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ABSTRACT

In this work, we study physical-layer identification of passive UHF
RFID tags. We collect signals from a population of 70 tags using
a purpose-built reader and we analyze time domain and spectral
features of the collected signals. We show that, based on timing
features of the signals, UHF RFID tags can be classified, indepen-
dently of the location and distance to the reader (evaluated up to
6 meters), with an accuracy of approx. 71% (within our popula-
tion). Additionally, we show that is possible to uniquely identify a
maximum of approx. 26 UHF RFID tags independently of the pop-
ulation size. We analyze the implications of these results on tag
holder privacy. We further show that, in controlled environments,
UHF RFID tags can be uniquely identified based on their signal
spectral features with an Equal Error Rate of 0% (within our pop-
ulation); we discuss the application of those techniques to cloning
detection in RFID-enabled supply chains.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.3 [Computer Sys-

temsOrganization]: Special-Purpose And Application-Based Sys-
tems—Signal processing systems; K.6.5 [Management of com-

puting and informations systems]: Security and Protection—Au-

thentication, Physical security, Unauthorized access

General Terms

Design, Experimentation, Measurement, Security

Keywords

Fingerprinting, Physical-layer Identification, Privacy, RFID, Track-
ing, Wireless Security

1. INTRODUCTION
Radio Frequency IDentification (RFID) devices are becoming

increasingly important components of a number of systems such
as electronic passports [1], transportation systems [51], and sup-
ply chain systems [19]. As a result, a number of security protocols
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have been proposed for RFID authentication [21, 27, 49], key man-
agement [30,33], and privacy-preserving deployment [7,14,16,28,
31,35]. The literature contains a number of investigations of RFID
security and privacy protocols [2,29] on the logical level; however,
little attention has been dedicated to the security and privacy impli-
cations of the RFID physical communication layer.

Physical-layer device identification techniques aim at identify-
ing a device or a class of devices based on fingerprints obtained
by analyzing a device’s communication at the physical layer. Such
techniques have been proposed for several applications and wire-
less platforms [11, 12, 24, 26, 39, 46, 48, 50] and few investigations
addressed HF [12, 40] and UHF [38] RFID tags.

The implication of applying physical-layer device identification
techniques on RFID-based applications is twofold: they can provide
additional security guarantees by enabling physical-layer-based
identification, but they can also invalidate privacy guarantees of
protocols running at the upper layers of communication.

In this work, we study physical-layer identification of passive
UHF RFID tags. We performed experiments on a population of
70 UHF RFID tags (EPC C1G2) from three different manufactur-
ers. We built an RFID reader that challenged tags by simulating an
inventorying protocol. From the (fixed) preambles of tags’ replies,
we extracted RF signal features that allowed us to classify and iden-
tify tag models and individual tags. The features that we extracted
contain timing and spectral information of the collected signals.

We show that, using timing features, individual UHF RFID tags
can be classified with an accuracy of 71.4% (within our popula-
tion) from different locations and distances up to 6 meters, and that
is possible to uniquely identify a maximum of approx. 26 UHF
RFID tags independently of the population size. These results have
implications for users’ privacy: tracking of RFID tag users will be
indeed possible (i) with high accuracy, especially given that users
are expected to carry several RFID tags (e.g., on their glasses, med-
ical devices, clothes, etc), and (ii) despite most privacy-preserving
countermeasures on upper communication layers. Namely, if com-
munication with an RFID tag is possible, physical-layer identifica-
tion techniques will enable it to be tracked disregarding the location
of the tag. This result is the first that shows that tracking of UHF
RFID tags is possible with high accuracy from their nominal oper-
ating distance (i.e., within 6 meters).

We further show that, using spectral features, in controlled en-
vironments, UHF RFID tags can be classified with an accuracy
of 99.6% and identified with an Equal Error Rate of 0.0% (within
our population). Although this result shows that spectral features
are not stable when measured from varying distances, the highly-
accurate classification and identification provided by this technique
might motivate its use to the detection of product cloning in RFID-
enabled supply chain.



The rest of this paper is organized as follows. In Section 2,
we define our problem statement and provide a system overview.
In Section 3, we present our acquisition setup, the performed ex-
periments, and summarize the collected data. We introduce our
physical-layer identification techniques in Section 4 and present
their performance results in Section 5. In Section 6, we discuss
the implications of our techniques. We make an overview of back-
ground and related work in Section 7 and conclude the paper in
Section 8.

2. PROBLEM STATEMENT AND SYSTEM

OVERVIEW
The main goal of our work is to study the feasibility and the

accuracy of physical-layer identification (identity verification) and
classification of passive UHF RFID tags. The former refers to the
verification of tag identities based on accept/reject decisions: the
fingerprint of the tag under identification is verified against a refer-
ence fingerprint representing the claimed identity (1:1 comparison).
The latter refers to the association of tags to previously defined sets
of classes based on similarity rules: the tag under classification is
assigned to one and only one class, which, in our study, represents
either a tag or a tag model.
In our study, we use a single experimental setup for the examina-

tion of classification and identification. Our setup consists of two
main components: a signal acquisition setup (i.e., a purpose-built
tag reader, Section 3.1) and a feature extraction and matching mod-
ule (Section 4). Our acquisition setup challenges the tags with in-
and out-of-specification commands (Section 3.2) and captures their
responses. Our feature extraction module then extracts timing and
spectral features from the collected responses; more specifically,
our module extracts the time interval error, the average baseband
power, and the frequency components of the responses.
To evaluate both classification and identification accuracies of

our physical-layer identification techniques, we deploy a tag pop-
ulation composed of 70 EPC class-1 generation-2 (C1G2) RFID
tags [18] of three models and manufactures. EPC C1G2 tags are
the de facto standard passive UHF tags and the most pervasive in
the current market.
In summary, in this work we address the following questions:

1. Is it possible to identify passive UHF RFID tags using
physical-layer identification techniques?

2. What is the classification and identification accuracy of our
setup, within our tag population?

3. What is the impact of environmental and signal acquisition
factors like tag position, tag orientation, communication
power, and sampling rate on the classification and identifi-
cation accuracy?

4. What are the implications of the proposed techniques for
users’ privacy and how those can be used for cloning detec-
tion in RFID-enabled supply chains?

