DISS. ETH Nr. 21850

Investigation of starch metabolism in Cassava (*Manihot esculenta* Crantz)

A dissertation submitted to the

ETH ZURICH

For the degree of Doctor of Sciences

Presented by

Carmen Elisa Hostettler

MSc ETH in Biology

Born 26th June 1981 Guggisberg BE

Accepted on the recommendation of

Prof. Samuel C. Zeeman, examiner Prof. Wilhelm Gruissem, co-examiner Dr. Angel Mérida, co-examiner Dr. Herve Vanderschuren, co-examiner

Acknowledgement

I would like to thank Prof. S.C. Zeeman for giving me the opportunity to do my PhD in his lab. During the time of my PhD Sam provided me with great support and gave me advice whenever needed. Thanks to the many discussions I got one step further and I had a great time and I could greatly profit in terms of scientific work but not only. Thanks a lot Sam for all your help during these years, I enjoyed the time in your lab!

My thank goes to all those supporting me in my projects in order to get them further; Sylvain Bischof who helped me a lot to perform the proteomic analysis; Kim Schlegel who helped me out with advice concerning FEC maintenance; Herve Vanderschuren for the advice in respect of cloning approaches to generate transgenic cassava plants; Our gardeners, Sabine Klarer, Sara Bangerter and Andrea Ruckle I am thankful for taking care of my cassava plants. Gabriel and Wuyan I would like to thank for their help in last minute and to continue the project I've started.

Further I would like to thank all the Zeeman's lab members. I have spent a great time in the lab together with you and I'm certainly gone miss the skiing trip.

Special thanks go to the "Happy Lab". Namely Michaela, Simona, Sebastian and Martin they provided me with fruitful discussions and great help in moments I thought there is no going on. I would like to thank for their help and great support in the lab and further. All the numerous discussions help and support when things seemed to be worth than they actually were.

Last but not least I would like to thank my family; your unconditional support and faith in let me become where I am now. Life is just easier knowing that you are there!

Table of content

SummaryI Zusammenfassung				
			AbbreviationsVII	
1.	Introduction1			
1.1.	Cassava – an important starch crop1			
1.2.	Physiology of cassava1			
1.3.	Starch – an important raw material 2			
1.4.	Composition of starch and its architecture			
1.5.	Carbon assimilation and storage: From source to sink tissue			
1.6.	Carbon assimilation by photosynthesis4			
1.7.	Starch synthesis in chloroplasts			
1.8.	Starch degradation in leaves			
1.9.	Starch phosphorylation			
1.10.	Starch hydrolysis in chloroplasts 10			
1.11.	Sucrose synthesis 11			
1.12.	Sucrose transport 12			
1.13.	Sucrose metabolism in heterotrophic tissues			
1.14.	Starch synthesis in amyloplasts 14			
1.15.	Starch degradation in heterotrophic tissue upon germination and re-growth			
1.16.	Adding value to cassava as a starch crop14			
1.17.	Scope of the work 15			
2.	Material and Method 17			
2.1.	Greenhouse grown cassava 17			
2.2.	Growth analysis 17			
2.2.1.	Age determination 17			
2.3.	Photosynthetic capacity 17			

2.3.1.	Photosynthesis at different light intensities	18
2.3.2.	Photosynthesis of leaves at different developmental stages	18
2.4.	lodine staining, microscopy	18
2.4.1.	Microscopy	18
2.5.	Carbohydrate extraction	18
2.6.	Carbohydrate measurements	19
2.6.1.	Insoluble carbohydrate determination	19
2.6.2.	Soluble carbohydrate determination	19
2.6.2.1.	Enzymatically	19
2.6.2.2.	HPLC-PAD	20
2.7.	Protein extraction	20
2.7.1.	Soluble protein extraction for Immunoblot analysis and native PAGE	20
2.7.2.	Protein amount determination by Bradford	21
2.8.	SDS PAGE	21
2.9.	Western Blot	21
2.10.	Determination of amylolytic activity	22
2.10.1.	Native PAGE	22
2.11.	Proteome analysis, sample digestion, mass spectrometry and spectra analysis	22
2.11.1.	Protein preparation	22
2.11.2.	Mass spectormetry	23
2.11.3.	Protein identification and label-free peptide quantification	23
2.12.	Construct design	24
2.12.1.	Overexpression of potato StGWD in cv. 60444	24
2.12.2.	RNAi: Hairpin design	25
2.12.3.	Agrobacterium tumefaciens transformation	27
2.12.4.	Tissue culture and FEC transformation	27
2.13.	Construct functional analysis	28

2.13.2.	Genomic DNA extraction
2.13.3.	RNA extraction
3.	Cassava growth carbon assimilation and allocation analysis
3.1.	Introduction
3.2.	Growth analysis of greenhouse-grown cassava plants
3.2.1.	Growth analysis of plant batches grown at different time points
3.3.	Photosynthetic capacity measurements
3.3.1.	Photosynthetic capacity of cassava leaves in dependence of light and age
3.4.	Carbohydrate accumulation in cassava leaves and stem
3.4.1.	Carbohydrates in cassava leaves of different developmental stage and time points
3.4.2.	Carbohydrates in cassava stem at different developmental stages and time points
3.5.	Conclusions drawn from the analysis of carbohydrate assimilation in cassava plants 48
3.5.1.	Analysis of plant batches used for subsequent experiments
3.5.2.	Capacity of cassava plants to perform photosynthesis and carbon assimilation
4.	Carbohydrate metabolism in Cassava storage roots after induction of
4.	Carbohydrate metabolism in Cassava storage roots after induction of sink-to-source transition
4. 4.1.	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53
4. 4.1. 4.2.	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55
 4.1. 4.2. 4.3. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition
4.1.4.2.4.3.	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison:Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58
 4.1. 4.2. 4.3. 4.3.1. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison: Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60
 4.1. 4.2. 4.3. 4.3.1. 4.3.1.1. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison:Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60
 4.1. 4.2. 4.3. 4.3.1. 4.3.1.1. 4.3.1.2. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison: Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60Changes in differentmetabolic pathways accompany60Changes in differentmetabolic60Changes in differentmetabolic60Changes in different60Changes in different60Changes in different60Changes in different60Changes in different60Changes in different60
 4. 4.1. 4.2. 4.3. 4.3.1. 4.3.1.1. 4.3.1.2. 4.4. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison: Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60Changes in different metabolic pathways accompany the metabolic shift from sink-to-source66Discussion72
 4.1. 4.2. 4.3. 4.3.1. 4.3.1.1. 4.3.1.2. 4.4. 4.4.1. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison:Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60Changes in differentmetabolic pathways accompany66Discussion72Robustness of proteomics data analysis72
 4.1. 4.2. 4.3. 4.3.1. 4.3.1.1. 4.3.1.2. 4.4. 4.4.1. 4.4.2. 	CarbohydratemetabolisminCassavastoragerootsafterinductionofsink-to-source transition53Introduction53Remobilization of carbohydrates from storage organs55Cassava storage root proteome comparison:Unravelling enzymes involved in carbohydratemetabolism in storage roots before and after pruning58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60Changes in differentmetabolic pathways accompany66Discussion72Robustness of proteomics data analysis72Changes in starch metabolism caused by pruning73
 4. 4.1. 4.2. 4.3. 4.3.1.1. 4.3.1.2. 4.4. 4.4.1. 4.4.2. 4.4.3. 	CarbohydratemetabolisminCassavastoragerootsafterinduction53Introduction53Introduction5353Remobilization of carbohydrates from storage organs5555Cassava storage root proteome comparison: Unravelling enzymes involved in carbohydrate58Investigation of metabolic pathway changes after pruning60Changes in the abundance of proteins involved in primary carbon metabolism60Changes in differentmetabolic pathways accompany66Discussion72Robustness of proteomics data analysis72Changes in starch metabolism caused by pruning73Changes in sucrose metabolism caused by pruning74

4.4.5.	General conclusion and outlook	77
5.	Increasing starch bound phosphate level: A transgenic approach	81
5.1.	Introduction	81
5.2.	Transformation and regeneration of cassava	84
5.2.1.	Overexpression of potato glucan, water dikinase in cassava tissue culture	84
5.2.2.	Construct description, in vitro analysis	84
5.2.3.	Growth analysis of transgenic StGWD and StGWD _{C1084S} lines compared to wild-ty	pe plants88
5.2.4.	Starch visualization in leaf and determination of storage root growth in the plants	transgenic
5.2.5.	Storage starch: ³¹ P-NMR reveals increased phosphate bound to C6 and C3 StGWD _{C1084S}	position in 94
5.2.6.	Increase in total starch phosphate: RNAi construct design against MeSEX4 and M	'eLSF2 95
5.2.7.	RNAi construct design against MeAMY3	98
5.3.	Discussion	99
5.3.1.	Analysis of Cassava plants expressing StGWD and StGWD _{C1084S}	99
5.3.2.	RNAi-constructs transformed to Cassava cv. 60444 under investigation	101
5.3.3.	Outlook	103
6.	General Discussion	105
6.1.	Integrating Proteomics and carbohydrate metabolism	106
6.2.	Potential of modified starch in industry	109
7.	References	115
8.	Curriculum vitae	127

Summary

Cassava (*Manihot esculenta* Crantz) is a perennial shrubby plant grown in the tropical and subtropical regions for its starchy roots. In South America and Africa it is mainly grown as a security food and feed stock whereas in Asia the starch industry is the major consumer. In the last decades the economic interest of cassava as a starch crop increased markedly. However, cassava is vegetatively propagated and limited in germplasm.

Starch is the major carbohydrate in plants and an important raw material used for food and non-food industry for mankind. Plants store carbohydrates in form of starch, a polyglucan consisting of linear α -1,4 linked glucose units with α -1,6 branch points. The insoluble, semi-crystalline starch granules are either stored transiently in autotrophic (source) leaf tissues or as reserve compound in heterotrophic storage organs (sink; i.e. seeds and tubers). Transitory starch is synthesised during the day in source tissues from photosynthetically assimilated carbon. During the subsequent night transitory starch is degraded to meet the demand for carbohydrates in sink tissues. In most plants carbohydrates are transported through the phloem from source to sink in form of sucrose, a non-reducing disaccharide. In sink tissues sucrose is unloaded and converted to starch and stored as a carbohydrate reserve for long term. In the process of starch biosynthesis multiple enzymes are involved. Starch metabolism in source and sink tissues share some common features, however there are some differences in which enzymes are involved. Differences also occur depending on the botanical source, in respect of starch architecture, granule size and shape. These characteristics define physico-chemical properties. For the diverse industrial applications (i.e. pharmaceuticals, instant food, paper-making) starches of different characteristics are desired.

In order to increase the value of cassava as a starch crop the subject of my thesis was to identify possible key enzymes involved in cassava root starch metabolism. With the help of profound knowledge about starch metabolism and improved biotechnology tools, transgenic cassava plants can be engineered with better starch properties or increased yield.

In my first part of the thesis I have investigated the growth performance of cassava (cv. 60444) grown under defined greenhouse conditions. The interest was to study the photosynthetic capacity and the allocation of assimilated carbon in form of starch and soluble sugars. In the first part the main focus was on leaf and stem tissue at different developmental stages. Hence, photosynthetic capacity and non-structural carbohydrates were visualized and measured from leaf and stem tissue at different developmental stages. Integration of photosynthetic rate and accumulated carbohydrate revealed a high source capacity of cassava leaves. Hence, more carbohydrates are accumulated than needed throughout the day.

I

In a second part of my thesis I asked the question what key enzymes are involved in remobilizing root starch. Therefore, storage roots, harvested from untreated cassava plants and 10 days after cutting off the aerial plant material were compared. Analysed starch levels and amylolytic enzyme activity revealed a negative correlation. Further, a large scale proteome analysis indicated a metabolic transition from sink to source. This analysis elucidated the involvement of an α -amylase, AMY3 to be a major enzyme responsible for starch mobilization.

In my third part of the thesis I focused on the attempt to modify starch properties in order to add economic value to cassava starch. Phosphorylated starches, the only naturally occurring modification, are used in paper-making industry to increase paper-strength. Depending on the botanical source the degree of starch-bound phosphate varies from high (i.e. 0.5% in potato) to low (i.e. 0.05% in cassava). Phosphorylation of starch in plants is executed by a glucan, water dikinase (GWD) and dephosphorylated by two glucan phosphatases (SEX4, LSF2). Activity of GWD is redox regulated. Thus either the potato *St*GWD or the redox-insensitive and constitutively active *St*GWD_{C10845} were transformed into cassava. Preliminary analysis revealed a positive functionality hence, an increase in total phosphate content. Secondly, cassava plants were transformed with an RNAi constructs targeting *SEX4* or *LSF2* transcript. The constructs were specifically expressed in root tissue to avoid manipulation of starch metabolism in other tissues. In order to increase starch yield an RNAi construct was made targeting *AMY3* as I could show that this is the major enzyme involved in starch mobilization.

Zusammenfassung

Cassava (*Manihot esculenta* Crantz) ist eine ausdauernde, strauchartige Pflanze die besonders in den Tropen und Subtropen für ihre stärkehaltigen Wurzeln angebaut wird. In Südamerika und Afrika wird Cassava als Nahrungs- und Futtermittelsicherheit angebaut während in Asien das Industrielle Interesse im Vordergrund steht. Das wirtschaftliche Interesse an Cassava als Kulturpflanze zur Gewinnung von Stärke ist in den letzten Jahrzehnten markant gestiegen. Durch die vegetative Vermehrung ist die genetische Diversität jedoch limitiert.

Stärke ist eines der wichtigsten Kohlenhydrate in Pflanzen und ein wichtiger Rohstoff für die Nahrungsmittel und nicht-Nahrungsmittel Industrie für die Menschheit. Pflanzen speichern ihre Kohlenhydrate in Form von Stärke, ein Polymer das aus Glucose Einheiten besteht, die linear α -1,4 zu linearen Ketten verbunden sind mit α -1,6 Verzweigungen. Die unlöslichen, semi-kristallinen Stärkekörner wird einerseits transient in autotrophen (Ort der Produktion, Source) Blattgewebe, oder als Reserveverbindung in heterotrophen Geweberorganen gespeichert (Ort des Verbrauchs, Sink, bsp. Samen und Knollen). Transiente Stärke wird am Tag aus photosynthetisch assimiliertem Kohlenstoff synthetisiert. Während der folgenden Nacht wird die transiente Stärke wieder abgebaut um den Bedarf an Kohlenhydraten in Sink Gewebe nachzukommen. In den meisten Pflanzen werden die Kohlenhydrate mittels dem Phloem vom Source zum Sink Gewebe transportiert in Form von Saccharose, einem nicht-reduzierenden Zweifachzucker. Im Sink Gewebe wird Saccharose vom Phloem entladen, in Stärke umgewandelt und als Reservekohlenhydrat über längere Zeit gespeichert. An der Stärke Biosynthese ist eine Mehrzahl an Enzymen beteiligt. Der Stärkemetabolismus in Source und Sink Geweben hat einige gemeinsame Eigenschaften wobei es auch Unterschiede bezüglich der Enzyme gibt, die beteiligt sind. Abhängig von der botanischen Herkunft kann es auch zu Unterschieden bezüglich der Stärke Zusammensetzung, Grösse und Form des Stärkekorns kommen. Diese Merkmale definieren die physikalisch-chemischen Eigenschaften. Für die diversen, industriellen Anwendungen (Pharmazeutika, Fertigprodukte und Papierherstellung) sind unterschiedliche Merkmale erwünscht.

Um Cassava als Kulturpflanze einen Mehrwert zu verleihen, war das Thema meine Doktorarbeit die Identifizierung möglicher Schlüsselenzyme die im Stärkemetabolismus von Cassava beteiligt sind. Mit Hilfe von fundiertem Wissen über den Stärkemetabolismus und den verbesserten biotechnologischen Werkzeugen kann eine Wertsteigerung von Cassava als Kulturpflanze für Stärke erreicht werden.

In meinem ersten Teil der Dissertation habe ich das Wachstumsverhalten von Cassava (cv. 60444) Pflanzen untersucht, die bei definierten Gewächshaus Bedingungen angezogen wurden. Das Interesse lag in der Kapazität für Photosynthese und der Verteilung des assimilierten Kohlenstoffs in Form von Stärke und löslichen Zuckern. Der erste Fokus lag auf dem Blatt- und Stammgewebe zu unterschiedlichen Entwicklungsstadien. Dabei wurden die photosynthetische Kapazität und die nichtstrukturelle Kohlenhydrate gemessen und visualisiert von Blatt- und Stammgewebe zu unterschiedlichen Entwicklungsstadien. Das Vergleichen der Photosyntheserate mit der Menge an assimilierten Kohlenhydraten zeigte eine hohe Source Kapazität in den Cassava Blätter. Demzufolge werden mehr Kohlenhydrate synthetisiert während des Tages als verbraucht während der Nacht.

In einem zweiten Teil meiner Abhandlung habe ich die Frage gestellt welche Schlüsselenzyme benötigt werden um die Wurzelstärke zu mobilisieren. Dafür wurden Speicherwurzeln von Cassava Pflanzen verglichen 10 Tage nach Entblättern mit unbehandelten Kontrollpflanzen. Die analysierte Menge an Stärke und amylolytische Enzym Aktivität zeigte eine negative Korrelation. Des Weiteren hat eine umfangreiche Proteome Analyse auf einen Wechsel von Sink zu Source Metabolismus hingewiesen. Die Auswertung hat eine Beteiligung von α -amylase, AMY3 als wichtiges Enzym der Stärke Mobilisierung aufgezeigt.

Im dritten Teil meiner Doktorarbeit habe ich mich damit beschäftigt in Cassava Stärke mit modifizierten Eigenschaften herzustellen um der Stärke aus Cassava einen wirtschaftlich höheren Wert zu verleihen. Phosphorylierte Stärke – die einzige natürlich vorkommende Modifizierung, wird in der Papierherstellung gebraucht um das Papier zu stärken. Abhängig von der botanischen Quelle kann der Grad von Stärkegebundenem Phosphat von hoch (Bsp. 0.5% in Kartoffeln) und niedrig (Bsp. 0.05%, in Cassava) variieren. Die Pflanzenstärke wird durch die glucan, water dikinase (GWD) phosphoryliert und durch zwei glucan phosphatasen (SEX4, LSF2) dephosphoryliert. Die Aktivität von GWD ist Redox reguliert. So wurden das Kartoffel *St*GWD Protein oder die redox-insensitive und konstitutive aktive *St*GWD_{C10845} Form in Cassava transformiert. Erste Ergebnisse zeigen eine positive Funktionalität und somit einen erhöhten Phosphatgehalt. Weiter, Cassava Pflanzen konnten mit einem RNAi Konstrukt gegen die Transkripte von SEX4 und LSF2 transformiert werden. Die Konstrukte wurden wurzelspezifisch exprimiert um das Verändern auf den Stärkeertrag zu erhöhen habe ich ein RNAi Konstrukt entwickelt gegen das *AMY3* Transkript, da ich zeigen konnte das dieses ein wichtiges Enzym ist um gespeicherte Stärke abzubauen.

Abbreviations

AGPase	ADPglucose pyrophosphorylase
AMY3	α-amylase 3
ANOVA	analysis of variance
ATP	adenosine triphosphate
BAP	6-benzylaminopurine
BCA	bicinchoninic acid
BE	branching enzyme
Вр	base pairs
BSA	bovine serum albumin
CBM	carbohydrate-binding module
DEPC	diethylpyrocarbonate
DHAP	dihydroxyacetonephosphate
DP	degree of polymerization
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
EoD	end of day
EoN	end of night
EtOH	ethanol
Expt	experiment
F1,6BPase	fructose-1,6-bisphosphatase
F6P	fructose-6-phosphate
FBA	fructose-1,6-bisphosphate aldolase
FEC	friable embryonic callus
FK	fructokinase
FR	fibrous root
Fru	fructose
FW	fresh weight
G1P	glucose 1-phosphate
G6P	glucose 6-phosphate
G6PDH	glucose-6-phosphate dehydrogenase
GAP	glyceraldehyde-3-phosphate
GBSS	granule bound starch synthase
Glc	glucose
GPT1	plastidial hexose-phosphate translocater
GWD	glucan, water dikinase
H+	proton
НХК	hexokinase
HPAEC	high pH anion exchange chromatography
IITA	International Institute for Tropical Agriculture
Int	internodium
INV	invertase
IRGA	infrared gas analyser
ISA	Isoamylase
LC	liquid chromatography
LDA	limit-dextrinase (pullulanase)
LSF2	like sex4 2

Mal	maltose
MeOH	methanol
Mops	3-(N-morpholino)propanesulfonic acid
MS	mass spectrometry
NAD+/NADH	nicotinamide adenine dinucleotide
NaOAc	sodium acetate
Nos	nopaline synthase
OPPP	oxidative pentose phosphate pathway
PAD	pulsed amperometric detection
PAGE	polyacrylamide gel electrophoresis
PAR	photosynthetically active radiation
PCA	principle component analysis
PCR	polymerase chain reaction
PGI	phosphoglucosisomerase
PGM	phosphoglucomutase
PPD	post-harvest physiological deterioration
PPi	inorganic pyrophosphate
PWD	phosphoglucan water dikinase
PVPP	polyvinylpolypyrrolidon
SBE	branching enzymes
SD	standard deviation
SDS	sodium dodecyl sulfate
SEX	starch excess
SEX4	starch excess 4
SnRK1	Snf1-protein kinase
SPS	sucrose phosphate synthase
SR	storage root
SS1	starch synthase
Suc	sucrose
SUS	sucrose synthase
ТбР	trehalose-6-phosphate
TCA	trichloroacetic acid
TCA cycle	trcarboxylic acid cycle
TDP	ten days of pruning
TEMED	tetramethylethylenediamine
TPS	trehalose 6-phosphate
Tris	tris(hydroxymethyl)aminomethane
TTBS	tris-buffered saline with tween-20
ZDP	zero days of pruning

1. Introduction

1.1. Cassava – an important starch crop

Cassava (*Manihot esculenta* Crantz) belongs to the five important starch crops beside, rice, wheat, potato and maize. In recent years, its commercialization increased markedly. World market assessment revealed a 9% increase in cassava productivity within the years 2006-2010 (www.fao.org/giews; Food outlook 2008 and 2012). While in Africa cassava is mainly a strategic crop in terms of food security and poverty reduction, an increased industrial interest is observed on the Asian market. Especially in Thailand, one of the leaders for cassava starch production, this market is supported by the government (www.fao.org/giews; Food outlook May 2012). Hence, the interest in cassava biology in respect of starch production increased during the last decades. One main focus in cassava research is the improvement of cassava as a starch crop by investigating storage root production, starch properties and to increase yield in order to attribute more value to this crop.

1.2. Physiology of cassava

Manihot esculenta Crantz or cassava is perennial, shrubby crop that belongs to the family of Euphorbiaceae. It originates from South America, most likely from Brazil, and is grown for its starchy roots in tropical and subtropical regions as a food and feed crop. As a crop it shows several good characteristics like stress tolerance, tolerance for limited soil-nutrient and, as it is a perennial crop, there is no defined harvesting time. Thus, in South America and Africa, cassava is grown by small-scale farmers as a security food crop along with other crops in intercropping systems. Cassava is vegetatively propagated from stem cuttings. Older parts of mother plants are cut into 20-30 cm sticks which are transplanted to soil. The performance of a new plant depends on the fitness of the mother plant. Harvesting of storage root is performed between seven and twelve months after planting. Cassava roots can be harvested when needed. However, fresh roots need to be used immediately or further processed due to rapid post-harvest physiological deterioration (PPD). This process happens within 24-72h where after storage root become unpalatable (Sanchez et al., 2006). With respect to its economic use, PPD is a major drawback as harvested roots have a short shelf live. Hence, harvested storage roots are often further processed to chips or flour.

Cassava synthesizes cyanogenic glycosides (CG), linamarin and lotaustralin in all plant tissues. Cyanogenic glycosides are involved in herbivour defence, where tissue damage brings together CG with specific enzymes. In subsequent enzymatic reactions linamarin and lotaustralin are converted to the neurotoxic cyanide (Mcmahon et al., 1995; Du et al., 1995). Hence, before consumption cassava tissues need to be prepared to detoxify them. Depending on the CG content cassava varieties are

broadly categorized into being sweet (low CG content) or bitter (high CG content) (Ceballos et al., 2004).

Cassava has two types of roots; fibrous roots involved in nutrient uptake and thick storage roots containing high starch levels (up to 80% of dry weight). Fibrous roots are built at the lateral side of stem cuttings. During growth some fibrous roots undergo a developmental transition to form starchy storage roots. This occurs by radial thickening and starch deposition in the phloem and xylem parenchyma cells (Teerawanichpan et al., 2008).

1.3. Starch – an important raw material

For the diverse applications in the starch industry, a raw material is needed that shows a number of specific properties. Knowledge about starch metabolism is growing, through many ground-breaking studies performed on model plants like *Arabidopsis thaliana*. Thanks to such studies, many of the enzymes involved and the regulatory mechanisms controlling them have been described. This knowledge comes from leaf tissue which synthesises starch during the day and degrades during the following night to meet the metabolic needs of the plant and fuel growth in the dark (reviewed in Streb and Zeeman, 2012; Stitt and Zeeman, 2012; Smith and Stitt, 2007; Zeeman et al., 2010).

Two kinds of starches can be distinguished in plants which fulfil different storage requirements. Transitory starch in photosynthetic tissues like Arabidopsis leaves undergoes a diurnal cycle of synthesis and degradation. In non-photosynthetic tissues (i.e. potato tubers, cassava storage roots, maize kernels) carbohydrate is translocated from the photosynthetic tissue, imported into the amyloplast and converted to starch. Starch in amyloplasts is built-up and stored over a long-term period (Geigenberger, 2003; Sonnewald and Kossmann, 2013). Cassava produces both transient and storage starch, but neither process has been studied in depth at the molecular genetic level in this species.

Starch originating from different botanical sources behave in a different physico-chemical way. The tissue as well as the species it is extracted from defines the properties of starch. The granule size and the amylose to amylopectin ratio both contribute to defining the starch properties. In pharmaceutical industries, starch is used as a filling material in tablets, for which starch with a small granule size is ideal. In the food industry, starch is used as a binding agent in processed foods in addition to being a carbohydrate source. For this, starches with low amylose contents are often preferred for their stable gelling properties when heated in water (i.e. gelatinised). Native starches are often pre-treated either chemically or physically in order to improve or deliver the required properties required by the various branches of the food industry. In the paper industry starch is used as a coating agent. For this, starches are pre-treated with harsh chemical methods to insert charged

groups. In this context, naturally phosphorylated starch is used for paper industry. Starch phosphorylation is the only natural modification of the glucose units that introduces a charged group. For this reason, there is an interest in increasing in total phosphate bound to native starches. This could potentially decrease the pre-treatments or even make them unnecessary. Omitting such harsh chemical treatments would reduce processing costs and be better for the environment.

1.4. Composition of starch and its architecture

Starch is an inert polyglucan composed of two molecules, amylose and amylopectin. Amylose has an estimated molecular weight of 10⁵-10⁶ Daltons (Perez and Bertoft, 2010) consists of essentially linear α -1,4 linked glucose chains with a low proportion of α -1,6 linkages (branch points). Amylopectin has an estimated molecular weight of 10⁷-10⁹ Daltons (Yoo and Jane, 2002) and consists of shorter, linear α -1,4 linked chains with high degree of α -1,6-branches (~5%; Perez and Bertoft, 2010). Amylopectin is responsible for the crystalline structure of starch granules. The branches of α -1,6 linkages lay within a specific layer, the so called amorphous layer. Amorphous layers alternate with crystalline layer that contain mainly linear α -1,4 linked glucan chain segments. These linear chains form double helices then pack in an ordered pattern. This arrangement gives starch its insoluble, semi-crystalline properties as water molecules are expelled. These alternating layers make up the crystalline zones of starch granules which can be viewed as a ring-like structure (Figure 1.1). The formation of helices and their arrangement differ depending on the starch type and plant species. The helices arrange either in an A-, or B- type crystallinity. In an A-type starch, typically found in cereals, the helices are packed together densely in a monoclinic unit cell, whereas in a B-type starch, characteristic for tuberous starch, is arranged in an open hexagonal way with water-filled space between the helices (Blennow and Engelsen, 2010). In some species, a mixture of A- and B-type packing is observed. This so-called C-type starch is found in pea and cassava (reviewed in Damager et al., 2010).

Internal growth-ring structure of a starch granule (adjusted composite image)

Figure 1.1 The composition and structure of starch granules

The relationship between the starch granule (composite image of potato granules, *left*) and amylopectin structure. Crystalline and amorphous lamellae arrange to form blocklets that make up the growth rings. (Zeeman et al., 2010)

1.5. Carbon assimilation and storage: From source to sink tissue

Starch is a storage compound found in many plant tissues. In leaves carbon for starch biosynthesis comes from the assimilated CO_2 during photosynthesis. In contrast, in heterotrophic tissues, the carbon for starch biosynthesis comes from sucrose transported from the leaves. Despite the differences in the way of carbon is supplied, there are many similarities in how starch itself is synthesized. In the following part, the two pathways will be described.

1.6. Carbon assimilation by photosynthesis

Plants assimilate carbon during the day via photosynthesis. Photosynthesis is partitioned into light-dependent and light-independent reactions. In the light reactions light energy is captured and converted into chemical energy, used to catalyse the light-independent reactions where atmospheric carbon dioxide is incorporated into carbon compounds that fuel cellular metabolism and biomass production. Light is captured in the chloroplast thylakoid membranes by chlorophyll and accessory pigments of the light harvesting complexes. This energy is transferred to the photosystem II, where it excites electrons derived from the splitting of water molecules. Electrons flow along the photosynthetic electron transport chain, a series of redox reactions, transports protons across the thylakoid membrane into the lumen, creating a proton gradient. This gradient is used by the proton-

driven ATPase to synthesise ATP from ADP and inorganic phosphate. The electrons are further energised in photosystem I and then used to reduce NADP to NADPH.

The generated chemical energy and reducing power is primarily used in the assimilation of atmospheric CO_2 via the Calvin Cycle (the light-independent reactions of photosynthesis).

The cycle has 3 parts: carboxylation, reduction and regeneration. During carboxylation atmospheric CO₂ is assimilated by the enzyme Ribulose-1,5-bisphosphate-carboxylase/-oxygenase (RuBisCo) yielding 2 molecules of 3-phosphoglycerate (3-PGA). This is converted to triose-phosphates (TP), a fraction of which can be transported to the cytosol for sucrose synthesis or retained in the chloroplast for starch synthesis. Most TP is used to regenerate RuBP via several enzymatic steps. One of the intermediates generated is fructose 6-phosphate (F6P) that is used for starch synthesis. Assimilated carbon is partitioned between starch and sucrose synthesis. Sucrose is the primary product, synthesized in the cytosol and exported to heterotrophic tissues via the phloem. Starch in the chloroplast is transiently stored during the day and degraded during the subsequent night, when no photosynthesis occurs. The extent of partitioning into starch depends on the need of the plant and on the species. For Arabidopsis it was reported that during the day up to 50% of the assimilated carbon is subjected into starch (Zeeman and Ap Rees, 1999).

1.7. Starch synthesis in chloroplasts

In the starch synthesis pathway (Figure 1.2), F6P is first isomerized by phosphoglucoseisomerase (PGI) to glucose-6-phosphate (G6P). Then, G6P is converted to glucose 1-phosphate (G1P) by phosphoglucomutase (PGM). ADPglucose pyrophosphorylase (AGPase) catalyses the committed step in starch biosynthesis, using G1P and ATP to generate ADP-glucose and inorganic pyrophosphate (PPi). AGPase is highly regulated and, although it catalyses a reversible reaction, the action of inorganic pyrophosphatase hydrolyses pyrophosphate rendering ADPglucose production essentially irreversible *in vivo*. AGPase is regulated by redox regulation on the one hand (Hendriks et al., 2003). On the other hand, its activity is controlled allosterically by the levels of inorganic phosphate (Pi), an inhibitor, and triose-P, an activator (Preiss et al., 1988).

Figure 1.2 Pathway of starch synthesis in chloroplasts

Carbon assimilated via the Calvin cycle is partitioned with a fraction exported to the cytosol for sucrose synthesis and a fraction retained in the chloroplast for starch synthesis. Redox activation and allosteric regulation of AGPase controls the flux of carbon into starch. Abbreviations: Fru6P, fructose 6-phosphate; Glc1P, glucose 1-phosphate; Glc6P, glucose 6-phosphate; TPT, triose-phosphate/phosphate translocator. (Zeeman et al., 2007)

The ratio of these two metabolites changes according to supply of photo- assimilates and the demand for them, helping to regulate partitioning into starch. It was also shown that T6P, a compound involved in sucrose signalling, is able to promote the redox-activation of AGPase. Evidence for the linear pathway of starch synthesis comes from Arabidopsis mutants lacking each of the three enzymes (PGM, PGI, AGPase; Caspar et al., 1985; Lin et al., 1988; Yu et al., 2000). Compared to wild-type plants these mutants are unable to accumulate significant amounts of starch in their leaves. Instead they accumulate 4-5 times more soluble sugars during the day than wild-type plants (Caspar et al., 1985; Gibon et al., 2002).

Starch itself is synthesized by the coordinated activities of three enzymes. Linear chains of amylopectin and amylose are synthesized by starch synthases. Starch synthases transfer the activated glucosyl moiety of ADP-glucose to the non-reducing end of a pre-existing glucan chain, elongating it by one glucose unit. There are five classes of starch synthases in plants (Ball and Morell, 2003). Four of these starch synthases are soluble (SS1-4) whereas the fifth is termed granule bound starch synthase (GBSS). The granule bound starch synthase (GBSS), as the name

implies is found within the starch granules and is responsible for amylose synthesis. Mutant plants (e.g. maize *waxy* mutant) lacking the GBSS activity are amylose free (Shure et al., 1983).

The synthesis of amylopectin involves several steps in order to achieve its semi-crystalline structure. Soluble starch synthases (SS1-SS3) elongate existing glucan chains. Mutant analysis revealed that each isoform prefers to elongate glucan chains of different lengths. The SS1 isoform is thought to synthesis short glucan chains with a degree of polymerization (DP) of around 10 glucose units (Delvalle et al., 2005). The SS2 and SS3 isoforms elongate longer glucan chains. Pea mutants lacking *SS2* have amylopectin with an altered structure, containing excessive small (DP<10) and long (DP>25) glucan chains (Craig et al., 1998), but deficient in intermediate length chains. The *SS2* knock-out mutant of *Arabidopsis* also has amylopectin with decreased numbers of intermediate-length chains (DP12 to DP28; Zhang et al., 2005). For SS3 no change in amylopectin synthesis was observed in Arabidopsis mutant (Zhang et al., 2005), though the double mutant *Atss2ss3* displayed a strong reduction in DP12 to DP28 chains, and it was suggested that these two isoforms have some redundancy in their activities (Zhang et al., 2008).

The SS4 isoform is somewhat unique in that it appears to have a role in starch granule initiation. Arabidopsis mutants lacking *SS4* had a decreased number and altered morphology of starch granules compared to the wild type, even though no change in amylopectin structure was observed. Interestingly, the double mutant *Atss3ss4* is essentially starch free suggesting that SS3 can partially compensate for SS4 in granule initiation (Roldan et al., 2007; Szydlowski et al., 2009). Starch granule initiation is far from understood.

To introduce α -1,6-branch points, branching enzymes (BE) act on the linear substrates generated by starch synthases. Branching enzymes cut α -1,4 linked glucan chains and transfer the cut segment to a C6 hydroxyl of a glucose unit on the same or an adjacent chain, introducing an α -1,6 linkage. In plants, two classes of branching enzyme exist, SBEI and SBEII. The BEs act on linear glucan chains with a minimum length of DP12, transferring at least 6 glucose units (Takeda et al., 1993). A third enzyme class helps to give starch its semi-crystalline structure by selectively removing some branch points. This is done by the debranching enzymes (DBE), which hydrolyse α -1,6 glucose linkages. The DBEs can be classified into two sub-groups; isoamylases (ISA) and limit-dextrinases (LDA). LDA acts preferentially on substrates with small side chains, like the yeast pullulan (α -1,4 linked maltotriose linked together with α -1,6 bond) and limit dextrins produced during starch breakdown. ISAs do not act on pullulan, probably needing longer linear chains before the branch point. However, ISAs can further be divided into three sub-classes ISA1-3. For starch synthesis, ISA1 and ISA2 are most relevant. Mutants lacking ISA1 have been described in several species. All accumulate a glycogen-like glucan polymer as well or instead of insoluble granules. Thus, ISA1 is proposed to trim the glucans to

promote the formation of semi-crystalline structures. In most species examined, ISA2 is non catalytic and acts in a complex with catalytic ISA1 subunits (Hussain et al., 2003). ISA3 is, by contrast, implicated in starch degradation (see below).

1.8. Starch degradation in leaves

1.9. Starch phosphorylation

To meet the carbon need in the dark, leaf starch is degraded. The initial step of starch degradation requires glucan phosphorylation. In potato, the isolation of proteins capable of binding starch led to the identification of glucan, water dikinase (GWD). Repression of this enzyme in potato led to an 85% drop in total starch bound phosphate and increased starch levels in leaves (Lorberth et al., 1998). Similarly, the Arabidopsis gwd mutant (sex1) displays elevated starch levels and slow growth, as the plants lack carbon supply during the dark period (Yu et al., 2001). GWD catalyses the transfer of the β -phosphate of ATP to the glucose moieties while the γ -phosphate of ATP is concomitantly released (transferred to water) to produce orthophosphate (Pi) and AMP (Mikkelsen et al., 2005). It was shown that GWD phosphorylates the C6 position of the glucose residues (Ritte et al., 2006). Upon phosphorylation by GWD, a second kinase, phosphoglucan water dikinase (PWD) catalyzes the phosphorylation of the C3 position of different glucose residues (Baunsgaard et al., 2005; Kotting et al., 2005). PWD, as its name implies, needs the pre-phosphorylation by GWD. Starch phosphorylation was shown to solubilize starch granule surface, presumably by disrupting and unwinding the helical structures of amylopectin (Blennow and Engelsen, 2010). This solubilisation renders starch granules accessible for hydrolytic enzymes involved in starch degradation, such as exoamylases (i.e. BAM1, BAM3) and debranching enzymes (i.e. ISA3) (Edner et al., 2007) (Figure 1.3).

Figure 1.3 The pathway of starch degradation in chloroplasts and the role of transient glucan phosphorylation

Maltose and malto-oligosaccharides are released from the surface of the starch granule during degradation. Maltooligosaccharides are metabolized in the stroma. Maltose and glucose are exported to the cytosol. Estimated fluxes are indicated by relative arrow size. Dashed arrows represent the minor steps in *Arabidopsis*. Inset is a model depicting the role of phosphorylation by GWD and PWD in disrupting the packing of amylopectin double helices (*gray boxes*). This allows the release of maltose and malto-oligosaccharides (*black lines*) by β -amylases (BAMs) and DBE (ISA3). Phosphate (*red dots*) is concomitantly released by SEX4 to allow complete degradation (Zeeman et al., 2010).

It was shown many years ago that β-amylases are not able to act past phosphate residues on glucan chains (Takeda and Hizukuri, 1981). Thus, for efficient starch degradation phosphate residues introduced by GWD and PWD need to be released again. In Arabidopsis two genes have been shown to encode active phosphoglucan phosphatases. Functional characterization of these enzymes in Arabidopsis (*AtSEX4, AtLSF2*) showed that *sex4* mutants have high starch levels and slow growth compared to wild-type plants, and also accumulate phospho-oligosaccharides. Total glucan-bound phosphate (starch and phospho-oligosaccharides) was six times higher in *sex4* mutants than in wild type plants. SEX4 preferentially removes phosphate residues from C6-position of glucose residues (Kotting et al., 2005; Hejazi et al., 2010). The second isoform, LSF2 was shown to specifically release phosphate from the C3 position of the glucose residues (Santelia et al., 2011). Interestingly, the single mutant *lsf2* behaves like wild-type plants with respect to starch and phospho-oligosaccharide

levels. However, total starch bound phosphate levels are 25% higher than in the wild type, specifically due to an increase in C3-bound phosphate. Although no starch excess phenotype was observed for *lsf2*, the double mutant *sex4lsf2* showed an even more severe starch-excess phenotype and the accumulation of phosphor-oligosaccharides (Santelia et al., 2011). This shows that in the *sex4* mutant lines LSF2 activity contributes to starch breakdown even if it cannot substitute for the lack of SEX4.

1.10. Starch hydrolysis in chloroplasts

The opening of the double helical chains makes the glucans accessible for hydrolyzing enzymes like α - and β -amylases and debranching enzymes (LDA, ISA3). In Arabidopsis leaves starch degradation is predominantly catalyzed by the plastidial exoamylases BAM1 and BAM3, which release maltose from the non-reducing ends of α -1,4 glucan chains. Maltose is the major degradation product from β -amylolytic hydrolysis of transitory starch (Weise et al., 2004; Fulton et al., 2008), which is transported to the cytosol through the maltose exporter 1 (MEX1; Niittyla et al., 2004). However, β -amylases are not able to hydrolyse α -1,6 glucan bonds. Thus, they act no further than few glucose units close to the branch point.

Characterization of starch degrading enzymes in cereal endosperm revealed that α -amylases are important upon germination. The situation appears to be different in Arabidopsis. There are three α -amylase isoforms in Arabidopsis, but only one is localized to the plastid (AMY3). In contrast to the cereal endosperm, it was shown that α -amylases play a minor role in starch degradation. Mutants lacking α -amylases metabolize starch normally (Yu et al., 2005) suggesting that α -amylases are not crucial in starch degradation. Only in plants already deficient in starch metabolism due to the lack of other proteins was a contribution of AMY3 observed. For example, it was shown that phospho-oligosaccharides were reduced while starch content was elevated in the double mutant *sex4amy3*, compared to the *sex4* single mutant (Kotting et al., 2009). This suggests that AMY3 releases branched oligosaccharides from the starch granule, at least in the *sex4* mutant background.

Branch points on the granule surface and in branched oligosaccharides are hydrolysed by debranching enzymes ISA3 and LDA resulting in linear glucan chains which can be further hydrolysed by β -amylases. In the chloroplast, a disproportionating enzyme (DPE1) recycles short maltooligosaccharides to release glucose (Critchley et al., 2001; Lu et al., 2006). Glucose is also transported to the cytoplasm by the plastidial glucose transporter (pGlcT; Cho et al., 2011). Another enzyme thought to be involved in starch mobilisation is starch phosphorylase (PHS1). PHS1 catalyses the reversible reaction which releases G1P from linear glucans. It has long been speculated that

starch phosphorylases are involved in starch degradation, however mutant analysis only displayed a phenotype under stress conditions (Zeeman et al., 2004).

Maltose, once exported to the cytosol, is further metabolized to provide substrates for downstream pathways (e.g. sucrose synthesis). The cytosolic glucosyltranferase (DPE2) splits maltose, releasing one and transferring the other to an acceptor, probably a cytosolic heteroglycan (Chia et al., 2004; Fettke et al., 2006). The free glucose is phosphorylated by hexokinase and enters the hexose-P pool. A cytosolic starch phosphorylase (PHS2) acts on the heteroglycan, releasing or adding G1P. Thus, supply of substrates for various metabolic processes is maintained during the night.

1.11. Sucrose synthesis

Sucrose, a non-reducing disaccharide consisting of one molecule glucose and one fructose, is synthesized in the cytosol. In most plants, sucrose is transported from the source to the sink or stored in the vacuoles. Furthermore, plants often accumulate sucrose upon cold, drought or salt stress to maintain osmotic balance and to help stabilize proteins and membranes.

As described earlier, triose-phosphates (TP) synthesized during photosynthesis are exported from the chloroplast by the triose-phosphate/phosphate translocator (TPT) in exchange for orthophosphate (Pi). In the cytosol, TP provides substrates for diverse pathways (protein synthesis, organic acid or cell wall synthesis) but most is utilized to synthesize sucrose, at least in fully expanded leaves. First, TP is condensed to fructose-1,6-bisphosphate (F1,6BP) by aldolase. F1,6BP is then dephosphorylated by fructose-1,6-bisphosphatase (F1,6BPase) to F6P. In the cytosol F6P, G6P and G1P are equilibrated by the cytosolic phosphoglucoisomerase (cPGI) and phosphoglucomutase (cPGM), respectively. G1P is converted to UDP-glucose (UDPGIc) by UDPGIc pyrophosphorylase, using UTP and releasing PPi. The hexose-phosphate F6P and UDPGIc are then utilized to synthesize sucrose by the sequential reactions of sucrose-6-phosphate synthase (SPS) and sucrose-6-phosphate phosphatase (SPP).

The synthesis of sucrose is strongly regulated. The activity of SPS is regulated via complex allosteric feed forward and feedback mechanisms that integrate the availability of substrates for sucrose synthesis with the demand for sucrose in sink tissues. A decreased demand in sink tissues leads to an accumulation of sucrose in leaf mesophyll cells. An increase in sucrose leads to inhibition of SPS which causes an increase in F6P since this is not further utilized. This in turn influences levels of the regulatory metabolite fructose 2,6-bisphosphate (F2,6BP) - produced from F6P by fructose 2,6-bisphosphatase (F2,6BPase). F2,6BP inhibits F1,6BPase activity, limiting hexose-P production. As Pi is released in various steps of sucrose synthesis, inhibition of the pathway leads to less Pi in the cytosol, which restricts the export of triose-phosphate from the chloroplast. Increasing stromal TP and lowered Pi concentrations promotes starch synthesis through allosteric activation of

AGPase as described above. In addition, the accumulation of sucrose frequently correlates with an increase of trehalose-6-phosphate, which redox-activates AGPase (Kolbe et al., 2005). Thus, partitioning between sucrose and starch is both flexible but also tightly regulated to allow fast responses to changes in environmental conditions, and the supply of and demand for photoassimilates.

1.12. Sucrose transport

Sucrose is transported by the phloem from the site of synthesis (mature leaves; source) to the site of utilization (growing leaves, heterotrophic tissues; sink). From the mesophyll cells, sucrose diffuses symplastically through plasmodesmata, to the bundle sheath cells adjacent to the phloem, after which it is loaded into the phloem by one of three mechanisms (see below). The difference in concentration of solutes between the source, where sugars are synthesized and the sink, where sugars are unloaded and utilized, results in a hydrostatic pressure gradient that leads to a bulk flow of assimilates between the source and sink tissues.

In plants three mechanisms of phloem loading exist; apoplastic loading, symplastic loading and polymer trapping (reviewed in De Schepper et al., 2013). Species that transport raffinose instead of sucrose use polymer trapping, where sucrose is symplastically transported to specialized companion cells – intermediary cells - via plasmodesmata. There sucrose is converted to a higher molecular carbohydrate, raffinose or stachyose. Because of the higher molecular size of raffinose and stachyose, it is proposed that these carbohydrates cannot diffuse back through the plasmodesmata and are thus trapped in the companion cells and then transported in the phloem. In many woody species, phloem is symplastically loaded down a concentration gradient, without up-concentration, hence a completely passive way. However, the most common phloem loading is via the apoplast where the phloem cells are symplastically isolated from the mesophyll. Sucrose is transported symplastically to the phloem parenchyma transported into the apoplast by an efflux transporter (SWEET; Chen et al., 2012).

Sucrose is then actively loaded into the companion cells via sucrose/ H^+ co-transporters (SUT1, *At*SUC2; Stadler and Sauer, 1996; Sauer, 2007). The proton motive force is built up via an H^+ -ATPase in the companion cell membrane.

In sink tissues sucrose unloading can be apoplastically or symplastically. For potato tuber it was shown that during tuberization the unloading changes from apoplastic to symplastic. In the tuberization initiation phase, when the stolon tip starts to grow, phloem tubers are symplastically isolated hence phloem unloading occurs via the apoplast (Viola et al., 2001). In contrast, phloem loading occurs symplastically in the developing potato tubers themselves. However, in detached

potato tubers exhibiting bud outgrowth, the phloem function shifts to apoplastic loading (Viola et al., 2007).

1.13. Sucrose metabolism in heterotrophic tissues

Sucrose produced in the source tissues is transported to non-photosynthetic tissues and unloaded according to the demand of these sink tissues. In sink cells sucrose is either hydrolysed by an invertase (INV) to fructose and glucose or metabolized by sucrose synthase (SUS) to fructose and UDP-glucose using UDP (Koch, 2004). Alternatively it can be transported to the vacuole. There are 3 types of invertases: cell wall (cwINV), cytosolic (cINV), and vacuolar (vINV) invertases. SUSs are localized to the cytosol.

Depending on the developmental stage or ongoing physiological processes, sucrose may be preferentially cleaved by INVs or by SUSs. In general, hexoses favour cell division and expansion and INV is often seen to mediate the initiation and expansion of many new sink structures, often with vacuolar activity preceding that in cell walls. The action of cwINV coincides with the elevated expression of hexose transporters in some systems (Koch, 2004). Later, transition to storage and maturation phases is facilitated by changes in the hexose/sucrose ratio, and by shifts from INV to SUS mediated sucrose cleavage (Koch, 2004). SUS activity in mature storage tissues may be advantageous because it is energy-efficient compared with INVs. SUS releases only one hexose in contrast to INV which releases two this means that double the ATP is used in order to phosphorylate the hexose products of INVs. It was observed that O₂ concentration decreases within solid tissues in a potato tuber

(Geigenberger et al., 2000), and correlating with this was a decrease in ATP/ADP ratio. This suggests that respiration and hence ATP synthesis may be lower. Hence, releasing only one free hexose by SUS might save energy within the glycolytic pathway. On the other hand, INV is thought to play a role in delivering hexose based signals and it can define the osmotic strength for sucrose unloading or in the vacuole.

In order to investigate the possibility to increase sink strength transgenic potato tubers expressing yeast INV either in the apoplast or in the cytosol were analysed. This analysis revealed that cytosolic expression led to large changes of metabolites, decrease in starch and increase of respiration. The apoplastic INV increased potato tuber size due to increase in water content. The authors of these studies suggested that the sucrose/hexose ratio depends on how and where sucrose is cleaved. This can lead to unpredicted changes in sugar signalling. Thus, an increase in extracellular hexose promoted respiration rather than increasing starch synthesis (Ferreira and Sonnewald, 2012).

1.14. Starch synthesis in amyloplasts

In heterotrophic tissues, starch synthesis occurs in the amyloplast via a similar pathway as in chloroplasts (see above). Unlike in chloroplasts, carbohydrates need to be transported from the cytosol across the plastid membrane to fuel starch synthesis. Cleavage of sucrose by SUS in the cytosol results in UDPGIc and fructose. Fructose is phosphorylated by hexokinases (HXK) or fructokinase (FK) yielding F6P, which is equilibrated with G1P and G6P by the activity of PGI and PGM. Carbohydrate is imported in form of G6P (or occasionally G1P) from the cytosol into the amyloplast (Hill and Smith, 1991; Kosegarten and Mengel, 1994; Kammerer et al., 1998). In the amyloplast stroma, subsequent steps convert G6P to ADPglucose as described above. The cereal endosperm is an exception as the precursor for starch synthesis; ADPG is also produced by a cytosolic AGPase and transported into the plastid from the cytosol. Indications that G6P is the major compound transported to the amyloplast in other species comes from transgenic or mutant plants lacking PGM in the plastid, which leads to decreased starch content in heterotrophic tissues (Caspar et al., 1985; Harrison et al., 1998; Fernie et al., 2002). The activity of AGPase in the amyloplast relies on the availability of ATP. This is maintained by an ADP/ATP translocator (Neuhaus et al., 1997).

1.15. Starch degradation in heterotrophic tissue upon germination and re-growth

Starch mobilization in heterotrophic tissue was shown to be different from the transitory starch degradation like cereals where starch degradation was described to occur by an amylolytic enzyme activity (Fincher, 1989). Thereby the accumulated starch in the endosperm is degraded upon the gibberellic acid signal released by the germinated seed. This signal stimulates the aleurone cell layer to initiate the production and secretion of α -amylase and other hydrolytic enzymes. Free glucose released in the endosperm space is taken up by the embryo, phosphorylated by hexokinases to hexose phosphates which supply the non-photosynthetic seedling with respiratory substrates and carbon skeletons for diverse cellular structures. However, knowledge about starch mobilization in heterotrophic tissues apart from cereals is very poorly understood.

1.16. Adding value to cassava as a starch crop

Cassava starch is low in protein and fat content compared to seed crops like rice, or wheat (Jobling, 2004). As aforementioned (Chapter 1.1) both its good, low-input growth and the physicochemical properties of its starch make cassava a valuable starch crop. One drawback of cassava, though, is limited genetic variation, as it is multiplied by vegetative propagation. To introduce new desirable traits to cassava by breeding is challenging. In general, inbreeding by consecutive self-pollination is used to identify useful recessive traits. However, cassava is a monoecious plant where flowering time of female and male at the same branches is often separated in time. Hence, it is challenging to define the right time to be able to perform crosses (Jennings and Iglesias, 2002; Ceballos, 2004). Moreover, generating seeds is slow, taking up to a year.

To increase cassava germplasm and to add value to it as a starch crop, identification of new lines was performed earlier, either by mutant screening (Carvalho et al., 2004; Ceballos et al., 2007; Ceballos et al., 2008) or by transgenic modification (Raemakers et al., 2005). Through genetics, plant lines affected in GBSSI (Raemakers et al., 2005; Ceballos et al., 2007), and putatively in ISA (Ceballos et al., 2008) and BE2 (Carvalho et al., 2004) have been described. All of these lines show differences in starch architecture and starch properties, potentially suitable for various industrial applications. With the progress made in biotechnology during the last decades it is now possible to generate transgenic lines (Bull et al., 2009) in cassava in which foreign genes are expressed or endogenous genes are repressed. This method provides the possibility to study the biochemical roles of one or more gene in more detail. However, in order to analyse gene functions in cassava starch metabolism knowledge about the basic growth behaviour and metabolic pathways are first needed. On the biochemical level very few genes involved in cassava starch metabolism were studied to date. It was shown that SBE2 transcript expression undergoes a diurnal oscillation and is induced upon sugar supply (Baguma et al., 2003; Baguma et al., 2008). Transcriptional analysis revealed the presence of a plastidic ATP/ADP transporter in a wide range of cassava plant tissues (Yuen et al., 2009). Moreover, a gene encoding for an α -amylase (designated as MeAMY2) was isolated from cassava storage roots (Tangphatsornruang et al., 2005). The authors reported that the sequence contains the active site and a carbohydrate binding domain. However, sequence analysis revealed closer homology to AtAMY2-like (At1g76130) than AMY3 from Arabidopsis.

1.17. Scope of the work

The increased use of cassava in starch industry leads to increased demand for variation in starch traits. Although some genes involved in cassava starch metabolism were isolated, information about biological relevance is missing thus far. To generate and analyse transgenic cassava plants basic knowledge about the carbohydrate metabolism is needed.

I first analysed cassava plants grown in a greenhouse, monitoring growth performance, the capacity for carbon assimilation and carbon allocation. Second, I sought to identify key enzymes involved in starch metabolism, with the main focus on starch mobilization. This is important in understanding the biological background on the one hand and to unravel target enzymes for future biotechnological applications on the other. Third, I attempted to introduce new starch traits to the cassava germplasm through biotechnology. Transgenic lines were designed based partly on current knowledge and partly according to my new findings.

2. Material and Method

All studies were performed with the African Cassava variety *Manihot esculenta* Crantz (cv. 60444) form the International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria.

2.1. Greenhouse grown cassava

Cassava plants were propagated by taking stem cuttings from the lower, hardwood part of the stem of mother plants. The cuttings contained at least 2 axillary buds or a stem with 15 cm length. The stem cuttings were planted in soil (70% Klasmann Substrat 2 [pH 5.5 (CaCl2), fertilization 2.0 g/L], 30% Perlite) in a squared pot size (7x7x6 cm, V=195 cm³). Within 2 months, the rooted cuttings were transferred to bigger round pots (diameter 13 cm, V = 880 cm³) containing 40% Klasmann Substrate 2, 10 % Perlite, 50% lawn soil from Ricoter (40 % sand, 10% Perlite, 25% garden compost, 25% "Weisstorf", 5kg m⁻³ chipples made of horn) and 6 g Osmocot extract from Scotts (11% N, 11% P, 18% K, 2% MgO). Mother plants grown for cuttings were cultivated and grown in 5-L pots containing 40% Klasmann Substrate 2, 10% Perlite, 50% lawn soil from Ricoter and 16 g Osmocot extract from Scotts. The plants were grown under greenhouse conditions under a 14 h light period at 20 kilolux minimal light intensity, 24°C, 60% humidity, and 10 h night period, 17°C and 50% humidity.

2.2. Growth analysis

2.2.1. Age determination

The developmental stage of cassava plants were determined by the height, number of axillary buds and leaves. The height was determined from the origin of sprouting to the apex. The number of nodes and leaves were counted from the apex leaf down to the origin of sprouting. The apex leaf (being visible from top view) was considered as youngest leaf 1 (L1) (Figure 3.1 A).

2.3. Photosynthetic capacity

Photosynthetic capacity of greenhouse grown cassava plants was determined using a portable Li-6400XT from LI-COR. The Li-6400XT device was connected to an infrared gas analyser (IRGA). Calibration of the device was performed as described in the manual. For each series of measurement a new CO₂ cylinder (Licor Environmental GmbH, Bad Homburg, Germany) was used and the soda lime and the desiccant were exchanged if necessary. All measurements were performed with the following parameter settings: a stomata ratio of 0.5, an air flow of 250 μ mol m⁻² s⁻¹ and a CO₂ concentration of 400 ppm at ambient air humidity in the chamber. The light intensity varied depending on the experimental set up (see paragraphs 2.3.1 and 2.3.2.). For the measurements, a chamber with integrated LED source is clamped over a single leaf and the gas exchange of a defined area (6 cm²) of the leaf was measured. As the area of cassava leaves is greater than 6 cm², the measurements were performed on each of the three middle lobes of a specific leaf.

2.3.1. Photosynthesis at different light intensities

To determine the photosynthetic rate at different light intensities, a series of light quanta was applied to a mature leaf (L4). The light series comprised 0, 25, 50, 100, 200, 400, 600, 800, 1200, 1500 μ mol quanta m⁻² s⁻¹. For each position of the chamber, three measurement points per light intensity were logged with an interval of 10 s and a dead time of 90 s after the intensity changes. The three middle lobes per leaf were analysed for three individual plants.

2.3.2. Photosynthesis of leaves at different developmental stages

To measure the photosynthetic rate dependent on leaf age, the measurements were performed at a constant light intensity of 100 μ mol quanta m⁻² s⁻¹. On each of the three middle lobe of the leaf, three independent measurement points were logged when the value was stable. The data was collected from leaves of different developmental stage (L4, L7, L10, L 13, L16, L19) of three individual plants.

2.4. lodine staining, microscopy

Starch visualization by iodine staining was performed as described in Hostettler et al. 2011. Briefly, leaf material was destained in hot 80% ethanol and submerged in iodine solution (I2–KI) solution (0.34% (w/v) I2 and 0.68% (w/v) KI) for staining. Stem and storage root tissue was stained directly with iodine.

2.4.1. Microscopy

The plant tissue samples (leaf, stem, storage root) were cut into lateral sections of 20 μ m using a Vibratom (Leica VT1200 S) and stained with iodine. The samples were analysed under a Zeiss Axio Imager Z2 microscope.

2.5. Carbohydrate extraction

Insoluble and soluble carbohydrate extraction was performed as described in Hostettler et al. 2011. Plant material of leaf, stem and storage root was harvested and immediately frozen in liquid nitrogen. For leaf tissue, 8 discs with an area of 3.41 mm² each were punched out of the lobes. Except for the youngest leaf, which was too small, the disks did not contain the middle vein. Each tissue sample

consisted of 100-200 mg plant material. Stem and storage root samples were pulverized with the Geno/Grinder[®] 2010 from SPEX SamplePrep prior to further extraction. All tissue samples were grinded in an ice-cold 5-mL all-glass homogenizer with 3 mL ice-cold 0.7M perchloric acid. 2.7 mL of the homogenate were transferred into a13-mL culture tube and spun down (3.000 *g*, 10 min, 4°C). After centrifugation, 2.2 mL of the supernatant was transferred into a new tube and neutralized to pH 6-7 by adding the appropriate volume of neutralization buffer (2 M KOH , 0.4 M MES). After precipitation of the potassium perchlorate (14.000 *g*, 10 min, 4 °C), aliquots were taken from the supernatant and stored at -20°C. The insoluble fraction was washed with 4 mL ddH₂O and spun down (3.000 *g*, 10 min, 4 °C). The supernatant was discarded and the pellet was washed 3 times with 80% ethanol. Between the washing steps the suspension was spun down as before. The pale or colourless pellet was dried and re-suspended in water to a final volume of 1 mL. The insoluble fraction was stored at -20 °C.

2.6. Carbohydrate measurements

2.6.1. Insoluble carbohydrate determination

For the carbohydrate measurements, the starch in the samples was first hydrolysed to glucose. This involved a gelatinization step at 95°C for 10 min after which the samples were mixed with digestion buffer (220 mM Na-acetate pH 4.8, 10 units α -amylase [EC 3.2.1.98, Roche Diagnostics], 12.6 units amyloglucosidase [EC 3.2.1.3, Roche Diagnostics]) or control digestion buffer (220 mM Na-acetate pH 4.8) in a 1:1 (v:v) ratio and incubated at 37°C for 4 h. The digest was spun down at 16.000 *g* for 10 min at 20°C. For glucose quantification 100 µL sample (for Δ OD₃₄₀ 0.2-0.5) was mixed in a 200 µL assay containing 25 mM Hepes-KOH pH 7.5, 1 mM MgCl₂, 1 mM ATP, 1 mM NAD⁺, 1.4 units hexokinase (EC2.7.1.1, Roche Diagnostics). The initial OD at 340 nm (OD₃₄₀) was determined. The addition of 1 unit glucose-6-phosphate dehydrogenase (EC1.1.1.49, Roche Diagnostics) to the assay triggers the convertion of glucose-6-phosphate to 6-gluconolactone thereby reducing NAD⁺ to NADH which was spectrophotometrically detected with a microplate reader (TECAN Infinite® M1000). The amount of NADH detected corresponds to the equivalent amount of glucose.

2.6.2. Soluble carbohydrate determination

2.6.2.1. Enzymatically

The contents of soluble sugars such as glucose, fructose and sucrose were analysed spectrophotemetrically using an enzymatic assay. The enzymatic assay was comprised of three steps.
The first steps of the assay involved the measurement of glucose levels and were already described before (Chapter 2.6.1.). When the kinetic reaction for glucose reached the endpoint, fructose levels were determined by adding 0.7 units phosphoglucoisomerase (PGI 2mg/mL, EC5.3.1.9, Roche Diagnostics). PGI converts fructose 6-phosphate (F6P) to glucose 6-phosphate (G6P) that then enters the same reaction pathway as described before and NADH is released and measured. When fructose kinetic reaction reached the saturation 10 units invertase (INV, EC3.2.1.26, baker yeast Fluka) was added to hydrolyse sucrose into glucose and fructose. Both, glucose and fructose then enter again the reaction pathway via G6PDH either directly or through PGI and can be monitored indirectly via the formation of NADH.

2.6.2.2. HPLC-PAD

Soluble sugars (glucose, fructose, sucrose and maltose) in the supernatant were measured using high pH anion exchange chromatograpy coupled to pulsed amperiometric detection (HPAEC-PAD) as described in Fulton et al. (2008) with minor modifications. Samples of the neutralized soluble fraction (100 μ L) were applied to sequential 1.5-mL columns of Dowex 50 W and Dowex 1 (Sigma-Aldrich, Buchs, Switzerland). The neutral compounds were eluted with 4 mL of water, lyophilized, and re-dissolved in 100 μ L of water. The sugars were separated on a Dionex PA-20 column according to the following conditions: eluent A, 100 mM NaOH; eluent B, 150 mM NaOH and 500 mM sodium acetate. The gradient was as follows: 0 to 7 min, 100% A; 7 to 26.5 min, a concave gradient to 20% A, 80% B (elution of sugars); 26.5 to 32 min, 20% A, 80% B (column wash step); 32 to 40 min, 100% A (column re-equilibration). Peaks were identified by co-elution with known sugar standards. Peak areas were determined using Chromeleon software (Dionex, Olten, Switzerland).

2.7. Protein extraction

2.7.1. Soluble protein extraction for Immunoblot analysis and native PAGE

Three hundred mg of frozen, pulverized tissue was homogenized with 1 mL ice-cold extraction buffer (100 mM Mops pH 7.2, 1 mM EDTA, 10% [v/v] ethanediol, 1% [w/v] PVPP, 1mM DTT, 1x proteinase inhibitor [Complete, Mini, EDTA-free, Roche Applied Science]). The proteins were homogenized using ice-cold all-glass homogenizer. The homogenate was sedimented by centrifugation (10min, 16.000*g*, 4°C) and the supernatant immediately used for native protein activity assays or stored at -80°C for further experiments.

2.7.2. Protein amount determination by Bradford

For total protein content determination, the BioRad Protein Assay (BioRad, Herculaes, California) was performed following the manufacturer's instruction. Bovine serum albumin (BSA, Sigma-Aldrich) served as a standard.

2.8. SDS PAGE

Soluble proteins were separated by SDS-PAGE. The stacking gel was composed of 3.75% (w/v) acrylamide/ bisacrylamide (37.5/1), 125 mM Tris-HCl pH 6.8, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulfate, 0.1% (v/v) TEMED and the separating gel of 7.5% (w/v) acrylamide/bisacrylamide (37.5/1), 375 mM Tris-HCl pH 8.8, 0.1% (w/v) SDS, 0.05% (w/v) ammonium persulfate, 0.05% (v/v) TEMED.

Proteins were mixed in a 1:9 (v/v) ratio with SDS sample buffer (0.1 M Tris-HCl pH 6.8, 40% [v/v] glycerol, 3% [w/v] SDS, 0.015% [w/v] bromophenol blue, 1.1% [w/v] DTT). Electrophoresis was performed in running buffer (25 mM Tris-HCl pH 8.3, 192 mM glycine, 0.1% [w/v] SDS) at 22°C at constant current of 15 mA per gel. PrecisionPlusProteinTM Standards (Biorad) were used as molecular weight markers. To visualize proteins on SDS gel the proteins were first fixed in 12% trichloroacetic acid (TCA) solution for 30 min and then the staining solution (5% [v/v] MeOH, 12.5% Ammonium sulfate, 2.5% ortho-phosphoric acid, (1-2 mL) 5% Coomassie blue G250) was added.

2.9. Western Blot

Proteins separated by SDS PAGE were transferred onto a PVDF-membrane by electroblotting in 119 mM Tris, 40mM glycine, pH8.3, 10% (v/v) methanol (blotting buffer) at constant 100V for 1 h at 4°C. Following transfer, the membrane was washed in TBS (20mM Tris-pH7.5, 500mM NaCl) for 10 min and incubated for 1h at 25°C in blocking solution (2% or 3% (w/v) non-fat dry milk in TTBS (TBS with 0.1% Tween-20) to block unspecific binding sites. After the blocking step the membranes were rinsed in TTBS for 1 min and subsequently the membrane was washed 3 times 10 min. The blots were incubated overnight with the primary antibody against GWD (Eurogentech, Cologne, Germany) or against the FLAG Tag (M2, Sigma Aldrich) in a dilution of 1/3000 or 1/1000, respectively. The antibodies were raised in rabbit (GWD) and mouse (M2). The corresponding secondary antibodies tagged with horse radish peroxidase (HRP) were mixed with 3% non-fat dry milk in TTBS and incubated at 20°C for 2h. The membrane was washed with TTBS once for 1 min and subsequently three times for 10 min. Chemiluminescence was detected using the Chemiglow West substrate following the manufacturers protocol (Proteinsimple, Santa Clara, California).

2.10. Determination of amylolytic activity

2.10.1. Native PAGE

For native gels, soluble proteins were mixed 1:9 (v/v) with10x native sample buffer (50% [v/v] glycerol, 0.05% [w/v] bromophenol blue) and separated using 1 mm thick gels consisting of a stacking gel (3.75% [w/v] acrylamide/ bisacrylamide (37.5/1), 125 mM Tris-HCl pH 6.8, 0.05% [w/v] ammonium persulfate, 0.1% [v/v] TEMED) and a separating gel (6% [w/v] acrylamide/bisacrylamide (37.5/1), 375 mM Tris-HCl pH 8.8, 0.05% [w/v] ammonium persulfate, 0.05% [v/v] TEMED). Electrophoresis was performed in running buffer (25 mM Tris pH 8.3, 192 mM Glycine) at 4°C, 100 V for 20 min followed with 20 mA constant current for 1 h. To detect amylolytic protein activity, the following substrates were added to the gel: 0.1% (w/v) amylopectin from potato starch (Sigma-Aldrich), 0.1% (w/v) β -limit dextrin (Megazyme International, Bray, Ireland) or 1% (w/v) red-pullulan (Megazyme International).

2.11. Proteome analysis, sample digestion, mass spectrometry and spectra analysis

2.11.1. Protein preparation

Total proteins were extracted according to a modified protocol from (Saravanan and Rose, 2004). Briefly, root material was homogenize on ice using a glass homogenizer in 1% (w/v) PVPP, 0.7 M sucrose, 0.1 M KCl, 0.5 M Tris-HCl, pH 7.5, 100 mM EDTA, 2% (v/v) β -mercaptoethanol, 2x protease inhibitor cocktail (Roche Applied Science, Penzberg, Germany). 1:1 ratio (v/v) phenol, pH 8.0 (Sigma-Aldrich) was added and spun down at 30 min at 4.000 *g*, 4°C. Proteins in the phenol phase were precipitated overnight at -20°C in 5 volumes of 0.1 M ammonium-acetate-100% methanol and after centrifugation (5 min at 4.000 *g*, 4°C) washed in 100% methanol and subsequently in 80% acetone. The air-dried precipitated proteins were resuspended in 4% SDS, 40 mM Tris pH 6.8, 2x protease inhibitor cocktail (Roche Applied Science). Protein concentration was determined using a BCA Protein Assay Kit (Thermo Scientific, Waltham, Massachusetts) before adding 40 mM DTT. Proteins were boiled 5 min at 95°C and 100 µg proteins were subjected to SDS-PAGE on 12% gels. The Gels were Coomassie-stained according to standard procedures and subsequently sliced into 14 fractions. Each gel slice was diced into small pieces. In-gel protein digestion, dried peptides were resuspended in 3% (v/v) acetonitril 0.2% (v/v) trifluoretic acid and

cleaned up using Sep-Pak Cartridges (Waters, Milford, Massachusetts, USA). Clean samples were dried and resuspended in $12 \mu L 3\%$ (v/v) acetonitril, 0.2% (v/v) formic acid for mass spectrometry.

2.11.2. Mass spectormetry

Mass spectrometry analysis and database searches were done accordingly to Bischof et al., 2011 and Bischof et al., 2013. Peptides were analyzed on a LTQ Orbitrap mass spectrometer (Thermo Fischer Scientific, Bremen, Germany) coupled to an Eksigent-Nano-HPLC system (Eksigent Technologies, Dublin (CA), USA). Peptide mixtures were loaded onto laboratory-made capillary columns (75 μm inner diameter [BGB Analytik, Böckten, Switzerland], 8 cm length, packed with Magic C18 AQ beads, 3 μm, 100 Å [Michrom BioResources, Auburn, CA, USA]). Peptides were eluted from the column by an increased acetonitrile concentration in the mobile phase from 5% (v/v) acetonitrile, 0.2% (v/v) formic acid to 40% (v/v) acetonitrile, 0.2% (v/v) formic acid over 74 min, followed by a 10 min wash step at 5% (v/v) acetonitrile, 0.2% (v/v) formic acid. Full-scan MS spectra (300-2000 m/z) were acquired with a resolution of 60000 at 400 m/z after accumulation to a target value of 500000. Collision induced dissociation (CID) MS/MS spectra were recorded in data dependent manner in the ion trap from the six most intense signals above a threshold of 500, using a normalized collision energy of 35% and an activation time of 30 ms. Charge state screening was enabled and singly charge states were rejected. Precursor masses already selected for MS/MS were excluded for further selection for 120 s and the exclusion window was set to 20 ppm. The size of the exclusion list was set to a maximum of 500 entries.

2.11.3. Protein identification and label-free peptide quantification.

MS/MS spectra were searched with Mascot (Matrix Science, London, UK) version 2.3 against the cassava protein database Mesculenta 147 peptide.fa (ftp://ftp.jgipsf.org/pub/JGI_data/phytozome/v7.0/Mesculenta/) with a concatenated decoy database supplemented with contaminants. Information about Arabidopsis AGI-homologue and protein description were obtained from the file Mesculenta_147_annotation_info.txt. (download from ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v7.0/Mesculenta/) using a small awk script. The search parameters were: requirement for tryptic ends, one missed cleavage allowed, mass tolerance of ± 5 ppm. Beside carbamidomethylation of cysteines as fixed modification, oxidation of methionine was included as variable modification. Peptide identification was accepted with a minimal Mascot ion score of 23 and a Mascot expectation value \leq 0.05. To increase protein identification confidence, a minimum of two unique peptides for each identified protein was required. The spectrum false discovery rate was calculated by dividing the number of decoy database spectrum assignments by

the number of spectrum assignments in the final dataset. The false positive rate was below 1% for all measured biological replicates. For the Progenesis analysis, a merged peaklist was generated.

Progenesis LC-MS analysis was done according to (Greer et al., 2012). Peptides were detected and quantified with Progenesis LC-MS software (version 2.5; Non Linear Dynamics) using default settings (no deconvolution/deisotoping, 200 most intense MS/MS peaks). Peak areas were calculated by Progenesis from imported Thermo RAW mass spectrometry files. The 14 gel lanes, each containing six biological samples were analysed separately and resulting quantification information was merged to obtain final protein abundances. For peak alignment, one sample was set as reference and the retention times of all other samples within the same gel lane were aligned. Around 20 manual landmarks were set before automatic alignment to create a maximal overlay of the two-dimensional feature maps. Features with only one charge or more than 3 charges were excluded from further analyses and all remaining features were used to calculate a normalization factor for each sample that corrects for experimental variation. For quantification, all unique peptides (with Mascot score \geq 25 and p < 0.05, see above) of an identified protein were included and the total cumulative abundance was calculated by summing the abundances of all peptides allocated to the respective protein. No minimal thresholds were set for the method of peak picking or selection of data to use for quantification. Finally, quantification information of all 14 analyzed gel lanes were merged and statistical analysis of variance (ANOVA) was used to calculate p-values based on the sum of the normalized abundances across all 84 runs.

2.12. Construct design

2.12.1. Overexpression of potato StGWD in cv. 60444

Two pCAMBIA2300 plasmid constructs harbouring either the wild-type (pCAMBIA2300::*StGWD*) or redox-insensitive (pCAMBIA2300::*StGWD_{C1084S}*) coding sequence (CDS) of potato GWD were obtained from Mikkel Glaring (University of Copenhagen, Copenhagen, Denmark). In both cases, the constructs were under the control of the 35S promoter and contained the native transit peptide of *StGWD* (JG388473; NCBI database) at the N-terminus. At the C-terminus, a FLAG-tag (Einhauer and Jungbauer, 2001) was added. The redox-insensitive sequence contains a nucleotide modification (5'-GC-3251-CT-3') leading to an amino acid substitution of cysteine 1084 to a serine (C1084S) at the peptide level. Genotyping and verification of mutation sequence was performed with primers as indicated in Table 2.1.

Primer	Sequence (5'-3')
StGWD_BamHI_rv	gc ggatcc TCACTTATCATCAT
StGWD_BamHI_fw2	cg ggatcc ATGAGTAATTCCTTAG
StGWD5F	TCCAATGGTGGAGACAACCA

Table 2.1 Primer list for genotyping and sequencing the wild-type and redox-insensive StGWD constructs (in **bold** the sequence for restriction sites).

2.12.2. RNAi: Hairpin design

For RNA interference (RNAi), a hairpin construct was designed against three genes: MeSEX4, MeLSF2 and MeAMY3. For each gene, a 190- 205 bp long template was amplified from the coding sequence which was prior tested to be unique to the specific transcript by performing a nucleotide BLAST search on the cassava genome database (www.phytozome.net). Accession numbers and sequence positions of the hairpin templates are given in Table 2.2. The target sequence of MeSEX4 was first cloned in the pCR8 vector using the TOPO® TA Cloning® Kit from Life Technologies (Carlsbad, California). The MeAMY3 sequence was first cloned in the pJET1.2 vector using the CloneJET PCR Cloning kit from Thermo Scientific. All primers are given in Table 2.3, set A). In a second step, the MeSEX4 and MeAMY3 sequences were re-amplified (primers in set B, Table 2.3) in the forward and reverse orientation and cloned into a modified plasmid of pBluescriptSKII (from H. Vanderschuren, ETH Zurich, Switzerland) containing a synthetic plant intron sequence forming a loop (57-165 bp of the M27939 sequence; Goodall and Filipowicz, 1989). The hairpin construct of MeLSF2 (target sequences in both orientations linked with the loop) was de novo synthetized and ligated in the pBluescriptSKII by Eurofins MWG Operon (Ebersberg, Germany). All RNAi constructs were each subcloned into a modified pCAMBIA1301 vector containing the Solanum tuberosum class I patatin promoter (GQ352473.1 aligning 11-970bp, Naumkina et al., 2007) at the 3' end (Figure 2.1).

