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Abstract

The goal of this thesis was to investigate how a density-density interaction
between electrons on a lattice can lead to the emergence of a phase transition
such as anti-ferromagnetism or superconductivity. The prototypical model
that is used in this type of studies is the the single band 2D Hubbard model
with a strong repulsive interaction. This model is the simplest representa-
tion of the high-Tc cuprates and the computation of its phase-diagram has
been an outstanding problem over the last three decades in the field of con-
densed matter theory. In order to make a significant contribution to the field,
we pursued a three-fold strategy to compute the transition temperature of
a phase transition faster and more accurate. This three-fold strategy can
be summarized as: (1) the development of a new algorithm named DCA+,
(2) a significant improvement to the numerical implementation of the CT-
AUX cluster-solver and (3) porting the algorithm to new hard-ware in order
to harness the full power of a supercomputer. These three strategies are
explained in detail respectively in chapter 2, 3 and 5. In chapter 4, we inves-
tigate several regions of the phase-diagram of the 2D Hubbard model and
ultimately show that the lightly hole-doped Hubbard model with a strong
repulsive interaction U/t = 7 has a finite Tc of 0.05 t. This region of the
phase-diagram was not reachable up till now and was only possible due to
a successful completion of each strategy. In chapter 6, I introduce a new
algorithm to compute the spectrum of electronic lattice models. Contrary
to other methods that have the same goal, this method obtains the spec-
trum by analytically continuing the self-energy through a straightforward
constrained minimization process. Despite its utter simplicity, it reproduces
the spectra of NiO very accurately.
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Abstract

Das Ziel dieser Doktorarbeit ist die Bedingungen zu studieren, unter welchen
eine Dichte-Dichte Wechselwirkung zwischen Elektronen auf einem Gitter
zu Phasenbergängen, wie zum Beispiel Ferro-Magnetismus oder Supraleitung,
führen kann. Für diese Art von Untersuchungen wird als Standardmod-
ell das zweidimensionale Hubbard Modell mit stark abstoender Wechsel-
wirkung betrachtet, wobei nur ein Energieband berücksichtigt wird. Dies ist
die einfachste Darstellung eines Hochtemperatur Cuprat-Supraleiters. Die
Berechnung des zugehörigen Phasendiagramms ist ein seit über drei Jahrzehn-
ten offenes Problem in der Theorie der kondensierten Materie. Mit dem Ziel
diesem Gebiet signifikant beizutragen wurden die folgenden drei Schritte be-
folgt, die es ermöglichen, die Übergangstemperatur eines Phasenübergangs
schneller und präziser zu bestimmen: (1) Die Entwicklung eines neuen Algo-
rithmus namens DCA+, (2) die wesentliche Verbesserung der numerischen
Implementation des CT-AUX Cluster-Solvers und (3) die Anpassung des
Algorithmus an neue Hardware, um die Kapazität eines Supercomputers
vollständig nutzen zu können. Die einzelnen Schritte sind entsprechend
in Kapitel 2, 3 und 5 im Detail erklärt. In Kapitel 4 werden diverse Re-
gionen des Phasendiagramms des zwei dimensionalen Hubbard Modells
untersucht und es wird allgemeingültig gezeigt, dass das schwach Loch-
gedopte Hubbard Modell mit stark abstoender Wechselwirkung U/t = 7
eine endliche kritische Temperatur Tc von 0.05 t besitzt. Bis dato war dieser
Abschnitt des Phasendiagramms nicht darstellbar und ist nur aufgrund der
Komplettierung der obigen Schritte zugänglich geworden. In Kapitel 6
wird ein neuer Algorithmus zur Berechnung des Spektrums von Elektronen-
Gittermodellen vorgestellt. Im Unterschied zu anderen Vorgehensweisen
wird das Spektrum hier dadurch bestimmt, dass ein durch direkte Bedin-
gungen eingeschränkter Minimierungsprozess die Eigenenergien analytisch
erweitert. Trotz ihrer Schlichtheit reproduziert diese Methode das Spektrum
von NiO aüsserst präzise.
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Chapter 1

Introduction

For over a century, superconductivity has fascinated generations of physi-
cists and materials scientists, and continues to captivate researchers as new
classes of superconducting materials are discovered. Below a certain critical
temperature Tc, superconductors exhibit conductance without resistance as
well as perfect diamagnetism, i.e. a complete expulsion of an external mag-
netic field (Meissner-Ochsenfeld effect), implying that the electrons behave
in a collective manner. This is possible, because of a net attractive interac-
tion forcing electrons to form boson-like Cooper pairs, which can condense
into a coherent macroscopic quantum state analogous to a Bose-Einstein
condensate. The energy required to break up pairs (also called energy gap)
suppresses the scattering processes from defects and impurities that would
give rise to electrical resistance in normal conductors.

In conventional superconductors, which include many elemental metals such
as Hg, Al and Nb, the attractive interaction between electrons arises from
the interaction between the negatively charged electrons and the positively
charged ions. The distortion of the ion lattice left behind by the motion of an
electron attracts a second electron and thus results in an effective attractive
interaction between the electrons. This mechanism is active and can over-
come the instantaneous Coulomb repulsion at long times, or low energies,
because the ion dynamics is slow compared to the electrons. This retarda-
tion, however, also limits the magnitude of Tc that can be reached in these
systems. These concepts are well described and understood within a rigor-
ous theoretical foundation, the BCS (Bardeen-Cooper-Schrieffer) theory [8],
and its extension, the Migdal-Eliashberg theory [68, 20].

The high-temperature superconducting copper-oxide based materials (high-
Tc cuprates), discovered in 1986, have much higher critical temperatures, up
to 150 K, exceeding by far the theoretical limit of conventional superconduc-
tors. Early on this triggered speculations that superconductivity in these
systems arises from a different mechanism. In addition, the spatial compo-
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1. Introduction

nent of the pair wave function was found to have dx2−y2-wave structure, dif-
ferent from the isotropic s-wave structure in conventional superconductors.
It is by now generally accepted that pairing in these systems has a different
origin and most likely arises from the strong magnetic interactions or fluctu-
ations between the electron spins that result in an antiferromagnetic phase
in the undoped parent compounds [73]. The details of how superconductiv-
ity emerges from the highly enigmatic pseudogap phase, which dominates
much of the higher temperature phase diagram of the doped systems, is still
under heavy debate.

The physics of these crystalline systems is well described by a Hamiltonian
that is expanded in atomic orbitals

H = ∑
ij,µν,σ

tµν
ij c†

iµσcjνσ + ∑
ij,µν,σσ′

Uµν,σσ′

ij niµσnjνσ′ , (1.1)

where the fermionic creation (destruction) c†
iµσ (ciµσ) operator creates (de-

stroys) an electron with spin σ in atomic orbital µ on lattice site i, niµσ =

c†
iµσciµσ is the corresponding number operator and non-density-density inter-

actions have been neglected. The transition amplitudes tµν
ij between orbitals

on different sites and Coulomb interactions Uµν,σσ′

ij can be computed from
ab initio electronic structure calculations [4, 3, 5, 7, 48, 66, 69] – these quan-
tities decay rather fast with distance between lattice sites due to the spatial
locality of the atomic orbitals and screening effects.

However, despite the simplicity of the Hamiltonian, the theoretical descrip-
tion of these systems is extremely challenging. Traditional many-body per-
turbation theory cannot be used, due to the absence of a small parameter,
and current implementations based on density functional theory (DFT), are
unable to adequately describe the strong electronic correlations that underly
the physics of this system, particularly the physics of the superconducting
state. However, DFT calculations of the electronic ground state show – in re-
markable agreement with photoemission experiments – that the low-energy
electronic structure is governed by a single band of electrons formed by the
Cu 3dx2−y2 and the O 2px/y orbitals of the CuO planes. The physics of this
band may be described by a single-band Hubbard model

H = −t ∑
〈ij〉,σ

c†
iσcjσ + U ∑

i
ni↑ni↓ , (1.2)

where the sums run over the sites i of a 2D square lattice and the nota-
tion 〈ij〉 indicates that the j-sumation runs only over the four near neighbor
sites of i. The second term describes an on-site Coulomb repulsion that
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raises the energy when two electrons reside on the same site and therefore
favors singly occupied sites and thus moment formation. Numerical calcu-
lations based on this model have found many phenomena similar to what
has been observed experimentally, including antiferromagnetism, pseudo-
gap behavior and strong d-wave pair correlations, and are thought to be the
simplest to capture qualitatively the relevant physics of superconductivity
in the cuprates. The reliable computation of the superconducting transition
temperature, however, has thus far posed insurmountable computational
challenges for even this simplified model.

Simulations based on the Dynamical Cluster Approximation (DCA) showed
that the model describes a superconducting transition with d-wave charac-
ter [60], and even allowed an analysis of the pairing mechanism [61]. But
they were far from converged due to a notorious cluster shape dependence
of the results computed within the DCA. Furthermore, the simulations of Tc
were done at an unrealistically small value of U/t = 4, since the fermionic
sign problem of the quantum Monte Carlo algorithms used as a cluster
solver within the DCA, prevented simulations for values of U/t = 7 that
would be more realistic for these systems.

A quantitative description that accounts for, e.g., materials specific variation
of Tc between different cuprates, requires calculations based on the more
complex multi-orbital model, see Eq. (1.1), which explicitly take into account
additional bands and orbitals and thus can distinguish between different
materials. Extending the computation to multiple orbitals and inclusion
of realistic, materials specific electronic structure is not conceptually diffi-
cult. However, plans to do so have remained elusive, as the reliable solution
of even the simple single-band Hubbard model has posed insurmountable
computational challenges.
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Chapter 2

Theory of the DCA+

Abstract

The dynamical cluster approximation (DCA) is a systematic extension
beyond the single site approximation in dynamical mean field theory
(DMFT), to include spatially non-local correlations in quantum many-
body simulations of strongly correlated systems. In this chapter, we
present an extension to the DCA, that can incorporate a continuous
lattice self-energy in oder to achieve better convergence with cluster
size. The new method, which we call DCA+, cures the cluster shape
dependence problems of the DCA, without suffering from causality vi-
olations of previous attempts to interpolate the cluster self-energy. A
practical approach based on standard inference techniques is given to
deduce the continuous lattice self-energy from an interpolated cluster
self-energy. We will also discuss in detail how the two-particle frame-
work of the DCA can be extended to the DCA+. The latter is of par-
ticular importance with regard to the determination of the critical tem-
perature of a phase-transition in the lattice.

relevant papers:

• M. Jarrell, Th. Maier, C. Huscroft and S. Moukouri, A Quantum Monte
Carlo Algorithm for Non-local Corrections to the Dynamical Mean-Field Ap-
proximation, Phys. Rev. B 64, 195130 (2001).

• T. Maier, M. Jarrell, Th. Pruschke and M. Hettler, Quantum Cluster
Theories, Reviews of Modern Physics, 77, pp. 1027-1080 (2005).

• P. Staar, T. Maier and T. C. Schulthess, Dynamical cluster approximation
with continuous lattice self-energy, Phys. Rev. B 88, 115101 (2013)

• P. Staar, T. Maier and T. C. Schulthess, Detecting phase-transitions in
electronic lattice-models with DCA+, to be published soon (2013)
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Figure 2.1: The positions of the cluster momenta {~K} and shape of the
patches for two 16 site DCA-clusters. Notice that the 16B site cluster does
not have the same point-group symmetry as the Brillouin-zone, leading to a
lattice self-energy with a lower symmetry.

2.1 Introduction

The Dynamical Cluster Approximation was developed to study materials of
2D nature, by allowing the self-energy to be non-local. In the DCA, the infi-
nite lattice-problem is reduced to a finite size quantum cluster impurity with
periodic boundary conditions, embedded into a self-consistent mean-field.
This reduction is achieved via a coarse-graining procedure of the Green’s
function, in which the Brillouin zone is divided into Nc patches and the
self-energy Σ is assumed to be constant on these patches. In this way, all
correlations within the cluster are dealt with exactly, while long-range cor-
relations outside the cluster are described via a mean-field. If the cluster
impurity problem is solved exactly, such as with Quantum Monte Carlo
(QMC) integration, the DCA will reproduce the exact solution of the lattice
model in the limit of infinite cluster size.

In practice, the fermionic sign problem [55, 98] imposes an upper-bound to
the cluster-size and a lower bound to the temperature which can be accessed.
While small clusters have proven to give us an excellent qualitative insight
on the physical phenomena [62], most physical quantities, such as the su-
perconducting transition temperature Tc, converge poorly on the available
small clusters [60]. The DCA can therefore not be used as a reliable method
for quantitive predictions of those observables.

There are two important factors that influence the results of the DCA, both

6



2.1. Introduction
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Figure 2.2: Momentum-dependence of the DCA and DCA+ self-energies
(red and black represent the imaginary and real part) calculated on the 16A
and 16B clusters in a half-filled Hubbard model with nearest neighbor hop-
ping t = 1, Coulomb interaction U/t = 7 and next-nearest neighbor hop-
ping t′/t = −0.15 at a temperature T = 0.2. For the DCA, one clearly sees
a large difference between the self-energies of the two clusters at the section
(π, 0) → (0, π), which is close to the Fermi-surface and thus physically the
most relevant part of the self-energy. In the DCA+ , the self-energies of the
two clusters agree very well.

related to the choice of the cluster. The most obvious factor is the mean
field approximation, which reduces the momentum anisotropy of the self-
energy as the clusters become smaller. One can only avoid this error by
considering clusters with a sufficiently large size. In practice, the critical
cluster-size is obtained by comparing physical quantities on different cluster-
sizes. More complicated is the influence of the geometry of the cluster. There
is a set of different clusters, all of which have the same cluster size but
different shape and therefore different positions of the cluster momentum
points. In Fig. 2.1, we show two 16 site clusters for which this is the case. The
different positioning of the cluster momentum points in these two clusters
leads to a different geometric shape of the coarse-graining patches and thus
a different parametrization of the self-energy. This is illustrated in Fig. 2.2,
where the momentum dependence of the DCA self-energy at the lowest
Matsubara frequency is shown for the 16A and 16B site cluster introduced in
Fig. 2.1. The relative error between the self-energies on the different clusters
is close to 100% around the Fermi-surface, making it unsuitable to derive
any quantitative results from this calculation.

One can argue that the influence of the mean-field approximation for clus-
ters with the same size is similar. Therefore, the difference in results can be
brought back to the shape of the coarse-graining patches. One example is
the difference in superconducting transition temperature Tc between the 16A
and 16B site cluster [60]. The role of the geometry has been studied inten-
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2. Theory of the DCA+

sively by investigating the evolution of the magnetic and superconducting
transition temperatures over different cluster sizes [60, 93] or by compar-
ing the site-occupancies of different clusters over a wide range of doping
[102, 28].

The geometric shape dependence of the self-energy is built into the DCA
by construction, since the DCA self-energy is expanded on the coarse-grain
patches as [25]

Σ(~k, vm) = ∑
i

ϕ~Ki
(~k)Σ~Ki

(vm). (2.1)

Here, the set of patches {ϕ~Ki
(~k)} is formally defined through the cluster-

momenta {~Ki},

ϕ~Ki
(~k) =

{
1 ∀j : |~k− ~Ki| ≤ |~k− ~Kj|
0 ∃j : |~k− ~Ki| > |~k− ~Kj|

(2.2)

and Σ~Ki
(vm) is the cluster self-energy for momentum ~Ki.

In this paper, we present an extension to the DCA that allows the self-energy
to be expanded in an arbitrary large set of smooth basis-functions, and
thereby itself becoming a smooth function of momentum. The inclusion
of a smooth self-energy into the framework of the DCA requires a new fun-
damental look at the algorithm. The resulting extended algorithm will be
called DCA+ , indicating an incremental generalization to the well-known
DCA algorithm. The distinguishing feature of the DCA+ algorithm that sets
it apart from the DCA algorithm is that cluster and lattice self-energies are
in general different. In the DCA, the lattice self-energy Σ(~k) is a simple ex-
tension of the cluster self-energy Σ~Ki

via the step function form in Eq. (2.1).
It therefore has jump discontinuities between the patches. In the DCA+ the
lattice self-energy is a function with continuous momentum dependence,
which, when coarse grained is equal to the cluster self-energy.

2.2 Theory

In this section, we present the generic structure of the DCA+ algorithm,
without going into any implementation details. First, we introduce the key
features of the DCA+ algorithm that distinguish it from the DCA, and show
that the latter is just a specialization of the former. Next, we present a ge-
ometric interpretation of the DCA+ algorithm in terms of the functional
representation space of the self-energy. This interpretation provides guid-
ance for how cluster-dependent features are incorporated into the lattice

8



2.2. Theory

self-energy, and offers insights for the derivation of a practical implementa-
tion of the DCA+ algorithm that will be discussed in the following section.
In order to keep the notation simple, we will omit the frequency parame-
ter v in all equations. Furthermore, all single-particle functions defined on
the impurity-cluster are represented by a subscript on the cluster-momenta
(e.g the cluster self-energy Σ~K), while the continuous lattice single-particle
functions will have the usual dependence on the momentum vector ~k (e.g.
the lattice self-energy Σ(~k) ). An overline over the quantity signifies that the
latter has been coarsegrained.

2.2.1 DCA and DCA+ formalisms:

A system of interacting electrons on a lattice is generally described by a
Hamiltonian H = H0 + Hint, where the kinetic energy H0 is quadratic in the
fermion operators and the interaction Hint is quartic. It’s free energy Ω may
be written in terms of the exact single-particle Green’s function G as

Ω[G] = Tr ln(−G) + Φ[G]− Tr[(G−1
0 − G−1)G] . (2.3)

Here we have used a matrix notation for the Green’s function G of the in-
teracting system described by H and the Green’s function G0 of the non-
interacting system described by H0. Φ[G] is the Luttinger-Ward functional [57]
given by the sum of all vacuum to vacuum ”skeleton” diagrams drawn with
G. The self-energy Σ is obtained from the functional derivative of Φ[G] with
respect to G [10, 9]

Σ =
δΦ[G]

δG
, (2.4)

and is related to the Green’s function via the Dyson equation

G−1
0 − G−1 = Σ . (2.5)

These two relations imply that the free energy is stationary with respect to
G, i.e. δΩ[G]/δG = 0. In principle, the exact Green’s function G and self-
energy Σ can be determined from the self-consistent solution of Eqs. (2.4)
and (2.5). However, since the functional Φ[G] is usually unknown, an ap-
proximation is required that replaces the exact Φ[G] by a known or a com-
putable functional. Conserving approximations replace the exact Φ[G] by
an approximate functional, which sums up certain subclasses of diagrams
that are thought to capture the dominant physics. In general, this results in
a weak coupling approximation. A different approach is taken in the DCA:

9



2. Theory of the DCA+

rather than approximating the Luttinger Ward Φ, the functional representa-
tion space of the Green’s function is reduced by replacing the exact Green’s
function G(~k) by a coarse-grained Green’s function Ḡ~K in momentum space
defined as

Ḡ~K =
∫

d~k ϕ~K(
~k) G(~k) . (2.6)

where the coarse-graining functions ϕ~K(
~k) have been defined in Eq. (2.2).We

note that approximating G in this way corresponds to an approximation of
the Laue function, ∆~k1+~k3,~k2+~k4

, which expresses momentum conservation at
each vertex in the diagrams defining Φ [34, 39]. For the single site DMFT
approximation (Nc = 1), ϕ(~k) is constant over the entire Brillouin zone, and
consequently the Laue function is replaced by ∆DMFT = 1, i.e. momentum
conservation is disregarded. For a finite size DCA cluster (Nc > 1), the Laue
function restores momentum conservation for the cluster momenta ~K and
reads in terms of the ϕ~K(

~k)

∆DCA(~k1,~k2,~k3,~k4) = δ~K1+~K3,~K2+~K4
(2.7)

× ϕ~K1
(~k1) ϕ~K2

(~k2) ϕ~K3
(~k3) ϕ~K4

(~k4) .

By replacing the exact Laue function with its DCA approximation in the
Luttinger Ward functional, the momentum integrals over the Green’s func-
tions in the diagrams defining the Φ-functional are reduced to sums over
the finite set of coarse-grained Green’s functions defined in Eq. (2.6). This
way, Φ[Ḡ] becomes identical to the Luttinger-Ward functional of a finite size
cluster and the computation of the corresponding self-energy

ΣDCA
~K

= δΦ[Ḡ~K]/δḠ~K (2.8)

becomes feasible. As such, within the DCA approximation the free energy
functional Ω[G] becomes

ΩDCA[G] = Tr ln(−G) + Φ[Ḡ]− Tr[(G−1
0 − G−1)G] .

From stationarity of the free energy, δΩ[G]/δG = 0, one obtains the Dyson
equation within the DCA

G−1
0 (~k)− G−1(~k) = ∑

~K

ϕ~K(
~k)ΣDCA

~K
. (2.9)

10



2.2. Theory

Here, the right hand side follows from δḠ~K/δG = ϕ~K(
~k) and δΦ[Ḡ~K]/δḠ~K =

ΣDCA
~K

. Eqs. (2.6), (2.8) and (2.9) form a closed set of equations which is solved
iteratively until self-consistency is reached. This is the DCA algorithm. Fol-
lowing Eq. (2.9), the self-energy Σ(~k) of the lattice Green’s function G(~k),
which is used to compute the coarse-grained Green’s function in Eq. (2.6), is
approximated by a piecewise constant continuation of the cluster self-energy
ΣDCA
~K

, which changes between different momentum patches but is constant
within a given patch,

Σ(~k) = ∑
~K

ΣDCA
~K

ϕ~K(
~k). (2.10)

With the DCA+ algorithm we introduce in this paper, the DCA framework
is extended to allow for a more general relationship between the lattice self-
energy Σ(~k) and cluster self-energy Σ~K than that in Eq. (2.10). In the DCA+ ,
in analogy with Eq. (2.6), we only demand the cluster self-energy to be equal
to the coarse-grained lattice self-energy,

Σ̄~K =
∫

d~k ϕ~K(
~k)Σ(~k) . (2.11)

In the DCA algorithm, this requirement is trivially satisfied since according
to Eq. (2.10), Σ(~k) is set to the cluster self-energy Σ(~K) for momenta ~k in
patch Pi. However, it is important to realize that Eq. (2.11) allows for a more
general approximation of the lattice Σ(~k), which, for example, can retain its
smooth momentum dependence instead of the DCA step function character.
To proceed, it is convenient for our purposes to express the free energy as a
functional of the self-energy. By following the work of Potthoff [79, 78], we
eliminate the Green’s function G in favor of the self-energy Σ to write the
free energy as a functional of the self-energy Σ,

Ω[Σ] = −Tr ln[−(G−1
0 − Σ)] + (LΦ)[Σ] . (2.12)

Here, the functional (LΦ)[Σ] is obtained from Φ[G] through a Legendre-
transformation

(LΦ)[Σ] = Φ− Tr[Σ G] . (2.13)

Replacing Σ(~k) in (LΦ)[Σ] with the coarse-grained self-energy in Eq. (2.11),
i.e. Σ(~k) ≈ ∑~K ϕ~K(

~k)Σ̄~K, then yields

(LΦ)[Σ] = Φ−∑
~K

Σ̄~K Ḡ~K , (2.14)

11



2. Theory of the DCA+

where Ḡ~K is the coarse-grained Green’s function defined in Eq. (2.6). If this
functional is used in the free energy in Eq. (2.12), one obtains at stationarity,
δΩ[Σ]/δΣ = 0,

[G−1
0 (~k)− Σ(~k)]−1 = ∑

~K

ϕ~K(
~k) Ḡ~K . (2.15)

Here, the right hand side follows from δΣ̄~K/δΣ = ϕ~K(
~k) and (LΦ)[Σ̄~K]/δΣ̄~K =

−Ḡ~K. Using the identity
∫

d~kϕ~K(
~k)ϕ~K′(

~k) = δ~K, ~K′ and multiplying both sides

with
∫

d~kϕ~K(
~k) results in the DCA+ coarse-graining equation

Ḡ~K =
∫

d~k ϕ~K(
~k) [G−1

0 (~k)− Σ(~k)]−1 . (2.16)

We note that in contrast to the DCA algorithm, the lattice self-energy Σ(~k)
enters in the coarse-graining step. It is related to the cluster self-energy Σ~K
through Eq. (2.11), i.e. its coarse-grained result must be equal to Σ(~K). The
special choice Σ(~k) = ∑~K ϕ~K(

~k)Σ~K satisfies this requirement and recovers
the DCA algorithm. But in general, Σ(~k) needs to only satisfy Eq. (2.11),
i.e. one has more freedom in determining a lattice self-energy Σ(~k) from the
cluster Σ(~K). In the DCA+ algorithm, we take advantage of this freedom to
derive a Σ(~k) that retains a smooth~k-dependence and thus is more physical
than the piecewise constant Σ(~k) of the DCA. As in the DCA, the cluster
self-energy Σ~K may be determined from the solution of an effective cluster
problem described by (LΦ)[Σ] as a functional of the coarse-grained propa-
gator Σ[~K] = Σ[Ḡ(~K)]. This, together with Eqs. (2.11) and (2.16) form the
basis of the DCA+ algorithm.

A detailed description of the algorithm will be given in the implementation
section. Evidently, determining the lattice self-energy Σ(~k) from the cluster
self-energy Σ~K through inversion or deconvolution of Eq. (2.11) presents a
difficult task.

2.2.2 Structure of a DCA+ cluster-calculation:

Since the lattice self-energy Σ(~k) no longer is restricted to Eq. (2.1), it can be
expanded into an arbitrary set of smooth basis functions {Bi(~k)}, such as
cubic splines or crystal harmonics, i.e.

Σ(~k) = ∑
i
Bi(~k)σi . (2.17)

Here, σj are the expansion coefficients of the lattice self-energy correspond-
ing to the basis-function Bj(~k). Contrary to the DCA, the coarse-graining

12



2.2. Theory

patches ϕ~K(
~k) in the DCA+ are not linked in any shape or form to the basis

functions in which we expand the lattice self-energy. As was mentioned in
the previous section, the DCA+ maps the full lattice problem into a cluster
impurity problem embedded into a mean field by coarse-graining both the
lattice self-energy and lattice Green’s function. The cluster-mapping in the
DCA+ is thus very similar to the cluster-mapping in the DCA, with the ex-
ception that we use a continuous lattice self-energy in the coarse-graining of
the Green’s function

Σ̄~K =
Nc

VBZ

∫

BZ
d~k ϕ~K(

~k) Σ(~k), (2.18)

Ḡ~K =
Nc

VBZ

∫

BZ
d~k ϕ~K(

~k)
[
[G0(~k)]−1 − Σ(~k)

]−1
.

Eq. (2.18) can now be simplified by using the explicit expansion of the lattice
self-energy in Eq. (2.17)

Σ̄~Ki
= ∑

j

( ∫
d~k ϕ~Ki

(~k) Bj(~k)

)

︸ ︷︷ ︸
= Pi,j

σj. (2.19)

Here, Pi,j is a projection operator, defined by coarse-graining the basis func-
tion Bj over patch i. Note that in the DCA, this projection operator be-
comes the identity-operation δi,j. Hence, the coarse graining of the lattice
self-energy in the DCA is an implicit operation (σi ≡ Σ̄~Ki

), while in the
DCA+ it becomes explicit.

