simplicial space Factn.

Proposition 4.2.4. pFactnq‚,...,‚ is an n-fold Segal space.

Proof. The proof of the Segal condition works similarly as for Algn and essentially follows
from the fact that paths of objects arise from weak equivalences and rescaling, which we
can use to glue.

It remains to check that for every i and every k1, . . . , ki´1, the pn ´ iq-fold Segal space
pFactnqk1,...,ki´1,0,‚,...,‚ is essentially constant.

We claim that the composition of degeneracy maps

pFactnqk1,...,ki´1,0,...,0 ãÝÑ pFactnqk1,...,ki´1,0,ki`1,...,kn

is a deformation retract.

For s P r0, 1s, consider the path γs in pFactnqk1,...,ki´1,0,ki`1,...,kn sending an element
represented by

pFq :“ pF ,
´

Iβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqiăαďn

¯

to

pFqs :“
´

F , pIβ0 ď ¨ ¨ ¨ ď Iβkβ q1ďβăi, p0, 1q, pI
α
0 psq ď ¨ ¨ ¨ ď Iαkαpsqqiăαďn

¯

,

where for α ą i, aαj psq “ p1 ´ sqaαj and bαj psq “ p1 ´ sqbαj ` s. Note that for s “ 0,
Iα0 p0q “ Iα0 , Iαj p0q “ Iαj and for s “ 1, Iαj p1q “ p0, 1q.

The collection of paths γs form a deformation retraction provided that each path is well-
defined, i.e. indeed maps to pFactnqk1,...,ki´1,0,ki`1,...,kn . It suffices to check condition (3) in
definition 4.2.1 for pFqs. Since pFq P pFactnqk1,...,ki´1,0,ki`1,...,kn , this reduces to checking

For every i ă α ď n, F is an En´α`1-algebra in factorization algebras on
p0, 1qt1,...,α´1u in a neighborhood of π´1

α pI
α
0 psq Y . . .Y I

α
kα
psqq Ď p0, 1qn.

Condition (3) on pFq for i implies that in particular, F is an En´i`1-algebra in factoriza-
tion algebras on p0, 1qt1,...,i´1u in (a neighborhood of) π´1

i pp0, 1qq “ p0, 1q
n.

This in turn implies that for every α ą i, F is an En´α`1-algebra in factorization algebras
on p0, 1qt1,...,α´1u in a neighborhood of π´1

α pp0, 1qq “ p0, 1q
n Ě π´1

α pI
α
0 psqY. . .YI

α
kj
psqq.

4.2.3 Completeness of Factn

We now show that the auxiliary n-fold Segal space of factorization algebras Factn always
is complete, and thus is an p8, nq-category.

Proposition 4.2.5. The n-fold Segal space Factn is complete.
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Proof. We need to show that for any k1, . . . , ki´1, ki`1, . . . , kn, the degeneracy map

pFactnqk1,...,ki´1,0,ki`1,...,kn
s0
ÝÑ pFactnq

inv
k1,...,ki´1,1,ki`1,...,kn

is a weak equivalence.

For any element in the right hand side

pFq “ pF , Ii0 ď Ii1, pI
α
0 ď ¨ ¨ ¨ ď Iαkαqα‰i

¯

there is another element

pF̃q “ pF̃ , Ĩi0 ď Ĩi1, pĨ
α
0 ď ¨ ¨ ¨ ď Ĩαkαqα‰i

¯

which, in the homotopy category, is an inverse of pFq. The composition in the homotopy
category is represented by an element

pGq “ pG, ˜̃Ii0 ď
˜̃Ii1, p

˜̃Iα0 ď ¨ ¨ ¨ ď
˜̃Iαkαqα‰i

¯

which, for some 0 ď c ď d ď 1, where the pair pc, dq is not equal to p1, 0q, on π´1
i pp0, dqq

restricts to (the rescaled) F and on π´1
i ppc, 1qq restricts to (the rescaled) F̃ . Moreover,

there is a path to the En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u which
is the source d1pFq of F which in turn is weakly equivalent to the target d0pF̃q of F̃ ,
i.e. there is a weak equivalence G ÝÑ d1pFq.

F̃

|pc,1q

10

F

|p0,dq

10

G
10 c d

σpFq

»

10

As a factorization algebra on p0, 1qtiu with values in factorization algebras on p0, 1qnzi,
d1pFq is locally constant and and therefore weakly equivalent to its restrictions to p0, dq
and pc, 1q. Since G » d1pFq and F and F̃ are its restrictions to p0, dq and pc, 1q,

F » d1pFq.

This construction yields a deformation retraction.
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4.2.4 The symmetric monoidal structure on Factn

Factn has a symmetric monoidal structure defined by a Γ-object which arises similarly to
the structure of Algn as a Γ-object.

Definition 4.2.6. For every k1, . . . , kn and m ě 0, let pFactnrmsqk1,...,kn be the collection
of tuples

pF1, . . . ,Fm, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

where for every 1 ď β ď m, pFβ , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P pFactnqk1,...,kn . Similarly to
Factn this can be made into a complete n-fold Segal space.

Proposition 4.2.7. The assignment

Γ ÝÑ SSpacen,

rms ÞÝÑ Factnrms

extends to a functor and endows Factn with a symmetric monoidal structure.

