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Abstract

Let S be an oriented hyperbolic surface with basepoint x ∈ S and set Γ = π1(S, x).
Let ρ : Γ → G = Isom+(D) be a holonomy representation into the group G of
orientation preserving isometries of the Poincaré disc. The pullback eΓ

b ∈ H2
b(Γ) of

the bounded Euler class eb ∈ H2
b(Homeo+(S1)) via the composition

Γ
ρ
// G // Homeo+(S1)

is invariant under the action of the mapping class group M(S) of S. The lat-
ter group acts on the unit tangent bundle T1S of S by orientation preserving
homeomorphisms and the pullback of eΓ

b to the fundamental group π1(T1S) is
invariant under this lifted mapping class group action. We prove that this pulled
back class is trivialised by a unique M(S)-invariant homogeneous quasimorphism
Rot : π1(T1S)→ R which is moreover integral-valued and independent of the choice
of hyperbolic metric on S.
For a closed regular curve c on S the integer Rot([c′]) serves as a substitute for the
classical rotation number for closed regular planar curves. In particular, we have the
following analogon of Whitney’s classification result for regular homotopy classes of
planar curves: Two closed regular curves c1, c2 on S are regularly homotopic if and
only if they are homotopic and, moreover, Rot([c′1]) = Rot([c′2]). Chillingworth has
introduced the related concept of winding numbers for curves and used it to prove
an analogous result for non-compact surfaces. But in contrast to the quasimorphism
Rot, the definition of the winding number functions involves the choice of a nowhere
vanishing vector field on the surface and, for exactly this reason, is not well defined
anymore for compact surfaces.
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Zusammenfassung

Sei S eine orientierte hyperbolische Fläche, x ∈ S ein Basispunkt und Γ = π1(S, x)
deren Fundamentalgruppe. Wir betrachten eine Holonomiedarstellung ρ : Γ →
G = Isom+(D) von Γ mit Werten in der Gruppe G der orientierungserhaltenden
Homöomorphismen der hyperbolischen Ebene. Der Pullback eΓ

b ∈ H2
b(Γ) der be-

schränkten Eulerklasse eb ∈ H2
b(Homeo+(S1)) längs der Komposition

Γ
ρ
// G // Homeo+(S1)

ist invariant unter der Operation der AbbildungsklassengruppeM(S) von S. Letz-
tere operiert auf dem Einheitstangentialbündel T1S von S durch orientierungser-
haltende Homöomorphismen, und der Pullback von eΓ

b auf die Fundamentalgruppe
π1(T1S) ist invariant unter dieser Operation. Wir beweisen, dass diese Cohomolo-
gieklasse durch einen eindeutig bestimmten, M(S)-invarianten homogenen Quasi-
morphismus Rot : π1(T1S) → R trivialisiert wird, welcher ausserdem auch noch
ganzzahlig und unabhängig von der Wahl der hyperbolischen Metrik auf S ist.
Für reguläre geschlossene Kurven c auf S dient die Zahl Rot([c′]) als Ersatz für
die klassische Rotationszahl für ebene reguläre geschlossene Kurven. Insbesondere
gilt folgendes Analogon von Whitneys Klassifikationsresultat für reguläre Homo-
topieklassen ebener Kurven: Zwei reguläre geschlossene Kurven c1, c2 auf S sind
genau dann regulär homotop, wenn sie homotop sind und zusätzlich Rot([c′1]) =
Rot([c′2]) gilt. Chillingworth hat den verwandten Begriff der Windungszahl für
Kurven eingeführt und mit dessen Hilfe ein analoges Resultat für nicht kompakte
Flächen bewiesen. Im Gegensatz zum Quasimorphismus Rot fliesst in die Definition
der Windungszahl allerdings die Wahl eines nirgends verschwindenden Vektorfeldes
auf der Fläche ein. Und aus genau diesem Grund sind Windungszahlen im kom-
pakten Fall nicht mehr wohldefiniert.
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Introduction

Let S be an oriented surface of finite topological type such that the space Hyp(S)
of complete hyperbolic metrics of finite volume is non-empty. We fix a universal
covering S̃ → S, a base point x ∈ S and set Γ = π1(S, x). Associated to every
metric h ∈ Hyp(S) and every non-zero tangent vector of S̃ with base point lying
above x there is a holonomy representation

ρ : Γ→ G

into the group G = Isom+(D) = PSU(1, 1) of orientation preserving isometries of
the Poincaré disc. Observe that the induced action of G on the boundary ∂D gives
an embedding G ↪→ Homeo+(S1) into the group of orientation preserving homeo-
morphisms of the circle.

Consider the central Z-extension

〈t〉 // // Homeo+
Z (R) // // Homeo+(S1)

where the group in the middle consists of orientation preserving homeomorphisms
of the real line which commute with the integral translation t : x 7→ x + 1. The
cohomology class eZ ∈ H2(Homeo+(S1),Z) associated to this extension is called
the integral Euler class. It is easy to represent eZ by an explicit cocycle which only
takes values in the set {0, 1} and therefore also represents a bounded cohomology
class eb ∈ H2

b(Homeo+(S1)), the bounded Euler class.

Consider the pullback eΓ
b = ρ∗(eb) ∈ H2

b(Γ) of the bounded Euler class via a holo-
nomy representation Γ

ρ−→ G −→ Homeo+(S1). It is a non-trivial fact that eΓ
b is

independent of the choice of ρ and is moreover invariant under the outer action of
the mapping class group M(S) of S on the fundamental group Γ.

Let’s focus on the case of a compact surface S for the moment. Then we might as
well consider the pullback eΓ

Z = ρ∗(eZ) ∈ H2(Γ,Z) ∼= Z of the integral Euler class
via a holonomy representation (in the non-compact case Γ is a free group and so
H2(Γ,Z) is trivial). Again, as the notation suggests, eΓ

Z is independent of the choice
of ρ and is a (2g − 2)-fold multiple of a suitable generator in this group where g is
the genus of the surface S. Now consider a central Z-extension

Z // // Γ
p
// // Γ

of Γ whose cohomology class in H2(Γ,Z) equals eΓ
Z. Then the pullback p∗(eΓ

b ) lies
in the kernel of the comparison map

c : H2
b(Γ)→ H2(Γ,R)

from bounded to usual cohomology, and hence it is trivialised by a homogeneous
quasimorphism ϕ : Γ → R. As it turns out, the group Γ is isomorphic to the
fundamental group π1(T1S) of the unit tangent bundle of S (we omit basepoints
from the notation of fundamental groups in what follows). There is an action of
M(S) by orientation preserving homeomorphisms on T1S such that the induced
outer action on π1(T1S) lifts the outer action on π1(S). Indeed, this is true for all
surfaces, not only compact ones. Clearly, the pullback p∗(eΓ

b ) ∈ H2
b(Γ) is invariant

under this lifted action since eΓ
b is invariant.

Returning to the case of a general surface, it is natural to ask the following ques-
tion motivated by the compact case: The pullback of the invariant class eΓ

b to
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H2
b(π1(T1S)) is invariant under the lifted mapping class group action and is trivi-

alised by a homogeneous quasimorphism. Is there an invariant homogeneous quasi-
morphism trivialising this class? The first main objective of this thesis is to
answer the above question affirmatively: There is a unique such quasimorphism
Rot : π1(T1S)→ R and it takes integral values.

We give two approaches to this problem. In Section 4 we restrict to the case of
a compact surface and take a purely algebraic approach. The starting point of
our consideration is the fact that the natural homomorphism M(S) → Out+(Γ)
is an isomorphism in the compact case by the Dehn-Nielsen-Baer theorem. The
construction of the lifted mapping class group action by outer automorphisms on
Γ reduces to a splitting problem and, ultimatively, to a cohomological vanishing
result. We then derive the existence and uniqueness of an invariant trivialising
quasimorphism using again cohomological methods.

Section 5 treats the case of a general surface using geometric methods. We first
explicitely construct a lifted mapping class group action on the unit tangent bundle.
Then we introduce simultaneous lifts of all holonomy representations and use these
lifts to define Rot. As it turns out, the natural domain of definition of Rot is not a
single fundamental group but rather the full fundamental groupoid π1(T1S) or, at
least, the subset of closed classes.

Our second main objective is to give a concrete description of the quasimorphism
Rot in more classical terms. This is done in the final Section 6. We will see that Rot
serves as an analogon of the notion of ‘rotation number’ of regular closed planar
curves for regular closed curves on a hyperbolic surface. The rotation number of a
regular closed planar curve c is defined as the number of times the tangent vector
c′ rotates in counter-clockwise direction as c is traversed once in positive direction.
In order to give a similar definition for curves on more general surfaces one needs a
reference frame with respect to which the rotation of the tangent vector c′ can be
measured. This has been carried out by Chillingworth and, indepenently, by Rein-
hart in the case of non-compact surfaces by choosing a nowhere vanishing vector
field as reference frame. Fixing such a vector field, Chillingworth defines the notion
of ‘winding number’ for curves and shows that it classifies regular homotopy classes:
Two regular closed curves are regularly homotopic if and only if they are homo-
topic and have the same winding number. This generalises Whitney’s classification
result for regular homotopy classes of planar curves in terms of the rotation number.

For a regular closed curve c on a hyperbolic surface S we can interpret the homotopy
class [c′] of its derivative as an element of π1(T1S) and form the integer Rot([c′]).
In analogy to the above classification results we have: Two closed regular curves
c1, c2 on S are regularly homotopic if and only if they are homotopic and, more-
over, Rot([c′1]) = Rot([c′2]). Hence we have an analogon of the rotation respectively
winding number in the planar respectively non-compact setting which is intrinsi-
cally defined and does not dependent on the choice of a global reference frame. In
particular, it is available for compact surfaces of genus g ≥ 2 as well. We will also
clarify the connection between the quasimorphism Rot and Chillingworth’s wind-
ing number functions. In fact, Rot encodes the information of all winding number
functions simultaneously.
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Finally, we discuss the quasimorphism rot defined on the fundamental group π1(S)
of a non-compact surface introduced by Calegari. It turns out that rot is a specific
winding number function which clarifies the connection to Rot. We compare a
formula describing rot obtained by Calegari with certain combinatorial formulas
which we will derive for Rot.
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1. Preliminaries

This section serves as a reference for some basic results that will be needed later
on. At the same time we use the opportunity to fix notations and concepts.

1.1. Coverings and Topological Groups. Let p : Y → X be a covering map
of connected spaces. Recall that a covering transformation is a homeomorphism
T : Y → Y that descends to the identity on X. Either T is the identity or T has
no fixed point. A covering p is called regular (or Galois) if the group of covering
transformations acts transitively on each fibre of p. A covering p is universal if Y
is simply connected. A topological space X admits a universal covering X̃ → X if
and only if it is sufficiently connected by which we mean that it is path-connected,
locally path-connected and semi-locally simply connected.
Fix a base point x ∈ X and choose a base point y ∈ Y lying above x, i.e., p(y) = x.
Every curve c : I → X starting at x has a unique lift to Y starting at y. If c1 and
c2 are homotopic (rel {0,1}) and start at x then their lifts with starting point y are
homotopic as well, in particular, they have the same end point. Hence if p is regular
then for every class γ ∈ π1(X,x) and every point y ∈ Y lying above x there is a
unique covering transformation T yγ such that the lift of every curve representing γ
to Y with starting point y has endpoint T yγ (y). For fixed y the map γ 7→ T yγ from
π1(X,x) to the group of covering transformations of p is a group homomorphism.
When p is universal then it is an isomorphism identifying the group of covering
transformations with the fundamental group π1(X,x).

There is a standard construction of a universal covering for sufficiently connected
spaces. But since we will only need it for topological groups we restrict ourselves
to this case where much more structure is available. Let G be a topological group
with neutral element e. We assume that G is sufficiently connected and locally
compact. For any two curves u : I → G and v : I → G we can form their pointwise
product t 7→ u(t)v(t) which we denote by u · v for short. If we equip the space G
of all curves in G with the compact-open topology (cf. Subsection 1.5) the binary
operation · induces a structure of topological group on G with neutral element the
class of the constant path ẽ : t 7→ e. Moreover, if u, u′ are homotopic (rel {0, 1})
via the homotopy g and v, v′ are homotopic (rel {0, 1}) via the homotopy h then

I × I → G, (t, s) 7→ g(t, s)h(t, s)

is a homotopy (rel {0, 1}) from u · v to u′ · v′. From this it is easy to deduce that ·
descends to a topological group structure on the fundamental groupoid π1(G) of G
equipped with the quotient topology. We point out that this group structure differs
from the groupoid structure given by concatenation. A slightly different point of
view is the following. The set N of all closed nullhomotopic paths in G based at e
is a closed normal subgroup of G and we have π1(G) = G /N .

The set G̃ of all classes of paths starting at e is a closed normal subgroup of π1(G).
The map p : G̃ → G sending a class of paths to their common endpoint in G is
a continuous surjective group homomorphism with kernel the fundamental group
π1(G, e). In fact we have:

Lemma 1.1. The group G̃ is connected and simply connected and p is a universal
covering map.

For a topological group G there are two ‘multiplications’ available for homotopy
classes (rel {0, 1}) of curves in G. On the one hand there is concatenation of
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composable paths which we denote by ∗ for the moment. Then there is the pointwise
multiplication · discussed above. They are compatible in the following sense:

Lemma 1.2. Let a, b, c, d be curves in G such that a and b are composable as well
as c and d. Then

(a ∗ b) · (c ∗ d) ' (a · c) ∗ (b · d) (rel {0, 1}).

It is well known and easy to check that, as a consequence, the restrictions of · and
∗ to the fundamental group π1(G, e) agree and are both commutative.

1.2. On Surfaces. In this very short subsection we introduce some conventions
concerning surfaces that will stay in effect throughout this thesis. By a surface
S we always mean a connected, two-dimensional differentiable manifold (without
boundary) which is orientable and oriented, i.e., equipped with a fixed orientation.
Moreover, we focus on topologically finite surfaces, that is, we require the fundamen-
tal group π1(S) to be finitely generated. For such a surface we denote by Hyp(S)
the set of complete hyperbolic metrics with finite volume. We always require that
Hyp(S) is non-empty. In particular, if S is compact then its genus is ≥ 2.

1.3. Definition of Unit Tangent Bundles. Let M be a smooth manifold of
dimension m. The tangent bundle of M is the union of all tangent spaces of M ,
formally we set

TM =
⋃
x∈M
{x} × TMx.

When there is no risk of confusion, a typical element (x, v) ∈ TM will just be de-
noted by v and we will say that v is based at x or that x is the basepoint of v. It is
well known that the differentials of the local charts in any smooth atlas of M give
a smooth atlas of TM and that the basepoint map TM →M is an m-dimensional
vector bundle.

Choose a riemannian metric g on M . This choice allows to define unit tangent
spaces

T 1,gMx = {v ∈ TMx | ||v||g = 1}

as well as the unit tangent bundle

T 1,gM =
⋃
x∈M
{x} × T 1,gMx ⊂ TM.

The unit tangent bundle is a codimension 1 submanifold of TM and is also an
Sm−1-bundle over M via the basepoint map.

Although the definitions above depend on the choice of a metric g, the diffeomorphy
type of T 1,gM does not. Hence we are going to define a metric-independent version
of the unit tangent bundle by ‘semiprojectivising’ the tangent spaces of M . For
every x ∈M the group R+ acts on TMx \{0} by scalar multiplication and the orbit
space

T1Mx =
(
TMx \ {0}

)
/R+
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can be interpreted as the space of rays in TMx emanating from the origin. Similar
as above the union

T1M =
⋃
x∈M
{x} × T1Mx

has a natural structure of smooth manifold and of an Sm−1-bundle over M . For
any metric g the canonical map

T 1,gM → T1M, (x, v) 7→ (x, [v])

is clearly smooth and is a sphere bundle isomorphism.

1.4. Coverings of Unit Tangent Bundles. Let M be a smooth manifold and
let Γ < Diff(M) act freely and properly discontinuously on M . Then the canonical
map p : M → Γ\M is a regular covering with group of covering transformations
Γ. Equip the space Γ\M with the unique manifold structure such that p is a local
diffeomorphism. Via pullback the projection p induces a bijection

Riem(Γ\M)→ Riem(M)Γ

between the corresponding spaces of (Γ-invariant) Riemannian metrics. Fix g ∈
Riem(Γ\M) and set g̃ = p∗(g). Then p is a local isometry and hence the differential

dp : T 1,g̃(M)→ T 1,g(Γ\M)

gives a local diffeomorphism between the unit tangent bundles. On the other hand,
by definition of g̃, we have Γ < Isom(M, g̃) and hence there is an action of Γ on
T 1,g̃(M) given by the differentials γ · v = dγ(v).

Lemma 1.3. The map dp is a regular covering with Γ as group of covering trans-
formations. Hence dp induces a diffeomorphism

q : Γ\T 1(M)
∼=−→ T 1(Γ\M).

Proof. Fix a point (v, x) ∈ T 1(Γ\M) and choose an open neighbourhood U of x in
Γ\M and a diffeomorphism ψ : p−1(U)→ Γ× U such that the diagram

p−1(U)
ψ

//

p
##F

FF
FF

FF
FF

Γ× U

π2
||yy

yy
yy

yy
y

U

commutes. If we equip Γ×U with the pulled back metric π∗2(g) then ψ is isometric.
Hence we can take the differentials of all maps in the above diagram and obtain
again a commutative diagram

(dp)−1(T 1(U))
dψ

//

dp
&&NNNNNNNNNNN

Γ× T 1(U)

π2
yyssssssssss

T 1(U)

where, strictly speaking, the map on the right is the differential of π2 but this is
still just the projection to the second factor. As T 1(U) is an open neighbourhood
of (v, x) in T 1(Γ\M) this shows that dp : T 1(M)→ T 1(Γ\M) is indeed a covering
with fibre Γ. But Γ clearly acts transitively on the fibres of dp (via the differentials)
and hence dp is a regular covering with Γ as group of covering transformations. �
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1.5. The Compact-Open Topology. We collect some general facts about compact-
open topologies. Recall the definition of the compact-open topology on the set
C(X,Y ) of continuous maps from X to Y : For K ⊂ X and U ⊂ Y define

D(K,U) = {f ∈ C(X,Y ) | f(K) ⊂ U},
then the compact open topology has the familiy {D(K,U) | K compact, U open}
as a subbasis.

For a one-point space X = ∗ we can identify C(∗, Y ) with Y and the compact open
topology on the first space agrees with the topology on Y . A very useful result is
the following:

Lemma 1.4. Let X,Y, Z be topological spaces and let f : X × Y → Z be a map.
If f is continuous then so is the map X → C(Y,Z), x 7→ f(x, ·) where C(Y,Z) is
equipped with the compact-open topology. If Y is locally compact then the reverse
implication is also true.

For this reason we will assume that all spaces in question are locally compact. With
this assumption the evaluation map

C(X,Y )×X → Y, (f, x) 7→ f(x)

is continuous and, in fact, the compact open topology is the coarsest topology on
C(X,Y ) such that it is continuous. Also the composition operation

◦ : C(Y,Z)× C(X,Y )→ C(X,Z)

is continuous. Hence if X is locally compact then the group Homeo(X) equipped
with the compact-open topology is a topological group.

Another important consequence of Lemma 1.4 is that, in the locally compact set-
ting, there is a bijection between homotopies H : I × X → Y between maps
f, g ∈ C(X,Y ) and paths h : I → C(X,Y ), t 7→ H(t, ·) connecting f and g.
Hence the homotopy classes of maps in C(X,Y ) correspond to the path connected
components of C(X,Y ):

[X,Y ] = π0

(
C(X,Y )

)
.

Similar statements hold for homotopies with restrictions. For example a homotopy
relative to {0, 1} between curves wi : I → X having the same starting and end
point is the same thing as a path I → C(I,X) which takes values in the subspace
{f ∈ C(I,X) | f(0) = wi(0), f(1) = wi(1)}.

Finally, for later use we record:

Lemma 1.5. If Y is totally disconnected, then so is C(X,Y ). In particular: For
discrete X the space Homeo(X) is totally disconnected.

Proof. Let f, g ∈ C(X,Y ) be different. Choose x ∈ X with f(x) 6= g(x) and choose
open sets U, V in Y such that

U ∩ V = ∅, U ∪ V = Y, f(x) ∈ U, g(x) ∈ V.
The open sets U ′ = D(x, U) and V ′ = D(x, V ) in C(X,Y ) then give a similar
decomposition, i.e.,

U ′ ∩ V ′ = ∅, U ′ ∪ V ′ = C(X,Y ), f ∈ U ′, g ∈ V ′.
�
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1.6. Isometries of the Poincaré Disc. We collect some basic facts from hy-
perbolic geometry for later reference. The Poincaré disc is the open unit disc
D = {z ∈ C | |z| < 1} endowed with the Poincaré metric

h =
4|dz|2

(1− |z|2)2

of constant curvature −1. The group SU(1, 1) consisting of all complex matrices of
the form

g =
(
a b

b a

)
with |a|2 − |b|2 = 1

acts on D by fractional linear transformations, i.e., by

gz =
az + b

bz + a
.

This action is orientation preserving and isometric with kernel {±I}. Hence we get
an action of the quotient G = PSU(1, 1) = SU(1, 1)/{±I} on D.

Lemma 1.6. The map G → Isom+(D) to the group of orientation preserving
isometries of D is an isomorphism.

We use the notation

g =
[
a b

b a

]
for a typical element of G where the square brackets indicate that we mean the
residue class of the corresponding matrix in SU(1, 1) and where we have the de-
terminant condition |a|2 − |b|2 = 1. The unit element of G is denoted by e in the
sequel. An element g 6= e is called elliptic, parabolic or hyperbolic depending on
whether | tr(g)| is less than, equal to or bigger than 2. An elliptic element has a
unique fixed point on D, a parabolic one has a unique fixed point on the boundary
∂D and a hyperbolic element has a pair of fixed points on the boundary ∂D. We
define the following three subgroups of G:

K =
{[

ζ 0
0 ζ−1

] ∣∣∣∣ ζ ∈ S1

}
A =

{[√
1 + t2 t

t
√

1 + t2

] ∣∣∣∣ t ∈ R
}

N =
{[

1 + iy −iy
iy 1− iy

] ∣∣∣∣ y ∈ R
}

Then every elliptic, parabolic respectively hyperbolic element is conjugated within
G to an element in the group K, A respectively N . The subgroup K is maximal
compact and isomorphic to S1/{±1} ∼= S1. It is the stabiliser of the point 0 ∈ D.
The groups A and N are both isomorphic to R and their product B = AN acts
simply transitively on D.

Since the action of G on D is isometric we have an induced action on the unit
tangent bundle T 1D by the differentials, explicitely given by

g(z, v) = (gz, dgz(v)) =
(az + b

bz + a
,

v

(bz + a)2

)
.
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The above discussion shows:

Lemma 1.7. The action of G on T 1D is simply transitive, hence the map

G
∼=−→ T 1D, g 7→ g(0, 1)

is a homeomorphism. The left coset gK ⊂ G is mapped homeomorphically to the
fibre over the point g(0, 1).
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2. Quasimorphisms

This section is about quasimorphisms on groups (and groupoids). We start by
recalling the definition and basic properties of quasimorphisms, then discuss their
connection to bounded cohomology. Next we compare the two seminorms on the
space of homogeneous quasimorphisms given by the defect and by the pullback of
the norm on H2

b (the so-called Gromov norm). In Subsections 2.3 and 2.4 we present
new results concerning these seminorms which make use of the heavy machinery
introduced to the theory of bounded cohomology by Burger and Monod. In par-
ticular we use the amenable and doubly ergodic action on the poisson boundary
of random walks on groups. In Subsection 2.5 we briefly review the translation
quasimorphism, the rotation number and the Euler class which will play a crucial
role in the rest of this work.

2.1. Basic Properties. Let Γ be a group with neutral element e. A quasimor-
phism on Γ is a map ϕ : Γ → R that behaves like a homomorphism up to finite
error. More precisely, we require that its defect

D(ϕ) = sup
x,y∈Γ

|ϕ(xy)− ϕ(x)− ϕ(y)|

is finite. An easy induction shows that for any n we have an inequality

(1)
∣∣∣ϕ(x1 · · ·xn)−

n∑
k=1

ϕ(xk)
∣∣∣ ≤ (n− 1)D(ϕ).

We shall say that two maps ϕ1, ϕ2 : Γ → R are at finite distance if they are with
respect to the sup-norm, i.e., if ||ϕ1 − ϕ2||∞ is finite. Every map at finite distance
of a quasimorphism is a quasimorphism as well.

We call a quasimorphism ϕ homogeneous if ϕ(xn) = nϕ(x) for all integers n and all
x ∈ Γ. To every quasimorphism ϕ we can associate its homogenisation ϕ defined
by

ϕ(x) = lim
n→∞

ϕ(xn)
n

.

Lemma 2.1. The above limit exists for all x ∈ Γ. The map ϕ is a homogeneous
quasimorphism at finite distance of ϕ, in fact ||ϕ− ϕ||∞ ≤ D(ϕ).

Proof. By (1) we have

|mϕ(xn)− nϕ(xm)| ≤ |mϕ(xn)− ϕ(xmn)|+ |nϕ(xm)− ϕ(xmn)|
≤ (m− 1)D(ϕ) + (n− 1)D(ϕ)

for all m,n ≥ 1. Dividing by mn gives∣∣∣ϕ(xn)
n
− ϕ(xm)

m

∣∣∣ ≤ ( 1
n

+
1
m
− 2
mn

)
D(ϕ),

hence ϕ(xn)/n is a Cauchy sequence and the limit indeed exists. Specialising the
first inequality in the proof to the case m = 1 gives

|ϕ(xn)− nϕ(x)| ≤ (n− 1)D(ϕ).

Dividing by n and passing to the limit (n→∞) shows |ϕ(x)−ϕ(x)| ≤ D(ϕ). Since
this holds for all x ∈ Γ we have ||ϕ − ϕ||∞ ≤ D(ϕ). Finally, ϕ is homogeneous
because

ϕ(xm) = lim
n→∞

ϕ(xmn)
n

= m lim
n→∞

ϕ(xmn)
mn

= mϕ(x).

�
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Denote by Q(Γ) respectively Qh(Γ) the spaces of all quasimorphisms respectively
homogeneous quasimorphisms on Γ. We call two quasimorphisms equivalent if they
are at finite distance.

Corollary 2.2. The homogenisation operator (·) : Q(Γ) → Q(Γ) is a projection
with kernel l∞(Γ) and image Qh(Γ). As a consequence, every equivalence class of
quasimorphisms contains exactly one homogeneous one, and we have the decompo-
sition

Q(Γ) = l∞(Γ)⊕Qh(Γ)

with respect to which (·) is just the projection on the second factor.

