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Abstract

Modern computer processors provide an increasing amount of parallel computation resources.
Harnessing the full potential of these resources requires approaches that are adapted to this par-
allelism, especially as the core count increases.
Solving skyline queries is a well-known, computationally intensive problem in the context of
database systems. Many solutions and optimizations have been suggested, most of which op-
timized parts of the implementation or used pre-computed data structures to speed up the
computation. However, the majority of approaches did not harness the potential of modern
multi-core processor architectures. The only approach that exploits multi-core parallelism so far,
is based on an input-partitioning scheme, which is not optimal as we will show in this thesis.

Pipelining, or pipeline parallelism, is a concept which allows to increase the throughput when
processing data elements, but at the cost of a higher latency for individual elements. In this
thesis, we present how a pipelining approach can be used to solve skyline queries on multi-core
systems and compare it against a state-of-the-art implementation based on input-partitioning.
We use a doubly-linked list of computation nodes that shift and transfer data elements between
each other to calculate the result. Our experimental results show that our approach outperforms
the state-of-the-art implementation by an order of magnitude in all relevant workloads.

We develop a template which allows to implement pipelined approaches for related problems
with only a small development effort and apply the template to skyline computation and sort-
ing. Furthermore, we describe the properties which a task needs to exhibit to make use of our
template.

Author’s Note: This document is optimized for electronic viewing with electronic hyperlinks,
both within the document and to external resources.
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1 Introduction

1.1 Motivation

Modern processor designs have departed from the previous approach of a single unit running at
high clock speeds and now provide multiple cores which provide parallel compute resources. To
properly utilize these resources, we need to develop parallelized solutions to existing and new
problems.

Determining the skyline of a set of points (see section 3) is such a compute-intensive problem
which has efficient and well understood single-threaded implementations.

Parallel programming is a still an active area of research and tries to harness the parallel com-
putation resources provided by modern computer systems. An extreme case are FPGA systems:
Field Programmable Gate Arrays (see subsection A.1. These offer unmatched parallelism using
configurable hardware circuits, but their design and limitations often require new approaches to
solve a problem.

One such approach was presented by Woods et al. [14]: An implementation to solve skyline
queries on FPGA system which performed very well compared to the state-of-the-art implemen-
tation on powerful servers.

1.2 Goal

The aim of this thesis is to explore how to adapt the approach taken with the implementation by
Woods et al. [14] to multi-core systems. We aim to evaluate the viability of the ported approach
and measure and analyse the performance and compare it to state-of-the-art implementations.

Further, we aim to identify related problems which can be solved by such an approach, develop
a template implementation and to evaluate how high the effort is to adapt the approach to these
problems.

2 Related work

Kung et al. [1] presented a mathematical definition of finding the maxima of a set of vectors in
1975. In 2001, Börzsönyi et al. [2] presented the problem in a database setting as ”solving skyline
queries” and presented two possible approaches to implement it (block nested loops, divide and
conquer). A first ”online” implementation which produced result tuples continuously (not only
at the end of the algorithm) was presented by Kossmann et al. [3]

The presentation of the problem was followed by research on various optimizations of the
approaches: Chomicki et al. [4] used sorting as a first phase before determining the skyline in
the second phase. This approach allowed to immediately output tuples as skyline tuples when
they were added to the window in the second block nested loops-like phase. Branch-and-Bound
Skyline was proposed by Papadias et al. [5] and operated on an R-tree index structure.
Lee et al. developed an index structure based on the Z-Order [6] and used knowledge about
the resulting partitioning to discard entire regions from consideration for the skyline. This ap-
proach showed a high performance, however was not applicable if the index structure couldn’t
be precomputed, e.g. if data were made available as a stream. A comprehensive overview of the
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sequential approaches and their complexities was presented by Godfrey et al. [7]

Most research had focused on traditional optimizations and did not take advantage of the
paradigm change in computer architecture: The shift from single- to multi-core processors.
One of the first implementations to leverage super-scalar features of modern processors was Cho
et al. [8] Their implementation used vectorization to speed up dominance tests in SIMD ar-
chitectures by parallelizing the comparisons of the respective dimension elements. And as the
dominance test is likely the most executed function in computing the skyline, the performance
of this function is vital to the overall performance of an approach.

With the advent of grid-computing, more research was done on how to handle skyline queries
on distributed data or how to leverage the power distributed systems to process such queries.
Cui et al. [9] proposed a parallel distributed skyline for data that is located at different sites.
The approach partitions sites into incomparable groups which can execute the skyline query in
parallel and transfer some specially chosen tuples between the sites to eliminate false positives
before transmitting the intermediate results for merging. Such early elimination reduces the size
of intermediate results and thus transmission and computation time.
Vlachou et al. [10] proposed a novel angle-based partitioning of the data space using hyper-
spherical coordinates, This approach for distributed processing allows to discard more points per
partition than other partitioning approaches, resulting in smaller intermediate results. Köhler
et al. [11] proposed a similar approach but used hyperplane projections as a computationally
cheaper partitioning approach.

Still, many approaches did not take into account that modern processors now featured multi-
ple cores. This changed with Park et al. [12]: They presented a state-of-the-art parallel algorithm
for processing skyline queries on multi-core processors. It is based on a input-partitioning ap-
proach which maps the (in-place) skyline function to partitions of the input set and then merges
the results. It assumes that the input fits into main memory.

Teubner et al. [13] presented a parallel pipelined approach for multi-core systems to solve
joins in a database setting. A pipelined approach was not yet used in research solving skyline
queries, until Woods et al. presented an pipelined FPGA-based implementation [14].
FPGA systems offer massively parallel computation capabilities, however require significant
knowledge and handling of low-level hardware details, compared to a commodity computer.

The focus of this thesis is solving skyline queries on multi-core hardware where all data is
either located at or streamed to one device and no pre-processing can be done. With Park et al.
there is only one main parallel approach for such hardware. Our aim with this thesis is to see if
the pipelined approach taken by Woods et al. can be adapted and if it shows good performance
on multi-core hardware.

3 The skyline operator

3.1 Introduction

The skyline operator was presented initially by Börzsönyi et al. [2] A skyline query over a multi-
dimensional set of data points will return a subset, such that in this subset no point dominates
any other point. Informally, this is often illustrated by the following two-dimensional example.
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Example When searching for a hotel, two dimensions to consider are the price of the
hotel and the distance to the beach. For both dimensions, smaller values are preferable.
Hotels which are close to the beach often are more expensive than hotels which are distant.
If we do not have a scoring function that weighs the distance and price, we cannot establish
a ’better than’-order. We can only eliminate hotels from the candidates if there is another
hotel that is better in at least one dimension and equal in the remaining dimensions. E.g.:
A hotel can be removed from consideration if there is a cheaper hotel with the same (or
smaller) distance to the beach.

The remaining hotels form the skyline of the hotel set, which can give the user/customer
an overview and a better understanding of the trade-offs that need to be made when choosing
a hotel. Figure 1 illustrates this, the diamonds being the hotels in the skyline set.

Figure 1: Two-dimensional skyline example

3.2 Formal definitions

Given a d-dimensional space T = {d0, d1, . . . , dn−1} and a set of points M = {p1, p2, . . . , pn}
where each point pi is a point in the space T , we can define the problem as follows.1

Definition 1. Dominance
Given two points p, q ∈ T : We say q dominates p (notation: q � p) if and only if:

∀i ∈ T : qi ≥ pi ∧ ∃i ∈ T : qi > pi

Note that the > / ≥ relation chosen to compare the elements of dimensions could also be
replaced by < / ≤, depending on the problem statement.

1These definitions were introduced with a slightly different notation by Lee et al. [6]
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Definition 2. Skyline
A point p ∈M belongs to the skyline of M (SM ), if and only if it is not dominated by any other
point:

@q ∈M − {p} : q � p ↔ p ∈ SM

Property 1. Incomparability
Two points p, q ∈ T are incomparable if and only if neither dominates the other:

p � q ∧ q � p ↔ p3q

Note that this implies that this implies that a point does not dominate itself.

Property 2. Transitivity
The dominance property is transitive:

p � q ∧ q � r =⇒ p � r

This transitivity property is very significant for any implementation which calculates the
skyline: As soon as a point q is dominated by a point p, it can be discarded. This because all
points that would be dominated by q will be dominated by p as well.

Property 3. Asymmetry
The dominance property is asymmetric:

p � q =⇒ q � p

Property 4. Reflexivity
The dominance-relation is irreflexive, i.e. a point cannot dominate itself. The incomparability-

relation however is reflexive.
p � p

p3p

Further, as noted in [2], the skyline has the following property:

Property 5. Score maximization
For any monotonic (strictly increasing) scoring function f : T → R and any set of points M ,

the skyline of M will always contain the point p ∈M which maximizes the scoring function.

p = argmax
t∈M

(f(t)) ⇒ p ∈ SM

Proof. Without loss of generality, let us assume that we use the >-relation to compare dimension
elements, as used in definition 1.
We prove the property by contradiction: Assume that a point p maximizes the monotone scoring
function f but is not part of the skyline. Then there had to exist a point q which dominates p.
And by definition 1 this implies that all elements of q are greater or equal to the corresponding
elements of p and at least one must be strictly greater. For any monotonic (strictly increasing)
scoring function, this would however imply that q > p, which contradicts the assumption that p
maximizes f .

The skyline problem is an instance of the maximum-vector problem [7].
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3.3 Algorithms

This section enumerates some basic concepts for determining the skyline which do not use any
preprocessed data structures.

3.3.1 Naive

The naive unparallelized way to evaluate a skyline query over a set of data points would be to
iterate over the set and check every point against every other in the set, removing dominated
points and output the remaining ones as skyline points.

Algorithm 1 Naive computation of the skyline

1: procedure naiveSkyline(set M)
2: for i=0 ... M.size-1 do
3: if ! M.get(i).valid then
4: continue
5: end if
6: dominated = false
7: for j=i+1...M.size-1 do
8: if ! M.get(j).valid then
9: continue

10: end if
11: if M.get(i) � M.get(j) then
12: M.get(j).valid = false
13: else if M.get(j) � M.get(i) then
14: dominated = true
15: break
16: end if
17: end for
18: if ! dominated then
19: output(M.get(i))
20: end if
21: end for
22: end procedure

3.3.2 Divide and conquer

This approach divides the input set into partitions, determines the skyline set in the partitions
and then merges the skylines of the partitions. It can be parallelized to perform the skyline
computation on the partitions in parallel, and to perform several merge operations in parallel.

Such an approach performs very well, if the skyline is distributed evenly (position-wise) within
the dataset and the skyline is small: The results of the partitions will be small, resp. contain a
small number of ”false positives” (points that will not be part of the final skyline) and the merge
operations correspondingly cheap to perform.
The case in which the approach might not perform well (depending on the exact merging ap-
proach) is if the intermediate results are very large, e.g. if the partitions result sizes are very
unbalanced. This would lead to the a larger number of false positives in the intermediate results
and fast merge operations.
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3.3.3 Block nested loop

An issue of the naive algorithm is the extremely poor cache utilization: Assuming that the input
size far exceeds the cache size, only the candidate point can be kept in the cache in an itera-
tion of the outer loop. The other points which the naive algorithm iterates over will not be cached!

Instead of checking a data point against every other data point in the set for dominance, the
block nested loop join uses a small subset (”block”) to test against the set. As the elements of
the block are frequently used, more elements are likely to be cached. After the block has been
compared to the whole data set, the next block can be tested. It is important to test a block
against the whole data set to make sure that the elements of a block are compared against each
other, too! This approach can be seen in algorithm 2.