Proof. Just as for Algn, a morphism f : rms Ñ rks is sent to the functor

Factnrms ÝÑ Factnrks,

pF1, . . . ,Fm, I 1sq ÞÝÑ p
â

βPf´1p1q

Fβ , . . . ,
â

βPf´1pkq

Fβ , I 1sq.

Remark 4.2.8. It is not quite as straightforward to write down the symmetric monoidal
structure as a tower and we will not need it later on.

4.3 The map of n-fold simplicial sets
ş

p´q
A

In this section, given a fixed En-algebra A, we define a map of n-fold simplicial sets
ż

p´q

A : PBordfrn ÝÑ Factn

from the framed bordism category to the auxiliary category of factorization algebras. This
map essentially translates the properties of the bordisms to factorization algebras on p0, 1q.
It thus in a certain sense encodes the geometry of the embedded manifold. It will not,
however, be a map of n-fold Segal spaces as it does not extend to the simplicial structure
of the “levels”, as we explain below in problem 4.3.5.

We will use the following proposition to show that the third condition on factorization
algebras in Factn is the exact translation via the map π˚p

ş

p´q
Aq of the third condition on

elements in PBordfrn .

Proposition 4.3.1. Let G be a locally constant factorization algebra on a smooth manifold
M . Let X be a smooth manifold and Y a topological space. Consider f : M Ñ XˆY such
that the composition with the projection, πX ˝ f : M Ñ X, is submersive at pπX ˝ fq

´1ptq
for some t P X. Then f˚G is a locally constant factorization algebra on X with values in
factorization algebras on Y in a neighborhood of π´1

X ptq. If X “ Rs, f˚G is an Es-algebra
in factorization algebras on Y in this neighborhood.
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Proof. F :“ f˚G is a factorization algebra on X ˆ Y , so by theorem 3.2.26, (1), the
image of the functor induced by the pushforward along the projection is a factorization
algebra F̃ “ pr1˚

F on X with values in factorization algebras on Y . Note that we have

F̃ : U ÞÑ FU for U Ă X, where

FU : W ÞÑ FpU ˆW q for W Ă Y.

We need to show that F̃ is locally constant in a neighborhood of t. Take V Ă U Ă X
two sufficiently small open sets containing t such that U » V . Then the structure map
FV Ñ FU is a weak equivalence if for every open set W Ă Y , the map FV pW q Ñ FU pW q
is a weak equivalence. Consider

FU pW q “ FpU ˆW q “ f˚GpU ˆW q “ Gpf´1pU ˆW qq,

FV pW q “ FpV ˆW q “ f˚GpV ˆW q “ Gpf´1pV ˆW qq.

Since G is locally constant, it is enough to show that the inclusion f´1pV ˆW q Ă f´1pUˆ
W q is a weak equivalence. Since

f´1pV ˆW q “ pπX ˝ fq
´1pV q X pπY ˝ fq

´1pW q, and

f´1pU ˆW q “ pπX ˝ fq
´1pUq X pπY ˝ fq

´1pW q,

it is enough to show that pπX ˝ fq
´1pV q ãÑ pπX ˝ fq

´1pUq is a weak equivalence. This
holds because we assumed that V » U and that πX ˝ f is a submersion at pπX ˝ fq

´1 ptq,
so locally a projection map.

Now recall from definition 2.3.1 that for an element pMq in PBordfrn we used the following
notation, where S Ď t1, . . . , nu:

M V ˆ p0, 1qn

p0, 1qn

p0, 1qS

π

pS

πS

Applying the above proposition to G “ π˚p
ş

M
Aq, f “ π, X “ p0, 1qS , Y “ p0, 1qnzS , we

obtain the desired property.

Corollary 4.3.2. Let A be an En-algebra and let M be an n-dimensional framed manifold.
For S Ď t1, . . . , nu, let pS : M Ñ p0, 1qS be submersive at x P p´1

S ppt
αqαPSq. Then

F :“ π˚p
ş

M
Aq is an E|S|-algebra in factorization algebras on p0, 1qnzS in a neighborhood

of π´1
S ppt

αqαPSq.

By the corollary, the following is well-defined.
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Definition 4.3.3. Let A be an En-algebra. Let
ż

p´q

A : PBordfrn ÝÑ Factn

send
`

M ãÑ V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n

˘

P pPBordnqk1,...,kn

to
ˆ

π˚p

ż

M

Aq, pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n

˙

P pFactnqk1,...,kn ,

where, as in the previous sections, π : M ãÑ V ˆ p0, 1qn � p0, 1qn.

Proposition 4.3.4.
ş

p´q
A is a well-defined map of n-fold simplicial sets.

Proof. By the above proposition, p
ş

p´q
Aq ppMqq is an element in pFactnqk1,...,kn . Moreover,

ş

p´q
A commutes with the face and degeneracy maps dij , s

i
j and δij , σ

i
j of the n-fold simplicial

sets pPBordfrn q‚,...,‚ and pFactnq‚,...,‚ by construction.

Problem 4.3.5.
ş

p´q
A does not extend to a map between l-simplices of the levels,

i.e. p
ş

p´q
Aqk1,...,kn is not a map of simplicial sets

p

ż

p´q

Aqk1,...,kn : pPBordnqk1,...,kn ÝÑ pFactnqk1,...,kn ,

as can be seen in the following example.