3. EXPERIMENTAL SETUP AND DATA
In this section, we first describe our signal acquisition and an-

tenna setup. We then detail the different types of experiments we
performed and present the collected datasets.

3.1 Acquisition and Antenna Setup
The communication between RFID readers and tags is half-

duplex. A reader transmits commands and data to a tag by modulat-
ing an RF signal. The tag replies to the reader using a backscattered
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Figure 1: Acquisition setup challenge and tag response.

signal modulated by modifying the reflection coefficient of its an-
tenna. Figure 1 shows a sample reader’s challenge and subsequent
tag’s response.

Our acquisition setup is shown in Figure 2: it consists of a trans-
mitter and a receiver and uses a bistatic antenna configuration to
minimize leakage from the transmitter to the receiver (i.e., one an-
tenna for the transmitter and a second one for the receiver). The
chosen antennas are circularly polarized, which allows our acqui-
sition setup to power up (and then communicate with) a tag mini-
mizing the impact of the tag orientation.

Our transmitter is composed of an arbitrary waveform genera-
tor which outputs commands and data at the baseband frequency
according to the pulse-interval encoding (PIE) and phase-reversal
amplitude shift keying (PR-ASK) modulation (as detailed into the
EPC C1G2 specification [18]), and of a mixer that upmixes the
baseband signal to the chosen carrier frequency. After the final
amplification stage and considering the antenna gain, the nominal
transmission power is 29 dBm. The chosen carrier frequency is
866.7 MHz (corresponding to channel 6, band 2, of the ETSI EN
302 208 regulations [20], which define 10 channels of 200 KHz
@ 2W ERP between 865.6 and 867.6 MHz). Commands and data
are loaded into the arbitrary waveform generator as sequences of
samples with sampling rate and resolution equal to 600 KS/s and
12 bits, respectively.

Our receiver is based on a direct-conversion I/Q demodulator [15]
and two analog to digital converters (ADC). The phase of the tag
reflection (i.e., the backscatter signal) is not predictable or control-
lable, as it varies with the distance to the tag; the I/Q demodulator
allows the reception of a backscatter signal regardless of the dis-
tance to the tag. To finally acquire the tag backscatter signal, we
convert it into the digital domain using two ADCs with sampling
rate of 1 GS/s and 8-bit resolution.

The positions of the transmitting and receiving antennas and of
the tags that we considered in our experiments are shown in Fig-
ure 3. The acquisition antennas are placed vertically (z-axis) one
above the other, at 0.5 m and 1 m from the ground, respectively.
In their nominal position, the tags are positioned equidistantly be-
tween the two antennas along the z-axis, centered on the antennas
on the x-axis, and at a distance of 0.8 m. The tag nominal position
is therefore (0, 0.8, 0.75).

3.2 Performed Experiments
Our experiments are based on the interaction between a reader

and a tag population that is used for inventorying purposes as de-
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Figure 2: Block diagram of our acquisition setup.

fined in the EPC C1G2 specification [18]. The communication se-
quence between a reader and a tag with no collisions is shown in
Figure 4. The reader challenges the tag with a set of commands
to select a particular tag population (Select), to initiate an inven-
tory round (Query), and to request the transmission of a tag’s iden-
tification (EPC) number (Ack). The tag replies first with an RN16
packet (after the reader’s Query) and then with an EPC packet (after
the reader’s Ack). We extracted signal features (fingerprints) from
the tags’ replies, more specifically from the fixed preamble of the
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Figure 4: EPC inventory sequence. P, FS, and CW stand for

preamble, frame-sync, and continuous wave respectively.

RN16 packet1. This was done to not introduce any data-dependent
bias in our identification, since the RN16 preamble is fixed for
all tags.

Our tag population is composed of 70 tags of 3 different models
and manufactures: ALN9540, AD833, and UPM Dogbone. Tags
from the same model were taken from the same roll. The selected
models present differences in the embedded integrated circuits, an-
tenna sizes and materials, and applications2.

For all the tags in our tag population, we collected the preambles
of RN16 reply packets. In our experiments, we varied tag positions
(Figure 3) as well as challenged tags at different power levels and
to backscatter data at different link frequency.

According to the EPC C1G2 specification [18], the reader can
specify the backscatter link frequency (BLF, i.e., the tag data rate)
through a parameter called TRcal; Table 1 shows the selected TRcal
times for our experiments and their corresponding BLF, frequency
tolerances, and frequency variations during backscatter according
to the EPC C1G2 specification. We note that the relatively large
BLF tolerance and variation during backscatter may represent a
distinguishing factor between different tags. We expect the varia-

1RN16 packets are transmitted by the tags as a part of the anti-
collision protocol that is used during tag inventorying [18].
2Datasheets can be found online [3–5].



tion in BLF tolerance and variation during backscatter to be higher
when tags are requested to backscatter at an out-of-specification
BLF, since the manufacturers mainly focus on tag responses within
the specified frequency range. Therefore, in order to increase the
possibility of finding distinguishing characteristics, we challenged
tags with out-of-specification TRcal times. For this experiment, we
selected subsets of tags from all three tag models. The acquisition
setup was configured as detailed in Section 3.1 and tags were placed
at the nominal position (Figure 3 and Table 2 – configuration 0).
For a subset of tags of one model, we acquired the preamble of

the RN16 packet by challenging tags to backscatter at one selected
link frequency, but varying the position of the tags, the tag orienta-
tion, and the transmission power of our acquisition setup for a total
of 10 different configurations (summarized in Table 2 – configura-
tions 1 to 10). For the tag position, we considered location points
that are representative of the tag being on the right, left, closer to
the reader antennas, and further away to the reader antennas. There-
fore, we run four experiments by varying the tag distance (y-axis)
to the antennas (between 0.5 and 6 m), two experiments by varying
the tag vertical position (z-axis, between 0.5 and 1 m), and two
experiments by varying the tag lateral position (x-axis, between
-0.3 and 0.3 m). For tag orientation, we run one experiment by
rotating the tag by 90◦ with respect to the y-axis. In terms of trans-
mission power, we run one experiment by decreasing it by a fac-
tor of 4 (from 29 to 23 dBm). Although several other tag orienta-
tions and transmission powers could be explored, those will only
affect the amount of power transferred from the reader to the tag
and viceversa. The considered location points already represent
different cases of power transfer.

