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Abstract

An encryption scheme is a cryptographic protocol ensuring confiden-
tiality of communication. At the same time, encryption does not gen-
erally protect the integrity of the resulting encrypted communication.
The potential ability of an adversary to modify the encrypted commu-
nication is called the malleability of the encryption scheme.

Several different notions of security have been introduced to capture
not only confidentiality of an encryption scheme, but also to restrict its
malleability. This set of notions was mainly formalized using a game-
based approach and includes notions like non-malleability [17], integrity
of plaintexts [7], or plaintext-uncertainty [19]. However, the model in
which they are presented allow no intuitive and meaningful compari-
son of the notions, and their practical relevance often remains unclear.

A different model aiming at an abstract and natural way of defining
security of cryptographic protocols is considered in the context of con-
structive cryptography [26, 29]. In this model, communication is ab-
stracted as a channel and cryptographic protocols are considered as
transformation of a particular type of channel into a more secure chan-
nel. This model also allows to describe the malleability properties of
an encryption scheme in a meaningful way by a set of transformations
that can be applied to a sent message.

In this thesis, I adapt several game-based security notions to the model
of constructive cryptography, describing the corresponding restricted
type of malleability as a set of transformations on the plaintext space.
The resulting types of malleability are compared and examined with
regard to their practical meaning for the use in secure communication.
As a result of the analysis of the different types of malleability, I trans-
late the natural definition of confidentiality (i.e. constructing a confi-
dential channel) from the constructive framework to the game-based
model and define “pure” confidentiality based on a game, resulting in
a new game-based notion.

As a further application of the constructive model of malleability, I
specify a restricted type of malleability that is sufficient to render the
encryption-with-redundancy composition secure. In other words, an
encryption scheme that conforms to this type of malleability can be
combined with a keyless redundancy mechanism to guarantee both
confidentiality and authenticity of communication. As it is shown
in [2], such a sufficient condition is not provided by the traditional
game-based security notions.
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Chapter 1

Introduction

Secure communication is one of today’s most important concepts in cryp-
tography. In applications, such as online banking or e-commerce, or when
sending sensitive data over the public internet, one would like to assume
secure point-to-point connections. The term secure usually refers to confiden-
tiality and authenticity, meaning that the communication cannot be read by a
third party, and that a received message cannot originate from someone else
than the legitimate sender.

Since this security is usually not ensured by standard communication chan-
nels, such as communication over the internet, cryptographic encryption
schemes and authentication mechanisms, or a combination of both, are typ-
ically employed to secure communication.

This thesis mainly focuses on encryption schemes and their contribution to
the overall goal, that is, secure and confidential communication.

1.1 Security of Encryption Schemes

Research in cryptography has a long history of studying and discussing
the security properties of encryption schemes. The traditional approach,
which is adopted in numerous papers, is to define security properties in a
game-based model where an adversary plays a game with a (hypothetical)
“challenger” and the scheme satisfies the property if no adversary can win
the game with substantial probability.

The first game-based security notions were proposed for public-key encryp-
tion schemes where messages to a certain receiver are encrypted by using
the same publicly known key by any party, and ciphertexts are decrypted
by using the corresponding private key that is only known to the receiver.
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1. Introduction

Goldwasser and Micali [21] introduced semantic security as a way of formaliz-
ing the confidentiality of a public-key encryption scheme. Semantic security
means that any information that an adversary can obtain from a ciphertext
about the corresponding plaintext can also be obtained without knowledge
of the ciphertext. Intuitively, semantic security means that the ciphertext
leaks no information about the plaintext.

A notion that is related to semantic security is indistinguishability, also aim-
ing at defining confidentiality by using the game-based approach. Many dif-
ferent definitions of this were introduced in the literature. However, these
definitions converge on the idea that an adversary is unable to distinguish
between two different types of encryptions (e.g. the encryptions of two
chosen messages or the encryption of a chosen message and a random mes-
sage).

It was shown that indistinguishability is equivalent to both semantic security
and a notion of privacy based on computational entropy [30, 20]. This equiv-
alence and the simple formalization of indistinguishability induced people
to conclude that indistinguishability is the right formalization of confiden-
tiality [8].

Non-malleability, a somewhat stronger notion not only covering confidential-
ity, was introduced by Dolev, Dwork and Naor [17, 18]. The following sce-
nario should be considered: An auctioneer distributes his public key and
accepts bids in the form of an encrypted amount (signed by the bidder).
Confidentiality of the encryption scheme prevents other bidders from learn-
ing the bidden amounts of their opponents. A perfectly confidential channel
can however not prevent a malicious bidder from transforming the cipher-
text of the opponent’s bid into a ciphertext which corresponds to a bid that
is just slightly higher (e.g. increasing the bid by one dollar), signing it to
be his own bid, and winning the auction. The notion of non-malleability
disables this undesired behavior, i.e. that an adversary can generate a new
ciphertext from a given ciphertext so that the corresponding plaintexts are
“meaningfully related”. The malleability of an encryption scheme is thus the
potential adversarial influence on the outcome of the decryption that can be
achieved by modifying given ciphertexts.

For secret-key encryption schemes, where a secret-key is shared among
sender and receiver and used for encryption and decryption, both indis-
tinguishability [5, 23, 7] and non-malleability [19, 23, 7] were adapted and
game-based formalizations were provided.

2



1.2. The Weaknesses of the Game-Based Model

1.2 The Weaknesses of the Game-Based Model

Defining security in the game-based model has a long tradition, which re-
sulted in a large variety of different notions and definitions. However, these
notions and definitions, as well as the game-based approach itself, have
many disadvantages that cannot simply be justified by their popularity.

These disadvantages mainly arise from the fact that security is defined by
the properties of the primitives that a constructed functionality is based on
(e.g. the indistinguishability property of an encryption scheme), rather than
by the security of the functionality itself (e.g. confidentiality of communica-
tion). This leads to unnecessary complexity of the definitions and different
versions of game-based definitions for the same security properties of the
functionality.

The drawbacks of the game-base approach can be illustrated by means of the
notion of indistinguishability, whose goal is to capture confidentiality. On
the level of constructed functionality, i.e. secure communication, the secu-
rity goal is clear and simple: Communication does not leak any information
about sent messages. On the level of the encryption scheme, this is defin-
able in various ways. In [5], four versions of indistinguishability, differing
in the way the adversary is challenged, are defined and proved to be equiv-
alent. Other variations in the definitions are due to the number of challenge
queries that are allowed ([5, 23] vs. [7]), or the different types of encryption
schemes considered (stateless vs. stateful, allowance of message replay [31]).
In a addition to the non-trivial transition from the game-based definition to
a security statement for the functionality, it is a rather complex and subtle
undertaking to compare different game-based definitions and notions. On
the level of secure communication, the meaning of numerous observations
and results about indistinguishability definitions remains rather unclear.

Moreover, another problem is that a seemingly minor detail of a game-based
definition can lead to a significant change of the security statement on the
functionality level. The example of indistinguishability is considered once
more: If one restricts the challenge encryption to messages of equal length,
the security statement translates into confidential communication, leaking
no information about the sent messages except for their length. Without this
restriction, no information is leaked and communication is perfectly confi-
dential.

The problem of “translating” statements from the functionality level to the
level of the primitive also affects the model of the adversary. For func-
tionality, like secure communication, different models of adversaries exist
(e.g. only passive attacker or the Dolev-Yao model [16]). In a game-based
approach, the capabilities of an adversary are specified in an attack model.
However, the translation between the levels for such adversary models is
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1. Introduction

not clear, which is why there is no simple model correspondence between
the levels that is widely accepted. It is often argued that the strongest pos-
sible attack model should be used because the more powerful the adversary
is in the game, the more secure is the encryption scheme that meets the
requirements [13, 14]. This paradigm to use the strongest possible security
property for the primitive can, however, suppress the fact that in order to
achieve the strongest possible security for the constructed functionality (e.g.
secure communication), a weaker variant of security would suffice for the
primitive (e.g. the encryption scheme) [12], and possibly result in a more
efficient encryption scheme.

An additional drawback of the game-based approach is that guarantees pro-
vided by a game-based notion are not generically preserved under composi-
tion. As pointed out by Krawczyk [24], combining an encryption scheme
that satisfies a game-based definition of indistinguishability with an au-
thentication scheme does necessarily result in an authenticated encryption
scheme that still satisfies the game-based properties of each component.
The authenticate-then-encrypt composition paradigm (AtE) is an example
of how the complexity of such a composition is underestimated and not an-
alyzed properly. For many years, AtE was assumed to preserve the security
properties of the composed schemes and was used in practice (TLS [15]),
before Krawczyk [24] disabused the community.

In conclusion, security definitions in the game-based model are hard to com-
pare and often have an unclear meaning for the scenario in which they are
applied. Therefore, a more promising approach is to define security on the
level of constructed functionality and so that composition preserves the de-
fined security properties.

1.3 Changing Perspective

With regard to the disadvantages mentioned in the previous section, one can
question whether the traditional game-based security modeling is the right
approach to take. One could argue that it would be more natural to define
security by changing the viewpoint and defining the security properties of
the constructed functionality itself. For secure communication, this means
that one defines what communication must fulfill in order to be called se-
cure.

Constructive cryptography, introduced by Maurer [26], follows this approach.
To be more precise, a security goal is characterized by an ideal functional-
ity (e.g. a secure channel allowing two honest parties to communicate with
each other). The term secure refers to the abilities (or inabilities) of the ad-
versary in the ideal functionality (e.g. a secure channel does not leak any
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1.3. Changing Perspective

information1 to the adversary and does only allow forwarding or deleting
messages). A cryptographic protocol (e.g. an encryption scheme) is seen as
a transformation of a given functionality into a stronger functionality. Such
a protocol is thus called secure if it transforms an insecure functionality into
the ideal, secure functionality that was specified. The formal definition of
this type of security will be given in Chapter 2.

A similar approach is taken in [33, 3], introducing reactive simulatability,
and in Canetti’s UC framework [11] .

Following the ideas of constructive cryptography, Chapter 3 introduces how
ideal functionalities should be modeled in the case of secure communica-
tion. As the corresponding primitives are communication channels, the ba-
sic functionality is a channel without security guarantees, called insecure
channel. Capturing the notions of authenticity, confidentiality as well as the
combination of both in an ideal functionality, the authenticated channel, the
confidential channel and the secure channel are defined. Especially in the case
of the confidential channel, a new definition that covers pure confidential-
ity and does—in contrast to existing game-based notions—not restrict the
malleability in any way, is given. The malleability of a channel is formal-
ized on the basis of the definition of malleability given in [29], allowing the
categorization of confidential channels according to the type of malleability
allowed.

The system concept, introduced by Maurer and Renner in [28], provides the
framework for the discussions of definitions, statements and proofs in this
thesis. Starting on a very abstract level, a system simply has a set of inter-
faces through which systems can be connected in order to establish a new
composed system. A communication channel is thus a system providing an
interface to the sender A, one to the receiver B and an additional one to the
adversary E.

On a second, more concrete level, systems do not only have interfaces but
also can communicate via the interfaces with each other by taking inputs
and producing outputs in discrete steps, often called rounds. For example,
a simple communication channel, without an adversary being present, takes
as input a message at the sender interface A and produces the message as
output at the receiver interface B.

As mentioned in [28], statements should be made on the highest level of
abstraction possible. On the one hand, a theorem proven on such a high
level is completely precise and, on the other hand, very powerful as it holds
for any instantiation on a lower-level that complies with the requirements
made in the theorem (such as required properties or axioms). In this thesis,

1Except for the length of the message.
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1. Introduction

most of the statements and proofs are made on the level of discrete systems,
using the formal model of random systems introduced in [25].

1.4 Formalizing Restricted Types of Malleability

The main aim of this thesis is to examine confidentiality and non-malleability
related security notions, with a special focus on the malleability character-
istics. Section 1.1 underlined the need to examine notions that are stronger
than confidentiality on the example of an online auction. Such notions (e.g.
non-malleability) are also interesting in the case of secret-key cryptography.
Consideration should be given to the authenticate-then-encrypt (AtE) com-
position paradigm, where security is established by encrypting an authenti-
cated message. It has been shown that confidentiality alone does not suffice
to render the composition secure as the encryption scheme could allow a
type of malleability that can be exploited to break the whole system [24, 7].
An interesting question in this context is what kind of malleability is suffi-
cient for AtE to be sound [29].

Chapter 4 presents a selection of game-based security notions from the lit-
erature that address non-malleability and integrity properties of encryption
schemes. The game-based notions are defined using the formalization of
a game as a random system [27] and they are characterized in an unified
description framework using pseudo-code.

In order to both have a meaningful statement of each game-based notion and
to be able to compare the notions among each other, they are “translated”
into channel-based security statements. For each game-based notion, I spec-
ify a restricted type of malleability and show that an encryption scheme is
secure with respect to the notion if, and only if, it constructs a confidential
channel with the specified type of malleability.

The first considered notion is non-malleability [17]. I show that a scheme
which is secure in the sense of non-malleability2 allows the following type
of malleability: An adversary can forward, replay and delete messages and
insert “constant” messages (that are independent of the sent messages). In
the case of public-key cryptography, the term non-malleability seems to be
appropriate as this type of malleability is the strongest that is achievable
(inserting constant messages can always be achieved by encrypting such a
message using the known public key). In the case of secret-key cryptography,
using the term non-malleability is unfortunate and it seems interesting to
investigate even more restricted types of malleability.

2The naming may seem counter-intuitive as a non-malleable scheme actually can be
malleable.
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One type of notions that refers to a more restricted type of malleability is
the one addressing the integrity of encryption. Definitions of such notions
are given in [7, 19] in the form of plaintext integrity, in [7] ciphertext integrity
is introduced, in [22] existential unforgeability is defined and existential forgery
is given in [19]. I will show that all these definitions capture essentially the
same security statement on the level of secure communication, that is, that
a scheme secure in their sense constructs a confidential channel that allows
no malleability at all, i.e. a secure channel.

In [19], a set of additional notions concerning the integrity of encryption
is proposed. I will deal with the two closely related notions of plaintext-
uncertainty and chosen-plaintext forgery and show that the corresponding con-
fidential channel allows malleability where the result of the modification
done by the adversary must be unpredictable in a computational sense.

In the process of showing the results for plaintext-uncertainty and chosen-
plaintext forgery, a new attack model for game-based notions that does not
restrict the malleability of the channel induced by such a notion is intro-
duced. While traditional, existing game-based definitions, such as those of
indistinguishability, are always coupled with such a restriction to the mal-
leability, the new attack model leads to a game-based definition of pure
confidentiality.

Chapter 5 proposes a new restricted type of malleability called subset-blurring.
The purpose of this type of malleability is that an encryption scheme that
constructs a subset-blurring confidential channel can be used in a general
AtE composition, called encryption-with-redundancy (EwR), such that the
composition with a public redundancy code constructs a secure channel. As
outlined out in [2], such a sufficient condition for a sound EwR composi-
tion with keyless authentication (i.e. publicly known redundancy) cannot
be formalized using the traditional game-based notions.

1.5 Related Work

Non-malleability of public-key schemes Non-malleability notions and mal-
leability characteristics of encryption schemes were so far primarily studied
using game-based models. The notion of non-malleability was introduced
by Dolev, Dwork and Naor [17, 18] using a simulation-based formalization.

In [6], both indistinguishability and non-malleability definitions are given
and related to each other. For non-malleability, a new indistinguishability-
based definition is given.

Bellare and Sahai, in [8, 9], present the equivalence of the two definitions
of non-malleability. By doing so, they come up with another definition, a

7



1. Introduction

“pure” indistinguishability definition, that is shown to be equivalent to the
other two definitions. In [32], the comparison of the different definitions is
extended to less restricted models and equivalence relations and separations
are examined with regard to specific adversary types.

Relaxing the attack model The equivalence of non-malleability and indis-
tinguishability (or semantic security) in the strongest attack model (CCA)
was pointed out in [18, 6]. In [12], it is argued that CCA is too strict and that
a weaker attack model is sufficient “for most practical purposes”. They intro-
duce the replayable chosen-ciphertext attack model (RCCA) and corresponding
definitions of indistinguishability and non-malleability are given. The equiv-
alence of the two definitions is shown to hold true even under this type of
attack model. Weaker attack models than CCA that are still sufficient “for
practical purposes” have also been studied in [35, 31, 1].

Notions for secret-key schemes The first study of game-based notions for
the secret-key case was provided in [5]. Definitions of indistinguishability
against chosen-plaintext attacks are given and the relations are analyzed.
Since CPA is a weaker attack model than the one considered here, these
definitions are not considered in this thesis.

Katz and Yung [22] introduce a new notion called encryption unforgeability,
addressing the integrity property of secret-key encryption.

In [19], non-malleability was adapted to the setting of secret-key schemes
for the first time. The stated definition of non-malleability is, however, not
fully precise and considers only weak attack models. In addition to non-
malleability, many other definitions addressing the integrity of encryption
that potentially capture interesting malleability characteristics of encryption
were proposed.

In [23], both indistinguishability and non-malleability are examined in detail
and similar results about the relations, as in the public-key case, are stated.
Bellare and Namprempre [7] made a similar analysis of the two notions
using concrete security statements. Additionally, two definitions addressing
the integrity of encryption were introduced and the individual notions were
examined with respect to the preservation of security under the three main
composition paradigms (EtA, AtE, E&A).

An and Bellare [2] introduce the encryption-with-redundancy paradigm where
an encryption scheme is used along with either public redundancy (e.g. a
hash of the message) or with secret redundancy (e.g. a MAC). They further
examine the authentication properties of encryption schemes that satisfy
the properties of existing notions and that are extended according to their
paradigm.

8



1.6. Future Work

Constructive cryptography The paradigm of constructive cryptography was
introduced by Maurer [26]. Maurer and Tackmann [29] applied the paradigm
to formalize the malleability of an encryption scheme precisely. Further, they
not only showed a malleability condition that is sufficient for the AtE com-
position to be sound, but also that encryption in TLS satisfies this condition.

1.6 Future Work

In this thesis, I express game-based security notions in the channel-based
framework of constructive cryptography where the malleability of an en-
cryption scheme is formalized as a set of transformations on the plaintext
history. This results in a collection of restricted types of malleability. An
interesting question is whether other types that are not captured by game-
based security notions exist, which are useful and of practical relevance (e.g.
a type that is both necessary and sufficient for AtE to be sound).

Particularly in the case of plaintext-uncertainty, the given formalization is
still very close to the original game-based definition. It remains unclear if
there is a more natural way of defining the type of malleability, or even if
an information-theoretic definition, based on min-entropy properties of the
transformations, results in a more useful type of malleability.

Regarding the introduced game-based definition of “pure” confidentiality,
the given formalization “borrows” concepts from the constructive model
and thus differs slightly in style from traditional game-based notions. It
would be interesting to analyze if this difference is inherent or if there exists
a definition that is closer to the traditional games.
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Chapter 2

Model and Notation

This chapter introduces the model and notation used in this thesis. The
model considered here is an adapted version of the theory of systems intro-
duced by Maurer and Renner in [28, Section 6], a system model defining
different layers separated by their level of abstraction. As opposed to the
bottom-up approach widely used in cryptography, they use a top-down ap-
proach, starting at the most abstract level. Therefore, they avoid many tech-
nical details and are able to state more general results. For a more detailed
comparison of the top-down and the bottom-up approach, see [28, Section
1.4].

In the following, the two most principal levels of abstraction of this approach
are introduced, namely the level of abstract systems and the level of discrete
systems. The concepts and definitions are adapted from [28] and the lecture
notes on cryptography of Maurer [27] in order to suit the needs of this thesis.

2.1 Abstract Systems

On the highest level of abstraction, the focus lies on abstract systems that are
characterized solely by their set of interfaces. Let I be the set of interfaces
that characterizes a system. Such a system is called an I-system. A system—
both abstract and discrete—will in the following be denoted by a bold-face
capital letter, e.g. S.

Systems can be connected via their interfaces to build new systems. The
topology of such composed systems is the main focus on this level. Two
systems, S and T, can be composed by connecting an interface of one system,
e.g. the interface iS of S, with an interface of the other system, e.g. interface
iT of T, resulting in the system denoted by SiS−iT T, or simply ST if it is clear
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2. Model and Notation

which interfaces are connected. This kind of composition is called sequential
composition.

Parallel composition of systems is defined if the two systems to be composed
have the same set of interfaces I . The parallel composition of two I-systems,
S and T, is denoted by S‖T. The result of such a composition is the I-system
where each interface (of S‖T) provides parallel access to the corresponding
interfaces of both S and T.

In the considered model, compositions are assumed to have a fundamental
property called composition-order independence. This property is a kind of
generalized associativity for the operation of sequential composition.

2.1.1 Resources and Converters

In the following, the focus is restricted to two special types of systems, i.e.
resources and converters.

Resources A resource system (or simply resource) with interface set I , also
called I-resource, is a system with |I| interfaces labeled by elements of I . In
every consideration, the set of interfaces is fixed and the set of resources is
thus denoted in situ by R. Moreover, an equivalence relation ≡ is assumed
to be defined on the set R (this relation has to be made explicit on a lower
level).

An I-resource with I = {1, . . . , n} models systems that enable an n-party
interaction where each interface i is intended to be accessed by party i.
For the example of secure communication, resources with the interface set
I = {A, B, E} are considered. The interfaces A and B are accessible to the
honest parties Alice and Bob respectively, and the interface E is accessible to
the adversary Eve. Examples for resources in this context are an (insecure)
communication channel or a shared secret key.

Converters A converter system (or simply converter) is a system with two
interfaces, one is designated as the inside interface and the other one as the
outside interface. Converters are denoted by a bold-face capital letter (e.g.
C) or by a small greek letter (e.g. π, ϕ, σ). The inside interface of a converter
C can be connected to an interface i ∈ I of a I-resource S. The outside
interface of C serves as the new interface of the combined system, which is
again a resource of the same type as S and is denoted by CiS, or simply CS
if i is the only interface of S. The set of converters is denoted by Σ.

12
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Properties of Resources and Converters The following properties are as-
sumed to hold for the sets R and Σ and for the mapping Σ×R× I → R
defining the attachment of a converter to the interface of a resource. In the
following conditions, the set R contains I-resources, α and β stand for any
converter in the set Σ, i and j for any interface in I , and R and S for any
resource in the set R:

(i) The order of applying converters at different interfaces is irrelevant,
αiβj S ≡ βjαi S, i 6= j.

(ii) There is a special converter in the set Σ, denoted by 1, a dummy con-
verter that refers to applying no converter at all: 1i S ≡ S.

(iii) Attaching converters from Σ preserves the equivalence relation: If R ≡ S,
then αi R ≡ αi S.

(iv) Serial composition of two converters α, β, denoted by α ◦ β, is defined
by (α ◦ β)i S := αiβi S. The set Σ is closed under serial composition,
α ◦ β ∈ Σ.

(v) Parallel composition of two converters α, β, denoted by α‖β, is defined
by (α‖β)i(R‖S) := (αi R)‖(βi S). The set Σ is closed under parallel
composition, α‖β ∈ Σ.

(vi) For a resource R, there exists a special type of converter in Σ, called
resource converter, emulating the resource R and making it available in
parallel to the system it is connected to at the inner interface. Such
a resource converter is denoted by (R‖·) (or (·‖R) respectively) and
defined by (R‖·)S := (R‖S).

2.1.2 Pseudo-metrics

In order to be able to express how similar resources are, a pseudo-metric is
defined on the set of resources R.

Definition 2.1. A pseudo-metric on the set of resource systems R, denoted by
d, is a function d : R×R → R with the following properties (for any resources
R, S, T ∈ R):

(i) d(S, S) = 0,

(ii) d(S, T) = d(T, S),

(iii) d(R, T) ≤ d(R, S) + d(S, T).

An important property of a pseudo-metric is closure under composition
with converters.

13
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Definition 2.2. A pseudo-metric d is called closed under composition with con-
verters Σ if for any two resources R, S ∈ R, any converter α ∈ Σ and any interface
i ∈ I ,

d(αi R, αi S) ≤ d(R, S).

2.1.3 Defining Security

Let R be the set of {A, B, E}-resources and Σ be the set of converters ac-
cording to the properties from Section 2.1.1, and let d be a pseudo-metric
according to Definition 2.1. Security is defined following the ideas of con-
structive cryptography for the case of secure communication by adapting
the definition from [29].

The intuition behind the upcoming definition of security is as follows: A
“real” resource R is specified, being a reasonable model of the resource used
in practice. The ideal resource S captures the behavior of a resource one
would like to have. A pair of converters π = (π1, π2), called a protocol, is
employed at the honest interfaces A and B of the real resource with the idea
of transforming it into a more secure resource, called transformed resource,
that is similar or equivalent to the ideal one. The protocol π is considered
secure if anything that can be achieved interacting with the transformed re-
source πA

1 πB
2 R can also be achieved interacting with the ideal resource S.

In order to make this informal statement more precise, a special converter σ
that is applied at the E-interface of the ideal resource S to translate between
the E-interfaces of the two resources, called the simulator, is introduced. It
has to be mentioned that the application of a simulator can only strengthen
the ideal system since its behavior can always be emulated by the adversary.

In order to measure the similarity of the transformed resource and the ideal
resource, the pseudo-metric d is used. While equivalence of the transformed
resource and the ideal resource translates into a distance between the two
resources of 0, the state of “being similar” is reflected by a “small” distance
between the two resources.

