mzuriCh ETH Library

Data Cleansing for Food
Composition Data

Master Thesis

Author(s):
Hochuli, Alexandra

Publication date:
2014

Permanent link:
https://doi.org/10.3929/ethz-a-010129946

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-010129946
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Data Cleansing
for Food Composition Data

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Master Thesis

Alexandra Hochuli
<hochulia@student.ethz.ch>

Prof. Dr. Moira C. Norrie
David Weber

Global Information Systems Group
Institute of Information Systems
Department of Computer Science

7th April 2014

Copyright (©) 2014 Global Information Systems Group.

Abstract

This Master thesis gives an overview of data cleansing problems by analysing the Swiss Food
Composition Database (SFCD). Databases can contain incorrect, incomplete or duplicate
entries. Such problems need to be cleaned. Existing problems of the SFCD data are presen-
ted and solutions using data cleansing methods and approaches are discussed to solve them.
Additionally, open source tools for data cleaning are presented that could be useful to clean
data automatically. Furthermore, a Food Matching Tool is presented which was developed
during this thesis. The tool matches food items of two food sets by only using the names
of the foods and food classifications. A food can for example be classified with categories
like fruit, vegetable or milk product. This is useful information to match foods. The matches
proposed by the tool can then be used to find duplicates in a food database or to enhance food
data of one data source with food data of another source.

iii

iv

Contents

1 Introduction 1
1.1 Motivation for Data Cleansing 2
1.2 Motivation for this Master Thesis 3
1.3 Structure 4

2 Background 5
2.1 Data cleansing process 5

2.1.1 Dataauditing 5
2.1.2 Workflow specification 5
2.1.3 Workflow execution and verification 6
2.1.4 Post-processing and backflow of data 6
2.2 Methods e 6
221 Parsing 6
2.2.2 Data transformations oL 6
2.2.3 Duplicate elimination 0L 6
2.2.4 Statistical methods oL 7
2.2.5 Similarity methods 0oL 7
2.3 Datacleansing tools Lo 8
2.3.1 SQL Power DQguru 8
2.3.2 OpenRefine 8
233 Othertools 8
2.4 Food Composition Data, . 9
2.4.1 Swiss Food Composition Database 9
2.5 Total Diet Study 9
2.6 FoodCASE 9
2.6.1 Data Quality Analysis Tool 9

3 Data quality issues of the Swiss Food Composition Database 11

3.1 General problems 11
3.1.1 Rounding problems 11
3.1.2 Quotation marksasvalues. 11
3.1.3 English names missing 12
3.1.4 Different formats 12
3.1.5 Null in relationship table 12
3.1.6 Redundancy of samples and methods 12
3.1.7 Misfielded data L 13
3.1.8 Legacydata 13

CONTENTS

3.2 Analysis using the Data Quality Analysis Tool 13
3.2.1 Automatic correction. 13
3.2.2 Manual correction 14
3.2.3 Correction with choice 14
3.24 Correction by atool L. 14

3.3 Approaches for duplicate detection 14
3.3.1 Table tblreference, 14
3.3.2 Table tblsinglefoodcomponentsample 14
3.3.3 Table tblmethod 15
3.3.4 Table tblsinglefoodcomponent 15
3.3.5 Table tblsinglefood L. 15

Approach: Food Matching Tool 17

4.1 Motivation e 17

4.2 OVerview e e 18
4.2.1 Matching step definition oo 18
4.2.2 Sequence matchingo Lo 19
4.2.3 Weighted matching o . 19

4.3 Facet matching L Lo 20
4.3.1 Food classification theory 20
4.3.2 Single facet matching Lo 21
4.3.3 Multiple facet matchingo 23
4.3.4 Similarity for facet matching 24

4.4 Food name matching 25

4.5 Exploitationo 25
4.5.1 Version and study theory 26
4.5.2 Exploitation process L oo L 26

4.6 Matching scenarios oL Lo oo 28
4.6.1 Sequence matching o oL 28
4.6.2 Weighted matchingo 0. 28

Implementation 31

5.1 Food Matching Java classes 31

5.2 Food data representation 0oL 33

5.3 Matching steps 33
5.3.1 Facet matching 33
5.3.2 Name matching 35

5.4 Matching storage 37

5.5 Exploitation e 37

5.6 Matching scenarios 39
5.6.1 Sequence matching 39
5.6.2 Weighted matching 39

Extensibility 43

6.1 LangualL classification 43

6.2 Combination of multiple facet classifications 43

6.3 Combination of food name matchings 44

CONTENTS

vii

6.4 Similarity methods for name matching
6.5 Additional food data sources . . .

7 Evaluation

7.1
7.2
7.3
7.4
7.5
7.6

8 Discussion
Justification of facet matching

8.1

8.2
8.3
8.4

9 Conclusion

Contribution
9.2 Future Work
Classification mapping . . .
Facet matching
LangualL classification . . .
Food Consumption Data . .

9.1

Test data
Parameters
Matching of fruits
Evaluation scheme
Sequence of steps vs. Weighted matching

Exploitation

8.1.1 Common facets and their levels
8.1.2 Parent facets
8.1.3 Other facet matching approaches

Justification of Exploitation
Variants of food name matching
Brute force matching

9.2.1
9.2.2
9.2.3
9.24
9.2.5

A Appendix

A.1 Java classes

Combination of food names

B Abbreviations

44
44

45
45
45
46
46
47
48

o1
o1
o1
o1
52
23
93
54

95
95
95
95
o6
o6
56
o6

o7
o7

63

viii CONTENTS

Introduction

Data cleansing is about correction and improvement of data in a database. In an ETL (Extract-
Transform-Load) process, where data from different data sources is extracted, transformed
and then loaded into a new database, data cleansing is of high importance. An example is
shown in Figure 1.1 where customer data from two data sources is extracted and loaded into
a new database table. The person James Black appears in both data sources, but the last name
is written differently. The birthday is the same date in both sources, but the date format is
different. In the new database table the customer James Black appears now twice, but once
with a typing error in the last name and the date format is not consistent.

DataSourcel
James Black |01-01-1980 \
James Black |01-01-1980
DataSource2
/7 James Blak |01/01/1980
James Blak |01/01/1980

Figure 1.1: Duplicates in ETL process

The goal of data cleansing in this example would be to correct the typing error and to trans-
form the dates into the same format, such that duplicate customers can be detected and elim-
inated. The duplicate elimination of customers reduces the costs of a company because less
letters to the customers have to be sent. Additionally, customers are not annoyed by receiving
the same letter several times. Another advantage of duplicate elimination is that statistics
about the customers can be improved, as for example the average age of customers is not
correct with duplicates in the database.

Data cleansing operates on the data which is already in the database. To avoid inconsistencies
in the format, such as the date of birth in Figure 1.1, the text fields where the data is entered
into the system or database should be validated, such that only a certain format of the text is

2 1.1. MOTIVATION FOR DATA CLEANSING

allowed. Another validation could be, that only numbers or only letters are allowed in a text
field. But even if the data validation is realised carefully, certain errors are not avoided, such
as typing errors or if data is entered several times to the database which results in duplicates
within the database. Therefore, data cleansing is still needed even though data validation is
present.

1.1 Motivation for Data Cleansing

As the customer example shows, it is important that there are no duplicates in a database,
i.e. that a real world item, for example a customer, should not be represented by more than
one database entry. Usually, the database entries that represent the same real world object are
not exactly the same. They can contain for example spelling errors in the street name or the
telephone numbers do not have the same format.

In [7] data cleansing problems and anomalies are discussed. The following list presents some
of them and possible solutions are mentioned:

* Typographical errors: As shown in the introduction example in Figure 1.1 misspellings
can happen when the data is entered into the system. Typing errors could be found by
comparing the words to a reference dictionary.

¢ Standardisation, harmonisation: In the whole data set that should be cleaned, the same
dictionaries and abbreviations should be used for same real world objects. An example
is shown in Figure 1.2 where the same unit is represented with two different words,
namely *'mg’/’milligram’ and ’g’/’gram’.

Nutrient | Value Unit

nutrientl 100 mg

nutrient2 | 224 | milligram

nutrient3 4 gram

nutrientd 1 g

Figure 1.2: Units are not standardised

e Uniformity: The same units and currencies should be used within a database table
column, such that they could be compared directly. In Figure 1.2 for example, some
values are given in milligrams, others in grams. These values need to be transformed
into the same unit first, before they can be compared.

» Data enhancement: Additional data is added to a database entry. This data could be
obtained from external sources by identifying that it is the same real world item, or by
merging information with another database entry, which represents the same real world
item.

* Analysis of database schema: Data types of columns should be appropriate, e.g. if the
field expects a number, the type should be number, not text. If values should be within

CHAPTER 1. INTRODUCTION 3

a certain range or part of a certain set or should not be null, corresponding database
constraints should exist. For each column or combination of columns which should be
unique, a unique constraint should exist. All possible foreign keys should be set.

* Patterns: If a field should only accept values of a certain pattern, a regular expression
can be created to ensure this pattern.

* Cross-field validation, attribute dependencies: These are constraints including several
columns of a database table. Figure 1.3 shows an example where the values of the
columns ’Birthday’ and Age’ are correlated.

Birthday | Age

01.01.1990 | 24

01.01.1992| 24

Figure 1.3: Birthday and age are correlated

* Outlier detection: Outliers, as 'mg’ or 10134’ of Figure 1.4, are often indicators for
errors in a database. Therefore, one of the goals of data cleansing is to find outliers.

Value Value
124 2
189 8
348 10134
mEg 4
799 10

Figure 1.4: Outliers

1.2 Motivation for this Master Thesis

There exist quite a lot of data cleansing tools with focus on address data. This master thesis
focuses on food composition data by analysing the SFCD and proposing solutions how to
clean the data cleansing issues and anomalies that were found. The tool developed during
this master thesis is a Food Matching tool, which matches food items of two food sets. The
resulting matches could be used to find duplicates in the database, for example after an in-
tegration of multiple food sets, or to enhance the food data of one set with the information
provided by the other set.

4 1.3. STRUCTURE

1.3 Structure

In Chapter 2 the theory about data cleansing, including methods and tools used for data
cleansing, and theory about food composition data is explained. In Chapter 3 the SFCD is
analysed and data cleansing problems of the SFCD data are presented. Chapter 4 describes
the approach of the Food Matching tool, which was developed during this master thesis.
Chapter 5 shows implementation issues of the Food Matching tool and Chapter 6 explains
how the tool could be extended. Chapter 7 presents evaluation results of matching two food
sets using the Food Matching tool. In Chapter 8 methods and decisions which were needed
for the realisation of the tool are justified. Finally, Chapter 9 summarises the work done
during the master thesis, explains the contribution again, and presents future work.

Background

In this chapter general theory about data cleansing is presented, including the data cleansing
process, methods and tools for data cleansing. Furthermore, an introduction to food compos-
ition data and the SFCD is given.

2.1 Data cleansing process

In this section the data cleansing process is described. To clean data of a database, several
steps and tasks are needed, each responsible for one data cleansing issue of the data. The order
in which these tasks are executed is essential to optimise the process and to not introduce
new problems in the data. In [8] and [11] the data cleansing process is explained which is
summarised in the following.

2.1.1 Data auditing

At the beginning of the process, the data in the database is analysed to find problems in data
quality. For this analysis, for example statistical methods like mean and standard deviation
could be used to find outliers in a database column. Another method to analyse the data is
to use SQL queries on the database. The goal of this process step is to find anomalies or
contradictions in the data.

2.1.2 Workflow specification

As soon as the problems of the data are detected, data cleansing steps can be defined for each
problem. The sequence in which these steps should be executed, also called the workflow,
needs to be specified. The optimal workflow can be found by clearly analysing the cause of
the errors and the anomalies. When the data, that should be cleaned, comes from multiple
databases, it is recommended to clean first the data within each database, then to integrate the
data from the multiple databases, and finally to clean the integrated database [8].

6 2.2. METHODS

2.1.3 Workflow execution and verification

The specified workflow is executed on samples of the data or a copy of the data to test the
workflow. During the cleansing steps the data can be replaced, modified or deleted. The res-
ults of the execution are verified and analysed. If the results are not satisfying, the workflow
is improved by specifying new or adapted transformations and is executed again. This is done
iteratively until the results are good. The workflow should also be efficient as for large data
sets the cleansing process takes a lot of time.

2.1.4 Post-processing and backflow of data

Finally the workflow is executed on the whole data set. The results are also verified and can
be corrected manually if necessary. The data of the original database should be replaced with
the cleaned data, such that applications that are using the original data have access to the
cleaned data. This also avoids re-cleaning of the same data in future data extractions.