Consider the following 1-simplex in pBord1q1, which is given by a smooth deformation of
the standard embedding of the circle, r0, 1s ˆ S1 ãÑ r0, 1s ˆ R ˆ p0, 1q, and the pair of
intervals p0, bs ď ra, 1q.

V “ R

0 1ab

M1 M0.5 M0

U
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The factorization algebra F1 “ pπ1q˚p
ş

S1 Aq associated to s “ 1 is not weakly equivalent
to that associated to s “ 0 (even after any rescaling of p0, 1q), as its value on the open set
U as given in the picture is

F1pUq “ Ab2 b pAopqb2,

but F0 “ pπ0q˚p
ş

S1 Aq on intervals takes on values 1, A,Aop, or AbAop.

4.4 Collapsing the factorization algebra and FAlgn

In this section, we explain how to “collapse” a factorization algebra in Factn. We define
a map of n-fold simplicial sets

V : Factn ÝÑ FAlgn

to an n-fold Segal space FAlgn Ě Algn of factorization algebras on p0, 1qn, which have
certain locally constancy properties, but do not lead to bimodules.

We first define a collapse-and-rescale map v : Int‚ Ñ Covers‚ given by applying a collapse-
and-rescale map %

b
a : p0, 1q Ñ p0, 1q to a tuple of intervals with endpoints a, b. This map

is lifted to a map V : Factn Ñ FAlgn by pushing forward the factorization algebra along
the product of the collapse-and-rescale maps.

4.4.1 The collapse-and-rescale map v : Int‚ Ñ Covers‚

... on the levels

Informally speaking, we first collapse the complement of all intervals and then rescale the
rest to p0, 1q. We saw in lemma 3.1.4 that the collapse-and-rescale maps %ba commute

in a suitable way. This ensures that we can define the collapse-and-rescale map %
b
a by a

successive application of %ba’s.

Definition 4.4.1. Let I0, . . . , Ik be closed intervals in p0, 1q with non-empty interior and
endpoints a “ pa0, . . . , akq, b “ pb0, . . . , bkq. Then, let

%ba “ %b0a1 ˚ %
b1
a2 ¨ ¨ ¨ ˚ %

bk´1
ak

.

Note that since by definition paα, bαq is non-empty, pbα´1, aαq X pbα, aα`1q “ H. So we

can apply lemma 3.1.4 and the map %
b
a is independent of the order of maps %bαaα`1

. In the
following, we will apply this to pI0 ď ¨ ¨ ¨ ď Ikq P Intk.

10 b0 a1 b1a2 b2 a3

10 b̃0 “ ã1 b̃2 “ ã3b̃1ã2

%
b
a

Notation 4.4.2. For I0, . . . , Ik as above let tj1, . . . , jlu Ď t0, . . . , k´1u be the indices for

which bjβ ă ajβ`1, i.e. %
bjβ
ajβ`1 ‰ id. Then, similarly as we saw for %ba,

%ba|Dba ,
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for D
b
a “ p0, bj1s Y paj1`1, bj2s Y ¨ ¨ ¨ Y pajl`1, 1q is bijective. We denote its inverse by

p%baq
´1 “ p%ba|Dbaq

´1 : p0, 1q ÝÑ Db
a.

... as a map of complete Segal spaces

Proposition 4.4.3. The map

Intk
v k
ÝÑ Coversk,

pI0 ď ¨ ¨ ¨ ď Ikq ÞÝÑ p%bapI0q ď ¨ ¨ ¨ ď %bapIkqq,

extends to a map of complete Segal spaces.

Proof. We first need to show that the map v k extends to a map of spaces v k : Intk Ñ
Coversk, i.e. we need to define it on l-simplices and show that it commutes with the spatial
face and degeneracy maps s∆

l , d
∆
l of Intk and σ∆

l , δ
∆
l of Coversk. Finally we need to show

that all v k together form a map of simplicial spaces, i.e. they commutes with the simplicial
face and degeneracy maps sj , dj of Int‚ and σj , δj of Covers‚.

... on l-simplices Consider an l-simplex in Intk consisting of underlying 0-simplices
pI1psq ď ¨ ¨ ¨ ď IkpsqqsP|∆l| and a rescaling datum pϕs,t : p0, 1q Ñ p0, 1qqs,tP|∆l|. It is sent
to the l-simplex in Coversk defined as follows:

1. for s P |∆l|, the sth underlying 0-simplex of the image is
´

%bapI0psqq ď ¨ ¨ ¨ ď %bapIkpsqq
¯

P Coversk;

2. for s, t P |∆l|, the rescaling datum is

φs,t “ %
bptq
aptq ˝ ϕs,t|Dbapsq ˝ p%

bpsq
apsqq

´1 : p0, 1q Ñ p0, 1q.

... commutes with the spatial degeneracy and face maps The map v k commutes
with spatial degeneracy and face maps since these come from the degeneracy and face
maps of the simplicial set p∆lql.

... commutes with the simplicial degeneracy and face maps This essentially
follows from the behaviour of the collapse-and-rescale maps %ba, which is summarized in
the following lemma.