Definition 2.3. A protocol π = (π1, π2) securely constructs resource S from
R with error ε, if there exists a converter σ ∈ Σ such that the distance between
the real resource—to which π1 and π2 are attached via the interfaces A and B—
and the ideal resource—to which σ is attached via the E-interface—is bounded by ε
according to the pseudo-metric d:

∃ σ ∈ Σ : d(πA
1 πB

2 R, σE S) ≤ ε.
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2.1.4 Step-wise Refinement and Composability

Step-wise refinement is a very natural and intuitive paradigm in cryptography
and other constructive disciplines. Following this paradigm, one constructs
complex systems from simpler components or modules (sometimes called
primitives). Each of these components can be constructed from even simpler
primitives, and so on. The overall construction consisting of a sequence
of refinements is, however, only useful if the relevant properties of each
individual refinement step are composeable. This means that the properties
of a single step are preserved in the process of composing several refinement
steps and the overall construction still has those properties.

In the context of cryptography, the definition of securely realizing an ideal
resource from a real resource is an example of such a relevant property of a
refinement step. The fundamental property of composability holds for the
security definition stated in the previous section. More precisely, compos-
ability of the security definition means that whenever an ideal resource S is
used in the composition of a new resource, it can safely be replaced by the
resource πA

1 πB
2 R in this composition.

In the following, Theorem 1 of [29] is recalled using the notation of the
introduced model. The theorem states that under the assumption that the
considered pseudo-metric d is closed under composition with converters Σ,
security is composable for both the sequential composition of converters and
for the parallel composition of resources.

Theorem 2.4 (Composability). Let R, S, T and U be resources from R and let
π = (π1, π2) and ϕ = (ϕ1, ϕ2) be protocols so that π securely constructs S from
the resource R with error επ and ϕ securely constructs T from S with error εϕ.

If the pseudo-metric d is closed under composition with converters Σ according
to Definition 2.2, then (ϕ1 ◦ π1, ϕ2 ◦ π2) securely constructs T from R with er-
ror επ + εϕ, (π1‖1, π2‖1) securely constructs S‖U from R‖U with error επ and
(1‖π1, 1‖π2) securely constructs U‖S from U‖R with error επ.

The proof of the Theorem can be found in [29, Theorem 1].

2.2 Discrete Systems

On the second level of abstraction, i.e. the level of discrete systems, the
behavior of systems is focused on in addition to the structure of composed
systems. Not only do systems have sets of interfaces, but their behavior
is modeled by an explicit communication via the interfaces. The model in
which this communication is considered is a round-based model: In each
round, a system receives an input at a single interface from a discrete input
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alphabet and produces an output at a single interface from a discrete output
alphabet before handling the next input.

A discrete system is thus additionally characterized by the discrete input
and output alphabets at each interface, as well as the probability distribu-
tions of the output given the input and output history.

2.2.1 (X ,Y)-Systems

On the level of discrete systems, statements about systems depend only on
the observable input-output behavior of the system. Therefore, a system can
be seen as a black-box producing, on an input X from an alphabet X , an
output Y from another alphabet Y . If the system has multiple interfaces,
the input X and the output Y can be seen as containing an identifier of the
interface the input is delivered to or the interface the output is produced at
respectively. A resource can thus be defined as a (X ,Y)-system.

Definition 2.5. An (X ,Y)-system takes inputs X1, X2, . . . (from some discrete
alphabet X ) and generates, for each new input Xi, an output Yi ∈ Y . The output
Yi depends (possibly probabilistically) on the current input Xi and on the internal
state.

Two discrete systems with the same input-output behavior are considered
to be equivalent. Equivalence in this sense implies that two such systems
behave identically in any environment they are plugged into. Characterizing
a discrete system by conditional probability distributions allows to formalize
this idea of the equivalence relation. In the following, the notation Xi, where
X is a random variable and i ≥ 1, denotes the tuple (X1, . . . , Xi).

Definition 2.6. An (X ,Y)-random system F is a (possibly infinite) sequence of
conditional probability distributions pF

Yi |XiYi−1 for i ≥ 1.

Definition 2.7. Two resources R and S are equivalent, denoted

R ≡ S,

if they correspond to the same random system, i.e.

pR
Yi |XiYi−1 = pS

Yi |XiYi−1 , i ≥ 1,

where the equality of two probability distributions pR
Yi |XiYi−1 and pS

Yi |XiYi−1 is defined
by the equality of the probabilities for any values of the random variables.

Therefore, all the considered resources are seen as random systems in this
thesis, following the viewpoint of [25]. Although a random system can
be described in many ways, a kind of pseudo-code that is introduced in
Section 2.3 will be used in this thesis.
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2.2.2 Distinguishers

The concepts of a distinguisher and of the corresponding distinguishing advan-
tage provide a concrete definition of a pseudo-metric on the level of discrete
systems. A distinguisher is a system that can be connected to resources and
that outputs, after a certain number of rounds of interaction with the re-
source, a distinguishing bit W. The distinguishing bit can be regarded as the
distinguisher’s guess to which of two resources in question he is connected
to.

In order to keep the complexity of definitions and proofs reasonable, re-
sources that are connected to distinguishers are assumed to be single-interface
systems in this thesis. If this is not the case by default, one can merge the
interfaces of the resource by letting all of them be accessed via the same
(single) interface. This simplification allows a distinguisher to be seen as a
converter where the inside interface can be connected to a resource and the
outside interface provides the distinguishing bit W.

Definition 2.8. A distinguisher D for (X ,Y)-systems is a converter which, at
the inside interface, behaves like a (Y ,X )-system that is one query ahead, meaning
that it is defined by pD

Xi |Yi−1Xi−1 (instead of pD
Xi |YiXi−1) for all i. Moreover, there

exists a number q of queries, after which the system outputs a bit W at the outside
interface, based on the transcript (Xq, Yq), according to a conditional distribution
pD

W|XqYq .

To measure the distance between two resources R and S, the following
pseudo-metric is introduced:

Definition 2.9. The advantage of a distinguisher D in distinguishing the resources
R and S, denoted by ∆D(R, S), is defined as

∆D(R, S) :=
∣∣∣ PDR(W = 1)− PDS(W = 1)

∣∣∣ .

The advantage of a distinguisher class D in distinguishing R and S, denoted by
∆D(R, S), is defined as

∆D(R, S) := sup
D∈D

∆D(R, S).

It has to be mentioned that the given definition indeed satisfies the postu-
lated conditions of a pseudo-metric.

Remark 2.10. For any distinguisher D and any distinguisher class D, ∆D and ∆D

are pseudo-metrics on the resource set R according to Definition 2.1.

The condition for closure of the pseudo-metric under composition is implied
in the case of Definition 2.9 by the condition that the class of distinguishers
is closed under composition.
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Remark 2.11. If a distinguisher class D is closed under composition with con-
verters Σ, namely that for any distinguisher D ∈ D and any converter C ∈ Σ,
DC ∈ D, then the advantage of the distinguisher class D, the pseudo-metric ∆D, is
closed under composition with converters Σ.

The following lemma states that equivalent resources cannot be distinguished
by any distinguisher. Since equivalence of two systems is defined as identi-
cal input-output behavior of the two systems, and the input-output behavior
is all that a distinguisher can observe, there is nothing that can be distin-
guished.

Lemma 2.12. If two systems F and G are equivalent, F ≡ G, then any distin-
guisher D has the distinguishing advantage 0,

∆D(F, G) = 0.

Proof. Recall that the distinguishing advantage is defined as

∆D(F, G) =
∣∣∣PDF(W = 1)− PDG(W = 1)

∣∣∣ .

The probability that D outputs W = 1 interacting with F can be written
as the sum, over all values of inputs/outputs at the inner interface of D,
of probabilities that D outputs W = 1 conditioned on that input/output
at the inner interface, multiplied by the probability of that input/output in
the system F. Since the probability distributions of F and G are equal for
all inputs/outputs due to their equivalence, all terms corresponding to an
input/output probability in F can be replaced by corresponding terms for
G and thus the probability that W = 1 is equal in both cases. �

2.2.3 Monotone Event Sequences

Considering (X ,Y)-random systems, it is sometimes useful to examine cer-
tain conditions on the input and output of such a system. Following Mau-
rer [25], a (possibly infinite) sequence of binary random variables A =
A0, A1, A2, . . . denoting the state of the condition in each round is called
event sequence. An event sequence is called a monotone event sequence (MES),
if Ai = 0 implies Ai+1 = 0 for i ≥ 1. Therefore, a random system F with
MES A can informally be seen as a system with (possibly) two states: an ini-
tial state where the condition described by A is satisfied, and a second state
where the system fails to fulfill the condition. Once the system is in the sec-
ond state, it remains like this for all future rounds due to the monotonicity
of A.

Often, one is only interested in the system as long as it is in the first state
satisfying the condition, denoted by F|A.
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Definition 2.13. Let F be a random system with MES A = A0, A1, A2, . . . and
let G be another random system. Then, F conditioned on A is equivalent to G,
denoted by F|A ≡ G, if for i ≥ 1

pF
Yi |XiYi−1 Ai=1 = pG

Yi |XiYi−1 .

Recall a part of Theorem 1 of [25] where it is shown that in order to dis-
tinguish random systems F and G with F|A ≡ G in k queries, a distin-
guisher must provoke the event Āk to have non-zero distinguishing advan-
tage. Here the statement is adapted for a general distinguisher without an
explicit bound on the number of queries. For this, let Āi denote the comple-
mentary event of Ai, and PDF(A) := supi≥1 PDF(Ai) be the probability of
the event condition of A to be eventually true. The following Lemma is thus
an adaption of [25, Theorem 1 (i)].

Lemma 2.14. Let F be a random system with MES A and let G be a random
system such that F|A ≡ G, then for any distinguisher D,

∆D(F, G) ≤ PDF(Ā).

Proof. Using the triangle inequality and Lemma 2.12, we get

∆D(F, G) ≤ ∆D(F, F|A) + ∆D(F|A, G)

= ∆D(F, F|A) + 0.

Since either A or Ā in any random experiment,

∆D(F, F|A) =
∣∣∣ PDF(W = 1)− PDF|A(W = 1)

∣∣∣
=

∣∣∣ PDF|A(W = 1) · PDF(A) + PDF|Ā(W = 1) · PDF(Ā)− PDF|A(W = 1)
∣∣∣ .

If PDF(W = 1) ≥ PDF|A(W = 1), we get

∆D(F, F|A) = PDF(W = 1)− PDF|A(W = 1)

= PDF|A(W = 1) · PDF(A) + PDF|Ā(W = 1) · PDF(Ā)

− PDF|A(W = 1)

≤ PDF|A(W = 1) · 1 + 1 · PDF(Ā)− PDF|A(W = 1)

= PDF(Ā).
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If conversely PDF(W = 1) < PDF|A(W = 1), we get

∆D(F, F|A) = PDF|A(W = 1)− PDF(W = 1)

= PDF|A(W = 1)− PDF|A(W = 1) · PDF(A)

− PDF|Ā(W = 1) · PDF(Ā)

≤ PDF|A(W = 1)− PDF|A(W = 1) · PDF(A)− 0

= PDF|A(W = 1)− PDF|A(W = 1) · (1− PDF(Ā))

= PDF|A(W = 1) · PDF(Ā)

≤ PDF(Ā).

We conclude that in either case, ∆D(F, F|A) ≤ PDF(Ā). �

2.2.4 Computational Security

Modeling the adversary to have unbounded computing power, one gets secu-
rity statements in an information-theoretical sense. Information-theoretical
security comes, however, often at a high price of inefficiency. For an en-
cryption scheme to be perfectly secure, at least one fresh bit of a random
key must be used for every bit of a message to be encrypted [34]. In what
followings, the adversary’s computing power is thus bounded and security
notions are stated in a computational sense only.

In order to argue about computationally bounded systems and adversaries,
an asymptotic complexity model has to be considered. In such a model,
one defines the notions efficient, feasible and negligible. In this model, only
bounded adversaries that meet a certain notion of feasibility are considered.
Efficiency is required for resources and converters in order to assure the pos-
sibility of an efficient implementation. In this model, security is defined as
follows: If a feasible adversary can break the security properties of an effi-
cient system only with negligible probability, such an unlikely event (e.g. the
event of correctly guessing the key) is “ignored” and the system is consid-
ered secure.

Following the hierarchy of levels of abstraction in [28], the level of discrete
systems is not the right level to argue about complexity of systems (e.g.
in terms of computation steps) which is why it is thus hard to define rea-
sonable asymptotic notions. Nevertheless, in order to be able to formulate
asymptotic statements on this level, a reasonable computational model is as-
sumed, allowing to express the upper bound of computation steps (in total)
of a system by a number t1. As a simplification, trivial operations, such as

1A computational model can for example be formulated using interactive Turing ma-
chines
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forwarding a message or checking for a simple condition (such as if a flag is
set), are assumed not to count as a computation step.

The complexity of a system is defined by the number of computation steps
t and the number of queries q done by the system. Based on the complexity
and the two abstract notions efficient2 and negligible, abstract classes of effi-
cient systems are introduced. A system (resource, converter or adversary) is
in the class of efficient systems (resources, converters or adversaries) if its
computation steps and its queries can be bounded by an efficient quantity.
More precisely, the considered classes are the class of efficient resources Re,
the class of efficient converters Σe and the class of efficient adversaries Ae (e.g.
distinguishers).

The terms efficient and negligible must be instantiated in such a way that
the resulting efficiency classes and negligible quantities have the following
closure properties. For any efficient converters C1, C2 ∈ Σe, any efficient
resources R, S ∈ Re, any efficient adversary A ∈ Ae and any interface i ∈ I :

(i) R‖S ∈ Re

(ii) Ci
1S ∈ Re

(iii) ACi
1 ∈ Ae

(iv) C1 ◦ C2 ∈ Σe,

and for any efficient quantity l and any negligible quantities ε1 and ε2,

k · ε1 and ε1 + ε2 are negligible quantities.

The notions efficient and negligible are usually defined with respect to a
security parameter k.3 The security parameter represents security relevant
quantities in a system (e.g. the length of a key used in a cryptographic pro-
tocol). Thus, families of systems parametrized by the security parameter k,
i.e. {S(k)}k∈N, are considered, meaning that the class of efficient systems is
a set of families of concrete systems parametrized by the security parameter.

In addition to the asymptotic view, it is interesting to observe certain system
parameters for fixed values of the security parameter k (e.g. a fixed key-
length of 1024 bits), and thus most of the statements are formulated in two
ways:

Concrete statement The concrete statement assumes a fixed k and states that
if a security predicate (e.g. the advantage in a game is bounded by ε) holds

2As simplification, the notions ‘efficient’ and ‘feasible’ are hereby assumed to be identi-
cal.

3Efficient in k can for example be “polynomial in k”.
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for any k-adversary with certain complexity bounds, then a certain other
security predicate holds as well for all k-adversaries with some (potentially
slightly different) complexity bounds. The set of k-adversaries satisfying
the complexity bounds in a reduction is denoted by Aq1,q2,...,qn,t where the
example refers to the class of all adversaries bounded by q1 queries of the
first type, q2 queries of the second type, . . . , qn queries of the n-th type and
bounded by t computation steps. These classes do not satisfy the closure
properties.

Asymptotic statement The asymptotic statement shows that if a security
predicate Q1 holds for all families of efficient adversaries, then a security
predicate Q2 also holds for all these families.

In a normal reduction, the complexity bounds and the security predicate of
the concrete statement are often weakened by small factors during the re-
duction process. Therefore, a “small amount of security” is intuitively “lost”
in every reduction step. As this amount is usually only an efficient quan-
tity, the asymptotic statement follows directly from the concrete statement
because efficient is closed under composition.

2.2.5 The Hybrid Argument

This section recalls a popular proof technique in cryptography, called the
hybrid argument. The argument provides a useful theorem on the (abstract)
level of discrete systems that can be applied to shorten proofs and to make
them more elegant. The theorem is taken from the lecture notes on cryptog-
raphy by Maurer [27].

The hybrid argument is often used in reduction proofs when a sequence
Q0, . . . , Qn of systems is considered where two subsequent systems Qi and
Qi+1 are assumed to be indistinguishable, and one is interested in the distin-
guishability of the two “extreme” systems Q0 and Qn. Applying the triangle
inequality, for any distinguisher D one gets,

∆D(Q0, Qn) ≤
n

∑
i=1

∆D(Qi, Qi−1).

If one assumes that D is able to distinguish Q0 and Qn, this contradicts
at least one of our indistinguishability assumptions about a hybrid pair Qi
and Qi+1, but this contradiction cannot be allocated to a specific pair. This
results in an unsatisfying non-constructive statement. Under a special condi-
tion, one can nevertheless obtain a constructive reduction from that triangle
inequality, namely when only a single pair of systems is “embedded in”
every pair of the sequence.
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Theorem 2.15. Let S and T be (single-interface) systems and let C1, . . . , Cn be
converters such that

Ci+1S ≡ CiT

for i = 1, . . . , n− 1, and define F := C1S and G := CnT. Then, for any distin-
guisher D,

∆D(F, G) = n · ∆DCI(S, T),

where I is chosen uniformly from {1, . . . , n}.

The proof of the theorem can be found in [27, Ch. 5.4].

2.3 Notation

Notation that is consequently used in this thesis includes x ∈R S to denote
the sampling of x uniformly at random from the set S. Assignment of vari-
ables is denoted by x ← y, xn stands for the tuple (x1, . . . , xn), the appending
of an element to a tuple is denoted by T‖x, and the i-th member of the tu-
ple T by T(i). The disjoint union of two (potentially non-disjoint) sets S1
and S2 is denoted by S1 ∪̇ S2. The relations ∈ and /∈ are both used for set
membership and for being part of a tuple.

Specifying Systems In this thesis, discrete systems are characterized using
a pseudo-code style that is introduced in this section. As a first part of the
characterization, the input and output sets X and Y are specified. Usually,
there are different types of inputs and outputs. To distinguish between the
different types, the convention that the input starts with a string identifier of
the type followed by the actual input, as for example [′′type 1′′, x], is used.

After the domain and range specification, the pseudo-code is given accord-
ing to the following sample:

initialize
// some initialization code

on every input Xi do
// do something on every input

on input Xi = [’type 1’, . . .] do
// do something on an input of type 1
// output something on this input

...
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on first input Xi = [’type j’, . . .] do
// do something on an input of type j
// output something on this input

The initialization part is executed before the first round of communication
of the system. In each round i, all the event conditions are checked top-
down and their respective body is executed immediately if the condition
is true. Multiple bodies can thus be executed in one round, especially the
ones without a condition (“on every input Xi”) are executed in every round.
Bodies of conditions saying “On first input” are only executed the first time
a query of the corresponding type is input.

The actual implementation of the pseudo-code is irrelevant in this context.
The only two things that matter is that the pseudo-code is a fully valid
characterization of a random system and that the implementation of the
pseudo-code can be done efficiently (e.g. the implementation of a map using
a hash map or the first-time-only condition by a simple flag).

24



Chapter 3

Secure Communication

Secure communication is an ideal scenario of communication where two
honest parties, Alice and Bob, communicate without a (hypothetical) ad-
versary Eve being able to interfere in their communication, be it just as
eavesdropper or as an active adversary trying to modify the communica-
tion, depending on the type of security one is talking about. In the system
model introduced in the previous chapter, such a scenario can be modeled
by communication channels. A communication channel is a special type of
resource with three interfaces, the sender interface A, the receiver interface
B and the adversary’s interface E, where the type of security is reflected by
the abilities of the adversary at his interface.

This chapter is structured as follows: Firstly, the most important types of
communication channels are introduced and defined, using the ideas and
definitions of [26, 27]: the insecure channel, the authenticated channel and
the secure channel. Secondly, the basic primitives of secret-key cryptogra-
phy, i.e. authentication and encryption schemes, are formalized. In the
last part of this chapter, the confidential channel is introduced because the
definition needs a model of the corresponding malleability properties. Mal-
leability properties capture the possible adversarial influence on delivered
messages corresponding to modifying transmitted ciphertexts. Moreover, on
the basis of the introduced confidential channel, a formalization of public-
key encryption schemes and their security is given.

3.1 Communication Channels

Communication channels are {A, B, E}-resources that can be further charac-
terized by the functionality provided to the sender and receiver (single-use
vs. multiple-use channel) and by the type of access that is provided at the E-
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interface to the adversary Eve. Unless specified otherwise, communication
channels are always multiple-use channels and are denoted by arrow-like
symbols in the following. The message space used for communication chan-
nels is denoted byM.

On the basis of the paradigm of constructive cryptography [26], the defini-
tions of the three most important channels are given. As existing communi-
cation channels in practice usually do not give any security guarantees (e.g.
communication over the internet), the first channel is called insecure channel
and allows an adversary full access to the channel.

3.1.1 Insecure Channel

Definition 3.1. An insecure channel −→ with message space M is a commu-
nication channel giving the adversary full access to the channel as follows: If no
adversary is present, −→ takes in round i input mi ∈ M at the A-interface and
immediately outputs mi at the B-interface. If an adversary is present, −→ works as
follows:

on input Xi = mi ∈ M at A-interface do
output Yi = mi at E-interface

on input Xi = m′i ∈ (M∪̇ {⊥}) at E-interface do
output Yi = m′i at B-interface

The symbol ⊥ is not part of the message space and indicates the deletion of the
message in such a way that the receiver recognizes the deletion.

Note that the adversary has three possibilities of modifying the sent message
in the case of the insecure channel −→: He can either insert an arbitrary
message (including the one that was initially sent), he can delete the message
such that Bob detects the deletion or he can simply input nothing, which is
referred to as an undetected deletion of the message.1

3.1.2 Authenticated Channel

If the access of the adversary is restricted so that sent messages are still
leaked to the adversary but the receiver receives only messages that were
initially sent by the sender, the channel is called authenticated (i.e. the ad-
versary can only delete and forward messages). This is represented in the
channel symbol by a dot at the sender side (representing the “exclusiveness”
of sending the message).

1Communication is assumed to be completely asynchronous without any time guaran-
tees. Therefore, a receiver cannot detect if he does not receive a sent message.
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Definition 3.2. An authenticated channel •−→ (allowing replaying and reorder-
ing) with message spaceM is a communication channel leaking the sent messages,
but giving the adversary only forward and delete access: If no adversary is present,
•−→ takes in round i input mi ∈ M at the A-interface and immediately outputs
mi at the B-interface. If an adversary is present, •−→ works as follows:

initialize
initialize map M : N→M
initialize k← 1

on input Xi = mi ∈ M at A-interface do
M[k]← mi, k← k + 1
output Yi = mi at E-interface

on input Xi = [‘forward’, j] at E-interface do
if j < k then output Yi = M[j] at B-interface

on input Xi = [‘delete’] at E-interface do
output Yi = ⊥ at B-interface

Again, the adversary additionally has the possibility of deleting a message
undetected by not providing any input for a given output at the E-interface.

3.1.3 Secure Channel

The final goal of secure communication is that the access of the adversary is
restricted, so that he does not get any information about the sent messages
(except for their length), and that he cannot insert any new message or mod-
ify any sent message. The channel with such restricted access is called secure
channel and its symbol gets an additional dot at the receiver side (represent-
ing the “exclusiveness” of receiving the message).

Definition 3.3. A secure channel •−→• (allowing replaying and reordering) with
message space M is a communication channel leaking no information about sent
messages (except for their length) and giving the adversary only forward and delete
access: If no adversary is present, •−→• takes inputs Xi = mi ∈ M at the A-
interface and immediately outputs Yi = mi at the B-interface. If an adversary is
present, •−→• works as follows:

initialize
initialize map M : N→M
initialize k← 1

on input Xi = mi ∈ M at A-interface do
M[k]← mi, k← k + 1
output Yi = |mi| at E-interface
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on input Xi = [‘forward’, j] at E-interface do
if j < k then output Yi = M[j] at B-interface

on input Xi = [‘delete’] at E-interface do
output Yi = ⊥ at B-interface

Regarding undetected deletion, the statements made for the authenticated
channel are also valid for the secure channel.

It has to mentioned that both the authenticated and the secure channel de-
fined here allow the adversary to replay and reorder messages, since for-
warding arbitrary messages from the history is possible. One can also de-
fine stronger versions of the channels allowing no reordering and replaying
by allowing only the forwarding of sent messages in order and only once.
The stronger versions are actually the standard variants used, for example,
in [27, 29]. In this thesis, the weaker versions are used since the channels
are compared with game-based security notions and the definitions of those
notions usually do not give any guarantees about the message ordering.

The scenario where no adversary is present is denoted by a dummy con-
verter ⊥ at the E-interface, e.g. ⊥E −→, in what follows.

3.2 Secret-key Channel Constructions

First of all, channel constructions are studied in the context of secret-key
cryptography where the two honest entities have access to a shared secret
key. The shared secret key is modeled as a system that outputs a key at the
two honest interfaces A and B and provides no output at the E-interface of
the adversary.

Definition 3.4. A shared secret key • ‖ • with key space K is a {A, B, E}-
resource providing a shared uniform random key K ∈R K at the A- and B-interfaces
and no output at the E-interface.

The shared secret key can, for instance, be the result of a key exchange pro-
tocol. The key is then applied in a secret-key protocol. The two fundamental
types of protocols are defined: The first protocol is aiming at authenticity of
communication and is called an authentication scheme. The second one is a
protocol aiming at privacy of communication and is called encryption scheme.
In order to formalize the security of such a protocol, the simulation-based
definition of security from the previous chapter is used (see Definition 2.3).

According to this definition, the goal of a protocol π = (π1, π2) is to con-
struct a more secure channel from a less secure one. For an authentication
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scheme, traditional security notions (e.g. strong unforgeability against cho-
sen message attacks) correspond to a channel construction resulting in an
authenticated channel. An authentication scheme is thus called secure if it
constructs an authenticated channel •−→ from an insecure channel −→ and
a shared secret key • ‖ •. Accordingly, for encryption schemes, traditional
notions (e.g. indistinguishability under chosen-plaintext attacks) translate
into a channel transformation constructing a secure channel from an authen-
ticated channel. An encryption scheme is correspondingly considered secure
if it constructs a secure channel •−→• from an authenticated channel •−→
and a shared secret key • ‖ •. This traditional order of the transformations
to get a secure channel from an insecure channel is known as the Encrypt-
then-Authenticate paradigm (EtA).