Proof. On the one hand, we obviously have ϕ = ϕ in case ϕ is already homogeneous,
hence (·) is a projection on its image Qh(Γ). On the other hand, ϕ = ψ if and only
if ϕ and ψ are equivalent. Indeed, the if part is clear and the only if part follows
from Lemma 2.1 since

||ϕ− ψ||∞ ≤ ||ϕ− ϕ||∞ + ||ψ − ψ||∞ ≤ D(ϕ) +D(ψ).

�

Next, we derive two results concerning the defect of a homogeneous quasimorphism.
To do so, we need the following observation concerning commutators in groups.

Proposition 2.3. The element x−2ny−2n(xy)2n can be written as a product of n
commutators.

Proof. See [2] Lemma 3.6. Actually this is a special case of a much more general
result (compare [32] Lemma 2.1): Let x1, . . . , x2n be arbitrary elements and assume
that z can be written as a product containing each xi and each inverse x−1

i exactly
once as a factor, then z is a product of n commutators. �

Lemma 2.4. Let ϕ denote the homogenisation of ϕ. Then D(ϕ) ≤ 2D(ϕ).

Proof. Define ϕ′(x) = 1
2

(
ϕ(x)−ϕ(x−1)

)
and observe that ||ϕ′−ϕ|| ≤ D(ϕ). So ϕ′ is

a quasimorphism whose homogenisation agrees with ϕ. Moreover we have D(ϕ′) ≤
D(ϕ), hence for the proof we may replace ϕ by ϕ′ and assume in what follows that
ϕ(x−1) = −ϕ(x) for all x ∈ Γ (i.e., we may assume that ϕ is antisymmetric).
We shall first derive bounds for the values of an antisymmetric quasimorphism on
product of commutators. For a single commutator we have

|ϕ([x, y])| ≤ |ϕ(x) + ϕ(y) + ϕ(x−1) + ϕ(y−1)|︸ ︷︷ ︸
=0

+3D(ϕ) = 3D(ϕ),

and if c is a product of n commutators then an induction shows that

(2) |ϕ(c)| ≤ (4n− 1)D(ϕ).

Now by Proposition 2.3 and (2) we obtain

|ϕ((xy)2n)− ϕ(x2n)− ϕ(y2n)| ≤ |ϕ(x−2ny−2n(xy)2n)|+ 2D(ϕ)
≤ (4n− 1)D(ϕ) + 2D(ϕ) = (4n+ 1)D(ϕ)

for every positive integer n. Dividing this by 2n and passing to the limit (n→∞)
gives

|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ 2D(ϕ),

and the claim follows by taking the supremum over all x, y ∈ Γ. �

Lemma 2.5. Every homogeneous quasimorphism is invariant under conjugation.
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Proof. Let ϕ be homogeneous. Then for all x, y ∈ Γ and all positive n we have

n|ϕ(yxy−1)− ϕ(x)| = |ϕ(yxny−1)− ϕ(xn)| ≤ 2D(ϕ)

by (1). Dividing by n and passing to the limit (n→∞) gives the claim. �

It is a remarkable fact that the defect of a homogeneous quasimorphism is encoded
in its values on commutators.

Lemma 2.6. If ϕ is homogeneous then

D(ϕ) = sup
x,y∈Γ

|ϕ([x, y])|.

Proof. First notice that

|ϕ([x, y])| ≤ |ϕ(x) + ϕ(yx−1y−1)|+D(ϕ) = D(ϕ)

because ϕ is invariant under conjugation and antisymmetric. To prove the reversed
inequality we can proceed similarly as in the proof of Lemma 2.4. Set

s = sup
x,y∈Γ

|ϕ([x, y])|.

For any positive integer n we obtain by Proposition 2.3:

2n · |ϕ(xy)− ϕ(x)− ϕ(y)| = |ϕ((xy)2n)− ϕ(x2n)− ϕ(y2n)|
≤ |ϕ(x−2ny−2n(xy)2n)|+ 2D(ϕ)
≤ (n− 1)D(ϕ) + ns+ 2D(ϕ)
= (n+ 1)D(ϕ) + ns.

Dividing this by 2n and passing to the limit (n→∞) gives

|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ 1
2

(D(ϕ) + s).

Taking the supremum over all x, y ∈ Γ finally shows that s ≥ D(ϕ). �

Homogeneous quasimorphisms have many more pleasant properties besides the ones
described above. We list two of them for convenience, the easy proofs are all based
on a variant of the limit argument in the proof of Lemma 2.6 and will be omitted.
Let ϕ be a homogeneous quasimorphism on Γ.

Lemma 2.7. If two elements x, y commute then ϕ(xy) = ϕ(x) + ϕ(y). In partic-
ular, every homogeneous quasimorphism on an abelian group is a homomorphism.

There is also an analogon to the homomorphism theorem of group theory:

Lemma 2.8. Let f : Γ → Λ be a surjective homomorphism. Then there exists a
quasimorphism ψ on Λ such that the diagram

Γ
ϕ
//

f

��

R

Λ
ψ

??

commutes if and only if ϕ vanishes identically on ker(f). If this is the case then ψ
is unique, homogeneous and D(ϕ) = D(ψ).



10

2.2. Quasimorphisms and Bounded Cohomology. In this subsection we dis-
cuss the link between quasimorphisms and the second bounded cohomology of a
group. In analogy to usual group cohomology we consider the (inhomogeneous) bar
resolution of Γ but restrict to bounded maps, i.e., consider the resolution

0 // l∞(Γ0) d0 // l∞(Γ) d1 // l∞(Γ2) d2 // l∞(Γ3) d3 // · · ·

where the dn are the usual inhomogeneous coboundary operators given by

(dnα)(x0, . . . , xn) = α(x1, . . . , xn)

+
n∑
k=1

(−1)kα(x0, . . . , xk−2, xk−1xk, xk+1, . . . , xn)

+ (−1)n+1α(x0, . . . , xn−1).

Then the bounded cohomology groups of Γ with real coefficients are defined by

Hn
b (Γ,R) = ker(dn)/ Im(dn−1),

equipped with the quotient seminorm. We have chosen this very naive definition
since, except for the next two subsections, it is the most appropriate one for our
purposes. However, there is an extensive theory behind this cohomology. Originally
introduced by Gromov, later on Burger and Monod developed a framework to de-
fine and study (continuous) bounded cohomology for arbitrary topological groups
and a large class of coefficients. Their work includes in particular strong methods
to compute H•cb via a variety of resolutions of the coefficient space. A crucial role is
played by the seminorm whose correct computation is guaranteed by additional as-
sumptions on the resolution. For an introduction to bounded cohomology we refer
the reader to [30] or [9]. There is also a modern approach to bounded cohomology
via derived functors, see Bühler [7], giving the whole theory a more classical foun-
dation. The essential difference in the derived functor approach is that the spaces
H•cb are only recovered up to isomorphism and not up to isometry of seminormed
spaces. Hence the ‘canonical’ seminorm remains somewhat mysterious.
We will now focus on the second real bounded cohomology H2

b(Γ) = H2
b(Γ,R) for

discrete groups Γ since this is all we will need in the sequel. For these spaces Ivanov
proved that the canonical seminorm is actually a norm, see [16].

Let ϕ be a quasimorphism on Γ. Then dϕ(x, y) = ϕ(x) − ϕ(xy) + ϕ(y) is an
inhomogeneous 2-cocycle on Γ which is bounded since ||dϕ||∞ = D(ϕ) < ∞ by
definition. Hence it defines a class [dϕ] ∈ H2

b(Γ). The map ϕ 7→ [dϕ] fits into a
four-term exact sequence as follows.

Lemma 2.9. The following diagram is commutative and has exact rows

0 // Hom(Γ,R)⊕ l∞(Γ) //

π1

��

Q(Γ)
[d·]
//

(·)
��

H2
b(Γ,R)

c // H2(Γ,R)

0 // Hom(Γ,R) // Qh(Γ)
[d·]
// H2
b(Γ,R)

c // H2(Γ,R)

where the so-called comparison map c is induced by forgetting the boundedness of
an inhomogeneous 2-cocycle.

Proof. The commutativity of the diagram is clear by Corollary 2.2. We shall prove
exactness of the upper row, the argument for the lower row being similar. The
class of a 2-cocycle β ∈ l∞(Γ2) lies in the kernel of the comparison map if and
only if there exists ϕ : Γ → R with β = dϕ. Since β is bounded, ϕ has to be a
quasimorphism. Next, the class [dϕ] ∈ H2

b(Γ) is trivial if and only if there exists
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α ∈ l∞(Γ) with d(ϕ−α) = 0. Hence the quasimorphism ϕ is the sum of a bounded
function and a homomorphism on Γ. �

Denote by || · ||b the pullback of the canonical norm on H2
b(Γ) to the space Q(Γ).

Then we have two seminorms on Q(Γ) given by

D(ϕ) = ||dϕ||∞,
||ϕ||b = inf

α∈l∞(Γ)
||dϕ+ dα||∞.

Corollary 2.10. The restrictions of these two seminorms to Qh(Γ) are equivalent.
More precisely, for all ϕ ∈ Qh(Γ) there is the estimate

||ϕ||b ≤ D(ϕ) ≤ 2||ϕ||b.

Proof. The first inequality is immediate from the definitions. On the other hand, α
vanishes identically for any bounded function α and hence ϕ+ α = ϕ. Now Lemma
2.4 implies

||dϕ||∞ ≤ 2||d(ϕ+ α)||∞
for all α which gives the second inequality. �

Proposition 2.11. Let Γ be countable. Then Qh(Γ) is complete (with respect to
either seminorm). Hence the quotient Qh(Γ)/Hom(Γ,R) is a Banach space.

Proof. Let (ϕn)n∈N be a Cauchy sequence with respect to the defect seminorm. We
proceed in steps.
Step 1. We claim that there exists a sequence (fn)n∈N of homomorphisms fn :
Γ→ R such that the family of quasimorphisms ψn = ϕn− fn takes bounded values
on any fixed element of Γ. More precisely, for every x ∈ Γ there exists a constant
Cx such that

|ψn(x)| ≤ Cx ∀n ≥ 1.

For the proof, consider the composition of homomorphisms α : Γ→ Γab → Γab⊗ZQ.
Choose a set of elements {y1, y2, . . .} in Γ whose images zi = α(yi) form a basis of
the Q-vector space Γab⊗ZQ. For n ≥ 1 let gn : Γab⊗ZQ→ R be the unique Q-linear
map such that gn(zi) = ϕn(yi) for all i. We will prove that the homomorphisms
fn = gn ◦ α : Γ→ R will do the job.
Fix an element x ∈ Γ. We claim that there exists a positive integer m, integers
a1, a2, . . . almost all of which are zero and an element z ∈ Γ′ such that

(3) xm =
∏
i

yaii · z.

To show this, write α(x) =
∑
i rizi as rational linear combination with ri = 0 for

almost all i. For an appropriate positive integer m′ we therefore have α(xm
′
) =∑

i bizi with all bi integral. The image of the element
∏
i y
−bi
i ·xm′ in Γab lies in the

kernel of the map Γab → Γab⊗Z Q which is torsion. Hence there is a positive integer
m′′ such that z =

∏
i y
−m′′bi
i · xm′m′′ ∈ Γ′. Now set m = m′m′′ and ai = m′′bi.

Assume that z is a product of k commutators and that exactly s of the exponents
ai in (3) are non-zero. Then by (1) we have

m|(ϕn − fn)(x)| ≤
∑
i

ai|ϕn(yi)− fn(yi)|+ |ϕn(z)|+ |fn(z)|+ sD(ϕn).

Here all terms in the first sum vanish by the choice of fn, moreover fn(z) = 0 since
z ∈ Γ′ and finally |ϕn(z)| ≤ (2k − 1)D(ϕn) by Lemma 2.6. In summary we have

|ψn(x)| ≤ 2k + s− 1
m

D(ϕn).
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Since every Cauchy sequence is bounded, the defects D(ϕn) are bounded indepen-
dently of n and this proves the claim.
Step 2. There exists a subsequence (ψnk)k∈N such that for all x ∈ Γ the limit

ψ(x) = lim
k→∞

ψnk(x)

exists. For the proof we write Γ = {x1, x2, . . .}. By step 1 there exists a subse-
quence of the ψn such that the evaluation on the element x1 converges. From this
subsequence we can again extract a subsequence such that the evaluation on the
element x2 converges. Continuing this way and applying the usual diagonal trick
we end up with a subsequence for which indeed all the above limits exist.
Step 3. We claim that the map ψ is a homogeneous quasimorphism and that
limn→∞ ϕn = ψ with respect to the defect seminorm. It is enough to prove the
last statement. Indeed, by definition of ψn this is equivalent to ψn → ψ. Since
ψn is a Cauchy sequence as well it will suffice to prove that the subsequence ψnk
converges to ψ. Assume this is not the case, then there exists ε > 0 such that
D(ψnk − ψ) > 2ε for infinitely many k. Choose N such that D(ψnk − ψnl) < ε for
all k, l > N . Hence there exist k > N and x, y ∈ Γ such that∣∣(ψnk(xy)− ψnk(x)− ψnk(y)

)
−
(
ψ(xy)− ψ(x)− ψ(y)

)∣∣ > 2ε.

So we have ∣∣(ψnl(xy)− ψnl(x)− ψnl(y)
)
−
(
ψ(xy)− ψ(x)− ψ(y)

)∣∣ > ε

for all l > N . But this contradicts the existence of all limits in Step 2. �

2.3. Comparing the Two Seminorms. In fact, all concrete examples of homo-
geneous quasimorphisms known to the author satisfy the equality D(ϕ) = 2||ϕ||b.
We conjecture that this is true in general, at least for countable groups:

Conjecture 2.12. Let Γ be a countable group. Then every homogeneous quasi-
morphism ϕ on Γ satisfies the equality D(ϕ) = 2||ϕ||b.

Besides the fact that there seems not to be a known counterexample, we shall col-
lect some additional evidence for the conjecture in this subsection. To do so, we
need a result concerning the canonical norm on H2

b .

Let Γ be a countable discrete group. Following [23], Section 0.3 we recall the
construction of the Poisson boundaries of (right) random walks on Γ determined
by certain symmetric probability measures µ on Γ. For this we always assume
µ to be non-degenerate, i.e., Γ is generated by suppµ. (We point out that for
the construction of Poisson boundaries on general locally compact groups µ has
in addition to be spread out, i.e., that there exists a convolution power µ∗n which
is non-singular with respect to the Haar measure on Γ. This last condition is
automatically fullfilled in discrete groups because the Haar measure is the counting
measure.)
Let Γ∞ =

∏∞
k=0 Γ be the space of trajectories of the random walk and let Pµ be

the image of the product measure µ∞ on the space
∏∞
k=1 Γ of increments by the

map
∞∏
k=1

Γ→ Γ∞, (x1, x2, . . .) 7→ (1, x1, x1x2, . . .).

Call a subset A ⊂ Γ∞ stationary (mod 0) if it is measurable and if it contains with
almost every trajectory y also all trajectories y′ which can be obtained from y by
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coordinate shifts and by replacing any finite number of coordinates, i.e., all y′ such
that y′n+k = yn for all sufficiently large n and a fixed integer k. Denote by A the
σ-algebra of classes of stationary sets (mod 0) and call it the stationary σ-algebra.
The Poisson boundary (B, ν) of the random walk (Γ, µ) is the quotient space of the
measure space (Γ∞,Pµ) with respect to the measurable partition attached to the
stationary σ-algebra A . In particular, ν is the image of Pµ by the canonical map
Γ∞ → B. The action of Γ on Γ∞ by component-wise left multiplication induces an
action of Γ on A and hence on B. The measure ν is Γ-quasi-invariant.

Proposition 2.13. Consider a surjective homomorphism π : Γ1 → Γ2 between
countable discrete groups. Let µ1 be a symmetric non-degenerate probability measure
on Γ1 and let µ2 = πµ1 be its image by π. Denote by (Bi, νi) the Poisson boundary
of (Γi, µi), i = 1, 2. Then π induces a Γ-equivariant measurable map πB : B1 → B2

such that ν2 = πBν1.

Proof. First observe that µ2 is also symmetric and non-degenerate because π is sur-
jective. Consider the following diagram (ignore the dotted arrow for the moment):(∏∞

k=1 Γ1, µ
∞
1

)
��

α=
Q∞
k=1 π //

(∏∞
k=1 Γ2, µ

∞
2

)
��

(Γ∞1 ,Pµ1)

��

β=
Q∞
k=0 π // (Γ∞2 ,Pµ2)

��

(B1, ν1)
πB // (B2, ν2)

Obviously all maps are measurable and the top square commutes. Moreover the
horizontal maps are equivariant homomorphisms. Observe first that µ∞2 = αµ∞1 .
This follows immediatley from Kolmogorov’s consistency theorem (cf. [33], The-
orem 5.1) as these two measures clearly agree on cylinder subsets of Γ∞2 . By
commutativity of the top square this implies that Pµ2 = βPµ1 . As a consequence,
for any stationary set A ⊂ Γ∞1 the image β(A) is contained in a stationary set in
Γ∞2 . Hence the map β descends to a measurable equivariant map πB such that the
lower square of the diagram commutes almost everywhere. By this commutativity
and the definition of νi as the image of Pµi we finally deduce ν2 = πBν1. �

Theorem 2.14. Let π : Γ1 → Γ2 be a surjective homomorphism of countable
groups. Then the induced map H2

b(π) : H2
b(Γ2)→ H2

b(Γ1) is an isometric injection.

Proof. Let Γ be a countable discrete group and µ a symmetric non-degenerate
probability measure on Γ. Then Γ acts measure class preserving on the Poisson
boundary (B, ν) of Γ and this action is amenable and doubly ergodic, see [22],
Theorem 3. We fix such a measure µ. By amenability of the Γ-action the complex

0→ R ε→ L∞(B)→ L∞(B2)→ L∞(B3)→ . . .

is a strong augmented resolution of isometrically injective Γ-modules ([30], Lemma
2.3). The same is true for the subresolution

0→ R ε→ L∞alt(B)→ L∞alt(B
2)→ L∞alt(B

3)→ . . .

of alternating functions because the obvious projection maps L∞(Bn)→ L∞alt(B
n)

have norm 1, compare [9], Lemma 2.12. Hence the complex of invariants

0→ L∞alt(B)Γ → L∞alt(B
2)Γ → L∞alt(B

3)Γ → . . .
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realises the bounded cohomology H•b(Γ). Moreover, by the double ergodicity of the
Γ-action all functions in L∞(B2)Γ are constant and hence L∞alt(B

2)Γ = 0. As a
consequence we get an isometric identification

H2
b(Γ) = ZL∞alt(B

3)Γ = {c ∈ L∞alt(B
3, ν⊗3)Γ | dc = 0}.

Choose a symmetric non-degenerate probability measure µ1 on Γ1 and let µ2 and
(Bi, νi) be as in Proposition 2.13. As π is surjective, µ2 is a symmetric and non-
degenerate probability measure on Γ2. By the same proposition the maps πnB :
Bn1 → Bn2 are measurable and equivariant for all positive integers n. In addition
we have ν⊗n2 = πnBν

⊗n
1 . The induced maps

π∗ : L∞alt(B
n
2 , ν

⊗n
2 )→ L∞alt(B

n
1 , ν

⊗n
1 ), f 7→ f ◦ πnB

are therefore equivariant and isometric as C is an essential bound for f if and only
if it is one for f ◦ πnB . Moreover, an easy check shows that these maps constitute a
morphism of augmented resolutions

0 // R ε // L∞alt(B2) //

π∗

��

L∞alt(B
2
2) //

π∗

��

L∞alt(B
3
2) //

π∗

��

· · ·

0 // R ε // L∞alt(B1) // L∞alt(B
2
1) // L∞alt(B

3
1) // · · ·

By equivariance we hence get an isometry

ZL∞alt(B
3
2)Γ2 → ZL∞alt(B

3
1)Γ1

which realises the induced map H2
b(π). �

Corollary 2.15. If Conjecture 2.12 is true for a specific countable group, then it
is also true for all its quotients. In particular, its validity for countable free groups
would imply its validity in general.

Proof. Let π : Γ1 → Γ2 be a surjective homomorphism of countable groups and
let ϕ be an arbitrary quasimorphism on Γ2. On the one hand, we clearly have
D(π∗ϕ) = D(ϕ) by the surjectivity of π. On the other hand, ||π∗ϕ||b = ||ϕ||b by
Theorem 2.14. Assume that Conjecture 2.12 is true for Γ1. If ϕ is homogeneous
then so is π∗ϕ, hence

D(ϕ) = D(π∗ϕ) = 2||π∗ϕ||b = 2||ϕ||b
where the second equality holds by assumption. �

A large family of homogeneous quasimorphisms on free groups was introduced by
Brooks in [6]. And a slightly different construction was used by Rolli in [35] to
produce an uncountable familiy of independent homogeneous quasimorphisms. It
is worth noting that these essentially exhaust all explicitly known quasimorphisms
on free groups and they all satisfy Conjecture 2.12 (cf. [35], Proposition 3.6).

2.4. Harmonicity. For f ∈ l∞(Γ) and a probability measure µ on Γ we define the
convolution f ∗ µ by the formula

(f ∗ µ)(x) =
∫

Γ

f(xy−1) dµ(y) =
∑
x∈Γ

µ(y)f(xy−1).

Convolution with µ is a linear operator on l∞(Γ) of norm 1 and the invariant
functions are called µ-harmonic. More generally, one can define the convolution
f ∗µ for unbounded functions by the same formula provided that the sum converges.
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A function f ∈ l∞(Γn) is called µ-pluriharmonic if it is harmonic with respect to
every variable. We denote by l∞µ (Γ) the space of µ-pluriharmonic functions.
Assume that µ is moreover non-degenerate. Then we can form the Poisson boundary
(B,µ) of Γ with respect to µ on which Γ acts amenable and doubly ergodic. Recall
the Poisson transform

P(n) : L∞(Bn+1, ν⊗(n+1))→ l∞µ (Γn+1)

defined by

P(n)f(x) =
∫
Bn+1

f(xξ) dν⊗(n+1)(ξ)

which is a Γ-equivariant isometric isomorphism which preserves alternating maps
(cf. [9], Proposition 3.11).

Let Γ be finitely generated. Choose a word lengths metric d associated to a finite
generating system of Γ. A probability measure µ on Γ is said to have finite first
moment if the sum ∑

x∈Γ

d(1, x)µ(x)

is finite (this definition does not depend on the choice of d as all such metrics are
bi-Lipschitz equivalent). Let ϕ : Γ → R be a quasimorphism and let µ have finite
first moment. Then the convolution ϕ ∗ µ makes sense as ϕ has at most linear
growth with respect to d.

The following result supplements the discussion about harmonic quasimorphisms
in [9] and shows that they are always defect minimising in their equivalence class.

Theorem 2.16. Let Γ be a finitely generated group and let µ be a symmetric,
non-degenerate probability measure on Γ with finite first moment. For every quasi-
morphism ϕ of Γ there is a unique antisymmetric µ-harmonic quasimorphism ϕµ
at finite distance of ϕ. Moreover, we have

D(ϕµ) = ||ϕµ||b,
i.e., its defect is least possible among all quasimorphisms at finite distance of ϕ.

Proof. The existence of an antisymmetric µ-harmonic quasimorphism ϕµ at finite
distance of ϕ was proven in [9], Corollary π.
We shall show uniqueness. To every quasimorphism ϕ : Γ → R we can associate
a function ωϕ : Γ2 → R by setting ωϕ(x, y) = ϕ(x−1y). One easily checks that
ωϕ is Γ-invariant and moreover alternating if ϕ is antisymmetric. In addition it is
µ-biharmonic if ϕ is µ-harmonic and antisymmetric. We prove harmonicity in the
first variable, the argument for the second variable is similar but does not rely on
ϕ being antisymmetric:

(ωϕ ∗1 µ)(x, y) =
∑
z∈Γ

µ(z)ωϕ(xz−1, y)

=
∑
z∈Γ

µ(z)ϕ(zx−1y)

= −
∑
z∈Γ

µ(z)ϕ(y−1xz−1)

= −ϕ(y−1x) = ϕ(x−1y) = ωϕ(x, y).

Assume now that there are two antisymmetric µ-harmonic quasimorphisms ψ1, ψ2

at finite distance of each other. Then we have

ωψ1−ψ2 ∈ l∞µ,alt(Γ
2)Γ = L∞alt(B

2, ν⊗2)Γ = 0



16

by the double ergodicity of the Poisson boundary. Hence ωψ1 = ωψ2 and therefore
ψ1 = ψ2.
Finally, we prove that ϕµ has minimal possible defect. By [9], Lemma 3.13 the
inclusion of the subresolution

0 −→ R −→ l∞µ,alt(Γ) −→ l∞µ,alt(Γ
2) −→ l∞µ,alt(Γ

3) −→ · · ·

into the homogeneous standard resolution of Γ induces the identity at the level of
cohomology. Moreover, we already noted that l∞µ,alt(Γ

2)Γ = 0, hence we get an
isometric identification

H2
b (Γ) ∼= Zl∞µ,alt(Γ

3)Γ.

Now, by the above discussion, dωϕµ is a bounded alternating µ-triharmonic homo-
geneous 3-cocycle on Γ and hence we conclude

||dωϕµ ||∞ = ||[dωϕµ ]||H2
b
.

On the other hand, there is an isometric isomorphism of chain complexes

0 // R di //

α0

��

l∞(Γ) di //

α1

��

l∞(Γ2) di //

α2

��

L∞(Γ3) di //

α3

��

· · ·

0 // l∞(Γ)Γ dh // l∞(Γ2)Γ dh // l∞(Γ3)Γ dh // l∞(Γ4)Γ dh // · · ·

where di respectively dh are the (in-)homogeneous coboundary operators. The
degree n map ist given by

αnf(x0, . . . , xn) = f(x−1
0 x1, x

−1
1 x2, . . . , x

−1
n−1xn).

A short calculation shows that dhωϕµ = α2(diϕµ) and so we finally conclude that

D(ϕµ) = ||dϕµ||H2
b

= ||ϕµ||b.

�

2.5. The Translation Number and the Euler Class. In this subsection we are
going to define the translation number quasimorphism and the rotation number
introduced by Poincaré. For a detailed treatment of the objects in the title and
their impact on the dynamics of individual circle homeomorphisms as well as more
general group actions by homeomorphisms the reader is referred to [13], [14] or [10].

Denote by H̃ = Homeo+
Z (R) the group of orientation preserving homeomorphisms of

the real line which commute with integral translations. In other words, its elements
are the continuous, strictly monotonic increasing functions f : R → R satisfying
f(x + 1) = f(x) + 1 for all x ∈ R. We will frequently use the following estimate
valid for every such function f :

(4)
∣∣(f(x)− x

)
−
(
f(y)− y

)∣∣ ≤ 1 ∀x, y ∈ R.

Denote by H = Homeo+(S1) the group of orientation preserving homeomorphisms
of the circle. Equipped with the compact-open topology both H̃ and H are topo-
logical groups. Interpreting S1 = R/Z as quotient of the real line there is a natural
projection p : H̃ → H which is clearly a continuous group homomorphism.
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Lemma 2.17. The group H̃ is contractible and p : H̃ → H is a covering map
realising H̃ as universal covering group of H. Moreover, there is a central Z-
extension

(5) 〈t〉 // // H̃
p
// // H

where t : R→ R is the translation t(x) = x+ 1.