Table 2.2 Sequence position of the RNAi hairpin construct				
Construct	Accession (Phytozom.org)	CDS (bp)	Sequence position for hairpin construct (bp)	
SEX4 RNAi	cassava4.1_009735m.g	1140	197-402	
LSF2 RNAi	cassava4.1_013314m	858	41-231	
AMY3 RNAi	cassava4.1_001362	2691	1-210	

Tahle	2.2 Seau	ence n	osition	of the	RNΔi	hairnin	construc

51(25).	
Primer name	Sequence (5'-3')
Set A	
MeS4fw2	ATGAGAACATGAGAAAATTT
MeS4rv8	ATTCTGCTTGCAACAGGACC
AMY3 forward	ATGTCGACCGTTGCCATTGAG
AMY3 reverse	AAAAGTTTCAAGAAGAGCGGT
Set B	
AMY3 anti-sense forward (Clal)	AT ATCGA TAATCTTACCTCACGAGTGGTACATGTCGACCGTTGCCATTGAG
AMY3 anti-sense reverse (KpnI)	AT GGTACC AAAAGTTTCAAGAAGAGCGGT
AMY3-sense forward (Xhol)	AT CTCGAG ATGTCGACCGTTGCCATTGAG
AMY3-sense reverse (BamHI)	AT GGATCC AAAAGTTTCAAGAAGAGCGGT
MeS4as_Hp_rv_Kpn	GG GGTACC GGTCCTGTTGCAAGCAGAAT
MeS4_Hp_rvBamHI	CGC GGATCC GGTCCTGTTGCAAGCAGAAT
MeS4_HpF_Cla	ATATCGAT AATCTTACCTCACGAGTGGTACA <i>GGAGGACAAGGGAAAGTCT</i>
MeS4as_Hp_rv_Kpn	ATCTCGAGAGGAGGACAAGGGAAAGTCT
Set C	
35S For (GWD)	GCACAATCCCACTATCCT
stR1-r1 (GWD)	CTTGGGCAAGGTCATCAGGTA
pp2A fw	TGCAAGGCTCACACTTTCATC
pp2A rv	CTGAGCGTAAAGCAGGGAAG
patatinFW	TGCGTATTAGTTTTAGCGACGAAG
patatinRV	AAA CAG ATT CTC TCC CTC GCA C
terminatorFW	TGA ATC CTG TTG CCG GTC TTG
terminatorRV	AGC GCA ACG CAA TTA ATG TGA G

 Table 2.3 Primer list used for hairpin cloning and genotyping (in bold the sequence for restriction sites).

Figure 2.1 Representing vector map of modified pCAMBIA1301-patatin used for RNAi constructs The patatin promoter is upstream of the insert consisting of the antisense-sequence of the target transcript, followed by an artificial hairpin (110 bp), the sense-sequence of the target transcript, and the Nos Poly terminator.

2.12.3. Agrobacterium tumefaciens transformation

Electrocompetent *Agrobacterium tumefaciens* strain LBA4404 (Rif⁵⁰ Strep¹⁰⁰) were transformed with an RNAi construct or the full length CDS of StGWD-Flag tag, respectively. One μ L the plasmid of interest was added to a 50 μ L aliquot of competent cells of *A. tumefaciens*, hold on ice. The mix was transferred to pre-cooled Gene Pulser cuvettes (BioRad) and an electro shock of 1.5kV, 200 Ω was applied. After transformation, the cells were put back on ice and 750 μ L of YEB liquid medium (5 g/L Beef extract, 1 g/L yeast extract, 5 g/L peptone, 5 g/L sucrose, 0.5 g/L MgCl₂) was added. After 90 min, the cells were grown on YEB medium containing the respective antibiotics at 28°C for 2 days.

2.12.4. Tissue culture and FEC transformation

Cassava plantlets of the African genotype cv. 60444 were grown in in a SANYO plant growth facility (Type MLR , Panasonic Biomedical Sales Europe B.V.) under a day-night regime (16h light, 8h dark, 27°C, 50 µmol m⁻² s⁻¹). Transgenic cassava lines were obtained with Agrobacterium-mediated friable embryonic callus (FEC) transformation described in (Bull et al., 2009; Niklaus et al., 2011). The important steps of transformation are illustrated in a scheme in Figure 2.2. After transformation with *A. tumefaciens* harbouring the plasmid of interest, the transformed FECs were pre-selected on regenerating medium containing hygromycin antibiotics (Figure 2.2, step 2 and 3). Until step 4 the growth media are supplied with antibiotics for selection though in step 4 and 5 the media contain no antibiotics (Figure 2.2). In these steps (4, 5) new plantlets are regenerated. To confirm that the re-generated cassava plantlets contain the construct of interest a rooting test was performed on

growth media containing selection antibiotics (Figure 2.2, step 6). DNA was extracted and the insertion of the construct verified by PCR amplification using primers listed in Table 2.3 (set C).

Figure 2.2 Main steps involved cassava transformation and regeneration. This schematic illustration depicts the late phase of maintaining and transforming cassava friable embryonic calli (FEC). The transformation steps were performed according Bull et al., 2009. 1) FECs are multiplied and maintained on GD medium 2) Inoculation of FEC with *A. tumefaciens* 3) FECs are regenerated by transferring the transformed FECs on selective media. After 1-2 weeks leafy structures are generated. 4) To regenerate plantlets the leafy structures are transferred on growth media without antibiotics. 5) Plantlets are transferred on growth media to regenerate plantlets including roots. 6) For positive selection part of the stem of regenerated plantlets are subjected to "rooting test". The growth medium is supplied with antibiotics. Plantlets containing the plasmid produce roots, negatives not. The positive lines are grown on growth medium and kept for further analysis and as library. The pictures derive from Bull et al. (2009).

2.13. Construct functional analysis

2.13.1. Starch isolation from transgenic cassava storage root and ³¹P NMR analysis

To measure the content of starch-bound phosphate, starch granules were purified from cassava storage roots according to Hostettler et al., 2011. The frozen material was first pulverized using a

Geno/Grinder[®] 2010 from SPEX SamplePrep. After resuspension in ice-cold starch extraction buffer (50 mM Tris-HCl, pH 8.0, 0.2 mM EDTA, 0.5% (v/v), the mix was homogenized for 3 min using a Waring blender. The homogenate was filtered through a 100 μ m nylon mesh and the filtrate was spun down (15 min, 3.000 *g*, 20°C). The pellet was resuspended in starch extraction buffer and filtered through a 75 and 60 nylon mesh. The filtrate was overlaid on a 10 ml cushion of 95% (v/v) Percoll and 5% (v/v) 500 mM Tris-HCl, pH 8.0 and after centrifugation (15 min at 2.500*g*), the pellet was resuspended in SDS buffer (0.5% SDS [w/v]). The samples were spun down at 20.000*g* for 1 min and washed again in 1ml SDS buffer. The centrifugation and re-suspension steps with SDS buffer were repeated several times to get a clean, white pellet of starch granules. After this, SDS was washed away by five centrifugation/resuspension steps with water and a final wash with 80% EtOH. The starch pellet was dried under vacuum for 48 h.

Sample preparation for ³¹P-NMR analysis was done according to Santelia et al. (2011). Briefly, the starch samples were resuspended in a salt solution (3 mM NaCl, 1 mM CaCl₂, pH6) and digested with α -amylase from pig pancreas (Roche Applied Science) and amyloglucosidase from *Aspergillus niger* (Roche Applied Sciences). ³¹P-NMR analysis was performed on an Avance III 600-MHz spectrometer equipped with a QCI CryoProbe (Bruker) at 303K.

2.13.2. Genomic DNA extraction

Leaf material was harvested and frozen in liquid nitrogen. After pulverisation with a mixer mill (MM301, Retsch) in a 1.5-mL Eppendorf tube containing glass beads, the plant material was resuspended in 900 μ L DNA extraction buffer (7M Urea, 0.3 M NaCl, 50 mM Tris-HCl, pH 8.0, 20 mM EDTA, pH 8). Following centrifugation (13.000*g*, 20 °C, 15 min), the supernatant was mixed in a 1:1 (v/v) ratio with phenol: chloroform: isoamylalcohol (25:24:1; Carl Roth, Karlsruhe, Germany) and spun down for 15 min, 13.000*g*, at 20°C. Six hundred μ L from the aqueous phase was transferred to a 1.5-mL Eppendorf tube containing 1:10 (v/v) 3 M Sodium Acetate, pH 5.2 and 1 μ L RNaseA (20 mg/mL) was added and mixed well. To precipitate the DNA, isopropanol in a 1:1 (v/v) was added to the mixture and incubated for 1 h at -20°C. The precipitated DNA was spun down at 13.000*g* for 15 min at 20°C. The pellet was washed twice with 1 mL 70% ethanol and once with 100% ethanol. Between the washing steps the sample was spun down 13.000*g*, 15 min at 20°C. After drying the pellet under the air-flow it was re-suspended in 30 μ L ddH₂O.

2.13.3. RNA extraction

Up to 200 mg of pulverized storage root samples (using a GenoGrinder, described in 2.6) were mixed with 600 μ L of RNA extraction buffer (150 mM Tris-boric acid, pH 7.5, 2% SDS, 50 mM EDTA, pH 8.0)

during 2-5 min using a vortex. After adding 150 μ L of 100% EtOH and mixing for 1 min on a vortex, 66 μ L 5M potassium acetate were added and mixed for 1 min. Following the addition of 750 uL chloroform to denature proteins, the samples were mixed for 1 min and spun down at 13.000 *g* for 3 min at 20°C. Of the RNA containing aqueous phase, 500 μ L was transferred to a new 2-mL Eppendorf tube. To the aqueous phase phenol: chloroform was added in a 1:1 (v/v) ratio. The mixture was spun down at 13.000 *g*, 1 min, 20°C. From the upper aqueous phase 400 μ L was transferred to a new 2-mL Eppendorf tube. One mL of 100% RNase-free EtOH was added and mixed well. The RNA was precipitated at -80°C for 30 min and pelleted by 13.000 *g*, 30 min, 4°C. The supernatant was removed and 170 μ L 80% RNase-free EtOH was added. The RNA was subsequently pelleted at 13.000 *g*, 3 min, 20°C. The supernatant was removed and the pellet re-suspended in DEPC water. To precipitate RNA, 25 μ L 8M DEPC LiCl was added and incubated at -20 °C overnight. The RNA was pelleted at 13.000 *g*, 30 min, 4 °C and the supernatant was removed. To wash the pellet 170 μ L 80% RNase-free EtOH was added and spun down (13.000 *g*, 3 min, 20 °C). The supernatant was removed and the pellet air dried under the flow hood for 5 min. Then the pellet was resuspended in 25-50 μ L DEPC water.

3. Cassava growth carbon assimilation and allocation analysis

3.1. Introduction

In plants two kinds of starches can be distinguished which fulfil different storage requirements. Transitory starch in photosynthetic tissues like Arabidopsis leaves undergoes a diurnal cycle of synthesis and degradation. In non-photosynthetic tissues (i.e. potato tubers, cassava storage roots, maize kernels) carbohydrate is translocated from the photosynthetic tissue, imported into the amyloplast and converted to starch. Starch in amyloplasts is built-up and stored over a long-term period (Geigenberger, 2003; Sonnewald and Kossmann, 2013). Cassava produces both transient and storage starch, but neither process has been studied in depth at the molecular genetic level in this species.

I first studied carbohydrate metabolism in leaves and storage root of cassava with the aim of drawing a basic framework of starch and carbohydrate metabolism. I measured physiological parameters and correlate them with the carbohydrate metabolism. My experiments were performed with greenhouse-grown cassava plants, grown under defined conditions to reduce environmental influences on the metabolism (such as variability in water availability, temperature, light intensities or soil-nutrient availability). Cassava physiological characteristics and yield performance in response to natural growth conditions as well as stress conditions were investigated in several studies performed on field grown cassava plants (El-Sharkawy et al., 1984; El-Sharkawy, 1990; Angelov et al., 1993). Comparisons of biomass with parameters such as photosynthetic rate and stomatal conductance revealed a positive correlation between the root biomass and photosynthesis (El-Sharkawy, 1990). Only few studies are reported dealing with greenhouse grown cassava plants (Edwards et al., 1990; Calatayud, 2000; Cruz, 2003).

To investigate the general performance of cassava in our greenhouse conditions, experiments were performed to unravel the general performance, in respect of growth and carbon assimilation. Therefore, the characteristics of several batches of greenhouse grown cassava plants was assessed and compared with photosynthetic capacity and the distribution of carbohydrates in different tissues at various developmental stages.

3.2. Growth analysis of greenhouse-grown cassava plants

3.2.1. Growth analysis of plant batches grown at different time points

Manihot esculenta Crantz plant batches were generated by stem cuttings from different mother plants. The plants were grown in a greenhouse for 4-5 months under defined light, climate, and soil-nutrient conditions (Chapter 2.1). For this thesis, six batches of plants were harvested at different times of the year for six individual experiments. Although the conditions were controlled, minimal variation of external, environmental influences like day length and light intensity could not be excluded. For the harvested batches, the homogeneity of the plants was determined. Individual plant height was measured from the apex - the emerging point of the youngest visible leaf - to the sprouting initiation site at the bottom. The number of leaves was assigned by the top-down counting, starting with the youngest leaf (number one) down to the initiation of sprouting (Figure 3.1 A). The number of leaves was determined by counting them from top to bottom. The numbering of internodes was done the same way where the first internode section was that between the first and second leaf. Although at the point of harvesting the plants were at a similar developmental stage, differences in height, number of leaves and of internodes were observed. Therefore, the above definition of tissue age facilitated the comparisons of plants and tissues at the same developmental stages in the different experiments (i.e. young, developing, mature, and aged leaves).

Figure 3.1 *Manihot esculenta* **Crantz (cv. 60444) grown under greenhouse conditions for 4-5 months** A) The tissue was numbered according to the age and counted from the young, undeveloped to the old, mature tissue (L = leaf). B) Enlargement of the apex of cassava plant showing the youngest leaves, arrow pointing at the youngest leaf. C) Cassava fibrous roots (FR) and storage roots (SR)

Comparing the growth of the six plant batches, the mean plant height of the different batches was 110 cm ranging between 57 \pm 5.97 cm (Photosynthesis Expt 1) to 137.79 \pm 19.72 cm (RNAseq) (Figure 3-2 A). Variation in the number of internodes was between 24.3 \pm 0.67 (Photosynthesis Expt 1) and 34.3 \pm 1.2 (Photosynthesis Expt 2) (Figure 3-2 B). And the number of leaves ranged from 14.6 \pm 2.01 (Proteome) to 25.83 \pm 3.41 (RNAseq) (Figure 3-2 C).

Figure 3.2 Plant batch growth analyses

For the six plant batches used in the different experiments for this thesis the three measures height (cm), number of internodes and number of leaves were determined. Mean \pm SD (N = 3, 10, 24 as indicated)

Although the average of leaf number varied between batches, minimal variation was observed within each batch. An eventual connection between the parameters they were plotted against each other to reveal any dependency. Thus, a pairwise-comparison was performed on the collected data and linear regression was investigated (Figure 3-3). The comparison revealed that, within the harvested plants, none of these parameters were strongly correlated.

Figure 3.3 Pairwise comparisons over all six plant batches used for the described experiments

The comparison was performed between A) height (cm) vs. number of leaves, B) Number of internodes vs. number of leaves, C) number of internodes vs. height (cm). R^2 = linear correlation coefficient (N = 60).

3.3. Photosynthetic capacity measurements

I measured the photosynthetic capacity of greenhouse grown cassava plants using a LI-COR 6400 XT device connected to an integrated infrared-gas analyser (IRGA). This device has a chamber with integrated LED source, which is clamped over a single leaf and the gas exchange of a defined area (6 cm²) of the leaf is measured. Cassava leaves are hand-shaped with multiple lobes and a surface area larger than 6 cm². Thus, photosynthetic measurements were performed on the 3 middle lobes in triplicate (i.e. nine measurements) and the mean value taken as a representative value for photosynthetic performance. I investigated the influence of both light intensity and leaf age on the photosynthetic capacity so as to be able to relate this to carbohydrate content. For the analysis, CO₂ concentration and air flow were kept constant (400 ppm; 250 mol s⁻¹).

3.3.1. Photosynthetic capacity of cassava leaves in dependence of

light and age

The dependency of photosynthesis on light was investigated by applying a series of light intensities (photosynthetically active radiation [PAR] from 0 to 1500 μ mol quanta m⁻² s⁻¹) to a fully-expanded leaf (L4) and measuring gas exchange (Figure 3.4 A). As expected, photosynthetic rate increased with increasing light intensity. In the dark, respiration led to negative photosynthetic rate (i.e. an increased Δ CO₂). At a PAR of 25 μ mol quanta m⁻² s⁻¹ photosynthetic rate was close to zero, and the

acquired data allowed me to calculate a light compensation point of PAR 24 μ mol quanta m⁻² s⁻¹ (where the rate of photosynthesis equals that of respiration/photorespiration). Between PAR 50 to 200, the photosynthetic rate increased in a near-linear way (R² = 0.9853), reaching 7.48 μ mol CO₂ m⁻² s⁻¹. The positive influence of light intensity on the photosynthetic rate was limited beyond PAR 400 and the CO₂-assimilation curve flattened reaching a maximum of 13.84 μ mol CO₂ m⁻² s⁻¹ as photosynthesis became light-saturated (Figure 3.4 A).

Figure 3.4 Photosynthetic rate in greenhouse-grown cassava plants

A) at increasing light intensities (0-1500 μ mol quanta $m^{-2} s^{-1}$) from L4 B) from leaves at different developmental stages (L4-L20) at constant light intensity (100 μ mol $m^{-2} s^{-1}$). Mean ± SD (N=3)

The influence of leaf age on photosynthesis was measured at a light intensity of 100 μ mol quanta m⁻² s⁻¹, which was similar to that measured within the leaf canopy in the greenhouse on a typical day. The youngest fully developed leaves measured (L4 and L7) showed highest photosynthetic rates (around 5 μ mol CO₂ m⁻² s⁻¹; Figure 3.4 B). From leaf 10 to the oldest leaves, photosynthetic capacity decreased progressively to 1.43 μ mol CO₂ m⁻² s⁻¹. Thus, leaf age indeed has a major negative influence on the photosynthetic rate even with the same, non-saturating PAR.

3.4. Carbohydrate accumulation in cassava leaves and stem

3.4.1. Carbohydrates in cassava leaves of different developmental stage and time points

Based on my measurements of photosynthetic rate, I calculated the theoretical accumulation of carbohydrate for a defined light period. These calculations revealed that in mature leaves up to 298.76 mg hexoses g⁻¹ FW at high light intensities (PAR 1500) could be assimilated in a 14 h light period (Table 3.1). While at low light intensities the theoretical assimilation of hexoses decreases 89% (PAR 50; Table 3.1). The potential of hexose assimilation depends on leaf age where the theoretical carbohydrate accumulation was lower in older leaves with L20 having only 29% the assimilation rate of L4 (Table 3.2).

Table 3.1 Theoretical carbon assimilation according the photosynthetic rate measurements Calculation was based on both the photosynthetic rate measurements in dependency of light intensity and the measurement that 1 g leaf tissue has an area of 0.01414 m^2 .

Carbon assimilation				
(mg hexose g ⁻¹ FW)				
Light intensity	14h light period			
(µmol quanta m ⁻² s ⁻¹)				
0		-44.02		
25		-0.62		
50		33.89		
100		90.14		
200		161.56		
400		228.76		
600		257.02		
800		274.37		
1200		292.76		
1500		298.76		

Table 3.2 Theoretical carbon assimilation according the photosynthetic rate measurements Calculation was based on both the photosynthetic rate measurements in dependency of light intensity and the measurement that 1 g leaf tissue has an area of 0.01414 m^2 .

Carbon assimilation				
	(mg hexose g ⁻⁺ FW)			
Leaf	9h light period	14h light period		
L4	68.54	106.61		
L7	66.77	103.86		
L10	54.53	84.83		
L13	47.98	74.64		
L16	35.36	55.01		
L20	19.72	30.68		
PAR: 100 μ mol quanta m ⁻² s ⁻¹				

Figure 3.5 Visualisation of starch in cassava leaves by iodine staining

Whole leaves stained with iodine, harvested 4h into the light period. L1= leaf one, L4=leaf 4, L7= leaf 7, L10= leaf 10, L13= leaf 13, L16= leaf 16, L20= leaf 20. Scale bar 10 cm.

The theoretical hexose accumulation during the light period leads to the question about real level of carbohydrates in cassava leaves at different developmental stages. The finding of reduced photosynthetic rate in older leaves suggests that they might have a lower degree of starch and soluble sugar accumulation during the day. To investigate this, I harvested every 3rd leaf – from the first, undeveloped leaf (L1) down to the oldest leaf (L20) (Figure 3.1). Initially, whole cassava leaves harvested 4h into the light were stained with iodine to visualize starch. This showed no obvious differences in starch levels between the differently aged leaves, except that the youngest leaf hardly stained (Figure 3.5 A). This suggests that starch is either not fully degraded during the night or starch

synthesis is very rapid during the first 4h light period. To complement this semi-quantitative iodine staining, leaf material was harvested in two experiments to quantify insoluble and soluble carbohydrates. In the first experiment, leaves of different ages (every 3rd leaf) were sampled both at midday (9h into the light) and in the second experiment the comparable leaves were sampled both at the end of the day (EoD) and end of the night (EoN). Insoluble (starch) and soluble (sucrose, glucose, fructose and maltose) carbohydrates were extracted and measured as described (Chapter 2.6.). For these measurements leaves of plants from 'carbohydrate Expt1' and 'carbohydrate Expt2' were analysed (Figure 3.2).

The measurement of starch at midday showed that carbohydrate allocation into this storage pool differed depending on the leaf age and position. In L4 the starch level was highest $(13.76 \pm 1.98 \text{ mg glu eqv. g}^{-1} \text{ FW})$ whereas only in the youngest, undeveloped leaf (L1) it was lowest $(0.142 \pm 0.08 \text{ mg glu eqv. g}^{-1} \text{ FW})$. For the other leaves investigated (L7-L21), starch levels varied between $3.50 \pm 1.51 \text{ mg}$ (L10) and 10.52 ± 2.01 (L19) mg glu eqv. g $^{-1}$ FW (Figure 3.6 A). The analysis of soluble sugars revealed a pattern similar to that described by Angelov et al. (1993) where sucrose levels are low in the very youngest (~6 mg suc g $^{-1}$ FW) and oldest (~11 mg suc g $^{-1}$ FW) leaves but higher in the most of the fully-expanded leaves in between (~14-15 mg suc g $^{-1}$ FW). In comparison to the sucrose levels the amount of glucose and fructose are low with maximal values in L4 ($2.1 \pm 0.25 \text{ mg gluc g}^{-1}$ FW; $1.16 \pm 0.13 \text{ mg fruc g}^{-1}$ FW) (Figure 3.6 B-D). Generally, in my analysis the carbohydrate levels were slightly lower than what was measured in field studies, but comparable in terms of the division between the different carbohydrate pools. The carbon partitioned into starch after 9h in cassava leaves, is comparable to the amounts typically observed in Arabidopsis at the end of the day (in a 12h light period) (Gibon et al., 2004; Fulton et al., 2008).

A-D) harvested at the 9h into the light period and E-I) harvested at end of the day (grey, stripe bar) and end of the night (black bar) A, E) starch, B, F) sucrose, C, G) glucose, D, H) fructose I) maltose. L1=young, newly emerged leaf at the top, L21=oldest leaf at the bottom. Mean \pm SE, N = 5, 4, 3.

To investigate the extent of leaf starch accumulation during the day and degradation in the subsequent night, leaf tissue was harvested at the EoD and EoN. These measurements give insight into the extent of diurnal, transitory starch turnover in a 14h light regime. For these measurements leaves from plants 'carbohydrate Exp2' were analysed (Figure 3.2). Higher starch levels were observed at the EoD, with the highest value of 20.01 ± 3.78 mg glu eqv. g⁻¹ FW in L4 and the lowest in L1 (8.03 ± 1.89 mg glu g⁻¹ FW). As in the previous experiment, starch levels in the older leaves (L7, L10 and L20) were comparable to each other and lower than in L4. At the end of the night between 80.1 % (L1) and 52.3 % (L7) of the transient starch level was degraded. Interestingly, the levels for soluble sugars (sucrose, glucose and fructose) were unchanged at EoD and EoN (Figure 3.6 F-H). These data are consistent with the idea that leaf starch is degraded to maintain sugar levels during the dark.

Lower amounts of starch at the EoN than at the end of the previous day suggests that in cassava leaves, diurnal starch metabolism is occurring in a similar way as has been described in the model plant Arabidopsis (Gibon et al., 2004; Fulton et al., 2008). In Arabidopsis, transient leaf starch is degraded during the night by a cascade of enzymes (see Chapter 1.6). In the main transient starch degradation pathway, β -amylases are involved, producing maltose as an intermediate metabolite (Niittyla et al., 2004; Weise et al., 2004). The comparison of maltose levels at the EoD and EoN showed increased maltose levels at the EoN in all leaves except L1, where maltose levels remained unchanged. (Figure 3.6 I) This finding suggests that in cassava leaves, maltose is an intermediate metabolite in transitory starch metabolism, as in Arabidopsis.

3.4.2. Carbohydrates in cassava stem at different developmental stages and time points

In daily life cassava is propagated by stem cuttings from mother plants. The older part of the stem is cut into 15-30 cm long sections and planted vertically to soil. This is because this lower part is full of nutrients needed to fuel re-growth of new leaves and stem (El-Sharkawy, 2004).

Figure 3.7 Starch visualization of cassava stem with iodine staining

lodine staining of bisected part and outer stem part are shown. Below the stem sections the respective numbering is indicated. Scale bar = 5cm

I stained the laterally bisected stem with Lugol to reveal a positive correlation between tissue age and starch accumulation. This is in accordance with the stem being a storage organ. Starch accumulates mainly in the pith ray at the outermost layers of the stem. In the younger stem tissue, the middle pith remains unstained, whereas in older tissue, the staining is observed in all layers (Figure 3.7). Analysis of differently aged transverse stem sections under the light microscope (Int1, Int10, Int15, Int20, and Int25) confirmed the preliminary finding of starch accumulation in different cell layers. In the youngest part of the stem (Int1), starch granules are formed in the chlorenchyma (Figure 3.8). In internode 10, starch granules appear in the cells around the phloem, and start to accumulate at the margins of the pith. From Int10 to Int15, radial growth from the cambium is observed. The cell layer containing the pith ray and xylem are enlarged and starch granules start to accumulate in pith ray close to the cambium, and eventually also in the pith cells (Figure 3.8). Within the pith ray and the central pith layer, starch granules increase in number and volume.

Figure 3.8 Starch visualization of transversal cassava stem section

Light micsroscopy pictures at different developmental stages. EP= epidermis; PH= Phloem; XY = Xylem; PI = Pith; CA = Cambium; CE = Collenchym; CH = Chlorenchym; PR = Pith ray. Scale bar as indicated.

The accumulation of starch in the older part of the stem was also shown quantitatively; every 5^{th} internode section (counting from the top to the bottom) was harvested from 5 replicate cassava plants. For these measurements stem sections of plant batch 'carbohydrate Expt1' (Figure 3.2) were analysed. I observed that the starch content increased with the age of the tissue (Figure 3.9 A). Starch levels below 10 mg glu eqv. g⁻¹ FW were detected in Int1, Int5 and Int10. From Int15 down to Int30, close to the sprouting initiation site, starch levels doubled from 35.05 ± 3.3 mg to 73.93 ± 17.79 mg glu eqv. g⁻¹ FW (Figure 3.9 A).

Sucrose levels showed quite similar levels throughout the analysed samples, ranging from 4.2 ± 0.3 mg to 7.95 ± 0.2 mg suc g⁻¹ FW. Int1 and Int5 had the lowest levels of sucrose. Compared to the younger stem part sucrose levels were higher in the middle of the stem (Int10 to Int20) and the oldest stem sections (Int25 and Int30) (Figure 3.9 B). The levels of glucose and fructose behaved in a reciprocal manner compared to starch accumulation. These soluble sugars were considerably lower in the older stem tissue. For example, glucose levels were 87% lower in Int30 compared with Int1. Fructose levels, like those of glucose were highest in the youngest part of the stem (Figure 3.9 C-D).

Analysis of insoluble and soluble carbohydrate accumulation at the end of the day and at the end of the night, measured from stem sections of plant batch 'carbohydrate Expt2' (Figure 3.2), revealed little or no diurnal fluctuation in stem carbohydrate levels. Diurnal starch turnover was not observed in investigated parts of the stem (Figure 3.9 E-H). The values for starch at the end of the day were comparable to the values measured in samples harvested after the following dark period. Except for Int25 where a difference in starch levels at the indicated time points was determined though below significance (t-test > 0.05) (Figure 3.9 E). No major differences were observed between the end of the day and the end of the night for sucrose, glucose and fructose (Figure 3.9 F-G). Only in Int10 were sucrose levels 30% lower at the end of the night than at the end of the day. Glucose and fructose levels showed a similar pattern of accumulation to each other; levels increased from Int1 to Int10 and were lower again in Int25 (Figure 3.9 G-H). In comparison to the measurements on plant batch 'carbohydrate Expt1', lower soluble sugar levels were determined. For the two hexoses, glucose and fructose the levels differed between 2 and 80% in younger internode sections compared to the previous measurements. In contrast for Int25 the analysed hexoses were 60% higher. The changes in sucrose levels were between 16-35% lower compared to the 'carbohydrate Expt1'.

Figure 3.9 Analysis of insoluble (starch) and soluble (sucrose, glucose, and fructose) carbohydrate allocation in stem at different developmental stages. A-D) harvested at the 9h into the light period and E-H) harvested at the end of the day (grey, stripe bar) and end of the night (black bar) A, E) starch, B, F) sucrose, C, G) glucose, D, H) fructose. Int1= youngest internode section, on the top Int25 = oldest internode section at the bottom. Mean \pm SE, N=5, 4, 3.

3.5. Conclusions drawn from the analysis of carbohydrate assimilation in cassava plants

3.5.1. Analysis of plant batches used for subsequent experiments

In this chapter I showed that small differences in height, number of internodes and leaves were observed between the batches of plants used for my individual experiments (Figure 3.2). However, considering that the plants were grown from cuttings of different mother plants and grown under semi-controlled greenhouse conditions at different times of year, the batches used for experiments were broadly homogenous. The number of internodes is a good parameter to define the plants developmental stage and showed the least variation. The variation of leaf number between the batches can be explained by the fact that in cassava, the oldest leaves undergo senescence and are eventually shed (Alves, 2002). Nevertheless, for most of the plants, the number of leaves, plant height and the number of internodes was the same. Even in the batches where one parameter varied (e.g. plant height in the batch for the photosynthesis experiment) the other two parameters were still similar to other batches. Therefore, it is reasonable to conclude that the developmental stage of the batches was similar and that the results from the different experiments can be compared with each other.

3.5.2. Capacity of cassava plants to perform photosynthesis and carbon

assimilation

The photosynthetic rate measurements accurately quantified the influence of light intensity on the carbon assimilation rate in my material (Figure 3.4 A). The light intensity inevitably varied in my plants, depending on the season, although this was augmented to some extent by supplementary lighting in the glasshouses. The maximal photosynthetic rates reported here are lower than was found in other studies (Edwards et al., 1990; Angelov et al., 1993; Calatayud et al., 2000). This might be because my measurements were gained on greenhouse-grown plants and/or because the variety used (cv. 60444) is rather a model than an agricultural cultivar. A clear negative correlation between leaf age and the capacity to assimilate carbon could also be shown (Figure 3.4 B). This was also observed in field grown plants (Angelov et al., 1993). The collected photosynthetic rate data are important as they allowed me to calculate the potential carbon assimilation, which can be compared with the absolute measurements of non-structural carbohydrates in the leaves. For example, comparing the theoretical assimilation of carbon with the starch accumulation during a day suggests that young, fully expanded leaves partitioned only 5-11% of assimilated carbon into starch. In the oldest leaf (L20) as much of 22% goes into starch. However, these values are somewhat speculative as light intensity is likely to have varied throughout the day and throughout the leaf canopy.

All leaves degraded their starch to some extent during the night, although some degraded more than others, and most contained residual starch at the end of the dark period (Figure 3.6 E). This is in contrast to findings in the model plant Arabidopsis, which partitions a higher proportion of its assimilates into starch and degrades almost all of it at night. Nevertheless, as in Arabidopsis, I observed increased maltose levels at the end of the night (Figure 3.6 I) suggesting that cassava leaves metabolise their starch via a comparable pathway.

Cassava differs from Arabidopsis in another important way, accumulating about 10 times more sucrose (Gibon et al., 2004), together with high levels of glucose and fructose. In fact, the levels of total soluble carbohydrates were comparable to the amount of starch in the leaves. It is likely that much of this sugar is stored in the vacuoles of the palisade and sponge mesophyll cells. Interestingly, the levels of these sugars were almost unchanged at the end of the night, suggesting that starch is degraded to support night-time metabolism and maintain sugar levels (Figure 3.9 E-H).

Total non-structural carbohydrate levels were lowest in the oldest leaves (i.e. those close to senescence and with low photosynthetic rates) and the very youngest leaves (i.e. those that are still actively growing; Figure 3.6). The highest levels were observed in the fully expanded leaves at the top of the canopy (L4 and L7; Figure 3.6), which can be partly explained by their location (exposed to more light) and their high photosynthetic rate. Moving down the stem, the older leaves are more prone to being shaded by the upper canopy (Figure 3.1) and display lower photosynthetic rates, possibly as the process of senescence begins and the photosynthetic machinery is degraded (Figure 3.4 B). These findings are in agreement with the data shown by Angelov et al. (1993) where a similar trend of carbohydrate levels in different aged leaves was found, although the absolute values they observed were higher than those reported here. Again, these differences in absolute amounts could be explained by the growth conditions and the model cultivar used in our studies.

Carbohydrate levels measured for the developmental stages and diurnal fluctuations revealed differences in absolute values and pattern in respect of tissue age. Especially soluble sugars were lower in the diurnal analysis compared to the levels seen for the developmental stages. Depending on the analysed tissue and the age variation was up to 80% i.e. in stem sections Int1 at the end of the day compared to middle of the day (Figure 3.9). A reason for these substantial differences might be explained by differences in light conditions in the greenhouse and the difference in plant material (carbohydrate Expt1 and Expt2, Figure 3.2). Another reason for the observed differences might be explained by a diurnal fluctuation of carbohydrates throughout the day night cycle. Here I present three time points thus, it might be that soluble sugars throughout the light period are accumulated at midday and decrease towards the end of the day. To test this hypothesis a 24-h harvesting

experiment could be performed. However, the experimental-setup I present here was designed in such a way that the results can be considered to be valuable.

Fully-expanded leaves serve as source tissue delivering carbohydrates to sink tissues. Export is probably highest during the day in cassava, but might continue during the night. However, if the calculated partitioning into starch is correct, it suggests that only a small fraction of the day-time assimilates is stored for night-time metabolism. Clearly, the developing root and shoot apices represent strong sinks, as does the starch-accumulating storage root. However, my data also show that starch accumulates in the stem – particularly the older parts (Figure 3.9 A) – to very high levels (up to 74 mg glu eqv. g⁻¹ FW). This suggests that the stem is also a strong sink tissue. The stem starch does not appear to follow the diurnal fluctuations observed for transitory starch in leaves, and can be considered as a storage starch pool that accumulates over time in the pith (Figure 3.8). This starch probably serves an important role during the propagation of cassava from stem cuttings, fuelling regrowth of new roots and shoots.

Further evaluation of the pattern and amounts of carbon partitioned between storage in the leaf and export to the various sinks would be valuable. This could be evaluated by feeding cassava leaves with ¹⁴C-labelled CO₂. After supplying a pulse of ¹⁴CO₂, the amount of ¹⁴C label in the insoluble or soluble carbohydrate fractions in different plant parts could be determined during a chase period. Performing such experiments for differently aged leaves could reveal also where carbon, fixed in different parts of the canopy are primarily exported to. In Arabidopsis and other species, it was shown that the phloem network between leaves is established in with a defined way, related to the phyllotaxis of the plant. Thus, sucrose exported from a specific source leaf ends up in sink leaves defined by the vascular connections (Busse and Evert, 1999).

4. Carbohydrate metabolism in Cassava storage roots after induction of sink-to-source transition

4.1. Introduction

As described in the General Introduction, transitory leaf starch metabolism has already been studied in detail and well-described in the literature (Smith and Stitt, 2007; Streb and Zeeman, 2012). In contrast, storage starch metabolism in heterotrophic tissues - especially starch remobilization - is less well understood. Early biochemical studies dealing with starch remobilization in cereal grains revealed major differences between the degradation pathways of transitory and storage starch. For example, whereas the breakdown of transitory starch in Arabidopsis leaves is highly dependent on the hydrolytic activity of β -amylases, storage starch remobilization in the cereal endosperm is mainly catalysed by α -amylases (Fincher, 1989). Although other starch metabolizing enzymes are found to be present in the endosperm of germinating seeds (i.e. LDA, α -glucosidase, β -amylase) a large increase in α -amylase production is observed upon germination. This led to the general acceptance that cereal starch mobilization is initiated by α -amylolytic hydrolysis. On the other hand, in potato tubers evidence was presented showing that β -amylases may be the main hydrolytic enzymes, responsible in remobilizing starch (Nielsen et al., 1997; Viola et al., 2007). It is well known that potato tubers stored at cold temperatures for several days increase break down some of their starch and accumulate soluble sugars, a process called cold-sweetening. Studies to investigate the molecular mechanism and discover the enzymes involved revealed a correlation between increased β -amylase activity and coldsweetening. For white clover, it was also shown that starch mobilization upon defoliation leads to increase in soluble sugars and decrease in starch content in the storage roots. This was shown to correlate with an increase in α -amylase activity (Gallagher et al., 1997). Other studies showed that α -amylase activity can be isolated from starch granules of poplar wood ray cells and potato tubers (Witt and Sauter, 1994; Witt and Sauter, 1996). Although no detail about the functional involvement of these hydrolytic enzymes in heterotrophic starch metabolism are provided, the results give indications that starch remobilization differs from what is described in leaf tissue.

The aim of this study was to identify key proteins involved in the remobilization of starch in cassava storage roots using a proteomics approach. Therefore a simple method was developed to shift the metabolism in cassava roots from starch synthesis to degradation - or in other words to induce a sink to source transition. In potato tubers, studies involving sink-source transition are performed on tubers detached from the mother plants. By doing so, bud dormancy is released and new sprouts are made (Viola et al., 2007). In this process, starch is remobilized and sucrose is made and transported

to the bud, indicating that new sink is created. Unlike potato tubers, which derive from modified stems, cassava roots do not sprout once detached from the mother plant. In contrast, detached cassava roots undergo a rapid post-harvest physiological deterioration (PPD) within 24-48h (Sanchez et al., 2006). The first step is black discoloration of the vascular parenchyma and later of the storage parenchyma. This is followed by a secondary PPD, attributed to microbial infection. Thus, to study starch remobilization in cassava storage roots, another experimental setup was needed to provoke the transition from sink-source in cassava roots. Studies aiming to delay PPD showed that pruning before the harvest minimises deterioration. Additionally, it was shown that starch content of storage roots decreased near linearly up to 26 days, after which starch starts to accumulate again (van Oirschot et al., 2000). Thus, pruning seems to be a valuable method to study starch remobilization in cassava storage roots, and was used here.

In the past decades, mass spectrometry-based proteomics has become an important method to monitor metabolic network components at a system-wide level (Domon and Aebersold, 2010; Schulze and Usadel, 2010). Nevertheless, peptide and therefore protein identification depends upon available genome sequence information. Sequencing of the cassava genome began 2003 and resulting EST sequences were used for pioneer transcriptomics and proteomics studies (Lopez et al., 2004; Sheffield et al., 2006; Reilly et al., 2007; Li et al., 2010; Mitprasat et al., 2011; Owiti et al., 2011). Proteomics studies based on 1 or 2 dimensional gel electrophoresis analysed several cassava tissues including fibrous and storage root (Sheffield et al., 2006), secondary somatic embryos (Baba et al., 2008), leaves at different growth stages (Mitprasat et al., 2011) and storage roots subjected to post-harvest deterioration (Owiti et al., 2011). These studies successfully identified up to 1110 proteins in storage roots by combining available EST sequences with bioinformatics approaches to optimize protein identification in non-sequenced organisms (Owiti et al., 2011). Recently, the first annotated draft of the cassava genome, predicted to contain 30666 protein-coding loci, released (ftp://ftp.jgiwas psf.org/pub/JGI data/phytozome/v5.0/Mesculenta; reviewed in Prochnik et al., 2012) thus paving the way for the application of large-scale shotgun proteomics.

Various methods have been developed to provide absolute or relative quantitative information for identified proteins (Domon and Aebersold, 2010; Schulze and Usadel, 2010). First, protein abundances can be determined prior to analysis by peptide isobaric labelling, during acquisition by multiple reaction monitoring or in a post-acquisition manner by label-free strategies (Vaudel et al., 2010; Owiti et al., 2011). Second, it has been shown that the number of identified peptides is to some extent proportional to the protein abundance, enabling protein quantification by label-free spectra counting (Lu et al., 2007). Third, softwares such as SuperHirn or Progenesis LC-MS

have been developed to determine peptide and protein abundances according to the intensity of eluting ions (Azimzadeh et al., 2012; Fischer et al., 2012; Greer et al., 2012). Implementation of statistical tests in Progenesis LC-MS has proven to be excellently suited for obtaining sensitive and robust quantification of proteomics data (Azimzadeh et al., 2012; Fischer et al., 2012; Greer et al., 2012), and this approach was used here to identify proteins involved in the remobilization of starch in cassava storage roots.

4.2. Remobilization of carbohydrates from storage organs

A) Cassava plants were pruned and storage roots harvested immediately (ZDP) or ten days after pruning (TDP). Within this time-period a new shoot appeared (red arrow); Greenhouse, 14h light. A-D) Carbohydrate allocation in stem at the cutting side ZDP and TDP. E-G) Carbohydrate allocation in cassava storage roots ZDP and TDP, A,E) starch, C,F) sucrose and D,G) soluble sugar level glucose (dark grey), fructose (light grey). Values are mean ±SE (N=5), *t-test < 0.01
To investigate starch catabolism in cassava storage roots, I analysed changes in carbohydrate levels and amylolytic activity upon cutting off the photosynthetic above-ground tissues. The storage roots of greenhouse-grown cassava plants (plant batch 'Proteome', Figure 3.2) were harvested either uncut as a control (Control; zero days of pruning, ZDP) or 10 days after cutting off the above-ground photosynthetic part (ten days of pruning, TDP) (Figure 4.1 A). The emergence of new shoots from internodes could be observed within this time period, but the leaves were tiny and not yet photosynthetic source tissues (Figure 4.1 A).

To investigate the remobilization of carbohydrates from both stem and root storage tissues, levels of starch, sucrose, glucose, and fructose were determined at both time points. Starch levels in stem tissue (immediately below the cutting side) and storage roots were decreased by 44.6% and 48.1%, respectively (Figure 4.1 B, E). The level of sugars remained unchanged for the two time points in both tissues (Figure 4.1 C, D, F, G).

activities cannot be determined unambiguously. Ceballos et al. (2008) performs similar analyses and suggested that ISA and SBE activities migrate at the top of the gel (Figure 4.2 A). However, isoforms of both α - and β -amylases also run in this location in Arabidopsis leaf extracts. A faint activity band appears further down in the gel for the TDP protein samples, which may represent limit dextrinase (LDA) activity. The substrate β -limit dextrin (amylopectin digested with an excess of commercial β -amylases; Figure 4.2 B) cannot be digested by β -amylase. As seen on amylopectin, the enzymatic activities on β -limit dextrin were increased TDP in comparison to the control samples. Activity of the top two bands appeared the same as on amylopectin and were increased in TDP samples, as was the lowest band. Two minor bands visible on amylopectin were not visible on β -limit dextrin, suggesting that they may be β -amylases. The chromogenic substrate red-pullulan (partially depolymerised pullulan containing Procion MX-5B dye) is a specific substrate to reveal LDA activity (Figure 4.2 C). For LDA activity, 3 times more total protein was loaded per lane (7.5 μ g) compared to the native PAGE containing amylopectin and β -limit dextrin. The activity of LDA on red-pullulan also appeared to be increased in the TDP samples compared to ZDP control samples (Figure 4.2 C). With the exception of LDA activity, these analyses do not reveal clearly which hydrolytic enzymes are involved in the process of starch degradation upon the sink-source-transition.

I was interested if the decrease in starch levels is caused by a changed hydrolytic activity of starch degrading enzymes. Therefore, protein extracts from two replicate cut and control storage roots were analysed by native PAGE containing 0.1% amylopectin, 0.1% β -limit dextrin or 1% red pullulan (Figure 4.2 A-C). Using amylopectin as a substrate reveals starch hydrolysing/modifying enzyme activity. Activity bands appeared at the top of the native PAGE with a markedly increased activity in storage root extract after cutting compared to the control (Figure 4.2 A). The identity of these The decrease in starch levels and the increase in amylolytic activity show that storage starch is mobilized in stems and storage roots for the production of new leaf tissue. Therefore, this treatment appears as a suitable system in which to further analyse the switch from a sink to a source tissue.

Figure 4.2 Amylolytic enzyme activity PAGE

Total storage root protein extract from ZDP and TDP were subjected on a 6% native PAGE containing A) 0.1% potato amylopectin, B) 0.1% β -limit dextrin and C) 1%red pullulan. Protein loading was 2.5 μ g for A and B, and 7.5 μ g for C. D) 6% SDS-PAGE stained with co-omassie for protein loading control, either 2.5 μ g or 7.5 μ g per lane.

4.3. Cassava storage root proteome comparison: Unravelling enzymes involved in carbohydrate metabolism in storage roots before and after pruning

A large-scale proteome study of storage roots was performed and conducted by Dr. Sylvain Bischof, primarily to identify important proteins involved in storage starch metabolism. Therefore, proteins from storage roots harvested before (ZDP) and after pruning (TDP) were extracted and equivalent concentrations of total proteins were separated by 1-dimensional SDS-PAGE (Figure 4.3 A). Each lane was cut into 14 fractions to decrease the sample complexity, thereby increasing the probability to identify individual proteins. Proteins in each fraction were in-gel digested with trypsin and analyzed by mass spectrometry (MS) using an Orbitrap mass spectrometer. Three biological replicates were analysed for each time point. Measured spectra were identified using the cassava genome database (www.phytozome.net) and quantitative information for each identified peptide and protein was obtained using the software Progenesis LC-MS.

Figure 4.3 Evaluation of proteomics data set

A) Total protein separated on a SDS-PAGE for proteomics and the slices subjected for digestion B) Correlation analysis between the biological replicate represented in a PCA plot. Before Cutting = ZDP; After Cutting = TDP C) Total number of proteins indicating the significantly up- and down-regulated as a percentage in respect of fold changes. Data obtained by Dr. Sylvain Bischof, ETH Zürich.

In total, 20177 peptides were identified across all six datasets analysed. Peptide identification was accepted with a minimal Mascot ion score of 23 and a maximum expectation value of \leq 0.05. To increase protein identification confidence, a minimum of two unique peptides for each protein was required. Proteins identified with only a single peptide hit were excluded. This led to a total of 2410 proteins identified with a high confidence (Supplemental Table 4.1). Of these, 2409 proteins were found in both time points while only one protein (cassava4.1_005818m; homologue to Arabidopsis CYTOCHROME P450 86 A1) was found only at ZDP (Supplemental Table 4.1).

To investigate homogenity among the biological replicates, a principle component analysis (PCA) was performed. PCA analysis revealed a clear separation of the biological replications of "Before Cutting" (ZDP) and "After Cutting" (TDP) (Figure 4.3 B). In PC1, which contributes 53% of the variance, clearly separates the six replicates according the treatment "Before cutting" and "After cutting". While the replicates for "Before Cutting" cluster together for PC2 (20.9%) and PC3 (11.6%) "After Cutting" B separates from the two other replicates for PC3 (Figure 4.3 B). However, the clear separation between the treated and untreated samples indicates clear protein regulation.

To identify proteins significantly differently expressed after pruning (compared to the untreated control), an analysis of variance (ANOVA) test was performed (Supplemental Table 4.2). To reveal proteins that were de-regulated (up or down) after pruning, the mean average of protein abundance TDP was compared to mean average of protein abundance of the untreated control samples. This comparison reveald a total of 315 proteins with ANOVA p-values ≤ 0.05 (Figure 4.3 D). Investigations of the fold change of the deregulated proteins revealed that 127 proteins were up-regulated, 105 and 33 of which were at least 1.5-fold or 2-fold higher, respectively. One hundred and eighty proteins were down-regulated, 101 and 68 of which were at least 1.5-fold or 2-fold lower, respectively. (Figure 4.3 D; Supplemental Table 4.2).

Next, I used the publicly-available functional annotations of *Arabidopsis thaliana* proteins to identify the cassava proteins (see Material and Methods for details). Several Arabidopsis proteins had more than one close cassava protein homolog suggesting that DNA duplications have resulted in multiple gene copies in the cassava genome. Sixteen out of 2410 cassava proteins could not be assigned to any Arabidopsis homolog, suggesting that they are specific to cassava (Supplemental Table 4.1).

To gain insight into the metabolic processes affected by pruning, I categorized the 2394 genes according to their metabolic functions using the MapMan software (Supplemental Table 4.1; mapman.mpimp-golm.mpg.de; Usadel et al., 2009). As some proteins are involved in more than one metabolic pathway, several cassava homologs were found to be allocated to two or more functional

categories. In order to identify processes significantly altered by pruning, the proportion of deregulated proteins in each category was compared with the proportion of total proteins in the same category. After pruning (TDP), proteins belonging to the functional categories 'cell wall' and 'hormone metabolism' were significantly under-represented compared to the control (ZDP; Figure 4.4 A). In contrast, proteins assigned to the categories 'major CHO metabolism', 'TCA/Organic acid transformation', 'amino acid metabolism', and 'protein' were significantly over-represented after pruning (Figure 4.4 A).

Figure 4.4 Evaluation of the MapMan categorization

The relative pathway abundance was calculated by the number of features assigned to a MapMan category in relation to the total number of features found over all categories (Black bar). White bar reflect the relative abundance of significantly up-regulated features TDP to the total number of features significantly up-regulated TDP. Grey bar reflect the relative abundance of significantly down-regulated features TDP to the total number of features significantly down-regulated TDP. The probability of features found to be over- or underrepresented within one category was determined with a Hypergeometric distribution test. * p-value ≤ 0.01

4.3.1. Investigation of metabolic pathway changes after pruning

4.3.1.1. Changes in the abundance of proteins involved in primary carbon metabolism

The transition of cassava root from sink-to-source is connected to significant changes in starch and sucrose metabolism. This is not surprising as storage roots, as a sink tissue, relies on carbohydrates (sucrose) transported from the photosynthetic source tissues. The sucrose is unloaded from the phloem and can either be cleaved by invertase (into fructose and glucose) or by sucrose synthase (SUS; which converts UDP and sucrose into fructose and UDP-glucose). In subsequent steps the generated hexoses are metabolised further giving substrates for diverse metabolic pathways (e.g.

respiration), or they are transported to the vacuole for storage, or transported into the amyloplast and converted into starch. In heterotrophic tissues that have switched into a source tissue, some of these reactions are reversed. For example, starch is degraded and the products are used to synthesise sucrose, which then is exported to new sink tissue via phloem transport. Sucrose is synthesised in the cytoplasm from F6P and UDP-glucose by consecutive activities of sucrose-6phosphate synthase (SPS) and sucrose-6-phosphate phosphatase (SPP). To elucidate differences in storage root primary carbohydrate metabolism in untreated (sink) and pruned (source) roots, I investigated the protein levels for enzymes involved in starch and sucrose metabolism in more detail.

Starch metabolism

In *Arabidopsis thaliana*, 53 proteins are known to be directly or indirectly involved in starch metabolism (Streb and Zeeman, 2012). The obtained cassava proteome data were mined for cassava homologs of Arabidopsis proteins involved in starch metabolism. A total of 31 cassava proteins were found (Table 4.1). For the other 22 proteins assigned to the starch metabolism in Arabidopsis no peptides corresponding to a cassava homolog were identified. Of the 31 proteins identified, six pairs were each annotated to the same Arabidopsis protein. A closer investigation of the cassava genome revealed that these cassava homologs are duplicate. Hence a total of 25 starch related proteins were found in this proteome analysis. The duplicates were indicated with a prefix "a" or "b". The case of LDA was an exception; a closer analysis showed that the two cassava sequences (cassava4.1_004771; cassava4.1_024672) lie next to each other on the same scaffold. An alignment of these two peptide sequences to the *At*LDA as a query reveald sequence homology of either the N- or C-terminus without common sequence overlaps. Therefore, the two samples were taken together. From these 25 proteins 8 were identified to be involved in starch synthesis and 15 in degradation, (Table 4.1; Streb et al., 2012).

Of the 30 proteins involved in starch metabolism, five were significantly (p-value = \leq 0.05) deregulated in the TDP sample compared to the ZDP control (Table 4.1). Of these, three proteins were up- and two proteins were down-regulated.

Among the proteins induced by pruning was a protein containing a starch-binding domain and a coiled-coil domain (COC, cassava4.1_012932) which was increased in abundance by 1.7 fold. The Arabidopsis homolog was shown to be a chloroplast-localized protein which binds to starch, preferentially to amylose (Lohmeier-Vogel et al., 2008). Furthermore, starch synthase 1 (SS1; cassava4.1_004619) was significantly more abundant TDP (1.2-fold) compared to the ZDP control. However, the most striking change was a 6.3-fold increase in the plastidial endoamylase α -amylase 3 (AMY3; cassava4.1_001362). AMY3 is involved in the release of branched malto-olicosaccharides

from the starch granule. Analysis of down-regulated proteins in TDP samples revealed APL3 (a largesubunit of AGPase cassava4.1_005409) and PWD (phosphoglucan water dikinase, cassava4.1_000497) to be 2-fold and 1.3-fold less abundant, respectively. APL3 is specific for root tissue in Arabidopsis, while APL1 is more abundant in leaves (Crevillen et al., 2005). PWD (cassava4.1_000497) plays a role in starch phosphorylation, acting on starch granules after pre-phosphorylation by GWD (Baunsgaard et al., 2005; Kotting et al., 2005).

The other proteins assigned to the starch synthesis pathway include the plastidial PGM1 isoform, three isoforms of starch synthases (SS2, cassava4.1_002278; SS4, cassava4.1_003800; and GBSSI, cassava4.1 003884), two branching enzymes isoforms (SBE2-a cassava4.1 003773; SBE2-b, cassava4.1 001686; and SBE3, cassava4.1 001595), and the debranching enzymes ISA1 and ISA2 (cassava4.1_001932; cassava4.1_001414). Amongst the proteins assigned to starch degradation were the debranching enzymes ISA3 (cassava4.1_008945) and LDA (cassava4.1_004771, cassava4.1_024672), the phosphoglucan phosphatase SEX4 (cassava4.1_009735) and its homolog LSF1 (cassava4.1 025886). Both plastidial and cytosolic disproportionating enzymes, DPE1 (cassava4.1 008552) DPE2 (cassava4.1 001086), and which recycle short maltooligosaccharides to release glucose were identified. Homologs of the plastidial and cytosolic α glucan phosphorylase (PHS1, cassava4.1_004717, cassava4.1_002614 and PHS2, cassava4.1_001626, cassava4.1_004717) were identified. PHS1 and PHS2 catalyze the reversible reaction of glucose-1-phosphate (Steup and Schachtele, release from linear glucans 1981; Shimomura et al., 1982). In addition, a plastidial hexose-phosphate translocater (GPT1, cassava4.1 009268) and a glucose transporter (GlcT, cassava4.1 004822) could be identified. GPT1 was described in maize and Arabidopsis heterotrophic tissues and transports glucose-6-phosphate across the amyloplast membrane (Kammerer et al., 1998; Andriotis et al., 2010), providing substrates for either starch synthesis or the plastidial oxidative pentose phosphate pathway. GIcT was shown to be important to export glucose from the Arabidopsis chloroplasts during the dark period (Cho et al., 2011).

Table 4.1 Starch related proteins Up- or down-regulation of starch –related proteins TDP. Significant ANOVA p-value ≤ 0.05 are indicated in bold. Fold change is represented in respect of TDP (N=3).

Enzyme	Cassava accession	Arabidopsis Accession	Fold change	Anova (p)
AMY3	cassava4.1_001362m PACid:17970800	AT1G69830	6.271784075	0.023873795
SS1	cassava4.1_004619m PACid:17988337	AT5G24300	1.244623178	0.027163229
сос	cassava4.1_012932m PACid:17987585	AT5G39790	1.769509262	0.045000512
GBSSI	cassava4.1_003884m PACid:17959989	AT1G32900	1.766510779	0.059838338
SS4	cassava4.1_003800m PACid:17972839	AT4G18240	1.388017137	0.06039722
ADG1	cassava4.1_005518m PACid:17993865	AT5G48300	1.399319996	0.102984919
SEX4	cassava4.1_009735m PACid:17978895	AT3G52180	2.142486305	0.135771612
GlcT	cassava4.1_004822m PACid:17987618	AT5G16150	1.647159078	0.143239995
PHS2_b	cassava4.1_002466m PACid:17978799	AT3G46970	1.304470706	0.14731939
PHS1_a	cassava4.1_002614m PACid:17978880	AT3G29320	1.403512667	0.159453092
LDA	cassava4.1_004771m PACid:17981254/ cassava4.1_024672m PACid:17981243	AT5G04360	1.431089875	0.170502706
pGPT	cassava4.1_009268m PACid:17980520	AT5G54800	1.598831466	0.196091071
SS2	cassava4.1_002278m PACid:17978759	AT3G01180	1.373885415	0.235049795
ISA2	cassava4.1_001414m PACid:17986210	AT1G03310	1.361153605	0.253063848
DPE2	cassava4.1_001086m PACid:17969334	AT2G40840	1.250485455	0.264003241
SBE3	cassava4.1_001595m PACid:17966954	AT2G36390	1.319348939	0.273468576
PHS1_b	cassava4.1_004717m PACid:17991231	AT3G29320	1.420309134	0.275694189
DPE1	cassava4.1_008552m PACid:17989108	AT5G64860	1.064269048	0.576997277
LSF1	cassava4.1_025886m PACid:17963084	AT3G01510	1.206461149	0.694236214
SBE2_a	cassava4.1_003773m PACid:17961099	AT5G03650	1.111449633	0.702243606
PGI_a	cassava4.1_006414m PACid:17980631	AT4G24620	1.052986579	0.721798105
PGM2_a	cassava4.1_004332m PACid:17969721	AT1G70730	1.124431419	0.762414575
ISA1	cassava4.1_001932m PACid:17965320	AT2G39930	1.157479924	0.772568075
PGM1	cassava4.1_003452m PACid:17960838	AT5G51820	1.033803977	0.831527628
PHS2_a	cassava4.1_001626m PACid:17966328	AT3G46970	1.021786578	0.912783717
APL3	cassava4.1_005409m PACid:17968441	AT4G39210	-2.088975338	0.011351981
PWD	cassava4.1_000497m PACid:17989907	AT5G26570	-1.321020787	0.026783934
PGI_b	cassava4.1_031246m PACid:17981861	AT4G24620	-1.049204492	0.575652002
PGM2_b	cassava4.1_004336m PACid:17982342	AT1G70730	-1.03259972	0.739905026
SBE2_b	cassava4.1_001686m PACid:17972441	AT5G03650	-1.02787995	0.83351531
ISA3	cassava4.1_008945m PACid:17990994	AT4G09020	-1.031881174	0.847019054

Sucrose metabolism

Amongst the significantly deregulated proteins were several enzymes involved in sucrose metabolism. A set of 100 proteins involved in sucrose metabolism and transport in Arabidopsis was used to identify homologs in cassava. I could assign 49 cassava proteins to Arabidopsis homologs (Table 4.2). After correcting for duplicated (or triplicated genes), a total of 34 Arabidopsis homologs were found in the cassava proteome (Table 4.2). Amongst the 49 proteins, four were significantly up-regulated and two significantly down-regulated (p-value \leq 0.05) in TDP samples compared the ZDP control samples (Table 4.2). After pruning fructokinase (FK; cassava4.1_011584) and cytosolic fructose-1,6-bisphosphatase (F1,6BPase; cassava4.1 011197) (which produce fructose 6-phosphate from free fructose or from fructose 1,6-bisphosphate respectively) were down-regulated compared to the control. Mutant analysis in Arabidopsis showed that F1,6BPase is involved in fructose sensing and signalling, independent to the catalytic activity (Cho and Yoo, 2011). After pruning, there was significant up-regulation of plastidial fructose-1,6-bisphosphate aldolase (FBA3; cassava4.1_009233), cytosolic invertase2 (cINV2; cassava4.1_005201), cytosolic/nuclear hexokinase1 (HXK1; cassava4.1_006138) and plastidial hexokinase3 (HXK3; cassava4.1_007221). FBA3 converts fructose 1,6-bisphosphate into dihydroxyacetonephosphate (DHAP) and glyceraldehyde-3-phosphate (GAP; triose-phosphate). The metabolites DHAP and GAP are substrates for diverse metabolic pathways in different subcellular compartments (OPPP, glycolysis and TCA cycle, sucrose synthesis). The cINV2 hydrolyses sucrose into glucose and fructose. HXK1 and HXK3 phosphorylate various hexoses (e.g. fructose and glucose) (Claeyssen and Rivoal, 2007). As for F1,6BPase, HXK1 is involved in sugar-signalling in Arabidopsis, sensing glucose independently of its catalytic activity (Moore et al., 2003).

Enzyme	Cassava accession	Arabidopsis Accession	Fold change	Anova (p)
FBA3	cassava4.1_009233m PACid:17991143	AT2G01140	1.31375782	0.016611607
cINV2	cassava4.1 005201mlPACid:17960338	AT4G09510	1.279162588	0.035931392
НХКЗ	cassava4.1 007221m PACid:17990129	AT1G47840	1.512944971	0.038045423
НХК1	cassava4.1 006138m PACid:17985703	AT4G29130	1.559017046	0.039299266
cPGI	cassava4.1 004581m/PACid:17978999	AT5G42740	1.095756629	0.071848769
FK	cassava4.1 025703m/PACid:17973403	AT1G17160	1.843801599	0.083268321
FBA3	cassava4.1 009217m PACid:17976496	AT2G01140	1.711619311	0.088076604
UGPase1	cassava4.1 003947m1PACid:17969276	AT3G03250	1.973510332	0.099628734
SUS3	cassava4.1 001840m PACid:17981623	AT4G02280	1.601670806	0.108474525
PFK5	cassava4.1 005217m PACid:17974485	AT2G22480	1.670368678	0.117662228
сТРІ	cassava4.1 014503m PACid:17981974	AT3G55440	1.722312487	0.124504536
cTPI	cassava4.1 014432m PACid:17967798	AT3G55440	1.550469005	0.153717454
F1,6BPase	cassava4.1 008978m PACid:17990898	AT5G64380	1.397492877	0.198494275
pTPI	cassava4.1 012016m/PACid:17981009	AT2G21170	1.375325681	0.206730912
FBA6	cassava4.1 010509m/PACid:17974511	AT2G36460	1.152940825	0.222164189
FBA6	 cassava4.1_010502m PACid:17961042	AT2G36460	1.275518191	0.243091463
cTPI	cassava4.1 014454m PACid:17988950	AT3G55440	1.180865848	0.305726618
рТРІ	cassava4.1 012057m PACid:17986071	AT2G21170	1.237065937	0.344269378
SUS6	cassava4.1_027790m PACid:17979357	AT1G73370	1.132328345	0.356569843
FK	cassava4.1 009589m/PACid:17989580	AT1G66430	1.059469231	0.51925422
SPSA1	cassava4.1 000732m/PACid:17989703	AT5G20280	1.146477123	0.538192248
SUS6	cassava4.1_001874m PACid:17972883	AT1G73370	1.103336919	0.639252054
FK	cassava4.1 018514m/PACid:17973431	AT1G17160	1.003602549	0.680104111
pPGI	cassava4.1_006414m PACid:17980631	AT4G24620	1.052986579	0.721798105
PFP	cassava4.1_003757m PACid:17962621	AT1G20950	1.070408139	0.737585428
PGM2	cassava4.1_004332m PACid:17969721	AT1G70730	1.124431419	0.762414575
TMT2	cassava4.1_002419m PACid:17972054	AT4G35300	1.166354201	0.784652062
SPP2	cassava4.1_008254m PACid:17994099	AT2G35840	1.085711675	0.811210375
PGM1	cassava4.1_003452m PACid:17960838	AT5G51820	1.033803977	0.831527628
UGPase2	cassava4.1_006965m PACid: 17961642	AT5G17310	1.029815509	0.836268835
cPGI	cassava4.1_008526m PACid:17960520	AT5G42740	1.030880805	0.874555718
FBA2	cassava4.1_009140m PACid: 17966251	AT4G38970	1.026531768	0.944833158
SUS6	cassava4.1_001283m PACid:17991130	AT1G73370	1.139926359	0.957015817
FK	cassava4.1_011584m PACid:17982732	AT3G59480	-1.475956124	0.013297578
cF1,6BPase, FINS1	cassava4.1_011197m PACid:17981706	AT1G43670	-1.217314961	0.039438558
FBAL	cassava4.1_032962m PACid:17968079	AT1G18270	-1.171850871	0.051744173
SUS4	cassava4.1_001864m PACid:17992794	AT3G43190	-1.258455378	0.065106092
FBA2	cassava4.1_009143m PACid:17961139	AT4G38970	-1.391879393	0.137753418
UGPase2	cassava4.1_006979m PACid:17979348	AT5G17310	-1.139212866	0.17657924
SUS4	cassava4.1_001871m PACid:17965267	AT3G43190	-1.15987115	0.190463169
PFP	cassava4.1_004602m PACid:17991512	AT1G12000	-1.274753778	0.199752268
PFK3	cassava4.1_006625m PACid:17989898	AT4G26270	-1.371593061	0.200778451
PFP	cassava4.1_003814m PACid:17990206	AT1G20950	-1.352083741	0.201283797
FK	cassava4.1_011578m PACid:17975802	AT3G59480	-1.514375705	0.20581161
PFK3	cassava4.1_004789m PACid:17985737	AT4G26270	-1.119311497	0.295388041
FRK	cassava4.1_011838m PACid:17972376	AT5G19150	-1.102633246	0.325308231
pPGI	cassava4.1_031246m PACid:17981861	AT4G24620	-1.049204492	0.575652002
HXK2	cassava4.1_006251m PACid:17973163	AT2G19860	-1.043431483	0.595756134
PGM2	cassava4.1_004336m PACid:17982342	AT1G70730	-1.03259972	0.739905026

 Table 4.2 Sucrose related proteins
 Proteins involved in sucrose metabolism up- or down regulated TDP.
 Significant ANOVA

 p-value ≤ 0.05 are indicated in bold. Fold change is represented in respect of TDP (N=3).

Carbohydrate Signalling

Sugar signalling is well known and certain sugars and some enzymes are involved in translating the metabolic state of the cell into a transcriptional response. As mentioned, glucose can be sensed by HXK1 (Jang et al., 1997; Moore et al., 2003) and fructose can be sensed by F1,6BPase (Cho and Yee, 2011), both of which were up-regulated after pruning. Also up-regulated after pruning was KING1 (cassava4.1_008188), the γ -regulatory subunit (Bouly et al., 1999) of the heterotrimeric SnRK1 (Snf1-protein kinase), which was 11-fold more abundant. Proteins homologous to SnRK1 in mammals (AMPK) and yeast (Snf1) have been described to be up-regulated under starving conditions (reviewed in Hardie et al., 1998). In plants, the role of SnRK1 proteins is still controversial. However, there are reports that SnRK1 inhibits the activity of enzymes involved in energy consuming pathways such as isoprenoid biosynthesis (3HMGCoA reductase), nitrogen assimilation (nitrate reductase) and sucrose biosynthesis (SPS) (Sugden et al., 1999). Sugden et al. (1999) showed that SPS is inactive in the phosphorylated state (Huber et al., 1989). I also identified KIN10, the catalytic α -subunit of the SnRK1 (Baena-Gonzalez et al., 2007), though no change in abundance was observed.

4.3.1.2. Changes in different metabolic pathways accompany the metabolic shift from sink-to-source

Energy derived from catabolic processes (in form of ATP and reducing equivalents i.e. NAD[P]H) are required for cell maintenance and to drive energy-consuming anabolic processes. To provide energetic compounds carbohydrates and other energy-rich metabolites are respired by various pathways. Depending on the metabolite source (e.g. lipid, sugar, protein, amino acids) different pathways are involved. For example, glycolysis consumes hexose-phosphates generating pyruvate, ATP and NADH, while lipids are metabolized by β -oxidation to acetyl Co-A. Both pyruvate and acetyl CoA provide substrate for the tricarboxylic acid (TCA) cycle. As shown in Figure 4.4 A, proteins of the functional categories, 'protein', 'amino acid', 'gluconeogenesis' and 'TCA/ organic acid' were statistically overrepresented in the dataset TDP (Table 4.3).

Energy producing pathways

Energy to fuel metabolism can be obtained by degradation of lipids. Interestingly, an enrichment of proteins functionally categorized in lipid metabolism was observed after pruning (Figure 4.4 A). Seven proteins were down-regulated in TDP compared ZDP samples, five of which are known to act in lipid synthesis. On the other hand of the ten proteins up-regulated, six are known to play a role in lipid degradation (Table 4.3). These observations indicate an induction of lipid degradation after pruning.

I observed an increased abundance of several peroxisomal proteins involved in β-oxidation and the glyoxylate cycle: the acyl-CoA oxidase ACX3 (cassava4.1_002966), the multifunctional protein MFP2 (cassava4.1_002479) and the peroxisomal ketoacetyl-CoA thiolase PKT3 (cassava4.1_007022). Ten additional proteins involved in fatty acid breakdown were also identified (Supplemental Table 4.1; Penfield et al., 2006). Tricarboxylic acid cycle proteins were also significantly enriched and up-regulated TDP (Figure 4.4 A). Metabolites derived from sugars, fatty acids, and proteins all feed into the TCA and are metabolized to produce reducing equivalents to fuel ATP production. In total, 49 proteins of the TCA cycle were identified (Supplemental Table 4.1), of which nine were up-regulated TDP compared to the ZDP control samples. In contrast, only one TCA protein was down-regulated TDP (Table 4.3).

Gluconeogenesis allows the de-novo synthesis of glucose from non-carbohydrate carbon substrates (i.e. pyruvate, lactate, glycerol, gluconeogenic amino acids). The two gluconeogenic enzymes phosphoenolpyruvate carboxykinase PCK1 (cassava4.1_004362; cassava4.1_030131) and peroxisomal malate dehydrogenase pMDH1 (cassava4.1_010585) were both found to be up-regulated in TDP samples (Table 4.3; Supplemental Table 4.1). In a sequential reaction, MDH catalyses the oxidation of malate to oxaloacetate which is further converted by PCK1 to phosphoenolpyruvate. Phosphoenolpyruvate can then be converted to hexose phosphates through gluconeogenesis, or to pyruvate through the last steps of glycolysis. In addition, the glyoxylate cycle enzyme citrate synthase CSY2 (cassava4.1_005825; Pracharoenwattana et al., 2005) was detected but its abundance did not change.

Twenty proteins involved in the oxidative pentose phosphate pathway (OPPP) were identified, eighteen of which were unchanged (Supplemental Table 4.1). However, the glucose-6-phosphate dehydrogenase isoform G6PD4 (cassava4.1_003566), which generates NADPH at the start of the pathway was up-regulated TDP (Table 4.3).

Table 4.3 Significant regulated proteins of the MapMan categorization with the largest changes. MapMan categories that showed highest changes and the proteins that changes most (p-value ≤ 0.05).

Mapman category	Cassava accession	Arabidopsis Accession	Max fold change	Anova (p)
gluconeogenese/ glyoxylate cycle	cassava4.1_004362	AT4G37870	2.842536127	0.015794126
gluconeogenese/ glyoxylate cycle	cassava4.1_030131	AT4G37870	2.560662975	0.029497669
gluconeogenesis	cassava4.1_010585	AT2G22780	1.768182403	0.028130428
OPP	cassava4.1_003566	AT1G09420	1.233848973	0.000655903
TCA / org	cassava4.1_007889	AT5G58330	2.283125624	0.009206196
TCA / org	cassava4.1_010105	AT5G43330	1.203658368	0.002399012
TCA / org	cassava4.1_009952	AT4G35650	1.431034228	0.04786744
TCA / org	cassava4.1_000903	AT2G05710	1.241465409	0.017624705
TCA / org	cassava4.1_006853	AT2G44350	1.613845419	0.033774052
TCA / org	cassava4.1_007540	AT1G59900	1.398320386	0.011352076
TCA / org	cassava4.1_004864	AT3G13930	1.298227513	0.042369153
TCA / org	cassava4.1_003490	AT3G52200	1.263526843	0.034907379
TCA / org	cassava4.1_008387	AT2G20420	1.300115518	0.043278571
TCA / org	cassava4.1_004579	AT3G16950	-1.119370463	0.014414463
glycolysis	cassava4.1_006596	AT3G12780	1.745902602	0.009172008
glycolysis	cassava4.1_006605	AT3G12780	1.61206826	0.024595073
glycolysis	cassava4.1_006818	AT2G29560	-1.559280338	0.013076458
glycolysis	cassava4.1_007678	AT2G36530	-1.184387774	0.017383169
glycolysis	cassava4.1_005990	AT5G56350	-1.598008389	0.000651792
lipid metabolism	cassava4.1_028937	AT5G35360	1.636998465	0.001626041
lipid metabolism	cassava4.1_002966	AT1G06290	2.249492405	0.003248717
lipid metabolism	cassava4.1_014036	AT4G16210	1.643172336	0.007485635
lipid metabolism	cassava4.1_005575	AT4G29010	1.577977396	0.008383851
lipid metabolism	cassava4.1_001538	AT4G35790	1.58413125	0.018376305
lipid metabolism	cassava4.1_002951	AT5G13640	1.178699477	0.023079062
lipid metabolism	cassava4.1_007181	AT2G33150	2.286929361	0.024956686
lipid metabolism	cassava4.1_002479	AT3G06860	1.959534388	0.026417829
lipid metabolism	cassava4.1_006559	AT2G18730	1.306196433	0.038275462
lipid metabolism	cassava4.1_019325	AT5G42890	1.561863456	0.04040195
lipid metabolism	cassava4.1_000033	AT1G36160	-2.372967306	0.000310268
lipid metabolism	cassava4.1_004720	AT2G26260	-1.953040311	0.004870589
lipid metabolism	cassava4.1_004314	AT3G22960	-2.069258196	0.01550972
lipid metabolism	cassava4.1_000041	AT1G36160	-4.840405433	0.022125948
lipid metabolism	cassava4.1_004405	AT5G52920	-1.460937398	0.029268563
lipid metabolism	cassava4.1_004230	AT3G22960	-1.581515844	0.03100602
lipid metabolism	cassava4.1_006550	AT4G36480	-1.299408497	0.044136398
lipid metabolism	cassava4.1_023396	AT2G07050	-2.283239733	0.051325251
gluconeogenese/ glyoxylate cycle	cassava4.1_004362	AT4G37870	2.842536127	0.015794126
gluconeogenese/ glyoxylate cycle	cassava4.1_030131	AT4G37870	2.560662975	0.029497669
mitochondrial electron transport / ATP synthesis	cassava4.1_009175	AT2G20360	1.374081152	0.029255982
mitochondrial electron transport / ATP synthesis	cassava4.1_012350	AT5G40810	1.333333982	0.051180451
mitochondrial electron transport / ATP synthesis	cassava4.1_014824	AT3G54110	2.108727377	0.075192815

Protein and amino acid metabolism

I observed changes in proteins associated with protein and amino acid biosynthesis. There was an increase in proteins assigned to protein ubiquitination and modification TDP compared to the ZDP controls (Table 4.4). The protein ubiquitination pathway served to conjugate ubiquitin to Lys residues within substrate proteins, thereby targeting them for degradation by proteasomes (Smalle and Vierstra, 2004). Amongst the functional category for amino acid metabolism 18 proteins were up-regulated TDP. Four of the proteins are assigned to the central amino acids metabolism like aspartate aminotransferase that catalyses the reversible transfer of the amino group from aspartate to α -ketoglutarate yielding glutamate and oxaloacete. Furthermore, it was described that they are responsible to recycle carbon skeleton during ammonia assimilation (Ryan and Fottrell, 1974).

 Mapman category	Cassava accession	Arabidopsis Accession	Max fold change	Anova (p)
 amino acid metabolism	cassava4.1_008396	AT1G12050	1.602166851	0.004113184
amino acid metabolism	cassava4.1_019208	AT2G43750	1.541881836	0.005888425
amino acid metabolism	cassava4.1_006617	AT1G70580	1.926825688	0.007351459
amino acid metabolism	cassava4.1_012571	AT5G54080	3.560328754	0.008195887
amino acid metabolism	cassava4.1_022406	AT4G34030	1.115867703	0.010464068
amino acid metabolism	cassava4.1_010180	AT2G17265	1.355471482	0.011336394
amino acid metabolism	cassava4.1_011138	AT3G22740	9.158163652	0.011499745
amino acid metabolism	cassava4.1_004831	AT5G62530	1.369684373	0.012721537
amino acid metabolism	cassava4.1_007524	AT1G80600	1.692282687	0.01966984
amino acid metabolism	cassava4.1_006432	AT5G11880	1.417256807	0.022360409
amino acid metabolism	cassava4.1_008771	AT1G09795	1.348388951	0.02236232
amino acid metabolism	cassava4.1_008563	AT2G24580	1.497246038	0.026408252
amino acid metabolism	cassava4.1_006859	AT5G46180	1.838310247	0.0271597
amino acid metabolism	cassava4.1_005703	AT3G22200	1.768579566	0.032529975
amino acid metabolism	cassava4.1_007094	AT4G31990	1.344153267	0.038616693
amino acid metabolism	cassava4.1_008844m	AT5G19550	1.260339511	0.04100868
amino acid metabolism	cassava4.1_006286	AT4G24830	1.460609283	0.041827029
amino acid metabolism	cassava4.1_007019	AT3G57050	1.5727444	0.047772756
amino acid metabolism	cassava4.1_009247	AT4G01850	-3.966421553	0.007795959
amino acid metabolism	cassava4.1_009789	AT3G61440	-2.966724969	0.010016052
amino acid metabolism	cassava4.1_009245	AT4G01850	-4.153689723	0.011618162
amino acid metabolism	cassava4.1_012023	AT5G65780	-1.914311188	0.015473361
amino acid metabolism	cassava4.1_011785	AT4G14880	-1.470820095	0.016861007
amino acid metabolism	cassava4.1_008023	AT1G17745	-1.721439695	0.023508802
amino acid metabolism	cassava4.1_009260	AT4G01850	-7.173982227	0.028675998
amino acid metabolism	cassava4.1_010021	AT3G61440	-3.602058257	0.042572879
amino acid metabolism	cassava4.1 009356	AT2G36880	-3.634983363	0.042766793

Table 4.4 Significant regulated proteins of the MapMan categorization amino acid and protein metabolism. MapMan categories that showed highest changes and the proteins that changes most (p-value ≤ 0.05).

