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Summary 

The role of the myelin-associated protein Nogo-A, as a neurite growth inhibitor after CNS injury 

has been well described. However, much less is known about its physiological functions in the 

maturing and adult brain. Nogo-A is thought to stabilize neuronal circuits and restrict synaptic 

plasticity, and accordingly, has been shown to limit the experience-dependent plasticity in the 

visual cortex beyond the developmental critical period. In my thesis, I investigated the role of 

Nogo-A protein in the developmental refinement of retinal terminals and in the anatomical and 

the functional plasticity of the subcortical visual system in mice. 

In the first part of my thesis, I analyzed the expression pattern of Nogo-A in the retina and in the 

subcortical and the cortical visual system as well as the expression of the two main Nogo-A 

receptors, Nogo-66 receptor 1 (NgR1) and sphingosine 1-phosphate receptor 2 (S1PR2). NgR1 

was strongly expressed in the retinal ganglion cell (RGC) bodies and axons whereas Nogo-A was 

complementarily expressed in in the Müller glia in the retina, and in oligodendrocytes and 

neurons in the brain. In the same chapter, I examined the developmental refinement of retinal 

terminals, which was not affected by systemic Nogo-A deletion in knock-out (KO) mice. 

In the second part of this thesis, I addressed the function of Nogo-A in the visual system 

plasticity using functional and anatomical readouts. Eye-specific terminal segregation in the 

dorsal lateral geniculate nucleus (dLGN) of adult Nogo-A KO mice was decreased as compared 

to wild type (WT) controls. To test the hypothesis, that this result could be attributed to a lower 

stability of the circuits in the Nogo-A KO mice we induced experience-dependent plasticity by 

right eye closure (monocular deprivation, MD). In the absence of Nogo-A, an additional 

desegregation of eye-specific retinogeniculate terminals occurred in the left dLGN and ectopic 

open-eye terminals in the right dLGN were observed. Interestingly, on the functional level, 
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Nogo-A KO mice exhibited increased spatial frequency sensitivity as tested by the optokinetic 

tracking response (OKR) test. Upon MD, the spatial frequency and contrast sensitivity of the 

open eye increased stronger in the Nogo-A deficient mice than WT controls.  

In conclusion, the work presented in this thesis indicates that the functional and anatomical 

plasticity of the subcortical visual system can be restricted in the adult brain by the Nogo-A 

protein.  
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Zusammenfassung 

Das myelin-assoziierte Protein Nogo-A ist in seiner Rolle als Wachstumshemmer für Neuriten 

gut beschrieben. Im Gegensatz dazu ist über die physiologische Funktion von Nogo-A im sich 

entwickelnden und im adulten Gehirn wenig bekannt. Es wird angenommen, dass Nogo-A 

neuronale Netzwerke stabilisiert und synaptische Plastizität einschränkt. Dementsprechend wurde 

gezeigt, dass Nogo-A erfahrungsabhängige Plastizität im visuellen Kortex nach der 

entwicklungsphysiologischen kritischen Periode limitiert.  

In meiner Arbeit habe ich die Rolle des Proteins Nogo-A für die entwicklungsbedingte 

Verfeinerung retinaler Nervenendigungen im dorsalen Corpus geniculatum laterale (dCGL, engl. 

dLGN) und für die anatomische und funktionale Plastizität des subkortikalen visuellen Systems 

von Mäusen untersucht. 

In Kapitel 2 meiner Arbeit, habe ich die Expressionsmuster von Nogo-A und den zwei 

Hauptrezeptoren von Nogo-A, Nogo-66 Rezeptor 1 (NgR1) und Sphingosin 1-Phosphat Rezeptor 

2 (S1PR2),  in der Retina und im subkortikalen sowie dem kortikalen visuellen System analysiert. 

NgR1 war stark in den Zellkörpern der retinalen Ganglienzellen und Axonen exprimiert, während 

Nogo-A komplementär in den Müller Gliazellen der Retina und in Oligodendrozyten und 

Neuronen des Gehirns exprimiert war. In demselben Kapitel konnte ich zeigen, dass die 

entwicklungsbedingte Verfeinerung retinaler Nervenendigungen im dCGL nicht durch 

systemische Deletion von Nogo-A in Knockout (KO)-Mäusen beeinflusst war. 

Im zweiten Teil meiner Arbeit habe ich die Rolle von Nogo-A für neuronale Schaltkreis-

Plastizität im visuellen System auf funktioneller und anatomischer  Ebene untersucht. Im 

Vergleich zu Wildtyp-Mäusen war die augenspezifische Segregation von Nervenendigungen im 
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dCGL in Nogo-A KO Mäusen vermindert. Dies könnte auf eine verminderte Stabilität der 

neuronalen Schaltkreise in Abwesenheit von Nogo-A zurück zu führen sein.  Um diese 

Hypothese zu testen induzierten wir aktivitätsabhängige Plastizität mittels einer monokularen 

Deprivation (MD) des rechten Auges. In Abwesenheit von Nogo-A konnte eine zusätzliche 

Desegregation der augenspezifischen Projektionen der Retina in den linken dCGL und ektopische 

Endigungen des geöffneten Auges im rechten dCGL beobachtet werden. Zusätzlich beobachteten 

wir auf funktioneller Ebene eine erhöhte Sensitivität für die räumliche Frequenzwahrnehmung im 

optokinetischen Bewegungstest. Nach MD erhöhte sich die Frequenz- und die 

Kontrastsensitivität stärker in Mäusen ohne Nogo-A als in WT-Kontrolltieren. 

Zusammenfassend zeigen diese Resultate, dass Nogo-A einen einschränkenden Einfluss auf die 

funktionelle und anatomische Plastizität im adulten subkortikalen visuellen System hat. 
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CHAPTER 1 

 

 

INTRODUCTION: MATURATION AND PLASTICITY OF 

THE MOUSE VISUAL SYSTEM AND THE PHYSIOLOGICAL 

FUNCTIONS OF THE NOGO-A PROTEIN 
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1. Maturation and plasticity of the mouse subcortical visual system 

The precise organization of the adult brain requires activity-based rearrangements of neuronal 

circuits during brain maturation and later on mechanisms that can maintain the refined circuits 

during adulthood. The mouse visual system serves as an excellent model to study different 

aspects of these processes. The subcortical visual system is often used as a model system to study 

developmental refinement of the retinal fiber projections, whereas adult experience-dependent 

plasticity is usually studied in the binocular visual cortex. In the experimental part of this thesis I 

investigated, whether the growth inhibitory protein Nogo-A affects anatomical refinement and 

the adult structural and functional plasticity in the subcortical visual system. In this chapter I 

summarize the anatomical organization of the subcortical visual system, the mechanisms of the 

developmental refinement of retinal projections and the models of experience-dependent 

plasticity. Furthermore, I will briefly introduce Nogo-A downstream signaling and its known 

physiological functions. 

1.1 The mouse visual system 

Mice, being nocturnal animals with rather poor vision, were for long time neglected for studies of 

the visual system. However the basic organization of the mouse visual system has many 

similarities with that of higher mammalian species. Moreover, mice are born with closed eyes, 

and therefore the development and maturation of the visual system occurs in large part 

postnatally, making it accessible for experimental manipulations. The powerful genetic tools 

available for mice help to answer questions about the development, maturation and plasticity of 

the visual system which would be difficult to address in other animal models. Retinal ganglion 

cells (RGCs) are the only retinal neurons projecting their axons to the brain. The main visual 

pathway processing conscious vision consist of retinal projections to the dorsal lateral geniculate 
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nucleus (dLGN) in the thalamus which further relays visual information to the primary visual 

cortex (V1) and then to secondary visual areas [1, 2]. Retinal ganglion cells (RGCs) project also 

to other areas such as the superior colliculus (SC) in the midbrain, important for eye and head 

movement coordination, but also for other sensory and motor functions [3]. Retinal projections to 

the brain are retinotopically organized: adjacent neurons in the retina innervate adjacent regions 

in the SC and the dLGN, which further relays the topographic organization to the visual cortex. 

Mechanisms of the retinotopic map formation, which involve i.a. ephrin signaling, were 

intensively studied in the mouse visual system [4-7]. After initial targeting of visual targets based 

on molecular cues [4], retinal terminals undergo extensive pruning, which can be investigated in 

the early postnatal (P4-P8) mouse retinogeniculate and retinocollicular pathways [8, 9]. It is well 

established that map refinement is driven by the spontaneous retinal activity [10] but sensory 

experience also influences its maturation and plasticity. Monocular eye closure or rearing animals 

in a darkness leads to functional [11, 12] and anatomical [13] changes in the visual cortex, 

especially in juvenile mice during a critical period lasting from P19-32 [11]. One of the factors 

shown to limit visual cortex plasticity after the critical period is the myelin Nogo-A protein and 

its receptor NgR1 [14]. Nogo-A [15] and NgR1 [16] are also expressed in the subcortical visual 

system, making them plausible regulators of subcortical visual system maturation and plasticity.  

1.2 Mouse subcortical visual system 

Mouse eyes are positioned laterally and the region of visual space seen by both eyes comprises 

only the central 30-40° of the upper visual field [17]. Therefore, the majority of retinal ganglion 

cell axons cross at the optic chiasm, innervating the contralateral hemisphere, and only 2-3% of 

axons which originate from the ventrotemporal retina project ipsilaterally [18].  
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Figure 1 Retinal projections from the two eyes to the main retinorecipient brain areas 

Retinal projections from two eyes were anterogradely traced by intraocular injection of cholera 
toxin β-subunit (CTb) tracers; CTb-594 (red) was injected to left eye and CTb-488 (green) to 
right eye. a-d coronal brain sections from adult C57BL/6 mouse containing main retinorecipient 
areas are presented in the caudal-to-rostral direction. a Section through the rostral region of the 
superior colliculus (SC) in the midbrain; the main target of mouse RGC axons. Retinal terminals 
innervate 3 superficial layers of the SC: Zo zonal, SuG superficial gray and Op optic layer. The 
superior colliculus receives mainly retinal projections from the contralateral eye, and the 
ipsilateral eye projections terminate in the deeper superficial gray and in the optic layer. The 
dorsal terminal nucleus (DTN) of the accessory optic system lies in a groove at the ventral end of 
the brachium of the SC. b Section through the midbrain containing pretectal nuclei: nucleus of 
the optic tract (NOT), olivary pretectal nucleus (OPT), posterior pretectal (PPT) and medial 
(MPT) pretectal nuclei. At the ventral side of the midbrain lies the medial terminal nucleus 
(MTN) of the accessory optic system. c Section through the rostral end of the midbrain 
containing rostral part of the OPT innervated at this region by both eyes. In the thalamus, there is 
also visible caudal end of the dorsal lateral geniculate nucleus (dLGN). d Section through the 
thalamus containing the dorsal (dLGN) and ventral (vLGN) lateral geniculate nuclei and the 
intergeniculate leaflet (IGL). The dLGN receives projections from the contralateral (contra) and 
ipsilateral (ipsi) eye reaching the thalamus through the optic tract (OT). e The first target of 
retinal axons after optic chiasm is the suprachiasmatic nucleus (SCN) in the hypothalamus; OT 
optic tract, 3V third ventricle. Scale bar is the same for a-e: 500 µm. 
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Figure 2 Organization of the retinal projections in the mouse brain including the inferior 
and superior fascicles of the accessory optic tract which innervate accessory optic nuclei  

Accessory optic system nuclei (MTN, DTN, LTN), which are involved in optokinetic tracing 
responses, are innervated by retinal axons that diverge from the optic tract (OT) at tree main 
locations: at the midhypothalamus forming inferior fascicule of the accessory optic tract (AOT-
IF), later at the level of the ventral LGN leave the anterior fibers of the superior fascicle of AOT 
(AOT-SFa) and at the brachium of superior colliculus (BSC) the posterior fibers superior 
fascicle (AOT-SFp). Medial terminal nucleus (MTN) is innervated by fibers from AOT-IF and 
AOT-SF. Dorsal terminal nucleus (DTN) is innervated by AOS-SFp and the lateral terminal 
nucleus (LTN), which is not very defined in mouse, lies in between anterior and posterior fibers 
of AOT-SF. Abbreviations: OC optic chiasm, PT pretectum, SC superior colliculus, IC inferior 
colliculus. Modified from Hayhow et al. 1960 [19] based on Yonehara et al. 2009 [20]. 

  



Chapter 1: Introduction 
 

11 
 

The first retinorecipient target after the optic chiasm is the suprachiasmatic nucleus (SCN) in the 

hypothalamus (Fig. 1e), which is involved in circadian responses to light [21]. The SCN is 

bilaterally innervated by intrinsically photosensitive RGCs (ipRGCs) expressing the 

photopigment melanopsin [21]. Further caudally in the thalamus lies the lateral geniculate 

nucleus (LGN; Fig. 1d), which is subdivided into dorsal (dLGN) and ventral (vLGN) nuclei 

separated by intergeniculate leaflet (IGL). The dLGN is a relay nucleus to the primary visual 

cortex and receives contralateral and ipsilateral eye projections in distinct domains. The vLGN 

and IGL are innervated by melanopsin ipRGCs and are involved in the circadian clock regulation 

[22, 23]. Another nucleus which is innervated by ipRGCs [23], the olivary pretectal nucleus 

(OPT) in the dorsal midbrain (Fig. 1c), is responsible for the pupillary light reflex. Further 

caudally in the midbrain lie other pretectal nuclei: the nucleus of the optic tract (NOT) as well as 

the medial (MPT) and the posterior (PPT) pretectal nuclei and the caudal end of the olivary 

pretectal nucleus (Fig. 1b). The NOT together with the dorsal terminal nucleus (DTN) of the 

accessory optic system (AOS), which lies ventrally from the superior colliculus (Fig.1 a), are 

involved in the optokinetic reflex induced by stimuli moving in the temporal-to-nasal direction 

[24]. At the same level as pretectal nuclei, at the ventral part of the midbrain, lies the medial 

terminal nucleus (MTN) of the AOS (Fig. 1b) which is responsible for the optokinetic reflex in 

response to upward and downward moving stimuli. The accessory optic system takes its name 

from the fact that the retinal axons innervating it diverge from the main optic tract, forming 

inferior and superior fascicle of the accessory optic tract (AOT-IF and AOT-SF; Fig. 2). AOS 

nuclei are innervated exclusively by the crossed projections [24, 25]. Further caudally lies the 

main target of RGC axons, the superior colliculus (SC) (Fig. 1a). In the mouse, virtually all 

RGCs project to the superior colliculus [26], which corresponds to the optic tectum in lower 

vertebrates, whereas in primates the dLGN is the main target of RGCs and less than 10% of 
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fibers project to the SC [27]. The SC consists of seven layer from which tree superficial layers, 

the zonal (Zo), the superficial gray (SuG) and the optic layer (Op), are innervated by the retina 

[26]. The superior colliculus is mainly innervated by the contralateral eye, while sparse ipsilateral 

eye projections go  to the deeper SuG and Op layers in the rostral and medial part of the SC (Fig. 

