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Abstract
One of the aims of systems biology is to decode genetic sequences in terms

of biological activity and phenotypic expression. In particular, to describe
evolutionary processes, it is important to characterize the fitness of organ-
isms as a function of the genetic space they can explore. In other words, it
is important to characterize the fitness landscape on which evolution takes
place. Many theoretical studies in evolutionary biology have assumed sim-
plistic fitness functions to be able to study the evolutionary process. This
thesis however, explores and describes a fitness landscape based on real in-
vitro fitness of HIV experimental data.

Background knowledge about the data is presented in chapter 1. In ad-
dition, this chapter also introduces two individual mutation-based models of
the fitness landscape used in chapters 2 and 3. One, the main effects (ME)
model, includes the estimates of the fitness effects of individual amino acid
variants; whereas the other, the main and epistatic effects (MEEP) model,
also accommodates the estimates of the pairwise epistatic interactions. The
details of the fitting and the performance of the models are presented in the
appendix A. Most importantly, the two individual mutation-based models of
the fitness landscape are a great tool to investigate the roles of epistasis and
pleiotropy.

Chapter 2 explores three complementary visual representations of the
fitness landscape. One provides a polynomial surface fitting of the exper-
imental fitness values of the viral sequences, represented by points in a
plane and placed such that the information about the number of amino acid
mutations between the sequences is maximally conserved. The second rep-
resentation renders the fitness landscape as a network where edges link
neighboring sequences and the size of the nodes accounts for fitness. The
third representation uses the MEEP model to generate a three dimensional
fitness surface based on a grid of 1-mutation neighboring sequences incor-
porating the most frequent individual mutations. All three representations
indicate a high level of local ruggedness and support Kauffman’s massif cen-
tral hypothesis which states that high fitness genotypes tend to be close to
each other. Most importantly, they show that low-dimensional fitness maps
can still capture important features of complex fitness landscapes.

Chapter 3 uses the ME and the MEEP fitness landscape models to simu-
late the evolution of HIV populations and study the maintenance of genetic
recombination, one of the most intriguing problems of evolutionary biology.
On the basis of simplistic models of fitness landscapes, it has been shown
that the interaction between genetic drift and natural selection favors re-
combination independent of epistatic interactions. The ME and the MEEP
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fitness landscape models therefore offer an unprecedented opportunity to
bridge the gap between simplistic models and real fitness landscapes. Al-
though recombination is shown to be still generally favored under the ME
and the MEEP fitness landscape models, evolved HIV populations cannot
be kept in realistic regions of the sequence space, and therefore it remains
unclear whether genetic drift outweighs epistasis as a factor for the mainte-
nance of recombination in a more complex and rugged fitness landscape.

Chapter 4 provides an exploratory analysis of the change of the HIV fit-
ness values across different common drug environments. Specifically, chap-
ter 4 presents a principal component analysis of the fitness data of the dif-
ferent conditions which reveals structure and patterns associated with drug
resistance and cross-resistance. In addition, by comparison with patterns
generated by simulated data, it was possible to quantify which part of the
total variance of the original data was due to non-specific, drug-class-specific
and drug-specific effects of resistance mutations. Accordingly, it was shown
that relative fitness is mainly drug-independent and that drug-specific ef-
fects are significantly different between drug classes. Further comparison
of the results with known combination therapies indicates that principal
component analysis can identify effective drug combinations to minimize
the risk of emergence of resistance.

At last, chapter 5 sums-up the most important difficulties and challenges
encountered in the previous chapters and puts the main results in perspec-
tive. First and last, this thesis shows that a better understanding of HIV’s
evolutionary process leads to a better understanding of HIV drug resistance
and the other way around.
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Résumé
L’un des principaux objectifs de la biologie des systèmes est celui de déco-

der des séquences génétiques en termes d’activité biologique et d’expression
phénotypique. En particulier, afin de mieux comprendre le processus évolu-
tif, il est important de caractériser l’aptitude des organismes en fonction de
l’espace génétique qu’ils peuvent explorer. Autrement dit, il est important de
caractériser le paysage adaptatif où l’évolution peut avoir lieu. En biologie
évolutive, de nombreuses études théoriques sont basées sur des fonctions de
fitness simples afin de pouvoir étudier les processus de l’évolution naturelle.
Cette thèse, en revanche, explore et décrit un paysage adaptatif qui est basé
sur des données expérimentales de fitness in-vitro du VIH.

Quelques précisions sur les données sont présentées dans le chapitre 1.
Ce chapitre introduit également deux modèles du paysage adaptatif utili-
sés dans la suite de la thèse. L’un permet de calculer la fitness d’un virus à
partir de l’effet de chaque mutation individuelle (ce modèle est appelé ME) ;
tandis que l’autre prend en compte non seulement l’effet de chaque muta-
tion individuelle, mais aussi les effets des interactions entre les paires de
mutations (ce modèle est appelé MEEP). Les détails sur l’ajustement et la
performance des modèles sont présentés dans l’annexe A. Ces deux modèles
constituent un outil sans précédent pour étudier le rôle des interactions de
mutations (épistasie et pléiotropie) dans le processus évolutif.

Le chapitre 2 explore trois représentations visuelles complémentaires du
paysage adaptatif. La première consiste en une surface de régression polyno-
miale sur les valeurs de fitness des séquences virales, qui sont représentées
par des points dans un plan et placées de telle sorte que l’information sur
le nombre de mutations entre les séquences est maximale. La seconde re-
présentation montre le paysage adaptatif sous forme d’un réseau dont les
arêtes lient des séquences voisines et la taille des nœuds représente la fit-
ness de chaque virus. Enfin, la troisième représentation utilise le modèle
MEEP pour générer une surface adaptative tridimensionnelle basée sur un
treillis formé par des séquences espacées d’une mutation les unes des autres
et intégrant les mutations les plus fréquemment observées. Ces trois repré-
sentations indiquent toutes un haut niveau de rugosité locale et soutiennent
l’hypothèse du massif central de Kauffman qui stipule que les génotypes
dont la fitness est élevée ont tendance à être proches les uns des autres.
Elles montrent également qu’un espace de dimension réduite (deux ou trois
dimensions) est suffisant pour retrouver les caractéristiques les plus impor-
tantes des paysages adaptatifs complexes.

Le chapitre 3 utilise les modèles ME et MEEP pour reproduire l’évolution
des populations virales et, de cette façon, étudier le maintien de la recombi-
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naison génétique qui constitue l’un des problèmes les plus intrigants de la
biologie évolutive. Sur la base de modèles simples de paysages adaptatifs, il
a été observé que l’interaction entre la dérive génétique et la sélection natu-
relle favorise la recombinaison indépendamment des interactions entre les
effets des mutations. Les modèles ME et MEEP permettent donc de faire le
lien entre des modèles plus simples et les vrais paysages adaptatifs. Bien
que la recombinaison soit, de façon générale, aussi favorisée pour les mo-
dèles plus complexes tels que le ME et le MEEP, les populations virales n’ont
pas pu évoluer et rester dans les régions réalistes de l’espace de séquences.
Il n’apparaît donc pas encore clairement si la dérive génétique est toujours
plus importante que les interactions épistatiques pour le maintien de la re-
combinaison dans le cas d’un paysage adaptatif qui soit plus complexe et
plus rugueux.

Le chapitre 4 présente une analyse exploratoire de la variation des va-
leurs de fitness du VIH mesurées en présence de différents médicaments.
Plus précisément, ce chapitre présente une analyse en composantes princi-
pales des données de fitness qui révèle la structure et les profils de résis-
tance aux médicaments. En outre, par comparaison avec des données simu-
lées, nous avons pu quantifier la partie de la variance totale des données
d’origine due à des effets non-spécifiques et à des effets spécifiques à chaque
classe de médicaments. En conséquence, il a été montré que la fitness est es-
sentiellement indépendante de l’environnement (du médicament) et que les
effets spécifiques aux médicaments sont significativement différents entre
les classes de médicaments. Par la comparaison de ces résultats avec les
thérapies connues, il s’avère que l’analyse en composantes principales per-
met d’identifier des combinaisons de médicaments efficaces pour réduire au
minimum le risque d’émergence de résistance.

Enfin, le chapitre 5 fait un résumé des difficultés les plus importantes et
des défis rencontrés le long des chapitres précédents et fait une rétrospec-
tive des résultats les plus importants. Avant tout, cette thèse montre qu’une
meilleure compréhension des processus d’évolution du VIH conduit à une
meilleure compréhension de la résistance du VIH aux médicaments et vice-
versa.
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CHAPTER

ONE

INTRODUCTION

Needless to try—your knowledge
is insufficient to allow me to
explain you what I want.

Jorge Zambujo



1.1. GENERAL INTRODUCTION

1.1 The concept of fitness landscape

Fitness landscapes have been the subject of a somewhat philosophical de-
bate (Kaplan, 2008; Ruse, 1991), not so much about the definition of the con-
cept itself, but rather about Wright’s three dimensional pictorial metaphor
which he created to illustrate his so-called shifting balance theory in non-
mathematical terms (Wright, 1932). The definition of a fitness landscape is
rather straightforward: a fitness landscape is but the mapping between a
set of genotypes and their corresponding fitness values (Kauffman, 1993).
However, the comprehension and description of such a mapping for a large
set of genotypes presents many difficulties and is the source of discussions
about the nature of the evolutionary process itself (Provine, 1989). Access
to large-scale sequence and fitness data has led to new ways of tackling a
problem which has primarily been only philosophical (Schuster, 2012).

1.2 HIV data collection

Being the cause of AIDS, one of the world’s largest pandemics, HIV has
been having devastating social and economic consequences in the last three
decades (Fauci et al., 2003). The research effort which was mounted to take
control of HIV led to the discovery and approval of, on average, one anti-
retroviral drug per year (Clercq, 2009). The introduction of new drugs has
been accompanied by the emergence of multiple resistance mutations, es-
pecially in the pol gene which encodes for two main target proteins of drug
treatment (Bennett et al., 2009). With such a large number of available
drugs and the associated risk of the emergence of drug resistance mutations,
genotypic and phenotypic testing became indispensable to help clinicians to
better plan HIV patients’ specific therapies. As a result of the adoption of
genotypic and phenotypic HIV testing, large datasets gathering both geno-
typic and phenotypic data have been collected. One of these datasets is
owned by Monogram Biosciences, an American company previously known
as Virologic, which again, provides individualized genotypic and phenotypic
testing for HIV patients. In a 10-year research collaboration, Monogram
Biosciences has shared over 70’000 amino acid sequences of the HIV-1 pol
gene, along with their respective fitness in the absence and the presence of
a minimum of 15 antiretroviral drugs.
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CHAPTER 1. INTRODUCTION

1.3 The fitness assay
The in-vitro replication capacity (RC) quantifies the total production of

virions in a single round of infection. Thus, the RC can be regarded as a
measure of viral fitness for each single sequence for a given drug condi-
tion. To stop infection after a single round, a viral vector is constructed
based on an NL4-3 HIV-1 clone, where a luciferase expression cassette is in-
serted at the place of the envelope gene to disable the possibility of further
replication (fig. 1.1 b). In essence, patient derived amplicons containing the
protease (PR) and the reverse transcriptase (RT) are inserted in the NL4-
3 clone (fig. 1.1 b), so that HEK 293 cells are co-transfected both with the
NL4-3 clone and with a murine leukemia virus (A-MLV) which contains the
envelope gene to guarantee that the HIV clone is able to replicate only once
(fig. 1.1 c). The RC (also referred to as fitness) is obtained by measuring
and normalizing the luciferase activity relative to a NL4-3 reference virus
of fitness 1. Fitness measurement errors have been estimated to be around
20% (Petropoulos et al., 2000).