2.2 Methods

In this section possible data transformations and machine learning methods that can be used
for data cleansing are presented.

2.2.1 Parsing

Regular expression parsing can be used to find syntax or format errors in database entries
[11]. When dealing with schema integration, parsing can be used to match columns of dif-
ferent databases or tables, for example by comparing the words or values that are written in a
column, or by comparing the labels of different columns. Regular expressions can be learnt
by ’learning by example’ techniques as described in Potter’s Wheel [9]. Hidden Markov
models can be used to learn how probable a regular expression is in the training data [3].
However, to capture all the possible syntax and format errors of the database entries, a huge
amount of regular expressions is needed, which is expensive in the learning phase and the
evaluating phase of new data.

2.2.2 Data transformations

In data cleansing, decomposing and reassembling data is an important part [6]. Data trans-
formations are applied to get a more unified form of the data, such that the data entries are
better comparable. This is useful for example to find duplicates in the data set or to get more
representative statistics from the data. Possible transformations are for example to map data
into a new format [11], to split free-form attributes if several attributes were written into the
same field, or to split or merge, also called unfold and fold, attributes [8]. Other transforma-
tions are standardisation, such that standard codes are used, and normalisation where values
are transformed for example into the same unit.

2.2.3 Duplicate elimination

Duplicate elimination, also called deduplication, is the process of finding and eliminating
duplicate data entries. An ideal database should contain exactly one representation of a real

CHAPTER 2. BACKGROUND 7

world object. If a database contains more than one representation of one real world object,
these representations are called duplicates. To find duplicates in a database, first similar
entries have to be found [8]. Often this is done by mapping the data to keys, such that sim-
ilar entries are mapped to the same key [11]. If the keys are chosen well, it is assumed that
duplicates only occur among the entries which were mapped to the same key, such that the
search space for duplicates becomes much smaller. In [3] the same principle is described
as blocking, where entries are hashed, based on their attributes, and duplicates are searched
only within entries of the same hash bucket. In [4] the basic sorted neighbourhood method
is described, where keys for example are created by some letters from each attribute, then
the keys are sorted and compared within a sliding window. For comparison some rules us-
ing equational theory can be defined to find out, if the records of the corresponding keys are
similar. In [4] a multi-pass approach is also described, which generates several keys for one
record and uses the transitive closure to find duplicate candidates.

If duplicates could be found, the records have to be merged somehow into one new record.
One possibility is to pick the value that appears more frequently or the value of a more au-
thentic source [3].

2.2.4 Statistical methods

Statistical methods like mean, standard deviation, ranges or clustering can be used to find
unexpected values, correct values, or fill in an average value in records where the value is
missing [11]. To find outliers, the Chebyshev’s theorem can be used, which says, that values
should lie within a certain number of standard deviations from the mean [6]. Another method
to find outliers is using association rules [6]. Association rules are rules that define depend-
encies between several attributes. An ordinal association rule, which describes dependencies
between attributes with the operators <=, =, >=, has confidence c if for ¢% of the records
the rule holds. To find outliers rules with high confidence, e.g. 98%, are considered.

2.2.5 Similarity methods

To compute the similarity of strings or sets, different similarity methods and metrics exist . In
[3] some of them are presented. In the following these similarity methods are summarized:

* The Jaccard similarity is a common method to measure the similarity of two sets A

and B. It uses the intersection and the union of the two sets. Formally, the Jaccard
_ |AnB|
~ JAUBJ

similarity is defined as sim(A, B)

* The Levenshtein distance, also called edit distance, is a similarity method for strings.
The number of operations is counted to transform one string into the other one using
insertion, deletion and replacement of characters [10].

* N-grams are used to measure the similarity of strings. The strings are divided in shorter
strings of length N. These shorter strings, also called N-grams, build a set, such that
the original string is represented by a set of strings. Using 3-grams for example, the
string "apple’ is transformed into the set { app’,’ppl’,’ple’ }.

* Soundex, which determines the similarity of strings based on the phonetic, or the cosine
distance are other similarity methods.

8 2.3. DATA CLEANSING TOOLS

2.3 Data cleansing tools

While analysing the different data cleansing techniques, also several data cleansing tools were
investigated in the context of this Master thesis. The focus was on open source tools, because
if the SFCD turned out to be cleansable with a data cleansing tool, one of these tools could
have been used or extended to clean th SFCD data. Therefore, the functionalities they provide
and the data cleansing problems they deal with were studied.

2.3.1 SQL Power DQguru

The SQL Power DQguru! is an open source tool for data cleansing. The user can select a
database table he wants to clean. The tool provides several data transformations to trans-
form the values of a database column, such as Lowercase, Uppercase, Empty String to Null,
Boolean to String, Trim Spaces, Word Count, Concatenation, Substring and Sort Words. De-
duplication is also provided. For the deduplication, the user has to specify which columns of
the database table should be considered. If the values of two database entries are equal in all
of these columns, the entries are duplicates according to the tool. Additionally, SQL Power
DQguru provides address cleansing. After the cleansing, the tool writes the cleaned data
back into the same database table, such that the original table is modified. If the original table
should not be modified, the user should copy the table first and then apply the data cleansing
tool onto this copied table.

2.3.2 OpenRefine

OpenRefine? is an open source data cleansing tool developed by Google. The data can be
imported from files with comma separated values amongst others, but it is not possible to
directly load the data from a database. However, after importing the data it is represented in
columns. The tool provides several data transformations, such as Lowercase, Uppercase or
Trim whitespaces. The values of a column can be clustered using different distance methods
which the user can choose. By using this clustering functionality, the user could detect near
duplicates. However, the clustering can only be applied on the values of one column at the
time, such that it is not possible to find duplicates considering multiple columns as in the SQL
Power DQguru. OpenRefine does not provide deduplication. Nevertheless, the tool provides
other interesting functionality, such as enhancement. The data can be enhanced by using web
services or Freebase®, which is an online database that anyone can use. After the data has
been transformed by the OpenRefine tool it is stored to a file again.

2.3.3 Other tools

Another tool that may be useful for data cleansing tasks is DataWrangler [5], which can be
used to reorder and transform data. Possible transformations are proposed to the user based
on a ranking of previous transformations. In Chapter 8 of [1] more data cleansing tools are
discussed.

"http://www.sqlpower.ca/page/dqguru
“http://openrefine.org
3http://www.freebase.com

CHAPTER 2. BACKGROUND 9

2.4 Food Composition Data

Food Composition Data is the data which describes what nutrients are contained in a food,
and how much of a nutrient is contained in the food. Examples for nutrients are carbohydrate,
fat, protein, water, alcohol, vitamins, mineral nutrients.

2.4.1 Swiss Food Composition Database

The following list shows an overview of the relevant SFCD tables for this master thesis:
* tblcomponent: This table contains the nutrients, or also called components.

* tblsinglefood: This table contains basic foods, such as apple, pear or yoghurt. These
foods are called single foods in the SFCD.

* tblsinglefoodcomponent: This table is the mapping table between single foods and
components. It contains the information of what components are contained in a single
food and how much of a component is contained in the single food.

* tblaggrfood: This table contains more complex foods, such as fruits. These foods are
called aggregated foods in the SFCD. An aggregated food consists of several single
foods.

* tblaggrcontributingvalue: This table is the mapping table between the aggregated foods
and the single foods of which they consist.

* tblaggrfoodcomponent: This table is the mapping table between aggregated foods and
components. It contains the information of what components are contained in an ag-
gregated food and how much of a component is contained in the aggregated food.

2.5 Total Diet Study

Total Diet Studies analyse contaminants in the food.* The contaminants are also called sub-
stances in the following.

2.6 FoodCASE

FoodCASE is a research project at the ETH Zurich as well as a software for the management
of scientific food composition information.’ The SFCD is managed by this software.

2.6.1 Data Quality Analysis Tool

The Data Quality Analysis (DQA) Tool is a tool of FoodCASE. Running the tool on the
SFCD data, checks data quality requirements for the data, which were specified previously.
As a result the tool shows statistics which requirements are fulfilled by the data, and which
ones are not.

*http://www.tds-exposure.eu
Shttp://www.foodcase.ethz.ch/index _EN

10

2.6. FOODCASE

Data quality issues of the Swiss Food
Composition Database

The SFCD was analysed using SQL queries directly on the database tables and using the
DQA Tool described in Section 2.6.1.

3.1 General problems

In general, the data quality of the SFCD is good. However, some data cleansing issues could
be found which are presented in the following.

3.1.1 Rounding problems

In the table tblsinglefoodcomponent for example, the selected value (singlefoodcompselec-
tedvalue) is rounded, but the minimum value (singlefoodcompminimum) and maximum value
(singlefoodcompmaximum) are not rounded. If the selected value and the minimum value are
originally the same values, and then the selected value is rounded down, the selected value
gets smaller than the minimum value. The same problem occurs when other values, such as
mean, median, standard deviation or standard error of this table, are combined.

These rounding inconsistencies also exist in the table tblaggrfoodcomponent.

3.1.2 Quotation marks as values

In the samples table (tblsinglefoodcomponentsample) for example, some attributes of type
’character varying’ contain two quotation marks (°) instead of a description of sample reason
(singlefoodcompsamplereason) or sample handling (singlefoodcompsamplehandling). Prob-
ably this indicates that the value of such an attribute is the same as the value of the item which
was entered into the system before.

11

12 3.1. GENERAL PROBLEMS

The same phenomenon occurs in the table tblsinglefoodcomponent for the attribute aggrfood-
compidconfidencecode.

3.1.3 English names missing

In the tables tblsinglefood and tblaggrfood there are foods which do not have an English name
even though this attribute is mandatory.

3.1.4 Different formats

In the table tblreference, the publication date (referencepublicationdate) is not in a consistent
format. Sometimes the date is written with timezone, sometimes without.

In the table tblaggrcontributingvalue, the value weights (aggrcontrvalueweight) are not in the
same format. Some values are given as ’1°, others as *1.0’.

3.1.5 Null in relationship table

In some tables which represent a relationship between two other tables, like tblsinglefood-
componentreference which maps singlefoodcomponents to references and vice versa, there
exist some rows where one side of the mapping is null as shown in Figure 3.1. The same
problem occurs in the table tblaggrcontributingvalue, which maps singlefoodcomponents to
aggrfoodcomponents. The origin of this problem is probably based on half cascading deletion
of singlefoodcomponents or aggrfoods.

singlefoodcomponent reference
siD | .. riD
1 1
2 2

singlefoodcomponentreference

id siD riD
1 1 2
2 null 2

Figure 3.1: Null entry in a relationship table

3.1.6 Redundancy of samples and methods

In the samples table (tblsinglefoodcomponentsample) and the methods table (tblmethod) the
same real world objects are stored several times. The reason for this redundancy is the design
of the FoodCASE database schema. As shown in Figure 3.2 a sample is referred only to one
singlefoodcomponent. Therefore, even if the samples for two different singlefoodcomponents

CHAPTER 3. DATA QUALITY ISSUES OF THE SWISS FOOD COMPOSITION
DATABASE 13

are the same, they have to be entered twice into the samples table. The same problem exists
for the methods, which are also only referred to one singlefoodcomponent.

singlefoodcomponent

singlefoodcomponentsample

clD
id | place samplehandling cID 1
1 Spain | freeze-drying, milling [1)
2 Spain | freeze-drying, milling | 2

Figure 3.2: Database schema problem for samples

3.1.7 Misfielded data

In the recipe table (tblrecipe) a recipe has a reference attribute which indicates where the
measurements of the corresponding recipe are documented. For some recipes this reference
attribute is left empty and the reference is added to the recipe name like ’siehe ... (German
for ’see ...").

3.1.8 Legacy data

The analysis of the SFCD with the DQA Tool described in Section 2.6.1 shows that some
database fields are null, even though they should not be empty. The reason for this is legacy
data, which means that older data was imported to the newer database from another data-
base where this information was not stored. To get the missing information, someone has
to extract the required information from the research papers and documentation of the food
measurements.

3.2 Analysis using the Data Quality Analysis Tool

The DQA Tool, which is described in Section 2.6.1, was run on the SFCD data. If require-
ments were fulfilled only partially or not at all, the reason for that was analysed. In the
following, SFCD problems are presented, analysed and possible solutions how to clean the
data are discussed.

