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Zusammenfassung

Stabgitter-Modelle stellen ein geeignetes Instrument dar, um das mechanische
Verhalten sowie das Bruchverhalten von spröden, heterogenen Materialien wie
Fels, Eis oder Beton numerisch zu simulieren. Das mechanische Verhalten von
Gitterstrukturen wird in der vorliegenden Arbeit untersucht wobei die Hetero-
genität von den genannten Materialien vernachlässigt wird um die Problemstel-
lung zu vereinfachen. Rapid Prototyping wurde für die Herstellung der physis-
chen Gitterstrukturen bestehend aus 9×9×9 Zellen und der einzelnen Gitterstäbe
als Produktionsverfahren gewählt, um die experimentellen Daten zu erhalten.
Die gewünschte geometrische Genauigkeit und eine gewisse Homogenität im Ma-
terial wurden durch den Einsatz eines 3D-Photopolymerdruckers erreicht. Der
Einfluss von unterschiedlichen Stabschlankheiten und Querschnittgeometrien der
Einzelstäbe auf das Verformungsverhalten der Gitterstruktur wurde durch die
Verwendung von vier unterschiedlichen Stabformen untersucht.

Das Verformungsverhalten von den Gitterstrukturen wurde anhand zwei unter-
schiedlicher Modelle simuliert. Die mechanischen Eigenschaften der Einzelstäbe
wurden für das klassische Modell gemessen, welches gewöhnlich von anderen
Forschern verwendet wird. Die Messungen wurden in einer selbst entwickel-
ten Mikro-Belastungseinrichtung durchgeführt. Ein plastisches Verhalten der
Einzelstäbe wurde durch eine Erweiterung des klassischen Modells berücksichtigt.
Das getestete Material weist ein visko-elastisches Materialverhalten auf. Die
mechanischen Eigenschaften der Einzelstäbe mit den vier unterschiedlichen For-
men weisen einen klaren Grössen- und Formeinfluss auf. Daher konnten keine
universellen Materialparameter für das klassische Modell gefunden werden.

Ein neuer Modellierungsansatz wurde untersucht, welcher von Van Mier (2007,
2012, 2013) vorgeschlagen wurde. Das Modell ist direkt vom Kraft-Verformungs-
verhalten der Einzelstäbe abhängig. Viele Annahmen des klassischen Modells
können damit vermieden werden wenn das Kraft-Verfomungsverhalten der Einzel-
stäbe die Basis der Analyse bildet und nicht mehr die klassischen Materialgesetzte
auf der Basis von Spannungen und Dehnungen. Die Einzelstäbe wurden unter
unterschiedlichen Randbedingungen bzw. verschiedenen Querkraft/Normalkraft-
verhältnissen und unter Zug- und Druckbelastung in der Mikro-Belastungseinrich-
tung getestet, um die nötigen Verfomungskurven für das neue Modell zu erhalten.

Die physischen Gitterstrukturen wurden unter Zug- und Druckbelastung getestet.
Die Oberflächendeformation wurde während den Experimenten mittels dreidimen-
sionaler Bildkorrelation gemessen, um Informationen über das Verformungsver-
halten zu gewinnen. Die unter Zugbeanspruchung belasteten Gitterstrukturen
weisen eine ungleichförmige Verformung über die gesamte Höhe auf, was zu einer
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hohen Streuung in der gemessenen Maximalkraft führt. Die Ebene mit der klein-
sten Verformungsrate schreibt die maximal erreichbare Kraft aufgrund des visko-
elastischen Materialverhaltens vor. Die unter Druck beanspruchten Gitterstruk-
turen weisen eine kleine Streuung in der gemessenen Maximalkraft auf, wobei die
Ebene mit der höchsten Verformungsrate die maximale Kraft vorgibt.

Die Resultate der beiden Modelle stimmen mit den Experimenten unter Zug-
beanspruchung überein, wobei der neue Modellierungsansatz das Verformungsver-
halten der Gitterstrukturen präziser beschreibt. Der neue Modellierungsansatz ist
imstande, das visko-elastische Verformungsverhalten zu charakterisieren wobei die
Berechnungen des klassischen Modells ein linear elastisches-plastisches Verfor-
mungsverhalten ergeben. Die Eingabecharakteristik der Einzelstäbe beschreibt
direkt das Verformungsverhalten der Gitterstruktur für beide Modelle. Das klas-
sische Modell reagiert sensitiv auf Veränderungen der Eingabeparameter. Eine
kleine Veränderung der Steifigkeit des plastischen Bereichs der Einzelstäbe resul-
tiert in einer ausgeprägten Veränderung der maximalen Gitterdeformation, bei
welchem dieses versagt. Der neue Modellierungsansatz weist keine solche Sensi-
tivität auf, was die Zuverlässigkeit der Resultate des neuen Modell unterstreicht.

Das klassische Modell liefert keine befriedigende Resultate für das Verformungs-
verhalten der Gitterstrukturen unter Druckbeanspruchung, auch wenn die Effekte
2. Ordnung berücksichtigt werden. Mit dem neuen Modellansatz werden bessere
Resultate erzielt speziell für Gitterstrukturen, welche Stäbe mit einer grossen
Schlankheit enthalten. Die Resultate beider Modelle sind stark abhängig von
den Eigenschaften der im Gitter horizontal liegenden Stäbe. Die Veränderung
der Eigenschaften der horizontal liegenden Stäbe beeinflusst die maximal erre-
ichbare Kraft des Gitters sowie das Verformunsverhalten nach der Maximalkraft.
Die Eigenschaften dieser Stäbe sind schwer zu bestimmen aufgrund des visko-
elastischen Materialverhaltens.



Abstract

Beam lattice models are a convenient tool to simulate (numerically) the mechani-
cal and fracture behaviour of brittle disordered materials like rock, ice or concrete.
The mechanical behaviour of lattice structures is investigated in this thesis with-
out considering the heterogeneity of the mentioned materials in order to simplify
the study. Physical lattice structures (9×9×9 cells) and single beam elements with
an accurate geometry were produced by means of Rapid Prototyping. The speci-
mens i.e. the single beam elements and the global lattices were loaded in uniaxial
tension and uniaxial compression. A three dimensional photopolymer printer was
used to achieve the desired geometrical accuracy and a certain homogeneity in
the material. Four different single beam shapes were chosen to investigate the
influence of different slenderness ratios and cross-sectional geometries of single
elements on the lattice deformation behaviour.

Two different lattice models were investigated to simulate the deformation be-
haviour of the physical lattice structures. The single beam element properties
were measured by using a micro-mechanical loading device for the classical model
which is commonly used by other researchers. This model was extended to han-
dle also a plastic behaviour of the beam elements. The material shows a distinct
visco-elastic behaviour. The tested single beam elements with the four different
shapes show a distinct size and shape effect on the element properties. Universal
material properties for the classical model could not be determined.

A new model approach, which was recently proposed by Van Mier (2007, 2012,
2013), was investigated where the model is directly based on the load and dis-
placement information of the single beam elements. Many assumptions of the
classical model can thereby circumvented when the load-deformation response of
the single element forms the basis for the analysis and not any longer classical
constitutive equations based on stress and strain. The single beam elements were
also loaded in a micro-mechanical loading device in tension and compression un-
der different loading conditions (i.e. shear to normal force ratios) to obtain the
information required for the new model approach.

The physical lattice structures were tested under tensile and compressive load.
The surface deformation during the experiments was measured with a three-
dimensional image correlation system to obtain the deformation characteristics
of the physical lattice structures. The global lattice structures under tension
show a non-uniform deformation over the whole height. This leads to a high scat-
ter in the measured maximum forces whereas the layer with the smallest loading
rate determines the force capacity. The experiments under compression show a
small scatter whereas the layer with the highest loading rate determines the force



4 Abstract

capacity.
The results from the classical model and the new model approach are in agree-

ment with the experiments under tensile load. However, the new model approach
reproduces the deformation behaviour of the lattice more precisely. It is capa-
ble to characterize the visco-elastic deformation behaviour whereas the classical
model shows a linear elastic-purely plastic deformation behaviour of the lattice
structure. The input characteristic of the single beam elements prescribes directly
the structural behaviour in both models. The classical model is more sensitive
to changes of the input parameters especially when changing the stiffness of the
plastic part of the single element behaviour. Only a small variation leads to a dis-
tinct change of the maximum lattice deformation where the lattice fails. The new
model approach does not show such sensitivity to changes of the input parameters.
This makes the new model approach more reliable.

The simple classical model is not capable to simulate the deformation behaviour
of the lattice structures under compression. The measured deformation behaviour
could not be simulated satisfactory, also not when the second order effect was
taken into account. The new model approach shows a better agreement with
the experiments especially for lattice structures which contain beams with a high
slenderness. The results from both models strongly depend on the properties of
the in-plane beams loaded in tension. The properties of these beams influence
the maximum force and the deformation behaviour after the maximum force.
The in-plane beam properties are difficult to determine due to the visco-elastic
material behaviour. These beams have a low deformation rate compared with the
out-of-plane beams loaded under compression.



1. Introduction

1.1. Background

The understanding of the mechanical and fracture behaviour of building materials
is of high interest to construct and build safe civil engineer structures i.e. large
constructions like bridges. The material properties have to be evaluated in the
laboratory on specimen sizes from 100mm up to 10m whereas the size of the civil
engineer constructions lies beyond this level. Therefore, fundamental knowledge
of materials and structures is needed to develop better mechanical and fracture
models that can predict the behaviour of the materials at this size of structures.

A convenient tool to simulate (numerically) the mechanical and fracture be-
haviour of brittle disordered materials like rock, ice or concrete are simple truss
or beam lattice models. Herrmann et al (1989) first studied the fracture in disor-
dered materials using a beam lattice model. Subsequently, different approaches
of lattice models were proposed to study the fracture mechanics in different disor-
dered materials. Many input parameters can influence the outcome of the results
from these simulations. Trusses instead of beams can be used, the difference be-
tween regular and random distributed beams in the lattice was studied or statis-
tically distributed material properties were assigned to the beams. The selection
of the fracture criterion like the Rankine or the Von Mises criterion and different
softening behaviour of the beams have a high impact on the fracture behaviour.

A lattice model where the heterogeneity of the material is taken into account
by projecting the material structure on top of the lattice and assigning properties
of various phases to the individual beams was first introduced by Van Mier and
his co-workers (Schlangen and Van Mier (1992a); Schlangen (1993), Vervuurt
(1997)). A simple one-dimensional constitutive equation is sufficient to model the
material behaviour. Satisfactory results were achieved for the tensile and shear
fracture behaviour of disordered materials where the selection of the mechanical
properties and the fracture law for the different phases plays a key role in the
numerical simulations. The size and shape effect was successfully simulated by
Man (2010) using this type of model, although the calculated size-range was for
computational reasons rather narrow. However, simulations by means of this type
of lattice model did not show very satisfactory results in the case of compressive
fracture.
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1.2. Scope of the research

The aim of the present research is to improve the understanding of the mechanical
behaviour of lattice structures and to separate the influence of the geometrical (i.e.
the size and the shape of one single beam element) and the material properties (i.e.
modulus of elasticity E, yield stress fpl) in the model to the structural behaviour.
The material heterogeneity was not considered in a first attempt to simplify the
topic. Physical lattice structures (9×9×9 cells) and single beam elements with
an accurate geometry were produced by means of Rapid Prototyping to obtain
the experimental data. A three dimensional photopolymer printer was used to
achieve the desired geometrical accuracy and homogeneity in the material. Four
different single beam shapes were chosen to investigate the influence of different
slenderness ratios and cross-sectional geometries of single elements on the lattice
deformation behaviour.

Two different lattice models were investigated to simulate the deformation be-
haviour of the physical lattice structures. The single beam element properties
(modulus of elasticity Ebeam, yield stress fpl and the maximum deformation
δbeam,max) were measured by using a micro-mechanical loading device for the
classical model which is commonly used by other researchers. This model was
extended to handle also a plastic behaviour of the beam elements. Subsequently,
the physical lattice structures were tested under tensile and compressive load.
The surface deformation during the experiments was measured with a three-
dimensional image correlation system to obtain the deformation characteristics
of the physical lattice structures.

A new model approach is investigated where the model is directly based on
the load and displacement information of the single elements which was already
introduced by Van Mier (2007, 2012, 2013). Many assumptions of the classical
model can thereby circumvented when the load-deformation response of the single
element forms the basis for the analysis and not any longer classical constitutive
equations based on stress and strain. The single beam elements were also loaded
in a micro-mechanical loading device in tension and compression under different
loading conditions (i.e. moment to normal force ratios) to obtain the information
required for the new model approach. The loading conditions were chosen by
analysing the force distribution in a global lattice structure using the classical
lattice model where the results are only dependent on the single element geometry
and the used material properties are irrelevant.

The experiments are compared with both models to obtain informations about
the applicability to simulate the structural behaviour of such types of lattices.
The sensitivity of the models is investigated by means of parameter studies. The
influence of varying material parameters on the deformation behaviour of the
global lattice illustrates the challenge to separate the geometrical and material
parameters conclusively.
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1.3. Outline of the thesis

This thesis is divided into seven Chapters. After an overview of both types of
simulation processes used, the specimen generation and the model assumptions are
described in detail. The performed experiments are explained and the comparison
between the simulations and experiments have been studied. The contents of
subsequent Chapters is as follows:

• Chapter 2:

A description of the lattice model concept and its application in research
is given. The generation of the lattice model structure is explained. The
simulation processes of the classical model and the new model approach
are described. The classical model is extended to consider plastic material
behaviour. The principle of video image correlation is discussed which will
be used in the single beam element tests and the global lattice experiments
to obtain a better understanding of the deformation behaviour.

• Chapter 3

The principle of Rapid prototyping is explained where three different pro-
cesses are illustrated. The specimen generation and production method for
the single beam element tests and the global lattice experiments are de-
scribed. A Model assumption for the simulations is introduced to handle
specimens with a non-constant cross-section over the length. The genera-
tion of the specimens for the new model approach is described in detail to
obtain the correct force-deformation curves for the simulations.

• Chapter 4

The micro-mechanical behaviour of the single beam elements for the classical
model and the new model approach are investigated. The micro-mechanical
testing device and the parameters that influences the mechanical properties
of the elements are described. The results from the single beam element
tests are discussed and a method to measure the modulus of elasticity of
the elements using video image correlation is introduced.

• Chapter 5

The macro-mechanical behaviour of the global lattice under tensile and com-
pressive load is investigated. The testing setup for both type of experiments
is explained in details. The results are discussed with regards to the mea-
sured deformation behaviour of the layers in the lattice using video image
correlation. The model assumption is verified in order to examine the ap-
plicability in the simulations.

• Chapter 6

The comparison between the macro-mechanical experiments and the simula-
tions is presented, The applicability of the models are verified by comparing
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the deformation behaviour of the lattice structures with the numerical re-
sults. Parameters studies for both models are carried out to investigate the
sensitivity of the models when changing the input parameters. The fracture
behaviour of the models is compared with the experiments in tension.

• Chapter 7

The observations from the last Chapter are concluded and the advantages
and disadvantages are summarized for both models. An outlook is given
on topics how the specimens have to be redesigned and what sort of pro-
duction method is more favourable than used in this thesis to obtain more
certainty about the geometrical and the material influences on the global
lattice behaviour.



2. Preliminary investigations

2.1. Lattice modelling

2.1.1. Concept

Among others, lattice models are used to discretise a continuum and form a simple
method to simulate fracture in quasi-brittle material by generating a network of
two or three dimensional spring, trusses or beam elements. Hrennikoff (1941) first
proposed the idea replacing a continuum by trusses. Hrennikoff used the lattice
approximation to solve linear elastic problems. The lattice theory was adopted in
the 70’s to simulate fracture and creep processes at the atomistic scale by studying
the behaviour of square lattice structures (Thomson et al (1971) and Hsieh and
Thomson (1973)). In statistical physics, lattice models were introduced to study
fracture of disordered media. The fracture model was initially reduced to a scalar
problem by applying the electric analogy where each element was reduced to a
resistor (Duxbury et al (1987)). Fracture was simulated by loading the lattice with
an increasing current. Once the current reached a certain value in an element, the
resistance becomes infinite and the element reacts as an insulator. The current
will be increased until the whole lattice is no longer conducting. It was found in
the 80’s that this analogy was not appropriate to compare experimental results
and simulations. Fracture in disordered media was then studied by Herrmann
et al (1989) using two dimensional beam-lattice models. In this simulation, the
element with the highest ratio of mechanical stress over the tensile strength is
removed one after another.

Different lattice models were subsequently used to model fracture in disordered
material where the implementation of heterogeneity (particle projection or sta-
tistically distribution of the mechanical properties), the type of elements (trusses
or beams) and the adopted fracture criterion (linear elastic with or without soft-
ening) were changed. Burt and Dougill (1977) assigned different stiffness and
strengths on the elements in a random network structure to study the influence
of the material heterogeneity on the stress-strain-curve. Simulations of lattices in
square configuration from physicists showed a Poisson’s ratio of v = 0.0. Triangu-
lar lattices were then preferred to simulate fracture in quasi-brittle material due
to the possibility to adjust the Poisson’s ratio (Schlangen and Van Mier (1992b)).
Schorn and Rode (1989) adopted the lattice model to the third dimension where
the linear elastic trusses were connected to each other in a regular cubic pat-
tern. The elements preserved different stiffness as well as tensile and compressive
strength of a certain distribution.
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Van Mier and his co-workers developed a lattice model (Schlangen and Van Mier
(1992a); Schlangen (1993)) where the heterogeneity was implemented by project-
ing the lattice on the internal structure of concrete and by assigning different prop-
erties to the elements dependent in which region the element is located. Beams
instead of trusses are used in this model because on one hand it is possible to take
a wide range of the Poisson’s ratio into account and on the other hand it per-
mits to simulate crack bridging, where intact material pieces link the crack faces
as was observed in experiments by Van Mier (1991). Schlangen and Garboczi
(1997) illustrated that a simulation with trusses leads to simple crack pattern
while using beams, complex crack pattern can be achieved. Results based on the
work of Nooru-Mohamed (1992) show this conclusion, where shear simulations
on double-notched square specimens with homogeneous lattices were performed.
Ince et al (2003) showed the influence by using Timoshenko beams instead of
Bernoulli beams on the load-displacement response while the difference is quite
small (between 5% to 10%).

The model of Schlangen and Van Mier (1992a) was adopted by other researchers
(Bolander Jr et al (1996), Bolander and Sukumar (2005), Joseph and Jefferson
(2007)). It is also used to describe the fracture of different materials for instance
fibre concrete (Bolander et al (2008)), asphalt concrete (Kim and Buttlar (2005))
or wood (Landis et al (2002)). Due to the development in parallel computing
and larger computer facilities, the model was successfully extended in the third
dimension by Lilliu and Van Mier (2003) and Liliu (2007). The three-dimensional
model takes the realistic internal structure of the concrete into account and the
simulations lead to a better performance for the softening behaviour of concrete
for tensile experiments. The lattice model is in general capable to simulate a soft-
ening behaviour of the material by using a linear elastic-purely brittle constitutive
law for the beams and mapping the internal structure. It gives the opportunity
to have a better insight in the origin of softening. Man and van Mier (2008) and
Man (2010) studied the size and shape effect in three-dimensional numerical con-
crete where the internal aggregate distribution was determined through Magnetic
Resonance Imaging (MRI).

Compared to the approach taking the internal structure of the material into
account to describe the mechanical material behaviour, there are many attempts
to achieve this by varying the fracture behaviour of the single beams. Schorn
and Rode (1989) used a criterion related to the Rankine criterion. They specified
for every truss a statistically distributed tensile and compressive stress. The Von
Mises yield criterion was used by Herrmann et al (1989), but this approach did
not lead to a realistic simulation for fracture in compression. Arslan et al (1995)
assumed the beam properties as linear elastic-plastic to achieve a plastic fracturing
in the lattice model. By changing the ultimate strain of the beam, they reached
a better result of the softening behaviour of concrete under uniaxial tension than
by using a linear elastic-purely brittle fracture law.
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Lattice structures have the same composition like cellular solids. Cellular solids
are structures that consist of hollow cells with solid edges or faces, combined
together to fill space in the solid. Different cellular solids appear in nature like
sponge, cork or wood. Man-made cellular solids nowadays are honeycomb material
as well as open- or close- cell foams of polymers, metals, glass or ceramics. There
is a wide range of applications of cellular solids like insulation, absorbing kinetic
energy, cushioning and the usage as building material.

In contrary to the discretisation of the continuum in fracture mechanics, re-
searchers in the field of cellular solids evaluate the properties of these materials by
using discrete models. Gibson and Ashby (1997) give an overview of the applica-
tion and mechanical behaviour of cellular solids. Studies in the early development
in cellular solids were done by Suh (1980), Suh and Webb (1985), Wendle (1976),
Hilyard (1982) and Hilyard and Cunningham (1994). They studied the collapse
of single cells and approximated the results to the general behaviour of cellular
solids. To investigate the size effects, Onck et al (2001) modelled the structure
of honeycombs in a finite element program, where the struts are described as a
continuum material. Constitutive laws for the system response were developed
on the basis of experimental results obtained from tests on foams with varying
densities (Andrews et al (2001)). Schmidt and Fleck (2001) studied the influence
of cell irregularities on the stress intensity factor also by modelling the internal
structure as a set of finite element struts. Mangipudi and Onck (2011) used for
the multi-scale analysis of metallic foams the elastic beam formulation by Crisfield
et al (2012). With this method, the influence of cell shape anisotropy and size
effects were investigated. To take the exact geometry of the internal microstruc-
ture of open cell foam into account, X-ray tomography was used by Jang and
Kyriakides (2009a). They tested the material under compression and simulated
the behaviour with a finite element program, where they used beam elements with
variable cross sections and adopted the exact geometry of the cells in the model
(Jang and Kyriakides (2009b)).

2.1.2. Generation of the lattice model

Different types of lattices are used to discretise the continuum. Lattices in a
random configuration are applied in the model where the internal structure of
the material is unknown to represent the heterogeneity in the material. Regular
lattices are used in models, where the internal structure is included by applying
different material properties dependent in which phase of the material the beam is
laying. The lattice network can be generated by square or triangular arrangement.
In this thesis, triangular regular lattices with equal beam length are investigated
due to their widespread application in fracture mechanics.

Triangular lattice structures can be constructed through an approach from the
crystallography. In two dimensions, circles with equal diameters are arranged
in a hexagonal arrangement (Figure 2.1(a)). One circle is surrounded by six
neighbouring circles. Through connecting the centres of every circle with its
neighbours, the regular triangular lattice network is constructed. Modelling of
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(a) (b)

Figure 2.1.: Different two-dimensional lattices: (a) Triangular and (b) Honeycomb
configuration

cellular solids, respectively honeycomb structures in two dimensions is done by
connecting every centre of a triangle with the centres of neighbouring triangles
(Figure 2.1(b)). Gibson and Ashby (1997) describe the mechanical response and
the fracture mechanism of such structures. In both cases, the beam lengths in
the lattice are the same (Beam length in triangular lattice: 1· circle diameter s;
Beam length in honeycomb lattice:

√
3/3· circle diameter s).

Three-dimensional lattices are constructed in the same way like the two-dimen-
sional lattices. Instead of circles, spheres with diameter s are arranged in space
considering the closed packed arrangements of hexagonal sphere-layers. The dis-
tance d between two layers is:

d =

√
6

3
· s (2.1)

Layer B and C can be placed in two different relations relative to Layer A
(Figure 2.2). In the hexagonal closed packed structure (hcp, Figure 2.2(a)), every
second layer is the same (ABAB). In the centred cubic packing (fcc, Figure 2.2(b)),
every third layer is the same (ABCABC). The distance d between the layers keeps
the same for both configurations. The difference in these arrangements is the
existence of two different types of triangular gaps dependent on the layer order.
Each sphere has 12 neighbours in every case: 6 in the same layer and both 3 on
the lower and upper layer. The beams in the lattice are constructed by connecting
the centres of every sphere with the neighbouring centres.

A side view of the two different layer arrangements is showed in Figure 2.3.
It shows the geometry of the lattice boundary. The lower and upper boundary
layers of the regular lattice are planar. The layers are used in the simulation
to apply the external forces or displacements. The vertical boundaries of the
lattices are disturbed which is normal for a triangular type lattice. To quantify
the disturbance, the maximal relative horizontal difference between two layers can



2.1. Lattice modelling 13

(a) hpc packing (b) fcc packing

Figure 2.2.: 3D sphere packing: (a):hcp packing (light grey layer A; grey layer B),
(b) fcc packing (light grey layer A; grey layer B; dark grey layer C)

be calculated for both structures.

x =

√
3

6
· s y =

√
3

3
· s (2.2)

(a) hcp lattice (b) fcc lattice

Figure 2.3.: Side view of two different 3D lattice configuration

The fcc lattice has a two times higher relative horizontal difference than the
hcp lattice. To achieve a more homogeneous force and deformation behaviour in
the lattice, only the hcp configuration will be investigated in this thesis.

A number of different cell configurations in 3D is used to describe the mi-
crostructure of cellular materials. A common geometry for simulating the me-
chanical behaviour of open cell foams is the Kelvin cell (Figure 2.4(b)). The
analogy in modelling the two different domains (continuum and open cell foam
modelling) is obvious (see Figure 2.4). In both cases, a frame of trusses or beams
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(a) Triangle cell (b) Kelvin cell

Figure 2.4.: Analogy between lattice and cellular structures modelling

connects the nodes to describe the structure. Therefore, the same model is sup-
posed to work for both point of views.