Table 4.4 Significant regulated protein	ins of the MapMan catego	rization amino acid	and protein metabo	lism.
protein	cassava4.1_008257	AT2G38000	2.281747913	0.022194642
protein	cassava4.1_007163	AT4G38220	1.607520884	0.025997167
protein	cassava4.1_007251	AT4G38220	1.539019794	0.035387818
protein	cassava4.1_002552	AT1G50380	1.485492241	0.039766223
protein	cassava4.1_009672	AT3G54360	1.46021094	0.00386717
protein	cassava4.1_006459	AT1G06110	1.752486433	0.001786115
protein	cassava4.1_013730	AT3G27430	1.842292617	0.02456257
protein	cassava4.1_008212	AT1G53750	1.524920926	0.037236273
protein	cassava4.1_008421	AT5G58290	1.485892869	0.023993294
protein	cassava4.1_015645	AT3G60820	1.17945286	0.022298921
protein	cassava4.1_008374	AT5G09900	1.165663759	0.022289753
protein	cassava4.1_022803	AT3G13235	1.252930263	0.005124596
protein	cassava4.1_007929	AT1G51710	1.247724727	0.000184834
protein	cassava4.1_015319	AT2G18110	1.568825174	0.01445178
protein	cassava4.1_007130	AT1G04170	1.411027139	0.012777074
protein	cassava4.1_009232	AT1G53880	1.323855844	0.049159598
protein	cassava4.1_011934	AT2G40010	1.172392775	0.013602982
protein	cassava4.1_024858	AT5G07090	1.360660378	0.0453126
protein	cassava4.1_003839	AT3G03060	1.337480979	0.018067829
protein	cassava4.1_009061	AT1G45000	1.202475005	0.031655988
protein	cassava4.1_006415	AT1G63500	1.310031239	0.015797169
protein	cassava4.1_004238	AT3G25800	1.170059726	0.044526673
protein	cassava4.1_006148	AT4G35230	1.945108137	0.002996077
protein	cassava4.1_022125	AT4G20360	2.152845168	0.04550581
protein	cassava4.1_000656	AT1G09620	-5.828654907	0.041876401
protein	cassava4.1_032535	AT4G10320	-1.554065116	0.038778811
protein	cassava4.1_007409	AT1G14570	-1.67872442	0.013700506
protein	cassava4.1_009231	AT2G38860	-1.360936044	0.001005953
protein	cassava4.1_001804	AT4G30020	-2.780422867	0.033328303
protein	cassava4.1_000634	AT5G06460	-1.512632939	0.012333321
protein	cassava4.1_018147	AT5G42190	-1.633379408	0.028928969
protein	cassava4.1_000599	AT5G06600	-1.88056626	0.027227639
protein	cassava4.1_005302	AT3G18190	-1.595956909	0.011719071
protein	cassava4.1_005057	AT3G03960	-1.244498262	0.013973317
protein	cassava4.1_001585	AT3G07100	-2.204258055	0.045976556
protein	cassava4.1_000150	AT1G71220	-1.661860023	0.014141749
protein	cassava4.1_032325	AT5G67360	-5.267634152	0.045000855
protein	cassava4.1_004221	AT4G34980	-2.534486168	0.009117001
protein	cassava4.1_006951	AT2G03640	-2.356099306	0.043776796
protein	cassava4.1_008506	AT3G50000	-2.277335938	0.001188611
protein	cassava4.1_004241	AT4G26300	-1.243089333	0.000953209
protein	cassava4.1_000688	AT4G20850	-1.6375074	0.016587509

Cell wall biosynthesis

The plant cell wall consists of cellulose, hemicellulose and pectins. These different polymers make up the cell wall layers, giving it the rigidity. Plant cell walls undergo constant modifications in order to allow cell expansion and division in growing tissues. Biosynthesis of the cell wall includes polymerization and several modification steps. Of the proteins described to be involved in cell wall synthesis and hemicellulose modifications, 12 were down-regulated (e.g. RHM1, UDP-GlcNAc) TDP compared to the ZDP controls, while five others were up-regulated (like expansin-like 1 pectin methylesterase inhibitor [PME inhibitor] and xylanase 1; Table 4.5). PME was shown to be involved in cell wall modifications required for pollen tube growth (Jiang et al., 2005). The finding that a putative PME inhibitor is up-regulated, while most other cell wall biosynthetic proteins were down-regulated, indicates that cell wall modifications and growth may be reduced.

Table 4.5 Significant regulated proteins of the MapMan categorization cell wall. MapMan categories that showed highest changes and the proteins that changes most (p-value ≤ 0.05).

Mapman category	Cassava accession	Arabidopsis Accession	Max fold change	Anova (p)
cell wall	cassava4.1_004339	AT3G14310	1.481605442	0.003386575
cell wall	cassava4.1_003278	AT1G62440	1.599930163	0.005963094
cell wall	cassava4.1_001252	AT1G58370	1.475983414	0.007256631
cell wall	cassava4.1_004821	AT4G02320	1.689617201	0.028879098
cell wall	cassava4.1_014262	AT3G45970	1.465024207	0.032980867
cell wall	cassava4.1_013014	AT5G13870	-2.053823582	0.002361225
cell wall	cassava4.1_003705	AT5G49720	-4.673208839	0.005091526
cell wall	cassava4.1_006282	AT1G31070	-1.901909375	0.009644226
cell wall	cassava4.1_005517	AT1G75680	-2.472428331	0.015315386
cell wall	cassava4.1_026770	AT5G07720	-7.792853011	0.015907422
cell wall	cassava4.1_012617	AT1G63000	-2.510786326	0.017298634
cell wall	cassava4.1_003070	AT1G78570	-1.939766287	0.024894052
cell wall	cassava4.1_012622	AT1G63000	-3.058469716	0.027758688
cell wall	cassava4.1_006215	AT3G61490	-6.021070584	0.030450968
cell wall	cassava4.1_023284	AT3G51160	-1.612490451	0.032606569
cell wall	cassava4.1_013011	AT3G23730	-7.078208205	0.034907825
cell wall	cassava4.1_007645	AT3G62830	-2.474521947	0.046882028

Changes in strigolactone biosynthesis- release of bud outgrowth

According to our analysis the MapMan category 'hormones' was significantly down-regulated after pruning. Interestingly, investigations of this functional category revealed that two proteins involved in strigolactone biosynthesis, MAX1 and MAX4 (cassava4.1_005510 and cassava4.1_005134), to be down-regulated 2.3 and 9.4 times, respectively. For Arabidopsis it was shown that strigolactone is involved in maintaining axillary bud dormancy. It was shown that strigolactone-deficient mutant plants, *max* (more axillary growth), exhibit increased branching (Stirnberg et al., 2002; Sorefan et al., 2003; Booker et al., 2005). Recently, a strigolactone transporter ABCG40 (also known as PDR12 that transports strigolactone in petunia; cassava4.1_027677; cassava4.1_000229) was described (Kretzschmar et al., 2012) ABCG40 was 1.7 times more abundant after cutting (Table 4.6; Supplemental Table 4.1).

Table 4.6 Significant regulated proteins of the MapMan categorization hormone metabolism. MapMan categories that showed highest changes and the proteins that changes most (p-value ≤ 0.05).

Mapman category	Cassava accession	Arabidopsis Accession	Max fold change	Anova (p)
hormone metabolism	cassava4.1_015449	AT1G28200	1.407374243	0.010436829
hormone metabolism	cassava4.1_013447	AT1G52340	1.283231678	0.038862279
hormone metabolism	cassava4.1_014697	AT5G43830	1.499349065	0.011633709
hormone metabolism	cassava4.1_015980	AT5G42650	1.540189318	0.045488344
hormone metabolism	cassava4.1_001259	AT1G67560	1.196296357	0.013257182
hormone metabolism	cassava4.1_005134	AT4G32810	-9.38927503	0.044837868
hormone metabolism	cassava4.1_000306	AT2G36910	-2.828121082	0.040240115
hormone metabolism	cassava4.1_005510	AT2G26170	-2.30123054	0.04271988
hormone metabolism	cassava4.1_006458	AT1G11680	-1.461856026	0.036350652
hormone metabolism	cassava4.1_003527	AT5G63120	-2.073351598	0.002667439
hormone metabolism	cassava4.1_023409	AT1G79460	-42.83336756	0.004069604

4.4. Discussion

4.4.1. Robustness of proteomics data analysis

Here, I show that shotgun proteome analysis proved helpful in elucidating the changes in protein abundance when cassava storage roots are transformed from a sink to a source and induced to mobilize their starch. The PCA analysis showed that one of the TDP biological replicates separated apart from the other two, while the ZDP control group clustered together closely. However, the treated samples were clearly separated from the controls along the main axis of the PCA analysis, suggesting that changes caused by pruning occurred in all three TDP samples. It is likely that after pruning, the plants are more stressed than the control plants, and therefore in a less uniform state. It is also likely that, because of the TDP sample separation, the statistical significance of individual protein changes are less pronounced than they could be with further replication. Nevertheless, the data I present here are valuable, and their analysis provides insight into storage root signalling and metabolism.

When analysing my proteome data, it became apparent that cassava frequently has multiple homologs to a given Arabidopsis protein suggesting that gene duplication might have since the evolutionary divergence of the two species. However, for some cases it transpired that the cassava genome database is not correctly annotated. For example, an incorrect annotation was found for LDA, where the single gene locus is interrupted and incorrectly given as two loci in the database. Thus, in order to analyse protein families in more detail, it will be crucial to carefully verify that the gene annotation is correct.

4.4.2. Changes in starch metabolism caused by pruning

As expected, I could show that pruning off the cassava shoots induces starch remobilization in storage roots. The decrease in starch content, both at the site of stem pruning and in subterranean storage roots, was highly significant after 10 days (Figure 4.1 B, C). This is in accordance with previous studies of pre-harvest pruning experiments (van Oirschot et al., 2000). I could show using various native gels that there was an increase in amylolytic activity in storage roots accompanying the change in starch. However, with the exception of LDA, it was not possible to really say which enzymes are responsible for the activity bands I observed, hence the use of proteomics.

My data reveal that there are changes in starch metabolic proteins, but these changes are not as widespread as one might have expected. Furthermore, not all of the changes can be simply interpreted. The down-regulation of the root specific large subunit of AGPase (APL3) after pruning is in agreement with the idea that the rate of starch synthesis is decreased upon transition from sink-to-source. AGPase is widely accepted to be the step at which the flux into starch is controlled in plants. The down-regulation of PWD after pruning is more surprising as the enzyme has a designated role in starch degradation (Baunsgaard et al., 2005; Kotting et al., 2005). That said, it was shown that glucan phosphorylation not only occurs during starch degradation, but also during synthesis (Nielsen et al., 1994), explaining the presence of PWD in control storage roots. Furthermore, it should be pointed out firstly, that the change in PWD abundance was small and secondly, that it is not known whether phosphorylation is really required for the degradation of starch in cassava root, as it is in Arabidopsis leaves or potato tubers.

Despite the red-pullulan gels suggesting a higher LDA activity at TDP compared to ZDP (Figure 4.2), at the proteome level no significant change was observed. It is possible that the increase in activity was due to posttranslational modification rather than an increase in protein abundance. However, the semi-quantitative native gels also need to be backed up with accurate assays. In contrast, the proteomic analysis showed that AMY3 protein abundance is substantially increased in starchmobilizing roots TDP. It is not clear whether this activity is reflected on the native gel analysis, and further work will be needed to determine if there is an increase in α -amylase activity. In Arabidopsis, mutant analysis revealed that AMY3 is not essential for transitory starch degradation (Yu et al., 2005). However, for cereals it is well described that α -amylases are the main hydrolytic enzymes involved in degrading storage starch for germination (Fincher, 1989). Furthermore, in other systems, an increase in α -amylase activity correlates with re-mobilization of storage starch (e.g. in defoliated white-clover and poplar wood ray cells; Baur-Höch et al., 1990; Witt and Sauter, 1994; Gallagher et al., 1997). This supports the idea that storage starch degradation in some heterotrophic tissues involves α -amylases. If the main pathway to degrade cassava storage starch does involve AMY3, it implies that branched linear maltooligosaccharides are released from the granule surface. Branched and maltooligosaccharides will serve as substrates for debranching enzymes (LDA and ISA3) to generate more linear maltooligosaccharids (Delatte et al., 2006; Streb et al., 2008). Linear maltooligosaccharides can be further processed by stromal enzymes. In the pathway described in Arabidopsis leaves β -amylases would be one of the key stromal enzymes degrading both the granule surface and linear maltooligosaccharides. It is surprising that in the proteome analysis, I could not identify any β -amylase homologs. The reason for this might be that β -amylases are not involved in storage starch mobilization in cassava or the proteins were below the detection limit.

To strengthen my hypothesis that AMY3 is a key player in cassava root starch breakdown, functional analyses are needed. A transgenic cassava line with repressed AMY3 is in development, and will give allow the functionality of AMY3 in storage root to be tested directly (see Chapter 5). If it is involved, changing its expression may offer an opportunity to increase starch yields in cassava storage roots by preventing the post-harvest decline in starch levels.

4.4.3. Changes in sucrose metabolism caused by pruning

Although I interpret the changes in proteins detected on the assumption that the sink-source transition occurred, it is interesting that the actual sucrose amount did not change (Figure 4.1). In sink tissues sucrose is unloaded from the phloem and transported to the cell, where it is hydrolysed by SUS or cytosolic INV depending on how sucrose is cleaved UDPG and fructose (SUS) or glucose and fructose (INV) are generated. The free hexoses are then phosphorylated either by HXK or FK in order to feed the hexose-P pool. In the proteomic analysis I observed more of FK in untreated samples

(sink). This suggests that fructose is phosphorylated predominantly by FK to increase F6P levels. In subsequent steps F6P can be equilibrated by PGM to G6P that then can be transported to the amyloplast by the pG6PT where it can be converted to starch. Interestingly, I could identify more of cytosolic F1,6BPase before pruning. This enzyme catalyses the dephosphorylation of F1,6BP to F6P by releasing Pi. As a result again F6P is produced that could be subjected towards the amyloplast, and hence starch synthesis. A recent screen for fructose insensitive mutants in Arabidopsis identified the cytosolic F1,6BPase as a sensor for fructose availability. It was shown that similar to HXK1 signalling this is not dependent on the catalytic activity. This finding suggests that potentially in heterotrophic tissues similar mechanism exists. On the other hand after pruning and thus during transition from sink to source metabolism, cINV2 increased suggesting that sucrose is hydrolysed in the cytosol to glucose and fructose. This might be beneficial as high sucrose export rate to the new emerging leaves might not be required yet. The concomitant increase of hexokinases (HXK1 and HXK3) suggests that potentially the demand for hexose-P increased in the root that can feed into diverse metabolic pathways. Furthermore, a plastidic fructose-1,6 bisphosphatealdolase (FBA) that catalyses the reversible reaction of F1,6BP to DHAP and triose-P. Further DHAP can enter the oxidative pentose phosphate pathway generating NADPH. Thus, these findings suggest that the sucrose metabolism has changed. There are good evidences that sucrose pathway generates F6P that is likely converted to G6P and hence starch in the amyloplast in untreated storage roots. On the other hand the high abundance of cINV suggests that there is an increased demand for hexose-Ps that can supply various metabolic pathways.

4.4.4. Evidence for sugar signalling in cassava storage roots

It might be that the concentration of sucrose is finely controlled and is kept constant despite large changes in fluxes. After pruning, the influx of sucrose must have stopped abruptly and, after a time, sucrose production in the root must occur to support regrowth. It is also possible that there were significant changes between ZDP and TDP but that after ten days, a new homeostasis has been reached. That said there were relatively few changes in sucrose metabolic proteins detected ten days after pruning compared to control plants, suggesting that perhaps the storage root has already the enzymatic capacity to synthesise sucrose.

In potato tubers, where transition of sink to source was studied upon tuber sprouting, a correlation between activity of either SUS or cINV and developmental stage of the tissue was observed. Thus, INV activity is predominant in the tuber initiation phase, where growth occurs. Sucrose cleavage by SUS on the other hand is the main sucrolytic pathway in developed tubers (Ross et al., 1994; Appeldoorn et al., 1997). The up-regulation of cINV2 TDP might also indicate a change in how sucrose is degraded in cassava roots. The concomitant up-regulation of two hexokinases, HXK1 and HXK3,

point into the direction that there is an increased capacity to feed hexoses (potentially generated by cINV2) into the hexose-P pool. Hexose-Ps are intermediates used for diverse catabolic and anabolic pathways. An increase in HXK activity and in biosynthetic activities associated with transition to a source tissue would also lead to an increased demand of ATP consistent with my findings of a significant increase of proteins involved in respiration (Table 4.3). Although not measured here, I anticipate that there would be an increase in respiration in the storage roots of pruned plants.

In roots TDP, there was a significant up-regulation of KING1, a regulatory subunit of SnRK1, while the catalytic α -subunit remained unchanged. SnRK1, a homolog to AMPK in mammals and Snf1 in yeast, is reported to be involved in sucrose signalling and up-regulated upon starvation. Expression analysis showed that SnRK1 is up-regulated in growing potato stolons, whereas in mature tuber tissue fewer transcripts were detected suggesting that SnRK1 is active during tuber maturation (Man et al., 1997). In addition it was shown that the transcript of y-subunit (KING1) is highly expressed in stems and root tissue of Arabidopsis (Bouly et al., 1999). SnRK1 is proposed to act in two ways; it directly inhibits target enzymes involved in isoprenoid synthesis, nitrogen assimilation and sucrose synthesis (Sugden et al., 1999) by phosphorylating them. For Arabidopsis, it was also shown that overexpression of the catalytic α -subunits (AtKIN10 and AtKIN11) increases the transcription of target enzymes involved in starvation and/or stress responses via a transcriptional cascade involving factors like GBF5 and bZIP (Satoh et al., 2004; Baena-Gonzalez et al., 2007). Amongst up-regulated transcripts, were genes repressed by sugars. In addition, for wheat endosperm it was shown that the wheat TaAMY2 promoter is induced by SnRK1, supporting the hypothesis that SnRK1 is involved in low sugar-signalling. In contrast, overexpression of SnRK1 in potato tubers as well as rice led to an increase in starch content as well as an increase in sucrose synthase and ADGPase activity (McKibbin et al., 2006). Given the strong data implicating SnRK1 in the response to starvation, the finding that the KING1 subunit is greatly up-regulated is exciting and makes it an excellent target for further experimental analysis.

Also in the context of sucrose signalling, it was shown that the sucrose signalling pathway of SnRK1 is linked to the signalling pathway via the metabolite trehalose 6-phosphate (T6P). It was shown in Arabidopsis that T6P increases after sucrose feeding and re-illumination at the end of the night (Schluepmann et al., 2004; Lunn et al., 2006). These findings have led to the suggestion that T6P serves as a signal for high carbon availability. It was further shown that T6P can stimulate redox activation of AGPase (Kolbe et al., 2005; Lunn et al., 2006) and that supplying exogenous trehalose increases APL3 transcription (Wingler et al., 2000). My proteomics data revealed the presence of four homologs of trehalose-6-phosphate synthase (TPS; Supplemental Table 4.1), but they were unchanged during the experiment.

The pruning of my cassava plants clearly had a big impact on other metabolic pathways that were not the primary focus of my work, with changes of proteins involved in lipid, protein and amino acid metabolism and in the biosynthesis of hormones such as strigolactones. Clearly such changes can be interpreted in the context of this study. For example, the fact that strigolactones act as inhibitors of apical dormancy release is consistent with re-sprouting of lateral buds (Figure 4.1 A, Table 4.6). Such findings suggest that in cassava, as in other plants, strigolactones are involved in regrowth and branching. My work therefore provides further gene targets for investigation that could ultimately be used to improve plant vigour or to alter plant architecture.

The extent of re-mobilization of starch after pruning however, cannot only be explained only by the transition of the storage root to a source tissue supplying newly-developing sinks (i.e. the new leaves). The strength of these sinks is not likely to be strong enough to require all the carbon lost from the starch pool. The decrease of 48% in starch content 10 days after pruning (Figure 4.1 E) additionally reflects the needs of storage roots to maintain its own cellular homeostasis through respiration. Without the support of the autotrophic leaf tissues, stored carbohydrates are converted into CO₂ through the OPPP and the TCA cycle. In addition to supplying energy (e.g. for housekeeping metabolism and membrane energization) these pathways will also supply various intermediates which are needed to feed other biochemical processes (i.e. protein metabolism, gene transcription, general metabolic pathways) throughout the day and night.

4.4.5. General conclusion and outlook

Overall, the analysis of changes in the primary carbohydrate metabolism together with the overall proteome changes occurring after pruning lead me to the conclusion that a transition from sink to source did indeed occur. The finding that AMY3 levels correlated with starch remobilization, places it as a main candidate in the starch degradation pathway depends. Moreover, the absence of β -amylase homologs in the proteome data supports this idea. To confirm the hypothesis that AMY3 is the key enzyme in cassava to mobilize starch a functional analysis using an RNAi construct to suppress AMY3 expression is underway (Chapter 5).

It might be that some proteins (e.g. the β -amylases) are missing as their abundance is below detection limit. Our laboratory recently conducted a combined proteome and transcriptome study in the non-model plants *Cecropia peltata*. More detailed information was gained with a transcriptome analysis (Bischof et al., 2013) than with the proteome analysis, but the combination of both was optimal. In order to strengthen the data I present here, a whole transcriptome analysis using the RNAseq is underway. As transcript levels respond faster than protein levels, I performed a time-course harvest of storage roots after pruning. At the time of writing, storage roots were harvested 4h,

24h, 2 days, 6 days and 10 days after pruning, with control samples (uncut plants) at time points 0h, 4h and 24h. The outcome of this experiment is still under investigation, but when completed, will be directly comparable with my proteome study.

5. Increasing starch bound phosphate level: A transgenic approach

5.1. Introduction

Depending on the end use in food or non-food industries, starches with different properties are needed. Apart from processed food, confectionary and drinks, starch is used to make corrugated board and paper. For most of these processes, starches are modified postextraction to obtain the required properties. Many modifications are gained by substitution of hydroxyl groups. Substitutions are gained through esterification (e.g. phosphate, acetate), oxidation, etherification (e.g. hydroxypropyl, hydroxyethyl) or cross-linking (e.g. phosphate diester). These chemical alterations confer properties such as increased water retention, better retrogradation, starch structure stabilisation, or improved pasting properties. In the paper industry, cationic starches are used for paper strengthening (Tharanathan, 2005). Native starches from various botanical sources differ in their physico-chemical properties. Several studies have shown that parameters like amylose:amylopectin ratio, granule size, protein and lipid content, and the degree of starch phosphorylation are responsible for influence key functional characteristics such as peak viscosity, paste clarity, or retrogradation (Tester and Morrison, 1990; Jobling et al., 2002). The degree of phosphorylation was reported to influence peak viscosity and gel formation. This was shown by the analysis of physico-chemical properties of potato wild-type starch compared to Stgwd suppressor lines which have low levels of starch-bound phosphate (see below and Chapter 1). This revealed that high maximum viscosity derives from starch phosphorylation (Vikso-Nielsen et al., 2001). Potato tuber starch, which has a high degree of phosphorylation (0.5%), shows a much higher viscosity peak compared to cassava root starch, which has only 0.05% starch phosphorylation (Blennow et al., 1998).

Early studies of GWD down-regulation in potato revealed a starch excess phenotype in leaves, while tubers exhibited a reduction in cold sweetening. These findings indicated that *St*GWD is involved in starch degradation in both tissues. As these studies also showed that the lack of *StGWD* leads to a reduced G6-phosphorylation (Lorberth et al., 1998; Vikso-Nielsen et al., 2001), they provided the first indication that phosphorylation is important for the initial step in starch degradation. Subsequent studies in the model plant Arabidopsis supported this finding. Thus, a model has emerged in which amylopectin on the starch granule surface is phosphorylated by GWD during degradation, rendering it more soluble. Phosphate-ester bound to the starch granule is suggested to open the packing of

double helical chain structures by altering the steric conformations. It may also destabilise the double helices themselves. This is proposed to make the glucan chains more accessible for hydrolysing enzymes like α - and β - amylases, and the debranching enzymes (ISA3, LDA) involved in starch degradation (Edner et al., 2007). Through studies of Arabidopsis, another glucan dikinase (PWD, phosphoglucan, water dikinase) was subsequently discovered and shown to phosphorylate glucose units of amylopectin at the C3 position after prephosphorylation of GWD (Baunsgaard et al., 2005; Kotting et al., 2005). GWD was also shown to be specific for the 6-carbon of the individual glucose units (Ritte et al., 2002).

Limited proteolysis revealed that *St*GWD, a 155 kDa protein, consists of 5 stable fragments. Analysis of these fragments showed that GWD contains three major domains important for successful amylopectin phosphorylation. GWD contains two CBM domain that are involved in binding amylopectin and a pyruvate-phosphate dikinase-like domain is involved in phosphotransfer via an autocatalytic histidine residue (Mikkelsen et al., 2005; Mikkelsen et al., 2006). Investigation of the third domain through site-directed mutagenesis of cysteine residues revealed a redox regulation motif. Functional analysis revealed that GWD is active by reduction of a disulphide bridge in a reducing environment which is predominant during the light phase in chloroplasts. Although the main function of starch phosphorylation was shown to be important during starch mobilisation, Nielsen et al. (1994) reported that during starch biosynthesis phosphate is incorporated into starch. In potato tubers discs 0.5% of the glucosyl residues in newly synthesised starch are phosphorylated (Nielsen et al., 1994). This finding also explains why starch granules are phosphorylated not only at the surface but also in the inner layers. This was recently visualized by synchrotron X-ray microfluorescence mapping in potato starch granules (Buleon et al., 2014).

For efficient hydrolysis of starch granules to maltose and oligosaccharides, phosphate esters need to be removed. In higher plants two glucan phosphatases – SEX4 and LSF2 - have been described (Zeeman and Ap Rees, 1999; Niittyla et al., 2006; Kotting et al., 2009; Santelia et al., 2011). The characterisation of these phosphatases in Arabidopsis revealed that both enzymes are responsible for removing phosphate residues both from the starch granules and from soluble phospho-oligosaccharide released from the starch granule. Recombinant *At*SEX4 protein efficiently removes phosphate residues from both the C-6 and C-3 position of the glucose units. The *Atsex4* mutant has increased starch levels as well as high phospho-oligosaccharide content. The accumulation of phospho-oligosaccharide revealed the importance of removing phosphate contents as some hydrolysing enzymes

(including the important maltose-producing exoamalyse, β -amylase) are blocked by phosphate residues (Kotting et al., 2009). In contrast, AtLSF2 removes preferentially C3- bound phosphate (Santelia et al., 2012). In contrast to *Atsex4* mutants, *Atlsf2* mutants show no difference in starch levels to the wild type, and nor do phospho-oligosaccharides accumulate. This suggests that side-specificity of *AtSEX4* for C3-bound phosphate may be sufficient to mediate its removal during starch breakdown. However, the loss of LSF2 was reflected at the level of total starch-bound phosphate, which was increased by 25%, specifically due to an increase at the C3 position. In addition, it was shown that although *Atlsf2* seems to have only little effect on starch metabolism, the double mutant *Atsex4lsf2* had a more severe starch-accumulating phenotype than the *Atsex4* single mutant. This showed that although *AtLSF2* is dispensable for normal rates of starch degradation, its activity becomes important in the *Atsex4* mutant background (Santelia et al., 2011).

In recent studies, transgenic plants overexpressing StGWD were described and published in the scientific literature and in patent applications. StGWD was expressed in barley (Carciofi et al., 2011), wheat and corn (Sonnewald and Kossmann, 2013). Carciofi et al. (2011) showed that StGWD overexpression leads to more than a 7-fold increase of starch-bound phosphate. This corresponds to 3 times more phosphate than what is found for cassava native starch. Here, we aimed to increase the degree of starch-bound phosphate in cassava starch granules, as well as to increase starch yield. Therefore, three approaches were followed. Two aimed at increasing starch-bound phosphate and one at increasing starch levels in cassava storage root. Firstly, potato StGWD was overexpressed either in its wildtype form or as a modified, redox-insensitive form ($StGWD_{C1084}$). This was done with the expectation that, if the wild type form was inactive in vivo through oxidation, the redoxinsensitive form would be constitutively active. Secondly, RNAi constructs were designed against each of the two endogenous genes encoding glucan phosphatases SEX4 and LSF2 in order to reduce their activity. Both RNAi constructs are driven by a root-specific promoter to limit dephosphorylation activity specifically in cassava storage roots. Third, an RNAi construct was designed against the plastidial alpha amylase gene (AMY3) to decrease starch degradation in storage root and thereby increasing starch yields in an agricultural setting. As shown in the previous chapter, AMY3 is highly induced at both gene and protein levels during starch remobilisation in cassava storage roots.

5.2. Transformation and regeneration of cassava

5.2.1. Overexpression of potato glucan, water dikinase in cassava tissue culture

5.2.2. Construct description, in vitro analysis

As described, potato starch is highly phosphorylated compared to other plant species. To investigate if the potato StGWD would be as efficient in phosphorylating starch granules in other species and to investigate the impact of the mutated, redox-insensitive StGWD in vivo, constructs for expression of StGWD or the redox-insensitive StGWD_{C10845} were transformed into cassava friable embryonic cell cultures (FECs; see Chapter 2.12; Figure 2.1). In subsequent steps, the transformed FECs were successfully regenerated on selective media, containing the antibiotic geneticin. The last steps for regenerating plantlets are performed on media without antibiotics. Thus, the regenerated plantlets were subsequently re-tested by growing them on selective rooting media containing the antibiotic geneticin. In this test, only transformed plantlets containing the construct produce roots. For the StGWD construct, 22 individual plant lines were isolated and for the StGWD_{C10845}, 43 plant lines were isolated. The insertion of the transformation construct in the cassava plantlets was further verified by insert-specific PCR (Figure 5.1, Chapter 2.12.1) and DNA sequencing of the products. For StGWD lines, this revealed an 81% positive transformation rate. For the StGWD_{C10845} lines, all lines selected in the rooting test were positive by PCR and sequencing. For further analysis, 13 individual StGWD lines and 35 individual StGWD_{C1084S} were selected.

Figure 5.1 Representative PCR reactions to test positive *StGWD* and *StGWD*_{*c10845*} **transgene insertion.** Primers annealing in the promoter and insert region were chosen for the PCR. Here the transgenic *St*GWD #5 line was loaded on a 1% Agarose gel together with wild-type, plasmid and water as template. For DNA control the *PP2A* was amplified.

The expression levels of StGWD and StGWD_{C10845} proteins in the selected transgenic lines were investigated by immunoblot analysis, compared to untransformed wild-type plants. As both proteins were tagged with a FLAG-tag at the C-terminus, the protein level was investigated using two antibodies; an anti-GWD antiserum raised against recombinant StGWD protein (Eurogentec) and a commercially-available anti-FLAG antibody raised against the FLAG-tag (α -M2, Sigma). The anti-GWD antibody recognised both the overexpressed StGWD/StGWD_{c10845} (162 kDa) protein and another protein of similar molecular weight – presumably the endogenous MeGWD (155 kDa). This second band was variable in intensity, but was observed in both transformed plants and the wild type. As shown in Figures 5.2 and 5.3, the expression level of the recombinant protein in leaf tissue varied from high to undetectable between the individual transformed lines. The antibody against the FLAG tag was used to discriminate between the endogenous and overexpressed StGWD protein. Immunoblots incubated with the anti-FLAG antibody showed that it was specific (i.e. the second band was not visible), but the overall sensitivity was much lower than for the anti-GWD antibodies. Considering both the anti-GWD and the anti-FLAG immunoblots, the transgenic lines were divided into three groups of high, intermediate and low/nonexpressing lines. High expression refers to clear protein detection with both antibodies; intermediate when protein expression detected with the anti-GWD, but not the anti-FLAG antibodies; low when neither antibodies detected the overexpressed proteins. For the StGWD over-expressing lines, four (lines 18, 17, 5 and 2) were identified with high, two with intermediate (lines 16 and 11) and seven with low (lines 6, 9, 1, 20, 3, 21, and 19) protein expression levels (Figure 5.3). For the transgenic StGWD_{C10845} cassava lines tested, there were 18 with high (lines 48, 52, 45, 43, 53, 46, 41, 9, 13, 20, 30, 27, 22, 39, 6, 34, 10, and 24), 15 with intermediate (50, 51, 47, 42, 44, 35, 36, 8, 40, 33, 5, 32, and 11), and four with low (lines 3, 15, 4, and 49) protein expression (Figure 5.3).

Figure 5.2 StGWD expression levels in transgenic Cassava lines

Thirty μ g of total leaf protein from individual transgenic Cassava lines were subjected to immunoblot analysis. Replicate blots were performed using anti-*St*GWD (top panel) or anti-FLAG (bottom panel) primary antibodies. The black arrow indicates the 162 kDa *St*GWD protein. The grey arrow may represent the endogenous 155 kDa *Me*GWD protein.

Figure 5.3 StGWD $_{\rm C1084S}$ expression levels in transgenic Cassava lines

Immunoblot analysis as in Figure 5.1 of individual transgenic cassava lines using anti-StGWD or anti-FLAG antibodies. The black arrow indicates the 162 kDa $StGWD_{C1084S}$ protein. The grey arrow may represent the endogenous 155 kDa *Me*GWD protein.

5.2.3. Growth analysis of transgenic *St*GWD and *St*GWD_{C1084S} lines compared to wild-type plants

To describe any effects of expression of either the StGWD or the StGWD_{C1084S} constructs on growth, yield and starch-bound phosphate, a set of transgenic lines were transferred to soil and grown under greenhouse conditions. The selection of lines for analysis was performed according the protein levels detected in leaves. Transgenic lines were selected with either high or low expression, the latter serving as transgenic controls. Thus, for StGWD-9 overexpressing lines (18, 17, 5, 2, 16, 11, 3, 21 and 19) (Figure 5.2), and 12 for StGWD_{C1084S} the lines (48, 52, 45, 46, 41, 49, 44, 9, 13, 33, 5, 3, 15) (Figure 5.3) were grown in the greenhouse for storage root formation. As an additional control, in-vitro grown wild type (cv. 60444) was transferred on soil. Four months after transplantation of the transgenic lines, plant height, leaf numbers and internode numbers were determined as described in Chapter 3.2.1. Figures 5.4 and 5.5 show the transgenic StGWD and StGWD_{C10845} lines (ordered according transgene expression levels; see Figures 5.2 and 5.3), compared to wild-type plants. For the transgenic lines expressing the wild-type StGWD construct the number of internodes and leaves showed a tendency to be higher than in wild-type plants though, only for line 2 a significant difference in number of internode was observed (Figure 5.4 B-C). The analysis of leaf number shows a tendency that transgenic plants – StGWD and $StGWD_{C10845}$ retain the leaves compared to wild type plants, though only for the StGWD CLI0845 – lines 33, 41, 5, and 9 a significant difference was seen. Older leaves were curled and bent downwards, while the newly developing leaves at the apex were apparently unaffected. Although this seemed to be a general phenotype for transformed cassava plants, in StGWD lines 17 and 5, the effect was more severe and seemed to be consistent for all leaves as they aged. The other plants showed the leaf-phenotype for a certain period, but it then well as disappeared at a later stage in development. This leaf phenotype was not observed when the plants were grown in vitro. The StGWD lines, when compared to wild-type plants, grew less well shown by plant height (Figure 5.4 A). This reduced growth effect was statistically significant (Student's t-test \leq 0.05) for the lines 11, 16 and 17. For these transgenic lines the protein expression levels were high. This suggests that the protein expression might influence growth of the internodes as the plants otherwise appear to be at the same developmental stage. The negative influence was obvious in two plant lines with high expression (17, 5), which showed a pronounced stunted growth (Figure 5.4 D). Three out of four lines with highest protein expression levels (18, 17 and 5) showed decreased growth as the two lines with intermediate protein expression (16 and 11) (Figure 5.4 A). However, the transgenic

Figure 5.4 Growth analyses of transgenic *St*GWD cassava lines

In vitro grown plantlets were transferred into soil and grown in the greenhouse. The general growth parameters were determined after 4 months. The transgenic lines were arranged according the protein loading in Figure 5.1 (from high in dark grey to low in light grey; Figure 5.1). A) Height (cm), B) number of internodes, C) number of leaves. Transgenic lines (grey bars), cv. 60444 wild type (black bar). Mean \pm SE (N=1-5). Asterisk shows significant difference (t-test < 0.05) D) Pictures of representative transgenic plants and a wild-type plant.

lines with low or non-detectable expressed protein (3, 21, and 19) grew comparably to wildtype plants. From the analysis of the redox-insensitive StGWD_{C1084S} lines, no clear correlation between plant growth parameters and recombinant protein expression could be made. None of the lines showed a significant difference compared to wild-type plants (Figure 5.5).

Figure 5.5 Growth analyses of transgenic $StGWD_{C1084S}$ cassava lines

In vitro grown plantlets were transferred into soil and grown in the greenhouse. The general growth parameters were determined after 4 months. The transgenic lines were arranged according the protein loading in Figure 5.2 (from high in dark grey to low in light grey; Figure 5.2). A) Height (cm), B) number of internodes, C) number of leaves. Transgenic lines (grey bars), cv. 60444 wild type (black bar). Mean \pm SE (N=1-5). Asterisk shows significant difference (t-test < 0.05).

D) Pictures of representative transgenic plants and a wild-type plant.

5.2.4. Starch visualization in leaf and determination of storage root growth in the transgenic plants

To provide a first insight in impact of StGWD or StGWD_{C10845} expression on starch metabolism, the tips of leaf 4 or 5 were stained with iodine at the end of the day and end of the night (Figure 5.6). As shown in Chapter 3 (Figure 3.5), leaf starch in the wild type is not fully degraded at the end of the night. Wild-type leaves stained in a brown-reddish colour at both time points. For the transgenic lines, leaf tissue was harvested from two plants representing high, intermediate and low protein expression levels. Starch stained a brownreddish colour as in the wild type. For the transgenic StGWD lines with high protein expression (18, 17), starch had accumulated at the end of the day and a residual amount still seen at the end of the night. The two StGWD transgenic lines with intermediate protein expression level (16, 11) had starch at the end of the day, but less starch could be seen at the end of the night than in the wild type. For one low expressing line (21) starch was detected at both time points where for another (19) less starch was observed at the end of the night compared with the end of the day. Interestingly, the transgenic lines expressing the redox insensitive StGWD_{C1084S} starch stained darker in contrast to the brown-reddish colour of the wild type and the StGWD overexpressing lines. The redox insensitive lines expressing high protein levels (9, 13) and intermediate protein level (5) had starch at the end of the day but did not stain at the end of the night. The leaves of a second line expressing intermediate protein levels (33) stained for starch at both time points. The two nonexpressing StGWD_{C10845} lines stained for starch at the end of the day but not at the end of night (Figure 5.6). Overall preliminary results hint at a difference in the starch in the StGWD_{C10845} lines, but these differences (either qualitative or quantitative) need to be confirmed by further measurements and analyses.

To investigate the phosphorylation activity of *St*GWD and *St*GWD_{C10845} on cassava starch, the storage roots of the transgenic plants were harvested after 6 months. The mean storage root fresh weight of the transgenic lines was in all cases lower than in wild-type plants (Figure 5.7). On average, the storage root fresh weight of *St*GWD lines was 68% lower than in the wild type, varying between 0.93 g and 37.67 g (Figure 5.7 A). On average, the storage root biomass production of StGWD_{C10845} lines was 81% less than in the wild-type, varying between 0.85 g and 10.37 g (Figure 5.7 B). In some of the individual transgenic line no storage roots had developed. No correlation was observed between storage root development and transgenic protein expression (Figure 5.7).

Figure 5.7 Storage root of transgenic StGWD and StGWD_{C10805} cassava lines

The fresh weight of the storage roots from transgenic (grey bars) and wild-type (black bars) plants was determined after 6 months of growth. A) *St*GWD lines B) StGWD_{C10845} lines. The transgenic lines are arranged according the protein expression levels (high to low) given in Figures 5.1 and 5.2. Mean \pm SD. (N=1-5).

5.2.5. Storage starch: ³¹P-NMR reveals increased phosphate bound to C6 and C3 position in *St*GWD_{C1084S}

Starch was isolated from the *St*GWD and *St*GWD_{C1084S} lines and subjected for ³¹P-NMR analysis to get information about the ratio of C3 and C6 phosphorylation, as was described by Santelia et al. (2011). For these measurements, starch was isolated from the storage roots of representative transgenic lines as well as from the wild type. The non-expressing *St*GWD line (21) was used as a transformation control (Figure 5.2). Representative lines with high protein expression for *St*GWD (#18) and *St*GWD_{C10845} (#9) were chosen (Figure 5.2, Figure 5.3). ³¹P-NMR gives a relative percentage of C3 and C6 phosphorylation within a sample, and is also semi-quantitative for phosphate abundance. All analysed samples revealed similar C3:C6 phosphorylation ratio between 2.1 and 2.7 (Figure 5.8). The peak intensity was similar for all sample the peak was more intense (the y-axis scale in Figure 5.8 D is double that of the other spectra in A-C). This suggests that more total phosphate was present. However, for quantification of total bound phosphate other, more quantitative experimental approaches are needed.

Figure 5.8 Evaluation of phosphate bound to C6 or C3 position in transgenic StGWD and StGWD_{C10845}

³¹ P-NMR one-dimensional spectra of hydrolyzed root starch of wild-type and *St*GWD and *St*GWD_{c10845} transgenic lines. Recorded between 9216 and 16,384 transients at 303K, pH 6.0. Peak areas are proportional to the relative amount of glucan-bound phosphate and are given as a percentage on top of each peak. Chemical shifts are referenced to external H_3PO_4 (85%) A) wild type B) transformation control *St*GWD #21, non-expressing (Figure 5.2) C) *St*GWD #18, a high expressing line D) *St*GWD_{c10845} #9, high protein expressing line. For D) the peak signal is half compared to the samples A-C). Figure and measurements conducted and adapted from Dr. M. Schubert, ETH Zürich.

5.2.6. Increase in total starch phosphate: RNAi construct design against *MeSEX4* and *MeLSF2*

Another approach to increase phosphate content bound to starch is to knock-out the glucan phosphatases SEX4 and LSF2 using the RNAi technique. In Arabidopsis, it was shown that *Atsex4* mutants lead to stunted growth. This stunted growth is caused by the fact that *Atsex4* mutant plants accumulate starch that is not degraded during the night, thus the supply of carbon during the night is blocked (Zeeman et al., 1999; Kotting et al., 2005). Thus,

it is possible that down-regulation or knocking-out of *MeSEX4* transcript might lead to a comparable impact on whole plant growth in cassava, and negatively affect biomass production. Furthermore, the propagation of plants by stem cuttings might also be negatively affected when starch can't be degraded to fuel regrowth. Therefore, an RNAi construct was designed driven by a potato patatin class I promoter, which was shown to be tuber specific in potato and root-specific in Arabidopsis (Naumkina et al., 2007).

The protein sequences of *At*SEX4 and *At*LSF2 were used as a query to search for the orthologous proteins in cassava. A BLASTP search was performed against the cassava proteome database (www.phytozome.net; Prochnik et al., 2012). The translation product of gene accession number cassava4.1_009735m showed highest homology to the *At*SEX4 protein sequence and the translation product of gene accession number cassava4.1_013314m showed highest homology to the LSF2 protein. For the production of the RNAi hairpin constructs, sequences unique to the individual transcripts (205 bp for SEX4-RNAi and 190 bp for LSF2-RNAi) were chosen (Figure 5.9 A, B). All RNAi constructs were cloned into a modified pCAMBIA1301 vector with a patatin class I promoter and Nos-terminator (Figure 2.1).

Figure 5.9 Sequences used for RNAi construction

The indicated sequence form the corresponding CDS was used as a template to design a hairpin construct

Both constructs were successfully cloned and transformed into cassava FECs according the protocol described previously (Bull et al., 2009; see also Chapter 2). For the SEX4-RNAi lines 155 and for LSF2-RNAi lines 133 individual plants were grown on selective growth media containing hygromycin. Under these conditions, only transgenic plantlets produced roots. For the SEX4-RNAi construct 46 and for the LSF2-RNAi construct, 57 plantlets made roots (Table 5.1). Using PCR reactions with primer combinations specific for the promoter and terminator sequences present in the T-DNA insertion, integration of the construct into the genomic DNA was confirmed (Figure 5.10). The confirmation PCR analysis revealed that for SEX4-RNAi lines the majority (84%) were positive for both PCR reactions. Four lines were positive for only promoter or terminator sequence PCRs and one line showed no insertion. For the LSF2-RNAi lines, 86% were positive for both sequences, 17% were positive for either promoter or terminator sequence, and two lines showed no insertion. Preliminary observations suggest that the SEX4-RNAi lines have a pronounced slow-growth phenotype in tissue culture and that the leaves for several independent lines are abnormally narrow. In contrast, LSF2-RNAi lines are comparable to the wild type plants grown in tissue culture.

Promoter (Patatin) and terminator (Terminator) sequence were amplified to verify the insertion of the hairpin construct. For each line a positive transgenic line, wild-type and plasmid containing the respective RNAi insert and water was loaded as indicated. For DNA control the *PP2A* was amplified. A) SEX4-RNAi, positive line #155 B) LSF2-RNAi line, positive control line #4.

5.2.7. RNAi construct design against MeAMY3

As described in Chapter 4, AMY3 was identified as a likely candidate enzyme involved in starch degradation in heterotrophic storage root tissue. In order to test this biological role of AMY3 in storage starch degradation and potentially increase storage root biomass by preventing unwanted starch breakdown, I designed a hairpin construct against the *MeAMY3* transcript. Although AMY3 is dispensable for starch degradation in Arabidopsis leaves, we do not know if this is the case for cassava. Furthermore, down-regulation of AMY3 could block starch degradation in heterotrophic tissue such as the stem. Thus, expressing a hairpin construct against the *MeAMY3* transcript on a whole plant level could potentially have a negative impact on plant growth and propagation, as described for SEX4 down-regulation above. Thus, the *MeAMY3* RNAi hairpin was also designed to be driven by the patatin class I promoter (Naumkina et al., 2007).

The *At*AMY3 protein sequence was used as a query to search for the orthologous protein in cassava. A BLASTP search revealed that the protein encoded by the gene accession number cassava4.1_001362m has the highest sequence homology to *At*AMY3. For the RNAi hairpin construct, a unique 210-bp sequence matching the 5' end of the *MeAMY3* coding sequence was chosen (Figure 5.9 C). The RNAi construct was cloned into a modified pCAMBIA1301 vector (Figure 2.1).

At the time of writing, the AMY3-RNAi construct the plasmid has been transformed into FECs. The transformed FECs are growing on selection media (Figure 2.2, step 4 and 5) and 22 individual plantlets are currently regenerating on growth medium (Table 5.1). Next, these plants will be transferred and tested for rooting capacity on a medium containing hygromycin (Figure 2.2, step 6).

5.3. Discussion

5.3.1. Analysis of Cassava plants expressing StGWD and StGWD_{C1084S}

Here, I describe the successful isolation of multiple independent StGWD and StGWD_{C10845} overexpressing lines with different protein levels. Preliminary characterisation of growth parameters showed no persistent correlation between protein expression and growth behaviour. Though, three out of 4 high expressing StGWD lines were significantly smaller than wild-type plants (Figure 5.3 A). A reason might be that the insertion sites of the transgene disrupt endogenous genes affecting growth. However, this would be unlikely to occur at the relatively high frequency with which we observed reduced growth. In addition it might be that the plantlets coming from *in vitro* culture need some time to recover after changed conditions. However, transformed plants without transgene expression seemed not to be affected during this environmental change and grew as well as wild-type plants. The correlation between transgene expression and growth behaviour needs to be investigated in subsequent generations. In addition, the data for transgene protein expression level comes from leaf tissue. Although the transgene is driven by the ubiquitous 35S promoter it is possible that the protein expression in storage root differs. Thus, in order to correlate aspects of the phenotypes it will be crucial to determine transgenic protein expression level in storage roots as well. Then the overexpression of a key enzyme involved in starch metabolism could potentially influence the performance of any starch synthesising tissue, which further might have secondary effects on the whole plant.

It is known that repression of AtGWD leads to starch accumulation and stunted growth, caused by the reduced remobilization of starch during the dark period (Yu et al., 2001). Starch accumulation and hypo-phosphorylation was found in potato tubers with repressed StGWD (Lorberth et al., 1998). However, overexpressing StGWD in cassava could render starch more accessible to hydrolytic degradation because of phosphate-esters bound to starch solubilize the granule surface by disrupting the packing of double helical structure of amylopectin. In this case, the carbohydrate supply essential for growth would not be limited. Thus, I assume that overexpression of StGWD in cassava plants doesn't change growth phenotype substantially. As shown in Figure 5.4 the staining of transgenic StGWD and especially the StGWD_{C1084S} lines degrade as much, if not more starch during the night compared to wild-type plants. An indication for facilitated starch remobilization caused by GWD overexpression was shown by Carciofi et al., (2011), where starch granules were visualized by Scanning Electron Microscopy (SEM). The starch granules from the endosperm of StGWD overexpressing barley lines had pores and irregularities on their surface that were not seen in the starch from the wild type. Similar pore like structures were shown for barley starch granules after partial α -amylolytic hydrolysis (Li and Yeh, 2001). Thus, additional phosphate-esters on starch granules may indeed render the amylopectin more accessible to hydrolytic enzymes (Edner et al., 2007). Whether this occurs in my cassava lines and has an influence on starch levels will need to be tested. An increased phosphate-level bound to starch is also likely to change the starch properties as the granule architecture might be less densely packed and thus, exhibiting differences in physico-chemical behaviour. In addition, the staining of starch for the transgenic StGWD/ StGWD_{c10845} shows differences in metabolizing starch efficiency indicating that starch hydrolysis is facilitated. However, a more detailed investigation with quantitative measurements of the starch content at the end of the day and end of the night will be needed to confirm the preliminary finding with iodine staining.

The aim of the transgenic lines was to increase total phosphate content on starch and potentially to modify starch properties. In barley, *St*GWD overexpression increased the total starch-bound phosphate content in the endosperm by 7-fold (Carciofi et al., 2011). Preliminary analysis of C3- and C6-bound phosphate by ³¹P-NMR measurements revealed that although there was no shift in C3:C6 ratio, the high peak intensity in the starch sample from a plant highly expressing the redox insensitive form of GWD seems highly promising (Figure 5.8). As ³¹P-NMR is not a quantitative method to determine total starch bound phosphate levels further experiments will need to support these preliminary analyses. At the

time of writing, analyses of total phosphate using assays based on the Malachite Green reagent seem to confirm a doubling of the phosphate content of the starch from this line (Wuyan Wang, unpublished results). Furthermore, the results I present here were gained from just one biological replicate. Thus, in order to unravel the functional effect of the transgenic lines these first results need to be corroborated by the analysis of other transgenic lines expressing the two versions of the GWD protein. However, taken together, the preliminary data of staining leaves with iodine and the ³¹P-NMR analysis of the redox-insensitive *St*GWD_{C10845} suggests that the starch in the transgenic line potentially has an altered structure (i.e. amylopectin) as visualized by iodine (Figure 5.6) and phosphate content.

It will now be essential to perform further experiments to reveal the full effect of StGWD and its redox-insensitive version on cassava root starch metabolism. The first thing will be to confirm the increase in total phosphate content, which can be measured using one of three different ways: Firstly, the aforementioned Malachite Green assay can be performed to determine total phosphate content after enzymatic glucan dephosphorylation. Secondly, it will be important to determine with additional NMR analyses whether there is a shift in the ratio of C3:C6 phosphorylation. On the one hand, one might expect an increase in C6 phosphorylation, given that GWD specifically mediates this reaction. However, as PWD depends on previous action of GWD, an increase in C3-bound phosphate might also occur as a consequence. A third method to discriminate between C6- and C3- bound phosphate quantitatively is by HPLC after acid-hydrolysis of the starch to release Glucose 6-P and Glucose 3-P. If an increase in phosphate is achieved, further structural analyses on the starches from the transgenic plants will be required to determine if starch granule morphology, composition (amylose:amylopectin ratio), or architecture (amylopectin chain length distribution) are affected. Furthermore, it will be crucial to analyse the physico-chemical properties to elucidate whether characteristics of commercial interest (i.e. paste clarity, viscosity, retrogradation) are improved.

5.3.2. RNAi-constructs transformed to Cassava cv. 60444 under investigation

All three RNAi constructs described here have been transformed into cv. 60444 plantlets. For all three constructs SEX4-RNAi, LSF2-RNAi and AMY3-RNAi lines, plantlets could successfully be re-generated. For SEX4- and LSF2-RNAi genotyping revealed positive lines (Table 5.1). Whereas the phenotype of *in vitro* grown LSF2-RNAi lines is comparable to

wild-type plants SEX4-RNAi lines show growth retardation and reduced leaf area. This phenotype might be caused by the transformation process, as suggested for StGWD/ StGWD_{C1084S} expressing plants grown on soil. However, the LSF2-RNAi lines would then also be expected to show this phenotype; the transformed plasmid is the same and the transformation process was done in parallel. This implies that the growth phenotype, if substantiated, is caused by the SEX4 RNAi construct. As shown for Arabidopsis, loss of SEX4 reduces growth as a consequence of being unable to degrade transitory starch at night, restricting carbohydrate supply (Kotting et al., 2009). The observation of retarded growth of my SEX4-RNAi lines, although not yet quantified, may reflect a similar metabolic perturbation. However, it is important to stress that the construct is driven by the class I patatin promoter which is supposedly root specific. The possibility exists that the promoter is leaky or that, in cassava, it is not exclusively expressed in roots. Furthermore, there are reports that the patatin promoter is induced by sucrose (Naumkina et al., 2007), which is supplied to the growth media at this stage in the transgenesis process. That said, it is questionable whether such a metabolic defect, as described above for Arabidopsis, would restrict growth in material grown in such sugar-rich culture medium.

Careful evaluation of promoter function is important when considering starch remobilization to avoid negatively influencing growth the propagation of material through stem cuttings. This will need to be investigated in further detail, for instance by transcript analysis in leaves and by analysis of transgenic plantlets transferred to soil (where no exogenous sucrose is supplied). Staining leaf tissue to detect a possible starch-excess phenotype will give a first indication as to whether the construct is expressed and functional in tissues other than storage roots.

Concerning the RNAi-LSF2 lines, after positive genotyping it will be crucial to analyse transcript levels in leaves and storage roots, once the lines are transferred on soil. *In vitro* grown LSF2-RNAi plantlets do not show any growth defects. This is unsurprising as this was also the case for *Atlsf2* mutants (Santelia et al., 2012). To confirm the functionality of this construct it will be critical to investigate storage starch directly to see whether there is a change in phosphate content and distribution like that seen in Arabidopsis *Atlsf2* mutants. This will be highly novel as the role of LSF2 in storage starch metabolism has never been studied. Furthermore, though it is well known that the level of starch phosphorylation has an impact on starch properties, it is not known what influence a changed ratio of C6:C3 bound phosphate has. The physico-chemical properties of Arabidopsis starches were not

investigated, presumably because of the difficulties in obtaining adequate amounts. This should not be a problem with cassava and if my transgenic plants exhibit the desired effects on starch bound phosphate, it may have real potential for future industrial applications.

Analysis of the AMY3-RNAi lines will give new information about starch mobilization in cassava storage roots. The finding that AMY3 has a minor role in Arabidopsis leaf starch metabolism (Yu et al., 2005) has dampened interest in this protein, but the high expression in cassava storage roots upon transition from sink to source tissue (Chapter 4) renews the question of how important AMY3 might be in this and other systems. The minor role in leaf starch metabolism, if also the case for cassava, makes AMY3 a good potential candidate for repression in that it may affect specifically root starch, though the aforementioned question about whether stem starch metabolism will also be affected remains. Thus, analysis of the AMY3-RNAi line will be important to reveal the importance of α -amylolytic activity in heterotrophic tissue, and to what extent other hydrolysing enzymes are able to compensate for the loss of AMY3.

5.3.3. Outlook

In the longer term, there may be still more to gain by combining the modifications I have initiated here. In respect of generating phosphorylated starch in cassava I would think that generating a double transgenic overexpressing *St*GWD and repressing SEX4 and/or LSF2 could potentially increase starch yield as well as phosphorylation of starch further than any of the single modifications can.

In *Atsex4* mutant lines, glucan-bound phosphate accumulates as phospho-oligosaccharides rather than phosphorylated starch. It was shown that these phospho-oligosaccharides are released from the starch granule by the debranching enzyme ISA3 and by AMY3 (Kotting et al., 2009). The double mutant *Atsex4amy3* revealed a decrease in phopho-oligosaccharides and increase starch levels. Thus, repressing both AMY3- and SEX4/LSF2 might again increase starch yield and starch bound phosphate in cassava storage roots.

As described earlier, before the harvesting of cassava storage roots is performed, the aboveground plant part is cut off. This cutting was shown to increase shelf-life of the roots, as PPD response is delayed. However, during this process starch is degraded and thus yield is affected. It might be of interest to investigate if blocking starch degradation in SEX4-RNAi or AMY3-RNAi has any effect on the PPD response. If it does, such lines could of substantial interest for cassava growers.

6. General Discussion

In the first part of my PhD thesis I described growth analysis of greenhouse-grown cassava plants to gain information about experimental reproducibility and showed that the plants behaved in a comparable way. The absolute values of carbon assimilation and non-structural carbohydrates were lower than what has been described in the literature. This is likely because the previous measurements were mostly gained from agronomic cassava cultivars grown in the field (Angelov et al., 1993). It is not surprising that the absolute values differ. Unlike greenhouse experiments, growth in field is not limited in respect of soil space and the environmental conditions are not equally comparable. However, the advantage of our experimental design lies in the high reproducibility between experiments, which is important for this kind of basic research. I could show that under the given conditions, cassava accumulates similar starch levels in leaves during the day as does Arabidopsis (Gibon et al., 2004). Further, I could show that starch is synthesised during the day degraded during the night, as reported for Arabidopsis (Gibon et al., 2004; Fulton et al., 2008). Interestingly, in contrast to Arabidopsis, the synthesised starch is not fully remobilized at the end of the night and the residual starch content varies, depending on leaf age. (Figure 3.6 E). This is an important observation as it shows that single time point measurements or single leaf analysis have to be treated carefully. Further, the incomplete remobilisation suggests that the demand during the night is for less than the available stored carbohydrate. This would be an interesting point to follow up, because it could mean that cassava could grow faster with the available stored resources, which in turn opens possibilities for cassava varieties with more biomass production. Soluble sugar analysis revealed high levels of sucrose; far more than what is reported in Arabidopsis (Figure 3.6 F-H) (Gibon et al., 2004).

Combining the photosynthetic rate measurements and the levels of starch accumulated during a photo period in young leaves, a hypothetical carbon portioning rate was calculated. This revealed that only 5-11% of the assimilated carbon is subjected into starch (Table 3.1 and Table 3.2). In contrast high levels of sucrose were measured. However, the photosynthetic rate and determination of carbohydrate levels were not performed with the same plant batch and not at the same time. This could potentially influence absolute values as suggested by comparing two carbohydrate measurements from two different plant batches analysed for the influence of leave development and diurnal starch turnover (Figure3.6). Thus the actual carbon flux is yet unknown. As mentioned in 'Chapter 3' ¹⁴C-labelling experiments could substantiate this calculated value for carbon partitioning.

Nevertheless, in terms of source capacity (e.g. carbon assimilation and transport), the residual starch levels at the end of the night and high sucrose levels 9h into the day strongly indicate that cassava plants grown in the greenhouse are not restricted in carbohydrate availability (Figure 3.6 B,E). The carbon assimilated and stored throughout the day exceeds the demand of sink tissues. This is highly interesting in the context of biotechnological applications, where approaches are considered in order to increase source capacity. Hence, from the results I present here I conclude that the source capacity of cassava canopy is already high. As mentioned above for the carbohydrate analysis, plant batches used for analysis were grown at different times of the year. Comparing the absolute values and the pattern of carbohydrate allocation reveals that in terms of soluble sugars absolute levels differ whereas starch levels remain comparable amongst the plant batches (Figure 3.6). Therefore, sucrose and hexose pools could potentially serve as a buffering system to meet the needs for non-structural carbohydrates. It is likely that under stressful environmental conditions where low carbon assimilation occurs (i.e. scarce environmental conditions like water limitation, low light conditions, and high temperature), accumulated soluble sugars could compensate for the carbon deficiency. This hypothesis needs further investigation, for instance labelling experiments in combination with stress analysis might reveal changes in soluble carbohydrate availability and flux. It is also possible that the non-structural carbohydrate levels follow a species-specific pattern different to what has been described for Arabidopsis (Gibon et al., 2004). This could be tested with a 24h experiment where plant material is harvested throughout the day and night at different time points.

6.1. Integrating Proteomics and carbohydrate metabolism

As cassava is an important starch crop, strategies to increase yield in storage roots could potentially achieved by increasing source capacity or sink strength or by preventing starch mobilization.

An increase in source strength could potentially provide increased carbohydrates for transport to sink tissues. The finding of residual starch levels at the end of the night and high soluble sugar content in leaves (Figure 3.6) suggests that the carbohydrate available for transport exceeds the need during the night. Thus, a more promising approach to increase starch yield in heterotrophic tissue could be to increase sink strength in storage roots. In the past attempts to increase sink strength in various crop species was shown to be challenging, because sucrose or sugar availability revealed to be tightly regulated. This was shown by overexpression of yeast INV in the apoplast or cytosol of potato tubers, which increased

tuber water content, but not starch levels (Ferreira and Sonnewald, 2012). For the cytosolic INV expressing lines, increased glucose levels were observed, whereas sucrose and starch levels decreased. Further analysis revealed that high levels of hexose-phosphate were not imported to the amyloplast for starch synthesis but rather subjected to glycolysis (Sonnewald et al., 1997; Hajirezaei et al., 2000). This illustrated that the increase in hexoses derived from the hydrolytic activity of INV is channelled in an unexpected way. It is likely that the changes in hexose availability mimic the situation of high sugar availability. As mentioned before sucrose and hexoses are sensed by various proteins that trigger specific responses at the molecular level. Evidence for sugar signalling occurring in cassava storage root upon pruning (sugar starvation) are given by the identification of overrepresented key signalling proteins (e.g. SnRK1, HXK1). This suggests that a response to changes of metabolite availability does occur. Strategies to increase sink strength in cassava simply by increasing sucrose hydrolysis may also trigger a cellular response to carbohydrate availability as they did in potato.

It was shown that starch yield can be increased by SUS overexpression. Evidence for the correlation of SUS activity and starch synthesis came from transgenic potato plants where SUS was repressed. A lack of SUS led to decrease of starch levels, whereas *St*SUS4 overexpressing lines accumulated up to double the starch amount detected in wild-type plants (Baroja-Fernandez et al., 2009). Thus, these findings suggest that SUS overexpression has a potential to increase starch yield in storage organs. Successful transformation of cassava lines were performed in another project, though the analysis is still under investigation (*Miyako Keller, unpublished*).

As an alternative to increasing yield, I decided to block starch degradation. As cassava storage roots accumulate up to 85% starch per dry weight, this yield already is high. However, as described, cassava plants are pruned before harvesting in order to minimize post-harvest physiological deterioration. To inhibit starch mobilization in a targeted way I performed a proteomic analysis to reveal important starch mobilizing enzymes in heterotrophic tissues.

My experimental setup showed that 10 days after pruning off the aerial parts of cassava there was a decrease in starch levels by half in storage roots to support regrowth of new leaves (Figure 4.1). The decreased starch levels correlated with higher total amylolytic activity as detected by native gels. Although the individual activity bands could not be

assigned to a defined enzymatic activity, proteomics provided a way to elucidate potential proteins responsible that would then be suitable targets for a transgenic approach.

The analysis of deregulated proteins between untreated control samples and roots 10 days after pruning revealed major changes in a wide range of metabolic pathways. Of the starch metabolizing enzymes, the high abundance of AMY3 protein after pruning leads me to conclude that starch remobilization may be highly dependent on this α -amylase activity. This is quite novel as, thus far, α -amylases were not clearly attributed to be involved in starch degradation of roots. Hopefully, the transgenic lines AMY3-RNAi I generated will provide definitive evidence for the importance of this α -amylase in cassava starch mobilization one way or the other.

The activity of LDA on red-pullulan native PAGE also appeared to increase upon pruning (Figure 4.2). This enzyme was easy to assay because red-pullulan is a specific substrate it. However, although the protein was detected in the proteomics, an increase in abundance was not observed. Nevertheless, I propose a working model where the initial steps of starch mobilization in cassava storage root occurs by the interplay of AMY3 attacking the granule and LDA helping to debranch the limit dextrins it releases. According to the other proteins I found in the proteome, the glucosyl tranferase DPE1 and the starch phosphorylase PHS1 could also be involved in subsequent metabolism of linear oligosaccharides. The resulting Glc and Glc1P could then enter metabolic pathways such as the oxidative pentose phosphate pathway (OPPP) or be transported to the cytosol for further down-stream metabolism (e.g. sucrose synthesis, glycolysis). Proteomics data give good broad evidence as to which pathways may have changed. However, to substantiate the findings it is crucial to perform further experiments. For example, the increased abundance of AMY3 does not necessarily mean that also the activity is also increased, although it is likely. Hence, specific enzyme assay is needed to substantiate the hypothesis. Moreover, the fact that I did not identify any β -amylases in the proteomics approach does not necessary lead to the conclusion that they are not present. Indeed, cassava, like Arabidopsis, has several β amylase genes and some minor bands visible on the native gel with amylopectin could not be seen on the native gel with β -limit dextrin – a hallmark of a β -amylase. Thus, together with the analysis of α -amylase activity it will be crucial to determine if there is any β -amylase activity present after all, and if pruning changes it.

Due to the sink-source transition where sucrose is exported rather than imported, a change in sucrose pathway was expected. The investigation of the sucrose pathway revealed underrepresentation of F1,6BPase and FK after pruning. In contrast, a cytosolic INV2 and HXK1 and HXK3 were found to be more abundant after pruning compared to the control. The high abundance of both cINV and HXK1 in accordance with an increased abundance of the respiration pathway shows similarities to the finding that high cytosolic INV expression in potato tubers leads to increased respiration (Appeldoon et al., 1997). In agreement with this hypothesis is the finding of proteins involved in glycolysis found to be highly abundant. Hence, while this strongly indicates that after sink-source transition cINV helps to meet the changed cellular demand for energetic compounds, it does not really provide insight into changes in sucrose biosynthesis.

The identification of a major component SnRK1 being increased after pruning is an exciting result. As discussed in chapter 4, this indicates that the metabolic reconfiguration in the storage roots of pruned plants is switched by starvation, potentially via this kinase. This also represents a good target for transgenic repression, as blocking its activity might keep the root in a dormant state and prevent unwanted regrowth.

The comparison of the proteomic analysis of storage roots before and after pruning has thus proved to be an excellent tool to identify major changes in metabolic pathways and revealed potential targets for future transgenic approaches. However, only 25 cassava proteins homologous to the 53 known Arabidopsis proteins involved in starch metabolism were identified. This is surely because protein detection is limited to the more abundant proteins. Previously it was shown that a combined analysis of proteome and transcriptome can be highly complementary (Bischof et al., 2012). Hence, I initiated an RNAseq analysis. Although these data are still under investigation, first results showed high induction of AMY3 transcript after pruning, consistent with the data presented in this thesis.

6.2. Potential of modified starch in industry

In the third part of my PhD, three transgenic approaches were pursued to increase the value of cassava as starch crop. The main focus was to engineer starch with altered starch composition and architecture. Manipulating starch composition can confer improved physico-chemical properties. For the diverse industrial applications, both in the food and non-food branches, a diversity of starches raw materials is desired. Rather than modify native starches post-harvest, genetically modified plants could provide native improved starches directly to replace chemical treatments. For instance, it was shown that genetically modified amylose-free and short-chain potato amylopectin starch exhibits excellent freezethaw stability (Jobling et al., 2002). This example reveals that genetic modification of starch crops have a great potential to engineer starches of industrial interest.

I designed transgenic cassava lines with the intention of increasing starch-bound phosphate. As described in 'Chapter 5' a key gene involved in phosphorylating starch is GWD. Cassava starch has only little starch bound phosphate (0.05%) - one tenth that of potato (0.5%). It was already reported that the expression of StGWD could increases total starch bound phosphate content in barley (Carciofi et al., 2011). Moreover StGWD is redox regulated, being inactive when oxidised, but can be rendered constitutively active with an amino acid substitution in the redox-motif (from a cysteine to serine; StGWD_{C10845}). Many positive, individual transformants with variation in StGWD and StGWD_{C1084} expression levels were analysed. Preliminary analysis of the starch-bound phosphate of one plant per transgenic line revealed that expression of the redox-insensitive StGWD_{C1084} appears to double phosphorylation levels compared to the wild type. This was seen for ³¹P-NMR signal as well as in a Malachite Green assays (not in this thesis). This finding is very promising; the transformation was successful and more importantly, the overexpressed protein is functional. However, not everything is clear. It is surprising that the C3:C6 phosphorylation ratio was the same as for wild type, given that StGWD phosphorylates C6 position of the glucose residues (Ritte et al., 2006). However it is possible that the endogenous PWD, which phosphorylates at the C3 position, responds to the increase in prephosphorylated starch, and is more active as a consequence.

As discussed in Chapter 5, starch-bound phosphate potentially solubilizes amylopectin chains. Indications for an increased accessibility to hydrolytic enzymes were given by SEM pictures of starch granules in *St*GWD overexpressing lines of barley, showing more pores and irregularities (Carciofi et al., 2011). The iodine stained leaves of my transgenic cassava *St*GWD/*St*GWD_{C10845} showed that for most lines less starch was observed at the end of the night compared to wild-type leaves. Although very preliminary, this may suggests that starch mobilization is increased by StGWD. Alternatively, starch synthesis may be impaired or disturbed. To test this, it will be crucial to analyse the starch content of leaves at the end of day and end of night.

The preliminary data showing that starch-bound phosphate can be increased leads to further questions. The first results revealed that the one transgenic line had doubled starch-bound phosphate compared to wild type. This is still less than was reported for *St*GWD overexpression in barley endosperm, and less than for normal potato starch. This is

surprising as starch from different potato varieties are even more highly phosphorylated (8-33 nMol G6P mg⁻¹ starch, Carciofi et al., 2011). There are several reasons why phosphorylation activity of potato *St*GWD might be less efficient in another species. Firstly, the storage roots of transgenic lines were still small and not developed to the same extent as the wild-type control (Figure 5.7). This might be caused either by the transgenic event (a secondary effect of *St*GWD/*St*GWD_{C10845} overexpression) or simply because plants from this first generation (coming from culture media) develop their storage root more slowly than wild-type plants. However, it is likely that starch accumulation and storage capacity is not yet fully developed. Thus, it is possible that the degree of phosphorylation could change. Starch is phosphorylated during its synthesis (Nielsen et al., 1994). This can explain the phosphate residues within the starch granules. However, it was recently shown that the majority of starch-bound phosphate sits on the granule surface (Buleon et al., 2014), and could be subject to constant turnover (see below). The development of storage roots in the next generation is needed to rule out some of the more trivial explanations above.

Another reason for the lower phosphate content compared to potato starch might be that *St*GWD has a preference for a certain molecular architecture common in potato, but rare in cassava. This is not an unreasonable suggestion; it was reported that down-regulation of SBE in potato tubers change both the degree of polymerisation of linear glucan chains and, in addition, increased the degree of phosphorylation (Jobling, 1999; Blennow et al., 2000). In this respect, cassava starch has C-type architecture of the crystalline lamellae whereas potato has a B-type and barley A-type (reviewed in Damager et al., 2010). This means that the helices formed by the side chains of amylopectin are arranged in different patterns. Even minimal differences in granule surface could potentially affect the affinity and activity of the protein. This could be tested for instance *in vitro* with heterologous expressed *St*GWD protein - both wild type and redox-insensitive forms - using native starches isolated from different biological origins with different packing types (A-, B-, and C-type). This would show how efficiently *St*GWD phosphorylates different starch types.

Another reasonable explanation would be that increased phosphorylation of the cassava starch by *St*GWD occurs but is only transient and that a high proportion is again released by SEX4 and LSF2 before the phosphate can be buried and protected inside the starch granule. My other attempts to increase total starch bound phosphate should address this. As described in 'Chapter 5' I generated RNAi constructs against the two active glucan phosphatases *SEX4* and *LSF2*. Once the transgenic lines are growing in the greenhouse, one

could try to generate double or multiple transgenic crosses in order to generate cassava plants combining *St*GWD/*St*GWD_{C1084S} with the silencing constructs RNAi-SEX4 and RNAi-LSF2. The combination of high kinase activity and decreased phosphatase activity could potentially increase the phosphate content much more. Furthermore, Arabidopsis *sex4* mutants were shown to accumulate phosphooligosaccharides, released in part by AMY3 (Kotting et al., 2009). Hence, the double mutant lines RNAi-AMY3 and RNAi-SEX4 could also potentially lead to increased starch yield in combination with increased phosphate content. These generation and analyses of these combinations will need to be undertaken by a future PhD student or researcher.

Taking together all the results I gathered during my PhD, I believe that I could significantly contribute towards knowledge in cassava starch metabolism. Furthermore, I believe that the isolated transgenic lines have potential for valuable future research and maybe also for industrial applications.

7. References

- Alves, A.A.C. (2002). Cassava Botany and Physiology. Biology, Production and Utilization. R. Hillocks, J. Thresh, and A. Bellotti, eds (CBI Publishing, New York). Chapter 5, 67-89.
- Andriotis, V.M., Pike, M.J., Bunnewell, S., Hills, M.J., Smith, A.M. (2010). The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. Plant Journal **64**, 128-139.
- Angelov, M.N., Sun, J.D., Byrd, G.T., Brown, R.H., Black, C.C. (1993). Novel characteristics of cassava, *Manihot esculenta* Crantz, a reputed C-3-C4 intermediate photosynthesis species. Photosynthesis Research **38**, 61-72.
- Appeldoorn, N.J.G., deBruijn, S.M., KootGronsveld, E.A.M., Visser, R.G.F., Vreugdenhil, D., van der Plas, L.H.W. (1997). Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta 202, 220-226.
- Azimzadeh, O., Scherthan, H., Yentrapalli, R., Barjaktarovic, Z., Ueffing, M., Conrad, M., Neff, F., Calzada-Wack, J., Aubele, M., Buske, C., Atkinson, M.J., Hauck, S.M., Tapio, S. (2012). Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE) heart tissue reveals immediate mitochondrial impairment after ionising radiation. Journal of Proteomics 75, 2384-2395.
- Baba, A.I., Nogueira, F.C.S., Pinheiro, C.B., Brasil, J.N., Jereissati, E.S., Juca, T.L., Soares, A.A., Santos, M.F., Domont, G.B., Campos, F.A.P. (2008). Proteome analysis of secondary somatic embryogenesis in cassava (*Manihot esculenta*). Plant Science 175, 717-723.
- **Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J.** (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature **448**, 938-910.
- Baguma, Y., Sun, C., Ahlandsberg, S., Mutisya, J., Palmqvist, S., Rubaihayo, P.R., Magambo,
 M.J., Egwng, T.G., Larsson, H., Jansson, C. (2003). Expression patterns of the gene encoding starch branching enzyme II in the storage roots of cassava (*Manihot esculenta* Crantz). Plant Science 164, 833-839.
- Baguma, Y.S., C., Boréen, M., Olsson, H., Rosenqvist, S., Mutisya, J., Rubaihayo, P. R., Jansson, C. (2008). Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis. Plant Signaling & Behavior 3, 439-445.
- **Ball, S.G., and Morell, M.K.** (2003). From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual review of plant biology **54**, 207-233.
- Baroja-Fernandez, E., Munoz, F.J., Montero, M., Etxeberria, E., Sesma, M.T., Ovecka, M., Bahaji, A., Ezquer, I., Li, J., Prat, S., Pozueta-Romero, J. (2009). Enhancing sucrose synthase activity in transgenic potato (*Solanum tuberosum* L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiology 50, 1651-1662.
- Baunsgaard, L., Lutken, H., Mikkelsen, R., Glaring, M.A., Pham, T.T., Blennow, A. (2005). A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated alphaglucans and is involved in starch degradation in Arabidopsis. Plant Journal **41**, 595-605.
- Baur-Höch, B., Machler, F., Nösberger, J. (1990). Effect of carbohydrate demand on the remobilization of starch in stolons and roots of white clover (*Trifolium repens* L.) after defoliation. Journal of Experimental Botany 41, 573-578.
- Bischof, S., Baerenfaller, K., Wildhaber, T., Troesch, R., Vidi, P.-A., Roschitzki, B., Hirsch-Hofmann, M., Hennig, L., Kessler, F., Gruissem, W., Baginsky, S. (2011).
 Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of *N*-acetylated plastid precursor proteins. Plant Cell **11**, 3911-3928.

