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ZUSAMMENFASSUNG 

 

Lachgas (N2O) ist ein starkes Treibhausgas und bedeutend an der Zerstörung der 
stratosphärischen Ozonschicht beteiligt. Seine Bildung und Freisetzung in die 
Atmosphäre ist deshalb von grosser Umweltrelevanz. In der biologischen 
Abwasserreinigung kann N2O sowohl während der Nitrifikation (Oxidation von 
Ammonium zu Nitrat), wie auch durch die heterotrophe Denitrifikation (Reduktion von 
Nitrat zu Luftstickstoff) gebildet werden. Die simultane Aktivität mehrerer 
Bildungswege erschwert eine eindeutige Identifizierung der dominanten 
biochemischen Bildungsmechanismen. Auf Grund der grossen Umweltrelevanz von 
N2O sowie des ungenügenden Prozessverständnisses der N2O Bildung in der 
Abwasserreinigung, werden in dieser Arbeit die wichtigsten Bildungsprozesse sowie die 
relevanten Prozessparameter untersucht. Dazu wurde eine Methode angewandt, die es 
erlaubt die positionsabhängige Verteilung von 15N (genannt Site Preference, SP), wie 
auch den Anteil von 15N im N2O Molekül zu bestimmen. Darauf aufbauend wurden 
Betriebsstrategien formuliert und getestet, welche die N2O Emissionen aus der 
Abwasserreinigung minimieren. 

Es konnte gezeigt werden, dass die N2O Bildung unter aeroben Bedingungen durch die 
Nitrifikanten dominiert wird, wobei hohe Ammonium- und Nitrit- Konzentrationen die 
N2O Produktion begünstigen. Ein Beispiel stellt die Dosierung von Faulwasser dar, in 
deren Folge die Ammonium- und Nitrit-Konzentrationen mit den N2O Emissionen 
deutlich korreliert haben. In diesem Sinne wurde getestet, ob NO2

- indirekt über die N2O 
Messung detektiert werden kann. Dies wurde für ein Nitritations-Anammox Prozess 
getestet, bei welchem NO2

- ein wichtiges Zwischenprodukt darstellt, da seine 
Konzentration ein Indikator für eine mangelnde Prozessstabilität ist. Der 
Zusammenhang zwischen gelöstem NO2

- und erhöhter N2O Emission konnte bestätigt 
werden, wobei weitere Bildungswege (z.B. die NH2OH Oxidation) berücksichtigt werden 
müssen. Insgesamt sind die Resultate jedoch vielversprechend. 

Die Mechanismen der N2O Bildung sind jedoch noch nicht vollständig verstanden, was 
eine Abschätzung der Emissionsfaktoren schwierig macht. Zudem sind die Emissionen 
räumlich und zeitlich sehr variabel und werden durch eine Vielzahl von Faktoren 
beeinflusst. Aus diesem Grund sind aktuelle Emissionsabschätzungen noch mit einer 
grossen Unsicherheit verbunden. Daraus wird gefolgert, dass für die gezielte 
Optimierung einer Anlage eine fix installierte kontinuierliche N2O-Abluftmessung 
vorteilhaft ist. Damit kann neben der N2O Emissionsüberwachung auch die 
Prozessstabilität überwacht werden. Abschliessend kann gesagt werden, dass auf 
Grund des N2O Emissionspotentials energetische Optimierungen von 
Abwasserreinigungsverfahren, ohne Mitberücksichtigung der N2O Emissionen, nicht 
sinnvoll erscheinen. 
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SUMMARY 

 

Nitrous oxide (N2O) is a strong greenhouse gas, and involved in the destruction of the 
stratospheric ozone layer. Emissions to the atmosphere are therefore harmful for the 
environment. In biological wastewater treatment, N2O can be produced in different 
process steps: during nitrification (the oxidation of ammonia to nitrate) and during 
heterotrophic denitrification (the reduction of nitrate to dinitrogen gas). However, 
identifying the most important N2O production pathways is a complex issue, since all 
of them might be active simultaneously. The aim of this work was therefore (i) to 
identify the most important N2O production pathway in biological wastewater 
treatment based on isotopomeric analysis in combination with emission pattern, (ii) to 
evaluate the impact of relevant operating parameters as well as (iii) to test operating 
strategies reducing these emissions. 

Results indicate that NO2
- reduction (presumably by ammonia oxidizing bacteria) is the 

dominant N2O production pathway under aerobic conditions. The contribution from 
NH2OH oxidation in wastewater treatment, however, cannot be completely excluded, 
but is deemed only of minor importance in this investigation. The addition of digester 
liquid, equivalent to a temporary increase of the nitrogen load, to a pilot-scale activated 
sludge plant showed that high nitrogen loads accelerated N2O emission significantly, 
correlating positively with the NO2

- build-up in the nitrification activated sludge tanks. 
As such, operating strategies reducing NO2

- accumulation are considered to emit only 
low amounts of N2O. Given the correlation of soluble NO2

- with N2O emission, the 
application of N2O analysis as a potential indirect measure for dissolved NO2

- was 
tested for a nitritation-anammox process. Results clearly confirmed this correlation but 
showed that also other pathways are relevant for N2O emission in this process (e.g. 
NH2OH oxidation or yet undefined toxic components). Thus this is a promising 
approach and needs to be further investigated. 

N2O production is a complex issue, since strongly depending on the individual plant 
operating conditions. This makes it difficult to extrapolate from one treatment plant to 
another. Given the N2O emission potential, plant optimization from an energetic point 
of view does not make sense without considering N2O emission. Further, a continuous 
N2O off-gas online monitoring concept for full-scale plants is considered favorable in 
order to minimize overall climate impact of wastewater treatment. A financial 
greenhouse gas crediting system could be a potent incentive to promote widespread 
adoption of the here proposed approach. 
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  Chapter 1- General Introduction 
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Denitrification is the heterotrophic reduction of NO3
- to atmospheric nitrogen (N2), with 

NO2
-, nitric oxide (NO) and N2O as obligatory intermediates (detailed overview given in 

Zumft 1997). 

Ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) 

During the autotrophic oxidation of NH4
+ to NO3

-, O2 is used as the terminal electron 
acceptor and CO2 as the carbon source (Colliver and Stephenson 2000). In activated 
sludge, the oxidation from NH4

+ via NH2OH to NO2
- is performed by AOB (such as 

Nitrosomonas oligotropha, Nitrosomonas europaea, and Nitrosospira, a β-subclass of 

proteobacteria). NOB perform the oxidation of NO2
- to NO3

- (e.g. Nitrobacter, an α-
subclass of proteobacteria and Nitrospira an independent line within the domain of 
bacteria; Bock and Wagner 2006). Under regular operating conditions, Nitrosomonas 
were reported to be the dominant AOB species and Nitrospira the dominant NOB 
species at low NH4

+ and NO2
- concentrations (Purkhold et al., 2000; Freitag et al., 2005; 

Manser et al., 2005). 

The enzymes required for the oxidation of NH4
+ to NO2

- are ammonia monooxygenase 
(AMO) and hydroxylamine oxidoreductase (HAO). The latter being the energy-
generating step: four electrons are released, two of them are required for the AMO 
reaction while the other two are used for energy generation. The enzyme for the 
oxidation of NO2

- to NO3
- is called nitrite oxidoreductase (NO2-OR) (Colliver and 

Stephenson 2000; Bock and Wagner 2006). 

Heterotrophic denitrifying microorganisms (HET) 

Heterotrophic denitrification is the reduction of NO3
- to N2 by use of organic substrate 

as the electron donor and carbon source. It is carried out by prokaryotes (bacteria as 
well as archaea), such as Paracoccus denitrificans and Alcaligenes faecalis (Zumft 1997). 
The N2O release is expected to be linked to the activity of N2O-reductase enzymes 
relative to the activity of N2O forming enzymes (Alinsafi et al., 2008; Knowles 1982; von 
Schulthess et al., 1994). For example, low dissolved oxygen concentrations may result in 
incomplete denitrification (Stouthamer 1991), and strong N2O-reductase enzyme 
inhibition in the presence of O2 (von Schulthess et al., 1994). 

Denitrification requires four reductases: NO3
-- (NaR / Nap), NO2

-- (NiR), NO (NoR) and 
N2O (N2OR) reductase (Bergaust, 2008; Zumft 1997). The genes encoding these proteins 
are activated by several signals: both, (i) no (or low) O2 concentrations as well as (ii) the 
presence of denitrification intermediates (e.g. NO2

-, NO) are needed for their expression 
(Bergaust et al., 2008). In general, regulation of these enzymes helps to avoid toxic NO2

- 
and NO concentrations, as e.g. reported for Nitrosomonas europaea expressing NO2

- 
reductase (NirK) at toxic NO2

- levels (Beaumont et al., 2004). 

N2O production pathways in wastewater treatment 

N2O production in biological wastewater treatment is generally attributed to 
nitrification and heterotrophic denitrification. According to Kampschreur et al. (2009), 
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combination with limited aeration, and (iii) a low ratio of readily biodegradable organic 
compounds to NO3

- during heterotrophic denitrification (Kampschreur et al., 2009; Ahn 
et al., 2010; Desloover et al., 2012; Wunderlin et al., 2012). 

A continuously and fast growing understanding of the N2O production mechanisms 
and the relevant impacting parameters within the near future is highly expected, since 
in addition to the present thesis, an increasing number of research groups worldwide 
are working on this topic. 

Importance of N2O emission in the field of wastewater treatment 

In conventional biological wastewater treatment, N removal occurs via microbial 
nitrification and heterotrophic denitrification. Most of the wastewater treatment 
plants in Switzerland are designed for nutrient removal. Basically, aerobic conditions 
are needed for autotrophic nitrification, while anoxic conditions (absence of O2) and a 
sufficient amount of organic carbon is required to support heterotrophic denitrification 
(detailed overview given in Law et al., 2012). 

In the last decade, significant efforts have been made to reduce the energy 
consumption of wastewater treatment plants, mainly by lowering the aeration of the 
nitrification stage to the required minimum (Kampschreur et al., 2009), because 
aeration is responsible for about 50 % of the total energy consumption of a wastewater 
treatment plant (VSA, 2008). This leads to low dissolved O2 concentrations in the 
bioreactors used for nitrification, which might in combination with high N loads be a 
trigger for N2O production (please see also ‘N2O production pathways wastewater 
treatment’ in this chapter). 

The literature is currently inconsistent about the quantities of N2O emitted during 
wastewater treatment: reported values are ranging from 0 to 25 % (Kampschreur et al., 
2009; Law et al., 2012). Recently, a measuring campaign across the United States 
showed that 0.01 to 3.3 % of the removed N is emitted as N2O (Ahn et al., 2010). And in 
another investigation, where N2O was measured continuously over one year on a full-
scale treatment plant in the Netherlands, an emission of 3 % was reported (Daelman et 
al., 2012). These wide ranges clearly indicate that N2O emission is dynamic, plant 
specific, and not yet sufficiently understood. 

Figure 5 shows a rough estimation of GHG emission (CO2, CH4, N2O) from wastewater 
treatment. Currently, an average N2O emission of 0.5 % with respect to influent N, is 
proposed as an acceptable emission level, since in this case, the respective global 
warming potential is somewhat smaller compared to the one of aeration energy 
consumption. Moreover, in a recent investigation it is discussed that in addition to 
biological nutrient removal, N2O production can also be relevant during sludge 
incineration (please see Appendix A). Data from two Swiss sludge mono-incineration 
plants indicate that around 0.2 to 1 % of the N influent load was emitted as N2O 
(equivalent to about 10 to 47 gCO2,equiv/PE/d), which is comparable to estimated N2O 
emission from the main water line. Moreover, N2O emissions from sludge incineration 
were negatively correlated with incineration temperatures, being higher at low 
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(4) Validating the isotope approach during regular operation of a pilot-scale 
wastewater treatment plant (Chapter 5). 

(5) Evaluating the importance of the different operating strategies, and the impact 
of key factors linked to N2O production (Chapter 6). 

(6) Discussing and exemplifying the potential future role of N2O off-gas 
measurement in wastewater treatment and process control (Chapter 7 and 8). 

Significance of the work 

This thesis contributes to a better understanding of the relevant N2O production 
pathways, including the discussion of N2O impacting process parameters. However, the 
wide range of emissions observed, as well as the multiple factors correlating with 
them, result in complex and dynamic N2O emission patterns, which makes it 
challenging to formulate general plant operating strategies for keeping N2O emissions 
low. Therefore, it is suggested to implement a continuous on-line N2O off-gas 
measurement at full-scale plants. Investment costs are estimated to be higher, but still 
in the same order of magnitude, compared to conventional commercially available ion 
selective electrodes, as usually applied for online NH4

+ or NO3
- measurement (please see 

also Chapter 8). Consequently, every plant can be optimized individually with respect to 
its overall carbon footprint. Moreover, the implementation of a financial GHG crediting 
system, as suggest by Wang et al. (2011), could be an additional incentive to promote 
widespread adoption of a continuous N2O off-gas monitoring concept. 

The site-specific isotopic signatures of N2O produced during biological nutrient 
removal, and determined in this study, is a novel approach in the field of wastewater 
treatment, and will very likely be increasingly applied in future work. Accordingly, this 
method has the potential to substantially improve the understanding of N2O emission 
dynamics in biological nutrient removal, especially when combined with other tools, 
such as molecular approaches (e.g. Yu et al., 2010) and mathematical modeling (e.g. Ni 
et al., 2011; Ni et al., 2012; please see also Chapter 2). 

Our improved understanding of the involved mechanisms is deemed to be relevant 
well beyond wastewater treatment, since the biochemical processes also occur in 
aquatic environments (e.g. surface waters, sediments), in agricultural soils (the 
dominant global N2O source) as well as other ecosystems and technical processes, and 
play a crucial role in the global N cycle. 

Outline 

In the first part of this thesis (chapters 3 to 5), the mechanisms of N2O production are 
investigated, based on concentration and emission data combined with the nitrogen 
isotopic signature of N2O. With the latter being a novel approach in the field of 
biological nutrient removal. In the second part (chapter 6), the dynamics and levels of 
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N2O emissions are studied in pilot-scale. Finally, in chapter 7 and 8, N2O off-gas 
measurement as a process control parameter was investigated for a nitritation-
anammox process, which is judged to be a promising approach for future applications 
and a necessary stepping stone toward implementation in conventional full-scale 
plants. 

In the first part of Chapter 2 an overview is given over the current state of knowledge 
concerning N2O production pathways and mechanisms, while the second part focuses 
on novel methods for future investigations of N2O emissions from natural as well as 
engineered systems. One of the presented methods is about the nitrogen isotopic 

signature of N2O (site preference, δ15N), which is a novel tool in biological wastewater 
treatment and applied in this thesis (see chapter 3 and 4). 

In Chapter 3 the mechanisms of N2O production are investigated in a lab-scale 
bioreactor. Based on N2O emission data in combination with NH4

+, NO2
- and NO3

- 
concentration profiles, production pathways and mechanisms are discussed. The main 
conclusion is that there was a small contribution of NH2OH oxidation at the beginning 
of the aeration phase when NH4

+ concentration is high but NO2
- still low, while in the 

course of nitrification a shift to nitrifier denitrification driven N2O production is 
observed. 

Chapter 4 introduces the nitrogen isotopic signature of N2O as a novel method in 
biological wastewater treatment (see Chapter 2). The isotopic signature of the different 
N2O production pathways was investigated based on lab-scale experiments where 
substrate availability was controlled in order to ‘promote’ the different production 
routes. The data confirm that under aerobic conditions, NO2

- reduction, presumably by 
AOB, is the dominant N2O production pathway. The contribution from NH2OH oxidation 
is only of minor importance. This is an important aspect concerning the actual debate 
about the N2O production mechanisms in biological wastewater treatment. 

In Chapter 5 the nitrogen isotopic signature of N2O was applied to a pilot-scale 
treatment plant operated at different dissolved oxygen concentrations. The data 
confirm the findings of Chapter 3 and 4, where NO2

- reduction was postulated as the 
dominant N2O production mechanism under aerobic conditions. Moreover, it was 
confirmed that analyzing N2O nitrogen isotopic signature is a promising tool for 
pathway identification in biological wastewater treatment. 

The effect of digester liquid addition to a pilot-scale activated sludge plant was studied 
in Chapter 6. Results show that an increase in influent N load resulted in elevated N2O 
emission, correlating positively with the NO2

- build-up in the nitrification reactor. This 
underscores the fact that an operating strategy at low dissolved NO2

- (<2 mgN/l) and 
with equalized N loads prevents substantial N2O emission. 

In Chapter 7 and 8 the potential of N2O as an indirect measure for dissolved NO2
- will be 

discussed in detail. This application is based on a positive correlation between dissolved 
NO2

- and N2O off-gas concentration (as reported for conventional treatment schemes; 
see e.g. chapter 6). A nitritation-anammox reactor was operated at different aeration 
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rates in order to control NO2
- accumulation, which is feasible due to the absence of 

NOBs, and due to anammox inhibition if molecular oxygen is not promptly depleted by 
AOB activity. It is shown that N2O emission can be controlled by adjusting the airflow 
rate, with high emissions at high aeration rates, and vice-versa. Moreover, NO2

- 
reduction and NH2OH oxidation seemed to contribute to N2O production as 
independent mechanisms, and thus did not always result in a clear linear NO2

-/N2O 
correlation. However, reactor operation at minimal N2O emission avoided situations of 
NO2

- accumulation, which is expected to improve overall process stability of nitritation-
anammox reactors, and thus suggests incorporating continuous N2O off-gas 
measurement in the process control. 

Appendix A shows an article about N2O emission of sludge incineration (in German). 

Appendix B shows an overview article about N2O emission of biological wastewater 
treatment (in German). 
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Abstract 

Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it 
is an effective greenhouse gas and it leads to ozone depletion through photo-chemical 
nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in 
atmospheric concentration requires an understanding of the mechanisms that lead to 
its formation in natural and engineered microbial communities. N2O is formed 
biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite 
(NO2

-) to NO and further to N2O. Our review of the biological pathways for N2O 
production shows that apparently all organisms and pathways known to be involved in 
the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of 
NO2

- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is 
only performed by ammonia oxidizing bacteria. In addition to biological pathways, we 
review important chemical reactions that can lead to NO and N2O formation due to the 
reactivity of NO2

-, NH2OH and nitroxyl (HNO). Moreover, biological N2O formation is 
highly dynamic in response to N-imbalance imposed on a system. Thus, understanding 
NO formation and capturing the dynamics of NO and N2O build-up are key to 
understand mechanisms of N2O release. Here, we discuss novel technologies that allow 
experiments on NO and N2O formation at high temporal resolution, namely NO and 
N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with 
quantum cascade laser based absorption spectroscopy. In addition, we introduce other 
techniques that use the isotopic composition of N2O to distinguish production 
pathways and findings that were made with emerging molecular techniques in 
complex environments. Finally, we discuss how a combination of the presented tools 
might help to address important open questions on pathways and controls of nitrogen 
flow through complex microbial communities that eventually lead to N2O build-up. 

Key words 

Isotopic signature; micro-sensors; molecular tools; dinitrogen oxide; nitrogen 
monoxide; pathway identification; quantum cascade laser based absorption 
spectrometry, site preference 
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Introduction 

Nitric oxide (NO) and nitrous oxide (N2O) are atmospheric trace gases that influence 
atmospheric chemistry and the greenhouse effect. Biological and chemical processes 
produce N2O on the earth surface (Crutzen, 1979). Entering the stratosphere, N2O is 
converted to NO by photo-oxidation. NO together with nitrogen dioxide (NO2) 
participate in a set of reactions that transfer ozone (O3) to molecular oxygen (O2), 
thereby leading to O3 layer depletion. In fact, N2O is and will remain the dominant O3-
depleting substance in the 21st century (Ravishankara et al., 2009), since the use of 
chlorofluorocarbons has been restricted by the Montreal Protocol. In addition, N2O is a 
potent greenhouse gas. The infrared radiative forcing of one N2O molecule is 206 times 
that of one carbon dioxide (CO2) molecule (Stein and Yung, 2003). Together with the 
long atmospheric lifetime of N2O (~ 120 years) this results in a ~300 times higher global 
warming potential of N2O than that of CO2 on a per molecule basis. Overall, N2O 
contributes 6 to 8 % to the anthropogenic greenhouse effect, despite its relatively low 
atmospheric concentration (~322 ppbv) (Montzka et al., 2011). 

Over the last 100 years atmospheric N2O concentrations have been steadily increasing 
due to the massive introduction of fixed nitrogen into the environment by humans 
(IPCC, 2001). Counteracting the further increase of N2O in the atmosphere will rely on (i) 
decreasing the introduction of fixed nitrogen into the environment by humans, (ii) 
exactly quantifying the important environmental sources of N2O, and (iii) 
implementing effective strategies to mitigate its formation in nitrogen-transforming, 
man-made ecosystems such as agriculture and wastewater treatment. Thus, there is 
an urgent need to understand the mechanisms that underpin the formation of N2O in 
natural and engineered microbial communities. 

In this review, we will outline the current state-of-the-art on biological and chemical 
processes that can produce and consume N2O and NO - an important precursor of N2O 
in many biological pathways. We will discuss pathways that produce NO and N2O in 
natural and engineered microbial communities and experimental approaches that can 
be used to distinguish between different pathways in these systems. Importantly, NO 
and N2O formation can be highly dynamic and occur at small spatial scales. Thus, we 
will further introduce two novel technologies that provide such data and how they can 
lead to mechanistic insight: (i) NO and N2O microelectrodes and (ii) the analysis of the 
site preference in N2O measured with quantum cascade laser based absorption 
spectrometry. In addition, we discuss the challenges of incorporating molecular 
biological techniques in this scheme. 

Biological pathways for NO and N2O production 

The study of laboratory cultures for pathways and controls of NO and N2O production 
in different organisms has generated considerable knowledge, which was partly 
reviewed recently (Stein, 2011; Chandran et al., 2011). Figure 1 shows that the sequential 
reduction of nitrite (NO2

-) to NO and further to N2O can be performed by all organisms 
involved in the catabolic branch of the N-cycle. While all N-cycle organisms can perform 



  Chapter 2 

19 

these reactions it is currently believed that denitrifiers and ammonia oxidizing bacteria 
(AOB) and archaea (AOA) are the most important environmental sources of N2O. 
However, in the following section we additionally review the evidence for NO and N2O 
production by nitrite oxidizing bacteria (NOB), anaerobic methane (N-AOM) and 
ammonia oxidizing bacteria (anammox), and bacteria that perform dissimilatory 
nitrate reduction to ammonia (DNRA). Even though it is clear that these bacteria can 
produce NO and N2O there is only few information on the controls, conditions and 
magnitude for NO and N2O production by these bacteria in the laboratory and in the 
environment. This should be an important aspect of future research as e.g. DNRA and 
anammox are the major N-conversion pathways in some important environments. 

Denitrification. The key enzyme for NO formation during denitrification is nitrite 
reductase (Nir). Purification and characterization of Nir from several bacteria revealed 
two entirely different periplasmic enzymes: a heme-containing cytochrome cd1 Nir 
(NirS) and a copper-containing Nir (NirK) as reviewed by Cutruzzolà (1999). Reduction of 
NO to N2O is mediated by respiratory nitric oxide reductases (Nor). Respiratory Nor 
proteins are integral membrane proteins that fall into two groups: one is a cytochrome 
bc complex that can use c-type cytochromes as electron donors (cNor), whereas the 
other one lacks a cytochrome c component and accepts electrons from quinols (qNor; 
sometimes termed NorZ) (Hendriks et al., 2000; Zumft, 2005). Few bacteria use qNor 
for classical denitrification. Rather, qNor is mainly encoded by pathogenic bacteria that 
use it for NO detoxification and the survival of anoxic periods when expressed in 
concert with Nir, as shown for Neisseria spp. (Anjum et al., 2002; Rock et al., 2007). The 
final step in denitrification is mediated by nitrous oxide reductase (Nos), a multi-copper 
enzyme that reduces N2O to dinitrogen (N2) (Zumft and Kroneck, 2007).  

N2O reduction by Nos is the only known N2O consuming process that can counteract 
release of N2O from ecosystems (Richardson et al., 2009). Accumulation of N2O is often 
observed in pure cultures (Otte et al., 1996; Baumann et al., 1996; Kester et al., 1997; 
Bergaust et al., 2010) and mixed microbial communities (Firestone and Tiedje, 1979; 
Firestone et al., 1980; Morley et al., 2008; Kampschreur et al., 2008b; Schreiber et al., 
2009; Elberling et al., 2010; Pellicer-Nàcher et al., 2010; Liengaard et al., 2011) during 
transitions from anoxic to oxic conditions or vice versa (Table 1). Even in pure cultures 
the physiological basis for this is not well understood because it probably has multiple, 
strain-specific reasons. It has been hypothesized that Nos is - unlike Nir and Nor - 
inhibited by O2 (Morley et al., 2008), but in pure cultures evidence for O2-insensitive 
(Berks et al., 1993) and O2-sensitive (Otte et al., 1996) Nos have been reported. Likewise, 
it has been argued that expression of Nos is slower than that of the preceding 
denitrification enzymes (Stief et al., 2009; Firestone et al., 1980), but in Paracoccus 
denitrificans Nos synthesis is faster (Baumann et al., 1996; Bergaust et al., 2010) and in 
Pseudomonas stutzeri Nos is even constitutively expressed at low levels (Körner and 
Zumft, 1989). More studies on Nos expression in relation to N2O production pathways 
and on Nos inhibition by O2 are needed with environmentally relevant isolates and 
mixed microbial communities. Additional factors that lead N2O accumulation are the 
slower turnover of Nos at low pH as compared to nitrate reductase (Nar), Nir and Nor 
(Richardson et al., 2009; Bergaust et al., 2010), low pH during Nos assembly (Bergaust et 
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isotopic composition (δ15N) and the site preference (SP) in isotopomers of N2O produced 
by AOB and denitrifiers, respectively. 

Ammonia oxidizing bacteria (AOB). High levels of NO and N2O can be produced by pure 
cultures of aerobic AOB (Lipschultz et al., 1981; Kester et al., 1997; Shaw et al., 2006), but 
the mechanism is not completely understood. Generally, two different pathways are 
inferred. First, the activity of nitrifier-encoded NirK and cNor reduces NO2

- to NO and 
N2O in a pathway termed nitrifier denitrification (Poth and Focht, 1985; Wrage et al., 
2001; Schmidt et al., 2004b). A few reports exist on N2 formation by AOB during nitrifier 
denitrification, but a nosZ gene or functional Nos in AOB was not demonstrated (Poth, 
1986; Schmidt et al., 2004b; Schmidt, 2009). The term nitrifier denitrification is 
somewhat misleading as it has until now not been shown that it is a true dissimilatory 
process for energy conservation and growth, but rather may be a detoxification 
mechanism to counteract the accumulation of NO2

- to toxic concentrations (Beaumont 
et al., 2002, 2004a, 2004b). 

In the second pathway, N2O is formed by hydroxylamine (NH2OH) oxidation. The 
current model is that hydroxylamine oxidoreductase (HAO) oxidizes NH2OH to NO 
(Hooper, 1968; Hooper and Terry, 1979). NO is then reduced to N2O by a yet unidentified 
Nor; a potential candidate is cytochrome c554 (Upadhyay et al., 2006). However, the 
catalytic cycle of HAO, including its intermediates and its catalytic potential are a 
subject of ongoing debate (Hendrich et al., 2002; Cabail and Pacheco, 2003; Cabail et al., 
2005; Fernández et al., 2008; Kostera et al., 2008) and as of yet direct formation of N2O 
from HAO or other reactions cannot be excluded. Indeed, the difference in the site 
preference (SP) of N2O produced by NH2OH oxidation and nitrifier denitrification 
indicates that N2O might be produced by HAO by a mechanism that (i) either does not 
involve NO reduction by canonical Nor used for nitrifier denitrification or (ii) does 
proceed via a completely different mechanism without free NO as intermediate 
(discussed in section ‘site preference’ and ‘HNO as intermediate of enzymatic 
hydroxylamine oxidation’). Both nitrifier denitrification and NH2OH oxidation require O2 
to activate ammonia (NH3) with ammonia monooxygenase (AMO) to NH2OH, which 
serves as a substrate for HAO or as electron donor to nitrifier denitrification. A pathway 
in which AOB perform denitrification with organic substrates instead of NH3 as electron 
donor (Schmidt, 2009) should be considered heterotrophic denitrification performed by 
AOB. Ammonia oxidizing archaea (AOA) have also been demonstrated to produce N2O 
probably by pathways akin to AOB (Santoro et al., 2011). 

The relative importance of NH2OH oxidation and nitrifier denitrification for NO and N2O 
production is still debated. Based on pure culture investigations Yu et al. (2010) 
hypothesized that a high NH3 oxidation activity favors N2O production via NH2OH 
oxidation. Similarly, Wunderlin et al. (2012) found that NH2OH oxidation is favored by 
high NH3 and low NO2

- concentrations, and a high nitrification rate in a mixed culture 
for treating municipal wastewater. Moreover, stable nitrogen isotopes work with AOB 
pure cultures showed that NH2OH oxidation contributes to N2O production mainly at 
high O2 whereas nitrifier denitrification is more active at low O2 concentrations (Sutka 
et al. 2006). 
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Nitrite oxidizing bacteria (NOB). NOB form NO and N2O during denitrification of nitrate 
(NO3

-) or NO2
- with pyruvate or glycerol as electron donor under anoxic conditions 

(Freitag et al., 1987; Ahlers et al., 1990), but a known NO reductase could not be 
identified in the genomes of different Nitrobacter species and 'Candidatus Nitrospira 
defluvii' (Starkenburg et al., 2006, 2008b; Lücker et al., 2010). Under anoxic conditions 
nitrite oxidoreductase (NXR) mediates NO3

- reduction to NO2
-, while it mediates the 

reverse reaction under oxic conditions (Freitag et al., 1987). NOB actively express NirK, 
which co-purifies with NXR, in the presence of NO2

- and if O2 concentrations are low 
(Ahlers et al., 1990; Starkenburg et al., 2008a). NO generated by NOB-NirK is thought to 
direct cellular electron flux either toward O2 respiration at high O2 concentrations or 
toward NADH synthesis by reversibly inhibiting cytochrome oxidase at low O2 
concentrations. An interesting question to explore in natural communities would be 
whether NO produced by AOB or denitrifying bacteria can influence the activity of NOB. 

Dissimilatory nitrate reduction to ammonia (DNRA). NO and N2O turnover by bacteria 
that perform DNRA has been mainly investigated in Escherichia coli and Salmonella 
typhimurium. In E. coli, NO formation is mediated by cytochrome c nitrite reductase 
(Nrf) under anoxic conditions in the presence of NO3

- and NO2
- (Corker and Poole, 2003). 

NO detoxifying enzymes, such as flavorubredoxin, may further reduce NO to N2O. On 
the other hand, E. coli Nrf reduces NO to N2O or NH3 if electrons are donated to the 
enzyme at high or low potential, respectively (Costa et al., 1990), contributing to 
detoxification of exogenously generated NO (van Wonderen et al., 2008). Aerobic and 
anaerobic NO formation from NO2

- in S. typhimurium is mediated by membrane-bound 
nitrate reductase (Nar). Under aerobic conditions, activity of NO detoxifying Hmp (see 
below) oxidizes NO to NO3

- resulting in non-detectable NO concentrations in culture 
suspensions (Gilberthorpe and Poole, 2008). 

Anaerobic methane and ammonia oxidizing bacteria. Bacteria that mediate the 
oxygenic nitrite-dependent oxidation of methane (N-AOM) and anaerobic ammonia 
oxidation (anammox) have been shown to use NO as an intracellular intermediate 
produced by NO2

- reduction via NirS while they consume exogenous NO without 
concurrent N2O formation (Ettwig et al., 2010; Kartal et al., 2010, 2011). Rather, N-AOM 
dismutates NO to form N2 and O2, while anammox couples the reduction of NO to a 
condensation with NH3 to produce hydrazine (N2H4). Both have the genetic potential to 
reduce NO to N2O; anammox bacteria encode for flavorubredoxin (Strous et al., 2006) 
and N-AOM encodes for qNor (Ettwig et al., 2010). However, physiological data for both 
indicates that they withstand rather high NO levels (N-AOM 20 μmol L-1, anammox 7 
μmol L-1) without activating anaerobic NO detoxification mechanisms.  

NO2
- → NO → N2O. central steps in the N-cycle. Generally, the reduction of NO2

- to NO is 
a central step in the catabolic branch of the N-cycle, because it can be carried out by all 
involved organisms (Figure 1). The reduction of NO2

- to NO is central for energy 
conservation in denitrification, anammox and N-AOM. In contrast, during NO2

- 
oxidation and nitrifier denitrification the reduction of NO2

- to NO is involved in 
regulating metabolic homeostasis or the removal of toxic NO2

- (Beaumont et al., 2002, 
2004a; Starkenburg et al., 2008). 
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The reduction of NO to N2O is, besides a potential direct formation of N2O from NH2OH 
in AOB, the only known biochemical reaction that produces N2O. NO reduction to N2O is 
central for energy conservation only in denitrification (Zumft, 1997). The function of 
cNor in AOB is unclear. cNor is expressed and metabolically active during aerobic 
growth (Beaumont et al., 2004b). Knock-out mutants of cNor have lower growth rate 
and yield in chemostats (Schmidt et al., 2004b) but not in batch culture (Beaumont et 
al., 2004b). In chemostats, cNor regulates the free NO concentration to an optimal, 
non-toxic level and contributes to recovery of AOB from anaerobic conditions (Schmidt 
et al., 2004b). On the other hand, stripping NO from AOB cultures leads to the 
inhibition of growth, arguing for NO being an obligate intermediate of AOB (Zart et al., 
2000). 

NO detoxification and NO synthesis. Most bacteria encode for enzymes involved in NO 
detoxification. This is true for bacteria inside and outside the catabolic N-cycle. 
Flavohemoglobins (Hmp) mediate the O2-dependent detoxification of NO to NO3

- with 
NO dioxygenase activity (Gardner et al., 1998). In contrast, the anaerobic detoxification 
of NO is mediated by Flavodiiron NO reductase (flavorubredoxin [NorVW]) and Hmp by 
reducing NO to N2O (Kim et al., 1999; Gardner et al., 2002; Gomes et al., 2002). 

An alternative, less explored route to N2O formation is via the synthesis of NO from 
arginine by NO synthases (NOS) and subsequent reduction of NO to N2O by cNor, qNor, 
Hmp or NorVW. Because NOS was discovered in the medical field it shares a similar 
abbreviation with N2O reductases (Nos). Until now, NOS has only been detected in a 
few bacterial –mostly gram-positive – species (Sudhamsu and Crane, 2009) and 
synthesized NO seems to remain intracellular (Shatalin et al., 2008; Schreiber et al., 
2011). However, NOS activity has also been reported in blooming, pelagic diatoms (Vardi 
et al., 2006). More research is needed to elucidate if NOS-derived NO is a significant 
source for N2O emitted from phytoplankton blooms in oceans and freshwater. 

Chemical reactions in NO and N2O turnover 

Chemical production of NO and N2O from inorganic nitrogen compounds at ambient 
temperatures are well known phenomena in soil science (van Cleemput and Samater, 
1996) and atmospheric chemistry (Lammel and Cape, 1996). In soil science, the 
chemical processes leading to NO and N2O are often summarized as chemo-
denitrification (Chalk and Smith, 1983). NH2OH and NO2

- (or its acid HNO2) are the main 
precursors for chemical production of NO and N2O in wastewater or natural waters. In 
the following, we discuss chemical reactions involving HNO, NH2OH and NO2

- that can 
be responsible for the release of NO and N2O. We will also discuss the possible 
significance of chemical N2O production during biological NH2OH oxidation. 

Significance of HNO. In many studies on chemical N2O production, HNO is postulated 
as the direct precursor of N2O (see below): HNO dimerizes via hyponitrous acid (H2N2O2), 
to N2O and H2O (Bonner and Hughes, 1988).  

2 HNO → H2N2O2 → N2O + H2O    Equation 1 
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It can be assumed that formation of HNO in natural and wastewater follows the same 
mechanisms that are used to synthesize HNO (DuMond and King, 2011) in the 
laboratory: (i) disproportionation of NH2OH derivatives containing good leaving groups 
attached to the nitrogen atom and (ii) decomposition of nitroso compounds (X-N=O, 
where X represents a good leaving group). Chemical HNO production is a likely process 
for wastewater treatment, since nitrification can produce considerable amounts of 
both, HNO2, which is a precursor for nitrosation agents (e.g. dinitrogen trioxide N2O3, 
Bonner and Stedman, 1996), and NH2OH. 

Recently, medical researchers have started to reevaluate the relevance of HNO for 
physiologically and biologically systems (Fehling and Friedrichs, 2011). The increased 
interest in HNO is due to the fact that HNO lifetime in aqueous solutions is much 
longer than previously assumed: the HNO dimerization rate constant has been 
reassessed to be on the order of 8·105 M-1·s-1 instead of the previously reported value of 
2·109 M-1·s-1, and the pKa value of HNO has been redetermined to be 11.4 instead of the 
old value of 4.2 (Shafirovich and Lymar, 2002). It is likely that the importance of HNO 
has also been underestimated in the research on N2O emissions. Analytical 
determination of HNO is very challenging (Miranda, 2005), because HNO is short-lived. 
However, computer simulations could be a helpful tool to assess the importance of 
HNO in N2O formation (Law et al., 2012). 

HNO2 disproportionation. A well understood process for NO production is the 
disproportionation of HNO2 (Udert et al., 2005). Since the pKa value of the NO2

-/HNO2 
couple (pKa = 3.29; Schwartz and White, 1981) is far below 7, this process releases 
relevant amounts of NO only under acidic conditions. The disproportionation of HNO2 
can be described with Equation 2. The products - NO and NO2 - are in equilibrium with 
N2O3 (Eq. 5) which is an important agent for nitrosation (Bonner and Stedman, 1996). 
Under aerobic conditions, NO will be further oxidized to NO2. Since NO2 reacts with H2O 
to form HNO2 and NO3

-, the reaction scheme (Eq. 2 to 4) is ultimately a chemical 
pathway for the oxidation of NO2

- to NO3
-. 

2 HNO2 ↔ NO + NO2 + H2O     Equation 2 

NO + 0.5 O2 → NO2      Equation 3 

2 NO2 + H2O ↔ HNO2 + NO3
- + H+    Equation 4 

NO + NO2 ↔ N2O3      Equation 5 

Since the kinetic and equilibrium constants for Equations 2 to 5 are known, the 
production of NO can be calculated (Udert et al., 2005). Depending on the aeration 
intensity, substantial losses of nitrogen oxides can occur during chemical HNO2 
oxidation. The stripped nitrogen oxides are mainly HNO2, but also NO is lost. 