With the introduction of the cluster-mapping in the DCA+ in Eq. (2.19), the
lattice mapping is conceptually well defined as long as the inverse of the
projection-operator P exists. Assuming that P−1 exists, we can retrieve the
expansion coefficients of the lattice self-energy from the self-energy of the
cluster-solver Σ~K in a straightforward manner

σj = ∑
j
(P−1)i,j Σ~Kj

. (2.20)

This closes the DCA+ iteration and allows us to carry out a self-consistent
calculation.

In Fig. 2.3, we have summarized the generic structure of the DCA+ al-
gorithm, without specifying yet any implementation details of the lattice-
mapping. In the ”cluster-mapping” step, the lattice Green’s function and
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Cluster-

Solver

Σ(�k) =
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Convergence
|Σ̄ �K − Σ �K | ≤ εqmc

Figure 2.3: The generic structure of a self-consistent DCA+ algorithm, in
which the cluster- and lattice-mapping play a central role in order to connect
the continuous lattice self-energy Σ(~k) with the cluster self-energy Σ~K. Con-
vergence is reached when the cluster-solver produces a cluster self-energy
Σ~K equal to the coarse-grained self-energy Σ̄~K ≡ Σ̄(~K).

self-energy are coarse-grained onto the patches defined by Φ~K(
~k) to give Ḡ~K

and Σ̄~K, respectively. A cluster solver algorithm such as QMC is then used to
calculate, from the corresponding bare Green’s function G0,~K, the interacting
Green’s function and self-energy Σ~K on the cluster. In the ”lattice-mapping
step”, which is missing in the standard DCA algorithm, a new estimate
for the lattice self-energy Σ(~k) is then computed through inversion of the
projection operator Pi,j. The lattice self-energy then enters the next cluster-
mapping step via the lattice Green’s function G(~k). In the implementation
section of this paper, we will describe in detail how the lattice-mapping can
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2.2. Theory

be done in a numerically stable way.

Due to the distinction between the lattice and cluster self-energy in the
DCA+ algorithm, we can not use the convergence criteria of the DCA. In
the latter, convergence is reached if the self-energy (lattice or cluster) of the
previous iteration is equal to the current one. If one monitors only conver-
gence on the lattice self-energy in the DCA+ algorithm, one might stop the
iterations although the cluster solver still produces a cluster self-energy Σ~K
that differs from the coarse-grained lattice self-energy Σ̄(~K). This would
indicate that the DCA+ does not converge to a stationary point of the free
energy functional Ω. To avoid such a problem, we demand that conver-
gence is reached only when the coarse-grained lattice self-energy Σ̄(~K) and
the cluster self-energy Σ~K agree to within the Monte Carlo sampling error.

It is important to note that the proposed algorithm is fundamentally differ-
ent from a simple interpolation of the cluster self-energy Σ~K between the
cluster momenta ~K. A smooth interpolation will almost certainly fail to
satisfy Eq. (2.11), i.e. the main requirement of the DCA+ that the coarse-
grained lattice Σ(~k) is equal to the cluster Σ~K. Such a procedure was proven
in Ref. [34] to lead to causality violations when the cluster self-energy is
added back to the inverse coarse-grained propagator in the ”cluster exclu-
sion” step to avoid overcounting of self-energy diagrams. In the DCA+ , the
lattice self-energy is different from an interpolated cluster self-energy and
the self-energy that enters the cluster exclusion step is given by the coarse-
grained lattice self-energy. Because of this, the proof given in Ref. [34] does
not apply and the DCA+ algorithm is not automatically plagued by causality
problems. Although we do not have a rigorous proof that the DCA+ algo-
rithm remains causal, we have never encountered any causality violations in
the application of this method to the single-band Hubbard model.

2.2.3 Analysis of the projection operator Pi,j and its connection to

the locality of Σ(~k):

From the previous subsection it follows that the projection operator Pi,j plays
a central role in the implementation of the DCA+ algorithm. In order to ob-
tain a self-consistent algorithm, it is conceptually clear that the projection
operator has to be invertible. In practice, however, this might not be so eas-
ily achieved. In this section, we give the reader an intuitive understanding
for this operator and show that its inverse exists if the DCA locality assump-
tion is satisfied for the lattice self-energy. Furthermore, we discuss how the
projection operator Pi,j is influenced by the choice of the cluster.

To this end, we expand the lattice self-energy in terms of cubic Hermite
splines [45]. These functions form a basis for cubic splines and obey a con-
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Figure 2.4: The leading eigenvalues of various clusters on a fine mesh of 512
points. We can clearly observe a strong decay of the leading eigenvalues for
small clusters, which becomes weaker with increasing the cluster-size. This
observation explains the intuitive notion that large clusters can describe finer
features in the self-energy, since the image-space of larger clusters contains
more eigenvectors.

volution property. The lattice self-energy can therefore be written as sum
over a very fine mesh {~ki} in momentum space.

Σ(~k) = ∑
~ki

σ~ki
H(~k−~ki) with Σ(~ki) = σ~ki

(2.21)

It has to be stressed that choosing Hermite splines as a basis will not influ-
ence the conclusions we obtain here and thus does not reduce the generality
of our arguments. It just simplifies the discussion, since the expansion index
i can now be identified with a lattice momentum~ki in the fine lattice mesh
and the expansion coefficient σi with the lattice self-energy at that lattice
momentum ~ki. Next, we generalize the cluster-mapping in Eq. (2.19), by
replacing the cluster momentum points {~Ki} by the fine lattice {~ki}. The
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coarse-graining then becomes a convolution of the lattice self-energy with
the patches and we obtain

Σ̄~ki
= ∑

j
σ~k j

∫
d~k ϕ0(~k−~ki)H(~k−~k j)

︸ ︷︷ ︸
=P~ki ,~kj

. (2.22)

The projection-matrix P~ki ,~k j
has now become a symmetric, square matrix. The

latter allows us to do a spectral decomposition of P~ki ,~k j
into its eigenspace. If

we represent its eigenvalues by λ and its corresponding eigenvector by eλ,
we obtain

Σ̄~ki
= ∑

j
σ~k j ∑

λ

λ eλ(~ki)× eT
λ(~k j) (2.23)

In terms of the eigenspace of the projection-operator, the cluster- and lattice-
mapping can now be written as

cluster-mapping: Σ̄~ki
= ∑

λ

λ 〈σ~k j
, eλ(~k j)〉 eλ(~ki)

lattice-mapping: σ~ki
= ∑

λ

λ−1 〈Σ̄~k j
, eλ(~k j)〉 eλ(~ki) (2.24)

Here, the inner-product 〈~a,~b〉 is represented by a simple dot-product be-
tween the two vectors~a and~b. From Eqs. (2.24), it is clear that the spectrum
{λ} of the projection-operator Pij plays a central role in the cluster- and lat-
tice mapping. In Fig. 2.4, we show the leading eigenvalues (i.e. having the
largest absolute value) of Pi,j for various clusters. One can clearly observe
that all eigenvalues are smaller or equal than one and decay rapidly for
small clusters (Nc ≤ 8) and slowly for large clusters (Nc ≥ 32). This can be
easily understood from the form-factor of the patches. The latter are very
similar to box-car filters, which are one of the most common low-pass filters
used in the field of signal processing. Since the coarse-graining of the lattice
self-energy in Eq. (2.22) can be rewritten as a convolution with the patches,
the projection operator Pi,j will in fact reduce all the Fourier components
during the convolution, insuring that the L2-norm of any function in the
eigenspace never grows. Consequently, this is also true for all eigenvectors,
which leads us to conclude that the eigenvalues have to be less or equal to
1.
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Figure 2.5: The dimension of the union image space IA
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ferent clusters A and B versus the eigenvalue index i. Since the rank of IA
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both equal i, any deviation of the rank for the space IA
λi
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λi
from

i indicates that the projection operators of clusters A and B span different
image spaces. One can clearly observe that the differentiation of the 16A
site cluster eigenspace with smaller clusters occurs faster.

Using the spectral decomposition of the projection-matrix, we can split the
representation space of the continuous lattice self-energy into the image-
space I and the kernel-space K of the projection operator Pi,j. Since our
projection-operator does not follow the strict mathematical definition of a
projection operator1, we define the image Iε as the space spanned by the
eigenvectors that have an eigenvalue larger than ε. Here, ε is a small, positive
cut-off parameter. The kernel Kε contains the remainder of the space, and
is thus spanned by the eigenvectors with an eigenvalue smaller than ε. Due
to the inversion of the eigenvalue in Eq. (2.24), the lattice-mapping is only
well-defined on the image-space Iε. This brings us to the first important
observation. In order to do a self-consistent DCA+ calculation, the coarse-
grained lattice self-energy should always be entirely defined on the image-
space Iε of our projection operator. Otherwise, there exists no well-defined

1A projection operator should satisfy the relationship P2 = P. The eigenvalues of such
an operation can only be 0 and 1.
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Figure 2.6: The correlation between the magnitude of the leading eigen-
value and the delocalization of the its corresponding eigenvector for various
clusters.

transformation that maps the cluster self-energy back into the lattice self-
energy, which in turn breaks the DCA+ self-consistency loop. Notice that
this requirement holds trivially in the case of the traditional DCA, since in
that case the projection matrix is simply the identity-matrix of size Nc, and
all eigenvalues are equal to one.

Eq. (2.23) can also explain how the geometry of the patches will influence
the results obtained with the DCA+ . In Fig. 2.5, we plot the union space of
the image spaces IA

λi
and IB

λi
versus eigenvalue index i for different clusters.

The plot shows very clearly that the first leading eigenvectors are equal to
each other, and gradually diverge as eigenvectors with smaller eigenvalues
are added. This brings us to the second observation. If one wants to carry
out a DCA-calculation with results that are independent of cluster shape, the
cluster self-energy has to be representable on the intersection of the image-
spaces Iε of both clusters.

So far, we have only discussed and introduced strict geometrical criteria
on the lattice and cluster self-energy, that indicate when a DCA+ cluster
calculation is feasible. In order to link geometrical criteria to physics, we
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show in Fig. 2.6 the delocalization of the leading eigenvectors 〈r2〉. Formally,
we define the delocalization as

〈r2〉λ =

√
∑~r eT

λ(~r) r2 eλ(~r)
∑~r eT

λ(~r) eλ(~r)
. (2.25)

At close inspection, we can see a clear correlation between the absolute value
of the leading eigenvalues λ and the delocalization of its corresponding
eigenvector for all cluster sizes. This correlation shows that the space Iε is
actually spanned by the eigenvectors with a small delocalization. As a result,
satisfying the geometric criteria to do a self-consistent DCA+ calculation is
essentially equivalent to satisfying the DCA-assumption of locality for the
lattice self-energy. Another important conclusion that can be drawn from
Fig. 2.6 is that the number of vectors that span the space Iε=0.25 becomes
larger with increasing cluster size. This correlation reflects the intuitive no-
tion in the DCA that larger clusters can describe finer features of the lattice
self-energy.

2.2.4 Role of the cluster in the DCA+

In the DCA algorithm, the real space cluster takes a central role. It com-
pletely defines the basis-functions in which the self-energy is expanded.
Furthermore, the real space cluster dictates how the lattice is mapped on the
cluster through the coarse-graining procedure. Consequently, solutions ob-
tained with the DCA algorithm usually dependent on the particular choice
(shape) of the cluster. In practice, this leads to a very good qualitative de-
scription of the physics, but prohibits quantitative analysis, as calculated
physical quantities strongly depend on cluster shape. In the DCA+ , we
start from an expansion of the self-energy into an arbitrary set of basis-
functions. In this way, the influence of the real space cluster is reduced,
since it does not dictate the basis-functions on which the self-energy is ex-
panded. The real space cluster only specifies how the cluster is mapped on
the lattice through the shape of the coarse-graining patches. Consequently,
the focus in the DCA+ shifts from the real space cluster to the projection
operator Pi,j. This operator embodies the quantum cluster approximation
of the DCA+ , since it connects the cluster self-energy with the lattice self-
energy in a purely geometric way. The projection operator is only defined by
the set of basis-functions of the lattice self-energy and the real space cluster
and not subjected in any way to physical parameters (such as temperature,
band-structure, interaction terms, ...). This purely ’geometric’ property of
the projection operator allows us to find a priori the necessary conditions
to which the cluster self-energy has to be subjected, in order to allow for
a self-consistent, cluster-independent DCA+ calculation. These necessary
conditions that follow from the discussion in the previous subsections are:
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• In order to perform a self-consistent DCA+ calculation, the cluster self-
energy has to converge in the image-space Iε of the projector.

• In order to perform a cluster-independent DCA+ calculation on the
cluster A and B, the cluster self-energy needs to converge on the inter-
section of the image-spaces of both projectors (IA

ε

⋂ IB
ε ) .

2.3 Implementation of the self-consistent loop.

In the last section, we have introduced a projection operator Pi,j and shown
its involvement in the cluster and lattice-mapping. Via a geometric consid-
eration, we have shown conceptually that its inverse exists as long as the
expansion coefficients 〈Σ̄~k, eλ(~k)〉 of the cluster self-energy vanish rapidly in
the image-space Iε of the projection operator Pi,j. At closer inspection, the
lattice mapping is thus a two stage process. First, we need to determine the
expansion coefficients of the cluster self-energy. To this end, we will propose
a novel interpolation technique, which is motivated from the analytical prop-
erties of the self-energy. The interpolated cluster self-energy Σ̄~k j

is then used

to compute the inner product 〈Σ̄~k j
, eλ(~k j)〉 with the eigenfunctions of the

projection operator Pi,j, which gives the expansion coefficients of the cluster
self-energy. Secondly, we need to deconvolute the interpolated cluster self-
energy on the image space Iε, where we need to determine the optimal value
for the parameter ε. If the latter is too large, the self-consistency can not be
reached. If ε is too small, the lattice-mapping will become numerically unsta-
ble due to the division of small eigenvalues. To solve this problem, we adapt
the Richardson-Lucy deconvolution algorithm, which inverts Eq. (2.22) in a
numerically stable way.

2.3.1 Interpolation

In the context of tight-binding models, one of the most successful algorithms
to interpolate its band structure is the Wannier-interpolation-method [64]. It
finds its justification in the localized nature of Wannier orbitals, from which
the tight-binding models are derived. Since the self-energy is a correction
to the band-structure due the interaction between the electrons, the Wannier
interpolation method seems a suitable interpolation algorithm. Okamoto et
al. [75] have examined this possibility implicitly, by expanding the lattice
self-energy Σ(~k) into the cubic-harmonic basis-functions {C~K(~k)}.
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Figure 2.7: The decay of ΣR for a Nc = 100-site cluster with U/t = 7
and t′/t = 0 for various temperatures at half filling. For high temperatures
(T ≤ 0.3), the system is only weakly correlated and ΣR will rapidly decay.
For low temperatures, the correlations exceed the cluster-radius Rc = 5.

Σ(~k) = ∑
~K

C~K(~k) ΣK (2.26)

C~K(~k) =
1

Nc
∑
~R

eı~R(~K−~k)

This approach only works when the self-energy Σ~K is sufficiently smooth,
such that the real-space self-energy Σ~R converges on the cluster in real space.
Notice that the latter is implicitly computed in Eq. (2.26), since

Σ(~k) = ∑
~K

C~K(~k) Σ~K = ∑
~R

e−ı~R~k 1
Nc

∑
~K

eı~R~KΣ~K

︸ ︷︷ ︸
=Σ~R

.

The sum over all lattice points can now be split into two terms. In the first
term, we run over all lattice-points within the cluster-radius. In the second
term, we sum over all the remaining points in the lattice.
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Σ(k) = ∑
~R

e−ı~R~KΣ~R

= ∑
|~R|<Rc

e−ı~R~kΣ~R + ∑
|~R|≥Rc

e−ı~R~kΣ~R (2.27)

If correlations have longer range, Σ~Ri
will no longer converge on the clus-

ter in real space. This is clearly illustrated in Fig [2.7], where we show
the self-energy Σ~R for a Nc = 100-site cluster with U/t = 7 for various
temperatures. At high temperatures (T ≥ 0.25), the system is only weakly
correlated. The self-energy Σ~R in this temperature range is contained within
the cluster-radius Rc = 5. For lower temperatures, it is clear that ΣR is ex-
tends beyond Rc. Applying the Wannier interpolation scheme according to
Eq. (2.26) to such correlated systems is simply not allowed, since the expan-
sion coefficients Σ~R outside the cluster can not be assumed to be zero. A
straightforward application of Eq. (2.26) will lead to ringing and eventually
to causality violations. The latter was observed by Okamoto et al. [75], and
could only partially be resolved by introducing low-pass filtering schemes.
The applicability of this approach is very limited, due to a lack of a general
framework to determine these filters.

Formalism of the interpolation:

From the previous section, it has become clear that the interpolation tech-
niques such as Eq. (2.26) can only work if the function converges on the
finite (and often small) basis-set. The rate of convergence depends critically
on the choice of the basis-functions. Consider for example the free Green’s
function G0 of the single band Hubbard model:

G0(~k, v) = [ı v− ε(~k)]−1. (2.28)

While this Green’s function G0 will converge poorly on the cubic-harmonics
of the lattice for small frequency v, it is straightforward to see that [G0]−1

will be completely converged on a 4-site cluster. This simple example shows
how one can extend the interpolation-idea introduced by Okamoto et al [75].
Given an injective transformation T , we can write

F (~k) = T −1
[
T
[
F
]
(~k)
]

= T −1
[
∑
~K

C~K(~k) T
[
F~K

]]
(2.29)
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Figure 2.8: Interpolation-procedure for the self-energy ΣK at the lowest mat-
subara frequency for a 100-site cluster at a temperature T = 0.2, U/t = 7 and
t′ = 0 at half-filling. (A) The interpolated function Σ(~k) is a smooth function
through the results ΣK obtained from the QMC cluster solution, where the
circles and diamonds represent respectively the real and imaginary part. (B)
The transformed function T [Σ] smoothes the self-energy function, making it
suitable for a cubic harmonics expansion. (C) The Fourier transform of the
interpolated function Σ(k). Notice that the tails expand much further than
the cluster-radius Rc = 5. (D) The Fourier transform of the function T [ΣK].
The convergence is reached at Rc = 3.

The method of operation to interpolate a function becomes now clear. Find
an injective (and preferably analytical) transformation T , such that the trans-
formed function-values converge on the chosen basis-functions. Use this ex-
pansion to compute the transformed function-values on arbitrary k-points.
Finally, apply the inverse transformation T −1 on the transformed function-
values in order to obtain the desired interpolated function-values on arbi-
trary k-points.

This approach has many advantages. First, it provides a measure that in-
dicates when the interpolation-procedure works or fails. If T [Σ~K] does not
converge on the basis-set, one is not allowed to perform an interpolation.
Second, this interpolation-procedure does not introduce extra information –
filtering schemes and other numerical tricks to ensure causality, on the other
hand, introduce extra, undesirable structure into the interpolated functions.
By using filtering schemes or other numerical tricks to assure causality, we
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2.3. Implementation of the self-consistent loop.

introduce extra structure in the function that is to be interpolated, which is
undesirable. Third, if the transformation T is analytical, we will not break
the analyticity of the interpolated function. For Green’s functions and their
derived functions such as the self-energy, analyticity is an important prop-
erty. In arbitrary interpolation schemes such as splines [19] or radial-basis
expansions [16], this analyticity is often broken. The obtained interpolating
function is therefore questionable from a physics-point of view. The chal-
lenge of this approach is naturally the search for a correct transformation T .
Notice that T can be different for different functions, since the only require-
ments are injectivity and convergence on the chosen basis-set. In the next
subsections, we will propose such a transformations for the self-energy Σ.
The proposed transformation will be motivated by physical and analytical
properties of the self-energy.

Interpolation on large clusters:

Since the imaginary part of the self-energy is strictly negative in the upper-
half of the complex-plane [1]

Im[Σ(~k, ı v > 0)] < 0. (2.30)

we can introduce an injective transformation T that preserves the analyticity
of the self-energy2,

T (Σ) =
[
Σ− α ı

]−1, with α > 0. (2.31)

Due to the property shown in (2.30), the transformation T will map the self-
energy Σ into a bounded function, irrespective of how spiky the self-energy
Σ is. Notice also that we first shift the imaginary part of the self-energy
down by α ı, in order to avoid introducing poles due to the Monte Carlo sta-
tistical noise. Consequently, the function T (Σ) will now be localized in real
space, and we can safely perform an expansion of the function T (Σ) over
cubic harmonics. We have illustrated this process in Fig. 2.8, by applying
our interpolation procedure to a 100-site cluster at a temperature T = 0.2 at
half filling. In (A), we show respectively the computed values of the clus-
ter self-energy Σ~K and its interpolation Σ~k along a high-symmetry line in
the Brillouin-zone. Notice that the imaginary part of the interpolation func-
tion remains at all times negative! In (B), the transformed function T [Σ~K]
is shown, together with its interpolating function. Clearly, the transforma-
tion T has reduced the sharp features in the self-energy, and the function
has become smoother. In (C) and (D), we show the Fourier transform from

2Since Im[Σ(~k, v)] < 0, we will not introduce any new poles in the upper-half plane by
inverting the function.
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2. Theory of the DCA+

respectively the interpolated self-energy Σ(~k) and the transformed values
T [Σ~K]. The large difference in the convergence radii is clear, and shows the
effectiveness of our indirect approach compared to a direct one. This result
is not a coincidence. In the appendix, we have proven in a rigorous way the
point-wise convergence.

Interpolation on small clusters:

For certain parameter sets, the fermionic sign problem prevents the investi-
gation of large enough clusters, for which T [Σ] will converge. In this case,
we recommend to interpolate the T [Σ] using cubic splines, instead of inter-
polating the latter with the earlier proposed Wannier-interpolation. Since
T [Σ] is a much smoother function, cubic splines can still perform reason-
ably well, even in the case of small clusters. The self-energy on the other
hand will not be smooth, and a straightforward spline interpolation will
lead to overshoots or ringing, which in turn turn might lead to an acausal
self-energy. This particular phenomenon has been studied extensively by
Okamoto et al [75]. The ringing might be cured by the use of tension
splines [18], in which case a tension parameter is introduced. It is how-
ever important to keep in mind that the splines might add extra information
into the system, and thus bias the physics. This problem does not occur with
Wannier interpolation, as long as the Fourier coefficients of T [Σ~K] converge
on the real space cluster.

lattice-symmetry:

Most of the clusters used in the DCA do generally not obey the same symme-
try operations as the infinite lattice. As a consequence, the lattice-self-energy
in the DCA breaks the symmetry of the lattice, due to its strict parametriza-
tion with the coarsegrain patches. The only way to resolve this issue in
the DCA, is to restrict to the few clusters that obey the cluster-symmetry.
In order to remove this undesirable feature in the DCA+ , we symmetrize
the self-energy after the interpolation. The interpolated cluster-self-energy
obeys thus by construction the symmetry operations of the lattice.

2.3.2 Cluster Deconvolution

The goal of this section is to present a practical implementation of the lattice-
mapping. As mentioned in the theoretical section of this paper, the lat-
tice mapping is in essence the inversion of the cluster mapping defined in
Eq. (2.18). In a common DCA+ calculation, we will have much more ba-
sis functions than Monte Carlo cluster-points. As a consequence, we need
to determine more lattice expansion coefficients than cluster-points that are
given by the cluster-solver. The inversion problem is thus seemingly under-
determined. Therefore, we do not attempt to solve Eq. (2.18) directly, but
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2.3. Implementation of the self-consistent loop.

first generalize the coarsegraining equation of the self-energy. This is ac-
complished by rewriting each coarsegraining patch as a translation of the
patch around the origin, i.e ϕ~K(

~k) = ϕ~0(
~k − ~K). Next, we generalize the

cluster-momentum vector ~K to an arbitrary momentum vector. Using the
interpolated cluster self-energy Σ̄~K as a substitute for the cluster self-energy
Σ~K in Eq. (2.18), we obtain

Σ̄(~k) =
Nc

V

∫
d~k′ ϕ~0(

~k− ~k′) Σ(~k′) (2.32)

Any solution of Eq. (2.32) is thus also a solution of Eq. (2.18). We should
stress that with the exception of the continuity of the self-energy, this gen-
eralization does not introduce any new information as long as the Wannier-
interpolation converges! With Eq. (2.32), we have now rephrased the lattice-
mapping into a deconvolution problem. These type of problems are regu-
larly encountered in the field of signal theory and image processing and vari-
ous algorithms have been successfully developed to address the ill-conditioned
deconvolution problem [38].

The Richardson-Lucy algorithm:

One of the most common deconvolution algorithms is the Richardson-Lucy
algorithm [81, 56]. The latter is based on a Bayesian inference scheme. Since
the patches are strictly positive and integrate to unity, we can interprete
them as a probability distribution function.

∀~k,~k′ : ϕ~0(
~k−~k′) ≥ 0, 1 =

Nc

VBZ

∫

BZ
d~k ϕ~0(

~k− ~k′)

As such, we can apply Bayes theorem and construct a conditional probability
Q for any given lattice self-energy Σ(~K)

Q(~k|~k′) = ϕ0(~k′ −~k) Σt
l(
~k)∫

BZ d~k′′ ϕ0(~k′ −~k′′) Σ(~k′′)
. (2.33)

We should stress at this point that conditional probability Q is computed
separately for the real and imaginary part of the self-energy. The conditional
probability Q(~k|~K) is then used to construct a new lattice self-energy Σ

′
(~k),

given a continuous cluster self-energy Σ̄(~k′),
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Figure 2.9: Relative error between the cluster self-energy Σ~K and the inte-
grated lattice self-energy Σ̄(~K) for the real (open symbols) and imaginary
(solid symbols) part at 5% doping and T = 0.2.

Σ
′
(~k) =

∫

BZ
d~k′ Qt(~k|~k′)Σ̄(~k′). (2.34)

The idea of the Richardson-Lucy algorithm is now to use Eq. (2.33) and
Eq. (2.34) in an iterative way. After plugging both equations together, we
end up with a fixed point problem

Σ(~k)← Σ(~k)
∫

d~k′
ϕ0(~k−~k′) Σ̄(~k′)∫

d~k′′ ϕ0(~k′ −~k′′) Σ(~k′′)
. (2.35)

If the interpolated function Σ̄(~k) is now used as our initial guess for the lat-
tice self-energy Σ(~k), Eq. (2.35) provides us with a simple implementation
for the lattice-mapping. In light of the DCA+ algorithm, the Richardson-
Lucy deconvolution algorithm has many interesting properties, that make
it an ideal algorithm to be used for the deconvolution. First of all, it is a
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cluster self-energy Σ~K(πT) and the coarse-grained lattice self-energy at the
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T = 0.2.

straightforward algorithm that does not need any extra, non-physical input.
Other deconvolution algorithms, such as total variation [85, 14] introduce
non-physical penalty factors to insure smoothness of the result. Secondly,
the Richardson-Lucy algorithm conserves the sign of strictly positive and
negative functions. This property can be easily proven in Eq. (2.35), since
ϕ0(~k) is strictly positive. Hence, if the initial guess for Σ(~k) and Σ̄(~k′) are
both positive (negative) for all momenta ~k, the resulting Σ(~k) will also be
positive (negative). Therefore, if the interpolated cluster self-energy Σ̄(~k) is
causal, the lattice self-energy will also be a causal function. Third, it has been
proven that the solution of this iterative scheme converges to the maximum
of the likelihood function [56]. Hence, of all lattice self-energies that gener-
ate the same cluster self-energy after the convolution (coarse-graining), the
Richardson-Lucy algorithm will produce the lattice self-energy that is the
most likely to reproduce the cluster self-energy.