1a) [28].  

1.3 Establishment of the retinotopic maps 

Mechanisms of the correct retinotopic map establishment, which involve mainly Eph and ephrin 

signaling, have been intensively studied in the developing chick optic tectum and the mouse 

superior colliculus [29, 30]. At perinatal ages, EphA receptors, including EphA5 and 6, are 

expressed in the mouse RGCs in the temporal-to-nasal (T-N) high-to-low gradient, whereas the 

ephrin-A ligands, mainly A2 and A5, are highly expressed at the posterior end of the SC (Fig. 3a; 

reviewed in [4, 31]). Temporal and nasal RGC axons terminate along the anterior-posterior (AP) 

axis of the SC. Mediolateral targeting is mediated by EphBs, including B1-B4, expressed in the 

RGCs in a ventral-to-dorsal gradient and by Ephrin-B1 expressed highly in the medial SC, which 

acts as a branch attractant [32]. Therefore, RGC axons from the ventral retina with high EphBs 

expression, preferentially terminate in the medial SC, whereas dorsal RGC axons in the lateral 

SC. Apart from ephrins, Wnt-Ryk signaling is involved in the mediolateral SC targeting [33]. The 

mechanisms of the dLGN map formation are less investigated but Eph-As and ephrin-As are also 

involved in this process [5, 34]; for details see Fig. 3a. RGC axons initially overshoot their proper 

termination zones (TZ) and then form interstitial branches preferentially close to their future TZ. 

The mechanisms by which branch formation is biased towards the appropriate location are not 

fully understood; however TrkB-BDNF signaling was proposed to be involved in this process 

[30].    
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Figure 3 Development of the retinotopic maps in the mouse dorsal lateral geniculate 
nucleus (dLGN) and the superior colliculus (SC) 
a At birth, retinal ganglion cells (RGCs) project to the dLGN and the SC based on the 
complementary expression of the Eph receptors in the retina and the ephrins in the target 
structures. Several EphA receptors are expressed in the RGCs in the temporal-to-nasal (T-N) 
high-to-low gradient. In the SC, ephrin-As, including ephrin-A2 and A5 are expressed in the 
anterior-to-posterior (A-P) low-to-high gradient. RGCs from temporal retina, with high EphAs 
receptor expression, are more sensitive to their repulsive ligands ephrin-As, and therefore project 
to the anterior SC, whereas RGCs from N retina project to the posterior SC. Targeting along the 
mediolateral axis (M-L) of the SC is determined by the EphBs ventral-to-dorsal (V-D) high-to-
low expression gradient in the retina and by the M-L high-to-low expression of ephrin-B1 in the 
SC, which acts as a branch attractant. Axons from the ventral retina project therefore medially 
and those from the dorsal retina more laterally in the SC. In the dLGN, ephrin-A2 and A5 are 
expressed in the anterior-ventral-lateral (high) to posterior-dorsal-medial (low) gradient. The 
dLGN is a three-dimensional structure; therefore not all projections shown on the scheme are 
located in the same A-P plane. In the dLGN, NV axons (blue) terminate in the most anterior part 
of the nucleus, near the optic tract at the ventral side. ND axons (green) project to posterior half 
of the nucleus to the ventromedial location. TV axons (red), apart from projecting ipsilaterally, in 
the contralateral dLGN terminate in the middle of the A-P axis in the most dorsal part of the 
nucleus. TD axons (yellow) project the posterior half of the nucleus just below the ipsilateral-eye 
area. a At birth in the SC and the dLGN, RGC axons overshoot their proper termination zones 
(TZ; white circles) and form several branches with a bias towards the TZ. Axonal overshoots and 
inappropriate branches are eliminated during first postnatal week based on the spontaneous 
retinal activity, leading to the precise innervation of the mature SC and the dLGN b.   
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The refinement of the imprecise retinotopic maps is mediated by the spontaneous retinal activity, 

and in the SC and the dLGN occurs ~P4-P8 [9]. The most widely used model system to study this 

process is the segregation of the eye-specific retinal projections in the dLGN [35] which I will 

summarize in the next paragraph.  

1.4 Eye-specific segregation of the retinal input in the dorsal lateral geniculate nucleus  

Retinal projections which cross at the optic chiasm innervate the dLGN at embryonic day 15-16, 

whereas the ipsilateral projections arrive on postnatal day 0-2 and occupy the dorsal half of the 

nucleus [28]. This initial targeting is influenced by the complementary pattern of Eph receptors 

and ephrin expression in the RGC axons and the LGN as described in the previous paragraph [5, 

7], but might also be influenced by the spontaneous retinal activity which occurs even during 

embryonic development (Fig. 4d) [29]. At postnatal days 2-4, the terminals from the two eyes are 

widely distributed throughout the dLGN in overlapping territories (Fig. 4a’,a’’,b) and each LGN 

neuron receives many weak synaptic contacts from both eyes (Fig. 4c) [30]. During the first 

postnatal days, cholinergic starburst amacrine cells generate retinal activity waves [31] (Fig. 4d) 

which are relatively slow and therefore not correlated between two eyes; they allow for specific 

strengthening of terminals from only one eye (Fig. 4c) [32, 33]. This spontaneous retinal activity 

leads to the coarse-scale refinement of retinal terminals and to the segregation of eye-specific 

domains in the dLGN by P10 (Fig. 4a’’’,b) [34, 35]. The weak synaptic terminals are further 

eliminated and the remaining ones strengthened by a mechanism depending on the stage III 

glutamatergic retinal waves, which are generated by retinal bipolar cells (Fig. 4c,d) [36, 37]. 

Disruption of the stage III waves with the  pharmacological blocker APB [36] or in mutant mice 

in which stage III waves are abnormally frequent and persistent [37], leads to desegregation of 

segregated eye-specific projections in the dLGN. After eye opening, occurring in mice ~ P12-14, 
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stage III waves are blocked by the maturing retinal inhibitory circuits [38, 39], and retinal activity 

starts being driven by the visual experience. A recent study, using electrophysiological recordings 

in the LGN slice preparation, indicated that visual experience plays a crucial role in the 

maintenance of retinogeniculate synapses [40]. Dark rearing after initial visual experience led to 

the weakening and increase in the number of retinogeniculate synapses. The effect of dark rearing 

was limited to a restricted sensitive period, finishing at the end of the first postnatal month [41]. 

Whether this kind of plasticity is paralleled by structural plasticity of retinal terminals and 

potential desegregation of eye-specific domains in the dLGN is unknown. Furthermore, the 

molecular mechanisms by which the plasticity of the retinogeniculate pathway is restricted in the 

adult brain were not investigated. 

 

1.5 Experience dependent plasticity of the visual system 

1.5.1. Ocular dominance plasticity 

Ever since the landmark study of Torsten Wiesel and David Hubel [42] on the role of experience 

in the preferential responses of neurons in the cat binocular visual cortex to one or the other eye, 

ocular dominance (OD) serves as a model to study the mechanisms of experience–dependent 

brain plasticity. In this work, monocular eye-closure (monocular deprivation, MD) in juvenile 

kittens led to weakening of the responses from the deprived eye and strengthening of the open 

eye responses in the binocular visual cortex. Further work determined that the OD plasticity was 

limited to the critical period ending in cats around the third postnatal month [43]. Since then, 

many studies confirmed these results in other mammalian species including mouse in which 4 

days of MD during the critical period (P19-32) leads to pronounce OD shift [10, 38].  
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Figure 4 Eye-specific segregation of retinal terminals in the dorsal lateral geniculate 
nucleus 

a Tracing of retinal projections from both eyes to the LGN using cholera toxin β-subunit tracers 
(CTb, left eye CTb-594, red; right eye CTb-488, green). a’ At postnatal day 2 (P2), retinal 
terminals from both eyes strongly overlap in the dorsal part of the dLGN (ipsilateral green, 
contralateral red). a’’ At P4, retinal terminals from the ipsilateral eye are more restricted to the 
dorso-medial part of the dLGN but they are still strongly overlapping with the contralateral eye 
projections. a’’’ By 10 postnatal day, retinal projections from the ipsi- (green) and contralateral 
eye are well segregated into eye-specific domains; scale bar 200 µm. b Scheme showing that the 
eye-specific projections in the dLGN are strongly overlapping during first postnatal days (P1-P4) 
but the coarse-scale refinement is finished by postnatal day 10. c Example of the synaptic 
refinement on one dLGN neuron from the right eye ipsilateral domain. Early postnatally, the 
LGN neuron is contacted by many weak synapses from both eyes. By P10, based on the 
spontaneous activity (stage II waves) projections from the right eye are eliminated and afterwards 
the remaining left eye synapses are further strengthened (fine-scale refinement). In adult animals 
LGN neurons receive 1-3 retinal inputs. d Developmental phases of retinal activity: Before birth, 
mouse retina spontaneously generates slow cholinergic waves called stage I waves which are 
propagated through gap junctions. Postnatally, stage II cholinergic waves mediate coarse-scale 
refinement of retinal terminals. Stage III glutamatergic waves are important for the maintenance 
of retinal terminals. Recent studies indicate that sensory experience also plays a role in the 
maintenance process. c and d are based on drawings from [44, 45]. 
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However, recent research in mice indicated that the OD plasticity is not strictly limited to the 

critical period and can also occur in adult animals after longer periods of deprivation or after 

repeated MD [39-41]. Mechanisms of juvenile and adult OD plasticity differ from each other 

[39]. During the critical period, there is first pronounced weakening of the closed-eye synapses 

followed by the strengthening of the open-eye synapses [42]. In adult animals, however, the 

NMDA-receptor dependent strengthening of open-eye synapses is more apparent than closed-eye 

input weakening and therefore the effects of MD probably need a longer time to be manifested 

[39, 42, 43]. Molecular and cellular mechanisms governing the OD plasticity are not fully 

understood. It is known that the maturation of the inhibitory circuit in the visual cortex is 

essential for the initiation of the OD plasticity during the critical period. In mice deficient in the 

GAD65 enzyme, important for GABA synthesis, MD does not cause any OD shift but local 

restoration of inhibition by diazepam can rescue the phenotype [46]. Several studies addressed 

also factors that limit OD plasticity during adulthood. Cortical inhibition is also involved in the 

closure of the critical period and reducing it locally with pharmacological blockers (MPA or 

picrotoxin) [47], affecting neuromodulation with fluoxetine [48] or by enriched environment 

housing [49, 50] can increase OD plasticity in adult animals. Structural factors such as myelin 

and perineuronal nets (PNNs) are also involved in the decreased plasticity during adulthood. 

PNNs, the extracellular matrix structures compose of chondroitin sulfate proteoglycans (CSPGs), 

mature around the end of critical period and are enriched around cortical interneurons. They are 

involved in the synapse stabilization as shown by the effects of their local digestion in the visual 

cortex: chondroitinase ABC enzyme increases adult OD plasticity [51]. Myelin in the visual 

cortex also matures around the end of critical period and systemic deletion of the myelin protein 

Nogo-A or its receptor NgR1 [14] restored juvenile-like plasticity in adult mice, which suggests 

that the Nogo-A deficient myelin provided less inhibitory environment. However, Nogo-A 
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protein is also expressed by neurons and therefore the observed plasticity might be mediated 

directly by neuronal Nogo-A [52, 53].  

1.5.2. Plasticity of optokinetic reflexes 

Eye movements can be divided into two broad categories: movements that stabilize the retina in 

respect to the visual world and movements that shift the retina in respect to the world. Gaze-

shifting movements are important to adjust the position of the fovea, the region in the central 

retina with high density of photoreceptors. Mice lack a fovea and therefore they do not display 

apparent gaze-shifting movements. In contrast, as other afoveate animals, mice exhibit robust 

behaviors that stabilize the retina in respect to the world. One type of those compensatory gaze-

stabilizing eye movements is the vestibular-ocular reflex (VOR), which generates compensatory 

eye movements in opposite direction during head rotation or translation to maintain the gaze on a 

stationary object. On the other hand, the large-field movements in the visual surround trigger 

spontaneous, compensatory eye and head movements, which follow the stimulus, known as the 

optokinetic response (OKR). When the animal is unrestrained, the motion of visual field triggers 

not only eye but also reflexive head and neck movement which can be easily monitored by the 

observer [54]. The OKR is triggered by stimuli moving slowly in three main directions: temporal-

to-nasal, upward and downward [25]; they are detected by the On direction-selective ganglion 

cells (DSGCs) [55], but On-Off DSGCs may also contribute to the OKR [56, 57]. On and On-Off 

DSGCs project to the pretectal nucleus of the optic tract (NOT) and the terminal nuclei of the 

accessory optic system (AOS) [56]. The horizontal OKR is mediated by the NOT and the dorsal 

terminal nucleus (DTN). The OKR is usually tested by presenting to animals rotating sine wave 

black and white gratings and monitoring the evoked eye or head movements [54, 58]. By 

increasing the spatial frequency of the grating or decreasing contrast one can determine the 
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spatial frequency and the contrast sensitivity threshold. The head OKR spatial frequency 

threshold for adult C57BL/6 mice is approximately 0.4 cycles per degree (c/d) [54] which is a bit 

lower than the cortical visual acuity approaching 0.6 c/d [59]. The horizontal head OKR is 

triggered by a stimulus moving in the temporal-to-nasal direction whereas the nasal-to-temporal 

direction does not induce head tracking behavior. Therefore, it is possible to test spatial 

frequency and contrast sensitivity independently for both eyes, simply by changing the direction 

of the stimulus. It has also been described that the OKR can undergo plastic changes. Upon 

monocular deprivation, the spatial frequency and contrast sensitivity of the open eye increases 

over time, whereas the performance of the closed eye is not affected after eyelid reopening [60]. 