3.2.1 Automatic correction

Only few problems were found, that can be cleaned automatically. The rounding problems
described in Section 3.1.1 can be detected and corrected automatically. This can be done by
finding entries where for example the selected value is larger than the minimum value, but
only if the difference is based on the last decimal of the rounded value, and the minimum and
maximum are the same. Then the minimum and maximum can be rounded to the selected
value. Another requirement of the DQA Tool was that the selected values are rounded to a
certain precision. This can be cleaned automatically as well by rounding the numbers to the
required precision.

14 3.3. APPROACHES FOR DUPLICATE DETECTION

3.2.2 Manual correction

Most of the problems need to be cleaned manually. As described in Section 3.1.8 some
database fields are null because of legacy data. The missing information has to be extracted
from documentations manually.

3.2.3 Correction with choice

Some problems could be cleaned by proposing a few suggestions to the user. He then can
decide if an appropriate solution is proposed and select it to clean the problem. For example,
to fill in the missing English names mentioned in Section 3.1.3 a dictionary or translating ser-
vice could be used to propose some translations of the food name to the user who can choose
the correct translation if it is available.

For some foods the values of protein, carbohydrate and fat components are missing. A pos-
sible solution could be to propose similar food items to the user. He then can choose one and
the values of this similar food would be used for the values of the other food.

3.2.4 Correction by a tool

To use a tool for the data cleansing, the problems need to be automatically correctable or at
least with choices. For manual corrections a tool does not help so much, because the user has
still a lot of work to do as he has to look up the missing information in research papers. In
the SFCD most of the problems require manual correction which is why no tool to clean the
SFCD was developed in the context of this Master thesis.

3.3 Approaches for duplicate detection

In this section, deduplication approaches for some of the SFCD tables are presented.

3.3.1 Table tblreference

Citation (referencecitation), title (referencetitle) and authors (referenceauthors) can be used
to deduplicate the references by comparing the strings with string similarity algorithms.

3.3.2 Table tblsinglefoodcomponentsample

A sample is referenced to one singlefoodcomponent as explained in Section 3.1.6. If the
same sample of food is used for several singlefoodcomponents, a new sample entry is added
for each singlefoodcomponent, which leads to duplicates in the sample table. If most of the
fields are the same for two sample entries, it can be assumed that the two samples are the
same. The fields ’idsinglefoodcompsample’ and ’singlefoodcompsampleidsinglefoodcomp’
should be ignored, the ’singlefoodcompsampledate’ values should be close together. Addi-
tionally, the singlefoodcomponents of two samples that are assumed to be duplicates should
belong to the same singlefood. Some fields are left empty or contain the empty string
instead of containing the same value as before, as described in Section 3.1.2. In this case the
missing information has to be inserted first, before the samples can be compared.

However, to deduplicate the samples another database schema is needed as depicted in Figure

CHAPTER 3. DATA QUALITY ISSUES OF THE SWISS FOOD COMPOSITION
DATABASE 15

3.3, where one table (sample) only contains data about the samples and one table (singlefood-
componentsample) contains the relationships between sample items and singlefoodcompon-
ent items.

singlefoodcomponent

sample cID
sID | place samplehandling 1
1 Spain | freeze-drying, milling 2
2 Spain | freeze-drying, milling

singlefoodcomponentsample

id sID clD

1 1 1

2 1 2

Figure 3.3: Proposed changes of database schema for samples

3.3.3 Table tblmethod

The duplicates detection can be handled analogeous to tblsinglefoodcomponentsample.

3.3.4 Table tblsinglefoodcomponent

The singlefoodcomponents with the same idimportsource are duplicate candidates. The idim-
portsource contains the ID of the previous database. However, it is possible that the two
singlefoodcomponents come from different data sources and the idimportsource is incident-
ally the same.

3.3.5 Table tblsinglefood

If two singlefoods have many components in common and their measured values (singlefood-
components) are similar, they could be duplicates.

16

3.3. APPROACHES FOR DUPLICATE DETECTION

Approach: Food Matching Tool

4.1 Motivation

The goal of the Food Matching Tool is to match two sets of food items as shown in Figure
4.1. The food data comes from different food data sources, such as the SFCD, a Total Diet
Study (TDS) or a food consumption study. Not all data sources provide the same information
about food items, which leads to difficulties in food matching. Common food information
which is provided by most data sources are the food name in any language and the food
category of the food such as fruit, vegetable or milk products.

SetA SetB

apple apple, raw

banana raw banana

Figure 4.1: Two sets of foods are matched

To find out which food items of the two sets are the same or similar, a matching of the food
items is required. The Food Matching Tool can be used to find the best matches for the food
items of one set (SetA in Figure 4.1) from the items of the other food set (SetB in Figure
4.1). The idea of the Food Matching is to compare the foods of the SetA with the foods of
the SetB, using the food names and the food categories, and to propose the most similar SetB
foods as matches for the SetA foods. In the example depicted in Figure 4.2 two sets of foods
are illustrated and possible matches of SetB foods are proposed for the food11, which belongs
to SetA. The order of the proposed foods indicates a ranking, such that the food with the best
ranking is proposed first. The user can then choose one of the proposed foods as the correct

17

18 4.2. OVERVIEW

match for the food of SetA.

The Food Matching Tool can be used to enhance the information of a SetA food with the
information of the corresponding food item of SetB, or to combine the information. Further-
more, the matching of food items can also be used to find duplicates of two food sets before
the sets are merged into a new database.

SetA SetB
food11 match food21
food12) ——>

food22 54423

food13

food24

foodll | —— | food21

food22

food24

Figure 4.2: Food items of two food sets and proposed foods for food11

4.2 Overview

Figure 4.3 shows an overview of how the food matching process of the Food Matching Tool
works. At the beginning the user chooses the two food sets that should be matched, SetA
and SetB. The Food Matching consists of an Exploitation step, where stored matches from a
previous run of the tool are retrieved from the matching storage, and several matching steps
where the food names and other food information, such as food categories, is used to match
the foods. In the following it is defined what a matching step is and two scenarios of the
Food Matching Tool are explained, called sequence matching and weighted matching.

4.2.1 Matching step definition

Figure 4.4 shows an abstract matching step for a foodA of SetA. As input the matching
step gets a candidate set of the foodA, which contains the foods of SetB which are possible
matches for the foodA. During the matching step all foods of the candidate set are compared
with foodA and a similarity score is computed which indicates how similar foodA and the
candidate food are. The candidate foods with the best scores, namely with a score larger than
some threshold ¢, remain in the candidate set, the other candidate foods are excluded from
the candidate set such that the candidate set is reduced.

CHAPTER 4. APPROACH: FOOD MATCHING TOOL 19

/ Candidate
set
Matching o Matching step: Matching step:
{ SlEL] Food classifications Food names
Custom | Similarity > t? l
settings k

yes /

Candidate

Matching
candidates

Figure 4.3: Overview of weighted matching (orange) and sequence matching (green)

Candidate set _
Matching step

Figure 4.4: Abstract matching step

Reduced
candidate set
of foodA

4.2.2 Sequence matching

The two scenarios of the matching process differ in how the matching steps are combined. In
the sequence matching, the matching steps are executed in sequence, such that the reduced
candidate set of a matching step is the candidate set of the next matching step for a food of
SetA. The candidate set for the first matching step is initialized by the whole SetB. Figure
4.5 shows the initial candidate set for food11 of the example in Figure 4.2, containing all
foods of SetB. The sequence matching scenario is shown with the green line in Figure 4.3.
The goal of this scenario is to reduce the candidate set after each step, such that in further
matching steps a food of SetA has to be compared with less foods of SetB. The remaining
candidate foods of the last matching step are proposed as matching candidates to the user
together with the matches found in the Exploitation step.

4.2.3 Weighted matching

In the weighted matching, the matching steps are executed separately, such that each match-
ing step gets the whole SetB as input candidate set. The best matches of the matching steps
are combined, where the similarity scores of matches of different steps can be weighted dif-

20 4.3. FACET MATCHING

SetB
= Candidate set

wch food21
matc
food1l === (food22 ;5423

food24

Figure 4.5: Initial candidate set

ferently, and are then proposed to the user as matching candidates. In Figure 4.3 the weighted
matching is indicated with orange. The goal of this scenario is that foods of SetB are not
excluded from the candidate set if the matching in one step is very bad and would exclude
most of the foods.

In the following, first the basic matching steps using food names, food categories and other
food classifications are described in more detail, and then the Exploitation step is discussed.
In the end of this section the two scenarios are explained in more detail with examples.

4.3 Facet matching

In this section the matching steps that use the food classifications are presented. First it
is explained what food classifications are. Afterwards, the ’single facet matching’” and the
"’multiple facet matching’ are described.

4.3.1 Food classification theory

Foods are classified according to their food categories like milk products or fruits, but also
according to their wrapping or cooking methods.

The classes that can be chosen to classify a food are called facets. In Figure 4.7 some facets
describing food categories are shown, in Figure 4.6 some facets of the LanguaL. classification
for cooking methods are listed. Facets are represented either by names like ’Fine bakery
wares’ or by a code like "A009T".

There exist two types of food classification: single facet classification and multiple facet
classification. If a food is classified by a single facet classification it means that only one
facet is assigned to the food. Single facets usually describe the food categories like milk
product or fruit. Using a multiple facet classification, one or more facets are assigned to a
food. These facets describe for example cooking methods or the wrapping of a food.

In some classifications the facets are organised hierarchically as shown in Figure 4.7 for the
FoodEx2 classification, such that facets can have parent facets and child facets. Not only the
leaves can be chosen to classify the food, but also the parent facets.

Single facet classifications:

+ EuroFIR classification: The EuroFIR! classification describes only food categories,

"http://www.eurofir.org

CHAPTER 4. APPROACH: FOOD MATCHING TOOL 21

W Langual Codes

- | G. COOKING METHOD

GO001 {COOKING METHOD NOT KNOWM)
G0003 {COOKING METHOD NOT APPLICABLE)
GO004 (COOKED BY DRY HEAT)

G005 (BAKED OR. ROASTED)

GO00S (BROILED OR. GRILLED)

GO007 (CHARCOAL BROILED)

GO003 {GRIDDLED)

0003 (POPPED)

GO010 (TOASTED)

G0011 (COOKED BY MICROWAVE)

G0012 {COOKED BY MOIST HEAT)

50013 (COOKED IN WATER. OR WATER-BASED LIQUID)
GO014 (BOILED)

50015 (BOILED AMD DRAINED)

GO016 (BOILED IN LARGE AMOUNT OF LIQUID)
G0017 (BOILED IM SMALL AMOUNT OF LIQUID)
G0018 (BOILED AMD UNDRAINED)

0013 (BRAISED)

50020 {SIMMERED, POACHED OR STEWED)
G021 {COOKED IM STEAM)

ssesssssssses st

Figure 4.6: Facets of LanguaL classification

no cooking methods or wrappings. The facets are organised in a hierarchical structure.

* FoodEx2 classification (main facets): One part of the FoodEx2? classification is a
single facet classification, which describes the food category of a food. The classifica-
tion is hierarchical as shown in Figure 4.7.

Multiple facet classifications:

* Own classification: Each country has its own classification of food categories. The
Swiss classification is non-hierarchical.

* FoodEx2 classification (sub facets): The other part of the FoodEx2 classification,
which describes cooking methods among others, is a multiple facet classification. The
facets are organised hierarchical. Examples for parent facets and their child facets are
’Characterising Ingredient’ (’Fruit and fruit products’, *Tap water’), ’Cooking-method’
(’Baked’, "Microwave-cooked’), "Preservation-technique facet’ ("Frozen’).

* LangualL classification: The facets of the Langual. classification are organised in
groups as shown in Figure 4.8. From the facet group A (Product Type) several facets
can be selected, for the other facet groups B to Z only one facet is selected from each
group. Within the facet groups the facets are organised hierarchical, even though in the
FoodCASE application the facets are not structured hierarchically.