Like all other deconvolution algorithms, the Richardson-Lucy algorithm is
an approximate algorithm, meaning that the convergence to the exact solu-

29



2. Theory of the DCA+

tion is not guaranteed up to an arbitrary precision. This is not surprising,
since we know that the convolution is invertible as long as the expansion
coefficients of the cluster-self-energy in Eq. (2.24) decay faster than the eigen-
values of the projection-operator. Consequently, the smaller the cluster, the
slower the Richardson-Lucy algorithm will converge to a solution and the
bigger the discrepancy between the coarsegrained lattice self-energy Σ̄(~K)
and the cluster self-energy Σ~K obtained from the cluster-solver. This phe-
nomenon is illustrated in Fig. 2.9, where we show the relative error in the
L2-norm between Σ̄(~K) and Σ~K. The figure clearly shows that the larger
cluster converges faster and that the residual error between the cluster and
coarsegrained self-energy decreases with increasing cluster-size.

In a typical deconvolution, we stop the iteration process if a certain accuracy
is obtained. In theory, one could use the statistical error of the Monte Carlo
integration to determine the accuracy. In practice, we have found that a rel-
ative error below 2.5% delivers in most cases very good results. In Fig. 2.10,
we show the lattice self-energy for a 32-site cluster, stopped at an accuracy
of 2.5%. We can clearly observe that the cluster and coarse-grained lattice
self-energy coincide very well.

2.4 Theory and implementation of the two-particle frame-
work.

In this section, we present the theoretical foundation as well as a practi-
cal implementation of the two-particle framework in the DCA+ algorithm.
Just as in the DCA, this framework is a systematic methodology, aimed at
detecting the critical temperature of various kinds of phase-transitions in
the lattice. Since the DCA+ is a natural extension of the DCA, we will
first briefly revise how phase transitions are detected in the DCA, following
closely the argumentation of Jarrell et. al. [39]. Next, we introduce the the-
oretical foundation of the two-particle framework in the DCA+ . Starting
from the diagrammatic criterium for a thermodynamic consistent algorithm
Γ(k1, k2) = δΣ(k1)/δG(k2) = δ2Φ/(δG(k1)δG(k2)) introduced by Baym and
Kadanoff [10, 9], we derive a coarsegraining condition that links the lat-
tice vertex function Γ(k1, k2) with the cluster vertex function ΓK1,K2 . This
coarsegraining condition is the two-particle equivalent of the coarsegraining
condition for the self-energy in the DCA+ . Finally, we introduce a practical,
numerically stable algorithm that for a given cluster vertex generates a con-
tinuous lattice vertex, that satisfies the previously introduced two-particle
coarsegraining condition.
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2.4. Theory and implementation of the two-particle framework.

2.4.1 Detection of phase-transitions in the DCA

The critical temperature of a second order phase transition can be accurately
recorded by monitoring the divergence of the associated lattice-susceptibility
over a range of temperatures. The lattice-susceptibility is obtained indirectly
from the two-particle cluster Greens-functions, which are computed in the
last DCA-iteration when self-consistency is reached for the self-energy. In
this section, we revise how to compute lattice-susceptibilities in the DCA for
the two most prominent channels, namely the particle-hole (ph) and particle-
particle (pp) channel. Formally, the two-particle Greens functions in the ph
and pp channel are defined as

GQ,I I
ph (K1, K2) = 〈c†

K1+Q cK1 c†
K2

cK2+Q〉,
GQ,I I

pp (K1, K2) = 〈c†
K1+Q c†

−K1
c−K2 cK2+Q〉. (2.36)

Here, the brackets 〈...〉 represent the thermal average, which in our case is
obtained through a CT-AUX Quantum Monte Carlo impurity solver and a
delayed NFFT measurement technique. For the symbols K and Q, we use
the conventional representation [1] K = {~K, vm} and Q = {~Q, νn} where
~K and ~Q are the cluster momentum vectors and vm and νn are respectively
the uneven and even frequencies. Since Q is a constant, we will drop the
superscript Q for notational convenience. With the interacting two-particle
cluster Greens function GI I , we can solve the cluster Bethe-Salpeter equation
towards the cluster vertex function Γc

K1,K2
. This is accomplished by inverting

the matrix-representation of respectively the non-interacting and interacting
two-particle cluster Greens function G0 and GI I , and subsequently subtract-
ing the inverse matrices:

Γc
K1,K2

=
[
G0]−1

K1,K2
−
[
GI I]−1

K1,K2
. (2.37)

Here, G0 is constructed from a pair of interacting single-particle cluster
Greens-functions GI , which are also computed in the last DCA-iteration. In
accordance with Eqs. (2.36), the non-interacting two-particle Greens function
is different for both channels and defined as,

G0
ph(K1, K2) = δK1,K2 GI(K1 + Q)GI(K2),

G0
pp(K1, K2) = δK1,K2 GI(K1 + Q)GI(−K2). (2.38)

Next, we compute the two-particle lattice Greens-function χ, by approximat-
ing the lattice vertex function with the cluster vertex function obtained from
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Eq. (2.37). Just as the lattice self-energy in the DCA, the cluster vertex func-
tion ΓK1,K2 is expanded into the set of coarsegraining patches {ϕ~Ki

(~k)} in
order to obtain the lattice vertex function Γ(k1, k2)

Γ(k1, k2) = ∑
K1,K2

ϕK1(k1) Γc
K1,K2

ϕK2(k2).

Similarly to the lattice self-energy in the DCA, the lattice vertex function is
constant on the patches. This reduces the complexity of the lattice Bethe-
Salpeter significantly, since the product of the lattice vertex function Γ with
the non-interacting two-particle lattice Greens-function χ0 can now be sim-
plified to the product of the cluster vertex function Γc with the coarsegrained
non-interacting two-particle lattice Greens-function χ̄0. Formally, the latter
is defined in both channels as

χ̄0
ph(K1, K2) = δK1,K2

∫
d~k ϕ~K1

(~k) G(~k + Q)G(~k), (2.39)

χ̄0
pp(K1, K2) = δK1,K2

∫
d~k ϕ~K1

(~k) G(~k + Q)G(−~k).

The lattice Bethe-Salpeter equation can now be solved towards the two-
particle lattice Greens-function χ

χ = χ̄0 [1− Γc χ̄0]−1. (2.40)

The corresponding lattice susceptibility is now obtained by summing over all
frequencies and all cluster-momenta. Since a second order phase transition
is marked by a divergence of its susceptibility χ, the critical temperature can
be accurately determined by investigating where the leading eigenvalue of
the matrix Γc χ̄0 crosses 1.

2.4.2 Thermodynamic self-consistency and its implication for the
DCA+

Early on, Hettler [35, 34] pointed out that the DCA is thermodynamic self-
consistent algorithm, meaning that the vertex-function obtained with the
DCA is in effect equal to the functional derivative of the cluster self-energy
ΣK towards the cluster Greens-function GK

Γc
K1,K2

=
δΣK1

δGK2

. (2.41)
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This property is essential for the DCA in order to accurately monitor phase-
transition in the context of the two-particle framework. As was shown by
Baym and Kadanoff, an algorithm that violates Eq. (2.41) will report differ-
ent phase transition temperatures in the single and two-particle framework,
which is clearly unphysical.

In the DCA+ , the lattice self-energy Σ(k) is the central quantity in the self-
consistency loop and is kept as a fully continuous function in momentum-
space. The equivalent of the self-energy in the two-particle framework is the
vertex-function. Consequently, we want to extend the two-particle frame-
work of the DCA to the DCA+ by introducing a continuous lattice vertex
function. In order to insure thermodynamic self-consistency, we demand
that this continuous lattice vertex function satisfies the continuous equiva-
lent of Eq. (2.41), i.e.

Γ(k1, k2) =
δΣ(k1)

δG(k2)
. (2.42)

Since the exact functional dependence of the self-energy in terms of the
Greens function is not tractable, it is not possible to deduce lattice vertex
function Γ directly from Eq. (2.42). To that end, we apply the chain-rule, a
common technique in the DCA+ , on the right hand side and obtain

Γ(k1, k2) = ∑
K1,K2

δΣ(k1)

δΣK1

δΣK1

δGK2

δGK2

δG(k2)
. (2.43)

We can now multiply both sides with a product of coarsegraining patches
ϕ~K(k1) ϕ~K′(k2) and integrate both sides of the equation over the Brillouin
zone. Using the functional definition of the coarsegraining patch ϕ~K(

~k1) =
δΣK/δΣ(k1), we can simplify the first factor of each term in Eq. (2.43) to a
delta-function ϕ~K(

~k1)× δΣ(k1)/δΣK1 = δ~K,~K1
. Using the coarsegrain condi-

tion for the Greens-function in the DCA+ , we can simplify the last factor
in each term to δGK2 /δG(k2) = ϕ ~K2

(~k2). Due to the orthonormality of the
coarsegrain patches, we then arrive at another delta-function
Nc/V

∫
dk2 ϕ ~K2

(~k2)ϕ~K′(k2) = δ~K′,~K2
. With the realization that δΣK1 /δGK2 is in

fact the cluster vertex function Γc
K1,K2

shown in Eq (2.41), we can now write
down the DCA+ coarsegraining condition for the lattice vertex-function

Γc
K1,K2

=
(Nc

V

)2 ∫

V
d~k1d~k2 ϕ~K1

(~k1) Γ(~k1,~k2) ϕ~K2
(~k2). (2.44)
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The DCA+ can therefore be extended to the two-particle framework in a
straightforward way by introducing a lattice-mapping for the cluster vertex
function Γc

K1,K2
to a lattice vertex function Γ(~k1,~k2), which is fully continuous

in momentum space. It should be noted that the coarsegraining condition
in Eq. (2.44) is the two-particle equivalent of the self-energy coarsegraining
condition shown in Eq. (2.32), which forms the basis of the DCA+ algo-
rithm. Just as with the self-energy in the DCA+ , the lattice vertex function
Γ is defined implicitly through a coarsegraining over its momenta vectors.
Consequently, we have assumed that the lattice vertex function is a smooth
function, in which case we can safely invert Eq. (2.44).

Assuming that we can invert Eq. (2.44), the process of detecting a phase tran-
sitions in the DCA+ is very similar to the DCA. Equations (2.36), (2.37) and
(2.38) are not affected by the DCA+ . In Eq. (2.39), the noninteracting two-
particle lattice Greens function will now be computed using the continuous
lattice self-energy in the Greens-functions of the integrand. Just as the lattice
vertex function, the latter will be computed on a fine k-mesh, in which case
the lattice Bethe-Salpeter equation for the DCA+ becomes

χ = χ0 [1− Γ χ0]−1. (2.45)

The next section will be entirely dedicated to a numerical algorithm that can
solve the integral-equation (2.44) in a stable fashion.

2.4.3 Algorithm for the lattice-vertex Γ(~k1,~k2)

The lattice self-energy Σ(~k) is obtained in the DCA+ through a consecutive
interpolation and deconvolution of the cluster-self-energy Σ~K. To maintain
the similarity between the vertex and the self-energy, we will follow the same
recipe in order to implement a lattice-mapping for the vertex. To simplify the
interpolation-process, we first decompose the cluster vertex into its singular
value representation

Γc
~K1,~K2

= ∑
i

σi Ui(~K1)Vi(~K2). (2.46)

In this way, the cluster vertex function can be written as a sum of factor-
ized terms into its two indices K1 and K2. The singular value decompo-
sition of the cluster vertex is motivated by two reasons. First of all, the
implementation of the interpolation is greatly simplified with the decompo-
sition. It is much easier to interpolate functions with a single index than
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2.4. Theory and implementation of the two-particle framework.

a double momentum index. Secondly, in all cases encountered in this pa-
per, we have observed that the singular vectors have typically a very strong
frequency dependency, but a weak momentum dependency. This is not sur-
prising from a physical point of view, as the effective interaction between
the quasi-particles is very localized in real space. This weak momentum
dependence makes them ideal functions to interpolate with cubic splines,
without the risk of introducing any numerical anomalies. The interpolated
vertex-function Γ̃ can thus be written down as,

Γ̃(~k1,~k2) = ∑
i

σi Ui(~k1)Vi(~k2). (2.47)

Just as in the DCA+ , we generalize the coarsegraining in Eq. (2.44) to a con-
volution and expand the lattice vertex function into the set of basis-functions
{B} used for the lattice self-energy 3. If cubic Hermite splines [45] are used
as basis-functions, we can rewrite Eq. (2.44) as a matrix-equation,

Γ̃(~k′1,~k′2) = ∑
~k1,~k2

Φ(~k′1,~k1) Γl(~k1,~k2)Φ(~k′2,~k2)

Φ(~k1,~k2) =
∫

d~k′ ϕ~0(~k1 −~k)B(~k−~k2) (2.48)

Using a singular value decomposition of the matrix Φ, we can formally
invert Eq. (2.48) and obtain an explicit formula for the lattice-vertex Γ

Γ(~k1,~k2) = ∑
i

σi ũi(~k1) ṽi(~k2), (2.49)

ũi(~k) = ∑
j

vΦ
j (~k)

〈uΦ
j (
~k), Ui(~k)〉

σΦ
j

,

ṽi(~k) = ∑
j

〈Vi(~k), vΦ
j (
~k)〉

σΦ
j

uΦ
j (~k) .

From the geometric interpretation of the DCA+ , we know that the singular
values of the Φ-matrix decay rapidly. Just as in the case of the self-energy,
the lattice mapping for the vertex can only be performed if the expansion
coefficients 〈uΦ

j (
~k), Ui(~k)〉 and 〈Vi(~k), vΦ

j (
~k)〉 decay faster than the singular

values.
3The set of basis-functions {B} can be freely chosen by the reader, since the DCA+ is not

dependent on the choice of the basis-functions. In this paper, we have used cubic Hermite
splines [45].
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Chapter 3

Implementation of the CT-AUX
cluster-solver:

Abstract

Solving the cluster-impurity problem is the most expensive computa-
tional step in the entire DCA(+)-loop. As such, it is imperative to
have a fast cluster-solver in order to reach the interesting regions of
the phase-diagram. In this chapter, we present improvements to the
continuous-time auxiliary field (CT-AUX) cluster solver, which was ini-
tially developed by Gull et. al. For the sampling of the configuration,
we present a submatrix update algorithm that is very similar to the sub-
matrix update algorithm in the Hirsch-Fye and originally developed by
Nukala et. al. The algorithm takes optimal advantage of modern CPU
architectures by consistently using matrix instead of vector operations,
resulting in a speedup of a factor of at least 10. The measurement of the
single- and two-particle Greens-function was also improved by intro-
ducing a non-equidistant fast Fourier transform (NFFT). Compared to
a straightforward non-equidistant discrete Fourier-transform (NDFT),
the NFFT algorithm accelerates the measurements with 2 to 3 orders of
magnitude.

relevant papers:

• E. Gull, P. Werner, O. Parcollet and M. Troyer, Continuous-time auxiliary-
field monte carlo for quantum impurity models., EPL, 82:57003, 2008.

• P. Nukala, T. Maier, M. Summers, G. Alvarez, and T. Schulthess, Fast
update algorithm for the quantum Monte Carlo simulation of the Hubbard
model, PRB, 80:195111,2009.

• E. Gull, P. Staar, S. Fuchs, P. Nukala, M. Summers, T. Pruschke, T.
Schulthess and T. Maier, Submatrix updates for the continuous-time auxiliary-
field algorithm, PRB, 83:075122,2011.
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• P. Staar, T. Maier and T. Schulthess, Efficient non-equidistant FFT ap-
proach to the measurement of single- and two- particle quantities in continu-
ous time Quantum Monte Carlo methods., Journal of Physics: Conference
Series, 402:012015, 2012.

3.1 Introduction

The DCA(+) algorithm is schematically represented in Fig. 3.1, where the
emphasis has now been put on the CT-AUX cluster solver instead of the
DCA(+)-loop. In order to have a fast implementation of the DCA(+) algo-
rithm, it is crucial to have an efficient, fast QMC cluster-solver, since other
sections of the loop only take a marginal amount of the total run-time. All
continuous time QMC-solvers consists of 2 parts, which are executed in
consecutive order for many iterations during the sampling of the Greens-
function GI (see Fig 3.1). In the first part, one stochastically samples the
partition function over its expansion order 〈k〉 in a step by step process,
until the sample is uncorrelated from the original sample. In the CT-AUX
solver, these steps consist of random insertions and removals of Hubbard
Stratonovitch spins in the Hubbard Stratonovitch configuration [29]. For a
Hybridization solver [101, 103], the steps are implemented by random inser-
tions or removals of pairs of operators. In the second part, one measures the
Greens-functions which correspond to the sample of the partition function.
In this section, we want to review in detail how these two parts, i.e. the up-
dating of the Hubbard Stratonovitch configuration and the measuring of the
Greens-function, can be improved in the case of a CT-AUX cluster-solver.

In the past, two numerical algorithmic improvements have significantly in-
creased the speed of the simulations with the Hirsch-Fye algorithm: the
delayed updates [2] and the submatrix updates [74]. Both delayed and subma-
trix updates are mainly based on efficient memory management. Modern
computer architectures employ a memory hierarchy: calculations are per-
formed on data that is first loaded into registers. Any data that are not in
the registers are stored either in the cache (currently with a size of a few
MB) or in the main memory (with a size of a few GB). The cache is relatively
fast, but there is little of it, while access to the main memory is often slow
and shared among several compute cores. The bottleneck in many modern
scientific applications, including the continuous-time algorithms, is not the
speed at which computations are performed, but the speed at which data
can be loaded from and stored into main memory. The central object in the
Hirsch-Fye algorithm is a matrix, which for large cluster calculations does
not fit into the cache. In essence, Monte Carlo updates consist of rank-one
updates or matrix-vector products on this large matrix. Such updates per-
form O(〈k〉2) operations on O(〈k〉2) data, where 〈k〉 is the size of the matrix,
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Compute the self-energy Σ.

Compute cluster excluded Greens-function.

Quantum Monte Carlo integration.

Perform the cluster-mapping.

Thermalization of the random walk.

Sampling of the Greens-functions.

Obtain the Greens-function G from

Do { submatrix-updates. }
while(expansion order is not converged)

d-NFFT :  FFT and rescaling.

Obtain new Greens function.

Do { submatrix-updates. }
while(sample is correlated)

d-NFFT : local convolutions.  

 2D-NFFT : accumulate         (last iteration) 

+=
∫ β

−β

dτ φ(τ − τ) Mi,j δ(τ − (τj − τi))

GII

G0( �K, �m) =

GI( �K, �m)−1 + Σ( �K, �m)


−1

Σ( �K, �m) =
[
G0( �K, �m)

]−1 −
[
GI( �K, �m)

]−1

〈M( �K, �)〉 ← 1

φ(�)
FFT [M(�R, τ)]

M(�R, τ)

M(�Rj − �Ri, τ)

GI( �K, �m) = G0( �K, �m)

1 − 〈M( �K, �m)〉G0( �K, �m)




Start with an initial guess for the Self-energy.

Stop if the Self-energy is converged, 
else continue the loop.

Sampling of the partition-function.

Measure the Greens-functions.

Perform the lattice-mapping.

Gσ( �K, �) =
∏

i=1,2

( ∫ β

0

dτi
∑

�Ri

)
ei

�K (�R2−�R1)ei� (τ2−τ1)

×〈c†σ(�R1, τ1)cσ(�R2, τ2)〉

Figure 3.1: A schematic representation of the DCA(+) self-consistency loop,
in which a CT-AUX cluster solver is used. The sections affected by opti-
mizations discussed in this chapter are high-lighted in red and green. The
thermalization of the random of the stochastic walk and the sampling of the
partition function are accelerated by the submatrix update procedure [33]
(green). The measurement of the single and two-particle functions are accel-
erated respectively by the d-NFFT and 2D NFFT procedures (red). Notice
that the d-NFFT algorithm spans over two sections of the Monte Carlo in-
tegration: In the sampling-phase of the Greens-function, it will convolute
the samples of the function M(~r, τ) with a localized window-function ϕ
to obtain M and accumulate the latter. After the sampling phase, it will
Fourier transform this convoluted function M and rescale it by the appro-
priate Fourier coefficient of the window-function, in order to obtain the av-
eraged Fourier transform of 〈M(~r, τ)〉. The latter is than used to obtain
the interacting Greens function GI , from which a new self-energy Σ can be
obtained.
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(A)

(B)

N’

N’

N

N G
N

ks〈k〉

Γ−1

Figure 3.2: Illustration of update formulas. (A): rank-one updates , access-
ing O(〈k〉2) data points for O(〈k〉2) operations and performing one update.
(B): submatrix updates, accessing O(〈k〉2) values but performing O(〈k〉2 ks)
operations for ks updates.

and therefore run at the speed of memory. Matrix-matrix operations, with
O(〈k〉3) operations executed on O(〈k〉2) data, could run at the speed of the
registers, as more (fast) calculation per (slow) load / store operation are per-
formed. The reason behind the success of both the submatrix and the delayed
updates is the combination of several (slow) successive rank-one operations
into one fast matrix-matrix operation, at the cost of some minimal overhead.
This is illustrated in Fig. 3.2.

An important question is therefore how these techniques may be generalized
to the continuous-time CT-AUX algorithm and how these savings translate
into newly accessible physics. In the first section of the chapter, we present
a submatrix-update procedure for the CT-AUX [33]. We will show that it
accelerates the sampling of the partition function by a factor of at least 10
in the CT-AUX. This fast sampling leads to a quick thermalization, and
allows us to linearly scale large cluster-problems to hundreds-of-thousands
of processors [94].

The acceleration of the sampling procedure also means that the time spent
in the measurements becomes disproportionally large. This motivated us
to search for fast and efficient methods to measure the Greens-functions,
both in the single- and two-particle case. Consequently, we present in the
second part of the chapter methods to accelerate the measurements of the
Greens function in the context of continuous time cluster solvers. They are
based on non-equidistant fast Fourier transforms (NFFT). The focus in this
paper lies on how the NFFT can be used to do measurements in the CT-
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AUX cluster solver, but the findings can be applied to other continuous time
solvers without complications such as the Hybridization-solver.

3.2 The Continuous-Time Auxiliary Field algorithm

In this section, we present the submatrix updates for CT-AUX [29], for which
the linear algebra is similar to the well-known Hirsch Fye [36] method. We
start with a short derivation of the CT-AUX solver from the partition func-
tion. Next, we show how the Metropolis sampling procedure can be used
to perform the integration. Finally, we introduce the submatrix-updates and
show the improvements to the time-to-solution.

3.2.1 The partition function expansion.

The Hamiltonian of the cluster-impurity model of size Nc can be parametrized
by an effective hopping-matrix ti,j and an on-site interaction U

H = ∑
σ

Nc

∑
i,j=1

ti,jc†i,σcjσ

︸ ︷︷ ︸
=H0

+U
Nc

∑
i=1

(ni,↑ − 1/2)(ni,↓ − 1/2)− UNc

4
︸ ︷︷ ︸

=Hi

. (3.1)

Here, c(†)i,σ denotes the annihilation (creation) of an electron at site i with spin
σ and ni,σ = c†

i,σci,σ represents the impurity occupation at site i with spin σ.
Continuous-time algorithms expand expressions for the partition function
Z = Tr

[
exp(−βH)

]
at inverse temperature β into a diagrammatic series. In

CT-AUX, this series is a perturbation expansion in the interaction:

Z = e−KTr
[
e−H0 Tτe−

∫ β
0 dτ (Hi−K/β)

]

= e−K ∑
n≥0

(K
β

)n ∫ β

0
dτ0 ...

∫ β

τn−1

dτn (3.2)

× Tr
[
e(β−τn)H0(1− βHi

K
) ... e(τ2−τ1)H0(1− βHi

K
)e−τ1H0

]

︸ ︷︷ ︸
=Zn

As Rombouts indicated in his papers [82, 83], the interaction term Hi in this
expansion can be decoupled through the introduction of an auxiliary field,
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1− βHi

K
=

1
2 ∑

i
∑

si=−1,1
eγs(ni,↑−ni,↓),

cosh(γ) = 1 +
βUNc

2K
, (3.3)

introducing an arbitrary constant K and auxiliary spins s. Hence

Z = ∑
n≥0

∑
si=±1
1≤i≤n

∫ β

0
dτ1 . . .

∫ β

τn−1

dτn

( K
2β

)n
Zn,

Zn({si, τi}) ≡ Tr
1

∏
i=n

e−∆τi H0 esiγ(n↑−n↓) (3.4)

Note that the insertion of an arbitrary number of interaction vertices (auxil-
iary spin and time pairs) (sj, τj) with sj = 0 into Eq. (3.4) does not change
the value of Zn({si, τi}). We will refer to auxiliary spins with value sn = 0
as non-interacting spins. By performing a Grassman-variables integral, we
can rewrite the trace of exponentials of one-body operators in Eq. (3.4) as a
determinant of a (n× n) matrix N.

Zn({si, τi})
Z0

= ∏
σ=↑,↓

det N−1
σ ({si, τi}),

N−1
σ ({si, τi}) = eV

{si}
σ − G{τi}

0σ

(
eV
{si}
σ − 1

)
, (3.5)

eV
{si}
σ = diag

(
eγ(−1)σs1 , . . . , eγ(−1)σsn

)
.

G{τi}
0σ denotes a (n× n) matrix of bare Green’s functions, (G{τi}

0σ )ij = G0σ(τi −
τj). The matrix N is related to the Green’s function matrix G by G = NG0.
The matrices G and N for auxiliary spin configurations that have the same
imaginary time location for all vertices, but differ in the value of a single
auxiliary spin sp, are related by a Dyson equation

N′ = N + (G:p − δ:p)λNp:,
G′ = G + (G:p − δ:p)λGp:, (3.6)

λ = eV′p−Vp − 1.
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Here, the notation X:,p and Xp,: represent respectively the p-th column or
row of the matrix X. These Dyson-equations will form the basis for the
submatrix-algorithm discussed later in this chapter.

It is also important to notice that Eq. (3.5) forms an explicit formula, that
allows one to compute N directly as a function of the bare Green’s function
matrix and the auxiliary spin configuration {τi, si}. This is a particularly
handy expression, as it allows us to verify the correctness of the updated
N-matrix at each time in the QMC integration.