3.2.1 Authentication Schemes

Authentication schemes aim at preventing an adversary from modifying a
message undetected. This is usually done by adding a message authentica-
tion code (MAC), using a secret key, and letting the receiver check the MAC,
using the same secret key.

Definition 3.5. An authentication scheme is a protocol ϕ = (ϕ1, ϕ2) with key
space K, input message spaceM and output message spaceM′. ϕ1 and ϕ2 connect
with their inner interfaces to a shared secret key • ‖ • with key space K and to a
channel with message space M′′ ⊇ M′. The resulting resource is a channel with
message spaceM.

An authentication scheme family, denoted shortly by ϕ(k), is a family of authen-
tication schemes parametrized by the security parameter k, {ϕ(k)}k∈N.

Security of an authentication scheme is defined as securely constructing an
authenticated channel from an insecure channel and a shared secret key.
This definition corresponds to the traditional game-based notion of weak
unforgeability against chosen message attacks (WUF-CMA).

Definition 3.6. An authentication scheme ϕ = (ϕ1, ϕ2) is secure with error ε
and with respect to the distinguisher class D and converter set Σ if it securely
constructs an authenticated channel •−→ from (−→ ‖ • ‖ •) with error ε:

∃σ ∈ Σ : ∆D(ϕA
1 ϕB

2 (−→ ‖ • ‖ •), σE(•−→)) ≤ ε (security)

and
∆D(ϕA

1 ϕB
2⊥E(−→ ‖ • ‖ •),⊥E(•−→)) ≤ ε (availability)

An authentication scheme family ϕ(k) is secure if for every k ϕ(k) is secure with
error ε and with respect to the class of efficient adversaries Ae and the set of efficient
converters Σe, and the error ε is negligible in k.
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3.2.2 Encryption Schemes

In a similar way, an encryption scheme can be seen as an invertible mapping
of messages (so called plaintexts) onto ciphertexts. It can be defined as
a protocol transforming a channel with message space containing the set
of ciphertexts into a channel with a message space consisting of the set of
plaintexts.

Definition 3.7. A secret-key encryption scheme is a protocol π = (π1, π2)
with key space K, message space M and ciphertext space C. π1 and π2 connect
with their inner interfaces to a shared secret key • ‖ • with key space K and to a
channel with message space M′ ⊇ C. The resulting resource is a channel with
message spaceM.

A secret-key encryption scheme family, denoted shortly by π(k), is a family of
secret-key encryption schemes parametrized by the security parameter k, {π(k)}k∈N.

Security of an encryption scheme is defined as constructing a secure chan-
nel from an authenticated channel and a shared secret key. The notion of
indistinguishability against chosen-plaintext attacks (IND-CPA) is the corre-
sponding security notion in the traditional game-based model.

Definition 3.8. A secret-key encryption scheme π = (π1, π2) is secure with
error ε and with respect to the distinguisher class D and converter set Σ if it
securely constructs a secure channel •−→• from (•−→ ‖ • ‖ •) with error ε:

∃σ ∈ Σ : ∆D(πA
1 πB

2 (•−→ ‖ • ‖ •), σE(•−→•)) ≤ ε (security)

and
∆D(πA

1 πB
2⊥E(•−→ ‖ • ‖ •),⊥E(•−→•)) ≤ ε (availability)

A secret-key encryption scheme family π(k) is secure if for every k π(k) is secure
with error ε and with respect to the class of efficient distinguishers De and the set of
efficient converters Σe, and the error ε is negligible in k.

3.3 Confidentiality and Malleability

There are scenarios where the above channel constructions cannot be ap-
plied and one wants to make a statement about a construction of a channel
with confidentiality guarantees only. The confidential channel is important,
for example, in the context of public-key cryptography, or when applying the
Authenticate-then-Encrypt (AtE) paradigm.

Defining the confidential channel is, however, not as simple as specifying
the other channels. The “passive abilities” of the adversary in a confidential
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channel are clearly that the adversary does not learn anything about the
sent messages (except for their length). Modeling the “active abilities” is,
in contrast, not straightforward. A first idea could be to let the adversary
either forward or delete messages or to let him choose the message that is
output at the receiver’s interface. This approach does, however, not cover
cases where the adversary is able to systematically modify sent messages not
known to him (e.g. flipping a bit of a sent message). Intuitively, this calls
for an additional ability of the adversary, that is, to specify a function that
is applied to the sent message and whose result is output at the receiver’s
interface. A formalization of that concept, i.e. the concept of the malleability
of a channel, is proposed by Maurer and Tackmann [29, Section 4.2].

3.3.1 Formalizing the Malleability

Since the adversary “sees” all the ciphertexts corresponding to messages
sent by Alice and all ciphertexts corresponding to messages received by Bob,
he can intuitively use all these ciphertexts to assemble a new ciphertext.
The decryption of this constructed ciphertext thus potentially depends on all
previous messages from the history. An adversary can also “invent” parts of
the ciphertext, potentially resulting in a probabilistic behavior of decryption
(e.g. when decryption involves a pseudo-random permutation on a “new”
input).

The influence of the adversary on each sent message can thus be described
as a (probabilistic) transformation that is applied to the complete message
history, and the result of the transformation is delivered at the B-interface.
Formally, the input of the adversary corresponds to a (probabilistic) trans-
formation F : M∗ ×M∗ → M where the parameters correspond to the
previous messages at the A- respectively B-interface.

As the malleability and therefore also the set of possible transformations can
change in each round, a set of eligible transformations is defined out of which
the adversary can choose the transformation to be applied. A channel is
intuitively more secure if these sets of eligible transformations are small.

Definition 3.9. The malleability of a communication channel is a tuple F :=
({Fα}α∈A, {Aq}q∈N), where {Fα}α∈A is a family of transformations Fα : M∗ ×
M∗ →M. The set A specifies the set of possible transformations, whereas after q
queries the random variable Aq ⊆ A describes the eligible transformations.

The formalization of the concept of the malleability as tuple F allows to
define the confidential channel. In addition to the forwarding and deleting
abilities already defined for other channels, a confidential channel, allow-
ing reordering and replaying, must allow modifying messages based on the
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malleability F and replaying messages that were the result of such a modi-
fication.

Definition 3.10. A confidential channel −→• (allowing replaying and reorder-
ing) with message space M is a communication channel leaking no information
about sent messages (except for their length) and allowing an arbitrary malleability
described by F where every transformation in the family {Fα}α∈A is efficiently im-
plementable. If no adversary is present, −→• takes inputs Xi = mi ∈ M at the
A-interface and immediately outputs Yi = mi at the B-interface. If an adversary is
present, −→• works as follows:

initialize
initialize iA ← 1, iE ← 1
initialize tuples M1, M2

on input Xi = mi ∈ M at A-interface do
determine Ai according to the specification of F
iA ← iA + 1
M1 ← M1‖mi
output Yi = (|mi|,Ai) at E-interface

on input Xi = [‘forward’, j] at E-interface do
if j < iA then output Yi = M1(j) at B-interface

on input Xi = [‘delete’] at E-interface do
output Yi = ⊥ at B-interface

on input Xi = [‘modify’, αi], αi ∈ Ai−1 at E-interface do
evaluate m′i ← Fαi(M1, M2)
iE ← iE + 1
M2 ← M2‖m′i
output Yi = m′i at B-interface

on input Xi = [‘replay’, j] at E-interface do
if j < iE then output Yi = M2(j) at B-interface

The distribution of each Ai depends on the lengths |m1|, . . . , |mi−1| of the messages
input at the A-interface and the previousA1, . . . ,Ai−1 and the previous input trans-
formations αi.

The set of eligible transformations can change with any query (i.e. Ai−1 6=
Ai), but the set only has to be specified explicitly on an input at the A-
interface and a corresponding output at the E-interface. On input Xi =
[‘modify’, αi] at the E-interface, the new set of eligible transformations Ai is
fully specified by αi and Ai−1, both known to the adversary, and does not
explicitly have to be output.
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3.3.2 Soundness of Authenticate-then-Encrypt

Using the paradigm of Authenticate-then-Encrypt (AtE), one wants to estab-
lish a secure channel by first authenticating the message and then encrypt-
ing the pair consisting of a message and an authentication code. In terms of
channel constructions, an encryption scheme is, in a first step, used to con-
struct a confidential channel−→• from an insecure channel−→ and a shared
secret key • ‖ •. In a second step, an authentication scheme is applied with
the goal of constructing a secure channel •−→• from a confidential channel
−→• and a shared secret key • ‖ •.

The composition of encryption and authentication in this order does, how-
ever, not generally construct a secure channel, as pointed out in [24, 7].
Phrased constructively, the problem is that the arbitrary malleability offered
by −→• potentially allows an adversary to systematically abuse the veri-
fication of authenticity to his advantage and to break confidentiality (e.g.
when flipping a bit in a ciphertext results in a failed MAC-verification for
only some specific messages, but not for others). Note that traditional secu-
rity notions do not address this problem. To avoid such undesired behav-
ior, the malleability has to be restricted, which is a very complex task in a
game-based model since it has never been formalized. By using the above
formalization of malleability, the task becomes much simpler. A sufficient
restriction to the malleability rendering an AtE composition secure has been
given in [29].

In contrast to the AtE composition paradigm, the counterpart paradigm
Encrypt-then-Authenticate (EtA) is sound using even traditional game-based
security notions and should be preferred [24]. In the context of construc-
tive cryptography, the soundness of EtA can be seen as a simple example
application of the Composability Theorem 2.4: Using an encryption and au-
thentication scheme according to Definitions 3.6 and 3.8, EtA is sound if the
considered class of adversaries is closed under composition with the class
of converters (protocols and simulators).

3.3.3 Public-key Encryption

A public-key encryption scheme is a protocol that produces a publicly known
value, the public key, and a value that is only known to the receiver party Bob.
This value is called the private key. The public key can then be used by the
sender Alice to transform a message into a ciphertext which Bob can later
decrypt to the original message using the private key.

Definition 3.11. A public-key encryption scheme is a protocol π = (π1, π2)
with public-key space K, message spaceM and ciphertext space C. π1 and π2 con-
nect with their inner interfaces to a (potentially single-use) authenticated channel
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←−• from B to A with message space K and to an insecure channel −→ from A
to B with message spaceM′ ⊇ C. The resulting resource is a channel from A to B
with message spaceM.

A public-key encryption scheme family, denoted shortly by π(k), is a fam-
ily of public-key encryption schemes parametrized by the security parameter k,
{π(k)}k∈N.

In terms of a channel transformation, a public-key encryption scheme is
considered secure if it constructs a confidential channel from Alice to Bob
using an insecure channel from Alice to Bob and a (potentially single-use)
authenticated channel from Bob to Alice. The authenticated channel from
receiver to sender is used to distribute the public key in a authenticated
manner. This channel can thus be single-use or even limited to be only
available for a short time.

Definition 3.12. A public-key encryption scheme π = (π1, π2) is secure with er-
ror ε and with respect to the distinguisher class D and converter set Σ if it securely
constructs a confidential channel −→• from A to B according to Definition 3.10
from (←−• ‖ −→) with error ε:

∃σ ∈ Σ : ∆D(πA
1 πB

2 (−→ ‖ ←−•), σE(−→•)) ≤ ε (security)

and
∆D(πA

1 πB
2⊥E(−→ ‖ ←−•),⊥E(−→•)) ≤ ε (availability)

A public-key encryption scheme family π(k) is secure if for every k π(k) is secure
with error ε and with respect to the class of efficient distinguishers De and the set of
efficient converters Σe, and the error ε is negligible in k.
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Chapter 4

Game-based Security Notions

This chapter deals with game-based security notions and analyzes their for-
malization as a type of malleability in the model of constructive cryptogra-
phy. For this, several security notions that are related to non-malleability, or
that have interesting malleability characteristics, are formalized in a unified
way. This chapter is organized as follows: Section 4.1 formalizes the notion
of a game, the game winning probability and the advantage of an adversary
in a game. The notion of a bit-guessing game is introduced since most of
the existing games are stated in a indistinguishability style and thus in this
form. Then, the winning of bit-guessing games is related to the concept of
distinguishing.

Section 4.2 discusses the appropriate attack model that should be considered
in the channel-based model according to constructive cryptography.

The further sections of this chapter focus the main results. The restricted
types of malleability induced by the following game-based notions are stated
and proven: Non-malleability and indistinguishability are studied in Sec-
tion 4.3, integrity of plaintexts and ciphertexts, as well as existential unforge-
ability, in Section 4.4. Section 4.6 deals with the two notions of plaintext-
uncertainty and chosen-plaintext forgery.

4.1 Games as Systems

In order to formalize the notion of a game with one player (e.g. the adver-
sary), one should recall the definition of a (X ,Y)-system from Chapter 2.
Such a system proceeds in rounds taking—in round i—input Xi and provid-
ing the output Yi. A game is a (X ,Y)-system with an additional output in
every round consisting of a bit indicating whether the game has been won.
An important property of the game winning condition is its monotonicity.
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Definition 4.1. For a (X ,Y × {0, 1})-system S, the binary component Ai of the
output (Yi, Ai) is called a monotone binary output (MBO) if Ai = 1 implies
Aj = 1 for j ≥ i. Such a system S with MBO is called a game.

Connecting a system (e.g. an adversary) to the game, the composition de-
fines a random experiment. The winning probability is defined by the proba-
bility of the MBO bit to be 1 in this experiment.

Definition 4.2. For a game S and for a system W, we denote with ΓW
q (S), the

game winning probability, the probability that W wins the game within q queries:

ΓW
q (S) := PWS(Aq = 1),

and with ΓW(S) the probability that W wins the game eventually:

ΓW(S) := sup
i≥1

PWS(Ai = 1).

For a classW of systems, the winning probability of the best W inW is denoted as

ΓW (S) := sup
W∈W

ΓW(S).

4.1.1 Bit-guessing Games

In the following, only a special type of game is considered: The goal of the
game can be seen as guessing a secret bit b correctly. The bit is assumed to
be fixed at initialization and to remain constant throughout the execution of
the game. Guessing the bit is represented by the first binary input with the
identifier ’guess’ causing the MBO to switch to 1 if the binary input matches
the bit b. Moreover, no other input, i.e. also no second input of this form, has
any influence on the MBO. Since the game is defined as a random system, no
statement about an inner state can be made, which is why a formalization
has to be stated differently. In other words, a game is a bit-guessing game
if it is equivalent to a random combination of two other games where the
secret bit is not random but fixed.

Definition 4.3. Let Sb denote a game that is always won by any system that inputs
the fixed bit b as its guess and that is never won by any system that inputs the fixed
bit 1 − b as its guess, and in which any input other than a guess or a second
guess cannot turn the MBO to 1. Formally, the MBO is initialized to 0, A0 := 0.
Let Gb

i denote the event that i-th input is the first guess input and of the form
Xi = [’guess’, b]. Let further Ni denote the event that input i is not of the form
Xi = [’guess’, b′], b′ ∈ {0, 1} or there exists j < i such that input j was of the
form Xi = [’guess’, b′], b′ ∈ {0, 1}. We thus require that

pSb
Ai=1|XiYiGb

i
= 1, pSb

Ai=1|XiYiG1−b
i

= 0,
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and
pSb

Ai=b|XiYi Ni
= pSb

Ai−1=b|Xi−1Yi−1 .

A game S is called a bit-guessing game if there exist games S0 and S1 such that
S ≡ SB where B is a binary random variable chosen at random according to some
distribution. The games S0 and S1 are called conditional games of S.

A game S is called a uniform bit-guessing game if S is a bit-guessing game
where the random variable B is chosen uniformly at random (i.e. 0 and 1 each with
probability 1

2 ).

Note that any system that always inputs the fixed bit b as its guess wins a
uniform bit-guessing game with probability 1

2 .

Sometimes, it is easier to analyze the winning probability of a system in a
bit-guessing game with respect to the two conditional games of the game.
The following Lemma states the correlation of the respective winning prob-
abilities.

Lemma 4.4. Let S be a uniform bit-guessing game and S0 and S1 its two condi-
tional games defined above, then for any system W

ΓW(S) =
1
2
· ΓW(S0) +

1
2
· ΓW(S1)

Proof. We simply use Definitions 4.2 and 4.3 and get

ΓW(S) = sup
i≥1

PWS(Ai = 1)

= sup
i≥1

PWSB(Ai = 1), B ∈R {0, 1}

=
1
2
· sup

i≥1
PWS0(Ai = 1) +

1
2
· sup

i≥1
PWS1(Ai = 1)

=
1
2
· ΓW(S0) +

1
2
· ΓW(S1). �

As a uniform bit-guessing game can be won by an adversary always out-
putting a fixed bit with probability 1

2 , the game winning probability itself
seems not a good measure for the abilities of an adversary. Similar in spirit
of the distinguishing advantage, a game-winning advantage is defined.

Definition 4.5. For a uniform bit-guessing game S, the advantage of a system W
in winning the bit-guessing game S is defined as

ΦW(S) := 2
∣∣∣∣ ΓW(S)− 1

2

∣∣∣∣ .
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Using Lemma 4.4, the expression can be rewritten as:

Corollary 4.6. Let S be a uniform bit-guessing game and S0 and S1 its two condi-
tional games defined above, then for any system W

ΦW(S) =
∣∣ ΓW(S0) + ΓW(S1)− 1

∣∣
Similarly to the statement in Lemma 2.14, the game winning probability of
two conditionally equivalent games can be related as follows.

Lemma 4.7. Let S be a uniform bit-guessing game on which additionally a MES
A is defined and let T be a uniform bit-guessing game such that S|A ≡ T, then for
any system W, ∣∣ΓW(S)− ΓW(T)

∣∣ ≤ PDS(Ā).

Proof. The absolute difference means that either ΓW(S) ≤ ΓW(T) + PDS(Ā)
or that ΓW(S) ≥ ΓW(T) − PDS(Ā). We note that either A or Ā in any
random experiment. Thus,

ΓW(S) = ΓW(S|A) · PDS(A) + ΓW(S|Ā) · PDS(Ā).

To show the first inequality, we give an upper bound of the probability and
use the conditional equivalence

ΓW(S) ≤ ΓW(S|A) · 1 + 1 · PDS(Ā)

= ΓW(T) + PDS(Ā).

To show the second inequality, we bound the probability accordingly to get

ΓW(S) = ΓW(S|A) · (1− PDS(Ā)) + ΓW(S|Ā) · PDS(Ā)

≥ ΓW(S|A)− ΓW(S|A) · PDS(Ā) + 0

≥ ΓW(S|A)− 1 · PDS(Ā) + 0

= ΓW(T)− PDS(Ā). �

4.1.2 Game-based Security Notions

In the context of game-based security notions, one usually defines a security
notion for an encryption scheme or other cryptographic protocols over a bit-
guessing game. We state here for both secret-key and public-key encryption
schemes π = (π1, π2) according to Definitions 3.7 and 3.11 what it means
to be secure with respect to some security notion that is defined over a
particular game as follows:
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For a secret-key or public-key encryption scheme π = (π1, π2) according to
Definitions 3.7 and 3.11 and a uniform bit-guessing game S(π) according to
Definition 4.3 linked to the security notion NOTION and having queries of
types {1, 2, . . . , n}, we call the encryption scheme π (ε, q1, q2, . . . , qn, t)-secure
in the sense of NOTION, if

ΦA(q1,q2,...,qn ,t)(S(π)) ≤ ε

and A(q1,q2,...,qn,t) is the class of all adversaries making at most qi queries of
type i and making at most t computation steps.

For a family of secret-key or public-key encryption schemes, parametrized
by a security parameter k, we say that the encryption scheme family π(k) is
NOTION secure if for all k

ΦA(q1,q21,...,qn ,t)(S(π(k))) ≤ ε

holds if q1, q2, . . . , qn and t are efficient in k and ε is negligible in k.

4.1.3 Relating Bit-guessing and Distinguishing

Recall the concept of a distinguisher from Chapter 2. A distinguisher inter-
acts with either of two systems and outputs a bit W (that can be seen as a
guess for which system it is interacting with). An adversary for a uniform
bit-guessing game S is nothing else than an adversary interacting with ei-
ther of S0 or S1, finally outputting a bit V as its guess. The two concepts
seem to be identical with the exception of how the guess is presented. The
following definition allows to compare bit-guessing game adversaries and
distinguishers.

Definition 4.8. For a system W interacting with a bit-guessing game S, we denote
by W† the distinguisher with same input/output behavior as W, except that the
guess-bit V is not input into the game but rather presented as the distinguishers
decision bit W. We call W† the distinguisher variant of W.

For a distinguisher D, we analogously denote by D+ the bit-guessing game adver-
sary system with the same input/output behavior as D, except that the decision
bit W is input to the game as guess-bit V. We call D+ the bit-guessing game
adversary variant of D.

Note that the two transformations + and † define a duality. Therefore, we
have the equivalence relations, (

W†
)+
≡ W (4.1)(

D+)† ≡ D. (4.2)
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The two concepts of bit-guessing and distinguishing are indeed congruent,
as the following Lemma shows.

Lemma 4.9 (Equivalence of distinguishing and bit-guessing). If a system W
has advantage ε in winning the uniform bit-guessing game S, then the distinguisher
W† has distinguishing advantage ε in distinguishing the two systems S0 and S1
according to Definition 4.3. Conversely, if a distinguisher D has advantage ε in
distinguishing the two conditional games S0 and S1 of a uniform bit-guessing game
S, then D+ has advantage ε in winning the game S.

ΦW(S) = ∆W†
(S0, S1)

∆D(S0, S1) = ΦD+
(S)

Proof. According to Corollary 4.6, we have

ΦW(S) =
∣∣ ΓW(S0) + ΓW(S1)− 1

∣∣ .

=

∣∣∣∣∣ sup
i≥1

PWS0(Ai = 1) + sup
j≥1

PWS1(Aj = 1)− 1

∣∣∣∣∣ .

Clearly, the probability that W eventually wins game Sb (i.e. outputs as
its first guess V = b) is the same as the probability that the distinguisher
variant of W, W† outputs the distinguishing bit W = b interacting with Sb.
Thus,

ΦW(S) =
∣∣∣ PW†S0(W = 0) + PW†S1(W = 1)− 1

∣∣∣
=

∣∣∣ (1− PW†S0(W = 1)) + PW†S1(W = 1)− 1
∣∣∣

=
∣∣∣ PW†S0(W = 1)− PW†S1(W = 1)

∣∣∣
= ∆W†

(S0, S1)

Replacing W by D+ and applying (4.2) in the other direction follows di-
rectly. �

4.1.4 Notational Conventions

In the upcoming sections of this chapter, several uniform bit-guessing games
according to Definition 4.3 are specified using the pseudo-code characteriza-
tion from Chapter 2. To keep the definitions short, parts that are common to
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all definitions are specified here and skipped later. All definitions share the
monotonicity update step of the MBO at the beginning of every round and
the outputting of the MBO at the end of every round.

initialize
generate the bit b ∈R {0, 1}
initialize A0 ← 0

on every input Xi do
Ai ← Ai−1

...
on every input Xi do

output the MBO Ai

Since a uniform bit-guessing game is defined by the existence of two condi-
tional games S0 and S1, a general characterization of those games that can
be applied for every later definition is given here: If the game S is defined as
above, then its conditional game Sd is defined in exactly the same way with
the exception that the bit b is fixed to the value d. Note that this definition
complies with the condition S ≡ SB, B ∈R {0, 1}.

4.2 Finding the Right Attack Model

Game-based security definitions are formalized as a game that an adversary
cannot win with “substantial” probability. The capabilities of the adversary
in the game are usually defined by one of the three traditional attack models:
chosen-plaintext attacks (CPA), chosen-ciphertext attacks (CCA1) and adaptive
chosen-ciphertext attacks (CCA2 or often just CCA).

Several works in the literature examine how different game-based notions
relate to each other with respect to different attack models. For public-key
encryption schemes, a good overview of the most common notions of in-
distinguishability and non-malleability is presented in [6]. In the context of
private-key encryption schemes, a similar outline is provided in [7].

In the channel-based model of constructive cryptography, the capabilities
of an adversary are defined implicitly by the model. The adversary (in the
role of the distinguisher) gets access to all three interfaces of a channel. If
an encryption scheme is applied to a multi-use insecure channel, an adver-
sary can—at any time—produce multiple ciphertexts of chosen messages by
inputting the messages at the sender interface, and he can also see the de-
cryption of multiple chosen ciphertexts by inputting them at the adversary’s
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interface. An attack model like CPA is thus clearly too weak. A first idea
could be that CCA should be considered, but a detail in the definition of the
attack model renders it too strong.

Chosen-plaintext Attack Model In the chosen-plaintext attack model, the
adversary only gets access to an encryption oracle (i.e. no decryption or-
acle). As pointed out in [6, Theorem 4], the lack of a decryption oracle
renders schemes secure that potentially leak the secret key (or private key).
It is clear that such a scheme does not comply with our understanding of
confidentiality, which is why a stronger attack model must be considered.

Chosen-ciphertext Attack Model The chosen-ciphertext attack model is
sufficient in the sense that it additionally gives access to a decryption or-
acle. The decryption oracle is modified so that decryption of a challenge
ciphertext is refused to prevent trivial attacks. It does, however, only refuse
the self challenge ciphertext and not a ciphertext that is “equivalent” to the
challenge ciphertext (i.e. one that decrypts to the same message). This de-
tail allows trivial attacks for schemes where efficient “re-randomization” of
ciphertexts is possible. Therefore such a scheme is not secure under CCA.