1.4 Sequence data
In total, Monogram Biosciences shared 70’081 amino acid sequences of

HIV-1 subtype B PRs and RTs derived from patients receiving multi-drug
combination therapy. The sequences have a total length of 404 amino acids:
99 correspond to the full length of the PR and 305 to the first part of the RT.
Both the PR and the RT lie next to each other in the pol gene and are essen-
tial enzymes for viral replication. For this reason, they have been the two
main targets of anti-viral drug therapy and most of the mutations associated
with drug treatment occur in the first 400 residues of the pol gene (Bennett
et al., 2009). In essence, the PR is a homodimer of 2 times 99 residues long
and plays an essential role in the maturation of viral particles budding from
the cell’s membrane. It cleaves the Gag and the Gag-Pol poly-proteins into
smaller core proteins (MA, CA, NC, p6, PR, RT and IN of Fig. 1.1 b) encoded
by these two genes. Without the PR processing of these two protein precur-
sors, the virus cannot be infectious. Another important aspect is that viral
assembly and maturation are highly coordinated. This means that small
changes in PR activity may induce drastic changes in viral fitness. For a
three-dimensional representation of the structure of a PR dimer please re-
fer to figure A.3 of the appendix A. The RT is a heterodimer responsible for
the reverse transcription of the viral RNA into the DNA duplex. The bigger
subunit (p66) has 560 residues and contains the two catalytic domains of the
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1.4. SEQUENCE DATA

Figure 1.1: Schematic illustration of the processes of data collection and of the
fitness assay. a. Collection of HIV-1 sequences from blood samples of HIV infected
patients. b. Insertion of a patient’s derived segment into NL4-3 vectors containing
a Luciferase as an indicator gene instead of the full env gene. c. Co-transfection to
HEK 293 using a helper virus (A-MLV env) to substitute the missing env gene; the
full round of infection is completed with the infection of T-cells which is followed by
light emission associated with the indicator gene.

molecule, a polymerase triad (Asp 110, Asp185 and Asp186) and a ribonu-
clease H (RNase H) active site. The first domain takes single stranded viral
RNA and transcribes it into a RNA/DNA hybrid double-helix. The second
cleaves the RNA from the hybrid and finally, the polymerase again com-
pletes the remaining DNA to allow the integration of the DNA double-helix
into the host cell genome. Even though both subunits arise from the same
amino acid sequence, the smaller has 440 residues and is arranged differ-
ently: in a closed conformation that deactivates RT’s catalytic sites (Frankel
and Young, 1998). Typically, combination therapies have consisted of PR in-
hibitors (PIs) in association with RT inhibitors (RTIs). (The RTIs can still
be classified in two classes, either as nucleoside analog reverse transcrip-
tase inhibitors (NRTIs) or as non-nucleoside reverse transcriptase inhibitors
(NNRTIs)). Both RTI classes inhibit the polymerase active site (Beeren-
winkel, 2004). For further details regarding the different drugs, please refer
to chapter 4.
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CHAPTER 1. INTRODUCTION

1.5 Individual mutation-based models
Two individual mutation-based models have been developed to estimate

the fitness effects of 1’857 single mutations and of 257’536 pairs of mutations
which were found in Monogram Biosciences’ 70’081 amino acid sequences
(see the appendix A). The fitness w of a sequence i was calculated as

wi = exp(b0 +

NM∑
j=1

Mijγj +

NE∑
k=1

Eikχk)

where b0 stands for the intercept, γj the estimated main effect of the jth

mutation Mij and χk estimates the epistatic interaction of the kth combina-
tion of mutations Eik. One variant of the individual mutation-based mod-
els assumed no epistasis (χk = 0) and was referred to as the main effects
(ME) model, and the second variant also included pairwise epistasis, and
was therefore referred to as the main effects and epistatic effects (MEEP)
model. The fitting of the individual fitness estimates was obtained by means
of a Generalized Kernel Ridge Regression (GKRR) which is a computational
method of the family of the support vector machines and well suited for
cases where the number of parameters to be estimated exceeds by far the
number of experimental observations (number of available sequences). (A
full description of the individual mutation-based models and of the GKRR
is found in the supplementary material of Hinkley et al. (Hinkley et al.,
2011).) Chapter 2 uses the MEEP model and chapter 3 uses both the ME
and the MEEP variants. The details of the performance of the models in the
different drug environments is found in the appendix A.
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1.5. INDIVIDUAL MUTATION-BASED MODELS
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Abstract

Fitness landscapes are generally high-dimensional and there-
fore hard to depict and conceptualize. Here, we explore three
approaches to visually capture the main properties of a large
fitness landscape derived from HIV sequences which were as-
sayed for in-vitro fitness. First, we apply a multidimensional
scaling to data consisting of 4’000 HIV pol amino-acid sequences
to obtain an approximation of the sequence space in 2D, which
we use to create a 3D smooth trend surface of the fitness land-
scape by means of a polynomial surface of in-vitro fitness val-
ues. Second, we build a network-based representation of the fit-
ness landscape where edges link neighboring sequences and the
size of the nodes represent the fitness values. Third, we apply
a model which estimates the fitness effects of single and dou-
ble mutations to calculate a 3D fitness surface of a discrete se-
quence space consisting of a mesh of one mutation neighboring
sequences. Our results show evidence for a high degree of local
epistasis and biophysical constraints, as well as empirical sup-
port for Kauffman’s massif central hypothesis which states that
high fitness genotypes tend to be close to each other. Overall,
this chapter shows that low-dimensional representations can
capture important features of complex fitness landscapes.
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CHAPTER 2. REPRESENTING THE LANDSCAPE

2.1 Introduction
In 1932, Sewall Wright presented the heuristic concept of fitness land-

scape to explain his Shifting Balance theory (Wright, 1932). More specif-
ically, Wright plotted maps of adaptive values on what he called “fields of
gene combinations”, nowadays referred to as the genetic space. These maps
were later used to define the concept of fitness/adaptive landscapes (Gavrilets,
2004; Kauffman, 1993; Stadler, 2002). If the number of gene combinations,
and thereby fitness landscape, is sufficiently small it is possible to map the
fitness of each gene combination such that the representation is intelligi-
ble (Wiles and Tonkes, 2006; Wright, 1932). However, if the fitness land-
scape is large, then the genetic space is high-dimensional. As a consequence,
it is difficult to get a legible map of all the gene combinations to their fitness
values in two dimensions.

Figure 2.1: Wright’s original diagram of a fitness landscape (Wright, 1932).

Wright argued that a very large number of pairwise genetic distances
could be approximately represented by an equally very large number of Eu-
clidean distances in two dimensions, on top of which he assumed and drew
a continuous, smooth fitness surface (see fig. 2.1). As in topographic maps,
Wright’s representations showed peaks, ridges, and valleys, and served to
intuitively illustrate the mathematical results of his Shifting Balance the-
ory. Accordingly, populations tend to evolve to the peaks of high fitness of
the landscape which are separated by valleys of low fitness, and the topog-
raphy of the landscape determines how many peaks exist and how acces-
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2.1. INTRODUCTION

sible they are. The intuitive nature of these representations made them
common in textbooks and in research papers on evolutionary biology (Bar-
ton et al., 2007; Orr, 2009; Poelwijk et al., 2007; Smith et al., 2002). Yet,
the over-simplifying assumptions inherent to these representations and the
lack of methods to produce them led to an ongoing epistemological debate
on whether Wright’s representations should be kept or abandoned (Kaplan,
2008; Provine, 1989; Ruse, 1991; Skipper, 2004). On the one hand, for very
high-dimensional spaces, the concept of peaks and valleys is likely to be
meaningless (Gavrilets, 2004). On the other hand, except for recent studies
such as (Gavrilets, 1997; McCandlish, 2011), there were no real attempts to
create and test concrete applications of these representations. However, the
development of multivariate analysis and spatial statistics, the increased
availability of computing power, and the access to large sequence and fit-
ness data sets constitute an unprecedented opportunity to finally investi-
gate their application to experimental data.

In this chapter we first implement a set of methods to construct a Wrightean
diagram using data which consists of amino acid sequences and the corre-
sponding fitness values. The data have been described in detail in chap-
ter 1 and in the appendix A. Specifically we consider three approaches to
represent fitness landscapes. The underlying idea of our first approach is
similar to the one proposed by McCandlish (McCandlish, 2011), in the sense
that we seek a representation of the sequence space in two dimensions. Mc-
Candlish analyzes the eigenvalues and eigenvectors of evolutionary transi-
tion matrices, which best suits populations evolving in a same environment
and undergoing small mutation rates (McCandlish, 2011). HIV populations,
however, are characterized by high mutation rates; therefore, this method
does not apply. Instead, a non-metric multidimensional scaling (MDS) is a
more suitable method to obtain a scatter plot that maximally conserves the
information about the distance between HIV sequences. We measure the
distance between sequences by counting the number of substitutions. This
distance is commonly referred to as Hamming distance (HD). We use MDS
to produce a scatter plot of the sequence space, which we then use to fit
the fitness surface by trend surface analysis; i.e. the surface is obtained by
fitting a low degree polynomial surface to the fitness values of every HIV
sequence (Li et al., 2000; Venables and Ripley, 2002).

As any smooth surface most likely misrepresents some aspects of high-
dimensional landscapes (Gavrilets, 2004; Kouyos et al., 2012), we also in-
vestigate the fitness landscape using a network-based representations. As
in the works of McCandlish (McCandlish, 2011) and of Ashlock and Schon-
feld (Ashlock and Schonfeld, 2005), we plot fitness values at the nodes of a
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network, with the edges linking the closest sequences in terms of number of
mutations. Finally, we use a model that estimates the effect of both main
and epistatic effects of mutations (see appendix A) to plot and to compare
the fitness surface of a regular mesh of one-mutation neighboring sequences
with the previous representations.

All in all, we find good qualitative agreement between the three repre-
sentations in terms of the overall fitness distribution and local ruggedness
along the sequence space.

2.2 Materials and methods
This section consists of five parts. In part one, we explain how the subset

of sequences analyzed here was chosen from the larger data set described in
chapter 1 and in the appendix A. In parts two and three, we briefly present
the mathematical methods that allow us to produce a Wrightean-like dia-
gram from sequence and fitness data. In parts four and five, we present two
alternative methods to also visually inspect the fitness landscape.

2.2.1 The sequence alignment
We consider a subset of 4’000 unique amino acid sequences from the data

set described in chapter 1 and in the appendix A, which contains 70’081
virus samples derived from HIV-1 infected patients. The sequenced region
contains all of the protease and the first 305 amino acid positions of the
reverse transcriptase. We chose a subset of 4’000 sequences for the follow-
ing reasons: the majority of the original set of sequences contains unre-
solved positions indicating that the sampled virus population was polymor-
phic at these positions. Such unresolved positions can induce significant
errors in the calculation of the HD. To minimize this problem, sequences
with more than 2.5% of unresolved positions were excluded from the sample.
The choice of this threshold offers a “level-headed” compromise between the
number of available sequences and the sequence quality. In addition, to ob-
tain a more uniform distribution of the sampled sequences across the range
of HD, we force the distribution of the HD between the sampled sequences
and the consensus sequence of the alignment to be uniform. Thus, we choose
100 sequences, at random, for each class of HD, in the range of 3 to 42 substi-
tutions to the consensus sequence (the maximum range containing at least
100 sequences per class of HD). Hence, we cover an important part of the
range of possible classes of HD of the original alignment, with as many se-
quences as possible, while respecting the constraint of an equal number of
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sequences per class of HD. (For a detailed description of the sequence data
and of the fitness assay, see chapter 1) Note that a sample size of 4’000 se-
quences implies 7’998’000 pairwise HD. This number is still tractable by
numerical optimization methods such as MDS.

