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A Bayesian Approach to Learning 3D
Representations of Dynamic Environments

Ralf Kästner, Nikolas Engelhard, Rudolph Triebel, and Roland Siegwart

Abstract We propose a novel probabilistic approach to learning spatial represen-
tations of dynamic environments from 3D laser range measurements. Whilst most
of the previous techniques developed in robotics address this problem by compu-
tationally expensive tracking frameworks, our method performs in real-time even
in the presence of large amounts of dynamic objects. The computer vision commu-
nity has provided comparable methods for learning foreground activity patterns in
images. However, these methods generally do not account well for the uncertainty
involved in the sensing process. In this paper, we show that the problem of detecting
occurrences of non-stationary objects in range readings can be solved online under
the assumption of a consistent Bayesian framework. Whilst the model underlying
our framework naturally scales with the complexity and the noise characteristics
of the environment, all parameters involved in the detection process obey a clean
probabilistic interpretation. When applied to real-world urban settings, the results
produced by our approach appear promising and may directly be applied to solve
map building, localization, or robot navigation problems.

1 Introduction and Related Work

Understanding dynamic properties of the world has become an increasingly popular
research topic in mobile robotics. The motivations for this popularity are manifold.
The occurrence of moving objects in the robot’s sensor range may for example cor-
rupt the localization or map building process [12, 1, 3]. On the other hand, novel
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planning approaches aim at navigating platforms through highly dynamic environ-
ments [11, 6]. They therefore strongly rely on robust motion parameter estimates
for objects that may potentially interfere with the robot’s trajectory.

A widely common group of methods addressing motion estimation is committed
to tracking the displacement of entire point clusters [10]. Whilst such approaches
succeed in obtaining a parametric description of the cluster motion, they usually
take strong assumptions about the size or shape of objects. In the above scenarios,
however, we generally do not want to constrain ourselves with a limited number of
object classes. In fact, we seek to detect motion rather than to find explicit motion
parameters. Consider therefore a sensor reading that has been introduced by a dy-
namic object. If, at any later point in time, we acquire another reading that matches
the previous observation, we may not care to also answer the difficult question of
identity. That is, no matter if the measurement originates from a single or two dif-
ferent objects, we would still want to classify it as being dynamic.

In this paper, we propose a novel approach to the problem of learning 3D rep-
resentations of dynamic environments from range data. In strong analogy to back-
ground modeling in computer vision [8], this problem constitutes a binary classifi-
cation task. That is, for a series of range observations we seek to estimate whether
single measurements originate from a static or a dynamic object. We therefore rep-
resent correspondences between measurements and objects using Gaussian mixture
distributions [14, 13].

Where standard methods for learning Gaussian mixtures fail due to the non-
stationary nature of a dynamic world model [5], we propose an alternative on-line
solution that does not make any assumptions about the number of Gaussians in the
mixture model but efficiently scales with the complexity of the environment. Even
in highly populated settings, our approach is thus capable of distinguishing dynamic
from static objects in real-time.

The emphasis of this work strongly lies on the Bayesian formalization of all steps
involved in the learning process [8]. In fact, following techniques used in probabilis-
tic change detection [7] our method is strictly governed by the laws of probability,
and each effective parameter comes with a clear probabilistic interpretation.

We demonstrate the practicability of our approach in simulation and by experi-
ments involving several urban outdoor scenarios with a diversity of static structures
and dynamic objects.

2 Probabilistic Formulation

Our algorithm to learning dynamic environment representations operates on range
readings acquired with a nodding 2D laser range scanner that pitches up and down
during data acquisition to produce 3D point clouds. This setup has been used fre-
quently in the literature (see, e.g. [15]) and is usually known as the nodding laser
scanner configuration. Throughout this paper, we define a sensor measurement zt as
the tuple (rt,ϑt,ϕt), where rt is the measured range, and ϑt and ϕt are the pitch and
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yaw angles of the laser beam at time t of the data acquisition. We assume that rt is
affected by Gaussian noise, thus we have rt ∼N(r̂t,σr), where r̂t is the true distance
between the laser origin and the observed object.

