
Diss. ETH No. 22013

Stochastic Biochemical Networks in Random Environments:
Probabilistic Modeling and Inference

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

Christoph Zechner

Dipl.-Ing., Graz University of Technology, Austria

born on 06.07.1986

citizen of Austria

accepted on the recommendation of

Prof. Dr. Heinz Koeppl (examiner)
Prof. Dr. John Lygeros (co-examiner)
Prof. Dr. Peter Swain (co-examiner)

2014





3

For

Hanna





Acknowledgments

I would like to express my deepest appreciation to Heinz Koeppl for believing in me
and enabling me to do my PhD in this outstanding academic environment. His excep-
tional availability for in-depth scientific discussions, feedback and support were crucial
in finding my research directions and interests and allowed me to perform my doc-
toral research with maximum efficiency. Furthermore, he helped me to connect within
the scientific community by funding a multitude of scientific meetings and conferences
around the world and even supported a six-month research internship abroad. I am
grateful for the many scientific skills I could learn from him in the course of my PhD.
I highly appreciated his easygoing, friendly and down-to-earth mentality and I hope I
could adopt a large portion of that mindset.

I would like to greatly thank my co-advisor and head of the Automatic Control Lab
John Lygeros for the assessment of my thesis, all the fruitful scientific collaborations
and the excellent work environment during my doctoral research. I could strongly
profit from being exposed to a diversity of group members within and outside my field
of research. I always appreciated his valuable and inspiring comments, especially during
the close collaborations with Jakob Ruess. I am also very grateful for having been part
of his committed teaching team. I believe the amount of time and effort he invested
there sets the best example of how teaching should be done. Also, I am very thankful
to him for enabling me to stay at the lab also after Heinz Koeppl left ETH.

I am sincerely thankful also to my second co-advisor Peter Swain for the stimulating
and enriching discussions during our meetings. As an experienced pioneer in my field
of research, his feedback meant a big deal to me and helped me to find “the right”
questions. I am also grateful to him for investing his time to read and assess my thesis
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Abstract

Biochemical processes within clonal cell populations exhibit a substantial degree of
cell-to-cell variability. While a fraction of the overall variability is due to the intrinsic
stochasticity of the chemical reactions, a major part is attributed to fluctuations in their
surrounding environment – also referred to as extrinsic noise. The latter causes severe
complications in the analysis and inference of biochemical networks, primarily because
every cell needs to be described by a differently parameterized stochastic process, giving
rise to a mixed-effect model. Therefore, straightforward approaches that aim to directly
analyze such models scale only poorly with the number of considered cells.

The major goal of this thesis is to address these scalability issues and to develop an
efficient mathematical framework for the analysis and inference of stochastic biochem-
ical processes subject to extrinsic noise. We show that scalable kinetic models can be
derived by marginalizing the mixed-effect model with respect to environmental com-
ponents, yielding a parameter dimensionality independent of the population size. We
first follow this idea to efficiently reconstruct biochemical processes from experimen-
tal single-cell measurements. In case of population snapshot data, we derive moment
equations based on the marginalized model and use them to infer its kinetic parameters
from experimental flow cytometry measurements.

Analogously, we develop a marginalized inference scheme for heterogeneous time-
lapse data, in which the dynamics of individual cells can be recorded over time. The
time-series nature of such measurements gives rise to a challenging missing data prob-
lem, which we solve using a sequential Monte Carlo algorithm. Using experimental
data from an artificially controlled gene in yeast, we validate the approach and demon-
strate its ability to infer kinetic parameters, unmeasured chemical species and to dissect
intrinsic and extrinsic contributions of noise.

The marginal process framework is then extended for the important case of dynam-
ically changing environmental conditions. In particular, we demonstrate that the con-
struction of the marginal dynamics for fluctuating environments is closely connected to
solving a stochastic filtering problem. We show how the latter can be tackled in prac-
tice and derive a marginal stochastic simulation algorithm, which allows to perform
exact simulations of only parts of a network. We also show that the marginal process
framework serves a promising analytical tool to study noise in biochemical systems.
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Zusammenfassung

Biochemische Prozesse in genetisch identischen Zellen weisen ein beträchtliches Maß
an Zell-zu-Zell-Variabilitität auf. Davon kann nur ein Teil auf die intrinsische Stochas-
tizität der chemischen Reaktionen zurückgeführt werden. Ein ebenso wesentlicher Teil
entsteht durch Fluktuationen in der Umgebung eines Prozesses, welcher daher oftmals
als extrinsisch bezeichnet wird. Dieser Teil der Variabilität sorgt für erhebliche Schwie-
rigkeiten bei der Analyse und Rekonstruktion von biochemischen Netzwerken. Insbe-
sondere hat er zur Folge, dass jede Zelle durch einen unterschiedlich parametrisierten
stochastischen Prozess beschrieben werden muss. Ansätze die auf eine direkte Analyse
der daraus resultierenden Mischeffekt-Modelle abzielen, skalieren daher schlecht mit
der Anzahl der berücksichtigten Zellen.

Das Hauptziel dieser Arbeit ist es sich mit diesem Skalierungsproblem auseinander-
zusetzen und ein effizientes mathematisches Grundgerüst für die Analyse und Rekon-
struktion von stochastischen biochemischen Prozessen unter Berücksichtigung der ex-
trinsischen Variabilität zu entwickeln. Wir zeigen, dass skalierbare kinetische Modelle
konstruiert werden können, indem man das Mischeffekt-Modell bezüglich der Umge-
bungskomponenten marginalisiert. Im Speziellen kann dadurch eine Parameterdimen-
sionalität erzielt werden, welche unabhängig von der Grösse der Zellpopulation ist.
Zunächst verwenden wir diesen Ansatz um biochemische Prozesse effizient aus experi-
mentellen Einzelzell-Daten zu rekonstruieren. Im Fall von“Population-Snapshot-Daten”
leiten wir Gleichungen für die Momente des marginalisierten Modells her, welche uns
anschliessend die Schätzung von kinetischen Parametern aus Durchflusszytometrieda-
ten ermöglichen.

Analog dazu, entwickeln wir ein marginalisiertes Schätzverfahren für heterogene Zeit-
reihenmessungen, in denen die Einzelzelldynamik über die gesamte Zeitdauer eines Ex-
periments aufgenommen werden kann. Die resultierenden Daten bringen jedoch ein
kompliziertes “Missing-Data-Problem” mit sich, welches wir mit Hilfe eines sequenti-
ellen Monte Carlo Algorithmus lösen. Wir validieren den Ansatz unter Zuhilfenahme
von experimentellen Daten eines künstlich kontrollierten Gens in Hefe. Im Speziellen
zeigen wir, dass man damit kinetische Parameter und die Anzahl von experimentell un-
zugänglichen Molekülen schätzen kann. Des Weiteren lässt sich damit feststellen, wie
viel der gesamten Zell-zu-Zell-Variabilität auf intrinsische beziehungsweise extrinsische
Ursachen zurückzuführen sind.

Anschliessend erweitern wir das marginalisierte Prozessmodell für den wichtigen Fall
von sich dynamisch verändernden Umgebungsbedingungen. Im Besonderen demons-
trieren wir, dass die Konstruktion der Marginaldynamik in engem Zusammenhang mit
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der Lösung eines stochastischen Filterproblems steht. Wir zeigen wie dieses Problem
praktisch gelöst werden kann und leiten einen marginalen Simulationsalgorithmus her,
welcher es erlaubt, lediglich einen kleinen Teil eines stochastischen Netzwerkes exakt
zu simulieren. Wir zeigen ebenfalls, dass das marginalisierte Prozessmodell ein vielver-
sprechendes analytisches Instrument zur Untersuchung von Unsicherheiten in bioche-
mischen Systemen darstellt.







1 Introduction

With the advance of single-cell techniques, realization has grown that biochemical net-
works are characterized by a non-negligible degree of stochasticity [74]. Particularly
in the context of gene expression, cells seemingly act “by chance”, for instance in the
stress-induced activation of a transcriptional program [94]. Analyses based on only
population averages can therefore yield imperfect or even spurious results [108]. Espe-
cially processes involving low-copy molecules are far off any deterministic regime [64],
demanding for mathematical models that can account for their intrinsic stochastic-
ity. Continuous-time Markov chains (CTMCs) were shown to provide a reasonable
approximation to the discrete dynamics of stochastic reaction networks [37, 74, 76]. In
particular, they allow to assess how a biochemical process and its uncertainty evolve
over time, for instance through a probability distribution of the process being in a
particular molecular configuration at a particular time point. In practice, however, the
analysis of CTMC models, for instance through the chemical master equation (CME),
turns out to be highly challenging. With the increasing pertinence of stochastic kinetic
models, the development of efficient techniques for their analysis has thus evolved to a
central research thread within the field of quantitative biology.

Despite the analytical complexity of CTMCs, sample paths are straightforward to
generate through stochastic simulation algorithms (SSA) [26,44]. Due to their simplic-
ity, SSA-based approaches are extensively used to study noise in biochemical networks,
for instance, by computing Monte Carlo estimates of probability distributions or mo-
ments thereof. However, such estimates are characterized by a slow convergence and
often rely on an overwhelmingly large number of Monte Carlo samples. Alternative ap-
proaches aim at directly solving the CME by truncating the infinite space of molecular
configurations to the ones which are reached with a reasonably high probability [81,131].
While those approaches can guarantee high accuracies, they turn out to be prohibitive
for systems involving more than only a few chemical species.

Higher efficiencies can typically be achieved through analytical approximations of
the CME. For instance, the diffusion approximation [37], van Kampen’s system size
expansion [125] and associated techniques such as the linear noise approximation (LNA)
[31, 61] are commonly employed. The latter yields a system of ordinary differential
equations (ODEs) describing only means and variances of the chemical species whose
solution is straightforward to compute numerically. Along those lines, the CME can be
used to derive an ODE system describing arbitrary moments of the molecular species
[37, 125]. Since the resulting equations are generally infinite-dimensional, moment-
closure approximations need to be employed to obtain a closed moment system up to
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2 1 Introduction

a desired order [52, 106, 128]. All these methods have in common that they are highly
efficient but also that their approximation accuracy is unknown beforehand and thus,
needs to be assessed using additional simulations (e.g., through SSA).

In the context of modeling, one may distinguish between two elementary problems –
neither being less important for quantitatively assessing a network’s dynamics. The first
one is referred to as the forward problem, in which the behavior of a model is investigated
either analytically [17, 35, 53, 67, 96, 111] or using extensive simulations [74, 110, 123] –
for instance with the assistance of the aforementioned techniques. Some studies aim
to relate certain biologically meaningful properties to the kinetic parametrization of a
model. The authors from [35, 96, 111] derive analytical expressions of the mRNA- or
protein distributions and provide expressions for characterizing the underlying kinetics.
Those approaches have the advantage that they reveal simple and amenable biophysical
quantities such as the burst-size and frequency of a particular gene. On their downside,
however, they rely on strong assumptions or approximations which might not always
represent well what happens in reality. In such cases, Monte-Carlo-based techniques
may be considered favorable, since they can deal with arbitrarily complex and nonlinear
networks – putting aside their limitations in terms of computational cost. Typical
applications can be found in the analysis of a network’s robustness or sensitivity with
respect to variations in kinetic parameters [95,100,123].

The second problem is the so-called inverse problem, which is centered around
the computational reverse-engineering of dynamical systems and their properties from
quantitative data. It therefore represents the critical link between mathematical mod-
els and experimental measurements. The reverse-engineering – or inference – can be
performed either with respect to the network topology [10, 70, 90] or the parametriza-
tion and states of a given network [47, 82, 130]. In the context of stochastic reaction
systems, the former has received only limited attention, most likely because the sub-
stantial degree of noise in such systems does not permit reliable reconstructions using
current experimental protocols. In contrast, the inference of biophysical parameters
of a presumably known stochastic model from experimental single-cell data has been
intensively studied over the past years. A natural classification of existing approaches
may be performed by the type of single-cell data they act on. Population snapshot data
such as revealed by flow cytometry- or mRNA FISH (fluorescence in situ hybridiza-
tion) provide a handle on the mRNA- or protein distributions at a sequence of time
points. Correspondingly, associated inference techniques are typically centered around
the CME and approximations thereof [82, 88, 105, 136]. Time-lapse microscopy tech-
niques allow to track living cells over time and therefore, provide information about
the molecular fluctuations inside a single cell. However, exploiting this additional
source of information for the purpose of inference turns out to be computationally
challenging. The partial and noisy observations of the stochastic molecular processes
give rise to a complicated missing data problem [39, 129], whose solution is generally
intractable. A variety of numerical schemes for the solution of such problems based
on either analytical approximations of the underlying process [34, 79, 92] or stochas-
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tic simulation [5, 46, 47, 135] have been proposed recently. Other studies focus on the
combination of statistical inference with optimal design principles [22], meaning that
the experimental conditions (e.g., such as the concentration of an inhibitor) are chosen
such as to yield the most revealing measurements – for instance with regard to unknown
process parameters or states. Most commonly, the informativeness of an experiment is
quantified based on either the Shannon- [13,19,69] or Fisher information [9,61,105] and
optimized with respect to the design parameters of an experiment. Such approaches
were shown to yield a substantial reduction in the estimation uncertainty and can even
resolve practical non-identifiabilities between pairs of parameters.

A majority of existing studies are based on the assumption that every considered cell
of a population corresponds to an independent realization of one and the same stochastic
model. During recent years, however, there has been increasing evidence that homoge-
neous models that solely account for intrinsic noise cannot explain the large degree of
phenotypic variability that is commonly observed in single-cell experiments [23,33,99].
This stems from the fact that for complexity reasons, such models typically involve
only a handful of molecular components but neglect that they are just a fractional part
of a large entirety. More specifically, fluctuations in a networks environment form an
additional source of stochasticity – commonly referred to as extrinsic noise. Recent
dual-reporter techniques allow to quantify the extent to which the expression of a gene
is driven by intrinsic or extrinsic noise [33, 53, 120]. In fact, it often turns out that
the latter even dominates [23, 33]. Recent attempts to account for extrinsic noise are
based on augmenting a kinetic model by certain extrinsic quantities [53, 110] such as
for instance the ribosomal abundance, giving rise to a heterogeneous Markov model.
While such models were shown to predict well the experimentally observed variability,
they suffer from the increased dimensionality. In particular, since every cell’s dynamics
depends on a different realization of the environmental conditions, the associated mod-
els scale poorly with the population size. For the purpose of inference – for instance
– reliable process reconstructions can only be obtained by incorporating a large num-
ber of individual cells. At the same time, however, the number of unknowns increases
with every considered cell. As a consequence, straightforward approaches, which aim
to perform inference directly on such augmented models [34, 59, 135] are likely to be
prohibitive when considering more than only very few cells at once.

1.1 Outline and Contributions

The main purpose of this thesis is to develop a mathematical framework permitting an
efficient analysis and reconstruction of biochemical processes in random environments.
Accordingly, dealing with the associated scalability issues forms a major part of this
work and runs like a common thread through Chapters 2, 3, 4 and 5.

In Chapter 2 we introduce the background concepts that the subsequent chapters
rely on. For instance, we discuss a probabilistic modeling and simulation framework
for chemical kinetics and introduce the notion of random environments. We further
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provide a brief primer in Bayesian inference and related techniques such as Bayesian
filtering and smoothing, model selection and so forth.

The succeeding two chapters largely focus on the Bayesian inference of biophysical
parameters and states from experimental single-cell measurements. In Chapter 3 we
propose a statistical framework for analyzing population snapshot data. We first extend
the standard CME to a heterogeneous counterpart which can in principle account for
random variations in a networks environment. However, we show that approaches based
on full distributions are often impracticable for the purpose of inference and propose
an alternative scheme, which describes a heterogeneous cell population by moments up
to a certain order. We validate the approach using synthetic and experimental flow
cytometry data and demonstrate that only a few moments may be sufficient to fully
identify the parameters of a stochastic reaction network.

In Chapter 4, we lay out a corresponding inference framework for time-lapse mi-
croscopy measurements. In order to fully exploit the information present in that data,
the measurement trajectories are modeled as heterogeneous hidden Markov models.
In Section 4.2 we propose an efficient algorithm (i.e., dynamic prior propagation) to
perform inference of such models. In contrast to previous approaches [34, 59, 135], the
scheme allows to marginalize the model with respect to the random environmental
conditions and therefore, achieves a parameter dimensionality independent of the pop-
ulation size. Correspondingly, we derive a stochastic process, which no longer depends
on the particular realization of the extrinsic variables, providing a coherent dynamic
description of all cells in population at once. The algorithm is tested using simulated
measurements and subsequently used to reconstruct the transcriptional dynamics of an
artificially controlled gene in yeast. In Section 4.3, the process marginalization is com-
bined with a sparse Bayesian learning procedure [14,87,122] to determine which parts
of a reaction network are significantly modulated by extrinsic noise. In particular, the
scheme provides an automated and data-driven way of deciding which of the reaction
rates are likely to vary from cell to cell. Another extension of the inference algorithm is
provided in Section 4.4, wherein it is used to assess the informativeness of a given ex-
periment. In conjunction with an efficient stochastic approximation algorithm [58,65],
this allows us to optimally design experiments for the purpose of parameter inference
from time-lapse microscopy measurements. More specifically, we apply the algorithm
to calculate temporal perturbation profiles which can for instance be synthesized using
novel microfluidic techniques [124].

In Chapter 5 the marginal process framework is revisited and extended for the im-
portant case of dynamically changing environmental conditions [53, 110]. Technically,
this corresponds to marginalizing a CTMC model with respect to certain dimensions
which are considered extrinsic. Chapter 5 is analytical in nature and – in contrast to
the preceding parts – largely concerned with the aforementioned forward problem. For
instance, we calculate analytical expressions to quantify a network’s ability to suppress
environmental noise. Furthermore, we derive a simple and widely applicable approxima-
tion (i.e., the slow noise approximation) for modeling protein distributions in random
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environments.

1.2 Related Publications

The research of this thesis is interdisciplinary and was performed in close collaboration
with other theorists and experimentalists. In the following, we provide a list of publi-
cations, underlying the results of this work.

Chapter 2 includes results from:

H. Koeppl*, C. Zechner*, A. Ganguly, S. Pelet, and M. Peter. Accounting
for extrinsic variability in the estimation of stochastic rate constants. Int
J Robust Nonlin, 22(10):1103–1119, 2012. [59]
*Remark: H. Koeppl and C. Zechner contributed equally to this work.

Chapter 3 summarizes the results published in:

C. Zechner*, J. Ruess*, P. Krenn, S. Pelet, M. Peter, J. Lygeros, and
H. Koeppl. Moment-based inference predicts bimodality in transient gene
expression. Proc Natl Acad Sci USA, 109(21):8340–8345, 2012. [136]
*Remark: C. Zechner and J. Ruess contributed equally to this work.

Chapter 4 is based on the publications:

C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl. Scalable inference
of heterogeneous reaction kinetics from pooled single-cell recordings. Nat
Methods, 11(2):197–202, 2014. [137]

C. Zechner, S. Deb, and H. Koeppl. Marginal dynamics of stochastic bio-
chemical networks in random environments. In Proceedings of the European
Control Conference (ECC), 2013, pages 4269–4274, 2013. [132]

C. Zechner, F. Wadehn, and H. Koeppl. Sparse learning of Markovian
population models in random environments. In Proceedings of the 19th
IFAC World Congress, 2014, pages 1723–1728. IFAC, 2014. [138]

C. Zechner, S. Pelet, M. Peter, and H. Koeppl. Recursive Bayesian estima-
tion of stochastic rate constants from heterogeneous cell populations. In
Proceedings of the IEEE Conference on Decision and Control, 2011, pages
5837–5843, 2011. [135]

C. Zechner, P. Nandy, M. Unger, and H. Koeppl. Optimal variational per-
turbations for the inference of stochastic reaction dynamics. In Proceedings
of the IEEE Conference on Decision and Control, 2012, pages 5336–5341.
IEEE, 2012. [134]

Chapter 5 is mainly based on the paper:



6 1 Introduction

C. Zechner and H. Koeppl. Uncoupled analysis of stochastic reaction net-
works in fluctuating environments. Plos Comp Biol, 2014. In press. [133]

Related publications not explicitly discussed:

P. Nandy, M. Unger, C. Zechner, and H. Koeppl. Optimal perturbations
for the identification of stochastic reaction dynamics. In Proceedings of the
16th IFAC Symposium on System Identification, pages 686–691, 2012. [86]



2 Preliminaries

2.1 Stochastic Chemical Kinetics

Cells implement their complex behavior and functionality through a variety of dynam-
ically interacting biomolecules. In the following we denote those molecules – or species
– as X1, . . . ,XK . The way the species can interact is defined by a set of L chemical
reactions of the form

a1
1X1 + . . .+ a1

KXK → b1
1X1 + . . .+ b1

KXK
...

aL1X1 + . . .+ aLKXK → bL1X1 + . . .+ bLKXK ,

(2.1)

with aji , b
j
i ∈ N. We further define matrices

A =

a1
1 . . . aL1
...

. . .
...

a1
K . . . aLK

 and B =

 b1
1 . . . bL1
...

. . .
...

b1
K . . . bLK


and denote by S = BT − AT = (ν1, . . . , νL) the stoichiometry matrix of system
(2.1). Accordingly, the vector νi specifies the net change in the molecular abun-
dances associated with reaction i. In order to describe the temporal evolution of
a chemically reacting system, we next introduce the time-dependent system state
X(t) = (X1(t), . . . , XK(t))T ∈ NK , collecting the molecular abundances of the species
X1, . . . ,XK at time t1. Assuming that the molecular system is well-mixed, it can be
shown that X(t) follows a continuous-time Markov chain (CTMC) [24], which we de-
note by X. A CTMC is characterized by integer-valued state trajectories exhibiting
discontinuities (i.e., jumps) whenever a reaction fires. The transition dynamics of such
a CTMC are defined through the probabilities of a reaction happening within a small
amount of time together with the probability that the system remains in its current
state, i.e.,

P (X(t+ ∆t) = x+ νi | X(t) = x) = hi(x, ci)∆t+ o(∆t) ∀i = 1, . . . , L (2.2)

P (X(t+ ∆t) = x | X(t) = x) = 1−
L∑
i=1

hi(x, ci)∆t− o(∆t), (2.3)

1We will generally follow the convention to denote random quantities and their realization as upper
and lower case letters, respectively. This also applies for greek symbols.

7
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with hi(x, ci) as the hazard function and ci ∈ R as the kinetic parameter of reaction
i2. The term o(∆t) refers to the probability that multiple reactions happen within ∆t,
which for ∆t→ 0 goes to zero much faster than hi(x, ci)∆t. Throughout this work we
assume mass-action kinetics [7] such that hi(x, ci) = cigi(x) with

gi(x) =
K∏
k=1

(
xk
aik

)
.

A central property of CTMCs (and jump processes in general) are the random waiting
times between two consecutive reactions. Assuming that a CTMC is in state x at time t,
we may characterize the waiting time Wi for the i-th reaction channel by a cumulative
distribution function (CDF) P (Wi < w | X(t) = x). In order to find that CDF,
we first note that the probability that Wi is larger than some small ∆w is given by
P (Wi > ∆w | X(t) = x) = 1− hi(x, ci)∆w − o(∆w). Furthermore, due to the Markov
property of X, the transition probabilities only depend on the current state X(t) and
not on how long the chain has already remained in that state. As a consequence, the
probability P (Wi > w + ∆w | X(t) = x) factorizes as

P (Wi > w + ∆w | X(t) = x)

= P (Wi > w + ∆w | X(t) = x,Wi > ∆w)P (Wi > ∆w | X(t) = x)

= P (Wi > w | X(t) = x) (1− hi(x, ci)∆w − o(∆w))

(2.4)

where the fact that P (Wi > w + ∆w | X(t) = x,Wi > ∆w) = P (Wi > w | X(t) = x)
is referred to as the memoryless property of CTMCs. The derivative of P (Wi > w |
X(t) = x) is then given by

d

dw
P (Wi > w | X(t) = x)

= lim
∆w→0

P (Wi > w + ∆w | X(t) = x)− P (W > w | X(t) = x)

∆w

= lim
∆w→0

P (Wi > w | X(t) = x) (1− hi(x, ci)∆w + o(∆w))− P (Wi > w | X(t) = x)

∆w
= P (Wi > w | X(t) = x) lim

∆w→0
(−hi(x, ci) + o(∆w))

= −hi(x, ci)P (Wi > w | X(t) = x),

(2.5)

which means that P (Wi > w | X(t) = x) satisfies a linear homogeneous ODE with a
constant coefficient. With the initial condition P (Wi > 0 | X(t) = x) = 1, the waiting
time distribution is found to be

P (Wi < w | X(t) = x) = 1− P (Wi > w | X(t) = x) = 1− e−hi(x,ci)w, (2.6)

2In this section we assume all kinetic parameters to be given. For the sake of simplicity, they are not
considered as parameters of the respective probabilities and densities. However, the reader should
keep in mind that (2.2) and (2.3) as well as derived quantities do depend on those parameters.
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or equivalently,
Wi | (X(t) = x) ∼ Exp (hi(x, ci)) = pi(w | x), (2.7)

with p(w | x) = P (Wi ∈ [w,w + dw] | X(t) = x) as the probability density func-
tion (PDF) of Wi. Exponential waiting-time distributions are in fact a distinguishing
property of CTMCs when compared to more general process classes such as renewal
processes [57,85].

2.1.1 Kolmogorov Equations

A natural quantity in the context of stochastic reaction dynamics is the probability of
finding the system in state x at time t given that it was in some other state x′ at time
t′ < t denoted by P (X(t) = x | X(t′) = x′). Although this probability cannot be found
explicitly in all but the simplest scenarios, its temporal evolution may be given in form
of an ordinary differential equation, which in principle, can be solved numerically. We
realize that P (X(t+ ∆t) = x | X(t′) = x′) can be factorized as

P (X(t+ ∆t) = x | X(t′) = x′)

=
L∑
i=1

(
hi(x− νi, ci)∆t+ o(∆t)

)
P (X(t) = x− νi | X(t′) = x′)︸ ︷︷ ︸

Probability of moving from x− νi to x within ∆t

+

(
1−

L∑
i=1

hi(x, ci)∆t+ o(∆t)

)
P (X(t) = x | X(t′) = x′).︸ ︷︷ ︸

Probability that system was already in state x at time t

(2.8)

Using the definition of the differentiation operator we can then show that P (X(t) =
x | X(t′) = x′) satisfies the differential equation [24,37]

d

dt
P (X(t) = x | X(t′) = x′)

= lim
∆t→0

P (X(t+ ∆t) = x | X(t′) = x′)− P (X(t) = x | X(t′) = x′)

∆t

= lim
∆t→0

∑L
i=1

(
hi(x− νi, ci)∆t+ o(∆t)

)
P (X(t) = x− νi | X(t′) = x′)

∆t

− lim
∆t→0

(∑L
i=1 hi(x, ci)∆t+ o(∆t)

)
P (X(t) = x | X(t′) = x′)

∆t

=
L∑
i=1

hi(x− νi, ci)P (X(t) = x− νi | X(t′) = x′)

−
L∑
i=1

hi(x, ci)P (X(t) = x | X(t′) = x′),

(2.9)
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with initial condition P (X(t′) = x | X(t′) = x′) = δxx′ , whereby δxx′ indicates the Kro-
necker delta function in x and x′. Eq. (2.9) is most commonly known as the chemical
master equation (CME). Within the theory of Markov chains, it is also referred to as
Kolmogorov-forward equation, since it determines how the probability mass is propa-
gated as time increases. It is sometimes useful to write down a differential equation
also for the marginal probabilities

P (X(t) = x) =
∑
x′∈X

P (X(t) = x | X(t′) = x′)P (X(t′) = x′). (2.10)

Differentiation with respect to time yields

d

dt
P (X(t) = x) =

∑
x′∈X

d

dt
P (X(t) = x | X(t′) = x′)P (X(t′) = x′)

=
L∑
i=1

hi(x− νi, ci)
∑
x′∈X

P (X(t) = x− νi | X(t′) = x′)P (X(t′) = x′)︸ ︷︷ ︸
P (X(t)=x−νi)

−
L∑
i=1

hi(x, ci)
∑
x′∈X

P (X(t) = x | X(t′) = x′)P (X(t′) = x′)︸ ︷︷ ︸
P (X(t)=x)

=
L∑
i=1

hi(x− νi, ci)P (X(t) = x− νi)−
L∑
i=1

hi(x, ci)P (X(t) = x),

(2.11)

which further implies that P (X(t) = x) satisfies the CME when the initial distribution
is set to P (X(t′) = x′).

In contrast to the forward equation, the so-called Kolmogorov-backward equation is
centered around the question: if one finds the system in state x at time t, how likely
was the system in state x′ at time t′ < t3? Technically, it can be derived similarly to
the forward equation (2.9), whereas the dynamics are computed with respect to the
initial variables x′ and t′ instead of x and t [37], i.e.,

d

dt′
P̃ (X(t) = x | X(t′) = x′) =

L∑
i=1

hi(x
′, ci)P̃ (X(t) = x | X(t′) = x′)

−
L∑
i=1

hi(x
′, ci)P̃ (X(t) = x | X(t′) = x′ + νi).

(2.12)

We remark that if the initial condition of the forward equation coincides with the termi-
nal condition of the backward equation, i.e., P̃ (X(t′) = x | X(t′) = x′) = P (X(t′) = x |
3Alternatively, this can be expressed by the question: how does the probability of being in state x

at time t depend on the initial state x′ at time t′.
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X(t′) = x′) = δxx′ , we have that P̃ (X(t) = x | X(t′) = x′) = P (X(t) = x | X(t′) = x′)
for all t > t′. Consequently, the probability of finding a reaction network in a particu-
lar state at a particular time satisfies both the forward- and backward equations. The
latter also provides a means to compute backward probabilities P (X(t′) = x′ | X(T ) =
x) ∝ P̃ (X(T ) = x | X(t′) = x′) for T > t′ by solving (2.12) backward in time with
initial condition P̃ (X(T ) = x | X(T ) = x′) = δxx′ . However, one should keep in mind
that the result is not a valid probability distribution in x′ and thus, requires a proper
normalization.

2.1.2 The Random Time-Change Model

While the CME represents one of the most important and widely used modeling ap-
proaches for stochastic biochemical systems, it is characterized by a few major draw-
backs. For instance, it typically suffers from a so-called state space explosion, meaning
that the number of reachable states scales very badly with the number of chemical
species and their abundance – even if one considers only the states which are reached
with a reasonably high probability [81]. Furthermore, it does not offer a complete de-
scription of a CTMC or realizations thereof, since it only contains information about
the molecular state X(t), but not about the sequence of reactions through which that
state was reached. Especially when dealing with time-lapse measurements, mathemati-
cal descriptions of the entire realizations – or paths – turn out to be of vital importance
(see e.g., Chapters 4).