In the channel-based view, the ultimate goal of secure communication is a
secure channel. A secure channel is an abstraction of a communication chan-
nel where only sent messages and the forwarding and deleting of them are
considered, but not ciphertexts. Being able to transform a given ciphertext
into a new ciphertext decrypting to the same message is thus not of any
concern with respect to a secure channel if this modification process can be
detected by a simulator and “abstracted” as forwarding the message.

A simple scheme that allows such a behavior can be designed from any
scheme that constructs a secure channel by prepending a random bit in
the process of encryption, whereas the bit is just ignored during decryption.
Clearly, the new scheme is not CCA-secure (neither for the notion of indistin-
guishability nor for non-malleability), but still constructs a secure channel:
A new simulator can be constructed with the same behavior as the old one
except that a random bit is prepended to any ciphertext that is output, and
the first bit of any input ciphertext is just dropped.

Replayable Chosen-ciphertext Attack Model A relaxed variant of CCA,
addressing exactly this unnecessary strictness of CCA, was introduced by
Canetti, Krawczyk and Nielsen in [12]. Their attack model is called replayable
chosen-ciphertext attack (RCCA) and being motivated that security with re-
spect to RCCA is sufficient “for most practical purposes”. As argued above,
RCCA security is indeed suitable for secure communication.
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In the RCCA attack model, both decryption of the challenge ciphertext and
ciphertexts decrypting to a challenge message are refused (e.g. by a dummy
output ’test’).

In conclusion, one can say that neither CPA nor CCA are attack models
that are appropriate if one wants to show the equivalence between a game-
based security notion and a certain type of confidential channel. The RCCA
variant given in [12] is the variant to use, especially for non-malleability and
integrity notions.

Allowing Arbitrary Malleability in an Attack Model However, for other
non-malleability related notions, RCCA can still be too strong. Imagine, for
example, a notion that wants to capture the security properties of CBC. For a
given ciphertext generated by CBC encryption, it is possible to modify parts
of the ciphertext such that decryption of the modified ciphertext consists of
message blocks that are the same as the initial message, and other blocks
get randomized. Therefore, a notion capturing CBC must—in contrary to
non-malleability—explicitly allow the transformation of a ciphertext into a
different ciphertext decrypting to a “related” plaintext. Using the RCCA
model for this notion leads to a trivial attack using the above described
transformation of a challenge ciphertext since the transformed ciphertext is
not refused by the decryption oracle.

For such notions, a more general attack model is needed. In Section 4.5, such
a model is presented in order to introduce a game-based notion of “pure”
confidentiality (without further restricting the malleability).

4.3 Non-malleability Notions

In the literature, there exist a large number of different definitions for non-
malleability notions. It starts with the simulation-based definition in [17],
and continues with a definition in [6] that is in the spirit of indistinguisha-
bility. Bellare and Sahai [8] introduce a third “pure” indistinguishability
based definition and show the equivalence of all three definitions. In a later
paper, they provide a corrected version with certain additional assumptions
for the equivalence to hold [9]. In [32], all the existing definitions are re-
compiled and analyzed for all kinds of subtleties (such as restriction to the
message space or restriction to the considered adversaries).

A common result of most studies is that the indistinguishability-based defi-
nition of non-malleability is equivalent to the indistinguishability-based def-
inition of confidentiality under CCA. This equivalence can easily be trans-
ferred to the case of the RCCA attack model because the CCA oracles can
simply be replaced by RCCA oracles and the proof is still valid.
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Motivated by this, the indistinguishability-based definition of confidential-
ity under RCCA is preferred to the respective variant of non-malleability to
analyze the corresponding type of malleability in the channel-based setting.
It may sound counter-intuitive to use a confidentiality notion to make a state-
ment about non-malleability, but due to the equivalence and the fact that the
non-malleability definition is slightly more complex it seems reasonable to
use the simpler definition.

Following the development of the notion of non-malleability, the public-key
case is studied first. Three different types of indistinguishability definitions
under RCCA are given and their asymptotic equivalence is shown. The
first notion is a simple “left-or-right” definition, allowing only one challenge
query. The second is the “real-or-random”-variant of it, whereas the third
allows multiple “real-or-random” challenge queries.

Having formalized the games, it is shown that the common counterpart in
terms of a channel is a confidential channel allowing forwarding, deleting,
replaying and inserting “constant” messages (constant in the sense of inde-
pendent of messages from the history).

4.3.1 Formalization of the Indistinguishability Games

The three above-mentioned games are formalized here as discrete systems
using the previously introduced pseudo-code model. The games are de-
noted by SLR

RCCA(π), SROR
RCCA(π) and SM−ROR

RCCA (π). The parameter π corre-
sponds to the encryption scheme that is used in the game and is seen as a
pair of (potentially stateful) converters. On initialization of the converters,
π2 generates a secret and a public key and outputs the public key whereas
the secret key is kept secret (and can be seen as being stored in the con-
verter).

Definition 4.10 (LR-IND-RCCA game). Let π = (π1, π2) be a public-key en-
cryption scheme according to Definition 3.11 and SLR

RCCA(π) be a uniform bit-
guessing game according to Definition 4.3, called LR-IND-RCCA game, with the
following input/output behavior: SLR

RCCA(π) has input variables Xi ∈ [{’init’}] ∪̇
[{’LR’}×M×M] ∪̇ [{’decrypt’}× C] ∪̇ [{’guess’}× {0, 1}] as well as the out-
put variables Yi ∈ [{’pubkey’} × K] ∪̇ [{’challenge’} × C] ∪̇ [{’decrypted’} ×
(M∪̇ {⊥, ’test’})] ∪̇ [{’guessed’}] and the MBO. SLR

RCCA(π) works as follows:

initialize
generate the bit b ∈R {0, 1}
initialize π to get public key K ∈R K
initialize S← ∅
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on input Xi = [’init’] do
output Yi = [’pubkey’, K]

on first input Xi = [’LR’, m0, m1] do
if |m0| = |m1| then

c← π1(K, mb)
S← S ∪ {m0, m1}
output Yi = [’challenge’, c]

on input Xi = [’decrypt’, c′] do
if π2(c′) ∈ S then m′ ← ’test’ else m′ ← π2(c′)
output Yi = [’decrypted’, m′]

on first input Xi = [’guess’, d] do
Ai ← Ai−1 ∨ (b = d)
output Yi = [’guessed’]

Inputs of type Xi = [’LR’, m0, m1] are called LR-queries and those of type Xi =
[’decrypt’, c′] decryption queries.

Definition 4.11 (LR-IND-RCCA security). We say that an encryption scheme
π according to Definition 3.11 is (ε, qd, t)-secure in the sense of LR-IND-RCCA
if

ΦA(qd ,t)(SLR
RCCA(π)) ≤ ε,

with qd denoting the number of decryption queries.

We say that the encryption scheme family π(k) is LR-IND-RCCA secure if, for all
k, π(k) is (ε, qd, t)-secure in the sense of LR-IND-RCCA and qd and t are efficient
in k and ε is negligible in k.

The ROR variant of the game just replaces the LR-query by a ROR-query.

Definition 4.12 (ROR-IND-RCCA game). Let π = (π1, π2) be a public-key en-
cryption scheme and SROR

RCCA(π) be a uniform bit-guessing game, called ROR-IND-
RCCA game. SROR

RCCA(π) has the same input and output variables as SLR
RCCA(π) ex-

cept that in the input domain, [{’LR’} ×M×M] is replaced by [{’ROR’} ×M].
SROR

RCCA(π) works exactly the same as SLR
RCCA(π) except that the LR-query section

is replaced by:

on first input Xi = [’ROR’, m0] do
generate m1 ∈R M with |m1| = |m0|
c← π1(K, mb)
S← S ∪ {m0, m1}
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output Yi = [’challenge’, c]

Accordingly, inputs of type Xi = [’ROR’, m0] are called ROR-queries.

Definition 4.13 (ROR-IND-RCCA security). We say, an encryption scheme π
according to Definition 3.11 is (ε, qd, t)-secure in the sense of ROR-IND-RCCA
if

ΦA(qd ,t)(SROR
RCCA(π)) ≤ ε.

We say that the encryption scheme family π(k) is ROR-IND-RCCA secure if, for
all k, π(k) is (ε, qd, t)-secure in the sense of ROR-IND-RCCA and qd and t are
efficient in k and ε is negligible in k.

The third variant of the game allows multiple challenge queries of the form
’ROR’. Additionally, decryption of challenge messages has to be answered
in a reasonable way, not just by a ’test’-output. Therefore, the game keeps
in the random case a data structure to map the chosen random messages to
the real challenge messages and outputs these challenge messages in place
of a ’test’. This is an unusual definition, but it can be motivated by the
equivalence that will be shown in the following section, and by the easier
correspondence to the channel-based setting where forwarding messages
from the history is allowed explicitly.

Definition 4.14 (M-ROR-IND-RCCA game). Let π = (π1, π2) be a public-key
encryption scheme and SM−ROR

RCCA (π) be a uniform bit-guessing game, called M-
ROR-RCCA game, with the following input/output behavior: SM−ROR

RCCA (π) has
the same input variables as SROR

RCCA(π), as well as the same output variables except
that [{’decrypted’} × (M∪̇ {⊥, ’test’})] is replaced by [{′decrypted′} × (M∪̇
{⊥})]. SM−ROR

RCCA (π) works as follows:

initialize
generate the bit b ∈R {0, 1}
initialize π to get public key K ∈R K
initialize S← ∅
initialize empty map M :M→M

on input Xi = [’init’] do
output Yi = [’pubkey’, K]

on input Xi = [’ROR’, m0] do
generate m1 ∈R M with |m1| = |m0|
c← π1(K, mb)
M[m1]← m0
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output Yi = [’challenge’, c]

on input Xi = [’decrypt’, c′] do
m′ ← π2(c′)
if b = 1 and M[m′] is set then

m′ ← M[m′]
output Yi = [’decrypted’, m′]

on first input Xi = [’guess’, d] do
Ai ← Ai−1 ∨ (b = d)
output Yi = [’guessed’]

Definition 4.15 (M-ROR-IND-RCCA security). We say, an encryption scheme
π according to Definition 3.11 is (ε, qr, qd, t)-secure in the sense of M-ROR-IND-
RCCA if

ΦA(qr ,qd ,t)(SM−ROR
RCCA (π)) ≤ ε,

with qr being the number of ROR-queries and qd denoting the number of decryption
queries.

We say that the encryption scheme family π(k) is M-ROR-IND-RCCA secure if,
for all k, π(k) is (ε, qr, qd, t)-secure in the sense of M-ROR-IND-RCCA and qr, qd
and t are efficient in k and ε is negligible in k.

4.3.2 Equivalence of the Games

In what follows, the asymptotic equivalence of all three notions is shown
under the assumption of a “non-efficient” size of the message space (i.e.
that the probability to correctly guess a random message from the space is
negligible).

Lemma 4.16 (LR-IND-RCCA⇒ ROR-IND-RCCA). If a public-key encryption
scheme family π(k) is LR-IND-RCCA secure, then π(k) is also ROR-IND-RCCA
secure.

Especially if a specific public-key encryption scheme π is (ε, qd, t)-secure in the sense
of LR-IND-RCCA, then it is also (ε, qd, t − t′)-secure in the sense of ROR-IND-
RCCA where t′ are the number of computation steps needed to generate a random
message.

Proof. Note that the two games to consider are defined almost identically,
with the exception that the LR-query body of the LR-IND-RCCA game is
replaced by the ROR-query body in the ROR-IND-RCCA game.
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We can thus construct a converter C that forwards all queries except the
ROR-query. Getting a message m0 in the ROR-query, C generates a second
message m1 of equal length uniformly at random and outputs m0 and m1 at
the inner interface in a LR-query.

If the converter C is connected to the game SLR
RCCA(π), a ROR-query m0 pro-

vokes C to generate a random message m1, SLR
RCCA(π) encrypts the message

mb according to the bit b chosen at random and puts m0 and m1 into the set S.
A ROR-query m0 to the game SROR

RCCA(π) is treated exactly in the same way:
A random message m1 is generated, mb is encrypted and both messages are
put into S. All other queries, except an ROR-query, are in SLR

RCCA(π) triv-
ially answered in the same way as in the game SROR

RCCA(π) according to the
definition.

We conclude that the two games are equivalent for any encryption scheme
π,

SROR
RCCA(π) ≡ CSLR

RCCA(π). (4.3)

Let π be a public-key encryption scheme according to Definition 3.11 being
(ε, qd, t)-secure in the sense of LR-IND-RCCA, namely that

ΦA(qd ,t)(SLR
RCCA(π)) ≤ ε.

Let A further be an adversary attacking π in the sense of ROR-IND-RCCA,
making qd decryption queries to the game defined in Definition 4.12, making
at most t− t′ computation steps and having advantage ΦA(SROR

RCCA(π)) > ε.
Considering the converter C from above, we note that the composition AC
makes at most qd decryption queries since decryption queries are simply
forwarded. The number of computation steps of AC is bounded by t since
A makes at most t − t′ steps and the converter does increase the number
of steps only in the case of an ROR-query by t′, being the number of steps
needed to generate a random message. As only one such query is treated
by C, the total number of computation steps is bounded by t− t′ + t′ = t.
Using the Equivalence 4.3, we can express the advantage of AC in winning
the LR-IND-RCCA game by

ΦAC(SLR
RCCA(π)) = ΦA(CSLR

RCCA(π))

= ΦA(SROR
RCCA(π)) > ε.

As the existence of such an adversary A contradicts our assumption that π
is (ε, qd, t)-secure in the sense of LR-IND-RCCA, we conclude that no such
adversary A can exist and thus π is (ε, qd, t− t′)-secure in the sense of ROR-
IND-RCCA. As we proved this fact for a general encryption scheme π, it
particularly holds for all k and corresponding encryption schemes π(k) of a
family. Assuming that the number of computation steps needed to generate
a random message is efficient in k, the asymptotic statement that LR-IND-
RCCA security implies ROR-RCCA security, follows directly. �
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Lemma 4.17 (ROR-IND-RCCA⇒ LR-IND-RCCA). If a public-key encryption
scheme family π(k) using message spaceM(k) of size |M(k)| is ROR-IND-RCCA
secure, then π(k) is also LR-IND-RCCA secure if |M(k)| is not efficient in k.

Especially if a public-key encryption scheme π with message spaceM of size |M| is
(ε, qd, t)-secure in the sense of ROR-IND-RCCA, then it is

(
2ε + 2qd

|M| , qd, t− t′
)

-
secure in the sense of LR-IND-RCCA where t′ captures some efficiently imple-
mentable computation steps.

Proof. Let π be an encryption scheme that is (ε, qd, t)-secure in the sense
of ROR-IND-RCCA, meaning that ΦA(qd ,t)(SROR

RCCA(π)) ≤ ε. Let B further be
an adversary attacking π in the sense of LR-IND-RCCA, making at most qd
decryption queries to the game defined in Definition 4.10, making at most
t− t′ computation steps and having advantage

ΦB(SLR
RCCA(π)) > 2ε +

2qd

|M| .

We can construct a converter C that we can apply to adversary B resulting in
a system BC that makes qd decryption queries and t computation steps and
has advantage ΦBC(SROR

RCCA(π)) > ε in winning the LR-IND-RCCA game.

Converter C works as follows:

initialize
generate d ∈R {0, 1}
initialize mother ← ⊥

on first input [’LR’, m0, m1] at outer interface do
output [’ROR’, md] at inner interface
get input [’challenge’, c] at inner interface
mother ← m1−d
output [’challenge’, c] at outer interface

on input [’decrypt’, c′] at outer interface do
output [’decrypt’, c′] at inner interface
get input [’decrypted’, m′] at inner interface
if mother 6= ⊥ and m′ = mother then m′ ← ’test’
output [’decrypted’, m′] at outer interface

on first input [’guess’, b] at outer interface do
output [’guess’, b⊕ d] at inner interface
get input [’guessed’] at inner interface
output [’guessed’] at outer interface
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We see that BC makes exactly the same number of queries as B. The over-
head in terms of computation steps induced by converter C is the number
of steps needed to store one message, to assign a string to a variable and
check simple conditions qd times and once xor-ing two bits, which can be
summarized in t′. For analyzing the advantage of BC in winning the ROR-
IND-RCCA game, we let SROR

RCCA−0(π) and SROR
RCCA−1(π) be the two condi-

tional games of the bit-guessing game SROR
RCCA(π) according to Definition 4.3.

Thus, the first conditional game is the ROR-IND-RCCA game that always
encrypts the real message as challenge. The second game is the one that
always encrypts the random message accordingly.

We note that the game CSROR
RCCA−0(π) is equivalent to SLR

RCCA(π), with the
exception that the first game includes an additional random message mr in
the set S provoking a ’test’ output in decryption for a queried ciphertext
decrypting to mr. This behavior cannot be observed in the second game
where the message mr is output. Let B = B0, B1, B2 denote the MES where
Bi is the event that up to query i, no ciphertext decrypting to the randomly
chosen message has been input. Thus, we have the conditional equivalence

CSROR
RCCA−0(π)|B ≡ SLR

RCCA(π). (4.4)

Since every output B that gets from the game CSROR
RCCA−0(π)|B is indepen-

dent of mr (as we are in the real case and the real message is encrypted
as challenge), the probability that B no longer holds is, by using the union
bound, at most 1

|M|qd.

In the case where a random message is encrypted by the ROR-IND-RCCA
game, the winning probability of B is 1

2 since he has to guess a secret ran-
dom bit d. The bit d is secret to him as all output he gets from the system
CSROR

RCCA−1(π) is independent of the bit d:

- The LR-query is answered with the encryption of a random message
and is thus independent of the bit d.

- Decryption queries are answered by its real plaintext content except
for three cases where a ’test’ answer is provided: The ROR-IND-RCCA
game returns ’test’ if the input ciphertext decrypts to the random mes-
sage chosen in the LR-query or to md. Additionally, the converter C
replaces the decryption answer by a ’test’ answer if the input ciphertext
decrypts to m1−d. Since both encryptions of md and m1−d are answered
by ’test’, the decryption query answers are also independent of d.

- The output to a guess query is trivially independent of d.

For our analysis of the advantage of BC, we use Corollary 4.6 and the fact
that B has winning probability 1

2 in the random case of the ROR-IND-RCCA

50



4.3. Non-malleability Notions

game to get

ΦBC(SROR
RCCA(π)) =

∣∣∣ ΓBC(SROR−0
RCCA (π)) + ΓBC(SROR−1

RCCA (π))− 1
∣∣∣

=
∣∣∣∣ ΓB(CSROR−0

RCCA (π)) +
1
2
− 1

∣∣∣∣ .

Since the advantage of B in the LR-IND-RCCA game is ΦB(SLR
RCCA(π)) >

2ε + 2qd
|M| , we distinguish two cases, namely ΓB(SLR

RCCA(π)) > 1
2 + ε + qd

|M|
or ΓB(SLR

RCCA(π)) < 1
2 − ε − qd

|M| . Using Lemma 4.7 with the conditional
equivalence (4.4) in the first case, we get

ΓB(CSROR−0
RCCA (π)) ≥ ΓB(SLR

RCCA(π))− 1
|M|qd

>
1
2

+ ε +
qd

|M| −
1
|M|qd =

1
2

+ ε.

Using the same Lemma and conditional equivalence yields for the second
case

ΓB(CSROR−0
RCCA (π)) ≤ ΓB(SLR

RCCA(π)) +
1
|M|qd

<
1
2
− ε− qd

|M| +
1
|M|qd =

1
2
− ε.

In either case, the advantage can thus be lower bound by

ΦBC(SROR
RCCA(π)) =

∣∣∣∣ ΓB(CSROR−0
RCCA (π))− 1

2

∣∣∣∣
>

1
2
− 1

2
+ ε = ε.

As this contradicts our assumption that π is (ε, qd, t)-secure in the sense of
ROR-IND-RCCA, such an adversary B cannot exist and we conclude that π

is
(

2ε + 2qd
|M| , qd, t− t′

)
-secure in the sense of LR-IND-RCCA. The asymptotic

statement follows directly under the assumption that the size of the message
space is not efficient in the security parameter. �

The definitions of the two games allowing only a single challenge query
are thus asymptotically equivalent. In the following statements, the multi-
challenge version is also shown to be equivalent to these definitions.

Remark 4.18 (M-ROR-RCCA⇒ ROR-IND-RCCA). If a public-key encryption
scheme family π(k) is M-ROR-RCCA secure, then π(k) is also ROR-RCCA secure.

If a public-key encryption scheme π is (ε, qr, qd)-secure in the sense of M-ROR-IND-
RCCA, then it is also (ε, qd)-secure in the sense of ROR-IND-RCCA.
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This implication is trivial since ROR-IND-RCCA merely is a special case
of the M-ROR-RCCA game where only one challenge ciphertext is queried.
In other words, any adversary to the ROR-IND-RCCA game is also an ad-
versary to the M-ROR-RCCA game where only one ROR-query is allowed,
using a simple converter that replaces the challenge message by a ’test’ in
decryption query responses.

Lemma 4.19 (ROR-IND-RCCA⇒ M-ROR-IND-RCCA). If a public-key en-
cryption scheme family π(k) is ROR-IND-RCCA secure, then π(k) is also M-
ROR-RCCA secure.

Especially if a public-key encryption scheme π is (ε, qd, t)-secure in the sense of
ROR-IND-RCCA, then it is also (ε · qr, qr, qd, t− t′)-secure in the sense of M-ROR-
RCCA where t′ captures some efficiently implementable computation steps.

Proof. Let π be an encryption scheme that is (ε, qd, t)-secure in the sense
of ROR-IND-RCCA, namely ΦAqd ,t(SROR

RCCA(π)) ≤ ε. Let A further be an
adversary attacking π in the sense of M-ROR-IND-RCCA, making at most
qr ROR-queries and qd decryption queries to the game defined in Defini-
tion 4.14, making at most t − t′ computation steps and having advantage
ΦA(SM−ROR

RCCA (π)) > ε · qr.

We show the implication using a hybrid argument and the equivalence of bit-
guessing and distinguishing stated in Lemma 4.9. The intuition behind the
argument is that the adversary A, attacking the M-ROR-IND-RCCA security
of π, can easily be transformed into a distinguisher for the two conditional
games SM−ROR

RCCA−0(π) and SM−ROR
RCCA−1(π), the first being the game encrypting

the real message given as argument in all qr ROR-queries, the latter always
encrypting a random message. To construct an adversary against the ROR-
IND-RCCA security of π, we define a sequence of hybrid systems so that
two subsequent systems only differ in one ROR-query as it is the case in
the ROR-IND-RCCA game. For that we define the following sequence of
converters Ci, where 1 ≤ i ≤ qr:

initialize
output [’init’] at inner interface
get input [’pubkey’, K] at inner interface
initialize challenge← 1.
initialize empty map M :M→M

on input [’ROR’, m0] at outer interface do
if challenge < i then

generate m1 ∈R M with |m1| = |m0|
c← π(K, m1)
M[m1]← m0
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elseif challenge = i then
output [’ROR’, m0] at inner interface
get input [’challenge’, c] at inner interface

else
generate m1 ∈R M with |m1| = |m0|
c← π(K, m0)
M[m1]← m0

output [’challenge’, c] at outer interface

on input [’decrypt’, c′] at outer interface do
output [’decrypt’, c′] at inner interface
get input [’decrypted’, m′] at inner interface
if M[m′] is set then

m′ ← M[m′]
output [’decrypted’, m′] at outer interface

on first input [’guess’, b] at outer interface do
forward the query and the response

In conclusion, we note that in the case of ROR-queries, Ci simulates the M-
ROR-IND-RCCA game by always encrypting a random message in the first
i − 1 queries, using the ROR-query in the i-th query and answering the re-
maining queries with the encryption of the real message given as argument.
Encryption can be done by the converter using the public key. Decryption
queries are also slightly adapted so that ciphertexts decrypting to one of the
challenge messages are answered by the corresponding real challenge mes-
sage, as it is done in the M-ROR-RCCA game. Guess queries are forwarded
unchanged.

Considering the number of queries that the composed adversary system ACi
makes, we note that the number of ROR-queries is exactly 1 and that the
number of decryption queries is qd. The overhead in terms of computation
steps is given by t′, capturing a query to get the public-key, generation of
random messages, encryption using the public-key and mapping messages
onto integers in the order of qr. In other words the system ACi at most
t− t′ + t′ = t computation steps.

For a comparison of the particular hybrid systems, we use the two condi-
tional games, SM−ROR

RCCA−0(π) and SM−ROR
RCCA−1(π) and further define SROR

RCCA−0(π)
and SROR

RCCA−1(π) to be the two conditional games of the ROR-IND-RCCA
game SROR

RCCA(π) according to Definition 4.3.
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Therefore, we have for 1 ≤ i < qr the equivalences

C1SROR
RCCA−0(π) ≡ SM−ROR

RCCA−0(π)

Cqr S
ROR
RCCA−1(π) ≡ SM−ROR

RCCA−1(π)

Ci+1SROR
RCCA−0(π) ≡ CiSROR

RCCA−1(π).