2.2.2 Multidimensional scaling of pairwise Hamming dis-
tances

We use a non-metric MDS to maximize the correlation between the se-
quences’ pairwise HD and their pairwise Euclidean distances between the
sequences in a xy plane. The purpose of MDS is to find a configuration of
points in a reduced dimensional space, here a two dimensional plane, such
that the distances between these points best match those of the original
pairwise distance matrix. Put differently, we use MDS to create a percep-
tual two dimensional map of the sequences’ genetic space, in order to display
the fitness values on a configuration of points that is optimized according to
the pairwise HD between sequences. In essence, MDS is a numerical opti-
mization technique that starts with a prior configuration of axis and points.
This prior configuration is typically given by principal coordinate analysis of
the original distance matrix (as it was the case in this chapter). MDS then
incrementally improves the initial configuration of points, by moving the
positions of the points by small amounts, and by choosing the new configu-
ration that will gradually increase the goodness of fit to the initial distance
matrix (Kruskal, 1964). The goodness of fit of a new configuration is typi-
cally given by Kruskal’s stress function S which is written as follows,

S =

√√√√∑n
i<j (dij − d̂ij)2∑n

i<j d
2
ij

.

Here, dij is the initial distance between two points, point i and point j, and
d̂ij the corresponding distance in the configuration of points that is being
optimized. For a detailed mathematical description of MDS please refer
to (Cox and Cox, 1994). The method has been implemented in the isoMDS
function which is part of the R:MASS package (R Development Core Team,
2009; Venables and Ripley, 2002).

2.2.3 Spatial interpolation of the fitness landscape
We use the scaled approximation of the sequence space which we obtain

from the MDS to map the fitness of the sequences on a three dimensional
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CHAPTER 2. REPRESENTING THE LANDSCAPE

surface (i.e. x and y coordinates span the sequence space, and the z axis to
the fitness values). To represent this surface, we fit a polynomial regression
surface, also known as trend surface, to the entire set of points. The trend
surface is fitted by least-squares, a method described in detail in (Ripley,
1981) and implemented in the function surf.ls of the R:spatial pack-
age (Ripley, 1981; Venables and Ripley, 2002). Put differently, the procedure
consists in fitting polynomials to the fitness values and the sequences’ two
dimensional coordinates of the sequence scaled space which is given by MDS
of the sequences’ pairwise HD.

2.2.4 Network-based representation
A limitation of MDS is that it is computationally expensive to optimize

over many data points. An intermediate step between the pairwise HD and
the two-dimensional coordinates produced by MDS is the distance matrix.
This N ×N matrix of pairwise HD can be interpreted as the adjacency ma-
trix of a fully connected weighted graph. The two dimensional represen-
tation then is a graph drawing problem and in fact many graph drawing
algorithms are variants of MDS. Within this graph representation it is now
possible to reduce the complexity by deleting edges in order to highlight im-
portant relationships between sequences and ignore those that contain little
information. For example, if we are most interested in those sequences that
are most similar to a particular sequence then it may be beneficial delete
all edges except for the K closest neighbors. Another example would be if
we are interested in the density of close neighbors. In that case we would
delete all edges that are above a certain HD threshold, retaining connections
between similar sequences.

Once the reduced graph is constructed, it is then possible to draw the
graph using MDS (or other graph drawing algorithms (Fruchterman and
Reingold, 1991; Kamada and Kawai, 1989)), but only optimizing over a sub-
set of edges rather than the complete distance matrix.

2.2.5 One-mutation neighbors mesh
We also construct a one-mutation neighbors mesh of the fitness land-

scape to investigate its shape. The mesh is defined by discrete two-dimensional
coordinates (i, j) of one-mutation neighboring sequences. Since we lack ex-
perimental measurements for all the sequences in the mesh, we use esti-
mated fitness values based on the MEEP model as described in the ap-
pendix A. This model explains approximately 45% of the variance of the
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experimental fitness measurements (see figure A.1 of the appendix A). The
mesh represents a section through the fitness landscape. To ensure maxi-
mal accuracy of the estimates and the coverage of the most plausible region
of the sequence space, we place the consensus sequence of the protein align-
ment at (0, 0), the center of the mesh. At (1, 0), (0, 1), (−1, 0), and (0,−1),
we place four sequences differing of only one mutation from the consensus
(labeled in blue in figure 2.2). Once more, to ensure a maximal accuracy
of the estimates, the mutations are chosen according to their frequencies of
occurrence in the alignment, Each sequence is mutated at a different locus
to ensure that the pairwise HD between sequences can be given by the ax-
ial directions of the mesh and to prevent double and multiple mutants on
the same locus. At (2, 0), (0, 2), (−2, 0), and (0,−2), we place another four
sequences, but differing by two mutations from the consensus, and we re-
peat this procedure until we reach thirty mutations from (0, 0). At (1, 1) we
place a double mutant that contains the single mutations of both (1, 0) and
(0, 1). Again, we repeat this operation until the entire mesh is filled up (see
figure 2.2).

Figure 2.2: Schematic illustration of a one-mutation neighbors mesh of axis i, j.
Green indicates the position of the consensus sequence. The colors blue, red, violet,
and orange indicate the position of sequences with one, two, three, and four substi-
tutions to the consensus sequence, respectively. The numbers in brackets designate
the order of choice of new mutations. Number one corresponds to the most common
mutation found in the sequence alignment; number two to the second most common
mutation, and so forth.

14



CHAPTER 2. REPRESENTING THE LANDSCAPE

2.3 Results
We use three complementary approaches to visualize an HIV derived fit-

ness landscape. First, we consider a method based on multi-dimensional
scaling, second, a network-based representation, third, a one-mutation neigh-
bors mesh based on predicted fitness values.

2.3.1 Spatial interpolation of the fitness landscape
We construct a Wrightean fitness surface in two steps. First, we use

MDS to find a two dimensional point configuration optimizing the pairwise
HD between the sequences. Second, we fit a three dimensional surface by
interpolating the fitness values of the sequences with a polynomial trend
surface.

Figure 2.3: 6-degree polynomial interpolation by least-squares of the fitness of
4’000 unique sequences placed on a two dimensional MDS space of pairwise HD.
The fitness surface is given by the isolines, in panel A. The sequence density in
the two dimensional MDS space of pairwise HD given by levels of blue. Dark blue
stands for regions of high sequence density, light blue for regions of low sequence
density. In panel B are depicted the isolines of an interpolation of the absolute
values of the standardized residuals of the surface in panel A.

In the first step, we find that MDS provides a surprisingly good repre-
sentation of the sequence alignment in two dimensions. The Pearson cor-
relation coefficient between the pairwise HD and the multi-scaled pairwise
HD reaches 0.85, after 500 iterations of the MDS algorithm. The R2 between
these distances indicates that a two dimensional configuration of points can
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explain up to 72% of the total variance of the sequence space. The plane
represents a sequence space of approximately 50× 40 pseudo substitutions.

Figure 2.4: Boxplots showing the median and the quartiles of the fitness distri-
bution of classes of 400 sequences of increasing HD to the consensus. The area
between the vertical curves that is superimposed to the boxplots gives the kernel
density estimation of the fitness distribution of for each class of HD. The fitness
corresponds to the relative replicative capacity of sequences relative to that of an
NL4-3 based control virus.

In the second step, we use a polynomial regression surface of low degree
to fit the sequences’ fitness values and capture the overall fitness trend over
the sequence space. A smooth trend typically implies a low degree polyno-
mial fit. We thus find that degrees 5 and 6 are low enough to capture the
overall fitness trend and high enough to eliminate the artefactual slopes due
to fewer data points at the borders of the surface (see figure 2.7). The fitted
surface is depicted in figure 2.3A for the polynomial interpolation of degree
6.

Despite of the fact that the sequence alignment contains an equal num-
ber of sequences of each class of HD to the consensus, the density of points
(given by the levels of blue in figure 2.3) is manifestly higher in the area
of higher fitness than in the rest of the plot. (This can be partly explained
geometrically, for the simple reason that the surface of concentric circles
increases quadratically with HD, whereas the number of points increases
linearly, given the uniform sampling along the range of HD.) The residuals
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associated with the fit are also manifestly larger in this area of higher fit-
ness and point density (figure 2.3B). Hence, most of the variation in the data
is poorly represented by the surface, especially in the area of higher fitness.
This indicates a high local ruggedness in this region and is in line with the
distribution of the variance of the fitness values across the different classes
of HD, which is shown in figure 2.4. Also in line with figure 2.3, both the
average fitness values and their variances decrease with the accumulation
of mutations from the consensus sequence (figure 2.4).

Network-based representation

The most straightforward way to reduce the number of edges in the graph
is to keep a link between two nodes (i.e. sequences) if their respective HD is
less than some threshold value θHD. When θHD is too small, however, this
method will result in largely disconnected graphs, as many of the sequences
will be more than θHD away from their neighbors for sparsely sampled se-
quence spaces. This also strongly depends on the sampling distribution in
sequence space. Since the sampling density is highest close to the consensus
sequence for the HIV data, this method would then preferentially connect
nodes that are close to the consensus sequence, whilst leaving nodes far
away from the consensus sequence disconnected (figure 2.8).

Another way to reduce complexity is to keep only those edges, which lead
to the K closest neighbors (i.e. smallest HD) of each sequence, ignoring du-
plicate edges. Each node in the resulting graph will then have at least K
neighbors. This graph is more of a qualitative representation of how se-
quences would evolve when moving across the landscape if we assume that
it is easier to reach sequences that are close, but disregards the number
of mutations required to reach the neighbor sequence. In this sense, nodes
with a high degree (i.e. number of neighbors) are accessible from many other
nodes in the sample, while nodes with a low degree are only accessible from
few sequences.

When K = 1, each node is only connected to one other sequence. The
resulting graph is disconnected, with several clusters of sequences that are
closer to each other than to other sequences. When K = 2 (Figure 2.5A), the
graph becomes connected, but both high and low fitness nodes are spread out
on the plane. This shows that if we just consider the closest neighbors of a
particular sequence, we do not see any type of correlation between high and
low fitness sequences. As K is increased the high fitness nodes (blue) start
to move closer to each other, though they are interspersed with low fitness
nodes (red). This is compatible with the main results obtained with both
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Figure 2.5: Reduced graphs using the nearest-neighbor reduction scheme for
K = 2 (A) and 5 (B) closest neighbors and N = 4100 sequences. The graphs were
drawn using the Graphviz sfdp algorithm (Gansner and North, 2000). Blue nodes
are sequences that have a higher fitness than the reference sequence, red node se-
quences with a lower fitness. The size of the node is representative of the absolute
value of the relative fitness (courtesy of Gabriel Leventhal).
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the spatial interpolation and the one-mutation neighbors mesh, in the sense
that there clearly is a general region of high fitness, but that this region is
locally rugged.

One-mutation neighbors mesh

Figure 2.6: Surface view of the predicted fitness of a one-mutation neighbors mesh
of sequences accumulating the most frequency mutations from the consensus se-
quence. The xy axis show the number of mutations to the consensus and the z axis
shows relative fitness (%), where blue stands for low and red for high values of rel-
ative fitness to that of an NL4-3 based control virus. The fitness based on a model
including main and epistatic effects of mutations (see the appendix A for a detailed
description of the model).

The construction of a one-mutation neighbors mesh allows a direct three
dimensional representation of a section through the sequence space. The
construction of such a mesh is illustrated in figure 2.2. More specifically, we
draw thirty unique mutations for each of their axial directions of the mesh.
In total, the mesh consists of 61 × 61 unique sequences which always differ
in a single mutation to the four adjacent sequences.