Proof. Clearly, p is surjective and its kernel is generated by t. It therefore remains
to prove that H̃ is contractible. But the continuous map

I × H̃ → H̃, (s, f) 7→
(
x 7→ sx+ (1− s)f(x)

)
is a homotopy between idH̃ and the constant map f 7→ idR. �

We now turn to the definition of the translation and the rotation number.

Lemma 2.18. For f ∈ Homeo+
Z (R) and x ∈ R the limit

T (f) = lim
n→∞

fn(x)− x
n

∈ R

exists and is independent of the choice of x. The map T : Homeo+
Z (R) → R is a

continuous, homogeneous quasimorphism with defect 1.

Proof. For x ∈ R define a function Tx : Homeo+
Z (R)→ R by Tx(f) = f(x)−x. The

inequality (4) exactly states that any two of these functions are at finite distance:
||Tx − Ty||∞ ≤ 1. For the same reason we have

|Tx(fg)− Tx(f)− Tx(g)| = |Tg(x)(f)− Tx(f)| ≤ 1

for all f, g ∈ Homeo+
Z (R), hence each Tx is a quasimorphism. Everything except for

the last claim now follows at once since the defining formula for T describes precisely
the common homogenisation for the family of equivalent continuous quasimorphims
Tx.
We finally prove that D(T ) = 1. Observe that the quasimorphism bT0c given by
the integer part of T0 is at finite distance of T0 and that

bT0c(fg)− bT0c(f)− bT0c(g) ∈ {0, 1}
for all f, g. Hence the quasimorphism bT0c − 1

2 has defect at most 1
2 and has T as

its homogenisation. The claim now follows from Lemma 2.4. �

The quasimorphism T : Homeo+
Z (R) → R is called translation number. For the

definition of the rotation number function R : Homeo+(S1)→ R/Z consider f ∈ H
and choose an arbitrary lift f̃ ∈ H̃ of f under p. By Lemma 2.17 and the defini-
tion of the translation number the image R(f) of the real number T (f̃) in R/Z is
independent of the lift f̃ and is called the rotation number of f .

For later use we describe a method of computation for integral translation numbers.
Since H̃ is the universal covering group of H, we can interpret elements of the
former group as homotopy classes (rel {0, 1}) of curves starting at the identity in
the latter, cf. Subsection 1.1. This point of view allows to compute translation
numbers, whenever they are integral, as the degree of a certain self map of S1:

Proposition 2.19. Let the element f ∈ Homeo+
Z (R) be represented by a path w :

I → Homeo+(S1) starting at the identity. The path

I
w // Homeo+(S1)

R // R/Z

is closed if and only if the translation number T (f) is integral. If this is the case
then the mapping degree of the induced map S1 → S1 equals T (f).
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Proof. Consider the diagram

Homeo+
Z (R)

p

��

T // R

��

Homeo+(S1)
R // R/Z

where both vertical arrows are universal coverings. Since this diagram commutes
the image T (f) is represented by the path R ◦w, that is, T (f) equals the endpoint
of the unique lift of this path to R starting at 0. Hence T (f) is integral if and only
if R ◦ w is closed. The second claim is a consequence of the following general fact:
Let g : R/Z → R/Z be continuous and let g̃ : R → R be the unique lift of g with
g̃(0) = 0. Then we have deg(g) = g̃(1). �

We will finish this subsection by showing that the translation number trivialises
the pullback via p of the cohomology class in H2(H,Z) associated to the central
extension (5). We refer to Section 4.1 for further details.
In what follows we identify Z ∼= 〈t〉 via the isomorphism k 7→ tk. Let eZ ∈ H2(H,Z)
be the (integral) Euler class, i.e., the cohomology class associated to the extension
(5). The image of eZ under the canonical homomorphism H2(H,Z)→ H2(H,R) is
denoted by eR and is referred to as the real Euler class. To construct a concrete
cocycle representing eZ respectively eR we choose the section σ : H → H̃ sending
f to the unique lift f̃ ∈ H̃ with 0 ≤ f̃(0) < 1. Then the corresponding cocycle is
given by

α(f, g) = σ(f)σ(g)σ(fg)−1(0).

By definition of σ we have σ(fg)(0) ∈ [0, 1[ and similarly σ(g)(0) ∈ [0, 1[, hence
σ(f)σ(g)(0) ∈ [0, 2[. From this it is immediate that α can only take the values 0
and 1, specifically

(6) α(f, g) = bσ(f)σ(g)(0)c ∈ {0, 1}.

In particular, α is bounded and hence defines a bounded cohomology class eb ∈
H2
b(H,R) as well, the bounded Euler class. The image of eb under the comparison

map is of course just eR. Since p∗(eR) ∈ H2(H̃,R) vanishes according to Corollary
4.5 (a) there is a quasimorphism on H̃ trivialising p∗(eb) ∈ H2

b(H̃,R) by Lemma
2.9. In fact, this quasimorphism is just the translation number:

Lemma 2.20. We have [dT ] = p∗(eb) in H2
b(H̃,R).

Proof. We set s = σ ◦ p : H̃ → H̃, hence s(f̃) = f̃ − bf̃(0)c. Then the pullback
β = p∗α is given by

β(f̃ , g̃) = bs(f̃)s(g̃)(0)c = bf̃ g̃(0)c − bf̃(0)c − bg̃(0)c,

where we have used (6) for the first equality. In other words we have β = dbT0c,
this completes the proof since T is the homogenisation of bT0c (cf. proof of Lemma
2.18). �

Let D be the Poincaré disc and let G = PSU(1, 1) be the group of orientation
preserving isometries of D acting by linear fractional transformations on D, cf.
Lemma 1.6. Since G also acts on the topological boundary S1 = ∂D ⊂ C we
have a canonical embedding G ↪→ Homeo+(S1). In particular, one can ask for the
rotation number of elements g ∈ G. We give a formula which involves a lift of g to
the two-fold cover SU(1, 1) of G:
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Lemma 2.21. Let g ∈ SU(1, 1) be an element with upper left entry a. Then

R(g) =

{
sign

(
Im(a)

)
1
π arccos

(
1
2 tr(g)

)
, | tr(g)| < 2,

0, | tr(g)| ≥ 2,

where in the first case Im(a) 6= 0.

Proof. Every parabolic or hyperbolic element has a fixed point on the boundary
∂D and therefore vanishing rotation number. For an elliptic element of the form

g =
(
ζ 0
0 ζ−1

)
with ζ = eiϕ ∈ S1 we have gz = ζ2z and hence g describes a rotation with angle
2ϕ. So g has rotation number ϕ

π . On the other hand, tr(g) = 2 cosϕ and this leads
to the above formula. The case of an arbitrary elliptic element follows at once from
this because each such element is conjugated within SU(1, 1) to one of the above
diagonal form, and conjugation preserves the rotation number, preserves traces and
also preserves the sign of the imaginary part of the upper left entry of every elliptic
element. To see the latter, let

g =
(
a b

b a

)
be elliptic and write a = x+iy and b = z+iw. Then by assumption on the trace we
have |x| < 1 and the determinant condition gives y2 = z2 +w2 +(1−x2) > z2 +w2.
In particular y does not vanish. If we conjugate g with another element

h =
(
c d

d c

)
∈ SU(1, 1)

then the imaginary part of the upper left entry of the result is given by the expres-
sion

(|c|2 + |d|2)y + 2 Im(cd)z − 2Re(cd)w.
Here the first term clearly has the same sign as y. Moreover,(

2| Im(cd)z|+ 2|Re(cd)w|
)2 ≤ 4

(
Im(cd)2 + Re(cd)2

)
(z2 + w2)

< 4|cd|2y2 ≤ (|c|2 + |d|2)2y2,

where the first inequality follows from Cauchy-Schwarz, the second from the above
remark and the last one from the arithmetic-geometric mean inequality. Hence
the signs of the imaginary parts of the upper left entries in g and hgh−1 are the
same. �

2.6. Quasimorphisms on Groupoids. The concept of quasimorphism naturally
generalises from groups to groupoids. A quasimorphism on a groupoid G is a map
ϕ : G→ R such that there exists a constant D with

|ϕ(xy)− ϕ(x)− ϕ(y)| ≤ D
whenever xy is defined. The smallest such constant is called the defect of ϕ and
denoted D(ϕ). Virtually everything said in Subsection 2.1 applies to this more
general setting with the obvious modifications. In particular, it makes sense to
speak of homogeneous quasimorphisms by requiring that ϕ(xn) = nϕ(x) for all
integers n and all self-composable elements x ∈ G. Homogeneous quasimorphisms
are invariant under conjugation whenever it is defined. Also we have ϕ(xy) =
ϕ(x) + ϕ(y) whenever xy and yx are defined and agree.



20

In the important special case where G = π1(X) is the fundamental groupoid of
a topological space conjugation invariance implies that the restriction of ϕ to the
subset of classes of closed curves depends only on the free homotopy class of a
curve.
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3. Holonomy Representations

In this section we consider the class of holonomy representations ρ : π1(S) →
PSU(1, 1) which are defined via metrics h ∈ Hyp(S) on a surface S. Then we
discuss invariants of representations ρ that characterise the subset Hol(π1(S)) ⊂
Hom(π1(S),PSU(1, 1)) of holonomy representations inside the representation vari-
ety. These invariants are given by pulling back via ρ either the integral Euler class
eZ ∈ H2(Homeo+(S1),Z) or the bounded Euler class eb ∈ H2

b(Homeo+(S1)). This
section is taken from [8].

3.1. Definitions. Let S be an oriented surface. We fix once and for all a universal
covering p : S̃ → S of S and choose base points x ∈ S and x̃ ∈ S̃ lying above x.
Set Γ = π1(S, x) and recall that for γ ∈ Γ and ỹ ∈ S̃ lying above x we denote by
T ỹγ ∈ Diff+(S̃) the unique covering transformation of p such that the lift of any
curve in γ to S̃ with starting point ỹ has endpoint T ỹγ (ỹ). The map T x̃(−) from Γ
to the group of covering transformations of p is a group isomorphism. Hence, for
what follows, we will identify the group of covering transformations with Γ.
Fix a metric h ∈ Hyp(S) and notice that the pullback h̃ = p∗(h) is a Γ-invariant
complete hyperbolic metric on S̃ which, however, is not of finite volume anymore. If
we equip S̃ with the metric h̃ all covering transformations are orientation preserving
isometries, hence we obtain a homomorphism

T x̃(−) : Γ→ Isom+(S̃, h̃)

into the group of orientation preserving isometries of S̃. By Cartan’s theorem the
universal cover S̃ is isometric to the Poincaré disc. Fixing such an isometry we can
conjugate the above homomorphism into a representation

ρh,x : Γ→ G,

called holonomy representation, where G = Isom+(D) = PSU(1, 1). This of course
depends on the choice of the lift x̃ and the choice of the isometry f : (S̃, h̃) → D.
Changing x̃ amounts to pre-composition with a conjugation in Γ and changing f
amounts to post-composition with a conjugation in G. To sum up, for each metric
h we obtain a well-defined conjugacy class of representations Γ→ G.

However, we will need to be more specific about the involved choices. Therefore
we give a modified definition of holonomy representations which keeps track of the
input data. To start with, we shall pin down the isometry S̃ → D. Let ṽ be a non-
zero tangent vector of S̃ with base point x̃. Since Isom+(D) acts simply transitively
on the unit tangent bundle of D there is a unique orientation preserving isometry

fh̃,ṽ : (S̃, h̃)→ D

sending x̃ to 0 ∈ D and ṽ to a positive multiple of the tangent vector 1 ∈ TD0.
Define the holonomy representation associated to ṽ and h by

ρh,ṽ : Γ→ G, γ 7→ fh̃,ṽ ◦ T
x̃
γ ◦ (fh̃,ṽ)

−1.

It is easy to see that, indeed, ρh,ṽ is a well-defined homomorphism with respect to
which fh̃,ṽ is equivariant.

Lemma 3.1. Let ρ : Γ → G be a holonomy representation. Then the image of ρ
contains no elliptic elements.

Proof. For γ 6= 1 the covering transformation T x̃γ has no fixed point on S̃, hence
the conjugated map ρ(γ) has no fixed point on D. �
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3.2. Characterising Holonomy Representations via the Euler Class. Let
S be a surface as before. Remember that we always assume that Hyp(S) is non-
empty, in particular, if S is compact then its genus is g ≥ 2. We keep the notation
G = PSU(1, 1) and fix a base point x ∈ S. The goal of this subsection is to
characterise the set Hol(Γ) of holonomy representations of the fundamental group
Γ = π1(S, x) among all representations Γ→ G.

We first assume that S is compact. To every representation ρ : Γ→ G we can asso-
ciate a numerical invariant e(ρ), called the Euler number, of ρ as follows. Consider
the pullback ρ∗(eZ) ∈ H2(Γ,Z) of the integral Euler class eZ ∈ H2(Homeo+(S1),Z)
via the composition

Γ
ρ
// G // Homeo+(S1)

(see Subsection 2.5 for the definition of eZ). Since S has genus g ≥ 2 the classifying
map S → BΓ is a homotopy equivalence and therefore induces an isomorphism
H2(S,Z)→ H2(Γ,Z). Now we define e(ρ) as the evaluation of ρ∗(eZ) on the image
of the fundamental class [S] ∈ H2(S,Z) under the above isomorphism. There is
a famous bound on the Euler number of a representation known as Milnor-Wood
inequality (cf. [29], [40]):

Theorem 3.2. The Euler number e(ρ) of every representation ρ : Γ→ G satisfies

|e(ρ)| ≤ 2g − 2.

In fact, every integer between −2g+2 and 2g−2 is realised as the Euler number of a
suitable representation. For ρ ∈ Hol(Γ) the Euler number always takes the maximal
possible value e(ρ) = 2g − 2, compare [8], Section 3.8. Goldman has shown in [15]
that this property actually characterises holonomy representations:

Theorem 3.3. A representation ρ : Γ→ G belongs to Hol(Γ) if and only if e(ρ) =
2g − 2.

Observe that for a non-compact surface S the fundamental group Γ is free and hence
has trivial second cohomology. Therefore, the pullback ρ∗(eZ) vanishes and there is
no analogon of the Euler number available for representations ρ ∈ Hom(Γ, G). But
despite the vanishing of the usual second cohomology of Γ, the bounded cohomology
H2
b(Γ) is heavily non-trivial. Hence for arbitrary surfaces S we can try to use the

pullback ρ∗(eb) ∈ H2
b(Γ) of the bounded Euler class as a characterising invariant

for holonomy representations. This indeed works, see [8], Corollary 4.5:

Theorem 3.4. The subset Hol(Γ) ⊂ Hom(Γ, G) is characterised by the fact that
for ρ ∈ Hol(Γ) the pullback ρ∗(eb) of the bounded Euler class equals a certain fixed
class which depends only on S. In particular, the pullback eΓ

b = ρ∗(eb) ∈ H2
b(Γ) is

the same for all holonomy representations ρ.

Corollary 3.5. The class eΓ
b ∈ H2

b(Γ) is invariant under the action of the mapping
class group M(S) of S.

Proof. We begin with some computations concerning holonomy representations and
start with a simple observation. For every ψ ∈ Diff+(S̃) and every non-zero tangent
vector ṽ of S̃ based at x̃ we have

(7) fψ∗(h̃),ṽ = fh̃,dψ(ṽ) ◦ ψ.

Indeed, the map on the right hand side satisfies the defining properties of fψ∗(h̃),ṽ.
Now let ϕ ∈ Diff+(S) be a diffeomorphism and choose a lift ψ ∈ Diff+(S̃). Then
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we obtain

ρϕ∗(h),ṽ(γ) = fψ∗(h̃),ṽ ◦ T
x̃
γ ◦

(
fψ∗(h̃),ṽ

)−1

= fh̃,dψ(ṽ) ◦ ψT
x̃
γ ψ
−1 ◦

(
fh̃,dψ(ṽ)

)−1

= fh̃,dψ(ṽ) ◦ T
ψ(x̃)
ϕ∗(γ) ◦

(
fh̃,dψ(ṽ)

)−1

= ρh,dψ(ṽ)(ϕ∗(γ)),

where we have used (7) in the second equality. Hence for every ρ ∈ Hol(Γ) and
every ϕ ∈ Diff+(S) the representation ρ◦ϕ∗ is again contained in Hol(Γ). Therefore

(ϕ∗)∗(eΓ
b ) = (ϕ∗)∗(ρ∗(eb)) = (ρ ◦ ϕ∗)∗(eb) = eΓ

b

as desired. �
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4. The Algebraic Picture

In this section we describe the purely algebraic approach to our main result in
the case of a compact surface S. From an algebraic point of view this is the
most interesting case since the fundamental group Γ = π1(S, x) is non-free. A
major role will be played by a certain central Z-extension of Γ, denoted Γ2−2g and
isomorphic to the fundamental group of the unit tangent bundle of S. By the
Dehn-Nielsen-Baer theorem the mapping class group M(S) can be identified with
the group Out+(Γ) of ‘orientation preserving’ outer automorphisms of Γ which is the
starting point of our algebraic treatment. We prove that the natural homomorphism
Out+(Γ2−2g) → Out+(Γ) splits and hence we obtain an action of Out+(Γ) on the
extension Γ2−2g by outer automorphisms.
The pullback ρ∗(eb) to H2

b(Γ) of the bounded Euler class via any holonomy repre-
sentation is invariant under the mapping class group action. Its lift to H2

b(Γ2−2g)
is invariant under the lifted mapping class group action and moreover lies in the
kernel of the comparison map to the usual cohomology, hence is trivialised by a
homogeneous quasimorphism. We prove that it is trivialised by a unique invariant
homogeneous quasimorphism Rot which moreover takes integral values.

We start by recalling the connection between extensions of a group G by an abelian
group A and the second cohomology H2(G,A). Subsection 4.2 deals with lifting
question in central extensions. We present a general result which describes, under
certain assumptions, the (outer) automophism group of a central group extension
of G by A in terms of the automorphism group of G and homomorphisms G → A
(cf. Proposition 4.8). In Subsection 4.3 we specialise the discussion to the central
Z-extensions of a compact surface group Γ. In particular we determine their (outer)
automorphism groups (Theorem 4.14). The next three subsections culminate in a
description of the first and second cohomology group of Out+(Γ) with (twisted)
coefficients the dual of the abelianisation Γab, see Theorem 4.30. For this we use
a characterisation of the abelianisation of the Torelli group I ≤ M(S) obtained
by Johnson as well as a result of Looijenga on the stable rational cohomology of
mapping class groups. Finally we turn to the proof of the main results in Subsection
4.7 which will make use of most results obtained so far in this section.

4.1. Abelian Extensions and H2. In this subsection we introduce the notion
of abelian and central extensions of a group G by an abelian group A. Fixing a
G-module structure on A the set of strong isomorphism classes of such extensions
can be turned into a group which is naturally isomorphic to the second cohomology
H2(G,A). This is all classical, more information can be found in [25] for example.

An abelian extension of a group G by an abelian group A is an exact sequence E
of the form

(8) E : A //
i // G

p
// // G.

An abelian extension is central if moreover i(A) is contained in the center of G.
We will write A additively but G and G multiplicatively. Since A is abelian the
action of G on i(A) by conjugation descends to an action of G. Identifying A with
its image i(A) we hence obtain a left action ϕE : G→ Aut(A) which turns A into
a G-module. The extension E is central if and only if ϕE is trivial, i.e., if A is a
trivial G-module.
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The extension E is called split if there exists a homomorphism σ : G → G with
pσ = idG. We will call such maps σ splittings to distinguish them from arbitrary set-
theoretical sections. An easy check shows that (8) splits if and only if G ∼= AoϕE G
is the semidirect product of A with G.
A morphism of extensions is a morphism of short exact sequences

(9) B // //

h

��

H // //

g

��

H

f

��

A // // G // // G

It is an isomorphism (i.e., it has a two-sided inverse) if and only if f, g, h are all
isomorphisms. By the 5-lemma this is already the case if f and h are isomorphisms.
An isomorphism of extensions of G by A of the special form

A // // G1
// //

∼=
��

G

A // // G2
// // G

is called a strong isomorphism. Clearly, if E1 and E2 are strongly isomorphic then
ϕE1 = ϕE2 , that is, conjugation induces the same G-module structure on A. Being
strongly isomorphic is an equivalence relation and we will denote by E(G,A) the
set of strong isomorphism classes of abelian extensions of G by the G-module A.
We point out that the action of G on A is part of the input data, although this is
not reflected in the notation (similar as in the notation of group (co-)homology).
Let E1, E2 be two abelian extensions of G by the G-module A. Form the pullback
over p1 and p2 to get the lower right square and obtain d by the pullback property:

A

id

��

− id
//

d

  
@@

@@
@@

@@
A��

i2
��

X

��

// G2

p2

����

A //
i1 // G1

p1 // // G

Now A × A�X�G is exact and the conjugation action of G on A × A is the
diagonal one. By setting G = coker(d) we obtain another abelian extension

E1 · E2 : A //
i // G

p
// // G

of G by A which is called the Baer product of E1 and E2 (cf. [1]). In fact, we have
to be more careful since there are several choices involved in forming the above
extension (everything is only defined up to unique isomorphism). To pin down the
Baer product at least up to strong isomorphism we are going to make these choices
now. Instead of working with universal properties we give explicit descriptions of
the involved groups and maps. To start with, the pullback X is given by

X = {(x1, x2) ∈ G1 ×G2 | p1(x1) = p2(x2)}

and the map d : A→ X by a 7→ (i1(a),−i2(a)). Define

j : A×A→ X, (a1, a2) 7→ (i1(a1), i2(a2)),
q : X → G, (x1, x2) 7→ p1(x1) = p2(x2),
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then the upper part of the diagram

A��

(id,− id)

��

A��

d

��

A×A //
j
//

P
����

X
q
// //

����

G

A //
i // G

p
// // G

commutes and the middle row is an abelian extension. Now we define the Baer
product E1 · E2 as the sequence of cokernels in the bottom row where Σ is the
summation map. A routine verification shows:

Proposition 4.1. The Baer product induces an abelian group structure on E(G,A)
with the split extension as neutral element.

Next we describe an isomorphism between E(G,A) and the second cohomology
group H2(G,A). Consider an extension E as in (8) and choose a set theoretical
section σ : G → G of p. For x, y ∈ G the two elements σ(x)σ(y) and σ(xy) of G
both lift the product xy, hence the map

α : G2 → A, α(x, y) = i−1
(
σ(x)σ(y)σ(xy)−1

)
is well-defined. It is easy to see that

σ(x)α(y, z)σ(x)−1α(x, yz) = α(x, y)α(xy, z)

for all x, y, z ∈ G and hence α is an inhomogeneous 2-cocycle. Moreover, for a
strong isomorphism

A //
i // G

p
// //

∼= g

��

G

A //
i′ //

G
′ p′

// // G

of extensions and sections σ, σ′ of p, p′ consider the map

β : G→ A, β(x) = i′−1
(
σ′(x)g(σ(x))−1

)
.

A calculation shows that α′ = α+ dβ where α, α′ are the cocycles computed using
the two sections. Hence any strong isomorphism class of extensions gives rise to a
well-defined class in H2(G,A).

There is a more abstract way to describe the above construction using the 5-term
exact sequence in group cohomology (cf. [38], 6.8.3.). Consider A as a G-module
via the map p. Then the 5-term exact sequence induced by the extension E takes
the form

H1(G,A)
p∗
// H1(G,A)

i∗ // Hom(A,A)G δ // H2(G,A)
p∗
// H2(G,A).

Now associate to E the class [E] = δ(idA) ∈ H2(G,A). By naturality of the 5-term
sequence, strongly isomorphic extensions have the same class and hence we obtain
a map E(G,A)→ H2(G,A) which agrees with the above construction.

Proposition 4.2. The map E 7→ [E] induces a group isomorphism E(G,A) →
H2(G,A).

The proof is somewhat tedious but straightforward, details can be found in [25] IV.
Theorem 8.8. We content ourselves with describing the inverse map. Fix a class in
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H2(G,A) and choose a representing cocycle α : G2 → A. Define a multiplication
on the set A×G by

(a1, x1)(a2, x2) = (a1 + a2 + α(x1, x2), x1x2).

One checks that this is a group structure, the associativity for example being equiva-
lent to the cocycle identity for α. The resulting group Gα fits in an abelian extension
A�Gα �G where the two homomorphisms are given by i : A → Gα, a 7→ (a, 1)
and p : Gα → G, (a, x) 7→ x. Moreover, if α′ = α + dβ is another representative
then the map

Gα → Gα′ , (a, x) 7→ (a+ β(x), x)

induces a strong isomorphism of extensions. Hence every class in H2(G,A) gives
rise to a well-defined element of E(G,A).

We note for later reference:

Lemma 4.3. Assume that the extension E splits. Then the set of splittings is in
bijection with the space of 1-cocycles G→ A (where G acts on A by conjugation as
usual). More precisely, the splittings form a one-dimensional affine space over the
space of 1-cocycles. In particular we have:

(a) If the extension is central then the splittings are in bijection with Hom(G,A).
(b) If H1(G,A) = 0 then all splittings are (as maps) conjugated under A, and

the set of splittings is in bijection with A/AG.

Proof. Fix a splitting s : G → G. Then any section σ : G → G is of the form
σ = (i ◦ f) · s with a well-defined map f : G→ A. A computation gives

σ(x)σ(y) = i(f(x))s(x)i(f(y))s(y)
= i(f(x) + x · f(y))s(x)s(y)
= i

(
x · f(y)− f(xy) + f(x)

)
i(f(xy))s(xy)

= i
(
x · f(y)− f(xy) + f(x)

)
σ(xy),

hence σ is a homomorphism if and only if f is a 1-cocycle.
From this (a) is clear as then Z1(G,A) = Hom(G,A). In the situation of (b) there
exists an element a ∈ A such that f(x) = a− xa and consequently

σ(x) = [a, x]s(x) = as(x)a−1.

Therefore A acts transitively by conjugation on the set of splitting maps and all
stabilisers are equal to AG. �

4.2. Automorphisms of Central Extensions. In this subsection we restrict our
attention to central extensions

E : A //
i // G

p
// // G.