Since we do not account for uncertainty in the acquisition angles ϑ and ϕ of our
nodding range scanner, we represent full sensor sweeps as range images. A range
image is defined by an N ×M matrix of cells ci, j, representing a discretization of
the continuous space S = [−ϑmax,ϑmax]× [−ϕmax,ϕmax], where the pitch and yaw
angles ϑ and ϕ of the laser beam range between predefined boundaries. For each zt,
we can thus compute a 3D coordinate vector z[i, j]

t , with i and j denoting the indices
of the range image cell ci, j that corresponds to rt.

To formulate our problem mathematically, we furthermore introduce a binary
state variable xt, which is true if the observation zt corresponds to a dynamic object
and false otherwise. Our aim is to estimate xt at any time step t, given the noisy
measurement zt acquired at time t. Formally, we therefore want to find p(xt | zt).
Assuming statistical independences between all range image cells, we can then esti-
mate the joint posterior probability of range measurements being caused by dynamic
objects x̄t = {x[i, j]

t } given the range image z̄t = {z[i, j]
t } as

p(x̄t | z̄t) =
∏
i, j

p(x[i, j]
t | z[i, j]

t ). (1)

To keep the following notations uncluttered, we will drop the superindices [i, j]
and perform all further computations only on the cell level. Consequently, the con-
ditional p(xt | zt) associated with each cell shall from now on be referred to as cell
posterior.

2.1 Formulation using Gaussian Mixture Models

To infer the binary states xt, we use a generative approach: we assume that each
observation zt was caused by the existence of one of K objects, which can be either
dynamic or static. The unobserved distance of each object to the laser origin is
modeled using a normal distribution N(µk,σk), with mean µk, variance σk, and
k ∈ {1, . . . ,K}. For each cell, we thus yield a set of model parameters which shall
henceforth be denoted Θ = {K,µ1, . . . ,µK ,σ1, . . . ,σK}. To express the fact that zt
corresponds to object k, we furthermore introduce binary correspondence variables
gk

t , where only one gk
t can be true for any zt.
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2.2 Decomposing the Cell Posterior

In an online process, our model changes over time. LetΘt therefore represent the set
of parameters at acquisition time t. Together with the states xt, the model parameters
are generally unknown and need to be inferred. In other words, at any given time t
we will be facing the question of how to update our latest parameter estimate Θt−1
using the most recent observation zt. We therefore want to make the Θt and Θt−1
explicit in the probabilistic formulation and rewrite the cell posterior from Eqn. (1)
as

p(xt,Θt | zt,Θt−1) = p(xt | zt,Θt,Θt−1) p(Θt | zt,Θt−1)
= p(xt | zt,Θt) p(Θt | zt,Θt−1). (2)

Here, the second equality assumes our model Θt to provide a complete description
of the underlying process.

The above equation constitutes two conditionals that are essential to finding the
cell posteriors. The first conditional describes an assignment of binary states xt to
observations zt under the assumption that all model parameters Θt are known. It
shall therefore be coined as dynamics likelihood. The second conditional implies
the sought model Θt from an observation zt and the most recent parameter set Θt−1.
Accordingly, it will be termed the update rule.

2.3 The Dynamics Likelihood

We follow the approach presented in [8] and express the dynamics likelihood by
marginalization over all correspondence variables gk

t . We thus obtain

p(xt | zt,Θt) =
p(xt,zt | Θt)

p(zt | Θt)

=

∑K
k=1 p(xk

t ,zt | gk
t ,Θ

k
t )p(gk

t | Θ
k
t )∑K

k=1 p(zt | gk
t ,Θ

k
t )p(gk

t | Θ
k
t )

(3)

=

∑K
k=1 p(xk

t | g
k
t ,Θ

k
t )p(zt | gk

t ,Θ
k
t )p(gk

t | Θ
k
t )∑K

k=1 p(zt | gk
t ,Θ

k
t )p(gk

t | Θ
k
t )

.