- Bischof, S., Umhang, M., Eicke, S., Streb, S., Qi, W.H., Zeeman, S.C. (2013). *Cecropia peltata* accumulates starch or soluble glycogen by differentially regulating starch biosynthetic genes. Plant Cell **25**, 1400-1415.
- Blennow, A., Bay-Smidt, A.M., Wischmann, B., Olsen, C.E., Moller, B.L. (1998). The degree of starch phosphorylation is related to the chain length distribution of the neutral and the phosphorylated chains of amylopectin. Carbohydrate Research **307**, 45-54.
- **Blennow, A., Engelsen, S.B., Munck, L., Moller, B.L.** (2000). Starch molecular structure and phosphorylation investigated by a combined chromatographic and chemometric approach. Carbohydrate Polymers **41**, 163-174.
- Blennow, A., and Engelsen, S.B. (2010). Helix-breaking news: fighting crystalline starch energy deposits in the cell. Trends in Plant Science **15**, 236-240.
- Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P., Leyser, O. (2005). MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell 8, 443-449.
- Bouly, J.P., Gissot, L., Lessard, P., Kreis, M., Thomas, M. (1999). *Arabidopsis thaliana* proteins related to the yeast SIP and SNF4 interact with AKIN alpha 1, an SNF1-like protein kinase. Plant Journal **18**, 541-550.
- Buleon, A., Cotte, M., Putaux, J.L., d'Hulst, C., Susini, J. (2014). Tracking sulfur and phosphorus within single starch granules using synchrotron X-ray microfluorescence mapping. Biochimica et Biophysica Acta **1840**, 113-119.
- Bull, S.E., Owiti, J.A., Niklaus, M., Beeching, J.R., Gruissem, W., Vanderschuren, H. (2009). Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nature protocols **4**, 1845-1854.
- **Busse, J.S., and Evert, R.F.** (1999). Pattern of differentiation of the first vascular elements in the embryo and seedling of *Arabidopsis thaliana*. International Journal of Plant Sciences **160**, 1-13.
- Calatayud, P.A., Llovera, E., Bois, J.F., Lamaze, T. (2000). Photosynthesis in drought-adapted cassava. Photosynthetica **38**, 97-104.
- Carciofi, M., Shaif, S.S., Jensen, S.L., Blennow, A., Svensson, J.T., Vincze, E., Hebelstrup, K.H. (2011). Hyperphosphorylation of cereal starch. Journal of Cereal Science **54**, 339-346.
- Carvalho, L.J.C.B., de Souza C.R.B., de Mattos Cascardo, J. C., Bloch Junior, C., Campos, L. (2004). Identification and characterization of a novel cassava (*Manihot esculenta* Crantz) clone with high free sugar content and novel starch. Plant Molecular Biology **56**, 643-659.
- **Caspar, T., Huber, S.C., Somerville, C.** (1985). Alterations in growth, photosynthesis, and respiration in a starchless mutant of *Arabidopsis thaliana* (L) deficient in chloroplast phosphoglucomutase activity. Plant Physiology **79**, 11-17.
- Ceballos, H., Iglesias, C.A., Perez, J.C., and Dixon, A.G.O. (2004). Cassava breeding: opportunities and challenges. Plant Molecular Biology 56, 503-516.
- Ceballos, H., Sanchez, T., Morante, N., Fregene, M., Dufour, D., Smith, A.M., Denyer, K., Perez, J.C., Calle, F., Mestres, C. (2007). Discovery of an amylose-free starch mutant in cassava (*Manihot esculenta* Crantz). Journal of Agricultural and Food Chemistry 55, 7469-7476.
- Ceballos, H., Sanchez, T., Denyer, K., Tofino, A.P., Rosero, E.A., Dufour, D., Smith, A., Morante, N., Perez, J.C., Fahy, B. (2008). Induction and identification of a smallgranule, high-amylose mutant in cassava (*Manihot esculenta* Crantz). Journal of Agricultural and Food Chemistry **56**, 7215-7222.
- Ceballos, H., Iglesias, C.A., Pérez J.C., Dixon A.G.O. (2004). Cassava breeding: opportunities and challenges. Plant Molecular Biology 56, 503-516.

- Chen, L.Q., Qu, X.Q., Hou, B.H., Sosso, D., Osorio, S., Fernie, A.R., Frommer, W.B. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science **335**, 207-211.
- Chia, T., Thorneycroft, D., Chapple, A., Messerli, G., Chen, J., Zeeman, S.C., Smith, S.M., Smith, A.M. (2004). A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant Journal 37, 853-863.
- **Cho, M.H., Lim, H., Shin, D.H., Jeon, J.S., Bhoo, S.H., Park, Y.I., Hahn, T.R.** (2011). Role of the plastidic glucose translocator in the export of starch degradation products from the chloroplasts in *Arabidopsis thaliana*. New Phytologist **190,** 101-112.
- **Cho, Y.H., and Yoo, S.D.** (2011). Signaling role of fructose mediated by FINS1/FBP in *Arabidopsis thaliana*. PLoS Genetics **7**.
- **Claeyssen, E., and Rivoal, J.** (2007). Isozymes of plant hexokinase: occurrence, properties and functions. Phytochemistry **68**, 709-731.
- Craig, J., Lloyd, J.R., Tomlinson, K., Barber, L., Edwards, A., Wang, T.L., Martin, C., Hedley, C.L., Smith, A.M. (1998). Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell **10**, 413-426.
- **Crevillen, P., Ventriglia, T., Pinto, F., Orea, A., Merida, A., Romero, J.M.** (2005). Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADP-glucose pyrophosphorylase-encoding genes. Journal of Biological Chemistry **280**, 8143-8149.
- Critchley, J.H., Zeeman, S.C., Takaha, T., Smith, A.M., Smith, S.M. (2001). A critical role for disproportionating enzyme in starch breakdown is revealed by a knock-out mutation in Arabidopsis. Plant Journal **26**, 89-100.
- **Cruz, J.L., Mosquim, P.R., Pelacani, C.R., Araújo, W.L., DaMatta, F.M.** (2003). Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava. Photosynthetica **41**, 201-207.
- Damager, I., Engelsen, S.B., Blennow, A., Moller, B.L., Motawia, M.S. (2010). First principles insight into the alpha-glucan structures of starch: their synthesis, conformation, and hydration. Chemical Reviews **110**, 2049-2080.
- **De Schepper, V., De Swaef, T., Bauweraerts, I., Steppe, K.** (2013). Phloem transport: a review of mechanisms and controls. Journal of Experimental Botany **64**, 4839-4850.
- Delatte, T., Umhang, M., Trevisan, M., Eicke, S., Thorneycroft, D., Smith, S.M., Zeeman, S.C. (2006). Evidence for distinct mechanisms of starch granule breakdown in plants. Journal of Biological Chemistry **281**, 12050-12059.
- Delvalle, D., Dumez, S., Wattebled, F., Roldan, I., Planchot, V., Berbezy, P., Colonna, P., Vyas, D., Chatterjee, M., Ball, S., Merida, A., D'Hulst, C. (2005). Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant Journal **43**, 398-412.
- **Domon, B., and Aebersold, R.** (2010). Options and considerations when selecting a quantitative proteomics strategy. Nature Biotechnology **28**, 710-721.
- Du, L.C., Bokanga, M., Moller, B.L., Halkier, B.A. (1995). The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry **39**, 323-326.
- Edner, C., Li, J., Albrecht, T., Mahlow, S., Hejazi, M., Hussain, H., Kaplan, F., Guy, C., Smith, S.M., Steup, M., Ritte, G. (2007). Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial beta-amylases. Plant Physiology **145**, 17-28.
- Edwards, G.E., Sheta, E., Moore, B.D., Dai, Z., Franceschi, V.R., Cheng, S.H., Lin, C.H., Ku, M.S.B. (1990). Photosynthetic characteristics of cassava (*Manihot esculenta* Crantz), a C3 species with chlorenchymatous bundle sheath cells. Plant Cell Physiology **31**, 1199-1206.

- **Einhauer, A., and Jungbauer, A.** (2001). The FLAG (TM) peptide, a versatile fusion tag for the purification of recombinant proteins. Journal of Biochemical and Biophysical Methods **49**, 455-465.
- El-Sharkawy, M.A. (2004). Cassava biology and physiology. Plant Molecular Biology 56, 481-501.
- **El-Sharkawy, M.A., Cock J.H.** (1990). Photosynthesis of cassava (*Manihot esculenta*). Experimental Agriculture **26**, 325-340.
- **El-Sharkawy, M.A., Cock, J.H., Held, A.A.** (1984). Photosynthetic responses of cassava cultivars (*Manihot esculenta* Crantz) from different habitats to temperature. Photosynthesis Research **5**, 243-250.
- Fernie, A.R., Swiedrych, A., Tauberger, E., Lytovchenko, A., Trethewey, R.N., Willmitzer, L. (2002). Potato plants exhibiting combined antisense repression of cytosolic and plastidial isoforms of phosphoglucomutase surprisingly approximate wild type with respect to the rate of starch synthesis. Plant Physiology and Biochemistry 40, 921-927.
- Ferreira, S.J., and Sonnewald, U. (2012). The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization. Frontiers in Plant Science **3**, 23,1-18
- Fettke, J., Eckermann, N., Kotting, O., Ritte, G., Steup, M. (2006). Novel starch-related enzymes and carbohydrates. Cellular and Molecular Biology **52**, 883-904.
- **Fincher, G.B.** (1989). Molecular and cellular biology associated with endosperm mobilization in germinating cereal-grains. Annual Review Plant Physiology Plant Molecular Biology **40**, 305-346.
- Fischer, R., Trudgian, D.C., Wright, C., Thomas, G., Bradbury, L.A., Brown, M.A., Bowness, P., Kessler, B.M. (2012). Discovery of candidate serum proteomic and metabolomic biomarkers in ankylosing spondylitis. Molecular Cell Proteomics **11**.
- Fulton, D.C., Stettler, M., Mettler, T., Vaughan, C.K., Li, J., Francisco, P., Gil, D., Reinhold, H., Eicke, S., Messerli, G., Dorken, G., Halliday, K., Smith, A.M., Smith, S.M., Zeeman, S.C. (2008). beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. Plant Cell 20, 1040-1058.
- Gallagher, J.A., Volenec, J.J., Turner, L.B., Pollock, C.J. (1997). Starch hydrolytic enzyme activities following defoliation white clover. Crop Science **37**, 1812-1818.
- **Geigenberger, P.** (2003). Regulation of sucrose to starch conversion in growing potato tubers. Journal of Experimental Botany **54**, 457-465.
- Geigenberger, P., Fernie, A.R., Gibon, Y., Christ, M., Stitt, M. (2000). Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biological Chemistry **381**, 723-740.
- **Gibon, Y., Vigeolas, H., Tiessen, A., Geigenberger, P., Stitt, M.** (2002). Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGIc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant Journal **30**, 221-235.
- Gibon, Y., Blasing, O.E., Palacios-Rojas, N., Pankovic, D., Hendriks, J.H., Fisahn, J., Hohne, M., Gunther, M., Stitt, M. (2004). Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant Journal **39**, 847-862.
- **Goodall, G.J., and Filipowicz, W.** (1989). The Au-rich sequences present in the introns of plant nuclear pre-messenger RNAs are required for splicing. Cell **58**, 473-483.

- Greer, E., Martin, A.C., Pendle, A., Colas, I., Jones, A.M.E., Moore, G., Shaw, P. (2012). The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell **24**, 152-162.
- Hardie, G., Carling, D., Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annual Review Biochemistry 67, 821-855.
- Harrison, C.J., Hedley, C.L., Wang, T.L. (1998). Evidence that the rug3 locus of pea (*Pisum sativum* L.) encodes plastidial phosphoglucomutase confirms that the imported substrate for starch synthesis in pea amyloplasts is glucose-6-phosphate. Plant Journal **13**, 753-762.
- **Hejazi, M., Fettke, J., Kotting, O., Zeeman, S.C., Steup, M.** (2010). The laforin-like dualspecificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6-and C3phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. Plant Physiology **152**, 711-722.
- Hendriks, J.H.M., Kolbe, A., Gibon, Y., Stitt, M., Geigenberger, P. (2003). ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiology **133**, 838-849.
- Hill, L.M., and Smith, A.M. (1991). Evidence that glucose-6-phosphate is imported as the substrate for starch synthesis by the plastids of developing pea embryos. Planta 185, 91-96.
- Huber, J.L.A., Huber, S.C., Nielsen, T.H. (1989). Protein-phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity. Archives of Biochemistry and Biophysics 270, 681-690.
- Hussain, H., Mant, A., Seale, R., Zeeman, S., Hinchliffe, E., Edwards, A., Hylton, C., Bornemann, S., Smith, A.M., Martin, C., Bustos, R. (2003). Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15, 133-149.
- Jang, J.-C., Leon, P., Zhou, L., Sheen, J. (1997). Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5-19.
- Jennings, D., and Iglesias, C. (2002). Breeding for crop improvement. Cassava: Biology, Production and Utilization. R. Hillocks, J. Thresh, and A. Bellotti, eds (CBI Publishing, New York). Chapter 8, 149-166.
- **Jobling, S.** (2004). Improving starch for food and industrial applications. Current Opinion of Plant Biology **7**, 210-218.
- Jobling, S., Schwall, G.P., Westcott, R.J., Sidebottom, C.M., Debet, M., Gidley, M.J., Jeffcoat, R., Safford, R. (1999). A minor form of starch branching enzyme in potato (*Solanum tuberosum* L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of *SBE A*. Plant Journal **18**, 163-171.
- Jobling, S., Westcott, R.J., Tayal, A., Schwall, G.P. (2002). Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nature Biotechnology **20**, 295-299.
- Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A., Flugge, U.I. (1998). Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: The glucose 6-phosphate phosphate antiporter. Plant Cell **10**, 105-117.
- Koch, K. (2004). Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion Plant Biology **7**, 235-246.

- Kolbe, A., Tiessen, A., Schluepmann, H., Paul, M., Ulrich, S., Geigenberger, P. (2005). Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proceedings of the National Academy of Sciences USA. **102**, 11118-11123.
- Kosegarten, H., and Mengel, K. (1994). Evidence for a glucose 1-phosphate translocator in storage tissue amyloplasts of potato (*Solanum tuberosum*) suspension-cultured cells. Physiologia Plantarum **91**, 111-120.
- Kotting, O., Pusch, K., Tiessen, A., Geigenberger, P., Steup, M., Ritte, G. (2005). Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology **137**, 242-252.
- Kotting, O., Santelia, D., Edner, C., Eicke, S., Marthaler, T., Gentry, M.S., Comparot-Moss, S., Chen, J., Smith, A.M., Steup, M., Ritte, G., Zeeman, S.C. (2009). STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 21, 334-346.
- Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J.B., Reinhardt, D., Bours, R., Bouwmeester, H.J., Martinoia, E. (2012). A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341-344.
- Li, J.-Y., Yeh, A.-I. (2001). Relationships between thermal, rheological characteristics and swelling power for various starches. Journal of Food Engineering **50**, 141-148.
- Li, Y.Z., Pan, Y.H., Sun, C.B., Dong, H.T., Luo, X.L., Wang, Z.Q., Tang, J.L., Chen, B. (2010). An ordered EST catalogue and gene expression profiles of cassava (*Manihot esculenta*) at key growth stages. Plant Molecular Biology **74**, 573-590.
- Lin, T.P., Caspar, T., Somerville, C.R., Preiss, J. (1988). A starch deficient mutant of Arabidopsis thaliana with low ADPglucose pyrophosphorylase activity lacks one of the 2 subunits of the enzyme. Plant Physiology 88, 1175-1181.
- Lohmeier-Vogel, E.M., Kerk, D., Nimick, M., Wrobel, S., Vickerman, L., Muench, D.G., Moorhead, G.B. (2008). Arabidopsis At5g39790 encodes a chloroplast-localized, carbohydrate-binding, coiled-coil domain-containing putative scaffold protein. BMC Plant Biology **8**, 120.
- Lopez, C., Jorge, V., Piegu, B., Mba, C., Cortes, D., Restrepo, S., Soto, M., Laudie, M., Berger, C., Cooke, R., Delseny, M., Tohme, J., Verdier, V. (2004). A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology 56, 541-554.
- Lorberth, R., Ritte, G., Willmitzer, L., Kossmann, J. (1998). Inhibition of a starch-granulebound protein leads to modified starch and repression of cold sweetening. Nature Biotechnology 16, 473-477.
- Lu, P., Vogel, C., Wang, R., Yao, X., Marcotte, E.M. (2007). Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nature Biotechnology 25, 117-124.
- Lu, Y., Steichen, J.M., Weise, S.E., Sharkey, T.D. (2006). Cellular and organ level localization of maltose in maltose-excess Arabidopsis mutants. Planta **224**, 935-943.
- Lunn, J.E., Feil, R., Hendriks, J.H., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W.R., Carillo, P., Hajirezaei, M.R., Stitt, M. (2006). Sugar-induced increases in trehalose 6phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in *Arabidopsis thaliana*. Biochemical Journal **397**, 139-148.
- Man, A.L., Purcell, P.C., Hannappel, U., Halford, N.G. (1997). Potato SNF1-related protein kinase: Molecular cloning, expression analysis and peptide kinase activity measurements. Plant Molecular Biology 34, 31-43.

- McKibbin, R.S., Muttucumaru, N., Paul, M.J., Powers, S.J., Burrell, M.M., Coates, S., Purcell, P.C., Tiessen, A., Geigenberger, P., Halford, N.G. (2006). Production of highstarch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnology Journal **4**, 409-418.
- McMahon, J.M., White, W.L.B., Sayre, R.T. (1995). Cyanogenesis in Cassava (*Manihot esculenta* Crantz). Journal of Experimental Botany **46**, 731-741.
- Mikkelsen, R., Suszkiewicz, K., Blennow, A. (2006). A novel type carbohydrate-binding module identified in alpha-glucan, water dikinases is specific for regulated plastidial starch metabolism. Biochemistry **45**, 4674-4682.
- Mikkelsen, R., Mutenda, K.E., Mant, A., Schurmann, P., Blennow, A. (2005). alpha-Glucan, water dikinase (GWD): A plastidic enzyme with redox-regulated and coordinated catalytic activity and binding affinity. Proceeding of the National Academy of Sciences USA. **102**, 1785-1790.
- Mitprasat, M., Roytrakul, S., Jiemsup, S., Boonseng, O., and Yokthongwattana, K. (2011). Leaf proteomic analysis in cassava (*Manihot esculenta* Crantz) during plant development, from planting of stem cutting to storage root formation. Planta **233**, 1209-1221.
- Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X., Hwang, I., Jones, T., Sheen, J. (2003). Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science **300**, 332-336.
- Naumkina, E.M., Bolyakina, Y.P., Romanov, G.A. (2007). Organ-specificity and inducibility of patatin class I promoter from potato in transgenic arabidopsis plants. Russian Journal of Plant Physiology 54, 350-359.
- Neuhaus, H.E., Thom, E., Mohlmann, T., Steup, M., Kampfenkel, K. (1997). Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of *Arabidopsis thaliana* L. Plant Journal **11**, 73-82.
- Nielsen, T.H., Deiting, U., Stitt, M. (1997). A beta-amylase in potato tubers is induced by storage at low temperature. Plant Physiology **113**, 503-510.
- Nielsen, T.H., Wischmann, B., Enevoldsen, K., Moller, B.L. (1994). Starch phosphorylation in potato tubers proceeds concurrently with *de novo* biosynthesis of starch. Plant Physiology **105**, 111-117.
- Niittyla, T., Messerli, G., Trevisan, M., Chen, J., Smith, A.M., Zeeman, S.C. (2004). A previously unknown maltose transporter essential for starch degradation in leaves. Science **303**, 87-89.
- Niittyla, T., Comparot-Moss, S., Lue, W.L., Messerli, G., Trevisan, M., Seymour, M.D.J., Gatehouse, J.A., Villadsen, D., Smith, S.M., Chen, J.C., Zeeman, S.C., Alison, M.S. (2006). Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. Journal of Biological Chemistry **281**, 11815-11818.
- Niklaus, M., Gruissem, W., Vanderschuren, H. (2011). Efficient transformation and regeneration of transgenic cassava using the neomycin phosphotransferase gene as aminoglycoside resistance marker gene. GM crops **2**, 193-200.
- Owiti, J., Grossmann, J., Gehrig, P., Dessimoz, C., Laloi, C., Hansen, M.B., Gruissem, W., Vanderschuren, H. (2011). iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal 67, 145-156.
- **Perez, S., and Bertoft, E.** (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Starke **62**, 389-420.
- Pracharoenwattana, I., Cornah, J.E., Smith, S.M. (2005). Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17, 2037-2048.

- Preiss, J., Kumar, A., Ghosh, P. (1988). A study of the catalytic and regulatory functions of a sugar nucleotide synthetase using *in vitro* and *in vivo* mutagenesis techniques. Glycoconjugate Journal 5, 365-365.
- Prochnik, S., Marri, P.R., Desany, B., Rabinowicz, P.D., Kodira, C., Mohiuddin, M., Rodriguez, F., Fauquet, C., Tohme, J., Harkins, T., Rokhsar, D.S., Rounsley, S. (2012). The cassava genome: Current progress, future directions. Tropical Plant Biology 5, 88-94.
- Raemakers, K., Schreuder, M., Suurs, L., Furrer-Verhorst, H., Vincken, J.-P., de Vetten, N., Jacobsen, E., Visser, R.G.F. (2005). Imporved cassava starch by antisense inhibition of granule-bound starch synthase I. Molecular Breeding **16**, 163-172.
- Reilly, K., Bernal, D., Cortes, D.F., Gomez-Vasquez, R., Tohme, J., Beeching, J.R. (2007). Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Molecular Biology **64**, 187-203.
- Ritte, G., Lloyd, J.R., Eckermann, N., Rottmann, A., Kossmann, J., Steup, M. (2002). The starch-related R1 protein is an alpha -glucan, water dikinase. Proceeding of the National Academy of Sciences USA 99, 7166-7171.
- Ritte, G., Heydenreich, M., Mahlow, S., Haebel, S., Kotting, O., Steup, M. (2006). Phosphorylation of C6- and C3-positions of glucosyl residues in starch is catalysed by distinct dikinases. FEBS Letter **580**, 4872-4876.
- Roldan, I., Wattebled, F., Lucas, M.M., Delvalle, D., Planchot, V., Jimenez, S., Perez, R., Ball, S., D'Hulst, C., Merida, A. (2007). The phenotype of soluble starch synthase IV defective mutants of *Arabidopsis thaliana* suggests a novel function of elongation enzymes in the control of starch granule formation. Plant Journal **49**, 492-504.
- Ross, H.A., Davies, H.V., Burch, L.R., Viola, R., Mcrae, D. (1994). Developmental-changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (*Solanum tuberosum*). Physiolgia Plantarum **90**, 748-756.
- **Ryan, E., and Fottrell, P.F.** (1974). Subcellular-localization of enzymes involved in assimilation of ammonia by soybean root nodules. Phytochemistry **13**, 2647-2652.
- Sanchez, T., Chavez, A.L., Ceballos, H., Rodriguez-Amaya, D., Nestel, P., Ishitani, M. (2006). Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. Journal of the Science of Food and Agriculture **86**, 634-639.
- Santelia, D., Kotting, O., Seung, D., Schubert, M., Thalmann, M., Bischof, S., Meekins, D.A., Lutz, A., Patron, N., Gentry, M.S., Allain, F.H.T., and Zeeman, S.C. (2011). The phosphoglucan phosphatase like Sex Four2 dephosphorylates starch at the C3-Position in Arabidopsis. Plant Cell 23, 4096-4111.
- Saravanan, R.S., and Rose, J.K.C. (2004). A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4, 2522-2532.
- Satoh, R., Fujita, Y., Nakashima, K., Shinozaki, K., Yamaguchi-Shinozaki, K. (2004). Analysis of bZIP transcription factors involved in hypoosmolarity-responsive expression of the ProDH gene in Arabidopsis. Plant Cell Physiology **45**, S228-S228.
- Sauer, N. (2007). Molecular physiology of higher plant sucrose transporters. FEBS Letter 581, 2309-2317.
- Schluepmann, H., van Dijken, A., Aghdasi, M., Wobbes, B., Paul, M., Smeekens, S. (2004). Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6phosphate accumulation. Plant Physiology **135**, 879-890.
- Schulze, W.X., and Usadel, B. (2010). Quantitation in Mass-Spectrometry-Based Proteomics. Annual Review of Plant Biology 61, 491-516.

- Sheffield, J., Taylor, N., Fauquet, C., Chen, S.X. (2006). The cassava (*Manihot esculenta* Crantz) root proteome: Protein identification and differential expression. Proteomics 6, 1588-1598.
- Shimomura, S., Nagai, M., Fukui, T. (1982). Comparative glucan specificities of 2 types of spinach leaf phosphorylase. Journal of Biochemistry **91**, 703-717.
- Shure, M., Wessler, S., Fedoroff, N. (1983). Molecular-identification and isolation of the *waxy* locus in maize. Cell **35**, 225-233.
- Smalle, J., and Vierstra, R.D. (2004). The ubiquitin 26S proteasome proteolytic pathway. Annual review of plant biology **55**, 555-590.
- Smith, A.M., and Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant Cell and Environment **30**, 1126-1149.
- **Sonnewald, U., and Kossmann, J.** (2013). Starches-from current models to genetic engineering. Plant Biotechnology Journal **11**, 223-232.
- Sorefan, K., Booker, J., Haurogne, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C., Leyser, O. (2003). MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Gene Development **17**, 1469-1474.
- Stadler, R., and Sauer, N. (1996). The *Arabidopsis thaliana AtSUC2* gene is specifically expressed in companion cells. Botanica Acta **109**, 299-306.
- Steup, M., and Schachtele, C. (1981). Mode of glucan degradation by purified phosphorylase forms from spinach leaves. Planta **153**, 351-361.
- Stirnberg, P., van de Sande, K., Leyser, H.M.O. (2002). MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development **129**, 1131-1141.
- Stitt, M., and Zeeman, S.C. (2012). Starch turnover: pathways, regulation and role in growth. Current Opinion of Plant Biology 15, 282-292.
- **Streb, S., and Zeeman, S.C.** (2012). Starch metabolism in Arabidopsis. The Arabidopsis book. American Society of Plant Biologists **10**, e0160.
- Streb, S., Delatte, T., Umhang, M., Eicke, S., Schorderet, M., Reinhardt, D., Zeeman, S.C. (2008). Starch granule biosynthesis in Arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoamylase. Plant Cell 20, 3448-3466.
- Sugden, C., Donaghy, P.G., Halford, N.G., Hardie, D.G. (1999). Two SNF1-Related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutarylcoenzyme A reductase, nitrate reductase, and sucrose phosphate synthase *in vitro*. Plant Physiology **120**, 257-274.
- Szydlowski, N., Ragel, P., Raynaud, S., Lucas, M.M., Roldan, I., Montero, M., Munoz, F.J., Ovecka, M., Bahaji, A., Planchot, V., Pozueta-Romero, J., D'Hulst, C., Merida, A. (2009). Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21, 2443-2457.
- Takeda, Y., and Hizukuri, S. (1981). Re-examination of the action of sweet-potato betaamylase on phosphorylated (1-4)-alpha-D-glucan. Carbohydrate Research 89, 174-178.
- Takeda, Y., Guan, H.P., Preiss, J. (1993). Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydrate Research **240**, 253-263.
- Tangphatsornruang, S., Naconsie, M., Thammarongtham, C., Narangajavana, J. (2005). Isolation and characterization of an alpha-amylase gene in cassava (*Manihot esculenta*). Plant Physiology Biochemistry **43**, 821-827.
- Teerawanichpan, P., Lertpanyasampatha, M., Netrphan, S., Varavinit, S., Boonseng, O., Narangajavana, J. (2008). Influence of cassava storage root development and environmental conditions on starch granule an size distribution. Starch-Starke **60**, 696-705.

- **Tester, R.F., and Morrison, W.R.** (1990). Swelling and gelatinization of cereal starches .1. effects of amylopectin, amylose, and lipids. Cereal Chemistry **67**, 551-557.
- **Tharanathan, R.N.** (2005). Starch-value addition by modification. Critical Reviews in Food Science and Nutrition **45**, 371-384.
- Usadel, B., Poree, F., Nagel, A., Lohse, M., Czedik-Eysenberg, A., Stitt, M. (2009). A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize. Plant Cell Environment **32**, 1211-1229.
- van Oirschot, Q.E.A., O'Brien, G.M., Dufour, D., El-Sharkawy, M.A., Mesa, E. (2000). The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. Journal of Science in Food and Agriculture **80**, 1866-1873.
- Vaudel, M., Sickmann, A., Martens, L. (2010). Peptide and protein quantification: A map of the minefield. Proteomics **10**, 650-670.
- Vikso-Nielsen, A., Blennow, A., Jorgensen, K., Kristensen, K.H., Jensen, A., Moller, B.L. (2001). Structural, physicochemical, and pasting properties of starches from potato plants with repressed r1-gene. Biomacromolecules **2**, 836-843.
- Viola, R., Pelloux, J., van der Ploeg, A., Gillespie, T., Marquis, N., Roberts, A.G., Hancock, R.D. (2007). Symplastic connection is required for bud outgrowth following dormancy in potato (*Solanum tuberosum* L.) tubers. Plant Cell Environment **30**, 973-983.
- Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C., Oparka, K.J. (2001). Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell **13**, 385-398.
- Weise, S.E., Weber, A.P.M., Sharkey, T.D. (2004). Maltose is the major form of carbon exported from the chloroplast at night. Planta **218**, 474-482.
- Wingler, A., Fritzius, T., Wiemken, A., Boller, T., Aeschbacher, R.A. (2000). Trehalose induces the ADP-glucose pyrophosphorylase gene, *ApL3*, and starch synthesis in Arabidopsis. Plant Physiology **124**, 105-114.
- Witt, W., and Sauter J. J. (1996). Purification and properties of a starch granule-degrading α -amylase from potato tubers. Journal of Experimental Botany **47**, 1789-1795.
- Witt, W., and Sauter J. J. (1994). Starch metabolism in poplar wood ray cells during spring mobilization and summer deposition. Physiologia Plantarum **92**, 9-16.
- Yoo, S.H., and Jane, J.L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers 49, 307-314.
- Yu, T.-S.K., H., Häusler, R.E., Hille, D., Flügge, U-I., Zeeman S.C., Smith, A.M., Kossmann, J., Lloyd, J., Ritte, G., Steup, M., Lue, W-L., Chen, J., Weber, A. (2001). The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907-1918.
- Yu, T.S., Lue, W.L., Wang, S.M., and Chen, J.C. (2000). Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation. Plant Physiology 123, 319-325.
- Yu, T.S., Zeeman, S.C., Thorneycroft, D., Fulton, D.C., Dunstan, H., Lue, W.L., Hegemann, B., Tung, S.Y., Umemoto, T., Chapple, A., Tsai, D.L., Wang, S.M., Smith, A.M., Chen, J., Smith, S.M. (2005). alpha-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry 280, 9773-9779.
- Yuen, C.Y.L., Leelapon, O., Chanvivattana, Y., Warakanont, J., Narangajavana, J. (2009). Molecular characterization of two genes encoding plastidic ATP/ADP transport proteins in cassava. Biologia Plantarum 53, 37-44.

- Zeeman, S.C., and Ap Rees, T. (1999). Changes in carbohydrate metabolism and assimilate export in starch-excess mutants of Arabidopsis. Plant Cell and Environment 22, 1445-1453.
- Zeeman, S.C., Kossmann, J., Smith, A.M. (2010). Starch: Its Metabolism, Evolution, and Biotechnological Modification in Plants. Annual Review of Plant Biology, **61**, 209-234.
- Zeeman, S.C., Delatte, T., Messerli, G., Umhang, M., Stettler, M., Mettler, T., Streb, S., Reinhold, H., Kotting, O. (2007). Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Functional Plant Biology 34, 465-473.
- Zeeman, S.C., Thorneycroft, D., Schupp, N., Chapple, A., Weck, M., Dunstan, H., Haldimann, P., Bechtold, N., Smith, A.M., Smith, S.M. (2004). Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology **135**, 849-858.
- Zhang, X.L., Myers, A.M., James, M.G. (2005). Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis. Plant Physiology 138, 663-674.
- Zhang, X.L., Szydlowski, N., Delvalle, D., D'Hulst, C., James, M.G., Myers, A.M. (2008). Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biology 8, 96.

8. Curriculum vitae

CARMEN ELISA HOSTETTLER

Home Address:	Brüderhofweg 44,
	8057 Zürich, Switzerland
	Tel.: +41 79 755 71 08
	Email: cari-hostettler@gmx.ch
University Address:	Swiss Federal Institute of Technology
	Department of Biology, Institute of Plant Sciences
	Universitätstr. 2
	8092 Zürich, Switzerland
	Tel.: +41 44 632 38 42
Mariatal Status: Single	
Date of Birth:	26.06.1981

EDUCATION

Place of Birth: Bern, Switzerland

June 2009 – present	PhD in Plant Biochemistry , ETH Zürich. Investigation of starch metabolism in Cassava (<i>Manihot esculenta</i> Crantz) Supervisor: Prof. Dr S. Zeeman
Oct 2006 – April 2008	MSc in Plant Biology , ETH Zürich. Physiological and Biochemical Characterization of a Putative mutant impaired in Glucose Signalling in Carbohydrate Metabolism. Supervisor: Prof. Dr S. Zeeman
Oct 2005 – Oct 2008	Studies in Integrative Biology, ETH Zürich
Oct 2001 – Oct 2005	Studies in Pharmaceutical Sciences, ETH Zürich
Aug 1998 – Aug 2001	Gymnasium Bern – Köniz, modern languages (Center subject: Spanish, English, complementary subject: History)
WORK EXPERIENCE	
------------------------	--
May 2008 – May 2009	Research and personal assistant at ETH Zürich, in the group of Plant Biochemistry, Prof. S. Zeeman.
April 2005 – Sept 2007	Assistant, Belfa AG, Glattbrugg
PUBLICATIONS	

Hostettler, C., Kolling, K., Santelia, D., Streb, S., Kotting, O., and Zeeman, S.C. (2011). Analysis of starch metabolism in chloroplasts. Methods Mol Biol 775, 387-410.

Reinhold, H., Soyk, S., Simkova, K., **Hostettler, C.**, Marafino, J., Mainiero, S., Vaughan, C.K., Monroe, J.D., and Zeeman, S.C. (2011). beta-Amylase-Like Proteins Function as Transcription Factors in Arabidopsis, Controlling Shoot Growth and Development. Plant Cell 23, 1391-1403.

LANGUAGE SKILLS

German:	mother tongue
English:	proficient (C1), written and spoken
French:	independent (B1) written and spoken
Spanish:	basic (A2) written and spoken

Supplemental Table 4.1. Quantitative proteome map of cassava roots during pruning. Root proteins were extracted by phenol/methanol precipitation (Saravanan and Rose, 2004) and equivalent amounts of protein were separated by SDS-PAGE followed by in-gel tryptic digestion. Peptides were analyzed by mass spectrometry (MS) using an Orbitrap mass spectrometer. Three biological replicates including sample collection, protein extraction and separation were analyzed by MS for each time point. Measured spectra were analyzed by Mascot using the the cassava genomic database Mesculenta_147_peptide.fa (download from ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v7.0/Mesculenta/) and quantitative information for each identified peptide and protein was obtained by data analysis using the software Progenesis LC-MS (www.nonlinear.com). Information about Arabidopsis AGI-homologues and protein descriptions were downloaded from ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v7.0/Mesculenta. SUB-cellular protein localization was based on the database SUBA (Heazlewood et al., 2007; http://suba.plantenergy.uwa.edu.au). DAP: days after pruning.

				Progenesis	Mapman		
Cassava accession	Arabidopsis Accession	Anova (p)	Max fold change	Highest mean condition	Peptides used for quantitation	Bincode	Name
cassava4.1_007929m PA	AT1G51710	0.000184834	1.247724727	Ten DAP	7	29.5.11.05	protein
cassava4.1_009485m PA	AT5G10770	0.000331509	1.54793695	Ten DAP	2	27.3.99	RNA
cassava4.1_006320m PA	AT4G35090	0.000423785	2.90455018	Ten DAP	21	21.6	redox
cassava4.1_003566m PA	AT1G09420	0.000655903	1.233848973	Ten DAP	9	7.1.01	OPP
cassava4.1_008547m PA	AT1G49820	0.0011878	2.376973953	Ten DAP	3	35.1	not assigned
cassava4.1_028937m PA	AT5G35360	0.001626041	1.636998465	Ten DAP	3	11.1.01	lipid metabolism
cassava4.1_012839m PA	AT3G24170	0.001630858	1.41248156	Ten DAP	3	21.2.2	redox
cassava4.1_010570m PA	AT1G07750	0.00165494	1.904043819	Ten DAP	4	33.1	development
cassava4.1_006656m PA	AT5G57655	0.001667931	1.989665603	Ten DAP	12	35.1	not assigned
cassava4.1_013350m PA	AT3G45600	0.001742257	1.687943839	Ten DAP	4	33.99	development
cassava4.1_013267m PA	AT3G54820	0.00177835	1.936787885	Ten DAP	9	34.19.1	transport
cassava4.1_006459m PA	AT1G06110	0.001786115	1.752486433	Ten DAP	2	29.5.11.4.3.02	protein
cassava4.1_008713m PA	AT5G18170	0.002006845	2.03320298	Ten DAP	8	12.3.01	N-metabolism
cassava4.1_015379m PA	AT4G11150	0.002298373	1.346622159	Ten DAP	10	34.1.01	transport
cassava4.1_011655m PA	AT4G13010	0.002317828	2.695500686	Ten DAP	9	26.07	misc
cassava4.1_010105m PA	AT5G43330	0.002399012	1.203658368	Ten DAP	17	8.2.09	TCA / org
cassava4.1_006188m PA	AT3G24170	0.002824254	1.206469929	Ten DAP	11	21.2.2	redox
cassava4.1_006148m PA	AT4G35230	0.002996077	1.945108137	Ten DAP	2	29.4.1.52	protein
cassava4.1_001385m PA	AT1G47550	0.003194085	1.328324206	Ten DAP	4	35.2	not assigned
cassava4.1_001602m PA	AT3G26720	0.003244191	1.615893902	Ten DAP	11	26.03	misc
cassava4.1_002966m PA	AT1G06290	0.003248717	2.249492405	Ten DAP	5	11.9.4.02	lipid metabolism
cassava4.1_004339m PA	AT3G14310	0.003386575	1.481605442	Ten DAP	16	10.8.01	cell wall
cassava4.1_011670m PA	AT4G27585	0.003651751	1.356094422	Ten DAP	8	35.1	not assigned
cassava4.1_009672m PA	AT3G54360	0.00386717	1.46021094	Ten DAP	6	29.5.11.04.02	protein
cassava4.1_008396m PA	AT1G12050	0.004113184	1.602166851	Ten DAP	3	13.2.6.2	amino acid metabolism
cassava4.1_009839m PA	AT1G12840	0.004195739	1.388372798	Ten DAP	16	34.1	transport
cassava4.1_003845m PA	AT1G72160	0.004723487	1.345255193	Ten DAP	35	28.99	DNA
cassava4.1_003845m PA	AT1G72160	0.004723487	1.345255193	Ten DAP	35	34.99	transport
cassava4.1_005081m PA	AT1G36280	0.004856757	1.772631821	Ten DAP	11	23.1.2.08	nucleotide metabolism
cassava4.1_000890m PA	AT1G22610	0.004928974	2.923968357	Ten DAP	3	35.1.19	not assigned

cassava4.1_022803m PA	AT3G13235	0.005124596	1.252930263	Ten DAP	8	29.5.11.01	protein
cassava4.1_018093m PA	AT1G53540	0.005343764	8.023552477	Ten DAP	4	20.2.1	stress
cassava4.1_019208m PA	AT2G43750	0.005888425	1.541881836	Ten DAP	3	13.1.5.3.01	amino acid metabolism
cassava4.1_003278m PA	AT1G62440	0.005963094	1.599930163	Ten DAP	3	10.5.3	cell wall
cassava4.1_033294m PA	AT5G44640	0.006099166	1.123323949	Ten DAP	2	35.1	not assigned
cassava4.1_008949m PA	AT5G08370	0.006160509	1.484106938	Ten DAP	11	3.8.2	minor CHO metabolism
cassava4.1_032921m PA	AT3G48690	0.006820393	6.305755438	Ten DAP	3	35.1	not assigned
cassava4.1_029528m PA	AT5G10770	0.00716048	1.780161588	Ten DAP	6	27.3.99	RNA
cassava4.1_001252m PA	AT1G58370	0.007256631	1.475983414	Ten DAP	7	10.6.2	cell wall
cassava4.1_006617m PA	AT1G70580	0.007351459	1.926825688	Ten DAP	6	1.2.3	PS
cassava4.1_006617m PA	AT1G70580	0.007351459	1.926825688	Ten DAP	6	13.1.1.3.01	amino acid metabolism
cassava4.1_008799m PA	AT2G26560	0.007481419	1.641450843	Ten DAP	6	33.1	development
cassava4.1_014036m PA	AT4G16210	0.007485635	1.643172336	Ten DAP	8	11.9.4.04	lipid metabolism
cassava4.1_014036m PA	AT4G16210	0.007485635	1.643172336	Ten DAP	8	13.2.3.5	amino acid metabolism
cassava4.1_001604m PA	AT3G50950	0.007588512	1.948000233	Ten DAP	3	20.1	stress
cassava4.1_006302m PA	AT4G35090	0.007777746	3.291850587	Ten DAP	30	21.6	redox
cassava4.1_005123m PA	AT3G48000	0.008100567	1.519328287	Ten DAP	22	5.10	fermentation
cassava4.1_012571m PA	AT5G54080	0.008195887	3.560328754	Ten DAP	2	13.2.6.2	amino acid metabolism
cassava4.1 005575m PA	AT4G29010	0.008383851	1.577977396	Ten DAP	8	11.9.4.09	lipid metabolism
cassava4.1_009237m PA	AT1G52290	0.009068043	1.582418007	Ten DAP	6	30.2.22	signalling
cassava4.1 006596m PA	AT3G12780	0.009172008	1.745902602	Ten DAP	3	1.3.03	PS
cassava4.1_006596m PA	AT3G12780	0.009172008	1.745902602	Ten DAP	3	4.010	glycolysis
cassava4.1_007889m PA	AT5G58330	0.009206196	2.283125624	Ten DAP	3	8.2.09	TCA / org
cassava4.1_016819m PA	AT2G45820	0.009305408	1.662800685	Ten DAP	15	27.3.67	RNA
cassava4.1_014834m PA	AT5G63400	0.009597616	1.394046695	Ten DAP	4	23.4.01	nucleotide metabolism
cassava4.1_015449m PA	AT1G28200	0.010436829	1.407374243	Ten DAP	3	17.1.3	hormone metabolism
cassava4.1_022406m PA	AT4G34030	0.010464068	1.115867703	Ten DAP	2	13.2.4.4	amino acid metabolism
cassava4.1_010150m PA	AT4G17520	0.011073163	1.452526425	Ten DAP	4	27.4	RNA
cassava4.1_010180m PA	AT2G17265	0.011336394	1.355471482	Ten DAP	5	13.1.3.6.1.04	amino acid metabolism
cassava4.1_007540m PA	AT1G59900	0.011352076	1.398320386	Ten DAP	5	8.1.01.01	TCA / org
cassava4.1_011138m PA	AT3G22740	0.011499745	9.158163652	Ten DAP	7	13.1.3.4.012	amino acid metabolism
cassava4.1_012276m PA	AT2G38750	0.011587371	1.127961248	Ten DAP	18	31.1	cell
cassava4.1_014697m PA	AT5G43830	0.011633709	1.499349065	Ten DAP	6	15	metal handling
cassava4.1_014697m PA	AT5G43830	0.011633709	1.499349065	Ten DAP	6	17.2.3	hormone metabolism
cassava4.1_021183m PA	AT1G35720	0.011709466	1.169080202	Ten DAP	29	31.1	cell
cassava4.1_011779m PA	AT5G05340	0.012357838	1.393003633	Ten DAP	9	26.12	misc
cassava4.1_004831m PA	AT5G62530	0.012721537	1.369684373	Ten DAP	15	13.2.2.2	amino acid metabolism
cassava4.1_007130m PA	AT1G04170	0.012777074	1.411027139	Ten DAP	11	29.2.3	protein
cassava4.1_032853m PA	AT3G60140	0.012963094	3.99794269	Ten DAP	2	26.03	misc
cassava4.1_011775m PA	AT1G05260	0.013026138	1.752926694	Ten DAP	8	20.2.2	stress
cassava4.1_001259m PA	AT1G67560	0.013257182	1.196296357	Ten DAP	13	17.7.1.02	hormone metabolism
cassava4.1_006560m PA	AT5G27380	0.013390276	1.818096767	Ten DAP	2	21.2.2	redox
cassava4.1_011934m PA	AT2G40010	0.013602982	1.172392775	Ten DAP	16	29.2.2	protein
cassava4.1_003090m PA	AT3G10740	0.013648187	1.783904242	Ten DAP	7	35.1	not assigned

cassava4.1_006689m PA	AT1G64760	0.014038146	1.233673092	Ten DAP	5	35.1	not assigned
cassava4.1_015319m PA	AT2G18110	0.01445178	1.568825174	Ten DAP	10	29.2.4	protein
cassava4.1_004362m PA	AT4G37870	0.015794126	2.842536127	Ten DAP	17	6.04	gluconeogenese/ glyoxylate cycle
cassava4.1_006415m PA	AT1G63500	0.015797169	1.310031239	Ten DAP	5	29.4	protein
cassava4.1_015242m PA	AT5G63620	0.015933251	2.085665939	Ten DAP	8	35.1	not assigned
cassava4.1_015966m PA	AT3G62020	0.01599747	1.865450268	Ten DAP	5	20.2.99	stress
cassava4.1_013284m PA	AT5G60660	0.016435053	1.4258252	Ten DAP	5	34.19.1	transport
cassava4.1_001300m PA	AT1G74310	0.016472509	2.158408629	Ten DAP	53	20.2.1	stress
cassava4.1_009233m PA	AT2G01140	0.016611607	1.31375782	Ten DAP	21	1.3.06	PS
cassava4.1_008188m PA	AT3G48530	0.017106935	11.3332787	Ten DAP	6	35.1	not assigned
cassava4.1_011051m PA	AT5G22330	0.017210329	1.579219012	Ten DAP	4	35.1	not assigned
cassava4.1_029504m PA	AT4G39230	0.017316378	1.468246346	Ten DAP	10	16.8.5	secondary metabolism
cassava4.1_000903m PA	AT2G05710	0.017624705	1.241465409	Ten DAP	23	8.1.03	TCA / org
cassava4.1_013205m PA	AT4G21320	0.017768663	2.769392266	Ten DAP	3	20.2.1	stress
cassava4.1_003839m PA	AT3G03060	0.018067829	1.337480979	Ten DAP	6	29.5.11.20	protein
cassava4.1_001530m PA	AT5G06350	0.018268656	1.962559571	Ten DAP	2	35.2	not assigned
cassava4.1_001538m PA	AT4G35790	0.018376305	1.58413125	Ten DAP	11	11.9.3.01	lipid metabolism
cassava4.1_010825m PA	AT5G08540	0.019285698	1.541150533	Ten DAP	7	35.2	not assigned
cassava4.1_007524m PA	AT1G80600	0.01966984	1.692282687	Ten DAP	4	13.1.2.3.04	amino acid metabolism
cassava4.1_008175m PA	AT3G17810	0.020121655	1.346053171	Ten DAP	13	23.2	nucleotide metabolism
cassava4.1_023189m PA	AT3G42050	0.020321894	1.4106215	Ten DAP	15	34.1.01	transport
cassava4.1_010559m PA	AT5G25770	0.020379347	1.271911282	Ten DAP	4	35.2	not assigned
cassava4.1_011202m PA	AT1G50510	0.020600799	1.938611586	Ten DAP	3	35.1	not assigned
cassava4.1_003404m PA	AT3G06510	0.021541596	2.038064428	Ten DAP	2	26.03	misc
cassava4.1_004771m PA	AT5G04360	0.022131553	1.490585736	Ten DAP	7	2.1.2.04	major CHO metabolism
cassava4.1_008933m PA	AT2G43790	0.02218486	1.476349168	Ten DAP	9	30.6	signalling
cassava4.1_008257m PA	AT2G38000	0.022194642	2.281747913	Ten DAP	11	20.2.1	stress
cassava4.1_008257m PA	AT2G38000	0.022194642	2.281747913	Ten DAP	11	29.6	protein
cassava4.1_008374m PA	AT5G09900	0.022289753	1.165663759	Ten DAP	16	29.5.11.20	protein
cassava4.1_015645m PA	AT3G60820	0.022298921	1.17945286	Ten DAP	5	29.5.11.20	protein
cassava4.1_006432m PA	AT5G11880	0.022360409	1.417256807	Ten DAP	18	13.1.3.5.05	amino acid metabolism
cassava4.1_008771m PA	AT1G09795	0.02236232	1.348388951	Ten DAP	6	13.1.7.01	amino acid metabolism
cassava4.1_011460m PA	AT5G42800	0.022640606	1.520848984	Ten DAP	5	16.8.3.01	secondary metabolism
cassava4.1_010140m PA	AT4G37970	0.022721325	1.327226671	Ten DAP	22	16.2.1.010	secondary metabolism
cassava4.1_002951m PA	AT5G13640	0.023079062	1.178699477	Ten DAP	2	11.8.10	lipid metabolism
cassava4.1_021615m PA	AT3G55260	0.023288961	1.648389028	Ten DAP	3	35.1	not assigned
cassava4.1_005844m PA	AT5G14220	0.023298414	1.544615719	Ten DAP	8	19.09	tetrapyrrole synthesis
cassava4.1_007980m PA	AT3G52880	0.023824769	1.420397426	Ten DAP	24	21.2	redox
cassava4.1_001362m PA	AT1G69830	0.023873795	6.271784075	Ten DAP	7	2.2.2.1	major CHO metabolism
cassava4.1_004506m PA	AT1G60420	0.023916742	1.678195678	Ten DAP	19	35.1	not assigned
cassava4.1_008421m PA	AT5G58290	0.023993294	1.485892869	Ten DAP	15	29.5.11.20	protein
cassava4.1_010513m PA	AT2G28680	0.024262984	3.009674099	Ten DAP	10	33.1	development
cassava4.1_011708m PA	AT2G45400	0.024337862	1.423547767	Ten DAP	5	16.8.4.01	secondary metabolism
cassava4.1_013730m PA	AT3G27430	0.02456257	1.842292617	Ten DAP	4	29.5.11.20	protein

cassava4.1_006605m PA	AT3G12780	0.024595073	1.61206826	Ten DAP	26	1.3.03	PS
cassava4.1_006605m PA	AT3G12780	0.024595073	1.61206826	Ten DAP	26	4.010	glycolysis
cassava4.1_007181m PA	AT2G33150	0.024956686	2.286929361	Ten DAP	10	11.9.4.05	lipid metabolism
cassava4.1_007181m PA	AT2G33150	0.024956686	2.286929361	Ten DAP	10	13.2.4.1	amino acid metabolism
cassava4.1_013823m PA	AT1G19580	0.025608326	1.192395482	Ten DAP	13	35.1	not assigned
cassava4.1_004359m PA	AT4G14210	0.025714328	1.388460969	Ten DAP	5	16.1.4.02	secondary metabolism
cassava4.1_009976m PA	AT1G74640	0.025768111	1.406039938	Ten DAP	4	35.2	not assigned
cassava4.1_007163m PA	AT4G38220	0.025997167	1.607520884	Ten DAP	3	29.5	protein
cassava4.1_008563m PA	AT2G24580	0.026408252	1.497246038	Ten DAP	3	13.1.5.2.041	amino acid metabolism
cassava4.1_002479m PA	AT3G06860	0.026417829	1.959534388	Ten DAP	21	11.9.4.09	lipid metabolism
cassava4.1_012423m PA	AT2G28680	0.026822532	3.966860939	Ten DAP	5	33.1	development
cassava4.1_006938m PA	AT3G06960	0.026921797	1.810813641	Ten DAP	4	35.2	not assigned
cassava4.1_006859m PA	AT5G46180	0.0271597	1.838310247	Ten DAP	5	13.2.2.3	amino acid metabolism
cassava4.1_004619m PA	AT5G24300	0.027163229	1.244623178	Ten DAP	10	2.1.2.02	major CHO metabolism
cassava4.1_012172m PA	AT4G24340	0.02779684	2.232144911	Ten DAP	3	35.1	not assigned
cassava4.1_010585m PA	AT2G22780	0.028130428	1.768182403	Ten DAP	2	6.03	gluconeogenesis
cassava4.1_001079m PA	AT3G08840	0.028145441	1.125596694	Ten DAP	25	35.1	not assigned
cassava4.1_004821m PA	AT4G02320	0.028879098	1.689617201	Ten DAP	13	10.8.99	cell wall
cassava4.1_011574m PA	AT5G66390	0.029161634	1.388266508	Ten DAP	9	26.12	misc
cassava4.1_009175m PA	AT2G20360	0.029255982	1.374081152	Ten DAP	15	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_030131m PA	AT4G37870	0.029497669	2.560662975	Ten DAP	2	6.04	gluconeogenese/ glyoxylate cycle
cassava4.1_013229m PA	AT3G23400	0.030211562	1.774555917	Ten DAP	5	31.1	cell
cassava4.1_006252m PA	AT1G44170	0.030252118	1.392279242	Ten DAP	19	5.10	fermentation
cassava4.1_014185m PA	AT3G11050	0.030807941	2.039471953	Ten DAP	14	15.2	metal handling
cassava4.1_009061m PA	AT1G45000	0.031655988	1.202475005	Ten DAP	21	29.5.11.20	protein
cassava4.1_034124m PA	AT2G38610	0.031898734	1.463435978	Ten DAP	5	35.1	not assigned
cassava4.1_005703m PA	AT3G22200	0.032529975	1.768579566	Ten DAP	17	13.1.1.1.02	amino acid metabolism
cassava4.1_006367m PA	AT1G63940	0.03266988	1.746078082	Ten DAP	17	21.2.1	redox
cassava4.1_014262m PA	AT3G45970	0.032980867	1.465024207	Ten DAP	5	10.7	cell wall
cassava4.1_009693m PA	AT3G17880	0.033098781	1.637245385	Ten DAP	7	21.01	redox
cassava4.1_029420m PA	AT5G42260	0.033247131	5.52076836	Ten DAP	4	26.03	misc
cassava4.1_017520m PA	AT3G24540	0.033431781	1.416408678	Ten DAP	6	30.2.22	signalling
cassava4.1_010343m PA	AT1G17020	0.033740587	1.772202731	Ten DAP	3	16.8.4	secondary metabolism
cassava4.1_006853m PA	AT2G44350	0.033774052	1.613845419	Ten DAP	4	8.1.02	TCA / org
cassava4.1_009779m PA	AT5G09810	0.034029813	1.185250403	Ten DAP	39	31.1	cell
cassava4.1_003490m PA	AT3G52200	0.034907379	1.263526843	Ten DAP	18	8.1.01.02	TCA / org
cassava4.1_009991m PA	AT4G17370	0.035048704	1.72928579	Ten DAP	2	35.1	not assigned
cassava4.1_009469m PA	AT5G62390	0.035367764	1.561448059	Ten DAP	13	30.3	signalling
cassava4.1_007251m PA	AT4G38220	0.035387818	1.539019794	Ten DAP	15	29.5	protein
cassava4.1_007931m PA	AT1G53280	0.0355971	1.584043363	Ten DAP	20	35.1	not assigned
cassava4.1_005201m PA	AT4G09510	0.035931392	1.279162588	Ten DAP	6	2.2.1.03.01	major CHO metabolism
cassava4.1_008212m PA	AT1G53750	0.037236273	1.524920926	Ten DAP	15	29.5.11.20	protein
cassava4.1_008528m PA	AT1G49820	0.037640945	1.716446498	Ten DAP	13	35.1	not assigned
cassava4.1_027841m PA	AT4G19880	0.03792572	1.689813809	Ten DAP	2	26.09	misc

cassava4.1_007221m PA	AT1G47840	0.038045423	1.512944971	Ten DAP	17	2.2.1.04	major CHO metabolism
cassava4.1 006559m PA	AT2G18730	0.038275462	1.306196433	Ten DAP	7	11.3.05	lipid metabolism
cassava4.1_007094m PA	AT4G31990	0.038616693	1.344153267	Ten DAP	22	13.1.1.2.01	amino acid metabolism
cassava4.1_013447m PA	AT1G52340	0.038862279	1.283231678	Ten DAP	8	17.1.1.1.011	hormone metabolism
cassava4.1_006138m PA	AT4G29130	0.039299266	1.559017046	Ten DAP	15	2.2.1.04	major CHO metabolism
cassava4.1_006303m PA	AT4G35090	0.039559359	3.329616518	Ten DAP	3	21.6	redox
cassava4.1_003427m PA	AT5G57580	0.039731649	2.126304302	Ten DAP	3	30.3	signalling
cassava4.1_001233m PA	AT1G68560	0.039750451	1.79339563	Ten DAP	2	2.2.2.1	major CHO metabolism
cassava4.1_001233m PA	AT1G68560	0.039750451	1.79339563	Ten DAP	2	26.03	misc
cassava4.1_002552m PA	AT1G50380	0.039766223	1.485492241	Ten DAP	15	29.5	protein
cassava4.1_015763m PA	AT5G63880	0.040025265	1.232033827	Ten DAP	2	27.3.71	RNA
cassava4.1_002871m PA	AT5G04590	0.040264369	1.20751879	Ten DAP	9	14.03	S-assimilation
cassava4.1_019325m PA	AT5G42890	0.04040195	1.561863456	Ten DAP	2	11.8	lipid metabolism
cassava4.1_001514m PA	AT5G12950	0.040475663	1.331413898	Ten DAP	9	35.2	not assigned
cassava4.1_011289m PA	AT5G65550	0.04073648	1.380319881	Ten DAP	6	16.8.1.012	secondary metabolism
cassava4.1_008844m PA	AT5G19550	0.04100868	1.260339511	Ten DAP	22	13.1.1.2.01	amino acid metabolism
cassava4.1_018274m PA	-	0.041254303	2.271361357	Ten DAP	8	-	-
cassava4.1_005935m PA	AT3G18080	0.041369304	1.68803424	Ten DAP	4	26.03	misc
cassava4.1_006286m PA	AT4G24830	0.041827029	1.460609283	Ten DAP	21	13.1.2.3.022	amino acid metabolism
cassava4.1_009614m PA	AT4G32400	0.041859795	1.204114911	Ten DAP	4	2.1.2.05	major CHO metabolism
cassava4.1_009614m PA	AT4G32400	0.041859795	1.204114911	Ten DAP	4	34.8	transport
cassava4.1_004864m PA	AT3G13930	0.042369153	1.298227513	Ten DAP	24	8.1.01.02	TCA / org
cassava4.1_010126m PA	AT3G14420	0.042417068	1.750614151	Ten DAP	3	1.2.02	PS
cassava4.1_001244m PA	AT1G68560	0.042873595	1.296483626	Ten DAP	18	2.2.2.1	major CHO metabolism
cassava4.1_001244m PA	AT1G68560	0.042873595	1.296483626	Ten DAP	18	26.03	misc
cassava4.1_008387m PA	AT2G20420	0.043278571	1.300115518	Ten DAP	29	8.1.06	TCA / org
cassava4.1_004238m PA	AT3G25800	0.044526673	1.170059726	Ten DAP	6	29.4	protein
cassava4.1_013231m PA	AT4G00430	0.044991767	1.724545394	Ten DAP	6	34.19.1	transport
cassava4.1_012932m PA	AT5G39790	0.045000512	1.769509262	Ten DAP	3	30.1	signalling
cassava4.1_024858m PA	AT5G07090	0.0453126	1.360660378	Ten DAP	11	29.2.2	protein
cassava4.1_015980m PA	AT5G42650	0.045488344	1.540189318	Ten DAP	2	17.7.1.03	hormone metabolism
cassava4.1_022125m PA	AT4G20360	0.04550581	2.152845168	Ten DAP	2	29.2.4	protein
cassava4.1_012203m PA	AT3G12070	0.046365439	1.254214436	Ten DAP	3	16.1.1	secondary metabolism
cassava4.1_007019m PA	AT3G57050	0.047772756	1.5727444	Ten DAP	9	13.1.3.4.02	amino acid metabolism
cassava4.1_013108m PA	AT4G28510	0.047867372	1.095548426	Ten DAP	15	35.1	not assigned
cassava4.1_009952m PA	AT4G35650	0.04786744	1.431034228	Ten DAP	14	8.2.04	TCA / org
cassava4.1_029754m PA	-	0.048235431	2.005286887	Ten DAP	12	-	-
cassava4.1_016410m PA	AT4G20260	0.048320706	1.827661574	Ten DAP	15	35.1	not assigned
cassava4.1_006146m PA	AT5G24318	0.049024098	1.605479466	Ten DAP	2		
cassava4.1_009232m PA	AT1G53880	0.049159598	1.323855844	Ten DAP	2	29.2.3	protein
cassava4.1_006167m PA	AT2G20710	0.049873837	1.601900133	Ten DAP	2	27.3.67	RNA
cassava4.1_014405m PA	AT4G05530	0.050516088	1.513458331	Ten DAP	4	26.22	misc
cassava4.1_012350m PA	AT5G40810	0.051180451	1.333333982	Ten DAP	10	9.6	mitochondrial electron transport / ATP synthesis
cassava4.1_009774m PA	AT4G19810	0.051297032	2.477640027	Ten DAP	2	20.1	stress

cassava4.1_013146m PA	AT3G25530	0.051384993	2.293879567	Ten DAP	9	7.1.03	OPP
cassava4.1_004242m PA	AT4G34740	0.05201263	1.463150813	Ten DAP	3	23.1.2.01	nucleotide metabolism
cassava4.1_025314m PA	AT5G05340	0.05239306	1.681763208	Ten DAP	6	26.12	misc
cassava4.1_007958m PA	AT2G37860	0.052532176	1.327618316	Ten DAP	4	33.99	development
cassava4.1_033681m PA	AT5G52640	0.052579521	2.219789608	Ten DAP	8	20.2.1	stress
cassava4.1_003547m PA	AT3G22520	0.053450028	1.424501163	Ten DAP	12	35.2	not assigned
cassava4.1_012822m PA	AT3G19450	0.053613244	1.339313346	Ten DAP	8	16.2.1.010	secondary metabolism
cassava4.1_015781m PA	AT5G17710	0.053680231	1.914582244	Ten DAP	5	29.6	protein
cassava4.1_009957m PA	AT4G01370	0.05461617	2.199295373	Ten DAP	2	30.6	signalling
cassava4.1_008595m PA	AT1G79340	0.055298181	2.241940642	Ten DAP	3	29.5	protein
cassava4.1_007758m PA	AT5G13420	0.055953372	1.564594557	Ten DAP	17	7.2.02	OPP
cassava4.1_013928m PA	AT2G40300	0.056077517	2.096646531	Ten DAP	2	15.2	metal handling
cassava4.1_010112m PA	AT4G34660	0.056201116	2.572800448	Ten DAP	2	35.1	not assigned
cassava4.1_004646m PA	AT3G57890	0.057087088	1.600495507	Ten DAP	4	31.1	cell
cassava4.1_012124m PA	AT5G05340	0.057482353	1.294967875	Ten DAP	16	26.12	misc
cassava4.1_015076m PA	AT3G23600	0.057643451	2.518995587	Ten DAP	6	26.01	misc
cassava4.1_008470m PA	AT2G30970	0.057728064	1.299925515	Ten DAP	8	13.1.1.2.01	amino acid metabolism
cassava4.1_015518m PA	AT1G52560	0.057826935	5.765906962	Ten DAP	3	20.2.1	stress
cassava4.1_011348m PA	AT2G38550	0.058066603	2.12048969	Ten DAP	8	35.2	not assigned
cassava4.1_016053m PA	AT4G17870	0.058304653	1.453804348	Ten DAP	2	35.2	not assigned
cassava4.1_007767m PA	AT3G15000	0.058402951	1.475471216	Ten DAP	2	35.1	not assigned
cassava4.1_015693m PA	AT3G23790	0.05866846	1.214305238	Ten DAP	3	11.1.08	lipid metabolism
cassava4.1_005434m PA	AT3G02090	0.05916803	1.143925682	Ten DAP	26	29.3.2	protein
cassava4.1_008899m PA	AT4G37560	0.059230945	2.478273535	Ten DAP	3	26.01	misc
cassava4.1_006239m PA	AT5G55530	0.059323751	1.716334891	Ten DAP	2	20.2.2	stress
cassava4.1_013192m PA	AT2G37170	0.059604376	1.405645798	Ten DAP	2	34.19.1	transport
cassava4.1_003884m PA	AT1G32900	0.059838338	1.766510779	Ten DAP	22	2.1.2.02	major CHO metabolism
cassava4.1_009342m PA	AT1G23740	0.060365659	1.883058797	Ten DAP	3	26.07	misc
cassava4.1_003800m PA	AT4G18240	0.06039722	1.388017137	Ten DAP	13	2.1.2.02	major CHO metabolism
cassava4.1_003755m PA	AT1G80300	0.060462505	1.398461807	Ten DAP	7	34.99	transport
cassava4.1_005238m PA	AT5G12200	0.060578289	1.51697375	Ten DAP	7	23.2	nucleotide metabolism
cassava4.1_010524m PA	AT5G62740	0.060582809	1.324566012	Ten DAP	8	35.1	not assigned
cassava4.1_006893m PA	AT5G01930	0.060823333	1.859860797	Ten DAP	5	10.6.2	cell wall
cassava4.1_011816m PA	AT4G21580	0.060938874	1.3633373	Ten DAP	13	26.01	misc
cassava4.1_012665m PA	AT1G34750	0.061007351	1.772860503	Ten DAP	2	29.4	protein
cassava4.1_014374m PA	AT1G23730	0.061351853	3.988592007	Ten DAP	3	8.03	TCA / org
cassava4.1_014374m PA	AT1G23730	0.061351853	3.988592007	Ten DAP	3	16.99	secondary metabolism
cassava4.1_014300m PA	AT1G11360	0.061895336	1.30200224	Ten DAP	9	20.2.99	stress
cassava4.1_009634m PA	AT2G05830	0.062010836	1.314886414	Ten DAP	12	29.2.3	protein
cassava4.1_014556m PA	AT5G65430	0.062325234	2.620329253	Ten DAP	5	30.7	signalling
cassava4.1_000993m PA	AT3G26720	0.062798181	1.47073049	Ten DAP	10	26.03	misc
cassava4.1_005204m PA	AT5G63190	0.063137994	1.876195606	Ten DAP	6	28.99	DNA
cassava4.1_008812m PA	AT3G09630	0.063667245	1.209794454	Ten DAP	28	29.2.2	protein
cassava4.1_022124m PA	AT5G46180	0.064380903	1.660399724	Ten DAP	8	13.2.2.3	amino acid metabolism

cassava4.1_004784m PA	AT1G23010	0.064509475	1.995783063	Ten DAP	4	35.1	not assigned
cassava4.1_005834m PA	AT3G06850	0.064513066	1.738671063	Ten DAP	5	13.2.4.1	amino acid metabolism
cassava4.1_014362m PA	AT1G76010	0.06456237	1.666145104	Ten DAP	3	27.3.67	RNA
cassava4.1_015081m PA	AT4G39120	0.064596342	3.292903674	Ten DAP	2	3.4.05	minor CHO metabolism
cassava4.1_007300m PA	AT1G15000	0.064658902	1.594007354	Ten DAP	6	29.5.05	protein
cassava4.1_005513m PA	AT4G23100	0.064935838	1.731188063	Ten DAP	10	21.2.2	redox
cassava4.1_012863m PA	AT5G40450	0.065291969	2.333114682	Ten DAP	4	35.2	not assigned
cassava4.1_028771m PA	AT2G44470	0.065772681	5.377251633	Ten DAP	5	26.03	misc
cassava4.1_013905m PA	AT1G53990	0.066075431	2.4408933	Ten DAP	2	26.28	misc
cassava4.1_014450m PA	AT4G35220	0.066128776	1.551299072	Ten DAP	2	28.99	DNA
cassava4.1_015185m PA	AT1G16470	0.066160414	1.476539204	Ten DAP	9	29.5	protein
cassava4.1_005478m PA	AT3G15180	0.066163812	1.038889796	Ten DAP	4	29.5.11.20	protein
cassava4.1_011093m PA	AT2G34460	0.066175915	1.54684509	Ten DAP	6	35.1	not assigned
cassava4.1_005072m PA	AT5G07830	0.066891806	1.33476902	Ten DAP	3	35.1	not assigned
cassava4.1_009222m PA	AT3G51800	0.067106988	1.481433002	Ten DAP	17	27.3.67	RNA
cassava4.1_010413m PA	AT3G20790	0.067108396	1.804225249	Ten DAP	4	35.1	not assigned
cassava4.1_025830m PA	AT4G13360	0.067457245	1.302273849	Ten DAP	9	11.9.4.03	lipid metabolism
cassava4.1_025830m PA	AT4G13360	0.067457245	1.302273849	Ten DAP	9	13.2.3.5	amino acid metabolism
cassava4.1_004654m PA	AT1G74960	0.067936275	2.119408602	Ten DAP	5	11.1.03	lipid metabolism
cassava4.1_004749m PA	AT3G54660	0.068054203	1.342478493	Ten DAP	13	21.2.2	redox
cassava4.1 006422m PA	AT1G63500	0.068439156	1.561000762	Ten DAP	9	29.4	protein
cassava4.1_006514m PA	AT3G02360	0.068515089	1.157948949	Ten DAP	24	7.1.03	OPP
cassava4.1_011834m PA	AT5G20080	0.069813724	2.735159814	Ten DAP	4	21.99	redox
cassava4.1_018310m PA	AT1G70830	0.070129725	1.326049479	Ten DAP	5	20.2.99	stress
cassava4.1_010796m PA	AT1G71695	0.070223875	1.68419489	Ten DAP	14	26.12	misc
cassava4.1_006541m PA	AT5G13700	0.070271449	1.434290406	Ten DAP	6	22.2.1	polyamine metabolism
cassava4.1_010793m PA	AT3G28715	0.070803684	1.594073253	Ten DAP	6	34.1.01	transport
cassava4.1_009230m PA	AT1G30580	0.071021211	1.396539902	Ten DAP	14	35.2	not assigned
cassava4.1_008265m PA	AT5G14780	0.071294825	1.526066796	Ten DAP	21	25.10	C1-metabolism
cassava4.1_004581m PA	AT5G42740	0.071848769	1.095756629	Ten DAP	16	4.03	glycolysis
cassava4.1_029773m PA	-	0.072573514	3.529971943	Ten DAP	4	-	-
cassava4.1_011685m PA	AT3G14130	0.072577913	1.881728673	Ten DAP	3	1.2.02	PS
cassava4.1_006534m PA	AT4G39660	0.073111024	1.53209489	Ten DAP	4	13.1.1.3.011	amino acid metabolism
cassava4.1_013157m PA	AT2G32520	0.073329733	2.407094125	Ten DAP	5	26.01	misc
cassava4.1_005717m PA	AT5G01590	0.073330691	1.767087109	Ten DAP	4	35.2	not assigned
cassava4.1_013158m PA	AT1G11840	0.073713737	1.465869143	Ten DAP	17	13.2.3.2	amino acid metabolism
cassava4.1_013158m PA	AT1G11840	0.073713737	1.465869143	Ten DAP	17	24.02	Biodegradation of Xenobiotics
cassava4.1_007696m PA	AT4G05390	0.07422721	1.242594337	Ten DAP	9	7.3	OPP
cassava4.1_000971m PA	AT3G26720	0.075131762	1.746442693	Ten DAP	2	26.03	misc
cassava4.1_014824m PA	AT3G54110	0.075192815	2.108727377	Ten DAP	5	9.8	mitochondrial electron transport / ATP synthesis
cassava4.1_003459m PA	AT1G48480	0.075341077	1.478632347	Ten DAP	5	30.2.3	signalling
cassava4.1_015142m PA	AT1G50380	0.075596309	1.628853185	Ten DAP	2	29.5	protein
cassava4.1_007371m PA	AT5G23300	0.075944318	1.662588682	Ten DAP	7	23.1.1.04	nucleotide metabolism
cassava4.1_010564m PA	AT2G47470	0.076002899	1.158256843	Ten DAP	12	21.01	redox

cassava4.1_007825m PA	AT3G51840	0.076044277	1.456671513	Ten DAP	7	11.9.4.02	lipid metabolism
cassava4.1_009435m PA	AT1G67830	0.076232759	1.875391751	Ten DAP	7	26.28	misc
cassava4.1_001583m PA	AT1G68020	0.076347475	1.661357559	Ten DAP	10	3.2.3	minor CHO metabolism
cassava4.1_017275m PA	AT1G27450	0.076350311	1.775992811	Ten DAP	6	23.3.1.01	nucleotide metabolism
cassava4.1_004722m PA	AT2G12550	0.076713491	1.564076367	Ten DAP	7	29.5.11	protein
cassava4.1_016679m PA	AT4G02450	0.077528949	1.913315701	Ten DAP	3	35.1.40	not assigned
cassava4.1_004909m PA	AT1G20510	0.077832438	1.79561715	Ten DAP	11	16.2	secondary metabolism
cassava4.1_010152m PA	AT1G24090	0.078300659	1.568456912	Ten DAP	2	27.1.19	RNA
cassava4.1_006963m PA	AT4G29010	0.078731416	1.39991261	Ten DAP	4	11.9.4.09	lipid metabolism
cassava4.1_009577m PA	AT3G20320	0.079683254	1.382229445	Ten DAP	7	35.1	not assigned
cassava4.1_012353m PA	AT5G35360	0.079896684	1.253456069	Ten DAP	16	11.1.01	lipid metabolism
cassava4.1_009867m PA	AT4G08390	0.080470099	1.346612793	Ten DAP	13	21.2.1	redox
cassava4.1_000229m PA	AT1G15520	0.080774004	1.739864434	Ten DAP	4	34.16	transport
cassava4.1_010609m PA	AT2G22780	0.081508672	1.630146593	Ten DAP	9	6.03	gluconeogenesis
cassava4.1_011797m PA	AT3G12500	0.081958189	1.505522867	Ten DAP	4	20.1	stress
cassava4.1_007775m PA	AT1G51760	0.082856187	1.636460263	Ten DAP	9	17.2.1	hormone metabolism
cassava4.1_005856m PA	AT1G48030	0.083034992	1.115108049	Ten DAP	28	8.1.01.03	TCA / org
cassava4.1_005713m PA	AT1G20200	0.083222592	1.237560229	Ten DAP	23	29.5.11.20	protein
cassava4.1_025703m PA	AT1G17160	0.083268321	1.843801599	Ten DAP	4	3.5	minor CHO metabolism
cassava4.1_008310m PA	AT3G05530	0.08333596	1.190981454	Ten DAP	21	29.5.11.20	protein
cassava4.1_016682m PA	AT3G21110	0.083977953	2.063122047	Ten DAP	3	23.1.2.07	nucleotide metabolism
cassava4.1_025834m PA	AT5G58590	0.083994416	1.135409662	Ten DAP	8	30.5	signalling
cassava4.1_005305m PA	AT1G52260	0.08415807	1.181996761	Ten DAP	14	21.01	redox
cassava4.1_004173m PA	AT1G72160	0.084369128	1.387906865	Ten DAP	27	28.99	DNA
cassava4.1_004173m PA	AT1G72160	0.084369128	1.387906865	Ten DAP	27	34.99	transport
cassava4.1_008246m PA	AT4G35630	0.084469505	1.274305843	Ten DAP	18	13.1.5.1.02	amino acid metabolism
cassava4.1_031450m PA	AT3G02090	0.084526198	1.312059731	Ten DAP	5	29.3.2	protein
cassava4.1_001250m PA	AT1G58370	0.085756528	1.692607178	Ten DAP	9	10.6.2	cell wall
cassava4.1_014862m PA	AT3G12490	0.086067278	1.835124189	Ten DAP	8	29.5.03	protein
cassava4.1_009795m PA	AT5G12040	0.086437944	1.573525459	Ten DAP	9	35.1	not assigned
cassava4.1_008822m PA	AT1G11860	0.087461873	1.444836627	Ten DAP	13	13.2.5.2	amino acid metabolism
cassava4.1_009217m PA	AT2G01140	0.088076604	1.711619311	Ten DAP	5	1.3.06	PS
cassava4.1_014519m PA	AT5G65430	0.088374287	2.340842327	Ten DAP	2	30.7	signalling
cassava4.1_015372m PA	AT2G18050	0.089306229	20.78379869	Ten DAP	3	28.1.3	DNA
cassava4.1_015148m PA	AT5G35530	0.089423011	1.175309963	Ten DAP	19	29.2.2	protein
cassava4.1_027209m PA	AT5G50950	0.089605968	1.31052149	Ten DAP	19	8.1.08	TCA / org
cassava4.1_007687m PA	AT4G29040	0.090152619	1.458370165	Ten DAP	19	29.5.11.20	protein
cassava4.1_007682m PA	AT5G66120	0.090178485	1.26512224	Ten DAP	14	13.1.6.1.02	amino acid metabolism
cassava4.1_007682m PA	AT5G66120	0.090178485	1.26512224	Ten DAP	14	18.5	Co-factor and vitamine metabolism
cassava4.1_013197m PA	AT4G10960	0.090683565	1.779109445	Ten DAP	2	10.1.02	cell wall
cassava4.1_005338m PA	AT1G79440	0.092137298	1.325675898	Ten DAP	15	8.2.99	TCA / org
cassava4.1_005338m PA	AT1G79440	0.092137298	1.325675898	Ten DAP	15	13.1.1.1.03	amino acid metabolism
cassava4.1_018127m PA	AT1G07400	0.092940795	2.246755149	Ten DAP	2	20.2.1	stress
cassava4.1_028027m PA	AT1G05150	0.09335274	1.313032591	Ten DAP	13	30.3	signalling

