DISS. ETH NO. 21375

MECHANISMS OF N₂O PRODUCTION IN BIOLOGICAL WASTEWATER TREATMENT: FROM PATHWAY IDENTIFICATION TO PROCESS CONTROL

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

PASCAL WUNDERLIN

Dipl. Umwelt-Natw. ETH

born on 10.9.1982

citizen of Stein AG

accepted on the recommendation of

Prof. Dr. Hansruedi Siegrist, examiner

Prof. Dr. Kartik Chandran, co-examiner

Dr. Adriano Joss, co-examiner

Dr. Joachim Mohn, co-examiner

Prof. Dr. Eberhard Morgenroth, co-examiner

Wow! It is so exciting to finally write this page! Many times in the past I have thought about that special moment, and tried to imagine how I am going to feel about. Writing these lines, is more than words can say, but definitely a great moment in my life. Now it is time to relax and taking the opportunity to say thank you to a lot of important people who have supported me during the last years.

First of all, a great thank goes to the project partners who have financially supported this doctoral thesis. This is the Swiss Federal Office for the Environment (FOEN), the canton of Bern (AWA), the canton of Basel- Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF + Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, WWTP Worblental, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen and Zentralschweizer Umweltdirektorenkonferenz (ZUDK).

Then, I would like to thank Hansruedi Siegrist, for supervising this doctoral thesis, and giving me the opportunity and support to conduct this research. It was a great experience and honor to me working with him and learning from his experience.

Also, a big thank goes to Adriano Joss, who has accompanied me on my long way, always bringing in his great expertise. I very much enjoyed his support and open door, whenever I needed his advice.

Thanks are extended to Joachim Mohn, Lukas Emmenegger, Béla Tuzson and Kerstin Zeyer from the laboratory for air pollution and environmental technology of Empa. The collaboration with them added an extra-dimension to my thesis, since this would not have been possible without their expertise in isotopic analysis, and their motivation to collaborate. Moreover, their support and help, concerning the off-gas analysis, were great and indispensable.

Also a big thank goes to Kartik Chandran, from the Columbia University of New York. It is a great honor to have such a renowned expert co-examining my doctoral thesis.

I also would like to thank Eberhard Morgenroth, for his advices and the numerous discussions, especially during the PhD-seminars. I very much enjoyed his inputs and critical feedbacks.

Moreover, I would like to thank Moritz Lehmann, from the Department of Environmental Science of the University of Basel, for bringing in his isotope expertise.

Furthermore, a special thank go to all the colleagues from the process engineering and urban water management department at Eawag. Especially I would like to thank:

(i) Marco Kipf and Adriana Lotito, both of them contributed substantially to the success of this thesis,

(ii) all the PhD-students who made PhD life unforgettable: Sarina Jenni, Christoph Egger, Alexandra Hug, Hanspeter Zöllig, Ania Chomiak, Jonathan Habermacher, Basil Thalmann, Dario Del Giudice, Michele Laureni, Ann-Kathrin Ostermeyer, Joao Mimoso, and the former PhD-students: Christian Abegglen, Markus Gresch, Maryna Peter-Varbanets and David Dürrenmatt,

(iv) Jack Eugster, Richard Fankhauser, Karin Rottermann, Claudia Bänninger and Anja Wollhauser for their technical support in the lab, and

(v) the teaching assistants: René Lüscher, Angela Birrer, Marine Schneider and Lena Mutzner.

Ein grosses Dankeschön geht auch an all meine Freunde, und insbesondere an Beni, für seine guten Ratschläge und unterstützenden Worte, sowie an Philipp Hänger für die Covergestaltung.

Ebenfalls möchte ich mich bei meiner Familie und ganz speziell bei meinen Eltern, Brigitte und Ignaz, bedanken. Sie haben mir ermöglicht, diesen Weg einzuschlagen, und mich dabei immer voll unterstützt.

Abschliessend möchte ich mich herzlichst bei Aline bedanken. Sie hat durch ihr Verständnis und ihre aufmunternden Worte in schwierigen Zeiten einen grossen Anteil am Gelingen dieser Doktorarbeit.

Thanks a lot to all of you.

Pascal Wunderlin, July 2013

TABLE OF CONTENTS

ACKNOWLED	DGEMENTS	i
TABLE OF CONTENTS		iii
GRAPHICAL THESIS OVERVIEW		iv
LIST OF FREQ	UENTLY USED ABBREVIATIONS	vii
ZUSAMMEN	FASSUNG	ix
SUMMARY		xi
Chapter 1:	General Introduction	1
Chapter 2:	Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies	15
Chapter 3:	Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions	69
Chapter 4:	Isotope signatures of N_2O in a mixed microbial population system: Constraints on N_2O producing pathways in wastewater treatment	91
Supporting Information for Chapter 4		115
Chapter 5:	Pathway identification of N_2O production in biological wastewater treatment: Is the nitrogen isotopic signature a suitable tool?	125
Chapter 6:	Effect of digester liquid addition on N ₂ O production in a pilot-scale biological wastewater treatment plant	145
Chapter 7:	Monitoring N_2O emission for indirect NO_2^- measurement and nitritation-anammox process control	163
Chapter 8:	Online N ₂ O measurement: The next standard for controlling biological ammonia oxidation?	177
Chapter 9:	General Conclusions	183
Chapter 10:	Outlook	189
Appendix A:	N_2O emission of sludge incineration	197
Appendix B:	$\rm N_{2}O$ emission of biological was tewater treatment	217
2 ZURRICULUM VITAE		

GRAPHICAL THESIS OVERVIEW

Chapter 1 & 2 (p. 1 & 15): Literature overview

Chapter 3 (p. 69): N₂O emission pattern (lab-scale)

Chapter 4 (p. 91): N₂O isotopic signature (lab-scale)

GRAPHICAL THESIS OVERVIEW

Chapter 8 (p. 177):

Online N₂O measurement: The next standard for controlling biological ammonia oxidation ?

Chapter 7 (p. 163): N₂O monitoring for process control

(pilot-scale)

Chapter 6 (p. 145): Effect of digester liquid dosing (pilot-scale)

Chapter 5 (p. 125): N₂O isotopic signature (pilot-scale)

LIST OF FREQUENTLY USED ABBREVIATIONS

AOB	Ammonia oxidizing bacteria
NOB	Nitrite oxidizing bacteria
AMO	Ammonia monooxygenase, an important enzyme of AOB
CHF	Swiss currency
COD	Chemical oxygen demand, a surrogate measure for organic pollutant concentration in the sector of wastewater mostly proportional to the total organic content
δ ¹⁵ N lpha,eta	Relative differences of isotope ratios for the inner (α) and the outer (β) nitrogen atom in the asymmetric N_2O molecule
GHG	Greenhouse gas
НАО	Hydroxylamine oxidoreductase, an important enzyme of AOB
HET	Heterotrophic microorganisms
lsotopomer	Molecules containing the same number of isotopic atoms but with differing positions
Ν	Nitrogen
NH_4^+	Ammonium
NH ₂ OH	Hydroxylamine
NO_2^{-}	Nitrite
NO ₃ ⁻	Nitrate
N ₂ O	Nitrous oxide
NO	Nitric oxide
PE	Person equivalents
SP	Site preference, the difference between the $\delta^{{ m 15}}{ m N}^{lpha}$ and $\delta^{{ m 15}}{ m N}^{eta}$
WWTP	Wastewater treatment plant

Lachgas (N₂O) ist ein starkes Treibhausgas und bedeutend an der Zerstörung der stratosphärischen Ozonschicht beteiligt. Seine Bildung und Freisetzung in die Atmosphäre ist deshalb von grosser Umweltrelevanz. In der biologischen Abwasserreinigung kann N₂O sowohl während der Nitrifikation (Oxidation von Ammonium zu Nitrat), wie auch durch die heterotrophe Denitrifikation (Reduktion von Nitrat zu Luftstickstoff) gebildet werden. Die simultane Aktivität mehrerer eine eindeutige Identifizierung Bildungswege erschwert der dominanten biochemischen Bildungsmechanismen. Auf Grund der grossen Umweltrelevanz von N₂O sowie des ungenügenden Prozessverständnisses der N₂O Bildung in der Abwasserreinigung, werden in dieser Arbeit die wichtigsten Bildungsprozesse sowie die relevanten Prozessparameter untersucht. Dazu wurde eine Methode angewandt, die es erlaubt die positionsabhängige Verteilung von ¹⁵N (genannt Site Preference, SP), wie auch den Anteil von ¹⁵N im N₂O Molekül zu bestimmen. Darauf aufbauend wurden Betriebsstrategien formuliert und getestet, welche die N₂O Emissionen aus der Abwasserreinigung minimieren.

Es konnte gezeigt werden, dass die N₂O Bildung unter aeroben Bedingungen durch die Nitrifikanten dominiert wird, wobei hohe Ammonium- und Nitrit- Konzentrationen die N₂O Produktion begünstigen. Ein Beispiel stellt die Dosierung von Faulwasser dar, in deren Folge die Ammonium- und Nitrit-Konzentrationen mit den N₂O Emissionen deutlich korreliert haben. In diesem Sinne wurde getestet, ob NO₂⁻ indirekt über die N₂O Messung detektiert werden kann. Dies wurde für ein Nitritations-Anammox Prozess getestet, bei welchem NO₂⁻ ein wichtiges Zwischenprodukt darstellt, da seine Konzentration ein Indikator für eine mangelnde Prozesstabilität ist. Der Zusammenhang zwischen gelöstem NO₂⁻ und erhöhter N₂O Emission konnte bestätigt werden, wobei weitere Bildungswege (z.B. die NH₂OH Oxidation) berücksichtigt werden müssen. Insgesamt sind die Resultate jedoch vielversprechend.

Die Mechanismen der N₂O Bildung sind jedoch noch nicht vollständig verstanden, was eine Abschätzung der Emissionsfaktoren schwierig macht. Zudem sind die Emissionen räumlich und zeitlich sehr variabel und werden durch eine Vielzahl von Faktoren beeinflusst. Aus diesem Grund sind aktuelle Emissionsabschätzungen noch mit einer grossen Unsicherheit verbunden. Daraus wird gefolgert, dass für die gezielte Optimierung einer Anlage eine fix installierte kontinuierliche N₂O-Abluftmessung vorteilhaft ist. Damit kann neben der N₂O Emissionsüberwachung auch die Prozessstabilität überwacht werden. Abschliessend kann gesagt werden, dass auf Grund des N₂O Emissionspotentials energetische Optimierungen Abwasserreinigungsverfahren, ohne Mitberücksichtigung der N₂O Emissionen, nicht sinnvoll erscheinen.

Nitrous oxide (N_2O) is a strong greenhouse gas, and involved in the destruction of the stratospheric ozone layer. Emissions to the atmosphere are therefore harmful for the environment. In biological wastewater treatment, N_2O can be produced in different process steps: during nitrification (the oxidation of ammonia to nitrate) and during heterotrophic denitrification (the reduction of nitrate to dinitrogen gas). However, identifying the most important N_2O production pathways is a complex issue, since all of them might be active simultaneously. The aim of this work was therefore (i) to identify the most important N_2O production pathway in biological wastewater treatment based on isotopomeric analysis in combination with emission pattern, (ii) to evaluate the impact of relevant operating parameters as well as (iii) to test operating strategies reducing these emissions.

Results indicate that NO₂⁻ reduction (presumably by ammonia oxidizing bacteria) is the dominant N₂O production pathway under aerobic conditions. The contribution from NH₂OH oxidation in wastewater treatment, however, cannot be completely excluded, but is deemed only of minor importance in this investigation. The addition of digester liquid, equivalent to a temporary increase of the nitrogen load, to a pilot-scale activated sludge plant showed that high nitrogen loads accelerated N₂O emission significantly, correlating positively with the NO₂⁻ build-up in the nitrification activated sludge tanks. As such, operating strategies reducing NO₂⁻ accumulation are considered to emit only low amounts of N₂O. Given the correlation of soluble NO₂⁻ with N₂O emission, the application of N₂O analysis as a potential indirect measure for dissolved NO₂⁻ was tested for a nitritation-anammox process. Results clearly confirmed this correlation but showed that also other pathways are relevant for N₂O emission in this process (e.g. NH₂OH oxidation or yet undefined toxic components). Thus this is a promising approach and needs to be further investigated.

 N_2O production is a complex issue, since strongly depending on the individual plant operating conditions. This makes it difficult to extrapolate from one treatment plant to another. Given the N_2O emission potential, plant optimization from an energetic point of view does not make sense without considering N_2O emission. Further, a continuous N_2O off-gas online monitoring concept for full-scale plants is considered favorable in order to minimize overall climate impact of wastewater treatment. A financial greenhouse gas crediting system could be a potent incentive to promote widespread adoption of the here proposed approach.

Chapter 1

General Introduction

Introduction

In this doctoral thesis, the production and emission of nitrous oxide (N_2O) from biological wastewater treatment is investigated, with a specific focus on pathway identification, plant operating reduction strategies and the potential use of N_2O off-gas real-time data for process control.

In the following introduction, the emphasis lies on (i) the environmental relevance of N_2O , (ii) some facts about the historical context, (iii) the current state of knowledge concerning N_2O production mechanisms and important pathways, and (iv) its relevance in the field of biological nutrient removal.

Managing the nitrogen cycle and environmental relevance of N_2O

The nitrogen (N) cycle (Figure 1) is essential for life, as N (present in the redox states from -3 to +5) is a nutrient of primary importance for all organisms, since being an important component of proteins, enzymes and genetic material (e.g. DNA). The N cycle is driven by microbial activities, involving a high diversity of organisms (Barton and Atwater 2002; Jetten 2008). Until recent decades, the biological N availability was basically driven by naturally occurring N₂ fixation by several types of bacteria and algae (Barton and Atwater 2002). However, human-derived N₂ fixation, e.g. by the Haber-Bosch process or by cultivation of legumes, significantly increased global N fixation rate throughout the last century. This resulted in significant quantitative changes of the N cycle and led to world-wide environmental problems, such as eutrophication of coastal waters, acid rain, stratospheric ozone depletion as well as to an increase in the atmospheric N₂O concentration (Figure 2; Kampschreur 2010).

Figure 1. Microbial N cycle: (1) aerobic ammonia (NH_4^+) oxidation, (2) aerobic nitrite (NO_2^-) oxidation, (3) nitrate (NO_3^-) reduction to NO_2^- , (4) to (6) heterotrophic denitrification, (7) N_2 fixation, (8) anaerobic ammonium oxidation (Anammox; Kampschreur et al., 2009).

 N_2O is an unwanted gas since of great environmental relevance: (i) it is a greenhouse gas (GHG) with a global warming potential of about 300 times higher than that of carbon dioxide (CO₂) (IPCC 2007), and (ii) it is involved in the destruction of the stratospheric ozone layer. Since the ban on chlorofluorocarbons (CFCs) in the 1980-ies,

 N_2O is estimated to be the most important threat to the ozone layer of the 21st century (Kramlich and Linak 1994; IPCC 2007; Ravishankara et al., 2009). Compared to the preindustrial level, the atmospheric N_2O concentration has increased by about 18 % (from about 270 ppb to up to 324.2 ppb in the year 2011; WMO GHG Bulletin (2012); Figure 2), primarily due to human activities, and due to an atmospheric residence time of about 114 years (IPCC 2001; IPCC 2007). The major sink of N_2O is the stratospheric reaction with molecular oxygen to nitric oxide (NO). Latter induces the destruction of the stratospheric ozone layer (Kramlich and Linak 1994; Ravishankara et al., 2009; Wuebbles, 2009).

Figure 2. Atmospheric N_2O concentrations over the last 1000 years (IPCC 2001).

About two thirds of overall N₂O emission is estimated to originate from agricultural activities, such as application of fertilizer, animal manure management and so forth, while fuel combustion, industrial production of adipic acid as well as of nitric acid are other important source (USEPA 2009). The contribution of N₂O emission from wastewater treatment to total GHG emission is estimated to be approximately 0.25 % (Kampschreur et al., 2009) (please see also 'Importance of N₂O emission in the field of wastewater treatment' in this chapter). In Switzerland, total N₂O emission is estimated to cause about 6 % of the total GHG emission (FOEN 2008). As such, given global climate change as well as the current political GHG debate, emission reduction is considered of increasing importance, and is highly expected to appear on the political agendas in the near future. Switzerland, for example, has committed, based on the new CO₂ act (in force since 1.1.2013), to reduce domestic GHG emission, until 2020, by at least respect 20 % with to the emission level 1990 in (http://www.bafu.admin.ch/klima/12325/index.html?lang=de; September 2013).

N_2O from a historical point of view: Medical application vs. rocket science

 N_2O is color-less, nonflammable, and commonly known as 'laughing gas', due to its euphoric effect when inhaled. Therefore, the popularity nowadays among young people is not surprising. The gas was first synthesized by Joseph Priestly in the 18th century. However, it took almost a century, till Horace Wells, a dentist, successfully applied N_2O as an anesthetic drug (Figure 3). Still, his colleagues remained skeptical since the public demonstration by Horace Wells had been only partly successful. In 1863, however, N_2O started to be applied more frequently for medical purposes, and is nowadays still used in dentistry (www.general-anaesthesia.com; www.wikipedia.com; Mai 2013).

Figure 3. Horace Wells uses N_2O as an anesthetic for tooth extraction in a self-experiment (left; http://lifeboat.com/ex/utopian.surgery; September 2013). Inhalant systems used for N_2O application (right; www. http://general-anaesthesia.com/images/nitrous-oxide.htm; September 2013).

Moreover, N_2O is also used as an oxidizer (at elevated temperatures similarly effective as oxygen) in rocket engines or in vehicles, since N_2O delivers extra oxygen which enables the engine to burn more fuel and thus to increase its power (www.wikipedia.com, Mai 2013). At Stanford university, for example, there are engineering attempts to use N_2O as a fuel for rocket thrusters (http://woods.stanford.edu/environmental-venture-projects/high-rate-microbial-

production-nitrous-oxide-energy-generation; September 2013). Or a recent patent application by the Robert Bosch GMBH suggests to increase block heating work power by adding N₂O (presumably originating from biological wastewater treatment) to CH₄ produced during anaerobic sludge digestion (Patent number: PCT/EP2011/057571). This illustrates that N₂O has a wide technical application. In the environment (and in biochemical processes within engineered reactors), however, N₂O is an unwanted microbial by-product, due to its negative impacts on the global climate and the stratospheric ozone layer. Process understanding and optimization, leading to minimal microbial N₂O production, is therefore subject to increasing research activities, which is also the focus of this thesis. As such, the next section will provide a brief overview over the current understanding of the microbial N cycle and how it is linked to N₂O production (additional information is provided in chapter 2 of this thesis).

Microorganisms involved in the nitrogen cycle and in N₂O production

The biological N cycle (Figure 1) involves a complex interaction of many microorganisms and enzymes, depending on the environmental conditions. Nitrification and heterotrophic denitrification, both relevant for the N cycle, are also used in wastewater treatment plants to achieve nutrient removal (Figure 4). Basically, nitrification is the stepwise autotrophic oxidation of ammonia (NH_4^+) via nitrite (NO_2^-) to nitrate (NO_3^-) by the use of oxygen (O_2) . Ammonia-oxidizing bacteria (AOB) and nitrite oxidizers (NOB) are two groups of microorganism involved in this process (Colliver and Stephenson 2000; Ward et al., 2011). Denitrification is the heterotrophic reduction of NO_3^- to atmospheric nitrogen (N_2), with NO_2^- , nitric oxide (NO) and N_2O as obligatory intermediates (detailed overview given in Zumft 1997).

Ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)

During the autotrophic oxidation of NH_4^+ to NO_3^- , O_2 is used as the terminal electron acceptor and CO_2 as the carbon source (Colliver and Stephenson 2000). In activated sludge, the oxidation from NH_4^+ via NH_2OH to NO_2^- is performed by AOB (such as *Nitrosomonas oligotropha, Nitrosomonas europaea*, and *Nitrosospira*, a β -subclass of proteobacteria). NOB perform the oxidation of NO_2^- to NO_3^- (e.g. *Nitrobacter*, an α subclass of proteobacteria and *Nitrospira* an independent line within the domain of bacteria; Bock and Wagner 2006). Under regular operating conditions, *Nitrosomonas* were reported to be the dominant AOB species and *Nitrospira* the dominant NOB species at low NH_4^+ and NO_2^- concentrations (Purkhold et al., 2000; Freitag et al., 2005; Manser et al., 2005).

The enzymes required for the oxidation of NH_4^+ to NO_2^- are ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). The latter being the energy-generating step: four electrons are released, two of them are required for the AMO reaction while the other two are used for energy generation. The enzyme for the oxidation of NO_2^- to NO_3^- is called nitrite oxidoreductase (NO_2^-OR) (Colliver and Stephenson 2000; Bock and Wagner 2006).

Heterotrophic denitrifying microorganisms (HET)

Heterotrophic denitrification is the reduction of NO_3^- to N_2 by use of organic substrate as the electron donor and carbon source. It is carried out by prokaryotes (bacteria as well as archaea), such as *Paracoccus denitrificans* and *Alcaligenes faecalis* (Zumft 1997). The N₂O release is expected to be linked to the activity of N₂O-reductase enzymes relative to the activity of N₂O forming enzymes (Alinsafi et al., 2008; Knowles 1982; von Schulthess et al., 1994). For example, low dissolved oxygen concentrations may result in incomplete denitrification (Stouthamer 1991), and strong N₂O-reductase enzyme inhibition in the presence of O₂ (von Schulthess et al., 1994).

Denitrification requires four reductases: NO_3^- (NaR / Nap), NO_2^- (NiR), NO (NoR) and N_2O (N_2OR) reductase (Bergaust, 2008; Zumft 1997). The genes encoding these proteins are activated by several signals: both, (i) no (or low) O_2 concentrations as well as (ii) the presence of denitrification intermediates (e.g. NO_2^- , NO) are needed for their expression (Bergaust et al., 2008). In general, regulation of these enzymes helps to avoid toxic NO_2^- and NO concentrations, as e.g. reported for *Nitrosomonas europaea* expressing NO_2^- reductase (NirK) at toxic NO_2^- levels (Beaumont et al., 2004).

N₂O production pathways in wastewater treatment

 N_2O production in biological wastewater treatment is generally attributed to nitrification and heterotrophic denitrification. According to Kampschreur et al. (2009),

there are three main routes for N₂O production (Figure 4), which are called hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification, respectively (adapted from Wunderlin et al., 2012):

- Hydroxylamine oxidation refers to the production of N₂O from intermediates of • biological hydroxylamine oxidation (e.g. HNO, N₂O₂H₂; Poughon et al., 2001; Law et al., 2012), being probably related to a highly imbalanced metabolic activity of AOB (Yu et al., 2010), or to chemical decomposition of NH, OH as well as to chemical oxidation with $\mathsf{NO}_{\scriptscriptstyle 2}^{\scriptscriptstyle -}$ as an electron acceptor (chemo-denitrification; Ritchie and Nicholas 1972; Stuven et al., 1992).
- Nitrifier denitrification is attributed to reduction of NO₂⁻ by AOB in combination ٠ with NH_{4}^{+} , hydrogen or pyruvate as electron donors, e.g. at O₂-limiting conditions or elevated NO_2^{-} concentrations (Stuven et al., 1992; Colliver and Stephenson 2000; Wrage et al., 2001).
- During heterotrophic denitrification, however, N₂O is an obligate intermediate and its production therefore assumed to be due to an imbalanced activity of Nreducing enzymes, e.g. due to O, inhibition (Baumann et al., 1997; Lu and Chandran 2010), NO² accumulation (von Schulthess et al., 1994), or a limited availability of biodegradable organic compounds (Itokawa et al., 2001).

Figure 4. Overview of N₂O production pathways during autotrophic nitrification and heterotrophic denitrification. During nitrification, N₂O can be produced via nitrifier denitrification or NH,OH oxidation. During heterotrophic denitrification, N,O is an obligate intermediate (adapted from Wunderlin et al., 2013).

Even though, the dominant N₂O production pathways in biological nutrient removal have been identified (Figure 4), their relative contribution under defined process conditions is not yet clear to avoid unnecessary emissions. As such, no consensus has been achieved so far about the most important parameter favoring N₂O production. The scientific discussion, however, has been focused on some factors that have been recognized to be strongly linked to N₂O production. These are (i) low dissolved O₂ concentration during nitrification as well as heterotrophic denitrification, (ii) the accumulation of NO_2^{-} and / or NH_4^{+} during nitrification due to high nitrogen loads in

combination with limited aeration, and (iii) a low ratio of readily biodegradable organic compounds to NO_3^{-1} during heterotrophic denitrification (Kampschreur et al., 2009; Ahn et al., 2010; Desloover et al., 2012; Wunderlin et al., 2012).

A continuously and fast growing understanding of the N_2O production mechanisms and the relevant impacting parameters within the near future is highly expected, since in addition to the present thesis, an increasing number of research groups worldwide are working on this topic.

Importance of N_2O emission in the field of wastewater treatment

In conventional biological wastewater treatment, N removal occurs via microbial nitrification and heterotrophic denitrification. Most of the wastewater treatment plants in Switzerland are designed for nutrient removal. Basically, aerobic conditions are needed for autotrophic nitrification, while anoxic conditions (absence of O_2) and a sufficient amount of organic carbon is required to support heterotrophic denitrification (detailed overview given in Law et al., 2012).

In the last decade, significant efforts have been made to reduce the energy consumption of wastewater treatment plants, mainly by lowering the aeration of the nitrification stage to the required minimum (Kampschreur et al., 2009), because aeration is responsible for about 50 % of the total energy consumption of a wastewater treatment plant (VSA, 2008). This leads to low dissolved O_2 concentrations in the bioreactors used for nitrification, which might in combination with high N loads be a trigger for N₂O production (please see also 'N₂O production pathways wastewater treatment' in this chapter).

The literature is currently inconsistent about the quantities of N₂O emitted during wastewater treatment: reported values are ranging from 0 to 25 % (Kampschreur et al., 2009; Law et al., 2012). Recently, a measuring campaign across the United States showed that 0.01 to 3.3 % of the removed N is emitted as N₂O (Ahn et al., 2010). And in another investigation, where N₂O was measured continuously over one year on a full-scale treatment plant in the Netherlands, an emission of 3 % was reported (Daelman et al., 2012). These wide ranges clearly indicate that N₂O emission is dynamic, plant specific, and not yet sufficiently understood.

Figure 5 shows a rough estimation of GHG emission (CO₂, CH₄, N₂O) from wastewater treatment. Currently, an average N₂O emission of 0.5 % with respect to influent N, is proposed as an acceptable emission level, since in this case, the respective global warming potential is somewhat smaller compared to the one of aeration energy consumption. Moreover, in a recent investigation it is discussed that in addition to biological nutrient removal, N₂O production can also be relevant during sludge incineration (please see Appendix A). Data from two Swiss sludge mono-incineration plants indicate that around 0.2 to 1 % of the N influent load was emitted as N₂O (equivalent to about 10 to 47 gCO_{2,equiv}/PE/d), which is comparable to estimated N₂O emission from the main water line. Moreover, N₂O emissions from sludge incineration were negatively correlated with incineration temperatures, being higher at low

temperature and vice-versa. Accordingly, the here presented comparison (Figure 5), clearly illustrates that wastewater treatment plant optimization requires a broad view, focusing on more than just one aspect like aeration energy, and that all relevant GHG emissions need to be taken into account.

* Greenhousgas emission based on average european emission data (700gCO_{2.equiv.}/kWh)

Figure 5. Estimation of GHG emission in wastewater treatment (adapted from Wunderlin et al., 2013): N_2O is produced during biological nutrient removal as well as during sludge incineration; CH_4 originates most probably from the sewer system, primary clarifier and sludge digestion and storage (e.g. contribution of past-digester if not connected to the biogas system).

General objectives of this thesis

The overall objective of this thesis is to identify mechanisms of N_2O production and how the resulting emissions can be reduced in biological wastewater treatment. Therefore, the focus will be on mixed microbial cultures used for state-of-the-art municipal wastewater treatment. To address these objectives, the work will be structured around the following milestones (please refer also to the graphical thesis overview on page iv and v):

- (1) Providing a sound literature overview, and discussing suitable methods available to elucidate N₂O production mechanisms (**Chapter 2**).
- (2) Investigating the N_2O production pathways based on N_2O emission pattern in a lab-scale bioreactor (**Chapter 3**).
- (3) Identifying the N₂O site-specific isotopic signature of individual microbial processes in a lab-scale reactor, based on quantum cascade laser absorption spectrometry (QCLAS; **Chapter 4**).

- (4) Validating the isotope approach during regular operation of a pilot-scale wastewater treatment plant (**Chapter 5**).
- (5) Evaluating the importance of the different operating strategies, and the impact of key factors linked to N₂O production (**Chapter 6**).
- (6) Discussing and exemplifying the potential future role of N_2O off-gas measurement in wastewater treatment and process control (**Chapter 7 and 8**).

Significance of the work

This thesis contributes to a better understanding of the relevant N_2O production pathways, including the discussion of N_2O impacting process parameters. However, the wide range of emissions observed, as well as the multiple factors correlating with them, result in complex and dynamic N_2O emission patterns, which makes it challenging to formulate general plant operating strategies for keeping N_2O emissions low. Therefore, it is suggested to implement a continuous on-line N_2O off-gas measurement at full-scale plants. Investment costs are estimated to be higher, but still in the same order of magnitude, compared to conventional commercially available ion selective electrodes, as usually applied for online NH_4^+ or NO_3^- measurement (please see also Chapter 8). Consequently, every plant can be optimized individually with respect to its overall carbon footprint. Moreover, the implementation of a financial GHG crediting system, as suggest by Wang et al. (2011), could be an additional incentive to promote widespread adoption of a continuous N_2O off-gas monitoring concept.

The site-specific isotopic signatures of N_2O produced during biological nutrient removal, and determined in this study, is a novel approach in the field of wastewater treatment, and will very likely be increasingly applied in future work. Accordingly, this method has the potential to substantially improve the understanding of N_2O emission dynamics in biological nutrient removal, especially when combined with other tools, such as molecular approaches (e.g. Yu et al., 2010) and mathematical modeling (e.g. Ni et al., 2011; Ni et al., 2012; please see also Chapter 2).

Our improved understanding of the involved mechanisms is deemed to be relevant well beyond wastewater treatment, since the biochemical processes also occur in aquatic environments (e.g. surface waters, sediments), in agricultural soils (the dominant global N_2O source) as well as other ecosystems and technical processes, and play a crucial role in the global N cycle.

Outline

In the first part of this thesis (**chapters 3 to 5**), the mechanisms of N_2O production are investigated, based on concentration and emission data combined with the nitrogen isotopic signature of N_2O . With the latter being a novel approach in the field of biological nutrient removal. In the second part (**chapter 6**), the dynamics and levels of

 N_2O emissions are studied in pilot-scale. Finally, in **chapter 7** and **8**, N_2O off-gas measurement as a process control parameter was investigated for a nitritationanammox process, which is judged to be a promising approach for future applications and a necessary stepping stone toward implementation in conventional full-scale plants.

In the first part of **Chapter 2** an overview is given over the current state of knowledge concerning N₂O production pathways and mechanisms, while the second part focuses on novel methods for future investigations of N₂O emissions from natural as well as engineered systems. One of the presented methods is about the nitrogen isotopic signature of N₂O (site preference, δ ¹⁵N), which is a novel tool in biological wastewater treatment and applied in this thesis (see chapter 3 and 4).

In **Chapter 3** the mechanisms of N₂O production are investigated in a lab-scale bioreactor. Based on N₂O emission data in combination with NH_4^+ , NO_2^- and NO_3^- concentration profiles, production pathways and mechanisms are discussed. The main conclusion is that there was a small contribution of NH_2OH oxidation at the beginning of the aeration phase when NH_4^+ concentration is high but NO_2^- still low, while in the course of nitrification a shift to nitrifier denitrification driven N₂O production is observed.

Chapter 4 introduces the nitrogen isotopic signature of N_2O as a novel method in biological wastewater treatment (see Chapter 2). The isotopic signature of the different N_2O production pathways was investigated based on lab-scale experiments where substrate availability was controlled in order to 'promote' the different production routes. The data confirm that under aerobic conditions, NO_2^- reduction, presumably by AOB, is the dominant N_2O production pathway. The contribution from NH_2OH oxidation is only of minor importance. This is an important aspect concerning the actual debate about the N_2O production mechanisms in biological wastewater treatment.

In **Chapter 5** the nitrogen isotopic signature of N_2O was applied to a pilot-scale treatment plant operated at different dissolved oxygen concentrations. The data confirm the findings of Chapter 3 and 4, where NO_2^{-1} reduction was postulated as the dominant N_2O production mechanism under aerobic conditions. Moreover, it was confirmed that analyzing N_2O nitrogen isotopic signature is a promising tool for pathway identification in biological wastewater treatment.

The effect of digester liquid addition to a pilot-scale activated sludge plant was studied in **Chapter 6**. Results show that an increase in influent N load resulted in elevated N_2O emission, correlating positively with the NO_2^- build-up in the nitrification reactor. This underscores the fact that an operating strategy at low dissolved NO_2^- (<2 mgN/l) and with equalized N loads prevents substantial N_2O emission.

In **Chapter 7** and **8** the potential of N_2O as an indirect measure for dissolved NO_2^- will be discussed in detail. This application is based on a positive correlation between dissolved NO_2^- and N_2O off-gas concentration (as reported for conventional treatment schemes; see e.g. chapter 6). A nitritation-anammox reactor was operated at different aeration

rates in order to control NO₂⁻ accumulation, which is feasible due to the absence of NOBs, and due to anammox inhibition if molecular oxygen is not promptly depleted by AOB activity. It is shown that N₂O emission can be controlled by adjusting the airflow rate, with high emissions at high aeration rates, and vice-versa. Moreover, NO₂⁻ reduction and NH₂OH oxidation seemed to contribute to N₂O production as independent mechanisms, and thus did not always result in a clear linear NO₂⁻/N₂O correlation. However, reactor operation at minimal N₂O emission avoided situations of NO₂⁻ accumulation, which is expected to improve overall process stability of nitritation-anammox reactors, and thus suggests incorporating continuous N₂O off-gas measurement in the process control.

Appendix A shows an article about N₂O emission of sludge incineration (in German).

Appendix B shows an overview article about N_2O emission of biological wastewater treatment (in German).

References

Alinsafi, A., Adouani, N., Beline, F., Lendormi, T., Limousy, L., Sire, O. (2008). Nitrite effect on nitrous oxide emission from denitrifying activated sludge. Process Biochemistry 2008, 43, 683-689.

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology 44(12), 4505-4511.

Barton, P. K. and Atwater, J. W. (2002). Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste. Journal of Environmental Engineering-Asce 128(2), 137-150.

Baumann, B., Snozzi, M., VanderMeer, J. R. and Zehnder, A. J. B. (1997). Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Research 31(8), 1947-1954.

Beaumont, H. J. E., Lens, S. I., Reijnders, W. N. M., Westerhoff, H. V. and van Spanning, R. J. M. (2004). Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Molecular Microbiology 54(1), 148-158.

Bergaust, L., Shapleigh, J., Frostegard, A. and Bakken, L. (2008). Transcription and activities of NO_x reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environmental Microbiology 10(11), 3070-3081.

Bock, E. and Wagner, M. (2006). Oxidation of Inorganic Nitrogen Compounds as an Energy Source. The Prokaryotes 2, 457-495.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Daelman, M. R. J., van Dongen, L. G. J. M., van Voorthuizen, E. M., Volcke, E. I. P. and van Loosdrecht, M. C. M. (2012). Methane and nitrous oxide emissions from municipal wastewater treatment. IWA Nutrient Removal and Recovery 2012: Trends in NRR, Harbin, China, 23-25 September 2012.

Desloover, J., Vlaeminck, S. E., Clauwaert, P., Verstraete, W. and Boon, N. (2012). Strategies to mitigate N_2O emissions from biological nitrogen removal systems. Current Opinion in Biotechnology, doi:10.1016/j.copbio.2011.12.030.

FOEN (2008). Switzerland's Greenhouse Gas Inventory 1990-2007. National Inventory Report 2009. Submission of 15 April 2009 under the United Nations Framework Convention on Climate Change and under the Kyoto Protocol. Federal Office for the Environment, Bern.

Freitag, T. E., Chang, L., Clegg, C. D. and Prosser, J. I. (2005). Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in agricultural grassland soils. Applied and Environmental Microbiology 71(12), 8323-8334.

IPCC (2001). Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.

IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D. Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

Itokawa, H., Hanaki, K. and Matsuo, T. (2001). Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research 35(3), 657-664.

Jetten, M. S. M. (2008). The microbial nitrogen cycle. Environmental Microbiology 10(11), 2903-2909.

Kampschreur, M. J. (2010). Dynamics of nitric oxide and nitrous oxide emission during nitrogen conversion processes. Dissertation.

Kampschreur, M. J., Poldermans, R., Kleerebezem, R., Van Der Star, W. R. L., Haarhuis, R., Abma, W. R., Jetten, M. S. M. and Van Loosdrecht, M. C. M. (2009). Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. 60: 3211-3217.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Knowles, R. (1982). Denitrification. Microbiological Reviews 46(1), 43-70.

Kramlich, J. C. and Linak, W. P. (1994). Nitrous-Oxide Behavior in the Atmosphere, and in Combustion and Industrial-Systems. Progress in Energy and Combustion Science 20(2), 149-202.

Law, Y., Ni, B.-J., Lant, P. and Yuan, Z. (2012). N_2O production rate of an enriched ammonia oxidising bateria culture exponentially correlates to its ammonia oxidation rate. Water Research 46(10), 3409-3419.

Law, Y., Ye, L., Pan, Y. and Yuan, Z. (2012). Nitrous oxide emissions from wastewater treatment processes. Phil Trans R Soc B 367, 1265-1277.

Lu, H. and Chandran, K. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnology and Bioengineering 106(3), 390-398, 10.1002/bit.22704.

Manser, R., Gujer, W. and Siegrist, H. (2005). Membrane bioreactor versus conventional activated sludge system: population dynamics of nitrifiers. Water Science and Technology 52(10-11), 417-425.

Ni, B.-J., Yuan, Z., Chandran, K., Vanrolleghem, P. A. and Murthy, S. (2012). Evaluating mathematical models for N₂O production by ammonia-oxidizing bacteria: Towards a unified model. Proceedings of the 3rd IWA/WEF Wastewater Treatment Modelling (WWTmod) Conference Mont-Sainte-Anne, Québec, Canada.

Ni, B. J., Ruscalleda, M., Pellicer-Nàcher, C. and Smets, B. F. (2011). Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: Extensions to the general ASM models. Environmental Science and Technology 45(18), 7768-7776.

Poughon, L., Dussap, C. G. and Gros, J. B. (2001). Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnology and Bioengineering 72(4), 416-433.

Purkhold, U., Pommerening-Roser, A., Juretschko, S., Schmid, M. C., Koops, H. P. and Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology 66(12), 5368-5382.

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Ritchie, G. A. and Nicholas, D. J. (1972). Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochemical Journal 126(5), 1181-1191.

Stouthamer, A. H. (1991). Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans. Journal of Bioenergetics and Biomembranes 23(2), 163-185.

Stuven, R., Vollmer, M. and Bock, E. (1992). The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Archives of Microbiology 158(6), 439-443.

USEPA (2009). Inventory of U.S. Greenhouse Gas Emissions And Sinks: 1990-2007, U.S. Environmental Protection Agency, Washington DC, Report No. EPA 430-R09-004.

von Schulthess, R., Wild, D. and Gujer, W. (1994). Nitric and Nitrous Oxides from Denitrifying Activated-Sludge at Low-Oxygen Concentration. Water Science and Technology 30(6), 123-132.

VSA, (2008). Handbuch Energie in ARA. Neuauflage des Handbuchs Energie in ARA von 1994.

Wang, J. S., Hamburg, S. P., Pryor, D. E., Chandran, K. and Daigger, G. T. (2011). Emissions credits: Opportunity to promote integrated nitrogen management in the wastewater sector. Environmental Science and Technology 45(15), 6239-6246.

Ward, B. B., Arp, D. J. and Klotz, M. G. (2011). Nitrification. Washington, USA: IWA Publishing.

WMO greenhouse gas bulletin (2012). The state of greenhouse gases in the atmosphere based on global observations through 2011. www.wmo.int

Wrage, N., Velthof, G. L., van Beusichem, M. L. and Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33(12-13), 1723-1732.

Wuebbles, D. J. Nitrous oxide: No laughing matter. Science 2009, 326 (5949), 56-57.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2013). Lachgas-Emissionen aus ARA - Relevanz, Bildungswege und Reduktionsstrategien. Aqua & Gas 2, 54-59.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61(4), 533-616.

Chapter 2

Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

This chapter has been published as:

Schreiber, F.; <u>Wunderlin, P.</u>; Udert, K. M.; Wells, G. F.. *Frontiers in Microbiology*, **2012**, *3*, 10.3389/fmicb.2012.00372.

Graphical abstract

Autotrophic nitrification

Heterotrophic denitrification

Abstract

Nitrous oxide (N,O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N₂O is formed biologically from the oxidation of hydroxylamine (NH,OH) or the reduction of nitrite (NO,⁻) to NO and further to N,O. Our review of the biological pathways for N,O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO₂⁻ to NO and the further reduction of NO to N₂O, while N₂O formation from NH₂OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N₂O formation due to the reactivity of NO₂, NH₂OH and nitroxyl (HNO). Moreover, biological N₂O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N₂O build-up are key to understand mechanisms of N₂O release. Here, we discuss novel technologies that allow experiments on NO and N₂O formation at high temporal resolution, namely NO and N,O microelectrodes and the dynamic analysis of the isotopic signature of N,O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N₂O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N₂O build-up.

Key words

Isotopic signature; micro-sensors; molecular tools; dinitrogen oxide; nitrogen monoxide; pathway identification; quantum cascade laser based absorption spectrometry, site preference

Introduction

Nitric oxide (NO) and nitrous oxide (N₂O) are atmospheric trace gases that influence atmospheric chemistry and the greenhouse effect. Biological and chemical processes produce N₂O on the earth surface (Crutzen, 1979). Entering the stratosphere, N₂O is converted to NO by photo-oxidation. NO together with nitrogen dioxide (NO₂) participate in a set of reactions that transfer ozone (O₃) to molecular oxygen (O₂), thereby leading to O₃ layer depletion. In fact, N₂O is and will remain the dominant O₃-depleting substance in the 21st century (Ravishankara et al., 2009), since the use of chlorofluorocarbons has been restricted by the Montreal Protocol. In addition, N₂O is a potent greenhouse gas. The infrared radiative forcing of one N₂O molecule is 206 times that of one carbon dioxide (CO₂) molecule (Stein and Yung, 2003). Together with the long atmospheric lifetime of N₂O (~ 120 years) this results in a ~300 times higher global warming potential of N₂O than that of CO₂ on a per molecule basis. Overall, N₂O contributes 6 to 8 % to the anthropogenic greenhouse effect, despite its relatively low atmospheric concentration (~322 ppbv) (Montzka et al., 2011).

Over the last 100 years atmospheric N_2O concentrations have been steadily increasing due to the massive introduction of fixed nitrogen into the environment by humans (IPCC, 2001). Counteracting the further increase of N_2O in the atmosphere will rely on (i) decreasing the introduction of fixed nitrogen into the environment by humans, (ii) exactly quantifying the important environmental sources of N_2O , and (iii) implementing effective strategies to mitigate its formation in nitrogen-transforming, man-made ecosystems such as agriculture and wastewater treatment. Thus, there is an urgent need to understand the mechanisms that underpin the formation of N_2O in natural and engineered microbial communities.

In this review, we will outline the current state-of-the-art on biological and chemical processes that can produce and consume N_2O and NO - an important precursor of N_2O in many biological pathways. We will discuss pathways that produce NO and N_2O in natural and engineered microbial communities and experimental approaches that can be used to distinguish between different pathways in these systems. Importantly, NO and N_2O formation can be highly dynamic and occur at small spatial scales. Thus, we will further introduce two novel technologies that provide such data and how they can lead to mechanistic insight: (i) NO and N_2O microelectrodes and (ii) the analysis of the site preference in N_2O measured with quantum cascade laser based absorption spectrometry. In addition, we discuss the challenges of incorporating molecular biological techniques in this scheme.

Biological pathways for NO and N₂O production

The study of laboratory cultures for pathways and controls of NO and N₂O production in different organisms has generated considerable knowledge, which was partly reviewed recently (Stein, 2011; Chandran et al., 2011). Figure 1 shows that the sequential reduction of nitrite (NO_2^{-1}) to NO and further to N₂O can be performed by all organisms involved in the catabolic branch of the N-cycle. While all N-cycle organisms can perform these reactions it is currently believed that denitrifiers and ammonia oxidizing bacteria (AOB) and archaea (AOA) are the most important environmental sources of N_2O . However, in the following section we additionally review the evidence for NO and N_2O production by nitrite oxidizing bacteria (NOB), anaerobic methane (N-AOM) and ammonia oxidizing bacteria (anammox), and bacteria that perform dissimilatory nitrate reduction to ammonia (DNRA). Even though it is clear that these bacteria can produce NO and N_2O there is only few information on the controls, conditions and magnitude for NO and N_2O production by these bacteria in the laboratory and in the environment. This should be an important aspect of future research as e.g. DNRA and anammox are the major N-conversion pathways in some important environments.

Denitrification. The key enzyme for NO formation during denitrification is nitrite reductase (Nir). Purification and characterization of Nir from several bacteria revealed two entirely different periplasmic enzymes: a heme-containing cytochrome cd1 Nir (NirS) and a copper-containing Nir (NirK) as reviewed by Cutruzzolà (1999). Reduction of NO to N₂O is mediated by respiratory nitric oxide reductases (Nor). Respiratory Nor proteins are integral membrane proteins that fall into two groups: one is a cytochrome bc complex that can use c-type cytochromes as electron donors (cNor), whereas the other one lacks a cytochrome c component and accepts electrons from quinols (qNor; sometimes termed NorZ) (Hendriks et al., 2000; Zumft, 2005). Few bacteria use qNor for classical denitrification. Rather, qNor is mainly encoded by pathogenic bacteria that use it for NO detoxification and the survival of anoxic periods when expressed in concert with Nir, as shown for *Neisseria spp*. (Anjum et al., 2002; Rock et al., 2007). The final step in denitrification is mediated by nitrous oxide reductase (Nos), a multi-copper enzyme that reduces N₂O to dinitrogen (N₂) (Zumft and Kroneck, 2007).

N₂O reduction by Nos is the only known N₂O consuming process that can counteract release of N₂O from ecosystems (Richardson et al., 2009). Accumulation of N₂O is often observed in pure cultures (Otte et al., 1996; Baumann et al., 1996; Kester et al., 1997; Bergaust et al., 2010) and mixed microbial communities (Firestone and Tiedje, 1979; Firestone et al., 1980; Morley et al., 2008; Kampschreur et al., 2008b; Schreiber et al., 2009; Elberling et al., 2010; Pellicer-Nàcher et al., 2010; Liengaard et al., 2011) during transitions from anoxic to oxic conditions or vice versa (Table 1). Even in pure cultures the physiological basis for this is not well understood because it probably has multiple, strain-specific reasons. It has been hypothesized that Nos is - unlike Nir and Nor inhibited by O_2 (Morley et al., 2008), but in pure cultures evidence for O_2 -insensitive (Berks et al., 1993) and O₂-sensitive (Otte et al., 1996) Nos have been reported. Likewise, it has been argued that expression of Nos is slower than that of the preceding denitrification enzymes (Stief et al., 2009; Firestone et al., 1980), but in Paracoccus denitrificans Nos synthesis is faster (Baumann et al., 1996; Bergaust et al., 2010) and in Pseudomonas stutzeri Nos is even constitutively expressed at low levels (Körner and Zumft, 1989). More studies on Nos expression in relation to N₂O production pathways and on Nos inhibition by O, are needed with environmentally relevant isolates and mixed microbial communities. Additional factors that lead N₂O accumulation are the slower turnover of Nos at low pH as compared to nitrate reductase (Nar), Nir and Nor (Richardson et al., 2009; Bergaust et al., 2010), low pH during Nos assembly (Bergaust et al., 2010), inhibition of Nos by nitrous acid formed from NO_2^- at low pH (Zhou et al., 2008), inhibition of Nos by exogenously produced NO (Frunzke and Zumft, 1986; Schreiber, in preparation) or hydrogen sulfide (H₂S) (Sørensen et al., 1980) and copper limitation (Granger and Ward, 2012).

Figure 1. Biological pathways for NO and N₂O turnover in the catabolic branch of the Ncycle plus NO synthesis and detoxification. Different colors are allocated to different microbial quilds or turnover pathways: AOB (red) – ammonia oxidizing bacteria; NOB (green) – nitrite oxidizing bacteria; anammox (orange) – anaerobic oxidation of ammonia; DNRA (blue) – dissimilatory nitrate/nitrite reduction to ammonia; N-AOM (purple) – oxygenic nitrite-dependent anaerobic oxidation of methane. Key enzymes of each microbial guild are depicted that are known to mediate the conversion from one chemical N-species into another: AMO – ammonia monooxygenase; HAO hydroxylamine oxidoreductase; NXR - nitrite oxidoreductase; Nar - membrane-bound nitrate reductase; Nap – periplasmic nitrate reductase; NirK – copper-containing nitrite reductase; NirS - cytochrome cd1 nitrite reductase; Nrf - cytochrome c nitrite reductase; NirB - cytoplasmic nitrite reductase; cNor – nitric oxide reductase that accepts electrons from c-type cytochromes; qNor - nitric oxide reductase that accepts electrons from quinols; c_{554} - cytochrome c_{554} ; NorVW – flavorubredoxin, Hmp – flavohemoglobins; HZS – hydrazine synthase; HDH – hydrazine dehydrogenase; Nos – nitrous oxide reductase; NOS - nitric oxide synthase; unknown enzymes - nitric oxide dismutation to N, and O, during N-AOM and nitrous oxide producing enzyme in NOB. Roman numbers in brackets denote the oxidation state of the chemical N-species. The red and the black box denote the

isotopic composition (δ ¹⁵N) and the site preference (SP) in isotopomers of N₂O produced by AOB and denitrifiers, respectively.

Ammonia oxidizing bacteria (AOB). High levels of NO and N₂O can be produced by pure cultures of aerobic AOB (Lipschultz et al., 1981; Kester et al., 1997; Shaw et al., 2006), but the mechanism is not completely understood. Generally, two different pathways are inferred. First, the activity of nitrifier-encoded NirK and cNor reduces NO_2^{-1} to NO and N₂O in a pathway termed nitrifier denitrification (Poth and Focht, 1985; Wrage et al., 2001; Schmidt et al., 2004b). A few reports exist on N₂ formation by AOB during nitrifier denitrification, but a nosZ gene or functional Nos in AOB was not demonstrated (Poth, 1986; Schmidt et al., 2004b; Schmidt, 2009). The term nitrifier denitrification is somewhat misleading as it has until now not been shown that it is a true dissimilatory process for energy conservation and growth, but rather may be a detoxification mechanism to counteract the accumulation of NO_2^{-1} to toxic concentrations (Beaumont et al., 2002, 2004a, 2004b).

In the second pathway, N₂O is formed by hydroxylamine (NH₂OH) oxidation. The current model is that hydroxylamine oxidoreductase (HAO) oxidizes NH₂OH to NO (Hooper, 1968; Hooper and Terry, 1979). NO is then reduced to N₂O by a yet unidentified Nor; a potential candidate is cytochrome c_{554} (Upadhyay et al., 2006). However, the catalytic cycle of HAO, including its intermediates and its catalytic potential are a subject of ongoing debate (Hendrich et al., 2002; Cabail and Pacheco, 2003; Cabail et al., 2005; Fernández et al., 2008; Kostera et al., 2008) and as of yet direct formation of N₂O from HAO or other reactions cannot be excluded. Indeed, the difference in the site preference (SP) of N₂O produced by NH₂OH oxidation and nitrifier denitrification indicates that N₂O might be produced by HAO by a mechanism that (i) either does not involve NO reduction by canonical Nor used for nitrifier denitrification or (ii) does proceed via a completely different mechanism without free NO as intermediate (discussed in section 'site preference' and 'HNO as intermediate of enzymatic hydroxylamine oxidation'). Both nitrifier denitrification and NH₂OH oxidation require O₂ to activate ammonia (NH₃) with ammonia monooxygenase (AMO) to NH₂OH, which serves as a substrate for HAO or as electron donor to nitrifier denitrification. A pathway in which AOB perform denitrification with organic substrates instead of NH₃ as electron donor (Schmidt, 2009) should be considered heterotrophic denitrification performed by AOB. Ammonia oxidizing archaea (AOA) have also been demonstrated to produce N₂O probably by pathways akin to AOB (Santoro et al., 2011).

The relative importance of NH_2OH oxidation and nitrifier denitrification for NO and N_2O production is still debated. Based on pure culture investigations Yu et al. (2010) hypothesized that a high NH_3 oxidation activity favors N_2O production via NH_2OH oxidation. Similarly, Wunderlin et al. (2012) found that NH_2OH oxidation is favored by high NH_3 and low NO_2^{-1} concentrations, and a high nitrification rate in a mixed culture for treating municipal wastewater. Moreover, stable nitrogen isotopes work with AOB pure cultures showed that NH_2OH oxidation contributes to N_2O production mainly at high O_2 whereas nitrification is more active at low O_2 concentrations (Sutka et al. 2006).

Nitrite oxidizing bacteria (NOB). NOB form NO and N₂O during denitrification of nitrate (NO_3^-) or NO₂⁻ with pyruvate or glycerol as electron donor under anoxic conditions (Freitag et al., 1987; Ahlers et al., 1990), but a known NO reductase could not be identified in the genomes of different *Nitrobacter* species and *'Candidatus Nitrospira defluvii'* (Starkenburg et al., 2006, 2008b; Lücker et al., 2010). Under anoxic conditions nitrite oxidoreductase (NXR) mediates NO₃⁻⁻ reduction to NO₂⁻⁻, while it mediates the reverse reaction under oxic conditions (Freitag et al., 1987). NOB actively express NirK, which co-purifies with NXR, in the presence of NO₂⁻⁻ and if O₂ concentrations are low (Ahlers et al., 1990; Starkenburg et al., 2008a). NO generated by NOB-NirK is thought to direct cellular electron flux either toward O₂ respiration at high O₂ concentrations or toward NADH synthesis by reversibly inhibiting cytochrome oxidase at low O₂ concentrations. An interesting question to explore in natural communities would be whether NO produced by AOB or denitrifying bacteria can influence the activity of NOB.

Dissimilatory nitrate reduction to ammonia (DNRA). NO and N₂O turnover by bacteria that perform DNRA has been mainly investigated in *Escherichia coli* and *Salmonella typhimurium*. In *E. coli*, NO formation is mediated by cytochrome c nitrite reductase (Nrf) under anoxic conditions in the presence of NO₃⁻ and NO₂⁻ (Corker and Poole, 2003). NO detoxifying enzymes, such as flavorubredoxin, may further reduce NO to N₂O. On the other hand, *E. coli* Nrf reduces NO to N₂O or NH₃ if electrons are donated to the enzyme at high or low potential, respectively (Costa et al., 1990), contributing to detoxification of exogenously generated NO (van Wonderen et al., 2008). Aerobic and anaerobic NO formation from NO₂⁻ in *S. typhimurium* is mediated by membrane-bound nitrate reductase (Nar). Under aerobic conditions, activity of NO detoxifying Hmp (see below) oxidizes NO to NO₃⁻ resulting in non-detectable NO concentrations in culture suspensions (Gilberthorpe and Poole, 2008).

Anaerobic methane and ammonia oxidizing bacteria. Bacteria that mediate the oxygenic nitrite-dependent oxidation of methane (N-AOM) and anaerobic ammonia oxidation (anammox) have been shown to use NO as an intracellular intermediate produced by NO_2^{-1} reduction via NirS while they consume exogenous NO without concurrent N_2O formation (Ettwig et al., 2010; Kartal et al., 2010, 2011). Rather, N-AOM dismutates NO to form N_2 and O_2 , while anammox couples the reduction of NO to a condensation with NH₃ to produce hydrazine (N_2H_4). Both have the genetic potential to reduce NO to N_2O ; anammox bacteria encode for flavorubredoxin (Strous et al., 2006) and N-AOM encodes for qNor (Ettwig et al., 2010). However, physiological data for both indicates that they withstand rather high NO levels (N-AOM 20 µmol L-1, anammox 7 µmol L-1) without activating anaerobic NO detoxification mechanisms.

 $NO_2^- \rightarrow NO \rightarrow N_2O$. central steps in the N-cycle. Generally, the reduction of NO_2^- to NO is a central step in the catabolic branch of the N-cycle, because it can be carried out by all involved organisms (Figure 1). The reduction of NO_2^- to NO is central for energy conservation in denitrification, anammox and N-AOM. In contrast, during $NO_2^$ oxidation and nitrifier denitrification the reduction of NO_2^- to NO is involved in regulating metabolic homeostasis or the removal of toxic NO_2^- (Beaumont et al., 2002, 2004a; Starkenburg et al., 2008).
The reduction of NO to N_2O is, besides a potential direct formation of N_2O from NH_2OH in AOB, the only known biochemical reaction that produces N_2O . NO reduction to N_2O is central for energy conservation only in denitrification (Zumft, 1997). The function of cNor in AOB is unclear. cNor is expressed and metabolically active during aerobic growth (Beaumont et al., 2004b). Knock-out mutants of cNor have lower growth rate and yield in chemostats (Schmidt et al., 2004b) but not in batch culture (Beaumont et al., 2004b). In chemostats, cNor regulates the free NO concentration to an optimal, non-toxic level and contributes to recovery of AOB from anaerobic conditions (Schmidt et al., 2004b). On the other hand, stripping NO from AOB cultures leads to the inhibition of growth, arguing for NO being an obligate intermediate of AOB (Zart et al., 2000).

NO detoxification and NO synthesis. Most bacteria encode for enzymes involved in NO detoxification. This is true for bacteria inside and outside the catabolic N-cycle. Flavohemoglobins (Hmp) mediate the O_2 -dependent detoxification of NO to NO_3^- with NO dioxygenase activity (Gardner et al., 1998). In contrast, the anaerobic detoxification of NO is mediated by Flavodiiron NO reductase (flavorubredoxin [NorVW]) and Hmp by reducing NO to N_2O (Kim et al., 1999; Gardner et al., 2002; Gomes et al., 2002).

An alternative, less explored route to N_2O formation is via the synthesis of NO from arginine by NO synthases (NOS) and subsequent reduction of NO to N_2O by cNor, qNor, Hmp or NorVW. Because NOS was discovered in the medical field it shares a similar abbreviation with N_2O reductases (Nos). Until now, NOS has only been detected in a few bacterial –mostly gram-positive – species (Sudhamsu and Crane, 2009) and synthesized NO seems to remain intracellular (Shatalin et al., 2008; Schreiber et al., 2011). However, NOS activity has also been reported in blooming, pelagic diatoms (Vardi et al., 2006). More research is needed to elucidate if NOS-derived NO is a significant source for N_2O emitted from phytoplankton blooms in oceans and freshwater.

Chemical reactions in NO and N₂O turnover

Chemical production of NO and N_2O from inorganic nitrogen compounds at ambient temperatures are well known phenomena in soil science (van Cleemput and Samater, 1996) and atmospheric chemistry (Lammel and Cape, 1996). In soil science, the chemical processes leading to NO and N_2O are often summarized as chemodenitrification (Chalk and Smith, 1983). NH₂OH and NO₂⁻ (or its acid HNO₂) are the main precursors for chemical production of NO and N_2O in wastewater or natural waters. In the following, we discuss chemical reactions involving HNO, NH₂OH and NO₂⁻ that can be responsible for the release of NO and N_2O . We will also discuss the possible significance of chemical N_2O production during biological NH₂OH oxidation.

Significance of HNO. In many studies on chemical N₂O production, HNO is postulated as the direct precursor of N₂O (see below): HNO dimerizes via hyponitrous acid ($H_2N_2O_2$), to N₂O and H_2O (Bonner and Hughes, 1988).

$$2 \text{ HNO} \rightarrow \text{H}_2\text{N}_2\text{O}_2 \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$$
Equation 1

It can be assumed that formation of HNO in natural and wastewater follows the same mechanisms that are used to synthesize HNO (DuMond and King, 2011) in the laboratory: (i) disproportionation of NH_2OH derivatives containing good leaving groups attached to the nitrogen atom and (ii) decomposition of nitroso compounds (X-N=O, where X represents a good leaving group). Chemical HNO production is a likely process for wastewater treatment, since nitrification can produce considerable amounts of both, HNO_2 , which is a precursor for nitrosation agents (e.g. dinitrogen trioxide N_2O_3 , Bonner and Stedman, 1996), and NH_2OH .

Recently, medical researchers have started to reevaluate the relevance of HNO for physiologically and biologically systems (Fehling and Friedrichs, 2011). The increased interest in HNO is due to the fact that HNO lifetime in aqueous solutions is much longer than previously assumed: the HNO dimerization rate constant has been reassessed to be on the order of $8\cdot10^5$ M⁻¹·s⁻¹ instead of the previously reported value of $2\cdot10^9$ M⁻¹·s⁻¹, and the pKa value of HNO has been redetermined to be 11.4 instead of the old value of 4.2 (Shafirovich and Lymar, 2002). It is likely that the importance of HNO has also been underestimated in the research on N₂O emissions. Analytical determination of HNO is very challenging (Miranda, 2005), because HNO is short-lived. However, computer simulations could be a helpful tool to assess the importance of HNO in N₂O formation (Law et al., 2012).

HNO₂ **disproportionation.** A well understood process for NO production is the disproportionation of HNO₂ (Udert et al., 2005). Since the pKa value of the NO₂^{-/}HNO₂ couple (pKa = 3.29; Schwartz and White, 1981) is far below 7, this process releases relevant amounts of NO only under acidic conditions. The disproportionation of HNO₂ can be described with Equation 2. The products - NO and NO₂ - are in equilibrium with N₂O₃ (Eq. 5) which is an important agent for nitrosation (Bonner and Stedman, 1996). Under aerobic conditions, NO will be further oxidized to NO₂. Since NO₂ reacts with H₂O to form HNO₂ and NO₃⁻, the reaction scheme (Eq. 2 to 4) is ultimately a chemical pathway for the oxidation of NO₂⁻ to NO₃⁻.

$2 \text{ HNO}_2 \leftrightarrow \text{NO} + \text{NO}_2 + \text{H}_2\text{O}$	Equation 2
$NO + 0.5 O_2 \rightarrow NO_2$	Equation 3
$2 \text{ NO}_2 + \text{H}_2\text{O} \leftrightarrow \text{HNO}_2 + \text{NO}_3^- + \text{H}^+$	Equation 4
$NO + NO_2 \leftrightarrow N_2O_3$	Equation 5

Since the kinetic and equilibrium constants for Equations 2 to 5 are known, the production of NO can be calculated (Udert et al., 2005). Depending on the aeration intensity, substantial losses of nitrogen oxides can occur during chemical HNO_2 oxidation. The stripped nitrogen oxides are mainly HNO_2 , but also NO is lost.