This closely resembles the case of real-valued Markov processes whose Kolmogorov-
forward equation is given by a PDE (i.e, the Fokker-Planck equation [37]), which due
to its analytical and numerical complexity, is barely used for process analysis. In-
stead, it often appears beneficial to work with the corresponding process equations
(i.e., stochastic differential equations, SDEs), facilitating the use of highly developed
techniques from stochastic calculus. Although far less prevalent in the field of systems
biology, such process equations exist also in case of CTMCs. In particular, it can be
shown that the solution of the CTMC defined in (2.2) and (2.3) is given through the
random time-change model (RTM) as

X(t) = X(0) +
L∑
i=1

Yi

(∫ t

0

hi(X(s), ci)ds

)
νi, (2.13)

where Y1, . . . , YL are independent Poisson processes with intensity one4 [7]. Eq. (2.13)
is a stochastic integral equation, where the state X(t) enters the r.h.s. through the
reaction counters Yi. More specifically, the original time argument t is replaced by
a state-dependent function

∫ t
0
hi(X(s), ci)ds. Intuitively this can be understood as

randomly changing the speed at which the time of a unit Poisson process passes by. Note
that eq. (2.13) can also be written in SDE-form. Via the Doob-Meyer decomposition

4Yi is then said to be a unit Poisson process.
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theorem, it can be shown that the Poissonian reaction counters Yi can be decomposed
into a predictable part and a martingale, i.e.,

Yi

(∫ t

0

hi(X(s), ci)ds

)
=

∫ t

0

hi(X(s), ci)ds+ Q̃i

(∫ t

0

hi(X(s), ci)ds

)
, (2.14)

with E
[
Q̃i(
∫ t

0
hi(X(s), ci)ds)

]
= 0. To keep the notation compact, we further de-

fine Qi(t) := Q̃i(
∫ t

0
hi(X(s), ci)ds), meaning that the state-dependent transformation∫ t

0
hi(X(s), ci)ds is subsumed into Qi(t). In differential notation eq. (2.14) reads

dYi(t) = hi(X(t−), ci)dt+ dQi(t), (2.15)

where X(t−) denotes the state of the system immediately before the next jump hap-
pens5. The solution of the CTMC X thus satisfies the SDE

dX(t) =

(
L∑
i=1

hi(X(t−), ci)νi

)
dt+

L∑
i=1

dQi(t)νi. (2.16)

In the following, we will denote by Xt ∈ S[0, t] the stochastic path of the CTMC
X on a time interval [0, t], consisting of the random jump-times and types of events.
In cases where all the stoichiometric vectors ν1, . . . , νL are distinct, this path can be
equivalently defined as Xt = {X(s) ∈ X | s ∈ [0, t]}. Accordingly, we can assign Xt

a path density which describes the distribution over all possible sample paths of X
between time zero and t. We remark that a rigorous treatment of such a density is
beyond the scope of this work (see e.g., [59]) but their interpretation as a likelihood
function turns out to be straightforward. The latter is particularly important in the
context of inference because it allows to quantify how likely a given path xt has been
realized under a set of rate constants c = {c1, . . . , cL}. More specifically, it turns out
that the likelihood function over a path instance xt can be written as [62,129]

p(xt | c) =
L∏
i=1

crii e
−ci

∫ t
0 gi(x(s))ds, (2.17)

with ri := ri(xt) as the number of reactions.

2.1.3 Stochastic Simulation Algorithm

Although CTMCs are barely tractable analytically, it is straightforward to simulate
sample paths thereof. A general algorithm for simulating arbitrary reaction networks

5This is required for the SDE to be causal. Technically X(t−) is given through a left-sided limit,
i.e., X(t−) = lims→t− X(s). In case no jump happens at t, we have that X(t−) = X(t). If a jump
happens at t, X(t−) will correspond to the state of the CTMC immediately before that jump.
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was proposed in [44], although equivalent schemes were published way earlier in the
mathematical community (e.g., [26]). In principle, the algorithm and its variants are
based on drawing exponential waiting-times for each of the reaction channels and pick-
ing the next reaction according to the smallest one. A standard implementation of this
algorithm is given by the first reaction method and is outlined in Algorithm 1. We re-
mark that several variants of the original algorithm have been proposed recently [42,97],
which were shown to achieve a substantial reduction in computational effort.

Algorithm 1 (First reaction method). The algorithm takes the stoichiometric change
vectors ν1, . . . , νL, the kinetic parameters c1, . . . , cL, the final time T and the initial state
x0 as input and returns the reaction types together with the associated firing times.

1: Initialize variables t← 0 and x← x0.
2: while t < T do
3: for i = 1, . . . , L do
4: Draw waiting-time for the i-th reaction channel Wi ∼ Exp(hi(x, ci)).
5: end for
6: Choose reaction associated with the minimal waiting-time k ← argmax

i=1,...,L
Wi.

7: Update state x← x+ νk.
8: Update time t← t+Wk.
9: Output t and x.

10: end while

2.1.4 Moment Dynamics

We have indicated in Section 2.1.2 that analyzing stochastic models based on probability
distributions suffers from severe scalability issues. In many cases – however – already a
few summary statistics might describe a dynamical system sufficiently well [82,136]. To
this end, we realize that the moments of a stochastic kinetic model are straightforward
to derive from the CME. Multiplying both sides of (2.9) with a polynomial f : RK 7→ R
and summing over all possible states yields

∑
x∈X

f(x)
d

dt
P (X(t) = x) =

d

dt
E [f(x)]

=
L∑
i=1

∑
x∈X

f(x)hi(x− νi, ci)P (X(t) = x− νi)−
L∑
i=1

∑
x∈X

f(x)hi(x, ci)P (X(t) = x).

(2.18)
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Using a variable transformation x̃ = x− νi, we further obtain

d

dt
E [f(X(t))] =

L∑
i=1

∑
x̃∈X

f(x̃+ νi)hi(x̃, ci)P (X(t) = x̃)

−
L∑
i=1

∑
x∈X

f(x)hi(x, ci)P (X(t) = x)

=
L∑
i=1

E [f(X(t) + νi)hi(X(t), ci)]−
L∑
i=1

E [f(X(t))hi(X(t), ci)] .

(2.19)

We remark that (2.19) is not generally closed, which means that the r.h.s. may depend
on moments of higher order than E [f(X(t))]. In particular, this is the case as soon
as a kinetic model is non-linear or equivalently, if it involves reactions of order two
and above. As a consequence, (2.19) gives rise to an infinite-dimensional system of
ODEs, demanding for suitable approximations – known as moment-closure schemes
(see e.g., [52] and Section 3.2).

In contrast, linear models generally close at order two, such that the dynamics can
be described by a finite-dimensional ODE system. The following example illustrates
the calculation of moments by means of a simple birth process.

Example 1 (Moments of a birth process (CME)). The CME for a linear birth process
with rate constant c is given by

d

dt
P (X(t) = x) = cP (X(t) = x− 1)− cP (X(t) = x). (2.20)

With f(x) = x we obtain for the mean

d

dt
E [X(t)] = c

∞∑
x=0

xP (X(t) = x− 1)− c
∞∑
x=0

xP (X(t) = x)

= c

∞∑
x̃=0

(x̃+ 1)P (X(t) = x̃)− c
∞∑
x=0

xP (X(t) = x)

= cE [X(t)] + c− cE [X(t)]

= c

(2.21)

and with f(x) = x2 for the second-order moment

d

dt
E
[
X2(t)

]
= c

∞∑
x=0

x2P (X(t) = x− 1)− c
∞∑
x=0

x2P (X(t) = x)

= c
∞∑
x̃=0

(x̃+ 1)2P (X(t) = x̃)− c
∞∑
x=0

x2P (X(t) = x)

= cE
[
X2(t)

]
+ 2cE [X(t)] + c− cE

[
X2(t)

]
= 2cE [X(t)] + c.

(2.22)
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Although the CME-based technique to derive moment equations appears to be stan-
dard in the field of computational biology, we would like to briefly discuss an alternative
approach, which relies on the path-wise CTMC description from Section 2.1.2. In par-
ticular it is based on the extension of Ito’s lemma for counting processes (see e.g., [63]).
Although a general treatment is possible, we explain the approach using the following
simple example.

Example 2 (Moments of a birth process (SDE)). The solution of a linear birth process
with rate constant c satisfies the SDE

dX(t−) = cdt+ dQ(t) (2.23)

where Q is a martingale. Taking the expectation on both sides and dividing by dt yields

d

dt
E [X(t)] = c. (2.24)

In order to calculate the second-order moment, we first need an SDE describing X2(t).
For that sake, we make use of Ito’s formula for counting processes, i.e.,

dF (X(t)) =
[
F (X(t−) + 1)− F (X(t−))

]
dX(t). (2.25)

With F (X) = X2, we further obtain

dX2(t) =
[
(X2(t−)) + 2X(t−) + 1−X2(t−)

]
dX(t)

=
[
2X(t−) + 1

]
dX(t)

=
[
2X(t−) + 1

]
[cdt+ dQ(t)]

= c
[
2X(t−) + 1

]
dt+

[
2X(t−) + 1

]
dQ(t).

(2.26)

Since the expected values of all terms multiplied by dQ(t) are zero, we obtain for the
second order moment

d

dt
E
[
X2(t)

]
= 2cE [X(t)] + c, (2.27)

coinciding with the results from Example 1.

2.1.5 Random Environments and Extrinsic Noise

Although CTMC models of stochastic reaction dynamics can be derived from biophys-
ical principles, they are often unable to explain well the cell-to-cell variability observed
experimentally. To some extent, such discrepancies may stem from wrong or over-
simplified assumptions on the reaction kinetics. The main reason – however – was shown
to be the so-called extrinsic contribution to the overall variability, arising from un-
modeled stochastic effects in a cell’s microenvironment [33, 120]. Mathematically, one
can account for extrinsic noise by introducing a CTMC that on top of the kinetic param-
eters c1, . . . , cL, also depends on certain environmental variables [53, 59, 120, 136, 137],
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which we refer to as extrinsic factors. Examples for such factors are the number of
ribosomes, the cell-cycle stage, the cell-size and so forth. Most extrinsic factors are
believed to dynamically change over time [53]. However, when considering only short
time intervals they are often assumed to stay roughly the same, for instance over the du-
ration of an experiment [136,137]. Constant extrinsic factors can substantially simplify
the analysis of kinetic models and – from a practical viewpoint – may be distinguished
from the more complicated class of temporally fluctuating environments. Nonetheless,
the former can be considered a special case of the latter, which allows us to introduce a
general mathematical modeling framework that will be used throughout Chapters 3-5.

2.1.5.1 Mixed-Effect Modeling

We assume that a stochastic biochemical network can be described by a conditional
Markov chain X | (S,Z) with S = {S1, . . . , SI} and Z = {Z1, . . . , ZJ}. The shared
parameters could for instance include kinetic parameters associated with elementary
reactions that are believed to be the same among cells [59]. In contrast, the extrinsic
factors Z are assumed to vary between individual cells. More specifically, we assume
that for each cell m = 1, . . . ,M , the corresponding extrinsic factors are drawn from a
common distribution Zm | (A = a) ∼ p( · | a), with A as a set of extrinsic statistics
controlling p( · | a). As a consequence, the population of M is described by an ensemble
of conditional Markov chains Xm | (S,Zm) for m = 1, . . . ,M . The resulting models
have gained more and more attention in the past years and are commonly known as
mixed-effect- or heterogeneous Markov models. From a Bayesian point of view, such
models fall into the class of hierarchical Bayesian networks [15].

A central problem of such models is that they do not scale well with the population
size M , since for every considered cell m, one introduces another Markov chain Xm |
(S,Zm). In contrast, a homogeneous population can be considered as M realizations
of exactly the same Markov chain X | S. A significant portion of this thesis deals with
overcoming such scalability issues for the purpose of inference (Chapter 3 and 4) and
analysis (Chapter 5).

In the following, we will briefly explain two possible approaches for modeling extrinsic
noise in biochemical networks.

2.1.5.2 Variability over Conserved Species

The first approach is based on the idea that at a given time point, one cell has a
different molecular configuration than another cell. For instance, when considering an
enzymatic reaction, a cell having many enzyme copies will facilitate a higher substrate-
product turnover than a cell bearing only little enzyme. Accordingly, a heterogeneous
cell population could be modeled through a randomly drawn enzyme abundance. In a
straight-forward attempt, this could be implemented by assigning an initial distribution
over the enzyme. However, we realize that the enzyme may exist in different states,
i.e., most of the time, a fraction will be bound by the substrate and thus, only the
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total number of enzyme molecules is constant or conserved. We therefore, assign the
variability to the total number of enzyme molecules, regardless of their respective state.
The following approach is based on extending this idea to the general case, where
extrinsic variability enters a biochemical network through arbitrary conservation laws.

We first need a principled way to identify the conservation laws of a biochemical
reaction network. For that sake, we realize that the state space of any network satisfies
X = {X ∈ NK : NX = B}, with N ∈ Nl×K as the smallest positive integer basis of the
null space of the stoichiometry matrix S. Matrix N then represents the l conservation
laws of the reaction network. The corresponding conservation constants are collected
in B ∈ Nl and determine the total number of species for each each of the l conser-
vation laws. Considering a population of size M , each cell m would have a different
conservation constant Bm. Assuming that all heterogeneity comes from a variability
in conserved species, we can then set Zm ≡ Bm and define a multivariate probability
distribution p(zm | a) = p( · | a) for m = 1, . . . ,M accordingly. The shared parameters
are then simply the kinetic rate constants, i.e., S = {C1, . . . , CL}.

In order to perform inference, we need an explicit dependency of the CTMC model
on the random conservation constants Z. This dependency will be manifested in the
hazard functions involving some of the conserved species. In particular, the conservation
laws allow us to express some of the chemical species as a function of some other species
and the conservation constants. Assuming a certain partitioning of the state space, we
can write

NX =
(
Ñ N̄

)(X̃
X̄

)
= ÑX̃ + N̄X̄ = Z, (2.28)

with Ñ ∈ Nl×(K−l) and N̄ ∈ Nl×l Reformulating with respect to X̄ further yields

X̄ = N̄−1(Z − ÑX̃), (2.29)

where the partitioning of the state vector X needs to be chosen such that N̄ has
full rank. Relation (2.29) allows us to rewrite the hazard functions as hi(X,Ci) ≡
hi(X̃, Z, Ci) for i = 1, . . . , L such that we obtain an explicit dependency on the extrin-
sic factors Z. Modeling extrinsic variability through conserved species for the purpose
of inference is demonstrated [59,136] and Section 3. We remark, however, that the ob-
tained hazard functions may be of complex form such that resulting inference problems
become analytically complex.

2.1.5.3 Variability over Rate Constants

A more widely used and significantly simpler way of modeling extrinsic noise is to
assume that some of the kinetic rate constants C1, . . . , CL randomly vary between
cells [34,50,135] or fluctuate over time [53,110]. Without loss of generality, we assume
a particular ordering of the reactions such that C = {Z1, . . . , ZJ , S1, . . . , SI}. Since
we assume mass-action kinetics throughout this work, this modeling approach has the
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advantage that the environment enters the target network X linearly, which will al-
low us to perform several important calculations analytically (see Chapters 4 and 5).
Additionally, it readily extends to the case of fluctuating environments.

2.2 Bayesian Statistics

In contrast to traditional frequentist statistics, Bayesian modeling approaches allow
the inclusion of a-priori knowledge about latent variables6. In particular, those vari-
ables are considered random themselves and are therefore, associated with respective
prior distributions. Once a measurement is obtained, this prior distribution is used in
conjunction with Bayes theorem to calculate the posterior distribution, describing the
updated belief about the latent variable. In a subsequent experiment, this posterior
distribution is used as a prior distribution and so forth. The more measurements are
included, the more accurate the posterior distribution becomes.

Let us consider a general Bayesian model where a set of latent variables X ∈ X is
observed through measurements Y ∈ Y, i.e.,

Y | (X = x) ∼ p(y | x),

with p(y | x) as the conditional measurement density. In the context of inference,
the latter is often referred to as the likelihood function, although in that case, x is
considered the independent variable instead of y. The latent variables X are associated
with a prior distribution, i.e., X ∼ p(x). The statistical model is then characterized by
its joint probability distribution

p(x, y) = p(y | x)p(x). (2.30)

Observing that p(x, y) = p(x | y)p(y) and rearranging with respect to p(x | y), we
obtain the well-known Bayes’ formula

p(x | y) =
p(y | x)p(x)

p(y)
=

p(y | x)p(x)∫
X p(y | x)p(x)dx

, (2.31)

with p(x | y) as the posterior distribution and p(y) =
∫
X p(y | x)p(x)dx the evidence- or

marginal likelihood function. The latter plays a central role in several areas of Bayesian
statistics such as model selection (see Section 2.2.3) or sparse learning problems (see
Section 4.3) [14,102]. In the case of parameter inference – however – it often turns out
to be of minor importance since it can be considered a scaling constant independent of
x. Example 3 demonstrates the computation of the posterior distribution over kinetic
parameters given a complete sample path of a CTMC.

6Latent means that the variable is not observed directly, but rather through some other variables of
the model.
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Example 3 (Posterior distribution over kinetic parameters). We know from eq. (2.17)
that the likelihood function of a sample path xt with respect to the kinetic parameters
c1, . . . , cL is given by

p(xt | c1, . . . , cL) =
L∏
i=1

crii e
−ci

∫ t
0 gi(x(s))ds. (2.32)

We assume now that we have prior knowledge about the kinetic parameters in form of
independent Gamma distributions, i.e.,

p(c1, . . . , cL) =
L∏
i=1

Γ(ci;αi, βi), (2.33)

with αi and βi as the shape- and inverse scale parameters of the respective distribution.
The posterior distribution then becomes [129]

p(c1, . . . , cL | xt) ∝ p(xt | c1, . . . , cL)p(c1, . . . , cL)

=
L∏
i=1

crii e
−ci

∫ t
0 gi(x(s))ds βαii

Γ(αi)
cαi−1
i e−βici

=
L∏
i=1

βαii
Γ(αi)

cαi+ri−1
i e−ci(βi+

∫ t
0 gi(x(s))ds)

∝
L∏
i=1

Γ

(
ci;αi + ri, βi +

∫ t

0

gi(x(s))ds

)
,

(2.34)

i.e., is again given by a product of independent Gamma distributions. This further
implies that the Gamma distribution is a conjugate prior [39] to the path likelihood of
a CTMC with linearly parameterized propensity functions.

We remark that in most practically relevant scenarios, (2.31) cannot be found in
closed form such that suitable numerical methods need to be employed. Those can
generally be divided into two subgroups, i.e., analytical- and sampling-based methods
[14]. The former are typically characterized by low computational costs but on the
other hand, only reveal approximations of the true posterior distribution. This will be
demonstrated in more detail in Section 4.3 where we apply a variational approximation
to the inference of a high-dimensional posterior distribution [11]. However, most parts
of this thesis will rely on sampling-based approaches, since in general they allow to
draw samples from the exact target posterior distribution. An extensive discussion of
such computation schemes is not in the scope of this work, but further details will
be provided in the respective sections of this thesis. Additional information can for
instance be found in [14].
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2.2.1 Predictive Distributions

Once a posterior distribution has been obtained through an initial measurement Y1,
it can be used to predict the outcome of the next experiment. In particular, the
probability distribution of the second measurement Y2 is given through the so-called
predictive distribution, i.e.,

Y2 | (Y1 = y1) ∼ p(y2 | y1) =

∫
X
p(y2 | x)p(x | y1)dx. (2.35)

For the j-th measurement the predictive distribution is given by

p(yj | y1, . . . , yj−1) =

∫
X
p(yj | x)p(x | y1, . . . , yj−1)dx, (2.36)

with p(x | y1, . . . , yj−1) as the posterior distribution obtained from the (j − 1)-th ex-
periment. Note that if j = 1, the predictive distribution corresponds to the marginal
likelihood of (2.31). Eq. (2.36) turns out to be very useful to assess the predictive power
of models that have been trained against data. In particular, due to the integration
over the previous posterior distribution, it takes into account the parameter uncertainty
that remains a-posteriori. As a consequence, large models are typically less predictive
than simple models, since they involve many (unknown) parameters that need to be
estimated from data. In a Bayesian sense, highly predictive models will thus represent
a compromise between model accuracy and complexity.

2.2.2 Bayesian Filtering and Smoothing

In many practical scenarios we are interested in estimating a time-dependent rather
than a static quantity such as for instance the state of a continuous-time Markov
process X(t), characterized by a transition kernel

X(t) | (X(s) = x′) ∼ P (X(t) = x | X(s) = x′), (2.37)

with s 6= t and P (X(t) = x | X(s) = x′) given through the Kolmogorov-forward and
backward equations, according to whether s < t or s > t, respectively. Typically, we can
obtain noisy measurements of the state at discrete time points which are characterized
through a measurement density, i.e.,

Yl | (X(tl) = x) ∼ p(y | x) (2.38)

for l = 1, . . . , N . Eqs. (2.37) and (2.38) define a so-called general state space model.
If X(t) is Markovian, they are also referred to as hidden Markov models (HMMs, see
Figure 2.1) and their inference is a central topic in the statistical- and machine learning
disciplines [8, 15,56].

Let us assume we want to estimate the state X(tn) from a sequence of n < N
measurements taken within an interval [0, tn]. In a Bayesian scenario, this is achieved
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Measurements

Process dynamics

Figure 2.1: Bayesian network of a hidden Markov model. The latent process X(t) (dashed circles)
can be observed through noisy measurements Yn taken discrete at time points tn.

by computing the posterior distribution P (X(tn) = x | y1:n) with y1:n = {y1, . . . , yn}.
The latter is also referred to as the filtering distribution and using Bayes formula, it is
straightforward to show that it satisfies the recurrence relation

P (X(tn) = x | y1:n)

∝ p(yn | x)
∑
x′∈X

P (X(tn) = x | X(tn−1) = x′)P (X(tn−1) = x′ | y1:n−1), (2.39)

with P (X(tn) = x | X(tn−1) = x′) given by the Kolmogorov-forward equation and
P (X(tn−1) = x′ | y1:n−1) as the filtering distribution at time tn−1. Note that the
filtering distribution is straightforward to compute for time points later than the last
measurement time, i.e.,

P (X(t) = x | y1:n) =
∑
x′∈X

P (X(t) = x | X(tn) = x′)P (X(tn) = x′ | y1:n), (2.40)

for t > tn. Eq. (2.40) represents the knowledge about the state at time t without
incorporating additional measurements and therefore, its computation is often referred
to as the prediction step. After a new measurement has been obtained at tn+1 we
again apply (2.39) such that the distribution exhibits an instantaneous jump (i.e., it is
updated).

Inference schemes based on (2.39) and (2.40) are generally referred to as recur-
sive Bayesian estimation techniques. We remark that the sum in (2.39) is analyt-
ically tractable for only a few special cases. The most famous analytical solution
of the Bayesian recursion is known as the Kalman filter which applies if both the
measurement- and process distributions are Gaussian.

The computation of the filtering distribution is particularly useful for on-line (or
tracking) applications where the observations are measured and processed one after each
other. In contrast, if all N measurements are collected beforehand, better estimates can
be achieved using the smoothing distribution p(X(tn) = x | y1:N), since it incorporates
all information available (i.e., also future measurements). Importantly, the smoothing
distribution can be written as a product of two independent filters [18]

P (X(tn) = x | y1:N) =
P (X(tn) = x | y1:n−1)p(yn:N | X(tn) = x)

p(yn:N | y1:n−1)
, (2.41)
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where P (X(tn) = x | y1:n−1) is just the filtering distribution from (2.40) and p(yn:N |
X(tn) = x) is given through the backward information filter

p(yn:N | X(tn) = x)

= p(yn | x)
∑
x′∈X

P (X(tn+1) = x′ | X(tn) = x)p(yn+1:N | X(tn+1) = x′), (2.42)

with p(yn+1:N | X(tn+1) = x′) as the result from time point tn+1. We note that the
sum is a function in x and tn and therefore, can be computed using the Kolmogorov-
backward equation together with an initial condition of p(yn+1:N | X(tn+1) = x′).
Finally, the smoothing distribution is obtained by multiplying both filters together and
rescaling it such that it sums up to one.

The above distributions allow to optimally estimate the state X(t) for any t. How-
ever, as discussed in Section 2.1.2, distributions over the state alone do not fully
characterize a stochastic process. For instance, in the context of stochastic chemi-
cal kinetics, we might be interested in computing timing statistics of certain reac-
tions, which require a path-wise description of the underlying process. In the Bayesian
context, this would mean that we search for posterior distributions over entire paths
X1:N = {X(t) ∈ X | t ∈ [t1, tN ]}, i.e.,

p(x1:N | y1:N) =

∏N
n=1 p(yn | xn)p(x1:N)

p(y1:N)

=
p(yN | xN)p(xN−1:N | xN−1)p(x1:N−1 | y1:N−1)

p(yN | y1:N−1)
,

(2.43)

with p(x1:N) as the path density and xn = x(tn). This distribution can also be in-
terpreted as a smoothing distribution over paths, which can be established recursively
from its ancestor at time tN−1.

2.2.3 Model Selection

In many biological systems, large parts of biochemical interactions and mechanisms
are yet to be discovered. Accordingly, a problem at least as central as the inference of
unknown model quantities is the discrimination between different model variants. For-
mally, when considering candidate models M = 1, . . . , K, one could assign a posterior
probability to all the candidates using

P (M = i | y) =
p(y | M = i)P (M = i)∑K
i=1 p(y | M = i)P (M = i)

∀i = 1, . . . , K, (2.44)

where P (M = i) is the model prior and p(y | M = i) is model evidence. Note that
when assuming a fixed model, the latter precisely coincides with the denominator in
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Bayes’ formula (2.31). More specifically, it is obtained by averaging the measurement
likelihood over the unknown model quantities Xi ∈ Xi, i.e.,

p(y | M = i) = E [p(y | x,M = i) | M = i]

=

∫
Xi
p(y | x,M = i)p(x | M = i)dx.

(2.45)

In general, the expectation in (2.45) is analytically intractable and therefore, one needs
to resort to the aforementioned approximation techniques. For instance, if the dimen-
sionality of the latent space Xi is moderately low, one could directly sample from the
prior distribution p(x | M = i) and estimate the evidence as

p(y | M = i) ≈ 1

M

M∑
m=1

p(y | x(m),M = i), (2.46)

with x(1), . . . , x(M) as i.i.d. samples from p(x | M = i). When two models are compared
pairwise, it is common to compute their Bayes factor, which is defined by

Ki,k =
p(y | M = i)

p(y | M = k)
(2.47)

and often given in units of deciban (dB), e.g.,

KdBi,k = log10Ki,k. (2.48)

2.3 Single-Cell Fluorescence Data

A major part of this thesis deals with calibrating stochastic biochemical models using
experimental single-cell fluorescence data. In particular, we consider two classes of data,
which – even when considering the same biochemical networks – require a completely
different computational handling. In the following we briefly discuss both types of
data from the viewpoint of inference but remark that a description of the respective
experimental techniques is not in the scope of this thesis.

2.3.1 Population Snapshot Data

The first class is population snapshot data such as revealed by flow-cytometry [89,
136] or mRNA FISH [82, 88]. Characteristic for such data is that individual cells
cannot be followed over multiple time points – either because the cells do not survive
the acquisition (e.g., mRNA FISH) or because the cells enter the device in a random
sequential order such that any associations between time points are necessarily lost
(e.g., fluorescence-activated cell sorting, FACS). Mathematically, we assume hence that
the M measurements at every time point tl are statistically independent samples from
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each other7, i.e., Y m
l | (Θ = θ) ∼ p(yml | θ) with m = 1, . . . ,M and Θ as a complete

parametrization of the model. Under those assumptions, it holds that

p(y1
1, . . . , y

M
1 , . . . , y

1
L, . . . , y

M
L | θ) =

L∏
l=1

M∏
m=1

p(yml | θ). (2.49)

In the context of parameter inference, one tries to find a θ, under which the temporal
distributions p(yml | θ) or their respective statistics best explain the data (see Section
3).

2.3.2 Time-Lapse Data

The second type of single-cell measurements are so-called time-lapse or live-cell data,
where individual cells can be tracked over time. Using fluorescence microscopy tech-
niques, their dynamics are monitored in a frame-by-frame fashion such that suitable
image segmentation- and tracking algorithms allow to reconstruct each cell’s abun-
dance trajectory. Consequently, such data provides additional information on how
the abundance of a particular cell evolves over multiple time points. This will be re-
flected by a statistical dependency between individual data points of a trajectory, i.e.,
Y m

1 , . . . , Y m
L | (Θ = θ) ∼ p(ym1 , . . . , y

m
L | θ). Therefore, independence is preserved only

across cells such that we obtain

p(y1
1, . . . , y

M
1 , . . . , y

1
L, . . . , y

M
L | θ) =

M∏
m=1

p(ym1 , . . . , y
m
L | θ). (2.50)

Denoting by Y m
1:L = {Y m

l | l = 1, . . . , L} the trajectory of cell m, we can compactly
write (2.50) as

p(y1
1:L, . . . , y

M
1:L | θ) =

M∏
m=1

p(ym1:L | θ). (2.51)

We realize from (2.51) that time-lapse data provides more information than population
snapshot data, since a parametrization θ not only needs to explain the entirety of
measurements at the respective time points, but also their evolution along the entire
measurement interval. Similarly, if we consider a stochastic process, it seems much more
difficult to infer its time-scale (e.g., in terms of its autocorrelation) from a sequence
probability distributions than from a set of sample paths. The latter provide a direct
handle on the time-scale of the process and therefore, often appear favorable from the
viewpoint of inference.

7In reality, if the same cells are measured multiple times (e.g., using a cell sorter), there will be
correlated effects between time points. However, we assume those to be negligible due to the
randomization of the cell indices m = 1, . . . ,M .



3 Inference from Heterogeneous
Snapshot Data

In this chapter, we develop a Bayesian inference scheme for analyzing population snap-
shot data such as revealed by flow cytometry [136] or mRNA FISH [82, 88]. In par-
ticular, we consider time-lapse variants thereof, meaning that multiple snapshots are
recorded over a sequence of time points. Although such recordings provide a handle on
the dynamics of the considered biochemical system, they cannot resolve any temporal
correlation on a single-cell level (see Section 2.3). In contrast, they allow to display how
the probability distribution over the fluorescence protein evolves over time. As a conse-
quence, mathematical models of such data are typically based on the chemical master
equation, since its transient solution corresponds to what is measured experimentally.
Here we put focus on the case where a population of cells exhibits a non-negligible de-
gree of extrinsic variability. As pointed out in Section 2.1.5, the associated mixed-effect
models scale poorly with the number measured cells. This turns out to be specifically
problematic when considering flow cytometry techniques, which are able to capture
thousands of cells at once.

In Section 3.1 we introduce the mathematical problem formulation and discuss a
straightforward attempt at inference using heterogeneous CMEs. Since that approach
is of limited practical use, we subsequently introduce a moment-based scheme (see
Section 3.2), whose computational complexity is independent of the population size
and therefore, ideally suited for analyzing heterogeneous snapshot data.

