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CH-8092 Zürich, Switzerland

augusto.teixeira@math.ethz.ch

Abstract

In this article, we first extend the construction of random interlacements, introduced by A.S.
Sznitman in [14], to the more general setting of transient weighted graphs. We prove the
Harris-FKG inequality for this model and analyze some of its properties on specific classes
of graphs. For the case of non-amenable graphs, we prove that the critical value u∗ for the
percolation of the vacant set is finite. We also prove that, once G satisfies the isoperimetric
inequality IS6 (see (1.5)), u∗ is positive for the product G × Z (where we endow Z with unit
weights). When the graph under consideration is a tree, we are able to characterize the
vacant cluster containing some fixed point in terms of a Bernoulli independent percolation
process. For the specific case of regular trees, we obtain an explicit formula for the critical
value u∗.

Key words: random walks, random interlacements, percolation.

AMS 2000 Subject Classification: Primary 60K35, 82C41.

Submitted to EJP on June 20, 2008, final version accepted June 22, 2009.

∗Author’s webpage: http://www.math.ethz.ch/˜teixeira/

1604

DOI: 10.1214/EJP.v14-670

1

http://dx.doi.org/10.1214/EJP.v14-670


1 Introduction

The model of random interlacements was recently introduced by A.S. Sznitman in [14]. Its
definition is motivated by the study of the trajectory performed by random walk on the discrete
torus (Z/NZ)d, d > 3, or on the discrete cylinder (Z/NZ)d ×Z ,d > 2, when it runs up to times
of respective order Nd and N2d, see [2], [4]. In a heuristic sense, the random interlacements
describe for these time scales the microscopic limiting “texture in the bulk” created by the walk,
see [20], [15]. In [16], the random interlacements came as the main ingredient to improve the
upper bound obtained in [4] for the asymptotic behavior of the disconnection time of the cylinder
(Z/NZ)d × Z by a random walk.

In this article, we first extend the model of random interlacements to the setting of transient
weighted graphs, as suggested in [14], Remark 1.4. Consider G = (V, E) a graph composed of a
countable set of vertices V and a (non-oriented) set of edges E ⊂ { {x, y} ⊂ V ; x 6= y}. We assume
G connected and provide it with a weight function a : V × V → R+ (also called conductance),
which is symmetric and such that ax,y > 0 if and only if {x, y} ∈ E . When ax,y = 1{x,y}∈E , we
say that the graph is endowed with the canonical weights. A weight function a induces on G an
irreducible, reversible Markov chain with transition probability given by q(x, y) = ax,y/µx, where
µ is the reversible measure for the chain, which is defined by µx =

∑
{x,y}∈E ax,y. Throughout

this paper, we assume that the weighted graph under consideration induces a transient Markov
chain.

Roughly speaking, the random interlacements are defined in terms of a Poisson point process on
the space of doubly infinite trajectories in V modulo time shift that visit points finitely often,
see Section 2 for the precise definition. We will be interested in Iu, the so-called interlacement at
level u > 0, which is the union of the trace of the trajectories appearing in the above mentioned
point process. The parameter u controls the intensity of this process.

Although the precise definition of Iu is postponed to Section 2, we now describe the law of the
indicator function of the vacant set at level u, Vu = V \ Iu, regarded as a random element of
{0, 1}V . As we show in Remark 2.3, the law Qu that Vu induces on ({0, 1}V ,Y) is characterized
by

Qu[Yx = 1 for all x ∈ K] = exp(−u · cap(K)), for all finite K ⊂ V , (1.1)

where cap(K) stands for the capacity of K, see (2.1), and Y is the σ-algebra generated by the
canonical coordinate maps (Yx)x∈V on {0, 1}V .

We then prove in Theorem 3.1, a Harris-FKG type inequality for the law Qu, answering a
question of [14], cf. Remark 1.6 1). More precisely, we show that for every pair of increasing
random variables f and g, see the beginning of Section 2 for the precise definition, with finite
second moment with respect to Qu, one has

∫
fg dQu >

∫
f dQu

∫
g dQu. (1.2)

As a by-product, (1.2) enables to define the critical value

u∗ = inf{u > 0; η(x, u) = 0} ∈ [0,∞], (1.3)
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for the percolation probability

η(u, x) = P [the cluster containing x in Vu is infinite] , (1.4)

independently of the base point x. This is the content of Corollary 3.2. An important question
is to determine whether u∗ is non-degenerate, i.e. 0 < u∗ < ∞.

In the remainder of the article, we derive some properties of random interlacements for specific
classes of graphs.

We first derive two results concerning the non-degeneracy of the critical value u∗ under assump-
tions involving certain isoperimetric inequalities, ISd, d > 1. Namely, according to [21] p. 40, a
weighted graph G satisfies the isoperimetric inequality ISd if there exists κ > 0 such that

µ(A)1−1/d 6 κ · a(A), for every finite A ∈ V, (1.5)

where

µ(A) =
∑

x∈A

µx and (1.6)

a(A) =
∑

x∈A,y∈Ac

ax,y. (1.7)

When d = ∞ (with the convention 1 − 1/d = 1), the graph is said to satisfy the strong isoperi-
metric inequality, or to be non-amenable.

Our first result concerning the non-degeneracy of u∗ states that, cf. Theorem 4.1,

u∗ is finite for non-amenable graphs with bounded

degrees and weights bounded from below.
(1.8)

We then consider the critical value of product graphs of the type G×Z. Random interlacements
on such graphs are expected to be related to the investigation of the disconnection time of a
discrete cylinder, see [13]. In Theorem 4.2 we prove that

the critical value u∗ of G × Z is positive, if G satisfies the

isoperimetric inequality IS6, has bounded degree and

weights bounded from above and from below,

(1.9)

where we endow Z with the canonical weights and define the product weighted graph G × Z as
in (4.1).

In particular, with these results, one concludes that when G as above is non-amenable, the
critical value of G × Z is non-degenerate, see below (1.4).

We then consider the case where G is a transient tree of bounded degree. In general, the law
Qu does not dominate nor is dominated by any non-degenerate Bernoulli i.i.d. variables, see
Remark 1.1 of [11]. However, when G is a tree of bounded degree, we show in Theorem 5.1 that
under the measure Qu,

the cluster containing a fixed site x ∈ V has the same law as

the cluster of x under the Bernoulli independent site percolation

process characterized by P [z is open ] = exp(−u · fx(z)),

(1.10)
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where the function fx(z) is defined in (5.1). As a consequence, we conclude in Proposition 2.3
that

when G is a tree with degree, which is bounded,

and at least three, endowed with weights bounded

from above and from below, then 0 < u∗ < ∞.

(1.11)

We also obtain an explicit formula for the critical value of regular trees of degree d:

u∗ =
d(d − 1)log(d − 1)

(d − 2)2
, (1.12)

see Corollary 5.2. Interestingly this implies that P[x ∈ Vu∗ ] = 1
d(1+o(1)), as d → ∞, cf Remark

5.3.

We now give a rough description of the proofs of the main results in this article.

The construction of the intensity measure of the Poisson point process governing the random
interlacements is the main step towards the definition of the process. It appears in Theorem 2.1.
Although we follow the argument of Theorem 1.1 of [14] for the case V = Z

d, we present here
the entire proof for the sake of completeness.

Concerning the Harris-FKG inequality, we cannot rely on the so-called FKG-Theorem (see [10]
Corollary 2.12 p. 78) to prove (1.2). Indeed, the canonical condition (2.13) of [10] p. 78 does
not hold for the measure Qu, see Remark 3.3 2). Moreover, we also show in Remark 3.3 1) that
in general the conditional expectations of increasing functions on {0, 1}V , with respect to the
σ-algebra generated by finitely many coordinates, are not necessarily increasing functions. This
last feature prevents the use of the standard argument employed to prove the full Harris-FKG
inequality once it holds for random variables depending only on the state of finitely many sites,
see for instance [5] Theorem 2.4.