Iron-mediated reduction of NO₂⁻. Ferrous iron (Fe(II)) can reduce NO₂⁻ to NO and, in the second reaction step, NO to N₂O (Kampschreur et al., 2011)

$NO_2^- + Fe^{2+} + 2H^+ \rightarrow Fe^{3+} + NO + H_2O$ Equation 6	$\Delta G^{\circ} = 35.8 \cdot kJ \text{ reaction}^{\neg}$
NO + Fe ²⁺ + H ⁺ \rightarrow Fe ³⁺ + 0.5 N ₂ O + 0.5 H ₂ O Equation 7	ΔG° = -38.9 kJ reaction

The first reaction is thermodynamically not possible under standard conditions, but in natural waters ferric iron (Fe(III)) will precipitate and thereby draw the Gibbs free energy to negative values. Iron-mediated reduction of NO₂⁻ was described as one of the sources of N₂O in soils (Van Cleemput, 1998). Recently, Kampschreur et al. (2011) postulated that this process can contribute significantly to N₂O production in wastewater treatment, if NO₂⁻ and Fe(II) are present concomitantly. One example for such a system is nitrogen removal from anaerobic digester effluents via nitritation/denitrification or nitritation/anammox. Digester supernatants can contain high amounts of Fe(II), because iron salts are used to precipitate phosphate and Fe(II) will be released in the anaerobic digester due to the reducing conditions. Hu et al. (2001) reported an additional reaction of NO₂⁻ with iron: under acidic conditions NO₂⁻ is reduced in the presence of metallic iron to N₂ and NH₃. They propose a mechanism, in which metallic iron is oxidized at low pH releasing Fe²⁺ ions and molecular hydrogen (H₂). NO₂⁻ is then reduced by H₂ to N₂ and NH₃.

Oxidation of NH₂OH by Fe(III). Iron not only mediates NO and N₂O production from NO₂⁻. As Fe(III), it also oxidizes NH₂OH to N₂O. This process can be used for the analytical determination of trace amounts of NH₂OH (Butler and Gordon, 1986a). The general equation for the reaction is

4 Fe(III) + 2 NH₂OH
$$\rightarrow$$
 4 Fe(II) + N₂O + H₂O + 4 H⁺ Equation 8

In this reaction, N_2O formation strongly depends on the pH value. In experiments with distilled water and natural seawater, Butler and Gordon (1986b) found that at pH 3, N_2O recovery was 80 %, while at a pH value of 9.5, N_2O production was negligibly low. The authors hypothesized that at high pH values, HNO, reacts with O_2 to produce NO_2^- and H_2O . However, it is also known that HNO can react with NH_2OH to N_2 (Bonner et al. 1978, Eq. 10). Chemical production of N_2O via NH_2OH oxidation by Fe(III) is a likely process during nitrification, because Fe(III) compounds are ubiquitous in natural waters and wastewater treatment systems.

Reaction of NH₂OH with HNO₂ and HNO. Döring and Gehlen (1961) investigated the reaction of NH₂OH and HNO₂. They described the process as nitrosation of NH₂OH. The overall reaction can be written as

$$NH_2OH + HNO_2 \rightarrow N_2O + 2 H_2O$$
 Equation 9

In their reaction scheme, Döring and Gehlen (1961) included $H_2N_2O_2$ (the dimer of HNO) as a direct precursor for N_2O . At neutral pH values, N_2O_3 is the relevant nitrosation agent. There are several reaction pathways for N_2O_3 formation from HNO₂. Formation of N_2O_3 from HNO₂ is given by Equation 2 and 5. A kinetic constant for nitrosation of

NH₂OH is given by Döring and Gehlen (1961) and together with the kinetic constants for Equation 1 and 4 (Udert et al., 2005) the N₂O production from NH₂OH and HNO₂ can be estimated. Some of the NH₂OH can also react with the intermediate HNO to form N₂ (Bonner et al., 1978)

$$HNO + NH_2OH \rightarrow N_2 + 2 H_2O$$
 Equation 10

Disproportionation of NH_2OH . The disproportionation of NH_2OH can be described with the following equation (Bonner et al., 1978)

$$4 \text{ NH}_2\text{OH} \rightarrow 2 \text{ NH}_3 + \text{N}_2\text{O} + \text{H}_2\text{O}$$
 Equation 11

In pure water, this process is very slow with slightly higher degradation rates at elevated pH values. At pH 3 and 25±3 °C, Bonner et al. (1978) observed no NH₂OH disproportionation over 2 months, while 12 to 18% of the NH₂OH was degraded over two months at pH 13.5. Complexes of transition metals can accelerate NH₂OH disproportionation considerably (Alluisetti et al., 2004). Jenni et al. (2012) also observed N₂O formation within minutes, although the experiment was conducted in a phosphate buffer solution without transition metals. The disproportionation might have been catalyzed by the steel surface of an electrode immersed in the reactor, but this hypothesis still has to be proven.

Autoxidation of NH₂OH. Oxidation of NH₂OH with O_2 (autoxidation, Eq. 12) is a slow process, although faster than NH₂OH disproportionation.

$$2 \text{ NH}_2\text{OH} + \text{O}_2 \rightarrow \text{N}_2\text{O} + 3 \text{ H}_2\text{O}$$
Equation 12

Again, trace concentrations of metals can strongly accelerate the process. Anderson (1964) reported that in an aerated solution with 1 mmol·L⁻¹ NH₂OH and 1 μ mol·L⁻¹ cupric sulfate 30% of the NH₂OH was oxidized within 1 hour, while only 2.5 % were degraded without cupric sulfate addition (pH between 7.8 and 7.9, 30°C). Cu is by far the most potent catalyzer for the autooxidation of NH₂OH followed by Co(II), Fe(II), Mn(II) and Zn(II) (Moews Jr and Audrieth, 1959). Since most wastewaters and natural waters contain some traces of metals, autoxidation of hydroxylamine cannot a priori be excluded as a source of N₂O.

HNO as intermediate of enzymatic NH₂OH oxidation. Several authors postulated that HNO was a likely intermediate of HAO due to the observed N₂O production (Ritchie and Nicholas, 1972; Anderson 1964). Igarashi et al. (1997) could show that the crystal structure of HAO in *Nitrosomonas europaea* is in agreement with the following two step reaction

$NH_{2}OH \rightarrow (HNO) + 2 H^{+} + 2 e^{-1}$	Equation 13
$(HNO) + H_2O \rightarrow HNO_2 + 2 H^+ + 2 e^-$	Equation 14

Based on this scheme, an imbalance of the two reaction steps could lead to an accumulation of HNO and subsequently to chemical N_2O production (Eq. 1). Law et al. (2012) developed four different metabolic computer models to elucidate the

mechanisms of aerobic N₂O production in a nitritation reactor. The best fit of the measurement data was achieved with a model based on chemical HNO production. The other models, which represented three different metabolic pathways for the enzymatic reduction of nitrite and NO to N₂O, could not reproduce the measurement data satisfactorily. Indeed, we think that the positive site preference (SP) of N₂O produced during NH₂OH oxidation can be explained by a kinetic isotope effect acting during the chemical cleavage of a symmetric intermediate such as H₂N₂O₂ formed by dimerization of two HNO molecules (Eq. 1; Toyoda et al., 2005). In addition, the studies of Law et al. (2012) and of Udert et al. (2005) exemplify that computer models are powerful tools to elucidate the mechanisms of N₂O and NO production, especially when the processes contain microbial as well as chemical reaction steps.

Relevant environments for chemical reactions. In the last years, nitrogen treatment of high-strength wastewaters such as digester supernatant, manure and urine have received considerable attention. Based on our literature review, these systems are particularly prone to chemical production of NO and N₂O because of high NH₂ oxidation rates and high concentrations of the intermediate NH,OH. Furthermore, some treatment schemes include NO_2^{-} accumulation as a process step, for example SHARON[®]. Ubiquitous iron compounds, e.g. from phosphate precipitation or as sensors and reactor walls, are another factor that can support the production of NO and N₂O. At the current stage of knowledge, it is hard to estimate the contribution of chemical processes to the overall NO and N₂O production. Many chemical processes have been described, but with the exception of HNO₂ disproportionation and the reaction of HNO₂ with NH,OH, the kinetic data are insufficient for a reliable prediction of the production rates. Chemical production of NO and N₂O can also occur in natural environments, where high ammonia inputs meet low pH values such as strongly fertilized soils (van Cleemput and Samater, 1996) or poorly buffered lakes (Schuurkes and Mosello, 1988). Furthermore, chemical oxidation of NO and N₂O is an important process in the atmosphere (Lammel and Cape, 1996).

NO and N₂O formation in natural environments

Nitric oxide. NO production and consumption has been studied in soils. The studies used inhibition of nitrification with low concentrations of acetylene (~10 Pa) to distinguish between NO turnover by nitrification and denitrification, assuming that acetylene does not inhibit N₂O reductase at these concentrations. O₂ availability, as regulated by soil moisture content, is the main factor controlling the mechanisms of NO release (Bollmann and Conrad, 1998). While denitrification is the only process that releases NO under anoxic conditions, nitrification dominates NO release under oxic conditions with highest rates at low O₂ concentrations. In addition, soil pH, NH₄⁺, NO₃⁻, NO₂⁻ and respiration are important soil variables that affect NO turnover (Gödde and Conrad, 2000).

Measurements of NO in seawater are rare, because concentrations are low and turnover is fast due to its reactivity. However, Zafiriou et al. (1980) found that surface water of the central equatorial Pacific is a NO source to the atmosphere. Here, NO is

formed by photolysis of NO₂⁻ during daytime and reaches concentrations in the picomolar range (Zafiriou and True, 1979). Moreover, NO is formed by microbial processes in the O₂ minimum zone of the eastern tropical North Pacific (Ward and Zafiriou, 1988). Here, maximum NO turnover and concentration coincide with low O₂ concentrations (10 – 100 μ mol L-1) and some nitrification activity overlying the O₂ minimum zone. In contrast, NO turnover and concentrations are low in the core of the O₂ minimum zone. The exact source of NO remained unidentified, but it was hypothesized that nitrifiers produce NO under reduced O₂ concentrations and that denitrifiers establish rather low NO concentrations in the core of the O₂ minimum zone. NO formation has been measured in marine sediments (Schreiber et al., 2008) and a more detailed study of NO turnover has been performed in freshwater sediments (Schreiber in preparation). Both studies will be discussed in the section focusing on microelectrodes.

Nitrous oxide. Generally, N₂O formation has been investigated to greater detail and in a wider variety of habitats as compared to NO, because its environmental impact is considered to be stronger than that of NO and its turnover is easier to measure due to its chemical stability. At present anthropogenic N₂O emissions account for ~40 % of the global N₂O emissions (Montzka et al., 2011). Current estimates state that ~50 % of the anthropogenic N_2O is emitted from soils (Stein and Yung, 2003), 10 % from estuaries and freshwater habitats (Beaulieu et al., 2011) and 3.2 % are emitted from wastewater treatment plants (WWTP) (Kampschreur et al., 2009). We caution that future adjustments to these estimates are likely, and that these averages do not capture the high variability in emissions from selected environments. Recent work has suggested that emissions from WWTPs in particular are highly variable and may in some cases be up to an order of magnitude greater than previous estimates (Lotito et al, 2012; Ahn et al., 2010). Soils and aquatic habitats exposed to intense agricultural activities are the largest sources due to high N-input through fertilization. Since mixed microbial communities in soils are the largest anthropogenic source for N₂O, its formation has been intensively studied and was recently reviewed (Baggs, 2011). N₂O formation in WWTP has been reviewed by Kampschreur et al. (2009).

The ocean is an important source of N₂O accounting for ~30 % of the natural N₂O emission (Stein and Yung, 2003). Large areas of the ocean are thought to be in equilibrium with the atmosphere, but regions of O₂ depletion are significant sources of N₂O (Elkins et al., 1978). In O₂ minimum zones, N₂O is generally produced to concentrations in the nanomolar range as O₂ reaches low concentrations (Yoshida et al., 1989; Naqvi et al., 2000; Farias et al., 2007; Nicholls et al., 2007). High N₂O accumulation was observed in surface water of the Arabian Sea and explained with frequent, turbulence-induced aeration of suboxic surface water (Naqvi et al., 2000). Likewise, O₂ fluctuations, induced by the El Nino-Southern oscillation, have been proposed to affect N₂O emission from the O₂ minimum zone of the eastern South Pacific (Farias et al., 2007). Furthermore, marine and freshwater sediments emit N₂O (Meyer et al., 2008; Nielsen et al., 2009). NO and N₂O formation in sediments will be discussed in more detail in the section focusing on microelectrodes.

The occurrence of animals such as earthworms (Horn et al., 2003) in soils and macrofauna in fresh -or seawater habitats (Stief et al., 2009; Heisterkamp et al., 2010) enhances the emission of N_2O in response to anthropogenic N-input. These animals ingest denitrifying bacteria and stimulate their activity probably with delayed expression of N_2O reduction leading to enhanced N_2O emissions.

Experimental approaches

In most investigated habitats NO and N_2O formation has been attributed to the NH_2OH pathway by AOB, nitrifier denitrification and heterotrophic denitrification. There are three approaches to determine the contribution of the different pathways:

(1) Indirect inference of pathways by excluding the activity of all other possible pathways, which can be achieved by using inhibitors or by removing the substrate (Kampschreur et al., 2008b; Stief et al., 2009; Schreiber et al., 2009; Wunderlin et al., 2012)

(2) Measuring the isotopic signature of N_2O (¹⁵N natural abundance or site preference) and comparing the data to values of pure cultures (Yoshida, 1988; Yoshida et al., 1989; Sutka et al., 2006; Well et al., 2006; Charpentier et al., 2007; Wunderlin et al., under review).

(3) Application of ${}^{15}N$ isotopically-enriched substrates and mass spectrometric measurements of N_2O (Bateman and Baggs, 2005; Baggs, 2008).

In complex systems all of these approaches suffer from the coupled nature of nitrification and denitrification. This especially applies to studies where bulk measurements have been done even though micro-environmental heterogeneities are expected; e.g. in aggregates in wastewater treatment systems or in soil particles. In addition, it has become clear that NO and N₂O are dynamically produced in response to changing environmental conditions (Kampschreur et al., 2008b; Schreiber et al., 2009). Transient NO and N₂O concentrations can be orders of magnitude higher than under steady state. Conventional mass spectrometric measurements do not allow measurements with high temporal and spatial resolution, making approach 2 and 3 inaccessible to microscale and dynamic analysis of NO and N₂O.

Hakitat Dautukatian		NO [μM]					N ₂ Ο [μΜ]			D	
Habitat Pertubation	baseline	peak	build-up ^a	recovery ^b	baseline	peak	build-up ^a	recovery ^b	, Possible pathway	Keterence	
tropical soil (slurries)	oxic-anoxic					0	200- 400	13-20 h	6-10 h	Denitrification	Liengaard et al. 2011
agricultural soil (cores)	oxic-anoxic by liquid-manure injection					< 1	200	27 h	48 h	Denitrification	Markfoged et al. 2011
agricultural soil (aggregates)	oxic-anoxic by tryptone addition					< 1	400	19.5 h	n.d.	Denitrification	Hojberg et al. 1994
permafrost soil (cores)	oxic-anoxic by thawing					< 1	2.5	36 h	n.d.	Denitrification	Elberling et al. 2010
(*****)	oxic-anoxic	< 0.03	1.1	5-7 min	15 min	0.5	5	5 min	15 min	AOB	Schreiber et al. 2009
nitrifying and	oxic-anoxic	< 0.03	0.3	30 min	n.d.	< 0.1	3	30 min	n.d.	Denitrification	
denitrifying biofilm	NO_2^- addition	< 0.03	1.3	0.5 min	20 min					AOB	
	NO_2^- addition	0.05	0.4	1 min	n.d.					Denitrification	
full scale										AOB/Denitrification	
nitritation reactor	influent shut-down	15 ppm ^c	80 ppm ^c	~10 min	1	10	110	4.5 h	n.d.	and reduced gas stripping	Kampschreur et al. 2008a
complex	oxic-anoxic	0.3 ppm ^c	2.5 ppm ^c	$\sim 8 \min$	n.d.	2	11	10 min	n.d.	AOB	Kampschreur et al. 2008b
nitrifying culture	NO_2^- addition	0.2 ppm ^c	0.45 ppm ^c	15 min	45 min	2.4	3.4	15 min	30 min	AOB	
membrane-aerated	oxic-anoxic					< 1	70	25 min	60 min	AOB	Pellicer-Nàcher et al., 2010
biofilm	anoxic-oxic					20	45	20 min	25 min	Denitrification	
freshwater sediment	salinity increase					0	4	9 h	22 h	Denitrification	Nielsen et al., 2009
marine sediment	salinity decrease NO ₃ ⁻ increase					0	2.5	2	7 h	Denitrification	
Arabian sea water	oxic-anoxic					0.05	1.5	72 h	48 h	Denitrification/AOB	Naqvi et al., 2000

Table 1. Transient formation of NO and N_2O in different habitats.

^atime to reach peak concentrations; ^btime to recover to a new steady-state concentration (not necessarily to baseline concentration); cconcentration in ppm instead of μM because it was measured in the gas phase

Novel analytical methods

In the following sections, we will discuss different analytical methods (microelectrodes, mass spectrometry and quantum cascade laser based absorption spectroscopy) that can be used to allocate NO and N₂O production to certain pathways by using one of the three approaches outlined above. Combining these methods and thus the different approaches will lead to a more firm pathway allocation. Microelectrodes can measure with high temporal and spatial resolution and in combination with other microelectrodes (NH₄⁺, NO₃⁻, NO₂⁻, O₂) approach 1 can be used to allocate source pathways. Further, quantum cascade laser based absorption spectroscopy can measure the site preference in N₂O dynamically and can be used to allocate N₂O production pathways with approach 2. In addition, we will discuss the potential for other techniques that measure the isotopic composition of N₂O and molecular methods to aid the understanding of NO and N₂O formation in complex environments.

Microelectrodes to capture micro-environmental distribution and temporal dynamics of NO and $N_{\rm 2}O$

NO and N_2O microelectrodes

Microelectrodes belong to the tool box of microbial ecologists since Revsbech et al. introduced an O_2 microelectrode in the early 1980's (Revsbech et al., 1980). The first N_2O microelectrode for microbial ecology (Revsbech et al., 1988) was a combined O_2/N_2O sensor where an O_2 -reducing gold cathode was placed in front of an N_2O -reducing silver cathode (both polarized at -800 mV) to avoid the interference of O_2 with N_2O detection. These sensors where difficult to manufacture and had a short life-time. Thus, Andersen et al. (2001) introduced an improved O_2 -insensitive N_2O microelectrode. Insensitivity to O_2 is achieved by placing a reservoir filled with alkaline ascorbate solution for the chemical reduction of O_2 in front of the N_2O -reducing cathode, which is separated from the ascorbate reservoir with a gas permeable silicone membrane. These N_2O microelectrodes have a sensitivity of ~0.5 µmol L⁻¹ and a spatial resolution of ~60 µm.

Electrochemical NO sensors for the detection of NO in biological systems are available since the early 1990's (Shibuki, 1990). Amperometric sensing of NO is commonly achieved by the oxidation of NO at a working electrode polarized with 0.7 - 0.9 V vs. a reference electrode (Ag/AgCl or Calomel) leading to the following anodic reaction:

$$NO + 2 H_2O + 3 e^- \rightarrow NO_3^- + 4 H^+$$
 Equation 15

The resulting current is proportional to the NO concentration and can be detected as the analytical signal. Electrodes are reported as single anode-type electrodes or as combined sensors (Figure 2). In combined sensors, the reference electrode and the sensing electrode are placed together in an internal electrolyte compartment that is separated from the sample by a gas permeable, non-conductive membrane (Clark-type, Figure 2B), whereas single anode-type electrodes use the aqueous sample as an electrolyte and complete the measuring circuit by submerging an external reference electrode into it (Figure 2A). Charged interferences like NO_2^- and ascorbate are typically repelled by constructing combined sensors with hydrophobic membranes like chloroprene (Shibuki, 1990), PTFE (TeflonTM) (Lee et al., 2004), sol-gels (Shin et al., 2005), polystyrene (Kitamura et al., 2000) or silicone (Schreiber et al., 2008), or by depositing conductive NafionTM on single anode-type electrodes (Malinski and Taha, 1992; Friedemann et al., 1996; Bedioui and Villeneuve, 2003).

Most of the previously described NO electrodes have been optimized to detect NO at low nanomolar or even picomolar concentration. This has been achieved by increasing the sensing surface with a subsequent loss of spatial resolution. Single-anode type sensors commonly rely on carbon-fibers that have a length of up to several millimeters and combined sensors have openings in the high micrometer to millimeter range. Microelectrodes with long, exposed sensing surfaces are not applicable for profiling in stratified microbial systems because the concentration of the analyte might change along the sensing surface. The obtained signal is then an integrated measure of the concentrations along the electrode. Similarly, combined electrodes with wide openings are also problematic for profiling applications, since the step size of different measurement points in a depth profile should not be smaller than 2 times the outer diameter of the electrode (Gieseke and de Beer, 2004). In addition, single-anode sensors are not robust enough to be inserted in a sturdy sediment or soil sample since the particles will damage the Nafion membrane that confers selectivity against NO,-Consequently, applications of NO electrodes - commercially supplied by World Precision Instruments (Sarasota, Florida, USA) – in microbiology were restricted to detection of NO in pure culture suspensions (e.g. Corker and Poole, 2003).

Recently, an NO microelectrode was introduced that is applicable to study complex, stratified microbial communities in sediments and biofilms (Schreiber et al., 2008). The NO microelectrode is a combined (Clark-type) sensor with a carbon-fiber anode (+ 750 mV) placed behind a gas permeable silicon membrane (Figure 2B). The sensor has a detection limit of 0.030 μ mol L⁻¹ and a spatial resolution of ~60 μ m. Thus, the sensor is optimized to provide sufficient sensitivity for NO concentrations produced in complex, N-cycling microbial communities and sufficient spatial resolution to measure in microbial biofilms, sediments and soils. The robust Clark-type design allows measurements in sturdy soil and sediment samples. It has been made commercially available through Unisense A/S (Arhus, Denmark), who also supplies N₂O microelectrodes.

Interferences. H₂S interferes with NO measurement as it passes the silicone membrane and is readily oxidized at the sensing anode. A sensitive H₂S microsensor (Jeroschewski et al., 1996) should thus be used to rule out any interference of H₂S in the measurements or –if possible- experiments must be designed to avoid active sulfate reduction in the sample by excluding sulfate from the medium. Jenni et al. (2012) investigated the interferences of CO₂, O₂ and various nitrogen compounds commonly found in wastewater treatment on NO and N₂O sensors. They found that NO interfered with the N₂O measurement, while the NO sensors were sensitive on NH₃, NH₂OH, HNO₂ and N₂H₄. If high concentrations of these compounds are expected, it is recommended to check the concentrations of interfering compounds. No significant interferences were found by CO₂ and O₂. The cross-sensitivities can be corrected with calibration curves that are determined before the experiments. Jenni et al. (2012) also reported a significant temperature dependency. The NO signal increased by about 3.5 % per 1 °C and the N₂O signal by 3.9 % per 1 °C. The temperature dependencies can be corrected with exponential functions.

Figure 2. NO microelectrodes. (A) depicts a typical single-anode type NO sensor with a long sensing anode, which is coated with Nafion to confer selectivity against charged interferences. The anode and reference cathode are directly emerged into the sample medium. Some sensor designs integrate the cathode into the electrode shaft. (B) depicts the NO microelectrode for measurements in biofilms and sediments as reported by Schreiber et al. (2008). This sensor is also an example for a combined NO sensor (Clark-type) where sensing anode and reference cathode are separated from the sample medium by a gas permeable membrane. Drawing is not to scale.

Application of NO microelectrodes

The novel NO microelectrode has been applied to study NO formation in permeable marine (Schreiber et al., 2008) and river (Schreiber et al., in preparation) sediments. The results showed that in steady-state NO is produced in oxic/micro-oxic sediment strata reaching concentrations of 0.13 μ mol L⁻¹ in river and 0.5 μ mol L⁻¹ in marine sediments. In both sediments NO produced in the oxic zone was consumed in the anoxic zone. It was hypothesized that NO was produced by AOB in the oxic zone. Labeling experiments with a ¹⁵N-labeled NO donor in the river sediment suggested that denitrification actively consumes exogenously produced NO.

Furthermore, the NO microelectrodes have been applied together with N_2O microelectrodes in two N-cycling microbial biofilms; namely a complex NH_4^+ -fed biofilm with nitrifying and denitrifying activity (Schreiber et al., 2009) and human dental plaque that was naturally exposed to high NO_3^- and NO_2^- in saliva (Schreiber et al., 2010). The study in dental plaque showed that plaque denitrified under aerobic conditions, that NO and N_2O was produced by denitrification and that NO and N_2O concentrations increased with decreasing pH. Aerobic denitrification has also been reported from permeable marine sediments (Gao et al., 2010) and from isolated (Patureau et al., 2000) or extracted soil bacteria (Morley et al., 2008). Until now, it is not known in which environments aerobic denitrification plays an important role and if it is an environmentally significant NO and N_2O emission pathway. NO, N_2O , NO_2^- , NO_3^- and O_2 microelectrodes will be crucial to determine the importance of aerobic denitrification for NO and N_2O release for complex ecosystems, because these sensors allow the simultaneous detection of NO, N_2O , NO_2^- , NO_3^- , O_2 concentrations at high spatial resolution and their relation to denitrification activity.

Studying a complex N-cycling biofilm revealed the dynamics of NO and N₂O formation upon perturbations in a system where nitrification and denitrification co-exist (Schreiber et al., 2009). The concomitant use of an O, microelectrode and a set of control experiments enabled assignment of NO and N₂O formation under oxic conditions to AOB and under anoxic conditions to denitrifiers. It also showed that AOB produce NO and N₂O under fully oxic conditions if NO₂⁻ concentrations are high. This is in agreement with other observations (Beaumont et al., 2004a, 2004b; Shaw et al., 2006) and contradicts the assumption that AOB require low O, to release NO and N,O (Lipschultz et al., 1981; Poth and Focht, 1985; Kester et al., 1997; Beaumont et al., 2004a; Kampschreur et al., 2008b). The high temporal resolution of the microelectrodes allow to detect transient bursts (seconds to minutes) of NO and N₂O. The bursts occurred by AOB upon O₂ removal and upon NO₂⁻ addition by both AOB and denitrifiers. The bursts only occurred if the perturbations were exerted upon metabolically active AOB and denitrifiers. In both scenarios NO and N₂O are formed in parallel confirming that NO is the preceding intermediate of N₂O in the N₂O production pathways in this biofilm. An important contribution by Yu et al. (2010) showed that an AOB pure culture accumulated only NO, not N₂O, upon transition from oxic to anoxic conditions. In mixed microbial communities were AOB and heterotrophic denitrifiers co-exist this could lead to NO release by AOB and immediate reduction to N₂O by heterotrophic denitrifiers or anaerobic detoxification via NorVW and Hmp. This mixed source of N₂O during transient oxic to anoxic conditions has to be taken into account when determining the pathways with isotopic techniques. It has been argued that N₂O transiently accumulates during transition from anoxic to oxic conditions because O₂ inhibits Nos while denitrification still proceeds, but direct evidence for this hypothesis is weak. Using both NO and N₂O microelectrodes would allow to test this because N₂O accumulation should not be accompanied by NO accumulation if the denitrification sequence is inhibited at the level of Nos.

Application of N₂O microelectrodes

In many habitats steady-state N_2O concentrations are below or at the detection limit of the N_2O microelectrode. Thus, the N_2O microelectrode has commonly been used to estimate the denitrification potentials in stratified microbial communities such as sediments, biofilms and aggregates in combination with the acetylene inhibition technique (Revsbech et al., 1988). Acetylene (~10 kPa) inhibits N_2O reductase and leads to the accumulation of high amounts of N_2O .

More recently, N₂O microelectrodes have been used to study N₂O production without acetylene inhibition in natural samples. These studies revealed that N₂O concentrations in the micromolar range are expected when the system is exposed to a perturbation (Table 1). Transient accumulation of high N₂O concentrations were achieved by any perturbation that affects the ambient O₂ concentration: flooding of soils with water (Liengaard et al., 2011; Markfoged et al., 2011), creating an organic hotspot around a soil aggregate (Hojberg et al., 1994), thawing of permafrost soils (Elberling et al., 2010), and decreasing the O₂ supply to wastewater-grown biofilms (Kampschreur et al., 2008a, 2008b; Schreiber et al., 2009; Pellicer-Nàcher et al., 2010). In addition, increased input of NO_3^{-} , NO_2^{-} or NH_4^{+} to sediments, soils and biofilms (Hojberg et al., 1994; Meyer et al., 2008; Schreiber et al., 2009; Nielsen et al., 2009), organic inputs, salinity fluctuations in sediments (Nielsen et al., 2009) and changes of pH due to microbial activity in a denitrifying, dental biofilm (Schreiber et al., 2010) lead to increased microenvironmental N₂O levels. Importantly, in many of these studies N₂O accumulated in a transient manner making time-course measurements necessary to capture the N₂O peak and the accumulation time span. The high spatial resolution of the N₂O microelectrode allowed allocating processes that mitigate the emission of N₂O to the atmosphere in soils, sediments and wastewater treatment biofilms. N₂O that is produced by denitrification in deeper layers is consumed during its diffusion toward the sediment-water interface in nutrient-enriched mangrove sediments (Meyer et al., 2008), toward the soil-atmosphere interface in a thawed permafrost soil (Elberling et al., 2010) or in a soil aggregate exposed to an organic hotspot (Hojberg et al., 1994). Likewise, N₂O release from a membrane-aerated biofilm reactor was minimized by N₂Oreducing microbes placed above AOB that produced N₂O due to perturbations induced by an intermittent aeration regime (Pellicer-Nàcher et al., 2010).

Outlook

From the investigations of transient NO and N_2O accumulation it emerges that two scenarios with distinct dynamics are important. First, N_2O accumulates over hours to days, because it mirrors the onset of denitrification activity. Depending on the system it decreases because N_2O reduction pathways are turned on with a delay or denitrification activity decreases due to substrate limitation. Ahn et al. (2011) even observed that peak NO and N_2O emissions after a shift to O_2 -limitation in a nitrifying reactor were lasting for several month before adaptation on the metabolic or community level decreased the emissions. Second, perturbation of active AOB or denitrifiers leads to burst-like (within seconds to minutes) release of NO and N_2O . The exact biochemical mechanisms for this require further research directly on the involved enzymes. Moreover, future research must show the contributions of the two types of transitions to the N_2O budget and could use this as a framework to mitigate peak N_2O releases to the atmosphere. Mitigation strategies could aid at avoiding perturbations or confining the N_2O -releasing processes into a diffusion-limited environment that is overlaid with N_2O -consuming microbial communities.

$N_{\scriptscriptstyle 2}O$ source partitioning based on the nitrogen and oxygen isotopic signature

In recent years, the isotopic signature of N₂O has been used as a powerful tool to assign N₂O production pathways to nitrification and heterotrophic denitrification in different ecosystems such as soils, rivers, sea, wastewater treatment (Yoshida et al., 1989; Yamagishi et al., 2007; Baggs, 2008; Koba et al., 2009; Baulch et al., 2011; Park et al., 2011; Toyoda et al., 2011). N₂O is a linear molecule (N^{β}-N^{α}-O) with one nitrogen atom at the center position (N^{α}) bound to oxygen, and one at the end position (N^{β}) bound to N^{α}. The three most abundant N₂O isotopic species in the atmosphere are ¹⁴N¹⁵N¹⁶O (0.37%) and ¹⁴N¹⁴N¹⁶O (> 99%). Isotope abundances are usually reported in the δ -notation (in per-mil; ‰), δ ¹⁵N = [(R_{sample}/R_{reference}) - 1] x 1000, where R is the ratio of ¹⁵N/¹⁴N of a sample (R_{sample}) with respect to atmospheric N₂ as the reference (R_{reference}) (Mariotti et al., 1981).

The intramolecular distribution of the nitrogen isotopes (¹⁴N¹⁵NO versus ¹⁵N¹⁴NO) is termed site preference (SP) and is expressed as the relative difference in δ ¹⁵N between the α and the β position (SP = δ ¹⁵N^{α} – δ ¹⁵N^{β}) (Toyoda and Yoshida, 1999). In analogy to the δ -notation, the isotopomer analysis denotes the relative difference of the ¹⁵N/¹⁴N isotope ratio for a given position (δ ¹⁵N^{α}, δ ¹⁵N^{β}) with respect to the standard (e.g. δ ¹⁵N^{α} = [(¹⁵R^{α}/¹⁵R^{α} reference) - 1] x 1000, whereas ¹⁵R^{α} = [¹⁴N¹⁵N¹⁶O]/[¹⁴N¹⁴N¹⁶O] and ¹⁵R^{α} reference is the isotope ratio of the standard material (N₂O) (see below)) (Toyoda and Yoshida, 1999). The SP has the advantage of being independent of the isotopic signature of the respective substrates (e.g. NH₄⁺ or NO₃⁻) and of being specific for pathways (enzymes) involved in N₂O formation (Toyoda et al., 2005; Sutka et al., 2006).

Microbial (enzymatic) processes usually lead to an isotopic fractionation due to different transformation rates of ¹⁴N and ¹⁵N, resulting in isotopically lighter end-products than molecules in prior steps (Stein and Yung, 2003). Thus, the average ¹⁵N/¹⁴N ratio of N₂O, termed as δ ¹⁵N^{bulk}_{N2O}, can be used to distinguish different production pathways in complex samples if the isotopic signature of the pure bacterial culture is known. However, the meaning of δ ¹⁵N^{bulk}_{N2O} can be limited since it is strongly dependent on the isotopic signature of the substrate, which usually is unknown, as well as on the physiological activity (Mariotti et al., 1981). Additionally, the isotopic composition of an intermediate (e.g. N₂O during heterotrophic denitrification) is

affected by production (NO $_3^-$ reduction) as well as consumption (N $_2$ O reduction) processes.

In addition to nitrogen isotopes, oxygen isotope ratios are also increasingly used in order to better distinguish between the N₂O formation pathways (Yoshinari and Wahlen, 1985; Kool et al., 2007; Baggs, 2008; Frame and Casciotti, 2010). In this case δ ¹⁸O denotes the relative difference in the ¹⁸O/¹⁶O ratio of N₂O (R_{sample}) with respect to the reference (R_{reference}), in per-mil (‰), usually being the Vienna Standard Mean Ocean Water (VSMOW) (δ ¹⁸O = [(R_{sample}/R_{reference}) - 1] x 1000) (Wahlen and Yoshinari, 1985).

Table 2. Advantages and disadvantages of isotope-ratio mass spectrometry (IRMS), quantum cascade laser based absorption spectroscopy (QCLAS) and membrane-inlet mass spectrometry (MIMS).

	Advantages	Disadvantages
IRMS	• Well known, widely applied method	Lab-based method
	- Measurement of $\delta^{15}N^{\alpha}\!,\delta^{15}N^{\beta}$ and $\delta^{18}O$	• Low temporal resolution (flask- sampling)
		• Requirement of standard gases (not commercially available)
QCLAS	• Portable, enabling field measurement campaigns	• Requirement of standard gases (not commercially available)
	• Continuous measurement (high temporal resolution) of $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$	
MIMS	• High sample throughput	• Application limited to isotope labeling / tracer experiments
	• Low sample volume required	
	Long-term measurement possible	
	• online measurements with high temporal resolution possible	

Analysis of the isotopic signature of N_2O

There are basically two different analytical techniques available to analyze N_2O nitrogen isotopic signatures at natural abundance levels (Table 2): (i) the isotope-ratio mass spectrometry based technique (IRMS) (Brenninkmeijer and Röckmann, 1999; Toyoda and Yoshida, 1999), and (ii) the recently developed quantum cascade laser based absorption spectrometry (QCLAS) (Waechter et al., 2008).

IRMS-based method is widely applied with an excellent precision and accuracy (Mohn et al., 2010). Nevertheless, the calibration procedure of the intramolecular nitrogen isotope distribution in N_2O is still under debate. Originally, two alternative approaches have been proposed, one by Toyoda and Yoshida (1999) and one by Brenninkmeijer and Röckmann (1999), which resulted in a difference in SP of about 30 ‰ for tropospheric

 N_2O . The analysis of the SP by IRMS techniques relies on the N_2O^+ and NO^+ fragment ions at the mass-to-charge ratio (m/z) 44, 45, 46 (for N_2O) and m/z 30, 31 (for NO). However, both calibration approaches do not take into account the isotope effects associated with the formation of NO^+ in the ion source of the mass spectrometer. Recently, Westley et al. (2007) investigated these discrepancies in more detail and found that these isotope effects have much smaller impact on the calibration procedure proposed by Toyoda and Yoshida (1999) (see below), and supported therefore this procedure as the most accurate basis for a community standard.

Furthermore, IRMS is a lab-based technique. Thus, the time resolution of N₂O isotopic analysis during field measurement campaigns is therefore limited (Waechter et al., 2008). Nevertheless, in addition to nitrogen isotopes, the oxygen isotopic signature can also be analyzed routinely by IRMS.

QCLAS is a novel approach for site-specific analysis of nitrogen isotopes, with the advantage of a high sensitivity, time resolution, and portability, the latter of which enables field measurement campaigns (Waechter et al., 2008). This was demonstrated by Mohn et al. (2012), who recently presented first data of a high precision real-time analysis of site-specific isotopic signatures of atmospheric N₂O above a grassland plot. The measurement campaign was run over three weeks with almost 550 analyzed gas samples. It was demonstrated that a continuous measurement of the N₂O isotopic signature allowed improved detection of the dynamics of N₂O production (before and after fertilizer application to the grassland plot), and thus opens a completely new field of applications. In another study, isotopic signature of N₂O, produced during batch-scale experiments with activated sludge, were analyzed in real time, which permitted to trace short-term fluctuations in SP and δ ¹⁵N^{bulk}_{N2O}, allowing to identify N₂O production pathways in biological wastewater treatment (Wunderlin et al., under review).

The QCLAS is based on direct absorption laser spectroscopy in the mid-infrared range for simultaneous measurement of the most abundant N₂O isotopic species, such as ¹⁴N¹⁵N¹⁶O, ¹⁵N¹⁴N¹⁶O and ¹⁴N¹⁴N¹⁶O (Waechter et al., 2008; Mohn et al., 2010). In order to enable high precision analysis (e.g. a precision of < 0.1 ‰ for δ ¹⁵N^{α} and δ ¹⁵N^{β}) (Waechter et al., 2008) a combination with a pre-concentration unit is essential at ambient or sub-ambient mixing ratios (Mohn et al., 2010, 2012). For example, with the liquid nitrogen-free, fully-automated pre-concentration unit built by Mohn et al. (2010), N₂O can be concentrated by a factor of 200 (e.g. from ambient concentrations to around 60 ppm) from 10 L gas samples within 20 min.

Calibration. For both techniques, IRMS as well as QCLAS, an adequate calibration procedure needs to be applied, since instrumental nonlinearity and drifts impact the accuracy of the isotope ratio measurement (e.g. $\delta^{15}N^{\text{bulk}}{}_{\text{N2O}}$ values depend on the N₂O gas concentration) (Waechter et al., 2008). However, international standards are not commercially available so far. Therefore, they need to be prepared and analyzed from other laboratories (intercalibration) for $\delta^{15}N^{\text{bulk}}{}_{\text{N2O}}$, $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$, to ensure that measurements are performed on a common scale and that results are comparable

between laboratories (Westley et al., 2007). So far, the calibration procedure proposed by Toyoda and Yoshida (1999), as mentioned above, is accepted as the provisional basis for a community standard: N₂O is synthesized via thermal decomposition of isotopically characterized NH₄NO₃, since it is known that the nitrogen atom at the center (α) position of N₂O originates from NO₃⁻, while the end (β) nitrogen comes from NH₄⁺. Using this calibration procedure a SP of tropospheric N₂O of 18.7 ± 2.2 ‰ is measured (Westley et al., 2007).

Membrane-inlet mass spectrometry (MIMS) was proposed as another promising tool to study the dynamics of N_2O production in ¹⁵N labeling experiments. MIMS has a high sample throughput (within minutes), allows direct analysis of liquid or gas samples and requires only low sample amounts (Bauer, 1995; Baggs, 2008) (Table 2). Recently, it was coupled with an automated sampling and calibration unit (ASCU), and was tested in a long-term ¹⁵N-NO₃⁻ tracer experiment over 7 days. It was confirmed that ¹⁵N measurements of N_2 and N_2O , detected as N_2 at m/z 28, 29 and 30 (N_2O was reduced to N_2 in an elemental copper furnace prior to analysis), are in good agreement with IRMS-based analysis (Eschenbach and Well, 2011).

The membrane-inlet part can also be combined with a quadrupole mass spectrometer for simultaneous online measurement of different m/z ratios (e.g. ${}^{15,15}N_2O$ at m/z = 46, ${}^{14,15}N_2O$ at m/z = 45, ${}^{15,15}N_2$ at m/z = 30, ${}^{14,15}N_2$ at m/z = 29) with a time resolution of 1 to 2 minutes (Ettwig et al., 2010; Gao et al., 2010). Nevertheless, the interpretation of spectra corresponding to a certain gas mixture might be difficult since one peak can correspond to different atomic compositions (e.g. ${}^{14,14}N_2^+$ and CO⁺ at m/z = 28). This problem is reduced by applying ${}^{15}N$ labeled substrates, where the only important remaining correction needed is for m/z = 30, which consist of the signal from the ${}^{15,15}N_2^+$ fragment of ${}^{15,15}N_2O$, the ${}^{14}NO^+$ fragment of ${}^{14,14}N_2O$ and ${}^{15,15}N_2$) (Thomsen et al., 1994).

Isotopic signature of N_2O : site preference, $\delta^{15}N$ and $\delta^{18}O$

Site preference. The SP is a promising tool for N₂O source partitioning since it is specific to pathways involved and independent of the respective substrates (Sutka et al., 2006) (Table 3). For N₂O production via NH₂OH oxidation by typical AOB pure cultures values in the range of 30.8 ± 5.9 to 35.6 ± 1.4 ‰ were measured (Sutka et al., 2003, 2004, 2006), which is in agreement with recently reported SP values of marine AOA (30.8 \pm 4.4 ‰) (Santoro et al., 2011). In contrast, Frame and Casciotti (2010) estimated 36.3 ± 2.4 ‰ for a marine AOB. For nitrifier denitrification by AOB, the following SP values were reported: 0.1 ± 1.7 ‰ (Sutka et al., 2006), -0.8 ± 5.8 ‰ (Sutka et al., 2003, 2004) and -10.7 ± 2.9 ‰ (Frame and Casciotti, 2010). For N₂O production via heterotrophic denitrification SP values in the range of -5.1 to 0 ‰ were reported (Toyoda et al., 2005; Sutka et al., 2006). Nitric oxide reductases (Nor) likely determine the SP of N₂O during nitrifier denitrification as well as heterotrophic denitrification. The SP for both pathways is in the same range indicating that the involved Nor's in AOB (cNor) and heterotrophic denitrifiers (cNor or qNor) (Stein and Yung, 2003; Stein, 2011) share a similar enzymatic mechanism. In case free NO is formed during NH₂OH oxidation, any NO molecule that is funneled into nitrifier or heterotrophic denitrification (either directly or via initial

oxidation to NO_2^{-}) would result in N_2O with an SP of ~0 ‰ masking its initial NH_2OH source.

The most probable explanation for a positive SP during NH₂OH oxidation is a preferable ¹⁴N-¹⁶O bond cleavage of a symmetric intermediate such as hyponitrite (-¹⁶O¹⁴N¹⁵N¹⁶O-), leading to an enrichment of ¹⁴N-¹⁵N-¹⁶O (Toyoda et al., 2005; Schmidt et al., 2004a). In the current model of N₂O formation from NH₂OH oxidation, NH₂OH is reduced to NO, which is further reduced to N₂O by an unidentified Nor. However, the positive SP of N₂O formed from NH₂OH oxidation can only be explained (i) if the involved Nor has a different mechanism than Nor's mediating nitrifier and heterotrophic denitrification or (ii) if N₂O is formed by a different mechanism, which does not involve free NO. We suggest mechanisms involving HNO: either by formation of free H₂N₂O₂ with further chemical decomposition to N₂O (discussed in section 'HNO as intermediate of enzymatic NH₂OH oxidation') or a site specific enzymatic cleavage of -ONNO- as discussed above (Toyoda et al., 2005; Schmidt et al., 2004a). Further insights in the enzymatic mechanism of HAO and potentially HAO-associated Nor with careful chemical control experiments are needed to elucidate the biochemical mechanism of N₂O formation.

Furthermore, a positive SP is, in addition to NH_2OH oxidation, also an indicator for increasing importance of the heterotrophic N_2O reductase activity relative to N_2O production (substantially greater activity than 10 % compared to production) (Yamagishi et al., 2007; Jinuntuya-Nortman et al., 2008; Koba et al., 2009). As a consequence, N_2O reduction to N_2 might lead to an overestimation of N_2O production by NH_2OH oxidation, or vice versa. Nevertheless, further investigations are necessary in order to determine the individual signatures under conditions more representative for ecosystems with mixed culture populations (Wunderlin et al., under review).

Under nitrifying conditions, N_2O can theoretically be produced simultaneously via NH_2OH oxidation as well as nitrifier denitrification. Thus, based on SP literature data, the individual contribution (F_{NN} : NH_2OH oxidation; F_{ND} : nitrifier denitrification) can be calculated from the following isotopomer mixing model:

 $F_{ND} = (1 - F_{NN}) = \frac{\left(SP_{tot} - SP_{NN}\right)}{\left(SP_{ND} - SP_{NN}\right)}$ Equation 16

where SP_{ND} and SP_{NN} are the end-member SP signatures of the NH_2OH oxidation and nitrifier denitrification pathway, respectively, as reviewed above, and SP_{tot} the measured signature of the individual produced N_2O (Frame and Casciotti, 2010).

δ ¹⁵**N**. Wide ranges for δ ¹⁵N^{bulk}_{N20} were reported so far, mainly due to limited information about the isotopic signature of the substrates or to both a huge complexity determined by multiple transformation processes involving different enzymes, as well as variable reaction rates or mechanisms affecting isotopic fractionation (Perez et al., 2006) (Table 3). For example, it was shown that isotopic fractionation during NH₃ oxidation is variable, depending mainly on the amino acid sequences for the *α*-subunit of AMO of the different investigated pure culture AOB

(Casciotti et al., 2003). However, N₂O produced by AOB during nitrifier denitrification or NH₂OH oxidation is basically more strongly depleted in ¹⁵N ($\Delta \delta$ ¹⁵N = δ ¹⁵N_{substrate} - δ ¹⁵N^{bulk}_{N2O}; in the range of between 40 to 68 ‰) compared to heterotrophic denitrification, where N₂O is an obligate intermediate and the fractionation therefore depends on both production and consumption processes ($\Delta \delta$ ¹⁵N of 0 to 39 ‰) (Yoshida, 1988; Yoshida et al., 1989; Stein and Yung, 2003; Perez et al., 2006; Koba et al., 2009; Park et al., 2011).

 δ ¹⁸O. The oxygen isotopic signature of N₂O (δ ¹⁸O) is also used as a tool for N₂O source partitioning, even though this approach faces a couple of difficulties: for example, N₂O production via NH₂OH oxidation as well heterotrophic N₂O reduction result in a positive correlation between the δ^{18} O in N₂O and SP (Frame and Casciotti, 2010) (Table 3). Furthermore, δ ¹⁸O enrichment factors are scarce and highly variable (Park et al., 2011), and are reported to be strongly influenced by oxygen exchange or incorporation, such as (i) oxygen incorporation (from dissolved O_2) into NH₂OH during the oxidation of NH₄⁺ to NH₂OH, (ii) oxygen incorporation (from H₂O) into NO₂⁻ during the oxidation of NH₂OH to NO₂, and (iii) oxygen exchange between NO₂/NO₃ and H₂O (Kool et al., 2007). For example, it was shown that 64 to 94 % of the oxygen atoms in the precursors of N₂O were exchanged with oxygen atoms in H₂O (Snider et al., 2009; Park et al., 2011), which underscores the fact that the understanding and quantification of the effect of oxygen exchange between H₂O and dissolved nitrogen species is and will remain challenging. Isotopic labeling is a promising approach to overcome such difficulties (see below), but up to now the natural abundance oxygen isotopic signature should be used with caution in N₂O source partitioning studies (Kool et al., 2007, 2010).

N and O labeling. Beside natural abundances, nitrogen and oxygen isotope labeling techniques have been applied to study and quantify N₂O production pathways (Table 3). For example, Poth and Focht (1985) investigated the relative importance of the NH₂OH oxidation and nitrifier denitrification pathway in Nitrosomonas europaea pure culture by applying ${}^{14}N-NH_{4}^{+}$ in combination with ${}^{15}N-NO_{2}^{-}$. Based on the large amounts of double-labeled ${}^{15,15}N_{2}O$ (m/z = 46), it was concluded that nitrifier denitrification is the dominant pathway. Baggs and Blum (2004) determined the relative contribution of nitrification and denitrification to ${}^{15}N-N_2O$ production by the application of ${}^{14}NH_4{}^{15}NO_3$ and ¹⁵NH₄¹⁵NO₃. However, such conventional ¹⁵N labeling techniques do not allow to distinguish between NH,OH oxidation and nitrifier denitrification in mixed population systems (Kool et al., 2010). As a consequence, a dual isotope approach was applied, based on ¹⁸O-labeling of H_2O as well as ¹⁵N-labeling of NH_4^+ or NO_3^- (Wrage et al., 2005). The basic concept behind is, that AOB use oxygen from O_2 for the oxidation of NH_4^+ to NH₂OH, but oxygen from H₂O for the oxidation of NH₂OH to NO_2^{-1} (see above). As such, the ¹⁸O signature of N₂O produced via nitrifier denitrification reflect to 50 % the signature of O₂ and to the other 50 % the signature of H₂O, which is in this study artificially enriched in ¹⁸O (Kool et al., 2007), under the assumption that no further oxygen is exchanged between NO_2^- and H_2O . In contrast, the ¹⁸O signature of N_2O derived from NH₂OH oxidation reflects to 100 % the signature of O₂ (Wrage et al., 2005; Kool et al., 2010). Nevertheless, the effect of oxygen exchange has to be taken into account.

Table 3. Advantages and disadvantages of SP, $\delta^{15}N^{bulk}$ and $\delta^{18}O$, on a natural abundance or labeled level (adapted from Baggs (2008)).

	Advantages	Disadvantages
Site preference (SP)	• Independent of isotopic signature of substrates	• Unknown pathways might affect SP
	Noninvasive method	• SP from pure culture bacteria have to be known
	 Specific for pathways involved 	
$\delta^{15} N^{bulk}$	• Characteristic fractionation of different pathways (depending on the rate limiting step)	• Depending on the isotopic signature of the substrate, as well as the physiological activity
	Noninvasive method	• Multiple reaction steps (branching effects) cause uncertainty
δ ¹⁸ Ο	Noninvasive method	\bullet Oxygen exchange between N species and O2 or H2O difficult to quantify
	• Additional information to nitrogen isotopic signature	
Isotope labeling of N	• Isotopically enriched substrates are not	• The use of ¹⁸ O labeled H_2O is not
and O	fractionation	suitable under field conditions
	• Quantification of individual pathways	• Isotopically labeled substances might impact microbial activity

Natural samples

The analysis of the natural abundance isotopic signature of N₂O emitted from ecosystems such as soils, rivers or biological wastewater treatment indicate that N₂O from terrestrial and aquatic sources is depleted in ¹⁵N compared to tropospheric N₂O (δ ${}^{15}N = 7 \%$ and $\delta {}^{18}O = 20.7 \%$) (Stein and Yung, 2003), but also show a huge variability and complexity, making process identification ambiguous at large scale. For example, in biological wastewater treatment an average $~\delta~^{\rm 15}N^{\rm bulk}_{\rm N_{2O}}$ of -9.6 ‰, SP of 16 ‰ and $~\delta$ ¹⁸O of 22 to 44.3 ‰ were estimated (Yoshinari and Wahlen, 1985; Toyoda et al., 2011), indicating that nitrification as well as denitrification contributed to N₂O production. N₂O emitted from agricultural soils is reported to be strongly depleted in $\delta^{15}N^{\text{bulk}}_{\text{N2O}}$ (e.g. -34 ‰) (Park et al., 2011), referring to nitrification dominated N₂O production. Isotopic signatures of N₂O emitted from rivers and streams are in the range of -18 to 2.4 % (δ ¹⁵N^{bulk}), -6 to 31 ‰ (SP) and 17 to 53 ‰ (δ ¹⁸O) being in line with values reported above, which indicates to be highly influenced by sources such as agriculture or municipal wastewater treatment (Toyoda et al., 2009; Baulch et al., 2011). This is underscored by a recent study that investigates the oxygen and intramolecular nitrogen isotopic composition of N₂O, confirming that nitrogen-based fertilizer application was largely responsible for the rise in N_2O atmospheric concentration during the last 65 years (Park et al., 2012).

Outlook

In this section, the isotopic signature of N_2O , especially the SP, is discussed to be a powerful tool to distinguish N_2O production pathways. Recent technological advances, e.g. the development and application of the quantum cascade laser absorption spectroscopy, now allow a high temporal resolution in the analysis of the isotopic changes of N_2O . Nevertheless, an adequate calibration procedure still needs to be applied, since instrumental nonlinearity and drifts impact the accuracy of the isotope ratio measurement, and calibration standards are not commercially available so far. It is a pressing issue to further investigate the characteristic isotopic signatures of the individual N_2O production pathways in mixed microbial communities under controlled conditions, in order to more accurately interpret isotopic signatures from complex environmental systems. Further, it is important to study N_2O isotopic signatures with respect to involved microbial communities, enzymatic reaction mechanisms and enzymatic transformation rates. The use of the oxygen isotopic signature of N_2O as a reliable tool for pathway identification requires the elucidation of mechanisms and rates of oxygen exchange in the future.

Molecular approaches to understanding microbial NO and $\ensuremath{\mathsf{N}_2\mathsf{O}}$ formation

While abiotic variables such as dissolved O_2 , pH, NO_2^- , and other nitrogen compounds have long been recognized to exert a strong influence on rates of microbial NO and N_2O emissions, the importance of microbial community composition and dynamics to such emissions is still little understood (Wallenstein et al., 2006). As such, researchers have recently begun supplementing process-level NO and N_2O emission measurements in a variety of environments with molecular techniques aimed at characterizing abundance, diversity, community structure, and activity of microbial guilds involved in nitrogen cycling. Here, we briefly introduce emerging molecular approaches to the delineation of key pathways, communities, and controls of NO and N_2O production, and we summarize recent applications of these tools.

Quantifying the genetic potential for N_2O consumption

An appealing focus for application of molecular tools in environmental samples is direct quantification via the quantitative polymerase chain reaction (qPCR) of relevant functional genes (Smith and Osborn, 2008). Such an approach most commonly targets DNA, not RNA, and is thus a measure of genetic potential in the environment and not the activity.

Owing to the relative independence of each catabolic step, denitrification has been described as having a modular organization (Zumft, 1997). Indeed, Jones et al. (2008)

concluded based on an analysis of 68 sequenced genomes of heterotrophic denitrifiers that approximately 1/3 lacked the nosZ gene encoding for N₂O reductase and thus lack the genetic capacity for N₂O reduction. Based on this assessment, researchers have hypothesized that the ratio of nosZ to the sum of nirK and nirS encoding for copper and cytochrome cd1-type nitrite reductases, respectively, is representative of the fraction of denitrifiers in a given environment that generate N₂O as a catabolic end product. Environments with high nosZ/(nirK+nirS) ratios are likely associated with a high capacity for N₂O consumption, and thus for low N₂O emissions. Commonly used primers and qPCR conditions for genes relevant for NO and N₂O turnover during Ncycling are available in the literature and are listed in Table 4, and thus the measurement of such ratios are feasible with little method development. Application of such tools has commonly shown a lower abundance of nosZ compared to other denitrifying reductases, particularly in soil environments (Henry et al., 2006; Hallin et al., 2009; Bru et al., 2011).

First assessments of this hypothesis are somewhat conflicting. In favor for the hypothesis, Philippot et al. (2009) demonstrated a negative correlation between nosZ proportional abundance and $N_2O/(N_2 + N_2O)$ ratio in grassland pasture soil. In a followup study, Philippot et al. (2011) dosed three soils with several dilutions of a denitrifying bacterial isolate known to lack the nosZ gene, and measured the response at the DNA level of nirK, nirS, and nosZ genes via qPCR. N₂O emissions increased in all soils upon dosing of the nosZ-deficient isolate. However, in two of the three soils, the increase in denitrification potential (relative to non-inoculated controls) was higher than the measured increase in N2O emissions, suggesting that the original denitrifier community was capable of acting as a sink for N₂O production. Moreover, ratios of N₂O emissions to total denitrifying end products $(N_2O + N_2)$ in non-inoculated soils were not correlated to nosZ/(nirK+nirS). While the authors acknowledge that abundance of nosZ deficient denitrifiers may not be as important in soils with a high N₂O uptake capacity, their results clearly demonstrate that abundance of denitrifiers incapable of N₂O reduction can influence denitrification end products in natural environments. Similarly, Morales et al. (2010) document a strong positive correlation between the difference in nirS and nosZ gene abundance (nirS-nosZ; nirK was not quantified) and N₂O emissions in 10 soils. Garcia-Lledo et al. (2011) suggested that a significant decrease in nosZ gene abundance during periods of high NO₃ content in a constructed wetland might be indicative of increased genetic capacity for (unmeasured) N₂O emissions.

In contrast, Čuhel et al. (2010) detail a significant but, puzzlingly, positive correlation in grassland soil between nosZ/(nirS+nirK) ratios and N₂O/(N₂ + N₂O), but caution that the relative importance of denitrifier community composition and enzyme regulation relative to proportion of nosZ deficient community members remains uncertain. In line with this result, Braker and Conrad (2011) found similar ratios of nosZ/(nirS+nirK) via Most Probable Number (MPN-) PCR in three soils with profoundly different N₂O/(N₂ + N₂O) ratios, and concluded that the hypothesis that a higher abundance of denitrifiers lacking nosZ is linked to increased N₂O emissions may be an oversimplification.

The genetic potential for N_2O production via nitrifier denitrification in AOB (and possibly AOA) could theoretically be measured via qPCR of the nirK and norB genes. Design of such analyses is hampered due to the fact that AOB nirK and norB genes are not phylogenetically distinct from that of heterotrophic denitrifying organisms (Cantera and Stein, 2007; Garbeva et al., 2007). In addition, NorB is not the only NO reductase in AOB (Stein, 2011).

Target gene ¹	Primer name	Nucleotide sequence (5'-3')	References	
b-AOB (amoA)	amoA-1F	GGG GTT TCT ACT GGT GGT	(D. (1. 1. 1007)	
	amoA-2R	CCC CTC KGS AAA GCC TTC TTC	(Rotthauwe et al., 1997)	
AOA (amoA)	Arch-amoAF	STA ATG GTC TGG CTT AGA CG	(Eronais at al. 2005)	
	Arch-amoAR	GCG GCC ATC CAT CTG TAT GT	(Francis et al., 2005)	
narG	narG-F	TCG CCS ATY CCG GCS ATG TC	$(\mathbf{D}_{\mathbf{T}})$ at al. 2007)	
	narG-R	GAG TTG TAC CAG TCR GCS GAY TCS G	(Diu et al., 2007)	
napA	V17m	TGG ACV ATG GGY TTY AAY C	$(D_{m_1} \text{ at al} 2007)$	
	napA4r	ACY TCR CGH GCV GTR CCR CA	(Diu et al., 2007)	
nirK	nirK1F	GGM ATG GTK CCS TGG CA	$(\mathbf{D}_{rel}, \mathbf{r}_{rel}, r$	
	nirK5R	GCC TCG ATC AGR TTR TGG	(Diakei et al., 1998, 2012)	
	nirK876	ATY GGC GGV AYG GCG A	(Hanny et al. 2004)	
	nirK1040	GCC TCG ATC AGR TTR TGG TT	(ITemy et al., 2004)	
nirS	nirS1F	CCT AYT GGC CGC CRC ART	D 1 (1 1000 2012	
	nirS6R	CGT TGA ACT TRC CGG T	Braker et al. 1998, 2012	
	cd3aF	GTS AAC GTS AAG GAR ACS GG	(Throbäck et al., 2004)	
	R3cd	GAS TTC GGR TGS GTC TTG A	(Michotey et al., 2000)	
norB	cnorB-2F	GAC AAG NNN TAC TGG TGG T	(Braker and Tiedje, 2003)	
	cnorB-6R	GAA NCC CCA NAC NCC NGC	(Geets et al., 2007)	
nosZ	nosZ2F	CGC RAC GGC AAS AAG GTS MSS GT	Henry et al. 2006	
	nosZ2R	CAK RTG CAK SGC RTG GCA GAA	field y et al. 2000	
	nosZF	CGC TGT TCI TCG ACA GYC AG	(Rich et al., 2003)	
	nosZR	ATG TGC AKI GCR TGG CAG AA	(Kloos et al., 2001)	

Table 4. Reported primers and literature references relevant for NO and N_2O turnover during N-cycling.

¹amoA – subunit A of ammonia monooxygenase, b-AOB - ammonia oxidizing bacteria, narG – subunit G of membrane bound nitrate reductase; napA – subunit A of periplasmic nitrate reductase; nirK - copper-type nitrite reductase; nirS - cytochrome cd1 nitrite reductase; norB – subunit B of nitric oxide reductase; nosZ – subunit Z of nitrous oxide reductase

Community structure and diversity impacts on NO and N₂O production

In addition to monitoring abundance of nosZ deficient denitrifiers, PCR-based tools are now being applied to the investigation of links between community structure and N_2O emissions for both nitrifiers and denitrifiers. For this purpose, community structure is commonly profiled via cultivation-independent molecular fingerprinting methods, such as terminal restriction fragment length polymorphism (T-RFLP) or denaturing gradient gel electrophoresis (DGGE), targeting either 16S rRNA fragments specific to the functional guild of interest or functional genes (for example, nirK or amoA) directly. In addition, traditional cloning and Sanger sequencing and, increasingly, barcoded amplicon-based pyrosequencing of functional genes are often employed for robust phylogenetic comparisons. Readers are referred to Prosser et al. (2010) for a detailed methodological description of these and other nucleic-acid based methods. Multivariate statistical analyses such as canonical correspondence analysis (CCA), redundancy analysis (RDA) (Ramette, 2007; Wells et al., 2009), or path analysis (Avrahami and Bohannan, 2009) can then be used to explore the interplay between abiotic variables, community composition, and extant process rates.