That is, we keep the standing assumption that i(A) is a central subgroup of G or,
what amounts to the same, that A is a trivial G-module. In the following we deal
with lifting questions in central extensions and will finally describe, for suitable
central extensions E, the (outer) automophism group of G in terms of the auto-
morphism group of G and homomorphisms G→ A (cf. Proposition 4.8).
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Let E be as above, let H be a group and let f : H → G be a group homomorphism.
Forming the pullback over f and p we obtain the diagram

A // // H̃

��

// // H

f

��

A // // G
p
// // G

where the top row is a central extension of H by A which we call the pullback
of E under f and which we denote by f∗E. Every morphism F → E of central
extensions as in (9) factors uniquely over the pullback f∗E in the following way:

F : B

h

��

// // H

g

��

// // H

f∗E : A // // H̃

��

// // H

f

��

E : A // // G // // G

It is easy to see that for a fixed homomorphism f : H → G the pullback construction
induces a group homomorphism f∗(−) : E(G,A) → E(H,A). Considering A as
trivial module for all groups we hence obtain a functor

E(−, A) : Grp→ Abop

and Proposition 4.2 can be strengthened as follows:

Theorem 4.4. The map [−] : E(−, A) → H2(−, A) is a natural isomorphism of
functors Grp→ Abop.

As a consequence we have the following lifting result.

Corollary 4.5. Let E be a central extension and let f : H → G be a group homo-
morphism as above.

(a) There exists a lift f : H → G if and only if f∗([E]) = 0 in H2(H,A). In
particular, the pullback p∗([E]) ∈ H2(G,A) vanishes.

(b) Assume that f is such a lift. Then the lifts are precisely the maps of the
form h 7→ f(h) · i(g(h)) for a homomorphism g : H → A.

Proof. By Theorem 4.4 the vanishing f∗([E]) = 0 is equivalent to the splitting of
the pullback f∗E = (A� H̃ �H). Assume first that f exists and consider the
diagram

H

f

��

idH

""

s

��

H̃

��

// // H

f

��

G
p
// // G

By the pullback property of the square s exists and is a splitting of f∗E. On the
other hand, if s : H → H̃ is a splitting then the composition H

s→ H̃ → G is a lift
of f . This proves (a). For the second part, assume that f̃ is a second lift. Then

p
(
f(h)−1f̃(h)

)
= 1
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for every h ∈ H, hence there is a unique map g : H → A with f(h)−1f̃(h) = i(g(h))
for all h ∈ H. Now g is a homomorphism as f and f̃ are homomorphisms and A is
central. �

Let E again be as above. An endomorphism ϕ : G → G descends to a well-
defined endomorphism ϕ : G → G (and hence is a lift of a such) if and only if
ϕ(i(A)) ⊂ i(A). In the other direction we have the following criterion:

Corollary 4.6. An endomorphism ϕ of G lifts to an endomorphism of G if and
only if ϕ∗(ker p∗) ≤ ker p∗ where p∗ : H2(G,A) → H2(G,A) denotes the induced
map on the level of cohomology.

Proof. Assume that ϕ is a lift of ϕ. Then the commutativity of the diagram

H2(G,A)
p∗
//

ϕ∗

��

H2(G,A)

ϕ∗

��

H2(G,A)
p∗
// H2(G,A)

implies ϕ∗(ker p∗) ≤ ker p∗. Conversely, the latter implies ϕ∗([E]) ∈ ker p∗ by Corol-
lary 4.5 (a). Hence (ϕ ◦ p)∗([E]) = 0 and therefore ϕ ◦ p lifts to an endomorphism
of G again by Corollary 4.5. �

Denote by End↑(G) the set of endomorphisms ofG which lift to endomorphisms ofG
and denote by EndA(G) the set of endomorphisms ϕ of G such that ϕ(i(A)) ⊂ i(A).
Obviously, both sets are closed under composition. But in general the inverse of
an automorphism in one of these sets will not automatically lie in the set again.
For this to hold we have to impose further conditions. We shall need the following
basic result.

Lemma 4.7. Let C ≤ B be finitely generated abelian groups. If ϕ is an automor-
phism of B such that ϕ(C) ≤ C, then actually ϕ(C) = C.

Proof. It is well known that finitely generated abelian groups are hopfian, that
is, every surjective endomorphism of such a group is an isomorphism. Consider
the induced map ϕ : B/ϕ(C) → B/ϕ(C). Then ϕ is surjective and hence is an
isomorphism since B/ϕ(C) is finitely generated. But clearly C/ϕ(C) ≤ kerϕ and
therefore ϕ(C) = C. �

We turn to the main result of this subsection:

Proposition 4.8. Let E be a central extension as above. Assume that:

(i) The center of G is finitely generated.
(ii) H2(G,A) is finitely generated.
(iii) There is no non-trivial homomorphism A/([G,G] ∩A)→ A.

Then the following holds:

(a) AutA(G) = Aut(G) ∩ EndA(G) is a subgroup of Aut(G) and Aut↑(G) =
Aut(G) ∩ End↑(G) is a subgroup of Aut(G).

(b) Every lift of every element in Aut↑(G) is an automorphism of G and there
is an abelian extension

Hom(G,A) // ∆ // AutA(G) // // Aut↑(G)

where ∆ sends h : G→ A to the automorphism x 7→ x · i(h(p(x))) of G.
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Proof. To prove (a) it is enough to show that both sets are closed under inversion.
Consider an element ϕ ∈ AutA(G). By (i) we can apply Lemma 4.7 to the groups
i(A) ≤ Z(G) and the restriction ϕ|Z(G) (which is automatically an automorphism)
to conclude that ϕ(i(A)) = i(A). So (ϕ)−1 is in AutA(G) as well. Next, consider
ϕ ∈ Aut↑(G) and let ψ ∈ Aut(G) be its inverse. We shall use the lifting criterion
from Corollary 4.6. By (ii) we can apply Lemma 4.7 to the groups ker p∗ ≤ H2(G,A)
and the isomorphism ϕ∗ to obtain ϕ∗(ker p∗) = ker p∗. This shows that ψ∗(ker p∗) =
ker p∗ and hence ψ lifts as well.
To prove (b) we first look at elements in EndA(G) which lift the identity idG.
By Corollary 4.5 (b) these are precisely the maps of the form x 7→ x · H(x) for
a homomorphism H : G → A. Now H factors over the abelianisation of G and
hence by (iii) the restriction H|A must be trivial. Therefore H factors over a
homomorphism h : G→ A. Summarising, there is a bijection

∆ : Hom(G,A)→ ker
(

EndA(G)→ End↑(G)
)

which sends h to the endomorphism x 7→ x·i(h(p(x))) and a short calculation shows
that ∆ is actually a homomorphism. In particular we have ∆(h)◦∆(−h) = idG for
all h and hence im(∆) ≤ AutA(G).
Finally we prove that every lift of every element in Aut↑(G) is bijective. As a
consequence, the map AutA(G) → Aut↑(G) is surjective and in combination with
the above discussion about ∆ this proves the exactness of the sequence

Hom(G,A) // ∆ // AutA(G) // // Aut↑(G).

To do so we consider mutually inverse maps ϕ,ψ ∈ Aut↑(G) and arbitrary lifts ϕ
and ψ. By the previous paragraph there exists h ∈ Hom(G,A) such that ϕ ◦ ψ =
∆(h). As the map on the right hand side is bijective, ϕ is surjective and ψ is
injective. By symmetry, both maps are indeed bijective.

�

Since Inn(G) ⊆ AutA(G) and Inn(G) ⊆ Aut↑(G) we can form the quotients

OutA(G) = AutA(G)/ Inn(G),
Out↑(G) = Aut↑(G)/ Inn(G)

which are subgroups of the corresponding outer automorphisms groups.

Corollary 4.9. Under the same assumptions as in Proposition 4.8 there is an
abelian extension

W //
∆ // OutA(G) // // Out↑(G)

where W is the cokernel of the injective commutator map

p−1(Z(G))/Z(G)
x7→[x,−]

// Hom(G,A).

Proof. Since the sequence

1 // Z(G) // p−1(Z(G)) Int // Inn(G) // Inn(G) // 1

is exact the commutative diagram

p−1(Z(G))/Z(G)

[x,−]

��

// // Inn(G)
��

��

// // Inn(G)
��

��

Hom(G,A) // ∆ // AutA(G) // // Aut↑(G)

has exact rows. Now apply the snake lemma. �
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4.3. Compact Surface Groups. In this subsection we collect some basic facts
about the fundamental group Γ = π1(S) of a closed orientable surface S of genus
g and its central Z-extensions. Then we apply the results of the last subsection to
the situation at hand. In the beginning we closely follow [8], Section 3.3.

It is well known that Γ has the following standard presentation:

Γ =
〈
a1, b1, . . . , ag, bg

∣∣∣ g∏
k=1

[ak, bk] = 1
〉
.

For any integer n we define the group

Γn =
〈
a1, b1, . . . , ag, bg, c

∣∣∣ g∏
k=1

[ak, bk] = cn, c is central
〉
.

Lemma 4.10. The group Γn fits into a central extension

En : Z // i // Γn
p
// // Γ

where i(k) = ck and where p is the obvious projection. Moreover, Em ·En ∼= Em+n

for all integers m,n.

Proof. The natural homomorphism p : Γn → Γ induced by ak 7→ ak, bk 7→ bk and
c 7→ 1 is surjective with kernel the central subgroup generated by c. To show that c
has infinite order in Γn we can clearly assume n 6= 0. The homomorphism Γn → H3

into the Heisenberg group given by

ak 7→

1 n 0
0 1 0
0 0 1

 , bk 7→

1 0 0
0 1 n
0 0 1

 , c 7→

1 0 gn
0 1 0
0 0 1


maps c to an element of infinite order. Hence i is injective and En is indeed a
central extension.
Next we compute the Baer product Em · En. The pullback X ≤ Γm × Γn in the
construction is generated by the elements

d =
(
c(m), 1

)
, e =

(
1, c(n)

)
and uk =

(
a

(m)
k , a

(n)
k

)
, vk =

(
b
(m)
k , b

(n)
k

)
, 1 ≤ k ≤ g

and is actually given by the presentation

X =
〈
u1, v1, . . . , ug, vg, d, e

∣∣∣ g∏
k=1

[uk, vk] = dmen, d and e are central
〉
.

Define the map X → Γm+n by uk 7→ ak, vk 7→ bk and d 7→ c, e 7→ c. Then the
diagram

Z��
(id,− id)

��

Z��
1 7→de−1

��

Z× Z //
(k,l)7→dkel

//

P
����

X // //

����

Γ

Z // i // Γm+n

p
// // Γ

commutes and hence indeed Em · En ∼= Em+n. �

Lemma 4.11. The class [E1] generates H2(Γ,Z) ∼= Z.
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Proof. ([8], Proposition 3.1.) We first prove that every central Z-extension of Γ is
strongly isomorphic to one of the extensions En. Let

Z // ι // Λ
π // // Γ

be such an extension. Choose lifts αk and βk of ak and bk, these are determined
up to central elements. Hence the product l =

∏g
k=1[αk, βk] does not depend on

the lifts and lies in the kernel of π. So there is an integer n with ι(n) = l. The
homomorphism f : Γn → Λ defined by ak 7→ αk, bk 7→ βk and c 7→ ι(1) fits into the
commutative diagram

Z // i // Γn

f

��

p
// // Γ

Z // ι // Λ
π // // Γ

and so gives a strong isomorphism of extensions by the 5-lemma. In combination
with Lemma 4.10 this shows that E(Γ,Z) is generated by the class of E1. But it
is obvious that two extensions Em, En are never strongly isomorphic for m 6= n.
Hence the class of E1 has infinite order. �

We point out that this does not mean that the groups Γn are pairwise non-isomorphic.
In fact Γn ∼= Γ−n for all n. The computation of the abelianisations in the next
lemma shows that these are the only non-trivial isomorphisms among the Γn.

Lemma 4.12. Let n be an integer.
(a) The center Z(Γn) = 〈c〉 is isomorphic to Z.
(b) We have [Γn,Γn] ∩ 〈c〉 = 〈cn〉 and (Γn)ab ∼= Γab × (Z/nZ).

Proof. (a) The well known fact that Γ has trivial center implies Z(Γn) ≤ 〈c〉 while
the other inclusion is trivial. (b) By definition, cn is a product of commutators. On
the other hand, there is a surjective homomorphism Γn → Z/nZ given by ak 7→ 0,
bk 7→ 0 and c 7→ 1, hence [Γn,Γn] ∩ 〈c〉 ≤ 〈cn〉. So the diagram

nZ // //

��

[Γn,Γn]

��

// // [Γ,Γ]

��

Z // i // Γn
p

// // Γ

has exact rows and the snake lemma gives the exact sequence

Z/nZ // // (Γn)ab // // Γab.

The latter splits because Γab is free abelian. �

The extension E2−2g has an important geometric meaning as it describes the long
exact homotopy sequence of the unit tangent bundle T1S → S:

Lemma 4.13. There is a central extension

π1(S1) // // π1(T1S) // // π1(S).

To be more precise, choose a standard curve system a1, b1, . . . , ag, bg on S such that
the lift to the universal cover S̃ of

∏g
i=1[ai, bi] bounds a positively oriented disc

and consider the isomorphism π1(S) ∼= Γ induced by this curve system. Moreover
identify π1(S1) ∼= Z such that the composition Z → π1(S1) → π1(T1S) maps 1
to the class of the positively oriented fibre. Then the above extension is strongly
isomorphic to the extension E2−2g.
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Proof. The long exact homotopy sequence for the S1-bundle T1S → S gives an
exact sequence

π2(S) // π1(S1) // π1(T1S) // π1(S) // π0(S1).

Here the first term is trivial since the universal covering of S is contractible, and
the last term is trivial since S1 is path-connected. Clearly, the action of π1(S) on
the fundamental group of the fibre is trivial, hence the extension is central.
It remains to determine the strong isomorphy type of this extension. For this we
choose a point x ∈ S which does not lie on any of the curves ai, bi and we choose
a vector field X on S which vanishes only at the point x. Define lifts ãi = X ◦ ai
and b̃i = X ◦ bi and observe that the closed curve

∏g
i=1[ãi, b̃i] is homotopic to X ◦ c

where c is the boundary of a small positively oriented disc around the point x. But
the later is homotopic to iX(x) times the positively oriented fibre of T1S over the
point x by definition of the index iX(x). Finally, by the Poincaré-Hopf theorem,
we have iX(x) = χ(S) = 2 − 2g which implies the claim by the proof of Lemma
4.11. �

Set H = Γab and observe that H is a free abelian group of rank 2g, freely generated
by the images of the generators ak, bk of Γ. We will frequently use the notation
H∗ = Hom(H,Z) for the dual group of H. We now turn to the description of
the (outer) automorphisms group of Γn in terms of H∗ and the corresponding
automorphism group of Γ:

Theorem 4.14. Assume that n 6= 0. There are abelian extensions

H∗ //
∆ // Aut(Γn) // // Aut(Γ)

and

H∗ //
∆ // Out(Γn) // // Out(Γ).

The map ∆ sends a homomorphism l : H → Z to the automorphism z 7→ z · cl(q(z))
where q : Γn → Γ→ H denotes the canonical projection.

Proof. We will derive the claim from Proposition 4.8 and start by verifying the three
conditions in the statement there. We set A = 〈c〉 ∼= Z for notational clarity. By
Lemma 4.12 (a) the center Z(Γn) = A is finitely generated and by (b) the group
A/([Γn,Γn] ∩ A) is cyclic of order n 6= 0, hence does not admit any non-trivial
homomorphisms to A. Finally, H2(Γ, A) ∼= Z is finitely generated. Proposition 4.8
now gives the abelian extension

Hom(Γ, A) // ∆ // AutA(Γn) // // Aut↑(Γ).

Since A = Z(Γn) is characteristic we have AutA(Γn) = Aut(Γn). Moreover, every
automorphism of Γ acts by multiplication with ±1 on H2(Γ, A) ∼= Z and therefore
preserves ker(p∗), hence Aut↑(Γ) = Aut(Γ). Finally, we observe that the identifi-
cation Z ∼= A given by 1 7→ c induces an identification Hom(Γ, A) ∼= H∗ and the
description of the map ∆ above follows from the description given in Proposition
4.8.
For the second extension we can apply Corollary 4.9 and observe that p−1(Z(Γ)) =
A = Z(Γn). �

Note that for n = 0 the analogous statement fails. The automorphism of Γ0 induced
by ak 7→ ak, bk 7→ bk and c 7→ c−1 lifts the identity on Γ but does not lie in the
image of ∆.

Lemma 4.15. For ϕ ∈ Aut(Γ) the following conditions are equivalent:
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(i) The induced isomorphism ϕ∗ of H2(Γ,Z) is the identity.
(ii) For every integer n 6= 0 and every lift ϕ ∈ Aut(Γn) of ϕ the restriction of

ϕ to the center Z(Γn) is the identity.

Proof. In the situation of (ii) we set A = Z(Γn) ∼= Z and consider the commutative
diagram

Hom(A,A) δ //

(ϕ|A)∗

��

H2(Γ, A)

ϕ∗

��

Hom(A,A) δ // H2(Γ, A)

where δ is the connecting homomorphism in the cohomological 5-term sequence
associated to En. As n 6= 0 we have δ(idA) = [En] 6= 0 by Lemma 4.11, in particular
δ is non-trivial. Since the groups Hom(A,A) and H2(Γ, A) are both infinite cyclic
and since δ is non-trivial, the maps ϕ∗ and (ϕ|A)∗ have to be multiplication with
the same integer. Hence (i) and (ii) are equivalent. �

We denote by Aut+(Γ) the group of automorphisms which satisfy the equivalent
conditions in Lemma 4.15. For n 6= 0 we define Aut+(Γn) to be the preimage of
Aut+(Γ) under the projection Aut(Γn) → Aut(Γ). For n = 0 we define Aut+(Γ0)
to be the group of automorphism ϕ which restrict to the identity on the center and
which map to an element of Aut+(Γ) under the canonical projection. It is easy to
see that all the groups Aut+ have index 2 in the corresponding full automorphism
groups except for |Aut(Γ0) : Aut+(Γ0)| = 4. Finally, since inner automorphisms
are contained in Aut+, it makes sense to form the quotients Out+(Γ) and Out+(Γn).

Corollary 4.16. If one replaces each Aut by Aut+ and each Out by Out+ in
Theorem 4.14, one again obtains abelian extensions. This holds for all n, including
the case n = 0.

Proof. For n 6= 0 one only has to observe that the image of the map ∆ : H∗ →
Aut(Γn) actually lies in Aut+(Γn) since automorphisms of the form ∆(l) all descend
to the identity on Γ. For n = 0 one can directly adapt the proof given in Theorem
4.14 with obvious small modifications. �

We denote the abelian extensions described in the above corollary by Aut+(En)
respectively Out+(En).

Proposition 4.17. The map E(Γ,Z)→ E(Aut+(Γ), H∗) induced by En 7→ Aut+(En)
is a group homomorphism. The same holds if we replace Aut+ by Out+.

Proof. Let m,n be integers. The Baer product Em · En is given by the lower row
of the diagram

(10) Z��
(id,− id)

��

Z //
��

��

1

��

Z× Z //
im×in //

P
����

X // //

����

Γ

Z // i // Γ // // Γ

and is the sequence of cokernels of the upper part. Here

X = {(xm, xn) ∈ Γm × Γn | pm(xm) = pn(xn)}.
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Hence it is enough to prove that the group Aut+(Γ) fits into a commutative diagram

(11) H∗��

(id,− id)

��

H∗ //
��

��

1

��

H∗ ×H∗ //
∆m×∆n //

P
����

W // //

f

��

Aut+(Γ)

H∗ //
∆ // Aut+(Γ) // // Aut+(Γ)

with short exact columns and rows. The group W is given by

W = {(ϕm, ϕn) ∈ Aut+(Γm)×Aut+(Γn) |
ϕm and ϕn descend to the same map in Aut+(Γ)}

and the map ∆ : H∗ → Aut+(Γ) by ∆(l) : x 7→ x · i(l(q(x)) where q : Γ→ H is the
canonical projection. Note that the lower row is exact by Corollary 4.16. Hence it
is sufficient to construct a homomorphism f such that the diagram commutes and
such that the composition H∗ → W

f→ Aut+(Γ) is trivial. The exactness of the
middle column then follows from the nine lemma.
To define f , choose a pair (ϕm, ϕn) ∈ W and denote by ϕ the common image of
both maps in Aut+(Γ). Since by assumption ϕm, ϕn both restrict to the identity
on the center there is an isomorphism of extensions

Z× Z //
im×in // X // //

ϕm×ϕn
��

Γ

ϕ

��

Z× Z //
im×in // X // // Γ

which, by passing to the cokernel sequence in (10), induces an isomorphism

Z // // Γ // //

ϕ

��

Γ

ϕ

��

Z // // Γ // // Γ

We define f
(
(ϕm, ϕn)

)
= ϕ. Clearly, f is a homomorphism and the above diagram

shows that it takes values in Aut+(Γ). By the same reason, the lower right hand
square in (11) commutes. A routine verification finally shows the commutativity of

the lower left square in (11) as well as the triviality of the composition H∗ →W
f→

Aut+(Γ).
The corresponding statement for Out+(En) can be proved in the same way just by
dividing out the inner automorphisms at the appropriate places. �

Corollary 4.18. The cohomology class [Out+(En)] lies in

n ·H2
(

Out+(Γ), H∗
)
.

We will show later (cf. Theorem 4.30) that the group H2
(

Out+(Γ), H∗
)

is anni-
hilated by 2g − 2. In combination with the previous corollary this shows that the
extension Out+(En) splits whenever n is divisible by 2g − 2.
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4.4. The Symplectic Group and the Torelli Group. By the homotopy invari-
ance of singular homology the mapping class groupM(S) of a surface S acts on the
integral homology H1(S). This action clearly preserves the homological intersection
form ω on H1(S), hence it factors over the symplectic group Sp(ω).
On the other hand, M(S) acts by outer automorphisms on Γ = π1(S) and the re-
sulting homomorphismM(S)→ Out+(Γ) is an isomorphism by the Dehn-Nielsen-
Baer theorem. Observe that H1(S) is just the abelianisation of Γ by the Hurewitz
theorem. Hence the action of the mapping class group on the homology of S cor-
responds to the natural homomorphism

(12) Out+(Γ)→ Aut(Γab).

The latter is well-defined since the conjugation action of Γ on Γab is trivial. Now,
from a purely algebraic point of view, it is not so clear anymore why (12) should
factor over a symplectic group. The first goal of this subsection is therefore to give
an algebraic explanation of this phenomenon.

We keep the notation H = Γab for the abelianisation of Γ. For 1 ≤ i ≤ g we denote
the image of ai in H by xi and the image of bi by xi+g, then these 2g elements
form a Z-base of the free abelian group H. Consider the non-degenerate integral
symplectic form

ω =
g∑
i=1

dxi ∧ dxi+g ∈ ∧2H∗

on H with respect to which {x1, . . . , x2g} is a symplectic standard basis. We will
prove that (12) indeed factors over the integral symplectic group Sp(ω) ∼= Sp2g(Z).

We take the opportunity to recall the construction of exterior powers of free abelian
groups. Let H be free abelian with a free basis {x1, . . . , xn}. For a positive integer
m the m-th exterior power ∧mH is defined as the quotient of the m-fold integral
tensor power

⊗m
H by the subgroup generated by all pure tensors v1 ⊗ · · · ⊗ vm

where two of the elements vi are the same. As usual, we denote the image in ∧mH
of a tensor v1 ⊗ · · · ⊗ vm by v1 ∧ · · · ∧ vm. It is not difficult to see that ∧mH is free
abelian of rank

(
n
m

)
and that a basis is given by the elements

xki ∧ . . . ∧ xkm , 1 ≤ k1 < . . . < km ≤ n.

In what follows, we shall take a more general point of view. Let F be a free group
of rank n on the generators a1, . . . , an and let r ∈ F . We consider the one-relator
group

G = 〈a1, . . . , an | r〉,

i.e., the quotient G = F/R where R = 〈〈r〉〉 ≤ F is the normal subgroup generated
by r. We make the standing assumption that r ∈ F ′ lies in the commutator
subgroup of F . As a consequence, the natural projection F → G descends to an
isomorphism Fab ∼= Gab between the corresponding abelianisations. This common
abelianisation will be denoted by H and is a free abelian group of rank n, freely
generated by the images ai. We will now give an upper bound on the image of
the homomorphism Aut(G)→ Aut(H). The proof uses a construction taken from
Johnson [17] which will also play a role later on.
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Theorem 4.19. Write r = [u1, v1] · · · [um, vm] as a product of commutators in F .
Then the element

θ =
m∑
i=1

ui ∧ vi ∈ ∧2H

depends only on r and not on the presentation as a product of commutators. More-
over, the image of the homorphism Aut(G) → Aut(H) consists of automorphisms
for which the induced automorphism of ∧2H preserves θ up to sign.

Proof. For a group Γ the lower central series is the sequence of characteristic sub-
groups defined recursively by Γ(0) = Γ and Γ(k+1) = [Γ,Γ(k)]. The factor group
Γk = Γ/Γ(k) is the largest quotient which is nilpotent of class k. In particular, we
have Γ(1) = Γ′ and Γ1 = Γab. The functor (−)k : Grp → Nilk into the category
of nilpotent groups of class k is left adjoint to the inclusion functor and hence is
right exact. In the special case of the free group F = 〈a1, . . . , an〉, the quotients Fk
are the free nilpotent groups of class k on n generators. They enjoy the following
universal property: For any nilpotent group N of class k and for every n-tupel of
elements x1, . . . , xn ∈ N there is a unique homomorphism f : Fk → N such that
f(ai) = xi.
Applying (−)2 to the exact sequence 1 → R → F → G → 1 we obtain the right-
exact sequence

R2 → F2 → G2 → 1.

Since r ∈ F ′ the element r is central in F2 and the image of R2 is given by the
cyclic subgroup 〈r〉. So we have a central extension

〈r〉 // // F2
// // G2.

Lemma 4.20. Every automorphism of G2 lifts to an automorphism of F2 which
fixes the set {r, r−1}.

Proof. We denote by ai respectively ãi the images of the generators ai ∈ F in F2

respectively G2. Consider an automorphism ϕ of G2, set b̃i = ϕ(ãi) and choose
preimages bi in F2. By the universal property of F2 there is a unique endomorphism
ψ : F2 → F2 such that ψ(ai) = bi. By construction, ψ lifts ϕ. Likewise, there is a
lift ρ of the inverse ϕ−1. Since the composition ρ ◦ψ lifts the identity on G2, there
are integers ki with ρ ◦ ψ(ai) = air

ki for 1 ≤ i ≤ n. Because r ∈ F2 is central we
can conclude that ρ ◦ ψ is the identity on (F2)′, in particular we have

(13) ρ ◦ ψ(r) = r.

On the other hand, since both ψ and ρ descend to G2, there are integers s, t such
that ψ(r) = rs and ρ(r) = rt. Now (13) implies st = 1 and hence s = t = ±1. In
addition, this shows that ψ and ρ are surjective and therefore also injective because
finitely generated nilpotent groups are hopfian. �

We set N = F (1)/F (2). Note that N and H are both abelian and that we have a
central extension

N // // F2
// // H.

Lemma 4.21. The commutator map on F2 descends to an alternating bilinear and
Aut(F2)-equivariant map H ×H → N which induces an equivariant isomorphism

j : ∧2H → N.