cassava4.1_033243m PA	AT1G29670	0.093570108	1.372641654	Ten DAP	3	26.28	misc
cassava4.1_012577m PA	AT4G04210	0.09366112	1.131417713	Ten DAP	3	29.5	protein
cassava4.1_011945m PA	AT5G39580	0.093767439	1.520976492	Ten DAP	14	26.12	misc
cassava4.1_012175m PA	AT1G72370	0.093878715	1.43518343	Ten DAP	11	29.2.2	protein
cassava4.1_012123m PA	AT5G65020	0.094034705	1.185072511	Ten DAP	23	31.1	cell
cassava4.1_015937m PA	AT1G08360	0.09491255	1.463014366	Ten DAP	5	29.2.2	protein
cassava4.1_014785m PA	AT2G05840	0.095075691	1.879268117	Ten DAP	2	29.5.11.20	protein
cassava4.1_010625m PA	AT1G72680	0.095350359	1.155570461	Ten DAP	6	16.2.1.010	secondary metabolism
cassava4.1_004357m PA	AT3G14310	0.095743875	1.240568708	Ten DAP	20	10.8.01	cell wall
cassava4.1_014530m PA	AT5G65430	0.096514632	1.909766122	Ten DAP	20	30.7	signalling
cassava4.1_025303m PA	AT1G34760	0.096807014	1.39546415	Ten DAP	4	30.7	signalling
cassava4.1_016186m PA	AT3G01280	0.097118226	1.55317116	Ten DAP	3	34.20	transport
cassava4.1_016265m PA	AT1G50670	0.097774385	1.463405664	Ten DAP	3	29.5.03	protein
cassava4.1_003715m PA	AT2G42520	0.098027506	1.751151739	Ten DAP	6	27.1.2	RNA
cassava4.1_010901m PA	AT2G37400	0.09827619	1.616095121	Ten DAP	7	35.1	not assigned
cassava4.1_006016m PA	AT5G38530	0.098580554	1.533754741	Ten DAP	2	13.1.6.5.05	amino acid metabolism
cassava4.1_005135m PA	AT3G48000	0.098895426	1.459693801	Ten DAP	12	5.10	fermentation
cassava4.1_012377m PA	AT5G05780	0.09921274	1.146935279	Ten DAP	7	29.5.11.20	protein
cassava4.1_014880m PA	AT4G35220	0.099505094	1.241651867	Ten DAP	3	28.99	DNA
cassava4.1_003947m PA	AT3G03250	0.099628734	1.973510332	Ten DAP	5	4.01	glycolysis
cassava4.1_007378m PA	AT4G02930	0.099637493	1.422604815	Ten DAP	19	29.2.4	protein
cassava4.1_031851m PA	AT2G28470	0.100173729	1.824336403	Ten DAP	2	10.6.2	cell wall
cassava4.1_031851m PA	AT2G28470	0.100173729	1.824336403	Ten DAP	2	26.03	misc
cassava4.1_004631m PA	AT3G16910	0.100232505	1.900017914	Ten DAP	7	11.1.08	lipid metabolism
cassava4.1_002296m PA	AT5G66420	0.100338059	1.256878759	Ten DAP	9	35.2	not assigned
cassava4.1_014189m PA	AT3G58730	0.100433077	1.928489194	Ten DAP	14	34.1.01	transport
cassava4.1_009858m PA	AT5G41970	0.100711165	1.221749119	Ten DAP	2	35.2	not assigned
cassava4.1_016080m PA	AT4G32770	0.102437178	1.181698428	Ten DAP	2	16.1.3.04	secondary metabolism
cassava4.1_013758m PA	AT1G79690	0.102708689	1.519950738	Ten DAP	8	35.1	not assigned
cassava4.1_015360m PA	AT1G74050	0.102916491	1.811506317	Ten DAP	12	29.2.2	protein
cassava4.1_013127m PA	AT2G26670	0.102936095	1.947373893	Ten DAP	2	19.021	tetrapyrrole synthesis
cassava4.1_005518m PA	AT5G48300	0.102984919	1.399319996	Ten DAP	41	2.1.2.01	major CHO metabolism
cassava4.1_009995m PA	AT5G14040	0.103680728	1.24008339	Ten DAP	4	34.9	transport
cassava4.1_008398m PA	AT2G47960	0.104158069	1.774534008	Ten DAP	4	35.2	not assigned
cassava4.1_007756m PA	AT5G13420	0.104546175	1.435539489	Ten DAP	12	7.2.02	OPP
cassava4.1_010500m PA	AT2G17390	0.104635787	1.422041907	Ten DAP	10	27.3.39	RNA
cassava4.1_011898m PA	AT2G45960	0.104671447	1.305293364	Ten DAP	4	34.19.1	transport
cassava4.1_014340m PA	AT3G07030	0.104703753	1.449146193	Ten DAP	2	35.2	not assigned
cassava4.1_009119m PA	AT2G06050	0.105660151	1.960366965	Ten DAP	4	17.7.1.05	hormone metabolism
cassava4.1_014361m PA	AT5G44730	0.105799638	1.559748533	Ten DAP	2	33.99	development
cassava4.1_007070m PA	AT3G07320	0.106068623	1.272388897	Ten DAP	4	26.04	misc
cassava4.1_006601m PA	AT2G22250	0.106390049	1.48077009	Ten DAP	15	13.1.1.2.01	amino acid metabolism
cassava4.1_007828m PA	AT1G51760	0.106848206	1.333445294	Ten DAP	4	17.2.1	hormone metabolism
cassava4.1_006819m PA	AT4G27070	0.107220011	1.444489587	Ten DAP	9	13.1.6.5.05	amino acid metabolism

cassava4.1_008272m PA	AT3G61540	0.107274725	1.429869844	Ten DAP	2	29.5	protein
cassava4.1_016592m PA	AT4G10430	0.107393213	1.786402396	Ten DAP	4	35.2	not assigned
cassava4.1_007668m PA	AT4G31340	0.107440936	1.652766391	Ten DAP	4	31.1	cell
cassava4.1 022815m PA	-	0.107459891	3.588931611	Ten DAP	4	-	-
cassava4.1_032980m PA	AT3G07040	0.108332888	1.717412787	Ten DAP	2	20.1	stress
cassava4.1 001840m PA	AT4G02280	0.108474525	1.601670806	Ten DAP	37	2.2.1.05	major CHO metabolism
cassava4.1_010916m PA	AT5G50960	0.109771979	1.289702027	Ten DAP	2	35.1	not assigned
cassava4.1 008357m PA	AT1G29150	0.109788784	1.288257706	Ten DAP	3	29.5.11.20	protein
cassava4.1_017844m PA	AT1G19910	0.110222168	1.400984234	Ten DAP	2	34.1.01	transport
cassava4.1_034037m PA	AT4G39230	0.11036905	1.691425069	Ten DAP	7	16.8.5	secondary metabolism
cassava4.1_009367m PA	AT4G24220	0.110531344	1.500818316	Ten DAP	12	35.2	not assigned
cassava4.1_012695m PA	AT3G61220	0.110671344	1.564297867	Ten DAP	7	26.22	misc
cassava4.1_011955m PA	AT1G44835	0.111332268	1.372309489	Ten DAP	2	29.1.015	protein
cassava4.1_010415m PA	AT5G50850	0.112275193	1.392954128	Ten DAP	15	8.1.01.01	TCA / org
cassava4.1 009388m PA	AT3G02540	0.112276135	2.225844396	Ten DAP	5	29.5.11.01	protein
cassava4.1_010800m PA	AT4G29120	0.113438562	1.093053604	Ten DAP	7	7.1.03	OPP
cassava4.1_000908m PA	AT2G05710	0.113489976	1.26897535	Ten DAP	34	8.1.03	TCA / org
cassava4.1_008657m PA	AT3G47520	0.114050678	1.285920773	Ten DAP	15	8.2.09	TCA / org
cassava4.1 015974m PA	AT5G06720	0.114366918	1.860333256	Ten DAP	3	26.12	misc
cassava4.1_009445m PA	AT5G22300	0.115069058	1.278215514	Ten DAP	2	26.08	misc
cassava4.1 015100m PA	AT5G02790	0.115136676	4.120762135	Ten DAP	3	35.1	not assigned
cassava4.1 003086m PA	AT4G39690	0.115305126	1.112800648	Ten DAP	15	35.2	not assigned
cassava4.1 014642m PA	AT1G07890	0.115515397	2.004814059	Ten DAP	6	21.2.1	redox
cassava4.1 008437m PA	AT5G19990	0.116050842	1.229496628	Ten DAP	22	29.5.11.20	protein
cassava4.1 011300m PA	AT4G08900	0.116376462	1.674871193	Ten DAP	10	13.2.2.3	amino acid metabolism
cassava4.1 013984m PA	AT1G64520	0.117593767	2.131915673	Ten DAP	7	29.5.11.20	protein
cassava4.1 005217m PA	AT2G22480	0.117662228	1.670368678	Ten DAP	10	4.04	glycolysis
cassava4.1 006241m PA	AT5G41670	0.117793077	1.609821025	Ten DAP	20	7.1.03	OPP
cassava4.1 009310m PA	AT2G05990	0.117967302	1.449345644	Ten DAP	15	11.1.06	lipid metabolism
cassava4.1 012793m PA	AT5G19760	0.118178435	1.395746889	Ten DAP	2	34.9	transport
cassava4.1 009796m/PA	AT5G03290	0.118338472	1.328447738	Ten DAP	11	8.2.04	TCA / org
cassava4.1 003850m PA	AT2G42520	0.118514027	1.290346032	Ten DAP	9	27.1.2	RNA
cassava4.1 024362mlPA	_	0.11957709	2.585239527	Ten DAP	51	-	_
cassava4.1 012014m/PA	AT3G59890	0.119599332	1.897646739	Ten DAP	2	13.1.3.5.02	amino acid metabolism
cassava4.1 012581mlPA	AT3G03800	0.120542801	1.446378885	Ten DAP	4	31.4	cell
cassava4.1 015623mlPA	AT2G02390	0.120568896	1.916276017	Ten DAP	6	26.09	misc
cassava4.1 016751mlPA	AT5G23750	0.12143601	1.65994725	Ten DAP	5	27.3.99	RNA
cassava4.1 022523mlPA	AT2G46520	0.122538113	1.338119305	Ten DAP	15	20.1	stress
cassava4.1 022523mlPA	AT2G46520	0.122538113	1.338119305	Ten DAP	15	29.3.1	protein
cassava4.1 015597m/PA	AT1G67360	0.122667975	1.842562216	Ten DAP	3	35.1	not assigned
cassava4.1 011776m PA	AT1G52760	0.122703254	1.550010546	Ten DAP	5	11.9.2	lipid metabolism
cassava4.1 017118mlPA	AT4G23690	0.123358814	1.18419055	Ten DAP	2	20.1	stress
cassava4.1_003828mlPA	AT3G19420	0.124048356	1.579814812	Ten DAP	- 3	29.4	protein
cassava4.1 029023mIPA	AT1G33590	0.124148931	1.214383251	Ten DAP	5	20.1	stress
[-		

cassava4.1_012448m PA	AT4G39230	0.124182302	1.291397582	Ten DAP	19	16.8.5	secondary metabolism
cassava4.1_014503m PA	AT3G55440	0.124504536	1.722312487	Ten DAP	4	4.08	glycolysis
cassava4.1_012111m PA	AT4G02340	0.124679634	2.293402251	Ten DAP	3	26.01	misc
cassava4.1_016095m PA	AT3G26420	0.124689652	1.200801559	Ten DAP	3	27.4	RNA
cassava4.1_031433m PA	AT4G13010	0.124984694	1.168757775	Ten DAP	24	26.07	misc
cassava4.1_007005m PA	AT5G64430	0.125313955	1.692603144	Ten DAP	7	35.1	not assigned
cassava4.1_001858m PA	AT3G15730	0.125808286	1.256587923	Ten DAP	44	11.9.3.01	lipid metabolism
cassava4.1_016102m PA	AT1G75270	0.125935919	1.856076082	Ten DAP	6	21.2.1	redox
cassava4.1_015875m PA	AT1G20440	0.125958623	1.892394426	Ten DAP	11	20.2.99	stress
cassava4.1_004740m PA	AT2G23420	0.125998287	1.587311852	Ten DAP	3	35.1	not assigned
cassava4.1_008132m PA	AT5G07030	0.128229688	1.415961373	Ten DAP	4	27.3.67	RNA
cassava4.1_014065m PA	AT3G02520	0.128409936	1.164910071	Ten DAP	6	30.7	signalling
cassava4.1_010344m PA	AT4G37990	0.12924818	1.315275224	Ten DAP	11	16.2.1.010	secondary metabolism
cassava4.1_011215m PA	AT4G38460	0.129432822	1.366033569	Ten DAP	7	16.1.1.010	secondary metabolism
cassava4.1_012687m PA	AT2G42130	0.129456199	2.113531173	Ten DAP	4	35.2	not assigned
cassava4.1_022023m PA	AT5G63220	0.129538139	1.278214383	Ten DAP	4	35.2	not assigned
cassava4.1_015573m PA	AT3G01850	0.129652966	2.324416414	Ten DAP	2	7.2.03	OPP
cassava4.1_007736m PA	AT1G44820	0.129727155	1.292639102	Ten DAP	4	26.08	misc
gi 169794081 ref YP_OC	-	0.130938682	1.49258646	Ten DAP	25	-	-
cassava4.1_018015m PA	AT1G24020	0.131542999	2.79451859	Ten DAP	2	20.2.99	stress
cassava4.1_014787m PA	AT2G01250	0.132060716	1.715439587	Ten DAP	3	29.2.2	protein
cassava4.1_003997m PA	AT5G13110	0.13211543	1.270766833	Ten DAP	2	7.1.01	OPP
cassava4.1_015119m PA	AT3G12390	0.132246489	1.37088616	Ten DAP	7	29.2.4	protein
cassava4.1_005750m PA	AT3G24200	0.132306972	1.481000472	Ten DAP	3	26.07	misc
cassava4.1_034435m PA	AT2G15490	0.133359806	1.329493123	Ten DAP	2	26.02	misc
cassava4.1_009013m PA	AT1G62640	0.13473601	1.260540024	Ten DAP	2	11.1.03	lipid metabolism
cassava4.1_013772m PA	AT5G06060	0.134868707	1.779255439	Ten DAP	2	26.08	misc
cassava4.1_013119m PA	AT5G45390	0.134940556	1.948054619	Ten DAP	5	29.5.05	protein
cassava4.1_009799m PA	AT4G16260	0.135189841	1.359937941	Ten DAP	3	26.04	misc
cassava4.1_009901m PA	AT5G08170	0.135221193	1.266541616	Ten DAP	2	22.1.04	polyamine metabolism
cassava4.1_009735m PA	AT3G52180	0.135771612	2.142486305	Ten DAP	7	35.1	not assigned
cassava4.1_010221m PA	AT3G02540	0.136497744	1.177026973	Ten DAP	7	29.5.11.01	protein
cassava4.1_008948m PA	AT5G57850	0.136673603	1.475229168	Ten DAP	11	26.26.1	misc
cassava4.1_013237m PA	AT1G59960	0.136691543	1.742945345	Ten DAP	2	16.8.2	secondary metabolism
cassava4.1_009456m PA	AT3G20330	0.136779974	1.152139989	Ten DAP	7	23.1.1.02	nucleotide metabolism
cassava4.1_014303m PA	AT2G45300	0.137496082	1.306516982	Ten DAP	3	13.1.6.1.06	amino acid metabolism
cassava4.1_002579m PA	AT3G01680	0.137631582	1.112520095	Ten DAP	20	35.2	not assigned
cassava4.1_010989m PA	AT3G56460	0.138451284	2.70541493	Ten DAP	2	26.01	misc
cassava4.1_008997m PA	AT3G17880	0.138970581	1.577286504	Ten DAP	13	21.01	redox
cassava4.1_009187m PA	AT3G09350	0.139100531	1.782427134	Ten DAP	6	35.1.3	not assigned
cassava4.1_012919m PA	AT1G18640	0.13955574	1.775868678	Ten DAP	3	13.1.5.1.03	amino acid metabolism
cassava4.1_006694m PA	AT3G09940	0.139889848	1.379383744	Ten DAP	9	21.2.1	redox
cassava4.1_000751m PA	AT3G45850	0.140830767	2.894303682	Ten DAP	2	28.1	DNA
cassava4.1_017458m PA	AT3G23790	0.140921749	1.768589971	Ten DAP	3	11.1.08	lipid metabolism

cassava4.1_006628m PA	AT5G58090	0.14094893	1.476696688	Ten DAP	7	35.1	not assigned
cassava4.1_006439m PA	AT4G36195	0.141408492	1.216205254	Ten DAP	7	29.5.05	protein
cassava4.1_004822m PA	AT5G16150	0.143239995	1.647159078	Ten DAP	2	2.2.2.06	major CHO metabolism
cassava4.1_004822m PA	AT5G16150	0.143239995	1.647159078	Ten DAP	2	34.2	transporter
cassava4.1_006843m PA	AT3G54470	0.143534558	1.279785675	Ten DAP	15	23.1.1.05	nucleotide metabolism
cassava4.1_010959m PA	AT5G08300	0.143699243	1.388010412	Ten DAP	14	8.1.06	TCA / org
cassava4.1_011972m PA	AT1G24360	0.143736145	1.886584677	Ten DAP	4	11.1.04	lipid metabolism
cassava4.1_002380m PA	AT1G03090	0.143806965	1.677205102	Ten DAP	4	13.2.4.4	amino acid metabolism
cassava4.1_016660m PA	AT3G06390	0.145027917	1.920382692	Ten DAP	2	35.1	not assigned
cassava4.1_005282m PA	AT1G09830	0.14532559	1.206211827	Ten DAP	4	23.1.2.02	nucleotide metabolism
cassava4.1_015338m PA	AT2G18110	0.145538293	1.215746511	Ten DAP	4	29.2.4	protein
cassava4.1_011761m PA	AT1G09130	0.14559431	2.45156516	Ten DAP	3	29.5.05	protein
cassava4.1_002470m PA	AT5G19620	0.1456893	1.34840287	Ten DAP	8	35.1	not assigned
cassava4.1_004309m PA	AT3G15410	0.145803989	1.408860436	Ten DAP	5	35.1	not assigned
cassava4.1_005155m PA	AT2G14170	0.146659443	1.344217415	Ten DAP	11	13.2.4.3	amino acid metabolism
cassava4.1_002466m PA	AT3G46970	0.14731939	1.304470706	Ten DAP	17	2.2.2.02	major CHO metabolism
cassava4.1_013399m PA	AT4G28400	0.149369472	1.500677506	Ten DAP	9	29.4	protein
cassava4.1_015380m PA	AT4G11150	0.149638012	1.876903114	Ten DAP	12	34.1.01	transport
cassava4.1_010597m PA	AT5G37600	0.150226394	1.385437199	Ten DAP	5	12.2.02	N-metabolism
cassava4.1_016943m PA	AT1G10200	0.150818868	1.553702378	Ten DAP	2	27.3.67	RNA
cassava4.1_033064m PA	AT1G65590	0.151549948	1.203318337	Ten DAP	2	35.1	not assigned
cassava4.1_011783m PA	AT2G42910	0.151866716	1.45798603	Ten DAP	3	13.1.7.011	amino acid metabolism
cassava4.1_011783m PA	AT2G42910	0.151866716	1.45798603	Ten DAP	3	23.1.03	nucleotide metabolism
cassava4.1_014284m PA	AT4G13720	0.152079354	1.157927141	Ten DAP	7	35.1	not assigned
cassava4.1_018158m PA	AT5G12020	0.152181229	2.297352002	Ten DAP	7	20.2.1	stress
cassava4.1_011142m PA	AT5G06720	0.152240907	1.740625242	Ten DAP	5	26.12	misc
cassava4.1_006877m PA	AT5G04990	0.153157786	1.389127443	Ten DAP	6	35.1	not assigned
cassava4.1_014432m PA	AT3G55440	0.153717454	1.550469005	Ten DAP	9	4.08	glycolysis
cassava4.1_005825m PA	AT3G58750	0.153986539	1.726053013	Ten DAP	6	6.01	gluconeogenese/ glyoxylate cycle
cassava4.1_012430m PA	AT3G58840	0.155223324	1.256174144	Ten DAP	4	35.2	not assigned
cassava4.1_001724m PA	AT3G06810	0.155239958	1.3728602	Ten DAP	15	11.9.4.02	lipid metabolism
cassava4.1_021137m PA	AT2G31810	0.156128679	1.297916733	Ten DAP	10	13.1.4.1	amino acid metabolism
cassava4.1_027575m PA	AT3G10690	0.156154049	1.164292797	Ten DAP	5	28.1	DNA
cassava4.1_008220m PA	AT1G16300	0.156368217	1.245150077	Ten DAP	13	4.09	glycolysis
cassava4.1_013756m PA	AT4G02610	0.156698671	2.904417771	Ten DAP	3	13.1.6.5.05	amino acid metabolism
cassava4.1_010553m PA	AT3G08640	0.156840179	1.24827519	Ten DAP	7	35.1	not assigned
cassava4.1_014093m PA	AT2G45060	0.157485941	1.463446796	Ten DAP	4	35.2	not assigned
cassava4.1_010870m PA	AT5G10010	0.157631391	1.606725317	Ten DAP	4	35.2	not assigned
cassava4.1_019672m PA	AT5G47550	0.157982784	1.581793652	Ten DAP	3	20.1	stress
cassava4.1_019672m PA	AT5G47550	0.157982784	1.581793652	Ten DAP	3	29.5.03	protein
cassava4.1_000097m PA	AT3G22790	0.158757509	1.17223175	Ten DAP	2	29.4	protein
cassava4.1_016475m PA	AT1G14900	0.158828042	1.596609554	Ten DAP	3	28.1	DNA
cassava4.1_002614m PA	AT3G29320	0.159453092	1.403512667	Ten DAP	16	2.2.2.02	major CHO metabolism
cassava4.1_009927m PA	AT4G11260	0.159669678	1.199940349	Ten DAP	6	29.4	protein

cassava4.1_013908m PA	AT3G17440	0.160116025	1.434000825	Ten DAP	4	31.4	cell
cassava4.1_012558m PA	AT3G54110	0.160695162	2.245330522	Ten DAP	3	9.8	mitochondrial electron transport / ATP synthesis
cassava4.1_009781m PA	AT5G50550	0.160815515	1.397641197	Ten DAP	2	35.1	not assigned
cassava4.1_000255m PA	AT1G15520	0.161043991	1.356373812	Ten DAP	23	34.16	transport
cassava4.1_006624m PA	AT1G72160	0.161692272	1.327880464	Ten DAP	22	28.99	DNA
cassava4.1_006624m PA	AT1G72160	0.161692272	1.327880464	Ten DAP	22	34.99	transport
cassava4.1_012070m PA	AT4G00560	0.162198166	1.602976423	Ten DAP	2	35.1	not assigned
cassava4.1_012416m PA	AT1G76150	0.162648597	1.4718774	Ten DAP	2	11.8	lipid metabolism
cassava4.1_005004m PA	AT3G26310	0.163684417	1.365154447	Ten DAP	2	26.10	misc
cassava4.1_010419m PA	AT1G67280	0.164035207	1.222203298	Ten DAP	13	13.2.3.2	amino acid metabolism
cassava4.1_010419m PA	AT1G67280	0.164035207	1.222203298	Ten DAP	13	24.02	Biodegradation of Xenobiotics
cassava4.1_013151m PA	AT3G56190	0.164532623	1.220861496	Ten DAP	6	35.1	not assigned
cassava4.1_006991m PA	AT5G46290	0.164659675	1.508417849	Ten DAP	11	11.1.03	lipid metabolism
cassava4.1_027961m PA	AT3G04790	0.165238087	1.378612947	Ten DAP	4	1.3.010	PS
cassava4.1_027961m PA	AT3G04790	0.165238087	1.378612947	Ten DAP	4	7.2.04	OPP
cassava4.1_001014m PA	AT1G09010	0.165647616	1.613332796	Ten DAP	3	10.6.2	cell wall
cassava4.1_001014m PA	AT1G09010	0.165647616	1.613332796	Ten DAP	3	26.03	misc
cassava4.1_008399m PA	AT5G67290	0.165862705	1.287798858	Ten DAP	2	26.07	misc
cassava4.1_007302m PA	AT4G34480	0.166136738	1.81995484	Ten DAP	2	35.1	not assigned
cassava4.1_009729m PA	AT5G43940	0.16630625	1.314192012	Ten DAP	11	25.11	C1-metabolism
cassava4.1_009729m PA	AT5G43940	0.16630625	1.314192012	Ten DAP	11	26.11	misc
cassava4.1_022796m PA	AT1G12230	0.16667314	1.474429065	Ten DAP	13	7.2.02	OPP
cassava4.1_004441m PA	AT4G12400	0.166744092	1.393226809	Ten DAP	37	20	stress
cassava4.1_006278m PA	AT1G79440	0.167929112	1.552981411	Ten DAP	10	8.2.99	TCA / org
cassava4.1_006278m PA	AT1G79440	0.167929112	1.552981411	Ten DAP	10	13.1.1.1.03	amino acid metabolism
cassava4.1_013704m PA	AT4G03140	0.169735767	2.484905239	Ten DAP	6	26.22	misc
cassava4.1_006438m PA	AT3G57610	0.16992243	1.480939935	Ten DAP	9	23.1.2.20	nucleotide metabolism
cassava4.1_015011m PA	AT2G21870	0.170082557	1.961272465	Ten DAP	22	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_007900m PA	AT1G09750	0.170206359	1.109267201	Ten DAP	7	27.3.99	RNA
cassava4.1_019697m PA	AT3G01390	0.17071522	1.646760569	Ten DAP	3	34.1	transport
cassava4.1_015738m PA	AT5G55190	0.171999406	1.562508637	Ten DAP	4	30.5	signalling
cassava4.1_005882m PA	AT1G54100	0.172134009	1.26532535	Ten DAP	11	5.10	fermentation
cassava4.1_006078m PA	AT3G60130	0.172325711	5.424339969	Ten DAP	3	26.03	misc
cassava4.1_027816m PA	AT2G34680	0.173277258	1.828798307	Ten DAP	2	35.1	not assigned
cassava4.1_008386m PA	AT5G55530	0.173686893	1.431849839	Ten DAP	3	20.2.2	stress
cassava4.1_008738m PA	AT3G19450	0.174318087	1.163159793	Ten DAP	9	16.2.1.010	secondary metabolism
cassava4.1_014677m PA	AT5G66140	0.174435359	1.579507455	Ten DAP	8	29.5.11.20	protein
cassava4.1_006730m PA	AT3G48730	0.174894594	1.198048467	Ten DAP	4	19.03	tetrapyrrole synthesis
cassava4.1_034034m PA	AT5G55860	0.175455423	1.362649273	Ten DAP	9	35.2	not assigned
cassava4.1_011852m PA	AT5G20080	0.175507767	1.827815582	Ten DAP	11	21.99	redox
cassava4.1_007957m PA	AT1G77120	0.176082112	2.022238374	Ten DAP	4	5.03	fermentation
cassava4.1_014837m PA	AT2G01250	0.176672888	1.633752667	Ten DAP	13	29.2.2	protein
cassava4.1_008063m PA	AT5G48930	0.176749688	1.841378332	Ten DAP	9	16.2.1.04	secondary metabolism
cassava4.1_011810m PA	AT4G21580	0.177270989	1.447487266	Ten DAP	12	26.01	misc

cassava4.1_002801m PA	AT1G61010	0.177421905	1.127597816	Ten DAP	3	27.1	RNA
cassava4.1_029718m PA	AT4G23850	0.179128844	1.333396037	Ten DAP	11	11.1.09	lipid metabolism
cassava4.1_004490m PA	AT1G33320	0.179719114	1.819017997	Ten DAP	3	13.1.3.4.01	amino acid metabolism
cassava4.1_014627m PA	AT3G22110	0.180551261	1.867885562	Ten DAP	7	29.5.11.20	protein
cassava4.1_002044m PA	AT5G65620	0.180626404	1.167258642	Ten DAP	28	29.5	protein
cassava4.1_007037m PA	AT5G67630	0.181135868	1.128821798	Ten DAP	15	28.1	DNA
cassava4.1_010948m PA	AT3G46440	0.181535215	1.559198475	Ten DAP	5	10.1.05	cell wall
cassava4.1_005009m PA	AT5G17530	0.181725429	1.372335882	Ten DAP	13	4.02	glycolysis
cassava4.1_029521m PA	AT5G56000	0.182113053	1.191222766	Ten DAP	10	20.2.1	stress
cassava4.1_001802m PA	AT5G17920	0.182927258	1.083683862	Ten DAP	39	13.1.3.4	amino acid metabolism
cassava4.1_009000m PA	AT1G03475	0.183185178	1.339301334	Ten DAP	6	19.08	tetrapyrrole synthesis
cassava4.1_029062m PA	AT1G80360	0.183471573	1.262502537	Ten DAP	4	13.1.6.2	amino acid metabolism
cassava4.1_001084m PA	AT5G62670	0.183499081	1.315417428	Ten DAP	6	34.1	transport
cassava4.1_012284m PA	AT5G23540	0.183766266	1.243936082	Ten DAP	10	29.5.11.20	protein
cassava4.1_015183m PA	AT1G79210	0.184321418	1.461992832	Ten DAP	2	29.5.11.20	protein
cassava4.1_008376m PA	AT1G08450	0.185227248	1.748001198	Ten DAP	6	30.3	signalling
cassava4.1_009477m PA	AT1G68010	0.18533929	1.730487959	Ten DAP	2	1.2.06	PS
cassava4.1_009477m PA	AT1G68010	0.18533929	1.730487959	Ten DAP	2	13.2.5.1	amino acid metabolism
cassava4.1_007405m PA	AT5G14590	0.185710917	1.376514432	Ten DAP	5	8.1.04	TCA / org
cassava4.1_002712m PA	AT5G63190	0.186660482	1.406280973	Ten DAP	20	28.99	DNA
cassava4.1_008337m PA	AT1G57720	0.186992953	1.205671768	Ten DAP	27	29.2.4	protein
cassava4.1_008143m PA	AT5G11170	0.187767386	1.274099146	Ten DAP	16	28.1	DNA
cassava4.1_009887m PA	AT1G08490	0.187971264	1.597828424	Ten DAP	5	30.1.01	signalling
cassava4.1_014637m PA	AT5G14240	0.188590911	1.423461116	Ten DAP	2	35.2	not assigned
cassava4.1_007702m PA	AT1G48620	0.189116256	1.22919659	Ten DAP	5	28.1.3	DNA
cassava4.1_012745m PA	AT5G09650	0.189129233	1.223212637	Ten DAP	10	23.4.99	nucleotide metabolism
cassava4.1_008036m PA	AT1G69740	0.189966942	1.392324151	Ten DAP	12	19.04	tetrapyrrole synthesis
cassava4.1_034056m PA	AT1G47480	0.190316801	1.175662707	Ten DAP	6	35.1	not assigned
cassava4.1_010424m PA	AT1G01910	0.190338386	1.441716109	Ten DAP	3	34.18.01	transport
cassava4.1_003897m PA	AT1G06820	0.190499398	1.177493373	Ten DAP	8	16.1.4	secondary metabolism
cassava4.1_008567m PA	AT3G54250	0.191774513	1.279815931	Ten DAP	3	16.1.2.06	secondary metabolism
cassava4.1_006384m PA	AT1G09020	0.193170958	1.66202018	Ten DAP	2	29.4	protein
cassava4.1_014967m PA	AT3G10220	0.193483419	1.173217952	Ten DAP	4	31.1	cell
cassava4.1_031695m PA	AT2G28470	0.194104834	1.404811068	Ten DAP	9	10.6.2	cell wall
cassava4.1_031695m PA	AT2G28470	0.194104834	1.404811068	Ten DAP	9	26.03	misc
cassava4.1_013202m PA	AT2G37170	0.194784697	1.259616676	Ten DAP	5	34.19.1	transport
cassava4.1_009020m PA	AT1G79550	0.195049664	1.619909834	Ten DAP	23	4.010	glycolysis
cassava4.1_020020m PA	AT2G04400	0.195521885	1.199452984	Ten DAP	3	13.1.6.5.04	amino acid metabolism
cassava4.1_009268m PA	AT5G54800	0.196091071	1.598831466	Ten DAP	4	2.1.2.05	major CHO metabolism
cassava4.1_009268m PA	AT5G54800	0.196091071	1.598831466	Ten DAP	4	34.8	transport
cassava4.1_011635m PA	AT2G38550	0.196161485	1.566361646	Ten DAP	5	35.2	not assigned
cassava4.1_016386m PA	AT5G10860	0.19621274	1.877067847	Ten DAP	6	35.1	not assigned
cassava4.1_005207m PA	AT5G10920	0.196440908	1.281885226	Ten DAP	4	13.1.2.3.023	amino acid metabolism
cassava4.1_013362m PA	AT5G40650	0.196617706	2.337190674	Ten DAP	4	8.1.07	TCA / org

cassava4.1_005766m PA	AT2G44450	0.197073759	1.430884362	Ten DAP	7	26.03	misc
cassava4.1 021900m PA	AT5G06860	0.197094283	1.420545274	Ten DAP	3	10.6.3	cell wall
cassava4.1_011347m PA	AT3G04120	0.197749641	1.219588669	Ten DAP	35	4.09	glycolysis
cassava4.1 007552m PA	AT4G26000	0.197839353	1.310694227	Ten DAP	4	27.3.99	RNA
cassava4.1_012465m PA	AT3G61220	0.197943978	2.571041827	Ten DAP	2	26.22	misc
cassava4.1_016056m PA	AT2G18230	0.197959383	1.414196793	Ten DAP	4	23.4.99	nucleotide metabolism
cassava4.1_011176m PA	AT3G04120	0.198445418	1.364651348	Ten DAP	14	4.09	glycolysis
cassava4.1 008978m PA	AT5G64380	0.198494275	1.397492877	Ten DAP	2	1.3.07	PS
cassava4.1_008674m PA	AT5G15610	0.201459286	1.633795735	Ten DAP	3	29.5.11.20	protein
cassava4.1 005098m PA	AT5G19320	0.201910767	1.182109785	Ten DAP	9	30.5	signalling
cassava4.1_007022m PA	AT2G33150	0.202881357	1.339763806	Ten DAP	4	11.9.4.05	lipid metabolism
cassava4.1_007022m PA	AT2G33150	0.202881357	1.339763806	Ten DAP	4	13.2.4.1	amino acid metabolism
cassava4.1_004139m PA	AT5G51480	0.203010811	1.249173685	Ten DAP	10	26.07	misc
cassava4.1_009956m PA	AT4G17520	0.203234177	1.35060261	Ten DAP	15	27.4	RNA
cassava4.1_010369m PA	AT2G39770	0.203337967	1.399898286	Ten DAP	4	10.1.1.01	cell wall
cassava4.1_006506m PA	AT3G61140	0.203646963	1.388688858	Ten DAP	5	30.11.1	signalling
cassava4.1_015424m PA	AT5G41210	0.203899002	1.575802874	Ten DAP	5	26.09	misc
cassava4.1_008319m PA	AT3G27740	0.204066305	1.373745314	Ten DAP	5	13.1.2.3.011	amino acid metabolism
cassava4.1_008319m PA	AT3G27740	0.204066305	1.373745314	Ten DAP	5	23.1.1.01	nucleotide metabolism
cassava4.1_003505m PA	AT1G49670	0.204499677	1.534919466	Ten DAP	11	26.07	misc
cassava4.1 007624m PA	AT1G52380	0.204523388	1.213707106	Ten DAP	3	30.5	signalling
cassava4.1_013356m PA	AT5G04170	0.204726227	1.596097212	Ten DAP	3	30.3	signalling
cassava4.1_007681m PA	AT1G09850	0.204852553	1.281273884	Ten DAP	3	29.5.03	protein
cassava4.1_009001m PA	AT5G62390	0.205642308	1.770945057	Ten DAP	5	30.3	signalling
cassava4.1_002427m PA	AT1G52320	0.205689252	9.558877778	Ten DAP	2	35.2	not assigned
cassava4.1_005293m PA	AT4G32520	0.20661457	1.308309878	Ten DAP	16	1.2.05	PS
cassava4.1_005293m PA	AT4G32520	0.20661457	1.308309878	Ten DAP	16	13.1.5.2.01	amino acid metabolism
cassava4.1_005293m PA	AT4G32520	0.20661457	1.308309878	Ten DAP	16	25.01	C1-metabolism
cassava4.1_012016m PA	AT2G21170	0.206730912	1.375325681	Ten DAP	5	1.3.05	PS
cassava4.1_010194m PA	AT4G17520	0.207083219	1.492993885	Ten DAP	3	27.4	RNA
cassava4.1_011091m PA	AT3G26340	0.207405692	1.277059355	Ten DAP	11	29.5.11.20	protein
cassava4.1_006445m PA	AT1G20200	0.20816789	1.144333442	Ten DAP	4	29.5.11.20	protein
cassava4.1_007750m PA	AT5G09900	0.209207856	1.375988838	Ten DAP	10	29.5.11.20	protein
cassava4.1_007394m PA	AT4G18950	0.209314163	1.775092794	Ten DAP	5	29.4	protein
cassava4.1_007394m PA	AT4G18950	0.209314163	1.775092794	Ten DAP	5	31.1	cell
cassava4.1_027307m PA	AT1G80460	0.210752582	1.209969748	Ten DAP	3	11.5.01	lipid metabolism
cassava4.1_002829m PA	AT1G29880	0.211694385	1.173245649	Ten DAP	24	29.1.014	protein
cassava4.1_002307m PA	AT2G45290	0.211754741	1.343756161	Ten DAP	36	1.3.08	PS
cassava4.1_002307m PA	AT2G45290	0.211754741	1.343756161	Ten DAP	36	7.2.01	OPP
cassava4.1_009613m PA	AT5G65760	0.211765259	1.394151175	Ten DAP	2	29.5	protein
cassava4.1_002124m PA	AT1G15690	0.212300603	1.243447943	Ten DAP	14	34.30	transport
cassava4.1_012289m PA	AT3G14750	0.212515649	1.29305773	Ten DAP	2	35.1	not assigned
cassava4.1_006975m PA	AT1G80600	0.213609758	1.743242821	Ten DAP	2	13.1.2.3.04	amino acid metabolism
cassava4.1_002761m PA	AT5G27600	0.213671198	1.581802835	Ten DAP	4	11.1.08	lipid metabolism
-							

cassava4.1_006909m PA	AT4G26910	0.214072247	1.510417328	Ten DAP	15	35.1	not assigned
cassava4.1_020495m PA	AT2G13560	0.214297831	1.460325103	Ten DAP	2	8.2.10	TCA / org
cassava4.1_009293m PA	AT1G47710	0.214914351	1.244709985	Ten DAP	14	20.1	stress
cassava4.1_009293m PA	AT1G47710	0.214914351	1.244709985	Ten DAP	14	29.5.05	protein
cassava4.1_009185m PA	AT1G65930	0.215458892	1.358067264	Ten DAP	8	8.1.04	TCA / org
cassava4.1_003704m PA	AT5G64570	0.215842054	1.324212017	Ten DAP	9	35.1	not assigned
cassava4.1_004043m PA	AT2G39940	0.216143781	1.366521723	Ten DAP	7	29.5.11.4.3.02	protein
cassava4.1_014131m PA	AT5G58420	0.2171081	1.648918987	Ten DAP	2	29.2.2	protein
cassava4.1_012067m PA	AT1G19140	0.217322652	1.090820027	Ten DAP	4	35.2	not assigned
cassava4.1_014799m PA	AT2G05840	0.217682487	1.593129998	Ten DAP	12	29.5.11.20	protein
cassava4.1_009845m PA	AT1G79230	0.217993551	1.583438478	Ten DAP	5	13.2.5.3	amino acid metabolism
cassava4.1_006906m PA	AT1G34430	0.218824284	1.430551967	Ten DAP	12	8.1.01.02	TCA / org
cassava4.1_026109m PA	AT4G19880	0.220125146	1.395969431	Ten DAP	6	26.09	misc
cassava4.1_009294m PA	AT3G02720	0.220753064	1.936735153	Ten DAP	5	35.1	not assigned
cassava4.1_006476m PA	AT5G08530	0.221707488	1.10958104	Ten DAP	14	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_017342m PA	AT2G21620	0.222162403	1.596158839	Ten DAP	5	20.2.99	stress
cassava4.1_010509m PA	AT2G36460	0.222164189	1.152940825	Ten DAP	33	4.07	glycolysis
cassava4.1_007011m PA	AT5G43060	0.222566275	1.154674258	Ten DAP	4	29.5.03	protein
cassava4.1_011513m PA	AT4G24340	0.222793534	1.874873862	Ten DAP	2	35.1	not assigned
cassava4.1_012257m PA	AT2G42500	0.222937315	1.633778016	Ten DAP	3	29.4	protein
cassava4.1_016417m PA	AT3G22630	0.223888583	1.392010564	Ten DAP	2	29.5.11.20	protein
cassava4.1_033369m PA	AT2G22590	0.223901915	1.672644369	Ten DAP	2	16.8.1	secondary metabolism
cassava4.1_010547m PA	AT3G19320	0.223926953	1.318353165	Ten DAP	5	35.1	not assigned
cassava4.1_010165m PA	AT4G17520	0.224224593	1.136952973	Ten DAP	4	27.4	RNA
cassava4.1_010037m PA	AT2G41810	0.224367785	1.666953139	Ten DAP	3	35.2	not assigned
cassava4.1_015618m PA	AT5G12110	0.224594498	1.310168788	Ten DAP	10	29.2.4	protein
cassava4.1_029886m PA	AT5G42650	0.226513182	1.267680859	Ten DAP	12	17.7.1.03	hormone metabolism
cassava4.1_012107m PA	AT5G57330	0.229434561	1.132547405	Ten DAP	4	3.5	minor CHO metabolism
cassava4.1_012458m PA	AT1G02560	0.229472115	2.204088314	Ten DAP	2	29.5.05	protein
cassava4.1_007573m PA	AT5G10770	0.229869941	1.376230551	Ten DAP	6	27.3.99	RNA
cassava4.1_003640m PA	AT4G32250	0.230584339	1.677092483	Ten DAP	3	29.4	protein
cassava4.1_005392m PA	AT3G13860	0.230637077	1.300432067	Ten DAP	13	29.6	protein
cassava4.1_008936m PA	AT5G02500	0.23071684	1.178106471	Ten DAP	2	29.6	protein
cassava4.1_011191m PA	AT3G02360	0.231086905	1.194851295	Ten DAP	11	7.1.03	OPP
cassava4.1_013160m PA	AT4G16060	0.232165143	1.305060748	Ten DAP	2	35.2	not assigned
cassava4.1_002278m PA	AT3G01180	0.235049795	1.373885415	Ten DAP	12	2.1.2.02	major CHO metabolism
cassava4.1_011883m PA	AT2G33040	0.235992394	1.430886555	Ten DAP	15	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_005468m PA	AT5G36210	0.236001118	1.290750016	Ten DAP	11	29.5	protein
cassava4.1_000869m PA	AT5G13980	0.236516771	1.249670989	Ten DAP	2	26.03	misc
cassava4.1_029798m PA	AT5G01260	0.236819804	1.646134072	Ten DAP	2	2.2.2.04	major CHO metabolism
cassava4.1_002502m PA	AT5G67090	0.237153725	1.254353545	Ten DAP	5	29.5.01	protein
cassava4.1_014499m PA	AT3G58600	0.237309731	1.117304593	Ten DAP	4	35.2	not assigned
cassava4.1_009300m PA	AT3G25700	0.237917388	1.580893201	Ten DAP	4	27.3.99	RNA
cassava4.1_004453m PA	AT4G12400	0.238546377	1.25319202	Ten DAP	26	20	stress

cassava4.1_034169m PA	AT1G05150	0.240072307	1.898305225	Ten DAP	4	30.3	signalling
cassava4.1_003265m PA	AT2G26730	0.24044058	1.476831735	Ten DAP	6	30.2.3	signalling
cassava4.1_011782m PA	AT1G16700	0.240807272	1.767069801	Ten DAP	5	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_026755m PA	AT4G11290	0.240868909	2.679319815	Ten DAP	2	26.12	misc
cassava4.1_008727m PA	AT1G74910	0.241650561	1.299649707	Ten DAP	6	2.1.2.01	major CHO metabolism
cassava4.1_001007m PA	AT2G47390	0.242277642	1.423503769	Ten DAP	11	35.2	not assigned
cassava4.1_031960m PA	AT4G33680	0.242447407	2.045445187	Ten DAP	4	13.1.3.5.03	amino acid metabolism
cassava4.1_015312m PA	AT2G45790	0.242553961	1.238395427	Ten DAP	3	10.1.021	cell wall
cassava4.1_012516m PA	AT2G33800	0.242581264	1.356065274	Ten DAP	3	29.2.1.99	protein
cassava4.1_010502m PA	AT2G36460	0.243091463	1.275518191	Ten DAP	10	4.07	glycolysis
cassava4.1_006785m PA	AT3G13920	0.24339004	1.149106658	Ten DAP	29	29.2.3	protein
cassava4.1_013524m PA	AT5G40770	0.243426689	1.247327147	Ten DAP	11	35.1	not assigned
cassava4.1_014819m PA	AT5G63400	0.245238626	1.1110552	Ten DAP	12	23.4.01	nucleotide metabolism
cassava4.1_026399m PA	AT1G78860	0.24524261	1.974348304	Ten DAP	2	26.16	misc
cassava4.1_012407m PA	AT2G21250	0.245775157	1.361977986	Ten DAP	4	3.5	minor CHO metabolism
cassava4.1_032931m PA	AT1G15520	0.246022369	1.363656604	Ten DAP	2	34.16	transport
cassava4.1_011356m PA	AT5G23050	0.247008937	2.301824116	Ten DAP	5	11.1.08	lipid metabolism
cassava4.1_004170m PA	AT5G25880	0.248158705	1.508189973	Ten DAP	2	8.2.10	TCA / org
cassava4.1_009412m PA	AT2G26930	0.24860403	1.144938073	Ten DAP	2	16.1.1.04	secondary metabolism
cassava4.1_013784m PA	AT5G51100	0.249382311	1.672711555	Ten DAP	2	21.6	redox
cassava4.1_034167m PA	AT4G10750	0.249725888	1.285887132	Ten DAP	5	35.1	not assigned
cassava4.1_013881m PA	AT1G30890	0.249898389	1.141854828	Ten DAP	3	35.1	not assigned
cassava4.1_003861m PA	AT4G01660	0.250052072	1.55412865	Ten DAP	4	35.1.1	not assigned
cassava4.1_004677m PA	AT5G27380	0.250732346	1.870919195	Ten DAP	4	21.2.2	redox
cassava4.1_017439m PA	-	0.251100416	1.204464045	Ten DAP	14	-	-
cassava4.1_007366m PA	AT1G80480	0.252858067	1.105706958	Ten DAP	5	31.1	cell
cassava4.1_001414m PA	AT1G03310	0.253063848	1.361153605	Ten DAP	6	2.1.2.04	major CHO metabolism
cassava4.1_011947m PA	AT4G15960	0.254566346	1.322124094	Ten DAP	8	26.01	misc
cassava4.1_012794m PA	AT5G19760	0.255229562	1.334041053	Ten DAP	10	34.9	transport
cassava4.1_008701m PA	AT5G07440	0.25523341	1.661348081	Ten DAP	3	12.3.01	N-metabolism
cassava4.1_015571m PA	AT1G67360	0.255396173	1.645971266	Ten DAP	11	35.1	not assigned
cassava4.1_006009m PA	AT1G51980	0.255404062	1.38137865	Ten DAP	14	29.3.2	protein
cassava4.1_013761m PA	AT5G42790	0.255798808	1.227475355	Ten DAP	9	29.5.11.20	protein
cassava4.1_008604m PA	AT1G65930	0.257333496	1.266361963	Ten DAP	23	8.1.04	TCA / org
cassava4.1_009710m PA	AT3G19320	0.258894533	1.145406289	Ten DAP	8	35.1	not assigned
cassava4.1_007545m PA	AT1G07930	0.258958446	1.294882477	Ten DAP	33	29.2.4	protein
cassava4.1_013904m PA	AT3G47590	0.260090476	1.655467618	Ten DAP	3	35.1	not assigned
cassava4.1_009172m PA	AT2G20360	0.260475842	1.32830518	Ten DAP	10	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_010950m PA	AT3G03080	0.261184917	1.338568932	Ten DAP	19	26.07	misc
cassava4.1_022780m PA	AT3G57880	0.262775559	1.193627045	Ten DAP	14	35.1.19	not assigned
cassava4.1_003708m PA	AT1G48480	0.263110776	1.489697948	Ten DAP	3	30.2.3	signalling
cassava4.1_001086m PA	AT2G40840	0.264003241	1.250485455	Ten DAP	7	2.2.2.04	major CHO metabolism
cassava4.1_014881m PA	AT4G17830	0.264228098	1.321297262	Ten DAP	3	29.5	protein
cassava4.1_011707m PA	AT4G04020	0.26526688	1.220851886	Ten DAP	6	31.1	cell

cassava4.1_016997m PA	AT2G37790	0.265289513	1.245156765	Ten DAP	7	3.5	minor CHO metabolism
cassava4.1_003756m PA	AT5G13520	0.26546009	1.166953804	Ten DAP	11	29.5	protein
cassava4.1_013855m PA	AT5G10860	0.265473742	1.317348682	Ten DAP	12	35.1	not assigned
cassava4.1_008363m PA	AT1G29150	0.265545566	1.174032878	Ten DAP	20	29.5.11.20	protein
cassava4.1_006543m PA	AT4G33030	0.265634698	1.25688037	Ten DAP	9	11.10.03	lipid metabolism
cassava4.1_013833m PA	AT2G40060	0.265974309	1.185620443	Ten DAP	3	35.2	not assigned
cassava4.1_007509m PA	AT4G34480	0.267100739	1.136566537	Ten DAP	6	35.1	not assigned
cassava4.1_007157m PA	AT4G34480	0.267610463	3.949257967	Ten DAP	2	35.1	not assigned
cassava4.1_006024m PA	AT1G74920	0.267674974	1.195445435	Ten DAP	12	16.4.2.01	secondary metabolism
cassava4.1_009803m PA	AT1G14810	0.268924838	1.420865544	Ten DAP	5	13.1.3.6.1.02	amino acid metabolism
cassava4.1_009971m PA	AT1G06690	0.269696027	1.32719413	Ten DAP	2	3.5	minor CHO metabolism
cassava4.1_001595m PA	AT2G36390	0.273468576	1.319348939	Ten DAP	51	2.1.2.03	major CHO metabolism
cassava4.1_009321m PA	AT3G15010	0.273549556	1.184176417	Ten DAP	7	27.4	RNA
cassava4.1_011778m PA	AT5G05340	0.273922495	1.437085572	Ten DAP	6	26.12	misc
cassava4.1_003888m PA	AT2G29690	0.274495295	1.158538147	Ten DAP	12	13.1.6.5.01	amino acid metabolism
cassava4.1_010113m PA	AT4G19810	0.274709203	1.198971424	Ten DAP	2	20.1	stress
cassava4.1_000828m PA	AT5G65750	0.275259972	1.248060804	Ten DAP	6	8.1.05	TCA / org
cassava4.1_001635m PA	AT2G32810	0.27564693	1.507490154	Ten DAP	2	10.6.2	cell wall
cassava4.1_001635m PA	AT2G32810	0.27564693	1.507490154	Ten DAP	2	26.03	misc
cassava4.1_004717m PA	AT3G29320	0.275694189	1.420309134	Ten DAP	41	2.2.2.02	major CHO metabolism
cassava4.1_014529m PA	AT1G17880	0.275944085	2.318617916	Ten DAP	2	27.3.50	RNA
cassava4.1_021032m PA	AT4G19710	0.276692123	1.137422637	Ten DAP	14	13.1.3.6.1.010	amino acid metabolism
cassava4.1_025269m PA	AT2G27920	0.276693341	1.37804778	Ten DAP	2	29.5	protein
cassava4.1_012862m PA	AT3G12800	0.276930751	1.333385401	Ten DAP	3	26.22	misc
cassava4.1_001478m PA	AT1G15130	0.278160208	1.150563746	Ten DAP	13	35.1.41	not assigned
cassava4.1_014325m PA	AT3G62870	0.278162586	1.251860406	Ten DAP	17	29.2.2	protein
cassava4.1_014123m PA	AT5G07090	0.278233423	1.311007803	Ten DAP	13	29.2.2	protein
cassava4.1_008634m PA	AT5G22790	0.278471246	1.429984079	Ten DAP	3	35.2	not assigned
cassava4.1_014160m PA	AT2G40300	0.279067793	1.373033508	Ten DAP	2	15.2	metal handling
cassava4.1_014710m PA	AT3G16240	0.279461013	1.227574304	Ten DAP	2	34.19.2	transport
cassava4.1_011025m PA	AT2G43950	0.279841329	1.41996038	Ten DAP	8	35.2	not assigned
cassava4.1_014480m PA	AT2G28790	0.28243327	1.33201853	Ten DAP	3	20.2	stress
cassava4.1_009354m PA	AT5G13490	0.283166033	1.972139563	Ten DAP	4	34.14	transport
cassava4.1_005411m PA	AT5G20890	0.283428878	1.287333867	Ten DAP	14	29.6	protein
cassava4.1_015362m PA	AT1G16210	0.284364536	1.222239749	Ten DAP	6	35.2	not assigned
cassava4.1_004825m PA	AT5G16370	0.287532813	1.408612804	Ten DAP	3	11.1.08	lipid metabolism
cassava4.1_004277m PA	AT1G53210	0.288365841	1.77598753	Ten DAP	3	30.3	signalling
cassava4.1_004544m PA	AT1G16900	0.288908346	10.70472557	Ten DAP	2	29.4	protein
cassava4.1_010071m PA	AT3G59350	0.289454379	1.140529309	Ten DAP	7	29.4.1.58	protein
cassava4.1_015004m PA	AT5G02790	0.289602269	1.73939417	Ten DAP	9	35.1	not assigned
cassava4.1_007558m PA	AT5G19180	0.289741479	1.79721153	Ten DAP	2	29.5.11.02	protein
cassava4.1_013596m PA	AT2G34470	0.289924582	1.136816896	Ten DAP	6	13.2.2.3	amino acid metabolism
cassava4.1_014729m PA	AT2G45790	0.289930114	1.802359789	Ten DAP	3	10.1.021	cell wall
cassava4.1_004083m PA	AT4G34200	0.291387344	1.122572134	Ten DAP	34	13.1.5.1.01	amino acid metabolism

cassava4.1_001005m PA	AT2G25140	0.291398063	1.114160938	Ten DAP	15	20.2.1	stress
cassava4.1_034211m PA	AT3G19950	0.292492413	1.139416306	Ten DAP	4	29.5.11.04.02	protein
cassava4.1_025020m PA	AT5G40990	0.292958686	3.522533517	Ten DAP	2	26.28	misc
cassava4.1_013042m PA	AT1G03210	0.293722756	1.327520312	Ten DAP	5	35.1	not assigned
cassava4.1_019717m PA	AT3G17210	0.296258178	1.380432172	Ten DAP	2	35.1	not assigned
cassava4.1_017974m PA	AT1G53540	0.296343926	2.077299902	Ten DAP	2	20.2.1	stress
cassava4.1_013889m PA	AT3G57490	0.29704583	1.744164102	Ten DAP	12	29.2.2	protein
cassava4.1_001589m PA	AT5G23890	0.297130636	1.098638586	Ten DAP	7	35.1	not assigned
cassava4.1_016465m PA	AT1G21720	0.297288507	1.849489944	Ten DAP	3	29.5.11.20	protein
cassava4.1_024545m PA	AT4G39080	0.297808552	1.134090951	Ten DAP	13	34.1	transport
cassava4.1_015854m PA	AT1G78380	0.300165074	1.577772431	Ten DAP	2	26.09	misc
cassava4.1_009191m PA	AT3G55010	0.300362407	1.453932258	Ten DAP	3	23.1.2.05	nucleotide metabolism
cassava4.1_032232m PA	AT5G48220	0.300732801	1.164862846	Ten DAP	5	13.1.6.5.04	amino acid metabolism
cassava4.1_020466m PA	AT1G01170	0.300882019	1.258313736	Ten DAP	2	20.2.99	stress
cassava4.1_005146m PA	AT4G38350	0.301370716	1.756119579	Ten DAP	5	35.1	not assigned
cassava4.1_015495m PA	AT4G38400	0.302165955	1.372378836	Ten DAP	3	10.7	cell wall
cassava4.1_014720m PA	AT5G63510	0.302478244	2.112446556	Ten DAP	3	35.1	not assigned
cassava4.1_015762m PA	AT2G44050	0.30274562	1.485300788	Ten DAP	4	18.3.02	Co-factor and vitamine metabolism
cassava4.1_017151m PA	AT1G70670	0.303151086	1.584720306	Ten DAP	4	33.99	development
cassava4.1_003768m PA	AT5G50400	0.303175764	1.246916852	Ten DAP	9	26.13	misc
cassava4.1_018909m PA	AT3G03590	0.304804219	1.401795783	Ten DAP	2	35.1	not assigned
cassava4.1_004141m PA	AT3G08510	0.304938692	1.39926466	Ten DAP	18	11.9.3.05	lipid metabolism
cassava4.1_004141m PA	AT3G08510	0.304938692	1.39926466	Ten DAP	18	30.4.04	signalling
cassava4.1_014454m PA	AT3G55440	0.305726618	1.180865848	Ten DAP	2	4.08	glycolysis
cassava4.1_026354m PA	AT3G52570	0.306925844	1.09936401	Ten DAP	3	35.2	not assigned
cassava4.1_022943m PA	AT3G63520	0.307431289	1.167261114	Ten DAP	11	16.1.4.10	secondary metabolism
cassava4.1_007013m PA	AT5G63910	0.307752397	1.210196981	Ten DAP	2	35.2	not assigned
cassava4.1_010097m PA	AT5G48020	0.308535859	1.5786211	Ten DAP	2	35.2	not assigned
cassava4.1_014495m PA	AT3G15260	0.309322707	1.127316526	Ten DAP	7	29.4	protein
cassava4.1_014930m PA	AT3G51780	0.309636695	1.228321144	Ten DAP	3	35.1	not assigned
cassava4.1_014442m PA	AT4G29260	0.310118017	1.925704228	Ten DAP	2	26.13	misc
cassava4.1_002356m PA	AT5G37510	0.310647517	1.119518848	Ten DAP	31	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_011672m PA	AT1G24360	0.310671389	1.352236436	Ten DAP	9	11.1.04	lipid metabolism
cassava4.1_004991m PA	AT2G24820	0.312439527	2.015954215	Ten DAP	2	29.3.3	protein
cassava4.1_010116m PA	AT5G50850	0.313050014	1.122741376	Ten DAP	11	8.1.01.01	TCA / org
cassava4.1_002528m PA	AT3G01680	0.313529432	1.26677368	Ten DAP	16	35.2	not assigned
cassava4.1_009117m PA	AT5G42970	0.31366166	1.399699608	Ten DAP	3	30.11.1	signalling
cassava4.1_007234m PA	AT4G33680	0.314994227	1.406954901	Ten DAP	10	13.1.3.5.03	amino acid metabolism
cassava4.1_033530m PA	AT2G07698	0.315294196	1.072453001	Ten DAP	2	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_025245m PA	AT3G16640	0.316373319	1.199945461	Ten DAP	3	35.1	not assigned
cassava4.1_031819m PA	AT4G17190	0.318830879	1.678003967	Ten DAP	2	16.1.2.09	secondary metabolism
cassava4.1_009084m PA	AT3G04600	0.319447398	1.269305928	Ten DAP	6	29.1	protein
cassava4.1_010153m PA	AT4G37970	0.319621263	1.310919671	Ten DAP	10	16.2.1.010	secondary metabolism
cassava4.1_002509m PA	AT1G30360	0.319754479	1.29512792	Ten DAP	3	20.2.3	stress

cassava4.1_003454m PA	AT5G38640	0.321144404	1.34009831	Ten DAP	4	29.2.3	protein
cassava4.1_002128m PA	AT1G15690	0.321430183	1.151475361	Ten DAP	22	34.30	transport
cassava4.1_009566m PA	AT2G27680	0.321460791	1.238517696	Ten DAP	4	3.5	minor CHO metabolism
cassava4.1_003885m PA	AT5G64440	0.321920209	1.313432185	Ten DAP	3	26.08	misc
cassava4.1_007608m PA	AT3G16480	0.323103027	1.303480878	Ten DAP	4	29.3.2	protein
cassava4.1_001605m PA	AT1G23180	0.323187153	1.204668776	Ten DAP	3	35.1.3	not assigned
cassava4.1_015358m PA	AT1G18540	0.323233589	2.049679238	Ten DAP	4	29.2.2	protein
cassava4.1_011826m PA	AT4G14880	0.323405622	1.150869717	Ten DAP	22	13.1.5.3.01	amino acid metabolism
cassava4.1_009003m PA	AT1G79550	0.323730242	1.046669029	Ten DAP	44	4.010	glycolysis
cassava4.1_014643m PA	AT1G07890	0.324429292	1.26813682	Ten DAP	22	21.2.1	redox
cassava4.1_004303m PA	AT5G13030	0.325379006	1.085522064	Ten DAP	11	35.2	not assigned
cassava4.1_006577m PA	AT1G72330	0.327432841	1.260349922	Ten DAP	9	13.1.1.3.01	amino acid metabolism
cassava4.1_016521m PA	AT5G47030	0.327494787	1.61273057	Ten DAP	3	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_000329m PA	AT3G13290	0.327783369	2.630167856	Ten DAP	2	33.99	development
cassava4.1_006456m PA	AT5G26030	0.331490128	1.826811146	Ten DAP	4	19.020	tetrapyrrole synthesis
cassava4.1_016307m PA	AT3G49010	0.332609031	1.698476697	Ten DAP	7	29.2.2	protein
cassava4.1_001915m PA	AT5G57870	0.333412087	1.101384847	Ten DAP	8	29.2.3	protein
cassava4.1_017016m PA	AT2G27030	0.33605523	1.208267749	Ten DAP	5	30.3	signalling
cassava4.1_017537m PA	AT3G56070	0.33706801	1.247159295	Ten DAP	3	31.3.01	cell
cassava4.1_009715m PA	AT4G28390	0.338253209	1.447312727	Ten DAP	10	34.9	transport
cassava4.1_000646m PA	AT5G49030	0.338700394	1.290886133	Ten DAP	2	29.1.05	protein
cassava4.1_004671m PA	AT3G11710	0.339216471	1.066682824	Ten DAP	21	29.1.06	protein
cassava4.1_003615m PA	AT2G13560	0.339703277	1.041972912	Ten DAP	14	8.2.10	TCA / org
cassava4.1_015127m PA	AT3G14290	0.339766448	1.555464468	Ten DAP	8	29.5.11.20	protein
cassava4.1_011958m PA	AT1G05620	0.341288571	1.451006338	Ten DAP	3	23.2	nucleotide metabolism
cassava4.1_004228m PA	AT3G17970	0.341361591	1.202938313	Ten DAP	4	29.3.3	protein
cassava4.1_015434m PA	AT4G26220	0.342743029	1.20574566	Ten DAP	4	16.2.1.06	secondary metabolism
cassava4.1_004630m PA	AT5G08680	0.343302159	1.165361737	Ten DAP	27	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_013921m PA	AT5G06290	0.344037686	1.545225211	Ten DAP	8	21.05	redox
cassava4.1_012057m PA	AT2G21170	0.344269378	1.237065937	Ten DAP	3	1.3.05	PS
cassava4.1_010182m PA	AT2G45440	0.344885219	1.232827248	Ten DAP	3	13.1.3.5.01	amino acid metabolism
cassava4.1_033827m PA	AT3G55260	0.346162586	1.286145115	Ten DAP	7	35.1	not assigned
cassava4.1_030462m PA	AT5G42180	0.346920268	1.237565298	Ten DAP	2	26.12	misc
cassava4.1_012630m PA	AT2G42130	0.347381349	1.202836008	Ten DAP	13	35.2	not assigned
cassava4.1_018010m PA	AT3G53990	0.347470385	1.335264101	Ten DAP	8	20.2.2	stress
cassava4.1_032915m PA	AT2G35490	0.348894389	1.348188973	Ten DAP	2	31.1	cell
cassava4.1_006126m PA	AT3G17760	0.349429876	1.238726536	Ten DAP	7	13.1.1.1.01	amino acid metabolism
cassava4.1_003064m PA	AT3G05900	0.350529124	1.251771814	Ten DAP	30	35.1	not assigned
cassava4.1_003245m PA	AT1G45150	0.351239492	1.32982647	Ten DAP	7	35.2	not assigned
cassava4.1_015325m PA	AT1G20225	0.352438263	1.45497267	Ten DAP	4	35.2	not assigned
cassava4.1_016640m PA	AT5G63620	0.354306567	1.545974534	Ten DAP	2	35.1	not assigned
cassava4.1_014032m PA	AT3G09740	0.354921952	1.070693756	Ten DAP	8	31.4	cell
cassava4.1_010908m PA	AT1G12780	0.355039838	1.21550372	Ten DAP	17	10.1.02	cell wall
cassava4.1_014339m PA	AT5G13120	0.355273486	1.327502033	Ten DAP	6	31.3.01	cell

cassava4.1_004513m PA	AT3G16950	0.355327854	1.255723499	Ten DAP	13	8.1.01.03	TCA / org
cassava4.1_019312m PA	AT5G25450	0.356567728	1.336257434	Ten DAP	5	9.05	mitochondrial electron transport / ATP synthesis
cassava4.1_027790m PA	AT1G73370	0.356569843	1.132328345	Ten DAP	2	2.2.1.05	major CHO metabolism
cassava4.1_007986m PA	AT1G04980	0.35688277	1.221255692	Ten DAP	9	21.01	redox
cassava4.1_006431m PA	AT3G02360	0.357872224	1.171183241	Ten DAP	10	7.1.03	OPP
cassava4.1_013545m PA	AT4G35220	0.359315648	1.478018155	Ten DAP	6	28.99	DNA
cassava4.1_025681m PA	AT1G10510	0.359547901	1.284454675	Ten DAP	3	33.99	development
cassava4.1_016825m PA	AT5G16400	0.360655545	1.400409713	Ten DAP	2	21.01	redox
cassava4.1_003136m PA	AT4G16760	0.363012308	1.339363523	Ten DAP	6	11.9.4.02	lipid metabolism
cassava4.1_001205m PA	AT1G68560	0.363669101	1.290821362	Ten DAP	10	2.2.2.1	major CHO metabolism
cassava4.1_001205m PA	AT1G68560	0.363669101	1.290821362	Ten DAP	10	26.03	misc
cassava4.1_017451m PA	AT2G22170	0.363851642	1.282441248	Ten DAP	3	35.1	not assigned
cassava4.1_010847m PA	AT1G52730	0.364026576	1.325306314	Ten DAP	2	27.3.99	RNA
cassava4.1_010847m PA	AT1G52730	0.364026576	1.325306314	Ten DAP	2	33.99	development
cassava4.1_013244m PA	AT3G53900	0.366267989	1.212582056	Ten DAP	4	23.3.1.03	nucleotide metabolism
cassava4.1_013511m PA	AT2G20690	0.366304429	1.502393845	Ten DAP	3	18.3.02	Co-factor and vitamine metabolism
cassava4.1_007347m PA	AT5G59420	0.366463544	1.141026237	Ten DAP	7	31.4	cell
cassava4.1_014421m PA	AT5G20720	0.367273711	1.211841298	Ten DAP	5	29.6	protein
cassava4.1_009196m PA	AT5G16880	0.368599383	1.122314718	Ten DAP	5	31.4	cell
cassava4.1_013801m PA	AT3G02520	0.368770217	1.082408846	Ten DAP	14	30.7	signalling
cassava4.1_003951m PA	AT3G49220	0.369153168	1.107975296	Ten DAP	3	10.8.01	cell wall
cassava4.1_012376m PA	AT4G36800	0.369829034	1.335426368	Ten DAP	2	29.5.11.03	protein
cassava4.1_000003m PA	AT1G55860	0.372904527	1.194876019	Ten DAP	3	29.5.11.4.01	protein
cassava4.1_006417m PA	AT4G38510	0.373164713	1.142162958	Ten DAP	3	34.1.01	transport
cassava4.1_023292m PA	AT3G10690	0.373245796	1.236149296	Ten DAP	3	28.1	DNA
cassava4.1_003675m PA	AT3G49240	0.374293473	1.057417397	Ten DAP	5	35.1.5	not assigned
cassava4.1_006966m PA	AT4G34490	0.374323627	1.161413236	Ten DAP	19	28.99	DNA
cassava4.1_004791m PA	AT1G77590	0.378392434	1.172509373	Ten DAP	11	11.1.09	lipid metabolism
cassava4.1_018483m PA	AT3G45980	0.378634731	1.245698376	Ten DAP	10	28.1.3	DNA
cassava4.1_002716m PA	AT5G49910	0.378902009	1.272858531	Ten DAP	35	20.2.1	stress
cassava4.1_005096m PA	AT4G13700	0.379491299	1.583264074	Ten DAP	2	26.13	misc
cassava4.1_009351m PA	AT5G13490	0.37988375	1.601326537	Ten DAP	25	34.14	transport
cassava4.1_013120m PA	AT4G28510	0.380275112	1.178080654	Ten DAP	7	35.1	not assigned
cassava4.1_007795m PA	AT1G18450	0.380809964	1.203678846	Ten DAP	2	31.1	cell
cassava4.1_015911m PA	AT1G30070	0.381325198	1.389215731	Ten DAP	2	35.1	not assigned
cassava4.1_011832m PA	AT4G34050	0.381826562	1.594142971	Ten DAP	5	16.2.1.06	secondary metabolism
cassava4.1_009944m PA	AT5G53400	0.38533401	1.159532821	Ten DAP	5	31.1	cell
cassava4.1_003376m PA	AT2G23350	0.386520742	1.489169829	Ten DAP	6	27.1	RNA
cassava4.1_016116m PA	AT3G48890	0.389211545	1.503679734	Ten DAP	6	21.2	redox
cassava4.1_001937m PA	AT2G17790	0.38953689	1.093856805	Ten DAP	7	29.3.4.3	protein
cassava4.1_003199m PA	AT5G04885	0.389918028	1.252656188	Ten DAP	5	26.03	misc
cassava4.1_015848m PA	AT4G36750	0.390846052	1.212722003	Ten DAP	2	11.8	lipid metabolism
cassava4.1_017425m PA	AT1G67430	0.391841855	1.180793071	Ten DAP	5	29.2.2	protein
cassava4.1_014582m PA	AT3G25780	0.392678075	1.28304514	Ten DAP	11	17.7.1.04	hormone metabolism

cassava4.1_018351m PA	AT1G70830	0.395858808	1.238853255	Ten DAP	8	20.2.99	stress
cassava4.1_017764m PA	AT1G80230	0.396012665	1.174891178	Ten DAP	2	9.07	mitochondrial electron transport / ATP synthesis
cassava4.1_013442m PA	AT4G23900	0.396735515	1.259858351	Ten DAP	5	23.4.010	nucleotide metabolism
cassava4.1_016933m PA	AT1G48830	0.397394291	1.30731631	Ten DAP	10	29.2.2	protein
cassava4.1_014684m PA	AT2G27020	0.397487659	1.379711075	Ten DAP	9	29.5.11.20	protein
cassava4.1_018385m PA	AT5G02560	0.398060046	1.465837786	Ten DAP	4	28.1.3	DNA
cassava4.1_031031m PA	AT1G13750	0.398279194	1.267897145	Ten DAP	6	26.13	misc
cassava4.1_011691m PA	AT4G02340	0.398400564	1.207667745	Ten DAP	7	26.01	misc
cassava4.1_018616m PA	AT2G44310	0.399493152	1.216766819	Ten DAP	2	30.3	signalling
cassava4.1_016073m PA	AT3G25580	0.401394376	1.193346108	Ten DAP	2	21.01	redox
cassava4.1_013978m PA	AT2G40300	0.402828259	1.1564929	Ten DAP	9	15.2	metal handling
cassava4.1_016023m PA	AT3G17020	0.402924694	1.180845866	Ten DAP	3	20.2.2	stress
cassava4.1_005314m PA	AT3G58610	0.404093702	1.404617236	Ten DAP	8	13.1.4.1	amino acid metabolism
cassava4.1_032669m PA	AT2G44450	0.4059898	2.207208249	Ten DAP	2	26.03	misc
cassava4.1_016576m PA	AT4G17830	0.40690464	1.188317736	Ten DAP	4	29.5	protein
cassava4.1_002785m PA	AT1G77590	0.407199249	1.279226235	Ten DAP	3	11.1.09	lipid metabolism
cassava4.1_011323m PA	AT4G08900	0.407884397	1.526062466	Ten DAP	2	13.2.2.3	amino acid metabolism
cassava4.1_017647m PA	AT5G38410	0.409052039	1.401832487	Ten DAP	4	1.3.02	PS
cassava4.1_004702m PA	AT5G18070	0.409161171	1.160892843	Ten DAP	5	10.1	cell wall
cassava4.1_004164m PA	AT5G25880	0.409932835	1.370762959	Ten DAP	59	8.2.10	TCA / org
cassava4.1_012783m PA	AT3G12290	0.411045463	1.074067198	Ten DAP	14	25.05	C1-metabolism
cassava4.1_006391m PA	AT5G63890	0.411285133	1.080965417	Ten DAP	8	13.1.7.08	amino acid metabolism
cassava4.1_008631m PA	AT3G13920	0.411533546	1.549947232	Ten DAP	5	29.2.3	protein
cassava4.1_007023m PA	AT2G01720	0.412231265	1.177729717	Ten DAP	8	29.7	protein
cassava4.1_016823m PA	AT4G10450	0.412312993	1.202999724	Ten DAP	14	29.2.2	protein
cassava4.1_011977m PA	AT3G48890	0.413938316	1.362453552	Ten DAP	2	21.2	redox
cassava4.1_011932m PA	AT4G29830	0.41415835	1.386194604	Ten DAP	3	30.5	signalling
cassava4.1_009598m PA	AT3G45770	0.41723009	1.179147563	Ten DAP	8	29.3.1	protein
cassava4.1_001640m PA	AT1G56070	0.417597042	1.133145981	Ten DAP	16	29.2.4	protein
cassava4.1_002005m PA	AT4G33090	0.417775598	1.064657549	Ten DAP	15	29.5	protein
cassava4.1_007404m PA	AT1G59900	0.417952736	1.093499112	Ten DAP	25	8.1.01.01	TCA / org
cassava4.1_000501m PA	AT1G79280	0.419078515	1.717262941	Ten DAP	2	35.1	not assigned
cassava4.1_014465m PA	AT3G62030	0.419321569	1.180687438	Ten DAP	3	31.3.01	cell
cassava4.1_001448m PA	AT2G16950	0.419647717	1.10117892	Ten DAP	5	29.3.1	protein
cassava4.1_014220m PA	AT5G24650	0.419787893	1.168333441	Ten DAP	5	29.3.2	protein
cassava4.1_002627m PA	AT3G01680	0.420338202	1.161859738	Ten DAP	7	35.2	not assigned
cassava4.1_005164m PA	AT1G20080	0.420506364	1.164548596	Ten DAP	12	35.1.19	not assigned
cassava4.1_005539m PA	AT2G45300	0.420760728	1.289188782	Ten DAP	9	13.1.6.1.06	amino acid metabolism
cassava4.1_018936m PA	AT1G51060	0.422502589	1.242431203	Ten DAP	3	28.1.3	DNA
cassava4.1_002624m PA	AT5G26830	0.422540469	1.273159959	Ten DAP	22	29.1.03	protein
cassava4.1_004493m PA	AT4G20980	0.422913326	1.119615305	Ten DAP	13	29.2.3	protein
cassava4.1_005257m PA	AT5G62890	0.423904165	1.245464817	Ten DAP	5	34.99	transport
cassava4.1_011177m PA	AT5G03300	0.424276732	1.103520743	Ten DAP	18	23.3.2.01	nucleotide metabolism
cassava4.1_005898m PA	AT1G51980	0.425336972	1.106670583	Ten DAP	12	29.3.2	protein

cassava4.1_001787m PA	AT4G39080	0.428373657	1.158062044	Ten DAP	5	34.1	transport
cassava4.1_015272m PA	AT3G10920	0.429182382	1.164547288	Ten DAP	7	21.6	redox
cassava4.1_009490m PA	AT4G19006	0.429668087	1.069940883	Ten DAP	12	29.5.11.20	protein
cassava4.1_010835m PA	AT1G64970	0.429689483	1.057518331	Ten DAP	5	16.1.3.05	secondary metabolism
cassava4.1_015090m PA	AT2G25080	0.429941879	1.228329064	Ten DAP	2	21.2	redox
cassava4.1_010349m PA	AT4G11120	0.429967535	1.167298445	Ten DAP	6	29.2.4	protein
cassava4.1_015238m PA	AT5G35530	0.431583123	1.107434929	Ten DAP	6	29.2.2	protein
cassava4.1_000214m PA	AT5G04140	0.432801218	1.262220889	Ten DAP	14	12.2.1.01	N-metabolism
cassava4.1_018711m PA	AT1G04480	0.433485509	1.249610425	Ten DAP	2	29.2.2	protein
cassava4.1_000342m PA	AT1G05570	0.433730254	1.288008997	Ten DAP	3	3.6	minor CHO metabolism
cassava4.1_018079m PA	AT1G68300	0.434046687	1.215338876	Ten DAP	2	20.2.99	stress
cassava4.1_022949m PA	AT1G65980	0.434532054	1.565352241	Ten DAP	2	21.05	redox
cassava4.1_020346m PA	AT3G61110	0.435091532	1.089561345	Ten DAP	3	29.2.2	protein
cassava4.1_012361m PA	AT5G13440	0.435347938	1.174871035	Ten DAP	6	9.05	mitochondrial electron transport / ATP synthesis
cassava4.1_018170m PA	-	0.437661803	1.409145641	Ten DAP	11	-	-
cassava4.1_009305m PA	AT1G08470	0.437828391	1.181760482	Ten DAP	7	16.4.1	secondary metabolism
cassava4.1 030498m PA	AT3G15090	0.438785512	1.20482267	Ten DAP	2	35.1	not assigned
cassava4.1_003340m PA	AT3G12580	0.438874913	1.325632284	Ten DAP	11	20.2.1	stress
cassava4.1_023204m PA	AT3G08960	0.439375157	1.754886117	Ten DAP	2	27.3.99	RNA
cassava4.1_011839m PA	AT5G39740	0.439926969	1.368973583	Ten DAP	15	29.2.2	protein
cassava4.1_005323m PA	AT3G20410	0.440441151	1.179084533	Ten DAP	3	30.3	signalling
cassava4.1_014302m PA	AT4G23630	0.440622405	1.269110862	Ten DAP	5	35.1	not assigned
cassava4.1_013498m PA	AT2G16850	0.4406411	1.360692223	Ten DAP	5	34.19.1	transport
cassava4.1_012868m PA	AT5G46800	0.442380152	2.128587443	Ten DAP	7	34.9	transport
cassava4.1_000431m PA	AT4G00630	0.444440864	1.150462649	Ten DAP	10	34.15	transport
cassava4.1 008086m PA	AT5G37600	0.444580128	1.168559628	Ten DAP	9	12.2.02	N-metabolism
cassava4.1_013786m PA	AT2G26800	0.444860532	1.504312361	Ten DAP	2	13.2.4.4	amino acid metabolism
cassava4.1 003079m PA	AT2G32850	0.44560197	3.475238053	Ten DAP	2	29.4	protein
cassava4.1_003274m PA	AT3G13060	0.44642218	1.391352466	Ten DAP	2	35.2	not assigned
cassava4.1 017832m PA	AT5G16450	0.446613452	1.16616913	Ten DAP	3	25	C1-metabolism
cassava4.1_002254m PA	AT2G05920	0.446920464	1.307875719	Ten DAP	14	29.5.01	protein
cassava4.1_027677m PA	AT1G15520	0.44712201	1.163753634	Ten DAP	7	34.16	transport
cassava4.1_004214m PA	AT5G01320	0.447266017	1.063657916	Ten DAP	10	5.02	fermentation
cassava4.1_004085m PA	AT4G34200	0.447469639	1.189443723	Ten DAP	17	13.1.5.1.01	amino acid metabolism
cassava4.1_009602m PA	AT5G14780	0.447757326	6.33041327	Ten DAP	2	25.10	C1-metabolism
cassava4.1_011439m PA	AT2G03390	0.450092527	1.268424358	Ten DAP	2	28.1	DNA
cassava4.1_014943m PA	AT4G36910	0.451562959	1.193283134	Ten DAP	5	35.1	not assigned
cassava4.1_016781m PA	AT4G01900	0.452073156	1.13626153	Ten DAP	2	30.1	signalling
cassava4.1_013351m PA	AT2G41530	0.452581152	1.180958023	Ten DAP	8	35.1	not assigned
cassava4.1_017973m PA	AT1G65980	0.453077239	1.198801445	Ten DAP	5	21.05	redox
cassava4.1_008270m PA	AT5G10330	0.453680529	1.648173646	Ten DAP	6	13.1.7.06	amino acid metabolism
cassava4.1_004407m PA	AT5G61900	0.455045428	1.267516425	Ten DAP	3	35.1	not assigned
cassava4.1_016543m PA	AT3G22630	0.456336581	1.190354573	Ten DAP	8	29.5.11.20	protein
cassava4.1_001983m PA	AT2G42490	0.4571225	1.36387091	Ten DAP	2	26.07	misc