It should be emphasized that the molecular and statistical tools highlighted above are most commonly used in microbial ecology to explore correlations, rather than causal associations, between community structure and function in complex microbial communities. As discussed in detail by Reed and Martiny (2007) directly testing causal relationships between microbial community composition or diversity and ecosystem processes is significantly more difficult, but experimental approaches often drawn from classical ecology are now being adapted to this challenge. We anticipate that future studies testing the functional significance of microbial community structure to NO or N_2O production will benefit greatly from these approaches.

Studies targeting the relationship between nitrifier community composition and greenhouse gas production are sparse at present, despite the fact that ample molecular tools are available for this purpose. Avrahami and Bohannan (2009) employed a combination of qPCR and T-RFLP to explore the response of N₂O emission rates and betaproteobacterial AOB abundance and composition in a California meadow to manipulations in temperature, soil moisture, and fertilizer concentration. While a complex interaction between factors was determined to directly and indirectly contribute to N₂O emission rates, path analysis suggested that the major path by which NH₄⁺ influenced emission rates in the high N fertilization treatment was indirectly via two specific AOB clusters. This observation suggested a significant relationship between AOB community structure and N₂O emission rates. It is important to note that this study did not attempt to discriminate between the nitrifier denitrification and hydroxylamine oxidation pathways for AOB-linked N₂O production, nor was the relative importance of heterotrophic denitrification versus nitrification for overall N₂O emissions directly compared.

Assessment of the importance of DNRA as a process, and diversity therein, to NO and N_2O production is in its infancy. It has been suggested that our understanding of this little understood phenomena would benefit from the future investigations employing molecular techniques to quantify abundance and diversity of the nrf gene in conjunction with either modeling or stable isotope-based methods (Baggs, 2011). To our knowledge, such an assessment has yet to be conducted.

The relationship between denitrifier community composition and N₂O emissions, while still ambiguous, has been studied in more detail. Palmer et al. (2010) investigated narG (encoding for membrane-bound nitrate reductase, Nar) and nosZ phylogenetic diversity

in a low-pH fen via gene clone libraries and T-RFLP. They documented novel narG and nosZ genotypes and a phylogenetically diverse low-pH adapted denitrifier community, and suggested that the novel community structure may be responsible for complete denitrification and low N₂O emissions under in situ conditions. In a more recent study, Palmer et al. (2011) investigated denitrifier gene diversity in peat circles in the arctic tundra via barcoded amplicon pyrosequencing of narG, nirK/nirS, and nosZ, and found evidence that high and low N₂O emission patterns were associated with contrasting denitrifier community composition. Braker et al. (2012) found that, of three soils profiled, the soil with the most robust denitrification (lowest N₂O/N₂ ratio) harbored the most diverse denitrifier community, as measured via nosZ and nirK sequence diversity, suggesting that differences in community composition (higher diversity) are associated with ecosystem-level functional differences. In denitrifying bioreactors, population dynamics tracked via 16S rRNA-based T-RFLP were strongly correlated to NO,² appearance and emissions of N₂O (Gentile et al., 2007). In contrast, Rich and Myrold (2004) found little relationship between nosZ phylogenetic diversity as measured via T-RFLP in wet soils and creek sediments in an agrosystem, and suggested that activity and community composition were uncoupled in this ecosystem.

Taken together, the body of literature reviewed here suggests that, in at least some cases, community structure and diversity can play a functionally significant role in microbial N_2O emissions. The importance of community composition relative to environmental parameters and metabolic adaptation in response to transient conditions (for example, shifts in patterns of gene expression or regulation) in determining N_2O production, however, remains poorly understood. A worthwhile, but challenging future research direction would be to tease apart the influence of whole community metabolic adaptation versus community shifts on NO/N_2O emissions in mixed microbial communities.

A role for variation in regulatory response

Differences in transcriptional and translational regulation as well as enzyme activity have also been highlighted as potentially critical modulators of microbial NO or N₂O production (Richardson et al., 2009; Bergaust et al., 2011; Braker and Conrad, 2011). Such differences likely contribute to observed associations between community structure and greenhouse gas production discussed above. Strong regulation at the transcriptional, translational, and enzyme level is likely occurring in both nitrifier and denitrifier communities, and such regulation complicates attempts to directly relate abundance or diversity of functional guilds to process rates (Braker and Conrad, 2011). Similarly, transient near-instantaneous NO and N₂O accumulation in active nitrifying and denitrifying biofilms in response to O, or NO,⁻ perturbations, as measured with high temporal resolution via microelectrodes, strongly suggests that dynamics are controlled in some cases at the enzyme level (Schreiber et al., 2009). Indeed, culturebased assays targeting denitrifier isolates from two soils demonstrated substantial diversity in sensitivity of Nos enzymes to O₂ and provided a physiological underpinning for a previously observed link between denitrifier community composition and rate of N₂O production (Cavigelli and Robertson, 2000).

Gene expression can be readily quantified with reverse transcriptase quantitative PCR (RT-qPCR), and researchers are now beginning to explore the relationship between gene expression patterns for critical functional genes (amoA, hao, nirK, nirS, norB, and nosZ) and NO/N₂O emissions. Yu et al. (2010) used such an approach to quantify expression of amoA, hao, nirK, and norB in chemostats of *Nitrosomonas europaea* during initiation and recovery from transient anoxic conditions. Surprisingly, expression profiles of nirK and norB were not strongly linked; strong overexpression of nirK concomitant with NO accumulation was observed upon initiation of anoxia, and at the same time norB, amoA, and hao gene transcripts declined in abundance. N₂O emissions peaked during recovery to aerated conditions, but did not correlate strongly to gene expression. The methods of Yu et al. (2010) provide a robust road map for examining relationships between nitrifier gene expression and NO/N₂O emissions in mixed communities in environmental settings, though it should be noted that such an analysis is complicated by the polyphyletic nature of the AOB nirK and norB genes.

RT-qPCR has also been used to assess the relationship between gene expression and NO/N₂O production in systems dominated by denitrifiers. Liu et al. (2010) quantified the relationship between nirS, nirK, and nosZ gene pools, their transcription products, and gas kinetics (NO, N₂O, and N₂) as a function of pH in soils. Interestingly, neither gene pool abundance, nor transcription rates could explain a profound increase in N₂O emissions at low pH. The authors attribute the observed N₂O:N₂ product ratio to post-transcriptional phenomenon, although it is also plausible that enhanced chemodenitrification may play a role.

A worthy future contribution could be made via direct environmental metatranscriptomic assessment of patterns in microbial gene expression in environments with different or varying rates of NO or N_2O production. Metatranscriptomics is the direct sequencing of cDNA generated via reverse transcription of environmental RNA transcripts, and therefore provides a picture of currently transcribed genes in a given environment (Morales and Holben, 2010). In line with the results of Liu et al. (2010), it is important to recognize that measurement of the size or diversity of the gene transcript pool neglects post-transcriptional regulation governing, for example, the assembly of N_2O reductase and enzyme activity (Braker and Conrad, 2011). As of yet, variations in post-transcriptional regulation at the community level and its effect on NO/N₂O production has been little explored in nitrifying and denitrifying pure cultures and communities. Critical insights in this regard may be possible in the future from an approach coupling metatranscriptomics and metaproteomics—that is, direct measurement of the composition of the proteome in an environment.

A need for an integrated approach to NO and $N_{\scriptscriptstyle 2}O$ turnover in complex microbial communities

NO and N_2O can be produced by many different biological and chemical reactions. Considerable progress has been made to allocate NO and N_2O production to certain

biological pathways, but commonly some uncertainty remains, because many processes share the same reaction sequence for $N_{2}O$ production via NO and NO_{2}^{-} . We delineated basically 3 independent approaches to allocate pathways (indirect inference; isotopic signature of N₂O, and isotopic labeling). Parallel use of these approaches will increase confidence in the interpretation. The possibility for various chemical reaction that produce and consume NO and N₂O additionally complicate the picture. Chemical reactions can be important in engineered systems that employ waters with concentrated N-contents and in natural systems, where low pH values coincide with high ammonia inputs. However, in most natural systems and in municipal wastewater treatment, chemical reactions will probably not be the main contributors of NO and N₂O emissions. Nevertheless, the possibility of chemical NO and N₂O production has to be considered when interpreting measurements. Experiments with inactivated biomass could help to give a first estimation of the chemical production rates. However, care has to be taken since the chemical conditions that facilitate chemical NO and N₂O production such as pH and trace metal availability are in turn shaped by microbial activity.

Molecular methods have largely been applied independently from the stable isotope and microelectrode approaches. Ample opportunities exist for integration of these techniques. Indeed, it is clear that such an integrated approach is critical to assessing the importance of microscale heterogeneity in environmental parameters, microbial community structure and stability, and genetic regulation to observed process-level N_2O emission rates.

Joint use of stable isotope methods in conjunction with molecular techniques appears particularly important, given reported difference in isotope effects depending on the community structure of nitrifiers (Casciotti et al., 2003) or denitrifiers (Toyoda et al., 2005) present. In addition, linking source-partioned N₂O as measured via stable isotope techniques to the underlying microbial communities via molecular approaches may allow a more significant measure of the strength of coupling between microbial diversity and measured emissions (Baggs, 2008, 2011). One promising way forward is to assess environmental conditions that favor a shift of dominant N₂O production pathway (for example, from denitrification to nitrification, or vice versa) as measured via stable isotope methods, and to simultaneously link such a shift to diversity and abundance of functional gene pools and transcripts via PCR-based molecular approaches. Such an approach has the potential to yield insights into the relative importance of dominant functional guilds, community composition, and activity in determining microbial NO/N₂O production rates. A fruitful first application would be to combine stable isotope-based methods with the molecular approach pioneered by Yu et al. (2010) for delineating the relationship between transcriptional response of the model AOB Nitrosomonas europaea and NO/N₂O production. This coupled approach would allow conclusive verification of conditions proposed by Chandran et al. (2011) to favor a switch between nitrifier denitrification and NH₂OH oxidation as dominant sources NO and N₂O production.

Similarly, it is clear that molecular tools and microelectrodes are complementary to study NO and N₂O turnover. An excellent example of such integration is provided by Okabe et al. (2011), who profiled microscale gradients in N₂O emissions in anammox granules and compared these profiles to spatial location of AOB, as measured via fluorescence in-situ hybridization (FISH). Based on their results, the authors concluded that putative heterotrophic denitrifiers in the inner part of the granule, not AOB, were likely responsible for the majority of the extant N₂O process emissions. A similar approach is likely applicable in a wide variety of environments, including flocs, sediments, soils, and microbial mats. In addition, use of either FISH probes with higher phylogenetic resolution or depth stratified DNA/RNA extraction coupled to PCR-based measurements may allow a direct microscale assessment of links between microbial diversity and activity and NO/N₂O production profiles. Such a microscale assessment is important because stratified environments likely contain both regions of N₂O production and consumption that are masked during bulk NO/N₂O concentration measurements or DNA/RNA extractions. In addition, microelectrode measurements with high temporal resolution should be combined with qPCR to better understand the regulation of NO and N₂O peak emissions from different environments.

The conditions for NO and N_2O formation in pure cultures and by chemical reactions begin to be better understood. Furthermore, several recent technological advancements allow researcher to investigate the regulation of NO and N_2O formation in complex environments at high spatial and temporal resolution. These advancements provide a cornerstone to understand and mitigate the release of NO and N_2O from natural and engineered environments.

Acknowledgements

We thank Joachim Mohn (Swiss Federal Laboratories for Materials Testing and Research, Empa) for helpful discussions during the preparation of the manuscript.

References

Ahlers, B., Konig, W., and Bock, E. (1990). Nitrite reductase activity in *Nitrobacter vulgaris*. FEMS Microbiology Letters 67, 121-126.

Ahn, J.H., Kwan, T, and Chandran, K. (2011). Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: microbial ecology through nitrous oxide production. Environmental Science and Technology. 45, 2734-2740.

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K., & Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology, 44(12), 4505–4511.

Alluisetti, G. E., Almaraz, A. E., Amorebieta, V. T., Doctorovich, F., and Olabe, J. A. (2004). Metal-catalyzed anaerobic disproportionation of hydroxylamine. Role of diazene and nitroxyl intermediates in the formation of N_2 , N_2O , NO^+ , and NH_3 . Journal of the American Chemical Society 126, 13432-13442.

Andersen, K., Kjaer, T., and Revsbech, N. P. (2001). An oxygen insensitive microsensor for nitrous oxide. Sensors and Actuators B: Chemical 81, 42-48.

Anderson, J. H. (1964). The copper-catalysed oxidation of hydroxylamine. The Analyst 89, 357-362.

Anjum, M. F., Stevanin, T. M., Read, R. C., and Moir, J. W. B. (2002). Nitric Oxide Metabolism in *Neisseria meningitidis*. Journal of Bacteriology 184, 2987-2993.

Avrahami, S., and Bohannan, B. J. M. (2009). N_2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria. Global Change Biology 15, 643-655.

Baggs, E. M. (2011). Soil microbial sources of nitrous oxide: recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability 3, 321-327.

Baggs, E. M. (2008). A review of stable isotope techniques for N₂O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22, 1664-1672.

Baggs, E. M., and Blum, H. (2004). CH_4 oxidation and emissions of CH_4 and N_2O from Lolium perenne swards under elevated atmospheric CO_2 . Soil Biology and Biochemistry 36, 713-723.

Bateman, E. J., and Baggs, E. M. (2005). Contributions of nitrification and denitrification to N_2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41, 379-388.

Bauer, S. (1995). Membrane introduction mass spectrometry; an old method that is gaining new interest through recent technological advances. Trends in Analytical Chemistry 14, 202-213.

Baulch, H. M., Schiff, S. L., Thuss, S. J., and Dillon, P. J. (2011). Isotopic character of nitrous oxide emitted from streams. Environmental Science and Technology 45, 4682-4688.

Baumann, B., Snozzi, M., Zehnder, a J., and van der Meer, J. R. (1996). Dynamics of denitrification activity of *Paracoccus denitrificans* in continuous culture during aerobic-anaerobic changes. Journal of Bacteriology 178, 4367-74.

Beaulieu, J. J., Tank, J. L., Hamilton, S. K., Wollheim, W. M., Hall, R. O., Mulholland, P. J., Peterson, B. J., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., et al. (2011). Nitrous oxide emission from denitrification in stream and river networks. Proceedings of the National Academy of Sciences of the United States of America 108, 214-9. Beaumont, H. J. E., Lens, S. I., Reijnders, W. N. M., Westerhoff, H. V., and van Spanning, R. J. M. (2004a). Expression of nitrite reductase in *Nitrosomonas europaea* involves NsrR, a novel nitrite-sensitive transcription repressor. Molecular Microbiology 54, 148-58.

Beaumont, H. J. E., van Schooten, B., Lens, S. I., Westerhoff, H. V., and van Spanning, R. J. M. (2004b). *Nitrosomonas europaea* Expresses a Nitric Oxide Reductase during Nitrification. Journal of Bacteriology 186, 4417-4421.

Beaumont, H. J. E., Hommes, N. G., Sayavedra-Soto, L. A., Arp, D. J., Arciero, D. M., Hooper, A. B., Westerhoff, H. V., and van Spanning, R. J. M. (2002). Nitrite Reductase of *Nitrosomonas europaea* Is Not Essential for Production of Gaseous Nitrogen Oxides and Confers Tolerance to Nitrite. Journal of Bacteriology 184, 2557-2560.

Bedioui, F., and Villeneuve, N. (2003). Electrochemical Nitric Oxide Sensors for Biological Samples - Principle, Selected Examples and Applications. Electroanalysis 15, 5-18.

Bergaust, L., Bakken, L. R., and Frostegård, A. (2011). Denitrification regulatory phenotype, a new term for the characterization of denitrifying bacteria. Biochemical Society Transactions 39, 207-12.

Bergaust, L., Mao, Y., Bakken, L. R., and Frostegård, A. (2010). Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous oxide reductase in *Paracoccus denitrificans*. Applied and Environmental Microbiology 76, 6387-96.

Berks, B. C., Baratta, D., Richardson, J., and Ferguson, S. J. (1993). Purification and characterization of a nitrous oxide reductase from *Thiosphaera pantotropha*. Implications for the mechanism of aerobic nitrous oxide reduction. European Journal of Biochemistry 212, 467-76.

Bollmann, A., and Conrad, R. (1998). Influence of O_2 availability on NO and N_2O release by nitrification and denitrification in soils. Global Change Biology 4, 387-396.

Bonner, F. T., and Stedman, G. (1996). "The Chemistry of Nitric Oxide and Redox-related Species", in Methods in Nitric Oxide Research, eds. M. Feelisch and J. S. Stamler (New York: John Wiley & Sons), 3-18.

Bonner, F.T. and Hughes, M.N. (1988). The aqueous solution chemistry of nitrogen in low positive oxidation states. Comments on Inorganic Chemistry 7, 215-234.

Bonner, F. T., Dzelzkalns, L. S., and Bonucci, J. A. (1978). Properties of nitroxyl as intermediate in the nitric oxide-hydroxylamine reaction and in trioxodinitrate decomposition. Inorganic Chemistry 17, 2487-2494.

Braker, G., Dörsch, P., and Bakken, L. R. (2012). Genetic characterization of denitrifier communities with contrasting intrinsic functional traits. FEMS Microbiology Ecology 79, 542-554.

Braker, G., and Conrad, R. (2011). Diversity, structure, and size of N₂O producing microbial communities in soil--what matters for their functioning? Advances in Applied Microbiology 75, 33-69.

Braker, G., and Tiedje, J. M. (2003). Nitric Oxide Reductase (norB) Genes from Pure Cultures and Environmental Samples. Applied and Environmental Microbiology 69, 3476-3483.

Braker, G., Fesefeldt, A., and Witzel, K.-P. (1998). Development of PCR Primer Systems for Amplification of Nitrite Reductase Genes (nirK and nirS) To Detect Denitrifying Bacteria in Environmental Samples. Applied and Environmental Microbiology 64, 3769-3775.

Brenninkmeijer, C. A. M., and Röckmann, T. (1999). Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Communications in Mass Spectrometry 13, 2028-2033.

Bru, D., Ramette, A., Saby, N. P. A., Dequiedt, S., Ranjard, L., Jolivet, C., Arrouays, D., and Philippot, L. (2011). Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME Journal 5, 532-542.

Bru, D., Sarr, A., and Philippot, L. (2007). Relative Abundances of Proteobacterial Membrane-Bound and Periplasmic Nitrate Reductases in Selected Environments. Applied and Environmental Microbiology 73, 5971-5974.

Butler, J. H., and Gordon, L. I. (1986a). An improved gas chromatographic method for the measurement of hydroxylamine in marine and fresh waters. Marine Chemistry 19, 229-243.

Butler, J. H., and Gordon, L. I. (1986b). Rates of nitrous oxide production in the oxidation of hydroxylamine by iron (III). Inorganic Chemistry 25, 4573-4577.

Cabail, M. Z., Kostera, J., and Pacheco, a A. (2005). Laser photoinitiated nitrosylation of 3electron reduced *Nm europaea* hydroxylamine oxidoreductase: kinetic and thermodynamic properties of the nitrosylated enzyme. Inorganic Chemistry 44, 225-31.

Cabail, M. Z., and Pacheco, a A. (2003). Selective one-electron reduction of *Nitrosomonas europaea* hydroxylamine oxidoreductase with nitric oxide. Inorganic Chemistry 42, 270-2.

Cantera, J. J. L., and Stein, L. Y. (2007). Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environmental Microbiology 9, 765-776.

Casciotti, K. L., Sigman, D. M., and Ward, B. B. (2003). Linking Diversity and Stable Isotope Fractionation in Ammonia-Oxidizing Bacteria. Geomicrobiology Journal 20, 335-353.

Cavigelli, M. A., and Robertson, G. P. (2000). The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology 81, 1402-1414.

Chalk, P. M., and Smith, C. J. (1983). "Chemodenitrification," in Gaseous Loss of Nitrogen from Plant-Soil Systems, , eds. J. R. Freney and J. R. Simpson (Dordrecht, The Netherlands: Kluwer).

Chandran, K., Stein, L. Y., Klotz, M. G., and van Loosdrecht, M. C. M. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39, 1832-7.

Charpentier, J., Farias, L., Yoshida, N., Boontanon, N., and Raimbault, P. (2007). Nitrous oxide distribution and its origin in the central and eastern South Pacific Subtropical Gyre. Biogeosciences 4, 729-741.

van Cleemput, O. (1998). Subsoils: Chemo- and biological denitrification, N_2O and N_2 emissions. Nutrient Cycling in Agroecosystems 52, 187-194.

van Cleemput, O., and Samater, A. H. (1996). Nitrite in soils: Accumulation and role in the formation of gaseous N compounds. Fertilizer Research 45, 81-89.

Corker, H., and Poole, R. K. (2003). Nitric oxide formation by *Escherichia coli*- Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. Journal of Biological Chemistry 278, 31584-92.

Costa, C., Macedo, A., Moura, I., Moura, J. G. G., Le Gall, J., Berlier, Y., Liu, M.-Y., and Payne, W. J. (1990). Regulation of the hexaheme nitrite/nitric oxide reductase of *Desulfovibrio desulfuricans, Wolinella succinogenes* and *Escherichia coli*: A mass spectrometric study. FEBS Letters 1, 67-70.

Crutzen, P. J. (1979). The Role of NO and NO_2 in the Chemistry of the Troposphere and Stratosphere. Annual Review of Earth and Planetary Sciences 7, 443-472.

Čuhel, J., Šimek, M., Laughlin, R. J., Bru, D., Chèneby, D., Watson, C. J., and Philippot, L. (2010). Insights into the Effect of Soil pH on N_2O and N_2 Emissions and Denitrifier Community Size and Activity. Applied and Environmental Microbiology 76, 1870-1878.

Cutruzzolà, F. (1999). Bacterial nitric oxide synthesis. Biochimica et Biophysica Acta 1411, 231-49.

Döring, C., and Gehlen, H. (1961). Über die Kinetic der Reaktion zwischen Hydroxylamin und Salpetriger Säure. Zeitschrift für anorganische und allgemeine Chemie 312, 32-44.

DuMond, J.F. and King, S.B. (2011). The chemistry of nitroxyl-releasing compounds. Antioxidants and Redox Signaling 14, 1637-1648.

Elberling, B., Christiansen, H. H., and Hansen, B. U. (2010). High nitrous oxide production from thawing permafrost. Nature Geoscience 3, 332-335.

Elkins, J. W., Wofsy, S. C., McElroy, M. B., Kolb, C. E., and Kaplan, W. A. (1978). Aquatic sources and sinks for nitrous oxide. Nature 275, 602 - 606.

Eschenbach, W., and Well, R. (2011). Online measurement of denitrification rates in aquifer samples by an approach coupling an automated sampling and calibration unit to a membrane inlet mass spectrometry system. Rapid Communications in Mass Spectrometry 25, 1993-2006.

Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., et al. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-8.

Farias, L., Paulmier, a, and Gallegos, M. (2007). Nitrous oxide and N-nutrient cycling in the oxygen minimum zone off northern Chile. Deep Sea Research Part I: Oceanographic Research Papers 54, 164-180.

Fehling, C. and Friedrichs, G. (2011). Dimerization of HNO in aqueous solution: An interplay of solvation effects, fast acid-base equilibria, and intramolecular hydrogen bonding? Journal of the American Chemical Society 133, 17912-17922.

Fernández, M. L., Estrin, D. a, and Bari, S. E. (2008). Theoretical insight into the hydroxylamine oxidoreductase mechanism. Journal of Inorganic Biochemistry 102, 1523-30.

Firestone, M. K., Firestone, R. B., and Tiedje, J. M. . (1980). Nitrous Oxide from Soil Denitrification: Factors Controlling its Biological Production. Science 208, 749-751.

Firestone, M. K., and Tiedje, J. M. (1979). Temporal Change in Nitrous Oxide and Dinitrogen from Denitrification Following Onset of Anaerobiosis. Applied and Environmental Microbiology 38, 673-679.

Frame, C. H., and Casciotti, K. L. (2010). Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7, 2695-2709.

Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B. (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences, USA 102, 14683-14688.

Freitag, A., Rudert, M., and Bock, E. (1987). Growth of *Nitrobacter* by dissimilatoric nitrate reduction. FEMS Microbiology Letters 48, 105-109.

Friedemann, M. N., Robinson, S. W., and Gerhardt, G. a (1996). o-Phenylenediaminemodified carbon fiber electrodes for the detection of nitric oxide. Analytical Chemistry 68, 2621-8.

Frunzke, K., and Zumft, W. (1986). Inhibition of nitrous-oxide respiration by nitric oxide in the denitrifying bacterium *Pseudomonas perfectomarina*. Biochimica et Biophysica Acta 852, 119-125.

Gao, H., Schreiber, F., Collins, G., Jensen, M. M., Svitlica, O., Kostka, J. E., Lavik, G., de Beer, D., Zhou, H.-yang, and Kuypers, M. M. M. (2010). Aerobic denitrification in permeable Wadden Sea sediments. The ISME Journal 4, 417-26.

Garbeva, P., Baggs, E. M., and Prosser, J. I. (2007). Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from *Nitrosospira* species isolated from soil. FEMS Microbiology Letters 266, 83-89.

Garcia-Lledo, A., Vilar-Sanz, A., Trias, R., Hallin, S., and Baneras, L. (2011). Genetic potential for N_2O emissions from the sediment of a free water surface constructed wetland. Water Research 45, 5621-5632.

Gardner, A. M., Helmick, R. A., and Gardner, P. R. (2002). Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in *Escherichia coli*. Journal of Biological Chemistry 277, 8172-7.

Gardner, P. R., Gardner, A. M., Martin, L. A., and Salzman, A. L. (1998). Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proceedings of the National Academy of Sciences of the United States of America 95, 10378-83.

Geets, J., de Cooman, M., Wittebolle, L., Heylen, K., Vanparys, B., De Vos, P., Verstraete, W., and Boon, N. (2007). Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge. Applied Microbiology and Biotechnology 75, 211-21.

Gentile, M. E., Lynn Nyman, J., and Criddle, C. S. (2007). Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. ISME Journal 1, 714-728.

Gieseke, A., and de Beer, D. (2004). "Use of microelectrodes to measure in situ microbial activities in biofilms, sediments, and microbial mats", in Molecular Microbial Ecology Manual, eds. G. Kowalchuk, F. de Bruijn, I. Head, A. Akkermans, and J. van Elsas (Springer Heidelberg).

Gilberthorpe, N. J., and Poole, R. K. (2008). Nitric oxide homeostasis in *Salmonella typhimurium*: roles of respiratory nitrate reductase and flavohemoglobin. Journal of Biological Chemistry 283, 11146-54.

Gomes, C. M., Giuffrè, A., Forte, E., Vicente, J. B., Saraiva, L. M., Brunori, M., and Teixeira, M. (2002). A novel type of nitric-oxide reductase. *Escherichia coli* flavorubredoxin. Journal of Biological Chemistry 277, 25273-6.

Granger, J., and Ward, B. B. (2012). Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnology and Oceanography 48, 313-318.

Gödde, M., and Conrad, R. (2000). Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biology and Fertility of Soils 32, 120-128.

Hallin, S., Jones, C. M., Schloter, M., and Philippot, L. (2009). Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. ISME Journal.

Heisterkamp, I., Schramm, a, de Beer, D., and Stief, P. (2010). Nitrous oxide production associated with coastal marine invertebrates. Marine Ecology Progress Series 415, 1-9.

Hendrich, M. P., Upadhyay, A. K., Riga, J., Arciero, D. M., and Hooper, A. B. (2002). Spectroscopic characterization of the NO adduct of hydroxylamine oxidoreductase. Biochemistry 41, 4603-11.

Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S., and Saraste, M. (2000). Nitric oxide reductases in bacteria. Biochimica et Biophysica Acta 1459, 266-73.

Henry, S., Bru, D., Stres, B., Hallet, S., and Philippot, L. (2006). Quantitative Detection of the nosZ Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils. Applied and Environmental Microbiology 72, 5181-5189.

Henry, S., Baudoin, E., Lopezgutierrez, J., Martinlaurent, F., Brauman, A., and Philippot, L. (2004). Quantification of denitrifying bacteria in soils by gene targeted real-time PCR. Journal of Microbiological Methods 59, 327-335.

Hojberg, O., Revsbech, N. P., and Tiedje, J. M. (1994). Denitrification in Soil Aggregates Analyzed with Microsensors for Nitrous Oxide and Oxygen. Soil Science Society of America Journal 58, 1691-1698.

Hooper, A. B., and Terry, K. R. (1979). Hydroxylamine oxidoreductase of *Nitrosomonas*. Production of nitric oxide from hydroxylamine. Biochimica et Biophysica Acta 571, 12-20.

Hooper, A. B. (1968). A nitrite-reducing enzyme from *Nitrosomonas europaea*: Preliminary characterization with hydroxylamine as electron donor. Biochimica et Biophysica Acta 162, 49-65.

Horn, M. A., Schramm, A., and Drake, H. L. (2003). The Earthworm Gut: an Ideal Habitat for Ingested N_2O -Producing Microorganisms. Applied and Environmental Microbiology 69, 1662-1669.

Hu, H. Y., Goto, N., and Fujie, K. (2001). Effect of pH on the reduction of nitrite in water by metallic iron. Water Research 35, 2789-2793.

Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y. and Tanaka, N. (1997). The 2.8 Å structure of hydroxylamine oxidoreductase from a nitrifying chemoautotrophic bacterium, Nitrosomonas europaea. Nature Structural Biology 4(4), 276-284.

IPCC. (2001). Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press.

Jenni, S., Mohn, J., Emmenegger, L., and Udert, K. M. (2012). Temperature dependence and interferences of NO and N_2O microelectrodes used in wastewater treatment. Environmental Science & Technology 46, 2257-2266.

Jeroschewski, P., Steuckart, C., and Kühl, M. (1996). An Amperometric Microsensor for the Determination of H_2S in Aquatic Environments. Analytical Chemistry 68, 4351-4357.

Jinuntuya-Nortman, M., Sutka, R. L., Ostrom, P. H., Gandhi, H., and Ostrom, N. E. (2008). Isotopologue fractionation during microbial reduction of N_2O within soil mesocosms as a function of water-filled pore space. Soil Biology and Biochemistry 40, 2273-2280.

Jones, C. M., Stres, B., Rosenquist, M., and Hallin, S. (2008). Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Molecular Biology and Evolution 25, 1955-1966.

Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M., and Van Loosdrecht, M. C. M. (2011). Reduced iron induced nitric oxide and nitrous oxide emission. Water Research 45, 5945-5952.

Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2008a). Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research 42, 812-26.

Kampschreur, M. J., Tan, N. C. G., Kleerebezem, R., Picioreanu, C., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2008b). Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environmental Science & Technology 42, 429-35.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43, 4093-103.

Kartal, B., Maalcke, W. J., de Almeida, N. M., Cirpus, I., Gloerich, J., Geerts, W., Op den Camp, H. J. M., Harhangi, H. R., Janssen-Megens, E. M., Francoijs, K.-J., et al. (2011). Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127-130.

Kartal, B., Tan, N. C. G., Van de Biezen, E., Kampschreur, M. J., Van Loosdrecht, M. C. M., and Jetten, M. S. M. (2010). Effect of nitric oxide on anammox bacteria. Applied and Environmental Microbiology 76, 6304-6.

Kester, R. A., de Boer, W., and Laanbroek, H. J. (1997). Production of NO and N_2O by Pure Cultures of Nitrifying and Denitrifying Bacteria during Changes in Aeration. Applied and Environmental Microbiology 63, 3872-7.

Kim, S. O., Orii, Y., Lloyd, D., Hughes, M. N., and Poole, R. K. (1999). Anoxic function for the *Escherichia coli* flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Letters 445, 389-94.
Kitamura, Y., Uzawa, T., Oka, K., Komai, Y., Ogawa, H., Takizawa, N., Kobayashi, H., and Tanishita, K. (2000). Microcoaxial electrode for in vivo nitric oxide measurement. Analytical Chemistry 72, 2957-62.

Kloos, K., Mergel, A., Sch, C., and Bothe, H. (2001). Denitrification within the genus Azospirillum and other associative bacteria. Functional Plant Biology 28, 991-998.

Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., et al. (2009). Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochimica et Cosmochimica Acta 73, 3115-3133.

Kool, D. M., Wrage, N., Zechmeister-Boltenstern, S., Pfeffer, M., Brus, D., Oenema, O., and van Groenigen, J. W. (2010). Nitrifier denitrification can be a source of N₂O from soil: A revised approach to the dual-isotope labelling method. European Journal of Soil Science 61, 759-772.

Kool, D. M., Wrage, N., Oenema, O., Dolfing, J., and van Groenigen, J. W. (2007). Oxygen exchange between (de)nitrification intermediates and H_2O and its implications for source determination of NO_3^- and N_2O : A review. Rapid Communications in Mass Spectrometry 21, 3569-3578.

Kostera, J., Youngblut, M. D., Slosarczyk, J. M., and Pacheco, A. A. (2008). Kinetic and product distribution analysis of NO^{*} reductase activity in *Nitrosomonas europaea* hydroxylamine oxidoreductase. Journal of Biological Inorganic Chemistry 13, 1073-83.

Körner, H., and Zumft, W. G. (1989). Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of *Pseudomonas stutzeri*. Applied and Environmental Microbiology 55, 1670-6.

Lammel, G., and Cape, J. N. (1996). Nitrous acid and nitrite in the atmosphere. Chemical Society Reviews 25, 361-369.

Law, Y., Ni, B.-J., Lant, P. and Yuan, Z. (2012). N_2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Research 46, 3409-3419.

Lee, Y., Oh, B. K., and Meyerhoff, M. E. (2004). Improved planar amperometric nitric oxide sensor based on platinized platinum anode. 1. Experimental results and theory when applied for monitoring NO release from diazeniumdiolate-doped polymeric films. Analytical Chemistry 76, 536-44.

Liengaard, L., Nielsen, L. P., Revsbech, N. P., Elberling, B., Priemé, a., Prast, a. E., and Kühl, M. (2011). Effects of flooding cycles in the Pantanal on the turnover of soil nitrogen pools and emission of N_2O . Biogeosciences Discussions 8, 5991-6030.

Lipschultz, F., Zafiriou, O. C., Wofsy, S. C., McElroy, M. B., Valois, F. W., and Watson, S. W. (1981). Production of NO and N₂O by Soil nitrifying bacteria. Nature 294, 641-643.

Liu, B., Mørkved, P. T., Frostegård, Å., and Bakken, L. R. (2010). Denitrification gene pools, transcription and kinetics of NO, N_2O and N_2 production as affected by soil pH. FEMS Microbiology Ecology 72, 407-417.

Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M. and Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research 46(11), 3563-3573.

Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., and Vacherie, B. (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America 107, 13479-13484.

Malinski, T., and Taha, Z. (1992). Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358, 676 - 678.

Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62, 413-430.

Markfoged, R., Nielsen, L. P., Nyord, T., Ottosen, L. D. M., and Revsbech, N. P. (2011). Transient N_2O accumulation and emission caused by O_2 depletion in soil after liquid manure injection. European Journal of Soil Science 62, 541-550.

Meyer, R. L., Allen, D. E., and Schmidt, S. (2008). Nitrification and denitrification as sources of sediment nitrous oxide production: A microsensor approach. Marine Chemistry 110, 68-76.

Michotey, V., Mejean, V., and Bonin, P. (2000). Comparison of Methods for Quantification of Cytochrome cd 1-Denitrifying Bacteria in Environmental Marine Samples. Applied and Environmental Microbiology 66, 1564-1571.

Miranda, K.M. (2005) The chemistry of nitroxyl (HNO) and implications in biology. Coordination Chemistry Reviews 249, 433-455.

Moews Jr, P. C., and Audrieth, L. F. (1959). The autoxidation of hydroxylamine. Journal of Inorganic and Nuclear Chemistry 11, 242-246.

Mohn, J., Tuzson, B., Manninen, A., Yoshida, N., Toyoda, S., Brand, W. A., and Emmenegger, L. (2012). Site selective real-time measurements of ambient N_2O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques Discussions 5, 813-838

Mohn, J., Guggenheim, C., Tuzson, B., Vollmer, M., Toyoda, S., Yoshida, N., and Emmenegger, L. (2010). A liquid-free preconcentration unit for measurements of ambient N_2O isotopomers by QCLAS. Atmospheric Measurement Techniques 3, 609-618.

Montzka, S. a, Dlugokencky, E. J., and Butler, J. H. (2011). Non-CO₂ greenhouse gases and climate change. Nature 476, 43-50.

Morales, S. E., and Holben, W. E. (2011). Linking bacterial identities and ecosystem processes: can "omic" analyses be more than the sum of their parts? FEMS Microbiology Ecology 75, 1-16.

Morales, S. E., Cosart, T., and Holben, W. E. (2010). Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME Journal 4, 799-808.

Morley, N., Baggs, E. M., Dörsch, P., and Bakken, L. (2008). Production of NO, N_2O and N_2 by extracted soil bacteria, regulation by $NO_2(-)$ and O_2 concentrations. FEMS Microbiology Ecology 65, 102-12.

Naqvi, S. W., Jayakumar, D. a, Narvekar, P. V., Naik, H., Sarma, V. V., D'Souza, W., Joseph, S., and George, M. D. (2000). Increased marine production of N_2O due to intensifying anoxia on the Indian continental shelf. Nature 408, 346-349.

Nicholls, J. C., Davies, C. A., and Trimmer, M. (2007). High-resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea. Limnology and Oceanography 52, 156-168.

Nielsen, M., Gieseke, A., de Beer, D., and Revsbech, N. (2009). Nitrate, nitrite, and nitrous oxide transformations in sediments along a salinity gradient in the Weser Estuary. Aquatic Microbial Ecology 55, 39-52.

Okabe, S., Oshiki, M., Takahashi, Y., and Satoh, H. (2011). N_2O emission from a partial nitrification-anammox process and identification of a key biological process of N_2O emission from anammox granules. Water Research 45, 6461-6470.

Otte, S., Grobben, N. G., Robertson, L. a, Jetten, M. S., and Kuenen, J. G. (1996). Nitrous oxide production by *Alcaligenes faecalis* under transient and dynamic aerobic and anaerobic conditions. Applied and Environmental Microbiology 62, 2421-6.

Palmer, K., Biasi, C., and Horn, M. A. (2011). Contrasting denitrifier communities relate to contrasting N(2)O emission patterns from acidic peat soils in arctic tundra. The ISME Journal, 1-20.

Palmer, K., Drake, H. L., and Horn, M. A. (2010). Association of Novel and Highly Diverse Acid-Tolerant Denitrifiers with N_2O Fluxes of an Acidic Fen. Applied and Environmental Microbiology 76, 1125-1134.

Park, S., Croteau, P., Boering, K. A., Etheridge, D. M., Ferretti, D., Fraser, P. J., Kim, K. R., Krummel, P. B., Langenfelds, R. L., van Ommen, T. D., Steele, L. P., et al. (2012). Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nature Geoscience 5, 261-265.

Park, S., Pérez, T., Boering, K. A., Trumbore, S. E., Gil, J., Marquina, S., and Tyler, S. C. (2011). Can N_2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N_2O production and consumption in tropical soils? Global Biogeochemical Cycles 25.

Patureau, D., Zumstein, E., Delgenes, J. P., and Moletta, R. (2000). Aerobic Denitrifiers Isolated from Diverse Natural and Managed Ecosystems. Microbial Ecology 39, 145-152.

Pellicer-Nàcher, C., Sun, S., Lackner, S., Terada, A., Schreiber, F., Zhou, Q., and Smets, B. F. (2010). Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration. Environmental Science & Technology 44, 7628-34.

Perez, T., Garcia-Montiel, D., Trumbore, S., Tyler, S., Camargo, P. de, Moreira, M., Piccolo, M., and Cerri, C. (2006). Nitrous oxide nitrification and denitrification ¹⁵N enrichment factors from amazon forest soils. Ecological Applications 16, 2153-2167.

Philippot, L., Andert, J., Jones, C. M., Bru, D., and Hallin, S. (2011). Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N_2O emissions from soil. Global Change Biology 17, 1497-1504.

Philippot, L., Čuhel, J., Saby, N. P. A., Chèneby, D., Chroňáková, A., Bru, D., Arrouays, D., Martin-Laurent, F., and Šimek, M. (2009). Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environmental Microbiology 11, 1518-1526.

Poth, M. (1986). Dinitrogen Production from Nitrite by a *Nitrosomonas* Isolate. Applied and Environmental Microbiology 52, 957-959.

Poth, M., and Focht, D. D. (1985). ¹⁵N Kinetic Analysis of N₂O Production by *Nitrosomonas*: an Examination of Nitrifier Denitrification. Applied and Environmental Microbiology 49, 1134-1141.

Prosser, J. I., Jansson, J. K., and Liu, W.-T. (2010). "Nucleic-acid-based characterization of community structure and function", in Environmental Molecular Microbiology, eds. W.-T. Liu and J. K. Jansson (Norfolk, UK: Caister Academic Press), 63-86.

Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62, 142-160.

Ravishankara, A. R., Daniel, J. S., and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123-5.

Reed, H. E. and Martiny, J. B. H. (2007). Testing the functional significance of microbial composition in natural communities. FEMS Microbiology Ecology 62, 161-170.

Revsbech, N. P., Nielsen, L. P., Christensen, P. B., and Sørensen, J. (1988). Combined oxygen and nitrous oxide microsensor for denitrification studies. Applied and Environmental Microbiology 54, 2245-9.

Revsbech, N. P., Jørgensen, B. B., and Blackburn, T. H. (1980). Oxygen in the Sea Bottom Measured with a Microelectrode. Science 207, 1355-1356.

Rich, J. J., and Myrold, D. D. (2004). Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA. Soil Biology and Biochemistry 36, 1431-1441.

Rich, J. J., Heichen, R. S., Bottomley, P. J., Cromack, K., and Myrold, D. D. (2003). Community Composition and Functioning of Denitrifying Bacteria from Adjacent Meadow and Forest Soils. Applied and Environmental Microbiology 69, 5974-5982.

Richardson, D., Felgate, H., Watmough, N., Thomson, A., and Baggs, E. M. (2009). Mitigating release of the potent greenhouse gas N_2O from the nitrogen cycle - could enzymic regulation hold the key? Trends in Biotechnology 27, 388-97.

Ritchie, G.A. and Nicholas, D.J. (1972). Identification of the sources of nitrous oxide produced by oxidative and reductive processes in *Nitrosomonas europaea*. Biochemical Journal 126, 1181-1191.

Rock, J. D., Thomson, M. J., Read, R. C., and Moir, J. W. B. (2007). Regulation of denitrification genes in *Neisseria meningitidis* by nitric oxide and the repressor NsrR. Journal of Bacteriology 189, 1138-44.

Rotthauwe, J. H., Witzel, K. P., and Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63, 4704-4712.

Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L. (2011). Isotopic Signature of N₂O Produced by Marine Ammonia-Oxidizing Archaea. Science 333, 7-10.

Schmidt, H. L., Werner, R. A., Yoshida, N., and Well, R. (2004a). Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Communications in Mass Spectrometry 18, 2036-2040.

Schmidt, I. (2009). Chemoorganoheterotrophic growth of *Nitrosomonas europaea* and Nitrosomonas eutropha. Current Microbiology 59, 130-8.

Schmidt, I., van Spanning, R. J. M., and Jetten, M. S. M. (2004b). Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology 150, 4107-14.

Schreiber, F., Beutler, M., Enning, D., Lamprecht-Grandio, M., Zafra, O., González-Pastor, J. E., and Beer, D. de (2011). The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation , swarming , and dispersal. BMC Microbiology 111.

Schreiber, F., Stief, P., Gieseke, A., Heisterkamp, I. M., Verstraete, W., de Beer, D., and Stoodley, P. (2010). Denitrification in human dental plaque. BMC Biology 8, 24.

Schreiber, F., Loeffler, B., Polerecky, L., Kuypers, M. M. M., and de Beer, D. (2009). Mechanisms of transient nitric oxide and nitrous oxide production in a complex biofilm. The ISME Journal 3, 1301-13.

Schreiber, F., Polerecky, L., and de Beer, D. (2008). Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Analytical Chemistry 80, 1152-8.

Schreiber, F., Stief, P., Kuypers, M. M. M., and de Beer, D. Nitric oxide turnover in a permeable river sediment-in preparation.

Schuurkes, J. A. A. R., and Mosello, R. (1988). The role of external ammonium inputs in freshwater acidification. Swiss Journal of Hydrology 50, 71-87.

Schwartz, S. E., and White, W. H. (1981). Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution. Advances in environmental science and engineering. Volume 4, 1-45.

Shafirovich, V. and Lymar, S.V. (2002). Nitroxyl and its anion in aqueous solutions: Spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. Proceedings of the National Academy of Sciences of the United States of America 99, 7340-7345.

Shatalin, K., Gusarov, I., Avetissova, E., Shatalina, Y., McQuade, L. E., Lippard, S. J., and Nudler, E. (2008). Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. Proceedings of the National Academy of Sciences of the United States of America 105, 1009-13.

Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J. I., and Baggs, E. M. (2006). *Nitrosospira spp.* can produce nitrous oxide via a nitrifier denitrification pathway. Environmental Microbiology 8, 214-22.

Shibuki, K. (1990). An Electrochemical Microprobe for Detecting Nitric-Oxide Release in Brain-Tissue. Neuroscience Research 9, 69-76.

Shin, J. H., Weinman, S. W., and Schoenfisch, M. H. (2005). Sol-gel derived amperometric nitric oxide microsensor. Analytical Chemistry 77, 3494-501.

Smith, C. J., and Osborn, A. M. (2008). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology 67, 6-20.

Snider, D. M., Schiff, S. L., and Spoelstra, J. (2009). ¹⁵N/¹⁴N and ¹⁸O/¹⁶O stable isotope ratios of nitrous oxide produced during denitrification in temperate forest soils. Geochimica Et Cosmochimica Acta 73, 877-888.

Starkenburg, S. R., Arp, D. J., and Bottomley, P. J. (2008a). Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in *Nitrobacter winogradskyi* Nb-255. Environmental Microbiology 10, 3036-42.

Starkenburg, S. R., Larimer, F. W., Stein, L. Y., Klotz, M. G., Chain, P. S. G., Luis, A., Poretpeterson, A. T., Gentry, M. E., Arp, D. J., Ward, B., et al. (2008b). Complete Genome Sequence of *Nitrobacter hamburgensis* X14 and Comparative Genomic Analysis of Species within the Genus *Nitrobacter*. Applied and Environmental Microbiology 74, 2852-2863.

Starkenburg, S. R., Chain, P. S. G., Sayavedra-Soto, L. A., Hauser, L., Land, M. L., Larimer, F. W., Malfatti, S. A., Klotz, M. G., Bottomley, P. J., Arp, D. J., et al. (2006). Genome Sequence of the Chemolithoautotrophic Nitrite-Oxidizing Bacterium *Nitrobacter winogradskyi* Nb-255. Applied and Environmental Microbiology 72, 2050-2063.

Stein, L. Y. (2011). Surveying N_2O -producing pathways in bacteria. Methods in Enzymology 486, 131-52.

Stein, L. Y., and Yung, Y. L. (2003). Production, Isotopic Composition, and a Atmospheric Fate of Biologically Produced Nitrous Oxide. Annual Review of Earth and Planetary Sciences 31, 329-356.

Stief, P., Poulsen, M., Nielsen, L. P., Brix, H., and Schramm, A. (2009). Nitrous oxide emission by aquatic macrofauna. Proceedings of the National Academy of Sciences of the United States of America 106, 4296-300.

Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M. W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., et al. (2006). Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790-4.

Sudhamsu, J., and Crane, B. R. (2009). Bacterial nitric oxide synthases: what are they good for? Trends in Microbiology 17, 212-8.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., and Li, F. (2006). Distinguishing Nitrous Oxide Production from Nitrification and Denitrification on the Basis of Isotopomer Abundances. Applied and Environmental Microbiology 72, 638-644.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A. (2004). Nitrogen isotopomer site preference of N₂O produced by Nitrosomonas europaea and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 18, 1411-1412.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A. (2003). Nitrogen isotopomer site preference of N₂O produced by Nitrosomonas europaea and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 17, 738-745.

Sørensen, J., Tiedje, J. M., and Firestone, R. B. (1980). Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying *Pseudomonas fluorescens*. Applied and Environmental Microbiology 39, 105-8.

Thomsen, J. K., Geest, T., and Cox, R. P. (1994). Mass spectrometric studies of the effect of pH on the accumulation of intermediates in denitrification by *Paracoccus denitrificans*. Applied and Environmental Microbiology 60, 536-541.

Throbäck, I. N., Enwall, K., Jarvis, Å., and Hallin, S. (2004). Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology 49, 401-417.

Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K., and Shiomi, H. (2011). Isotopomer Analysis of Production and Consumption Mechanisms of N_2O and CH_4 in an Advanced Wastewater Treatment System. Environmental Science & Technology 45, 917-922.

Toyoda, S., Iwai, H., Koba, K., and Yoshida, N. (2009). Isotopomeric analysis of N_2O dissolved in a river in the Tokyo metropolitan area. Rapid Communications in Mass Spectrometry 23, 809-821.

Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., and Tanji, Y. (2005). Fractionation of N_2O isotopomers during production by denitrifier. Soil Biology and Biochemistry 37, 1535-1545.

Toyoda, S., and Yoshida, N. (1999). Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry 71, 4711-4718.

Udert, K. M., Larsen, T. A., and Gujer, W. (2005). Chemical nitrite oxidation in acid solutions as a consequence of microbial ammonium oxidation. Environmental Science and Technology 39, 4066-4075.

Upadhyay, A. K., Hooper, A. B., and Hendrich, M. P. (2006). NO reductase activity of the tetraheme cytochrome C_{554} of *Nitrosomonas europaea*. Journal of the American Chemical Society 128, 4330-7.

Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., and Bowler, C. (2006). A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biology 4, e60.

Waechter, H., Mohn, J., Tuzson, B., Emmenegger, L., and Sigrist, M. W. (2008). Determination of N_2O isotopomers with quantum cascade laser based absorption spectroscopy. Optics Express 16, 9239-9244.

Wahlen, M., and Yoshinari, T. (1985). Oxygen isotope ratios in N_2O from different environments. Nature 313, 780-782.

Wallenstein, M. D., Myrold, D. D., Firestone, M., and Voytek, M. (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecological Applications 16, 2143-2152.

Ward, B. B., and Zafiriou, O. C. (1988). Nitrification and Nitric-Oxide in the Oxygen Minimum of the Eastern Tropical North Pacific. Deep-Sea Research Part a-Oceanographic Research Papers 35, 1127-1142.

Well, R., Kurganova, I., Lopesdegerenyu, V., and Flessa, H. (2006). Isotopomer signatures of soil-emitted N_2O under different moisture conditions—A microcosm study with arable loess soil. Soil Biology and Biochemistry 38, 2923-2933.

Wells, G. F., Park, H.-D., Yeung, C.-H., Eggleston, B., Francis, C. A., and Criddle, C. S. (2009). Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaea. Environmental Microbiology 11, 2310-2328.

Westley, M. B., Popp, B. N., and Rust, T. M. (2007). The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 21, 391-405.

van Wonderen, J. H., Burlat, B., Richardson, D. J., Cheesman, M. R., and Butt, J. N. (2008). The nitric oxide reductase activity of cytochrome c nitrite reductase from *Escherichia coli*. Journal of Biological Chemistry 283, 9587-94.

Wrage, N., Van Groenigen, J. W., Oenema, O., and Baggs, E. M. (2005). A novel dualisotope labelling method for distinguishing between soil sources of N_2O . Rapid Communications in Mass Spectrometry 19, 3298-3306.

Wrage, N., Velthof, G. L., Beusichem, M. L. V., and Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33, 1723-1732.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46, 1027-1037.

Wunderlin, P., Siegrist, H., Tuzson, B., Joss, A., Lehmann, M. F., Emmenegger, L., and Mohn, J. Idenitification of N_2O production pathways in biological wastewater treatment based on stable nitrogen isotopes-under review.

Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N., Watanabe, S., Koba, K., and Yamanaka, Y. (2007). Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. Journal of Geophysical Research-Biogeosciences 112.

Yoshida, N., Morimoto, H., Hirano, M., Koike, I., Matsuo, S., Wada, E., Saino, T., and Hattori, A. (1989). Nitrification Rates and N-15 Abundances of N_2O and NO_3^{-1} in the Western North Pacific. Nature 342, 895-897.

Yoshida, N. (1988). ¹⁵N-depleted N₂O as a product of nitrification. Nature 335, 528-529.

Yoshinari, T., and Wahlen, M. (1985). Oxygen isotope ratios in N_2O from nitrification at a wastewater treatment facility. Nature 317, 349-350.

Yu, R., Kampschreur, M. J., van Loosdrecht, M. C. M., and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44, 1313-9.

Zafiriou, O. C., Mcfarland, M., and Bromund, R. H. (1980). Nitric-Oxide in Seawater. Science 207, 637-639.

Zafiriou, O. C., and True, M. B. (1979). Nitrite photolysis in seawater by sunlight. Marine Chemistry 8, 9-32.

Zart, D., Schmidt, I., and Bock, E. (2000). Significance of gaseous NO for ammonia oxidation by *Nitrosomonas eutropha*. Antonie van Leeuwenhoek 77, 49-55.

Zhou, Y., Pijuan, M., Zeng, R. J., and Yuan, Z. (2008). Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environmental Science & Technology 42, 8260-5.

Zumft, W., and Kroneck, P. (2007). Respiratory transformation of nitrous oxide N_2O to dinitrogen by Bacteria and Archaea. Advances in Microbial Physiology 52, 107.

Zumft, W. G. (2005). Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. Journal of Inorganic Biochemistry 99, 194-215.

Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews 61, 533-616.

Chapter 3

Mechanisms of N₂O production in biological wastewater treatment under nitrifying and denitrifying conditions

This chapter has been published as:

Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N₂O production in biological wastewater treatment under nitrifying and denitrifying conditions. *Water Research*, **2012**, *46* (4), 1027-1037.

Graphical abstract

Abstract

Nitrous oxide (N_2O) is an important greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment, microbial processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major sources; however, the underlying pathways remain unclear. In this study, the mechanisms of N_2O production were investigated in a laboratory batch scale system with activated sludge for treating municipal wastewater. This relatively complex mixed population system is well representative for full-scale activated sludge treatment under nitrifying and denitrifying conditions.

Under aerobic conditions, nitrite oxidation experiments have confirmed nitrifier denitrification to be the dominant, strongly nitrite-dependent N_2O production pathway. Furthermore, N_2O is produced via hydroxylamine oxidation, as has been shown by the addition of hydroxylamine. In both sets of experiments, N_2O production was highest at the beginning of the experiment, then decreased continuously and ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In ammonia oxidation experiments, N_2O peaked at the beginning of the experiment when the nitrite concentration was lowest. This indicates that N_2O production via hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 to 3 mgO₂/l); the contribution of nitrifier denitrification increases at higher nitrite and lower ammonia concentrations towards the end of the experiment.

Under anaerobic conditions, nitrate reducing experiments confirmed that N_2O emission is low under optimal growth conditions for heterotrophic denitrifiers. However, N_2O and nitric oxide (NO) production rates increased significantly under unfavorable conditions, for example in the presence of oxygen or nitrite.

Keywords

Biological wastewater treatment; denitrifying condition; hydroxylamine oxidation; nitrous oxide; nitric oxide; nitrifying condition

Introduction

Nitrous oxide (N_2O) is an important greenhouse gas, about 310 times more effective than carbon dioxide (CO_2), and a major sink for stratospheric ozone (S.A. Montzka and S. Reimann et al., 2011; Ravishankara et al., 2009; IPCC 2007). Limiting anthropogenic N_2O emission is thus an urgent requirement. It is estimated that about two thirds of the overall N_2O is emitted by microbial processes occurring mainly in agriculture, but also in biological wastewater treatment (USEPA 2009). In fact, N_2O emissions have been shown to dominate total greenhouse gas emissions from biological wastewater treatment (Wunderlin et al., 2010). In addition to N_2O , nitric oxide (NO) could also be emitted, which is toxic for microorganisms (Zumft 1993) and contributes to the destruction of the stratospheric ozone layer (Crutzen 1979).

 N_2O production in biological wastewater treatment is associated with autotrophic nitrification and heterotrophic denitrification. Nitrification is the stepwise autotrophic oxidation of ammonia (NH_4^+) to nitrite (NO_2^-) by ammonia-oxidizing bacteria (AOB) and further to nitrate (NO_3^-) by nitrite-oxidizing bacteria (NOB). Denitrification is the reduction of nitrate (NO_3^-) to atmospheric nitrogen (N_2) by heterotrophic denitrifiers (HET), with nitrite (NO_2^-), nitric oxide (NO) and nitrous oxide (N_2O) as obligatory intermediates. According to Kampschreur et al. (2009), there are three main routes for N_2O production (Figure 1):

- Hydroxylamine oxidation: production of N₂O from intermediates of biological hydroxylamine oxidation (HNO, N₂O₂H₂; Poughon et al., 2001), probably related to a highly imbalanced metabolic activity of AOB (Yu et al., 2010), or by chemical decomposition of hydroxylamine as well as by chemical oxidation with NO₂⁻ as an electron acceptor (chemodenitrification; Stüven et al., 1992; Ritchie and Nicholas 1972).
- Nitrifier denitrification: reduction of NO₂⁻ by AOB in combination with ammonia, hydrogen or pyruvate as electron donors, e.g. at oxygen-limiting conditions or elevated nitrite concentrations (Wrage et al., 2001; Colliver and Stephenson 2000; Stüven et al., 1992).
- Heterotrophic denitrification: production of N₂O by heterotrophic denitrifiers due to an imbalanced activity of nitrogen-reducing enzymes, e.g. due to oxygen inhibition (Lu and Chandran 2010; Baumann et al., 1997), nitrite accumulation (von Schulthess et al., 1994), or a limited availability of biodegradable organic compounds (Itokawa et al., 2001).

In the last decade, significant efforts have been made to better understand the mechanisms of N_2O production (Rassamee et al., 2011; Yu et al., 2010; Tallec et al., 2006; Burgess et al., 2002; Itokawa et al., 2001; von Schulthess et al., 1994). As a result, several parameters favoring N_2O production were identified: low dissolved oxygen concentration, accumulation of nitrite, rapidly changing (dynamic) conditions or a low ratio of COD to N-compounds during heterotrophic denitrification (Kampschreur et al., 2009).

It is generally believed that nitrifier denitrification is the main N_2O production pathway in biological wastewater treatment under aerobic conditions (Colliver and Stephenson 2000), but its importance with respect to hydroxylamine oxidation and heterotrophic denitrification remains unclear. Therefore, a better understanding of these mechanisms is essential to formulate operating strategies that minimize N_2O emissions.

In this study, we analyzed N_2O and NO production (emission patterns) from activated sludge under nitrifying and denitrifying conditions in a laboratory-scale batch reactor. A homogeneously mixed system was chosen to allow the selection of specific microbial activities (AOB, NOB, HET) without the use of (i) chemical inhibitors potentially interfering with activated sludge in a complex way, or (ii) pure cultures that may behave differently than mixed culture systems, such as activated sludge. This is the first study investigating the combination of nitrifier denitrification, heterotrophic denitrification and hydroxylamine oxidation as relevant N_2O (and NO) production pathways in conventional activated sludge used to treat real municipal wastewater.

Figure 1: Scheme of relevant N_2O production pathways in biological wastewater treatment. During autotrophic nitrification (left figure), N_2O can be produced either via nitrifier denitrification or hydroxylamine oxidation (chemically as well as biologically). During heterotrophic denitrification (right figure), N_2O is an obligate intermediate in the nitrogen reduction chain.

Materials and methods

Maintenance of sludge and experimental setup

Batch experiments were carried out with activated sludge taken from our pilot scale wastewater facility at Eawag, which was operated continuously for several weeks at the same sludge age before the experimental phase. It treats around 60 population equivalents and consists of primary clarification followed by activated sludge treatment with nitrification, pre-denitrification and secondary clarification. It was operated with a solid retention time of around 22 days (11 days aerobic) and total suspended solid (TSS) concentrations between 4 and 4.4 g/l. N_2O emissions from the

aerobic tank were low during normal operation (below 0.1% of the nitrogen load entering the biological compartment), but correlated positively with the incoming nitrogen peak in the morning. Nitrification was complete (average NH_4^+ and NO_2^- concentrations below 0.7 mgN/l in the effluent), with average nitrogen removal above 60%.

Experiments were carried out in a laboratory- scale batch reactor (Figure 2) with a working volume of 6.9 liters and a headspace of 1.2 liters. The reactor was controlled by a programmable logical controller (PLC) linked to a SCADA interface for data visualization and storage. The water temperature was held at 20.1 \pm 1.2°C. A continuous gas flow of 1 l/min was supplied by a mass flow controller (red-y smart series, Vögtlin Instruments AG) during nitrification as well as during denitrification experiments in order to strip N₂O and NO from the liquid phase and analyze it in the off-gas (see section 'Analytical procedures'). Under aerobic conditions, on / off regulation (switching between high-purity nitrogen gas and synthetic air) was applied to adjust the oxygen concentration. Under anaerobic conditions, nitrogen gas was continuously fed into the reactor. The pH was measured with a pH electrode (Orbisint CPS11, Endress+Hauser; calibration at pH 7 and 9), and was held at 7.1±0.2 by a pH controller through the addition of CO₂ (>99.9% CO₂, Carbagas). The dissolved oxygen concentration was measured with an oxygen sensor (Oxymax H, Endress+Hauser; operational range from 0.01 to 20 mgO₂/l).

Figure 2: Schematic diagram of the laboratory-scale batch reactor. (1) and (2) mass flow controller; (3) solenoid valve (controlled); (4) pressure regulator; (5) synthetic air; (6) high purity N_2 gas; (7) pure CO_2 ; (8) oxygen sensor; (9) pH sensor; (10) temperature sensor; (11) temperature controller.

Nitrifying and denitrifying batch experiments

For nitrifying experiments, activated sludge was taken from the nitrification reactor of our pilot-scale wastewater facility before 8 a.m. (before morning urea and COD peak) and filled into the lab-scale batch reactor. Each nitrifying experiment was carried out at

a constant oxygen concentration (set point): 0.5, 1, 2 or 3 mgO₂/l. The experiments were started by adding the substrate (25 mgNH₄⁺-N/l, NH₄HCO₄ from Merck; 15 mgNO₂⁻-N/l, NaNO₂ from Merck; 10 mgNH₂OH-N/l, NH₂OH-Cl from Fluka; Table 1). Except for simultaneous nitrifying and denitrifying experiments, no external organic carbon source was provided in order to prevent heterotrophic activity, which was confirmed by nitrogen mass balances and a constant NO₃⁻ concentration after the experiment. The substrate addition initialized N₂O production, but also NO production in some nitrite oxidation experiments. Neither N₂O nor NO was emitted before the substrate addition.