Algorithm 2 Bock nested loop computation of the skyline

1: procedure blockSkyline(set M)
2: while block = nextBlock(M) do
3: for j in M do
4: if ! j.valid then
5: continue
6: end if
7: for b in block do
8: dominated = false
9: if b � j then

10: j.valid = false
11: else if j � b then
12: dominated = true
13: break
14: end if
15: end for
16: if ! dominated then
17: output(b)
18: end if
19: end for
20: end while
21: end procedure

This approach could be parallelized by processing the possible blocks in parallel.

4 Shifter List for skyline queries

4.1 Motivation

In [14], Woods et al. presented an approach to solve skyline queries (see section 3) on FPGAs.
Their approach described a hybrid of algorithm and data structure and used a set of compute
nodes which transferred their data to their adjacent nodes. Effectively, the resulting data struc-
ture presented was similar to a doubly-linked list.

10



Figure 2: Overview of Shifter List architecture

Such a ”Shifter List” has several desirable properties: Each node operates on a local data set
with a block-nested-loop (BNL) approach. Such local data access would indicate good spatial
locality which typically is advantageous for cache and overall performance. Local data access is
also a requirement for good performance systems with NUMA characteristics (see subsection A.2)
as these systems incur performance penalties when accessing remote memory compared to local
memory.
Further it communicates only with adjacent nodes which makes the communication pattern sig-
nificantly simpler and leaves room for possible optimizations.

Because of these potential benefits, we wish to explore the possibility of implementing such
a Shifter List on a modern multi-core computer.

Terminology We will use the term ”Shifter List” throughout this thesis to refer to the struc-
ture presented in this section.

4.2 Introduction

This section describes the general concepts and behaviour of a Shifter List implementation which
solves skyline queries. In section 5, we will describe the actual implementation details.

A Shifter List uses the concept of nodes: A node is a (virtual) compute unit with associated
memory. Nodes are connected to their direct neighbours, forming a doubly linked list as seen in
Figure 2.

Nodes can communicate only to their neighbours to forward data and transfer potential re-
sults. These limited communication connections are vital to the FGPA implementation, as it
reduces the required amount of interconnection wires and routing compared to a graph of fully
connected nodes.

Data points are ”streamed though” the nodes, enabling pipeline parallelism. Every node only
operates on its local dataset from associated memory and the data elements it receives from its
neighbours.

This section describes the generalized implementation necessary to solve skyline queries.
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4.2.1 Terminology

The data stream is the flow of data points from node 0 to node n− 1. We name this direction
”down” and the reverse direction ”up”. Thus nodes further ”upstream” have smaller a smaller
numeric id than nodes further ”downstream”. We will use the term ”working set” to refer the
local memory maintained by each node.

4.3 Local candidate set

Every node keeps a local set of candidates that could be in the skyline in his working set. We
call the set of points maintained within the working set the ”candidate set”. The original Shifter
List implementation for FPGAs has a set size of one, i.e. only one single element per node that
is a skyline candidate. On a multi-core implementation we have more memory available, so this
restriction to a single element is unnecessary.

4.4 Overflow

Naively, we could have large enough working sets to store the whole skyline as candidates. How-
ever even if enough memory were available to store the skyline, very large working sets are not
desirable: Due to their size, their spatial and temporal locality would be worse, as every data
point needs to be compared to the entire candidate set at each node if incomparable. If the size
exceeded the cache size of a processor (core), this would lead to increased cache misses which
would in turn lead to a lower performance for the node.

Instead, we use an overflow data structure. The implementation of this is arbitrary - the only
requirement is that it supports the FIFO order and could store the whole input2.

Now, if a point has reaches the last node and cannot be inserted into the local working set, it
has not been compared to all points yet and needs to begin again. It is inserted into the overflow
and, once all elements from the input have been read, will be re-read from the overflow by the
first node.

4.5 Handling end of input

When the input has been read completely by the first node, the first node treats the overflow as
new input and the last node writes to a new overflow.
This can be achieved for example by swapping the input and overflow (and taking care of ’flushing’
the data stream before swapping) or by using a wrap-around queue from the last to the first node.

Once the first node does not find any data points any more in the input after such a swap,
the algorithm can terminate. By property 6, all elements in the working sets can be output.

4.5.1 Order preservation

By reading all input first before reading from the overflow - and by always processing the data
points in FIFO (first in, first out) order - we ensure that data points in the data stream flowing
downwards are never reordered. This is a necessary condition for this implementation because
if reordering were possible, reordered points might not be compared to all input, leading to false
positives in the skyline.

2Practically, it will never need to store the whole input, but in the most extreme case #input− windown−1
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4.6 Accepting into the candidate set

To ensure that all points are compared to each other, we only accept data points into the can-
didate set at the last node, if the candidate set has still space. This way we can be sure that
when a point is inserted into the candidate set of the last node, it has been compared against all
candidates at every node.

If we accepted it at a node ni further upstream which had a non-empty candidate set, the
data point would have not been compared to the local candidate sets of the nodes ni+1, . . . , nn−1
and could be output without being compared to all data points in the input set, which would
violate definition 2.

4.7 Output condition

To guarantee that a point x is in the skyline, we have to ensure that no other point exists that
dominates x (by definition 2). Thus, every point that is output as part of the result must have
been compared against all other points.
We can safely exclude the already eliminated points by property 2. This means that a point in
the candidate set can be output if and only if it has been compared to all remaining points.

Now we need to determine when a point has been compared against all remaining other
points. To do so, we use a strictly increasing global timestamp counter, such that two events
cannot receive the same timestamp. All points are initialized with an empty timestamp (which
always evaluates to be smaller than any other timestamp) and the first timestamp that our global
counter can provide is 1.
On two occasions, we mark data points with a timestamp:

• When we insert them into a local candidate set

• When we insert them into the overflow

Property 6. A point c in the local candidate set of a node can be output if:

• It is compared against a point q in the input and it holds that: c.time < q.time, or

• There is no input any more to process at any node or in the overflow.

If a point c in the candidate set is compared against a point p and p.time > c.time, then c
was inserted into the candidate set before p was inserted into the overflow. Because the insertion
of the points happens only at the last node as defined previously, this implies that p must
have already been compared against c (due to the order preservation property described before).
Because the timestamp is strictly increasing, no data point can appear in the data stream after
p with a lower timestamp. This guarantees that we can output c as part of the skyline.

4.8 Operations

4.8.1 Basic operation

The basic operation loop of a shifter list node can be seen in algorithm 3. It mainly consists of
a loop that alternates between processing normal input (data points) and processing transfers.
For each data point it calls a processing function which indicates by its return value what action
should be performed for the data point: To drop it, forward it or to terminate the execution of
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Algorithm 3 Basic operation loop of a Shifter List node

1: while true do
2: if hasNormalInput() then
3: x = getInput()
4: if x == PT TERMINATE then
5: forward(x)
6: outputAll()
7: return
8: end if
9: action = process(x)

10: if action == FORWARD then
11: forward(x)
12: else if action == DROP then
13: continue
14: end if
15: end if
16: processTransfers()
17: end while

the algorithm.

The operations used will be explained in detail in the following subsections.

4.8.2 Reading input

Because overflow and input file are swapped when necessary (subsection 4.5), the first node
only has to take care of reading from the input and counting how many items it read since the
last swap. If no elements are found between two swaps, then the algorithm can terminate. In
algorithm 4 we see the pseudocode describing this, without specifying a specific implementation
for the input/overflow swap.

4.8.3 Data forwarding

Data elements that are neither added to the local candidate set nor eliminated are forwarded to
the next node. If there is no next node, the data element is inserted into the overflow.

4.8.4 Processing

This subsection describes the processing of a single data point, shown in algorithm 6.
When processing a data point on a node, it is compared against all elements of the local candidate
set. First, the timestamps are compared and the candidate output if the condition specified in
subsection 4.7 is fulfilled. Second, we check the actual data: If the data point is dominated by
any element of the candidate set, it is immediately discarded. If it dominates a point in the
candidate set, that candidate is discarded unless it is involved in a transfer (in which case it is
only marked as invalidated and later deleted by the transfer algorithm). If a candidate dominates
the point, the data point is discarded immediately and the processing function returns.
When the data point has been compared against all candidates of the current node, we check if
we can insert it into the local candidate set. If this is the case, we drop it from the input stream,
otherwise forward it to the next node.
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Algorithm 4 Handling Input

1: procedure getInput(node n)
2: if n.isFirst() then . First node reads from input
3: if wasSwapped then
4: readCounter = 0
5: wasSwapped = false
6: end if
7: i = input.read()
8: if i == END OF INPUT then . All input processed
9: if readCounter==0 then

10: return PT TERMINATE
11: else
12: performSwap()
13: wasSwapped = true
14: return PT NOP . A no-op point, will be ignored
15: end if
16: end if
17: readCounter = readCounter + 1
18: return i
19: else
20: return n.queueUpStreamIn.get() . Other nodes read from queue
21: end if
22: end procedure

Algorithm 5 Forwarding

1: procedure forward(datapoint pt, node n)
2: if n.isLast() then
3: pt.timestamp = getNextTimestamp()
4: overflow.insert(pt)
5: else
6: n.queueDownstreamOut.put(pt)
7: end if
8: end procedure
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Algorithm 6 Processing of a datapoint

1: procedure process(datapoint pt, node n)
2: if pt == PT NOP
3: return DROP then . Can discard this immediately
4: end if
5: for datapoint c in n.candidates do
6: if !c.valid then
7: continue
8: end if
9: if pt.timestamp > c.timestamp then

10: if c.valid and !(c.beingSent or c.beingReceived) then
11: output(c)
12: dropFromCandidates(c)
13: continue
14: end if
15: end if
16: dominance = dominanceTest(c,pt)
17: if dominance == POINT then
18: c.valid = false
19: if !(c.beingSent or c.beingReceived) then
20: dropFromCandidates(c)
21: end if
22: continue
23: else if dominance == WINDOW then
24: return DROP
25: end if
26: end for . The input point was not dominated.
27: insertionPos = couldInsertToCandidates(pt,n)
28: if insertionPos != -1 then . Insertion succeeded
29: n.candidates[insertionPos].timestamp = getNextTimestamp()
30: return DROP
31: else
32: return FORWARD
33: end if
34:end procedure
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Figure 3: Transfer anomaly: Tuples T and R are not compared

4.8.5 Accepting into the candidate set

This operation was described in subsection 4.6 and is implemented in algorithm 7.

Algorithm 7 Accepting elements into the candidate set

1: procedure couldInsertIntoCandidates(datapoint pt, node n)
2: if !n.isLast() or n.candidates.full() then . Cannot insert
3: return -1
4: else
5: pos = n.candidates.put(pt)
6: return pos
7: end if
8: end procedure

4.8.6 Transfer

Without a transfer and because we only insert into the candidate set at the last node, the
candidate set of the last node would eventually be full while all other nodes would have empty
sets. Unless candidates are eliminated, the node can’t accept elements into the candidate set
any more until the next cycle begins and the condition for the output (subsection 4.7) is fulfilled.
This would effectively reduce the implementation to a serial skyline computation on the last
node.

This is the motivation for transferring (parts of) candidate sets to nodes further up the stream.