3.3 Collected Data
Using our setup, we performed the experiments described in

Section 3.2 and collected RN16 preambles. Each collected RN16
preamble is a fixed sequence of 16 data-0 symbols, which, accord-
ing to the selected tag encoding scheme (i.e., Miller encoding with
4 subcarrier [18]), corresponds to 64 square wave cycles (duty cycle
equal to 50%). In Table 3, we summarize the data that we collected,
represented in a form of datasets.
Dataset 1 contains tag responses from 50 different ALN9540

tags. For each tag and one selected TRcal (equal to 15 µs), we
collected 100 RN16 preambles. This dataset is used in Section 5.2
to evaluate the identification and classification accuracies of the
proposed physical-layer identification techniques (detailed in Sec-
tion 4) for a population composed of same model, same manu-
facturer tags. Dataset 2 contains tag responses from 10 differ-
ent ALN9540 tags (randomly selected among the 50 tags used for
dataset 1). For each tag and for 10 different configurations (Ta-
ble 2, configurations 1 to 10), we collected 100 RN16 preambles,
for a total of 1000 RN16 preambles per tag. This dataset is used
in Section 5.3 to estimate the stability of the proposed techniques
with respect to different configurations of tag position, orientation,
and transmission power. Datasets 3, 4, and 5 contain tag responses
from 3 models, 10 tags for each model. For each tag and for each
of the six selected TRcal (Table 1), we collected 100 RN16 pream-
bles, for a total of 600 RN16 preambles per tag. These datasets are
used in Section 5.4 to analyze the classification accuracy between
different tag models and within each model, as well as to validate
the accuracy of the proposed techniques for different TRcal values.
Data collection was performed over two weeks, one tag at the

time, 100 RN16 preamble acquisitions in a row, in a indoor, RF
noisy environment with activeWi-fi, GSM, and Bluetooth networks
and with other objects nearby. Between two acquisitions, tags are

Table 1: Selected TRcal times and related backscatter link fre-

quencies (BLF), BLF tolerances, and BLF variations.

TRcal BLF Freq. Freq. variation
[µs] [KHz] tolerance during backscatter

151 1422 - -
171 1255 - -
33.3 640 +/- 15% +/- 2.5%
83.3 256 +/- 10% +/- 2.5%
225 95 +/- 5% +/- 2.5%
2501 85.3 - -
1 Those TRcal values are out-of-specification,
therefore the given BLF are only estimated.

Table 2: Varied parameters for the different configurations.

Config. Tag position Tag TX
Fig. 3 (x,y,z)-axis orientation power

[m] [dBm]

0 N (0, 0.8, 0.75) 0◦ 29
1 A (0, 0.5, 0.75) 0◦ 29
2 B (0, 1.1, 0.75) 0◦ 29
3 C (0, 2.2, 0.75) 0◦ 29
4 D (0, 6, 0.5) 0◦ 321

5 E (0.3, 0.8, 0.75) 0◦ 29
6 F (-0.3, 0.8, 0.75) 0◦ 29
7 G (0, 0.8, 1) 0◦ 29
8 H (0, 0.8, 0.5) 0◦ 29
9 N (0, 0.8, 0.75) 90◦ 29
10 N (0, 0.8, 0.75) 0◦ 23

1 Due to the larger distance (6 m) between tags and antennas
in this configuration, in order to power up the tags the
transmission power is increased by a factor of 2.

powered-down and considered fully discharged3. Unless otherwise
indicated, acquisition setup and tags were in the nominal config-
uration (i.e., Table 2 – configuration 0). In order to speed up the
acquisition process, we shortened the aforementioned inventorying
sequence as shown in Figure 1: the considered acquisition sequence
is only composed of Select and Query commands as reader chal-
lenge and the RN16 packet as tag response (i.e., the tag’s identifi-
cation (EPC) number is not requested and therefore not acquired).
Within our setup, a single RN16 preamble acquisition takes 10 ms
(including challenge, tag response, and discharge time of the tag).

4. FEATURE EXTRACTION AND

MATCHING
The goal of the fingerprinting features is to obtain distinctive fin-

gerprints from the signals collected in the proposed experiments.
Here, we detail the extraction and matching procedures of two types
of features: time domain features (Section 4.1) and spectral PCA
features (Section 4.2). The feature extraction is based on the fixed
RN16 preamble in order to avoid any data-dependent bias in our
evaluation.

3According to the EPC C1G2 specification [18], the maximum fall
time for the reader power-down RF envelope is 0.5 ms and the
reader shall remain powered off for at least 1 ms before power-
ing up again. After the tag response, we provide a 2 ms discharge
time where no RF signals are transmitted to the tag.



Table 3: Collected data.

Dataset Model # tags
# acquired RN16 preambles Considered Considered Total # acquired RN16

per tag and TRcal TRcal configurations preambles per tag

1 ALN9540 50 100 1 (15) 1 100
2 ALN9540 10 100 1 (15) 10 1000
3 ALN9540 10 100 6 (15, 17, ..., 250) 1 600
4 AD833 10 100 6 (15, 17, ..., 250) 1 600
5 Dogbone 10 100 6 (15, 17, ..., 250) 1 600

4.1 Time Domain Features
In this section, we describe the extraction and matching proce-

dures for fingerprinting features in the time domain, namely the
time interval error (TIE) and the average baseband power (P̄B).
We also investigated the use of additional timing features, such as
the signal rise and fall times and the time from the reader’s trans-
mission to the tag’s response. These timing features, however, per-
formed poorly in both classification and identification, hence in this
work we focus on the time interval error and the average baseband
power from the time domain characteristics.