Here, we introduce object parameters Θk
t = {µk

t ,σ
k
t } and individual state variables

xk
t expressing if the k-th Gaussian is dynamic or static. We furthermore assume the

probability of observing zt to be equal for both dynamic and static objects, given the
knowledge that zt was caused by object k. This results in the conditional indepen-
dence relation p(xk

t ,zt | gk
t ,Θ

k
t ) = p(xk

t | g
k
t ,Θ

k
t )p(zt | gk

t ,Θ
k
t ).
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From Eqn. (3), three terms need to be specified further. Starting from the right, we
first note that p(gk

t |Θ
k
t ) is the prior probability for zt being caused by object k. Usu-

ally, p(gk
t | Θ

k
t ) is named the weight of the k-th Gaussian in the mixture and denoted

by the symbol wk
t . Second, the data likelihood p(zt | gk

t ,Θ
k
t ) is equal toN(zt;µk

t ,σ
k
t ).

And, finally, the dynamics likelihood of Gaussian k is defined as p(xk
t | g

k
t ,Θ

k
t ).

2.4 The Update Rule

Just as for the dynamics likelihood, we write the update rule as a marginal over
correspondences gk

t and obtain

p(Θt | zt,Θt−1) =

K∑
k=1

p(Θk
t | zt,gk

t ,Θ
k
t−1) p(gk

t | zt,Θ
k
t−1) (4)

This provides us with two additional terms. The correspondence likelihood
p(gk

t | zt,Θ
k
t−1) constitutes a statistical law for selecting Gaussian k as an expla-

nation for the occurrence of zt, and the update rule of Gaussian k is denoted by
p(Θk

t | zt,gk
t ,Θ

k
t−1).

2.5 The Mixture Weights

As stated above, we assume that each observation zt is caused by only one possible
object. This corresponds to the hard assignment of data points to clusters known
from the k-means clustering algorithm. Using this, we can say that all t data points
acquired at the discrete time steps 1, . . . , t are each assigned to one out of K clusters
where each cluster corresponds to a Gaussian. If we denote the number of observa-
tions that correspond to cluster k at time t by nk

t , we can estimate the prior probability
of a new observation zt to be caused by object k. As this prior is equal to the weight
wk

t , we have

p(gk
t | Θ

k
t ) = wk

t =
nk

t

t
(5)

We note that knowing t, nk
t thus becomes an equivalent representation of the

mixture weight wk
t .
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3 Online Estimation of the Mixture Parameters

In this section, we present an online implementation for estimating our model pa-
rameters. As shown above, we can compute the posterior probability of an observa-
tion zt to be caused by a dynamic object in two stages: First, we apply the update
rule according to Eqn. (4) and reestimate the mixture parameters Θt with respect to
the latest model Θt−1. And second, we use the dynamics likelihood from Eqn. (3)
on the updated mixture models in order to infer new state variables xt.

3.1 Sequential Parameter Updates

A key contribution of this paper pertains to the central question of how to integrate
new observations with an existing cell mixture. In contrast to the approach presented
in [14], we seek to strictly govern the sequential update of our mixture models by
statistical densities and the laws of probability.

In mathematical terms, finding the optimal parameter assignment for Θt given
Θt−1 and an observation zt is equivalent to maximizing the update probability
p(Θt | zt,Θt−1). We therefore want to reconsider the probabilistic update rule for our
cell mixtures defined in Eqn. (4). It suggests that in order to maximize p(Θt | zt,Θt−1),
we first need to recover an optimal assignment for the correspondence variables gk

t .
We recall that following our above assumptions, each observation zt may only be

caused by one possible object. Put differently, we are interested in inferring whether
a sensor response zt originates from an object k ∈ {1, . . . ,K} that is already repre-
sented by our mixture or not. Following the proposal in [7], we therefore introduce
a joint probability and estimate correspondences with respect to two distinct cases.