Lemma 4.4.4. The following diagram commutes:

Intk`1 Coversk`1

Intk Coversk

Intk´1 Coversk´1

v k`1

v k

dj

sj

δj

σj

v k´1
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Proof. The collapse-and-rescaling maps on the top and in the middle coincide, since %
bj
aj “

id and therefore
%
djpbq

djpaq
“ ¨ ¨ ¨ ˚ %bj´1

aj ˚ %bjaj ˚ %
bj
aj`1

“ %ba.

Thus the top diagram commutes.

For the lower diagram, we need to compare the composition of the (collapse-and-)rescaling
maps.

Intk Coversk

Intk´1 Coversk´1

%ba

id or ρj %
bj´1
aj`1

%ba

The upper right composition σj ˝ v k has as rescaling map %
bj´1
aj`1 ˚ %

b
a. Using lemma 3.1.4

and remark 3.1.3 we obtain

%bj´1
aj`1

˚ %ba “ %bj´1
aj`1

˚ p%b0a1 ˚ %
b1
a2 ¨ ¨ ¨ ˚ %

bk´1
ak

q

3.1.4
“ %bj´1

aj`1
˚ p%bj´1

aj ˚ %bjaj`1
˚ ˚
α‰j´1,j

%bαaα`1
q

“ p%bj´1
aj`1

˚ %bj´1
aj q ˚ %bjaj`1

˚ ˚
α‰j´1,j

%bαaα`1

3.1.3
“ p%bj´1

aj`1
˚ %bjaj`1

q ˚ ˚
α‰j´1,j

%bαaα`1

3.1.3
“ %bj´1

aj`1
˚ ˚
α‰j´1,j

%bαaα`1

3.1.4
“ %b0a1 ˚ ¨ ¨ ¨ ˚ %

bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

“ %
pb
j

paj
,

where paj “ pa0, . . . , aj´1, aj`1, . . . , akq and pb
j
“ pb0, . . . , bj´1, bj`1, . . . , bkq.

For j ‰ 0, k, we have that sjpaq “ paj and sjpbq “ pb
j

and thus the lower left composition
v k´1 ˝sj has as rescaling map

%
sjpbq

sjpaq
“ %

pb
j

paj
.

For j “ 0 or j “ k we have that sjpaq “ ρjppa
j
q “ %

bj´1
aj`1ppa

j
q and sjpbq “ ρjppb

j
q “ %

bj´1
aj`1p

pb
j
q,

and thus the lower left composition v k´1 ˝σj has as rescaling map

%
sjpbq

sjpaq
“ %

pb
j

paj
˚ %bj´1

aj`1

“ p%b0a1 ˚ ¨ ¨ ¨ ˚ %
bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

q ˚ %bj´1
aj`1

“ %b0a1 ˚ ¨ ¨ ¨ ˚ %
bj´2
aj´1

˚ %bj´1
aj`1

˚ %bj`1
aj`2

˚ ¨ ¨ ¨ ˚ %bk´1
ak

“ %
pb
j

paj
,

since similarly to above, by lemma 3.1.4 we can first reorder the terms in the parentheses,

use %
bj´1
aj`1 ˚ %

bj´1
aj`1 “ %

bj´1
aj`1 by remark 3.1.3, and then reorder again.
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4.4.2 The “faux” Algn, the n-fold Segal space FAlgn

Recall that in definition 3.2.27, given pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,n P pCoversnqk1,...,kn , we
inductively defined a stratification of p0, 1qn by

Xn “ p0, 1q
n, Xn´i “ Xn´i`1 X Yi,

for 1 ď i ď n, where

Yi “ π´1
i

`

Si
˘

for Si “ p0, 1qz
ki
ď

j“0

paij , b
i
jq “ p0, 1qz

ki
ď

j“0

pIijq
˝,

and pIijq
˝ “ paij , b

i
jq is the interior of the interval Iij . Note that the setXzYi “

Ťki
j“0pa

i
j , b

i
jqˆ

p0, 1qnzi is a disjoint union of products of the form

p0, si1q ˆ p0, 1q
nzi, psij , s

i
j`1q ˆ p0, 1q

nzi, or psili , 1q ˆ p0, 1q
nzi,

where n “ t1, . . . , nu.

We now define a “faux” n-fold Segal space FAlgn of En-algebras, whose objects are En-
algebras, but the morphisms do not behave like modules.

Definition 4.4.5. For every k1, . . . , kn ě 0, let pFAlgnqk1,...,kn be the collection of tuples

pF , pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq,

satisfying the following conditions:

1. F is a factorization algebra on p0, 1qn.

2. For 1 ď i ď n,
pIi0 ď ¨ ¨ ¨ ď Iikiq P Coverski ,

3. For 1 ď i ď n, on every connected component of XzYi, the factorization algebra F
is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

We make the collection pFAlgnq‚,...,‚ into an n-fold Segal space similarly to pAlgnq‚,...,‚.

Remark 4.4.6. Similarly to definition 4.2.1 we use theorem 3.2.26 to formulate the
condition on the factorization algebra F .