4.1.1 Time Interval Error

The time interval error (TIE) measures how far each active edge
of the clock varies from its ideal position. To measure the TIE,
the ideal edges must be known or estimated. Figure 5 shows part
of the RN16 preamble of an UHF RFID tag and the time interval
error computed by using a fixed reference clock on a number of
consecutive clock cycles. We observe a constant increase of TIE,
i.e., constant first derivative ∂TIE . We therefore define ∂TIE as a
feature for fingerprinting UHF RFID tags. In fact, in our particular
case, the ∂TIE is proportional to the tag backscatter link frequency.
Since the TIE measurements demonstrated precise and stable be-

havior, i.e., no significant outliers, we used a standard linear least
square fitting algorithm (LSF) to determine ∂TIE . More precisely,
we fit a line y = a · x + b to the set of TIE points {(xi, yi) : i ∈
{1, ..., C}}, by minimizing the least square error. Here C is the
number of clock cycles used to fit the line, xi is the index of the
clock cycle, and yi is the TIE at clock cycle i. The ∂TIE is the
fitted line coefficient a.
For each cycle i, we computed TIEi with respect to the 10% of

the cycle step height, i.e., at 0.1 · (Ai−Bi)+Bi, whereBi andAi

are the average low-state amplitude and the average high-state am-
plitude of the baseband signal for cycle i, respectively (Figure 5).
For more accurate approximation of ∂TIE we used all (64) clock
cycles in the preamble part of the tag response.
It should be noted that the notions of time interval error and

∂TIE are close to the notion of clock offset and clock skew as
in [26, 34]. The difference resides in the communication layer
used for measurement. We measured the time interval error on the
physical-layer signal, while in [26, 34], the clock offset/skew was
derived from timestamps available at upper-layer protocols (e.g.,
TCP). Such timestamp information however is not available in EPC
RFID communication and therefore cannot be used.

4.1.2 Average Baseband Power

We define the average baseband power P̄B as the average power
of an acquired RN16 preamble. The average is computed by con-
sidering each cycle in the acquired baseband signal such as P̄B =
1
C

·
∑C

i=1 PB,i, where C is the number of clock cycles and the
average baseband power for a cycle i is PB,i =

1
2
· (Ai −Bi)
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The TIE is the difference between the edges of the tag signal

and the reference clock. We observe a linear increase of TIE.

The average baseband power relates to the backscatter power
transferred from the tag to the reader during data modulation, i.e.,
when the tag modulates the RF carrier from A to B and vicev-
ersa (Figure 5). The modulation backscatter power is given, among
other parameters, by the reflection coefficients of the tag antenna,
which are determined by the input impedance of the tag antenna
and the input impedance of the RF port of the tag embedded inte-
grated circuit [22].

4.1.3 Feature Combination and Matching

Given that the ∂TIE and the average baseband power P̄B are
1-dimensional features, for the purposes of classification and iden-
tification we also combine them in a 2-dimensional feature vector
[∂TIE , P̄B]. We denote this feature combination as (∂TIE , P̄B).

For evaluation, reference and testing device fingerprints are built
from a numberN of acquired RN16 preambles. Each device finger-
print is the value of a selected feature, ∂TIE , P̄B , or (∂TIE , P̄B),
averaged over N . For matching two fingerprints, i.e., computing
the similarity score between reference and testing fingerprints, we
used Euclidean distance.

4.2 Spectral Features
Statistical spectral features for identification were initially pro-

posed in [12, 13]. We used the feature extraction and matching



methods described in [12]. Here, we briefly discuss them for com-
pleteness. First, we separated the RN16 preamble of each collected
sampled signal into single clock cycles and then computed the spec-
tral features for each of those clock cycles. The final fingerprint of
each RN16 preamble was formed by computing the average of the
spectral features of all single clock cycles. This procedure is similar
to the computation of ∂TIE , where we used a linear regression over
all clock cycles in the RN16 preamble. The advantage of this ap-
proach is that it allowed us to work on low dimensional data which
is suitable for standard PCA analysis as opposed to [12].

5. PERFORMANCE RESULTS
In this section, we present the evaluation of the classification and

identification accuracies obtained by using each one of the four
proposed features, i.e., ∂TIE , P̄B , (∂TIE , P̄B), and spectral fea-
tures. First, we review the metrics that we used to evaluate the
classification and identification accuracy. Then, we elaborate on
the achieved results and summarize the main outcomes of our ex-
perimental analysis.

5.1 Evaluation Metrics
We evaluate our feature accuracy in terms of classification and

threshold-based identity verification. We also compute the entropy
of the probability distribution of selected features.
For evaluation of the classification capabilities of our features,

we adopt the classification success rate metric. We compute it as
follows. Each individual tag (or tag model) is considered as a sep-
arate class. A reference fingerprint of each class is then computed
and stored. During classification, unknown testing fingerprints are
assigned to one of the classes according to the k-Nearest Neighbor
rule4. The percentage of correctly assigned testing fingerprints to
their respective classes is our classification success rate.
For identity verification (identification), we adopted the Equal

Error Rate (EER) as a single metric since it is a widely agreed
metric for evaluating such systems [9]. We estimate the EER as
follows. We compute the similarity score between all testing and
reference fingerprints from all tags. We then separate these scores
in two categories: genuine and imposter. The genuine category
includes all scores from matching two fingerprints from the same
tag. The imposter category contains all scores from comparing two
fingerprints from different tags. Given that each score represents
the similarity between two fingerprints (identities), we compute the
rate of falsely rejected and falsely accepted tags using a threshold
score value. The scores from the genuine category that are above
this threshold indicate the number of false rejects or the False Re-
ject Rate (FRR), while the scores from the imposter category that
are below the threshold indicate the number of the false accepts or
the False Accept Rate (FAR). The EER is the error rate where both
FAR and FRR are equal. The value of the threshold at the EER is
our threshold T for an accept/reject decision.
For our 1-dimensional features, we compute the entropy of the

corresponding probability distribution in order to show how many
bits of information are contained within that distribution. To com-
pute the entropy, we consider bins of width equal to the average
variance of the features in the dataset and count the number of fin-
gerprints that fall in the different bins. We then apply the standard
entropy formula [42]. We note that for higher dimensional features,

4It should be noted that more sophisticated classifiers can be de-
vised such as Support Vector Machines (SVM) and Probabilistic
Neural Networks (PNN) [8]. Due to more complicated training
procedures, we do not consider them in the present work.

Table 4: ALN9540 - Classification accuracy - 50 tags.

Feature Class. Succ. Rate (%) Entropy [bits]
(empirical) (theory)

∂TIE 71.4 (69.7; 73.0) 5.84 7.08
P̄B 43.2 (38.6; 47.7) 4.57 6.02
(∂TIE , P̄B) 98.7 (98.0; 99.4) - -
Spectral 99.6 (99.3; 99.9) - -
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Figure 6: Distribution of ∂TIE for the 50 identical ALN9540

tags in a form of histogram. The total of 1000 fingerprints (20

per tag for N = 5) are used to fill in the histogram bins.

computing the entropy can be misleading due to the small size of
our dataset and the curse of dimensionality [8].