The protocol for the transfer needs to satisfy the requirement for the skyline: All data points
in the input stream must be compared against any element in the candidate sets. The protocol
must prevent anomalies that would violate our skyline definitions: Points which are transferred
between nodes’ candidate sets may neither ’miss’ any points points in the data stream (see
Figure 3), nor may they be output on more than one node.
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4.8.7 Output at termination

When the algorithm terminates, the data points in the candidate sets are skyline points and
need to be output. They may however be still in transfer between two nodes. The exact
implementation depends on the transfer protocol which will be detailed in the following section.

5 Skyline: Implementation with Shifter Lists

5.1 General design

This section explains the implementation details of our Skyline implementation. The implemen-
tation uses POSIX threads3 to spawn and manage its threads.

5.1.1 Input and output

As in the FPGA implementation, only the first node reads input from the data source. It then
processes and forwards the data elements to the next node along the pipeline. If all input has
been processed, it additionally forwards an ”End-of-input” data element. It then processes only
transfers until it receives a special message from the last node that the input and overflow have
been swapped. It can then resume its computation.
All input that is neither consumed nor dropped by the last node is written to an overflow memory
area.

The output memory area is shared by the nodes and synchronized over a global position
indicator. This indicator is accessed only by atomic fetch&add operations to obtain a new
output position for a node. This implies that the output ordering is arbitrary, as it depends on
the order of transfers, data point forwarding etc.
This is different from the FPGA implementation where only the first node was able to output
skyline elements. On a multi-core machine however, we can easily omit this restriction for an
additional benefit: If data points don’t have to be transferred to the first node for output, their
slots in the local working sets become available much quicker, improving overall performance.
The overhead for the small synchronization for obtaining the output position was evaluated to
be not significant in this implementation.
Note that this is the only lock in our implementation after setting up the algorithm. All other
operations are asynchronous.

5.1.2 Communication

The communication between two nodes is achieved by unidirectional channels. To allow for
bidirectional communication, each node is assigned 2 channels per neighbour. These channels
are implemented as ring buffers with a fixed capacity.
While in the FPGA implementation of Shifter List one data point at a time is transferred between
the nodes, we chose to send data points in batches: Messages are implemented as structs with
a fixed capacity for data points - they contain a fixed maximum number of data points and are
not adjusted in size if the message is not full. They are copied to the queues when sent, and
copied out of the queues when retrieved (no pointers are used).
Because we have unidirectional queues, one reader and one writer position as well as an ’occupied’
flag per slot in the ring buffer are sufficient to implement the queue.

3http://linux.die.net/man/7/pthreads, retrieved on 2013-06-26
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5.1.3 Transfer of working set

To transfer the working set from one core to the next we require an asynchronous transfer pro-
tocol. The protocol needs to be asynchronous to prevent that two threads need to wait to be in
the proper state simultaneously to initiate the transfer (depending on the size of messages and
the dimensionality of the data set, this wait time could be significant).

Further, our protocol needs to make sure that:

• Every data point in the input stream gets compared (at least once) to every element which
is being transferred.

• No distinct data point can be output on two nodes.

The communication for transfers happens on the same communication channels which are
used for the transfer of data points. This allows us to get an important property for free: The
information which data points were by a node before a transfer was in effect.

The following protocol was adapted from the FPGA implementation:

Transfer protocol

1. The receiving node sends a HAS SPACE message once it can accept transfers, and
passes the number of free spaces of its local candidate set along.

2. The sending node receives the HAS SPACE message.

3. The sending node sends a TRANSFER message, with the data points to transfer
contained in the message (at most as many as specified in the HAS SPACE message).
It marks all data points as ”being sent” in its local working set.

4. The receiving node receives the TRANSFER message. It copies all data points to its
local candidate set and marks them as ”being received”.Then it sends an ACK message
back.

5. The sending node receives the ACK and checks if any data points in its data set exist
that have the ”being sent” flag set and have been dominated in the meantime.

a) If there are dominated points in its candidate set, it sends an INVALID message,
with all the ids of the invalidate data points.

b) Otherwise it sends a VALID message

6. The sending node removes all data points that had the flag ”being sent” from its
candidate set.

7. The receiving node receives the INVALID/VALID message. It removes the ”being
received” flag from any element in its local candidate set. In the case of an INVALID
message, it drops any data points from the candidate set that have their id mentioned
in the message.

8. The receiving node can drop any candidate from its set that was involved in the transfer
and was invalidated between steps 4 and 7.
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This protocol assumes that:

1. A data point cannot be transferred (again) if it is marked as ”being sent” or ”being re-
ceived”.

2. After a HAS SPACE message has been sent from a node i, the node cannot send a
HAS SPACE message until after a transfer between node i and i+ 1.

3. Data points that are dominated but are involved in the transfer are not deleted directly,
but marked as dominated/invalid.

4. A data point cannot be output if it is currently involved in a transfer.

5. When protocol messages are processed by a node, it performs any subsequent protocol step
immediately without interleaving other data point processing.

The third point is required by the invalidation part of the transfer protocol: Points that are sent
and dominated at the sending node need to be passed along to in the INVALID message. These
points are cleaned up later by step 8 of the algorithm.

When a node can accept a transfer is configurable: In our implementation we specified a ’free’
percentage as threshold for the node and note whether we have already sent a HAS SPACE mes-
sage to satisfy the second requirement. The implementation can be seen in algorithm 9.
The number of the free elements in the working set should be maintained as a counter to avoid
expensive re-calculation. This calculation would be needed at every iteration of a Shifter List
node, because elements could be dropped after processing input or finishing transfers.

This protocol also easily allows us to define what happens to data points in transfer when
the algorithm terminates: Because the transfer acknowledgements and message for termination
are sent on the same channels, we can safely assume that after a node receives a termination
message, no transfers will be completed. These data points should be output by the sender.

This protocol is illustrated in Figure 4a and Figure 4b.

Correctness of Transfer The above transport protocol satisfies our requirements as follows.
Two points in the input are compared for dominance against each other exactly once, even if

in transfer (provided neither is eliminated in the meantime). The following three constellations
are possible:

Case a) The point in transfer is processed after the streamed point. Thus the streamed
point is compared against the working set of the receiving node first which does not yet contain
the transferred point. Therefore, the streamed point will also arrive before the ACK for the
transfer at the sending node (no-reordering property) and be compared there against the copy
of the point in transfer.

Case b) The point in transfer is processed before the streamed point. This means that the
copy of the point in transfer will already be in the local working set before the streamed point
is compared. Also, the ACK has already been sent (protocol steps are executed immediately).
The streamed data point will be compared to the transferred point at the receiving node of
the transfer. When the streamed point arrives at the sending node of the transfer, the copy of
the point in transfer has already been removed because the ACK was received first (immediate
execution, no reordering).
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Algorithm 8 Transfer processing, Part 1

1: procedure processTransfers(node n)
2: message m = n.queueUpstreamIn.get()
3: if m.type == HAS SPACE then
4: max = m.get() . Sender specified how many it can accept
5: message t
6: t.type = TRANSFER
7: i=0
8: for datapoint c in n.candidates do
9: if i==max or i==t.msgSizeMax then

10: break
11: end if
12: if !c.beingSent and !c.beingReceived then
13: c.beingSent = true
14: t.put(c)
15: i = i+1
16: end if
17: end for
18: n.queueUpstreamOut.put(t)
19: else if m.type == ACK then
20: message t
21: invalid = 0 . Count all invalidated candidates
22: for datapoint c in n.candidates do
23: if c.beingSent then
24: c.beingSent = false
25: if !c.valid then
26: invalid = invalid + 1
27: t.put(c)
28: dropFromCandidates(c)
29: end if
30: end if
31: end for
32: if invalid > 0 then
33: t.type = INVALID
34: else
35: t.type = VALID
36: end if
37: n.queueUpstreamOut.put(t)
38: end if
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Algorithm 9 Transfer processing, Part 2

39: m = n.queueDownstreamIn.get()
40: if m.type == TRANSFER then
41: for datapoint p in m do
42: pos = couldInsertIntoCandidates(p, n)
43: n.candidates.get(pos).beingReceived = true
44: end for
45: message t
46: t.type = ACK;
47: n.queueDownStreamOut.put(t)
48: else if m.type == VALID then
49: n.sentHasSpace = false . We can request the next transfer
50: for datapoint c in n.candidates do
51: if c.beingReceived then
52: c.beingReceived = false
53: end if
54: end for
55: else if m.type == INVALID then
56: n.sentHasSpace = false
57: for datapoint c in n.candidates do
58: if c.beingReceived then
59: c.beingReceived = false
60: end if
61: dropFromCandidates(c)
62: end for
63: end if
64: if !n.sentHasSpace and n.candidates.freeCount > transferlimit then
65: message m
66: m.type = HAS SPACE
67: m.put(n.candidates.freeCount) . How many we can take at least
68: n.queueDownstreamOut.put(m)
69: n.sentHasSpace = true
70: end if
71: end procedure
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Case c) No point in transfer. The two points will be compared eventually when one of
them is accepted into a working set with timestamp ti. After their comparison, the other point
is either also accepted into the working set (in which case they are not compared any more) or
is put into the overflow with a timestamp tj . Because of the strictly increasing nature of the
timestamps, tj > ti. The point in the working set will be removed eventually, but at the latest
when the two points meet again: Then the output condition is satisfied and the point in the
working set is output without evaluation of their dominance.
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Figure 4: Occurrence of VALID and INVALID in the transfer protocol



5.2 Optimizations

This section details optimizations which have been implemented in the Skyline Shifter List algo-
rithm. The impact of some of these implementations is measured in section 6.

5.2.1 Linked list working set

The working set was initially implemented as an array of fixed size, with a flag indicating if this
array element was occupied or not. The size was a compile time constant, which did not allow
much flexibility to configure the windows. Dynamic allocation with a configuration value eased
this problem.

Because finding the next ’free’ element in an array is an operation with linear complexity
(and this operation is needed when inserting new data points into the data set), we switched to
a linked list implementation with doubly linked elements and a pointer to the last element. The
list elements are allocated and deallocated on demand.

The linked list allows insertion to be performed in constant complexity, however we lose
the advantage of spatial locality as well as possible compiler optimizations related to arrays
(especially, if the window size is a compile time constant).

5.2.2 Load balancing; Working set scaling

The concept of Shifter List relies on the parallel processing of many elements, using pipeline
parallelism. This pattern exhibits the best performance if all units of the pipeline are busy and
operating at the same speed (no bottlenecks).
Because in our Shifter List implementation every node eliminates points, the further down the
pipeline, the less input is received by a node. We have noticed that this imbalance leads to
significant performance hits.
To ensure better load balancing, we have introduced working set scaling: The initial node has the
smallest working set, with subsequent nodes getting increasingly larger windows. This approach
is based on the assumption that smaller working sets can contain less points which in turn leads
to less points which are dominated by this window.

We expect that this optimization will have the highest effect on data sets with a medium to
large percentage of skyline points with respect to the input size. It will have no effect on very
small skylines that fit into the first working sets: These will eliminate most points and leave
insufficient load for the subsequent nodes.

5.2.3 NUMA aware scheduling and data placement

Our implementation pins threads to specific cores using the pthread library call pthread attr -

setaffinity np to avoid thread migration and use the fact that we know the special communi-
cation and data sharing pattern of Shifter List in advance. We pin one thread to each physical
processor core before starting to assign threads to an already used core and forcing the operating
system to schedule them.