Proof. ([17], Lemmas 1A,1B,1C) The commutator map [·, ·] on F2×F2 takes values
in N and depends only on the residue class mod N of its arguments since N is
central. Hence it descends to a well-defined map b : H×H → N which is obviously
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equivariant and alternating. The bilinearity is a consequence of the well known
commutator identities

[x, yz] = [x, y] · y[x, z]y−1 and [xy, z] = x[y, z]x−1 · [x, z].

The induced homomorphism j : ∧2H → N is surjective since every element in N is
a product of commutators. For the injectivity it is then enough to observe that the
two groups ∧2H and N are both free abelian of the same rank

(
n
2

)
. This is clear

for the first group, while the structure of N has been determined by Magnus, cf.
[26], Theorems 5.11 and 5.12. �

Set θ = j−1(r) ∈ ∧2H. By construction of j this is the element defined in the
statement of the theorem. The independence of the decomposition of w into com-
mutators is now obvious. As a consequence of the Aut(F2)-equivariance of j the
diagram

Aut(F2) //

��

Aut(N)

Int(j−1)

��

Aut(H) d // Aut(∧2H)

commutes where d is given by the diagonal action. Hence we have a commutative
diagram

Aut(F2){±r} //

����

Aut(N){±r}
Int(j−1)

// Aut(∧2H){±θ}
��

��

Aut(G) // Aut(G2) // Aut(H) d // Aut(∧2H)

where in the upper row we mean the corresponding set stabilisers and where the
left vertical map is surjective by Lemma 4.20. This shows the desired invariance of
θ up to sign. �

We now come back to the concrete case of the compact surface group Γ. Here F is
the free group on the generators ai, bi for 1 ≤ i ≤ g and r =

∏g
i=1[ai, bi] ∈ F ′. The

element θ is given by

θ =
g∑
i=1

xi ∧ xi+g ∈ ∧2H.

Denote the image of Aut(Γ) → Aut(H) by K. By Theorem 4.19 every element of
K induces an automorphism of ∧2H which preserves θ up to sign. To make the
link to the symplectic form ω we consider the map

H∗ → H∗∗, f 7→
(
g 7→ (f ∧ g)(θ)

)
which is K-equivariant up to sign. Composition with the inverse of the Aut(H)-
equivariant evaluation map H → H∗∗ gives a homomorphism c : H∗ → H which is
again K-equivariant up to sign. A short computation shows that c(dxi) = xi+g and
c(dxi+g) = −xi for 1 ≤ i ≤ g, in particular, c is an isomorphism. Now θ corresponds
to the symplectic form ω via the K-equivariant isomorphism c⊗ c : ∧2H∗ → ∧2H,
hence we can conclude that ω is K-invariant up to sign as well. Equivalently, we
have

(14) K ≤ 〈σ〉n Sp(ω)

where σ ∈ Aut(H) is the involution given by interchanging xi and xi+g for 1 ≤ i ≤ g
and satisfying (σ ⊗ σ)∗(ω) = −ω.
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Lemma 4.22. For ϕ ∈ Aut(Γ) the following conditions are equivalent:

(i) ϕ ∈ Aut+(Γ).
(ii) The image of ϕ in Aut(H) lies in Sp(ω).
(iii) The image of ϕ in Aut(H) has determinant 1.

Proof. The group

Hω =
〈
x1, . . . , x2g, y

∣∣∣ [xi, xj ] = yω(xi,xj), y is central
〉

fits into a central extension

C : Z // i // Hω
// // H

where i(1) = y. Since (ϕ ⊗ ϕ)∗(ω) = ±ω a similar argument as in the proof
of Lemma 4.11 shows that the pullback ϕ∗C is strongly isomorphic to ±C, hence
ϕ∗([C]) = ±[C] ∈ H2(H,Z). Moreover, a check show that q∗([C]) = [Eg] ∈ H2(Γ,Z)
where q : Γ → H is the canonical projection. Now consider the commutative
diagram

〈[C]〉
q∗
//

ϕ∗

��

H2(Γ,Z)

ϕ∗

��

〈[C]〉
q∗
// H2(Γ,Z)

where in the left column we mean the subgroup of H2(H,Z) generated by [C]. Since
q∗ 6= 0 the two vertical maps are multiplication with the same integer ±1, hence (i)
and (ii) are equivalent. The equivalence of (ii) and (iii) is a consequence of (14), the
well known fact that all elements of Sp(ω) have determinant 1 and det(σ) = −1. �

In summary we have shown so far that the image of the natural map Out+(Γ) →
Aut(H) is contained in Sp(ω). In the second half of this subsection we are going
to prove that it actually equals Sp(ω). To do so, we first take a closer look at the
symplectic group and use the opportunity to introduce some notation.

With respect to the base {x1, . . . , x2g} of H the group Sp = Sp(ω) is realised as
the integral symplectic group Sp2g(Z) consisting of integral square matrices ϕ of
size 2g satisfying the equation

ϕTJϕ = J, where J =
(

0 I
−I 0

)
.

Decomposing ϕ into four square blocks we have the equivalent conditions

ϕ =
(
A B
C D

)
∈ Sp2g(Z) ⇐⇒

{
ATC = CTA
BTD = DTB
ATD − CTB = I

We will introduce some special elements of Sp which will be useful later on. For
1 ≤ i ≤ g let Ei be the square matrix of size g with all entries zero except the
(i, i)-entry which is 1. Set

λi =
(
I Ei
0 I

)
and µi =

(
I 0
Ei I

)
.

For different indices 1 ≤ i, j ≤ g define Fij to be the square matrix of size g with
all entries zero except for the entries at the spots (i, i) and (j, j) which are 1 and
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the entries at the spots (i, j) and (j, i) which are −1. Set

νij =
(
I 0
Fij I

)
.

Finally, for a permutation π ∈ Sg let Pπ be the permutation matrix associated to
π, i.e., (Pπ)ij = δπ(i)j , and set

θπ =
(
Pπ 0
0 Pπ

)
.

Among the various relations between these elements we shall only use the following
easy to verify ones:

θπλiθ
−1
π = λπ(i),

θπµiθ
−1
π = µπ(i),

θπνijθ
−1
π = νπ(i)π(j).

Proposition 4.23. The group Sp is generated by the four elements λ1, µ1, ν12 and
θπ where π = (12 . . . g) is a cycle of length g.

Proof. By [3], Theorem 1 the group Sp is generated by λi and µi for 1 ≤ i ≤ g
together with ν12, . . . , ν(g−1)g. By the above relations these are all conjugated under
the subgroup 〈θπ〉 to one of the three elements λ1, µ1, ν12. �

Theorem 4.24. The image of the map Out+(Γ)→ Aut+(H) equals Sp.

Proof. It suffices to prove the inclusion ⊇. By Proposition 4.23 it is enough to
show that the four elements µ1, λ1, ν12 and θπ lift to Aut(Γ). For this we shall lift
them to automorphisms of the free group F which preserve the normal subgroup R
generated by r =

∏g
i=1[ai, bi]. These then descend to the desired automorphisms

of Γ.
Let λ̃1 be the endomorphism of F which maps b1 to b1a1 and fixes all other gen-
erators. Then clearly λ̃1 is invertible and fixes r, hence lifts λ1. Similarly, the
automorphism µ̃1 of F which maps a1 to a1b1 and fixes all other generators is a lift
of µ1. Next, let ν̃12 be defined by

a1 7→ a1a2b
−1
2 a−1

2 b1,

b1 7→ b−1
1 a2b2a

−1
2 b1a2b

−1
2 a−1

2 b1,

a2 7→ b−1
1 a2b2,

and by fixing all other generators. A calculation again shows that ν̃12 fixes r and
lifts ν12. Moreover, one verifies that an inverse is given by

a1 7→ a1b
−1
1 a2b2a

−1
2 ,

b1 7→ a2b
−1
2 a−1

2 b1a2b2a
−1
2 ,

a2 7→ a2b
−1
2 a−1

2 b1a2.

Finally, a lift θ̃π of θπ is given by ai 7→ ai+1 and bi 7→ bi+1 where all indices are to be
taken (mod g). This is clearly an isomorphism and since θ̃π(r) = [a1, b1]−1r[a1, b1]
it preserves R. �

Hence there are natural surjections Aut+(Γ)→ Sp and Out+(Γ)→ Sp. The kernel
of the latter homomorphism is called the Torelli group and denoted I. Geometri-
cally, I is the subgroup of the mapping class group consisting of those classes which
act trivially on the first homology H1(S) of the surface S.
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4.5. The Abelianisation of the Torelli Group. For the cohomological compu-
tations in the next subsection we need a description of the abelianisation Iab of
the Torelli group. The first complete description has been given by Johnson in a
sequence of three papers on the Torelli group ([19], [20], [21]). Johnson mainly
considered the case of a surface with one boundary component where things are
slightly easier to handle. He then derived the corresponding results for closed sur-
faces from this. We are going to present his work for the case of closed surfaces
only and will allways assume that the genus g of the surface is at least 3.

Johnson constructed two different homomorphisms σ and τ from I into abelian
groups. In [18] he defines σ as a combination of a family of Z2-valued homomor-
phisms constructed by Birman and Craggs based on the Rochlin invariant in [4].
Its image can be described as a certain space of boolean polynomials over Z2 (see
below). On the other hand, the definition of τ is purely algebraic in nature and
is related to the arguments we have used in the proof of Theorem 4.19. Its image
is a quotient of the third exterior power of H. Nowadays τ is known as Johnson
homomorphism. These two homomorphisms are not independent but share certain
information (mod 2) in a sense made precise below. Hovewer, it turns out that they
combine all the information about Iab (compare Theorem 4.29).

Before we can describe the two homomorphisms σ and τ we need some preparations.
We will frequently be dealing with the second and third exterior power of H and of
its (mod 2)-reduction H = H/2H. To simplify notation we use abbreviations like

xijk = xi ∧ xj ∧ xk, for i, j, k ∈ {1, . . . , 2g} pairwise different

in ∧3H and analogous ones for elements in ∧2H. The set {xijk | i < j < k} is then
a Z-basis of ∧3H. Recall the element

θ =
g∑
i=1

xi ∧ xi+g ∈
(
∧2 H)Sp

which is the dual of the invariant symplectic form ω on H. Since θ is invariant the
map

β : H → ∧3H, v 7→ θ ∧ v
is an Sp-equivariant homomorphism.

Lemma 4.25. The cokernel V of β is free abelian.

Proof. We use the decomposition

∧3H =
g⊕
i=1

Ki ⊕
g⊕
i=1

Li ⊕W

into a sum of 2g + 1 subspaces where Ki is generated by the elements xij(j+n) for
1 ≤ j ≤ g and j 6= i, Li is generated by the elements x(i+g)j(j+g) for 1 ≤ j ≤ g and
j 6= i and W is generated by the set of elements xjkl where no two indices differ by
a multiple of g. Since β(xi) =

∑g
j 6=i xij(j+g) the image of β decomposes into the

direct sum of subspaces Zai ≤ Ki and Zbi ≤ Li with

ai =
g∑
j 6=i

xij(j+g) and bi =
g∑
j 6=i

x(i+g)j(j+g).

The elements ai and bi are obviously primitive, hence the quotients Ki/Zai and
Li/Zbi are free abelian. This finishes the proof. �
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Lemma 4.26. The map γ : ∧3H → H,

u ∧ v ∧ w 7→ ω(u, v)w + ω(v, w)u+ ω(w, u)v

is a surjective, Sp-equivariant homomorphism. The composition γ ◦ β : H → H is
multiplication with g − 1.

Proof. Again, the equivariance follows from the invariance of ω. Since

γ(xi(i+n)j) = xj

for 1 ≤ i ≤ g and j 6= i, i + g, γ is surjective. Finally, a simple calculation proves
γ(β(xi)) = (g − 1)xi for all i, hence γ ◦ β = (g − 1) idH . �

We now turn to the description of the Johnson homomorphism τ and closely follow
[17], Section 3. We will refer to the proof of Theorem 4.19 and the notations
introduced therein. Set M = Γ(1)/Γ(2), then there is a commutative diagram

〈r〉
��

��

〈r〉
��

��

N // //

����

F2
// //

����

H

M // // Γ2
// // H

Let ϕ ∈ I, i.e., ϕ acts trivially on H. Let v ∈ H and choose a lift ṽ ∈ Γ2. Then the
element δ(ϕ)(v) = ϕ(ṽ)ṽ−1 is independent of the choice of the lift ṽ and projects to
0 ∈ H. Hence it lies in M and we obtain a map δ(ϕ) : H → M . For two elements
v, w ∈ H with lifts ṽ, w̃ we have

δ(ϕ)(vw) = ϕ(ṽw̃)(ṽw̃)−1 = ϕ(ṽ)δ(ϕ)(w)ṽ−1 = δ(ϕ)(v)δ(ϕ)(w)

since δ(ϕ)(w) ∈M is central in Γ2. Therefore, δ(ϕ) is a homomorphism.

Lemma 4.27. The map
δ : I → Hom(H,M)

is an Sp-equivariant homomorphism (where the action on I is given by conjugation
and the action on Hom(H,M) is given by (ϕ · f)(v) = ϕ

(
f(ϕ−1(v))

)
as usual).

Proof. For ϕ,ψ ∈ I we have

δ(ϕψ)(v) = ϕ(ψ(ṽ))ṽ−1 = ϕ
(
δ(ψ)(v)

)
· δ(ψ)(v) = δ(ϕ)(v) · δ(ψ)(v),

where in the last equality we have used that δ(ψ)(v) ∈M and that I acts trivially
on M . So δ is indeed a homomorphism. Moreover, for ϕ ∈ Aut+(Γ) and ψ ∈ I we
obtain

δ(ϕψϕ−1)(v) = ϕ(ψ(ϕ−1(ṽ)))ṽ−1 = ϕ
(
ψ(ϕ−1(ṽ)))ϕ−1(ṽ)−1

)
= ϕ

(
δ(ψ)(ϕ−1v)

)
and hence δ is Sp-equivariant. �

To give the final form of the Johnson homomorphism we first notice that the iso-
morphism j of Lemma 4.21 induces an isomorphism k : ∧2H/〈θ〉 →M . Using this
we obtain equivariantly

Hom(H,M) ∼= M ⊗H∗ ∼= M ⊗H ∼=
(
∧2 H/〈θ〉

)
⊗H

where the second isomorphism is given by the self-duality of H induced by the
symplectic form ω and the third by k−1. The last space now canonically projects
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onto (∧3H)/(θ ∧ H) = V , the cokernel of the map β defined above. Indeed, the
diagram

〈θ〉 ⊗H //

∼=
��

(∧2H)⊗H //

��

(
∧2 H/〈θ〉

)
⊗H

��

H
β

// ∧3H // V

commutes and the right column consists of the cokernels of the maps on the left.
Summing up the above discussion, δ induces an Sp-equivariant homomorphism

τ : Iab → V.

Johnson proved that τ is surjective (cf. [17], Section 4).

Next, we turn to the homomorphism σ. We will not actually define it since this
would lead us too far away, the interested reader is referred to [18]. Instead, we
content ourselves with the description of its image. All that follows is taken from
the before mentioned reference. Denote by H = H/2H ∼= H ⊗ Z2 the reduction of
H (mod 2). To avoid cumbersome notation we shall abstain from distinguishing
between objects related to H and their reduction in H. This will not cause any
problems since we are exclusively working over Z2 for the moment. In particular,
we denote the reduction H ∧ H → Z2 of the symplectic form ω again by ω. The
induced action of Sp on H and on all related objects introduced below naturally
factors over the finite simple group Sp2g(Z2).
A quadratic form on H is a map q : H → Z2 such that

q(u+ v) = q(u) + q(v) + ω(u, v)

for all u, v ∈ H. The set Ω of quadratic forms on H is an affine space over the
2g-dimensional Z2-vector space H

∗
= Hom(H,Z2) and carries the induced action

of Sp given by (ϕq)(v) = q(ϕ−1(v)). Denote by L the vector space of affine linear
maps f : Ω → Z2 and let B be the subalgebra of Map(Ω,Z2) generated by L.
In other words, B is the algebra of all functions on Ω which can be written as a
polynomial expression in affine linear maps. Since f2 = f for all f ∈ B one may
interpret B as an algebra of ‘boolean polynomials’. The symplectic group Sp acts
linearly on B via (ϕf)(q) = f(ϕ−1q).
Consider the evaluation map α : H → L given by α(v)(q) = q(v). It is easy to see
that α is equivariant, however, α is not a homomorphism. Indeed, we have

(15) α(v + w) = α(v) + α(w) + ω(v, w)

for all v, w ∈ H. Setting ei = α(xi) ∈ L, a basis of L is given by {1, e1, . . . , e2g}
where 1 denotes the constant function on Ω. The boolean property of B then
implies that a basis of B as a Z2-vector space is given by all monomials of the form
ei1 · · · eik with i1 < . . . < ik.
There is a filtration B0 < B1 < . . . of B where Bn is the subspace of functions
which can be written as a polynomial of degree ≤ n. The Sp-action preserves this
filtration and therefore descends to actions on the quotients Bn/Bn−1. However,
the action does not preserve homogeneous elements as a consequence of the fact
that α is not a homomorphism. For example we have

µ1(e1) = µ1α(x1) = α(µ1(x1)) = α(x1 + x1+g)
= α(x1) + α(x1+g) + ω(x1, x1+g)
= e1 + ei+g + 1

where in the second line we have used (15). The quotients Bn/Bn−1 have a familiar
structure. Using the explicit basis of B given above it is not difficult to prove:
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Lemma 4.28. The map α extends to an Sp-equivariant isomorphism of graded
algebras

∞⊕
n=0

∧nH →
∞⊕
n=0

Bn/Bn−1.

Consider the element

Arf = e1e1+g + . . .+ ege2g ∈ (B2)Sp,

the Arf-invariant. It is indeed Sp-invariant and corresponds to the (mod 2)-
reduction of θ under the isomorphism B2/B1

∼= ∧2H. Johnson now constructs
σ as a surjective equivariant homomorphism

σ : Iab → B3/(B1 Arf).

Notice that the target spaces of both τ and σ naturally surject on the space

V = (∧3H)/(θ ∧H) ∼= V ⊗ Z2,

by reduction (mod 2) respectively by Lemma 4.28. The abelianisation Iab of the
Torelli group is now characterised in terms of σ and τ as follows:

Theorem 4.29. Assume that g ≥ 3. The diagram

Iab
τ //

σ

��

V

(mod 2)

��

B3/(B1 Arf) s // V

commutes, where s is induced by the isomorphism B3/B2
∼= ∧3H. It is in fact a

pullback diagram in the category of Z[Sp]-modules, in particular there is an exact
sequence

B2/〈Arf〉 // // Iab // // V

where the group on the left is finite 2-torsion and the group on the right is free
abelian of rank

(
2g
3

)
− 2g.

Proof. For the first part, see [21], Theorem 6. The last statement follows directly
from the fact that the inclusion B2/〈Arf〉 → B3/(B1 Arf) is the kernel of the
homomorphism s. �

The assumption g ≥ 3 on the genus of S is crucial in the previous theorem. Indeed,
for g = 1 the Torelli group is trivial and for g = 2 Mess has shown in [28] that it
is free of infinite rank. As a consequence, Iab is free abelian of infinite rank in this
case.

4.6. On the Cohomology of the Mapping Class Group. The goal of this
subsection is to give upper bounds on the size of the first and second cohomology
of Out+(Γ) with coefficients in H∗ equipped with the natural action. Our result is
the following:

Theorem 4.30. Let Out+(Γ) act on H in the natural way.
(a) Assume that g ≥ 3. The group H1(Out+(Γ), H) is annihilated by 2g − 2.

Moreover,
H1
(

Out+(Γ),Hom(H,A)
)

= 0
for every torsion-free abelian group A equipped with the trivial action.
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(b) For g ≥ 6 the group H2(Out+(Γ), H∗) is annihilated by 2g − 2.

The main work is devoted to the proof that H1(Out+(Γ), H) is annihilated by 2g−2.
This is already known, actually Morita has even shown that H1(Out+(Γ), H) ∼=
Z2g−2, see [31], Corollary 5.4. However, we take an alternative approach which
makes use of the short exact sequence I� Out+(Γ) � Sp and the explicit descrip-
tion of Iab in Theorem 4.29. For (b) we will combine this calculation with a van-
ishing result of Looijenga for the rational cohomology group H2(Out+(Γ), H∗⊗Q)
which holds for g ≥ 6.

We start by recalling some tools from group cohomology which will be needed in
the sequel. First, we recall the 5-term exact sequences of low degree terms in the
classical Lyndon/Hochschild-Serre spectral sequence:

Proposition 4.31. Let 1→ N → G→ Q→ 1 be a short exact sequence of groups
and let M be a G-module. The there are exact sequences

H2(G,M)→ H2(Q,MN )→ H1(N,M)Q → H1(G,M)→ H1(Q,MN )→ 0,

respectively

0→ H1(Q,MN )→ H1(G,M)→ H1(N,M)Q → H2(Q,MN )→ H2(G,M).

Proof. See [38], 6.8.3. �

Next, we give a version of the universal coefficient theorem which also applies to
coefficients with non-trivial action.

Proposition 4.32. Let G be a group, M an arbitrary G-module and A a trivial
G-module. Then for every n ≥ 0 there is a short exact sequence

0→ Hn(G,M)⊗Z A→ Hn(G,M ⊗Z A)→ TorZ
1 (Hn−1(G,M), A)→ 0.

Similarly, there is a short exact sequence

0→ Ext1
Z(Hn−1(G,M), A)→ Hn(G,HomZ(M,A))→ HomZ

(
Hn(G,M), A

)
→ 0.

Proof. To prove the second statement, consider the right exact functors

ZG−Mod
C // Ab

D // Abop

between abelian categories where

C = Z⊗ZG − = (−)G and D = HomZ(−, A).

The value of the composite functor DC on a left ZG-module M is given by

DC(M) = HomZ(Z⊗ZGM,A)
= HomZG(Z,HomZ(M,A))

= HomZ(M,A)G

Note that both ZG−Mod and Ab have enough projectives and that moreover C
sends projective objects to D-acyclic ones. To see the latter, consider a projective
ZG-left module M and choose a complement N such that M ⊕N is free. Then

(Z⊗ZGM)⊕ (Z⊗ZG N) = Z⊗ZG (M ⊕N)

is a free abelian group, so the same holds for Z ⊗ZG M . In particular, the latter
group is D-acyclic. Hence we can invoke the Grothendieck spectral sequence

E2
pq = (LpG)(LqF )(M)⇒ Lp+q(GF )(M).

Now, because Z has cohomological dimension 1, only the first two columns in the
E2-sheet of that spectral sequence are non-zero and the sequence collapses to give
the desired result.
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One can derive the first sequence in a similar fashion using the two right exact
functors

ZG−Mod
Z⊗ZG− // Ab

A⊗Z− // Ab .

�

We now turn to the proof of Theorem 4.30 and start with an analysis of the ho-
mology group H1(Out+(Γ), H). As I� Out+(Γ) � Sp is short exact we obtain an
exact sequence

H1(I, H)Sp
// H1(Out+(Γ), H) // H1(Sp, HI)

by Proposition 4.31. Since the action of I on H is trivial by definition we have the
following description of the two outer groups:

• By Proposition 4.32 we have

H1(I, H)Sp
∼=
(

H1(I,Z)⊗H
)

Sp
= (Iab⊗H)Sp

(the Tor-term clearly vanishes).
• H1(Sp, HI) = H1(Sp, H).

Our claim will follow as soon as we prove that the first group is cyclic of order g−1
and the second group is annihilated by 2. The latter is rather easy to see and is a
consequence of the following general fact:

Proposition 4.33. Let G be a group and let M be a G-module. Assume that there
exists a central element in G which acts by multiplication with −1 on M . Then
H1(G,M) is annihilated by 2.

Proof. Let z ∈ Z(G) act by multiplication with −1 on M . We shall work with the
inhomogeneous bar-resolution and consider a 1-cycle c =

∑
imi[gi] ∈ Z1(G,M),

i.e.,

(16)
∑
i

gimi −mi = 0.

Subtracting the two equations

∂
(
mi[gi|z]

)
= gi(mi)[z]−mi[giz] +mi[gi]

∂
(
mi[z|gi]

)
= z(mi)[gi]−mi[zgi] +mi[z]

and using that giz = zgi as well as z(mi) = −mi we obtain

2mi[gi] = ∂
(
mi[gi|z]

)
− ∂

(
mi[z|gi]

)
− (gimi −mi).

Summing over i and using (16) shows that 2c is a boundary, as desired. �

We can apply this to the situation of Sp acting on H. The negative of the identity
matrix is central in Sp and indeed acts by multiplication with −1 on H, hence
H1(Sp, H) is annihilated by 2. Actually, a little more work shows that H1(Sp, H) is
isomorphic to Z2, a generator being given by the class of the inhomogeneous 1-cycle

x1[ν12]− x1[µ1] + x2[µ2].

We now turn to the more difficult task to compute (Iab⊗H)Sp where we keep the
standing assumption g ≥ 3. Recall that by Theorem 4.29 the group Iab is given by
a pullback construction and in particular it fits into an exact sequence

B2/〈Arf〉 // // Iab // // V.

We will proceed in several steps.



48

Lemma 4.34. We have

HSp = 0,
(H ⊗H)Sp

∼= Z,
(∧2H ⊗H)Sp = 0,

(∧3H ⊗H)Sp
∼= Z.

The isomorphism in the second line is induced by the symplectic Form ω : H×H →
Z and the one in the fourth by the map ω ◦ (γ × id) : ∧3H ×H → Z.

Proof. The isomorphism in the second line is a consequence of the one in the fourth
since the equivariant homomorphism γ ⊗ id : ∧3H ⊗H → H ⊗H is surjective and
(−)Sp is right-exact. Similarly, the vanishing of the first group follows from the
vanishing of the third.
We prove that the third group is trivial. For i ≤ g and j 6∈ {i, i + g} we have the
equations

(µi − 1)(xij ⊗ xl) = x(i+g)j ⊗ xl, l 6= i

(λi − 1)(x(i+g)j ⊗ xl) = xij ⊗ xl, l 6= i+ g

Using these and the fact that the wedge product is antisymmetric we can conclude
that the coinvariants are generated by the elements

xi(i+g) ⊗ xl, xi(i+g) ⊗ xl+g

where i, l ≤ g. Now the equations

(µl − 1)(xi(i+g) ⊗ xl) = xi(i+g) ⊗ xl+g,
(λl − 1)(xi(i+g) ⊗ xl+g) = xi(i+g) ⊗ xl

which are also valid for l = i show the vanishing of (∧2H ⊗H)Sp.
We now turn to the fourth group, the argument in fact being very similar. For
i ≤ g and j, k 6∈ {i, i+ g} we have

(µi − 1)(xijk ⊗ xl) = x(i+g)jk ⊗ xl, l 6= i

(λi − 1)(x(i+g)jk ⊗ xl) = xijk ⊗ xl, l 6= i+ g

Hence the coinvariants are generated by the images of the elements

xi(i+g)j ⊗ xj+g, xi(i+g)(j+g) ⊗ xj

for i, j ≤ g and i 6= j. Since Sp clearly acts transitively on the set of such elements
up to sign, their images in (∧3H⊗H)Sp are all the same up to sign. Hence the latter
group is cyclic and generated by each of them. On the other hand, the equivariant
bilinear map ω ◦ (γ× id) descends to an equivariant homomorphism ∧3H⊗H → Z.
This in turn factors over the coinvariants since the action on Z is trivial. The claim
now follows because the image of each element xi(i+g)j ⊗ xj+g in Z equals 1. �

Proposition 4.35. We have

(V ⊗H)Sp
∼= Zg−1.