4.3.2 Single facet matching

The single facet matching is the matching step that uses single facets to match food items. As
described in Section 4.3.1, in a single facet classification a food item is classified with only

Zhttp://www.efsa.europa.eu/de/datex/datexfoodclass.htm

22 4.3. FACET MATCHING

= |} Fine bakery wares (AD0DST)
- || Biscuits (sweet and semi-sweet) (ADDSV)
----- # Biscuit, filed (with inclusions, filing or coating) (A00AE)
... # Biscuits, chocolate (A0092)
= |, Biscuits, sweet, plain (A009X)
. & Biscuits, oat meal (ADDAB)
- # Biscuits, spelt meal (ADDAC)
Biscuits, sweet, wheat wholemeal (A004A4)
. & Butter biscuits (A009Y)
‘. @ Speculaas (ADDAD)
= |, Cakes (ADDAM)
EI , Cheese cake (ADDAR)
. B | Cream cheese cake (ADDAS)
... Cheese cream sponge cake (ADDAT)
EI , Chocolate cakes (ADOEF)

Figure 4.7: Hierarchical facet structure of FoodEx2 classification

W Langual Codes

root
(- [A, PRODUCT TYPE

[#~ | B. FOOD 50OURCE

. , C. PART OF PLANT OR. ANIMAL

- |, E. PHYSICAL STATE, SHAPE OR FORM

, F. EXTENT OF HEAT TREATMENT

, G, COOKING METHOD

, H. TREATMENT APPLIED

.). PRESERVATION METHOD

J K. PACKING MEDILUM

, M. CONTAINER OR. WRAPPING

, M. FOOD CONTACT SURFACE

, P. CONSUMER. GROUP/DIETARY USE/LABEL CLAIM
+- | R, GEQGRAPHIC PLACES AND REGIONS
il || Z. ADIUNCT CHARACTERISTICS OF FOOD

B-3-5-E-

Figure 4.8: Facet groups of the LanguaL classification

one facet and this facet describes the food category. This means if two foods are classified
with the same single facet, the food belongs to the same food category. In this matching
step, foods with the same single facets are considered to be similar, whereas foods with
different single facets are considered to be less similar. For single food classifications which
are hierarchical, the parent-child structure is also taken into account. Figure 4.9 shows an
example, where a foodl1 of SetA is classified with the facet "Fish’, and the foods of SetB
are classified with 'Fish’, Seafood’ and 'Meat’. The foods with facet Fish’ remain in the
candidate set, the food with facet "Meat’ is excluded. The facet Seafood’ is a parent of the
facet *Fish” which is why the food22 is not excluded from the candidate set.

In more detail, a similarity function is needed to compute a similarity score for two foods.
The function should take the hierarchical structure into account. A high similarity score
means that the two foods are very similar, whereas a low score means that the two foods are
dissimilar. The concrete similarity function used for the Food Matching Tool is described in
Section 4.3.4.

CHAPTER 4. APPROACH: FOOD MATCHING TOOL 23

Custom settings: The user can specify what single facet classifications are available for
the SetA, such that only these classifications are used to match the foods. The user can also
specify the threshold that is used to determine which foods remain in the candidate set and
which ones are excluded from the candidate set.

Candidate set

food21
food22 "

Seafood

food11 Mmatch
Fish
food24

Fish food23

Meat

Figure 4.9: Candidate set after using single facets

4.3.3 Multiple facet matching

The multiple facet matching is the matching step that uses multiple facets to match food
items. The SetA foods are compared to the foods of their candidate sets. In Figure 4.10
food11 has the multiple facets A0120, B1205, F1314 and is compared to other foods. To
compare two food items using multiple facets, a similarity measure needs to be defined to
compute a ranking of the food items. Several approaches can be considered for this measure:

* Intuitively, SetB foods with more facets in common with a SetA food are more likely
to be a match for this SetA food. But if the level of the facets in the facet tree is
considered, it can also be said, that facets with a lower level are more accurate and
should therefore contribute more to the score than facets with a higher level.

* For hierarchical multiple facet classifications, the parent facets of facets of a food
should also be taken into account. For example, if a facet of foodA is a parent of a
foodB facet this should also contribute to the similarity score, because it means that
at least at some level the foods are similar. Another approach of facet weighting is
presented in Section 9.2.2.

The concrete similarity function used for the multiple facet matching in the Food Matching
Tool is the same as for the single facet matching and is described in Section 4.3.4. When
the similarities between a SetA food and its candidate foods are computed, a ranking of the
candidate foods is established. The foods with the highest similarity get the best rank, the
foods with the lowest similarity get the worst rank. There are the following possibilities how
to continue with the candidate food ranking:

* The SetB foods with the most facets in common remain in the candidate set of a SetA
food. For example keep the best k=5 matches. The disadvantage of this approach is
that some SetB foods are excluded from the candidates even though they have the same
similarity as some other SetB foods that remain in the set, such that the order of the
foods is relevant.

24 4.3. FACET MATCHING

» Keep the SetB foods in the candidate set for which the similarity with the SetA food is
higher than a certain threshold. In Figure 4.10 the threshold is set to 0.5, which means
that candidates with a lower similarity, such as food24, are excluded from the candidate
set. This approach is chosen in the Food Matching Tool.

Custom settings: The user can specify which multiple facet classifications are available for
the SetA foods, such that only these classifications are used to match the foods. The user can
also specify the threshold or the value of k, which are used to determine which foods remain
in the candidate set and which ones are excluded.

Candidate set

food21

A0120, B1205,

C2031
food22

B1205, K1450Q

food11 0.9>0.5

A0120, B1205,
F1314

food24

K9014

Figure 4.10: Candidate set after using multiple facets and the similarities between the food
items

4.3.4 Similarity for facet matching

For both, the single facets and the multiple facets, the same method is used to compute
the similarity scores of two foods. The method makes use of the Jaccard similarity, which
is described in Section 2.2.5. In Figure 4.11 and Figure 4.12 examples are shown how to
compute the similarity scores for facets. A facet set of a food is defined here as the set of all
facets the food is classified with, plus all their parent facets. Figure 4.11 shows an example to
compute the similarity of foodA and foodB using single facets. foodA is classified with facet
f8, foodB with the facet f9. The facet set of foodA consists of foodA’s single facet f8 and
all the parent facets of f8, namely f5, f2, f1. The facet set for foodB is built analogeous.
The Jaccard similarity of the two facet sets is then used as the score for foodA and foodB.

Figure 4.12 shows an example for a matching using multiple facets. FoodA is classified with
the facets f4 and f8, foodB with f7 and f9. The facet set of foodA consists of foodA’s
multiple facets f4 and f8, plus all their parents, namely f5, which is a parent of f8, and f2
and f1, which are parents of both, f4 and f8. The facet set for foodB is built analogeous.
The similarity score for the multiple facet matching of foodA and foodB is then computed
using the Jaccard similarity of their facet sets.

CHAPTER 4. APPROACH: FOOD MATCHING TOOL 25

fi
/ \ = {f8, f5, 2, f1} :=s1
f2 f3 - -
f4‘/ \fs f%[\lﬁ — foodB = {f9, 5, 2, f1} :=s2
\[\ sim(foodA, foodB) = s10s2] _3
[stus2| 5
f9

Figure 4.11: Similarity of single facet matching

f1
/ \ = {f8, f5, f4, 2, f1} := sl
f2 f3 - -
f \fS f%[\}7 — foodB = {f9, f7, f5, 3, f2, f1} :=s2
\l \ sim(foodA, foodB) = s1ns2] _3
[stus2| 8
f9

Figure 4.12: Similarity of multiple facet matching

In the examples of Figure 4.11 and Figure 4.12 the facets of foodA and foodB are leaves of
the facet tree, but they could also be inner nodes of the tree.

4.4 Food name matching

In the food name matching step, the food names are used to find the most similar foods
of SetB for a food of SetA. As name the English name of a food is used in the Food
Matching Tool, but also other names, such as synonyms or names of other languages, could
be considered for a food name matching. This is discussed later in Section 8.3. The English
name of a food in SetA is compared to the English names of the foods in its candidate
set. Also in this matching step a similarity measure is needed to compute the similarity of
two food names and therefore of the corresponding foods. As similarity measure different
string similarity methods can be used as described in 2.2.5. In the Food Matching Tool the
Levenshtein distance and Jaccard similarity with N-grams are used. The resulting similarity
scores are used to compute a ranking of the candidate foods. The foods of the top ranks are
proposed as matches for the SetA food.

4.5 Exploitation

In the Exploitation step of the food matching, the goal is to exploit matches that were stored
in previous runs of the Food Matching Tool. To understand this exploitation, the version and
study concept of food data is described in the following before the process of the Exploitation

26 4.5. EXPLOITATION

is explained.

4.5.1 Version and study theory

In the context of Food Composition Data, from time to time foods that are already stored
in the database are measured again. Reasons for this could be that through new research
some components or substances of the food composition data change or new nutrient or
contaminant values are measured, such that the food data set needs to be updated. Instead
of adding the new information to the already stored food item, a new food item of the food
is stored, such that the old food item is not changed. To relate the two items, a food has a
foodID and a version, as shown in Figure 4.13.

In the context of Total Diet Studies, for each study that is carried out, a set of foods is chosen
which are investigated in this study. If foods were already investigated in an earlier study,
the stored foods also have a foodID to relate foods among each other. Instead of the version
as in the Food Composition Data, TDS foods have a study as attribute. In the following, the
expression ’version’ is used for both, version and study.

ID | foodID | englishname | version
1 10 apple, raw 5
2 11 raw banana 5
203 10 apple, raw 7
204 11 banana, raw 7

Figure 4.13: Example for versions of foods

4.5.2 Exploitation process

In the Exploitation step, the SetA and SetB foods are looked up in the matching storage using
their foodIDs and the current and previous versions of the food sets. If matches between
SetA and SetB foods of any version combination are found, they are proposed to the user as
possible matching candidates. In the following, some examples are presented with different
version combinations. The version of SetA is denoted by versionA, the version of SetB
with versionB. A food with foodID XX is called foodXX. In Figure 4.14 and 4.15 Setl is
a previous version of Set2 and Set3 is a previous version of Set4. To indicate that the set
versions are not all related, the sets on the right hand side of the figure have a column study
instead of version.

* versionA, previous versionB: Set2 and Set4 should be matched in Figure 4.14. Set2
and Set3 were matched in a previous run of the Food Matching Tool, where food11 of
Set2 was matched with food9 of Set3. This match was stored in the matching storage
and can be retrieved in the Exploitation step. In Set4 there is also a food with foodID

CHAPTER 4. APPROACH: FOOD MATCHING TOOL 27

9, and since Set3 is a previous version of Set4 food9 is proposed as matching candidate
of food11.

* previous versionA, versionB: Set2 and Set3 should be matched in Figure 4.14. Setl
and Set3 were matched in a previous run of the Food Matching Tool, where food10 of
Setl was matched with food8 of Set3. In the Exploitation step of food10 of Set2 this
match is retrieved from the matching storage and food8 of Set3 is proposed as matching
candidate of food10.

* previous versionA, previous versionB: Set2 and Set4 should be matched in Figure 4.15.
Setl and Set3 were matched in a previous run of the Food Matching Tool, where food10
was matched with food8 and food11 was matched with food9. These matches were
stored in the matching storage. In the Exploitation step of Set2, the foodIDs 10 and 11
are looked up in the matching storage together with previous versions of Set2 and Set4,
which are the sets Setl and Set3 in this example. The matches of the previous run are
retrieved and therefore food8 is proposed as matching candidate for food10 and food9

is proposed for food11.
Setl Set3
ID | foodID | version ID | foodID | study
P matched -
1 10 5 <€ :, 4 8 2
7
2 11 5 4 5 9 2
6\0*\) s
l, ’b‘d(\e'\?&\g(\/ \L
Set2 Ca” Set4
ID | foodID |version| .~ 7 ID | foodID | study
203| 10 7 ¢ x| 8 4
matched by
204 11 7 <€ - _E;pBit_atEn_ ->| 26 9 4

Figure 4.14: Examples of Exploitation

Setl Set3
ID | foodID | version ID | foodID | study
matched
1 10 5 <€ >| 4 8 2
) 11 5 < matched 5| s 9)
Set2 ‘l' Set4 l’
ID | foodID | version matched by ID | foodID | study
Exploitation
203 | 10 7 €-——-=-=-=-=--- >| 25 8 4
204 11 7 |e--matchedby sl 9 4
Exploitation

Figure 4.15: Examples of Exploitation

28 4.6. MATCHING SCENARIOS

The version combination of versionA, versionB is not considered as relevant, because this
would mean that the two sets already have been matched. A version combination with sub-
sequent versions of SetA and SetB is also not considered because in practice the new versions
should be matched, and not older versions.

The benefit of the Exploitation step is that the user who runs the Food Matching Tool can see
which SetB foods were chosen in previous runs as the correct matches of the SetA foods.

4.6 Matching scenarios

4.6.1 Sequence matching

In the sequence of steps scenario, the matching steps ’single facet matching’, *multiple
facet matching’ and ’food name matching’ are executed in sequence, where in each step
some of the SetB foods are excluded from the candidate set as explained in Section To
determine which foods are excluded, a threshold ¢ is used after each matching step, such that
if the computed score s of a foodA of SetA and a foodB of SetB is smaller than ¢, foodB is
excluded from the candidate set of foodA. The matches that are found in the Exploitation
step do not have a similarity score. They are just added without a score to the final candidate
set of foodA that is presented to the user.