Because communication channels between nodes are shared and accessed frequently, we sched-
ule threads in core-major order (as recommended in [18], chapter 3.1.2). This assignment of
threads implies that we first ’fill up’ a NUMA region with threads, before proceeding to the next
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Figure 5: Example of optimized scheduling on a system with 2 NUMA regions and 8 logical pro-
cessors. Communication channels have been collapsed into bidirectional channels for simplicity.

one. This assignment also guarantees the lowest number of communication channels crossing the
NUMA node boundaries, while still utilizing all cores (see Figure 5).

In the optimal case, most nodes actually are located on one physical processor socket as their
neighbouring node(s).
The default policy of Linux of ordering its logical processors, as we observed it, seems to follow
a core-major ordering. Following this order (pinning threads to sequentially increasing logical
processor ids) the threads would be allocated in a round-robin fashion on the nodes, leading to
each communication channel crossing a NUMA boundary (for N > 1 NUMA regions).

The data placement is unchanged from the default allocation policy of Linux. However, we
take care to allocate the communication channels and working sets on the thread which is actually
going to use them, taking advantage of the ’first-touch’ allocation policy of Linux4 5. This policy
will only map the virtual memory to physical memory once it is actually used (written/read).
The physical memory will belong to the node that touches it first. Thus it is important to
allocate the memory on the right node.

To discover the NUMA topology we use the numa library6 and then pin the threads to the
appropriate logical processors.

When some processors offer Simultaneous Multi-Threading (SMT, e.g. Hyper-Threading),
the operating systems sees more logical processors than physical processors exist. To avoid
resource contention, it may be desirable to avoid these virtual logical processors. The imple-
mentation accepts a bitmask to forbid certain logical processors. Otherwise our thread pinning
implementation would inadvertently pin threads to physical and virtual processors that map to
the same physical core.

4http://linux.die.net/man/2/set_mempolicy, retrieved on 2013-06-06
5https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt, retrieved on 2013-06-06
6http://oss.sgi.com/projects/libnuma/, retrieved on 2013-06-07
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5.2.4 Start phase: Eager accept

In the initial algorithm implementation only the last node accepted data points into its candi-
date set. This however led to a high number of transfers and the initial nodes basically only
forward the data. Further, this implementation showed a high number of elements that needed
to be passed on because of a full working set at the last element: Remember that the transfer
protocol needs every transfer to be acknowledged before the sender can free the space in the
local working set again. Thus we adjusted the algorithm slightly, this was inspired by the FPGA
implementation (state automaton in figure 10, [14]).

A node can accept a data point into its candidate set if and only if:

• They are not dominated by any data point in the local candidate set, and

• The node’s candidate set is not full, and

• The node is

a) The last node, or

b) Has never had a full local candidate set

Algorithm 10 Accepting elements into the candidate set (Optimized)

1: procedure couldInsertIntoCandidates(datapoint pt, node n)
2: if n.candidates.full() then . Cannot insert in any case
3: return -1
4: else if n.isLast() or n.state == NEVER FULL then
5: pos = n.candidates.put(pt)
6: if n.candidates.full() then
7: n.state = FULL
8: end if
9: return pos

10: else
11: return -1
12: end if
13: end procedure

The only change is that nodes which have never had a full candidate set may also accept data
points into the candidate set. It is trivial to see that this does not violate correctness: If a node
ni has never had a full candidate set until a time t, it will not have forwarded any data points
before t. Thus there are no data points at nodes further downstream: The data point has been
compared against all input so far and can be accepted into the candidate set.

5.2.5 Challenges

After initial measurements we discovered that a vital point in the performance of the Shifter List
implementation is the time of the initiation of the transfer protocol. Our initial implementation
only transferred points to the upstream node when the candidate set of the sending node was
full - even if a part of the candidate set could already have been transferred. This delayed the
transfers unnecessarily and led to a significant performance penalty.
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5.3 Limitations

Our implementation currently uses three different implementations of the run loop to distinguish
the initial, middle and last nodes respectively. Due to this implementation choice, we require at
least three threads to run the algorithm.
This is an acceptable limitation as the current mid-range processors offers already 4 physical
cores. It would be possible to remove this limitation, however at a significant increase in imple-
mentation complexity.

Further, our implementation for the input and overflow currently assumes that all input can
fit into main memory. It could be adapted with a small effort to support other ways to store the
overflow or stream the input.

Our implementation eagerly allocates respectively frees memory when data points are inserted
or deleted. A custom memory management which caches these elements for later reuse may
benefit spatial locality by allocating a contiguous chunk of memory.

6 Experimental data

In this section, we compare the performance of our skyline implementation discussed in section 5
against a state-of-the-art competitor: pskyline, developed by Park et al. [12]. Further we would
like to investigate the behaviour of our Shifter List algorithm and determine the impact of our
optimizations.
Unless noted otherwise, the algorithms allocated 32 threads, which is the maximum number of
physical threads that our hardware supports without sharing computation resources7, excluding
shared caches.

Most experiments use one of the following three types of datasets. These distributions are
typically used to evaluate skyline computation.

Correlated In a set of correlated data points, a data point which is ’good’ in one dimension is
also likely to be good in the other dimensions. In this dataset, the skyline size tends to be small.

Anti-correlated In a set of correlated data points, a data point which is ’good’ in one di-
mension is likely to be ’bad’ in the other dimensions. This will result in a larger number of
incomparable data points and thus in a larger skyline. In this dataset, the skyline tends to be of
large size.

Uniform In a uniform data set, data points are chosen from a uniform distribution. For such
a distribution, every possible combination has the same likelihood to be observed. Unlike in the
former two data sets, this means that different dimensions of a data point are independently
chosen at random.

7As in Hyperthreading by Intel processors, or sharing Floating Point Units by AMD Opteron processors.
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6.1 Optimization impact

6.1.1 Array vs. linked list with scaling

We evaluated the implementation of the working set as an array and compared it to the imple-
mentation using a linked list.

The array implementation used 3 different sizes to allow for some working set scaling: One
size for the initial node, one for the last node and one for the remaining nodes in between. These
sizes were configured as (16, 128, 1024) and (512, 2048, 4096), respectively.
The linked list implementation used a working set scaling factor of 1.5, an initial working set
size of 2 and a maximum working set size of 220. The data set contained 102400 points and were
distributed according to an anti-correlated distribution.

In Figure 6a, we plotted the runtime of the skyline algorithm for both implementations. We
can observe that the best configuration of the array is comparable - and for the dimensions 12
and 14 even better - than the linked list implementation. The array configuration with a working
set size of 16 for the initial node did show a very bad performance. This is likely due to the too
small overall working set size which leads to many iterations in our algorithm in which points
have to be written and re-read from the overflow.

To see if this performance still holds for larger data sets and skyline sizes, we ran the exper-
iment with an input size of one million points and an anti-correlated distribution. In Figure 7a
and Figure 7b, we can see that the linked list now clearly outperforms the array implementation.

While the mediocre performance of the linked list on the smaller data set was unexpected,
there are four main reasons why this is the case:

1. The array version exhibits very good spatial locality, being highly efficient for the processor
to iterate over the working set when implemented as an array.

2. The linked list exhibits very poor spatial locality (”pointer chasing”) which could be wors-
ened by the eager allocation mentioned above.

3. The working set size was a compile time constant - allowing an abundance of optimizations
by the compiler.

4. The linked list eagerly used malloc and free when dropping or adding an element from the
list.

With the higher performance on the larger data sets and the increased flexibility of the
linked list we will continue to use this version. Possible optimizations that manually manage the
memory allocation of the linked list may prove beneficial for performance.

6.1.2 NUMA scheduling

This experiment examines how the impact of the custom scheduling and thread pinning is, op-
posed to specifying nothing and letting the Linux scheduler take care of scheduling.
To achieve this, we call pthread_create without setting any processor affinity before or after
the threads start. The experiment was executed on a 4 socket machine equipped with four AMD
Opteron 6276 processors. Such a processor actually consists of two combined full processors
(’modules’) connected via a HyperTransport link. Each module has 6MB of L3 cache. We made
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Array with start=512

Linked list

(a) Array vs. linked list performance

4 6 8 10
Linked list 0.077 2.312 9.001 14.958

Array (start=16) 0.131 9.391 55.567 102.554
Array (start=512) 0.408 3.338 5.792 10.757

12 14 16
Linked list 15.470 16.106 15.322

Array (start=16) 127.240 129.478 130.285
Array (start=512) 14.467 17.410 16.959

(b) Array vs. linked list runtimes in seconds

Figure 6: Performance of Array and Linked List implementation
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(a) Array vs. linked list performance with larger data set

4 6 8
Linked list 0.642 28.627 487.033

Array (start=512) 1.659 35.642 1176.618

(b) Array vs. linked list runtimes in seconds, with larger data set
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Figure 7: Impact of NUMA aware thread pinning

sure that logical CPUs which share certain resources8 are not both used.

We hypothesize that our variant which pins the threads to the cores as we specified in subsub-
section 5.2.3 performs better or at least as good as the variant which leaves the thread placement
up to the operating system, since we know the communication pattern of our threads in advance.

However, the data we obtained does only partly match our hypothesis: For the uniform point
distribution, our performance when using pinning is almost identical to the one without pinning.
In the anti-correlated case plotted in Figure 7, we are even slightly slower when using the pinned
version.

In our experiments regarding NUMA-awareness we have used both the knowledge of the
NUMA configuration and the communication pattern of our algorithm. However, we did not
achieve performance benefits with this knowledge. We assume that other effects outweigh and
obscure the effects of NUMA.

6.1.3 Working set scaling

As mentioned in subsubsection 5.2.2, we use scaling of the working sets to ensure sufficient
load at nodes further downstream. In this experiment, we evaluated the effectiveness of this
optimization.

To evaluate this, we ran a query and evaluated the number of points that were not forwarded
by a node. These points were either dominated, added to the working set, or output. This
measurement does allow us to detect nodes that have no work or only a low load, however
does not give us a utilization value. To ensure proper results, the skyline must be uniformly
distributed among the input points.

8Instruction cache, instruction decode logic, floating point unit. See [19], p.5
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Figure 8: Load balancing with different working set scaling factors

Setup We use an initial working set size of 2 for the first node and then multiplicatively scale
this by a constant factor up to a maximum working set size of 220 elements per node. In this
experiment, we vary the working set scaling factor. We used an anti-correlated distribution to
generate the dataset of 102400 tuples and 16 dimensions per tuple.

Data In Figure 8 we plotted for each working set scaling factor the number of eliminated tuples
per nodes. The x-axis reflects the sequence of the nodes in the Shifter List, the initial node being
at x=0. We can see that for all scaling factors except 1.35, only some nodes perform any action
while the rest are not used (easily recognizable by the drop of the line to zero).

In Figure 9 we plotted the runtime needed for each working set scaling factor.

Analysis We observe that all curves have a rising characteristic, which is expected given that
we increase the working set for each node.

We can clearly see by the steep curves in Figure 8 that the higher the scaling factor is, the
more load is placed on the first nodes. After a few nodes, there is no more load left for the
remaining nodes. The extreme case is the factor 32: Only four nodes do actual work.
This is contrasted by the factor 1.35: All nodes have work to perform and the curve almost
approximates a linear curve in the log-plot (which matches the characteristic of our working set
scaling).

In the performance plot in Figure 9, we observe that our working set size scaling has a
significant impact on the runtime of our algorithm. The scaling factor of 1.35 shows the best
performance which confirms our hypothesis that we need to use the potential of all nodes to
achieve best performance.
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Figure 9: Load balancing effect on performance

6.2 Skyline size

In this section we analyse the performance on three different workloads: Anti-correlated, corre-
lated and uniform datasets.