3.2.2 The metropolis sampling procedure.

The infinite sum over expansion orders n and the integral and sum over
vertices {(si, τi)} in Eq. (3.4) is computed to all orders in a stochastic Monte
Carlo process: The algorithm samples time ordered configurations {(si, τi)}
with weight

w({si, τi}) =
(Kdτ

2β

)n
∏

σ=↑,↓
det N−1

σ ({si, τi}). (3.7)

To guarantee ergodicity of the sampling, it is sufficient to insert and remove
spins with a random orientation si =↑, ↓ at random times 0 ≤ τi < β. Spin
insertion updates are balanced by removal updates. For an insertion update
we select a random time in the interval [0, β) and a random direction for this
new spin, leading to a proposal probability pprop(n→ n+ 1) = (1/2)(dτ/β).
For removal updates a random spin is selected and proposed to be removed,
leading to a proposal probability pprop(n + 1→ n) = 1/(n + 1). The combi-
nation of Eq. (3.7) with these proposal probabilities leads to the Metropolis
acceptance rate p(n→ n + 1) = min(1, R) with

R =
K

n + 1 ∏
σ=↑,↓

det[N(n+1)
σ ]−1

det[N(n)
σ ]−1

. (3.8)

In addition to the insertion and removal updates we consider spin flips of
auxiliary spins. These updates are self-balancing, and the transition proba-
bility from a state {(s1, τ1), · · · , (si, τi), · · · } to a state {(s1, τ1), · · · , (−si, τi), · · · }
is given by

R = ∏
σ=↑,↓

det[N(n)
σ ({(s1, τ1), · · · , (−si, τi), · · · })]−1

det[N(n)
σ ({(s1, τ1), · · · , (si, τi), · · · })]−1

. (3.9)
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Non-interacting auxiliary spins, or auxiliary spins with value 0, do not
change the value of w({si, τi}) in Eq. (3.7). We will make use of this fact
to precompute a matrix that is equivalent to N but contains non-interacting
vertices represented by spin 0 auxiliary spins. Insertion and removal up-
dates then become equivalent to spin-flip updates (from 0 to 1 or −1 and
vice versa), thus allowing for a similar application of the sub-matrix update
algorithm as in the case of the Hirsch-Fye solver [74]. This procedure is
explained in more detail in Sec. 3.4.

3.3 Introduction of submatrix updates in the CT-AUX

To derive the sub-matrix updates algorithm equivalent to the one outlined
in Ref. [74], let us consider a typical step k of the algorithm at which the in-
teraction pk with spin and time (spk , τpk ) of m interaction vertices, is changed
from Vpk to V ′pk

. The new matrix Gk+1 is then given by Eq. (3.6),

Gk+1 = Gk + (Gk
:pk
− δ:,pk)δpk ,:λ

kGk, (3.10)

λk = eV′pk
−Vpk − 1.

We proceed by showing how the determinant ratio det Nk/ det Nk+1 of Eq. (3.8)
as well as the new matrix Nk+1 are computed efficiently using the Woodbury
formula

[A−1 + X Λ Y]−1 = A− A X (Λ−1 + Y A X)−1 Y A. (3.11)

As such, we define an inverse matrix A of G, analyze its changes during an
update, and show how they can be incorporated in a small (k× k) matrix Γ
that is easily computed by accessing only k2

s matrix elements in each step.
The inverse of this matrix is then iteratively computed either by employing
an LU decomposition, or a partitioning scheme. A change to the inverse
Green’s function matrix Ak = (Gk)−1 is of the form

Ak+1 = Ak + γk(Ak
:,pk
− δ:pk)δpk ,: (3.12)

= Ak (1 + γk δ:,pk δpk ,:)− γk δ:,pk δpk ,:,

γk = e−γσ(s′pk
−spk ) − 1.

We define Ãk
ij = Ak

ij + γk Ak
:,pk

δpk ,: = Ak (1 + γk δ:,pk δpk ,:), i.e. the matrix Ak

where the p-th column is multiplied by (1 + γk). We can recursively ap-
ply Eq. (3.12) to obtain an expression for performing multiple interaction
changes, as long as they occur for different spins:
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Ak+p = Ak
p

∏
l=1

(1 + γl δ:,pl δpl ,:)

︸ ︷︷ ︸
=D

+
p

∑
l=1

δ:,pl︸︷︷︸
=X

−γl
︸︷︷︸
=Λ

δpl ,:︸︷︷︸
=XT

(3.13)

Here, X is a fat column with 1 on positions {pl , l} with l ∈ {1, . . . , p} and
Λ is a p× p diagonal matrix with the elements −γl . The new matrix Ak+p

is therefore generated from Ak by successively multiplying columns pl , 0 ≤
l ≤ p of Ak with γl and adding constants to the diagonal. X and YT are
index matrices that label the changed spins and keep track of a prefactor
γl . For measurements we need access to the Green’s function G, not its
inverse A. It is obtained after ks steps by applying the Woodbury formula
to Eq. (3.13)

Gk+p =
[

AkD + X Y
]−1

, (3.14)

= D−1 Gk −D−1 Gk X (Λ−1 + XTD−1GkX)−1XTD−1Gk. (3.15)

We can simplify this expression by noting that the diagonal matrices com-
mute and defining a new diagonal matrix D̃ = XTD−1X. Using the identity
D̃ XT = XTD−1, we obtain that

Gk+p = D−1 Gk −D−1 Gk X (Λ−1 + D̃XTGkX)−1D̃XTGk.,

= D−1 Gk −D−1 Gk X (D̃−1Λ−1 + XTGkX)−1
︸ ︷︷ ︸

=Γ−1

XTGk.,

= D−1
(

Gk − G:,pk Γ−1 Gpk ,:

)
. (3.16)

Here we have introduced a ks × ks - matrix Γ, which is defined as

Γi,j = Gk
i,j − δi,j

1 + γi

γi
, (3.17)

Note that Gk is the interacting Green’s function at step k = 0 and not the
bare Green’s function G0 of the effective action, unless all auxiliary spins
are zero. Translating this Green’s function formalism to a formalism for
N matrices is straightforward. We multiply Eq. (3.16) from the right with
(G0)−1, which yields
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Nk+p = D−1(N − G:,pk Γ−1Npk ,:), (3.18)

where one G:,pk remains in Eq. (3.18). Notice here that the Greens-function
matrix is never computed explicitly. For the interactiong vertices, we can
deduce from Eq. (3.5) a simple formula for Gk

i,j. By simply multiplying
Eq. (3.5) on the left-hand side with N, we obtain that,

1 = NeV − NG0eV + NG0 (3.19)

We can now exploit the relationship G = N G0 and arrive at,

Gij = (NijeVj − δij)/(eVj − 1) (3.20)

For the non-interacting vertices, we we need to compute Gij = ∑k NikG0
kj at

a cost of O(N) for each i and j. To either accept or reject a configuration
change, we need to compute the determinant ratio det Nk+1/ det Nk. The
latter is equivalent to det Gk+1/ det Gk ≡ det Ak/ det Ak+1, since the G0 ma-
trices are the same. From the matrix-determinant lemma and Eq. (3.13), we
know that

det Ak+1 =
p

∏
j=1

(−γj)det Ak det Γ. (3.21)

The computation of the determinant det Γk is an expensive O(k3) operation,
if Γk has to be recomputed from scratch. However, we successively build
Γk by adding rows and columns. This can be implemented efficiently by
progressively building the LU decomposition of Γ. This LU-decomposition
is then used for the inversion in Eq. (3.18). For each accepted update, we
keep track of a LU decomposition of Γ in the following way:

Γk =

(
Γk−1 s
wT d

)
=

(
Lk−1 0
xT 1

)(
Uk−1 y

0 β

)
,

y = L−1 s, x = (UT)−1 w, β = Gk,k −
1 + γk

γk − xTy (3.22)
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where both xT and y are computed in O(k2) by solving a linear equation for
a triangular matrix. The determinant ratio needed for the acceptance of an
update is

det Ak+1

det Ak = −βγk. (3.23)

These updates have been formulated for spins that have only been updated
once. In the case where the same spin is changed twice or more, rows and
columns in Γ, or L and U, need to be modified. These changes are of the
form Γ → Γ + uvT, and Bennett’s algorithm [12] can be used to refactorize
the matrix. The probability to accept/reject a (k + 1)-th spin requires O(k2)
operations, since the computation of x and y in Eq. (3.22) requires O(k2)
operations.

3.4 The random walk with submatrix updates

The sums and integrals of Eq. (3.4) are computed by a random walk in the
space of all expansion orders, auxiliary spins, and time indices. In the cluster
case, configurations acquire an additional site index. A configuration cn at
expansion order n contains n interaction vertices with spins, sites, and time
indices:

cn = {(τ1, s1, σ1), · · · (τn, sn, σn)}. (3.24)

The configuration space C consists of all integrands / summands in Eq. (3.4),
which we can represent by sets of triplets of numbers, consisting of auxiliary
spins, times, and site indices,

C = { ci | i ∈N}. (3.25)

To efficiently make use of the submatrix updates, we add an additional step
before insertion and removal updates are performed. In this preparation
step, we insert a number ks of randomly chosen non-interacting vertices
with auxiliary spin s = 0, which, as discussed in Sec. 3.2, does not change
the value of the partition function. Once these vertices are inserted, inser-
tion and removal updates at the locations of the pre-inserted non-interacting
vertices become identical to spin-flip updates. An insertion update of a spin
s = 1 now corresponds to a spin-flip update from spin s = 0 to spin s = 1
and similar for removal updates. To accommodate this pre-insertion step,
we split our random walk into an inner and an outer loop. In the outer
loop, we perform measurements of observables and run the preparation
step discussed above as well as recompute steps. These steps are described
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in more detail below. In the inner loop (labeled by k) we perform ks in-
sertion, removal, or spin-flip updates at the locations of the pre-inserted
non-interacting spins. It is best to choose ks small, such that the Γ-matrices
fit into the cache.

3.4.1 Preparation steps

We begin a Monte Carlo sweep with preliminary computations for spins that
we will propose to insert or remove. For this, we generate randomly a set of
kins

max pairs of (site,time) indices, where ks denotes the maximum insertions
possible. We then compute the additional rows of the matrix N for these
noninteracting spins:

Ñ =

(
N 0
R̃ 1

)
, (3.26)

where R̃ is a matrix of size n × ks containing the contributions of newly
added noninteracting spins,

R̃ij = G0
ik(e
−γσsk − 1)Nkj, (3.27)

at the cost of O(n2 ks), as well as the Green’s function matrix G = NG0 for
the new spins.

3.4.2 Insertion, removal, spinflip of an auxiliary spins

Vertex insertion updates are performed by proposing to flip one of the newly
inserted non-interacting spins from value zero to either plus or minus one.
The determinant ratio is obtained by using (3.21), i.e. by consecutive solving
Eq. (3.22). If the update is accepted, the auxiliary spin is changed and the
matrix Γ is enlarged by a row and a column. Starting from a configuration
ck = {(τ1, s1, σ1), · · · (τk, sk, σk)}, we propose to remove the interaction vertex
(τj, sj, σj). The ratio of the two determinants is computed by proposing to
flip an auxiliary spin from ±1 to zero. For this we compute s and w as
in Eq. (3.22), and then compute x and y by solving a linear equation for a
triangular system . Finally, Eq. (3.23) is computed using Eq. (3.22). If the
update is accepted the auxiliary spin is set to zero and Γ is enlarged by a
row and a column. To perform a spin-flip update we choose a currently
interacting spin with value ±1 and propose to flip it to ∓1. If the update is
accepted, Γ grows by a row and a column.

3.4.3 Recompute step

This scheme of insertion, removal, and spinflip updates is repeated ks times.
With each accepted move the matrix Γ grows by a row and a column. To
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Figure 3.3: The seconds per sweep on an XK7-node (Todi). By increasing the
submatrix-size ks, we can keep the Gamma-matrices in cache and therefore
avoid latency between the CPU and main-memory as well as between the
CPU and the GPU.

keep the algorithm efficient, we periodically recompute the full N matrix
using Eq. (3.18),

Nk+ks = D−1 (N − G:,pk Γ−1Npl ,:). (3.28)

As Γ grows with every accepted update, the cost of computing determinant
ratios is O(k2). The recompute step consists of two inversions for L and
U, which are both O(k2) operations, and two matrix multiplications, at cost
O(k2N) and O(N2k) respectively. Noninteracting auxiliary spins can then
be removed from Nk+ks

ij by deleting the corresponding rows and columns.

3.4.4 Speed-up versus submatrix ks.

In Fig. 3.3, we show the seconds per sweep on an XK7-node (Todi). By
increasing the submatrix-size ks, we can keep the Gamma-matrices in cache
and therefore avoid latency between the CPU and main-memory as well as
between the CPU and the GPU. The optimal submatrix-size lies around 102.
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Figure 3.4: The maximum speed-up as a function of the expansion-order (or
matrix-size) 〈k〉. The latter is defined as the ratio of the maximum time per
sweep versus the minimum time per sweep as a function of the submatrix
size ks

In Fig. 3.4, we show the maximum speed-up on an XK7-node (Todi), by
plotting the ratio of the maximum time per sweep versus the minimum
time per sweep as a function of the submatrix size ks. It is interesting to see
that the maximum-speed-up is minimal around the matrix-size 〈k〉 ≈ 800.
There is a logical explanation for this. For small Γ matrices, we can take full
advantage of the cache. For large matrices, the CUBLAS-library becomes
extremely efficient. However, for matrix-sizes of 〈k〉 ≈ 800, the cache of the
current Bulldozer CPU is too small, while at the same time the matrix is also
too small to fully occupy the GPU-cores.

3.5 Single and two-particle measurement with d-NFFT:

3.5.1 measurement of single particle quantities

There exist two types of single particle quantities. The most common ones,
such as the self-energy and the single-particle Greens function GI are trans-
lation invariant in space and time. The non-invariant single particle Greens
functions are only used during the computation of the two-particle Greens
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3.5. Single and two-particle measurement with d-NFFT:

function. We focus first on the space-time translation invariant quantities.
In the CT-AUX algorithm, the single-particle Greens function GI is not di-
rectly obtained via the Monte Carlo integration, but derived from an other
accumulated quantity 〈M[k, i v]〉. In the latter, 〈....〉 represents the Monte
Carlo integration. Following closely the notation in Ref. [29], we can write
down the quantity M as a function of the N-matrix and its corresponding
Hubbard-Stratonovitch spin configuration {v},

GI[k
]
= G0[k

]
− G0[k

]
〈M
[
k
]
〉G0[k], (3.29)

M{v}
[
r, i v

]
= ∑

λ1,λ2 ∈{v}
ei v (τλ2−τλ1 )M{v}

[
λ1, λ2]

M{v}
[
λ1, λ2] = δr,rλ2−rλ1

(eV{vλ1} − 1)N
[
λ1, λ2

]
.

The measurement boils down to a Fourier transform of non-equispaced data
since the vertices reside on randomly chosen imaginary times. This elimi-
nates the possible use of the fast Fourier transform (FFT) because the latter
requires equispaced data. In a straightforward implementation of the non-
equispaced discrete Fourier transform (NDFT), each measurement would be
a two step process. One would first compute the Fourier coefficient matrix
Cm,l = ei vm τl , which involves the evaluation of many expensive trigonomet-
ric functions. Next, the actual transform would be carried out via a matrix-
vector multiplication. Both operations scale as O(Nv Nτ), where Nv and Nτ

represent respectively the number of positive matsubara frequencies and the
number of vertices.

We present here a measurement algorithm which scales linear in Nτ, and
requires only one Fourier transform at the end of each Monte-Carlo inte-
gration. The dependency of our measurement algorithm on Nv is therefore
virtually eliminated and a speed-up of order Nv can be expected. Before
we introduce the d-NFFT, it is instructive to give a short review on the non-
equispaced fast Fourier transform (NFFT) algorithm [44]. The NFFT algo-
rithm is based on the convolution theorem, shown in Eq. (3.30). It states that
the Fourier transform of a convolution is equal to the point-wise product of
the Fourier transforms:

fv ϕv =
∫ β

0
dτei v τ

[ ∫ β

0
dλ ϕ(τ − λ) f (λ)

]
. (3.30)

The NFFT algorithm makes use of this theorem in the following manner.
First, the non-equispaced data-set {τi, fi} is projected onto an equispaced
grid, with m Nv intervals. Here, m is called the oversampling factor and is
typically in the range of 4 to 10. This projection is achieved via a convolution
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3. Implementation of the CT-AUX cluster-solver:

Algorithm 1 The delayed-NFFT algorithm, which computes the single-
particle Greens-function GI :

Require: N-samples {v} =
{
{τ1, M(τ1)}

}
of function M(τ) at random

times in the interval [−β, β]
Ensure: Return the average of the Fourier-transformed samples 〈M(v)〉.

Define the function M(τ1) on the oversampled grid {τ1 = −β +

l1 ∆τ | l1 ∈ {0, . . . , m Nv}} and with ∆τ = 2β
m Nv

for i = 1→ N do
for {τ1, M(τ1)} ∈ {v}i do

I = τ+β
∆τ {find the lower-index of τi such that τ(I) ≤ τ1 < τ(I + 1)}

for λ = −m→ m do
ϕinterp ← interpolate ϕ at τ(I + λ)− τ1
M(I + λ)←M(I + λ) + ϕinterp ∗M(τ1)

end for
end for

end for

ComputeM(v)← FFT[M(τ)]

Compute 〈M〉 ← M(v)
N∗ϕ(v)

Compute GI(v)← G0(v) [1 + 〈M(v)〉G0(v)]

with a localized, translation invariant kernel ϕ, such as a Gaussian distribu-
tion function. The localization of the kernel is in the range of [−m, m] lat-
tice spacings, which insures that the time needed for the convolution scales
linearly with the data size. Next, the FFT algorithm is applied on the pro-
jected, now equispaced data and one obtains its representation in Matsubara
frequencies. At last, each data-point in Matsubara frequencies is renormal-
ized by its corresponding Fourier-coefficient of the kernel ϕ, and hence we
recover the Fourier component fv of the original non-equispaced data-set.
The NFFT algorithm can be summarized as,

fv ←
1

ϕv
FFT

[{
f l = ∑

λ

ϕ(τλ −
l β

N
) fλ | l ∈ 1, ..., m Nv

}]
= NFFT({τλ, fλ})

(3.31)

From Eq. (3.31), it is clear that the NFFT algorithm scales asO(m Nv log(m Nv)+
m Nτ). An important property of the NFFT-algorithm is that for particular
kernels the maximum relative error on fv can be proven to decrease expo-
nentially as a function of the oversampling parameters m [44]. In the case of
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Figure 3.5: The relative error E2 versus the oversampling factor m. The error
decreases exponentially for increasing m, as expected from the theory. When
the kernel ϕ is approximated by an interpolating value, the error becomes
independent of the m. In the linear regime, the error saturates at ≈ 10−4,
while in the cubic regime it saturates ate machine precision ≈ 10−16.

a gaussian window function ϕg, the maximum relative error E2 is

E2 =
| f NFFT

v − f NDFT
v |

|| f NDFT
v ||1

= 4 e−m π (1−1/(2σ−1)).

In the case of a Monte-Carlo integration with a continuous time solver, the
latter will produce many data-sets, all on a different set of randomly chosen
times. Since the FFT is a linear operation, we can delay this operation until
the end of each Monte-Carlo integration. In this way, one accumulates the
convoluted function M

[
r, τl
]

during the Monte-Carlo integration, instead of
M
[
r, i v

]
.

M
[
r, τi
]
= ∑

λ1,λ2 ∈{v}
ϕ((τλ2 − τλ1)− τi) M{v}

[
λ1, λ2] with τi =

2 i β

m Nv

(3.32)

As a result, only a single Fourier transform and rescaling has to be per-
formed on M

[
r, τl
]

to obtain 〈M
[
k, v

]
〉 at the end of each Monte Carlo
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Figure 3.6: The speed-up of d-NFFT compared to DFT, versus the oversam-
pling parameter m. Replacing the exact evaluation of the kernel ϕ with
its interpolated value results clearly in a drastic speed-up. For this figure,
we used typical parameters for a Monte Carlo simulation (Nv = 512, Nτ =
1024).

iteration. From the latter, GI can be obtained in the usual manner according
to Eq. (3.29). As shown in Fig. (3.1), this delayed-NFFT (d-NFFT) will now
span over two sections in the Monte-Carlo integration. In the accumulating
phase, it will convolute the function-samples on the oversampled NFFT-grid.
As a consequence, each measurement now boils down to a convolution, and
the desired scaling linear O(m Nτ) is obtained. Only after the Monte-Carlo
integration, we will Fourier transform the oversampled function M

[
r, τl
]
.

Notice that the delay of the FFT will not affect the accuracy, and the relative
error will still decrease exponentially as a function of the oversampling. A
second optimization can be obtained by replacing the exact evaluation of
the kernel ϕ with an interpolated value. Evaluating a Gaussian distribution
function involves the evaluation of trigonometric functions, which require
many cycles to compute. A drastic improvement in the speed-up can be
obtained when ϕ is interpolated, but generally at a loss of accuracy. The ac-
curacy can be improved via an adequate tuning of the oversampling factor
m. This is illustrated in Fig. (3.5), which shows the relative error E2 for dif-
ferent interpolation schemes. As expected from the theory, one can observe
an exponential decline if the kernel is evaluated exactly. For linear and cu-
bic interpolated kernels, we observe that the error saturates as a function
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3.5. Single and two-particle measurement with d-NFFT:

of m, due to systematic errors. For linear interpolation, the errors saturates
at ≈ 10−4, while in the cubic regime it saturates at machine precision. In
Fig. (3.6) we show the speed-up of d-NFFT versus NDFT. Notice that the
speed-up is of the order O(Nv) ∼ 103. Considering both the need for accu-
racy and speed-up, the most optimal choice for QMC cluster solvers seems
to be a cubic interpolation scheme at m = 8. In this way, the error on the
Fourier transform will always be two to three orders of magnitude smaller
than a typical statistical error of a Monte-Carlo integration. The fully opti-
mized d-NFFT algorithm is summarized in Alg. (1).

3.5.2 measurement of two-particle Greens-function GI I

The two-particle Greens-function GI I is obtained via a Quantum Monte
Carlo Integration of a product of translation-noninvariant1 single-particle
TNSP Greens functions GI

σ

[
k1, k2

]
,

GI I
σ1,σ2

[k1, k2, q] =
〈

GI
σ1

[
k1, k1 + q

]
GI

σ2

[
k2 + q, k2

]
− δσ1,σ2 GI

σ1

[
k1, k2

]
GI

σ2

[
k2 + q, k1 + q

]〉
.

(3.33)

Here, 〈. . . 〉 represents the Monte Carlo Integration. Just as in the single-
particle case, the (TNSP) Greens functions G{v}σ

[
k1, k2

]
can be computed

straightforwardly from the N-matrix and its Hubbard-Stratonovitch config-
uration {v}.

G{v}σ
[
k1, k2

]
= δk1,k2 G0[k1

]
− G0[k1

]
M{v}σ

[
k1, k2

]
G0[k2

]
,

M{v}σ
[
k1, k2

]
= ∑

λ1,λ2 ∈{v}σ

(eV{ϕ}σ

λ1,λ2
− 1)N

[
λ1, λ2

]
× ei (ω2 τλ2−ω1 τλ1 )ei (k2 rλ2−k1 rλ1 ).

(3.34)

For this, the NFFT algorithm has to be generalized to two dimensions, which
is straightforward. One constructs a fine 2D grid of the size mNv in both
dimensions and convolutes the M-function with a 2D localized kernel. In
our case, we simply used the product of two 1D Gaussian distributions.
Just as in the 1D case, we apply the FFT on this fine equispaced grid , and
renormalize each function-value in the Matsubara representation by the as-
sociated Fourier component of the localized kernel.

1in time and space
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3. Implementation of the CT-AUX cluster-solver:

Algorithm 2 A 2D-NFFT algorithm to compute the TNSP Greens-function
in the CT-AUX.

Require: A set of samples {v} =
{
{τi, τj, Mi,j}

}
of the 2D function M(τ1, τ2)-

function at random times in the interval [−β, β]× [−β, β].
Ensure: Return the corresponding TNSO Greens-function G(v1, v2).

Define the function M(τ1, τ2) on the 2D-oversampled grid
{
{τ1 = −β +

l1 ∆τ, τ2 = −β + l2 ∆τ} | l1, l2 ∈ {0, . . . , m Nv}
}

and with ∆τ = 2β
m Nv

.

for {τi, τj, Mi,j} ∈ {v} do
I ← τi+β

∆τ {find the lower-index of τi such that τ(I) ≤ τi < τ(I + 1)}
J ← τj+β

∆τ {find the lower-index of τi such that τ(J) ≤ τj < τ(J + 1)}
for λi = −m→ m do

ϕi ← ϕ(τ(I + λi)− τi)
for λj = −m→ m do

ϕj ← ϕ(τ(J + λj)− τj)
M(I + λi, J + λj)←M(I + λi, J + λj) + ϕi ∗ ϕj ∗Mi,j

end for
end for

end for

ComputeM(v1, v2)← FFT[M(τ1, τ2)]

Compute M(v1, v2)← M(v1,v2)
ϕ1(v1)∗ϕ2(v2)

Compute GI(v1, v2)← δv1,v2 G0(v1)− G0(v1)M(v1, v2)G0(v2)

In contrast to the 1D case, it is not possible to use a delayed FT scheme
here. The TNSP Greens function needs to be computed every single time
in order to evaluate Eq. (3.33). As a consequence, the measurement of a
two-particle function is generally determined by the speed at which the FFT
can be performed on the oversampled grid. We will therefore devote the
rest of this section to tricks, which can speed up the FFT. First, we can
take advantage of the fact that the function-values are real. This means
that the function values in Matsubara representation will have a conjugate
symmetry, and it is thus sufficient to compute only half of the Matsubara
frequencies. This should speed up the FFT by a factor of two [23]. Another
trick that should be used is pruning. Notice that we are actually only inter-
ested in a small subset of Fourier components of order O(N2

v) instead of all
them O

(
m2 N2

v

)
. This essentially implies that we can skip the (m− 1) Nv

Fourier Transforms in the second dimension. The FFT in 2D is therefore
not of the order O

(
m2 N2

v log(m2 N2
v)
)
, but rather of O

(
m2 N2

v log(m Nv) +
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3.5. Single and two-particle measurement with d-NFFT:

0 5 10 15 20 25 30√
Nτ ∼ 〈k〉/Nc

50

100

150

200

250

300

350

sp
ee

d-
up

2D
-N

FF
T

ve
rs

us
2D

-N
D

FT

Nω = 8

Nω = 16

Nω = 32

Nω = 64

Figure 3.7: The speed-up of an optimized 2D-NFFT compared to NDFT in
2D for an oversampling factor m = 6, which corresponds to a relative error
of E2 ∼ 10−6. The method is clearly advantageous for large number of
Matsubara frequencies (Nv � 1) in the strongly correlated region 〈k〉 � 1.

m N2
v log(m Nv)

)
. The pruning of our FFT leads generally to an additional

speed-up of roughly 2. In Fig. (3.7), we show you the combined speed-up of
the NFFT method in 2D versus the NDFT. Due to its better scaling, the NFFT
is clearly a good improvement in the case of a large number of vertices and
a large number of Matsubara frequencies. The algorithm will therefore be
hugely beneficial in the case of low temperatures and strong correlation.
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Chapter 4

Study of phase-diagram of the 2D
Hubbard model.