The mechanism of the OKR plasticity after MD is not fully understood. It has been suggested that 

the visual cortex is responsible for the increased visual performance after MD and accordingly, 

pharmacological cortex inactivation blocked the MD effect [60]. However, after bilateral visual 

cortex aspiration, MD still led to a moderate increase in spatial frequency sensitivity [60], 

suggesting that other circuits including possibly indirect efferent projections from NOT and DTN 

to the oculomotor and vestibular regions of cerebellum [61] might be involved in this visual 

improvement. The molecular bases of this plasticity have not been addressed so far, and therefore 

in chapter 3, we investigated whether Nogo-A protein restricts this type of plasticity similarly to 

its role in the cortical OD plasticity. 
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2. The Nogo-A protein in the CNS 

2.1 Nogo-A signaling pathways  

Nogo-A is well known as a myelin-associated protein, inhibiting neurite growth after spinal cord 

injury or stroke [62]. However, it is also endogenously expressed in myelin and neurons under 

physiological conditions [63]. In the intact CNS, it plays a role in the stabilization of neuronal 

circuits [64] and restriction of synaptic plasticity [52]. Nogo-A protein contains two main 

inhibitory domains: the C-terminal Nogo-66 domain and the Nogo-A ∆20 domain in the middle 

of the Nogo-A-specific, extracellular region [65]. Nogo-66 binds to the Nogo-66 receptor 1 

(NgR1) [66], whereas the Nogo-A ∆20 domain binds to the newly identified G-protein coupled 

receptor sphingosine 1-phosphate receptor 2 (S1PR2) [67] (Fig. 4). Both domains, Nogo-66 and 

∆20, activate the small GTPase RhoA (Fig. 5a). Downstream signaling modulates actin and 

microtubule cytoskeleton dynamics: RhoA activates its effector ROCK which further transduces 

growth inhibitory signals through cofilin or myosin light chain 2 (MLC2) to F-actin and through 

collapsin response mediator protein 2 (CRMP2) to microtubules. Apart from the main signaling 

pathway, the Nogo-A ∆20 region has been shown to be internalized (Fig. 5b) together with its 

receptor, forming signaling endosomes transported retrogradely from the growth cone to the cell 

body where they lower the phosphorylation state of the cyclic AMP response element binding 

protein (CREB) transcription factor and thereby possibly inhibit growth-related gene expression 

[62, 67]. However, the mechanisms by which the ∆20 fragment could be cleaved off from full 

length Nogo-A protein are not clear yet. Recently, ∆20 but not Nogo-66 mediated growth cone 

collapse has been shown to be dependent on mammalian target of rapamycin (mTOR) pathway-

activated protein translation [68] (Fig. 5c). Apart from Nogo-A, two other myelin inhibitory 

proteins, myelin-associated glycoprotein (MAG) and Oligodendrocyte-myelin glycoprotein  
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Figure 5 Nogo-A signaling pathways 

Nogo-A exerts its inhibitory action mainly through two domains, the Nogo-66 (red) and the 
Nogo-A ∆20 region (green). Nogo-66 binds to the GPI-anchored NgR1 receptor which forms a 
complex with two co-receptors Lingo1 and p75 or Troy enabling signal transduction. The NgR1 
signaling complex activates RhoA-GTPase which regulates cytoskeleton dynamics and mediates 
growth inhibitory action of Nogo-A. The Nogo-A ∆20 domain binds to sphingosine 1-phosphate 
receptor 2 (S1PR2) activating G13 protein and further LARG protein which also activates RhoA. 
Therefore, signaling from both Nogo-A inhibitory domains converge on the RhoA pathway. a 
RhoA activates ROCK protein which phosphorylates several protein involved in actin and 
microtubule dynamics. Phosphorylated LIM kinase phosphorylates and thereby inactivates 
cofilin, an F-actin-severing protein. Inactive cofilin attenuates F-actin reorganization. ROCK may 
also activate slingshot phosphatase (SSH) which activates cofilin and therefore increases F-actin 
depolymerization at the minus end of filaments, thereby preventing their reassembly. ROCK may 
activate also myosin light chain 2 (MLC2) which induces actomyosin contraction promoting 
filopodia retraction. Phosphorylation and thereby inactivation of the collapsin response mediator 
protein 2 (CRMP2) destabilizes microtubules. b The Nogo-A ∆20 fragment has been shown to be 
internalized together with its receptor S1PR2 by pincher mediated endocytosis forming signaling 
endosomes. Signalosomes can be retrogradely transported along the axon to the cell body and 
modulate growth related gene expression by decreasing CREB phosphorylation. c Recently, ∆20 
but not Nogo-66 mediated growth cone collapse has been shown to be dependent on the protein 
synthesis involving the mTOR pathway. The ∆20 region has also been shown to activate 
indirectly integrin signaling. 
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(OMgp), and chondroitin sulfate proteoglycans (CSPGs) have been shown to bind to the NgR1 

receptor and to activate RhoA-ROCK pathway [76, 77]. Nogo-66, MAG and OMgp also bind to 

the paired immunoglobulin-like receptor B (PirB) but its downstream signaling is less well 

understood [78]. The temporal and spatial pattern of expression of different Nogo-A signaling 

components may be crucial for the final signaling outcome. 

2.2 Physiological functions of the Nogo-A protein in the CNS 

Nogo-A has been discovered as a main component of differentiated oligodendrocytes and myelin 

which inhibits neurite growth, neuroblast migration and fibroblast spreading and migration [77]. 

Studies using Nogo-A blocking antibodies in vivo confirmed it relevance as an inhibitor of 

neurite sprouting: suppression of Nogo-A after spinal cord injury and stroke enhanced axonal 

sprouting and regeneration and was accompanied by functional recovery [78, 79]. Since the 

observation that acute Nogo-A neutralization can induce sprouting of the non-injured axons in the 

cerebellum [64] it has been hypothesized that Nogo-A may restrict structural plasticity in the 

intact CNS. Several studies confirm this hypothesis; for review see [69]. Nogo-A has been also 

shown to limit dendritic complexity and synaptic transmission of Purkinje cells in cerebellum 

[70]. Apart from neurite growth, Nogo-A was shown to stabilize dendritic spines in the 

hippocampus [71], where Nogo-A neutralization and to the lesser extent its genetic deletion leads 

to more immature spine morphology. This effect seems to be mediated by NgR1, since single cell 

knock-down of NgR1 reproduced the Nogo-A neutralization phenotype. These results are in line 

with recent findings that Nogo-A limits synaptic long term potentiation (LTP) in the CA3-CA1 

pathway of hippocampus and motor cortex [52, 53]. The synaptic plasticity function might be at 

least partially mediated by neuronal Nogo-A, as miRNA-mediated neuronal knock-down 

reproduced this phenotype in rats [53]. In several brain regions, including the hippocampus and 
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cerebellum, Nogo-A and the NgR1 but also S1PR2 are complementarily expressed in the pre- and 

postsynaptic elements [67, 70, 71]. Both Nogo-A receptors, NgR1 [52] and S1PR2 [67], have 

been shown to restrict LTP, most likely by converging on the RhoA-ROCK signaling pathway 

which is implicated in the LTP mediated effects on spine morphology [72]. The growth 

stabilizing function of Nogo-A might be also linked to the tonic down-regulation of growth-

related genes and may involve retrograde signalosome transport along axons affecting the growth 

program in the opposite way than retrograde signaling of neurotropic factors [62].  

In the visual system, Nogo-A/B and the receptor NgR1 are involved the closure of the critical 

period and restriction of adult OD plasticity [14]. Short time monocular deprivation (4 days) in 

the adult Nogo-A/B or NgR1 knock-out (KO) mice was sufficient to promote OD shift as 

detected by single unit recordings. However, the anatomical bases of this plasticity were not 

investigated. It has been reported that the increased number of the layer 5 pyramidal neuron 

apical dendritic spines in binocular cortex correlates with the increased responsiveness to the 

non-deprived eye [73]. Therefore, it is most likely that the effects of a short term deprivation in 

Nogo-A/B or NgR1 deficient mice are mediated by synaptic plasticity and not by large scale 

growth and reorganization of the circuit. PirB, the other Nogo-66 receptor, has been also 

observed to restrict OD plasticity during and after the critical period [74]. In this study, 

monocular enucleation (ME) for 5 to 10 days led to marked widening of the neuronal activity-

associated Ark mRNA expressing region in the layer 4 of binocular visual cortex in the PirB KO 

mice as compared to wild-type controls. This suggests that growth and expansion of 

thalamocortical projections from the remaining eye may be increased in the absence of PirB.  

Much less is known, about the role of Nogo-A during synaptic refinement at the early postnatal 

life. One of the model systems of developmental synaptic refinement is the elimination of surplus 
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climbing fibers (CF) innervating Purkinje cells (PC) in the cerebellum during the third postnatal 

week, leading to single CF innervation of a given PC. In Nogo-A deficient mice, the elimination 

of CF was transiently decreased but excessive fibers were eliminated by P28 [70]. Moreover, in 

the Nogo-A KO cerebellum, each CF appeared to make more vGLUT2 positive synapses on PC 

dendrites than in WT brains, suggesting that in the absence of Nogo-A CF had more complex 

terminal arbors. Whether Nogo-A is also involved in the refinement of retinogeniculate terminals 

is unknown.  
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3 Conclusions 

In this chapter I have described the anatomical organization of the adult mouse subcortical visual 

system and some of the known mechanisms which underlie the retinotopic map formation and its 

developmental refinement. Spontaneous neuronal activity in the retina plays a fundamental role 

in the maturation of the retinal projections. The molecular mechanisms governing this process are 

not fully understood. After the maturation phase, the subcortical visual system has often been 

thought to be insensitive to sensory experience. However, recent studies indicate that 

retinogeniculate synapses are more plastic than previously assumed. The molecular mechanisms 

that limit subcortical plasticity in adult brains have not been investigated so far. I have also 

introduced the most widely used models of experience-dependent plasticity, the ocular 

dominance (OD) of neurons in the binocular visual cortex, as well as the optokinetic response 

which is mediated by cortical and subcortical structures and can undergo plastic changes upon 

monocular deprivation (MD). One of the factors that was shown to limit OD plasticity in the 

adult cortex is the Nogo-A protein and its receptor NgR1. Nogo-A has also been shown to 

influence the developmental refinement of climbing fibers in the cerebellum. Therefore we 

decided to investigate whether Nogo-A regulates developmental refinement and adult plasticity 

of retinogeniculate terminals as well as functional plasticity of the optokinetic response in the 

adult mouse brain. 
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4 Aims of the thesis 

To be able to hypothesize about the possible role of Nogo-A and its receptors in the maturation 

and plasticity of subcortical visual system it is necessary to know their pattern of expression. 

Therefore, in the chapter 2, I have analyzed the expression profile of Nogo-A as well as its 

receptors NgR1 and S1PR2 in the developing and adult retina. Furthermore, I analyzed the 

cellular localization of the Nogo-A protein in the optic nerve, the lateral geniculate nucleus and in 

the visual cortex of adult mice. To determine whether Nogo-A regulates the developmental 

refinement of retinogeniculate terminals, in chapter 2, I have analyzed eye-specific terminal 

segregation in the dorsal lateral geniculate nucleus of Nogo-A deficient mice at postnatal day 10, 

just after the refinement.  

To determine if Nogo-A restricts the anatomical plasticity of the adult  subcortical visual system, 

in chapter 3 I have analyzed the eye-specific projection segregation in the dLGN of adult mice at 

postnatal day 60, well beyond the subcortical and cortical critical period. I further tested whether 

visual experience influences anatomical plasticity of retinal projections in the adult brain and 

whether Nogo-A is involved in the restriction of this plasticity. To answer whether Nogo-A 

deletion influences visual function of adult mouse, I measured the spatial frequency and contrast 

sensitivity using the optokinetic tracking response (OKR). Furthermore, to understand if Nogo-A 

can restrict plasticity on a functional level I promoted enhancement of the OKR by monocular 

deprivation and analyzed spatial frequency and contrast sensitivity in wild-type and Nogo-A 

knock-out mice.  
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1 Introduction 

Retinal projections are produced in excess during perinatal period and the maturation of axonal 

terminals is required to sculpt the stereotypical retinotopic map. This process consists of the 

pruning of collateral branches in the terminals that overshoot their neuronal targets [1]. The 

retinogeniculate pathway of the visual system has been widely used as a model to study 

mechanisms of developmental circuits remodeling during early postnatal life [2-5]. In the mouse, 

retinal terminals from both eyes occupy overlapping territories in the dorsal lateral geniculate 

nucleus (dLGN) in thalamus during the first postnatal days, but before natural eye opening at 

P12-14 undergo extensive pruning which leads to the segregation of the two eye domains [6, 7]. 

Later in life, the segregated retinal terminals from both eyes in the dLGN were thought to be very 

stable and the visual system plasticity was assumed to be restricted to the higher, cortical level 

[8]. However, recent studies by Hooks and Chen [9, 10] brought this view into question, by 

showing that the retinogeniculate synapses are plastic and sensitive to visual experience around 

P20.  

Nogo-A and its receptor NgR1 have been previously implicated in the restriction of the cortical 

ocular dominance plasticity beyond the developmental critical period [11].Whether Nogo-A is 

also involved in the regulation of developmental retinogeniculate refinement is unknown. 

Expression of Nogo-A protein has been reported in the retina and optic nerve of early postnatal 

mice [12] making it a plausible regulator of the maturation process. However, a detailed temporal 

profile of Nogo-A expression in the maturing visual system is still lacking.  

Here we have analyzed the expression of Nogo-A in the retina of early postnatal and adult mice 

and looked at the expression profiles of the two main Nogo-A receptors, NgR1 and S1PR2, in the 

retina. Additionally, we have determined the pattern of Nogo-A expression in the subcortical and 
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cortical visual pathways. To determine whether Nogo-A influences the developmental refinement 

of the retinogeniculate projections we have analyzed the degree of eye-specific terminal 

segregation in the dLGN in Nogo-A knock-out (KO) and wild-type (WT) mice at postnatal day 

10 (P10) when the majority of excessive terminals are already pruned.  

We observed that the expression of Nogo-A protein is developmentally regulated and its 

receptors are expressed in the retina. Nogo-A is also expressed in the dLGN and in the visual 

cortex. The systemic deletion of Nogo-A did not influence the eye-specific terminal segregation 

in the dLGN. Our results indicate that Nogo-A is not involved in the developmental refinement of 

retinal terminals. 
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2 Material and methods 

2.1 Animals 

Retinal and brain tissues from postnatal (P1-P15) female and male mice and young adult (P30 or 

P60) male C57BL/6 wild-type (WT) mice were used for immunohistochemistry or mRNA 

expression studies. Analysis of retinogeniculate projection refinement was conducted on brain 

tissues from P10 C57BL/6 WT and Nogo-A knock-out (KO) mice of the same genetic 

background. Nogo-A KO mice were generated in our laboratory as described previously [13]. 

Animal experiments were carried out with acceptance and in agreement with the guidelines of the 

Cantonal Veterinary Office in Zurich. 