4.6.2 Weighted matching

In the weighted matching scenario, the matching steps ’single facet matching’, *multiple facet
matching’ and ’food name matching’ are executed independently, such that for each step
the candidate set of a foodA consists of all SetB foods. After each step some foods of the
candidate set are excluded using a threshold as in the sequence of steps scenario. Then
the remaining candidates of all steps are combined using their scores and a weight for each
matching step. The following example in Table 4.16 shows how to compute the weighted
similarity of two foods foodA and foodB. The table contains example values for the similarity
scores and the weights of each matching step. The similarity score of the Exploitation is
defined by 1. The weights of the matching steps are user-defined. For each matching step,
the similarity of a matching step is multiplied with the step’s weight. Then these weighted
similarities are added up to one final similarity. The candidate foods of the foods of SetA are
proposed to the user together with their final similarities.

Custom settings: The user can specify the weights that are used to combine the matching
candidates of the different matching steps.

CHAPTER 4. APPROACH: FOOD MATCHING TOOL

29

matching step similarity | weight of weighted similairty
score step (score welght)

single facet matching

multiple facet matching 0.7 1 0.7
food name matching 0.4 2 0.8
exploitation 1.0 1 1.0
final weighted similarity 2.8

Figure 4.16: Example for a weighted matching scenario

30

4.6. MATCHING SCENARIOS

Implementation

5.1 Food Matching Java classes

In Figure 5.1 an overview of the Java classes are shown that were implemented or used
for the Food Matching Tool. In the following the purpose and the main functionality of
the classes are described. In general the classes are located on the client side in package
ch.ethz.inf.tds.client.gui.food.matching as a part of the FoodCASE distribution. If this is not
the case, it is mentioned in the following. In the appendix in Section A.1, a more detailed
class diagram is shown with local variables and methods of the classes. In the implementa-
tion of the name matching, the library DéjaVu Stringmetrics' is used. which was developed
during the Information Systems Lab 2013 in the Globis Group by students.

* FoodMatching: This class is the main class of the Food Match-
ing Tool. The wuser can choose the food sets that have to be
matched and can select the matching scenario, namely matchWith-
Weights() or matchWithSequence(). These two methods call the methods
findExploitationCandidates (), findSingleFacetCandidates/(),
findMultipleFacetFoodEx2Candidates () and
findNameCandidates () of the FoodMatching class to retrieve the can-
didates of each matching step. The candidates for each food of SetA are maintained in
the list candidates.

* FoodObject: The foods of the two food sets are objects of the classes
AggregatedFood and TdsFood. This class represents the food items in a shared
representation. More details about this class can be read in Section 5.2.

e SingleFacetMatching: An instance of this class is created in the method find-
SingleFacetCandidates(). The class preprocesses SetB and computes the single facet

The DéjaVu Stringmetrics library was developed by students during the Information Systems Lab of the
Globis Group in spring 2013

31

32

5.1. FOOD MATCHING JAVA CLASSES

matching of each food of SetA and its candidates. More details are described in Section
5.3.1.

MultipleFacetMatchingFoodEx2: An instance of this class is created in the
method findMultipleFacetFoodEx2Candidates(). The class preprocesses SetB and
computes the multiple facet matching of each food of SetA and its candidates using
the FoodEx2 classification. More details are described in Section 5.3.1.

MultipleFacetMatchingOwn: An instance of this class is created in the method
findMultipleFacetOwnCandidates(). The class preprocesses SetB and computes the
multiple facet matching of each food of SetA and its candidates using the own classi-
fication. More details are described in Section 5.3.1.

FacetMatchingUtils: This class contains methods to compute the Jaccard simil-
arity of two sets. They are used for the facet matching and are described in more detail
in Section 5.3.1.

FoodNameMatching: An instance of this class is created in the method find-
NameCandidates(). The class matches the name of a food of SetA with the names of
its candidates using different similarity methods. More details are described in Section
5.3.2.

NGramWordTokenizer: This class is used for the name matching. It extends the
class Tokenizer of the string matching library DéjaVu. More details can be found
in Section 5.3.2.

Tokenizer, WordTokeninzer, NGramTokenizer: These classes belong to
the string matching library DéjaVu and are used for the implementation of class
NGramWordTokenizer.

Exploitation: An instance of this class is created in the method findExploitation-
Candidates(). The class retrieves matches for a food of SetA from the matching storage
or matches for a previous version of the food. More details are described in Section
5.5.

MatchingStorage: This class represents the matching storage and therefore the
entries of the database table, where the matches of previous runs of the Food Matching
Tool are stored, and where the Exploitation gets the matches from. More details about
the matching storage can be found in Section 5.4.

FoodObjectSchema: FoodObjectSchema is an enumeration type and repres-
ents the data source of the two food sets. Foods of the database table ’tblaggrfood’ get
the FoodObjectSchema *'TBL_AGGRFOOD?’, foods of the database table "tdsfood’ get
the FoodObjectSchema *'TDS_FOOD’.

MatchingStorageBean: This class is located on the server side in package
ch.ethz.inf.foodcomp.server.sessionbeans. The class is used by the Exploitation
class to access the database. The MatchingStorageBean class provides methods
for retrieving, storing and deleting matches of the matching storage. More information
about the Mat chingStorageBean can be found in Section 5.4.

CHAPTER 5. IMPLEMENTATION 33

* FoodMatchingTest: This test class contains the tests for the Food Matching Tool.

| SingleFacetMatching |
FacetMatchingUtils uses
FoodObject \

(FOOd) \
“enumeration” food A /
representation

FoodObjectSchema . calls | MultipleFacetMatchingOwn
FoodMatching matching steps

’/”ffffif”;7
FoodMatchingTest
calls

uses
| MatchingStorageBean |€—| Exploitation | | NGramWordTokenizer

| MultipleFacetMatchingFoodEx2 |

| FoodNameMatching |

uses

WordTokeninzer

(dejavu library)
\l,accesses \Lextends S
uses
“entity” Tokenizer NGramTokenizer
MatchingStorage (dejavu library) (dejavu library)

Figure 5.1: Overview of Food Matching classes

5.2 Food data representation

In the implementation of the Food Matching Tool, food data from two different sources can
be matched, namely Food Composition Data from the FoodCASE database table ’tblaggr-
food” and TDS data from the FoodCASE database table "tdsfood’. The food data of these
two sources is represented in a common food data representation, which is an object of the
class FoodObject, such that during the matching process the foods from both sources
can be handled equally. Only the information which is necessary for the food matching is
extracted from the food data: the English name, the single and multiple facets of the classi-
fications FoodEx?2, Langual. and the own classification, the foodID and the database schema,
which is ’tblaggrfood’ or ’tdsfood’. In Figure 5.2 it is shown how the information of an
AggregatedFood object is extracted.

5.3 Matching steps

5.3.1 Facet matching

In the Food Matching Tool the single food matching is implemented using the main facets of
the FoodEx2 classification described in Section 4.3.1, the multiple facet matching is imple-
mented using the sub facets of the FoodEx?2 classification or the own Swiss classification also
described in Section 4.3.1. Since both classifications are hierarchical, the parent facets can
be used for the facet matchings. In the method fi11FacetsB () of the single and multiple
facet matching, the foods of SetB are preprocessed by building the facet set of each food
in SetB. As an example, the fil1lFacetsB () method of the SingleFacetMatching
class is shown in Figure 5.3.

34 5.3. MATCHING STEPS

public FoodObject (AggregatedFood food) {
this.id = food.getId():
this.foodld = Integer.parselnt(food.getPublicId())
this.originalName = food.getName () :
this.englishMName = food.getnameenglishi):

if (food.getFoodEx2() '= null) {
thizs.foodEx25ingle = food.getFoodExX2Z () !
foodExZMultiple = new HashSet<FoodExZFacet> (),
for (AggrFoodEx2Facet aggrFacet : food.getFoodExZ2Facets()) {

foodExZMultiple.add (aggrFacet.getFoodEx2Facet ()) ;

langualCodes = new ArrayList«<Langualcode> () ;
for (AggrFoodLangualcode aggrFoodLangualcode @ food.getlangualcodelist()) {
langualCodes.add (aggrFoodLangualcode . getLangual ()) ;

ownCategories = new ArrayList<Category>()}:
for (AggregatedFoodCategory aggrCat : food.getCategoryList()) {
ownCategories.add (aggrCat.getCategory()):

Figure 5.2: FoodObject from an AggregatedFood

private void fillFacetsB(List<FoodCbject> setB) |
for (FoodObject foodB : setEB) |
Integer foodBId = foodB.getId();
HashSet<Integer> facetSet = new HashSet<Integer>();

if (foodB.getFoodEx23ingle() != null) {
FoodExZ2 £ = foodB.getFoodEx2Single () ;
Integer facet = f.getId();

facetSet.add (facet) ;

FoodExZ2 currentFacet = f£;
while (currentFacet.getParent() != null) |
FoodExZ2 parent = currentFacet.getParent();

facetSet.add (parent.getId());

currentFacet = parent;

acetSetsB.put (foodBId, facetSet);

Figure 5.3: Builds facet set of foods in SetB

Figure 5.4 and 5.5 show how the similarity of the facet sets of a foodA and its candidates is
computed

CHAPTER 5. IMPLEMENTATION 35

for (Integer foodBId : previocusCandidates) |
Set<Integer> facetSetB = facetSetsB.get (foodBId);

Double similarity = FacetMatchingUtils.
computedaccardSimilarity(facetSeth, facetSetB);
if (!candidateScores.containsEey(similarity)} {

candidateScores.put (similarity, new HashSet<Integer>());

1
candidateScores.get{similarity) .add(foodBId) ;

Figure 5.4: Computes the similarity of the facet sets of foodA and its candidates.
candidateScores is of type TreeMap<Double, Set<Integer>> andisempty at
the beginning.

static public Double computeJaccardsSimilarity(Set<Integer> facetsFoodh,
Set<Integer> facetsFoodB) {

Set<Integer> union = new HashSet<Integer> (facetsFoodAd);
union.addall (facetsFoodB) ;

Set<Integer> intersection = new HashSet<Integer> (facetsFooda) ;

intersection.retainfll (facetsFoodB) ;

Double sizeIntersection = Integer.

valueOf (intersection.size ()) .doubleValue () ;
Double sizeUnion = Integer.valuedf(union.size()).doublevalue();
Double similarity = sizelntersection / sizeUnion;

return similarity;

Figure 5.5: Method to compute Jaccard similarity of two sets

5.3.2 Name matching

For the food name matching, the Jaccard similarity is used again to compute the similarity
of the English names of the foods. Here, the sets which are compared using the Jaccard
similarity are sets of 3-grams. As explained in Section 2.2.5, a food name ’apple’ is
transformed into a set of 3-grams { app’,’ppl’,’ple’}. For the implementation of the food
name matching, classes of the library DéjaVu were used and extended. The library allows to
build the 3-grams of the food names and then to compute the Jaccard similarity of their sets.
In the Food Matching Tool a variant of this method is implemented in the class
NGramWordTokenizer. It extends the class Tokenizer and combines the
WordTokeninzer and the NGramTokenizer of DéjaVu. The variant consists of
splitting the food names into words first and then to build the 3-grams of the words. If for
example the name contains several words, like "apple raw’, then the 3-grams which contain

36 5.3. MATCHING STEPS

the whitespace are ignored and not part of the 3-grams set of the food. This approach helps
to ignore the ordering of the words, which should not be relevant in the name matching.
After the 3-grams sets of two foods are built, the Jaccard similarity of the two sets can be
computed, which is used as the score of the food name matching of the two foods.

Figure 5.6 and 5.7 show how the food name matching is implemented. The method
matchFoodNames () computes the similarities of foodA and its candidates us-
ing the SimilarityMetric that is given as argument. SimilarityMetric
is a class of DéjavVu and is a super class of JaccardSimilarity and
JaccardSimilarityWithTokenizer. JaccardSimilarityWithTokenizer
is the similarity metric that is used in Figure 5.7. The method of this figure shows
an example of how to instantiate a similarity metric of the DéjaVu library and how
matchFoodNames () is called.