For the denitrifying experiments, sludge was taken from the nitrification reactor of our pilot-scale wastewater facility in the afternoon and was stored overnight in the batch-scale reactor under anaerobic conditions in order to remove the remaining dissolved nitrogen compounds (mainly NO₃⁻). The experiments were launched by adding organic carbon (Na acetate from Merck; always >100 mgCOD/l) and nitrate (20 mgNO₃⁻-N/l, NaNO₃ from Fluka; Table 1). The substrate addition initiated N₂O production, as well as NO production during suboptimal growth conditions, while neither N₂O nor NO was produced before the substrate addition. For experiments at low dissolved oxygen concentrations, an N₂ / O₂ gas mixture with only about 5% oxygen was applied in order to better adjust the dissolved oxygen concentration in the reactor.

The nitrifying and denitrifying experiments were both stopped when N₂O (and NO) production ceased and the dissolved nitrogen species were completely oxidized (NH_4^+ , NH_2OH or NO_2^- in the nitrifying experiment) or reduced (NO_3^- in the denitrifying experiment). During all experiments, N₂O as well as NO were continuously analyzed in the off-gas and liquid samples were periodically taken (see section 'Analytical procedures'). The disappearance and appearance rates of NH_4^+ , NH_2OH , NO_2^- and NO_3^- were calculated using regression analysis. Average N₂O and NO emission rates were calculated based on time integration of emission loads.

Analytical procedures

The N₂O and NO concentrations in the off-gas were continuously (1 minute temporal resolution) analyzed by FTIR spectroscopy (GASMET CX-4000, Temet Instruments, Helsinki), equipped with a heated (40°C) flow-through gas cell with a 9.8 m path length. The quantification limits for N₂O and NO are 0.25 and 5 ppm respectively, and the expanded standard uncertainty for both components is around 10% (95% confidence level; Mohn et al., 2008). Liquid grab samples were taken regularly (every 15 to 60 minutes) and immediately filtered through a 0.7µm filter (GF/F Whatman) and a 0.45 µ m syringe filter (Chromafil Membranfilter from Macherey), then stored at 4°C. NH₄⁺-N was analyzed photometrically using a Foss FIAstar flow injection 5000 analyzer (detection limit 0.2 mgN/l; uncertainty around 5% at 95% confidence level). NO₃⁻-N and NO₂⁻-N were determined by anion chromatography (761 compact IC, Metrohm; detection limit for both components 0.2 mgN/l; uncertainty around 5% at 95% confidence level). Commercial photochemical test kits (Hach Lange GmbH, Düsseldorf, Germany) were used to measure low NO₂⁻ concentrations (LCK 341; detection limit 0.015mgN/l) and COD (LCK 314, LCK 414, or LCK 114).

Experiment	Added substrate (initial concentration)	O ₂ concentration	Nitrogen conversion rate	N ₂ O-N (NO-N) production rate [#]	Y N ₂ O ^{##} (Y NO ^{##})
		[mg/l]	[mgN/gTSS*h]	[mgN/gTSS*h[[%]
$\mathrm{NH_4}^+$ oxidation	NH4 ⁺ (25 mgN/l)	0.6±0.2	1.1 ^a	0.040 (<lod)< td=""><td>3.8</td></lod)<>	3.8
	NH4 ⁺ (25 mgN/l)	1.0±0.2	1.4^{a}	0.037 (<lod)< td=""><td>2.7</td></lod)<>	2.7
	NH4 ⁺ (25 mgN/l)	1.9±0.2	1.9 ^a	0.039 (<lod)< td=""><td>2.0</td></lod)<>	2.0
	NH4 ⁺ (25 mgN/l)	3.1±0.2	2.6 ^a	0.033 (<lod)< td=""><td>1.3</td></lod)<>	1.3
NO_2^- oxidation	NO ₂ ⁻ (15 mgN/l)	0.6±0.2	1.8 ^a	0.028 (<lod)< td=""><td>1.5</td></lod)<>	1.5
	NO ₂ ⁻ (15 mgN/l)	1.1±0.2	1.8^{a}	0.15 (0.008)	8.4 (0.5)
	NO_{2}^{-} (15 mgN/l)	2.1±0.3	3.0 ^a	0.031 (<lod)< td=""><td>1.0</td></lod)<>	1.0
	NO_{2}^{-} (15 mgN/l)	3.1±0.2	2.2^{a}	0.18 (0.018)	8.9 (0.8)
NH ₂ OH oxidation	NH ₂ OH (10 mgN/l)	1.1±0.2	0.6 ^c	0.043 (<lod)< td=""><td>6.9</td></lod)<>	6.9
	NH ₂ OH (10 mgN/l)	2.2±0.2	$0.7^{\rm c}$	0.062 (<lod)< td=""><td>8.5</td></lod)<>	8.5
NO ₃ ⁻ reduction (+Na acetate)	NO ₃ ⁻ (20 mgN/l)	0	4.8 ^b	0.009 (<lod)< td=""><td>0.2</td></lod)<>	0.2
	NO ₃ ⁻ (20 mgN/l)	0.01 ± 0.01	3.7 ^b	0.029 (<lod)< td=""><td>0.8</td></lod)<>	0.8
	NO3 ⁻ (20 mgN/l)	0.04 ± 0.03	2.1 ^b	0.196 (0.008)	9.5 (0.4)
	NO3 ⁻ (20 mgN/l)	0.13±0.15	4.4 ^b	0.450 (0.12)	10.3 (2.6)
	NO ₃ ⁻ (20 mgN/l)	0.4±0.2	3.0 ^b	0.565 (0.017)	18.9 (0.6)
Continuous addition of NH_4^+	NH_4^+ (10 mgN/l)	1.1±0.2	1.4 ^c	0.032 (<lod)< td=""><td>2.3</td></lod)<>	2.3
	NH4 ⁺ (10 mgN/l)	2.1±0.2	2.1 ^c	0.023 (<lod)< td=""><td>1.1</td></lod)<>	1.1
	NH_{4}^{+} (10 mgN/l)	3.1±0.2	2.1 ^c	0.018 (<lod)< td=""><td>0.9</td></lod)<>	0.9
Simultaneous nitrification / denitrification	NH ₄ ⁺ (25 mgN/l), acetate (>100 mgCOD/l)	2.0±0.3	1.8ª	0.270 (<lod)< td=""><td>15.0</td></lod)<>	15.0

a) Nitrogen (NH_4^+ or NO_2^-) oxidation rate

b) Nitrogen (NO₃⁻) reduction rate

c) Nitrogen (NO3) production rate

[#] The N₂O and NO production rates were calculated on the basis of the N₂O and NO concentrations in the offgas and the gas flowrate. The N₂O and NO concentrations were measured in ppm (every 60 seconds) and transformed into μ gN₂O-N/h (1ppmN₂O=1.149 μ gN₂O-N/l_{air} at 20°C and 1bar) and μ gNO-N/h (1ppmNO=0.58 μ gNO-N/l_{air} at 20°C and 1bar) respectively by multiplying the concentration with the gas flowrate (Q_{gas}=60 l/h).

^{##} Y N₂O (and Y NO) was calculated by dividing the average N₂O-N (NO-N) emission rate by the nitrogen conversion rate and multiplied by 100%.

<LOD: below limit of detection

Table 1: Summary of experiments and relevant parameters: added substrates and initial concentrations; oxygen concentrations; nitrogen conversion rates (nitrogen oxidation under nitrifying conditions and reduction under denitrifying conditions); N_2O emission rates in relation to the nitrogen conversion rates.

Results and discussion

N_2O production during nitrite (NO_2^{-}) oxidation under aerobic conditions

Figure 3 shows two typical profiles of the N₂O emission rate and the concentrations of NO₂⁻ and NO₃⁻ (the initial nitrite concentration was around 15 mgN/l), at 2.1 and 3.1 mgO₂/l respectively. The nitrite degradation rate was in the range from 1.8 to 3 mgN/gTSS*h, depending on the oxygen concentration (Table 1). Most of the nitrite was oxidized to nitrate, which indicates that there was no significant heterotrophic activity. NO was only produced under conditions with high N₂O production rates, where NO peaked before N₂O. In most experiments, the NO concentration was close or below the FTIR detection limit and therefore not shown in in Figure 3 A. The production of N₂O started as soon as nitrite was added and ceased when all the nitrite was consumed. The N₂O production was dynamic and variable, but not oxygen-dependent: there was a high N₂O emission rate compared to the nitrogen oxidation rate (8.4 and 8.9%) at 1.1 and 3.1 mgO₂/l (Figure 3, A and B), but only a low emission rate (1.0 to 1.5%) at 0.6 and 2.1 mgO₂/l (Figure 3, C and D; Table 1). The different N₂O emissions seem to be due to variable maximum NO₂⁻ oxidation rates: the NO₂⁻ oxidation rate was low at high N₂O production and vice-versa (Table 1).

The NO,⁻ oxidation experiments always showed the highest N₂O production rate after NO² addition (when the NO² concentration was highest), and decreased in parallel with the NO_2^{-1} concentration (Figure 3). This is consistent with Tallec et al. (2006), who also showed a positive correlation between the nitrite concentration and N₂O production. NO,⁻ is often considered to be one of the key parameters responsible for N₂O production (see Kampschreur et al., 2009; Bock et al., 1995; Remde and Conrad, 1990). It is generally assumed that an accumulation of nitrite leads to increased nitrifier denitrification activity by AOB with nitrite instead of oxygen as the terminal electron acceptor; ammonia is thought to be the corresponding electron donor (Kampschreur et al., 2009; Colliver and Stephenson 2000): as reported by Kim et al. (2010), N₂O emissions were significantly enhanced when ammonia was added together with nitrite to activated sludge. In our experiments, ammonia is unlikely to act as an electron donor since no external ammonia was added, and it was not detectable in the bulk media; the inhibition of the ammonia oxidation (by allylthiourea) confirmed that there was no significant ammonia production from biomass decay (data not shown). Therefore, hydrogen, pyruvate or other electron donors have to be considered.

At high N_2O production rates, the production of NO, a precursor of N_2O in the nitrogen reduction chain, underscores nitrifier denitrification to be the dominant N_2O production pathway (Figure 3, C and D). In our setup, heterotrophs cannot be assumed to contribute significantly to N_2O production, because (i) no external organic carbon was added, (ii) most of the nitrite was converted into nitrate, and (iii) the enzyme activity of heterotrophic denitrifiers is known to be strongly affected by the availability of dissolved oxygen because this process operates mainly under anaerobic conditions (von Schulthess et al., 1994). As shown in this section, nitrifier denitrification by AOB is the dominant $\rm N_2O$ production pathway under aerobic conditions, low COD loads and the presence of nitrite.

Figure 3: Effect of NO_2^- addition (15 mgN/l, at time zero) to activated sludge, at 2.1 mg O_2 /l (A, B) and at 3.1 mg O_2 /l (C, D) respectively. N_2O (A, C) and NO (C) production started after substrate (NO_2^-) addition. Symbols: N_2O emission rate (solid line), NO emission rate (dotted line), NH_4^+ concentration (closed circles), NO_3^- concentration (open triangles), and NO_2^- concentration (stars).

N_2O production during hydroxylamine (NH₂OH) oxidation under aerobic conditions

A representative profile of the N₂O emission rate and the concentrations of NH₄⁺, NO₂⁻ and NO₃⁻ (the initial hydroxylamine concentration was around 10 mgN/l; Table 1) is given in Figure 4 (A and B). NH₄⁺ production occurred at a constant rate of around 0.1 mgN/gTSS*h (at 1 and 2 mgO₂/l) up to around 0.6 mgN/gTSS*h (at 0 mgO₂/l), which could be due to (enzymatic) NH₂OH decay (this was not observed in experiments without activated sludge). Nitrite accumulated up to 0.4 mgN/l, and the NO₃⁻ production rate was in the range from 0.6 to 0.7 mgN/gTSS*h (Table 1). The NO₂⁻ concentration as well as the NO₃⁻ production rate were significantly lower than during the ammonia oxidation experiments (see next section). Nevertheless, the N₂O production rate (43 to 62 µgN/gTSS*h) was comparable to the ammonia oxidation experiment, and therefore significantly higher in relation to the nitrogen oxidation rate (6.9 to 8.5% of the oxidized NH₂OH (calculated from NO₃⁻ accumulation) was emitted as N_2O , compared to 1.3 to 3.8% for ammonia oxidation experiments; Table 1). N_2O production started as soon as hydroxylamine was added and reached its maximum concentration around 30 minutes after the substrate addition. The N_2O concentration then decreased even though the nitrite level remained at around 0.4 mgN/l. The nitrogen mass balance shows that most of the NH₂OH is converted into NO_3^- , indicating that the N_2O emission rate decreases in parallel with the NH₂OH concentration. This emission pattern points to biological hydroxylamine oxidation as the most important N_2O production pathway. Nitrifier denitrification, which is strongly correlated with the nitrite concentration (see the section before) may additionally account for some of the emitted N_2O . It was already observed that N_2O is produced during biological NH₂OH oxidation (Sutka et al., 2006), and it is assumed that intermediates such as HNO and $N_2O_2H_2$ are directly involved in its formation (Poughon et al., 2001; Ritchie and Nicholas, 1972).

In our oxidation experiments, the N₂O production rate was in the same range or, at elevated oxygen concentrations ($2 \text{ mgO}_2/\text{I}$), even higher than during the NH₄⁺ oxidation experiments. This is in agreement with Kim et al. (2010), who explained this phenomenon by a higher availability of electrons during hydroxylamine oxidation (compared to ammonia oxidation) because of a lack of the electron-consuming ammonia oxidizing step (see Figure 1). As a consequence, more electrons are available for nitrite reduction and N₂O production (since nitrite reduction by AOB stops at N₂O). A further distinction between the contribution of hydroxylamine oxidation and nitrifier denitrification would require alternative techniques, such as the analysis of the N₂O site-specific isotopic signature (Wunderlin et al., 2010; Koba et al., 2009; Sutka et al., 2006). However, N₂O production from NH₂OH is not expected to be dominant in biological wastewater treatment, as the NH₂OH concentration in activated sludge is assumed to be much lower than in our batch experiment; NH₂OH oxidation to NO₂⁻ is the energy-generating step in AOB, an accumulation is therefore unfavorable from an energetic point of view (Casciotti et al., 2003).

The above results may also be due to chemical N_2O production. This was tested by adding NH_2OH to tap water (without activated sludge; Figure 4 C and D). Under aerobic conditions, low amounts of N_2O were produced, but were slightly increased by further addition of NO_2^{-1} . On the basis of these experiments, chemical decomposition of NH_2OH as well as a chemical reaction between NH_2OH and NO_2^{-1} could be responsible for the N_2O production; the following mechanisms are hypothesized for this process (Stüven et al., 1992; Ritchie and Nicholas, 1972):

$NH_2OH + 0.5O_2 \rightarrow 0.5N_2O + 1.5H_2O$	Equation 1
$NH_2OH + NO_2^- + H^+ \rightarrow N_2O + 2H_2O$	Equation 2

However, as N_2O production from NH_2OH in tap water was low as compared to activated sludge, chemical N_2O production is not expected to be dominant in biological wastewater treatment (Figure 4, A and C).

Based on the above arguments we conclude that, in addition to nitrifier denitrification, biological NH_2OH oxidation must be considered as a potentially relevant pathway for N_2O production.

Figure 4: Effect of NH_2OH addition (10 mgN/l, at time zero) to activated sludge, at 1.1 mgO₂/l (A, B) and to tap water, at 3.1 mgO₂/l (C, D; including NO₂⁻ addition after 210 minutes) respectively. N₂O (A, C) production started after substrate (NH₂OH) addition. Symbols: N₂O emission rate (solid line), NH_4^+ concentration (closed circles), NO_3^- concentration (open triangles), and NO_2^- concentration (stars; please note the different scale for NO_2^-).

N_2O production during ammonia (NH_4^+) oxidation under aerobic conditions

During NH_4^+ oxidation experiments, NO_2^- accumulated up to 2 mgN/l (Figure 5). The ammonia degradation rates were in the range from 1.1 to 2.6 mgN/gTSS*h (Table 1), depending on the dissolved oxygen concentration. Most of the ammonia was converted into nitrate, which confirms the presence of AOB and NOB, and indicates no significant heterotrophic activity. At 2 mgO₂/l (Figure 5, A and B), N₂O production started as soon as ammonia was added and reached its maximum concentration around 20 to 30 minutes after substrate addition, when NH_4^+ was still high and NO_2^- very low. At 0.6 mgO₂/l (Figure 5, C and D), the N₂O production rate reached a plateau of rather constant emissions while NH_4^+ oxidation was ongoing. In all experiments, N₂O production rates were in the range from 33 to 40 µgN/gTSS*h, which corresponds to 1.3 to 3.8% of the ammonia oxidation rate (Table 1). During continuous ammonia addition,

the N₂O emission rate was in the range from 18 to $32 \mu gN/gTSS^*h$, which corresponds to 0.88 to 2.3% of the ammonia oxidation rate (Table 1) and thus comparable to the NH_{4}^{+} (peak) addition experiments. It is also similar to the values reported in the literature: Tallec et al. (2006) measured N₂O emissions from nitrifying activated sludge in the range from 0.1 to 0.4%, compared to ammonia oxidation; N₂O emissions in the range from 0.05 to 3.3% were observed for pure-culture AOB (Hynes and Knowles, 1984; Yoshida, 1988). Recently, Kim et al. (2010) reported a value of 2.9% from nitrifying activated sludge. Our experiments showed quite comparable N₂O emission rates at different oxygen concentrations. In contrast, the NH_4^+ fraction emitted as N_2O was higher at low oxygen concentrations. This is in agreement with Tallec et al. (2006), who reported a maximum yield (ratio of emitted N₂O to oxidized nitrogen) at an oxygen concentration of 1 mgO₂/l. It is hypothesized that oxygen-limiting conditions during nitrification lead to an accumulation of nitrite, since NOB have a lower affinity to oxygen than AOB, possibly due to a different half-saturation constant (Blackburne et al., 2008) and therefore a lower activity. Given that AOB can use nitrite instead of oxygen as the electron acceptor, nitrifier denitrification is held responsible for the increased N₂O emissions (Kampschreur et al., 2009; Wrage et al., 2001). Burgess et al. (2002) observed a strong correlation between the build-up of nitrite and N₂O emissions in combination with ammonia shock loads, which is consistent with our data. At high concentrations of dissolved oxygen, N₂O emissions peaked at the beginning of the experiment, when NH_4^+ was highest and NO_2^- lowest. This indicates that N_2O might partly be produced via NH₂OH oxidation, when ammonia is in excess, nitrite at low concentrations and the nitrogen oxidation rate is high. This is consistent with the findings of Sutka et al. (2006), who showed that an increasing oxygen concentration in *N. europaea* cultures decreased the relative importance of NO_{2}^{-} reduction relative to NH,OH oxidation in N,O production. Moreover, they suggested that an increase in NO,⁻ concentration could have contributed to N₂O production via nitrite reduction. Similarly, Yu et al. (2010) reported a positive correlation between N_2O production and NH_4^+ concentration in N. europaea cultures and concluded that N₂O production via NH₂OH oxidation contributed even more when ammonia oxidation is shifted from low towards its maximum specific activity.

Based on the results presented in the two sections before, we conclude that in ammonia oxidation experiments (this section) NH_2OH oxidation and nitrifier denitrification contribute to the N_2O production: nitrifier denitrification is dominant but hydroxylamine oxidation becomes increasingly relevant at high ammonia and low nitrite concentrations. Therefore, a systematic experimental approach, as chosen in this study, proves to be appropriate to study the mechanisms of N_2O production in a complex, mixed population system.

Figure 5: Effect of NH_4^+ addition (25 mgN/l, at time zero) to activated sludge, at 2 mgO2/l (A, B) and 0.6 mgO₂/l (C, D) respectively. N_2O production (A, C) started right after NH_4^+ addition. Symbols: N_2O emission rate (solid line), NH_4^+ concentration (closed circles), NO_3^- concentration (open triangles), and NO_2^- concentration (stars).

N_2O production during nitrate (NO_3^{-}) reduction under anaerobic and low aerobic conditions

Under optimal anaerobic conditions (Figure 6, A and B), the NO₃⁻ reduction rate was around 4.8 mgN/gTSS*h, and NO₂⁻ reached 4 to 5 mgN/l towards the end of the experiment. The N₂O emission rate was around 9 μ gN/gTSS*h (0.2% of the NO₃⁻ reduction rate), which is a factor of 3.1 to 20 lower compared to the oxidation experiments (NH₄⁺ oxidation, NH₂OH oxidation or NO₂⁻ oxidation; Table 1). N₂O production started immediately after substrate addition and peaked towards the end of the experiment when nitrite accumulated to maximum concentrations. Accordingly, von Schulthess et al. (1994) reported a positive correlation between N₂O and NO₂⁻ concentrations for anaerobic growth conditions.

In the presence of oxygen (Figure 6, C and D), the NO₃⁻ reduction rate was in the range from 2.1 to 4.4 mgN/gTSS*h, which is lower than under completely anaerobic conditions. Additionally, nitrite accumulated up to around 9 mgN/l, and the N₂O production rate was significantly higher than under optimal conditions, with values of 29 to 565 μ gN/gTSS*h, which is equivalent to between 0.79 and 18.9% of the NO₃⁻ reduction rate. NO was also produced, at a rate of 8 to 120 mgN/gTSS*h, e.g. 0.37 to 2.6% of the NO₃⁻ reduction rate (Table 1; Figure 6, C). The reason for the variable profile

of N₂O and NO emissions in Figure 6 C remains unclear, but it may be due to (i) inhibition of the NO-reducing enzyme by an accumulation of NO,⁻ or (ii) an imprecise O, regulation of the batch reactor because high concentrations of dissolved N₂O and NO seem to interfere with the dissolved oxygen concentration measurement. Our findings are consistent with the studies of Kampschreur et al. (2009) and von Schulthess et al. (1994), which reported that dissolved oxygen availability, especially in combination with other factors such as nitrite accumulation, is expected to lead to increasing N₂O production. An unbalanced activity of the nitrogen-reducing enzymes is considered to be the dominant mechanism for heterotrophic N₂O production, e.g. N₂O reductase is reported to be particularly inhibited by oxygen (Bonin et al., 2002; Baumann et al., 1997). The ratio of COD to N-compounds is not assumed to be a relevant factor in impacting N₂O emissions in our denitrifying experiments, since it was always higher than 5 (COD was always >100 mgCOD/l; the highest initial NO_3^- concentration was 20 mgN/l), and Itokawa et al. (2001) reported almost no N_2O emissions at COD / N ratios above 5, but more than 20% under conditions of limiting organic carbon availability (COD / N ratios below 3.5).

Figure 6: Effect of NO_3^- addition (20 mgN/l, at time zero) to activated sludge, at 0 mgO₂/l (only high purity N_2 flow; A, B) and controlled at 0.13 mgO₂/l (synthetic air with low oxygen partial pressure; C, D) respectively. Symbols: N_2O emission rate (solid line; please note the different scale for N_2O), NO emission rate (dotted line), and total N_2O and NO emission rate (dashed line); NH_4^+ concentration (closed circles), NO_3^- concentration (open triangles), NO_2^- concentration (stars; COD concentration was always >100 mgCOD/l).

As demonstrated in this section, the production of N_2O by HET was low under optimal growth conditions, but increased significantly in the presence of oxygen or nitrite accumulation.

Figure 7: Effect of NH_4^+ (25 mgN/l, at time zero) and acetate addition (COD concentration was always >100 mgCOD/l) to activated sludge, at 2 mgO2/l (A, B). N_2O production (A) started after NH_4^+ addition. Symbols: N_2O emission rate (solid line), NH_4^+ concentration (closed circles), NO_3^- concentration (open triangles), and NO_2^- concentration (stars). In contrast, negligible N_2O emissions (dashed line) occurred in the NH_4^+ oxidation experiment at 2 mgO₂/l and no additional organic carbon (data taken from Figure 5, A).

*N*₂O production during simultaneous nitrifying and denitrifying conditions under aerobic conditions

Figure 7 shows a profile of the N₂O emission rate and the concentrations of NH₄⁺, NO₂⁻ and NO₃⁻. Organic substrate was always available in excess (>100 mgCOD/l). Nitrite accumulated up to 1.4 mgN/l during the experiment, and the ammonia degradation rate was 1.8 mgN/gTSS*h at 2 mgO₂/l, which is comparable to the values obtained in NH₄⁺ oxidation experiments without any additional carbon source (see Table 1). Around 50% of the ammonia was converted into NO₃⁻ which indicates simultaneous heterotrophic activity. N₂O production started as soon as the substrate was added and reached a maximum concentration at the end of the experiment when nitrite accumulated to its highest concentrations. N₂O emissions almost ceased entirely when all the ammonia (and nitrite) was oxidized, even though heterotrophic reduction of

 NO_3^{-} was still going on. The N₂O production rate was in the range of 270 µgN/gTSS*h, which is around 15% of the ammonia oxidation rate or around 34% of the denitrification rate (calculated from the NH_4^+ oxidation rate minus the NO_3^- production and NO_2^- net production rate), and therefore much higher than in NH_4^+ oxidation batch experiments. The N₂O emission and NO_2^- concentration patterns were different to those in the NH_4^+ oxidation experiments, but resembled those in the NO_3^- reduction experiment under anaerobic conditions. Nitrite reduction by HET thus dominates the N₂O production. Given that both the NH_4^+ and the organic substrate are present at non-limiting concentrations, it is to be expected that O₂ limitation will develop in the inner core of bigger sludge flocs (Hamersley and Howes 2002). Thus, heterotrophic denitrification is to be expected inside the flocs, even though some enzymes, like the N₂O reductase, might still be inhibited due to the presence of oxygen.

This section clearly indicates that under aerobic conditions ($2 \text{ mgO}_2/\text{I}$) and high COD loads, heterotrophs dominate the N₂O production. Additional methods, such as the analysis of the N₂O site-specific isotopic signature, are greatly needed to obtain a more accurate allocation of these emissions to heterotrophic denitrification, nitrifier denitrification and biological hydroxylamine oxidation.

Strategies for reducing N₂O emissions

Our data clearly support nitrifier denitrification by AOB under aerobic conditions as the dominant N_2O production pathway, where NO_2^- positively correlates with N_2O emissions. Biological NH_2OH oxidation is hypothesized to contribute to N_2O production mainly at high NH_4^+ and low NO_2^- concentrations in combination with a high nitrogen oxidation rate.

The production of N_2O by heterotrophic denitrification is likely to be of minor importance when operated without significant NO_2^- accumulation (<2 mgN/l; von Schulthess et al., 1994) and under completely anaerobic conditions.

Therefore, to avoid N₂O emissions, biological wastewater treatment plants should be operated at low NH_4^+ and NO_2^- concentrations, which means a high solid retention time (large population with effective protection against N-peaks and extended denitrification), equalization of load variation (e.g. with digester liquid) and optimal control of the sludge recycling depending on the COD and NO_3^- loads in the anoxic zone.

Under aerobic conditions ($2 \text{ mgO}_2/I$) and high COD loads, NO_2^- reduction by HET is the dominant N_2O producer. Low oxygen concentrations (< $1 \text{ mgO}_2/I$; Tallec et al., 2006) are therefore expected to reduce the N_2O production due to a higher heterotrophic N_2O reductase activity which is particularly sensitive to oxygen (and inhibited at elevated oxygen concentrations such as at $2 \text{ mgO}_2/I$). Simultaneous nitrification / denitrification at high oxygen concentrations and high COD loads should consequently be avoided.

Conclusions

Batch experiments with activated sludge treating municipal wastewater have shown that N_2O is produced under both nitrifying (aerobic) and denitrifying (anaerobic) conditions:

- AOB are the main N_2O producers under aerobic conditions and low COD loads; the N_2O production pathway is dominated by nitrifier denitrification.
- At high ammonia and low nitrite concentrations in combination with a high nitrogen oxidation rate, biological N₂O production via hydroxylamine oxidation is favored. However, an alternative technique such as the analysis of the N₂O site-specific isotopic signature has to be applied to confirm the activity of this pathway and to further distinguish between the contribution of hydroxylamine oxidation and nitrifier denitrification (Wunderlin et al., 2010; Koba et al., 2009; Sutka et al., 2006).
- The production of N₂O by HET is of minor importance when the plant is operated under optimal growth conditions. Suboptimal conditions, such as the presence of oxygen or the accumulation of nitrite, significantly increased both N₂O and NO production rates. Oxygen input into anoxic zones should therefore be strongly prevented.
- At simultaneous nitrification and denitrification, N₂O production is dominated by heterotrophic NO₂⁻ reduction, depending strongly on the nitrite concentration, the COD load and the dissolved oxygen concentration. Simultaneous nitrification / denitrification at high oxygen concentrations (2 to 3 mgO₂/l) and high COD loads should consequently be avoided.
- This study provides direct evidence that strategies to study and avoid N_2O emissions must consider nitrifier denitrification, hydroxylamine oxidation as well as heterotrophic denitrification.

Acknowledgements

This study was financially supported by the Swiss Federal Office for the Environment (FOEN), the Swiss National Foundation for Scientific Research, the canton of Bern (AWA), the canton of Basel-Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF+Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen, Zentralschweizer Umweltdirektorenkonferenz (ZUDK), Empa and Eawag.

References

Baumann, B., Snozzi, M., VanderMeer, J. R., Zehnder, A. J. B. (1997). Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Research 31(8), 1947-1954.

Blackburne, R., Yuan, Z. G., Keller, J. (2008). Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation 19(2), 303-312.

Bock, E., Schmidt, I., Stuven, R., Zart, D. (1995). Nitrogen loss caused by denitrifying nitrosomonas cells using ammonium or hydrogen as electron-donors and nitrite as electron-acceptor. Archives of Microbiology 163(1), 16-20.

Bonin, P., Tamburini, C., Michotey, V. (2002). Determination of the bacterial processes which are sources of nitrous oxide production in marine samples. Water Research 36(3), 722-732.

Burgess, J. E., Colliver, B. B., Stuetz, R. M., Stephenson, T. (2002). Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. Journal of Industrial Microbiology & Biotechnology 29(6), 309-313.

Casciotti, K. L., Sigman, D. M., Ward, B. B. (2003). Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiology Journal 20(4), 335-353.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Crutzen, P. J. (1979). The role of NO and NO_2 in the chemistry of the troposphere and stratosphere. Annual review of earth and planetary sciences, Vol. 7, 443-472.

Hamersley, M. R. and Howes, B. L. (2002). Control of denitrification in a septage-treating artificial wetland: the dual role of particulate organic carbon. Water Research 36(17), 4415-4427.

Hynes, R. K. and Knowles, R. (1984). Production of nitrous oxide by *nitrosomonas europaea*: effects of acetylene, pH, and oxygen. Canadian Journal of Microbiology 30(11), 1397-1404.

IPCC, (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D. Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

Itokawa, H., Hanaki, K., Matsuo, T. (2001). Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research 35(3), 657-664.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Kim, S. W., Miyahara, M., Fushinobu, S., Wakagi, T., Shoun, H. (2010). Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria. Bioresource Technology 101(11), 3958-3963.

Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N., Nakajima, T. (2009). Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochimica et Cosmochimica Acta 73(11): 3115-3133.

Mohn, J., Zeeman, M. J., Werner, R. A., Eugster, W., Emmenegger, L. (2008). Continuous field measurements of delta C-13-CO₂ and trace gases by FTIR spectroscopy. Isotopes in Environmental and Health Studies 44(3), 241-251.

Rassamee, V., Sattayatewa, C., Pagilla, K., Chandran, K. (2011). Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnology and Bioengineering 108(9), 2036-2045.

Ravishankara, A. R., Daniel, J. S., Portmann, R. W. (2009). Nitrous Oxide (N_2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Remde, A. and Conrad, R. (1990). Production of nitric-oxide in *nitrosomonas-europaea* by reduction of nitrite. Archives of Microbiology 154(2): 187-191.

Ritchie, G. A. and Nicholas, D. J. (1972). Identification of the sources of nitrous oxide produced by oxidative and reductive processes in *nitrosomonas europaea*. Biochemical Journal 126(5), 1181-1191.

Lu, H. and Chandran, K. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnology and Bioengineering 106(3), 390-398.

Montzka, S. A. and Reimann, S. (Coordinating Lead Authors), Engel, A., Krüger, K., O'Doherty, S., Sturges, W. T., Blake, D., Dorf, M., Fraser, P., Froidevaux, L., Jucks, K., Kreher, K., Kurylo, M. J., Mellouki, A., Miller, J., Nielsen, O.-J., Orkin, V. L., Prinn, R. G., Rhew, R., Santee, M. L., Stohl, A., Verdonik, D., 2011. Ozone-depleting substances (ODSs) and related chemicals, Chapter 1 in Scientific Assessment of Ozone Depletion: (2010), Global Ozone Research and Monitoring Project, Report No. 52, 516 pp., World Meteorological Organization, Geneva, Switzerland, 2011.

Poughon, L., Dussap, C. G., Gros, J. B. (2001). Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnology and Bioengineering 72(4), 416-433.

Stüven, R., Vollmer, M., Bock, E. (1992). The impact of organic matter on nitric oxide formation by *nitrosomonas europaea*. Archives of Microbiology 158(6), 439-443.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72(1), 638-644.

Tallec, G., Garnier, J., Billen, G., Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research 40(15), 2972-2980.

USEPA, (2009). Inventory of U.S. greenhouse gas emissions and sinks: 1990-2007, U.S. Environmental Protection Agency, Washington DC, Report No. EPA 430-R09-004.

von Schulthess, R., Wild, D., Gujer, W. (1994). Nitric and nitrous oxides from denitrifying activated-sludge at low-oxygen concentration. Water Science and Technology 30(6), 123-132.

Wrage, N., Velthof, G. L., van Beusichem, M. L., Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33(12-13), 1723-1732.

Wunderlin, P., Mohn, J., Joss, A., Siegrist, H. (2010). N_2O emission from biological WWT - Global relevance and pathway identification with isotopes. Proceedings of 7th IWA Leading-Edge Conference on Water and Wastewater Technologies Phoenix, AZ, USA (June).

Yoshida, N. (1988). N-15-depleted N_2O as a product of nitrification. Nature 335(6190): 528-529.

Yu, R., Kampschreur, M. J., van Loosdrecht, M. C. M., Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Zumft, W. G. (1993). The biological role of nitric-oxide in bacteria. Archives of Microbiology 160(4), 253-264.

Chapter 4

Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment

This chapter has been published as:

<u>Wunderlin, P.</u>; Lehmann, M. F.; Siegrist, H.; Tuzson, B.; Joss, A.; Emmenegger, L.; Mohn, J. Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment. *Environmental Science and Technology*, **2013**, *47* (3), 1339-1348.

Graphical abstract

Abstract

We present measurements of site preferences (SP) and bulk ${}^{15}N/{}^{14}N$ ratios ($\delta {}^{15}N^{\text{bulk}}_{N_{2O}}$) of nitrous oxide (N₂O) by quantum cascade laser absorption spectroscopy (QCLAS) as a powerful tool to investigate N₂O production pathways in biological wastewater treatment. QCLAS enables high-precision N₂O isotopomer analysis in real time. This allowed us to trace short-term fluctuations in SP and $~\delta~^{\rm 15}N^{\rm bulk}_{\rm N_{2O}}$ and, hence, microbial transformation pathways during individual batch experiments with activated sludge from a pilot-scale facility treating municipal wastewater. On the basis of previous work with microbial pure cultures, we demonstrate that N_2O emitted during ammonia (NH_4^+) oxidation with a SP of -5.8 to 5.6 % derives mostly from nitrite (NO₂) reduction (e.g. nitrifier denitrification), with a minor contribution from hydroxylamine (NH₂OH) oxidation at the beginning of the experiments. SP of N₂O produced under anoxic conditions was always positive (1.2 to 26.1 ‰), and SP values at the high end of this spectrum (24.9 to 26.1 ‰) are indicative of N₂O reductase activity. The measured δ $^{15}\mathsf{N}^{\mathsf{bulk}}{}_{\mathsf{N}2\mathsf{O}}$ at the initiation of the NH_4^{+} oxidation experiments ranged between -42.3 and -57.6 ‰ (corresponding to a nitrogen isotope effect $\Delta \delta^{15}N = \delta^{15}N_{substrate} - \delta^{15}N_{N20}^{bulk}$ of 43.5 to 58.8 ‰), which is considerably higher than under denitrifying conditions (δ ¹⁵N^{bulk}_{N20} 2.4 to -17 ‰; $\Delta \delta$ ¹⁵N = 0.1 to 19.5 ‰). During the course of all NH₄⁺ oxidation and nitrate (NO_3^-) reduction experiments, $~\delta~^{15}N^{\text{bulk}}{}_{\text{N2O}}$ increased significantly, indicating net ¹⁵N enrichment in the dissolved inorganic nitrogen substrates (NH_4^+ , NO_3^-) and transfer into the N₂O pool. The decrease in ¹⁵N during NO₂⁻ and NH₂OH oxidation experiments is best explained by inverse fractionation during the oxidation of NO_2^{-1} to NO₃⁻.

Keywords

N₂O production; nitrification; denitrification; pathway identification; stable nitrogen isotopes; isotopomer; laser spectroscopy

Introduction

Nitrous oxide (N_2O) is an important greenhouse gas and a major sink for stratospheric ozone (Ravishankara et al., 2009; S.A. Montzka and S. Reimann et al., 2011). It is estimated that about two thirds of anthropogenic N_2O emissions can be attributed to microbial processes occurring mainly in agricultural soils, or managed lawns but also in biological wastewater treatment (USEPA 2009; Townsend-Small et al., 2011).

Microbial nitrogen (N) transforming processes such as autotrophic nitrification and heterotrophic denitrification have been identified as major N₂O sources. However, the partitioning between these processes with respect to global N₂O emissions and the respective mechanisms are still unclear. There are three main microbial pathways involved in N₂O formation (Figure 1; Kampschreur et al., 2009): (i) N₂O production as a side product during hydroxylamine (NH₂OH) oxidation to nitrite (NO₂⁻), probably related to high metabolic activity (Yu et al., 2010), (ii) the reduction of NO₂⁻ by ammonia-oxidizing bacteria (AOB), known as nitrifier denitrification (Colliver and Stephenson 2000), and (iii) the production of N₂O by heterotrophic denitrifiers (HET), resulting from an unbalanced activity (e.g. due to inhibition) of nitrogen-reducing enzymes (or in some cases from a lack of N₂O reductase; Baumann et al., 1997). The reduction of N₂O to N₂ by HET is currently considered to be the dominant microbial sink for N₂O (Schreiber et al., 2012).

A promising approach to trace N₂O source and sink processes is to analyze the nitrogen (and oxygen) isotope composition and intramolecular distribution of ¹⁵N on the central (α) and terminal (β) positions of the asymmetric N₂O molecules (Toyoda and Yoshida 1999; Sutka et al., 2006; Baggs 2008). Bulk nitrogen isotope ratios of N₂O are reported in the conventional δ -notation, in per-mil (‰), δ ¹⁵N = [(R_{N2O}/R_{reference}) - 1] x 1000, where R is the nitrogen isotope ratio (¹⁵N/¹⁴N), and atmospheric N₂ (AIR) serves as the reference (Mariotti et al., 1981; Coplen 2011). Analogously, δ ¹⁵N^{α} and δ ¹⁵N^{β} denote the relative enrichment of ¹⁵N in the central (N^{α}) position (¹⁴N¹⁵N¹⁶O) or in the terminal (N^{β}) position (¹⁵N¹⁴N¹⁶O) with respect to the reference. The site preference (SP) is defined as SP = δ ¹⁵N ^{α} - δ ¹⁵N^{β} (Brenninkmeijer and Röckmann 1999; Toyoda and Yoshida 1999).

Most of the studies that have used N_2O isotopic measurements so far were field studies, in which the responsible N_2O source processes, for instance, were not well constrained (Westley et al., 2006; Yamagishi et al., 2007; Koba et al., 2009; Toyoda et al., 2009; Ostrom et al., 2010). In this regard, it is helpful that microbial N transformation processes are typically associated with kinetic isotope fractionation, e.g. the discrimination of the ¹⁵N-containing molecules during most enzymatic reactions. During nitrification, N_2O is a side-product. Therefore, the nitrogen isotope fractionation is generally higher than during heterotrophic denitrification, where N_2O is assumed to be an obligate intermediate and the isotope fractionation is the net result of production and consumption processes (Figure 1; SI, Table S1; Yamagishi et al., 2007; Koba et al., 2009).
In methodological investigations with pure cultures designed to identify the isotopic signature produced by specific enzymatic pathways, the following SP values were reported: (i) -10.7 \pm 2.9 to 0.1 \pm 1.7 ‰ for nitrifier denitrification by AOB (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006; Frame and Casciotti 2010), (ii) 30.8 ± 5.9 to 36.3 ± 2.4 ‰ for NH,OH oxidation (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006; Frame and Casciotti 2010; Santoro et al., 2011), and (iii) -5 to 0 ‰ for N₂O production by HET only (e.g. at inhibited N₂O reductase; Figure 1; SI, Table S1 for a detailed overview; Toyoda et al., 2005; Sutka et al., 2006). A strongly positive SP might also be the result of the subsequent heterotrophic N₂O reduction to N₂, as the ¹⁴N-O bond is preferentially broken during this enzymatic transformation step, leading to an enrichment in ¹⁴N-¹⁵N-O in the residual N₂O (Figure 1; Ostrom et al., 2007; Yamagishi et al., 2007). For N₂O production by the nitrification process, a SP of about 33 ‰ was assumed, mainly on the basis of the findings of a study with N. europaea in a pure culture (Sutka et al., 2006; suggesting the importance of NH₂OH oxidation in overall N₂O production by this nitrifier). In contrast, Toyoda et al. (2011) estimated a SP of 4.5 ‰ for N₂O production in an aerated (oxic) tank of a biological wastewater treatment plant and suggested that the contribution of NH₂OH oxidation (with a presumably much higher SP) during the nitrification pathway is less important in mixed cultures.

Figure 1. Scheme of relevant N_2O production pathways in biological wastewater treatment, adapted from Wunderlin et al. (2012), including SP and $\Delta \delta^{15}N$ (= $\delta^{15}N_{substrate} - \delta^{15}N_{N2O}^{bulk}$) values reported from cultivation studies (Yoshida 1988; Sutka et al., 2003; Sutka et al., 2004; Toyoda et al., 2005; Sutka et al., 2006; Ostrom et al., 2007; Yamagishi et al., 2007; Koba et al., 2009; Frame and Casciotti 2010; Santoro et al., 2011). Additional information is given in the SI, Table S1.

The goal of the present study is to identify N_2O production pathways of an activated sludge system in a lab-scale batch reactor operated under specific process conditions. We applied quantum cascade laser absorption spectroscopy (QCLAS) as a novel technique to analyze the site-specific isotope composition of N_2O in real time. The net N_2O nitrogen isotopic signatures are compared to published pure-culture investigations where the active pathways are known. A mixed population system was chosen to more adequately mimic the situation in a full-scale plant, as compared to pure culture investigations. Our lab-scale experiments were performed to test the

following hypotheses: (i) nitrifier denitrification is the dominant N_2O production pathway during nitrification (NH_4^+ oxidation), (ii) NH_2OH addition is conductive to N_2O production by NH_2OH oxidation, while (iii) the addition of NO_2^- to activated sludge fosters N_2O production by nitrifier denitrification, and (iv) HET is assumed to be the main pathway under anoxic conditions with N_2O reductase activity being regulated by the dissolved oxygen concentration (Table 1).

Materials and methods

Experimental setup for batch scale experiments

In the present investigation, batch experiments were carried out with activated sludge sampled from the aerobic (nitrifying) reactor of a pilot scale municipal wastewater treatment plant adapted to NH_4^+ nitrification before the daily NH_4^+ peak load (before 8 a.m.; for more details see SI Text S1). A laboratory batch-scale reactor with a working volume of 6.9 L and a headspace of 1.2 L was used (for more details see Wunderlin et al., 2012). The wastewater temperature was held at 20 ± 1.2 °C. Continuous gas flow was maintained at 1 standard liter per minute using a mass flow controller (Red-y Smart series, Vögtlin Instruments, Switzerland) during both nitrification and denitrification experiments in order to strip N₂O (and NO) from the liquid phase for subsequent analysis. The dissolved oxygen concentration was adjusted by automated oxygen-controlled (by Oxymax H, Endress + Hauser) purging either with high purity nitrogen gas or synthetic air (20.5% O₂ in N₂). Under anoxic conditions, nitrogen gas was continuously purged through the reactor. The pH was measured with a pH electrode (Orbisint CPS11, Endress + Hauser, calibration at pH 7 and 9), and was held constant at 7.1 ± 0.2 using a pH controller via the addition of CO₂ (> 99.9% CO₂, Carbagas).

Nitrification experiments were carried out at oxygen concentrations typical for fullscale plants: 0.5, 1, 2 or 3 mgO₂/l. The experiments were started by adding either NH₄⁺, NO₂⁻ or NH₂OH (25 mg NH₄⁺-N/l, NH₄HCO₃ from Merck, Switzerland; 15 mgNO₂⁻-N/l, NaNO₂ from Merck; 2, 5, 10 or 15 mgNH₂OH-N/l, NH₂OH-HCl from Fluka, Switzerland). Denitrification experiments were performed at zero or very low dissolved oxygen concentrations (<0.2 mgO₂/l), and were launched by adding organic carbon (sodium acetate from Merck; always > 100 mg COD/l; COD: chemical oxygen demand) and NO₃⁻ (10 or 20 mgNO₃⁻-N/l, NaNO₃ from Fluka). Samples were preconditioned to remove ambient NO₃⁻ present in the activated sludge through denitrification, prior to the start of the actual denitrification experiment with controlled substrate amendments. Preconditioning of the nitrification experiments included continuous aeration of the batch-scale reactor to remove ambient NH₄⁺ by nitrification. An overview of the experiments was analyzed by elemental analyzer (EA) - isotope-ratio mass-spectrometry (IRMS; for more details about the analytical aspects, see SI, Text S2).

Experiments under nitrifying and denitrifying conditions were stopped when N_2O (and NO) production ceased and the dissolved N substrate was completely oxidized (NH_4^+ ,

 NH_2OH or NO_2^{-1} in the nitrification experiments) or reduced (NO_3^{-1} in the denitrification experiments). More detailed descriptions of the experimental setup, the batch experiments and the respective emission data are given in Wunderlin et al. (2012).

Liquid analysis procedures

Grab samples were taken regularly (every 15 to 60 minutes) and were immediately filtered through a 0.7 μ m filter (GF/F Whatman) and a 0.45 μ m syringe filter (Chromafil Membranfilter from Macherey), before being stored at 4 °C until their analysis within 24 hours. NH₄⁺-N was analyzed photometrically using a Foss FIAstar flow injection 5000 analyzer (detection limit 0.2 mgN/l; relative uncertainty 5%). NO₃⁻-N and NO₂⁻-N were determined by ion chromatography (761 compact IC, Metrohm; detection limit for both components 0.2 mgN/l; relative uncertainty 5%). Commercial photochemical test kits (Hach Lange GmbH, Düsseldorf, Germany) were used to measure low NO₂⁻ concentrations (LCK 341; detection limit 0.015 mgN/l) and COD (LCK 314, LCK 414, or LCK 114).

Analysis of N_2O concentration and isotopic composition

The N₂O and NO concentrations in the outflowing gas (off-gas) were continuously (1 minute temporal resolution) analyzed by FTIR spectroscopy (GASMET CX-4000, Temet Instruments, Finland), equipped with a heated (40°C) flow-through gas cell of 9.8 m path length (see SI, Figure S1). The quantification limits for N₂O and NO are 0.25 and 5 ppm respectively, and the expanded standard uncertainty for both components is around 10% (2 σ confidence level; Mohn et al., 2008).

The exhaust gas was dynamically diluted with synthetic air (Messer, Switzerland) to constant N₂O concentrations (around 300 ppb), using two mass flow controllers (Red-y Smart series, Vögtlin Instruments, Switzerland), in order to ensure a high precision of the isotope measurement (see SI, Text S₃, Figure S₁). At the pump outlet, the pressure was adjusted to 4 bar using a pressure relief valve. Humidity as well as CO, were removed from the gas flow to ppm or even ppb levels, respectively, applying a permeation drier (MD-050-72S-1, PermaPure Inc., USA) and a chemical CO₂ trap filled with Ascarite (4 g, 10 - 35 mesh, Fluka, Switzerland) and Mg(ClO₄), (2 x 2 g, Fluka, Switzerland). Finally, the sample gas was passed through a sintered metal filter (SS-6F-MM-2, Swagelok, USA) and directed to a preconcentration unit (Mohn et al., 2010). This fully automated liquid-nitrogen free preconcentration device was used to increase the N₂O concentrations by a factor of 200, from ambient level to around 70 ppm N₂O (Mohn et al., 2010; Mohn et al., 2012). The N₂O content from 10 liters of diluted off-gas was adsorbed onto a porous polymer adsorption trap (HayeSep D 100-120 mesh, Hayes Separations Inc., USA) at a flowrate of 500 standard cubic centimeters per minute, then desorbed by resistive heating combined with synthetic air purging, and finally introduced into the evacuated multipass cell of the QCLAS (Waechter et al., 2008). Successive preconcentration cycles resulted in a temporal resolution of 30 minutes for N₂O isotopomer analysis. The accuracy of this procedure was ensured by preconcentration of N₂O with a known isotopic composition (standard I) and subsequent QCLAS analysis at least once daily. The high precision analysis capacity and equivalence to IRMS has recently been demonstrated in an inter-comparison study (Köster et al., 2013).

The QCLAS employed in this study allowed simultaneous quantification of the three most abundant N₂O isotopic species (¹⁴N¹⁴N¹⁶O, ¹⁵N¹⁴N¹⁶O, ¹⁴N¹⁵N¹⁶O). For both δ ¹⁵N α and δ ¹⁵N^{β}, a precision better than 0.1 ‰ was obtained with six minutes of spectral averaging at mixing ratios of 70 ppm N₂O. Before and after each experiment, standard gases were analyzed to calibrate the δ ¹⁵N α and δ ¹⁵N β measurements, and to correct for drifts. The standard gas itself was calibrated against primary standards by QLAS. Standard I: δ ¹⁵N α = 2.1 ± 0.1‰, δ ¹⁵N β = 2.0 ± 0.2 ‰, 246.9 ± 0.1 ppm N₂O; standard II: δ ¹⁵N α = 25.0 ± 0.1 ‰, δ ¹⁵N β = 24.8 ± 0.2 ‰, 249.1 ± 0.1 ppm N₂O (the precision indicated is the standard error of the mean). Primary standard gases were analyzed (δ ¹⁵N α , δ ¹⁵N β and δ ¹⁵N^{bulk}_{N2O}) by IRMS at the Tokyo Institute of Technology, Japan (Toyoda and Yoshida 1999).

Table 1. Summary of batch experiments: added substrates (initial concentrations and their isotopic composition) to activated sludge taken from the nitrification reactor of our pilot plant, and dissolved oxygen concentrations; SP, $\delta^{15}N^{bulk}$ of N_2O (both at the beginning and end of the experiments), $\Delta \delta^{15}N$ of produced N_2O and the quantitative interpretation of SP data. NN refers to NH_2OH oxidation, ND to AOB nitrifier denitrification, HET to heterotrophic denitrification and N_2O red. to N_2O reductase activity. Additional information is given in Wunderlin et al (2012).

Experiment	Added substrate	O ₂	$\delta^{15}N^{bulk}_{N2O}*$		Net N isotope effect $(\Delta \delta^{15} N)^{\#}$	Site preference (SP)*		Interpretation of microbial processes based on SP ^{##}	
			start	end		start	end	start	end
		[mg/l]	[‰]	[‰]	[‰]	[‰]	[‰]		
NO -	NO ₂ ⁻								
NO ₂ oxidation $(\delta^{15}N = -30.5\%)$ Hypothesis : Nitrifier denitrificati on (ND)	15 mgN/l	0.6	-64.4		-	0.2		100%ND	
	15 mgN/l	0.6	-56.3	-72.9	25.8	-1.1	-2.1	100%ND	100%ND
	15 mgN/l	1.1	-54.9	-67.1	24.4	-0.2	-1.1	100%ND	100%ND
	15 mgN/l	2.1	-59.7	-72.4	29.2	-3.0	-3.4	100%ND	100%ND
	15 mgN/l	3.1	-57.5	-69.2	27.0	-2.1	-3.9	100%ND	100%ND
	NH ₂ OH								
NH ₂ OH oxidation $(\delta^{15}N = -71.3\%)$ Hypothesis : NH ₂ OH oxidation (NN) and ND	2 mgN/l	2.1	-62.3		-	25.2		89%NN 11%ND	
	5 mgN/l	2.1	-76.0	-86.3	4.7	26.4	19.9	93%NN 7%ND	72%NN 28%ND
	10 mgN/l	1.1	-63.9	-50.7	-7.4	30.7	3.7	100%NN	19%NN 81%ND
	10 mgN/l	2.2	-68.2	-83.1	-3.1	29.0	20.7	100%NN	74%NN 26%ND
	15 mgN/l	2.3	-70.1	-79.2	-1.2	27.5	25.8	97%NN 3%ND	91%NN 9%ND
	10 mgN/l [§]	2.1	-65.7	-68.4	-5.6	30.5	30.2	100% NN ^{§§}	100% NN ^{§§}

	$\mathrm{NH_4}^+$								
NH_4^+ peak addition $(\delta^{15}N =$ 1.15‰) Hypothesis : ND and NN	25 mgN/l	0.6	-57.6	-34.7	58.8	0.9	-2.0	10%NN 90%ND	100%ND
	25 mgN/l	1.0	-55.5	-25.8	56.7	3.0	-1.0	16%NN 84%ND	3%NN 97%ND
	25 mgN/l	1.9	-54.7	-29.0	55.9	5.6	0.4	25%NN 75%ND	8%NN 92%ND
	25 mgN/l	2.0	-55.8	-25.3	57.0	2.5	-2.3	15%NN 85%ND	100%ND
	25 mgN/l	3.1	-42.3	-39.6	43.5	1.9	-1.8	13%NN 87%ND	100%ND
Continuous NH ₄ ⁺ addition $(\delta^{15}N =$ 1.15‰) Hypothesis	9 mgN/l	1.1	-54.8	-35.7	56.0	-0.5	-4.5	5%NN 95%ND	100%ND
	9 mgN/l	2.1	-50.2	-31.7	51.4	-1.2	-5.8	3%NN 97%ND	100%ND
	9 mgN/l	3.1	-48	-33.6	49.2	-1.2	-4.9	3%NN 97%ND	100%ND
: ND and NN	15 mgN/l	2.9	-51.4	-30.9	52.6	1.1	-2.3	10%NN 90%ND	100%ND
NO ₃ ⁻ reduction	NO ₃ -								
$(\delta^{15}N =$	20 mgN/l	0	2.4	50.1	0.1	24.9	25.4	HET and str	ong N ₂ O red.
2.5‰) Hypothesis	20 mgN/l	0	-5.3	13.2	7.8	24.9	26.1	HET and strong N ₂ O red.	
: hetero-	10 mgN/l	< 0.1	3.0		-	25.8		HET and str	ong N ₂ O red.
denitrificati on (HET)	10 mgN/l	<0.1	-9.6	9.3	12.1	24.0	14.7	HET and low N_2O red.	
and N ₂ O reductase	20 mgN/l	0.1-0.2	-17.0	31.5	19.5	6.2	1.2	HET and low N_2O red.	

* SP and $\delta^{15}N^{\text{bulk}}_{N20}$ values at the beginning and the end of experiments, respectively. In

experiments with the same start and end value only one sample was analyzed.

[#] Net nitrogen (N) isotope effect calculated from the difference between δ^{15} Nsubstrate and δ^{15} Nsubstrate and δ^{15} Nsubstrate and δ^{15} Nsubstrate and δ^{15} Nsubstrate was at that time already oxidized.

^{##} Calculated based on the isotopomer mixing model, presented in equation 1.

[§] Control experiment in tap water.

\$\$ Assumption that 100 % of N2O is produced by chemical NH2OH oxidation.

RESULTS AND DISCUSSION

Isotopic signature of N₂O produced during NO₂⁻ oxidation experiments

The SP of N₂O produced during NO₂⁻ oxidation experiments, where nitrifier denitrification is hypothesized to be the dominant pathway, ranged between 0.2 ‰ and -3.9 ‰ (-1.7 \pm 1.3 ‰ on average; Figure 2 A; Table 1), which is consistent with previous work. For example, Sutka and co-workers (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006) and Frame and Casciotti (2010) reported average SP values of 0.1 \pm 1.7 and -10.7 \pm 2.9 ‰ for nitrifier denitrification by *N. multiformis*, *N. europaea* and *N. marina* in batch cultures, respectively (Figure 1). However, our data show a systematic decrease in SP from the beginning (-0.2 to -3 ‰) towards the end of the experiments (-1.1 to -3.9 ‰), when NO₂⁻ was almost depleted (Table 1). On the basis of their SP data, Toyoda et al. (2005) proposed that during N₂O production by enzymatic NO reduction, one NO molecule is bound to the active center of the NO reductase (e.g. cNOR or qNOR; Hendriks et al., 2000; Stein 2010), followed by the binding of the second NO molecule. Assuming that ¹⁵N-O binds preferentially to the active center of the enzyme compared to ¹⁴N-O, and that oxygen is abstracted from the NO molecule bound to the active

center, ¹⁵N would be enriched at the terminal (β) position (¹⁵N-¹⁴N-O; resulting in a negative SP). In our experiments, the N₂O production rate was highest at the beginning (highest off-gas concentration of about 140 ppm at a constant air flow rate of 1 standard liter per minute) and steadily decreased in parallel with the NO₂⁻ concentration (SI, Text S4, Figure S2 A and B, and see also Wunderlin et al., 2012). While we lack an obvious explanation for the observed SP decrease, we speculate that SP is somehow affected by (i) the N₂O production rate, or (ii) by a (slow) switch in N₂O production process in the course of an experiment, for example from a partial contribution of NH₂OH oxidation with a positive end-member SP to 'sole' nitrifier denitrification activity.

Figure 2. $\delta^{15}N^{bulk}$ (open symbols) and SP (closed symbols) of N₂O emitted during (A) NO₂⁻ ($\delta^{15}N = -30.5\%$) oxidation, and (B) NH₂OH ($\delta^{15}N = -71.3\%$) oxidation experiments. The reaction progress is either reported as the ratio of the actual versus the initial NO₂⁻ concentration (experiment starts at 1.0 in A), or by the ratio of the actual versus the final NO₃⁻ concentration (experiment starts at 0.0 in B). In parentheses: set-points of dissolved oxygen concentration (in mg/l; left), NH₂OH concentration (in mgN/l; middle in B), and R² (right). The uncertainty (2 σ confidence level) for SP and $\delta^{15}N^{bulk}_{N20}$ is $\pm 0.3\%$ and for $[NO_2^{-}]/[NO_3^{-}]_{ini}$ and $[NO_3^{-}]/[NO_3^{-}]_{ini}$ better than ± 0.1 .

The first measurement of δ ¹⁵N^{bulk}_{N20} was in the range of -54.9 to -59.7 ‰ (Figure 2 A; Table 1). The apparent net N isotope effect (Δ δ ¹⁵N = δ ¹⁵N_{N02} - δ ¹⁵N^{bulk}_{N20}; δ ¹⁵N of NaNO₂ = -30.5 ‰; Table 1), calculated on the basis of the initial N₂O isotopic composition thus lies between 24.4 and 29.2 ‰. However, the actual value for Δ δ ¹⁵N may be a few ‰ lower (extrapolation of data shown in Figure 2 A), since about 20 to 40 % of the initial NO₂ ⁻ was already oxidized to NO₃ ⁻ when the first N₂O sample was analyzed (SI, Text S4, Figure S2 A and B). Nevertheless, our estimated range is consistent with the literature data, where, for example Δ δ ¹⁵N of 24.4 and 35.1 ‰ are reported for nitrifier denitrification of *N. multiformis* and *N. europaea*, respectively, in pure culture (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006). In the course of our experiments, δ ¹⁵N^{bulk}_{N20} systematically decreased to values between -67.1 and -72.9 ‰ (Figure 2 A; Table 1), a trend which seems to contradict 'normal fractionation' during progressive substrate depletion, in this case NO₂ ⁻ reduction to N₂O (e.g. where the product δ ¹⁵N^{bulk}_{N20} is lower than the substrate δ ¹⁵N, e.g. δ ¹⁵N-NO₂, and δ ¹⁵N of both

substrate and product increase with ongoing reaction). The decreasing trend in δ ¹⁵N indicates that the δ ¹⁵N of the NO₂⁻ itself represents a 'moving baseline' which is affected not only by N isotope fractionation during the reduction to N₂O, but also by the oxidation to NO₃⁻ (preventing the use of a Rayleigh model to calculate N isotope effects for N₂O production). Oxidation of NO₂⁻ to NO₃⁻ in the ocean has been reported to be associated with an inverse N isotope effect (e.g. a negative Δ δ ¹⁵N; Casciotti 2009), and it appears that this effect seems to dominate the isotopic changes of the NO₂⁻ (and hence of N₂O).

Isotopic signature of N₂O produced during NH₂OH oxidation experiments

During NH₂OH oxidation experiments, where NH₂OH oxidation is hypothesized to be the dominant N₂O production pathway, the SP of N₂O ranged between 26.4 and 30.7 ‰ at the beginning of the experiments (28.4 \pm 1.9 % on average; Figure 2 B; Table 1). This was significantly higher than the SP observed during NO₂⁻ oxidation experiments (SP in the range of -0.2 to -3.0 ‰; Figure 2 A), where nitrifier denitrification by AOB was the dominant N₂O producing process. But in agreement with previous work, where average SP values of 32.5 \pm 0.6 ‰, 33.5 \pm 1.2 ‰ and 30.8 \pm 5.9 ‰ were measured for the N₂O production via NH₂OH oxidation by N. multiformis, N. europaea and Methylococcus capsulatus, respectively (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006). SP values of 36.3 \pm 2.4 ‰ were determined for the marine β -proteobacterium Nitrosomonas marina C-113a (Figure 1; Frame and Casciotti 2010). The systematic decrease in SP in the course of our experiments (Figure 2 B), in addition to the decreasing trend observed for $\delta\,{}^{\scriptscriptstyle 15}N^{\scriptscriptstyle bulk}{}_{\scriptscriptstyle N2O}$ (see below), underscores that $\rm NH_2OH$ oxidation is dominant at the beginning of the experiments, while nitrifier denitrification becomes important with ongoing depletion of NH₂OH substrate. By assuming an average SP of 28.5 ‰ for pure N₂O production via NH₂OH oxidation (SP_{NN}; this section) and an average SP of -2 ‰ for AOB nitrifier denitrification (SP_{ND}; see section before), the partitioning of both processes with regards to total N₂O production can be estimated (F_{ND} and F_{NN} , respectively), even though a marginal contribution from additional (not considered) pathways cannot be completely excluded (equation 1; Frame and Casciotti 2010):

$$F_{ND} = (1 - F_{NN}) = \frac{(SP_{tot} - SP_{NN})}{(SP_{ND} - SP_{NN})}$$
 Equation 1

Accordingly, a site preference (SP_{tot}) generally in between of 20 and 25 ‰ (as observed towards the end of several of the experiments shown in Figure 2 B) suggests that ~12 to ~28 % of the total N₂O production in the nitrifying batch experiments can eventually be attributed to nitrifier denitrification (F_{ND}). At the extreme, in one of the experiments at 1.1 mgO₂/l (Table 1; SI, Figure S2 C), we measured a SP of 3.7 ‰ at the end of the experiment when NH₂OH is low suggesting that nitrifier denitrification by AOB can almost completely take over N₂O production (see also Figure 3 A).