5.2 Recognition Accuracy
In this section, we analyze the accuracy of our proposed features

for classification and threshold-based identity verification (identi-
fication). For accuracy estimation, we used dataset 1 (Table 3)
which contains 5000 RN16 preamble acquisitions from 50 iden-
tical (same model and manufacturer) tags. We used a 5-fold cross
validation [8] in order to validate the error rates. For each tag (100
acquisitions), the set was split in 5 independent folds; one fold (20
acquisitions) was used for training and the remaining four folds (80
acquisitions) were used to form the testing device fingerprints. The
training and testing data were thus separated.

Table 4 shows the classification success rates and confidence in-
tervals for the proposed features. The number of acquisitions that
were used to build a device fingerprint was fixed to 5 (N = 5) and
classification was performed with the 3-Nearest Neighbor rule5.
The ∂TIE achieves an accuracy of approximately 71%.

Given that the classification accuracy is dependent on the number
of evaluated tags, we estimated the entropy in bits from the empir-
ical distribution of ∂TIE obtained from our investigation over 50
tags (Figure 6). Additionally, we computed its theoretical maxi-
mum, i.e., the maximum number of information bits that could be

5Typical choices for k are 1, 3, 5, and 7. In our case, k = 3 pro-
vided a good benchmark given that the estimated accuracy showed
higher variance for k = 1 and did not significantly improve for
k ≥ 5.
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Figure 7: Identification accuracy of (a) the (∂TIE , P̄B) feature for different number of RN16 preambles (signals)N used to build the

fingerprints and (b) the spectral features for differentN and subspace dimensions. The computation is performed on the 50 identical

(same manufacturer and model) tags.

learned from ∂TIE , with respect to the empirical distribution and
the maximal allowed backscatter link frequency (BLF) tolerance
as defined in the EPC C1G2 specification [18]. The entropy re-
sults based on the empirical distribution suggest that we could learn
5.84 bits of information about an UHF RFID tag (Table 4). The en-
tropy depends only on the variations of ∂TIE , which relate to the
BLF tolerances. Considering the ∂TIE distribution (Figure 6), we
observe a BLF tolerance of ±14.01% around a mean BLF of ap-
prox. 1400 KHz (for the considered TRcal, we estimated a BLF
equal to 1422 KHz, Table 1). Given this measured tolerance, the
maximum possible entropy would be 7.08 bits6. If considering the
maximal allowed BLF tolerance as defined in the EPC C1G2 spec-
ification, i.e.,±22% for BLF equal to 320 KHz, the maximum pos-
sible entropy would be 9.86 bits. Although this last result seemed
very promising, we could not observe such a large tolerance within
our tag population. We later further show that ∂TIE is stable across
different locations and distances to the reader of up to 6 meters. The
implications of these results are discussed in Section 6.
The average baseband power (P̄B) feature shows a significantly

lower accuracy on its own, but performs well when combined with
∂TIE (98.7%). The empirical entropy is 4.57 bits and the maxi-
mum entropy 6.02 bits7. This shows that there is much less uncer-
tainty in the baseband power compared to ∂TIE . The spectral fea-
tures score the highest classification success rate of 99.6%. Those
results motivated us to explore the accuracy of the two most dis-
criminative features, i.e., the combined (∂TIE , P̄B) and the spectral
features, in the case of tag identity verification (identification).
For the combined (∂TIE , P̄B) feature we varied the number of

acquired RN16 preambles N over which we average to obtain the
testing device fingerprint. The reference device fingerprint is ob-
tained by averaging over all acquisitions in the training set (20 ac-
quisitions). The results of the analysis for N = 1, 3, 5, 10 acquisi-
tions are shown in Figure 7(a). The Equal Error Rate (EER) grad-

6The maximum possible entropy is achieved when the probability
distribution of ∂TIE is assumed to be uniform [23].
7The maximum possible entropy according to the standard speci-
fication could not be computed because no tolerances on the base-
band power are included.

ually decreases with higher averaging factor N reaching an EER
= 0.5% approximately. This means that by using these combined
features, our system can verify the identity of individual identical
tags with an accuracy of 99.5% (genuine accepts), while allowing
0.5% of false rejects. For the EER estimation, we approximated the
genuine and imposter score distributions. For example, in the case
ofN = 5, each fold contains 4 fingerprints, for a total of 16 testing
fingerprints (4 folds). For 50 tags, this results in 800 genuine and
39200 imposter matching scores.

For the spectral features we varied two parameters, the number of
RN16 preambles N and the dimensionality of the PCA subspace.
As shown in Figure 7(b), the averaging factor N does not have
an effect as opposed to the subspace dimensionality. The most dis-
criminative subspaces are to be found in subspaces with dimension-
ality 5 to 40. For dimensionality 30 and 40, the EER = 0%. Higher
dimensionality subspaces degrade the accuracy, most probably due
to noisy eigenvector components. While this result demonstrates
the discriminant capabilities of the spectral features, a larger dataset
of hundreds of tags is required in order to have a more accurate es-
timate of the EER.

In summary, we observe that a combination of only 2 features,
i.e., ∂TIE and the average baseband power P̄B , provides high iden-
tification accuracy in terms of EER. The spectral features further
decrease the EER to 0%.