Iron-mediated reduction of NO2
-. Ferrous iron (Fe(II)) can reduce NO2

- to NO and, in the 
second reaction step, NO to N2O (Kampschreur et al., 2011) 
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NO2
- + Fe2+ + 2H+ → Fe3+ + NO + H2O   ΔG0 = 35.8•kJ reaction−1 

 Equation 6 

NO + Fe2+ + H+ → Fe3+ + 0.5 N2O + 0.5 H2O   ΔG0 = −38.9 kJ reaction−1  
Equation 7 

The first reaction is thermodynamically not possible under standard conditions, but in 
natural waters ferric iron (Fe(III)) will precipitate and thereby draw the Gibbs free 
energy to negative values. Iron-mediated reduction of NO2

- was described as one of the 
sources of N2O in soils (Van Cleemput, 1998). Recently, Kampschreur et al. (2011) 
postulated that this process can contribute significantly to N2O production in 
wastewater treatment, if NO2

- and Fe(II) are present concomitantly. One example for 
such a system is nitrogen removal from anaerobic digester effluents via 
nitritation/denitrification or nitritation/anammox. Digester supernatants can contain 
high amounts of Fe(II), because iron salts are used to precipitate phosphate and Fe(II) 
will be released in the anaerobic digester due to the reducing conditions. Hu et al. 
(2001) reported an additional reaction of NO2

- with iron: under acidic conditions NO2
- is 

reduced in the presence of metallic iron to N2 and NH3. They propose a mechanism, in 
which metallic iron is oxidized at low pH releasing Fe2+ ions and molecular hydrogen 
(H2). NO2

- is then reduced by H2 to N2 and NH3. 

Oxidation of NH2OH by Fe(III). Iron not only mediates NO and N2O production from NO2
-

. As Fe(III), it also oxidizes NH2OH to N2O. This process can be used for the analytical 
determination of trace amounts of NH2OH (Butler and Gordon, 1986a). The general 
equation for the reaction is 

4 Fe(III) + 2 NH2OH → 4 Fe(II) + N2O + H2O + 4 H+   Equation 8 

In this reaction, N2O formation strongly depends on the pH value. In experiments with 
distilled water and natural seawater, Butler and Gordon (1986b) found that at pH 3, N2O 
recovery was 80 %, while at a pH value of 9.5, N2O production was negligibly low. The 
authors hypothesized that at high pH values, HNO, reacts with O2 to produce NO2

- and 
H2O. However, it is also known that HNO can react with NH2OH to N2 (Bonner et al. 
1978, Eq. 10). Chemical production of N2O via NH2OH oxidation by Fe(III) is a likely 
process during nitrification, because Fe(III) compounds are ubiquitous in natural waters 
and wastewater treatment systems. 

Reaction of NH2OH with HNO2 and HNO. Döring and Gehlen (1961) investigated the 
reaction of NH2OH and HNO2. They described the process as nitrosation of NH2OH. The 
overall reaction can be written as 

NH2OH + HNO2 → N2O + 2 H2O     Equation 9 

In their reaction scheme, Döring and Gehlen (1961) included H2N2O2 (the dimer of HNO) 
as a direct precursor for N2O. At neutral pH values, N2O3 is the relevant nitrosation 
agent. There are several reaction pathways for N2O3 formation from HNO2. Formation of 
N2O3 from HNO2 is given by Equation 2 and 5. A kinetic constant for nitrosation of 
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NH2OH is given by Döring and Gehlen (1961) and together with the kinetic constants for 
Equation 1 and 4 (Udert et al., 2005) the N2O production from NH2OH and HNO2 can be 
estimated. Some of the NH2OH can also react with the intermediate HNO to form N2 
(Bonner et al., 1978) 

HNO + NH2OH → N2 + 2 H2O     Equation 10 

Disproportionation of NH2OH. The disproportionation of NH2OH can be described with 
the following equation (Bonner et al., 1978) 

4 NH2OH → 2 NH3 + N2O + H2O    Equation 11 

In pure water, this process is very slow with slightly higher degradation rates at 
elevated pH values. At pH 3 and 25±3 °C, Bonner et al. (1978) observed no NH2OH 
disproportionation over 2 months, while 12 to 18% of the NH2OH was degraded over two 
months at pH 13.5. Complexes of transition metals can accelerate NH2OH 
disproportionation considerably (Alluisetti et al., 2004). Jenni et al. (2012) also observed 
N2O formation within minutes, although the experiment was conducted in a 
phosphate buffer solution without transition metals. The disproportionation might 
have been catalyzed by the steel surface of an electrode immersed in the reactor, but 
this hypothesis still has to be proven. 

Autoxidation of NH2OH. Oxidation of NH2OH with O2 (autoxidation, Eq. 12) is a slow 
process, although faster than NH2OH disproportionation. 

2 NH2OH + O2 → N2O + 3 H2O     Equation 12 

Again, trace concentrations of metals can strongly accelerate the process. Anderson 

(1964) reported that in an aerated solution with 1 mmol•L-1 NH2OH and 1 μmol•L-1 
cupric sulfate 30% of the NH2OH was oxidized within 1 hour, while only 2.5 % were 
degraded without cupric sulfate addition (pH between 7.8 and 7.9, 30°C). Cu is by far 
the most potent catalyzer for the autooxidation of NH2OH followed by Co(II), Fe(II), 
Mn(II) and Zn(II) (Moews Jr and Audrieth, 1959). Since most wastewaters and natural 
waters contain some traces of metals, autoxidation of hydroxylamine cannot a priori be 
excluded as a source of N2O. 

HNO as intermediate of enzymatic NH2OH oxidation. Several authors postulated that 
HNO was a likely intermediate of HAO due to the observed N2O production (Ritchie and 
Nicholas, 1972; Anderson 1964). Igarashi et al. (1997) could show that the crystal 
structure of HAO in Nitrosomonas europaea is in agreement with the following two 
step reaction  

NH2OH → (HNO) + 2 H+ + 2 e-     Equation 13 

(HNO) + H2O → HNO2 + 2 H+ + 2 e-    Equation 14 

Based on this scheme, an imbalance of the two reaction steps could lead to an 
accumulation of HNO and subsequently to chemical N2O production (Eq. 1). Law et al. 
(2012) developed four different metabolic computer models to elucidate the 
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mechanisms of aerobic N2O production in a nitritation reactor. The best fit of the 
measurement data was achieved with a model based on chemical HNO production. 
The other models, which represented three different metabolic pathways for the 
enzymatic reduction of nitrite and NO to N2O, could not reproduce the measurement 
data satisfactorily. Indeed, we think that the positive site preference (SP) of N2O 
produced during NH2OH oxidation can be explained by a kinetic isotope effect acting 
during the chemical cleavage of a symmetric intermediate such as H2N2O2 formed by 
dimerization of two HNO molecules (Eq. 1; Toyoda et al., 2005). In addition, the studies 
of Law et al. (2012) and of Udert et al. (2005) exemplify that computer models are 
powerful tools to elucidate the mechanisms of N2O and NO production, especially 
when the processes contain microbial as well as chemical reaction steps. 

Relevant environments for chemical reactions. In the last years, nitrogen treatment of 
high-strength wastewaters such as digester supernatant, manure and urine have 
received considerable attention. Based on our literature review, these systems are 
particularly prone to chemical production of NO and N2O because of high NH3 oxidation 
rates and high concentrations of the intermediate NH2OH. Furthermore, some 
treatment schemes include NO2

- accumulation as a process step, for example 
SHARON®. Ubiquitous iron compounds, e.g. from phosphate precipitation or as sensors 
and reactor walls, are another factor that can support the production of NO and N2O. At 
the current stage of knowledge, it is hard to estimate the contribution of chemical 
processes to the overall NO and N2O production. Many chemical processes have been 
described, but with the exception of HNO2 disproportionation and the reaction of HNO2 
with NH2OH, the kinetic data are insufficient for a reliable prediction of the production 
rates. Chemical production of NO and N2O can also occur in natural environments, 
where high ammonia inputs meet low pH values such as strongly fertilized soils (van 
Cleemput and Samater, 1996) or poorly buffered lakes (Schuurkes and Mosello, 1988). 
Furthermore, chemical oxidation of NO and N2O is an important process in the 
atmosphere (Lammel and Cape, 1996).  

NO and N2O formation in natural environments 

Nitric oxide. NO production and consumption has been studied in soils. The studies 
used inhibition of nitrification with low concentrations of acetylene (~10 Pa) to 
distinguish between NO turnover by nitrification and denitrification, assuming that 
acetylene does not inhibit N2O reductase at these concentrations. O2 availability, as 
regulated by soil moisture content, is the main factor controlling the mechanisms of 
NO release (Bollmann and Conrad, 1998). While denitrification is the only process that 
releases NO under anoxic conditions, nitrification dominates NO release under oxic 
conditions with highest rates at low O2 concentrations. In addition, soil pH, NH4

+, NO3
-, 

NO2
- and respiration are important soil variables that affect NO turnover (Gödde and 

Conrad, 2000). 

Measurements of NO in seawater are rare, because concentrations are low and 
turnover is fast due to its reactivity. However, Zafiriou et al. (1980) found that surface 
water of the central equatorial Pacific is a NO source to the atmosphere. Here, NO is 
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formed by photolysis of NO2
- during daytime and reaches concentrations in the 

picomolar range (Zafiriou and True, 1979). Moreover, NO is formed by microbial 
processes in the O2 minimum zone of the eastern tropical North Pacific (Ward and 
Zafiriou, 1988). Here, maximum NO turnover and concentration coincide with low O2 
concentrations (10 – 100 μmol L-1) and some nitrification activity overlying the O2 
minimum zone. In contrast, NO turnover and concentrations are low in the core of the 
O2 minimum zone. The exact source of NO remained unidentified, but it was 
hypothesized that nitrifiers produce NO under reduced O2 concentrations and that 
denitrifiers establish rather low NO concentrations in the core of the O2 minimum zone. 
NO formation has been measured in marine sediments (Schreiber et al., 2008) and a 
more detailed study of NO turnover has been performed in freshwater sediments 
(Schreiber in preparation). Both studies will be discussed in the section focusing on 
microelectrodes. 

Nitrous oxide. Generally, N2O formation has been investigated to greater detail and in a 
wider variety of habitats as compared to NO, because its environmental impact is 
considered to be stronger than that of NO and its turnover is easier to measure due to 
its chemical stability. At present anthropogenic N2O emissions account for ~40 % of the 
global N2O emissions (Montzka et al., 2011). Current estimates state that ~50 % of the 
anthropogenic N2O is emitted from soils (Stein and Yung, 2003), 10 % from estuaries 
and freshwater habitats (Beaulieu et al., 2011) and 3.2 % are emitted from wastewater 
treatment plants (WWTP) (Kampschreur et al., 2009). We caution that future 
adjustments to these estimates are likely, and that these averages do not capture the 
high variability in emissions from selected environments. Recent work has suggested 
that emissions from WWTPs in particular are highly variable and may in some cases be 
up to an order of magnitude greater than previous estimates (Lotito et al, 2012; Ahn et 
al., 2010). Soils and aquatic habitats exposed to intense agricultural activities are the 
largest sources due to high N-input through fertilization. Since mixed microbial 
communities in soils are the largest anthropogenic source for N2O, its formation has 
been intensively studied and was recently reviewed (Baggs, 2011). N2O formation in 
WWTP has been reviewed by Kampschreur et al. (2009). 

The ocean is an important source of N2O accounting for ~30 % of the natural N2O 
emission (Stein and Yung, 2003). Large areas of the ocean are thought to be in 
equilibrium with the atmosphere, but regions of O2 depletion are significant sources of 
N2O (Elkins et al., 1978). In O2 minimum zones, N2O is generally produced to 
concentrations in the nanomolar range as O2 reaches low concentrations (Yoshida et 
al., 1989; Naqvi et al., 2000; Farias et al., 2007; Nicholls et al., 2007). High N2O 
accumulation was observed in surface water of the Arabian Sea and explained with 
frequent, turbulence-induced aeration of suboxic surface water (Naqvi et al., 2000). 
Likewise, O2 fluctuations, induced by the El Nino-Southern oscillation, have been 
proposed to affect N2O emission from the O2 minimum zone of the eastern South 
Pacific (Farias et al., 2007). Furthermore, marine and freshwater sediments emit N2O 
(Meyer et al., 2008; Nielsen et al., 2009). NO and N2O formation in sediments will be 
discussed in more detail in the section focusing on microelectrodes. 
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The occurrence of animals such as earthworms (Horn et al., 2003) in soils and 
macrofauna in fresh -or seawater habitats (Stief et al., 2009; Heisterkamp et al., 2010) 
enhances the emission of N2O in response to anthropogenic N-input. These animals 
ingest denitrifying bacteria and stimulate their activity probably with delayed 
expression of N2O reduction leading to enhanced N2O emissions. 

Experimental approaches 

In most investigated habitats NO and N2O formation has been attributed to the NH2OH 
pathway by AOB, nitrifier denitrification and heterotrophic denitrification. There are 
three approaches to determine the contribution of the different pathways: 

(1) Indirect inference of pathways by excluding the activity of all other possible 
pathways, which can be achieved by using inhibitors or by removing the substrate 
(Kampschreur et al., 2008b; Stief et al., 2009; Schreiber et al., 2009; Wunderlin et al., 
2012) 

(2) Measuring the isotopic signature of N2O (15N natural abundance or site preference) 
and comparing the data to values of pure cultures (Yoshida, 1988; Yoshida et al., 1989; 
Sutka et al., 2006; Well et al., 2006; Charpentier et al., 2007; Wunderlin et al., under 
review). 

(3) Application of 15N isotopically-enriched substrates and mass spectrometric 
measurements of N2O (Bateman and Baggs, 2005; Baggs, 2008).  

In complex systems all of these approaches suffer from the coupled nature of 
nitrification and denitrification. This especially applies to studies where bulk 
measurements have been done even though micro-environmental heterogeneities are 
expected; e.g. in aggregates in wastewater treatment systems or in soil particles. In 
addition, it has become clear that NO and N2O are dynamically produced in response to 
changing environmental conditions (Kampschreur et al., 2008b; Schreiber et al., 2009). 
Transient NO and N2O concentrations can be orders of magnitude higher than under 
steady state. Conventional mass spectrometric measurements do not allow 
measurements with high temporal and spatial resolution, making approach 2 and 3 
inaccessible to microscale and dynamic analysis of NO and N2O. 

 

 



 

 

Table 1. Transient formation of NO and N2O in different habitats. 

Habitat Pertubation 
NO [µM] N2O [µM] 

Possible pathway Reference 
baseline peak build-upa recoveryb baseline peak build-upa recoveryb

tropical soil  
(slurries) 

oxic-anoxic     0 
200-
400 

13-20 h 6-10 h Denitrification Liengaard et al. 2011 

agricultural soil  
(cores) 

oxic-anoxic  
by liquid-manure  

injection 
    < 1 200 27 h 48 h Denitrification Markfoged et al. 2011 

agricultural soil  
(aggregates) 

oxic-anoxic  
by tryptone  

addition 
    < 1 400 19.5 h n.d. Denitrification Hojberg et al. 1994 

permafrost soil  
(cores) 

oxic-anoxic  
by thawing 

    < 1 2.5 36 h n.d. Denitrification Elberling et al. 2010 

nitrifying and 
denitrifying biofilm 

oxic-anoxic < 0.03 1.1 5-7 min 15 min 0.5 5 5 min 15 min AOB Schreiber et al. 2009 
oxic-anoxic < 0.03 0.3 30 min n.d. < 0.1 3 30 min n.d. Denitrification  

NO2
- addition < 0.03 1.3 0.5 min 20 min     AOB  

NO2
- addition 0.05 0.4 1 min n.d.     Denitrification  

full scale  
nitritation reactor 

influent shut-down 15 ppmc 80 ppmc ~10 min 1 10 110 4.5 h n.d. 
AOB/Denitrification

and reduced gas 
stripping 

Kampschreur et al. 2008a 

complex  
nitrifying culture 

oxic-anoxic 0.3 ppmc 2.5 ppmc ~ 8 min n.d. 2 11 10 min n.d. AOB Kampschreur et al. 2008b 
NO2

- addition 0.2 ppmc 0.45 ppmc 15 min 45 min 2.4 3.4 15 min 30 min AOB  
membrane-aerated  

biofilm 
oxic-anoxic     < 1 70 25 min 60 min AOB Pellicer-Nàcher et al., 2010 
anoxic-oxic     20 45 20 min 25 min Denitrification  

freshwater sediment salinity increase     0 4 9 h 22 h Denitrification Nielsen et al., 2009 

marine sediment 
salinity decrease 

NO3
- increase 

    0 2.5 2 7 h Denitrification  

Arabian sea water oxic-anoxic     0.05 1.5 72 h 48 h Denitrification/AOB Naqvi et al., 2000 
atime to reach peak concentrations; btime to recover to a new steady-state concentration (not necessarily to baseline concentration); 
cconcentration in ppm instead of μM because it was measured in the gas phase 

 



  Chapter 2 

31 

Novel analytical methods 

In the following sections, we will discuss different analytical methods (microelectrodes, 
mass spectrometry and quantum cascade laser based absorption spectroscopy) that 
can be used to allocate NO and N2O production to certain pathways by using one of the 
three approaches outlined above. Combining these methods and thus the different 
approaches will lead to a more firm pathway allocation. Microelectrodes can measure 
with high temporal and spatial resolution and in combination with other 
microelectrodes (NH4

+, NO3
-, NO2

-, O2) approach 1 can be used to allocate source 
pathways. Further, quantum cascade laser based absorption spectroscopy can measure 
the site preference in N2O dynamically and can be used to allocate N2O production 
pathways with approach 2. In addition, we will discuss the potential for other 
techniques that measure the isotopic composition of N2O and molecular methods to 
aid the understanding of NO and N2O formation in complex environments. 

Microelectrodes to capture micro-environmental distribution and 
temporal dynamics of NO and N2O 

NO and N2O microelectrodes 

Microelectrodes belong to the tool box of microbial ecologists since Revsbech et al. 
introduced an O2 microelectrode in the early 1980's (Revsbech et al., 1980). The first N2O 
microelectrode for microbial ecology (Revsbech et al., 1988) was a combined O2/N2O 
sensor where an O2-reducing gold cathode was placed in front of an N2O-reducing silver 
cathode (both polarized at -800 mV) to avoid the interference of O2 with N2O detection. 
These sensors where difficult to manufacture and had a short life-time. Thus, Andersen 
et al. (2001) introduced an improved O2-insensitive N2O microelectrode. Insensitivity to 
O2 is achieved by placing a reservoir filled with alkaline ascorbate solution for the 
chemical reduction of O2 in front of the N2O-reducing cathode, which is separated from 
the ascorbate reservoir with a gas permeable silicone membrane. These N2O 
microelectrodes have a sensitivity of ~0.5 μmol L-1 and a spatial resolution of ~60 μm. 

Electrochemical NO sensors for the detection of NO in biological systems are available 
since the early 1990’s (Shibuki, 1990). Amperometric sensing of NO is commonly 
achieved by the oxidation of NO at a working electrode polarized with 0.7 - 0.9 V vs. a 
reference electrode (Ag/AgCl or Calomel) leading to the following anodic reaction: 

NO + 2 H2O + 3 e- → NO3
- + 4 H+     Equation 15 

The resulting current is proportional to the NO concentration and can be detected as 
the analytical signal. Electrodes are reported as single anode-type electrodes or as 
combined sensors (Figure 2). In combined sensors, the reference electrode and the 
sensing electrode are placed together in an internal electrolyte compartment that is 
separated from the sample by a gas permeable, non-conductive membrane (Clark-type, 



Chapter 2   

32 

Figure 2B), whereas single anode-type electrodes use the aqueous sample as an 
electrolyte and complete the measuring circuit by submerging an external reference 
electrode into it (Figure 2A). Charged interferences like NO2

- and ascorbate are typically 
repelled by constructing combined sensors with hydrophobic membranes like 
chloroprene (Shibuki, 1990), PTFE (Teflon™) (Lee et al., 2004), sol-gels (Shin et al., 2005), 
polystyrene (Kitamura et al., 2000) or silicone (Schreiber et al., 2008), or by depositing 
conductive Nafion™ on single anode-type electrodes (Malinski and Taha, 1992; 
Friedemann et al., 1996; Bedioui and Villeneuve, 2003). 

Most of the previously described NO electrodes have been optimized to detect NO at 
low nanomolar or even picomolar concentration. This has been achieved by increasing 
the sensing surface with a subsequent loss of spatial resolution. Single-anode type 
sensors commonly rely on carbon-fibers that have a length of up to several millimeters 
and combined sensors have openings in the high micrometer to millimeter range. 
Microelectrodes with long, exposed sensing surfaces are not applicable for profiling in 
stratified microbial systems because the concentration of the analyte might change 
along the sensing surface. The obtained signal is then an integrated measure of the 
concentrations along the electrode. Similarly, combined electrodes with wide openings 
are also problematic for profiling applications, since the step size of different 
measurement points in a depth profile should not be smaller than 2 times the outer 
diameter of the electrode (Gieseke and de Beer, 2004). In addition, single-anode sensors 
are not robust enough to be inserted in a sturdy sediment or soil sample since the 
particles will damage the Nafion membrane that confers selectivity against NO2

-. 
Consequently, applications of NO electrodes – commercially supplied by World 
Precision Instruments (Sarasota, Florida, USA) – in microbiology were restricted to 
detection of NO in pure culture suspensions (e.g. Corker and Poole, 2003). 

Recently, an NO microelectrode was introduced that is applicable to study complex, 
stratified microbial communities in sediments and biofilms (Schreiber et al., 2008). The 
NO microelectrode is a combined (Clark-type) sensor with a carbon-fiber anode (+ 750 
mV) placed behind a gas permeable silicon membrane (Figure 2B). The sensor has a 
detection limit of 0.030 μmol L-1 and a spatial resolution of ~60 μm. Thus, the sensor is 
optimized to provide sufficient sensitivity for NO concentrations produced in complex, 
N-cycling microbial communities and sufficient spatial resolution to measure in 
microbial biofilms, sediments and soils. The robust Clark-type design allows 
measurements in sturdy soil and sediment samples. It has been made commercially 
available through Unisense A/S (Arhus, Denmark), who also supplies N2O 
microelectrodes.   

Interferences. H2S interferes with NO measurement as it passes the silicone membrane 
and is readily oxidized at the sensing anode. A sensitive H2S microsensor (Jeroschewski 
et al., 1996) should thus be used to rule out any interference of H2S in the 
measurements or –if possible- experiments must be designed to avoid active sulfate 
reduction in the sample by excluding sulfate from the medium. Jenni et al. (2012) 
investigated the interferences of CO2 , O2 and various nitrogen compounds commonly 
found in wastewater treatment on NO and N2O sensors. They found that NO interfered 
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Furthermore, the NO microelectrodes have been applied together with N2O 
microelectrodes in two N-cycling microbial biofilms; namely a complex NH4

+-fed 
biofilm with nitrifying and denitrifying activity (Schreiber et al., 2009) and human 
dental plaque that was naturally exposed to high NO3

- and NO2
- in saliva (Schreiber et 

al., 2010). The study in dental plaque showed that plaque denitrified under aerobic 
conditions, that NO and N2O was produced by denitrification and that NO and N2O 
concentrations increased with decreasing pH. Aerobic denitrification has also been 
reported from permeable marine sediments (Gao et al., 2010) and from isolated 
(Patureau et al., 2000) or extracted soil bacteria (Morley et al., 2008). Until now, it is not 
known in which environments aerobic denitrification plays an important role and if it is 
an environmentally significant NO and N2O emission pathway. NO, N2O, NO2

-, NO3
- and 

O2 microelectrodes will be crucial to determine the importance of aerobic 
denitrification for NO and N2O release for complex ecosystems, because these sensors 
allow the simultaneous detection of NO, N2O, NO2

-, NO3
-, O2 concentrations at high 

spatial resolution and their relation to denitrification activity.  

Studying a complex N-cycling biofilm revealed the dynamics of NO and N2O formation 
upon perturbations in a system where nitrification and denitrification co-exist 
(Schreiber et al., 2009). The concomitant use of an O2 microelectrode and a set of 
control experiments enabled assignment of NO and N2O formation under oxic 
conditions to AOB and under anoxic conditions to denitrifiers. It also showed that AOB 
produce NO and N2O under fully oxic conditions if NO2

- concentrations are high. This is 
in agreement with other observations (Beaumont et al., 2004a, 2004b; Shaw et al., 
2006) and contradicts the assumption that AOB require low O2 to release NO and N2O 
(Lipschultz et al., 1981; Poth and Focht, 1985; Kester et al., 1997; Beaumont et al., 2004a; 
Kampschreur et al., 2008b). The high temporal resolution of the microelectrodes allow 
to detect transient bursts (seconds to minutes) of NO and N2O. The bursts occurred by 
AOB upon O2 removal and upon NO2

- addition by both AOB and denitrifiers. The bursts 
only occurred if the perturbations were exerted upon metabolically active AOB and 
denitrifiers. In both scenarios NO and N2O are formed in parallel confirming that NO is 
the preceding intermediate of N2O in the N2O production pathways in this biofilm. An 
important contribution by Yu et al. (2010) showed that an AOB pure culture 
accumulated only NO, not N2O, upon transition from oxic to anoxic conditions. In mixed 
microbial communities were AOB and heterotrophic denitrifiers co-exist this could lead 
to NO release by AOB and immediate reduction to N2O by heterotrophic denitrifiers or 
anaerobic detoxification via NorVW and Hmp. This mixed source of N2O during 
transient oxic to anoxic conditions has to be taken into account when determining the 
pathways with isotopic techniques. It has been argued that N2O transiently 
accumulates during transition from anoxic to oxic conditions because O2 inhibits Nos 
while denitrification still proceeds, but direct evidence for this hypothesis is weak. 
Using both NO and N2O microelectrodes would allow to test this because N2O 
accumulation should not be accompanied by NO accumulation if the denitrification 
sequence is inhibited at the level of Nos. 
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Application of N2O microelectrodes 

In many habitats steady-state N2O concentrations are below or at the detection limit of 
the N2O microelectrode. Thus, the N2O microelectrode has commonly been used to 
estimate the denitrification potentials in stratified microbial communities such as 
sediments, biofilms and aggregates in combination with the acetylene inhibition 
technique (Revsbech et al., 1988). Acetylene (~10 kPa) inhibits N2O reductase and leads 
to the accumulation of high amounts of N2O. 

More recently, N2O microelectrodes have been used to study N2O production without 
acetylene inhibition in natural samples. These studies revealed that N2O concentrations 
in the micromolar range are expected when the system is exposed to a perturbation 
(Table 1). Transient accumulation of high N2O concentrations were achieved by any 
perturbation that affects the ambient O2 concentration: flooding of soils with water 
(Liengaard et al., 2011; Markfoged et al., 2011), creating an organic hotspot around a soil 
aggregate (Hojberg et al., 1994), thawing of permafrost soils (Elberling et al., 2010), and 
decreasing the O2 supply to wastewater-grown biofilms (Kampschreur et al., 2008a, 
2008b; Schreiber et al., 2009; Pellicer-Nàcher et al., 2010). In addition, increased input of 
NO3

-, NO2
- or NH4

+ to sediments, soils and biofilms (Hojberg et al., 1994; Meyer et al., 
2008; Schreiber et al., 2009; Nielsen et al., 2009), organic inputs, salinity fluctuations in 
sediments (Nielsen et al., 2009) and changes of pH due to microbial activity in a 
denitrifying, dental biofilm (Schreiber et al., 2010) lead to increased micro-
environmental N2O levels. Importantly, in many of these studies N2O accumulated in a 
transient manner making time-course measurements necessary to capture the N2O 
peak and the accumulation time span. The high spatial resolution of the N2O 
microelectrode allowed allocating processes that mitigate the emission of N2O to the 
atmosphere in soils, sediments and wastewater treatment biofilms. N2O that is 
produced by denitrification in deeper layers is consumed during its diffusion toward 
the sediment-water interface in nutrient-enriched mangrove sediments (Meyer et al., 
2008), toward the soil-atmosphere interface in a thawed permafrost soil (Elberling et 
al., 2010) or in a soil aggregate exposed to an organic hotspot (Hojberg et al., 1994). 
Likewise, N2O release from a membrane-aerated biofilm reactor was minimized by N2O-
reducing microbes placed above AOB that produced N2O due to perturbations induced 
by an intermittent aeration regime (Pellicer-Nàcher et al., 2010). 

Outlook 

From the investigations of transient NO and N2O accumulation it emerges that two 
scenarios with distinct dynamics are important. First, N2O accumulates over hours to 
days, because it mirrors the onset of denitrification activity. Depending on the system it 
decreases because N2O reduction pathways are turned on with a delay or 
denitrification activity decreases due to substrate limitation. Ahn et al. (2011) even 
observed that peak NO and N2O emissions after a shift to O2-limitation in a nitrifying 
reactor were lasting for several month before adaptation on the metabolic or 
community level decreased the emissions. Second, perturbation of active AOB or 
denitrifiers leads to burst-like (within seconds to minutes) release of NO and N2O. The 



Chapter 2   

36 

exact biochemical mechanisms for this require further research directly on the involved 
enzymes. Moreover, future research must show the contributions of the two types of 
transitions to the N2O budget and could use this as a framework to mitigate peak N2O 
releases to the atmosphere. Mitigation strategies could aid at avoiding perturbations or 
confining the N2O-releasing processes into a diffusion-limited environment that is 
overlaid with N2O-consuming microbial communities. 

N2O source partitioning based on the nitrogen and oxygen 
isotopic signature 

In recent years, the isotopic signature of N2O has been used as a powerful tool to assign 
N2O production pathways to nitrification and heterotrophic denitrification in different 
ecosystems such as soils, rivers, sea, wastewater treatment (Yoshida et al., 1989; 
Yamagishi et al., 2007; Baggs, 2008; Koba et al., 2009; Baulch et al., 2011; Park et al., 

2011; Toyoda et al., 2011). N2O is a linear molecule (Nβ-Nα-O) with one nitrogen atom at 

the center position (Nα) bound to oxygen, and one at the end position (Nβ) bound to N
α. The three most abundant N2O isotopic species in the atmosphere are 14N15N16O (0.37 
%), 15N14N16O (0.37 %) and 14N14N16O (> 99 %). Isotope abundances are usually reported in 

the δ-notation (in per-mil; ‰), δ15N = [(Rsample/Rreference) - 1] x 1000, where R is the ratio 
of 15N/14N of a sample (Rsample) with respect to atmospheric N2 as the reference (Rreference) 
(Mariotti et al., 1981). 

The intramolecular distribution of the nitrogen isotopes (14N15NO versus 15N14NO) is 

termed site preference (SP) and is expressed as the relative difference in δ15N between 

the α and the β position (SP = δ15Nα – δ15Nβ) (Toyoda and Yoshida, 1999). In analogy 

to the δ-notation, the isotopomer analysis denotes the relative difference of the 
15N/14N isotope ratio for a given position (δ15Nα, δ15Nβ) with respect to the standard 

(e.g. δ15Nα = [(15Rα/15Rα
reference) - 1] x 1000, whereas 15Rα = [14N15N16O]/[14N14N16O] and 15Rα

reference is the isotope ratio of the standard material (N2O) (see below)) (Toyoda and 
Yoshida, 1999). The SP has the advantage of being independent of the isotopic 
signature of the respective substrates (e.g. NH4

+ or NO3
-) and of being specific for 

pathways (enzymes) involved in N2O formation (Toyoda et al., 2005; Sutka et al., 2006). 

Microbial (enzymatic) processes usually lead to an isotopic fractionation due to 
different transformation rates of 14N and 15N, resulting in isotopically lighter end-
products than molecules in prior steps (Stein and Yung, 2003). Thus, the average 15N/14N 

ratio of N2O, termed as δ15Nbulk
N2O, can be used to distinguish different production 

pathways in complex samples if the isotopic signature of the pure bacterial culture is 

known. However, the meaning of δ15Nbulk
N2O can be limited since it is strongly 

dependent on the isotopic signature of the substrate, which usually is unknown, as 
well as on the physiological activity (Mariotti et al., 1981). Additionally, the isotopic 
composition of an intermediate (e.g. N2O during heterotrophic denitrification) is 
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affected by production (NO3
- reduction) as well as consumption (N2O reduction) 

processes. 

In addition to nitrogen isotopes, oxygen isotope ratios are also increasingly used in 
order to better distinguish between the N2O formation pathways (Yoshinari and 

Wahlen, 1985; Kool et al., 2007; Baggs, 2008; Frame and Casciotti, 2010). In this case δ
18O denotes the relative difference in the 18O/16O ratio of N2O (Rsample) with respect to the 
reference (Rreference), in per-mil (‰), usually being the Vienna Standard Mean Ocean 

Water (VSMOW) (δ18O = [(Rsample/Rreference) - 1] x 1000) (Wahlen and Yoshinari, 1985). 

Table 2. Advantages and disadvantages of isotope-ratio mass spectrometry (IRMS), 
quantum cascade laser based absorption spectroscopy (QCLAS) and membrane-inlet mass 
spectrometry (MIMS). 

 Advantages Disadvantages 

IRMS • Well known, widely applied method • Lab-based method 

 • Measurement of δ15Nα, δ15Nβ and δ18O • Low temporal resolution (flask-
sampling) 

  • Requirement of standard gases (not 
commercially available) 

QCLAS • Portable, enabling field measurement 
campaigns 

• Requirement of standard gases (not 
commercially available) 

 • Continuous measurement (high temporal 
resolution) of δ15Nα and δ15Nβ 

 

MIMS • High sample throughput • Application limited to isotope labeling 
/ tracer experiments 

 • Low sample volume required  

 • Long-term measurement possible  

 • online measurements with high temporal 
resolution possible 

 

 

Analysis of the isotopic signature of N2O 

There are basically two different analytical techniques available to analyze N2O 
nitrogen isotopic signatures at natural abundance levels (Table 2): (i) the isotope-ratio 
mass spectrometry based technique (IRMS) (Brenninkmeijer and Röckmann, 1999; 
Toyoda and Yoshida, 1999), and (ii) the recently developed quantum cascade laser 
based absorption spectrometry (QCLAS) (Waechter et al., 2008). 

IRMS-based method is widely applied with an excellent precision and accuracy (Mohn 
et al., 2010). Nevertheless, the calibration procedure of the intramolecular nitrogen 
isotope distribution in N2O is still under debate. Originally, two alternative approaches 
have been proposed, one by Toyoda and Yoshida (1999) and one by Brenninkmeijer and 
Röckmann (1999), which resulted in a difference in SP of about 30 ‰ for tropospheric 
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N2O. The analysis of the SP by IRMS techniques relies on the N2O
+ and NO+ fragment 

ions at the mass-to-charge ratio (m/z) 44, 45, 46 (for N2O) and m/z 30, 31 (for NO). 
However, both calibration approaches do not take into account the isotope effects 
associated with the formation of NO+ in the ion source of the mass spectrometer. 
Recently, Westley et al. (2007) investigated these discrepancies in more detail and 
found that these isotope effects have much smaller impact on the calibration 
procedure proposed by Toyoda and Yoshida (1999) (see below), and supported therefore 
this procedure as the most accurate basis for a community standard. 

Furthermore, IRMS is a lab-based technique. Thus, the time resolution of N2O isotopic 
analysis during field measurement campaigns is therefore limited (Waechter et al., 
2008). Nevertheless, in addition to nitrogen isotopes, the oxygen isotopic signature can 
also be analyzed routinely by IRMS. 

QCLAS is a novel approach for site-specific analysis of nitrogen isotopes, with the 
advantage of a high sensitivity, time resolution, and portability, the latter of which 
enables field measurement campaigns (Waechter et al., 2008). This was demonstrated 
by Mohn et al. (2012), who recently presented first data of a high precision real-time 
analysis of site-specific isotopic signatures of atmospheric N2O above a grassland plot. 
The measurement campaign was run over three weeks with almost 550 analyzed gas 
samples. It was demonstrated that a continuous measurement of the N2O isotopic 
signature allowed improved detection of the dynamics of N2O production (before and 
after fertilizer application to the grassland plot), and thus opens a completely new field 
of applications. In another study, isotopic signature of N2O, produced during batch-
scale experiments with activated sludge, were analyzed in real time, which permitted 

to trace short-term fluctuations in SP and δ15Nbulk
N2O, allowing to identify N2O 

production pathways in biological wastewater treatment (Wunderlin et al., under 
review). 

The QCLAS is based on direct absorption laser spectroscopy in the mid-infrared range 
for simultaneous measurement of the most abundant N2O isotopic species, such as 
14N15N16O, 15N14N16O and 14N14N16O (Waechter et al., 2008; Mohn et al., 2010). In order to 

enable high precision analysis (e.g. a precision of < 0.1 ‰ for δ15Nα and δ15Nβ) 
(Waechter et al., 2008) a combination with a pre-concentration unit is essential at 
ambient or sub-ambient mixing ratios (Mohn et al., 2010, 2012). For example, with the 
liquid nitrogen-free, fully-automated pre-concentration unit built by Mohn et al. (2010), 
N2O can be concentrated by a factor of 200 (e.g. from ambient concentrations to 
around 60 ppm) from 10 L gas samples within 20 min. 

Calibration. For both techniques, IRMS as well as QCLAS, an adequate calibration 
procedure needs to be applied, since instrumental nonlinearity and drifts impact the 

accuracy of the isotope ratio measurement (e.g. δ15Nbulk
N2O values depend on the N2O 

gas concentration) (Waechter et al., 2008). However, international standards are not 
commercially available so far. Therefore, they need to be prepared and analyzed from 

other laboratories (intercalibration) for δ15Nbulk
N2O, δ15Nα and δ15Nβ, to ensure that 

measurements are performed on a common scale and that results are comparable 
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between laboratories (Westley et al., 2007). So far, the calibration procedure proposed 
by Toyoda and Yoshida (1999), as mentioned above, is accepted as the provisional basis 
for a community standard: N2O is synthesized via thermal decomposition of isotopically 

characterized NH4NO3, since it is known that the nitrogen atom at the center (α) 

position of N2O originates from NO3
-, while the end (β) nitrogen comes from NH4

+. 
Using this calibration procedure a SP of tropospheric N2O of 18.7 ± 2.2 ‰ is measured 
(Westley et al., 2007). 

Membrane-inlet mass spectrometry (MIMS) was proposed as another promising tool to 
study the dynamics of N2O production in 15N labeling experiments. MIMS has a high 
sample throughput (within minutes), allows direct analysis of liquid or gas samples and 
requires only low sample amounts (Bauer, 1995; Baggs, 2008) (Table 2). Recently, it was 
coupled with an automated sampling and calibration unit (ASCU), and was tested in a 
long-term 15N-NO3

- tracer experiment over 7 days. It was confirmed that 15N 
measurements of N2 and N2O, detected as N2 at m/z 28, 29 and 30 (N2O was reduced to 
N2 in an elemental copper furnace prior to analysis), are in good agreement with IRMS-
based analysis (Eschenbach and Well, 2011).  

The membrane-inlet part can also be combined with a quadrupole mass spectrometer 
for simultaneous online measurement of different m/z ratios (e.g. 15,15N2O at m/z = 46, 
14,15N2O at m/z = 45, 15,15N2 at m/z = 30, 14,15N2 at m/z = 29) with a time resolution of 1 to 2 
minutes (Ettwig et al., 2010; Gao et al., 2010). Nevertheless, the interpretation of spectra 
corresponding to a certain gas mixture might be difficult since one peak can 
correspond to different atomic compositions (e.g. 14,14N2

+ and CO+ at m/z = 28). This 
problem is reduced by applying 15N labeled substrates, where the only important 
remaining correction needed is for m/z = 30, which consist of the signal from the 15,15N2

+ 
fragment of 15,15N2O, the 14NO+ fragment of 14,14N2O and 15,15N2) (Thomsen et al., 1994). 