Example 4.4.7. For n “ 1, pFAlg1qk consists of elements of the form

pF , I0 ď . . . ď Ikq,

where F is a factorization algebra on p0, 1q and is locally constant everywhere except at
the points S “ ts1, . . . , slu “ p0, 1qzpI0 Y . . .Y Ikq. In particular, pFAlg1q0 “ pAlg1q0 and
consists of locally constant factorization algebras on p0, 1q, i.e. E1-algebras. However, for
k ą 1, pAlg1qk is the proper subset of pFAlg1qk of elements which furthermore satisfy the
condition that if U , V are intervals containing the same point sj , FpUq » FpV q.

Proposition 4.4.8. There is an inclusion of n-fold Segal spaces

Algn Ă FAlgn .
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Proof. Recall from definition 3.2.27 that

Xn´α “ S1 ˆ ¨ ¨ ¨Sα ˆ p0, 1qtα`1,...,nu.

Thus, the stratification induces a stratification on XzYi of the form

pXzYiq XXn´α “ S1 ˆ ¨ ¨ ¨ ˆ Sα ˆ p0, 1qtα`1,...,i´1u ˆ
`

p0, 1qzSi
˘

ˆ p0, 1qti`1,...,nu

“ X̃n´α ˆ p0, 1q
ti`1,...,nu,

where
X̃n´α “ S1 ˆ ¨ ¨ ¨ ˆ Sα ˆ p0, 1qtα`1,...,i´1u ˆ

`

p0, 1qzSi
˘

.

for 0 ď α ă i.

Let pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq P pAlgnqk1,...kn . The restriction F |XzYi is locally constant
with respect to the stratification pXzYiq X Xn´α. Thus, as a factorization algebra on
p0, 1qti`1,...,nu with values in factorization algebras on p0, 1qt1,...,iu it is locally constant.

4.4.3 The collapsing map V : Factn Ñ FAlgn

We can now lift the collapsing map v : Int Ñ Covers to a collapsing map V : Factn Ñ
FAlgn.

Notation 4.4.9. Let pIi0 ď ¨ ¨ ¨ ď Iikiqi“1,...,nq P Intnk1,...,kn . For 1 ď i ď n denote the

collapse-and-rescale map associated to pIi0 ď ¨ ¨ ¨ ď Iikiq P Intki by %
bi

ai , and denote their

product by

%
b
a “ p%

b1

a1 , . . . , %
bn

anq : p0, 1qn ÝÑ p0, 1qn.

Note that
%
b
a “ %

b1

a1 ˝ . . . ˝ %
bn

an ,

where as before we again denote by %
bi

ai the map p0, 1qn ÝÑ p0, 1qn which is %
bi

ai in the ith

coordinate and the identity otherwise, and the order in the above composition does not
matter.

Proposition 4.4.10.

pFactnqk1,...kn
V
ÝÑ pFAlgnqk1,...kn

pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq ÞÝÑ

´

p%
b
aq˚pFq,

`

v pIi0 ď ¨ ¨ ¨ ď Iikiq
˘

1ďiďn
q

is a map of n-fold Segal spaces.

Proof. As we have seen in lemma 4.4.4 that the (collapse-and-)rescaling maps behave well
with respect to face and degeneracy maps of the simplicial space, it is enough to show
that V indeed maps to FAlgn.

We need to check the third condition in definition 4.4.5, i.e. that for 1 ď i ď n, on

XzYi “ π´1
i

`

ki
ď

j“0

%
bi

aipI
i
jq
˝
˘
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p%
b
aq˚F is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

For this it is enough to show that for every 0 ď j ď ki, we have
´

p%
b
aq˚F

¯

|
π´1
i

`

%
bi

ai
pIijq

˝

˘ “ p%
b
aq˚

´

F |π´1
i pIijq

˝

¯

is an En´i`1-algebra in factorization algebras on p0, 1qt1,...,i´1u.

Since pF , pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďnq P pFactnqk1,...kn , F |π´1
i pIijq

˝ is an En´i`1-algebra in

factorization algebras on p0, 1qt1,...,i´1u, so the following lemma finishes the proof.

Lemma 4.4.11. Let G be a locally constant factorization algebra on p0, 1q and let %ba be
a collapse-and-rescaling map. Then p%baq˚G is locally constant on p0, 1q.

Proof. This follows from the fact that preimages of intervals under %ba again are intervals.

4.5 The functor of p8, nq-categories FHn

We now show that, given an En-algebra A, the composition V ˝
ş

p´q
A lands in Algn and

thus yields a map
FHn “ FHnpAq : PBordfrn ÝÑ Algn .

Proposition 4.5.1. Let pMq “
`

M ãÑ V ˆ p0, 1qn, pIi0 ď ¨ ¨ ¨ ď Iikiq1ďiďn
˘

P

pPBordnqk1,...kn . Then

´

V ˝

ż

p´q

A
¯

ppMqq P pAlgnqk1,...,kn ,

Proof. Let π : M ãÑ V ˆp0, 1qn � p0, 1qn and as usual denote the endpoints of the interval
Iij by aij , b

i
j . We need to show that the underlying factorization algebra of FHnppMqq,

which is

FpMq “ p%
b
aq˚π˚

ż

M

A,

is locally constant with respect to the stratification associated to the intervals
`

%
bi

aipI
i
0q ď

¨ ¨ ¨ ď %
bi

aipI
i
ki
q
˘n

i“1
.