3.1 Inference Based on the Chemical Master Equation

We consider an ensemble of heterogeneous CTMCs Xm | (S,Zm) for m = 1, . . . ,M
with Zm as a set of extrinsic factors. Throughout this section, we assume those factors
to be constant over time and that Zm | (A = a) ∼ p(z | a) with a as a set of extrinsic
statistics. Consequently, a cell’s molecular abundance can be described by a conditional
probability

P (Xm(t) = x | S = s, Zm = z) = P (x, t | s, z), (3.1)

which can be understood as the solution of a conditional master equation of the form

d

dt
P (x, t | s, z) =

L∑
i=1

hi(x−νi, s, z)P (x−νi, t | s, z)−
L∑
i=1

hi(x, s, z)P (x, t | s, z), (3.2)

25
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with an initial condition P (x, 0 | s, z) that possibly depends on the s and z. Similarly,
the hazard functions hi of that conditional master equation are defined such that they
may depend on any of the parameters in z and s. An exemplary scenario would be
that s corresponds to the set of kinetic rate constants c, while z could be the ribosomal
abundance that varies from cell to cell.

When considering experimental snapshot data, every acquired fluorescence value
stems from an individual cell – each having different extrinsic factors Zm. There-
fore, such data cannot be appropriately described by a single CME model. In contrast,
it represents a mixture of M CMEs with variable parameterization. Mathematically,
this corresponds to a marginalization, i.e.,

P (x, t | s, a) =

∫
Z
P (x, t | s, z)p(z | a)dz

= E [P (x, t | s, Z) | a] ,

(3.3)

which means that the conditional probabilities are “averaged” with respect to the ex-
trinsic factors. The resulting marginal probabilities directly depend on the extrinsic
statistics a. In theory, (3.3) is maximally scalable with respect to M , meaning that it
is independent of the population size.

3.1.1 Statistical Modeling

Let us for the moment assume that for a given S = s and A = a, we can evaluate
the marginal distribution (3.3). We have now given a temporal sequence of snapshot
measurements at times t1, . . . , tL at which the molecular state has been partially ob-
served. We denote the state and corresponding measurement of the m-th cell at time
tl as Xm

l = Xm(tl) and Y m
l | (Xm

l = x,Ω = ω) ∼ p(y | x, ω) with Ω as a (possibly
unknown) set of parameters characterizing the acquisition noise. The l-th snapshot
consists of Ml single-cell measurements Yl = {Y m

l | m = 1, . . . ,Ml}.
The goal is to infer posterior distributions over S, A and Ω. The likelihood function

factorizes as

p(y1, . . . , yL | s, a, ω) =
L∏
l=1

Ml∏
m=1

pl(y
m
l | s, a, ω)

=
L∏
l=1

Ml∏
m=1

∑
x∈X

p(yml | x, ω)P (x, tl | s, a)

=
L∏
l=1

Ml∏
m=1

E [p(yml | X(tl), ω) | s, a] ,

(3.4)

and hence,

p(s, a, ω | y1, . . . , yL) ∝
L∏
l=1

Ml∏
m=1

E [p(yml | X(tl), ω) | s, a] p(s)p(a)p(ω). (3.5)
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Eq. (3.5) allows us to evaluate the posterior distribution up to a normalizing constant
such that in principle, we could sample from it using a suitable MCMC scheme. Nev-
ertheless, the expected value in (3.5) is taken with respect to the marginal probability
distribution which we have assumed to be known so far. In reality – however – it is
barely tractable and thus, would require numerical approximations. For instance, the
marginalization could be performed by Monte Carlo averaging multiple solutions of the
conditional CME with randomly drawn Z. Alternatively, one could extend the state
space by a discretized variant of Z with p(z | a) as initial condition [50] and numerically
solve the extended CME (e.g., using FSP [81]). The solution of this equation would then
yield the joint distribution over X(t) and Z, which can be marginalized subsequently
by evaluating a finite sum. In the context of parameter estimation, both approaches
are practically infeasible for all but the smallest systems, since most inference schemes
rely on iterative algorithms that require many numerical integrations of the CME. In
the next section, we introduce an alternative and significantly more efficient approach.

3.2 Inference Based on Moments

We have seen in Section 2.1.4 that the dynamics of a biochemical network can be
described by a set of coupled moment equations, which are straightforward to derive
from the CME. This section is centered around the question if and how one can leverage
those moment equations for the purpose of inference. Intuitively speaking, we try to
find a set of parameters such that the moments of the biochemical network agree well
with the moments obtained experimentally.

3.2.1 Marginal Moment Dynamics

We again consider the heterogeneous biochemical network from Section 3.1. We remark
that the moments of such a model are different from those derived in Section 2.1.4. More
specifically, we require the marginal moments of X(t), i.e.,

E [f(X(t))] =
∑
x∈X

f(x)P (x, t | s, a)

=
∑
x∈X

f(x)

∫
Z
P (x, t | s, z)p(z | a)dz,

(3.6)
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with f : X × Z 7→ R as a polynomial in x and z. Taking the time derivative of (3.6),
we further obtain

d

dt
E [f(X(t), Z)] =

∑
x∈X

f(x, z)

∫
Z

d

dt
P (x, t | s, z)p(z | a)dz

=
∑
x∈X

f(x, z)

∫
Z

[ L∑
i=1

hi(x− νi, s, z)P (x− νi, t | s, z)

−
L∑
i=1

hi(x, s, z)P (x, t | s, z)
]
p(z | a)dz

=
L∑
i=1

∫
Z

∑
x∈X

f(x+ νi, z)hi(x, s, z)P (x, t | s, z)p(z | a)dz

−
L∑
i=1

∫
Z

∑
x∈X

f(x, z)hi(x, s, z)P (x, t | s, z)p(z | a)dz

=
L∑
i=1

E [E [f(X(t) + νi, Z)hi(X(t), s, Z) | Z]]

−
L∑
i=1

E [E [f(X(t), Z)hi(X(t), s, Z) | Z]]

=
L∑
i=1

E [f(X(t) + νi, Z)hi(X(t), s, Z)]−
L∑
i=1

E [f(X(t), Z)hi(X(t), s, Z)] .

(3.7)

Depending on the particular form of hi and f , the r.h.s. of (3.7) may also contain
higher-order moments (and cross-moments) of the extrinsic factors Z and the state
X(t). We therefore require a suitable moment-closure [52, 128] scheme in order to get
a finite-dimensional system of ODEs. For that sake, we introduce the vector of non-
central moments (and cross-moments) up to a certain order n as µ̃(t) as well as the
vector of all moments of order higher than n as µ̄(t). The moment system can then be
written as

d

dt
µ̃(t) = A(s, a)µ̃(t) +B(s, a)µ̄(t). (3.8)

The idea of moment-closure is to replace the dependency of the moments of order higher
than n by a dependency of the moments of order up to n. In other words, we try to
find a closure function q such that q̂(µ̃(t)) ≈ µ̄(t). This is illustrated in the following
example using a non-linear death-process.

Example 4 (Gaussian closure). Let us consider a homogeneous one-dimensional death
process X(t) with death-rate X2(t) and some initial condition X(0) = x0. The non-
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central moments of up to order two are given by

d

dt
E [X(t)] = −E

[
X2(t)

]
d

dt
E
[
X2(t)

]
= E

[
X2(t)

]
− 2E

[
X3(t)

]
.

(3.9)

In this case, the second-order moment depends on the third-order moment and so forth.
Hence, we try to approximate E [X3(t)] as a function of the first- and second-order
moment, i.e., E [X3(t)] ≈ q̂(E [X(t)] ,E [X2(t)]). For instance, if we assume that
P (x, t) is approximately Gaussian, we obtain for the third-order moment E [X3(t)] =
−2E [X(t)]3 + 3E [X(t)]E [X2(t)] and furthermore,

d

dt
E [X(t)] = −E

[
X2(t)

]
d

dt
E
[
X2(t)

]
= 4E [X(t)]3 + E

[
X2(t)

]
− 6E [X(t)]E

[
X(t)2

]
.

(3.10)

With eq. (3.10) we have found an approximative closed moment system of the nonlinear
death-process. However, additional simulations need to be performed to judge whether
the closure can accurately describe the first- and second-order moments.

Several different closure techniques have been proposed recently [52,114,115]. They
all have in common that they rely on certain assumptions on the underlying distri-
bution. The authors in [114] propose a closure scheme termed derivative matching
corresponding to a log-normal assumption. When using the zero-cumulants closure,
the (n+ 1)-th order cumulants of the abundance distribution are set to zero, yielding a
closed moment system of order n [52]. In this section we focus on the aforementioned
closure-types but remark that further closures have been proposed in the literature (see
e.g., [115]).

3.2.2 Statistical Modeling

Although an extension to the general case is straightforward, we assume - for the sake
of clarity - that only a single species is measured from a cell population at time points
tl, l ∈ {1, . . . , L}. We further assume that the technical noise is negligibly small or that
it has been deconvolved from the measurements beforehand (see e.g., Section 3.2.4). We
define γ = {s, a} and denote the approximate time evolution of the measured species’
k-th order moment as t 7→ µ̃k(t, γ) for k ∈ {1, . . . , n}. With the k-th order experimental
moments µ̂k = {µ̂k(tl) | l ∈ {1, . . . , L}}, the posterior distribution over γ is generally
given by

p (γ | µ̂1, . . . , µ̂n) ∝
L∏
l=1

p (µ̂1(tl), . . . , µ̂n(tl) | γ) p(γ), (3.11)

with p(γ) as the prior distribution over γ. For simplicity, we further assume that the
experimental moments of different order are statistically independent of each other,
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corresponding to the assumption that they have been estimated using distinct and
independent sets of samples (e.g., using bootstrapping). In this case, (3.11) simplifies
to

p (γ | µ̂1, . . . , µ̂n) ∝
n∏
k=1

L∏
l=1

p (µ̂k(tl) | γ) p(γ). (3.12)

Furthermore, the large-sample case encountered in population snapshot measurements,
allows us to make use of the central limit theorem and assume that p (µ̂k(tl) | γ) =
N (µ̃k(tl, γ), σ2

k(tl)), where σ2
k(tl) refers to the estimated uncertainty of the respective

moment. For instance, if we consider the first two central moments (i.e., mean and
variance), asymptotically unbiased estimators are given by

µ̂(tl) =
1

N

N∑
i=1

xi(tl)

and µ̂2(tl) =
1

N

N∑
i=1

(xi(tl)− µ̂1(tl))
2 .

and the corresponding variances can be estimated as

σ2
1(tl) =

1

N
µ̂2

2(tl) and

σ2
2(tl) =

1

N

(
µ̂4(tl)−

N − 3

N − 1
µ̂2(tl)

)
,

respectively [105, 136]. Under those assumptions, the posterior from eq. (3.12) can
be evaluated using available techniques. Here, we employ a standard Metropolis-
Hastings (M-H) sampler [15] to draw samples from the posterior distributions. For
all the subsequent experiments, we assume flat prior distributions over parameters
γj ∈ γ (with zero probability for negative values). In the M-H scheme, for each of
the JP parameters in γ, we use independent log-normal proposal distributions such
that q(γnew|γold) =

∏JP
j=1 q(γ

new
j |γoldj ) with q(γnewj |γoldj ) = LN

(
ln γoldj , v2

j

)
. Proposed

parameter samples are then accepted with probability

a = min

{
1,
p (γnew | µ̂1, . . . , µ̂n) q(γold|γnew)

p (γold | µ̂1, . . . , µ̂n) q(γnew|γold)

}
.

From the resulting samples, it is straightforward to extract point estimates, for in-
stance by selecting the parameter configuration which maximizes the posterior distri-
bution (i.e., the maximum a posterior (MAP) estimate). Whether the moments of the
measured distributions carry enough information to jointly determine the intrinsic pa-
rameters and the extrinsic statistics, in general has to be answered by performing an
identifiability analysis of the moment system [12,51,105].
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Table 3.1: Reference and inferred model parameters.

Parameter c1 c2 c3 c4
Reference 1.500 · 10−2 8.000 · 10−4 1.000 · 10−3 4.000 · 10−1

MAP 1.380 · 10−2 7.050 · 10−4 9.865 · 10−4 3.988 · 10−1

Unit s−1 s−1 s−1 s−1

3.2.3 Application to Simulated Data

To test whether the moment-based inference scheme can identify parameters even in
the case of multi-modal process distributions, we studied the four-species model de-
picted in Figure 3.1a, which can be thought of as a simple model of transiently induced
gene expression. Degradation of A serves as a simplistic mechanism to model a tempo-
ral window of transcription factor activity. During this temporal window, the gene B
manages to switch into a state, where protein C is produced only in a fraction of the
cells. The corresponding moment equations of order one and two can be found in [136].
For simplicity, we assume that the initial conditions of the species are known. If in
some application the initial conditions are unknown, they can be included as unknown
parameters in the parameter search and estimated along with the other parameters.
For species A we set the initial amount to 50 molecules, B was initialized at 1 (cor-
responding to the gene being initially in the inactive state), whereas all other species
were initialized at 0 molecules. The reference data was generated by stochastic simu-
lation [44] using M = 20000 sample paths of length T = 10000s. We computed means
and variances of species C and their corresponding uncertainties each 2000s, treated
them as experimental measurements and computed maximum a posterior (MAP) esti-
mates as described in Section 3.2.2. The scaling parameters of the log-normal proposal
densities were set to vj = 0.01. After a burn-in period, we recorded around 10000
samples of the M-H algorithm from which the MAP values were extracted. This infer-
ence was performed multiple times using random initial parameter values, drawn from
a log-normal distribution LN (ln 0.002, 22). Each time, the inference scheme ended up
with equivalent MAP estimates (up to small random deviations, introduced by the
randomized parameter search).

The inferred and reference parameters are given in Table 3.1 and the corresponding
moments are depicted in Figure 3.1c. Even though in this case, mean and variance
do not paint a full picture of the underlying multi-modal protein distribution, all pa-
rameters - and thus the protein distributions - were estimated accurately up to a small
approximation error (see Figure 3.1b).

3.2.3.1 Second-Order Moment Resolves Non-Identifiability

For the simple model of transient gene activation, the population mean alone does not
provide enough information to uniquely determine the four model parameters. This
is demonstrated in Figure 3.2, where we compared two different model configurations,
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Figure 3.1: Moment-based inference using synthetic data. (a) A simple model of transient gene
activation: The binding of A to the target gene B aggregates all necessary steps involved in gene
activation such as the binding of additional transcription factors, polymerase binding or chromatin
remodeling. Also protein synthesis is reduced to the simplest possible model, i.e., a first order pro-
duction, abstracting messenger RNA (mRNA) transcription and degradation, translation and protein
folding. (b) The protein distributions predicted by the calibrated model (red) compared to the distri-
butions generated from the reference model (black) at four representative time points. Estimates of
the distributions were obtained by stochastic simulation (20000 runs). (c) The time evolutions of the
approximate protein mean and variance obtained from moment closure (MC) differ only little from
approximations computed by stochastic simulation (SSA). Therefore, the model parameters can be
inferred up to negligibly small deviations.
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each of them found by running the same MCMC algorithm with different initial condi-
tions. In both cases, the estimated means fit well the reference mean. In contrast, the
variances significantly differ from each other. Neither parameter set can reproduce the
underlying distribution. For one of them, the distribution is even unimodal (see Figure
3.3).
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Figure 3.2: The plot shows results for two parameter configurations that achieved almost equivalent
mean values but strongly differ in the variance. Red, Blue: Calibrated models; Black: Reference model
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Figure 3.3: Protein distributions for two parameter configurations. As the blue distribution is uni-
modal for all time points, it follows that the multi-modality cannot be predicted from the protein
mean alone. Red, Blue: Calibrated models; Black: Reference model.
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3.2.4 Application to Hog1-Induced Gene Expression in Yeast

The moment-based inference scheme allowed us to study gene expression, activated by
the HOG signaling pathway in budding yeast [54]. Upon hyper-osmotic shock yeast
cells induce the MAPK Hog1 signaling cascade. The role of this kinase is two-fold. In
the cytoplasm, Hog1 phosphorylates its substrate to increase the internal concentra-
tion of glycerol in the cell. In parallel, a large fraction of the active Hog1 translocates
to the nucleus where it triggers the activation of a transcriptional program leading to
the upregulation of roughly 300 genes [38]. Once the internal glycerol concentration
allows to balance the external osmotic pressure, the HOG pathway is deactivated lead-
ing to loss of active MAPK and a rapid termination of the transcriptional process. To
quantify the amount of transcription induced by this pathway a fluorescent expression
reporter was generated using the promoter pSTL1 (promoter of the sugar transporter-
like protein 1), a well characterized Hog1 expression target driving the expression of
a fluorescent protein construct (quadrupleVenus - qV). It was shown in [94] that the
transient activation of the MAPK Hog1 in conjunction with a slow step in the tran-
scription activation process of the promoter results in a bimodality in the expression
profiles of this fluorescent expression reporter. The pSTL1-qV reporter abundance was
quantified by flow cytometry at 9 different time points for NaCl concentrations of 0M,
0.1M, 0.12M and 0.2M. To determine the nuclear enrichment of Hog1, we used the
fluorescence microscopy data published in [94].

3.2.4.1 Kinetic Modeling

Components involved in activation and translocation of Hog1 are present in high abun-
dance (e.g., around 6800 Hog1 molecules per cell [40]). Consequently, intrinsic fluctu-
ations of active Hog1 are relatively small. Experimental results from [83, 94] support
this and also that Hog1 signaling is robust against cell-to-cell variations. Motivated by
this, we assume Hog1 signaling to be deterministic rather than stochastic and that the
mean dynamics reflect well the signaling behavior [72,140]. Continuous-time functions
of nuclear Hog1 were obtained from the experimental data by linear regression with
radial basis functions [15] across different NaCl concentrations (see Figure 3.4).

Several transcription factors such as Sko1 or Hot1 are under control of active Hog1
once it translocates to the nucleus as shown in [21]. This and the experimentally
observed switch-like induction of fluorescent reporter expression, suggest a high coop-
erativity in the pSTL1 promoter dynamics. In a purely stochastic mass-action model,
one way to model cooperativity is to require multiple Hog1 copies to bind to the pro-
moter before messenger RNAs (mRNA) can be transcribed. However, the previous
high copy-number considerations allow us to simplify this step into transforming the
fitted Hog1 abundance curves using a Hill-function with tunable parameters, i.e.,

ũ(t) =
Vmax(u(t) + u0)nH

KnH
d + (u(t) + u0)nH

, (3.13)
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Figure 3.4: Extracted nuclear Hog1 enrichment over time. Black: Fitted using linear RBF regression;
blue: interpolated; red: mean abundance obtained from microscopy.

with u(t) as the fitted nuclear Hog1 abundance and u0, nH , Vmax and Kd as unknown
parameters, estimated during model calibration. The output of this function is then
treated as a time-varying kinetic parameter modulating the gene activation rate, i.e.,
c1(t) = ũ(t). Efficient transcription of mRNA requires interaction of the active gene
with chromatin remodeling complexes (generic remodeler denoted as CR) [94]. Trans-
lation is modeled as a one-step linear production event, depending on the number of
ribosomes.

We model extrinsic variability at two different stages of the proposed model. First, we
assume variability in chromatin remodeling, because it depends on a variety of different
complexes which might be subject to cell-to-cell variations (such as RSC or the SAGA
complex, [55, 89]). Chromatin remodeling is modeled by recruitment of species C by
the active gene B. Thus, variability in the total number of CR (Z1 = [C] + [D]) leads
to variability in the remodeling efficiency. Furthermore, we assume heterogeneity in
the translation efficiency [23], which is reflected by a variability in the proxy species
Z2 = [E]. Mean and covariance matrix of the random vector Z = [Z1, Z2]T are defined
as

E [Z] =

(
α1

1

α1
2

)
(3.14)

and

E
[
(Z − E [Z])(Z − E [Z])T

]
=

(
α2

11 α2
12

α2
12 α2

22

)
(3.15)

The extrinsic statistics then enter the moment equations in terms of the initial con-
ditions for the respective first and second order moments. The extrinsic statistics were
assumed to be unknown and inferred from the measurements as explained in Section
3.2.2. Note that within a moment-based approach, no assumptions on the distribution
p(z) are required. However, once a comparison between the protein distributions is
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desired, realizations z have to be drawn from p(z) for each SSA run. As p(z) is not
fully characterized by mean and variance only, further assumptions need to be made.
Here, we restrict the shape of p(z) to be log-normal [36] and compute it’s parameters
from the inferred extrinsic statistics (i.e., first and second order moments). A schematic
illustration of the model is given in Figure 3.5a. The corresponding moment equations
of order one and two can be found in [136].
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Figure 3.5: MAPK Hog1 induced pSTL1-qV expression. (a) Osmotic pressure is sensed at the
membrane, and results in the activation of the MAPK signaling cascade. Once active, double-
phosphorylated MAPK Hog1 translocates to the nucleus, where it can bind via transcription factors to
the pSTL1 promoter. Remodeling of the chromatin structure then allows for efficient transcription of
mRNA, which is exported from the nucleus to yield expression of the fluorescent reporter pSTL1-qV.
Blue-shaded entities denote species subject to extrinsic variability. (b) Comparison of pSTL1-qV mean
and variance obtained after calibration (Cal) and validation (Val) of the model using moment closure
(MC) and 20000 stochastic simulation runs (SSA) with the experimental estimates obtained from the
time-lapsed (TL) flow cytometry (FC) data (∼ 20000 cells).

3.2.4.2 Modeling Fluorescence Intensities

We further assumed that the measured fluorescence intensity for a given cell is propor-
tional to the number of fluorescent proteins [89], i.e., ITot(tl) = εÎTot(tl) with scaling
parameter ε. Furthermore, we assumed that the reporter abundance IR(tl) is corrupted
by autofluorescence and measurement artifacts, modeled as an additive random variable
IAF (tl), independent of the reporter abundance, i.e., ITot(tl) = IR(tl) + IAF (tl). Mean
and variance of IAF (tl) were estimated from the flow cytometry data for 0M NaCl,
collected over the measurement time points. As this allows very accurate estimates (N
in the order of hundreds of thousands), the uncertainty of those estimates can be well
neglected. The experimental means and variances of pSTL1-qV abundance at a given
measurement time point were calculated as µ̂kR(tl) = µ̂kTot(tl) − µkAF (tl) for k ∈ {1, 2}.
Note that moment-based inference and analysis of the model can be carried out with-
out any assumptions on the autofluorescence distribution. In order to compare protein
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distributions from the model with experimentally obtained distributions, we sampled
autofluorescence values from the measured flow cytometry distribution for 0M NaCl.

3.2.4.3 Model Calibration and Validation

Alltogether, the model comprises the parameters u0, nH , Kd, Vmax, c2 ,c3, c4, c5, c6,
c7 , c8, α1

1, α1
2, α2

11, α2
22 and α2

12, which were estimated from the time courses of the
experimental means and variances (see Figure 3.5b) using NaCl concentrations 0M,
0.12M and 0.2M.

Note that the propensity of a translation event is proportional to the product c6 · [E].
Thus, the parameters c6, α1

2 and α2
22 are structurally unidentifiable [12, 51]; hence we

estimated the products c6α
1
2 and c2

6α
2
22. Given those products, statistics of the number

of ribosomes could for instance be estimated by setting c6 to values from literature and
quantifying the remaining part.

Due to the high-dimensional state and parameter space and the fact that our flow
cytometry experiments only captured distributions of a single protein, we expected the
resulting posterior distributions to be multi-modal. Therefore, a standard M-H scheme
was performed 50 times, each time with randomly drawn initial parameter configura-
tions. Note that in general, this is likely to give parameter configurations for which the
nonlinear moment system is numerically unstable and thus, we first selected a stable
parameter configuration γs (see Table 3.2). Then, each parameter value was randomly
initialized around those initial parameter values, i.e., γ0

j ∼ LN (ln γj,s, 0.5
2). The scal-

ing parameters vj of the log-normal proposal densities are given in Table 3.2. We then
sorted the 50 parameter sets according to their maximum a-posteriori probabilities and
selected the best five parameter sets for further inspection.

To quantitively assess the goodness-of-fit we additionally computed a distance mea-
sure between the predicted and experimental distributions. Among the various metrics
proposed in literature (see [41] for an overview) we chose the uniform or Kolmogorov
metric (measuring the maximum deviation between the cumulative distributions). As it
is scale-invariant and bounded by one it appears more amenable to interpretation than
other distance measures. Moreover, it was already used in the context of stochastic
simulations of chemical kinetics [20]. For each of the 50 parameter sets we computed
the Kolmogorov distance for all NaCl concentrations and time points between the em-
pirical and the predicted pSTL1-qV distributions. The final parameter set was selected
such as to minimize the total distance, i.e., the sum of individual Kolmogorov distances
over all time points and the three concentrations used for fitting (i.e., 0M, 0.12M and
0.2M of NaCl). Figure 3.6 depicts the Kolmogorov distance for the best performing
parameter set which is given in Table 3.2.

Using the final parameter set, the pSTL1-qV expression profiles for each measure-
ment time point and NaCl concentration were computed from the calibrated model
using stochastic simulation. A comparison between the experimental and the predicted
distributions is shown in Figure 3.8a. Even though only means and variances were used
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Table 3.2: Inferred model parameters and Metropolis-Hastings setup. The γj,s denote the initial
parameter values, chosen such as to obtain stable moment dynamics. The inferred MAP estimates
are denoted as γj,MAP . The scaling parameters of the log-normal proposal distributions used in the
Metropolis-Hastings algorithm are denoted as vj .

Parameter γj,s γj,MAP Unit vj
u0 3.000 · 10−2 1.581 · 10−2 a.U. 0.01
nH 3.000 6.130 1 0.01
Kd 2 · 10−1 1.418 · 10−1 a.U. 0.01
Vmax 1.000 1.025 s−1 0.01
c2 1.000 1.384 s−1 0.02
c3 4.000 · 10−4 6.669 · 10−4 s−1 0.02
c4 1.000 · 10−3 1.469 · 10−2 s−1 0.02
c5 1.000 2.825 · 10−1 s−1 0.02
c7 1.000 · 10−3 5.476 · 10−4 s−1 0.02
c8 1.000 · 10−4 1.283 · 10−4 s−1 0.02
α1
1 3.300 · 101 2.250 · 102 1 0.01

c6α1
2 3.300 · 10−2 5.663 · 10−3 s−1 0.01

α2
11 1.900 · 103 7.809 · 103 1 0.02

c26α
2
22 1.900 · 10−3 3.098 · 10−6 s−2 0.02

c6α2
12 1.100 · 10−1 8.935 · 10−2 s−1 0.01

in the inference, the bimodal distributions are accurately predicted by the model.

We further validated the model using an additional snapshot data set from [94], where
the pSTL1-qV reporter abundance was measured for several other NaCl concentrations
between 0M and 0.3M, 45 minutes upon osmotic shock. From the model predictions
and the measured distributions, we computed the coefficient of variation (CV) and a
dose-response as functions of the NaCl concentration (Figure 3.8b). The area around
0.1M NaCl, where the CV is large and the dose-response curve is rising, indicate the
NaCl concentration interval where the expression is in a bimodal regime. Note that
also at 0.3M NaCl, a concentration much larger than the concentrations that were used
in the inference, the CV is predicted accurately.
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Figure 3.6: Distance in distribution between model predictions and data. The Kolmogorov distance
DK was computed between the empirical and the predicted pSTL1-qV distribution for each time point
and concentration. Note that the distance DK is bounded by one.
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To study the stochastic pSTL1-qV induction, we simulated the model to estimate
the average number of cells that (a) never activate the pSTL1 promoter, (b) activate
the promoter at least once and (c) induce transcription. Our model predicts that
for all NaCl concentrations except 0M all cells manage to activate the promoter and
therefore, that the bimodality has to be caused by the subsequent - and comparably
slow - chromatin remodeling step (see Figure 3.7).
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Figure 3.7: Statistical analysis of the transcriptional activation in pSTL1-qV expression. Bars indi-
cate the percentage of cells that never activated the gene (-), that activated the gene at least once (+)
and cells that initiated transcription (++). Statistics were computed from 1000 traces obtained using
stochastic simulation with the inferred parameters.

Further, we performed an in silico knock-down of CR, by rescaling each cell’s amount
of CR by a hand-tuned factor, such that the percentage of responding cells saturated
around 60% as measured in the experiment (see Figure 3.8b). We found that the
transition between the non- and all-responding domain is shifted to higher NaCl values
and that the slope of the transition edge is decreased.

3.2.4.4 In Silico Homogenization of the Cell Population

After calibrating the model, we switched off extrinsic variability, by setting each cell’s
extrinsic condition to the inferred mean value. We then recomputed estimates of the
pSTL1-qV distributions using stochastic simulation. The resulting average cell can
be interpreted as a homogenized version of the measured population. Again CV and
dose-response were computed and plotted in Figure 3.8b. Interestingly, we find that
extrinsic variability does not affect the dose-response behavior in pSTL1-qV induction.
In contrast, the homogenized population shows significant differences in the CV. In
particular, for larger stress levels the CV is relatively small compared to the hetero-
geneous counterpart, indicating less variability in pSTL1-qV reporter expression. For
intermediate stress levels the homogenized population still shows a bimodal response.

To study the extent to which extrinsic variability can be reduced by cell-gating, we
re-estimated the extrinsic statistics using the time-lapsed flow cytometry data set for
gates of different size, applied on the forward scatter channel (FSC, often used as a
proxy for cell volume). We found that the variability in the translation efficiency is
significantly reduced for small gating diameters. In contrast, no significant trend was
found in the estimated variability in CR (see Figure 3.9).
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Figure 3.8: Population mean and variance predict bimodal pSTL1-qV response. (a) Model calibration
(Cal) and validation (Val). The parameters were inferred using time-lapsed (TL) flow cytometry (FC)
data of the pSTL1-qV reporter at three NaCl concentrations (i.e., 0M, 0.12M and 0.2M) and used
to predict the expression profiles at a NaCl concentration of 0.1M. (b) Model validation using flow
cytometry snapshot data (SS), recorded 45 minutes after osmotic shock for 0M, 0.1M, 0.12M, 0.135M,
0.15M, 0.175M, 0.2M and 0.3M of NaCl. Left: Coefficient of variation (CV) of pSTL1-qV intensity
as a function of NaCl. Right: Dose-response comparison. All curves indicate a Hill-type relation.
The calibrated model was homogenized (Hom), giving rise to the average cell’s CV and dose-response
curves. Additionally, we studied the suppression of the chromatin remodeling in silico by reducing
the amount of CR, such that the percentage of responding cells saturated around 60% (CR∆) and
compared the model predictions to the results reported in [94], where the authors performed a knock-
down of the transcription adapter 2 (Ada2) to demonstrate the impact of chromatin remodeling in
pSTL1-qV induction (Ada2∆).
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Figure 3.9: Cell-gating eliminates only a fraction of extrinsic variability. To study the influence of
cell-gating on cell-to-cell variability we fixed all parameters but the extrinsic statistics α̃ to their pre-
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The CV of the translation efficiency increases with the logarithmic gating diameter (right), whereas
the CV of the chromatin remodeling remains more or less constant (left).