Abstract

The DCA and DCA+ algorithms were developed to study the domi-
nating physics of the high-temperature copper based superconductors.
The simplest model that emulates these materials is the 2D Hubbard
model on a square lattice with a strong repulsive interaction, i.e an on-
site repulsion U that equates the width of the band-structure. In this
chapter, we investigate the phase-diagram of the 2D Hubbard model
with the DCA+ and show that the latter obtains the quantitatively and
quantitatively the correct physics. We look in depth at the antiferro-
magnetic transition at half-filling and show that the transition has an s-
wave symmetry and that the transition temperature TN decays logarith-
mically, as expected by the Mermin-Wagner theorem. We investigate
the pseudo gap region, which is located in the low hole-doped region
of the phase-diagram and characterized by a partial suppression of the
density of states at the Fermi energy at the antinodal points. We will
show that the DCA+ can converge quantitatively the pseudo-gap tem-
perature T∗, contrary to the DCA. will also study the superconducting
transition, both in the attractive and repulsive case. The investigation
of the well-studied attractive Hubbard-model serve as a validation of
the DCA+ algorithm as well as a strong indication that the supercon-
ducting transition exhibits the physics of a Klosterlitz Thouless transi-
tion. In the case of the repulsive Hubbard-mode, we will show that the
DCA+ algorithm can converge the superconducting transition temper-
ature and that the wave-function of the Cooper pair has the distinctive
d-wave momentum-structure. The quantitative convergence of Tc was
up till now impossible with the DCA and an important step towards
the phase-diagram calculations of the 2D Hubbard model.
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relevant papers:

• P. Staar, T. A. Maier and T. C. Schulthess, Dynamical cluster approxima-
tion with continuous lattice self-energy, Phys. Rev. B 88, 115101 (2013)

• P. Staar, T. A. Maier and T. C. Schulthess, Detecting phase-transitions in
electronic lattice-models with DCA+, to be submitted soon (2013)

4.1 Introduction

Since the discovery of the high-temperature copper based superconductors [11],
the study of interacting electrons on a lattice has attracted a lot of attention.
It was soon realized by Zhang and Rice [105] that these simple lattice models
contained the essential physics of this novel class of superconductors and
could potentially explain the pairing mechanism in these materials. The
simplest lattice-model that exhibits qualitatively all the observed physical
phases, is the single band Hubbard model [37]

H = ∑
~k

ε(~k) c†
~k

c~k + U ∑
i

ni ni (4.1)

ε(~k) = −4 t (cos(kx) + cos(ky))

Here, c(†)~k
is the Fourier transform of the annihilation (creation) operator of

an electron with spin σ on site i, while ni,σ corresponds to the occupation
number operator. The dispersion ε(~k) describes the electrons on the lattice
in the absence of any interactions. The parameters t and U represent respec-
tively the hopping amplitude between the nearest neighbors on the lattice
and the on-site Coulomb repulsion.

The DCA has been very successful in the qualitative explanation of the var-
ious well-known phases in the Hubbard model. It has shown that the hole
doped model has a superconducting region where the superconducting gap
has a d-wave symmetry [61]. In the low hole-doped region of the phase dia-
gram, the DCA has also reproduced various tell-tale signs of the pseudo-gap
physics [28], such as the momentum dependent gap formation.

The major challenge that the DCA currently faces, is its discrepancy on the
solutions of the Bethe Salpeter equation for different clusters. If the self-
consistency is obtained in the DCA with a Quantum Monte Carlo solver, the
fermionic sign problem prevents us to solve large clusters at low tempera-
tures. For large interaction strengths (U/t ≥ 4), we are restricted to small
clusters (Nc ≤ 32) in order to solve the Hubbard model. In the DCA, the so-
lutions of the Bethe-Salpeter equation for these clusters converge poorly [60].
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Figure 4.1: DCA description of the gap function ∆(k) in the 4- and 8-site
cluster at 5% doping with U/t = 8. In the 4-site cluster, the gap will be either
1 or -1 along the Fermi-surface and thus clearly overestimate a d-wave gap
of cos(kx)− cos(ky) (red). In the 8-site cluster, a large section on the nodal
area is zero, underestimating the d-wave gap. The overestimation in the
4-site leads to a superconducting phase transition (marked by a crossing of
the leading eigenvalue through 1), while the underestimation of the gap in
the 8-site cluster suppresses the superconducting phase transition.

This lack of convergence can be attributed to a purely geometric effect. Each
cluster will evidently have a different number of k-points at different posi-
tions. In small clusters, these limited number of k-points can not adequately
describe the superconducting gap-function ∆~K in momentum space. Conse-
quently, each cluster will overestimate the gap-function in certain areas of
the Brillouin zone, while underestimate it in the other parts. This leads to
very inconsistent transition temperatures for different clustersizes [60]. This
geometric effect on the gap function is clearly illustrated in Fig. 4.1 by con-
sidering the two smallest clusters available. On the one hand, a 4-site cluster
will overestimate a gap function with a d-wave symmetry, since the latter ac-
quires its values at the extrema [π, 0] and [0, π]. On the other hand, an 8-site
cluster will underestimate the d-wave gap since the nodal area [π/2, π/2]
has to be zero due to the cluster-symmetry. Since the size of the gap-function
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is proportional the transition temperature Tc, it is to be expected that the 4-
site cluster overestimates the transition temperature, and the 8-site cluster
underestimates the latter.

In the previous chapters, we have proposed algorithmic changes to the DCA
self consistency loop as well as implementation changes to the CTAUX
cluster-solver. In this chapter, we want to show how these improvements
dramatically improve our capability to investigate the phase-diagram. We
will focus in particular on the cluster-size dependence of the transition tem-
peratures for anti-ferromagnetic and superconducting transition.

4.2 The anti-Ferromagnetic transition in the 2D repul-
sive Hubbard model.

For systems with a low dimensionality (d ≤ 2), the Mermin-Wagner theo-
rem states that a continuous symmetry can not be spontaneously broken at
finite temperature. As a consequence, the observed antiferromagnetic phase
transition at half filling in the DCA must be an anomaly, that arises from
the finite size cluster approximation. A simple explanation can be given for
this anomaly. As the temperature is lowered, the anti-ferromagnetic corre-
lations grow exponentially and eventually cross the cluster-radius. At that
point, the mean-field approximation breaks down and the DCA will report
antiferromagnetic phase transition. A tell-tale sign for this phenomenon is
the formation of large ’peaks’ in the momentum space representation of the
self-energy, around the anti-nodal points {±π, 0} and {0,±π}. They induce
a slow decay of the self-energy in real-space, which eventually will cross the
cluster-radius. In the assumption that the correlations grow exponentially
with temperature and that the cluster-radius can be approximated by

√
Nc,

we expect that the Neel-temperature TN will decay logarithmically,

√
Nc ≈ rc ≈ α eγ/TN → TN ≈

γ

log(α−1
√

Nc)
(4.2)

This picture is also valid in the case of the DCA+ , and one should thus
expect a logarithmic decay of the Neel temperature. In Fig. 4.2, we show the
evolution of the Neel temperature TN for increasing cluster-sizes and the
accompanying logarithmic fit according to Eq. (4.2). In the inset of Fig. 4.2,
we show the imaginary part of the self-energy at the anti-nodal-point {π, 0}
for various cluster-size at a temperature of T = 0.25. We observe that the di-
vergence becomes stronger with increasing cluster-size, due to the inclusion
of more correlations in the larger clusters.
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Figure 4.2: .The Neel temperature TN versus cluster-size for U/t = 7 at half-
filling. Inset: the imaginary part of the self-energy at the anti-nodal point
{π, 0} for T = 0.25.

In order to show that the DCA+ captures the qualitative physics of the anti-
ferromagnetic transition, we have plotted the antiferromagnetic gap-function,
i.e. the eigenvector Φ associated with the leading eigenvalue, in momentum
and frequency space in Fig. 4.3. Just as in the DCA [93], we can observe
that the leading eigenvector is only mildly momentum-dependent along
the Fermi-surface, which is indicative for a s-wave transition. For large
Matsubara frequencies, we observe that the antiferromagnetic gap-function
converges to a finite value. The anti-ferromagnetic transition can thus be
characterized as a condensation of local particle-hole pairs (local magnetic
moments). In addition, the eigenfunction has a clear finite asymptotic value.
This reflects the instantaneous contribution of the Hubbard U to the effective
interaction that leads to a magnetic moment formation.

4.3 Investigation of the pseudogap-region in the 2D re-
pulsive Hubbard model.

One of the most distinctive features of the hole-doped cuprates is the emer-
gence of a pseudogap [72], i.e. a partial suppression of the density of states
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Figure 4.3: The leading eigenvector in the particle-hole channel for U/t = 7,
Nc = 144 at half-filling close to the Neel transition.

at the Fermi energy at the antinodal points (π, 0) and (0, π) in the Brillouin
zone. This state appears below a temperature T∗, which rises with decreas-
ing hole doping as the Mott insulating half-filled state is approached. The
detailed relation between the pseudogap and superconductivity remains
controversial. Since superconductivity arises from the pseudogap state, it
is generally believed that understanding this unuasual phenomenon is an
important prerequisite to understanding the pairing mechanism. Recent de-
bate has been centered around the question of whether the pseudogap is a
signature of superconducting fluctuations above Tc [21, 100] or whether it
is a competing phase [95, 31].

Cluster dynamical mean field studies of the single-band Hubbard model
have found a similar pseudogap opening up at the antinodal points at low
temperatures in the low doping regime [62, 58, 77, 52, 13, 28]. In these calcu-
lations, the pseudogap originates from a strong momentum-space variation
of the single-particle self-energy, which, as shown in recent DCA calcula-
tions by Gull et al. [28], gives rise to a momentum-sector-selective metal-
insulator transition. The DCA+ improves upon the DCA algorithm in that
it gives a self-energy with smooth and therefore more physical momentum
dependence, and can therefore provide new insight into this problem. In
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Figure 4.4: The imaginary part of the lattice self-energy for different clus-
ters at a temperature of T = 0.33 with a hole-doping of 5% (U/t = 7 and
t′/t = −0.15). Two key observations can be made. The DCA+ produces for
all clusters a lattice self-energy which follows the lattice symmetry. This is
not true in the case of the DCA, which is illustrated in the region of (π, 0)
to (0, π) for the clusters 16B, 20 and 24. One can also observe that the
DCA+ converges monotonically. The self-energy increases systematically
with increasing cluster size as longer range correlations are taken into ac-
count. This systematic growth of the self-energy is harder to detect in the
DCA. Therefore, we expect that the DCA+ will lead to a more systematic
convergence of other physical quantities, such as the pseudo gap transition
temperature.

addition, since previous studies were limited to relatively small clusters up
to 16 sites, it is important to explore whether the self-energy and pseudogap
physics is converged on such clusters.

In Fig. 4.4, we plot the imaginary part of the lattice self-energy at the small-
est Matsubara frequency ω0 = πT for various clusters, computed with the
DCA (left panel) and the DCA+ (right panel). One immediately observes the
much more physical smooth momentum dependence of the DCA+ results
versus the step-function-like nature of the DCA results for the self-energy.
At closer inspection, one notices a much more systematic convergence of the
DCA+ results with different cluster size and geometry. While the DCA re-
sults for ImΣ(~K) show smaller spread at a given ~K-point (e.g. at ~K = (π, 0)),
their cluster dependence is non-monotonic. In DCA+ , in contrast, ImΣ(~K)|
monotonically increases with cluster size – a sensible result as longer ranged
correlations are systematically taken into account.

Another striking feature of the DCA results is the asymmetry for clusters
that do not have the full lattice symmetry such as the 16B, 20 and 24 site
clusters. e.g., in the 16B cluster, the asymmetry around (π/2, π/2) as one
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moves along the line from (π, 0) to (0, π) is apparent and the results in these
regions are significantly different from those for the symmetric 16A cluster.
This asymmetry results from the asymmetric arrangement of the two cluster
K-points closest to (π/2, π/2) with respect to (π/2, π/2) (see right hand
side of Fig. 2.1). This asymmetry is completely removed in the DCA+ .

In addition, with the exception of a small region around (π, π), the DCA+ re-
sults for the asymmetric 16B cluster are almost identical to the results of the
fully symmetric 16A cluster. The DCA+ algorithm restores the full lattice
symmetry in the results obtained from clusters that do not have the full
symmetry and thus makes studies on these clusters much more useful. This,
combined with the improved convergence as a function of cluster size allows
for much more systematic and precise extrapolations to the exact infinite
cluster size.

To further illustrate this point, we now turn to a study of the temperature
T∗ below which the pseudogap starts to form. Here, we define T∗ as the
maximum in the temperature dependence of the bulk (q = 0) magnetic
(particle-hole, spin S = 1) susceptibility χph(q = 0, T). The downturn in this
quantity below T∗ with decreasing temperature signals the suppression of
low-energy spin excitations, which is also observed in experiments to accom-
pany the opening of the pseudogap in the single-particle spectral weight. In
the DCA and DCA+ algorithms, χph is computed from the single and two-
particle Greens-function GI I

ph obtained from the cluster-solver. Using the no-

tation K = (~K, v), the bare two-particle Greens-function GI I
0,ph is constructed
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4.3. Investigation of the pseudogap-region in the 2D repulsive Hubbard model.

from a pair of interacting cluster Greens functions (for ~q = 0)

GI I
0,ph(K) = G(K) G(K) ,

while the fully renormalized two-particle Green’s function GI I
ph is computed

as

GI I
ph(K, K′) =

(
4

∏
l=1

∫ β

0
dτl

)
ei v1 (τ1−τ2)ei v2 (τ3−τ4)

× ∑
σ,σ′=±

〈c†
σ(~K, τ1) cσ(~K, τ2)c†

σ′(~K
′, τ3) cσ′(~K′, τ4)〉.

The irreducible cluster vertex function Γph(~Q = 0, ~K, ~K′) is then obtained by
inverting the Bethe-Salpeter equation on the cluster

Γph =
[

GI I
0,ph

]−1
−
[

GI I
ph

]−1
, (4.3)

where we used a matrix notation in in the cluster momenta ~K and ~K′. The
uniform lattice spin susceptibility χph(q = 0) is then calculated from

χph = ∑
K1,K2

χ0 [1− Γ χ0]−1.

Here, χ0 is the coarse-grained bare susceptibility of the lattice,

χ0(K) =
∫

d~k ϕK(~k) G(~k)G(~k)

This procedure to compute the uniform lattice spin susceptibility χph(~q = 0)
is the same in the DCA+ as in the DCA [39]. The quantities that enter
these equations, however, are different between both approaches. In the
DCA+ , for thermodynamic consistency, one should apply the same inter-
polation procedure to the vertex function Γph(K, K′) as is done for the self-
energy. Here however, for the sake of simplicity and in order to focus on
the effects of the self-energy, we keep the piecewise constant dependence
of Γph(K, K′) that is naturally obtained from its extraction from the cluster
quantities in Eq. (4.3) as in the DCA. In the S = 1 particle-hole channel,
where the leading correlations are antiferromagnetic and have only weak
internal ~K-dependence [17], we expect this to be a good approximation.

In Fig. 4.5, we show results for χph(~q = 0) obtained with the DCA for differ-
ent clusters. One observes a strong cluster size dependence and the results
are not converged even for the largest cluster that can still be simulated
before the fermonic sign problem begins to make the QMC sampling expo-
nentially difficult. The corresponding DCA+ results are displayed in Fig. 4.6.
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Figure 4.7: T∗ versus clustersize computed in the DCA and DCA+ at 5
percent doping (U/t = 7 and t′/t = −0.15).

Here, convergence is reached much sooner. The location of the maximum
in temperature dependence, T∗, is essentially independent of the cluster for
Nc ≥ 8 (see Fig. 4.7). As discussed previously, this directly results from the
improved convergence of the self-energy in the DCA+ . From these results,
once the effects of cluster geometry are removed in the DCA+ , it becomes
clear that the underlying correlations that lead to the pseudogap formation
are short-ranged and well contained in clusters of size 8.

4.4 Superconducting transition temperature Tc in 2D
attractive Hubbard model.

The attractive Hubbard model has been studied extensively [67, 104] over
the past three decades. Following the discovery of the high-temperature
cuprates, this nontrivial toy-model has been used to shed light on the forma-
tion of Cooper pairs [88] and other exotic states of matter which arise from
the correlation between electrons [70]. As this model does not suffer from a
fermionic sign problem, large clusters can be solved and the phase diagram
can be obtained accurately through a finite size scaling procedure.
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Thouless scaling law for a density of d = 0.5. We can observe a clear data-
collapse for clusters with a cluster-size larger than 84.

The phase-diagram of the attractive Hubbard model with a interaction of
U = −4 has been studied in detail by Paiva et. al. [76], using a determinental
QMC cluster solver [15, 87]. They used two independent observables to
nail down the superconducting transition temperature Tc, namely a data-
collapse of the cluster-susceptibility at the correct Tc due to the Klosterlitz-
Thouless scaling-law and the universal-jump relation involving the helicity
modulus of a two-dimensional superfluid [71]. Since both observables lead
to the same transition temperatures, we can safely conclude the reported
transition temperatures are valid reference points for this model.

The Klosterlitz-Thouless scaling-law dictates a data-collapse of the cluster-
susceptibility versus cluster-size on the parametric curve C for large enough
clusters:

C = {
√

Nc exp(−α/
√

T − TKT
c ), N−7/8

c Ps} (4.4)

Here, the two parameters α and TKT
c are fitting parameters, that are found
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previously reported values by Paiva et al.

by minimizing the spread of the data, in order to obtain the best data-
collapse. This method has the advantage that it does not require us to
compute the lattice-susceptibility. We can thus avoid the inversion of the
vertex coarsegraining in Eq. (2.44). The cluster susceptibility Ps can be ob-
tained by directly summing the two-particle cluster Greens functions GI I

over all momentum and frequency variables. In Fig. 4.8, we have plotted the
best data-collapse of the cluster-susceptibility Ps at 50% doping. The critical
temperature TKT

c = 0.13 obtained by the data-collapse is equal to the value
obtained by Paiva et. al. The discrepancy on the α parameter (0.3 versus
0.1) can most likely be attributed to the mean-field character of the DCA
algorithm.

In Fig. 4.9, we show the phase-diagram of the attractive Hubbard model
with U = −4. The critical temperatures at the densities d = 0.1, 0.5 and
0.8 are obtained by fitting the Klosterlitz-Thouless scaling law of the critical
temperature versus cluster-size:
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4.5. Superconducting transition temperature Tc in 2D repulsive Hubbard model.

Tc(Nc) = TKT
c +

A
(B + log(

√
Nc))2

(4.5)

The fits are shown in the inset of Fig. 4.9. We can clearly observe a decay
of the critical temperature with cluster-size. To investigate the robustness
of the fit, we investigate the spread of the TKT

c by omitting each data-point
once from the data-set {Nc, Tc(Nc)}. This results in 6 slightly different TKT

c
for each density, form which we can compute the standard deviation. We
represent this standard deviation as the error-bar on the TKT

c fits in Fig. 4.9.

From Fig. 4.8 and Fig. 4.9, we can come to two important conclusions.
First, the transition temperature that we obtain with the data-collapse of the
cluster-susceptibility is in good agreement with the transition temperature
obtained by the two-particle framework of the DCA+ . We therefore ob-
tain the same transition temperature with two different methods, one solely
based on cluster-quantities (i.e. the single and two-particle Greens functions)
and one based on the lattice-quantities, which are essentially obtained by
inverting Eq. (2.32) for the lattice self-energy and Eq. (2.44) for the lattice
vertex. As such, we can conclude that the proposed algorithm to invert the
two-particle coarsegraining condition in Eq. (2.44) works correctly. Secondly,
we can reproduce the phase-diagram of the attractive Hubbard model with
a interaction of U = −4 presented by Paiva. As such, the two-particle frame-
work of the DCA+ is consistent with the literature for the attractive Hubbard
model, which is a strong indication that framework works correctly.

4.5 Superconducting transition temperature Tc in 2D
repulsive Hubbard model.

4.5.1 The superconducting transition for 10% hole doping at U/t =
4.

Through a careful investigation of the evolution of Tc versus the cluster size
Nc, the DCA had predicted [60] a superconducting transition temperature
Tc of approximately 0.023 t in the 2D single band Hubbard model with a
repulsive interaction of U/t = 4 and 10% percent hole-doping. In Fig. 4.10,
we compare this evolution of Tc versus Nc with newly obtained results for
the transition temperature with the DCA+ . We can make three clear ob-
servations. First, the transition temperatures of the six largest clusters in
the DCA+ agree very well with the observed transition temperatures of the
three largest clusters in the DCA. Consequently, the DCA+ does not con-
tradict quantitative results of the DCA, but rather confirms and clarifies
earlier findings. Next, the DCA+ can access much larger clusters than the
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Figure 4.10: The superconducting transition temperature Tc versus cluster-
size computed with the DCA and the DCA+ . Due to a more favorable sign-
problem in the DCA+ , we can observe a consistent growth of Tc towards
the extrapolated value of the DCA.

DCA. This is mainly due to the improved fermionic sign problem of the
DCA+ algorithm. The access to larger clusters allows us to treat non-local
correlation’s more accurately and thus implicitly converge Tc better. Third,
we can observe a much more systematic convergence of Tc in the DCA+ , a
property already observed during the study of pseudo-gap temperature T∗.
The transition temperature Tc in the interval of Nc = 16 to Nc = 32 rises
monotonously and becomes flat for clusters with Nc ≥ 32. If the effective Tc
for the 16-site DCA-cluster is assumed to be the mean of the 16A and 16B site
clusters in Fig. 4.10, the monotonic rise of Tc seems to be also present in the
DCA with a little imagination. However, due to the inaccessibility of larger
clusters with the DCA, it is very hard to judge whether the DCA transition
temperatures are converged, or still rising. With the new DCA+ results, it
becomes clear that Tc saturates around 0.024± 0.01.

The monotonic rise of Tc can be attributed mainly to two factors. The
smaller the cluster, the more the coarsegraining reduces the non-local cor-
relations and thus lowers the transition temperature. This idea is enforced
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Figure 4.11: The leading eigenvalue at 10% doping for U/t = 4. The critical
temperature Tc is converges to Tc ≈ 0.024 for clusters larger than 36.

by Fig. 4.11, where we show the leading eigenvalue versus temperature for
various cluster-sizes. We can clearly observe a systematic growth of the lead-
ing eigenvalue for increasing cluster-size over a wide range of temperatures.
Another factor that influences the transition temperature is the coherence
length, i.e the ’size’ of a Cooper pair. Recently, It was argued that the coher-
ence length is relatively large for small interactions [59]. This could explain
the discrepancy between the optimal charge-modulation wave-vector found
in experiments and theory [59]. The large coherence length could also ex-
plain why there seem to be two regimes in Fig. 4.10, namely monotonic rise
of Tc for Nc ≤ 32 and a flat Tc for Nc ≥ 32. In the first regime, the lin-
ear cluster size Lc ≈

√
Nc is smaller than the coherence length. As such,

the DCA+ neglects (spatial) phase fluctuations between Cooper-pairs com-
pletely, which would suppress Tc. But since pairs are correlated over larger
distances than Lc, increasing Lc takes into account longer ranged pair-field
correlations and therefore the pair-field susceptibility and thus Tc increases.
This process is similar to what one observes in finite size calculations for the
cluster correlation function [76], which increases monotonically with cluster
size. In the second regime, linear cluster size Lc is larger than coherence
length. In this regime, increasing Lc does not increase the pair-field suscep-
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Figure 4.12: For each cluster-size, we show the average and standard-
deviation of the superconducting transition temperature Tc of four differ-
ent cluster-orientations (U/t = 4 and 10% doping). The red line shows
the average fit of the Klosterlitz Thouless scaling law, given by Eq. (4.5).
Inset: By generating random transition temperatures, which are Gaussian
distributed around the mean value and lie within the standard-deviation,
we can generate a distribution function for TKT

c . This distribution is then
used to obtain an estimate for the lattice transition temperature TKT

c (Nc =
∞) = 0.0199± 0.002.

tibility since pairs are correlated only over smaller distances than those set
by Lc. But increasing Lc will take into account longer-ranged phase fluctua-
tions and therefore Tc decreases with cluster size according to the Klosterlitz-
Thouless scaling law given by Eq. (4.5). In the attractive Hubbard model, we
can demonstrate this logarithmic decay clearly, because we can access very
large clusters in the absence of the fermionic sign problem. In the repulsive
case, the sign problem does not allow us to access such large clusters, in
which case it is very hard to distinguish between a logarithmic decay or a
simple constant function due to the limited range of available clusters.

With this picture in mind, the crossover between both regimes can give us a
good estimate for the coherence length. If we assume that the transition tem-
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4.5. Superconducting transition temperature Tc in 2D repulsive Hubbard model.

perature becomes a constant once the cluster-radius exceeds the coherence-
length, we could deduce from Fig. 4.10 that the coherence length is approx-
imately

√
32/π ≈ 3.19 lattice-spacings. Future work will indicate whether

this back-of-the-envelope calculations are accurate estimates. Note that this
estimate for the coherence length seems roughly consistent with the recent
calculations of the striped clusters [59]. For the striped system, the enhance-
ment of Tc is expected when the correlation length is equal to the stripe
periodicity. For U/t = 4, one found an enhancement for a period of eight
stripes, but not for a period of four stripes.

4.5.2 Signatures of a Klosterlitz-Thouless transition.

Phase transitions in strictly two-dimensional systems have been studied ex-
tensively in various models, such as the rotator model or the lattice Coulomb
gas. By now, it is commonly accepted that phase transitions in two dimen-
sions are of the Klosterlitz Thouless type[46]. In short, a Klosterlitz Thouless
transition is characterized by the difference of the decay-rate of the correla-
tion length above and below the transition temperature[24]. Above the tran-
sition temperature, we have an exponential decay of the correlation length,
while below the transition temperature one observes a power-law decay of
the correlation length. In finite size systems, this leads to a specific depen-
dency of the transition temperature Tc as a function of the system-size or in
our case the cluster-size Nc. The specific dependency is given by Eq. (4.5).