cassava4.1_019826m PA	AT4G14320	0.457263504	1.129065532	Ten DAP	3	29.2.2	protein
cassava4.1_011964m PA	AT5G66720	0.458016724	1.104723364	Ten DAP	2	35.1	not assigned
cassava4.1_031166m PA	AT1G05500	0.458032785	1.404886067	Ten DAP	8	35.1.19	not assigned
cassava4.1_013407m PA	AT1G14410	0.459263658	1.112970173	Ten DAP	3	27.3.67	RNA
cassava4.1_004947m PA	AT1G76160	0.459716576	1.299910913	Ten DAP	6	35.1	not assigned
cassava4.1_016175m PA	AT2G30860	0.460680241	1.319406552	Ten DAP	17	26.09	misc
cassava4.1_018308m PA	AT1G34030	0.463163671	1.161911941	Ten DAP	14	29.2.2	protein
cassava4.1_019559m PA	AT5G01650	0.463438013	1.365749217	Ten DAP	4	35.1	not assigned
cassava4.1_013579m PA	AT5G19140	0.465137153	1.158552249	Ten DAP	6	15	metal handling
cassava4.1_020696m PA	AT3G52730	0.46742504	1.093321488	Ten DAP	2	9.05	mitochondrial electron transport / ATP synthesis
cassava4.1_015644m PA	AT5G37475	0.467985123	1.102287032	Ten DAP	8	27.3.99	RNA
cassava4.1_015644m PA	AT5G37475	0.467985123	1.102287032	Ten DAP	8	29.2.3	protein
cassava4.1_005910m PA	AT2G40890	0.468923502	1.2488587	Ten DAP	10	16.2.1.05	secondary metabolism
cassava4.1_005910m PA	AT2G40890	0.468923502	1.2488587	Ten DAP	10	26.10	misc
cassava4.1_011885m PA	AT5G16990	0.469781369	1.097758394	Ten DAP	3	26.07	misc
cassava4.1_006349m PA	AT5G40010	0.470136297	1.452699255	Ten DAP	2	29.5.09	protein
cassava4.1_018436m PA	AT4G09320	0.470340414	1.206059127	Ten DAP	11	23.4.010	nucleotide metabolism
cassava4.1_010514m PA	AT1G31190	0.471295777	1.174773426	Ten DAP	4	3.4.05	minor CHO metabolism
cassava4.1_009757m PA	AT5G40490	0.472703102	1.215554011	Ten DAP	6	27.4	RNA
cassava4.1_015586m PA	AT3G17770	0.472742777	1.292479338	Ten DAP	6	3.5	minor CHO metabolism
cassava4.1_007661m PA	AT1G77670	0.473681122	1.261297456	Ten DAP	4	16.2	secondary metabolism
cassava4.1_019974m PA	AT2G24940	0.473794589	1.125225641	Ten DAP	3	21.2	redox
cassava4.1_006281m PA	AT1G22380	0.474336281	1.352626614	Ten DAP	3	26.02	misc
cassava4.1_010643m PA	AT3G57560	0.474712044	1.326808871	Ten DAP	6	13.1.2.3.02	amino acid metabolism
cassava4.1_010643m PA	AT3G57560	0.474712044	1.326808871	Ten DAP	6	23.4.99	nucleotide metabolism
cassava4.1_006452m PA	AT3G19340	0.474789914	1.156896019	Ten DAP	8	35.2	not assigned
cassava4.1_020331m PA	AT3G24540	0.474805414	1.373361087	Ten DAP	3	30.2.22	signalling
cassava4.1_013615m PA	AT5G67500	0.475234311	1.154176	Ten DAP	2	34.20	transport
cassava4.1_009800m PA	AT4G05390	0.476262611	1.249294151	Ten DAP	4	7.3	OPP
cassava4.1_008923m PA	AT4G19410	0.478500386	1.049459551	Ten DAP	18	10.8.02	cell wall
cassava4.1_017771m PA	AT3G52300	0.479634494	1.120817371	Ten DAP	14	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_027417m PA	AT5G64580	0.483798873	1.407005454	Ten DAP	2	29.5.09	protein
cassava4.1_012158m PA	AT2G41790	0.484270518	1.136207712	Ten DAP	3	29.5.07	protein
cassava4.1_027390m PA	AT5G12370	0.486683863	1.429311257	Ten DAP	4	35.1	not assigned
cassava4.1_013892m PA	AT3G57490	0.487375307	1.126417479	Ten DAP	12	29.2.2	protein
cassava4.1_013922m PA	AT5G12370	0.487752671	1.197000612	Ten DAP	3	35.1	not assigned
cassava4.1_003563m PA	AT5G48960	0.489232508	1.308540642	Ten DAP	12	35.1	not assigned
cassava4.1_012429m PA	AT3G48330	0.489349417	1.115834343	Ten DAP	3	29.4	protein
cassava4.1_024143m PA	AT5G16510	0.49208473	1.412911061	Ten DAP	3	10.5.5	cell wall
cassava4.1_014693m PA	AT5G13450	0.493108104	1.204089184	Ten DAP	16	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_015992m PA	AT5G01750	0.494548266	1.149353908	Ten DAP	7	35.2	not assigned
cassava4.1_005272m PA	AT2G16070	0.494559326	1.17935106	Ten DAP	7	35.2	not assigned
cassava4.1_011901m PA	AT5G58220	0.494589238	1.206010136	Ten DAP	4	35.2	not assigned
cassava4.1_016698m PA	AT5G39850	0.494763628	1.101999974	Ten DAP	13	29.2.2	protein

cassava4.1_018628m PA	AT2G33220	0.494916715	1.16100412	Ten DAP	3	35.2	not assigned
cassava4.1_015393m PA	AT5G57950	0.495109137	1.050188337	Ten DAP	2	29.5.11.20	protein
cassava4.1_006660m PA	AT4G30810	0.49572561	1.63248472	Ten DAP	3	29.5.05	protein
cassava4.1_002629m PA	AT3G01680	0.49725085	1.132259788	Ten DAP	19	35.2	not assigned
cassava4.1_016079m PA	AT5G42960	0.497843324	1.123098932	Ten DAP	3	35.2	not assigned
cassava4.1_018546m PA	AT3G56490	0.498320938	1.088543873	Ten DAP	5	29.4	protein
cassava4.1_029911m PA	AT5G57850	0.499282873	1.351879309	Ten DAP	6	26.26.1	misc
cassava4.1_024456m PA	AT5G19680	0.500390892	1.120726049	Ten DAP	2	29.4	protein
cassava4.1_007236m PA	AT5G58100	0.500654269	1.181506536	Ten DAP	3	35.2	not assigned
cassava4.1_015256m PA	AT4G27670	0.500658758	1.170432359	Ten DAP	17	20.2.1	stress
cassava4.1_019078m PA	AT1G07770	0.502929679	1.113574077	Ten DAP	5	29.2.2	protein
cassava4.1_018061m PA	AT3G03100	0.505095154	1.06059607	Ten DAP	4	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_006562m PA	AT2G36070	0.505518313	1.146187141	Ten DAP	2	29.3.2	protein
cassava4.1_031909m PA	AT4G29680	0.505994384	1.430257047	Ten DAP	4	23.4.99	nucleotide metabolism
cassava4.1_015850m PA	AT5G59240	0.507199783	1.298474887	Ten DAP	4	29.2.2	protein
cassava4.1_003366m PA	AT2G01190	0.507513896	1.163377566	Ten DAP	9	35.1	not assigned
cassava4.1_014674m PA	AT2G43090	0.508014116	1.167276749	Ten DAP	7	35.1.23	not assigned
cassava4.1_012143m PA	AT3G18140	0.508459282	1.118758176	Ten DAP	2	35.1	not assigned
cassava4.1_016348m PA	AT3G49010	0.509441779	1.263391859	Ten DAP	5	29.2.2	protein
cassava4.1_004263m PA	AT2G28000	0.513291853	1.110031131	Ten DAP	35	1.3.013	PS
cassava4.1_004458m PA	AT3G23990	0.514433757	1.127685188	Ten DAP	39	20.2.1	stress
cassava4.1_004458m PA	AT3G23990	0.514433757	1.127685188	Ten DAP	39	29.6	protein
cassava4.1_018405m PA	AT3G52580	0.517862537	1.058747651	Ten DAP	4	29.2.2	protein
cassava4.1_030272m PA	AT3G52990	0.518210808	1.09196647	Ten DAP	9	4.013	glycolysis
cassava4.1_002794m PA	AT4G24490	0.518452523	1.11251776	Ten DAP	9	16.1.1	secondary metabolism
cassava4.1_009589m PA	AT1G66430	0.51925422	1.059469231	Ten DAP	9	2.2.1.01	major CHO metabolism
cassava4.1_011604m PA	AT2G37130	0.519766372	1.335961159	Ten DAP	2	26.12	misc
cassava4.1_006449m PA	AT1G71380	0.520970573	1.436725749	Ten DAP	5	26.03	misc
cassava4.1_006696m PA	AT3G25860	0.521457238	1.120844204	Ten DAP	10	11.1.031	lipid metabolism
cassava4.1_018343m PA	AT5G09500	0.522253993	1.187948698	Ten DAP	8	29.2.2	protein
cassava4.1_013318m PA	AT1G28290	0.522266663	1.291810548	Ten DAP	12	20.2.99	stress
cassava4.1_017005m PA	AT3G20390	0.522376374	1.119842778	Ten DAP	5	35.1	not assigned
cassava4.1_001348m PA	AT4G35830	0.523119751	1.026568624	Ten DAP	45	8.1.03	TCA / org
cassava4.1_003683m PA	AT1G80300	0.523492883	1.116025358	Ten DAP	15	34.99	transport
cassava4.1_016194m PA	AT5G14670	0.524466306	1.101509102	Ten DAP	13	29.3.4.99	protein
cassava4.1_023099m PA	AT1G65590	0.52534827	1.696367081	Ten DAP	2	35.1	not assigned
cassava4.1_006289m PA	AT2G19520	0.527328259	1.095997435	Ten DAP	6	27.3.62	RNA
cassava4.1_006289m PA	AT2G19520	0.527328259	1.095997435	Ten DAP	6	33.99	development
cassava4.1_011869m PA	AT3G04880	0.527899594	1.114181408	Ten DAP	14	28.2	DNA
cassava4.1_018867m PA	AT3G54560	0.528031009	1.073188726	Ten DAP	2	28.1.3	DNA
cassava4.1_008283m PA	AT1G57720	0.529383663	1.150272781	Ten DAP	11	29.2.4	protein
cassava4.1_014694m PA	AT3G10260	0.5294189	1.099415488	Ten DAP	2	35.1	not assigned
cassava4.1_004565m PA	AT1G60420	0.529510857	1.684251928	Ten DAP	11	35.1	not assigned
cassava4.1_014355m PA	AT1G04040	0.531292696	1.072624505	Ten DAP	13	26.13	misc

cassava4.1_016255m PA	AT3G22845	0.531808878	1.170957721	Ten DAP	2	35.1	not assigned
cassava4.1_004007m PA	AT2G37690	0.532207848	1.176638626	Ten DAP	6	23.1.2.06	nucleotide metabolism
cassava4.1_015737m PA	AT3G49470	0.532743982	1.155933557	Ten DAP	5	29.2.4	protein
cassava4.1_027096m PA	AT4G13550	0.532751646	1.271682179	Ten DAP	2	11.9.2.01	lipid metabolism
cassava4.1_017636m PA	AT4G39520	0.533581226	1.205737838	Ten DAP	2	30.5	signalling
cassava4.1_014293m PA	AT1G78300	0.534086194	1.026279164	Ten DAP	7	30.7	signalling
cassava4.1_010360m PA	AT3G62220	0.534788363	1.188410613	Ten DAP	10	29.4.1.58	protein
cassava4.1_006757m PA	AT2G34250	0.535209745	1.057123938	Ten DAP	10	29.3.4.99	protein
cassava4.1_001124m PA	AT1G50180	0.535469775	1.267189874	Ten DAP	3	20.1	stress
cassava4.1_018207m PA	AT2G35120	0.537647262	1.054354253	Ten DAP	2	1.2.4	PS
cassava4.1_009436m PA	AT5G63140	0.537927411	1.28103021	Ten DAP	5	26.13	misc
cassava4.1_000732m PA	AT5G20280	0.538192248	1.146477123	Ten DAP	19	2.1.1.01	major CHO metabolism
cassava4.1 033375m PA	AT4G10960	0.539648025	1.052751287	Ten DAP	4	10.1.02	cell wall
cassava4.1_002342m PA	AT3G05900	0.539691525	1.065590285	Ten DAP	17	35.1	not assigned
gi 169794058 ref YP_0C	-	0.539983166	1.09196	Ten DAP	10	-	-
cassava4.1_007416m PA	AT1G11580	0.544083584	1.078682374	Ten DAP	3	10.8.01	cell wall
cassava4.1 015116m PA	AT1G47420	0.544853489	1.075271566	Ten DAP	6	35.2	not assigned
cassava4.1_012401m PA	AT2G26230	0.545974996	1.211378306	Ten DAP	6	23.2	nucleotide metabolism
cassava4.1 008840m PA	AT3G59350	0.546106429	1.377057627	Ten DAP	2	29.4.1.58	protein
cassava4.1_016588m PA	AT3G06050	0.54615609	1.098968316	Ten DAP	5	20.2.99	stress
cassava4.1 016588m PA	AT3G06050	0.54615609	1.098968316	Ten DAP	5	21.05	redox
cassava4.1 017910m PA	AT1G09590	0.546600603	1.067518609	Ten DAP	6	29.2.2	protein
cassava4.1 002471m PA	AT2G01690	0.547941233	1.194204238	Ten DAP	5	35.2	not assigned
cassava4.1 019568m PA	AT3G44590	0.548114542	1.04398566	Ten DAP	4	29.2.2	protein
cassava4.1 015802m PA	AT1G26910	0.54842191	1.086947303	Ten DAP	2	29.2.2	protein
cassava4.1 011801m PA	AT5G55610	0.548734198	1.040017799	Ten DAP	6	35.2	not assigned
cassava4.1 011305m PA	AT2G38380	0.548824354	1.564145403	Ten DAP	2	26.12	misc
cassava4.1 016783m PA	AT4G25740	0.549250852	1.039251793	Ten DAP	10	29.2.2	protein
cassava4.1 007920m PA	AT5G02130	0.550414182	1.181701843	Ten DAP	4	31.1	cell
cassava4.1 016516m PA	AT2G29960	0.552446353	1.184173413	Ten DAP	7	31.3.01	cell
cassava4.1 014688m PA	AT5G10360	0.555233033	1.173377264	Ten DAP	8	29.2.2	protein
cassava4.1 006921mlPA	AT5G16620	0.556158835	1.255006252	Ten DAP	7	29.3.3	protein
cassava4.1 010684m PA	AT1G10940	0.556203693	1.086250248	Ten DAP	14	29.4	protein
cassava4.1 010205m/PA	AT1G55510	0.556506397	1.373946586	Ten DAP	2	13.2.4.1	amino acid metabolism
cassava4.1 010863mlPA	AT5G16990	0.556897972	1.202270878	Ten DAP	23	26.07	misc
cassava4.1 013131m PA	AT2G18730	0.557142138	1.089146477	Ten DAP	3	11.3.05	lipid metabolism
cassava4.1 013627m/PA	AT1G19190	0.557344039	1.081027977	Ten DAP	6	35.1	not assigned
cassava4.1 005709mlPA	AT4G34880	0.559039137	1.031182026	Ten DAP	2	26.08	misc
cassava4.1 003883mlPA	AT3G13470	0.559587481	1.14786853	Ten DAP	11	29.6	protein
cassava4.1 008940mlPA	AT4G38630	0.560004554	1.130672749	Ten DAP	7	29.5.11	protein
cassava4.1 003479m/PA	AT1G50480	0.561101657	1.323934539	Ten DAP	18	25.02	C1-metabolism
cassava4.1 007933mlPA	AT1G09750	0.561305029	1.060069699	Ten DAP	9	27,3.99	RNA
cassava4.1_018932m/PA	AT5G53560	0.56196856	1.060967965	Ten DAP	2	35.1	not assigned
cassava4.1 010581mlPA	AT5G37600	0.56272964	1.679825302	Ten DAP	2	12.2.02	N-metabolism
		0.0001/2001			-		

cassava4.1_004187m PA	AT1G31800	0.562957666	1.311831506	Ten DAP	3	26.10	misc
cassava4.1_018294m PA	AT1G08830	0.563472541	1.062460578	Ten DAP	3	21.6	redox
cassava4.1_003582m PA	AT5G20950	0.563616773	1.171537803	Ten DAP	27	10.6.1	cell wall
cassava4.1_024093m PA	AT5G67400	0.563971862	1.274088986	Ten DAP	9	26.12	misc
cassava4.1_014978m PA	AT2G37020	0.564207573	1.507103585	Ten DAP	2	35.1	not assigned
cassava4.1_015349m PA	AT4G31300	0.564475473	1.054623614	Ten DAP	6	29.5.11.20	protein
cassava4.1_019588m PA	AT3G44590	0.56531707	1.038957218	Ten DAP	2	29.2.2	protein
cassava4.1_025763m PA	AT5G57190	0.565468245	1.232607547	Ten DAP	4	11.3.08	lipid metabolism
cassava4.1_027481m PA	AT4G37070	0.565817152	2.716364616	Ten DAP	2	33.1	development
cassava4.1_015271m PA	AT3G18580	0.567734826	1.123673018	Ten DAP	2	27.3.99	RNA
cassava4.1_019411m PA	AT2G32060	0.568378304	1.062211946	Ten DAP	3	29.2.2	protein
cassava4.1_018852m PA	AT5G10390	0.569833561	1.083380437	Ten DAP	6	28.1.3	DNA
cassava4.1_009188m PA	AT1G77420	0.570507807	1.106828687	Ten DAP	3	35.1	not assigned
cassava4.1_010438m PA	AT1G02305	0.571203439	1.07690079	Ten DAP	2	29.5.03	protein
cassava4.1_020258m PA	AT4G30010	0.571291679	1.15218838	Ten DAP	2	35.2	not assigned
cassava4.1_012602m PA	AT1G56450	0.571364928	1.110599928	Ten DAP	4	29.5.11.20	protein
cassava4.1_006924m PA	AT4G13930	0.571584774	1.059521237	Ten DAP	24	1.2.05	PS
cassava4.1_006924m PA	AT4G13930	0.571584774	1.059521237	Ten DAP	24	13.1.5.2.01	amino acid metabolism
cassava4.1_006924m PA	AT4G13930	0.571584774	1.059521237	Ten DAP	24	25.01	C1-metabolism
cassava4.1_020027m PA	AT5G47890	0.571780791	1.073611558	Ten DAP	2	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_002358m PA	AT5G60600	0.571879673	1.100088181	Ten DAP	17	16.1.1.06	secondary metabolism
cassava4.1_002667m PA	AT1G65540	0.573164601	1.107513997	Ten DAP	8	30.3	signalling
cassava4.1_007932m PA	AT1G48850	0.573311733	1.282174963	Ten DAP	6	13.1.6.1.07	amino acid metabolism
cassava4.1_018900m PA	AT4G15000	0.57348261	1.07746629	Ten DAP	5	29.2.2	protein
cassava4.1_011662m PA	AT2G18980	0.574596435	1.285041988	Ten DAP	8	26.12	misc
cassava4.1_027198m PA	AT4G35630	0.574664541	1.120835261	Ten DAP	2	13.1.5.1.02	amino acid metabolism
cassava4.1_018529m PA	AT1G08480	0.575427155	1.064054573	Ten DAP	3	35.2	not assigned
cassava4.1_016492m PA	AT4G27270	0.575536365	1.075283543	Ten DAP	9	11.8	lipid metabolism
cassava4.1_013216m PA	AT5G10730	0.575827882	1.225152215	Ten DAP	3	35.2	not assigned
cassava4.1_000010m PA	AT2G45540	0.576367307	1.496321716	Ten DAP	3	35.1	not assigned
cassava4.1_000080m PA	AT4G38600	0.576762684	1.10038342	Ten DAP	4	29.5.11.4.01	protein
cassava4.1_008552m PA	AT5G64860	0.576997277	1.064269048	Ten DAP	8	2.2.2.04	major CHO metabolism
cassava4.1_015411m PA	AT5G10160	0.577437775	1.056171151	Ten DAP	5	11.1.05	lipid metabolism
cassava4.1_026808m PA	AT2G16950	0.578046806	1.142165959	Ten DAP	3	29.3.1	protein
cassava4.1_019309m PA	AT1G27970	0.580342759	1.057862777	Ten DAP	3	29.3.1	protein
cassava4.1_014419m PA	AT5G58270	0.580875052	1.572590149	Ten DAP	2	34.16	transport
cassava4.1_018106m PA	AT1G24020	0.581038844	1.029769467	Ten DAP	6	20.2.99	stress
cassava4.1_008465m PA	AT5G17990	0.581630658	1.165360493	Ten DAP	7	13.1.6.5.02	amino acid metabolism
cassava4.1_008164m PA	AT3G16850	0.583155636	1.523084953	Ten DAP	4	10.6.3	cell wall
cassava4.1_015382m PA	AT1G08110	0.584282967	1.042051748	Ten DAP	3	13.2.3.2	amino acid metabolism
cassava4.1_015382m PA	AT1G08110	0.584282967	1.042051748	Ten DAP	3	24.02	Biodegradation of Xenobiotics
cassava4.1_015768m PA	AT1G26910	0.584284251	1.047135728	Ten DAP	7	29.2.2	protein
cassava4.1_016920m PA	AT1G48830	0.584445408	1.001783869	Ten DAP	2	29.2.2	protein
cassava4.1_019062m PA	AT5G08060	0.584770845	1.027616892	Ten DAP	4	35.1	not assigned

cassava4.1_008511m PA	AT5G26670	0.585349932	1.270047801	Ten DAP	2	10.8.02	cell wall
cassava4.1_018671m PA	AT5G02960	0.586046196	1.076056284	Ten DAP	4	29.2.2	protein
cassava4.1_006370m PA	AT1G60770	0.587881083	1.112535174	Ten DAP	3	27.3.67	RNA
cassava4.1_005106m PA	AT3G63130	0.588628072	1.108226575	Ten DAP	6	30.5	signalling
cassava4.1_016159m PA	AT4G17170	0.589386993	1.007124654	Ten DAP	8	30.5	signalling
cassava4.1_028407m PA	AT5G19440	0.589748288	1.458511638	Ten DAP	3	26.11	misc
cassava4.1_002839m PA	AT1G29880	0.59009623	1.122019069	Ten DAP	9	29.1.014	protein
cassava4.1_029035m PA	AT3G60140	0.590129566	1.139165316	Ten DAP	3	26.03	misc
cassava4.1_003805m PA	AT3G23940	0.590182853	1.124613494	Ten DAP	18	35.1	not assigned
cassava4.1_015351m PA	AT1G35780	0.591006582	1.202983448	Ten DAP	4	35.2	not assigned
cassava4.1_004040m PA	AT4G18810	0.593293724	1.246732298	Ten DAP	4	20.2.99	stress
cassava4.1_004040m PA	AT4G18810	0.593293724	1.246732298	Ten DAP	4	30.11	signalling
cassava4.1_010214m PA	AT1G08370	0.593935467	1.288688154	Ten DAP	2	27.3.67	RNA
cassava4.1_011275m PA	AT3G17940	0.59410198	1.219360615	Ten DAP	3	3.5	minor CHO metabolism
cassava4.1_016772m PA	AT5G11900	0.595225705	1.165327236	Ten DAP	2	29.2.3	protein
cassava4.1_014206m PA	AT4G36130	0.595888819	1.052623838	Ten DAP	11	29.2.2	protein
cassava4.1_015085m PA	AT4G11600	0.596162159	1.056729731	Ten DAP	2	21.2.2	redox
cassava4.1_004703m PA	AT2G01600	0.597183512	1.002074675	Ten DAP	4	35.1.21	not assigned
cassava4.1_005690m PA	AT5G40760	0.598006009	1.06405769	Ten DAP	23	7.1.01	OPP
cassava4.1_002157m PA	AT1G20160	0.598207597	1.056274832	Ten DAP	8	29.5.01	protein
cassava4.1_014112m PA	AT4G34670	0.598449025	1.078970949	Ten DAP	11	29.2.2	protein
cassava4.1_007709m PA	AT5G11520	0.598795759	1.281891986	Ten DAP	4	13.1.1.2.01	amino acid metabolism
cassava4.1_003628m PA	AT1G26110	0.598862672	1.188537748	Ten DAP	2	35.2	not assigned
cassava4.1_002461m PA	AT5G49570	0.601004412	1.105524388	Ten DAP	5	35.1	not assigned
cassava4.1_007212m PA	AT5G19485	0.604486282	1.091080344	Ten DAP	2		
cassava4.1_015872m PA	AT1G78380	0.605788204	1.04706008	Ten DAP	8	26.09	misc
cassava4.1_019888m PA	AT1G07660	0.607008927	1.022377948	Ten DAP	11	28.1.3	DNA
cassava4.1_019888m PA	AT1G07660	0.607008927	1.022377948	Ten DAP	11	31.1	cell
cassava4.1_012374m PA	AT4G14930	0.607057098	1.0332793	Ten DAP	2	26.13	misc
cassava4.1_027765m PA	AT5G23400	0.60758125	1.069685075	Ten DAP	17	20.1	stress
cassava4.1_008996m PA	AT2G19940	0.608752056	1.261053989	Ten DAP	9	35.1	not assigned
cassava4.1_034378m PA	AT5G17380	0.609688827	1.1944795	Ten DAP	13	5.02	fermentation
cassava4.1_000217m PA	AT5G41790	0.610125936	1.105367267	Ten DAP	11	30.11.1	signalling
cassava4.1_000217m PA	AT5G41790	0.610125936	1.105367267	Ten DAP	11	33.99	development
cassava4.1_000938m PA	AT4G16130	0.610966457	1.244906174	Ten DAP	7	3.8.01	minor CHO metabolism
cassava4.1_005091m PA	AT5G28900	0.611087647	1.159782591	Ten DAP	4	29.4	protein
cassava4.1_015998m PA	AT1G09630	0.613891179	1.017328005	Ten DAP	3	30.5	signalling
cassava4.1_018051m PA	AT2G42210	0.616600768	1.024928559	Ten DAP	3	29.3.2	protein
cassava4.1_011276m PA	AT1G74030	0.616694214	1.055071282	Ten DAP	6	4.012	glycolysis
cassava4.1_010379m PA	AT4G31860	0.617460458	1.381685734	Ten DAP	2	29.4	protein
cassava4.1_001254m PA	AT4G19710	0.617841482	1.056085498	Ten DAP	34	13.1.3.6.1.010	amino acid metabolism
cassava4.1_002669m PA	AT5G19740	0.617970946	1.049690324	Ten DAP	3	29.5	protein
cassava4.1_015045m PA	AT4G12060	0.619574179	1.048190392	Ten DAP	2	29.3.99	protein
cassava4.1_011026m PA	AT1G53240	0.619622671	1.176113478	Ten DAP	8	8.1.09	TCA / org

cassava4.1_004987m PA	AT4G01690	0.621702214	1.100534904	Ten DAP	4	19.09	tetrapyrrole synthesis
cassava4.1_012198m PA	AT4G02340	0.622191278	1.17939896	Ten DAP	4	26.01	misc
cassava4.1_002897m PA	AT2G38040	0.622240148	1.100220755	Ten DAP	15	16.99	secondary metabolism
cassava4.1_025071m PA	AT1G72250	0.622585743	1.131509457	Ten DAP	3	31.1	cell
cassava4.1_003967m PA	AT4G00570	0.622612636	1.104674933	Ten DAP	24	8.2.10	TCA / org
cassava4.1_004839m PA	AT3G13930	0.622759215	1.067178615	Ten DAP	13	8.1.01.02	TCA / org
cassava4.1_015599m PA	AT5G65270	0.622792875	1.082843716	Ten DAP	4	30.5	signalling
cassava4.1_017409m PA	AT2G34480	0.624379554	1.038157144	Ten DAP	7	29.2.2	protein
cassava4.1_008930m PA	AT2G45240	0.62481308	1.170799017	Ten DAP	2	29.5.07	protein
cassava4.1_019152m PA	AT1G29850	0.625318346	1.013673248	Ten DAP	2	35.1	not assigned
cassava4.1_011417m PA	AT2G45630	0.629936881	1.009777145	Ten DAP	2	1.2.06	PS
cassava4.1_011417m PA	AT2G45630	0.629936881	1.009777145	Ten DAP	2	13.2.5.1	amino acid metabolism
cassava4.1_011417m PA	AT2G45630	0.629936881	1.009777145	Ten DAP	2	26.01	misc
cassava4.1_016323m PA	AT2G25950	0.631820171	1.127040409	Ten DAP	3	35.2	not assigned
cassava4.1_014208m PA	AT1G78300	0.632481482	1.132571816	Ten DAP	3	30.7	signalling
cassava4.1_004070m PA	AT4G12420	0.633176832	1.38681867	Ten DAP	12	35.1	not assigned
cassava4.1_013074m PA	AT1G53580	0.634915586	1.145006654	Ten DAP	10	13.2.3.2	amino acid metabolism
cassava4.1_013074m PA	AT1G53580	0.634915586	1.145006654	Ten DAP	10	24.01	Biodegradation of Xenobiotics
cassava4.1_004610m PA	AT4G11740	0.63566873	1.05176332	Ten DAP	2	31.4	cell
cassava4.1_027071m PA	AT3G06580	0.63653083	1.046894678	Ten DAP	7	3.8.01	minor CHO metabolism
cassava4.1_001874m PA	AT1G73370	0.639252054	1.103336919	Ten DAP	7	2.2.1.05	major CHO metabolism
cassava4.1_011180m PA	AT5G47540	0.640474524	1.243683804	Ten DAP	2	35.1	not assigned
cassava4.1_031676m PA	AT3G23790	0.642536998	1.396436246	Ten DAP	2	11.1.08	lipid metabolism
cassava4.1_011868m PA	AT5G24400	0.643063887	1.161632061	Ten DAP	3	7.1.02	OPP
cassava4.1_003892m PA	AT2G35040	0.64341346	1.218546227	Ten DAP	9	23.1.2.09	nucleotide metabolism
cassava4.1_026278m PA	AT4G33865	0.645330482	1.237314951	Ten DAP	2	29.2.2	protein
cassava4.1_009840m PA	AT1G12840	0.648186722	1.060618846	Ten DAP	16	34.1	transport
cassava4.1_009997m PA	AT3G53580	0.649059036	1.063680667	Ten DAP	4	13.1.3.5.04	amino acid metabolism
cassava4.1_008286m PA	AT3G18270	0.652232231	1.094959889	Ten DAP	4	26.01	misc
cassava4.1_016433m PA	AT2G33470	0.652272858	1.020290791	Ten DAP	5	35.1	not assigned
cassava4.1_016843m PA	AT4G02080	0.653685041	1.017726857	Ten DAP	9	30.5	signalling
cassava4.1_013773m PA	AT5G16710	0.655846774	1.979349927	Ten DAP	2	21.2.1	redox
cassava4.1_004706m PA	AT5G48570	0.656207588	1.07177473	Ten DAP	17	31.3.01	cell
cassava4.1_003677m PA	AT1G78900	0.657889152	1.152417359	Ten DAP	41	34.1	transport
cassava4.1_026035m PA	AT1G77120	0.660050818	1.034810387	Ten DAP	24	5.03	fermentation
cassava4.1_013706m PA	AT5G37720	0.660484374	1.231686917	Ten DAP	2	27.4	RNA
cassava4.1_017662m PA	AT4G38740	0.660927824	1.055041869	Ten DAP	10	31.3.01	cell
cassava4.1_019244m PA	AT1G11530	0.661276429	1.013187652	Ten DAP	2	21.01	redox
cassava4.1_009951m PA	AT4G35260	0.661935377	1.020030079	Ten DAP	7	8.1.04	TCA / org
cassava4.1_033800m PA	AT5G55200	0.661952208	1.01471254	Ten DAP	3	29.6	protein
cassava4.1_029910m PA	AT5G54140	0.662041406	1.536798143	Ten DAP	2	17.2.1	hormone metabolism
cassava4.1_000857m PA	AT4G37640	0.664040619	1.059518029	Ten DAP	2	30.3	signalling
cassava4.1_014326m PA	AT2G42590	0.66500669	1.157075617	Ten DAP	3	30.7	signalling
cassava4.1_008935m PA	AT4G17890	0.665044616	1.170525072	Ten DAP	6	29.5.11.05	protein

cassava4.1_006479m PA	AT2G42810	0.666430779	1.048477206	Ten DAP	5	29.4	protein
cassava4.1_006851m PA	AT4G28300	0.666949426	1.034092869	Ten DAP	3	10.5.4	cell wall
cassava4.1_014135m PA	AT5G27470	0.667049298	1.145221742	Ten DAP	8	29.1.011	protein
cassava4.1_010846m PA	AT2G17390	0.667141871	1.268329945	Ten DAP	4	27.3.39	RNA
cassava4.1_021211m PA	AT5G58090	0.667241901	1.369876376	Ten DAP	2	35.1	not assigned
cassava4.1_013465m PA	AT4G17720	0.668246942	1.092446793	Ten DAP	17	27.4	RNA
cassava4.1_004945m PA	AT5G15270	0.669871718	1.039080292	Ten DAP	7	35.1	not assigned
cassava4.1_005721m PA	AT5G40760	0.670259761	1.080528375	Ten DAP	2	7.1.01	OPP
cassava4.1_012522m PA	AT3G60100	0.671786518	1.371513252	Ten DAP	6	8.1.02	TCA / org
cassava4.1_009035m PA	AT3G02540	0.673321617	1.114769183	Ten DAP	4	29.5.11.01	protein
cassava4.1_021385m PA	AT5G19460	0.673348388	1.168931077	Ten DAP	3	35.1	not assigned
cassava4.1_003622m PA	AT3G11710	0.675096237	1.033820519	Ten DAP	4	29.1.06	protein
cassava4.1_014251m PA	AT1G78300	0.675476391	1.031398558	Ten DAP	25	30.7	signalling
cassava4.1_008885m PA	AT4G21800	0.677741544	1.292223765	Ten DAP	2	35.1	not assigned
cassava4.1_001934m PA	AT5G57870	0.678729731	1.044626938	Ten DAP	20	29.2.3	protein
cassava4.1_003276m PA	AT5G27540	0.679037421	1.124138565	Ten DAP	4	30.5	signalling
cassava4.1_018514m PA	AT1G17160	0.680104111	1.003602549	Ten DAP	5	3.5	minor CHO metabolism
cassava4.1_001527m PA	AT4G35790	0.681162773	1.106076759	Ten DAP	13	11.9.3.01	lipid metabolism
cassava4.1_016808m PA	AT1G33140	0.683545813	1.063991834	Ten DAP	4	29.2.2	protein
cassava4.1_005052m PA	AT4G05160	0.683569249	1.029351558	Ten DAP	2	16.2	secondary metabolism
cassava4.1_021316m PA	AT2G28100	0.683688942	1.11319261	Ten DAP	2	35.1	not assigned
cassava4.1_001960m PA	AT5G10560	0.684154846	1.050722269	Ten DAP	6	10.6.2	cell wall
cassava4.1_004114m PA	AT3G58610	0.686477132	1.039618343	Ten DAP	8	13.1.4.1	amino acid metabolism
cassava4.1_011830m PA	AT3G03890	0.688944169	1.101065817	Ten DAP	5	35.2	not assigned
cassava4.1_005830m PA	AT3G63130	0.689146628	1.274707635	Ten DAP	11	30.5	signalling
cassava4.1_010437m PA	AT4G09670	0.689503617	1.041242731	Ten DAP	2	35.1	not assigned
cassava4.1_014473m PA	AT4G02580	0.689783825	1.05618186	Ten DAP	6	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_003096m PA	AT4G26300	0.690013085	1.052826245	Ten DAP	15	29.1.019	protein
cassava4.1_003396m PA	AT1G49760	0.691409967	1.125804578	Ten DAP	16	27.1	RNA
cassava4.1_019698m PA	AT5G02450	0.692625627	1.035769806	Ten DAP	2	29.2.2	protein
cassava4.1_019638m PA	AT1G74270	0.693271275	1.41033239	Ten DAP	2	29.2.2	protein
cassava4.1_025886m PA	AT3G01510	0.694236214	1.206461149	Ten DAP	2	26.13	misc
cassava4.1_008473m PA	AT2G42710	0.696230589	1.452579598	Ten DAP	3	29.2.2	protein
cassava4.1_008987m PA	AT4G21800	0.699841424	1.08735633	Ten DAP	2	35.1	not assigned
cassava4.1_011190m PA	AT1G23820	0.700481635	1.030214518	Ten DAP	4	22.1.06	polyamine metabolism
cassava4.1_011157m PA	AT3G63410	0.701037404	1.150436199	Ten DAP	6	16.1.3.03	secondary metabolism
cassava4.1_003773m PA	AT5G03650	0.702243606	1.111449633	Ten DAP	23	2.1.2.03	major CHO metabolism
cassava4.1_009441m PA	AT3G53110	0.704311716	1.137201185	Ten DAP	9	28.1	DNA
cassava4.1_012454m PA	AT2G32080	0.70931135	1.055623605	Ten DAP	5	27.3.99	RNA
cassava4.1_013184m PA	AT4G35000	0.709731245	1.449770746	Ten DAP	2	21.2.1	redox
cassava4.1_004237m PA	AT4G36690	0.710485928	1.070142892	Ten DAP	4	27.1.1	RNA
cassava4.1_013254m PA	AT5G04740	0.710783603	1.07949141	Ten DAP	12	13	amino acid metabolism
cassava4.1_009220m PA	AT2G05990	0.710899885	1.088983058	Ten DAP	6	11.1.06	lipid metabolism
cassava4.1_010187m PA	AT5G54160	0.71374806	1.04535163	Ten DAP	17	16.2.1.09	secondary metabolism

cassava4.1_009378m PA	AT2G40490	0.714663656	1.223966684	Ten DAP	7	19.07	tetrapyrrole synthesis
cassava4.1_016942m PA	AT1G54860	0.715009406	1.349561399	Ten DAP	2	35.2	not assigned
cassava4.1_004233m PA	AT2G15620	0.715678328	1.047246806	Ten DAP	6	12.1.02	N-metabolism
cassava4.1_008307m PA	AT1G09430	0.71629274	1.032393284	Ten DAP	7	8.2.011	TCA / org
cassava4.1_003343m PA	AT3G12580	0.718780712	1.23062273	Ten DAP	7	20.2.1	stress
cassava4.1_029022m PA	AT5G40480	0.719286128	1.06018545	Ten DAP	3	29.3.1	protein
cassava4.1_010020m PA	AT4G36810	0.719964229	1.319289776	Ten DAP	4	16.1.1.010	secondary metabolism
cassava4.1_003924m PA	AT3G10050	0.720126798	1.034605981	Ten DAP	4	13.2.5.1	amino acid metabolism
cassava4.1_009911m PA	AT2G30200	0.720256216	1.073731739	Ten DAP	7	11.1.02	lipid metabolism
cassava4.1_006414m PA	AT4G24620	0.721798105	1.052986579	Ten DAP	12	4.03	glycolysis
cassava4.1_012601m PA	AT2G43180	0.722988186	1.123192152	Ten DAP	11	35.2	not assigned
cassava4.1_011791m PA	AT4G08790	0.725003905	1.891511104	Ten DAP	2	26.08	misc
cassava4.1_017700m PA	AT4G40030	0.725261993	1.008604129	Ten DAP	2	28.1.3	DNA
cassava4.1_006309m PA	AT3G60140	0.725795856	1.189548767	Ten DAP	8	26.03	misc
cassava4.1_006586m PA	AT4G14040	0.726970276	1.056119743	Ten DAP	10	15	metal handling
cassava4.1_028848m PA	AT3G04710	0.728199727	1.302642038	Ten DAP	2	31.1	cell
cassava4.1_006494m PA	AT1G54730	0.728331172	1.053543706	Ten DAP	2	34.2	transporter
cassava4.1_004384m PA	AT5G21105	0.728643033	1.080768401	Ten DAP	2	21.2.1	redox
cassava4.1_003907m PA	AT3G13470	0.729131131	1.035227991	Ten DAP	41	29.6	protein
cassava4.1_003519m PA	AT5G66760	0.731786795	1.20097796	Ten DAP	14	8.1.07	TCA / org
cassava4.1_007587m PA	AT3G11330	0.732179747	1.052466036	Ten DAP	2	35.1	not assigned
cassava4.1_026522m PA	AT1G32780	0.735203468	1.00997587	Ten DAP	3	26.11.01	misc
cassava4.1_007669m PA	AT4G35850	0.735924118	1.049605743	Ten DAP	6	35.1.5	not assigned
cassava4.1_003757m PA	AT1G20950	0.737585428	1.070408139	Ten DAP	23	4.05	glycolysis
cassava4.1_010708m PA	AT4G35160	0.73950961	1.119199147	Ten DAP	3	16.2	secondary metabolism
cassava4.1_012894m PA	AT5G65940	0.740187789	1.006619062	Ten DAP	2	11.9.4.05	lipid metabolism
cassava4.1_012894m PA	AT5G65940	0.740187789	1.006619062	Ten DAP	2	13.2.3.5	amino acid metabolism
cassava4.1_006988m PA	AT2G44640	0.740348701	1.130252778	Ten DAP	2	35.2	not assigned
cassava4.1_011781m PA	AT3G02280	0.741603652	1.065295716	Ten DAP	2	19.99	tetrapyrrole synthesis
cassava4.1_014448m PA	AT3G18165	0.744336861	1.168315852	Ten DAP	2	35.1	not assigned
cassava4.1_021498m PA	AT1G60500	0.745810998	1.001030325	Ten DAP	3	26.17	misc
cassava4.1_011472m PA	AT4G24770	0.747382867	1.145137628	Ten DAP	4	27.3.99	RNA
cassava4.1_013717m PA	AT3G01280	0.755270655	1.161847292	Ten DAP	15	34.20	transport
cassava4.1_010208m PA	AT3G08030	0.756672953	1.150945156	Ten DAP	16	35.2	not assigned
cassava4.1_021342m PA	AT3G45140	0.758675264	1.283327948	Ten DAP	7	17.7.1.02	hormone metabolism
cassava4.1_000822m PA	AT5G65750	0.759404502	1.038313945	Ten DAP	45	8.1.05	TCA / org
cassava4.1_002448m PA	AT1G76140	0.759855998	1.016477165	Ten DAP	5	29.5	protein
cassava4.1_003150m PA	AT1G67680	0.760610733	1.061629036	Ten DAP	8	29.3.4.99	protein
cassava4.1_009703m PA	AT5G61510	0.76126965	1.247551492	Ten DAP	8	26.07	misc
cassava4.1_008058m PA	AT2G27600	0.761969821	1.127459236	Ten DAP	10	29.3.99	protein
cassava4.1_004981m PA	AT1G76160	0.762168161	1.174124621	Ten DAP	15	35.1	not assigned
cassava4.1_004773m PA	AT2G17290	0.762359189	1.046979102	Ten DAP	2	30.3	signalling
cassava4.1_004332m PA	AT1G70730	0.762414575	1.124431419	Ten DAP	29	4.02	glycolysis
cassava4.1_024672m PA	AT5G04360	0.763370856	1.345789754	Ten DAP	2	2.1.2.04	major CHO metabolism

cassava4.1_004491m PA	AT4G24040	0.764361068	1.020367089	Ten DAP	8	3.2.04	minor CHO metabolism
cassava4.1_031207m PA	AT5G57590	0.76596927	1.067409429	Ten DAP	3	16.99	secondary metabolism
cassava4.1_003145m PA	AT4G16760	0.768968092	1.026901389	Ten DAP	6	11.9.4.02	lipid metabolism
cassava4.1_005231m PA	AT4G31180	0.770425815	1.085526277	Ten DAP	22	29.1.012	protein
cassava4.1_001932m PA	AT2G39930	0.772568075	1.157479924	Ten DAP	5	2.1.2.04	major CHO metabolism
cassava4.1_012219m PA	AT5G58270	0.772754281	1.012848187	Ten DAP	2	34.16	transport
cassava4.1_003971m PA	AT3G47930	0.773845251	1.049720694	Ten DAP	16	21.2.1.02	redox
cassava4.1_010572m PA	AT5G03610	0.775687077	1.106844388	Ten DAP	2	26.28	misc
cassava4.1_000437m PA	AT2G02560	0.776438978	1.026963099	Ten DAP	15	35.1	not assigned
cassava4.1_002419m PA	AT4G35300	0.784652062	1.166354201	Ten DAP	5	34.2	transporter
cassava4.1_007565m PA	AT1G07930	0.785594101	1.220154584	Ten DAP	2	29.2.4	protein
cassava4.1_013290m PA	AT5G62740	0.78645352	1.008623722	Ten DAP	12	35.1	not assigned
cassava4.1_013998m PA	AT2G29570	0.786732869	1.080619622	Ten DAP	16	27.3.67	RNA
cassava4.1_005265m PA	AT1G72330	0.790084699	1.037164715	Ten DAP	10	13.1.1.3.01	amino acid metabolism
cassava4.1_015314m PA	AT2G39020	0.792724826	1.165209435	Ten DAP	3	26.24	misc
cassava4.1_021650m PA	AT1G60710	0.794606886	1.107537218	Ten DAP	5	17.2.3	hormone metabolism
cassava4.1_007909m PA	AT5G66680	0.797104263	1.149915617	Ten DAP	12	26.01	misc
cassava4.1_004726m PA	AT5G08680	0.798271833	1.013961356	Ten DAP	36	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_002837m PA	AT1G06950	0.798585257	1.050838527	Ten DAP	12	29.3.3	protein
cassava4.1_022495m PA	AT5G20990	0.79915816	1.067243431	Ten DAP	6	18.1.01	Co-factor and vitamine metabolism
cassava4.1_000833m PA	AT4G11610	0.799790169	1.079107573	Ten DAP	4	13.1.6.5	amino acid metabolism
cassava4.1_000233m PA	AT3G13300	0.799960479	1.254465012	Ten DAP	6	35.1	not assigned
cassava4.1_033533m PA	AT3G07160	0.800135142	1.064935529	Ten DAP	3	3.6	minor CHO metabolism
cassava4.1_002079m PA	AT3G23980	0.800613098	1.45454257	Ten DAP	2	35.1	not assigned
cassava4.1_011200m PA	AT1G10840	0.80114766	1.00980798	Ten DAP	8	29.2.3	protein
cassava4.1_013194m PA	AT3G10690	0.802027084	1.063615915	Ten DAP	4	28.1	DNA
cassava4.1_001582m PA	AT2G26570	0.803155838	1.198245535	Ten DAP	2	35.2	not assigned
cassava4.1_017195m PA	AT5G37850	0.805457444	1.15066742	Ten DAP	3	3.5	minor CHO metabolism
cassava4.1_009358m PA	AT1G08200	0.808485133	1.104546988	Ten DAP	3	10.1.03	cell wall
cassava4.1_008254m PA	AT2G35840	0.811210375	1.085711675	Ten DAP	8	2.1.1.02	major CHO metabolism
cassava4.1_007396m PA	AT3G55120	0.812011909	1.108277601	Ten DAP	16	16.8.2	secondary metabolism
cassava4.1_005233m PA	AT3G22520	0.812472324	1.010710403	Ten DAP	3	35.2	not assigned
cassava4.1_005366m PA	AT3G06720	0.81351216	1.007063505	Ten DAP	6	29.3.1	protein
cassava4.1_009740m PA	AT3G26700	0.813666609	1.074450896	Ten DAP	2	29.4.1.59	protein
cassava4.1_012113m PA	AT3G59760	0.814356045	1.027357882	Ten DAP	11	13.1.5.3.01	amino acid metabolism
cassava4.1_010018m PA	AT3G44190	0.815914494	1.098967774	Ten DAP	2	35.1	not assigned
cassava4.1_028456m PA	AT2G01410	0.816610415	1.224352073	Ten DAP	2	35.2	not assigned
cassava4.1_012151m PA	AT1G31230	0.818659735	1.040621927	Ten DAP	9	13.1.3.6.1.01	amino acid metabolism
cassava4.1_012360m PA	AT5G05780	0.819870947	1.041926318	Ten DAP	3	29.5.11.20	protein
cassava4.1_002361m PA	AT4G04910	0.820486475	1.04645568	Ten DAP	23	29.5.09	protein
cassava4.1_033167m PA	AT2G25050	0.822180114	1.048746925	Ten DAP	2	35.1.20	not assigned
cassava4.1_004718m PA	AT5G05520	0.82309976	1.082478264	Ten DAP	10	35.1	not assigned
cassava4.1_011872m PA	-	0.824350759	1.166000176	Ten DAP	3	-	-
cassava4.1_001472m PA	AT1G15130	0.826133153	1.115299673	Ten DAP	5	35.1.41	not assigned

cassava4.1_002741m PA	AT5G36880	0.826415524	1.065465671	Ten DAP	6	11.1.08	lipid metabolism
cassava4.1_009501m PA	AT4G24820	0.826443788	1.065593612	Ten DAP	11	29.5.11.20	protein
cassava4.1_002622m PA	AT3G01680	0.826532459	1.136684746	Ten DAP	8	35.2	not assigned
cassava4.1_003452m PA	AT5G51820	0.831527628	1.033803977	Ten DAP	26	4.02	glycolysis
cassava4.1_011619m PA	AT5G42150	0.832642234	1.658476459	Ten DAP	2	35.2	not assigned
cassava4.1_002075m PA	AT4G14570	0.833362994	1.053213917	Ten DAP	4	29.5	protein
cassava4.1_026977m PA	AT5G16390	0.835208492	1.001575169	Ten DAP	2	11.1.01	lipid metabolism
cassava4.1_006965m PA	AT5G17310	0.836268835	1.029815509	Ten DAP	30	4.01	glycolysis
cassava4.1_013577m PA	AT3G51680	0.837677915	1.02240832	Ten DAP	5	26.22	misc
cassava4.1_009678m PA	AT5G08280	0.837688317	1.089944465	Ten DAP	3	19.05	tetrapyrrole synthesis
cassava4.1_013110m PA	AT1G79500	0.838668818	1.155439132	Ten DAP	5	3.5	minor CHO metabolism
cassava4.1_002326m PA	AT4G02570	0.840746233	1.098632883	Ten DAP	4	29.5.11.4.3.03	protein
cassava4.1_010051m PA	AT2G25710	0.841811317	1.471720262	Ten DAP	2	18	Co-factor and vitamine metabolism
cassava4.1_012009m PA	AT1G48550	0.842378415	1.038457804	Ten DAP	2	29.3.4.3	protein
cassava4.1_009397m PA	AT1G61580	0.844253162	1.034094961	Ten DAP	25	29.2.2	protein
cassava4.1_026681m PA	AT5G67500	0.844614731	1.071182591	Ten DAP	4	34.20	transport
gi 169794130 ref YP_0C	-	0.845692632	1.068307993	Ten DAP	4	-	-
cassava4.1_002036m PA	AT2G42490	0.847042528	1.008793003	Ten DAP	2	26.07	misc
cassava4.1_001361m PA	AT3G45140	0.849276933	1.1170045	Ten DAP	19	17.7.1.02	hormone metabolism
cassava4.1_009089m PA	AT1G74210	0.854154005	1.45127023	Ten DAP	2	11.9.3.03	lipid metabolism
cassava4.1_009051m PA	AT1G06550	0.855146097	1.072324464	Ten DAP	12	11.9.4.03	lipid metabolism
cassava4.1_009051m PA	AT1G06550	0.855146097	1.072324464	Ten DAP	12	13.2.3.5	amino acid metabolism
cassava4.1_023507m PA	AT1G14000	0.857084189	1.397716259	Ten DAP	2	29.4	protein
cassava4.1_015876m PA	AT1G60500	0.858316532	1.053068761	Ten DAP	13	26.17	misc
cassava4.1_012898m PA	AT1G65270	0.85842136	1.045940826	Ten DAP	4	35.2	not assigned
cassava4.1_003669m PA	AT4G11420	0.861050818	1.010022028	Ten DAP	3	29.2.3	protein
cassava4.1_015190m PA	AT1G55900	0.861051417	1.090299583	Ten DAP	3	35.1	not assigned
cassava4.1_011533m PA	AT1G66670	0.861368826	1.111989252	Ten DAP	3	29.5.05	protein
cassava4.1_001823m PA	AT1G76390	0.863444048	1.059386009	Ten DAP	9	29.5.11.04.02	protein
cassava4.1_004118m PA	AT1G72550	0.865410372	1.045275973	Ten DAP	14	29.1.020	protein
cassava4.1_002107m PA	AT5G67360	0.867961054	1.058448344	Ten DAP	16	29.5.01	protein
cassava4.1_013169m PA	AT1G11840	0.869139495	1.027859689	Ten DAP	3	13.2.3.2	amino acid metabolism
cassava4.1_013169m PA	AT1G11840	0.869139495	1.027859689	Ten DAP	3	24.02	Biodegradation of Xenobiotics
cassava4.1_011768m PA	AT1G05260	0.870257763	1.306054502	Ten DAP	2	20.2.2	stress
cassava4.1_010253m PA	AT5G51970	0.870774468	1.113205918	Ten DAP	2	3.3	minor CHO metabolism
cassava4.1_008526m PA	AT5G42740	0.874555718	1.030880805	Ten DAP	6	4.03	glycolysis
cassava4.1_002054m PA	AT1G05520	0.874945345	1.108407503	Ten DAP	4	29.3.4.2	protein
cassava4.1_034446m PA	AT3G14240	0.875487027	1.266770008	Ten DAP	2	29.5.01	protein
cassava4.1_007482m PA	AT4G24550	0.879190239	1.182458729	Ten DAP	6	29.3.4.99	protein
cassava4.1_011729m PA	AT3G07720	0.879851035	1.000761379	Ten DAP	6	35.1	not assigned
cassava4.1_011175m PA	AT3G04120	0.88016232	1.021336999	Ten DAP	23	4.09	glycolysis
cassava4.1_017064m PA	AT1G22450	0.880935585	1.019902372	Ten DAP	6	9.07	mitochondrial electron transport / ATP synthesis
cassava4.1_008018m PA	AT4G23650	0.88127098	1.041670012	Ten DAP	2	30.3	signalling
cassava4.1_004762m PA	AT3G06540	0.88187685	1.033813675	Ten DAP	6	30.5	signalling

cassava4.1_015397m PA	AT5G58590	0.884405937	1.027954513	Ten DAP	4	30.5	signalling
cassava4.1_002480m PA	AT5G26710	0.8845848	1.00684614	Ten DAP	16	19.01	tetrapyrrole synthesis
cassava4.1_002480m PA	AT5G26710	0.8845848	1.00684614	Ten DAP	16	29.1.017	protein
cassava4.1_005270m PA	AT3G53950	0.887727595	1.036932623	Ten DAP	4	24	Biodegradation of Xenobiotics
cassava4.1_001287m PA	AT1G31730	0.887896894	1.02517107	Ten DAP	4	31.4	cell
cassava4.1_004022m PA	AT5G61970	0.889938143	1.044585339	Ten DAP	8	29.3.4.99	protein
cassava4.1_005326m PA	AT5G38830	0.890532791	1.0694662	Ten DAP	11	29.1.016	protein
cassava4.1_024700m PA	AT1G79870	0.892766495	1.036069701	Ten DAP	4	13.2.5.2	amino acid metabolism
cassava4.1_024700m PA	AT1G79870	0.892766495	1.036069701	Ten DAP	4	18.10.03	Co-factor and vitamine metabolism
cassava4.1_024700m PA	AT1G79870	0.892766495	1.036069701	Ten DAP	4	26.01	misc
cassava4.1_031500m PA	AT1G52340	0.894295579	1.035450534	Ten DAP	2	17.1.1.1.011	hormone metabolism
cassava4.1_011640m PA	AT1G04190	0.894406273	1.091201633	Ten DAP	4	35.1.5	not assigned
cassava4.1_007701m PA	AT2G24420	0.894655017	1.021702849	Ten DAP	4	28.2	DNA
cassava4.1_003972m PA	AT1G77180	0.895834598	1.090270997	Ten DAP	2	28.1	DNA
cassava4.1_010697m PA	AT1G50940	0.896104715	1.013023457	Ten DAP	4	9.3	mitochondrial electron transport / ATP synthesis
cassava4.1_003319m PA	AT2G03270	0.89894329	1.020811888	Ten DAP	4	28.99	DNA
cassava4.1_003401m PA	AT5G04590	0.899552907	1.040374301	Ten DAP	16	14.03	S-assimilation
cassava4.1_007095m PA	AT5G11580	0.903672726	1.062238044	Ten DAP	2	20.2.5	stress
cassava4.1_007095m PA	AT5G11580	0.903672726	1.062238044	Ten DAP	2	31.2	cell
cassava4.1_012342m PA	AT5G40810	0.903777585	1.035702675	Ten DAP	2	9.6	mitochondrial electron transport / ATP synthesis
cassava4.1_000825m PA	AT5G17020	0.903919563	1.031055924	Ten DAP	18	29.3.1	protein
cassava4.1_006778m PA	AT4G01070	0.904096341	1.096099036	Ten DAP	4	16.8.3	secondary metabolism
cassava4.1_006636m PA	AT2G28100	0.905154304	1.026157756	Ten DAP	3	35.1	not assigned
cassava4.1_014920m PA	AT3G05500	0.906836515	1.000571935	Ten DAP	6	35.1	not assigned
cassava4.1_004265m PA	AT3G04870	0.907142824	1.044965353	Ten DAP	9	16.1.4	secondary metabolism
cassava4.1_014241m PA	AT4G34670	0.908714985	1.011209601	Ten DAP	16	29.2.2	protein
cassava4.1_009157m PA	AT3G55010	0.909111051	1.08264107	Ten DAP	8	23.1.2.05	nucleotide metabolism
cassava4.1_005014m PA	AT1G51680	0.911296815	1.039376481	Ten DAP	9	16.2.1.03	secondary metabolism
cassava4.1_010453m PA	AT5G13560	0.911818438	1.084131616	Ten DAP	2	35.1	not assigned
gi 169794116 ref YP_OC	-	0.912520534	1.481060796	Ten DAP	2	-	-
cassava4.1_001626m PA	AT3G46970	0.912783717	1.021786578	Ten DAP	21	2.2.2.02	major CHO metabolism
cassava4.1_004500m PA	AT1G25350	0.913138679	1.019277098	Ten DAP	5	29.1.018	protein
cassava4.1_009444m PA	AT2G17420	0.914900915	1.000243002	Ten DAP	7	21.01	redox
cassava4.1_011917m PA	AT1G42470	0.917742185	1.020483856	Ten DAP	2	35.1	not assigned
cassava4.1_023310m PA	AT1G80560	0.917808443	1.322540138	Ten DAP	11	13.1.4.4.03	amino acid metabolism
cassava4.1_000871m PA	AT1G12930	0.91891167	1.128782853	Ten DAP	2	29.3.1	protein
cassava4.1_025676m PA	AT2G44060	0.919257137	1.077142045	Ten DAP	16	33.2	development
cassava4.1_011818m PA	AT4G12080	0.925917257	1.081492542	Ten DAP	2	27.3.67	RNA
cassava4.1_015603m PA	AT5G53530	0.92597934	1.041551068	Ten DAP	5	29.3.4.3	protein
cassava4.1_002838m PA	AT3G54540	0.9275557	1.097382113	Ten DAP	3	34.16	transport
cassava4.1_030393m PA	AT2G18330	0.931851555	1.002945845	Ten DAP	2	29.5.09	protein
cassava4.1_012472m PA	AT2G30920	0.934969877	1.078895349	Ten DAP	2	18.8.01	Co-factor and vitamine metabolism
cassava4.1_009947m PA	AT5G14040	0.936335311	1.031499313	Ten DAP	12	34.9	transport
cassava4.1_002828m PA	AT1G79600	0.937149053	1.125476379	Ten DAP	3	34.16	transport

cassava4.1_008076m PA	AT1G35620	0.937991733	1.13675293	Ten DAP	7	21.01	redox
cassava4.1_018726m PA	AT5G42260	0.93822544	1.30359566	Ten DAP	3	26.03	misc
cassava4.1_010439m PA	AT5G46630	0.939227263	1.097894118	Ten DAP	3	29.3.4.99	protein
cassava4.1_003877m PA	AT3G07020	0.940480809	1.076947347	Ten DAP	3	11.8.03	lipid metabolism
cassava4.1_033251m PA	AT1G79870	0.941241635	1.071423961	Ten DAP	3	13.2.5.2	amino acid metabolism
cassava4.1_033251m PA	AT1G79870	0.941241635	1.071423961	Ten DAP	3	18.10.03	Co-factor and vitamine metabolism
cassava4.1_033251m PA	AT1G79870	0.941241635	1.071423961	Ten DAP	3	26.01	misc
cassava4.1_008225m PA	AT1G16300	0.943577617	1.053882317	Ten DAP	12	4.09	glycolysis
cassava4.1_004208m PA	AT4G33070	0.944812902	1.001842493	Ten DAP	8	5.02	fermentation
cassava4.1_009140m PA	AT4G38970	0.944833158	1.026531768	Ten DAP	3	1.3.06	PS
cassava4.1_003451m PA	AT1G79750	0.94556931	1.012751815	Ten DAP	2	8.2.10	TCA / org
cassava4.1_008916m PA	AT5G48230	0.946903546	1.126929249	Ten DAP	13	13.2.3.5	amino acid metabolism
cassava4.1_008916m PA	AT5G48230	0.946903546	1.126929249	Ten DAP	13	16.1.2.01	secondary metabolism
cassava4.1_002932m PA	AT1G18260	0.9488031	1.136339993	Ten DAP	3	35.1	not assigned
cassava4.1_001365m PA	AT2G26570	0.951896772	1.272082587	Ten DAP	3	35.2	not assigned
cassava4.1_026031m PA	AT2G39040	0.95272846	1.513151621	Ten DAP	2	26.12	misc
cassava4.1_022298m PA	AT3G18420	0.954933636	1.003215517	Ten DAP	7	35.1.5	not assigned
cassava4.1_005161m PA	AT1G76160	0.956187764	1.075713325	Ten DAP	3	35.1	not assigned
cassava4.1_000510m PA	AT1G67230	0.956960248	1.051648931	Ten DAP	3	35.2	not assigned
cassava4.1_001283m PA	AT1G73370	0.957015817	1.139926359	Ten DAP	7	2.2.1.05	major CHO metabolism
cassava4.1_006181m PA	AT2G24270	0.960339583	1.019077673	Ten DAP	2	1.3.04	PS
cassava4.1_007379m PA	AT5G39410	0.960666921	1.012238665	Ten DAP	9	35.2	not assigned
cassava4.1_019445m PA	AT5G17380	0.96301834	1.012793724	Ten DAP	6	5.02	fermentation
cassava4.1_002823m PA	AT1G71270	0.96325834	1.02722885	Ten DAP	5	35.1	not assigned
cassava4.1_001078m PA	AT5G62670	0.963688071	1.003989177	Ten DAP	2	34.1	transport
cassava4.1_002589m PA	AT1G64550	0.964985692	1.041565149	Ten DAP	4	34.16	transport
cassava4.1_005215m PA	AT4G31180	0.965025058	1.036477705	Ten DAP	9	29.1.012	protein
cassava4.1_012442m PA	AT4G11980	0.966399591	1.012905934	Ten DAP	3	35.1	not assigned
cassava4.1_008344m PA	AT1G10670	0.968865333	1.035513508	Ten DAP	4	8.2.011	TCA / org
cassava4.1_003930m PA	AT5G53370	0.968904287	1.023597151	Ten DAP	9	10.8.99	cell wall
cassava4.1_011656m PA	AT3G50210	0.969733722	1.298729463	Ten DAP	4	16.8.4	secondary metabolism
cassava4.1_028531m PA	AT4G20360	0.970220748	1.024446976	Ten DAP	4	29.2.4	protein
cassava4.1_004699m PA	AT1G69340	0.973615827	1.015049772	Ten DAP	3	35.1	not assigned
cassava4.1_007551m PA	AT5G19780	0.976845766	1.167138602	Ten DAP	4	31.1	cell
cassava4.1_004713m PA	AT1G49760	0.978807367	1.041535157	Ten DAP	9	27.1	RNA
cassava4.1_003499m PA	AT2G42520	0.983451556	1.003401007	Ten DAP	6	27.1.2	RNA
cassava4.1_010309m PA	AT5G23050	0.986025795	1.185538822	Ten DAP	4	11.1.08	lipid metabolism
cassava4.1_025592m PA	AT4G36760	0.986449961	1.057797757	Ten DAP	3	29.5	protein
cassava4.1_012267m PA	AT5G11810	0.987835079	1.001778001	Ten DAP	3	35.2	not assigned
cassava4.1_001703m PA	AT5G51430	0.991552847	1.007358645	Ten DAP	10	35.1	not assigned
cassava4.1_006591m PA	AT1G01300	0.991905745	1.007457951	Ten DAP	13	29.5.04	protein
cassava4.1_013813m PA	AT5G23950	0.992638664	1.0057787	Ten DAP	3	20.2.2	stress
cassava4.1_006574m PA	AT1G32500	0.99399441	1.082987797	Ten DAP	3	34.16	transport
cassava4.1_009974m PA	AT4G34660	0.99429564	1.063141195	Ten DAP	4	35.1	not assigned
cassava4.1_012176m PA	AT5G28830	0.995235636	1.072672752	Ten DAP	2	30.3	signalling
-----------------------	-----------	-------------	--------------	----------	----	--------------	-----------------------
cassava4.1_001848m PA	AT3G15730	0.995960364	1.055613106	Ten DAP	5	11.9.3.01	lipid metabolism
cassava4.1_029912m PA	AT2G19080	0.997482544	1.110781864	Ten DAP	2	35.1	not assigned
cassava4.1_000033m PA	AT1G36160	0.000310268	-2.372967306	Zero DAP	4	11.1.01	lipid metabolism
cassava4.1_005990m PA	AT5G56350	0.000651792	-1.598008389	Zero DAP	6	4.013	glycolysis
cassava4.1_004241m PA	AT4G26300	0.000953209	-1.243089333	Zero DAP	7	29.1.019	protein
cassava4.1_009231m PA	AT2G38860	0.001005953	-1.360936044	Zero DAP	10	29.5	protein
cassava4.1_008506m PA	AT3G50000	0.001188611	-2.277335938	Zero DAP	2	29.4	protein
cassava4.1_021312m PA	AT5G49830	0.001281753	-1.449046934	Zero DAP	7	35.2	not assigned
cassava4.1_005818m PA	AT5G58860	0.001789936	Infinit	Zero DAP	2	26.10	misc
cassava4.1_013014m PA	AT5G13870	0.002361225	-2.053823582	Zero DAP	3	10.7	cell wall
cassava4.1_004106m PA	AT4G00740	0.002492005	-2.374777322	Zero DAP	5	20.2.3	stress
cassava4.1_003527m PA	AT5G63120	0.002667439	-2.073351598	Zero DAP	2	17.5.3	hormone metabolism
cassava4.1_003527m PA	AT5G63120	0.002667439	-2.073351598	Zero DAP	2	27.1	RNA
cassava4.1_004971m PA	AT5G55230	0.002824427	-1.661939589	Zero DAP	5	31.1	cell
cassava4.1_023409m PA	AT1G79460	0.004069604	-42.83336756	Zero DAP	4	17.6.1.02	hormone metabolism
cassava4.1_005817m PA	AT5G57260	0.004337957	-8.255161118	Zero DAP	18	26.10	misc
cassava4.1_000239m PA	AT2G20190	0.00456591	-2.152447807	Zero DAP	2	35.1	not assigned
cassava4.1_007650m PA	AT5G12250	0.004804689	-2.491595981	Zero DAP	11	31.1	cell
cassava4.1_003389m PA	AT5G27120	0.004809163	-3.165424654	Zero DAP	2	27.3.67	RNA
cassava4.1_004720m PA	AT2G26260	0.004870589	-1.953040311	Zero DAP	6	11.8.04	lipid metabolism
cassava4.1_003705m PA	AT5G49720	0.005091526	-4.673208839	Zero DAP	4	10.2	cell wall
cassava4.1_003400m PA	AT5G10840	0.005521293	-5.328285484	Zero DAP	3	35.2	not assigned
cassava4.1_008088m PA	AT5G41040	0.006874662	-1.63843743	Zero DAP	9	35.1	not assigned
cassava4.1_014777m PA	AT3G07030	0.007441539	-1.497351383	Zero DAP	2	35.2	not assigned
cassava4.1_009247m PA	AT4G01850	0.007795959	-3.966421553	Zero DAP	13	13.1.3.4.011	amino acid metabolism
cassava4.1_004081m PA	AT5G60790	0.008090031	-2.762754986	Zero DAP	10	34.16	transport
cassava4.1_001698m PA	AT1G04080	0.008246631	-1.675107876	Zero DAP	5	35.1.41	not assigned
cassava4.1_004221m PA	AT4G34980	0.009117001	-2.534486168	Zero DAP	12	29.5.01	protein
cassava4.1_006282m PA	AT1G31070	0.009644226	-1.901909375	Zero DAP	6	10.1	cell wall
cassava4.1_009789m PA	AT3G61440	0.010016052	-2.966724969	Zero DAP	8	13.1.5.3.01	amino acid metabolism
cassava4.1_014594m PA	AT2G38740	0.010390822	-3.204474615	Zero DAP	2	35.1	not assigned
cassava4.1_005904m PA	AT2G43820	0.010485923	-1.811946214	Zero DAP	4	26.02	misc
cassava4.1_012402m PA	AT5G01410	0.010775754	-4.622868947	Zero DAP	11	35.1	not assigned
cassava4.1_005079m PA	AT4G39950	0.010893536	-19.48809178	Zero DAP	6	26.10	misc
cassava4.1_005409m PA	AT4G39210	0.011351981	-2.088975338	Zero DAP	28	2.1.2.01	major CHO metabolism
cassava4.1_009245m PA	AT4G01850	0.011618162	-4.153689723	Zero DAP	17	13.1.3.4.011	amino acid metabolism
cassava4.1_005302m PA	AT3G18190	0.011719071	-1.595956909	Zero DAP	23	29.6	protein
cassava4.1_000634m PA	AT5G06460	0.012333321	-1.512632939	Zero DAP	6	29.5.11.02	protein
cassava4.1_006818m PA	AT2G29560	0.013076458	-1.559280338	Zero DAP	6	4.012	glycolysis
cassava4.1_011584m PA	AT3G59480	0.013297578	-1.475956124	Zero DAP	22	2.2.1.01	major CHO metabolism
cassava4.1_007409m PA	AT1G14570	0.013700506	-1.67872442	Zero DAP	2	29.5	protein
cassava4.1_005057m PA	AT3G03960	0.013973317	-1.244498262	Zero DAP	16	29.6	protein
cassava4.1_000150m PA	AT1G71220	0.014141749	-1.661860023	Zero DAP	12	29.7	protein

cassava4.1_004579m PA	AT3G16950	0.014414463	-1.119370463	Zero DAP	15	8.1.01.03	TCA / org
cassava4.1_000458m PA	AT3G62360	0.014511461	-1.964032548	Zero DAP	5	35.2	not assigned
cassava4.1_003857m PA	AT4G18030	0.014679084	-3.663598697	Zero DAP	8	20.2.3	stress
cassava4.1_005517m PA	AT1G75680	0.015315386	-2.472428331	Zero DAP	6	10.6.1	cell wall
cassava4.1_005517m PA	AT1G75680	0.015315386	-2.472428331	Zero DAP	6	26.03	misc
cassava4.1_012023m PA	AT5G65780	0.015473361	-1.914311188	Zero DAP	6	13.1.4.1	amino acid metabolism
cassava4.1_004314m PA	AT3G22960	0.01550972	-2.069258196	Zero DAP	7	11.1.030	lipid metabolism
cassava4.1_000191m PA	AT5G20490	0.015607078	-1.468547668	Zero DAP	9	31.1	cell
cassava4.1_026770m PA	AT5G07720	0.015907422	-7.792853011	Zero DAP	2	10.3	cell wall
cassava4.1_026770m PA	AT5G07720	0.015907422	-7.792853011	Zero DAP	2	26.02	misc
cassava4.1_000688m PA	AT4G20850	0.016587509	-1.6375074	Zero DAP	23	29.5.01	protein
cassava4.1_011785m PA	AT4G14880	0.016861007	-1.470820095	Zero DAP	9	13.1.5.3.01	amino acid metabolism
cassava4.1_012617m PA	AT1G63000	0.017298634	-2.510786326	Zero DAP	9	10.1.011	cell wall
cassava4.1_007678m PA	AT2G36530	0.017383169	-1.184387774	Zero DAP	14	4.012	glycolysis
cassava4.1_005840m PA	AT2G03820	0.018611319	-1.931357425	Zero DAP	2	35.1	not assigned
cassava4.1_001142m PA	AT2G23520	0.020216991	-1.376081175	Zero DAP	2	35.2	not assigned
cassava4.1_002126m PA	AT4G10070	0.021320539	-1.638279498	Zero DAP	3	27.2	RNA
cassava4.1_000041m PA	AT1G36160	0.022125948	-4.840405433	Zero DAP	2	11.1.01	lipid metabolism
gi 169794080 ref YP_0C	-	0.02212956	-3.452999046	Zero DAP	5	-	-
cassava4.1_012699m PA	AT5G26667	0.022295451	-1.289052438	Zero DAP	10	23.4.3	nucleotide metabolism
cassava4.1_008023m PA	AT1G17745	0.023508802	-1.721439695	Zero DAP	10	13.1.5.1.01	amino acid metabolism
cassava4.1_007632m PA	AT5G23860	0.023603342	-1.820090119	Zero DAP	14	31.1	cell
cassava4.1_003070m PA	AT1G78570	0.024894052	-1.939766287	Zero DAP	13	10.1.010	cell wall
cassava4.1_001824m PA	AT3G13870	0.025023618	-1.969382217	Zero DAP	19	33.99	development
cassava4.1_001104m PA	AT2G24520	0.025155309	-1.971669953	Zero DAP	2	34.1	transport
cassava4.1_009295m PA	AT5G13930	0.025470523	-8.825291154	Zero DAP	5	16.8.2.01	secondary metabolism
cassava4.1_021147m PA	AT1G22380	0.026194216	-3.670478589	Zero DAP	3	26.02	misc
cassava4.1_026874m PA	AT5G04420	0.026369047	-2.744156117	Zero DAP	5	35.1	not assigned
cassava4.1_003765m PA	AT1G26850	0.026655555	-3.301021418	Zero DAP	9	20.2.3	stress
cassava4.1_000497m PA	AT5G26570	0.026783934	-1.321020787	Zero DAP	9	2.2.2.03	major CHO metabolism
cassava4.1_000599m PA	AT5G06600	0.027227639	-1.88056626	Zero DAP	10	29.5.11.05	protein
cassava4.1_012622m PA	AT1G63000	0.027758688	-3.058469716	Zero DAP	2	10.1.011	cell wall
cassava4.1_009402m PA	AT5G13930	0.027894834	-2.648803168	Zero DAP	3	16.8.2.01	secondary metabolism
cassava4.1_033676m PA	AT5G54440	0.028198395	-2.50853873	Zero DAP	3	35.2	not assigned
cassava4.1_009260m PA	AT4G01850	0.028675998	-7.173982227	Zero DAP	4	13.1.3.4.011	amino acid metabolism
cassava4.1_018147m PA	AT5G42190	0.028928969	-1.633379408	Zero DAP	2	29.5.11.4.3.01	protein
cassava4.1_004405m PA	AT5G52920	0.029268563	-1.460937398	Zero DAP	14	11.1.030	lipid metabolism
cassava4.1_011800m PA	AT4G24570	0.030038692	-12.83297076	Zero DAP	2	9.8	mitochondrial electron transport / ATP synthesis
cassava4.1_006215m PA	AT3G61490	0.030450968	-6.021070584	Zero DAP	2	10.6.3	cell wall
cassava4.1_007617m PA	AT5G23860	0.03076012	-2.338573269	Zero DAP	2	31.1	cell
cassava4.1_004230m PA	AT3G22960	0.03100602	-1.581515844	Zero DAP	13	11.1.030	lipid metabolism
cassava4.1_000103m PA	AT3G43300	0.031779992	-1.986283503	Zero DAP	9	30.5	signalling
cassava4.1_023284m PA	AT3G51160	0.032606569	-1.612490451	Zero DAP	7	10.1.07	cell wall
cassava4.1_001804m PA	AT4G30020	0.033328303	-2.780422867	Zero DAP	10	29.5.01	protein