Let V Ď U be good neighborhoods at Xn´α “ S1ˆ¨ ¨ ¨ˆSαˆp0, 1qtα`1,...,nu from definition
3.2.27 respectively remark 3.2.28. We can assume that they are boxes, i.e. products of
intervals

U “ U1 ˆ ¨ ¨ ¨ ˆ Un, V “ V 1 ˆ ¨ ¨ ¨ ˆ V n

and meet exactly one connected component

psijq
α
β“1 ˆ p0, 1q

tα`1,...,nu

of Xn´α. We need to show that the structure map FpMqpV q Ñ FpMqpUq is a weak
equivalence. By definition,

FpMqpV q “ p
ż

M

Aqpπ´1pṼ qq and FpMqpUq “ p
ż

M

Aqpπ´1pŨqq,
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where Ṽ “ p%
b
aq
´1pV q and Ũ “ p%

b
aq
´1pUq. Since

ş

M
A is locally constant, it is enough to

show that the inclusion π´1pṼ q ãÑ π´1pŨq is a weak equivalence.

The open sets Ṽ and Ũ are boxes of open intervals,

Ṽ “ pe1, f1q ˆ ¨ ¨ ¨ ˆ pen, fnq and Ũ “ pc1, d1q ˆ ¨ ¨ ¨ pcn, dnq

where pci, diq “ p%
bi

aiq
´1pU iq and pei, f iq “ p%

bi

aiq
´1pV iq. The endpoints ci and ei, respec-

tively di and f i, either lie in the same closed specified interval Iiji or in ones connected by
a chain of overlapping intervals. An argument similar to that in corollary 2.3.4 or, if an
endpoint is 0 or 1, example 2.3.2 gives a diffeomorphism

π´1pŨq ÝÑ π´1pṼ q.

Definition 4.5.2. Let

FHn “ FHnpAq “ V ˝

ż

p´q

A : PBordfrn ÝÑ Algn,

FHn
`

pMq
˘

“ pFM ,
`

v pIi0 ď . . . ď Iikiq
˘n

i“1
q,

where FpMq “ p%
b
aq˚π˚

ş

M
A. By the universal property of the completion it extends to a

map of complete n-fold Segal spaces

FHn “ FHnpAq : Bordfrn ÝÑ Algn .

Example 4.5.3. [The value at a point] A point viewed as an object ˚ in the bordism
category is represented by the trivial bordism

p˚q “
`

M “ p0, 1qn ãÑ p0, 1qn,
`

p0, 1q
˘n

i“1

˘

.

We have seen in example 4.1.4 that
ş

p0,1qn
A »

ş

Rn A » A as a factorization algebra on

M “ p0, 1qn. Then π : M “ p0, 1qn Ñ p0, 1qn is the identity map and %
b
a “ id. So,

FHnpAqp˚q “
`

A,
`

p0, 1q
˘n

i“1

˘

P pAlgnq0,...,0.

4.6 The fully extended topological field theory FHn

To obtain a fully extended topological field theory the functor FHnpAq needs to be sym-
metric monoidal. In this section we extend it to a symmetric monoidal functor, both
by defining a natural transformation of Γ-objects and by defining compatible functors
between the layers of the towers.

4.6.1 Symmetric monoidality via Γ-objects

We extend the map FHnpAq to a natural transformation between functors Γ Ñ SSpacen,
rms ÞÑ PBordfrn rms,Algnrms.
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Proposition 4.6.1. For every object rms P Γ, let FHnrms “ FHnpAqrms be the map of
n-fold Segal spaces

PBordfrn rms ÝÑ Algnrms,
`

M1, . . . ,Mm, pI
i
0 ď . . . ď Iikiq

n
i“1q

˘

ÞÝÑ
`

FpM1q, . . . ,FpMmq, v pI
i
0 ď . . . ď Iikiq

n
i“1

˘

.

This assignment endows the functor FHnpAq of p8, nq-categories with a symmetric mon-
oidal structure.

Proof. The map FHnrms is well-defined since the the image of the left-hand element
under the inclusion PBordnrms Ď pPBordnr1sq

m is the collection of

pMβ , pI
i
0 ď . . . ď Iikiq

n
i“1q P pPBordfr,Vn qk1,...,kn

which under FHnpAq are sent to elements in pAlgnqk1,...,kn with underlying factorization
algebras FpMβq and the same underlying element in pCoversnqk1,...,kn

`

v pIi0 ď . . . ď Iikiq
˘n

i“1
.

Thus the collection of the images lies in the image of the inclusion Algnrms Ď pAlgr1sqm.
The map FHnrms is a map of n-fold Segal spaces by the same argument as for FHn.

To see that this assignment defines a natural transformation, let f : rms Ñ rks, and
1 ď α ď k. Let π “ πr1s > ¨ ¨ ¨ > πrms : M1 > ¨ ¨ ¨ >Mm Ñ p0, 1qn. By the following lemma
we have

π˚

ż

š

βPf´1pαqMβ

A “
â

βPf´1pαq

πrβs˚

ż

Mβ

A,

and thus the following diagram commutes.

PBordfrn rms Algnrms

PBordfrn rks Algnrks

FHnrms

f f

FHnrks

Lemma 4.6.2. Let f : X Ñ Z, g : Y Ñ Z be continuous maps of topological spaces and
let F be a factorization algebra on X > Y . Then

pf > gq˚F “ f˚F |X b g˚F |Y .