We would now like to make a connection between these theoretical find-
ings and the superconducting transition observed with the DCA+ for the
repulsive Hubbard model. Unlike the attractive model, where we could
compute the transition temperatures for very large clusters and thus estab-
lish a strong indication for a KT-transition, we can only obtain the transition
temperatures in the repulsive model for clusters with a size less than 56.
Furthermore, the clusters with a size of 32 or less are in the regime where
the coherence length is larger than the cluster-size and can thus not be used
in order to establish a KT-transition. Consequently, we can only use clus-
ters in the range of 36 to 56 to show a logarithmic decay of the transition,
which is highly non-trivial. In Fig. 4.12, one can observe a small decay in
Tc for Nc ∈ {32, ..., 56}, but it would be too simplistic to simply fit Eq. (4.5)
to this data in order to obtain TKT

c , since we have very few data-points in
a limited range. Furthermore, we would not know the error on the fitted
TKT

c . To address this issue, we compute for each cluster-size the transition
temperature of four different clusters with a very small deconvolution cut-
off for σϕ = 0.1 (typically, we use a value of σϕ = 0.5). By taking a small
deconvolution cut-off, we amplify the cluster-dependency of the transition-
temperature. Next, we compute the mean and standard deviation of the four
transition temperatures to eliminate specific cluster-shape dependencies and
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Figure 4.13: The superconducting transition temperature Tc versus cluster-
size for U/t = 7 and 10% doping.

thus obtain a clean system-size dependent transition temperature, as well as
its confidence intervals. The results are shown in Fig. 4.12, where the mean
values are represented by the dots and the confidence intervals are given
by a dashed line. In order to obtain an estimate for TKT

c and its error, we
now generate new transition temperatures for each cluster-size, which are
gaussian distributed around the mean and lie in the confidence interval. For
each of these newly generated set of transition temperatures, we perform a
fit with Eq. (4.5) in order to obtain a TKT

c . As such, we obtain a distribution
for TKT

c , which we show in the inset of Fig. 4.12. The obtained distribution
for TKT

c can be fitted perfectly with a Gaussian distribution with a mean of
0.0199 and a standard deviation of 0.002. The latter can be interpreted re-
spectively as the superconducting transition temperature of the lattice and
its respective error: TKT

c (Nc = ∞) = 0.0199± 0.002. The average fit to the
data is shown in Fig. 4.12 with the red line.
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Figure 4.14: .The leading eigenvector in the particle-particle channel for
U/t = 7, β = 20, Nc = 28 and 10% doping. The d-wave structure is clearly
visible.

4.5.3 The superconducting transition for 10% hole doping at U/t =
7.

In this section, we investigate the superconducting transition in the 2D
Hubbard-model with a strong repulsive interaction of U/t = 7 and a finite
hole-doping of 10%. This region of the phase-diagram is inaccessible with
the DCA, due to an exponentially increasing fermionic sign problem [55].
For clusters with a size less than 28, the sign problem in the DCA+ is suffi-
ciently delayed and becomes only problematic after Tc is reached. For this
reason, it is impossible to compare the following results with previously
published data.

In Fig. 4.13, we show the superconducting transition temperature Tc ver-
sus cluster-size. Just as in the weakly interacting case with a U/t = 4,
we observe that the smallest cluster-sizes have a slightly smaller transition
temperature, due to the coarser averaging of the lattice self-energy and lat-
tice Greens-function. This reduces correlations on the finite size cluster and
thus also Tc. Interestingly, we observe that the transition temperature Tc
converges much faster with cluster-size Nc in the strongly interacting limit.
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4. Study of phase-diagram of the 2D Hubbard model.

This is consistent with the coherence length picture we introduced in the
last section. Intuitively, one would expect that the radius of the Cooper-
pairs becomes smaller with increasing interaction strength, since the elec-
trons become more localized. Following the same line of reasoning as in
the weakly interacting regime, we estimate the coherence length to be of the
order ξ ≈

√
12/π = 1.95 lattice-spacings.

In Fig. 4.14, we show the leading eigenvector Φ(~k, v), obtained after solving
the Bethe-salpeter equation on a fine mesh of 128 k-points. We can clearly
observe the d-wave structure along the Fermi-surface. The original goal of
the paper, i.e. reduce the cluster-shape dependence of the leading eigenvec-
tor Φ(~k, v) in order to minimize fluctuations of the transition temperature,
is thus achieved. Fig. 4.14 also illustrates nicely the frequency dependence
of Φ(~k, v), which follows the typical bell-curve [61]. Although the leading
eigenvector Φ(~k, v) is not a measurable quantity, its momentum and fre-
quency dependence can reveal the structure of the pairing interaction that
drives the formation of Cooper pairs in the superconducting state. Close to
Tc, the effective pairing interaction can be reconstructed [63] from the the
leading eigenvector Φ(~k, v),

Γ(~k, v,~k′, v′) ≈ α Φ(~k, v)Φ(~k′, v′) (4.6)

Here, the parameter α is a fitting parameter, which indicates the strength
of the interaction. After plugging in the approximation to Φ ≈ (cos(kx)−
cos(ky))/(γ2 + v2) ≡ ϕd, we obtain

Γ(~k, v,~k′, v′) ≈ α
(cos(kx)− cos(ky)) (cos(k′x)− cos(k′y))

(γ2 + v2)(γ2 + v′2)
(4.7)

The vertex can now be Fourier transformed and we obtain a short-range,
retarded effective interaction,

Γ(~r, τ,~r′, τ′) ≈ α e−γ (|τ|+|τ′|) ∆(~r) ∆(~r′) (4.8)

∆(~r) =
1
2 ∑

i=±1
δ(rx − i)δ(ry)− δ(rx)δ(ry − i)

After fitting ϕd to the leading eigenvector, we obtain a γ of approximately
0.5± 0.1, which is in the range of 4t2/U ≈ 0.57, predicted by Zhang and
Rice.
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Chapter 5

Scaling and performance of DCA+ on
leadership systems.

Abstract

In this chapter, we show how the DCA+ can be efficiently implemented
on leadership systems. We discuss in detail how the application can
be ported to multi-core and hybrid CPU-GPU systems and how this
affects the scalability, performance and time or energy to solution. Fur-
thermore, we discuss how the algorithmic improvements of the DCA+ ,
i.e the incorporation of a continuous self-energy, lead to a better fermionic
sign problem in the DCA+ than in the DCA. Due to this property, we
estimate that the DCA+ improves the time-to-solution with a factor of
109 compared to the DCA in the case of a 28 site cluster in the 2D Hub-
bard model with U/t = 7. When running at scale on Titan at ORNL,
the production runs scale optimally to 18,600 nodes for this set of pa-
rameters and we have measured sustained performance of up to 15.4
peta-flops, on Titan, which has a peak-performance of 27 peta-flops
and Linpack performance of 17,6 peta-flops.
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5. Scaling and performance of DCA+
on leadership systems.

5.1 Introduction

The rapidly increasing capability of computers in conjunction with the grow-
ing sophistication and efficiency of quantum Monte Carlo solvers has pushed
the limits of simulations to larger cluster sizes and interaction strengths, as
well as lower temperatures. As a result, the only serious barrier for quan-
tum Monte Carlo calculations at low temperatures and away from certain
parameter regimes (such as half-filling in the single-band Hubbard model)
that remains is the fermionic sign problem[98], which leads to an exponen-
tially growing statistical error with increasing system size and interaction
strength, and decreasing temperature.

The sign problem has posed an insurmountable challenge to quantum Monte
Carlo calculations of fermionic systems, especially for simulations of finite
size systems, and remains a problem in the DCA approach. The DCA, how-
ever, was shown to have a less severe sign problem than finite size calcu-
lations [39], which, in the absence of a rigorous mathematical justification,
was attributed to the action of the mean-field host on the cluster. This has
enabled simulations of larger clusters at lower temperatures than those ac-
cessible with finite size simulations and thus has opened new possibilities
for gaining insight into low temperature phenomena in correlated systems.

The DCA+ approach is different from the DCA in that it generates a more
physical self-energy with smooth momentum dependence, and the correla-
tions described by this self-energy are therefore shorter-ranged than those
in the DCA. Hence, it is therefore not unreasonable to expect a difference in
the severity of the sign problem between DCA+ and DCA.

In Fig. 5.1 we compare the fermionic sign σqmc between the DCA and the
DCA+ for a 32-site cluster and U = 7t for a doping of 5%. At low tem-
peratures, the average sign in the DCA+ simulation is significantly larger
than that of the DCA simulation. As indicated above, we attribute this im-
provement to the smooth momentum dependence of the DCA+ self-energy
as compared to the step function dependence of the DCA self-energy. From
Fourier analysis, one knows that the smoothness of a function is related to
the rate of decay of its Fourier coefficients[43]. More precisely, if a function
f is p times differentiable, then its Fourier components fn will decay at least
at a rate of 1/np+1

f ∈ Cp → | fn| ≤
| f (p)|1
np+1 . (5.1)

Since the DCA+ self-energy has smooth momentum dependence and not
the step discontinuities of the DCA, its Fourier-transform to real space is
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5.2. Implementation and method of performance measurements

0.0 0.2 0.4 0.6 0.8 1.0

T

0.25

0.50

0.75

1.00

σ
qm

c

DCA+

DCA

Figure 5.1: Temperature dependence of the average fermionic sign for Nc =
32 at 5 percent doping (U/t = 7 and t′/t = −0.15).

shorter-ranged than that of the DCA and the correlations it describes are
shorter-ranged. We believe that it is this removal of unphysical long-range
correlations, which reduces the sign problem in the DCA+ . In any case,
with this significant reduction in the severity of the sign problem, it is possi-
ble to study the physics of fermionic systems in even larger clusters and at
lower temperatures than accessible with the DCA.

5.2 Implementation and method of performance mea-
surements

Just as in state of the art DCA, the heart of the DCA+ simulations is the
CT-AUX algorithm [29] with submatrix updates [33] and accumulation of
measurements with non-equidistant fast Fourier transforms [93]. The usual
way to parallelize Monte Carlo algorithms is to assign a Markov chain to
every MPI rank, and one rank per compute core of a parallel computer.
Measurements are performed in order with the Monte Carlo updates and
accumulated on every core. Communication between ranks is limited to a
reduction operation at the end of the Monte Carlo simulation – note that in
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on leadership systems.
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Figure 5.2: Schematic representation of the on-node parallellization of a
conventional node (2 × CPU) versus a hybrid-multicore node (1 × CPU and
1 × GPU).

the present case, the quantum Monte Carlo simulation is just one step inside
the respective DCA and DCA+ iterations (see Algorithms 1 and 2). In light
of modern machines with hybrid nodes consisting of multi-core CPU and
GPU, we use a different implementation strategy. We run one MPI rank for
each node and use Nw + Na pthreads per node, where Nw and Na are, re-
spectively, the numbers of walker and accumulator threads running on each
node. On a multi-socket CPU node, the walker and accumulator threads
are distributed evenly over the processors. On hybrid nodes, the compute
intensive walker threads run on the GPU, since they consist mostly of matrix
multiplications (see Fig. 3.2). The accumulators that execute measurements,
which typically are more complex operations that benefit from latency op-
timized cores, run on the multi-core CPU. When a simulation starts up, all
walkers begin from a random configuration running updates until the av-
erage expansion order 〈k〉 converges, at which point the particular walker
is thermalized. At this point the stochastic sampling of the Green’s func-
tion and other observables begins. Walkers send their data (the N-matrix)
over to the pool of accumulator threads, where the measurements are pro-
cessed asynchronously. On a hybrid system this involves transferring data
from the GPU to the CPU over the PCIe bus. Should all accumulators be
busy, the walker continues to update its configuration. However, given the
speed of the measurements with non-equidistant fast Fourier transforms,
the accumulators are typically ready to take on measurements before the
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5.3. Computer systems and performance model

walkers are done with a minimum sweep of 〈k〉 updates required between
measurements. This implementation as it runs on a hybrid CPU-GPU node
is sketched in Fig. 5.2 and summarized in algorithm 3.

Algorithm 3 Hybrid-multicore implementation

1: Start with Nw walkers and Na accumulators.
2: while walker is not thermalized do
3: 1 submatrix-update (GPU)
4: end while
5: repeat
6: if walker then
7: do 〈k〉/ks submatrix-updates (GPU)
8: while all accumulators are busy do
9: 1 submatrix-update (GPU)

10: end while
11: end if
12: copy configuration from the walker (GPU) to the accumulator (CPU)
13: if accumulator then
14: do measurement (NFFT on CPU)
15: end if
16: until all accumulators are finished

On the CPU only version of the code, the floating point performance is
measured by counting all floating point operations with PAPI counters and
dividing by the entire wallclock time of the entire simulation. Since such
counters are not available on GPUs, a lower bound for the floating point
operations performed when running simulations on a hybrid CPU-GPU sys-
tem is computed analytically from the matrix dimensions used on the sub-
matrix updates of the CT-AUX algorithm. Three DGEMM and one DTRSM
operation are necessary for a submatrix update in each of the two spin chan-
nels. Two of these DGEMM are initialization steps. The actual update, repre-
sented in Fig. 3.2B, involves one DGEMM and one DTRSM. Each DGEMM
will contribute 2 ks 〈k〉2 FLOPs, while the DTRSM accounts for k2

s 〈k〉 FLOPs.
Comparing this lower bound estimate with identical simulations running
on CPU-only system where we measure all floating point operations, we
observe that the discrepancy is never larger than 5%.

5.3 Computer systems and performance model

We use a single code base for the implementation of the DCA and DCA+ al-
gorithms (outer loop see algorithm 1 and 2), as well as the quantum Monte
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Carlo cluster solver described in the previous section, on distributed multi-
core and hybrid CPU-GPU systems. The code is implemented in C++ with
template meta-programming techniques to hide architectural complexities
in the quantum Monte Carlo implementation. We use MPI for inter-node
parallelization, pthreads for the multi-threading on the nodes, and CUDA
for the hybrid implementation. The simulations reported in this work have
been executed on distributed multi-core and distributed hybrid CPU-GPU
architectures. The following computer systems are used for the performance
results we report in this and the next section:

Monte Rosa is a Cray XE6 distributed multi-core system at the Swiss Na-
tional Supercomputing Center (CSCS) consisting of 1,496 compute nodes
with two AMD Interlagos processors running at 2.1 GHz and 16 cores each.
Each node is equipped with 32 GB DDR3-1600 RAM.

Todi is a Cray XK7 distributed hybrid CPU-GPU system at CSCS consist-
ing of 272 compute nodes with one 16 core AMD Interlagos processor run-
ning at 2.1 GHz, and one NVIDIA K20X GPU that has 14 streaming multi-
processors running at 732 MHz. The compute nodes are equipped with 32
GB DDR3-1600 memory and the GPU has 6 GB GDDR5 memory.

Titan is a Cray XK7 distributed hybrid CPU-GPU system at ORNL consist-
ing of 18688 compute nodes with one 16 core AMD Interlagos processor
running at 2.2 GHz, and one NVIDIA K20X GPU that has 14 streaming
multi-processors running at 732 MHz. The compute nodes are equipped
with 32 GB DDR3-1600 memory and the GPU has 6 GB GDDR5 memory.

Practically all the time of a fully self-consistent DCA(+) calculation is spend
in the CT-AUX cluster solver. In order to understand the performance of the
code on different architectures, it is thus sufficient to analyze the quantum
Monte Carlo (QMC) simulations. As discussed in the previous section, these
simulations consist of a thermalization phase in which no measurements are
done, and a measurement phase in which measurements of Green’s function
and other observables (such as the two particle vertex) are accumulated. At a
given cluster size Nc and temperature T, the QMC simulation is thermalized
when the average expansion order 〈k〉 stabilizes – note that 〈k〉 ∝ N3

c T−3.
Furthermore, in order to decorrelate the configurations between individual
measurements, 〈k〉 updates have to be performed to the Green’s function.
Thus, the time needed to perform a QMC integration is characterized by the
expansion order 〈k〉, the number or measurements needed to reach a desired
accuracy, and the number of nodes that are available on the machine. We
can empirically determine the thermalization time ∆t(〈k〉) and the time per
measurement ∆m(〈k〉), i.e. time for 〈k〉 updates to the Green’s function
plus time for actual measurement. The parallel efficiency E for a given
mean expansion order 〈k〉, number of nodes Nn, and necessary number of
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measurements Nm is then given by

E(Nn, Nm, 〈k〉) = 1
Nn

∆t(〈k〉) + Nm ∆m(〈k〉)
∆t(〈k〉) + Nm

Nn
∆m(〈k〉)

. (5.2)

Consequently, the parallel efficiency remains high only as long as the num-
ber of measurements is large compared to the number of nodes used in the
simulations. This is a typical Amdahl’s Law behavior, where at large node
counts the parallel efficiency drops at the moment that the parallel phase
(measurements) becomes comparable to the serial phase (thermalization) of
the simulation. A detailed comparison between this performance model and
the real simulations at scale is given in Fig. 5.6 that will be discussed in the
next section.

In Fig. 5.3 we show the time per measurement ∆m when the algorithm is
running on the CPU-only nodes of Monte Rosa and the hybrid CPU-GPU
nodes of Todi. To be precise, the speed-up is the ratio between between ∆m
on an XE-6 node and an XK7 node.
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Figure 5.3: The seconds per measurement needed on a XE6 node (Monte
Rosa) versus an XK7 node (Todi). The dotted lines are cubic fits to the data-
points.
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For any given cluster size, we have to run a sequence of DCA(+) simula-
tions, starting at high temperature and cooling down to temperatures below
Tc, as we can only determine the critical temperature from the point where
the leading eigenvalue of the two-particle vertex equals unity and the pair-
field susceptibility diverges. From Fig. (5.3), it becomes clear that running
the simulations on the hybrid CPU-GPU architectures is in almost all cases
preferable. With the exception of small expansion order 〈k〉 where the N-
matrices fit into the cache of the CPU, we obtain a considerable speed-up
with the hybrid-multicore implementation, mainly due to the superior per-
formance of DGEMM on the GPU compared to on a CPU. In particular
when the mean expansion order is high (〈k〉 ≥ 1000), i.e. at low temperature
and large cluster sizes, we observe a very significant speed-up on the hybrid
system. Since this is the region where the superconducting transition occurs
and where a large number of measurements are needed to suppress the
sign problem for large clusters, we have to focus our efforts to obtain a maxi-
mum speed-up and efficiency in this parameter regime. Hence, running the
simulations on hybrid CPU-GPU nodes pays off from a time to solution per-
spective. This is even more the case from an energy to solution perspective.
We find that despite the higher performance, the energy consumption of the
XK7 cabinet is about equal to that of the XE6.

A detailed comparison of the energy to solution, normalized per node and
measurement, is given in Fig. (5.4), where the results are determined from
power measurements of the entire cabinet (thus including network and all
cooling devices) taken at millisecond intervals and integrated over the en-
tire simulation cycle. Using the GPU-based XK7 dramatically reduced the
energy cost of the simulation. Thus, all simulations to produce the results
plotted in figure 4.13 and those we will analyze in the next section, were
done on the Cray XK7 supercomputers Todi and Titan.

5.4 Performance results at scale

The most important benefit of the DCA+ algorithm is the improvement of
the fermionic sign problem for larger clusters at lower temperatures. It al-
lows us to converge the superconducting transition temperature Tc as a func-
tion of cluster size Nc. This was discussed in detail in the previous chapter
and the results for Tc are plotted in figure 4.13. We will now discuss how the
simulations to compute Tc were done on the large-scale computer systems
with the implementation we have discussed in section 5.2. Since the imple-
mentation is portable to multi-core and hybrid CPU-GPU systems and the
performance model of section 5.3 is generic, our present discussion should
apply to all of high-end computing systems in operation today.

The reduction of the sign problem is of crucial importance to the time to
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Figure 5.4: Energy (normalized by node and QMC measurement) needed
to do a simulation on a XE6 (Monte Rosa) versus an XK7 node (Todi). The
dotted lines are cubic fits to the data-points.

solution. From the central limit theorem, we know that the standard devia-
tion on an accumulated observable, i.e. the accuracy, is proportional to the
inverse square root of the number of measurements. In QMC simulations,
the fermionic algebra introduces contributions with a negative weight, often
interpreted as a negative probability. To take these negative weights into
account, we need to divide the accumulated observable with the average
sign of the weights. This becomes problematic in the case of a small average
sign. If we assume a standard deviation on our observable of the order of
σO ≈ 1, a reasonable assumption since all observables have a magnitude of
the order of 1, we obtain that the number of measurements needed for a
desired accuracy ε is

Nm =
( σO

σQMC ε

)2
(5.3)

In order to obtain an estimate for the time-to-solution, we have to estimate
two quantities: the time per measurement ∆m and the fermionic sign. We
know that the complexity of the time per measurement is cubic with inverse
temperature ∆m ∝ T−3. In order to predict the fermionic sign, we fit a
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solid and dotted lines are the estimated TTS according to Eq. (5.4). Inset:
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lines are the fits, used to generate the estimated TTS-curves.

Fermi-Dirac like function (1 + exp(−a(T − b))−1 to the measured average
sign, which sets the positive parameters a and b (see inset of Fig. [5.5]). By
multiplying the time per measurement with the desired number of measure-
ments to obtain an accuracy of ε, we arrive at an empirical formula for the
time-to-solution (TTS) for a desired accuracy ε at a given temperature T,

TTS(T, ε) ∝ T−3
(σO

ε

)2 (
1 + e−a(T−b))2 (5.4)

There are two temperature regimes for the TTS. If T > b, the TTS will grow
proportional T−3 since the fermionic sign will be close to 1. For T < b, the
exponent will become more important and the TTS will grow exponentially.
This can be clearly seen in figure 5.5, where the parameter b is approxi-
mately ≈ 0.2− 0.25 in the case of the DCA. Consequently, we can observe
a kink in the log-log plot of the TTS for the DCA-simulations at those tem-
peratures. In essence, the DCA+ moves the transition between polynomial
to exponential TTS to lower temperature due to its favorable sign and thus
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Table 5.1: Effect of the number of measurements on the error of the self-
energy Σ~K and Tc for Nc = 28, U/t = 7.

# measurements accuracy on Σ~K Tc
500k 0.03 0.0484 ± 0.004
10M 0.0074 0.0518 ± 0.0014

vastly improves the time to solution. Since we will never be able to run the
DCA simulations at U/t = 7 and cluster sizes of Nc = 12 or larger with the
machines we have available, we will have to estimate the TTS of the DCA
from extrapolation down to Tc in figure 5.5. A comparison of the predicted
TTS for the DCA+ runs with actual TTS in actual Nc = 28 runs at T ≈ Tc,
shows that we have the correct order of magnitude. We estimate that the
DCA+ algorithm improves the TTS of these runs by about 9 orders of magnitude
compared to the state-of-the-art DCA runs, using the same cluster solver and
implementation in both methods.

The number of measurements necessary to reach a desired accuracy of ε =
0.01 in the DCA+ iterations at Tc, as estimated from eq. (5.3), is 10 million
for Nc = 28 and U/t = 7, and 2.5 million for Nc = 52 and U/t = 4. These
are the two largest, most time consuming runs we performed to produce the
results plotted in figure 4.13. In table 5.1 we show for the measured εQMC
is indeed in agreement with the desired value ε = 0.01 that we used in the
measurements, and that this value is indeed reasonable to reach an accuracy
on Tc of a few percent. If only 500 thousand measurements were used, the
error on Tc would be closer to 10%. The error on Tc shown in the table where
determined from five independent runs with different seeds.

We have measured the parallel efficiency by running two sets of simulations,
one with 500 thousand and one with 10 million measurements for Nc = 28
and U/t = 7 parameter-set. In figure 5.6 we compare the actual TTS of these
simulations with the predictions from equation (5.2) for various number of
nodes. We can conclude that the scaling limitations of the simulations are
entirely driven by Amdahl’s law and the relative time taken by the thermal-
ization in the QMC cluster solver.

For the remainder of this analysis, we use the (Nc = 28, U/t = 7) and (Nc =
52, U/t = 4) simulations to study the strong- and weak-scaling behavior.
As indicated above, in oder to reach a desired accuracy of ε = 0.01, we
have to run 10 million measurements for the former and 2.5 million for
the latter. The corresponding strong scaling plot is shown in Fig 5.7. The
measured parallel efficiency for the (Nc = 28, U/t = 7) run at 18,600 nodes
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surements in the strong (U/t = 7) and weak (U/t = 4) interaction limit.
The dashed lines show the predictions of Eq. (5.2).

is 0.94, in good agreement with estimates based on Eq. (5.2). A floating point
performance plotted was determined with the method discussed in section
5.2. At 18,600 nodes, the floating point performance is determined to be
0.94 for the 28 site cluster runs and 0.82 for the 52 site clusters. The relative
difference in sustained performance is consistent with respective average
expansion order 〈k〉 and corresponding matrix sizes used in the CT-AUX
cluster solver.

For completeness, we also show weak scaling plots in figure 5.8. Here we
start from the runs discussed above and same configurations used at 2,500
nodes in weak scaling experiments. The number of measurements are scaled
proportionally with the number of nodes up to a maximum of 18,600. As
expected, the time to solution remains constant. The sustained performance
is 13.6 petaflops in the case of Nc = 52 and 9.7 petaflops when Nc = 28.
The weak scaling plot indicate what we would have to do, if we ran with
even larger clusters. In that case, we would have to increase the number of
measurements even further to suppress the sign-problem. For example, if
we were to run a 32-site cluster with U/t = 7, we estimate that we would
need 100 million measurements, even more than the 10 million we used at
18,600 nodes in the strong scaling plot for Nc = 28. Furthermore, the 32-site
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Figure 5.7: Strong scaling behavior for the largest clusters in the weak and
strong interacting regime. The required 10 and 2.5 million measurements
were used for Nc = 28 and Nc = 52, respectively, in order to reach a desired
accuracy of ε = 0.01 in the DCA+ iterations

runs will have a larger average expansion order and would thus take longer.
We estimate that they would run for 100 minutes on 18,600 nodes on Titan.

The highest sustained performance in a full production run we have mea-
sured so far was 15.4 petaflops. This simulations ran on Titan (18,600 nodes)
for 2250 seconds with a total energy consumption of 4300 kWh. It was
recorded just prior to submission of the camera ready manuscript, while
simulating the low doping region (5% hole-doping) of the Hubbard model
in a 52-site cluster with U/t = 7. In this region of the phase-diagram, the
lattice self-energy becomes strongly momentum dependent, thus requiring
large clusters in order to have adequate momentum resolution. Had we
done this run on a Cray XE6 with the same number of nodes but with multi-
core processors only, we would have consumed 33,580 kWh and the time to
solution would have been more than six hours.
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Figure 5.8: Weak scaling behavior for the largest clusters in the weak and
strong interacting regime. The number of measurements are scaled propor-
tionally with the number of nodes, with starting values at 2,500 node of 10
and 2.5 million for the Nc = 28 and Nc = 52 configurations, respectively.
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Chapter 6

Continuous-Pole-Expansion: A novel
method to obtain the spectrum of

electronic lattice models.