Explained An observation zt can be explained by the k-th Gaussian in the current
mixture model. Consider therefore the range reading rt associated with zt along
with the expected measurement noiseσr. Furthermore, letΘk

t−1 be the parameters
of the Gaussian k in the mixture distribution that best explains zt. Then our ob-
servation model gives rise to the assumption that p(zt | gk

t ) ∼ N(µk
t−1,σ

k
t−1 +σr).

Note that by summing up the variances of the measurement σr and the object
representation σk

t−1, we account for the noise in both models.
Unexplained An observation cannot be explained by any of the K Gaussians in

the current mixture model. Without making any specific assumption on how un-
observed objects occur within the sensor range, we assume a uniform distribution
over the entire beam length. Hence, we define p(zt | gnew) ∼U(0,rmax) whereU
denotes the uniform distribution with support in [0,rmax], and gnew is a new Gaus-
sian explaining zt.

Given the above cases, we are able to arrive at a posterior for unexplained obser-
vations. We define pnew = p(gnew) and apply Bayes rule to relate p(gnew | zt) to the
likelihood at which observations are generated by unrepresented objects:
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p(gnew | zt) =
p(zt | gnew) · pnew

p(zt | gnew) · pnew + p(zt | gk
t ) · (1− pnew)

(6)

Then, by exploiting the assumption that p(zt | gnew) · pnew is small we can approx-
imate the logarithm of this expression

log p(gnew | zt) ≈ log
p(zt | gnew) · pnew

p(zt | gk
t ) · (1− pnew)

= log p(zt | gnew) + log pnew−

log p(zt | gk
t )− log(1− pnew) (7)

Plugging in our model assumptions with respect to the described cases conse-
quently yields

log p(gnew | zt) ≈ − logrmax + log pnew− log(1− pnew) +

1
2

log2π(σk
t−1 +σr) +

1
2

(rt −µ
k
t−1)2

(σk
t−1 +σr)

(8)

It appears beneficial to combine all expressions depending on the range measure-
ment rt in the above equation. This leaves us with a simple quadratic distance

dk(rt) = (rt −µ
k
t−1)T (σk

t−1 +σr)−1(rt −µ
k
t−1) (9)

Exploiting the assumption that an unexplained observation with a probability of
p(gnew | zt) > 0.5 is significant, this distance may then be compared to the following
constant threshold

dmin
k = 2log0.5 + 2logrmax −2log pnew +

2log(1− pnew)− log2π(σk
t−1 +σr) (10)

We conclude that if dk(r) < dmin
k , the k-th Gaussian is a possible explanation for

the occurrence of observation zt.
The reader may have noticed that the method presented so far only allows for

selecting a set of candidate Gaussians from the mixture. We therefore propose to
proceed as follows: If we find any Gaussian explaining zt, we will arrange a hard
assignment of zt to the candidate Gaussian k with the lowest distance dk(rt). Note
that this is equivalent to selecting the object with the highest correspondence like-
lihood p(gk

t | zt) = 1− p(gnew | zt). We then account for maximizing Eqn. (4) by
computing the maximum likelihood estimate for the k-th Gaussian. A sequential ap-
proach exists to finding the maximum likelihood solution for the parameters of a
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Algorithm 1: updateMixture(Mt−1, rt)
Input: Mixture of GaussiansMt−1 = {〈n1

t−1,Θ
1
t−1〉, . . . , 〈n

K
t−1,Θ

K
t−1〉}

Input: Laser reading rt
Output: Updated Mixture of GaussiansMt
Mcand ← ∅
foreach 〈nk

t−1,Θ
k
t−1〉 ∈Mt−1 do

Evaluate dk(rt) and dmin
k according to Eqs. 9 and 10

if dk(rt) < dmin
k then

Mcand ←Mcand ∪{〈nk
t−1,Θ

k
t−1〉}

end
end
if Mcand , ∅ then
〈nk

t−1,Θ
k
t−1〉 ← argmin

〈nl
t−1 ,Θ

l
t−1〉∈Mcand

dl(rt)