6.2.1 Setup

We used the data generators of pskyline[12] to generate these data sets. All values in this exper-
iment are, unless mentioned otherwise, medians of 5 repetitions.

In all the datasets we evaluate different selections of the windows scaling factor and com-
pare it against pskyline. All implementations had 32 threads assigned. The measurements were
performed on a 4-socket Intel Xeon E-5 (E5-4640) Linux machine with 20MB of L3 cache per
Socket. Hyperthreading was enabled and the system provided 32 physical and 64 logical proces-
sors respectively.

The measured runtimes for pskyline were taken from the reported time in the output, which
excludes the time to load the data file from disk. For the Shifter List implementation, the
measuring was performed analogously.

6.2.2 Anti-correlated

In Figure 10, we can see significantly better performance of the Shifter list implementation com-
pared to pskyline in both higher and lower dimensions. The performance is better by a factor of
8 to 15 for this dataset.
At D > 12, we observe a stabilization of the performance for both implementations, as the size
of the skyline does not grow any more and actually decreased slightly in the generated dataset.
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4 6 8 10
Pskyline 1.1966 23.3411 81.8337 128.117

Shifter List(Best) 0.0773 2.3124 9.0014 14.9583

12 14 16
Pskyline 144.4039 140.978 134.3983

Shifter List(Best) 15.4703 16.1058 15.3217

Table 1: Runtime of pskyline and best Shifter List on anti-correlated distribution

Further we observe that the smallest working set scaling factor (1.5) exhibits the best per-
formance among the Shifter List implementations.
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Figure 10: Performance evaluation of a anti-correlated distribution

6.2.3 Uniform

As we can see in Figure 11, our implementation significantly outperforms pskyline in the higher
dimensions which deteriorates quickly for D>8. However, we also outperform pskyline in smaller
dimensions, as can be seen in Table 2.
Overall we can see a performance increase of a factor of 3-10.
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4 6 8 10
Pskyline 0.0444 0.8631 6.901 27.2466

Shifter List(Best) 0.0144 0.0797 0.5737 2.9207

12 14 16
Pskyline 69.8414 123.0952 163.79491

Shifter List(Best) 8.1504 14.3108 19.1508

Table 2: Runtime (in seconds) of pskyline and the best Shifter List configuration on the uniform
data set

As before, the configuration with a working set scaling factor of 1.5 was the best performing
implementation among the Shifter List measurements.
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Figure 11: Performance evaluation of a uniform distribution

6.2.4 Correlated

For the correlated dataset, where the skyline is very small (less than 0.01% of the input set),
we can see in Figure 12 that the performance of pskyline is better by about a factor of 1.3 to 2
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compared to the best Shifter List configuration.

Moreover the best Shifter List implementation is the one with the largest working set scaling
factor, which indicates configurations in which the first nodes process all input are preferred9.
This could indicate that multi-core approaches in general are not a good fit for this kind of dataset
where the skyline is small with respect to the input set. The same conclusion was drawn by Köhler
et al.10 To corroborate this theory, we have added a single-threaded naive implementation for
comparison to Figure 12: We can immediately see that the naive implementation far outperforms
both implementations. On datasets with very small skylines, other approaches would thus be
more appropriate than these multi-threaded approaches.
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Figure 12: Performance evaluation of a correlated distribution

6.3 Data skew

We evaluated how our algorithm performs if the position of the skyline elements does not follow
a uniform distribution within the dataset. To do so, we evaluated datasets where the skyline ele-
ments are clustered with varying density at the beginning of the input and at the end of the input.

9The larger the window, the more data points are accepted into the candidate set in the eager start phase.
10See [11], page 91
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4 6 8 10
Pskyline 0.0046 0.0061 0.0067 0.008

Shifter List(Best) 0.0096 0.0101 0.0109 0.0114

12 14 16
Pskyline 0.0088 0.009 0.0098

Shifter List(Best) 0.0124 0.0115 0.0130

Table 3: Runtime (in seconds) of pskyline and the best Shifter List configuration on the correlated
data set

6.3.1 Setup

The dataset was generated by the pskyline generator. After completion, we ran our implemen-
tation to determine which points belong to the skyline and which do not and split the data into
two files. A small script then merges these two types of points into a single data set with the
requested stride size between the skyline elements: A distance of zero means that for a skyline
size of N, the first N elements of the dataset belong to the skyline, a value of one that every
second element belongs to the skyline. We steadily increase the distances as to evaluate how
resistant the algorithms are to skew. Further we repeat the same experiment with the whole
dataset reversed, i.e. the skyline spaced from the end of the dataset.

The experiment was run on the same 4-socket Intel Xeon machine as the previous experiment.
We used a target skyline size of slightly more than 12’000 elements from an input data set of
approximately 10 million elements, which is a skyline density of slightly less than a thousandth
of the input size. Both implementations had 32 cores available. The Shifter List implementation
was configured with a working set scaling factor of 1.35.

The stride size was varied from zero to 834. With the latter stride size, the elements are
spaced such that they span the entire input. Increasing the stride size any further is not possible
without reducing the number of skyline elements.

6.3.2 Hypothesis

Because pskyline operates according to an input-partitioning scheme, we expected a stronger
skew would lead to a worse performance. This due to the assumption that when the skyline
elements were close together, only few input partitions would contain skyline elements and the
remaining partitions would contain many data points that did not belong to the final result. We
assumed that this would lead to unnecessarily large intermediate results and require more work
in the reduce step.
As Shifter List greedily accepts elements into the input set at the beginning, we expected that
a skew to the beginning would lead to the best performance, while a uniform distribution or a
skew toward the end of the dataset would lead to more data points being put into the overflow
- and thus a worse performance.

6.3.3 Results and analysis

The performance results can be seen in Figure 13a and Figure 13b, the reverse data set results
in Figure 14a and Figure 14b. We observed that both implementations are influenced by skew
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in the dataset.
Pskyline behaved as hypothesized: If the dataset exhibited heavy skew (whether toward the
beginning or end of the dataset) the performance is worse than when the skyline elements are
uniformly positioned in the dataset (at stride size of 834). If the skew was toward the end of the
dataset, then pskyline was even more affected: The performance decreased by a factor of 5 if the
stride size was changed from a uniform spacing of the skyline elements (stride 834) to a dense
clustering at the end of the data set (stride 0).

The Shifter List-based implementation behaved partly as expected in our hypothesis: For a
heavy skew at the beginning, it outperformed pskyline significantly by a factor of 74. For the
higher stride sizes, the performance then worsened. For the skew toward the end of the dataset,
we did however observe a similar behaviour: The heavier the skew, the better the performance
got. That our implementation performs better for a skew toward the beginning than the end
can be explained by the eager accept optimization which clearly favours the skew toward the
beginning. The performance improvement for the high skew can be explained by an inspection of
the statistics: For the skew towards the end with a stride size of 0, only a tenth of the transfers
(2489) was needed compared to the stride size of 834 (24083 transfers).

Though the performance of both implementations are influenced by skew, our Shifter List-
based implementation outperforms pskyline in any skew configuration explored in this experi-
ment. Furthermore the impact of the skew on the Shifter List-based implementation is about
equal to the impact on pskyline if the skew is toward the beginning. However the impact on
pskyline is significantly higher if the skew is toward the end of the data set.

6.4 Scalability

To evaluate the scalability of our algorithm, we vary the number of cores used for the algorithms
and observe the impact on performance.

6.4.1 Setup

We used the linked list implementation with a working set scaling factor of 1.5. Because reducing
the number of nodes would also reduce the working set size, we made sure that the overall size of
the working set was always (approximately) equal by adjusting the working set size of the initial
node (and adjusting the maximum working set size if necessary). This effectively increases the
working set size per node but keeps the overall size constant.
Without such an adjustment, the different working set size would lead to significantly different
results as the Shifter List would need different numbers of iterations to processes the data (as
less points can be held in the working set per iteration).
This experiment was run on our Intel machine (the hardware details are mentioned in subsec-
tion 6.2).

6.4.2 Data and Analysis

We plotted the runtime of the algorithms vs. the number of allocated cores in Figure 15. We
observe in the figure that both pskyline and our implementation improved their performance
with additional cores. Both implementations profited most when adding up to 16 (Shifter List)
resp. 24 cores (pskyline). After this point, the performance of pskyline even degraded, while
the performance of our Shifter List-based implementation remained steady, and again improved
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(a) Skew performance Shifter List vs. pskyline

0 1 32 64 128
Pskyline 68.2252 69.4055 68.1215 63.9327 60.6038

Shifter List 0.9097 0.9621 1.6969 1.7729 2.5216

256 512 768 834
Pskyline 54.0099 44.9272 36.168 34.6405

Shifter List 1.6867 1.7333 1.7019 1.7120

(b) Skew performance (Runtime values in seconds)

Figure 13: Skew performance
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(a) Skew performance Shifter List vs. pskyline for reversed dataset

0 1 32 64 128
Pskyline 172.7669 174.2273 169.6893 163.8039 149.906

Shifter List 5.3718 5.3036 4.2528 4.2033 4.0910

256 512 768 834
Pskyline 122.1815 76.4784 37.6953 32.9388

Shifter List 4.0603 3.9069 3.6980 2.5730

(b) Skew performance (Runtime values in seconds)

Figure 14: Skew performance for reversed dataset
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(a) Scalability of pskyline
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(b) Scalability of Shifter List implementation

Figure 15: Scalability of pskyline and Shifter List implementation
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4 6 8 12 16
Pskyline 248.88 226.63 201.53 172.73 162.36

Shifter List 21.92 18.09 16.37 15.37 8.51

20 24 28 32
Pskyline 149.74 137.51 143.80 141.5671

Shifter List 8.53 8.44 8.28 7.44

Table 4: Runtime values when adjusting number of nodes, in seconds. As plotted in Figure 15
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Figure 16: Speed-up of both implementations, compared with basis of 4 cores

again slightly when increasing the number of cores to 32.

We note that by going from 4 to 32 cores, the runtime of pskyline decreased by a factor of
1.75, while the runtime of Shifter List decreased by a factor of 2.95.

A significant jump in performance happens for our Shifter List implementation between 12
and 14 nodes: The performance almost doubles. To determine the cause, we re-ran the exper-
iment but slightly enlarged the size of the working set, from approximately 85’000 to 100’000
elements. We plotted the comparison in Figure 17. We can observe that the second plot also has
such a jump in performance at 24 to 28 nodes.

For the original setting with 12 nodes, the last three nodes had to handle half of the overall
working set, which may have been too much. With 16 nodes, this load is spread out over 5 nodes.
The same effect can be seen with the larger overall window: At 24 nodes, 4 nodes had to handle
half of the working set compared to 5 nodes at 28 nodes.

43



 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 4  6  8  10  12  14  16  18  20  22  24  26  28  30  32

R
u
n
ti

m
e
 [

se
co

n
d
s]

Number of cores

Scalability with number of cores
100k tuples, 32 threads, D=12, anticorrelated

Shifter List, window size = skyline
Shifter List, window size > skyline

Figure 17: Comparison of Shifter List with two different working set configurations

We speculate that the load balancing should be configured to fit the number of available nodes.
The constant scaling factor, which was originally determined for 32 nodes, does not necessarily
guarantee a good load balance for less nodes. Either the factor needs to be tuned when changing
the number of nodes or an automatic load balancing could be implemented.

6.5 Behaviour analysis

In this subsection, we will show some of the experiments that we have performed to evaluate and
analyse the behaviour of our algorithm.