This surface covers about the same order of magnitude as the domain of
HD as it can be found in the original sequence alignment. The sequences are

19



2.4. DISCUSSION

placed by order of frequency of occurrence of their mutations from the cen-
ter (0, 0), where the consensus sequence is placed, to the edges of the mesh.
The sequences that do not directly lie on the axes result from the combina-
tion of the mutations of the sequences that lie on the axes (see figure 2.2).
The sequences at the four corners of the mesh thus accumulate the greatest
number of substitutions — sixty mutations to the consensus sequence.

Given that there are no experimental measurements for most of the se-
quences in the mesh, we use a mode which predicts fitness for the amino
acid sequences. This fitness is given by the MEEP model as described in
the appendix A. The overall predictive power of the model that is used to
estimate the fitness of sequences has been shown to be approximately 45%
based on an independent cross-validation data set of 5’000 sequences (see
figure A.1 of the appendix A).

Figure 2.6 shows the surface formed by the fitness estimates of the se-
quences that constitute the mesh of one-mutation neighbors. This repre-
sentation of the fitness landscape reveals several local optima. As observed
in figures 2.3 and 2.5, the ruggedness of the surface tends to be higher in
the region of higher fitness (in red). Interestingly, the consensus sequence
(the center of the mesh) is located a few mutations away from the region of
highest fitness. All the four corners of the mesh (i.e. sequences with high
numbers of mutations) have nevertheless very low fitness (in blue). Overall,
fitness decreases with the accumulation of mutations from the center of the
mesh.

2.4 Discussion
All our results show some structure in the distribution of the average

fitness across the sequence space in a way that suggests that local fitness
peaks are more likely to be located close to each other, supporting the massif
central hypothesis (Kauffman, 1993). This hypothesis was corroborated for
the case of a theoretical fitness landscape (Østman et al., 2010), and our
results now also offer empirical support from a biologically realistic derived
HIV fitness landscape. A difference to theoretical fitness landscape studies
is that one has no control regarding the locations of the sequences relatively
to the fitness optima. It is unlikely to observe any sequence at a fitness
optimum of the landscape because, although the fitness values result from
in-vitro measurements, the viruses were directly obtained from patients.
Thus, the fitness values were measured in an environment that is different
from that in which they evolved.

Applying MDS to visualize fitness landscapes has several shortcomings.
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As mentioned before, one limitation of MDS is that it is computationally
demanding as it uses all the combinations of pairwise distances between
points, which means it works best for a limited number of data points. Yet,
we found that a two dimensional approximation of the sequence space re-
tained as much as 72% of its original variance in terms of pairwise HD be-
tween sequences. This finding means that most of the information concern-
ing the pairwise HD can still be retained in only two dimensions, despite of
the drastic cut in the number of dimensions. Such high value of conserved
variance may be due to several selection conditions on which sequences
evolved prior to the drug free environment on which the fitness measure-
ments were taken. If sequences evolved in such a way that they express
only a few main phenotypic traits, then there is a sampling bias that reduces
the complexity of the sequence space. Biophysical constraints (constraints
in the secondary and tertiary protein structures) and pleiotropic constraints
have been shown to limit the degree of mutational freedom of sequences (Lo-
zovsky et al., 2009; Weinreich et al., 2006) and might thus constitute another
non-exclusive explanation for such high value of conserved variance. These
constraints can lead to “holes” in the sequence space (Gavrilets, 1997). If
the number of “holes” is sufficiently high, then it is possible that most of the
complexity of the sequence space can be captured in only a few dimensions.

It is important to note that the sequence space has a clear interpreta-
tion in terms of neighborhood — two sequences that are close to each other
differ only by few amino acids. In a MDS space, however, this is only true
in a statistical sense — sequences that are close to each other likely have
only a few amino acids difference, but this need not to be the case. Hence,
neighborhood has a very different interpretation.

A low-degree polynomial interpolation of the sequences’ fitness values
yields a coarse-grained picture of the fitness distribution along the MDS
approximation of the sequence space. We observe that, on average, the se-
quences in a focal area of the sequence space (closer to the consensus) tend
to be fitter than the sequences at the periphery. The observation that the
goodness of fit is the lowest also in the focal area of the sequence space, sug-
gests that the ruggedness (the degree to which fitness changes within a few
mutations) of the landscape is higher in the region of high fitness.

Due to the discrete nature of the sequence space, graph theory provides a
good framework to represent the fitness landscape (Ashlock and Schonfeld,
2005; McCandlish, 2011; Stadler, 2002). We have further reduced the com-
plexity from the full distance matrix by only including links between the
closest neighbor sequences. Only including the most immediate neighbor
sequences results in a relatively even distribution of high and low fitness
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sequences across the two dimensional plane. When including links between
medium distance neighbors the high fitness sequences begin to cluster to-
gether. Thus the most immediate neighbors don not have similar fitness
values, but the intermediately distanced neighbors of high fitness sequences
also have a high fitness. This is in support of the MDS analysis, in the sense
that fitness peaks tend to be close to each other, but this region of high fit-
ness is interspersed with many low fitness values, indicating high rugged-
ness.

For a more local analysis of the surface, we constructed a one-mutation
neighbors mesh of estimated sequence fitness values based in the MEEP
model described in the appendix A. Although fitness values are estimated
on potentially unrealistic sequences (due to biophysical constraints), the fit-
ness model filters part of the experimental noise that can otherwise be con-
founded with ruggedness. Again, the one-mutation neighbors mesh shows
that ruggedness tends to be higher in the region of higher fitness, in accor-
dance with the other methods.

The analyses presented in this chapter also point out the limitations
of any reductive representation of a fitness landscape. However, if the se-
quence space does have a much lower complexity than what is usually as-
sumed, then such representations can reveal the main features of fitness
landscapes, such as ruggedness and overall fitness distribution. This chap-
ter suggests that a good mathematical model for biologically realistic fit-
ness landscape should ideally not only account for high ruggedness (such
as highly epistatic NK landscapes (Kauffman and Weinberger, 1989)), but
also integrate a region of higher fitness and highly constrained/pleiotropic
sequence spaces (Weinreich et al., 2006).

Overall, our analyses support the massif central hypothesis, at least for
HIV, and thereby underlines the utility of simple representation of fitness
landscapes.
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2.5 Supplementary figures

Figure 2.7: Interpolated polynomial fitness surfaces by least-squares on the ge-
netic scaled spaces by MDS. The six different figures show the result of the interpo-
lation for polynomial degrees (np) from 1 to 6. Blue regions correspond to domains
of low relative fitness and red for regions of high relative fitness. The contour plot
that corresponds to the interpolation with np = 6 is shown in the left panel of fig-
ure 2.3.
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Figure 2.8: Network with nodes connected that are less than θHD = 10 (A), 20
(B), 30 (C) and 40 (D) HD apart. The graph on the right are close-up of the largest
component in the four cases (courtesy of Gabriel Leventhal).
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We have to remember that what
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but nature exposed to our
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Abstract

The Hill-Robertson effect, which states that the interaction be-
tween genetic drift and selection generates unfavorable link-
age disequilibrium (hence favoring recombination), offers one of
the most promising hypotheses to explain the evolution and the
maintenance of sexual reproduction and recombination. On the
basis of simple models of fitness landscapes, it has been shown
that the Hill-Robertson works independently of epistatic inter-
actions. In this chapter, we test whether this is also valid in the
case of individual mutation-based models of fitness landscapes
which are based on estimates of the fitness effects of 1’857 single
mutations and of 257’536 pairs of mutations found in a 70’081
HIV-1 B pol-genotypes assayed for in vitro replication capacity.
We use computer simulations to mimic the evolution of HIV pop-
ulations and we address the question of whether genetic drift
also outweighs epistasis as a factor for the evolutionary mainte-
nance of recombination in the case of more complex and rugged
fitness landscapes. Although recombination is shown to be gen-
erally favored in finite population for individual mutation-based
models, evolved HIV populations cannot be kept in realistic re-
gions of the sequence space, and therefore it remains unclear
whether genetic drift outweighs epistasis as a factor for the
maintenance of recombination in the case of a more complex and
rugged approximation of the landscape.
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3.1 Introduction
Understanding the evolution and the maintenance of sexual reproduc-

tion and recombination has been one of the most intriguing problems of evo-
lutionary biology of the last thirty-five years (Kondrashov, 1993). The most
prominent population genetic theories that have been proposed to answer
this problem argue that the benefit of sexual reproduction and recombina-
tion arises from breaking apart harmful genetic linkage disequilibria (sta-
tistical associations between alleles at different loci), and assume that this
benefit outweighs the cost of breaking apart co-adapted gene combinations
(commonly referred to as recombination load) (Barton and Charlesworth,
1998). As for the cause of the emergence of linkage disequilibria, there are
two dominant views. The stochastic view states that genetic linkage dise-
quilibria is primarily due to the interaction between genetic drift and selec-
tion, whereas the deterministic view postulates that linkage results rather
from epistasis, in other words, the way genes or alleles interact (Kouyos
et al., 2006). Using computer simulations, Keightley and Otto have shown
that varying levels of epistasis did not significantly affect the benefit of re-
combination in finite populations (Keightley and Otto, 2006). Besides, it
was shown that the benefit of recombination increases with population size,
given that there is selection on sufficient loci (Iles et al., 2003; Keightley
and Otto, 2006). In brief, it has been argued that epistasis is negligible
in comparison to the interplay between drift and selection as a mechanism
generating linkage disequilibria, on which the benefit of recombination re-
lies. These results are based on simple models of fitness landscapes. Later,
de Visser et al. (de Visser et al., 2009) found a general disadvantage of sex
and recombination on an empirical fitness landscape. As this landscape re-
lied on five loci only, de Visser’s results are not directly comparable to the
previous ones assuming selection on many loci. Nevertheless, de Visser’s
results pointed out that the topography of the fitness landscape and, in par-
ticular, the presence of sign epistasis (when the sign of the fitness effects of
an allele varies across genetic backgrounds (Weinreich et al., 2005)) have a
significant effect on the benefit of recombination (de Visser et al., 2009).

A system analysis of the mutational effects in HIV-1 pol genes provided
two individual mutation-based models of a large fitness landscape derived
from experimental data (see appendix A). These models constitute a frame-
work of unprecedented biological realism, on which it is possible to examine
the evolution and the maintenance of recombination for the case of large
fitness landscapes. We use these models to test the earlier results of Keight-
ley and Otto (Keightley and Otto, 2006) on large-scale and biologically re-
alistic fitness landscapes. Accordingly, we simulate competition assays be-
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tween recombination and non recombinant HIV genomes, and track the fate
of recombination modifier alleles for different parameters. Hence, we test
whether recombination is still robustly selected for, not only in the case of
simple fitness fits, but also in the case of the more complex individual mu-
tation models, with and without epistasis, also in the form of sign epistasis.
We find that recombination is usually favored, but in contrast to the results
of Keightley and Otto (Keightley and Otto, 2006), we observe that the in-
crease of population size does not always increase the strength of selection
for recombination. Unfortunately, we cannot draw any conclusions on the
determinants of the benefit of recombination due to important limitations of
the application of the different models of fitness landscapes which we high-
light in the discussion section.