2.2 Retrograde tracing 

To visualize the cell bodies of retinal ganglion cells (RGCs) for immunohistochemistry of Nogo-

A we retrogradely labeled them with cholera toxin β-subunit (CTb) conjugated to Alexa 488. At 

P8, WT pups were anesthetized with isoflurane and 1 µl of CTb-488 (0.5% in PBS, Molecular 

Probes) was injected through the intact skull to the surface of the left superior colliculus using 

NanoFil 10 µl syringe (WPI) with 33 gauge needle. Animals were sacrifice at P10 and retinae 

were collected after perfusion. 

2.3 Anterograde tracing 

To visualize retinal projections from two eyes to the brain, CTb tracers conjugated either to 

Alexa 594 (red, left eye) or Alexa 488 (green, right eye) were injected intraocularly. P8 pups WT 

(n=6) and Nogo-A KO (n=6) were anesthetized with isoflurane, superior surface of sclera was 

exposed by making incision in the upper eyelid and 0.5 µl of CTb was injected to each eye at a 

45° angle using NanoFil syringe with 35G needle taking care not to damage the lens and the 
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ciliary bodies. Animals were sacrificed 2 days later. For immunohistochemistry in adult WT 

brain, retinal projections from the left eye were traced with CTb-594 as previously described 

[14]. 

2.4 Tissue collection 

Tissues for immunohistochemistry and tracing experiments were collected from perfused mice. 

Mice were terminally anesthetized with Nembutal (100 mg/kg body weight) and transcardially 

perfused with PBS followed by 4% PFA. Tissues were postfixed in 4% PFA overnight and 

cryoprotected with 30% sucrose in PBS (brains, retinae and optic nerves for cryosectioning). 

Brains were sectioned in the coronal plane at 40 µm, retinae cross-sectioned and optic nerves 

with chiasm longitudinally sectioned at 14 µm using a cryostat. Retinae with retrogradely labeled 

RGCs and adult retinae for NgR1 staining were flat-mounted after postfixation by doing 4 radial 

incisions to create petal shape and were used immediately for immunostaining. For mRNA 

expression study of Nogo-A receptors we collected retinae from P4, P10, P15, P30 and P60 WT 

mice (3 mice per time point). Postnatal mice (P4-P15) were sacrificed by decapitation and P30-

P60 mice by cervical dislocation. Eyes were immediately enucleated and retinae were quickly 

dissected in ice cold, sterile PBS, taking care to remove lens, sclera and hyaloids vessels, snap-

frozen in liquid nitrogen and stored in -80°C.  

2.5 Immunohistochemistry 

The expression of Nogo-A in the retina of early postnatal mice (P1-P6) mice was visualize on 

retinal cross-sections using rabbit antiserum (1:200, Laura (Rb173A) raised against aa 174-979 

fragment of rat Nogo-A, produced in our laboratory [15]) together with RGC marker β-3 tubulin 

(1: 1000, mouse Ab, Promega, #G712A). Primary and secondary antibodies were diluted in PBS 

containing 0.3% of Triton-X-100 and 5% of normal goat serum. For staining of Nogo-A on the 
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retinal flat-mount, P10 retinae were incubated with primary antibodies for one week at 4°C (anti-

Nogo-A Laura AS, 1:200; anti-Brn3a - nuclear RGC marker, 1:100, mouse Ab, Santa Cruz 

Biotech., #sc-8429) followed by 2 days of incubation at 4°C with corresponding secondary 

antibodies in the same buffer as for Nogo-A staining on sections. The staining of NgR1 (1:200, 

goat Ab, R&D Systems, #AF1440) was performed on adult (P60) WT retina cross-sections using 

PBS with 0.3% of Triton-X-100 and 5% of BSA as a blocking and antibody buffer. For double 

staining for NgR1 (1:100) and Nogo-A (1:200) on adult retinal flat-mounts, incubations with 

primary and secondary antibody were performed as for P10 retinae using the same buffer as for 

NgR1 staining on sections. On optic nerve sections from adult WT mice (P60), we detected 

Nogo-A (Laura AS, 1:200) and Adenomatus Polyposis Coli, a mature oligodendrocytes marker 

(mouse anti-APC; 1:250; Calbiochem Ab-7) using the same protocol as for retinal cross-sections. 

For the staining of Nogo-A in the adult WT brain we first incubated sections in 50mM glycine in 

0.1M Tris buffer pH 8, and performed heat-induced antigen retrieval for 30 s in a microwave to 

increase Nogo-A immunoreactivity. Following primary antibodies were used: rabbit anti-Nogo-A 

Laura AS (1:200) and mouse anti-NeuN (1:500, Milipore, #MAB377). 

2.6 Semi-quantitative real-time PCR  

Total RNA was isolated from retinal tissues of WT mice (P4-P60) using RNeasy Mini Kit 

(Qiagen) including a DNase I treatment to digest the residual genomic DNA. Reverse 

transcription was performed using oligoT primers as previously described [16]. When possible, 

primers were designed to span exon-exon junction to prevent genomic DNA amplification. 

Sequences of primers can be found in Table 1. qPCRs were performed in LightCycler480 using 

SYBR Green I MasterMix (Roche Diagnostics). Each reaction was done in triplicate with 3 

biological replicates. Expression levels of Ngr1 or S1pr2 were normalized to 2 housekeeping 
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genes (Gapdh and Rpl19) using comparative threshold method (∆∆CT) [17] and one sample from 

P4 mouse was used as a calibrator. 

Table 1 

Gene Forward primer Reverse primer Annealing 
temp (°C) 

Product 
size (bp) 

Ngr1 CTCGACCCCGAAGATGAAG TGTAGCACACACAAGCACCAG 60 116 

S1pr2 CATCGCCATCGAGAGACAAG TCAGACAATTCCAGCCCAGG 62 146 

Gapdh CAGCAATGCATCCTGCACC TGGACTGTGGTCATGAGCCC 58 96 

Rpl19 TGAGTATGCTCAGGCTACAG GAATGGACAGTCACAGGCTT 62 175 

 

2.7 Image acquisition 

Images of retinal stainings were acquired using Leica SPE-II confocal microscope at 40X (NA 

1.25 with step size of 0.2 µm and are presented as maximum intensity projections. Nogo-A 

stainings in the optic nerve and in the brain were acquired using Leica DM550B epi-fluorescence 

microscope with a 20X objective (NA 0.5) in automatic mosaic mode. Pictures of retinal 

projections in the dLGN were visualized with a Zeiss Axioskop 2 Plus epi-fluorescence 

microscope (Carl Zeiss) using 10X objective (NA 0.3) with the same exposure setting for both 

tracers. 

2.8 Analysis of eye-specific projections segregation in the dLGN 

The segregation of eye-specific projections in the dLGN of P10 WT and Nogo-A KO mice was 

determined for different contralateral thresholds on a 0-255 grayscale as described by Muir-

Robinson and colleagues [18]. Background fluorescence was subtracted from the images using a 

rolling ball filter of 200 pixels radius and histograms were normalized to 8-bit intensity range 

(NIH ImageJ). Ipsilateral gray value thresholds were kept constant and adjusted consistently for 
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each picture. For each animal, we analyzed three sections from the middle of the dLGN 

containing the largest ipsilateral patch using custom-written NIH ImageJ plugins and routines (by 

van der Burg A. Brain Research Institute, Zurich). In the segregation and the dLGN size analysis 

we determined borders of dLGN based on contralateral tracing excluding the optic tract and the 

intergeniculate leaflet. Size of dLGN was measured on the same 3 central sections which were 

used in the segregation analysis and is represented for each animal as an average of those 3 

sections. 

2.9 Statistical analysis 

All numerical data are presented as a mean ± standard error of the mean (SEM). Threshold 

depended segregation data were compared between WT vs. KO using the two-way repeated 

measures (RM) analysis of variance ANOVA with post-hoc Bonferroni’s tests (α = 0.05). Size of 

dLGN was compared between WT and KO group using Student’s t-test using the GraphPad 

Prism software. 
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3. Results 

3.1 Expression of the Nogo-A protein in the retina is developmentally regulated  

To understand if the Nogo-A signaling may play a role in the postnatal maturation of the mouse 

visual system we decided to first determine the expression pattern of Nogo-A and its receptors. In 

the adult mouse retina, Nogo-A is expressed in the ganglion cell layer (GCL) however the 

expression is limited to the endfeet of Müller glia and absent in the retinal ganglion cells (RGCs) 

[12, 14]. In early postnatal retina (P1 [12] and P4 [19]) Nogo-A was reported to be strongly 

expressed by RGCs. To determine when the pattern of expression exactly changes, we performed 

immunohistochemical stainings for Nogo-A and the RGC marker β-3 tubulin on cross-sections of 

early postnatal retina from P1 to P6 mice (Fig. 1a). At P1 (Fig. 1a’) and P4 (Fig. 1a’’) Nogo-A 

signal was present in β-3 tubulin-positive RGC cell bodies and axons. However, in P6 retina (Fig. 

1a’’’) the expression pattern changed dramatically and Nogo-A signal was mainly present around 

RGC cells in the endfeet of Müller glia. To better visualize the RGC cell bodies and Müller glia 

endfeet we decided to retrogradely trace RGCs and performed stainings on a flat-mounted 

retinae. The retrograde tracing was performed at P8 by a single injection of cholera toxin β-

subunit conjugated to Alexa 488 (CTb-488) into the left superior colliculus; the right retina was 

harvested at P10. In P10 retinae the CTb-488 tracer fully filled cell bodies of RGCs (Fig. 1b; 

green) and the RGC nuclei were additionally visualized by staining against the RGC-specific 

transcription factor Brn3a (Fig. 1b; blue). CTb-488-positive RGC cells were devoid of Nogo-A 

signal; however, Nogo-A was clearly expressed around RGC cell bodies in Müller glia processes 

forming a typical honeycomb pattern (Fig. 1b; red).  
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Figure 1 Nogo-A expression in RGCs is down-regulated by P6 whereas the expression of 
NgR1 stays high in RGCs until adulthood 

a The Nogo-A protein (red) is strongly expressed in the β-3 tubulin-positive (green) retinal 
ganglion cell bodies and axons at postnatal day 1 (P1) and P4 but is down-regulated by P6, when 
the expression increases in Müller glia endfeet (arrowheads). b On retinal flat-mounts from P10 
mice, Nogo-A (red) is present in Müller glia endfeet around retrogradely labeled RGC bodies 
(CTb-488 tracing; green) expressing Brn3a nuclear marker (blue); maximal intensity projection 
of 5-µm serial confocal optical sections. c In the adult retina, NgR1 is exclusively expressed in 
the ganglion cell layer and in the fiber layer corresponding to RGC bodies and axons. 
Abbreviations: ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; 
IPL: inner plexiform layer, GCL: ganglion cell layer; FL: fiber layer. d On flat-mounted adult 
WT mouse retinae, NgR1 staining (green) is present in RGC bodies and axonal fascicles whereas 
Nogo-A is exclusively expressed around RGC bodies in Müller glia endfeet; see higher 
magnification picture of the region marked with dotted line in d’. Scale bars in a-d, 50 µm; d’, 10 
µm. e,f Developmental regulation of Nogo-A receptors mRNA expression in the retina. e Ngr1 
mRNA is expressed in the retina across different developmental ages (P4-P60). f S1pr2 mRNA 
expression is strongly down-regulated in the retina after P4. 
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Taken together, our results show that Nogo-A is strongly expressed by mouse retinal ganglion 

cells during first postnatal days and is strongly down-regulated between P4 and P6. After P6 in 

the retina, Nogo-A is predominantly expressed in Müller glia. 

3.2 Nogo-A receptors are expressed in the mouse retina 

Nogo-A exerts its inhibitory functions mainly through two domains called Nogo-66 and Nogo-A-

∆20 [14]. The C-terminal Nogo-66 domain binds predominantly to the Nogo-66 receptor 1 

(NgR1) [21], whereas the Nogo-A specific Nogo-A-∆20 domain binds to the newly identified 

sphingosine 1-phosphate receptor 2 (S1PR2) [22]. The two Nogo-A receptors, have been reported 

to be expressed in the adult mouse RGCs [20-22]. However, their developmental profile of 

expression in the retina is unknown. In adult mouse retinal cross-sections, we detected NgR1 

protein expression (Fig. 1c) exclusively in ganglion cell layer (GCL) and in the fiber layers (FL) 

corresponding to RGC bodies and axonal fascicles. NgR1 staining was negative in the inner 

plexiform layer (IPL) with the RGC dendrites and the inner nuclear layer (INL) containing the 

cell bodies of bipolar, amacrine and horizontal cells. NgR1 was also not detected in the outer 

plexiform layer (OPL) with the horizontal and bipolar cell dendrites and in the nuclear layer 

(ONL) containing photoreceptors. To further compare the pattern of Nogo-A and NgR1 

expression in adult mice we performed double immunostainings on retinal flat-mounts. On 

confocal images at the level of RGC bodies and axons (Fig. 1d, close-up in d’), the NgR1 

staining (green) was localized in the RGC cytoplasm and at the cell surface and in axonal 

fascicles of RGCs. In contrast, the Nogo-A signal (red), as in P10 retinae, was present in Müller 

glia endfeet and undetectable in RGCs. 

 To determine if the expression of NgR1 and S1PR2 in the retina is developmentally regulated we 

analyzed their mRNA expression profiles using qPCR. Ngr1 mRNA was detectable in retinal 
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samples from early postnatal (P4) to adult (P60) ages (Fig. 1e) and the expression was more 

elevated between P10 to P30 (at P15 70% higher than at P4). The expression of S1pr2 mRNA in 

the retina was highest at P4 and decreased by P10 to around 15% of the P4 level and stayed at the 

same level in older ages (P15-P60; Fig. 1f). Overall, the two Nogo-A receptors are expressed in 

the retina; however S1pr2 mRNA is down-regulated by postnatal day 10. 