Isotopic signature of N2O: site preference, δ15N and δ18O 

Site preference. The SP is a promising tool for N2O source partitioning since it is specific 
to pathways involved and independent of the respective substrates (Sutka et al., 2006) 
(Table 3). For N2O production via NH2OH oxidation by typical AOB pure cultures values 
in the range of 30.8 ± 5.9 to 35.6 ± 1.4 ‰ were measured (Sutka et al., 2003, 2004, 2006), 
which is in agreement with recently reported SP values of marine AOA (30.8 ± 4.4 ‰) 
(Santoro et al., 2011). In contrast, Frame and Casciotti (2010) estimated 36.3 ± 2.4 ‰ for a 
marine AOB. For nitrifier denitrification by AOB, the following SP values were reported: 
0.1 ± 1.7 ‰ (Sutka et al., 2006), -0.8 ± 5.8 ‰ (Sutka et al., 2003, 2004) and -10.7 ± 2.9 ‰ 
(Frame and Casciotti, 2010). For N2O production via heterotrophic denitrification SP 
values in the range of -5.1 to 0 ‰ were reported (Toyoda et al., 2005; Sutka et al., 2006). 
Nitric oxide reductases (Nor) likely determine the SP of N2O during nitrifier 
denitrification as well as heterotrophic denitrification. The SP for both pathways is in 
the same range indicating that the involved Nor’s in AOB (cNor) and heterotrophic 
denitrifiers (cNor or qNor) (Stein and Yung, 2003; Stein, 2011) share a similar enzymatic 
mechanism. In case free NO is formed during NH2OH oxidation, any NO molecule that 
is funneled into nitrifier or heterotrophic denitrification (either directly or via initial 
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oxidation to NO2
-) would result in N2O with an SP of ~0 ‰ masking its initial NH2OH 

source. 

The most probable explanation for a positive SP during NH2OH oxidation is a preferable 
14N-16O bond cleavage of a symmetric intermediate such as hyponitrite (-16O14N15N16O-), 
leading to an enrichment of 14N-15N-16O (Toyoda et al., 2005; Schmidt et al., 2004a). In 
the current model of N2O formation from NH2OH oxidation, NH2OH is reduced to NO, 
which is further reduced to N2O by an unidentified Nor. However, the positive SP of N2O 
formed from NH2OH oxidation can only be explained (i) if the involved Nor has a 
different mechanism than Nor’s mediating nitrifier and heterotrophic denitrification or 
(ii) if N2O is formed by a different mechanism, which does not involve free NO. We 
suggest mechanisms involving HNO: either by formation of free H2N2O2 with further 
chemical decomposition to N2O (discussed in section ‘HNO as intermediate of 
enzymatic NH2OH oxidation’) or a site specific enzymatic cleavage of -ONNO- as 
discussed above (Toyoda et al., 2005; Schmidt et al., 2004a). Further insights in the 
enzymatic mechanism of HAO and potentially HAO-associated Nor with careful 
chemical control experiments are needed to elucidate the biochemical mechanism of 
N2O formation during NH2OH oxidation. 

Furthermore, a positive SP is, in addition to NH2OH oxidation, also an indicator for 
increasing importance of the heterotrophic N2O reductase activity relative to N2O 
production (substantially greater activity than 10 % compared to production) 
(Yamagishi et al., 2007; Jinuntuya-Nortman et al., 2008; Koba et al., 2009). As a 
consequence, N2O reduction to N2 might lead to an overestimation of N2O production 
by NH2OH oxidation, or vice versa. Nevertheless, further investigations are necessary in 
order to determine the individual signatures under conditions more representative for 
ecosystems with mixed culture populations (Wunderlin et al., under review). 

Under nitrifying conditions, N2O can theoretically be produced simultaneously via 
NH2OH oxidation as well as nitrifier denitrification. Thus, based on SP literature data, 
the individual contribution (FNN: NH2OH oxidation; FND: nitrifier denitrification) can be 
calculated from the following isotopomer mixing model: 

 
 NNND

NNtot
NNND SPSP

SPSP
FF




 )1(       Equation 16 

where SPND and SPNN are the end-member SP signatures of the NH2OH oxidation and 
nitrifier denitrification pathway, respectively, as reviewed above, and SPtot the 
measured signature of the individual produced N2O (Frame and Casciotti, 2010). 

δ15N. Wide ranges for δ15Nbulk
N2O were reported so far, mainly due to limited 

information about the isotopic signature of the substrates or to both a huge 
complexity determined by multiple transformation processes involving different 
enzymes, as well as variable reaction rates or mechanisms affecting isotopic 
fractionation (Perez et al., 2006) (Table 3). For example, it was shown that isotopic 
fractionation during NH3 oxidation is variable, depending mainly on the amino acid 

sequences for the α-subunit of AMO of the different investigated pure culture AOB 
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(Casciotti et al., 2003). However, N2O produced by AOB during nitrifier denitrification or 

NH2OH oxidation is basically more strongly depleted in 15N (Δδ15N = δ15Nsubstrate - δ
15Nbulk

N2O; in the range of between 40 to 68 ‰) compared to heterotrophic 
denitrification, where N2O is an obligate intermediate and the fractionation therefore 

depends on both production and consumption processes (Δδ15N of 0 to 39 ‰) 
(Yoshida, 1988; Yoshida et al., 1989; Stein and Yung, 2003; Perez et al., 2006; Koba et al., 
2009; Park et al., 2011). 

δ18O. The oxygen isotopic signature of N2O (δ18O) is also used as a tool for N2O source 
partitioning, even though this approach faces a couple of difficulties: for example, N2O 
production via NH2OH oxidation as well heterotrophic N2O reduction result in a positive 

correlation between the δ18O in N2O and SP (Frame and Casciotti, 2010) (Table 3). 

Furthermore, δ18O enrichment factors are scarce and highly variable (Park et al., 2011), 
and are reported to be strongly influenced by oxygen exchange or incorporation, such 
as (i) oxygen incorporation (from dissolved O2) into NH2OH during the oxidation of NH4

+ 
to NH2OH, (ii) oxygen incorporation (from H2O) into NO2

- during the oxidation of NH2OH 
to NO2

-, and (iii) oxygen exchange between NO2
-/NO3

- and H2O (Kool et al., 2007). For 
example, it was shown that 64 to 94 % of the oxygen atoms in the precursors of N2O 
were exchanged with oxygen atoms in H2O (Snider et al., 2009; Park et al., 2011), which 
underscores the fact that the understanding and quantification of the effect of oxygen 
exchange between H2O and dissolved nitrogen species is and will remain challenging. 
Isotopic labeling is a promising approach to overcome such difficulties (see below), but 
up to now the natural abundance oxygen isotopic signature should be used with 
caution in N2O source partitioning studies (Kool et al., 2007, 2010). 

N and O labeling. Beside natural abundances, nitrogen and oxygen isotope labeling 
techniques have been applied to study and quantify N2O production pathways (Table 
3). For example, Poth and Focht (1985) investigated the relative importance of the 
NH2OH oxidation and nitrifier denitrification pathway in Nitrosomonas europaea pure 
culture by applying 14N-NH4

+ in combination with 15N-NO2
-. Based on the large amounts 

of double-labeled 15,15N2O (m/z = 46), it was concluded that nitrifier denitrification is the 
dominant pathway. Baggs and Blum (2004) determined the relative contribution of 
nitrification and denitrification to 15N-N2O production by the application of 14NH4

15NO3 
and 15NH4

15NO3. However, such conventional 15N labeling techniques do not allow to 
distinguish between NH2OH oxidation and nitrifier denitrification in mixed population 
systems (Kool et al., 2010). As a consequence, a dual isotope approach was applied, 
based on 18O-labeling of H2O as well as 15N-labeling of NH4

+ or NO3
- (Wrage et al., 2005). 

The basic concept behind is, that AOB use oxygen from O2 for the oxidation of NH4
+ to 

NH2OH, but oxygen from H2O for the oxidation of NH2OH to NO2
- (see above). As such, 

the 18O signature of N2O produced via nitrifier denitrification reflect to 50 % the 
signature of O2 and to the other 50 % the signature of H2O, which is in this study 
artificially enriched in 18O (Kool et al., 2007), under the assumption that no further 
oxygen is exchanged between NO2

- and H2O. In contrast, the 18O signature of N2O 
derived from NH2OH oxidation reflects to 100 % the signature of O2 (Wrage et al., 2005; 
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Kool et al., 2010). Nevertheless, the effect of oxygen exchange has to be taken into 
account. 

Table 3. Advantages and disadvantages of SP, δ15Nbulk and δ18O, on a natural abundance 
or labeled level (adapted from Baggs (2008)). 

 Advantages Disadvantages 

Site preference (SP) • Independent of isotopic signature of 
substrates 

• Unknown pathways might affect SP 

 • Noninvasive method • SP from pure culture bacteria have to 
be known 

 • Specific for pathways involved  

δ15Nbulk • Characteristic fractionation of different 
pathways (depending on the rate limiting 
step) 

• Depending on the isotopic signature of 
the substrate, as well as the 
physiological activity 

 • Noninvasive method • Multiple reaction steps (branching 
effects) cause uncertainty 

δ18O • Noninvasive method • Oxygen exchange between N species 
and O2 or H2O difficult to quantify 

 • Additional information to nitrogen isotopic 
signature 

 

Isotope labeling of N 
and O 

• Isotopically enriched substrates are not 
significantly impacted by kinetic isotope 
fractionation 

• The use of 18O labeled H2O is not 

suitable under field conditions 

 • Quantification of individual pathways • Isotopically labeled substances might 
impact microbial activity 

 

Natural samples 

The analysis of the natural abundance isotopic signature of N2O emitted from 
ecosystems such as soils, rivers or biological wastewater treatment indicate that N2O 

from terrestrial and aquatic sources is depleted in 15N compared to tropospheric N2O (δ
15N = 7 ‰ and δ18O = 20.7 ‰) (Stein and Yung, 2003), but also show a huge variability 
and complexity, making process identification ambiguous at large scale. For example, 

in biological wastewater treatment an average δ15Nbulk
N2O of -9.6 ‰, SP of 16 ‰ and δ

18O of 22 to 44.3 ‰ were estimated (Yoshinari and Wahlen, 1985; Toyoda et al., 2011), 
indicating that nitrification as well as denitrification contributed to N2O production. 

N2O emitted from agricultural soils is reported to be strongly depleted in δ15Nbulk
N2O (e.g. 

-34 ‰) (Park et al., 2011), referring to nitrification dominated N2O production. Isotopic 

signatures of N2O emitted from rivers and streams are in the range of -18 to 2.4 ‰ (δ
15Nbulk), -6 to 31 ‰ (SP) and 17 to 53 ‰ (δ18O) being in line with values reported above, 
which indicates to be highly influenced by sources such as agriculture or municipal 
wastewater treatment (Toyoda et al., 2009; Baulch et al., 2011). This is underscored by a 
recent study that investigates the oxygen and intramolecular nitrogen isotopic 
composition of N2O, confirming that nitrogen-based fertilizer application was largely 
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responsible for the rise in N2O atmospheric concentration during the last 65 years (Park 
et al., 2012).  

Outlook 

In this section, the isotopic signature of N2O, especially the SP, is discussed to be a 
powerful tool to distinguish N2O production pathways. Recent technological advances, 
e.g. the development and application of the quantum cascade laser absorption 
spectroscopy, now allow a high temporal resolution in the analysis of the isotopic 
changes of N2O. Nevertheless, an adequate calibration procedure still needs to be 
applied, since instrumental nonlinearity and drifts impact the accuracy of the isotope 
ratio measurement, and calibration standards are not commercially available so far. It 
is a pressing issue to further investigate the characteristic isotopic signatures of the 
individual N2O production pathways in mixed microbial communities under controlled 
conditions, in order to more accurately interpret isotopic signatures from complex 
environmental systems. Further, it is important to study N2O isotopic signatures with 
respect to involved microbial communities, enzymatic reaction mechanisms and 
enzymatic transformation rates. The use of the oxygen isotopic signature of N2O as a 
reliable tool for pathway identification requires the elucidation of mechanisms and 
rates of oxygen exchange in the future. 

Molecular approaches to understanding microbial NO and N2O 
formation 

While abiotic variables such as dissolved O2, pH, NO2
-, and other nitrogen compounds 

have long been recognized to exert a strong influence on rates of microbial NO and N2O 
emissions, the importance of microbial community composition and dynamics to such 
emissions is still little understood (Wallenstein et al., 2006). As such, researchers have 
recently begun supplementing process-level NO and N2O emission measurements in a 
variety of environments with molecular techniques aimed at characterizing abundance, 
diversity, community structure, and activity of microbial guilds involved in nitrogen 
cycling. Here, we briefly introduce emerging molecular approaches to the delineation of 
key pathways, communities, and controls of NO and N2O production, and we 
summarize recent applications of these tools. 

Quantifying the genetic potential for N2O consumption 

An appealing focus for application of molecular tools in environmental samples is 
direct quantification via the quantitative polymerase chain reaction (qPCR) of relevant 
functional genes (Smith and Osborn, 2008). Such an approach most commonly targets 
DNA, not RNA, and is thus a measure of genetic potential in the environment and not 
the activity. 

Owing to the relative independence of each catabolic step, denitrification has been 
described as having a modular organization (Zumft, 1997). Indeed, Jones et al. (2008) 
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concluded based on an analysis of 68 sequenced genomes of heterotrophic denitrifiers 
that approximately 1/3 lacked the nosZ gene encoding for N2O reductase and thus lack 
the genetic capacity for N2O reduction. Based on this assessment, researchers have 
hypothesized that the ratio of nosZ to the sum of nirK and nirS encoding for copper and 
cytochrome cd1-type nitrite reductases, respectively, is representative of the fraction of 
denitrifiers in a given environment that generate N2O as a catabolic end product. 
Environments with high nosZ/(nirK+nirS) ratios are likely associated with a high 
capacity for N2O consumption, and thus for low N2O emissions. Commonly used 
primers and qPCR conditions for genes relevant for NO and N2O turnover during N-
cycling are available in the literature and are listed in Table 4, and thus the 
measurement of such ratios are feasible with little method development. Application 
of such tools has commonly shown a lower abundance of nosZ compared to other 
denitrifying reductases, particularly in soil environments (Henry et al., 2006; Hallin et 
al., 2009; Bru et al., 2011). 

First assessments of this hypothesis are somewhat conflicting. In favor for the 
hypothesis, Philippot et al. (2009) demonstrated a negative correlation between nosZ 
proportional abundance and N2O/(N2 + N2O) ratio in grassland pasture soil. In a follow-
up study, Philippot et al. (2011) dosed three soils with several dilutions of a denitrifying 
bacterial isolate known to lack the nosZ gene, and measured the response at the DNA 
level of nirK, nirS, and nosZ genes via qPCR. N2O emissions increased in all soils upon 
dosing of the nosZ-deficient isolate. However, in two of the three soils, the increase in 
denitrification potential (relative to non-inoculated controls) was higher than the 
measured increase in N2O emissions, suggesting that the original denitrifier 
community was capable of acting as a sink for N2O production. Moreover, ratios of N2O 
emissions to total denitrifying end products (N2O + N2) in non-inoculated soils were not 
correlated to nosZ/(nirK+nirS). While the authors acknowledge that abundance of nosZ 
deficient denitrifiers may not be as important in soils with a high N2O uptake capacity, 
their results clearly demonstrate that abundance of denitrifiers incapable of N2O 
reduction can influence denitrification end products in natural environments. Similarly, 
Morales et al. (2010) document a strong positive correlation between the difference in 
nirS and nosZ gene abundance (nirS-nosZ; nirK was not quantified) and N2O emissions 
in 10 soils. Garcia-Lledo et al. (2011) suggested that a significant decrease in nosZ gene 
abundance during periods of high NO3

- content in a constructed wetland might be 
indicative of increased genetic capacity for (unmeasured) N2O emissions.  

In contrast, Čuhel et al. (2010) detail a significant but, puzzlingly, positive correlation in 
grassland soil between nosZ/(nirS+nirK) ratios and N2O/(N2 + N2O), but caution that the 
relative importance of denitrifier community composition and enzyme regulation 
relative to proportion of nosZ deficient community members remains uncertain. In line 
with this result, Braker and Conrad (2011) found similar ratios of nosZ/(nirS+nirK) via 
Most Probable Number (MPN-) PCR in three soils with profoundly different N2O/(N2 + 
N2O) ratios, and concluded that the hypothesis that a higher abundance of denitrifiers 
lacking nosZ is linked to increased N2O emissions may be an oversimplification. 
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The genetic potential for N2O production via nitrifier denitrification in AOB (and 
possibly AOA) could theoretically be measured via qPCR of the nirK and norB genes. 
Design of such analyses is hampered due to the fact that AOB nirK and norB genes are 
not phylogenetically distinct from that of heterotrophic denitrifying organisms 
(Cantera and Stein, 2007; Garbeva et al., 2007). In addition, NorB is not the only NO 
reductase in AOB (Stein, 2011). 

Table 4. Reported primers and literature references relevant for NO and N2O turnover 
during N-cycling. 

Target gene1 Primer name Nucleotide sequence (5'-3') References 

b-AOB (amoA) amoA-1F GGG GTT TCT ACT GGT GGT 
(Rotthauwe et al., 1997) 

amoA-2R CCC CTC KGS AAA GCC TTC TTC 
AOA (amoA) Arch-amoAF STA ATG GTC TGG CTT AGA CG 

(Francis et al., 2005) 
Arch-amoAR GCG GCC ATC CAT CTG TAT GT 

narG narG-F TCG CCS ATY CCG GCS ATG TC 
(Bru et al., 2007) 

narG-R GAG TTG TAC CAG TCR GCS GAY TCS G 
napA V17m TGG ACV ATG GGY TTY AAY C 

(Bru et al., 2007) 
napA4r ACY TCR CGH GCV GTR CCR CA 

nirK nirK1F GGM ATG GTK CCS TGG CA 
(Braker et al., 1998, 2012) 

nirK5R GCC TCG ATC AGR TTR TGG 

nirK876 ATY GGC GGV AYG GCG A 
(Henry et al., 2004) 

nirK1040 GCC TCG ATC AGR TTR TGG TT 
nirS nirS1F CCT AYT GGC CGC CRC ART 

Braker et al. 1998, 2012 
nirS6R CGT TGA ACT TRC CGG T 

cd3aF GTS AAC GTS AAG GAR ACS GG (Throbäck et al., 2004) 
(Michotey et al., 2000) R3cd GAS TTC GGR TGS GTC TTG A 

norB cnorB-2F GAC AAG NNN TAC TGG TGG T (Braker and Tiedje, 2003) 
(Geets et al., 2007) cnorB-6R GAA NCC CCA NAC NCC NGC 

nosZ nosZ2F CGC RAC GGC AAS AAG GTS MSS GT 
Henry et al. 2006 

nosZ2R CAK RTG CAK SGC RTG GCA GAA 

nosZF CGC TGT TCI TCG ACA GYC AG (Rich et al., 2003) 
(Kloos et al., 2001) nosZR ATG TGC AKI GCR TGG CAG AA 

1amoA – subunit A of ammonia monooxygenase, b-AOB - ammonia oxidizing bacteria, 
narG – subunit G of membrane bound nitrate reductase; napA – subunit A of 
periplasmic nitrate reductase; nirK - copper-type nitrite reductase; nirS - cytochrome cd1 
nitrite reductase; norB – subunit B of nitric oxide reductase; nosZ – subunit Z of nitrous 
oxide reductase 

Community structure and diversity impacts on NO and N2O production 

In addition to monitoring abundance of nosZ deficient denitrifiers, PCR-based tools are 
now being applied to the investigation of links between community structure and N2O 
emissions for both nitrifiers and denitrifiers. For this purpose, community structure is 
commonly profiled via cultivation-independent molecular fingerprinting methods, such 
as terminal restriction fragment length polymorphism (T-RFLP) or denaturing gradient 
gel electrophoresis (DGGE), targeting either 16S rRNA fragments specific to the 
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functional guild of interest or functional genes (for example, nirK or amoA) directly. In 
addition, traditional cloning and Sanger sequencing and, increasingly, barcoded 
amplicon-based pyrosequencing of functional genes are often employed for robust 
phylogenetic comparisons. Readers are referred to Prosser et al. (2010) for a detailed 
methodological description of these and other nucleic-acid based methods. 
Multivariate statistical analyses such as canonical correspondence analysis (CCA), 
redundancy analysis (RDA) (Ramette, 2007; Wells et al., 2009), or path analysis 
(Avrahami and Bohannan, 2009) can then be used to explore the interplay between 
abiotic variables, community composition, and extant process rates.  

It should be emphasized that the molecular and statistical tools highlighted above are 
most commonly used in microbial ecology to explore correlations, rather than causal 
associations, between community structure and function in complex microbial 
communities. As discussed in detail by Reed and Martiny (2007) directly testing causal 
relationships between microbial community composition or diversity and ecosystem 
processes is significantly more difficult, but experimental approaches often drawn 
from classical ecology are now being adapted to this challenge. We anticipate that 
future studies testing the functional significance of microbial community structure to 
NO or N2O production will benefit greatly from these approaches. 

Studies targeting the relationship between nitrifier community composition and 
greenhouse gas production are sparse at present, despite the fact that ample molecular 
tools are available for this purpose. Avrahami and Bohannan (2009) employed a 
combination of qPCR and T-RFLP to explore the response of N2O emission rates and 
betaproteobacterial AOB abundance and composition in a California meadow to 
manipulations in temperature, soil moisture, and fertilizer concentration. While a 
complex interaction between factors was determined to directly and indirectly 
contribute to N2O emission rates, path analysis suggested that the major path by which 
NH4

+ influenced emission rates in the high N fertilization treatment was indirectly via 
two specific AOB clusters. This observation suggested a significant relationship 
between AOB community structure and N2O emission rates. It is important to note that 
this study did not attempt to discriminate between the nitrifier denitrification and 
hydroxylamine oxidation pathways for AOB-linked N2O production, nor was the relative 
importance of heterotrophic denitrification versus nitrification for overall N2O 
emissions directly compared. 

Assessment of the importance of DNRA as a process, and diversity therein, to NO and 
N2O production is in its infancy. It has been suggested that our understanding of this 
little understood phenomena would benefit from the future investigations employing 
molecular techniques to quantify abundance and diversity of the nrf gene in 
conjunction with either modeling or stable isotope-based methods (Baggs, 2011). To our 
knowledge, such an assessment has yet to be conducted. 

The relationship between denitrifier community composition and N2O emissions, while 
still ambiguous, has been studied in more detail. Palmer et al. (2010) investigated narG 
(encoding for membrane-bound nitrate reductase, Nar) and nosZ phylogenetic diversity 
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in a low-pH fen via gene clone libraries and T-RFLP. They documented novel narG and 
nosZ genotypes and a phylogenetically diverse low-pH adapted denitrifier community, 
and suggested that the novel community structure may be responsible for complete 
denitrification and low N2O emissions under in situ conditions. In a more recent study, 
Palmer et al. (2011) investigated denitrifier gene diversity in peat circles in the arctic 
tundra via barcoded amplicon pyrosequencing of narG, nirK/nirS, and nosZ, and found 
evidence that high and low N2O emission patterns were associated with contrasting 
denitrifier community composition. Braker et al. (2012) found that, of three soils 
profiled, the soil with the most robust denitrification (lowest N2O/N2 ratio) harbored 
the most diverse denitrifier community, as measured via nosZ and nirK sequence 
diversity, suggesting that differences in community composition (higher diversity) are 
associated with ecosystem-level functional differences. In denitrifying bioreactors, 
population dynamics tracked via 16S rRNA-based T-RFLP were strongly correlated to 
NO2

- appearance and emissions of N2O (Gentile et al., 2007). In contrast, Rich and 
Myrold (2004) found little relationship between nosZ phylogenetic diversity as 
measured via T-RFLP in wet soils and creek sediments in an agrosystem, and suggested 
that activity and community composition were uncoupled in this ecosystem. 

Taken together, the body of literature reviewed here suggests that, in at least some 
cases, community structure and diversity can play a functionally significant role in 
microbial N2O emissions. The importance of community composition relative to 
environmental parameters and metabolic adaptation in response to transient 
conditions (for example, shifts in patterns of gene expression or regulation) in 
determining N2O production, however, remains poorly understood. A worthwhile, but 
challenging future research direction would be to tease apart the influence of whole 
community metabolic adaptation versus community shifts on NO/N2O emissions in 
mixed microbial communities. 

A role for variation in regulatory response 

Differences in transcriptional and translational regulation as well as enzyme activity 
have also been highlighted as potentially critical modulators of microbial NO or N2O 
production (Richardson et al., 2009; Bergaust et al., 2011; Braker and Conrad, 2011). Such 
differences likely contribute to observed associations between community structure 
and greenhouse gas production discussed above. Strong regulation at the 
transcriptional, translational, and enzyme level is likely occurring in both nitrifier and 
denitrifier communities, and such regulation complicates attempts to directly relate 
abundance or diversity of functional guilds to process rates (Braker and Conrad, 2011). 
Similarly, transient near-instantaneous NO and N2O accumulation in active nitrifying 
and denitrifying biofilms in response to O2 or NO2

- perturbations, as measured with 
high temporal resolution via microelectrodes, strongly suggests that dynamics are 
controlled in some cases at the enzyme level (Schreiber et al., 2009). Indeed, culture-
based assays targeting denitrifier isolates from two soils demonstrated substantial 
diversity in sensitivity of Nos enzymes to O2 and provided a physiological underpinning 
for a previously observed link between denitrifier community composition and rate of 
N2O production (Cavigelli and Robertson, 2000). 
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Gene expression can be readily quantified with reverse transcriptase quantitative PCR 
(RT-qPCR), and researchers are now beginning to explore the relationship between 
gene expression patterns for critical functional genes (amoA, hao, nirK, nirS, norB, and 
nosZ) and NO/N2O emissions. Yu et al. (2010) used such an approach to quantify 
expression of amoA, hao, nirK, and norB in chemostats of Nitrosomonas europaea 
during initiation and recovery from transient anoxic conditions. Surprisingly, 
expression profiles of nirK and norB were not strongly linked; strong overexpression of 
nirK concomitant with NO accumulation was observed upon initiation of anoxia, and at 
the same time norB, amoA, and hao gene transcripts declined in abundance. N2O 
emissions peaked during recovery to aerated conditions, but did not correlate strongly 
to gene expression. The methods of Yu et al. (2010) provide a robust road map for 
examining relationships between nitrifier gene expression and NO/N2O emissions in 
mixed communities in environmental settings, though it should be noted that such an 
analysis is complicated by the polyphyletic nature of the AOB nirK and norB genes. 

RT-qPCR has also been used to assess the relationship between gene expression and 
NO/N2O production in systems dominated by denitrifiers. Liu et al. (2010) quantified the 
relationship between nirS, nirK, and nosZ gene pools, their transcription products, and 
gas kinetics (NO, N2O, and N2) as a function of pH in soils. Interestingly, neither gene 
pool abundance, nor transcription rates could explain a profound increase in N2O 
emissions at low pH. The authors attribute the observed N2O:N2 product ratio to post-
transcriptional phenomenon, although it is also plausible that enhanced chemo-
denitrification may play a role. 

A worthy future contribution could be made via direct environmental 
metatranscriptomic assessment of patterns in microbial gene expression in 
environments with different or varying rates of NO or N2O production. 
Metatranscriptomics is the direct sequencing of cDNA generated via reverse 
transcription of environmental RNA transcripts, and therefore provides a picture of 
currently transcribed genes in a given environment (Morales and Holben, 2010). In line 
with the results of Liu et al. (2010), it is important to recognize that measurement of 
the size or diversity of the gene transcript pool neglects post-transcriptional regulation 
governing, for example, the assembly of N2O reductase and enzyme activity (Braker and 
Conrad, 2011). As of yet, variations in post-transcriptional regulation at the community 
level and its effect on NO/N2O production has been little explored in nitrifying and 
denitrifying pure cultures and communities. Critical insights in this regard may be 
possible in the future from an approach coupling metatranscriptomics and 
metaproteomics—that is, direct measurement of the composition of the proteome in 
an environment. 

A need for an integrated approach to NO and N2O turnover in 
complex microbial communities 

NO and N2O can be produced by many different biological and chemical reactions. 
Considerable progress has been made to allocate NO and N2O production to certain 
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biological pathways, but commonly some uncertainty remains, because many 
processes share the same reaction sequence for N2O production via NO and NO2

-. We 
delineated basically 3 independent approaches to allocate pathways (indirect inference; 
isotopic signature of N2O, and isotopic labeling). Parallel use of these approaches will 
increase confidence in the interpretation. The possibility for various chemical reaction 
that produce and consume NO and N2O additionally complicate the picture. Chemical 
reactions can be important in engineered systems that employ waters with 
concentrated N-contents and in natural systems, where low pH values coincide with 
high ammonia inputs. However, in most natural systems and in municipal wastewater 
treatment, chemical reactions will probably not be the main contributors of NO and 
N2O emissions. Nevertheless, the possibility of chemical NO and N2O production has to 
be considered when interpreting measurements. Experiments with inactivated 
biomass could help to give a first estimation of the chemical production rates. 
However, care has to be taken since the chemical conditions that facilitate chemical NO 
and N2O production such as pH and trace metal availability are in turn shaped by 
microbial activity. 

Molecular methods have largely been applied independently from the stable isotope 
and microelectrode approaches. Ample opportunities exist for integration of these 
techniques. Indeed, it is clear that such an integrated approach is critical to assessing 
the importance of microscale heterogeneity in environmental parameters, microbial 
community structure and stability, and genetic regulation to observed process-level 
N2O emission rates.  

Joint use of stable isotope methods in conjunction with molecular techniques appears 
particularly important, given reported difference in isotope effects depending on the 
community structure of nitrifiers (Casciotti et al., 2003) or denitrifiers (Toyoda et al., 
2005) present. In addition, linking source-partioned N2O as measured via stable isotope 
techniques to the underlying microbial communities via molecular approaches may 
allow a more significant measure of the strength of coupling between microbial 
diversity and measured emissions (Baggs, 2008, 2011). One promising way forward is to 
assess environmental conditions that favor a shift of dominant N2O production 
pathway (for example, from denitrification to nitrification, or vice versa) as measured 
via stable isotope methods, and to simultaneously link such a shift to diversity and 
abundance of functional gene pools and transcripts via PCR-based molecular 
approaches. Such an approach has the potential to yield insights into the relative 
importance of dominant functional guilds, community composition, and activity in 
determining microbial NO/N2O production rates. A fruitful first application would be to 
combine stable isotope-based methods with the molecular approach pioneered by Yu 
et al. (2010) for delineating the relationship between transcriptional response of the 
model AOB Nitrosomonas europaea and NO/N2O production. This coupled approach 
would allow conclusive verification of conditions proposed by Chandran et al. (2011) to 
favor a switch between nitrifier denitrification and NH2OH oxidation as dominant 
sources NO and N2O production. 
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Similarly, it is clear that molecular tools and microelectrodes are complementary to 
study NO and N2O turnover. An excellent example of such integration is provided by 
Okabe et al. (2011), who profiled microscale gradients in N2O emissions in anammox 
granules and compared these profiles to spatial location of AOB, as measured via 
fluorescence in-situ hybridization (FISH). Based on their results, the authors concluded 
that putative heterotrophic denitrifiers in the inner part of the granule, not AOB, were 
likely responsible for the majority of the extant N2O process emissions. A similar 
approach is likely applicable in a wide variety of environments, including flocs, 
sediments, soils, and microbial mats. In addition, use of either FISH probes with higher 
phylogenetic resolution or depth stratified DNA/RNA extraction coupled to PCR-based 
measurements may allow a direct microscale assessment of links between microbial 
diversity and activity and NO/N2O production profiles. Such a microscale assessment is 
important because stratified environments likely contain both regions of N2O 
production and consumption that are masked during bulk NO/N2O concentration 
measurements or DNA/RNA extractions. In addition, microelectrode measurements 
with high temporal resolution should be combined with qPCR to better understand the 
regulation of NO and N2O peak emissions from different environments. 

The conditions for NO and N2O formation in pure cultures and by chemical reactions 
begin to be better understood. Furthermore, several recent technological 
advancements allow researcher to investigate the regulation of NO and N2O formation 
in complex environments at high spatial and temporal resolution. These advancements 
provide a cornerstone to understand and mitigate the release of NO and N2O from 
natural and engineered environments. 
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Abstract 

Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric 
ozone. In biological wastewater treatment, microbial processes such as autotrophic 
nitrification and heterotrophic denitrification have been identified as major sources; 
however, the underlying pathways remain unclear. In this study, the mechanisms of 
N2O production were investigated in a laboratory batch scale system with activated 
sludge for treating municipal wastewater. This relatively complex mixed population 
system is well representative for full-scale activated sludge treatment under nitrifying 
and denitrifying conditions. 

Under aerobic conditions, nitrite oxidation experiments have confirmed nitrifier 
denitrification to be the dominant, strongly nitrite-dependent N2O production 
pathway. Furthermore, N2O is produced via hydroxylamine oxidation, as has been 
shown by the addition of hydroxylamine. In both sets of experiments, N2O production 
was highest at the beginning of the experiment, then decreased continuously and 
ceased when the substrate (nitrite, hydroxylamine) had been completely consumed. In 
ammonia oxidation experiments, N2O peaked at the beginning of the experiment when 
the nitrite concentration was lowest. This indicates that N2O production via 
hydroxylamine oxidation is favored at high ammonia and low nitrite concentrations, 
and in combination with a high metabolic activity of ammonia-oxidizing bacteria (at 2 
to 3 mgO2/l); the contribution of nitrifier denitrification increases at higher nitrite and 
lower ammonia concentrations towards the end of the experiment. 

Under anaerobic conditions, nitrate reducing experiments confirmed that N2O emission 
is low under optimal growth conditions for heterotrophic denitrifiers. However, N2O 
and nitric oxide (NO) production rates increased significantly under unfavorable 
conditions, for example in the presence of oxygen or nitrite. 

Keywords 

Biological wastewater treatment; denitrifying condition; hydroxylamine oxidation; 
nitrous oxide; nitric oxide; nitrifying condition 
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Introduction 

Nitrous oxide (N2O) is an important greenhouse gas, about 310 times more effective 
than carbon dioxide (CO2), and a major sink for stratospheric ozone (S.A. Montzka and S. 
Reimann et al., 2011; Ravishankara et al., 2009; IPCC 2007). Limiting anthropogenic N2O 
emission is thus an urgent requirement. It is estimated that about two thirds of the 
overall N2O is emitted by microbial processes occurring mainly in agriculture, but also 
in biological wastewater treatment (USEPA 2009). In fact, N2O emissions have been 
shown to dominate total greenhouse gas emissions from biological wastewater 
treatment (Wunderlin et al., 2010). In addition to N2O, nitric oxide (NO) could also be 
emitted, which is toxic for microorganisms (Zumft 1993) and contributes to the 
destruction of the stratospheric ozone layer (Crutzen 1979). 

N2O production in biological wastewater treatment is associated with autotrophic 
nitrification and heterotrophic denitrification. Nitrification is the stepwise autotrophic 
oxidation of ammonia (NH4

+) to nitrite (NO2
-) by ammonia-oxidizing bacteria (AOB) and 

further to nitrate (NO3
-) by nitrite-oxidizing bacteria (NOB). Denitrification is the 

reduction of nitrate (NO3
-) to atmospheric nitrogen (N2) by heterotrophic denitrifiers 

(HET), with nitrite (NO2
-), nitric oxide (NO) and nitrous oxide (N2O) as obligatory 

intermediates. According to Kampschreur et al. (2009), there are three main routes for 
N2O production (Figure 1): 

 Hydroxylamine oxidation: production of N2O from intermediates of biological 
hydroxylamine oxidation (HNO, N2O2H2; Poughon et al., 2001), probably related 
to a highly imbalanced metabolic activity of AOB (Yu et al., 2010), or by chemical 
decomposition of hydroxylamine as well as by chemical oxidation with NO2

- as 
an electron acceptor (chemodenitrification; Stüven et al., 1992; Ritchie and 
Nicholas 1972). 

 Nitrifier denitrification: reduction of NO2
- by AOB in combination with ammonia, 

hydrogen or pyruvate as electron donors, e.g. at oxygen-limiting conditions or 
elevated nitrite concentrations (Wrage et al., 2001; Colliver and Stephenson 
2000; Stüven et al., 1992). 

 Heterotrophic denitrification: production of N2O by heterotrophic denitrifiers 
due to an imbalanced activity of nitrogen-reducing enzymes, e.g. due to oxygen 
inhibition (Lu and Chandran 2010; Baumann et al., 1997), nitrite accumulation 
(von Schulthess et al., 1994), or a limited availability of biodegradable organic 
compounds (Itokawa et al., 2001). 

In the last decade, significant efforts have been made to better understand the 
mechanisms of N2O production (Rassamee et al., 2011; Yu et al., 2010; Tallec et al., 2006; 
Burgess et al., 2002; Itokawa et al., 2001; von Schulthess et al., 1994). As a result, several 
parameters favoring N2O production were identified: low dissolved oxygen 
concentration, accumulation of nitrite, rapidly changing (dynamic) conditions or a low 
ratio of COD to N-compounds during heterotrophic denitrification (Kampschreur et al., 
2009). 
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a constant oxygen concentration (set point): 0.5, 1, 2 or 3 mgO2/l. The experiments were 
started by adding the substrate (25 mgNH4

+-N/l, NH4HCO4 from Merck; 15 mgNO2
--N/l, 

NaNO2 from Merck; 10 mgNH2OH-N/l, NH2OH-Cl from Fluka; Table 1). Except for 
simultaneous nitrifying and denitrifying experiments, no external organic carbon 
source was provided in order to prevent heterotrophic activity, which was confirmed by 
nitrogen mass balances and a constant NO3

- concentration after the experiment. The 
substrate addition initialized N2O production, but also NO production in some nitrite 
oxidation experiments. Neither N2O nor NO was emitted before the substrate addition. 

For the denitrifying experiments, sludge was taken from the nitrification reactor of our 
pilot-scale wastewater facility in the afternoon and was stored overnight in the batch-
scale reactor under anaerobic conditions in order to remove the remaining dissolved 
nitrogen compounds (mainly NO3

-). The experiments were launched by adding organic 
carbon (Na acetate from Merck; always >100 mgCOD/l) and nitrate (20 mgNO3

--N/l, 
NaNO3 from Fluka; Table 1). The substrate addition initiated N2O production, as well as 
NO production during suboptimal growth conditions, while neither N2O nor NO was 
produced before the substrate addition. For experiments at low dissolved oxygen 
concentrations, an N2 / O2 gas mixture with only about 5% oxygen was applied in order 
to better adjust the dissolved oxygen concentration in the reactor. 

The nitrifying and denitrifying experiments were both stopped when N2O (and NO) 
production ceased and the dissolved nitrogen species were completely oxidized (NH4

+, 
NH2OH or NO2

- in the nitrifying experiment) or reduced (NO3
- in the denitrifying 

experiment). During all experiments, N2O as well as NO were continuously analyzed in 
the off-gas and liquid samples were periodically taken (see section ‘Analytical 
procedures’). The disappearance and appearance rates of NH4

+, NH2OH, NO2
- and NO3- 

were calculated using regression analysis. Average N2O and NO emission rates were 
calculated based on time integration of emission loads. 