5.3 Feature Stability
In the previous section, we have analyzed the classification and

identification accuracies of our proposed features. This allows us
to have a benchmark for estimating the stability of those features
with respect to different configurations of tag position, orientation,
and transmission power (Table 2). In this section, we evaluate:

1. The stability of the proposed features to different configu-
rations by using datasets 1 and 2 (Table 3). First, we ex-
tract the reference fingerprints from dataset 1 (which con-
tains RN16 preambles from 50 tags) for the same set of 10
tags deployed to collect dataset 2. Then, we compute the
testing fingerprints from all the different configurations and



Table 5: Feature stability - ALN9540 - 10 tags

Classification Success Rate (%)
Feature Nominal configuration Different configurations Reduced sampling rate (100 MS/s)

∂TIE 99.8 (99.5; 100) 96.4 (95.01; 97.86) 99.88 (99.49; 100)
P̄B 64.6 (56.9; 72.3) 15.92 (14.49; 17.35) 60.25 (54.28; 66.22)
(∂TIE , P̄B) 100 (100; 100) 36.24 (26.73; 45.75) 100 (100; 100)
Spectral 100 (100; 100) 37.6 (18.5; 56.8) 100 (100; 100)
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Figure 8: Visualization of ∂TIE of 10 randomly selected

ALN9540 tags. 220 fingerprints (11 configurations x 20 finger-

prints) are displayed for each tag (N = 5). ∂TIE is stable across

all configurations.

tags in dataset 2, and classify them to the reference finger-
prints. The classification success rate of this analysis is com-
pared to the classification success rate for the selected 10 tags
computed from dataset 1 (i.e., in the nominal configuration,
Table 2 – configuration 0).

2. The stability of the proposed features to a reduced sampling
rate. First, we downsample by a factor of 10, i.e., from the
nominal sampling rate of 1 GS/s to 100 MS/s, the collected
signals in dataset 1 for the same set of 10 tags deployed to
collect dataset 2. Then, we extract the reference and testing
fingerprints from the downsampled signals and evaluate the
classification accuracy. The classification success rate of this
analysis is compared to the classification success rate for the
selected 10 tags computed from dataset 1 (i.e., at 1 GS/s).

For all the proposed features, Table 5 compares the classifica-
tion success rates and confidence intervals for the selected tags in
the nominal configuration with the rates of the stability analysis for
different configurations and reduced sampling rate (for this analy-
sis, N was set to 5).
The obtained results demonstrate that the ∂TIE feature is stable

across all configurations. Figure 8 visually illustrates ∂TIE for the
selected 10 tags. For each tag, the figure shows all 220 fingerprints
(N = 5) from the 11 configurations in Table 2 (20 fingerprints for
each configuration). Very small variability can be observed.
On the negative side, the average baseband power, the combi-

nation of time interval error and average baseband power, and the
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Figure 9: The fingerprints of the 3 models (AD833, Dogbone,

and ALN9540) clustered in separate regions by using ∂TIE and

the average baseband power P̄B .

spectral features significantly reduced their corresponding discrim-
inant capabilities. This result shows that while those features in
the considered signals are unique within a fixed tag position, ori-
entation, or transmission power, they change across different con-
figurations of these parameters. We discuss the impact of these
limitations on applications in Section 6.

Considering the stability of the proposed features to a lower sam-
pling rate, the obtained results demonstrate that our features are sta-
ble when reducing the sampling rate from 1 GS/s to 100 MS/s. We
discuss the impact of this result in Section 5.5.

5.4 Accuracy on Different Models
In this section, we present accuracy results on our 3 different

models (datasets 3-5). We analyze the classification accuracy be-
tween the models (model distinction) and within each model. We
also validate the accuracy of our features for different TRcal values.

In terms of the ability to classify different models, all features
perform equally well with a success rate of 100%. For the time
domain features this is due to the good discriminant capabilities of
both ∂TIE and P̄B , which show perfect and distant boundaries be-
tween the three models. This is visualized for these two features
in Figure 9. Given the stability results (Section 5.3), the ∂TIE fea-
ture is also a good candidate for model distinction independently
of the location and distance to the reader. We acknowledge, how-
ever, that we need to consider a larger set of models in order to
more precisely estimate the classification accuracy across models
and possibly compute the entropy (Section 5.2).



The ability of the proposed features to distinguish devices within
the same model for different TRcal is summarized in Tables 6(a),
6(b), and 6(c). The ∂TIE feature shows on average an accuracy
of 80-100% for the selected TRcal, i.e., between 8 and 10 tags are
correctly classified within each model. We observe that the accu-
racy is higher compared to the analysis on the 50 tags (Table 4).
This is most likely due to the smaller tag set used in this analysis.
Nevertheless, this result clearly shows that the time interval error
can equally be exploited on different models.
The average baseband power (P̄B) feature varies depending on

the model. While its accuracy is comparable for Dogbone and
ALN9540, it is very high on AD833 (90-100%). In line with the re-
sults in Section 5.2, the combined feature (∂TIE , P̄B) shows high
classification accuracy on each model. The spectral features also
perform very well irrespective of the model. This result shows that
our proposed features work on different models of UHF RFID tags.
We note that, although in some case out-of-specification TRcal

times lead to a more accurate classification, it is not possible to
generalize this for all combinations of models and features. Sim-
ilarly, no generalization can be done on the relationship between
classification accuracy and TRcal length.

5.5 Discussion
The results of our work show that we can learn approx. 6 bits of

information about an UHF RFID tag by only observing the time
interval error (TIE). This information can be extracted indepen-
dently of the tag position (distances up to 6 meters), orientation,
or transmission power. The stability of the TIE across different
configurations is due to the origin of TIE variability, namely the
tag local oscillator.
For more accurate identification of individual tags, we observed

other physical characteristics such as average baseband power and
spectral features. We demonstrated that a combination of only two
physical-layer parameters, i.e., TIE and average baseband power,
can accurately identify same model and manufacturer tags with
EER = 0.5%. The spectral features further decrease the EER to
0%. We acknowledge that a larger dataset of hundreds to thou-
sand devices is required to give a better estimate of the operational
EER. The main drawback of the above features is their instability to
tag position, orientation, and transmission power. In contrast to the
TIE, the average baseband power and spectral features are bound to
particular tag antenna reflection characteristics, which themselves
are sensitive to position, orientation, and transmission power. Fu-
ture work is needed to better quantify these effects and propose
appropriate measures. Moreover, the impact of other factors like
temperature variation, different acquisition setups, and tag motion
needs to be quantified.
In addition to identification accuracy, the design specification of

an identification system will usually include requirements for com-
putational speed and system cost [9]. Computational speed refers to
how fast an identification system makes the accept/reject decisions,
which affects the scalability of the system from small populations
to large populations. Our techniques obtain high accuracies by us-
ing a minimum of one (for spectral features) and a maximum of
5 (for the (∂TIE , P̄B) feature) RN16 preambles. A RN16 pream-
ble is acquired in 10 ms (Section 3.3). Therefore, considering data
processing (i.e., the feature extraction process) as negligible8, our
techniques can process between 20 and 100 tags/s. We note that the

8The time length of the RN16 preamble for TRcal equal to 15 µs is
about 48 µs, which at a sampling rate of 100 MS/s makes the num-
ber of samples to process equal to 4800. Considering the relatively
short length and size of this digital signal, we assume the process
time as negligible when compared to the acquisition time.