The DéjaVu library provides also other similarity methods besides the Jaccard similarity.
One of them is the Levenshtein distance, which is described in Section 2.2.5. This method is
also provided by the Food Matching Tool for the food name matching, as well as the original
Jaccard and 3-grams method and its extended version of the class NGramWordTokenizer.
The user can choose one of these methods to match the food names.

private TreeMap<Double, Set<Integer>> matchFoodNames (FoodObject fooda,
Set<Integer> candidateSet, SimilarityMetric simMethod) {

TreeMap<Double, Set<Integer>> candidateScores =
new TreeMap<Double, Set<Integer>>();

String nameR = foodA.getEnglishName ();

if (nameZ != null) {

for (Integer foodBId : candidateSet) {

FoodObject foodB = hashedSetB.get (foodBId) ;

String nameB = foodB.getEnglishName () ;

if (nameB != null) {
Double similarity = simMethod.computeSimilarity(

namel.toLowerClase (), nameB.toLowerlase());
if (!candidateScores.containsKey(similarity)) {
candidateScores.put (similarity, new HashSet<Integer>());

}
candidateScores.get (similarity) .add (foodBId) ;

return candidateScores;

Figure 5.6: Similarity of food names is computed using the given similarity metric

CHAPTER 5. IMPLEMENTATION 37

rublic TreeMap<Double, Set<Integer>> matchFoodNamesJaccardNGramWord (
FoodObject foodhA, Set<Integer> candidateSet) {

NGramWordTokenizer tokenizer = new NGramWordTokenizer(3);
JaccardSimilarityWithTokenizer jaccSim =
JaccardSimilarityWithTokenizer.getBuilder() .
tokenizer (tokenizer) .takeTokenizer (true) .build();

TresMap<Double, Set<Integer>> candidateScores =
matchFoodNames (foodA, candidateSet, jaccSim);

return candidateScores;

Figure 5.7: Similarity of food names is computed using the given similarity metric

5.4 Matching storage

The database table of the matching storage is shown on the left hand side of Figure 5.8. It
consists of an item ID and the foodID, schema and version of the SetA and SetB foods, where
the schema is the database table ’tblaggrfood’ or ’tdsfood’ which the matched food belongs
to. A food set SetA or SetB is uniquely defined by the schema and the version. If a match of
a SetA food and a SetB food is stored, the foodID, schema and version of the SetA food are
stored in the columns foodidl, schemal and versionl. The information of the SetB food is
stored in foodid2, schema? and version2.

Matching storage

ID | foodidl [schemal |versionl |foodid2| schema2 |version2 SetA SetB
1 10 tblaggrfood 5 8 tdsfood 2 —> Setl Set3
20 10 [tblaggrfood 7 8 tdsfood 2 —> Set2 Set3
60 8 tdsfood 4 10 |[tblaggrfood 7 —> Set4 Set2
61 9 tdsfood 4 11 [tblaggrfood 7 —> Set4d Set2

Figure 5.8: Matching Storage example

5.5 Exploitation

The Exploitation step of the Food Matching Tool is implemented in a more general form than
described in the approach of Section 4.5. For the SetA foods the version of SetA, called
versionA, and the previous versions of versionA are considered as explained in the approach.
For the SetB foods not only previous versions of versionB are considered as mentioned in the
approach, but all versions.

38 5.5. EXPLOITATION

For example if Set2 and Set4 should be matched in Figure 4.14 of Chapter 4, the Set2 foods
food10 and foodl1 are looked up in the matching storage. For food10 this means that the
tuple {10, tblaggrfood, 7}, which corresponds to {foodid, schema, version}, is looked up
in the matching storage. Since Set2 could have been SetA or SetB in previous runs of the
tool, the foods of Set2 are looked up twice in the matching storage: Once in the columns
of {foodidl, schemal, versionl }, whereas schema?2 is the schema of Set2, and once in the
columns of {foodid2, schema2, version2}, whereas schemal is the schema of Set2. This
procedure is implemented in the method getMatchesForVersionA () depicted in Fig-
ure 5.9. All matches that are retrieved by this method are proposed as matching candidates
of food10 if the foodid2, or foodidl respectively, is a foodID of SetB, which is Set4 in this
example. The version of the SetB foods is not considered as relevant because all versions of
SetB are considered as mentioned before.

After retrieving matches for versionA, matches for previous versions of versionA are re-
trieved. For the example of Figure 4.14 this means that the tuple {10, tblaggrfood, 5} is
looked up in the matching storage, because version 5 is the previous version of version 7.
The retrieving of the matches for this version is analogeous to the retrieving of matches for
versionA. The retrieved SetB foods are also proposed as matching candidates. Figure 5.10
shows the method where getMatchesForVersionA () is called with previous versions
of versionA.

private void getMatchesForVersionA (FoodObject foodA, Integer version,
Set<FoodObject> matches) {

List<MatchingStorage> matchesl = BeanBag.getMatchingStorageBean() .
getMatchesPartl (foodA.getFoodId (), schemal.toString(),
version, schemaB.toString());
for (MatchingStorage match : matchesl) {
Integer foodId2 = match.getFoodidZ ();
if (foodIdsB.containsKey (foodId2)) {
matches.add (foodIdsB.get (foodId2)) ;

List<MatchingStorage> matchesZ = BeanBag.getMatchingStorageBean() .
getMatchesPart2 (foodA.getFoodId (), schemaA.toString(),
version, schemaB.toString());
for (MatchingStorage match : matchesz) {
Integer foodIdl = match.getFoodidl ();
if (foodIdsB.containsKey (foodIdl)) {
matches.add (foodIdsB.get (foodIdl)) ;

Figure 5.9: Retrieve matches from matching storage

CHAPTER 5. IMPLEMENTATION 39

public Set<FoodObject> getMatches (FoodObject foodA) {
Set<FoodObject> matches = new HashSet<FoodObject>();

getMatchesForVersionA(foodA, versionk, matches);

TreeSet<Integer> versionListh;

if (schemahA.equals (FoodObjectSchema. TBL AGGRFOOD)) |
versionListA = thlVersions;

} else {
versionListA = tdsVersions;

}

Integer previousVersionA = versionListA.lower(versionh);

if (previousVersionA != null) {
getMatchesForVersionA (foodhA, previousVersionkh, matches);

}

return matches;

Figure 5.10: Get exploitation matches for versionA and its previous versions

5.6 Matching scenarios

5.6.1 Sequence matching

The sequence matching is implemented in the method matchWithSequence () shown
in Figure 5.11. It calls the matching steps in sequence and adapts the candidate set
of the foods of SetA after each step. If the returned candidate set of a matching
step for a SetA food, which is the reduced candidate set, is empty, the candidate set
of this food is not changed after this matching step. This is realised in the method
setEmptyCandidateSetToPreviousSet. The reason for this is, that if a food of
SetA is not classified with the classification of the single or multiple facet matching, the facet
matching cannot find any candidates and the empty set is returned. Therefore, the next match-
ing step can also not find any candidates because the input candidate set is empty. To avoid
this case, where all following matching steps are useless, the candidate set is only changed
if it is not empty. As the final candidates for a SetA food are stored in a TreeMap together
with their similarities, the matches that are found in the Exploitation step are also stored in
this TreeMap in the end with similarity NaN such that all candidates are stored in one data
structure.

5.6.2 Weighted matching

The weighted matching is implemented in the method matchWithWeights () shown in
Figure 5.12. It calls all the matching steps independently, such that the input candidate set for
each matching step is the whole SetB. Afterwards, the returned candidates of each step for a
food of SetA are combined.

40 5.6. MATCHING SCENARIOS

public void matchWithSequence () |
initialiseCandidates (setE);
List<Set<FoodCbject>> exploitationCandidates =

findExploitationCandidates=();

List<TreeMap<Doukle, Set<Integer>>> singleCandidates =
findSingleFacetCandidates();

setEmptyCandidateSetToPrevicusSet (candidates, singleCandidates);

candidates = singleCandidates;

List<TreeMap<Doukle, Set<Integer>>> multipleCandidates =
findMultipleFacetFoodExZ2Candidates () ;

setEmptyCandidateSetToPreviousSet (candidates, multipleCandidates);

candidates = multipleCandidates;

List<TreeMap<Double, Set<Integer>>> nameCandidates = findNameCandidates();

candidates = nameCandidates;

o

[*H

(%]
|

Iterator<Set<FoodCbject>> 1tExploit = exploitaticonCandidates.iterator();
for (TreeMap<Double,Set<Integer>> candidatesk : candidates) {
candidatesA.put (VzlN, new HashSet<Integer>());
Set<FoodCbject> explMatchesk = 1tExploit.next();
for (FoodObject match : explMatchesZ) |
candidatesA.get (NaN) .add{match.getId());

Figure 5.11: Sequence matching method

CHAPTER 5. IMPLEMENTATION 41

public void matchWithWeights () |

List<TreeMap<Double, Set<Integer>>> finalCandidates =
new ArraylList<TreeMap<Double, Set<Integer>>>();

initialiseCandidates (s=tEB);

List<Set<FoodCbject>> exploitationCandidates = findExploitationCandidates();

List<TreeMap<Double, Set<Integer>>> singleCandidates = findSingleFacetCandidates();

List<TreeMap<Double, Set<Integer>>> multipleCandidates =
findMultipleFacetFoodEx2Candidates () ;

List<TreeMap<Double, Set<Integer>>> nameCandidates = findNWameCandidates();

Iterator<Set<Foodohj
Iterator<TreeMap<Double, Set<Integer>>> itS8ingle = singleCandidates.iterator();

= exploitationCandidates.iterator();

Iterator<TreeMap<Double, Set<Integer>>> itMultiple = multipleCandidates.iterator();
Iterator<TreeMap<Double, Set<Integer>>> itName = nameCandidates.iterator();
while (itSingle.hasNext()) { for sach foodh

Hashtable<Integer, Double> candidatesZ = new Hashtable<Integer, Double>();

Set<FoodObject> explCandh = itExploitation.next();
for (Foodobject candidate : explcCandz) |

candidatesh.put (candidate.getId(), weightExploitaticon);

TreeMap<Double, Set<Integer>> singleCandh = itSingle.next();

extractCandidatesFromTree (singleCandl, candidatesl, weightSingleMatching);
TreeMap<Double, Set<Integer>> multipleCandh = itMultiple.next();
extractCandidatesFromTree (multipleCandh, candidatesd, weightMultipleMatching);
TreeMap<Double, Set<Integer>> nameCandl = itName.next();

extractCandidatesFromTree (nameCandf, candidatesf, weightNamsMatching);

nteger>> treeCandlh = new TreeMap<Double, Set<Integer>>();
for (Entry<Integer,Double> entry : candidatesh.entrySet()) {
Integer foodBId = entry.getRey();
Double =zimilarity = entry.getValue();
if (!treeCandh.containsEey(similarity)) |
treeCandh.put (similarity, new HashSet<Integer>());
}
treeCandh.get (similarity) .add (foodBId) ;
}
finalCandidates.add(treeCandh) ;
}

candidates = finalCandidates;

Figure 5.12: Weighted matching method

42

5.6. MATCHING SCENARIOS

Extensibility

6.1 Langual. classification

The hierarchical structure of the LanguaL classification is not captured in the SFCD, such that
the parents of a facet are not known. As soon as this hierarchy is available, a new matching
step can be introduced using the LanguaL classifiaction facets. This matching step is analog-
ous to the multiple facet matching of the FoodEx2 classification or the own classification. In
the fil1FacetsB () method of Figure 5.3, it is shown how the parent facets for the single
facets are retrieved. The fi11FacetsB () for the multiple facet matching using FoodEx2
facets looks similar, but with a list of facets. For the LangualL classification the method would
look like the method for the multiple FoodEx2 facets, except replacing the FoodEx2 classi-
fication by the LangualL classification. The similarity scores would be computed in the same
manner.

6.2 Combination of multiple facet classifications

Instead of only using one multiple facet matching to match the foods, a combination of
several multiple facet matchings using different classifications could be implemented. As
an example, in one matching step the similarity of two foods is computed using the Foo-
dEx2 classification and in another matching step the similarity is computed using the Swiss
classification. The method matchWithWeights () in Figure 5.12, which represents the
weighted matching scenario, shows how several matching steps can be executed independ-
ently and can then be combined using weights. A similar scenario, or rather subscenario, can
be implemented to combine several multiple facet matchings.

43

44 6.3. COMBINATION OF FOOD NAME MATCHINGS

6.3 Combination of food name matchings

Instead of only using the English names of the foods, the food names in other languages
or synonyms could be used to match the foods. As in the Section 6.2, where the idea of
combining several multiple facet matchings is described, several food name matchings could
be combined. Instead of using the class FoodNameMat ching, which compares the English
names, a new class could be implemented which replaces the English names by the scientific
names for example. The two name matching steps could then be combined as in the previous
section.