2.1.3. Fracture Simulation

This section describes how the deformation and fracture of a lattice can be mod-
elled. Two different models will be investigated. The first model refers to the
classical method which is appropriate in this field of fracture research by now
(Schlangen and Van Mier (1993), Bolander et al (2008), Man (2010) etc.). This
model is extended to handle a linear elastic-purely plastic material behaviour.
The geometrical stiffness matrix is implemented in the model to investigate its
influence on the deformation behaviour of the lattice under compression. A new
approach will be presented, first hypothesized by Van Mier (2007, 2012, 2013),
where the constitutive formulation of the material behaviour and the fracture law
of a single beam are not necessary any more.

Classical model

In the classical beam lattice model, the direct stiffness method is used to calculate
the deformations and the forces in single Bernoulli beam elements. The global
stiffness matrix is calculated from the local stiffness matrix (Equation 2.3) by
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transformation in the global coordinate system.
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(2.3)

The deformations and forces in the nodes can be calculated by solving the
following Equation:

F = K × U (2.4)

Equation 2.4 is used independently if external deformations or forces are applied
on the lattice structure. The beam forces in the local coordinate system are
calculated through back transformation of the global forces at the nodes.

Using a linear elastic-purely brittle constitutive law for the beam behaviour
(Figure 2.5(a)), the fracture is simulated by removing a single beam element in
the mesh for every load step. A uniformly distributed unity displacement or
force is applied on the lattice and the element with the highest stress over tensile
strength ratio is removed. The failure criterion considers the normal force and
the maximum moment at the end of the beam to calculate the maximum stress
in the beam as follows:

σi
f{t,pl}

=
1

f{t,pl}
(
Fi

A
+ α× max {|Mi| , |Mj |}

W{el,pl}
) ≥ 1 (2.5)

A refers to the cross sectional area of the lattice beam and W to the cross
sectional modulus of resistance. The elastic modulus of resistance Wel is taken
into account for linear elastic behaviour. The parameter α considers the influence
of the bending moment in this criterion. In fracture mechanics of concrete, the
influence of the parameter α on the tail of the stress-deformation curve was inves-
tigated by Schlangen (1993) for two dimensional analysis and by Liliu (2007) for
three-dimensional analysis. The maximum external displacement or force, where
one beam fails, is determined by multiplying the unit load with the factor

1

µ
= max

σi
ft,i

(2.6)

In this case, all other elements will not fail:

µ · σi
ft,i

< 1 (2.7)
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(a) (b)

Figure 2.5.: Stress-strain relation of a single lattice element: (a) linear elastic-
purely brittle, (b) linear elastic-ideal plastic-purely brittle

The global stiffness matrix is recalculated for the lattice without the failed
element and the procedure starts over.

The simulation process for the lattice model with linear elastic-ideal plastic
material behaviour is illustrated in Figure 2.6. Figure 2.5(b) shows the stress-
strain diagram of the estimated material property. In comparison with the elastic
solution, there are two more parameters to consider: the stiffness of the plastic
plateau E2 and the ultimate strain εmax. The internal forces and displacements
for every lattice element are stored after each step to handle the two new param-
eters in contrast to the common method where the calculation starts from zero
for each step. The advantage is that the new parameters can directly be imple-
mented in the simulation. Arslan et al (1995) reduced the effective modulus of
elasticity for every step dependent on the deformation of each element to simulate
the linear elastic-plastic behaviour. This method leads to iterations whereas the
deformations and forces can directly be determined with the described method.

The element stresses in this model are also calculated with Equation 2.5. Com-
pared to the linear elastic analysis, the plastic modulus of resistance Wpl will be
inserted. This will lead to a small overestimation of deformation, when a cross-
section of one beam reaches the yielding plateau. However, the ultimate stress in
the beam is not influenced. To check whether the stress or the strain criterion is
reached, two new parameters are introduced:

ξi,j =
1

fpl
(
fpl − σi,j−1

σi,j
) ζi,j =

1

εmax
(
εmax − εi,j−1

εi,j
) (2.8)

where i indicates the element and j indicates the step number. By finding the
minimum of these two values, the load or strain factor equal to Equation 2.6 can
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Figure 2.6.: Classical Simulation process
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be found:

µ = min(|ξi,j , ζi,j |) (2.9)

Dependent if the plastic stress or the ultimate strain is reached, the modulus
of elasticity for the critical element is set differently in the next step. In addition,
the internal forces are set to zero in the second case which corresponds to the
removal of the element from the lattice.

The following two Equations are valid for every element in the lattice depending
whether the yield stress of an element is first reached,

µ(
σi,failed
fpl

) = 1 and µ(
σn 6=i

fpl
) < 1 (2.10)

or the ultimate strain is reached

µ(
εi,failed
εmax

) = 1 and µ(
εn 6=i

εmax
) < 1 (2.11)

For the fracture process, it is possible that the load factor µ reaches a negative
value due to change in the global stiffness matrix which leads to a different internal
force distribution.

It is assumed in the current models that the deformations in the structure
are negligibly small. Sufficient accurate results are reached for analysing the
equilibrium in the undeformed configuration. If the deformations are large (strain
> 0.05%), analysing the equilibrium for the deformed configuration leads to more
accurate results and stability effects like buckling are directly taken into account.
The geometrical stiffness matrix has to be included in the simulations for this
purpose:

kg =
T

L
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(2.12)

where

T = EA(uj − ui)/L (2.13)
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The matrix is dependent on the normal force T in the elements. It is added to
the local stiffness matrix (Equation 2.3) to achieve the second order local stiffness
matrix of one single Bernoulli beam. This results in an iterative process during
the simulation. The equilibrium is reached in one iteration for displacement con-
trolled simulations. In a first step, the global stiffness matrix is built to calculate
the normal forces in the elements. In a second step, the internal normal forces
are included by Equation 2.12 and the forces in the elements are calculated for
the deformed equilibrium. For force controlled simulations, appropriate iteration
methods can be chosen (modified Newton-Rapson, Arch-length method etc.) to
calculate the equilibrium.

New approach

The new approach is based on the consideration to take the force-displacement
curve for one element directly into account to describe the fracture behaviour
of the lattice. Van Mier (2007) and Van Mier (2012) described the approach
in terms of using the interaction potential between two atoms in the atomistic
scale to describe the material behaviour for large scales. Considerations are made
for structural lattices. Taking the force-displacement curves into account has
several advantages compared to the classical modelling of lattice structures. One
of the main features is that the material properties respectively the assumed
constitutive laws are not necessary any more to calculate the stiffness matrix.
Also the approval of the specific fracture law is not needed any longer because
this information is all contained inside the force-displacement curve of an element.
In addition, the information about the stress distribution over a cross section of
an element and the inclusion of the geometrical stiffness matrix (Equation 2.12)
to consider stability effects also become unnecessary for this type of input.

The basis for this approach is to access to a database of experimental data for
single beams with exactly the same geometry as they are present in the lattice and
which are tested under the same load and boundary condition as in the lattice
structure. This results in a database of force-displacement curves for different
types of loading conditions. Figure 2.7 illustrates the process of the new model.
In a first step, the loading condition of every beam has to be calculated. This is
done in the classical way by estimating the global stiffness matrix in which the
value of the modulus of elasticity is indifferent. This proposition is evident when
looking at the form of the stiffness matrix (Equation 2.3). Assuming following
Equation for isotropic material

G =
E

2 · (1 + ν)
(2.14)

the modulus of elasticity can be excluded from the matrix and it only includes
geometrical terms.

By applying a force or displacement load on the lattice, the relative displace-
ment w1 and the load distribution for every element is calculated. Figure 2.8(b)
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Figure 2.7.: Simulation process for the new approach
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Figure 2.8.: Element force distribution for lattice elements: (a) Regular lattice,
(b) V/N-ratio for all elements

shows the distribution of the shear to normal force ratio i.e. V/N-ratio for all ele-
ments in a regular lattice (Figure 2.8(a)). It is obvious that there is a distribution
in the lattice, i.e. not every element has the same loading condition.

By assigning a force-displacement curve from the database to every element
which corresponds to the same loading condition, the force in every element is
captured with respect to the relative displacement of the element (Figure 2.9(a)).
This leads to a change of the secant modulus of elasticity whereas an iteration
process is necessary. The moment of inertia I and the polar moment of inertia J
will be set to zero before the iteration starts because the information about the
V/N-ratio is included in the force-displacement curve. Only the relative displace-
ments wi are relevant to solve the equilibrium from Equation 2.4. The iteration
stops until certain accuracy for the calculated external force is reached:

Ftot,j − Ftot,j−1 < ε (2.15)

The external load or displacement can be increased after the iteration stops.
The simulation process start over due to the fact that the force distribution in the
lattice has changed. This leads to a new assignment of different force-displacement
curves to every element. The simulation stops when the lattice structure drops
under a certain external force level.

Both models are compared with the experiments on the lattice structures in
Chapter 6 on the basis of experimental results on single lattice elements. The
experimental results are discussed in Chapter 4 for single elements and in Chapter
5 for lattice structures.
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(a) (b)

Figure 2.9.: Force-displacement diagram for a given V/N-ratio: (a) First calcula-
tion step of modulus of elasticity E∗i , (b) Second calculation step of
modulus of elasticity E∗i+1

2.2. Digital image correlation

Digital image correlation is a convenient tool to measure surface deformations of
specimens and to identify strain distributions in the analysed material. Digital
image correlation (DIC) is used in single element tests to determine the modu-
lus of elasticity of the material which is needed as an input parameter for the
classical lattice model (see Chapter 2.1.3). DIC is also used to capture the sur-
face strain distribution during experiments on lattice structure in order to verify
certain model assumptions and the uniformity of the deformation on the lattice.
This Chapter gives an overview of the DIC process and the required specimen
preparation.

2.2.1. DIC process

The method was investigated in the 80′s in the field of experimental mechan-
ics to detect surface deformations. Chu et al (1985) and Hild and Roux (2006)
describe the procedure for identifying the surface deformations. Nowadays, this
technique is used in a wide field of applications. Grediac (2004) gives an overview
of the measurement methods in composite materials as well as the advantages
and disadvantages by using this technique. Godara and Raabe (2007) used DIC
to investigate the influence of glass fibre alignment in polymers where Jerabek
et al (2010) determined the strain distribution on polymer specimens under ten-
sile load. Wattrisse et al (2001) analysed the strain localization in steel for tensile
experiments. The deformation behaviour of fibre reinforced composites was stud-
ied by Giancane et al (2010) whereas Vanlanduit et al (2009) investigated the
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Figure 2.10.: Subset shape with pixel size n before (left) and after (right)
deformation

fatigue and crack growth process on aluminium. The technique is also applied
for detecting strain concentrations respectively cracks at an early loading stage
and debonding phenomena’s. Kuentz et al (2006) analysed the crack behaviour of
a reinforced concrete beam. Studying the crack distribution on micro fibre rein-
forced cement specimens under tensile load was done by Rieger (2010). Caduff and
Van Mier (2010) investigated the crack nucleation and growth on three different
types of concrete under compressive load. The interfacial debonding properties
in concrete were analysed by Corr et al (2007).

The principle of two dimensional digital image correlation is composed of com-
paring two grey scale pictures before and after a certain surface deformation. To
calculate the movement of a single pixel in the image, a square pixel area around
the pixel is taken into account (subset). This area must have a unique character
in order to recognise it in the deformed state. The grey scale values of the area
before and after the deformation are compared using the following Equation:

C(x, y, u, v) =

n/2∑
i,j=−n/2

(I(x+ i, y + j)− I∗(x+ u+ i, y + v + j))2 (2.16)

C: Correlation function
x,y: Coordinates of the centre pixel in undeformed state
u,v: Displacement of the centre pixel
n: Subset size [pixel]
I(...): Grey scale value in undeformed state
I∗(...): Grey scale value in deformed state

Equation 2.9 represents the classical correlation function, which calculates the
least square error of the subsets. A perfect match in the deformation calculation
corresponds to a value of C = 0. Due to noise effects and deformations in the
sub-pixel field, the correlation function never reaches zero. Calculating the defor-
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mation in the sup-pixel region is done by using a Fourier or iterative algorithm.
The cross-correlation function surface is calculated over a range of deformations
u and v on the basis of the Fourier algorithm. The exact deformations are found
by fitting the calculated cross-correlation surface in the sub-pixel range where the
maximum surface peak corresponds to the deformations. Hild and Roux (2006)
and Sutton et al (2009) describe the different algorithms in details. The deformed
subset shape does not have to be square due to rotations, enlargements or reduc-
tions in the movement. The deformation field is expanded with Taylor arrays of
the order zero to two. The second order allows curvatures along the subset sides.

The light conditions can change during the recording of the surface which leads
to a change of grey scale values in the pictures. In this case, to avoid erroneous
calculated deformation of the correlation function in this case, a photometric
transformation is used to produce a rugged algorithm

I(x, y) = P (I∗((x+ u, y + v)) (2.17)

where P is the photometric transformation function.
Different interpolation functions are implemented in the transformation to in-

terpolate the grey scale values in the sub-pixel size and to reach a continuity in
the subset area.

Strains in two dimensions can be calculated from the measured deformations
using

εxx = u,x + 0.5(u2,x + v2,x) (2.18)

εyy = v,y + 0.5(u2,y + v2,y) (2.19)

γxy = 0.5(u,y + v,x) (2.20)

One camera is used for two dimensional detection of deformations which stands
perpendicular to the subjected surface. Out-of-plane deformations cannot be
detected and they can lead to poor deformation calculations. To measure defor-
mations in the third dimension, two cameras are required. Both cameras are used
to view the same area of the specimen (Figure 2.11). The deformation calcula-
tions are done by stereo correlation. A calibration is required with this technique
to determine the position of the two cameras. A high accuracy in the calibration
leads to a high accuracy in the deformation calculation.

The strains in the third dimension are calculated through the Nabla function

εxx,yy,xy = ∇(ux,y,z, vx,y,z) (2.21)

Strains are calculated at the same subset centres as the deformations were de-
termined. The surrounding centres are taken into account with a certain weight.
Close centres have a higher weight than distant centres. The accuracy is enhanced
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Figure 2.11.: Camera positions (C1, C2) for three dimensional deformation
measurement

by considering more centres for image noise reduction but local strain concentra-
tions cannot be detected any more. Therefore, the number of centres included in
the calculation has to be considered depending on the character of the investiga-
tion. For instance, are we interested in a homogeneous strain calculation or is the
focus on strain localisation.

The computational time of correlating the subsets and calculating the strains
has also to be considered. More computational time is consumed when the subset
size is increased. A subset size of more than n = 25 pixels does not lead to a
more accurate deformation calculation. By increasing the number of analysed
subset centres, the deformation field is more precise as the calculated strain con-
centrations on a nearby area. The computational time increases linearly with
the number of analysed subset centres. Therefore, it has to be considered what
type of information are required for the target investigation before starting the
correlation calculations.

2.2.2. Sample preparation

Calculating the deformations requires a random and not repeating pattern of the
observed sample surface in order to identify the subsets in the unreformed and
deformed state. If the sample surface does not show a useful specific pattern, a
random speckle pattern has to be applied on the surface. The applied film may
not influence the material behaviour and should deform simultaneously with the
surface. The application is done by spraying a continuous film of white paint on
the surface. The paint should not reflect the light which will lead to erroneous de-
formation calculations. An airbrush is used to generate a random speckle pattern
with black colour. The speckle size is dependent on the resolution of the cameras
and the size of the observed area on the surface that the subset includes at least
3 by 3 speckles.





3. Specimen production and
generation

3.1. Introduction

Producing specimens for single element and lattice structure experiments requires
a high accuracy in the fabrication to avoid irregular or imperfect geometries. Due
to the undercut geometry of the lattice structures, common fabrication methods
such as CNC drilling or the application of simple mould techniques are not conve-
nient. Techniques with lost moulds are not appropriate due to the complexity in
the production process, to achieve the desired geometry and to sustain a homoge-
neous material behaviour for every part. Rapid prototyping is capable to produce
complex undercut specimens with a high geometrical accuracy and certain homo-
geneity in the material considering a few construction rules. This Chapter gives
an overview of the functionality of rapid prototyping and describes the fabricated
geometries of the single element and lattice structure specimens. Three different
rapid prototyping methods will be described in detail.

3.2. Rapid prototyping

Prototyping or model making is used to verify a conceptualisation of a design. At
the early ages until now, manual prototyping is applied to build prototypes by
employing different production methods like castings, moulds, material removal or
joining. This fabrication method is time consuming dependent on the complexity
of the model and leads to high costs (Metelnick (1991)). Rapid prototyping
(RP) or solid free form fabrication was invented to reduce the time and costs
of fabricating models. The principle of this production method consists in lying
thin layers of a material over each other to build a three dimensional structure
(Figure 3.1). First attempts with this technique were made in the 19th century
at which wax plates were cut with a specific contour. The free form volume was
created by laying the plates on top of each other (Bourell and Beaman (2012)).
The first presentation of a photo-polymer rapid prototyping system was in 1981
(Prinz et al (1997)) where a photo-polymer resin is cured with an UV-laser layer
by layer. Due to the enhancements in computer technology, rapid prototyping
had been growing through the last three decades and there are more than 30
production techniques on the market by now. Kruth (1991), Kochan (1993),
Beaman et al (1997) and Chua et al (2010) describe the historical trends and the
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Figure 3.1.: Illustration of the layer modelling technique in rapid prototyping
process

different production methods for RP. The processing goes from rapid prototyping
to rapid tooling at which fabricated parts are directly deployed for mechanical
loaded machine components.

3.2.1. Stereolithography

Stereolithography (SL) describes a process, where ultraviolet-curable resin poly-
merizes during an exposure with a laser. Jacobs (1992) and Jacobs (1995) describe
the process in detail. During the process, an elevator platform is located below
the surface of a liquid thermoset polymer. The desired polymer area above the
elevator is exposed with an ultraviolet laser, which leads to solidification. The
hardened parts adhere on the top of the elevator. The platform shifts downwards
by the height of the next layer. During the next exposure of the liquid polymer,
the material in contact with the previous layer solidifies. The whole model is build
by repeating the process. The solidified part is finally removed from the platform
and the uncured resin is washed off using an adequate solvent. The part is in a
green state and it has to be post cured by exposure to UV light in a chamber
to reach the final strength of the material. Due to the mandatory connection of
the layers to each other, support structures have to be considered to build layers
for overhanging parts. The support structures are removed after the post-curing
of the model. Acrylic based resins were used initially whereas nowadays different
resins are on the market with improved accuracy and strength properties.

Different parameters influence the properties of the final part. Curtis et al
(2003) investigated the optimization of build parameters for different resin types
to avoid different material properties in the same part. The existence of cured
and uncured resin in the same green state part can cause shrinkage and distortion
during post-curing. Fuh et al (1997) optimized the build parameters to achieve
parts with a high accuracy and homogeneous material parameters. Decreasing
the layer thickness leads to a higher strength of the material (Chockalingam et al
(2008)).
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Post-curing of the green state samples leads to a change of the material prop-
erties. Parts, which were exposed to UV light and microwave show greater values
for the yield and ultimate strength as well as the modulus of elasticity (Curtis
et al (2003) and Salmoria et al (2005)). Different degrees of curing induce a varia-
tion in strength, while post-curing improves the toughness in conjunction with the
durability (Cheah et al (1997) and Karalekas and Rapti (2002)). Post processing
with electroplating of the green part to improve the mechanical properties was
used by Saleh et al (2004). Improving the material properties by adding rein-
forcing materials like fibres, Nano tubes and other materials was also investigated
(Cheah et al (1999), Sandoval and Wicker (2006), Sandoval and Wicker (2006)).

3.2.2. Selective Laser Sintering

In contrast to the stereolithography process, powder material is used in the Se-
lective Laser Sintering (SLS) fabrication process to build the desired parts. The
process was invented by Deckard (1988), where a laser fuses thermoplastic polymer
powder together, building the part. The principle of the layer technique remains
the same as in the SL-process. Different materials (thermoplastics, composites,
metals or ceramics) are capable for the SLS production as long as heat-fusible
powder of the specific material can be produced. The part is build in a chamber
where the environmental temperature is below the melting or the glass-transition
temperature of the used powder material. The production speed is increased since
only a few degrees of locally heating is necessary to fuse or sinter the powder by
means of a CO2 laser. The chamber is filled with an adequate gas to avoid chem-
ical reactions of the powder. The unconsolidated powder provides the support
material for overhanging parts. The specimen is cleaned from the powder by air
or brush after the process is completed. Post-curing is not required to improve
the material properties.

Different parameters in the SLS-process influence the material properties as well
as the geometrical accuracy. The powder grain size and powder blend influences
both the part strength as its durability (McAlea (1997)). The application of
different laser types with different energy levels is investigated to achieve a better
coupling between the grains which leads to a denser material part respectively
better mechanical properties (Tolochko et al (2000), Santos et al (2004), Abe et al
(2001)). Santos et al (2006) give an overview of the development using different
laser systems. Agarwala et al (1995) observed the influence of the laser scanning
speed on the material density. Pre-heating of the powder was investigated to
reduce the residual stresses in the build part due to the concentrated energy
input (Klocke et al (1995)).

3.2.3. Jetted Photopolymer

Jetting heads are used to release droplets of photopolymer material at the desired
position. Multiple jetting heads are required to release both the part and support
photosensitive material separately. Curing takes place directly after the material
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Figure 3.2.: Production principle for jetted photopolymer process; This technique
is used to produce all specimens

release by subjecting it to UV light. The UV light sources are integrated in the
jetting heads (Figure 3.2). After finishing one layer of the part, the build tray
moves downwards vertically for one layer thickness. The jetting heads have to
move only in the x-y-plane. The support material is washed out by using a water
jet after the part has been finished. The part is fully cured after the building
process and post-processing is not necessary. The jetted photopolymer process
was first invented by Fudim (1988) and the first commercial PolyJet machine for
rapid prototyping was introduced by Objet3d in 2000.

The fabricated parts are mainly used for design studies or in the jewellery
industry. Therefore, the influence of different process parameters on the material
properties has not investigated until now.

3.2.4. Process Comparison

Each process is based on the same principle namely building a part using the
layer technique. Table 3.1 lists the main properties of the three described pro-
cesses. The in-plane and the out-of -plane accuracy of the desired part depends
on the fabrication process. The thinnest layers as the best in-plane accuracy can
be reached with the jetted photopolymer process whereas the in-plane accuracy
depends on the size of the produced part for the stereolithography process. Dif-
ferent materials can be used for SL and SLS, whereas only acrylic photopolymers
are available for jetted photopolymer application. Post-curing is needed in the
SL-process to reach the desired material properties.
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Table 3.1.: Comparison of Rapid Prototyping process properties

SL SLS
Jetted

Photopolymer

Minimum layer
thickness [mm]

0.05 0.1 0.016

In-plane accuracy
0.1-0.2% of part

dimension
0.1-0.5 mm 0.02-0.2 mm

Build material
Different liquid
photopolymers

Different powders
Acrylic

photopolymer
Post-curing Yes No No

Figure 3.3.: 3D Printer Objet Eden 500V

The jetted photopolymer process is used in this thesis to produce the desired
parts due to the high geometrical accuracy of the specimen production and to
avoid post-curing of the parts. All specimens are produced with the machine
type Eden 500V from Objet3D (Figure 3.3) which uses the PolyJet technique.
The maximum size of the produced part can be 500× 300× 200mm. The acrylic
photopolymer FullCure720 is used for the material parts and FullCure705 serves
as support structure. All specimens used in this thesis are constructed with the
NURBES modelling software Rhinoceros V 5.0 from RobertMcNeel&Associates.
Ma et al (2001) describes the advantages of using NURBES models for designing
parts for Rapid Prototyping. Binary STL-files (Standard Tesselation Language)
were exported to the Objet3D printing software. The export parameters are
listened in Appendix A.1.

3.3. Single beam geometry

The single beam element properties (modulus of elasticity Ebeam, yield stress fpl
and maximum deformation δmax,beam) needed in the classical simulation (Fig-
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ure 2.6) are determined using the specimens shown in Figure 3.4. Four differ-
ent specimen shapes are considered. The cross-sectional geometry (square or
round) and the cross-sectional area in the middle of the beam vary. Two different
cross-sectional shapes are chosen to investigate the influence on the deformation
behaviour of lattice structures, to verify the simulations which should be inde-
pendent of the cross-sectional shape and to determine the influence of the beam
shape on the single element properties. Two different cross-sectional areas are
used to vary the slenderness of the beams and to inspect any size effects on the
single beam properties in the chosen dimension range. The cross-sectional area in
the middle of the specimen has the same value between the large square and the
large round cross-sections (Figure 3.4(a) and 3.4(b)) as well as between the small
square and the small round cross-sections (Figure 3.4(c) and 3.4(d)). The length
of the beams corresponds to the node distance in the simulation and is the same
for all four geometrical shapes. The parts which contain a cylindrical hole serve
as support in the single element experiments where the testing device is described
in Chapter 4.2.1.