3.2 Materials and methods
To mimic the evolution of HIV populations, we implemented a standard

genetic algorithm for N sequences with a maximum of resemblance to the
HIV-1 sequences of the sequence alignment. Each sequence consisted of 404
polymorphic amino acid residues 1. In total, 1455 single mutations were
allowed, which corresponded to the set of single mutations found in the
HIV sequence alignment used to fit the fitness models 2. The number of
mutations per generation and per sequence followed a Poisson distribution
with mean µ. The mutations were randomly and uniformly distributed from
residues 1 to 404. The fitness was calculated for four different fitness mod-
els. Two models inferred fitness based on the number of substitutions to
the consensus sequence, commonly referred to as Hamming distance (HD),
and the other two models inferred fitness based on estimates of main and
epistatic effects of individual mutations.

In case of the two HD-based models, the fitness w of a sequence i was
calculated as wi = exp(b0 +αni+ βn2

i ), where b0 is the intercept of the model,
ni the HD to the consensus sequence, α the independent fitness effect of a
mutation and β its epistatic contribution. In the simplest variant of the
model, we assumed no epistasis (β = 0). In this simple case, we assumed
that the log-fitness decreases linearly with the accumulation of substitu-
tions to the consensus. In essence, the sequences were sorted according to
their HD to the consensus and the average log-fitness of each class of HD
fitted to a linear model log(wi) = b0 + αni. In the second variant, to take

1. 99 Protease residues plus 305 Reverse Transciptase residues.
2. For a detailed description of the sequence data and of the fitness assay, please refer to

chapter 1 and to the appendix A.
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Figure 3.1: A diagrammatic representation of the four different fitness models
used in this chapter. a illustrates the log-fitness linear regression model based on
the number of substitutions to the consensus sequence and b the analog quadratic
regression model, c illustrates the individual mutation main effects (ME) model
and d the individual mutation main and epistatic effects (MEEP) model.

epistasis into account, the average log-fitness of each class of HD was fitted
to the quadratic function with parameters b0, α, and β. In the case of the two
individual mutation-based models, we used the ME model (which excludes
epistasis) and the MEEP model (which includes epistasis). The descriptions
of the individual mutation-based models is given in chapter 1. For a bet-
ter overview of the models, a schematic outline of the four different fitness
models is provided in figure 3.1.

A binary modifier of the recombination rate was added at the end of each
sequence. The start frequencies of the modifiers were set 50% at state 0
and 50% at state 1. The modifier locus was left mutation free. Pairs of se-
quences were sampled with replacement from the parental population with
a probability proportional to their fitness (by “roulette-wheel” selection) and
the number of recombination events followed two Poisson distributions with
means r01 (with r01 = r10) and r11 depending on the combination of the pair
of modifiers. For all cases, we assumed r00 = 0. The positions of the recom-
bination breaks were also randomly and uniformly distributed along the
entire sequence. The sampling took over until the number of offspring se-
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quences reached N so as to maintain a constant population size. Each run of
the simulation started with an homogeneous population consisting of N re-
peats of a sequence corresponding to a local optimum, which was reached by
adaptive walks climbing the fitness landscape by means of steepest ascent
from the consensus of the sequence data. We also implemented an initial
equilibration (burn-in) period of a minimum of N generations to ensure that
the population was allowed to reach a state of selection-mutation balance
around one or more optima of the fitness landscape. After the equilibration
period, we let the modifiers to freely change in frequency until their com-
plete extinction or fixation in the population.

3.3 Results
To determine the odds for the fixation of a recombination modifier for

different parameter combinations, we implemented computer simulations
which reproduced the evolution of HIV populations in the four different fit-
ness models shown in figure 3.1. The models can be grouped in two dif-
ferent ways. They can be either HD-based or individual mutation-based,
or they can either exclude or include epistasis. Although both HD-based
models have nearly the same fitness predictive power (see figure 3.2 B), the
quadratic model fits the data significantly better than the linear model (see
figure 3.2 A), which is evidence for a considerable amount of epistasis in the
empirical fitness landscape.

The individual mutation-based models offer a substantial increase in
terms of fitness predictive power and also highlight the significance of epis-
tasis in fitness determination, with the MEEP model providing a signifi-
cant higher predictive power than the ME model. For a detailed analysis
of the predictive power of the ME and the MEEP models please see the ap-
pendix A. To limit the number of parameter combinations of the genetic
algorithm, we explored the parameter space in a twofold manner. We took
into consideration both small and medium/large population sizes (N = 1′000
and N = 10′000) (Brown, 1997; Kouyos et al., 2006). The recombination rate
was left constant, at a level of the same order of magnitude of previous es-
timates (Rajaram, Minin, Suchard, and Dorman, Rajaram et al.; Zhuang
et al., 2002) (r11 = 0.1 crossovers per sequence per generation). We also al-
lowed an intermediate recombination rate to consider not only a scenario
where the modifier is completely linked to its genetic background, similar
to what is to be expected from competing sexual and asexual genotypes of a
same species (r01 = 0 and r10 = 0 crossovers per sequence per generation),
but also the case where the modifier is only partially linked to the selected
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Figure 3.2: A. Mean and standard errors (black dots and gray vertical bars) of
log fitness as a function of the number of mutations (Hamming distance) to the
consensus sequence for all the sequences in the data set. The black slope shows
the linear fitness fit, whereas the red curve shows the quadratic fitness fit. B.
Illustration of the R-squares of the four fitness models by dispersion ellipses of
predicted against measured fitness values of 5’000 sequences sampled at random
from the data set. Black stands for the linear model, red for the quadratic model,
green for the ME model, and blue for the MEEP model.

loci by allowing an intermediate recombination rate (r01 = 0.05 and r10 = 0.05
crossovers per sequence per generation). Finally, we tested both a low and a
high mutation rate (µ = 0.1 and µ = 0.5 mutations per sequence per gener-
ation). The order of magnitude of biological estimates for the mutation rate
is assumed to be in the range of the chosen mutation rates (although µ = 0.5
is presumably exaggerated) (Brown, 1997; Wain-Hobson, 1993).

We ran 500 instances of the genetic algorithm for each combination of
parameters and for each fitness model. Each instance is initialized with an
homogeneous population of N sequences which, for a given fitness model,
corresponds to the nearest local fitness optimum to the consensus sequence.
In essence, we subjected the consensus sequence to adaptive walks that
climbed the fitness landscape by means of the steepest ascent. To bring the
homogeneous population to mutation-selection balance, we allowed an equi-
libration period of a minimum of N generations of mutation, selection, drift
and recombination. After the equilibration period, the modifier for recombi-
nation was introduced in half of the population. And finally, the population
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was allowed to evolve until complete fixation or extinction of the modifier
for recombination. As the proportion of fixations and extinctions follows a
binomial distribution of sample size 500, it is possible to statistically test
the evolution of recombination for a given combination of parameters and
a given fitness model as it is shown in figure 3.3. Figure 3.3 reveals that
recombination is favored in all four fitness models. This result, however, is
not significant for 5 out of the 32 possible parameter combinations, namely
when the population size is high and the mutation rate is low. On the posi-
tive note, for a high mutation rate, recombination is always strongly favored.

There is no significant difference between the outcome of the two dif-
ferent intermediate recombination rate scenarios: no clear pattern can be
assigned to the introduction of the intermediate recombination rate

The fixation frequencies of the recombination modifier show greater sim-
ilarity between the linear and the quadratic models (pairwise comparison of
the frequencies of the two upper panels of figure 3.3) than between the ME
and the MEEP models (pairwise comparison of the frequencies of the two
lower panels of figure 3.3).

Interestingly, it is in the MEEP model for fitness landscape that recom-
bination is the least favored (see low right panel of figure 3.3) — a benefit
for recombination is still present but to a weaker degree.

3.4 Discussion
The fixation frequencies of the recombination modifier show an overall

advantage of recombination, also in the fitness landscapes that correspond
to the more complex individual mutation-based models. In this respect, our
results are in line with previous findings by Keightley and Otto (Keightley
and Otto, 2006). Yet, we see no generalized increase of the advantage of
recombination with the increase of the population size. Instead, an increase
in the benefit of recombination when both the population size and the mu-
tation rate are large suggests that the advantage of recombination depends
on an interaction between the population size and the mutation rate. Fur-
thermore, when the population size is large but the mutation rate is small,
the benefit of recombination is weaker or even absent.

The fitness landscapes defined by the ME and the MEEP models are
characterized by vast neutral regions of the sequence space (Kouyos et al.,
2012); therefore, the interactions and the effects of the parameters might
only be better revealed for very high levels of rates of recombination and of
mutation. As we tested the parameters in a somewhat reasonably realistic
range, we might fail to catch some of their effects and interactions. Further-
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Figure 3.3: Barplots showing the relative frequencies of the recombination modi-
fier for 500 independent runs. Blue represents the proportion of the runs for which
the recombination modifier fixates in the population and red the proportion of the
runs for which the recombination modifier goes extinct. Each panel corresponds to
one of the four fitness models of this chapter (linear and quadratic fits, and ME and
MEEP models). For a diagrammatic representation of the models see figure 3.1.
The parameters are displayed below the x axis. r01 stands for the intermediate
recombination rate, µ the mutation rate, and N the population size. Error bars
represent the 95% confidence intervals of the relative frequencies of the modifier.

more, although the ME and the MEEP models provide more than a two-fold
increase in terms of fitness predictive power, their highest fitness optima
are located in unobserved and, in all likelihood, unrealistic regions of the
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sequence space — more than a hundred substitutions away from the con-
sensus sequence, whereas the observed range of number of substitutions to
the consensus does not exceed 60. This is due to the fact that the distribu-
tion of estimated fitness effects obtained in (Hinkley et al., 2011) contains a
high number of beneficial mutations which are fixated by natural selection
(see figure 3.4).

As a consequence, in these two models, after the initial equilibration
phase, evolved populations consist of presumably unrealistic sequences. (With-
out the equilibration phase recombination is selected for also because it pro-
vides an extra source of variability that speeds up the adaptation of the
recombination positive fraction of the population by means of the Fisher-
Muller hypothesis (de Visser and Elena, 2007).) In the case of the HD-based
models, there is only one fitness optimum, which corresponds to the consen-
sus sequence. Thus, in these two models, and for reasonable rates of muta-
tion and recombination, evolved populations remain in a realistic region of
the sequence space.

The introduction of an intermediate recombination rate partially breaks
the linkage between the recombination modifier and its genetic background.
For this reason, we expected a consistent reduction of the benefit of recom-
bination in this scenario. However, the introduction of an intermediate re-
combination rate showed no coherent effect on the benefit of recombination.

Interestingly, the fitness landscape defined by the MEEP model is gener-
ally less favorable for the evolution of recombination than those defined by
the other models. As the MEEP model specifically allows for sign epistasis,
we can speculate that the inclusion of this form of epistasis dampens the
generalized benefit of recombination provided by the Hill-Robertson effect.
Sign epistasis is assumed to be detrimental for the evolution of recombina-
tion because the more sign epistasis is present in the fitness landscape, the
fewer the mutational pathways that can be traversed by natural selection. If
this is the cause for the decrease of the general advantage of recombination
in case of the MEEP model, then this result would indicate that the benefit
of recombination depends on the topography of the fitness landscape, which
would agree with (de Visser et al., 2009). Yet, only the implementation of
a deterministic version of the simulations on the individual mutation-based
models would allow us to quantify with exactitude which part of the bene-
fit of recombination is attributable to the stochastic versus the deterministic
effects. Unfortunately, this is not feasible because it requires the monitoring
of the frequencies of approximately 21000 genotypes.