Mt ←Mt−1 \ {〈nk
t−1,Θ

k
t−1〉}

nk
t ← nk

t−1 + 1
Θk

t ← updateGaussian(Θ
k
t−1, rt)

Mt ←Mt ∪{〈nk
t ,Θ

k
t 〉}

else
nK+1

t ← 1
ΘK+1

t ← {µK+1
t ← rt,σ

K+1
t ← σr}

Mt ←Mt−1 ∪{〈nK+1
t , θK+1

t 〉}

end
collapseMixture(Mt)

Gaussian distribution that allows new observations zt to be processed one at a time.
For a detailed discussion of this approach, the interested reader may refer to [2].

In cases where no candidate Gaussian exists, we represent the observed object by
introducing a new Gaussian K +1 into the mixture. This Gaussian is then initialized
with mean rt and variance σr.

We are now ready to state Alg. 1 for sequential parameter updates. It takes the
range measurement rt associated with a new observation zt and the corresponding
cell mixture distributionMt−1 as input arguments and in return outputs the updated
densityMt.

Our algorithm makes use of two auxiliary functions. As the name suggests,
updateGaussian sequentially reestimates mean and variance of the best candidate
Gaussian with respect to rt. The second function of concern is collapseMixture.
It provides an abstract mechanism for joining Gaussians that share a significant
fraction of the state space. To see why this is necessary, the reader may consider
the very nature of the mixture density p(zt | Θt). This density actually constitutes
a noise model of the environment with the sensor uncertainty displayed by newly
added Gaussians solely acting as a prior. In fact, the variance of each Gaussian may
often grow beyond this initial uncertainty, e.g. in order for it to represent a highly
scattered surface.

Although alternative approaches exist to collapsing Gaussian mixture models
(see e.g. [9], p. 185 ff.), we propose to use a method that widely resembles our
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sequential update algorithm. Just as for associating noisy observations with the most
likely mixture candidates, we have implemented a very similar algorithm to perform
a pair-wise identification of Gaussians obeying the distance threshold from Eq. 10.
The advantage of such an implementation is clear at hand: Instead of introducing
a new parameter into the update step, we may reuse the prior probability pnew for
the occurrence of unexplained objects. Hence, the total number K of Gaussians
contained in a cell mixture is bound by our model assumptions and does not require
artificial clamping.

3.2 Computing the Dynamics Likelihood

Above, we have demonstrated how to update the parameters of a Gaussian mixture
distribution that is capable of representing observations in statistically independent
range image cells. However, our model does not yet disambiguate between obser-
vations caused by dynamic and observations caused by static objects. Or formally
speaking, we have not yet provided an estimate for the binary state variables xk

t
associated with each of the Gaussians.

From the dynamics likelihood stated in Eqn. (3), we know that the conditional
density p(xk

t | g
k
t ,Θ

k
t ) defines a state labeling strategy and that, in its most general

form, this strategy constitutes a weighting of the k-th Gaussian in the mixture dis-
tribution.

To compute the dynamics likelihood of Gaussian k, we use the method described
in [14]. It is based on the observation that the majority of range readings usually
originates from static objects. This means in turn that the objects, to which the most
observed data points correspond, are more likely to be static. As we model each hy-
pothetical occurrence of an object with a Gaussian k, and as according to Eqn. (5) the
number of observations caused by the k-th object is encoded in the mixture weight
wk, we can estimate p(xk

t | g
k
t ,Θ

k
t ) as follows: First, we sort all weights wk in de-

scending order. Then, we compute the number KS of Gaussians that most probably
correspond to static objects as

KS = argmin
l

 l∑
k=1

ws(k) > ρ

 . (11)

Here, s(k) is the index of the weight wk after sorting and ρ ∈ [0,1] is an
environment-dependent parameter that represents a measure for the minimum por-
tion of observations that should be accounted for by static hypotheses. The last
K−KS Gaussians in the sorted mixture are consequently labeled as dynamic. Thus,
the lower the value of ρ, the more Gaussians are considered to be dynamic. For ρ= 0,
only the most evident Gaussian, i.e. the one with the highest count of observations,
remains static. Using Eqn. (11), the dynamics likelihood is approximated as
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p(xk
t | g

k
t ,Θ

k
t ) =

{
1 if s(k) > KS
0 otherwise. (12)

3.3 Computational Complexity

We briefly want to discuss the expected computational costs of the proposed method.
We therefore analyze the steps taken in order to update the model parameters Θt
given a new observation zt and for recalculating the state variables xt.