Analytical procedures 

The N2O and NO concentrations in the off-gas were continuously (1 minute temporal 
resolution) analyzed by FTIR spectroscopy (GASMET CX-4000, Temet Instruments, 
Helsinki), equipped with a heated (40°C) flow-through gas cell with a 9.8 m path 
length. The quantification limits for N2O and NO are 0.25 and 5 ppm respectively, and 
the expanded standard uncertainty for both components is around 10% (95% 
confidence level; Mohn et al., 2008). Liquid grab samples were taken regularly (every 15 
to 60 minutes) and immediately filtered through a 0.7μm filter (GF/F Whatman) and a 

0.45μm syringe filter (Chromafil Membranfilter from Macherey), then stored at 4°C. 
NH4

+-N was analyzed photometrically using a Foss FIAstar flow injection 5000 analyzer 
(detection limit 0.2 mgN/l; uncertainty around 5% at 95% confidence level). NO3

--N and 
NO2

--N were determined by anion chromatography (761 compact IC, Metrohm; 
detection limit for both components 0.2 mgN/l; uncertainty around 5% at 95% 
confidence level). Commercial photochemical test kits (Hach Lange GmbH, Düsseldorf, 
Germany) were used to measure low NO2

- concentrations (LCK 341; detection limit 
0.015mgN/l) and COD (LCK 314, LCK 414, or LCK 114). 
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Experiment 
Added substrate 

(initial 
concentration) 

O2 
concentration 

Nitrogen 
conversion rate 

N2O-N (NO-N) 
production 

rate# 

Y N2O
## (Y 

NO##) 

  
  

[mg/l] [mgN/gTSS*h] [mgN/gTSS*h[ [%] 

NH4
+ oxidation 

NH4
+ (25 mgN/l) 0.6±0.2 1.1a 0.040 (<LOD) 3.8 

NH4
+ (25 mgN/l) 1.0±0.2 1.4a 0.037 (<LOD) 2.7 

NH4
+ (25 mgN/l) 1.9±0.2 1.9a  0.039 (<LOD) 2.0 

NH4
+ (25 mgN/l) 3.1±0.2 2.6a  0.033 (<LOD) 1.3 

NO2
- oxidation 

NO2
- (15 mgN/l) 0.6±0.2 1.8a 0.028 (<LOD) 1.5 

NO2
- (15 mgN/l) 1.1±0.2 1.8a 0.15 (0.008) 8.4 (0.5) 

NO2
- (15 mgN/l) 2.1±0.3 3.0a 0.031 (<LOD) 1.0 

NO2
- (15 mgN/l) 3.1±0.2 2.2a 0.18 (0.018) 8.9 (0.8) 

NH2OH oxidation 
NH2OH (10 mgN/l) 1.1±0.2 0.6c  0.043 (<LOD) 6.9 

NH2OH (10 mgN/l) 2.2±0.2 0.7c 0.062 (<LOD) 8.5 

NO3
- reduction 

(+Na acetate) 

NO3
- (20 mgN/l) 0 4.8b 0.009 (<LOD) 0.2 

NO3
- (20 mgN/l) 0.01±0.01 3.7b 0.029 (<LOD) 0.8 

NO3
- (20 mgN/l) 0.04±0.03 2.1b 0.196 (0.008) 9.5 (0.4) 

NO3
- (20 mgN/l) 0.13±0.15 4.4b 0.450 (0.12) 10.3 (2.6) 

NO3
- (20 mgN/l) 0.4±0.2 3.0b 0.565 (0.017) 18.9 (0.6) 

Continuous 
addition of NH4

+ 

NH4
+ (10 mgN/l) 1.1±0.2 1.4c 0.032 (<LOD) 2.3 

NH4
+ (10 mgN/l) 2.1±0.2 2.1c 0.023 (<LOD) 1.1 

NH4
+ (10 mgN/l) 3.1±0.2 2.1c 0.018 (<LOD) 0.9 

Simultaneous 
nitrification / 
denitrification 

NH4
+ (25 mgN/l), 

acetate (>100 
mgCOD/l) 

2.0±0.3 1.8a 0.270 (<LOD) 15.0 

a) Nitrogen (NH4
+ or NO2

-) oxidation rate 

b) Nitrogen (NO3
-) reduction rate 

c) Nitrogen (NO3
-) production rate 

# The N2O and NO production rates were calculated on the basis of the N2O and NO concentrations in the off-
gas and the gas flowrate. The N2O and NO concentrations were measured in ppm (every 60 seconds) and 
transformed into µgN2O-N/h (1ppmN2O=1.149 µgN2O-N/lair at 20°C and 1bar) and µgNO-N/h 
(1ppmNO=0.58 µgNO-N/lair at 20°C and 1bar) respectively by multiplying the concentration with the gas 
flowrate (Qgas=60 l/h). 
## Y N2O (and Y NO) was calculated by dividing the average N2O-N (NO-N) emission rate by the nitrogen 
conversion rate and multiplied by 100%. 

<LOD: below limit of detection 

Table 1: Summary of experiments and relevant parameters: added substrates and initial 
concentrations; oxygen concentrations; nitrogen conversion rates (nitrogen oxidation 
under nitrifying conditions and reduction under denitrifying conditions); N2O emission 
rates in relation to the nitrogen conversion rates. 
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Results and discussion 

N2O production during nitrite (NO2
-) oxidation under aerobic conditions 

Figure 3 shows two typical profiles of the N2O emission rate and the concentrations of 
NO2

- and NO3
- (the initial nitrite concentration was around 15 mgN/l), at 2.1 and 3.1 

mgO2/l respectively. The nitrite degradation rate was in the range from 1.8 to 3 
mgN/gTSS*h, depending on the oxygen concentration (Table 1). Most of the nitrite was 
oxidized to nitrate, which indicates that there was no significant heterotrophic activity. 
NO was only produced under conditions with high N2O production rates, where NO 
peaked before N2O. In most experiments, the NO concentration was close or below the 
FTIR detection limit and therefore not shown in in Figure 3 A. The production of N2O 
started as soon as nitrite was added and ceased when all the nitrite was consumed. The 
N2O production was dynamic and variable, but not oxygen-dependent: there was a high 
N2O emission rate compared to the nitrogen oxidation rate (8.4 and 8.9%) at 1.1 and 3.1 
mgO2/l (Figure 3, A and B), but only a low emission rate (1.0 to 1.5%) at 0.6 and 2.1 
mgO2/l (Figure 3, C and D; Table 1). The different N2O emissions seem to be due to 
variable maximum NO2

- oxidation rates: the NO2
- oxidation rate was low at high N2O 

production and vice-versa (Table 1). 

The NO2
- oxidation experiments always showed the highest N2O production rate after 

NO2
- addition (when the NO2

- concentration was highest), and decreased in parallel 
with the NO2

- concentration (Figure 3). This is consistent with Tallec et al. (2006), who 
also showed a positive correlation between the nitrite concentration and N2O 
production. NO2

- is often considered to be one of the key parameters responsible for 
N2O production (see Kampschreur et al., 2009; Bock et al., 1995; Remde and Conrad, 
1990). It is generally assumed that an accumulation of nitrite leads to increased nitrifier 
denitrification activity by AOB with nitrite instead of oxygen as the terminal electron 
acceptor; ammonia is thought to be the corresponding electron donor (Kampschreur et 
al., 2009; Colliver and Stephenson 2000): as reported by Kim et al. (2010), N2O 
emissions were significantly enhanced when ammonia was added together with nitrite 
to activated sludge. In our experiments, ammonia is unlikely to act as an electron donor 
since no external ammonia was added, and it was not detectable in the bulk media; the 
inhibition of the ammonia oxidation (by allylthiourea) confirmed that there was no 
significant ammonia production from biomass decay (data not shown). Therefore, 
hydrogen, pyruvate or other electron donors have to be considered. 

At high N2O production rates, the production of NO, a precursor of N2O in the nitrogen 
reduction chain, underscores nitrifier denitrification to be the dominant N2O 
production pathway (Figure 3, C and D). In our setup, heterotrophs cannot be assumed 
to contribute significantly to N2O production, because (i) no external organic carbon 
was added, (ii) most of the nitrite was converted into nitrate, and (iii) the enzyme 
activity of heterotrophic denitrifiers is known to be strongly affected by the availability 
of dissolved oxygen because this process operates mainly under anaerobic conditions 
(von Schulthess et al., 1994). 
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N2O, compared to 1.3 to 3.8% for ammonia oxidation experiments; Table 1). N2O 
production started as soon as hydroxylamine was added and reached its maximum 
concentration around 30 minutes after the substrate addition. The N2O concentration 
then decreased even though the nitrite level remained at around 0.4 mgN/l. The 
nitrogen mass balance shows that most of the NH2OH is converted into NO3

-, indicating 
that the N2O emission rate decreases in parallel with the NH2OH concentration. This 
emission pattern points to biological hydroxylamine oxidation as the most important 
N2O production pathway. Nitrifier denitrification, which is strongly correlated with the 
nitrite concentration (see the section before) may additionally account for some of the 
emitted N2O. It was already observed that N2O is produced during biological NH2OH 
oxidation (Sutka et al., 2006), and it is assumed that intermediates such as HNO and 
N2O2H2 are directly involved in its formation (Poughon et al., 2001; Ritchie and Nicholas, 
1972). 

In our oxidation experiments, the N2O production rate was in the same range or, at 
elevated oxygen concentrations (2 mgO2/l), even higher than during the NH4

+ oxidation 
experiments. This is in agreement with Kim et al. (2010), who explained this 
phenomenon by a higher availability of electrons during hydroxylamine oxidation 
(compared to ammonia oxidation) because of a lack of the electron-consuming 
ammonia oxidizing step (see Figure 1). As a consequence, more electrons are available 
for nitrite reduction and N2O production (since nitrite reduction by AOB stops at N2O). A 
further distinction between the contribution of hydroxylamine oxidation and nitrifier 
denitrification would require alternative techniques, such as the analysis of the N2O 
site-specific isotopic signature (Wunderlin et al., 2010; Koba et al., 2009; Sutka et al., 
2006). However, N2O production from NH2OH is not expected to be dominant in 
biological wastewater treatment, as the NH2OH concentration in activated sludge is 
assumed to be much lower than in our batch experiment; NH2OH oxidation to NO2

- is 
the energy-generating step in AOB, an accumulation is therefore unfavorable from an 
energetic point of view (Casciotti et al., 2003). 

The above results may also be due to chemical N2O production. This was tested by 
adding NH2OH to tap water (without activated sludge; Figure 4 C and D). Under aerobic 
conditions, low amounts of N2O were produced, but were slightly increased by further 
addition of NO2

-. On the basis of these experiments, chemical decomposition of NH2OH 
as well as a chemical reaction between NH2OH and NO2

- could be responsible for the 
N2O production; the following mechanisms are hypothesized for this process (Stüven et 
al., 1992; Ritchie and Nicholas, 1972): 

OHONOOHNH 2222 5.15.05.0    Equation 1 

OHONHNOOHNH 2222 2    Equation 2 

However, as N2O production from NH2OH in tap water was low as compared to 
activated sludge, chemical N2O production is not expected to be dominant in biological 
wastewater treatment (Figure 4, A and C). 
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the N2O emission rate was in the range from 18 to 32 μgN/gTSS*h, which corresponds 
to 0.88 to 2.3% of the ammonia oxidation rate (Table 1) and thus comparable to the 
NH4

+ (peak) addition experiments. It is also similar to the values reported in the 
literature: Tallec et al. (2006) measured N2O emissions from nitrifying activated sludge 
in the range from 0.1 to 0.4%, compared to ammonia oxidation; N2O emissions in the 
range from 0.05 to 3.3% were observed for pure-culture AOB (Hynes and Knowles, 1984; 
Yoshida, 1988). Recently, Kim et al. (2010) reported a value of 2.9% from nitrifying 
activated sludge. Our experiments showed quite comparable N2O emission rates at 
different oxygen concentrations. In contrast, the NH4

+ fraction emitted as N2O was 
higher at low oxygen concentrations. This is in agreement with Tallec et al. (2006), who 
reported a maximum yield (ratio of emitted N2O to oxidized nitrogen) at an oxygen 
concentration of 1 mgO2/l. It is hypothesized that oxygen-limiting conditions during 
nitrification lead to an accumulation of nitrite, since NOB have a lower affinity to 
oxygen than AOB, possibly due to a different half-saturation constant (Blackburne et 
al., 2008) and therefore a lower activity. Given that AOB can use nitrite instead of 
oxygen as the electron acceptor, nitrifier denitrification is held responsible for the 
increased N2O emissions (Kampschreur et al., 2009; Wrage et al., 2001). Burgess et al. 
(2002) observed a strong correlation between the build-up of nitrite and N2O emissions 
in combination with ammonia shock loads, which is consistent with our data. At high 
concentrations of dissolved oxygen, N2O emissions peaked at the beginning of the 
experiment, when NH4

+ was highest and NO2
- lowest. This indicates that N2O might 

partly be produced via NH2OH oxidation, when ammonia is in excess, nitrite at low 
concentrations and the nitrogen oxidation rate is high. This is consistent with the 
findings of Sutka et al. (2006), who showed that an increasing oxygen concentration in 
N. europaea cultures decreased the relative importance of NO2

- reduction relative to 
NH2OH oxidation in N2O production. Moreover, they suggested that an increase in NO2

- 
concentration could have contributed to N2O production via nitrite reduction. Similarly, 
Yu et al. (2010) reported a positive correlation between N2O production and NH4

+ 
concentration in N. europaea cultures and concluded that N2O production via NH2OH 
oxidation contributed even more when ammonia oxidation is shifted from low towards 
its maximum specific activity. 

Based on the results presented in the two sections before, we conclude that in 
ammonia oxidation experiments (this section) NH2OH oxidation and nitrifier 
denitrification contribute to the N2O production: nitrifier denitrification is dominant 
but hydroxylamine oxidation becomes increasingly relevant at high ammonia and low 
nitrite concentrations. Therefore, a systematic experimental approach, as chosen in this 
study, proves to be appropriate to study the mechanisms of N2O production in a 
complex, mixed population system. 
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NO3
- was still going on. The N2O production rate was in the range of 270 μgN/gTSS*h, 

which is around 15% of the ammonia oxidation rate or around 34% of the 
denitrification rate (calculated from the NH4

+ oxidation rate minus the NO3
- production 

and NO2
- net production rate), and therefore much higher than in NH4

+ oxidation batch 
experiments. The N2O emission and NO2

- concentration patterns were different to 
those in the NH4

+ oxidation experiments, but resembled those in the NO3
- reduction 

experiment under anaerobic conditions. Nitrite reduction by HET thus dominates the 
N2O production. Given that both the NH4

+ and the organic substrate are present at non-
limiting concentrations, it is to be expected that O2 limitation will develop in the inner 
core of bigger sludge flocs (Hamersley and Howes 2002). Thus, heterotrophic 
denitrification is to be expected inside the flocs, even though some enzymes, like the 
N2O reductase, might still be inhibited due to the presence of oxygen. 

This section clearly indicates that under aerobic conditions (2 mgO2/l) and high COD 
loads, heterotrophs dominate the N2O production. Additional methods, such as the 
analysis of the N2O site-specific isotopic signature, are greatly needed to obtain a more 
accurate allocation of these emissions to heterotrophic denitrification, nitrifier 
denitrification and biological hydroxylamine oxidation. 

Strategies for reducing N2O emissions 

Our data clearly support nitrifier denitrification by AOB under aerobic conditions as the 
dominant N2O production pathway, where NO2

- positively correlates with N2O 
emissions. Biological NH2OH oxidation is hypothesized to contribute to N2O production 
mainly at high NH4

+ and low NO2
- concentrations in combination with a high nitrogen 

oxidation rate. 

The production of N2O by heterotrophic denitrification is likely to be of minor 
importance when operated without significant NO2

- accumulation (<2 mgN/l; von 
Schulthess et al., 1994) and under completely anaerobic conditions. 

Therefore, to avoid N2O emissions, biological wastewater treatment plants should be 
operated at low NH4

+ and NO2
- concentrations, which means a high solid retention time 

(large population with effective protection against N-peaks and extended 
denitrification), equalization of load variation (e.g. with digester liquid) and optimal 
control of the sludge recycling depending on the COD and NO3

- loads in the anoxic 
zone. 

Under aerobic conditions (2 mgO2/l) and high COD loads, NO2
- reduction by HET is the 

dominant N2O producer. Low oxygen concentrations (<1 mgO2/l; Tallec et al., 2006) are 
therefore expected to reduce the N2O production due to a higher heterotrophic N2O 
reductase activity which is particularly sensitive to oxygen (and inhibited at elevated 
oxygen concentrations such as at 2 mgO2/l). Simultaneous nitrification / denitrification 
at high oxygen concentrations and high COD loads should consequently be avoided. 
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Conclusions 

Batch experiments with activated sludge treating municipal wastewater have shown 
that N2O is produced under both nitrifying (aerobic) and denitrifying (anaerobic) 
conditions: 

 AOB are the main N2O producers under aerobic conditions and low COD loads; 
the N2O production pathway is dominated by nitrifier denitrification. 

 At high ammonia and low nitrite concentrations in combination with a high 
nitrogen oxidation rate, biological N2O production via hydroxylamine oxidation 
is favored. However, an alternative technique such as the analysis of the N2O 
site-specific isotopic signature has to be applied to confirm the activity of this 
pathway and to further distinguish between the contribution of hydroxylamine 
oxidation and nitrifier denitrification (Wunderlin et al., 2010; Koba et al., 2009; 
Sutka et al., 2006). 

 The production of N2O by HET is of minor importance when the plant is operated 
under optimal growth conditions. Suboptimal conditions, such as the presence 
of oxygen or the accumulation of nitrite, significantly increased both N2O and 
NO production rates. Oxygen input into anoxic zones should therefore be 
strongly prevented. 

 At simultaneous nitrification and denitrification, N2O production is dominated 
by heterotrophic NO2

- reduction, depending strongly on the nitrite 
concentration, the COD load and the dissolved oxygen concentration. 
Simultaneous nitrification / denitrification at high oxygen concentrations (2 to 3 
mgO2/l) and high COD loads should consequently be avoided. 

 This study provides direct evidence that strategies to study and avoid N2O 
emissions must consider nitrifier denitrification, hydroxylamine oxidation as 
well as heterotrophic denitrification. 
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Abstract 

We present measurements of site preferences (SP) and bulk 15N/14N ratios (δ15Nbulk
N2O) of 

nitrous oxide (N2O) by quantum cascade laser absorption spectroscopy (QCLAS) as a 
powerful tool to investigate N2O production pathways in biological wastewater 
treatment. QCLAS enables high-precision N2O isotopomer analysis in real time. This 

allowed us to trace short-term fluctuations in SP and δ15Nbulk
N2O and, hence, microbial 

transformation pathways during individual batch experiments with activated sludge 
from a pilot-scale facility treating municipal wastewater. On the basis of previous work 
with microbial pure cultures, we demonstrate that N2O emitted during ammonia (NH4

+) 
oxidation with a SP of -5.8 to 5.6 ‰ derives mostly from nitrite (NO2

-) reduction (e.g. 
nitrifier denitrification), with a minor contribution from hydroxylamine (NH2OH) 
oxidation at the beginning of the experiments. SP of N2O produced under anoxic 
conditions was always positive (1.2 to 26.1 ‰), and SP values at the high end of this 

spectrum (24.9 to 26.1 ‰) are indicative of N2O reductase activity. The measured δ
15Nbulk

N2O at the initiation of the NH4
+ oxidation experiments ranged between -42.3 and -

57.6 ‰ (corresponding to a nitrogen isotope effect Δδ15N = δ15Nsubstrate - δ
15Nbulk

N2O of 

43.5 to 58.8 ‰), which is considerably higher than under denitrifying conditions (δ
15Nbulk

N2O 2.4  to -17 ‰; Δδ15N = 0.1 to 19.5 ‰). During the course of all NH4
+ oxidation 

and nitrate (NO3
-) reduction experiments, δ15Nbulk

N2O increased significantly, indicating 
net 15N enrichment in the dissolved inorganic nitrogen substrates (NH4

+, NO3
-) and 

transfer into the N2O pool. The decrease in 15N during NO2
- and NH2OH oxidation 

experiments is best explained by inverse fractionation during the oxidation of NO2
- to 

NO3
-.  

Keywords 

N2O production; nitrification; denitrification; pathway identification; stable nitrogen 
isotopes; isotopomer; laser spectroscopy 
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Introduction 

Nitrous oxide (N2O) is an important greenhouse gas and a major sink for stratospheric 
ozone (Ravishankara et al., 2009; S.A. Montzka and S. Reimann et al., 2011). It is 
estimated that about two thirds of anthropogenic N2O emissions can be attributed to 
microbial processes occurring mainly in agricultural soils, or managed lawns but also in 
biological wastewater treatment (USEPA 2009; Townsend-Small et al., 2011). 

Microbial nitrogen (N) transforming processes such as autotrophic nitrification and 
heterotrophic denitrification have been identified as major N2O sources. However, the 
partitioning between these processes with respect to global N2O emissions and the 
respective mechanisms are still unclear. There are three main microbial pathways 
involved in N2O formation (Figure 1; Kampschreur et al., 2009): (i) N2O production as a 
side product during hydroxylamine (NH2OH) oxidation to nitrite (NO2

-), probably related 
to high metabolic activity (Yu et al., 2010), (ii) the reduction of NO2

- by ammonia-
oxidizing bacteria (AOB), known as nitrifier denitrification (Colliver and Stephenson 
2000), and (iii) the production of N2O by heterotrophic denitrifiers (HET), resulting from 
an unbalanced activity (e.g. due to inhibition) of nitrogen-reducing enzymes (or in some 
cases from a lack of N2O reductase; Baumann et al., 1997). The reduction of N2O to N2 by 
HET is currently considered to be the dominant microbial sink for N2O (Schreiber et al., 
2012). 

A promising approach to trace N2O source and sink processes is to analyze the nitrogen 
(and oxygen) isotope composition and intramolecular distribution of 15N on the central (

α) and terminal (β) positions of the asymmetric N2O molecules (Toyoda and Yoshida 
1999; Sutka et al., 2006; Baggs 2008). Bulk nitrogen isotope ratios of N2O are reported 

in the conventional δ-notation, in per-mil (‰), δ15N = [(RN2O/Rreference) - 1] x 1000, where 
R is the nitrogen isotope ratio (15N/14N), and atmospheric N2 (AIR) serves as the reference 

(Mariotti et al., 1981; Coplen 2011). Analogously, δ15Nα and δ15Nβ denote the relative 

enrichment of 15N in the central (Nα) position (14N15N16O) or in the terminal (Nβ) position 

(15N14N16O) with respect to the reference. The site preference (SP) is defined as SP = δ15N
α - δ15Nβ (Brenninkmeijer and Röckmann 1999; Toyoda and Yoshida 1999). 

Most of the studies that have used N2O isotopic measurements so far were field 
studies, in which the responsible N2O source processes, for instance, were not well 
constrained (Westley et al., 2006; Yamagishi et al., 2007; Koba et al., 2009; Toyoda et al., 
2009; Ostrom et al., 2010). In this regard, it is helpful that microbial N transformation 
processes are typically associated with kinetic isotope fractionation, e.g. the 
discrimination of the 15N-containing molecules during most enzymatic reactions. 
During nitrification, N2O is a side-product. Therefore, the nitrogen isotope fractionation 
is generally higher than during heterotrophic denitrification, where N2O is assumed to 
be an obligate intermediate and the isotope fractionation is the net result of 
production and consumption processes (Figure 1; SI, Table S1; Yamagishi et al., 2007; 
Koba et al., 2009). 
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following hypotheses: (i) nitrifier denitrification is the dominant N2O production 
pathway during nitrification (NH4

+ oxidation), (ii) NH2OH addition is conductive to N2O 
production by NH2OH oxidation, while (iii) the addition of NO2

- to activated sludge 
fosters N2O production by nitrifier denitrification, and (iv) HET is assumed to be the 
main pathway under anoxic conditions with N2O reductase activity being regulated by 
the dissolved oxygen concentration (Table 1). 

Materials and methods 

Experimental setup for batch scale experiments 

In the present investigation, batch experiments were carried out with activated sludge 
sampled from the aerobic (nitrifying) reactor of a pilot scale municipal wastewater 
treatment plant adapted to NH4

+ nitrification before the daily NH4
+ peak load (before 8 

a.m.; for more details see SI Text S1). A  laboratory batch-scale reactor with a working 
volume of 6.9 L and a headspace of 1.2 L was used (for more details see Wunderlin et al., 
2012). The wastewater temperature was held at 20 ± 1.2 °C. Continuous gas flow was 
maintained at 1 standard liter per minute using a mass flow controller (Red-y Smart 
series, Vögtlin Instruments, Switzerland) during both nitrification and denitrification 
experiments in order to strip N2O (and NO) from the liquid phase for subsequent 
analysis. The dissolved oxygen concentration was adjusted by automated oxygen-
controlled (by Oxymax H, Endress + Hauser) purging either with high purity nitrogen 
gas or synthetic air (20.5% O2 in N2). Under anoxic conditions, nitrogen gas was 
continuously purged through the reactor. The pH was measured with a pH electrode 
(Orbisint CPS11, Endress + Hauser, calibration at pH 7 and 9), and was held constant at 
7.1 ± 0.2 using a pH controller via the addition of CO2 (> 99.9% CO2, Carbagas). 

Nitrification experiments were carried out at oxygen concentrations typical for full-
scale plants: 0.5, 1, 2 or 3 mgO2/l. The experiments were started by adding either NH4

+, 
NO2

- or NH2OH (25 mg NH4
+-N/l, NH4HCO3 from Merck, Switzerland; 15 mgNO2

--N/l, 
NaNO2 from Merck; 2, 5, 10 or 15 mgNH2OH-N/l, NH2OH-HCl from Fluka, Switzerland). 
Denitrification experiments were performed at zero or very low dissolved oxygen 
concentrations (<0.2 mgO2/l), and were launched by adding organic carbon (sodium 
acetate from Merck; always > 100 mg COD/l; COD: chemical oxygen demand) and NO3

- 
(10 or 20 mgNO3

--N/l, NaNO3 from Fluka). Samples were preconditioned to remove 
ambient NO3

- present in the activated sludge through denitrification, prior to the start 
of the actual denitrification experiment with controlled substrate amendments. 
Preconditioning of the nitrification experiments included continuous aeration of the 
batch-scale reactor to remove ambient NH4

+ by nitrification. An overview of the 
experiments is given in Table 1. The nitrogen isotopic signature of the substrates used 
in the experiments was analyzed by elemental analyzer (EA) - isotope-ratio mass-
spectrometry (IRMS; for more details about the analytical aspects, see SI, Text S2). 

Experiments under nitrifying and denitrifying conditions were stopped when N2O (and 
NO) production ceased and the dissolved N substrate was completely oxidized (NH4

+, 
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NH2OH or NO2
- in the nitrification experiments) or reduced (NO3

- in the denitrification 
experiments). More detailed descriptions of the experimental setup, the batch 
experiments and the respective emission data are given in Wunderlin et al. (2012). 

Liquid analysis procedures 

Grab samples were taken regularly (every 15 to 60 minutes) and were immediately 
filtered through a 0.7 μm filter (GF/F Whatman) and a 0.45 μm syringe filter (Chromafil 
Membranfilter from Macherey), before being stored at 4 °C until their analysis within 
24 hours. NH4

+-N was analyzed photometrically using a Foss FIAstar flow injection 5000 
analyzer (detection limit 0.2 mgN/l; relative uncertainty 5%). NO3

--N and NO2
--N were 

determined by ion chromatography (761 compact IC, Metrohm; detection limit for both 
components 0.2 mgN/l; relative uncertainty 5%). Commercial photochemical test kits 
(Hach Lange GmbH, Düsseldorf, Germany) were used to measure low NO2

- 
concentrations (LCK 341; detection limit 0.015 mgN/l) and COD (LCK 314, LCK 414, or LCK 
114). 

Analysis of N2O concentration and isotopic composition 

The N2O and NO concentrations in the outflowing gas (off-gas) were continuously (1 
minute temporal resolution) analyzed by FTIR spectroscopy (GASMET CX-4000, Temet 
Instruments, Finland), equipped with a heated (40°C) flow-through gas cell of 9.8 m 
path length (see SI, Figure S1). The quantification limits for N2O and NO are 0.25 and 5 
ppm respectively, and the expanded standard uncertainty for both components is 

around 10% (2σ confidence level; Mohn et al., 2008). 

The exhaust gas was dynamically diluted with synthetic air (Messer, Switzerland) to 
constant N2O concentrations (around 300 ppb), using two mass flow controllers (Red-y 
Smart series, Vögtlin Instruments, Switzerland), in order to ensure a high precision of 
the isotope measurement (see SI, Text S3, Figure S1). At the pump outlet, the pressure 
was adjusted to 4 bar using a pressure relief valve. Humidity as well as CO2 were 
removed from the gas flow to ppm or even ppb levels, respectively, applying a 
permeation drier (MD-050-72S-1, PermaPure Inc., USA) and a chemical CO2 trap filled 
with Ascarite (4 g, 10 - 35 mesh, Fluka, Switzerland) and Mg(ClO4)2 (2 x 2 g, Fluka, 
Switzerland). Finally, the sample gas was passed through a sintered metal filter (SS-6F-
MM-2, Swagelok, USA) and directed to a preconcentration unit (Mohn et al., 2010). This 
fully automated liquid-nitrogen free preconcentration device was used to increase the 
N2O concentrations by a factor of 200, from ambient level to around 70 ppm N2O 
(Mohn et al., 2010; Mohn et al., 2012). The N2O content from 10 liters of diluted off-gas 
was adsorbed onto a porous polymer adsorption trap (HayeSep D 100-120 mesh, Hayes 
Separations Inc., USA) at a flowrate of 500 standard cubic centimeters per minute, then 
desorbed by resistive heating combined with synthetic air purging, and finally 
introduced into the evacuated multipass cell of the QCLAS (Waechter et al., 2008). 
Successive preconcentration cycles resulted in a temporal resolution of 30 minutes for 
N2O isotopomer analysis. The accuracy of this procedure was ensured by 
preconcentration of N2O with a known isotopic composition (standard I) and 
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subsequent QCLAS analysis at least once daily. The high precision analysis capacity and 
equivalence to IRMS has recently been demonstrated in an inter-comparison study 
(Köster et al., 2013). 

The QCLAS employed in this study allowed simultaneous quantification of the three 

most abundant N2O isotopic species (14N14N16O, 15N14N16O, 14N15N16O). For both δ15Nα and 

δ15Nβ, a precision better than 0.1 ‰ was obtained with six minutes of spectral 
averaging at mixing ratios of 70 ppm N2O. Before and after each experiment, standard 

gases were analyzed to calibrate the δ15Nα and δ15Nβ measurements, and to correct 
for drifts. The standard gas itself was calibrated against primary standards by QLAS. 

Standard I: δ15Nα = 2.1 ± 0.1‰, δ15Nβ = 2.0 ± 0.2 ‰, 246.9 ± 0.1 ppm N2O; standard II: δ
15Nα = 25.0 ± 0.1 ‰, δ15Nβ = 24.8 ± 0.2 ‰, 249.1 ± 0.1 ppm N2O (the precision indicated is 

the standard error of the mean). Primary standard gases were analyzed (δ15Nα, δ15Nβ 

and δ15Nbulk
N2O) by IRMS at the Tokyo Institute of Technology, Japan (Toyoda and 

Yoshida 1999). 

Table 1. Summary of batch experiments: added substrates (initial concentrations and their 
isotopic composition) to activated sludge taken from the nitrification reactor of our pilot 

plant, and dissolved oxygen concentrations; SP, δ15Nbulk of N2O (both at the beginning and 

end of the experiments), Δδ15N of produced N2O and the quantitative interpretation of 
SP data. NN refers to NH2OH oxidation, ND to AOB nitrifier denitrification, HET to 
heterotrophic denitrification and N2O red. to N2O reductase activity. Additional 
information is given in Wunderlin et al (2012). 

Experiment  
Added 

substrate 
O2  δ15Nbulk

N2O * 

Net N 
isotope 
effect 

(Δδ15N)# 

Site preference 
(SP)* 

Interpretation of microbial 
processes based on SP## 

  
start end start end start end 

 
[mg/l] [‰] [‰] [‰] [‰] [‰]     

NO2
- 

oxidation 
(δ15N = -
30.5‰) 
Hypothesis
: Nitrifier 
denitrificati
on (ND) 

NO2
- 

   

15 mgN/l 0.6 -64.4 - 0.2 100%ND 

15 mgN/l 0.6 -56.3 -72.9 25.8 -1.1 -2.1 100%ND 100%ND 

15 mgN/l 1.1 -54.9 -67.1 24.4 -0.2 -1.1 100%ND 100%ND 

15 mgN/l 2.1 -59.7 -72.4 29.2 -3.0 -3.4 100%ND 100%ND 

15 mgN/l 3.1 -57.5 -69.2 27.0 -2.1 -3.9 100%ND 100%ND 

NH2OH 
oxidation 
(δ15N = -
71.3‰) 
Hypothesis
: NH2OH 
oxidation 
(NN) and 
ND 

NH2OH 
    

2 mgN/l 2.1 -62.3 - 25.2 89%NN 11%ND 

5 mgN/l 2.1 -76.0 -86.3 4.7 26.4 19.9 
93%NN 
7%ND 

72%NN 
28%ND 

10 mgN/l 1.1 -63.9 -50.7 -7.4 30.7 3.7 100%NN 
19%NN 
81%ND 

10 mgN/l 2.2 -68.2 -83.1 -3.1 29.0 20.7 100%NN 
74%NN 
26%ND 

15 mgN/l 2.3 -70.1 -79.2 -1.2 27.5 25.8 
97%NN 
3%ND 

91%NN 
9%ND 

10 
mgN/l§ 

2.1 -65.7 -68.4 -5.6 30.5 30.2 100% NN§§ 100% NN§§ 
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NH4
+ peak 

addition 
(δ15N = 
1.15‰) 
Hypothesis
: ND and 
NN 

NH4
+ 

    

25 mgN/l 0.6 -57.6 -34.7 58.8 0.9 -2.0 
10%NN 
90%ND 

100%ND 

25 mgN/l 1.0 -55.5 -25.8 56.7 3.0 -1.0 
16%NN 
84%ND 

3%NN 
97%ND 

25 mgN/l 1.9 -54.7 -29.0 55.9 5.6 0.4 
25%NN 
75%ND 

8%NN 
92%ND 

25 mgN/l 2.0 -55.8 -25.3 57.0 2.5 -2.3 
15%NN 
85%ND 

100%ND 

25 mgN/l 3.1 -42.3 -39.6 43.5 1.9 -1.8 
13%NN 
87%ND 

100%ND 

Continuous 
NH4

+ 
addition 
(δ15N = 
1.15‰) 
Hypothesis
: ND and 
NN 

9 mgN/l 1.1 -54.8 -35.7 56.0 -0.5 -4.5 
5%NN 

95%ND 
100%ND 

9 mgN/l 2.1 -50.2 -31.7 51.4 -1.2 -5.8 
3%NN 

97%ND 
100%ND 

9 mgN/l 3.1 -48 -33.6 49.2 -1.2 -4.9 
3%NN 

97%ND 
100%ND 

15 mgN/l 2.9 -51.4 -30.9 52.6 1.1 -2.3 
10%NN 
90%ND 

100%ND 

NO3
- 

reduction 
(δ15N = 
2.5‰) 
Hypothesis
: hetero-
trophic 
denitrificati
on (HET) 
and N2O 
reductase 

NO3
- 

    
20 mgN/l 0 2.4 50.1 0.1 24.9 25.4 HET and strong N2O red. 

20 mgN/l 0 -5.3 13.2 7.8 24.9 26.1 HET and strong N2O red. 

10 mgN/l <0.1 3.0 - 25.8 HET and strong N2O red. 

10 mgN/l <0.1 -9.6 9.3 12.1 24.0 14.7 HET and low N2O red. 

20 mgN/l 0.1-0.2 -17.0 31.5 19.5 6.2 1.2 HET and low N2O red. 

* SP and δ15Nbulk
N2O values at the beginning and the end of experiments, respectively. In 

experiments with the same start and end value only one sample was analyzed. 
 # Net nitrogen (N) isotope effect calculated from the difference between δ15Nsubstrate and δ15Nbulk

N2O, by using the 
first data point, leading to a slight bias since some of the substrate was at that time already oxidized. 
## Calculated based on the isotopomer mixing model, presented in equation 1. 
§ Control experiment in tap water. 
§§ Assumption that 100 % of N2O is produced by chemical NH2OH oxidation.   

RESULTS AND DISCUSSION 

Isotopic signature of N2O produced during NO2
- oxidation experiments 

The SP of N2O produced during NO2
- oxidation experiments, where nitrifier 

denitrification is hypothesized to be the dominant pathway, ranged between 0.2 ‰ 
and -3.9 ‰ (-1.7 ± 1.3 ‰ on average; Figure 2 A; Table 1), which is consistent with 
previous work. For example, Sutka and co-workers (Sutka et al., 2003; Sutka et al., 2004; 
Sutka et al., 2006) and Frame and Casciotti (2010) reported average SP values of 0.1 ± 1.7 
and -10.7 ± 2.9 ‰ for nitrifier denitrification by N. multiformis, N. europaea and N. 
marina in batch cultures, respectively (Figure 1). However, our data show a systematic 
decrease in SP from the beginning (-0.2 to -3 ‰) towards the end of the experiments (-
1.1 to -3.9 ‰), when NO2

- was almost depleted (Table 1). On the basis of their SP data, 
Toyoda et al. (2005) proposed that during N2O production by enzymatic NO reduction, 
one NO molecule is bound to the active center of the NO reductase (e.g. cNOR or qNOR; 
Hendriks et al., 2000; Stein 2010), followed by the binding of the second NO molecule. 
Assuming that 15N-O binds preferentially to the active center of the enzyme compared 
to 14N-O, and that oxygen is abstracted from the NO molecule bound to the active 
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substrate and product increase with ongoing reaction). The decreasing trend in δ15N 

indicates that the δ15N of the NO2
- itself represents a ‘moving baseline’ which is 

affected not only by N isotope fractionation during the reduction to N2O, but also by 
the oxidation to NO3

- (preventing the use of a Rayleigh model to calculate N isotope 
effects for N2O production). Oxidation of NO2

- to NO3
- in the ocean has been reported to 

be associated with an inverse N isotope effect (e.g. a negative Δδ15N; Casciotti 2009), 
and it appears that this effect seems to dominate the isotopic changes of the NO2

- (and 
hence of N2O). 