The exact mechanism of N₂O formation during NH₂OH oxidation is unknown, but can be hypothesized that it is produced either via chemical breakdown of nitroxyl radicals (NOH; Law et al., 2012), or via NO production by hydroxylamine oxidoreductase (HAO), which is subsequently reduced to N₂O by an NO reductase such as cytochrome c_{554} (Upadhyay et al., 2006; Chandran et al., 2011). For both scenarios, a positive SP can be interpreted as an indicator of a reaction via a symmetric intermediate, where the cleavage of the ¹⁴N-O bond is preferred over that of the ¹⁵N-O bond, resulting in a ¹⁵N enrichment at the central (α) position (¹⁴N-¹⁵N-O; Schmidt et al., 2004).

The δ ¹⁵N^{bulk} values of N₂O produced at the beginning of the NH₂OH oxidation experiments were in the range of -63.9 to -76 ‰ (Figure 2 B). On the basis of these values, $\Delta \delta^{15}$ N between -7.4 and 4.7 ‰ were estimated (δ^{15} N of NH₂OH-HCl = -71.3 ‰; Table 1). Yet, the observed N isotope effect range is consistent with reports from the literature, with $\Delta \delta^{15}$ N values for N₂O production via NH₂OH oxidation of -2 ‰ for N. europaea and N. multiformis, and -5.7 ‰ for M. trichosporium respectively (Sutka et al., 2006). A similar value was measured for *N. capsulatus* (-3.1 ‰; Sutka et al., 2003; Sutka et al., 2004) and for the marine β -proteobacterium *Nitrosomonas marina C-113a* (6.7 ‰; Frame and Casciotti 2010). As in the NO² oxidation experiments, we observed systematically decreasing $~\delta~^{\mbox{\tiny 15}}N^{\mbox{\tiny bulk}}_{\mbox{\tiny N2O}}$ values to -79.2 to -86.3 ‰ with progressive reaction (Figure 2 B). This trend is best explained by the above mentioned increasing contribution of nitrifier denitrification activity by AOB to the total N₂O production. Indeed, NO₂, the precursor substrate of N₂O in nitrifier denitrification, accumulated by up to 0.4 mgN/l during the experiment (in parallel with N₂O), yielding maximum offgas concentrations of about 60 ppm (SI, Text S4, Figure S2 C and D). The inverse fractionation during partial NO_2^{-1} oxidation to NO_3^{-1} can explain the negative trends as described for the NO,² oxidation experiments (see above and Casciotti 2009). In the experiment at 1.1 mgO₂/l (shown in SI, Figure S2 C and D), we monitored the N₂O isotopic signature until NH₂OH was almost completely oxidized (in contrast to the other NH₂OH oxidation experiments shown in Figure 2 B): at very low N₂O production rates during the second half of the incubation, $\,\delta\,{}^{\scriptscriptstyle 15}\!N^{\text{bulk}}{}_{\scriptscriptstyle N^{2O}}$ increased again from a minimum of -81.1 to -50.7 ‰. We consider this increase in δ ¹⁵N^{bulk}_{N2O} to be the result of a paralleling increase of the $\delta^{15}N$ of the precursor N (NH₂OH and NO₂⁻) and N₂O pools according to Rayleigh distillation kinetics, dominating the overall N isotope dynamics towards substrate depletion.

In a control experiment, where we added NH₂OH to tap water (without activated sludge), N₂O was produced with an average δ ¹⁵N^{bulk} value of -67.2 ± 1.8 ‰ ($\Delta \delta$ ¹⁵N of around -4.1 ± 1.8 ‰) and an average SP of 30.3 ± 0.2 ‰ (Table 1). SP remained essentially invariant and only a minor decrease in δ ¹⁵N^{bulk}_{N2O} (from -65.7 to -68.4 ‰) was observed. As NO₂⁻ production was marginal in the absence of activated sludge (data not shown), we conclude that the observed signatures are characteristic for purely inorganic NH₂OH oxidation. Indeed, Toyoda et al. (2005) reported an average SP value of 30.1 ‰ for inorganic NO₂⁻ reduction and 29.5 ‰ for inorganic NH₂OH oxidation respectively, and proposed an N₂O formation mechanism via hyponitrite (N₂O₂⁻²), a symmetric

intermediate. Also here, the positive SP can be explained by the preferential cleavage of the 14 N-O bond of the -O- 14 N- 15 N-O- molecule (similar to the mechanism discussed above).

Figure 3. Quantitative apportioning of AOB nitrifier denitrification (ND) and NH₂OH oxidation (NN) according to the observed SP and the isotopomer mixing model (equation 1) during (A) NH₂OH oxidation at 1.1 mgO₂/l and (B) NH₄⁺ oxidation (peak addition) at 1.9 mgO₂/l. Substrate was added at time zero. The uncertainty (2 σ confidence level) for SP is \pm 0.3 ‰

Isotopic signature of N_2O produced during NH_4^+ oxidation experiments

During 'conventional' nitrification (NH $_{A}^{+}$ oxidation) where nitrifier denitrification was hypothesized to be the dominant N₂O production pathway, the SP of the N₂O (determined at the onset of the experiments) ranging from 0.9 to 5.6 ‰ and from -5.8 to 1.1 ‰ during peak and continuous NH_4^+ addition, respectively (Figure 4 A; Figure 5; Table 1). In the peak addition experiments, SP decreased to values of 0.4 to -2.3 ‰ with ongoing reaction, similar to the values observed in the NO,⁻ oxidation experiments and reported for nitrifier denitrification in pure culture (see section 'Isotopic signature of N_2O produced during NO_2^- oxidation experiments'). O_2 and NH_4^+ concentrations seemed to influence the SP, with higher SP values at elevated dissolved O_2 and high NH_4^+ concentrations at the beginning of the experiment (Figure 4 B). For example, the SP ranged between 2.5 and 5.6 % at ~2 mgO₂/l, and was significantly lower (0.9 %) at 0.6 mgO_2/I (at the same initial NH_4^+ concentration). SP was minimal towards the end of the experiment when NO_2^{-1} concentrations peaked and almost all the NH_4^{+} was consumed (Figure 4 B and C, Figure 5 A and B). This trend further underscores the growing importance of nitrifier denitrification by AOB with ongoing reaction and the progressive depletion of NH_4^+ and the accumulation of NO_2^- (see also Wunderlin et al., 2012). In contrast, during continuous NH_4^+ addition (Figure 5 C and D), SP was quite constant and only decreased after the cessation of NH⁺₄ addition (and the putative shift to nitrifier denitrification dominated N₂O production as described above). Our SP data

further indicate that an increase in NH_4^+ concentration from 9 to 15 mgN/l fosters N_2O production by NH_2OH oxidation (Table 1).

Figure 4. (A) $\delta^{15}N^{bulk}$, and (B) SP of N₂O produced during NH₄⁺ ($\delta^{15}N = 1.15$ ‰) oxidation experiments. The concentration of NH₄⁺ is expressed as the ratio of the instantaneous NH₄⁺ concentration to the initial NH₄⁺ concentration (experiment starts at 1.0). (C) SP of N₂O emitted as a function of the NO₂⁻ concentration (experiment starts at 0 mgN/l). Note that in the experiment at 3 mgO₂/l, a rapid NO₂⁻ built-up occurred, and therefore no SP value was obtained at lower NO₂⁻ concentrations. In parentheses: set-point of dissolved oxygen concentrations (in mg/l; left) and R² (right). The uncertainty (2 σ confidence level) for SP and $\delta^{15}N^{bulk}_{N_{2O}}$ is ± 0.3 ‰, and for $[NH_4^+]/[NH_4^+]_{ini}$ better than ± 0.05 .

Similar to the approach described above (equation 1), and assuming average SPs of 28.5 % for pure N₂O production via NH₂OH oxidation (derived from NH₂OH oxidation

experiments) and of -2 ‰ for NO,⁻ reduction (derived from NO,⁻ oxidation experiments) respectively, the contribution from both pathways can be assessed, even though the marginal contribution from other pathways cannot be completely excluded at this point. Accordingly, a site preference (SP_{tot}) of 0.9 to 5.6 ‰ at the onset of the peak addition experiments indicates a maximum contribution of NH,OH oxidation to the total N₂O production of about 25 %. This contribution systematically decreases to less than ~7 % towards the end of the experiments (Figure 3 B). This observation appears to be qualitatively consistent with a recent study by Yu et al. (2010), who speculated that during initial N₂O production in a pure *N. europaea* culture NH₂OH oxidation is more important because NH₂OH accumulates transiently at high NH_4^+ oxidation rates, e.g. under oxic conditions in an ammonia-fed chemostat or at high NH⁺ loads (Chandran et al., 2011). Furthermore, in a nitritation system, the NH_4^+ oxidation rate correlated exponentially with the specific N₂O production rate, which can be explained by the chemical breakdown of NOH (presumably formed during NH₂OH oxidation; Law et al., 2012), and in a pure culture of N. europaea it was shown that increased dissolved oxygen concentrations decreased the relative importance of nitrifier denitrification to NH₂OH oxidation (Sutka et al., 2006; Frame and Casciotti 2010). In other mixed culture nitrification experiments, the observed SP values suggest a dominance of nitrifier denitrification (over NH₂OH oxidation) with regard to N₂O production (Toyoda et al., 2011).

The $~\delta~^{\mbox{\tiny 15}}N^{\mbox{\tiny bulk}}$ of N_2O emitted at the onset of $NH_4^{~\mbox{\tiny +}}$ oxidation experiments ranged between -42.3 and -57.6 ‰ (Figure 4 A), which translates into $\Delta \delta^{15}$ N values of 43.5 to 58.8 ‰ (δ ¹⁵N of NH₄HCO₃ = 1.15 ‰; Table 1) (again being slightly biased by a potential ¹⁵N enrichment prior to the first measurement). Nevertheless, these Δ δ ¹⁵N values are similar to data reported for N₂O production via nitrification (50 ‰ by Toyoda et al., 2011; 47 to 68 ‰ by Koba et al., 2009; 56.9 ‰ by Frame and Casciotti 2010; Figure 1). In the course of our incubation experiments, $\delta^{15}N^{bulk}_{N_{20}}$ values systematically increased to -25.3 to -39.6 % due to ¹⁵N enrichment in the substrate N pool (NH₄⁺ and transformation products) as result of N isotopic fractionation according to the Rayleigh distillation kinetics during the stepwise oxidation to NO₂⁻ and NO₃⁻ (Figure 4 A; SI, Text S2 and S5, Figure S4 A). In the experiment with 3.1 mgO_2/l, the initial δ ¹⁵N^{bulk}_{N2O} was significantly higher (-42.3 ‰) than in the other NH_4^+ oxidation experiments (-54.7 to -57.6 ‰), and thus the net $\Delta \delta^{15}N$ was significantly lower (43.5 ‰). In addition, NO₂⁻ accumulation was highest in the high-O₂ experiment (up to almost 5 mgN/l; Figure 4 C), indicating that the NO_2^{-1} oxidation to NO_3^{-1} was the limiting step. In a mixed population system, the $\Delta \delta$ ¹⁵N naturally depends on the importance of each single transformation process. However, there are ambiguities with respect to the relationship between biogeochemical process reaction rate and N isotope fractionation (e.g. Kritee et al., 2012), and the reduction in N isotope fractionation is often linked to low substrate concentrations (e.g. Lehmann et al., 2007; Granger et al., 2008). In the high-O, experiment (at 3.1 mgO₂/l), NO₂⁻ was clearly not limiting N₂O production, and hence we assume that it is the high NH_4^+ oxidation rate in combination with a comparatively sluggish NO₂⁻ oxidation, which leads to NO₂⁻ accumulation and in turn to the partial

Figure 5. N_2O data time series of NH_4^+ ($\delta^{15}N = 1.15\%$) peak addition (at 1.9 mgO₂/l; A and B) and NH_4^+ continuous addition (at 1.9 mgO₂/l; C and D) experiments; dissolved nitrogen species (NH_4^+ , NO_2^- , NO_3^-), N_2O concentrations, as well as isotopic composition (adapted from Wunderlin et al., 2012, where additional information about nitrogen conversion rates, N_2O production rate, yield and a detailed discussion of concentration / emission patterns is provided).

Isotopic signature of N₂O produced during NO₃⁻ reduction experiments

Under anoxic conditions, N₂O SP values of around 25 ‰ seem to be consistent with previous work (Ostrom et al., 2007; Yamagishi et al., 2007; Koba et al., 2009), where an increasing SP was explained by the partial reduction of N₂O to N₂ (Figure 6). However, Toyoda et al. (2005) determined SP values of ~24 ‰ for *Pseudomonas fluorescens*, even though N₂O reduction was inhibited by acetylene . At low levels of dissolved oxygen (< 0.1 - 0.2 mgO₂/l) and in the presence of accumulated NO₂⁻ (> 4 mgN/l), SP values lower than 25 ‰ indicate the production of N₂O by heterotrophic denitrification, with reduced impact from N₂O reduction, since N₂O production by heterotrophic denitrification in absence of N₂O reduction results in SP values of between 0 and -5 ‰ (Figure 1 and SI, Table S1; Toyoda et al., 2005; Sutka et al., 2006). Our interpretation of the N₂O isotopic signatures is in accordance with the N₂O emission profiles and emission rates under varying dissolved oxygen concentrations presented in Wunderlin et al. (2012), assuming (partial) inhibition of the N₂O reductase at low dissolved oxygen concentrations, or the presence of NO₂⁻ (> 4 mgN/l).

Under anoxic conditions (o mgO₂/l), initial δ ¹⁵N^{bulk} values were in the range from -17 to 2.4 ‰, and increased systematically to values between 9.3 and 50.1 ‰ at the end of the experiments (Figure 6; Table 1). That is, the N₂O generated had a significantly higher δ ¹⁵N^{bulk} than was observed during NH₄⁺ oxidation conditions (-42.3 to -57.6 ‰), albeit

similar δ ¹⁵N substrates (δ ¹⁵N of NaNO₃ = 2.5 ‰; δ ¹⁵N of NH₄HCO₃ = 1.15 ‰). The isotopic signature of dissolved NO₂⁻ and NO₃⁻ (SI, Text S2 and S5, Figure S4 B) indicates that during heterotrophic denitrification the change of the δ ¹⁵N^{bulk}_{N2O} (-17 to 50.1 ‰) paralleled that of the precursor NO₂⁻ (-23.5 to 43 ‰) within the respective experiments, with a consistent δ ¹⁵N offset between the two N pools due to the N isotope fractionation during NO₃⁻ reduction to N₂O. The Δ δ ¹⁵N (= δ ¹⁵N_{NO3}⁻ - δ ¹⁵N^{bulk}_{N2O}) of N₂O produced during heterotrophic denitrification ranged between 0.1 and 19.5 ‰, a range that includes values reported from pure culture investigations (~13 ‰ for NO₂⁻ reduction; Sutka et al., 2006). However, our values are at the lower end of data reported for heterotrophic denitrification in the natural environment (o to 39 ‰; Koba et al., 2009; Figure 1). This might partly be due to an underestimation of our Δ δ ¹⁵N values, since a significant fraction of the initial NO₃⁻ was already reduced before the first N₂O sample was collected.

Figure 6. SP is plotted against $\delta^{15}N^{bulk}{}_{N_{2O}}$ under NO_3^- ($\delta^{15}N = 2.5 \%$) reducing conditions (experiments start at low $\delta^{15}N^{bulk}{}_{N_{2O}}$). In parentheses: set-point of dissolved oxygen concentration (in mg/l). The uncertainty (2 σ confidence level) for SP and $\delta^{15}N^{bulk}{}_{N_{2O}}$ is $\pm 0.3 \%$.

The isotopic signature of N_2O as a tool to differentiate between the contribution of nitrification and heterotrophic denitrification

During the multi-step process of NH_4^+ oxidation, the SP of N_2O indicates that NO_2^- reduction, presumably by AOB nitrifier denitrification, is the dominant N_2O production pathway in the investigated activated sludge system. However, NH_2OH oxidation contributes up to about 25 % to the total N_2O production, preferentially at dissolved O_2 concentrations higher than 1 mgO₂/l and NH_4^+ concentrations higher than 10 mgN/l. On the other hand, the isotopic signature of the N_2O produced during heterotrophic denitrification is significantly different from nitrification-derived N_2O . Still, N_2O source partitioning remains a difficult task under low dissolved oxygen concentrations where, in addition to NH_2OH oxidation and nitrifier denitrification by AOB, heterotrophic denitrification may also contribute significantly to N_2O production. Concomitant N_2O reduction by HET further complicates the interpretation of net N_2O isotope effects.

Our results underscore the value, but also the limitations, of N_2O isotopomer analysis in investigating the pathways of, and controls on, N_2O production and co-occurring N transformations in biological (municipal) wastewater treatment. Especially in combination with parameters commonly reported in wastewater treatment, such as the concentrations of dissolved O_2 , N species, COD, but also N_2O and NO, the isotopic signature of N_2O provides additional insight into the pathways directly involved in N_2O production. Our data elucidating the N isotope dynamics associated with N_2O production in wastewater treatment may be integrated in future numerical models in order to establish a more quantitative framework for predicting and understanding N_2O production in biological wastewater treatment plants.

Nomenclature

lsotopomer:	Molecules containing the same isotopes but with differing isotope positions; e.g. N_2O with ¹⁵ N in the central (¹⁴ N- ¹⁵ N-O) or the end (¹⁵ N- ¹⁴ N-O) position (Müller 1994)		
R:	Nitrogen isotope ratio, ¹⁵ N/ ¹⁴ N		
δ ¹⁵ N _{compound} :	$(R_{compound}$ - $R_{ref})$ / R_{ref} x 1000, with atmospheric nitrogen as the reference material (ref)		
δ ¹⁵ N ^{α} and δ ¹⁵ N ^{β} :	Relative differences of isotope ratios for the inner (α) and the outer (β) nitrogen atom in the asymmetric N ₂ O molecule		
SP:	Site preference, the difference between the $\delta^{{ m 15}}{ m N}^{lpha}$ and $\delta^{{ m 15}}{ m N}^{eta}$		
δ ¹⁵ N ^{bulk} _{N2O} :	The average between $\delta^{{}_{15}}\!N^{\alpha}$ and $\delta^{{}_{15}}\!N^{\beta}$ in $N_{_2}O$		
$\Delta~\delta$ $^{15}\text{N}:$	The net nitrogen (N) isotope effect, which approximates the apparent fractionation of a multiple step reaction, expressed as the difference between δ ¹⁵ Nsubstrate and δ ¹⁵ N ^{bulk} _{N2O} ; according to Koba et al. (2009) and Sutka et al. (2006).		

Acknowledgements

This study was financially supported by the Swiss Federal Office for the Environment (FOEN), the Swiss National Foundation for Scientific Research, the canton of Bern (AWA), the canton of Basel- Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF + Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, WWTP Worblental, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen, Zentralschweizer Umweltdirektorenkonferenz (ZUDK), Empa

and Eawag. The authors thank Naohiro Yoshida and Sakae Toyoda from the Tokyo Institute of Technology for analysis of the site-specific isotopic composition of our primary N2O calibration gases. Special thanks go also to Carsten Schubert and Gijs Nobbe (Eawag) for the isotopic analysis of the applied substrates, and George F. Wells (Eawag) for helpful discussions during the preparation of the manuscript.

Supporting information available

Additional information about the analysis of the nitrogen isotopic composition of dissolved nitrogen species, the experimental setup for the analysis of N_2O isotopic composition, and the time series of NO_2^- oxidation and NH_2OH oxidation experiments is given in the supporting information. This information is available free of charge via the Internet at http://pubs.acs.org/.

References

Baggs, E. M. (2008). A review of stable isotope techniques for N₂O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22(11), 1664-1672.

Baumann, B., Snozzi, M., VanderMeer, J. R. and Zehnder, A. J. B. (1997). Development of stable denitrifying cultures during repeated aerobic-anaerobic transient periods. Water Research 31(8), 1947-1954.

Brenninkmeijer, C. A. M. and Röckmann, T. (1999). Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Communications in Mass Spectrometry 13(20), 2028-2033.

Casciotti, K. L. (2009). Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta 73(7), 2061-2076.

Chandran, K., Stein, L. Y., Klotz, M. G. and Van Loosdrecht, M. C. M. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39(6), 1832-1837.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Coplen, T. B. (2011). Guidelines and recommended terms for expression of stableisotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25, 2538-2560.

Frame, C. H. and Casciotti, K. L. (2010). Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7(9), 2695-2709.

Granger, J., Sigman, D. M., Lehmann, M. F. and Tortell, P. D. (2008). Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology and Oceanography 53(6), 2533-2545.

Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S. and Saraste, M. (2000). Nitric oxide reductases in bacteria. Biochimica et Biophysica Acta - Bioenergetics 1459(2-3), 266-273.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N. and Nakajima, T. (2009). Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochimica et Cosmochimica Acta 73(11), 3115-3133.

Köster, J. R., Well, R., Tuzson, B., Bol, R., Dittert, K., Giesemann, A., Emmenegger, L., Manninen, A., Cardenas, L. and Mohn, J. (2013). Novel laser spectroscopic technique for continuous analysis of N₂O isotopomers - application and intercomparison with isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 27, 216-222.

Kritee, K., Sigman, D. M., Granger, J., Ward, B. B., Jayakumar, A. and Deutsch, C. (2012). Reduced isotope fractionation by denitrification under conditions relevant to the ocean. Geochimica Et Cosmochimica Acta 92, 243-259.

Law, Y., Ni, B.-J., Lant, P. and Yuan, Z. (2012). N_2O production rate of an enriched ammonia oxidising bateria culture exponentially correlates to its ammonia oxidation rate. Water Research 46(10), 3409-3419.

Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Granger, J., Hoffmann, S., Cane, G. and Brunelle, B. G. (2007). The distribution of nitrate ${}^{15}N/{}^{14}N$ in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate. Geochimica Et Cosmochimica Acta 71(22), 5384-5404.

Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A. and Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62(3), 413-430.

Mohn, J., Guggenheim, C., Tuzson, B., Vollmer, M., Toyoda, S., Yoshida, N. and Emmenegger, L. (2010). A liquid-free preconcentration unit for measurements of ambient N_2O isotopomers by QCLAS. Atmospheric Measurement Techniques 3, 609-618.

Mohn, J., Tuzson, B., Manninen, A., Yoshida, N., Toyoda, S., Brand, W. A. and Emmenegger, L. (2012). Site selective real-time measurements of ambient $N_{\rm 2}O$

isotopomers by laser spectroscopy. Atmospheric Measurement Techniques 5, 1601-1609.

Mohn, J., Zeeman, M. J., Werner, R. A., Eugster, W. and Emmenegger, L. (2008). Continuous field measurements of 13 C-CO₂ and trace gases by FTIR spectroscopy. Isotopes in Environmental and Health Studies 44(3), 241-251.

Müller, P. (1994). Glossary of terms used in physical organic chemistry. Pure & Applied Chemistry 66(5), 1077-1184.

Ostrom, N. E., Piit, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M. and Robertson, G. P. (2007). Isotopologue effects during N_2O reduction in soils and in pure cultures of denitrifiers. Journal of Geophysical Research G: Biogeosciences 112(2), G02005.

Ostrom, N. E., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M., Gandhi, H., von Fischer, J. C. and Robertson, G. P. (2010). Isotopologue data reveal bacterial denitrification as the primary source of N_2O during a high flux event following cultivation of a native temperate grassland. Soil Biology and Biochemistry 42(3), 499-506.

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

S.A. Montzka and S. Reimann (Coordinating Lead Authors), A. Engel, K. Krüger, S. O'Doherty, W.T. Sturges, D. Blake, M. Dorf, P. Fraser, L. Froidevaux, K. Jucks, K. Kreher, M.J. Kurylo, A. Mellouki, J. Miller, O.-J. Nielsen, V.L. Orkin, R.G. Prinn, R. Rhew, M.L. Santee, A. Stohl and Verdonik, D. (2011). Ozone-Depleting Substances (ODSs) and Related Chemicals, Chapter 1 in Scientific Assessment of Ozone Depletion: (2010), Global Ozone Research and Monitoring Project–Report No. 52, 516 pp., World Meteorological Organization, Geneva, Switzerland, 2011.

Santoro, A. E., Buchwald, C., McIlvin, M. R. and Casciotti, K. L. (2011). Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea. Science 333(6047), 1282-1285.

Schmidt, H. L., Werner, R. A., Yoshida, N. and Well, R. (2004). Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Communications in Mass Spectrometry 18(18), 2036-2040.

Schreiber, F., Wunderlin, P., Udert, K. M. and Wells, G. F. (2012). Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies. Frontiers in Microbiology 3, 10.3389/fmicb.2012.00372.

Stein, L. Y. (2010). Surveying N_2O -producing pathways in bacteria. Methods in Enzymology 486(C), 131-152.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J. and Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72(1), 638-644.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. and Breznak, J. A. (2003). Nitrogen isotopomer site preference of N_2O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 17(7), 738-745.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. and Breznak, J. A. (2004). Erratum: Nitrogen isotopomer site preference of N2O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 18(12), 1411-1412.

Townsend-Small, A., Pataki, D. E., Czimczik, C. I. and Tyler, S. C. (2011). Nitrous oxide emissions and isotopic composition in urban and agricultural systems in southern California. Journal of Geophysical Research G: Biogeosciences 116(1).

Toyoda, S., Iwai, H., Koba, K. and Yoshida, N. (2009). Isotopomeric analysis of N_2O dissolved in a river in the Tokyo metropolitan area. Rapid Communications in Mass Spectrometry 23(6), 809-821.

Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N. and Tanji, Y. (2005). Fractionation of N_2O isotopomers during production by denitrifier. Soil Biology & Biochemistry 37(8), 1535-1545.

Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K. and Shiomi, H. (2011). Isotopomer analysis of production and consumption mechanisms of N_2O and CH_4 in an advanced wastewater treatment system. Environmental Science & Technology 45(3), 917-922.

Toyoda, S. and Yoshida, N. (1999). Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry 71(20), 4711-4718.

Upadhyay, A. K., Hooper, A. B. and Hendrich, M. P. (2006). NO reductase activity of the tetraheme cytochrome c_{554} of *Nitrosomonas europaea*. Journal of the American Chemical Society 128(13), 4330-4337.

USEPA (2009). Inventory of U.S. Greenhouse Gas Emissions And Sinks: 1990-2007, U.S. Environmental Protection Agency, Washington DC, Report No. EPA 430-R09-004.

Waechter, H., Mohn, J., Tuzson, B., Emmenegger, L. and Sigrist, M. W. (2008). Determination of N_2O isotopomers with quantum cascade laser based absorption spectroscopy. Optics Express 16(12), 9239-9244.

Westley, M. B., Yamagishi, H., Popp, B. N. and Yoshida, N. (2006). Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions. Deep-Sea Research Part II: Topical Studies in Oceanography 53(17-19), 1802-1816.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N., Watanabe, S., Koba, K. and Yamanaka, Y. (2007). Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. Journal of Geophysical Research-Biogeosciences 112, G02015.

Yoshida, N. (1988). 15 N-depleted N_2O as a product of nitrification. Nature 335(6190), 528-529.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Supporting Information for Chapter 4

Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment

This chapter has been published as:

<u>Wunderlin, P.</u>; Lehmann, M. F.; Siegrist, H.; Tuzson, B.; Joss, A.; Emmenegger, L.; Mohn, J. Isotope signatures of N₂O in a mixed microbial population system: Constraints on N₂O producing pathways in wastewater treatment. *Environmental Science and Technology*, **2013**, *47* (3), 1339-1348.

SP [‰]	Isotope fractionation [‰]	Species	Reference	
NH ₂ OH oxidat	tion			
30.8 ± 5.9	-3.1	Methylococcus capsulatus	Sutka et al. (2003); Sutka et al. (2004)	
33.5 ± 1.2	-2	Nitrosomonas europaea	Sutka et al. (2006)	
32.5 ± 0.6	-2	Nitrosomonas mulitiformis	Sutka et al. (2006)	
35.6 ± 1.4	-5.7	Methylosinus trichosporium	Sutka et al. (2006)	
36.3 ± 2.4^{a}	6.7 ^a	Nitrosomonas marina C-113a	Frame and Casciotti (2010)	
29.5 ± 1.1	n.d.	Inorganic NH_2OH oxidation	Toyoda et al. (2005)	
Nitrification: N	NO_2^- reduction by	nitrifier denitrification		
-0.8 ± 5.8	35.1	Nitrosomonas europaea	Sutka et al. (2003); Sutka et al. (2004)	
0.1 ± 1.7	24.4	Nitrosomonas multiformis	Sutka et al. (2006)	
-10.7 ± 2.9^{b}	56.9 ^b	Nitrosomonas marina C-113a	Frame and Casciotti (2010)	
Nitrification: (Combination of N	D_2^- reduction by nitrifier denitrification d	und/or NH ₂ OH oxidation	
31.4 ± 4.2	46.9	Nitrosomonas europaea	Sutka et al. (2006)	
30.8 ± 4.4	n.d.	Marine ammonia oxidizing archaea	Santoro et al. (2011)	
n.d.	68	Nitrosomonas europaea	Yoshida (1988)	
4.5 ^c	$48.4 \pm 0.3^{\circ}$	Mixed population system; WWTP	Toyoda et al. (2011)	
Heterotrophic	denitrification: N	O_3^- and/or NO_2^- reduction		
-0.6 ± 1.9^{d}	12.7 ^d	Pseudomonas chlororaphis	Sutka et al. (2006)	
-0.5 ± 1.9^{d}	n.d. ^d	Pseudomonas aureofaciens	Sutka et al. (2006)	
-0.5 ± 1.9^{e}	n.d. ^e	Pseudomonas chlororaphis	Sutka et al. (2006)	
-0.5 ± 0.6^{e}	36.7 ^e	Pseudomonas aureofaciens	Sutka et al. (2006)	
23.3 ± 4.2^{f}	$17 \text{ to } 39^{\text{f}}$	Pseudomonas fluorescens	Toyoda et al. (2005)	
-5.1 ± 1.8^{f}	$10 \text{ to } 22^{\mathrm{f}}$	Paracoccus denitrificans	Toyoda et al. (2005)	

Table S1. Reported values of characteristic nitrogen isotopic signatures (SP, $\Delta \delta^{15}N$) for NH₂OH oxidation, nitrifier denitrification, and heterotrophic denitrification.

^a NH₄⁺ oxidiation: Dominant contribution from NH₂OH oxidation (experiment at high O₂ concentrations).

^b Dominant contribution from nitrifier denitrifcation (experiment at low O₂ concentrations).

^c Nitrifier denitrification as dominant N₂O production pathway in the oxic tank.

^d NO₂⁻ eduction

^e NO₃⁻ eduction

^f From NO₃⁻ to N₂O

Text S1. Characterization of the activated sludge and the pilotscale treatment plant

Batch experiments were carried out with activated sludge taken from the nitrification reactor before the daily NH_4^+ peak load (before 8 a.m.) of the pilot scale facility at Eawag treating municipal wastewater. The plant consists of a primary clarification unit followed by activated sludge treatment (pre-denitrification, nitrification) and secondary clarification (sludge recirculation was twice the influent flow). It was operated with a solids retention time of ~20 - 22 days (10 - 11 days aerobic) and total suspended solid (TSS) concentrations between 4 and 4.4 g/l. Nitrification was complete, with average total nitrogen removal above 60%. The nitrification reactor is operated at dissolved oxygen concentrations in the range from 0.5 to 2 mgO₂/l. Therefore, batch-scale experiments were carried out at dissolved oxygen concentrations in a similar range (0.5 to 3 mgO₂/l). The dissolved nitrogen species in the activated sludge tanks were usually below 10 mgN/l.

Text S2. Analytical details of the nitrogen isotopic composition of substrates and dissolved nitrogen species

For measuring δ ¹⁵N, aliquots of the samples (NH₄HCO₃, NaNO₂, NH₂OH-HCl and NaNO₃) were weighed into tin capsules (Säntis). Samples were combusted at 1020 °C with excess oxygen in an elemental analyzer (Thermo quest, CE instruments) and the resulting combustion gases passed through a reduction furnace at 650 °C. After removal of water with magnesium perchlorate and purification in a gas chromatographic column, N₂ was measured on-line with an isotope-ratio mass-spectrometer (IRMS; Micromass). Nitrogen isotope ratios are reported in the conventional delta notation with respect to atmospheric N₂ (AIR). The analytical reproducibility is \pm 0.2 ‰ for δ ¹⁵N.

In selected experiments, the isotope signature of dissolved NO_x (= $NO_3^- + NO_2^-$) and NO_3^- was measured: (i) in the ammonia oxidation experiment at 2.1 mgO₂/l with an initial ammonia concentration of ~25 mgN/l, and (ii) in the denitrification experiment under anoxic conditions with an initial nitrate concentration of ~20 mgN/l (Figure S₃ and S₄).

Nitrogen (N) isotope ratio measurements of naturally occurring NO_x (= NO₂⁻ + NO₃⁻) were performed using the denitrifier method (Sigman et al., 2001; Casciotti et al., 2002). Briefly, sample NO_x or NO₃⁻ (after nitrite removal from the sample) is quantitatively converted to N₂O by cultured denitrifying bacteria. The N₂O was automatically extracted, purified and analyzed on-line using a gas-bench preparation system coupled to a continuous flow isotope-ratio mass-spectrometer (CF-IRMS; Thermo Finnigan DeltaPlus XP). The general target sample size was 50 nmol *N. Pseudomonas chlororaphis* (ATCC #13985; formerly *Pseudomonas aureofaciens*) were used for the NO_x conversion. Data were corrected for the procedural blank contribution, which was always less than 1% of the sample size. N isotope ratios are reported in the conventional

delta (δ) notation in per-mil (‰): δ ¹⁵N = (R_{sample}/R_{reference}) - 1] x 1000, where R represents the ratio of ¹⁵N to ¹⁴N in the sample and in atmospheric N₂ (AIR) respectively. Isotope values were calibrated using international NO₃⁻ reference materials (IAEA-N3, USGS-34) with assigned δ ¹⁵N values of 4.7 and -1.8 ‰ (versus atmospheric N2) respectively. The analytical precision of the method is generally better than ± 0.2 ‰. For separate δ ¹⁵N-NO₃⁻ measurement, NO_x samples were amended with 20 µL per 1 ml sample of 1% sulfamic acid (dissolved in 10 % vol / vol HCl) solution to remove any nitrite in the sample prior to the bacterial conversion of the remaining NO₃⁻ to N₂O (Granger and Sigman 2009). δ ¹⁵N-NO₂⁻ was then derived on the basis of the following isotope mass balance equation (1):

$$\delta^{15}N_{NO_{2}^{-}} = \left\{ \delta^{15}N_{NO_{x}} * [NO_{x}] - \delta^{15}N_{NO_{3}^{-}} * [NO_{3}^{-}] \right\} / [NO_{2}^{-}]$$
[1]

It is important to note that this indirect approach can lead to a significant error for δ ¹⁵N of NO₂⁻ in the low-nitrite / high-nitrate samples. Samples with nitrite concentrations lower than 0.2 mgN/l were not considered.

Text S3. Details of experimental setup and analysis of N_2O isotopic composition

Figure S1. Experimental setup for analysis of N_2O mixing ratios and its site-specific isotopic composition. The reactor setup is identical to the study in Wunderlin et al. Wunderlin et al., 2012. MFC: mass flow controller; FTIR: fourier transform infrared spectroscopy; P: pressure sensor; v: valve; QCLAS: quantum cascade laser absorption spectroscopy.

The laser spectrometer (QCLAS) was operated in batch mode, alternating between preconcentrated sample gas from the batch-scale reactor and a calibration gas (standard I diluted to 70 ppm), to correct for drift effects. Prior to the analysis, the gas cell was evacuated by a scroll pump (TriScroll 300, Varian), then flushed for 4 minutes with 10 standard cubic centimeters per minute of purge gas at reduced pressure (1 kPa), before the downstream on-off valve (V3 in Figure S1) was closed (Mohn et al., 2012). As purge gas we used either synthetic air (prior to analysis of preconcentrated off-gas) or

reference gas (prior to analysis of standard I). The multipass cell was subsequently filled with pre-concentrated air or reference gas respectively until a cell pressure of 8 kPa was reached. Finally, the multipass cell was closed by switching the three-way valve V2 or V4, and the gas sample was analyzed for 6 minutes (Figure S1).

Text S4. Time series of NO_2^- oxidation and NH_2OH oxidation experiments

Figure S2. N_2O data time series of NO_2^- (at 3.1 mgO₂/l; A and B) and NH_2OH (at 1.1 mgO₂/l; C and D) oxidation experiments: dissolved nitrogen species (NH_4^+ , NO_2^- , NO_3^-), N_2O mixing ratios, as well as isotopic composition. Additional information about nitrogen conversion rates, N_2O production rate, yield and a detailed discussion of concentration / emission patterns is given in Wunderlin et al. (2012).

Figure S2 displays time series data of dissolved nitrogen species (NH₄⁺, NO₂⁻, NO₃⁻), N₂O off-gas concentrations, and N₂O isotopic signatures (SP, δ ¹⁵N^{bulk}_{N2O}) during an NO₂⁻ oxidation experiment (Figure S2 A and B), as well as an NH₂OH oxidation experiment (Figure S2 C and D). Data indicate that during both NO₂⁻ oxidation and NH₂OH oxidation experiments, most of the nitrogen is oxidized to NO₃⁻.

SP data of the two experiments are significantly different: during NO_2^- oxidation the SP is slightly negative (-0.2 to -3.9 ‰), while SP is positive during NH_2OH oxidation experiments (26.4 to 30.5 ‰ at the beginning; Table 1). The continuous decrease in SP during NH_2OH oxidation is likely to be due to a shift from NH_2OH oxidation to nitrifier denitrification dominated N_2O production in the course of the experiment (for a more detailed discussion see section 'Isotopic signature of N_2O production during NH_2OH oxidation.

During progressive NO_2^- oxidation, decreasing $\delta^{15}N_{N20}^{bulk}$ is best explained by the inverse kinetic isotopic fractionation during the oxidation of NO_2^- to NO_3^- . In the NH₂OH

oxidation experiment, a decreasing δ ¹⁵N^{bulk}_{N2O} during the first part of the incubation is followed by an increase after 200 minutes. We suspect that this changing trend is due to a shift of NH₂OH oxidation dominated N₂O production to nitrifier denitrification, as also concluded from the SP data (see above).

Text S5. Nitrogen isotopic composition of dissolved nitrogen species

Figure S3 A shows the dissolved nitrogen species (NH_4^+, NO_2^-, NO_3^-) in the course of an ammonia oxidation experiment. The NH_4^+ oxidation rate was approximately 1.9 mgN/gTSS*h (TSS: total suspended solids). Towards the end of the experiment, NO_2^- accumulates by up to 1.1 mgN/l.

Dissolved nitrogen species (NO₂⁻, NO₃⁻) under denitrifying conditions (at o mgO₂/l) are shown in Figure S3 B. The NO₃⁻ reduction rate was about 4.2 mgN/gTSS*h. NO₂⁻ accumulated by up to 4 mgN/l towards the end of the experiment when NO₃⁻ was almost depleted.

Figure S3. Concentrations of dissolved nitrogen species (NH_4^+, NO_2^-, NO_3^-) of (A) in the ammonia oxidation experiment at 2.1 mgO₂/l, and (B) in the denitrification experiment under anoxic conditions. Note that total nitrogen was 15 % lower at the beginning compared to the end of the experiment (after 250 minutes in Figure A), which can probably be explained by ammonia adsorption to the surface of activated sludge flocs.

The N isotope data of dissolved NO₃⁻ and NO₂⁻ of both experiments are depicted in Figure S4 (see also Text S2). Under nitrifying conditions, the δ ¹⁵N of ammonia was approximated as follows:

$$\delta^{15} N_{NH_4^+} = \frac{\left[NH_4^+\right]_{ni}}{\left[NH_4^+\right]} * \left\{\delta^{15} N_{NH_4^+}_{Substrate} - \left(1 - \frac{\left[NH_4^+\right]}{\left[NH_4^+\right]_{ni}}\right) * \delta^{15} N_{NO_x}\right\}$$
[2]

where $[NH_4^+]_{ini}$ and $[NH_4^+]_t$ are the initial and instantaneous NH_4^+ concentrations respectively and the $\delta^{15}N-NH_4^+$ substrate is the $\delta^{15}N$ of the added NH_4^+ salt (Mariotti et

al., 1981). A strong ammonium δ ¹⁵N increase was observed over the course of the experiment, corresponding to an N isotope effect (change of isotope ratio) of ~19 ‰, in agreement with reports from the literature (Casciotti 2009; Toyoda et al., 2011). The calculated N isotopic signature of NO₂⁻ ranges between -31.6 ‰ at the beginning and -7.4 ‰ towards the end of the experiment, paralleling the δ ¹⁵N trend of NH₄⁺ (Rayleigh distillation; Figure S4 A). Nitrite is depleted more strongly in ¹⁵N compared to NO₃⁻, which is explained by inverse kinetic fractionation during the oxidation of NO₂⁻ to NO₃⁻ (Casciotti 2009). The δ ¹⁵N of NO₃⁻ decreases during the initial phase of the batch experiment, to -26 ‰. At the end of the experiment, when most of the ammonia is converted into NO₃⁻, its δ ¹⁵N value is similar to the (initial) NH₄⁺ educt, as expected in a closed system where the oxidation of ammonia to nitrate is the dominant process. The slightly positive initial δ ¹⁵N-NO₃⁻ at time zero is hypothesized to be due to the mixing of nitrified 'new' nitrate with some residual nitrate (0.34 mgN/l; Figure S3 A), slightly enriched in ¹⁵N.

Under denitrifying conditions (Figure S4 B), the δ ¹⁵N-NO₃⁻ increases from ~0.5 ‰ to ~83 ‰ in the course of the batch experiment, due to kinetic N isotope fractionation during denitrification. The decrease in δ ¹⁵N-NO₃⁻ at 130 min may be explained by reduced N isotope fractionation due to NO₃⁻ limitation (< 0.2 mgNO₃⁻-N/l), or some admixture of another NO₃⁻ source, possibly from NO₂⁻ oxidation. From the δ ¹⁵N-NO₃⁻ to [NO₃⁻] relationship, we calculated an isotope effect of ~17 ‰ for nitrate reduction, which is within the range of reported literature values between 13 and 30 ‰ (compilation in Casciotti 2009). The calculated δ ¹⁵N of NO₂⁻ was significantly lower at the beginning of the experiment (-23.5 ‰) with respect to the substrate nitrate (5 ‰). As the reaction proceeds, NO₂⁻ becomes increasingly enriched in ¹⁵N, reflecting the parallel δ ¹⁵N

Figure S4. Temporal trend of $\delta^{15}N$ of NO_3^- , NO_2^- , and NH_4^+ under (A) nitrifying conditions (at 2.1 mgO₂/l), and (B) denitrifying conditions (o mgO₂/l). Note that $\delta^{15}N-NO_2^-$ and $\delta^{15}N-NH_4^+$ were both calculated from isotope mass balances using measured dissolved

inorganic nitrogen (DIN) concentrations, and δ^{15} N-NO_x, δ^{15} N-NO₃, as well as the δ^{15} N-NH₄-substrate measurements (see Equations 1 and 2).

REFERENCES

Casciotti, K. L. (2009). Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta 73(7), 2061-2076.

Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K. and Hilkert, A. (2002). Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry 74(19), 4905-4912.

Frame, C. H. and Casciotti, K. L. (2010). Biogeochemical controls and isotopic signatures of nitrous oxide production by a marine ammonia-oxidizing bacterium. Biogeosciences 7(9), 2695-2709.

Granger, J. and Sigman, D. M. (2009). Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Communications in Mass Spectrometry 23(23), 3753-3762.

Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A. and Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62(3), 413-430.

Mohn, J., Tuzson, B., Manninen, A., Yoshida, N., Toyoda, S., Brand, W. A. and Emmenegger, L. (2012). Site selective real-time measurements of ambient N_2O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques Discussions 5, 813-838.

Santoro, A. E., Buchwald, C., McIlvin, M. R. and Casciotti, K. L. (2011). Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea. Science 333(6047), 1282-1285.

Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M. and Böhlke, J. K. (2001). A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Analytical Chemistry 73(17), 4145-4153.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J. and Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72(1), 638-644.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. and Breznak, J. A. (2003). Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 17(7), 738-745.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H. and Breznak, J. A. (2004). Erratum: Nitrogen isotopomer site preference of N₂O produced by *Nitrosomonas europaea* and *Methylococcus capsulatus* Bath. Rapid Communications in Mass Spectrometry 18(12), 1411-1412.

Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N. and Tanji, Y. (2005). Fractionation of N_2O isotopomers during production by denitrifier. Soil Biology & Biochemistry 37(8), 1535-1545.

Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K. and Shiomi, H. (2011). Isotopomer analysis of production and consumption mechanisms of N_2O and CH_4 in an advanced wastewater treatment system. Environmental Science & Technology 45(3), 917-922.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Yoshida, N. (1988). 15 N-depleted N $_2$ O as a product of nitrification. Nature 335(6190), 528-529.

Chapter 5

Pathway identification of N₂O production in biological wastewater treatment: Is the nitrogen isotopic signature a suitable tool?

This chapter has been submitted for publication <u>Wunderlin, P.;</u> Siegrist, H.; Joss, A.; Emmenegger, L.; Mohn, J.

Graphical abstract

Abstract

Nitrous oxide (N₂O) is an important greenhouse gas and a major sink of stratospheric ozone. Microbial transformation processes, particularly autotrophic nitrification and heterotrophic denitrification, have been identified as major N₂O sources in biological wastewater treatment. The ¹⁵N isotopic signature of N₂O is a novel and powerful technique to differentiate between these pathways: it is based on the site-specific distribution of ¹⁵N (site preference, SP) as well as the average ¹⁵N content (δ ¹⁵N^{bulk}_{N2O}) of the asymmetric N₂O molecule.

In the present study, we investigate the applicability of N₂O isotopomer analysis to source allocation in a pilot-scale biological wastewater treatment plant. The ¹⁵N isotopic signature was analyzed with respect to the dissolved oxygen concentration in the activated sludge tank, which is one of the most important controlling parameters for autotrophic nitrification and heterotrophic denitrification. Results show that under aerated conditions with 2 to 3 mgO₂/l, N₂O is produced from nitrite (NO₂) reduction by nitrifier denitrification (SP close to 0 ‰) or heterotrophic denitrification (SP close to 0 ‰, without N₂O reduction). Hydroxylamine (NH₂OH) oxidation cannot be excluded, but the SP data suggests that the contribution from this pathway is low. With decreasing dissolved oxygen (below 1 mgO_{$_2$}/l), however, the increase in SP is most probably caused by heterotrophic denitrification due to N₂O reduction. On the other hand, δ ¹⁵N^{bulk}_{N2O} supports the findings from the SP analysis, but cannot be used as a quantitative measure in this study, since the isotopic composition of the substrates is unknown. In sum, this study illustrates the value of the ¹⁵N isotopic signature of N₂O as a promising tool to further investigate N₂O production pathways in biological wastewater treatment.

Keywords

Biological wastewater treatment; nitrous oxide (N₂O); nitrifier denitrification; pathway identification; site preference

Nomenclature

¹⁵ N; ¹⁴ N:	Stable nitrogen isotopes
R:	Nitrogen isotope ratio, ¹⁵ N/ ¹⁴ N
$\delta^{15}N^{\alpha}$, $\delta^{15}N^{\beta}$:	Relative differences of isotope ratios to the standard material (nitrogen, N ₂) for the inner (α) and the outer (β) nitrogen atom in the asymmetric N ₂ O molecule
$\delta {}^{15} N^{bulk}_{\qquad N20}$:	The average ^{15}N content in N_2O relative to nitrogen (N_2)
SP:	Site preference, the difference between the $\delta^{ extsf{15}} extsf{N}^{lpha}$ and $\delta^{ extsf{15}} extsf{N}^{eta}$

Introduction

Nitrous oxide (N_2O) is an important greenhouse gas (about 300 times more effective than CO_2) and a major sink for stratospheric ozone (IPCC 2007). These impacts on our environment make it an urgent requirement to limit anthropogenic N_2O emissions (Ravishankara et al., 2009). It is estimated that about two thirds of the overall N_2O is emitted by microbial processes occurring mainly in agriculture, but also in biological wastewater treatment (USEPA 2009). Depending on the operating conditions, N_2O emissions are estimated to represent a major part of the total greenhouse gas emissions from biological wastewater treatment (Daelman et al., 2012). Continuous online monitoring of N_2O is consequently helpful in reducing overall greenhouse gas emission from biological wastewater treatment (e.g. Wunderlin et al., 2013b).

 N_2O production in biological wastewater treatment is mainly attributed to autotrophic nitrification and heterotrophic denitrification, which produce N_2O via different pathways (Kampschreur et al., 2009; Wunderlin et al., 2012): (i) during the oxidation of ammonia (NH_4^+) or hydroxylamine (NH_2OH) to nitrite (NO_2^-), (ii) via reduction of NO_2^- by ammonia-oxidizing bacteria (AOB), known as nitrifier denitrification, and (iii) during heterotrophic denitrification where N_2O is an obligate intermediate. The importance of each of these pathways remains unclear, but it is generally believed that nitrifier denitrification is dominant in biological wastewater treatment under aerobic conditions (Colliver and Stephenson 2000).

A promising way of apportioning N₂O production to nitrification and denitrification is to analyze the stable nitrogen (N) isotopes (Baggs 2008; Schreiber et al., 2012; Wunderlin et al., 2013a). This is done by measuring the isotope ratio of a sample (R_{sample}) against atmospheric nitrogen (N₂; $R_{standard}$) and expressing the result in the delta (δ) notation (Mariotti et al., 1981): δ ¹⁵N_{sample} = ($R_{sample} - R_{standard}$) / $R_{standard}$ * 1000. The difference in ¹⁵N between the central oxygen-bound (position and the outer (position is known as the site preference (SP): SP = δ ¹⁵N^{α} - δ ¹⁵N^{β}. In recent years, analytical procedures have been developed to determine the intramolecular distribution of ¹⁵N within the asymmetric linear N₂O molecule by isotope-ratio massspectrometry (IRMS) (Brenninkmeijer and Röckmann 1999; Toyoda and Yoshida 1999) as well as by quantum cascade laser absorption spectrometry (QCLAS) (Waechter et al., 2008; Mohn et al., 2012; Köster et al., 2013).

The advantage of SP is its independence from the ¹⁵N content of the substrates and its specificity to the processes involved in N₂O production and degradation (Sutka et al., 2006). Due to the complexity of the mixed population system used in this investigation, the characteristic SP values of specific pathways need to be studied on pure bacterial cultures. The following SP end-member values were consequently reported for N₂O production by both nitrifying and denitrifying bacterial strains (Sutka et al., 2006): (i) 31.4 to 33.5 ‰ for NH₂OH oxidation, (ii) 0.1 ‰ for nitrifier denitrification by AOB, and (iii) -0.5 to -0.6 ‰ for heterotrophic denitrification (for a more detailed overview, see Wunderlin et al., 2013a). Positive SP values in the range from o to 26.1 ‰, under anoxic or very low dissolved oxygen conditions, are attributed to a significant

heterotrophic N₂O reductase activity relative to N₂O production (Yamagishi et al., 2007; Koba et al., 2009; Wunderlin et al., 2013a). Conventional parameters, such as the dissolved O₂, the N species (NH_4^+ , NO_2^- , NO_3^-), the organic carbon as well as the process control and the N₂O off-gas analysis, must be considered to interpret the isotope data more conclusively (e.g. to discriminate between NH_2OH oxidation and heterotrophic denitrification, since both pathways lead to a positive SP; Decock and Six 2013).

The SP of the N_2O emitted from an activated sludge lab-scale batch reactor was investigated in a recent publication (Wunderlin et al., 2013a): the results show that under aerobic conditions, the SP values were within the range for NO_2^- reduction, which is hypothesized to be primarily due to AOB nitrifier denitrification. However, the contribution of the NH_2OH oxidation to the total N_2O production was of minor importance under typical nitrifying process conditions. Furthermore, heterotrophic denitrification activity under anoxic conditions is supported by positive SP data (up to 26.1%).

In this study, we investigated the nitrogen isotopic signature of N₂O emitted from a pilot-scale treatment plant fed with real municipal wastewater and operated at different concentrations of dissolved oxygen. The goal was to test the applicability of N₂O isotopic analysis for source allocation in a set-up that was closer to full-scale plants than that of previous lab-scale batch experiments. The tested hypothesis was that NO₂⁻ reduction is the dominant route for N₂O production under aerobic conditions in this system treating real municipal wastewater, i.e. the SP of N₂O is expected to be close to 0 %.

Materials and methods

A pilot-scale wastewater facility treating around 60 population equivalents and consisting of primary clarification followed by activated sludge treatment with predenitrification (Bio1), nitrification (Bio2) and secondary clarification was monitored (Figure 1). It was operated with a solids retention time of around 12 days. The concentration of mixed liquor suspended solids (MLSS) was about 3 g/l. The plant was controlled by a programmable logical controller (PLC) linked to an interface for direct access to data visualization and storage. It was fed with real municipal wastewater taken from the nearby sewer in the municipality of Dübendorf (CH) at a fixed flowrate, changing every 2 hours with a mean value of 27 m³/day (Figures 2 and 3). Both reactors (Bio1 and Bio2) had a volume of 8 m³ and were operated together as a completely stirred tank reactor. The return sludge flow was about 2.3 times higher than the influent flow. The dissolved oxygen concentrations in the activated sludge tanks were controlled at a given set-point (3, 2, 1, 0.5 or <0.5 mgO₂/l) based on the aeration rate adjustment (on / off control).

Plant operation during measuring campaign

In the first week of the measuring campaign (day 1 to 7; Figure 2), the off-gas of Bio2 was continuously measured at dissolved oxygen (DO) concentration set-points of 3, 2, 1, 0.5 and <0.5 mgO₂/l (during 24 hours each). The O₂ set-point was changed in the morning before the influent N peak (before 8 a.m.). In the second week (day 8 to 14; Figure 3), the exhaust gas of Bio1 was continuously analyzed, at DO set-points of 3, 2, 1, 0.5 and <0.5 mgO₂/l (during 24 hours each; changed in the morning), while Bio2 was continuously operated at 2 mgO₂/l (Figure 2). These two set-ups were chosen in order to investigate the relative contribution of heterotrophic denitrification (predominantly active in the pre-denitrification reactor) to total N₂O emission from the nitrification reactor.

Figure 1. Overview of the pilot-scale wastewater facility with off-gas measurement locations. (A) In the first week of the measuring campaign, Bio1 was operated under anoxic conditions while Bio2 was operated at different oxygen concentrations (range from minimum to 3 mgO_2/l ; Table 1). (B) In the second week, Bio1 was operated at different oxygen concentrations (range from minimum to 3 mgO_2/l ; Table 1), while the concentration of the dissolved oxygen in Bio2 was 2 mgO_2/l .

N₂O concentration and isotopic analysis

To enable quantitative emission measurements, the individual reactors were sealed and the off-gas was directed through an exhaust pipe. The N₂O mixing ratios were analyzed on-line by FTIR spectroscopy (GASMET CX-400, Temet Instruments, Helsinki; Mohn et al., 2008). The N₂O emission loads were computed by multiplying the N₂O offgas concentration by the air flowrate measured at the reactor inlet (t-mass S AT70, Endress + Hauser), with 1 ppm N₂O corresponding to 1.249 mgN₂O-N/m³_{air} under standard conditions (273.15 K, 1013 mbar). The N₂O emission factors per DO set-point (typically lasting over 24 hours) were then determined by dividing the total mass of the N emitted as N₂O by the total mass of the N in the inflow present as NH₄⁺ (Table 1).

For the site-specific N₂O isotopic analysis, dry and CO₂-free off-gas samples integrating over 30 minutes were collected in Tedlar bags (sampling time indicated by arrows in Figures 2 and 3) and analyzed by quantum cascade laser absorption spectroscopy (QCLAS; Waechter et al., 2008). Standard reference gases with a known isotopic composition as analyzed by IRMS were used for the δ ¹⁵N^{α} and δ ¹⁵N^{β} calibration (Toyoda and Yoshida 1999). Samples with N₂O concentrations below 10 ppm were preconcentrated prior to isotopomer analysis (Mohn et al., 2010; Mohn et al., 2012). The
performance achieved by high-precision analysis and its equivalence to IRMS were recently demonstrated in an inter-comparison study (Köster et al., 2013).

Wastewater sampling procedures and analysis

Laboratory measurements were carried out every weekday. Grab samples were taken six times per day at 7, 8, 10 and 12 a.m. and 2 and 4 p.m. The samples were immediately filtered through a 0.45 μ m syringe filter and stored at 4°C. The NH₄⁺-N was analyzed by photometry using a Foss FIAstar (flow-injection 5000 analyzer). The NO₃⁻-N and NO₂⁻-N were determined by anion chromatography (761 compact IC, Metrohm). The measurements were carried out within 24 hours of sampling. The influent municipal wastewater was subjected to flow-proportional sampling for 2 hours in each case (WaterSam, Gerber Instruments) during the whole measuring campaign for the total organic carbon (TOC) analysis. The samples were homogenized (Ultra-turrax T25, Faust Laborbedarf AG) before TOC analysis (IL 550 TOC-TN, Hach Lange GmbH). The ratio of COD_{total} (total chemical oxygen demand) to TOC is 3.3 ± 0.5 (n = 39, measured over one year), while the COD_{total} to COD_{soluble} ratio is 1.8 ± 0.2 (n = 6; measured over two months).

Results and discussion

Trends of dissolved nitrogen species and N₂O emissions

The trend data for the NH_4^+ influent concentrations, influent flows, aeration rates, dissolved oxygen concentrations, N_2O off-gas concentrations and dissolved N species (NH_4^+, NO_2^-, NO_3^-) are shown in Figures 2 and 3. The NH_4^+ influent loads tended to peak during the morning hours (between 8 to 11 a.m.) due to high NH_4^+ concentrations in the sewer system and in combination with the highest daily influent flow into the activated sludge plant (~1.4 m³/h between 8 to 10 a.m.). The low N influent loads in the morning of days 3, 8, 11 and 12 were affected by rainfall in the catchment area leading to dilution in the sewer networks (pilot-plant influent flow with a fixed daily variation; see Figures 2 and 3). Under normal dry weather conditions, the NH_4^+ influent loads were typically in the range from 20 to 70 gN/h. The total organic carbon (TOC) concentrations of the influent wastewater were between 100 and 250 mg/l (data not shown), corresponding to about 330 to 850 mg/l total chemical oxygen demand (COD; i.e. about a factor of 3.3 higher than the TOC).

The N₂O emissions were highly dynamic but seemed to depend on the dissolved NH_4^+ and NO_2^- concentrations in the activated sludge tanks: for example, during day 2 (Figure 2), the N influent load was high, and both NH_4^+ and NO_2^- built up in the nitrification reactor, while the N₂O emissions rose in parallel. On the other hand, during low N loading situations, such as during rain events on days 8 and 14 (Figure 3), N₂O emissions were low or even below the limit of detection (< 0.5 ppm). This is in accordance with several studies: thus Lotito et al. (2012) reported a similar daily pattern of N₂O emissions correlating with the N influent load, and Ahn et al. (2010) identified dissolved NO_2^- as a relevant parameter for N₂O production in full-scale treatment plants.

Figure 2. Data overview of the measuring campaign from Bio2 (Bio1 was operated under anoxic conditions; see also Figure 2 A): NH_4^+ influent load and influent flow into Bio1, aeration rate, dissolved oxygen, N_2O off-gas concentration (average over 10 minutes) and dissolved N species (NH_4^+ (\bullet), NO_2^- (Δ), NO_3^- (\circ); not available for day 6) of Bio2 (day 2 adapted from Houweling et al., 2011). Arrows indicate time of gas sampling for isotopic analysis (one arrow is equal to one sample integrated over 30 minutes).

No clear correlation between DO and N₂O emissions could be observed in this study (Table 1). This might be partly due to incomplete nitrification, leading to NH_4^+ accumulation in the activated sludge tank, at DO below 1.5 mg/l (Figures 2 and 3). According to the literature, N₂O emissions are expected to be higher under oxygen-limiting conditions than in situations with DO in excess (Tallec et al., 2006; Wunderlin et al., 2012). In fact, the N₂O emissions from Bio2 were in the range from 0.1 to 2.6% with respect to the NH₄⁺ influent load, and between 0.005 and 2.1% from Bio1, respectively (Table 1). These data are variable, but are within the range of values reported in the literature: thus (i) Ahn et al. (2010) reported a range from 0.01 to 1.8 ± 0.79% with respect to the N influent load, and (ii) in a recent investigation by Aboobakar et al. (2012) an average emission factor of 0.04% with respect to the NH₄⁺ influent flow was measured, and (iii) N₂O emissions monitored on a full-scale treatment plant over one year yielded about 3% of the incoming N (Daelman et al., 2012).

As shown in this section, the reported N_2O emissions were dynamic and variable, and the dominant N_2O production pathway could only be approximately assessed. However, additional information is needed to obtain a better understanding.

Consequently, the N_2O nitrogen isotopic signature is analyzed and its applicability discussed in the following sections.

Figure 3. Data overview of the measuring campaign from Bio1 (Bio2 was constantly operated at $2 \text{ mgO}_2/l$; see also Figure 1 B): NH_4^+ influent load and influent flow into Bio1, aeration rate (not detected during day 8 and during the morning of day 9), dissolved oxygen, N_2O off-gas concentration (averages over 10 minutes) and dissolved N species $(NH_4^+ (\bullet), NO_2^- (\Delta), NO_3^- (\circ);$ not available for day 12 and 13) of Bio1. Arrows indicate time of gas sampling for isotopic analysis (one arrow is equal to one sample integrated over 30 minutes).

Site preference (SP) of N₂O

In the previous section, we noted that N₂O emissions were highly dynamic and variable, which led to difficulties in drawing any reliable conclusions about dominant N₂O production pathways. However, additional information is provided by the analysis of the N₂O site preference (SP): the SP of N₂O emitted under different concentrations of dissolved oxygen varied between 0.9 and 17.9 ‰ (Figure 4 A and Table 1). Basically, the SP values were low at 2 to 3 mgO₂/l, and higher under low DO concentrations (<1 mgO₂/l; except for Bio1 operated at 1 mgO₂/l). This is consistent with a recent study by Wunderlin et al. (2013a), who reported SP values of -5.8 to 5.6 ‰ during NH₄⁺ oxidation and values of up to 26.1 ‰ under anoxic conditions from activated sludge lab-scale batch experiments. In another publication reporting on the investigation of the nitrogen isotopic signature of N₂O emitted from a full-scale activated sludge treatment

plant, an SP value of 4.5 ‰ was estimated for N₂O emitted from the nitrification reactor (Toyoda et al., 2011). Moreover, SP values in the range from 0.1 to 16.9 ‰ were measured in river water below the effluents of wastewater treatment plants (Toyoda et al., 2009).