3.3 Nogo-A expression in the adult mouse brain 

We have demonstrated that Nogo-A expression in the RGCs is down-regulated by the sixth 

postnatal day and that NgR1 is expressed in postnatal and adult RGCs. Therefore, to determine if 

NgR1 expressing RGC axons could interact with the Nogo-A in the visual pathway, we decided 

to analyze expression of Nogo-A in the optic nerve and the brain. In the optic nerve, Nogo-A has 

been reported to be expressed in typical rows of interfascicular oligodendrocytes already at the 

eighth postnatal day and, at the mRNA level, to strongly increase during myelination of the optic 

nerve [12]. As expected, in the adult WT optic nerve we detected Nogo-A protein in APC-

expressing oligodendrocyte cell bodies and processes (Fig. 2a). Therefore, Nogo-A expressed in 

the optic nerve oligodendrocytes, may interact with NgR1 receptor present in RGC axons. At P8, 

a time of maturation of retinogeniculate projections, Nogo-A has been reported to be mainly 

expressed by neurons throughout the brain [19] while the myelination of retinal projections is just 

starting at this time [23]. We further wanted to analyze the expression of Nogo-A protein in the 

lateral geniculate nucleus (LGN), in the thalamus of adult mouse. To visualize retinal projections 

to the LGN, we traced them anterogradely by injection of CTb-594 in the left eye. After antigen 

retrieval, we performed immunohistochemistry against Nogo-A and the neuronal marker NeuN 

and could detect strong Nogo-A expression in NeuN positive neurons in the thalamus and 

hippocampus (Fig. 2b,c). 
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Figure 2 Expression of Nogo-A protein in the adult mouse visual system 

a In the adult mouse optic nerve, Nogo-A (green) is expressed by APC-positive (red) 
oligodendrocytes. a’ Magnification of the optic nerve region marked at a with the dotted line. b 
In the thalamus and the hippocampus, Nogo-A is strongly expressed by neurons but also by 
oligodendrocytes. Inset b’ represents 5x magnification of the dLGN region marked with dotted 
line. c Retinal projections to the LGN were traced with the CTb-594 tracer (red). Nogo-A is 
expressed in the majority of NeuN-positive neurons (blue) and in some putative oligodendrocytes 
(arrowheads). c’ Region of inset as in b’. d Nogo-A is also expressed by cortical neurons 
including the primary visual cortex (V1) and by oligodendrocytes in the corpus callosum 
(arrowheads). d’ Nogo-A (green) is strongly expressed in the NeuN positive neurons (blue) in 
layer II/III and V/VI of V1. Scale bars: a 100 µm; a’ 50 µm; b-c 200 µm; b’-c’ 20 µm; d 500 µm 
and d’ 100 µm.  
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In the dLGN, Nogo-A was uniformly expressed in both ipsi- and contralateral eye projection-

receiving areas (CTb-594; red) by most of the NeuN positive neurons (Fig. 2b,c). Interestingly, 

the dLGN is the only rodent relay thalamic nucleus, which next to excitatory relay neurons 

contains also GABAergic interneurons [24]. Apart from NeuN-positive neurons, we could 

observe Nogo-A expression in NeuN-negative, smaller cells in the dLGN and optic tract, possibly 

oligodendrocytes (Fig. 2c).  

We have also analyzed Nogo-A protein expression in the adult mouse primary visual cortex. In 

the adult WT mouse cortex we could detect Nogo-A protein signal in neurons and also 

oligodendrocyte cell bodies (Fig. 2d). The Nogo-A expression looked uniform across different 

cortical areas (data not shown) and in the primary visual cortex Nogo-A was expressed in NeuN-

positive neurons in layer II to VI (Fig. 2d’). Consistently with the previous report for Nogo-A 

mRNA [25], the strongest Nogo-A staining was detected in layers II/III and V-VI. Taken 

together, our immunostainings showed that Nogo-A is widely expressed in neurons of the adult 

mouse visual system. 

3.4 Nogo-A does not influence the developmental segregation of retinogeniculate terminals 

Nogo-A and NgR1 are both expressed in the visual system during the developmental refinement 

of the retinogeniculate projection which in mice take place between P4-P8 [26, 27]. Therefore we 

investigated whether systemic deletion of Nogo-A would influence this process. To visualize the 

retinal projections from both eyes we intravitreally injected CTb tracers of different colors in the 

two eyes of P8 WT and Nogo-A KO mice (Fig. 3a; left eye CTb-594, red; right eye CTb-488, 

green). At P10, after course-scale refinement, we analyzed eye-specific segregation of 

retinogeniculate terminals in the dLGN (Fig. 3b). As expected, in P10 WT mice, eye-specific 

projections to the dLGN from ipsi- and contralateral eyes were well segregated, with only a small 
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rim of overlapping projections at the border of the two eye-specific domains (Fig. 3b; close-up 

Fig. 3c) corresponding to the  typical pattern of segregation reported for this age [7]. In Nogo-A 

KO mice at P10, eye-specific projections were segregated to a similar extent as in WT mice (Fig. 

3b,c). Quantitatively, the percentage of non-overlapping pixels could be determined by 

subtraction of binarised images of the green and the red channels. To avoid subjective 

determination of the threshold, the extent of segregation was represented not as a single value but 

rather as a function of the contralateral threshold as previously reported [18]. The analysis 

confirmed that at P10 the eye-specific projection segregation in the left and right dLGN was 

comparable and not significantly different between WT and Nogo-A KO mice (Fig. 3d; at 

contralateral threshold 30, right dLGN WT 64.8±3.3% vs. KO 69.4±4.4%, RM-ANOVA p>0.99; 

left dLGN WT 61.3±2.5% vs. KO 62.9±4.8%; p>0.99). We also measured the size of the dLGN 

at P10 on brain sections. In the two hemispheres, the dLGN size did not differ significantly 

between WT and Nogo-A KO animals (Fig. 3e; right dLGN p=0.64; left dLGN p=0.18; t-test). 

Thus, the systemic deletion of Nogo-A does not seem to interfere with the developmental 

refinement of retinogeniculate terminals.  
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Figure 3 Nogo-A does not influence the developmental refinement of retinogeniculate 
projection 

a Scheme of the anterograde tracing procedure. Eye retinal ganglion cell projections to the LGN 
were traced in Nogo-A KO and WT mice at P8 by intravitreal injection of cholera toxin β-subunit 
(CTb) tracers; (green, CTb-488 right eye; red, CTb-594 left eye). For each animal, the degee of 
the two-eye projection segregation in the dLGN was analyzed at P10 on 3 coronal brain sections 
in the center of the dLGN. b At P10 in WT mice, retinal terminals in the dLGN appeared 
segregated into central ipsilateral eye and surrounding contralateral eye territories. In Nogo-A 
KO mice at P10, the eye-specific segregation in the dLGN resembled that of WT mice at this age. 
c Higher magnification from panel b of the border between ipsilateral and contralateral eye 
territories in the dLGN. d Quantitatively, the eye-specific projection segregation in the left and 
right dLGN did not differ significantly between P10 Nogo-A KO and WT mice. Two-way RM 
ANOVA with Bonferroni’s post-hoc tests, Nogo-A KO and WT n=6 mice. NS (not significant) p 
> 0.05. Scale bars: b 200 µm, c 100 µm. 
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4. Discussion 

In the present study, we analyzed the expression pattern of Nogo-A protein in the early postnatal 

and adult mouse visual system and determined whether systemic deletion of Nogo-A influences 

the developmental refinement of the eye-specific retinogeniculate projection. The Nogo-A 

protein expression in the retinal ganglion cells is developmentally regulated and decreases before 

postnatal day 6, whereas Nogo-A receptor NgR1 is expressed in RGC cell bodies and axons in 

young and adult mice. In the optic nerve, Nogo-A is expressed by oligodendrocytes, whereas in 

the LGN and visual cortex Nogo-A is also present in neurons in addition to oligodendrocytes. 

Systemic deletion of Nogo-A did not influence the developmental refinement of the anatomical 

distribution of the terminals of axons from left and right eye in the dLGN.  

4.1 Nogo-A and NgR1 are expressed in complementary patterns in the visual system 

Nogo-A is strongly expressed in prenatal RGCs [28] and during the first postnatal days but is 

down-regulated before the sixth postnatal day, when the expression switches to Müller glia. The 

role of Nogo-A in Müller glia is unknown. Müller glia differentiate in the mouse retina around P3 

and reach maturity at P20 [29]; morphologically, Müller glia process density and radial 

orientation seemed normal in the Nogo-A KO mice (data not shown), but more subtle effects of 

the absence of Nogo-A on the biochemical or functional maturation of Müller cells cannot be 

excluded. However, in the adult Nogo-A KO mice retinae expression of the glial structural 

proteins, vimentin and GFAP [14] and the expression of the mature Müller glia markers, Kir 4.1 

and aquaporin 4, (Pernet.V.;data not shown) was not significantly different from the WT retinae. 

 Neuronal Nogo-A expression might be involved in axonal growth and fasciculation [30, 31] as 

the timing of RGC axonal growth correlates with the high Nogo-A expression in those cells. In 
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the mouse, retinal axons crossing at the chiasm innervate the LGN at around embryonic day 15-

16, whereas uncrossed projections reach their target postnatally around P0-P2 [6]. Nogo-A and its 

receptors have been also implicated in the axonal guidance at the optic chiasm. During the optic 

chiasm decussation, acute blockage of the NgR1 receptor with blocking peptide NEP1-40 led to 

guidance errors [32]. However, using the DiI tracing of the RGC axons at the embryonic day 15 

and at P1 we did not observe any guidance errors at the optic chiasm of Nogo-A KO mice 

(Pernet. V.; data not shown). 

The Nogo-A receptors NgR1 and S1PR2 are both expressed in the retina but S1pr2 mRNA is 

down-regulated to a lower level before postnatal day 10. On the other hand, Ngr1 mRNA is 

expressed in young and adult retinae. In adult mouse retinae, NgR1 protein is specifically 

expressed in retinal ganglion cell bodies and axons.  

So far, there was not detailed study on the Nogo-A protein expression in the thalamus. In the 

Allen Institute adult mouse brain resources [33] Nogo-A mRNA appears to be moderately to 

strongly expressed in the LGN neurons and in oligodendrocytes in the optic tract. A similar 

expression is described in other thalamic nuclei and hippocampus. Previous studies reported that 

in adult rat brains Nogo-A mRNA expression in the neocortex was the strongest in layer II/III 

and layer V-VI [25, 26]; the protein was mainly detected in oligodendrocytes in the corpus 

callosum [25]. In the adult brain, including the visual system, we detected Nogo-A in both 

oligodendrocytes and neurons. The staining intensity was stronger in neurons; however, the 

myelin pool of Nogo-A is probably underestimated, since we did not use organic solvents that 

would improve detection of myelin proteins but hinder neuronal signal [25]. These localizations 

suggest that NgR1 and S1PR2 expressed in retinal axons may interact with Nogo-A expressed by 
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oligodendrocytes in the optic nerve and the optic tract and by neurons and oligodendrocytes of 

the LGN. 

4.2 Retinotopic map formation is not affected by Nogo-A deletion 

Several guidance molecules including Slit, Shh and Ephrin-B [34-36] are involved in the RGC 

growth cone guidance at the optic chiasm. Recently, Nogo-A expressed by radial glia at the optic 

chiasm has been suggested to be involved in the repulsion of the NgR1 expressing RGC growth 

cones especially from ventrotemporal retina which projects ipsilaterally [32]. However, in P10 

Nogo-A mice, the ipsilateral eye projections appear to form normally and to innervate the 

appropriate region of the dLGN.  

4.3 The refinement of the retinogeniculate projection is normal in the absence of Nogo-A 

Eye-specific segregation of retinal synaptic terminals in the mouse dLGN occurs based on the 

spontaneous retinal activity at the time when photoreceptors are still immature and eyelids are 

closed [37, 38]. As the spontaneous activity of two eyes is not synchronous, synaptic terminals 

from one eye ending on a given LGN neuron get selectively strengthened and those from the 

other eye eliminated based on the burst-time-dependent plasticity leading finally to a monocular 

innervation [39]. Nogo-A and its receptor NgR1 have been recently shown to restrict long term 

potentiation (LTP) in hippocampus and motor cortex [40-42]. Therefore, it is tempting to 

speculate that the developmental down-regulation of Nogo-A expression in the RGCs before 

postnatal day 6 might be required for a proper synaptic strengthening and refinement of retinal 

terminals which occurs around this time. In line with this hypothesis, the stabilization of the 

synaptic contacts between Purkinje and deep cerebellar nuclei neurons has been shown to require 

developmental Nogo-A down-regulation [43]. The genetic deletion of Nogo-A in the present 

study could have enhanced this process. Thus, it would be interesting to investigate whether 
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ectopic overexpression of Nogo-A in RGCs during LGN segregation would interfere with this 

process and, on the other hand, if systemic deletion of Nogo-A would accelerate the refinement at 

P4 when the Nogo-A level is still high in WT RGCs. Moreover, systemic deletion of Nogo-A 

was shown to induce up-regulation of other repulsive and inhibitory factors and their receptors, in 

particular semaphorin 3F and 4D, plexin B2, ephrin A3 and EphA4 in the mouse spinal cord and 

neocortex [44]. It would be therefore interesting to know the expression pattern of these factors in 

the developing visual system, but one should also analyze whether Nogo-A deletion affects 

spontaneous and visually-evoked retinal and retinogeniculate activity. Finally, cell-specific 

Nogo-A KO mice, which are coming available now, should be used to determine the role of 

myelin vs. neuronal Nogo-A in the different aspects of retinal pathway development and 

refinement. 
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1 Abstract  

The inhibitory action of Nogo-A on axonal growth has been well described. However, much less 

is known about the effects that Nogo-A could exert on the plasticity of neuronal circuits under 

physiological conditions. We investigated the effects of Nogo-A knock-out (KO) on visual 

function of adult mice using the optokinetic head turning response (OKR) and the monocular 

deprivation (MD)-induced OKR plasticity and analyzed the anatomical organization of the eye-

specific retinal projections. The spatial frequency sensitivity of the OKR was higher in intact 

Nogo-A KO than in wild-type (WT) mice. After MD, Nogo-A KO mice reached a significantly 

higher spatial frequency and contrast sensitivity. Bilateral ablation of the visual cortex did not 

affect the OKR sensitivity before MD but reduced the MD-induced enhancement of OKR by 

approximately 50 % in Nogo-A KO and WT mice. These results suggest that cortical and 

subcortical brain structures contribute to the OKR plasticity. The tracing of retinal projections to 

the dorsal lateral geniculate nucleus (dLGN) revealed that the segregation of eye-specific 

terminals was decreased in the adult Nogo-A KO dLGN compared with WT mice. Strikingly, 

MD of the right eye led to additional desegregation of retinal projections in the left dLGN of 

Nogo-A KO but not in WT mice. In particular, MD promoted ectopic varicosity formation in 

Nogo-A KO dLGN axons. The present data show that Nogo-A restricts visual experience-driven 

plasticity of the OKR and plays a role in the segregation and maintenance of retinal projections to 

the brain. 
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2 Introduction  

The mammalian visual system is a well-established model to study the effects of lesions and 

experience on the CNS function and plasticity [1-4]. The ocular dominance (OD) plasticity of 

primary visual cortex neurons (V1) has been shown to be most prominent during the 

developmental critical period (in mouse postnatal day (P)19-P32) and to decline afterward upon 

maturation of inhibitory circuits [5, 6] and specific factors associated with myelin and 

perineuronal nets [7, 8]. In contrast to the visual cortex, the subcortical visual system is 

considered to be much less plastic [2, 9]. However, recent electrophysiological studies suggested 

that retinogeniculate synapses are sensitive to visual experience, and their plasticity is limited to 

the “sensitive period” overlapping with the cortical critical period [10, 11]. Factors limiting adult 

subcortical plasticity are largely unknown.  