Reestimating the cell mixture is largely dominated by the search for the best
candidate distribution and by the pair-wise collapsing of Gaussians. As the average
number of Gaussians K̂ contained in the cells varies with the choice of pnew, com-
plexity strongly depends on our prior expectation about the occurrence of world
dynamicity. We may however state that the update costs are bound by a recursive
collapse of the entire mixture distribution into a single Gaussian density. And hence,
Alg. 1 runs in worst-case O(K̂2 log K̂).

Estimating the states requires an additional sorting of the updated cell mixture
which takes additional effort in O(K̂ log K̂).

4 Evaluation

In order to evaluate the approach proposed in this paper, we have conducted several
experiments based on both simulated and real-world data. In this section, we present
our results and some major insights originating from the analysis of these results.

First, we want to consider the influence of the parameter pnew on the quality of
our on-line mixtures estimates. We will then discuss the performance of our method
as applied to range observations from different outdoor settings.

4.1 Simulations and the Influence of pnew

To assess the theoretical soundness of our approach, we have initially generated
various sets of sample observations from a predetermined ground truth. This ground
truth was composed of Gaussian mixture distributions of which the parameters were
known. Drawing samples from such mixtures is straightforward, and these samples
may directly serve as simulated range measurements to the estimation process.

As a similarity measure between the simulated and the estimated mixture dis-
tributions, we have chosen to adapt a variational approximation to the Kullback-
Leibler divergence for Gaussian mixture models. This approximation was first pro-
posed in [4] and provides a fairly accurate, closed-form distance function.
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Fig. 1 The influence of the prior probability pnew on the size and the quality of the learned mixture
distributions. The graphs display the number of estimated Gaussians and the approximated distance
to the ground truth.

Consider two Gaussian mixturesMa andMb with weights wk
a and wl

b, and den-
sities Nk

a and N l
b, respectively. Then, the variational approximation of the distance

dvar(Ma||Mb) betweenMa andMb is given by

dvar(Ma||Mb) =
∑

k

wk
a log

∑
k′ wk′

a e−dKL(Nk
a ||N

k′
a )∑

l wl
b e−dKL(Nk

a ||N
l
b)

(13)

where dKL(Nk ||Nl) denotes the Kullback-Leibler divergence between normal
densities Nk and Nl.

The symmetric form of the approximated distance shall then be defined as

dsym(Ma||Mb) =
dvar(Ma||Mb) + dvar(Mb||Ma)

2
(14)

One of the major objectives of this evaluation was to examine the influence of the
prior probability pnew on the resulting estimates. In the course of our analysis, we
have therefore repeatedly sampled 1000 data points from a ground truth consisting
of 4 Gaussians with varying mean and variance parameters. Each of those sample
sets was then used to infer a new mixture under the assumption of different values
for pnew. The number of Gaussians in the resulting mixtures and the approximated
distance between the ground truth and the estimates are illustrated in Fig. 1.

A deeper investigation of the graphs in this figure reveals that it can be divided
into four major parts: The Gaussians in the estimates tend to associate easily for very
small values of pnew. Under these conditions, the number of independent state hy-
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Fig. 2 The influence of pnew by example. A small prior probability causes estimates to generalize
over the ground truth. But for a wide parameter range, a fairly accurate regression of the sample
distribution is achieved.

potheses is underestimated, but the model might excellently generalize over ground
truth distribution with many individual densities. An example of this behavior is
depicted in Fig. 2.