cassava4.1_000195m PA	AT2G38770	0.033699088	-2.771771461	Zero DAP	2	35.2	not assigned
cassava4.1_005974m PA	AT5G07990	0.03427019	-4.336721255	Zero DAP	2	16.8.3.03	secondary metabolism
cassava4.1_000134m PA	AT3G11130	0.034731579	-1.336794767	Zero DAP	62	31.4	cell
cassava4.1_013011m PA	AT3G23730	0.034907825	-7.078208205	Zero DAP	2	10.7	cell wall
cassava4.1_007713m PA	AT5G23860	0.035265304	-1.496295869	Zero DAP	26	31.1	cell
cassava4.1 008405m PA	AT1G51630	0.035841927	-2.036739081	Zero DAP	8	35.2	not assigned
cassava4.1_004018m PA	AT1G70770	0.036307972	-2.065843638	Zero DAP	9	35.2	not assigned
cassava4.1_006458m PA	AT1G11680	0.036350652	-1.461856026	Zero DAP	6	17.3.1.2.03	hormone metabolism
cassava4.1_017972m PA	AT5G24710	0.036809768	-3.734045149	Zero DAP	2	35.1	not assigned
cassava4.1_008317m PA	AT3G14100	0.037345774	-1.732291775	Zero DAP	3	35.1	not assigned
cassava4.1_007339m PA	AT2G17840	0.037365356	-1.769091637	Zero DAP	2	20.2.3	stress
cassava4.1_007339m PA	AT2G17840	0.037365356	-1.769091637	Zero DAP	2	33.99	development
cassava4.1_003361m PA	AT2G07360	0.038436759	-2.255211256	Zero DAP	6	35.1	not assigned
cassava4.1_032535m PA	AT4G10320	0.038778811	-1.554065116	Zero DAP	7	29.1.05	protein
cassava4.1_011197m PA	AT1G43670	0.039438558	-1.217314961	Zero DAP	2	2.1.1.03	major CHO metabolism
cassava4.1_000306m PA	AT2G36910	0.040240115	-2.828121082	Zero DAP	7	17.2.2	hormone metabolism
cassava4.1_000306m PA	AT2G36910	0.040240115	-2.828121082	Zero DAP	7	34.16	transport
cassava4.1_005410m PA	AT5G53850	0.041451637	-1.357691971	Zero DAP	14	3.5	minor CHO metabolism
cassava4.1_000656m PA	AT1G09620	0.041876401	-5.828654907	Zero DAP	2	29.1.04	protein
cassava4.1_009169m PA	AT5G12470	0.042465397	-1.544540869	Zero DAP	8	35.2	not assigned
cassava4.1_010021m PA	AT3G61440	0.042572879	-3.602058257	Zero DAP	2	13.1.5.3.01	amino acid metabolism
cassava4.1_009783m PA	AT2G37620	0.042603938	-1.252216472	Zero DAP	2	31.1	cell
cassava4.1_000607m PA	AT4G32640	0.042648559	-2.028837774	Zero DAP	6	31.4	cell
cassava4.1_005510m PA	AT2G26170	0.04271988	-2.30123054	Zero DAP	3	17.2.2	hormone metabolism
cassava4.1_016634m PA	AT5G04420	0.042765794	-2.610155898	Zero DAP	9	35.1	not assigned
cassava4.1_009356m PA	AT2G36880	0.042766793	-3.634983363	Zero DAP	4	13.1.3.4.011	amino acid metabolism
cassava4.1_009356m PA	AT2G36880	0.042766793	-3.634983363	Zero DAP	4	15.2	metal handling
cassava4.1_000716m PA	AT1G07670	0.042935125	-2.185440264	Zero DAP	8	34.21	transport
cassava4.1_006951m PA	AT2G03640	0.043776796	-2.356099306	Zero DAP	5	29.3.1	protein
cassava4.1_003746m PA	AT1G14830	0.043944445	-3.043660566	Zero DAP	6	26.17	misc
cassava4.1_006550m PA	AT4G36480	0.044136398	-1.299408497	Zero DAP	5	11.8.1	lipid metabolism
cassava4.1_003858m PA	AT5G42080	0.04414592	-1.979692128	Zero DAP	30	26.17	misc
cassava4.1_003858m PA	AT5G42080	0.04414592	-1.979692128	Zero DAP	30	30.5	signalling
cassava4.1_001902m PA	AT1G16780	0.044297493	-4.250299323	Zero DAP	2	34.30	transport
cassava4.1_011715m PA	AT5G61240	0.044740061	-3.867016975	Zero DAP	2	20.1	stress
cassava4.1_005134m PA	AT4G32810	0.044837868	-9.38927503	Zero DAP	2	17.1.1	hormone metabolism
cassava4.1_032325m PA	AT5G67360	0.045000855	-5.267634152	Zero DAP	9	29.5.01	protein
cassava4.1_001780m PA	AT2G34300	0.045419222	-2.306619469	Zero DAP	3	20.2.3	stress
cassava4.1_000375m PA	AT5G37830	0.045496398	-1.906025628	Zero DAP	6	35.1	not assigned
cassava4.1_001585m PA	AT3G07100	0.045976556	-2.204258055	Zero DAP	3	29.3.4.2	protein
cassava4.1_007645m PA	AT3G62830	0.046882028	-2.474521947	Zero DAP	8	10.1.05	cell wall
cassava4.1_000264m PA	AT1G74260	0.046941495	-1.157447776	Zero DAP	21	23.1.2.04	nucleotide metabolism
cassava4.1_014182m PA	AT3G49720	0.047532797	-4.068148662	Zero DAP	7	35.2	not assigned
cassava4.1_033822m PA	AT3G48770	0.047699234	-3.658330681	Zero DAP	3	35.2	not assigned

cassava4.1_004109m PA	AT2G01970	0.049269555	-2.583957311	Zero DAP	2	35.1	not assigned
cassava4.1_002730m PA	AT2G36910	0.050451189	-3.675274833	Zero DAP	3	17.2.2	hormone metabolism
cassava4.1_002730m PA	AT2G36910	0.050451189	-3.675274833	Zero DAP	3	34.16	transport
cassava4.1_006307m PA	AT4G04950	0.050937731	-1.83056123	Zero DAP	9	21.01	redox
cassava4.1_023396m PA	AT2G07050	0.051325251	-2.283239733	Zero DAP	5	11.8.06	lipid metabolism
cassava4.1_023396m PA	AT2G07050	0.051325251	-2.283239733	Zero DAP	5	17.3.1.2.99	hormone metabolism
cassava4.1_000052m PA	AT2G22125	0.051706843	-16.0134457	Zero DAP	2	35.1.19	not assigned
cassava4.1_032962m PA	AT1G18270	0.051744173	-1.171850871	Zero DAP	15	35.1	not assigned
cassava4.1_001312m PA	AT2G27040	0.052267146	-1.440044705	Zero DAP	3	27.3.36	RNA
cassava4.1_002709m PA	AT2G37040	0.052401432	-2.095994966	Zero DAP	17	16.2.1.01	secondary metabolism
cassava4.1_034463m PA	AT3G14920	0.052498334	-3.447677257	Zero DAP	2	35.2	not assigned
cassava4.1_012773m PA	AT5G18900	0.052876726	-2.150868383	Zero DAP	6	13.2.2.2	amino acid metabolism
cassava4.1_012773m PA	AT5G18900	0.052876726	-2.150868383	Zero DAP	6	26.07	misc
cassava4.1_032346m PA	AT1G20960	0.05390777	-1.832553584	Zero DAP	9	27.1	RNA
cassava4.1_032346m PA	AT1G20960	0.05390777	-1.832553584	Zero DAP	9	28.1	DNA
cassava4.1_034377m PA	AT2G37040	0.054267515	-1.608598285	Zero DAP	6	16.2.1.01	secondary metabolism
cassava4.1_006663m PA	AT5G15490	0.054689925	-1.457182957	Zero DAP	20	10.1.04	cell wall
cassava4.1_011998m PA	AT1G23740	0.055736084	-2.436151941	Zero DAP	3	26.07	misc
cassava4.1_003754m PA	AT3G60190	0.056264621	-1.346231081	Zero DAP	3	26.17	misc
cassava4.1_002192m PA	AT3G23640	0.057483302	-1.94043044	Zero DAP	10	2.2.2.1	major CHO metabolism
cassava4.1_002192m PA	AT3G23640	0.057483302	-1.94043044	Zero DAP	10	26.03	misc
cassava4.1_001389m PA	AT4G34450	0.058157801	-1.287754848	Zero DAP	8	31.4	cell
cassava4.1_000434m PA	AT1G62020	0.058574141	-1.877474651	Zero DAP	32	31.4	cell
cassava4.1_001326m PA	AT4G23460	0.05857614	-1.467404395	Zero DAP	14	31.4	cell
cassava4.1_000038m PA	AT5G53460	0.058828253	-7.706148959	Zero DAP	3	12.2.1.02	N-metabolism
cassava4.1_006870m PA	AT3G61650	0.060474719	-1.579779411	Zero DAP	3	31.1	cell
cassava4.1_029686m PA	AT1G49390	0.06048357	-1.17010131	Zero DAP	2	16.8.4	secondary metabolism
cassava4.1_004027m PA	AT4G19120	0.060929571	-8.062795674	Zero DAP	2	20.2.3	stress
cassava4.1_007323m PA	AT3G23820	0.061733816	-15.72300044	Zero DAP	2	10.1.06	cell wall
cassava4.1_021804m PA	AT3G13330	0.062960187	-2.103215518	Zero DAP	16	35.2	not assigned
cassava4.1_000652m PA	AT5G64740	0.063005955	-2.986672643	Zero DAP	4	10.2.01	cell wall
cassava4.1_005759m PA	AT3G10410	0.063532231	-2.58039141	Zero DAP	2	29.5.05	protein
cassava4.1_001251m PA	AT1G59610	0.064036318	-2.539874139	Zero DAP	5	26.17	misc
cassava4.1_001864m PA	AT3G43190	0.065106092	-1.258455378	Zero DAP	50	2.2.1.05	major CHO metabolism
cassava4.1_006293m PA	AT4G00660	0.065764637	-1.591317734	Zero DAP	7	28.1	DNA
cassava4.1_029365m PA	AT5G42150	0.06606291	-2.714370986	Zero DAP	3	35.2	not assigned
cassava4.1_004967m PA	AT1G30760	0.066200613	-1.666273188	Zero DAP	2	16.4.1	secondary metabolism
cassava4.1_004967m PA	AT1G30760	0.066200613	-1.666273188	Zero DAP	2	26.08	misc
cassava4.1_006969m PA	AT2G03640	0.067146794	-2.096579845	Zero DAP	5	29.3.1	protein
cassava4.1_005241m PA	AT1G24510	0.067817827	-1.211263315	Zero DAP	6	29.4	protein
cassava4.1_000725m PA	AT1G68750	0.068246242	-1.212412649	Zero DAP	34	4.014	glycolysis
cassava4.1_015161m PA	AT1G76010	0.069121746	-1.468106207	Zero DAP	2	27.3.67	RNA
cassava4.1_009942m PA	AT4G39090	0.069440431	-3.69365985	Zero DAP	2	29.5.03	protein
cassava4.1_014988m PA	AT2G45140	0.069574499	-1.949695903	Zero DAP	3	35.1	not assigned

cassava4.1_001132m PA	AT4G31480	0.069632903	-1.854285982	Zero DAP	7	31.4	cell
cassava4.1_000949m PA	AT5G07350	0.069838559	-2.011650145	Zero DAP	35	27.3.73	RNA
cassava4.1_007598m PA	AT5G12250	0.070172113	-2.826278516	Zero DAP	2	31.1	cell
cassava4.1_001924m PA	AT3G07770	0.071621094	-1.435444439	Zero DAP	14	20.2.1	stress
cassava4.1_001905m PA	AT2G04030	0.07189603	-1.555413393	Zero DAP	7	20.2.1	stress
cassava4.1_004733m PA	AT3G08590	0.072270475	-1.145879222	Zero DAP	8	4.011	glycolysis
cassava4.1_006558m PA	AT1G22380	0.072869444	-2.065889988	Zero DAP	7	26.02	misc
cassava4.1_010212m PA	AT3G51240	0.072870901	-3.099376688	Zero DAP	17	16.8.3.02	secondary metabolism
cassava4.1_001713m PA	AT4G33650	0.072925083	-1.348971109	Zero DAP	25	26.17	misc
cassava4.1_015079m PA	AT5G59950	0.073174992	-1.389881818	Zero DAP	8	27.4	RNA
cassava4.1_009083m PA	AT3G26040	0.073362278	-1.612906459	Zero DAP	2	35.1	not assigned
cassava4.1_011447m PA	AT2G20760	0.073539254	-1.849118077	Zero DAP	4	35.2	not assigned
cassava4.1_003221m PA	AT5G35160	0.07423579	-2.577936106	Zero DAP	3	35.2	not assigned
cassava4.1_006916m PA	AT3G53710	0.076032207	-2.268139014	Zero DAP	5	27.3.99	RNA
cassava4.1_005978m PA	AT2G30490	0.076038917	-1.686021432	Zero DAP	16	16.2.1.02	secondary metabolism
cassava4.1_000133m PA	AT3G11130	0.078319383	-1.501883747	Zero DAP	18	31.4	cell
cassava4.1_000439m PA	AT1G62020	0.078384275	-1.948669591	Zero DAP	15	31.4	cell
cassava4.1_002591m PA	AT2G37040	0.078457509	-2.079302935	Zero DAP	4	16.2.1.01	secondary metabolism
cassava4.1_001612m PA	AT1G79930	0.079273281	-1.450938522	Zero DAP	33	20.2.1	stress
cassava4.1_023162m PA	AT1G22410	0.079371208	-2.474108116	Zero DAP	7	13.1.6.1.01	amino acid metabolism
cassava4.1_006852m PA	AT4G32720	0.079634542	-2.04250915	Zero DAP	4	27.3.99	RNA
cassava4.1_015620m PA	AT5G59240	0.079939539	-1.266170537	Zero DAP	5	29.2.2	protein
cassava4.1_011616m PA	AT5G14790	0.080114724	-1.547288808	Zero DAP	4	35.2	not assigned
cassava4.1_005636m PA	AT5G03070	0.080493635	-1.742289734	Zero DAP	3	29.3.1	protein
gi 169794114 ref YP_OC	-	0.081117879	-1.245412229	Zero DAP	2	-	-
cassava4.1_006174m PA	AT4G31500	0.081818635	-2.755157503	Zero DAP	11	26.10	misc
cassava4.1_012531m PA	AT1G30910	0.082023184	-2.487124039	Zero DAP	2	35.1	not assigned
cassava4.1_002190m PA	AT2G21630	0.082384323	-1.194759377	Zero DAP	3	29.3.4.2	protein
cassava4.1_023808m PA	AT4G18060	0.08258256	-6.048926736	Zero DAP	2	35.1	not assigned
cassava4.1_000109m PA	AT3G60860	0.084386708	-2.383048761	Zero DAP	5	30.5	signalling
cassava4.1_002291m PA	AT4G01400	0.084628252	-2.559372295	Zero DAP	2	35.1.5	not assigned
cassava4.1_002970m PA	AT5G06600	0.084756188	-1.786200253	Zero DAP	6	29.5.11.05	protein
cassava4.1_001477m PA	AT3G08947	0.08495288	-1.368632025	Zero DAP	16	29.3.1	protein
cassava4.1_005303m PA	AT3G06720	0.085963972	-2.257961636	Zero DAP	2	29.3.1	protein
cassava4.1_020642m PA	AT1G04820	0.087067372	-3.040400543	Zero DAP	2	31.1	cell
cassava4.1_003015m PA	AT3G05420	0.089463985	-1.817427059	Zero DAP	12	11.1.013	lipid metabolism
cassava4.1_001793m PA	AT1G50500	0.08975524	-1.690577435	Zero DAP	7	31.4	cell
cassava4.1_000865m PA	AT4G11420	0.090161722	-1.196171848	Zero DAP	13	29.2.3	protein
cassava4.1_015437m PA	AT5G58590	0.09103674	-1.258089102	Zero DAP	8	30.5	signalling
cassava4.1_006760m PA	AT1G09020	0.091367694	-1.4026111	Zero DAP	3	29.4	protein
cassava4.1_000994m PA	AT2G30110	0.091971719	-1.507985879	Zero DAP	23	29.5.11.02	protein
cassava4.1_016908m PA	AT4G26910	0.093036114	-1.310853517	Zero DAP	4	35.1	not assigned
cassava4.1_010431m PA	AT1G20330	0.097023816	-2.235505532	Zero DAP	3	17.3.1.2.02	hormone metabolism
cassava4.1_001508m PA	AT5G65700	0.097765045	-2.867744863	Zero DAP	2	30.2.11	signalling

cassava4.1_005625m PA	AT3G10410	0.099803555	-1.611033817	Zero DAP	4	29.5.05	protein
cassava4.1_008671m PA	AT1G06070	0.100032945	-1.387773873	Zero DAP	2	27.3.35	RNA
cassava4.1_006491m PA	AT1G60170	0.100055472	-1.643872473	Zero DAP	2	27.1	RNA
cassava4.1_003721m PA	AT1G04430	0.100761703	-9.068010148	Zero DAP	2	20.2.3	stress
cassava4.1_013512m PA	AT3G51140	0.101577055	-1.175635697	Zero DAP	2	35.2	not assigned
cassava4.1_003290m PA	AT1G13900	0.105466169	-2.566813481	Zero DAP	3	26.13	misc
cassava4.1_032947m PA	AT4G30160	0.105915202	-1.342317055	Zero DAP	3	31.1	cell
cassava4.1_001980m PA	AT5G26742	0.10807087	-7.844273698	Zero DAP	3	27.1.2	RNA
cassava4.1_004797m PA	AT5G58440	0.110277653	-1.149929618	Zero DAP	2	35.1	not assigned
cassava4.1_003222m PA	AT4G12650	0.110329636	-1.594832305	Zero DAP	2	35.2	not assigned
cassava4.1_000440m PA	AT1G62020	0.111246532	-2.922815281	Zero DAP	2	31.4	cell
cassava4.1_009478m PA	AT5G45620	0.111660934	-1.129471775	Zero DAP	6	29.5.11.20	protein
cassava4.1_017157m PA	AT5G58070	0.112040016	-2.296720027	Zero DAP	2	35.1	not assigned
cassava4.1_010852m PA	AT3G13224	0.112315629	-1.384551058	Zero DAP	7	35.1	not assigned
cassava4.1_031963m PA	AT3G63460	0.112933811	-1.6120225	Zero DAP	14	35.1	not assigned
cassava4.1_003449m PA	AT3G13772	0.113512858	-1.955864771	Zero DAP	5	35.2	not assigned
cassava4.1_001449m PA	AT1G60070	0.114134389	-1.354192059	Zero DAP	5	31.4	cell
cassava4.1_001607m PA	AT1G79920	0.114584689	-1.768400216	Zero DAP	23	20.2.1	stress
cassava4.1_012525m PA	AT4G05320	0.11640596	-1.201344302	Zero DAP	6	29.5.11.01	protein
cassava4.1_027656m PA	AT5G24710	0.117798534	-1.471117978	Zero DAP	3	35.1	not assigned
cassava4.1_002180m PA	AT3G19720	0.117890691	-1.540618657	Zero DAP	2	26.17	misc
cassava4.1_009199m PA	AT2G38860	0.118047526	-1.563518764	Zero DAP	12	29.5	protein
cassava4.1_000554m PA	AT1G15750	0.118173515	-2.902186386	Zero DAP	5	35.1	not assigned
cassava4.1_012494m PA	AT2G19590	0.118297569	-3.316619024	Zero DAP	5	17.5.1.02	hormone metabolism
cassava4.1_001229m PA	AT5G50920	0.118929068	-1.271468742	Zero DAP	40	29.5.05	protein
cassava4.1_008118m PA	AT1G05350	0.119580607	-1.358755153	Zero DAP	5	35.1	not assigned
cassava4.1_005668m PA	AT5G07990	0.119827044	-2.21899024	Zero DAP	5	16.8.3.03	secondary metabolism
cassava4.1_006080m PA	AT3G16760	0.120472478	-2.856264717	Zero DAP	2	35.1.5	not assigned
cassava4.1_001815m PA	AT3G13870	0.120689931	-2.228153322	Zero DAP	3	33.99	development
cassava4.1_029240m PA	AT1G61790	0.120798119	-2.045090452	Zero DAP	3	34.3	transport
cassava4.1_000444m PA	AT3G55200	0.121329403	-1.948516064	Zero DAP	7	27.1.1	RNA
cassava4.1_001480m PA	AT5G53480	0.125371776	-1.524350855	Zero DAP	5	29.3.1	protein
cassava4.1_011499m PA	AT1G77470	0.128009951	-2.141876915	Zero DAP	2	28.1	DNA
cassava4.1_001232m PA	AT5G50920	0.128090013	-1.240039682	Zero DAP	16	29.5.05	protein
cassava4.1_001434m PA	AT3G02760	0.128444198	-1.178789582	Zero DAP	30	29.1.021	protein
cassava4.1_004814m PA	AT5G60640	0.128786431	-1.051798155	Zero DAP	16	21.01	redox
cassava4.1_014781m PA	AT1G10510	0.129305678	-1.243120042	Zero DAP	2	33.99	development
cassava4.1_011773m PA	AT2G46290	0.12968384	-1.139854529	Zero DAP	11	29.2.3	protein
cassava4.1_023691m PA	AT2G44060	0.130300953	-1.319418858	Zero DAP	3	33.2	development
cassava4.1_012246m PA	AT4G23420	0.130825845	-1.707989569	Zero DAP	5	26.22	misc
cassava4.1_005412m PA	AT5G05010	0.131514634	-1.387211294	Zero DAP	16	31.4	cell
cassava4.1_001943m PA	AT1G25350	0.133228633	-1.108658488	Zero DAP	19	29.1.018	protein
cassava4.1_007640m PA	AT5G12250	0.133797057	-1.403905509	Zero DAP	2	31.1	cell
cassava4.1_005236m PA	AT4G05420	0.134489575	-1.406391523	Zero DAP	8	20.2.5	stress

cassava4.1_005236m PA	AT4G05420	0.134489575	-1.406391523	Zero DAP	8	29.5.11.4.06	protein
cassava4.1_000940m PA	AT2G27880	0.134544783	-1.83663712	Zero DAP	5	27.3.36	RNA
cassava4.1_000940m PA	AT2G27880	0.134544783	-1.83663712	Zero DAP	5	33.99	development
cassava4.1 002411m PA	AT2G45000	0.134562973	-1.573681723	Zero DAP	3	35.2	not assigned
cassava4.1_011524m PA	AT2G20760	0.13630996	-1.232886514	Zero DAP	3	35.2	not assigned
cassava4.1 000381m PA	AT5G64270	0.137181746	-1.826199668	Zero DAP	6	27.1.1	RNA
cassava4.1_018507m PA	AT3G51030	0.13733635	-2.05086728	Zero DAP	5	21.01	redox
cassava4.1_009143m PA	AT4G38970	0.137753418	-1.391879393	Zero DAP	7	1.3.06	PS
cassava4.1_001424m PA	AT1G52360	0.138747233	-1.500370263	Zero DAP	18	31.4	cell
cassava4.1_012192m PA	AT5G12380	0.141518046	-1.514301967	Zero DAP	15	31.1	cell
cassava4.1_001931m PA	AT2G40730	0.142233519	-1.271409941	Zero DAP	4	29.4	protein
cassava4.1_001869m PA	AT4G13780	0.144364779	-1.29059591	Zero DAP	12	29.1.010	protein
cassava4.1_007330m PA	AT1G32440	0.145350852	-1.355625365	Zero DAP	7	11.1.030	lipid metabolism
cassava4.1_014620m PA	AT3G57650	0.148190655	-2.745739887	Zero DAP	2	11.3.01	lipid metabolism
cassava4.1_000048m PA	AT2G22125	0.148935796	-2.031665254	Zero DAP	10	35.1.19	not assigned
cassava4.1_001100m PA	AT5G42220	0.149072629	-3.043880986	Zero DAP	3	29.2.3	protein
cassava4.1_006899m PA	AT5G62790	0.150722774	-1.53472782	Zero DAP	7	16.1.1.02	secondary metabolism
cassava4.1_000611m PA	AT3G03380	0.15094663	-3.052047343	Zero DAP	4	29.5.05	protein
cassava4.1_018340m PA	-	0.150958293	-3.564582787	Zero DAP	2	-	-
cassava4.1_010414m PA	AT3G08900	0.151645903	-1.395277088	Zero DAP	3	10.5.5	cell wall
cassava4.1 009041m PA	AT5G63180	0.152614979	-11.18212258	Zero DAP	2	10.6.3	cell wall
cassava4.1_015453m PA	AT5G41210	0.152957014	-1.713153327	Zero DAP	2	26.09	misc
cassava4.1_003552m PA	AT3G18670	0.153263822	-1.390270974	Zero DAP	3	31.1	cell
cassava4.1_007502m PA	AT1G50010	0.154095892	-1.32270652	Zero DAP	25	31.1	cell
cassava4.1_018011m PA	AT3G59440	0.15474751	-4.664042421	Zero DAP	2	30.3	signalling
cassava4.1_002425m PA	AT2G34680	0.155243465	-1.571500894	Zero DAP	6	35.1	not assigned
cassava4.1_010782m PA	AT3G57560	0.155515992	-1.130361263	Zero DAP	4	13.1.2.3.02	amino acid metabolism
cassava4.1 010782m PA	AT3G57560	0.155515992	-1.130361263	Zero DAP	4	23.4.99	nucleotide metabolism
cassava4.1_009544m PA	AT1G48420	0.156454004	-1.142350167	Zero DAP	7	17.5.1	hormone metabolism
cassava4.1 008836m PA	AT2G34560	0.157047562	-5.203690154	Zero DAP	2	35.1	not assigned
cassava4.1_011926m PA	AT5G06570	0.157682544	-1.212155658	Zero DAP	5	35.1	not assigned
cassava4.1 002830m PA	AT4G24520	0.158050628	-1.621137992	Zero DAP	6	16.2	secondary metabolism
cassava4.1_002830m PA	AT4G24520	0.158050628	-1.621137992	Zero DAP	6	26.10	misc
cassava4.1_008057m PA	AT5G67150	0.158706658	-2.809675125	Zero DAP	2	16.2	secondary metabolism
cassava4.1 004670m PA	AT3G19820	0.160897762	-1.333037762	Zero DAP	20	17.3.1.2.08	hormone metabolism
cassava4.1_009917m PA	AT1G79460	0.161307928	-4.098475722	Zero DAP	4	17.6.1.02	hormone metabolism
cassava4.1 001388m PA	AT4G34450	0.161666381	-1.230983914	Zero DAP	29	31.4	cell
cassava4.1_016503m PA	AT1G17730	0.161797139	-1.308875945	Zero DAP	4	27.3.71	RNA
cassava4.1 012474m PA	AT2G40060	0.164207855	-1.982885352	Zero DAP	2	35.2	not assigned
cassava4.1_000550m PA	AT3G15880	0.164494254	-1.839507307	Zero DAP	3	33.99	development
cassava4.1_005440m PA	AT3G52990	0.165048789	-1.227373338	Zero DAP	27	4.013	glycolysis
cassava4.1_006418m PA	AT4G38510	0.165759715	-1.207238125	Zero DAP	7	34.1.01	transport
cassava4.1_009273m PA	AT2G34510	0.167148444	-1.851998178	Zero DAP	3	35.2	not assigned
cassava4.1_002873m PA	AT5G64390	0.168803621	-1.575077873	Zero DAP	3	27.4	RNA
•							

cassava4.1_005700m PA	AT3G01090	0.168848088	-1.181970191	Zero DAP	15	29.4	protein
cassava4.1_005700m PA	AT3G01090	0.168848088	-1.181970191	Zero DAP	15	30.1	signalling
cassava4.1_026724m PA	AT3G53180	0.170053256	-1.254819873	Zero DAP	4	12.2.02	N-metabolism
cassava4.1_032172m PA	AT2G37230	0.170713847	-1.342185483	Zero DAP	3	35.1.5	not assigned
cassava4.1_000807m PA	AT1G20760	0.171396572	-1.421182322	Zero DAP	2	30.3	signalling
cassava4.1_027898m PA	AT3G44330	0.172686971	-1.464103018	Zero DAP	2	35.2	not assigned
cassava4.1_029890m PA	AT2G34680	0.173017946	-1.712428922	Zero DAP	2	35.1	not assigned
cassava4.1_001879m PA	AT5G03340	0.175433659	-1.154708067	Zero DAP	45	31.2	cell
cassava4.1_006979m PA	AT5G17310	0.17657924	-1.139212866	Zero DAP	6	4.01	glycolysis
cassava4.1_009442m PA	AT3G15010	0.176983182	-2.701525944	Zero DAP	5	27.4	RNA
cassava4.1_006154m PA	AT5G23630	0.177095447	-1.398042048	Zero DAP	2	34.14	transport
cassava4.1_000768m PA	AT2G32730	0.178686751	-1.359203907	Zero DAP	17	29.5.11.20	protein
cassava4.1_001650m PA	AT5G11490	0.178930633	-1.11602864	Zero DAP	8	31.4	cell
cassava4.1_005320m PA	AT4G23650	0.179076187	-1.283838051	Zero DAP	4	30.3	signalling
cassava4.1_000300m PA	AT4G30100	0.179378173	-1.704186746	Zero DAP	2	28.1	DNA
cassava4.1_007263m PA	AT5G43960	0.179497947	-1.426903179	Zero DAP	4	29.3.1	protein
cassava4.1_007614m PA	AT5G23860	0.18042207	-1.490929643	Zero DAP	11	31.1	cell
cassava4.1_005209m PA	AT1G22410	0.183508087	-2.040400684	Zero DAP	2	13.1.6.1.01	amino acid metabolism
cassava4.1_012174m PA	AT1G62290	0.183874945	-1.357770277	Zero DAP	5	29.5.04	protein
cassava4.1_004928m PA	AT2G34040	0.184594777	-1.469667419	Zero DAP	15	33.99	development
cassava4.1_000160m PA	AT3G50590	0.185483159	-1.377757597	Zero DAP	9	35.1	not assigned
cassava4.1_006336m PA	AT5G36890	0.186046191	-1.511666104	Zero DAP	4	26.03	misc
cassava4.1_034227m PA	AT2G36770	0.1864669	-3.537260731	Zero DAP	3	26.02	misc
cassava4.1_002236m PA	AT4G24840	0.187132771	-1.484578297	Zero DAP	7	35.2	not assigned
cassava4.1_003255m PA	AT5G23570	0.18738984	-2.575520242	Zero DAP	3	27.3.99	RNA
cassava4.1_000597m PA	AT1G29900	0.189301558	-1.149953736	Zero DAP	18	13.1.2.3.011	amino acid metabolism
cassava4.1_000597m PA	AT1G29900	0.189301558	-1.149953736	Zero DAP	18	23.1.1.01	nucleotide metabolism
cassava4.1_001871m PA	AT3G43190	0.190463169	-1.15987115	Zero DAP	82	2.2.1.05	major CHO metabolism
cassava4.1_023285m PA	AT4G26000	0.191609761	-1.628176037	Zero DAP	3	27.3.99	RNA
cassava4.1_003785m PA	AT1G26850	0.192042495	-3.440469102	Zero DAP	3	20.2.3	stress
cassava4.1_001669m PA	AT2G23140	0.192209488	-1.385969451	Zero DAP	4	29.5.11.04.02	protein
cassava4.1_003934m PA	AT4G33070	0.192713043	-1.283526861	Zero DAP	10	5.02	fermentation
cassava4.1_028367m PA	AT2G28760	0.192730085	-1.428537111	Zero DAP	14	10.1.05	cell wall
cassava4.1_003067m PA	AT1G78570	0.194482964	-3.682132649	Zero DAP	4	10.1.010	cell wall
cassava4.1_005183m PA	AT1G71440	0.195370789	-1.348707413	Zero DAP	6	31.1	cell
cassava4.1_007612m PA	AT1G06570	0.195572251	-2.091793481	Zero DAP	2	13.2.6.2	amino acid metabolism
cassava4.1_007612m PA	AT1G06570	0.195572251	-2.091793481	Zero DAP	2	16.1.3.01	secondary metabolism
cassava4.1_009173m PA	AT2G43710	0.195830622	-1.705688301	Zero DAP	6	11.1.015	lipid metabolism
cassava4.1_012653m PA	AT3G53970	0.196201459	-1.359692197	Zero DAP	3	29.5.11.20	protein
cassava4.1_012020m PA	AT5G40150	0.197270192	-2.269539678	Zero DAP	9	26.12	misc
cassava4.1_002328m PA	AT2G27460	0.197789123	-1.436845564	Zero DAP	6	29.3.4.2	protein
cassava4.1_001227m PA	AT1G59610	0.197986575	-1.795119919	Zero DAP	5	26.17	misc
cassava4.1_010265m PA	AT5G51970	0.199056082	-1.29567229	Zero DAP	6	3.3	minor CHO metabolism
cassava4.1_000030m PA	AT1G80070	0.199707833	-1.435209516	Zero DAP	5	27.1.1	RNA

cassava4.1_004602m PA	AT1G12000	0.199752268	-1.274753778	Zero DAP	18	4.05	glycolysis
cassava4.1_005714m PA	AT1G17720	0.199930828	-1.346232339	Zero DAP	9	29.4	protein
cassava4.1_034367m PA	AT1G62730	0.200169606	-1.189748199	Zero DAP	2	35.2	not assigned
cassava4.1_026237m PA	AT5G41040	0.200599264	-1.402533889	Zero DAP	4	35.1	not assigned
cassava4.1_006625m PA	AT4G26270	0.200778451	-1.371593061	Zero DAP	2	4.04	glycolysis
cassava4.1_011984m PA	AT2G40010	0.200941812	-1.129150903	Zero DAP	8	29.2.2	protein
cassava4.1_010169m PA	AT5G02890	0.201058565	-1.985887814	Zero DAP	2	35.1	not assigned
cassava4.1_003814m PA	AT1G20950	0.201283797	-1.352083741	Zero DAP	13	4.05	glycolysis
cassava4.1_001228m PA	AT2G41740	0.203114372	-1.852213017	Zero DAP	10	31.1	cell
cassava4.1_004227m PA	AT3G58610	0.204035797	-1.111224656	Zero DAP	24	13.1.4.1	amino acid metabolism
cassava4.1_005249m PA	AT1G24510	0.204298987	-1.31056531	Zero DAP	13	29.4	protein
cassava4.1_005439m PA	AT5G20890	0.204394373	-1.391873271	Zero DAP	23	29.6	protein
cassava4.1_006134m PA	AT3G62120	0.205193741	-1.54972133	Zero DAP	13	29.1.040	protein
cassava4.1_011566m PA	AT1G60650	0.20529678	-1.802531438	Zero DAP	2	27.4	RNA
cassava4.1_011578m PA	AT3G59480	0.20581161	-1.514375705	Zero DAP	10	2.2.1.01	major CHO metabolism
cassava4.1_004457m PA	AT3G22960	0.207034125	-1.396069182	Zero DAP	4	11.1.030	lipid metabolism
cassava4.1_000834m PA	AT5G22780	0.207105807	-2.30384455	Zero DAP	12	31.4	cell
cassava4.1_006013m PA	AT5G56350	0.208583385	-1.299462423	Zero DAP	8	4.013	glycolysis
cassava4.1_000953m PA	AT5G07350	0.211352088	-10.93597897	Zero DAP	2	27.3.73	RNA
cassava4.1_008135m PA	AT1G60780	0.211897339	-1.201202497	Zero DAP	4	29.3.4.99	protein
cassava4.1_006498m PA	AT4G13940	0.212321039	-1.402188106	Zero DAP	14	13.2.3.4	amino acid metabolism
cassava4.1_003461m PA	AT5G57460	0.212824778	-1.353412852	Zero DAP	9	35.2	not assigned
cassava4.1_001134m PA	AT4G31480	0.214756289	-1.301132204	Zero DAP	26	31.4	cell
cassava4.1_009487m PA	AT2G33840	0.215969314	-1.484034669	Zero DAP	2	29.1.01	protein
cassava4.1_001702m PA	AT5G22780	0.216769327	-5.251768037	Zero DAP	2	31.4	cell
cassava4.1_006168m PA	AT1G09870	0.217372962	-1.985626681	Zero DAP	3	26.13	misc
cassava4.1_001093m PA	AT1G50200	0.219440275	-1.421112712	Zero DAP	30	29.1.07	protein
cassava4.1_002175m PA	AT1G78950	0.220116202	-199.8256438	Zero DAP	2	16.1.5	secondary metabolism
cassava4.1_006145m PA	AT5G46570	0.221731178	-1.227336239	Zero DAP	4	29.4	protein
cassava4.1_012958m PA	AT3G48750	0.222334258	-1.690177755	Zero DAP	4	31.3	cell
cassava4.1_001000m PA	AT5G26860	0.222545455	-1.246617507	Zero DAP	7	29.5.05	protein
cassava4.1_013358m PA	AT2G36870	0.223033528	-1.615915878	Zero DAP	4	10.7	cell wall
cassava4.1_002768m PA	AT3G51050	0.224300663	-1.389298313	Zero DAP	7	35.1	not assigned
cassava4.1_003825m PA	AT3G14240	0.224400237	-1.541947741	Zero DAP	7	29.5.01	protein
cassava4.1_002221m PA	AT1G45332	0.225998227	-2.491900698	Zero DAP	4	29.2.4	protein
cassava4.1_002371m PA	AT3G55610	0.22724297	-1.650303001	Zero DAP	5	13.1.2.2.01	amino acid metabolism
cassava4.1_008895m PA	AT1G62640	0.228149083	-1.08681315	Zero DAP	3	11.1.03	lipid metabolism
cassava4.1_000821m PA	AT5G43470	0.228755922	-1.245165899	Zero DAP	4	20.1	stress
cassava4.1_007694m PA	AT4G29040	0.230710714	-1.37875563	Zero DAP	24	29.5.11.20	protein
cassava4.1_005251m PA	AT1G56110	0.231646073	-1.348690326	Zero DAP	12	27.3.67	RNA
cassava4.1_001191m PA	AT5G63840	0.231910911	-1.622777138	Zero DAP	5	2.2.2.1	major CHO metabolism
cassava4.1_001191m PA	AT5G63840	0.231910911	-1.622777138	Zero DAP	5	26.03	misc
cassava4.1_000563m PA	AT3G63460	0.23499536	-1.826582502	Zero DAP	11	35.1	not assigned
cassava4.1_008456m PA	AT1G63660	0.235604958	-1.519950626	Zero DAP	3	23.1.2.031	nucleotide metabolism

cassava4.1_000389m PA	AT2G16640	0.235725678	-1.436239604	Zero DAP	8	29.3.3	protein
cassava4.1_001463m PA	AT1G55020	0.237088458	-1.297116648	Zero DAP	9	17.7.1.02	hormone metabolism
cassava4.1_001878m PA	AT3G53230	0.238249901	-1.596671695	Zero DAP	21	31.2	cell
cassava4.1_000767m PA	AT5G19820	0.238911655	-1.196456026	Zero DAP	7	35.1	not assigned
cassava4.1_006561m PA	AT1G22380	0.238925273	-1.159010735	Zero DAP	16	26.02	misc
cassava4.1_001379m PA	AT4G34450	0.239453354	-1.74553958	Zero DAP	5	31.4	cell
cassava4.1_000649m PA	AT1G21630	0.240366981	-1.389288747	Zero DAP	2	30.3	signalling
cassava4.1_000515m PA	AT3G01780	0.243266216	-1.579602406	Zero DAP	4	35.2	not assigned
cassava4.1_003870m PA	AT2G44160	0.243319965	-1.332936552	Zero DAP	17	25.06	C1-metabolism
cassava4.1_002853m PA	AT5G55230	0.244521017	-1.433043746	Zero DAP	7	31.1	cell
cassava4.1_017924m PA	AT1G77120	0.245352276	-1.280134892	Zero DAP	3	5.03	fermentation
cassava4.1_005262m PA	AT4G39980	0.246187446	-2.943840189	Zero DAP	2	13.1.6.1.01	amino acid metabolism
cassava4.1_002006m PA	AT1G73430	0.247874896	-1.707889235	Zero DAP	3	29.3.4.2	protein
cassava4.1_030986m PA	AT1G65810	0.249427138	-1.578963638	Zero DAP	2	28.1	DNA
cassava4.1_000654m PA	AT1G09620	0.25010725	-1.24862701	Zero DAP	26	29.1.04	protein
cassava4.1_004725m PA	AT3G25140	0.251031865	-6.077008193	Zero DAP	2	10.4	cell wall
cassava4.1_000885m PA	AT2G32730	0.252078337	-1.547671435	Zero DAP	4	29.5.11.20	protein
cassava4.1_003908m PA	AT5G49460	0.252250075	-1.104198522	Zero DAP	6	8.2.011	TCA / org
cassava4.1_004682m PA	AT3G10380	0.252476691	-3.226190744	Zero DAP	2	31.4	cell
cassava4.1_005784m PA	AT1G21380	0.252775032	-1.094178875	Zero DAP	2	31.4	cell
cassava4.1_026305m PA	AT4G33790	0.2549199	-1.797641338	Zero DAP	4	11.9.4.013	lipid metabolism
cassava4.1_004982m PA	AT5G49020	0.25528538	-1.7310998	Zero DAP	4	26.06	misc
cassava4.1_004065m PA	AT3G54860	0.255425181	-1.392578982	Zero DAP	4	29.3.4.3	protein
cassava4.1_015786m PA	AT1G04760	0.257468854	-1.690005813	Zero DAP	7	31.4	cell
cassava4.1_008185m PA	AT1G15200	0.259637505	-1.285463348	Zero DAP	3	35.1	not assigned
cassava4.1_000279m PA	AT2G32240	0.260738828	-1.198183402	Zero DAP	80	35.2	not assigned
cassava4.1_006672m PA	AT5G34850	0.261518859	-1.538427908	Zero DAP	2	26.13	misc
cassava4.1_005313m PA	AT5G20860	0.262365491	-1.258576374	Zero DAP	3	10.8.01	cell wall
cassava4.1_013178m PA	AT1G31860	0.263045671	-1.367502031	Zero DAP	2	13.1.7.02	amino acid metabolism
cassava4.1_001370m PA	AT3G51550	0.263188641	-3.07717149	Zero DAP	3	30.2.16	signalling
cassava4.1_008061m PA	AT5G07030	0.263401797	-1.037561364	Zero DAP	15	27.3.67	RNA
cassava4.1_002129m PA	AT2G38040	0.263784161	-1.722290621	Zero DAP	10	16.99	secondary metabolism
cassava4.1_000665m PA	AT5G49810	0.264332214	-1.200698529	Zero DAP	5	13.1.3.4.011	amino acid metabolism
cassava4.1_003557m PA	AT2G14740	0.265111518	-1.912701255	Zero DAP	2	29.3.4.3	protein
cassava4.1_002974m PA	AT2G25970	0.265481579	-1.147835231	Zero DAP	14	35.1	not assigned
cassava4.1_010114m PA	AT4G35360	0.267501656	-1.215661666	Zero DAP	6	18.4.01	Co-factor and vitamine metabolism
cassava4.1_010334m PA	AT3G08900	0.26827522	-1.039515748	Zero DAP	17	10.5.5	cell wall
cassava4.1_005989m PA	AT1G55150	0.268806172	-1.228147207	Zero DAP	4	17.5.3	hormone metabolism
cassava4.1_007010m PA	AT2G41540	0.269642611	-2.070434811	Zero DAP	2	11.5.02	lipid metabolism
cassava4.1_007854m PA	AT4G00090	0.270231492	-1.483635555	Zero DAP	2	33.99	development
cassava4.1_004898m PA	AT5G12370	0.270695696	-1.131926227	Zero DAP	8	35.1	not assigned
cassava4.1_034217m PA	AT2G17980	0.270892357	-1.379714656	Zero DAP	4	29.3.4.4	protein
cassava4.1_001603m PA	AT1G67930	0.272193318	-1.670543317	Zero DAP	7	31.4	cell
cassava4.1_002657m PA	AT3G01680	0.273286148	-1.081422376	Zero DAP	17	35.2	not assigned

cassava4.1_002628m PA	AT3G53260	0.274821949	-2.263289102	Zero DAP	4	16.2.1.01	secondary metabolism
cassava4.1_013475m PA	AT5G17770	0.275931945	-1.404083477	Zero DAP	9	21.99	redox
cassava4.1_002048m PA	AT3G14067	0.276882501	-1.294899475	Zero DAP	4	29.5.01	protein
cassava4.1_013884m PA	AT4G17720	0.278089603	-1.06640368	Zero DAP	5	27.4	RNA
cassava4.1_007549m PA	AT1G75780	0.28133407	-1.335809098	Zero DAP	19	31.1	cell
cassava4.1_008778m PA	AT2G34590	0.283120183	-1.064644164	Zero DAP	6	11.1.031	lipid metabolism
cassava4.1_013875m PA	AT3G02870	0.283929068	-1.203425686	Zero DAP	8	3.4.05	minor CHO metabolism
cassava4.1_001841m PA	AT2G21790	0.292408753	-1.809298426	Zero DAP	2	23.5.04	nucleotide metabolism
cassava4.1_003281m PA	AT2G25430	0.2928494	-1.313091884	Zero DAP	8	35.1.21	not assigned
cassava4.1_004789m PA	AT4G26270	0.295388041	-1.119311497	Zero DAP	15	4.04	glycolysis
cassava4.1_013410m PA	AT2G30620	0.299232771	-1.169984478	Zero DAP	2	28.1.3	DNA
cassava4.1_004686m PA	AT3G11830	0.299246034	-1.162748818	Zero DAP	23	29.6	protein
cassava4.1_015822m PA	AT4G20410	0.299700864	-1.082045723	Zero DAP	3	29.3.4.99	protein
cassava4.1_030760m PA	AT5G51550	0.300249279	-1.313388773	Zero DAP	4	35.1	not assigned
cassava4.1_001026m PA	AT2G46520	0.301022394	-1.153183263	Zero DAP	21	20.1	stress
cassava4.1_001026m PA	AT2G46520	0.301022394	-1.153183263	Zero DAP	21	29.3.1	protein
cassava4.1_011702m PA	AT1G04690	0.301895713	-1.078487653	Zero DAP	13	34.15	transport
cassava4.1_003876m PA	AT5G66020	0.302417297	-1.294814849	Zero DAP	7	29.5	protein
cassava4.1_003876m PA	AT5G66020	0.302417297	-1.294814849	Zero DAP	7	30.4	signalling
cassava4.1_014364m PA	AT5G02050	0.304107908	-1.258769008	Zero DAP	4	35.1	not assigned
cassava4.1_002445m PA	AT3G62310	0.304908875	-1.662332328	Zero DAP	3	27.1.2	RNA
cassava4.1_001063m PA	AT2G05170	0.306275274	-1.516262443	Zero DAP	2	29.3.4.3	protein
cassava4.1_014680m PA	AT5G10360	0.306893425	-1.075013806	Zero DAP	14	29.2.2	protein
cassava4.1_001045m PA	AT3G14940	0.308350079	-1.068919865	Zero DAP	42	4.014	glycolysis
cassava4.1_016203m PA	AT2G30860	0.309842199	-1.61549477	Zero DAP	2	26.09	misc
cassava4.1_005730m PA	AT1G18070	0.311176237	-1.149838522	Zero DAP	20	30.5	signalling
cassava4.1_029503m PA	AT3G14470	0.311442231	-1.434785994	Zero DAP	2	20.1	stress
cassava4.1_006585m PA	AT1G51710	0.313187601	-1.376430101	Zero DAP	8	29.5.11.05	protein
cassava4.1_023600m PA	AT1G79690	0.314274331	-1.897170296	Zero DAP	2	35.1	not assigned
cassava4.1_013077m PA	AT2G25280	0.317490481	-1.187822134	Zero DAP	9	35.2	not assigned
cassava4.1_005890m PA	AT3G18080	0.318592933	-1.433046893	Zero DAP	2	26.03	misc
cassava4.1_017618m PA	AT5G03840	0.318728147	-3.198649693	Zero DAP	2	33.99	development
cassava4.1_006331m PA	AT4G14300	0.31956071	-1.626441938	Zero DAP	2	35.1	not assigned
cassava4.1_001487m PA	AT5G53480	0.319746418	-1.119414225	Zero DAP	6	29.3.1	protein
cassava4.1_007561m PA	AT1G27090	0.320488404	-10.08051037	Zero DAP	2	35.1.40	not assigned
cassava4.1_003275m PA	AT5G55860	0.321028776	-1.308936832	Zero DAP	4	35.2	not assigned
cassava4.1_000886m PA	AT5G15400	0.323036765	-1.673602724	Zero DAP	7	29.5.11	protein
cassava4.1_010218m PA	AT3G08030	0.323427213	-1.526502448	Zero DAP	6	35.2	not assigned
cassava4.1_009985m PA	AT1G75330	0.324421766	-1.190018734	Zero DAP	8	13.1.2.3.021	amino acid metabolism
cassava4.1_011838m PA	AT5G19150	0.325308231	-1.102633246	Zero DAP	2	3.5	minor CHO metabolism
cassava4.1_015465m PA	AT1G12520	0.325549013	-1.157559274	Zero DAP	4	15.2	metal handling
cassava4.1_015465m PA	AT1G12520	0.325549013	-1.157559274	Zero DAP	4	21.6	redox
cassava4.1_007513m PA	AT5G19780	0.326323057	-1.298802962	Zero DAP	10	31.1	cell
cassava4.1_033198m PA	AT3G44330	0.327466163	-1.471952597	Zero DAP	4	35.2	not assigned

cassava4.1_018324m PA	AT3G60770	0.329562244	-1.326923764	Zero DAP	7	29.2.2	protein
cassava4.1_008841m PA	AT1G51410	0.332597375	-1.380525873	Zero DAP	2	26.11	misc
cassava4.1_015377m PA	AT3G27310	0.332663541	-1.56580164	Zero DAP	2	35.2	not assigned
cassava4.1_005819m PA	AT3G61050	0.332711437	-1.495360313	Zero DAP	4	30.3	signalling
cassava4.1_004591m PA	AT5G11710	0.334291677	-2.485800471	Zero DAP	2	35.1.21	not assigned
cassava4.1_012957m PA	AT5G26667	0.337281857	-1.242398634	Zero DAP	11	23.4.3	nucleotide metabolism
cassava4.1_011693m PA	AT1G59960	0.33866683	-1.261127283	Zero DAP	17	16.8.2	secondary metabolism
cassava4.1_005850m PA	AT5G08570	0.341091752	-1.065878932	Zero DAP	30	4.013	glycolysis
cassava4.1_001141m PA	AT2G36810	0.341663472	-1.536059747	Zero DAP	2	35.2	not assigned
cassava4.1_000863m PA	AT1G50200	0.345706112	-1.732394586	Zero DAP	3	29.1.07	protein
cassava4.1_006409m PA	AT4G38510	0.349462983	-1.191834226	Zero DAP	25	34.1.01	transport
cassava4.1_015404m PA	AT5G66410	0.350208928	-1.320775254	Zero DAP	2	35.2	not assigned
cassava4.1_010809m PA	AT4G22880	0.351992526	-1.650067301	Zero DAP	5	16.8.1.01	secondary metabolism
cassava4.1_007973m PA	AT1G01090	0.355072418	-1.509752752	Zero DAP	3	11.1.031	lipid metabolism
cassava4.1_003859m PA	AT5G42080	0.356007274	-1.404716505	Zero DAP	2	26.17	misc
cassava4.1_003859m PA	AT5G42080	0.356007274	-1.404716505	Zero DAP	2	30.5	signalling
cassava4.1_016211m PA	AT5G05270	0.356095699	-1.755159688	Zero DAP	2	16.8.2	secondary metabolism
cassava4.1_013996m PA	AT3G10350	0.358191338	-1.391483131	Zero DAP	3	34.18.01	transport
cassava4.1_022761m PA	AT3G51160	0.3586267	-1.588993815	Zero DAP	3	10.1.07	cell wall
cassava4.1_000948m PA	AT1G06220	0.359104038	-1.28220935	Zero DAP	5	29.2.4	protein
cassava4.1_005735m PA	AT1G11910	0.359381312	-1.389786971	Zero DAP	6	29.5.04	protein
cassava4.1_003760m PA	AT1G80270	0.360462179	-1.175225196	Zero DAP	5	27.3.67	RNA
cassava4.1_011727m PA	AT2G16760	0.361575973	-1.953429017	Zero DAP	3	35.2	not assigned
cassava4.1_034199m PA	AT3G14470	0.361610931	-2.585759417	Zero DAP	2	20.1	stress
cassava4.1_021056m PA	AT2G13540	0.362806936	-1.156989244	Zero DAP	9	29.2.3	protein
cassava4.1_011632m PA	AT1G18080	0.366769296	-1.125578461	Zero DAP	8	27.3.99	RNA
cassava4.1_011632m PA	AT1G18080	0.366769296	-1.125578461	Zero DAP	8	33.99	development
cassava4.1_005423m PA	AT1G04510	0.367366596	-1.495533348	Zero DAP	4	35.1	not assigned
cassava4.1_016645m PA	AT5G58060	0.369008325	-1.409195547	Zero DAP	2	31.4	cell
cassava4.1_024927m PA	AT1G14000	0.369381231	-1.423565477	Zero DAP	2	29.4	protein
cassava4.1_026844m PA	AT1G05180	0.370278938	-1.56561562	Zero DAP	5	17.2.2	hormone metabolism
cassava4.1_009036m PA	AT5G42130	0.372757022	-1.465266073	Zero DAP	2	34.9	transport
cassava4.1_013677m PA	AT4G24380	0.37285605	-1.279984755	Zero DAP	3	35.2	not assigned
cassava4.1_004360m PA	AT2G41790	0.373177571	-1.121934451	Zero DAP	13	29.5.07	protein
cassava4.1_008280m PA	AT4G01320	0.374217066	-1.313340943	Zero DAP	7	29.5	protein
cassava4.1_007902m PA	AT3G26618	0.37749923	-1.105923509	Zero DAP	5	29.2.5	protein
cassava4.1_004712m PA	AT3G02350	0.380484087	-1.680493785	Zero DAP	2	26.02	misc
cassava4.1_006196m PA	AT5G17330	0.380767679	-1.243052761	Zero DAP	8	13.1.1.101	amino acid metabolism
cassava4.1_001528m PA	AT2G41620	0.38099804	-1.280869392	Zero DAP	8	29.3.1	protein
cassava4.1_009410m PA	AT1G08200	0.382178588	-1.202317572	Zero DAP	19	10.1.03	cell wall
cassava4.1_001401m PA	AT4G30190	0.382205224	-1.093456093	Zero DAP	13	34.1.02	transport
cassava4.1_001047m PA	AT1G53310	0.383411372	-1.062839258	Zero DAP	23	4.014	glycolysis
cassava4.1_005309m PA	AT3G18190	0.386876873	-1.74718242	Zero DAP	3	29.6	protein
cassava4.1_007343m PA	AT5G59420	0.387352367	-1.225906247	Zero DAP	8	31.4	cell

cassava4.1_003328m PA	AT5G02500	0.389293787	-1.208234007	Zero DAP	21	29.6	protein
cassava4.1_004403m PA	AT3G25680	0.390068924	-1.341044213	Zero DAP	2	35.2	not assigned
cassava4.1_006253m PA	AT3G30841	0.390347043	-1.113577426	Zero DAP	6	4.011	glycolysis
cassava4.1_001050m PA	AT3G14940	0.390648545	-1.27557415	Zero DAP	6	4.014	glycolysis
cassava4.1_028537m PA	AT1G48410	0.393191568	-1.179995708	Zero DAP	16	27.3.36	RNA
cassava4.1_028537m PA	AT1G48410	0.393191568	-1.179995708	Zero DAP	16	33.99	development
cassava4.1_002964m PA	AT5G09590	0.394458618	-1.179584849	Zero DAP	21	20.2.1	stress
cassava4.1_013208m PA	AT5G66060	0.395424583	-1.250118822	Zero DAP	2	13.2.2.2	amino acid metabolism
cassava4.1_013208m PA	AT5G66060	0.395424583	-1.250118822	Zero DAP	2	26.07	misc
cassava4.1_003823m PA	AT1G76400	0.399971611	-1.387515247	Zero DAP	12	29.7	protein
cassava4.1_007337m PA	AT1G55810	0.400816571	-1.318786401	Zero DAP	4	23.3.1.03	nucleotide metabolism
cassava4.1_003606m PA	AT5G56360	0.400948077	-1.256956479	Zero DAP	2	30.3	signalling
cassava4.1_005523m PA	AT5G26830	0.401015679	-1.029141049	Zero DAP	6	29.1.03	protein
cassava4.1_003674m PA	AT1G04430	0.401377902	-1.987146994	Zero DAP	7	20.2.3	stress
cassava4.1_003364m PA	AT5G03540	0.402078974	-1.171669621	Zero DAP	9	31.4	cell
cassava4.1_005424m PA	AT5G05010	0.402874184	-1.166319338	Zero DAP	4	31.4	cell
cassava4.1_001052m PA	AT2G41740	0.403363523	-1.234160649	Zero DAP	27	31.1	cell
cassava4.1_011120m PA	AT4G17190	0.403844751	-1.042731718	Zero DAP	4	16.1.2.09	secondary metabolism
cassava4.1_001066m PA	AT5G62600	0.40529779	-1.285508515	Zero DAP	6	35.1	not assigned
cassava4.1_000966m PA	AT5G11560	0.406420542	-1.204626124	Zero DAP	22	35.1	not assigned
cassava4.1_008665m PA	AT1G04850	0.407695673	-1.055592527	Zero DAP	8	29.5.11	protein
cassava4.1_001712m PA	AT5G17920	0.407750196	-1.135022493	Zero DAP	39	13.1.3.4	amino acid metabolism
cassava4.1_014072m PA	AT4G13720	0.408721601	-1.153231284	Zero DAP	3	35.1	not assigned
cassava4.1_012129m PA	AT3G20000	0.409630437	-1.089005795	Zero DAP	6	35.1	not assigned
cassava4.1_004004m PA	AT5G13110	0.411092798	-1.212963212	Zero DAP	11	7.1.01	OPP
cassava4.1_029649m PA	AT2G22475	0.411205804	-1.28159669	Zero DAP	2	17.1.3	hormone metabolism
cassava4.1_012725m PA	AT2G30050	0.411350659	-1.542821595	Zero DAP	5	29.3.4.4	protein
cassava4.1_001558m PA	AT4G17770	0.411586018	-1.112607291	Zero DAP	4	3.2.3	minor CHO metabolism
cassava4.1_010822m PA	AT5G64210	0.412436031	-1.499607584	Zero DAP	9	9.04	mitochondrial electron transport / ATP synthesis
cassava4.1_011551m PA	AT2G02400	0.41250551	-1.191342295	Zero DAP	2	16.2	secondary metabolism
cassava4.1_030187m PA	AT5G13560	0.413273053	-1.341765658	Zero DAP	2	35.1	not assigned
cassava4.1_005682m PA	AT5G26780	0.416283326	-1.144529228	Zero DAP	23	1.2.05	PS
cassava4.1_005682m PA	AT5G26780	0.416283326	-1.144529228	Zero DAP	23	13.1.5.2.01	amino acid metabolism
cassava4.1_005682m PA	AT5G26780	0.416283326	-1.144529228	Zero DAP	23	25.01	C1-metabolism
cassava4.1_002487m PA	AT5G26710	0.417541	-1.232816738	Zero DAP	3	19.01	tetrapyrrole synthesis
cassava4.1_002487m PA	AT5G26710	0.417541	-1.232816738	Zero DAP	3	29.1.017	protein
cassava4.1_001827m PA	AT4G24190	0.418897312	-1.121090683	Zero DAP	38	20.2.1	stress
cassava4.1_006090m PA	AT3G53110	0.420521138	-1.156170938	Zero DAP	10	28.1	DNA
cassava4.1_012200m PA	AT5G12380	0.420534687	-1.161570533	Zero DAP	15	31.1	cell
cassava4.1_000843m PA	AT4G30160	0.423147933	-1.006061037	Zero DAP	17	31.1	cell
cassava4.1_002253m PA	AT1G71820	0.423765376	-1.181517897	Zero DAP	11	35.2	not assigned
cassava4.1_002723m PA	AT3G54440	0.425044901	-1.264260688	Zero DAP	5	26.03	misc
cassava4.1_011870m PA	AT2G33040	0.426437989	-1.142911431	Zero DAP	14	9.09	mitochondrial electron transport / ATP synthesis
cassava4.1_001498m PA	AT4G33090	0.42860693	-1.033619268	Zero DAP	27	29.5	protein

cassava4.1_011652m PA	AT4G13010	0.428660383	-1.081153386	Zero DAP	8	26.07	misc
cassava4.1_005485m PA	AT5G53850	0.42934528	-1.353157179	Zero DAP	2	3.5	minor CHO metabolism
cassava4.1_013135m PA	AT3G56190	0.430001422	-1.131644581	Zero DAP	10	35.1	not assigned
cassava4.1 001085m PA	AT3G19170	0.431309893	-1.196022223	Zero DAP	3	29.5.07	protein
cassava4.1_012002m PA	AT1G67730	0.433201771	-1.305924124	Zero DAP	2	16.7	secondary metabolism
cassava4.1 004975m PA	AT3G20050	0.436868269	-1.179412798	Zero DAP	29	29.6	protein
cassava4.1_026366m PA	AT4G30160	0.437237253	-1.139650676	Zero DAP	6	31.1	cell
cassava4.1 004280m PA	AT4G30920	0.437642316	-1.144480085	Zero DAP	34	29.5	protein
cassava4.1_001499m PA	AT4G33090	0.437893414	-1.120546965	Zero DAP	2	29.5	protein
cassava4.1_014268m PA	AT2G39700	0.438817473	-2.276195669	Zero DAP	2	10.7	cell wall
cassava4.1_014223m PA	AT1G78300	0.438991444	-1.071094582	Zero DAP	19	30.7	signalling
cassava4.1_015407m PA	AT4G26410	0.439749	-1.671168833	Zero DAP	2	35.2	not assigned
cassava4.1 006150m PA	AT2G46630	0.439843239	-1.11931876	Zero DAP	3	10.5.3	cell wall
cassava4.1_024698m PA	AT1G48430	0.441257123	-1.061243226	Zero DAP	9	3.5	minor CHO metabolism
cassava4.1 006725m PA	AT5G43600	0.446741171	-1.335932162	Zero DAP	7	29.5	protein
cassava4.1_005252m PA	AT3G02530	0.44708314	-1.100207447	Zero DAP	26	29.6	protein
cassava4.1_006082m PA	AT5G41950	0.45117335	-1.218274937	Zero DAP	3	35.2	not assigned
cassava4.1_010881m PA	AT4G17260	0.452112962	-1.189213506	Zero DAP	5	5.01	fermentation
cassava4.1 011283m PA	AT1G15950	0.45409929	-1.264073793	Zero DAP	6	16.2.1.07	secondary metabolism
cassava4.1_007374m PA	AT3G02100	0.45724081	-1.208806097	Zero DAP	2	26.02	misc
cassava4.1 002009m PA	AT1G62870	0.458125728	-1.447893233	Zero DAP	4	35.2	not assigned
cassava4.1 007673m PA	AT2G36530	0.45845483	-1.079144809	Zero DAP	34	4.012	glycolysis
cassava4.1 005355m PA	AT4G29840	0.459243254	-1.114509738	Zero DAP	5	13.1.3.2.01	amino acid metabolism
cassava4.1 008669m PA	AT5G15610	0.460135842	-1.170322807	Zero DAP	8	29.5.11.20	protein
cassava4.1_003946m PA	AT4G33070	0.461665621	-1.279396032	Zero DAP	5	5.02	fermentation
cassava4.1_010463m PA	AT2G47470	0.462245665	-1.084267749	Zero DAP	10	21.01	redox
cassava4.1_006526m PA	AT1G54990	0.465431485	-1.394625466	Zero DAP	2	35.2	not assigned
cassava4.1 007464m PA	AT1G06950	0.466186401	-1.091960835	Zero DAP	8	29.3.3	protein
cassava4.1_007039m PA	AT5G25754	0.466558832	-1.090340689	Zero DAP	10	35.2	not assigned
cassava4.1 029767m PA	AT4G36760	0.469127989	-1.234557746	Zero DAP	8	29.5	protein
cassava4.1 007915m PA	AT5G57020	0.472652568	-1.33749787	Zero DAP	2	29.4	protein
cassava4.1 000019m PA	AT1G64790	0.473657928	-1.184126653	Zero DAP	17	35.1	not assigned
cassava4.1 030093m PA	AT4G17140	0.475642953	-1.483846532	Zero DAP	2	35.1	not assigned
cassava4.1 028263m PA	AT2G27100	0.475929562	-1.467793077	Zero DAP	2	27.3.11	RNA
cassava4.1 005332m PA	AT3G06350	0.479010327	-1.139028065	Zero DAP	13	13.1.6.1.010	amino acid metabolism
cassava4.1 003735m PA	AT1G26460	0.479749972	-1.22345825	Zero DAP	2	35.1.5	not assigned
cassava4.1 001564m PA	AT4G16660	0.481895612	-1.297312266	Zero DAP	7	20.2.1	stress
cassava4.1 001865m PA	AT4G02350	0.482308664	-1.149624934	Zero DAP	8	31.4	cell
cassava4.1 004547m PA	AT2G26890	0.482759726	-1.228681796	Zero DAP	2	20.2.1	stress
cassava4.1 003346m PA	AT5G02500	0.483978736	-1.193985118	Zero DAP	4	29.6	protein
cassava4.1 014376m/PA	AT4G23420	0.484583369	-1.23280006	Zero DAP	6	26.22	misc
cassava4.1 004292mlPA	AT1G70570	0.485057013	-1.251498577	Zero DAP	10	13.1.6.5.02	amino acid metabolism
cassava4.1 007686m1PA	AT2G29550	0.485965217	-1.238020874	Zero DAP	2	31.1	cell
cassava4.1 008198m PA	AT4G14300	0.488683047	-1.328080859	Zero DAP	2	35.1	not assigned
							5

cassava4.1_013025m PA	AT5G13870	0.488981095	-1.08612867	Zero DAP	11	10.7	cell wall
cassava4.1_001644m PA	AT1G56070	0.489178888	-1.083692364	Zero DAP	53	29.2.4	protein
cassava4.1_004939m PA	AT2G17200	0.489758327	-1.356043491	Zero DAP	8	29.5.11	protein
cassava4.1_008510m PA	AT5G22060	0.492867645	-1.125498	Zero DAP	7	20.2.1	stress
cassava4.1_004778m PA	AT5G49650	0.495559932	-1.255844843	Zero DAP	2	3.7	minor CHO metabolism
cassava4.1_003630m PA	AT3G52850	0.495583903	-1.397439734	Zero DAP	5	29.3.4.3	protein
cassava4.1_005997m PA	AT3G26280	0.495595754	-1.053691982	Zero DAP	4	26.10	misc
cassava4.1_008743m PA	AT3G19760	0.495913476	-1.14516534	Zero DAP	10	27.1	RNA
cassava4.1_008743m PA	AT3G19760	0.495913476	-1.14516534	Zero DAP	10	29.2.3	protein
cassava4.1_009269m PA	AT2G14260	0.496296404	-1.116599333	Zero DAP	11	29.5	protein
cassava4.1_000897m PA	AT1G08420	0.497180086	-1.299981769	Zero DAP	3	29.4	protein
cassava4.1_005341m PA	AT5G62810	0.498266798	-1.080082082	Zero DAP	2	35.1	not assigned
cassava4.1_003880m PA	AT4G27500	0.501039343	-1.196663317	Zero DAP	8	35.2	not assigned
cassava4.1_023107m PA	AT3G04940	0.50364659	-1.127952046	Zero DAP	5	13.1.5.3.01	amino acid metabolism
cassava4.1_002598m PA	AT5G37510	0.504930896	-1.180475567	Zero DAP	12	9.1.2	mitochondrial electron transport / ATP synthesis
cassava4.1_013239m PA	AT1G09760	0.507060735	-1.068148157	Zero DAP	9	27.1	RNA
cassava4.1_007596m PA	AT1G36730	0.508772172	-1.060465487	Zero DAP	2	29.2.3	protein
cassava4.1_003953m PA	AT4G19210	0.510132817	-1.013285348	Zero DAP	10	27.2	RNA
cassava4.1_003402m PA	AT2G23350	0.510414542	-1.847299698	Zero DAP	4	27.1	RNA
cassava4.1_013854m PA	AT5G46860	0.510524446	-1.190235709	Zero DAP	3	31.4	cell
cassava4.1 012693m PA	AT3G02780	0.511975614	-1.353690093	Zero DAP	3	16.1.2.07	secondary metabolism
cassava4.1_027170m PA	AT2G21270	0.5175008	-1.086472359	Zero DAP	9	29.5.11	protein
cassava4.1_001451m PA	AT1G60070	0.517980536	-1.117163473	Zero DAP	11	31.4	cell
cassava4.1_002990m PA	AT2G25970	0.519236817	-1.156477221	Zero DAP	4	35.1	not assigned
cassava4.1_001476m PA	AT5G53480	0.520398396	-1.087313701	Zero DAP	15	29.3.1	protein
cassava4.1_008685m PA	AT5G36230	0.52115836	-1.119418338	Zero DAP	6	29.2.3	protein
cassava4.1_018737m PA	AT5G59890	0.525597951	-1.021344296	Zero DAP	3	31.1	cell
cassava4.1_016210m PA	AT5G26667	0.525807945	-1.246533278	Zero DAP	8	23.4.3	nucleotide metabolism
cassava4.1_001919m PA	AT3G07160	0.529533403	-1.415717625	Zero DAP	6	3.6	minor CHO metabolism
cassava4.1_001272m PA	AT1G59610	0.529922255	-1.254674441	Zero DAP	19	26.17	misc
cassava4.1_011608m PA	AT1G65650	0.531082476	-1.09524201	Zero DAP	3	29.5.11	protein
cassava4.1_010490m PA	AT5G42240	0.531611881	-1.152313176	Zero DAP	3	29.5.05	protein
cassava4.1_018854m PA	AT2G32720	0.535075076	-1.509680834	Zero DAP	3	21.2	redox
cassava4.1_002775m PA	AT4G21150	0.536594597	-1.261474547	Zero DAP	13	35.1	not assigned
cassava4.1_000788m PA	AT2G31660	0.537390874	-1.328448422	Zero DAP	3	29.3.1	protein
cassava4.1_011882m PA	AT4G33670	0.541088996	-1.148245068	Zero DAP	7	3.5	minor CHO metabolism
cassava4.1_008655m PA	AT4G32330	0.541594278	-1.152370301	Zero DAP	2	35.2	not assigned
cassava4.1_005119m PA	AT1G63770	0.548999285	-1.038928669	Zero DAP	16	29.5	protein
cassava4.1_002407m PA	AT5G04130	0.551654941	-1.417696558	Zero DAP	5	28.1	DNA
cassava4.1_002156m PA	AT5G17920	0.552295333	-1.067753004	Zero DAP	51	13.1.3.4	amino acid metabolism
cassava4.1_028954m PA	AT2G20580	0.553479272	-1.111408971	Zero DAP	2	29.5.11.20	protein
cassava4.1_013760m PA	AT5G58100	0.555120744	-1.349866149	Zero DAP	4	35.2	not assigned
cassava4.1_004471m PA	AT3G23990	0.555843831	-1.111148723	Zero DAP	18	20.2.1	stress
cassava4.1_004471m PA	AT3G23990	0.555843831	-1.111148723	Zero DAP	18	29.6	protein

cassava4.1_008072m PA	AT5G41040	0.560878265	-1.184426239	Zero DAP	3	35.1	not assigned
cassava4.1_002933m PA	AT4G31200	0.564372638	-1.166209384	Zero DAP	3	27.1	RNA
cassava4.1_015707m PA	AT3G53620	0.566303611	-1.117540223	Zero DAP	5	23.4.99	nucleotide metabolism
cassava4.1_016651m PA	AT2G18110	0.567530529	-1.427567852	Zero DAP	3	29.2.4	protein
cassava4.1_010473m PA	AT1G50380	0.571251993	-1.175792928	Zero DAP	3	29.5	protein
cassava4.1_010183m PA	AT3G02230	0.572600682	-1.066954552	Zero DAP	4	10.5.5	cell wall
cassava4.1_004848m PA	AT1G56110	0.572845542	-1.053482682	Zero DAP	14	27.3.67	RNA
cassava4.1_005418m PA	AT3G52990	0.574000528	-1.180918455	Zero DAP	10	4.013	glycolysis
cassava4.1_005232m PA	AT5G61790	0.574131326	-1.159980559	Zero DAP	8	30.3	signalling
cassava4.1_008232m PA	AT1G56050	0.575337723	-1.170977119	Zero DAP	3	30.5	signalling
cassava4.1_008598m PA	AT1G78850	0.575394331	-1.178610058	Zero DAP	2	26.16	misc
cassava4.1_031246m PA	AT4G24620	0.575652002	-1.049204492	Zero DAP	13	4.03	glycolysis
cassava4.1_004679m PA	AT2G01600	0.577171946	-1.320591698	Zero DAP	5	35.1.21	not assigned
cassava4.1_013860m PA	AT3G02870	0.577959141	-1.189042612	Zero DAP	3	3.4.05	minor CHO metabolism
cassava4.1_005543m PA	AT4G29840	0.579925663	-1.156119166	Zero DAP	4	13.1.3.2.01	amino acid metabolism
cassava4.1_007313m PA	AT5G65720	0.580742666	-1.110701417	Zero DAP	5	13.1.5.3	amino acid metabolism
cassava4.1_003648m PA	AT5G46190	0.581708154	-1.247264846	Zero DAP	3	35.1	not assigned
cassava4.1_024269m PA	AT4G34050	0.584206955	-1.094517158	Zero DAP	5	16.2.1.06	secondary metabolism
cassava4.1_003988m PA	AT1G43690	0.584969562	-1.074185995	Zero DAP	5	29.5.11	protein
cassava4.1_021580m PA	AT1G79280	0.59010117	-1.199072719	Zero DAP	2	35.1	not assigned
cassava4.1_018524m PA	AT1G70600	0.590549539	-1.01690311	Zero DAP	2	29.2.2	protein
cassava4.1_000064m PA	AT1G49340	0.592626001	-1.259616288	Zero DAP	2	30.4	signalling
cassava4.1_011059m PA	AT2G37400	0.593528861	-1.168903755	Zero DAP	2	35.1	not assigned
cassava4.1_001080m PA	AT5G62670	0.593612742	-1.061933419	Zero DAP	30	34.1	transport
cassava4.1_029678m PA	AT2G39960	0.59468313	-1.123840225	Zero DAP	2	35.1	not assigned
cassava4.1_032692m PA	AT1G07250	0.595074248	-1.291104853	Zero DAP	2	26.02	misc
cassava4.1_006251m PA	AT2G19860	0.595756134	-1.043431483	Zero DAP	3	2.2.1.04	major CHO metabolism
cassava4.1_004516m PA	AT4G35470	0.597741779	-1.082742701	Zero DAP	2	35.1	not assigned
cassava4.1_001342m PA	AT1G80410	0.599828662	-1.082317738	Zero DAP	11	26.05	misc
cassava4.1_002586m PA	AT2G26140	0.601829259	-1.365354519	Zero DAP	2	29.5.07	protein
cassava4.1_004160m PA	AT3G25800	0.602866902	-1.090856724	Zero DAP	16	29.4	protein
cassava4.1_011738m PA	AT5G66390	0.602878467	-1.283657347	Zero DAP	3	26.12	misc
cassava4.1_001305m PA	AT2G27040	0.603255578	-1.103854015	Zero DAP	15	27.3.36	RNA
cassava4.1_019781m PA	AT2G37600	0.603563575	-1.796524137	Zero DAP	2	29.2.2	protein
cassava4.1_008355m PA	AT1G21750	0.603916353	-1.070835714	Zero DAP	27	21.01	redox
cassava4.1_001982m PA	AT1G62750	0.604009616	-1.014931801	Zero DAP	7	29.2.4	protein
cassava4.1_015803m PA	AT5G39510	0.606598593	-1.013854268	Zero DAP	4	31.4	cell
cassava4.1_005461m PA	AT4G33510	0.607900321	-1.163312533	Zero DAP	6	13.1.6.1.01	amino acid metabolism
cassava4.1_003902m PA	AT5G49460	0.608377652	-1.166261625	Zero DAP	34	8.2.011	TCA / org
cassava4.1_010098m PA	AT3G04830	0.608588648	-1.124313961	Zero DAP	3	35.2	not assigned
cassava4.1_014378m PA	AT2G16595	0.608675063	-1.068552209	Zero DAP	2	35.1	not assigned
cassava4.1_016070m PA	AT2G37270	0.60941872	-1.004864247	Zero DAP	12	29.2.2	protein
cassava4.1_004327m PA	AT5G23880	0.609631928	-1.162469887	Zero DAP	3	27.1	RNA
cassava4.1_015675m PA	AT2G27450	0.60966991	-1.091507394	Zero DAP	2	22.1.05	polyamine metabolism