It is not clear how to obtain (1.2) from the characterization of the law Qu given in (1.1). Our
proof relies instead on the construction of Iu in terms of the point process of interlacement
trajectories, as in Section 2. Roughly speaking, we first transport the functions f and g to
the space of point measures where this point process is defined. We then consider a sequence
of σ-algebras Fn in this space, induced by an increasing sequence of finite sets Kn exhausting
V . Intuitively, these σ-algebras keep track of the behavior of interlacement trajectories of the
point measure, which meet Kn, between their first and last visit to Kn. We then prove (1.2) for
Fn-measurable functions using the FKG-Theorem, implying the desired result via a martingale
convergence argument.

For the proof of (1.8), we rely on the known fact that for non-amenable graphs, the L2(µ) norm
of a compactly supported function f on V can be bounded in terms of the Dirichlet form of f

D(f, f) =
1

2

∑

x,y∈V

|f(x) − f(y)|2ax,y,

see [21] Theorem 10.3. This implies a linear lower bound for the capacity of a finite set in terms
of its cardinality. This bound is then used to offset the growth of the number of self-avoiding
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paths of size n, in a Peierls-type argument leading to the finiteness of u∗.

To prove (1.9) we use a renormalization argument that takes place on an isometric copy of the
discrete upper half plane Z+ × Z, which can be found inside the graph G × Z, cf. below (4.10).
We then employ bounds on the hitting probability of a point x ∈ V for the random walk in G×Z

in terms of the distance between x and the starting point of the walk, which are consequences
of classical results on isoperimetric inequalities, see for instance [21], Theorem 14.3, p. 148. The
proof of the positivity of u∗ then relies on a renormalization argument, which is adapted from
[14], Proposition 4.1.

Theorem 5.1 provides a characterization of the cluster of the vacant set containing a fixed site
x ∈ V , in terms of a Bernoulli independent site percolation process, in the case where G is a
tree, see (1.10). The rough strategy of the proof is to partition the space of doubly infinite
trajectories modulo time shift, where the Poisson point process governing Iu is defined, into sets
indexed by the vertices of the graph V . This partition induces on V a Bernoulli independent site
percolation process, and we can identify the corresponding component of x with the connected
component of x in Vu. We strongly use the fact that G is a tree to obtain this identification.

This article is organized as follows.

In the Section 2 we construct the model of random interlacements on transient weighted graphs
and show that (1.1) characterizes the image measure Qu of the interlacement set, see Remark 2.3.

We prove in Section 3, Theorem 3.1 the Harris-FKG inequality for Qu and we state in Re-
marks 3.3 1) and 2) the main obstructions concerning the use of standard techniques to prove
this theorem.

In Section 4 we establish two results based on isoperimetric inequalities. Theorem 4.1 proves
the claim (1.8) whereas Theorem 4.2 shows (1.9).

In Section 5 we prove Theorem 5.1 yielding (1.10) and also Corollary 5.2, which exhibits the
explicit formula (1.12) for the critical value of regular trees.

Finally let us comment on our use of constants. Throughout this paper, c will be used to denote
a positive constant depending only on the graph under consideration, which can change from
place to place. We write c1, . . . , c5 for fixed positive constants (also depending only on the graph
under consideration), which refer to their first appearance in the text.

Acknowledgments - We are grateful to Alain-Sol Sznitman for the important corrections and
encouragement.

2 Definition of the model

In this section we define the model of random interlacements in the more general setting of
transient weighted graphs and prove the characterization of the process in terms of (1.1).

We first introduce some further notation. We let ⌊·⌋ denote the integer part of a positive real
number. Given two configurations α, α′ ∈ {0, 1}V we write α < α′ if α(x) > α′(x) for all x ∈ V .
We say that a function f defined on {0, 1}V is increasing, if f(α) > f(α′), whenever α < α′. We
also denote, for real a < b, the uniform probability on the interval [a, b] by U [a, b].
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For a graph G = (V, E), we say that x, y ∈ V are neighbors (and write x ↔ y) if {x, y} ∈ E . The
degree of a vertex x ∈ V is defined as the number of edges incident to x.

Thoughout this article, the term path always denotes nearest-neighbor finite paths, i.e. τ :
{0, · · · , n} → V such that τ(i) ↔ τ(i + 1) for 0 6 i < n, where n > 0 is what we call the
length of the path. We denote by dG(x, y) (or simply d(x, y) in case there is no ambiguity)
the distance between x and y, which is the smaller length among paths from x to y. We write
B(x, n) = {z ∈ V ; d(z, x) 6 n} for the closed ball with center x ∈ V and radius n. For a set
K ⊂ V , d(x, K) stands for the distance between x and K, i.e. the infimum of the distances
between x and the elements of K. The boundary of K, ∂K, is the set of points of K that have
some neighbor in Kc. The cardinality of K is denoted by |K|.
Suppose that G is endowed with some weight function a, see the definition in the introduction.
For a finite set A ⊂ V , we define its capacity as

cap(A) = inf

{
1

2

∑

x,y∈V

|f(x) − f(y)|2ax,y; f has finite support, f ≡ 1 in A

}
. (2.1)

We call a graph transient when the capacity of some singleton (equivalently any finite set) is
positive, see [21], Theorem 2.12. From now on, we always assume that the weighted graph under
consideration is transient.

The space W+ stands for the set of infinite trajectories, that spend only a finite time in finite
sets

W+ =
{
γ : N → V ;γ(n) ↔ γ(n + 1) for each n > 0 and

{n; γ(n) = y} is finite for all y ∈ V
}
.

(2.2)

We endow W+ with the σ-algebra W+ generated by the canonical coordinate maps Xn. For
w ∈ W+ and K ⊂ V , we write H̃K for the hitting time of K by the trajectory w

H̃K(w) = inf{n > 1; Xn(w) ∈ K}. (2.3)

Given a weighted graph, we let Px stand for the law of the random walk associated with the
transition matrix q(·, ·) starting at some point x ∈ V , see the definition in the introduction. If
ρ is some measure on V , we write Pρ =

∑
x∈V Pxρ(x).

The assumed transience of the weighted graph G, see below (2.1), is equivalent to the transience
of the associated random walk. This means that Px[H̃{x} = ∞] > 0 for every x ∈ V , we quote
[21] Theorem 2.12. As a consequence, the set W+ supports Px.

If we define the equilibrium measure by

eA(x) = 1{x∈A}Px[H̃A = ∞] · µx, (2.4)

we have the equality:

cap(K) =
∑

x∈K

eK(x) (2.5)

for any finite set K ⊂ V , see for instance [20], Proposition 2.3.
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We further consider the space of doubly infinite trajectories that spend only a finite time in
finite subsets of V

W =
{
γ : Z → V ;γ(n) ↔ γ(n + 1) for each n ∈ Z, and

{n; γ(i) = y} is finite for all y ∈ V
}
.

(2.6)

We define the shift map, θk : W → W

θk(w)(·) = w(· + k), for k ∈ Z. (2.7)

And for w ∈ W , we define the entrance time HK in a set K ⊂ V by

HK(w) = inf{n ∈ Z; Xn(w) ∈ K}. (2.8)

Consider the space W ∗ of trajectories in W modulo time shift

W ∗ = W/ ∼, where w ∼ w′ ⇐⇒ w(·) = w′(· + k) for some k ∈ Z. (2.9)

and denote with π∗ the canonical projection from W to W ∗. The map π∗ induces a σ-algebra in
W ∗ given by W∗ = {A ⊂ W ∗; (π∗)−1(A) ∈ W}, which is the largest σ-algebra on W ∗ for which

(W,W)
π∗

→ (W ∗,W∗) is measurable.