6.5.1 Runtime usage

In this experiment, we added more instrumentation code to our implementation to capture the
execution time of different ”tasks” that our implementation performs. These main tasks are:
Processing points (testing for dominance), messaging (queue operations: send/receive), handling
the transfer protocol and waiting for input. The remaining overhead (initialization, looping etc.)
was ignored in this experiment. We used 102400 tuples with an anti-correlated distribution and
executed it without any pinning or NUMA awareness, as this was shown to be ineffective by our
earlier experiments. The experiment was executed on our Intel machine (see subsection 6.2 for
hardware details).

In Figure 18 and Table 5 we plotted/listed the use of the algorithms runtime with regard to
the identified tasks. Note that as some work is not captured by the measurements and the nodes
do not start or end at the same time, the total runtime shown in the plot is not equal for each
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Figure 18: Runtime usage per core

Processing Messaging Transferring Waiting
14.77% 1.91% 0.04% 83.29%

Table 5: Percentage used by tasks with respect to totalled runtime
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node.

We can see in the plot that the messaging and transfer took only a very small part of the
overall runtime of the algorithm. Further, we see that the processing took an increasing amount
of the runtime the further downstream a node was located. This is caused by the increasing
working set size: Every node has a working set which larger by a multiplicative factor than his
predecessors (bounded by an upper limit). Due to this, the potential processing time needed per
received data point increases which is reflected in the plot. We can observe that after Node 29 the
processing part of the runtime dropped again, at which point so many data points were filtered
out by the nodes upstream that the reduction in input data was stronger than the increase in
size of the local working set.

Very prominent in the plot is the amount of ”waiting” which accounted for the lion’s share of
the run time. It behaves inversely proportional to the processing time. This is also a consequence
of the scaling of the working set: As initial nodes have a very small working set, they process
their input elements received from the queues very quickly, thus incurring more wait time per
received message (assuming a constant rate of messages) than their downstream peers. If a node
drops or accepts all elements of a message into the working set, this leads to more wait time for
subsequent nodes as this empty message will be discarded.

To break down the wait time further, we added additional instrumentation code. The first
part of the waiting happens when a node’s outward down queue is full: It will ”stall” processing
of messages containing data points. This is necessary as trying to put an element in a full queue
will block until the operation succeeds (named ”messaging wait”). If the node were to greedily
process input messages and send the data elements downstream, this might result in a deadlock.
The second part of the waiting time happens when the node does not have any input to process
(no input from upstream nodes), we label this ”waiting for input”. We plotted the results in
Figure 19. We can observe that the time for transfers and full queues (”messaging wait”) are
negligible. The messaging time is not negligible, but most interesting is the stalling: It accounts
for a significant part of the runtime. This indicates that load balancing might be an issue which
could improve performance further.

The high amount of stalling might indicate that the message queues between nodes are not
large enough to compensate some fluctuations in processing speed of the different nodes. To
confirm this influence, we increased the size of the queues and plotted both uniform and anti-
correlated workloads in Figure 20 and Figure 21. We can see that stalling is no longer an issue.

6.5.2 Iteration/Working set size impact

In our skyline implementation we can output at most M =
∑n−1

0 size(wi) data points every
cycle, where size(wi) is the size of the working set of the i-th node. This is due to our output
condition that can only output data points from the working set. Should however M be smaller
than the resulting skyline, some of the skyline points have to be put into the overflow file, re-
quiring another iteration over the remaining input.
In this experiment, we examine how much influence the number of iterations has on the perfor-
mance of our implementation. To do so, we vary the overall working set size while keeping our
input set the same. We should note that cache effects could influence our results - the working
set is a heavily accessed local data structure for each node.
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Figure 19: Detailed runtime usage per core

We used a data set of 102400 anti-correlated tuples with dimension 14 (the skyline size 85828
was known in advance). We used a working set scaling factor of 1.35 and used the maximum
window size to control the total working set size. We varied the total size of the working set be-
tween 2% and 100% of the skyline size. We derived the lower bound for the number of iterations
by dividing of the skyline size by the total working set size. The experiment was run on the Intel
Xeon machine detailed in subsection 6.2.

In Figure 22 we plotted both the runtime and the number of iterations needed for a specific
working set size. The number of iterations was plotted using a logarithmic scale. As expected,
the number of iterations decreased rapidly as we increased the size of the working set.

The runtime decreased as expected starting at 20% of the skyline size. The data points below
this size however, exhibited a lower runtime. This can be explained by cache effects: For the
first two data points, the working set fit into the L1 cache of our machine, which greatly sped
up the access and iteration over the set, offsetting some of the cost of additional iterations. The
third data point thus lay higher again. The last anomaly is the fourth datapoint (20%) which lay
unexpectedly higher, likely due to the same effect with the L2 cache (as with the L1 cache before).

Choosing the right size of the working set is thus very important for a good performance of
our implementation. Choosing it too small will increase the number of iterations, choosing it too
big will result in a bad load-balancing, leaving later nodes without work.
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Figure 20: Detailed runtime usage with larger buffer queues (Anticorrelated)

6.6 Discussion

We have shown several experiments in this section. Our main findings include that our imple-
mentation outperforms pskyline by an order of magnitude on all but the correlated datasets (in
which a naive, single-threaded performs best). Furthermore, we have shown that both our im-
plementation and pskyline are affected by a skew of the skyline tuples in their distribution with
the dataset (position), with our implementation being more resistant to skew toward the end of
the dataset. Our implementation also showed a good speed-up when increasing the number of
cores.
The other main finding is that the configuration of our implementation is vital to its performance.

6.6.1 Future work

Given the high influence of configuration parameters on the performance of our implementation,
future work should develop a load balancing solution to fully ensure an even distribution of load
across nodes and to minimize the amount of waiting or stalling at the nodes.
Such an approach could influence the size of the working sets at runtime. Increasing the working
set size at upstream nodes if a node has too much load will result in a higher number of compar-
isons against working set elements for these nodes, eliminating more tuples from the data stream
and resulting in less load for downstream nodes. Decreasing the working set on the other hand
can be used to push more load toward downstream nodes.
The load balancing will have to provide a heuristic to detect the conditions for initiating the
re-balancing and ensure that enough time is provided for transfers to take place and shift the
working set items accordingly. The scheme has to avoid situations where the load balancing is
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Figure 21: Detailed runtime usage with larger buffer queues (Uniform)
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alternating between too much load and too little load.

7 Other algorithms

In this section we analyse which problems could be solved using a (possibly generalized) Shifter
List implementation.

7.1 Frequent item

In a data stream, determining the n most frequently occurring elements is non-trivial. An
accurate solution would require memory linear in the number of distinct items which occur in
the stream as it needs to store the number occurrences for every item it saw so far.
As this is not desirable for a data stream with a potentially enormous number of distinct elements,
approximation algorithms have been devised which provide certain error-guarantees for the most
frequent items. One of these algorithms is called Space-Saving, developed by Metwally et al. in
[15].

7.1.1 Space-Saving: Overview

Space-Saving provides a fixed amount of buckets to count the occurrences of frequent items. It
accurately counts the occurrences for items until it encounters a new item and has no bucket to
store it in.
Space-Saving now replaces the least-occurring item in its buckets emin with the count ζemin

with
the new item and assigns the new item the count ζemin+1. This results in a certain inaccuracy
which is the trade-off for the space which is saved compared to the traditional approach.

One obvious property of Space-Saving is that its result depends on the exact permutation of
the input due to its replacement strategy. Another is that the occurrences are only over-, never
under-estimated.

7.1.2 General implementation

This implementation implements Space-Saving on top of Shifter Lists. In the local working set
of each node we store the items and their number of occurrences in a descending sort order.
The items are streamed downwards and the smallest occurrence count of a node is passed along
with the points to maintain the sort order between the nodes.
The transfer protocol will be changed to respect and maintain that order.

7.1.3 Sort order invariant

At each node, we maintain a set of items and occurrence counts. The algorithm will try to
preserve the following order: cmini ≥ cmaxi+1 This simply means that the nodes should try to
respect a global descending order. As soon as node detects that this order is violated, it will
initiate a transfer to re-establish it.

7.1.4 Transfer protocol

To transfer the occurrences between the nodes, we need an asynchronous transfer protocol which
preserves the sorting invariant. For this, each node needs some awareness of its neighbours’
state. A node forwarding an item sends along the minimum occurrence count of its working
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set. A transfer is initiated when the node further downstream sees the invariant violated, i.e.:
cmini < cmaxi+1

Transfer protocol

1. A node receives a point which matches an item in its working set. It updates the
occurrence counter for the item and notices that the invariant is now violated: The
point has a higher occurrence count than the smallest occurrence count in the adjacent
upstream node.

2. The node sends a TRANSFER message to the upstream node with the point needed
to re-establish the invariant and its occurrence counter. It stores a snapshot of the
occurrence counter at time of the transfer message.

3. The upstream node receives the message and:

(a) Accepts the point into the local working set, if the invariant is still violated.
Should the local working set be too full, the item with the smallest occurrence is
sent with a ACK message downwards. Otherwise an empty ACK is sent.

(b) It rejects the transfer with a NACK message, if the invariant had been restored
in the meantime by another processed item.

4. If the downstream node receives the ACK, it calculates the difference between the
snapshot of the occurrence counter and the current state of it. It then sends this delta
with a DELTA message to the upstream node. The element and its snapshot can now
be removed from the working set of the downstream node.

5. The upstream node receives the DELTA message and adds the delta to the local
occurrence counter.

The protocol requires a few additional conditions:

• A node can only take part in one transfer at a time.

• The last node must not accept input while waiting for an ACK. It must send up any input
that it receives for reinsertion.11

The second conditions stems from the fact that there still would be insufficient space and
that only one transfer can be in progress such as to maintain the sort order invariant. Note that
this will cause a re-ordering and can change the output of a Space-Saving implementation.

7.1.5 Evaluation

This implementation of Space-Saving requires a significant amount of coordination in the trans-
port protocol as well as additional state (the snapshot of the occurrence counters). Due to this
overhead it is unlikely that the implementation will offer a superior performance compared to
current implementations.

11It has to send it to the node upstream for reinsertion to prevent a deadlock which would occur if the message
buffer for its inbound communications channel were to be full.
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Roy et al. [17] presented an implementation where a single node was used to pre-filter the input
to Space-Saving, resulting in a two-step pipeline. The implementation already significantly im-
proved the throughput and filters out a significant percentage for even small distribution skews
(Zipf-parameter).
To achieve an improvement over this implementation with a Shifter List implementation, the
nodes would have to receive enough load, which is unlikely given that one node already pre-filters
a significant part of the workload and that the frequent item problem is not as computationally-
intensive (as compared to the skyline problem).

7.2 N-closest pairs of points

The n-closest pairs of points problem is the general form of the closest pair of points problem
(n=1). It consists in determining the n pairs of points in a set with the minimal distance. For
the special case n=1, there exist divide-and-conquer solutions to determine the closest pair of
points in O (n ∗ log(n)) 12.
The n-closest pairs of points problem should not be confused with the n-nearest neighbours
problem in which for a fixed point the nearest n points are to be determined.