Alternatively, we can imagine that the epistatic interactions of sequences
at the fitness optima of the landscape defined by the MEEP model are par-
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Figure 3.4: Distribution of the fitness effects of the ME and the MEEP models.
a. Distribution of the fitness effects of the ME model. b. Distribution of the main
effects of mutations of the MEEP model. c. Distribution of the 0.5% strongest
epistatic effects of the MEEP model. d. Distribution of the 5 · 10−5% strongest
epistatic effects of the MEEP model.

tially meaningless. In the sequence region corresponding to these fitness
optima, sequences are likely composed by series of alleles whose combina-
tions are presumably poorly represented (if not absent) in the sequence data.
One reason for the absence of certain allele combinations can be their possi-
ble highly detrimental fitness effects. Thus, even though it was shown that
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pairwise epistatic interactions of the MEEP model play an important role
in the determination of fitness of unseen biological sequences (see the ap-
pendix A), they are insufficient to justly characterize the fitness landscape
of unrealistic regions of the sequence space. Ideally, it would be necessary to
distinguish between genuinely neutral allele interactions and the false neg-
atives — the highly detrimental allele interactions which lead to unrealistic
sequences (and therefore are assumed to be neutral for their absence in the
sequence data). An illustration of this limitation is shown in figure 3.5.

Figure 3.5: Illustration of one limitation of the application of individual mu-
tation models. In the first row, we assume that the most common combination
of four alleles (reference sequence) has average fitness, which is accurately pre-
dicted by the model. In the second and third rows, we assume two less com-
mon pairwise interactions presenting a fitness advantage, but which are still
well predicted by the model. In the fourth row, however, we assume a highly
detrimental pairwise interaction which results from two single mutant alleles
present in the second and in the third rows. As this combination is never or
seldom observed, the model assumes that its effect is neutral and incorrectly
predicts a fitness value which migh be lower than the two previous ones but
higher than the reference. In the last row, we assume the case of a sequence
consisting of all four mutants present in the previous three rows. In this case,
the model will incorrectly estimate a very high fitness and this sequence, al-
though unrealistic, will likely be selected.

All in all, and despite a substantial increase in fitness predictive power,
the individual mutation-based models have limited fitness predictive power
for sequences composed of poorly represented alleles or combinations of al-
leles. Nevertheless, our results support the idea that there is no general
disadvantage of evolving recombination; on the contrary, regardless of the
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fitness model, recombination is favored especially when mutation rates are
high, which what is typically found in studies using recombination modi-
fiers (Hartl et al., 1997).
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Abstract

To detect general patterns and temporal trends of HIV-1 resis-
tance we apply principal component analysis (PCA) to in vitro
fitness data. 28’000 virus samples, obtained between 2002 and
2008, were assayed for fitness in 16 to 21 selective environ-
ments. Fitness measurements are based on replication capac-
ity (RC), which quantifies in vitro viral replication in a single
cycle of infection. RC is determined both in the absence of drugs
and in the presence of 6-7 nucleoside analog reverse transcrip-
tase inhibitors (NRTIs), 3-4 non-nucleoside reverse transcrip-
tase inhibitors (NNRTIs), and 6-9 protease inhibitors (PIs). PCA
shows remarkable structure in RC across the different environ-
ments, which reveals differences in the patterns of resistance
and cross-resistance between drugs or between drug classes. To
probe the causes of the observed patterns, we develop a model
to generate simulated data and subject these simulated data to
an equivalent analysis. By comparing the outcomes of PCA on
the original and the simulated data, we quantify which part
of the total variance of the original data is due to non-specific
effects, class-specific effects, and drug-specific effects of resis-
tance mutations. We find that relative fitness is mainly drug-
independent and that drug-specific effects are substantially big-
ger than class-specific effects for NRTIs, but not for NNRTIs or
PIs. The observed patterns remain remarkably stable over the
period of observation. Comparison with known potent combina-
tion therapies suggests that PCA helps to identify combinations
that act synergistically in preventing the emergence of resis-
tance.
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4.1 Introduction

Antiretroviral therapy has fundamentally changed the face of the HIV
epidemic in the developed world. Over the last two decades more than 20
new antiretroviral drugs have been developed and the treatment with com-
binations of these drugs significantly reduces mortality and morbidity (Eg-
ger et al., 1997; Hammer et al., 1996; Mocroft et al., 1998; Palella et al.,
1998). The clinical benefit of treatment, however, is compromised by the re-
markable capacity of the virus to evolve resistance. A sustainable use of the
existing antiretrovirals thus necessitates a sound understanding of the gen-
eral patterns of resistance that emerge in the HIV epidemic. To establish
these patterns from epidemiological data, however, presents considerable
challenges. The large number of drugs, the even larger number of drug re-
sistance mutations, and the varying levels with which individual mutations
confer resistance to multiple drugs (i.e. cross-resistance) result in complex
data structure, and detecting general patterns requires methods that reduce
the high dimensionality of the data (Bennett et al., 2009; Egger et al., 1997;
Harrigan and Larder, 2002).

The aim of the present chapter is to provide a comprehensive picture
of HIV-1 drug resistance and its temporal evolution for three major drug
classes, and to develop a quantitative understanding for the underlying mu-
tational effects. We focus on the effect of protease and reverse transcriptase
inhibitors on replication capacity (RC), an in vitro measure of viral fitness
based on a single round of replication (Petropoulos et al., 2000). Fitness is
measured in 16-21 selective environments, consisting of a drug-free envi-
ronment, 6-7 environments containing nucleoside reverse transcriptase in-
hibitors (NRTIs), 3-4 environments containing non-nucleoside reverse tran-
scriptase inhibitors (NNRTIs), and 6-9 protease inhibitors (PIs). Using 4’000
virus samples per year between 2002 and 2008 we employ principal compo-
nent analysis (PCA) to detect general patterns and time trends in resis-
tance and fitness. To assist the interpretation of these patterns, we develop
a model to simulate data and compare the outcome of PCA on the original
and the simulated data to develop a time-resolved view of the role of class-
specific versus drug-specific effects.
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4.2 Materials and methods

4.2.1 Experimental data
28’000 virus samples derived from HIV-1 infected patients were assayed

for RC. These virus samples were submitted to Monogram Biosciences, Inc,
for drug resistance testing between 2002 and 2008. The assay is described
in chapter 1 and was originally presented elsewhere (Petropoulos et al.,
2000). In brief, patient virus-derived amplicons representing all of the pro-
tease (PR) and residues 1-305 of the reverse transcriptase (RT) are inserted
into the backbone of a resistance test vector. The amplicons reflect the di-
versity of PR and RT in the patient. The resistance test vector is a modified
NL4-3 HIV clone such that it can only undergo a single round of infection.
The RC is then determined as the total production of infectious progeny
virus after a single complete replication cycle of the patient-derived virus
relative to that of an NL4-3 based control virus. (Note that there are cor-
responding multi-cycle assays (Dykes et al., 2006; Miao et al., 2008), with
different advantages and disadvantages.) The RC of the NL4-3 based con-
trol virus is thus equal to 1. For the virus samples analyzed here, the RC
is measured not only in the absence of drugs, but also in the presence of
15-20 different single drugs (6-9 PIs, 6-7 NRTIs, and 3-4 NNRTIs) at a
series of drug dilutions. The RC on drugs was obtained by interpolating
measurements at different drug concentrations. For each drug, the RC of
a virus was given by the interpolated value that corresponds to the drug
concentration at which the NL4-3 based control virus has 10% of its RC
in the absence of drugs. Specifically, the initial set of drugs is the follow-
ing: 6 PIs—amprenavir (AMP), indinavir (IDV), lopinavir (LPV), nelfinavir
(NFV), ritonavir (RTV), and saquinavir (SQV); 6 NRTIs—abacavir (ABC),
didanosine (ddI), lamivudine (3TC), stavudine (d4T), zidovudine (ZDV), and
tenofovir (TFV); and 3 NNRTIs—delavirdine (DLV), efavirenz (EFV), and
nevirapine (NVP). 1 PI is introduced in 2003—atazanavir (ATV). In 2005, 1
PI—tipranavir (TPV)—and 1 NRTI—emtricitabine (FTC)—are introduced.
1 PI is introduced in 2006—darunavir (DRV)—and, at last, 1 NNRTI is in-
troduced in 2008—etravirine (ETR).

4.2.2 Principal Component Analysis
PCA is a statistical method used to identify structure in a cloud of points

in a multidimensional coordinate system. PCA identifies a new ordered
set of orthogonal coordinates such that they capture decreasing amounts of
maximum variance. An intuitive understanding of the PCA can be obtained
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as follows. Imagine a projection of the multidimensional cloud of points
onto a line. Then this cloud is rotated until that an orientation is found for
which the variance of the projected points along the line is maximal. This
orientation defines the first principal component (PC). The remaining PCs
are orthogonal to the first PC, but are ordered such that they explain de-
creasing maximum amounts of variance in the cloud of points. The more
the variance is explained by the first PCs, the more the cloud of points is
structured (Gnanadesikan, 1977; Jolliffe, 1986).

The mathematical procedure yields eigenvalues that quantify the frac-
tions of the variance of the original cloud of points along the PCs. The result
of a PCA is usefully summarized in scatter-plots that show a projection of
the cloud of points onto planes defined by pairs of principal components.
The normed vectors spanning up the original coordinate system are shown
as arrows projected onto the plane of the scatter-plot. These scatter-plots
are commonly called biplots (Gabriel, 1971; Gower and Hand, 1996).

Here, the cloud of points corresponds to the RC data consisting of a table
with 28’000 rows (i.e. the virus samples) and 16-21 columns (i.e. the selec-
tive environments: absence of drugs; 6-7 NRTIs; 3-4 NNRTIs; 6-9 PIs). The
RC values were log-transformed as this eliminated positive skewness of the
values’ distribution and improved the homogeneity of their variance. Our
analysis was performed with the ade4 R package (Chessel et al., 2004; R
Development Core Team, 2009).

4.2.3 Simulated data

The PCA is a powerful tool to reveal hierarchical structure in variance
and covariance in the data. However, it does not allow to infer directly the
underlying processes that are responsible for the observed patterns. To ob-
tain a better understanding of the patterns observed in PCA of the HIV
samples, we develop a model based on assumed effects of mutations on RC
in different selective environments. To this end we produce data with sim-
ilar structure based on biologically motivated assumptions in order to test
whether this model is compatible with the data.

We generate simulated data by the following approach. First, we gener-
ate sequences that are maximally similar to the original data with regard
to sequence length and drug resistance polymorphism. Specifically, as the
experimental data is based on the 99 amino acids of the PR and the first 305
amino acids of the RT, we generate corresponding random sequences with a
total length of 404 positions. Each position in the sequence can be in one of
two states corresponding to either the drug sensitive wild-type or a drug re-
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sistance mutation. We define a vector m = (m1,m2, . . . ,m404), where mk are
binary random variables. The number of mutations in each sequence are
sampled from numbers of resistance mutations found in a similar dataset
based on 9’466 sequences (Bonhoeffer et al., 2004) . In addition, we subdi-
vide m into mPR = (m1,m2, . . . ,m99) and mRT = (m100,m101, . . . ,m404). Second,
we generate the corresponding RC values for the sequences, which we store
in a N × E matrix Φ = [φi,j], where N is the number of viral samples and
E the number of drug environments. We assume that the effect of each mu-
tation has up to three components depending on the environment. The first
component (non-specific component) reflects that part of the effect which is
present in all environments, which we write aPR = (a1, a2, . . . , a99) and aRT =
(a100, a101, . . . , a404), where the ak are sampled from a normal distribution
with mean zero and variance 1 (i.e. N(0, 1)) . The second component (class-
specific component) reflects that part which is specific to all drugs of a given
class. They are also normally distributed with mean 0 but different vari-
ances. Specifically we have

bPI = (bPI
1 , b

PI
2 , . . . , b

PI
99), bPI ∼ N(0, σPI

β )

bNRTI = (bNRTI
100 , . . . , bNRTI

404 ), bNRTI ∼ N(0, σNRTI
β )

bNNRTI = (bNNRTI
100 , . . . , bNNRTI

404 ), bNNRTI ∼ N(0, σNNRTI
β )

The third component (drug-specific component) reflects that part which is
specific to only one drug. It is given by

cPI = (cPI
1 , c

PI
2 , . . . , c

PI
99), cPI ∼ N(0, σPI

γ )

cNRTI = (cNRTI
100 , . . . , cNRTI

404 ), cNRTI ∼ N(0, σNRTI
γ )

cNNRTI = (cNNRTI
100 , . . . , cNNRTI

404 ), cNNRTI ∼ N(0, σNNRTI
γ )

As the effect of the third component must be specific to a single drug rather
than to all drugs of the same class, we create three specificity matrices
(SPI ,SNRTI , and SNNRTI) with E columns. The number of rows is either
99 (PI) or 305 (NRTI and NNRTI). Each row of these matrices contains a 1
at a randomly chosen column of the one drug for which the mutation is spe-
cific and all other entries are set to 0. We define dlj as the jth column-vector
of (cl)T · Sl, with l = PI, NRTI, or NNRTI. Finally, for a given set of σNRTI

β ,
σNNRTI
β , σPI

β and σNRTI
γ , σNNRTI

γ , σPI
γ , we generate sequences mi with i = 1 . . . N .