The dimensions were chosen on considerations of the production process and
the handling of the specimens. The cleaning of the global lattice specimens from
the support material is done by using a water jet with a certain pressure. The
water jet can destroy single beams in the lattice structure when the cross-sectional
area of the beams is too small. A too large beam cross-sectional area interferes
with the water jet when penetrating the lattice structure to the centre. The water
pressure will decrease to a level in the centre where it is not possible any more to
wash out the support structure. Increasing the water pressure to clean the centre
is not suitable due to risk damaging the beams. The same considerations are valid
for the length of the beam between the nodes. Increasing the beam length leads
to a higher distance from the lattice surface to the centre. A higher water jet
pressure is necessary to wash out the support material where the risk for a beam
failure increases.

A constant radius over the length for every specimen shape was chosen for
two main reasons. Uniaxial tensile tests are performed to measure the tensile
strength of material with different types of ductility (brittle, quasi-brittle, ductile).
The specimen shape for different ductile materials is standardized in DIN 50125
(2009) for metallic materials or DIN 53504 (2009) and ASTM D638 (2008) for
plastics. The specimen shape for brittle material is not standardized. Van Vliet
(2000) suggested a dogbone-shaped specimen with freely rotating supports to
identify the tensile strength of a quasi-brittle material like concrete. There are
several advantages and disadvantages using different specimen shapes to measure
the tensile strength. Van Vliet (2000) and Rieger (2010) analysed the stress
distribution for different specimen shapes whereas nearly the same analysis is
made here but for slightly different specimen shapes. Figure 3.5 illustrates the
stress distribution for three different specimen shapes under tension in the elastic
regime. The bright areas of the specimens correspond to high stresses. The
advantage of using a rectangular shaped specimen (Figure 3.5(a)) is the well-
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Figure 3.4.: Single beam geometries; Dimensions in [mm]

defined geometry as the stress distribution of the part between the supports but
there are stress concentrations near the edges as can be seen in Figure 3.5(a). This
can lead to failure at the intersection between the specimen and the supports
during the experiment. The stress concentrations can be reduced by rounding
the edges to reduce the stress concentrations which leads to a dumbbell shaped
specimen form (Figure 3.5(b)). This shape is commonly used to identify the
tensile strength of ductile materials. Small stress concentrations remain at the
intersection between the curved part and the straight part which also can lead
to a geometrical induced failure of the specimen. Using a constant radius over
the whole specimen height (Figure 3.5(c)) eliminates the stress concentrations
between the support parts and the specimen. The highest stress is located in the
middle part of the specimen. Thereby, the analysis is in agreement with Van Vliet
(2000) and Rieger (2010). The problem remains that the stress distribution in
the middle part is not fully constant over the whole cross-section, but the risk of
a geometrical induced failure is minimised. On this account, dogbone shaped
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(a) Rectangular (b) Dumbbell (c) Dogbone

Figure 3.5.: Stress concentration for three different specimen shapes

specimens with a constant radius are used in this thesis for the single beam
experiments. A nearly constant stress distribution in the middle cross-section
can be reached by maximizing the radius of the dogbone which leads to a thinner
specimen shape. A too large radius is not suitable as illustrated before due to the
cleaning process of the specimens.

Another reason to analyse the mechanical behaviour of single beams with vari-
able cross-section over the length is to investigate the adaptability of the lattice
model to the behaviour of open-cell foams. The beams in open-cell foams exhibit
variable cross-sections due to the production process of this material. Jang and
Kyriakides (2009b), Onck et al (2004) and Gong et al (2005) took the variable
cross-sections into account to model the mechanical behaviour of open-cell foams
under tensile and compressive load. The basic lattice model calculates the forces
in the single beams using constant cross-section areas A and moment of inertias
I over the whole length of the beam. Equivalent constant areas Aeq and moment
of inertias Ieq can be calculated to take the variable cross-section of single beams
in global lattice structures into account. The methods to calculate the equivalent
geometrical parameter are described in section 3.4.

The print orientation must also be considered in the evaluation of the single
beam properties. Depending on the alignment of the specimens in three dimen-
sional space, the mechanical properties will vary due to the layered production
process of the parts. Figure 3.6 illustrates the four different possible orientations
of the single beams in a triangular lattice structure. Hague et al (2004), Quintana
et al (2010) and Dulieu-Barton and Fulton (2000) investigated the influence of
the material orientation on the mechanical properties for standardized tensile test
specimens produced with stereolitography. They tested specimen orientations in
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Figure 3.6.: Single beam orientations in a triangular lattice

the main directions x, y and z and found differences in the properties dependent
on the print orientation. Equivalent investigations for the PolyJet production are
not known.

The first angle in the captions of Figures 3.6(a)-3.6(d) corresponds to the ori-
entation angle of the specimen in the x-y-plane (i.e. in-plane) and the second
angle corresponds to the out-of-plane angle. The coordinate system is consistent
with the system defined in Figure 3.2 which describes the jetted photopolymer
production process. A persistent layer is printed in the x-y-plane at which the
layers are lying on each other in the z-direction. Two different print direction
effects can be studied with this set-up, namely the influence of different in-plane
angles (orientation 0◦/0◦ vs. 60◦/0◦) and the influence of the out-of-plane an-
gle (orientation 0◦/0◦ vs. orientation 30◦/55◦) on the material properties of the
specimens.

The variation of the cross-sectional shape combined with the variation of the
print orientation results in sixteen different specimen configurations.
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Figure 3.7.: Lattice geometry containing large square cross-sectional beam ele-
ments; Dimensions in [mm]

3.4. Lattice geometry

The tested lattice structures consist of 1′000 nodes and 5′130 beam elements.
10 by 10 node points are arranged in the x-y-plane and 10 layers are stacked in
the z-direction in the hexagonal closed packed arrangement (hcp packing, Figure
2.2(a)). The length between the nodes is 10 mm and this results in a lattice
dimension of 100 × 86.6 × 81.6 mm. The beam geometries from Figure 3.4 are
used for the shapes of the single beam elements in the lattice structures. Figure 3.7
illustrates the constructed lattice structure containing large square cross-sectional
beam elements. The illustrations for the lattice structures which contain the other
three different beam types are listed in Appendix A.2.

The internal nodes are constructed by rotating the single beam elements in the
nodes to the desired orientation. The overlapping areas of the beams that do not
intersect are cut off. The removed areas are marked in grey in Figure 3.8(a) for
the two dimensional case. The external knots are constructed by cutting off the
area at the outer intersection line where the beams cross each other (Figure 3.8(b)
for two dimensional case).

Plates with a thickness of 5mm are printed directly on the bottom and the top
of the lattice structure (Figure 3.7(b)). These plates are used for applying an
external load to the global lattice.

3.5. Single beam geometry for new approach

The internal force distribution in the global lattice has to be known to define
the boundary conditions for the single beam elements tests. The variation of
the boundary conditions leads to different force-deformation curves which are
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(a) Internal knot construction (b) External knot construction

Figure 3.8.: Construction principles for lattice structures; Grey: Cut off areas

(a) Effective beam length (b) Beam length division

Figure 3.9.: Modelling principles for geometrical property calculation

needed in the new model approach (Figure 2.7). The same beam shapes are used
as described in Chapter 3.4. The geometrical parameters, namely the area A,
moment of inertia I and beam length L of the single beams have to be identified
for a linear-elastic analysis of the lattice structure to achieve the element forces
in the beams.

The linear-elastic analysis of the lattice structure was done by defining the
bottom plane nodes of the lattice as fixed in x, y and z direction and a uniformly
distributed displacement uz was applied on the top plane nodes. The Poisson’s
ratio was set to ν = 0.3 in order to substitute the shear modulus G with the
modulus of elasticity E according to equation 2.14. The V/N-ratios in the beams
are therefore independent of the modulus of elasticity E. Model assumptions are
made to evaluate the geometrical parameters.

The main assumption of the model consists in defining the inter-sectional area/
volume in the nodes as completely rigid (areas marked in grey in Figure 3.9(a)).
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Figure 3.10.: Variable definition for the equation of kinetics

Every beam bordering on a node has a different normal force, a different bending
moment and a different shear force. This leads to a complex stress distribution
in the nodal areas. Therefore, the amount of the bending stiffness from the nodes
with respect to the bending stiffness of the single beam is hard to predict. Also the
nodal area, which deforms under normal force cannot be predicted directly. The
suggested model assumption avoids making estimates of the deformation ratio of
the knot to the global lattice deformation and it simplifies the calculation of the
geometrical single beam parameters used in the simulations. This assumption is
evaluated by analysing the lattice deformation under tensile and compressive load
(Chapter 5) and in the simulations (Chapter 6).

The effective beam length between the rigid node sections (Figure 3.9(a)) is
measured from the three dimensional lattice models in the construction software
Rhinoceros and they are listed in Table 3.2 for every beam shape. The constant
equivalent area Aeq of the variable cross-sectional beam is calculated by applying
a normal force F to the beam. The elongation of the beam is calculated with the
following equation

δl =

n∑
i=1

δli =

n∑
i=1

F × Li

E ×Ai
(3.1)

where the beam is divided into infinite small layers in which the cross-section is
assumed to be constant (as indicated in Figure 3.9(b)). The elongation of every
layer under the given force F is accumulated. The equivalent area is determined
through

Aeq =
F × L
E × δl

(3.2)

The calculated area is independent of the assumed modulus of elasticity E and
the force F at which the length L corresponds to the values listed in Table 3.2.

The effective moment of inertia is calculated by using the equation of kinetics.
The end moments of the single beams in the lattice structures do not have the
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Table 3.2.: Geometrical properties of single beams

Cross section
shape

Effective
beam length

[mm]

Area
Aeq[mm2]

Moment of
inertia

Ieq[mm4]

Radius of
inertia√
I/A[mm]

Large square 4.91 3.82 1.67 0.66
Large Round 5.26 3.83 1.61 0.65
Small square 5.41 2.42 0.80 0.57
Small round 5.66 2.43 0.78 0.57

same value; the shear force is constant over the length of the beam. The moment
distribution is simplified by assuming identical end moments at the beam for a
given shear force (M0 Figure 3.10). The end rotation of the beam for a given
virtual rotation (leads to a virtual moment distribution M1) is then

ϕ =

∫ x=0

L

M0(x)×M1(x)

E × I(x)
(3.3)

The variable cross-section is taken into account including the variable moment
of inertia I(x). The effective moment of inertia Ieq is then calculated by integrat-
ing the moment distribution M0 and M1 and solving equation 3.3 with respect to
I

Ieq =
M0 ×M1

6× E × ϕ
× L (3.4)

The calculation is independent of the values M0 and M1 as well as the modulus
of elasticity E. The results for the equivalent area Aeq and moment of inertia Ieq
are listed in Table 3.2.

The normal forces and the shear forces for all elements are calculated with
the classical model (Figure 2.6) using the calculated geometrical properties for
the global stiffness matrix. The V/N-ratios are independent on the modulus of
elasticity. The V/N-ratio distributions in the lattices are illustrated in figure 3.11
for the four different beam shapes where the lattice deformation was set to 0.1mm.
The distributions for the lattices with the large cross-sections (Figure 3.11(a) and
3.11(b)) show some differences. The maximum ratio and the mean ratio over
all elements have slightly higher values for the square beams in comparison to
the round beams. Based on the smaller beam length (i.e. smaller slenderness)
between the nodes (4.91mm) of the square beam type compared to the round
beams (5.26mm), a higher shear force or rather higher end moments with respect
to the normal forces are formed. The slenderness is defined as

λ = L/

√
I

A
(3.5)
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Figure 3.11.: Shear/Normal force distribution of single beams in lattice

The radius of inertia
√
I/A is nearly equal for the large and the small cross-

sections. Thus, the beam length between the nodes has the main influence to the
slenderness. The influence of the slenderness can be better seen by comparing the
V/N-ratio distributions for lattices containing beams with large and small cross-
sectional area (Figure 3.11(a) and 3.11(c)). Lattices with small square beams
have significantly smaller V/N-ratios than lattices with large square beams due
to the higher slenderness. A small difference is also present comparing the two
different cross-sectional shapes for the small beams. It is evident at this point of
the lattice analysis that the deformation behaviour of the structure is influenced
by the single beam slenderness. Using beams with a small slenderness leads to a
structure deformation which is more influenced by bending deformations.

Figure 3.12 illustrates the approach used to achieve the desired loading condi-
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(a) Static system for inclined load (b) Specimen geometry for inclined load

Figure 3.12.: Specimen geometry definition for inclined load cases

tion in the beam. A force F is applied on the beam at a certain angle α. The force
F can be split in a shear force part V and a normal force part N with respect to
the neutral axis of the beam. The used testing device for single beam elements
(described in Chapter 4.2.1) is capable to load the specimens with normal forces.
The lateral load is applied by rotating the neutral axis of the beam with respect to
the loading direction in the testing device (Figure 3.12(a)). The side view of the
specimen geometry (Figure 3.12(b) shows the design of the supports to reach the
desired loading case in the beam. The angle α is defined through the V/N-ratio

α = arctan
V

N
(3.6)

Three classes with a different V/N-ratios are investigated for every beam shape
to achieve the corresponding force-deformation curves. The first class with a
V/N-ratio of 0.2 was chosen due to the fact that the majority of the beams in the
global lattice lies in this range. The two other V/N-ratios were selected to 0.4
and 0.6 to respect the behaviour of the beams with a high V/N-ratio. The beams
can reach higher V/N-ratios for larger lattice deformations especially when the
global lattice has a plastic deformations behaviour. This change in the V/N-ratio
distribution will be discussed in detail in Chapter 6.4.1.





4. Micro-mechanical behaviour:
Single beams

4.1. Introduction

In order to determine the mechanical properties and the force-deformation curves
of the single element beams, a micro-mechanical testing device was developed.
The device and the experimental setup will be described in this Chapter. Also
the influence of the environmental conditions on the single beam behaviour will
be investigated and compared to the effect on the material produced with stere-
olithography from the literature. The mechanical properties are investigated for
the single element beams with different shapes and orientations whereas the spec-
imens were loaded with two different loading rates in order to study the impact
on the single beam behaviour. Video image correlation was additionally applied
to evaluate the modulus of elasticity of the beams. The force-deformation curves
needed for the new model are also presented in this Chapter. Curves of specimens
loaded under three different V/N-ratios and two different loading rates are inves-
tigated in order to cover the loading conditions which are present in the global
lattice structure.

4.2. Testing methods and parameters

4.2.1. Micro mechanical testing device and test setup

A testing device was constructed to measure the beam behaviour under tensile and
compressive load for specimens with size in the millimetre range. The development
was done to respect the size and the maximum capable force of the specimens.
Forces up to 100N were expected for the tests in tension and a load cell with an
appropriate capacity was chosen. Figure 4.1 illustrates the construction of the
testing device. It consists of a stepper motor from Faulhaber with a maximal
torque of 1.2mNm where a gear (1 : 1024) is mounted. The motor moves a cross
beam along two ball screw spindles from Eichenberger Gewinde which have an
efficiency of more than 80% transmitting the force in contrast to normal threaded
rods which have an efficiency less than 25%. The load cell from MTS with a
capacity of ±200N is placed opposite to the cross beam. The frame of the whole
construction consists of stainless steel to prevent corrosion and has a high stiffness
to minimise the deformations of the loading stage during the experiment which
can influence the measured deformation. A displacement transducer (LVDT) from
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Figure 4.1.: Micro-mechanical testing device

HBM with a range of ±1mm is used to measure the displacement of the cross
beam which corresponds to the deformation of the specimen in the testing device.
The small range of the LVDT was chosen to have a high precision measuring in
the elastic range of the specimen. The specimens are fixed to the supports using
dowel pins that fit into the supports, which are mounted to the cross-beam and
the load cell, as can be seen from Figure 4.1. The stepper motor is capable to
load the specimens with a loading rate up to 20µm/s.

Figure 4.2 shows the test setup for the single element tests. The load cell
and the LVDT are connected to a signal amplifier HGCplus from HBM which
converts the signal from the measuring device to an analogue signal. This signal
is converted to a digital signal processed by computer that stores the data. The
used software is written with Labview. The computer also controls the motor
encoder which sends the desired electrical impulses to the motor. The V IC system
from Limess consists of two cameras (Pike F421B) with a resolution of 2048×
2048 pixels which are connected to a trigger box. This signal ensures that both
pictures are collected at exactly the same time. Using a software trigger with a
smaller accuracy leads to imprecision during the correlation. The cameras are also
connected to a computer, which records and stores the pictures using the software
V ICSnap. The system is capable of recording the specimen surface with a picture
rate of 5Mhz. The force signal from the HBM amplifier is also recorded by the
system used for the video image correlation to synchronise the collected pictures
with the force-deformation measurement.
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Figure 4.2.: Overview of the Micro-mechanical test setup
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(a) Water only (b) 1 h in NaOH

(c) 3 h in NaOH (d) 6 h in NaOH

Figure 4.3.: ESEM picturs of specimen surface for different treatment times in a
NaOH solution

4.2.2. Environmental effects on the single beam behaviour

The preparation and the storage condition of the material until testing was con-
trolled in order to reach the same mechanical behaviour of the produced parts in
the single beam elements and the global lattice structure.

The preparation of the specimens consists of cleaning the cured parts from the
support material as described in Chapter 3.3. The cleaning was done using a wa-
ter jet for lattice structures or by hand for single beam elements using the dulled
side of a cutter. Pictures of the specimen were made with an Environmental
Scanning Electron Microscope (ESEM) to investigate the surface properties after
the cleaning process. Figure 4.3(a) shows that the surface is not fully cleaned
from the support material and has rough layer borders as well as small cracks in
the layers (indicated with circles in Figure 4.3(a)). It was decided to treat the
specimens in a 4% sodium hydroxide solution to dissolve the support material
and to grind the layer borders. Figure 4.3(b)-4.3(d) illustrate the surface of the
specimen for different treatment time in the solution. A treatment for one hour
solves the remaining support material but leads to a minor change of the layer
border quality. Extending the treatment to three hours produces a smooth border
of the layers where no cracks are visible any more due to dissolving of material
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residue. The surface starts to show some grooves at this stage of treatment. The
grooves occur since the jetting heads of the printer release droplets of the material
which immediately hardens until they move on. This production method induces
the rugged border and surface of the layers. The characteristic becomes more ev-
ident by extending the treatment to six hours. Figure 4.3(d) shows many grooves
at the border layers because more hardened material was dissolved. Also gaps
between two layers are now visible due to dissolution of the weaker intersection
layer material compared with the layer material which can lead to a delamination
effect. From these experiments, it was decided to treat the specimens for three
hours in the NaOH solution, at which time it was assumed that the specimens
were fully cleaned from the support material and rough borders were eliminated.
Moreover, a degradation of the material by delamination effect was minimal after
this treatment.

The environmental conditions (humidity and temperature) have a large impact
on the mechanical properties of the specimens produced by Polyjet technology.
The impact of the change in storing temperature and humidity and the storing
time was investigated for parts produced by stereolithography. Liu and Jiang
(2003) studied the influence of the environmental temperature and humidity on
the change of sample dimensions. The effects of ageing in different environments
were investigated by Ottemer and Colton (2002), where they stored the samples
in different moisture environments at a constant temperature. They recognized a
decrease in mechanical properties for specimens exposed at high humidity envi-
ronments and an increase for specimens exposed at low humidity during a storage
time of about 400 hours. Scheirs (2000) studied the influence of the exposure to
stray light on the mechanical properties of material parts. A statistical DOE (de-
sign of experiments) approach was carried out by Puebla et al (2012) considering
the build orientations as well as the effects of ageing and pre-conditioning. The
environmental condition according to ASTM D638 (2008) is used to determine
the mechanical properties of polymer part fabricated with rapid prototyping. It
prescribes the storing conditions to an environmental temperature of 20◦ with a
humidity of 50%. The storing time is not defined. Equivalent studies for speci-
mens produced with the Polyjet technology have not been conducted until now.
Consequently, the influence of the environmental temperature and humidity is in-
vestigated in order to detect changes in mechanical behaviour and to clearly define
the storage conditions for the single element specimens and the lattice structures.

Figure 4.4 shows the influence of storing the specimens at different moisture
environments at the same temperature of 20◦ for 7 days. Four specimens with
the same storing condition were tested and representative curves are shown in
Figure 4.4. Specimens with large square cross-sections were tested for two dif-
ferent orientations. It is obvious that the storing humidity has a huge influence
on the single beam behaviour for both orientations. The loading curves present
a descending maximum force while the humidity increases. The curve gradient
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Figure 4.4.: Loading curves for specimens stored in different moisture environ-
ments at a constant temperature of 20◦ for 7 days

keeps the same value for specimens stored at 40% and 65% RH. Also the maxi-
mum force is only slightly reduced between these two environments and the force
drop after the maximum indicates a brittle behaviour of the specimen. Increasing
the relative humidity to 85% leads to a more obvious reduction of the maximum
force and a reduction in the curve gradient, whereas the reduction in the curve
gradient is more distinct for element with orientation 30◦/55◦ than for elements
with orientation 0◦/0◦. A higher ultimate displacement is reached for this speci-
men, which indicates a more plastic behaviour of the specimen stored at 85% RH
which was also observed by Bolon et al (1980) for UV-cured polymers.

The observations agree with the study from Ottemer and Colton (2002) where
a decrease in mechanical properties of specimens produced by SL, while increasing
the environmental humidity, was observed. They also found a difference in the
modulus of elasticity measured on specimens stored at low RH (0% and 45%) for
7 days. This change is not present for the current material type between 40% and
65% RH. Ottemer and Colton (2002) determined the mechanical properties on
specimens according to ASTM D638 (2008), which have larger dimensions than
those used here. Also the used material differs due to the different print process
and the selected RH’s range. This may explain the difference in the results.

The influence of the storage time respectively ageing on the specimens exposed
at 85% RH is illustrated in Figure 4.5. The moisture absorption of the specimens
was measured through determination of the weight over a period of 22 days (Figure
4.5(a)). An increase in weight is observed during the first 12 days while the
weight stays constant for the rest of the time. The increase in weight indicates
that the specimens absorb humidity from the environment which gets bound in
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Figure 4.5.: Influence of the storage time on the mechanical behaviour of single
beam elements

the specimen as water. The humidity absorption has an influence on the loading
curves, as shown in Figure 4.5(b). It is obvious that the mechanical properties,
the curve gradient and the maximum force decrease while increasing the storing
time. Only slight to negligible changes are observed for specimens stored between
13 and 15 days. The ultimate displacement gives no indication of any property
change due to the high scatter of this value.

Ottemer and Colton (2002) also noticed this behaviour of the investigated poly-
mer parts fabricated with SL on the ageing. They measured the moisture uptake
for different polymer types until the weight change was less than 1 per cent of
the total weight. The time to reach the saturation depends on the used polymer
type. The main absorption and the main decrease of the mechanical properties
took place in the first 12 days of storage. Only slight changes of the mechanical
properties were recognized until a storing time of 7 weeks.

The investigated influences on specimens produced with the PolyJet technique
show the same effects on the mechanical behaviour on specimens produced with
SL due to the application of a similar acrylic photopolymer as a part material
in both cases. In the end, it was decided that all specimens were to be stored
in a controlled environment (20◦ temperature and 85% RH) for 14 days before
testing to reach a ductile behaviour of the material and to have a clearly defined
environment which leads to a small scatter in results.
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(a) (b)

Figure 4.6.: Different boundary conditions for single element experiments

4.2.3. Testing series

The micro-mechanical behaviour of single beam elements was investigated to eval-
uate the parameters for the classical model approach (modulus of elasticity Ebeam,
yield stress fpl and maximum deformation δmax,beam). The specimens were loaded
as shown in Figure 4.6(a) which corresponds to the classical tensile test where the
support parts can freely rotate to avoid bending moments in the specimen which
can lead to a erroneous calculation of the mechanical parameters.

Four specimens were tested for every different beam shape respectively cross-
sectional geometry described in Chapter 3.3. Two different loading rates of the
specimens were selected to investigate this influence on the mechanical single
beam properties. The variation of the loading rate respects the certainty that the
lattice structure may not deform uniformly which leads to different loading rates
of every layer in the structure.

The evaluation of the force-deformation curve used for the new approach model
was done on the specimens described in Chapter 3.4. Three different classes were
tested whereas the specimen geometry respects the V/N-ratio of the elements
in the lattice structure. The force-deformation curves were measured for tensile
and compressive load with fixed ends which correspond to the loading condition
case in Figure 4.6(b). The above-mentioned variation of the loading rate was also
investigated in this testing series.

All measured curves in tension and compression show a contact effect at the
beginning due to the alignment of the specimen in the testing machine and the
use of dowel pins to connect the specimens with the supports. The zero point of
the curves was therefore corrected according to ASTM D638 (2008) for a correct
calculation of the modulus of elasticity Ebeam.
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4.3. Input parameters for the classical model

The results for uniaxial tensile tests on single beam elements are discussed in
this Chapter. The tests were necessary for obtaining the input parameters for
the classical model (modulus of elasticity Ebeam, yield stress fpl and maximum
deformation δmax,beam). The procedure to calculate the modulus of elasticity
using V IC3D is discussed in detail.

Uniaxial tension tests were performed for the different geometries and build
orientations. Figure 4.7 shows typical force-deformation curves for large square
beams with different orientations and a loading rate of 15µm/s. The curves
for the other three specimen geometries are listed in Appendix B.1. The beam
orientation regarding to the print direction i.e. the beam position in the lattice
structure is shown in the inset. The grey area represents the envelope of the four
measured curves done in a single testing series.