In this study, we investigated the potential role of the myelin-associated membrane protein Nogo-

A in the plasticity of the adult mouse visual system. Nogo-A is best known as an inhibitor of 

neurite outgrowth and regeneration in the injured CNS [12, 13]. Recently, Nogo-A also emerged 

as a negative physiological regulator of neuronal plasticity in the intact adult CNS. Deletion of 

the Nogo-A/B or their receptor NgR1 gene maintained experience-dependent plasticity in the 

visual or the somato-sensory cortex beyond the end of the critical period [7, 14]. As 

oligodendrocytes mature and Nogo-A appears at the time of the normal maturational closure of 

the plastic time window, myelin Nogo-A was claimed to be a major modulator of this 

phenomenon [7]. Results from blockage experiments revealed that Nogo-A and NgR1 repressed 

LTP in the hippocampus and motor cortex [15-17]. 

To assess functional plasticity in the subcortical visual system we used the optokinetic head 

response (OKR) as described by Prusky and colleagues [18], measuring spatial frequency and 
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contrast sensitivity in adult Nogo-A knock-out (KO) mice before and after monocular deprivation 

(MD). This paradigm was previously used to demonstrate that vision plasticity can be enhanced 

in adult mice and is mediated by the visual cortex [19, 20]. Neither the role of subcortical circuits 

nor the molecular mechanisms influencing the increase of spatial frequency sensitivity in this 

system have been investigated so far.  

Here we show that Nogo-A KO mice have improved spatial frequency sensitivity and increased 

spatial frequency and contrast sensitivity enhancement after MD-induced plasticity compared 

with WT mice. Additionally, upon bilateral visual cortex ablation, MD was still able to induce a 

significantly higher increase of spatial frequency sensitivity in Nogo-A KO than in WT mice, 

suggesting that cortical and subcortical visual regions participate in the OKR plasticity. At the 

anatomical level, Nogo-A deletion led to a decrease in the eye-specific segregation of retinal 

projections in the dLGN of adult mice. After ten days of right eye closure, the degree of retinal 

projections segregation in the left dLGN was additionally decreased in Nogo-A KO mice 

compared with intact mice. We observed significantly more ectopic terminals from the open eye 

into closed eye ipsilateral territory in Nogo-A KO vs. WT mice. 
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3 Materials and methods 

3.1 Animals 

Young adult (P60-P65) male C57BL/6 wild-type and Nogo-A knock-out (KO) mice [21] with the 

same genetic background were used for behavioral vision measurements or tissue analysis. Nogo-

A KO mice were generated in our laboratory and were bred with C57BL/6 WT mice from the 

animal facility of the Brain Research Institute for more than 20 generations. Animal experiments 

were carried out with acceptance and in agreement with the guidelines of the Cantonal Veterinary 

Office in Zurich. 

3.2 Visual deprivation 

To test the functional and anatomical plasticity, we monocularly deprived adult Nogo-A KO and 

WT mice (the onset of deprivation, at P60-P65) by suturing the right eyelid as described 

previously [3]. Briefly, under isoflurane anesthesia the eyelid margins of the right eye were 

trimmed and antibiotic ophthalmic ointment was applied to the eye. The trimmed eyelids were 

closed with three mattress sutures using 9-0 silk. In behavioral experiments, the eyelids were re-

opened after 7 days of deprivation under isoflurane anesthesia. Animals whose eyelids were not 

fully closed and animals that had corneal opacities after eye reopening were excluded from the 

experiments. 

3.3 Measurements of spatial frequency and contrast sensitivity 

Spatial frequency and contrast sensitivity thresholds of the OKR were measured with the virtual 

optomotor system in freely moving mice as described previously (Fig. 1a; [18]). Briefly, 

individual mice were placed on an elevated platform in the center of an arena surrounded by four 

computer screens, and moving gratings of increasing spatial frequency or decreasing contrast 
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were displayed on the monitors (OptoMotry, CerebralMechanics). As animals track only gratings 

moving in the temporal-to-nasal direction, it is possible to test the two eyes independently by 

changing the direction of the stimulus [22]. The OKR spatial frequency sensitivity threshold was 

determined by presenting full contrast gratings with increasing spatial frequency (starting from 

0.042 cycle/degree (c/d)), until the maximum frequency that the mice were able to discriminate 

was reached. Contrast thresholds were determined at six spatial frequencies: 0.031, 0.064, 0.092, 

0.103, 0.192, 0.272 c/d by decreasing the contrast of the gratings until the tracking behavior 

ceased. Contrast thresholds were re-calculated into contrast sensitivity (Michelson contrast) by 

taking into account the luminescence of the screens. The contrast sensitivity (the reciprocal of the 

threshold) was then plotted against spatial frequencies on a log–log graph. For example, a 

contrast sensitivity of value 20 corresponds to 5.1 % of contrast and contrast sensitivity of 4 

corresponds to 25.1 % of contrast.  

3. 4 Ablation of the visual cortices 

To test the importance of the subcortical visual system for the plasticity of the OKR sensitivity, 

we bilaterally ablated the visual cortex using a modified protocol described by Prusky and 

colleagues [19]. Under isoflurane anesthesia, two small craniotomies were made above both 

striate cortices (2 to 3 mm lateral from the midline; 3 to 4 mm posterior from the bregma); and 

the cortices were aspirated down to the white matter according to the following stereotactic 

coordinates: 1.5 mm lateral to 4.0 mm lateral from the midline; 2.5 to 5.0 mm posterior from the 

bregma. The cavities were filled with gelfoam soaked with sterile saline, and the scalp was 

suture-closed. Operated animals were injected with an analgesic (Temgesic (Buprenorphin) 0.1 

mg/kg of body weight) and were placed on a warm blanket until recovery. Visual function tests 

were started one day after the surgery. At the end of the behavioral testing, animals were 
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sacrificed using an overdose of Nembutal and were perfused with solution of PBS followed by 4 

% PFA. Brains were coronally sectioned, and 3 dimensional (3D) reconstructions were created 

using Neurolucida software (MBF Bioscience). The volumes of the lesions were measured in the 

same software. 

3.5 Anterograde tracing of retinal projections  

To anterogradely trace retinal projections, cholera toxin β-subunit (CTb) conjugated to different 

fluorophores (Alexa 488, Alexa 594 or Alexa 647; 1.5 µl, 0.5 % in PBS, Molecular Probes) or 

adeno-associated virus serotype 2 (AAV2) containing eGFP cDNA under CAG promoter was 

intravitreally injected as previously described [23]. The AAV2.GFP vector (1014 vg/ml) was 

produced as described before [24] and was kindly provided by Dr. Deniz Dalkara (Institut de la 

Vision, Paris). CTb injections were made one day before sacrificing the animals, and the virus 

was injected into the left eye three weeks before the monocular deprivation in order to allow for 

optimal GFP expression. In monocularly deprived animals, the tracing was performed without 

exposing the cornea to light by making an incision in the upper eyelid above the sclera. Mice 

were sacrificed by an overdose of Nembutal and were perfused with PBS followed by a 4 % PFA 

solution. Brain coronal cryosections were cut at 40 µm and visualized with a Zeiss Axioskop 2 

Plus epi-fluorescence microscope (Carl Zeiss) or for mosaic image reconstruction with Leica 

DM550B microscope using a 10X objective (NA 0.3). For the analysis of ectopic open eye 

projections images were acquired with  a Leica SPE-II confocal microscope at 40X (NA 1.25), at 

a step size of 0.5 µm (Fig. 4) or 0.2 µm (Fig. 5) and a resolution of 1024 x 1024 pixels (0.27 

µm/pixel).  
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3.6 Image analysis 

Segregation between eye-specific projections in the dLGN was determined for different 

contralateral thresholds on a 0-255 grayscale as described by Muir-Robinson et al. [25]. 

Background fluorescence was subtracted from the images using a rolling ball filter of 200 pixels 

radius and histograms were normalized to 8-bit intensity range (NIH ImageJ). Ipsilateral gray 

value thresholds were kept constant and adjusted consistently for each picture. For each animal, 

we analyzed three sections from the middle of the dLGN containing the largest ipsilateral patch 

using custom-written NIH ImageJ plugins and routines. The size of the dLGN was measured in 

NIH ImageJ for the 3 sections used in the segregation analysis and is reported for each animal as 

an average from these 3 sections. 

The analysis of the nucleus of the optic tract (NOT) was done on 3 coronal sections in the rostral 

region of the superior colliculus (SC). To measure the size of the nucleus we defined its borders 

in similar way for all pictures by excluding the optic tract and preoptic nuclei. The fiber density 

in the NOT was calculated by measuring the area occupied by the tracer on binarised images after 

background subtraction with a rolling ball filter of 200 pixels radius (NIH ImageJ). 

To analyze the occurrence of the ectopic open eye projections in the middle of the closed eye 

ipsilateral territory, we acquired confocal pictures of three central sections of the right dLGN and 

created maximum intensity projections from 20 µm image stacks. On binarised pictures, we 

analyzed the percentage of area occupied by the ectopic left eye projections (CTb-594 Fig. 4f or 

CTb-594 and GFP Fig. 5e) in a 100 x 100 µm region of interest (ROI) placed in the center of the 

right eye ipsilateral territory. The ROI was automatically positioned at the center of mass of the 

right eye ipsilateral region (NIH ImageJ). 

 



Chapter 3: Role of the Nogo-A protein in the adult visual system plasticity 
 

67 
 

3.7 Statistical analysis 

All numerical data are presented as a mean ± standard error of the mean (SEM). Spatial 

frequency and contrast sensitivity as well as eye-specific segregation data were analyzed between 

groups using the two-way repeated measures (RM) analysis of variance ANOVA. The lesion 

volume, the ectopic projections and size of the NOT were analyzed by applying a one-way 

ANOVA test. In all cases we applied Bonferroni’s post-hoc tests with α = 0.05. Sizes of dLGNs 

were compared between WT and KO groups using a Student’s t-test. 
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4 Results 

4.1 Nogo-A ablation increases the plasticity of the optokinetic response after monocular 

deprivation 

The optokinetic response (OKR) to moving gratings allows a non-invasive assessment of spatial 

frequency sensitivity in mice [18]. Monocular deprivation (MD) induces plasticity in the OKR 

that is reflected by an increase in spatial frequency sensitivity of the non-deprived eye [19]. At 

the molecular level, the mechanisms of the OKR plasticity have not been studied. In order to 

determine if systemic Nogo-A deletion influences experience-driven plasticity of vision, we 

followed the MD-induced enhancement of OKR thresholds (Fig. 1a) mediated by the non-

deprived eye in adult Nogo-A KO and WT mice (Fig. 1b). In intact Nogo-A KO mice, the OKR 

sensitivity threshold of the left (Fig. 1b; 0.416 ± 0.001 cycle/degree, mean ± SEM) and right (Fig. 

S1a; 0.417 ± 0.009 c/d) eye was significantly higher than in WT animals (WT left eye: 0.395 ± 

0.0007 c/d; WT right eye: 0.397 ± 0.0008 c/d). The OKR sensitivity steadily increased in the 

non-deprived, left eye and plateaued at 5 days in the two groups subjected to 7 days of MD (Fig. 

1b). After 7 days of MD, Nogo-A KO responded to higher spatial frequencies (0.595 ± 0.005 c/d; 

representing a 43 % increase above the baseline) than WT mice (0.530 ± 0.006 c/d; 34 % increase 

above baseline). After eye reopening, the sensitivity gradually returned to baseline within 6-7 

days in both Nogo-A KO and WT mice. In the two mouse genotypes, the OKR threshold of the 

deprived eye showed no deficit after eye reopening (Fig. S1a). The spatial frequency sensitivity 

changes induced by MD in WT mice are consistent with previous reports [19, 20]. Repeated 

measurements of OKR sensitivity have been reported to influence the maximal spatial frequency 

that can be reached after MD [19]. Therefore, in another group of animals we measured the OKR 

sensitivity threshold one time before MD and another time at day 5 of MD (Fig. S1b). WT mice 
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tested only once at day 5 reached a lower OKR sensitivity threshold than that observed in the 

animal group measured daily (0.493 ± 0.004 vs. 0.527 ± 0.006 c/d; p = 0.001). However, in 

Nogo-A KO mice the difference between single and daily measurements was not significant 

(0.571 ± 0.003 vs. 0.589 ± 0.006 c/d; p = 0.103), suggesting perhaps a stronger plastic capacity 

than in WT visual system. We also measured contrast sensitivity that has previously been 

reported to increase after MD [19]. Contrast sensitivity was measured for six different spatial 

frequencies (0.031, 0.064, 0.092, 0.103, 0.192 and 0.272 c/d) before, during the 7-day period of 

MD and after eye reopening (Fig. 1c, d and Fig. S 1c, d). At the baseline, there was no difference 

in contrast sensitivity between WT and Nogo-A KO mice for the two eyes. The contrast 

sensitivity curves showed typical bell shapes with higher sensitivity for intermediate spatial 

frequencies (Fig. 1c and Fig. S1c, d). Upon MD, contrast sensitivity of the non-deprived eye 

strongly increased in both genotypes (Fig. S1c, d). The contrast sensitivity plateaued after 4 days 

of deprivation. Four intermediate spatial frequencies reached significantly higher values in Nogo-

A deficient mice (Fig. 1c). In agreement with previous reports, both groups of mice showed their 

highest contrast sensitivity at a spatial frequency of 0.064 c/d [18, 19]. After 7 days of MD, 

Nogo-A KO mice reached a maximum sensitivity of 39.03 ± 0.462 whereas WT mice reached 