Using these equivalences, we can apply Theorem 2.15 with F := SM−ROR
RCCA−0(π)

and G := SM−ROR
RCCA−1(π) to get for any distinguisher D,

∆D
(

SM−ROR
RCCA−0(π), SM−ROR

RCCA−1(π)
)

= qr · ∆DCI (SROR
RCCA−0(π), SROR

RCCA−1(π))
(4.5)

where I is chosen uniformly from {1, . . . , qr}. Let now be A† be the distin-
guisher variant of our adversary A according to Definition 4.8 so that we
can apply Lemma 4.9 and get

ΦA(SM−ROR
RCCA (π)) = ∆A†

(
SM−ROR

RCCA−0(π), SM−ROR
RCCA−1(π)

)
. (4.6)

Combining (4.5) and (4.6), we get

ΦA(SM−ROR
RCCA (π)) = qr · ∆A†CI (SROR

RCCA−0(π), SROR
RCCA−1(π)), (4.7)

and by applying Lemma 4.9 and using the fact that converter CI just for-
wards the guess V and thus (ACI)† ≡ A†CI , we have constructed adversary
ACI for the ROR-IND-RCCA game with the advantage

ΦACI (SROR
RCCA(π)) = ∆(ACI)†

(SROR
RCCA−0(π), SROR

RCCA−1(π))

= ∆A†CI (SROR
RCCA−0(π), SROR

RCCA−1(π))

=
ΦA(SM−ROR

RCCA (π))
qr

>
ε · qr

qr
= ε.

The adversary ACI makes, as we stated above for a general Ci, at most qd
decryption queries and t computation steps, and has an advantage greater
than ε. As this contradicts our assumption that π is (ε, qd, t)-secure in the
sense of ROR-IND-RCCA, we conclude that such an adversary A cannot
exist and thus π is (ε · qr, qr, qd, t − t′)-secure in the sense of M-ROR-IND-
RCCA. The asymptotic implication follows directly noting that ε · qr is still
negligible if qr is efficient in k. �

Secret-key versions of the Games All three game definitions can easily
be adapted for secret-key encryption schemes. In contrast to public-key
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schemes, where the knowledge of the public-key allows encryption of mes-
sages, encryption has to be allowed explicitly by the game. That is to say
that the definitions of the games are modified by removing the initializa-
tion query that outputs the public-key and introducing encryption queries
instead, where a message passed as argument is encrypted with the secret
key.

For the concrete security statements, this change induces a new parame-
ter qe denoting the number of encryption queries made to the game. Let
SLR−secret

RCCA (π) denote the secret-key scheme variant of the LR-IND-RCCA
game. LR-IND-RCCA security is therefore defined for the secret-key case
as follows.

Definition 4.20 (LR-IND-RCCA security). We say that a secret-key encryption
scheme π according to Definition 3.7 is (ε, qe, qd, t)-secure in the sense of LR-
IND-RCCA if

ΦA(qe ,qd ,t)(SLR−secret
RCCA (π)) ≤ ε,

with qe denoting the number of encryption and qd the number of decryption queries.

We say that the secret-key encryption scheme family π(k) is LR-IND-RCCA se-
cure if, for all k, π(k) is (ε, qe, qd, t)-secure in the sense of LR-IND-RCCA and
qe, qd and t are efficient in k and ε is negligible in k.

The asymptotic equivalence also holds for the secret-key versions of the
three games. The precise statements and proofs are omitted.

4.3.3 Non-malleable Confidential Channel

Intuitively, it is clear that an encryption scheme that is non-malleable in the
game-based sense allows to create ciphertexts of constant (or “fresh”) mes-
sages by encrypting such a message using the public-key (or the encryption
oracle in the secret-key case). To put another way, the corresponding mal-
leability has to be permitted also in the analog confidential channel such a
scheme constructs. Similarly, it is clear that allowing “some more” malleabil-
ity (e.g. to create a ciphertext decrypting to a message that depends on the
message history), would let an adversary easily win the game by applying
this malleability on the challenge ciphertext and learning information about
the challenge.

We thus define the non-malleable confidential channel to consist only of
“constant” transformations.

Definition 4.21. Let F : M∗ ×M∗ → M be a transformation on the plaintext
space. The transformation F is called constant if there exists an mc ∈ M such that
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for all M ∈ M∗ and all M′ ∈ M∗,

F(M, M′) = mc.

Definition 4.22. Let the malleability F be defined as F = ({Fα}α∈A, {Ai}i∈N).
And let −→• be a confidential channel with malleability F . Then, we call −→• a

non-malleable confidential channel denoted by
NM−→• if all α ∈ A correspond to

constant transformations according to Definition 4.21.

A public-key encryption scheme is non-malleable if it constructs a non-malleable

confidential channel
NM−→• from the resource (−→ ‖ ←−•).

A secret-key encryption scheme is non-malleable if it constructs a non-malleable

confidential channel
NM−→• from the resource (−→ ‖ • ‖ •).

The following two theorems state that a public-key encryption scheme fam-
ily is secure with respect to the three game notions if, and only if, the en-
cryption scheme family constructs a non-malleable channel from an insecure
channel and an (inverted) authenticated channel.

Theorem 4.23. If a public-key encryption scheme family π(k) is M-ROR-IND-
RCCA secure, then π(k) is non-malleable and constructs a non-malleable confiden-

tial channel
NM−→• from the resource (−→ ‖ ←−•).

Especially if a public-key encryption scheme π = (π1, π2) is (ε, qr, qd, t)-secure in
the sense of M-ROR-IND-RCCA, then π constructs a non-malleable confidential

channel
NM−→• with error ε from the resource (−→ ‖ ←−•), namely there exists a

simulator σ in Σt′ such that ∆A(qr ,qd ,t)(πA
1 πB

2 (−→ ‖ • ‖ •), σE(
NM−→•)) ≤ ε where

Σt′ is the class of all converters bounded to at most t′ computation steps andA(qr ,qd,t)
is the class of all distinguishers making at most qr queries at the A-interface, at most
qd queries at the E-interface and at most t computation steps.

Proof. Let π be an encryption scheme that is (ε, qr, qd, t)-secure in the sense

of M-ROR-IND-RCCA, ΦA(qr ,qd ,t)(SM−ROR
RCCA (π)) ≤ ε. Let

NM−→• be the non-
malleable confidential channel working as follows: On input m at the A-
interface, it keeps track of the message history and outputs |m| at the E-

interface. On input [‘forward’, i],
NM−→• outputs the i-th message from the

input history at the A-interface, on input [‘replay’, i], it outputs the i-th mes-
sage from the output history at the B-interface that corresponds to outcomes
of transformations. On input on input [‘delete’] it outputs ⊥ and on input
[‘modify’, m′], it outputs m′. Clearly this channel is non-malleable according
to the definition.

Let σ be the simulator working as follows:
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initialize
K ∈R K
round← 1
initialize empty map M :M→N

on input l at inner interface do
generate m′ ∈R M with |m′| = l
M[m′]← round
c← π1(K, m′)
round← round + 1
output c at outer interface

on input c′ at outer interface do
m← π2(K, c′)
if M[m] is set then

output [‘forward’, M[m]] at the inner interface
elseif m = ⊥ then

output [‘delete’] at the inner interface
else

output [‘modify’, m] at inner interface

The quantity t′ is defined as the number of computation steps the above
defined simulator σ makes at most.

Let D be a distinguisher making at most qr queries at the A-interface, at
most qd queries at the E-interface and making at most t computation steps.
Distinguisher D can distinguish the two resources πA

1 πB
2 (−→ ‖ • ‖ •) and

σE(
NM−→•) with advantage:

∆D
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(
NM−→•)

)
> ε (4.8)

We now show that one can construct a converter C so that the bit-guessing
variant of the composition DC according to Definition 4.8 results in a M-
ROR-IND-RCCA adversary (DC)+ with advantage greater than ε.

Converter C works as follows:

on input m at the outer A-subinterface do
output [’ROR’, m] at the inner interface
get input [’challenge’, c] at inner interface
output c at the outer E-subinterface
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on input c′ at the outer E-subinterface do
output [’decrypt’, c′] at the inner interface
get input [’decrypted’, m′] then
output m′ at the outer B-subinterface

Analyzing the system composition (DC)+, we note that it makes at most
qr ROR- and qd decryption queries. And since C only forwards queries
and makes no additional computation steps, the composed system makes at
most t computation steps.

Let SM−ROR
RCCA−0(π) and SM−ROR

RCCA−1(π) in the following be the two conditional
games of the M-ROR-IND-RCCA game, the first being the M-ROR-IND-
RCCA game always encrypting the real message in the ROR-queries, and
the second being the analogous one always encrypting a random message.

Comparing CSM−ROR
RCCA−0(π) and πA

1 πB
2 (−→ ‖ • ‖ •), we see that the output

to queries at the A-interface are distributed identically and thus, simulation
of the channel is perfect at the A-interface: The encryption of the input
message is returned. Also, the distribution of the output to queries at the
E-interface is exactly the same as the decryption of the input ciphertext is
returned in both systems. The two systems are thus equivalent,

πA
1 πB

2 (−→ ‖ • ‖ •) ≡ CSM−ROR
RCCA−0(π) (4.9)

Comparing the other system CSM−ROR
RCCA−1(π) with σE(

NM−→•), we again see that
the output to queries at the A-interface is distributed identically since a ran-
dom message is encrypted and output. For the comparison of the output at
the E-interface, we distinguish between the case where a ciphertext decrypt-
ing to one of the random messages (chosen internally) is input and the case
where a ciphertext decrypting to a different message or to ⊥ is input. In the
first case, the game outputs the corresponding real message that the random
message maps to. The channel behaves identically as the simulator keeps an
analogous map, mapping random messages to rounds, and tells the channel
to forward the real message from the corresponding round. In the second
case, the two systems behave identically since the correct decryption of the
input ciphertext is output. We conclude that the two systems are equivalent,

σE(
NM−→•) ≡ CSM−ROR

RCCA−0(π) (4.10)

Using Lemma 4.9, (4.2) and the equivalences (4.9) and (4.10), the advantage
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of (DC)+ in the M-ROR-RCCA game is

Φ(DC)+
(SM−ROR

RCCA (π)) = ∆((DC)+)†
(SM−ROR

RCCA−0(π), SM−ROR
RCCA−1(π))

= ∆DC(SM−ROR
RCCA−0(π), SM−ROR

RCCA−1(π))

= ∆D(CSM−ROR
RCCA−0(π), CSM−ROR

RCCA−1(π))

= ∆D(πA
1 πB

2 (−→ ‖ • ‖ •), σE(
NM−→•)) > ε.

As this contradicts our assumption that π is (ε, qr, qd, t)-secure in the sense of
M-ROR-IND-RCCA, we conclude that such a distinguisher D cannot exist

and thus π does indeed construct a non-malleable confidential channel
NM−→•

with error ε from the resource (−→ ‖ ←−•). The asymptotic statement fol-
lows since both game adversary and distinguisher are from the same class
of adversaries and are thus likewise in the class of efficient adversaries. The
simulator is efficient since the quantity t′ refers to an efficient number of
encryptions, decryptions and other operations that are efficient in a reason-
able model (otherwise the M-ROR-IND-RCCA game would itself not be ef-
ficient). �

Theorem 4.24. If a public-key encryption scheme family π(k) constructs a non-

malleable confidential channel
NM−→•, then π(k) is LR-IND-RCCA secure.

Especially if the public-key encryption scheme π constructs a non-malleable con-

fidential channel
NM−→• with error ε from (−→ ‖ ←−•) with respect to the dis-

tinguisher class A(qA,qE,t) of all distinguishers making at most qA query at the
A-interface, qE queries at the E-interface and at most t computation steps, and with
respect to the converter class Σt′′ consisting of all converters making at most t′′

computation steps, then π is ( 2ε, qE, t− t′)-secure in the sense of LR-IND-RCCA
where t′ captures some efficiently implementable computation steps.

Proof. Let π be an encryption scheme constructing a non-malleable confi-
dential channel from (−→ ‖ • ‖ •) for the class A(qA,qE,t) with error ε, for-
mally

∃ σ ∈ Σt′′ : ∆A(qA ,qE ,t)(πA
1 πB

2 (−→ ‖ • ‖ •), σE NM−→•) ≤ ε.

Let A further be a LR-IND-RCCA adversary with advantage ΦA(SLR
RCCA(π)) >

2ε, making at most qE decryption queries and at most t − t′ computation
steps.

Towards a contradiction, we show that we can construct a converter C such
that the combined system AC results in a distinguisher with advantage
greater than ε distinguishing the above two channels. Converter C works
as follows:
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initialize
generate b ∈R {0, 1}
initialize challenge← 0
initialize S← ∅

on first input Xi = [’LR’, m0, m1] at outer interface do
if |m0| = |m1| then

output mb at inner A-subinterface
get input c at inner E-subinterface
S← S ∪ {m0, m1}
output Yi = [’challenge’, c] at outer interface

on input Xi = [’decrypt’, c′)] at outer interface do
output c′ at inner E-subinterface
get input m′ at inner B-subinterface
if m′ ∈ S then m′ ← ’test’
output Yi = [’decrypted’, m′] at outer interface

on first input Xi = [’guess’, d] at outer interface do
output W ← (b = d) at inner interface
output Yi = [′guessed′] at outer interface

The composed system AC results in a distinguisher making 1 query at the
A-interface and qE queries at the E-interface. The overhead in terms of com-
putation steps imposed by C is the number needed to generate one random
bit, putting two messages in a set and checking qE times if a message is
contained in the set and finally checking the equality of two bits, captured
in t′ and thus leading to an upper bound of computation steps for AC of
t− t′ + t′ = t. We conclude that AC ∈ A(qA,qE,t).

In the following we show that this distinguisher has advantage greater than
ε, formally:

∀σ′ ∈ Σt′′ : ∆AC(πA
1 πB

2 (−→ ‖ • ‖ •), σ′E
NM−→•) > ε.

Comparing the two systems C πA
1 πB

2 (−→ ‖ • ‖ •) and SLR
RCCA(π), we see that

for a LR-query both systems randomly encrypt one of the two argument
messages based on a secret random bit. Additionally, both messages are put
into a set S. For a decryption query c, both system output π2(K, c), except in
the case where the decrypted message is contained in the set S where ’test’
is returned. Since the sets in both systems are filled accordingly, the output
to decryption queries is distributed identically.
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Finally, we see that whenever A wins the game LR-IND-RCCA, that is, when
he inputs the correct bit d = b, our constructed distinguisher AC will output
the guess bit W = 1. We thus get

PACπA
1 πB

2 (−→‖•

‖

•)(W = 1) = ΓA(SLR
RCCA(π)).

We further analyze the system C σ′E(
NM−→•) with an arbitrary simulator σ′ by

inspecting the dependency of the output on the bit b chosen by the converter
at random during initialization.

1. ′LR′-query: Message mb is input into the channel, so the input depends

on the bit b. But as the channel
NM−→• does per definition not leak any

information about the message to the simulator, except length of the
message, and because we have the condition that |m0| = |m1| for the
two messages in the LR-query, the input of the simulator is indepen-
dent of b and the output of the simulator is independent of b.

2. ′decrypt′-query: We distinguish the cases where a ciphertext is input,
disposing the simulator to forward or replay the challenge message
mb, and cases where the input disposes the simulator to forward or re-
play another message independent from b or to do something else like
deleting the message or inserting a new message. In the latter case, the
output is trivially the same for both values of b and thus independent
of b. In the first case, however, the channel outputs the message mb
to the converter. But since the converter replaces the message mb by
a ’test’ message, this output is also the same for both values of b and
hence does not depend on b.

We conclude that with any simulator σ′ (constrained to any bound t′′ on the
number of computation steps), any adversary A′ sees equally distributed

output—for both values of b—interacting with the system C σ′E(
NM−→•), thus

the adversary must guess a secret bit chosen uniformly at random and
guesses correctly with probability 1

2 . In particular, this holds for adversary
A,

∀ σ′ : ΓA(C σ′E(
NM−→•)) =

1
2

.

And thus,

∀ σ′ : PACσ′E(
NM−→•)(W = 1) =

1
2

.
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When combining these results, we get a distinguishing advantage of AC of

∀ σ′ : ∆AC(πA
1 πB

2 (−→ ‖ • ‖ •), σ′E
NM−→•)

=
∣∣∣∣ PACπA

1 πB
2 (−→‖•

‖

•)(W = 1)− PACσ′E(
NM−→•)(W = 1)

∣∣∣∣
=

∣∣∣∣ ΓA(SLR
RCCA(π))− 1

2

∣∣∣∣
=

1
2
·ΦA(SLR

RCCA(π))

>
1
2
· 2ε = ε.

As this contradicts our assumption that π constructs a non-malleable confi-

dential channel
NM−→• with error ε from (−→ ‖ • ‖ •), no such adversary A

can exist and π must be ( 2ε, qE, t− t′)-secure in the sense of LR-IND-RCCA.
The asymptotic statement follows directly. �

Again, the statements can be adapted for the secret-key case. The arguments
in the proofs of the two theorems can almost directly be transferred to the
secret-key case.

4.4 Unforgeable Encryption

In contrast to public-key encryption schemes where a malleability that al-
lows inserting constant messages is the best one can achieve, it makes sense
to study even stronger notions for secret-key schemes since encryption intu-
itively should only be possible when the secret-key is known. One idea is
to define a notion capturing the inability of an adversary to create a valid ci-
phertext. The notions of integrity of plaintexts [7, 19], integrity of ciphertexts [7],
and existential unforgeability [22, 19] are notions in that spirit.

The concepts of integrity of encryption and unforgeability of a valid encryp-
tion cover essentially the same idea. As an adversary usually has access
to an “encryption oracle”, only “new” encryptions are considered as “non-
integer encryptions” or forgeries. This can be defined both on the level of
the plaintext space (new meaning decrypting to a new message) and on the
level of the ciphertext space (new as an unseen ciphertext). As pointed out
in Section 4.2, only the level of the plaintext space must be considered in the
channel-based model, which is why the notion of integrity of plaintexts is
the most promising for a comparison.

It must further be pointed out that it makes no sense to investigate integrity
alone as an encryption scheme is only reasonable if it satisfies also its pri-
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mary goal, namely confidentiality. To cover such a combined goal, a stan-
dard real-or-random game with multiple challenges is stated to guarantee
confidentiality. In addition the game gives credit to ciphertext forgeries of
the above mentioned form by outputting the bit to guess from the real-or-
random game, which trivially allows the adversary to win the game.

4.4.1 Formalization of the Game

Definition 4.25 (Unforgeability game). Let π = (π1, π2) be a secret-key en-
cryption scheme according to Definition 3.7 and SEF

RCCA(π) be a bit-guessing game
according to Definition 4.3, called unforgeability game with the following in-
put/output behavior: SEF

RCCA(π) has input variables Xi ∈ [{′encrypt′} ×M] ∪̇
[{′decrypt′} × C] ∪̇ [{′guess′} × {0, 1}] as well as the output variables Yi ∈
[{′encrypted′}×C] ∪̇ [{′decrypted′}× (M∪̇{⊥})] ∪̇ [{′won′}×M×{0, 1}] ∪̇
[{′guessed′}] and the MBO. SEF

RCCA(π) works as follows:

initialize
generate key K ∈R K
generate the bit b ∈R {0, 1}
initialize S← ∅
initialize empty map M :M→M

on input Xi = [’encrypt’, m] do
if b = 0 then

S← S ∪ {m}
output Yi = [’encrypted’, π1(K, m)]

else
generate m′ ∈R M with |m′| = |m|
M[m′] = m
S← S ∪ {m′}
output Yi = [’encrypted’, π1(K, m′)]

on input Xi = [’decrypt’, c] do
if π2(K, c) = ⊥ then

output Yi = [’decrypted’,⊥]
elseif π2(K, c) /∈ S then

output Yi = [’won’, π2(K, c), b]
elseif b = 1 then

output Yi = [’decrypted’, M[π2(K, c)]]
else

output Yi = [’decrypted’, π2(K, c)]

on first input Xi = [’guess’, d] do
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Ai ← Ai−1 ∨ (b = d)
output Yi = [’guessed’]

Inputs of type Xi = [’encrypt’, m] are called encryption queries, and those of
type Xi = [’decrypt’, c′] decryption queries.

Definition 4.26 (EF-RCCA security). We say that a secret-key encryption scheme
π according to Definition 3.7 is (ε, qe, qd, t)-secure in the sense of EF-RCCA if

ΦA(qe ,qd ,t)(SEF
RCCA(π)) ≤ ε,

with qe being the number of encryption queries and qd denoting the number of
decryption queries.

We say that the secret-key encryption scheme family π(k) is EF-RCCA secure if,
for all k, π(k) is (ε, qe, qd, t)-secure in the sense of EF-RCCA and qe, qd and t are
efficient in k and ε is negligible in k.

4.4.2 Equivalence Results

The following two theorems show that an encryption is EF-RCCA secure if,
and only if, it constructs a confidential channel with no malleability, namely
a secure channel •−→•, from an insecure channel −→ and a shared secret
key • ‖ •.

Theorem 4.27 (EF-RCCA⇒ Secure channel •−→•). If a secret-key encryption
scheme family π(k) is EF-RCCA secure, then π(k) constructs a secure channel
•−→• from the resource (−→ ‖ • ‖ •) .

Especially if a secret-key encryption scheme π = (π1, π2) is (ε, qe, qd, t)-secure in
the sense of EF-RCCA, then π constructs a secure channel •−→• with error ε from
the resource (−→ ‖ • ‖ •) for the distinguisher class A(qe,qd,t) and the converter
class Σt′ where A(qe,qd,t) is the class of all distinguishers making at most qe queries
at the A-interface and at most qd queries at the E-interface.

Proof. Let π be a secret-key encryption scheme that is (ε, qe, qd, t)-secure in
the sense of EF-RCCA, namely that ΦA(qe ,qd ,t)(SEF

RCCA(π)) ≤ ε. Let σ further
be the simulator working as follows:

initialize
K ∈R K
round← 1
initialize empty map M :M→N
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on input |m| at inner interface do
generate m′ ∈R M with |m′| = |m|
M[m′]← round
c← π1(K, m′)
round← round + 1
output c at outer interface

on input c′ at outer interface do
m← π2(K, c′)
if M[m] is set then

output [‘forward’, M[m]] at the inner interface
else

output [‘delete’] at the inner interface

The number t′ is defined as the computation steps σ makes at most and
thus σ ∈ Σt′ . We note that σ only generates random messages, encrypts
messages and executes some set operations in the order of the number of
queries. Thus, t′ is efficient with respect to any security parameter k in a
reasonable computational (as we assumed it) if the number of queries is
efficient in k.

Towards a contradiction, we assume πA
1 πB

2 (−→ ‖ • ‖ •) does not construct a
secure channel, and let thus D be a distinguisher making at most qe queries
at the A-interface, qd queries at the E-interface and making at most t com-
putation steps that can distinguish the constructed channel and the ideal,
secure channel with the above defined simulator σ with advantage greater
than ε:

∆D
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(•−→•)
)

> ε

We show that one can construct a converter C so that the bit-guessing variant
of the composition DC according to Definition 4.8 results in an unforgeabil-
ity game adversary (DC)+ with advantage greater than ε.

Converter C works as follows:

on input m at the outer A-subinterface do
output [’encrypt’, m] at the inner interface
get input [’encrypted’, c] at inner interface
output c at the outer E-subinterface

on input c′ at the outer E-subinterface do
output [’decrypt’, c′] at the inner interface
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if get input [’won’, m′, b] then
if b = 0 then

output m′ at the outer B-subinterface
else

output ⊥ at the outer B-subinterface
else

get input [’decrypted’, m′]
output m′ at the outer B-subinterface

We see that the composition (DC)+ makes at most qe encryption and qd
decryption queries. The overhead in terms of computation steps imposed
by C can be ignored as C only forwards queries and thus the composition
makes at most t computation steps.

In the following, we let SEF
RCCA−0(π) and SEF

RCCA−1(π) be the two conditioned
systems of the EF-RCCA game according to Definition 4.3, the first being
the EF-RCCA game always encrypting the real message in the encryption
queries, and the second being the analogous one always encrypting a ran-
dom message.

Comparing the two systems CSEF
RCCA−0(π) and πA

1 πB
2 (−→ ‖ • ‖ •), we see

that the distribution of the outputs is always the same. Inputs at the A-
interface are answered by the encryption of the input and inputs at the
E-interface are answered by the message to which the input ciphertext de-
crypts. Thus, the two systems are equivalent,

CSEF
RCCA−0(π) ≡ πA

1 πB
2 (−→ ‖ • ‖ •). (4.11)

Comparing the two systems CSEF
RCCA−1(π) and σE(•−→•), we can state the

same result, namely that the output distribution of the two systems is iden-
tical and that the systems are equivalent. Queries at the A-interface are
answered in both cases with the encryption of a random equal-length mes-
sage. For queries at the E-interface, we distinguish between the case where
the input ciphertext corresponds to a random message used in a previous
encryption or to a different message. In the first case, the game returns the
respective random message and converter C replaces the random message
by the corresponding real message. In the channel system, the simulator
decrypts the random message and tells the channel to forward the corre-
sponding message. In this case, the output behavior is thus the same in
both systems. In the latter case, where the encryption of a different mes-
sage is input, the game returns this message along with the bit 1, and the
converter C replaces this answer by a ⊥-symbol. In the channel system, the
same effect can be observed as the simulator tells the channel to delete the
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message resulting in a ⊥-symbol at the B-interface. Thus,

CSEF
RCCA−1(π) ≡ σE(•−→•). (4.12)

Using Lemma 4.9 and the equivalence relations (4.11) and 4.12), we get an
advantage for (DC)+ of,

Φ(DC)+
(SEF

RCCA(π)) = ∆((DC)+)†
(SEF

RCCA−0(π), SEF
RCCA−0(π))

= ∆DC(SEF
RCCA−0(π), SEF

RCCA−0(π))

= ∆D(CSEF
RCCA−0(π), CSEF

RCCA−0(π))

= ∆D(πA
1 πB

2 (−→ ‖ • ‖ •), σE(•−→•)) > ε.