Proof. Because coinvariants are right-exact we have

(V ⊗H)Sp = coker
(

(H ⊗H)Sp
β⊗id−→

(
∧3H ⊗H

)
Sp

)
.
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Consider the following diagram where the vertical isomorphisms are given by Lemma
4.34: (

H ⊗H
)

Sp

∼=
��

β⊗id
//
(
∧3H ⊗H

)
Sp

∼=
��

γ⊗id
//
(
H ⊗H

)
Sp

∼=
��

Z //

·(g−1)

55Z
∼= // Z

By Lemma 4.26 the composition in the upper row equals multiplication with (g−1).
Hence the same holds for the composition in the lower row. But since the right map
in the lower row is surjective, the first one is actually multiplication by ±(g − 1)
and this gives the claim. �

Proposition 4.36. The space
(B2 ⊗H)Sp

is generated by the image of the element e1+g ⊗ x1.

Proof. We consider the filtration 0 < B0 < B1 < B2 with successive quotients Z2,
H and ∧2H. Hence there is an exact sequence

(Z2 ⊗H)Sp
// (B1 ⊗H)Sp

// (H ⊗H)Sp
// 0.

According the Lemma 4.34 the first space is trivial and the last one is generated by
the image of the element x1+g ⊗ x1. Hence (B1 ⊗H)Sp is generated by the image
of the element e1+g ⊗ x1. Now consider the exact sequence

(B1 ⊗H)Sp
// (B2 ⊗H)Sp

// (∧2H ⊗H)Sp
// 0.

Again by Lemma 4.34 the last space is trivial and hence the claim follows. �

Proposition 4.37. We have

(Iab⊗H)Sp
∼= Zg−1.

Proof. Tensoring the exact sequence

0 // B2/〈Arf〉 // Iab // V // 0

with H and taking coinvariants we obtain the exact sequence(
(B2/〈Arf〉)⊗H

)
Sp

//
(
Iab⊗H

)
Sp

//
(
V ⊗H

)
Sp

// 0.

By Proposition 4.35 the group on the right is isomorphic to Zg−1. The key point
of the proof is to show that the first map is trivial which will imply the claim. To
do so we use the right-exactness of the coinvariants once more to put ourselves in
a slightly more transparent setting. Define X via the pull back diagram

X //

��

∧3H

��

B3
r // ∧3H

so X has the following explicit description:

X = {(f, z) ∈ B3 × (∧3H) | r(f) = z (mod 2)}.
Since the inclusion i : B2 → B3 is the kernel of r the sequence

0 // B2

(i,0)
// X // ∧3H // 0
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is exact and we obtain a commutative diagram(
B2 ⊗H

)
Sp

(i,0)⊗id
//

��

(
X ⊗H

)
Sp

��(
(B2/〈Arf〉)⊗H

)
Sp

//
(
Iab⊗H

)
Sp

where the vertical maps are the canonical projections. It will be enough to prove
that the top horizontal map is trivial. A rather tedious calculation shows that(

(i, 0)⊗ id
)
(e1+g ⊗ x1) = (ν12 − 1)

(
(e1e1+ge2+g, x1(1+g)(2+g))⊗ x1

)
− (µ1 − 1)

(
((1 + e1)e1+ge2+g, x1(1+g)(2+g))⊗ x1

)
+ (µ2 − 1)

(
((1 + e1)e1+ge2+g, x1(1+g)(2+g))⊗ x2

)
+ (µ2 − 1)

(
(e2e1+g, 0)⊗ x1

)
and hence the image of the element e1+g ⊗x1 in (X ⊗H)Sp vanishes. On the other
hand, (B2⊗H)Sp is generated by the image of this element according to Proposition
4.36. This finishes the proof. �

So far we have shown that the group H1(Out+(Γ), H) is indeed annihilated by 2g−2.
The fact that it is torsion now easily implies the vanishing of the cohomology groups
H1
(

Out+(Γ),Hom(H,A)
)

for A torsion-free. Indeed, by the universal coefficient
theorem (Proposition 4.32) we have

H1
(
Out+(Γ),Hom(H,A)

) ∼= Hom
(

H1(Out+(Γ), H), A
)

= 0

(the Ext-term vanishes since H has trivial coinvariants by Lemma 4.34).

Finally, we prove Theorem 4.30 (b). The missing main ingredient is a deep result
of Looijenga who has computed the stable cohomology ring of the mapping class
group for a certain class of rational coefficients in terms of the stable cohomol-
ogy ring with trivial rational coefficients. We will not discuss the stability results
on the cohomology of mapping class groups here but instead refer to [24] for an
overview and to the references therein. The main result in [24] is essentially the
following. Let U be a finite dimensional rational algebraic representation of the
group Sp2g(Q). Then U also naturally carries an action of the mapping class group
of a closed surface S of genus g via the composition Out+(Γ) � Sp(ω)→ Sp2g(Q).
The cohomology of the mapping class group with coefficients in U can then be
explicitely computed within the stable range in terms of the rational cohomology
and certain combinatorial data associated with the representation U . In the case
of the rational representation U = H∗Q = H∗ ⊗Q this gives:

Theorem 4.38. For g ≥ 6 the cohomology group H2(Out+(Γ), H∗Q) vanishes.

Proof. In the notation of [24], Theorem 1 the tensor product of graduated algebras
on the left hand side has the form b · H•(Γ∞,Q)[c] where b is of degree 3 and c is
of degree 2. In particular, the homogeneous part of degree 2 is trivial. �

Now, observe that there is an equivariant isomorphism

H∗Q = Hom(H,Z)⊗Q
∼=−→ Hom(H,Q),

hence by the universal coefficient theorem we have

0 = H2
(
Out+(Γ),Hom(H,Q)

) ∼= Hom
(

H2(Out+(Γ), H),Q
)
,
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the Ext-term being trivial. So H2(Out+(Γ), H) does not admit any non-trivial
homomorphisms to Q and therefore has to be torsion since Q is injective as a
group. Another application of the universal coefficient theorem gives

H2
(
Out+(Γ), H∗

) ∼= Ext1
Z
(

H1(Out+(Γ), H),Z
) ∼= H1(Out+(Γ), H),

where the second isomorphism holds because H1(Out+(Γ), H) is finitely generated
and torsion. This finishes the proof of Theorem 4.30.

4.7. Trivialising the Bounded Euler Class. Finally, we will put the cohomo-
logical computations of the last subsections to good use. We start with a splitting
result.

Theorem 4.39. Assume that g ≥ 6. The extension

H∗ // // Out+(Γ2−2g) // // Out+(Γ)

splits and any two splitting maps are conjugated.

Proof. On the one hand, the cohomology class

[Out+(E2−2g)] ∈ H2(Out+(Γ), H∗)

of the above extension is a (2g − 2)-fold multiple by Corollary 4.18. On the other
hand, the latter group is annihilated by 2g−2 according to Theorem 4.30 (b). Hence
[Out+(E2−2g)] = 0 and the extension splits. The second claim is a consequence of
Lemma 4.3 and the vanishing of the first cohomology H1(Out+(Γ), H∗) = 0. �

Now consider a holonomy representation ρ : Γ → PSU(1, 1) → Homeo+(S1). The
pullback eΓ

b ∈ H2
b(Γ) via ρ of the bounded Euler class eb ∈ H2

b(Homeo+(S1)) is
independent of the choice of ρ by Theorem 3.4 and is invariant under the action of
the mapping class group Out+(Γ) by Corollary 3.5.
Moreover, by Theorem 3.3 the pullback eΓ

Z ∈ H2(Γ,Z) ∼= Z of the integral Euler class
eZ ∈ H2(Homeo+(S1),Z) via ρ equals 2g−2 times a generator. Hence the pullback
of eΓ

Z to H2(Γ2−2g,Z) vanishes by Corollary 4.5 (a) and therefore the pullback α of
eΓ
b lies in the kernel of the comparison map:

α ∈ ker
(

H2
b(Γ2−2g)

c−→ H2(Γ2−2g,R)
)
.

By Theorem 4.39 the canonical action of the mapping class group Out+(Γ) by outer
automorphisms on Γ lifts to an action on Γ2−2g by outer automorphisms. Fixing
such a lift we have actions of Out+(Γ) on the cohomology group H2

b(Γ2−2g,R)
as well as on the space Qh(Γ2−2g) of homogeneous quasimorphisms. Since eΓ

b is
invariant the same holds for α:

α ∈ H2
b(Γ2−2g)Out+(Γ).

Hence α is invariant and trivialised by a homogeneous quasimorphism by Lemma
2.9. The question now arises whether there exists an invariant homogeneous quasi-
morphism which trivialises α. In general this will not be the case, however, we
have:

Lemma 4.40. Let Γ be a group and let G be a group which acts on Γ (by outer
automorphisms). Consider a G-invariant bounded cohomology class α in the kernel
of the comparison map H2

b(Γ)→ H2(Γ).
(a) If H1(G,Hom(Γ,R)) = 0 then there exists a G-invariant homogeneous

quasimorphism ϕG which trivialises α, i.e., α = [dϕG].
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(b) If A ≤ R is a subgroup, H1(G,Hom(Γ, A)) = 0 and if α is trivialised by a
homogeneous quasimorphism taking values in A, then ϕG can be chosen to
have values in A as well.

If moreover Hom(Γ, A)G = 0 then ϕG is unique.

Proof. Observe that (a) is a consequence of (b) by Lemma 2.9. Hence we assume
that ϕ ∈ Qh(Γ) is A-valued and trivialises α. For every g ∈ G the map gϕ is an
A-valued homogeneous quasimorphism as well. In addition we have

[d(gϕ− ϕ)] = gα− α = 0

since α is assumed to be G-invariant. Hence gϕ−ϕ is a homomorphism by Lemma
2.9 and we obtain a map

u : G→ Hom(Γ, A), g 7→ gϕ− ϕ.
Obviously, u satisfies the cocycle identity and therefore defines an element in the
cohomology group H1(G,Hom(Γ, A)). By assumption, the latter is trivial and so
there exists f ∈ Hom(Γ, A) with u(g) = gf − f for all g ∈ G. Now the map
ϕG = ϕ − f satisfies all conditions: It is a homogeneous A-valued quasimorphism
which trivialises α and which is moreover G-invariant by the choice of f .
For the last claim we consider two such G-invariant quasimorphisms. Their differ-
ence is then a G-invariant homomorphism Γ→ A, hence trivial by assumption. �

As a direct consequence of the cohomological computations in the last subsection
we obtain:

Theorem 4.41. Assume that g ≥ 3, then(
H2
b(Γ)

)Out+(Γ) = ReΓ
b ⊕

(
Qh(Γ)

)Out+(Γ)
.

Proof. We have

H1(Out+(Γ),Hom(Γ,R)) = 0, (Γab)Out+(Γ) = 0

by Theorem 4.30 respectively by Lemma 4.34. Hence by Lemma 4.40 there is an
exact sequence

0 //
(
Qh(Γ)

)Out+(Γ) //
(

H2
b(Γ)

)Out+(Γ) c //
(

H2(Γ,R)
)Out+(Γ)

.

By the very definition of Out+(Γ) its action on H2(Γ,R) ∼= R is trivial. On the
other hand the image of eΓ

b under the comparison map is non-trivial by Theorem
3.3. Now the claim follows since the above sequence of real vector spaces splits. �

Theorem 4.42. Assume that g ≥ 6. The invariant class α ∈ H2
b(Γ2−2g) is triv-

ialised by a unique homogeneous quasimorphism Rot which is invariant under the
lifted mapping class group action. Moreover, Rot is integral-valued.

Proof. By Corollary 4.5 there exists a homomorphism σ such that the diagram

Γ2−2g
σ //

��

Homeo+
Z (R)

q

��

Γ
ρ
// PSU(1, 1) // Homeo+(S1)

commutes. On the one hand, the pullback q∗(eb) ∈ H2
b(Homeo+

Z (R)) is trivialised
by the translation quasimorphism T by Lemma 2.20 and hence the quasimorphism
T ◦ σ ∈ Qh(Γ2−2g) trivialises α. On the other hand, every element in the image
of ρ is parabolic or hyperbolic by Lemma 3.1 and therefore has vanishing rotation
number. Consequently, T ◦ σ is integral valued.
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Now we can apply Lemma 4.40 (b) to the invariant class α and the value group
A = Z. Observe that Hom(Γ2−2g,Z) = H∗ by Lemma 4.12 (b) and hence

H1(Out+(Γ),Hom(Γ2−2g,Z)) = H1(Out+(Γ), H∗) = 0

by Theorem 4.30 (a). Moreover, every Out+(Γ)-invariant homomorphism Γ2−2g →
Z factors over HOut+(Γ) which is trivial by Lemma 4.34. Therefore, there exists a
unique invariant homogeneous quasimorphism Rot : Γ2g−2 → R trivialising α and
it is integer-valued. �

By Lemma 4.13 the group Γ2−2g is isomorphic to the fundamental group of the
unit tangent bundle T1S. In the next section we will actually construct Rot geo-
metrically on the unit tangent bundle of an arbitrary surface S.
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5. The Geometric Picture

In this section we parallel the results of the last one. However, there are two es-
sential differences. On the one hand, we use geometric methods here instead of
algebraic ones. On the other hand, the constructions will work in full generality,
i.e., for arbitrary not necessarily compact hyperbolic surfaces. We start by con-
structing an action of the mapping class groupM(S) of a surface S by orientation
preserving homeomorphisms on the unit tangent bundle of S. This is well known,
we follow [37]. Then we define the quasimorphism Roth in dependence of a metric
h ∈ Hyp(S). As it turns out, the natural domain of Roth is not an individual fun-
damental group of the unit tangent bundle of S but rather the whole fundamental
groupoid π1(T1S). We prefer the (metric independent) semi-projectivised version
of the unit tangent bundle for several reasons. First, in this interpretation the
quasimorphisms Roth form a continuous family in h, and second, the restriction of
all Roth to the set of closed classes is integer-valued and hence independent of the
metric h.

The first subsection deals with an algebraic invariant characterising homotopy
classes of self maps of a space Y which depends on a chosen covering space of
Y . This mainly serves as a technical preparation for Subsection 5.2 where we recall
the construction of the lifted action of the mapping class group on the unit tangent
bundle of a surface. In the remaining three subsections we first construct a common
lift of all holonomy representations of all fundamental groups of S associated to a
fixed metric h. Then we use this lift to pull back the translation quasimorphism
to obtain the quasimorphism Roth. Finally, we prove various nice properties of the
family (Roth)h∈Hyp(S).

5.1. Coverings and Homotopies. Associated to a covering X → Y , we intro-
duce an endomorphism-valued invariant which classifies the homotopy classes of
continuous self maps of Y which lift to X. In this subsection all spaces are assumed
to be locally compact.

Consider a regular covering p : X → Y of connected spaces with group of covering
transformations Γ. We denote by C(X) respectively C(Y ) the space of continuous
self maps of X respectively Y equipped with the compact-open topology.

Denote by NC(X)(Γ) the set of all ψ ∈ C(X) satisfying the following property: For
all γ ∈ Γ there exists γ′ ∈ Γ such that ψγ = γ′ψ. The element γ′ is uniquely
determined by ψ and γ since a covering transformation is determined by the value
at one single point. We denote it by aψ(γ). It is easy to see that NC(X)(Γ) ≤ C(X)
is a submonoid, that the map aψ : Γ→ Γ is an endomorphism and that

a(−) : NC(X)(Γ)→ End(Γ)

is a homomorphism. Observe that NC(X)(Γ) ∩ Homeo(X) = NHomeo(X)(Γ) is the
usual normaliser of the subgroup Γ and that for ψ ∈ NHomeo(X)(Γ) the automor-
phism aψ of Γ is induced by the conjugation with ψ.

Assume that ϕ ∈ C(Y ) lifts to a continuous map X → X. Then every lift lies in
NC(X)(Γ) and any two such lifts differ only by left multiplication with an element
of Γ. Conversly, every element in NC(X)(Γ) descends to a continuous map Y → Y .
In the special case where X is simply connected, every element of C(Y ) lifts and
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the following sequence is exact:

1 −→ Γ −→ NC(X)(Γ) −→ C(Y ) −→ 1.

Now consider a tower of regular coverings Z
p′→ X

p→ Y of connected spaces and
let Γ respectively Γ′ be the groups of covering transformations of p respectively p′.
Denote by Λ the group of covering transformations of p ◦ p′. There is a short exact
sequence

1 −→ Γ′ −→ Λ −→ Γ −→ 1

where the second map is given by descent. Denote by

A(−) : NC(Z)(Λ)→ End(Λ),
a(−) : NC(X)(Γ)→ End(Γ)

the corresponding maps defined above. Observe that Γ′ acts by left multiplication
on NC(Z)(Λ) and by (pointwise) conjugation on End(Λ). With respect to these
actions the map A(−) is Γ′-equivariant.

Lemma 5.1. For every ψ ∈ NC(Z)(Λ) and every γ′ ∈ Γ′ we have Aψ(γ′) = idZ .
Hence Aψ descends to a well-defined endomorphism of Γ. The following diagram
commutes and has exact columns:

Γ′

��

Γ′

Int

��

NC(Z)(Λ)
A(−)

//

��

End(Λ)

��

NC(X)(Γ)
a(−)

// End(Γ)

Proof. All of this is routine verification. �

We keep the notations introduced above.

Proposition 5.2. Let p : X → Y be a regular covering with group of covering
transformations Γ. Let X̃ → X be a universal covering of X and let Γ′ be its group
of covering transformations. Assume that there exists a Γ′-invariant metric on X̃
such that X̃ is CAT(0). Then the non-empty fibres of the map

a(−) : NC(X)(Γ)→ End(Γ)

are precisely the path-connected components of NC(X)(Γ).

Proof. We first prove that every path-component is mapped to a single point. For
this none of the assumptions on X̃ is needed. Notice that End(Γ) is totally dis-
connected when equipped with the compact-open topology since Γ is discrete (cf.
Lemma 1.5). Hence it is enough to prove that a(−) is continuous. For this we have
to check the continuity of the map NC(X)(Γ)× Γ→ Γ, (ψ, γ) 7→ aψ(γ). But this is
obvious since Γ is discrete and since, for fixed γ, the map a(−)(γ) is clearly locally
constant.
It remains to show that the fibres of a(−) are path-connected. Assume that aψ =
aψ′ . By Lemma 5.1 we can choose lifts θ, θ′ ∈ NC(X̃)(Λ) such that Aθ = Aθ′ = A.
For x̃ ∈ X̃ let σx̃ : I → X̃ be the unique constant speed geodesic segment connecting
θ(x̃) to θ′(x̃). Because X̃ was assumed to be CAT(0), the map

H : I × X̃ → X̃, t 7→ σx̃(t)
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is continuous (cf. [5], Proposition 1.4. (1)). Moreover, observe that for λ ∈ Λ we
have two constant speed geodesic segments σλ(x̃) and A(λ)σx̃ with equal starting
and end point. Therefore, σλ(x̃) = A(λ)σx̃ and

H(t, λ(x̃)) = σλ(x̃)(t) = A(λ)σx̃(t) = A(λ)H(t, x̃).

Hence t 7→ H(t, ·) is a continuous path I → NC(X̃)(Λ) connecting θ to θ′ which
descends to a continuous path I → NC(X)(Γ) connecting ψ to ψ′. This finishes the
proof. �

Theorem 5.3. We keep the notations and assumptions of Proposition 5.2. Con-
sider two elements ϕ1, ϕ2 ∈ C(Y ) which both lift to X. Then the following are
equivalent:

(i) ϕ1 ' ϕ2.
(ii) aψ1 and aψ2 are Γ-conjugate for some (hence all) lifts ψi of ϕi, i = 1, 2.

Proof. The remark in the brackets in (ii) is a consequence of Lemma 5.1. Assume
that (i) holds. Choose a lift ψ1 of ϕ1, then the homotopy between ϕ1 ' ϕ2 lifts
to a path I → NC(X)(Γ) connecting ψ1 to a lift ψ2 of ϕ2. By Proposition 5.2 we
conclude aψ1 = aψ2 . On the other hand, if (ii) holds we can assume that actually
aψ1 = aψ2 . Then again by Proposition 5.2 there is a path I → NC(X)(Γ) connecting
ψ1 to ψ2. This path descends to a homotopy ϕ1 ' ϕ2. �

5.2. The Action of the Mapping Class Group on T 1S. Let S be a surface
equipped with a fixed metric h ∈ Hyp(S). We shall construct an alternative model
of the unit tangent bundle T 1S = T 1,hS. Then we use this model to define an ac-
tion of the mapping class group M(S) by orientation preserving homeomorphisms
on T 1S. This construction is well known, our exposition follows [37]. Using the
methods of the last subsection we finally prove that this action lifts the ‘outer ac-
tion’ of M(S) on S.

We start by recalling some facts concerning boundaries at infinity, for a detailed
exposition the reader is referred to [5], Chapter III.H 3. The boundary at infinity ∂D
of the Poincaré disc D is defined as the space of equivalence classes of quasi-geodesic
rays modulo finite distance. It is homeomorphic to S1 and the union D∪∂D carries
a natural topology turning it into a compactification of D which is homeomorphic
to D, the closed disc embedded in C. Denote by G = Isom+(D) = PSU(1, 1) the
group of orientation preserving isometries of D.
We set

∂D(3) = {(x, y, z) ∈ ∂D3 | x, y, z are pairwise different}
and define a map ∂D(3) → T 1D as follows. To a triple of pairwise different points
(x, y, z) we construct the unique non-oriented geodesic γ with endpoints x, y and
then the unique geodesic δ which is orthogonal to γ and with endpoint δ+ = z.
Then the image of (x, y, z) is the unit tangent vector based at γ ∩ δ pointing in the
direction of δ. Of course, this construction gives the same result if we swap x and
y, hence we obtain a map

(17) f : (∂D(3))/Z2 −→ T 1D

where Z2 acts on ∂D(3) by interchanging the first two entries. Clearly, f is a G-
equivariant homeomorphism where G acts diagonally on the left hand side. Fix a
universal covering p : S̃ → S and an isometric identification of S̃ with D. Denote
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(the image of) the group of covering transformations of p by Γ < G. As f is
G-equivariant we can divide out the Γ-action in (17) and obtain a homeomorphism

fS : Γ\(∂D(3))/Z2 −→ T 1S

by Lemma 1.3.

We are now going to construct an action of the mapping class groupM(S) by home-
omorphisms on T 1S. For this we start with an arbitrary element ϕ ∈ Homeo+(S)
and choose a lift ψ ∈ NHomeo+(D)(Γ) of ϕ to D. Then ψ is ‘type preserving’ and
hence induces a homeomorphism ∂ψ on ∂D that continuously extends ψ. The map

∂ψ(3) ∈ NHomeo+((∂D)(3))(Γ)

is obviously Z2-equivariant, hence it descends to a homeomorphism

Ψ ∈ NHomeo+((∂D)(3)/Z2)(Γ)

which, in turn, descends to a homeomorphism Φ ∈ Homeo+(Γ\(∂X)(3)/Z2). As
the notation suggests, Φ is independent of the choice of the lift ψ. Actually, it only
depends on the homotopy class of ϕ. Indeed, let ϕ1 ' ϕ2 be homotopic and choose
lifts ψ1 and ψ2. By Theorem 5.3 applied to the covering D→ S there exists γ ∈ Γ
such that aψ1 = γaψ2γ

−1. But then we have ∂ψ1 = γ∂ψ2 and hence Ψ1 = γΨ2, so
finally indeed Φ1 = Φ2. At last, we can conjugate Φ with the homeomorphism fS
to obtain ϕ# ∈ Homeo+(T 1S). Clearly, we have:

Theorem 5.4. The above construction yields a well-defined homomorphism

(−)# :M(S) −→ Homeo+
(
T 1S).

The homomorphism (−)# lifts the outer action of M(S) on the surface S in the
following sense:

Theorem 5.5. Let ϕ ∈ Diff+(S) be a diffeomorphism. Then the two homeomor-
phisms ϕ# and dϕ of T 1S are homotopic.

Proof. We start by recalling the involved coverings. First we have D → S with
group of covering transformations Γ. Then there is a commutative diagram

(∂D)(3)/Z2

f
//

��

T 1D

��

Γ\(∂D)(3)/Z2

fS // T 1S

where f and fS are homeomorphisms. The two vertical maps are isomorphic regular
coverings with group of covering transformations Γ. Here Γ acts on (∂D)(3)/Z2 via
the maps ∂γ and on T 1D via the differentials dγ. Notice that all coverings satisfy the
assumptions of Theorem 5.3. For D→ S this is clear as D is simply connected and
the Poincaré metric is Γ-invariant with sectional curvature −1, hence is CAT(0).
Similarly, the universal covering of T 1D can be identified with D × R with the
product metric Poincaré × Euclidian which has non-positive sectional curvature.
We denote the corresponding invariants by

a(−) : NHomeo+(D)(Γ)→ Aut(Γ)

b(−) : NHomeo+(T 1D)(Γ)→ Aut(Γ)

c(−) : NHomeo+((∂D)(3)/Z2)(Γ)→ Aut(Γ)

To start with the actual proof, choose a lift ψ ∈ NDiff+(D)(Γ) of ϕ. On the one
hand, for every γ ∈ Γ we have ψγ = aψ(γ)ψ. Looking at the induced maps on
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∂D we obtain ∂ψ∂γ = ∂aψ(γ)∂ψ and hence clearly cΨ = aψ. On the other hand,
we obtain similarly dψdγ = daψ(γ)dψ and therefore bdψ = aψ. Finally, we have
bfΨf−1 = cΨ. So we can conclude that

bfΨf−1 = bdψ

and by Theorem 5.3 the induced maps [ϕ]# and dϕ on T 1S are homotopic. �

5.3. Lifting the Holonomy Representations. We fix a metric h ∈ Hyp(S) on
the surface S for this subsection. We are going to construct lifts of the various ho-
lonomy representations to the fundamental groups π1(T1S, [v]) of the unit tangent
bundle of S. We fix a universal covering p : S̃ → S and we denote by q : T1S → S
the basepoint map.