For slightly higher values of pnew up to a probability of about 0.8, the number
of Gaussians then remains near constant, whereas the resulting mixture evidently
achieves a fairly accurate regression of the sample distribution. This insight is also
supported by Fig. 2 where we witness a tight fit between ground truth and estimate.

Assuming values above 0.8, pnew allows Gaussians to only associate if they are
very close with respect to our probabilistic distance. This consequently leads to
an overfitting behavior, resulting in a higher number of individual densities and
decreasing similarity.

If pnew converges towards a probability of 1.0, individual Gaussians cease to
associate. The scenario culminates in a trivial situation where each sample is repre-
sented by a single Gaussian. In those cases, the distance becomes negligible, but the
mixture model completely explodes in complexity.

Our analysis on the influence of pnew on learning mixtures from simulated data
advocates important insights pertaining to real-world processes. In order for the
estimator to disambiguate between static and dynamic objects, it is important to
adjust pnew according to the following criterion: If we expect very little motion
in the environment, we will choose small priors such that the model generalizes
well even for noisy readings of still surfaces. For widely dynamic environments, we
will assume higher probabilities pnew to allow for larger numbers of individual and
strongly discriminating hypotheses.
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Fig. 3 Estimation results from an urban scene with pedestrians moving in front of a building. The
approach robustly segments dynamic objects (red) from static background surfaces (green). The
gray boxes mark problematic edges that cannot be explained by the proposed model.

4.2 Outdoor Experiments

To evaluate its real-world performance, we have furthermore applied our method
to several data sets of outdoor scenarios with varying dynamic properties. Such
scenarios involved different background structures as well as a selection of dynamic
objects that usually move within urban settings. Amongst these objects, we found
pedestrians, cars, trams, and cyclists. We have fixed our nodding range sensor with
a typical pitch range of about 45 degrees in positions overlooking extensive areas.
The pitch frequency was usually adjusted to about 0.5 Hz. Hence, moving objects
appear slightly distorted.

Fig. 3 shows an exemplary outdoor scene and the learned environment represen-
tation. The data set used in order to produce these results is composed of continuous
scans over a time period of several minutes. For the purpose of visualization, we
have decided to obtain a pointcloud representation of the cell mixtures. We there-
fore depict the mean of a static Gaussian by a green point. Accordingly, dynamic
hypotheses are marked in red.

By qualitative visual investigation, we have found that the depicted outdoor re-
sults display a robust segmentation of static and dynamic objects. Unfortunately,
providing a labeled ground truth explaining our data sets is a difficult challenge
that limits the feasibility of a quantitative analysis. Instead, we show an application
of our approach to create a 3D grid-based Multi-level Surface (MLS) map [16] in
Fig. 4. As we can see, our approach to detect and remove dynamic objects reduces
the number of obstacles in the map, represented as non-traversable map cells.
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Fig. 4 Multi-level Surface map created from a different urban scene. The dynamic objects have
been removed using the approach presented in this paper. Green cells are classified as traversable.
The laser readings that have been classified as dynamic are overlaid to the map as red points.

The attentive observer may have noticed that some of the static regions of our
estimates contain small numbers of outliers. The regions of concern are specifically
characterized by edges lying in the measurement plane of the range sensor. For those
edges, the laser beam has an equally distributed chance of observing a foreground
or a background surface. Problematic edges hence constitute a model discontinuity
which cannot be explained by our current noise assumptions. Adressing such dis-
continuities, we therefore propose an alternative implementation of p(xt | zt,Θt) that
takes into account the spatial neighborhood between cell models [13].

5 Conclusions

We have presented a novel approach to the difficult problem of detecting dynamic
objects from range measurements. As opposed to previous work in the field, our
method takes very few assumptions about the structure of the environment. Never-
theless, our estimation algorithm is strictly governed by statistical models and the
laws of probability. The outdoor results produced within the scope of this paper ap-
pear promising and may directly serve as input to a variety of high-level approaches,
such as map building or object tracking.
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