cassava4.1_006347m PA	AT2G43980	0.610519811	-1.124505525	Zero DAP	2	30.4.05	signalling
cassava4.1_010947m PA	AT2G01350	0.612800331	-1.267079412	Zero DAP	3	35.1	not assigned
cassava4.1_019252m PA	AT3G05560	0.615520788	-1.002716316	Zero DAP	7	29.2.2	protein
cassava4.1_032996m PA	AT3G10670	0.616056192	-1.053823759	Zero DAP	5	29.8	protein assembly and cofactor ligation
cassava4.1_003331m PA	AT5G02500	0.61684202	-1.090969044	Zero DAP	53	29.6	protein
cassava4.1 017908m PA	AT2G36620	0.616995621	-1.033218712	Zero DAP	7	29.2.2	protein
cassava4.1_013798m PA	AT3G51680	0.618953853	-1.303362009	Zero DAP	3	26.22	misc
cassava4.1 004836m PA	AT3G18480	0.619484014	-1.830465272	Zero DAP	2	35.1	not assigned
cassava4.1_003986m PA	AT2G01910	0.619650281	-1.149371137	Zero DAP	2	31.1	cell
cassava4.1_028726m PA	AT1G73180	0.619866963	-1.13484413	Zero DAP	2	29.2.3	protein
cassava4.1_019405m PA	AT2G27730	0.621782426	-1.02443259	Zero DAP	4	35.2	not assigned
cassava4.1_008633m PA	AT3G13920	0.626686438	-1.14440779	Zero DAP	6	29.2.3	protein
cassava4.1_016888m PA	AT4G31580	0.628713652	-1.164226887	Zero DAP	2	27.1.1	RNA
cassava4.1_010230m PA	AT4G00620	0.6295953	-1.054787243	Zero DAP	3	25.05	C1-metabolism
cassava4.1_001032m PA	AT5G15450	0.63171075	-1.035181507	Zero DAP	22	20.2.1	stress
cassava4.1_024426m PA	AT3G52990	0.631881142	-1.109999738	Zero DAP	7	4.013	glycolysis
cassava4.1_006084m PA	AT1G30690	0.631979513	-1.261925638	Zero DAP	3	28.99	DNA
cassava4.1_006084m PA	AT1G30690	0.631979513	-1.261925638	Zero DAP	3	34.99	transport
cassava4.1 018508m PA	AT1G70600	0.632285357	-1.017575834	Zero DAP	6	29.2.2	protein
cassava4.1_017568m PA	AT2G42610	0.633284728	-1.46544828	Zero DAP	2	35.2	not assigned
cassava4.1 005264m PA	AT1G09270	0.634364279	-1.280355769	Zero DAP	2	29.3.1	protein
cassava4.1_005008m PA	AT3G08960	0.635762021	-1.158161064	Zero DAP	3	27.3.99	RNA
cassava4.1_005588m PA	AT3G04610	0.637558951	-1.107623126	Zero DAP	8	27.4	RNA
cassava4.1_023817m PA	AT4G37990	0.639725726	-1.135561876	Zero DAP	3	16.2.1.010	secondary metabolism
cassava4.1_001268m PA	AT1G59610	0.640291451	-1.354897331	Zero DAP	4	26.17	misc
cassava4.1_013696m PA	AT3G01280	0.641500055	-1.134589248	Zero DAP	4	34.20	transport
cassava4.1_034369m PA	AT1G12310	0.641552951	-1.0103102	Zero DAP	7	29.4	protein
cassava4.1_004800m PA	AT5G26360	0.642287461	-1.065212332	Zero DAP	25	29.6	protein
cassava4.1_002554m PA	AT2G04350	0.643048373	-1.052011594	Zero DAP	6	11.1.09	lipid metabolism
cassava4.1_000575m PA	AT1G09570	0.643256733	-1.052679317	Zero DAP	15	30.11	signalling
cassava4.1_015611m PA	AT5G63400	0.644435521	-1.15242761	Zero DAP	3	23.4.01	nucleotide metabolism
cassava4.1_014410m PA	AT5G20720	0.64537249	-1.251694825	Zero DAP	4	29.6	protein
cassava4.1_016383m PA	AT1G14000	0.647688303	-1.065004451	Zero DAP	8	29.4	protein
cassava4.1_015969m PA	AT5G60860	0.650461079	-1.373089382	Zero DAP	8	30.5	signalling
cassava4.1_000662m PA	AT5G19820	0.651342616	-1.176875413	Zero DAP	8	35.1	not assigned
cassava4.1_030765m PA	AT1G45000	0.6518382	-1.046591163	Zero DAP	4	29.5.11.20	protein
cassava4.1_002016m PA	AT3G51550	0.653551924	-1.217189809	Zero DAP	2	30.2.16	signalling
cassava4.1_011550m PA	AT5G43330	0.654595793	-1.100062179	Zero DAP	7	8.2.09	TCA / org
cassava4.1_016374m PA	AT5G14030	0.65543719	-1.079724173	Zero DAP	3	35.1	not assigned
cassava4.1_001837m PA	AT1G07510	0.655619946	-1.178647513	Zero DAP	3	29.5.07	protein
cassava4.1_004255m PA	AT5G15270	0.655677187	-1.258801734	Zero DAP	3	35.1	not assigned
cassava4.1_012731m PA	AT1G14130	0.656718694	-1.111931521	Zero DAP	3	26.07	misc
cassava4.1_002625m PA	AT4G21150	0.657946532	-1.258453169	Zero DAP	8	35.1	not assigned
cassava4.1_017263m PA	AT3G58700	0.658291406	-1.001854709	Zero DAP	9	29.2.2	protein

cassava4.1_004989m PA	AT3G20290	0.65982264	-1.092954118	Zero DAP	13	30.3	signalling
cassava4.1_001470m PA	AT2G20580	0.661534649	-1.030329033	Zero DAP	31	29.5.11.20	protein
cassava4.1_006316m PA	AT3G52990	0.663237038	-1.195295281	Zero DAP	3	4.013	glycolysis
cassava4.1_003743m PA	AT3G60190	0.663701188	-1.115084078	Zero DAP	10	26.17	misc
cassava4.1_007683m PA	AT2G44100	0.6644146	-1.065682	Zero DAP	20	30.5	signalling
cassava4.1_016297m PA	AT1G69370	0.665004502	-1.070509534	Zero DAP	5	13.1.6.2.01	amino acid metabolism
cassava4.1_022174m PA	AT1G70670	0.666520646	-1.068992843	Zero DAP	2	33.99	development
cassava4.1_006224m PA	AT1G48900	0.672531868	-1.028565759	Zero DAP	7	29.3.4.99	protein
cassava4.1_003149m PA	AT5G42020	0.675749186	-1.108346124	Zero DAP	4	20.2.1	stress
cassava4.1_011997m PA	AT1G67730	0.676743682	-1.026534222	Zero DAP	7	16.7	secondary metabolism
cassava4.1_019619m PA	AT1G36240	0.67824011	-1.003487817	Zero DAP	6	29.2.2	protein
cassava4.1_009401m PA	AT1G10070	0.678949103	-1.521023598	Zero DAP	2	13.1.4.1	amino acid metabolism
cassava4.1_006123m PA	AT3G06580	0.680003457	-1.020619452	Zero DAP	5	3.8.01	minor CHO metabolism
cassava4.1_031388m PA	AT1G55210	0.680506831	-1.064324778	Zero DAP	2	20.1	stress
cassava4.1_003623m PA	AT1G76850	0.6805749	-1.141281763	Zero DAP	3	35.2	not assigned
cassava4.1_003999m PA	AT4G10840	0.681641392	-1.072237386	Zero DAP	2	31.1	cell
cassava4.1_016951m PA	AT1G48830	0.68326232	-1.017928554	Zero DAP	2	29.2.2	protein
cassava4.1_030256m PA	AT3G06350	0.687013946	-1.149068908	Zero DAP	8	13.1.6.1.010	amino acid metabolism
cassava4.1_002186m PA	AT3G18860	0.687082196	-1.081569182	Zero DAP	7	11.9.3	lipid metabolism
cassava4.1_003931m PA	AT1G72160	0.69106505	-1.061554539	Zero DAP	14	28.99	DNA
cassava4.1_003931m PA	AT1G72160	0.69106505	-1.061554539	Zero DAP	14	34.99	transport
cassava4.1_000707m PA	AT5G46070	0.692006244	-1.049657034	Zero DAP	5	30.5	signalling
cassava4.1_016430m PA	AT5G11680	0.692661857	-1.051853468	Zero DAP	3	35.2	not assigned
cassava4.1_006542m PA	AT3G52750	0.693419537	-1.070500839	Zero DAP	5	31.2	cell
cassava4.1_016480m PA	AT1G02130	0.693957561	-1.400653352	Zero DAP	3	30.5	signalling
cassava4.1_002706m PA	AT5G49910	0.694156219	-1.059178252	Zero DAP	10	20.2.1	stress
cassava4.1_005136m PA	AT5G61790	0.699838856	-1.070370644	Zero DAP	15	30.3	signalling
cassava4.1_018188m PA	AT3G11780	0.700304925	-1.036835505	Zero DAP	2	35.1	not assigned
cassava4.1_001019m PA	AT1G14610	0.70135224	-1.009034734	Zero DAP	6	29.1.09	protein
cassava4.1_006031m PA	AT1G63770	0.706578758	-1.059451262	Zero DAP	24	29.5	protein
cassava4.1_017984m PA	AT3G07480	0.707462266	-1.050371603	Zero DAP	3	35.2	not assigned
cassava4.1_001866m PA	AT3G20630	0.711067217	-1.038249963	Zero DAP	12	29.5.11.05	protein
cassava4.1_002121m PA	AT1G78060	0.711544467	-1.035141982	Zero DAP	14	10.6.2	cell wall
cassava4.1_001324m PA	AT4G32180	0.711943487	-1.068751243	Zero DAP	4	18.4.01	Co-factor and vitamine metabolism
cassava4.1_006635m PA	AT5G40870	0.712216077	-1.062657295	Zero DAP	6	23.3.1.03	nucleotide metabolism
cassava4.1_012623m PA	AT3G02780	0.71248215	-1.032250163	Zero DAP	4	16.1.2.07	secondary metabolism
cassava4.1_012845m PA	AT1G02280	0.712541211	-1.042018158	Zero DAP	7	30.5	signalling
cassava4.1_008915m PA	AT3G58060	0.713275436	-1.01368093	Zero DAP	2	34.12	transport
cassava4.1_018797m PA	AT5G20500	0.718749622	-1.064678304	Zero DAP	3	21.04	redox
cassava4.1_019018m PA	AT5G42850	0.723016919	-1.086719011	Zero DAP	3	35.2	not assigned
cassava4.1_004824m PA	AT5G56680	0.723857107	-1.04082886	Zero DAP	19	29.1.022	protein
cassava4.1_016331m PA	AT5G48760	0.729594498	-1.05550915	Zero DAP	12	29.2.2	protein
cassava4.1_018638m PA	AT3G10610	0.730070879	-1.035324416	Zero DAP	8	29.2.2	protein
cassava4.1_004743m PA	AT1G09780	0.730918309	-1.057283359	Zero DAP	34	4.011	glycolysis

cassava4.1_001768m PA	AT5G46210	0.733103606	-1.072883399	Zero DAP	2	29.5.11.4.3.03	protein
cassava4.1 016578m PA	AT3G11730	0.733383536	-1.056871811	Zero DAP	2	30.5	signalling
cassava4.1_001575m PA	AT1G68020	0.73746868	-1.024050971	Zero DAP	11	3.2.3	minor CHO metabolism
cassava4.1_010997m PA	AT1G61720	0.738097773	-1.115827922	Zero DAP	6	16.8.3.01	secondary metabolism
cassava4.1_031560m PA	-	0.738340991	-1.195034102	Zero DAP	2	-	-
cassava4.1 018513m PA	AT2G28900	0.739488949	-1.001756878	Zero DAP	7	29.3.2	protein
cassava4.1_004336m PA	AT1G70730	0.739905026	-1.03259972	Zero DAP	9	4.02	glycolysis
cassava4.1 034068m PA	AT4G16640	0.740850052	-1.060133564	Zero DAP	4	29.5.07	protein
cassava4.1_016353m PA	AT5G37720	0.741009054	-1.050454072	Zero DAP	2	27.4	RNA
cassava4.1_014479m PA	AT2G45140	0.743173762	-1.060402738	Zero DAP	2	35.1	not assigned
cassava4.1_006318m PA	AT4G39280	0.743504582	-1.066077741	Zero DAP	9	29.1.020	protein
cassava4.1_031313m PA	AT3G50950	0.745094213	-1.018528036	Zero DAP	2	20.1	stress
cassava4.1 018289m PA	AT1G08830	0.746269362	-1.161778488	Zero DAP	5	21.6	redox
cassava4.1_013862m PA	AT5G20920	0.751093549	-1.054278766	Zero DAP	9	29.2.3	protein
cassava4.1 017871m PA	AT1G53540	0.751586678	-1.039906298	Zero DAP	13	20.2.1	stress
cassava4.1_005369m PA	AT4G16143	0.752604183	-1.036850828	Zero DAP	6	29.3.1	protein
cassava4.1_018472m PA	AT5G18380	0.754625812	-1.078600409	Zero DAP	9	29.2.2	protein
 cassava4.1_017802m PA	AT3G53430	0.754664143	-1.077615668	Zero DAP	4	29.2.2	protein
cassava4.1 009786m PA	AT4G34460	0.754799007	-1.185330324	Zero DAP	3	30.5	signalling
 cassava4.1_010728m PA	AT4G18060	0.754891026	-1.103886035	Zero DAP	2	35.1	not assigned
cassava4.1 003425m PA	AT1G74040	0.757968636	-1.236044876	Zero DAP	3	13.1.4.4.01	amino acid metabolism
cassava4.1 005643m PA	AT5G01220	0.759558072	-1.138846893	Zero DAP	2	11.10.04	lipid metabolism
cassava4.1 000741m PA	AT5G06120	0.762053258	-1.063660183	Zero DAP	11	30.5	signalling
cassava4.1 018150m PA	AT2G47110	0.770198225	-1.022081778	Zero DAP	3	29.5.11	protein
cassava4.1 015846m PA	AT4G14710	0.770220711	-1.065665217	Zero DAP	2	15.3	metal handling
cassava4.1 008560m PA	AT5G55280	0.771327815	-1.066558056	Zero DAP	2	31.2	cell
cassava4.1 002955m PA	AT5G09590	0.773928072	-1.072246697	Zero DAP	32	20.2.1	stress
cassava4.1 015287m PA	AT4G25740	0.77408131	-1.098547884	Zero DAP	2	29.2.2	protein
cassava4.1 014774m PA	AT3G57290	0.774441696	-1.075015706	Zero DAP	6	29.2.3	protein
cassava4.1 013839m PA	AT1G19580	0.775069781	-1.03167981	Zero DAP	5	35.1	not assigned
cassava4.1 000722m PA	AT4G33010	0.777156134	-1.093886258	Zero DAP	26	13.2.5.2	amino acid metabolism
cassava4.1 009504m PA	AT1G36050	0.778040507	-1.070307735	Zero DAP	2	35.2	not assigned
cassava4.1 005863m PA	AT1G04280	0.778699262	-1.106297919	Zero DAP	2	35.2	not assigned
cassava4.1 010996m PA	AT2G28760	0.779115209	-1.125097902	Zero DAP	5	10.1.05	cell wall
cassava4.1 010707m PA	AT1G60690	0.782796979	-1.06650103	Zero DAP	2	17.2.3	hormone metabolism
cassava4.1 006487m PA	AT4G24330	0.783717098	-1.259666449	Zero DAP	5	35.2	not assigned
cassava4.1 003872m PA	AT3G18060	0.785140085	-1.012666823	Zero DAP	10	33.99	development
cassava4.1 007132m PA	AT4G04720	0.786610935	-1.104828065	Zero DAP	3	29.4	protein
cassava4.1 007132m PA	AT4G04720	0.786610935	-1.104828065	Zero DAP	3	30.3	signalling
cassava4.1 008222m PA	AT1G53750	0.788981654	-1.027469885	Zero DAP	10	29.5.11.20	protein
cassava4.1 014631mlPA	AT5G43830	0.789034299	-1.063943012	Zero DAP	2	15	metal handling
cassava4.1 014631mlPA	AT5G43830	0.789034299	-1.063943012	Zero DAP	2	17.2.3	hormone metabolism
cassava4.1 000960m1PA	AT1G12470	0.789141445	-1.14749796	Zero DAP	5	29.3.4.3	protein
cassava4.1_012142m PA	AT5G42180	0.789197853	-1.000919552	Zero DAP	3	26.12	misc

cassava4.1_018275m PA	AT2G33845	0.790043987	-1.106565938	Zero DAP	2	35.1	not assigned
cassava4.1_018974m PA	AT4G18100	0.790918518	-1.091781078	Zero DAP	3	29.2.2	protein
cassava4.1_004530m PA	AT5G10240	0.792050369	-1.084029213	Zero DAP	3	13.1.3.1.01	amino acid metabolism
cassava4.1_031613m PA	AT5G16660	0.792186422	-1.031148153	Zero DAP	3	35.2	not assigned
cassava4.1_016326m PA	AT3G18820	0.793525947	-1.099527485	Zero DAP	7	30.5	signalling
cassava4.1_010620m PA	AT5G54770	0.794735243	-1.078985858	Zero DAP	11	35.1	not assigned
cassava4.1_018404m PA	AT4G29410	0.795569073	-1.061441727	Zero DAP	9	29.2.2	protein
cassava4.1_027425m PA	AT1G29970	0.797086965	-1.172286949	Zero DAP	2	29.2.2	protein
cassava4.1_013047m PA	AT4G20440	0.798376067	-1.029560388	Zero DAP	6	27.1	RNA
cassava4.1_003284m PA	AT5G27540	0.799407435	-1.048154708	Zero DAP	19	30.5	signalling
cassava4.1_010185m PA	AT4G31530	0.799784821	-1.020781322	Zero DAP	2	35.2	not assigned
cassava4.1_024940m PA	AT5G48230	0.802076688	-1.03841	Zero DAP	8	13.2.3.5	amino acid metabolism
cassava4.1_024940m PA	AT5G48230	0.802076688	-1.03841	Zero DAP	8	16.1.2.01	secondary metabolism
cassava4.1_022819m PA	AT2G13560	0.804328142	-1.03151126	Zero DAP	2	8.2.10	TCA / org
cassava4.1_005089m PA	AT4G22010	0.804486087	-1.074986296	Zero DAP	2	26.07	misc
cassava4.1_012974m PA	AT3G11400	0.809446208	-1.026795499	Zero DAP	10	29.2.3	protein
cassava4.1_019294m PA	AT4G39260	0.810580776	-1.337980166	Zero DAP	3	27.3.75	RNA
cassava4.1_001880m PA	AT5G03340	0.81096391	-1.071021305	Zero DAP	8	31.2	cell
cassava4.1_019281m PA	AT3G45030	0.812034311	-1.098348787	Zero DAP	3	29.2.2	protein
cassava4.1_011050m PA	AT2G40290	0.813987118	-1.038512487	Zero DAP	7	29.2.3	protein
cassava4.1_018000m PA	AT2G47710	0.814209812	-1.254685819	Zero DAP	2	20.2.99	stress
cassava4.1_006917m PA	AT2G41060	0.814985576	-1.065192443	Zero DAP	3	35.1	not assigned
cassava4.1_021540m PA	AT5G19690	0.81521602	-1.1653705	Zero DAP	2	35.1	not assigned
cassava4.1_016870m PA	AT4G02080	0.815319434	-1.143645746	Zero DAP	2	30.5	signalling
cassava4.1_006118m PA	AT5G17330	0.815555798	-1.004858014	Zero DAP	23	13.1.1.101	amino acid metabolism
cassava4.1_005842m PA	AT4G13430	0.818529098	-1.031419884	Zero DAP	7	8.1.03	TCA / org
cassava4.1_019289m PA	AT5G02610	0.818585242	-1.097407187	Zero DAP	8	29.2.2	protein
cassava4.1_008690m PA	AT5G18170	0.820176997	-1.011774886	Zero DAP	3	12.3.01	N-metabolism
cassava4.1_004656m PA	AT5G27410	0.820639054	-1.017606692	Zero DAP	15	26.26.1	misc
cassava4.1_009823m PA	AT5G28840	0.820661221	-1.04347875	Zero DAP	11	21.2.1.01	redox
cassava4.1_015884m PA	AT3G16780	0.821863752	-1.15739432	Zero DAP	2	29.2.2	protein
cassava4.1_000283m PA	AT1G76810	0.822165757	-1.046585502	Zero DAP	2	29.2.3	protein
cassava4.1_002959m PA	AT2G32910	0.823366077	-1.255009431	Zero DAP	2	35.2	not assigned
cassava4.1_005107m PA	AT1G77140	0.826151661	-1.476743153	Zero DAP	4	29.3.4.3	protein
cassava4.1_018266m PA	AT1G78870	0.826395346	-1.204896573	Zero DAP	6	29.5.11.03	protein
cassava4.1_013619m PA	AT3G01280	0.827340691	-1.054546477	Zero DAP	17	34.20	transport
cassava4.1_017738m PA	AT3G16640	0.830492973	-1.12531354	Zero DAP	6	35.1	not assigned
cassava4.1_009493m PA	AT4G24820	0.831193249	-1.041134446	Zero DAP	2	29.5.11.20	protein
cassava4.1_019754m PA	AT4G39200	0.831844716	-1.099653136	Zero DAP	5	29.2.2	protein
cassava4.1_017755m PA	AT4G11600	0.832195606	-1.108873896	Zero DAP	7	21.2.2	redox
cassava4.1_020156m PA	AT1G66240	0.833088122	-1.368581884	Zero DAP	4	15.2	metal handling
cassava4.1_014235m PA	AT2G42590	0.833164584	-1.100207461	Zero DAP	12	30.7	signalling
cassava4.1_001686m PA	AT5G03650	0.83351531	-1.02787995	Zero DAP	14	2.1.2.03	major CHO metabolism
cassava4.1_013147m PA	AT1G30630	0.834135941	-1.020801709	Zero DAP	3	31.4	cell

cassava4.1_022905m PA	AT2G44610	0.834369774	-1.419990679	Zero DAP	4	30.5	signalling
cassava4.1_018827m PA	AT5G28060	0.834568656	-1.106104471	Zero DAP	5	29.2.2	protein
cassava4.1_016963m PA	AT5G61640	0.834938944	-1.080209615	Zero DAP	3	29.4	protein
cassava4.1_018530m PA	AT3G52560	0.836494591	-1.347919227	Zero DAP	2	29.5.11.03	protein
cassava4.1_019020m PA	AT3G12260	0.839690149	-1.07025467	Zero DAP	5	35.1	not assigned
cassava4.1_006634m PA	AT3G29360	0.843345713	-1.972698757	Zero DAP	3	10.1.04	cell wall
cassava4.1_003147m PA	AT1G67680	0.844128752	-1.078178212	Zero DAP	5	29.3.4.99	protein
cassava4.1_008945m PA	AT4G09020	0.847019054	-1.031881174	Zero DAP	2	2.1.2.04	major CHO metabolism
cassava4.1_025609m PA	AT1G23010	0.849558336	-1.460857641	Zero DAP	2	35.1	not assigned
cassava4.1_015938m PA	AT5G59840	0.853251782	-1.287548413	Zero DAP	4	30.5	signalling
cassava4.1_023450m PA	AT2G33740	0.853400654	-1.404724761	Zero DAP	2	15.2	metal handling
cassava4.1_001591m PA	AT1G06410	0.855903364	-1.013465401	Zero DAP	6	3.2.3	minor CHO metabolism
cassava4.1_004003m PA	AT4G10840	0.85707322	-1.033583341	Zero DAP	11	31.1	cell
cassava4.1_002533m PA	AT5G27640	0.857716858	-1.000262322	Zero DAP	6	29.2.3	protein
cassava4.1_013128m PA	AT2G39990	0.85795894	-1.013952058	Zero DAP	8	29.5.11.20	protein
cassava4.1_015054m PA	AT5G63310	0.857973727	-1.091983977	Zero DAP	2	23.4.010	nucleotide metabolism
cassava4.1_011700m PA	AT1G04690	0.858435359	-1.018198845	Zero DAP	3	34.15	transport
cassava4.1_018076m PA	AT5G23740	0.858613448	-1.140373752	Zero DAP	5	29.2.2	protein
cassava4.1_018516m PA	AT3G49910	0.8592907	-1.094552092	Zero DAP	7	29.2.2	protein
cassava4.1_027526m PA	AT1G24140	0.861432824	-1.153670211	Zero DAP	4	29.5.07	protein
cassava4.1_033213m PA	AT4G26900	0.862600176	-1.089705818	Zero DAP	6	35.1	not assigned
cassava4.1_019080m PA	AT2G34160	0.862754441	-1.06675325	Zero DAP	4	35.2	not assigned
cassava4.1_034152m PA	AT4G12700	0.863528224	-2.063722	Zero DAP	3	35.2	not assigned
cassava4.1_009545m PA	AT5G12470	0.865660101	-1.037309466	Zero DAP	4	35.2	not assigned
cassava4.1_028353m PA	AT3G57880	0.866062293	-1.071714891	Zero DAP	5	35.1.19	not assigned
cassava4.1_011133m PA	AT1G53240	0.866486145	-1.003611309	Zero DAP	22	8.1.09	TCA / org
cassava4.1_019824m PA	AT5G22580	0.867344269	-1.109344136	Zero DAP	3	35.2	not assigned
cassava4.1_000163m PA	AT5G13530	0.867448111	-1.137003086	Zero DAP	3	29.4	protein
cassava4.1_009811m PA	AT5G21060	0.869991817	-1.160810847	Zero DAP	3	13.1.3.6.1.03	amino acid metabolism
cassava4.1_018824m PA	AT5G28060	0.871534416	-1.176830674	Zero DAP	2	29.2.2	protein
cassava4.1_014275m PA	AT2G42590	0.872616918	-1.032857253	Zero DAP	5	30.7	signalling
cassava4.1_017511m PA	AT5G14680	0.873221134	-1.104659027	Zero DAP	2	20.2.99	stress
cassava4.1_002469m PA	AT3G54540	0.875352727	-1.056228621	Zero DAP	6	34.16	transport
cassava4.1_001875m PA	AT3G53230	0.876348076	-1.022241289	Zero DAP	11	31.2	cell
cassava4.1_026154m PA	AT4G36760	0.87732223	-1.015449632	Zero DAP	5	29.5	protein
cassava4.1_019777m PA	AT5G40370	0.878184487	-1.135900298	Zero DAP	4	21.04	redox
cassava4.1_001803m PA	AT4G16170	0.879944471	-1.194503881	Zero DAP	4	35.2	not assigned
cassava4.1_008467m PA	AT3G49680	0.880176067	-1.011412885	Zero DAP	11	13.1.4.1	amino acid metabolism
cassava4.1_000211m PA	AT1G14850	0.880737153	-1.051367869	Zero DAP	4	29.3.1	protein
cassava4.1_013428m PA	AT3G18940	0.883609925	-1.0017564	Zero DAP	2	35.1	not assigned
cassava4.1_017240m PA	AT4G12440	0.886605722	-1.394754235	Zero DAP	2	23.3.1.01	nucleotide metabolism
cassava4.1_018059m PA	AT1G13950	0.888724901	-1.079785729	Zero DAP	3	29.2.3	protein
cassava4.1_003374m PA	AT2G36850	0.890196254	-1.172940123	Zero DAP	2	3.6	minor CHO metabolism
cassava4.1_014767m PA	AT2G25810	0.891579343	-1.054684736	Zero DAP	3	34.19.2	transport

cassava4.1_032573m PA	AT1G21680	0.894040088	-1.002540004	Zero DAP	10	35.1	not assigned
cassava4.1_006508m PA	AT4G13940	0.894087246	-1.042388558	Zero DAP	26	13.2.3.4	amino acid metabolism
cassava4.1_003676m PA	AT1G78900	0.894497998	-1.023123435	Zero DAP	24	34.1	transport
cassava4.1_001428m PA	AT3G16290	0.895956494	-1.037397394	Zero DAP	3	29.5.07	protein
cassava4.1_033996m PA	AT4G17100	0.898097531	-1.019019886	Zero DAP	3	29.5.05	protein
cassava4.1_008693m PA	AT5G07440	0.898345069	-1.942628999	Zero DAP	2	12.3.01	N-metabolism
cassava4.1_020032m PA	AT3G25220	0.900248928	-1.181539038	Zero DAP	2	31.3.01	cell
cassava4.1_020203m PA	AT3G10950	0.900507216	-1.741051985	Zero DAP	2	29.2.2	protein
cassava4.1_010865m PA	AT2G26060	0.901157406	-1.038165349	Zero DAP	2	35.1	not assigned
cassava4.1_009374m PA	AT1G61580	0.908271217	-1.039110146	Zero DAP	11	29.2.2	protein
cassava4.1_018226m PA	AT3G55280	0.9098995	-1.077098053	Zero DAP	2	29.2.2	protein
cassava4.1_018064m PA	AT1G13950	0.910054106	-1.184316026	Zero DAP	9	29.2.3	protein
cassava4.1_006109m PA	AT1G21750	0.910059016	-1.007350353	Zero DAP	15	21.01	redox
cassava4.1_000001m PA	AT3G02260	0.910780508	-1.014635911	Zero DAP	23	17.2.2	hormone metabolism
cassava4.1_020226m PA	AT1G31812	0.912657397	-1.14799133	Zero DAP	3	11.1.013	lipid metabolism
cassava4.1_014328m PA	AT5G27470	0.91421691	-1.027409962	Zero DAP	13	29.1.011	protein
cassava4.1_018965m PA	AT4G27090	0.914807216	-1.121559225	Zero DAP	8	29.2.2	protein
cassava4.1_002530m PA	AT5G27640	0.916050716	-1.04285271	Zero DAP	6	29.2.3	protein
cassava4.1_018644m PA	AT5G61170	0.921528089	-1.211332485	Zero DAP	7	29.2.2	protein
cassava4.1_019181m PA	AT3G01640	0.923790002	-1.008479021	Zero DAP	2	35.1	not assigned
cassava4.1_002747m PA	AT5G56000	0.923932914	-1.008130963	Zero DAP	63	20.2.1	stress
cassava4.1_006165m PA	AT3G18490	0.924311119	-1.028462355	Zero DAP	3	27.3.99	RNA
cassava4.1_004852m PA	AT4G04770	0.924344863	-1.612030446	Zero DAP	3	29.8	protein assembly and cofactor ligation
cassava4.1_005092m PA	AT3G48000	0.927184482	-1.007019521	Zero DAP	6	5.10	fermentation
cassava4.1_014161m PA	AT4G38800	0.927227896	-1.07487983	Zero DAP	5	35.1	not assigned
cassava4.1_018235m PA	AT3G55280	0.929921895	-1.125763698	Zero DAP	5	29.2.2	protein
cassava4.1_003658m PA	AT3G46740	0.929935222	-1.03270995	Zero DAP	24	29.3.3	protein
cassava4.1_015621m PA	AT2G16600	0.931327282	-1.169077009	Zero DAP	10	26.01	misc
cassava4.1_015621m PA	AT2G16600	0.931327282	-1.169077009	Zero DAP	10	31.3	cell
cassava4.1_019041m PA	AT1G20580	0.931378554	-1.143712503	Zero DAP	2	27.1	RNA
cassava4.1_010874m PA	AT1G17890	0.931435795	-1.011014388	Zero DAP	6	10.1.08	cell wall
cassava4.1_005454m PA	AT1G34220	0.932143946	-1.03954866	Zero DAP	2	35.2	not assigned
cassava4.1_011340m PA	AT3G04120	0.939211246	-1.039678525	Zero DAP	24	4.09	glycolysis
cassava4.1_003144m PA	AT5G42020	0.93961833	-1.010445613	Zero DAP	28	20.2.1	stress
cassava4.1_013330m PA	AT1G03210	0.940211195	-1.018619436	Zero DAP	2	35.1	not assigned
cassava4.1_005006m PA						10 2 1 02	
000452mlDA	AT3G21240	0.940864767	-1.124427639	Zero DAP	3	16.2.1.03	secondary metabolism
cassava4.1_008453m1PA	AT3G21240 AT1G09210	0.940864767 0.940998571	-1.124427639 -1.024385786	Zero DAP Zero DAP	3 9	30.3	secondary metabolism signalling
cassava4.1_008453m/PA cassava4.1_010805m/PA	AT3G21240 AT1G09210 AT3G28715	0.940864767 0.940998571 0.9410944	-1.124427639 -1.024385786 -1.013199217	Zero DAP Zero DAP Zero DAP	3 9 5	30.3 34.1.01	secondary metabolism signalling transport
cassava4.1_008453m PA cassava4.1_010805m PA cassava4.1_005003m PA	AT3G21240 AT1G09210 AT3G28715 AT3G03960	0.940864767 0.940998571 0.9410944 0.941403113	-1.124427639 -1.024385786 -1.013199217 -1.009108095	Zero DAP Zero DAP Zero DAP Zero DAP	3 9 5 21	30.3 34.1.01 29.6	secondary metabolism signalling transport protein
cassava4.1_008453m PA cassava4.1_010805m PA cassava4.1_005003m PA cassava4.1_009860m PA	AT3G21240 AT1G09210 AT3G28715 AT3G03960 AT1G79230	0.940864767 0.940998571 0.9410944 0.941403113 0.941819257	-1.124427639 -1.024385786 -1.013199217 -1.009108095 -1.018021457	Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP	3 9 5 21 4	30.3 34.1.01 29.6 13.2.5.3	secondary metabolism signalling transport protein amino acid metabolism
cassava4.1_008453m PA cassava4.1_010805m PA cassava4.1_005003m PA cassava4.1_009860m PA cassava4.1_012149m PA	AT3G21240 AT1G09210 AT3G28715 AT3G03960 AT1G79230 AT3G23620	0.940864767 0.940998571 0.9410944 0.941403113 0.941819257 0.947824576	-1.124427639 -1.024385786 -1.013199217 -1.009108095 -1.018021457 -1.113877867	Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP	3 9 5 21 4 2	30.3 34.1.01 29.6 13.2.5.3 29.2.2.50	secondary metabolism signalling transport protein amino acid metabolism protein
cassava4.1_008453m PA cassava4.1_010805m PA cassava4.1_005003m PA cassava4.1_009860m PA cassava4.1_012149m PA cassava4.1_001255m PA	AT3G21240 AT1G09210 AT3G28715 AT3G03960 AT1G79230 AT3G23620 AT3G27530	0.940864767 0.940998571 0.9410944 0.941403113 0.941819257 0.947824576 0.95105048	-1.124427639 -1.024385786 -1.013199217 -1.009108095 -1.018021457 -1.113877867 -1.026785378	Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP	3 9 5 21 4 2 7	30.3 34.1.01 29.6 13.2.5.3 29.2.2.50 35.1	secondary metabolism signalling transport protein amino acid metabolism protein not assigned
cassava4.1_008453m PA cassava4.1_010805m PA cassava4.1_005003m PA cassava4.1_009860m PA cassava4.1_012149m PA cassava4.1_001255m PA cassava4.1_011245m PA	AT3G21240 AT1G09210 AT3G28715 AT3G03960 AT1G79230 AT3G23620 AT3G27530 AT5G16760	0.940864767 0.940998571 0.9410944 0.941403113 0.941819257 0.947824576 0.95105048 0.951513692	-1.124427639 -1.024385786 -1.013199217 -1.009108095 -1.018021457 -1.113877867 -1.026785378 -1.000379422	Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP Zero DAP	3 9 5 21 4 2 7 5	16.2.1.03 30.3 34.1.01 29.6 13.2.5.3 29.2.2.50 35.1 30.4.05	secondary metabolism signalling transport protein amino acid metabolism protein not assigned signalling

cassava4.1_005352m PA	AT3G06720	0.953544275	-1.006986093	Zero DAP	19	29.3.1	protein
cassava4.1_029194m PA	AT3G55200	0.953943764	-1.761314429	Zero DAP	3	27.1.1	RNA
cassava4.1_013644m PA	AT1G55170	0.960514266	-1.074557229	Zero DAP	5	35.2	not assigned
cassava4.1_014383m PA	AT2G16595	0.963301014	-1.157732591	Zero DAP	3	35.1	not assigned
cassava4.1_004315m PA	AT2G32910	0.963506411	-1.044690144	Zero DAP	3	35.2	not assigned
cassava4.1_000124m PA	AT1G20960	0.966302182	-1.047239788	Zero DAP	2	27.1	RNA
cassava4.1_000124m PA	AT1G20960	0.966302182	-1.047239788	Zero DAP	2	28.1	DNA
cassava4.1_029952m PA	AT5G40382	0.971605413	-1.208473509	Zero DAP	4	-	-
cassava4.1_001828m PA	AT5G05980	0.974159869	-1.005713309	Zero DAP	3	25.08	C1-metabolism
cassava4.1_016219m PA	AT3G27080	0.977011728	-1.372029237	Zero DAP	4	29.3.2	protein
cassava4.1_001614m PA	AT2G38020	0.980070521	-1.043276032	Zero DAP	6	29.3.4.3	protein
cassava4.1_001455m PA	AT4G01810	0.980258185	-1.976975904	Zero DAP	2	29.3.4.2	protein
cassava4.1_006533m PA	AT5G60160	0.980487439	-1.007219108	Zero DAP	13	29.5.04	protein
cassava4.1_018143m PA	AT4G14420	0.981630068	-1.357586735	Zero DAP	2	35.1	not assigned
cassava4.1_014276m PA	AT5G05670	0.984425502	-1.073948286	Zero DAP	2	29.3.4.99	protein
cassava4.1_019037m PA	AT5G56600	0.987534441	-1.150670792	Zero DAP	4	31.1	cell
cassava4.1_019435m PA	AT2G18040	0.989499853	-1.251841314	Zero DAP	5	31.3.01	cell
cassava4.1_018964m PA	AT2G32720	0.989928031	-1.228327572	Zero DAP	2	21.2	redox
cassava4.1_010964m PA	AT2G47970	0.994719908	-1.007357975	Zero DAP	6	35.1	not assigned
cassava4.1_034288m PA	AT1G50180	0.99491094	-1.00106679	Zero DAP	19	20.1	stress
cassava4.1_011307m PA	AT4G21450	0.996118829	-1.006848597	Zero DAP	2	31.4	cell
cassava4.1_017098m PA	AT3G05590	0.998356961	-1.277587784	Zero DAP	7	29.2.2	protein
cassava4.1_017792m PA	AT1G42960	0.999246856	-1.33112505	Zero DAP	2	35.2	not assigned

Supplemental Table 4.2. Significantly differentially regulated proteins during pruning. Proteins significantly more abundant zero or ten days after pruning (DAP) were defined as having an ANC										
		5		Mapman						
Cassava accession	Arabidopsis Accession	Anova (p)	Max fold change	Highest mean condition	BINCODE	NAME				
cassava4.1_006617m PA	AT1G70580	0.00735146	1.926825688	Ten DAP	1.2.3	photsynthesis				
cassava4.1_010126m PA	AT3G14420	0.04241707	1.750614151	Ten DAP	1.2.02	photsynthesis				
cassava4.1_009233m PA	AT2G01140	0.01661161	1.31375782	Ten DAP	1.3.06	photsynthesis				
cassava4.1_006596m PA	AT3G12780	0.00917201	1.745902602	Ten DAP	1.3.03	photsynthesis				
cassava4.1_006605m PA	AT3G12780	0.02459507	1.61206826	Ten DAP	1.3.03	photsynthesis				
cassava4.1_007221m PA	AT1G47840	0.03804542	1.512944971	Ten DAP	2.2.1.04	major CHO metabolism				
cassava4.1_005201m PA	AT4G09510	0.03593139	1.279162588	Ten DAP	2.2.1.03.01	major CHO metabolism				
cassava4.1_009614m PA	AT4G32400	0.0418598	1.204114911	Ten DAP	2.1.2.05	major CHO metabolism				
cassava4.1_001233m PA	AT1G68560	0.03975045	1.79339563	Ten DAP	2.2.2.1	major CHO metabolism				
cassava4.1_001244m PA	AT1G68560	0.04287359	1.296483626	Ten DAP	2.2.2.1	major CHO metabolism				
cassava4.1_006138m PA	AT4G29130	0.03929927	1.559017046	Ten DAP	2.2.1.04	major CHO metabolism				
cassava4.1_001362m PA	AT1G69830	0.02387379	6.271784075	Ten DAP	2.2.2.1	major CHO metabolism				
cassava4.1_004771m PA	AT5G04360	0.02213155	1.490585736	Ten DAP	2.1.2.04	major CHO metabolism				
cassava4.1_004619m PA	AT5G24300	0.02716323	1.244623178	Ten DAP	2.1.2.02	major CHO metabolism				
cassava4.1_008949m PA	AT5G08370	0.00616051	1.484106938	Ten DAP	3.8.2	minor CHO metabolism				
cassava4.1_006596m PA	AT3G12780	0.00917201	1.745902602	Ten DAP	4.010	glycolysis				
cassava4.1_006605m PA	AT3G12780	0.02459507	1.61206826	Ten DAP	4.010	glycolysis				
cassava4.1_006252m PA	AT1G44170	0.03025212	1.392279242	Ten DAP	5.10	fermentation				
cassava4.1_005123m PA	AT3G48000	0.00810057	1.519328287	Ten DAP	5.10	fermentation				
cassava4.1_004362m PA	AT4G37870	0.01579413	2.842536127	Ten DAP	6.04	gluconeogenese/ glyoxylate cycle				
cassava4.1_030131m PA	AT4G37870	0.02949767	2.560662975	Ten DAP	6.04	gluconeogenese/ glyoxylate cycle				
cassava4.1_010585m PA	AT2G22780	0.02813043	1.768182403	Ten DAP	6.03	gluconeogenesis				
cassava4.1_003566m PA	AT1G09420	0.0006559	1.233848973	Ten DAP	7.1.01	OPP				
cassava4.1_010105m PA	AT5G43330	0.00239901	1.203658368	Ten DAP	8.2.09	TCA / org				
cassava4.1_009952m PA	AT4G35650	0.04786744	1.431034228	Ten DAP	8.2.04	TCA / org				
cassava4.1_000903m PA	AT2G05710	0.0176247	1.241465409	Ten DAP	8.1.03	TCA / org				
cassava4.1_006853m PA	AT2G44350	0.03377405	1.613845419	Ten DAP	8.1.02	TCA / org				
cassava4.1_007540m PA	AT1G59900	0.01135208	1.398320386	Ten DAP	8.1.01.01	TCA / org				
cassava4.1_004864m PA	AT3G13930	0.04236915	1.298227513	Ten DAP	8.1.01.02	TCA / org				
cassava4.1_003490m PA	AT3G52200	0.03490738	1.263526843	Ten DAP	8.1.01.02	TCA / org				
cassava4.1_008387m PA	AT2G20420	0.04327857	1.300115518	Ten DAP	8.1.06	TCA / org				
cassava4.1_007889m PA	AT5G58330	0.0092062	2.283125624	Ten DAP	8.2.09	TCA / org				
cassava4.1_009175m PA	AT2G20360	0.02925598	1.374081152	Ten DAP	9.1.2	mitochondrial electron transport / ATP synthesis				
cassava4.1_004821m PA	AT4G02320	0.0288791	1.689617201	Ten DAP	10.8.99	cell wall				

cassava4.1_003278m PA	AT1G62440	0.00596309	1.599930163	Ten DAP	10.5.3	cell wall
cassava4.1_001252m PA	AT1G58370	0.00725663	1.475983414	Ten DAP	10.6.2	cell wall
cassava4.1_014262m PA	AT3G45970	0.03298087	1.465024207	Ten DAP	10.7	cell wall
cassava4.1_004339m PA	AT3G14310	0.00338657	1.481605442	Ten DAP	10.8.01	cell wall
cassava4.1_002966m PA	AT1G06290	0.00324872	2.249492405	Ten DAP	11.9.4.02	lipid metabolism
cassava4.1_005575m PA	AT4G29010	0.00838385	1.577977396	Ten DAP	11.9.4.09	lipid metabolism
cassava4.1_002951m PA	AT5G13640	0.02307906	1.178699477	Ten DAP	11.8.10	lipid metabolism
cassava4.1_007181m PA	AT2G33150	0.02495669	2.286929361	Ten DAP	11.9.4.05	lipid metabolism
cassava4.1_019325m PA	AT5G42890	0.04040195	1.561863456	Ten DAP	11.8	lipid metabolism
cassava4.1_014036m PA	AT4G16210	0.00748564	1.643172336	Ten DAP	11.9.4.04	lipid metabolism
cassava4.1_002479m PA	AT3G06860	0.02641783	1.959534388	Ten DAP	11.9.4.09	lipid metabolism
cassava4.1_001538m PA	AT4G35790	0.0183763	1.58413125	Ten DAP	11.9.3.01	lipid metabolism
cassava4.1_006559m PA	AT2G18730	0.03827546	1.306196433	Ten DAP	11.3.05	lipid metabolism
cassava4.1_028937m PA	AT5G35360	0.00162604	1.636998465	Ten DAP	11.1.01	lipid metabolism
cassava4.1_008713m PA	AT5G18170	0.00200684	2.03320298	Ten DAP	12.3.01	N-metabolism
cassava4.1_012571m PA	AT5G54080	0.00819589	3.560328754	Ten DAP	13.2.6.2	amino acid metabolism
cassava4.1_008396m PA	AT1G12050	0.00411318	1.602166851	Ten DAP	13.2.6.2	amino acid metabolism
cassava4.1_006859m PA	AT5G46180	0.0271597	1.838310247	Ten DAP	13.2.2.3	amino acid metabolism
cassava4.1_008844m PA	AT5G19550	0.04100868	1.260339511	Ten DAP	13.1.1.2.01	amino acid metabolism
cassava4.1_022406m PA	AT4G34030	0.01046407	1.115867703	Ten DAP	13.2.4.4	amino acid metabolism
cassava4.1_007181m PA	AT2G33150	0.02495669	2.286929361	Ten DAP	13.2.4.1	amino acid metabolism
cassava4.1_004831m PA	AT5G62530	0.01272154	1.369684373	Ten DAP	13.2.2.2	amino acid metabolism
cassava4.1_005703m PA	AT3G22200	0.03252997	1.768579566	Ten DAP	13.1.1.102	amino acid metabolism
cassava4.1_014036m PA	AT4G16210	0.00748564	1.643172336	Ten DAP	13.2.3.5	amino acid metabolism
cassava4.1_006617m PA	AT1G70580	0.00735146	1.926825688	Ten DAP	13.1.1.3.01	amino acid metabolism
cassava4.1_008563m PA	AT2G24580	0.02640825	1.497246038	Ten DAP	13.1.5.2.041	amino acid metabolism
cassava4.1_011138m PA	AT3G22740	0.01149975	9.158163652	Ten DAP	13.1.3.4.012	amino acid metabolism
cassava4.1_006432m PA	AT5G11880	0.02236041	1.417256807	Ten DAP	13.1.3.5.05	amino acid metabolism
cassava4.1_007019m PA	AT3G57050	0.04777276	1.5727444	Ten DAP	13.1.3.4.02	amino acid metabolism
cassava4.1_010180m PA	AT2G17265	0.01133639	1.355471482	Ten DAP	13.1.3.6.1.04	amino acid metabolism
cassava4.1_007094m PA	AT4G31990	0.03861669	1.344153267	Ten DAP	13.1.1.2.01	amino acid metabolism
cassava4.1_007524m PA	AT1G80600	0.01966984	1.692282687	Ten DAP	13.1.2.3.04	amino acid metabolism
cassava4.1_006286m PA	AT4G24830	0.04182703	1.460609283	Ten DAP	13.1.2.3.022	amino acid metabolism
cassava4.1_008771m PA	AT1G09795	0.02236232	1.348388951	Ten DAP	13.1.7.01	amino acid metabolism
cassava4.1_019208m PA	AT2G43750	0.00588843	1.541881836	Ten DAP	13.1.5.3.01	amino acid metabolism
cassava4.1_002871m PA	AT5G04590	0.04026437	1.20751879	Ten DAP	14.03	S-assimilation
cassava4.1_014697m PA	AT5G43830	0.01163371	1.499349065	Ten DAP	15	metal handling
cassava4.1_014185m PA	AT3G11050	0.03080794	2.039471953	Ten DAP	15.2	metal handling
cassava4.1_011289m PA	AT5G65550	0.04073648	1.380319881	Ten DAP	16.8.1.012	secondary metabolism

cassava4.1_011460m PA	AT5G42800	0.02264061	1.520848984	Ten DAP	16.8.3.01	secondary metabolism
cassava4.1_010343m PA	AT1G17020	0.03374059	1.772202731	Ten DAP	16.8.4	secondary metabolism
cassava4.1_011708m PA	AT2G45400	0.02433786	1.423547767	Ten DAP	16.8.4.01	secondary metabolism
cassava4.1_029504m PA	AT4G39230	0.01731638	1.468246346	Ten DAP	16.8.5	secondary metabolism
cassava4.1_012203m PA	AT3G12070	0.04636544	1.254214436	Ten DAP	16.1.1	secondary metabolism
cassava4.1_010140m PA	AT4G37970	0.02272133	1.327226671	Ten DAP	16.2.1.010	secondary metabolism
cassava4.1_004359m PA	AT4G14210	0.02571433	1.388460969	Ten DAP	16.1.4.02	secondary metabolism
cassava4.1_015449m PA	AT1G28200	0.01043683	1.407374243	Ten DAP	17.1.3	hormone metabolism
cassava4.1_014697m PA	AT5G43830	0.01163371	1.499349065	Ten DAP	17.2.3	hormone metabolism
cassava4.1_013447m PA	AT1G52340	0.03886228	1.283231678	Ten DAP	17.1.1.1011	hormone metabolism
cassava4.1_015980m PA	AT5G42650	0.04548834	1.540189318	Ten DAP	17.7.1.03	hormone metabolism
cassava4.1_001259m PA	AT1G67560	0.01325718	1.196296357	Ten DAP	17.7.1.02	hormone metabolism
cassava4.1_005844m PA	AT5G14220	0.02329841	1.544615719	Ten DAP	19.09	tetrapyrrole synthesis
cassava4.1_018093m PA	AT1G53540	0.00534376	8.023552477	Ten DAP	20.2.1	stress
cassava4.1_013205m PA	AT4G21320	0.01776866	2.769392266	Ten DAP	20.2.1	stress
cassava4.1_008257m PA	AT2G38000	0.02219464	2.281747913	Ten DAP	20.2.1	stress
cassava4.1_001300m PA	AT1G74310	0.01647251	2.158408629	Ten DAP	20.2.1	stress
cassava4.1_001604m PA	AT3G50950	0.00758851	1.948000233	Ten DAP	20.1	stress
cassava4.1_011775m PA	AT1G05260	0.01302614	1.752926694	Ten DAP	20.2.2	stress
cassava4.1_015966m PA	AT3G62020	0.01599747	1.865450268	Ten DAP	20.2.99	stress
cassava4.1_012839m PA	AT3G24170	0.00163086	1.41248156	Ten DAP	21.2.2	redox
cassava4.1_006188m PA	AT3G24170	0.00282425	1.206469929	Ten DAP	21.2.2	redox
cassava4.1_009693m PA	AT3G17880	0.03309878	1.637245385	Ten DAP	21.01	redox
cassava4.1_007980m PA	AT3G52880	0.02382477	1.420397426	Ten DAP	21.2	redox
cassava4.1_006303m PA	AT4G35090	0.03955936	3.329616518	Ten DAP	21.6	redox
cassava4.1_006302m PA	AT4G35090	0.00777775	3.291850587	Ten DAP	21.6	redox
cassava4.1_006320m PA	AT4G35090	0.00042379	2.90455018	Ten DAP	21.6	redox
cassava4.1_006367m PA	AT1G63940	0.03266988	1.746078082	Ten DAP	21.2.1	redox
cassava4.1_006560m PA	AT5G27380	0.01339028	1.818096767	Ten DAP	21.2.2	redox
cassava4.1_005081m PA	AT1G36280	0.00485676	1.772631821	Ten DAP	23.1.2.08	nucleotide metabolism
cassava4.1_014834m PA	AT5G63400	0.00959762	1.394046695	Ten DAP	23.4.01	nucleotide metabolism
cassava4.1_008175m PA	AT3G17810	0.02012165	1.346053171	Ten DAP	23.2	nucleotide metabolism
cassava4.1_029420m PA	AT5G42260	0.03324713	5.52076836	Ten DAP	26.03	misc
cassava4.1_032853m PA	AT3G60140	0.01296309	3.99794269	Ten DAP	26.03	misc
cassava4.1_027841m PA	AT4G19880	0.03792572	1.689813809	Ten DAP	26.09	misc
cassava4.1_001233m PA	AT1G68560	0.03975045	1.79339563	Ten DAP	26.03	misc
cassava4.1_005935m PA	AT3G18080	0.0413693	1.68803424	Ten DAP	26.03	misc
cassava4.1_001244m PA	AT1G68560	0.04287359	1.296483626	Ten DAP	26.03	misc
cassava4.1_011779m PA	AT5G05340	0.01235784	1.393003633	Ten DAP	26.12	misc

cassava4.1_011574m PA	AT5G66390	0.02916163	1.388266508	Ten DAP	26.12	misc
cassava4.1_003404m PA	AT3G06510	0.0215416	2.038064428	Ten DAP	26.03	misc
cassava4.1_011655m PA	AT4G13010	0.00231783	2.695500686	Ten DAP	26.07	misc
cassava4.1_001602m PA	AT3G26720	0.00324419	1.615893902	Ten DAP	26.03	misc
cassava4.1_006167m PA	AT2G20710	0.04987384	1.601900133	Ten DAP	27.3.67	RNA
cassava4.1_029528m PA	AT5G10770	0.00716048	1.780161588	Ten DAP	27.3.99	RNA
cassava4.1_009485m PA	AT5G10770	0.00033151	1.54793695	Ten DAP	27.3.99	RNA
cassava4.1_010150m PA	AT4G17520	0.01107316	1.452526425	Ten DAP	27.4	RNA
cassava4.1_016819m PA	AT2G45820	0.00930541	1.662800685	Ten DAP	27.3.67	RNA
cassava4.1_015763m PA	AT5G63880	0.04002527	1.232033827	Ten DAP	27.3.71	RNA
cassava4.1_003845m PA	AT1G72160	0.00472349	1.345255193	Ten DAP	28.99	DNA
cassava4.1_007163m PA	AT4G38220	0.02599717	1.607520884	Ten DAP	29.5	protein
cassava4.1_007251m PA	AT4G38220	0.03538782	1.539019794	Ten DAP	29.5	protein
cassava4.1_002552m PA	AT1G50380	0.03976622	1.485492241	Ten DAP	29.5	protein
cassava4.1_009672m PA	AT3G54360	0.00386717	1.46021094	Ten DAP	29.5.11.04.02	protein
cassava4.1_006459m PA	AT1G06110	0.00178612	1.752486433	Ten DAP	29.5.11.4.3.02	protein
cassava4.1_013730m PA	AT3G27430	0.02456257	1.842292617	Ten DAP	29.5.11.20	protein
cassava4.1_008212m PA	AT1G53750	0.03723627	1.524920926	Ten DAP	29.5.11.20	protein
cassava4.1_008421m PA	AT5G58290	0.02399329	1.485892869	Ten DAP	29.5.11.20	protein
cassava4.1_015645m PA	AT3G60820	0.02229892	1.17945286	Ten DAP	29.5.11.20	protein
cassava4.1_008374m PA	AT5G09900	0.02228975	1.165663759	Ten DAP	29.5.11.20	protein
cassava4.1_022803m PA	AT3G13235	0.0051246	1.252930263	Ten DAP	29.5.11.01	protein
cassava4.1_007929m PA	AT1G51710	0.00018483	1.247724727	Ten DAP	29.5.11.05	protein
cassava4.1_008257m PA	AT2G38000	0.02219464	2.281747913	Ten DAP	29.6	protein
cassava4.1_015319m PA	AT2G18110	0.01445178	1.568825174	Ten DAP	29.2.4	protein
cassava4.1_007130m PA	AT1G04170	0.01277707	1.411027139	Ten DAP	29.2.3	protein
cassava4.1_009232m PA	AT1G53880	0.0491596	1.323855844	Ten DAP	29.2.3	protein
cassava4.1_011934m PA	AT2G40010	0.01360298	1.172392775	Ten DAP	29.2.2	protein
cassava4.1_024858m PA	AT5G07090	0.0453126	1.360660378	Ten DAP	29.2.2	protein
cassava4.1_003839m PA	AT3G03060	0.01806783	1.337480979	Ten DAP	29.5.11.20	protein
cassava4.1_009061m PA	AT1G45000	0.03165599	1.202475005	Ten DAP	29.5.11.20	protein
cassava4.1_006415m PA	AT1G63500	0.01579717	1.310031239	Ten DAP	29.4	protein
cassava4.1_004238m PA	AT3G25800	0.04452667	1.170059726	Ten DAP	29.4	protein
cassava4.1_006148m PA	AT4G35230	0.00299608	1.945108137	Ten DAP	29.4.1.52	protein
cassava4.1_022125m PA	AT4G20360	0.04550581	2.152845168	Ten DAP	29.2.4	protein
cassava4.1_003427m PA	AT5G57580	0.03973165	2.126304302	Ten DAP	30.3	signalling
cassava4.1_012932m PA	AT5G39790	0.04500051	1.769509262	Ten DAP	30.1	signalling
cassava4.1_008933m PA	AT2G43790	0.02218486	1.476349168	Ten DAP	30.6	signalling
cassava4.1_017520m PA	AT3G24540	0.03343178	1.416408678	Ten DAP	30.2.22	signalling

cassava4.1_009469m PA	AT5G62390	0.03536776	1.561448059	Ten DAP	30.3	signalling
cassava4.1_009237m PA	AT1G52290	0.00906804	1.582418007	Ten DAP	30.2.22	signalling
cassava4.1_009779m PA	AT5G09810	0.03402981	1.185250403	Ten DAP	31.1	cell
cassava4.1_012276m PA	AT2G38750	0.01158737	1.127961248	Ten DAP	31.1	cell
cassava4.1_013229m PA	AT3G23400	0.03021156	1.774555917	Ten DAP	31.1	cell
cassava4.1_021183m PA	AT1G35720	0.01170947	1.169080202	Ten DAP	31.1	cell
cassava4.1_012423m PA	AT2G28680	0.02682253	3.966860939	Ten DAP	33.1	development
cassava4.1_010513m PA	AT2G28680	0.02426298	3.009674099	Ten DAP	33.1	development
cassava4.1_010570m PA	AT1G07750	0.00165494	1.904043819	Ten DAP	33.1	development
cassava4.1_008799m PA	AT2G26560	0.00748142	1.641450843	Ten DAP	33.1	development
cassava4.1_013350m PA	AT3G45600	0.00174226	1.687943839	Ten DAP	33.99	development
cassava4.1_009614m PA	AT4G32400	0.0418598	1.204114911	Ten DAP	34.8	transport
cassava4.1_013267m PA	AT3G54820	0.00177835	1.936787885	Ten DAP	34.19.1	transport
cassava4.1_013231m PA	AT4G00430	0.04499177	1.724545394	Ten DAP	34.19.1	transport
cassava4.1_013284m PA	AT5G60660	0.01643505	1.4258252	Ten DAP	34.19.1	transport
cassava4.1_003845m PA	AT1G72160	0.00472349	1.345255193	Ten DAP	34.99	transport
cassava4.1_009839m PA	AT1G12840	0.00419574	1.388372798	Ten DAP	34.1	transport
cassava4.1_023189m PA	AT3G42050	0.02032189	1.4106215	Ten DAP	34.1.01	transport
cassava4.1_015379m PA	AT4G11150	0.00229837	1.346622159	Ten DAP	34.1.01	transport
cassava4.1_008188m PA	AT3G48530	0.01710694	11.3332787	Ten DAP	35.1	not assigned
cassava4.1_032921m PA	AT3G48690	0.00682039	6.305755438	Ten DAP	35.1	not assigned
cassava4.1_008547m PA	AT1G49820	0.0011878	2.376973953	Ten DAP	35.1	not assigned
cassava4.1_012172m PA	AT4G24340	0.02779684	2.232144911	Ten DAP	35.1	not assigned
cassava4.1_015242m PA	AT5G63620	0.01593325	2.085665939	Ten DAP	35.1	not assigned
cassava4.1_006656m PA	AT5G57655	0.00166793	1.989665603	Ten DAP	35.1	not assigned
cassava4.1_009991m PA	AT4G17370	0.0350487	1.72928579	Ten DAP	35.1	not assigned
cassava4.1_008528m PA	AT1G49820	0.03764094	1.716446498	Ten DAP	35.1	not assigned
cassava4.1_004506m PA	AT1G60420	0.02391674	1.678195678	Ten DAP	35.1	not assigned
cassava4.1_034124m PA	AT2G38610	0.03189873	1.463435978	Ten DAP	35.1	not assigned
cassava4.1_013823m PA	AT1G19580	0.02560833	1.192395482	Ten DAP	35.1	not assigned
cassava4.1_001079m PA	AT3G08840	0.02814544	1.125596694	Ten DAP	35.1	not assigned
cassava4.1_033294m PA	AT5G44640	0.00609917	1.123323949	Ten DAP	35.1	not assigned
cassava4.1_001530m PA	AT5G06350	0.01826866	1.962559571	Ten DAP	35.2	not assigned
cassava4.1_010559m PA	AT5G25770	0.02037935	1.271911282	Ten DAP	35.2	not assigned
cassava4.1_003090m PA	AT3G10740	0.01364819	1.783904242	Ten DAP	35.1	not assigned
cassava4.1_001514m PA	AT5G12950	0.04047566	1.331413898	Ten DAP	35.2	not assigned
cassava4.1_011670m PA	AT4G27585	0.00365175	1.356094422	Ten DAP	35.1	not assigned
cassava4.1_013108m PA	AT4G28510	0.04786737	1.095548426	Ten DAP	35.1	not assigned
cassava4.1_011051m PA	AT5G22330	0.01721033	1.579219012	Ten DAP	35.1	not assigned

cassava4.1_011202m PA	AT1G50510	0.0206008	1.938611586	Ten DAP	35.1	not assigned
cassava4.1_016410m PA	AT4G20260	0.04832071	1.827661574	Ten DAP	35.1	not assigned
cassava4.1_006689m PA	AT1G64760	0.01403815	1.233673092	Ten DAP	35.1	not assigned
cassava4.1_001385m PA	AT1G47550	0.00319409	1.328324206	Ten DAP	35.2	not assigned
cassava4.1_007931m PA	AT1G53280	0.0355971	1.584043363	Ten DAP	35.1	not assigned
cassava4.1_000890m PA	AT1G22610	0.00492897	2.923968357	Ten DAP	35.1.19	not assigned
cassava4.1_006938m PA	AT3G06960	0.0269218	1.810813641	Ten DAP	35.2	not assigned
cassava4.1_010825m PA	AT5G08540	0.0192857	1.541150533	Ten DAP	35.2	not assigned
cassava4.1_009976m PA	AT1G74640	0.02576811	1.406039938	Ten DAP	35.2	not assigned
cassava4.1_021615m PA	AT3G55260	0.02328896	1.648389028	Ten DAP	35.1	not assigned
cassava4.1_006146m PA	AT5G24318	0.0490241	1.605479466	Ten DAP		
cassava4.1_018274m PA;sava	a4.1_018274m PF024	0.0412543	2.271361357	Ten DAP		
cassava4.1_029754m PAt:cas	ssava4.1_029754m	0.04823543	2.005286887	Ten DAP		
cassava4.1_011584m PA	AT3G59480	0.01329758	1.475956124	Zero DAP	2.2.1.01	major CHO metabolism
cassava4.1_005409m PA	AT4G39210	0.01135198	2.088975338	Zero DAP	2.1.2.01	major CHO metabolism
cassava4.1_011197m PA	AT1G43670	0.03943856	1.217314961	Zero DAP	2.1.1.03	major CHO metabolism
cassava4.1_000497m PA	AT5G26570	0.02678393	1.321020787	Zero DAP	2.2.2.03	major CHO metabolism
cassava4.1_005410m PA	AT5G53850	0.04145164	1.357691971	Zero DAP	3.5	minor CHO metabolism
cassava4.1_006818m PA	AT2G29560	0.01307646	1.559280338	Zero DAP	4.012	glycolysis
cassava4.1_005990m PA	AT5G56350	0.00065179	1.598008389	Zero DAP	4.013	glycolysis
cassava4.1_007678m PA	AT2G36530	0.01738317	1.184387774	Zero DAP	4.012	glycolysis
cassava4.1_004579m PA	AT3G16950	0.01441446	1.119370463	Zero DAP	8.1.01.03	TCA / org
cassava4.1_011800m PA	AT4G24570	0.03003869	12.83297076	Zero DAP	9.8	mitochondrial electron transport / ATP synthesis
cassava4.1_006215m PA	AT3G61490	0.03045097	6.021070584	Zero DAP	10.6.3	cell wall
cassava4.1_023284m PA	AT3G51160	0.03260657	1.612490451	Zero DAP	10.1.07	cell wall
cassava4.1_003070m PA	AT1G78570	0.02489405	1.939766287	Zero DAP	10.1.010	cell wall
cassava4.1_007645m PA	AT3G62830	0.04688203	2.474521947	Zero DAP	10.1.05	cell wall
cassava4.1_013011m PA	AT3G23730	0.03490783	7.078208205	Zero DAP	10.7	cell wall
cassava4.1_013014m PA	AT5G13870	0.00236123	2.053823582	Zero DAP	10.7	cell wall
cassava4.1_026770m PA	AT5G07720	0.01590742	7.792853011	Zero DAP	10.3	cell wall
cassava4.1_003705m PA	AT5G49720	0.00509153	4.673208839	Zero DAP	10.2	cell wall
cassava4.1_005517m PA	AT1G75680	0.01531539	2.472428331	Zero DAP	10.6.1	cell wall
cassava4.1_006282m PA	AT1G31070	0.00964423	1.901909375	Zero DAP	10.1	cell wall
cassava4.1_012622m PA	AT1G63000	0.02775869	3.058469716	Zero DAP	10.1.011	cell wall
cassava4.1_012617m PA	AT1G63000	0.01729863	2.510786326	Zero DAP	10.1.011	cell wall
cassava4.1_004720m PA	AT2G26260	0.00487059	1.953040311	Zero DAP	11.8.04	lipid metabolism
cassava4.1_006550m PA	AT4G36480	0.0441364	1.299408497	Zero DAP	11.8.1	lipid metabolism
cassava4.1_000041m PA	AT1G36160	0.02212595	4.840405433	Zero DAP	11.1.01	lipid metabolism
cassava4.1_000033m PA	AT1G36160	0.00031027	2.372967306	Zero DAP	11.1.01	lipid metabolism

cassava4.1_004314m PA	AT3G22960	0.01550972	2.069258196	Zero DAP	11.1.030	lipid metabolism
cassava4.1_004230m PA	AT3G22960	0.03100602	1.581515844	Zero DAP	11.1.030	lipid metabolism
cassava4.1_004405m PA	AT5G52920	0.02926856	1.460937398	Zero DAP	11.1.030	lipid metabolism
cassava4.1_009356m PA	AT2G36880	0.04276679	3.634983363	Zero DAP	13.1.3.4.011	amino acid metabolism
cassava4.1_010021m PA	AT3G61440	0.04257288	3.602058257	Zero DAP	13.1.5.3.01	amino acid metabolism
cassava4.1_009789m PA	AT3G61440	0.01001605	2.966724969	Zero DAP	13.1.5.3.01	amino acid metabolism
cassava4.1_009260m PA	AT4G01850	0.028676	7.173982227	Zero DAP	13.1.3.4.011	amino acid metabolism
cassava4.1_009245m PA	AT4G01850	0.01161816	4.153689723	Zero DAP	13.1.3.4.011	amino acid metabolism
cassava4.1_009247m PA	AT4G01850	0.00779596	3.966421553	Zero DAP	13.1.3.4.011	amino acid metabolism
cassava4.1_011785m PA	AT4G14880	0.01686101	1.470820095	Zero DAP	13.1.5.3.01	amino acid metabolism
cassava4.1_012023m PA	AT5G65780	0.01547336	1.914311188	Zero DAP	13.1.4.1	amino acid metabolism
cassava4.1_008023m PA	AT1G17745	0.0235088	1.721439695	Zero DAP	13.1.5.1.01	amino acid metabolism
cassava4.1_009356m PA	AT2G36880	0.04276679	3.634983363	Zero DAP	15.2	metal handling
cassava4.1_005974m PA	AT5G07990	0.03427019	4.336721255	Zero DAP	16.8.3.03	secondary metabolism
cassava4.1_009295m PA	AT5G13930	0.02547052	8.825291154	Zero DAP	16.8.2.01	secondary metabolism
cassava4.1_009402m PA	AT5G13930	0.02789483	2.648803168	Zero DAP	16.8.2.01	secondary metabolism
cassava4.1_005134m PA	AT4G32810	0.04483787	9.38927503	Zero DAP	17.1.1	hormone metabolism
cassava4.1_005510m PA	AT2G26170	0.04271988	2.30123054	Zero DAP	17.2.2	hormone metabolism
cassava4.1_006458m PA	AT1G11680	0.03635065	1.461856026	Zero DAP	17.3.1.2.03	hormone metabolism
cassava4.1_003527m PA	AT5G63120	0.00266744	2.073351598	Zero DAP	17.5.3	hormone metabolism
cassava4.1_000306m PA	AT2G36910	0.04024011	2.828121082	Zero DAP	17.2.2	hormone metabolism
cassava4.1_023409m PA	AT1G79460	0.0040696	42.83336756	Zero DAP	17.6.1.02	hormone metabolism
cassava4.1_003857m PA	AT4G18030	0.01467908	3.663598697	Zero DAP	20.2.3	stress
cassava4.1_003765m PA	AT1G26850	0.02665556	3.301021418	Zero DAP	20.2.3	stress
cassava4.1_004106m PA	AT4G00740	0.002492	2.374777322	Zero DAP	20.2.3	stress
cassava4.1_001780m PA	AT2G34300	0.04541922	2.306619469	Zero DAP	20.2.3	stress
cassava4.1_011715m PA	AT5G61240	0.04474006	3.867016975	Zero DAP	20.1	stress
cassava4.1_007339m PA	AT2G17840	0.03736536	1.769091637	Zero DAP	20.2.3	stress
cassava4.1_012699m PA	AT5G26667	0.02229545	1.289052438	Zero DAP	23.4.3	nucleotide metabolism
cassava4.1_000264m PA	AT1G74260	0.04694149	1.157447776	Zero DAP	23.1.2.04	nucleotide metabolism
cassava4.1_005818m PA	AT5G58860	0.00178994	Infinity	Zero DAP	26.10	misc
cassava4.1_005079m PA	AT4G39950	0.01089354	19.48809178	Zero DAP	26.10	misc
cassava4.1_005817m PA	AT5G57260	0.00433796	8.255161118	Zero DAP	26.10	misc
cassava4.1_003746m PA	AT1G14830	0.04394445	3.043660566	Zero DAP	26.17	misc
cassava4.1_021147m PA	AT1G22380	0.02619422	3.670478589	Zero DAP	26.02	misc
cassava4.1_005904m PA	AT2G43820	0.01048592	1.811946214	Zero DAP	26.02	misc
cassava4.1_026770m PA	AT5G07720	0.01590742	7.792853011	Zero DAP	26.02	misc
cassava4.1_003858m PA	AT5G42080	0.04414592	1.979692128	Zero DAP	26.17	misc
cassava4.1_005517m PA	AT1G75680	0.01531539	2.472428331	Zero DAP	26.03	misc

cassava4.1_003527m PA	AT5G63120	0.00266744	2.073351598	Zero DAP	27.1	RNA
cassava4.1_002126m PA	AT4G10070	0.02132054	1.638279498	Zero DAP	27.2	RNA
cassava4.1_003389m PA	AT5G27120	0.00480916	3.165424654	Zero DAP	27.3.67	RNA
cassava4.1_000656m PA	AT1G09620	0.0418764	5.828654907	Zero DAP	29.1.04	protein
cassava4.1_032535m PA	AT4G10320	0.03877881	1.554065116	Zero DAP	29.1.05	protein
cassava4.1_007409m PA	AT1G14570	0.01370051	1.67872442	Zero DAP	29.5	protein
cassava4.1_009231m PA	AT2G38860	0.00100595	1.360936044	Zero DAP	29.5	protein
cassava4.1_001804m PA	AT4G30020	0.0333283	2.780422867	Zero DAP	29.5.01	protein
cassava4.1_000634m PA	AT5G06460	0.01233332	1.512632939	Zero DAP	29.5.11.02	protein
cassava4.1_018147m PA	AT5G42190	0.02892897	1.633379408	Zero DAP	29.5.11.4.3.01	protein
cassava4.1_000599m PA	AT5G06600	0.02722764	1.88056626	Zero DAP	29.5.11.05	protein
cassava4.1_005302m PA	AT3G18190	0.01171907	1.595956909	Zero DAP	29.6	protein
cassava4.1_005057m PA	AT3G03960	0.01397332	1.244498262	Zero DAP	29.6	protein
cassava4.1_001585m PA	AT3G07100	0.04597656	2.204258055	Zero DAP	29.3.4.2	protein
cassava4.1_000150m PA	AT1G71220	0.01414175	1.661860023	Zero DAP	29.7	protein
cassava4.1_032325m PA	AT5G67360	0.04500085	5.267634152	Zero DAP	29.5.01	protein
cassava4.1_004221m PA	AT4G34980	0.009117	2.534486168	Zero DAP	29.5.01	protein
cassava4.1_006951m PA	AT2G03640	0.0437768	2.356099306	Zero DAP	29.3.1	protein
cassava4.1_008506m PA	AT3G50000	0.00118861	2.277335938	Zero DAP	29.4	protein
cassava4.1_004241m PA	AT4G26300	0.00095321	1.243089333	Zero DAP	29.1.019	protein
cassava4.1_000688m PA	AT4G20850	0.01658751	1.6375074	Zero DAP	29.5.01	protein
cassava4.1_000103m PA	AT3G43300	0.03177999	1.986283503	Zero DAP	30.5	signalling
cassava4.1_003858m PA	AT5G42080	0.04414592	1.979692128	Zero DAP	30.5	signalling
cassava4.1_000607m PA	AT4G32640	0.04264856	2.028837774	Zero DAP	31.4	cell
cassava4.1_007617m PA	AT5G23860	0.03076012	2.338573269	Zero DAP	31.1	cell
cassava4.1_007632m PA	AT5G23860	0.02360334	1.820090119	Zero DAP	31.1	cell
cassava4.1_007713m PA	AT5G23860	0.0352653	1.496295869	Zero DAP	31.1	cell
cassava4.1_000191m PA	AT5G20490	0.01560708	1.468547668	Zero DAP	31.1	cell
cassava4.1_007650m PA	AT5G12250	0.00480469	2.491595981	Zero DAP	31.1	cell
cassava4.1_004971m PA	AT5G55230	0.00282443	1.661939589	Zero DAP	31.1	cell
cassava4.1_000134m PA	AT3G11130	0.03473158	1.336794767	Zero DAP	31.4	cell
cassava4.1_009783m PA	AT2G37620	0.04260394	1.252216472	Zero DAP	31.1	cell
cassava4.1_001824m PA	AT3G13870	0.02502362	1.969382217	Zero DAP	33.99	development
cassava4.1_007339m PA	AT2G17840	0.03736536	1.769091637	Zero DAP	33.99	development
cassava4.1_001902m PA	AT1G16780	0.04429749	4.250299323	Zero DAP	34.30	transport
cassava4.1_000716m PA	AT1G07670	0.04293513	2.185440264	Zero DAP	34.21	transport
cassava4.1_000306m PA	AT2G36910	0.04024011	2.828121082	Zero DAP	34.16	transport
cassava4.1_004081m PA	AT5G60790	0.00809003	2.762754986	Zero DAP	34.16	transport
cassava4.1_001104m PA	AT2G24520	0.02515531	1.971669953	Zero DAP	34.1	transport

cassava4.1_026874m PA	AT5G04420	0.02636905	2.744156117	Zero DAP	35.1	not assigned
cassava4.1_016634m PA	AT5G04420	0.04276579	2.610155898	Zero DAP	35.1	not assigned
cassava4.1_004109m PA	AT2G01970	0.04926956	2.583957311	Zero DAP	35.1	not assigned
cassava4.1_000239m PA	AT2G20190	0.00456591	2.152447807	Zero DAP	35.1	not assigned
cassava4.1_005840m PA	AT2G03820	0.01861132	1.931357425	Zero DAP	35.1	not assigned
cassava4.1_000375m PA	AT5G37830	0.0454964	1.906025628	Zero DAP	35.1	not assigned
cassava4.1_008317m PA	AT3G14100	0.03734577	1.732291775	Zero DAP	35.1	not assigned
cassava4.1_008088m PA	AT5G41040	0.00687466	1.63843743	Zero DAP	35.1	not assigned
cassava4.1_001698m PA	AT1G04080	0.00824663	1.675107876	Zero DAP	35.1.41	not assigned
cassava4.1_003400m PA	AT5G10840	0.00552129	5.328285484	Zero DAP	35.2	not assigned
cassava4.1_014182m PA	AT3G49720	0.0475328	4.068148662	Zero DAP	35.2	not assigned
cassava4.1_033822m PA	AT3G48770	0.04769923	3.658330681	Zero DAP	35.2	not assigned
cassava4.1_000195m PA	AT2G38770	0.03369909	2.771771461	Zero DAP	35.2	not assigned
cassava4.1_033676m PA	AT5G54440	0.0281984	2.50853873	Zero DAP	35.2	not assigned
cassava4.1_000458m PA	AT3G62360	0.01451146	1.964032548	Zero DAP	35.2	not assigned
cassava4.1_012402m PA	AT5G01410	0.01077575	4.622868947	Zero DAP	35.1	not assigned
cassava4.1_008405m PA	AT1G51630	0.03584193	2.036739081	Zero DAP	35.2	not assigned
cassava4.1_017972m PA	AT5G24710	0.03680977	3.734045149	Zero DAP	35.1	not assigned
cassava4.1_014594m PA	AT2G38740	0.01039082	3.204474615	Zero DAP	35.1	not assigned
cassava4.1_003361m PA	AT2G07360	0.03843676	2.255211256	Zero DAP	35.1	not assigned
cassava4.1_004018m PA	AT1G70770	0.03630797	2.065843638	Zero DAP	35.2	not assigned
cassava4.1_021312m PA	AT5G49830	0.00128175	1.449046934	Zero DAP	35.2	not assigned
cassava4.1_001142m PA	AT2G23520	0.02021699	1.376081175	Zero DAP	35.2	not assigned
cassava4.1_009169m PA	AT5G12470	0.0424654	1.544540869	Zero DAP	35.2	not assigned
cassava4.1_014777m PA	AT3G07030	0.00744154	1.497351383	Zero DAP	35.2	not assigned
gi 169794080 ref YP_00	-	0.02212956	3.452999046	Zero DAP	-	-