For each sequence, we proceed to calculate the RC for all different environ-
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ment as follows:

log(φi,j) =


aPR ·mPR

i + aRT ·mRT
i j ∈ X0

(aPR + bPI + dPI
j ) ·mPR,i + aRT ·mRT

i j ∈ PI
aPR ·mPR

i + (aRT + bNRTI + dNRTI
j ) ·mRT

i j ∈ NRTI
aPR ·mPR

i + (aRT + bNNRTI + dNNRTI
j ) ·mRT

i j ∈ NNRTI

where j is an index that refers to the particular drug considered.

4.2.4 Similarity measures of experimental and simulated
data

To quantify the similarity between the results of the PCA of the experi-
mental data with those of the simulated data, we use two measures of sim-
ilarity based on the shape and orientation of the two clouds of points. The
first measure is calculated by adding up the absolute differences between
the sorted eigenvalues of the PCAs based on the experimental and the sim-
ulated data. This measure therefore quantifies how similar the simulated
and the experimental data are with regard to the variance along the PCs.
More intuitively, it measures the similarity between the overall shape of the
two clouds of points. The second measure is based on the orientation of the
arrows that represent the normed vectors spanning up the original coordi-
nate system based on RC value in each environment. Specifically, we first
calculate both the centroids and the axial standard deviations of groups of
arrows that belong to the same drug class, and then add up the absolute
differences between the experimental and the simulated data with regard
to the centroids and axial standard deviations for each drug class. (When
comparing groups of arrows, we took into account that the axis’ orientation
can be flipped because its choice is arbitrary.) Intuitively, the second mea-
sure thus quantifies the similarity of the orientation of the two clouds of
points in the original coordinate system. In the main text we refer to the
first measure as the shape similarity and to the second as the orientation
similarity.

4.3 Results

4.3.1 PCA of experimental data
To identify patterns of cross-resistance we apply PCA to replicative fit-

ness data in 21 selective environments. Fig. 4.1 shows the PCA of 4’000
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Figure 4.1: Biplots illustrating the PCA of the experimental data: for each of the
4 rows, panels A to C show the RC values of 4’000 viruses in 16-21 environments
with respect to their projection onto the first 4 PCs. Column A, B, and C shows
first against second, second against third, and third against fourth PC, respectively.
The rows correspond to the years 2002, 2004, 2006, and 2008 and are based 4’000
viruses per year. The arrows show the projections of the initial coordinate system
consisting of the RC value for 6-7 NRTIs (blue), 3-4 NNRTIs (green), 6-9 PIs (red),
and 1 drug free environment (black). The variance captured by each PC is given as
a label of the corresponding axis. Gray levels account for the density of the point
scattering (and are generated with geneplotter (Gentleman and Biocore, 2006)).

HIV samples each from years 2002, 2004, 2006, and 2008. The biplots doc-
ument that 4 PCs are sufficient to capture > 90% of the total variance in
all years. Higher PCs (accounting for the remaining < 10%) are regarded as
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non-informative and will be ignored in the following. A closer examination
of fig. 4.1–A shows that the first PC captures approximately 60% of the total
variance. Given that all arrows have a component that points to the left of
the plot in column A of fig. 4.1, this implies that the first PC contrasts over-
all low with overall high RC viruses. This is supported by the fact that the
average log-RC values across all environments and the projection of the RC
values onto the first PC are highly correlated (see fig. 4.2). In particular, it
is remarkable that the arrow reflecting the drug free environment points to
the left together with all other arrows in fig. 4.1–A. This implies that viruses
that have high RC in absence of drugs also tend to have high RC in the pres-
ence of drugs. This can either be the case because many of the mutations
characterizing these viruses have similar effect in presence and absence of
drugs. An alternative but not mutually exclusive explanation is that the ef-
fect of the mutations that are specific either to a single drug or to a class of
drugs is manifest only in the corresponding environments. These environ-
ments, however, always only constitute the minority of environments as in
our data set there are always more environments to which such mutations
are not specific. As a consequence, the predominating effect in the analysis
will always be that of a mutation in a non-specific selective environment.

Inspection of fig. 4.1–A also shows that arrows belonging to the same
drug class tend to fall on top of each other. This indicates that a large part
of the variance in the data is due to class-specific effects. The second PC
shows that around 20% of the variance contrasts viruses on their suscepti-
bility/resistance to PIs and NNRTIs (fig. 4.1–A). The general pattern seen
in fig. 4.1–A remains very stable over the time period 2002-2008. Changes
are predominantly due to introduction of new drugs over the time period of
observation (see supplementary figure 4.7).

The third PC accounts for 6-8% of the variance (fig. 4.1–B). In 2002 and
2004, the third PC contrasts NNRTI and PI against NRTI resistant viruses.
In 2006 and 2008, the third component begins to explain also differences
within the NRTI class. Thus, adding up the variance accounted for by the
first three components, we find that 80-85% of the variance in the data
can be explained without evoking any drug-specific effect. While in 2002
and 2004 all arrows of the NRTI point in one direction, from 2006 onwards
the NRTIS point in opposing directions along the third PC. This pattern is
mostly, but not exclusively, due to the introduction of new drugs, as it par-
tially remains when restricting the analyses only to those drugs that are
available from 2002 (see supplementary figure 4.8).

In 2002 and 2004 the fourth PC, accounting for 4-5% of the total variance
(fig. 4.1–C), begins to reveal drug-specific effects among the NRTIs, while the
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Figure 4.2: Average log-RC values over the 21 drug environments of 4000 samples
from year 2008 against the projection onto the first PC (R2 = 0.996).

Figure 4.3: Biplots of the PCA of 2008 data with drug information. The plot corre-
sponds to fig. 4.1–B and C, year 2008. Panels A and B show the RC values of 4’000
viruses in 21 environments with respect to their projection onto the second, third,
and fourth PCs. The variance captured by each PC is shown in the inlays in the
upper-left corner of each panel. Acronyms for the drugs or drug classes are found
in Methods.

arrows for the NNRTIs and PIs remain much closer together. This implies
that drug-specific effects are much more pronounced in NRTIs than in PIs
or NNRTIs, which is in line with (Harrigan and Larder, 2002). In 2006
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and 2008, the large contribution that NRTI specific effects make to the total
variance begins to manifest itself already in the third PC (fig. 4.3–A), which
also contrasts individual NRTIs against each other. In these same years,
the fourth PC begins to reveal drug-specific effects, first in the PIs, and later
in the NNRTIs (fig. 4.3–B). This is partially due to the introduction of new
drugs and in part due to the fact that the 3rd PC begins to account for the
drug-specific effects among the NRTI class (see supplementary figure 4.8).

4.3.2 Comparison of simulated and experimental data

The analysis of the experimental data reveals considerable hierarchi-
cal structure suggesting varying degrees of cross-resistance in the different
drug classes. To assist the interpretation of the outcome of PCA of the ex-
perimental data, we simulate data according to a model in which the effect
of each mutation on the RC is subdivided into an environment independent
component (α), a class-specific component (β), and a drug-specific component
(γ). For simplicity, these components are drawn from normal distributions.
As we are interested in the relative importance of these components, we fix
the standard deviation of the distribution from which α is drawn to 1 and
we set the mean of all distributions to 0. For further details regarding the
model see Methods.

By changing the variances of the normal distributions, we use this model
to generate 100’000 datasets which differ in the relative contribution that
these components make to the RC value in different environments. We ex-
plored how well the 100’000 simulated datasets exhibit generic features of
the experimental dataset by using PCA based measures that quantify the
similarity of the overall shape and of the orientation of the cloud of points
formed by the experimental and the simulated data (see fig. 4.4–A). Thus our
method is related to Approximate Bayesian Computing (Beaumont et al.,
2002), with shape and orientation similarity being the summary statistics
assessing the similarity between the actual data and the model.

For the top 100 simulated datasets that were maximally similar with re-
gard to both similarity measures, we plotted the standard deviation of the
class-specific effects, σβ, against the standard deviation of the drug-specific
effects, σγ (see fig. 4.4–B). To illustrate how similar the biplots of the simu-
lated and the experimental datasets can be, we generated one dataset based
on the average values of the standard deviations σβ,NRTI , σβ,NNRTI , σβ,PI ,
σγ,NRTI , σγ,NNRTI , and σγ,PI of the 100 most similar datasets (fig. 4.4–B).
The biplot of the PCA of this simulated dataset is shown in fig. 4.4–C. The
variances explained by the principal components are close for both datasets
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Figure 4.4: PCA of simulated data. Panel A shows the similarity between
100’000 simulated datasets and the experimental data based on shape and ori-
entation of the cloud of points (see main text). Panel B shows the standard de-
viation of normal distributions underlying the class-specific effects, σβ, against the
standard deviation of the drug-specific effects, σγ for the 100 most similar data
sets with regard to shape and orientation. Panel C shows the PCA of simulated
data which was generated based on the average value of the standard deviations
σβ,NRTI , σβ,NNRTI , σβ,PI , σγ,NRTI , σγ,NNRTI and σγ,PI of the 100 datasets that were
most similar to the PCA of the viruses from year 2002 (see fig. 4.1 A for compari-
son). The parameters σβ and σγ were drawn randomly from a uniform distribution
between 0 and 3.

(experimental dataset: 60%, 20%; simulated dataset: 61%, 18%. Moreover,
the orientation of the arrows is similar in fig. 4.1–A, year 2002 (experimen-
tal data set) and fig. 4.4–C (simulated data set). Note, that although the
PCA reveals considerable structural similarity between the simulated and
the experimental data, comparison of the scatter-plots shows that the ex-
perimental data, in contrast to the simulated data, are not normally dis-
tributed.

Generating 100’000 datasets for each year and selecting the 100 best
fits, we analyzed temporal trends in the contribution of the class-specific
and drug-specific components (fig. 4.5). Across all years, we observe that the
class-specific component outweighs the drug-specific component for NNRTIs
and PIs, whereas the drug-specific component outweighs the class-specific
component for the NRTIs. The class-specific component remains stable over
time for the NRTIs and the NNRTIs, but decrease significantly over time in
the PIs. The drug-specific component increases in all drug classes, but only
significantly so in the NRTIs and the PIs. The temporal changes, however,
are mostly attributable to the introduction of new drugs, with the exception
of the decrease of the class-specific component of the PIs (see supplementary
figure 4.9). The fact that the new drugs lead to an increase of the drug-
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Figure 4.5: Time evolution of the class- and the drug-specific components of the
mutational effects from 2002 until 2008. Panel A the time evolution of σβ, the mean
standard deviation (±SE) of the normal distributions from which the class-specific
components are drawn. Panel B shows the time evolution of σγ , the mean standard
deviation of the normal distribution from which the drug-specific components are
drawn. Over the time window the class-specific components outweigh the drug-
specific components for both the NNRTIs and the PIs, but not the NRTIs. The
increase of the drug-specific components over time is mostly due to the introduction
of new drugs (see supplementary figure 4.9).

specific component indicates that these drugs exhibit resistance patterns
that are different from the previously existing drugs.