Table 6: Classification accuracy - 3 models.

(a) AD833 - Classification Success Rate (%) - 10 tags.

TRcal [µs]

Feature 15 17 33.3 83.3 225 250

∂TIE 72.5 79.6 70.9 84.5 89.4 76
P̄B 99.9 99.0 100 98.1 94.9 100
(∂TIE , P̄B) 99.9 99.6 100 99.8 98.5 98.5
Spectral 100 100 99.9 100 100.0 99

(b) Dogbone - Classification Success Rate (%) - 10 tags.

TRcal [µs]

Feature 15 17 33.3 83.3 225 250

∂TIE 72.4 73.0 75.8 81.3 71.9 75.1
P̄B 53 87.5 72.5 62 77.9 66.1
(∂TIE , P̄B) 93 100 99 94.6 97.4 92.1
Spectral 96.9 100 100 97.8 98.3 96.8

(c) ALN9540 - Classification Success Rate (%) - 10 tags.

TRcal [µs]

Feature 15 17 33.3 83.3 225 250

∂TIE 99.6 85.5 87.1 86 53.5 59.3
P̄B 72.6 92.4 80.4 80.1 94.4 87.4
(∂TIE , P̄B) 100 92.9 100 100 95.6 83.4
Spectral 100 97.8 100 100 99 96.5

RN16 preamble acquisition time can be reduced as the backscatter
link frequency increases. For TRcal equal to 15 µs, we can reduce
this time by half, doubling the acquisition speed.

In physical-layer identification the quality of the obtained finger-
prints and the computational speed are related to the system cost.
In our acquisition setup, the cost is mainly affected by the acquisi-
tion of the RN16 preambles (operated by an oscilloscope), which
requires a sampling rate of 1 GS/s. However, we showed that is
possible to reduce this sampling rate to 100 MS/s with no impacts
on the identification accuracy. This allows us to lower the system
cost by deploying less expensive acquisition setups that use for ex-
ample USRP platforms [6].

6. IMPLICATIONS OF UHF RFID TAG

IDENTIFICATION
In this section, we discuss the implications of our physical-layer

identification and classification techniques on the privacy of tag
holders and the application of those techniques to cloning detec-
tion in RFID-enabled supply chains.

6.1 Breaking Tag Holder Privacy
RFID technology has raised a number of privacy concerns in

many different applications, especially when considering consumer
privacy [29]. A person carrying several tags – attached to vari-
ous objects like books, passport, medicine, medical devices, and
clothes – can be subject to clandestine tracking by any reader in the
read range of those tags. Although some objects may be only tem-
porarily with a person (e.g., a shopping bag), others may be carried



for a longer time (e.g., a book) or even permanently (e.g., medical
devices), allowing clandestine tracking over wider time periods.
Although solutions that prevent a (clandestine) reader to com-

municate with tags at the physical layer exist (e.g., by “killing”
tags or by putting them to “sleep”, or by using Faraday cages, ac-
tive jammers, or “clipped” tags [32]), the provided privacy comes
at the price of tag functionality. Several solutions that guarantee
both privacy against clandestine tracking and tag functionality have
been proposed [44]. Those mainly exploit tag identification number
pseudonymity by means of cryptographic techniques like public-
key algorithms, symmetric-key primitives, pseudo-random number
generators, and hash functions [7, 14, 16, 35]. However, the pro-
posed solutions consider protection measures on the upper (logi-
cal) layers; physical-layer identification techniques can invalidate
those protection measures by identifying devices on the physical
communication layer.
In a scenario in which the target person carries several tags, a

relatively low identification accuracy (per tag) may be enough to
break privacy: besides the fact that privacy can be compromised
by having only weak evidence of someone being at a certain place,
combining the identification information from several tags will sig-
nificantly reduce a person’s privacy. Our TIE-based technique pro-
vides b = 5.84 bits of information for each tag, i.e, when individu-
ally considered, a maximum of n = ⌊2b⌋ tags can be uniquely iden-
tified. As a consequence, a set composed of k tags can be uniquely
identified among other

(

n+k−1
k

)

= (n+k−1)!
k!(n−1)!

sets, which provides
more information and leads to a more accurate identification. For
example, a set composed of 5 tags can be uniquely identified among
other 6 ·106 sets (corresponding to 22.5 bits of information), while
a set of 10 tags among other 2 · 1011 sets (corresponding to 37.6
bits of information). It is clear that the identification of a person
carrying several tags will be possible with a very high accuracy9.
Therefore, our TIE-based technique allows, in fact, people pro-

filing and clandestine tracking: an attacker only needs to profile
the target once, i.e., to extract and store for each of the tags in the
target’s set the corresponding timing feature ∂TIE , and then track
it by following the set of tags. As mentioned in previous sections,
identification through our TIE-based technique can be achieved in-
dependently of the location and distance to the reader from up to 6
meters, which facilitates clandestine tracking.
Defining countermeasures against unauthorized physical-layer

identifications is an open issue that, given our results, needs to be
addressed.

6.2 Cloning Detection in RFID-enabled
Supply Chains

Within RFID-enabled supply chains, each product is equipped
with an RFID tag containing a unique identifier (ID). Through an
RFID infrastructure (e.g., the EPCglobal network [19]), supply
chain partners can record, store, and share information associated
with those IDs, and use it to automate and speed-up processes. Tag
cloning may facilitate the injection of counterfeit products into le-
gal RFID-enabled supply chains: by carrying tags containing IDs
of genuine products, clones will be recognized as genuine by the
RFID infrastructure (unless human inspection is performed).
Current solutions for RFID-enabled supply chains, like the afore-

mentioned EPCglobal architecture, do not provide effective anti-
cloning measures [28]. In the past years, several solutions have
been proposed (e.g., [10, 14, 16, 28, 36]), but due to the limited re-
sources and cost constraints of passive UHF RFID tags for supply

9The accuracy may be additionally increased by considering sets
of tags composed of different tag models and manufacturers.

chain applications, a standardizable anti-cloning mechanism is still
under investigation.