Given a finite set K ⊂ V , write WK for the space of trajectories in W that enter the set K, and
denote with W ∗

K the image of WK under π∗.

The set of point measures on which one canonically defines the random interlacements is given
by

Ω =

{
ω =

∑

i>1

δ(w∗
i ,ui);w

∗
i ∈ W ∗, ui ∈ R+ and ω(W ∗

K × [0, u]) < ∞,

for every finite K ⊂ V and u > 0

}
.

(2.10)

It is endowed with the σ-algebra A generated by the evaluation maps ω 7→ ω(D) for D ∈
W∗ ⊗ B(R+).

The interlacements are governed by a Poisson point process on W ∗×R+ with an intensity defined
in terms of the measure ν on W ∗, which is described in the theorem below. We also refer to [19]
and [12] for measures similar to ν, following the outline of [7]. The construction we give here
does not involve projective limits.

Theorem 2.1. There exists a unique σ-finite measure ν on (W ∗,W∗) satisfying, for each finite
set K ⊂ V ,

1W ∗
K
· ν = π∗ ◦ QK (2.11)

where the finite measure QK on WK is determined by the following. Given A and B in W+ and
a point x ∈ V ,

QK [(X−n)n>0 ∈ A, X0 = x, (Xn)n>0 ∈ B] = Px[A|H̃K = ∞]eK(x)Px[B]. (2.12)
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We follow the proof of Theorem 1.1 in [14] that establishes the existence of such measure in the
case V = Z

d.

Proof. The uniqueness of ν satisfying (2.11) is clear since, given a sequence of sets Kn ↑ V ,
W ∗ = ∪nW ∗

Kn
. For the existence, what we need to prove is that, for fixed K ⊂ K ′ ⊂ V ,

π∗ ◦ (1WK
· QK′) = π∗ ◦ QK . (2.13)

We introduce the space
WK,K′ = {w ∈ WK ; HK′(w) = 0} (2.14)

and the bijection sK,K′ : WK,K′ → WK,K given by

[sK,K′(w)](·) = w(HK(w) + ·). (2.15)

To prove (2.13), it is enough to show that

s ◦ (1WK,K′ · QK′) = QK , (2.16)

where we wrote s in place of sK,K′ for simplicity. Indeed, by (2.12), 1WK,K′ · QK′ = 1WK
· QK′

and one just applies π∗ on both sides of the equation above to obtain (2.13).

We now consider the set Σ of finite paths σ : {0, · · · , Nσ} → V , such that σ(0) ∈ K ′, σ(n) /∈ K
for n < Nσ and σ(Nσ) ∈ K. We split the left hand-side of (2.16) by partitioning WK,K′ into the
sets

W σ
K,K′ = {w ∈ WK,K′ ; w restricted to {0, · · · , Nσ} equals σ}, for σ ∈ Σ. (2.17)

For w ∈ W σ
K,K′ , we have HK(w) = Nσ, so that we can write

s ◦ (1WK,K′ · QK′) =
∑

σ∈Σ

θNσ
◦ (1W σ

K,K′
· QK′). (2.18)

To prove (2.16), consider an arbitrary collection of sets Ai ⊂ V , for i ∈ Z, such that Ai 6= V for
at most finitely many i ∈ Z.

s ◦ (1WK,K′ · QK′)[Xi ∈ Ai, i ∈ Z] =
∑

σ∈Σ

QK′ [Xi+Nσ
(w) ∈ Ai, i ∈ Z, w ∈ W σ

K,K′ ]

=
∑

σ∈Σ

QK′ [Xi(w) ∈ Ai−Nσ
, i ∈ Z, w ∈ W σ

K,K′ ].
(2.19)

Using the formula for QK′ given in (2.12) and the Markov property, the above expression equals

∑
x∈Supp(eK′ )

∑
σ∈Σ

Px[Xj ∈ A−j−Nσ
, j > 0, H̃K′ = ∞] · µx

· Px[Xn = σ(n) ∈ An−Nσ
, 0 6 n 6 Nσ]Pσ(Nσ)[Xn ∈ An, n > 0]

=
∑
y∈K

x∈Supp(e
K′ )

∑
σ:σ(Nσ)=y

Px[Xj ∈ A−j−Nσ
, j > 0, H̃K′ = ∞] · µx

· Px[Xn = σ(n) ∈ An−Nσ
, 0 6 n 6 Nσ]Py[Xn ∈ An, n > 0].

(2.20)

1611



For fixed x ∈ Supp(eK′) and y ∈ K, we have

∑
σ:σ(Nσ)=y

Px[Xj ∈ A−j−Nσ
, j > 0, H̃K′ = ∞] · µx

· Px[Xn = σ(n) ∈ An−Nσ
, 0 6 n 6 Nσ]

(reversibility)
=

∑
σ:σ(Nσ)=y

σ(0)=x

Px[Xj ∈ A−j−Nσ
, j > 0, H̃K′ = ∞] · µy

· Py[Xm = σ(Nσ − m) ∈ A−m, 0 6 m 6 Nσ]

(Markov)
=

∑
σ:σ(Nσ)=y

σ(0)=x

Py[Xm = σ(Nσ − m) ∈ A−m, 0 6 m 6 Nσ,

Xm ∈ A−m, m > Nσ, H̃K′ ◦ θNσ
= ∞] · µy

= Py

[
H̃K = ∞, the last visit to K ′

occurs at x, Xm ∈ A−m, m > 0

]
· µy.

(2.21)

Using (2.21) in (2.20) and summing over x ∈ Supp(eK′), we obtain

s ◦ (1WK,K′ · QK′)[Xi ∈ Ai, i ∈ Z] =
∑

y∈K

Py[H̃K = ∞, Xm = A−m, m > 0] · µy

· Py[Xm ∈ Am, m > 0]

(2.12)
= QK [Xm ∈ Am, m ∈ Z].

(2.22)

This shows (2.16) and concludes the proof of the existence of the measure ν satisfying (2.11).
Moreover, ν is clearly σ-finite. �

Remark 2.2. To recover the measure ν of [14] (as well as Iu, see (2.23) below) one endows
Z

d with the weight (1/2d) · 1x↔y, see (1.26) and Remark 1.4. Note that for this choice of
conductance, µ is the counting measure on Z

d. �

We are now ready to define the random interlacements. Consider on Ω × R+ the law P of
a Poisson point process with intensity measure given by ν(dw∗) ⊗ du (for a reference on this
construction, see [17] Proposition 3.6). We define the interlacement and the vacant set at level
u respectively as

Iu(ω) =

{ ⋃

i;ui6u

Range(w∗
i )

}
and (2.23)

Vu(ω) = V \ Iu(ω), (2.24)

for ω =
∑

i>0 δ(w∗
i ,ui) in Ω.

The next remark establishes the link with (1.1).
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Remark 2.3. 1) Consider, for u > 0, the map Πu : Ω → {0, 1}V given by

(Πu(ω))x = 1{x∈Vu(ω)}, for x in V. (2.25)

Then the measure
Qu = Πu ◦ P (2.26)

is characterized by (1.1).

Indeed, for every finite subset K of V and u > 0, one has

Qu[Yx = 1 for all x ∈ K] = P[ω(W ∗
K × [0, u]) = 0] = exp(−u · ν(W ∗

K))

(2.11),(2.12)
= exp

(
−u ·∑x∈KeK(x)

) (2.5)
= exp(−u · cap(K)).