Isotopic signature of N2O produced during NH2OH oxidation experiments 

During NH2OH oxidation experiments, where NH2OH oxidation is hypothesized to be 
the dominant N2O production pathway, the SP of N2O ranged between 26.4 and 30.7 ‰ 
at the beginning of the experiments (28.4 ± 1.9 ‰ on average; Figure 2 B; Table 1). This 
was significantly higher than the SP observed during NO2

- oxidation experiments (SP in 
the range of -0.2 to -3.0 ‰; Figure 2 A), where nitrifier denitrification by AOB was the 
dominant N2O producing process. But in agreement with previous work, where average 
SP values of 32.5 ± 0.6 ‰, 33.5 ± 1.2 ‰ and 30.8 ± 5.9 ‰ were measured for the N2O 
production via NH2OH oxidation by N. multiformis, N. europaea and Methylococcus 
capsulatus, respectively (Sutka et al., 2003; Sutka et al., 2004; Sutka et al., 2006). SP 

values of 36.3 ± 2.4 ‰ were determined for the marine β-proteobacterium 
Nitrosomonas marina C-113a (Figure 1; Frame and Casciotti 2010). The systematic 
decrease in SP in the course of our experiments (Figure 2 B), in addition to the 

decreasing trend observed for δ15Nbulk
N2O (see below), underscores that NH2OH 

oxidation is dominant at the beginning of the experiments, while nitrifier 
denitrification becomes important with ongoing depletion of NH2OH substrate. By 
assuming an average SP of 28.5 ‰ for pure N2O production via NH2OH oxidation (SPNN; 
this section) and an average SP of -2 ‰ for AOB nitrifier denitrification (SPND; see section 
before), the partitioning of both processes with regards to total N2O production can be 
estimated (FND and FNN, respectively), even though a marginal contribution from 
additional (not considered) pathways cannot be completely excluded (equation 1; 
Frame and Casciotti 2010): 

)(

)(
)1(

NNND

NNtot
NNND SPSP

SPSP
FF




    Equation 1 

Accordingly, a  site preference (SPtot) generally in between of 20 and 25 ‰ (as observed 
towards the end of several of the experiments shown in Figure 2 B) suggests that ~12 to 
~28 % of the total N2O production in the nitrifying batch experiments can eventually be 
attributed to nitrifier denitrification (FND). At the extreme, in one of the experiments at 
1.1 mgO2/l (Table 1; SI, Figure S2 C), we measured a SP of 3.7 ‰ at the end of the 
experiment when NH2OH is low suggesting that nitrifier denitrification by AOB can 
almost completely take over N2O production (see also Figure 3 A). 
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The exact mechanism of N2O formation during NH2OH oxidation is unknown, but can 
be hypothesized that it is produced either via chemical breakdown of nitroxyl radicals 
(NOH; Law et al., 2012), or via NO production by hydroxylamine oxidoreductase (HAO), 
which is subsequently reduced to N2O by an NO reductase such as cytochrome c554 
(Upadhyay et al., 2006; Chandran et al., 2011). For both scenarios, a positive SP can be 
interpreted as an indicator of a reaction via a symmetric intermediate, where the 
cleavage of the 14N-O bond is preferred over that of the 15N-O bond, resulting in a 15N 

enrichment at the central (α) position (14N-15N-O; Schmidt et al., 2004). 

The δ15Nbulk values of N2O produced at the beginning of the NH2OH oxidation 
experiments were in the range of -63.9 to -76 ‰ (Figure 2 B). On the basis of these 

values, Δδ15N between -7.4 and 4.7 ‰ were estimated (δ15N of NH2OH-HCl = -71.3 ‰; 
Table 1). Yet, the observed N isotope effect range is consistent with reports from the 

literature, with Δδ15N values for N2O production via NH2OH oxidation of -2 ‰ for N. 
europaea and N. multiformis, and -5.7 ‰ for M. trichosporium respectively (Sutka et al., 
2006). A similar value was measured for N. capsulatus (-3.1 ‰; Sutka et al., 2003; Sutka 

et al., 2004) and for the marine β-proteobacterium Nitrosomonas marina C-113a (6.7 ‰; 
Frame and Casciotti 2010). As in the NO2

- oxidation experiments, we observed 

systematically decreasing δ15Nbulk
N2O values to -79.2 to -86.3 ‰ with progressive 

reaction (Figure 2 B). This trend is best explained by the above mentioned increasing 
contribution of nitrifier denitrification activity by AOB to the total N2O production. 
Indeed, NO2

-, the precursor substrate of N2O in nitrifier denitrification, accumulated by 
up to 0.4 mgN/l during the experiment (in parallel with N2O), yielding maximum off-
gas concentrations of about 60 ppm (SI, Text S4, Figure S2 C and D). The inverse 
fractionation during partial NO2

- oxidation to NO3
- can explain the negative trends as 

described for the NO2
- oxidation experiments (see above and Casciotti 2009). In the 

experiment at 1.1 mgO2/l (shown in SI, Figure S2 C and D), we monitored the N2O 
isotopic signature until NH2OH was almost completely oxidized (in contrast to the 
other NH2OH oxidation experiments shown in Figure 2 B): at very low N2O production 

rates during the second half of the incubation, δ15Nbulk
N2O increased again from a 

minimum of -81.1 to -50.7 ‰. We consider this increase in δ15Nbulk
N2O to be the result of a 

paralleling increase of the δ15N of the precursor N (NH2OH and NO2
-) and N2O pools 

according to Rayleigh distillation kinetics, dominating the overall N isotope dynamics 
towards substrate depletion. 

In a control experiment, where we added NH2OH to tap water (without activated 

sludge), N2O was produced with an average δ15Nbulk value of -67.2 ± 1.8 ‰ (Δδ15N of 
around -4.1 ± 1.8 ‰) and an average SP of 30.3 ± 0.2 ‰ (Table 1). SP remained essentially 

invariant and only a minor decrease in δ15Nbulk
N2O (from -65.7 to -68.4 ‰) was observed. 

As NO2
- production was marginal in the absence of activated sludge (data not shown), 

we conclude that the observed signatures are characteristic for purely inorganic NH2OH 
oxidation. Indeed, Toyoda et al. (2005) reported an average SP value of 30.1 ‰ for 
inorganic NO2

- reduction and 29.5 ‰ for inorganic NH2OH oxidation respectively, and 
proposed an N2O formation mechanism via hyponitrite (N2O2

2-), a symmetric 



 

interme
the 14N
above).

Figure 
oxidatio
1) durin

mgO2/l.
± 0.3 ‰

Isotop

During 
hypoth
(determ
to 1.1 ‰
Table 1)
ongoin
reporte
N2O pro
to influ
concen
ranged
mgO2/l
experim
(Figure 
importa
progres
2012). I
constan
to nitrif

ediate. Also
N-O bond o

. 

 3. Quantit
on (NN) ac

ng (A) NH2O

. Substrate 
‰ 

ic signatu

 ‘conventio
esized to 

mined at th
‰ during p
 ). In the pe

g reaction,
ed for nitrif
oduced dur
uence the 
trations at
 between 2
 (at the sam

ment when
 4 B and 
ance of n
ssive deple

 n contrast
nt and only
fier denitri

o here, the 
 of the -O-

tative appo
cording to 

OH oxidatio

 was added

ure of N2O

onal’ nitrif
 be the d
he onset of
eak and co

eak additio
, similar to 
fier denitr
ring NO2

- o
 SP, with h
t the begin

 2.5 and 5.6 
me initial N
n NO2

- conc
 C, Figure 
nitrifier de

etion of NH
t, during co
y decreased
ification do

 positive SP
14N-15N-O- 

ortioning o
 the observ
on at 1.1 mg

d at time ze

O produce

ication (NH
dominant 
f the exper
ontinuous 
n experime
 the values
ification in
xidation ex

 higher SP 
nning of th
 ‰ at ~2 m

 NH4
+ conce

centrations
 5 A and B
enitrificatio

H4
+ and the

ontinuous 
d after the 
ominated N

 

P can be ex
 molecule 

of AOB nit
ved SP and t
gO2/l and (

ero. The un

ed during 

H4
+ oxidati

 N2O prod
riments) ra
 NH4

+ addit
ents, SP de
s observed 
n pure cult
xperiments
 values at 
he experim

mgO2/l, and
ntration). S
s peaked a

 B). This tre
on by AO

e accumula
 NH4

+ addi
 cessation o

 N2O produ

xplained by
 (similar to

trifier deni
 the isotopo
(B) NH4

+ ox

ncertainty (

 NH4
+ oxid

on) where
uction pat
nging from
tion, respe

ecreased to
 in the NO2

ture (see se
s’). O2 and 
 elevated d

ment (Figu
  was signi

 SP was min
nd almost
end furthe
OB with o
ation of NO
ition (Figur
 of NH4

+ add
ction as de

y the prefer
o the mec

trification 
omer mixin
xidation (pe

(2σ confide

dation exp

e nitrifier d
thway, the

m 0.9 to 5.6
ctively (Fig
 values of 

2
- oxidation

ection ‘Isot
 NH4

+ conce
 dissolved O

re 4 B). Fo
ificantly low
nimal towa
 all the NH

er undersc
ongoing r

O2
- (see also

re 5 C and
dition (and
escribed ab

Ch

rential clea
hanism di

 (ND) and 
ng model (e
eak additio

ence level) f

periments

denitrificat
e SP of t
6 ‰ and fr
gure 4 A; F
 0.4 to -2.3 
n experime
topic signa
entrations 

 O2 and hig
r example
wer (0.9 ‰

ards the en
H4

+ was con
ores the g

reaction a
o Wunderl
d D), SP wa
d the putat
bove). Our 

hapter 4 

103 

avage of 
scussed 

 

 NH2OH 
equation 
n) at 1.9 

 for SP is 

s 

ion was 
he N2O 
rom -5.8 

 Figure 5; 
 ‰ with 

ents and 
ature of 
 seemed 
gh NH4

+ 
, the SP 

‰) at 0.6 
d of the 
nsumed 

 growing 
nd the 
in et al., 
as quite 
ive shift 
 SP data 



Chapte

104 

further
product

Figure 4
experim
NH4

+ co
N2O em
that in 
value w

oxygen

for SP a

Similar 
‰ for 

er 4 

r indicate t
tion by NH

 4. (A) δ15N
ments. The 
oncentratio

mitted as a f
 the experi

was obtaine

 concentra

and δ15Nbulk

 to the app
 pure N2O 

 hat an incr
H2OH oxidat

Nbulk, and (B
 concentrat
on to the in
 function of
iment at 3 
ed at lowe

tions (in m
k

N2O is ± 0.3 

proach desc
 productio

rease in NH
tion (Table

B) SP of N2O
tion of NH
nitial NH4

+ 
f the NO2

- c
 mgO2/l, a 

er NO2
- conc

mg/l; left) an

 ‰, and for

cribed abov
on via NH

 

H4
+ concen

e 1). 

O produced
H4

+ is expre
 concentrat

concentrati
 rapid NO2

-

centrations

nd R2 (right

r [NH4
+]/[NH

ve (equatio

2OH oxida

tration fro

d during NH
essed as th
tion (exper
on (experim
- built-up o
s. In paren

t). The unce

H4
+]ini bette

on 1), and a
ation (deriv

m 9 to 15 m

 

H4
+ (δ15N =

e ratio of 
riment star
ment starts
occurred, an
theses: set-

ertainty (2σ

r than ± 0.0

 assuming a
ved from 

 mgN/l fost

= 1.15 ‰) ox
 the instan
rts at 1.0). (
s at 0 mgN/
nd therefor
-point of d

σ confiden

05. 

 average SPs
 NH2OH ox

 

ters N2O 

xidation 
taneous 
(C) SP of 
/l). Note 
re no SP 

dissolved 

nce level) 

s of 28.5 
xidation 



  Chapter 4 

105 

experiments) and of -2 ‰ for NO2
- reduction (derived from NO2

- oxidation experiments) 
respectively, the contribution from both pathways can be assessed, even though the 
marginal contribution from other pathways cannot be completely excluded at this 
point. Accordingly, a site preference (SPtot) of 0.9 to 5.6 ‰ at the onset of the peak 
addition experiments indicates a maximum contribution of NH2OH oxidation to the 
total N2O production of about 25 %. This contribution systematically decreases to less 
than ~7 % towards the end of the experiments (Figure 3 B). This observation appears to 
be qualitatively consistent with a recent study by Yu et al. (2010), who speculated that 
during initial N2O production in a pure N. europaea culture NH2OH oxidation is more 
important because NH2OH accumulates transiently at high NH4

+ oxidation rates, e.g. 
under oxic conditions in an ammonia-fed chemostat or at high NH4

+ loads (Chandran et 
al., 2011). Furthermore, in a nitritation system, the NH4

+ oxidation rate correlated 
exponentially with the specific N2O production rate, which can be explained by the 
chemical breakdown of NOH (presumably formed during NH2OH oxidation; Law et al., 
2012), and in a pure culture of N. europaea it was shown that increased dissolved 
oxygen concentrations decreased the relative importance of nitrifier denitrification to 
NH2OH oxidation (Sutka et al., 2006; Frame and Casciotti 2010). In other mixed culture 
nitrification experiments, the observed SP values suggest a dominance of nitrifier 
denitrification (over NH2OH oxidation) with regard to N2O production (Toyoda et al., 
2011). 

The δ15Nbulk of N2O emitted at the onset of NH4
+ oxidation experiments ranged 

between -42.3 and -57.6 ‰ (Figure 4 A), which translates into Δδ15N values of 43.5 to 

58.8 ‰ (δ15N of NH4HCO3 = 1.15 ‰; Table 1) (again being slightly biased by a potential 
15N enrichment prior to the first measurement). Nevertheless, these Δδ15N values are 
similar to data reported for N2O production via nitrification (50 ‰ by Toyoda et al., 2011; 
47 to 68 ‰ by Koba et al., 2009; 56.9 ‰ by Frame and Casciotti 2010; Figure 1). In the 

course of our incubation experiments, δ15Nbulk
N2O values systematically increased to -

25.3 to -39.6 ‰ due to 15N enrichment in the substrate N pool (NH4
+ and transformation 

products) as result of N isotopic fractionation according to the Rayleigh distillation 
kinetics during the stepwise oxidation to NO2

- and NO3
- (Figure 4 A; SI, Text S2 and S5, 

Figure S4 A). In the experiment with 3.1 mgO2/l, the initial δ15Nbulk
N2O was significantly 

higher (-42.3 ‰) than in the other NH4
+ oxidation experiments (-54.7 to -57.6 ‰), and 

thus the net Δδ15N was significantly lower (43.5 ‰). In addition, NO2
- accumulation 

was highest in the high-O2 experiment (up to almost 5 mgN/l; Figure 4 C), indicating 
that the NO2

- oxidation to NO3
- was the limiting step. In a mixed population system, the 

Δδ15N naturally depends on the importance of each single transformation process. 
However, there are ambiguities with respect to the relationship between 
biogeochemical process reaction rate and N isotope fractionation (e.g. Kritee et al., 
2012), and the reduction in N isotope fractionation is often linked to low substrate 
concentrations (e.g. Lehmann et al., 2007; Granger et al., 2008). In the high-O2 
experiment (at 3.1 mgO2/l), NO2

- was clearly not limiting N2O production, and hence we 
assume that it is the high NH4

+ oxidation rate in combination with a comparatively 
sluggish NO2

- oxidation, which leads to NO2
- accumulation and in turn to  the partial 
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Our results underscore the value, but also the limitations, of N2O isotopomer analysis in 
investigating the pathways of, and controls on, N2O production and co-occurring N 
transformations in biological (municipal) wastewater treatment. Especially in 
combination with parameters commonly reported in wastewater treatment, such as 
the concentrations of dissolved O2, N species, COD, but also N2O and NO, the isotopic 
signature of N2O provides additional insight into the pathways directly involved in N2O 
production. Our data elucidating the N isotope dynamics associated with N2O 
production in wastewater treatment may be integrated in future numerical models in 
order to establish a more quantitative framework for predicting and understanding 
N2O production in biological wastewater treatment plants. 

Nomenclature 

Isotopomer: Molecules containing the same isotopes but with differing 
isotope positions; e.g. N2O with 15N in the central (14N-15N-O) or 
the end (15N-14N-O) position (Müller 1994) 

R:  Nitrogen isotope ratio, 15N/14N 

δ15Ncompound:  (Rcompound - Rref) / Rref x 1000, with atmospheric nitrogen as the 
reference material (ref) 

δ15Nα and δ15Nβ:  Relative differences of isotope ratios for the inner (α) and the 

outer (β) nitrogen atom in the asymmetric N2O molecule 

SP:  Site preference, the difference between the δ15Nα and δ15Nβ 

δ15Nbulk
N2O: The average between δ15Nα and δ15Nβ in N2O 

Δδ15N: The net nitrogen (N) isotope effect, which approximates the 
apparent fractionation of a multiple step reaction, expressed as 

the difference between δ15Nsubstrate and δ15Nbulk
N2O; 

according to Koba et al. (2009) and Sutka et al. (2006). 
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Table S1. Reported values of characteristic nitrogen isotopic signatures (SP, Δδ15N) for 
NH2OH oxidation, nitrifier denitrification, and heterotrophic denitrification. 

SP [‰] 
Isotope 
fractionation 
[‰] 

Species Reference 

NH2OH oxidation     

30.8 ± 5.9 -3.1 Methylococcus capsulatus 
Sutka et al. (2003); Sutka et 
al. (2004) 

33.5 ± 1.2 -2 Nitrosomonas europaea Sutka et al. (2006) 

32.5 ± 0.6 -2 Nitrosomonas mulitiformis Sutka et al. (2006) 

35.6 ± 1.4 -5.7 Methylosinus trichosporium Sutka et al. (2006) 

36.3 ± 2.4a 6.7a Nitrosomonas marina C-113a Frame and Casciotti (2010) 

29.5 ± 1.1 n.d. Inorganic NH2OH oxidation Toyoda et al. (2005) 

Nitrification: NO2
- reduction by nitrifier denitrification   

-0.8 ± 5.8 35.1 Nitrosomonas europaea 
Sutka et al. (2003); Sutka et 
al. (2004) 

0.1 ± 1.7 24.4 Nitrosomonas multiformis Sutka et al. (2006) 

-10.7 ± 2.9b 56.9b Nitrosomonas marina C-113a Frame and Casciotti (2010) 

Nitrification: Combination of NO2
- reduction by nitrifier denitrification and/or NH2OH oxidation 

31.4 ± 4.2 46.9 Nitrosomonas europaea Sutka et al. (2006) 

30.8 ± 4.4 n.d. Marine ammonia oxidizing archaea Santoro et al. (2011) 

n.d. 68 Nitrosomonas europaea Yoshida (1988) 

4.5c 48.4 ± 0.3c Mixed population system; WWTP Toyoda et al. (2011) 

Heterotrophic denitrification: NO3
- and/or NO2

- reduction   

-0.6 ± 1.9d 12.7d Pseudomonas chlororaphis Sutka et al. (2006) 

-0.5 ± 1.9d n.d.d Pseudomonas aureofaciens Sutka et al. (2006) 

-0.5 ± 1.9e n.d.e Pseudomonas chlororaphis Sutka et al. (2006) 

-0.5 ± 0.6e 36.7e Pseudomonas aureofaciens Sutka et al. (2006) 

23.3 ± 4.2f 17 to 39f Pseudomonas fluorescens Toyoda et al. (2005) 

-5.1 ± 1.8f 10 to 22f Paracoccus denitrificans Toyoda et al. (2005) 
a NH4

+ oxidiation: Dominant contribution from NH2OH oxidation (experiment at high O2 concentrations). 
b Dominant contribution from nitrifier denitrifcation (experiment at low O2 concentrations). 
c Nitrifier denitrification as dominant N2O production pathway in the oxic tank. 
d NO2

- eduction    
e NO3

- eduction    
f From NO3

- to N2O     
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Text S1. Characterization of the activated sludge and the pilot-
scale treatment plant 

Batch experiments were carried out with activated sludge taken from the nitrification 
reactor before the daily NH4

+ peak load (before 8 a.m.) of the pilot scale facility at Eawag 
treating municipal wastewater. The plant consists of a primary clarification unit 
followed by activated sludge treatment (pre-denitrification, nitrification) and secondary 
clarification (sludge recirculation was twice the influent flow). It was operated with a 
solids retention time of ~20 - 22 days (10 - 11 days aerobic) and total suspended solid 
(TSS) concentrations between 4 and 4.4 g/l. Nitrification was complete, with average 
total nitrogen removal above 60%. The nitrification reactor is operated at dissolved 
oxygen concentrations in the range from 0.5 to 2 mgO2/l. Therefore, batch-scale 
experiments were carried out at dissolved oxygen concentrations in a similar range (0.5 
to 3 mgO2/l). The dissolved nitrogen species in the activated sludge tanks were usually 
below 10 mgN/l. 

Text S2. Analytical details of the nitrogen isotopic composition of 
substrates and dissolved nitrogen species 

For measuring δ15N, aliquots of the samples (NH4HCO3, NaNO2, NH2OH-HCl and NaNO3) 
were weighed into tin capsules (Säntis). Samples were combusted at 1020 °C with 
excess oxygen in an elemental analyzer (Thermo quest, CE instruments) and the 
resulting combustion gases passed through a reduction furnace at 650 °C. After 
removal of water with magnesium perchlorate and purification in a gas 
chromatographic column, N2 was measured on-line with an isotope-ratio mass-
spectrometer (IRMS; Micromass). Nitrogen isotope ratios are reported in the 
conventional delta notation with respect to atmospheric N2 (AIR). The analytical 

reproducibility is ± 0.2 ‰ for δ15N. 

In selected experiments, the isotope signature of dissolved NOx (= NO3
- + NO2

-) and NO3
- 

was measured: (i) in the ammonia oxidation experiment at 2.1 mgO2/l with an initial 
ammonia concentration of ~25 mgN/l, and (ii) in the denitrification experiment under 
anoxic conditions with an initial nitrate concentration of ~20 mgN/l (Figure S3 and S4). 

Nitrogen (N) isotope ratio measurements of naturally occurring NOx (= NO2
- + NO3

-) 
were performed using the denitrifier method (Sigman et al., 2001; Casciotti et al., 2002). 
Briefly, sample NOx or NO3

- (after nitrite removal from the sample) is quantitatively 
converted to N2O by cultured denitrifying bacteria. The N2O was automatically 
extracted, purified and analyzed on-line using a gas-bench preparation system coupled 
to a continuous flow isotope-ratio mass-spectrometer (CF-IRMS; Thermo Finnigan 
DeltaPlus XP). The general target sample size was 50 nmol N. Pseudomonas 
chlororaphis (ATCC #13985; formerly Pseudomonas aureofaciens) were used for the NOx 
conversion. Data were corrected for the procedural blank contribution, which was 
always less than 1% of the sample size. N isotope ratios are reported in the conventional 
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inorganic nitrogen (DIN) concentrations, and δ15N-NOx, δ
15N-NO3

-, as well as the δ15N-
NH4-substrate measurements (see Equations 1 and 2). 
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Abstract 

Nitrous oxide (N2O) is an important greenhouse gas and a major sink of stratospheric 
ozone. Microbial transformation processes, particularly autotrophic nitrification and 
heterotrophic denitrification, have been identified as major N2O sources in biological 
wastewater treatment. The 15N isotopic signature of N2O is a novel and powerful 
technique to differentiate between these pathways: it is based on the site-specific 

distribution of 15N (site preference, SP) as well as the average 15N content (δ15Nbulk
N2O) of 

the asymmetric N2O molecule. 

In the present study, we investigate the applicability of N2O isotopomer analysis to 
source allocation in a pilot-scale biological wastewater treatment plant. The 15N isotopic 
signature was analyzed with respect to the dissolved oxygen concentration in the 
activated sludge tank, which is one of the most important controlling parameters for 
autotrophic nitrification and heterotrophic denitrification. Results show that under 
aerated conditions with 2 to 3 mgO2/l, N2O is produced from nitrite (NO2

-) reduction by 
nitrifier denitrification (SP close to 0 ‰) or heterotrophic denitrification (SP close to 0 
‰, without N2O reduction). Hydroxylamine (NH2OH) oxidation cannot be excluded, but 
the SP data suggests that the contribution from this pathway is low. With decreasing 
dissolved oxygen (below 1 mgO2/l), however, the increase in SP is most probably caused 

by heterotrophic denitrification due to N2O reduction. On the other hand, δ15Nbulk
N2O 

supports the findings from the SP analysis, but cannot be used as a quantitative 
measure in this study, since the isotopic composition of the substrates is unknown. In 
sum, this study illustrates the value of the 15N isotopic signature of N2O as a promising 
tool to further investigate N2O production pathways in biological wastewater 
treatment. 

Keywords 

Biological wastewater treatment; nitrous oxide (N2O); nitrifier denitrification; pathway 
identification; site preference 

Nomenclature 

15N; 14N: Stable nitrogen isotopes 

R: Nitrogen isotope ratio, 15N/14N 

δ15Nα, δ15Nβ: Relative differences of isotope ratios to the standard material 

(nitrogen, N2) for the inner (α) and the outer (β) nitrogen atom in 
the asymmetric N2O molecule 

δ15Nbulk
N2O: The average 15N content in N2O relative to nitrogen (N2) 

SP: Site preference, the difference between the δ15Nα and δ15Nβ 
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Introduction 

Nitrous oxide (N2O) is an important greenhouse gas (about 300 times more effective 
than CO2) and a major sink for stratospheric ozone (IPCC 2007). These impacts on our 
environment make it an urgent requirement to limit anthropogenic N2O emissions 
(Ravishankara et al., 2009). It is estimated that about two thirds of the overall N2O is 
emitted by microbial processes occurring mainly in agriculture, but also in biological 
wastewater treatment (USEPA 2009). Depending on the operating conditions, N2O 
emissions are estimated to represent a major part of the total greenhouse gas 
emissions from biological wastewater treatment (Daelman et al., 2012). Continuous 
online monitoring of N2O is consequently helpful in reducing overall greenhouse gas 
emission from biological wastewater treatment (e.g. Wunderlin et al., 2013b). 

N2O production in biological wastewater treatment is mainly attributed to autotrophic 
nitrification and heterotrophic denitrification, which produce N2O via different 
pathways (Kampschreur et al., 2009; Wunderlin et al., 2012): (i) during the oxidation of 
ammonia (NH4

+) or hydroxylamine (NH2OH) to nitrite (NO2
-), (ii) via reduction of NO2

- by 
ammonia-oxidizing bacteria (AOB), known as nitrifier denitrification, and (iii) during 
heterotrophic denitrification where N2O is an obligate intermediate. The importance of 
each of these pathways remains unclear, but it is generally believed that nitrifier 
denitrification is dominant in biological wastewater treatment under aerobic 
conditions (Colliver and Stephenson 2000).  

A promising way of apportioning N2O production to nitrification and denitrification is 
to analyze the stable nitrogen (N) isotopes (Baggs 2008; Schreiber et al., 2012; 
Wunderlin et al., 2013a). This is done by measuring the isotope ratio of a sample (Rsample) 

against atmospheric nitrogen (N2; Rstandard) and expressing the result in the delta (δ) 

notation (Mariotti et al., 1981): δ15Nsample  = (Rsample - Rstandard) / Rstandard * 1000. The 
difference in �15N between the central oxygen-bound (�� position and the outer (�� 

position is known as the site preference (SP): SP = δ15Nα - δ15Nβ. In recent years, 
analytical procedures have been developed to determine the intramolecular 
distribution of 15N within the asymmetric linear N2O molecule by isotope-ratio mass-
spectrometry (IRMS) (Brenninkmeijer and Röckmann 1999; Toyoda and Yoshida 1999) as 
well as by quantum cascade laser absorption spectrometry (QCLAS) (Waechter et al., 
2008; Mohn et al., 2012; Köster et al., 2013). 

The advantage of SP is its independence from the 15N content of the substrates and its 
specificity to the processes involved in N2O production and degradation (Sutka et al., 
2006). Due to the complexity of the mixed population system used in this 
investigation, the characteristic SP values of specific pathways need to be studied on 
pure bacterial cultures. The following SP end-member values were consequently 
reported for N2O production by both nitrifying and denitrifying bacterial strains (Sutka 
et al., 2006): (i) 31.4 to 33.5 ‰ for NH2OH oxidation, (ii) 0.1 ‰ for nitrifier denitrification 
by AOB, and (iii) -0.5 to -0.6 ‰ for heterotrophic denitrification (for a more detailed 
overview, see Wunderlin et al., 2013a). Positive SP values in the range from 0 to 26.1 ‰, 
under anoxic or very low dissolved oxygen conditions, are attributed to a significant 
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heterotrophic N2O reductase activity relative to N2O production (Yamagishi et al., 2007; 
Koba et al., 2009; Wunderlin et al., 2013a). Conventional parameters, such as the 
dissolved O2, the N species (NH4

+, NO2
-, NO3

-), the organic carbon as well as the process 
control and the N2O off-gas analysis, must be considered to interpret the isotope data 
more conclusively (e.g. to discriminate between NH2OH oxidation and heterotrophic 
denitrification, since both pathways lead to a positive SP; Decock and Six 2013). 

The SP of the N2O emitted from an activated sludge lab-scale batch reactor was 
investigated in a recent publication (Wunderlin et al., 2013a): the results show that 
under aerobic conditions, the SP values were within the range for NO2

- reduction, which 
is hypothesized to be primarily due to AOB nitrifier denitrification. However, the 
contribution of the NH2OH oxidation to the total N2O production was of minor 
importance under typical nitrifying process conditions. Furthermore, heterotrophic 
denitrification activity under anoxic conditions is supported by positive SP data (up to 
26.1 ‰). 

In this study, we investigated the nitrogen isotopic signature of N2O emitted from a 
pilot-scale treatment plant fed with real municipal wastewater and operated at 
different concentrations of dissolved oxygen. The goal was to test the applicability of 
N2O isotopic analysis for source allocation in a set-up that was closer to full-scale plants 
than that of previous lab-scale batch experiments. The tested hypothesis was that NO2

- 
reduction is the dominant route for N2O production under aerobic conditions in this 
system treating real municipal wastewater, i.e. the SP of N2O is expected to be close to 
0 ‰. 

Materials and methods 

A pilot-scale wastewater facility treating around 60 population equivalents and 
consisting of primary clarification followed by activated sludge treatment with pre-
denitrification (Bio1), nitrification (Bio2) and secondary clarification was monitored 
(Figure 1). It was operated with a solids retention time of around 12 days. The 
concentration of mixed liquor suspended solids (MLSS) was about 3 g/l. The plant was 
controlled by a programmable logical controller (PLC) linked to an interface for direct 
access to data visualization and storage. It was fed with real municipal wastewater 
taken from the nearby sewer in the municipality of Dübendorf (CH) at a fixed flowrate, 
changing every 2 hours with a mean value of 27 m3/day (Figures 2 and 3). Both reactors 
(Bio1 and Bio2) had a volume of 8 m3 and were operated together as a completely 
stirred tank reactor. The return sludge flow was about 2.3 times higher than the 
influent flow. The dissolved oxygen concentrations in the activated sludge tanks were 
controlled at a given set-point (3, 2, 1, 0.5 or <0.5 mgO2/l) based on the aeration rate 
adjustment (on / off control). 
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performance achieved by high-precision analysis and its equivalence to IRMS were 
recently demonstrated in an inter-comparison study (Köster et al., 2013). 

Wastewater sampling procedures and analysis 

Laboratory measurements were carried out every weekday. Grab samples were taken 
six times per day at 7, 8, 10 and 12 a.m. and 2 and 4 p.m. The samples were immediately 

filtered through a 0.45μm syringe filter and stored at 4°C. The NH4
+-N was analyzed by 

photometry using a Foss FIAstar (flow-injection 5000 analyzer). The NO3
--N and NO2

--N 
were determined by anion chromatography (761 compact IC, Metrohm). The 
measurements were carried out within 24 hours of sampling. The influent municipal 
wastewater was subjected to flow-proportional sampling for 2 hours in each case 
(WaterSam, Gerber Instruments) during the whole measuring campaign for the total 
organic carbon (TOC) analysis. The samples were homogenized (Ultra-turrax T25, Faust 
Laborbedarf AG) before TOC analysis (IL 550 TOC-TN, Hach Lange GmbH). The ratio of 
CODtotal (total chemical oxygen demand) to TOC is 3.3 ± 0.5 (n = 39, measured over one 
year), while the CODtotal to CODsoluble ratio is 1.8 ± 0.2 (n = 6; measured over two months). 

Results and discussion 

Trends of dissolved nitrogen species and N2O emissions 

The trend data for the NH4
+ influent concentrations, influent flows, aeration rates, 

dissolved oxygen concentrations, N2O off-gas concentrations and dissolved N species 
(NH4

+, NO2
-, NO3

-) are shown in Figures 2 and 3. The NH4
+ influent loads tended to peak 

during the morning hours (between 8 to 11 a.m.) due to high NH4
+ concentrations in the 

sewer system and in combination with the highest daily influent flow into the 
activated sludge plant (~1.4 m3/h between 8 to 10 a.m.). The low N influent loads in the 
morning of days 3, 8, 11 and 12 were affected by rainfall in the catchment area leading to 
dilution in the sewer networks (pilot-plant influent flow with a fixed daily variation; see 
Figures 2 and 3). Under normal dry weather conditions, the NH4

+ influent loads were 
typically in the range from 20 to 70 gN/h. The total organic carbon (TOC) 
concentrations of the influent wastewater were between 100 and 250 mg/l (data not 
shown), corresponding to about 330 to 850 mg/l total chemical oxygen demand (COD; 
i.e. about a factor of 3.3 higher than the TOC). 

The N2O emissions were highly dynamic but seemed to depend on the dissolved NH4
+ 

and NO2
- concentrations in the activated sludge tanks: for example, during day 2 (Figure 

2), the N influent load was high, and both NH4
+ and NO2

- built up in the nitrification 
reactor, while the N2O emissions rose in parallel. On the other hand, during low N 
loading situations, such as during rain events on days 8 and 14 (Figure 3), N2O emissions 
were low or even below the limit of detection (< 0.5 ppm). This is in accordance with 
several studies: thus Lotito et al. (2012) reported a similar daily pattern of N2O emissions 
correlating with the N influent load, and Ahn et al. (2010) identified dissolved NO2

- as a 
relevant parameter for N2O production in full-scale treatment plants. 
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plant, an SP value of 4.5 ‰ was estimated for N2O emitted from the nitrification reactor 
(Toyoda et al., 2011). Moreover, SP values in the range from 0.1 to 16.9 ‰ were measured 
in river water below the effluents of wastewater treatment plants (Toyoda et al., 2009). 

Table 1. Overview of (i) the average dissolved oxygen (DO) in the activated sludge reactor 
(where N2O was measured), (ii) the N2O emissions with respect to NH4

+-N influent loads, 

(iii) δ15Nbulk
N2O, and (iv) SP data with their interpretation of microbial processes (ND refers 

to AOB nitrifier denitrification, and NN to NH2OH oxidation; adapted from Wunderlin et 
al., 2013). Basically, ND is dominant at DO above 1 mgO2/l, while heterotrophic 
denitrification (N2O reduction) is more active at lower DO. Please note that DO values 
refer to the period between DO set-point changes. 

  Day Precipitation* DO 
N2O 

emissions** 
δ15Nbulk

N2O SP Interpretation of microbial 
processes based on SP 

      [mgO2/l] [%] [‰] [‰] 

M
on

ito
ri

ng
 B

io
2 

(B
io

1 
 a

no
xi

c)
 

1 No 3.1 ± 0.1 0.4 (-30 ± 2.9) 0.9 ± 2.9 ND high, NN low 

2 No 2.1 ± 0.1 2.6 (-44.1 ± 1.1) 4.3 ± 1.3 
ND high, NN low, or N2O 

red. 

3 Yes 1.3 ± 0.2 0.7 (-34.2 ± 2) 6.4 ± 2 
ND high, NN low, or N2O 

red. 

4 No 0.8 ± 0.2 0.1 (-20.3 ± 2.5)
15.6 ± 

2.5 
NO2

- red and strong N2O 
red. 

5 No 3.0 ± 0.1 1.7 n.d. n.d. n.d. 

6 No 3.1 ± 0.2 1.2 n.d. n.d. n.d. 

7 No ~0.2 0.2 
(-37.1 ± 1.4)

(-31.6 ± 
0.99 

8.3 ± 1.4
11.1 ± 

0.9 

NO2
- red and strong N2O 

red. 

M
on
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(B
io
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8 Yes 0.5 ± 0.1 n.d. n.d. n.d. n.d. 

9 No ~0.1 0.005 4.1 ± 1.4 
17.9 ± 

1.3 
NO2

- red and strong N2O 
red. 

10 No 1.0 ± 0.1 2.1 
(-39.4 ± 0.4)
(-35.6 ± 0.5)

4.7 ± 0.4
2.4 ± 0.5

ND high, NN low, or N2O 
red. 

11 No 2.0 ± 0.1 1.2 (-42.3 ± 0.8) 1.1 ± 0.8
ND high, NN low, or N2O 

red. 

12 Yes anoxic no gas-flow n.d. n.d. n.d. 

13 No anoxic no gas-flow n.d. n.d. n.d. 

14 No 3.0 ± 0.1 0.4 
(-33.3 ± 2.3)
(-29.5 ± 2.5)

1 ± 2.3
1.1 ± 2.5

ND high, NN low 

* Precipitation leads to lower influent N and COD loads     
** With respect to NH4

+-N influent load         

 

The data presented in Figure 4 A exhibit a negative correlation between the SP and the 
dissolved oxygen concentration in the activated sludge reactor. This is hypothesized to 
be mainly due to the activity of heterotrophic N2O reduction, which leads to an increase 
in the SP. In contrast, NH2OH oxidation with an end-member SP of 31.4 to 33.5‰ (Sutka 
et al., 2006) is not assumed to contribute significantly to the total N2O production 
under the given conditions: for example, a similar trend between the dissolved oxygen 
concentration and the SP was already shown (Sutka et al., 2006), and it was 
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demonstrated that decreasing concentrations of dissolved oxygen increase the 
importance of nitrifier denitrification relative to NH2OH oxidation in a pure culture 
study of N. europaea. This is also in agreement with a recent publication showing that 
N2O production is related to NH4

+ oxidation in the case of imbalanced metabolic activity 
(Yu et al., 2010), a situation where N2O might be produced as an intermediate of the 
NH2OH oxidation pathway (e.g. via NO or HNO; Ritchie and Nicholas 1972). Since this 
would result in the opposite correlation to that shown in Figure 4 A (e.g. higher SP with 
higher oxygen concentration), it is concluded that NH2OH oxidation only contributed 
marginally to the total N2O production in this investigation (SP up to 6.4 ‰; Table 1). 
Similarly, in activated sludge lab-scale batch experiments, an SP close to 0 ‰ indicated 
a low contribution from NH2OH oxidation under NH4

+ oxidizing conditions and DO up 
to 3 mgO2/l (Wunderlin et al., 2013a). 

According to the current state of knowledge, nitrifier denitrification is hypothesized to 
be the dominant N2O production pathway in biological wastewater treatment under 
aerobic conditions (Colliver and Stephenson 2000; Kampschreur et al., 2009; 
Wunderlin et al., 2012; Wunderlin et al., 2013a). This is supported by SP data (SP close to 
0 ‰, at DO >1.5 mgO2/l) and by the presence of dissolved NO2

- during periods of N2O 
emissions (Figure 2 and 3) as reported in our study. On the other hand, positive SP 
values, as detected under low dissolved oxygen (e.g. 8.3 to 17.9 ‰ below 1.5 mgO2/l; 
Table 1), are interpreted as an indicator of heterotrophic N2O reduction. As such, the 
shift to lower SP values with increasing oxygen concentrations is hypothesized to be 
due to (i) an increasing inhibition of the N2O reductase or (ii) to reduced overall 
heterotrophic activity: according to the literature, N2O reductase is assumed to be 
inhibited more efficiently than the other heterotrophic denitrifying enzymes in the 
presence of oxygen (von Schulthess et al., 1994; Kampschreur et al., 2009). 

Preliminary studies show the meaning of the SP data: (i) SP values at 0 ‰ are an 
indicator of NO2

- reduction, either by AOB nitrifier denitrification or heterotrophic 
denitrification, and (ii) positive SP values at high DO refer to NH2OH oxidation, while 
heterotrophic N2O reduction is the targeted process at low DO. As demonstrated in this 
section, SP data provide quantitative information about the relevant N2O production 
pathway. Our data are interpreted as follows: SP data close to 0 ‰ and high DO are an 
indicator of NO2

- reduction, while the increase in SP at low DO is attributed to 
increasing heterotrophic denitrification activity. 
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between SP and δ15Nbulk
N2O is due to heterotrophic N2O reduction, which increases the SP 

and leads to a less negative δ15Nbulk
N2O. Differentiation between AOB and HET based on δ

15Nbulk
N2O alone is limited due to a lack of isotope signature data from the substrate (NH4

+, 

NO3
-). Error bars represent the 2σ confidence level. 