7.2.1 Definition

Assuming a set of k points M = {p1, p2, . . . , pk}, where all pi are from the d-dimensional space
T and a distance function f : T × T → R. Then the n-closest pairs of points are a set S of n
pairs 〈pi, pl〉 of points chosen from M , such that:

∀ 〈pi, pj〉 ∈ S : pi 6= pj (1)

∀ 〈pi, pj〉 ∈ S : @ 〈pq, pr〉 ∈ S − 〈pi, pj〉 : (pi = pq ∧ pj = pr) ∨ (pi = pr ∧ pj = pq) (2)

@ 〈pi, pj〉 , pi 6= pj , pi ∈M,pj ∈M, 〈pi, pj〉 /∈ S : f(pi, pj) <

(
max

〈pq,pr〉∈S
f(pq, pr)

)
(3)

A point may only occur once in the same pair as specified by Equation 1 and there may not
be duplicate pairs by Equation 2. Equation 3 specifies that no pair of points in M (that is not in
the solution S) can have a smaller distance than the largest distance of a pair in the solution S.

7.2.2 General implementation

The implementation follows the implementation of the skyline algorithm, with a few adjustments.
The first node parses the input and forwards the points downwards the input stream. The last
node inserts them into its working set and transfers them to the upstream nodes.

Each node keeps the N pairs of points with the smallest distances encountered so far. Fur-
thermore, each node has a working set to store points which it receives from its neighbour node
downstream and transmits to its neighbour node upstream. It does not keep the points it receives
from upstream but instantly compares these points to the points in its window and tries to store
the calculated distance. An overview of this can be seen in Figure 23 and the adjusted processing
algorithm in algorithm 11.

When all input has been processed, we merge the working sets of the nodes with a simple
sorting algorithm in ascending pair distance and obtain the n closest pairs.

12see theorem 6: M. Shamos and D. Hoey, ”Closest-point problems,” Foundations of Computer Science, 1975.,
16th Annual Symposium, pp.151-162
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Algorithm 11 Processing of a datapoint (N-closest pairs of points)

1: procedure process(datapoint pt, node n)
2: if pt == PT NOP then
3: return DROP . Can discard this immediately
4: end if
5: for datapoint c in n.candidates do
6: if !c.valid then
7: continue
8: end if
9: if pt.timestamp > c.timestamp then

10: if c.valid and !(c.beingSent or c.beingReceived) then
11: dropFromCandidates(c)
12: continue
13: end if
14: end if
15: d = distance(c,pt)
16: insertDistance(d,n) . Adds the distance into the sorted set and trims size
17: end for
18: return FORWARD
19: end procedure

Input

Node 0 Node 1 Node ... Node n-2 Node n-1

Overflow

N-Best N-Best N-Best N-Best N-Best

W. set W. set W. set W. set W. set

Comparison

Figure 23: Flow of points (solid) and comparisons (dashed)
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7.2.3 Transfer, overflow, timestamps

Because we only need to transfer points between nodes and no invalidation occurs, we can sim-
plify the transfer protocol to a TRANSFER and an ACK message. The (in-)validation messages
are not required. This implies that points that have been received in a transfer are valid imme-
diately and can be immediately transferred again by the receiver.

We again use the same pattern of an overflow file and timestamps to ensure that points in
the working sets have been compared to all other points. Unlike in the skyline algorithm, we
then drop these entirely from the window instead of putting them into the output set.
The conditions and mechanisms for timestamping are identical to the skyline implementation.

7.2.4 Limitations

The implementation uses significantly more memory than a single-threaded naive version: The
sum of the working set sizes amounts to n ·#nodes as each node needs to store the n-best results.

7.2.5 Optimizations

The eager accept optimization from algorithm 10 can be applied. Further, to remove the memory
overhead mention in the previous subsection, one could be to enforce a global ordering over the
best distances kept at each node, but this is beyond the scope of this thesis.

7.3 Sorting

Sorting a set of elements according to a specified order is one of the most common problems in
computer science, thus we omit the formal definition here. This subsection details how it can be
implemented using a Shifter List-based implementation.

7.3.1 General implementation

The points are read and forwarded by the first node. The invariant of this implementation is
that every node keeps its working set sorted according to the defined order. We assume here
that the sort order is ascending.

Each node compares the received points to their working set. It will insert the point if it
is smaller than the largest one in its working set or the working set is not full. Otherwise it is
forwarded to the next node.

Algorithm algorithm 12 details the processing of a point, assuming that the chosen sort order
is ascending. Note that the implementation does not require the transfer protocol because points
are only forwarded downstream.

If the last node cannot accept all elements into the working set, they will be stored in the
overflow. If the input is empty, a cycle is complete and all points in the working set can be
output and then removed from the working set. If the overflow is not empty, all working sets are
flushed and the overflow becomes the new input.

If the sum of the working sets is K, then in every such cycle, the K-smallest points of the
remaining input will be stored in the working sets.
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Algorithm 12 Processing of a datapoint (Sorting)

1: procedure process(datapoint pt, node n)
2: if !n.candidates.full then
3: putIntoCandidates(pt) . This method will insert the point and keep the set sorted
4: return DROP
5: else if n.candidates.last > pt then
6: return FORWARD
7: else
8: last = popLastCandidate(n) . Last one is the largest one
9: putIntoCandidates(n, pt)

10: forward(last)
11: return DROP
12: end if
13: end procedure

Figure 24: Output pattern for sorting

7.3.2 Properties

This implementation establishes a sort order among the nodes. Assuming an ascending sort
order, the last element of any node’s working set will be smaller or equal than the first element
of the next downstream node’s working set:

ni.last ≤ ni+1.first

Also note that the size of a node’s working set can only increase or remain constant (between
comparisons) because elements are never dropped and only forwarded if there is insufficient space
to insert a smaller element.

7.3.3 Output

Because of the locally sorted working sets and the sorting property mentioned above, the result is
created by concatenating the working sets of the nodes in node order. This can be implemented
lock-free by assigning every node the area into which it shall copy its local working set.
If the sum of the working set sizes of each node is smaller than the input size, multiple cycles
are needed. After every cycle, the output area for each node advances exactly by the sum of the
local working sets (see Figure 24).
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7.3.4 Limitations

Each node has to keep its working set ordered in this implementation, thus insertions and dele-
tions need to preserve this invariant.
In an array implementation, locating the insertion point can be done in O(log(n)). However,
because the elements have to be moved to allow the insertion, insertion which does not happen
at the end of the array has linear complexity!
In a linked list implementation of the sorted working set, insertion and deletion are possible in
constant time. Locating the insertion point however, requires traversal of the data structure as
binary search is not possible (no random access) and thus exhibits linear complexity as well.

7.3.5 Evaluation

Because of the expensive preservation of the local sorting order in the working sets, this im-
plementation of sorting will likely not perform well against other established sorting methods.
Tentative experiments with quicksort confirmed this impression.

7.4 Problem properties

For a problem to be solvable with a Shifter List based implementation, it needs to meet the
following conditions:

1. It needs to be splittable into independent sub-elements.

2. The sub-elements must contain all necessary state. There cannot be a global state or shared
state between sub-elements.

3. It has a computational complexity of at most O(n2), where n is the number of sub-elements.

4. Sub-elements may not influence the state of other sub-elements, unless they are processed
together.

5. The result of processing sub-elements must only depend on these sub-elements and their
state.

Condition 1 is required to be able to process the problem in a pipelined approach. Because a
Shifter List node cannot access the state of other nodes, all state needs to be in the sub-elements
(Condition 2). As we can at most compare all sub-elements with each other by adding them
to the working sets, this limits us to problems with quadratic complexity or less (Condition 3).
Condition 4 and 5 are dictated by the independence of nodes. Note that points are ”processed
together” if they are either present in the working set or taken for processing from the down- or
upstream.

7.4.1 Problems

We show how two of the presented problems fulfil the conditions set above (Skyline and Frequent
item) and can be implemented with a Shifter List-based implementation and one problem that
does not fulfil the conditions (Shortest Path).

56



Skyline

1. Every point in the input set is a sub-element.

2. The state of a sub-element is the timestamp and the association to a node’s working set.
No global state is required.

3. Comparing all sub-elements with each other is sufficient to determine the result (Naive
algorithm).

4. Sub-elements only interact with each other on comparison.

5. The processing of sub-elements only depends on the involved sub-elements (dominance
test) and their state (timestamp).

Frequent Item

1. Every occurrence of a term is a sub-element

2. The terms contain their term and the number of occurrences (initially 1). No global state
is required

3. Comparing all sub-elements with each other would allow grouping identical ones into buck-
ets and counting them. Sorting after the main shifter algorithm would only be O(b · log(b))
(b being the number of unique terms), well inside the quadratic complexity bound because
b ≤ n.

4. Sub-elements only influence each other when compared. (One sub-element has its occur-
rence counter incremented and the sub-element is dropped, if they have an identical term.)

5. The processing of sub-elements only depends on the involved sub-elements and their state
(term, occurrence count).

Counterexample: Shortest Path Determining the shortest path between two vertices in
a graph (typically solved using Dijkstra’s algorithm) is not possible with this template. The
problem has the following properties:

1. Every vertex is a sub-element.

2. Every sub-element contains the distances to other sub-elements. There must be a global
table with the minimum distance for each node. �

3. Comparing all elements with each other would allow to build the paths and discover the
shortest path in quadratic complexity of the sub-elements.

4. Sub-elements only influence each other when compared.

5. The processing of two sub-elements only depends on the state of these two and the global
minimum-distance table for the sub-elements. �

As we can see, the minimum-distance that vertices would need to store in a global manner
violates condition 2. Also, for processing, this global table would be required, which violates
condition 5. Thus this problem cannot be implemented in a Shifter List.
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8 Shifter List template

In the previous sections we have seen different ways to implement algorithms based on a Shifter
List structure. In this section, we detail a common template for implementations based on the
Shifter List structure and how some of the algorithms detailed before can be implemented with
this template.

8.1 Design

The template is implemented in C and thus we chose to implement the delegate calls with func-
tion pointers. It contains several compile-time options that can be used to enable debugging,
statistics or correctness checks.

The main design approach behind the template was the delegation pattern: The general
Shifter List provides a implementation for passing data between nodes and issues a series of
delegation calls. The actual algorithm can then decide what actions to take for the items provided
by the delegation call.

Certain methods are exposed to easily allow delegate functions to manipulate the state of a
node or communicate with adjacent nodes. The exposed methods above operate with the Shifter
List concepts of nodes. These are actual structures which hide additional implementation details.
This is an application of the concept of information hiding.

8.1.1 Configuration

The execution is started by calling an execution function with a configuration structure. The
configuration must contain pointers to all necessary delegates (or to stubs13) as well as specifying
the input and any options such as the number of threads to be used.

Furthermore, the implementation has to configure the behaviour of the template at the at the
end of an iteration: If it should terminate, or swap the overflow with the input and start a new
iteration. In the latter case, the template will iterate as long as there still is input to process.
The type of the data elements (floating point, integer or other) can be changed by changing a
typedef in a single header file.

8.1.2 Data flow & Transfer

By default, the template will send tuples downstream without a special protocol and use a simple
two-step transfer protocol (send, ACK/NACK) to transfer data elements upstream. The default
behaviour can be extended or overridden with delegate functions (see subsubsection 8.1.4).

8.1.3 Data points and state

Every data point contains the payload, an identifier for the point, a timestamp and three flags.
Of these flags, one is a validity flag and two are used to indicate if the point is in a transfer
(beingSent, beingReceived).

The node additionally uses a state flag to cache if it is the sending node in a transfer. This
saves the iteration over the working set’s beginSent-flags.

13An empty or default implementation of a method.
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The working set of each node is configured with a maximum size. This value can be overridden
at runtime by providing an initialization delegate. The defaults are determined by a set of compile
time constants: The initial working set size, the scale factor and the maximum size.