Abstract

Motivated by the development of the continuous time Quantum Monte
Carlo impurity solvers that can directly accumulate the self-energy on
the Matsubara frequencies, we present the continuous pole expansion
algorithm (CPE). It can perform an analytical continuation of the self-
energy located on the Matsubara frequencies to the real axis, which in
turn allows us to probe the spectrum of the lattice-model, on which the
original impurity-problem is modeled. Starting from the well-known
analytical properties of the self-energy, the CPE rephrases the analyti-
cal continuation problem into a minimization problem with linear con-
straints. This minimization problem is inherently numerically stable
and can be solved easily with the use of standard minimization meth-
ods. We approach the validation of the CPE in two different ways. First,
we investigate how the self-energy and spectrum compare to exact di-
agonalization results on the real axis. In this way, we can identify the
strengths and weaknesses of the proposed algorithm. Next, we will
investigate some well-known problems which have been discussed in
the literature in detail. To illustrate how the CPE can be used to in-
vestigate the momentum dependency of the spectrum, we apply the
CPE in the 2D Hubbard model at half-filling and confirm the momen-
tum dependent gap formation. Next, we illustrate the use of the CPE
in real materials calculation, by computing the spectrum of NiO and
comparing it with combined XPS, XES and BIS measurements.

relevant papers:

• P. Staar, B. Ydens, A. Kozhevnikov, J.-P. Locquet and T. C. Schulthess,
Continuous-Pole-Expansion: A novel method to obtain the spectrum of elec-
tronic lattice models., to be published soon (2013)
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6.1 Introduction

One of the main tasks of modern condensed matter physics is the investi-
gation of electronic lattice models with intermediate to strong correlations.
Many of these systems are not tractable with controlled analytic approxima-
tions in the regimes of interest, so that numerical simulations need to be
employed. Currently, the dynamical mean field theory (DMFT) [26] is the
method of choice to investigate these type of problems. For practical pur-
poses, the DMFT does not describe these models in real time, but rather in
imaginary time. As a consequence, we can only indirectly access quantities
on the real axis via an analytic continuation from the imaginary axis to the
real axis.

There are currently two widely used methods to do an analytic continuation.
The simplest and most unreliable one is the Pade-approximation[99, 6]. In
this method, one fits a fractional polynomial to the data on the Matsubara
frequencies. The analytic continuation is then obtained by simply evaluat-
ing the polynomial on the real axis, instead of the imaginary axis. In order
to obtain interesting features, one generally needs a large fractional poly-
nomial, which are notoriously unstable and violate the known analytical
properties of the function. The second and much more successful method is
the Maximum Entropy Method (MEM)[27, 40, 91]. This method analytically
continues the imaginary time Greens function to the real frequency axis in
order to obtain the spectrum A. It is based on the relationship

G(τ) =
−1
π

∫
dω

e−τ ω

1 + e−β ω
︸ ︷︷ ︸
=K(ω,τ)

A(ω). (6.1)

A straightforward (numerical) inversion of Eq (6.1) is impossible, since the
spectrum at large frequencies (ω � 1) has only an exponentially small con-
tribution to the imaginary time Greens function. Given a finite numerical
precision, this means that there are many different spectral functions that
all satisfy Eq (6.1). Without going into too much detail, the central idea
in a MEM approach is to search a spectral function that satisfies Eq (6.1)
and maximizes the information entropy S [89], relative to a positive definite
function m(ω) which has the correct high-frequency behavior

S = −
∫

dωA(ω)−m(ω)−A(ω) log(A(ω)/m(ω)). (6.2)

The m(ω) function serves as the default model. In the absence of the con-
straint in Eq (6.1), maximizing the entropy will result in a spectrum A(ω)

94



6.1. Introduction

equal to m(ω). For unknown systems, finding a good default model is not
always a trivial matter.

With the introduction of continuous time Monte Carlo solvers [84, 101, 103,
29, 30], we are able to directly measure the self-energy on the Matsubara
axis with unprecedented speed [33] and accuracy [93]. This motivated us
to investigate the possibility of an analytic continuation of the self-energy
directly in frequency space, using the relationship

Σ(z) = Σ0 +
1

2π

∫ ∞

−∞
dω

1
ω− z︸ ︷︷ ︸
=T(ω,z)

Im
[
Σ(ω)

]
. (6.3)

Performing the analytic continuation in frequency space is advantageous,
since the ill-defined high-frequency behavior caused by the exponential de-
cay in Eq. (6.1) can be avoided. This is easily demonstrated. We know that
the high frequency part of the self-energy on the matsubara axis behaves
like

Σ(v � 1) ≈ Σ0 − ı
Σ1

v
+ · · · , Σ0, Σ1 ∈ R (6.4)

By performing a high-frequency expansion on the right hand side of Eq. (6.3)
and equating this to Eq. (6.4), we can conclude that

Σ1 =
∫ ∞

−∞
dω Im

[
Σ(ω)

]
, Im

[
Σ(ω)

]
≤ 0. (6.5)

Hence, the imaginary part of the self-energy has a finite L1-norm, since we
also know from standard field theory [1] that the the imaginary part of the
self-energy is strictly negative on the real axis. As such, we can conclude
that it must decay fast on the real axis for large frequencies. Hence, the ex-
ponential decay of the transfer function K(ω, τ) for large large frequencies is
replaced by a polynomial decay of the new transfer function T(ω, v), simply
by keeping the analytic continuation completely in the frequency domain.
Despite the improvement to the ill-conditioned high-frequency problem on
the real axis, inverting Eq. (6.3) can still not be done in a straightforward way.
First of all, the numerical inversion of the transfer-matrix T(ωi, vj) is very
unstable. Secondly, the self-energy is obtained in this paper using a Monte-
Carlo algorithm. Therefore, the algorithm has to be robust enough to not be
affected by statistical errors on the data and should not extract information
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for the self-energy on the real axis from simple statistical noise. Thirdly, we
know that the imaginary part of the self-energy has to be negative. Such
a constraint is extremely difficult to enforce, while solving a linear system.
For these reasons, we translate the inversion-problem of Eq. (6.3) into a mini-
mization problem in this paper. The minimization function Λ is constructed
as the L2-norm between the QMC-data and the computed self-energy on
the Matsubara frequencies from a given strictly positive, real function f on
the real axis. As such, the solution that corresponds to the minimum of
the norm Λ corresponds also to the solution of Eq. (6.3). The advantage of
translating the inversion problem into minimization algorithms, is not only
with regard to the intrinsic robustness of these algorithms towards numer-
ical errors, but also the relative ease with which strong constraints can be
imposed on the solution. The goal of this paper is to investigate how to
parametrize the function α in an efficient way and consequently present a
viable implementation that can solve the constrained minimization problem.

A significant part of the paper will be spent on the validation of the CPE
algorithm. Since the analytic continuation of a complex function is a non-
trivial operation, we want to compare how the CPE performs, and observe
its weaknesses as well as its strengths. First, we will validate the method
via Exact Diagonalization (ED) on isolated clusters. As the name suggests,
the ED allows us to compute the exact self-energy function on the imagi-
nary and real axis for simple problems. A straightforward comparison is
thus possible. Next, we want to apply the CPE to reproduce the spectrum
of the single-band Hubbard model [37] at half-filling on a 32-site cluster in
the DCA[35, 34, 39, 62]. We will validate a formula that is commonly used
in the literature to probe the spectral density at the Fermi-energy. To illus-
trate how the CPE can be used to inspect the momentum-dependency of the
spectrum, we will also investigate the momentum dependent gap formation.
This topic has been recently investigated on small clusters [102, 32, 28], but
without any conclusions on the spectral functions. We will show that the
CPE arrives at the same conclusions as in the literature and investigate the
spectral functions more closely. At last, we apply the CPE to the NiO com-
pound, a well studied material. As such, we demonstrate how the orbital
dependent spectrum can be computed with the CPE. We will also validate
the results of the CPE versus XPS, XES and BIS measurements. As there
are no exact results for the impurity problem, experimental data is the next
best thing to validate the CPE algorithm. We will show a remarkable good
agreement between theory and experiment.

96



6.2. Analytical properties of Fermionic Green’s function and self-energy

6.2 Analytical properties of Fermionic Green’s function
and self-energy

We shortly review the analytical properties of the single-particle Greens-
function and self-energy for Fermionic systems. We follow closely the ar-
gumentation of Abrikosov, Gorkov and Dzyaloshinski[1]. These properties
will be used in the next section to motivate the Continuous Pole Expansion
(CPE) of the self-energy. As is well known in field theory, the single-particle
propagator G is defined as

G(~k, τ) = 〈Tτ[c†
~k
(τ)c~k(0)]〉. (6.6)

Here, τ represents the imaginary time and lives in the interval [−β, β]. For
notational convenience, we will omit the momentum vector~k, as it does not
contribute to the argument. For a Fermionic Greens-function, the value
for τ < 0 is related to the value for τ > 0 via the simple relationship
G(τ + β) = −G(τ), due to the time-ordering operator. Consequently, the
Fourier transform of the Fermionic Greens-function is only non-zero on the
Matsubara frequencies vm = π/β (2 m + 1) with m ∈ Z and we have that

G(vm) =
∫ β

0
dτ ei vm τ G(τ). (6.7)

Standard complex analysis teaches us that there exists a unique, analytical
function that coincides the infinite sequence {ı vm, G(vm)} in the complex
plane1. As such, we define the Greens-function G(z) on the entire complex
plane as the unique analytical continuation of this infinite sequence. Further-
more, a straightforward expansion of Eq. (6.6) in terms of the eigen-energies
and eigen-basis of the system reveal that there exists a positive, integrable,
real function ρ(ω) such that the Greens-function on the real axis can be
obtained as,

G(vm) =
∫ +∞

−∞
dω′

ρ(ω′)
ω′ −vm

. (6.8)

1We refer here to the interior uniqueness properties of single valued complex functions
from http://www.encyclopediaofmath.org: Let D be a domain in the complex plane C. The
classical interior uniqueness theorem for holomorphic, i.e. single-valued analytic, functions on D
states that if two holomorphic functions f (z) and g(z) in D coincide on some set E ⊂ D containing
at least one limit point in D, then f (z) = g(z) everywhere in D.
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Due the uniques property, we can generalize Eq. (6.8) to anywhere in the
(upper) complex plane and obtain

G(z) =
∫ +∞

−∞
dω′

ρ(ω′)
ω′ − z

. (6.9)

Since ρ is a real and positive function, we can logically deduce from Eq.(6.9)
that the following analytical properties hold for the Greens-function,

Im
[
G(ω + iv)

]
< 0 if v > 0. (6.10)

GI(iv) = GI(−iv)

As such, one notices that the single particle propagator can only have com-
plex zeros on the real axis. The self-energy Σ is related to the Greens-
function via the Dyson equation,

Σ(z) = G−1
0 (z).− G−1(z). (6.11)

Since G(z) and G0(z) have no zero’s in the upper complex plane, we know
that their inversion can not introduce any poles in the upper plane of the
self-energy. Hence, the self-energy is also analytic in the upper complex
plane, with the possible exception on the real axis. The lack of poles in the
upper complex plane allows us to use the residue theorem

Σ(z) =
1

2πı
lim

δ→0+

∫ ∞

−∞
dω

Σ(ω + ı δ)

ω− z
. (6.12)

From the causality requirement on the self-energy, we also know that the
imaginary part of the self-energy must be negative anywhere in the upper
complex plane. The causality property, combined with the Kramers-Kronig
relationships then result in the identity,

Σ(z) =
1

2π
lim

δ→0+

∫ ∞

−∞
dω

Im
[
Σ(ω + ı δ)

]

ω− z
,

lim
δ→0+

Im
[
Σ(ω + ı δ)

]
< 0 (6.13)
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6.3 Continuous pole expansion for the self-energy

Motivated by Eq. (6.13), we can parametrize the self-energy on the Matsub-
ara frequencies with a positive, real function f ,

Σ̃(vm) = Σ0 +
∫ ∞

∞
dω

f (ω)

ı vm −ω
, (6.14)

with f ≥ 0, Σ0 ∈ R,
∫ ∞

∞
dx f (x) = Σ1.

The goal of the CPE-algorithm is to search for the positive function f, that
minimizes the norm Λ,

Λ( f ) =
M

∑
m=0

∣∣∣Σ̃(vm)− Σ(vm]
∣∣∣
2
. (6.15)

In order to find f, we will decompose it in the basis of a regular spaced,
piecewise linear function. If {ωn = n ∆/N} for n ∈ {−N, ..., N} forms
our regular spaced grid on the real axis, we can define the decomposition
explicitly with the help of the step-function θ,

f (ω) =
N

∑
n=−N

αn ϕn(ω) with αn ≥ 0, (6.16)

ϕn(ω) = θ(ω−ωn−1) θ(ωn −ω)
ω−ωn−1

ωn −ωn−1

+ θ(ω−ωn) θ(ωn+1 −ω)
ωn+1 −ω

ωn+1 −ωn
.

Due to this explicit decomposition, we can perform the integral in Eq. (6.14)
analytically and rewrite Σ̃(z) into a much simpler form

Σ̃(z) = Σ0 +
N

∑
n=−N

Φn(z) αn with αn ≥ 0, (6.17)

Φn(z) =
ωn−1 − z

ωn−1 −ωn
log
(

ωn−1 − z
ωn − z

)

− ωn+1 − z
ωn −ωn+1

log
(

z−ωn

z−ωn+1

)
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We can now define a transfer matrix Am,n = Φn(i vm) and rewrite the norm
Λ into a least square problem with boundary conditions,

Λ =
M

∑
m=0

∣∣∣Σ0 +
N

∑
n=−N

Am,n αn − Σ(vm)
∣∣∣
2
, αn ≥ 0.

By expanding the norm and gathering the terms of the same order in αn,
we obtain an explicit quadratic form for the norm Λ as a function of the
constant transfer matrix Am,n and the coefficients Σ0 and {αn},

Λ = M Σ2
0 − 2 Σ0

M−1

∑
m=0

Re[Σ(i vm)]

+~α Q~αT +~q~αT + C, (6.18)

Q =
(

Im[A]TIm[A] + Re[A]TRe[A]
)

~q = 2
((

Σ0 − Re[~Σ]
)

Re[A]− Im[~Σ] Im[A]
)

~α = {α−N , ... , αN} and
~Σ = {Σ(iv0), ... , Σ(ivM)}.

Hence, the CPE algorithm rephrases the problem of analytic continuation of
a noisy function to a quadratic programmable optimization problem, with
linear constraints. These type of problems are well known, and a multiple
algorithms exists to find the minimum. From Eqs. (6.18), it follows that Q
is positive semi-definite and according to Eq. (6.15), Λ has a trivial lower
bound. In a a quadratic programmable optimization problem, these con-
ditions are sufficient to guarantee a unique solution for which our norm
Λ is minimized. Consequently, given a ∆, an N and an M, there is a
unique set of {αn} and Σ0 for which our norm Λ is minimized. The Frank-
Wolf algorithm[22] (FWA) is the most simple algorithm, aimed at solving a
quadratic programmable optimization problem. We will discuss here its im-
plementation for the CPE-algorithm: First, we subtract the zeroth moment
Σ0 of the measured self-energy Σ. This ensures integrability of Σ and Σ̃
along the real axis. Next, we choose an initial set of {α}, and compute the
gradient of Λ towards {αn} and Σ0,
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~∇{α}Λ = 2 Im[A]T
(

Im[A]~α− Im[~Σ]
)

+ 2 Re[A]T
(

Re[A]~α + Σ0 − Re[~Σ]
)

.

∂Λ
∂Σ0

= 2
M−1

∑
m=0

(
Re[A]~α + Σ0 − Re[Σ(i vm)]

)
(6.19)

Notice that the initial guess of {αn} is irrelevant, since there is only 1 min-
imum in our convex search-space. We now search a λ, that minimizes the
norm Λ along the direction of −~∇{α}Λ. Special care has to be taken to en-
force positivity of all coefficients {α}. This is accomplished by pointwise
application of the ρ ramp-function2.

Σ̃(λ) = A ρ(~α − λ ~∇{α}Λ) (6.20)

Λ(λ) =
M

∑
m=0

(
Im
[
Σ̃(λ)−~Σ

])2
+
(

Re
[
Σ̃(λ)−~Σ

])2
.

The parameter λmin that minimizes our norm, can now be used to generate
a new set of coefficients {α},

~ai+1 = ρ(~αi − λmin ~∇{αi}Λ ) (6.21)

We continue this iterative process until Λ is numerically converged to a min-
imum value. This minimization approach in the CPE-algortihm has major
benefits compared to other algorithms. First, the CPE-algorithm depends
only on 3 external parameters ∆, N and M, if we do not take into account the
to be fitted self-energy points on the imaginary axis. Furthermore, for these
3 parameters, there is a unique solution, since the norm can be rewritten as
a quadratic function with a positive semi-definite kernel-matrix A. Second,
CPE is numerically stable against white noise on the measured self-energy Σ,
since we use a fitting procedure. This robustness is important in the DMFT
context, where the self-energy is computed via a statistical process. Third,
CPE is a self-consistent method, which returns a goodness-of-fit measure via
Λ. This measure can be used to adjust the external parameters.
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Figure 6.1: Comparison the real and imaginary part of the self-energy
Σ(~K, ω) obtained with ED as well as with CPE. We observe that the CPE can
capture the self-energy remarkably well around the Fermi-energy (ω = 0),
as well as the broad features far away from it.

6.4 Validation of CPE with Exact Diagonalization.

Since the analytical continuation of a complex function is a non-trivial task,
a proper validation of the algorithm is absolutely essential. To this end, we
would like to discuss in detail how the CPE performs for exactly solvable
models. With exact diagonalization (ED), we can currently solve the single
band Hubbard model on an isolated 8-site cluster. Due to the absence of the
coupling to the bath, the the Hamiltonian has a finite number of term and
is represented as

H =− t ∑
σ=↑,↓

8

∑
〈i,j〉=1

c†
i,σ cj,σ

+
U
2 ∑

σ=↑,↓

8

∑
i=1

(ni,σ − 1/2)(nj,−σ − 1/2)
)

The Hamiltonian acts on a Fock-space, composed of 216 = 65536 states. Af-
ter applying total number and magnetization symmetries, the matrix can
be block-diagonalized with a maximum block-size of 4900. Using standard
eigenvalue decomposition routines of LAPACK, we can obtain all the eigen-
energies {ε i} and eigenstates {|Ψi〉} of the isolated 8-site cluster. Following
standard many-body theory, we can now compute the Greens-function any-
where in the (upper) complex plane

2http://mathworld.wolfram.com/RampFunction.html

102



6.4. Validation of CPE with Exact Diagonalization.

G(ν, µ, z) = ∑
i,j

e−β εi

Z
〈Ψi|cν|Ψj〉〈Ψj|c†

µ|Ψi〉
z− ε i + ε j

. (6.22)

Here, the symbols ν and µ are short-hand notations for the band, spin and
cluster K-point ν = {bν, sν, ~Kν}. By solving the cluster twice, once with
the interaction switched on and once with the interaction switched off, we
can obtain respectively the interacting and non-interacting Greens-function.
From these two functions, we can obtain the self-energy in momentum space
through the Dyson equation anywhere in the complex plane,

Σ(~K, z) = G−1
0 (~K, z)− G−1(~K, z) (6.23)

The idea is now to evaluate the self-energy on the real axis and on the mat-
subara frequencies, located on the imaginary axis. In this way, we can use
the self-energy on the matsubara frequencies as an input for the CPE, and
compare the analytically continued self-energy with the exact result.

In Fig. 6.1, we show the self-energy for various ~K-points on the real axis ,
with an off-set of δ = 0.1ı. By comparing the ED results with the analyti-
cally continued self-energy, we can observe clearly the strengths and weak-
nesses of the CPE. Looking at the imaginary part of the self-energy, we can
clearly observe that the high-frequency behavior of the self-energy decays
smoothly and does not diverge. We can also see that the CPE can capture
the self-energy remarkably well around the Fermi-energy (ω = 0), as well
as the broad features far away from it. However, sharp features can not be
captured adequately. This is clear from the imaginary part of the self-energy
at ~K = {π, 0}. The divergence at the Fermi-energy is underestimated and
the features at the interval ω = [−4,−2] are absent in the CPE-self-energy.

Consequently, one should therefore not expect to be able to determine sharp
features in the spectrum with the CPE far from the Fermi-surface. Only
broad features can be captured accurately far from the Fermi-surface. This
is illustrated by Fig. 6.2, where we compare the spectrum obtained with ED
as well as with CPE. One can clearly observe that the gap around the Fermi-
surface is well represented by the CPE, as well as the broad Hubbard-bands
at ω ≈ ±3.

In lattice models, we can safely assume that the spectrum is smoother than in
finite size clusters, since we have an infinite number of eigenvalues instead
of a finite set. The finite set of eigenvalues introduces poles with a finite
weight on the real axis and thus originates the sharp features observed in
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Figure 6.2: Comparison of the spectrum obtained with ED as well as with
CPE. One can clearly observe that the gap around the Fermi-surface is well
represented by the CPE, as well as the broad Hubbard-bands at ω ≈ ±3.

Fig. 6.1 and Fig 6.2. As a consequence, we expect that the CPE will perform
even better for lattice models than in finite size model considered in this
section.

6.5 Application to Physical problems

In this section, we want to further validate the CPE-algorithm, by applying
it to some well known physical problems. The focus in this section is not
on the actual physics, but rather on the fact that the CPE can be used ef-
fectively in a wide range of problems and obtains the results reported in
the literature. We will concentrate on two fundamentally different problems.
First, we will use the CPE to investigate the momentum dependance of the
spectrum. Recently, a lot of attention has gone to the momentum dependent
gap formation at half-filling in the single band Hubbard model. By apply-
ing the CPE on the ~K-dependent self-energy obtained from the DCA, we
would like to verify this phenomenon. Second, we would like to showcase
the capabilities of the CPE by computing the spectrum of NiO and compar-
ing the latter to experimental data. The prediction of a 4.3 Ev gap around
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Figure 6.3: . Verification of the CPE algorithm through Eq. (6.24) at zero per-
cent doping. The left hand side β G(~k, β/2) is depicted by a solid line, while
the right hand side is given by the solid dots. Given that this relationship is
not enforced during the minimization-process, the agreement is remarkably
good.

the Fermi-energy, absent in LDA-calculations, is one of the great successes
of the DMFT. Consequently, it is imperative that the CPE can reproduce this
result accurately.

All in all, we want to illustrate that the CPE, in combination with LDA+DMFT,
can be a straightforward, easy-to-use numerical tool to determine accurately
the spectrum of lattice models as well as real materials.

6.5.1 Momentum-dependent gap formation in half-filled 2D Hub-
bard model.

The combination of the Dynamical Cluster Approximation together with the
CPE algorithm allows us to investigate the momentum dependency of the
spectrum in different regimes of the phase-diagram. Recently, a lot of atten-
tion has gone to the momentum dependent gap formation at half-filling in
the single band Hubbard model. In particular, it has been shown[102, 28]
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Figure 6.4: Temperature dependence of the spectrum A at half-filling. No-
tice the appearance of the van-Hove singularities originating from the band
splitting at the Fermi-energy ω = 0.

that for a specific interaction-strength of U/t = 6, the anti-nodal regions
([±π, 0] and [0,±π]) lose their spectral weight contribution at the Fermi-
energy faster than the nodal regions ([±π/2,±π/2]). This momentum
anisotropy in the self-energy is a very interesting phenomenon since exotic
ground-states such as the anti-ferromagnetic and d-wave superconducting
state require a momentum dependent self-energy.

In this paper, we would like to investigate this momentum anisotropy on
32-site cluster at half filling for an interaction strength of U/t = 6. A 32-site
cluster is large enough to investigate carefully the momentum-anisotropy
along the Fermi-surface, and will therefore give us an intimate view on the
gap-formation at zero doping. In the literature, the momentum anisotropy
of the gap formation has been investigated by using the identity,
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Figure 6.5: Temperature and momentum space dependence of the gap-
formation at half filling along the Fermi-surface

β G(~k, τ = β/2) = −β/2
∫

dω
A(~k, ω)

cosh(βω/2)
(6.24)

β→∞
≈ A(~k, ω = 0).

At low temperatures, the quantity β G(~k, τ = β/2) is a good estimate for the
spectrum at the Fermi-energy, since the function 1/ cosh(βω/2) becomes
a delta-function for β going to infinity. Since the imaginary time function
can be computed directly with a QMC solver, the spectrum at the Fermi-
energy can be probed straightforwardly, without having to do a analytical
continuation of the self-energy or Greens-function. With the CPE, we can
obtain the spectrum A(~K, ω) on the entire real axis. As a consequence, we
can verify the accuracy of the CPE, by performing the integral on the right-
hand side of Eq. (6.24) and comparing it to the quantity β G(~k, τ = β/2). In
Fig. 6.3, we show for various~k-points the left hand side of Eq. (6.24) (solid
lines) and compare it with the right hand side (solid dots). Given that this
relationship is not enforced during the minimization-process, the agreement
is remarkably good. This finding implies that all qualitative features we can
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deduce from the CPE-algorithm (at the Fermi-energy) would be identical to
the results in the literature, deduced from the quantity β G(~k, β/2).

The Mott-transition at zero percent doping has been intensively investigated,
since the introduction of the DMFT. The behavior of the spectrum as a func-
tion of the temperature is therefore well known in this region and offers us
a perfect platform to further benchmark the CPE algorithm. In Fig. 6.4, we
show the temperature dependence of the spectrum A(ω). As is expected,
the spectrum drops quickly in a broad region around the Fermi-energy
(ω = 0) in order to form a gap. At the same time, two broad Hubbard
bands emerge at ω = ±4 and two sharp peaks emerge at the edge of the
gap. These sharp features originate from the van-Hove singularities, which
typically go together with the formation of a gap. The major advantage of
analytically continuing the self-energy, opposed to the Greens-function be-
comes now clear. Since the CPE can only reproduce broad features, it is
much better to analytically continue the self-energy. The sharper features
such as the van-Hove singularities will then be generated by the Brillouin-
zone integration of the Greens function on the real axis,

A(ω) = − 1
π

∫
d~k Im

[ 1

ω + ı δ + µ− ε(~k)− Σ(~K, ω)

]
(6.25)

Here, we used a common used off-set of δ = 0.1. The Brillouin zone integra-
tion is performed using the tetrahedron integration method[53, 54] (TIM).
The TIM was developed especially to deal with integrals over inverse func-
tions. The inversion introduces poles in the integrand, and TIM can treat
these poles in a numerically controlled way.

Let us now focus on the momentum anisotropy of the self-energy, and its
impact on the spectrum. In Fig. 6.5, we show the imaginary part of the
self-energy and the spectrum for three different ~k−points along the Fermi-
surface. By looking at the rate of divergence on the imaginary axis of the
self-energy and investigating the local densities, Werner et al. [102] argued
that the spectrum at the Fermi-energy on the anti-nodal points should disap-
pear at a much faster rate then at the nodal points. The CPE confirms these
findings. The imaginary part of the self-energy at the anti-nodal points is
much larger than at the nodal points. Since the spectrum is inversely pro-
portional to the self-energy, the spectrum vanishes faster at the anti-nodal
points. Furthermore, we can immediately observe that this anisotropy in
the self-energy increases as the temperature T is lowered. Using the partial
occupancies n~K in the different patches of the Brillouin zone, Gull et al. [28]
have claimed that the gap opened at the nodal region should be much big-
ger than at the anti-nodal region. If we define the width of the gap as the
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minimum distance between the two van Hove singularities in Fig.[6.5], the
claim of the anisotropic gap can also be confirmed.