(2.27)

Since the family of sets [Y = 1 for all x ∈ K] (where K runs over all finite subsets of V ) is closed
under finite intersection and generates the σ-algebra Y, (1.1) uniquely determines Qu.

2) Note also that in general the measure Qu neither dominates nor is dominated by any non-
degenerate Bernoulli i.i.d. site percolation on V , see [11], Remark 1.1. However, as we will see
in the next section, Qu satisfies the Harris-FKG inequality. �

3 The Harris-FKG inequality

In this section we prove the Harris-FKG inequality (1.2) for the measure Qu, answering a question
of [14] cf. Remark 1.6, 2).

A common strategy to prove (1.2) is the following, see for instance [5] Theorem 2.4. In a first
step, one proves that (1.2) holds for random variables depending only on finitely many sites. A
powerful sufficient condition in order to establish the inequality in the case of variables depending
on finitely many coordinates is provided by the FKG-Theorem (see [10] Corollary 2.12 p. 78).
The general case is then handled by conditioning on the configuration inside some finite set K.
The conditional expectations are then proved to be increasing random variables and one can
apply the previous step. Finally one uses a martingale convergence argument to to achieve the
result for the original random variables.

There are two main obstructions to using this strategy in our case. In Remark 3.3 2), we prove
that the sufficient condition (2.13) of [10] p. 78 does not hold in general for the measures Qu,
so that the FKG-Theorem is not directly applicable. Further we provide in Remark 3.3 1) an
example in which the conditional expectation of an increasing function, with respect to the
configuration of finitely many sites, is not increasing.

The strategy of the proof we present here strongly uses the construction of Qu in terms of the
random interlacements. We consider an increasing sequence of finite sets Kn ↑ V , which induces
a certain sequence of σ-algebras FKn

. Roughly speaking, FKn
keeps track of the behavior

between the first and last visit to Kn of all paths with level at most u which meet the set Kn

. Given two function with finite second moment f and g, we give an explicit representation of
the conditional expectation of f ◦ Πu and g ◦ Πu with respect to FKn

and prove that they are
positively correlated. Finally, we prove (3.1) by a martingale convergence argument.

The main theorem of this section comes in the following.
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Theorem 3.1. Consider u > 0 and let f and g be increasing random variables on {0, 1}V with
finite second moment with respect to the measure Qu. Then one has

∫
fg dQu >

∫
f dQu

∫
g dQu. (3.1)

Proof. We consider the countable space Γ of finite paths in V . Given K a finite subset of V , we
define the functions φK : W ∗

K → Γ given by

φK(w∗) is the finite path starting when w∗ first visits K and

following w∗ step by step until its last visit of K.
(3.2)

We also consider the partition of W ∗
K consisting of the sets

W ∗
K,γ = {w∗ ∈ W ∗

K ; φK(w∗) = γ}, for γ ∈ Γ.

Define the following random variables on Ω

ZK,γ(ω) = ω(W ∗
K,γ × [0, u]), for γ ∈ Γ. (3.3)

They have Poisson distribution and are independent, since the sets W ∗
K,γ , for γ ∈ Γ, are disjoint.

We regard ZK = (ZK,γ)γ∈Γ as a random element of the space

L = {(αγ)γ∈Γ ∈ N
Γ; αγ is non-zero for finitely many γ ∈ Γ} ⊂ N

Γ,

with law denoted by RK . Since the set N
Γ has a natural associated partial order, the notion of

increasing and decreasing random variables on L ⊂ N
Γ is well defined.

Let F and G be two increasing random variables taking values in L ⊂ N
Γ that are square

integrable with respect to RK . We claim that

∫

L
FG dRK >

∫

L
F dRK

∫

L
G dRK . (3.4)

If F and G depend only on the value of finitely many coordinates Γ′ ⊂ Γ, they can be trivially
extended to increasing functions F ′ and G′ in N

Γ, one can choose for instance F ′(α) = F (1{γ∈Γ′} ·
α) and similarly for G′. In this case, since the law RK is a product measure on N

Γ (concentrated
on L), (3.4) is a direct consequence of the FKG-Theorem, see [3], Proposition 1). The general
case can be obtained by a martingale convergence argument as in [5] Theorem 2.4.

We define the σ-algebra FK = σ(ZK) and prove that it is possible to find increasing functions
FK and GK , on L, such that FK ◦ ZK = E[f ◦ Πu|FK ] and GK ◦ ZK = E[g ◦ Πu|FK ].

For this we construct the Poisson point process P in a more explicit way. Consider the probability
measures on W ∗

K,γ , defined by

νK,γ =
1W ∗

K,γ
· ν

ν(W ∗
K,γ)

, for γ ∈ Γ such that ν(W ∗
K,γ) > 0, and arbitrarily otherwise. (3.5)
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On some auxiliar probability space (S,S, Σ), we construct a collection of random elements
(η, ξ)γ,n (for γ ∈ Γ and n > 0) taking values on W ∗

K,γ × [0, u]. The law of this colection is
characterized by the following:

the (η, ξ)γ∈Γ,n>0 are independent and
each (η, ξ)γ,n is distributed as νK,γ ⊗ U [0, u].

(3.6)

In the same space (S,S, Σ), independently of the collection above, we construct a Poisson point
process, denoted by N , taking points on (W ∗×R+)\(W ∗

K×[0, u]). More precisely, the process N
takes values in Ω′ = {ω ∈ Ω; ω(W ∗

K × [0, u]) = 0} and has intensity measure 1(W ∗×R+)\(W ∗
K
×[0,u]) ·

ν(dw∗)du. Let EΣ denote the corresponding expectation.

Let JL and JS stand for the canonical projections on L × S and define the map:

ΨK : L × S −→ Ω

(α, σ) 7−→
∑

γ∈Γ

∑

0<j6αγ

δ(η,ξ)γ,j(σ) + N(σ). (3.7)

With these definitions, one has
JL = ZK ◦ ΨK . (3.8)

It follows from the procedure to construct a Poisson point process, see for instance [17] Propo-
sition 3.6 p. 130, that

ΨK ◦ (RK ⊗ Σ) = P. (3.9)

For a given α ∈ L, choose FK(α) and GK(α) as EΣ[f ◦Πu ◦ΨK(α, σ)] and EΣ[g ◦Πu ◦ΨK(α, σ)]
respectively. We now check that FK◦ZK and GK◦ZK are versions of the conditional expectations
of f ◦ Πu and g ◦ Πu with respect to FK . Indeed, denoting with E the expectation relative to
RK ⊗ Σ, we find that for α0 ∈ L,

E[ZK = α0, FK ◦ ZK ] = P[ZK = α0]E
Σ[f ◦ Πu ◦ ΨK(α0, σ)]

(3.8),(3.9)
= E[JL = α0]E[f ◦ Πu ◦ ΨK(α0, JS)]

(3.8), indep.
= E[ZK ◦ ΨK = α0, f ◦ Πu ◦ ΨK ]

(3.9)
= E[ZK = α0, f ◦ Πu].

(3.10)

Note that if α, α′ ∈ L are such that αγ > α′
γ for every γ ∈ Γ, we have by (3.7) that

Πu ◦ ΨK(α, ·) < Πu ◦ ΨK(α′, ·) for every

possible value of the second coordinate.
(3.11)

Hence, the fact that FK and GK are increasing follows from the monotonicity of f and g.

We now use (3.4) and the fact that the conditional expectations of square integrable functions
are also square integrable to deduce that

E
[
E[f ◦ Πu|FK ]E[g ◦ Πu|FK ]

]
= E

[
(FKGK) ◦ ZK

]

=

∫
FKGK dRK

(3.4)

>

∫
FK dRK

∫
GK dRK

= E
[
E[f ◦ Πu|FK ]

]
E
[
E[g ◦ Πu|FK ]

]
.