6.4 Similarity methods for name matching

Instead of using the Levenshtein distance or the Jaccard similarity, other similarity met-
rics could be used provided by the DéjaVu library such as SmithWatermanDistance.
A new method must be implemented in the FoodNameMatching that replaces the
JaccardSimilarityWithTokenizer inthe method depicted in Figure 5.7 by the new
similarity metric.

6.5 Additional food data sources

If not only foods of the Food Composition Database or of Total Diet Studies should
be matched, but for example foods of food consumption studies, a new Java class, e.g.
ConsumptionFood, can be generated which maps the food data from this food consump-
tion database table to Java objects of this class. A new constructor has to be implemented
in the FoodOb ject class, similar to the constructor shown in Figure 5.2, where the neces-
sary information of the consumption foods for the food matching is extracted and mapped
to FoodObject instances. Then food sets of the different data sources can be matched,
because they are all represented in the same way.

FEvaluation

7.1 Test data

As test data, food composition data of Denmark and France was used. The France set used
for testing contained about 1500 foods, the set of Denmark about 1000. In both food sets
about half of the food items are classified with the FoodEx2 classification. Also food sets
of UK and the SFCD data were used for testing during the development process of the Food
Matching Tool.

7.2 Parameters

For the evaluation the similarity thresholds of Figure 7.1 were chosen. For the weighted
matching evaluation the weights of all matching steps were set to 1 as also shown in Fig-
ure 7.1. The similarity thresholds of both facet matching steps are chosen to 0.5, but
the threshold for the name matching is 0.3. The threshold of 0.5 was too high for the
NGramWordTokenizer similarity, such that quite similar names were not found.

matching step similarity | weight of
threshold step

single facet matching 0.5 1
multiple facet matching 0.5 1
food name matching 0.3 1
exploitation 1.0 1

Figure 7.1: Similarity thresholds and weights for the evaluation

45

46 7.3. MATCHING OF FRUITS

The Levenshtein distance for the name matching does not work well for food names which is
why the NGramWordTokenizer was used for the evaluation.

7.3 Matching of fruits

The Food Matching Tool was evaluated with fruits of the France food set. The fruits were
selected manually and put into a new set, called the fruit set here. Afterwards this fruit set
was matched with the Denmark food set, which still contained all types of foods, not only
the fruits. The fruit set contains 134 foods which are related to fruits, including for example
fruit juices or fruit cakes. 77 of them are classified with FoodEx2 facets.

7.4 Evaluation scheme

For the evaluation, the results were assigned to the properties listed below. For the evaluation
of the Food Matching Tool, the expected matches of the fruit set and the Denmark set must be
known. For each food of the fruit set, the best food of the Denmark set was chosen manually
by deciding with human knowledge if two foods are similar. The matches are distinguished
by perfect matches and best matches. A perfect match means that there is a food in the
Denmark set that represents the same food as the food of the fruit set. For example, "apple,
raw’ and ’apple, fresh’ is considered as a perfect match. If no perfect match is available, best
matches of the foods are considered. For example, if no general apple item is available in one
of the sets, then a best match for "apple, raw’ could be ’apple, danish, raw’.

After executing the weighted matching and the sequence matching on the fruit set and the
Denmark set, the proposed matches were analysed. For each food of the fruit set it was
examined, if the perfect match, or the best match respectively, was proposed in the matching
candidates. The following list shows the evaluation criteria:

* Perfect match found: The perfect food of the Denmark set is proposed for a food of the
fruit set by the Food Matching Tool.

* Perfect match not found: The perfect food of the Denmark set is not proposed for a
food of the fruit set.

* Perfect match not available: There is no perfect match for a food of the fruit set avail-
able in the Denmark set.

* Best match found: The best food of the Denmark set is proposed for a food of the fruit
set.

* Best match not found: The best food of the Denmark set is not proposed for a food of
the fruit set.

¢ Best match not available: There is no best match for a food of the fruit set available in
the Denmark set.

CHAPTER 7. EVALUATION 47

7.5 Sequence of steps vs. Weighted matching

The results of matching the fruit set and the Denmark set using the parameters mentioned
above are presented in this section. In the table of Figure 7.2 the absolute values of the
weighted matching and the sequence matching are shown. For example, for 53 foods of
the fruit set, which contains 134 foods in total, the perfect match of the Denmark set was
proposed by the Food Matching Tool. For the perfect and the best matches that were found,
the average rank of the foods in the matching candidates ranking is shown in the table. For
example, if a perfect match was proposed by the Food Matching Tool its rank was 1.21 in
average, where rank 1 is the best rank and means that the food was proposed as best match.
The table of Figure 7.2 shows further the difference between the weighted matching and the
sequence matching. The number of best and perfect matches that are not found is twice as
much in the sequence matching as in the weighted matching. However, if the perfect or best
match is found, the average ranking of this match is higher in the sequence matching than in
the weighted matching.

perfect | perfect | perfect best
match [match | match match
found | not not not
(rank) | found | available | (rank) available
Weighted matching 53 1 80 38 16 26
(1.21) (2.03)
Sequence matching 46 8 80 26 28 26
(1.04) (1.46)

Figure 7.2: Absolute results of the fruit matching

In the following, relative values of the evaluation are presented. If the foods of the fruit set
are excluded, for which no best matches and therefore no perfect matches are available in
the Denmark set, the number of remaining fruit foods is 108. The relative values are listed
below and illustrated in Figure 7.3.

The results of the weighted matching:

Relative value of perfect matches found: 53/108 = 0.49

Relative value of best matches found: 38/108 = 0.35

Relative value of perfect and best matches not found: 17/108 = 0.16

The results of the sequence matching:

Relative value of perfect matches found: 46/108 = 0.43

Relative value of best matches found: 26/108 = 0.24

Relative value of perfect and best matches not found: 36/108 = 0.33

In the sequence matching, the case where for a food of SetA no match is proposed, appeared
more often than in the weighted matching. In the sequence matching, for 26 foods no match
was proposed, even though there exists a best match. In the weighted matching, only for

48 7.6. EXPLOITATION

Weighted matching Sequence matching
Perfect and

best matches \
not found

16%

Perfect and
best
matches not
found

Figure 7.3: Relative results of the fruit matching only considering the fruits for which a
perfect or best match is available

3 foods no match was proposed. The reason is that in the facet matching also the foods
are excluded, that are not classified with the classification used in the facet matching. As
mentioned above, only half of the data in both test sets is classified with FoodEx2 facets.
Therefore, it happens that the perfect or best matches are excluded in the facet matching of
the sequence matching, such that for the name matching step only foods are left with a name
similarity smaller than the given threshold. This results in an empty candidate set and no
match is proposed.

7.6 Exploitation

For the Denmark set and the France set, no data of previous versions was available for the
evaluation. To test the Exploitation step, the food sets were matched twice, such that the top
ranked matches of the first run could be stored as matches into the matching storage and in
the second run these matches could be retrieved by the Exploitation step. In the sequence
matching, the matches found by the Exploitation are just added to the proposed matching
candidates. In Figure 7.4 the proposed foods for 'Pineapple, canned’ are shown. The top
ranked match is "Pineapple, canned’ with similarity 1.0. The match found by the Exploitation
step is indicated with the similarity NaN. It is the same as the top ranked food, which is what
is expected as we previously stored this top ranked food in the matching storage.

foodA: Pineapple, canned
NaN Pineapple, canned
1.0 Pineapple, canned
0.6666666666666666 Pineapple juice, canned
0.42105263157894735 Apple juice, canned or bottled
0.38461538461538464 Pear, canned
0.35714285714285715 Peach, canned

Figure 7.4: Proposed matches for sequence matching with Exploitation

CHAPTER 7. EVALUATION 49

In the weighted matching, the matches found by the Exploitation are combined with the
matching candidates of the other matching steps. In Figure 7.5 on the right, the proposed
matches for *Apricot, dry’ are shown after the first execution of the matching. On the left,
the proposed matches of the second execution are shown. As the top ranked match of the
first execution is retrieved as Exploitation match in the second run, the top ranked food gets
a higher similarity score, as expected.

foodA: Apricot, dry foodA: Apricot, dry
2.475 Apricot, dried 1.475 Apricot, dried
1.0 Raisin, seedless 1.0 Raisin, seedless
0.75 Apricot, raw 0.75 Apricot, raw
0.6 Strawberry, jam 0.6 Strawberry, jam
0.6 Fig, dried 0.6 Fig, dried
0.6 Apple, dried 0.6 Apple, dried
0.3 Apricot, canned, light syrup pack 0.3 Apricot, canned, light syrup pack

Figure 7.5: Proposed matches for weighted matching with Exploitation on the left, without
Exploitation on the right

50

7.6. EXPLOITATION

Discussion

8.1 Justification of facet matching

The similarity function that is used to compute the similarity scores of two foods in the
single and multiple facet matching, was described in Section 4.3.4. Here it is shown that
this similarity function fulfils the requirements for a similarity function that were listed in
Section 4.3.2 and 4.3.3.

8.1.1 Common facets and their levels

If two foods of SetB have common facets with the foodA, the SetB food with more facets
in common or with common facets of a lower lever should be ranked higher than the other
food. In Figure 8.1 an example is shown where these two approaches are mixed. foodA of
SetA has the multiple facets {f6, {7, f8}. foodl of SetB has the multiple facets {f6, f7}. It
has two facets in common with foodA. food2 of SetB has only one multiple facet, namely
f8. It has one facet in common with foodA. Even though foodl has more facets in common
with foodA, the similarity score is equal as shown in Figure 8.1, because the level of the facet
of food2 is lower than the levels of the facets of foodl. The similarity function realises this
correctly.

8.1.2 Parent facets

If two foods of SetB have common facets with the parent facets of facets of foodA, the parent
facets of lower level should contribute more to the similarity score. In Figure 8.2 an example
is shown to illustrate this case. foodA of SetA has the multiple facets {f6, {7, {8}, foodl of
SetB the facets {f6, f8}, food2 of SetB the facets {f5, f6} and food3 of SetB the facets {f2,
f6}. f5 and f2 are both parents of f8, but f5 has a lower level in the facet tree than f2. The
similarity function treats this case correctly, because the common parents of the facet sets are

o1

52 8.1. JUSTIFICATION OF FACET MATCHING

£ foodA = {f6, 7, 8, f1, f3, 2, f5} := sA
/ \\ food1 = {f6, 7, 1, f3} := s1
2

f f3 food2 = {f8, 1, f2, f5} := s2
/N N ™
fa 5

. _IsAns1| 4

\l \ f6 £7 sim(foodA, food1) = A0St 7

. _IsAns2| 4

(g f9 sim(foodA, food2) = sa0s2] 7

Figure 8.1: Common facets of different levels

captured in the intersection of the facet sets and for parents on a higher level this intersection
is smaller.

f1 foodA = {f6, {7, 18, f1, f3, 2, f5}
/ \ food1 = {f6, 8, f1, f3, f2, f5}
f2 f3 food2 = {f5, 16, f1, f3, f2}
/N LN\ ™ food3={i2, f6,f1, 3}
f4 JfS\ f6 f7 sim(foodA, food1) = o
f8 f9

sim(foodA, food2) =
sim(foodA, food3) =

NIbh No N

Figure 8.2: Common parent facets

8.1.3 Other facet matching approaches

Other approaches to compare the facets were considered before coming up with the approach
above. In Chapter 2 of [2] the graph matching problem is discussed and several approaches
are summarized. The goal of the graph matching is to determine which vertex of one graph
corresponds to which vertex in the other graph. As the facets are organized in a tree structure
and therefore in a graph, this approach was considered. The facet tree, which consists of
all facets of a classification, is considered in the following as the base tree. The facet tree
of a food is here defined as the tree consisting of the facets the food was classified with,
and their parent facets. Defining the trees like that, the facet trees of foods are subtrees of
the base tree. Because of the base tree, each facet has its unique position in the facet tree.
Therefore, if two facet trees are matched, it is already defined which facet of one tree is
matched to which facet in the other tree. The graph edit distance and maximum common
subgraph techniques, which are mentioned in [2], were considered to match the facet trees.
The graph edit distance is similar to the edit distance for text. The number of operations are
counted to transform one graph into the other by inserting, deleting or relabeling vertices and
edges. For the facet trees only the inserting and deleting of vertices must be considered, as
the position is determined. The maximum common subgraph technique was considered as the
two facet trees are both rooted in the root of the base tree. Starting from the root and following

CHAPTER 8. DISCUSSION 53

the branches downwards the tree, the maximum common subgraph could be determined. The
size of the maximum common subgraph could be interpreted as the shared facets of the two
foods. The approach which was described above was used finally because it is simple to
implement and captures the properties that were required for the similarity measure.