It can be seen from Figures 4.7(a)-4.7(d) that the scatter in the ascending part
of the curves is small. The curves show nearly linear-elastic behaviour until the
maximum forces are reached. The force drops down for beams with orientations
0◦/0◦ and 0◦/60◦ i.e. which are laying in the x-y-plane (in-plane orientation).
The force then starts to increase again at a certain point until the beam breaks
in a brittle fashion. The force-deformation curves for these two orientations cor-
respond to the behaviour of various thermoplastics like polypropylene (PP) or
high density polyethylene (HDPE) (Kontou and Farasoglou (1998) and G’sell
and Jonas (1979)). No decrease of the force after the initial peak can be found
for beams with orientations 30◦/55◦ and 90◦/55◦ (out-of-plane orientation). The
force declines slightly after the maximum force is reached. The beams then also
break in a brittle manner. The highest scatter is observed for the deformations
when the specimen breaks brittle. The influence of the build orientations on
the maximum force is clearly visible. Specimens parallel to the print orienta-
tion reach the highest forces, whereas the out-of-plane specimens reach the lowest
forces. The values have a high difference in the magnitude. The build orientation
must therefore be taken into account in the simulations.

The yield stress fpl was determined by dividing the yield force through the cross-
sectional area in the middle of the beam. The areas for the large cross-sectional
shapes are the same as well as for the small cross-sectional shapes. Figure 4.8
illustrates the yield stress for every tested series and for the two different loading
rates.

The influence of the loading rate on the yield stress fpl is obvious for all spec-
imen geometries. The difference in the values varies from 30% for the in-plane
specimens up to 60% for the out-of-plane specimens. This characteristic is typical
for thermoplastics. Increasing the loading rate leads to higher yield stresses. A
simple material model can be used for this type of material to describe the visco-
elastic material behaviour. The Kelvin-Voigt model is appropriate to capture the
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Figure 4.7.: Load curves in tension for different beam orientations with large
square cross-section and loading rate of 15µm/s
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Figure 4.8.: Yield stress distribution for all cross-sectional geometries depending
on the specimen orientation tested in tension
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main influences of the material behaviour. The model is described through

σ(t) = E · ε(t) + η · dε(t)
dt

(4.1)

where η is the viscosity and dε(t)/dt refers to the loading rate. The modulus of
elasticity E and the viscosity η are specific material parameters whereas the stress
at a certain strain level can vary dependent on the loading rate i.e. the strain rate.
The specific material parameters E and η are different for the four orientations
due to the layered production process. The influence of the loading rate in the
model corresponds to the observations of the test results. The information of the
strain rate dependency is fruitful for comparing the global lattice experiments
with the simulations.

The influence of the orientation is clearly visible for all geometries. The highest
yield stresses are reached for the specimen with orientation 0◦/0◦. Changing the
in-plane angle to 60◦/0◦ leads to a decrease of the yield stress of about 20% for
all specimens. Specimens which are printed in the out-of-plane orientation have
a significantly lower yield stress compared to the in-plane specimens where the
difference can reach up to 100%. The stress keeps nearly the same value for
both out-of-plane orientations where it is independent of the variable in-plane
orientation. Dulieu-Barton and Fulton (2000) observed negligible change of the
yield stress between specimens produced with stereolithography with orientations
0◦/0◦ and 90◦/0◦. A change of 13% was determined between the orientations
0◦/0◦ and 0◦/90◦. Hague et al (2004) and Quintana et al (2010) observed only
slightly changes of the material properties of less than 5% for specimens produced
with stereolithography.

Some factors have to be mentioned to describe the observed differences in the
measured yield stresses depending on the build orientation. Former researchers
used stereolithography for the specimen production whereas Jetted photopolymer
technique is used in this thesis. This leads to a variation in the material prop-
erties due to the different production processes and the used liquid resin. The
aforementioned researchers stored the specimens in a controlled environment of
50% RH and 20◦ C whereas the specimens in the present study were stored at
85% RH and 20◦ C. The storing humidity has an influence on the yield stress
which was shown in Chapter 4.2.2. Another factor which can lead to differences
in the observations is the specimen size. In the mentioned studies, specimens
were produced according to ASTM D638 (2008), which have a cross-sectional
area of about 50.0mm2 in contrary to areas of 3.1mm2 respectively 1.8mm2 used
in this thesis. This decides whether the material can be handled as being isotropic
or anisotropic. Hague et al (2004) proposed to consider the material parts pro-
duced with stereolithogarphy as isotropic. The tested material in this work for
the specific specimen geometry shows an anisotropy which is not negligible. The
anisotropy results from the layered production method. The in-plane strength of
one layer seems to be higher than the bond between two layers.

The cross-sectional shape and area have an influence on the yield stress. It
has nearly the same value for large and small cross-sectional areas for the testing
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Figure 4.9.: Maximum deformation distribution for all cross-sectional geometries
depending on the specimen orientation tested in tension
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Figure 4.10.: Crack growth and orientation for specimen loaded in tension; crosses
indicate the location of the captured pictures

series with orientations 0◦/0◦ and 60◦/0◦ for both square and round shapes. No
size effect can be observed by varying the middle area for in-plane oriented spec-
imens. A size effect exists for specimens with orientations 30◦/55◦ and 90◦/55◦.
The yield stress decreases by reducing the cross-sectional area for the out-of-plane
specimens. This observation is made for both square and round shapes. Speci-
mens with a square cross-sectional shape have always a higher yield stress than
the corresponding specimens with a round cross-sectional shape. Thus, the shape
and size effect at this scale of material testing is not negligible and has to be taken
into account in the simulations by applying the corresponding yield stresses for
the different beam geometries.

Figure 4.9 illustrates the variation of the maximum reachable deformation
δmax,beam when the specimen breaks. It is obvious that in the series with a loading
rate of 5µm/s a higher maximum deformation is reached than in the series with
a higher loading rate. Specimens with a square cross-sectional shape break at a
lower deformation than the corresponding specimens with a round cross-sectional
shape. The geometry of the support structures has to be considered here. The
geometry differs for both shapes. The support structure for the round shaped
specimens has a smaller cross-sectional area than the square shaped support (see
Figure 3.4). This leads to higher strains in the supports during the test which
is measured by the LVDT. Thus, this observation cannot be explained only with
a shape effect but there is a tendency that the round beams have a higher de-
formation capacity before they fail in a brittle manner . A clear tendency of
the deformation dependency on the build orientation cannot be established. The
maximum deformations keep nearly the same value for all orientations, contrary
to the yield stresses which varies much more. A size effect is slightly present be-
cause only a small reduction of the displacements can be observed from the large
to the small cross-sectional geometries.
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Figure 4.11.: Crack surface of a specimen with orientation 0◦/0◦

Figure 4.10 shows a typical crack process of a single beam in tension. The
pictures were registered on a beam with large round cross-sectional area and an
orientation of 90◦/55◦. The crack initiation starts at one side of the specimen
when the maximum deformation of the plastic plateau is reached i.e before the
rapid decrease of the force (Figure 4.10(b)). Figure 4.10(c) illustrates the crack
direction when the specimen is fully broken. It is obvious that the crack is not
positioned in the middle of the beam and the orientation of the crack is not per-
pendicular to the loading direction. The crack occurs between two printing layers
which imply that the bond between two layers has a weaker strength than the
one in-plane layer itself. The anisotropic behaviour of the material observed from
the yield stress characteristics is then obvious when studying the crack patterns.

ESEM pictures of the cracked surface were taken to assess the brittle fracture
behaviour. Figure 4.11 shows a crack surface on a beam with large square cross-
sectional area and an orientation of 0◦/0◦. The surface is planar and shows no
dimple patterns which would indicate plastic fracture. Dimple crack patterns
are visible on fracture surfaces of steel or plastic with a ductile behaviour. This
observation confirms the brittle fracture behaviour of the specimens which was
already mentioned from the force-deformation curves.

Evaluation of the modulus of elasticity

The modulus of elasticity cannot be calculated directly from the measured force-
displacement curves for different reasons. The measured deformation takes also
the deformation of the testing device and the support parts into account while the
cross-section of the specimen between the supports is not constant. Therefore,
the required strain values were measured by means of video image correlation.

The surface deformations of the specimens were recorded with both cameras
during the experiments. An area of 40 × 40mm was examined. Objectives from
Schneider−Kreuznach (Makro−Extension) with a focal length of 42mm were
selected to achieve an appropriate resolution of the deformation field. Figure 4.12
illustrates one of the recorded pictures. The deformation and the strain calculation
were performed over the bright areas in the figure. The bright areas indicate high
strains and dark areas indicate low strains on the surface of the specimen. The



58 4. Micro-mechanical behaviour: Single beams

Figure 4.12.: Recorded Picture for video image correlation with marked area for
the strain calculation

mean value of the strain was determined over the area within the box shown in
Figure 4.12. The height of the box corresponds to the length listed in Table 3.2
to respect the assumption of rigid nodal areas and the variable cross-section over
the length. The modulus of elasticity is then calculated through

E =
δσ

δε
(4.2)

and the stress and strain are defined by

σ =
F

Aeq
and ε =

L

L0
(4.3)

where L is the measured length of the LVDT. The determination of L0 will be
described further on in this Chapter.

The stress is assigned by dividing the force over the equivalent area Aeq listed in
Table 3.2 which takes the irregular stress distribution over the considered length
of the specimen into account.

Figure 4.13(a) shows the stress-strain curve measured with VIC 3D. It is obvious
that the used polymeric material behaves as a visco-elastic material which leads
to a non-linear elastic behaviour in the ascending part of the curve. DIN EN ISO
527-1 (2012) specifies the strain levels at which the secant modulus of elasticity
has to be calculated. The strain levels are set to ε1 = 0.05% and ε2 = 0.25%.
Applying these levels to calculate the secant modulus on the developed material
leads to an overestimation of the material stiffness due to the soft deformation
behaviour. ASTM D638 (2008) contains advices to calculate the secant modulus
for materials with no linear regions whereby stress levels are defined instead of
strain levels. The calculation of the secant modulus through defining stress levels
was chosen in this thesis due to the application of different specimen shapes and
loading rates contrary to DIN EN ISO 527-1 (2012) and DIN 53504 (2009).The
distribution of the secant modulus of elasticiy in subjection to the stress level
is illustrated in Figure 4.13(b). The non-linear trend is clearly visible which is
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Figure 4.13.: VIC 3D measurement for modulus of elasticity calculation

Table 4.1.: Different values for the initial length dependent of the specimen shape

Tension
Large Small

Square 11.5 10.0
Round 12.0 11.0

characteristic for a visco-elastic material. The secant modulus in this thesis was
determined using the stress and the strain values at stress levels of 0% and 60%
relating to the maximal stress due to preserve a mean value i.e. not to over- or
underestimate the secant modulus of elasticity for the use in the simulation.

The measured force-deformation curves were converted to stress-strain curves
using the equivalent area Aeq and a certain initial length L0. The initial length L0

was determined empirically because the influence of the support deformation and
the deformation of the beam sections outside the investigated equivalent length
cannot be calculated directly due to the visco-elastic material behaviour and the
unknown stress distribution in the support structures. The initial length L0 was
chosen that the curve of the VIC-analysis and the curve of the measurement with
the LVDT intersect at a stress level of 60% (Figure 4.13(b)). Figure 4.13(b) also
illustrates the calculated distribution of the modulus of elasticity as a function
of the stress level. The visco-elastic material behaviour cannot be detected for
the experiments with the measurement of the LVDT because the support defor-
mations and the non-constant specimen shape over the length distort the real
material behaviour .

Four different initial lengths L0 could be calculated. Two main observations are
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obvious. The initial length L0 is smaller for specimens with square cross-sectional
areas than with round areas. The reason for the determination of the different
lengths is that the support structure of the round beams has a larger deformation
during the test as mentioned before, which leads to a larger deformation mea-
surement of the LVDT. Thereby, the initial length L0 has to be higher for round
shapes than for square shapes to calculate the correct strain over the observed
specimen length. This fact agrees with the observation that the initial length is
smaller for small cross-sectional areas than for large areas due to the fact that the
specimen has a smaller deformation outside the observed length of the specimen
for small middle areas. It can be said that the smaller the initial length is, the
smaller are the deformations of the specimen outside the observed area i.e of the
support structures.

Figure 4.14 shows the determined modulus of elasticity for all specimen shapes
and orientations. The same trends are obvious as seen before when discussing
the results of the yield stress measurements. Specimens tested with a small load-
ing rate show a smaller modulus of elasticity than with a larger loading rate.
The differences vary between 20% for the in-plane specimens and 30% for the
out-of-plane specimens. This change in the modulus is also a characteristic of
thermoplastics. An increase of the loading rate leads to a higher modulus of elas-
ticity, independent at which stress or strain levels the modulus is calculated. The
difference in the modulus of elasticity, dependent on the build orientation, is also
clearly visible from the diagrams. Specimens with an orientation of 0◦/0◦ have
the highest modulus whereas a change in the in-plane orientation to 60◦/0◦ leads
to smaller values. Specimens which are printed in the out-of-plane orientation
show also smaller modulus of elasticity than the in-plane specimens whereas the
values of both orientations 30◦/55◦ and 90◦/55◦ are nearly the same.

A shape effect is visible for the in-plane specimens. Specimens with square
cross-sectional areas have higher modulus of elasticity than with round areas for
both orientations 0◦/0◦ and 60◦/0◦. This effect is only slightly present for out-of-
plane specimens with large areas whereas for small areas, no significant change in
the value can be observed. The modulus of elasticity lies in the range of 400−500
MPa for all out-of-plane specimens and the scatter in the measurements can be up
to 20% which relativises the shape effect for this specimens. The existence of the
shape effects for in-plane specimens i.e. beams with square cross-sectional areas
have higher modulus of elasticity than with round areas proves the observation
that beams with square shape have smaller deformations until they fail comparing
with the round shape. The square beams have a more rigid behaviour than the
round beams which leads to a smaller deformation capacity until failure. This
observation shows that the influence of the support structure to the ultimate
deformation at failure is small as mentioned before.

A size effect can be observed by comparing values of specimens with large and
small cross-sectional areas. Specimens with a small area and in-plane orientations
0◦/0◦ and 60◦/0◦ have a higher modulus of elasticity than specimens with large
areas. This effect is not present for out-of-plane specimens.
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Figure 4.14.: Modulus of elasticity distribution for all cross-sectional geometries
depending on the specimen orientation tested in tension
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4.4. Input parameters for the new model

Tensile and compressive tests on single beam elements with different V/N-ratios
and two different loading rates were performed in order to determine the input
data i.e. the force-deformation curves for the new model approach. The ge-
ometries of the specimens are described in Chapter 3.4. The presented curves
in this Chapter are generated by calculating the mean curve from four experi-
ments. The curves are measured on specimens with an orientation of 30◦/55◦.
The force-deformation curves for specimens with orientation 90◦/55◦ can be found
in Appendix B.2. The curves and the tendencies show no differences regarding to
the curves for specimen with the presented orientation 30◦/55◦.

Figure 4.15 shows the measured curves for all four specimen geometries in
tension for V/N-ratios of 0.0, 0.2, 0.4 and 0.6. The experiments were performed
on specimens with an orientation of 30◦/55◦ and a loading rate of 15µm/s. The
force-deformation curves with a V/N-ratio of zero derive from the experiments
for the classical model described in the previous Section.

It is clearly visible from the diagrams that the beam elements have the same
deformation behaviour for all V/N-ratios. The stiffness in the elastic range is only
slightly influenced by changing the V/N-ratio. Also the yield force is in the same
range for the ratios of 0.0 and 0.2 for all beam shapes. No tendency is present
whether the specimens with a high or low V/N-ratio reach a higher deformation.
The observation, that the deformation behaviour of the elements in tension is not
affected by the magnitude of the end moments i.e. the V/N-ratio between 0.0 and
0.2, is in agreement with the fact that the second order effect under tension has
a minor influence on the deformation behaviour of a system. The second order
effect causes a reduction of the end moments under tensile load and the system
acts nearly the same way like under pure tensile load conditions. The system or
specimen is stabilized when loaded under tension.

Differences are visible for the yield force for all elements which were loaded with
a V/N-ratio of 0.4 and 0.6. They have about 50% higher values than specimens
loaded with ratios of 0.0 and 0.2. These differences can be explained from the
fact that the end moments for the specimens are higher with a V/N-ratio of 0.4
and 0.6. The higher end moments lead to a higher strain rate in the outer fibres
of the beam cross-sections which leads to a higher strength in these fibres for
visco-elastic materials. The higher strength increases the cross-sectional loading
capacity and the measured yield force also increases. This effect is present for
all beam geometries. The specimens tested with a V/N-ratio of 0.4 and 0.6
have higher forces over the whole length of the deformation compares with the
specimens tested with a V/N-ratio of 0.0 and 0.2 until they break brittle.

Figure 4.17 shows the measured curves for large square and round specimen
geometries in compression for V/N-ratios of 0.2, 0.4 and 0.6. The experiments
were performed on specimens with an orientation of 30◦/55◦ and loading rates of
5µm/s and 15µm/s.

It is visible that the V/N-ratio has no influence on the stiffness in the elastic
range for specimens with large cross-sections and two different loading rates. The
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(a) Large square
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(b) Large round

0 1 2 3
0

10

20

30

40

50

60

70

Deformation [mm]

Fo
rc

e 
[N

]

 

 
0.0
0.2
0.4
0.6

(c) Small square
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(d) Small round

Figure 4.15.: Force-deformation curves for specimens with different V/N-ratios
and orientation of 30◦/55◦ and a loading rate of 15µm/s tested in
tension
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(a) (b) (c)

Figure 4.16.: Deformation behaviour of specimens during compressive test: (a)
initial state, (b) after the elastic regime, (c) start of non-linear
regime

force in the curves, where the linear elastic regime ends, is not influenced by
the different V/N-ratios for specimens compressed with a loading rate of 5µm/s
(Figure 4.17(a) and 4.17(b)). However, the load is influenced by the loading rate
for ratios of 0.2 and 0.4 where specimens with higher loading rates reach higher
loads. Specimens with a ratio of 0.6 start to behave non-linear at the same force
level for both loading rates. It is obvious that the force increase i.e the stiffness of
the element is reduced after the linear elastic region where the reduction is more
distinct for specimens with higher V/N-ratios. This effect cannot be described by
only taking the second order effect into account which leads to higher moments
in the beam and to a continuous reduction of the stiffness during the experiment.

The effect of the stiffness reduction can be investigated by looking at the beam
deformation during the test. Figure 4.16 illustrates schematically the deformation
of the beam at different stages. Only the centre axis of the beam is shown. Figure
4.16(b) shows the beam deformation after the linear elastic regime. The centre
axis keeps linear and the V/N-ratio changes only slightly. The experiments show
a straight linear-elastic regime between these two deformation states. The middle
axis has rotated to a certain angle α from its original state during the deformation.
This rotation is basically prevented due to the fixed ends of the beam and this
leads to a reorientation of the middle axis at a force level where the linear elastic
regime ends. The beam ends are rectangular to the support structure after the
reorientation and two hinges are generated in the beam as indicated in Figure
4.16(c). The V/N-ratio has rapidly changed at this instant where the moments
in the beam have increased due to the second order effect which leads to a higher
V/N-ratio. This is indicated in the experimental curves with the plain increase of
the curve where the non-linear regime begins. Increasing the deformation leads
then to a stiffening of the specimen which is indicated with a curved trend in the
experiments.

The stiffening indicates a change in the V/N-ratio at which the amount de-
creases i.e. the normal force has a higher increase than the shear force. The
stiffening can be explained by looking at Figure 4.18(a). The beam is modelled
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(a) Large square cross-section/ loading rate
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(b) Large square cross-section/ loading rate
15µm/s
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(c) Large round cross-section/ loading rate
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(d) Large round cross-section/ loading rate
15µm/s

Figure 4.17.: Force-deformation curves for beams with large cross-section, differ-
ent V/N-ratios and orientation of 30◦/55◦ tested in compression

(a) (b)

Figure 4.18.: Possible mechanism developing in specimens loaded under different
V/N-ratios in compression: (a) stable condition for low V/N-ratios,
(b) unstable condition for high V/N-ratios
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with three segments where the interceptions indicate the provision of the hinges
and it is assumed that no tensile force can be carried. The three segments have
only contact under compression in the edges. It is obvious that the system is sta-
bilised in this state. Deforming the system under compression leads to a reduction
of the interception, and as a consequence it is forced to a more stable state. The
same happens in the experiment where the beam starts to stabilise itself when
the moments compared to the normal force are reduced, which corresponds to the
reduction of the interception. This will lead to stiffening in the force-deformation
curve up to the point where the deformation capacity of the middle part of the
beam is reached and the specimen fails, which occurs when the force drops. This
effect is visible for both ratios of 0.4 and 0.6, but the decrease in force is more
clearly visible for specimens with a ratio of 0.6. The force increases rapidly after
this drop because the specimen parts touch the support structure which leads to
purely material compression. This behaviour corresponds to the structural be-
haviour of the global lattice structure when the layers start to touch each other
under compressive load which is described in Chapter 5.4.2.

Figure 4.19 illustrates the measured curves for beams with small cross-sections
and two different loading rates for all ratios. The main observations are the
same like before for the beams with large cross-sections. The effects on the beam
behaviour are more visible for the small beams because they have a higher slender-
ness. This leads to a more distinct non-linear behaviour of the beams. Specimens
with a ratio of 0.2 show a larger non-linear regime until the specimen reacts like
under full compression. Specimens with a ratio of 0.4 have a significantly smaller
force increase after the linear elastic part until they reach the point where the
specimen fails because the deformation capacity of the middle part is reached.
The force decrease is more distinct than for specimens with large cross-sections
and the amount of the deformation until the specimen fails is nearly the same for
ratios of 0.4 and 0.6. The force increase after the beam fails corresponds to the
same behaviour like the beams with large cross-sectional areas.

The main difference in the behaviour between large and small beams is visible
for specimens tested with a ratio of 0.6. They show a plastic regime where the
force remains constant to a deformation at about 4mm. This can be explained
by looking at Figure 4.18(b). The system is not stable any more because the
position of the contact points lies outside of the specimen dimension. This leads
to a generation of plastic hinges at the location of the interceptions, whereas the
moment resistance is given by the material and geometrical beam properties. The
value of the moment keeps then the same value while increasing the rotation of
the hinge during the deformation in the experiment. The plastic deformation at
the same force level in the experimental curves indicates this behaviour.

4.5. Conclusion

The mechanical properties, namely the modulus of elasticity Ebeam, the yield
stress fpl and the maximum deformation δmax,beam of single beam elements under
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(a) Small square cross-section/ loading rate
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(b) Small square cross-section/ loading rate
15µm/s
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(c) Small round cross-section/ loading rate
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(d) Small round cross-section/ loading rate
15µm/s

Figure 4.19.: Force-deformation curves for beams with small cross-section, differ-
ent V/N-ratios and orientation of 30◦/55◦ tested in compression
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tensile load were investigated in this Chapter to determine the input parameters
for the classical lattice model. The influence of the environmental conditions on
the single element properties produced with the PolyJet technology were studied
in order to preserve the same material behaviour in single element experiments
and in the global lattice experiments. The observation that the mechanical prop-
erties decrease while increasing the environmental humidity agrees with a study
by Ottemer and Colton (2002). The storing time from the production until the ex-
periment of the specimen decreases the mechanical properties significantly, which
agrees again with the investigation by Ottemer and Colton (2002). The parts
used in their study were produced with the stereolithography process, whereas no
equivalent studies are available for parts produced with the Jetted photopolymer
technology, which has been used in this Thesis.

The build orientation has a remarkable influence on the modulus of elasticity
Ebeam and the yield stress fpl whereas the maximum deformation δmax,beam is not
influenced. The differences in the measured yield stress fpl can add up to 50%.
Ottemer and Colton (2002) noticed a difference of maximum 5% in the strength
by changing the build orientation. In contrast to the presented results, the parts
used by Ottemer and Colton (2002) were produced with stereolithography, they
were stored in different environmental conditions and the specimen size was more
than 10 times larger. This can lead to the observed differences. The material
used in this work has to be described as an anisotropic material.

The influence of the loading rate was investigated in order to estimate the in-
fluence of different layer deformations in the lattice structure to the global lattice
behaviour. The single beam properties are highly dependent on the loading rate
which is typically for thermoplastics. Increasing the loading rate leads to an
increase of the modulus of elasticity as well as the yield stress and to a reduc-
tion of the maximum deformation at failure. This behaviour can be described
with a simple visco-elastic material model; the Kelvin-Voigt model is sufficient to
characterise the main characteristics of the material.

A size and shape effect on the yield stress fpl was observed at this scale of
material testing for specimens which were not produced parallel to the build ori-
entation. The yield stress decreases by reducing the middle area of the tested
specimens. Beams with a square cross-sectional area show a slightly higher yield
stress than the corresponding beams with a round cross-sectional shape. With
the presented study, the influence of this effect can be respected in the simula-
tions by applying the corresponding single beam properties for the different beam
geometries.