(3.12)
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We consider now a sequence Kn ↑ V and claim that FKn
is an increasing sequence of σ-algebras.

To see this, note that for w∗ ∈ W ∗
Kn

, φKn+1(w
∗) determines φKn

(w∗). So that ZKn+1 contains
all the necessary information to reconstruct ZKn

.

Recall that for x ∈ V , Yx stands for the canonical coordinate on {0, 1}V . If x ∈ Kn, Yx ◦ Πu

is determined by ZK . As a result, f ◦ Πu and g ◦ Πu are both measurable with respect to
σ(FKn

; n ∈ N). The theorem now follows from (2.26) and the martingale convergence theorem.
�

Corollary 3.2. Given a transient, weighted graph G = (V, E), the critical point u∗ in (1.3) is
well defined regardless of the choice of the base point x.

Proof. Given x, x′ ∈ V , as G is connected, we can choose a path τ joining x to x′. Then we
have:

η(x, u) = Qu
[

the connected cluster of the set {z; Yz = 1} containing x is infinite
]

> Qu
[

the connected cluster of the set {z; Yz = 1} containing x′ is infinite

and contains Range(τ)
]

(3.1)

> η(x′, u) · Qu
[
Range(τ) ⊂ {z; Yz = 1}]

(1.1)
= η(x′, u) · exp{−u · Cap(Range(τ))}.

(3.13)

Hence, η(x′, u) > 0 implies η(x, u) > 0. The same argument in the opposite direction thus shows
that the positivity of η(x, u) does not depend on the point x. �

Remark 3.3. 1) As mentioned at the beginning of this section, given an increasing function on
{0, 1}V , we cannot always choose an increasing version of its Qu-conditional expectation with
respect to the configuration of finitely many sites. One example is given in the following.

Take V as N and connect with an edge all the points of N within distance 1 to each other and
also 0 to 3 as in the Figure 1. For n > 3, we assign the weight en to the edge that joins n and
n+1, and weight 1 for the rest of the edges. It is known that the random walk on V induced by
the conductions defined above is transient, hence we can define the interlacement process on it.

0

2

3 4
1

Figure 1: The graph defined in the Remark 3.3.

We show that the events [(Y1, Y2, Y3) = (0, 0, 0)] and [(Y1, Y2, Y3) = (0, 1, 0)] have positive Qu-
probability. Moreover, despite of the fact that Y0 is an increasing function on {0, 1}N, we prove
that

Eu
[
Y0|(Y1, Y2, Y3) = (0, 0, 0)

]
> 0 = Eu

[
Y0|(Y1, Y2, Y3) = (0, 1, 0)

]
. (3.14)
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First consider the set

W ∗
r =

{
w∗ ∈ W ∗; Range(w∗) ∩ {0, 1, 2, 3} = {1, 2, 3}

}
. (3.15)

Which is disjoint from W ∗
{0}. Now, using (2.27), we have

Qu
[
(Y0, Y1, Y2, Y3) = (1, 0, 0, 0)

]
> P
[
ω(W ∗

r × [0, u]) > 0
]
· P
[
ω(W ∗

{0} × [0, u]) = 0
]

= (1 − e−u·ν(W ∗
r ))e

−u·ν(W ∗
{0}

)
,

(3.16)

which is positive. Indeed, one easily checks that W ∗
r = W ∗

{1} \ W ∗
{0}, and by (2.11), (2.12) we

conclude that

ν
(
W ∗

{1} \ W ∗
{0}

)
> P1[H{0} = ∞] · eK(1) · P1[H{0} = ∞|H{1} = ∞] > 0. (3.17)

This gives us the left-hand inequality of (3.14).

We claim that the configuration (Y1, Y2, Y3) = (0, 1, 0) has positive probability. Indeed, the
exchange of the vertices 0 and 2 defines an isomorphism of the weighted graph, so that

Qu[(Y1, Y2, Y3) = (0, 1, 0)] >Qu[(Y0, Y1, Y2, Y3) = (0, 0, 1, 0)]

=Qu[(Y0, Y1, Y2, Y3) = (1, 0, 0, 0)]
(3.16),(3.17)

> 0.
(3.18)

On the other hand, the configuration [(Y0, Y1, Y2, Y3) = (1, 0, 1, 0)] is disjoint from the range
of the map Πu, since {1} is a bounded component of {x; Yx = 0}. Hence with (2.27) it has
Qu-probability zero, and the equality in (3.14) follows.

2) As we already mentioned, the Harris-FKG inequality for the measure Qu in general cannot
be proved by the application of the FKG-Theorem (see [10] Corollary 2.12 p. 78). Indeed, the
condition (2.13) of [10] p. 78

Qu(η ∧ ζ)Qu(η ∨ ζ) > Qu(η)Qu(ζ) (3.19)

does not hold in general for the measure Qu. For instance, consider the example in Remark 3.3
1) above. Define the two configurations for the state of the sites (Y0, Y1, Y2, Y3)

η = (0, 0, 1, 0) and ζ = (1, 0, 0, 0).

We know from (3.16) and (3.18), that they have positive Qu-probability. However the configu-
ration η ∨ ζ is given by (1, 0, 1, 0), and has zero Qu-probability, contradicting (3.19).

3) Finally we mention that the measure Qu does not satisfy the so-called Markov Field Prop-
erty. This property states that, for every finite set K ⊂ V , the configuration on (K \ ∂K) is
independent of the configuration on the complement of K when conditioned on what happens
in ∂K.

One can see from the example above, considering the set K = {1, 2, 3}, that

Qu[Y2 = 1|(Y0, Y1, Y3) = (0, 0, 0)]
(3.18)

> 0 = Qu[Y2 = 1|(Y0, Y1, Y3) = (1, 0, 0)]. (3.20)

This shows that the value of Y0 can influence the value of Y2, even if we condition on the
configuration on ∂K = {1, 3}. �
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4 Some non-degeneracy results for u∗

In this section we derive some results on the non-degeneracy of the critical value u∗ under
assumptions which involve isoperimetric inequalities. Roughly speaking, the main results of
this section are Theorem 4.1 which shows the finiteness of u∗ for non-amenable graphs and
Theorem 4.2 which shows the positivity of u∗ for G × Z when G satisfies IS6.

We first introduce some further notation. Given two graphs G and G′ with respective weight
functions a and a′, we define the weighted graph G × G′ as follows. Two pairs (x, x′) and (y, y′)
are considered to be neighbors if x ↔ y and x′ = y′ or if x = y and y ↔ y′. In this case we
define the weights between the two pairs by

a
(
(x, x), (y, y′)

)
= a(x, y)1{x′=y′} + 1{x=y}a

′(x′, y′). (4.1)

The first theorem of this section shows the finiteness of the critical value u∗ for graphs with
bounded degrees, with weights bounded from above and from below and satisfying the strong
isoperimetric inequality.

Loosely speaking, in the proof we first derive an exponential bound for the probability that a
given set is vacant, see (4.6). With this bound it is straightforward to control the growth of the
number of self avoiding paths of length n, starting from some fixed point. This proof does not
apply for general transient weighted graphs, for instance in Z

d with d > 3, because a bound of
type (4.6) fails in general. Indeed, according to (1.1), P[A ⊂ Vu] is given by exp(−u · cap(A))
and the capacity of an arbitrary subset of Z

d is not bounded from below by any linear function
of |A|, see [14] Remark 1.6 1).