33.64 ± 0.744, corresponding to 2.62 % and 3.04 % of contrast, respectively (Fig. 1d). One day 

after right eye reopening, contrast sensitivity of the left eye started decreasing although it 

remained significantly higher in the Nogo-A KO group, and went back to baseline after 7 days in 

both genotypes (Fig. S1e). At the behavioral level, our results revealed that Nogo-A ablation 

potentiates the MD-induced increase in visual plasticity. 
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Figure 1 Nogo-A deletion potentiates monocular deprivation-induced enhancement in 
visual performance of adult mice  
a The virtual reality optokinetic response (OKR) test was applied to assess spatial frequency and 
contrast sensitivity. Mouse head tracking was elicited by temporal-to-nasal stimulation. Spatial 
frequency and contrast sensitivity of adult (P60) WT and Nogo-A KO mice was measured before, 
during closure and after reopening of the right eye. b Spatial frequency sensitivity was higher in 
Nogo-A KO than in WT mice at the baseline and after right eye MD. c The contrast sensitivity of 
the left eye (represented as a Michelson contrast) was measured at six different spatial 
frequencies, before and during MD. The right eye MD induced a stronger increase in contrast 
sensitivity in Nogo-A KO than in WT mice. d The time course of the contrast sensitivity 
measured at a spatial frequency of 0.064 c/d showed stronger increase upon MD in the Nogo-A 
KO group. (WT n = 5, KO n = 6 mice; two-way repeated measures (RM) analysis of variance 
(ANOVA), Bonferroni’s post-hoc tests, ***p < 0.001, **p < 0.01, p* < 0.05). 
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Supplementary figure 1 Spatial frequency and contrast sensitivity measurements 
 a The right eye OKR sensitivity was not affected by MD but was higher in Nogo-A KO than in 
WT mice (***p < 0.001; two-way RM ANOVA, between groups). b Comparison between daily 
(from Fig. 1b) and single OKR testing after 5 days of MD. In the WT group single measurement 
of OKR sensitivity at day 5 led to weaker MD-induced OKR enhancement whereas the 
sensitivity of Nogo-A KO group was increased as strongly as after daily testing. c, d Contrast 
sensitivity of the non-deprived eye increased strongly during 7d of MD in both WT and Nogo-A 
KO mice. Contrast sensitivity in both groups stabilized after 3-4 days of MD and reached higher 
values in Nogo-A deficient mice. e After reopening of the right eye, contrast sensitivity of the left 
eye started to decrease after one day but was significantly higher for Nogo-A KO group and went 
back to baseline by day 7 in both groups. f Contrast sensitivity of the right eye was only slightly 
decreased for WT mice one day after eye reopening but not distinguishable from the baseline for 
both groups at day 7. 
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4.2 Cortical and subcortical visual regions are involved in the optokinetic response 

plasticity 

Visual plasticity is thought to occur mainly at the cortical level. Prusky and colleagues [19] 

observed a 72 % reduction in MD-induced OKR elevation after bilateral V1 ablation. In order to 

determine the relative importance of cortical vs. subcortical structures in the MD-induced OKR 

increase, we monitored the OKR plasticity before and after bilateral V1 aspiration in WT and 

Nogo-A KO mice. Three dimensional brain reconstructions allowed to confirm the lesion of V1 

(Fig. 2a) and that the lesion volume did not differ between WT and KO groups (Fig. 2b). As 

previously reported for WT mice [19], before MD, the spatial frequency sensitivity threshold was 

not affected by V1 cortex aspiration in Nogo-A KO or WT mice (Fig. 2c, d), suggesting that the 

slight, but significant OKR elevation found in intact KO mice is not a result of cortical plasticity. 

Under MD conditions, the OKR sensitivity increased significantly more in Nogo-A KO (after 7 

days of MD: 0.495 ± 0.003 c/d, 20 % above baseline) than in WT mice (0.460 ± 0.003 c/d, 16 % 

above baseline), suggesting that ~50 % of MD-induced plasticity occurred in subcortical regions. 

Taken together, our functional results suggest an important contribution of cortical and 

subcortical brain regions to the visual plasticity in Nogo-A KO mice. 

4.3 Eye-specific segregation of retinal projections is decreased in adult Nogo-A KO mice 

We observed that functional plasticity was partially cortex independent. Therefore, we evaluated 

if Nogo-A deletion influences the retinal projections in subcortical regions. The OKR to 

horizontal stimuli is mediated by the nucleus of the optic tract (NOT) and the dorsal terminal 

nucleus (DTN) in the pretectum and the accessory optic system, respectively, receiving 

projections from the contralateral eye [26, 27]. To visualize retinal ganglion cell (RGC) 

projections in the brain, we anterogradely traced optic nerve axons by injecting cholera toxin β-
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subunit (CTb) conjugated to either Alexa 488 (green; right eye) or Alexa 594 (red; left eye) in the 

intraocular space (Fig. 3a). We did not observe differences between Nogo-A KO and WT mice in 

the size (Fig. S2a, b, e, f) or fiber density (Fig. S2a, b, g, h) of the NOT. We then used the two-

eye terminal segregation paradigm in the dorsal lateral geniculate nucleus (dLGN) to evaluate the 

distribution and possibly plasticity of retinal axons (Fig. 3a). Indeed, the dLGN receives 

projections from the two eyes in well-defined, non-overlapping territories [28, 29]. In adult 

coronal brain sections of intact WT mice, the projections from the two eyes were well segregated 

into central ipsilateral and surrounding contralateral eye territories (Fig. 3b, c). However, in adult 

Nogo-A deficient mice the border between the two eye projections showed a higher overlap (Fig. 

3b, c). We quantified the segregation of the two eye projections in the dLGN using a method 

previously described by Muir-Robinson and colleagues [25]. The eye-specific projections to the 

dLGN were significantly less segregated in intact adult Nogo-A KO mice than in WT mice and 

the difference was apparent in the left and right dLGN (Fig. 3d; at contralateral threshold 30, 

right dLGN: WT 85.6 ± 1.6 vs. KO 70.6 ± 4.2 %; left dLGN WT 80.3 ± 7.5 vs. KO 60.3 ± 7.4 

%). The overall size of the dLGN was not different between WT and KO mice (Fig. 3e). These 

results suggest that the segregation of retinogeniculate terminals is altered in the absence of 

Nogo-A. 

4.4 Monocular deprivation enhances anatomical plasticity in the dorsal lateral geniculate 

nucleus of Nogo-A KO mice 

After normal segregation, eye-specific retinogeniculate projection can destabilize and present 

more overlap due to abnormal retinal activity [30, 31]. Therefore we decided to investigate 

whether Nogo-A influences the retinal projection stability in the dLGN after MD monocularly  
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Figure 2 Cortical and subcortical brain regions contribute to the MD-induced visual acuity 
enhancement  

a Representative dorso-ventral (left) and rostro-caudal projections of the 3D brain reconstruction 
(scale bar 2 mm). The superior colliculi are marked in yellow. Three weeks after bilateral V1 
ablation, the size and position of the lesion was systematically analyzed in 3D reconstructions 
obtained from coronal brain sections. b The volume of cortical lesions was not significantly 
different between WT and Nogo-A KO mice (n = 5 and 6 mice respectively; One-way ANOVA 
with Bonferroni’s post-hoc tests; NS > 0.05; WT left vs. KO left p = 0.673; WT right vs. KO 
right p > 0.999). c The spatial frequency sensitivity of the left eye was not affected by bilateral 
V1 ablation compared with intact animals, and stayed significantly higher in Nogo-A KO than in 
WT mice (e.g. at BL1 p = 0.0023). During right eye MD, the elevation of the spatial frequency 
sensitivity of the left eye was more modest than in intact conditions, but remained significantly 
higher in Nogo-A KO than in WT mice (at 7 days of MD WT 0.460 ± 0.003 vs. KO 0.495 ± 
0.003 c/d; p < 0.001; Two-way RM ANOVA with Bonferroni’s post-hoc tests; ***p < 0.001). d 
The spatial frequency sensitivity of the right eye was not changed by cortical lesions before and 
after eye reopening (WT n = 5, KO n = 6 mice; p < 0.001; Two-way RM ANOVA, between 
groups). 
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Figure 3 Nogo-A deletion decreases eye-specific segregation of retinogeniculate terminals in 
adult mice 

a Eye-specific projections to the dLGN were visualized by anterograde tracing of RGC 
projections with cholera toxin β-subunit tracers conjugated to either Alexa 488 (right eye) or 
Alexa 594 (left eye). The two tracers were intravitreally injected 1 day prior to brain collection. b 
On central dLGN sections, the segregation of ipsi- and contralateral retinal terminals appeared 
incomplete in adult (P60) Nogo-A KO compared to WT mice (dotted white line indicates the 
ipsilateral territory; scale bar 200 µm). c Magnified image from the ipsilateral eye territory shown 
in b (scale bar 100 µm). d Quantitative analysis of terminal segregation represented by the 
percentage of segregated ipsilateral pixels as a function of the contralateral signal threshold. For 
the Nogo-A KO group the segregation curves of the right and left dLGN were shifted to the right-
hand side, indicating a significantly lower degree of segregation than in WT brains (WT n = 5, 
KO n = 8 mice; two-way RM ANOVA with Bonferroni’s post-hoc tests, ***p < 0.001, **p < 
0.01). e Size of the dLGN was not different between the two groups (t-test, right dLGN p = 0.69, 
left dLGN p = 0.31). 
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Supplementary figure 2 Retinal projections in the nucleus of the optic tract  
a-d Representative images of the midbrain coronal sections containing the nucleus of the optic 
tract (NOT; dashed line), rostral end of the superior colliculi (SC) and pretectal nuclei (OPT 
olivary, PPT posterior and MPT medial pretectal nucleus). CTb tracing of retinal projections 
from left (red) and right (green) eye did not reveal anatomical changes in the organization of 
retinal projections in the NOT in the intact or MD Nogo-A KO mice (scale bar 200 µm). e, f The 
size of the NOT was measured on 3 consecutive sections in the rostral part of the superior 
colliculus. The size did not differ significantly between groups. g, h The density of the retinal 
terminals in NOT did not differ significantly between groups, p>0.05.  
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To test this, we deprived the right eye of adult WT and Nogo-A KO mice for 10 days, and traced 

retinal projections from both eyes with CTb without reopening the MD eye (Fig. 4a). After MD, 

the quantification of eye-specific projection segregation in the left dLGN revealed a non-

significant shift in the segregation curve of the WT group (Fig. 4b, c; at contralateral threshold of 

30: WT+MD: 68.079 ± 7.193 %). However, in the Nogo-A KO mice, MD significantly increased 

the overlap between the open eye and closed eye projections in the left dLGN when compared to 

the intact KO group (Fig. 4b, c; at threshold 30; KO+MD: 44.424 ± 9.924 %). In the right dLGN, 

MD did not cause detectable change in retinal projections segregation (Fig. 4d). However, in the 

right dLGN we noticed unusual occurrences of open eye projections in the middle of the 

ipsilateral territory of the closed eye. We therefore analyzed the ectopic open eye projections on 

higher resolution confocal images. In the intact condition, the density of contralateral terminals in 

the center of the ipsilateral eye territory was low and not significantly different between WT and 

KO mice (Fig. 4f; WT: 3.789 ± 0.547 % of ROI; KO: 5.644 ± 0.685 % of ROI; p = 0.473). 

However, compared with non-deprived animals, ectopic terminals from the open eye were 

significantly increased in this area of the dLGN in Nogo-A KO mice and covered 8.687 ± 0.710 

% of the selected region (Fig. 4e, f; p = 0.036). In contrast, in WT mice only a trend toward an 

increase in the density of ectopic projections was observed after MD (5.257 ± 0.805 % of ROI; p 

= 0.881). After MD, we did not observe size (Fig. S2c, d, e, f) or fiber density changes (Fig. S2c, 

d, g, h) in the NOT of Nogo-A KO or WT mice. These results suggest that Nogo-A inactivation 

promotes ectopic terminal formation in the dLGN in the MD plasticity paradigm. 

4.5 Formation of ectopic eye terminals in the Nogo-A KO dorsal lateral geniculate nucleus 

In order to determine how ectopic terminals from the open eye developed in the Nogo-A KO 

dLGN after MD, RGC axons were labeled by transducing retinal ganglion cells with AAV2.GFP 
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(Fig. 5). MD of the right eye was performed three weeks after intravitreal injection of the 

AAV2.GFP vector in the left eye, and the terminals of the two eyes were visualized by injecting 

CTb-594 in the open eye and CTb-647 in the closed eye, one day before tissue collection (Fig. 

5a). On coronal brain sections, a high density of GFP-filled axons was observed in the 

contralateral (right) and ipsilateral (left) dLGN receiving inputs from the open eye (Fig. 5b). 

Some of the GFP-labeled axons crossing the ipsilateral territory of the closed eye (blue) showed 

CTb-594-containing terminals (Fig. 5c). The superimposition of the three signals revealed the 

distribution of the CTb-594-positive varicosities and bouton-like structures on the course of GFP-

filled fibers (Fig. 5d). Often several CTb-594-stained swellings appeared on the same axonal 

segment, indicating that ectopic terminals from the open eye may stem from contralateral axons 

normally passing through the closed eyes ipsilateral territory. Moreover, the density of the CTb-

594-labeled open eye terminals was found to increase along with the density of GFP-labeled 

axons in the center of the closed eye ipsilateral territory in monocularly deprived Nogo-A KO 

mice compering with intact Nogo-A mice (Fig. 5e). These results suggest that Nogo-A gene 

deletion facilitates the formation of en passant varicosities and possibly also axon terminal 

sprouting from the open eye after monocular deprivation. 
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Figure 4 Monocular deprivation induces anatomical plasticity of retinal terminals in the 
dLGN of adult Nogo-A deficient mice 

a The right eye of adult (P60) WT and Nogo-A KO mice was suture-closed for 10 days (MD). 
One day before brain fixation, both eyes were traced with CTb (right eye 488, left eye 594) 
without reopening the MD eye. b Coronal brain sections showing CTb-labeled retinal projections 
after ten days of MD in the dLGN of WT and Nogo-A KO mice (scale bar 200 µm). c Threshold-
dependent quantification after MD revealed a decrease in eye-specific projection segregation in 
the left dLGN of Nogo-A KO but not in WT mice relative to intact mice. d The eye-specific 
projections segregation in the right dLGN was not affected by monocular deprivation (Two-way 
RM ANOVA with Bonferroni’s post-hoc tests, ***p < 0.001, **p < 0.01, NS > 0.05). e In the 
right dLGN of Nogo-A KO mice, MD induced ectopic open eye projections (red) in the 
ipsilateral field innervated by the closed eye (green) as shown on merged confocal microscopy 
image stacks (20 µm) of the right dLGN ipsilateral territory. Ectopic projections from the open 
eye were more numerous in Nogo-A KO than in WT mice in the center of the closed eye 
ipsilateral territory (scale bar 50 µm). f The percentage of area occupied by ectopic projections 
was automatically calculated with the ImageJ software on binarised images (e; right-hand side) in 
a 100 x 100 µm region of interest (red box) placed in the center of mass of the closed eye ipsi 
territory. This quantification confirmed a significantly higher number of ectopic projections from 
the open eye of Nogo-A KO mice (p = 0.036) after MD, whereas in WT mice MD had no effect 
(p = 0.88); one-way ANOVA, Bonferroni’s post-hoc tests).  
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Figure 5 Open eye ectopic projections form as en passant varicosities in the dLGN of Nogo-
A mice after MD  

a AAV2.GFP vector was intraocularly injected in the left eye 3 weeks before deprivation of the 
right eye. CTb-594 or CTb-647 were injected in the vitreous the day preceding tissue fixation. 
The same injections time course was used for intact Nogo-A KO mice. b The GFP signal and the 
CTb fluorescence were imaged by confocal microscopy. Low magnification images show high 
densities of GFP-positive open eye axons in the contralateral (right) and ipsilateral (left) dLGN. c 
At high magnification, many GFP-labeled axons crossed the ipsilateral territory of the closed eye 
d Examples of single fiber labeling. The merge of the 3 fluorescent signals revealed CTb-594-
positive varicosities on the course of GFP filled axons (scale bars, b: 200 µm, c: 100 µm, d: 25 
µm). e Monocular deprivation in Nogo-A KO mice increased the density of CTb-594-positive 
varicosities and GFP-positive fibers in the center of the closed eye ipsilateral territory. The 
quantification of the percentage of area occupied by CTb-594 signal as a function of GFP signal, 
was calculated in a 100 x 100 µm ROI in the center of the right dLGN as in Fig. 4 f. Single data 
points represent individual brain sections, shades of color represent individual animals (n = 3 
mice). 
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5 Discussion 