Average 15N content in N2O (δ15Nbulk
N2O) 

In addition to SP, the average 15N content of the N2O molecule (δ15Nbulk
N2O) provides 

supplementary information about the N2O production pathways involved. The range of 

the δ15Nbulk
N2O values varied widely between -44 and 4 ‰, with no strong dependence 

on DO concentrations (Table 1; Figure 4 B). However, the values are similar to those in 
the literature: between -24.4 and 5.6 ‰ was reported in a study on N2O in groundwater 

(Koba et al., 2009), while in river water, δ15Nbulk
N2O values ranged between -18 to 9 ‰ 

(Toyoda et al., 2009). In a full-scale wastewater treatment investigation, a δ15Nbulk
N2O 

value of -13.4 ‰ was estimated for N2O emitted from the oxidation tanks (Toyoda et al., 

2011). And in a recent activated sludge lab-scale investigation, δ15Nbulk
N2O values of 

between -57.6 and -25.3 ‰ were reported for NH4
+ oxidation experiments, and from -17 

to 50.1 ‰ for NO3
- reduction experiments with a similar initial substrate signature (δ

15N-NH4
+ = 1.15 ‰, δ15N-NO3

- = 2.5 ‰; Wunderlin et al., 2013a): isotopic signatures were 
most depleted in 15N at the beginning, and continuously increased throughout the 
experiments, due to Rayleigh distillation kinetics (an increase of 15N in the educt; refer 
to e.g. Mariotti et al. (1981) for more information about the basic principles of kinetic 
isotopic fractionation). 

The data presented in Figure 4 B in general exhibit no significant correlation between 

dissolved oxygen concentration and δ15Nbulk
N2O. Except at low dissolved oxygen 

concentrations (<1 mgO2/l), there is a slight correlation between δ15Nbulk
N2O and O2 in 

Bio1, mainly due to strong 15N enrichment (around +4 ‰) in one experiment. This is 
explained by an increasing heterotrophic N2O reductase activity relative to N2O 
production under low dissolved oxygen concentrations (0.5 mgO2/l), which is also in 

agreement with a positive SP value (17.9 ‰; see also Figure 4 C). The increase in δ
15Nbulk

N2O as DO increased from 2 to 3 mgO2/l is congruent with the findings of 
Wunderlin et al. (2013a), where the lower isotopic fractionation during NH4

+ oxidation 
was attributed to a high NH4

+ oxidation rate in combination with a comparatively 
sluggish NO2

- oxidation (NO2
- accumulated up to 5 mgN/l). However, in the present 

study, NO2
- accumulation was only slight (up to 2 mgN/l; see Figure 3 and 4). On the 

other hand, a reduced N fractionation can also be linked to low substrate 
concentrations (e.g. Lehmann et al., 2007; Granger et al., 2008), which might be partly 
consistent with a lower NH4

+ concentration range at 3 mgO2/l (0.9 to 4.1 mgN/l) 
compared to concentrations at 2 mgO2/l (4.4 mgN/l). 

Nevertheless, the wide variation in δ15Nbulk
N2O and the lack of data concerning the 

isotopic signature of the relative substrates (NH4
+ and NO3

-) make it difficult to 
differentiate between N2O production originating from AOB (nitrifier denitrification 



Chapter 5   

138 

and NH2OH oxidation) and from heterotrophic denitrification. Assuming that (i) the 
isotope signature of influent ammonia is around 0 ‰ and that (ii) ammonia is in excess 
during nitrification (large reactant concentration; Figure 2 and 3), the isotopic signature 
of the N2O produced via nitrification and heterotrophic denitrification is expected to be 

in the range of -47 to -68 ‰ and 0 to -39 ‰, respectively (e.g. Koba et al., 2009). Our δ
15Nbulk

N2O data are between -44 and 4 ‰, which can be interpreted to be within the range 
of both pathways, making it difficult to draw further conclusions. In fact, the isotopic 
signature of the influent ammonia may differ from 0 ‰, thus the 15N enrichment due to 
NH4

+ oxidation, or the isotopic fractionation in this study deviated from the values 
reported in the literature. This is supported by the findings of Toyoda et al. (2011) who 

measured δ15N-NH4
+ up to ~10 ‰ and calculated a fractionation of -48.4 ± 0.3 ‰ for 

the NH4
+ to N2O step, which supports a range from 30 to 50 ‰ for nitrification. 

Overall, we conclude that δ15Nbulk
N2O data qualitatively support the findings from SP 

analysis, even though the quantitative interpretation is complex because it is not only 
influenced by the pathways involved (multiple reaction steps) but also by their 
individual enzymatic activities, substrate concentrations and isotopic compositions (see 
also Decock and Six, 2013). 

Relationship between SP and δ15Nbulk
N2O 

Figure 4 C shows the relationship between SP and δ15Nbulk
N2O. There is a slightly positive 

trend between SP and δ15Nbulk
N2O, which has already been documented by Koba et al. 

(2009), and is interpreted to be due to heterotrophic N2O reduction: 15N depletion 
during N2O production is compensated by heterotrophic N2O reduction, which leads to 
both an enrichment of 15N in N2O and a positive SP. The shift to higher SP and less 

negative δ15Nbulk
N2O values in Bio1, shown in Figure 4 C, is explained by a high rate of 

heterotrophic N2O reduction compared to N2O production. Similarly, Ostrom et al. 
(2007) noted that the activity of N2O reductase needs to be higher than 10% compared 
to N2O production in order to significantly impact the SP. Therefore, a low SP, e.g. in the 

range from 0 to 5‰ in combination with δ15Nbulk
N2O values between -30 to -42‰ is an 

indicator of either (i) sole nitrifier denitrification activity or (ii) a combination of nitrifier 
denitrification activity and heterotrophic N reduction, respectively (Figure 4 C). 

Nevertheless, δ15Nbulk
N2O values of around -30 ‰ in combination with SP values of 

around 0 ‰ are out of line with the positive trend proposed above. Again, this might be 
due to a reduced kinetic N fractionation of the microbial transformation pathways, 
probably affected by high transformation rates at 3 mgO2/l, as well as to substrate 
limitation ultimately resulting in reduced 15N-N2O depletion. 

In sum, SP close to 0 ‰ in combination with negative δ15Nbulk
N2O values point to N2O 

production via NO2
- reduction (N2O as a side-product). On the other hand, positive SP 

data in conjunction with less depleted δ15Nbulk
N2O values and low dissolved O2 support 

N2O production from denitrification with substantial N2O reductase activity (N2O as an 
intermediate). 
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Using 15N isotope signature to understand N2O emissions from biological 
wastewater treatment 

If further studies corroborate the fact that N2O reductase activity alone controls the SP 
signature of N2O in conventional biological wastewater treatment and the numerical 
value can be confirmed, this measurement can be directly used to apportion the 
inhibition of the last step of the heterotrophic denitrification. Since an SP of 0 ‰ is 
expected in case of heterotrophic N2O emissions with completely inhibited N2O 
reductase, this measurement cannot be used directly to assess the N2O emissions via 
heterotrophic denitrifiers because a similar SP value is also assumed for nitrifier 
denitrification (e.g. 0.1 ‰; Sutka et al., 2006). Nevertheless, SP values close to 0 ‰ are a 
strong indicator of N2O production via NO2

- reduction, either by nitrifier denitrification 
or heterotrophic NO2

- reduction, a finding which will significantly impact future plant 
operating strategies. However, in situations with a significant contribution of NH2OH 
oxidation to the total N2O production, e.g. at high nitrification rates in combination 
with low NO2

- concentrations (Wunderlin et al., 2012), positive SP values are expected at 
high dissolved oxygen concentrations. This would result in SP values close to the 
NH2OH oxidation end-member signatures (31.4 to 33.5 ‰; Sutka et al., 2006), since they 
are unlikely to be biased by heterotrophic N2O reduction. The latter is assumed to be 
inhibited in the presence of oxygen. 

On the other hand, the interpretation of the δ15Nbulk
N2O is more complex because the 

observed signature results from several processes (multiple reaction steps during 
nitrification and denitrification). Recent publications used the net isotope effect, which 

is the difference in the isotope values between N2O and the substrate (Δδ15N = δ
15Nsubstrate - δ15Nbulk

N2O), instead of the kinetic isotope fractionation to overcome this 
difficulty (e.g. Koba et al., 2009; Wunderlin et al., 2013a). Clearly, information about the 
isotopic signature of the substrates (NH4

+, NO2
-, NO3

-) would enhance our 
understanding of N2O production. We therefore suggest that the fractionation of the 
substrates be characterized in forthcoming studies as a function of different microbial 
activity levels and operating conditions. In addition, we recommend that the kinetic N 

fractionation be quantified with greater accuracy. The interpretation of the δ15Nbulk
N2O 

signal obtained could then be used as a quantitative measure of the relative 
importance of AOB and HET in N2O production. 

Conclusion 

The present study tested whether the nitrogen isotopic signature is a suitable tool for 
N2O source allocation in a pilot-scale biological wastewater treatment plant. The 
hypothesis was that NO2

- reduction is the dominant route of N2O production under 
aerobic conditions in the studied system. The following conclusions can be drawn: 

 The SP data, in combination with dissolved O2, NO2
- and N2O off-gas analysis, 

confirmed that NO2
- reduction was the dominant N2O production pathway. 



Chapter 5   

140 

 Moreover, NH2OH oxidation was of minor importance in this investigation, while 
heterotrophic denitrification was relevant under low concentrations of dissolved 
oxygen. 

 The SP data illustrate the potential to discriminate between the different N2O 
production pathways, in combination with conventional parameters such as 
dissolved O2, nitrogen species, and N2O off-gas concentrations. 

 The δ15Nbulk
N2O data qualitatively support the findings from the SP analysis, since 

quantitative interpretation requires information about individual enzymatic 
activities, substrate concentrations as well as their isotopic compositions. 

 Further studies are required to confirm whether plant operating strategies at 
low concentrations of dissolved NO2

- can significantly reduce N2O emissions. 
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Abstract 

Nitrous oxide (N2O) is an important greenhouse gas, involved in the stratospheric 
ozone depletion. Its emission from biological wastewater treatment should therefore 
be avoided. With regard to on-going debate about energetic optimization and efficient 
conventional treatment of ammonia-rich digester liquid, a better understanding of N2O 
dynamics as well as of emission levels is needed. 

In the present study, we operated a pilot scale wastewater facility treating municipal 
wastewater and investigated the effect of peak as well as continuous digester liquid 
addition on N2O emission. Under ‘normal’ operating conditions (without digester liquid 
dosing), 0.1 to 0.6 % of the ammonia influent load was emitted as N2O, while being 
substantially increased at high nitrogen loads (during digester liquid peak addition), 
positively correlating with the build-up of ammonia (NH4

+) and nitrite (NO2
-) in the 

nitrification activated sludge tank. Results further show that continuous digester liquid 
addition (doubling ’normal‘ average nitrogen influent load) over 9 days, directly into 
the pre-denitrification reactor, resulted in high N2O emissions during the first 3 days 
(up to 10 %). Even though N2O emission decreased to a level of 1 to 4 % during the 
consecutive days, emission ranges were still high compared to ‘normal’ operating 
conditions. During a second continuous addition period, with variable influent loads, 
N2O emission levels were lower. These findings indicate that transient nitrification 
overloading leads to elevated N2O emission, and is therefore sensitive to digester liquid 
dosing. Moreover, nitrifier denitrification is hypothesized to be the dominant N2O 
production pathway, due to the positive correlation between N2O emission and 
dissolved NO2

- concentrations. A continuous online N2O off-gas measurement is 
deemed necessary for plant specific overall carbon footprint minimization. 

Keywords 

Biological wastewater treatment; denitrification; nitrification; nitrous oxide (N2O); 
digester liquid addition 
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Introduction 

Nitrous oxide (N2O) is an atmospheric pollutant relevant as a greenhouse gas (about 
300 times stronger than carbon dioxide (CO2)) and a major sink of stratospheric ozone 
(Ravishankara et al., 2009). In the last decade, significant efforts have been made to 
reduce the energy consumption and to improve nitrogen (N) removal of wastewater 
treatment plants: since aeration is responsible for about 50 to 60 % of the total energy 
consumption, one of the most adopted solutions is to lower the aeration of the 
nitrification stage to the required minimum (Müller 2010; Wang et al., 2012). However, 
the resulting low dissolved oxygen (O2) concentrations in the aerated reactors are 
currently discussed to be one of the key factors impacting N2O production 
(Kampschreur et al., 2009). N2O emissions higher than 0.5 to 1 % compared to 
converted N, result in greenhouse gas emission equivalent to aeration energy 
consumption (Law et al., 2012). Consequently, N2O emissions have to be considered in 
energy optimization strategies, in order to avoid a net increase of greenhouse gas 
emission instead of the alleged reduction (Kampschreur et al., 2009). 

In biological wastewater treatment, N2O is produced either during nitrification by 
ammonia oxidizing bacteria (AOB) or during heterotrophic denitrification by 
heterotrophic denitrifiers (HET). There is increasing evidence of a dominant N2O 
production pathway via nitrite (NO2

-) reduction by AOB, called nitrifier denitrification, 
strongly correlating with the build-up of ammonia (NH4

+) and NO2
- (Tallec et al., 2006a; 

Kampschreur et al., 2009; Ahn et al., 2010b; Houweling et al., 2011; Wunderlin et al., 
2012). Hydroxylamine (NH2OH) oxidation to NO2

- (via intermediates such as nitric oxide, 
NO, or nitroxyl, HNO; Law et al., 2012; Schreiber et al., 2012) is currently discussed to be 
active at high NH4

+ oxidation rates in combination with high NH4
+ and low NO2

- 
concentrations, but is probably of minor importance within concentration ranges 
typically found in conventional municipal wastewater treatment systems (Sutka et al., 
2006; Yu et al., 2010; Wunderlin et al., 2013). Similarly, the contribution from 
heterotrophic denitrification is considered negligible under normal operating 
conditions, such as low NO2

- and no dissolved oxygen concentrations during 
denitrification (von Schulthess et al., 1994; Kampschreur et al., 2009). 

The literature is currently inconsistent about the quantities of N2O emitted during 
wastewater treatment. For example: 

 Lotito et al. (2012) continuously measured N2O emission from the oxidation tank 
of a pilot activated sludge plant, and reported ranges of <0.04 to 0.1 %, with 
respect to influent N, for solid retention times higher than 15 days, but up to 0.3 
% for a solid retention time of approximately 11 days. 

 von Schulthess and Gujer (1996) investigated N2O emission from a continuously 
fed full-scale wastewater treatment plant. Total N2O emissions were between 
0.02 to 0.07 %, compared to total N input. 

 N2O emission of 12 full-scale treatment plants were monitored by Ahn et al. 
(2010b), and emission factors, in terms of N2O emitted compared to total N 
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input, in the range of between 0.01 to 1.8 ± 0.79 % were reported (corresponding 
to 0.01 to 3.3 ± 1.5 % with respect to N removed). 

 A highly variable N2O emission range of 0.6 to 25.3 % (3.5 ± 2.7 % on average), 
with respect to N denitrified, has been calculated from an investigation across 
seven biological nutrient removal plants in Australia (Foley et al., 2010). 

Likewise, no consensus has been achieved about the operating strategies to reduce N2O 
emission. Discussion has been focused on some factors that have been recognized to 
be mainly responsible for N2O production, such as (i) low dissolved O2 concentration 
during nitrification as well as heterotrophic denitrification, (ii) the accumulation of NO2

- 
and / or NH4

+ during nitrification, or (iii) a low ratio of readily biodegradable organic 
compounds to NO3

- during heterotrophic denitrification (Kampschreur et al., 2009; Ahn 
et al., 2010b; Desloover et al., 2012; Wunderlin et al., 2012). Recently, through the 
continuous operation of a pilot scale activated sludge plant combined with continuous 
N2O off-gas measurement, it has been demonstrated that N2O emissions follow a 
reproducible specific daily pattern: while emissions are quite negligible during night (at 
low N loads), it peaks in the morning during the hours of maximum N load, correlating 
with the build-up of NH4

+ and NO2
- in the activated sludge tanks (Lotito et al., 2012). 

In this study we investigated the impact of digester liquid addition on the dynamics as 
well as on the level of N2O production in a pilot-scale activated sludge plant, with the 
hypothesis that high N loading situations promote the build-up of NH4

+ and NO2
-, 

which in turn favors high N2O emissions. As a first step, short-term effects of digester 
liquid peak addition on N2O emission was evaluated. Then, the impact of continuous 
digester liquid addition over several days was investigated, in order to address potential 
biomass adaptation. To the best of our knowledge this is the first time that N2O off-gas 
concentrations are continuously monitored over several weeks, in combination with 
continuous measurement of dissolved NO2

- and NH4
+ in the activated sludge tanks. 

Materials and methods 

Pilot plant set-up and operation 

The pilot scale wastewater facility, treating around 60 to 80 population equivalents, 
consisted of a mechanical pre-treatment and a primary clarification, followed by an 
activated sludge treatment with pre-denitrification (Bio1) and two nitrification reactors 
(Bio2 and Bio3; each operated as a completely stirred tank reactor with a volume of 
about 7.5 m3) and a secondary clarifier (Figure 1). The plant was fed with municipal 
wastewater from the sewer system of the city of Dübendorf (Switzerland) and was 
operated at a solid retention time (referred to the biological compartments) of 
approximately 11 to 12 days (7 to 8 days aerobic) by wasting excess sludge from Bio1. The 
concentration of total suspended solids (TSS) was in the range of 1.6 to 1.8 g/l. Aeration 
was controlled at a constant dissolved oxygen (DO) concentration in the reactor (set-
point at 0.5, 1 or 2 mgO2/l). Furthermore, an internal recirculation from the second 
nitrification tank into the pre-denitrification stage was applied at 1.5 m3/h, in order to 
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Analytical methods for dissolved species 

The plant was equipped with various online sensors (Figure 1), such as (i) NH4
+ (Ion 

selective electrode ISEmax CAS 40, Endress + Hauser), pH (Orbisinit CPS11D, Endress + 
Hauser), total and dissolved COD (chemical oxygen demand; spectrometric s::can) in 
the primary clarifier, (ii) TSS (Turbimax, Endress + Hauser) in Bio1, (iii) NH4

+ and NO3
- 

(ISEmax, Endress + Hauser), NO2
- (Stamolys CA 70 analyzer, Endress + Hauser) and O2 

(Optical LDO, Hach Lange) in Bio2, and (iv) NH4
+ and NO3

- (ISEmax, Endress + Hauser) 
and O2 (Optical LDO, Endress + Hauser) in Bio3. All data were logged to a supervisory 
control and data acquisition system. Ion selective electrodes were calibrated once a 
week. Additionally, 24-hour flow proportional composite samples of the influent and 
effluent were sampled three times a week (daily sampling during continuous 
supernatant addition), for analyzing the following species: total N (commercial 
photochemical test kits, Hach Lange GmbH, Düsseldorf, Germany), NH4

+ (Foss FIAstar 
flow injection 5000 analyzer), NO2

- and NO3
- (ion chromatography, 761 compact IC, 

Metrohm), total and soluble COD (chemical oxidation demand; commercial 
photochemical test kits, Hach Lange GmbH, Düsseldorf, Germany), and TSS (standard 
methods). Mixed liquor suspended solids were measured according to standard 
methods (APHA 1998). 

Operational schedule 

Throughout the whole monitoring phase, the plant was operated under three different 
conditions: 

(i) ‘normal’ operating condition without any digester liquid addition, defined as 
reference days, including both working and week-end days (discussed in section ‘N2O 
production during ‘normal’ operating conditions’). 

(ii) ‘digester liquid peak’ condition, where digester liquid was added directly into Bio1 at 
8:30 or 9:00 a.m., at high rates (~120 gN within 1 minute, corresponding to about 20 % 
of the average daily NH4

+ influent load), during three different days applying different 
DO set-points (0.5, 1 and 2 mgO2/l in Bio3; discussed in section ‘Effect of digester liquid 
peak addition on N2O production under different dissolved O2 concentrations’). 

(iii) ‘continuous digester liquid’ addition during 24 hours directly into Bio1 (over 9 days) 
at a constant flow rate of about 600 gN per day (doubling the ‘normal’ average 
ammonia influent load), as well as over 12 days during a second continuous digester 
liquid dosing period at more variable influent loads (from 790 to 1339 gN/d; discussed 
in section ‘Effect of continuous digester liquid peak addition on N2O production’). 
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plant (Lotito et al., 2012). We interpret these correlations as indicative for nitrifier 
denitrification driven N2O production, which is also supported by a recent study, based 
on isotopomeric measurements, where N2O production in a pilot-scale treatment plant 
was dominated by NO2

- reduction (Wunderlin et al., in preparation; Chapter 5). 

Heterotrophic denitrification on the other side, is assumed to be of minor importance 
in our investigation, due to (i) anoxic conditions in the denitrification reactor, (ii) 
relatively low NO2

- concentrations (not higher than 2 mgN/l in Bio 2), and (iii) COD / N 
influent ratios higher than 5 (ratios below 5 were identified as critical with respect to 
N2O production; Alinsafi et al., 2008). 

Based on the presented data in this section, it is concluded that digester liquid peak 
addition resulted in higher N2O emission, compared to ‘normal’ week days, but being 
similar to ‘normal’ weekend days with higher N loads. Furthermore, N2O emissions are 
accelerated by low dissolved oxygen concentrations during nitrification, which 
supports nitrifier denitrification as relevant N2O production pathway. 

Effect of continuous digester liquid addition on N2O production 

During the first two days of continuous digester liquid addition (doubling the ‘normal’ 
ammonia influent load), the NH4

+ removal rate was reduced, due to probably a limiting 
nitrification capacity. But from the third day onward, NH4

+ effluent loads were lower 
than 20 gN/d, which accounted for less than 5 % compared to NH4

+ influent loads. NO2
- 

concentrations were remarkably high, especially during the first three days (>5 mgN/l; 
Figure 4), which is assumed to be due to a temporary plant overload, leading to 
incomplete nitrification or inhibition of NOBs. Consequently, N2O emission raised up to 
7.5 to 10 % with respect to influent NH4

+ (Figure 4), being significantly higher than 
during ‘normal’ operating conditions (e.g. 0.1 to 0.6 %, see Figure 2 and section ‘N2O 
production during ‘normal’ operating conditions’) and compared to values reported in 
literature: for example, von Schulthess and Gujer (1996) published a range from 0.2 to 
0.7 ‰ with respect to the total N input, and Ahn et al. (2010b) measured maximum 
values of 3.3 % compared to total N removed. 

At the fourth day after the start of continuous digester liquid addition, N2O emission 
decreased to values in the range of between 1.4 to 1.9 %, paralleled by a decline in 
dissolved NO2

-. It is hypothesized that this reduction is due to lower N influent loads 
(1324 gN/d during day 5 and 6 compared to about 1233 gN/d during the consecutive 
days). The COD / N ratio is speculated to be another potential factor impacting N2O 
emission: as during weekends the COD / N influent ratio is typically lower compared to 
week-days (due to industrial activities in the catchment area), this might result in lower 
heterotrophic activity, and consequently NO2

- produced by incomplete nitrification is 
less efficiently removed in the denitrification tanks. Of course, heterotrophic 
denitrification cannot be completely ruled out as significant N2O producers in this 
investigation, since high NO2

- concentrations and low COD / N ratios (below 5; Alinsafi 
et al., 2008) are discussed to favor N2O production by heterotrophic denitrifiers (von 
Schulthess et al., 1994; Wunderlin et al., 2012). However, just based on the presented 
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specific isotopic signature, are needed to obtain a more accurate allocation of the 
emissions reported in this study. 

The correlation between dissolved NO2
- and the N2O off-gas concentrations is shown in 

Figure 6 B: nitrification at high dissolved NO2
- concentration, leads to high N2O 

emissions. This is comparable to former investigations reporting increasing N2O 
emissions upon NO2

- build-up (Burgess et al., 2002a; Burgess et al., 2002b; Shiskowski 
and Mavinic 2006). Such a correlation is consistent with the general understanding of 
NO2

- reduction as the dominant pathway for N2O production in biological wastewater 
treatment (Colliver and Stephenson 2000), and leads to the conclusion that plants 
operated at low dissolved NO2

- (and NH4
+) emit only low amounts of N2O, which was 

confirmed by ceasing continuous digester dosing (day 14 and 15 shown in Figure 4). 

Implementation of continuous online N2O measurement for reducing overall 
carbon footprint of biological wastewater treatment 

A continuous N2O off-gas monitoring is recommended in order to elucidate and adopt 
appropriate plant specific operating strategies, which is supported by a recent finding 
of Daelman et al. (2013) who showed that continuous long-term online monitoring is 
required to capture N2O emission ranges accurately and emission dynamics more fully. 

The application of continuous N2O off-gas analysis in conventional biological 
wastewater treatment was already proposed by Burgess et al. (2002b), who came up 
with the idea of using N2O off-gas emission measurement as an indicator for 
monitoring nitrification process stability: it was shown that nitrification failure (e.g. 
due to microbial inhibition) or during NH4

+ shock loads resulted in NO2
- build-up and in 

increasing N2O off-gas concentrations (similar to our data). Their work resulted in an 
international patent application (number PCT/GB00/01094), which was further 
developed by Butler et al. (2009) who investigated N2O off-gas measurement as a tool 
for early warning of biological nitrification failure: basically, an increase in N2O was 
detected in parallel to an increase in NO2

-. However, to our knowledge, this idea was not 
further developed nor applied in full-scale treatment plants. 

The accumulation of NO2
- is unwanted but difficult to measure so far. As such, based on 

the correlation between dissolved NO2
- and N2O emission, the latter could be used as an 

indirect measure for NO2
- accumulation. Still, it is to be elucidated whether, beside 

nitrifier denitrification, also NH2OH oxidation contributes substantially to N2O 
production under specific operating conditions, as for example in a sequencing batch 
operating mode or during partial nitrification, since the NH2OH pathway is not 
expected to correlated with dissolved NO2

-. Nevertheless, by controlling activated 
sludge treatment processes at minimal N2O emissions, the contribution from both 
pathways, NH2OH oxidation as well as nitrifier denitrification, will be low. 
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Conclusions 

The effect of digester liquid addition on N2O production during conventional biological 
wastewater treatment was evaluated in this study, with the hypothesis that high N 
load situations promote the build-up of NH4

+ and NO2
- in the activated sludge tanks, 

which in turn favors high N2O emission. The conclusion can be summarized as follows: 

 The external addition of digester liquid (high N load situation) significantly 
increased the N2O emission rate compared to ‘normal’ operating conditions. 
Consequently, ammonia rich digester liquid should be dosed preferentially 
during low ammonia loads. 

 N2O emissions were lower when activated sludge was adapted to continuously 
high N influent loads, presumably by an increase of the nitrifier population. 
Thus, ammonia rich digester liquid could be added to bridge low N load 
situations in order to maintain a ‘strong’ nitrifier community. 

 N2O emission correlated with the N influent load and the build-up of NO2
- (and 

NH4
+) in the nitrification reactor. As a consequence, plants facing high N influent 

load variations, should be operated at sufficient dissolved oxygen, in order to 
avoid incomplete nitrification and to keep NO2

- low (< 1 to 2 mgN/l; e.g. aeration 
with NH4

+ control). 

 Energetic optimization of wastewater treatment by reducing aeration (and O2 
input) is critical, especially during high N loads. Therefore, it is recommended to 
reduce (or switching off) the aeration solely at low N load situations. 

 A continuous online N2O off-gas measurement is deemed necessary for plant 
specific overall greenhouse gas minimization. 
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Abstract 

Nitrous oxide (N2O) is a strong greenhouse gas and involved in the destruction of the 
stratospheric ozone layer. N2O production mechanisms of nitritation-anammox 
processes are not fully understood, but hypothesized to depend on dissolved NO2

- 
concentrations. Latter accumulates if the process is not stable and promotes growth of 
unwanted nitrite oxidizing bacteria (NOB), but so far, NO2

- is not easily measured 
online. Therefore, NO2

- is expected to be monitored indirectly via N2O off-gas analysis. 

In this investigation, a single-stage pilot-scale nitritation-anammox process was fed 
with digester liquid. The reactor was temporary operated at high aeration rates, up to 
the double of the usually applied airflow rates, in order to accumulate NO2

-, and thus to 
test the correlation between NO2

- and N2O. Results show that N2O emissions were 
controlled by the airflow rate: high aeration rates resulted in high NO2

- concentrations 
as well as high N2O emissions. However, there was not always a clear correlation 
between dissolved NO2

- and N2O off-gas concentrations, which is hypothesized to be 
due to NH2OH oxidation activity (another N2O production pathway). Nevertheless, 
reactor operation controlled at minimal N2O emission kept stable ammonia (NH4

+) 
removal rates at low NO2

- concentrations (<0.6 mgN/l). This is a promising finding and 
supports future directions incorporating continuous N2O off-gas measurement in the 
automatic process control, for example to control the airflow rate. 

Keywords 

Aeration rate; Nitrous oxide (N2O); Nitrite (NO2
-); Nitritation-anammox process control 
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Introduction 

Nitrous oxide (N2O) is a strong greenhouse gas, involved in the destruction of the 
stratospheric ozone layer (Ravishankara et al., 2009). However, N2O production and its 
relevance in biological wastewater treatment is still under debate. There is only a 
limited number of studies, investigating N2O production mechanisms and emission 
levels from anammox-based nitrogen (N) removal processes. For example, 
Kampschreur et al. (2008) measured an N2O emission rate of 2.3 % with respect to the 
N load during full-scale two-stage reject water treatment. And an emission level of 
9.6±3.2 %, with respect to N removed, was reported for a lab-scale two-stage granular 
nitrification-anammox process (Okabe et al., 2011). In another study, 1.2 % of the N load 
was emitted as N2O from a full-scale single-stage granular reactor (Kampschreur et al., 
2009). Similarly, Joss et al. (2009) investigated N2O emission from a single-stage 
nitritation-anammox reactor with suspended biomass, and measured an N2O emission 
rate of 0.6 % with respect to removed N during intermittent aeration, and 0.4 % during 
continuous aeration, respectively. 

These data reveal that N2O emission ranges from anammox-based systems can be 
relevant, depending on the operating conditions. And in some situations, N2O emission 
might even annihilate the avoided environmental impact achieved by lower energy 
consumption and organic carbon requirements compared to conventional treatment 
schemes. 

In addition to greenhouse gas emission, process stability is another issue of nitritation-
anammox processes. Currently, an active discussion concerning the selection of 
suitable sensors for process control, such as pH, conductivity, NH4

+ or O2, and on process 
control strategies is going on (e.g. Joss et al., 2011). A volumetric aeration control was 
recently proposed to be crucial for process stability in a single-stage nitritation-
anammox reactor, since O2 supply beyond depletion by AOB (e.g. during situations of 
over-aeration) can lead to anammox inhibition and thus favor NOB growth. Such 
process instability could be detected at an early stage by online monitoring of NO2

-. 
However, this requires a suitable online electrode with sufficient resolution (measuring 
few mgNO2

--N/l in digester liquid on the background of 0 to >100 mgNO3
--N/l), which 

is, to the author’s knowledge, currently not commercially available. However, based on 
the findings of enzymatic NO2

- reduction as a dominant N2O production pathway in 
biological wastewater treatment (e.g. Colliver and Stephenson 2000; Kampschreur et 
al., 2009; Wunderlin et al., 2012), and the confirmation of increased N2O off-gas 
concentrations upon NO2

- accumulation in a granular nitritation-anammox system 
operated at high dissolved oxygen (DO; >2 mgO2/l) (Kampschreur et al., 2009), it is 
hypothesized that dissolved NO2

- can be monitored indirectly via the measurement of 
N2O off-gas concentration (see also Butler et al., 2009 and Colliver et al., 2002). Thus, 
N2O emission rates, as a proxy for NO2

- concentration, could be used to control the 
aeration rate, as well as to design process control strategies reducing environmentally 
relevant gaseous emissions of the nitritation-anammox systems. 
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Materials and methods 

Set-up and operation of the nitritation-anammox pilot-scale sequencing 
batch reactor (SBR) 

A 400 liter one-stage nitritation-anammox pilot-scale reactor was operated in 
sequencing batch mode with digester liquid from the full-scale wastewater treatment 
plant Werdhölzli (Switzerland). The SBR cycle always included the following phases: (i) 
feeding (15 to 20 % volume exchange) with mixing, (ii) aeration, (iii) mixing, (iv) 
sedimentation, and (v) discharge (a typical SBR cycle is illustrated in Figure 2). A 
complete cycle usually lasted between 5 and 7 hours, depending amongst others, on 
parameters like NH4

+ degradation rate, sludge concentration, or aeration rate. The 
nitritation-anammox process was controlled by a programmable logical controller 
equipped with online sensors for the water level, NH4

+, NO3
-, DO concentrations, 

temperature, pH, and conductivity. Moreover, the reactor was also equipped with a 
stirrer, an aeration unit, as well as a temperature control (30±1 °C unless stated 
otherwise). Further details are given in Joss et al. (2011). 

Unless stated otherwise, the reactor aeration rate was manually controlled with a 
rotameter, to keep NO2

- concentration below 1 mgNO2
--N/l. This typically resulted in DO 

concentrations, measured in the bulk, of <0.05 mgO2/l. For experimental purposes, the 
reactor aeration rate was temporary increased to foster NO2

- accumulation, since an 
increase in oxygen supply is known to trigger NO2

- accumulation due to (i) anammox 
inhibition by DO, and (ii) a weak (or absent) NOB population (Joss et al., 2011) (see 
section ‘Correlation between dissolved NO2

- and N2O emission rate’). The proposed 
control of the aeration rate according to N2O emission, was done by manually adjusting 
the airflow rate, based on the N2O off-gas concentration measurement, where high N2O 
concentrations resulted in an airflow reduction, and vice-versa (see section ‘Manual 
airflow adjustment based on continuous N2O off-gas concentration measurement’). 

Analytical methods for dissolved species 

The sequencing batch reactor was equipped with various online sensors, such as for 
NH4

+ and NO3
- (ISEmax, Endress+Hauser), pH (Orbisint CPS11D, Endress+Hauser), O2 

(Oxymax H COS61D, Endress+Hauser) and conductivity (Indumax CLS50D, 
Endress+Hauser). All data were logged to a supervisory control and data acquisition 
system. To test the accuracy of the online sensors, dissolved NH4

+ and NO3
- were 

measured with commercial photochemical test kits (Hach Lange GmbH, Düsseldorf, 
Germany, Test LCK 305 or 303; LCK 340). Dissolved NO2

- was measured by anion 
chromatography (881 compact IC, Metrohm; detection limit 0.2 mgN/l), 
photochemically (Hach Lange GmbH, Düsseldorf, Germany, LCK 341) or with NO2

- test 
strips (Nitrite-test, 0-24 mgNO2

--N/l, Merck, Darmstadt, Germany). 
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N2O emissions were in between of 0.2 and 1 % with respect to converted N. This 
emission range is comparable to other investigations: for example, Joss et al. (2009) 
measured an N2O emission rate of 0.4 % with respect to N removed from a single-stage 
nitritation-anammox full-scale reactor. N2O emissions in our investigation were highly 
dynamic, usually peaking in the first part of the aeration phase, followed by a 
continuous decrease in parallel with the NH4

+ concentration (Figure 2). An emission 
delay, caused by the residence time in the headspace, is of minor importance, since 
being lower than 10 minutes at aeration rates higher than 300 l/h. In another 
investigation it was reported that N2O emission levels decreased by more than 10-times 
between the start and the end of the aerated period in a full-scale nitritation reactor 
(Kampschreur et al., 2008). An initial N2O peak was also reported for a partial 
nitrification system treating synthetic high strength NH4

+ wastewater: here it is 
assumed that under low DO concentrations of around 1 mgO2/l (during feeding) 
nitrifier denitrification was induced, while the continuous consumption of alkalinity 
during the second half of the aeration phase seemed to slow down AOB activity as well 
as N2O production (Kong et al., 2013). We hypothesize that our observed N2O emission 
peak at the beginning of the cycle and in combination with high NH4

+ concentrations, 
might, in addition to AOB nitrifier denitrification, presumably be due to a contribution 
from NH2OH oxidation to total N2O production (discussed in the next section). 
However, this needs to be confirmed in upcoming investigations. Isotopomeric analysis 
is considered a suitable tool to quantitatively apportion between these two pathways 
(please see Wunderlin et al., 2013 for more details about this method). 

Correlation between dissolved NO2
- and N2O emission rates 

As demonstrated in the previous section, both NO2
- concentrations as well as N2O 

emissions were low under regular and stable nitritation-anammox process operation. 
In this section, the purpose was to investigate the short-term effect of high aeration 
rates on NO2

- and N2O emission levels, because an increase in the airflow as well as in 
dissolved O2 is expected to accelerate AOB activities and to inhibit anammox bacteria. 

Figure 3 A illustrates the correlation between dissolved NO2
- and the N2O emission 

rates. It is shown that a build-up of dissolved NO2
-, upon a manual elevation of the 

airflow rate, leads to a linear increase of N2O emissions. Similarly, Kampschreur et al. 
(2009) reported higher N2O emissions upon NO2

- accumulation in a single-stage 
nitritation-anammox full-scale granular reactor, and also showed a linear correlation 
between NO2

- and N2O off-gas concentrations under non-limiting dissolved O2 
concentrations (>2 mgO2/l). We hypothesize that such a correlation, illustrated in Figure 
3 A, is due to AOB nitrifier denitrification activity, since switching off the oxygen supply 
or adding allylthiourea, a specific AOB inhibitor, ceased N2O production instantaneously 
(data not shown). Moreover, this is in agreement with the current assumption that N2O 
does not play a role in the anammox metabolism (Kartal et al., 2007; Kampschreur et 
al., 2009). 
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In some experiments, N2O strongly increased, even though NO2
- did not accumulate 

substantially (e.g. triangles in Figure 3 B). We hypothesize that this characteristic 
behavior was due to a significant contribution of NH2OH oxidation, which is another 
N2O production pathway of AOB. Accordingly, for nitrification, it was reported that N2O 
production via NH2OH oxidation seemed to be favored at high NH4

+ concentrations in 
combination with a high nitrification activity, and low NO2

- concentrations (Yu et al., 
2010; Law et al., 2012; Wunderlin et al., 2013a). In our experiments, N2O emission, at high 
AOB activities and low NO2

- concentrations, correlated with the NH4
+ concentration 

(data not shown). Moreover, in combination with a temporary airflow increase, this 
might have induced imbalanced metabolic activities, as proposed by Yu et al. (2010), 
and consequently might have fostered N2O production via NH2OH oxidation. Again, N2O 
production mechanisms in the (single-stage) nitritation-anammox process needs to be 
further investigated. 

Manual airflow adjustment based on continuous N2O off-gas concentration 
measurement 

Based on the results illustrated in Figure 3 and discussed in the previous sections, it is 
concluded that (i) under normal operation, both NO2

- as well as N2O were kept at low 
levels, while (ii) an increase in the airflow rate resulted in a built-up of NO2

- and in high 
N2O emission rates. Consequently, in this section, it is investigated, whether process 
operation can be optimized by manual aeration rate adjustment, solely based on N2O 
off-gas concentration data, which is considered a necessary stepping stone 
implementing this signal in automated process control. 