Theorem 4.1. Let G be a graph of degree bounded by q, endowed with a weight function a which
is bounded from below by m, satisfying the strong isoperimetric inequality. Then

u∗ < ∞. (4.2)

In other words, for sufficiently large values of u, the vacant set Vu does not percolate.

Proof. We first note that every non-amenable graph is automatically transient. This follows for
instance from (4.4) below.

A weighted graph satisfies the strong isoperimetric inequality (i.e. (1.5) with d = ∞) if and only
if exists a k̄ > 0 such that the graph satisfies the Dirichlet inequality

‖f‖2
2 6 κ̄ · 1

2

∑

x,y∈V

|f(x) − f(y)|2ax,y, where ‖f‖2 =

(∑

x∈V

f(x)µx

)1/2

, (4.3)

for every f : V → R with compact support. See for instance [21] Theorem 10.3.

From the definition of capacity (2.1), for any finite A ⊂ V ,

cap(A) > inf

{
1

κ̄
· ‖f‖2

2; f ≡ 1 in A, f with compact support

}
>

1

κ̄
µ(A). (4.4)
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Inserting this in the equation (1.1) and using the lower bound on a, we obtain, setting β = κ̄−1,
the desired exponential bound

P[A ⊂ Vu] = Qu[Yx = 1, for all x ∈ A] 6 exp(−u · βµ(A)) 6 exp(−u · β · m · n). (4.5)

Given a fixed point xo ∈ V , we can bound η(u, xo) (recall the definition in (1.4)) by the prob-
ability that xo is connected in Vu to ∂B(xo, n). Using the fact that the graph G has bounded
degree, we bound the latter probability by summing over the set Γn of all self-avoiding paths
starting at xo with length n. More precisely, we have

η(u, xo) 6 P[xo is connected in Vu to ∂B(xo, n)]

6 P[there exists a γ ∈ Γn; Range(γ) ⊂ Vu]

6
∑

γ∈Γn

P[Range(γ) ⊂ Vu]

6 qn · exp(−β · u · m · n)

(4.6)

and this last expression tends to zero with n for u > (βm)−1. This readily implies that the
probability that the vacant set at level u > (βm)−1 contains an infinite component is zero. �

As mentioned in the introduction, one important motivation for the introduction of the random
interlacements in [14] has been the study of the disconnection time of a discrete cylinder, see
for instance [15] and [16]. A natural way to generalize this kind of disconnection problem is to
consider cylinders with more general basis, see [13]. This motivates our next result. It establishes
that if some graph G satisfying IS6 (see 1.5), has bounded degree and weights bounded both
from above and from below, then the critical value u∗ for the graph G × Z is positive.

For the proof, we rely on some classical results of random walks on graphs to obtain a bound
on the Green function of G × Z. The rest of the proof is an adaptation of the renormalization
argument in [14], Proposition 4.1.

Theorem 4.2. Let G be a graph of bounded degree endowed with weights that are bounded from
above and from below, satisfying IS6. Then the critical value u∗ of the graph G × Z is positive.

Proof. Again, the transience of G ×Z follows from the assumptions on G, see the equation (4.9)
below and the claim above (2.4).

Since G satisfies IS6 and Z satisfies IS1, the product G×Z satisfies IS7, see [21], 4.10 p. 44. This
implies the upper bound

sup
x,y∈V

Px[Xn = y] 6 Cn−7/2, (4.7)

for some C > 0, see for instance [21], 14.3 and 14.5 (a) p. 148. The bound (4.7) implies the heat
kernel bound

Px[Xn = y] 6 C1n
−7/2exp

{−dG(x, y)2

C2n

}
, (x, y) ∈ G × Z, (4.8)

for some C1, C2 > 0, see [21], 14.12 p. 153.

From this, by similar estimates as in [9], 1.5.4 p. 31, one obtains for some C3 > 0 and all
(x, y) ∈ G × Z,

Px[H{y} < ∞] 6
∑

n>0

Px[Xn = y] 6
C3

dG(x, y)5
. (4.9)
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We will use this bound in the renormalization argument we mentioned above. This renormal-
ization will take place on an isometric copy of the upper plane Z+ × Z that we find in G × Z.
More precisely, take a path τ : N → V satisfying what we call the half-axis property :

dG(τ(n), τ(m)) = |n − m|, for all n, m ∈ N. (4.10)

The existence of such path is provided by [18] Theorem 3.1.

We can now find an isometry between Z+ × Z and a subset of G × Z, with respect to the graph
distances dZ+×Z(·, ·) and dG×Z(·, ·) which are defined as above (2.1). We take the map that, for
a given pair (i, j) ∈ Z+ × Z, associates (τ(i), j).

To see why this defines an isometry, we use (4.10) and note that for two graphs G1 and G2, one
has dG1×G2((i, j), (i

′, j′)) = dG1(i, i
′)+dG2(j, j

′). Indeed, if one concatenates two minimal paths,
the first joining (i, j) to (i′, j) in G1 × {j} (which is an isometric copy of G1) and the second
joining (i′, j) to (i′, j′) in {i′}×G2 (which is isometric to G2), one obtains dG1×G2((i, j), (i

′, j′)) 6

dG1(i, i
′)+dG2(j, j

′). To prove the other inequality, we note that for every path joining (i, j) and
(i′, j′) one can decompose it into its horizontal and vertical steps (corresponding respectively to
steps between pairs (k, l) ↔ (k′, l) and (k, l) ↔ (k, l′), see above (4.1)) to obtain paths in G1 and
G2 joining i to i′ and j to j′, respectively.

From now on we make no distinction between Z+ × Z and S = Range(τ) × Z ⊂ V × Z.

We say that τ : {0, · · · , n} → Z+ × Z is a ∗-path if

|τ(k + 1) − τ(k)|∞ = 1, for all k ∈ {0, · · · , n − 1},

where |p|∞ is the maximum of the absolute value of the two coordinates of p ∈ Z
2

The rest of the proof follows the argument for the Proposition 4.1 in [14] with some minor
modifications. For the reader’s convenience, we write here the proof together with the necessary
adaptions. Define

L0 > 1, Ln+1 = lnLn, where ln = 100⌊La
n⌋ and a =

1

1000
. (4.11)

We will consider a sequence of boxes in S of size Ln and define the set of indexes

Jn = {n} × (Z+ × Z), J ′
n = {n} × [(Z+ \ {0}) × Z] . (4.12)

For m = (n, q) ∈ Jn, we consider the box

Dm = (Lnq + [0, Ln)2) ∩ Z
2, (4.13)

recalling that we have identified S with Z+ × Z. And for m ∈ J ′
n we set

D̃m =
⋃

i,j∈{−1,0,1}

D(n,q+(i,j)). (4.14)

Roughly speaking, our strategy is to prove that the probability of finding a ∗-path in the set
Iu ∩ S that separates the origin from infinite in S is smaller than one. We do this by bounding
the probabilities of the following crossing events

Bu
m = {ω ∈ Ω; there exists in Iu ∩ S a ∗-path between Dm and D̃m}, (4.15)
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Dm

D̃m

D̃m1

Dm1

Dm2 D̃m2

Figure 2: The figure shows all the boxes with indexes in K1 and K2. Note that the event Bu
m

implies Bu
m1

and Bu
m2

for some m1 ∈ K1 and m2 ∈ K2.

where m ∈ J ′
n. For u > 0 and m ∈ J ′

n, we write

qu
m = P[Bu

n] and (4.16)

qu
n = sup

m∈Jn

qu
m. (4.17)

In order to obtain an induction relation between qu
n and qu

n+1 (that were defined in terms of two
different scales) we consider for a fixed m ∈ J ′

n+1 the indexes of boxes in the scale n that are in
the “boundary of Dm”

Km
1 = {m1 ∈ Jn; Dm1 ⊂ Dm and Dm1 is neighbor of S \ Dm}. (4.18)

And the indexes of boxes at the scale n and that have some point at distance Ln+1/2 of Dm

Km
2 = {m2 ∈ Jn; Dm2 ∩ {x ∈ S; dG×Z(z,Dm) = Ln+1/2} 6= ∅}. (4.19)

The boxes associated with the two sets of indexes above are shown in Figure 2. In this figure we
also illustrate that the event Bu

m implies the occurrence of both Bu
m1

and Bu
m2

for some choice
of m1 ∈ Km

1 and m2 ∈ Km
2 .