Recall from Subsection 1.3 that there is a canonical isomorphism

T 1,h̃S̃ → T1S̃, (x̃, ṽ) 7→ (x̃, [ṽ])

of S1-bundles over S̃. We will denote by Bh̃ : T1S̃
∼=→ T 1,h̃S̃ the inverse of this

isomorphism. We also recall from Subsection 3.1 that for every non-zero tangent
vector ṽ of S̃ with base point x̃ there exists a unique orientation preserving isometry

fh̃,ṽ : (S̃, h̃)→ D

sending x̃ to 0 ∈ D and ṽ to a positive multiple of the tangent vector 1 ∈ TD0.

Let c : I → T1S be a curve. Choose a lift c̃ : I → T1S̃ and set ṽ = Bh̃(c̃(0)). Define
a curve wc : I → G by the composition

I
c̃ // T1S̃

Bh̃ //
T 1,h̃S̃

dfh̃,ṽ
// T 1D

∼= // G

where the homeomorphism on the right is given by the simply transitive action of
G on T 1D, cf. Lemma 1.7. Observe that, by definition of the isometry fh̃,ṽ, the
path wc starts at the neutral element e ∈ G. We need the following technical result:

Lemma 5.6. (a) The path wc does not depend on the choice of the lift c̃.
(b) If c and c′ are homotopic relative {0, 1} then so are the paths wc and wc′ .
(c) Let c1 and c2 be two composable curves, i.e., c1(1) = c2(0). Then

wc1c2 ' wc1 · wc2 (rel {0, 1})
where on the right hand side we mean pointwise multiplication in G.

Proof. (a) Consider two lifts c̃1, c̃2 of c to S̃. For i = 1, 2 set ṽi = Bh̃(c̃i(0)), let x̃i
be the base point of ṽi and let x ∈ S lie below both x̃i. According to Lemma 1.3
there exists γ ∈ π1(S, x) such that ṽ2 = dT x̃1

γ (ṽ1). This implies c̃2 = [dT x̃1
γ ] ◦ c̃1 by

the uniqueness of lifts. Moreover, we have the equality

fh̃,ṽ1 = fh̃,ṽ1 ◦ T
x̃1
γ

since the composition on the right hand side satisfies the defining property of fh̃,ṽ1 .
These two observations imply that the diagram

I
c̃1 // T1S̃

Bh̃ //

[dT x̃1γ ]

��

T 1,h̃S̃
dfh̃,ṽ1 //

dT x̃1γ
��

T 1D
∼= // G

I
c̃2 // T1S̃

Bh̃ //
T 1,h̃S̃

dfh̃,ṽ2 // T 1D
∼= // G
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commutes and this implies the claim. To see (b) just note that we can lift a
homotopy between c and c′ to obtain homotopic lifts (rel {0, 1}) of these curves
to T1S̃. Finally, we prove (c). Choose composable lifts c̃1 and c̃2 and set ṽi =
Bh̃(c̃i(0)). Let g ∈ G be the unique element such that

dfh̃,ṽ1(ṽ2) = g(1).

Then the diagram

I
c̃2 // T1S̃

Bh̃ //
T 1,h̃S̃

dfh̃,ṽ2 // T 1D
∼= //

g

��

G

g·

��

I
c̃2 // T1S̃

Bh̃ //
T 1,h̃S̃

dfh̃,ṽ1 // T 1D
∼= // G

commutes and hence wc1c2 is the concatenation of the paths wc1 and g·wc2 . Observe
that g = wc1(1), so by Lemma 1.2 we have

wc1c2 = wc1 ∗
(
wc1(1) · wc2

)
=
(
wc1 ∗ (wc1(1)

)
· wc2 ' wc1 · wc2 (rel {0, 1})

where wc1(1) denotes the constant path. This finishes the proof. �

Corollary 5.7. Interpreting the homotopy class (rel {0, 1}) of the curve wc as an
element of the universal covering group G̃ of G, the above construction induces a
well-defined map

σh : π1(T1S)→ G̃, [c] 7→ [wc]

on the fundamental groupoid of T1S. This map is a homomorphism.

Proof. Indeed, by Lemma 5.6 a) and b) the map σh is well-defined and by c) it is
a homomorphism. �

Proposition 5.8. The homomorphism σh simultaneously lifts all holonomy repre-
sentations of all fundamental groups of S. More precisely, for any non-zero tangent
vector v ∈ TS with base point x there is a commutative diagram

π1(T1S, [v])

q∗

��

σh // G̃

��

π1(S, x)
ρh,v

// G

Here the right vertical map is the universal covering, which in our interpretation of
G̃ is given by mapping a homotopy class of curves in G to the common endpoint of
these curves.

Proof. Let c : I → T1S be a closed curve based at [v] and let c̃ be a lift to T1S̃
whose starting vector is based at x̃. Set ṽ = Bh̃(c̃(0)). Let b denote the composition

I
c̃ // T1S̃

Bh̃ //
T 1,h̃S̃

and let g = wc(1) ∈ G denote the endpoint of the curve wc. Finally, denote by
γ = [c] ∈ π1(S, x) the class of the curve c on S induced by c. Now, on the one
hand, we have

b(1) = dT x̃γ
(
b(0)

)
by definition of γ and Lemma 1.3. On the other hand,

dfh̃,ṽ ◦ b(1) = g
(
dfh̃,ṽ ◦ b(0)

)
.
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Therefore, the two orientation preserving isometries T 1,h̃S̃ → T 1D given by dfh̃,ṽ ◦
dT x̃γ and g ◦ dfh̃,ṽ agree at the point b(0). Hence they have to be the same and we
can conclude ρh,v(γ) = g. �

5.4. The Quasimorphism Rot. We keep a metric h ∈ Hyp(S) fixed for the mo-
ment. Let Roth be the pullback of the translation quasimorphism under the lifted
holonomy representation σh, i.e., we define Roth as the composition

π1(T1S)
σh // G̃ // Homeo+

Z (R) T // R

where the second homomorphism is the lift of the canonical inclusionG ↪→ Homeo+(S1)
described in Subsection 2.5.

Theorem 5.9. The map Roth is a homogeneous quasimorphism on the funda-
mental groupoid π1(T1S) with defect 1 whose values on classes of closed curves is
integral. Its restrictions to the various fundamental groups trivialise the lifts of
the corresponding bounded Euler classes. More precisely, for any non-zero tangent
vector v ∈ TS with base point x we have

(q∗)∗(e
π1(S,x)
b ) = [d(Roth |π1(T1S,[v]))] ∈ H2

b

(
π1(T1S, [v])

)
,

where eπ1(S,x)
b ∈ H2

b

(
π1(S, x)

)
is the pullback via ρh,v (or any other holonomy repre-

sentation of π1(S, x)) of the bounded Euler class eb ∈ H2
b

(
Homeo+(S1)

)
and where

q : T1S → S is the basepoint map.

Proof. Since T is a homogeneous quasimorphism with defect 1, Roth is homoge-
neous as well and has defect ≤ 1. Next, consider the diagram

π1(T1S, [v])

q∗

��

σh // G̃

��

// Homeo+
Z (R)

��

π1(S, x)
ρh,v

// G // Homeo+(S1)

which commutes according to Proposition 5.8. Let γ ∈ π1(T1S, [v]) be the class of a
closed curve. Its image in π1(S, x) is mapped to a parabolic or hyperbolic element
in G by Lemma 3.1 and therefore has rotation number 0. Hence the image σh(γ)
has integral translation number Roth(γ).
For the claim concerning the Euler classes we again refer to the above diagram.
The pullback of eb ∈ H2

(
Homeo+(S1)

)
along the bottom and left side of the big

rectangle equals (q∗)∗(e
π1(S,x)
b ). Using Lemma 2.20 on the other hand, the pullback

along the right and upper side equals

(σh)∗([dT ]) = [d(σ∗h(T ))] = [dRoth].

Finally, we can conclude that the defect of Roth is indeed 1. Since otherwise the
restriction of Roth to any fundamental group π1(T1S, [v]) would be a homomor-
phism by the above integrality statement. But then the pullback (q∗)∗(e

π1(S,x)
b ) is

trivial which is absurd. �

Next, we deal with the dependence of Roth from the metric h.

Proposition 5.10. For every γ ∈ π1(T1S) the map

Hyp(S)→ R, h 7→ Roth(γ)

is continuous. The value of Roth on closed classes is independent of the metric h.



62

Proof. Unraveling the definition of Roth and of σh the continuity claim reduces to
the continuity of the maps

Hyp(S)→ T 1D, h 7→ dfh̃,Bh̃([ṽ]) ◦Bh̃([ṽ])

for every fixed non-zero tangent vector ṽ ∈ T S̃. But Bh̃ as well as fh̃,ṽ depends
continuously on h (and ṽ). The second claim follows form the fact that Hyp(S) is
connected and all Roth take integral values on classes of closed curves by Theorem
5.9. �

Hence if γ ∈ π1(T1S) is closed we will frequently suppress the metric h and just
write Rot(γ).

Proposition 5.11. The value Rot([c]) for a closed curve c depends only on the
free homotopy class of c.

Proof. Fix a metric h ∈ Hyp(S). Since Roth is homogeneous it is invariant under
conjugation. But two closed classes [c] and [d] are conjugated in π1(T1S) if and
only if c and d are freely homotopic. �

5.5. Invariance of Rot Under the Mapping Class Group Action. In this
subsection we study the transformation behaviour of Rot. The essential technical
result is the following.

Proposition 5.12. For every ϕ ∈ Diff+(S) we have Roth ◦ (dϕ)∗ = Rotϕ∗(h).

Proof. We have to show the equality Roth([dϕ ◦ c]) = Rotϕ∗(h)([c]) for every curve
c : I → T1S. In fact we prove that σh([dϕ◦c]) = σϕ∗(h)([c]) and start with a simple
observation. For every ψ ∈ Diff+(S̃) and every non-zero tangent vector ṽ of S̃ we
have

(18) fψ∗(h̃),ṽ = fh̃,dψ(ṽ) ◦ ψ.

Indeed, the map on the right hand side satisfies the defining properties of fψ∗(h̃),ṽ.
Choose a lift c̃ : I → T1S̃ and set ṽ = Bh̃(c̃(0)). Choose a lift ψ ∈ Diff+(S̃) of ϕ
and observe that dψ ◦ c̃ is a lift of the curve dϕ ◦ c. In the diagram

I
c̃ // T1S̃

Bψ∗(h̃)
//

[dψ]

��

T 1,ψ∗(h̃)S̃
dfψ∗(h̃),ṽ

//

dψ

��

T 1D
∼= // G

I
dψ◦c̃

// T1S̃
Bh̃ //

T 1,h̃S̃
dfh̃,dψ(ṽ)

// T 1D
∼= // G

the first two squares obviously commute and the third does so because of (18).
Now the composition of the maps in the first row represents σϕ∗(h)([c]), while the
composition in the second row represents σh([dϕ ◦ c]). This proves the claim. �

As a consequence we obtain:

Theorem 5.13. The restriction of Rot to the set of closed classes is invariant
under the lifted action of the mapping class group #(−) :M(S)→ Homeo+(T1S).
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Proof. We fix a metric h ∈ Hyp(S). Let c be a closed curve in T1S and let ϕ ∈
Diff+(S). Then we have

Rot([#ϕ ◦ c]) = Roth([#ϕ ◦ c]) = Roth([dϕ ◦ c]) = Rotϕ∗(h)([c]) = Rot([c])

where the second equality holds by Theorem 5.5 and Proposition 5.11 and the third
by Proposition 5.12. �
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6. A Link to Winding Numbers

In this final section we are going to describe the geometric meaning of the quasi-
morphism Rot. For a regular closed curve in the plane one can define its ‘rotation
number’ as the number of times the tangent vector c′(t) rotates in counter-clockwise
direction as c is traversed once in positive direction. In [39] Whitney has shown
that two regular closed plane curves are regularly homotopic if and only if they have
the same rotation number. In [12] Chillingworth introduced a concept of winding
number on general surfaces which serves as a kind of substitute for the rotation
number in the planar case (see also Reinhart [34] who does essentially the same
thing). Since there is no canonical global directional reference frame on a general
surface S he chooses a nowhere vanishing vector field X on S and then measures
the number of times the tangent vector c′(t) rotates in counter-clockwise direction
with respect to the vector field X. In the non-compact case this leads to a satisfy-
ing generalisation of Whitney’s classification result for regular homotopy classes of
curves: Fixing X, two (not nullhomotopic) regular closed curves on S are regularly
homotopic if and only if they are homotopic and have the same winding number
with respect to X. However, when S is compact there is no nowhere vanishing vec-
tor field on S anymore and one merely ends up with an invariant taking values in
Z|χ(S)|. We will prove that Rot is a natural analogon of the planar rotation number
for arbitrary hyperbolic surfaces making any global reference frame superfluous.
We prove an analogon of Whitney’s theorem in full generality, see Theorem 6.13.
We will also clarify the connection of Rot to the various winding number functions
in Theorem 6.14. An explicit combinatorial formula for Rot will be derived which
is heavily inspired by a formula for winding numbers in [12]. In the final subsection
we discuss the connection between Rot and a certain quasimorphism rot defined on
the fundamental group of a non-compact surface introduced by Calegari in [11].

6.1. A Family of Retractions on PSU(1, 1). Let G = PSU(1, 1). We use the
notation introduced in subsection 1.6 and start by recalling the Iwasawa decompo-
sition for reductive groups in the special case of G. We have already defined the
three subgroups

K =
{[

ζ 0
0 ζ−1

] ∣∣∣∣ ζ ∈ S1

}
A =

{[√
1 + t2 t

t
√

1 + t2

] ∣∣∣∣ t ∈ R
}

N =
{[

1 + iy −iy
iy 1− iy

] ∣∣∣∣ y ∈ R
}

and the essence of the decomposition theorem is that the multiplication mapK×A×
N → G is a diffeomorphism. The subgroup K is maximal compact and isomorphic
to S1. Whenever we write K ∼= S1 we mean the isomorphism given by

K → S1,

[
ζ 0
0 ζ−1

]
7→ ζ2.

The groups A and N are both isomorphic to R and their product B = AN is a
Borel subgroup of G complementing K. An element g ∈ G belongs to B if and only
if a+ b ∈ R.
Let P be the set of parabolic elements and let H be the set of hyperbolic elements
in G. We also set C = P ∪H∪{e} for convenience.
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Lemma 6.1. There is a continuous map u : C → K with the following properties:
(i) g ∈ u(g)Bu(g)−1 for all g ∈ C.

(ii) u(kgk−1) = ku(g) for all g ∈ H∪P and all k ∈ K.

Proof. Let g be as above. We need to find

u(g) =
[
ζ 0
0 ζ−1

]
∈ K

such that [
ζ−1 0
0 ζ

] [
a b

b a

] [
ζ 0
0 ζ−1

]
∈ B.

This is the case if and only if a + ζ−2b ∈ R or, equivalently, Im(ζ−2b) = − Im(a).
Now, since p ∈ C we have Re(a) ≥ 1 and hence by the determinant condition

|b|2 = |a|2 − 1 = Im(a)2 + (Re(a)2 − 1) ≥ Im(a)2.

Therefore, there is allways a µ ∈ S1 such that Im(µ−1b) = − Im(a) and we may
define u(g) as the pre-image of µ under the isomorphism K ∼= S1. The problem
here is that the solution µ is not unique for g ∈ H. To ensure that u is continuous
and satisfies (ii) we proceed slightly different. Set

T =
{[

a z
z a

] ∣∣∣∣ z ∈ R, Re(a) ≥ 1, |a| = z + 1, a 6= 1
}
⊂ P ∪H

and observe that the restriction of the conjugation map

K × T → P ∪H, (k, g) 7→ kgk−1

is a homeomorphism. For g ∈ T we proceed as before and choose the unique
solution to the equation Im(µ−1z) = − Im(a) with Re(µ) ≥ 0 and observe that it
depends continuously on g. Let u(g) be the pre-image of µ under the isomorphism
K ∼= S1. Next, for k ∈ K and g ∈ T we set

u(kgk−1) = ku(g).

By the above observation this defines a continuous map on H∪P which clearly
satisfies (i) and (ii). Finally, u extends continuously to g = e by u(e) = e. �

If we conjugate the equality G = BK with k ∈ K we obtain another decomposition
G = kBk−1 ·K into two subgroups with trivial intersection. Actually, the multi-
plication map kBk−1 × K → G is still a homeomorphism. Let g ∈ C and define
rg : G→ K by the composition

G
∼= // u(g)Bu(g)−1 ×K

pr2 // K.

We collect the essential properties of the maps rg:

Lemma 6.2. (a) For g ∈ C the map rg : G → K is a deformation retraction
and is K-equivariant with respect to the action by right multiplication on
G and K. In particular, rg restricts to orientation preserving homeomor-
phisms hK → K on all left cosets of K in G.

(b) For k ∈ K and g ∈ P ∪H the diagram

G
rg

//

k·
��

K

k·
��

G
rkgk−1

// K

commutes.
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(c) The set C is path connected and the map

C ×G
(g,h)7→rg(h)

// K

is continuous.

Proof. (a) Clearly, rg restricts to the identity on K, and since B is contractible it
is a deformation retraction. The equivariance statement also follows immediately
from the definition.
(b) Let h ∈ G and assume that rg(h) = l, i.e., there exists b ∈ B such that
h = u(g)bu(g)−1 · l. Then we have

kh = ku(g)bu(g)−1 · l
= (ku(g))b(ku(g))−1 · kl
= u(kgk−1)bu(kgk−1)−1 · kl,

where we have used that u(kgk−1) = ku(g). Hence rkgk−1(kh) = krg(h).
(c) By Lemma 6.1 the set C is the union of all conjugates of the subgroup B. But
since B is path connected and since the neutral element lies in all those conjugates,
C is path connected as well.
Denote by m : B ×K → G the homeomorphism induced by the multiplication on
G. For fixed g ∈ C the retraction rg can be written as the composition

G
Int(u(g)−1)

// G
m−1

// B ×K
Int(u(g))×Int(u(g))

// G×K
pr2 // K

and together with the continuity of u this implies the continuity of the given map.
�

The main use of the retractions rg lies in the computation of translation numbers:

Proposition 6.3. Let w : I → G be a path starting at the neutral element and
such that g = w(1) ∈ C. Then the path

I
w // G

rg
// K

∼= // S1

is closed and the degree of the induced map S1 → S1 equals the translation number
of the element g̃ = [w] ∈ G̃.

Proof. We begin with a technical Lemma:

Lemma 6.4. Let g ∈ G and let r1, r2 : G → K be two retractions such that
r1(g) = r2(g) = e. There exists a constant c such that the following holds: Let
w : I → G be a path with w(0) = e and w(1) = g and for i = 1, 2 denote by degi(w)
the degree of the map S1 → S1 induced by the closed path

I
w // G

ri // K
∼= // S1.

Then deg2(w) = deg1(w) + c.

Proof. If r : G → K is a retraction then r and the inclusion K ↪→ G induce
mutually inverse isomorphisms between H1(G) and H1(K). In particular, the map
r∗ : H1(G)→ H1(K) is independent of the retraction r.
Let w,w′ be two such paths. Then w′w−1 is closed and its homology class in H1(G)
is mapped to the same element in H1(K) by r1 and r2 since both are retractions.
This gives the equality

[r1 ◦ w′]− [r1 ◦ w] = [r1 ◦ (w′w−1)] = [r2 ◦ (w′w−1)] = [r2 ◦ w′]− [r2 ◦ w]
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in H1(K). But for a suitable generator a of H1(K) ∼= Z we have [ri ◦w] = degi(w)a
and similar for w′, hence

deg2(w)− deg1(w) = deg2(w′)− deg1(w′).

�

Let r be the map

G
R // S1

∼= // K

induced by the rotation number. Then r is a retraction and moreover r(g) = e
whenever g ∈ C. We claim that for g ∈ C and all paths w : I → G starting at e and
ending at g we have

(19) degr(w) = degrg (w).

By Lemma 6.4 it is enough to find a suitable path w for each g such that we have
equality in (19). Since C is path-connected we can choose w : I → C starting at
e and ending at g. Then, on the one hand, the composition r ◦ w is constant and
therefore degr(w) = 0. On the other hand, the composition

I × I
(s,t)7→(w(s),w(st))

// C ×G
(g,h)7→rg(h)

// K

descends to a continuous map f : I × S1 → S1 giving a homotopy between a con-
stant path and rg ◦ w. Hence degrg (w) = 0 as well.

Now by Proposition 2.19 degr(w) equals the translation number of the element
g̃ ∈ G̃ represented by the curve w. This finishes the proof.

�

6.2. A Homological Interpretation of Rot. Let c : I → S be a closed curve
based at x. Denote by q : T1S → S the basepoint map and let

Vc = {Y : I → T1S | c = q ◦ Y and Y (0) = Y (1)}
be the space of closed curves lifting c. Interpreting c as being defined on S1 we can
form an S1-bundle Ec → S1 by the pullback

Ec

qc

��

// T1S

q

��

S1 c // S

Note that, since S is oriented, the pullback bundle has an induced orientation.
In particular, it is trivial and the total space Ec is homeomorphic to a torus.
Consider a trivialisation of Ec, i.e., an orientation preserving bundle isomorphism
Ec → S1 × S1. Each such map is of the form (qc, ψ) where ψ : Ec → S1 is continu-
ous and restricts to an orientation preserving homeomorphism to S1 on each fibre
of Ec. We call such a map ψ admissible.

The elements of Vc are in bijection to the sections of the pullback bundle Ec. For
Y ∈ Vc and an admissible map ψ we define degψ(Y ) as the degree of the map

S1
Y // Ec

ψ
// S1.

Intuitively, degψ(Y ) counts how often the curve Y winds around the fibres of Ec
with respect to the reference system given by ψ.
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Lemma 6.5. Let ψ1 and ψ2 be two admissible maps. Then there exists a constant
z ∈ Z such that for all Y ∈ Vc we have

degψ2
(Y ) = degψ1

(Y ) + z.

Proof. For i = 1, 2 set ϕi = (qc, ψi) : Ec → S1 × S1. We take the homology classes
a = [S1×{1}], b = [{1}×S1] of these oriented loops as a base ofH1(S1×S1) ∼= Z⊕Z.
Since ϕ1, ϕ2 are orientation preserving homeomorphisms there is an isomorphism
τ =

(
x y
z w

)
∈ SL2(Z) such that the diagram

H1(Ec)
(ϕ1)∗

// Z⊕ Z

τ

��

H1(Ec)
(ϕ2)∗

// Z⊕ Z

commutes. Moreover, the homology class of the oriented fibre (Ec)1 over 1 is
mapped to b by both ψ1 and ψ2, hence we have y = 0 and w = 1. Now for every
Y ∈ Vc we obtain the commutative diagram

Z
Y∗ // H1(Ec)

(ϕ1)∗
// Z⊕ Z(

1 0
z 1

)
��

Z
Y∗ // H1(Ec)

(ϕ2)∗
// Z⊕ Z

where the two compositions in the top and bottom row send the element 1 ∈ Z to
the pair

(
1,degψ1

(Y )
)

respectively
(
1,degψ2

(Y )
)
. This gives the claim. �

We are now going to construct a specific admissible map which will provide a link to
the quasimorphism Rot. Choose a lift c̃ : I → S̃ based at x̃ and define an S1-bundle
Ec̃ by the pullback

Ec̃

��

// T1S̃

q̃

��

I
c̃ // S̃

Observe that, by the pullback property of Ec, there is a unique bundle morphism
α : Ec̃ → Ec such that the diagrams

Ec̃

��

α // Ec

��

I // S1

Ec̃

��

α // Ec

��

T1S̃ // T1S

both commute. The map α is identifying, i.e., Ec carries the quotient topology with
respect to α. We fix a metric h ∈ Hyp(S) and a unit tangent vector ṽ ∈ T 1,h̃S̃ based
at x̃. Denote by γ = [c] ∈ π1(S, x) the homotopy class of the curve c and observe
that T x̃γ x̃ = c̃(1) by definition. Consider the map ψ̃ given by the composition

Ec̃ // T1S̃
∼= //

T 1,h̃S̃
dfh̃,ṽ

// T 1D
∼= // G

rρh,ṽ(γ)
// K

∼= // S1

where, as usual, fh̃,ṽ denotes the unique orientation preserving isometry S̃ → D
sending ṽ to 1 ∈ T 1D0 and rρh,ṽ(γ) denotes the retraction G→ K associated to the
element ρh,ṽ(γ) ∈ C.
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Then ψ̃ has the following properties:
(i) It is continuous.

(ii) Its restriction to each fibre of Ec̃ is an orientation preserving homeomor-
phism to S1.

(iii) The restrictions to the fibres over 0 and 1 ‘are the same’. More precisely,
ψ̃ factors through α.

For (ii) observe that each fibre of Ec̃ is mapped homeomorphically and orientation
preservingly to a fibre of T 1D and hence to a left coset of K in G. The claim now
follows from Lemma 6.2(a). To see (iii) note that a pair of points in Ec̃ that is
identified under α is mapped by the canonical map Ec̃ → T1S̃ to a pair of the
form ũ, dT x̃γ ũ for some ũ based at x̃. Their images in G are then of the form k,
ρh,ṽ(γ)k for some k ∈ K. But since rρh,ṽ(γ)(ρh,ṽ(γ)) = e and since rρh,ṽ(γ) is K-
right-equivariant by Lemma 6.2(a) their images in S1 are indeed the same.

Hence ψ̃ descends to a map ψ : Ec → S1 which is admissible by the above observa-
tions. The main point is now the following:

Proposition 6.6. For every Y ∈ Vc we have degψ(Y ) = Rot(Y ).

Proof. Let Ỹ be the lift of Y starting at the vector ũ based at x̃ and consider the
commutative diagram

I
Ỹ //

��

Ec̃ //

α

��

T1S̃
Bh̃ //

T 1,h̃S̃
dfh̃,ṽ

// T 1D
∼= // G

rρh,ṽ(γ)
// K

∼= // S1

S1 Y // Ec
ψ

// S1

On the one hand, the degree of the map in the bottom row equals degψ(Y ) by
definition. On the other hand, since ṽ and ũ have the same base point, there exists
k ∈ K with fh̃,ṽ = k ◦ fh̃,ũ and therefore the composition in the upper row equals

(20) I
wY // G

k· // G
rρh,ṽ(γ)

// K
∼= // S1.