Table 1. Overview of (i) the average dissolved oxygen (DO) in the activated sludge reactor (where N_2O was measured), (ii) the N_2O emissions with respect to NH_4^+ -N influent loads, (iii) $\delta^{15}N^{bulk}_{N_2O}$, and (iv) SP data with their interpretation of microbial processes (ND refers to AOB nitrifier denitrification, and NN to NH_2OH oxidation; adapted from Wunderlin et al., 2013). Basically, ND is dominant at DO above 1 mgO₂/l, while heterotrophic denitrification (N_2O reduction) is more active at lower DO. Please note that DO values refer to the period between DO set-point changes.

	Day	Precipitation*	DO	N ₂ O emissions ^{**}	$\delta^{15}N^{bulk}_{N20}$	SP	Interpretation of microbial
			$[mgO_2/l]$	[%]	[‰]	[‰]	processes based on SP
Monitoring Bio2 (Bio1 anoxic)	1	No	3.1 ± 0.1	0.4	(-30 ± 2.9)	0.9 ± 2.9	ND high, NN low
	2	No	2.1 ± 0.1	2.6	(-44.1 ± 1.1)	4.3 ± 1.3	ND high, NN low, or N ₂ O red.
	3	Yes	1.3 ± 0.2	0.7	(-34.2 ± 2)	6.4 ± 2	ND high, NN low, or N ₂ O red.
	4	No	0.8 ± 0.2	0.1	(-20.3 ± 2.5)	15.6 ± 2.5	NO_2^- red and strong N_2O red.
	5	No	3.0 ± 0.1	1.7	n.d.	n.d.	n.d.
	6	No	3.1 ± 0.2	1.2	n.d.	n.d.	n.d.
	7	No	~0.2	0.2	(-37.1 ± 1.4) (-31.6 ± 0.99)	8.3 ± 1.4 11.1 ± 0.9	NO_2^- red and strong N_2O red.
Monitoring Biol (Bio2 at 2 mgO2/l)	8	Yes	0.5 ± 0.1	n.d.	n.d.	n.d.	n.d.
	9	No	~0.1	0.005	4.1 ± 1.4	17.9 ± 1.3	NO_2^- red and strong N_2O red.
	10	No	1.0 ± 0.1	2.1	(-39.4 ± 0.4) (-35.6 ± 0.5)	$\begin{array}{c} 4.7\pm0.4\\ 2.4\pm0.5\end{array}$	ND high, NN low, or N ₂ O red.
	11	No	2.0 ± 0.1	1.2	(-42.3 ± 0.8)	1.1 ± 0.8	ND high, NN low, or N ₂ O red.
	12	Yes	anoxic	no gas-flow	n.d.	n.d.	n.d.
	13	No	anoxic	no gas-flow	n.d.	n.d.	n.d.
	14	No	3.0 ± 0.1	0.4	(-33.3 ± 2.3) (-29.5 ± 2.5)	$\begin{array}{c}1\pm2.3\\1.1\pm2.5\end{array}$	ND high, NN low
* Precipitation leads to lower influent N and COD loads							

** With respect to NH₄⁺-N influent load

The data presented in Figure 4 A exhibit a negative correlation between the SP and the dissolved oxygen concentration in the activated sludge reactor. This is hypothesized to be mainly due to the activity of heterotrophic N_2O reduction, which leads to an increase in the SP. In contrast, NH_2OH oxidation with an end-member SP of 31.4 to 33.5‰ (Sutka et al., 2006) is not assumed to contribute significantly to the total N_2O production under the given conditions: for example, a similar trend between the dissolved oxygen concentration and the SP was already shown (Sutka et al., 2006), and it was

demonstrated that decreasing concentrations of dissolved oxygen increase the importance of nitrifier denitrification relative to NH_2OH oxidation in a pure culture study of *N. europaea*. This is also in agreement with a recent publication showing that N_2O production is related to NH_4^+ oxidation in the case of imbalanced metabolic activity (Yu et al., 2010), a situation where N_2O might be produced as an intermediate of the NH_2OH oxidation pathway (e.g. via NO or HNO; Ritchie and Nicholas 1972). Since this would result in the opposite correlation to that shown in Figure 4 A (e.g. higher SP with higher oxygen concentration), it is concluded that NH_2OH oxidation only contributed marginally to the total N_2O production in this investigation (SP up to 6.4 ‰; Table 1). Similarly, in activated sludge lab-scale batch experiments, an SP close to o ‰ indicated a low contribution from NH_2OH oxidation under NH_4^+ oxidizing conditions and DO up to 3 mgO₂/l (Wunderlin et al., 2013a).

According to the current state of knowledge, nitrifier denitrification is hypothesized to be the dominant N₂O production pathway in biological wastewater treatment under aerobic conditions (Colliver and Stephenson 2000; Kampschreur et al., 2009; Wunderlin et al., 2012; Wunderlin et al., 2013a). This is supported by SP data (SP close to 0 ‰, at DO >1.5 mgO₂/l) and by the presence of dissolved NO₂⁻ during periods of N₂O emissions (Figure 2 and 3) as reported in our study. On the other hand, positive SP values, as detected under low dissolved oxygen (e.g. 8.3 to 17.9 ‰ below 1.5 mgO₂/l; Table 1), are interpreted as an indicator of heterotrophic N₂O reduction. As such, the shift to lower SP values with increasing oxygen concentrations is hypothesized to be due to (i) an increasing inhibition of the N₂O reductase or (ii) to reduced overall heterotrophic activity: according to the literature, N₂O reductase is assumed to be inhibited more efficiently than the other heterotrophic denitrifying enzymes in the presence of oxygen (von Schulthess et al., 1994; Kampschreur et al., 2009).

Preliminary studies show the meaning of the SP data: (i) SP values at 0 ‰ are an indicator of NO_2^{-} reduction, either by AOB nitrifier denitrification or heterotrophic denitrification, and (ii) positive SP values at high DO refer to NH_2OH oxidation, while heterotrophic N_2O reduction is the targeted process at low DO. As demonstrated in this section, SP data provide quantitative information about the relevant N_2O production pathway. Our data are interpreted as follows: SP data close to 0 ‰ and high DO are an indicator of NO_2^{-} reduction, while the increase in SP at low DO is attributed to increasing heterotrophic denitrification activity.

Figure 4. (A) The site preference (SP) of the N₂O emitted from Bio1 and Bio2 is plotted against the dissolved oxygen concentration (DO values averaged over the off-gas sampling period). The shift in SP towards more positive values with decreasing dissolved oxygen concentrations is due to the increasing importance of the heterotrophic N₂O reductase activity relative to N₂O production (see also Table 1). (B) $\delta^{15}N^{bulk}_{N2O}$ (average ¹⁵N content within N₂O) plotted against the dissolved oxygen concentration in Bio1 and Bio2 (DO values averaged over the off-gas sampling period). The $\delta^{15}N^{bulk}_{N2O}$ is strongly depleted in ¹⁵N, which is an indicator of N₂O production without strong N₂O reduction activity. The two data points at -20.3 and 4 ‰ under low dissolved oxygen are less depleted in ¹⁵N, thus supporting simultaneous heterotrophic denitrification activity (N₂O reduction). (C) The SP of N₂O plotted against the $\delta^{15}N^{bulk}_{N2O}$ emitted from Bio1 and Bio2. A positive trend

between SP and $\delta^{15} N^{bulk}{}_{N_{2O}}$ is due to heterotrophic N_2O reduction, which increases the SP and leads to a less negative $\delta^{15} N^{bulk}{}_{N_{2O}}$. Differentiation between AOB and HET based on $\delta^{15} N^{bulk}{}_{N_{2O}}$ alone is limited due to a lack of isotope signature data from the substrate (NH₄⁺, NO₃⁻). Error bars represent the 2 σ confidence level.

Average ¹⁵N content in $N_2O(\delta^{15}N^{bulk}_{N_2O})$

In addition to SP, the average ^{15}N content of the N_2O molecule (δ $^{15}N^{bulk}_{N2O}$) provides supplementary information about the N₂O production pathways involved. The range of the $\delta^{15}N^{\text{bulk}}$ values varied widely between -44 and 4 ‰, with no strong dependence on DO concentrations (Table 1; Figure 4 B). However, the values are similar to those in the literature: between -24.4 and 5.6 ‰ was reported in a study on N₂O in groundwater (Koba et al., 2009), while in river water, δ ¹⁵N^{bulk}_{N20} values ranged between -18 to 9 ‰ (Toyoda et al., 2009). In a full-scale wastewater treatment investigation, a δ ¹⁵N^{bulk}_{N20} value of -13.4 ‰ was estimated for N₂O emitted from the oxidation tanks (Toyoda et al., 2011). And in a recent activated sludge lab-scale investigation, $\delta^{15}N^{bulk}_{N_{20}}$ values of between -57.6 and -25.3 % were reported for NH₄⁺ oxidation experiments, and from -17 to 50.1 ‰ for NO₃⁻ reduction experiments with a similar initial substrate signature (δ 15 N-NH₄⁺ = 1.15 ‰, $\delta {}^{15}$ N-NO₃⁻ = 2.5 ‰; Wunderlin et al., 2013a): isotopic signatures were most depleted in ¹⁵N at the beginning, and continuously increased throughout the experiments, due to Rayleigh distillation kinetics (an increase of ¹⁵N in the educt; refer to e.g. Mariotti et al. (1981) for more information about the basic principles of kinetic isotopic fractionation).

The data presented in Figure 4 B in general exhibit no significant correlation between dissolved oxygen concentration and $~\delta^{~\text{\tiny 15}} N^{\text{\tiny bulk}}{}_{}_{}_{N_2O}\!.$ Except at low dissolved oxygen concentrations (<1 mgO₂/l), there is a slight correlation between δ ¹⁵N^{bulk}_{N2O} and O₂ in Bio1, mainly due to strong ¹⁵N enrichment (around +4 ‰) in one experiment. This is explained by an increasing heterotrophic N₂O reductase activity relative to N₂O production under low dissolved oxygen concentrations (0.5 mgO₂/l), which is also in agreement with a positive SP value (17.9 ‰; see also Figure 4 C). The increase in δ $^{15}N^{\text{bulk}}_{N_{2O}}$ as DO increased from 2 to 3 mgO₂/l is congruent with the findings of Wunderlin et al. (2013a), where the lower isotopic fractionation during NH⁺ oxidation was attributed to a high NH⁺ oxidation rate in combination with a comparatively sluggish NO⁻ oxidation (NO⁻ accumulated up to 5 mgN/l). However, in the present study, NO_2^{-1} accumulation was only slight (up to 2 mgN/l; see Figure 3 and 4). On the other hand, a reduced N fractionation can also be linked to low substrate concentrations (e.g. Lehmann et al., 2007; Granger et al., 2008), which might be partly consistent with a lower NH_4^+ concentration range at 3 mgO₂/l (0.9 to 4.1 mgN/l) compared to concentrations at $2 \text{ mgO}_2/\text{I}$ (4.4 mgN/I).

Nevertheless, the wide variation in $\delta^{15}N^{bulk}_{N_{2O}}$ and the lack of data concerning the isotopic signature of the relative substrates (NH₄⁺ and NO₃⁻) make it difficult to differentiate between N₂O production originating from AOB (nitrifier denitrification

and NH₂OH oxidation) and from heterotrophic denitrification. Assuming that (i) the isotope signature of influent ammonia is around o ‰ and that (ii) ammonia is in excess during nitrification (large reactant concentration; Figure 2 and 3), the isotopic signature of the N₂O produced via nitrification and heterotrophic denitrification is expected to be in the range of -47 to -68 ‰ and o to -39 ‰, respectively (e.g. Koba et al., 2009). Our δ ¹⁵N^{bulk}_{N2O} data are between -44 and 4 ‰, which can be interpreted to be within the range of both pathways, making it difficult to draw further conclusions. In fact, the isotopic signature of the influent ammonia may differ from o ‰, thus the ¹⁵N enrichment due to NH₄⁺ oxidation, or the isotopic fractionation in this study deviated from the values reported in the literature. This is supported by the findings of Toyoda et al. (2011) who measured δ ¹⁵N-NH₄⁺ up to ~10 ‰ and calculated a fractionation of -48.4 ± 0.3 ‰ for the NH₄⁺ to N₂O step, which supports a range from 30 to 50 ‰ for nitrification.

Overall, we conclude that δ ¹⁵N^{bulk}_{N2O} data qualitatively support the findings from SP analysis, even though the quantitative interpretation is complex because it is not only influenced by the pathways involved (multiple reaction steps) but also by their individual enzymatic activities, substrate concentrations and isotopic compositions (see also Decock and Six, 2013).

Relationship between SP and $\delta^{15} N^{bulk}_{N_{2O}}$

Figure 4 C shows the relationship between SP and δ ¹⁵N^{bulk}_{N20}. There is a slightly positive trend between SP and δ ¹⁵N^{bulk}_{N20}, which has already been documented by Koba et al. (2009), and is interpreted to be due to heterotrophic N₂O reduction: ¹⁵N depletion during N₂O production is compensated by heterotrophic N₂O reduction, which leads to both an enrichment of ¹⁵N in N₂O and a positive SP. The shift to higher SP and less negative δ ¹⁵N^{bulk}_{N2O} values in Bio1, shown in Figure 4 C, is explained by a high rate of heterotrophic N₂O reduction compared to N₂O production. Similarly, Ostrom et al. (2007) noted that the activity of N₂O reductase needs to be higher than 10% compared to N₂O production in order to significantly impact the SP. Therefore, a low SP, e.g. in the range from 0 to 5‰ in combination with $\delta^{15}N^{\text{bulk}}{}_{\text{N2O}}$ values between -30 to -42‰ is an indicator of either (i) sole nitrifier denitrification activity or (ii) a combination of nitrifier denitrification activity and heterotrophic N reduction, respectively (Figure 4 C). Nevertheless, $\delta^{15}N^{\text{bulk}}_{N_{20}}$ values of around -30 ‰ in combination with SP values of around o ‰ are out of line with the positive trend proposed above. Again, this might be due to a reduced kinetic N fractionation of the microbial transformation pathways, probably affected by high transformation rates at 3 mgO₂/l, as well as to substrate limitation ultimately resulting in reduced ¹⁵N-N₂O depletion.

In sum, SP close to 0 ‰ in combination with negative δ ¹⁵N^{bulk}_{N20} values point to N₂O production via NO₂⁻ reduction (N₂O as a side-product). On the other hand, positive SP data in conjunction with less depleted δ ¹⁵N^{bulk}_{N20} values and low dissolved O₂ support N₂O production from denitrification with substantial N₂O reductase activity (N₂O as an intermediate).

Using ¹⁵N isotope signature to understand N₂O emissions from biological wastewater treatment

If further studies corroborate the fact that N₂O reductase activity alone controls the SP signature of N₂O in conventional biological wastewater treatment and the numerical value can be confirmed, this measurement can be directly used to apportion the inhibition of the last step of the heterotrophic denitrification. Since an SP of o ‰ is expected in case of heterotrophic N₂O emissions with completely inhibited N₂O reductase, this measurement cannot be used directly to assess the N₂O emissions via heterotrophic denitrifiers because a similar SP value is also assumed for nitrifier denitrification (e.g. 0.1 ‰; Sutka et al., 2006). Nevertheless, SP values close to 0 ‰ are a strong indicator of N₂O production via NO₂⁻ reduction, either by nitrifier denitrification or heterotrophic NO⁻ reduction, a finding which will significantly impact future plant operating strategies. However, in situations with a significant contribution of NH₂OH oxidation to the total N₂O production, e.g. at high nitrification rates in combination with low NO₂⁻ concentrations (Wunderlin et al., 2012), positive SP values are expected at high dissolved oxygen concentrations. This would result in SP values close to the NH₂OH oxidation end-member signatures (31.4 to 33.5 ‰; Sutka et al., 2006), since they are unlikely to be biased by heterotrophic N₂O reduction. The latter is assumed to be inhibited in the presence of oxygen.

On the other hand, the interpretation of the $\delta^{15}N^{\text{bulk}}_{\text{N2O}}$ is more complex because the observed signature results from several processes (multiple reaction steps during nitrification and denitrification). Recent publications used the net isotope effect, which is the difference in the isotope values between N₂O and the substrate ($\Delta \delta^{15}N = \delta^{15}N_{\text{substrate}} - \delta^{15}N^{\text{bulk}}_{\text{N2O}}$), instead of the kinetic isotope fractionation to overcome this difficulty (e.g. Koba et al., 2009; Wunderlin et al., 2013a). Clearly, information about the isotopic signature of the substrates (NH₄⁺, NO₂⁻, NO₃⁻) would enhance our understanding of N₂O production. We therefore suggest that the fractionation of the substrates be characterized in forthcoming studies as a function of different microbial activity levels and operating conditions. In addition, we recommend that the kinetic N fractionation be quantified with greater accuracy. The interpretation of the $\delta^{15}N^{\text{bulk}}_{\text{N2O}}$ signal obtained could then be used as a quantitative measure of the relative importance of AOB and HET in N₂O production.

Conclusion

The present study tested whether the nitrogen isotopic signature is a suitable tool for N_2O source allocation in a pilot-scale biological wastewater treatment plant. The hypothesis was that NO_2^{-1} reduction is the dominant route of N_2O production under aerobic conditions in the studied system. The following conclusions can be drawn:

• The SP data, in combination with dissolved O₂, NO₂⁻ and N₂O off-gas analysis, confirmed that NO₂⁻ reduction was the dominant N₂O production pathway.

- Moreover, NH₂OH oxidation was of minor importance in this investigation, while heterotrophic denitrification was relevant under low concentrations of dissolved oxygen.
- The SP data illustrate the potential to discriminate between the different N₂O production pathways, in combination with conventional parameters such as dissolved O₂, nitrogen species, and N₂O off-gas concentrations.
- The $\delta {}^{15}N^{bulk}{}_{N_{2O}}$ data qualitatively support the findings from the SP analysis, since quantitative interpretation requires information about individual enzymatic activities, substrate concentrations as well as their isotopic compositions.
- Further studies are required to confirm whether plant operating strategies at low concentrations of dissolved NO₂⁻ can significantly reduce N₂O emissions.

Acknowledgements

This study was financially supported by the Swiss Federal Office for the Environment (FOEN), the Swiss National Foundation for Scientific Research, the canton of Bern (AWA), the canton of Basel- Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF + Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, WWTP Worblental, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen, Zentralschweizer Umweltdirektorenkonferenz (ZUDK), Empa and Eawag.

References

Aboobakar, A., Cartmell, E., Stephenson, T., Jones, M., Vale, P. and Dotro, G. (2012). Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant. Water Research.

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology 44(12), 4505-4511.

Baggs, E. M. (2008). A review of stable isotope techniques for N_2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry 22(11), 1664-1672.

Brenninkmeijer, C. A. M. and Röckmann, T. (1999). Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis. Rapid Communications in Mass Spectrometry 13(20), 2028-2033.

Casciotti, K. L. (2009). Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochimica et Cosmochimica Acta 73(7), 2061-2076.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Daelman, M. R. J., van Dongen, L. G. J. M., van Voorthuizen, E. M., Volcke, E. I. P. and van Loosdrecht, M. C. M. (2012). Methane and nitrous oxide emissions from municipal wastewater treatment. IWA Nutrient Removal and Recovery 2012: Trends in NRR, Harbin, China, 23-25 September 2012.

Decock, C. and Six, J. (2013). How reliable is the intramolecular distribution of ${}^{15}N$ in N₂O to source partition N₂O emitted from soil? Soil Biology and Biochemistry 65, 114-127.

Granger, J., Sigman, D. M., Lehmann, M. F. and Tortell, P. D. (2008). Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology and Oceanography 53(6), 2533-2545.

Houweling, D., Wunderlin, P., Dold, P., Bye, C., Joss, A. and Siegrist, H. (2011). N_2O emissions: Modeling the effect of process configuration and diurnal loading patterns. Water Environment Research 83(12), 2131-2139.

IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D. Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Koba, K., Osaka, K., Tobari, Y., Toyoda, S., Ohte, N., Katsuyama, M., Suzuki, N., Itoh, M., Yamagishi, H., Kawasaki, M., Kim, S. J., Yoshida, N. and Nakajima, T. (2009). Biogeochemistry of nitrous oxide in groundwater in a forested ecosystem elucidated by nitrous oxide isotopomer measurements. Geochimica et Cosmochimica Acta 73(11), 3115-3133.

Köster, J. R., Well, R., Tuzson, B., Bol, R., Dittert, K., Giesemann, A., Emmenegger, L., Manninen, A., Cardenas, L. and Mohn, J. (2013). Novel laser spectroscopic technique for continuous analysis of N₂O isotopomers - application and intercomparison with isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry 27, 216-222.

Lehmann, M. F., Sigman, D. M., McCorkle, D. C., Granger, J., Hoffmann, S., Cane, G. and Brunelle, B. G. (2007). The distribution of nitrate ${}^{15}N/{}^{14}N$ in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate. Geochimica Et Cosmochimica Acta 71(22), 5384-5404.

Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M. and Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research 46(11), 3563-3573.

Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A. and Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62(3), 413-430.

Mohn, J., Guggenheim, C., Tuzson, B., Vollmer, M., Toyoda, S., Yoshida, N. and Emmenegger, L. (2010). A liquid-free preconcentration unit for measurements of ambient N_2O isotopomers by QCLAS. Atmospheric Measurement Techniques 3, 609-618.

Mohn, J., Tuzson, B., Manninen, A., Yoshida, N., Toyoda, S., Brand, W. A. and Emmenegger, L. (2012). Site selective real-time measurements of ambient N_2O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques 5, 1601-1609.

Ostrom, N. E., Piit, A., Sutka, R., Ostrom, P. H., Grandy, A. S., Huizinga, K. M. and Robertson, G. P. (2007). Isotopologue effects during N_2O reduction in soils and in pure cultures of denitrifiers. Journal of Geophysical Research G: Biogeosciences 112(2), G02005.

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Ritchie, G. A. and Nicholas, D. J. (1972). Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochemical Journal 126(5), 1181-1191.

Schreiber, F., Wunderlin, P., Udert, K. M. and Wells, G. F. (2012). Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies. Frontiers in Microbiology 3, 10.3389/fmicb.2012.00372.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J. and Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72(1), 638-644.

Tallec, G., Garnier, J., Billen, G. and Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research 40(15), 2972-2980.

Toyoda, S., Iwai, H., Koba, K. and Yoshida, N. (2009). Isotopomeric analysis of N_2O dissolved in a river in the Tokyo metropolitan area. Rapid Communications in Mass Spectrometry 23(6), 809-821.

Toyoda, S., Suzuki, Y., Hattori, S., Yamada, K., Fujii, A., Yoshida, N., Kouno, R., Murayama, K. and Shiomi, H. (2011). Isotopomer analysis of production and consumption

mechanisms of N_2O and CH_4 in an advanced wastewater treatment system. Environmental Science & Technology 45(3), 917-922.

Toyoda, S. and Yoshida, N. (1999). Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Analytical Chemistry 71(20), 4711-4718.

USEPA (2009). Inventory of U.S. Greenhouse Gas Emissions And Sinks: 1990-2007, U.S. Environmental Protection Agency, Washington DC, Report No. EPA 430-R09-004.

von Schulthess, R., Wild, D. and Gujer, W. (1994). Nitric and Nitrous Oxides from Denitrifying Activated-Sludge at Low-Oxygen Concentration. Water Science and Technology 30(6), 123-132.

Waechter, H., Mohn, J., Tuzson, B., Emmenegger, L. and Sigrist, M. W. (2008). Determination of N_2O isotopomers with quantum cascade laser based absorption spectroscopy. Optics Express 16(12), 9239-9244.

Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A., Emmenegger, L. and Mohn, J. (2013a). Isotope signatures of N_2O in a mixed microbial population system: Constraints on N_2O producing pathways in wastewater treatment. Environmental Science and Technology 47(3), 1339-1348.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Wunderlin, P., Siegrist, H. and Joss, A. (2013b). Online N_2O measurement: The next standard for controlling biological ammonia oxidation? Environmental Science and Technology 47(17), 9567-9568.

Yamagishi, H., Westley, M. B., Popp, B. N., Toyoda, S., Yoshida, N., Watanabe, S., Koba, K. and Yamanaka, Y. (2007). Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California. Journal of Geophysical Research-Biogeosciences 112, G02015.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Chapter 6

Effect of digester liquid addition on N₂O production in a pilot-scale biological wastewater treatment plant

Thesis chapter

Wunderlin, P., Kipf, M., Lotito, A.M., Joss, A., Siegrist, H.

Graphical abstract

Abstract

Nitrous oxide (N_2O) is an important greenhouse gas, involved in the stratospheric ozone depletion. Its emission from biological wastewater treatment should therefore be avoided. With regard to on-going debate about energetic optimization and efficient conventional treatment of ammonia-rich digester liquid, a better understanding of N_2O dynamics as well as of emission levels is needed.

In the present study, we operated a pilot scale wastewater facility treating municipal wastewater and investigated the effect of peak as well as continuous digester liquid addition on N₂O emission. Under 'normal' operating conditions (without digester liquid dosing), 0.1 to 0.6 % of the ammonia influent load was emitted as N₂O, while being substantially increased at high nitrogen loads (during digester liquid peak addition), positively correlating with the build-up of ammonia (NH_{4}^{+}) and nitrite (NO_{2}^{-}) in the nitrification activated sludge tank. Results further show that continuous digester liquid addition (doubling 'normal' average nitrogen influent load) over 9 days, directly into the pre-denitrification reactor, resulted in high N₂O emissions during the first 3 days (up to 10 %). Even though N,O emission decreased to a level of 1 to 4 % during the consecutive days, emission ranges were still high compared to 'normal' operating conditions. During a second continuous addition period, with variable influent loads, N₂O emission levels were lower. These findings indicate that transient nitrification overloading leads to elevated N₂O emission, and is therefore sensitive to digester liquid dosing. Moreover, nitrifier denitrification is hypothesized to be the dominant N₂O production pathway, due to the positive correlation between N₂O emission and dissolved NO₂⁻ concentrations. A continuous online N₂O off-gas measurement is deemed necessary for plant specific overall carbon footprint minimization.

Keywords

Biological wastewater treatment; denitrification; nitrification; nitrous oxide (N_2O); digester liquid addition

Introduction

Nitrous oxide (N₂O) is an atmospheric pollutant relevant as a greenhouse gas (about 300 times stronger than carbon dioxide (CO₂)) and a major sink of stratospheric ozone (Ravishankara et al., 2009). In the last decade, significant efforts have been made to reduce the energy consumption and to improve nitrogen (N) removal of wastewater treatment plants: since aeration is responsible for about 50 to 60 % of the total energy consumption, one of the most adopted solutions is to lower the aeration of the nitrification stage to the required minimum (Müller 2010; Wang et al., 2012). However, the resulting low dissolved oxygen (O₂) concentrations in the aerated reactors are currently discussed to be one of the key factors impacting N₂O production (Kampschreur et al., 2009). N₂O emissions higher than 0.5 to 1 % compared to converted N, result in greenhouse gas emission equivalent to aeration energy consumption (Law et al., 2012). Consequently, N₂O emissions have to be considered in energy optimization strategies, in order to avoid a net increase of greenhouse gas emission instead of the alleged reduction (Kampschreur et al., 2009).

In biological wastewater treatment, N₂O is produced either during nitrification by ammonia oxidizing bacteria (AOB) or during heterotrophic denitrification by heterotrophic denitrifiers (HET). There is increasing evidence of a dominant N₂O production pathway via nitrite (NO₂⁻) reduction by AOB, called nitrifier denitrification, strongly correlating with the build-up of ammonia (NH₄⁺) and NO₂⁻ (Tallec et al., 2006a; Kampschreur et al., 2009; Ahn et al., 2010b; Houweling et al., 2011; Wunderlin et al., 2012). Hydroxylamine (NH₂OH) oxidation to NO₂⁻ (via intermediates such as nitric oxide, NO, or nitroxyl, HNO; Law et al., 2012; Schreiber et al., 2012) is currently discussed to be active at high NH₄⁺ oxidation rates in combination with high NH₄⁺ and low NO₂⁻ concentrations, but is probably of minor importance within concentration ranges typically found in conventional municipal wastewater treatment systems (Sutka et al., 2006; Yu et al., 2010; Wunderlin et al., 2013). Similarly, the contribution from heterotrophic denitrification is considered negligible under normal operating conditions, such as low NO₂⁻ and no dissolved oxygen concentrations during denitrification (von Schulthess et al., 1994; Kampschreur et al., 2009).

The literature is currently inconsistent about the quantities of N_2O emitted during wastewater treatment. For example:

- Lotito et al. (2012) continuously measured N_2O emission from the oxidation tank of a pilot activated sludge plant, and reported ranges of <0.04 to 0.1 %, with respect to influent N, for solid retention times higher than 15 days, but up to 0.3 % for a solid retention time of approximately 11 days.
- von Schulthess and Gujer (1996) investigated N_2O emission from a continuously fed full-scale wastewater treatment plant. Total N_2O emissions were between 0.02 to 0.07 %, compared to total N input.
- N_2O emission of 12 full-scale treatment plants were monitored by Ahn et al. (2010b), and emission factors, in terms of N_2O emitted compared to total N

input, in the range of between 0.01 to 1.8 \pm 0.79 % were reported (corresponding to 0.01 to 3.3 \pm 1.5 % with respect to N removed).

• A highly variable N_2O emission range of 0.6 to 25.3 % (3.5 ± 2.7 % on average), with respect to N denitrified, has been calculated from an investigation across seven biological nutrient removal plants in Australia (Foley et al., 2010).

Likewise, no consensus has been achieved about the operating strategies to reduce N_2O emission. Discussion has been focused on some factors that have been recognized to be mainly responsible for N_2O production, such as (i) low dissolved O_2 concentration during nitrification as well as heterotrophic denitrification, (ii) the accumulation of NO_2^{-1} and / or NH_4^{+} during nitrification, or (iii) a low ratio of readily biodegradable organic compounds to NO_3^{-1} during heterotrophic denitrification (Kampschreur et al., 2009; Ahn et al., 2010b; Desloover et al., 2012; Wunderlin et al., 2012). Recently, through the continuous operation of a pilot scale activated sludge plant combined with continuous N_2O off-gas measurement, it has been demonstrated that N_2O emissions follow a reproducible specific daily pattern: while emissions are quite negligible during night (at low N loads), it peaks in the morning during the hours of maximum N load, correlating with the build-up of NH_4^{+} and NO_2^{-1} in the activated sludge tanks (Lotito et al., 2012).

In this study we investigated the impact of digester liquid addition on the dynamics as well as on the level of N_2O production in a pilot-scale activated sludge plant, with the hypothesis that high N loading situations promote the build-up of NH_4^+ and NO_2^- , which in turn favors high N_2O emissions. As a first step, short-term effects of digester liquid peak addition on N_2O emission was evaluated. Then, the impact of continuous digester liquid addition over several days was investigated, in order to address potential biomass adaptation. To the best of our knowledge this is the first time that N_2O off-gas concentrations are continuously monitored over several weeks, in combination with continuous measurement of dissolved NO_2^- and NH_4^+ in the activated sludge tanks.

Materials and methods

Pilot plant set-up and operation

The pilot scale wastewater facility, treating around 60 to 80 population equivalents, consisted of a mechanical pre-treatment and a primary clarification, followed by an activated sludge treatment with pre-denitrification (Bio1) and two nitrification reactors (Bio2 and Bio3; each operated as a completely stirred tank reactor with a volume of about 7.5 m³) and a secondary clarifier (Figure 1). The plant was fed with municipal wastewater from the sewer system of the city of Dübendorf (Switzerland) and was operated at a solid retention time (referred to the biological compartments) of approximately 11 to 12 days (7 to 8 days aerobic) by wasting excess sludge from Bio1. The concentration of total suspended solids (TSS) was in the range of 1.6 to 1.8 g/l. Aeration was controlled at a constant dissolved oxygen (DO) concentration in the reactor (setpoint at 0.5, 1 or 2 mgO₂/l). Furthermore, an internal recirculation from the second nitrification tank into the pre-denitrification stage was applied at 1.5 m³/h, in order to

maintain a sufficient NO_3^- load for denitrification. The influent flow followed a fixed diurnal pattern, changing every two hours, with an average value of 1.2 m³/h (minimum influent flow of 0.7 m³/h between 4 to 6 a.m.; maximum influent flow of 1.6 m³/h between 8 to 10 a.m.). The return sludge, from the secondary clarifier to Bio1, varied proportionally to the influent flow.

The digester liquid from the municipal wastewater treatment plant Werdhölzli (Zürich, Switzerland), was stored in our experimental hall (neither aerated nor stirred) and was dosed directly into Bio1, either continuously or by discontinuous ('peak') addition (see below). The average ammonia concentration was 800 mgN/l, while NO_2^- and NO_3^- were below 1 mgN/l.

Figure 1. Flow scheme of the pilot scale wastewater facility treating municipal wastewater. The plant was operated with one pre-denitrification reactor (Bio1), followed by two aerated reactors (Bio2 and Bio3). N_2O was analyzed in the off-gas of Bio2 and Bio3. Further online measurements are indicated by dotted lines.

Analytical methods for off-gas measurement

Off-gas concentrations of N_2O (Rosemount Analytical X-Stream X2) were measured continuously. The sample gas was dried prior to analysis (PKE 521, Bühler Technologies). A 3-way valve was used in order to switch between the off-gas of Bio2 and Bio3 (every 36 minutes), and missing data were supplemented by linear interpolation. The analyzer was calibrated three times per week: dinitrogen (N_2) was used for zero point calibration, while a standard gas (Carbagas, Switzerland) with known concentration for N_2O (200 ppm) was used for the second calibration point. Then, N_2O emission loads were computed by multiplying the concentration by the air flow rate (1 ppm N_2O corresponds to 1.249 mg N_2O -N/m³_{air} under standard conditions at 273.15 K and 1013 mbar; further details about the accuracy of N_2O off-gas measurement is given in Lotito et al., 2012.), and were integrated over time to evaluate the total mass of N_2O -N emitted. N_2O emission factors per day were then calculated by dividing the total mass of N emitted as N_2O by the total mass of N in the inflow present as NH_4^+ .

Analytical methods for dissolved species

The plant was equipped with various online sensors (Figure 1), such as (i) NH_{4}^{+} (Ion selective electrode ISEmax CAS 40, Endress + Hauser), pH (Orbisinit CPS11D, Endress + Hauser), total and dissolved COD (chemical oxygen demand; spectrometric s::can) in the primary clarifier, (ii) TSS (Turbimax, Endress + Hauser) in Bio1, (iii) NH_4^+ and NO_3^- (ISEmax, Endress + Hauser), NO_2^{-} (Stamolys CA 70 analyzer, Endress + Hauser) and O_2^{-} (Optical LDO, Hach Lange) in Bio2, and (iv) NH_{4}^{+} and NO_{3}^{-} (ISEmax, Endress + Hauser) and O₂ (Optical LDO, Endress + Hauser) in Bio3. All data were logged to a supervisory control and data acquisition system. Ion selective electrodes were calibrated once a week. Additionally, 24-hour flow proportional composite samples of the influent and effluent were sampled three times a week (daily sampling during continuous supernatant addition), for analyzing the following species: total N (commercial photochemical test kits, Hach Lange GmbH, Düsseldorf, Germany), NH⁺ (Foss FIAstar flow injection 5000 analyzer), NO₂⁻ and NO₃⁻ (ion chromatography, 761 compact IC, Metrohm), total and soluble COD (chemical oxidation demand; commercial photochemical test kits, Hach Lange GmbH, Düsseldorf, Germany), and TSS (standard methods). Mixed liquor suspended solids were measured according to standard methods (APHA 1998).

Operational schedule

Throughout the whole monitoring phase, the plant was operated under three different conditions:

(i) 'normal' operating condition without any digester liquid addition, defined as reference days, including both working and week-end days (discussed in section ' N_2O production during 'normal' operating conditions').

(ii) 'digester liquid peak' condition, where digester liquid was added directly into Bio1 at 8:30 or 9:00 a.m., at high rates (~120 gN within 1 minute, corresponding to about 20 % of the average daily NH_4^+ influent load), during three different days applying different DO set-points (0.5, 1 and 2 mgO₂/l in Bio3; discussed in section 'Effect of digester liquid peak addition on N₂O production under different dissolved O₂ concentrations').

(iii) 'continuous digester liquid' addition during 24 hours directly into Bio1 (over 9 days) at a constant flow rate of about 600 gN per day (doubling the 'normal' average ammonia influent load), as well as over 12 days during a second continuous digester liquid dosing period at more variable influent loads (from 790 to 1339 gN/d; discussed in section 'Effect of continuous digester liquid peak addition on N_2O production').

Results and discussion

N₂O production during 'normal' operating conditions

During 'normal' operation, the total N influent concentrations were in the range of 17.9 to 42.1 mgN/l, corresponding to an average N influent load of 35 gN/h and an NH_4^+ influent load of 25.3 ± 4.8 gN/h, respectively (Figure 2). The N removal rate was 72 ± 5.5 %, with an ammonia oxidation rate higher than 98 % at a DO set-point of 2 mgO₂/l in both nitrification reactors. The dissolved COD influent concentration was 124 ± 47 mgCOD/l, resulting in an average dissolved COD / NH_4^+ -N influent ratio of approximately 11.3 ± 4. The total COD removal rate was higher than 80 %.

Figure 2. Fraction of N_2O emitted with respect to influent ammonia during six reference days, without external digester liquid addition, including the daily highest NO_2^{-1} concentrations.

During the 'normal' operating conditions, N₂O emissions were 0.1 to 0.2 % with respect to an average NH₄⁺-N influent load of 600 gN/d (Figure 2). During 'normal' days, there was usually no N₂O emission during night (except when digester liquid was added): then, N₂O started to increase in the morning hours (8 to 9 a.m.), paralleled by a build-up of NH₄⁺ and NO₂⁻ in the nitrification reactor (maximum daily NO₂⁻ concentrations up to 2 mgN/l, as illustrated in Figure 2). Furthermore, N₂O remained at an elevated level throughout the day, and finally decreased again in the afternoon, in parallel with a reduction of NH₄⁺ and NO₂⁻ concentrations, similarly to what observed by Lotito et al. (2012) and Ahn et al. (2010b). It has to be mentioned that N₂O emission during weekends were typically higher compared to work days which is hypothesized to be due to higher N influent loads during weekends (city with high ratio of commuter during work days). Looking at the data in Figure 2, it can be seen that 0.4 to 0.6 % of influent ammonia was emitted as N₂O during the exemplary Friday and Sunday (compared to normal values during working days of 0.1 to 0.2 %), and similarly, maximum NO₂⁻ concentrations were higher during these two days (up to 1.4 to 2 mgN/l). The N₂O emission ranges found for 'normal' operating conditions are in good agreement with data presented in literature (e.g. von Schulthess and Gujer 1996; Ahn et al., 2010a; Ahn et al., 2010b).

In this section it was shown that 'normal' days emitted relatively low amounts of N_2O , but is slightly accelerated during weekend days and higher N influent loads. N_2O emissions followed a typical pattern: low emissions during night, and high emissions during the day in combination with high N influent loads.

Effect of digester liquid peak addition on N_2O production under different dissolved O_2 concentrations

During digester liquid peak addition about 120 gN was added within 1 minute directly into Bio1, which accounted for about 20 % of the average daily ammonia influent load (Figure 3). This led to total ammonia influent loads between 750 and 810 gN/d, being in the range of 'normal' weekend days (Figure 2). Ammonia loss via effluent was highest at a DO set-point of 0.5 mgO₂/l in Bio3, which accounted for ~7 % with respect to the influent load, and was due to oxygen-limited nitrification.

Figure 3. N_2O emission during digester liquid peak addition in combination with three different DO set-points in Bio3 (0.5, 1 and 2 mgO₂/l, respectively; DO set-point in Bio2 was unchanged at 2 mgO₂/l).

Figure 3 shows that N₂O emissions were substantially increased due to digester liquid peak addition, compared to normal weekdays. This is in agreement with literature, reporting a positive correlation between NH_4^+ shock loads and the N₂O off-gas concentrations (Burgess et al., 2002a; Lotito et al., 2012). Moreover, in our study, N₂O emissions were highest at the DO set-point of 0.5 mgO₂/l (~1.3 %), while being only about 0.6 and 0.4 % at the DO set-points of 1 and 2 mgO₂/l, respectively (Figure 3). Again, this is congruent with literature: for example, Wunderlin et al. (2012) reported highest N₂O emission level at an oxygen concentration of 1 mgO₂/l. In another investigation, it was reported that a reduction of DO during high ammonia loads significantly increased N₂O emission in a pilot-scale municipal wastewater treatment

plant (Lotito et al., 2012). We interpret these correlations as indicative for nitrifier denitrification driven N_2O production, which is also supported by a recent study, based on isotopomeric measurements, where N_2O production in a pilot-scale treatment plant was dominated by NO_2^{-1} reduction (Wunderlin et al., in preparation; Chapter 5).

Heterotrophic denitrification on the other side, is assumed to be of minor importance in our investigation, due to (i) anoxic conditions in the denitrification reactor, (ii) relatively low NO_2^{-1} concentrations (not higher than 2 mgN/l in Bio 2), and (iii) COD / N influent ratios higher than 5 (ratios below 5 were identified as critical with respect to N_2O production; Alinsafi et al., 2008).

Based on the presented data in this section, it is concluded that digester liquid peak addition resulted in higher N_2O emission, compared to 'normal' week days, but being similar to 'normal' weekend days with higher N loads. Furthermore, N_2O emissions are accelerated by low dissolved oxygen concentrations during nitrification, which supports nitrifier denitrification as relevant N_2O production pathway.

Effect of continuous digester liquid addition on N₂O production

During the first two days of continuous digester liquid addition (doubling the 'normal' ammonia influent load), the NH_4^+ removal rate was reduced, due to probably a limiting nitrification capacity. But from the third day onward, NH_4^+ effluent loads were lower than 20 gN/d, which accounted for less than 5 % compared to NH_4^+ influent loads. NO_2^- concentrations were remarkably high, especially during the first three days (>5 mgN/l; Figure 4), which is assumed to be due to a temporary plant overload, leading to incomplete nitrification or inhibition of NOBs. Consequently, N₂O emission raised up to 7.5 to 10 % with respect to influent NH_4^+ (Figure 4), being significantly higher than during 'normal' operating conditions (e.g. 0.1 to 0.6 %, see Figure 2 and section 'N₂O production during 'normal' operating conditions') and compared to values reported in literature: for example, von Schulthess and Gujer (1996) published a range from 0.2 to 0.7 ‰ with respect to the total N input, and Ahn et al. (2010b) measured maximum values of 3.3 % compared to total N removed.

At the fourth day after the start of continuous digester liquid addition, N₂O emission decreased to values in the range of between 1.4 to 1.9 %, paralleled by a decline in dissolved NO₂⁻. It is hypothesized that this reduction is due to lower N influent loads (1324 gN/d during day 5 and 6 compared to about 1233 gN/d during the consecutive days). The COD / N ratio is speculated to be another potential factor impacting N₂O emission: as during weekends the COD / N influent ratio is typically lower compared to week-days (due to industrial activities in the catchment area), this might result in lower heterotrophic activity, and consequently NO₂⁻ produced by incomplete nitrification is less efficiently removed in the denitrification tanks. Of course, heterotrophic denitrification, since high NO₂⁻ concentrations and low COD / N ratios (below 5; Alinsafi et al., 2008) are discussed to favor N₂O production by heterotrophic denitrifiers (von Schulthess et al., 1994; Wunderlin et al., 2012). However, just based on the presented

data, it is not possible to quantitatively differentiate between the individual contributions of the N₂O production pathways.

Figure 4. NH_4^+ influent load (gN/d; dark grey bars), NH_4^+ effluent load (gN/d; white bars), fraction of NH_4^+ influent load emitted as N_2O (%; light grey bars) and the daily highest NO_2^- concentrations (mgN/l; bullets) during 9 days (day 5 to 13) of continuous supernatant addition (no data available for day 4 due to sensor calibration). Reverting to low N influent loads (day 14 and 15), results in a sharp decrease in both N_2O emission as well dissolved NO_2^- .

During the second weekend of continuous digester liquid addition, N_2O emission decreased to values of maximum 4 %, which is significantly lower than during the first weekend. It is hypothesized that this reduction might be due to biomass adaptation (e.g. due to metabolic adaptation, or growth of the nitrifier community), since nitrification was able to better deal with the high ammonia influent loads (less ammonia in the effluent). Similarly, Chandran et al. (2011) observed a steady decrease in N_2O emission from *N. europaea* pure culture within the first 8 days upon repeatedly NH_4^+ pulse loadings, which was attributed to an adaptive metabolic response.

The significant reduction of N_2O emission at day 14 and 15 in our study (down to 0.7 to 0.8 %, Figure 4) is due to a cessation of continuous digester liquid addition, and reverting to 'normal' influent loads. Dissolved NO_2^{-1} as well as N_2O emission reached similar levels as during the days before continuous digester liquid dosing. This situation nicely illustrates how to reduce N_2O emission by lowering N influent loads.

Figure 5. NH_4^+ influent load (gN/d; dark grey bars), NH_4^+ effluent load (gN/d; white bars), fraction of NH_4^+ influent load emitted as N_2O (%; light grey bars) and the daily highest NO_2^- concentrations (mgN/l; bullets) during 12 consecutive days of variable continuous supernatant addition. High N influent loads result in higher N_2O emission rates as well as NO_2^- concentrations compared to low N influent days.

In a second series of continuous digester liquid addition, it was tested whether a variable digester liquid dosing can keep NO₂⁻ low and in parallel also reduce N₂O emission peaks. In fact, the N influent loads varied between 781 and 1331 gN/d (Figure 5), and N_2O emission levels were in the range from 0.4 to 3 % with respect to NH_4^+ influent load. Highest daily NO,² concentrations were in between of 0.5 and 4.2 mgN/l. As hypothesized, both, N₂O emission rates as well as highest daily NO₂⁻ concentrations varied substantially, presumably depending on the N influent loads. Moreover, dissolved NO_2^{-} was significantly lower within the first three days, after the start of digester liquid dosing, compared to the data shown in Figure 4. This finding supports the assumption of nitrification overloading or (partial) NOB inhibition as a trigger for NO₂ accumulation within the first days of continuous digester dosing illustrated in Figure 4. Nevertheless, under more variable influent loads, the N₂O emission dynamics remained in line with the above reported trends, where high N loads resulted in high NO₂⁻ concentrations as well as N₂O emissions, and vice-versa. This indicates that transient nitrification overloading leads to elevated N₂O emission, and is therefore sensitive to digester liquid dosing, which should be added preferentially during low NH_{A}^{+} loading situations.

In this section, the effect of continuous digester liquid dosing over several days was investigated. Similar to the previous sections, (i) N_2O emission increased during high N influent loads, as well as (ii) in parallel to NO_2^{-1} accumulation. Microbial adaptation, e.g. on a metabolic level or by an increase in the nitrifier population, might explain the lower N_2O emission levels during the second weekend after continuous digester liquid dosing, depicted in Figure 4.

Nitrogen influent load and dissolved NO_2^- : two key factors impacting N_2O emission

Figure 6. (A) Correlation between N_2O emission (N_2O -N emitted with respect to NH_4^+ -N influent load) and ammonia influent load: Emissions are low under 'normal' operating conditions (average NH_4^+ influent load of 600 gN/d), but are increasing proportionally to the ammonia influent load. The two unusually high N_2O emission days might be due to nitrification inhibition. (B) Correlation between bulk NO_2^- and N_2O off-gas concentration (average values over one hours) of Bio2 during 'normal' operation and continuous supernatant addition: high NO_2^- concentrations are indicative for elevated N_2O off-gas concentrations.

A positive correlation between NH_4^+ influent loads and N_2O emissions is illustrated in Figure 6 A. At 'normal' influent loads (e.g. 600 gN/d), N_2O emissions were relatively low, compared to situations of higher influent loads (e.g. at 1400 gN/d). A similar trend has been described previously, but for lower nitrogen load situations (Lotito et al., 2012): N_2O emission were absent during low loaded nights but started to increase in the morning hours in parallel to the NH_4^+ peak in the inflowing wastewater and the buildup of NH_4^+ in the activated sludge tanks.

Chandran et al. (2011) proposed, that excessive nitrogen loads to a nitrification reactor are likely to trigger higher NH_4^+ oxidation rates, resulting in higher N_2O emissions, presumably produced via NH_2OH oxidation. Similarly, Law et al. (2012) observed an exponential correlation between N_2O production and NH_4^+ oxidation rates during partial nitrification of ammonia-rich wastewater, which is hypothesized to be due to chemical HNO decomposition. Additional methods, such as the analysis of the N_2O sitespecific isotopic signature, are needed to obtain a more accurate allocation of the emissions reported in this study.

The correlation between dissolved NO₂⁻ and the N₂O off-gas concentrations is shown in Figure 6 B: nitrification at high dissolved NO₂⁻ concentration, leads to high N₂O emissions. This is comparable to former investigations reporting increasing N₂O emissions upon NO₂⁻ build-up (Burgess et al., 2002a; Burgess et al., 2002b; Shiskowski and Mavinic 2006). Such a correlation is consistent with the general understanding of NO₂⁻ reduction as the dominant pathway for N₂O production in biological wastewater treatment (Colliver and Stephenson 2000), and leads to the conclusion that plants operated at low dissolved NO₂⁻ (and NH₄⁺) emit only low amounts of N₂O, which was confirmed by ceasing continuous digester dosing (day 14 and 15 shown in Figure 4).

Implementation of continuous online N₂O *measurement for reducing overall carbon footprint of biological wastewater treatment*

A continuous N_2O off-gas monitoring is recommended in order to elucidate and adopt appropriate plant specific operating strategies, which is supported by a recent finding of Daelman et al. (2013) who showed that continuous long-term online monitoring is required to capture N_2O emission ranges accurately and emission dynamics more fully.

The application of continuous N_2O off-gas analysis in conventional biological wastewater treatment was already proposed by Burgess et al. (2002b), who came up with the idea of using N_2O off-gas emission measurement as an indicator for monitoring nitrification process stability: it was shown that nitrification failure (e.g. due to microbial inhibition) or during NH_4^+ shock loads resulted in NO_2^- build-up and in increasing N_2O off-gas concentrations (similar to our data). Their work resulted in an international patent application (number PCT/GBoo/01094), which was further developed by Butler et al. (2009) who investigated N_2O off-gas measurement as a tool for early warning of biological nitrification failure: basically, an increase in N_2O was detected in parallel to an increase in NO_2^- . However, to our knowledge, this idea was not further developed nor applied in full-scale treatment plants.

The accumulation of NO₂⁻ is unwanted but difficult to measure so far. As such, based on the correlation between dissolved NO₂⁻ and N₂O emission, the latter could be used as an indirect measure for NO₂⁻ accumulation. Still, it is to be elucidated whether, beside nitrifier denitrification, also NH₂OH oxidation contributes substantially to N₂O production under specific operating conditions, as for example in a sequencing batch operating mode or during partial nitrification, since the NH₂OH pathway is not expected to correlated with dissolved NO₂⁻. Nevertheless, by controlling activated sludge treatment processes at minimal N₂O emissions, the contribution from both pathways, NH₂OH oxidation as well as nitrifier denitrification, will be low.

Conclusions

The effect of digester liquid addition on N_2O production during conventional biological wastewater treatment was evaluated in this study, with the hypothesis that high N load situations promote the build-up of NH_4^+ and NO_2^- in the activated sludge tanks, which in turn favors high N_2O emission. The conclusion can be summarized as follows:

- The external addition of digester liquid (high N load situation) significantly increased the N_2O emission rate compared to 'normal' operating conditions. Consequently, ammonia rich digester liquid should be dosed preferentially during low ammonia loads.
- N₂O emissions were lower when activated sludge was adapted to continuously high N influent loads, presumably by an increase of the nitrifier population. Thus, ammonia rich digester liquid could be added to bridge low N load situations in order to maintain a 'strong' nitrifier community.
- N_2O emission correlated with the N influent load and the build-up of NO_2^{-1} (and NH_4^{+}) in the nitrification reactor. As a consequence, plants facing high N influent load variations, should be operated at sufficient dissolved oxygen, in order to avoid incomplete nitrification and to keep NO_2^{-1} low (< 1 to 2 mgN/l; e.g. aeration with NH_4^{+} control).
- Energetic optimization of wastewater treatment by reducing aeration (and O₂ input) is critical, especially during high N loads. Therefore, it is recommended to reduce (or switching off) the aeration solely at low N load situations.
- A continuous online N₂O off-gas measurement is deemed necessary for plant specific overall greenhouse gas minimization.

Acknowledgements

This study was financially supported by the Swiss Federal Office for the Environment (FOEN), the canton of Bern (AWA), the canton of Basel-Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF + Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, WWTP Worblental, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen. Zentralschweizer Umweltdirektorenkonferenz (ZUDK) and Eawag. Special thanks go to Jakob Eugster, Anja Wohlhauser, Karin Rottermann, Claudia Bänninger-Werffeli and Richard Fankhauser (Eawag) for helpful assistance and support during the experimental phase. We also thank Joachim Mohn (Empa, Swiss Federal Laboratories for Materials Testing and Research) for helpful discussions concerning off-gas measurement.

References

Ahn, J. H., Kim, S., Park, H., Katehis, D., Pagilla, K. and Chandran, K. (2010a). Spatial and temporal variability in atmospheric nitrous oxide generation and emission from full-scale biological nitrogen removal and non-BNR processes. Water Environment Research 82(12), 2362-2372.

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K. (2010b). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology 44(12), 4505-4511.

Alinsafi, A., Adouani, N., Beline, F., Lendormi, T., Limousy, L. and Sire, O. (2008). Nitrite effect on nitrous oxide emission from denitrifying activated sludge. Process Biochemistry 43(6), 683-689.

APHA, AWWA and WEF (1998). Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC, USA, 1220pp.

Burgess, J. E., Colliver, B. B., Stuetz, R. M. and Stephenson, T. (2002a). Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. Journal of Industrial Microbiology & Biotechnology 29(6), 309-313.

Burgess, J. E., Stuetz, R. M., Morton, S. and Stephenson, T. (2002b). Dinitrogen oxide detection for process failure early warning systems. Water Science and Technology 45(4-5), 247-254.

Butler, M. D., Wang, Y. Y., Cartmell, E. and Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research 43(5), 1265-1272.

Chandran, K., Stein, L. Y., Klotz, M. G. and Van Loosdrecht, M. C. M. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39(6), 1832-1837.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Daelman, M. R. J., De Baets, B., van Loosdrecht, M. C. M. and Volcke, E. I. P. (2013). Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Research 47(9), 3120-3130.

Desloover, J., Vlaeminck, S. E., Clauwaert, P., Verstraete, W. and Boon, N. (2012). Strategies to mitigate N_2O emissions from biological nitrogen removal systems. Current Opinion in Biotechnology, doi:10.1016/j.copbio.2011.12.030.

Foley, J., de Haas, D., Yuan, Z. and Lant, P. (2010). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research 44(3), 831-844.

Houweling, D., Wunderlin, P., Dold, P., Bye, C., Joss, A. and Siegrist, H. (2011). N_2O emissions: Modeling the effect of process configuration and diurnal loading patterns. Water Environment Research 83(12), 2131-2139.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Law, Y., Ni, B.-J., Lant, P. and Yuan, Z. (2012). N_2O production rate of an enriched ammonia oxidising bateria culture exponentially correlates to its ammonia oxidation rate. Water Research 46(10), 3409-3419.

Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M. and Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research 46(11), 3563-3573.

Müller, E. A. (2010). Handbuch Energie in ARA. Verband Schweizer Abwasser- und Gewässerschutzfachleute (VSA).

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Schreiber, F., Wunderlin, P., Udert, K. M. and Wells, G. F. (2012). Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies. Frontiers in evolutionary and genomic microbiology.

Shiskowski, D. M. and Mavinic, D. S. (2006). The influence of nitrite and pH (nitrous acid) on aerobic-phase, autotrophic N_2O generation in a wastewater treatment bioreactor. Journal of Environmental Engineering and Science 5(4), 273-283.

Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J. and Li, F. (2006). Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Applied and Environmental Microbiology 72(1), 638-644.

Tallec, G., Garnier, J., Billen, G. and Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research 40(15), 2972-2980.

von Schulthess, R. and Gujer, W. (1996). Release of nitrous oxide (N_2O) from denitrifying activated sludge: Verification and application of a mathematical model. Water Research 30(3), 521-530.

von Schulthess, R., Wild, D. and Gujer, W. (1994). Nitric and Nitrous Oxides from Denitrifying Activated-Sludge at Low-Oxygen Concentration. Water Science and Technology 30(6), 123-132.

Wang, X., Liu, J., Ren, N.-Q. and Duan, Z. (2012). Environmental profile of typical anaerobic/anoxic/oxic wastewater treatment systems meeting increasingly stringent treatment standars from a life cycle perspective. Bioresource Technology, 10.1016/j.biortech.2012.09.009.

Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A., Emmenegger, L. and Mohn, J. (2013). Isotope signatures of N_2O in a mixed microbial population system: Constraints on N_2O producing pathways in wastewater treatment. Environmental Science and Technology 47(3), 1339-1348.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (in preparation). Nitrogen isotopic signature of N_2O emitted from a pilot scale municipal wastewater treatment plant.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Chapter 7

Monitoring N₂O emission for indirect NO₂⁻ measurement and nitritation-anammox process control

Thesis chapter

Wunderlin, P., Joss, A., Kipf, M., Siegrist, H.

Graphical abstract

Abstract

Nitrous oxide (N_2O) is a strong greenhouse gas and involved in the destruction of the stratospheric ozone layer. N_2O production mechanisms of nitritation-anammox processes are not fully understood, but hypothesized to depend on dissolved NO_2^- concentrations. Latter accumulates if the process is not stable and promotes growth of unwanted nitrite oxidizing bacteria (NOB), but so far, NO_2^- is not easily measured online. Therefore, NO_2^- is expected to be monitored indirectly via N_2O off-gas analysis.

In this investigation, a single-stage pilot-scale nitritation-anammox process was fed with digester liquid. The reactor was temporary operated at high aeration rates, up to the double of the usually applied airflow rates, in order to accumulate NO_2^{-} , and thus to test the correlation between NO_2^{-} and N_2O . Results show that N_2O emissions were controlled by the airflow rate: high aeration rates resulted in high NO_2^{-} concentrations as well as high N_2O emissions. However, there was not always a clear correlation between dissolved NO_2^{-} and N_2O off-gas concentrations, which is hypothesized to be due to NH_2OH oxidation activity (another N_2O production pathway). Nevertheless, reactor operation controlled at minimal N_2O emission kept stable ammonia (NH_4^+) removal rates at low NO_2^{-} concentrations (<0.6 mgN/I). This is a promising finding and supports future directions incorporating continuous N_2O off-gas measurement in the automatic process control, for example to control the airflow rate.

Keywords

Aeration rate; Nitrous oxide (N_2O) ; Nitrite (NO_2^{-}) ; Nitritation-anammox process control

Introduction

Nitrous oxide (N₂O) is a strong greenhouse gas, involved in the destruction of the stratospheric ozone layer (Ravishankara et al., 2009). However, N₂O production and its relevance in biological wastewater treatment is still under debate. There is only a limited number of studies, investigating N₂O production mechanisms and emission levels from anammox-based nitrogen (N) removal processes. For example, Kampschreur et al. (2008) measured an N₂O emission rate of 2.3 % with respect to the N load during full-scale two-stage reject water treatment. And an emission level of 9.6±3.2 %, with respect to N removed, was reported for a lab-scale two-stage granular nitrification-anammox process (Okabe et al., 2011). In another study, 1.2 % of the N load was emitted as N₂O from a full-scale single-stage granular reactor (Kampschreur et al., 2009). Similarly, Joss et al. (2009) investigated N₂O emission from a single-stage nitritation-anammox reactor with suspended biomass, and measured an N₂O emission rate of 0.6 % with respect to removed N during intermittent aeration, and 0.4 % during continuous aeration, respectively.

These data reveal that N_2O emission ranges from anammox-based systems can be relevant, depending on the operating conditions. And in some situations, N_2O emission might even annihilate the avoided environmental impact achieved by lower energy consumption and organic carbon requirements compared to conventional treatment schemes.

In addition to greenhouse gas emission, process stability is another issue of nitritationanammox processes. Currently, an active discussion concerning the selection of suitable sensors for process control, such as pH, conductivity, NH_4^+ or O₂, and on process control strategies is going on (e.g. Joss et al., 2011). A volumetric aeration control was recently proposed to be crucial for process stability in a single-stage nitritationanammox reactor, since O₂ supply beyond depletion by AOB (e.g. during situations of over-aeration) can lead to anammox inhibition and thus favor NOB growth. Such process instability could be detected at an early stage by online monitoring of NO,⁻. However, this requires a suitable online electrode with sufficient resolution (measuring few mgNO₂⁻-N/l in digester liquid on the background of 0 to >100 mgNO₃⁻-N/l), which is, to the author's knowledge, currently not commercially available. However, based on the findings of enzymatic NO₂⁻ reduction as a dominant N₂O production pathway in biological wastewater treatment (e.g. Colliver and Stephenson 2000; Kampschreur et al., 2009; Wunderlin et al., 2012), and the confirmation of increased N₂O off-gas concentrations upon NO,² accumulation in a granular nitritation-anammox system operated at high dissolved oxygen (DO; >2 mgO₂/l) (Kampschreur et al., 2009), it is hypothesized that dissolved NO₂⁻ can be monitored indirectly via the measurement of N₂O off-gas concentration (see also Butler et al., 2009 and Colliver et al., 2002). Thus, N_2O emission rates, as a proxy for NO_2^{-1} concentration, could be used to control the aeration rate, as well as to design process control strategies reducing environmentally relevant gaseous emissions of the nitritation-anammox systems.
Materials and methods

Set-up and operation of the nitritation-anammox pilot-scale sequencing batch reactor (SBR)

A 400 liter one-stage nitritation-anammox pilot-scale reactor was operated in sequencing batch mode with digester liquid from the full-scale wastewater treatment plant Werdhölzli (Switzerland). The SBR cycle always included the following phases: (i) feeding (15 to 20 % volume exchange) with mixing, (ii) aeration, (iii) mixing, (iv) sedimentation, and (v) discharge (a typical SBR cycle is illustrated in Figure 2). A complete cycle usually lasted between 5 and 7 hours, depending amongst others, on parameters like NH_4^+ degradation rate, sludge concentration, or aeration rate. The nitritation-anammox process was controlled by a programmable logical controller equipped with online sensors for the water level, NH_4^+ , NO_3^- , DO concentrations, temperature, pH, and conductivity. Moreover, the reactor was also equipped with a stirrer, an aeration unit, as well as a temperature control (30 ± 1 °C unless stated otherwise). Further details are given in Joss et al. (2011).