Proof. Let U Ă Z be open. Then pf > gq´1pUq “ f´1pUq > g´1pUq and by the gluing
property of F , we have

Fpf´1pUq > g´1pUqq “ Fpf´1pUqq b Fpg´1pUqq.
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As a corollary of proposition 4.6.1 we obtain our main result.

Corollary 4.6.3. Let A be an En-algebra. Then the map

FHnpAq : Bordfrn ÝÑ Algn

is a fully extended topological field theory.

4.6.2 Symmetric monoidality via the tower

In this section we extend the map to the layers of the tower in a compatible way.

On the lth layer the extension FHplqn is the composition of maps
ş

p´q
A and V plq analogous

to those for l “ 0. For simplicity, instead of defining the layers for the auxiliary spaces
Factn and FAlgn we define FHplqn directly.

Proposition 4.6.4. For every l ě 0, the assignment

PBordfr,ln ÝÑ Algplqn ,
`

πplq : M Ñ p0, 1qn`l, pIi0 ď . . . ď Iikiq
n`l
i“1

˘

ÞÝÑ
`

FMplq , v pIi0 ď . . . ď Iikiq
n`l
i“1

˘

,

where FMplq “ p%
b
aq˚pπ

plqq˚
ş

M
A, is a map of n-fold Segal spaces FHplqn “ FHplqn pAq. It

commutes with the looping and delooping maps u and ` from propositions 2.5.8 and 3.3.8.

Proof. We need to check:

1. FHplqn is well-defined, i.e. its image indeed lies in Algplqn .

Similarly to propositions 4.4.10 and 4.5.1 one can show that FMplq is locally constant
with respect to the stratification associated to v pIi0 ď . . . ď Iikiq

n`l
i“1 , and thus FHplqn

maps to Algn`l. Moreover, as noted in remark 2.5.6, pPBordfr,ln q1,...,1,0,‚,...,‚, with
pl ´ 1q 1’s, is the point viewed as a constant pn ´ lq-fold Segal space. This implies

that FHplqn indeed maps to Algplqn Ă Algn`l.

2. FHplqn commutes with the looping and delooping maps u, ` from propositions 2.5.8
and 3.3.8, i.e. the following diagram commutes:

PBordfr,ln Algplqn

LpPBordfr,l`1
n q LpAlgpl`1q

n q

FHplqn

` `

FHpl`1q
n

u u

It is straightforward to see from the constructions of u that the diagram for u
commutes. The commutativity for ` follows from the properties of the collapse-and-
rescale maps.
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By the universal property of the (l-hybrid) completion, we obtain maps

FHplqn : Bordfr,plqn ÝÑ Algplqn .

Corollary 4.6.5. The maps FHplqn endow the functor FHnpAq : Bordfrn Ñ Algn of
p8, nq-categories with a symmetric monoidal structure. Thus, given an En-algebra A, the
map

FHnpAq : Bordfrn ÝÑ Algn

is a fully extended topological field theory.

4.7 Variants

4.7.1 Geometric structures

As in section 2.7.1, let X be a topological space and E Ñ X a topological n-dimensional
vector bundle which corresponds to a (homotopy class of) map(s) e : X Ñ BGLpRnq from
X to the classifying space of the topological group GLpRnq.

Given a Disk pX,Eqn -algebra, one might ask if we can obtain a fully extended n-dimensional

pX,Eq-topological field theory by a similar procedure. Indeed, given a Disk pX,Eqn -algebra
A, in 4.1.1 we defined factorization homology for pX,Eq-structured n-dimensional man-
ifolds with coefficients in A. Analyzing its proof one sees that theorem 4.1.5 also holds
in this case. Thus, following the same steps as in section 4.3 we obtain a map of n-fold
simplicial sets

ż

p´q

A : PBordpX,Eqn ÝÑ Factn .

The rest of the construction remains the same and we obtain the following result.

Theorem 4.7.1. Let A be a Disk pX,Eqn -algebra. By the universal property of the comple-

tion, the composition FHnpAq “ V ˝
ş

p´q
A : PBordpX,Eqn Ñ Algn extends to an pX,Eq-

structured fully extended n-dimensional topological field theory

FHnpAq : BordpX,Eqn ÝÑ Algn .

4.7.2 A variant for n-fold categories

Recall from sections 2.4.3 and 3.5.3 the n-fold categories of bordisms and En-algebras, the
complete n-uple Segal spaces Borduplen and Alguplen . Similarly, one can define a complete
n-uple Segal spaces Factuplen and FAlguplen by relaxing condition (3) in definitions 4.2.1 and

4.4.5. Given an En-algebra, or, more generally as in the previous section, a Disk pX,Eqn -
algebra A, the maps

ş

p´q
A and V give maps

ż

p´q

A : PBordpX,Eq,uplen ÝÑ Factuplen

and
V : Factuplen ÝÑ FAlguplen .

Altogether, we obtain a fully extended “n-fold” TFT

FHnpAq : BordpX,Eq,uplen ÝÑ Alguplen .
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4.8 The simplest example: n “ 1

Let A be an algebra. Then FH1pAq is the field theory we expect: It sends S1 considered
as a 1-morphism from H to H to HCpAq “ AbAbAopA, the Hochschild chains of A. Note
that we work in the derived setting, so tensor products are derived tensor products.