4 Inference from Heterogeneous
Time-Lapse Data

In contrast to population snapshot measurements, fluorescence microscopy techniques
allow to record movies of cell populations from which single-cell time-lapse data can
be extracted (see Section 2.3). Such data do not only provide a handle on the protein
distribution at particular time points, but also, on how the abundance evolves over the
measurement interval. In other words, they also contain information about the temporal
behavior of the underlying molecular process inside a single cell. We remark that the
algorithms from Chapter 3 could be readily applied to this type of data by simply
discarding the additional information. However, it turns out time-lapse data provides
a highly informative source of information and can even resolve non-identifiabilities
of parameters (see Section 4.2.4.2). In order to fully exploit all information present
in time-lapse data, we need to follow a completely different strategy. In particular,
suitable approaches are centered around general state space models [15] and associated
inference techniques such as Bayesian filtering and smoothing [8].

4.1 Mathematical Modeling

We again consider a heterogeneous CTMC X | (S,Z) describing the time evolution
of a reaction network with L reaction channels and associated kinetic parameters
C = {C1, . . . , CL} = {Z1, . . . , ZJ , S1, . . . , SI}. Experimentally we can retrieve noisy
measurements of a few molecular species for M cells at different measurement times tl
with l = 1, . . . , N . The acquisition error associated with the experimental technique is
characterized by a conditional measurement density, i.e.,

Y m
l | (Xm

l = xml ,Ω = ω) ∼ p(yml | xml , ω), (4.1)

with Ω an unknown distribution parameter such as the acquisition noise variance. Fur-
thermore, we define the state trajectory of cell m between the l-th and the k-th mea-
surement time as Xm

l:k and denote by Y m
l:k the corresponding set of measurements.Image-

based single-cell techniques can additionally capture morphological features of cells such
as their volume or shape (see Figure 4.1a), which were shown to correlate well with
extrinsic factors [101,116]. They are incorporated by introducing morphological covari-
ates V m and hypothesizing a statistical dependency between these covariates and the
extrinsic factors Zm. This dependency is described by a conditional density

V m | (Zm = zm, B = b) ∼ p(vm | zm, b), (4.2)

41
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Figure 4.1: Modeling heterogeneous microscopy data. (a) Schematic generative model of the exper-
imental data. On top of intrinsic fluctuations, extrinsic factors and their morphological covariates
render individual cells different. The gene expression dynamics X(t, S, Zi) are hence characterized
by a parameter set S that is shared across cells and a set of individual (i.e. extrinsic) parameters
Zi. (b) Corresponding Bayesian mixed-effect model. Nodes denote random variables and statistical
dependency (and causality) is indicated by directed edges. Nodes with solid borders correspond to
experimentally accessible quantities, whereas dashed nodes refer to unobserved variables. Extrinsic
factors Zi are assumed to be drawn from a common distribution.

with b a set of shape parameters characterizing this conditional density. The resulting
mixed-effect state space model is depicted in Figure 4.1b.

4.1.1 A Straightforward Attempt at Inference

Formally, the posterior distribution over all unknown model quantities is given by

p(a, b, ω, s, z1, . . . , zM ,x1
1:N , . . . ,x

M
1:N | y1

1:N , . . . , y
M
1:N , v

1, . . . , vM)

∝ p(a, b, ω, z1, . . . , zM ,x1
1:N , . . . ,x

M
1:N , y

1
1:N , . . . , y

M
1:N , v

1, . . . , vM)

=

[
M∏
m=1

(
N∏
l=1

p(yml | xml , ω)

)
p(vm | zm, b)p(xm1:N | s, zm)p(zm | a)

]
× p(a)p(b)p(ω)p(s),

(4.3)

i.e., it is given by the joint distribution up to a normalizing constant that depends only
on the measurements. In that sense, any suitable MCMC sampler could be applied to
draw samples from (4.3). For instance, we could run a Metropolis-within-Gibbs scheme
and iteratively resample parameters and states using the full conditional distributions

p(x1
1:N , . . . ,x

M
1:N | ω, s, z1, . . . , zM , y1

1:N , . . . , y
M
1:N)

and p(a, b, ω, s, z1, . . . , zM | x1
1:N , . . . ,x

M
1:N , y

1
1:N , . . . , y

M
1:N , v

1, . . . , vM).

Via the chain rule of probability, we further note that

p(x1
1:N , . . . ,x

M
1:N | ω, s, z1, . . . , zM , y1

1:N , . . . , y
M
1:N) =

M∏
m=1

p(xm1:N | ω, s, zm, ym1:N) (4.4)
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and

p(a, b, ω, s, z1, . . . , zM | x1
1:N , . . . ,x

M
1:N , y

1
1:N , . . . , y

M
1:N , v

1, . . . , vM)

= p(s | x1
1:N , . . . ,x

M
1:N)

M∏
m=1

p(zm | a, b, vm,xm1:N)

× p(a, b | x1
1:N , . . . ,x

M
1:N , v

1, . . . , vM)

× p(ω | x1
1:N , . . . ,x

M
1:N , y

1
1:N , . . . , y

M
1:N).

(4.5)

Hence, conditional on the measurements, the distribution in (4.5) factorizes into indi-
vidual parts, from which sampling is fairly straightforward (e.g., using a Metropolis-
Hastings criterium). However, in reference to Section 2.2.2, we realize that the indi-
vidual terms within the product of (4.4) correspond to smoothing distributions, whose
computation is generally challenging. Additionally, we are confronted with the usual
scalability issues that arise when considering multiple cell measurements subject to ex-
trinsic variability (see Section 2.1.5). Therefore, a straightforward approach like the one
above is hardly able to deal with realistic problem settings. In the following section, we
develop an inference algorithm which accounts for those limitations and hence, permits
an application to experimental microscopy measurements.

4.2 Dynamic Prior Propagation

We can see from (4.3) that every considered cell 1, . . . ,M increases the dimensionality
of the posterior distribution due to the distinct extrinsic factors Z1, . . . , ZM . Picking up
the marginalization concept from Chapter 3, we ask whether we can again integrate out
those extrinsic factors from the posterior in order to obtain a parameter dimensionality
that is independent of the population size M . For the moment, let us consider the
distribution over all sample paths in a population of M heterogeneous cells, i.e.,

p(x1
t , . . . ,x

M
t | s, z1, . . . , zM) =

M∏
m=1

p(xmt | s, zm), (4.6)

with xmt as a sample path on a time interval [0, t] corresponding to cell m. Assuming
that Zm | (A = a) ∼ p(z | a), the marginalization over extrinsic factor is performed as

p(x1
t , . . . ,x

M
t | s, a) =

∫
Z
· · ·
∫
Z
p(x1

t , . . . ,x
M
t , z

1, . . . , zM | s, a)dz1 · · · dzM

=
M∏
m=1

∫
Z
p(xmt | s, zm)p(zm | a)dzm

=
M∏
m=1

p(xmt | s, a),

(4.7)
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with p(xmt | s, a) as the marginal path density. Importantly, we realize that after the
marginalization, all cells are associated with precisely the same path density showing
a direct dependency on the extrinsic statistics a. Although conceptually similar, the
above marginalization is different to that from Chapter 3, since it considers entire
realizations of the heterogeneous processes – not just time-point-wise readouts thereof.
An important question that arises in that context is whether there exists a marginal
process, which admits the path density p(xmt | s, a). If yes, it would provide a coherent
mathematical description of all heterogeneous cells at once.

4.2.1 Marginal Dynamics and the Innovation Theorem

Our goal is to find a dynamic description of the marginal process X | (S,A), where
the extrinsic parameters have been integrated out, such that their randomness is “self-
contained” in the resulting process. Similar constructions have been performed within
the theory of counting processes and they are based on the so-called innovation theo-
rem [1–4]. For instance, the author of [2] studied the marginal dynamics of a simple
three-state Markov Chain with random intensities. The following proposition shows
how to construct the marginal dynamics of an arbitrary reaction network with propen-
sity functions linear in Z (e.g., such as for mass-action kinetics).

Proposition 1. The propensities of the reactions with index j = 1, . . . , J of the
marginal process X | (S,A) are given by

hj(xt, t) = E [Zj | xt, a] gj(x(t)), (4.8)

with E [Zj | xt, a] as the conditional expectation of Zj given a sample path xt = {x(s) |
s ∈ [0, t]} and the extrinsic statistics a. All other propensities, i.e., those corresponding
to reaction indices i = J + 1, . . . , L remain unchanged.

Proof. Let P (X(t+ dt) = x(t) + ∆j | x(t), zj) denote the probability that reaction j
fires within the interval [t, t + dt) given the current state X(t) = x, where ∆j corre-
sponds to the stoichiometric change vector of reaction j. Then, for the marginal jump
probability we obtain

P (X(t+ dt) = x(t) + ∆j | xt, a)

=

∫
ZJ
P (X(t+ dt) = x(t) + ∆j, z | xt, a) dz

=

∫
ZJ
P (X(t+ dt) = x(t) + ∆j | x(t), zj) p(z | xt, a)dz

=

(∫
ZJ
zjp(z | xt, a)dz

)
gj(x(t))dt

= E [Zj | xt, a] gj(x(t))dt

= hj(xt, t)dt.

(4.9)
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Remark 1 (MGF Representation). We know from Section 2.1.2 and [62,129] that the
likelihood function of a path xt with respect to the parameters z is given by

p (xt | z) ∝
J∏
i=1

zrii exp

{
−

J∑
i=1

(
zi

∫ t

0

gi(x(s))ds

)}
, (4.10)

where ri counts the number of reactions of type i. Then, by applying Bayes’ formula,
the conditional expectation in (4.8) can be written as

E [Zj | xt, a] =

∫
Z
zjp(zj | xt, a)dzj

=

∫
Z
zj
p(xt | zj)p(zj | a)

p(xt | a)
dzj

=

∫
ZJ
zj
p(xt | z)p(z | a)

p(xt | a)
dz.

(4.11)

Hence, the marginal reaction hazard can be reformulated as

hj(xt, t) = E [Zj | xt, a] gj(x(t))

=

(∫
ZJ
zj
p(xt | z)p(z | a)

p(xt | a)
dz

)
gj(x(t))

=

(∫
ZJ
zj

p(xt | z)p(z | a)∫
ZJ p(xt | z)p(z | a)dz

dz

)
gj(x(t))

=
E [zjp (xt | z) | a]

E [p (xt | z) | a]
gj(x(t))

=
E
[
zj
∏J

i=1 z
ri
i exp

{
−
∑J

i=1

(
zi
∫ t

0
gi(x(s))ds

)}
| a
]

E
[∏J

i=1 z
ri
i exp

{
−
∑J

i=1

(
zi
∫ t

0
gi(x(s))ds

)}
| a
] gj(x(t)).

(4.12)

We note that the expectations in the numerator and denominator can be rewritten as
higher-order partial derivatives of the moment generating function (MGF)1 of Z | (A =
a) [2] and we arrive at

hj(xt, t) =

 ∂
∏J

i=1 ∂
ri

∂σj
∏J

i=1 ∂σ
ri
i

GZ|a(σ1, . . . , σJ)

( ∏J
i=1 ∂

ri∏J
i=1 ∂σ

ri
i

GZ|a(σ1, . . . , σJ)

)−1
 gj(x(t)),

(4.13)
with GZ|a as the MGF of Z | (A = a) and σi ≡ −

∫ t
0
gi(x(s))ds.

1The moment generating function of a random vector Z = (Z1, . . . , Zn) is defined as
E
[
eσ1Z1+...+σnZn

]
.
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In order to illustrate the calculation of the marginal hazard functions, a few exam-
ples for continuous as well as discrete extrinsic factors are provided in the following
(Examples 5–8).

Example 5 (Univariate Gamma Distribution). We assume a one-dimensional Gamma-
distributed extrinsic parameter Z | (A = a) ∼ G(α, β) with a = {α, β} and reaction
index 1. The MGF is known to be

GZ|a(σ) =
βα

(β − σ)α

and the i-th derivative becomes

di

dσi
GZ|a(σ) =

Γ(α + i)

Γ(α)

βα

(β − σ)α+i
.

Hence, by substituting into (4.13) the marginal hazard function is given by

h1(xt, t) =
α + r1

β +
∫ t

0
g1(x(s))ds

g1(x(t)). (4.14)

Example 6 (Conditioning on Covariates). Let us assume the case where additional
covariates V of Z – e.g., morphological features – are obtained experimentally (see
Section 4.1). We assume knowledge of a measurement density such that V | (Z =
z,B = b) ∼ p(v | z, b). In this case, the marginal hazard functions become

hj(xt, v, t) = ∂
∏J

i=1 ∂
ri

∂σj
∏J

i=1 ∂σ
ri
i

GZ|v,a,b(σ1, . . . , σJ)

( ∏J
i=1 ∂

ri∏J
i=1 ∂σ

ri
i

GZ|v,a,b(σ1, . . . , σJ)

)−1
 gj(x(t)),

where GZ|v,a,b is the MGF of Z | (V = v, A = a,B = b) ∼ p(z | v, a, b) ∝ p(v | z, b)p(z |
a). In case of Example 5, i.e., Z | (A = a) ∼ G(α, β) and V | (Z = z, B = b) ∼ G(ρ, φz)
with b = {ρ, φ}, we obtain

p(z | v, a, b) ∝ βα

Γ(α)
zα−1 exp{−βz}(φz)ρ

Γ(ρ)
vρ−1 exp{−φzv}

=
βαφρvρ−1

Γ(α)Γ(ρ)
zα+ρ−1 exp{−z(β + φv)},

and hence, Z | (V = v,A = a,B = b) ∼ G(α+ ρ, β + φv). Then, the marginal reaction
hazard is given by

h1(xt, v, t) =
α + ρ+ r1

β + φv +
∫ t

0
g1(x(s))ds

g1(x(t)). (4.15)
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Example 7 (Poisson Distribution). In many practical scenarios it might be the case
that the reaction hazards are modulated by a discrete-valued extrinsic variable, e.g., due
to a variability in copy numbers of certain species. For instance, if Z follows a Poisson
distribution with rate parameter λ, the MGF is given by

GZ|a(σ) = exp{λ(eσ − 1)} (4.16)

and its j-th derivative is found to be

dj

dσj
GZ|a(σ) = GZ|a(σ)

(
j∑

k=1

dj,k(λe
σ)j

)
(4.17)

with the coefficients dj,k following the recursive relation

dj+1,1 = 1

dj+1,k = dj,k−1 + kdj,k ∀ k = 2, . . . , j

dj+1,j+1 = 1 (4.18)

The marginal hazard function can then be written as

hi(xt, t) =

ri+1∑
k=1

dri+1,k(λe
σ)k

ri∑
k=1

dri,k(λe
σ)k

gi(x(t)). (4.19)

Example 8 (Bernoulli Distribution). Consider a cell population that is randomly par-
titioned into two subgroups. For some reason (maybe due to different cell-cycle stages),
one group can express a certain gene efficiently while the other group cannot. This can
be modeled by assuming that the corresponding kinetic rate constants are drawn from a
Bernoulli distribution such that each cell’s rate constant is Z = κ0 with probability p
or Z = κ1 with probability q = 1− p. In this case, the MGF is given by

GZ|a(σ) = peσκ0 + qeσκ1 . (4.20)

Taking the ri-th and the (ri + 1)-th derivative yields the marginal reaction hazard

hi(xt, t) =
peσκ0κri+1

0 + qeσκ1κri+1
1

peσκ0κri0 + qeσκ1κri1
gi(x(t)). (4.21)

Note that the above derivations are straight-forward to extend for discrete probability
distributions with more than two outcomes.
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Although the marginal process framework applies to arbitrary scenarios, we will
largely focus on the case where the extrinsic factors are distributed according to a
Gamma distribution (i.e, Examples 5 and 6), which provides a reasonable compromise
between analytical tractability and flexibility. More specifically, it represents a very
versatile distribution on the positive orthant, ranging from over-dispersed and right-
tailed, to under-dispersed and symmetric distributions. It was further shown to arise
in the context of stochastic gene expression [35,121].

4.2.2 Marginal Simulation Algorithm

We remark that the marginal hazard functions depend on the full process history Xt

through the conditional expectation from eq. (4.8), i.e., the resulting dynamics are non-
Markovian. However, the Markov property can be enforced by virtually extending the
state space by the summary statistics {r1,

∫ t
0
g1(x(s))ds}, . . . , {rJ ,

∫ t
0
gJ(x(s))ds} [137].

As a result, one can simulate sample paths of the marginal process using standard
methods that can account for the explicit time-dependency of the hazard functions
such as the first reaction method (see [6] and Section 2.1.3). In general, such algorithms
rely on the generation of random waiting-times for each of the reaction channels. All
reactions that are independent of the extrinsic factors will retain their exponentially
distributed waiting-times. In contrast, the waiting-times W1, . . . ,WJ associated with
the heterogeneous reactions are distributed according to

P (Wk < w | xt) = 1− e−
∫ w
0 hk(xt+T ,t+T )dT , (4.22)

with k = 1, . . . , J . Assuming that we have a means to sample from (4.22), it is straight-
forward to modify the first reaction method from Algorithm 1 by replacing the exponen-
tial waiting-time distribution by (4.22) for all heterogeneous reactions (see Algorithm
2).

Algorithm 2 (Marginal simulation algorithm). The algorithm takes the stoichiometric
change vectors ν1, . . . , νL, the kinetic parameters cJ+1, . . . , cJ+I , the final time T and
the initial state x0 as input and returns the reaction types together with the associated
firing times.

1: Initialize variables t← 0 and x← x0.
2: while t < T do
3: for i = 1, . . . , L do
4: if i ≤ J then
5: Draw waiting-time for the i-th reaction channel Wi ∼ (4.22).
6: else
7: Draw waiting-time for the i-th reaction channel Wi ∼ Exp(hi(x, ci)).
8: end if
9: end for
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10: Choose reaction associated with the minimal waiting-time k ← argmax
i=1,...,L

Wi.

11: Update state x← x+ νk.
12: Update time t← t+Wk.
13: Output t and x.
14: end while

We remark that in order to draw the non-exponential waiting-times for the i-th
reaction (i.e., line 5 in Algorithm 2), we require the corresponding path statistics
{ri,

∫ t
0
gi(x(s))ds}, which – for efficiency reasons – should be updated recursively as

the algorithm evolves. Furthermore, the waiting-time distribution (4.22) may depend
on additional hyperparameters a as can be seen from (4.8). For the particular case of
Gamma-distributed extrinsic factors, the associated waiting-times turn out to be dis-
tributed according to a Lomax - or Pareto-type-II distribution such as shown in Example
9.

Example 9 (Waiting-time distribution). The waiting-time distribution at time t for
the i-th reaction with Gamma-type heterogeneity is given by

P (Wi < w | xt)

= 1− exp

{
−
∫ w

0

hi(xt+T , t+ T )dT

}
= 1− exp

{
− (α + ri)

(
ln

[
β +

∫ t+w

0

gi(x(T ))dT

]

− ln

[
β +

∫ t

0

gi(x(T ))dT

])}
(4.23)

and with Gi(t) :=
∫ t

0
gi(x(T ))dT we arrive at

P (Wi < w | xt)

= 1− exp

{
− (α + ri)

(
ln [β +Gi(t) + wgi(x(t))]

− ln [β +Gi(t)]
)}

= 1−

[ β+Gi(t)
gi(x(t))

β+Gi(t)
gi(x(t))

+ w

](α+ri)

,

(4.24)

which we recognize as the CDF of a Pareto Type II - or “Lomax” distribution such that

Wi | xt ∼ Lomax

(
β +Gi(t)

gi(x(t))
, α + ri

)
. (4.25)
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a b c

Figure 4.2: Graphical explanation of the marginalization. (a) Original Bayesian network. (b, c)
Marginalized Bayesian networks. Both models represent valid Bayesian networks for the marginalized
model (i.e., are mathematically equivalent), whereas they differ in the causality between V and X.
Note that for clarity, individual time points are not represented separately in the above illustration.

The mean waiting-time is given by

E [Wi | xt] =
β +Gi(t)

gi(x(t))(α + ri − 1)
, (4.26)

which for large α and β, converges to β
gi(x(t))α

, which corresponds to the mean waiting-
time obtained for a homogeneous reaction with rate constant α

β
.

4.2.3 Sequential Markov Chain Monte Carlo

While the marginal process framework permits an integration – and thus elimination –
of the unknown extrinsic factors, we are still confronted with the second computational
bottleneck, i.e., the inference of a general state space model given partial observations.
More specifically, we aim to compute posterior distributions over states and the remain-
ing (i.e., non-marginalized) parameters, giving rise to a simplified but still challenging
inference problem. In the following, we develop a sequential Monte Carlo (SMC) algo-
rithm, which allows to efficiently perform inference on the marginalized process model.

We remark that the marginalization also applies to the shared kinetic parameters
modeled through mass-action, such that we can construct a stochastic process that
depends on only very few unknown parameters, i.e., the extrinsic statistics A, the mor-
phological shape parameters B and the acquisition noise parameter Ω (see Figure 4.2).
Note that marginalized inference schemes generally profit from a variance reduction
of the desired posterior statistics [28]2. It can thus be considered a rule of thumb to
marginalize analytically where ever possible.

2Such schemes are also denoted Rao-Blackwellized inference schemes since their reduction in variance
can be explained through the Rao-Blackwell theorem.
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The joint distribution of the marginalized model is given by

p(a, b, ω,x1
1:N , . . . ,x

M
1:N , y

1
1:N , . . . , y

M
1:N , v

1, . . . , vM) =[
M∏
m=1

(
N∏
l=1

p(yml | xml , ω)

)
p(vm | xm1:N , b, a)

]
p(x1

1:N , . . . ,x
M
1:N | a, b)p(a)p(b)p(ω).

(4.27)

We are interested in sampling from the posterior distribution

p(x1
1:N , . . . ,x

M
1:N , a, b, ω | {y1

1:N , v
1}, . . . , {yM1:N , v

M})

∝

[
M∏
m=1

(
N∏
l=1

p(yml | xml , ω)

)
p(vm | xm1:N , b, a)

]
p(x1

1:N , . . . ,x
M
1:N | a, b)p(a)p(b)p(ω)

=

[
M∏
m=1

(
N∏
l=1

p(yml | xml , ω)

)
p(vm | b, a)

]
p(x1

1:N , . . . ,x
M
1:N | a, b, v1, . . . , vM)

× p(a)p(b)p(ω),

(4.28)

where {x1
1:N , . . . ,x

M
1:N , a, b, ω} denote the unknown (i.e. latent) quantities. As sampling

from the full latent space is practically impossible, we resort to a recursive Bayesian
inference procedure, where the posterior distribution at time tl is computed from the
posterior distribution at time tl−1 as

p
(
x1

1:l, . . . ,x
M
1:l, a, b, ω | {y1

1:l, v
1}, . . . , {yM1:l, v

M}
)

∝

[
M∏
m=1

p(yml | xml , ω)p(xml−1:l | xml−1, T
m
l−1, a, b, v

m)

]
× p

(
x1

1:l−1, . . . ,x
M
1:l−1, a, b, ω | {y1

1:l−1, v
1}, . . . , {yM1:l−1, v

M}
)
.

(4.29)

By exploiting the recursive relation of the posterior distribution, the original inference
problem breaks up into a sequence of smaller problems which are easier solve. In
reference to Section 2.2.2, we realize that (4.29) can be understood as a smoothing
distribution. Sampling-based algorithms for the computation of such distribution go
under the name of sequential Monte Carlo (SMC) methods [27, 28]. When applied
to combined parameter- and state inference problems, standard SMC methods are
likely to suffer from particle degeneracy, since the static parameters cannot take values
different from their initialization at time t1. One strategy to overcome such problems
is to randomly perturb the static parameters at each time step, in order to maintain
diversity among the particles [118]. Practically, this means that the parameter values
of a drawn particle are discarded and newly sampled. Ideally, the resampling should
be performed such that the new parameter values are again a valid sample from the
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posterior distribution. This is generally achieved be applying an invariant kernel to
the original parameter values.

For that sake, note that the posterior can be written as

p
(
x1

1:l, . . . ,x
M
1:l, a, b, ω | {y1

1:l, v
1}, . . . , {yM1:l, v

M}
)

= p
(
a, b, ω | {x1

1:l, y
1
1:l, v

1}, . . . , {xM1:l, y
M
1:l, v

M}
)

× p
(
x1

1:l, . . . ,x
M
1:l | {y1

1:l, v
1}, . . . , {yM1:l, v

M}
)
.

(4.30)

Hence, diversified samples {x̃1
1:l, . . . , x̃

M
1:l, ã, b̃, ω̃} can be drawn by first sampling trajec-

tories {
x̃1

1:l, . . . , x̃
M
1:l

}
∼ p

(
x1

1:l, . . . ,x
M
1:l | {y1

1:l, v
1}, . . . , {yM1:l, v

M}
)

(4.31)

and subsequently drawing{
ã, b̃, ω̃

}
∼ p

(
a, b, ω | {x̃1

1:l, y
1
1:l, v

1}, . . . , {x̃M1:l, y
M
1:l, v

M}
)
. (4.32)

Within an SMC framework it is straight-forward to sample from the marginal distri-
bution (4.31), given that the full posterior at a certain time step is available as a set of
(possibly weighted) particles. Once a sample is drawn, marginalization is carried out
by only considering the variables of interest (i.e., {x̃1

1:l, . . . , x̃
M
1:l}). However, it appears

to be complicated to directly sample from (4.32) using standard techniques such as the
Metropolis-Hastings (M-H) algorithm. More specifically, such sampling methods rely
on appropriate proposal distributions that are typical hard to find - especially if the
sampling space is large. In such cases it can be beneficial to use a Gibbs-like Metropolis-
Hastings sampler [77], where subsets of variables are resampled conditionally on the
other variables, i.e., are drawn from the respective full conditional distributions3. Those
distributions satisfy the invariance requirement [103] and can be easily identified from
the underlying Bayesian network. On the one hand, some of the full conditional dis-
tributions might be of standard form, such that samples can be drawn straight away
(e.g., if the distribution is Gaussian). On the other hand, it is often less challenging
to find good proposal distributions for a single quantity such that better acceptance
ratios can be achieved. Assume that the set of all variables in a network is partitioned
into subsets U = {U1, . . . , UJ}. Then the subset Uj is independent of all other variables
in the Bayesian network when conditioned on its Markov blanket MB(Uj), defined as
the set of parents, children and the children’s parents of Uj [60]. Hence, the full condi-
tional distribution over Uj is given by p(Uj | U j) = p(Uj | MB(Uj)). Defining subsets
U1 = {Ω} and U2 = {A,B} we obtain

ω̃ ∼ p
(
ω |
{
x̃1

1, y
1
1

}
, . . . ,

{
x̃Ml , y

M
l

})
(4.33){

ã, b̃
}
∼ p

(
a, b |

{
x̃1

1:l, v
1
}
, . . . ,

{
x̃M1:l, v

M
})
. (4.34)

In the following, we will discuss in detail how to resample the individual quantities
in (4.31), (4.33) and (4.34).

3Such a scheme can be understood as component-wise modification of the standard M-H sampler.
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4.2.3.1 Resampling the Dynamic States

As indicated before, we sample the dynamic states by first simulating a particle from
(4.30) and ignoring its static parameters which are resampled subsequently. In principle,
sampling from (4.30) can be carried out by applying a M-H criterion. However, with
the same argument as above, this will suffer from low acceptance ratios if many cells are
in place and therefore, we again apply a component-wise modification, where each cell’s
trajectory is updated individually. In other words, we incorporate single measurements
one after each other by additionally exploiting the recursive posterior structure over
cells. To illustrate this, assume we have given the posterior distribution at time tl−1

over all cells. In order to incorporate the next measurement for the first cell at time tl,
we compute the posterior distribution

p
(
x1

1:l,x
2
1:l−1, . . . ,x

M
1:l−1, a, b, ω | {y1

1:l, v
1}, . . . , {yM1:l−1, v

M}
)

∝ p(y1
l | x1

l , ω)p(x1
l−1:l | x1

l−1, a, b, v
1, T 1

l−1)

× p
(
x1

1:l−1, . . . ,x
M
1:l−1, a, b, ω | {y1

1:l−1, v
1}, . . . , {yM1:l−1, v

M}
)
.

(4.35)

Note that we can easily sample from (4.35) using a M-H criterion. If we propose samples

{x̃1
1:l, x̃

2
1:l−1, . . . , x̃

M
1:l−1, ã, b̃, ω̃} ∼ p(x1

l−1:l | x1
l−1, a, b, v

1, T 1
l−1)

× p
(
x1

1:l−1, . . . ,x
M
1:l−1, a, b, ω | {y1

1:l−1, v
1}, . . . , {yM1:l−1, v

M}
)
,

(4.36)

the acceptance probability reduces to

γ1
x = min

{
1,
p(y1

l | x̃1
l , ω̃)

p(y1
l | x1

l , ω)

}
. (4.37)

We proceed analogously for the remaining cells until we have obtained the full posterior
distribution over all cells at time tl. Note that samples from p(xml−1:l | xml−1, a, b, v

m, Tml−1)
are easily obtained using a stochastic simulation algorithm like the one from Section
4.2.2. For all algorithms considered in this work, we adopt this choice of proposal
distribution.

4.2.3.2 Resampling the Measurement Parameters

In most realistic cases, statistics of the measurement noise are unknown and hence,
need to be included into the inference. We note that the measurement parameters
Ω are independent of all other nodes in the network given the state at the sampling
points xml and measurements yml for all m = 1, . . . ,M , i.e., conditional on the set
MB(Ω) = {{Xm

i , Y
m
i } | i = 1, . . . , l ∧m = 1, . . . ,M}. Therefore, the full conditional

can be written as

p(ω | {x1
1, y

1
1}, . . . , {xMl , yMl }) ∝

(
M∏
m=1

l∏
i=1

p(ymi | xmi , ω)

)
p(ω). (4.38)
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Depending on the specific structure of measurement likelihood function p(ymi | xml , ω),
the corresponding unknown parameters Ω and the prior p(ω), eq. (4.38) might be of
standard form. For instance, for a normally or log-normally distributed measurement
noise with unknown scaling parameter Ω := σ, gamma priors Ω ∼ G(αω, βω) can
be used. In particular, samples from the resulting full conditional are obtained as
ω̃ =

√
1/ṽ with

ṽ ∼ G

(
lM

2
+ αω,

∑M
m=1

∑l
i=1(xmi − ymi )2

2
+ βω

)
(4.39)

in case of a normal measurement noise and with

ṽ ∼ G

(
lM

2
+ αω,

∑M
m=1

∑l
i=1(lnxmi − ln ymi )2

2
+ βω

)
(4.40)

in case of a log-normal measurement noise.

4.2.3.3 Resampling the Extrinsic Statistics and Morphological Shape Parameters

We know from (4.34) that A and B can be resampled conditional on {X1
1:l, V

1}, . . . ,{
XM

1:l, V
M
}

. The corresponding full conditional distribution takes the form

p
(
a, b | {x̃1

1:l, v
1}, . . . , {x̃M1:l, v

M}
)

=
1

Z

(
M∏
m=1

p(x̃m | vm, a, b)p(vm | a, b)

)
p(a)p(b).

(4.41)

Evaluation of eq. (4.41) requires knowledge of the marginal path likelihood functions
p(x | v, a, bm). We assume the same configuration as in Example 6, i.e., one-dimensional
extrinsic factors Z and corresponding covariates V . The path likelihood given the
shared parameters S and extrinsic factors Z is given by

p(x | s, z) ∝

(
L∏

i=J+1

srii exp

{
−si

∫ t

0

gi(x(s))ds

})
× zr1 exp

{
−z
∫ t

0

g1(x(s))ds

}

=
L∏

i=J+1

fi(x, si)× f1(x, z).