As this contradicts our assumption that π is (ε, qe, qd, t)-secure in the sense of
EF-RCCA, we conclude that such a distinguisher D cannot exist and thus π
does indeed construct a secure channel •−→• with error ε from the resource
(−→ ‖ • ‖ •). The asymptotic statement follows directly. �

Theorem 4.28 (Secure channel •−→• ⇒ EF-RCCA). If a secrect-key encryp-
tion scheme family π(k) constructs a secure channel •−→• from (−→ ‖ • ‖ •),
then π(k) is EF-RCCA secure.

Especially if the secret-key encryption scheme π constructs a secure channel •−→•
from (−→ ‖ • ‖ •) with error ε for the distinguisher class A(qA,qE,t) of all distin-
guishers making at most qA, qE queries at the respective interface and at most t
computation steps, and for the converter class Σt′′ , then π is ( 2ε, qA, qE, t − t′)-
secure in the sense of EF-RCCA where t′ captures some efficiently implementable
computation steps.

Proof. Let π be an encryption scheme constructing a secure channel from
(−→ ‖ • ‖ •) with error ε, formally

∃ σ ∈ Σt′′ : ∆A(qA ,qE ,t)(πA
1 πB

2 (−→ ‖ • ‖ •), σE •−→•) ≤ ε.

Let A further be an EF-RCCA adversary with advantage ΦA(SEF
RCCA(π)) >

2ε, making at most qA encryption, qE decryption queries and at most t− t′

computation steps.

Towards a contradiction, we show that we can construct a converter C so that
the combined system AC results in a distinguisher with advantage greater
than ε distinguishing the above two channels.

Converter C works as follows:

initialize
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generate b ∈R {0, 1}
initialize S← ∅
initialize empty map M :M→M

on input Xi = [’encrypt’, m] at outer interface do
if b = 0 then

m′ ← m
else

generate m′ ∈R M with |m′| = |m|
M[m′]← m

S← S ∪ {m′}
output m′ at the inner A-subinterface
get input c at inner E-subinterface
output Yi = [’encrypted’, c] at outer interface

on input Xi = [’decrypt’, c′] at outer interface do
output c′ at inner E-subinterface
get input m′ at inner B-subinterface
if m′ = ⊥ then

output Yi = [’decrypted’,⊥] at outer interface
elseif m′ /∈ S then

output Yi = [’won’, m′, b] at outer interface
elseif b = 1 then

output Yi = [’decrypted’, M[m′]] at outer interface
else

output Yi = [’decrypted’, m′] at outer interface

on first input Xi = [’guess’, d] at outer interface do
if b = d then

output W = 1 as distinguisher guess
else

output W = 0 as distinguisher guess
output Yi = [’guessed’] at outer interface

Analyzing the composed system AC, we see that it makes at most qA queries
at the A-interface, qE queries at the E-interface. We further define t′ =
t′(qe, qd) to be the number of computation steps needed by C consisting
of the generation of random messages in the order of qe and maintaining
the map M and the set S in the order of qe + qd. Thus AC makes at most
t− t′ + t′ = t

Comparing the game SEF
RCCA(π) and the composed system CπA

1 πB
2 (−→ ‖ • ‖ •

), we see that both encryption and decryption queries are handled in the
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same way, which results in an identical output distribution: Either the input
message is encrypted and inserted into the set S, or a random message is
encrypted and inserted into the set. The choice of the variant is based on
a secret bit b that is chosen uniformly at random in either system. If, in a
decryption query, the ciphertext is valid and does not decrypt to a message
in S, this is considered a forgery and credited by outputting the secret bit b
in both systems. Invalid ciphertexts are answered trivially in the same way,
and for a decryption query with a ciphertext decrypting to a message in the
set S, the corresponding input message (stored in map M in the random
case) is returned in both systems. We conclude that the two systems are
equivalent with respect to encryption and decryption queries. Comparing
the behavior on an input of a guess query with the bit d, we note that the
game is won if d = b and not won otherwise, and in the composed system,
the distinguisher output W = 1 if d = b and W = 0 otherwise. We conclude
that winning the game corresponds exactly to a distinguisher output W = 1
in the composed system and thus,

PACπA
1 πB

2 (−→‖•
‖

•)(W = 1) = ΓA(SEF
RCCA(π)). (4.13)

We further analyze the system C σ′E(•−→•) with an arbitrary simulator σ′ by
inspecting the dependency of the output on the bit b chosen by the converter
at random during initialization.

1. ’encrypt’-query: The real message m is input into the channel in the
case of b = 0, a random message m′ otherwise, so the input depends
on the bit b. But as the channel •−→• does per definition not leak any
information about the input message to the simulator, except length
of the message, and as we have the condition that |m| = |m′| upon
generation of m′, the input of the simulator is independent of b and
the output of the simulator is independent of b.

2. ’decrypt’-query: A simulator only has the possibilities to tell the chan-
nel to replay a message from the history—in this case the correspond-
ing real message is output by the converter as the decryption result,
independent of the bit b— or the channel is told to delete the message
where the output is a ⊥-symbol trivially independent of b. Since all in-
puts to the simulator are independent of b, we come to the conclusion
that the output to any decryption query is independent of the bit b.

We conclude that with any simulator σ′ (constrained to any bound t′′ on the
number of computation steps), any adversary A′ sees equally distributed
output—for both values of b—interacting with the system C σ′E(•−→•),
thus the adversary must guess a secret bit chosen uniformly at random and
guesses correctly with probability 1

2 . In particular, this holds for adversary
A,

∀ σ′ : ΓA(C σ′E(•−→•)) =
1
2

. (4.14)
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Combining (4.13) and (4.14), the advantage of AC can be bounded by

∀ σ′ : ∆AC(πA
1 πB

2 (−→ ‖ • ‖ •), σ′E •−→•)

=
∣∣∣PACπA

1 πB
2 (−→‖•

‖

•)(W = 1)− PACσ′E•−→•(W = 1)
∣∣∣

=
∣∣∣∣ΓA(SEF

RCCA(π))− 1
2

∣∣∣∣
=

1
2
·ΦA(SEF

RCCA(π)) > ε.

Since AC has advantage greater than ε for any simulator σ′, the existence of
such an adversary A contradicts our assumption that π constructs a secure
channel •−→• with error ε from (−→ ‖ • ‖ •). Therefore, no such adversary
A can exist and π must be ( 2ε, qA, qE, t− t′)-secure in the sense of EF-RCCA.
The asymptotic statement follows directly. �

4.5 A Pure Confidentiality Notion

In Section 4.2, the need for a general attack model that also account for
arbitrary malleability characteristics of encryption schemes was motivated:
The traditional attack models do not account for a message-history depen-
dent malleability and allow trivial attacks for schemes allowing this type of
malleability. Thus a general model is needed both for notions that capture
the security of such schemes as well as for a notion capturing “pure” confi-
dentiality. The definition of a pure confidentiality notion is introduced here
along with the formalization of the new general attack model.

Using the idea of real-or-random based games, oracle queries are either
answered by a normal encryption and decryption in the “real” case, or in the
“random” case by simulating the encryption and decryption (this simulation
can and will strongly depend on the specific scheme).

4.5.1 Capturing Confidentiality in a Game

The intuition behind the formalization is as follows: Confidential communi-
cation does not leak any information about sent messages (except for their
length) and allows an arbitrary malleability. Ciphertexts thus must be in-
distinguishable from simulated ciphertexts that only depend on the length
of the message to encrypt. This is formalized by a pair of functions f1 and
f2 where f1 handles the generation of ciphertexts and f2 handles the simu-
lation of decryption. Since simulated encryption and decryption both can
be probabilistic and share information (e.g a key), the functions f1 and f2
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have a shared state s that potentially includes randomness. To formalize
the property that the encryption scheme is confidential (i.e. leaks no infor-
mation about the encrypted messages except for possibly their length), the
function f1 is restricted to produce outputs that may depend on the length
of the input messages, but these outputs must be independent of the values
of these messages.

Definition 4.29 (Confidentiality game). Let π = (π1, π2) be a secret-key en-
cryption scheme according to Definition 3.7, f1 be an efficiently computable func-
tion taking as input state information s and a message mi, outputting state infor-
mation s′ and a ciphertext ci. Let f2 be another efficiently computable function
taking as argument state information s̃ and a ciphertext c′i, outputting state in-
formation s̃′ and a message m′i ∈ (M ∪̇ {⊥}). Ciphertexts output by the func-
tion f1 must only depend on length of previous input messages, on previous ci-
phertexts output by f1, and on previous ciphertexts input into f2. Let S0 be a
set of initial state information and SCONF(π, f1, f2, S0) be a bit-guessing game
according to Definition 4.3, called confidentiality game, with the following in-
put/output behavior: SCONF(π, f1, f2, S0) has input variables Xi ∈ [{′encrypt′}×
M] ∪̇ [{′decrypt′} × C] ∪̇ [{′guess′} × {0, 1}] as well as the output variables
Yi ∈ [{′encrypted′} × C] ∪̇ [{′decrypted′} × (M ∪̇ {⊥})] ∪̇ [{′guessed′}] and
the MBO. SCONF(π, f1, f2, S0) works as follows:

initialize
generate the bit b ∈R {0, 1}
generate key K ∈R K
initialize state information s ∈R S0

on input Xi = [’encrypt’, mi] do
if b = 0 then

output Yi = [’encrypted’, π1(K, mi)]
else

(s, ci)← f1(s, mi)
output Yi = [’encrypted’, ci]

on input Xi = [’decrypt’, c′i] do
if b = 0 then

output Yi = [’decrypted’, π2(K, c′i)]
else

(s, m′i)← f2(s, c′i)
output Yi = [’decrypted’, m′i]

on first input Xi = [’guess’, d] do
Ai ← Ai−1 ∨ (b = d)
output Yi = [’guessed’]
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Inputs of type Xi = [’encrypt’, m] are called encryption queries and those of type
Xi = [’decrypt’, c′] decryption queries.

Definition 4.30 (Confidentiality). We say a secret-key encryption scheme π ac-
cording to Definition 3.7 is (ε, qe, qd, t)-confidential if there exist functions f1 and
f2 and a set S0 according to the definition of the Confidentiality game, such that

ΦA(qe ,qd ,t)(SCONF(π, f1, f2, S0)) ≤ ε,

with qe being the number of encryption queries and qd denoting the number of
decryption queries.

We say that the secret-key encryption scheme family π(k) is confidential if, for all
k, π(k) is (ε, qe, qd, t)-secure in the sense of Confidentiality and qe, qd and t are
efficient in k and ε is negligible in k.

4.5.2 Equivalence to the Construction of a Confidential Channel

To show that the introduced game indeed captures confidentiality, it is
shown that a scheme is secure in the sense of Confidentiality if and only
if it constructs a confidential channel from an insecure channel and a shared
secret key.

Lemma 4.31 (Confidentiality⇒ Confidential channel −→•). If a secret-key
encryption scheme family π(k) is confidential, then π(k) constructs a confidential
channel −→• from the resource (−→ ‖ • ‖ •).

Especially if a secret-key encryption scheme π = (π1, π2) is (ε, qe, qd, t)-confidential,
then the encryption scheme π constructs a confidential channel −→• from the re-
source (−→ ‖ • ‖ •) with error ε, namely there exists a simulator σ in Σ0 such that
∆A(qe ,qd ,t)

(
πA

1 πB
2 (−→ ‖ • ‖ •), σE(−→•)

)
≤ ε where A(qe,qd,t) is the class of all dis-

tinguishers making at most qe queries at the A-interface and at most qd queries at
the E-interface.

Proof. Let π be a secret-key encryption scheme that is (ε, qe, qd, t)-confidential,
namely there exist efficiently computable functions f1 and f2 and a set S0 ac-
cording to the game definition, such that ΦA(qe ,qd ,t)(SCONF(π, f1, f2, S0)) ≤ ε.

Let −→• be the following confidential channel based on the functions f1, f2
and the set S0 from above: Transformations that are input at the E-interface
are specified by ciphertexts c′i ∈ C and evaluated using the function f2 on the
state s. Additionally on inputs mi at the A-interface, the state s is updated by
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using the function f1 on mi. The state of the channel and thus the set of eligi-
ble transformations after i queries, Ai , is specified by the ciphertext history
output by f1 and the ciphertext history input to f2. Thus, on input Xi = mi at
the A-interface, Ai is specified implicitly by Ai−1 (consisting of the previous
ciphertext history) and explicitly by a ciphertext ci (that is output in round i
by f1). Note that this definition of the sets of eligible transformations is com-
patible with the definition since the sets only depend on the length of the
messages, the previous sets and the chosen transformations. We summarize
the characterization of −→• as follows:

initialize
initialize state information s ∈R S0

on input Xi = mi at A-interface do
(s, ci)← f1(s, mi)

output |mi| and ci as specification of Ai at E-interface

on input Xi = [‘modify’, c′i] at E-interface do
(s, m′i)← f2(s, c′i)
output Yi = m′i at B-interface

We further define the simulator σ as follows:

on input Xi = (li, ci) at inner interface do
output Yi = ci at outer interface

on input Xi = c′i at outer interface do
output [‘modify’, c′i] at inner interface

Since σ only forwards messages, it makes no computation steps and thus
σ ∈ Σ0. The definition of the simulator σ is sound with respect to the
channel −→• since it only outputs ciphertexts that are in the set of eligible
transformations defined above.

Let D be a distinguisher making at most qe queries at the A-interface, at
most qd queries at the E-interface, making at most t computation steps and
having a distinguishing advantage greater than ε for distinguishing the two
channels πA

1 πB
2 (−→ ‖ • ‖ •) and σE(−→•):

∆D
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)
)

> ε
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Let adversary D+ be the bit-guessing game adversary variant of distin-
guisher D from Definition 4.8. We now construct a converter C that when
composed with adversary D+ results in a Confidentiality adversary D+C.

Converter C works as follows:

on input m at A-interface do
output [’encrypt’, m] at the inner interface
get input [’encryption’, c] at inner interface
output c at the outer E-interface

on input c′ at E-interface do
output [’decrypt’, c′] at the inner interface
get input [’decrypted’, m′] at inner interface
output m′ at the outer B-interface

on input [’guess’, b] at the outer interface do
forward the query and the response

As the converter C essentially just forwards queries, D+C makes the same
number of queries and computation steps as D.

As a converter that only forwards guess queries such as C can be connected
to both game winner and distinguisher without affecting the “rerouting” of
the guess query, the following equivalence holds,

(D+C)† ≡ (D+)†C ≡ DC. (4.15)

Let SCONF−0(π, f1, f2, S0) and SCONF−1(π, f1, f2, S0) be the two conditional
games of the Confidentiality game as per Definition 4.3, the first being the
Confidentiality game encrypting always the real message, and the second
being the analogous one applying the functions f1 and f2 for the respective
queries.

Comparing CSCONF−0(π, f1, f2, S0) and πA
1 πB

2 (−→ ‖ • ‖ •), we see that the
output on queries at the A-interface is distributed identically as the input
message is encrypted using a random key K. The output on queries to the
E-interface is distributed identically, since the input ciphertext is decrypted
using the same key K as in encryption. Thus the two systems are equivalent:

CSCONF−0(π, f1, f2, S0) ≡ πA
1 πB

2 (−→ ‖ • ‖ •). (4.16)

Comparing the system CSCONF−1(π, f1, f2, S0) with σE(−→•), we again see
that the output on queries at the A-interface as well as the output on queries
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at the E-interface is distributed exactly the same in both systems: The game
as well as the channel maintain a state s and the transformations on that
state are according to the same distribution in both systems. This guarantees
that the input to the functions f1 and f2 is distributed identically, what in
turn implies that the output of the functions is distributed accordingly in
both systems. A query at the A-interface is answered by the output of the
function f1 in both systems. For a query at the E-interface, we see that in
both systems, the function f2 is invoked and the result is the output of the
system. We conclude that all the output is distributed identically and thus,
the two systems are equivalent,

CSCONF−1(π, f1, f2, S0) ≡ σE(−→•). (4.17)

Combining Lemma 4.9 and the equivalences (4.15), (4.16), and (4.17), we get
an advantage for D+C in winning the game SCONF(π, f1, f2, S0) of

ΦD+C(SCONF(π, f1, f2, S0))

= ∆(D+C)†
(SCONF−0(π, f1, f2, S0), SCONF−1(π, f1, f2, S0))

= ∆DC(SCONF−0(π, f1, f2, S0), SCONF−1(π, f1, f2, S0))

= ∆D(CSCONF−0(π, f1, f2, S0), CSCONF−1(π, f1, f2, S0))

= ∆D(πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)) > ε.

As this contradicts our assumption that π is (ε, qe, qd, t)-confidential, we con-
clude that such a distinguisher D cannot exist and thus π does indeed, with
error ε, construct a confidential channel −→• from the resource (−→ ‖ • ‖ •).
The asymptotic statement follows directly. �

For the implication in the other direction, a new type of formalizing dis-
crete systems has to be introduced that is equivalent to the random system
formalization.

So far, we characterized systems as random systems described by condi-
tional probability distributions based on the past inputs and outputs of the
system. In this proof, we need, however, a different formalization of systems,
introduced by Maurer in [25] as an equivalent characterization of systems,
called random automata. This characterization allows to describe a system as
if it would have an internal state: A random automaton has input space X
and output space Y , a space of state information S (consisting of both the
state and the internal randomness), and is defined by a sequence of func-
tions f1, f2, . . . called transition functions, fi : X × S→ Y × S. A transition is
written as (Yi, si) = fi(Xi, si−1) where si is the state information in round i,
and s0 the initial state information with the initialized internal randomness.

This characterization is used to specify the confidential channel and the sim-
ulator in the proof of the following lemma, showing that an encryption
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scheme that constructs a confidential channel is secure in the sense of Confi-
dentiality.

Lemma 4.32 (Confidential channel −→• ⇒ Confidentiality). If a secret-key
encryption scheme family π(k) constructs a confidential channel −→• from the
resource (−→ ‖ • ‖ •), then π(k) is confidential.

Especially if the secret-key encryption scheme π constructs a confidential channel
−→• from (−→ ‖ • ‖ •) with error ε for the distinguisher class A(qA,qE,t) of all
distinguishers making at most qA, qE queries at the respective interface and at most t
computation steps and for the converter class Σt′′ , then π is (ε, qA, qE, t)-confidential.

Proof. Let π be a secret-key encryption scheme constructing a confidential
channel

∗−→• from (−→ ‖ • ‖ •) for the classes A(qA,qE,t) and Σt′′ with error ε,
formally

∃ σ′ ∈ Σt′′ : ∆A(qA ,qE ,t)(πA
1 πB

2 (−→ ‖ • ‖ •), σ′E(
∗−→•)) ≤ ε.

We construct a channel −→• by extending the malleability of
∗−→• with the

transformations corresponding to forwarding, replaying and deleting mes-
sages. The resulting channel apparently still gives the same guarantees since
forwarding, replaying and deleting is always possible in a confidential chan-
nel. By adapting the simulator σ′ such that forward, replay and delete “com-
mands” are replaced by modify “commands” containing the corresponding
transformations, resulting in the simulator σ, we get an equivalent channel
construction σE(−→•):

∆A(qA ,qE ,t)(πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)) ≤ ε.

Note that the adapted simulator still makes the same number of computa-
tion steps.

Recall the introduction of a random automaton from above where a system
is characterized by a set of transition functions operating on the input and
on a state (including randomness). We characterize in the following both
−→• and σ as random automata.

To specify −→• as random automaton, recall the definition of a confidential
channel and note that on input of a message mi at the A-interface, |mi| and
the set of eligible transformations is output at the E-interface. We denote by
g1 the transition function that handles inputs at the A-interface and works
according to the random system specification. Recall further that on input αi
at the E-interface, a message m′i is output at the B-interface. The correspond-
ing transition function is denoted by g4. Let T0 be the set of initial state
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information (fixed initial state plus possible randomness), and thus −→• is
characterized as follows:

initialize
initialize state information t ∈R T0

on input Xi = mi at the A-interface do
(t, |mi|,Ai)← g1(t, mi)
output |mi| and Ai at the E-interface

on input Xi = αi at the E-interface do
(t, m′i)← g4(t, αi)
output m′i at the B-interface

Note that the output of g1 referring to the set of eligible transformations is
defined to only depend on the message lengths, the previous sets of eligible
transformations and the chosen transformations.

The simulator σ can analogously be specified as a random automaton where
S′0 is the set of initial state information, g2 the efficiently computable transi-
tion function for inputs at the inner interface, and g3 is the efficiently com-
putable transition function responsible for inputs at the outer interface:

initialize
initialize state information s′ ∈R S′0

on input Xi = (li,Ai) at inner interface do
(s′, ci)← g2(s′, li,Ai)

output ci at outer interface

on input Xi = c′i at outer interface do
(s′, αi)← g3(s′, c′i)
output [‘modify’, αi] at inner interface

Note that any “good” simulator must have this behavior. A simulator that
does not output a ci at the outer interface on an input at the inner interface or
that does not provide an output at the inner interface on an input at the outer
interface can be transformed into a “good” simulator without decreasing the
advantage of a distinguisher: Since any “real” channel πA

1 πB
2 (−→ ‖ • ‖ •)

has the behavior that on an input at the A-interface, an output at the E-
interface is produced, and similarly for an input at the E-interface, an output
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at the B-interface is produced, a distinguisher can recognize the “misbehav-
ior” of simulator described above in the system σE(−→•) and thus possi-
bly has a larger distinguishing advantage compared to the system with the
“good” simulator.

The specification of the channel and the simulator as random automata
above allowed a separation into functions for the respective inputs. Such
a separation is needed to construct the functions f1 and f2 for the confiden-
tiality game. For this, we define the set of initial state information S0 as
product set of the above two sets of initial state information T0 × S′0. The
functions f1 and f2 are constructed as follows:

function f1((t, s′), m): function f2((t, s′), c′):
(t, |m|,Ael)← g1(t, m) (s′, α)← g3(s′, c′)
(s′, c)← g2(s′, |m|,Ael) (t, m′)← g2(t, α)
return ((t, s′), c) return ((t, s′), m′)

Note that any c output by f1 does only depend on the message lengths
(input |m| of f1), the previous output ciphertexts of f1 and the ciphertexts
previously input to f2. Since the ciphertext c is produced by the function g2
and since the only other external input that c can depend on is Ael (defined
to depend only on the message lengths, the previous sets of eligible transfor-
mations and the chosen transformations), the function f1 does indeed satisfy
this property. Thus the functions f1, f2 and the set S0 are compatible with
the plaintext uncertainty game.

Let A be a Confidentiality adversary for the game (with parameters π, f1, f2
and S0) with advantage ΦA(SCONF(π, f1, f2, S0)) > ε, making at most qA
encryption, qE decryption queries and at most t computation steps.

Towards a contradiction, we show that we can use A to construct a distin-
guisher for πA

1 πB
2 (−→ ‖ • ‖ •) and σE(−→•) with advantage greater than

ε. For this, let C be the converter that just forwards encryption queries
to the A-subinterface of the inner interface and decryption queries to the
E-subinterface of the inner interface.

By a similar argument as in the proof of Lemma 4.31, we get the equivalence:

SCONF−0(π, f1, f2, S0) ≡ C πA
1 πB

2 (−→ ‖ • ‖ •).

For the comparison of the systems SCONF−1(π, f1, f2, S0) and C σE(−→•), we
note that f1 and f2 are constructed exactly such that the two systems are
equivalent: First of all, we note that the initial state informations are initial-
ized accordingly in both systems. Encryption queries are in both systems

78



4.6. Plaintext Uncertainty

handled by applying g1 on the state t and on the input message to get the
message length and the set of eligible transformations. g2 is further applied
on the state s′, the message length and the set of eligible transformations to
get a ciphertext c that is output. Decryption queries are handled accordingly
in both systems as f2 is built exactly such that the game is equivalent to the
converted channel construction for this kind of queries. We conclude that
the two systems are equivalent,

SCONF−1(π, f1, f2, S0) ≡ C σE(−→•).

Using these two equivalences, Lemma 4.9 and (4.1), we get

∆A†C
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)
)

= ∆A†
(

CπA
1 πB

2 (−→ ‖ • ‖ •), CσE(−→•)
)

= ∆A†
(SCONF−0(π, f1, f2, S0), SCONF−1(π, f1, f2, S0))

= Φ(A†)+
(SCONF(π, f1, f2, S0))

= ΦA(SCONF(π, f1, f2, S0)) > ε.

As this contradicts our assumption that π constructs a confidential channel
−→• with error ε from (−→ ‖ • ‖ •), we conclude that such an adversary A
cannot exist and π must be (ε, qA, qE, t)-confidential. The asymptotic state-
ment follows directly. �

4.6 Plaintext Uncertainty

The notion of plaintext-uncertainty is introduced in [19] along with sev-
eral other notions capturing the integrity properties of encryption schemes.
Plaintext-uncertainty aims at capturing an adversary’s inability to create a
ciphertext forgery to which he “knows” the result of decryption. Know-
ing the result of decryption refers to guessing the plaintext (as whole and
not only a part of it, e.g. the last bit). In the formalization given in [19],
several encryption queries can be submitted to an oracle before one single
challenge ciphertext is produced. The game is won if the adversary guesses
the decryption of the challenge ciphertext with “substantial” probability.

4.6.1 Formalization of the Game

Analogously to Section 4.4, the game is extended by a part covering the
confidentiality of the encryption scheme to capture the essential property
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of an encryption scheme. The added “real-or-random” oracle can only be
queried once, similarly to the restriction to the number of challenge queries.

The formalization of the game is almost identical to the one provided for
Confidentiality in the previous section. The difference is that in the plaintext-
uncertainty (PU) version of the game, only one query per type (’encrypt’
and ’decrypt’) are allowed. Additionally, the adversary’s “knowledge” of
the decryption outcome is formalized by a plaintext that is queried along
with the challenge ciphertext. A correct guess of the outcome is credited by
outputting the secret bit b of the confidentiality game.