In the present study, we showed that genetic deletion of Nogo-A potentiated the MD-induced 

enhancement of the OKR spatial frequency and contrast sensitivity in adult mice, in part 

independently of the visual cortex, demonstrating that the OKR plasticity can be improved by 

removing the neurite growth inhibitory protein Nogo-A. In the dLGN, Nogo-A KO mice showed 

decreased eye-specific segregation of retinal projections. This feature was potentiated by MD, 

suggesting that Nogo-A can modulate visual experience-induced plasticity in subcortical regions 

of the adult mouse brain. 

The visual cortex is thought to be the most plastic structure in the visual system. Modulation of 

visual experience can induce ocular dominance shift, during the critical period and to a lower 

extent as well beyond P30 and in adult mice [32-34]. Our data suggest that ~50 % of the 

enhancement in the OKR sensitivity induced by MD in Nogo-A KO mice was due to cortical 

plasticity. It has been previously shown by McGee and colleagues [7] that cortex myelination, 

and therefore increased Nogo-A expression, played a key role in the closure of the critical period. 

The genetic removal of the Nogo receptor NgR1 or of Nogo-A/B greatly enhanced the ocular 

dominance shift after brief MD in adult mice (P45 and older), suggesting that Nogo-A inhibits 

neuronal plasticity via NgR1 activation. Moreover, the neutralization of PirB, another receptor 

for Nogo-A increased cortical plasticity in adult animals [35]. In addition, proteoglycans present 

around neurons can restrict plasticity; enzymatic digestion of chondroitin sulfate proteoglycans 

(CSPGs) in the perineuronal nets restored ocular dominance shifts after MD in adult rats [8]. 

Interestingly, a recent study reported that NgR1 binds not only Nogo-A but also CSPGs 

suggesting signaling convergence of those inhibitors on the same transduction mechanisms [36].  
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We found that MD could still induce spatial frequency sensitivity increase after cortex ablation in 

WT and Nogo-A KO animals, suggesting that subcortical brain regions play an important and so 

far underestimated role in the OKR plasticity. Two important nuclei, the nucleus of the optic tract 

(NOT) and the dorsal terminal nucleus (DTN) in the subcortical visual system control the OKR in 

response to horizontally moving stimuli independently of the visual cortex [37-39]. Accordingly, 

the ablation of the visual cortices did not change the baseline of the OKR sensitivity. It was 

previously reported that cortical aspiration strongly but not fully diminished the elevation of 

OKR sensitivity after MD [19]. Our results further substantiate that the OKR sensitivity increase 

is partially due to subcortical nuclei that could involve direct retinal projections to the DTN and 

NOT. A LTP-like strengthening of synaptic contacts by Nogo-A removal may take place in this 

process [15, 16]. It is not clear how the eyelid closure of the right eye could influence the 

synaptic contacts of the left open eye terminals in these nuclei, as they receive mostly if not 

exclusively contralateral projections [40, 41]. In addition, we did not find any deficits in visual 

acuity of the deprived eye after eye reopening. Therefore, the increased OKR sensitivity in the 

open eye during MD unlikely involves direct competition between the two eye projections in the 

same nuclei, contrary to what has been described during postnatal maturation of the lateral 

geniculate nucleus [42]. Anatomically, we could not observe detectable changes in size or in 

retinal fiber density in the NOT after MD (Fig. S2). 

However, in the Nogo-A KO dLGN the degree of eye-specific axon segregation was significantly 

lower than in WT animals. This phenotype may result from the alteration of terminal maturation 

that normally occurs during the first two postnatal weeks in mice [43]. However, it could also 

reflect the decreased stabilization of the visual circuit in adult mice [14]. The weaker terminal 

stability hypothesis is supported by the changes observed here in Nogo-A KO mice after MD. In 

Nogo-A KO mice, eyelid closure decreased even more the segregation between open eye and 
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closed eye projections in the left dLGN. Furthermore, in Nogo-A deficient mice MD promoted 

ectopic terminal formation from open eye axons. The gain of ectopic terminals after MD in the 

Nogo-A KO dLGN could be related to the increased turnover of axonal varicosities that has been 

reported in the somato-sensory cortex of adult NgR1 KO and Nogo-A/B KO mice [14]. 

Importantly, in Nogo-A KO mice, 10 days of MD increased the density of ectopic fibers from the 

open eye, suggesting that axonal growth had occurred. 

Although the retinogeniculate synapses of adult mammals have been considered as stable and 

insensitive to visual experience changes, recent studies by Hooks and Chen [10, 11] challenged 

this view. The authors demonstrated that initial visual experience is necessary to allow the 

plasticity of retinogeniculate synapses after dark rearing and that the plasticity is limited to a 

specific “sensitive period”. As shown in this study, Nogo-A is involved in the stabilization of 

retinal afferents in the dLGN of the adult mice. 

In summary, the current study demonstrates that Nogo-A limits the plasticity of the adult mouse 

visual system not only at the cortical but also at a subcortical level. We propose that acute 

neutralization of Nogo-A with function blocking antibodies may be a new strategy to restore 

visual experience-driven plasticity in adult amblyopic patients and thereby aid in the treatment of 

visual dysfunction. 
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In this thesis, I addressed the influence of the nerve fiber growth inhibitory protein Nogo-A on 

the anatomical maturation and the functional and the anatomical plasticity of the visual system.  

In chapter 2, I analyzed the expression pattern of Nogo-A and its receptors NgR1 and S1PR2 in 

the visual system. In the retina, Nogo-A protein was strongly expressed in early postnatal retinal 

ganglion cell bodies (RGCs) and their axons, but its expression was down-regulated by postnatal 

day 6 (P6), when Nogo-A started being predominantly expressed in Müller glia cells and the 

vitreal endfeet, surrounding the RGC bodies. This pattern of expression was also observed in the 

adult retina. Both Nogo-A receptors, NgR1 and S1PR2, were expressed in the retina, but the 

S1pr2 mRNA was down-regulated to a lower level before P10, whereas the expression of Ngr1 

mRNA was moderately decreased until adulthood. In the retina, the NgR1 protein was 

exclusively expressed in the RGC bodies and axonal fascicles. In the brain, Nogo-A was strongly 

expressed in oligodendrocytes in the optic nerve and in neurons and oligodendrocytes in the 

dorsal lateral geniculate nucleus (dLGN) and in the primary visual cortex (V1) as well as in the 

non-visual brain regions. Therefore, the NgR1 receptor could sensitize RGCs to Nogo-A 

expressed in the subcortical visual system.  

Furthermore, in chapter 2, I analyzed whether systemic Nogo-A deletion affects developmental 

refinement of retinogeniculate terminals, similarly to what has been described for climbing fibers 

in the cerebellum [1]. The Nogo-A down-regulation in the RGCs between P4 and P6 correlates 

with ongoing refinement of retinal projections, suggesting that Nogo-A down-regulation in axons 

might be required to allow the stabilization of terminals in the brain, similarly to what has been 

shown in the cerebellum [2]. At P10, just after refinement, the eye-specific segregation of retinal 

terminals in the dLGN was not affected by genetic ,Nogo-A deletion; however as I described in 

chapter 3, the eye-specific segregation of retinal terminals was lower in adult Nogo-A KO than in 
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WT mice suggesting a decreased stabilization of the circuit in the absence of Nogo-A. 

Alternatively, the complete segregation at later developmental stages of the eye-specific 

projections may fail to occur in Nogo-A KO mice between P10 and adulthood.  

A desegregation of retinal terminals in the dLGN has been observed in two studies in which stage 

III retinal waves occurring after initial refinement of retinal terminals were pharmacologically [3] 

or genetically [4] blocked during the LGN plastic period. Therefore, it would be interesting to 

determine whether Nogo-A deletion affects retinal activity. Favoring the circuit stabilization 

hypothesis, Nogo-A and its receptor NgR1 have been shown to limit ocular dominance (OD) 

plasticity in adult brain, an effect that was attributed to Nogo-A expressed in myelin of the visual 

cortex, which matures at the time of the closure of the plastic period [5]. Up to now, the 

subcortical visual system was considered to be much less plastic than the visual cortex; however, 

at least at the functional level, altered visual experience has been shown to promote synaptic 

plasticity in retinogeniculate synapses during the developmental sensitive period starting at ~ P20 

and finishing at ~ P32 [6, 7]. Whether this plasticity is also accompanied by structural changes 

had not been investigated. Therefore, to test whether abnormal visual experience caused by 

monocular deprivation can promote anatomical plasticity in the subcortical visual system, in 

chapter 3, I analyzed eye-specific terminal segregation after 10 days of MD. In adult Nogo-A KO 

mice, MD caused significant desegregation of retinal terminals as compared to intact Nogo-A KO 

mice. In adult WT mice, the MD effect was not significant, suggesting again that Nogo-A may 

limit axonal and synaptic sprouting in the subcortical visual system during adulthood. After MD 

in adult Nogo-A KO mice, we observed formation of ectopic open eye terminals in the ipsilateral 

territory innervated by the closed eye, a phenomenon which suggests increased plasticity of 

axonal branches and synapses. It would be interesting to test, whether monocular deprivation 

during the retinogeniculate sensitive period (P20-P32) would be associated with structural 
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rearrangements. In the study by Hayakawa and Kawasaki [8], long term MD starting before the 

sensitive period at P10 until P35 did not cause significant expansion of the open eye ipsilateral 

domain, contrary to the dramatic expansion observed after monocular enucleation (ME). When 

the ME was performed after the sensitive period at P34 and the anatomy examined at P60 the 

expansion was not apparent, suggesting that anatomical plasticity of the retinogeniculate 

terminals is limited to the sensitive period. Therefore, I propose that Nogo-A expression in 

myelin may be involved in the closure of the retinogeniculate sensitive period which would be 

then different from the down-regulation of Nogo-A in RGCs. It would also be interesting to know 

if in Nogo-A KO mice the relay LGN neurons at the border between two eye domains are 

innervated by both eyes and how the decreased segregation of retinal terminals is reflected in the 

visual cortex, on the anatomical and functional level. In the study by McGee and colleagues [5] 

the receptive field size and the cortical evoked and spontaneous activity was not affected by 

Nogo-A/B deletion.  

Apart from anatomical plasticity in the subcortical visual system, we tested also the functional 

plasticity. The function of the subcortical visual system can be tested using the optokinetic 

tracking response (OKR) which is a reflexive head movement in response to large scale motion 

of the visual field. For the horizontally moving stimulus this behavior depends on the retinal 

projections to the pretectal and accessory optic system nuclei, that are the nucleus of the optic 

tract (NOT) and the dorsal terminal nucleus (DTN). As shown in chapter 3, in intact adult Nogo-

A KO mice, we observed higher spatial frequency sensitivity which, together with contrast 

sensitivity, was more enhanced than in WT mice after MD. The initial higher sensitivity, before 

MD, was cortex-independent as it was not affected by the visual cortex ablation. The visual 

cortex seems to be involved in the plastic increase of OKR after MD; however subcortical 

structures might also contribute to this process, since MD was still able to induce moderate OKR 
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increase after bilateral visual cortex ablation. It is possible that this phenotype might involve also 

the cerebellum, which has been shown to play an important role for the OKR motor learning [9, 

10]. Accordingly, adult Nogo-A KO mice show a higher density of innervation from both 

climbing (CF) and parallel fibers (PF) on Purkinje cells (PC) and increased synaptic transmission 

between PF and PC [1]. These anatomical changes may affect the vestibular and oculomotor 

performance and OKR learning. Accordingly, overexpression of Nogo-A in the Purkinje cells in 

adult mice has been shown to impair motor learning as assessed by the eye-blink conditioning 

test [2]. 

Finally, it would be interesting to assess whether acute blockage of Nogo-A in the adulthood e.g. 

by the administration of function blocking antibodies or by blockers of Nogo-A receptors would 

lead to similar OKR and anatomical retinogeniculate plasticity as that reported here after 

systemic Nogo-A deletion. Additionally, the role of Nogo-A and Nogo-A receptors in the 

plasticity could be addressed by cell type-specific knock-outs or knock-downs in 

oligodendrocytes, brain neurons or retinal ganglion cells. As we have shown that in the LGN and 

the visual cortex Nogo-A is expressed in both oligodendrocytes and neurons, distinguishing 

between the functions of Nogo-A in these two cell populations would be of great interest. In the 

CNS, myelination occurs at the final stage of neuronal circuit maturation and limits axonal 

growth and rearrangement [11]. It has been shown that the extent of myelination negatively 

correlates with the expression of growth-associated proteins such as GAP-43 [12]. On the other 

hand, neuronal Nogo-A and its receptor NgR1 have been shown to restrict long- term potentiation 

(LTP) without affecting the baseline synaptic transmission [13, 14]. To address the respective 

role of myelin and neuronal Nogo-A, one could take advantage of the cell-specific conditional 

Nogo-A KO mouse lines. All these approaches could help us to dissect the mechanism by which 

Nogo-A restricts plasticity in the adult visual system.  
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