Figure 4 shows a typical nitritation-anammox cycle, where the aeration rate was 
manually adjusted based on N2O off-gas data. In general, N2O off-gas concentrations 
decreased upon decreasing airflow rates, and vice-versa: for example, in Figure 4, a 
strong N2O emission increase at the beginning of the aeration period (within the first 
30 minutes), was counteracted by lowering the airflow from 500 to 400 l/h. Then, a 
stepwise airflow increase (from 400 up to 550 l/h) accelerated N2O emissions again. 
However, there was usually a threshold aeration rate, below which the N2O emission 
did not correlate anymore with the airflow rate (when dissolved NO2

- was below the 
limit of detection). These emissions are attributed to NH2OH oxidation, and are 
presumably impacted by the presence of toxic compounds or high NH4

+ concentrations. 

The above reported responses in N2O emissions upon changing airflow rates are 
interpreted to be primarily due to changing microbial activities: at high aeration rates, 
AOB activity is higher with respect to anammox bacteria, since latter are partly 
inhibited by the presence of oxygen. Therefore, aeration rates controlled according to 
microbial activities lead to stable and more balanced nitritation-anammox process 
operation. This argumentation is also supported by the effect of reducing process 
temperature: for example, lowering the temperature from 30 to about 23 °C resulted in 
decreasing microbial activities (data not shown; in agreement with the Arrhenius 
equation describing the dependency of reaction rate constants on temperature), and 
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Conclusions 

In the present study, it was tested whether the continuous monitoring of N2O off-gas 
concentrations can be used as an indirect measure for dissolved NO2

- in a single-stage 
nitritation-anammox process, which is based on the hypothesis that NO2

- dependent 
N2O emission by AOB is the dominant cause for the observed off-gas concentrations. 
The conclusions can be summarized as follows: 

 N2O emissions have proven to correlate with dissolved NO2
- concentrations: 

temporary high airflow rates resulted in both, increasing NO2
- concentrations as 

well as increasing N2O emissions, while aeration rates adequate to microbial 
activities kept NO2

- and N2O at low levels. 

 Operating conditions at high N2O emission and in combination with relatively 
low NO2

- is assumed to be biased by NH2OH oxidation activity, another 
independent pathway for N2O formation. 

 Reactor operation controlled at minimal N2O emissions, give stable NH4
+ 

removal rates and low NO2
- concentrations. 

 In sum, N2O off-gas concentration is a promising parameter for nitritation-
anammox process control and supports future directions incorporating this 
approach in full-scale. 
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In nitritation-anammox systems, N2O production is driven by AOB activity, either via 
nitrifier denitrification or NH2OH oxidation, since heterotrophic denitrification activity 
is negligible due to the low availability of degradable organic substrate, and anammox 
bacteria are considered not to produce N2O. Therefore, suitable process control 
strategies need to be clarified in order to (i) minimize N2O emissions, (ii) maintain low 
concentrations of dissolved NO2

- and (iii) keep NH2OH oxidation activity low. In this 
context, the continuous analysis of the N2O site-specific nitrogen isotopic signature is 
considered an excellent tool for quantitative pathway investigation. One promising 
approach is to feed the digester liquid continuously during aeration: at low NH4

+ 
concentrations, N2O production via NH2OH oxidation is also low, and the N2O emissions 
can therefore be taken as proxy for the NO2

- concentrations in the reactor (Figure 1). 

It was recently concluded that long-term continuous N2O off-gas analysis is required 
for the accurate recording of emission dynamics and levels of conventional wastewater 
treatment plants (Daelman et al., 2013). As such, nitrification (AOB) process control 
based on N2O emissions is considered helpful, because multiple factors impact on N2O 
production, resulting in a complex, dynamic and plant-specific pattern of N2O 
emissions (Burgess et al., 2002). Operating strategies minimizing overall greenhouse 
gas (GHG) emissions thus need to be tested individually in combination with online 
N2O emission analysis. 

N2O emission is environmentally relevant and must be considered in energy 
optimization scenarios: N2O is an environmentally harmful substance: it is a GHG and is 
involved in the destruction of the stratospheric ozone layer. Indeed N2O is estimated to 
play the biggest role in depletion of stratospheric ozone during the 21st century 
(Ravishankara et al., 2009). Therefore, N2O (and other GHG) emissions from the 
wastewater treatment sector must be minimized. 

On the basis of Siegrist et al. (2008), it is estimated that the average net energy 
consumption of Swiss wastewater treatment plants, including biogas use from sludge 
digestion, is in the range from 40 to 50 watt hours per person and day (Wh/p/d). This 
value can be reduced by about 50% by introducing the nitritation-anammox process for 
digester liquid treatment while keeping nitrogen removal at the same level. The 
resulting savings of 20 to 25 Wh/p/d correspond to about 150 gCO2,equivalents/p/d, 
assuming 700 gCO2,equivalents/kWhelectrical, which refers to emissions of about 0.5 gN2O/p/d. 
This accounts for approximately 3% of the daily nitrogen load of one person. 
Consequently, any discussion of potential future treatment schemes, must necessarily 
include N2O (and other GHG) emissions. Analogously, aeration energy-saving concepts 
for conventional treatment must include N2O emissions, which should not be 
significantly increased by them: for example, emission levels in the range of 0.5 to 1% 
with respect to oxidized nitrogen are already in the same order of magnitude as GHG 
emissions from the production of energy for aeration. 

Online N2O off-gas measurement is cost-effective, robust and requires little 
maintenance: Today’s N2O off-gas analyzers are stable and robust, enabling automated 
calibration procedures. Monitoring off-gas concentrations avoids direct contact with 
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activated sludge, hence significantly reduces cleaning, matrix interferences and the 
overall maintenance effort compared to probes inserted in the liquid phase. Investment 
costs are estimated to be higher, but still in the same order of magnitude, than those 
for the conventional commercially available ion selective electrodes usually applied for 
online NH4

+ and NO3
- measurement in the liquid. Alternatively, monitoring dissolved 

NO2
- would require a suitable online sensor with sufficient resolution, which needs, to 

the authors’ knowledge, considerably more maintenance. In addition, extending the 
N2O off-gas analyzer by an oxygen sensor in combination with an airflow measurement 
would allow the oxygen consumption to be continuously monitored and thus the 
aeration to be controlled via the online nitrification rate. 

A win-win situation for the environment and the plant operators: The implementation 
of a financial GHG crediting system, as suggested by Wang et al. (2011), is considered a 
powerful incentive to promote the broad application of a continuous N2O off-gas 
monitoring concept. We are convinced that the efforts described here have an 
enormous potential to reduce air and water pollution substantially and thus contribute 
significantly to sustainable development within the global wastewater treatment 
sector. 
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In this doctoral thesis, the production and emission of N2O in biological wastewater 
treatment was investigated with a specific focus on pathway identification, plant 
operating reduction strategies and the potential use of continuous N2O off-gas real-
time measurement for process control. 

The general conclusion section is structured as follows: first, the highlights of the 
presented work are summarized, followed by an extended conclusion of the individual 
chapters. A specific focus is put on the role of NO2

-. Moreover, it is discussed whether 
biomass might potentially adapt to N2O promoting factors, such as N influent peaks, 
which could lead to a reduction of N2O emission. Finally, the implications on 
wastewater treatment plant operation are addressed. 

Highlights of this thesis 

The overall objective of this thesis was to identify the mechanisms of N2O production in 
biological wastewater treatment and how the resulting emissions can be reduced. The 
work can be summarized with the following highlights: 

 NO2
- reduction to N2O was found to be a key pathway in the investigated 

conventional municipal wastewater treatment systems. 

 Isotopomeric analysis has been confirmed to be a powerful method to 
quantitatively differentiate between the three most important N2O production 
routes, e.g. nitrifier denitrification, hydroxylamine (NH2OH) oxidation pathway 
and heterotrophic denitrification in presence of low dissolved O2 concentrations. 

 Continuous N2O off-gas analysis is considered a necessary stepping stone for 
overall carbon footprint minimization of wastewater treatment. 

 Implementation of continuous N2O off-gas analysis in full-scale has the 
potential to further improve nitritation-anammox process stability of 
supernatant treatment. 

Main conclusions of the individual chapters 

Lab-scale batch experiments with mixed microbial culture indicated that both, NH2OH 
oxidation as well as NO2

- reduction contributed to N2O production during NH4
+ 

oxidation: the former was interpreted to be active at the beginning of the aeration 
phase, when NH4

+ concentration was high, but NO2
- still low, while in the course of 

nitrification a shift to nitrifier denitrification driven N2O production was observed 
(chapter 3). This trend is supported by N2O isotopomeric analysis, a novel method in the 
field of biological wastewater treatment. These data confirm that under aerobic 
conditions, NO2

- reduction seemed to be the dominant N2O production pathway. The 
contribution from NH2OH oxidation, however, cannot be completely excluded, but is 
deemed of minor importance in our investigation (chapter 4). Moreover, N2O isotope 
measurements on a pilot-scale treatment plant (SP close to 0 ‰), indicate that NO2

- 
reduction was dominant at dissolved oxygen concentrations higher than 1.5 mgO2/l. An 
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increase in SP at low dissolved oxygen is attributed to heterotrophic denitrification 
activity, with a substantial N2O reductase activity compared to N2O production (chapter 
5). 

The effect of digester liquid addition, equivalent to a temporary increase of the 
nitrogen load, to a pilot-scale activated sludge plant showed that high N loads 
accelerated N2O emission significantly, correlating positively with the NO2

- build-up in 
the nitrifying activated sludge tanks (chapter 6). This underscores the assumption that 
an operating strategy at low dissolved NO2

- (<2 mgN/l) contributes to keeping N2O 
emissions at low levels. 

The application of N2O as a potential indirect measure for dissolved NO2
- was the focus 

of chapter 7, where a nitritation-anammox reactor was operated at different aeration 
rates in order to experimentally operate at various degrees of NO2

- accumulation. Latter 
is feasible due to the absence of nitrite oxidizing bacteria (NOBs), and anammox 
inhibition at elevated dissolved oxygen concentrations. Data indicate that the 
correlation between dissolved NO2

- and the N2O off-gas concentration seems to be 
biased by a (so far) unknown contribution from NH2OH oxidation. In future 
investigations, the application of the isotopomeric analysis is promising to 
quantitatively differentiate between the two pathways. Nevertheless, the here 
presented results are judged to be prospective for further implementation in full-scale 
plants, and point to future directions incorporating continuous N2O off-gas 
measurement in the process control (chapter 8). 

The role of NO2
- within N2O production pathways 

A main conclusion of this thesis is, that NO2
- reduction is a major N2O production 

pathway in the investigated activated sludge systems. Consequently, low NO2
- 

concentrations during aeration are expected to reduce overall N2O emission. This is in 
line with several studies reporting a positive correlation between dissolved NO2

- and 
N2O emission (e.g. Kampschreur et al., 2009a; Kampschreur et al., 2009b; Ahn et al., 
2010; Foley et al., 2010). Moreover, data of this study also indicate that a shift from one 
dominating production route to another might occur over time within the same 
system, or that all of the known pathways are contributing simultaneously to total N2O 
production, depending on operating and environmental conditions, respectively. This 
implies that critical operating parameters, optimally combined with isotopomer data, 
need to be considered when discussing N2O emission dynamics, when testing N2O 
reducing operating strategies or when applying mathematical models. The latter 
currently includes either NH2OH oxidation or nitrifier denitrification, but not both at 
the same time due to parameter identifiability problems (e.g. Ni et al., 2011; Ni et al., 
2012; Ni et al., 2013). Another important point to consider in upcoming studies is 
whether the correlation between NO2

- and N2O holds also for high NO2
- concentrations, 

since this might have severe implications on nitritation systems (e.g. two-stage 
nitritation-anammox process), which are usually operated at high dissolved NO2

- 
concentrations (see e.g. Law et al., 2013). 
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Adaptation of the biomass might influence N2O production: 
Short-term vs. long-term effects 

The present study is based on short-term effects, such as NH4
+ or NO2

- peak addition, on 
N2O production, with activated sludge taken from a continuously operating pilot plant 
fed with municipal wastewater. Additionally, pilot-scale monitoring was conducted 
over several weeks, and continuous digester liquid dosing was performed over 9 days. 
An adaptive response, in terms of lower NO2

- concentrations and lower N2O emissions 
over the time, at simultaneously high N influent loads, was observed. This is in 
agreement with a recent publication, where daily NH4

+ feed-pulses were conducted 
over 18 days, and ‘stable’ N2O emissions were reached after about 8 days (Chandran et 
al., 2011). However, in another study it took about 80 days to stabilize N2O emission 
after transition from full nitrification to nitritation (Ahn et al., 2011). 

In this thesis, microbial long-term adaptation to changing conditions e.g. high N loads, 
high NO2

- concentrations, or low dissolved oxygen, was not systematically investigated. 
This is necessarily to be done in upcoming studies. The trend within the N2O research 
community goes towards long-term on-line monitoring to measure and control N2O 
emission levels, in order to better capture daily, weekly and seasonal N2O emission 
dynamics (Daelman et al., 2013), as well as to improve aeration and load control 
minimizing N2O emission. Therefore, upcoming long-term investigations, addressing 
this topic, are expected. 

Implications for wastewater treatment plant operation 

This study supports the current understanding, that NO2
- reduction is the dominant 

N2O production pathway in biological wastewater treatment (Colliver and Stephenson 
2000). Moreover, it is hypothesized that process perturbations, such as sudden 
increases of NH4

+ or NO2
- or drops in dissolved oxygen (at high N influent loads), leads 

to immediate N2O increases (Desloover et al., 2012; Law et al., 2012). In future, such N2O 
responses upon process perturbations might be used as an early warning for process 
failure in full-scale plants, as already proposed by e.g. Butler et al. (2009), Colliver et al. 
(2002), or Burgess et al. (2002). 

With respect to strategies minimizing N2O emissions, it is concluded that biological 
wastewater treatment plants should be operated at low NH4

+ and NO2
- concentrations, 

which means (i) a high solid retention time and thus a large population with nitrifying 
activity to handle nitrogen-peak-loads, (ii) sufficient dissolved oxygen at high N 
influent loads in order to avoid incomplete nitrification and to keep NO2

- low (<1 to 2 
mgN/l), (iii) an extended denitrification preventing soluble oxygen (to avoid inhibition 
of the N2O to N2 reduction step) and operated with sufficient readily biodegradable 
organic carbon (to avoid competition for reducing equivalents among denitrifying 
enzymes), and (iv) that ammonia rich digester liquid should be dosed preferentially 
during low ammonia loads (equalization of load variations; adapted from Wunderlin et 
al., 2012). However, these recommendations have yet to be verified in full-scale plants. 
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Energetic optimization of wastewater treatment by reducing aeration (and O2 input) is 
critical, especially during high N loads. Therefore, it is recommended to reduce oxygen 
set-point (or partly switching off) the aeration solely at low N load situations. Based on 
the current understanding, it is postulated that plants designed for a high degree of N 
removal and operated under stable conditions emit only low amounts of N2O: high 
nitrogen removal and low N2O emission rates are therefore not considered as opposing 
targets (Chandran et al., 2011; Law et al., 2012). 
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The outlook chapter is structured as follows: first, the remaining open questions for 
future investigations are addressed, followed by a specific focus on future applications 
of N2O isotopic analysis in combination with microbiological tools and mathematical 
modeling. This chapter is then completed with relevant aspects from a practical point 
of view, such as discussing the potential of implementing continuous N2O off-gas 
analysis on full-scale plants, and how to provide incentives to reduce overall carbon 
footprint of wastewater treatment plants. 

Further application of N2O nitrogen isotopic signature in 
combination with pure culture studies and mathematical 
modeling: A need for an integrated approach 

In this study, the N2O nitrogen isotopic signatures of mixed cultures from a pilot-scale 
plant treating real municipal wastewater were compared to published pure-culture 
investigations where the active pathways are known. A mixed population system was 
chosen as a necessary compromise between pure culture and full-scale studies, since it 
more closely resembles a full-scale plant, as compared to pure culture investigations 
and most of the microorganisms are barely cultivable as pure cultures. Yet, at the same 
time, a lab or pilot scale system is more easily controllable compared to a full-scale 
treatment plant required to discharge according to legal constraints. 

Nevertheless, pure culture investigations are considered an important approach 
complementing mixed culture studies determining N2O production mechanisms, and is 
also relevant for novel pathway identification. For example, Schreiber et al. (2012) 
concluded that, combining the genomic/proteomic approach, as demonstrated by Yu 
et al. (2010), with isotopomeric analysis, as investigated in this thesis (chapter 4; 
Wunderlin et al., 2013), could be a promising future direction for characterizing the 
relationship between transcriptional response of the AOB Nitrosomonas europaea and 
N2O production. 

Isotopomeric analysis has been demonstrated to be powerful for quantitatively 
apportioning N2O production from nitrifier denitrification, NH2OH oxidation and 
heterotrophic denitrification, respectively, in mixed microbial activated sludge systems, 
especially when combined with parameters such as the concentrations of dissolved O2, 
N species and COD (Wunderlin et al., 2013). Thus, combining this method with 
conventional N2O emission monitoring, is expected to further improve overall process 
understanding. Moreover, using δ15Nbulk

N2O as an additional quantitative measure, it is 
beneficial to further characterize the fractionation of the substrates depending on 
different microbial activity levels and operation conditions. Otherwise, the 
interpretation of the δ15Nbulk

N2O signal obtained from mixed culture remains, beside SP, 
limited to a qualitative information of the relative importance of AOB and 
heterotrophic denitrification to N2O production (for more details please see chapter 5; 
Wunderlin et al., in preparation). 
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Finally, improved process understanding needs to be incorporated into existing 
mathematical models, which is a powerful tool for better dealing with N2O emission 
dynamics. Especially, including NH2OH oxidation, nitrifier denitrification, as well as 
heterotrophic denitrification in a unified model would allow more general conclusions. 
Current mathematical models do not yet allow robust quantitative prediction of N2O 
emission without local parameter calibration. This is interpreted as an indicator for the 
model structure not yet having reached a generally applicable form. 

Implementation of continuous N2O off-gas measurement in full-
scale: A win-win situation for plant operators and the global 
climate 

The dynamic N2O emission pattern observed in this thesis and reported in literature, 
and its correlation with multiple factors, make it challenging to define general plant 
operating strategies for reducing N2O emission. Therefore, it is concluded that the 
implementation of continuous on-line N2O off-gas measurement at full-scale is 
favorable to achieve plant operation optimized with respect to its overall carbon 
footprint (comprehensive energy optimization strategies). On the long-term this might 
lead to sustainable operation strategies where online N2O measurement is not required 
anymore (e.g. conservative operation for small-scale facilities). 

Basically, N2O production is related to process instabilities leading for example to 
incomplete nitrification. In this context, Butler et al. (2009) came up with the idea of 
using N2O off-gas measurement as a tool for early warning of biological nitrification 
failure: for example, an increase in N2O was detected in parallel to an increase in NO2

-, 
similar to our data. Moreover, for a single-stage nitritation-anammox process, NO2

- 
accumulation induced by sudden activity loss could be easily detected online. Thus 
process monitoring via N2O off-gas analysis is expected to improve overall process 
stability of ammonia oxidizing processes. However, up to now, this idea was not further 
pursued nor applied in full-scale treatment plants, which might also be due to the only 
recent development of affordable and low maintenance off-gas monitoring. It is 
therefore considered an important step to further develop a robust method enabling 
representative measurements (e.g. to adequately deal with the spatial N2O emission 
variability; Ahn et al., 2010), with only low maintenance efforts required from the 
operator (Wunderlin et al., 2013). 
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an additional incentive, beside improving process stability, to promote widespread 
adoption of a continuous N2O off-gas monitoring concept. For example, N2O analytical 
equipment could be financed over greenhouse gas certificates: then, an N2O emission 
baseline scenario has to be defined first (as-is state), followed by the implementation of 
N2O reduction strategies resulting in lower overall emissions compared to the baseline 
scenario (according to the Swiss CO2 act, this reduction is called ‘additionality’; 
http://www.bafu.admin.ch/klima/12325/index.html?lang=de, September 2013). 

It is roughly estimated the ‘N2O implementation approach’ might lead to total costs of 
about 6’625 CHF per year, including the analyzer, the hood for gas sampling, the 
implementation and starting-up, as well as the maintenance (Table 1). Moreover, it is 
assumed that wastewater treatment plants (WWTPs) smaller than 100’000 person 
equivalents (PE) require one N2O monitoring set-up (6’625 CHF per year), WWTPs 
smaller than 200’000 PEs need two of them (13’250 CHF/a), and plants bigger than 
300’000 PEs require three set-ups (19’875 CHF/a) or even more, in order to get 
representative measurements. 

Table 1. Estimated costs of the ‘N2O implementation approach’ per year. The investment 
costs of the N2O analyzer is in the range of 40’000 CHF and has an estimated lifetime of 
10 years (personnel communication with MBE AG, Wetzikon, Switzerland). Both, the hood 
for off-gas sampling as well as the costs for implementation and starting-up are 
estimated to 10’000 CHF each (amortized over 10 years). 

Time horizon 5 years 

Costs of analyzer 20’000 CHF 

Costs of hood 5’000 CHF 

Cost of implementation and starting-up 5’000 CHF 

Cost of maintenance (0.5 h per week at 25 CHF) 3’125 CHF 

Total estimated costs per year 6’625 CHF 

 

Figure 1 compares the costs from Table 1 with the estimated earnings (resulting from 
the financial crediting system) of three exemplifying (conservative) N2O reduction 
scenarios: an N2O emission reduction of (i) 0.05 %, (ii) 0.3 %, and (iii) 0.7 % with respect 
to influent nitrogen (e.g. a reduction of 0.3 % means that N2O emissions are reduced 
from 0.8 to 0.5 % of the influent nitrogen). Data show that an absolute reduction of 0.3 
% leads to positive cash flows at a price of only 20 CHF per ton reduced CO2,equiv for 
plants bigger than 130’000 PEs (Figure 1 B). At a price of 100 CHF per ton CO2,equiv 
emission offset, however, an absolute reduction of 0.05 % already leads to positive cash 
flows for plants bigger than 170’000 PEs, while a reduction of 0.3 % is already cost 
efficient for WWTPs bigger than 20’000 PEs (Figure 1 A). 

It is estimated that, with this approach, about 10’800 tons of CO2,equiv emissions can be 
offset per year, when only 1/3 of the Swiss wastewater is treated in plants equipped 
with online N2O sensors, and resulting optimized operation is attributed to an absolute 
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emission reduction of about 0.3 % (there are probably additional emission savings due 
to a higher aeration efficiency, which is not considered in this calculation). 
Consequently, about 70’000 tons of CO2,equiv could be offset till 2020, which is about 1 % 
of the amount that has to be reduced by the Swiss mineral oil industry (in case they do 
not fulfill this target, they are obligated to pay a penalty of 160 CHF per ton CO2,equiv that 
has not been offset; www.klik.ch, September 2013). Even if this seems to be a small 
contribution, it still has to be considered potentially relevant, because Swiss offsetting 
projects are currently rare. For example, myclimate, one of the leading global provider 
of voluntary carbon offsetting solutions, presents just four Swiss offsetting projects on 
their webpage, reducing between 200 and 9’700 tons CO2,equiv over 7 to 10 years 
(http://www.myclimate.org/en/carbon-offset-projects/international-projects.html, 
September 2013). Therefore, wastewater treatment plants might become an attractive 
partner in Switzerland for carbon offsetting projects in the near future and thus 
contributing substantially to a further sustainable development. 
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Abstract 

Nitrous oxide (N2O) is a strong greenhouse gas (GHG) and involved in the destruction of 
the stratospheric ozone layer. During sludge incineration, significant N2O emissions 
may occur due to the high nitrogen content of sewage sludge. 

Literature studies as well as data from two Swiss fluidized bed furnaces display lower 
N2O emissions when operated at high freeboard temperature, compared to 
incinerators operated at lower temperatures. On the other side, literature studies 
indicate that NOx production is influenced by the bed temperature, where high 
temperatures favor NOx formation. Due to these opposing trends, it is important to 
note that focusing solely on N2O reduction strategies, e.g. by increasing the freeboard 
temperature, might result in increasing NOx emissions. New operating strategies have 
therefore to be tested at individual plants since N2O and NOx production and emissions 
are highly variable and plant-specific. 

To lower NOx emissions, fluidized bed furnaces can be equipped with a secondary 
DeNOx system (e.g. selectively non-catalytic reduction, SNCR) where NOx is reduced to 
N2 by injection of a reducing agent, such as ammonia or urea. On the other hand, the 
addition of nitrogen compounds (especially urea) encloses the risk of additional N2O 
formation. During standard system operation, however, it is difficult to distinguish 
between N2O produced during the primary incineration process (e.g. within the 
freeboard) and the secondary DeNOx system, respectively. 

Sewage sludge incineration in waste to energy plants (WTE) may lead to additional N2O 
emissions because of the relatively high nitrogen content within the sewage sludge. 
However, at low sewage sludge fraction, differentiation between N2O from waste and 
sewage sludge incineration, respectively, is not feasible, and thus can only roughly be 
estimated. 

N2O emission during sludge incineration in Swiss fluidized bed furnaces were in the 
range of 1.2 to 3.8 % with respect to the nitrogen content of sewage sludge. These 
emission levels indicate that N2O production during sludge incineration is relevant, 
since being around one fifth of total GHG emissions of wastewater treatment, but not 
the most important source. 
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Zusammenfassung 

Lachgas (N2O) ist ein starkes Treibhausgas und hat einen wesentlichen Einfluss auf die 
Zerstörung der stratosphärischen Ozonschicht. Bei der Klärschlammverbrennung 
können relevante N2O-Emissionen auftreten, da der Brennstoff einen relativ hohen 
Stickstoffanteil aufweist. 

Verschiedene Literaturstudien, wie auch Messungen an zwei Schweizer 
Wirbelschichtöfen deuten darauf hin, dass bei hohen Brennraumtemperaturen die 
N2O-Emissionen tiefer sind, als bei Anlagen, die bei geringeren Temperaturen betrieben 
werden. Auf der anderen Seite wird die NOx-Bildung stark durch die Betttemperatur 
beeinflusst. So deuten Literaturstudien darauf hin, dass eine erhöhte Betttemperatur 
die NOx-Bildung fördert. Vor diesem Hintergrund muss unbedingt beachtet werden, 
dass durch N2O-Reduktionsmassnahmen die NOx-Emissionen nicht wesentlich erhöht 
werden. Da die N2O- und NOx-Bildung jedoch sehr variabel und anlagenspezifisch ist, 
müssen allgemeinformulierte Betriebsstrategien mit Vorsicht betrachtet, und im 
Einzelfall getestet werden. 

Zur Senkung der NOx Emissionen können Wirbelschichtöfen zur 
Klärschlammverbrennung mit einer sekundären Entstickungsanlage (meist selektive 
nicht-katalytische Reduktion, SNCR) ausgerüstet werden. Bei diesen Systemen kann es 
jedoch zu erhöhten N2O Emissionen kommen, insbesondere bei der Verwendung von 
Harnstoff als Reduktionsmittel. Eine Unterscheidung der Emissionen aus dem primären 
Verbrennungsprozess und der sekundären Entstickungsstufe ist im regulären 
Anlagenbetrieb jedoch nicht möglich. 

Bei Klärschlamm-Mitverbrennung in Kehrichtverbrennungsanlagen können auf Grund 
des N Gehaltes im Klärschlamm erhöhte N2O Emissionen auftreten. Ist der Anteil des 
mitverbrannten Klärschlamms jedoch gering, so ist eine Unterscheidung der N2O 
Emissionen aus Kehrrichtverbrennung bzw. Klärschlammverbrennung nicht bzw. nur 
näherungsweise möglich. 

Die N2O-Emissionen bei den untersuchten Schweizer Anlagen waren im Bereich von 1.2-
3.8 % bezogen auf den im Schlamm enthaltenen Stickstoff. Der Vergleich mit anderen 
Treibhausgas-Quellen in der Abwasserreinigung zeigt, dass die 
Klärschlammverbrennung nicht den Hauptanteil der Emissionen ausmacht, mit einem 
Beitrag von rund einem Fünftel aber als relevant einzustufen ist. 
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Einleitung 

Lachgas (N2O) ist ein 300-mal stärkeres Treibhausgas als CO2 (IPCC 2007). 
Anthropogene Aktivitäten haben seit der Industrialisierung einen Anstieg der N2O 
Konzentration um etwa 20 % verursacht, nicht zuletzt auf Grund der langen 
Halbwertszeit in der Atmosphäre von 120 Jahren. Der N2O Abbau findet primär in der 
Stratosphäre statt, wobei das dabei gebildete Zwischenprodukt, NO, den Ozonabbau 
massiv beschleunigt (Kramlich and Linak, 1994). Aus diesem Grund ist N2O die 
bedeutendste anthropogen-emittierte ozonabbauende Substanz des 21. Jahrhunderts 
(Ravishankara et al., 2009). 

Die globalen anthropogenen N2O Emissionen machen schätzungsweise 8 % der 
Treibhausgasemissionen aus, wobei der Grossteil der Lachgasemissionen aus der 
Landwirtschaft stammt (intensive Bodenbewirtschaftung/Stickstoff-Düngung) (IPCC, 
2007). Weitere Quellen sind industrielle Prozesse und stationäre Verbrennungsanlagen, 
deren Anteil an den globalen N2O Emissionen zirka 5 % beträgt (Svoboda et al., 2006; 
Vitovec 1991a; Vitovec 1991b). Der Beitrag der biologischen Abwasserreinigung bezogen 
auf die gesamten anthropogenen N2O Emissionen ist noch unklar (BAFU, 2011). 

Im Rahmen des Forschungsprojekts ‚N2O Emissionen in der Abwasserreinigung: 
Biologische Nährstoffelimination und Schlammverbrennung‘ werden die N2O Emissionen 
und insbesondere deren Bildungsmechanismen in der biologischen Abwasserreinigung 
untersucht und kritische Betriebszustände identifiziert. Zudem sollen die N2O 
Emissionen der Klärschlammverbrennung abgeschätzt werden, da 
Verbrennungsprozesse ebenfalls zur N2O Bildung beitragen können. In einigen 
Literaturstudien wurde die Verbrennung von kommunalem Klärschlamm in 
Wirbelschichtfeuerungen bereits als bedeutende N2O Quelle identifiziert, wobei der 
hohe Stickstoffgehalt des Brennstoffs und die tiefen Brennraumtemperaturen 
(verglichen mit einer konventionellen Feuerungsanlage) Gründe für die relativ hohen 
N2O Emissionen zu sein scheinen (Vitovec 1991a; Vitovec 1991b; Korving et al., 2010; 
Sänger et al., 2001; Wether et al., 1999). Vor diesem Hintergrund soll die N2O Bildung an 
zwei Schweizer Schlammverbrennungsanlagen exemplarisch untersucht werden. 

Im Rahmen dieser Untersuchung wird anhand einer vertiefen Literaturstudie auf die 
Mechanismen der N2O Bildung bei Verbrennungsprozessen eingegangen (siehe Kapitel 
‚Mechanismen der N2O Bildung‘). In Kapitel 2 (‚Fallstudie Schweiz‘) werden die N2O 
Emissionen an zwei Klärschlamm-Monoverbrennungen im Vollmassstab (Anlage A und 
B), sowie einer Kehrichtverbrennungsanlage mit Klärschlamm-Mitverbrennung (Anlage 
C) quantifiziert, sowie der Einfluss verschiedener Prozessparameter abgeschätzt. 

Mechanismen der N2O Bildung in der Schlammverbrennung 

Lachgas wird bei der Klärschlammverbrennung in Wirbelschichtöfen hauptsächlich aus 
dem im Brennstoff enthaltenen Stickstoff gebildet (eine Reaktion von Luftstickstoff zu 
N2O ist bei Temperaturen <1000°C nicht zu erwarten). Die Verbrennung von 
Klärschlamm hat ein hohes N2O-Bildungspotential, da der Stickstoff-Anteil im 



 

Klärsch
Blick in
(homog
(hetero

Abbildu
Schlam

Abbildu
Klärsch
Amin-S
anschli
aktuelle
Bildung
Zugabe
die Zug

Neben 
wobei h
einer s
Literatu
Luft/Br
Sauerst
(Vitove
Brennra
Tempe
1991b). 
geförde
eingega

hlamm rela
n die Liter
gener Me

ogener Mec

ung 1. Ü
mverbrenn

ung 1 gibt
hlamm ent
Struktur vo
essend zu
em Stand 
g betracht
e von HCN 
gabe von N

 der N2O Bi
 hauptsäch
sehr schne
ur sind H-
ennstoff-V
toffübersch
c 1991a;
aumtempe
raturen üb
 Zudem w
ert, die so
angen wird

ativ hoch i
atur zeigt,

echanismus
chanismus)

Übersicht 
nung in Wir

t eine Übe
haltenen S
or) werden
u HCN un
 des Wisse
et. So hat
 die N2O B
H3. 

ildung ist a
lich H-, O- o
ellen Reak
Radikale d

Verhältnis, 
huss (hohe
 Vitovec

eraturen di
ber 1000°C
wird durch
ogenannte 
d. 

 st (40-60 
, dass N2O
s), aber a
) gebildet w

über mö
rbelschichtö

ersicht übe
 Stickstoffve
n durch V
nd NH3 um
ens wird vo
t Kramlich 
ildung sig

 auch der N
oder OH-Ra

ktion, OH-
dominieren
 siehe weit
es Luft/Bre
c 1991b).
ie Bildung 

C ist der N
h hohe Te
 thermisch

 

 g/kg Trock
O einerseit
auch durc

 werden kan

ögliche N
öfen (nach 

er möglich
erbindunge
Verdampfu
mgesetzt 
or allem H
 et al. (19
nifikant er

N2O-Abbau 
adikale bet
-Radikale r
nd unter b
ter unten),

ennstoff-Ve
. Grunds
 der N2O-a

N2O-Abbau 
emperatur
he Dissozia

kensubstan
ts durch R
ch oberflä
nn (Vitovec

N2O Bildu
 Korving et 

he N2O-Bil
en (liegt in
ng in die 

 (Vitovec 19
HCN als ze

89) gezeig
höht wurd

 ein wichtig
teiligt sind
reagieren 

brennstoffr
, wohingeg
erhältnis) d
sätzlich 

abbauende
 vorherrsch
en auch 
ation, wor

nz; Korving
Reaktionen 
ächen-kata
c 1991a; Vito

 

ngsmechan
 al., 2010). 

dungmech
 Biomasse 
 Gasphase
991a; Vito
ntrale Sub

gt, dass du
de, wenige

ger Prozess
. H-Radikal

 etwas lan
eichen Bed

gen O- und
 den Haupt

gilt abe
n Radikale

hend; Vitov
 ein weiter
rauf hier a

App

g et al., 20
 in der Ga

alysierte P
ovec 1991b

nismen b
 

hanismen. 
 hauptsäch

e freigeset
ovec 1991b
bstanz für 
urch eine 
r stark abe

s in der Ga
e zerstören

ngsamer. G
dingungen
d OH-Radi
anteil aus

er, dass 
e begünstig
vec 1991a; 
rer Abbau

 aber nicht

pendix A 

201 

010). Ein 
asphase 
Prozesse 
b). 

bei der 

 Die im 
hlich als 
tzt, und 
). Nach 

 die N2O 
 externe 
er durch 

asphase, 
n N2O in 
Gemäss 

n (tiefes 
kale bei 
machen 
 hohe 
gen (bei 
 Vitovec 

uprozess 
t weiter 



Append

202 

Neben 
Reaktio
zum B
dargest
Gegens

Wirbel

Wirbels
betrieb
überwi
tieferen
ein Vor
hohen 
unten).

In Abbi
untersc
Häufig 
wozu d
weist t
‚Bettsch
(Dräger

Abbildu
Wirbelb
der Sch
den Bre

Gemäs
Brennra
Tempe
So wur
Emissio
Emissio
Emissio

dix A 

 den Reakt
onen an O
Beispiel ka
tellt. Grun
stand aktue

lschichtfe

schichtfeue
ben als and

egend ger
n Brennrau
rteil der Wi
 Stickstoffg
. 

ldung 2 ist
chieden zw
 wird die 

 die aus de
 tendenziell

hmelze‘ zu
r und Voste

ung 2. Aufb
bett und Br
lamm direk

ennraum in

s Korving
aumtempe
ratur knap

rde gezeigt
onen begü
onen um r
onsdaten a

ionen in de
berflächen
nn Flugas

ndsätzlich 
eller Forsch

euerung u

erungen w
ere station
inge N2O E

umtempera
irbelschich

gehalten im

t der Quers
wischen W
 Schlamme
m Brennra
 tiefere Te

u verhinde
een, 2004).

fbau eines 
rennraum (
kt über dem

n das Wirbe

g et al
eratur und 
pp über dem
t, dass eine
ünstigt, wä

 rund 70% 
 anderer Klä

er Gasphas
n (heteroge
sche den 

 sind diese
hung (Vitov

und N2O Em

werden g
näre Feueru

 Emissionen
aturen beg
tfeuerung 

m Brennsto

schnitt eine
Wirbelbett u

entwässeru
aum aufste
emperature
rn, und an
. 