Unless stated otherwise, the reactor aeration rate was manually controlled with a rotameter, to keep NO₂⁻ concentration below 1 mgNO₂⁻-N/l. This typically resulted in DO concentrations, measured in the bulk, of <0.05 mgO₂/l. For experimental purposes, the reactor aeration rate was temporary increased to foster NO₂⁻ accumulation, since an increase in oxygen supply is known to trigger NO₂⁻ accumulation due to (i) anammox inhibition by DO, and (ii) a weak (or absent) NOB population (Joss et al., 2011) (see section 'Correlation between dissolved NO₂⁻ and N₂O emission rate'). The proposed control of the aeration rate according to N₂O emission, was done by manually adjusting the airflow rate, based on the N₂O off-gas concentration measurement, where high N₂O concentrations resulted in an airflow reduction, and vice-versa (see section 'Manual airflow adjustment based on continuous N₂O off-gas concentration measurement').

Analytical methods for dissolved species

The sequencing batch reactor was equipped with various online sensors, such as for NH_4^+ and NO_3^- (ISEmax, Endress+Hauser), pH (Orbisint CPS11D, Endress+Hauser), O_2^- (Oxymax H COS61D, Endress+Hauser) and conductivity (Indumax CLS50D, Endress+Hauser). All data were logged to a supervisory control and data acquisition system. To test the accuracy of the online sensors, dissolved NH_4^+ and NO_3^- were measured with commercial photochemical test kits (Hach Lange GmbH, Düsseldorf, Germany, Test LCK 305 or 303; LCK 340). Dissolved NO_2^- was measured by anion chromatography (881 compact IC, Metrohm; detection limit 0.2 mgN/l), photochemically (Hach Lange GmbH, Düsseldorf, Germany, LCK 341) or with NO_2^- test strips (Nitrite-test, 0-24 mgNO₂⁻-N/l, Merck, Darmstadt, Germany).

Analytical methods for continuous N₂O off-gas concentration measurement

The reactor was closed for off-gas sampling purposes. However, it was not possible to seal it perfectly, due to reactor design reasons, like for example placement of stirrer and online sensors. Therefore, off-gas dilution rates were estimated based on O_2 off-gas concentration analysis, while the reactor was purged with dinitrogen (N_2) gas at different supply rates. O_2 off-gas concentrations were continuously measured (Rosemount Analytical Binos 100 2M Dual-Channel Gas Analyzer; N_2 gas (Carbagas, Switzerland) and ambient air were used for zero and second point calibration). The dilution rates were computed by dividing the measured O_2 off-gas concentrations by the atmospheric O_2 content (21 %). Results are illustrated in Figure 1: it is shown that dilution rates are less than 10 % at N_2 flow rates higher than 500 l/h, while being less than 25 % at flow rates in between of 300 to 500 l/h. At N_2 flow rates below 300 l/h, dilution rates are continuously increasing.

Figure 1. Dilution rates, based on O_2 off-gas concentration analysis. Error bars indicate exemplarily the standard deviation for three individual measurements carried out on different days (flow rates at which multiple measurements have been carried out).

 N_2O off-gas concentrations were measured continuously (Rosemount Analytical X-Stream X2). The sample gas was dried prior to analysis (PKE 521, Bühler Technologies) in order to avoid condensation in the analyzer. The N_2O gas analyzer was calibrated three times a week with N_2 for the zero point, and with a 200 ppm standard gas (Carbagas, Switzerland) for the second calibration point. For N_2O off-gas concentrations higher than 200 ppm, the second point was calibrated by using a 5510 ppm standard gas (Carbagas, Switzerland), which was diluted with N_2 gas to the required N_2O concentration by using two mass flow controllers (Red-y Smart series, Vögtlin Instruments, Switzerland). N_2O emission loads were computed by multiplying the N_2O off-gas concentrations by the air flow rate measured at the reactor inlet, and integrating over time to evaluate the total mass of N_2O -N emitted (1 ppm corresponds to 1.249 mg N_2O -N/m³_{air} at 1013 mbar and 273 K). Emission factors were then calculated by dividing the nitrogen load emitted as N_2O by the NH₄⁺ depletion rate, which was

evaluated by linear regression of the NH_4^+ online signal during the aeration phase, typically with simultaneous AOB and anammox activity.

Results and discussion

Reactor performance and N₂O emission under normal operating conditions

During regular and stable nitritation-anammox process operation, the aeration rate was adjusted to keep dissolved NO_2^{-1} below 0.5 mgN/l. The NH_4^{+1} concentration was typically about 120 to 150 mgN/l, at the beginning of the aeration phase. At 20 mgNH₄⁺⁻ N/l the aerated period is ceased and switched to the stirring phase (depletion of residual NO_2^{-1}) to be followed by sedimentation. Reactor temperature was controlled at 30 ± 1 °C (except during one week where temperature was lowered to about 23 °C), and pH was between 7 and 8 (no pH control). There was no significant NOB activity, since NO_3^{-1} production was in the typical range for anammox activity (Figure 2). Total N removal rates were in the range from 250 to 400 mgN/l/d, depending amongst other factors, on aeration rate, microbial activity and sludge concentration. DO concentrations were below 0.05 mgO₂/l, and thus below the limit of detection.

Figure 2. A typical SBR-cycle consisted of (i) feeding with mixing, (ii) aeration, (iii) mixing, (iv) sedimentation and (v) discharge. NH_4^+ , NO_3^- , pH, volume, conductivity, temperature and N_2O off-gas concentration was continuously monitored. N_2O emission usually peaked right after the aeration is switched on, and reached a maximum concentration during the first half of the aeration phase, before continuously decreasing in the second half of the aeration phase (according to Figure 1, N_2O concentrations during this cycle are underestimated by about 23 % due to off-gas dilution).

N,O emissions were in between of 0.2 and 1 % with respect to converted N. This emission range is comparable to other investigations: for example, Joss et al. (2009) measured an N₂O emission rate of 0.4 % with respect to N removed from a single-stage nitritation-anammox full-scale reactor. N₂O emissions in our investigation were highly dynamic, usually peaking in the first part of the aeration phase, followed by a continuous decrease in parallel with the NH_4^+ concentration (Figure 2). An emission delay, caused by the residence time in the headspace, is of minor importance, since being lower than 10 minutes at aeration rates higher than 300 l/h. In another investigation it was reported that N₂O emission levels decreased by more than 10-times between the start and the end of the aerated period in a full-scale nitritation reactor (Kampschreur et al., 2008). An initial N₂O peak was also reported for a partial nitrification system treating synthetic high strength NH_{4}^{+} wastewater: here it is assumed that under low DO concentrations of around 1 mgO₂/l (during feeding) nitrifier denitrification was induced, while the continuous consumption of alkalinity during the second half of the aeration phase seemed to slow down AOB activity as well as N₂O production (Kong et al., 2013). We hypothesize that our observed N₂O emission peak at the beginning of the cycle and in combination with high NH⁺₄ concentrations, might, in addition to AOB nitrifier denitrification, presumably be due to a contribution from NH₂OH oxidation to total N₂O production (discussed in the next section). However, this needs to be confirmed in upcoming investigations. Isotopomeric analysis is considered a suitable tool to quantitatively apportion between these two pathways (please see Wunderlin et al., 2013 for more details about this method).

Correlation between dissolved NO_2^{-1} and N_2O emission rates

As demonstrated in the previous section, both NO_2^{-1} concentrations as well as N_2O emissions were low under regular and stable nitritation-anammox process operation. In this section, the purpose was to investigate the short-term effect of high aeration rates on NO_2^{-1} and N_2O emission levels, because an increase in the airflow as well as in dissolved O_2 is expected to accelerate AOB activities and to inhibit anammox bacteria.

Figure 3 A illustrates the correlation between dissolved NO_2^- and the N_2O emission rates. It is shown that a build-up of dissolved NO_2^- , upon a manual elevation of the airflow rate, leads to a linear increase of N_2O emissions. Similarly, Kampschreur et al. (2009) reported higher N_2O emissions upon NO_2^- accumulation in a single-stage nitritation-anammox full-scale granular reactor, and also showed a linear correlation between NO_2^- and N_2O off-gas concentrations under non-limiting dissolved O_2 concentrations (>2 mgO_2/I). We hypothesize that such a correlation, illustrated in Figure 3 A, is due to AOB nitrifier denitrification activity, since switching off the oxygen supply or adding allylthiourea, a specific AOB inhibitor, ceased N_2O production instantaneously (data not shown). Moreover, this is in agreement with the current assumption that N_2O does not play a role in the anammox metabolism (Kartal et al., 2007; Kampschreur et al., 2009).

The proportionality constants, shown in Figure 3 A, are variable and do not allow to quantitatively correlate dissolved NO_2^{-1} with N_2O off-gas concentrations (e.g. an N_2O emission rate of about 3 % was measured at NO_2^{-1} concentrations in between of 1 to 3 mgN/l). Thus, it is proposed to control the aeration rate according to an acceptable target N_2O emission, for example by the use of a proportional-integral-derivative (PID) controller: N_2O emissions below a defined threshold would lead to increasing aeration rates, while emissions above this threshold would result in lower airflow rates. According to Figure 3 A, N_2O emission rates below 1 % would keep NO_2^{-1} below 1 mgN/l. NH_4^{+} oxidation rates of this study were not optimal, since experiments were carried out during an nitritation-anammox recovery-phase. Therefore, the here presented correlations need to be reproduced and automatic process control to be implemented and tested under higher activities.

Figure 3. (A) Correlation between dissolved NO_2^{-} and the N_2O emission rate (in terms of N_2O -N emitted with respect to NH_4^{+} -N removed): at low NO_2^{-} also N_2O emission is low, while increasing NO_2^{-} concentrations fosters N_2O emission. In parenthesis: R^2 and reactor aeration rates (I/h; adapted from Wunderlin et al., 2013b). (B) Correlation between dissolved NO_2^{-} and the N_2O emission rate (in terms of N_2O -N emitted with respect to NH_4^{+} -N removed). There was always N_2O production in the presence of NO_2^{-} . On the other side, high N_2O emission rates must not necessarily be accompanied by high dissolved NO_2^{-} concentrations, which is interpreted to be an indicator for a significant contribution of NH_2OH oxidation to total N_2O production (e.g. triangles). In parenthesis: reactor aeration rates (I/h) and reactor operating temperature (°C).

In some experiments, N₂O strongly increased, even though NO₂⁻ did not accumulate substantially (e.g. triangles in Figure 3 B). We hypothesize that this characteristic behavior was due to a significant contribution of NH₂OH oxidation, which is another N₂O production pathway of AOB. Accordingly, for nitrification, it was reported that N₂O production via NH₂OH oxidation seemed to be favored at high NH₄⁺ concentrations in combination with a high nitrification activity, and low NO₂⁻ concentrations (Yu et al., 2010; Law et al., 2012; Wunderlin et al., 2013a). In our experiments, N₂O emission, at high AOB activities and low NO₂⁻ concentrations, correlated with the NH₄⁺ concentration (data not shown). Moreover, in combination with a temporary airflow increase, this might have induced imbalanced metabolic activities, as proposed by Yu et al. (2010), and consequently might have fostered N₂O production via NH₂OH oxidation. Again, N₂O production mechanisms in the (single-stage) nitritation-anammox process needs to be further investigated.

Manual airflow adjustment based on continuous N_2O off-gas concentration measurement

Based on the results illustrated in Figure 3 and discussed in the previous sections, it is concluded that (i) under normal operation, both NO_2^- as well as N_2O were kept at low levels, while (ii) an increase in the airflow rate resulted in a built-up of NO_2^- and in high N_2O emission rates. Consequently, in this section, it is investigated, whether process operation can be optimized by manual aeration rate adjustment, solely based on N_2O off-gas concentration data, which is considered a necessary stepping stone implementing this signal in automated process control.

Figure 4 shows a typical nitritation-anammox cycle, where the aeration rate was manually adjusted based on N_2O off-gas data. In general, N_2O off-gas concentrations decreased upon decreasing airflow rates, and vice-versa: for example, in Figure 4, a strong N_2O emission increase at the beginning of the aeration period (within the first 30 minutes), was counteracted by lowering the airflow from 500 to 400 l/h. Then, a stepwise airflow increase (from 400 up to 550 l/h) accelerated N_2O emissions again. However, there was usually a threshold aeration rate, below which the N_2O emission did not correlate anymore with the airflow rate (when dissolved NO_2^- was below the limit of detection). These emissions are attributed to NH_2OH oxidation, and are presumably impacted by the presence of toxic compounds or high NH_4^+ concentrations.

The above reported responses in N_2O emissions upon changing airflow rates are interpreted to be primarily due to changing microbial activities: at high aeration rates, AOB activity is higher with respect to anammox bacteria, since latter are partly inhibited by the presence of oxygen. Therefore, aeration rates controlled according to microbial activities lead to stable and more balanced nitritation-anammox process operation. This argumentation is also supported by the effect of reducing process temperature: for example, lowering the temperature from 30 to about 23 °C resulted in decreasing microbial activities (data not shown; in agreement with the Arrhenius equation describing the dependency of reaction rate constants on temperature), and

consequently, the airflow rate needed to be reduced in order to prevent over-aeration and NO_2^{-1} accumulation (data not shown).

Off-gas dilution with ambient air as well as physical mass-transfer characteristics are two additional factors potentially impacting N_2O off-gas concentrations as a result of changing aeration rates. However, off-gas dilution, as illustrated in Figure 1, was not significant, since changes in N_2O off-gas concentrations were higher than assumed solely based on dilution rates. Physical mass-transfer characteristics would typically lead to increasing off-gas concentrations upon airflow reduction, and vice-versa, opposing to what we observed in our experiments (Figure 4).

Figure 4. An exemplified nitritation-anammox cycle with manual airflow control, and the effect on N_2O off-gas concentrations: a reduction in the airflow resulted in lower N_2O off-gas concentrations, while an increase in airflow again fostered N_2O emission.

Monitoring N_2O emission for indirect NO_2^- measurement and process control: The potential for future applications

In this study, it has been shown that continuously monitoring N₂O off-gas concentrations is promising to significantly improve nitritation-anammox process control and stability. Data reveal that NO,² accumulation was successfully detected via N₂O off-gas analysis, and is hypothesized that reactor operation controlled at minimal N_2O emission also keeps stable NH_4^+ removal rates and low NO_2^- concentrations. However, an increase in N_2O was not always due to a substantial NO_2^- increase, since probably related to NH₂OH oxidation, and linked to high AOB activities (e.g. due to relatively high NH₄⁺ concentrations). Therefore, to reduce N₂O emission as well as for improving its significance for controlling dissolved NO⁻₂ concentrations, process operating strategies minimizing NH₂OH oxidation activity need to be elucidated. One promising approach is to reduce NH_{A}^{+} concentrations by changing to continuous feeding during aeration, since a temporary build-up of NH_4^+ is known to trigger N₂O emission. Moreover, a combination with the (online) analysis of the N₂O site-specific nitrogen isotopic signature (site preference; for more information see e.g. Wunderlin et al., 2013a) is considered an excellent tool for further pathway identification and nitritation-anammox process optimization with respect to minimize overall environmental impact of gaseous emissions.

Conclusions

In the present study, it was tested whether the continuous monitoring of N₂O off-gas concentrations can be used as an indirect measure for dissolved NO₂⁻ in a single-stage nitritation-anammox process, which is based on the hypothesis that NO₂⁻ dependent N₂O emission by AOB is the dominant cause for the observed off-gas concentrations. The conclusions can be summarized as follows:

- N₂O emissions have proven to correlate with dissolved NO₂⁻ concentrations: temporary high airflow rates resulted in both, increasing NO₂⁻ concentrations as well as increasing N₂O emissions, while aeration rates adequate to microbial activities kept NO₂⁻ and N₂O at low levels.
- Operating conditions at high N₂O emission and in combination with relatively low NO_2^- is assumed to be biased by NH_2OH oxidation activity, another independent pathway for N₂O formation.
- Reactor operation controlled at minimal N_2O emissions, give stable NH_4^+ removal rates and low NO_2^- concentrations.
- In sum, N_2O off-gas concentration is a promising parameter for nitritationanammox process control and supports future directions incorporating this approach in full-scale.

Acknowledgements

This study was financially supported by the Swiss Federal Office for the Environment (FOEN), the canton of Bern (AWA), the canton of Basel- Landschaft (AIB), the canton of St. Gallen (AFU), the canton of Thurgau (AfU), the canton of Zurich (AWEL), TBF + Partner AG Consulting Engineers, WWTP region Bern, WWTP ProRheno, WWTP REAL Luzern, WWTP Zurich-Werdhölzli, WWTP Worblental, Abwasserverband Altenrhein, Abwasserverband Morgental, Entsorgung St. Gallen, Zentralschweizer Umweltdirektorenkonferenz (ZUDK) and Eawag

References

Butler, M. D., Wang, Y. Y., Cartmell, E. and Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research 43(5), 1265-1272.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Colliver, B. B., Stuetz, R. M. and Stephenson, T. (2002). Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. Industrial Microbiology and Biotechnology 29(6), 309-313.

Joss, A., Derlon, N., Cyprien, C., Burger, S., Szivak, I., Traber, J., Siegrist, H. and Morgenroth, E. (2011). Combined nitritation-anammox: Advances in understanding process stability. Environmental Science and Technology 45(22), 9735-9742.

Joss, A., Salzgeber, D., Eugster, J., Konig, R., Rottermann, K., Burger, S., Fabijan, P., Leumann, S., Mohn, J. and Siegrist, H. (2009). Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR. Environmental Science & Technology 43(14), 5301-5306.

Kampschreur, M. J., Poldermans, R., Kleerebezem, R., Van Der Star, W. R. L., Haarhuis, R., Abma, W. R., Jetten, M. S. M. and Van Loosdrecht, M. C. M. (2009). Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. 60: 3211-3217.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2008). Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research 42(3), 812-826.

Kartal, B., Kuypers, M. M. M., Lavik, G., Schalk, J., den Camp, H., Jetten, M. S. M. and Strous, M. (2007). Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology 9(3), 635-642.

Kong, Q., Liang, S., Zhang, J., Xie, H., Miao, M. and Tian, L. (2013). N₂O emission in a partial nitrification system: Dynamic emission characteristics and the ammonium-oxidizing bacteria community. Bioresource Technology 127, 400-406.

Law, Y., Ni, B.-J., Lant, P. and Yuan, Z. (2012). N_2O production rate of an enriched ammonia oxidising bateria culture exponentially correlates to its ammonia oxidation rate. Water Research 46(10), 3409-3419.

Okabe, S., Oshiki, M., Takahashi, Y. and Satoh, H. (2011). N_2O emission from a partial nitrification-anammox process and identification of a key biological process of N_2O emission from anammox granules. Water Research 45(19), 6461-6470.

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A., Emmenegger, L. and Mohn, J. (2013a). Isotope signatures of N_2O in a mixed microbial population system: Constraints on N_2O producing pathways in wastewater treatment. Environmental Science and Technology 47(3), 1339-1348.

Wunderlin, P., Siegrist, H., Joss, A. (2013b). Online N₂O Measurement: The Next Standard for Controlling Biological Ammonia Oxidation? Environmental Science & Technology, 47 (17), 9567-9568, 10.1021/es402971p.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Chapter 8

Online N₂O measurement: The next standard for controlling biological ammonia oxidation?

This chapter has been published as:

<u>Wunderlin, P.</u>, Siegrist, H., Joss, A. Online N₂O measurement: The next standard for controlling biological ammonia oxidation? *Environmental Science and Technology*, **2013**, 47 (17), 9567-9568, 10.1021/es402971P.

N₂O emission carries information about AOB activity: N₂O formation during biological wastewater treatment is complex because it is produced via different pathways and influenced by many factors. At an earlier stage of the research, heterotrophic denitrifiers were considered the dominant N₂O producers, a situation which changed significantly in recent years, the focus having moved to ammonia-oxidizing bacteria (AOB). The latter can generate N₂O via (so far) two different pathways: (i) by reducing nitrite (NO₂⁻), and (ii) via intermediates formed during the oxidation of hydroxylamine (NH₂OH) to NO₂⁻, known as nitrifier denitrification and NH₂OH oxidation, respectively.

Nitrification was recently proposed to be the dominant N_2O source in full-scale biological wastewater treatment, which is mainly attributed to sub-optimal process operating conditions, such as the accumulation of NO_2^{-7} , the presence of low concentrations of dissolved oxygen or peak ammonia loads (Ahn et al., 2010). Monitoring N_2O off-gas concentrations combined with a better understanding of its dynamics and triggers is consequently helpful for improved AOB process control.

Figure 1. Correlation between N_2O emissions and NO_2^- levels of different experimental runs (adapted from chapter 7). Measurements were carried out in a 400 liter one-stage nitritation-anammox sequencing batch reactor fed with digester liquid from a municipal sludge digester, with continuous online N_2O off-gas analysis (Rosemount Analytical X-Stream X2).

Online N_2O is suitable for controlling AOB: We are currently working on the implementation of online N_2O off-gas analysis for the process control of full-scale nitritation-anammox treatment. Process stability and control is still a big issue here, involving an ongoing discussion about suitable sensors. Toxic influents, activity loss or over-aeration, all of which supply oxygen beyond the point of immediate AOB consumption, thus usually lead to microbial inhibition and NO_2^- accumulation. As a result, N_2O emission rates have increased substantially (Figure 1). N_2O off-gas analysis is consequently suitable for automated aeration rate control, leading to stable and more balanced operation of the nitritation-anammox process.

In nitritation-anammox systems, N₂O production is driven by AOB activity, either via nitrifier denitrification or NH₂OH oxidation, since heterotrophic denitrification activity is negligible due to the low availability of degradable organic substrate, and anammox bacteria are considered not to produce N₂O. Therefore, suitable process control strategies need to be clarified in order to (i) minimize N₂O emissions, (ii) maintain low concentrations of dissolved NO₂⁻ and (iii) keep NH₂OH oxidation activity low. In this context, the continuous analysis of the N₂O site-specific nitrogen isotopic signature is considered an excellent tool for quantitative pathway investigation. One promising approach is to feed the digester liquid continuously during aeration: at low NH₄⁺ concentrations, N₂O production via NH₂OH oxidation is also low, and the N₂O emissions can therefore be taken as proxy for the NO₂⁻ concentrations in the reactor (Figure 1).

It was recently concluded that long-term continuous N_2O off-gas analysis is required for the accurate recording of emission dynamics and levels of conventional wastewater treatment plants (Daelman et al., 2013). As such, nitrification (AOB) process control based on N_2O emissions is considered helpful, because multiple factors impact on N_2O production, resulting in a complex, dynamic and plant-specific pattern of N_2O emissions (Burgess et al., 2002). Operating strategies minimizing overall greenhouse gas (GHG) emissions thus need to be tested individually in combination with online N_2O emission analysis.

 N_2O emission is environmentally relevant and must be considered in energy optimization scenarios: N_2O is an environmentally harmful substance: it is a GHG and is involved in the destruction of the stratospheric ozone layer. Indeed N_2O is estimated to play the biggest role in depletion of stratospheric ozone during the 21st century (Ravishankara et al., 2009). Therefore, N_2O (and other GHG) emissions from the wastewater treatment sector must be minimized.

On the basis of Siegrist et al. (2008), it is estimated that the average net energy consumption of Swiss wastewater treatment plants, including biogas use from sludge digestion, is in the range from 40 to 50 watt hours per person and day (Wh/p/d). This value can be reduced by about 50% by introducing the nitritation-anammox process for digester liquid treatment while keeping nitrogen removal at the same level. The resulting savings of 20 to 25 Wh/p/d correspond to about 150 $gCO_{2,equivalents}/p/d$, assuming 700 $gCO_{2,equivalents}/kWh_{electrical}$, which refers to emissions of about 0.5 $gN_2O/p/d$. This accounts for approximately 3% of the daily nitrogen load of one person. Consequently, any discussion of potential future treatment schemes, must necessarily include N₂O (and other GHG) emissions. Analogously, aeration energy-saving concepts for conventional treatment must include N₂O emissions, which should not be significantly increased by them: for example, emission levels in the range of 0.5 to 1% with respect to oxidized nitrogen are already in the same order of magnitude as GHG emissions from the production of energy for aeration.

Online N₂**O off-gas measurement is cost-effective, robust and requires little maintenance:** Today's N₂O off-gas analyzers are stable and robust, enabling automated calibration procedures. Monitoring off-gas concentrations avoids direct contact with

activated sludge, hence significantly reduces cleaning, matrix interferences and the overall maintenance effort compared to probes inserted in the liquid phase. Investment costs are estimated to be higher, but still in the same order of magnitude, than those for the conventional commercially available ion selective electrodes usually applied for online NH_4^+ and NO_3^- measurement in the liquid. Alternatively, monitoring dissolved NO_2^- would require a suitable online sensor with sufficient resolution, which needs, to the authors' knowledge, considerably more maintenance. In addition, extending the N₂O off-gas analyzer by an oxygen sensor in combination with an airflow measurement would allow the oxygen consumption to be continuously monitored and thus the aeration to be controlled via the online nitrification rate.

A win-win situation for the environment and the plant operators: The implementation of a financial GHG crediting system, as suggested by Wang et al. (2011), is considered a powerful incentive to promote the broad application of a continuous N_2O off-gas monitoring concept. We are convinced that the efforts described here have an enormous potential to reduce air and water pollution substantially and thus contribute significantly to sustainable development within the global wastewater treatment sector.

Acknowledgements

Acknowledgments: This study was financially supported by the European Research Council within the Athene Project (grant 267897), as well as by the Swiss N₂O research project. Special thanks go to Marco Kipf (Eawag) for conducting the experiments, and to the operators of the Swiss wastewater treatment plants of Bazenheid and Zürich-Werdhölzli.

References

Ahn, J. H.; Kim, S.; Park, H.; Rahm, B.; Pagilla, K.; Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology, 44 (12), 4505-4511.

Burgess, J. E., Stuetz, R. M., Morton, S., Stephenson, T. (2002). Dinitrogen oxide detection for process failure early warning systems. Water Science and Technology, 45 (4-5), 247-254.

Daelman, M. R. J.; De Baets, B.; van Loosdrecht, M. C. M.; Volcke, E. I. P. (2013). Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Research, 47 (9), 3120-3130.

Ravishankara, A. R.; Daniel, J. S.; Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science, 326 (5949), 123-125.

Siegrist, H.; Salzgeber, D.; Eugster, J.; Joss, A. (2008). Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Science and Technology, 57 (3), 383-388.

Wang, J. S.; Hamburg, S. P.; Pryor, D. E.; Chandran, K.; Daigger, G. T. (2011). Emissions credits: Opportunity to promote integrated nitrogen management in the wastewater sector. Environmental Science and Technology, 45 (15), 6239-6246.

Chapter 9

General Conclusions

In this doctoral thesis, the production and emission of N_2O in biological wastewater treatment was investigated with a specific focus on pathway identification, plant operating reduction strategies and the potential use of continuous N_2O off-gas real-time measurement for process control.

The general conclusion section is structured as follows: first, the highlights of the presented work are summarized, followed by an extended conclusion of the individual chapters. A specific focus is put on the role of NO_2^- . Moreover, it is discussed whether biomass might potentially adapt to N_2O promoting factors, such as N influent peaks, which could lead to a reduction of N_2O emission. Finally, the implications on wastewater treatment plant operation are addressed.

Highlights of this thesis

The overall objective of this thesis was to identify the mechanisms of N_2O production in biological wastewater treatment and how the resulting emissions can be reduced. The work can be summarized with the following highlights:

- NO₂⁻ reduction to N₂O was found to be a key pathway in the investigated conventional municipal wastewater treatment systems.
- Isotopomeric analysis has been confirmed to be a powerful method to quantitatively differentiate between the three most important N₂O production routes, e.g. nitrifier denitrification, hydroxylamine (NH₂OH) oxidation pathway and heterotrophic denitrification in presence of low dissolved O₂ concentrations.
- Continuous N₂O off-gas analysis is considered a necessary stepping stone for overall carbon footprint minimization of wastewater treatment.
- Implementation of continuous N_2O off-gas analysis in full-scale has the potential to further improve nitritation-anammox process stability of supernatant treatment.

Main conclusions of the individual chapters

Lab-scale batch experiments with mixed microbial culture indicated that both, NH_2OH oxidation as well as NO_2^{-1} reduction contributed to N_2O production during NH_4^{+1} oxidation: the former was interpreted to be active at the beginning of the aeration phase, when NH_4^{+1} concentration was high, but NO_2^{-1} still low, while in the course of nitrification a shift to nitrifier denitrification driven N_2O production was observed (chapter 3). This trend is supported by N_2O isotopomeric analysis, a novel method in the field of biological wastewater treatment. These data confirm that under aerobic conditions, NO_2^{-1} reduction seemed to be the dominant N_2O production pathway. The contribution from NH_2OH oxidation, however, cannot be completely excluded, but is deemed of minor importance in our investigation (chapter 4). Moreover, N_2O isotope measurements on a pilot-scale treatment plant (SP close to 0 ‰), indicate that NO_2^{-1} reduction was dominant at dissolved oxygen concentrations higher than 1.5 mgO₂/l. An

increase in SP at low dissolved oxygen is attributed to heterotrophic denitrification activity, with a substantial N_2O reductase activity compared to N_2O production (chapter 5).

The effect of digester liquid addition, equivalent to a temporary increase of the nitrogen load, to a pilot-scale activated sludge plant showed that high N loads accelerated N_2O emission significantly, correlating positively with the NO_2^- build-up in the nitrifying activated sludge tanks (chapter 6). This underscores the assumption that an operating strategy at low dissolved NO_2^- (<2 mgN/l) contributes to keeping N_2O emissions at low levels.

The application of N_2O as a potential indirect measure for dissolved NO_2^- was the focus of chapter 7, where a nitritation-anammox reactor was operated at different aeration rates in order to experimentally operate at various degrees of NO_2^- accumulation. Latter is feasible due to the absence of nitrite oxidizing bacteria (NOBs), and anammox inhibition at elevated dissolved oxygen concentrations. Data indicate that the correlation between dissolved NO_2^- and the N_2O off-gas concentration seems to be biased by a (so far) unknown contribution from NH_2OH oxidation. In future investigations, the application of the isotopomeric analysis is promising to quantitatively differentiate between the two pathways. Nevertheless, the here presented results are judged to be prospective for further implementation in full-scale plants, and point to future directions incorporating continuous N_2O off-gas measurement in the process control (chapter 8).

The role of NO_2^- within N_2O production pathways

A main conclusion of this thesis is, that NO_2^{-1} reduction is a major N_2O production pathway in the investigated activated sludge systems. Consequently, low NO₂⁻ concentrations during aeration are expected to reduce overall N₂O emission. This is in line with several studies reporting a positive correlation between dissolved NO₂⁻ and N,O emission (e.g. Kampschreur et al., 2009a; Kampschreur et al., 2009b; Ahn et al., 2010; Foley et al., 2010). Moreover, data of this study also indicate that a shift from one dominating production route to another might occur over time within the same system, or that all of the known pathways are contributing simultaneously to total N₂O production, depending on operating and environmental conditions, respectively. This implies that critical operating parameters, optimally combined with isotopomer data, need to be considered when discussing N₂O emission dynamics, when testing N₂O reducing operating strategies or when applying mathematical models. The latter currently includes either NH₂OH oxidation or nitrifier denitrification, but not both at the same time due to parameter identifiability problems (e.g. Ni et al., 2011; Ni et al., 2012; Ni et al., 2013). Another important point to consider in upcoming studies is whether the correlation between NO₂⁻ and N₂O holds also for high NO₂⁻ concentrations, since this might have severe implications on nitritation systems (e.g. two-stage nitritation-anammox process), which are usually operated at high dissolved NO⁻ concentrations (see e.g. Law et al., 2013).

Adaptation of the biomass might influence N₂O production: Short-term vs. long-term effects

The present study is based on short-term effects, such as NH_4^+ or NO_2^- peak addition, on N_2O production, with activated sludge taken from a continuously operating pilot plant fed with municipal wastewater. Additionally, pilot-scale monitoring was conducted over several weeks, and continuous digester liquid dosing was performed over 9 days. An adaptive response, in terms of lower NO_2^- concentrations and lower N_2O emissions over the time, at simultaneously high N influent loads, was observed. This is in agreement with a recent publication, where daily NH_4^+ feed-pulses were conducted over 18 days, and 'stable' N_2O emissions were reached after about 8 days (Chandran et al., 2011). However, in another study it took about 80 days to stabilize N_2O emission after transition from full nitrification to nitritation (Ahn et al., 2011).

In this thesis, microbial long-term adaptation to changing conditions e.g. high N loads, high NO_2^{-1} concentrations, or low dissolved oxygen, was not systematically investigated. This is necessarily to be done in upcoming studies. The trend within the N₂O research community goes towards long-term on-line monitoring to measure and control N₂O emission levels, in order to better capture daily, weekly and seasonal N₂O emission dynamics (Daelman et al., 2013), as well as to improve aeration and load control minimizing N₂O emission. Therefore, upcoming long-term investigations, addressing this topic, are expected.

Implications for wastewater treatment plant operation

This study supports the current understanding, that NO_2^- reduction is the dominant N_2O production pathway in biological wastewater treatment (Colliver and Stephenson 2000). Moreover, it is hypothesized that process perturbations, such as sudden increases of NH_4^+ or NO_2^- or drops in dissolved oxygen (at high N influent loads), leads to immediate N_2O increases (Desloover et al., 2012; Law et al., 2012). In future, such N_2O responses upon process perturbations might be used as an early warning for process failure in full-scale plants, as already proposed by e.g. Butler et al. (2009), Colliver et al. (2002), or Burgess et al. (2002).

With respect to strategies minimizing N_2O emissions, it is concluded that biological wastewater treatment plants should be operated at low NH_4^+ and NO_2^- concentrations, which means (i) a high solid retention time and thus a large population with nitrifying activity to handle nitrogen-peak-loads, (ii) sufficient dissolved oxygen at high N influent loads in order to avoid incomplete nitrification and to keep NO_2^- low (<1 to 2 mgN/l), (iii) an extended denitrification preventing soluble oxygen (to avoid inhibition of the N_2O to N_2 reduction step) and operated with sufficient readily biodegradable organic carbon (to avoid competition for reducing equivalents among denitrifying enzymes), and (iv) that ammonia rich digester liquid should be dosed preferentially during low ammonia loads (equalization of load variations; adapted from Wunderlin et al., 2012). However, these recommendations have yet to be verified in full-scale plants.

Energetic optimization of wastewater treatment by reducing aeration (and O_2 input) is critical, especially during high N loads. Therefore, it is recommended to reduce oxygen set-point (or partly switching off) the aeration solely at low N load situations. Based on the current understanding, it is postulated that plants designed for a high degree of N removal and operated under stable conditions emit only low amounts of N₂O: high nitrogen removal and low N₂O emission rates are therefore not considered as opposing targets (Chandran et al., 2011; Law et al., 2012).

References

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology 44(12), 4505-4511.

Ahn, J. H., Kwan, T. and Chandran, K. (2011). Comparison of partial and full nitrification processes applied for treating high-strength nitrogen wastewaters: Microbial ecology through nitrous oxide production. Environmental Science and Technology 45(7), 2734-2740.

Burgess, J. E., Stuetz, R. M., Morton, S., Stephenson, T. (2002). Dinitrogen oxide detection for process failure early warning systems. Water Science and Technology, 45 (4-5), 247-254.

Butler, M. D., Wang, Y. Y., Cartmell, E. and Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research 43(5), 1265-1272.

Chandran, K., Stein, L. Y., Klotz, M. G. and Van Loosdrecht, M. C. M. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39(6), 1832-1837.

Colliver, B. B. and Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances 18(3), 219-232.

Colliver, B. B., Stuetz, R. M. and Stephenson, T. (2002). Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. Industrial Microbiology and Biotechnology 29(6), 309-313.

Daelman, M. R. J., De Baets, B., van Loosdrecht, M. C. M. and Volcke, E. I. P. (2013). Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Research 47(9), 3120-3130.

Desloover, J., Vlaeminck, S. E., Clauwaert, P., Verstraete, W. and Boon, N. (2012). Strategies to mitigate N_2O emissions from biological nitrogen removal systems. Current Opinion in Biotechnology, doi:10.1016/j.copbio.2011.12.030.

Foley, J., de Haas, D., Yuan, Z. and Lant, P. (2010). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research 44(3), 831-844.

Kampschreur, M. J., Poldermans, R., Kleerebezem, R., Van Der Star, W. R. L., Haarhuis, R., Abma, W. R., Jetten, M. S. M. and Van Loosdrecht, M. C. M. (2009a). Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. 60: 3211-3217.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009b). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Law, Y.; Lant, P.; Yuan, Z. (2013). The Confounding Effect of Nitrite on N₂O Production by an Enriched Ammonia-Oxidizing Culture. Environmental Science & Technology, 10.1021/es4009689.

Law, Y., Ye, L., Pan, Y. and Yuan, Z. (2012). Nitrous oxide emissions from wastewater treatment processes. Phil Trans R Soc B 367, 1265-1277.

Ni, B.-J.; Ye, L.; Law, Y.; Byers, C.; Yuan, Z. (2013). Mathematical Modeling of Nitrous Oxide (N_2O) Emissions from Full-Scale Wastewater Treatment Plants. Environmental Science & Technology, 10.1021/es4005398.

Ni, B.-J., Yuan, Z., Chandran, K., Vanrolleghem, P. A. and Murthy, S. (2012). Evaluating mathematical models for N₂O production by ammonia-oxidizing bacteria: Towards a unified model. Proceedings of the 3rd IWA/WEF Wastewater Treatment Modelling (WWTmod) Conference Mont-Sainte-Anne, Québec, Canada.

Ni, B. J., Ruscalleda, M., Pellicer-Nàcher, C. and Smets, B. F. (2011). Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: Extensions to the general ASM models. Environmental Science and Technology 45(18), 7768-7776.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Chapter 10

Outlook

The outlook chapter is structured as follows: first, the remaining open questions for future investigations are addressed, followed by a specific focus on future applications of N_2O isotopic analysis in combination with microbiological tools and mathematical modeling. This chapter is then completed with relevant aspects from a practical point of view, such as discussing the potential of implementing continuous N_2O off-gas analysis on full-scale plants, and how to provide incentives to reduce overall carbon footprint of wastewater treatment plants.

Further application of N₂O nitrogen isotopic signature in combination with pure culture studies and mathematical modeling: A need for an integrated approach

In this study, the N₂O nitrogen isotopic signatures of mixed cultures from a pilot-scale plant treating real municipal wastewater were compared to published pure-culture investigations where the active pathways are known. A mixed population system was chosen as a necessary compromise between pure culture and full-scale studies, since it more closely resembles a full-scale plant, as compared to pure culture investigations and most of the microorganisms are barely cultivable as pure cultures. Yet, at the same time, a lab or pilot scale system is more easily controllable compared to a full-scale treatment plant required to discharge according to legal constraints.

Nevertheless, pure culture investigations are considered an important approach complementing mixed culture studies determining N₂O production mechanisms, and is also relevant for novel pathway identification. For example, Schreiber et al. (2012) concluded that, combining the genomic/proteomic approach, as demonstrated by Yu et al. (2010), with isotopomeric analysis, as investigated in this thesis (chapter 4; Wunderlin et al., 2013), could be a promising future direction for characterizing the relationship between transcriptional response of the AOB *Nitrosomonas europaea* and N_2O production.

Isotopomeric analysis has been demonstrated to be powerful for quantitatively apportioning N₂O production from nitrifier denitrification, NH₂OH oxidation and heterotrophic denitrification, respectively, in mixed microbial activated sludge systems, especially when combined with parameters such as the concentrations of dissolved O₂, N species and COD (Wunderlin et al., 2013). Thus, combining this method with conventional N₂O emission monitoring, is expected to further improve overall process understanding. Moreover, using $\delta^{15}N^{bulk}_{N2O}$ as an additional quantitative measure, it is beneficial to further characterize the fractionation of the substrates depending on different microbial activity levels and operation conditions. Otherwise, the interpretation of the $\delta^{15}N^{bulk}_{N2O}$ signal obtained from mixed culture remains, beside SP, limited to a qualitative information of the relative importance of AOB and heterotrophic denitrification to N₂O production (for more details please see chapter 5; Wunderlin et al., in preparation).

Finally, improved process understanding needs to be incorporated into existing mathematical models, which is a powerful tool for better dealing with N_2O emission dynamics. Especially, including NH_2OH oxidation, nitrifier denitrification, as well as heterotrophic denitrification in a unified model would allow more general conclusions. Current mathematical models do not yet allow robust quantitative prediction of N_2O emission without local parameter calibration. This is interpreted as an indicator for the model structure not yet having reached a generally applicable form.

Implementation of continuous N₂O off-gas measurement in fullscale: A win-win situation for plant operators and the global climate

The dynamic N_2O emission pattern observed in this thesis and reported in literature, and its correlation with multiple factors, make it challenging to define general plant operating strategies for reducing N_2O emission. Therefore, it is concluded that the implementation of continuous on-line N_2O off-gas measurement at full-scale is favorable to achieve plant operation optimized with respect to its overall carbon footprint (comprehensive energy optimization strategies). On the long-term this might lead to sustainable operation strategies where online N_2O measurement is not required anymore (e.g. conservative operation for small-scale facilities).

Basically, N₂O production is related to process instabilities leading for example to incomplete nitrification. In this context, Butler et al. (2009) came up with the idea of using N₂O off-gas measurement as a tool for early warning of biological nitrification failure: for example, an increase in N₂O was detected in parallel to an increase in NO₂⁻, similar to our data. Moreover, for a single-stage nitritation-anammox process, NO₂⁻ accumulation induced by sudden activity loss could be easily detected online. Thus process monitoring via N₂O off-gas analysis is expected to improve overall process stability of ammonia oxidizing processes. However, up to now, this idea was not further pursued nor applied in full-scale treatment plants, which might also be due to the only recent development of affordable and low maintenance off-gas monitoring. It is therefore considered an important step to further develop a robust method enabling representative measurements (e.g. to adequately deal with the spatial N₂O emission variability; Ahn et al., 2010), with only low maintenance efforts required from the operator (Wunderlin et al., 2013).

Providing financial incentive for reducing N₂O emissions from biological wastewater treatment

Figure 1. Comparison of the earnings and the costs of the ' N_2O implementation approach' and three different emission reduction scenarios. One ton of reduced carbon dioxide equivalents ($CO_{2,equiv}$) is assumed to be equal to 100 (A) and 20 CHF (B), respectively.

The implementation of a continuous N_2O off-gas measurement is considered a helpful stepping stone to monitor and optimize full-scale plants (e.g. aeration energy efficiency) towards a high degree of nitrogen removal with minimal greenhouse gas emissions. Moreover, online N_2O measurement can be considered as carbon off-setting strategy, since total greenhouse gas emissions are aimed to be reduced. Therefore, a financial greenhouse gas crediting system, as proposed by Wang et al. (2011), could be

an additional incentive, beside improving process stability, to promote widespread adoption of a continuous N_2O off-gas monitoring concept. For example, N_2O analytical equipment could be financed over greenhouse gas certificates: then, an N_2O emission baseline scenario has to be defined first (as-is state), followed by the implementation of N_2O reduction strategies resulting in lower overall emissions compared to the baseline scenario (according to the Swiss CO_2 act, this reduction is called 'additionality'; http://www.bafu.admin.ch/klima/12325/index.html?lang=de, September 2013).

It is roughly estimated the 'N₂O implementation approach' might lead to total costs of about 6'625 CHF per year, including the analyzer, the hood for gas sampling, the implementation and starting-up, as well as the maintenance (Table 1). Moreover, it is assumed that wastewater treatment plants (WWTPs) smaller than 100'000 person equivalents (PE) require one N₂O monitoring set-up (6'625 CHF per year), WWTPs smaller than 200'000 PEs need two of them (13'250 CHF/a), and plants bigger than 300'000 PEs require three set-ups (19'875 CHF/a) or even more, in order to get representative measurements.

Table 1. Estimated costs of the ' N_2O implementation approach' per year. The investment costs of the N_2O analyzer is in the range of 40'000 CHF and has an estimated lifetime of 10 years (personnel communication with MBE AG, Wetzikon, Switzerland). Both, the hood for off-gas sampling as well as the costs for implementation and starting-up are estimated to 10'000 CHF each (amortized over 10 years).

Time horizon	5 years
Costs of analyzer	20'000 CHF
Costs of hood	5'000 CHF
Cost of implementation and starting-up	5'000 CHF
Cost of maintenance (0.5 h per week at 25 CHF)	3'125 CHF
Total estimated costs per year	6'625 CHF

Figure 1 compares the costs from Table 1 with the estimated earnings (resulting from the financial crediting system) of three exemplifying (conservative) N_2O reduction scenarios: an N_2O emission reduction of (i) 0.05 %, (ii) 0.3 %, and (iii) 0.7 % with respect to influent nitrogen (e.g. a reduction of 0.3 % means that N_2O emissions are reduced from 0.8 to 0.5 % of the influent nitrogen). Data show that an absolute reduction of 0.3 % leads to positive cash flows at a price of only 20 CHF per ton reduced $CO_{2,equiv}$ for plants bigger than 130'000 PEs (Figure 1 B). At a price of 100 CHF per ton $CO_{2,equiv}$ emission offset, however, an absolute reduction of 0.05 % already leads to positive cash flows for plants bigger than 170'000 PEs, while a reduction of 0.3 % is already cost efficient for WWTPs bigger than 20'000 PEs (Figure 1 A).

It is estimated that, with this approach, about 10'800 tons of $CO_{2,equiv}$ emissions can be offset per year, when only 1/3 of the Swiss wastewater is treated in plants equipped with online N₂O sensors, and resulting optimized operation is attributed to an absolute

emission reduction of about 0.3 % (there are probably additional emission savings due to a higher aeration efficiency, which is not considered in this calculation). Consequently, about 70'000 tons of $CO_{2,equiv}$ could be offset till 2020, which is about 1 % of the amount that has to be reduced by the Swiss mineral oil industry (in case they do not fulfill this target, they are obligated to pay a penalty of 160 CHF per ton $CO_{2,equiv}$ that has not been offset; www.klik.ch, September 2013). Even if this seems to be a small contribution, it still has to be considered potentially relevant, because Swiss offsetting projects are currently rare. For example, myclimate, one of the leading global provider of voluntary carbon offsetting solutions, presents just four Swiss offsetting projects on their webpage, reducing between 200 and 9'700 tons $CO_{2,equiv}$ over 7 to 10 years (http://www.myclimate.org/en/carbon-offset-projects/international-projects.html,

September 2013). Therefore, wastewater treatment plants might become an attractive partner in Switzerland for carbon offsetting projects in the near future and thus contributing substantially to a further sustainable development.

References

Ahn, J. H., Kim, S., Park, H., Katehis, D., Pagilla, K. and Chandran, K. (2010). Spatial and temporal variability in atmospheric nitrous oxide generation and emission from full-scale biological nitrogen removal and non-BNR processes. Water Environment Research 82(12), 2362-2372.

Butler, M. D., Wang, Y. Y., Cartmell, E. and Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research 43(5), 1265-1272.

Chandran, K., Stein, L. Y., Klotz, M. G. and Van Loosdrecht, M. C. M. (2011). Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochemical Society Transactions 39(6), 1832-1837.

Daelman, M. R. J., De Baets, B., van Loosdrecht, M. C. M. and Volcke, E. I. P. Influence of sampling strategies on the estimated nitrous oxide emission from wastewater treatment plants. Water Research, 10.1016/j.watres.2013.03.016.

Schreiber, F., Wunderlin, P., Udert, K. M. and Wells, G. F. (2012). Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies. Frontiers in Microbiology 3, 10.3389/fmicb.2012.00372.

Wang, J. S., Hamburg, S. P., Pryor, D. E., Chandran, K. and Daigger, G. T. (2011). Emissions credits: Opportunity to promote integrated nitrogen management in the wastewater sector. Environmental Science and Technology 45(15), 6239-6246.

Wunderlin, P., Lehmann, M. F., Siegrist, H., Tuzson, B., Joss, A., Emmenegger, L. and Mohn, J. (2013). Isotope signatures of N_2O in a mixed microbial population system:

Constraints on N_2O producing pathways in wastewater treatment. Environmental Science and Technology 47(3), 1339-1348.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (in preparation). Nitrogen isotopic signature of N_2O emitted from a pilot scale municipal wastewater treatment plant.

Wunderlin, P., Siegrist, H., Joss, A. (2013). Online N₂O Measurement: The Next Standard for Controlling Biological Ammonia Oxidation? Environmental Science & Technology, 47 (17), 9567-9568, 10.1021/es402971p.

Yu, R., Kampschreur, M. J., Loosdrecht, M. C. M. v. and Chandran, K. (2010). Mechanisms and specific directionality of autotrophic nitrous oxide and nitric oxide generation during transient anoxia. Environmental Science & Technology 44(4), 1313-1319.

Appendix A

N_2O emission of sludge incineration

Thesis chapter

Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H.

Abstract

Nitrous oxide (N_2O) is a strong greenhouse gas (GHG) and involved in the destruction of the stratospheric ozone layer. During sludge incineration, significant N_2O emissions may occur due to the high nitrogen content of sewage sludge.

Literature studies as well as data from two Swiss fluidized bed furnaces display lower N_2O emissions when operated at high freeboard temperature, compared to incinerators operated at lower temperatures. On the other side, literature studies indicate that NO_x production is influenced by the bed temperature, where high temperatures favor NO_x formation. Due to these opposing trends, it is important to note that focusing solely on N_2O reduction strategies, e.g. by increasing the freeboard temperature, might result in increasing NO_x emissions. New operating strategies have therefore to be tested at individual plants since N_2O and NO_x production and emissions are highly variable and plant-specific.

To lower NO_x emissions, fluidized bed furnaces can be equipped with a secondary DeNOx system (e.g. selectively non-catalytic reduction, SNCR) where NO_x is reduced to N₂ by injection of a reducing agent, such as ammonia or urea. On the other hand, the addition of nitrogen compounds (especially urea) encloses the risk of additional N₂O formation. During standard system operation, however, it is difficult to distinguish between N₂O produced during the primary incineration process (e.g. within the freeboard) and the secondary DeNOx system, respectively.

Sewage sludge incineration in waste to energy plants (WTE) may lead to additional N_2O emissions because of the relatively high nitrogen content within the sewage sludge. However, at low sewage sludge fraction, differentiation between N_2O from waste and sewage sludge incineration, respectively, is not feasible, and thus can only roughly be estimated.

 N_2O emission during sludge incineration in Swiss fluidized bed furnaces were in the range of 1.2 to 3.8 % with respect to the nitrogen content of sewage sludge. These emission levels indicate that N_2O production during sludge incineration is relevant, since being around one fifth of total GHG emissions of wastewater treatment, but not the most important source.

Zusammenfassung

Lachgas (N_2O) ist ein starkes Treibhausgas und hat einen wesentlichen Einfluss auf die Zerstörung der stratosphärischen Ozonschicht. Bei der Klärschlammverbrennung können relevante N_2O -Emissionen auftreten, da der Brennstoff einen relativ hohen Stickstoffanteil aufweist.

Verschiedene Literaturstudien, wie auch Messungen zwei Schweizer an Wirbelschichtöfen deuten darauf hin, dass bei hohen Brennraumtemperaturen die N₂O-Emissionen tiefer sind, als bei Anlagen, die bei geringeren Temperaturen betrieben werden. Auf der anderen Seite wird die NO_x-Bildung stark durch die Betttemperatur beeinflusst. So deuten Literaturstudien darauf hin, dass eine erhöhte Betttemperatur die NO_x-Bildung fördert. Vor diesem Hintergrund muss unbedingt beachtet werden, dass durch N,O-Reduktionsmassnahmen die NO_x-Emissionen nicht wesentlich erhöht werden. Da die N₂O- und NO_x-Bildung jedoch sehr variabel und anlagenspezifisch ist, müssen allgemeinformulierte Betriebsstrategien mit Vorsicht betrachtet, und im Einzelfall getestet werden.

Zur Senkung der NO_x Emissionen können Wirbelschichtöfen zur Klärschlammverbrennung mit einer sekundären Entstickungsanlage (meist selektive nicht-katalytische Reduktion, SNCR) ausgerüstet werden. Bei diesen Systemen kann es jedoch zu erhöhten N₂O Emissionen kommen, insbesondere bei der Verwendung von Harnstoff als Reduktionsmittel. Eine Unterscheidung der Emissionen aus dem primären Verbrennungsprozess und der sekundären Entstickungsstufe ist im regulären Anlagenbetrieb jedoch nicht möglich.

Bei Klärschlamm-Mitverbrennung in Kehrichtverbrennungsanlagen können auf Grund des N Gehaltes im Klärschlamm erhöhte N₂O Emissionen auftreten. Ist der Anteil des mitverbrannten Klärschlamms jedoch gering, so ist eine Unterscheidung der N₂O Emissionen aus Kehrrichtverbrennung bzw. Klärschlammverbrennung nicht bzw. nur näherungsweise möglich.

Die N₂O-Emissionen bei den untersuchten Schweizer Anlagen waren im Bereich von 1.2-3.8 % bezogen auf den im Schlamm enthaltenen Stickstoff. Der Vergleich mit anderen Treibhausgas-Quellen in der Abwasserreinigung zeigt, dass die Klärschlammverbrennung nicht den Hauptanteil der Emissionen ausmacht, mit einem Beitrag von rund einem Fünftel aber als relevant einzustufen ist.

Einleitung

Lachgas (N_2O) ist ein 300-mal stärkeres Treibhausgas als CO_2 (IPCC 2007). Anthropogene Aktivitäten haben seit der Industrialisierung einen Anstieg der N_2O Konzentration um etwa 20 % verursacht, nicht zuletzt auf Grund der langen Halbwertszeit in der Atmosphäre von 120 Jahren. Der N_2O Abbau findet primär in der Stratosphäre statt, wobei das dabei gebildete Zwischenprodukt, NO, den Ozonabbau massiv beschleunigt (Kramlich and Linak, 1994). Aus diesem Grund ist N_2O die bedeutendste anthropogen-emittierte ozonabbauende Substanz des 21. Jahrhunderts (Ravishankara et al., 2009).

Die globalen anthropogenen N₂O Emissionen machen schätzungsweise 8 % der Treibhausgasemissionen aus, wobei der Grossteil der Lachgasemissionen aus der Landwirtschaft stammt (intensive Bodenbewirtschaftung/Stickstoff-Düngung) (IPCC, 2007). Weitere Quellen sind industrielle Prozesse und stationäre Verbrennungsanlagen, deren Anteil an den globalen N₂O Emissionen zirka 5 % beträgt (Svoboda et al., 2006; Vitovec 1991a; Vitovec 1991b). Der Beitrag der biologischen Abwasserreinigung bezogen auf die gesamten anthropogenen N₂O Emissionen ist noch unklar (BAFU, 2011).

Im Rahmen des Forschungsprojekts ,N₂O Emissionen in der Abwasserreinigung: *Biologische Nährstoffelimination und Schlammverbrennung*⁴ werden die N₂O Emissionen und insbesondere deren Bildungsmechanismen in der biologischen Abwasserreinigung untersucht und kritische Betriebszustände identifiziert. Zudem sollen die N₂O Klärschlammverbrennung Emissionen der abgeschätzt werden, da Verbrennungsprozesse ebenfalls zur N₂O Bildung beitragen können. In einigen Literaturstudien wurde die Verbrennung von kommunalem Klärschlamm in Wirbelschichtfeuerungen bereits als bedeutende N₂O Quelle identifiziert, wobei der hohe Stickstoffgehalt des Brennstoffs und die tiefen Brennraumtemperaturen (verglichen mit einer konventionellen Feuerungsanlage) Gründe für die relativ hohen N₂O Emissionen zu sein scheinen (Vitovec 1991a; Vitovec 1991b; Korving et al., 2010; Sänger et al., 2001; Wether et al., 1999). Vor diesem Hintergrund soll die N₂O Bildung an zwei Schweizer Schlammverbrennungsanlagen exemplarisch untersucht werden.

Im Rahmen dieser Untersuchung wird anhand einer vertiefen Literaturstudie auf die Mechanismen der N₂O Bildung bei Verbrennungsprozessen eingegangen (siehe Kapitel ,Mechanismen der N₂O Bildung'). In Kapitel 2 (,Fallstudie Schweiz') werden die N₂O Emissionen an zwei Klärschlamm-Monoverbrennungen im Vollmassstab (Anlage A und B), sowie einer Kehrichtverbrennungsanlage mit Klärschlamm-Mitverbrennung (Anlage C) quantifiziert, sowie der Einfluss verschiedener Prozessparameter abgeschätzt.

Mechanismen der N₂O Bildung in der Schlammverbrennung

Lachgas wird bei der Klärschlammverbrennung in Wirbelschichtöfen hauptsächlich aus dem im Brennstoff enthaltenen Stickstoff gebildet (eine Reaktion von Luftstickstoff zu N_2O ist bei Temperaturen <1000°C nicht zu erwarten). Die Verbrennung von Klärschlamm hat ein hohes N_2O -Bildungspotential, da der Stickstoff-Anteil im

Klärschlamm relativ hoch ist (40-60 g/kg Trockensubstanz; Korving et al., 2010). Ein Blick in die Literatur zeigt, dass N₂O einerseits durch Reaktionen in der Gasphase (homogener Mechanismus), aber auch durch oberflächen-katalysierte Prozesse (heterogener Mechanismus) gebildet werden kann (Vitovec 1991a; Vitovec 1991b).

Abbildung 1. Übersicht über mögliche N₂O Bildungsmechanismen bei der Schlammverbrennung in Wirbelschichtöfen (nach Korving et al., 2010).

Abbildung 1 gibt eine Übersicht über mögliche N₂O-Bildungmechanismen. Die im Klärschlamm enthaltenen Stickstoffverbindungen (liegt in Biomasse hauptsächlich als Amin-Struktur vor) werden durch Verdampfung in die Gasphase freigesetzt, und anschliessend zu HCN und NH₃ umgesetzt (Vitovec 1991a; Vitovec 1991b). Nach aktuellem Stand des Wissens wird vor allem HCN als zentrale Substanz für die N₂O Bildung betrachtet. So hat Kramlich et al. (1989) gezeigt, dass durch eine externe Zugabe von HCN die N₂O Bildung signifikant erhöht wurde, weniger stark aber durch die Zugabe von NH₃.

Neben der N₂O Bildung ist auch der N₂O-Abbau ein wichtiger Prozess in der Gasphase, wobei hauptsächlich H-, O- oder OH-Radikale beteiligt sind. H-Radikale zerstören N₂O in einer sehr schnellen Reaktion, OH-Radikale reagieren etwas langsamer. Gemäss Literatur sind H-Radikale dominierend unter brennstoffreichen Bedingungen (tiefes Luft/Brennstoff-Verhältnis, siehe weiter unten), wohingegen O- und OH-Radikale bei Sauerstoffüberschuss (hohes Luft/Brennstoff-Verhältnis) den Hauptanteil ausmachen (Vitovec 1991a; Vitovec 1991b). Grundsätzlich gilt aber, dass hohe Brennraumtemperaturen die Bildung der N₂O-abbauenden Radikale begünstigen (bei Temperaturen über 1000°C ist der N₂O-Abbau vorherrschend; Vitovec 1991a; Vitovec 1991b). Zudem wird durch hohe Temperaturen auch ein weiterer Abbauprozess gefördert, die sogenannte thermische Dissoziation, worauf hier aber nicht weiter eingegangen wird.

Neben den Reaktionen in der Gasphase können in Wirbelschichtfeuerungen aber auch Reaktionen an Oberflächen (heterogener Mechanismus) eine wichtige Rolle spielen: zum Beispiel kann Flugasche den N₂O-Abbau katalysieren, wie in Abbildung 1 dargestellt. Grundsätzlich sind diese Prozesse aber noch wenig verstanden, und Gegenstand aktueller Forschung (Vitovec 1991a; Vitovec 1991b).

Wirbelschichtfeuerung und N₂O Emissionen

Wirbelschichtfeuerungen werden grundsätzlich bei tieferen Brenntemperaturen betrieben als andere stationäre Feuerungsanlagen (z.B. KVAs, Holzfeuerungen), welche überwiegend geringe N_2O Emissionen aufweisen (Vitovec 1991a; Vitovec 1991b). Diese tieferen Brennraumtemperaturen begünstigen einerseits geringe NO_x -Emissionen, was ein Vorteil der Wirbelschichtfeuerung darstellt, wirkt sich aber andererseits, neben den hohen Stickstoffgehalten im Brennstoff, negativ auf die N_2O -Bildung aus (siehe weiter unten).

In Abbildung 2 ist der Querschnitt eines Etagen-Wirbelschichtofens dargestellt: es wird unterschieden zwischen Wirbelbett und Brennraum, dem sogenannten ,Freeboard'. Häufig wird die Schlammentwässerung direkt über dem Brennraum durchgeführt, wozu die aus dem Brennraum aufsteigende Wärme genutzt werden kann. Das Bett weist tendenziell tiefere Temperaturen auf als die Brennkammer, um einerseits eine ,Bettschmelze' zu verhindern, und andererseits die Bildung von NO_x zu minimieren (Dräger und Vosteen, 2004).

Abbildung 2. Aufbau eines Etagen-Wirbelschichtofens. Es wird unterschieden zwischen Wirbelbett und Brennraum (Freeboard). In dem gezeigten Etagen-Wirbelschichtofen wird der Schlamm direkt über dem Brennraum getrocknet, und mittels Wurfbeschickung durch den Brennraum in das Wirbelbett gegeben (Bild aus Prozessleitsystem der Anlage B).

Gemäss zwischen Korving al. (2010) besteht eine Korrelation der et Brennraumtemperatur und der N₂O-Bildung (Abbildung 3 links), insbesondere wenn die Temperatur knapp über dem Sand-Bett gemessen wird (Vitovec 1991a; Vitovec 1991b). So wurde gezeigt, dass eine tiefe Brennraumtemperatur (um 880°C) relativ hohe N₂O Emissionen begünstigt, während durch eine Temperaturerhöhung auf 930°C die Emissionen um rund 70% gesenkt werden konnten. Dieser Trend wird durch N,O-Emissionsdaten anderer Klärschlammverbrennungsanlage bestätigt (z.B. Keller, 2010;
Sänger et al. 2001); in einer japanischen Anlage konnten die Emissionen durch eine Erhöhung der Brennraumtemperatur von 800 auf 850°C um rund 70% gesenkt werden (Abbildung 3 rechts). Die Autoren nehmen an, dass tiefe O_2 -Konzentrationen, eingestellt über ein tiefes Luft/Brennstoff-Verhältnis, einerseits zu höheren Brennraumtemperaturen führen (da auf Grund des geringeren Luftdurchsatzes der Brennraum weniger stark abgekühlt wird) und andererseits die H-Radikal-Bildung fördert, was sich positiv auf einen schnellen N₂O-Abbau auswirkt (Abbildung 3 links; und siehe weiter oben). In anderen Untersuchungen wurde jedoch kein Zusammenhang zwischen Sauerstoffgehalt im Abgas und N₂O Bildung beobachtet (Sänger et al. 2001).