Definition 4.33 (Plaintext uncertainty game). Let π = (π1, π2) be a secret-
key encryption scheme, let the functions f1 and f2 and the set S0 be defined ac-
cording to Definition 4.29 of the confidentiality game. And let SPU(π, f1, f2, S0)
be a bit-guessing game, called plaintext uncertainty game, with the following in-
put/output behavior: SPU(π, f1, f2, S0) has input variables Xi ∈ [{′encrypt′} ×
M] ∪̇ [{′decrypt′}×C × (M∪̇{⊥})] ∪̇ [{′guess′}×{0, 1}] as well as the output
variables Yi ∈ [{′encrypted′}×C] ∪̇ [{′decrypted′}× (M∪̇{⊥})] ∪̇ [{′won′}×
{0, 1}] ∪̇ [{′guessed′}] and the MBO. SPU(π, f1, f2, S0) works as follows:

initialize
generate the bit b ∈R {0, 1}
generate key K ∈R K
initialize me ← ⊥
initialize state information s ∈R S0

on first input Xi = [’encrypt’, m] do
me ← m
if b = 0 then

output Yi = [’encrypted’, π1(K, m)]
else

(s, c)← f1(s, m)
output Yi = [’encrypted’, c]

on first input Xi = [’decrypt’, c, mguess] do
if b = 0 then

m′ ← π2(K, c′)
else

(s, m′)← f2(s, c′)
if m′ = ⊥ then

output Yi = [’decrypted’,⊥]
elseif m′ 6= me and m′ = mguess then

output Yi = [’won’, b]
else

output Yi = [’decrypted’, m′]
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on first input Xi = [’guess’, d] do
Ai ← Ai−1 ∨ (b = d)
output Yi = [’guessed’]

Definition 4.34 (PU-Confidentiality). We say a secret-key encryption scheme π
according to Definition 3.7 is (ε, t)-secure in the sense of PU-Confidentiality if there
exist functions f1 and f2 and a set S0 according to the definition of the Plaintext
uncertainty game, such that

ΦAt(SPU(π, f1, f2, S0)) ≤ ε.

We say that the secret-key encryption scheme family π(k) is PU-confidential if, for
all k, π(k) is (ε, t)-secure in the sense of PU-Confidentiality and t is efficient in k
and ε is negligible in k.

4.6.2 Capturing the Malleability

The analog of a game that allows only one encryption and decryption query
in the constructive channel-based model is a single-use channel. Thus the
translation of the notion of PU-Confidentiality into a channel-based analog
must result in a single-use confidential channel with a certain type of mal-
leability. Note that the malleability in a single-use confidential channel is
specified by transformations F : (M ∪̇ {⊥}) → (M ∪̇ {⊥}) since the “his-
tory” for the first input at the E-interface can only consist of no message at
all (represented by the symbol ⊥) or the message that was input in the pre-
ceding query at the A-interface. The reason why the ⊥-symbol is included
in the range of the transformation is to allow deleting transformations as
part of the malleability, simplifying the following proofs.

Impossibility of Information-theoretical Definition A first idea to capture
the malleability of a scheme that is secure according to Definition 4.34 is
to allow transformations that have at least some min-entropy. This en-
sures that the probability of every single result of such a transformation is
very unlikely, and thus no adversary can guess the outcome of the trans-
formation and win the game defined above with substantial probability.
The problem however with such an information-theoretical definition of
the transformation-characteristic is that a transformation might not have
information-theoretical min-entropy, but the outcome of the transformation
might still be computationally unpredictable and the game cannot be won.

The following counter-example shows that one indeed has to define the al-
lowed set of transformations in a computational sense by some notion of
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unpredictability: Let π = (π1, π2) be an encryption scheme that is secure in
the sense of PU-Confidentiality according to Definition 4.34 and let f be an
efficiently computable one-way permutation. We construct the encryption
scheme π′ = (π′1, π′2) from the π as follows: We expand the original key
K by an independent second key K2 resulting in a key K‖K2. The encryp-
tion converter π′1 uses the original encryption converter π1, prepends the
bit 0 and appends f (K2). Decryption works as in the original scheme if the
prepended bit is 0. In the case of a prepended 1, π′2 outputs the second key
K2.

The new scheme π′ is still secure in the sense of PU-Confidentiality, oth-
erwise one could break the original scheme or the one-way permutation f .
Considering the type of channel π′ constructs, note that the malleability of a
corresponding confidential channel must allow the output of the key K2 on
an input of the form 1‖c at the E-interface, what refers to a transformation
without any min-entropy (neither information-theoretical or computational
HILL-type according to [4]) since the output can be checked by the already
known f (K2).

Computational Definition The second idea, which is more promising but
less elegant, is to define transformations of the channel to be unpredictable
in a computational sense. To formalize this, a game, called prediction game,
is defined.

Definition 4.35. Let−→• be a single-use confidential channel, and let Spred(−→•)
be a game according to Definition 4.1 called prediction game. Spred(−→•) works
as follows:

initialize
initialize A ← A0

on first input m at A-interface do
input m at A-interface of −→• to get (l,A1)
A ← A1
output A1 at E-interface

on first input (α, mguess), α ∈ A at E-interface do
input α at E-interface of −→• to get m′

if mguess = m′ ∧m′ 6= ⊥∧m′ 6= m then
Ai ← 1

A prediction adversary can submit an (optional) query to the A-interface
and must produce a description α from the set of eligible transformations
of the channel and a guess message mguess to win the game. The prediction
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adversary is successful if his guess is not trivial (“forwarding” or “deleting”)
and if it matches the outcome of the transformation Fα.

A single-use confidential channel is called δ-uncertain against t-predictors if
every prediction adversary bounded to at most t computation steps has at
most a game winning probability of δ for the prediction game.

Definition 4.36. A single-use confidential channel −→• is called δ-uncertain
against t-predictors if

ΓAt(Spred(−→•)) ≤ δ.

An encryption scheme is δ-uncertain against t-predictors if it transforms a single-
use, insecure channel−→ into a single-use, δ-uncertain confidential channel against
t-predictors. A single-use, δ-uncertain confidential channel against t-predictors is

called single-use, plaintext-uncertain confidential channel
PU−→• with respect

to the security parameter k, if δ is negligible in k and t is efficient in k.

In the following, a confidential channel
f1, f2,S0−→• is defined based on functions

f1, f2 and the set S0 according to the PU-game definition that is later used
to show the equivalence of the game-based the security definition and the
construction of a plaintext-uncertain confidential channel.

Definition 4.37. Let the functions f1, f2 and the set S0 be defined according to the
plaintext uncertainty game definition, and let S× C be the domain of the function

f2. Let
f1, f2,S0−→• be the following single-use confidential channel based on the functions

f1, f2 and the set S0 from above where transformations are defined as follows: A
transformation that is input at the E-interface is specified by a value c′ from C
and evaluated using the function f2 on the state s. Additionally on inputs m at
the A-interface, the state s is updated by using the function f1 on m. The state
of the channel and thus the set of eligible transformations A1 after such a query
at the A-interface is specified by the value output by f1. The initial set of eligible
transformations is implicitly given by the set C. We summarize the characterization

of
f1, f2,S0−→• as follows:

initialize
initialize state information s ∈R S0

on first input m at A-interface do
(s, c)← f1(s, m)

output |m| and c as specification of A1 at E-interface

on input [‘modify’, c′] at E-interface do
(s, m′)← f2(s, c′)
output Yi = m′ at B-interface
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4.6.3 Equivalence Results

Using the definition from the previous section and the same proof technique
as in Section 4.5.2, the following two theorems show that an encryption
scheme family is PU-confidential if, and only if, it constructs a single-use,
plaintext-uncertain confidential channel from an insecure channel and a key.

Theorem 4.38. If a secret-key encryption scheme family π(k) is PU-confidential,

then π(k) constructs a single-use, plaintext-uncertain confidential channel
PU−→•

from the resource (−→ ‖ • ‖ •) .

Especially if an encryption scheme π = (π1, π2) is (ε, t)-secure in the sense of PU-
Confidentiality, then π constructs a single-use, 2ε-uncertain confidential channel
−→• against t-predictors with error ε from the resource (−→ ‖ • ‖ •), namely there
exists a simulator σ ∈ Σ0 such that ∆At

(
πA

1 πB
2 (−→ ‖ • ‖ •), σE(−→•)

)
≤ ε

where −→• is a single-use, 2ε-uncertain confidential channel against t-predictors.

Proof. Let π be an encryption scheme that is (ε, t)-secure in the sense of PU-
Confidentiality, i.e. there exist efficiently computable functions f1 and f2 and
a set S0 according to the game definition, such that ΦAt(SPU(π, f1, f2, S0)) ≤
ε.

Let us further consider the confidential channel −→• according to Defini-
tion 4.37 that is parametrized by the functions f1, f2 and the set S0 from
the plaintext uncertainty game, claiming that −→• is 2ε-uncertain against
t-predictors.

We prove the claim by contradiction, assuming that−→• is not a 2ε-uncertain
confidential channel against t-predictors: Let P be a prediction adversary
making at most t computation steps with game winning probability

ΓP(Spred(−→•)) > 2ε.

We show that one can construct a converter C1, such that the composition
PC1 results in a game adversary that wins the plaintext uncertainty game
with advantage greater than ε. Converter C1 works as follows:

on first input m at A-interface do
output [’encrypt’, m] at the inner interface
get input [’encryption’, c] at inner interface
output c at the outer E-interface

on first input (c′, mguess) at E-interface do
output [’decrypt’, c′, mguess] at the inner interface
if get input [’won’, 1] then

output [’guess’, 1] at the inner interface
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else
b′ ∈R {0, 1}
output [’guess’, b′] at the inner interface

We note that PC1 is bound to make at most t computation steps since the
operations of C1 (forwarding of messages and flipping a bit) can be ignored.

Analyzing PC1 with respect to the two conditional games SPU−0(π, f1, f2, S0)
and SPU−1(π, f1, f2, S0), we note that PC1 does not have any advantage in-
teracting with SPU−0(π, f1, f2, S0) since every possible output of the game
results in a guess bit that is chosen uniformly at random. We conclude that
PC1 has winning probability 1

2 ,

ΓPC1(SPU−0(π, f1, f2, S0)) =
1
2

.

For the winning probability of PC1 interacting with SPU−1(π, f1, f2, S0), let
W denote the event that PC1 sees an input of the form [’won’, 1] and thus
wins the game with probability 1. We can thus write the winning probability
as

ΓPC1(SPU−1(π, f1, f2, S0))

= PPC1SPU−1(π, f1, f2,S0)(W) · 1 + (1− PPC1SPU−1(π, f1, f2,S0)(W)) · 1
2

=
1
2
· PPC1SPU−1(π, f1, f2,S0)(W) +

1
2

.

Using similar arguments as in the proof of Lemma 4.31, the prediction game
and the plaintext uncertainty game behave identically on an input at the
A-interface and on an encryption query respectively, and the “decryption
part” is handled accordingly. We conclude that the winning condition in the
prediction game corresponds to the case where W occurs in the plaintext
uncertainty game. Due to the assumption made about P, the adversary PC1
predicts the decryption result of the plaintext uncertainty game (i.e. the
eventW occurs) with probability greater than 2ε. Thus we get

ΓPC1(SPU−1(π, f1, f2, S0)) > ε +
1
2

.

Using Corollary 4.6, the advantage of PC1 is thus

ΦPC1(SPU(π, f1, f2, S0))

=
∣∣∣ ΓPC1(SPU−0(π, f1, f2, S0)) + ΓPC1(SPU−1(π, f1, f2, S0))− 1

∣∣∣
=

∣∣∣∣ ΓPC1(SPU−1(π, f1, f2, S0))−
1
2

∣∣∣∣ ,
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and since ΓPC1(SPU−1(π, f1, f2, S0)) > 1
2 , we get

ΦPC1(SPU(π, f1, f2, S0)) = ΓPC1(SPU−1(π, f1, f2, S0))−
1
2

> ε.

As this contradicts our assumption that π is (ε, t)-secure in the sense of PU-
Confidentiality, such a predictor P cannot exist and thus the channel −→• is
indeed 2ε-uncertain against t-predictors.

Now we define an appropriate simulator σ as follows:

on first input l and c at inner interface do
output c at outer interface

on first input c′ at outer interface do
output [’modify’, c′] at inner interface

We note that σ only forwards queries and is in Σ0.

Let D be a distinguisher making at most t computation steps and having a
distinguishing advantage greater than ε for distinguishing the two channels
πA

1 πB
2 (−→ ‖ • ‖ •) and σE(−→•):

∆D
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)
)

> ε (4.18)

Let adversary D+ be the bit-guessing game adversary variant of distin-
guisher D from Definition 4.8. We now show that one can construct a simple
converter C2 that when composed with adversary D+ results in a Plaintext-
uncertainty-game adversary D+C2.

Converter C2 works as follows:

on first input m at A-interface do
output [’encrypt’, m] at the inner interface
get input [’encryption’, c] at inner interface
output c at the outer E-interface

on first input c′ at E-interface do
output [’decrypt’, c′,⊥] at the inner interface
get input [’decrypted’, m′] at inner interface
output m′ at the outer B-interface

on first input [’guess’, b] at the outer interface do
forward the query and the response
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As the converter C2 essentially just forwards queries, D+C2 trivially makes
the same number of queries and computation steps as D, namely at most t
computation steps.

And as the converter C2 always inputs a ⊥-symbol as its guess, the game
will never provide any output of the form [’won’, b]. The analysis falls down
to the case of breaking confidentiality, and by using similar arguments as in
the proof of Lemma 4.31, we get the two equivalences

C2SPU−0(π, f1, f2, S0) ≡ πA
1 πB

2 (−→ ‖ • ‖ •),

and
C2SPU−1(π, f1, f2, S0) ≡ σE(−→•).

Similarly, the advantage of D+C2 is therefore

ΦD+C2(SPU(π, f1, f2, S0))

= ∆(D+C2)†
(SPU−0(π, f1, f2, S0), SPU−1(π, f1, f2, S0))

= ∆DC2(SPU−0(π, f1, f2, S0), SPU−1(π, f1, f2, S0))

= ∆D(C2SPU−0(π, f1, f2, S0), C2SPU−1(π, f1, f2, S0))

= ∆D
(

πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)
)

> ε.

As this contradicts our assumption that π is (ε, t)-secure in the sense of PU-
Confidentiality, we conclude that such a distinguisher D cannot exist and
thus π does indeed, with error ε, construct a 2ε-uncertain confidential chan-
nel −→• from the resource (−→ ‖ • ‖ •). The asymptotic statement follows
directly. �

Theorem 4.39. If a secret-key encryption scheme family π(k) constructs a plaintext-

uncertain confidential channel
PU−→•, then π(k) is PU-confidential.

Especially if the secret-key encryption scheme π constructs a δ-uncertain confiden-
tial channel −→• against t1-predictors with error ε from (−→ ‖ • ‖ •) for the
distinguisher class At2 and the converter class Σt1−t2 , then π is (ε + 2δ, t2)-secure
in the sense of PU-Confidentiality.

Proof. Let π be an encryption scheme constructing with error ε a δ-uncertain
confidential channel −→• against t1-predictors from (−→ ‖ • ‖ •), formally

∃ σ ∈ Σt1−t2 : ∆At2 (πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)) ≤ ε.

Using the same formalization of a channel and the same arguments as in
the proof of Lemma 4.32, the channel −→• can be described as a random
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automaton with initial state space T0, transition function g1 for an input at
the A-interface and transition function g4 for an input at the E-interface. The
simulator σ can be described analogously by S′0 and transition functions g2
and g3 for the respective input at the inner and outer interface.

Let f1, f2 and S0 further be defined in the same way as in the proof of
Lemma 4.32: S0 := T × S0, f1 and f2 work as follows:

function f1((t, s′), m): function f2((t, s′), c′):
(t, |m|,Ael)← g1(t, m) (s′, α)← g3(s′, c′)
(s′, c)← g2(s′, |m|,Ael) (t, m′)← g2(t, α)
return ((t, s′), c) return ((t, s′), m′)

Note that the functions f1, f2 and the set S0 are compatible with the plaintext
uncertainty game.

Let A be an adversary for the plaintext-uncertainty game with advantage
ΦA(SPU(π, f1, f2, S0)) > ε + 2δ, making at most t2 computation steps.

Towards a contradiction we show that we can construct a converter C such
that the combined system A†C results in a distinguisher with advantage
greater than ε distinguishing the above two channels.

Converter C works as follows:

on first input [’encrypt’, m] at the outer interface do
output m at the inner A-subinterface
get input c at the inner E-subinterface
output [’encryption’, c] at the outer interface

on first input [’decrypt’, c′, mguess] at outer interface do
output c′ at the inner E-subinterface
get input m′ at inner B-subinterface
if m′ 6= ⊥ and m′ = mguess then

output [’won’, 0] at the outer interface
else

output [’decrypted’, m′] at the outer interface

Since C essentially just forwards queries, A†C makes at most t2 computation
steps.

Comparing the two systems SPU−0(π, f1, f2, S0) and C πA
1 πB

2 (−→ ‖ • ‖ •),
we can argue similarly as in the proof of Lemma 4.31 that the two systems
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are equivalent if no decryption outcome is guessed correctly. In the case of
a correct guess, both systems output [’won’, 0] and thus are equivalent also
in this case. Thus,

SPU−0(π, f1, f2, S0) ≡ C πA
1 πB

2 (−→ ‖ • ‖ •). (4.19)

For the comparison of the systems SPU−1(π, f1, f2, S0) and C σE(−→•), we
define the MES B = B0, B1, . . . where the condition Bi is satisfied if no output
Yj, j ≤ i was of the form [’won’, b], b ∈ {0, 1}. Clearly, the two systems
in consideration behave exactly the same way as long as this condition is
satisfied: Encrypt queries are simulated accordingly using the functions g1
and g2, and decryption queries are always answered by a ’decrypted’ output
containing the simulated decryption using the functions g3 and g4. We state
this fact by the following conditional equivalence,

SPU−1(π, f1, f2, S0)|B ≡ (C σE(−→•))|B. (4.20)

We use Lemma 4.9 and the triangle inequality to get

ΦA(SPU(π, f1, f2, S0) = ∆A†
(SPU−0(π, f1, f2, S0), SPU−1(π, f1, f2, S0))

≤ ∆A†
(SPU−0(π, f1, f2, S0), C σE(−→•))

+ ∆A†
(C σE(−→•), SPU−1(π, f1, f2, S0)).

Using the equivalence (4.19), we get

∆A†
(SPU−0(π, f1, f2, S0), C σE(−→•))

= ∆A†
(C πA

1 πB
2 (−→ ‖ • ‖ •), C σE(−→•))

= ∆A†C(πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)).

Applying further Lemma 2.14 and equivalence (4.20), the distinguishing ad-
vantage of A† distinguishing C σE(−→•) and SPU−1(π, f1, f2, S0) is bounded
by

∆A†
(C σE(−→•), SPU−1(π, f1, f2, S0))

≤ ∆A†
(C σE(−→•), SPU−1(π, f1, f2, S0)|B) + PA†C σE(−→•)(B̄)

≤ ∆A†
(C σE(−→•)|B, SPU−1(π, f1, f2, S0)|B)

+ PA† SPU−1(π, f1, f2,S0)(B̄) + PA†C σE(−→•)(B̄)

= PA† SPU−1(π, f1, f2,S0)(B̄) + PA†C σE(−→•)(B̄).

Note that in the system C σE(−→•), an adversary sees [’won’, 0] in the first
round where the condition is no longer satisfied, whereas in the system
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SPU−1(π, f1, f2, S0), the output [’won’, 1] can be observed in this case, but
since C σE(−→•) and SPU−1(π, f1, f2, S0) are equivalent as long as B holds
and since the MES “switches” in both systems on the same condition, namely
when an adversary inputs a correct guess of the decryption outcome, the
probabilities that B̄ eventually holds is the same in both systems.

Using the fact that −→• is a δ-uncertain confidential channel against t1-
predictors, the probability PA†C σE(−→•)(B̄) can be bounded by δ, otherwise
A†C2(σ) would be a t1-predictor that wins the prediction game with proba-
bility greater than δ and thus breaks the δ-uncertain property of the channel:
The converter C2 forwards an encryption query to the A-interface and in-
puts the response at the inner interface of the simulator σ. The output of the
simulator is forwarded back to the adversary. On a decryption output, the
ciphertext is input at the outer interface of σ to get α, consecutively the α
and the message of the decryption query is output at the E-interface. Note
that A†C2(σ) is indeed a t1 predictor since A makes at most t2 computation
steps and C2(σ) is bound to t1− t2 computation steps. And since the output
to an encryption query is distributed identically from the viewpoint of A†

in the game setting as well as in the channel setting, any decryption query
output is distributed accordingly. And since the condition B̄ is equivalent
to the game winning condition, the probability can indeed be bound by the
game winning probability that is assumed for any t1-predictor:

PA†C σE(−→•)(B̄) ≤ δ.

We conclude that

ΦA(SPU(π, f1, f2, S0) ≤ ∆A†C(πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)) + 2δ,

and thus by rearranging the inequality, we get for the distinguishing advan-
tage of A†C,

∆A†C(πA
1 πB

2 (−→ ‖ • ‖ •), σE(−→•)) ≥ ΦA(SPU(π, f1, f2, S0)− 2δ

> ε + 2δ− 2δ = ε.

As this contradicts our assumption that π constructs a δ-uncertain confiden-
tial channel −→• against t1-predictors with error ε from (−→ ‖ • ‖ •), no
such adversary A can exist and π must be (ε + 2δ, t2)-secure in the sense of
PU-Confidentiality. The asymptotic statement follows directly. �

4.6.4 Chosen Plaintext Forgery

A notion closely related to plaintext uncertainty (PU) is chosen plaintext
forgery. To notion is also introduced in [19] and captures the inability of
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an adversary to create a ciphertext forgery decrypting to a message that is
chosen and fixed before the game starts. Tough it may seem that the two
notions are very similar, they are strictly separated as the following counter-
example shows: Consider an encryption scheme that is secure in the sense
of chosen plaintext forgery (CPF). From this scheme, one can construct a
scheme that is still secure in the sense of CPF but is clearly not PU-secure.
The encryption of the new scheme takes the generates the ciphertext accord-
ing to the base scheme and appends a message chosen at random and its
encryption. Clearly an adversary can use this information in the PU game
to submit a correct guess since he “knows” the outcome of decryption. In
any CPF, where the message to which a forgery must be presented is chosen
at the beginning, the probability that exactly the fixed message is “revealed”
in encryption is negligible if the message space is large enough.

Since the notion of chosen plaintext forgery is thus strictly weaker than plain-
text uncertainty, the formalization is skipped and only described informally.

Similarly to the malleability definition of plaintext uncertainty, a game has
to be defined based on a confidential channel. That game is parametrized
by a message m and the game is won if m is not input into the channel but
a transformation is input resulting in the message m. A channel is defined
to be chosen-plaintext unforgeable, if for any message the game cannot be
won with substantial probability.
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Chapter 5

Encryption with Redundancy

In the authenticate-then-encrypt paradigm (AtE) an authentication scheme
is applied in a first step to authenticate a message, and consecutively an en-
cryption scheme is used to encrypt the authenticated message. An interest-
ing question in this context is, if even weaker types of authentication mech-
anisms suffice to provide security for the composed scheme. An and Bel-
lare [2] study the authenticate-then-encrypt paradigm towards these ques-
tion in a more general way: They do not restrict their focus on authentica-
tion mechanisms that employ a shared secret key, but also consider simple
“redundancy functions” that are publicly known and can be computed by
any party. The motivation to study even such weaker authentication mecha-
nisms is that a sufficient strong encryption scheme might protect the added
redundancy such that the combined scheme provides the needed authentic-
ity guarantees.

In the following we denote by AtE the paradigm where the used authentica-
tion scheme uses a secret parameter for authentication and verification (i.e. a
shared secret key). The paradigm to use a keyless authentication mechanism
(e.g. a public redundancy code) is denoted by encryption-with-redundancy
(EwR).

In [2, Theorem 4.2], the traditional game-based notions of IND-CPA, NM-
CPA and IND-CCA are examined if they provide some form of protection for
the underlying authentication mechanism. It is shown that these notions do
not provide enough protection for any EwR composition to be sound and the
result is taken as “powerful indication that the intuition that privacy helps
provide integrity via encryption-with-redundancy is wrong” [2, Page 4].

In contrast to the statement above, I propose a restricted type of malleability
rendering the EwR paradigm secure with only minimal requirements for the
redundancy function. To show that the EwR paradigm has in fact a right to
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exist and is interesting to be considered, it is shown that a practical scheme
called bidirectional IGE conforms with the given type of malleability and a
construction in the sense of EwR is in fact possible.

5.1 Definition of the Malleability

In a first step, a general definition of “adding redundancy to a message” is
given in the form of the redundancy protocol. A useful constraint that can
be made to such a protocol is that intuitively it adds the same amount of
redundancy to every message. This property is called equal-length-preserving
and formalized by requiring that two equal length messages retain equal
length even after the redundancy is added by the protocol.

Definition 5.1. A redundancy protocol ρ = (ρ1, ρ2) with domain space M
and range space M′ is a protocol consisting of an injective converter ρ1 with
input spaceM and output spaceM′ and its inverse converter ρ2:

∀m ∈ M : ρ2(ρ1(m)) = m.

The converter ρ2 is defined to output the symbol ⊥ /∈ M on inputs not inM′. The
protocol ρ transforms a channel with message spaceM′′ ⊇M′ into a channel with
message spaceM.