8.1.4 Delegation calls

The following calls occur in the context of a node and therefore always pass along the node as
an argument.

• onNodeInit (Optional) When the setup is being performed, this method may perform
custom initialization of the node state. E.g. Set the maximum size of a node’s local
working set.

• onProcessData (Required) When a message with data points is received, the template
will issue a delegate call to process each data point. The function delegate can perform
any action on the data point and must then indicate what should happen with it: Either
it can be dropped or it can be forwarded to the next node.

• onCycleEnd (Optional) When the input has completed one iteration and has been pro-
cessed or stored in the overflow, this function delegate is called.

• onLoopEnd (Optional) As the template loops indefinitely and waits for input, this dele-
gate is called once per loop iteration.

• onTerminate (Optional) This delegate is called when all input has been processed and
no input remains. After this delegate call, the node will receive no more delegate calls.

• onTransferBegin (Optional) This delegate function is called to fill a message with all
elements that should be sent. The default implementation will try to fill the message with
as many elements from the local data set as possible.

• onTransferReceived (Optional) Upon receipt of the transfer, this delegate function is
called. It can decide what to do with the received elements and return a message to the
template as answer (ACK, NACK or custom). It receives the upper bound of the elements
that should be provided as argument. The default implementation will accept the elements
into the local working set if there is enough space and return an ACK, resp. a NACK if
there is not.

• onTransferComplete (Optional) This delegate function is called when the sending node
receives an ACK message. The delegate function can then send additional custom protocol
messages. The return value indicates to the template if the transfer should be regarded as
complete (and involved elements deleted from the local working set) or if the custom imple-
mentation will take care of further actions. NACK messages will be handled automatically
and the transfer is aborted without a call to this delegate.

• onProcessSpecialMessage (Required) This delegate function is used when the Shifter
List template does not recognize the type of a message that has been received by this node.
This can be used for custom messages, such as transfer protocol extensions.

If the implementation provides the delegates for the transfer methods, it will need to make sure
that the protocol is sound and that all state flags of the data elements are properly maintained.
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8.1.5 Output

Unless an output memory pointer is provided, the template will allocate enough memory to store
as many output elements as input elements.
The template provides a thread-safe output (with arbitrary order) into this memory region
with an output function that the implementation may use. If special ordering is required, the
implementation must provide this itself.

8.1.6 Exposed methods

The template exposes the following methods to allow the algorithm to modify the state of a node
or communicate with neighbouring nodes.

• sendMessageUp/-Down sends a message to the appropriate node

• add-/removeFromWorkingSet tries to add/remove a point to the data set. For inser-
tion, it accepts an optional parameter indicating the insertion position in the set.

• sendWorkingSetUp initiates a transfer. It uses the onTransferBegin delegate if avail-
able to determine the elements that should be transferred. It accepts an upper bound for
the number of elements.

• canOutput checks the flags to see if the data point is not in any transfer.

• output will output the point to the memory area.

8.1.7 Limitations

An generic implementation using such delegates (function pointers) cannot perform as well as
an implementation targeted at a single algorithm which allows for more optimizations.
Further, the template does not provide built-in support for a transport protocol that forwards
tuples downstream. However, such a protocol can easily be added by using the appropriate del-
egates and custom messages.
Some extensions (e.g. extending the global state data structure of the algorithm) require ex-
tensions of the data structures defined by the template, while others can make use of prepared
custom state fields.

8.2 Skyline

This subsection will detail the configuration used to run Skyline computations using the template
presented.

8.2.1 Configuration

The template was configured to restart when the initial input has been read (and remain-
der of the input is in the overflow). We do not need to configure a onTransferBegin or
onTransferReceived delegate as the default will suffice.

8.2.2 Modification

The skyline requires two additional states per node: A flag indicating if the working set of the
node has already once been full (related to subsubsection 5.2.4) and a field to store how much
space the upstream node has for a transfer. For this we just added the two fields to the struct
definition.

60



8.2.3 Processing

The processing delegate basically implements algorithm 6, with a small extension that will check
if a HAS SPACE message was received and initiate a transfer if that was the case. When
initiating a transfer by calling sendWorkingSetUp, the maximum number of elements to be set
is read from the stored value initially received in the HAS SPACE message.

8.2.4 Custom Messages and Transfer

The messages for indicating if the data points that were transferred are valid or not, we need the
two custom messages VALID and INVALID, and thus a onProcessSpecialMessage delegate.
The delegate will appropriately delete invalidated transferred points (INVALID case) and mark
the remaining points as valid and remove the transfer flag. Further, this delegate must also
handle the HAS SPACE message and store the contained data in the node state.
To actually perform the validation and send the VALID/INVALID messages, we need to install
a onTransferComplete delegate.

8.2.5 Other delegates

To transfer information about the available space for transfers, we use a onLoopEnd delegate and
send a HAS SPACE message when needed. Further, we want to output all remaining elements
in the working set when the template terminates which our onTerminate delegate will perform.

8.2.6 Evaluation

We implemented this algorithm with our template and checked for correctness of the results.
Further, we re-ran two experiments for the template-based implementation to examine the be-
haviour and performance.

In Figure 25, we plotted the performance of the template when the number of dimensions (and
thus the size of the skyline) is varied. We can see that for both the uniform and anti-correlated
dataset, the behaviour of the template is slower, but follows the same behaviour as the reference
implementation developed in section 5. However, the template implementation still outperforms
pskyline.
In Figure 26 we plotted the result of re-running the scalability evaluation of the template. We
can that the behaviour of the template matches that of the reference implementation, though it
does not exhibit the small drop at 28/32 nodes.

We can thus say that the template exhibits most of the relevant behaviour of the reference
implementation, though it has a lower performance.

8.3 Sorting

To implement sorting with the shifter list template, we only need three delegates: The mandatory
processing delegate as well as the onCycleEnd and onTerminate. We configured the template
to restart on the end of an iteration. We do not need the transfer delegates as no transfer is
required in this implementation. We implemented this algorithm with the template and affirmed
its correctness.
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(a) Performance of skyline template on anti-correlated dataset
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Figure 25: Performance comparison of Skyline implementation with / without template
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Figure 26: Scalability comparison of Skyline implementation with / without template

8.3.1 Modification

For output, each node needs two pieces of information: A pointer to his initial output area and
an offset (the sum of all working set sizes) so that he can calculate the next output position after
a cycle ended. This information has to be added in the configuration.

8.3.2 Delegates

The onProcessData delegate inserts the data into the local data set and preserve the sort order
and possibly forwards elements to the downstream node. The onCycleEnd delegate outputs the
data elements in the local working set and calculates the new output position for the node in the
next iteration. The and onTerminate delegate is identical, but does not require the calculation
of the next output position. For simplicity however, only one implementation needs to be created
and both delegates can be configure to run the identical implementation.
As these output areas are exclusive to the nodes, no synchronization for output is needed.

8.4 Discussion

We have demonstrated in this section how two problems can be solved with a Shifter List-based
implementation. We have shown that the overall behaviour of the template implementation of
solving skyline queries corresponds with the non-template version developed in this thesis.
As expected, the performance of the template-based implementation is lower than its reference
implementation. This is due to the generic nature of the template which incurs some perfor-
mance penalties for using delegate calls and does not benefit from the whole optimization range
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as compared to the reference implementation.

Nonetheless, the template is a very helpful: The time to develop an algorithm with the
template and see first performance results (which in the case of skyline still beat the competitor)
is significantly lower than implementing the whole algorithm from scratch. A first implementation
can verify the approach and general behaviour with the template, while for an optimized version
the delegate calls can be inlined and further optimized.

9 Conclusion

We have presented a new approach using pipeline-parallelism to solve skyline queries on multi-
core architectures. We have shown that it outperforms a state-of-the-art parallel implementation
which is based on input partitioning (pskyline, Park et al. [12]) by an order of magnitude, ex-
cept on datasets with a very small skyline. On datasets where the size of the skyline is very
small compared to the input size, a simple single-threaded approach already achieves a very
high performance as it can efficiently discard most input tuples. Parallelized approaches are not
necessary for such datasets.

In our evaluation, the experimental results have shown that while our implementation is
affected by skew (with respect to the position of skyline elements within the dataset) too, the
effect is smaller than for the compared algorithm. Additionally we observed that the configuration
factors significantly influence the performance of our approach.
Furthermore, we presented a template based on the Shifter List concept to implement algorithms
and showed how it can be used to implement skyline queries and sorting. The template allows
to quickly implement an algorithm with a pipelined approach, while avoiding a large part of the
tedious boilerplate-code. While the performance is not as high as with an implementation that
is focused on one algorithm, it allows for a quick evaluation of the viability and correctness of
an approach. It offers a performance baseline from which optimizations can be implemented.
Though slightly slower, the template skyline implementation still outperforms pskyline by a large
margin.

A Appendix

A.1 FPGA

An FPGA (field programmable gate array) is a hardware circuit which can reconfigure its path-
ways at initialization or runtime. It can be used to implement almost arbitrary operations by
properly routing signals and configuring its components.
Typically an FPGA consists of interconnection wires (with contain special re-configurable junc-
tions/intersections), lookup tables (LUT) to implement arithmetical or logical operations and
very small memory blocks (BRAM).

When implementing a circuit on an FPGA, the designer of the circuit is limited by the num-
ber of these resources. Signal propagation delays on the other hand restrict the maximum clock
frequency that the circuit run. Also, the layout and routing of the wires is very complex and
becomes harder the larger the size of the circuit is. Thus circuit design is typically done in a
hardware description language such as VHDL or Verilog. The actual routing and resource allo-
cation is then done by a vendor-specific tool which takes the resource constraints of the FPGA
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node 0 1 2 3 4 5 6 7
0 10 16 16 22 16 22 16 22
1 16 10 22 16 16 22 22 16
2 16 22 10 16 16 16 16 16
3 22 16 16 10 16 16 22 22
4 16 16 16 16 10 16 16 22
5 22 22 16 16 16 10 22 16
6 16 22 16 22 16 22 10 16
7 22 16 16 22 22 16 16 10

Table 6: Node distances obtained by executing numactl -H on a 4-socket machine with AMD
Opterons 6276 (Note that the AMD Opteron 6276 consists of two processors ’fused’ on a single
die - each with its own memory controller. Thus on a machine with four sockets, we can see
eight NUMA nodes.)

into account.

The fact that the number of clock cycles that operations take are known in advance can be
exploited in the design of a parallelized implementation to avoid synchronization or waiting that
would be normally required on normal hardware with a pre-emptive scheduler .

A.2 Non uniform memory access (NUMA)

In every computer, reading from or writing to memory by the processor takes a certain amount
of clock cycles. The number of these cycles usually depend on the architecture and hardware,
but also on whether the data is or can be cached.
For a long time, the whole area of main memory could be accessed by the processor within the
same number of cycles (assuming any involved caches miss).
In NUMA-systems this is no longer the case: Not all memory regions are accessible by a processor
at the same cost: ”The memory access time depends on the memory location relative to the
processor”14. For certain implementations, a processor may not even have access to certain
memory regions and has to request it from the owning processor. This leads to an increased
access time. The tool ’numactl’15 can print the distances between NUMA nodes. An example is
given in Table 6

Placement and access patterns for data thus can influence performance of a memory-intensive,
multi-threaded program (see e.g. [16]).

14 Non-Uniform Memory Access, Wikipedia, retrieved on 2013-08-13
15Requires a NUMA-aware Linux kernel. (2.5 and up: see [21], chapter 2)
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