(4.42)

Due to the product form of (4.42), only the function f1 corresponding to the extrinsic
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factor Z will depend on A and B, i.e., the marginalized likelihood function becomes

f1(x, a, b, v) =

∫
Z
f1(x, z)p(z | a)p(v | z, b)dz

∝
∫
Z
f1(x, z)p(z | v, a, b)dz

= E. [f1(x, z) | v, a, b]

(4.43)

In case of Gamma-distributed extrinsic factors Z | (A = a) ∼ G(α, β) and covariates
V | (Z = z,B = b) ∼ G(ρ, φz), we know that Z | (V = v,A = a,B = b) ∼ G(α+ ρ, β +
φv). Hence, we further obtain

f1(x, a, b, v) =
(β + φv)α+ρ

Γ(α + ρ)

∫
Z
z(r1+α+ρ−1) exp

{
−z
[
β + φv +

∫ t

0

g1(x(s))ds

]}
dz

=
(β + φv)α+ρΓ(α + ρ+ r1)

Γ(α + ρ)

[
β + φv +

∫ t

0

g1(x(s))ds

]−(α+ρ+r1)

.

(4.44)

Similarly, the density p(v | a, b) is found to be

p(v | a, b) =

∫
Z
p(v | z, b)p(z | a)dz =

βαφρvρ−1Γ(α + ρ)(β + φv)−(α+ρ)

Γ(α)Γ(ρ)
. (4.45)

Finally, we can rewrite (4.41) as

p
(
a, b | {x̃1

1:l, v
1}, . . . , {x̃M1:l, v

M}
)

=
1

Ẑ

(
M∏
m=1

f1(xmt , a, b, v
m)p(vm | a, b)

)
p(a)p(b).

(4.46)

Due to the complicated structure of (4.44) and (4.45), we cannot directly sample
from the full conditional such that we again make use of a M-H step, where proposed
samples {ã, b̃} ∼ q( · , · ) are accepted with probability

γA,B = min

{
1,

∏M
m=1 f1(xmt , ã, b̃, v

m)p(vm | ã, b̃)p(ã)p(b̃)q(a, b)∏M
m=1 f1(xmt , a, b, v

m)p(vm | a, b)p(a)p(b)q(ã, b̃)

}
. (4.47)

For the case studies considered later in this work, we chose q to be a multivariate
log-normal distribution.

4.2.3.4 Full Posterior Reconstruction

Since we have marginalized the joint distribution with respect to certain variables,
execution of the inference scheme can only deliver marginal posterior distributions.
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More specifically, the algorithm returns a set of P particles consisting of the vari-
ables {X1

1:l−1, . . . ,X
M
1:l−1, A,B,Ω}, while the shared and extrinsic parameters S and

Z1, . . . , ZM are not included. However, the particle distribution over all variables can
be easily reconstructed via the law of conditional probability, i.e.,

p(s, z1, . . . , zM ,x1
1:l, . . . ,x

M
1:l, a, b, ω | {y1

1:l, v
1}, . . . , {yM1:l, v

M})

= p
(
s | x1

1:l, . . . ,x
1
1:l

) [ M∏
m=1

p(zm | xm1:l, v
m, b)

]
× p(x1

1:l, . . . ,x
M
1:l, a, b, ω | {y1

1:l, v
1}, . . . , {yM1:l, v

M}).

(4.48)

This implies that a particle from the full posterior distribution can be constructed by
first drawing a particle from the marginal distribution and subsequently sampling S and
Z1, . . . , ZM conditional on that particle. If we assume Gamma-type prior distributions
for each of the kinetic parameters, i.e., Si ∼ G(κi, χi), the corresponding conditional
distribution p(si | x1

1:l, . . . ,x
M
1:l) is again Gamma, i.e., G (κi +Ri, χi +Gi) with Ri =∑M

m=1 r
m
i and Gi =

∑M
m=1

∫ tl
0
gi(x

m(s))ds.

Moreover, the marginal parameter posterior can be written as a multivariate com-
pound Gamma distribution

p(s | {y1
1:l, v

1}, . . . , {yM1:l, v
M}) = E

[
p(s | x1

1:l, . . . ,x
M
1:l)
]

(4.49)

with p(s | x1
1:l, . . . ,x

M
1:l) given by the product of the individual conditional distributions,

i.e.,∏L
i=J+1 G (κi +Ri, χi +Gi). Note that Ri and Gi are functions of the sample paths and

that the expectation in (4.49) is taken with respect to the smoothing distribution

p(x1
1:l, . . . ,x

M
1:l | {y1

1:l, v
1}, . . . , {yM1:l, v

M}) ≈ 1

P

P∑
p=1

1
Λ
(p)
S

(
x1

1:l, . . . ,x
M
1:l

)
, (4.50)

with Λ
(p)
S = {x1

1:l, . . . ,x
M
1:l}(p) collecting the M sample paths of the p-th particle. Con-

sequently - within the finite particle representation - (4.49) is approximated as a sum
of Gamma distributions.

Analogously, we can perform the reconstruction of the marginal (and joint) posterior
for the extrinsic factor Z, which for clarity is again assumed to be one-dimensional.
Note however, that according to the product form in (4.48), this can be carried out
independently for each cell. For the m-th cell we compute the compound density

p(zm | {y1
1:l, v

1}, . . . , {yM1:l, v
M}) = E [p(zm | xm1:l, v

m, a, b)] , (4.51)

where the expectation is taken with respect to the distribution

p(xm1:l, a, b | {y1
1:l, v

1}, . . . , {yM1:l, v
M}) ≈ 1

P

P∑
p=1

1
Λ
(p)
Z

(xm1:l, a, b) , (4.52)
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with Λ
(p)
Z = {xm1:l, a, b}(p). The full conditional distribution inside the expectation fac-

torizes as

p(zm | xm1:l, v
m, a, b) ∝ p(xm1:l | zm)p(vm | z, b)p(zm | a) (4.53)

and within the setup of Example 6, is again given by a Gamma distribution, i.e.,

G
(
α + rm1 + ρ, β +

∫ tl
0
g1(xm(s))ds+ φvm

)
. It follows that the marginal posterior dis-

tributions over the extrinsic factors Zm can again be approximated by sums of Gamma
distributions.

4.2.3.5 Implementation Aspects

Although the algorithm structure is mathematically characterized by the foregoing
derivations, several variants thereof are possible. It turns out that certain implemen-
tation details may have significant impact on the achieved performance. For instance,
resampling of the static parameters can be carried out before or after sampling the
dynamic states. Both strategies are mathematically correct, however, the former gen-
erally achieves better results as every particle that is drawn from the distribution at tl−1

receives a newly sampled value. In contrast, when sticking to the latter strategy, some
of the resampled parameters are immediately lost as the corresponding particles are
never drawn again at the subsequent time step. Furthermore - unlike classical sequen-
tial importance sampling methods - the proposed algorithm requires a short burn-in
period at each time iteration. In all simulation studies, we discarded around 10 percent
of the particles.

Finally, we mention that one is free to chose the order of the recursive updates,
meaning that single measurements can be incorporated first over time and then over
cells or vice versa (i.e., time-point-first- and cells-first mode). If one is mainly interested
in parameter estimation, we recommend to use the latter strategy, whereas the sequence
of processed cells at a particular time-step should be chosen randomly. This is likely to
produce diversified summary statistics and in turn smooth posterior distributions over
parameters. In contrast, processing entire cell trajectories one after each other appears
to be beneficial if one aims to perform a state reconstruction. In the same context, we
would like to discuss an interesting modification of the algorithm. In particular, it is
based on the idea to resample and update individual cells simultaneously, i.e., without
updating the posterior between consecutive cells (i.e., simultaneous mode).

While a theoretical analysis of that algorithm shall be performed in the future, it
has proven to perform well for both state reconstruction and parameter inference while
getting along with comparably few particles per time instance. An exemplary imple-
mentation of the marginal SMCMC algorithm (i.e., the cells-first variant) is summarized
in Algorithm 3.

Algorithm 3 (Marginal SMCMC). We assume that we have given the most recent
posterior distribution as a set of particles. Then, the updated posterior distribution



58 4 Inference from Heterogeneous Time-Lapse Data

incorporating the next measurement of cell m is obtained by:

1: for particle p = 1, . . . , P do
2: Select the p-th particle from the particle distribution at time tl−1.
3: Resample the measurement parameters ω̃ using (4.39) or (4.40).
4: Resample the extrinsic statistics and morphological shape parameters

ξ̃ =
{
α̃, β̃, ρ̃, φ̃

}
using a M-H step with proposal density q(ξ̃) =

∏4
i=1 LN

(
ln ξi, σ

2
ξ

)
and acceptance probability (4.47).

5: Propose a sub-trajectory x̂ml−1:l ∼ p(xml−1:l | xml−1, ã, b̃, v
m, Tml−1) by simulating the

marginal dynamics on [l − 1, l] using the resampled parameters ã and b̃.

6: Merge the sub-trajectories to obtain a full sample path X̂m
1:l = {xm1:l−1, x̂

m
(l−1,l]}.

7: if p = 1 then
8: Accept particle with probability 1.
9: else

10: Accept particle with probability

γmx = min

{
1,
p(yml | x̂ml , ω̃)

p(yml | x̃ml , ω)

}
,

where ω denotes the measurement noise parameter of the previous particle.
11: end if
12: Update p-th particle of the posterior distribution at time tl using the newly sam-

pled quantities.
13: end for

Note that the case where no morphological features are used for the inference can be
understood as a special instance (or simplification) of the described algorithm. Hence,
we do not provide additional equations for this scenario - in particular as they are
straight-forward to obtain from the provided derivations.

4.2.3.6 Bayes Factor Computation

We perform model selection by calculating the Bayes factor for two competing models
M = 1 and M = 2 with equal prior probability P (M = 1) = P (M = 2) = 0.5. We
consider pooled time-course measurements from a heterogeneous population but for
simplicity exclude the morphological features from the analysis. Note that in this case,
only the parameters A and Ω are required to specify the model. The Bayes factor is
then given by

K1,2 =
p(y1

1:l, . . . , y
M
1:l | M = 1)

p(y1
1:l, . . . , y

M
1:l | M = 2)

. (4.54)

Within the SMCMC framework, the marginal likelihood (i.e., the model-evidence) com-
putations in (4.54) turn out to be straight forward as they can be carried out recursively
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Table 4.1: Inferred model parameters and credible intervals for the synthetic case study.

Prior Posterior

Name Reference Unit q5 q95 Mean q5 q95 Mean

c2 5.00e− 03 s−1 3.40e− 04 2.03e− 02 6.67e− 03 3.79e− 03 6.85e− 03 5.23e− 03

c3 1.00e+ 00 s−1 5.13e− 02 2.98e+ 00 1.00e+ 00 8.43e− 01 1.18e+ 00 1.01e+ 00

c4 2.00e− 02 s−1 1.78e− 03 9.72e− 02 3.33e− 02 1.70e− 02 2.67e− 02 2.17e− 02

α 3.00e+ 00 − 2.62e− 01 7.16e+ 00 2.25e+ 00 5.26e− 01 5.10e+ 00 2.22e+ 00

β 1.00e+ 02 − 3.20e+ 01 8.54e+ 02 2.71e+ 02 1.47e+ 01 1.28e+ 02 5.39e+ 01

ρ 5.00e+ 00 − 7.04e− 01 7.81e+ 01 1.96e+ 01 9.14e− 01 1.09e+ 01 4.19e+ 00

φ 1.00e+ 03 − 7.74e+ 01 7.32e+ 03 1.98e+ 03 1.22e+ 02 1.91e+ 03 6.93e+ 02

ω 1.50e− 01 − 6.50e− 02 2.36e− 01 1.26e− 01 1.24e− 01 1.57e− 01 1.39e− 01

as

p(y1
1:l, . . . , y

M
1:l | M = k) = p(y1

1, . . . , y
M
1 | M = k)

×
N∏
i=2

p(y1
i , . . . , y

M
i | y1

1:i−1, . . . , y
M
1:i−1,M = k).

(4.55)

The individual terms in (4.55), i.e., the predictive densities, are given by

p(y1
i , . . . , y

M
i | y1

1:i−1, . . . , y
M
1:i−1, k) = E

[
M∏
m=1

p(ymi | xmi , ω)

]
(4.56)

where the expectation is take with respect to p(x1
1:i, . . . ,x

1
1:i, a, ω | y1

1:i−1, . . . , y
M
1:i−1),

which is simply obtained by drawing a particle {x1
1:i−1, . . . ,x

1
1:i−1, a, ω}(p) from the pre-

vious time step and extending the dynamic states until ti using the parameters a(p) and
ω(p) from that particle.

4.2.4 Application to Synthetic Gene Expression Data.

We first studied the proposed inference framework using simulated data of a simple
two-state gene expression model [96] given in Figure 4.3a under realistic measurement
conditions. We assume that the target gene can be activated by stimulation with an
extra-cellular signal which results in the translocation of a transcription factor. Ex-
trinsic variability was simulated by introducing a Gamma-distributed variability in the
protein translation rate. Data was collected for 20 cells, on which we applied DPP us-
ing 10,000 Monte Carlo samples per measurement time instance (for further details, see
caption of Figure 4.3a-b). The inferred posterior distributions over kinetic parameters,
extrinsic statistics and acquisition noise parameter – characterizing the measurement
variability – are depicted in Figure 4.3b. Table 4.1 summarizes the inferred parameter
values and their respective credible intervals.
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Figure 4.3: Parameter inference using simulated measurements. (a) Two-state gene expression model.
The gene activation event is controlled by a time-varying rate u(t) and includes transcription initi-
ation events such as the binding of transcription factors, RNA polymerase and possibly chromatin
remodeling. Upon activation of the gene, mRNA can be transcribed to further yield new proteins.
All reactions are modeled according to mass-action. Altogether, the model comprises four species and
six reactions, where we assume a Gamma-distributed heterogeneity in the translation efficiency,i.e., c5
drawn from a Gamma distribution G(α, β), with the extrinsic statistics α and β. We assume that 10
noisy (log-normally distributed with unknown scaling parameter) measurements of the protein abun-
dance can be obtained at equally spaced time points within a total interval of roughly 40 minutes.
(b) Parameter inference from protein time series using 20 cells. Inference results are shown for the
three kinetic parameters (c2, c3 and c4), the extrinsic statistics α and β and the scaling parameter ω
of the acquisition noise. The lower panel shows 2D posterior density plots, visualizing the a-posterior
correlations between pairs of parameters. DPP was performed using 10,000 samples per time instance
using the simultaneous mode.

The inferred posterior distribution over unobserved states can also be used to re-
construct activation and transcription events at the promoter. In general, the inverse
problem of reconstructing promoter activation states from the slow protein dynamics
is considerably ill-posed and we expect the posterior density in sequence space to be
close to degenerate. However, for the simulation study, Figure 4.4 indicates that ac-
curate detection of the promoter state is indeed possible within a realistic scenario.
Using the expression model as described in Figure 4.3, we simulated a double-pulsed
induction of gene expression. Noisy versions of the simulated protein abundance at
sparse time points were taken as our available measurements and mRNA and promoter
dynamics was reconstructed using DPP. We remark that constructing a sequence of
events by simply determining the maximum of the posterior distribution time-point-
wise (referred to as MMAP in Figure 4.4) does not yield a valid promoter activation
sequence and hence cannot be used to extract timing statistics, such as promoter on/off
times. Consequently, we determined the most likely posterior (MAP) sequence among
the set of all possible promoter sequences from which timing statistics can be recovered
correctly.
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Figure 4.4: Reconstructed gene expression dynamics for a double-pulsed induction (gray boxes)
from simulated protein measurements (circles). Shaded areas denote 5%- and 95%-quantiles of the
posterior distributions over states and the true values (dashed) and the maximum a posteriori (MAP)
trajectory (blue) are shown. Also shown are the posterior probabilities for the promoter to be inactive
or active, P0(t) and P1(t), respectively; black denotes probability one. For reference, we also show
the time-point-wise MAP (MMAP) estimate for the active promoter state (green) based on P0(t) and
P1(t).

4.2.4.1 Improved Identifiability via Pooled Recordings

Joint inference of multiple rate constants from single trajectories often yields practical
non-identifiabilities. However, the ill-posedness of such problems can be drastically
reduced by pooling recordings over multiple cells. This is demonstrated in the following
simulation study where two parameters of the model from Figure 4.3a (i.e., c2 and c4)
are jointly estimated using (i) one and (ii) ten single-cell trajectories. For both rate
constants, we assumed prior distributions of the form G(1, 10). Density plots of the
prior and the posteriors for case (i) and (ii) are depicted in Figure 4.5.

-1

-2

-3

-4

-5 -1-2-3-4 0 -5 -1-2-3-4 0 -5 -1-2-3-4 0

Prior Posterior (1 cell) Posterior (10 cells)

Figure 4.5: Improved identifiability via pooled single-cell trajectories; prior distribution (left), pos-
terior distribution based on data from one cell (middle) and posterior based on ten cells (right); true
parameter values (red lines) and posterior mean parameter estimates (dashed lines).

The left panel of Figure 4.5 demonstrates a weakly informative prior distribution.
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As a result, a single cell is hardly enough to jointly identify both parameters, i.e., the
posterior mass is distributed over roughly four orders of magnitude in both dimensions.
When increasing the number of measured trajectories to ten, this non-identifiability is
widely resolved such that both parameters can be inferred accurately.

4.2.4.2 Comparison between Time-Lapse and Population Snapshot Data

Recent inference approaches were developed for the use with population snapshot data
and thus, do not include temporal information on a single-cell level, such as provided
by time-lapse microscopy data (see Section 2.3). We indicated in the beginning of this
chapter that using such an approach on the data we provide means that a significant
portion of information is discarded. This will in turn lead to less accuracy or possibly
even non-identifiabilities in the resulting parameter inference.

Dealing with stochastic models, there exists a lower bound on the prediction un-
certainty that just corresponds to the process uncertainty itself (i.e. present even in
the case of complete knowledge of the parameters). Any positive deviation from this
bound stems from further parameter uncertainty represented by the posterior distribu-
tion. Assuming finite data records, there exist again fundamental lower bounds for this
uncertainty (e.g., the minimum mean squared error). While some inference methods
may exploit all features of the data, some others may not. Accordingly, the former
will achieve this minimal posterior uncertainty bound while the latter will not. Hence,
one anticipates a higher variance in the predictive distribution for methods that do not
exploit the temporal correlation structure in the data. To confirm this expectation, we
performed a simple case study using the transcriptional model proposed in [96], i.e.,

I
c1−⇀↽−
c2
A

A
c3−⇀ A+ mRNA

mRNA
c4−⇀ ∅,

where I and A refer to the molecular states where the promoter is inactive or active
(see Figure 4.6).

4.2.5 Application to Experimental Gene Expression Data

DPP was used to reconstruct the expression dynamics of an artificially controlled gene
expression system in yeast. A widely used system to control the expression of genes un-
der a GAL1 promoter in Saccharomyces cerevisiae is based on the hormone-dependent
activation of the chimeric transcription factor GAL4DBD.ER.VP16 (GEV) [71, 75].
GEV consists of a strong transcriptional activator, made by fusing the GAL4 DNA
binding domain (GAL4DBD) with the hormone-binding domain of the human estrogen
receptor (ER) [71] and the transcription activating domain of the herpes simplex virus
protein VP16 [107]. In its inactive state, GEV associates with the Hsp90 chaperone
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Figure 4.6: Predictions obtained using an inference scheme that neglects temporal information within
single-cells (e.g., [88]) and DPP. Measurements of 20 cells were simulated at 20 equally spaced time
points between 0 and 100min using a log-normal measurement model with σ = 0.15. Inference was
performed with respect to gene-off- and transcription rates. Panel (a) shows the respective posterior
distributions (left: population snapshot, right: DPP). Panel (b) shows the predictive distributions
for two quantities characterizing the underlying process: (left) the total number the gene is activated
within 100min. (right) the total time the gene is in its active state within 100min. The predictions
are compared to the distributions obtained using the true kinetic parameters (ground truth).

complex and resides in the cytoplasm. Upon addition of the exogenous hormone β-
estradiol to the extracellular medium, β-estradiol diffuses through the cell membrane
and binds to the GEV’s ER. Thereby, Hsp90 disassociates from the complex and active
GEV translocates to the nucleus where its GAL4DBD recognizes and binds to GAL
promoter regions. VP16 then activates transcription of the downstream gene. [137]

We engineered a strain that allows a combined readout of GEV translocation and
β-estradiol-induced gene expression. A GEV-mCherry construct in combination with
a nuclear marker allows to compute the ratio of nuclear to cytoplasmic GEV. In the
same strain, a destabilized [48,126] version of the Venus fluorescent protein (Y-Venus)
was placed under control of a GAL1 promoter, which allows a more accurate tracking
of the gene expression dynamics.

The fluorescence microscopy experiments were performed using a flow chamber that
allowed us to rapidly exchange the extracellular media and apply a 30min pulse of
50nM β-estradiol. The time-lapse microscopy movies were automatically analyzed [93]
to quantify the change in nuclear localization of the GEV-mCherry protein and the flu-
orescent levels of the Y-Venus protein in individual cells. Additional calibration experi-
ments with reference strains were performed to map recorded intensities to total protein
abundances. Based on a one-sided Kolmogorov-Smirnov test we determined and cor-
rected for a time delay in the protein measurements, that arises from an aggregation of
unmodeled sequential events, such as mRNA export, post-transcriptional/translational
modifications and reporter maturation. We then used 20 single cell trajectories of Y-
Venus abundance within the subsequent analyses. Assuming that the translocation
event occurs uniformly across cells and considering the high-abundance of GEV, we
take the average translocation curve as input to our gene expression models. For fuller
details on the experimental techniques, the reader may refer to [137].
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Figure 4.8: Robustness evaluation of Bayesian model selection with respect to models a, b and c.
All histograms were shifted by the same constant for a better visualization.

4.2.5.1 Modeling pGAL1 Y-Venus Expression and Acquisition

For the GAL1 expression system we investigated three different models of eukaryotic
gene expression and determined their empirical evidence by Bayesian model selection.
Next to the canonical two-state model [96] (see Figure 4.7a) of a promoter, we consid-
ered a model with a third refractory state [49, 119] (see Figure 4.7c) and a three-state
variant of a model proposed in [16], where the initiation-complex assembly is followed
by a slow activation step representing either RNA polymerase (RNAP) binding or
chromatin remodeling (see Figure 4.7b). Subsequent mRNA and protein synthesis are
modeled as first order events. Note that the obtained model rankings are subject to
sampling variance. Hence, in case of the three kinetic models, we computed the model-
evidences five times in order to check the robustness of the obtained results. We know
from section 4.2.3.6 that the evidence is computed as a product of predictive densities,
each corresponding to a particular time-point. Hence, in order to approximately assess
the variability over different runs, we randomly combined the individual terms over the
five repeats and computed histograms over the resulting model-evidences. The results
(shown in Figure 4.8) demonstrate that the two-state model a ranked best. Although
there is a significant overlap with the histogram of the three-state model c, the results
indicate no need for using the more complicated model c. Moreover, the figure indi-
cates little evidence for model b compared to a and c. We then computed the average
model-evidence and the respective Bayes factors, i.e., around 6.8dB when comparing a
to c and 51.8dB when comparing a to b.



4.2 Dynamic Prior Propagation 65

Posterior mean

0.05 0.10 0.15 0.05 0.10 0.15

0.5 1.5 2.5 3 4 5 6 0.10 0.15 0.20

x 10
−3 x 10

−4

−0.5 0.5 1.5
0

1

2

−1 0 1
4

5

6

x 10
−3

10 12 14 16

Figure 4.9: Parameter inference for the β-estradiol-induced Y-Venus expression in yeast. Posterior
distributions over unknown parameters. Based on 20,000 samples for the first time-iteration and
10,000 samples for the subsequent iterations DPP (simultaneous mode) was performed with respect to
all kinetic parameters (c1, . . . , c4, c6), the acquisition noise parameter ω, the extrinsic statistics (α,β)
and the morphological shape parameters (ρ,φ) characterizing the hypothesized dependency of volume
increase and translation rate. The marginal posterior for the gene-on rate is shown for c1û, with û as
the temporal average over the modulating GEV intensity.

Model selection was also performed for two competing measurement noise models
(i.e., i.i.d. normal and log-normal). Strong evidence was found for log-normally dis-
tributed measurement noise (>100dB). We next describe the choice of the prior distri-
butions for the winning model a.

For c1, c2 and c3 we used weakly informative exponential priors, i.e., p( · ) = G(1, 10),
with their quantiles shown in Table 4.2. In case of the mRNA and protein degradation
rates c4 and c6, the priors were chosen such that roughly 95 percent of the probability
mass were within the ranges [3, 40] and [15, 2000] minutes expected half life (i.e., C4 ∼
G(3, 2000) and C6 ∼ G(1, 5000)). Furthermore, for the hyperparameters α and β, a
two-dimensional log-normal prior distribution LN (µA,ΣA) with

µA =

(
2.71
5.70

)
and ΣA =

(
0.20 0.00
0.00 0.20

)
was used such as to be consistent with the results found in [89]. In order to avoid a
biased inference, we again picked a weakly informative log-normal prior distribution
over the morphological parameters ρ and φ, i.e., LN (µB,ΣB) with

µB =

(
2.30
10.82

)
and ΣB =

(
2 0
0 2

)
.

Parameter inference, state reconstruction and promoter activity detection were then
performed as described for the synthetic case study. Figure 4.9 shows the posterior
distribution over unknown parameters. The prior- and posterior statistics of the pa-
rameters are shown in Table 4.2.
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Table 4.2: Inferred model parameters and credible intervals for the β-estradiol induced gene expression
system.

Prior Posterior

Name Unit q5 q95 Mean q5 q95 Mean

c1 s−1 5.35e− 03 3.03e− 01 1.00e− 01 1.08e− 01 1.41e− 01 1.24e− 01

c2 s−1 5.40e− 03 3.03e− 01 1.00e− 01 3.98e− 02 5.93e− 02 4.92e− 02

c3 s−1 5.00e− 03 2.96e− 01 1.00e− 01 6.72e− 02 9.27e− 02 7.99e− 02

c4 s−1 4.14e− 04 3.16e− 03 1.50e− 03 1.30e− 03 1.71e− 03 1.51e− 03

c6 s−1 1.13e− 05 6.07e− 04 2.00e− 04 2.30e− 04 2.87e− 04 2.57e− 04

α − 8.78e+ 00 3.83e+ 01 2.04e+ 01 3.87e+ 00 3.83e+ 01 1.41e+ 01

β − 1.60e+ 02 1.56e+ 03 6.29e+ 02 3.88e+ 01 4.01e+ 02 1.45e+ 02

ρ − 7.38e+ 00 7.84e+ 02 2.05e+ 02 7.87e− 01 1.42e+ 01 4.72e+ 00

φ − 3.52e+ 04 3.98e+ 06 1.02e+ 06 6.69e+ 04 3.32e+ 06 1.02e+ 06

ω − 8.94e− 02 2.44e− 01 1.48e− 01 1.13e− 01 1.38e− 01 1.25e− 01

4.2.5.2 Model Predicts Mild Bursting in the GEV-pGAL1 System

The order of the estimated mRNA half-life of around 10min and mRNA synthesis rate
of 6 molec/min are inline with previous findings [139]. The specific value of the lat-
ter is above most reported rates for constitutively expressing genes [139] which appears
consistent with the fact that we use the strong VP-16 transcription activator. This syn-
thesis rate together with the length of 850 bp for the Y-Venus protein and a reported
elongation speed of 2kb/min [73] for GAL-driven genes indicates that there need to be
roughly three RNAPs on average on the gene. Figure 4.10a shows the reconstructed
states for two cells with different Y-Venus abundances. The predicted timing statistics
of the promoter activation sequences indicates that for successful initiations on average
around 2.5 transcripts per active promoter state are produced, suggesting that tran-
scription re-initiation and thus mild bursting takes place in this expression system. We
measured additional pulse experiments of 25nM and 100nM β-estradiol which we used
to validate the inferred results. More specifically, the calibrated model was forward-
simulated to check consistency with the performed measurements. Figure 4.11a shows
that the model predictions agree well with the experimentally obtained data across
different concentrations of β-estradiol.

4.2.5.3 Noise Contributions in pGAL1 Y-Venus Expression

Figure 4.10a also indicates to which extent a cell’s expression level is explained by
extrinsic and intrinsic factors. Although cell 1 shows mRNA levels similar to cell 2,
the former expresses significantly more Y-Venus due to a larger translation rate c5. By
forward simulating the inferred model we dissected and quantified the different sources
of variability in the measured Y-Venus abundance to separate intrinsic, extrinsic and
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Figure 4.10: State reconstruction of heterogeneous Y-Venus dynamics. (a) Inferred dynamics for two
exemplary cells showing different Y-Venus abundance. The temporal GEV-induction is shown as an
intensity map, where white and black coloring denote minimal and maximal abundance, respectively.
The inset scatter plots indicate the inferred expression regime, where each dot represents a single cell
and the arrows point towards the respective cell; the inset x- and y-axes correspond to the logarithm
of the temporal mean of Y-Venus and the mean posterior estimate of translation rate c5, respectively.
The panel below shows the inferred mRNA dynamics. Therein, the inset with the transcripts per on
cycle distribution over all posterior activation sequences shows a mean around one (gray dashed) and
mean around 2.5 taking only successful initiation events in account (red dashed). (b) Sources of cell-to-
cell variability in Y-Venus expression. The inferred model was used to compute the squared coefficient
of variation (SCV) of the Y-Venus abundance. The total SCV was decomposed into technical, intrinsic
and extrinsic components. (c) Dependency between volume increase and Y-Venus abundance. Multiple
cell’s intensity trajectories, their volume increase and translation efficiency (i.e., c5) were computed
via forward-simulation of the inferred model. The plot shows the Y-Venus abundance at time 200min
versus the volume increase from 0min until 200min for the predicted (blue) and experimental (red)
data. The inferred statistical dependency between the volume increase and the translation efficiency
is indicated by the dashed iso-lines (gray).

technical contributions to the overall variability. In particular, it holds that

SCV[Yl] =
E [E [Var [Yl | Xl] | Z]]

E [Yl]
2︸ ︷︷ ︸

technical

+
E [Var [E [Yl | Xl] | Z]]

E [Yl]
2︸ ︷︷ ︸

intrinsic

+
Var [E [E [Yl | Xl] | Z]]

E [Yl]
2︸ ︷︷ ︸

extrinsic

.

For a derivation of (4.57) the reader might refer to [137]. In order to perform the
decomposition, the model parameters were set to their mean posterior values and the
individual quantities were obtained via forward simulation (see Figure 4.10b). In the
technical contribution any systematic bias introduced, for instance by the image seg-
mentation algorithm, is not considered. The inferred model predicts that the variability
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in pGAL1 Y-Venus expression is significantly driven by extrinsic factors. This is further
supported by the results from Figure 4.12, which demonstrate that a model that just
accounts for intrinsic and technical noise, fails to predict the cell-to-cell variability in
the data.