A redundancy protocol ρ = (ρ1, ρ2) is called equal-length-preserving, if for any
messages m1, m2 ∈ M with |m1| = |m2|, it holds that |ρ1(m1)| = |ρ1(m2)|.

A redundancy protocol family, denoted shortly by ρ(k), is a family of redundancy
protocols parametrized by the security parameter k, {ρ(k)}k∈N.

The authenticity property of such a protocol is very weak and comes from
the fact that only messages from the range space and not from the whole
message space are considered as valid. A confidential channel intuitively
protects this authenticity property if it does not allow an adversary to ap-
ply a transformation resulting in a valid “redundant message”, namely a
message in M′. A confidential channel gives sufficient protection if trans-
formations resulting in M′ are not possible. The following proposition of
a type of malleability, called λ-subset-unlikely, is slightly weaker and allows
only transformations whose outcome is inM′ with at most probability λ.

Definition 5.2. A transformation Fα : M′′∗ ×M′′∗ → M′′ is called λ-subset-
unlikely for the subsetM′ ⊆M′′, if for any message history M1 ∈ M′∗, M2 ∈
M′∗, the probability that the result of the transformation is in the setM′ is bounded
by λ,

P(Fα(M1, M2) ∈ M′) ≤ λ.
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The corresponding confidential channel is alike called λ-subset-unlikely and
only allows transformations that are of the above defined form. If in an
asymptotic model, λ is negligible, the channel is called subset-blurring.

Definition 5.3. A confidential channel −→• with message space M′′ and mal-
leability F = ({Fα}α∈A, {Aq}q∈N) is called λ-subset-unlikely for the subset
M′ ⊆ M′′, if all α ∈ A correspond to λ-subset-unlikely transformations for the
subsetM′ ⊆M′′.

A λ-subset-unlikely confidential channel −→• for the subset M′ ⊆ M′′ is called
subset-blurring with respect to a security parameter k for the subset M′ ⊆
M′′, denoted by

$$−→•, if λ is negligible in k.

5.2 Soundness of Encryption-with-Redundancy

In the following, it is shown that a subset-blurring confidential channel and
an equal-length-preserving redundancy protocol are sufficient for the EwR
composition paradigm to be sound, i.e. that the resulting composition con-
structs a secure channel.

Theorem 5.4. Any equal-length-preserving redundancy protocol family ρ(k) with
domain space M and range space M′ according to Definition 5.1 constructs a
secure channel •−→• with message space M from a subset-blurring confidential

channel
$$−→• for the subsetM′ ∈ M′′.

Especially, any equal-length-preserving redundancy protocol ρ with domain space
M and range spaceM′ constructs a secure channel •−→• with message spaceM
from a λ-subset-unlikely confidential channel −→• for the subsetM′ ⊆ M′′ with
error qE · λ for the distinguisher class AqA,qE,t and converter class Σt′ .

Proof. Let −→• be a λ-subset-unlikely confidential channel for the subset
M′ ⊆ M′′ with malleability F = ({Fα}α∈A, {Aq}q∈N). Note that any trans-
formation Fα, α ∈ A is efficiently implementable and λ-subset-unlikely for
the subsetM′ ⊆M′′.

Let ρ = (ρ1, ρ2) be an equal-length-preserving redundancy protocol. And
let σ be the following simulator: σ simulates the constructed channel Rs :=
ρA

1 ρB
2 (−→•) and works as follows:

on input Xi = li at inner interface do
choose m′i ∈ M with |m′i| = li
input m′i at A-interface of Rs to get l′i and Ai
output l′i and Ai at outer interface

on input Xi = [‘forward’, j] at outer interface do
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output [‘forward’, j] at inner interface
on input Xi = [‘delete’] at outer interface do

output [‘delete’] at inner interface
on input Xi = [‘modify’, α] at outer interface do

input [‘modify’, α] at E-interface of Rs
output [‘delete’] at inner interface

on input Xi = [‘replay’, j] at outer interface do
output [‘delete’, j] at inner interface

We define t′ to be the number of computation steps that σ makes at most,
capturing the simulation of the channel Rs, forwarding queries, and the
generation of a message. We argue that t′ is efficient in any reasonable
model since Rs must be efficient in such a model.

We now compare the two channels R := ρA
1 ρB

2 (−→•) and S := σE(•−→•):
Note that on an input mi at the A-interface, the output of the two systems
at the E-interface is distributed identically if the previous input/output was
distributed accordingly: R outputs l′i := |ρ1(mi)| along with the set of eligi-
ble transformations. In S, σ simulates Rs on an input of the message m′i that
has the same length as mi. Since ρ is equal-length-preserving, the simulation
outputs exactly l′i . And since the set of eligible transformations depends only
on the message lengths, the previous sets and the chosen transformations,
all known to the simulated channel Rs, the set of eligible transformation Ai
that is output by the simulation has the same distribution as the output of
the real channel.

For the analysis of the output at the B-interface of the two systems, let
B = B1, B2, . . . denote the MES with Bi being the event that for any input of
the form [‘modify’, α] at the E-interface in all previous rounds j, j ≤ i, the out-
put at the B-interface was ⊥. Now we claim that the following conditional
equivalence holds:

R|B ≡ S. (5.1)

The output of the systems on forwarding and deleting inputs at the E-
interface are distributed identically if all previous inputs/outputs were. Re-
playing inputs are answered in both systems by a ⊥-symbol: In the first
system, every previously chosen transformation resulted in ⊥ due to the
condition B, and thus only ⊥ can be replayed. In the second system, the
simulator always deletes the message resulting similarly in ⊥. For a modify
query, R|B always outputs ⊥ at the B-interface due to the condition B. In S,
exactly the same behavior can be observed as the simulator transforms any
modify query into a delete query to the channel, resulting also in a ⊥ sym-
bol at the B-interface. We conclude that every query preserves the equality
of the output distribution of the two systems and thus the above equivalence
holds.
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Applying Lemma 2.14 with (5.1), we get for any distinguisher D ∈ AqA,qE,t,

∆D(R, S) ≤ PDR(B̄).

Consecutively, we want to show that the probability that eventually B̄ holds
in DR is bounded by qE · λ. Note that for any message m′ ∈ M′′, ρ2 outputs
⊥ except if m′ ∈ M′. And since −→• is defined such that any transfor-
mation is λ-subset-unlikely, the probability of any transformation to output
a message in M′ is at most λ. As D makes at most qE queries at the E-
interface and thus at most qE transformations are evaluated, the probability
that eventually a transformation results in a message inM′ and ρ2 presents
an output different from ⊥ is, by using the union bound, at most qE · λ. We
get, as stated in the lemma,

∀D ∈ AqA,qE,t : ∆D(ρA
1 ρB

2 (−→•), σE(•−→•)) ≤ qE · λ. (5.2)

The asymptotic statement for a redundancy protocol family ρ(k) follows
since adversaries are required to be efficient in k and since a subset-blurring

confidential channel
$$−→• is λ-subset-unlikely with λ negligible in k. Thus,

also qE must be efficient in k and qE · λ must be negligible in k. �

5.3 Example Scheme

To give the introduced definition of the subset-blurring confidential channel
and the EwR paradigm a justification for their existence, it is shown that
there exists a practical scheme that meets the definition. As illustration ex-
ample, a scheme analyzed in [19] is taken. The scheme is called bidirectional
infinite garble extension mode (BIGE) and is based on the original infinite gar-
ble extension mode introduced by Campbell [10].

BIGE is based on shared uniform random permutations (URP’s), P : {0, 1}n →
{0, 1}n and operates in two sequential block chaining sequences where the
block length is n bits. The variant of BIGE specified in [19] uses as resources
a channel with message space {0, 1}nl for l ∈ N, and three shared URP’s
P1, P2, P3. Encryption works basically as follows: The base IGE encryption is
used on the message blocks resulting in an intermediate ciphertext. IGE en-
cryption takes iteratively every message block, uses a random permutation
on the bit-wise xor of this block and the previous ciphertext block result-
ing in an intermediate block that is subsequently bit-wisely xored with the
previous message block (as in CBC mode). In a second phase, the process
of IGE encryption is repeated on the intermediate ciphertext, but in reverse
block order.

Formally, encryption of an nl-bit string works as follows:
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bigeenc(m = (m1, . . . , ml)):
generate m0 ∈R {0, 1}n

z0 ← P1(m0)
for i = 1, . . . , l do

zi ← P2(mi ⊕ zi−1)⊕mi−1
c0 ← P1(zl)
for i = 1, . . . , l do

ci ← P3(zl−i ⊕ ci−1)⊕ zl−i+1
return c = (c0, c1, . . . , cl)

Conversely, BIGE decryption of an nl-bit string works as follows:

bigedec(c = (c1, . . . , cm)):
zl ← P−1

1 (c0)
for i = 1, . . . , l do

zl−i ← P−1
3 (ci ⊕ zl−i+1)⊕ ci−1

m0 ← P−1
1 (z0)

for i = 1, . . . , l do
mi ← P−1

2 (zi ⊕mi−1)⊕ zi−1
return m = (m0, m1, . . . , ml)

Note that P1 is used to permute the random IV values, the two other URP’s
are used for the first and the second IGE phase respectively. Since chaining
is symmetric in encryption and decryption, a modification to a ciphertext
propagates (with overwhelming probability) to the end of the intermediate
ciphertext. This results in a modification of the first intermediate cipher-
text block (as the IGE phases work in the opposite directions) and thus the
“error” propagates through the whole message in the second phase. Since
random permutations are used, such an error corresponds to the random-
ization of the message blocks.

For the analysis of the scheme, recall the corresponding arguments of a
similar analysis of the scheme in [19].

Remark 5.5. Consider the situation after an encryption of a message me with nl′

bits resulting in ciphertext ce. A ciphertext c = (c1, . . . , cl) that is distinct from ce is
submitted to decryption. Analogously to the proof of Lemma 6 in [19], the following
sets of blocks are defined: Se is the set of blocks that were previously output by P2
during encryption of the message. The set Sd denotes the set of blocks that are input
to P−1

2 in the current decryption process. Formally, the sets are defined as follows:

Se := {ze
k ⊕me

k−1, 1 ≤ k ≤ l′}
Sd := {zs ⊕ms−1, 1 ≤ s ≤ l}.
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Let us now define the event B meaning that Sd is collision-free (i.e. that |Sd| = l)
and Se ∩ Sd = ∅. According to the proof of Lemma 6 in [19], the probability that
the event B̄ occurs can be bounded by:

P(B̄) ≤ nl′(nl′ − n)
n22n +

nl′(nl′ + n)
n22n+1 +

3(l + 1)nl′

n2n +
3(l + 1)2

2n+1 .

For the following analysis of the channel construction that is achieved by
BIGE, the scenario is simplified to the case of a single-use channel with a
message space that contains bit strings of the fixed length nl, l ∈ N. The
analysis should, however, be transferable to the more general case using
similar arguments, but a more carful study of the collision probabilities.

Using the above bound, the following lemma shows that BIGE constructs
a single-use subset-blurring confidential channel from a single-use insecure
channel and three URP’s.

Lemma 5.6. Let l′ be defined as l′ := l + 1, and let f be a function f : {0, 1}nl−1 →
{0, 1}n that maps n(l − 1)-bit strings to n-bit strings. Then, the encryption proto-
col (bigeenc, bigedec) with block size n constructs a single-use 1

2n -subset-unlikely
confidential channel for the subset {(m, t)|m ∈ {0, 1}n(l−1) ∧ f (m) = t} ⊆
{0, 1}nl , from a single-use insecure channel −→ with message space {0, 1}nl , and
three URP’s P1, P2, P3, for the distinguisher class At and for the converter class Σt′ .
The protocol constructs the channel with error 16l2+1

2n + 2 · δnu where δnu is defined
as follows:

δnu :=
nl′(nl′ − n)

n22n +
nl′(nl′ + n)

n22n+1 +
3(l′ + 1)nl′

n2n +
3(l′ + 1)2

2n+1 .

Proof. Let −→• be a single-use confidential channel with the malleability
F = {Fl} defined as follows: The transformation Fl outputs, for any input
arguments, a uniform random bit string of the length nl. Note that −→•
is indeed 1

2n -subset-unlikely for the subset M′ := {(m, t)|m ∈ {0, 1}n(l−1) ∧
f (m) = t} ⊆ {0, 1}nl since the probability Psubset that a uniform random bit
string of length l is in the subsetM′ is

Psubset =
|M′|
|{0, 1}nl | =

2n(l−1)

2nl =
1
2n .

Let σ be the simulator working as follows:

on first input len = n · l at inner interface do
generate c ∈R {0, 1}len

output c at outer interface
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on first input c′ ∈ {0, 1}nl at outer interface do
if c′ = c then

output [’forward’, 1] at inner interface
else

output [’modify’, l] at inner interface

The quantity t′ is defined as the number of computation steps σ makes at
most, capturing the generation of a random message and forwarding of
messages. Clearly, t′ is an efficient quantity in any reasonable model.

Note that leaking the length and specifying the transformation explicitly is
not necessary, but highlights how an argument could work for the more
general case where arbitrary values of l are considered.

For the following analysis, we use the notation R := bigeencAbigedecB(−→
‖P1‖P2‖P3) and S := σE(−→•) and define additionally a variant of the
real channel where the BIGE converters use some slightly modified URP’s
for encryption and decryption: A system P̄ is constructed from the URP
P such that the system, and also its inverse, outputs, on an input that has
never been input (or output in the case of the inverse) before, a uniform
random bit string (i.e. potentially one that was already output, resulting in
a collision), and on “known” inputs (or outputs for the inverse), it outputs
the same bit string as before. We call such a system in the following modified
URP. Based on this definition, we specify a modified real channel R̄ :=
bigeencAbigedecB(−→ ‖P̄1‖P̄2‖P̄3).

We now define the following MES B = B1, B2, . . . that allows a simpler com-
parison of systems. Bi is defined as the event B from Remark 5.5 if the
input in round i is a an input at the E-interface consisting of a ciphertext
distinct from a (potentially) previously output ciphertext, and as Bi−1 oth-
erwise. Since we study a single-use channel where at most one encryption
and one decryption query is processed, this event is well defined.

Note that a query at the E-interface is answered by the system R̄ conditioned
on B by a uniform random bit string if the ciphertext is distinct from a pre-
viously seen ciphertext (since all inputs to the modified URP’s are distinct
from any previous inputs and thus a random bit string is output) or by the
message that was encrypted previously if an already seen ciphertext is input.
Thus, the output on an input at the E-interface is distributed identically to
the system S where in the first case, a transformation is chosen that outputs
a uniform random bit string of the appropriate length, and in the second
case, the corresponding message is forwarded.

A second MES C = C1, C2, . . . is defined for the comparison of queries at the
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A-interface. The event Ci is defined with respect to the two following sets:1

Td := {zd
l−k ⊕ cd

k−1, 1 ≤ k ≤ l} ∪ {zd
l }

Te := {zl−s ⊕ cs−1, 1 ≤ s ≤ l} ∪ {zl}.

More precisely, Ci holds if in round i a message that is different from a
previous decrypted message (including the hidden IV block) is input at the
A-interface, Te is collision-free and Te ∩ Td = ∅. And Ci is defined as Ci−1
otherwise (i.e. no input at the A-interface in round i or an input that is not
“new”). In addition, the MES D is defined as consisting of events Di that
hold if, up to round i, no “IV-value” (i.e. blocks m0) collide.

Thus, an input at the A-interface to the system R̄ conditioned on C and D
results in a uniform random bit string since the IV is distinct from a previous
IV and thus the message to encrypt as whole is distinct from a previous seen
message, and since the input to the modified URP’s are all distinct from
previous inputs and thus uniform random values are output. This behavior
is identical to the one of the ideal system S, where an input at the A-interface
always results in a uniform random bit string of the appropriate length.

We conclude that the output to both inputs at the A- and E-interface are
distributed identically in the two systems and they are thus equivalent,

R̄|B ∧ C ∧ D ≡ S.

For the comparison of the modified real system and the real system, the
MES E is defined as sequence of events Ei where Ei holds if, up to round i,
all the outputs of the modified URP’s do not collide. Clearly the modified
URP’s, conditioned on E , behave identically to the original ones, and thus

R ≡ R̄|E .

Using the triangle inequality and Lemma 2.14, we get for any distinguisher
D ∈ At

∆D(R, S) ≤ ∆D(R, R̄) + ∆D(R̄, S)

≤ PDR̄(Ē) + PDR̄(B̄ ∨ C̄ ∨ D̄)

≤ PDR̄(Ē) + PDR̄(B̄) + PDR̄(C̄) + PDR̄(D̄).

For the probability of a collision in the modified real system, we note that
after at most one encryption and one decryption, there were at most 4 · l
invocations of a modified URP’s, and thus

PDR̄(Ē) ≤ 1
2
· (4l)2 · 1

2n =
8l2

2n .
1Note that the sets contain one more element than the sets defined in the remark. This

is due to the fact, that in encryption c0 is output whereas m0 is not output in decryption.
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5. Encryption with Redundancy

The probabilities for B̄ and C̄ to occur are bounded using Remark 5.5 (i.e.
the analysis used in the proof of [19, Lemma 6]) and the fact the encryption
and decryption of BIGE is symmetric (with the subtlety that the sets the
MES C is defined on are one element larger):

PDR̄(B̄) ≤ nl(nl − n)
n22n +

nl(nl + n)
n22n+1 +

3(l + 1)nl
n2n +

3(l + 1)2

2n+1 ≤ δnu

PDR̄(C̄) ≤ nl′(nl′ − n)
n22n +

nl′(nl′ + n)
n22n+1 +

3(l′ + 1)nl′

n2n +
3(l′ + 1)2

2n+1 ≤ δnu.

Finally, the probability that B̄ occurs can be bounded by the probability that
the IV chosen uniformly at random during the encryption happens to be the
same as the corresponding “IV” resulting from a decryption:

PDR̄(D̄) ≤ 1
2n .

Combining these bounds, we get, as stated in the lemma,

∆D(R, S) ≤ 16l2 + 1
2n + 2 · δnu. �
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Chapter 6

Discussion and Conclusion

6.1 Discussion

The primary goal of an encryption scheme is confidentiality of the encrypted
communication. Beyond that, encryption schemes intuitively vary substan-
tially in terms of the integrity properties they provide. The guarantees con-
cerning the integrity of encryption are captured in the malleability charac-
teristics of an encryption scheme and of the communication channel that
is constructed by such a scheme. In this thesis, the general model of mal-
leability, introduced in [29] and stemming from the paradigm of constructive
cryptography, is considered. The general model of malleability imposes a
natural scale in terms of security: The less malleable a scheme, the more
secure it is.

A major part of formalizations addressing the security guarantees of encryp-
tion schemes were done using a game-based approach. This resulted in a
large variety of different notions and a large number of definitions for a
particular notion. In an attempt to clarify the meaning of certain notions,
they are represented and examined in the general model of malleability of
constructive cryptography.

6.1.1 Indistinguishability and Non-malleability

The first finding is that a set of definitions related to the notion of indistin-
guishability of encryption (e.g. IND-CCA [6, 23, 7], IND-RCCA [12]) and the
definitions of non-malleability [17, 6, 19, 23, 7] capture essentially the same
security guarantee for communication: Communication is confidential and
allows modifications only in the form of inserting “constant, unrelated” mes-
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6. Discussion and Conclusion

sages. This statement, given in Section 4.3, is valid for both public-key and
secret-key schemes.

Public-key encryption In the case of public-key encryption, the result is as
expected and justifies the existence of the notions: Since the type of mal-
leability described by these notions is the strongest that is achievable for
schemes where any party can always encrypt a constant message using the
public key, this type of malleability can be seen as the ultimate security goal
of a public-key encryption scheme. However, it has to be pointed out that
traditional definitions of the notions often use the CCA attack model that is
too strong for this context. As argued in Section 4.2, the RCCA model that
provides the framework for the definition in this thesis is the appropriate
attack model.

Secret-key encryption For the secret-key case, it is, however, unclear how
a malleability that allows inserting constant messages can be useful. It is
an odd property for a scheme where, intuitively, encryption (i.e. creation of
valid ciphertexts) should only be possible with the secret key to be able to
create ciphertexts of constant messages, especially if the message the cipher-
text decrypts to is known or can be chosen.

6.1.2 Integrity of encryption

As in the case of secret-key encryption, the meaning and usefulness of the
notion of non-malleability is not clear because the notion induces a mal-
leability giving an adversary the ability to insert constant messages into
communication. Several notions addressing the elimination of such an abil-
ity and capturing the integrity of encryption are thus studied and translated
into the general constructive model of malleability. In Section 4.4, I present
the finding that the goal of notions such as integrity of plaintexts, integrity
of ciphertexts, and existential unforgeability translates into communication that
allows no malleability at all, which refers to the construction of a secure
channel. Schemes that are secure with respect to such notions cover both
confidentiality and authenticity in one single step and are thus called authen-
ticated encryption schemes.

6.1.3 History-dependent Malleability

Most of the existing game-based notions only cover schemes that allow
no “real” malleability, namely a malleability that allows transformations
depending on the message history. The problem is that traditional attack
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models, such as CCA or RCCA, exclude such transformations and the defi-
nition of a general attack model allowing such transformations is not trivial.
I propose such a general model for games in the “real-or-random”-spirit,
based on the simulation of both encryption and decryption in the random
case. This simulation is not given explicitly as it may strongly depend on
the encryption scheme in question.

Using the general attack model, I also propose a game-based definition of
“pure” confidentiality. This is the first such game-based definition capturing
the confidentiality of the corresponding encrypted communication without
any restriction to the malleability of communication. An open question is
whether the simulation of encryption can be given in a more game-like spirit
(e.g. by encryption of a random message).

Plaintext-uncertainty and Chosen-plaintext forgery Two notions that al-
low history-dependent malleability and seem to represent an interesting
type of malleability are plaintext-uncertainty and chosen-plaintext forgery. Since
the original definitions were only given in weak attack models that are not
considered here (e.g. CPA), the notions are adapted into the newly intro-
duced general attack model. The first idea to formalize the malleability
properties of plaintext uncertainty by defining the min-entropy characteris-
tics of the allowed transformations is shown to be insufficient. Therefore, the
definition given in Section 4.6 states that the malleability is restricted to trans-
formations for which it is computationally hard to predict their outcome.
Chosen-plaintext forgery captures a very similar type where the transforma-
tions should be unpredictable for any message that was fixed in advance
(prior to key generation).

6.2 Conclusion

The constructive model of malleability used in this thesis allows a very nat-
ural and meaningful view on the properties of encryption schemes. It has
been shown how several traditional game-based security notions for encryp-
tion schemes translate to this model. Additionally, the notion of “pure”
confidentiality is introduced allowing arbitrary malleability. A selection of
such restricted types of malleability that seem to be interesting for practical
purposes are presented in Table 6.1. To complete the picture, the type of
malleability given in [29] that is sufficient for a sound AtE composition is
added as well.

The overview includes the game-based notions that are equivalent to the re-
spective type of malleability. It further recalls the channel construction and
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the set of allowed transformations that corresponds to the type of malleabil-
ity. Moreover, it names the paradigm for which the malleability is useful.

Game notions Channel construction Allowed Fα Paradigm

INT-PTXT, Authenticated
INT-CTXT,

(−→ ‖ • ‖ •)
none encryption

EF-RCCA
to •−→•

schemes
(−→ ‖ • ‖ •)

?
to

$$−→• subset-unlikely EwR

IND-RCCA (−→ ‖ • ‖ •)

NM-RCCA to
NM−→• constant (AtE)

forwarding,
?

(−→ ‖ • ‖ •)
deleting and AtE

to
AtE−→•

reconstructible

(−→ ‖ • ‖ •)
Confidentiality

to −→• all (EtA)

(•−→ ‖ • ‖ •)
IND-CPA

to •−→• undefined EtA

Table 6.1: Overview of the different game-based notions and types of malleability introduced in
this thesis with the corresponding composition paradigm in which they can be used, ordered by
increasing security requirements to the corresponding encryption schemes.

The types of malleability are ordered according to the level of security re-
quirements made to a corresponding encryption scheme. For most com-
position paradigms (except for AtE), the intuition that the more secure an
encryption scheme must be in a composition, the less security requirements
are made to the corresponding authentication scheme of the composition,
holds true. Needless to say, there are four composition paradigms that have
been shown to be sound when an encryption scheme with the correspond-
ing malleability properties is applied. The least security requirements are
made to an encryption scheme used in EtA. Such a scheme must not even
satisfy the pure definition of confidentiality since decryption potentially can
leak the secret key.

A higher level of security is required from a scheme to be securely applied in
an AtE composition. The malleability of the scheme is restricted to be AtE-
compatible according to [29]. The channel constructed by such a scheme is

denoted here by the symbol
AtE−→•. Non-malleability defines an even higher

level of security, but it is unclear how this traditional notion and the cor-
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6.2. Conclusion

responding type of malleability can be used in the context of secret-key
encryption schemes.

The EwR composition paradigm moves almost all the security requirements
from the authentication scheme to the encryption scheme. The possibility
to use a keyless redundancy protocol comes at the price of a very restricted
type of malleability for the encryption scheme: It must construct a subset-
blurring confidential channel with the corresponding type of malleability
that I introduced in this thesis.

Finally, it is also possible to use no authentication scheme at all, that is, to
require that the encryption scheme does not allow any malleability at all
and thus constructs a secure channel.

I conclude that Table 6.1 includes a short summary and an overview of the
results of my thesis. The table also presents four different practical variants
of constructing a secure channel from an insecure channel. The composition
variants differ in the level of security that is required from the encryption
scheme. Using the channel-based approach of constructive cryptography
with the general model of malleability, the respective security requirements
can be modeled in a natural way and can thus be easily compared.
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