A method using video image correlation was presented to measure the modulus
of elasticity E on parts with dimensions in the millimetre range. It is more appro-
priate to measure the strain over the whole surface of the investigated specimen
part during the experiment than using the measurements from the external LVDT
to calculate the modulus of elasticity. The LVDT records additional machine dis-
placements and the deformation of the support structure during the experiments,
which will lead to a significant underestimation of the modulus of elasticity. The
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advantage using video image correlation is that the material behaviour is not
influenced while recording the surface deformation.

It is necessary to determine the mechanical properties directly on specimens
with a geometry corresponding to the elements in the global lattice structures.
This means testing specimens in the millimetre range. Identifying the mechanical
properties on specimens with dimensions defined in different codes for polymers
would lead to different results than determined here. Using these values for the
simulation would not respect the shape and size effect of the investigated single
beam elements which leads to a wrong interpretation of the global lattice structure
behaviour.

Single element force-deformation curves for different V/N-ratios were also de-
termined in this Chapter in order to simulate the lattice behaviour by means
of an alternative model based on this information. The loading curves of the
tensile experiments show the same behaviour for the different V/N-ratios when
studying beams with large middle cross-sectional areas. Beams with small middle
cross-sectional areas achieve higher maximum forces during the experiments by
increasing the V/N-ratio. This effect can be explained from the fact that the
end moments in the beams are higher, which leads to higher strain rates in the
outer fibres of the beam cross-section. This also leads to a higher single beam
strength due to the visco-elastic material behaviour, which increases the maxi-
mum measured force. The influence on the global lattice behaviour in tension will
be investigated in the simulations in Chapter 6.

The curves for the different V/N-ratios under compressive load show a strong
non-linear behaviour and the curve trend varies significantly by changing the
V/N-ratio. The main observations are that the beams behave the same at small
deformations i.e. in the linear elastic regime until a point where the moments in
the beam rapidly increase based on the second order effect. The curve trend i.e.
the increase of the force after this point then differs depending on the V/N-ratio.
Higher V/N-ratios lead to smaller increase of the force. Stiffening of the force-
deformation behaviour can be observed for all specimens in this regime until they
fail. The curve progression cannot be described with a single theory like the second
order theory or the plastic hinge theory. The force-deformation behaviour of the
single beam elements has to be described with different mechanism to investigate
the curve trend. The different mechanism can take effect in different stages of the
beam deformation or interact at the same time. This makes it difficult to identify
the main mechanical influence on the curve trend during the different deformation
stages where assumptions have to be made. Taking the force-deformation curves
directly into account in the simulation process circumvents these difficulties and
the single element behaviour is respected effectively.

It is obvious that much more effort is needed to establish the mechanical prop-
erties for the classical model than to preserve the force-deformation curves in the
new model approach. The classical model is based on the simplification using lin-
ear elastic-purely plastic material behaviour whereas the new model can respect
the visco-elastic material behaviour in a simple way and no further assumptions
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are necessary. The determination of the modulus of elasticity constitutes the
mayor challenge that the stress levels for the calculation have to be assigned em-
pirically to gain an acceptable value for the simulation. These calculation steps
are lapsed for the new model input data.



5. Macro-mechanical behaviour of
lattice structures

5.1. Introduction

The macro-mechanical behaviour of lattice structures with four different beam
shapes described in Chapter 3.4 was investigated under tensile and compressive
load in order to compare the results with the two different simulations. The setup
for both type of tests and the results will be discussed in this Chapter. Video
image correlation was additionally used to investigate the local deformation of
single beams and of the different layers in the lattice.

5.2. Test setup and boundary condition

The lattice structures were loaded under tensile and compressive load according to
Figure 5.1. Figure 5.1(a) illustrates the boundary condition chosen for the tensile
experiments. Freely rotating supports were used to measure the lattice behaviour
under tension which features degrees of freedom in all directions. Uniaxial tensile
tests can be performed with fixed or with freely rotating supports whereas no
standardised method exists for this type of test. Experiments and simulations
were performed in the past where larger maximum loads and fracture energies
were measured using fixed supports than freely rotating supports (Vervuurt and
Van Mier (2000), Van Mier et al (1996) and Van Mier (1997)). There is a higher
possibility that a bending moment is induced in the specimen during the mounting
process in the testing device with fixed supports. This can lead to erroneous
measurements. A testing setup with freely rotating supports was therefore chosen
to reach a well-defined stress distribution over the cross-section of the specimen
and to minimise the influence of the boundary condition on the results.

Figure 5.2 shows the test setup with the freely rotating supports for the tensile
tests. The test-setup is similar to the principle in Van Vliet and van Mier (2000),
which was later also applied by Stähli (2008) and Rieger (2010). Steel plates are
glued at the top and the buttom of the lattice structure shown in Figure 3.7(b)
which are fixed centrically to the supports with screws. The centres of the joint
heads lie in the same plane as the intersection of the lattice structure to the plastic
plates which were printed directly on it. Four LVDTs are installed at the edges
of the specimen which are mounted on the steel plates. The LVDTs allow to
measure only the deformation of the structure without any machine or support
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u

(a)

u

(b)

Figure 5.1.: Boundary conditions for tests in (a) tension and (b) compression

deformation during the experiments and to verify a homogeneous elongation of
the structure. The freely rotating setup is mounted to the loading machine using
massive steel cylinders and bolts.

The boundary condition illustrated in Figure 5.1(b) was chosen for the com-
pressive experiments on the lattice structures. The specimen is loaded between
two non-rotating rigid loading plates which ensure that every point of the top
plane of the structure has the same deformation during the loading. This bound-
ary condition can be modelled in a simple way which would reduce the complexity
of the model. One rotational loading plate would be needed in compressive ex-
periments where the specimens’ top and bottom plane are not parallel to each
other. Using two rigid plates in this case would produce zones in the specimen
which are higher loaded than others and this leads to a erroneous measurement of
the modulus of elasticity, the compressive strength and the post-peak behaviour
of the material. Using rapid Prototyping, it can be guaranteed that the top and
the bottom plates are parallel, which makes a rotational plate at one side obso-
lete. The production technique produces accurate specimens where the variance
of specimen height measured on every edge of the specimen lies in the range of
less than 0.1mm.

Figure 5.3 shows the test setup for the compressive experiments in the loading
frame. Four LVDTs are placed at the edges of the specimen to measure the
deformation of the lattice. They are fixed at the lower cross beam of the testing
frame. The tips of the LVDTs are placed on a rigid steel plate which lies between
the specimen and the upper loading plate. The most important factor is to ensure
that the lower and the upper cross beam of the testing frame are parallel to each
other to prevent an irregular deformation of the specimen.

The setup for the macro-mechanical experiments is illustrated in Figure 5.4.
An electro-mechanical testing machine from Zwick&Roell with a loading capac-
ity of 200kN was used to perform the experiments. The tests were controlled
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(a) (b)

Figure 5.2.: Tension test device
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Figure 5.3.: Compression test device

over the cross-beam of the testing machine where the displacement velocity was
45µm/s. The force and the cross beam displacement signal is controlled from
the Zwick controller whereas the software TestExpert V 2.0 was used to set the
displacement velocity. The signals from the LVDTs are processed with a signal
amplifier MGCPlus from HBM . The force signal from the testing machine was
again used to synchronise the measured displacements from the LVDT and the
collected pictures from the video image correlation system like for the single beam
element test setup (see Figure 4.2).

5.3. Testing series and specimen preparation

Four specimens for every single beam geometry (see Section 3.3) were produced
where two global lattices were tested under tension and two under compression.

The same steps from the production until the experiments were followed for the
lattice structures like for the single beam elements to provide the same properties
for both types of test. Six single elements were additionally printed with the
structures and tested to verify no change in the single properties. The support
material was washed out using water jet directly after the production of the global
lattice structures. The specimen were then cleaned in a 4.0% NaOH solution for
three hours to dissolve the remaining support material. They were stored for 14
days in a controlled environment of 20◦ and a RH of 85% until the experiments.
The steel plates used for the tensile test support were glued on the specimens
three days before testing and also the surface painting was done one day before
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Figure 5.4.: Overview of the macro-mechanical test setup

testing in the controlled environment.

5.4. Results

The results from the global lattice experiments will be discussed in this section.
The data from the video image correlation measurement are used to describe
the non-uniform deformation behaviour of the structure and to verify model as-
sumptions which were introduced in Chapter 4.2 i.e.the nodal areas can indeed
be assumed to act as rigid bodies. All measured curves show a contact effect at
the beginning of the measured curve due to the alignment of the specimen in the
testing machine for the tensile experiments. The contact effect in compression
occurs from the difference of the height of the specimen in the edges of maximum
0.1mm. The zero point of the curves was therefore corrected according to ASTM
D638 (2008) for a correct calculation of the stiffness Klattice.

5.4.1. Tension

Figure 5.5 shows the results of the tensile experiments of global lattice structures
with the four different beam geometries. The deformation of the lattice was mea-
sured by calculating the average of the four LVDTs measurements. The values had
a maximum difference of 0.2mm among each other at the point where the spec-
imen failed in the experiments, except of two tests where a maximum difference
of 2.0mm i.e. 1.6mm was measured. Figure C.3 in the Appendix show the curves



76 5. Macro-mechanical behaviour of lattice structures

for a good and for a worse measurement. Using the deformation measurement
from the cross beam of the testing machine would lead to a softer ascending part
of the curves due to the additionally measured deformation of the rotational-free
test setup at this part of the curve.

0 5 10
0

2000

4000

6000

8000

10000

12000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

Test 1
Test 2

(a) Large square cross section

0 5 10
0

2000

4000

6000

8000

10000

12000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

Test 1
Test 2

(b) Large round cross section
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(c) Small square cross section
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(d) Small round cross section

Figure 5.5.: Load diagrams for lattice structures in tension

Figure 5.5(a) illustrates typical force-deformation behaviour of the lattice struc-
ture which contains large square cross-sectional beams. It is obvious to see that
the specimens behave nearly linear elastic up to a force level of about 75% where
the stiffness starts to decrease rapidly. After this force level, the stiffness decreases
gradually to a point where the structure behaves in a plastic way i.e where the
force stays constant or increases slightly by increasing the deformation. The spec-
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imen then fails in a brittle manner where the force drops rapidly to zero. The
whole curve of one experiment describes a typical visco-elastic material behaviour
which was already mentioned for the single element deformation behaviour (see
Chapter 4.3). It is clearly visible for all experiments that the higher the maxi-
mum force of a structure is, the lower the deformation is until the specimen fails.
This global lattice behaviour corresponds to the observations for the single beam
elements.

The scatter of the measured force in the plastic region can reach up to 30%
for the specimen with large square cross-sectional beams in only two experiments
which is quiet high. The high scatter can be explained by looking at Figure 5.6. It
illustrates the measured strain of beams in the lattice during one experiment which
are lying in different layers. The analysed beams are indicated in Figure 5.6(a)
where the strain of in-plane and out-of-plane beams was calculated using video
image correlation. It is obvious that the strain of the different out-of-plane beams
(black lines in Figure 5.6(b)) vary strongly over the height of the structure where
the difference at the maximum lattice deformation is more than 60% between the
lowest and the highest measured strain. No tendency is present where the lowest
and the highest values over the height of the specimen occurs. This indicates
that the lattice deformation is not constant over the whole height and the single
layers can have different deformation rates. When respecting the results of the
single element behaviour, where it was shown that the modulus of elasticity and
the yield stress reach higher values while increasing the deformation rate, leads
to the assumption that the layer with the lowest deformation rate in the lattice
dictates the global lattice behaviour. A lattice with a homogeneous deformation
i.e. all layers have the same deformation rate, leads to higher measured loads
and a stiffer behaviour in the ascending part of the lattice than with a non-
uniform deformation. In structures with a non-uniform layer deformation, the
force capacity of a layer with a high deformation rate cannot be reached because
the layer with a lower deformation rate already started to behave plastic and
the whole deformation of the lattice is then concentrated in this layer. Based on
this assumption, the high scatter of the macro-mechanical lattice results can be
interpreted. Simulations with different single beam properties in different layers
will be presented in Chapter 6.3.1 to verify the assumption.

The mean value of the measured maximum forces reaches a higher value for
structures with large square beams (about 9′000N) than for structures with large
round beams (about 8′000N). This observation corresponds with the results from
single beam experiments where large square beams show higher yield stresses than
large round beams (Figure 4.8). Also a slightly higher deformation behaviour of
structures with large round beams can be observed, which also agrees with the
single beam results (Figure 4.9).

Lattices with small square beams show a mean value of the maximum force of
about 4′000N whereas structures with small round beams reach a mean force of
about 5′500N . The high difference of the maximum forces does not agree with
the results from the single element tests where small round beams have slightly
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Figure 5.6.: Analysed strain distribution of beams in the lattice structure: (a)
Analysed beams, (b) Strain distribution (out-of-plane beams: black
lines, in-plane beams: grey lines)

Table 5.1.: Stiffness Klattice [N/mm] and maximum force Fmax,lattice [N ] for lat-
tice structures in tension

Cross section shape Klattice Klattice Fmax,lattice Fmax,lattice

Test 1 Test 2 Test 1 Test 2

Large square 8’869 6’077 10’585 8’319
Large round 6’503 5’292 9’264 8’204
Small square 4’295 3’588 4’585 4’164
Small round 5’528 4’844 6’278 5’122

smaller yield stresses than small square beams. On the other hand, this difference
can be explained by looking at the force-deformation diagrams measured under
different V/N-ratios (Figure 4.15). Specimens with higher V/N-ratios show a
higher force than those with small V/N-ratios for small round beams. This could
explain the contrary observation of single element tests under pure tension for
the classical model and the global lattice experiments. This observation will
be discussed further when analysing the simulation results from both models in
Chapter 6.4.

Structures with small round beams show a significantly higher deformation ca-
pacity than structures with small square beams. Structures with small square
beams fail at the lowest deformation in comparison to all other specimen geome-
tries.

The measured stiffness and maximum forces are listened in Table 5.1. The
stiffness was again calculated between the force levels of 0% and 60% which cor-
responds to the chosen levels of the calculation for the single beams (Chapter 4.3).
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(a) (b)

(c)

Figure 5.7.: Crack pattern of lattice structure in tension: (a) Lattice before frac-
ture, (b) partly notched lattice, (c) schematical drawing of final crack
pattern

Lattice structures with large square beams show higher values than those with
large round beams. This observation corresponds with the results from the single
beam experiments where a smaller stiffness was measured for round beams. Lat-
tices with small square beams have significant smaller values which agrees with
the measurements from the single element test that the stiffness is higher for large
beams. The values for lattices with small round beams have a significant higher
value than those with small square beams but are smaller than the values from
lattices with large beams. This observation does not agree with the measurements
from the single beam tests where the value lies in the same order like for small
square beams. No explanation for this observation can be given at this point.
A detailed investigation will be made with the numerical simulations in Chapter
6.3.

Figure 5.7 shows a typical failure pattern for a lattice structure failed under
tensile load. Picture 5.7(a) was captured directly before the lattice starts to break
and picture 5.7(b) was captured 0.4 seconds thereafter. It is visible that the whole
specimen is intact and no single beam failed before collapse i.e. no indication is
given from the lattice surface that the structure will begin to break. The specimen
fails in a brittle manner: between two captured pictures nearly one complete layer
is broken i.e. in a short time period. It is also visible from picture 5.7(b) that
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Figure 5.8.: Beam deformation for different length in a lattice structure with large
square cross-sectional beams: (a)Definition of the length, (b) Defor-
mation curves

not every beam broke in the middle part between two node regions. There are
several beams which failed in the node region. No tendency of the crack position
in the beam could be found for all experiments. There seems to be randomness
in the position since the crack started to propagate at the edge of the specimen.

A constant orientation and position of the whole crack in the lattice can be
found for all lattices. Figure 5.7(c) illustrates the position and the orientation
of the crack after the specimen has fully failed. The crack pattern for the other
specimens can be found in Appendix C.3. All specimen break in the first or the
second layer from the top or the bottom support plates and the crack propagates
through only one layer in more than 50% of the experiments. This observation
indicates that the lattice geometry induces the position of the highest loaded
beams in structure. The cracks which propagate through one layer also indicate a
homogeneous loading condition where no moment occurs during the experiment
in the specimen. The specimen where the crack propagates through two layers
indicate a slightly eccentric loading condition of the lattice. However, the crack
started at one edge and propagated through the whole specimen without any crack
arrest. Using fixed supports would lead to bending moments in the specimen after
the first crack starts to propagate. The moment leads to a crack arrest and another
crack can start to grow at the opposite side of the specimen (Van Mier (1997)).
The crack position will be further investigated in the simulations in Chapter 6.3.

In order to verify the model assumption from Chapter 3.4 that the node area
can be modelled as a rigid body and only the beam section between the node
areas would deform, the deformation of beams with a length between the centres
of two nodes and beams with a length between two node areas were analysed.



5.4. Results 81

(a)

0 2 4 6 8
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Lattice deformation [mm]

B
ea

m
 d

ef
or

m
at

io
n 

[m
m

]

 

 
A long
A short
B long
B short

(b)

Figure 5.9.: Beam deformation for different length in a lattice structure with small
round cross-sectional beams: (a)Definition of the length, (b) Defor-
mation curves

Figure 5.8 shows single beam deformations during a tensile experiment. The
example relates to the lattice with large square cross-sectional beams. This beam
geometry represents the worst case for the model assumption due to the smallest
inter-sectional beam length of 4.91mm compared with the other beam geometries.
The node area deformation would have the largest influence for this case due to
its dimension. It is obvious to see from Figure 5.8(b) that the inter-sectional
beam (A short) reaches nearly the same deformation as the beam between two
node centres (A long). The long beam reaches a slightly higher deformation at
the highest lattice deformation whereas the difference between both curves is only
7% at the maximum lattice deformation. Therefore, the model assumption seems
to be applicable due to the small measured difference, where uncertainties of the
stress distribution in the nodes and the amount of the node stiffness to the beam
stiffness can be neglected, which reduces the complexity of the model and the
uncertainties of the parameter assignment.

Figure 5.9 shows the same analysis for the lattice with small round cross-
sectional beams. This case represents the best case where the node area has
the smallest dimension compared to the inter-sectional beam length of 5.66mm.
The inter-sectional beam deformation reaches nearly the same value as the beam
between two node centres in this case which is illustrated in Figure 5.9(b). The
difference between the two curves is only 5% at the maximum lattice deformation.
The deformation difference is reduced to 2% as expected between the two cases
i.e. between the beam deformation in lattices with large square and small round
cross-sectional areas. The measured difference between the long and the short
beam will therefore not exceed 7% for all tested lattice geometries. Increasing the
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inter-sectional beam length i.e the slenderness would lead to even smaller defor-
mation difference. This makes the model assumption also applicable for foams
where the slenderness of the beams or cell walls is higher than for lattices used
in this thesis. Producing lattices with higher or lower beam slenderness with the
PolyJet technology and keeping the distance between the node centres 10.0mm is
not applicable due to cleaning process of the structures which was mentioned in
Chapter 3.3. The deformation difference of the beam between two node centres
and the inter-sectional beam would increase with lower beam slenderness where
the influence of the nodal area on the structural deformation behaviour could be
investigated more detailed.

The difference for the in-plane beams can reach more than 50%. Different
points have to be mentioned for the interpretation of this result. The measured
deformations for the in-plane beams are in the range of less than 50µm. Measuring
values in this range with V IC can lead to differences between the real deformation
and the measured deformation because the scatter of the measurement lies in the
µm-range and a certain linearity error can be present. This relativises the validity
of the presented measurement. The amount of the in-plane beam deformation does
not influence the vertical lattice deformation in the linear elastic regime, whereas
the non-linear regime is affected by the in-plane stiffness (see Chapter 6.3.1 for
the classical model and Chapter 6.4.1 for the new model). The in-plane beams are
also much less loaded than the out-of-plane beams and have smaller V/N-ratios
i.e. they are mostly loaded with a normal force.

5.4.2. Compression

Figure 5.10 illustrates the results for the experiments in compression of the lat-
tice structures with the four different beam geometries. The deformation of the
lattices was calculated from the measurements of the LVDTs in the same way
as in the tensile tests. The difference between the measured deformations of the
LVDTs among each other was less than 0.2mm and no difference of the defor-
mation measurement from the LVDT and the testing machine was present. The
specimen were therefore compressed centrically with no or just little bending mo-
ment occurring during the experiment. The experiments show a small scatter in
the measurement The two experiments for the lattices with the small beams show
nearly exactly the same deformational behaviour.

Figure 5.10(a) shows the deformation curve for the specimen with large square
cross-sectional beams. It can be clearly seen that the specimens behave nearly
linear elastic at the beginning of the deformation up to a force level of about 50%
where a decrease in stiffness starts. The stiffness keeps nearly the same value
in this regime up to a deformation of about 22mm where the maximum force is
reached. A clear force drop is visible before the force starts to increase rapidly
after the minimum of the force drop is reached, which implies that the structure
is fully compressed and the different layers are touching each other (see Figure
5.11(b)). The maximum force before the force drop is about 8′500N for lattices
with large square beams. The lattice structures with large round cross-sectional



5.4. Results 83

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

Test 1
Test 2

(a) Large square cross section

0 10 20 30 40
0

2000

4000

6000

8000

10000

12000

14000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

Test 1
Test 2

(b) Large round cross section
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(c) Small square cross section
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Figure 5.10.: Load diagrams for lattices in compression



84 5. Macro-mechanical behaviour of lattice structures

beams show the same curve trend (Figure 5.10(b)). The force level, where the
stiffness decrease starts, the maximum force peak at about 24mm and the force
drop are in the same region for both square and round large cross-sectional beam
geometries. The mean difference is that the large round lattice structures reach
significant higher forces. The maximum forces before the force drop reach a
value of about 9′700N which is 14% higher than for specimens with square cross
sections.

Figures 5.10(c) and 5.10(d) illustrate the deformation behaviour for lattices with
small cross-sectional beams. The linear-elastic regime is followed by a stiffness
decrease. The stiffness change occurs at a force level of about 80%. The stiffness
after the linear-elastic regime is much smaller than for the lattices with large
beams. The deformation where the force reaches the maximum and starts to drop
lies in the region of 15mm and the force drop is more distinct for the small beam
lattices. A nearly ascending plastic plateau is visible after the force minimum
is reached. Increasing the deformation after the plastic plateau leads to a rapid
increase in force. This is also the point where the layers of the lattice start to
touch each other and the structure is fully compressed. The point where the
force increase starts is located at a deformation of about 37mm in contrast to the
lattices with large beams where the force starts to increase at a deformation of
about 32mm. This observation occurs from the difference of the inter-sectional
beam length where small beams have a larger length which leads to a higher
deformation capacity before the layers begin to touch each other.

Open- or close-cell plastic or metallic foams show the same deformation be-
haviour under compressive loading (Gibson and Ashby (1997), Jang and Kyri-
akides (2009a)). The main difference between the presented curves in this thesis
and the curves of foams is that the decrease in stiffness after the linear-elastic
regime is not present for open- or close-cell foams. The force decreases slightly
after the linear-elastic regime and the plastic plateau starts directly afterwards.
This difference appears because the beams and the cell walls in the investigated
foams have a much higher slenderness than the beams investigated in this work.
This could lead to the formation of plastic hinges in the elements and the force
will keep constant while increasing the deformation. No stiffening of the elements
occurs which would lead to a decrease in the global stiffness of the structure before
it deforms purely plastic.

The values of the stiffness are listed in Table 5.2 for every beam geometry. The
values lie in the same region for every beam geometry expected for the lattices
with small round cross-sectional beams which are 25% higher. The stiffness of
the structures under compressive load are significant smaller than under tensile
load (less than 25%). The high difference could be occurred from geometrical im-
perfections of the beams in the global lattice whereas the imperfections could not
be detected. This would lead to a small global lattice stiffness under compressive
load together with the second order effect. A difference 75% between the modulus
of elasticity in tension and compression seems unrealistic.

Figure 5.11 shows the lattice deformation for two different deformation levels
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Table 5.2.: Stiffness Klattice [N/mm] and maximum force Fmax,lattice [N ] for lat-
tice structures in tension

Cross section shape Klattice Klattice Fmax,lattice Fmax,lattice

Test 1 Test 2 Test 1 Test 2

Large square 1’248 1’183 8’970 8’350
Large Round 1’292 1’673 9’013 10’352
Small square 1’324 1’281 5’078 5’029
Small round 1’673 1’581 5’542 5’588

(a) (b)

Figure 5.11.: Deformed global lattice in compression: (a) at 50% strain, (b) at
100% strain
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Figure 5.12.: Analysed strain distribution of beams in the lattice structure: (a)
Analysed beams, (b) strain distribution (out-of-plane beams black
lines, in-plane beams grey lines)

for a lattice structure with small square cross-sectional beams. It can be seen
from Figure 5.11(a) that at a strain level of 50%, not every layer has deformed at
the same amount. Figure 5.11(b) shows the structure at 100% strain where the
specimen is fully compressed. The hollow space between the beams has vanished
and the layers touch.