We further validated our predictions using an independent dataset from a dual-
reporter experiment (YFP, CFP) of the same promoter under identical experimental
conditions. Intrinsic and extrinsic noise were quantified according to [99]. We remark
that the latter approach does not account for technical variability (e.g., due to image
segmentation errors), which will hence be subsumed in the intrinsic and/or extrinsic
parts. The predicted noise contributions are in good agreement with the variance
decomposition from the dual-reporter experiment across different concentrations of β-
estradiol (Figure 4.11b). The decomposition is also shown across time points for the
50nM pulse experiment. While the overall noise characteristics are well captured by the
model predictions, deviations are visible at early time points. Although background
fluorescence levels have been estimated and subtracted from the dual-reporter data,
correlated residuals will persist due to estimation uncertainties. In case of very low
abundances (i.e., at early time points), such residuals are likely to dominate and cause
an overestimation of extrinsic contributions. This effect vanishes at later time points,
since the actual protein abundances outweigh those residuals.

4.2.5.4 Morphological Features and Extrinsic Variability

On top of the protein measurements, DPP allows to incorporate additional single-
cell readouts such as morphological features. More specifically, it is able to quantify
statistical dependencies between such readouts and a population’s extrinsic factors.

Here we hypothesized a dependency between volume increase during the observation
time interval and the extrinsic factor (i.e., the translation efficiency) and quantified
it using DPP. The found covariation is depicted in Figure 4.10. Consistent with [23]
we find that volume increase positively correlates with translation efficiency but that it
does not explain all extrinsic variability present in the intensity trajectories. Hence, this
provides more evidence for the fact that simple normalization through morphological
features (e.g. forward scattering in flow cytometry data [136]) can not sufficiently
correct for extrinsic variability in data.

4.2.5.5 Comparison between Homogeneous and Heterogeneous Kinetic Models

Most state-of-the-art approaches for parameter inference in biochemical networks do
not account for extrinsic variability – that means – they rely on the assumption that
the recorded measurements stem from a homogeneous cell population. If the consid-
ered biochemical system is characterized by significant heterogeneity, such models and
their respective inference will yield biased results – either in the resulting parameter
estimates or subsequent predictions. In order to demonstrate this issue, we refitted the
model under the assumption of homogeneity using the same prior distributions over the
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Figure 4.11: Model validation using additional datasets. (a) Prediction of reporter dynamics. Y-
Venus trajectories were recorded upon application of β-estradiol pulses of 25, 50 and 100nM. The
plot shows a comparison between the predicted and experimental means (upper panels) and standard
deviations (lower panels) of the Y-Venus dynamics. The whiskers indicate the standard errors of the
experimentally obtained quantities. (b-c) Noise contributions. An additional dual-reporter dataset
was recorded for the same induction system and experimental conditions as in (a). Intrinsic and
extrinsic noise contributions were estimated using a traditional variance decomposition [99]. Whiskers
indicate standard errors of the experimentally obtained quantities. In order to account for differences
in the reporter lifetimes, the degradation rate of the model was set to the previously reported YFP
half-life of the dual-color strain [136]. (b) Comparison between dual-reporter experiments and model
predictions at the final time point (i.e., 110min) across different concentrations of β-estradiol. (c)
Noise decomposition across different time points for the 50nM pulse experiment.

kinetic and measurement parameters. Subsequently, that model was used to predict
the three pulse experiments. Figure 4.12 shows the predicted and experimental means
and standard deviations of the Y-Venus abundance for the different concentrations.
For completeness, also the predictions from the original (i.e., heterogeneous) model are
shown. We find that in this case, a model that neglects extrinsic variability is not
able to explain the large variability present in the data. While the mean dynamics are
captured well for all concentrations, the standard deviation is consistently underesti-
mated, highlighting the importance of inference schemes that can account for extrinsic
variability.
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Figure 4.12: Predictions obtained using an inference scheme that neglects extrinsic variability. The
results are compared to the experimental data as well as to the model predictions obtained via DPP.
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4.3 Detecting Sources of Extrinsic Variability

While DPP was developed to account for extrinsic noise, it relies on pre-specified as-
sumptions on where extrinsic noise enters a kinetic model – e.g., through its translation
rate. However, in most practical scenarios making such assumptions is challenging be-
cause the true sources and their strength for a specific cell line are yet to be identified.
In this section we lay out an empirical Bayesian inference scheme, which automati-
cally determines the heterogeneous reactions of a biochemical network using time-lapse
single-cell data. The scheme is based on a hierarchical Bayesian model whose evidence
is iteratively maximized using a variational Bayesian expectation-maximization algo-
rithm [14, 87, 122]. We demonstrate and analyze the approach using a simple model
of eukaryotic gene expression. In order to reduce the number of unknown parameters,
we again make use of the marginalized process introduced in Section 4.2. For a simple
demonstration of the main idea, the outlined method is described and analyzed for
the case of complete and noise-free measurements but describe in Section 4.3.3 how
the method can be generalized to the realistic scenario of partially observed- and noisy
data. The following results represent a first step towards a model-based understanding
of how and which concurrent processes modulate a specific cellular process under study
in vivo.

4.3.1 Hierarchical Bayesian Modeling

We now consider the special case where every reaction is potentially modulated by
extrinsic factors such that C = {C1, . . . , CL} = {Z1, . . . , ZL}. Moreover, we assume
that the extrinsic factors are distributed according to independent Gamma distribution,
i.e.,

p(z1, . . . , zL | a) =
L∏
i=1

G(zi;αi, βi), (4.57)

with a = {{αi, βi} | i = 1, . . . , L} as a set of extrinsic statistics. Assume we have given
measurements of M cells of a heterogeneous population, i.e., xm for m = 1, . . . ,M .
The extrinsic variability of each reaction channel i can be quantified by inferring the
extrinsic statistics {αi, βi} from those measurements. According to a Bayesian scenario,
this is equivalent to finding the posterior distribution

p(a | x1, . . . ,xM) ∝
M∏
m=1

p(xm | a)p(a)

=
M∏
m=1

(
L∏
i=1

p(xm | αi, βi)p(αi, βi)

)
,

(4.58)
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which hence, factorizes such that

p(a | x1, . . . ,xM) =
L∏
i=1

p(αi, βi | x1, . . . ,xM). (4.59)

Naively, one could just evaluate the individual terms in (4.59) and check whether the
corresponding values of αi are below a certain threshold, indicating heterogeneity of
the associated reaction. However, since those values are only accessible through the
noisy measurements xm, it is not clear how to choose such a threshold in order to
obtain maximally robust results. For instance, the heterogeneity stemming from the
intrinsic molecular fluctuations should be ”filtered out” and yield a negative detection
result. Positive detections are only desired if there is significant evidence in the data.
Technically, this can be understood as a sparse Bayesian learning problem [14,87,122].
The key step to achieve sparsity in empirical Bayesian models is to assign suitable prior
- and hyperprior distributions to the model quantities. Since detection of heterogeneity
is based on only αi, we chose

p(αi, βi) = p(αi | λi)p(βi), (4.60)

where λi controls the shape of p(αi | λi) and p(βi) is assumed to be flat over the
positive domain, such that p(αi, βi) ∝ p(αi | λi). The goal is to define p(αi | λi)
such that the heterogeneity is forced to zero unless there is significant evidence in the
data. Accordingly, suitable distributions will emphasize SCVs around zero while also
permitting high values. Here we choose p(αi | λi) such that p(ηi) = Exp(λi) with
ηi = α−1

i as the SCV. A transformation of random variables yields

p(αi | λi) =
λi
α2
i

e
− λi
αi . (4.61)

The resulting prior distributions over αi are illustrated in Figure 4.13 for different values
of λi.

While standard Bayesian approaches rely on given prior knowledge, empirical Bayes
techniques aim to infer parameters as well as their hyperparameters from data. In our
case, this means that in addition to αi and βi, also the hyperparameters λi are assumed
to be unknown and need to be estimated. In order to obtain a fully Bayesian model,
we need to specify hyperprior distributions p(λi). Again, we assume p(λi) to be flat
but remark that an extension to arbitrary distributions is possible. With the model
parameters a and their hyperparameters ρ = {λi | i = 1, . . . , L}, we aim to compute
the posterior distribution

p(a, ρ | x1, . . . ,xM)

∝
L∏
i=1

(
M∏
m=1

p(xm | αi, βi)

)
p(αi | λi)p(λi)

=
L∏
i=1

p(αi, βi, λi | x1, . . . ,xM)

(4.62)
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0 5 10 15

Figure 4.13: Prior distributions over αi for different values of the hyperparameter λi. The distribu-
tions show a peak for low values of αi and become more heavy-tailed with increasing λi.

where the r.h.s. of (4.62) is just the joint distribution over all model quantities. Un-
fortunately, it turns out that the posterior (4.62) is challenging to solve analytically.
In the next section we will develop a variational inference scheme for its approximate
solution.

4.3.2 Variational Inference

Variational inference schemes aim to approximate some target posterior p(z | y) by
some other distribution q(z). More specifically, one chooses q(z) such as to minimize
the Kullback-Leibler divergence (KL) between q(z) and the true distribution. For that
sake, note that for every q, the log-evidence function satisfies the decomposition [11,14]

ln p(z) = L [q(z)] +KL [q(z)‖p(z | y)] , (4.63)

where L [q(z)] forms a lower bound on ln p(z) which is given by

L [q(z)] =

∫
q(z) ln

p(z, y)

q(z)
dz. (4.64)

Accordingly, minimizing the KL with respect to q is the same as maximizing its coun-
terpart L [q(z)], i.e.,

q∗(z) = argmax
q(z)∈Q

L [q(z)] . (4.65)

It can be seen from (4.63) and (4.64) that L [q(z)] is maximal if and only if q(z) = p(z |
y). In order to obtain a tractable q(z), one typically imposes further constraints on its
structure. Most commonly, individual components of z are assumed to be independent
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of each other, i.e.,

q(z) =
L∏
l=1

q(zl), (4.66)

also known as the mean-field approximation [11]. In this case, it can be shown that
the optimal variational solution of the individual factors q(zi) is determined by

ln q∗(zi) = Ej 6=i [ln p(z, y)] + const. (4.67)

where Ej 6=i [ln p(z, y)] denotes the expectation of the logarithm of the joint distribution,
taken with respect to all factors q(zj) except q(zi). Since the optimal solution of a
particular q-factor depends on all other factors, the mean-field approximation typically
induces an iterative inference scheme, where the individual factors are updated in a
round-robin fashion. Such schemes stand in close relation with traditional expectation-
maximization (EM) algorithms [25] and accordingly, are often referred to as variational
Bayesian EM (VBEM) algorithms [11,113].

In practice, eq. (4.67) might still be intractable, in which case it is necessary to
further restrict the corresponding q-factor. For instance, one could assume q(zi) to
be some parameterized distribution (e.g., a Gaussian with mean and variance) and
determine its parameters θ as

θ∗ = argmax
θ∈Θ

E [ln p(z, y)] , (4.68)

whereas in this case, the expectation is taken with respect to all q-factors. For instance,
if one is interested solely in maximum a-posterior (MAP) estimates, q(zi) can be chosen
to be a Dirac-delta function with unknown position.

We will now use the VBEM framework to derive an approximate iterative inference
algorithm for the hierarchical Bayesian model from Section 4.3.1. The goal is to com-
pute an approximate posterior distribution q(a, ρ) for which we assume that it factorizes
as

q(a, ρ) =
L∏
i=1

q(αi, βi)q(λi). (4.69)

We remark that in the complete-data scenario considered here, also the true posterior
factors over the individual reaction channels i = 1, . . . , L, however, not over {αi, βi}
and λi. For analytical simplicity, we further assume q(λi) := δ(λi − λ̂i) with λ̂i as
an unknown position parameter. The factor q(αi, βi) for the i-th reaction channel is
determined by

ln q∗(αi, βi) = Eλi
[
ln p(a, ρ,x1, . . . ,xM)

]
+ const., (4.70)

which becomes

ln q∗(αi, βi) =
M∑
m=1

ln p(xm | αi, βi)

+ Eλi [ln p(αi | λi)] + const.

(4.71)
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when taking into account the r.h.s. of eq. (4.62). Together with the marginal path-
likelihood function from eq. (4.44), we further obtain

ln q∗(αi, βi)

=
M∑
m=1

αi ln βi + ln Γ(αi + rmi )− ln Γ(αi)

− (αi + rmi ) ln

(
βi +

∫ T

0

gi(x
m(t))dt

)
− λ̂i
αi
− 2 lnαi + const.,

(4.72)

where we have used the fact that

Eλi [λi] =

∫
λiδ(λi − λ̂i)dλi = λ̂i.

Although eq. (4.72) is not of standard form, it can be evaluated analytically or using
a suitable sampling algorithm.

The q-factor corresponding to λi is found by solving the parametric (instead of vari-
ational) optimization

λ∗i = argmax
λ̂i∈R

E
[
ln p(a, ρ,x1, . . . ,xM)

]
= argmax

λ̂i∈R
E [ln p(αi | λi)] .

(4.73)

The expectation inside the maximum operator is given by

E [ln p(αi | λi)] = −λ̂iEαi
[
α−1
i

]
+ ln λ̂i − 2Eαi [lnαi] , (4.74)

whose maximum is found to be

λ∗i =
1

Eαi
[
α−1
i

] . (4.75)

4.3.2.1 Implementation Aspects

As mentioned earlier, the VBEM scheme leads to an iterative algorithm, where all q-
factors are estimated successively, given the most recent estimates of all other q-factors.
For a particular reaction channel i, this means that we first determine q(αi, βi) given
the most recent value of λ̂i and subsequently re-estimate λ̂i given q(αi, βi) and so forth.
Since q(αi, βi) is not of standard form, we can compute its required statistics either via
numerical integration or Monte Carlo sampling. Here we focus on the latter approach
and employ a standard M-H sampler with log-normal proposal distributions to draw
samples from q(αi, βi). Those samples are also used for updating the corresponding
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hyperparameters λi, i.e., the expectation in eq. (4.75) is replaced by a Monte Carlo
average. Moreover, we found that replacing Eαi

[
α−1
i

]
by Eαi [αi]

−1 yields a similar
estimation performance, while significantly reducing the number of required divisions
per iteration.

Note that the parameters corresponding to the homogeneous reaction channels will
be driven to infinity, which in theory, causes the algorithm to diverge. Practically –
however – one can check whether αi (or λi) is above a critical threshold (e.g., around
10e5), in which case the i-th reaction is considered homogeneous and excluded from
the remaining analysis. Algorithm 4 summarizes the main structure of the proposed
scheme.

Algorithm 4 (VBEM algorithm). VBEM algorithm for detecting heterogeneity in
stochastic interaction networks.

1: Initialize λ̂i for i = 1, . . . , L
2: while not converged do
3: for i = 1, . . . , L do
4: Draw samples from q(αi, βi) using eq. (4.72) and the current value of λ̂i
5: Update λ̂i using eq. (4.75)
6: end for
7: end while

4.3.3 Extension to the Incomplete Data Scenario

In principle, the above algorithm can be easily extended for the incomplete data sce-
nario, i.e., if the measurements consist of sparse and noisy readouts Yn of the Markov
chain X at times tn. Intuitively, this can be understood as adding another layer on
top of the states xm in the hierarchical Bayesian model. In this case it turns out that
the variational expressions from Section 4.3.2 also involve expectations with respect to
smoothing distributions of the form p(xm | ym1 , . . . , ymN , a) when considering the m-th
cell. As mentioned in the beginning of this chapter, their computation is a challenging
task on its own and a variety of numerical and analytical approaches have been pro-
posed (e.g., [5,92,137] or Section 4.2). Apart from that, the VBEM framework can be
readily applied to the more complicated case of incomplete and noisy measurements.

4.3.4 Case Studies

We performed several simulation studies in order to demonstrate and evaluate the
proposed method. For each of the case studies, we used the simple reaction network
of eukaryotic gene expression illustrated in Figure 4.14a. Exemplary trajectories of
such a model are shown in Figure 4.14b. The model comprises six reaction channels
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with kinetic parameters c1, . . . , c6, which are either homogenous or heterogeneous –
depending on the particular case study. Unless otherwise specified, the mean values of
the kinetic parameters are chosen according to Table 4.3.

Table 4.3: Mean values of the kinetic parameters.

Parameter c1 c2 c3 c4 c5 c6
Mean (s−1) 0.5 0.05 0.1 0.001 0.03 0.008

We first analyzed convergence of the VBEM algorithm using the network from Fig-
ure 4.14a and assuming a heterogeneity over three out of the six parameters (i.e., c3, c5

and c6). The results from Figure 4.14c indicate that the algorithm is able to correctly
identify the extrinsic noise parameters αi and βi in presence of heterogeneity. In case
of the homogeneous reactions, both αi and βi diverge towards infinity, corresponding
to a CV of zero and a finite mean of αi/βi. Furthermore, we find that in case of
the heterogeneous reactions, only very few iterations are necessary until convergence is
achieved.
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Figure 4.14: (a) A simple model of eukaryotic gene expression. The numbered arrows indicate chem-
ical events taking place: upon activation of the gene (arrow 1), mRNA can be transcribed (arrow 3)
which in turn gets translated (arrow 5) into protein. The remaining arrows indicate gene-deactivation
(arrow 2) and degradation events (arrows 4 and 6). (b) Exemplary protein traces of a heterogeneous
network. In this case, heterogeneity was simulated by introducing a Gamma-type variability in the
translation rate. (c) Convergence of the VBEM algorithm. The algorithm was applied to M = 30 cell
trajectories between zero and 200min with c3, c5 and c6 being heterogeneous with CVs 0.5, 0.3 and
0.4, respectively. The algorithm was ran for 50 update iterations. The curves correspond to expected
values of the respective quantity (i.e., αi, βi).

Correct identification of the heterogeneous reactions depends on several parameters
such as the population size M or the degree of intrinsic noise. In Figure 4.15a we
analyze the detection robustness of a single reaction (i.e., the gene-activation event)
as a function M . In particular, we computed the ratio of positive detections using
20 independent runs (see figure caption for fuller details). In accordance with our
expectations, the results demonstrate that a robust detection of extrinsic variability is
possible only if enough cells are in place (e.g. around M > 100 in this case).
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Figure 4.15: Detection robustness. (a) Detection robustness as a function of the population size.
Probabilities for correct detections were computed for different population sizes (i.e., between 5 and
200 cells) using 20 independent runs. Circles denote mean values and whiskers indicate their standard
errors (SEM). (b) Detection robustness as a function of intrinsic and extrinsic noise. We computed
the rate of positive detection for different values of c1 yielding different levels of intrinsic noise. For
each c1 we computed the detection robustness for several degrees of extrinsic variability (i.e., CVs
between 0.05 and 1) using 20 independent runs. Circles denote mean values and whiskers indicate
their standard errors (SEM).

Similarly, Figure 4.15b shows the probability of successful detection as a function of
both intrinsic and extrinsic variability. Note that intrinsic noise of a reaction firing pro-
cess scales inversely with its kinetic parameter. Again considering the gene-activation
reaction, we computed the detection probabilities for three different values of c1 (i.e., the
intrinsic noise of the expression system) and several degrees of heterogeneity (see figure
caption for further details). The parameters c2 corresponding to the gene-deactivation
event was adjusted such as to yield a constant ratio c1/c2. We found that in presence
of significant intrinsic noise and only moderate degrees of extrinsic noise, the algo-
rithm facilitates the sparsity constraint and hence, yields negative results. In contrast,
when decreasing the level of intrinsic noise, the algorithm is widely able to detect the
heterogeneity (see Figure 4.15b).
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4.4 Optimal Design of Temporal Perturbations

Up to now, the experimental design underlying a set of time-lapse recordings was treated
as given. However, different experimental conditions can in fact yield completely dif-
ferent experimental outcomes and therefore, have a strong impact on the accuracy at
which inference can be performed. For instance, if the transcriptional activation of
a certain gene is recorded upon application of a step-like external perturbation, cells
may adapt almost instantaneously such that only a few informative measurements can
be obtained. Consequently, the information gain of such an experiment is comparably
low, which is reflected in a low decrease in uncertainty between prior and posterior.
In contrast, novel microfluidic techniques allow to synthesize sophisticated temporal
perturbations, which can in turn increase the informativeness of the recorded data.
In this section we briefly outline a mathematical framework to design optimal per-
turbations for the inference of stochastic reaction dynamics. To avoid the numerous
technicalities that arise in the presence of extrinsic noise, the framework is illustrated
by designing perturbations for only a single cell, assuming that those perturbations are
close-to-optimal also in the presence of extrinsic noise. However, an extension to mod-
els including cellular heterogeneity is straightforward – for instance using the concepts
from Section 4.2.

We consider a homogeneous CTMC X parameterized by a set of kinetic parame-
ters C that we aim to estimate from experimental time-lapse data. Furthermore we
assume that the reaction dynamics can be controlled by an exogenous perturbation
u ∈ U on the acquisition interval [0, T ], giving rise to a conditional Markov chain
X | (C;u), whereas u is considered a deterministic function and is thus separated
from the random quantities through a semicolon. In particular, we assume that the
perturbation allows to modulate the hazard function of a particular reaction, e.g.,
hk(x(t), ck, u(t)) = cku(t)gk(x(t)), where u(t) denotes the value of the perturbation at
time t. As in the previous chapters, we define sample paths of the Markov chain on
the canonical interval [0, T ] as X = {X(t) | t ∈ [0, T ]}. A sequence of N measurements
can be acquired at discrete time points t1, . . . , tN within [0, T ], which are assumed to
be distributed according to

Yl | (X(tl;u) = x) ∼ p(y | x), (4.76)

with p(y | x) as a known measurement density. The joint distribution over all model
quantities is then given by

p(y1, . . . , yN ,x, c) =

(
N∏
l=1

p(yl | xl)

)
p(x | c;u)p(c). (4.77)

The goal of the optimal input design is to choose u such as to generate maximally
informative measurements. In the next section, we will discuss how informativeness
can be expressed and formalized mathematically.
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4.4.1 Choosing the Objective Function

We consider a measurement trajectory Y1:N = {Y1, . . . , YN}, which is recorded upon
application of a perturbation u. A natural measure for the informativeness of an ex-
periment is given by the expectation of the Kullback-Leibler divergence between the
prior- and posterior distribution [13]

J (u) = E [KL [p (c | y1:N ;u) ‖p (c)]] , (4.78)

where the expectation is calculated with respect to the marginal distribution of Y1:N ,
i.e.,

p(y1:N ;u) =

∫ (∫ N∏
l=1

p(yl | xl)p(x | c;u)dx

)
p(c)dc, (4.79)

where the prior p(c) is assumed to be known, for instance from a previous experiment.
Although it allows for an elegant information theoretic interpretation, the Kullback-
Leibler divergence is often difficult to handle because of its intricate analytical form
- such as in case of stochastic chemical kinetics. A more tractable objective function
for experimental design purposes is the expected logarithm of the generalized posterior
variance [22], i.e. the expected logarithm of the determinant of the variance-covariance
matrix

J(u) = E [log |Σ|]

=

∫
log |Σ| p(y1:N ;u)dy1:N

=

∫
log
∣∣E [ccT | y1:N ;u

]
− µµT

∣∣ p(y1:N ;u)dy1:N

=

∫
log

∣∣∣∣∫ ccTp(c | y1:N ;u)dc− µµT
∣∣∣∣ p(y1:N ;u)dy1:N

=

∫
log

∣∣∣∣∫ (∫ ccTp(c | x)dc

)
p(x | y1:N ;u)dx− µµT

∣∣∣∣ p(y1:N ;u)dy1:N

(4.80)

with

µ =

∫ (∫
cp(c | x)dc

)
p(x | y1:N ;u)dx (4.81)

Recall that for a multivariate normal distribution the entropy is the logarithm of its
generalized variance. Consequently, it can be shown that the minimizer u∗ of (4.80)
converges to the maximizer of (4.78), if p(c | y1:N , u) approaches a Gaussian distribution.
Throughout this work, we chose equation (4.80) as the objective function.

Note that even though (4.80) exhibits simpler expressions than (4.78), it involves
complicated expectations that have to be evaluated using Monte Carlo simulation.
The most expensive expectation is the one taken with respect to p(x | y1:N ;u), since
it relies on the solution of a smoothing problem. The numerical solution of the latter
was already discussed in Section 4.2 and we will resort to the sampling algorithms
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developed therein. As can be seen from (4.79), also the outer expectation from (4.80)
involves a complicated integration with respect to the path x, requiring a substantial
amount of SSA runs. As a possible solution, certain simplifications can be made to
reduce the problem complexity. For instance, the expectation over the sample paths
and measurements could be“moved into the computation”of Σ, for instance to compute
the generalized log-variance under the expected measurement. We want to point out
that in this case, the resulting perturbation design cannot not account for any process
and acquisition variability and consequently, does not provide a viable alternative.
During our simulation studies from Section 4.4.5, we observed that that a reasonable
compromise between efficiency and accuracy is achieved by moving only the expectation
with respect to the observation noise into the calculation of Σ. Mathematically, this
would correspond to approximate J(u) as

J(u) ≈
∫

log

∣∣∣∣∫ (∫ ccTp(c | x)dc

)
p(x | ȳ1:N ;u)dx− µ̄µ̄T

∣∣∣∣ p(x̄;u)dx̄ (4.82)

with

µ̄ =

∫ (∫
cp(c | x)dc

)
p(x | ȳ1:N ;u)dx (4.83)

and

ȳl =

∫
ylp(yl | x̄l)dyl. (4.84)

Note that the symbol x̄ is needed because a second integration over the path x is used
inside the logarithm. If the measurement density p(y | x) has mean x (e.g., if the
measurement noise is additive with mean zero), we further have that ȳl = x̄l.

4.4.2 The Variational Problem

Given an objective function J(u), we define the optimization problem as

min J(u) : {u ∈ U}

s.t. X(t) = X(0) +
L∑
j=1

Yj

(∫ t

0

hj (X(s), cj, u) ds

)
νj,

(4.85)

where the dynamic constraint in (4.85) is just a perturbation-dependent version of
the random time-change model described in Section 2.1.2. Further, we restrict the
perturbations to be positive and to fulfill an Lp constraint, i.e.,

U = {u ∈ Lp([0, T ],R) | u ≥ 0 ∧ ‖u‖p = E} . (4.86)

Without further simplifying the variational problem (4.85) turns out to be intractable.
Thus, we assume the perturbation to be a parameterized function, i.e., u ≡ u(θ) with
θ ∈ Rq as a set of q perturbation parameters. In particular, we assume u(θ) to be
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an equally spaced, piece-wise constant function, with θ specifying the q perturbation
levels, i.e.,

u(θ, t) =

q∑
i=1

θi1Ti (t) , (4.87)

with Ti = {t ∈ [0, T ] | (i− 1)∆ ≤ t < i∆} and ∆ = T/q. Here we restrict our analysis
to the case of p = 1, which - in conjunction with the positivity constraint - yields the
following discrete optimization problem

min J(θ) : {θ ∈ G} (4.88)

with G = {θ ∈ Rq | θ ≥ 0 ∧ ‖θ‖1 = E∆−1} as the feasible set. Note that for compact-
ness, the dynamic constraint was omitted in (4.88).

4.4.3 Stochastic Approximation

In the following, we propose an efficient gradient-based algorithm for numerically min-
imizing J(u) based on stochastic approximation [58,65]. Although direct evaluation of

J(θ) is impossible, it is straight forward to obtain noisy estimates Ĵ(θ) using Monte
Carlo integration, such that we can compute the i-th component of the gradient of J(θ)
as a one-sided finite difference

∇̂i(J) =
Ĵ(θ + hnei)− Ĵ(θ)

hn
, (4.89)

with ei ∈ Rq as the i-th canonical base vector and hn ∈ R as the discretization step size.
The main idea of the constrained stochastic approximation algorithm is to iteratively
update the perturbation parameters as

θn+1 = P
(
θn − αn∇̂(J)

)
, (4.90)

where the sequences αn and hn need to be chosen such that
∑∞

n=0 αn =∞,
∑∞

n=0 α
2
n/h

2
n <

∞, limn→∞ αn = 0 and limn→∞ hn = 0 to ensure convergence [58]. For all simulations
in Section 4.4.5, we choose

αn =
a0

A+ nρ
and hn =

h0

nγ
,

whereas the individual parameters were tuned for each of the problems individually.
Function P projects θ back to the nearest point in the feasible region G (by means
of the L2-metric). In general, such a projection might be tedious to compute. Note
however that in our particular case G defines a canonical simplex in Rq, for which the
projection can be solved efficiently within a finite number of steps. In this work, we
use the algorithm proposed in [78].
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4.4.4 Fast Gradient Approximation Using Importance Sampling

Note that the one-sided gradient estimate rests upon q+1 Monte Carlo integrations over
the path space, which might lead to slow convergence for large q or high-dimensional
reaction dynamics. However - as demonstrated in [109] - the number of required SSA
runs can be significantly reduced using importance sampling concepts. Let us now
assume that a set of sample paths x(i) for i = 1, . . . , P has been simulated conditional
on a particular θ to obtain an estimate Ĵ(θ). Then, instead of newly sampling paths x′(i)

for a new parameter set θ′ (and corresponding perturbation u(θ′)), we can efficiently
draw them from the mixture distribution

X | (c; θ′) ∼ 1∑P
i=1wi

P∑
i=1

wi1x(i) (x)

with wi =
p
(
x(i) | c;u(θ′)

)
p (x(i) | c;u(θ))

,

(4.91)

where wi is referred to as the importance weight of sample x(i). The latter only re-
quires an evaluation of the path likelihood function with respect to the parameters
u(θ′), which is typically faster than simulating a new path. For instance, if one as-
sumes that u(θ) corresponds to the k-th rate constant, i.e., ck := u(θ), the likelihood
function is obtained by computing (2.17) from Section 2.1.2 for each time interval Ti
and multiplying together the individual terms.

Practically, one can sample from (4.91) by drawing an index i from the discrete
distribution defined by the normalized important weights. Then, a valid path x′(i) is
given by the path associated with index i, i.e., x(i). In theory, the set of sample paths
only needs to be simulated once in order to run the optimization. However - as with
all importance sampling techniques - finite sample effects become more significant for
larger deviations between θ and θ′. In this work, we simulate new sample paths to
obtain Ĵ(θ) and then, use equation (4.91) to compute Ĵ(θ + hnei) for all i = 1, . . . , q.

4.4.5 Case Studies

In the following, we perform simulation studies based on two simple reaction networks.
For all the simulations, we assume prior knowledge over the rate constants, e.g., ob-
tained from previous experiments. In particular, we assume a prior of the form

p(c) =
∏
j 6=k

Γ(cj; aj, bj)

with aj = 20cj, bj = 20 and cj as the true parameter. Furthermore - for simplicity - we
assume initial conditions to be known. In all case studies, a simple step perturbation
was used as a starting point for the numerical optimization. Estimates of the objective
Ĵ(u) were computed using 40− 120 sample paths.
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Table 4.4: Parameter configuration for the birth-death model.