Tiefe Betttemperaturen scheinen einen geringeren Einfluss auf die N₂O-Bildung zu haben (Abbildung 4 links), jedoch, ähnlich wie im Brennraum, mit einer Tendenz zu abnehmenden Emissionen bei höheren Temperaturen. Zudem ist ersichtlich, dass ein höheres Luft-/Brennstoff-Verhältnis zu tendenziell höheren Emissionen führt.

Ein stärker ausgeprägter Einfluss hat die Betttemperatur aber auf die NO_x -Bildung: Abbildung 4 rechts zeigt, dass bei höherer Betttemperatur die NO_x -Emissionen ansteigen.

Aus diesen Untersuchungen geht hervor, dass (i) in Betriebsstrategien zur Reduktion der Lachgas-Emissionen ebenfalls die NO_x -Bildung berücksichtigt werden muss, und (ii) eine Erhöhung der Brennraumtemperatur möglichst bei konstant (tief) bleibender Betttemperatur erfolgen soll.

Abbildung 3. Links: Einfluss der Brennraumtemperatur auf die N_2O Emissionen: höhere Temperaturen im Brennraum reduzieren die N_2O Emissionen. Die Prozentangaben im Kasten entsprechen den O_2 -Konzentrationen im (feuchten) Rauchgas: tiefe O_2 Konzentrationen resultieren aus einem geringen Luft/Brennstoff-Verhältnis, welches auch zu hohen Brennraumtemperaturen führt (Quelle: Korving et al., 2010). Rechts: Daten aus Japan zeigen eine starke Brennraumtemperatur-Abhängigkeit der N_2O -Emissionen: eine Erhöhung der Temperatur reduziert die Emissionen signifikant (Keller, 2010).

Abbildung 4. Links: Einfluss der Betttemperatur auf die N₂O Emissionen: eine höhere Betttemperatur führt tendenziell zu geringeren N₂O Emissionen. Die Prozentangaben im Kasten entsprechen den O₂-Konzentrationen im (feuchten) Rauchgas, wobei tiefe O₂ Konzentrationen aus einem geringen Luft/Brennstoff-Verhältnis resultieren, was ebenfalls zu höheren Brennraumtemperaturen führt (Quelle: Korving et al., 2010). Rechts: Einfluss der Betttemperatur auf die NO_x Emissionen, welche bei höheren Betttemperaturen ansteigen. Eine Veränderung des Luft/Brennstoff-Verhältnisses bzw. der O₂ Konzentration im (feuchten) Rauchgas hat nur einen geringen Einfluss auf die NO_x Emissionen. Die Betttemperatur wurde über den Schlammvortrocknungsgrad sowie die Temperatur der zugegebenen Luft reguliert (Quellen: Korving et al., 2010).

N₂O Emissionen der Klärschlamm-Mitverbrennung in Kehrichtverbrennungsanlagen (KVAs) und Effekte der Entstickung

Die beiden am häufigsten eingesetzten sekundären Entstickungs-Verfahren in Verbrennungsanlagen sind (i) die selektive katalytische Reduktion (SCR), und (ii) die selektive nicht-katalytische Reduktion (SNCR). Bei beiden Verfahren werden NO_{x^-} Verbindungen mit NH_3 oder Harnstoff zu N_2 und H_2O umgesetzt.

Beim SCR-Verfahren wird gasförmiger Ammoniak oder eine wässrige Ammoniak-Lösung verwendet, üblicherweise in einem Temperaturbereich zwischen 270 und 450°C. Messungen an österreichischen Anlagen haben gezeigt, dass die SCR-Verfahren eine vernachlässigbare Wirkung auf die N₂O Emissionen haben (Vitovec 1991a; Vitovec 1991b).

Beim SNCR-Verfahren wird häufig Ammoniak oder Harnstoff in den 850 bis 1000°C heissen Brennraum dosiert. Hierbei treten vor allem bei der Verwendung von Harnstoff höhere N₂O-Zusatzemissionen auf, da davon auszugehen ist, dass Harnstoff zu HNCO, einer wichtigen N₂O-Vorgängersubstanz zersetzt wird. Die N₂O Emissionen nehmen dabei linear mit der Menge des zugegebenen Reduktionsmittels zu, wobei die Höhe der Emissionen anlagenspezifisch ist und daher sehr unterschiedlich sein kann (Vitovec 1991a; Vitovec 1991b).

Fazit N₂O Bildung

Die Lachgas-Bildung bei der Klärschlammverbrennung in Wirbelschichtfeuerungen wird hauptsächlich durch den hohen Stickstoffgehalt im Brennstoff und die tiefen

Verbrennungstemperaturen verursacht. Neben der Bildung haben aber auch N₂O abbauende Reaktionen einen Einfluss auf die N₂O Emissionen.

Gemäss Literaturangaben begünstigen tiefe Brennraumtemperatur die N₂O Bildung. Im Weiteren wurde beschrieben, dass der Einsatz einer sekundären Entstickungsstufe (SCR) nicht per se einen Einfluss auf die N₂O-Bildung haben muss, wobei insbesondere die Verwendung von Ammoniak als wenig problematisch einzustufen ist. Hingegen können bei der Eindüsung von Harnstoff als Reduktionsmittel in den Brennraum (SNCR), erhöhte Emissionen auftreten, welche möglicherweise durch die Bildung von HNCO, eine Vorläufersubstanz von N₂O, aus Harnstoff verursacht werden.

Es gilt festzuhalten, dass bei Schlammverbrennungsanlagen die N₂O-Emissionen stark variieren können, da verschiedene Faktoren, wie Brennstoffzusammensetzung, Feuchte (Entwässerungsgrad), Art der Schlammentwässerung oder Betrieb des Ofens (insbesondere Temperatur) zeitlichen Schwankungen unterworfen sind.

Im folgenden Kapitel wird (i) die Auswirkung der Bett- und Brennraumtemperatur auf die N₂O-/NO_x-Emissionen von zwei Klärschlamm-Monoverbrennungsanlagen (A und B) betrachtet, und (ii) die Effekte einer sekundären Entstickungsanlage (DeNOx) einer KVA untersucht (C).

Fallstudien Schweiz

Von Schweizer Klärschlammverbrennungsanlagen liegen noch keine systematisch erhobenen Daten vor. Das Handbuch Emissionsfaktoren für stationäre Quellen des BAFU geht aber von vergleichbaren N₂O Emission wie bei KVAs aus (Bafu, 2000). Im Folgenden werden die Emissionen von zwei grosstechnischen Klärschlamm-Monoverbrennungsanlagen (Anlage A und B) und einer Kehrichtverbrennungsanlage mit Klärschlamm-Mitverbrennung (Anlage C) präsentiert. Insbesondere wird die Auswirkung der Brennraumtemperatur beim Wirbelschichtofen (Anlage A und B), sowie die Wirkung eines DeNOx Systems (SCR-Verfahren mit NH₃-Eindüsung) auf die N₂O-Emissionen einer KVA diskutiert (Anlage C).

Anlage A ist ein Wirbelschichtofen, in dem rund 40'000 Tonnen Klärschlamm pro Jahr (entspricht 280'000 Einwohnergleichwerten), mit einem mittleren Trockenmaterialgehalt (TS) von 25% verbrannt werden. Dies ergibt rund 9'000 Tonnen TS pro Jahr. Die Anlage wird bei einer Brennraumtemperatur von rund 850°C betrieben und die NO_x Emissionen werden mittels SNCR Verfahren, durch Zudosierung des Klärschlammfiltrats, reduziert (Angaben des Anlagenbetreibers).

Anlage B verfügt über drei Etagen-Wirbelschichtöfen mit einer Nachbrennkammer, einer Wärmerückgewinnung und einer Entstickungsanlage (SNCR Verfahren mit Ammoniak Zugabe). Die Brennraumtemperatur liegt im Mittel bei rund 800°C. Es werden durchschnittlich etwa 9'600 Tonnen Trockenmaterial pro Jahr verwertet (8'500 Tonnen eigener und zirka 1'100 Tonnen fremder Klärschlamm; 25-26% TS-Anteil im entwässerten Klärschlamm; gemäss Angaben des Anlagenbetreibers). **Anlage C** ist eine Kehrrichtverbrennungsanlage mit einem Durchsatz während der Messkampagne von rund 99 bis 103 Tonnen Müll pro Tag und etwa 4.7 Tonnen Klärschlamm (TS) pro Tag. Der Klärschlammanteil, auf TS-Basis, liegt somit bei rund 5%. Der mittlere Trockensubstanzanteil lag bei 29%, und die Brennraumtemperatur zwischen 830 und 870°C (Lödel und Sköries, 2012).

Im Folgenden werden die gemessenen N,O-Emissionen in Abhängigkeit der Einflussparameter Betttemperatur, wie der Brennraum-, und der O₂-Ammoniak-Eindüsung N₂O-Abgaskonzentration sowie der diskutiert. Die Tabelle 2 präsentiert Emissionsfaktoren werden in und im Kapitel ,N,O Emissionsfaktoren der untersuchten Anlagen' diskutiert.

Anlage A

Entsprechend Abbildung 5 links ist ein linearer Zusammenhang zwischen den N_2O -Emissionen und der Brennraumtemperatur zu beobachten. Es ist erkennbar, dass die Emissionen bei einer Erhöhung der Temperatur von 800 auf 870°C signifikant tiefer sind. Diese Abnahme ist in Übereinstimmung mit verschiedenen Literaturangaben, in denen ein wesentlicher Einfluss der Brennraumtemperatur auf die N_2O Emissionen diskutiert wird (siehe Einleitung; Vitovec 1991a, Vitovec 199b, Korving et al., 2010).

Abbildung 5. Links: Abhängigkeit der N₂O-Emissionen von der Brennraumtemperatur: eine höhere Brennraumtemperatur führt zu tieferen N₂O-Emissionen. Rechts: Abhängigkeit der N₂O-Emissionen von der O₂-Konzentration im Reingas: bei höherer O₂-Konzentrationen sind die N₂O-Emissionen ebenfalls höher; jedoch wurde das Rauchgas vor der Messung mit Umgebungsluft abgekühlt (und somit verdünnt). Die Messungen wurden im Zeitraum vom 1.2.2012 bis 29.2.2012 durchgeführt (gezeigt sind die Stundenmittelwerte).

Ausserdem ist ein Zusammenhang zwischen den N₂O-Emissionen und der Sauerstoff-Konzentration im Reingas zu beobachten (Abbildung 5). Es fällt auf, dass mit zunehmender O₂-Konzentration die N₂O-Emissionen ansteigen. Auch dieser Trend ist in Übereinstimmung mit anderen Untersuchungen: z.B. wurde durch Korving et al. (2010) gezeigt, dass bei einem Anteil von 6% O₂ die N₂O Emissionen signifikant höher sind als bei einem Anteil von 4% (siehe auch Abbildung 3 links). Dieser Zusammenhang ist jedoch vermutlich nicht nur auf die O₂-Konzentration zurückzuführen, da parallel auch eine Veränderung der Brennraumtemperatur aufgetreten ist. Vitovec (1991a) erwähnt in seinem Bericht über ,Pyrogene N₂O Emissionen', dass die N₂O-Emissionen mit zunehmendem Luftüberschuss aber gleichbleibender Temperatur ansteigen, und begründet dies mit einem langsameren radikal-bedingten N₂O-Abbau bei O₂-Überschuss, verglichen mit O₂-limitierenden Bedingungen. Es muss hier allerdings angemerkt werden, dass die in Abbildung 5 rechts dargestellten O₂ Konzentrationen im Reingas nach vorheriger Verdünnung mit Umgebungsluft gemessen wurden. Diese Verdünnung wird durchgeführt, um das Gas vor dem Eintritt in den Abgaswäscher abzukühlen. Aus diesem Grund sind die Sauerstoff-Konzentrationen deutlich höher als beispielsweise bei Anlage B, dargestellt in Abbildung 7.

Anlage B

In Abbildung 6 links ist der Zusammenhang zwischen der Brennraumtemperatur und den N₂O- und NO_x-Emissionen der Anlage B dargestellt. Analog zu Anlage A wird auch auf Anlage B bei höherer Brennraumtemperatur tendenziell weniger N₂O emittiert. Ein ähnlicher Zusammenhang ist auch für die beiden anderen Öfen der Anlage B 67 und 86 zu beobachten (siehe Abbildungen A1 und A3 im Anhang). Zwischen der Wirbelbetttemperatur und den N₂O-Emissionen ist ebenfalls ein leicht negativer Trend zu erkennen (Abbildung 6 rechts), was ebenfalls in Übereinstimmung ist mit Literaturwerten (vgl. Abbildung 4 links).

Die NO_x Emissionen bleiben bis zu einer Brennraumtemperaturen von etwa 850°C relativ konstant; zwischen 850 und 900°C steigen sie leicht an. Die konstant tiefen Emissionen sind jedoch vermutlich auf eine effiziente sekundäre Entstickung (SNCR mit Ammoniak Zugabe) zurückzuführen. Ein Anlagenbetrieb bei höheren Brennraum- und Betttemperaturen sowie nachgeschaltetem SNCR Katalysator ist somit ohne signifikant höhere NO_x Emissionen möglich.

Abbildung 6. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 66 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der Brennraumtemperatur; Rechts: in Abhängigkeit der Wirbelbetttemperatur. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Die vorliegenden Daten in Abbildung 7 links zeigen, dass bei Anlage B die Sauerstoff-Konzentration keinen direkten Einfluss auf die N₂O-Bildung zu haben scheint (auch bei der Betrachtung von kürzeren Zeitintervallen). Dies ist im Gegensatz zu Anlage A und auch einigen Literaturangaben (z.B. Korving et al., 2010), wobei andere Untersuchungen ein gegensätzliches Bild zeigen (z.B. Sänger et al. 2001). Anhand der vorliegenden Daten ist es leider nicht möglich, zu beurteilen, warum dieser Zusammenhang nicht bei allen Anlagen beobachtet werden kann. Dies zeigt, dass die N_2O Emissionen in der Schlammverbrennung zu einem gewissen Grad anlagenspezifisch sein können, und allgemeinformulierte Betriebsstrategien (und beeinflussende Parameter) im Einzelfall getestet werden müssen.

In Abbildung 7 rechts ist zu sehen, dass eine höhere Ammoniak-Dosierung tendenziell zu tieferen N₂O Emissionen führt (wobei die NO_x Emissionen nicht weiter reduziert werden konnten). Dies entspricht grundsätzlich nicht den Erwartungen erhöhter N₂O Emissionen bedingt durch eine Steigerung der Ammoniakzugabe (siehe Kapitel 1.3). Eine mögliche Erklärung könnte sein, dass bei einer höheren Brennraumtemperatur nicht nur weniger N₂O gebildet wird (Abbildung 6 links), sondern auf Grund einer erhöhten NO_x-Bildung auch mehr Ammoniak dosiert werden muss. Folglich würde kein direkter Zusammenhang zwischen der Ammoniak-Dosierung und den N₂O Emissionen bestehen.

Abbildung 7. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 66 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der O_2 -Konzentration; Rechts: in Abhängigkeit von der Ammoniak-Dosierung. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Anlage C

Bei einer Kehrrichtverbrennungsanlage wurden die N₂O Emissionen bei Mitverbrennung von Klärschlamm sowie der Einfluss eines SCR Katalysators mit NH_{3^-} Eindüsung auf die N₂O-Bildung an zwei aufeinander folgenden Messtagen untersucht. Hierfür wurden nacheinander Messungen an den beiden Ofenlinien vor dem Katalysator und im vereinigten Abgas nach dem Katalysator durchgeführt. Zudem wurden die N₂O-Emissionen mit und ohne Mitverbrennung von Klärschlamm verglichen.

In Tabelle 1 ist ersichtlich, dass die N₂O-Konzentrationen vor dem Katalysator tendenziell höher sind wenn Klärschlamm mitverbrannt wird (2.1-4.3 mgN₂O/Nm³), verglichen mit dem Betriebszustand ,ohne Klärschlamm' (1.5-2.1 mgN₂O/m³), was möglicherweise auf einen höheren Stickstoffanteil im Brennstoff mit Klärschlamm zurückzuführen ist. Nach dem Katalysator wurden sowohl mit als auch ohne

Klärschlamm vergleichbare Werte von 2.1-3.9 mgN₂O/Nm³ gemessen. Damit kann kein wesentlicher Einfluss des Katalysators, auf die N₂O-Emissionen nachgewiesen werden. Dies ist in Übereinstimmung mit Literaturwerten (Vitovec 1991a; Vitovec 1991b)

Tabelle 1. N₂O Messungen einer KVA mit und ohne Klärschlamm-Beimischung vor und nach dem SCR Katalysator. Bei der Klärschlamm-Mitverbrennung wurden dem Müll rund 5% (TS-Anteil) Klärschlamm beigemischt. Die Daten wurden am 11./12.4.2012 erhoben, mittels mehreren jeweils über eine Stunde dauernden Messungen (Lödel und Sköries, 2012).

Messort	N ₂ O- Konzentrationen [*]	N ₂ O Massenstrom**	Betriebszustand			
	$[mg-N_2O/m^3]$	[kg-N ₂ O/h]				
Vor Kat., Linie 1	3.5-4.3	0.107-0.134	mit Klärschlamm			
Vor Kat., Linie 2	2.1-4.3	0.054-0.111	mit Klärschlamm			
Nach Kat., Linie 1 &2	2.1-2.3	0.11-0.12	mit Klärschlamm			
Vor Kat., Linie 1	1.8-2.1	0.056-0.067	ohne Klärschlamm			
Vor Kat., Linie 2	<1.5-1.5	0.044	ohne Klärschlamm			
Nach Kat., Linie 1 &2	2.3-3.9	0.132-0.228	ohne Klärschlamm			
* bezogen auf 11 Vol% O ₂ , trocken, 273K, 1013hPa						
** trocken, 273K, 1013hPa						

N₂O Emissionsfaktoren der untersuchten Anlagen

Die Untersuchungen an den Schweizer Anlagen haben gezeigt, dass die N₂O-Emissionen der Klärschlamm-Monoverbrennung (Anlage A und B) gegenüber anderen Verbrennungsanlagen deutlich erhöht und bezüglich ihres Anteils an den Treibhausgasemissionen der Abwasserreinigung relevant sind (Tabelle 2). Die N₂O Emissionen einer KVA mit Klärschlamm-Mitverbrennung sind nicht signifikant höher als ohne Klärschlamm-Mitverbrennung (Tabelle 1). Im Weitern zeigt Tabelle 2, dass die Emissionen sehr variabel und anlagenspezifisch sind (Emissionsfaktoren im Bereich von 1.2-3.8 % bezogen auf den verbrannten Stickstoff). Dies verdeutlicht, dass allgemeinformulierte Betriebsstrategien mit Vorsicht zu betrachten sind, und im Einzelfall getestet werden müssen.

Bei den untersuchten Klärschlamm-Monoverbrennungsanlagen lagen die durchschnittlichen Brennraumtemperaturen im Bereich von 750 bis 870°C. Durch eine Vermeidung tiefer Brennraumtemperaturen konnten die N₂O Emissionen nachhaltig gesenkt werden. Zudem könnte durch ein tieferes Luft/Brennstoff-Verhältnis die Betttemperatur auf einem für die NO_x-Bildung optimalen tieferen Niveau gehalten werden. Eine O₂-Limitierung, ebenfalls bedingt durch ein tiefes Luft/Brennstoff-Verhältnis, könnte zusätzlich die effiziente, für den N₂O-Abbau wichtige Radikal-Bildung fördern. Inwieweit diese Massnahmen aus anlagentechnischer Sicht umsetzbar sind müsste abgeklärt werden.

		Anlage A Anlage B Klärschlammmono- verbrennung		Anlage C	
				Kehrichtverbrennung	
		(mit KS)	(mit KS)	(mit KS; vor Kat)	(mit KS, nach Kat)
Brennraum- temperatur	[°C]	795-865	750-870	835-861	835-861
N ₂ O Emissionen	[mgN ₂ O/Nm ³]	420 ⁽¹⁾	153-199 ⁽¹⁾	2.1-4.3 ⁽¹⁾	2.1-2.3 ⁽¹⁾
	[mgN ₂ O-N/Nm ³]	267 ⁽¹⁾	97 - 127 ⁽¹⁾	1.3-2.7 ⁽¹⁾	1.3-1.5 ⁽¹⁾
O ₂ Abgas	[%]	13 ⁽²⁾	8.8	8.1-10.3	7.7-8.0
Anteil TS	[%]	30	26	29 .1 ⁽⁵⁾	29.1 ⁽⁵⁾
TS-Umsatz Luftvolumen- strom	[tTS/h]	1.1	1.1	0.057 ^(3,5)	0.057 ^(3,5)
	[Nm ³ /h]	7852	7360	20100-27400	47900 ⁽⁴⁾
	[Nm ³ /tTS]	7138	6691	-	-
N-Umsatz (N- Gehalt ~5%)	[kgN/h]	55	58	2.96 ⁽⁵⁾	2.96 ⁽⁵⁾
N ₂ O Massen- strom	[kgN ₂ O/h]	3.3 ⁽¹⁾	1.1-1.5 ⁽¹⁾	0.054-0.134	0.11-0.12
	[kgN ₂ O-N/h]	2.1 ⁽¹⁾	0.7-1.0 ⁽¹⁾	0.034-0.085	0.07-0.076
N ₂ O Emissionen	[%]	3.8	1.2-1.7	k.A. ⁽⁶⁾	k.A. ⁽⁶⁾

Tahalla > NO	Emissions Eaktoron	dar drai untarsuchtan	Vorbronnungsanlagon
1000000000000000000000000000000000000	LIIIISSIOIIS-I UKLUIEII	uer urer untersuchten	verbrennungsunnugen.

⁽¹⁾ bezogen auf 11 Vol.-% O₂, trocken, 273K, 1013hPa

⁽²⁾ vor Messstelle verdünnt mit Umgebungsluft

⁽³⁾ betrifft Klärschlamm (~4.7 t/d), zusätzlich wurde 98.91 (Linie 1) bzw. 99.35 (Linie 2) t/d Müll verbrannt

⁽⁴⁾ Abluft Linie 1 und 2

⁽⁵⁾ N-Umsatz bezieht sich lediglich auf den im Klärschlamm enthaltene Stickstoff

 $^{(6)}$ keine Angabe möglich, da der Anteil der N₂O Emissionen aus der Klärschlammverbrennung nicht berechnet werden kann.

KS: Klärschlamm; Kat: Katalysator/sekundäre Entstickung

Relevanz der N₂O Emissionen der Klärschlammverbrennung

Die Lachgasemissionen in der Schlammverbrennung müssen in Relation zur Treibhausgase-Freisetzung bei der eigentlichen Abwasserreinigung (ARA) gesetzt werden. Abbildung 8 gibt einen Überblick der abgeschätzten Emissionswerte und deren Anteile an den Gesamtemissionen. Mit dieser Gegenüberstellung soll insbesondere die Relevanz der N₂O Emissionen der Schlammverbrennung verdeutlicht werden.

Methan (CH₄) Emissionen stammen hauptsächlich aus den Abwasserkanälen. Der geschätzte Anteil liegt im Bereich von 5% bezogen auf die Kohlenstoff (CSB)-Fracht im Abwasser, wobei angenommen wird, dass die übrigen Emissionen aus der Faulung stammen. Insgesamt schätzen wir die CH₄ Emissionen auf knapp einen Drittel (30 gCO_{2,äquiv}/EW*Tag) der totalen Treibhausgasemissionen in der Abwasserreinigung (die

Autoren gehen davon aus, dass in der Schweiz somit insgesamt etwa 10% der CSB-Fracht als CH_4 emittiert wird).

Lachgas kann ebenfalls in der biologischen Reinigungsstufe gebildet werden, hauptsächlich durch mikrobiologische Prozesse wie die Nitrifikation und die Denitrifikation: die Emissionen sind vor allem abhängig von der Stickstoffbelastung, und daher sehr dynamisch und anlagenspezifisch. Verschiedenste Untersuchungen zeigen, dass die N₂O Freisetzung durchaus im Bereich von 0.5 % bezogen auf den Stickstoffumsatz liegen kann (Wunderlin et al., 2013). Das Treibhauspotential dieser N₂O Emissionen ist in einer vergleichbaren Grössenordnung wie dasjenige des Energieverbrauchs für die Belüftung der biologischen Abwasserreinigung (24 gCO_{2,äquiv}/EW*Tag verglichen mit 40 gCO_{2,äquiv}/EW*Tag aus der Belüftungsenergie).

Das Treibhauspotential der N₂O Emissionen der Schlammverbrennung kann rund 20% total Treibhausgasemissionen Abwasserreinigung der der betragen (20 gCO_{2,äquiv}/EW*Tag; Abbildung Dieser Vergleich zeigt, dass die 8). Treibhausgasemissionen der Klärschlammverbrennung nicht den Hauptanteil des Treibhauspotentials der Abwasserreinigung ausmacht, mit einem Beitrag von rund einem Fünftel aber als relevant einzustufen ist.

Abbildung 8. Treibhausgasemissionen in der Abwasserreinigung: Methan wird hauptsächlich im Kanal gebildet und im Kläranlagenzulaufbereich in die Atmosphäre abgegeben (CH_4 Emissionen aus der Faulung sind ebenfalls realistisch), N_2O kann sowohl in der biologischen Reinigungsstufe und der Klärschlammverbrennung produziert werden (aus Wunderlin et al., 2013).

Schlussfolgerungen und Empfehlungen

Im Rahmen dieser Untersuchung wurden anhand einer vertiefen Literaturstudie die Mechanismen der N₂O Bildung bei Verbrennungsprozessen diskutiert. Ausserdem wurden N₂O Emissionsdaten von zwei Schweizer Klärschlamm-Monoverbrennungen im Vollmassstab (Anlage A und B), sowie punktuelle Messungen an einer Schweizer

Kehrichtverbrennungsanlage, mit Klärschlamm-Mitverbrennung (Anlage C) ausgewertet und der Einfluss relevanter Faktoren betrachtet.

Die Messungen haben ergeben, dass bei der Klärschlamm-Monoverbrennung eine Korrelation zwischen der Brennraumtemperatur und den N₂O Emissionen besteht, wobei hohe Temperaturen tendenziell tiefere Emissionen begünstigen. Dieser Zusammenhang ist in Übereinstimmung mit Literaturstudien, in denen die Brennraumtemperatur als einer der wichtigsten Faktoren für die N₂O-Bildung diskutiert wird. Im Weiteren muss darauf hingewiesen werden, dass durch Erhöhung der Brennraumtemperatur auch die NO_x-Emissionen ansteigen können. Insbesondere, wenn dadurch die Betttemperatur erhöht wird. Erhöhte NO_x Emissionen können jedoch durch eine nachgeschaltete sekundäre Entstickung vermieden werden. Gemäss Korving et al. (2010) ist eine Minimierung der N₂O Emissionen durch ein tiefes Luft-/Brennstoffverhältnis möglich, wobei eine grössere Temperaturdifferenz zwischen dem Bett und dem Brennraum resultiert.

Aufgrund punktueller Messungen vor bzw. nach dem SCR Katalysators einer KVA mit bzw. ohne Klärschlamm-Mitverbrennung, konnte kein signifikanter Einfluss des SCR Katalysators bzw. der Klärschlamm-Mitverbrennung beobachtet werden.

Gemäss Vitovec (1991a) sind drei Strategien zur Reduktion der N₂O Bildung denkbar: (i) Optimierung der Verbrennungstemperatur, (ii) thermische Nachbehandlung (durch Zugabe eines zusätzlichen stickstoffarmen Brennstoffs, z.B. Erdgas, wird eine Zone hoher Temperatur und hoher Radikalkonzentrationen geschaffen), oder (iii) katalytische N₂O-Entfernung.

Literaturverzeichnis

Bafu (2000). Handbuch Emissionsfaktoren für sationäre Quellen. Bundesamt für Umwelt, Bern, 355pp.

BAFU (2011). Entwicklung der Treibhausgas-Emissionen seit 1990. http://www.bafu.admin.ch/klima/09570/09574/index.html?lang=de

Dräger, R. und Vosteen, B. W. (2004). Monoklärschlammverbrennung in Etagenöfen, Wirbelschichtöfen und Etagenwirblern. VDI-Wissensforum, Seminar 433625 über Klärschlamm, Tiermehl, Altholz, biogene Abfälle, 12.-13.05.2004, München.

IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D. Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

Keller, J. (2010). Präsentation LET 2010, Phoenix (AZ), USA; Kuno, Nagano and Ozawa, Tokyo Metropolitan Government Courtesy Keisuke Hanaki, Uni-Tokyo.

Korving, L. D., Schilt, C., De Jong, W. (2010). Reduction of nitrous oxide emission by a smaller air to fuel ratio in a large-scale sewage sludge fluidized bed combustor. WIT Transaction on Ecology and the Environment, doi:10.2495/WM100051.

Kramlich, J. C. und Linak, W. P. (1994). Nitrous-Oxide Behavior in the Atmosphere, and in Combustion and Industrial-Systems. Progress in Energy and Combustion Science 20(2), 149-202.

Lödel, J. und Sköries, H. (2012). Bericht über die Durchführung von PCDD-/PCDF-Messungen am Kehrichtheizkraftwerk ,Anlage C'. Berichts-Nr.: 1805631.

Ravishankara, A. R., Daniel, J. S., Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Sänger, M., Werther, J., Ogada T. (2001). NO_x and N_2O emission characteristics from fuidised bed combustion of semi-dried municipal sewage sludge. Fuel 80 167-177.

Svoboda, K., Baxter, D., Martinec, J. (2006). Nitrous Oxide Emissions from Waste Incineration. Chemical Papers 60(1), 78-90.

Vitovec, W. (1991a). Pyrogene N2O-Emissionen. Workshop: 'N₂O und das Kyoto-Ziel', Innovative Impulse für die Wirtschaft- und Klimapolitik, Österreichische Akademie der Wissenschaften.

Vitovec, W. (1991b). $N_{\scriptscriptstyle 2}O$ Emissionen aus pyrogenen Quellen in Österreich, Dissertation TU-Wien.

Werther, J., Ogada T. (1999). Sewage sludge combustion. Progress in Energy and Combustion Science 25, 55–116.

Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Lachgas-Emissionen aus ARA - Relevanz, Bildungswege und Reduktionsstrategien. Aqua & Gas 2013, 2, 54-59.Anhang

Übersicht der N₂O-Emissionen aus Ofen 67

Abbildung A1. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 67 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der Brennraumtemperatur; Rechts: in Abhängigkeit der Wirbelbetttemperatur. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Abbildung A2. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 67 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der O_2 -Konzentration; Rechts: in Abhängigkeit von der Ammoniak-Dosierung. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Übersicht über die N₂O-Emissionen aus Ofen 86

Abbildung A3. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 86 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der Brennraumtemperatur; Rechts: in Abhängigkeit der Wirbelbetttemperatur. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Abbildung A4. N_2O (blau) und NO_x (rot) Emissionsdaten von Ofen 86 im Zeitraum vom 1.7.2009 bis 31.12.2011 (gezeigt sind Stundenmittelwerte). Links: in Abhängigkeit von der O_2 -Konzentration; Rechts: in Abhängigkeit von der Ammoniak-Dosierung. Die Rauchgastemperatur vor der Nachbrennkammer war konstant bei 880°C.

Appendix B

N₂O emission of biological wastewater treatment

This chapter has been published as:

<u>Wunderlin, P.,</u> Mohn, J., Joss, A., Emmenegger, L., Siegrist, H. Lachgas-Emissionen aus ARA - Relevanz, Bildungswege und Reduktionsstrategien. Aqua & Gas 2013, 2, 54-59.

Zusammenfassung

Lachgas (N₂O) ist ein starkes Treibhausgas und bedeutend an der Zerstörung der stratosphärischen Ozonschicht beteiligt. Seine Bildung und Freisetzung in die Atmosphäre hat deshalb eine grosse Umweltrelevanz. In der biologischen Abwasserreinigung kann N₂O sowohl während der Nitrifikation (Oxidation von Ammonium zu Nitrat), wie auch durch die heterotrophe Denitrifikation (Reduktion von Nitrat zu Luftstickstoff) gebildet werden. Diese Prozesse laufen meist gleichzeitig ab. Daher lässt sich ihr individueller Beitrag zur N₂O Bildung nur schwer abschätzen. Für diese Studie wurde ein neuartiger Ansatz angewandt, der eine bessere Beurteilung der N₂O Bildung auf Abwasserreinigungsanlagen erlaubt. Anhand der Analyse der stabilen Stickstoffisotopen wurde gezeigt, dass unter aeroben Bedingungen die Nitrifikation die N_2O Bildung dominiert. Dabei fördern hohe Ammonium (NH_4^+) und Nitrit (NO_2^-) Konzentrationen die N₂O Bildung. Ausserdem ist zu beachten, dass die Entstehung von N₂O räumlich und zeitlich sehr variabel ist und durch viele Parameter beeinflusst wird. Die aktuellen Emissionsschätzungen sind daher mit einer grossen Unsicherheit verbunden, was eine Bestimmung von präzisen Emissionsfaktoren schwierig macht. Untersuchungen aber zeigen, dass die N₂O Emissionen die Treibhausgasbilanz der gesamten Anlage dominieren können, welche ansonsten vor allem durch die indirekten Emissionen der Belüftung der biologischen Reinigungsstufe beeinflusst wird.

In Anbetracht der negativen Umweltauswirkungen von N_2O und der langen Aufenthaltszeit in der Atmosphäre (rund 120 Jahre) sollte unbedingt eine möglichst weitgehende Reduktion der Emissionen angestrebt werden. Das gegenwärtige Verständnis der relevanten Bildungsmechanismen deutet darauf hin, dass bei einer möglichst vollständigen Nitrifikation und Denitrifikation gleichzeitig auch die N_2O Bildung minimiert werden kann. Aus diesem Grund sollte sowohl bei der Auslegung wie auch bei der Optimierung und beim Betrieb von Belebtschlamm-Anlagen (z.B. Regelung der Belüftung) die N_2O Bildung mitberücksichtigt werden.

Stichwörter

Betriebsstrategien, biologische Abwasserreinigung, Denitrifikation, Lachgas (N₂O), Nitrifikation, Treibhausgas, Zerstörung der Ozonschicht

Einleitung

Lachgas (N_2O) ist ein zirka 300-mal stärkeres Treibhausgas als Kohlendioxid (CO_2 ; IPCC 2007). Anthropogene Aktivitäten haben seit der Industrialisierung einen Anstieg der N_2O Konzentration in der Atmosphäre um 18% verursacht, nicht zuletzt wegen seiner langen Halbwertszeit von 120 Jahren. Der Abbau findet primär in der Stratosphäre statt, wobei das dabei gebildete Zwischenprodukt Stickstoffmonoxid (NO) den Ozonabbau massiv beschleunigt (Kramlich and Linak 1994). Aus diesen Gründen ist Lachgas die wichtigste durch den Menschen freigesetzte ozonabbauende Substanz des 21. Jahrhunderts (Ravishankara et al., 2009).

Die anthropogenen N₂O Emissionen machen schätzungsweise 6% der gesamten Treibhausgasemissionen aus, wobei ein Grossteil davon durch die Stickstoff-Düngung landwirtschaftlicher Flächen verursacht wird (BAFU 2011). Weitere relevante Quellen sind die chemische Industrie und Verbrennungsprozesse. Der Beitrag der biologischen Abwasserreinigung ist noch unklar.

In der Schweiz ist der überwiegende Teil der kommunalen Abwasserreinigungsanlagen (ARA) mit einer biologischen Reinigungsstufe ausgerüstet. In Anbetracht des hohen Energieverbrauchs für die Belüftung (50 bis 70%; Müller 2010) sind zukünftige Optimierungsbestrebungen zu erwarten. So gibt es Bestrebungen den Energieeinsatz durch einen reduzierten Gebläse-Betrieb zu senken. Da hierdurch tiefere O_2 -Konzentrationen in der Nitrifikationsstufe verursacht werden, müssen die Mechanismen der N₂O Bildung sowie die Einflüsse der relevanten Parameter (z.B. O_2) besser verstanden werden.

Treibhausgaspotential der N₂O Emissionen in der Abwasserreinigung

Die N₂O Emissionen in der Abwasserreinigung sind von vielen Prozessparametern abhängig und daher zeitlich und räumlich sehr variabel. In den USA wurde in einer umfangreichen Messkampagne gezeigt, dass zwischen o.01 bis 3.3% des umgesetzten Stickstoff als N₂O freigesetzt werden (Ahn et al., 2010). In einer einjährigen Messkampagne auf einer ARA in den Niederlanden war der relative Anteil der N₂O Emissionen bei rund 3% bezogen auf die Stickstofffracht (Daelman et al., 2012). Diese Werte liegen zum Teil deutlich über dem bis anhin vom Weltklimarat (IPCC) verwendeten Emissionsfaktor von 7 gN₂O/Einwohnerwert(EW)/Jahr, was etwa einer Freisetzung von 0.1% des umgesetzten Stickstoffs als N₂O bei einer Stickstofffracht von 3.7 kgN/EW/Jahr entspricht (IPCC 2007).

Fig. 1 zeigt eine grobe Abschätzung und Gegenüberstellung der Treibhausgasemissionen durch die Abwasserreinigung. Es ist aktuell davon auszugehen, dass im Mittel etwa 0.5% des umgesetzten Stickstoffs als N_2O emittiert werden. Das dadurch verursachte Treibhausgaspotential entspricht somit etwa demjenigen, welches durch den Energieverbrauch für die Belüftung der biologischen Reinigungsstufe verursacht wird. Neueste Untersuchungen deuten darauf hin, dass während der Schlammverbrennung ebenfalls N_2O gebildet werden kann (Korving et al., 2010). Untersuchungen auf Schweizer Klärschlammverbrennungsanlagen zeigen, dass die N₂O Emissionen je nach Brennraumtemperatur zwischen 0.2 und 1%, bezogen auf die Stickstofffracht im ARA Zulauf, betragen können. Generell werden für tiefere Brenntemperaturen höhere Emissionen nachgewiesen. Diese Emissionen entsprechen 10 bis 47 $CO_{2,aqui}$ /EW*Tag. In der Schlammfaulung, der Kanalisation oder im Vorklärbecken kann zusätzlich Methan (CH₄) gebildet werden. CH₄ ist ein rund 25-mal stärkeres Treibhausgas als CO₂ und hat einen ähnlichen Anteil an den totalen Treibhausgasemissionen in der Abwasserreinigung wie N₂O.

* Treibhausgasemissionen basierend auf mittleren europäischen Emissionswerten (700gCO_{2,äquiv.}/kWh)

Fig. 1: Abschätzung der Treibhausgasemissionen in der Abwasserreinigung: N_2O Emissionen aus der Belebung und der Schlammverbrennung, sowie CH_4 Emissionen aus der Kanalisation und dem Vorklärbecken. Die Schlammfaulung kann ebenfalls einen signifikanten Beitrag leisten, insbesondere wenn die Nachfaulung nicht abgedeckt ist und das produzierte CH_4 somit direkt in die Atmosphäre entweichen kann (Daelman et al., 2012).

Mikrobielle N₂O Bildungswege

Die wesentlichen N₂O Bildungswege sowie die relevanten Prozessparameter in der biologischen Reinigungsstufe sind noch nicht vollständig identifiziert. Aus diesem Grund sind die Emissionsfaktoren noch relativ unsicher und eine Extrapolation der Messergebnisse auf andere Anlagen ist mit Vorsicht zu betrachten. In den letzten Jahren hat sich aber insgesamt das Prozessverständnis deutlich verbessert: In den 1990er Jahren wurde beispielsweise noch davon ausgegangen, dass N₂O hauptsächlich als Zwischenprodukt der heterotrophen Denitrifikation gebildet wird. Heute weiss man, dass zusätzlich auch während der Nitrifikation (Ammoniumoxidation) N₂O gebildet grundsätzlich werden kann (Fig. 2). N,0 wird unter suboptimalen Wachstumsbedingungen produziert. Dazu gehören etwa tiefe O₂ Konzentrationen, hohe NH_4^+ und NO_2^- Konzentrationen, oder ein tiefes Kohlenstoff (CSB) zu Stickstoff-Verhältnis (Kampschreur et al., 2009).

Um die N₂O Bildungswege in der kommunalen Abwasserreinigung identifizieren zu können wurde im Rahmen des in diesem Artikel vorgestellten Forschungsprojekts N₂O Emissionen in der Abwasserreinigung: Biologische Nährstoffelimination und Schlammverbrennung an Eawag und Empa eine neue Methode entwickelt und erfolgreich angewendet. Diese Methode basiert auf der Messung der stabilen Stickstoffisotopen (durchschnittlicher ¹⁵N-Gehalt in N₂O) sowie deren Verteilung im N₂O Molekül (¹⁵N¹⁴NO bzw. ¹⁴N¹⁵NO, Fig. 3, siehe auch weiter unten; Mohn et al., 2012; Wunderlin et al., 2013): da über die einzelnen Bildungswege N₂O mit unterschiedlichem ¹⁵N Gehalt und einer unterschiedlichen ¹⁵N Verteilung gebildet wird, kann diese Messung für eine Prozessidentifikation verwendet werden.

In der biologischen Abwasserreinigung kann grundsätzlich zwischen autotropher Nitrifikation und heterotropher Denitrifikation unterschieden werden, wobei N_2O in beiden Prozessen gebildet werden kann (Fig. 2). Obwohl diese Prozesse meistens räumlich oder zeitlich voneinander getrennt ablaufen, ist nicht auszuschliessen, dass der jeweils andere Prozess ebenfalls aktiv ist. Für die Erarbeitung von Massnahmen und von Betriebsstrategien zur Reduktion der Emissionen ist es aber essentiell, den jeweils für die N_2O Produktion relevanten Bildungsweg zu kennen.

N₂O Bildung unter nitrifizierenden Bedingungen

In der Nitrifikation wird NH₄⁺ unter aeroben Bedingungen über NO₂⁻ zu Nitrat (NO₃⁻) oxidiert. Dabei kann N₂O durch die Ammonium oxidierenden Bakterien (AOB) über zwei mögliche Wege gebildet werden (Fig. 2): (i) via Reduktion von NO₂⁻ (Nitrifikanten-Denitrifikation), oder (ii) über das Zwischenprodukt Hydroxylamin (NH₂OH), d.h. während der Oxidation von NH₄⁺ zu NO₂⁻. Es wird davon ausgegangen, dass in der kommunalen Abwasserreinigung die Nitrifikanten-Denitrifikation der dominante Prozess ist, und hauptsächlich bei erhöhten NO₂⁻ und tiefen O₂ Konzentrationen aktiv ist. Die N₂O Bildung über NH₂OH ist möglicherweise von Bedeutung bei einer hohen NH₄⁺ Oxidationsrate (bei hohen O₂ Konzentrationen), z.B. in einem sequentiellen biologischen Reinigungsverfahren (SBR) am Anfang der Belüftungsphase, bei hohen NH₄⁺ und tiefen NO₂⁻ Konzentrationen.

*N*₂*O Bildung unter denitrifizierenden Bedingungen*

In der heterotrophen Denitrifikation wird das zuvor gebildete NO_3^- unter anoxischen Bedingungen zu Luftstickstoff (N_2) reduziert. Dabei ist N_2O ein obligates Zwischenprodukt (Fig. 2, unten). Insbesondere die Hemmung des letzten Schritts (von N_2O zu N_2), z.B. durch Sauerstoff oder Nitrit, kann zu hohen N_2O Emissionen führen. Ausserdem kann ein zu geringes Verhältnis von abbaubarem organischem Substrat zu Nitrat (ungleichmässige Aktivität der reduzierenden Enzyme) die N_2O -Bildung erhöhen.

Autotrophe NitrifikationNO3^- DenitrifikationNO3^- Denitrifikation \uparrow NH4^+ > NH2OH > NO2^- > NO > N2O \downarrow NH2OHN2O \downarrow N2Oheterotrophe DenitrifikationNO3^- > NO2^- > NO > N2O > N2OHeterotrophe DenitrifikationNO3^- > NO2^- > NO > N2O > N2OHeterotrophe Denitrifikation

Fig. 2: Mögliche N_2O Produktionswege in der biologischen Abwasserreinigung Wunderlin et al. (2012). Während der Nitrifikation (oben) kann N_2O durch AOB über zwei Stoffwechselwege gebildet werden: Nitrifikanten-Denitrifikation, oder Hydroxylamin (NH₂OH) Oxidation. Während der heterotrophen Denitrifikation (unten) ist N_2O ein obligates Zwischenprodukt und dessen Akkumulation vor allem davon abhängig wie gut die einzelnen Reduktionsschritte aufeinander abgestimmt sind.

Identifikation der N₂O Bildungswege anhand der N₂O Isotopensignatur

Die in dieser Untersuchung angewandte Methode erlaubt es aufgrund der Messung der stabilen Stickstoffisotope im N₂O Molekül zwischen den unterschiedlichen N₂O Bildungswegen zu unterscheiden. Hierfür werden sowohl der durchschnittliche ¹⁵N-Gehalt, sowie dessen Verteilung im N₂O Molekül (¹⁵N¹⁴NO bzw. ¹⁴N¹⁵NO, genannt Site preference; Fig. 3) bestimmt. Wesentlich für dieses Verfahren ist, dass die drei möglichen N₂O Bildungswege (Nitrifkanten-Denitrifikation, NH₂OH Oxidation, heterotrophe Denitrifikation; Fig. 2) über ihre jeweilige charakteristische Isotopenzusammensetzung, analog eines Fingerabdrucks, identifiziert werden können.

Laborexperimente mit Belebtschlamm zeigen, dass unter aeroben Bedingungen die NO_2^{-} Reduktion (vermutlich grösstenteils durch die Nitrifikanten-Denitrifikation) den dominanten N_2O -Bildungsweg darstellt, wohingegen die NH_2OH Oxidation lediglich geringfügig beiträgt (graue Flächen in Fig. 3). Andererseits ist unter anoxischen Bedingungen erwartungsgemäss die heterotrophe Denitrifikantion der dominierende Prozess.

Weitere Messungen im Pilotmassstab bestätigen diesen Trend (Fig. 3): unter aeroben Bedingungen ($O_2 > 2 \text{ mg/l}$) ist die Nitrifikanten-Denitrifikation (NO_2^- Reduktion) der wesentliche Bildungsprozess, während bei tiefen O_2 Konzentrationen (<1.5 mg/l) zunehmend die heterotrophe Denitrifikation aktiviert wird. Der Beitrag der NH₂OH Oxidation bleibt auch unter diesen Bedingungen gering.

Fig. 3: Die Messungen im Pilot-Massstab (8 m^3 Reaktoren) bestätigen eine dominante Nitrit-Reduktion (Nitrifikanten-Denitrifikation) bei O_2 Konzentrationen von grösser 2 mg/l, wohingegen die heterotrophe Denitrifikation bei tiefen O_2 Konzentrationen zunehmend aktiv wird (aus Wunderlin et al., in preparation). Die N_2O Bildungswege wurden über ihre Stickstoff-Isotopensignaturen (Site preference) identifiziert, welche zuvor in Laborexperimenten bestimmt wurden und als graue Flächen dargestellt sind (aus Wunderlin et al., 2013).

Insgesamt konnte durch die Anwendung dieser neuartigen Methode das Prozessverständnis der N₂O-Bildung verbessert werden, wobei der Fortschritt hauptsächlich darin besteht, dass die NH₂OH Oxidation als relevante Quelle in der biologischen Reinigung von kommunalem Abwasser kaum eine Rolle spielt. Die Reduktion von NO₂⁻ als dominanter Stoffwechselweg rückt somit weiter in den Fokus, und deshalb kommt im Anlagenbetrieb der NO₂⁻ Konzentration zunehmend eine wichtige Bedeutung zu.

Typische Tagesgänge der N₂O Emissionen und relevante Prozessparameter

Fig. 4: Fliessschema der Pilotanlage mit einer der Nitrifikation vorgeschalteten Denitrifikationsstufe. Die N₂O Emissionen wurde kontinuierlich in der Abluft des ersten Nitrifikationsreaktors gemessen.

Um die Bedeutung der NO₂⁻ Konzentration für die N₂O Bildung zu überprüfen wurden Untersuchungen im Pilotmassstab unter verschiedensten Betriebsbedingungen durchgeführt. Für diese Messkampagne wurde eine Pilotanlage mit einer vorgeschalteten Denitrifikationsstufe betrieben (siehe Fig. 4). Für die Nitrifikation wurden zwei einander nachgeschaltete Reaktoren verwendet, wobei die N₂O Konzentration kontinuierlich in der Abluft des ersten Nitrifikationsreaktors gemessen wurde. Das Schlammalter lag bei etwa 11 Tagen und die O₂ Konzentration in der Nitrifikationsstufe war auf 2 mgO₂/l geregelt (Fig. 4). Die N₂O Emissionen der beiden in Fig. 5 dargestellten Tagesgänge lagen bei rund o.5% während des ersten Tages, und bei etwa 0.2% während des zweiten Tages (bezogen auf die NH_4^+ -Zulauffracht und Emissionen aus dem ersten Reaktor). Die Emissionsfaktoren einer Anlage im Vollmassstab könnten auf Grund der grösseren Beckentiefe jedoch etwas geringer sein.

Fig. 5: N_2O Emissionen und Verläufe der gelösten Stickstoff Komponenten an zwei aufeinander folgenden Messtagen. (A) NH_4^+ Zulauffracht in die biologische Reinigungsstufe, sowie deren Konzentration im Vorklärbecken, (B) NH_4^+ , NO_2^- und NO_3^- Konzentrationen im ersten Nitrifikationsreaktor, (C) kontinuierlich aufgezeichnete N_2O Abluftkonzentrationen und berechnete Frachten der ersten Nitrifikationsstufe. Der Zulauf

ist nach einem fixen Tagesgang geregelt (jeweils konstant über 2 Stunden; aus Lotito et al., 2012).

In der durchgeführten Messkampagne wurden typische Tagesgänge beobachtet, welche die grosse Dynamik der Emissionen illustrieren (Fig. 5): während der Nacht nimmt die NH₄⁺ wie auch die NO₂⁻ Konzentration in der Nitrifikationsstufe ab, da auch die Stickstoff Zulauffracht sinkt, während des Tages (ab ca. 8 Uhr morgens) steigen ihre Konzentrationen, bedingt durch eine erhöhte Stickstoff-Zulauffracht, wieder an. Die N₂O Emissionen (Konzentrationen in der Abluft) folgen diesen Trends: bei tiefen Stickstoff-Konzentrationen während der Nacht sind auch die N₂O Emissionen gering, wobei während des Tages, bei erhöhten NH₄⁺ und NO₂⁻ Konzentrationen, auch die N₂O Emissionen hoch sind.

In Fig. 5 (B) ist ersichtlich, dass neben NO₂⁻ möglicherweise auch die NH₄⁺ Konzentration in der Belebung einen wichtigen Parameter für die N₂O Produktion darstellt. Gemäss Fig. 2 (oben) kann N₂O theoretisch bei hoher Nitrifikationsaktivität über die NH₂OH Oxidation gebildet werden. Mit der Isotopenmethode (Fig. 3) konnte aber gezeigt werden, dass der NH₂OH Oxidationsweg in der kommunalen Abwasserreinigung keinen wesentlichen Beitrag leistet. Somit scheint die Bedeutung von NH₄⁺ hauptsächlich darin zu liegen, dass es das Ausgangsprodukt der Nitrifikanten-Denitrifikation ist (N₂O Bildung über die NO₂⁻ Reduktion). Zudem begünstigt eine hohe NH4⁺ Konzentration die NO₂⁻ Akkumulation in der Nitrifikation.

Fig. 6: Typische Tagesgänge der gelösten NO²⁻ und N₂O Abluft-Konzentrationen (Stundenmittelwerte) der ersten Nitrifikationsstufe, an zehn aufeinander folgenden Messtagen im Normalbetrieb.

Die gelöste NO₂⁻ Konzentration stellt somit einen zentralen Parameter für die Beurteilung der N₂O Bildung dar. In Fig. 6 werden NO₂⁻ Konzentration und N₂O Abluftkonzentration für 10 aufeinander folgende Messtage dargestellt. Es ist ersichtlich, dass die Konzentrationsverläufe der beiden Spezies gut übereinstimmen: in der Nacht sind die Konzentrationen erwartungsgemäss tief, während sie am Tag, bei hohen Stickstoff Zulauffrachten, erhöht sind. Vor diesem Hintergrund hat sich die Hypothese bestätigt, dass bei tiefen NO₂⁻ Konzentrationen auch die N₂O Bildung gering gehalten werden kann, was impliziert, dass die biologische Reinigungsstufe bei möglichst tiefen NO₂⁻ Konzentrationen betrieben werden sollte.

Neben erhöhten NH_{4}^{+} und NO_{2}^{-} Konzentrationen ist auch die O_{2} -Konzentration ein relevanter Parameter für die N₂O Bildung. Dies soll hier nochmals kurz aufgegriffen werden, denn im Zusammenhang mit der N₂O Bildung über die NO₂⁻ Reduktion ist bekannt, dass bei tiefen O₂ Konzentrationen (<1 mgO₂/l) die N₂O Emissionen tendenziell höher sind als bei 2 bis 3 mgO₂/l (Kampschreur et al., 2009). Bei der energetischen Optimierung der biologischen Reinigungsstufe, insbesondere wenn bei der Belüftung angesetzt wird, ist daher besondere Vorsicht geboten. Die N₂O-Bildung ist hoch komplex und weist eine grosse Dynamik auf. Daher kann an dieser Stelle keine abschliessende Empfehlung zur Optimierung der biologischen Abwasserreinigung präsentiert werden, um die N₂O Emissionen aus ARA möglichst tief zu halten. Vielmehr sollte vor dem Hintergrund der in diesem Artikel diskutierten Einflussparameter, wie NO₂⁻, NH₄⁺ oder O₂, jede Anlage für sich betrachtet werden, und optimierte Betriebsstrategien anhand einer fix installierten N,O Abluftmessung getestet und überwacht werden (empfohlene Betriebsstrategien, siehe unten). Die Messgeräte für eine kontinuierliche Abluftmessung sind standardmässig verfügbar und können bei verschiedenen Anbietern gekauft werden. Bei abgedeckten Reaktoren mit einer gefassten Abluft ist die Implementierung relativ einfach. Bei offenen, ungedeckten Reaktoren liegt die Schwierigkeit bei der Fassung der Abluft. In diesen Fällen muss eine auf der Wasseroberfläche aufliegende "Haube" eingesetzt werden, was aktuell noch nicht routinemässig angewendet wird. Es existieren aber Ansätze wie dies in Zukunft umgesetzt werden kann. Die Investitionskosten für eine online N₂O-Abluftmessung liegen höher als beispielsweise für konventionelle ionenselektive Sonden. Die Betriebskosten sind jedoch wegen des geringeren Wartungsaufwands tiefer.

Die anschliessend diskutierten Betriebsempfehlungen können aus den präsentierten Daten und dem daraus resultierenden Prozessverständnis abgeleitet werden. Sie stellen einen ersten Ausgangspunkt für weitere Optimierungen dar, die anhand von direkten Emissionsmessungen für die jeweilige Anlage überprüft und verifiziert werden sollten:

- Es wird als wichtig erachtet, dass die Nitrifikation wie auch die Denitrifikation möglichst vollständig ablaufen können, um die NO₂⁻ Bildung tief zu halten. Insbesondere sollten bei einer vorgeschalteten Denitrifikation zu kurze anoxische Phasen vermieden werden. Andererseits muss bei einer NH₄⁺ geregelten Belüftung genügend Zeit für die NO₂⁻ Oxidation zur Verfügung stehen.
- Generell sollte die NH₄⁺ Konzentration in der Belebung möglichst tief gehalten werden, was eine ausreichende Nitrifikationskapazität voraussetzt, d.h. ein aerobes Schlammalter mit genügend Sicherheit zur Verarbeitung von Stickstoff-Frachtspitzen. Zudem sollte Faulwasser nicht während Phasen mit hohen Stickstoff-Frachten im Zulauf dosiert werden.
- Während Phasen mit hohen Stickstoff-Frachten sollte die Nitrifikation bei ausreichend Sauerstoff betrieben werden, da bei tiefen O₂ Konzentrationen die

 N_2O Bildung gegenüber der NO_2^- Reduktion begünstigt wird. Somit sind tiefere O_2 -Konzentrationen während der Nacht bei geringen Stickstoff-Frachten sinnvoll und sparen Energie ohne viel N_2O zu produzieren.

 Anderseits sollte die Denitrifikation anoxisch betrieben werden. Daher ist es wichtig, einen O₂-Eintrag aus der Nitrifikation (Rücklauf, interne Rezirkulation) oder durch das Rührwerk möglichst zu vermeiden.

Schlussfolgerungen

Aus dem vorliegenden Artikel geht hervor, dass das Treibhausgaspotential der N_2O Emissionen in der biologischen Abwasserreinigung relevant ist und eine vergleichbare Grössenordnung aufweist wie die indirekten Emissionen der Belüftung. Aus diesem Grund sollten die N_2O Emissionen möglichst reduziert werden, und sowohl bei der Auslegung, der Optimierung sowie beim Betrieb der Anlage beachtet werden.

Anhand der präsentierten Daten wurde gezeigt, dass der mikrobiologischen Reduktion von NO₂⁻ zu N₂O in der kommunalen Abwasserreinigung eine grosse Bedeutung zukommt. Im Weitern ist ersichtlich, dass die N₂O Emissionen einer grossen zeitlichen und räumlichen Dynamik unterliegen, was es schwierig macht, von einem Tagesgang auf den nächsten zu extrapolieren, oder gar Aussagen über das Emissionspotential von anderen, nicht untersuchten Anlagen zu machen. In diesem Sinne wird als Schlussfolgerung in Aussicht gestellt, dass für eine gezielte Optimierung des Anlagenbetriebes eine kontinuierliche N₂O Emissionsmessung unerlässlich ist. Denn zusätzlich zur Emissionsüberwachung kann anhand der N₂O Bildung die Prozessstabilität relativ gut überwacht werden, gilt doch die Akkumulation von NO₂⁻ als Indiz für eine (vorübergehende) Überlastung der Anlage, eine O₂-Unterversorgung durch ineffiziente Belüftung oder gar Hemmung der mikrobiologischen Prozesse (Burgess et al., 2002; Butler et al., 2009).

Verdankung

Die Autoren danken folgenden Projektpartnern: Bundesamt für Umwelt (BAFU), Kanton Bern (AWA), Kanton Basellandschaft (AIB), Kanton St. Gallen (AFU), Kanton Thurgau (AfU), Kanton Zürich (AWEL), Zentralschweizer Umweltdirektorenkonferenz (ZUDK), TBF + Partner AG, Abwasserverband Altenrhein, ARA Region Bern, ARA REAL (Luzern), Abwasserverband Morgental, ARA ProRheno, Entsorgung St. Gallen, ARA Zürich-Werdhölzli und ARA Worblental. Zudem geht ein grosser Dank an Michael Schärer (BAFU), Marco Kipf (Eawag) und Adriana Lotito (Eawag).

Literaturverzeichnis

Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K. and Chandran, K. (2010). N₂O Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology 44(12), 4505-4511.

BAFU (2011). Entwicklung der Treibhausgas-Emissionen seit 1990. http://www.bafu.admin.ch/klima/09570/09574/index.html?lang=de.

Burgess, J. E., Stuetz, R. M., Morton, S. and Stephenson, T. (2002). Dinitrogen oxide detection for process failure early warning systems. Water Science and Technology 45(4-5), 247-254.

Butler, M. D., Wang, Y. Y., Cartmell, E. and Stephenson, T. (2009). Nitrous oxide emissions for early warning of biological nitrification failure in activated sludge. Water Research 43(5), 1265-1272.

Daelman, M. R. J., van Dongen, L. G. J. M., van Voorthuizen, E. M., Volcke, E. I. P. and van Loosdrecht, M. C. M. (2012). Methane and nitrous oxide emissions from municipal wastewater treatment. IWA Nutrient Removal and Recovery 2012: Trends in NRR, Harbin, China, 23-25 September 2012.

Daelman, M. R. J., van Voorthuizen, E. M., van Dongen, U. G. J. M., Volcke, E. I. P. and van Loosdrecht, M. C. M. (2012). Methane emission during municipal wastewater treatment. Water Research 46(11), 3657-3670.

IPCC (2007). Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D. Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. and van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research 43(17), 4093-4103.

Korving, L. D., Schilt, C. and De Jong, W. (2010). Reduction of nitrous oxide emission by a smaller air to fuel ratio in a large-scale sewage sludge fluidized bed combustor. 140, 43-55.

Kramlich, J. C. and Linak, W. P. (1994). Nitrous-Oxide Behavior in the Atmosphere, and in Combustion and Industrial-Systems. Progress in Energy and Combustion Science 20(2), 149-202.

Lotito, A. M., Wunderlin, P., Joss, A., Kipf, M. and Siegrist, H. (2012). Nitrous oxide emissions from the oxidation tank of a pilot activated sludge plant. Water Research 46(11), 3563-3573.

Mohn, J., Tuzson, B., Manninen, A., Yoshida, N., Toyoda, S., Brand, W. A. and Emmenegger, L. (2012). Site selective real-time measurements of ambient N₂O isotopomers by laser spectroscopy. Atmospheric Measurement Techniques Discussions 5, 813-838.

Müller, E. A. (2010). Handbuch Energie in ARA. Verband Schweizer Abwasser- und Gewässerschutzfachleute (VSA).

Ravishankara, A. R., Daniel, J. S. and Portmann, R. W. (2009). Nitrous oxide (N_2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949), 123-125.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012). Mechanisms of N_2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research 46(4), 1027-1037.

Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (in preparation). Nitrogen isotopic signature of N_2O : Application to a pilot scale biological wastewater treatment plant.

Wunderlin, P.; Lehmann, M. F.; Siegrist, H.; Tuzson, B.; Joss, A.; Emmenegger, L.; Mohn, J. Isotope signatures of N_2O in a mixed microbial population system: Constraints on N_2O producing pathways in wastewater treatment. *Environmental Science and Technology* 2013, 47 (3), 1339-1348.

CURRICULUM VITAE

- 2009 2013 PhD student at the Swiss Federal Institute of Aquatic Science and Technology (Eawag), Department of Process Engineering, Dübendorf, Switzerland
- 2008 Project engineer and application-oriented research and development at the Institute for Environmental and Process Engineering at the University of Applied Sciences of Eastern Switzerland (FHO)
- 2002 2007 Studies in environmental science with a focus on aquatic chemistry (Master of Science ETH), Swiss Federal Institute of Technology (ETH), Zürich
- 1998 2001 High School, Type E, Liestal (BL)
- 1994 1998 Secundary school, Gelterkinden (BL)
- 1989 1994 Primary school, Hemmiken (BL)
- September 10, 1982 Born in Laufenburg (AG)