The measured strains in the beam elements in different layers of the lattice
structure during an experiment in compression are illustrated in Figure 5.12.
VIC was used to calculate the strains. It is obvious that the strain of the out-of-
plane beams also varies strongly over the height of the structure and the lattice
deformation is considered as non-uniformly. Also no tendency is present where
the lowest and the highest values over the height of the specimen occurs. The
difference in the strain at the maximum lattice structure deformation occurs from
the fact that the layers have different in-plane deformations which lead to a dif-
ference in the maximum measured strain of the beams although the maximum
vertical compression is given from the layer distance. The difference in strain
of the beams among each other is more than 100%. The lattice therefore be-
haves in the same manner under tensile and compressive load where the beams
have different loading rates during the test. However, the scatter in the deforma-
tion behaviour is much smaller for tests in compression. This can be explained
from the fact that it is more convenient to adjust the testing setup for a centric
compressive experiment than for a centric tensile experiment. The deformation
measurement of the LVDTs indicates the accuracy of the experiments at which
the maximum difference of the LVDTs among each other is 2.0mm during the
tensile test and 0.2mm during the compressive test. The difference of 2.0mm can
lead to this higher scatter in the measurements because the lattice has not the
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same deformation rate in every edge.

5.5. Discussion and conclusion

The deformation behaviour of lattice structures with four different beam geome-
tries was investigated under tensile and compressive load in this Chapter. The
lattice structures show the same visco-elastic material behaviour for all beam ge-
ometries under tensile load with a higher deformation capacity for lattices with
round beams than those with square beams. Structures with large square beams
reach higher maximum forces than those with large round beams. This obser-
vation corresponds in a first qualitative analysis to the single beam element be-
haviour where square beams reach higher yield stresses. The contrary is present
for the lattices with small cross-sectional beams where lattices with square beams
reach significantly smaller maximum forces than with round beams although the
measured yield stress in the single element experiments is also higher for square
beams. This qualitative observation cannot be explained only by taking the single
beam properties like the yield stress into account. However, the force-deformation
behaviour of small round beams with different V/N-ratios shown in Chapter 4.4
indicates an increase of the maximum force by increasing the V/N-ratio. This
could explain the difference in the measured maximum force of the lattice struc-
tures. A quantitative analysis will be performed with numerical simulations in
Chapter 6.3 to prove the hypothesis.

All lattice structures show the same deformation behaviour under compressive
load. A decrease in stiffness is observed after the linear-elastic regime. The
decrease in stiffness is more distinct for lattices with small beams. The force
then starts to drop after the maximum force is reached, until it begins to increase
rapidly at a certain deformation for lattices with large beams due to contact
between the layers. Lattices with round beams reach a slightly higher maximum
force than lattices with square beams. A “longer valley“ is only visible for lattices
with small beams after the force drop. The structure deforms in a plastic manner
while keeping the force nearly constant with an increase of the deformation until
the layer starts also touching each other at a certain deformation which leads to
a rapid force increase. The behaviour of lattices with small beams corresponds
more to the compressive behaviour of open- or close-cell plastic or metallic foams.
Foams offer a long plastic plateau before the force rapidly increases but a decrease
in stiffness after the nearly linear-elastic regime is not present.

The strain distribution of beams in different layers of the structure was studied
using VIC. These results show that the lattice deformation over the whole height
is not constant i.e. the deformation rate of the layers differs from each other. This
can result in a high scatter of the measured behaviour because the layer with the
lowest deformation rate dictates the maximum reachable force of the structures
due to the visco-elastic behaviour of the beams for lattices loaded under tension.
This leads to the qualitative conclusion that the higher the differences in the
deformation rate among the layers, the lower the maximum force would be. A
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homogeneous deformation of the specimen would increase the maximum force
capacity while keeping the global deformation of the structure constant.

The tests in tension show a higher scatter than the tests in compression. The
influence of the non-uniform layer deformation would explain a higher scatter in
the tensile experiments. Another reason for the scatter in the results could be
found in the test setup. The adjustment for compressive tests is more convenient
to load the specimen centrically. The experiments in compression show a high
accurateness based on the centric loading where the LVDTs measure the same
deformation with a maximum difference of 0.2mm among each other in every edge
of the specimen for the worst experiment. A more accurate justification is needed
for tensile experiments. The inaccurate assembly of the specimen at the test setup
will lead to an eccentric loading of the specimen and to a high scatter in the results.
This could be achieved by using a set of additional bars to fixate the pendulum
bars in the hinges to obtain a rigid system to fix the specimens centrically between
the platens. However, the non-uniform global lattice deformation over the height
leads also to a high scatter in the tensile experiments which will be investigated
in Chapter 6.3.

The deformation difference of beams with a length between the centres of two
nodes and an inter-sectional length between two node areas was analysed in order
to check the model assumption of a rigid node area. The analysis on out-of-plane
beams shows only a small difference of 7% between the beams with a large square
cross-section. This beam geometry represents the worst case due to the highest
content of the node area to the beam length from centre to centre. The difference
is reduced to 5% when analysing beams with small round cross-sectional areas
where the node area has the smallest content to the total beam length between
two nodal centres. It can be concluded that the model assumption seems to be
appropriate for the characterisation of the global lattice deformation behaviour in
the numerical simulations. The model assumption is also convenient to design the
specimen geometry of the single element experiments with different V/N-ratios
due to the small difference in the deformation measurements.



6. Numerical investigation of lattice
structure behaviour

6.1. Introduction

The results from the two different models and the global lattice experiments under
tensile and compressive load will be compared in this Chapter. The comparison
of the lattice deformation behaviour between the different models and the ex-
periments enables to make statements about the practicability of the models.
The influences of different single element parameters on the global behaviour of
the structure like the maximum deformation of one element δmax,beam and the
plastic modulus of elasticity E2 (see Chapter 2.1.3) are investigated in order to
evaluate the sensitivity of the models. The single beam properties for the two
different loading rates are taken into account for centric and eccentric simulations
to describe the scatter of the tensile experiments.

6.2. Procedure for tensile simulations

The boundary and loading conditions for both models are set equal (Figure 6.1):
the nodes of the lowest layer have zero displacement (ux,y,z = 0) and an infinitely
large rotational stiffness (ϕx,y,z = 0) in all directions. The nodes in the topmost
layer cannot displace in the x− and y−direction (ux,y = 0) and have an infinitely
large rotational stiffness (ϕx,y,z = 0) in all directions. A displacement in the
z−direction (uz = δ) is applied at the nodes in the topmost layer: a uniform
distribution is applied for centric simulations and a non-uniform distribution for

x,y,z      =0x,y

x,y,z x,y,zu      =0       =0

z

u  =z

x
y

u    =0,

Figure 6.1.: Boundary conditions for the lattice simulations
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Figure 6.2.: Correction of the force-deformation curves for the new model for a
beam with large square cross-sectional area and an orientation of
30◦/55◦: (a) measured curves, (b) curves corresponds to the measured
modulus of elasticity

eccentric simulations.

The geometrical parameters of the single beams (moment of inertia Ieq, cross-
sectional area Aeq and length L) are equal in both models and correspond to
the values listed in Table 3.2. The single element properties for the classical
model (modulus of elasticity Ebeam, yield stress fpl and maximum deformation
δmax,beam) correspond to the results in Chapter 4.3 and the input values are listed
in Appendix D.1 for both loading rates.

The force-deformation curves of the single beam elements under different V/N-
ratios which are used for the new model correspond to the curves shown in Chapter
4.4 whereby the deformation from the origin point to the maximum force had to
be scaled with a factor to respect the deformation of the support structures in the
experiment. The example for the calculation of the factor is given for a beam ele-
ment with large square cross-sectional area and an orientation of 30◦/55◦. Figure
6.2(a) illustrates the measured curves of the classical tensile experiment and the
force-deformation curve with a V/N-ratio of 0.2 for the new model approach. The
support deformations are included in these curves. It is visible that the curve from
the classical tensile experiment has larger deformations in the ascending part than
the curve for the new model approach. The curve from the classical experiment
has to be scaled that the ascending part is identical with the calculated modulus
of elasticity (Chapter 4.3) as follows:

Deformationnew =
Deformation

L0
· L (6.1)
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where L0 corresponds to the initial length listed in Table 4.1 and L corresponds
to the effective beam length between the nodal areas listed in Table 3.2. Figure
6.2(b) shows the curve after the scaling. The force-deformation curve for the
new approach has also to be scaled to reach the same stiffness in the ascending
part like the curve from the classical model. The scaling factors are determined
empirically for the best agreement between both curves. It has to be mentioned
that the deformation after the maximum force keeps the same which is not the
case in Figure 6.2 where the procedure is only shown schematically.

Only the force-deformation curves with an orientation of 30◦/55◦ are used in the
simulations because this orientation is two times more present in one layer and the
curves with an orientation of 90◦/55◦ are nearly equal. Only the force-deformation
curve with a V/N-ratio of 0.0 was used for the simulations with an loading rate
of 5µm/s because no difference between the curves with a V/N-ratio of 0.0 and
0.2 are present with a loading rate of 15µm/s (see Figure 4.15). Additionally,
the majority of the beams have a V/N-ratio of 0.2 (Figure 3.11) which makes it
redundant to have the the force-deformation curves for V/N-ratios of 0.2-0.6.

The behaviour of the in-plane oriented beams in the lattice structure (orienta-
tion 0◦/0◦ and 60◦/0◦), which are loaded in compression, was chosen as linear-
elastic. The compressive modulus of elasticity was assumed to be equal to the
tensile modulus of elasticity. A linear-elastic behaviour was selected because the
measured strain in the in-plane beams are small (Figure 5.6) where it is assumed
that the beams do not start to yield in compression over the whole lattice defor-
mation. No stability problems of the in-plane beams were apparent in the lattice
experiments in tension described in Chapter 5.4.1 which makes the assumption
acceptable.

The simulation processes for both models are described in Chapters 2.1.3. The
single beam elements in the classical model were divided into 0.2mm segments (see
Figure 3.9(b)) with varying cross-sectional areas and equal lengths from which the
segment with the highest stress was determined. The whole beam starts to yield
when the highest loaded segment reaches the yield stress. The simulations are
stopped at the point where the global force drops below 50N .

6.3. Comparison between experiments and classical
model in tension

Figure 6.3 and 6.4 show the comparison between the classical model results and the
measured lattice deformation behaviour under tensile load. The simulations were
performed with the measured single beam parameters for the loading rates of 5µm
and 15µm. It is obvious that the results from the simulations describe a nearly
linear-elastic, purely-plastic structural behaviour. The force increase between
yielding of the first beams and the maximum force of the lattice (Fmax,lattice)
is about 25% for every lattice geometry. The transition from the linear elastic
to the purely plastic regime of the lattice takes place in a small deformation
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(a) Large square cross-section
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Figure 6.3.: Comparison between tests and classical model results for lattices with
large beams in tension; small crosses indicate the inter-section points
between the experimental and the simulated curves
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Figure 6.4.: Comparison between tests and classical model results for lattices with
small beams in tension; small crosses indicate the inter-section points
between the experimental and the simulated curves
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range of 0.3mm which leads to the observed linear elastic-purely plastic structure
behaviour. No distinct gradual yielding of the beams is present which would lead
to a more visco-elastic lattice behaviour. Thus, the input characteristics of the
single beams dictate directly the system response where the composition of the
beams in the lattice does not change the global lattice behaviour.

It can be seen from Figure 6.3 that the two simulations with the different load-
ing rates prescribe a lower and upper force limit of the experiments where the
tests lie between these two extremes. This observation is also valid for the lat-
tice with small square cross-sectional beams (Figure 6.4(a)). The large scatter
of the experiments can then be explained with the two different simulations and
the fact that the layer deformations are not equal over the height of the struc-
ture which was already mentioned in Chapter 5.4.1. The layer with the lowest
deformation rate dictates the maximum reachable force of the lattice, whereas a
non-uniform deformation distribution of the layers in the lattice leads to a layer
with a small deformation rate. However, the lattice can reach a higher maximum
force Fmax,lattice if the deformation distribution of the layers is uniform. This
statement corresponds to the simulations where the single element properties for
a deformation rate of 15µm are used. The effect of varying layer properties will
be investigated in Chapter 6.3.1.

The experiments are compared with both simulations which respect the single
beam behaviour from the measurements with the loading rates of 5µm/s and
15µm/s. It has to be mentioned that both loading rates are based on the defor-
mation between the frame and the cross beam of the micro testing device (see
Figure 4.1). The effective deformation rate of the beam with the length used in
the simulations (Table 3.2) is thereby smaller than the measured deformation.
The deformation rate of the beam could not be determined very accurately due
to the visco-elastic material behaviour, the unknown stress distribution in the
support structures and the unknown deformation of the testing frame during the
single beam experiment. An approximation of the loading rate can be given when
neglecting the deformation of the testing frame and assuming an uniform shape
of the beam. The whole length of one beam between the centres of the support
structures is 15mm. This would lead to loading rates for a beam with a length of
5mm which are three times smaller i.e. 1.7µm/s and 5µm/s. The non-uniform
shape will lead to an increase of these values. The global lattices were loaded
with a loading rate of 45µm/s whereas every lattice structure has 9 layers. A
uniform deformation of the structure is given when every layer deforms with a
loading rate of 5µm/s i.e. with 15µm/s in the single beam experiments. Thus,
the upper force limit can be calculated using the the single beam behaviour which
was measured on the specimens with a loading rate of 15µm/s. A non-uniform
deformation of the lattice structures leads to layers with a small deformation rate
(1.7µm/s) and all other layers are deformed with higher deformation rates than
measured. Thus, it can be seen from Figure 6.3 that all experiments reach higher
maximum forces than the simulations with a loading rate of 5µm/s which implies
that no beams in the structure have a smaller deformation rate than in the single
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Figure 6.5.: Comparison of the global stiffness Klattice: a) Values for all geome-
tries, b) Intersection point of the simulated and measured curves in
relation to Fmax,lattice

beam experiment for a loading rate of 5µm/s.
The curves from the experiments can be characterized with a visco-elastic be-

haviour like the single beam elements (Chapter 4.3 Equation 4.1). This leads
to intersection points between the experimental curves and the simulated curves
due to the linear-elastic model behaviour. The calculated stiffness for the tests
and the simulations are shown in Figure 6.5(a). They are calculated between the
point of origin and the point where the first beam starts to yield for the simulated
curve and between the force levels 0 − 0.6 × Fmax,lattice. It is obvious that the
stiffness from the experiments and the simulations lie in the same range for all
lattice geometries except for the lattice with small round cross-sectional beams.
Lattices with this type of beam geometry reach higher values. This observation
will be discussed later. The comparison confirms the model assumption that the
nodal areas can be modelled as a rigid section. This reduces the complexity of
the model because the stress distribution and the deformation in the nodal areas
can be neglected. Another possibility to prove the assumption and to verify the
calculation method of the modulus of elasticity for the single beam elements is to
analyse the position of the intersection points. The curves from the experiments
and simulations should intersect at a force level of 0.6 × Fmax,lattice because it
has to be mentioned that the modulus of elasticity for the single beam elements
was calculated between the stress levels 0− 0.6× fpl (Chapter 4.3). Figure 6.5(b)
illustrates the force level where the intersection points are present for all lattice
geometries. The values lie in the range of 60%; no clear tendency of a underesti-
mation or overestimation exists. This result also points out the practicability of
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Figure 6.6.: Crack pattern of simulated lattice structure in tension

the model assumption.

It can also be seen from the comparison between the tests and the simulations
that the maximum deformation at failure is substantially smaller for the simu-
lated lattices. The large difference occurs because the main deformation in the
simulated lattice takes place in the layers where the first beams start to yield due
to the linear elastic-purely plastic input behaviour of the single elements. The
first beams start to yield in the lowest and the topmost layer where stress con-
centrations are present. This results in a deformation concentration of the global
lattice in these two layers. The maximum lattice deformation corresponds there-
fore nearly to two times of δmax,beam (see model input values Appendix D.1). In
the next Chapter it will be discussed which input parameters influence the maxi-
mum lattice deformation δmax,lattice. It is also obvious that all simulated lattices
break brittle, which corresponds to the observation from the experiments. Figure
6.6 shows a typical crack pattern from a simulated lattice. The crack occurs in
one layer and passes through the whole layer where it can be present at the top
or the bottom of the structure. This result is in agreement with the observed
crack pattern from the experiments (Chapter 5.4.1 Figure 5.7(c)). Note however
that the position of the crack in the experiments varies between the first and the
second layer which can be a result of a slightly eccentric loading condition.

The experimental curves from the lattices with small round cross-sectional
beams show a significant difference to the simulated curves. The simulated lat-
tice behaviour with a loading rate of 15µm/s reaches nearly Fmax,lattice of the
lowest experimental curve. The values Klattice and Fmax,lattice are significantly
higher for the experimental curves which leads to a first estimate that the load-
ing rate of the beams in the lattice is higher than the used loading rate for the
single beam experiments. This can explain the observed difference for Klattice

and Fmax,lattice. Both values increase for a visco-elastic material with increasing
loading rate. This estimate has to be proven by investigating the sensitivity of the
model when varying different single beam properties. The influence of an eccen-
tric loading condition and the influence of different layer properties in the lattice
has to be analysed to mark out the reason for the differences in the measured and
simulated curves.
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Figure 6.7.: Parameter study for varying input parameters: (a) Influence of
δmax,beam on δmax,lattice, (b) Influence of E2 on δmax,lattice

6.3.1. Parameter study

The influence of several input parameters on the global lattice behaviour for the
classical model will be investigated in this section in order to verify the sensitivity
of the model. The influence of an eccentric loading condition and different layer
properties in the lattice will be studied to evaluate the main influences on the
global lattice behaviour. The geometrical model parameters stay constant in
all the analyses due to the observation that the model assumption seems to be
applicable (rigid node area) when comparing the modulus of elasticity from the
experiments and with simulations.

Figure 6.7(a) illustrates the change of the maximum lattice deformation
δmax,lattice when the maximum single beam deformation δmax,beam is increasing
for the out-of-plane beams (30◦/55◦ and 90◦/55◦). δmax,lattice increases propor-
tionally with δmax,beam whereas this variation appears to have no influence on the
modulus of elasticity and the maximum force of the structure for all geometries.
The single beam maximum deformation shows a high scatter in the single beam
element tests and could be chosen higher than assumed in the simulations in sec-
tion 5.3 (see Table 3.2). This could explain the significant difference between the
experiments and the simulations. The maximum deformation in the simulations
is about 50% of the measured deformations. This difference corresponds to a
three times higher single beam deformation capacity which is quite high. It is
therefore unrealistic that this parameter has the most important influence on the
deformation capacity of the global lattice.

The modulus of elasticity for the in-plane beams was set in the model according
to the measured values in the single beam experiments with its specific loading
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rates. It was observed in the global lattice experiments that the in-plane beams
have a significant smaller deformation rate compared to the out-of-plane beams.
The small deformation rate can therefore lead to a smaller modulus of elasticity
due to the visco-elastic behaviour of the single beam specimens. It is clearly
visible from Figure D.2(a) that a reduction has only a small effect on Fmax,lattice

for all beam geometries in the lattice. The maximum force decreases at about
5% when decreasing the modulus of elasticity of the in-plane single beams to
20% of its original value. Both parameters Klattice and δmax,lattice do not change
significantly by changing this parameter. This leads to the conclusion that the
modulus of elasticity for the in-plane beams has a subordinate influence on the
global lattice behaviour in tension when the classical model is used.

The plastic modulus of elasticity E2 (see Figure 2.5(b)) for the single beams was
set to zero for all simulations. However, a few single beam curves show a slightly
ascending plastic plateau. The influence of a varying plastic modulus of elasticity
E2 on δmax,lattice is illustrated in Figure 6.7(b) where E2 varies between −10MPa
to 10MPa. It is visible from Figure 6.7(b) that a negative E2 has a minor
influence on the maximum lattice deformation whereas only a small reduction
of the deformation is present for all lattices. On the other hand, δmax.lattice

increases rapidly between the values 0MPa and 5MPa of the plastic modulus
E2. A further increase has a minor influence on the maximum lattice deformation.
This observation agrees with the statement that the whole lattice deformation is
localized in the layers where the first beams start to yield when the single beam
element has a linear elastic-purely plastic behaviour. An increase of E2 for the
single beams leads to an activation of the deformation capacity of the other layers.
The layers where all beams have started to yield can now further increase their
load whereas the beams in the other layers will reach the yield stress. All layers
in the lattice will have a plastic deformation until the first beam fails which leads
to a higher δmax,lattice. It was also observed in the experiments that every layer
of the structure had a plastic deformation before the maximum deformation was
reached.

The maximum force before the lattice fails varies also linearly with the change
of the plastic modulus of elasticity E2 (Figure D.2(b)). A negative value reduces
the maximum force whereas a positive value increases the maximum force. This
observation is clear because the global lattice behaviour corresponds to the single
lattice behaviour as mentioned before. The global modulus of elasticity and the
force, when the first beam starts to yield, are not influenced by the change of E2.

The deformation behaviour of the lattice structure has therefore a linear de-
pendency on the model input parameters apart from δmax,lattice which is sensitive
to small changes of E2. This sensitivity describes a disadvantage of the classical
model due to the fact that a small change in the input parameters leads to a
significant change in the global lattice behaviour. The sensitivity complicates the
evaluation of accurate input parameters which would lead to appropriate results.

The parameter α, which controls the amount of the beam end moments to
the yield stress of an element (see Equation 2.5), was set to 1 for all simulations
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Figure 6.8.: Eccentric loading condition: (a) Same single beam behaviour for all
beams for a loading rate of 15µm/s, (b) Beams in the grey area have
single element behaviour for a loading rate of 5µm/s

i.e. the moments in the beams are fully respected in the model. Neglecting the
moments in the beams (α = 0) leads to an increase of the maximal force of the
lattice and a slightly increase of the maximum global lattice deformation. The
modulus of elasticity is not influenced by this parameter (see Appendix D.2 Figure
D.1(a)). It is not fruitful to set the parameter α differently from 1; otherwise the
statics of the system are not characterised correctly.

The influence of an eccentric loading condition was investigated on a lattice
with two different configurations (Figure 6.8). All single beam elements have the
same properties (which corresponds to the properties measured with a loading
rate of 15µm/s) in one configuration (Figure 6.8(a)). One fourth of all beam ele-
ments have a smaller modulus of elasticity and yield strength (which corresponds
to the single element properties measured with a loading rate of 5µm/s) in the
edge of the lattice with the smallest deformation rate due to the eccentric load in
the second configuration ((Figure 6.8(b)). The eccentric load was applied on the
lattice with a linearly changing deformation field where the maximum difference
of the deformation between the edges was set to 2mm, which corresponds to the
maximum measured difference in the experiments. Figure 6.9(a) illustrates the
change in the deformation behaviour of the lattice structure for both configu-
rations. Applying an eccentric load to the lattice while leaving the single beam
properties equal for all beams in the lattice leads to a slight reduction in the global
modulus of elasticity. The maximum force is almost similar to these centrically
loaded lattices, whereas the maximum lattice deformation is reduced when an ec-
centric load is applied. The maximum force and the global modulus of elasticity
reach a significant lower value for the simulation in the second configuration. It
can be concluded that the weakest zone in the lattice determines the global lattice



100 6. Numerical investigation of lattice structure behaviour

0 2 4 6
0

2000

4000

6000

8000

10000

12000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

15 µm/s

Centric
Eccentric 1
Eccentric 2

(a)

0 2 4 6
0

2000

4000

6000

8000

10000

12000

Deformation [mm]

Fo
rc

e 
[N

]

 

 

15 µm/s

5 µm/s

Equal Layers
1 different layer
5 different layer

(b)

Figure 6.9.: Simulated lattice behaviour for different test configurations: a) Influ-
ence of an eccentric loading condition, b) Influence of different layer
properties

behaviour, which was already mentioned. Using larger values of single element
properties for the beams in the edge with the highest deformation rate does not
influence the global lattice deformation significantly. The main influence on the
lattice deformation has the position of the zone where the lowest deformation rate
i.e. the beams with the lowest Ebeam and fpl are present.

It was observed in the experiments that the different layers in the lattice do
not have the same deformation rate (Chapter 5.4.1). This circumstance can be
simulated in the model by varying Ebeam and fpl for all the beams in one layer
of the lattice. Figure 6.9(b) illustrates the lattice deformation where different
configurations are studied. One weaker layer (E and fpl corresponds to the values
for a loading rate of 5µm/s) is introduced in the lattice in the first configuration
where the position of the weaker layer is irrelevant on the result. It is clearly
visible that the structure reaches the same maximum force like the lattice which
contains only weak beams. The stiffness has nearly the same value like for the
lattice where the parameters for the beams with the higher loading rate are used.
Changing the configuration that only one strong layer is present in the lattice
reduces the stiffness to the value, corresponding to the lattice including beam
properties for the smaller loading rate: the maximum force is also not influenced.
Alternating the beam properties from layer to layer i.e. one weak layer is followed
by a strong layer, does not change the maximum force which is defined by the
weakest layer. The global modulus of elasticity for this second configuration lies
in the range between the simulations for the two different loading rates. These
results correspond with the conclusion from the analysis of an eccentric loading
condition that the weakest zone defines the lattice behaviour, mainly Fmax,lattice.
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The high scatter of the maximum forces in the experiments can very likely be
explained with this observation. A uniformly deformed lattice will reach a higher
maximum force than a non-uniformly deformed lattice which includes one layer
with a smaller deformation rate while the global deformation rate is equal for both
cases. It is not possible at this time to reach a uniform deformation for the whole
lattice even with a centric loading condition and a regular and precise defined
lattice geometry. A small scatter in the single beam properties i.e. of Ebeam leads
already to a non-uniform deformation of the lattice. Producing a material for the
single beams with exactly the same behaviour would solve the circumstance, but
this seems to be hard to reach with the current production processes.