We now concentrate on the features which have not yet been discussed in
the literature. In particular, we would like to draw the attention to the
formation of the valleys in the imaginary part of the self-energy at ω ≈ ±2.
Going from T−1=3 to T−1=7, we can observe that these valleys grow faster
and are more profound at the anti-nodal points than at the nodal points.
Since the imaginary part of the self-energy can be thought of as the inverse
lifetime of the quasiparticle, we can conclude that the quasiparticle will have
a short lifetime on the Fermi-energy, and a much longer one in the valleys.
This picture translates directly into to the spectrum, where we see two peaks
rapidly grow at ω ≈ ±2. The difference in the shape of these peaks can be
explained by the topology of the free dispersion ε(~k). The free dispersion is
extremely flat at the anti-nodal points, since both the first derivative and the
laplacian vanishes at this point). The spectral weight at the nodal point will
thus be extremely peaked at the Fermi-energy if no interaction is present.
However, if there is a non-zero interaction, the lifetime of the particles at
the Fermi-energy will be very short, and all of them will be scattered in
equal amount to higher of lower energy-levels. At the nodal points, the free
dispersion spectrum is essentially linear with Fermi-velocity vector ε(~k) ∼
~k~vF). Hence, the free spectrum will be smeared around the Fermi-energy
and have some spectral weight in the valleys of the the imaginary part of
the self-energy. Hence, these electrons will not be scattered away, when
an interaction is introduced into the system. With this simple picture in
mind, one can now easily understand shape-difference of the peaks in the
spectrum shown in Fig. [6.5], as well as the findings of Gull et al. with the
partial occupancies as a function of the chemical potential.

6.5.2 Band-structure of NiO

We will now present how the CPE can be successfully used to investigate the
spectral properties of real materials, as opposed to electronic lattice models.
We have chosen to look at the NiO compound. This prototypical strongly
correlated material has been extensively studied, both experimentally [65,
86, 90] as well as theoretically [96, 80, 49, 50]. The experimental results from
the literature are the next best thing compared to the exact solution of the
impurity model. As such, the NiO is an ideal testing ground for LDA +
DMFT calculations [47, 42] with the subsequent CPE analytic continuation
of the self-energy to obtain the spectrum of the compound.

The large insulating band gap of 4.3 eV can not be predicted by conventional
band theory. More precisely, LDA wrongly predicts the NiO compound to
be metallic. The inclusion of spin polarization in density functional theory,
such as in LSDA[96], does introduce a band gap as a consequence of the anti-
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ferromagnetic order. However, angle-resolved photoemission experiments
(ARPES) have shown [97] that the electronic band gap also exists in the para-
magnetic phase, far above the Neel temperature at 525K. As the predicted
band gap in LSDA is also considerably smaller than the experimental values,
the need to include dynamical correlation effects via DMFT is generally ac-
cepted. In this work, we will compare our calculated LDA + DMFT + CPE
electronic spectra with experimental spectroscopy measurements in order to
further validate the CPE method.

Since the exact value of the double counting correction in NiO is still under
heavy debate and the goal of this paper is to showcase the capabilities of
the CPE algorithm, we will follow the standard procedure reported in the
literature by Karolak et al. [42]. As such, we will give a brief, detailed de-
scription how the self-energy on the Matsubara frequencies was obtained
for this material, but refrain from going into the details surrounding the
double counting correction. The non-correlated band structure of NiO was
obtained by an LDA calculation and is displayed in the inset of Fig. 6.6.
The resemblance of the band-structure reported by Karolak et al. is perfect
and we can clearly observe the five Nickel-bands around the Fermi-energy
ω = 0 as well as the lower three Oxygen-bands around ω ≈ −6. The
interaction tensor Uν,σ,µ,σ′ was obtained through a constrained RPA calcula-
tion (c-RPA) [48]. As is usual in the NiO compound, we have only kept the
interaction-terms between the Nickel-orbitals and ignore the density-density
interaction between the Oxygen-Oxygen and Oxygen-Nickel orbitals. In the
c-RPA method, the Wannier-orbitals, which are used to construct the tight-
binding Hamiltonian HLDA of the impurity, are reused to construct the in-
teraction tensor Uν,σ,µ,σ′ . As a consequence, the interaction terms are more
consistent with the band-structure than a simple application of the rotation-
ally invariant Slater-Kanamori [41, 92] on-site interaction-matrix, which is
traditionally constructed with the help of the parameters U and J. However,
a least squares fit of the the c-RPA matrix towards the parameters U and J
reveals that the interaction-matrix can be approximated quite well with the
parameters U = 9.14 and J = 0.71. These values do not differ tremendously
from the original U = 8 and J = 1 parameters by Karolak. For the sake of
completeness, we have listed the interaction tensor Uν,σ,µ,σ′ in table 6.1.

The multi-band impurity problem in the self-consistent DMFT-loop was
solved by an implementation of the CT-HYB algorithm [101, 103]. As is
common in the literature[50], only the diagonal elements of the self-energy
matrix are computed with the CT-HYB algorithm and the off-diagonal ele-
ments are ignored. Our calculations where performed at an inverse temper-
ature of β = 5 eV−1. At this temperature, the material is in the paramagnetic
state and the correlations are strong enough to introduce a band-gap. To ac-
count for correlation effects already included in the Hartree and exchange-
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Figure 6.6: The non-correlated partial density of states of NiO as obtained
by LDA. Inset: band-structure of NiO obtained with LDA.

correlation terms of the LDA calculation, we include the double-counting
term Hdc in our impurity-Hamiltonian H, given in Eq. 6.26. It should be
noted that the sum over the m in the double-counting term Hdc only runs
over the Nickel orbitals.

H = HLDA − µdc ∑
mσ

nmσ

︸ ︷︷ ︸
Hdc

+
1
2 ∑

ν,σ,µ,σ′
Uν,σ,µ,σ′nν,σ nµ,σ′

︸ ︷︷ ︸
Hint

. (6.26)

As pointed out by Karolak, the exact value of the double counting value µdc
is not known. Furthermore, it was shown that the size of Mott-insulator gap
increases by decreasing the double counting correction. As such, the double
counting correction µdc can be tuned, such that the computed spectrum has
a band-gap which is in accordance with the measured band-gap of 4.3eV.
The most optimal value for the double counting correction was found to
be 25 eV. For this reason, we use a double counting correction for the Ni-
orbitals of 25 eV.
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Uν,σ,µ,−σ nt2g,−σ nt2g,−σ neg,−σ nt2g,−σ neg,−σ

nt2g,σ 9.14 7.60 7.37 7.60 8.28
nt2g,σ 7.60 9.14 8.06 7.60 7.60
neg,σ 7.37 8.06 9.14 8.06 7.37
nt2g,σ 7.60 7.60 8.06 9.14 7.60
neg,σ 8.28 7.60 7.37 7.60 9.14

Uν,σ,µ,σ nt2g,σ nt2g,σ neg,σ nt2g,σ neg,σ

nt2g,σ 0.00 6.83 6.49 6.83 7.85
nt2g,σ 6.83 0.00 7.51 6.83 6.83
neg,σ 6.49 7.51 0.00 7.51 6.49
nt2g,σ 6.83 6.83 7.51 0.00 6.83
neg,σ 7.85 6.83 6.49 6.83 0.00

Table 6.1: The interaction tensor Uν,σ,µ,σ′ for NiO obtained by c-RPA. The
tensor can be approximated by the rotationally invariant Slater-Kanamori
interaction-matrix, using U = 9.14 and J = 0.71, which are close to the
commonly accepted values of U = 8 and J = 1 in the literature.

Once a density-density interaction is included between the Nickel-orbitals
by means of a self-consistent DMFT calculation, a band gap appears in the
spectral density. This can be clearly seen in Fig. 6.7, where the partial spectra
of each orbital are displayed. As usual, Fig. 6.7 was obtained by performing
an analytical continuation of the Matsubara self-energy to the real axis with
an off-set of δ = 0.1. A consecutive tetrahedron integration over the entire
Brillouin zone then results in the lattice Greens-function, from which the
partial spectra Aν(ω) can be trivially obtained. If we use the same definition
of the band-gap from experimental physics, i.e. the distance between the
mid-points of the top of the peaks, we obtain a band-gap of 4.55 eV, in good
agreement with the experimental value of 4.3 eV obtained by Sawatsky and
Allen [86]. These mid-points are represented by the horizontal dotted lines
in Fig. 6.7. Their intersection with the peak is marked by the vertical dotted
lines, which difference defines the band-gap.

From the comparison between the ED-results and CPE, we know that the
CPE is very good at reproducing an accurate picture for the spectrum close
to the Fermi-energy. As such, it is not surprising to reproduce the correct
band-gap of NiO around the Fermi-energy. To further bench-mark the CPE,
we will compare the calculated spectrum with the experimental spectrum
obtained by Sawatzky and Allen [86]. In this way, we want to explore
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Figure 6.7: The correlated partial spectra of NiO calculated by LDA +
DMFT + CPE. Defining the band-gap as in experimental physics, i.e. the
distance between the mid-points of the top of the peaks, we obtain a band-
gap of 4.55 eV, in good agreement with the experimental value of 4.3 eV.

how the CPE behaves over the entire real-axis and whether it can capture
the essential physics far from the Fermi-energy, as we claimed in the Ex-
act Diagonalization section. The experimental spectrum was obtained as a
combination of X-ray photoemission (XPS) and Bremsstrahlung-Isocromat-
Spectroscopy (BIS) measurements on cleaved single crystals of NiO. The
XPS spectrum was recorded at 120 eV and mainly captures the Nickel 3d
character. The measured spectra is shown in Fig. 6.8, together with the
LDA + DMFT + CPE spectrum. The latter is obtained by summing up the
partial spectra depicted in Fig. 6.7 and multiplied with the multiplicity of
each orbital (3× t2g, 2× eg, 3×O2p). Since the spectroscopy is measured in
arbitrary units of intensity, we can scale the measured spectrum such that
the largest peaks have the same height. A simple comparison of both spectra
shows a very good agreement between measured and computed spectrum.
In the region [−15,−5], we can observe that the CPE gradually rises and
appears to reproduce some of the peaks, albeit with a slight left-shift of ap-
proximately 2 eV. The peaks that define the gap around the Fermi-surface
are also much sharper defined with the CPE. Most likely, this originates
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Figure 6.8: The comparison of XPS and BIS spectra[86] to the spectral
function of NiO calculated by LDA + DMFT + CPE. The XPS spectrum is
measured at 120 eV, showing primarily the Nickel 3d character. Inset: The
comparison of Kα-emission spectra[51] with the partial spectrum of the O2p
orbital calculated by LDA + DMFT + CPE.

from the TIM integration of the self-energy.

To further validate the CPE, we compare the partial spectrum of the O2p
orbitals. The latter was measured very accurately by Kurmaev et al.[51] with
X-ray emission spectroscopy (XES). The Oxygen K-edge emission spectrum
provides a representation of the O2p spectrum, and can thus be readily used
to compare with the calculated O2p spectrum. In the inset of Fig. 6.8, we
compare the measured with the computed partial spectrum. Just as with
the total spectrum, we can observe a very good match between theory and
experiment and much sharper peaks and valleys in the CPE. The figure
also shows that the CPE can describe the essential physics far away from
the Fermi-surface rather well, as claimed in the ED section. This is not
surprising, since the CPE produces a smooth self-energy on the real-axis,
which is consistent with the basic assumption of a mean field theory such
as the DMFT.
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6.6 Conclusions

We have presented a new algorithm, the continuous pole expansion, that
allows us to probe the self-energy on the real axis through an analytical
continuation of its values located on the Matsubara frequencies. As a con-
sequence, we can compute the Greens-function on the real axis and thus
obtain the spectrum of the interacting lattice-model, associated to the self-
energy located on the Matsubara frequencies. The need for this algorithm
arises from the development of a new class of impurity solvers, namely the
continuous time Quantum Monte Carlo solvers. Together with the NFFT
method, these new solvers can directly accumulate the Greens-function and
self-energy on the Matsubara frequencies and by-pass therefore the less ac-
curate accumulation in imaginary time and consecutive Fourier-transform
to the Matsubara frequencies.

Since the analytical continuation of a complex function is notoriously un-
stable, we have developed the CPE algorithm starting from the well-known
analytical properties of the self-energy. Two of these analytical properties
are of particular use with regard to the CPE. First of all, there is a branch
cut along the real-axis in the imaginary part of the self-energy. Moreover,
when the branch-cut is approached from the upper complex plane. the self-
energy is negative definite, i.e. limv→0 Im[Σ(~k, ω + ı v)] ≤ 0. As a con-
sequence, we must parametrize the imaginary part of the self-energy as a
purely negative function, which is a very strong constrain. Second, we know
that the self-energy is a analytical function, which effectively means that it
has no poles in the upper complex plane. This implies that we can use the
Kramers-Kronig relationship to compute the self-energy anywhere in the
complex plane, given its imaginary part on the real axis. Consequently, we
can compute the self-energy on the Matsubara frequencies for any given
parametrization of the imaginary part on the real axis. With these two ana-
lytical properties in mind, the CPE can now be summarized in one sentence:
Find a negative definite parametrization of the imaginary part of the self-
energy on the real axis such that the norm between the accumulated QMC
self-energy and the computed self-energy on the Matsubara frequencies is
minimized.

By taking advantage of the analytical properties of the self-energy, we have
rewritten the analytical continuation problem into a constrained minimiza-
tion problem. This has two advantages. A minimization problem is numer-
ically more stable, especially with regard to statistical noise, which arises
from the Monte Carlo procedure. Secondly, the constrained minimization
problem can be rewritten to a quadratic programmable optimization prob-
lem, with linear constraints. These type of problems are well known and
many algorithms exist to solve this particular type of problem. In this paper,
we have used the simplest one: the Frank-Wolf algorithm.
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The validation of the CPE algorithm has received special attention in this
paper. In essence, we have approached the validation issue in two ways.
First, we have looked at the exactly solvable models. By comparing the
self-energy and spectrum of the CPE with the exact result of an 8-site, iso-
lated cluster, we could investigate the strengths and weaknesses of the CPE.
It became clear the CPE captures features close to the Fermi-energy very
well, as well as broad features far from the Fermi-energy. It is however
unable to capture any sharp features on the real-axis. Consequently, we
obtain a much smoother spectrum with the CPE far from the Fermi-energy
than in the exact result, while maintaining the correct spectrum around the
Fermi-energy. Next, we wanted to show that the CPE produces the correct
result for some well-known problems in the literature. The recent debate
around the momentum-dependent gap formation in half-filled 2D Hubbard
model is an ideal test-case. Since their findings are based on the identity in
Eq. (6.24), we have validated this identity with the CPE over a wide range
of temperatures and can thus conclude that the CPE confirms their findings
and is in line with what is now commonly accepted in the literature. Fur-
thermore, we could also observe from the k-dependent spectrum that the
gap is indeed smaller at the nodal point than at the anti-nodal. Last but
not least, we have also used the CPE in order to determine the spectrum of
NiO. This strongly correlated material has been extensively studied, both
experimentally as theoretically. Following the standard route in order to ob-
tain the self-energy on the Matsubara frequencies, this material is an ideal
testing ground for CPE calculations, since we can directly compare the CPE
produced spectrum with XPS, XES and BIS measurements. The agreement
between measurement and the CPE-spectrum in Fig. 6.8 is very satisfying
and show-cases how the CPE might be used in the future in order to deter-
mine the spectra of other less well known strongly correlated materials.
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Chapter 7

Press Releases

7.1 ORNL

A team of researchers simulating high-temperature superconductors has
topped 15 petaflopsor 15 thousand trillion calculations a secondon Oak
Ridge National Laboratorys (ORNLs) Titan supercomputer. More impor-
tantly, they did it with an algorithm that substantially overcomes two major
roadblocks to realistic superconductor modeling.

For their achievement, the team from ETH Zurich in Switzerland and ORNL
was named a finalist for the Gordon Bell Prize, awarded each year for out-
standing achievement in high-performance computing.

Materials become superconducting when electrons within them form pairscalled
Cooper pairsallowing them to collect into a condensate. As a result, super-
conducting materials conduct electricity without resistance, and therefore
without loss. This makes them immensely promising in energy applications
such as power transmission. They are also especially powerful magnets, a
property exploited in technologies such as maglev trains and MRI scanners.

The problem with these materials is that they are superconducting only
when they are very, very cold. For instance, the earliest discovered super-
conductor, mercury, had a transition temperature of 4.2 Kelvin, which is
below -450 degrees Fahrenheit and very close to absolute zero. Mercury
and other early superconductors were cooled with liquid heliuma very ex-
pensive process. Later materials remained superconducting above liquid
nitrogens boiling point of ?321 degrees Fahrenheit, making their use less
expensive.

The discovery, or creation, of superconductors that neednt be cooled would
revolutionize power transmission and the energy economy.
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Figure 7.1: Generic temperature (T) vs. doping (x) phase diagram of the
cuprates with antiferromagnetic (AF), superconducting (SC) and pseudogap
(PG) phases. The inset on the top right shows an embedded Hubbard cluster
representing a DCA calculation of a Hubbard model on a square lattice with
nearest neighbor hopping t and local Coulomb repulsion U.

The Swiss and American team approaches the problem with an application
called DCA++, with DCA standing for dynamical cluster approximation.
DCA++ simulates a cluster of atoms using the Hubbard modelwhich de-
scribes the behavior of electrons in a solid. It does so with a quantum Monte
Carlo technique, which involves repeated random sampling.

The application earned its development team the Gordon Bell Prize in 2008.

The new method, known as DCA+, was developed largely by Peter Staar
at ETH Zurich. It scaled to the full 18,688-node Titan system and took full
advantage of the systems NVIDIA GPUs, reaching 15.4 petaflops.
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In addition, it takes full advantage of the energy efficiency inherent in Titans
hybrid architecture. Each node of Titan contains both a CPU and a GPU. Us-
ing this system, simulation of the teams largest realistic clusters consumed
4,300 kilowatt-hours. The same simulation on a comparable CPU-only sys-
tem, the Cray XE6, would have consumed nearly eight times as much energy,
or 33,580 kilowatt-hours.

The DCA+ algorithm also took a bite out of two nagging problems common
to dynamic cluster quantum Monte Carlo simulations. These are known as
the fermionic sign problem and the cluster shape dependency.

The sign problem is a major complication in the quantum physics of many-
particle systems when they are modeled with the Monte Carlo method.

Particles in quantum mechanics are described by a wave function. For elec-
trons and other fermions, this function switches from positive to negativeor
vice versawhen two particles are interchanged. If you then sum the many-
particle states, the positive and negative values nearly cancel one another
out, essentially destroying the accuracy of the simulation.

This is a cluster method, said team member Thomas Maier of ORNL. If you
could make the cluster size infinite, then you would get the exact solution.
So the goal is to make it as large as possible.

But theres a problem when you deal with electrons, which are fermions. Its
the infamous fermion sign problem, and it really limits the cluster size we
can go to and the lowest temperature we can go to with quantum Monte
Carlo.

The sign problem cannot be overcome simply by creating larger supercom-
puters, Maier noted, because computational demands grow exponentially
with the number of atoms being simulated. In other words, as you go to
realistically large systems, you get problems that overwhelm not only every
existing supercomputer, but any system were likely to see in the foreseeable
future.

According to team member Thomas Schulthess of ETH Zurich and ORNL,
the DCA+ algorithm arrives at a solution nearly 2 billion times faster than
its DCA predecessor. So while it doesnt make the sign problem go away
entirely, it does make room for much more useful simulations, specifically
by allowing for more atoms at lower temperaturesa key requirement, since
so far superconductivity happens only in very cold environments.

The other problemcluster shape dependencymeant that when the researchers
simulated an atom cluster, the answer they got varied widely depending on
the shape of the cluster.

Lets say you have two 16-site clusters, Maier explained, one two-dimensional
system with a four-by-four cluster and another 16-site cluster of a different
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shape. The results with the standard DCA method depended a lot on the
cluster shape. Thats of course something you dont really want.

By improving the algorithm we succeeded in getting rid of this cluster shape
dependence. Before you would get vastly different results for the supercon-
ducting transition temperature, but now you get pretty much the same.

The reduced sign problem, combined with the power of Titan, also allows
the group to simulate much larger systems. In the past, the group was
limited to eight-atom cluster simulations if it wanted to get down to the
transition temperature for realistic parameters. More recently it has been
able to scale up to 28-atom systems.

As the team moves forward, Maier noted, it would like to simulate more
complex and realistic systems. For instance, two of the most promising ma-
terials in high-temperature superconducting research, which contain copper
and iron, hold their electrons in a number of different orbitals. Yet, so far
the team has simulated only one of these orbitals.

One direction we want to go into is to make the models more realistic by
including more degrees of freedom, or orbitals. But before you do that you
want to have a method that allows you to get an accurate answer for the
simple model. Then you can move on to more complicated models.

The question is always, Do you get to the interesting region where you get
interesting physics before you hit the sign problem, Maier noted. We were
able to get there to some extent before we had this new method. But now we
really have a significant improvement. Now we can really look at realistic
parameters.

The Gordon Bell Prize will be presented November 21 during the SC13 su-
percomputing conference in Denver. Besides Staar, Maier, and Schulthess,
the DCA+ team includes Raffaele Solca and Gilles Fourestey of ETH Zurich
and Michael Summers of ORNL.

7.2 CSCS press release

November 18, 2013 - by Simone Ulmer

Quantum leap in superconductor simulation Researchers from ETH Zurich
have developed an algorithm that simulates high-temperature superconduc-
tivity much faster. The team was nominated as one of the Gordon Bell Prize
finalists for the project and is to be rewarded by the US Department of En-
ergy with access to the supercomputer Titan.

Despite three decades of intensive science, the origin of the superconducting
transition in the 2D copper-oxygen planes of the high Tc superconductors
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(here YBa2Cu3O6+x) is still a mystery. The aim of DCA+ is to improve our
understanding of the superconductive state in these materials by simulating
electrons on a square lattice that can hop from an occupied (red) to an unoc-
cupied (blue) state and interact with an on-site interaction (red cloud). With
the new code, the scientists can detect the temperature at which the system
undergoes a superconducting transition with unprecedented accuracy and
hope to understand the phase diagram better. Peter Staar, a doctoral student
under Thomas Schulthess at ETH Zurich, refined an algorithm for the sim-
ulation of solid bodies like superconductors during his doctorate. Thanks
to the algorithm, the researchers reach their goal considerably more rapidly
than before in some cases even up to a billion times faster, say the scientists.
Using the algorithm on the supercomputer Titan at Oak Ridge National Lab-
oratory, they managed to carry out 15,000 trillion computational operations
per second fifteen petaflops. However, not only does the new algorithm
work faster; the scientists have also used it to overcome two central prob-
lems in the simulation of high-temperature superconductors. Moreover, the
new calculations reveal that the simplest models do not rule out supercon-
ductivity at room temperature.

Conducting electricity without resistance

The researchers themselves dub their publication, for which they were nom-
inated for the coveted Gordon Bell Prize, a quantum leap in the so-called
time-to-solution simulation of high-temperature superconductor models. The
US Department of Energy honored the teams achievement with its INCITE
Award: the scientists are to receive 2 million dollars worth of computing
time on the supercomputer Titan in 2014 and will also have the opportunity
to have this awarded for 2015 and 2016.

Superconductors and probably also the little-understood high-temperature
superconductors are composed of materials, in the crystal lattice of which
electrons arrange themselves in pairs, so-called Cooper pairs, at extremely
low temperatures at least -234 Celsius or -140 Celsius for high-temperature
superconductors. A phase transition then occurs in the system, where the
electrical resistance of the material becomes zero and electricity can flow
without any loss of energy.

Until now, such phase transitions were simulated approximately with the al-
gorithm DCA (Dynamical Cluster Approximation). In doing so, only a small
section of the crystal lattice, a cluster of atoms, was simulated on account
of the complexity of the quantum system to be modeled and the associated
computational intensity of the interacting particles. Qualitatively speaking,
this works very well with the previous methods, says Staar. Ascertaining
the exact so-called transition temperature at which a phase transition takes
place quantitatively, however, was not possible until now. The central prob-
lem of DCA is that the critical temperature depends greatly on the size of

121



7. Press Releases

the cluster and its geometry. This doesnt allow us to determine a uniform
and precise transition temperature.

More convincing simulations

Through Peter Staars revision and extension of DCA to form the new algo-
rithm DCA+, the clusters are basically calculated continuously as opposed
to in steps, which eradicates the geometry problem. The results of the clus-
ter are consistent, even if the geometry has been altered through a rotation
in the crystal lattice, for instance. The new procedure has also made another
breakthrough with the so-called fermionic sign problem, which arises when
simulating quantum systems with the so-called Monte Carlo Method. With
this technique, it is not possible to determine the transition temperature ex-
plicitly due to the mathematical and physical conditions.

Although the fermionic sign problem is not solved with DCA+, the effect
is delayed, explains Staar. This enables us to reach the point where the
transition to superconductivity takes place and determine the transition tem-
perature. For him personally, however, another key aspect of these research
results is the fact that the new calculations made with this simple model
cannot rule out superconductivity at room temperature. If additional calcu-
lations on more complex and material-specific models confirm this, it could
revitalize a discussion that has already been going on for decades. In mate-
rials science, the further development of superconductors is regarded as a
promising field with many potential applications in energy technology and
electronics. Scientists have dreamt of superconductivity at room temper-
ature ever since the 1980s, when high-temperature superconductors were
first discovered.

Whether Staar has won the Gordon Bell Prize for his work together with
colleagues from ETH Zurich and Oak Ridge National Laboratory will be
announced on 21 November 2013 at SC13 conference. The six finalists also
include a project by ETH-Zurich professor Petros Koumoutsakos and his
team, which they conducted in conjunction with IBM Research Zurich and
Lawrence Livermore National Laboratory (see ETH News, 15.11.2013).

Titan: The supercomputer Titan has 18,688 computer nodes that generate
17.59 petaflops of computational power. DCA+ was scaled on the entire
system, which means that the algorithm is capable of exploiting almost the
entire computational capacity. This extraordinary achievement earned the
project a nomination for the Gordon Bell Prize and the INCITE Award.
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Figure 7.2: Despite three decades of intensive science, the origin of the
superconducting transition in the 2D copper-oxygen planes of the high Tc
superconductors (here YBa2Cu3O6+x) is still a mystery. The aim of DCA+ is
to improve our understanding of the superconductive state in these materi-
als by simulating electrons on a square lattice that can hop from an occupied
(red) to an unoccupied (blue) state and interact with an on-site interaction
(red cloud). With the new code, the scientists can detect the temperature
at which the system undergoes a superconducting transition with unprece-
dented accuracy and hope to understand the phase diagram better.
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