8.2 Justification of Exploitation

In this section the implementation of the Exploitation step is discussed. As mentioned in
Section 5.5 the implementation of the Exploitation does not consider the version of SetB. If
the Exploitation finds matches with a newer version as the version of SetB, their foodIDs can
also be considered as matches.

In the Exploitation it is assumed that all foods of schemaB are related, such that a food of
schemaB belongs to the SetB itself or to a previous version of SetB. If food sets which are
not related with SetB are present in the same database table as SetB, it cannot be assumed
anymore that foods with the same foodIDs represent the same food, because foodIDs of
foods of not related sets are not related either. However, the aim of the Exploitation step is to
propose possible candidates which the user has to investigate to determine the correct match.

8.3 Variants of food name matching

In the Food Matching Tool implementation only the English names are used for the food
name matching. But also other names can be used, such as the original name, which is the
name of the food in the language of the country, where this food was stored originally. For
example the food names of a food consumption study in France are stored in French, or the
food names of a food composition database in Germany are in German. For the matching
also synonyms of the food names, such as peanut and groundnut or aubergine and eggplant,
can be taken into account, scientific names, or the food names in different languages, such as
Italian name. Even the brand name of a food could be useful because sometimes the brand
name is contained in the original name, as for example *Nutella’.

In the following an approach of the food name matching is described which uses a combin-
ation of all food names. Each food name of a food in SetA is compared to all names of the
foods in its candidate set. Figure 8.3 shows an example: Both names of food11, namely ’ori-
ginal name’ and ’synonym’, are compared to all names of food21. Also in this approach a
similarity measure is needed to compute the similarity of two foods.

There are several possibilities how to define the similarity measure and how to compute the
ranking of the candidate foods. To describe these possibilities the following example and
definitions are used. At the beginning of the food name reduction step, food21 and food22
are in the candidate set of food11, such that each name of food11 is compared with all names
of food21 and all names of food22. In Figure 8.3 it is shown how each name of foodll,
namely the original name and a synonym, are compared with all names of food21. In the fol-
lowing, a "pair of names’ consists of two names that are compared, e.g. {orig. namel, orig.
name21} or {orig. namel 1, synonym21}. For each of these pairs the score is computed with
the similarity methods explained in the Section 5.3.2. The scores could then be combined as
listed in the following to get the ranking score of the candidate foods.

* To get the ranking score of a candidate food, take the score of the pair that has the

54 8.4. BRUTE FORCE MATCHING

highest score of this candidate food. A problem of this scoring is that if the brand
names of two foods are the same, {brand name, brand name} gives the highest score
of all pairs, but maybe the foods are only of the same brand but are not the same foods.

* An average of all name pair scores of a candidate food is computed as score of the
candidate food. A problem of this scoring is that if two names that have nothing in
common, e.g. {orig. name (in French), Engl. name}, are compared, this name pair
score has negative influence on the score of the candidate food.

* An average of the name pair scores is computed for the score of the candidate food, but
a name pair score is only included in the average if the name pair score is higher than a
certain threshold. Name pairs, where the names have nothing in common, have a very
low score. Therefore, these pairs are not included in the candidate food score. It still
can happen, that for example only the brand name pair passes this threshold, such that
the candidate food gets a high score even the foods are not the same. To avoid this case
the brand name pairs could be weighted less than other pairs.

Custom settings: The user can specify in which languages the food names of the SetA are
available, such that not all name combinations have to be compared. The user can also specify
the threshold, which is used to determine which foods remain in the candidate set and which
ones are excluded.

food21 food21
food1l match |5 orig. name food11 match | orig. name
—> synonym orig. name —2> synonym
synonym > Eng. Name Csynonym>« — Eng. Name
[brand name > brand name

Figure 8.3: Food name comparison

8.4 Brute force matching

Originally, there was a brute force matching planned, which should be applied, if the sequence
matching would exclude too many candidates from the candidate set, such that in the end no
matching candidate is left. The idea was to use the food name matching again, but with a
non reduced candidate set, that still contains all foods of SetB. For the sequence matching
scenario this would make sense. Later, the idea of the weighted matching came up, such
that the matching steps are executed with independant candidate sets. In this scenario the
brute force matching would just be a repetition of the food name matching and would not
make sense. Since the weighted matching turned out to be more useful than the sequence
matching, it is recommended to use the weighted matching anyway and therefore a brute
force matching is not needed. If a sequence matching does not yield results that are good
enough, the weighted matching has to be executed instead of a brute force matching.

Conclusion

9.1 Contribution

The analysis of the Swiss Food Composition Database showed that in general the quality of
the data is good. However, some data cleansing issues could be revealed. Most of the existing
issues of the data cannot be automatically cleaned such that a tool that automatically cleans
the data cannot be used. The data cleansing of the SFCD requires manual cleansing, such as
reading through documentation to get missing information.

The Food Matching Tool, which was developed during this Master thesis, uses food names
and food classifications to compute similarity scores between the foods of the two sets. The
tool provides two matching scenarios, the weighted matching and the sequence matching. In
the weighted matching, different matching steps are applied independently and the resulting
similarities are combined to get a ranking of which foods of one set are the best matches for
foods of the other set. In the sequence matching, the matching steps are applied in sequence,
such that after each matching step some foods are excluded from being the best match of a
food. Only the similarities of the last matching step are used for the ranking. In the evaluation
the weighted matching achieved better results. The architecture of the tool allows several
possibilities how to extend the tool. Additional ideas how to further improve the tool are
discussed in the following future work.

9.2 Future Work

9.2.1 Classification mapping

If the two food sets that should be matched do not have a classification in common, the facets
of a classification of SetA could be mapped to facets of a classification of SetB. For example,
if the foods of SetA are classified with the FoodEx2 classification and the foods of SetB with
the LanguaL classification, a mapping of the two classifications could be defined that maps
a FoodEx2 facet, such as ’Biscuits (sweet and semi-sweet)’, to a LangualL facet, such as

99

56 9.2. FUTURE WORK

’Biscuits/Cookies’. Then this mapping can be used to find common or at least similar facets
of two foods.

9.2.2 Facet matching

As described in Section 4.3.3, in the facet matching common parent facets do also contribute
to the similarity score of two foods, but not as much as common facets. Another approach
could be to go manually through the facets of a classification and distribute weights individu-
ally for each facet, so that facets that seem to be more important for the matching get higher
weights than facets that are less relevant.

9.2.3 Langual. classification

As mentioned in Section 6.1 the Langual classification could also be used to match food
items. As soon as the hierarchical structure of the LangualL classification is captured in Food-
CASE, the multiple facet matching can be extended with this classification and the resulting
matching candidates of this step can be included in the weighted matching scenario.

9.2.4 Food Consumption Data

As described in Section 6.5 additional data sources can be added, such that food items of this
source can be matched as well. The Food Consumption Data is data about what food items
people consume and how much of it. It could be interesting to match this data with the SFCD
data, for example to compute how much of a certain nutrient people eat in average.

9.2.5 Combination of food names

In the Section 8.3, an additional approach was discussed how the food names could be used
for the food matching. The approach of combining different types of food names, as for
example the English names and the brand names, could be implemented as future work. In
the Food Matching Tool it is only possible to match English names with English names. In
Section 6.3 it is described how to extend the tool to match for example scientific names with
scientific names. The goal of this future work idea is that any type of food name can be
matched with any type of food name.

Appendix

A.1 Java classes

-schemaA: FoodObjectSchema
-schemaB: FoodObjectSchema

-versionA: int

-versionB: int

+getMatches (Food foodA) -id: int
-foodid1: int

-getMatchesForVersionA (Food foodA, int version, Set<Food> matches)
-schemal: String

-versionl: int
-foodid2: int
-schemaz2: String

-version2: int

+storeMatches (List<MatchingStorage> matches)

+getMatchesPart1 (int foodldA, String schemaA, int versionA, String schemaB)
+getMatchesPart2 (int foodldA, String schemaA, int versionA, String schemaB)
+deleteMatches (List<MatchingStorage> matches)

Figure A.1: Classes used for the Exploitation

58

A.1. JAVA CLASSES

-setA: List<Food>

-setB: List<Food>

-schemaA: FoodObjectSchema
-schemaB: FoodObjectSchema
-versionA: int

-versionB: int

-candidates:
List<TreeMap<Double,Set<int>>>

+matchWithWeights()
+matchWithSequence()
-findExploitationCandidates()
-findSingleFacetCandidates()
-findMultipleFacetOwnCandidates()
-findMultipleFacetFoodEx2Candidates()
-findNameCandidates()
-storeBestMatches()

-facetSetsB: Hashtable<int, Set<int>>

-fillFacetsB (List<Food> setB)
+matchSingleFacets (Food foodA, Set<int> candidateSet)

-facetSetsB: Hashtable<int, Set<int>>

-fillFacetsB (List<Food> setB)
+matchMultipleFacets (Food foodA, Set<int> candidateSet)

-facetSetsB: Hashtable<int, Set<String>>

-fillFacetsB (List<Food> setB)
+matchMultipleFacets (Food foodA, Set<int> candidateSet)

-hashedSetB: Hashtable<int, Food>

-fillFacetsB (List<Food> setB)

+matchLevDist (Food foodA, Set<int> candidateSet)
+matchJaccardNGram (Food foodA, Set<int> candidateSet)
+matchJaccardNGramWord (Food foodA, Set<int>
candidateSet)

-matchNames (Food foodA, Set<int> candidateSet,
SimilarityMetric sim)

Figure A.2: Main class FoodMatching and the classes of the matching steps

APPENDIX A. APPENDIX

59

-id: int

-foodld: int
-originalName: String
-englishName: String
-foodEx2Single: Food

-foodEx2Multiple: Set<FoodEx2Facet>
-langualCodes: List<Langualcode>
-ownCategories: List<Category>

TBL_AGGRFOOD
TDS_FOOD

-TEST_USER: String
-TEST PASSWORD:

+FoodObject (Aggreg

+FoodObject (TdsFood food)

String

atedFood food)

+computelaccardSimilarity (Set<int> facetsA, Set<int> facetsB)
+computelaccardSimilarityForStrings (Set<String> facetsA, Set<String> facetsB)

-wordTokenizer: WordTokeninzer
-currentNGramTokenizer: NGramTokenizer
-nextWord: String

-nGramSize: int

+hasMoreTokens()
+nextToken()
+reset(String s)

+hasMoreTokens()
+nextToken()
+reset(String s)

Figure A.3: Other classes

60

Al

JAVA CLASSES

Acknowledgments

I would like to thank my supervisor David Weber for supporting me during my Master Thesis.
Also I would like to thank Karl Presser for the interesting and helpful discussions.

61

62

Al

JAVA CLASSES

Abbreviations

SFCD Swiss Food Composition Database
DQA Data Quality Analysis

TDS Total Diet Study

63

Bibliography

[1] C. Batini and M. Scannapieco. Data quality: concepts, methodologies and techniques.
Springer, 2006.

[2] E. Bengoetxea. Inexact graph matching using estimation of distribution algorithms.
Ecole Nationale Supérieure des Télécommunications, Paris, 2002.

[3] V. Ganti and A. D. Sarma. Data cleaning: A practical perspective. Synthesis Lectures
on Data Management, 5(3):1-85, 2013.

[4] M. A. Hernandez and S. J. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. Data mining and knowledge discovery, 2(1):9-37, 1998.

[5] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual spe-
cification of data transformation scripts. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 3363-3372. ACM, 2011.

[6] J. I. Maletic and A. Marcus. Data cleansing: Beyond integrity analysis. In /Q, pages
200-209, 2000.

[7] H. Miiller and J.-C. Freytag. Problems, methods, and challenges in comprehensive data
cleansing. Technical Report HUB-IB-164, Humboldt University Berlin, 2003.

[8] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE Data
Engineering Bulletin, 23(4):3-13, 2000.

[9] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system. In
VLDB, volume 1, pages 381-390, 2001.

[10] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168-173, 1974.

[11] Wikipedia: Data cleansing. http://en.wikipedia.org/wiki/Data_
cleansing/, August 2013. [Online; accessed 7-October-2013].

65

http://en.wikipedia.org/wiki/Data_cleansing/
http://en.wikipedia.org/wiki/Data_cleansing/