All simulations were performed without respecting the second order effect. Fig-
ure D.1(b) in Appendix D.2 illustrates the influence of the second order effect to
the global lattice behaviour. It is clearly visible that the system behaves stiffer
i.e. Elattice increases in contrary to the first order simulations. The increase of
Fmax,lattice is distinct which is a result of the small modulus of elasticity for the
single beam elements. Increasing Ebeam would produce a smaller difference. It
was shown from the comparison between the experiments and the simulations
that the parameters from the single beam tests with two different loading rates
cover the scatter of the experiments without respecting the second order effect.
This solution is favourable due to an avoiding of iterations in the simulation and
to keep the model as simple as possible. The impact of the second order effect in
the experiment cannot be determined directly. A simulation respecting the second
order effect and using input parameters for a low deformation rate would have
the same result as well as a simulation without respecting the second order effect
and using input parameters for a high deformation rate. The second order effect
could be analysed in case of a uniform lattice deformation which is not possible
in the presented experiments.

6.4. Comparison between experiments and new
model in tension

Figure 6.10 and 6.11 show the comparison between the results from the new
model and the measured lattice behaviour under tensile load. It is obvious that
the visco-elastic behaviour of the global lattice is correctly simulated with the
new model. The ascending part of the curves shows a decreasing stiffness and the
simulations fit well with the experiments in this region. The two simulations with
the different loading rates also describe the lower and upper force limit of the
experiments except from the lattice with small round cross-sectional beam which
was already mentioned before. The shape of the simulated curves matches well
with the experimental curves. The slope of the curves in the plastic region of the
lattice, where the force rises only slightly by increasing the global deformation, can
be simulated much better than with the classical model. Especially the simulated
curves from the lattices with large round cross-sectional beams (Figure 6.10(b)) fit
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Figure 6.10.: Comparison between tests and new model results for lattices with
large beams in tension
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Figure 6.11.: Comparison between tests and new model results for lattices with
small beams in tension
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better to the experimental curves i.e. result in a better curve characterisation. It
is obvious that the new model approach provides the better results in comparison
to the classical model whereas also the input informations for the new model can
be determined much easier than for the classical model.

Also the simulated δmax,lattice is more in the region of the experiments than
with the classical model. The maximum deformations in the classical model had
nearly the same value for the simulations with both deformation rates. They
are significantly smaller than measured in the experiments. In the new model,
the lattice deforms more uniformly over the whole height of the specimen which
agrees with the observations from the experiments. The model does not lead
to a deformation localisation in the layers where the critical beams are located.
Considering directly the force-deformation curve of a single beam describes the
global lattice behaviour and the deformation in the layers more accurately than
in the classical model. The scatter of the measured δmax,lattice and δmax,beam is
in general high: these values cannot be predicted very well with the models. The
maximum deformation of the lattice is dependent on the first beam which reaches
δmax,beam and fails. The lattice will have a large maximum deformation if the
beam has a high deformation capacity. Contrary, the global lattice fails at a low
δmax,lattice if the beam, which fails first in the lattice, has a small δmax,beam. A
statistical distribution of the maximum deformation in the single beams would re-
sult in a scatter of the global lattice deformation where the measured deformation
would be located in this scatter.

The calculated stiffness for the experiments and the simulations are shown
in Figure 6.12(a). The stiffness were calculated again between 0% and 60% of
the force level related to Fmax,lattice for every curve. The values are in a good
agreement whereas a tendency is present that the simulations have a slightly
smaller value than the experiments for all lattices with different beam geometries.

6.4.1. Parameter study

There is one parameter in the new model which can change the results apart from
varying the input force-deformation curves for the single beams. The modulus of
elasticity of the in-plane beams, which deform linear-elastic under the compressive
load, can vary due to the small deformation rate of these beams. Figure 6.12(b)
shows the dependency on the stiffness Klattice on a varying modulus of elasticity of
the in-plane beams. The reduction of Klattice is obvious for all lattice geometries
whereas it is more reduced for the lattices with large cross-sectional beams than
for lattices with small cross-sectional beams. The value changes only slightly
between 0.5− 1.0× the in-plane modulus of elasticity. A variation in this region
seems appropriate for the single beam modulus of elasticity whereas a further
decrease would lead to values away from the measured values.

The maximum force of the global lattice is not influenced by the variation
between 0.5−1.0× the modulus of elasticity of the in-plane beams (Figure D.3(a))
for all lattice geometries. The value δmax,lattice has only a small variation between
0.5− 1.0× the in-plane modulus of elasticity (Figure D.3(b)). The dependency is
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Figure 6.12.: (a) Comparison of the stiffness Klattice for all geometries, (b) change
of stiffness Klattice dependent on the modulus of elasticity of in-plane
beams

more distinct in the region between 0.1-0.5 where a higher deformation reduction
is visible for larger lattice deformations. A modulus of elasticity for the in-plane
beams in this region (0.1−0.5) is again not appropriate due to the high reduction
of Klattice as mentioned before. It is obvious that the new model is more reliable
because the global lattice behaviour is not very sensitive to changes in the input
parameters like in the classical model (see Figure 6.7(b)).

The V/N-ratio in all elements changes significantly while reducing the modulus
of elasticity for the in-plane single beams. Figures 6.13(a) and 6.13(c) show the
V/N-ratio distribution for all elements in the lattice at the beginning of the global
lattice deformation depending on the in-plane single beam stiffness. It is clearly
visible that more elements have higher V/N-ratios when the modulus of elasticity
of the in-plane beam is reduced. It leads therefore to higher moments in the
beams. Different force-deformation curves have to be used in the simulation
when the V/N-ratio increases. This mechanism is negligible for a simulation of
lattices under tensile load because it was shown in Chapter 4.4 that the effect of
a varying V/N-ratio has a small influence on the force-deformation curve of the
single beam element. It is also an explanation why the global lattice behaviour
does not change significantly while varying the in-plane beam stiffness.

The V/N-ratio of the elements also changes during the simulation. Figures
6.13(b) and 6.13(d) illustrate the distribution at a global lattice deformation level
of 0.5×δmax,lattice for two different in-plane beam stiffness values. The pattern of
the distribution changes significantly compared to the pattern at the beginning of
the global lattice deformation (Figure 6.13(a) and 6.13(c)). The scatter increases
whereas lower and higher V/N-ratios are reached at this stage of deformation.
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Figure 6.13.: V/N-ratio distribution at different lattice deformation levels and
with varying in-plane beam stiffness: (a) 1% deformation and 100%
in-plane stiffness, (b) 50% deformation and 100% in-plane stiffness,
(c) 1% deformation and 50% in-plane stiffness, (d) 50% deformation
and 50% in-plane stiffness
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Figure 6.14.: Modified simulation for the lattice behaviour with small round cross-
sectional beams: a) comparison of the lattice behaviour, b) V/N-
ratio distribution at a global deformation of 0.2mm

This behaviour is typical for lattices with a visco-elastic or linear elastic-purely
plastic beam behaviour. A lattice where the beams behave only linear elastic
has no change of the V/N-ratios in the elements during the whole deformation.
An iterative simulation process is therefore necessary to respect the visco-elastic
or linear elastic-purely plastic element behaviour since the single beam modulus
of elasticity is reduced when increasing its deformation. Also this mechanism is
negligible for the simulation of lattices under tensile load like mentioned before.

The influence of an eccentric loading condition and the influence of different
layer properties have the same effect in the new model as in the classical model.
The reduction of the parameter α would reduce the V/N-ratio in all beam ele-
ments because a reduction implies also a reduction of the end moments in the
beams. This parameter can also be neglected in the new model to simulate the
tensile behaviour of the lattice structures because the single beam behaviour does
not change significantly while varying the V/N-ratio. It is not needed to take
the second order effect into account during the simulation because it is already
included in the force-deformation curves of the single beams. It is obvious that
the number of parameters with an influence on the global lattice behaviour is
significantly reduced in the new model due to the used input data, which reduces
the complexity of the model.

The simulations for the lattice with the small round cross-sectional beams also
do not reach the maximum forces of the experiments like in the classical model
(Figure 6.11(b)). The simulation with the higher loading rate reaches nearly
the same value for the measured maximum force and the stiffness Klattice like
the values from the second experiment. But generally, also the high values from
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the experiments can not be found with the new model. Using only the force
deformation-curves of the single beam experiments with a V/N-ratio 0.4 or 0.6,
which have higher maximum forces, leads to a significant increase of the reached
maximum force (Figure 6.14(a)). The result of the simulation represents the mea-
sured curves better than the results from the classical and the new model as shown
before. The existence of bending moments in the beams and the visco-elastic ele-
ment behaviour leads to a higher reachable fpl which results in higher Fmax,lattice.
On the other hand, it is not clear at this point why the force-deformation curves
with a V/N-ratio of 0.4 have to be used to reach the measured values because the
V/N-ratios in the elements lie in the region of less than 0.2 (Figure 6.14(b)). Re-
ducing the modulus of elasticity of the in-plane beams to 25% of its original value
increases the V/N-ratio of only 63 elements from 5130 elements to the desired level
of 0.4 which is not sufficient to reach a global force higher than 5′000N . It is con-
cluded from the different investigations that the layer deformation over the whole
height of the structure has to be very uniform, so that the beams were loaded
with a higher deformation rate than in the single beam element tests. This re-
sults in a higher modulus of elasticity and yield strength of the single beams which
leads to the measured lattice behaviour. Another possibility is that the beams in
the structures had a production-related higher modulus of elasticity Ebeam and
a higher yield stress fpl than in the single beam element test. More experiments
on structures with small round cross-sectional beams have to be done to identify
the difference between the experiments and the simulation more satisfying.

6.5. Procedure for compressive simulations

The boundary and loading conditions are set equal for both models according to
the tensile simulations described in Section 6.2 (see Figure 6.1). The geometrical
parameters of the single beams for both models, the single element properties for
the classical model and the force-deformation curves under different V/N-ratios
for the new model also correspond to the values described in Section 6.2. It has
to be mentioned that the compressive modulus of elasticity was set again equal
to the tensile modulus of elasticity.

The behaviour of the in-plane beams in the lattice structure (orientation 0◦/0◦

and 60◦/0◦), which are loaded in tension, was chosen as linear elastic-purely
plastic for the classical model. The measured single element properties (modulus
of elasticity Ebeam, yield stress fpl and the maximum deformation δmax,beam)
were used to describe the behaviour where the values are listed in Appendix D.1.
The yield stress fpl and the maximum deformation δmax,beam were set to the
same values like for the out-of-plane beams (30◦/55◦,90◦/55◦) due to the small
deformation rate of the in-plane beams. The measured force-deformation curves
in tension for a V/N-ratio of 0.2 were applied for the new model approach.

The simulation processes for both models are described in Chapter 2.1.3. The
simulation process for the new model approach could be adopted for the com-
pressive simulations. The described classical model without modification is not
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capable to simulate the behaviour of the lattice structures in a constructive way.
The described process has one failure criterion which calculates the maximum
tensile stress in all elements (Equ. 2.5). The element with the highest tensile
stress is then removed from the lattice. No compressive failure criterion exists.
Loading the lattice under compression leads to a failure in the in-plane beams
which are loaded in tension. The load of the structure increases further even
when the first in-plane beams have failed. This behaviour leads to non-realistic
high maximum forces of the lattice structure until the first out-of-plane beams
(orientation 30◦/55◦ and 90◦/55◦) reach the failure criterion and start to yield.
All beams are also divided into 0.2mm geometrical segments (Figure 3.9(b)) where
the stress is calculated in every segment from the local forces of the equivalent
beam in the lattice. Even taking the second order effect into account, where the
moments in the out-of-plane beams are increased, leads to the same mechanism.
The beams in the lattice structure have a small slenderness (see Chapter 3.4)
which leads to too high forces until the beams start to buckle using linear-elastic
material behaviour.

It was therefore decided to introduce a stiffness reduction of the out-of-plane
beams when one segment has reached a certain stress limit. Figure 6.15 illustrates
the stress distribution for the normal force N and the moment M in one segment.
The stress from the moment was again calculated by dividing the moment with
the plastic modulus of resistance Wpl. This leads to a stress distribution in the
beam where the beam fibres on the tensile side can have negative or positive
stresses dependent on the amount of the moment relative to the normal force.
The stress on the tensile side of the beam is defined as

ft = x · fpl (6.2)

Six different ranges for x were chosen whereas the modulus of elasticity of the
beam changes dependent on the current stress in the beam on the tensile side.
Table 6.1 shows the classification of the six different ranges. No reduction of the
modulus of elasticity is present when the stress on the tensile side is below −fpl.
A decrease of the modulus of elasticity is present between the stresses −fpl and
fpl. The modulus of elasticity is set to zero when the yield stress is exceeded fpl
which corresponds to the standard process in the classical model.

The reduction of the modulus of elasticity in the negative stress range of ft
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was chosen because only a reduction in the positive range of ft leads to a over-
estimation of the maximum force of the lattice structure Fmax,lattice. The stiff-
ness reduction in the elements was calculated for a vertical lattice deformation of
10mm. The maximum moment at the end of the single element was applied over
the whole length of the beam to respect the point that only one beam between
two nodes is used in the simulation instead of several beams which would lead to
the correct moment gradient in the element. No iterations during the simulations
are necessary with this modification. Avoiding iterations in the simulation leads
to an overestimation of the lattice stiffness which will be described in the next
Section.

Table 6.1.: Varying modulus of elasticity dependent on x: Definition of the six
different ranges

×Ebeam x

1.0 < (−1)
0.75 (−1) − (−0.5)
0.5 (−0.5) − (0)
0.25 (0) − (0.5)
0.1 (0.5) − (1)
0.0 > (1)

6.6. Comparison between experiments and classical
model in compression

Figure 6.16-6.17 show the comparison between the classical model and the mea-
sured lattice deformation under compressive load. The simulations were per-
formed with the measured single element properties for the loading rates of 5µm/s
and 15µm/s. The modulus of elasticity of the in-plane beams was set to 50% for
the lattices with large cross-sectional beams and 100% for the lattices with small
cross-sectional beams in the Figures. It is clearly visible that the stiffness of the
lattice structures is overestimated with the simulations whereas different reasons
can cause this difference. The compressive modulus of elasticity was set equal
to the tensile modulus of elasticity where the compressive modulus of elasticity
was not measured on single beam elements and no statement can be made at this
point if it is smaller than the tensile modulus of elasticity. Comparing the tests
with the new model, where the force-deformation curves were measured under
compression, will lead to a better estimate of this type of influence.

Figure 6.18 shows the comparison of the global lattice stiffness for the experi-
ments and the simulations. It is visible that the values from the experiments lie
in the same region for all beam geometries. A decreasing tendency is visible for
the values of the simulations. The lattice with large square cross-sectional beams
reaches the highest values whereas this type of beam has the smallest length be-
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Figure 6.16.: Comparison between tests and classical model results for lattices
with large beams in compression
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Figure 6.17.: Comparison between tests and classical model results for lattices
with large beams in compression
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Figure 6.18.: Comparison of the global stiffness Klattice

tween the nodal areas i.e. the smallest slenderness. Increasing the slenderness
leads to a smaller lattice stiffness where the lattice with the small round cross-
sectional beams has the smallest stiffness. It has to be mentioned that the modulus
of elasticity of the beam Ebeam with a small round cross-section has nearly the
same value than for small square and large round cross-sections. However, the
smaller length of these two beams leads to a higher lattice stiffness. It is visible
from the comparison in Figure 6.6 that the stiffness from the simulation of the
lattice with small round beams reach nearly the same values like the experiments.
It seems that lattice structures, which include beams with a higher slenderness
than used in this thesis would reach the same stiffness in the experiments and in
the simulations.

The simulation process of the classical model does not use iteration processes.
This leads to the fact, that no change of the modulus of elasticity of the out-
of-plane beams occurs until the first beam in the lattice starts to yield. The
first beam which starts to yield can be an in-plane beam under tension or an
out-of-plane beam under compression. The reduced modulus of elasticity of the
out-of-plane beams are taken into account in the next step. An iteration process
where the reduced modulus of elasticity of the out-of-plane beams are taken into
account before the first beam starts to yield could reduce the lattice stiffness.
This behaviour is present for all simulated curves in Figure 6.3-6.4. A steep force
increase is followed by a flattening of the simulated curves. This curve progression
corresponds in general to the measured curves where a nearly linear-elastic region
is followed by a flattening until the maximum force is reached. However, the curve
part with the decreased stiffness proceed over a larger deformation range in the
experiments whereas the deformation range between the end of the linear elastic
regime and the maximum force is smaller in the simulated curves.

The mechanism after the linear elastic regime is mostly based on the yielding
of the in-plane or out-of-plane beams. The modulus of elasticity of the out-of-
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plane beams can be reduced every time one beam reaches the yielding stress fpl.
The global stiffness keeps nearly the same value over the whole flattening curve
until the plastic plateau of the curve is reached. The reduction of the modulus of
elasticity to zero of all out-of-plane beams occurs in a small deformation range of
the lattice before the plastic plateau is reached. This region is indicated with a
high curvature in the simulated curves. The out-of-plane beams can not increase
their load further and the force stays constant over the whole deformation of the
lattice.

All simulations do not show an ascending part after the plastic plateau. There
is no implementation of a material contact behaviour in the model. The imple-
mentation would lead to a higher complexity of the model and the aim of a simple
model would be missed.

The two simulations with the different loading rates prescribe again nearly a
lower and upper force limit of the experiments where the simulation with the lower
loading rate prescribes the force limit of the experiments for lattices with large
cross-sectional beams quite well. This might indicate that the deformation of
the lattice over the height was non-uniform which was already mentioned for the
tensile experiments in Section 6.3. It was also observed that the strain distribution
of the out-of-plane beams on the surface of the lattice under compression is non-
uniform (see Figure 5.12 Chapter 5.4.2). It has to be mentioned that the beams
at the surface can freely deform perpendicular to the loading direction which
increases the measured strains of the beams and the scatter. The strain of the
beams inside the lattice structure can not be measured. It is not possible in the
case of a compressive load that the layer with the lowest loading rate prescribes
the deformation behaviour of the lattice structure. The layer with the highest
deformation rate first reaches the loading condition that the modulus of elasticity
of the out-of-plane beams is reduced. This layer then prescribes the maximum
reachable force. The layers with a low deformation rate do not reach first the
loading condition i.e. a high moment at the beam ends due to the second order
effect. It is however assumed that the deformation over the height is nearly
uniform due to the small scatter of the experimental results. It was mentioned
in Chapter 6.3.1 that the beam properties with the high loading rate are used to
prescribe an uniform deformation. The simulations with a high loading rate of
the single beam elements show a too high maximum force. It will be discussed in
the next Section which parameter influences the force of the plastic plateau.

6.6.1. Parameter study

The influence of varying input parameters on the global lattice behaviour for the
classical model will be investigated in this Section to describe the sensitivity of
the model in compression. The influence of an eccentric loading was investigated
for the model in tension where the characteristics keep the same in both loading
conditions. All experiments in compression were loaded centrically which is indi-
cated with the small differences between the four LVDTs in Chapter 5.4.2 which
makes an analysis obsolete. An analysis of different layer properties would not
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Figure 6.19.: Influence of a varying modulus of elasticity of the in-plane beams
on: (a) Felastic,lattice and (b) Fmax,lattice

lead to new insights of the mechanism different from the tensile simulations. The
geometrical model parameters stay constant over all analyses.

Figure 6.19 illustrates the dependency of the force in the lattice, when the
first beam starts to yield Felastic,lattice, and the maximum force of the lattice
Fmax,lattice to a varying modulus of elasticity of the in-plane beams. The analysis
was performed on lattices with the single beam properties measured with a loading
rate of 15µm/s. It is visible that the force at the end of the elastic regime
Felastic,lattice decreases while reducing the modulus of the in-plane beams (Figure
6.19(a)). The decrease of Fmax,elastic is constant between 25% and 100% of the
original modulus of elasticity of the in-plane beams. The stiffness of the lattice
structure is only slightly influenced.

The reduction of the maximum force Fmax,lattice while decreasing the modulus
of elasticity of the in-plane beams is clearly visible for all lattice geometries (Figure
6.19(b)). The reduction in Fmax,lattice for all lattices occurs due to the reason
that the moments in the out-of-plane beams are increasing while reducing the
modulus of elasticity of the in-plane beams. The out-of-plane beams in the global
lattice will preserve a larger reduction of the modulus of elasticity between the
yielding of two beams i.e. two steps of the classical model. This leads therefore
to smaller maximum forces of the global lattice.

It was mentioned in the last Section that the lattice deformation could be uni-
form where the single element properties with the higher loading rate of 15µm/s
must be used. The simulation with this single element parameters leads to an
overestimation of the maximum force when simulating the behaviour with the
original value of the modulus of elasticity of the in-plane beams. Reducing this
value leads therefore to the desired reduction of the maximum force. A reduc-
tion of the modulus of elasticity of the in-plane beams is permitted because the
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strain rate is small which leads to a reduction of the modulus of elasticity for a
visco-elastic material.

6.7. Comparison between experiments and new
model in compression

Figures 6.20-6.21 illustrate the comparison between the results from the new
model and the measured lattice behaviour under compressive load. The load-
ing curves with different V/N-ratios show the same deformation behaviour for
both loading rates (see Figure 4.17). It was therefore decided to apply the curves
measured with a loading rate of 5µm/s in the model. The loading rate was also
chosen from the fact that the whole structure was compressed with a loading rate
of 45µm/s which results in a loading rate of 5µm/s for one layer.

The in-plane beams have a linear elastic-purely plastic behaviour whereas the
modulus of elasticity and the yield stress fpl were set to 50% of their original value
for the calculated curves in the Figures. It was already seen from the classical
model that a reduction of the modulus of elasticity of the in-plane beams leads
to more accurate results. The maximum deformation at failure was set to 3.5mm
which is higher than the measured values in the single beam element tests (see
Figure 4.9). The round cross-sectional beams reach nearly the value with the
loading rate of 5µm/s. It is assumed that the maximum deformation at failure
is higher by trend than measured when considering the small deformation rate of
the in-plane beams.

It can be seen from Figure 6.20(a) that the stiffness is overestimated with
the new model for lattices with large cross-sectional beams. A flattening of the
calculated curve is not present and the maximum force of the structure is also
overestimated. The force drop occurs at a small deformation level of the structure
whereas the curves from the experiments show a decrease in force at a large
deformation level. The force drop occurs in the simulation at the point when the
first in-plane beams fail. This results in a change of the V/N-ratios in the out-
of-plane beams whereas the V/N-ratio is increasing for the critical beams. It was
seen in Figure 4.17 that an increase of the V/N-ratio leads to a reduction of the
force at a certain beam deformation. The increase of the V/N-ratio leads to this
steep force drop. It also has to be mentioned that only three classes of different
V/N-ratios were determined i.e. the V/N-ratios of 0.2, 0.4 and 0.6. Every beam
in the lattice which has a V/N-ratio below 0.3 is handled as a beam with a V/N-
ratio of 0.2. The beams between the V/N-ratios of 0.3-0.5 are handled as a beam
with a V/N-ratio of 0.4 etc. Only a slight change of the V/N-ratio of one beam
in the lattice i.e. a change from 0.29 to 0.31 leads to a class change of the beam
and therefore to a large reduction of the force.

There is only a small plateau present where the force stays nearly constant until
the force starts to increase with a slightly smaller stiffness than at the beginning of
the curve. The increase of the force does not occur from the material compression
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Figure 6.20.: Comparison between tests and new model results for lattices with
large beams in compression
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Figure 6.21.: Comparison between tests and new model results for lattices with
small beams in compression
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Figure 6.22.: Comparison of the global stiffness Klattice

at this deformation level of about 15mm which would be the case at a deformation
level of 35mm like in the experiments. The increase is a result from the point
that most beams remain at a V/N-ratio of 0.2 whereas this single beam curve
has a high increase in force also at a low deformation level (see Figure 4.17).
The difference in the measured and calculated curves occurs from the fact that
the beams in the lattice have a too small V/N-ratio. An increase of the values
would lead to a better approximation of the simulations to the experiments. The
V/N-ratio distribution for different in-plane beam properties will be discussed in
the next Section.

Figure 6.21 illustrates the comparison between the experiments and the simula-
tions for lattices with small cross-sectional beams. It is obvious that the curves fit
better than for the lattice with large cross-sectional beams. The stiffness is in the
same range for all curves. The maximum force is slightly overestimated for the
lattice with small square cross-sectional beams whereas the maximum force from
the simulation fits quite well with the experiments for the lattice with small round
cross-sectional beams. The force drop in the simulations occurs again at a too
small deformation level and only a small plateau with a constant force is present
whereas the experiments show a long plateau. The mechanism of this observation
is the same as described above. It is also visible here that the increase in force
after the plateau occurs at a too small deformation level of the lattice. This is
again an indication that too many beams in the lattice remained in the class with
a V/N-ratio of 0.2.