Parameter c1 c2 q E
Value u(θ, t) 0.30 15 200
Unit s−1 s−1 - 1

We studied the algorithm performance under the realistic setting of discrete-time and
noisy measurement. We assume the measurements to be corrupted by additive Gaussian
noise with zero-mean and standard deviation σY = 4. Before we applied the algorithm
to a more complicated, nonlinear reaction network, we studied the perturbation design
for a simple birth-death process (see Figure 4.16a), for which the results are easier to
interpret. We assume that the birth rate can be controlled by an external perturbation
(i.e., c1 ≡ u(θ, t)), which is optimized such as to minimize the expected logarithm of
the posterior variance of c2.
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Figure 4.16: (a) A simple birth-death process. (b-c) Illustration of the stochastic approximation

algorithm. (b) Exemplary minimization of Ĵ(θ) over 30000 update iterations and (c) convergence of a
three-dimensional perturbation to the optimum. The perturbation was initialized to a step function,
i.e., θi = 4 for i = 1, 2, 3, indicated by the black triangle.

Figures. 4.16b and 4.16c illustrate an exemplary minimization of Ĵ(θ) over the num-
ber of update iterations for a three-level input profile applied to the birth-death process.
The achieved decrease of the objective function corresponds to roughly two orders of
magnitude of the posterior variance.

We then calculated optimal perturbations for the case of one (see Figure 4.17a) and
two (see Figure 4.17b) measurement time points of species A, whose time evolution is
denoted A(t). Details on the parameter configuration used in the following simulations
are summarized in Table 4.4. Interestingly, high perturbation amplitudes arise imme-
diately before the measurement time points, which we interpret as follows: first - as true
in the general - perturbations yielding measurements during a dynamic transient are
preferable to measurements close to a stationary state. Second - in the particular case
of the first order death reaction - strong excitation close before the acquisition time will
accumulate many of the events at regions where they - conditional on that excitation -
can be inferred or “located” more accurately. It can be seen from Figure 4.17 that while
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the process mean is significantly increased, the standard deviation remains more or less
unchanged. In contrast, when considering the step perturbation, most of the transient
is missed during acquisition and furthermore, degradation events will be spread over a
wider time interval. We also want to point out the significant difference between the
perturbations obtained for the incomplete and complete case. For the latter, it was
shown in [86] that the expected posterior variance is minimal for the case θ1 = E∆−1

and θi 6=1 = 0.
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Figure 4.17: Optimal perturbations and mean process dynamics. Mean dynamics (solid) and the
±σ confidence bounds (dashed) for the step (black) and optimal (red) perturbation were computed by
integrating the moment ODEs. The triangles indicate the initial (white) and observation (gray) time
points used for perturbation design.

We repeated the two-observation experiment for a nonlinear model of transiently
induced transcriptional activation. Often cells react to changing environmental condi-
tions, by activating particular transcriptional programs (see e.g., [94]). Sensed at the
cell membrane, the stimulus or stress is mediated to the nucleus by a translocation of
certain transcription factors, which are activated by the signaling cascade. Once in the
nucleus, the signaling proteins can initiate transcription of the target genes. After the
cell has adapted, the transcription factors relocate to the cytoplasm, giving rise to only
a short time period of gene activity. A minimalistic model of the transiently induced
transcriptional activation is depicted in Figure 4.18a, whereas all reactions are modeled
according to mass-action kinetics. We further assume that the intracellular dynamics
can be perturbed by means of the rate c2 ≡ u(θ, t) (see Table 4.5 for details). The ini-
tial abundances of A, B, AB and C are initialized at 0, 5, 0 and 0 copies, respectively.
We assume that we can obtain noisy measurements of C at two time points with stan-
dard deviation σY = 4. The optimal perturbation was computed for the case of jointly
estimating c1 (degradation) and c5 (protein synthesis). The resulting perturbation as
well as the mean process dynamics of species A and C are depicted in Figure 4.18b.
Compared to the step response, the optimized perturbation results in a strong initial
up-regulation of species A, followed by a period where it decreases again. Intuitively, it
seems important to have a high transcription factor abundance during the early time
points, such that (a) many degradation events have appeared at the measurement time
points, and (b) maximize the temporal window of gene activity, such that many new
proteins can be synthesized. This is supported by the increased mean of species C as
shown in Figure 4.18b. However, we want to stress that such explanations are difficult
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Figure 4.18: Optimal perturbations for a simple model of transiently induced transcriptional acti-
vation. (a) Graphical illustration of the model. The transient nuclear accumulation of transcription
factor (species A) is modeled by production and degradation events. Molecules A can bind to the
promoter of the target gene (species B) to form a complex (AB). Transcription of mRNA and transla-
tion to the protein (C) is abstracted by a first order production event. (b) Optimal perturbations and
mean process dynamics. Mean dynamics (solid) and the ±σ confidence bounds (dashed) for the step
(black) and optimal (red) perturbation were computed over 2000 SSA runs. The triangles indicate the
initial (white) and observation (gray) time points used for perturbation design.

to justify rigorously due to the complexity of the reaction network and the challenges
arising due to the incomplete data scenario.

Table 4.5: Parameter configuration for the transcriptional model.

Parameter c1 c2 c3 c4 c5 q E
Value 0.1 u(θ, t) 0.05 0.20 0.80 15 80
Unit s−1 s−1 s−1 s−1 s−1 - 1



5 Uncoupled Analysis of Biochemical
Networks in Random Environments

The results from the previous chapter give rise to the question whether the process
marginalization can also be performed if the environmental conditions are not static,
but dynamically changing [53, 110]. In that sense, it would be possible, to marginalize
a stochastic model with respect to the fluctuations that are due to the surrounding
components such as the ribosomal abundance and so forth. Intuitively speaking, we
aim to find a proper dynamical description of just the system of interest as if it was
still embedded into the whole environment. This would correspond to a model in
which all the extrinsic fluctuations are “self-contained” meaning that it summarizes all
system behaviors attainable under all possible realizations of the environmental noise.
As a consequence, such models could be used to perform an uncoupled analysis of a
reaction network subject to extrinsic noise. A historical toy example of such a self-
contained model is given by the Polya urn scheme [30], which is known to be equivalent
to a standard Bernoulli urn, marginalized over random (and correspondingly extrinsic)
success rates [84]. In the former model, the player draws from an urn containing balls
of two colors. After each draw, the player returns the ball together with a fixed number
of new balls of the same color. Apparently, such scheme exhibits a self-excitation,
meaning that the outcome of the player’s draw will impact his future chances. This
stands in contrast with the standard Bernoulli model, where the number of balls of each
color is randomly drawn at the beginning but held fixed throughout the subsequent
trials. Nevertheless, looking at the number of successful draws over repeated trials,
both models turn out to be equivalent. From a biophysical point of view, the Polya
urn gives the desired uncoupled model since it provides a correct and self-contained
description of only the number of wins.

In this chapter, we will follow up on the marginal process from Chapter 4 and demon-
strate how it can be constructed and analyzed in the more general case of dynamically
changing environments.

5.1 Mathematical Modeling

We again consider a continuous-time Markov chain (CTMC) X, which we assume to
depend on another multivariate Markov process Z through its hazard functions in the
form

hi(x, z) = ci(z)gi(x), (5.1)

87
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with ci some positive function and gi a polynomial determined by the law of mass-action,
for instance. For reactions independent of Z, we thus have ci(z) ≡ ci. Typically, Z is
another jump or diffusion process corresponding to a set of modulating environmental
species or conditions that are considered extrinsic to the system of interest, whereas
the species in X represent the actual system of interest. For example, Z could be the
fluctating ribosome copy numbers affecting the kinetics of a gene regulatory network
represented by X. Although a more general treatment is possible, we assume a feed-
forward structure between Z and X, which means that Z modulates X but not vice-
versa. Consequently, the dynamics of the joint system Y (t) = (Z(t), X(t)) can be
described by a marginal Markov process Z together with a conditional Markov chain
X | Z.

5.2 Construction of the Uncoupled Dynamics

Mathematical descriptions of the joint system Y (t) are readily obtained using available
techniques for modeling Markovian dynamics [53,59]. Practically – however – we prefer
models that allow to properly describe only the interesting components X(t). As a
result, we obtain a jump process which - in contrast to the conditional process X | Z -
no longer depends on the environmental species in Z. We remark that a straightforward
marginalization of the joint master equation of Z and X generally leads to intractable
propensities [53,98]. Fortunately, it turns out that the innovation theorem [1,3,4] readily
applies to fluctuating environments such that the hazard functions of the uncoupled
process are formally given by

hi(xt, t) = E [ci (Z(t)) | xt] gi(X(t)), (5.2)

where the expectation is taken with respect to the conditional distribution π (z, t | xt)1.
The latter describes the conditional probability of the environmental process Z(t) given
the entire history of process X until time t. Using the expected value of that distribu-
tion, the feed-forward influence of Z on the hazard functions of X can be replaced by a
deterministic function of X, which no longer depends on the actual state of Z. Instead,
the marginal process X becomes self-exciting, meaning that it exerts a feedback on
itself. Hence, given that we can evaluate eq.(5.2), we have a means to simulate X while
bypassing the need to draw realizations of Z.x This has for instance been exploited for
the exact simulation of diffusion-driven Poisson processes [43]. As has been observed
in Section 4.2, the uncoupled process X is no longer Markovian, since the conditional
expectation - and hence the hazard functions - depend on the full process history Xt.
A schematic illustration of that uncoupling is given in Figure 5.1.

1Note that π is either a probability or a density, depending on whether Z is discrete- or real-valued,
respectively.
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Figure 5.1: Uncoupled stochastic dynamics. The environmental process Z modulates the dynamics
of the process under study X, e.g., through one of its hazard functions. Marginalization with respect
to Z yields the uncoupled dynamics of X, whereas the original dependency on the environment Z is
replaced by its optimal estimator given the history of X. Consequently, the marginal process X is
self-exciting, i.e., it exerts a feedback on itself.

5.2.1 Relation to Stochastic Filtering

Although the construction of the uncoupled dynamics is general, any practical imple-
mentation thereof will depend on an explicit computation of the conditional expectation
in (5.2). This expectation estimates the environmental state Z(t) given the full history
of the uncoupled process Xt and therefore, can be understood as the solution to a
stochastic filtering problem [3]. As discussed in Section 2.2.2, filtering techniques deal
with optimally reconstructing a hidden stochastic process at time t from noisy observa-
tions of that process up to time t. In the situation considered here, the hidden process
corresponds to the environment Z(t), which gets reconstructed from the “observed”
history Xt through the conditional mean in (5.2).

We assume that the environment Z(t) admits a probability distribution p(z, t) de-
scribed by a Kolmogorov-forward equation of the form

∂

∂t
p(z, t) = Ap(z, t), (5.3)

where A represents the temporal change of p(z, t), i.e., is the infinitesimal generator
of Z. For instance, if Z is a diffusion process, A corresponds to the Fokker-Planck
operator, while in case of a CTMC, A is given by the difference operator of the chemical
master equation (CME). In terms of filtering, (5.3) corresponds to the process model
of Z. Furthermore, we know that at a given time t, the solution of X can be written
as a sum of independent but time-transformed Poisson processes [7], each of them
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corresponding to a particular reaction channel. Consequently, the observation model
is given by a set of Poisson counting observations with the hazard functions given in
(5.1). This is closely related to Markov-modulated Poisson processes [117] and their
corresponding optimal filtering [32].

5.2.1.1 Derivation of the Normalized Filtering Distribution

The following derivation of the filtering distribution is based on [29] and is demonstrated
using a discrete-valued environmental process Z(t) (i.e., a CTMC). Furthermore, we
assume that Z(t) is a one-dimensional process and ck a linear function of Z(t), i.e.,
ck(z)gk(x) = ckzgk(x). However, analogous derivations are possible for multivariate or
real-valued Z(t).

Let us assume now that we have given the posterior distribution over the environ-
mental process at time t, i.e., P (Z(t) = z | xt). Then, the one-step posterior for a
sufficiently small ∆t can be generally written as

P (Z(t+ ∆t) = z | ∆Rk = {0, 1},xt)

=
P (∆Rk = {0, 1} | Z(t+ ∆t) = z)P (Z(t+ ∆t) = z | xt)∑∞
z=0 P (∆Rk = {0, 1} | Z(t+ ∆t) = z)P (Z(t+ ∆t) = z | xt)

,
(5.4)

where ∆Rk indicates whether a reaction has happened in ∆t or not. The likelihood
term in (5.4) is given by the Poissonian observation model with propensity hk(x(t), z) =
ckzgk(x(t)), i.e.,

P (∆Rk = 0 | Z(t+ ∆t) = z) = e−hk(x(t),z)∆t (5.5)

P (∆Rk = 1 | Z(t+ ∆t) = z) = ∆thk(x(t), z)e−hk(x(t),z)∆t. (5.6)

For small ∆t, we can write the one-step prior distribution as

P (Z(t+ ∆t) = z | xt) ≈ P (Z(t) = z | xt) + ∆tAP (Z(t) = z | xt). (5.7)

Hence, in case no reaction happens, we obtain

P (Z(t+ ∆t) = z | ∆Rk = 0,xt)

=
e−ckzgk(x(t))∆t [P (Z(t) = z | xt) + ∆tAP (Z(t) = z | xt)]∑∞

z=0 e
−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

=
e−ckzgk(x(t))∆tP (Z(t) = z | xt)∑∞

z=0 e
−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

+
∆tAP (Z(t) = z | xt)∑∞

z=0 e
−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

(5.8)
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Taking the limit yields the temporal change in P , i.e.,

lim
∆t→0

P (Z(t+ ∆t) = z | ∆Rk = 0,xt)− P (Z(t) = z | xt)
∆t

= lim
∆t→0

P (Z(t) = z | xt)
[
e−ckzgk(x(t))∆t −

∑∞
z=0 e

−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)
]

∆t
∑∞

z=0 e
−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

+ lim
∆t→0

AP (Z(t) = z | xt)∑∞
z=0 e

−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)
= P (Z(t) = z | xt) [−ckzgk(x(t)) + ckgk(x(t))E [Z(t) | xt]] +AP (Z(t) = z | xt)
= AP (Z(t) = z | xt) + ckgk(x(t)) [z − E [Z(t) | xt]]P (Z(t) = z | xt).

(5.9)

Using a simpler notation, we can write the differential change in case no reaction
happens as

d

dt
P (Z(t) = z | xt) = AP (Z(t) = z | xt)− ckgk(x(t)) [z −M1(t)]P (Z(t) = z | xt),

(5.10)
with M1(t) as the posterior expectation of Z. If one reaction happens, we can write
the one-step posterior distribution as

P (Z(t+ ∆t) = z | ∆Rk = 1,xt)

=
ckzgk(x(t))e−ckzgk(x(t))∆tP (Z(t) = z | xt)∑∞

z=0 ckzgk(x(t))e−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

+
∆tAP (Z(t) = z | xt)∑∞

z=0 ckzgk(x(t))e−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)
.

(5.11)

Since the posterior jumps instantaneously when the reaction happens, the derivatives
are not defined. Instead, we compute the increments if ∆t approaches zero. This yields

lim
∆t→0

P (Z(t+ ∆t) = z | ∆Rk = 1,xt)− P (Z(t) = z | xt)

= lim
∆t→0

ckzgk(x(t))e−ckzgk(x(t))∆tP (Z(t) = z | xt)∑∞
z=0 ckzgk(x(t))e−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)

− P (Z(t) = z | xt)

= lim
∆t→0

ze−ckzgk(x(t))∆tP (Z(t) = z | xt)∑∞
z=0 ze

−ckzgk(x(t))∆tP (Z(t+ ∆t) = z | xt)
− P (Z(t) = z | xt)

=

[
z −M1(t)

M1(t)

]
P (Z(t) = z | xt)

(5.12)

Finally, denoting by π(z, t) = P (Z(t) = z | xt) the normalized filtering distribution, we
obtain

dπ(z, t)

=
(
A− ckgk(x(t−))

[
z −M1(t−)

] )
π(z, t−)dt+

[
z −M1(t−)

M1(t−)

]
π(z, t−)dRk(t),

(5.13)
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with dRk(t) as the firing process for reaction type k. Note that this equation depends on
the conditional mean of Z(t), such that it becomes tedious to solve directly. Dropping
the normalizing constant in (5.4) and repeating the same derivation as above, it is
straightforward to show that the dynamics of the unnormalized filtering distribution
follow

dπ̃(z, t) =
[
A− ckgk(x(t−))z

]
π̃(z, t−)dt+ [z − 1] π̃(z, t−)dRk(t), (5.14)

with π(z, t) ≡ ξ(t)π̃(z, t) and ξ(t) a time-dependent normalizing factor independent of
z. Thus, (5.14) describes a scaled version of the exact filtering distribution. Once we
have numerically solved for π̃, it can be easily rescaled such that it integrates (or sums
up) to one for all t. Nevertheless, also the normalized distribution is important, since
it permits a simple computation of the posterior moments of Z as we shall see later
in this section. Note that (5.14) is a stochastic partial differential equation (SPDE)
in case Z describes a diffusion process or a stochastic difference-differential equation
(SDDE) if Z is a CTMC. In the latter case and if gk ≡ 1, the solution of (5.14) can be
compactly written as

Π̃(t) = e(Q−ckΛ)(t−tRk(t))

Rk(t)∏
l=1

Λe(Q−ckΛ)(tl−tl−1)

Π0 (5.15)

with tl as the l-th firing-time of R(t), Π̃(t) = (π̃(0, t), . . . , π̃(N − 1, t))T , N the number
of reachable states of Z, Λ = diag(0, . . . , N − 1), Π0 ∈ RN the initial distribution over
Z and Q ∈ RN×N the generator matrix of Z2.

In order to evaluate (5.2), we only require the mean (i.e., the first moment) of the
filtering distribution, i.e., M1(t) = E [Z(t) | xt]. In general, however, the mean also
depends on the second-order moment, which in turn depends on the third-order moment
and so forth. The i-th order non-central moment is computed by multiplying both sides
of (5.13) with zi and summing (or integrating) over all z ∈ Z, i.e.,

∑
z∈Z

zidπ(z, t) =
∑
z∈Z

zi
(
Aπ(z, t−)− ckgk(x(t−))

[
z −M1(t−)

]
π(z, t−)

)
dt

+
∑
z∈Z

zi
[
z −M1(t−)

M1(t−)

]
π(z, t−)dRk(t)

=
[
Di(t−)− ckgk(x(t−))(Mi+1(t−)−M1(t−)Mi(t

−))
]

dt

+
Mi+1(t−)−M1(t−)Mi(t

−)

M1(t−)
dRk(t),

(5.16)

2Note that we define Q to be a left stochastic matrix, i.e., its rows sum up to zero.
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with Di(t−) =
∑

z∈Z z
iAπ(z, t−). Therefore, the moment system is given by

dM1(t) =
[
D1(t−)− ckgk(x(t−))

(
M2(t−)−M1(t−)M1(t−)

)]
dt

+
M2(t−)−M1(t−)M1(t−)

M1(t−)
dRk(t)

...

dMi(t) =
[
Di(t−)− ckgk(x(t−))

(
Mi+1(t−)−M1(t−)Mi(t

−)
)]

dt

+
Mi+1(t−)−M1(t−)Mi(t

−)

M1(t−)
dRk(t).

(5.17)

Although (5.17) is generally infinite-dimensional, there are several relevant scenarios,
for which the moment dynamics are closed, i.e., only depend on higher-order moments
up to a certain order. This is for instance the case, if Z(t) is a Cox-Ingersoll-Ross
process [66] or any finite state Markov chain. On the other hand, if the conditional
process Z(t) | xt cannot be fully characterized by a finite number of moments, one can
employ suitable moment-closure approximations (see [52] and Chapter 3). Although
such techniques may yield excellent approximation performances in certain practical
scenarios, there is no principled way of assessing the quality of a particular closure “be-
forehand”, i.e., without performing extensive stochastic simulations. Those problems
are inherent if one aims to approximate Z(t) without including further information.
In contrast, the conditional process Z(t) | xt turns out to be easier to approximate.
This stems from the fact that due to the conditioning, the distribution over Z(t) will
generally be more informative than the unconditional distribution. This can be under-
stood via Bayes’ theorem: a complicated and broad prior distribution is significantly
harder to approximate by a simple distribution (e.g., a Gaussian) than a posterior
distribution that is obtained after observing data. The more data (i.e., information)
is included, the tighter and symmetric it is. While such arguments appear largely
qualitative, they can be rigorously formulated using concepts from asymptotic theory
such as large sample properties of Bayesian estimators [39]. In fact, our simulations
indicated that the approximation accuracy of the uncoupled dynamics often shows lit-
tle sensitivity with respect to the particular closure function. Intuitively, this can be
understood by analyzing (5.15): especially for large ck, the solution is predominantly

driven by the term e−ckΛ
∫ t
0 gk(x(s))dsΛRk(t), suggesting that it can be well approximated

by a Gamma-distribution. We note that the Gamma-distribution is fully characterized
by two parameters – or equivalently – its first two moments M1(t) and M2(t). As a
consequence, we may express the third order moment as a function of the first two
moments, i.e., M3(t) = −M1(t)M2(t)+2M2

2 (t)/M1(t), such that the second conditional
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moment closes as

dM2(t) =

[
D2(t−)− 2ckgk(x(t−))

M2(t−)

M1(t−)

(
M2(t−)−M2

1 (t−)
)]

dt

+ 2

[
M2

2 (t−)

M2
1 (t−)

−M2(t−)

]
dRk(t).

(5.18)

For univariate environments, we consistently used this type of closure. For the multi-
variate case, we applied the second-order zero-cumulants closure [52] in which the third
order moments are approximated by the first- and second-order moments as

E [ABC] = E [A]E [BC] + E [B]E [AC] + E [C]E [AB]− 2E [A]E [B]E [C] . (5.19)

The numerical solution of the filtering problem is illustrated in Figure 5.2. The
plot from Figure 5.2a illustrates that the conditional expectation has discontinuities
only at the firing times of reaction k, whereas the original environment Z(t) fluctuates
significantly faster. However, when considered as hazard functions of the k-th reaction,
both yield the equivalent dynamics in X(t). Note that when simulating the marginal
process, the true environment Z(t) is not revealed. Hence, for the sake of this study,
we simulated the joint model (Z(t), X(t)) and subsequently applied the filter on the
realization of X(t). Figure 5.2b shows a comparison between the exact solution of the
filtering distribution and the one obtained under the Gamma-closure from eq. (5.18).
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a b

Figure 5.2: Numerical solution of the filtering problem. The environment Z(t) was modeled as a birth-
death process which linearly modulates the rate of the k-th reaction of X. (a) Comparison between the
true environment Z(t) and the corresponding conditional expectation. In order to compute the mean
of the filtering distribution, we used eq. (5.15) in conjunction with a state space truncation. Since the
latter was chosen to be conservative, the approximation error is negligible and the method considered
practically exact. The red dots indicate the firing times of the modulated reaction k. (b) Comparison
between the exact filter (green) and approximate filter (black) based on the Gamma assumption, i.e.,
using eq. (5.18).

5.2.2 Modified Marginal Simulation Algorithm

Although the uncoupled dynamics of X are non-Markovian, the Markov property can
be enforced by virtually extending the state space by the filtering moments, which
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summarize the history of X (see Section 4.2.2 and [137]). In particular, the time Wk

that passes until a reaction of type k happens is distributed according to

P (Wk < w | xt) = 1− e−
∫ w
0 hk(xt,T )dT , (5.20)

with h(xt, w) = ciE [Z(t+ w) | xt,w], where xt,w extends xt by a time-interval w as-
suming that no reaction of type k happens in w. The corresponding density is given
by

pk(w | xt) = hk(xt, w)e−
∫ w
0 hk(xt,T )dT . (5.21)

We note that as long as no reaction of type k happens, dRk(t) is zero and hence,
ciE [Z(t+ w) | xt,w] is found by solving the ordinary differential equation from (5.17).
Since that solution is not generally known in closed form, we cannot directly sample
from (5.21). However, several efficient solutions to that problem have been developed in
the context of inhomogeneous Poisson processes, e.g., such as the method of thinning
[68]. In order to simulate from (5.21), we use the method of thinning as given in
Algorithm 5.

Algorithm 5 (Method of thinning). At a given time t, the algorithm requires the
conditional mean M1(t) and a real-valued constant λ̂ ≥M1(w)gk(x(w)).

1: Initialize W ← 0 and u←∞.
2: while u > M1(t+W )gk(x(t+W ))/λ̂ do
3: Simulate Ŵ ∼ Exp(λ̂).
4: Set W ← W + Ŵ .
5: Simulate u ∼ U(0, 1).
6: end while
7: Output W .

Note that the tuning parameter λ̂ has to be chosen such that λ̂ ≥M1(w)gk(x(w)) for
all w ∈ [0, T ]. Once a reaction has fired, the filter moments need to be updated by the
terms multiplying the firing process dRk(t) in (5.17) (i.e., they exhibit a discontinuity).

Evidently, simulation from (5.20) comes at higher cost than simulating from an ex-
ponential distribution (e.g., such as performed in standard SSA algorithms), since in
general, it relies on a numerical integration of an ODE. However, reactions associated
with the environmental part no longer need to be simulated, which yields a significant
reduction in computational effort as soon as the environmental network is large and
expensive to simulate.

5.2.3 Marginal Moment Dynamics

We want to highlight that the moments of the marginal dynamics precisely coincide
with those derived from the marginal CME in Section 3.2.1. This is in fact a direct
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consequence of the marginal CME being a lower-dimensional projection of the full path
density associated with the marginal process. Although a general proof is straightfor-
ward, we prefer to illustrate this on a tractable and well-understood example, i.e., the
Poisson process with a Gamma-distributed rate (see Example 10).

Example 10 (Marginal moment dynamics). We consider a conditional Poisson process
X | Z, where Z corresponds to a randomly drawn rate constant Z ∼ G(α, β). We know
that the conditional distribution over X(t) is given by a Poisson distribution, i.e.,

P (x, t | z) = P (X(t) = x | X(0) = 0, Z = z) =
(zt)x

x!
e−zt. (5.22)

Multiplying with p(z) and integrating over z, we obtain for the marginal distribution
over X(t)

P (x, t) =

∫ ∞
0

(zt)x

x!
e−zt

βα

Γ(α)
zα−1e−βzdz

= NB
(
x;α,

β

β + t

)
,

(5.23)

i.e., a negative binomial distribution. The first two moments of this distribution are
known to be

E [X(t)] =
αt

β
(5.24)

E
[
X2(t)

]
=
αt(β + t+ αt)

β2
. (5.25)

If we use formula (3.7) from Section 3.2.1, we obtain a three-dimensional ODE
system for computing the marginal moments, i.e.,

d

dt
E [X(t)] = E [Z]

d

dt
E
[
X2(t)

]
= E [Z] + 2E [ZX(t)]

d

dt
E [ZX(t)] = E

[
Z2
]
.

With initial conditions E [X(0)] = E [X2(0)] = E [ZX(t)] = 0, we the solution of the
moments in X(t) are given by

E [X(t)] = E [Z] t (5.26)

E
[
X2(t)

]
= E [Z] t+ E

[
Z2
]
t2, (5.27)

which with E [Z] = α/β and E [Z2] = α(α + 1)/β coincide with (5.24) and (5.25).



5.3 Generalized Master Equations 97

The marginal process dynamics can be written in SDE form as

dX(t) = M1(t−)dt+ dQ(t) (5.28)

with M1(t−) = α+X(t−)
β+t

and Q(t) as a martingale. Taking the expectation yields

d

dt
E [X(t)] =

α

β + t
+

1

β + t
E [X(t)] . (5.29)

For computing the second order moment, we make use of Ito’s formula and find that

dX2(t) = (2X(t−) + 1)dX(t) = 2X(t−)M1(t−) +M1(t−) + (2X(t−) + 1)dQ(t) (5.30)

and therefore,

d

dt
E
[
X2(t)

]
=

2α

β + t
E [X(t)] +

2

β + t
E
[
X2(t)

]
+

α

β + t
+

1

β + t
E [X(t)] . (5.31)

Interestingly, the first and second order moments can now be described using only two
ODEs, whereas the latter show an explicit time dependency. However, the solution of
those equations again yields the correct expressions.

5.3 Generalized Master Equations

Since the uncoupled process is generally non-Markovian, it does not satisfy a conven-
tional master equation. Nevertheless, it can be described by a non-Markovian modifica-
tion thereof, giving rise to a generalized master equation (GME). Typically, a GME is
given in the form of an integro-differential equation, where the integral part stems from
a time-convolution representing the memory effects of the system3. Alternatively, such
master equations may be transformed into a time-convolutionless form [112], which are
typically easier to handle analytically and numerically. While GMEs are barely used
in the context of biology, they are frequently applied in the field of quantum- and sta-
tistical mechanics [112,141]. In the following we will provide a brief discussion on how
the uncoupled dynamics relate to the GME formalism.

An important property of a (possibly non-Markovian) jump process are the waiting-
time distributions associated with each type of reaction (or transition) that may take
place at a given time and molecular configuration. We assume that the k-th reaction
is modulated by the environmental network Z. Accordingly, the k-th reaction will
be associated with a non-exponential waiting-time distribution given in (5.21). For
simplicity, the following considerations will be restricted to the case where the waiting-
time distribution does not depend on the full process history Xt but only on the current
state X(t) and time t, i.e.,

pk(w | xt) = pk(w | x, t) = hk(x, t)e
−

∫ w
0 hk(x,t+s)ds.

3In contrast, Markovian dynamics are known to be memoryless.
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The remaining reaction channels i 6= k are associated with exponential waiting-time
distributions of the form pi(w | x) = hi(x, ci) exp(−hi(x, ci)w). For instance, this situa-
tion arises if a static environmental network modulates X through a zero-order reaction
(see e.g., Section 5.4.2). We remark that a more general analysis is not in the scope of
this thesis but shall be subject to future research.

Following [45] or [57], we can use the network’s waiting-time distributions to formu-
late a generalization of the Chapman-Kolmogorov equation for jump processes with
non-exponential waiting-times. The probability of finding the system in a particular
state x at time t is determined by considering two cases. If x 6= X(0) = x0, we know
that we have reached x from another state x − νi via a reaction of type i. The cor-
responding probability is finally obtained by summing over all possible reactions that
may have moved the system to a state x and all possible times at which the reaction
may have fired. The latter will be reflected by the aforementioned time-integral. A
special case arises if x = x0, since we need an additional term accounting for the case
where the initial state x0 has never been left until t. More specifically, it can be shown
that P (x, t) = P (X(t) = x | X(0) = x0) satisfies

P (x, t) = S(t | x, 0)1x0 (x)

+
L∑
i=1

∫ t

0

P (x− νi, t− w)Qi(x− νi, t− w)h(x− νi, t− w)S(w | x, t− w)dw,

(5.32)

with h(x, t) = hk(x, t) +
∑

l 6=k hl(x, cl) as the total hazard,

Qi(x, t) =

{
hk(x,t)
h(x,t)

i = k
hi(x,ci)
h(x,t)

i 6= k.
(5.33)

as the probability next reaction will be the i-th one and S(w | x, t) the probability that
the system remains in x between t and t+ w, i.e.,

S(w | x, t) = e−
∫ w
0 h(x,t+s)ds. (5.34)

[45,57,133]. The latter gives rise to the probability that any reaction happens between
t and t + w, i.e., P (W < w | X(t) = x) = 1 − S(w | x, t) with density p(w | x, t) =
h(x, t+ w)S(w | x, t).