But since ρh,ṽ(γ) = kρh,ũ(γ)k−1 the diagram

G
rρh,ũ(γ)

//

k·
��

K

k·
��

G
rρh,ṽ(γ)

// K

commutes according to Lemma 6.2 (b) and hence the map S1 → S1 induced by
(20) differs from the map induced by

(21) I
wY // G

rρh,ũ(γ)
// K

∼= // S1

only by post-composition with a rotation of S1. In particular, they have the same
mapping degree. But for (21) this degree equals Rot(Y ) by Proposition 6.3 and the
definition of Rot. �

We can summarise the above discussion as follows:

Theorem 6.7. Let c : I → S be a closed curve and let ψ : Ec → S1 be admissible.
Then there exists a constant aψ depending only on ψ such that for all Y ∈ Vc we
have

Rot(Y ) = degψ(Y ) + aψ
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6.3. Regular Curves and Homotopies. We call a curve c : I → S regular if it is
continuously differentiable and has nowhere vanishing tangent vector, i.e., c′(t) 6= 0
for all t ∈ I. Such a curve is called regular closed if in addition c(0) = c(1) and
c′(0) = c′(1). A regular homotopy is a homotopy by regular curves. More precisely,
it is a continuous map f : I × I → S, (s, t) 7→ fs(t) such that the partial derivative
∂f/∂t exists and is continuous on I × I. For a regular curve c we can form the
derivative c′ : I → T1S which is well-defined and continuous by assumption. If c is
regular closed then c′ is closed as well.
Let v be a non-zero tangent vector based at x ∈ S, and consider the set πreg

1 (S, v)
of regular homotopy classes (rel {0, 1}) of regular closed curves on S such that
c′(0) = c′(1) = v. By the above discussion there is a natural map

πreg
1 (S, v)→ π1(T1S, [v])

induced by taking derivatives. Smale proved that it is actually a bijection, the
hard part of course being the injectivity of the map, see [36], Theorem A. For later
reference we state this in the following form:

Theorem 6.8. Let c1, c2 be two regular closed curves on S. If c′1, c
′
2 are (freely)

homotopic as curves in T1S then c1, c2 are (freely) regularly homotopic.

Let c : S1 → S be a closed curve. A loop of c is a restriction of c to an arc z1z2 of
positive length of S1 such that c(z1) = c(z2), in other words, it is a closed part of
c. Note that this definition includes the curve c itself as a loop. We call a closed
curve direct if it contains no nullhomotopic loop. In particular, a direct curve is
never nullhomotopic.
We are going to derive equivalent conditions for a closed curve c to be direct. To do
so, let c be based at x ∈ S and denote by γ 6= 1 the class of c in π1(S, x). Consider
a covering p : R → S and a point y ∈ R lying above x such that the image of
the homomorphism p∗ : π1(R, y)→ π1(S, x) is the subgroup generated by γ. Such
a pair (R, y) exists and is unique up to unique isomorphism of pointed coverings.
For brevity we will say that the pair (R, y) is adapted to c. The lift of c to R with
starting point y is closed by construction.

Proposition 6.9. Let c be as before. Then the following are equivalent:
(i) c is direct.

(ii) The (closed) lift of c to R with starting point y is simple closed, where (R, y)
is adapted to c.

Proof. We only give a sketch, for details the reader is referred to [12], Lemma
2.4. If c contains a nullhomotopic loop then so does its lift to R by the homotopy
lifting property. For the reverse implication observe that R is homeomorphic to a
cylinder (cf. proof of Proposition 6.10) and the lift of c to R represents a generator
of π1(R) ∼= Z. But such a curve on a cylinder is either simple or contains a
nullhomotopic loop. In the second case this loop projects to a nullhomotopic loop
of c. �

Next, we are going to prove that if two direct regular closed curves are homotopic
then they are actually regularly homotopic. This has been shown in [12], Theorem
5.5 and Theorem 6.2 using Smales result on regular homotopies (Theorem 6.8). We
present a proof which is independent of the latter.

Proposition 6.10. If two direct regular closed curves are (freely) homotopic then
they are (freely) regularly homotopic.

Proof. We only treat the case of free homotopies since this is all we will need. The
case of based homotopies follows by a slight modification of our argument. For
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i = 0, 1 let ci be direct closed and be based at xi and let hs be a free homotopy
between c0 and c1. Choose a pair (R, y0) adapted to c0. Let a be the curve given by
d(t) = ht(0) and denote by b its lift to R starting at y0. Then clearly the endpoint
y1 of b lies above x1 and we claim that the pair (R, y1) is adapted to c1. Indeed,
on the one hand we have

π1(R, y1) = [b]−1π1(R, y0)[b]

within the fundamental groupoid of R. On the other hand, the curve a−1c0a is
homotopic (rel {0, 1}) to c1 and hence

p∗(π1(R, y1)) = [a]−1p∗(π1(R, y0))[a] = [a]−1〈[c0]〉[a] = 〈[c1]〉.

By Proposition 6.9 the two lifts of ci to R with starting point yi (i = 0, 1) are
simple closed, not nullhomotopic and are moreover homotopic since h also lifts.

We will now show that these two lifts are regularly homotopic which finishes the
proof. Since the fundamental group of S is torsion-free the fundamental group of
R is isomorphic to Z. Moreover, R is orientable and hence, by the classification
of surfaces, has to be a cylinder. So we can choose a diffeomorphism from R
to the punctured plane R2 \ {(0, 0)}. The images of the two curves under this
diffeomorphism are two regular Jordan curves with the same non-zero winding
number around the origin. Hence they have the same orientation and both contain
the origin in their interior. We may now regularly homotope one of the curves
by a radial dilatation around the origin such that it contains the other curve in
its interior. By the differentiable version of the Schoenflies theorem there is a C1-
diffeomorphism of the punctured plane which maps the two curves into standard
circles around the origin, one containing the other. We may assume that they are
given by t 7→ e2πit and t 7→ 2e2πit, then a regular homotopy between them is given
by the map

(s, t) 7→ (1 + s)e2πit.

�

Proposition 6.11. Let c : I → S by a direct regular closed curve. Then we have
Rot(c′) = 0.

Proof. Choose a metric h ∈ Hyp(S). We distinguish two cases:
(i) The free homotopy class of c contains a shortest rectifiable curve. Clearly,

this curve has to be a closed geodesic an cannot contain any nullhomo-
topic loops. In particular, every regular parametrisation g : I → S of
this geodesic is direct. Now, since c is not nullhomotopic, we can choose
such a parametrised geodesic g freely homotopic to c and conclude from
Proposition 6.10 that these two curves are actually regularly homotopic.
In particular we have c′ ' g′ in T1S and hence Rot(c′) = Rot(g′). It re-
mains to show that Rot(g′) = 0. Let g̃ be a lift of g to S̃ and set ṽ = g̃′(0).
then the curve fh,ṽ ◦ g̃ is a regularly parametrised geodesic in D starting at
0 and pointing into the direction of the vector 1 ∈ T 1D0. Hence its image
is contained in D ∩ R and so the curve wg′ takes values in the subgroup
A ≤ G. But the rotation number vanishes on A and therefore Rot(g′) = 0
by Proposition 2.19.

(ii) The free homotopy class of c contains curves of arbitrary small length. Then
c has to wind around a single cusp of S. For each ε > 0 we can choose a
direct regular closed curve gε of length ≤ ε winding around that cusp. By
the same argument as before we have Rot(c′) = Rot(g′ε). Let g̃ε be a lift of
gε to S̃ and set ṽ = g̃′ε(0). Then the curve fh,ṽ ◦ g̃ε is not quite a geodesic
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but almost in the following sense: Its lenght tends to 0 as ε → 0 and the
tangent vectors stay in a sector around 1 ∈ (T 1D)z whose opening angle
also tends to 0 as ε→ 0. Hence by Proposition 2.19 and continuity reasons
we again conclude that Rot(c′) = 0.

�

Theorem 6.12. Let X0, X1 : S1 → T1S be two closed curves and set ci = q ◦Xi

for i = 0, 1. Then the following are equivalent:
(i) X0 and X1 are (freely) homotopic.

(ii) c0 and c1 are (freely) homotopic and Rot(X0) = Rot(X1).

Proof. The implication (i) ⇒ (ii) is clear. For the reverse implication we make
use of the pullback bundles introduced in Subsection 6.2. Let h : I × S1 → T1S,
(s, t) 7→ hs(t) be a (free) homotopy between c0 and c1. Define an S1-bundle Eh by
the pullback diagram

Eh //

qh

��

T1S

q

��

I × S1 h // S

Then, since Eh is orientable and I × S1 is homotopy equivalent to S1, Eh is the
trivial bundle and hence we may choose a continuous map ψ : Eh → S1 such that
(qc, ψ) : Eh → (I×S1)×S1 is an orientation preserving bundle isomorphism (where
on the right hand side the bundle map is projection to the first factor). For each
s ∈ I the bundle Ehs belonging to the curve hs fits into the pullback diagram

Ehs
is //

qhs

��

Eh

qh

��

S1
{s}×id

// I × S1

and the composition ψs = ψ◦is : Ehs → S1 is an admissible map. Now, according to
Theorem 6.7, there exists a constant as depending only on s such that degψs(Z) =
Rot(Z) + as for all closed lifts Z to T1S of the curve hs. But clearly as is locally
constant in s and hence a0 = a1.
By assumption we have Rot(X1) = Rot(X2) and therefore degψ0

(X0) = degψ1
(X1).

This means by definition that the two maps

S1
Xi // Ehi

ψi // S1

(i = 0, 1) have the same mapping degree and hence we may choose a homotopy
k : I × S1 → S1 between them. The continuous map

I × S1
id×k

// (I × S1)× S1
(qh,ψ)−1

// Eh // T1S

is then indeed a homotopy between X0 and X1. �

Combining the above result with Theorem 6.8 we obtain:

Theorem 6.13. Let c0, c1 be two homotopic regular closed curves in S. Then they
are regularly homotopic if and only if Rot(c′0) = Rot(c′1).

Hence Rot is a full invariant for the regular homotopy classes of homotopic regular
closed curves. Analogous results were proven for plane curves in [39] where Rot
is replaced by the classical rotation number and for non-compact surfaces in [12],
Theorem 3.1 where Rot is replaced by a winding number function wX depending
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on a non-vanishing vector field X on S. We will define winding numbers in the
next subsection and shall see that Rot and wX are actually closely related, so the
two results are essentially equivalent. However, we would like to point out that
Theorem 6.13 also holds for compact surfaces.

6.4. Winding Numbers. In [12] Chillingworth introduces a concept of winding
number on surfaces which generalises the traditional rotation number of curves in
the plane. We would also like to mention Reinhart [34] who gives an essentially
equivalent definition. For a beautiful treatment of rotation numbers of regular
plane curves including a classification result analogous to Theorem 6.13 we refer
the reader to Whitney [39]. Intuitively, the rotation number of a regular closed
plane curve c measures how often the (non-zero) tangent vector c′(t) rotates in
counter-clockwise direction when c is traversed once. Note that in the plane every
constant non-zero vector field serves as a global reference frame to which the tan-
gent vector c′(t) can be compared. On a general orientable surface S this canonical
global reference frame has to be replaced by a non-zero vector field X on S. If S
is compact and χ(S) 6= 0, no such vector field exists. Therefore we assume for the
moment that S is non-compact.

For a non-vanishing vector field X on S and for a regular closed curve c : S1 → S
Chillingworth defines the winding number wX(c) as follows. As in subsection 6.2
we define an S1-bundle Ec → S1 by the pullback

Ec

qc

��

// T1S

q

��

S1 c // S

Then we can consider the two curves c′ and X ◦ c as sections of Ec → S1 and set

wX(c) = degψ(c′)− degψ(X ◦ c)

for an admissible map ψ : Ec → S1. By Lemma 6.5 the value of wX(c) is inde-
pendent of the choice of ψ. He shows that if c1, c2 are homotopic direct regular
closed curves which are not nullhomotopic, then wX(c1) = wX(c2) (cf. [12], Theo-
rem 2.7). This allows to define winding numbers for non-trivial homotopy classes
of closed curves in S by using particularly simple representatives: For a homotopy
class γ 6= 1 define its winding number wX(γ) to be wX(c) for an arbitrary direct
regular closed representative curve c.

The case of a compact surface S is slightly more involved. Assume that χ(S) < 0
and let X be a vector field on S which vanishes only at the point p ∈ S. For
a regular closed curve c on S \ {p} we can define the winding number wX(c) in
the same way as above. However, even if c1 and c2 are regular closed curves in
S \{p} which are regularly homotopic we need not have wX(c1) = wX(c2). Indeed,
if a curve is homotoped to traverse the point p then wX(c) changes by the index
iX(p) which equals χ(S) by the Poincaré-Hopf theorem. Hence we obtain a Z|χ(S)|-
valued winding number for non-trivial homotopy classes of closed curves by setting
wX(γ) ≡ wX(c) (mod |χ(S)|) for an arbitrary direct regular closed representative
curve c in S \ {p}.



75

In the meantime it should come as no surprise that the quasimorphism Rot is
related to winding numbers. And indeed, Rot encodes the information of all winding
number functions simultaneously:

Theorem 6.14. Let S be non-compact and let X be a non-vanishing vector field
on S. Then

wX = −Rot ◦X∗
as maps π1(S)→ Z where we interpret X : S → T1S as section of the unit tangent
bundle. In case S is compact and X is a vector field on S which vanishes only at
the point p ∈ S the composition

π1(S \ {p}) X∗ // π1

(
T1(S \ {p})

)
// π1(T1S)

−Rot
// Z // Z|χ(S)|

induces a well-defined map π1(S)→ Z|χ(S)| which agrees with wX .

Proof. We start with the non-compact case. Let c be a direct regular closed curve
in S and choose an admissible map ψ : Ec → S1. Then by Theorem 6.7 there
exists a constant a such that degψ(Y ) = Rot(Y ) + a for all Y ∈ Vc. Subtracting
the corresponding equalities for Y = c′ and Y = X ◦ c gives

degψ(c′)− degψ(X ◦ c) = Rot(c′)− Rot(X ◦ c) = −Rot(X ◦ c)

by Proposition 6.11 since c is direct. But the left hand side equals wX([c]) by
definition which gives the claim.
In the compact case let z be the boundary of a positively oriented disc in S contain-
ing p in its interior. Then the kernel of the homomorphism π1(S \ {p}) → π1(S)
induced by the inclusion is the normal (i.e. conjugation invariant) subgroupoid
generated by the class [z]. On the other hand, the composition X ◦ z : S1 → T1S is
homotopic to iX(p) times the oriented fibre of T1S over p where iX(p) is the index
of the vector field X at p. Now the class of this fibre is central in π1(T1S) and
mapped to 1 by Rot, moreover we have iX(p) = χ(S) by the Poincaré-Hopf the-
orem. Hence the composition in the statement of the theorem is indeed constant
on the residue classes of the normal subgroupoid generated by [z] and therefore
descends to a well-defined map π1(S)→ Z|χ(S)|. This map agrees with wX by the
same argument as in the non-compact case treated before. �

6.5. An Explicit Formula for Rot. In section 7 of [12] Chillingworth gives an
explicit combinatorial formula for his winding number functions. As it turns out,
with some minor modifications his argument can be used to derive an analogous
formula for the quasimorphism Rot. We are going to present a sketch of the proof
and refer the reader to [12] for a more detailed exposition.

We assume that S has genus g and has p cusps and we fix a base point x ∈ S.
Consider a canonical curve system for S, i.e., a collection of curves

a1, . . . , ag, b1, . . . , bg, c1, . . . , cp

based at x with the following properties:

(i) The curves are all simple and disjoint outside x.
(ii) Each curve ci winds around a single cusp and cuts out a punctured disc

from S whose interior is disjoint from all other curves.



76

(iii) Cutting along all curves dissects S into the disjoint union of the punctured
discs from (ii) and a disc whose (oriented) boundary runs

a1, b1, a
−1
1 , b−1

1 , a2, b2, . . . , a
−1
g , b−1

g , c1, · · · , cp

where a−1
i means ai backwards etc.

One verifies that these curves and their inverses leave the base point x in the
following order with respect to the negative orientation:

O : a1, b
−1
1 , a−1

1 , b1, a2, b
−1
2 , . . . , a−1

g , bg, c1, c
−1
1 , c2, c

−1
2 , · · · , cp, c−1

p .

Moreover, they (or more precisely: their homotopy classes) generate the fundamen-
tal group π1(S) and satisfy the standard relation

g∏
i=1

[ai, bi] ·
p∏
i=1

ci = 1.

In addition to the above properties we may also require the canonical curve system
to satisfy:

(iv) All curves are regular. For a fixed non-zero tangent vector v based at x
their derivative at the starting point equals v while their derivative at the
endpoint equals −v. Hence each curve ‘changes direction by 180 degrees at
x’, in particular none of them is regular closed.

In a next step we modify these curves and their inverses in such a way that they
become regular closed and their derivatives are all based at the vector v. This can
be done by adding a small half turn based at x at the end of every curve and making
sure that the resulting curve is regularly homotopic to a simple curve. Hence we add
a positive oriented half turn to the curves a−1

i , bi and c−1
i and a negative oriented

one to their respective inverses. In order to distinguish these modified curves from
the original ones notationally, we will decorate them with a tilde. Notice that with
this definition ã−1

i is not technically the inverse of ãi but is only so up to choice
of a basepoint, i.e., up to a free regular homotopy. However, this implies that its
derivative is freely homotopic to the inverse of the derivative (ãi)′ in T1S and this
is all we will need in the sequel. Similar remarks apply to the other curves.
Denote by A±1

i the (class of the) derivative of ã±1
i in π1(T1S, v), similarly for the

other curves. Then by construction A±1
i lifts a±1

i to the unit tangent bundle. It

satisfies Rot(A±1
i ) = 0 by Proposition 6.11 since ã±1

i is regularly homotopic to a
simple curve. Moreover, it is the unique such lift up to homotopy by Theorem 6.12.
The same holds for the other curves.
Let Z be the (class of the) positively oriented fibre over x. By construction the
curves Ai, Bi, Ci together with Z generate π1(T1S, v) and a calculation shows that
they satisfy the relation

(22)
g∏
i=1

[Ai, Bi] ·
p∏
i=1

Ci = Zχ(S).

Since Z is central, every element of π1(T1S, v) can be written in the form Zr ·W
where W is a word in the generators A±1

i , B±1
i and C±1

i . Denote by w the word
obtained by replacing all capital letters in W by the corresponding small ones and
denote by w̃ the word obtained by decorating all letters with a tilde. We keep the
standing assumption that no cyclic subword of w represents the trivial element of
π1(S, x), in particular w is cyclically reduced.
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In what follows, we will not distinguish between a word and the curve it describes.
The curves ai, bi, ci on S are simple and disjoint except for the basepoint x. There-
fore every loop of w is, up to change of basepoint, given by a cyclic subword of w.
By assumption on w such a loop is not nullhomotopic and we can conclude that w
is direct. Choose a pointed covering (R, y) adapted to the class of w as described
in subsection 6.3. Then the lift of w to R with starting point y is simple closed.
By construction of the modified curves the lift of w̃ to R with starting point y is
simple except for small half turns at every transition between two letters. Let xy
be a cyclic subword of length 2 of w and consider the half turn between the corre-
sponding curves in the lift of w̃ to R. This turn might be harmless in the sense that
it can be regularly homotoped such that the curve becomes locally simple there,
or it might not be. In the latter case the half turn has ‘the wrong orientation’ and
changing this orientation makes it harmless. Technically, after taking the deriv-
ative w̃′, such a change of orientation amounts to multiplication with Z±1 up to
homotopy. A closer analysis of the possible cases shows that all half turns become
harmless after the following modifications:

(i) If x ∈ U and y > x−1 in the ordering O then change the orientation from
negative to positive (multiply w̃′ by Z).

(ii) If x ∈ U−1 and y < x−1 in the ordering O then change the orientation from
positive to negative (multiply w̃′ by Z−1).

Here U denotes the set of letters ai, b−1
i , ci and U−1 denotes the set of letters

a−1
i , bi, c

−1
i . Hence after these modifications, the resulting curve on R is regularly

homotopic to a simple one and, consequently, the corresponding modified curve ŵ on
S is regularly homotopic to a direct one. By Proposition 6.11 we have Rot(ŵ′) = 0
and this leads to the following formula:

Theorem 6.15. Consider an element Zr ·W ∈ π1(T1S, v) where W is a word in
the letters A±1

i , B±1
i and C±1

i . Let w be the corresponding word where all capital
letters are replaced by the corresponding small ones. Assume that no cyclic subword
of w represents the trivial element of π1(S, x). Then

Rot(ZrW ) = r − #
(
xy cyclic subword of w with x ∈ U and y > x−1

)
+ #

(
xy cyclic subword of w with x ∈ U−1 and y < x−1

)
.

An elementary combinatorial argument shows that we can reformulate this in the
following form:

Theorem 6.16. In the situation of the last theorem we have

Rot(ZrW ) = r + #
(
xy cyclic subword of w with x 6= y, y < x−1

)
− #

(
letters of w belonging to U

)
= r − #

(
xy cyclic subword of w with x 6= y, y > x−1

)
+ #

(
letters of w belonging to U−1

)
In combination with Theorem 6.14 this gives back Chillingworth’s formula for the
winding number functions.

6.6. Calegari’s rot. In subsection 4.2 of [11] Calegari introduces a function closely
related to the quasimorphism Rot (in fact, rather to the winding number functions)
on a non-compact hyperbolic surface S. He observes that for a holonomy represen-
tation ρ : π1(S) → PSU(1, 1) the pullback of the cohomology class associated to
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the central extension

Z // // ˜PSU(1, 1) // // PSU(1, 1)

is trivial since H2(π1(S),R) = 0. Hence ρ lifts to a homomorphism ρ̃ : π1(S) →
˜PSU(1, 1) and we can consider the pullback rot via ρ̃ of the translation quasimor-

phism on ˜PSU(1, 1) ≤ Homeo+
Z (R). In other words, he studies the maps

(23) rot = Rot ◦s

where s : π1(S) → π1(T1S) is a splitting (in fact this is only true up to sign
since another sign convention is used in [11]). According to Theorem 6.14 these
maps are precisely the winding number functions for S. The above definition of
course depends on s, however the restriction of rot to the commutator subgroup
π1(S)′ is independent of the splitting since π1(T1S) is a central extension of π1(S).
Reclaiming the notation from the last subsection, the fundamental group of S is
free on the set of generators

(24) a1, . . . , ag, b1, . . . , bg, c1, . . . , cp−1

(recall that p ≥ 1 by assumption). Hence there is a unique splitting map s such
that Rot ◦s takes the value 0 on each of these generators. For this specific choice
Calegari denotes the resulting quasimorphism on π1(S) by rotg,p.
The curves Ai etc. from the last subsection are constructed in such a way that
the map s sends each of the generators in (24) to the curve in T1S given by
the corresponding capital letter. As a consequence of equality (22) we obtain
Rot(s(cp)) = −χ(S) 6= 0 which shows that the definition of rotg,p involves a heavy
break of symmetry.

Calegari gives a formula for rotg,p in terms of homogeneous counting functions
which we will describe next. Consider a free group on a given set of generators.
For a fixed reduced word v in these generators (and their inverses) and a reduced
word w we denote by Cv(w) the number of copies of v inside the word w. We will
only consider words v consisting of one letter or two distinct letters in which cases
distinct copies of v inside w are always disjoint. As antisymmetrisations of the
counting functions we obtain the counting quasimorphisms

Hv(w) = Cv(w)− Cv−1(w)

and the homogenisations of these functions will be benoted by Cv respectively Hv.
By [11], Theorem 4.76 rotg,p can be expressed as a rational linear combination of
certain homogeneous counting functions on π1(S) considered as a free group on the
set G of generators given by (24). More precisely, there is a formula of type

(25) rotg,p =
1

2 rank(π1(S))

∑
(x,y)

nxyCxy

where the sum ranges over the set of pairs {(x, y) ∈ G2 | x 6= y, y−1} and where
all nxy are non-zero integers. We point out that the denominators in (25) grow
linearly with the topological complexity of S.
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The results of the last subsection can be directly applied to the current situation
to obtain similar formulas. For example Theorem 6.16 can be rephrased as

Rot = HZ +
∑

x 6=y,y<x−1

CXY −
∑
x∈U

CX

= HZ −
∑

x 6=y,y>x−1

CXY +
∑

x∈U−1

CX .

Some care has to be taken here since this is not a valid identity of functions on the
fundamental group π1(T1S), in fact the above counting functions are not even well-
defined there. But applying both sides to a word satisfying the conditions given in
the description of Theorem 6.15 results in a correct equality of integers. Taking the
arithmetic mean of the two expressions above one obtains the alternative form

Rot = HZ +
1
2

( ∑
x 6=y,x<y−1

HXY −
∑
x∈U

HX

)
.

Following Calegari’s convention we can consider π1(S) as a free group on the set G
of generators (24) and upon ignoring all terms involving the letters C±1

p the above
formula gives

(26) rotg,p =
1
2

( ∑
(x,y)∈G(2)

x<y−1

Hxy −
∑

x∈U∩G
Hx

)
,

this time as an actual equality of functions. Observe that the second sum in the
bracket is a homomorphism which vanishes on the commutator subgroup π1(S)′.

A slightly different expression can be derived from Theorem 6.15. To group the
occuring terms consider the four sets

S1 = {(x, y) ∈ U × U | y > x−1},
S2 = {(x, y) ∈ U × U−1 | y > x−1},
S3 = {(x, y) ∈ U−1 × U | y < x−1},
S4 = {(x, y) ∈ U−1 × U−1 | y < x−1}.

Then the map (x, y) 7→ (y−1, x−1) is a bijection between S1 and S4. Similarly, the
map (x, y) 7→ (y, x) is a bijection between S2 and S3 as an easy verification shows.
Hence Theorem 6.15 implies

Rot = HZ −
∑

(x,y)∈S1

HXY −
∑

(x,y)∈S2

(CXY − CY X),

which in turn leads to the formula

(27) rotg,p = −
∑

S1∩G(2)

Hxy −
∑

S2∩G(2)

(Cxy − Cyx).

Note that in contrast to (25) all coefficients are integral here.

To give a concrete example, we consider the once-punctured torus where g = p = 1.
In this case (25) gives after collecting terms

rot1,1 =
1
4

(
Ha1b1 +Hb1a

−1
1

+Hb−1
1 a1

+Ha−1
1 b−1

1

)
while (27) reads

rot1,1 = Cb1a1 − Ca1b1 .
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Although these expressions look quite different, they are indeed equivalent (up to
sign), due to identities of the form

Cxy + Cxy−1 = Cyx + Cy−1x, x 6= y, y−1

valid for a free group of rank 2. Similar remarks apply to the thrice-punctured
sphere where g = 0, p = 3 which is the only other surface with free fundamental
group of rank 2. For more complicated surfaces however, the relation between the
formulas (25) and (27) remains somewhat mysterious.

Finally, we briefly discuss another geometric interpretation of the function rot given
in [11]. Let S again be non-compact and consider an element a in the commutator
subgroup π1(S)′. For such elements the value of rot as defined in (23) is independent
of the choice of the section s. Let γ be the unique closed geodesic in the free
homotopy class of a, then the complement S \γ consists of finitely many connected
regions Ri with piecewise geodesic boundaries. Since, by assumption on a, the
curve γ is homologically trivial it is the boundary of an integral linear combination∑
i niRr which is unique as S is non-compact. The value rot(a) is linked to the

hyperbolic areas of the regions Ri as follows (cf. Lemma 4.68):∑
i

ni area(Ri) = −2π rot(a).

A similar relation was established earlier by McIntyre and Cairns in [27] for winding
number functions on compact surfaces and not necessarily homologically trivial
curves.
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