Figure 6.22 shows the calculated stiffness of the experiments and the simula-
tions. It is clearly visible that the simulations of lattices with small cross-sectional
beams have nearly the same value like for the experiments. On the other hand,
the simulations of lattices with large cross-sectional beams have a high difference
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Figure 6.23.: Loading curves for varying fpl of the in-plane beams: (a) 1 × fpl,
(b) 0.5× fpl

to the measured values. Global lattices, which contain beams with a high slen-
derness, show a better agreement between the experiments and the simulations
than the lattices which contain beams with a small slenderness. It was also seen
in Figure 6.7 that the stiffness calculations of the classical model show the same
tendency. Both lattices which contain large cross-sectional beams show too high
calculated stiffness with the classical model which are higher than calculated with
the new model. The values from the classical model can be a product of the ab-
stinence of an iteration process and that the compressive modulus of elasticity is
smaller than the tensile modulus of elasticity. Nevertheless, this is an indication
that the model assumption, where the nodal area is described as a rigid body, is
not applicable in compressive simulations for lattices which contain beams with
a small slenderness.

6.7.1. Parameter study

The influence of two parameters on the global lattice behaviour will be investi-
gated in this section namely the yielding stress fpl and the maximum deformation
until failure δmax,beam of the in-plane beams. All simulations were performed on
lattice structures with small square cross-sectional beams.

Figure 6.23 shows the calculated curves for two different yielding stresses fpl
of the in-plane beams where the curves in Figure 6.23(a) correspond to the orig-
inal yielding stress measured in the single beam tensile tests. Figure 6.23(b)
corresponds to 50% of the original yielding stress. It is visible that the lattice
structures, where the in-plane beams have a high yielding stress, reach the higher
forces before the first beams fail in the lattice and the force drops down. The
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Figure 6.24.: V/N-ratio distribution for a lattice with small square cross-sectional
beams at a deformation level of 20mm for varying fpl of the in-plane
beams: (a) 1× fpl, (b) 0.5× fpl

maximum deformation of the beam δmax,beam influences the maximum force in
the way that the reachable force decreases while reducing δmax,beam. The beams
in the lattice change their V/N-ratio when the first in-plane beams fail. The
beams with a small δmax,beam fail at a low deformation level of the lattice struc-
ture where a small maximum force can be reached. The stiffness of the lattice
structure is not influenced while varying δmax,beam.

The curves, where the yielding stress of the in-plane beams is set to 50% of
its original value, show nearly the same behaviour. The main difference lies in
the stiffness of the ascending curve after the linear-elastic region. The lattices
with 50% fpl of the in-plane beams have a smaller stiffness of the ascending curve
than the lattices with 100% fpl of the in-plane beams. This difference is visible
when looking at the curve calculated with 3.5mm δmax,beam and 50% fpl (Figure
6.23(b)). The curve reach a maximum force of about 7kN at a deformation level
of 12mm. The curves in Figure 6.23(a) reach a force of about 8kN at the same
deformation level of 12mm. This difference occurs because more beams in the
lattice with 50% fpl have a higher V/N-ratio than in the lattice with 100% fpl.
More beams are therefore in the class with a V/N-ratio of 0.4 than in the class
with a V/N-ratio of 0.2. A further reduction of fpl leads to erroneous deformation
patterns of the lattice where the beams can intersect each other. Comparing these
results with the measurements from the experiments leads to the statement that
the lattice behaviour is modelled more accurately using in-plane beams with 50%
fpl.

Figure 6.24 illustrates the V/N-ratio distribution for a lattice with small square
cross-sectional beams at a deformation level of 20mm for a varying fpl of the in-
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plane beams. It is clearly visible that the majority of the beams in the lattice,
where the in-plane beams have a yielding stress of 100%, have a low V/N-ratio i.e.
a value below 0.3 even at this high level of deformation. Consequently, the whole
lattice deformation is dominated by this class i.e. by the force-deformation curve
of a single beam measured with a V/N-ratio of 0.2. It is therefore not possible to
reach a plateau where the force is constant during the lattice deformation. Such
a plateau could be reached when the V/N-ratio of the majority of the beams is
in the range above 0.6.

Reducing the yielding stress fpl to 50% of its original value increases the V/N-
ratio in the beams which can be seen in Figure 6.24(b). The increase of the V/N-
ratio in a few beams correlates with the observation mentioned above, namely,
that the stiffness after the linear elastic part of the lattice deformation decreases
while reducing fpl of the in-plane beams. More beams reach higher V/N-ratios
than 0.3 which reduces the force in the beams. However, the majority of the
beams still stays in the region below a ratio of 0.3. This fact and the point that
no force-deformation curves are available for V/N-ratios over 0.6, prevents that
a plateau can be reached in the simulations. Again, a further reduction of the
yielding stress of the in-plane beams would lead to erroneous deformation patterns
of the lattice.

6.8. Discussion and conclusion

The deformation behaviour from the experiments of lattice structures with four
different beam geometries was compared with the classical model and the new
model approach under tensile and compressive load in this Chapter.

The following points were observed for both models in the case of tensile load:

• The input characteristic of the single beam properties dictates directly the
system response of the model (modulus of elasticity Ebeam, yielding stress fpl
and the maximum deformation at failure δmax,beam for the classical model
and the visco-elastic force-deformation curves for the new model approach).
The classical model describes a nearly linear elastic-purely plastic global
lattice behaviour, whereas the experiments show a visco-elastic global lattice
behaviour. The new model approach leads to satisfactory results because
the visco-elastic lattice behaviour is included in the input force-displacement
curves.

• The simulations with different single element properties, which were mea-
sured on single beams with two different loading rates, prescribe a lower
and an upper force limit of the experiments. The simulations with the sin-
gle beam properties measured with a loading rate of 5µm/s prescribe the
lower force limit. Lattice structures with a non-uniform deformation over
the height reach this limit because the layer with the lowest deformation rate
dictates the maximum force Fmax,lattce. The upper force limit is reached
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from lattice structures which deformly uniform over the height of the struc-
ture, viz. every layer reaches its force capacity. Specimens, which are loaded
eccentrically, lie between the two force limits of the simulations.

• The stiffness of the simulations and the experiments lie in the same region
for all lattice structures expect from the lattices with small round cross-
sectional beams which have a higher stiffness than calculated. The agree-
ment between the simulations and the experiments is an indication that the
model assumption, where the nodal areas are modelled as rigid sections,
seem applicable for all lattice geometries loaded in tension. The intersec-
tion point between the experimental and calculated curves for the classical
model lies at a force level of about 60% of the measured curves. This obser-
vation confirms the calculation method of the modulus of elasticity of the
single beams where the value was calculated between 0% and 60% of the
maximum force.

The force-deformation curves for the new-model approach had to be cor-
rected to reach nearly the same stiffness like in the experiments. The sup-
port structures increase the measured deformations which would lead to too
small stiffness from the simulations without a correction. Using a material
with a higher stiffness for the support structures than the same like the
tested specimen would prevent this source of error.

• The fracture pattern of the simulations and the experiments agrees: cracking
occurs at the lowest or the topmost layer in the simulations.

• Lattices with small round cross-sectional beams reach higher forces and stiff-
ness than expected from the simulations. The higher forces and stiffness of
the global lattice can be a result of the visco-elastic material behaviour of
the single beam elements where beams with high end moments reach higher
fpl. This is indicated when analysing the force-deformation curves for differ-
ent V/N-ratios. The single element shows an increase of the yielding force
while increasing the V/N-ratio. This could be the reason why the lattices
with this beam geometry present a higher stiffness and higher maximum
forces than the simulations. Using only the force-deformation curves of the
beams with a V/N-ratio of 0.6 increases both parameters to a realistic re-
sult. However, V/N-ratios of 0.6 for all beams can not be reached even when
reducing the modulus of elasticity of the in-plane beams to 25%. Another
possibility is that the beams in the tested lattice could reach higher forces
than measured in the single beam experiments. The exact reason for this
behaviour is therefore unclear.

One parameter in each model has a main influence on the simulated global
lattice behaviour under tensile load:

• The most critical parameter in the classical model is the plastic modulus of
elasticity E2 of the single beam behaviour. Only small lattice deformations
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occur when the parameter is set to zero because only the layer, where the
first beam starts to yield, deforms plastic until the lattice breaks. The maxi-
mum lattice deformation is therefore underestimated. Only a slight positive
change of this parameter leads to a significant increase of the maximum lat-
tice deformation. All layers can deform plastic in this case which was also
observed in the experiments. However, the maximum lattice deformation
is then overestimated. The model is therefore sensitive to small changes of
this parameter which is seen as a disadvantage of the classical model.

• The modulus of elasticity of the in-plane beams in the lattice (orientation
0◦/0◦ and 60◦/0◦) is the only parameter which can change the lattice be-
haviour i.e. the stiffness, the maximum force and the maximum deformation
of the lattice in the new model approach. The model reacts not sensitive
to changes of this parameter in the range of 25%-100% of its original value.
The modulus of elasticity of the in-plane beams changes the V/N-ratio dis-
tribution of the beams in the lattice in such a way that a reduction of the
modulus of elasticity leads to higher V/N-ratios in the beams.

The following points were observed for the compressive simulations:

• Classical model:

The classical model must be extended with a reduction of the modulus of
elasticity of the out-of-plane beams for the compressive simulations to reach
more realistic results compared with the experimental measurements. Using
the classical model without extension leads to non-realistic high maximum
forces even when the second order effect is taken into account. The results
from the classical model calculated with the single beam properties from the
two different loading rates describe again a lower and upper force limit of
the experimental values. The deformation mechanism of the lattice under
compression is however not equal to the mechanism under tension. The layer
with the highest deformation rate prescribes the lattice behaviour contrary
to the case in tension where the layer with the lowest loading rate prescribes
the lattice behaviour. The beams in the layers with a high deformation
rate first reach the loading condition where high end moments are present,
which leads to a reduction of the modulus of elasticity and a weaker layer
behaviour. A small scatter of the measurements is present although a non-
uniform deformation of the global lattice was observed.

The stiffness of the lattices is overestimated with the classical model due
to a prevention of iterations. An iteration would take the reduced modulus
of elasticity of the out-of-plane beams into account which would reduce the
stiffness until the first in-plane beam in the lattice starts to yield. There is
also a tendency that the calculation of the stiffness for lattices, which contain
beams with a large length i.e. with a high slenderness, leads to better results
than for lattices which contain beams with a small slenderness.
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A reduction of the modulus of elasticity of the in-plane beams decreases
the force where the first beam in the lattice starts to yield Felastic,lattice

and the maximum force of the lattice structure Fmax,lattice significantly.
The stiffness is only slightly influenced by this parameter. The reduction
of the modulus of elasticity of the in-plane beams leads to higher moments
in the out-of-plane beams. This reduces both parameters Felastic,lattice and
Fmax,lattice due to yielding of the out-of-plane beams at a smaller global
force level. It is therefore possible to preserve the maximum forces of the
experiments from the simulations with the higher deformation rate with a
reduction of the modulus of elasticity of the in-plane beams. This parameter
has a large influence on the lattice behaviour in compression where the
lattice behaviour in tension is only influenced marginally.

The classical model without modifications is in general not applicable for the
simulations in compression. Several modifications would be necessary like a
material contact rule and a reduction of the modulus of elasticity of the in-
plane beams to model the lattice behaviour more accurately. Consequently,
there is a risk that new parameters would make the model more sensitive as
it is actually, that the complexity is growing and that a several parameters
have to be determined empirically.

• New model approach:

The results from the new model approach show the same tendency. The
stiffness is overestimated for the lattices which contain large cross-sectional
beams whereas the stiffness from the experiments and the simulations are
in agreement for lattices which contain small cross-sectional beams. A re-
duction of the modulus of elasticity and the yielding stress of the in-plane
beams do not influence the stiffness. An influence is visible in the ascending
part after the nearly linear elastic region whereas a reduction of both pa-
rameters leads to a decrease in stiffness of the ascending part. The reduction
in stiffness of the ascending part is aspired because it reduces the maximum
force Fmax,lattice and the simulations are in better agreement with the ex-
periments. However, the V/N-ratios in the beams of the lattice have too
small values to reach the desired lattice behaviour even when reducing the
modulus of elasticity and fpl of the in-plane beams.

It can be concluded for the tensile loading condition that the model assumption
(the nodal area can be modelled as a rigid section) are valid both for the classical
model and the new model approach. This is indicated due to the agreement of the
measured and simulated stiffness for both models. The model assumption does
not seem to work for compressive loading conditions, both for the classical model
and the new model approach due to overestimation of the stiffness of the global
lattices, especially those that contain beams with a low slenderness.

Therefore, the nodal area deformation has to be taken into account which
changes the element geometry for the single element experiments. Using a linear
elastic or a linear elastic-purely plastic material with a high viscosity factor for all
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specimens would help to separate the influence of the geometrical and the single
element properties to the global lattice behaviour.



7. Conclusion and outlook

The deformation behaviour of lattice structures under tensile and compressive
load was investigated in the preceding Chapters. Two different models were used
to simulate the deformation behaviour namely the classical model, where the
single beam element properties had to be evaluated (modulus of elasticity Ebeam,
yield stress fpl and the maximum deformation δmax,beam) and the new model
approach, where the complete force-deformation curves under different loading
conditions of the single beam elements form the basic input parameters which
was first hypothesized by Van Mier (2007, 2012, 2013). The Polyjet technology
which uses acrylic photopolymer as building material was chosen to produce the
specimens for the single beam elements and the lattice structures.

The conclusions are as follows:

• Influence of the single element geometry on the single element properties

The material shows a distinct visco-elastic behaviour. Therefore, it was
necessary to test the single beams with two different loading rates to obtain
a sufficient database of element properties for the simulations. The tested
single beam elements with the four different shapes show a distinct size and
shape effect on the element properties. Universal material parameters for
the classical model could not be determined at this scale of the tested spec-
imens which lie in the mm range. The material properties are subsequently
influenced by the geometry of the specimen. It is therefore necessary to
determine the element properties when changing the beam geometry in the
lattice structure for the classical model. The single beams show also an
anisotropy dependent on the orientation in the lattice which is a product of
the layered production process. Note that all Rapid Prototyping processes
are based on this production method.

• Video image correlation

Video image correlation was successfully adopted to determine the modulus
of elasticity of the single beam elements. The assumption for both mod-
els that the nodal area of the lattice structure can be modelled as a rigid
section was also successfully confirmed using VIC. A non-uniform deforma-
tion behaviour of the global lattice under tensile and compressive load was
determined using VIC.

• Global lattice experiments

The global lattices loaded in tension show a non-uniform deformation over
the whole height i.e. the layers have different loading rates. This leads
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to a high scatter in the measured maximum forces. The layer with the
lowest loading rate prescribes the force capacity of the structure which is
a consequence of the visco-elastic material behaviour. The lattice fails in
the weakest layer which corresponds to the weakest link theory by Weibull
(1939). It is therefore necessary to measure the needed input parameters us-
ing different loading rates to cover the scatter of the experiments. The global
lattices loaded in compression show a small scatter in the results whereas
also a non-uniform deformation over the height was measured. Contrary
to the tensile experiments, the layer with the highest deformation rate pre-
scribes the force capacity of the lattice because the beams with the largest
deformation first start to buckle.

• Comparison of the experiments and the simulations under tensile load

The results from the classical model and the new model approach are in
agreement with the experiments under tensile load where the new model
approach reproduces the deformation behaviour of the lattice more pre-
cisely. It is capable to characterize the visco-elastic deformation behaviour
whereas the classical model shows a linear elastic-purely plastic deformation
behaviour of the lattice structure. The input characteristic of the single
beam elements prescribe directly the structural behaviour in both models.

The lattices which contain beams with a high slenderness show higher max-
imum forces in the experiments than calculated in both simulations. It is
assumed that this observation is also a product of the visco-elastic material
behaviour because the moments in the beams increase locally the loading
rate at the outer fibres of the elements which increases the yield stress of the
beams. This behaviour of the beams with a high slenderness could be ob-
served in the single beam experiments for the new model approach. A higher
maximum force is reached with an increase of the moment in the beams i.e.
an increase of the V/N-ratio. This leads to the higher measured forces of
this type of lattice structures than expected with the classical simulation
where the yield stress was determined on centric tensile experiments.

The classical model is more sensitive to changes of the input parameters
especially when changing the stiffness of the plastic part of the single element
behaviour. Only a small variation leads to a distinct change of the maximum
lattice deformation where the lattice fails. The new model approach does
not show such sensitivity to changes of the input parameters. This makes
the new model approach more reliable.

• Comparison of the experiments and the simulations under compressive load

The simple classical model is not capable to simulate the deformation be-
haviour of the lattice structures under compression. The measured defor-
mation behaviour could not be simulated satisfactory even when taking the
second order effect into account. One modification was introduced in the
model namely the modulus of elasticity was reduced dependent on the stress
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in the outer fibre of the beam loaded in compression in order to obtain a
sufficient deformation behaviour with this type of simulation. The stiffness
and the maximum forces of the lattices are however overestimated. More
modifications would be needed to obtain a more realistic deformation be-
haviour like a contact rule of the elements. A substitution of one element
with more elements could also lead to better results where the second order
effect would be taken into account in a more realistic way. This approach
was successfully applied by Jang and Kyriakides (2009b) on open-cell foams
which have a cellular structure consisting of beams with high slenderness.

The new model approach shows a better agreement with the experiments es-
pecially for lattice structures which contain beams with a high slenderness.
The simulations of lattices which contain beams with a small slenderness
show also too high stiffness and maximum forces of the structure. The stiff-
ness of the different lattices are in the same order in both models especially
for lattices which contain beams with a small slenderness. One reason for
overestimating the stiffness could be that the beams in the global lattices
were geometrically imperfect which would reduce the measured stiffness.

The results of both models are strongly dependent on the element properties
of the in-plane beams loaded in tension. The properties of these beams influ-
ence the maximum reachable force and the deformation behaviour after the
maximum force. The in-plane beam properties are difficult to determine due
to the visco-elastic material behaviour. These beams have a low deformation
rate compared with the out-of-plane beams loaded under compression.

The separation of the influence of the geometrical and single element param-
eters on the structural behaviour could not be solved in this work for lattices
under compressive load. The visco-elastic material behaviour prevents a clear
determination of the needed parameters. The high stiffness of the simulations in
compression indicates that the geometrical parameters have to be readjusted to
take the deformation of the nodal area into account for both models.

The new model approach shows a high potential for the application of fracture
modelling, especially to improve the understanding of the fracture process under
compressive load. The determination of the material properties (which are directly
influenced by the geometry of the elements) has become obsolete with this model
whereas the deformation behaviour has to be measured for beams under different
loading conditions.

Outlook and recommendations

It is highly recommended to change the used material with a high viscosity for
all specimens to a material with a low viscosity i.e. a material which does not
change the material behaviour while changing the loading rate like aluminium.
Rapid Prototyping has a high potential to produce complex structures but an
anisotropy would be present for all different processes at this scale of element
size which was used in this work due to the layered production process. Negative
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form processes show a higher potential to produce lattices with a homogeneous
material behaviour whereas ceramics or aluminium could be used to build the
structures. The anisotropy of the single beams can then be circumvented. Meisel
et al (2012) investigate a process to produce regular lattice structures by using a
negative form of sand which is produced by means of Rapid Prototyping.

The elimination of the anisotropy and the loading rate dependency of the single
element properties would lead to a better separation of the model parameters
which influences the global lattice behaviour. The influence of the second order
effect and the determination of the node rigidity, i.e. the amount of the end
moments of the beams which has to be taken into account to calculate the stresses
in the beams, could be better investigated and separated in the classical model.
The geometrical parameters for the classical model and the geometry of the single
beam elements for the new model approach can then be better determined when
the single element properties of the in-plane beams are definitely known especially
under compressive load. A readjustment of the single beam geometry for the new
model approach, which takes the knot geometry into account, is necessary to
reach better numerical results. It is therefore also recommended to construct a
micro-testing device where the specimen can also be loaded with end moments to
preserve the load-deformation curves.

Avoiding the high viscosity of the material would also lead a small scatter in the
measured maximum forces of the global lattice under tensile load because a non-
uniform layer deformation over the height of the lattice would have no influence
to this value.

The interaction between two different beams, produced with different materials,
has to be investigated in order to adopt the new model approach to disordered
materials where the heterogeneity of the material has to be taken into account
like in the classical model. This should finally lead to a more realistic fracture
behaviour of the material where the crack pattern of the simulation can indicate
the applicability of the new model approach.



A. Tables and figures from specimen
production and generation

A.1. STL-file export parameters

Table A.1.: Rhinoceros V 5.0 export parameters for stl-files

Value

Density 0.0
Maximum angle 0.0

Maximum aspect ratio 6.0
Minimum edge length 0.0001
Maximum edge length 0.0

Maximum distance, edge to
surface

0.01

Minimum initial grid quads 0.0

A.2. Global lattice geometries for different beam
shape
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Figure A.1.: Lattice geometry containing large round cross sectional beam ele-
ments Dimensions in [mm]
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Figure A.2.: Lattice geometry containing small square cross sectional beam ele-
ments; Dimensions in [mm]
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Figure A.3.: Lattice geometry containing small round cross sectional beam ele-
ments; Dimensions in [mm]





B. Tables and figures from
experimental results

B.1. Measured loading curves for different specimen
geometries
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Figure B.1.: Load curves in tension for different beam orientations with large
square cross section and loading rate of 5µm/s
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Figure B.2.: Load curves in tension for different beam orientations with large
round cross section and loading rate of 5µm/s
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Figure B.3.: Load curves in tension for different beam orientations with large
round cross section and loading rate of 15µm/s
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Figure B.4.: Load curves in tension for different beam orientations with small
square cross section and loading rate of 5µm/s
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Figure B.5.: Load curves in tension for different beam orientations with small
square cross section and loading rate of 15µm/s
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Figure B.6.: Load curves in tension for different beam orientations with small
round cross section and loading rate of 5µm/s
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Figure B.7.: Load curves in tension for different beam orientations with small
round cross section and loading rate of 15µm/s
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B.2. Force-deformation curves for specimens with
orientation 90◦/55◦
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(d) Small round

Figure B.8.: Force-deformation curves for specimens with different V/N-ratios and
orientation of 90◦/55◦ and a loading rate of 15µm/s tested in tension
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(a) Large square cross section/ loading rate
5µm/s
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(b) Large square cross section/ loading rate
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(c) Large round cross section/ loading rate
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(d) Large round cross section/ loading rate
15µm/s

Figure B.9.: Force-deformation curves for beams with large cross-section, different
V/N ratios and orientation of 90◦/55◦ tested in compression
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(a) Small square cross section/ loading rate
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(b) Small square cross section/ loading rate
15µm/s
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(c) Small round cross section/ loading rate
5µm/s
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(d) Small round cross section/ loading rate
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Figure B.10.: Force-deformation curves for beams with small cross section, differ-
ent V/N ratios and orientation of 90◦/55◦ tested in compression



C. Tables and figures for lattice
experiments

C.1. LVDT measurements for tensile experiments
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(a) Lattice with large square beams test 1
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(b) Lattice with large square beams test 2

Figure C.1.: LVDT measurements: (a) measurement with a difference less than
0.1mm, (b) measurement with a difference of 2.0mm
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C.2. LVDT measurement for compressive
experiments
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Figure C.2.: Typical LVDT measurement for compressive experiment with a dif-
ference of 0.2mm. The difference takes place at the beginning of
the measurement due to contact effect and does not change over the
measured lattice deformation
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C.3. Crack patters

(a) Lattice with large square beams test 1

(b) Lattice with large square beams test 2

(c) Lattice with large round beams test 1

(d) Lattice with large round beams test 2

Figure C.3.: Crack pattern for lattices with large beams
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(a) Lattice with small square beams test 1

(b) Lattice with small square beams test 2

(c) Lattice with small round beams test 1

(d) Lattice with small round beams test 2

Figure C.4.: Crack pattern for lattices with small beams



D. Tables and figures for numerical
investigation

D.1. Input parameters for classical model

Table D.1.: Input parameters for classical model for all geometries and loading
rate of 5µm/s; in-plane: 0◦/0◦,60◦/0◦, out-of-plane: 30◦/55◦,90◦/55◦

Modulus of elasti- Strength [MPa] Ultimate defor-
city [MPa] mation [mm]

in-plane
out-of-
plane

in-plane
out-of-
plane

in-plane
out-of-
plane

Large square 554 344 - 9.7 - 2.4
Large round 439 285 - 8.9 - 3.1
Small square 594 329 - 8.4 - 2.0
Small round 415 302 - 7.9 - 2.7

Table D.2.: Input parameters for classical model for all geometries and
loading rate of 15µm/s; in-plane: 0◦/0◦,60◦/0◦, out-of-plane:
30◦/55◦,90◦/55◦

Modulus of elasti- Strength [MPa] Ultimate defor-
city [MPa] mation [mm]

in-plane
out-of-
plane

in-plane
out-of-
plane

in-plane
out-of-
plane

Large square 683 505 - 14.5 - 1.7
Large round 546 396 - 13.0 - 2.5
Small square 775 462 - 12.0 - 1.6
Small round 616 451 - 11.4 - 1.7
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D.2. Additional figures for parameter studies
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Figure D.1.: Influences on the simulated lattice behaviour with large square cross-
sectional beams: (a) Variation of parameter α, (b) Influence of the
second order effect
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Figure D.2.: Variation of Fmax,lattice for two varying input parameters
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Figure D.3.: Variation of Fmax,lattice and δmax,lattcie for varying modulus of elas-
ticity of the in-plane beams
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