If p(w | x, t) = p(w | x) (and hence, Qi(x, t) = Qi(x)), the differential form of eq.
(5.32) is known to be

d

dt
P (x, t) =

L∑
i=1

∫ t

0

[
P (x− νi, t− w)Qi(x− νi)φ(w | x− νi)

− P (x, t− w)Qi(x)φ(w | x)
]
dw,

(5.35)
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where the memory function φ(w | x) is related to p(w | x) through the Montroll-Weiss
equation [80]

φ(u | x) =
up(u | x)

1− p(u | x)
, (5.36)

where φ(u | x) and p(u | x) denote the Laplace transforms of p(w | x) and φ(w | x),
respectively. From this relation, it is straightforward to verify that the master equation
becomes memory-less in case of exponential waiting-time distributions (i.e., the memory
function is given by a dirac-delta function) [45, 57]. In the more general case of time-
dependent waiting-time distributions, a corresponding differential equation could for
instance be obtained through direct differentiation of (5.32) [91, 133]. However, since
the type and time of the next reaction only depend on the current state x and time t, a
differential master equation is readily obtained by considering the uncoupled dynamics
X as a time-inhomogeneous Markov chain. Similar to Section 2.1.1 it is then sufficient
to characterize the probability of moving and staying within a small time interval
between t and t + ∆t. Those probabilities are again obtained through the respective
waiting-time distributions, i.e.,

P (X(t+ ∆t) = x+ νi | X(t) = x)︸ ︷︷ ︸
Probability of moving

= P (Wi < ∆t | X(t) = x) + fi(∆t)

P (X(t+ ∆t) = x | X(t) = x)︸ ︷︷ ︸
Probability of staying

= 1−
L∑
i=1

P (Wi < ∆t | X(t) = x)− fi(∆t),
(5.37)

where fi(∆t) corresponds to the probability that the state x + νi is reached through
multiple reactions. However, for decreasing ∆t, fi(∆t) goes to zeros much faster than
P (Wi < ∆t | X(t) = x). The probability of being in a certain state at time t + ∆t is
given by

P (x, t+ ∆t) =
L∑
i=1

(
P (Wi < ∆t | X(t) = x− νi) + fi(∆t)

)
P (x− νi, t)︸ ︷︷ ︸

Probability of moving in ∆t

+

(
1−

L∑
i=1

P (Wi < ∆t | X(t) = x)− fi(∆t)

)
P (x, t)︸ ︷︷ ︸

Probability of staying in x in ∆t

.

(5.38)
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The temporal change of P (x, t) is then found to be

d

dt
P (x, t) = lim

∆t→0

P (x, t+ ∆t)− P (x, t)

∆t

=
N∑
i=1

lim
∆t→0

P (Wi < ∆t | X(t) = x− νi)
∆t

P (x− νi, t)

−
N∑
i=1

lim
∆t→0

P (Wi < ∆t | X(t) = x)

∆t
P (x, t).

(5.39)

The limit terms in (5.39) precisely coincide with the definition of a (possibly time-
dependent) hazard function [4] and therefore,

d

dt
P (x, t) =

∑
i 6=k

hi(x− νi, ci)P (x− νi, t)−
∑
i 6=k

hi(x, ci)P (x, t)

+ hk(x− νk, t)P (x− νk, t)− hk(x, t)P (x, t).

(5.40)

Eq. (5.40) corresponds to the aforementioned time-convolutionless type of master equa-
tion.

5.4 Fluctuations on Different Timescales

The impact of environmental fluctuations on a dynamical system of interest is as di-
verse as the timescale on which they operate. For instance, extrinsic noise in the
context of gene expression might be slowly varying (e.g., correlates well with the cell-
cycle [104, 127]), while fluctuations in transcription factor abundance might be sig-
nificantly faster than the expression kinetics downstream. From a technical point of
view, timescales range from constant environmental conditions that are random but
fixed [137] to regimes where the fluctuations are very fast, such that quasi-steady-state
(QSS) assumptions become applicable [98]. A QSS-based approach for simulating a
system X in the presence of extrinsic noise Z corresponds to simulating the conditional
CTMC X | Z, where Z is replaced by the mean of Z. The simulation of the joint sys-
tem (X,Z) become prohibitive if extrinsic fluctuations are fast, while with (5.17) the
complexity of the marginal process simulation is invariant with respect to the time-scale
of the environment. Alternatively, one may try to replace a fluctuating environment
Z through a random but fixed enviroment of same variance but this leads to an over-
estimation of the process variance in X [53]. To investigate the two above simplifying
assumptions and compare them to the exact solution obtained via SSA and via the
marginal process, we performed a simulation study on a linear three-stage birth-death
model given in Figure 5.3a, where only species C is considered of interest in this case.
Accordingly, the uncoupled dynamics of C are obtained by integrating the dynamics
over the A and B. The results are shown in Figure 5.3b and Figure 5.3c.
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Figure 5.3: Marginal simulation algorithm. (a) Simple three-stage model. Species A, B and C are
modeled as coupled linear birth-death processes, where the coupling is realized by linearly modulating
the birth rates of B and C (rate constants c1 = 0.003, c2 = 0.001, c3 = 0.05, c4 = 5e−4, c5 = 1e−5, c6 =
1e−4). The uncoupled marginal dynamics of C are obtained by integrating over fluctuations of species
A and B (7000 sample paths were used). (b, c) Evaluation of the marginal simulation algorithm.
Simulations based on the QSS-approximation neglect a significant portion of variability as opposed to
assuming a constant environment (CE) in which case the variability is overestimated. In contrast, the
uncoupled dynamics correctly predict the fluctuations on the protein level, while yielding a reduction
in computational effort when compared to standard SSA (20min simulation time instead of 46min);
correspondingly higher speedup can be achieved for a larger time-scale separation of processes (A,B)
versus C.

5.4.1 The Effective Noise

Several recent studies [17, 53, 99, 120] are centered around the separation of different
noise contributions in biochemical networks. Typically, the law of total variance is
employed to decompose the fluctuations of X(t) into parts that are intrinsic to X and
parts that come from Z (i.e., are extrinsic to X). Here we found that performing such
an analysis on Z instead of X – in conjunction with our decoupling approach – provides
a novel way to study how stochasticity is propagated through biochemical networks.
Using the law of total variance, we can decompose the total (or unconditional) variance
of Z(t) as

Var [Z(t)] = E [Var [Z(t) | xt]] + Var [E [Z(t) | xt]] . (5.41)

The two terms on the r.h.s. can be interpreted as follows. Assume we can observe Z
only through X. Since X is intrinsically stochastic, a part of the variability of Z is
not carried over to X. In (5.41), this part (i.e., the suppressed noise) corresponds to
the first term on the r.h.s. since it quantifies the uncertainty about Z(t) that remains
after observing Xt. The second term determines how accurate Z can be reconstructed
from trajectories of X. Alternatively, it can be understood as the amount of noise in
Z that effectively impacts X (i.e., the effective noise). For instance, the environmental
process could be characterized by a large variance, but still have only marginal impact
on X(t) – depending on the timescale of Z and X.

In order to quantify those terms, we note that the conditional variance within in
the first term precisely coincides with the second-order central moment of the filtering
distribution from (5.14). This further implies that it can be computed “on-the-fly”
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when simulating X(t) using the marginal simulation algorithm which allows an efficient
estimation of its expectation. However, in some biologically relevant cases, the effective
noise can be determined even analytically, which we demonstrate in the following.

While a more general treatment might be possible, we assume in the following that
X is modulated by a one-dimensional process Z through a single zero-order reaction.
In order to compute the suppressed noise, we rewrite the conditional moments in terms
of central instead of non-central moments. In particular, we obtain for the mean and
variance

dM1(t) =
(
D1(t−)− ckS2(t−)

)
dt+

S2(t−)

M1(t−)
dRk(t)

dS2(t) =
(
D̃2(t−)− ckS3(t−)

)
dt+

[
S3(t−)

M1(t−)
− S2

2(t−)

M2
1 (t−)

]
dRk(t),

(5.42)

with S2(t) as the conditional variance Var [Z(t) | xt] and D̃2(t) as the unconditional
central moment dynamics of order two. We next need to compute the expected value
of S2(t). Decomposing dRk(t) into a predictable part and a martingale, i.e., dRk(t) =
ckM1(t−)dt+ dQk(t), we can rewrite (5.42) as

dM1(t) = D1(t−)dt+
S2(t−)

M1(t−)
dQk(t)

dS2(t−) =

(
D̃2(t−)− ck

S2
2(t−)

M1(t−)

)
dt+

[
S3(t−)

M1(t−)
− S2

2(t−)

M2
1 (t−)

]
dQk(t)

(5.43)

Taking the expectation of (5.43), all terms involving dQk(t) become zero and we obtain

d

dt
E [M1(t)] = E [D1(t)]

d

dt
E [S2(t)] = E

[
D̃2(t)

]
− ckE

[
S2

2(t)

M1(t)

]
.

(5.44)

Although (5.44) is fully general, it might often be hard to evaluate the expectation
E [S2

2(t)/M1(t)] (and possibly further terms stemming from the prior dynamics). We
realize that the mean in (5.44) is just the unconditional mean of Z(t), while the deriva-
tive of the expected variance shows an additional negative term, causing it to be smaller
than the unconditional variance.

5.4.1.1 Effective Noise of a Cox-Ingersoll-Ross Process

Let us consider the case where Z(t) follows a Cox-Ingersoll-Ross (CIR) process governed
by the SDE

dZ(t) = θ(µ− Z(t))dt+ σZ
√
Z(t)dWD(t), (5.45)
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with θ, µ and σZ as real process parameters and WD(t) as a standard Wiener pro-
cess.The expected central moments are then governed by

d

dt
E [M1(t)] = θ(µ− E [M1(t)])dt

d

dt
E [S2(t)] = −2θE [S2(t)] + σ2

ZE [M1(t)]− ckE
[
S2

2(t)

M1(t)

]
.

(5.46)

The only term that remains to be specified is the expectation E [S2
2(t)/M1(t)]. Fortu-

nately, it turns out that for the a Gamma-type conditional distribution, this expectation
simplifies to E [S2

2(t)/M1(t)] = E [S2(t)]2 /E [M1(t)]. A derivation of that fact can be
performed using Ito’s lemma. However, since it involves a multitude of technicalities
that are not in the scope of this study, we skip the individual steps. Instead we provide
a heuristic but substantially simpler explanation based on the fact that the CIR process
is conjugate to the Poissonian reaction channel. In particular, we consider the case of a
Gamma distributed random variable Z ∼ G(α, β), with α and β as shape- and inverse
scale parameters. The random variable is observed through a Poissonian measurement
X | (Z = z) ∼ Poiss(z). After observing X, the conditional distribution over Z is given
by

p(z | X = x) = G(z;α + x, β + 1). (5.47)

Furthermore, the conditional mean and variance are

M1 =
α + x

β + 1

S2 =
α + x

(β + 1)2

(5.48)

and the ratio thereof becomes
S2

2

M1

=
α + x

(β + 1)3
. (5.49)

Taking the expectation with respect to x then yields

S2
2

M1

=
α + E [X]

(β + 1)3
. (5.50)

We now compare this expression to E [S2]2 /E [M1]. In particular, we obtain for the two
expectations

E [M1] =
α + E [X]

β + 1

E [S2] =
α + E [X]

(β + 1)2
,

(5.51)
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and therefore, the both expressions will coincide. The expected moments – and hence
the suppressed noise then can be found by solving

d

dt
E [M1(t)] = θ(µ− E [M1(t)])dt

d

dt
E [S2(t)] = −2θE [S2(t)] + σ2

ZE [M1(t)]− ck
E [S2(t)]2

E [M1(t)]
.

(5.52)

In order to find an expression at stationarity, we set the l.h.s. to zero and solve for M1

and S2.

M∞
1 = µ

S∞2 =

√
µ2(ckσ2

Z + θ2)− µθ
ck

.
(5.53)

Hence, the suppressed and effective noise terms of Z(t) at stationarity are given by

E [Var [Z(t) | xt]] =

√
µ2(ckσ2

Z + θ2)− µθ
ck

Var [E [Z(t) | xt]] = Var [Z(t)]−
√
µ2(ckσ2

Z + θ2)− µθ
ck

.

(5.54)

Furthermore, the relative effective noise is found be dividing the effective noise by the
total noise, i.e.,

Var [E [Z(t) | xt]]
Var [Z(t)]

= 1 + 2
v2

ck

(
1−

√
ck
v2

+ 1

)
, (5.55)

with v = θ/σZ as the normalized timescale of Z(t). The computation of the effective
noise and its dependency on the environmental timescale is illustrated in Figure 5.4.

5.4.2 The Slow Noise Approximation

The effective noise can be understood as a measure of how strong Z impacts X. Only in
the special case of a very slow or constant environment, i.e., Di ≈ 0, we see from (5.44)
that for large t, Var [E [Z(t) | xt]] → Var [Z(t)], i.e., all variability in Z is transferred
to X. Hence, a more noisy but fluctuating environment may induce a similar (or
even the same) effective noise in X than a random but fixed environment of the same
variance. Consequently, when looking at only snapshot data for X one can generally
not infer whether the environment is constant or fluctuating. On the other hand, this
suggests that we may well approximate the impact of a complicated and dynamically
changing environment by a simple random variable of appropriate variance. More
specifically, we demand for an equivalent constant environment Z̄ such that Var

[
Z̄
]
≡

Var [E [Z(t) | xt]], where Var [E [Z(t) | xt]] = σ2 is the effective noise of the original,
fluctuating environment Z at stationarity. Let us again consider the birth-death process



5.4 Fluctuations on Different Timescales 105

a

0 40 80 120
0

0.1

0

1

Time in min

E
n

v
ir

o
n

m
e

n
ta

l N
o

is
e

 S
C

V

In
fo

rm
a

tio
n

 g
a

in
 in

 b
it

Suppressed noise

E!ective noise

Environmental noise

X

Z

b

Speed o
f E

nviro
nm

enta
l N

oisec

E
n

v
ir

o
n

m
e

n
t 

 Z O
u

tp
u

t  X

E
n

v
ir

o
n

m
e

n
t 

 Z O
u

tp
u

t  X

Time

Time
Time

S
C

V

Figure 5.4: Propagation and suppression of environmental fluctuations. (a) Linear birth-death pro-
cess in a fluctuation environment. The birth-rate is assumed to be linearly modulated by an environ-
mental stochastic process Z. (b) Calculation of suppressed and effective noise. Individual components
were computed analytically by solving the ordinary differential equation from (5.52) with µ = 0.1,
σZ = 0.003, θ = 1e − 4 and ck = 0.05. For orientation, we also show the information gain between
Z(t) and Z(t) | xt, computed using the marginal simulation algorithm (green); it can be understood
as the gain in information about Z through observing X and it exhibits a monotone relationship with
the effective noise. (c) Relation between the effective noise and the speed of the environmental fluctu-
ations. Noise contributions were computed by numerically solving the ODE from (5.44) for different
values of θ (i.e., timescales).

of Figure 5.4a and set the birth rate to one such that any scaling is subsumed in the
environmental process Z. With X0 = 0, the abundance of the birth death process at
any time is given by X(t) = Rb(t)− Rd(t) with Rb(t) and Rd(t) as counting processes
for the birth and death reaction, respectively.

The slow noise approximation is based on two critical assumptions:

1. The conditional process Z(t) | xt can be well represented by a Gamma distribu-
tion with time-varying parameters. We highlight that this assumption does not
mean that the unconditional process Z(t) needs to be approximately Gamma-
distributed.

2. The impact of a fluctuating environment on a system can be well “mimicked” by
a static environment Z̄ with a suitably chosen variance (e.g., the effective noise).

Under the Gamma-assumption, the conditional expectation M1(t) = E [Z(t) | xt] is
governed by the differential equations

dM1(t) =
[
D1(t−)− (M2(t−)−M2

1 (t−))
]

dt+
M2(t−)−M2

1 (t−)

M1(t−)
dRb(t)

dM2(t) =

[
D2(t−)− 2

M2(t−)

M1(t−)

(
M2(t−)−M2

1 (t−)
)]

dt+ 2

[
M2

2 (t−)

M2
1 (t−)

−M2(t−)

]
dRb(t).

(5.56)

Assuming a very slow environmental dynamics, we have that D1(t−) and D2(t−) become
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zero and hence,

dM1(t) = −(M2(t−)−M2
1 (t−))dt+

M2(t−)−M2
1 (t−)

M1(t−)
dRb(t)

dM2(t) = −2
M2(t−)

M1(t−)

(
M2(t−)−M2

1 (t−)
)

dt+ 2

[
M2

2 (t−)

M2
1 (t−)

−M2(t−)

]
dRb(t).

(5.57)

The solution of (5.57) immediately before the next jump at time t is given by

M1(t−) =
M2

1 (0)

M1(0) + (M2(0)−M2
1 (0)) t

M2(t−) =
M2

1 (0)M2(0)

[M1(0) + (M2(0)−M2
1 (0)) t]

2 .

(5.58)

Adding the the jump term [M2(t−)−M1(t−)2] /M1(t−) to M1(t−) further yields

M1(t) =
M2

1 (0) + (M2(0)−M2
1 (0))

M1(0) + (M2(0)−M2
1 (0)) t

. (5.59)

Repeating the above procedure for the subsequent jumps, we obtain

M1(t) =
M2

1 (0) + (M2(0)−M2
1 (0))Rb(t)

M1(0) + (M2(0)−M2
1 (0)) t

=
µ2

µ+ σ2t
+

σ2

µ+ σ2t
Rb(t)

= hb(Rb(t), t),

(5.60)

with µ = E
[
Z̄
]

and σ2 = Var
[
Z̄
]

as mean and variance of the approximate environ-
ment Z̄. Importantly, we find that the conditional mean – and therefore the hazard
function only depends on the time t and the number of birth reactions Rb(t). If we
additionally characterize the system in terms of Rb(t) and Rd(t) instead of X(t), the
time-convolutionless master equation from (5.40) applies.

Using the fact that X(t) = Rb(t)−Rd(t) and assuming a death-hazard of the form

hd(X(t), cd) = cdX(t) = cd(Rb(t)−Rd(t)),

we obtain the time-convolutionless master equation for P (rb, rd, t) = P (Rb(t) = rb, Rd(t) =
rd | Rb(0) = 0, Rd(0) = 0), i.e.,

d

dt
P (rb, rd, t) = hb(rb − 1, t)P (rb − 1, rd, t) + cd [rb − rd + 1]P (rb, rd − 1, t)

− hb(rb, t)P (rb, rd, t)− cd [rb − rd]P (rb, rd, t).
(5.61)

In the following, we derive a solution of this equation using the concept of generating
functions [37]. In particular, we employ certain properties of the probability generating
function

γ(ηb, ηd, t) =
∞∑
rd=0

∞∑
rb=0

ηrbb η
rd
d p(rb, rd, t), (5.62)
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which allow us to transform the difference-differential equation (5.61) into a PDE. It is
striaghtforward to show that the discrete shifts in P (rb, rd, t) map to partial derivates
of the probability generating function yielding

d

dt
γ(ηb, ηd, t) =

µ2

µ+ σ2t
(ηb − 1) γ(ηb, ηd, t)

+ ηb

[ σ2

µ+ σ2t
(ηb − 1) + cd (1− ηd)

] ∂
∂ηb

γ(ηb, ηd, t)

+ cdηd (ηd − 1)
∂

∂ηd
γ(ηb, ηd, t).

(5.63)

We realize that the above equation is a linear PDE with time-varying coefficients,
which we aim to solve using the method of characteristics. This method is based on
describing the PDE by means of so-called characteristic curves that are given through a
set of coupled ODEs – each of them corresponding to a particular dimension of the PDE
(i.e., ηb, ηd and γ). Considering a general linear first-order PDE with three independent
variables, i.e.,

d

dt
γ(ηb, ηd, t) = a(ηb, ηd, t, γ)

∂

∂ηb
γ(ηb, ηd, t) + b(ηb, ηd, t, γ)

∂

∂ηd
γ(ηb, ηd, t) + c(ηb, ηd, t, γ)

(5.64)
the characteristic equations are given by

d

dt
ηb(t) = −a(ηb(t), ηd(t), t, γ(t)) (5.65)

d

dt
ηd(t) = −b(ηb(t), ηd(t), t, γ(t)) (5.66)

d

dt
γ(t) = c(ηb(t), ηd(t), t, γ(t)). (5.67)

In the special case of eq. (5.63), we have that

d

dt
ηb(t) = −ηb(t)

(
ηb(t)

σ2

µ+ σ2t
− cdηd(t)−

σ2

µ+ σ2t
+ cd

)
(5.68)

d

dt
ηd(t) = −cdηd(t)(ηd(t)− 1) (5.69)

d

dt
γ(t) =

µ2

µ+ σ2t
γ(t)(ηb(t)− 1), (5.70)

whose solution is given by

ηb(t) =
Acd (Becdt −B + 1) (µ+ σ2t)

−ABσ2ecdt + ABcdσ2tecdt + ABσ2 + Aσ2ecdt − Aσ2 + cdµecdt
(5.71)

ηd(t) =
Becdt

Becdt −B + 1
(5.72)
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γ(t) = e−
cdµ

2t

σ2

(
ecdt (cd (ABσ2t+ µ)− A(B − 1)σ2) + A(B − 1)σ2

cd (µ+ σ2t)

)µ2

σ2

, (5.73)

with ηb(0) = A, ηd(0) = B and γ(0) = 1. In order the obtain the general solution of γ,
we need to express the initial conditions A and B as functions of ηb and ηd using (5.71)
and (5.72). The probability generating function γ is finally given by

γ(ηb, ηd, t) =

(
cdµ

cd (µ+ σ2t(1− ηbηd)) + σ2ηb(ηd − 1) (ecdt − 1)

)µ2

σ2

. (5.74)

Back-transformation then yields the joint probability distribution over rb and rd, i.e.,

P (rb, rd, t) =
1

rb!rd!

∂rb+rd

∂ηrbb ∂η
rd
d

γ(ηb, ηd, t)

∣∣∣∣∣
ηb=0,ηd=0

=

(
µ

µ+σ2t

)µ2
σ2

Γ
(
µ2

σ2 + rb

)
rd!(rb − rd)!Γ

(
µ2

σ2

) (
σ2 (ecdt − 1)

cd (µ+ σ2t)

)rb (cdt− ecdt + 1

ecdt − 1

)rd
,

(5.75)

from which we compute the distribution in X as

P (x, t) =
∞∑
rb=x

P (rb, rb − x, t)

= NB
(
x;
µ2

σ2
,

cdµe
cdt

cdµecdt + (ecdt − 1)σ2

)
,

(5.76)

i.e., a negative binomial distribution. Furthermore, it is straightforward to show that
marginally, both rb and rd have negative binomial distributions. We remark that the
slow noise approximation is exact in the case of infinitely slow and Gamma distributed-
as well as infinitely fast fluctuations. Eq. (5.76) provides a surprisingly simple approx-
imate solution for the transient probability distribution of birth-death processes in a
fluctuating environment. In order to check its validity, we compared the analytical ap-
proximate distributions to the ones obtained through SSA for a gene expression model,
where the environmental fluctuations are assumed to be due to the mRNA dynamics
(see Figure 5.5a). More specifically, we computed the Kolmogorov distance between
the resulting protein distributions as a function the environmental timescale. Apart
from the high accuracy for the limiting time-scales, Figures 5.5b,c indicate that the
SNA provides a good approximation also for intermediate regimes.
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Figure 5.5: Analytical protein distributions through the slow noise approximation. (a) Two-stage
gene expression model. Transcription and translation are modeled through mass-action kinetics with
reaction rate constants c1-c4. Fluctuations on the mRNA are considered environmental and hence, inte-
grated out in order to obtain a one-dimensional stochastic process describing only the protein. (b) Ac-
curacy of the slow noise approximation. The SNA was compared to the QSS- and CE-approximations
by means of the Kolmogorov distance between the respective approximate and exact distribution (SSA)
as a function of the relative speed of the mRNA fluctuations, i.e., c2/h̄3 and h̄3 = c3c1/c2. QSS- and
CE approximations break down for slow or fast environmental fluctuations respectively, whereas the
SNA yields accurate distributions regardless of the mRNA’s timescale. (c) Exemplary distributions
obtained through the different approaches in three different regimes (slow, intermediate, fast).





6 Discussion and Outlook

There is increasing evidence that mathematical models of stochastic reaction networks
need to account for both intrinsic and extrinsic noise. The latter stems from the
stochasticity in a network’s microenvironment such as the ribosomal abundance in the
context of gene expression. Previous modeling approaches either completely neglect the
extrinsic contributions of noise or account for them by conditioning a Markov process
on certain environmental quantities which are assumed to be randomly distributed.
In the latter models – commonly termed mixed-effect models – every considered cell
depends on its individual parametrization, significantly complicating their analysis and
inference.

A central goal of this thesis was to develop a general yet efficient modeling framework
of stochastic reaction networks subject to extrinsic noise. We have demonstrated that
the mathematically proper construction of a coherent and scalable model is achieved
through marginalization of the extrinsic factors (see e.g., Sections 3.1 or 4.2). In Chap-
ter 3, this marginalization was performed directly on the CME and its moments, yield-
ing the desired description of the heterogeneous protein distributions. We followed a
similar strategy in Chapters 4 and 5, although therein, the marginalization was per-
formed on the process level, meaning that the path measure was integrated with respect
to the extrinsic factors, instead of the CME. Importantly, this allows to construct a
marginal stochastic process, which provides a complete dynamic description of a bio-
chemical network with unknown extrinsic factors. In that sense, the two marginal mod-
els from Chapters 3 and 4 differ from each other, but by construction, yield the same
marginal probabilities and moments over chemical species. Consequently, the marginal
CME models can be understood as “subsets” of the more general models targeting the
path measure of the marginal process.

In Chapter 3, this allowed us to derive a scalable statistical model for analyzing
population snapshot data such as revealed by flow cytometry. Since the samples of
such data are considered statistically independent between subsequent time points,
a distribution-based approach – e.g., based on the CME – appears natural for the
purpose of inference. However, numerically integrating a CME – for instance using the
FSP algorithm – is feasible only for small networks. Beyond that, a straightforward
integration of the CME with respect to the extrinsic factors is analytically intractable
and thus, an alternative strategy had to be followed. In particular, we proposed a
moment-based description of the reaction network, for which the marginalization can
be performed analytically. In conjunction with suitable moment-closure techniques, this
yields a low-dimensional description of the heterogeneous dynamics, which compared
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to a CME-based approach, has excellent scalability with respect to dimensionality and
abundance. On its downside – however – it is characterized by to two critical limitations.
First, suitable closure functions have to be identified through trial and error, meaning
that for the inferred parameters, the obtained approximate moments are compared to
the ones obtained by Monte Carlo simulation. Second, it might not always be able
to uniquely identify all parameters of a network since the information present in the
data is not fully exploited by using only a finite number of moments. In the case
studies considered in Sections 3.2.3 and 3.2.4, however, mean and variances carried
indeed enough information to correctly infer the parameters of the respective reaction
networks. In that context, the reader might refer to [105], where the authors propose a
principled mathematical framework for assessing the parameter identifiability for given
experimental setup.

In Chapter 4 we laid out a marginal inference scheme that can take into account
the additional temporal information that is provided by time-lapse microscopy data.
It turns out that the inference of the resulting mixed-effect hidden Markov models is
highly challenging, since on top of the kinetic parameters, it relies on reconstructing
the partially observed sample paths of individual cells. By integrating over extrinsic
factors, we first constructed a marginal hidden Markov model and developed a corre-
sponding Bayesian inference scheme. In particular, we made use of a sequential MCMC
algorithm, which constructs the posterior distribution over states and parameters re-
cursively over time points and cells such that the full inference problem is split up
into a sequence of smaller problems. Marginalized inference schemes appear generally
favorable because they profit from a so-called Rao-Blackwellization [28], i.e., they can
achieve a substantial variance reduction of the desired posterior statistics. We used
the algorithm to infer the transcriptional dynamics of an inducable promoter in yeast
and show that it is able to correctly dissect the intrinsic and extrinsic contributions to
the total variability. We believe that with the increasing throughput and resolution of
imaging-based protocols, automated approaches like the one from Section 4.3 will be
become more and more important. The main idea is to extend the marginal inference
framework for the case where the true sources of extrinsic variability are not known
beforehand. Due to a sparse Bayesian learning procedure, the method is able to de-
tect on its own which reactions are likely to be targeted by environmental variability.
Especially if many cells are considered, such approaches provide a promising means to
obtain a comprehensive understanding if and how parts of a biochemical network are
affected by extrinsic variability.

Chapter 5 provides a broader view on the marginal dynamics of biochemical net-
works in random environments. Extending the construction of the marginal process
to the case of dynamically changing environments permits an uncoupled analysis of a
subnetwork that is considered a part of a possibly large entirety. We have shown that
the corresponding marginal hazard functions are strictly related to the solution of a
stochastic filtering problem and discussed how the latter can be solved in practice. The
resulting stochastic process depends on its full history and therefore, cannot be han-
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dled through Markovian modeling techniques. For instance, we demonstrated that the
uncoupled dynamics do not satisfy a conventional CME but instead, can be modeled
through a non-Markovian extension thereof (i.e., a GME). The latter is characterized by
either a time-convolution reflecting the memory effects or an explicit time-dependency
of the probability in- and out-fluxes. We remark that the hence obtained GMEs must
coincide with the solution obtained by performing a straightforward marginalization
of a joint CME (e.g., [98]). However, to the best of our knowledge the latter yields
intractable hazard functions straightaway, although a detailed comparison of the two
approaches is yet to be done. Based on the uncoupled dynamics, we were able to ana-
lytically compute how extrinsic noise is transmitted over Poissonian reaction channels
as a function of the environmental time scale. More specifically, we derived the amount
of variance that is effectively sensed at the Poissonian channel, which we refer to as
the effective noise. In this context, we believe that a combination of the marginal pro-
cess framework with recent information theoretic approaches [17] might help to better
understand the complex but robust signal processing within single cells. Furthermore,
the framework gave rise to a simple approximation of protein expression in fluctuat-
ing environments, which could for instance be used to analyze intrinsic and extrinsic
fluctuations of high-throughput single-cell datasets.

In general, we believe that the marginal process framework provides a promising
perspective on the dynamics of biological systems subject to extrinsic noise. We have
demonstrated its validity using several examples from inference and analysis, but believe
it will have further consequences that are not known at present. For instance, the
process could be used to quantify and analyze the robustness of a biochemical process
with respect to changes in the environmental fluctuations (or statistics thereof). In
the context of synthetic biology, this could aid to design circuits, that largely retain
their properties when they are embedded into a random or fluctuating environment.
We also believe that the framework has the potential to yield further analytical results.
For instance, one may examine the uncoupled dynamics for the limiting regime where
the same environment impacts a large number (e.g., infinitely many) reactions in a
network. Such approach might permit to compute a limiting stochastic process from
which a general approximation of biochemical networks in fluctuating environments
could be derived.
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