 Etagen-Wi
(Freeboard)

m Brennrau
elbett gegeb

l. (2010) 
 der N2O-Bi
m Sand-Be
e tiefe Bren
ährend du
 gesenkt w
ärschlamm

 

se können 
ener Mech
 N2O-Abba
e Prozesse
vec 1991a; V

missionen

grundsätzlic
ungsanlage
n aufweise
günstigen e
 darstellt, w

off, negativ

es Etagen-W
 und Brenn
ung direkt
eigende W
en auf als 
ndererseits

irbelschicht
). In dem ge

um getrockn
ben (Bild au

 besteht 
ildung (Abb

ett gemess
nnraumtem
urch eine 
werden ko

mverbrennu

 in Wirbels
hanismus) 
au katalys
e aber no
 Vitovec 199

n 

ch bei ti
en (z.B. KVA
n (Vitovec 

 einerseits g
 wirkt sich a
v auf die N

Wirbelschi
nraum, dem
 über dem

Wärme gen
 die Brenn
s die Bildu

tofens. Es w
ezeigten Et
net, und m
us Prozessle

 eine K
bildung 3 li
en wird (V

mperatur (
 Temperat
nnten. Die

ungsanlage

chichtfeue
 eine wicht
ieren, wie
ch wenig 

91b). 

eferen Br
As, Holzfeu
 1991a; Vito

 geringe NO
 aber andere

2O-Bildung

chtofens d
m sogenan
m Brennrau
utzt werde
kammer, u
ng von NO

 

wird unters
tagen-Wirb
ittels Wurf

eitsystem d

Korrelation 
 inks), insbe
Vitovec 199
 um 880°C)

urerhöhun
eser Trend 
e bestätigt

erungen ab
tige Rolle 

e in Abbil
 verstande

renntempe
uerungen),
ovec 1991b

Ox-Emission
erseits, neb

g aus (siehe

 dargestellt:
nnten ‚Fre
um durchg
en kann. D

 um einerse
Ox zu min

rschieden z
belschichtof
fbeschickun

der Anlage B

 zwische
esondere w
1a; Vitovec
) relativ ho

ng auf 930
 wird durc

t (z.B. Kelle

 

ber auch 
 spielen: 
ldung 1 
en, und 

eraturen 
 welche 

b). Diese 
nen, was 
ben den 
e weiter 

 es wird 
eboard‘. 
geführt, 

Das Bett 
eits eine 
imieren 

wischen 
fen wird 

ng durch 
B). 

en der 
wenn die 
c 1991b). 
ohe N2O 
0°C die 
ch N2O-

er, 2010; 



 

Sänger 
Erhöhu
(Abbild
eingest
Brennra
Brennra
fördert,
und s
Zusam
(Sänge

Tiefe B
haben 
abnehm
höhere

Ein stä
Abbildu
ansteig

Aus die
der Lac
eine Er
Betttem

Abbildu
Temper
Kasten 
Konzen
zu hohe
Japan z
Erhöhu

 et al. 200
ung der Bre

ung 3 re
tellt über
aumtempe
aum weni
, was sich 

siehe wei
menhang 
r et al. 200

Betttemper
 (Abbildung
menden Em
s Luft-/Bre

rker ausge
ung 4 rec
gen. 

esen Unter
hgas-Emis
rhöhung d
mperatur e

ung 3. Link
raturen im
 entsprech
trationen r
en Brennra
zeigen eine
ng der Tem

01); in eine
ennraumte
echts). Die
r ein tie
eraturen fü
ger stark 
 positiv au
ter oben

 zwischen 
1). 

raturen sch
g 4 links), 
missionen 
ennstoff-Ve

eprägter E
chts zeigt,

rsuchunge
sionen ebe

der Brennr
 rfolgen sol

ks: Einfluss 
m Brennrau

hen den 
 resultieren 
aumtemper
e starke Bre

mperatur re

er japanisc
mperatur v

e Autoren 
fes Luft/B
ühren (da 
 abgekühlt
uf einen sc
). In and

 Sauerstoff

heinen ein
 jedoch, äh
 bei höhere
erhältnis zu

influss hat
 dass bei

n geht her
enfalls die N
aumtempe
l. 

 der Brennr
m reduzier
O2-Konzen

 aus einem 
raturen füh
ennraumte
duziert die 

 

hen Anlag
 von 800 au
 nehmen 
Brennstoff
 auf Grund
t wird) un
chnellen N2

deren Un
fgehalt im

nen gering
hnlich wie 
en Temper
u tendenzie

t die Bettt
i höherer 

rvor, dass 
 NOx-Bildun
eratur mö

raumtemp
ren die N2O

ntrationen 
 geringen L
hrt (Quelle:
emperatur-A
 Emissionen

ge konnten
uf 850°C um
 an, dass
f-Verhältnis
d des geri

nd anderer

2O-Abbau 
ntersuchun
 Abgas un

eren Einflu
 im Brennr
aturen. Zu
ell höheren

temperatu
 Betttemp

 (i) in Betrie
ng berücks
glichst be

eratur auf 
O Emission
 im (feuc
uft/Brenns
 Korving et
Abhängigk
n signifikan

 die Emiss
m rund 70%
 tiefe O2

s, einerse
ngeren Lu

rseits die 
 auswirkt (A
ngen wur
nd N2O Bil

uss auf di
raum, mit 
dem ist er

n Emissione

r aber auf
eratur die

ebsstrateg
ichtigt wer
i konstant

f die N2O E
nen. Die Pr
chten) Ra
toff-Verhä

t al., 2010). 
keit der N2O
nt (Keller, 20

App

sionen dur
% gesenkt 

2-Konzentra
eits zu h
uftdurchsat
 H-Radikal-
Abbildung 
rde jedoc
ldung beo

e N2O-Bild
 einer Tend
rsichtlich, d
en führt. 

f die NOx-B
e NOx-Emi

gien zur Re
rden muss,
t (tief) ble

Emissionen:
rozentanga
uchgas: t
ltnis, welch
 Rechts: Da

O-Emission
010). 

pendix A 

203 

rch eine 
 werden 
ationen, 
höheren 
tzes der 
-Bildung 
 3 links; 
h kein 

obachtet 

dung zu 
denz zu 

 dass ein 

Bildung: 
ssionen 

duktion 
, und (ii) 

eibender 

 

: höhere 
aben im 
tiefe O2 
hes auch 
aten aus 
en: eine 



Append

204 

Abbildu
Betttem
Kasten 
Konzen
ebenfal
Einfluss
Betttem
der O2 K
Emissio
Temper

N2O 
verbre

Die be
Verbren
selektiv
Verbind

Beim S
Lösung
450°C. 
eine ve
1991b). 

Beim S
heissen
höhere
einer w
dabei li
Emissio
1991a; V

Fazit N

Die Lac
wird ha

dix A 

ung 4. Link
mperatur fü
 entsprech
trationen 
lls zu höher
s der Be

mperaturen
Konzentrat
onen. Die B
ratur der zu

Emission
ennungsan

eiden am 
nnungsanl
ve nicht-ka
dungen mi

SCR-Verfah
g verwende
 Messunge
ernachlässig
 

SNCR-Verfa
n Brennrau
 N2O-Zusat

wichtigen N
 inear mit d
onen anlag
 Vitovec 199

N2O Bildun

chgas-Bildu
auptsächli

ks: Einfluss
ührt tenden
en den O2

 aus eine
ren Brennra
etttempera
n ansteigen
tion im (feu
Betttempera
ugegebenen

nen de
nlagen (K

 häufigste
agen sind 
atalytische
t NH3 oder

hren wird 
et, übliche
n an öster
gbare Wirk

ahren wird 
m dosiert. 
tzemission

 N2O-Vorgä
der Menge 
genspezifis
91b). 

ng 

ung bei d
ch durch 

s der Bettt
nziell zu ge

2-Konzentra
em gering
aumtempe
tur auf 

n. Eine Ver
uchten) Rau
atur wurde
n Luft regul

r Klärsc
KVAs) und

en einges
 (i) die sel

e Reduktio
 Harnstoff 

 gasförmig
erweise in
reichischen
kung auf d

 häufig Am
 Hierbei tre

nen auf, da
ngersubsta

 des zugege
sch ist und

er Klärsch
 den hohen

 

temperatur
eringeren N
ationen im

gen Luft/B
eraturen fü

die NOx 
ränderung 
uchgas hat 
e über den
liert (Quelle

chlamm-M
d Effekte d

etzten se
ektive kat
n (SNCR). 
 zu N2 und 

ger Ammo
 einem T

n Anlagen 
die N2O Em

mmoniak o
eten vor all
 davon aus
anz zerset
ebenen Red
d daher se

hlammverb
n Stickstof

r auf die N
N2O Emissio
m (feuchten
Brennstoff-V
hrt (Quelle
 Emission
 des Luft/B
 nur einen g

n Schlammv
en: Korving

Mitverbre
der Entstic

kundären 
alytische R
 Bei beide
 H2O umge

niak oder 
emperatur
 haben gez
issionen h

 oder Harns
lem bei der
szugehen i
zt wird. D
duktionsm

ehr untersc

brennung 
ffgehalt im

N2O Emissio
onen. Die P
n) Rauchga
Verhältnis 
: Korving e

nen, welch
Brennstoff-V
 geringen E
vortrocknu

g et al., 2010

ennung 
ckung 

 Entsticku
Reduktion 
en Verfahr
setzt. 

 eine wäs
rbereich zw
eigt, dass d
aben (Vito

stoff in de
r Verwendu

 ist, dass Ha
ie N2O Em
ittels zu, w

chiedlich s

 in Wirbels
m Brennsto

onen: eine
Prozentanga
as, wobei 
 resultiere
et al., 2010).
he bei h
Verhältniss

Einfluss auf 
ungsgrad so
0). 

in Ke

ngs-Verfah
 (SCR), und
ren werde

ssrige Amm
wischen 2
 die SCR-Ve
ovec 1991a; 

en 850 bis 
ung von Ha
arnstoff zu

missionen n
wobei die H
sein kann 

schichtfeue
off und die

 

 

 höhere 
aben im 
tiefe O2 

en, was 
. Rechts: 
höheren 
ses bzw. 
f die NOx 
owie die 

ehricht-

hren in 
d (ii) die 
en NOx- 

moniak-
70 und 

erfahren 
 Vitovec 

 1000°C 
arnstoff 

u HNCO, 
 nehmen 
Höhe der 
 (Vitovec 

erungen 
e tiefen 



  Appendix A 

205 

Verbrennungstemperaturen verursacht. Neben der Bildung haben aber auch N2O 
abbauende Reaktionen einen Einfluss auf die N2O Emissionen. 

Gemäss Literaturangaben begünstigen tiefe Brennraumtemperatur die N2O Bildung. 
Im Weiteren wurde beschrieben, dass der Einsatz einer sekundären Entstickungsstufe 
(SCR) nicht per se einen Einfluss auf die N2O-Bildung haben muss, wobei insbesondere 
die Verwendung von Ammoniak als wenig problematisch einzustufen ist. Hingegen 
können bei der Eindüsung von Harnstoff als Reduktionsmittel in den Brennraum 
(SNCR), erhöhte Emissionen auftreten, welche möglicherweise durch die Bildung von 
HNCO, eine Vorläufersubstanz von N2O, aus Harnstoff verursacht werden. 

Es gilt festzuhalten, dass bei Schlammverbrennungsanlagen die N2O-Emissionen stark 
variieren können, da verschiedene Faktoren, wie Brennstoffzusammensetzung, Feuchte 
(Entwässerungsgrad), Art der Schlammentwässerung oder Betrieb des Ofens 
(insbesondere Temperatur) zeitlichen Schwankungen unterworfen sind. 

Im folgenden Kapitel wird (i) die Auswirkung der Bett- und Brennraumtemperatur auf 
die N2O-/NOx-Emissionen von zwei Klärschlamm-Monoverbrennungsanlagen (A und B) 
betrachtet, und (ii) die Effekte einer sekundären Entstickungsanlage (DeNOx) einer KVA 
untersucht (C). 

Fallstudien Schweiz 

Von Schweizer Klärschlammverbrennungsanlagen liegen noch keine systematisch 
erhobenen Daten vor. Das Handbuch Emissionsfaktoren für stationäre Quellen des 
BAFU geht aber von vergleichbaren N2O Emission wie bei KVAs aus (Bafu, 2000). Im 
Folgenden werden die Emissionen von zwei grosstechnischen Klärschlamm-
Monoverbrennungsanlagen (Anlage A und B) und einer Kehrichtverbrennungsanlage 
mit Klärschlamm-Mitverbrennung (Anlage C) präsentiert. Insbesondere wird die 
Auswirkung der Brennraumtemperatur beim Wirbelschichtofen (Anlage A und B), 
sowie die Wirkung eines DeNOx Systems (SCR-Verfahren mit NH3-Eindüsung) auf die 
N2O-Emissionen einer KVA diskutiert (Anlage C). 

Anlage A ist ein Wirbelschichtofen, in dem rund 40‘000 Tonnen Klärschlamm pro Jahr 
(entspricht 280‘000 Einwohnergleichwerten), mit einem mittleren 
Trockenmaterialgehalt (TS) von 25% verbrannt werden. Dies ergibt rund 9‘000 Tonnen 
TS pro Jahr. Die Anlage wird bei einer Brennraumtemperatur von rund 850°C betrieben 
und die NOx Emissionen werden mittels SNCR Verfahren, durch Zudosierung des 
Klärschlammfiltrats, reduziert (Angaben des Anlagenbetreibers). 

Anlage B verfügt über drei Etagen-Wirbelschichtöfen mit einer Nachbrennkammer, 
einer Wärmerückgewinnung und einer Entstickungsanlage (SNCR Verfahren mit 
Ammoniak Zugabe). Die Brennraumtemperatur liegt im Mittel bei rund 800°C. Es 
werden durchschnittlich etwa 9‘600 Tonnen Trockenmaterial pro Jahr verwertet (8‘500 
Tonnen eigener und zirka 1‘100 Tonnen fremder Klärschlamm; 25-26% TS-Anteil im 
entwässerten Klärschlamm; gemäss Angaben des Anlagenbetreibers). 
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Klärschlamm vergleichbare Werte von 2.1-3.9 mgN2O/Nm3 gemessen. Damit kann kein 
wesentlicher Einfluss des Katalysators, auf die N2O-Emissionen nachgewiesen werden. 
Dies ist in Übereinstimmung mit Literaturwerten (Vitovec 1991a; Vitovec 1991b) 

Tabelle 1. N2O Messungen einer KVA mit und ohne Klärschlamm-Beimischung vor und 
nach dem SCR Katalysator. Bei der Klärschlamm-Mitverbrennung wurden dem Müll rund 
5% (TS-Anteil) Klärschlamm beigemischt. Die Daten wurden am 11./12.4.2012 erhoben, 
mittels mehreren jeweils über eine Stunde dauernden Messungen (Lödel und Sköries, 
2012). 

Messort 
N2O-

Konzentrationen* 
N2O Massenstrom** Betriebszustand 

  [mg-N2O/m3] [kg-N2O/h] 
 

Vor Kat., Linie 1 3.5-4.3 0.107-0.134 mit Klärschlamm 

Vor Kat., Linie 2 2.1-4.3 0.054-0.111 mit Klärschlamm 

Nach Kat., Linie 1 &2 2.1-2.3 0.11-0.12 mit Klärschlamm 

Vor Kat., Linie 1 1.8-2.1 0.056-0.067 ohne Klärschlamm 

Vor Kat., Linie 2 <1.5-1.5 0.044 ohne Klärschlamm 

Nach Kat., Linie 1 &2 2.3-3.9 0.132-0.228 ohne Klärschlamm 
* bezogen auf 11 Vol.-% O2, trocken, 273K, 1013hPa 
** trocken, 273K, 1013hPa     

N2O Emissionsfaktoren der untersuchten Anlagen 

Die Untersuchungen an den Schweizer Anlagen haben gezeigt, dass die N2O-
Emissionen der Klärschlamm-Monoverbrennung (Anlage A und B) gegenüber anderen 
Verbrennungsanlagen deutlich erhöht und bezüglich ihres Anteils an den 
Treibhausgasemissionen der Abwasserreinigung relevant sind (Tabelle 2). Die N2O 
Emissionen einer KVA mit Klärschlamm-Mitverbrennung sind nicht signifikant höher 
als ohne Klärschlamm-Mitverbrennung (Tabelle 1). Im Weitern zeigt Tabelle 2, dass die 
Emissionen sehr variabel und anlagenspezifisch sind (Emissionsfaktoren im Bereich von 
1.2-3.8 % bezogen auf den verbrannten Stickstoff). Dies verdeutlicht, dass 
allgemeinformulierte Betriebsstrategien mit Vorsicht zu betrachten sind, und im 
Einzelfall getestet werden müssen. 

Bei den untersuchten Klärschlamm-Monoverbrennungsanlagen lagen die 
durchschnittlichen Brennraumtemperaturen im Bereich von 750 bis 870°C. Durch eine 
Vermeidung tiefer Brennraumtemperaturen konnten die N2O Emissionen nachhaltig 
gesenkt werden. Zudem könnte durch ein tieferes Luft/Brennstoff-Verhältnis die 
Betttemperatur auf einem für die NOx-Bildung optimalen tieferen Niveau gehalten 
werden. Eine O2-Limitierung, ebenfalls bedingt durch ein tiefes Luft/Brennstoff-
Verhältnis, könnte zusätzlich die effiziente, für den N2O-Abbau wichtige Radikal-
Bildung fördern. Inwieweit diese Massnahmen aus anlagentechnischer Sicht 
umsetzbar sind müsste abgeklärt werden. 
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Tabelle 2. N2O Emissions-Faktoren der drei untersuchten Verbrennungsanlagen. 

    Anlage A Anlage B Anlage C 
Klärschlammmono-

verbrennung 
Kehrichtverbrennung 

    
(mit KS) (mit KS) 

(mit KS; vor 
Kat) 

(mit KS, nach 
Kat) 

Brennraum-
temperatur 

[°C] 795-865 750-870 835-861 835-861 

N2O Emissionen [mgN2O/Nm3] 420(1) 153-199(1) 2.1-4.3(1) 2.1-2.3(1) 

[mgN2O-N/Nm3] 267(1) 97-127(1) 1.3-2.7(1) 1.3-1.5(1) 

O2 Abgas [%] 13(2) 8.8 8.1-10.3 7.7-8.0 

Anteil TS [%] 30 26 29.1(5) 29.1(5) 

TS-Umsatz [tTS/h] 1.1 1.1 0.057(3,5) 0.057(3,5) 

Luftvolumen-
strom 

[Nm3/h] 7852 7360 20100-27400 47900(4) 

[Nm3/tTS] 7138 6691 - - 

N-Umsatz (N-
Gehalt ~5%) 

[kgN/h] 55 58 2.96(5) 2.96(5) 

N2O Massen-
strom  

[kgN2O/h] 3.3(1) 1.1-1.5(1) 0.054-0.134 0.11-0.12 

[kgN2O-N/h] 2.1(1) 0.7-1.0(1) 0.034-0.085 0.07-0.076 

N2O Emissionen [%] 3.8 1.2-1.7 k.A.(6) k.A.(6) 

(1) bezogen auf 11 Vol.-% O2, trocken, 273K, 1013hPa 
(2) vor Messstelle verdünnt mit Umgebungsluft 
(3) betrifft Klärschlamm (~4.7 t/d), zusätzlich wurde 98.91 (Linie 1) bzw. 99.35 (Linie 2) t/d Müll 
verbrannt 
(4) Abluft Linie 1 und 2 
(5) N-Umsatz bezieht sich lediglich auf den im Klärschlamm enthaltene Stickstoff 
(6) keine Angabe möglich, da der Anteil der N2O Emissionen aus der Klärschlammverbrennung nicht 
berechnet werden kann. 
KS: Klärschlamm; Kat: Katalysator/sekundäre Entstickung      

Relevanz der N2O Emissionen der Klärschlammverbrennung 

Die Lachgasemissionen in der Schlammverbrennung müssen in Relation zur 
Treibhausgase-Freisetzung bei der eigentlichen Abwasserreinigung (ARA) gesetzt 
werden. Abbildung 8 gibt einen Überblick der abgeschätzten Emissionswerte und 
deren Anteile an den Gesamtemissionen. Mit dieser Gegenüberstellung soll 
insbesondere die Relevanz der N2O Emissionen der Schlammverbrennung verdeutlicht 
werden. 

Methan (CH4) Emissionen stammen hauptsächlich aus den Abwasserkanälen. Der 
geschätzte Anteil liegt im Bereich von 5% bezogen auf die Kohlenstoff (CSB)-Fracht im 
Abwasser, wobei angenommen wird, dass die übrigen Emissionen aus der Faulung 
stammen. Insgesamt schätzen wir die CH4 Emissionen auf knapp einen Drittel (30 
gCO2,äquiv/EW*Tag) der totalen Treibhausgasemissionen in der Abwasserreinigung (die 



 

Autoren
Fracht a

Lachga
haupts
Denitrif
und da
zeigen, 
Sticksto
N2O Em
Energie
gCO2,äqu

Das Tre
der t
gCO2,äqu

Treibha
Treibha
einem F

Abbildu
hauptsä
abgege
in der b
(aus Wu

Schlu

Im Rah
Mechan
wurden
im Voll

n gehen d
 als CH4 em

s kann e
ächlich d
fikation: d

aher sehr 
 dass die 
offumsatz 
missionen 
everbrauch

uiv/EW*Tag 

eibhauspot
total Tre

uiv/EW*Tag
ausgasemis
auspotenti
 Fünftel abe

ung 8. T
ächlich im 

eben (CH4 E
biologischen
underlin et

ssfolger

hmen diese
nismen de
n N2O Emi
lmassstab 

avon aus, 
ittiert wird

ebenfalls 
urch mik
ie Emissio

 dynamisch
 N2O Freise
 liegen kan
 ist in ei
s für die
 verglichen

tential der 
eibhausgas
; Abbild
ssionen de
als der Ab
er als releva

Treibhausga
 Kanal geb

Emissionen 
n Reinigung

t al., 2013). 

rungen u

er Untersu
er N2O Bil
ssionsdate

 (Anlage A

 dass in de
d). 

in der bi
robiologisc
nen sind v

h und anla
etzung du
nn (Wunde
ner vergle
e Belüftu

n mit 40 gC

 N2O Emiss
emissione

dung 8)
er Klärsch

bwasserrein
ant einzust

asemissione
bildet und 
 aus der Fa
gsstufe und

und Emp

chung wu
ldung bei 
en von zw
 und B), so

 

er Schweiz

iologischen
che Proze

 vor allem a
agenspezif
rchaus im
erlin et al.
eichbaren 
ng der b

CO2,äquiv/EW

sionen der 
n der 
. Diese

hlammverb
nigung au
tufen ist. 

en in de
 im Kläran

aulung sind
d der Klärsc

pfehlung

urden anha
 Verbrenn

wei Schweiz
owie punk

z somit ins

n Reinigu
sse wie 

 abhängig v
fisch. Versc
 Bereich v
, 2013). Da

 Grösseno
biologische

W*Tag aus d

 Schlammv
Abwasser

r Vergle
brennung 

smacht, m

er Abwass
nlagenzulau
d ebenfalls 
chlammver

gen 

and einer v
ungsproze
zer Klärsch
ktuelle Mes

sgesamt et

ngsstufe 
die Nitrif

 von der St
chiedenste
von 0.5 % 
as Treibhau
rdnung w
en Abwas

 er Belüftun

verbrennun
reinigung 
eich zei
nicht den 

mit einem 

serreinigung
ufbereich in
 realistisch),
rbrennung 

 vertiefen L
ssen disku

hlamm-Mo
ssungen a

App

twa 10% d

gebildet w
fikation u
tickstoffbe
e Untersuc
 bezogen a
uspotentia

wie dasjen
sserreinigu
ngsenergie

ng kann ru
 betrage
gt, dass
 Hauptant

 Beitrag vo

 

g: Metha
n die Atm
, N2O kann
 produziert

 Literaturstu
utiert. Aus

onoverbren
n einer Sc

pendix A 

211 

der CSB-

werden, 
nd die 
lastung, 
hungen 

 auf den 
al dieser 
ige des 
ng (24 

e). 

nd 20% 
n (20 
s die 
teil des 
on rund 

 

n wird 
osphäre 

n sowohl 
 werden 

udie die 
sserdem 
nungen 
hweizer 



Appendix A   

212 

Kehrichtverbrennungsanlage, mit Klärschlamm-Mitverbrennung (Anlage C) 
ausgewertet und der Einfluss relevanter Faktoren betrachtet. 

Die Messungen haben ergeben, dass bei der Klärschlamm-Monoverbrennung eine 
Korrelation zwischen der Brennraumtemperatur und den N2O Emissionen besteht, 
wobei hohe Temperaturen tendenziell tiefere Emissionen begünstigen. Dieser 
Zusammenhang ist in Übereinstimmung mit Literaturstudien, in denen die 
Brennraumtemperatur als einer der wichtigsten Faktoren für die N2O-Bildung diskutiert 
wird. Im Weiteren muss darauf hingewiesen werden, dass durch Erhöhung der 
Brennraumtemperatur auch die NOx-Emissionen ansteigen können. Insbesondere, 
wenn dadurch die Betttemperatur erhöht wird. Erhöhte NOx Emissionen können jedoch 
durch eine nachgeschaltete sekundäre Entstickung vermieden werden. Gemäss Korving 
et al. (2010) ist eine Minimierung der N2O Emissionen durch ein tiefes Luft-
/Brennstoffverhältnis möglich, wobei eine grössere Temperaturdifferenz zwischen dem 
Bett und dem Brennraum resultiert. 

Aufgrund punktueller Messungen vor bzw. nach dem SCR Katalysators einer KVA mit 
bzw. ohne Klärschlamm-Mitverbrennung, konnte kein signifikanter Einfluss des SCR 
Katalysators bzw. der Klärschlamm-Mitverbrennung beobachtet werden. 

Gemäss Vitovec (1991a) sind drei Strategien zur Reduktion der N2O Bildung denkbar: (i) 
Optimierung der Verbrennungstemperatur, (ii) thermische Nachbehandlung (durch 
Zugabe eines zusätzlichen stickstoffarmen Brennstoffs, z.B. Erdgas, wird eine Zone 
hoher Temperatur und hoher Radikalkonzentrationen geschaffen), oder (iii) 
katalytische N2O-Entfernung. 
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Zusammenfassung 

Lachgas (N2O) ist ein starkes Treibhausgas und bedeutend an der Zerstörung der 
stratosphärischen Ozonschicht beteiligt. Seine Bildung und Freisetzung in die 
Atmosphäre hat deshalb eine grosse Umweltrelevanz. In der biologischen 
Abwasserreinigung kann N2O sowohl während der Nitrifikation (Oxidation von 
Ammonium zu Nitrat), wie auch durch die heterotrophe Denitrifikation (Reduktion von 
Nitrat zu Luftstickstoff) gebildet werden. Diese Prozesse laufen meist gleichzeitig ab. 
Daher lässt sich ihr individueller Beitrag zur N2O Bildung nur schwer abschätzen. Für 
diese Studie wurde ein neuartiger Ansatz angewandt, der eine bessere Beurteilung der 
N2O Bildung auf Abwasserreinigungsanlagen erlaubt. Anhand der Analyse der stabilen 
Stickstoffisotopen wurde gezeigt, dass unter aeroben Bedingungen die Nitrifikation die 
N2O Bildung dominiert. Dabei fördern hohe Ammonium (NH4

+) und Nitrit (NO2
-) 

Konzentrationen die N2O Bildung. Ausserdem ist zu beachten, dass die Entstehung von 
N2O räumlich und zeitlich sehr variabel ist und durch viele Parameter beeinflusst wird. 
Die aktuellen Emissionsschätzungen sind daher mit einer grossen Unsicherheit 
verbunden, was eine Bestimmung von präzisen Emissionsfaktoren schwierig macht. 
Untersuchungen aber zeigen, dass die N2O Emissionen die Treibhausgasbilanz der 
gesamten Anlage dominieren können, welche ansonsten vor allem durch die indirekten 
Emissionen der Belüftung der biologischen Reinigungsstufe beeinflusst wird. 

In Anbetracht der negativen Umweltauswirkungen von N2O und der langen 
Aufenthaltszeit in der Atmosphäre (rund 120 Jahre) sollte unbedingt eine möglichst 
weitgehende Reduktion der Emissionen angestrebt werden. Das gegenwärtige 
Verständnis der relevanten Bildungsmechanismen deutet darauf hin, dass bei einer 
möglichst vollständigen Nitrifikation und Denitrifikation gleichzeitig auch die N2O 
Bildung minimiert werden kann. Aus diesem Grund sollte sowohl bei der Auslegung 
wie auch bei der Optimierung und beim Betrieb von Belebtschlamm-Anlagen (z.B. 
Regelung der Belüftung) die N2O Bildung mitberücksichtigt werden. 

Stichwörter 

Betriebsstrategien, biologische Abwasserreinigung, Denitrifikation, Lachgas (N2O), 
Nitrifikation, Treibhausgas, Zerstörung der Ozonschicht 
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Einleitung 

Lachgas (N2O) ist ein zirka 300-mal stärkeres Treibhausgas als Kohlendioxid (CO2; IPCC 
2007). Anthropogene Aktivitäten haben seit der Industrialisierung einen Anstieg der 
N2O Konzentration in der Atmosphäre um 18% verursacht, nicht zuletzt wegen seiner 
langen Halbwertszeit von 120 Jahren. Der Abbau findet primär in der Stratosphäre statt, 
wobei das dabei gebildete Zwischenprodukt Stickstoffmonoxid (NO) den Ozonabbau 
massiv beschleunigt (Kramlich and Linak 1994). Aus diesen Gründen ist Lachgas die 
wichtigste durch den Menschen freigesetzte ozonabbauende Substanz des 21. 
Jahrhunderts (Ravishankara et al., 2009). 

Die anthropogenen N2O Emissionen machen schätzungsweise 6% der gesamten 
Treibhausgasemissionen aus, wobei ein Grossteil davon durch die Stickstoff-Düngung 
landwirtschaftlicher Flächen verursacht wird (BAFU 2011). Weitere relevante Quellen 
sind die chemische Industrie und Verbrennungsprozesse. Der Beitrag der biologischen 
Abwasserreinigung ist noch unklar. 

In der Schweiz ist der überwiegende Teil der kommunalen Abwasserreinigungsanlagen 
(ARA) mit einer biologischen Reinigungsstufe ausgerüstet. In Anbetracht des hohen 
Energieverbrauchs für die Belüftung (50 bis 70%; Müller 2010) sind zukünftige 
Optimierungsbestrebungen zu erwarten. So gibt es Bestrebungen den Energieeinsatz 
durch einen reduzierten Gebläse-Betrieb zu senken. Da hierdurch tiefere O2-
Konzentrationen in der Nitrifikationsstufe verursacht werden, müssen die 
Mechanismen der N2O Bildung sowie die Einflüsse der relevanten Parameter (z.B. O2) 
besser verstanden werden. 

Treibhausgaspotential der N2O Emissionen in der Abwasserreinigung 

Die N2O Emissionen in der Abwasserreinigung sind von vielen Prozessparametern 
abhängig und daher zeitlich und räumlich sehr variabel. In den USA wurde in einer 
umfangreichen Messkampagne gezeigt, dass zwischen 0.01 bis 3.3% des umgesetzten 
Stickstoff als N2O freigesetzt werden (Ahn et al., 2010). In einer einjährigen 
Messkampagne auf einer ARA in den Niederlanden war der relative Anteil der N2O 
Emissionen bei rund 3% bezogen auf die Stickstofffracht (Daelman et al., 2012). Diese 
Werte liegen zum Teil deutlich über dem bis anhin vom Weltklimarat (IPCC) 
verwendeten Emissionsfaktor von 7 gN2O/Einwohnerwert(EW)/Jahr, was etwa einer 
Freisetzung von 0.1% des umgesetzten Stickstoffs als N2O bei einer Stickstofffracht von 
3.7 kgN/EW/Jahr entspricht (IPCC 2007). 

Fig. 1 zeigt eine grobe Abschätzung und Gegenüberstellung der 
Treibhausgasemissionen durch die Abwasserreinigung. Es ist aktuell davon 
auszugehen, dass im Mittel etwa 0.5% des umgesetzten Stickstoffs als N2O emittiert 
werden. Das dadurch verursachte Treibhausgaspotential entspricht somit etwa 
demjenigen, welches durch den Energieverbrauch für die Belüftung der biologischen 
Reinigungsstufe verursacht wird. Neueste Untersuchungen deuten darauf hin, dass 
während der Schlammverbrennung ebenfalls N2O gebildet werden kann (Korving et al., 
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Um die N2O Bildungswege in der kommunalen Abwasserreinigung identifizieren zu 
können wurde im Rahmen des in diesem Artikel vorgestellten Forschungsprojekts N2O 
Emissionen in der Abwasserreinigung: Biologische Nährstoffelimination und 
Schlammverbrennung an Eawag und Empa eine neue Methode entwickelt und 
erfolgreich angewendet. Diese Methode basiert auf der Messung der stabilen 
Stickstoffisotopen (durchschnittlicher 15N-Gehalt in N2O) sowie deren Verteilung im N2O 
Molekül (15N14NO bzw. 14N15NO, Fig. 3, siehe auch weiter unten; Mohn et al., 2012; 
Wunderlin et al., 2013): da über die einzelnen Bildungswege N2O mit unterschiedlichem 
15N Gehalt und einer unterschiedlichen 15N Verteilung gebildet wird, kann diese 
Messung für eine Prozessidentifikation verwendet werden. 

In der biologischen Abwasserreinigung kann grundsätzlich zwischen autotropher 
Nitrifikation und heterotropher Denitrifikation unterschieden werden, wobei N2O in 
beiden Prozessen gebildet werden kann (Fig. 2). Obwohl diese Prozesse meistens 
räumlich oder zeitlich voneinander getrennt ablaufen, ist nicht auszuschliessen, dass 
der jeweils andere Prozess ebenfalls aktiv ist. Für die Erarbeitung von Massnahmen und 
von Betriebsstrategien zur Reduktion der Emissionen ist es aber essentiell, den jeweils 
für die N2O Produktion relevanten Bildungsweg zu kennen. 

N2O Bildung unter nitrifizierenden Bedingungen 

In der Nitrifikation wird NH4
+ unter aeroben Bedingungen über NO2

- zu Nitrat (NO3
-) 

oxidiert. Dabei kann N2O durch die Ammonium oxidierenden Bakterien (AOB) über zwei 
mögliche Wege gebildet werden (Fig. 2): (i) via Reduktion von NO2

- (Nitrifikanten-
Denitrifikation), oder (ii) über das Zwischenprodukt Hydroxylamin (NH2OH), d.h. 
während der Oxidation von NH4

+ zu NO2
-. Es wird davon ausgegangen, dass in der 

kommunalen Abwasserreinigung die Nitrifikanten-Denitrifikation der dominante 
Prozess ist, und hauptsächlich bei erhöhten NO2

- und tiefen O2 Konzentrationen aktiv 
ist. Die N2O Bildung über NH2OH ist möglicherweise von Bedeutung bei einer hohen 
NH4

+ Oxidationsrate (bei hohen O2 Konzentrationen), z.B. in einem sequentiellen 
biologischen Reinigungsverfahren (SBR) am Anfang der Belüftungsphase, bei hohen 
NH4

+ und tiefen NO2
- Konzentrationen. 

N2O Bildung unter denitrifizierenden Bedingungen 

In der heterotrophen Denitrifikation wird das zuvor gebildete NO3
- unter anoxischen 

Bedingungen zu Luftstickstoff (N2) reduziert. Dabei ist N2O ein obligates 
Zwischenprodukt (Fig. 2, unten). Insbesondere die Hemmung des letzten Schritts (von 
N2O zu N2), z.B. durch Sauerstoff oder Nitrit, kann zu hohen N2O Emissionen führen. 
Ausserdem kann ein zu geringes Verhältnis von abbaubarem organischem Substrat zu 
Nitrat (ungleichmässige Aktivität der reduzierenden Enzyme) die N2O-Bildung erhöhen. 
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gehalten werden kann, was impliziert, dass die biologische Reinigungsstufe bei 
möglichst tiefen NO2

- Konzentrationen betrieben werden sollte. 

Neben erhöhten NH4
+ und NO2

- Konzentrationen ist auch die O2-Konzentration ein 
relevanter Parameter für die N2O Bildung. Dies soll hier nochmals kurz aufgegriffen 
werden, denn im Zusammenhang mit der N2O Bildung über die NO2

- Reduktion ist 
bekannt, dass bei tiefen O2 Konzentrationen (<1 mgO2/l) die N2O Emissionen tendenziell 
höher sind als bei 2 bis 3 mgO2/l (Kampschreur et al., 2009). Bei der energetischen 
Optimierung der biologischen Reinigungsstufe, insbesondere wenn bei der Belüftung 
angesetzt wird, ist daher besondere Vorsicht geboten. Die N2O-Bildung ist hoch 
komplex und weist eine grosse Dynamik auf. Daher kann an dieser Stelle keine 
abschliessende Empfehlung zur Optimierung der biologischen Abwasserreinigung 
präsentiert werden, um die N2O Emissionen aus ARA möglichst tief zu halten. Vielmehr 
sollte vor dem Hintergrund der in diesem Artikel diskutierten Einflussparameter, wie 
NO2

-, NH4
+ oder O2, jede Anlage für sich betrachtet werden, und optimierte 

Betriebsstrategien anhand einer fix installierten N2O Abluftmessung getestet und 
überwacht werden (empfohlene Betriebsstrategien, siehe unten). Die Messgeräte für 
eine kontinuierliche Abluftmessung sind standardmässig verfügbar und können bei 
verschiedenen Anbietern gekauft werden. Bei abgedeckten Reaktoren mit einer 
gefassten Abluft ist die Implementierung relativ einfach. Bei offenen, ungedeckten 
Reaktoren liegt die Schwierigkeit bei der Fassung der Abluft. In diesen Fällen muss eine 
auf der Wasseroberfläche aufliegende ‚Haube‘ eingesetzt werden, was aktuell noch 
nicht routinemässig angewendet wird. Es existieren aber Ansätze wie dies in Zukunft 
umgesetzt werden kann. Die Investitionskosten für eine online N2O-Abluftmessung 
liegen höher als beispielsweise für konventionelle ionenselektive Sonden. Die 
Betriebskosten sind jedoch wegen des geringeren Wartungsaufwands tiefer. 

Die anschliessend diskutierten Betriebsempfehlungen können aus den präsentierten 
Daten und dem daraus resultierenden Prozessverständnis abgeleitet werden. Sie 
stellen einen ersten Ausgangspunkt für weitere Optimierungen dar, die anhand von 
direkten Emissionsmessungen für die jeweilige Anlage überprüft und verifiziert werden 
sollten: 

 Es wird als wichtig erachtet, dass die Nitrifikation wie auch die Denitrifikation 
möglichst vollständig ablaufen können, um die NO2

- Bildung tief zu halten. 
Insbesondere sollten bei einer vorgeschalteten Denitrifikation zu kurze 
anoxische Phasen vermieden werden. Andererseits muss bei einer NH4

+ 
geregelten Belüftung genügend Zeit für die NO2

- Oxidation zur Verfügung 
stehen. 

 Generell sollte die NH4
+ Konzentration in der Belebung möglichst tief gehalten 

werden, was eine ausreichende Nitrifikationskapazität voraussetzt, d.h. ein 
aerobes Schlammalter mit genügend Sicherheit zur Verarbeitung von Stickstoff-
Frachtspitzen. Zudem sollte Faulwasser nicht während Phasen mit hohen 
Stickstoff-Frachten im Zulauf dosiert werden. 

 Während Phasen mit hohen Stickstoff-Frachten sollte die Nitrifikation bei 
ausreichend Sauerstoff betrieben werden, da bei tiefen O2 Konzentrationen die 
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N2O Bildung gegenüber der NO2
- Reduktion begünstigt wird. Somit sind tiefere 

O2-Konzentrationen während der Nacht bei geringen Stickstoff-Frachten 
sinnvoll und sparen Energie ohne viel N2O zu produzieren. 

 Anderseits sollte die Denitrifikation anoxisch betrieben werden. Daher ist es 
wichtig, einen O2-Eintrag aus der Nitrifikation (Rücklauf, interne Rezirkulation) 
oder durch das Rührwerk möglichst zu vermeiden. 

Schlussfolgerungen 

Aus dem vorliegenden Artikel geht hervor, dass das Treibhausgaspotential der N2O 
Emissionen in der biologischen Abwasserreinigung relevant ist und eine vergleichbare 
Grössenordnung aufweist wie die indirekten Emissionen der Belüftung. Aus diesem 
Grund sollten die N2O Emissionen möglichst reduziert werden, und sowohl bei der 
Auslegung, der Optimierung sowie beim Betrieb der Anlage beachtet werden. 

Anhand der präsentierten Daten wurde gezeigt, dass der mikrobiologischen Reduktion 
von NO2

- zu N2O in der kommunalen Abwasserreinigung eine grosse Bedeutung 
zukommt. Im Weitern ist ersichtlich, dass die N2O Emissionen einer grossen zeitlichen 
und räumlichen Dynamik unterliegen, was es schwierig macht, von einem Tagesgang 
auf den nächsten zu extrapolieren, oder gar Aussagen über das Emissionspotential von 
anderen, nicht untersuchten Anlagen zu machen. In diesem Sinne wird als 
Schlussfolgerung in Aussicht gestellt, dass für eine gezielte Optimierung des 
Anlagenbetriebes eine kontinuierliche N2O Emissionsmessung unerlässlich ist. Denn 
zusätzlich zur Emissionsüberwachung kann anhand der N2O Bildung die 
Prozessstabilität relativ gut überwacht werden, gilt doch die Akkumulation von NO2

- als 
Indiz für eine (vorübergehende) Überlastung der Anlage, eine O2-Unterversorgung 
durch ineffiziente Belüftung oder gar Hemmung der mikrobiologischen Prozesse 
(Burgess et al., 2002; Butler et al., 2009). 
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