Physical-layer identification provides means to detect counter-
feit products by creating physical-layer fingerprints that bind the
RFID tag to the claimed identity (fingerprints could then be stored
in a database, e.g., maintained by the tag manufacturer, for later
comparisons).

In a scenario where pallets of tagged products pass through an
RFID portal for physical-layer identification, the large amount of
products that need to be identified in a short time would require
a high computational speed. Additionally, tagged products can
be placed anywhere on a pallet and interfere with each other dur-
ing wireless communication (e.g., by signal superposition or signal
diffraction due to product packaging); fingerprints would then be
required to be particularly stable. Moreover, identification accu-
racy should be particularly high: the time spent in verifying false
positives will slow down the supply chain processes.

Similarly to the pallet-scenario, a physical-layer identification
system for a scenario in which tagged products move over a con-
veyor belt would require a high computational speed and accuracy.
Differently, tagged products may pass one at a time and at a fixed
position through the RFID portal, reducing interferences and allow-
ing fingerprints to be sensitive to tags’ position.

Although our work shows that identifying tags with high accu-
racy (EER=0%) and computational speed (100 tags/s) is feasible
using spectral features, our spectral-based technique is not suitable
for the pallet-scenario due to its sensitivity to tags’ position. Such
a technique may be, however, suitable for the conveyor-scenario,
where tags are identified one at a time and at a fixed position.

In summary, we show that cloning detection in RFID-enabled
supply chains is feasible under certain conditions. We note that
finding a highly-accurate, position-insensitive identification tech-
nique is an open issue. Similarly, security threats (and possible
countermeasures) against such cloning detection systems need to
be explored.

7. RELATEDWORK
Physical-layer fingerprinting (identification) has been investigat-

ed on a number of hardware platforms including RFID [12, 38, 40,
41]. To the best of our knowledge, only Periaswamy et al. [38] con-
sidered identification of UHF RFID tags. The authors proposed a
method to enable ownership transfer of UHF RFID tags using the
minimum power response of tags as a physical-layer fingerprint.
The authors considered a small set of 8 tags from 2 models and
only showed visual evidence that UHF tags can be distinguished;
feature stability was also not considered10. In comparison to the
above works, our work is the first to show the existence of stable
physical-layer fingerprints for distinguishing UHF RFID tags and
to provide empirical and theoretical bounds about their accuracy. In
addition, we validate the applicability of existing HF RFID identi-
fication techniques to UHF RFID.

In the context of HF RFID, Danev et al. [12] studied and eval-
uated the feasibility of using physical-layer identification to detect
cloned or counterfeit HF RFID smart cards and electronic pass-
ports. The authors proposed statistical spectral features as physical-
layer fingerprints. Experimental results on 50 identical smart cards
10The minimum power response provides tag’s energy-harvesting
information and it is usually indicated at a specified frequency and
distance [45]. This implies that it varies with the distance, which
makes the proposed technique working only at a fixed location.
Additionally, reflective environments cause significant variations
in the minimum power response [37], which may further limit the
proposed technique to controlled environments.



showed an EER of 2.43% from close proximity. Similarly, Romero
et al. [40] demonstrated that the magnitude and phase at selected
frequencies allow fingerprinting different models of HF RFID tags.
The authors validated their technique on 4 different models. Re-
cently, the same authors extended their technique to enable iden-
tification of same model and manufacturer transponders [41]. The
above works considered inductive coupled HF RFID tags and the
proposed features work from close proximity.
Besides the mentioned works on RFID devices, physical-layer

fingerprinting has been explored on different platforms such as VHF
[43, 47], Bluetooth [24], IEEE 802.11 [11, 26, 48], and 802.15.4
(ZigBee) [13, 39]. Our proposed TIE-based feature is close to the
notion of clock offset/skew proposed in [34] for fingerprinting net-
work hosts. The difference resides in the communication layer used
for measurement. We measure the time interval error at the physi-
cal layer, while in [34], the clock offset and skew are derived from
timestamps in upper-layer protocols (e.g., TCP).
Here follows a brief description of other related works. Shaw and

Kinsner [43] proposed to identify radio transmitters used in viola-
tion of regulations by extracting and modeling the radio transmit-
ter (turn-on) transient for classification. Ureten and Serinken [47]
used the same feature (but different feature extraction and classi-
fication methods) to identify VHF radio transmitters. Ellis and
Serinken [17] studied the feasibility of visually identifying VHF
radio transmitters based on amplitude and phase information con-
tained in the transmitter transient. Hall et al. studied and evaluated
radio fingerprinting for intrusion detection in both IEEE 802.11 [24]
and Bluetooth [25] networks, while the amplitude and phase en-
velops of the transmitter transient have been used by Ureten and
Serinken [48] to fingerprint IEEE 802.11b devices. Rasmussen and
Čapkun [39] demonstrated the feasibility of device fingerprinting
of wireless sensor nodes and discussed the implication of finger-
printing on detecting wormhole, Sybil, and cloning attacks. Brik et
al. [11] considered variances in the modulation errors to fingerprint
IEEE 802.11 devices, while Danev and Čapkun [13] investigated
the identification of identical IEEE 802.15.4 wireless sensor nodes
using temporal and spectral features of the transmitter transient.

8. CONCLUSION
In this work, we studied physical-layer identification of passive

UHF RFID tags. We collected signals from a population of 70
tags using a purpose-built reader and we analyzed time domain and
spectral features of the collected signals. We showed that, using
time domain features, UHF RFID tags can be classified, indepen-
dently of the location and distance to the reader (tested up to 6 me-
ters), with an accuracy of approx. 71%. Additionally, we showed
that is possible to uniquely identify a maximum of approx. 26 UHF
RFID tags independently of the population size. These results show
that breaking privacy at different locations and distances is possi-
ble, especially when target users carry several tags. We further
showed that, in controlled environments, UHF RFID tags can be
uniquely identified based on their signal spectral features with an
Equal Error Rate of 0%. This result shows that cloning detection
in RFID-enabled supply chains is feasible under certain conditions.
The countermeasures against unauthorized physical-layer identifi-
cations remain an open problem.
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