This, with a rough counting argument, allows us to conclude that

qu
m 6 cl2n sup

m1∈Km

1

m2∈Km

2

P[Bu
m1

∩ Bu
m2

], for all u > 0. (4.20)

We now want to control the dependence of the process in the two boxes D̃m1 and D̃m2 . For this
we will use the estimates (4.9) and split the set W ∗ as follows.
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Let V denote D̃m1 ∪ D̃m2 and write the set W ∗
V as the union below

W ∗
V = W ∗

1,1 ∪ W ∗
1,2 ∪ W ∗

2,1 ∪ W ∗
2,2, (4.21)

where

W ∗
1,1 = W ∗

eDm1

\ W ∗
eDm2

W ∗
1,2 = {ω ∈ W ∗

eDm1

; XHV
(ω) ∈ D̃m1 and H eDm2

< ∞}.
(4.22)

And W2,2, W2,1 defined with similar formulas. Note that the union above is disjoint, so that

the Poisson point processes obtained by restricting ω to W ∗
i,j are independent. (4.23)

For some measurable A ⊂ W ∗ and some index m ∈ J ′
n+1 with n > 0 we introduce the notation

Bu
m(A) = {ω ∈ Ω; 1A×[0,u] · ω ∈ Bu

m} (4.24)

Since the trajectories in the set W ∗
i,i are disjoint of the box mj for i, j ∈ {0, 1} and i 6= j, we

conclude that

Bu
m1

= Bu
m1

(
∪i,j∈{0,1}Wi,j

)
= Bu

m1

(
W ∗

1,1 ∪ W ∗
1,2 ∪ W ∗

2,1

)
, for u > 0 (4.25)

and a similar formula for Bu
m2

.

We now control the dependence of the process in the two different boxes. This is done by simply
requiring that no trajectory reaches both Dm1 and Dm2 .

P[Bu
m1

∩ Bu
m1

] = P
[
Bu

m1

(
W ∗

1,1 ∪ W ∗
1,2 ∪ W ∗

2,1

)
∩ Bu

m2

(
W ∗

2,2 ∪ W ∗
2,1 ∪ W ∗

1,2

)]

6 P
[
Bu

m1

(
W ∗

1,1

)
∩ Bu

m2

(
W ∗

2,2

)
, ω(W1,2 × [0, u]) = ω(W2,1 × [0, u]) = 0

]

+ P [ω(W1,2 × [0, u]) or ω(W2,1 × [0, u]) 6= 0]

(4.23)

6 P
[
Bu

m1

(
W ∗

1,1

)]
P
[
Bu

m2

(
W ∗

2,2

)]
+ P [ω(W1,2 × [0, u]) 6= 0]

+ P [ω(W2,1 × [0, u]) 6= 0]

6 qu
m1

qu
m2

+ (1 − e−u·ν(W1,2)) + (1 − e−u·ν(W2,1))

(2.12)

6 qu
m1

qu
m2

+ u
(
PeV

[X0 ∈ D̃m1 , H eDm2
< ∞]

+ PeV
[X0 ∈ D̃m2 , H eDm1

< ∞]
)

(4.9)

6 (qu
n)2 + cL2

n

L2
n

L5
n+1

(4.26)

where we assumed in the last step that u 6 1. Using (4.20) and taking the supremum over
m ∈ Jn+1, we conclude that

qu
n+1 6 c1l

2
n

(
(qu

n)2 + L4
nL−5

n+1

)
. (4.27)

With help of this equation, we prove the next Lemma, which shows that for some choice of L0

and u taken small enough, qu
n goes to zero sufficiently fast with n.
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Lemma 4.3. There exist L0 and ū = ū(L0) > 0, such that

qu
n 6

c3

l2nL
1/2
n

(4.28)

for every u < ū.

Proof of the Lemma. We define the sequence

bn = c3l
2
nqu

n, for n > 0. (4.29)

The equation (4.27) can now be rewritten as

bn+1 6 c4

((
ln+1

ln

)2

b2
n + (ln+1ln)2L4

nL−5
n+1

)
, for n > 0. (4.30)

With (4.11) one concludes that (ln+1ln)2 6 cL2a
n L2a

n+1 6 cL4a+2a2

n . Inserting this in (4.30) and
using again (4.11), we obtain

bn+1 6 c5(L
2a2

n b2
n + L2a2−a−1

n ) 6 c5L
2a2

n (b2
n + L−1

n ). (4.31)

We use this to show that, if for some L0 > (2c5)
4 and u 6 1 we have bn 6 L

−1/2
n , then the same

inequality also holds for n + 1. Indeed, supposing bn 6 L
−1/2
n , we have

bn+1 6 2c5L
2a2−1
n

(4.11)

6 2c5L
−1/2
n+1 L1/2(1+a)+2a2−1

n

(4.11)

6 2c5L
−1/2
n+1 L

−1/4
0 6 L

−1/2
n+1 . (4.32)

Which is the statement of the lemma. So all we still have to prove is that b0 6 L
−1/2
0 for

L0 > (2c5)
4 and small enough u. Indeed,

b0
(4.29)

= c3l
2
0q

u
0 6 c3l

2
0 sup

m∈J0

P[Iu ∩ D̃m 6= ∅]

6 c5L
2a+2
0 sup

x∈V
P[x ∈ Iu]

(1.1),(2.5)

6 c5L
2a+2
0 (1 − e−αu),

(4.33)

where α can be taken as supx∈V µx since both the degree and the weights are bounded from

above. For some L0 > (2c5)
4, we take u(L0) small enough such that b0 6 L

−1/2
0 for any

u 6 u(L0). �

We now use this lemma to show that with positive probability, one can find an infinite connection
from (0, 0) to infinite in the set Vu ∩ S. For this we choose L0 and u < u(L0) as in the lemma.
Writing BM for the set [0, M ] × [−M, M ] ⊂ S, we have

1 − η(u, (0, 0)) 6 P[(0, 0) is not in an infinite component of Vu ∩ S]

6 P[Iu ∩ BM 6= ∅] +
P
[
there is a ∗-path in S \ BM

surrounding the point (0, 0) in S
]

6
(
1 − exp(−u · cap(BM ))

)

+
∑

n>n0

P
[
Iu ∩ S \ BM contains a ∗-path surrounding (0, 0) and

passing through some point in [Ln, Ln+1 − 1] × {0} ∈ S
]

(4.34)

1623



The last sum can be bounded by
∑

n>n0

∑
m P[Bu

m] where the index m runs over all labels of
boxes Dm at level n that intersect [Ln, Ln+1 − 1]×{0} ⊂ S. Since the number of such m’s is at
most ln 6 cLa

n,

1 − η(u, (0, 0)) 6 cL2
n0

u +
∑

n>n0

cLa
nL−1/2

n

(4.11)

6 c(L2
n0

u +
∑

n>n0

L−1/4
n ). (4.35)

Choosing n0 large and u 6 u(L0, n0), we obtain that the percolation probability is positive. So
that u∗ > 0. �

5 Trees

The next theorem roughly states that if G is a tree, the vacant cluster at level u containing some
given vertex x ∈ V has the same law as the vacant cluster at x under a Bernoulli independent
site percolation with a suitable choice of occupancy probabilities (that depends on x and u). A
consequence of this fact is that 0 < u∗ < ∞, under some additional bounds on the degrees and
weights of the tree.