Consider the following element in pBord1q2, a pair of composable morphisms:

10 b0 a1 b1 a3

Taking factorization homology and pushing it to the base leads to the following factoriza-
tion algebra on p0, 1q:

10 b0 a1 b1 a3

ş

S1 A

π˚
ş

S1 A

π˚

A

A

U

AbAop

A

V

A

A

W

A1 1

Thus pushing forward again along the collapse-and-rescale map ρba gives the following
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diagram

A

A

AA

A A

1 1AbAop 1 1

AbAbAop A

d1

δ1

FHpAq FHpAq
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Oct. 2009 DI (equivalent to M.Sc.) in Technical Mathematics,
Vienna University of Technology

June 2004 Matura, Bundesrealgymnasium Krottenbachstrasse,
Vienna

Research interests

My research area is mathematical physics: higher category theory, fully extended topolog-
ical field theories, factorization algebras, derived algebraic geometry


	Contents
	Abstract
	Zusammenfassung
	Résumé
	Acknowledgements
	Introduction
	Motivation
	Topological field theories
	Factorization homology and factorization algebras

	Overview of the thesis
	Symmetric monoidal complete n-fold Segal spaces
	Definition of a fully extended n-TFT
	The target: En-algebras
	Construction of the fully extended n-TFT
	Guide to the reader


	Preliminaries: symmetric monoidal (infty ,n)-categories
	The homotopy hypothesis and (infty,0)-categories
	Complete Segal spaces as models for (infty,1)-categories
	Segal spaces
	The homotopy category of a Segal space
	Complete Segal spaces
	Segal categories

	Complete n-fold Segal spaces as models for (infty,n)-categories
	n-fold Segal spaces
	Complete and hybrid n-fold Segal spaces

	The homotopy bicategory of a 2-fold Segal space
	Constructions of n-fold Segal spaces
	Truncation
	Extension
	The higher category of morphisms and loopings

	Symmetric monoidal n-fold Segal spaces
	...as a Gamma-object
	...as a tower of (n+i)-fold Segal spaces


	The (infty,n)-category of cobordisms
	The complete n-fold Segal space of closed intervals in (0,1)
	The spatial structure of the levels of Int
	The simplicial set Int
	The Segal space Int

	A time-dependent Morse lemma
	The classical Morse lemma
	The time-dependent Morse lemma

	The (infty,n)-category of bordisms Bord
	The level sets of PBord
	The spaces PBord
	The n-fold simplicial set PBord
	The full structure of PBord as an n-fold simplicial space
	The complete n-fold Segal space Bord

	Variants of Bord and comparison with Lurie's definition
	Bounded submanifolds, cutting points, and R as a parameter space
	Comparison with Lurie's definition of cobordisms
	The n-fold category Bord

	The symmetric monoidal structure on Bord
	The symmetric monoidal structure arising as a Gamma-object
	The monoidal structure and the tower

	The homotopy (bi)category
	The homotopy category of the looping of Bord
	The homotopy bicategory h(Bord) and comparison with 2Cob

	Cobordisms with additional structure: orientations and framings
	Structured manifolds
	The (infty,n)-category of structured cobordisms
	Example: Objects in the framed Bord are 2-dualizable

	Fully extended topological field theories
	Definition
	n-TFT yields k-TFT
	Cobordism Hypothesis à la Baez-Dolan-Lurie and outlook


	The Morita (infty,n)-category of En-algebras
	The complete n-fold Segal space of closed covers in (0,1)
	Collapse-and-rescale maps
	The level sets of Cov
	The spatial structure of Cov
	The simplicial set Cov
	The Segal space Cov

	The Morita (infty,n)-category of En-algebras Alg
	Structured disks and En-algebras
	Factorization algebras
	Stratifications and locally constant factorization algebras
	The level sets of Alg
	The spaces Alg
	The n-fold simplicial set Alg
	The full structure of Alg as an n-fold simplicial space
	The n-fold Segal space Alg
	Completeness of Alg and the Morita (infty,n)-category of En-algebras

	The symmetric monoidal structure on Alg
	The symmetric monoidal structure arising as a Gamma-object
	The monoidal structure and the tower

	The homotopy category of Alg and the Morita category
	Variants and extensions of Alg
	The (infty,n+1)-category of En-algebras
	An unpointed version
	The n-fold category Alg


	Factorization homology as a fully extended TFT
	Factorization Homology
	The auxiliary (infty,n)-category Fact
	The spaces Fact
	The n-fold Segal space Fact
	Completeness of Fact
	The symmetric monoidal structure on Fact

	The map of n-fold simplicial sets int A
	Collapsing the factorization algebra and FAlg
	The collapse-and-rescale map v: Int -> Cov
	The "faux" Alg, the n-fold Segal space FAlg
	The collapsing map V:Fact -> FAlg

	The functor of (infty,n)-categories FH
	The fully extended topological field theory FH
	Symmetric monoidality via Gamma-objects
	Symmetric monoidality via the tower

	Variants
	Geometric structures
	A variant for n-fold categories

	The simplest example: n=1

	Bibliography
	Curriculum Vitae