The strategy of the proof is to partition W ∗ into sets W ∗,z (z ∈ V ) (see (5.3) below) and use
ω(W ∗,z × [0, u]) to build independent random variables that will induce the Bernoulli process.
The main task in the proof is to check that the component containing x is indeed the same both
for the interlacement set and for the induced Bernoulli site percolation.

Theorem 5.1. Let G = (V, E) be a tree with bounded degree, endowed with a weight function
which makes it a transient weighted graph and take x ∈ V a fixed site. Consider the function
fx : V → [0, 1] given by

fx(z) =Pz [d(Xn, x) > d(z, x) for every n > 0] · µz

· Pz [d(Xn, x) > d(z, x) for every n > 0] .
(5.1)

Then the cluster of Vu containing x in the interlacement process has the same law as the
open cluster containing x for the Bernoulli independent site percolation on V characterized by
P [z is open ] = exp(−u · fx(z)).

In particular, if in addition the degree of each vertex of the tree is larger than or equal to three and
the weights are bounded from above and from below, then the critical value u∗ is non-degenerate,
i.e.

0 < u∗ < ∞. (5.2)

Proof. We introduce, the partition W ∗ = ⊔z∈V W ∗,z, where

W ∗,z = {w∗ ∈ W ∗
{z}; d(x, Range(w∗)) > d(x, z)}. (5.3)

We claim that the sets W ∗,z are disjoint. Indeed, consider some trajectory w∗ ∈ W ∗,z. Since G is
a tree, z is the unique point in Range(w∗) for which d(x, z) attains the distance d(x, Range(w∗)).
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As a consequence, the random variables (ω(W ∗,z × [0, u]))z∈V are independent. We use them to
define a Bernoulli independent process given by

Y u
z (ω) = 1[ω(W ∗,z×[0,u])>1] for z ∈ V. (5.4)

Note by (2.12) and (5.3) that the probability P[Y u
z = 0] equals exp(−u · fx(z)).

We still need to prove that for the site percolation attached to the values of Y u
z , the null-cluster

containing x coincides with the connected component of Vu containing x. From now on, we fix
a point measure ω ∈ Ω and write Y u

z and Iu instead of Y u
z (ω) and Iu(ω) for simplicity. With

no loss of generality we assume x ∈ Vu. Our claim will follow once we show that given a nearest
neighbor self-avoiding path τ : {0, · · · , l} → V starting at x, Range(τ) ⊂ Vu if and only if
Yz = 0 for every z ∈ Range(τ).

Suppose first that Yz = 0 for every z ∈ Range(τ) and, by contradiction, that τ intersects Iu. We
call n̄ ∈ {0, . . . , l} the first time at which τ meets Iu. Since 1[x∈Iu] = 1[ω(W ∗

{x}
×[0,u])>1] = Yx = 0,

we conclude that n̄ > 0. Thus, τ(n̄) ∈ Iu, but ω(W ∗,τ(n̄) × [0, u]) = 0. Hence some (w∗
i , ui) with

ui < u in the support of ω belongs to W{τ(n̄)} and gets closer to x than τ(n̄). Since G is a tree,
the only fashion in which a trajectory of W ∗

{τ(n̄)} can get closer to x than τ(n̄) is by visiting the

point τ(n̄ − 1), which we know belongs to the vacant set, a contradiction.

Conversely, Range(τ) ⊂ Vu implies that 1[ω(W ∗
{z}

×[0,u])>1] = 0 for every z ∈ Range(τ). Since

W ∗,z ⊂ W ∗
{z}, we have Yz = 0 for every z ∈ Range(τ). This concludes the proof of the first part

of the theorem.

Let us now suppose in addition that every vertex of the tree has degree larger than or equal
to three and that the weights are bounded from above and from below. We now prove the
non-degeneracy of u∗ (5.2).

Since the tree has bounded degree, fx(z) is also bounded from above, say by L. And the
construction above shows that the vacant cluster containing x has the same law as under an
independent Bernoulli site percolation on the tree. We can explore the cluster which contains
x in this process, in such a way that it corresponds to a Galton-Watson model for population
growth. Every site z in this cluster is regarded as an individual in the population, and the
distance between z and the progenitor x is understood as the number of generations. The
neighbors of z, in the next generation which are vacant in the Bernoulli process, are regarded
as the descendents of z.

Since the degree of the tree is supposed to be larger than or equal to three, the distributions
of descendants in this branching process stochastically dominates the sum of two independent
Bernoulli variables with success probability exp(−uL) (recall that P [z is open ] = exp{(−u ·
fx(z)} > exp{−u · L}). It follows from [6], 5.4 Theorem (5), that with positive probability
the population of this branching process does not become extinct when u < log(2)/L. As a
consequence, for u < log(2)/L, there is a positive probability that x percolates in Vu. This gives
us the positivity of u∗. Here we did not use that the weights are bounded from below.

The finiteness of the critical value will follow from the Theorem 4.1 since G is non-amenable.
Indeed, one can use the Theorem (10.9) of [21] p. 114, to show that G endowed with the canonical
weights is non-amenable. And the same will hold for G endowed with the original weights since
they are bounded from above and from below and the degrees are bounded. �
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Corollary 5.2. Let G be the regular tree with degree d > 2 endowed with weights 1/d for every
edge. Then the critical point of the interlacement percolation is given by

u∗ =
d(d − 1)log(d − 1)

(d − 2)2
. (5.5)

Proof. We consider the construction provided by Theorem 5.1 and give an explicit formula for
fx(z). Given z, z′ ∈ V which are neighbors, one can use the strong Markov property on H{z}

and the Lemma (1.24) from [21] p. 9, to conclude that

Pz[H{z′} < ∞] =

∑
n>0 Pz[Xn = z′]

∑
n>0 Pz[Xn = z]

=
d −

√
d2 − 4d + 4

2(d − 1)
=

1

d − 1
. (5.6)

Now suppose that z 6= x and the point z′ is the unique neighbor of z for which the distance to
x equals d(z, x) − 1. From (5.1) and (5.6) one has

fx(z) = Pz[X1 6= z′, PX1 [H{z} = ∞]] · µz · Pz[H{z′} = ∞]

=
d − 1

d
· d − 2

d − 1
· d − 2

d − 1
=

(d − 2)2

d(d − 1)
.

(5.7)

From this we conclude that the cluster containing x has the same law as a branching process for
which (except for the first generation) the numbers of descendants are binomial, i.i.d. random
variables with expectation given by

(d − 1)exp

(
−u

(d − 2)2

d(d − 1)

)
. (5.8)

The critical point of this branching process is known to correspond to the case in which the
expectation of descendants equals 1, see for instance [6] 5.4 Theorem (5). �

Remark 5.3. Analyzing the equation (5.5), one concludes that the probability that a given
site x is vacant at the critical level u∗ is

P[x ∈ Vu∗ ] = exp{−u∗ · cap({x})} = exp

{−d log(d − 1)

d − 2

}
=

1

d
(1 + o(1)), (5.9)

and cap({x}) = (d − 2)/(d − 1). This gives rise to a natural question. Does the interlacement
model in Z

d present a mean field behavior in high dimensions? Or more precisely, does the
probability that the origin is vacant at the critical value of Z

d asymptotically behave like 1/2d
as d goes to infinite? This result is known to hold true for the case of Bernoulli independent
percolation, see for instance [8], [1].
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