4.4 Discussion
PCA of the HIV samples ranging from 2002 to 2008 reveals considerable

structure in the RC values across the 16-21 environments. The first PC es-
sentially reflects the mean log-RC of the viruses across all environments and
explains around 60% of the variance in the data. The comparison with the
PCA of the simulated data supports the interpretation that the first PC is
mainly due to the non-specific component of the mutational effects on RC.
Although this non-specific component is responsible for most of the variance
in the data, it is typically not the largest component of each mutation (com-
pare σα with σβ or σγ in fig. 4.5). The non-specific component nevertheless
dominates the variance, because it is present for each mutation in all envi-
ronments, and therefore contributes to RC everywhere. This also explains
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the somewhat counter intuitive observation that the arrow for the drug free
environment points to the left together with the arrows of all drug environ-
ments (fig. 4.1, column A): the non-specific component is the only component
that remains of a mutation in all environments to which this mutation is
not specific.

The fact that the arrows for all members of a drug class essentially fall
on top of each other when the data is projected onto the plane defined by the
first and second PCs is remarkable. The likelihood that a random rotation of
the data into a new coordinate system would achieve such an agreement is
negligible, and hence points to the power of the PCA to reveal non-random
patterns in the data. Moreover, it demonstrates the overriding effect of the
drug class on the overall structure in the data.

Comparison of the experimental with the simulated data suggests that
the variance captured in the second, third, and fourth PCs can mostly be
explained by the class-specific component of the mutational effects. The
drug-specific components are strongest for the NRTIs, and only for this
class is the magnitude of the drug-specific component larger than that of
the class-specific component. In line with earlier observations, our results
thus suggest that cross-resistance is higher in the NNRTIs and PIs than in
the NRTIs (Harrigan and Larder, 2002). Note, however, that the analysis
presented here focuses on RC values in the absence and in the presence of
drugs. Clinical studies such as (Harrigan and Larder, 2002) use changes in
IC50, the drug concentration at which the virus is half maximally inhibited,
as a measure of drug resistance. RC is a valid measure of in vitro fitness
and it has been shown, in the absence of drugs, to correlate negatively with
CD4 cell count and positively with viral load (Daar et al., 2005). Moreover,
RC in the absence of drugs increases while IC50 decreases during long-term
virologic failure (Barbour et al., 2002). However, the relation between RC on
drugs and IC50 is not clear, as the present chapter is the first to investigate
RC on drugs.

A temporal PCA analysis of HIV samples ranging from 2002 to 2008
shows that across all years the drug-specific component of the mutational
effects outweigh the class-specific component for the NRTIs but not for the
NNRTIs and the PIs. While this shows that the broad conclusions are ro-
bust over time, we emphasize that, like other datasets of comparable size,
our dataset is not based on a randomly selected set of HIV patients. Hence,
we cannot exclude that some part of the variance structure in the data is
due to biased sampling or changing patterns in frequency of drug use. The
temporal trends also show that the drug-specific component gains in im-
portance over the years. Restricting the analysis to only those drugs that
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were present already in 2002, however, argues that this effect is mostly
attributable to the introduction of new drugs that appear to have rather
distinct resistance profiles from the drugs that previously existed in their
class.

The model that we used to generate data greatly simplifies the complex
nature of mutational effects. In particular, it assumes that the effects of mu-
tations are independent of the genetic background and thus neglects that
mutations may interact to determine fitness. Given the level of simplifi-
cation it is remarkable how well the experimental and the simulated data
agree with regard to the overall similarity of orientation and shape of the
corresponding clouds of points provided that parameters are chosen appro-
priately. This argues that an additive model of mutational effects on log RC
is able to describe the experimental data well in a statistical sense. However,
it does not allow to infer that non-additive interactions between mutations
are generally absent for two reasons. First, we have compared only a single
model to the experimental data; therefore, we cannot exclude that there are
other models that fit the data as well or even better. Second, the quality of
a fit justifies the underlying assumption of a model in a statistical sense but
not necessarily in a biological sense.

To assess the robustness of our findings we also produced simulated data
based on modified models. To this end, we tested whether our findings are
robust with regard to using other random distributions than the normal
distribution for the three components underlying the mutational effects on
log RC. In particular, it is plausible that the non-specific component of the
mutational effect is typically deleterious, while the class- or drug-specific
components are often beneficial. To account for this we assumed a nega-
tive exponential distribution for the first component and positive exponen-
tial distributions for the second and the third components. We also tested
whether the fact that we have an uneven number of drugs in each class al-
ters the results qualitatively by restricting the analysis to only four drugs
per class. In all cases the results were qualitatively robust with regard to
the main result of our analysis, namely that the class-specific component ex-
ceeds the drug-specific component for the NNRTIs and PIs, but not for the
NRTIs (fig. 4.6).

In terms of the PCA, a potent combination therapy will be characterized
by a non-overlapping fitness profile, i.e. by arrows that fan out maximally
in the biplots. In fact, this is, to a considerable extent, reflected in current
guidelines for combination therapies (Hammer et al., 2008), which recom-
mend that an initial regimen should consist of a combination of EFV or an
RTV boosted PI such as LPV together with two NRTIs (typically TFV and
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Figure 4.6: This figure corresponds to fig. 4.4–B, but here restricted to four ran-
domly chosen drugs for each drug class.

FTC or ABC and 3TC). According to PCA, NRTIs show the strongest drug-
specific effects, and thus it makes sense to use two of them as they allow the
greatest opportunity to combine distinct profiles within a drug class. The
A5202 study of the AIDS clinical trial group (Sax et al., 2008) showed that
patients treated with the combination ABC/3TC had a shorter time to viro-
logic failure than patients treated with TFV/FTC. It is interesting to note
that PCA shows that TFV and FTC have more distinct profiles than ABC
and 3TC (fig. 4.3). Obviously, many aspects of treatment such as side ef-
fects, simplicity of therapy, and pill number do affect the choice of the initial
regimen but do not enter the data analyzed here. Nevertheless, the rec-
ommended combination regimens do appear to reflect the need to combine
drugs that show a distinct profiles in the biplots (fig. 4.3).

The analysis presented here is based on RC measurement only and does
not include any information about presence or absence of specific mutations
in viral samples. The finding that 3TC, FTC and ABC cluster is expected
as these drugs share the M184V resistance mutation (Turner et al., 2003;
White et al., 2002) and thus validates the application of PCA on RC values
as a means to delineate shared resistance profiles between drugs and drug
classes. PCA, however, goes beyond more empirical approaches in that it
allows to quantify the similarity between drugs in large and complex data
sets.

Our results show that PCA is a powerful tool to reveal underlying struc-
ture in fitness and resistance patterns among a large number of HIV-1 sam-
ples. PCA allows us to infer the relative magnitude of the non-specific,
the class-specific, and the drug-specific components of the mutational ef-
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fects when used in conjunction with simulated data. Although simpler ap-
proaches such as pairwise regression of RC values in different environments
may be more intuitive, PCA has the advantage that it reveals and quantifies
hierarchical structure in the data that might easily be missed with pairwise
regression. The hierarchy in the data structure reveals the dominant role
of the drug class in determining variance in RC across different selective
environments.
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4.5 Supplementary figures

Figure 4.7: Biplots of the experimental data as shown in fig. 4.1, but here high-
lighting new drugs that were introduced between 2002 and 2008. Acronyms for the
drugs or drug classes are found in Methods.
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Figure 4.8: Biplots illustrating the PCA of the experimental data as shown fig. 4.1,
but here restricted to only those 15 drugs for which data were available from 2002
onwards.
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Figure 4.9: This figure corresponds to fig. 4.5, but here restricted only to those 16
environments (15 drug-containing and one drug-free environment) for which data
was available from 2002 onwards.
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CHAPTER

FIVE

OUTLOOK AND GENERAL CONCLUSION

For me there are no answers,
only questions, and I am grateful
that the questions go on and on.
I don’t look for an answer,
because I don’t think there is
one. I’m very glad to be the
bearer of a question.

P. L. Travers



5.1. OUTLOOK

5.1 Outlook
Several questions arose throughout the previous chapters and a few of

them deserve further attention. They are presented in the following text by
their order of appearance in the different chapters.

5.1.1 Visual representations of the landscape
An interesting result in chapter 2 involved the R2 between the pair-

wise Hamming distances between sequences and the pairwise euclidean
distances of the corresponding planar point configuration found by multi-
dimensional scaling. It is remarkable that 72% of the total variance of the
sequences’ Hamming distances can be captured in only two dimensions in
terms of euclidean distances. Therefore, it would be interesting to investi-
gate which factors have an effect on the value of the R2, with the hope of
increasing it even further. In addition, it would also be interesting to inves-
tigate to what extent it would be possible to generate sequence alignments
defining fitness landscapes of the same level of complexity as the one de-
fined by experimental sequence data. Accordingly, it would be interesting
to investigate how fitness landscapes defined by mathematical models (such
as Kauffman’s NK fitness landscape (Kauffman and Levin, 1987; Kauffman
and Weinberger, 1989)) compare to the HIV landscape.

5.1.2 Odds for the evolution of recombination
A question which has arisen in chapter 3 is to know to what degree the

setup of the genetic algorithm can reproduce the previous results of Keight-
ley and Otto (Keightley and Otto, 2006) when using identical parameters
— for the same the sequence length and for the same fitness functions. It
would be also worthwhile to attempt to restrict the degree of mutation free-
dom of the sequences and allow only highly represented alleles to occur. In
other words, to restrain sequences from diverging to unrealistic regions of
the sequence space. The level of restrictiveness could also be subject to in-
vestigation. The more restricted the sequence space is, the lower the risk
of evolving unrealistic allele combinations. Limiting the fitness landscape
to the extreme of only five loci would also allow direct comparison with de
Visser’s results (de Visser et al., 2009). If a restriction of the sequence space
would solve the issue of evolving unrealistic sequences, then the genetic al-
gorithm could be used to look into other possibly relevant parameters of the
evolutionary dynamics of HIV. An ambitious extension of this project would
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be to include a more individual oriented modeling of the evolutionary pro-
cess and allow structure at the level of the viral population, either to mimic
the evolution in different compartments of the same individual, or the evo-
lution at the level of a metapopulation of different individuals.

5.1.3 Patterns of resistance and cross-resistance
In chapter 4, the similarity between the principal component analysis

(PCA) patterns of experimental and simulated data was measured on the
basis of an ad-hoc method. However, comparison of PCAs is a standard prob-
lem in G-matrix theory (used to study pleiotropy) (Mezey and Houle, 2003).
More specifically, Common Principal Component (CPC) analysis is a method
which is commonly used to quantify the similarities between G-matrices,
which essentially correspond to PCA characteristic matrices. Replacing the
ad-hoc method with a more standard CPC could possibly increase the ac-
curacy of the parameters’ estimation. It would be also interesting to inves-
tigate whether clusters of sequences (represented by points in the biplots)
share common patterns of drug resistance mutations.

5.2 Conclusion
Overall, this thesis presents a few results whose importance relies on

the fact that they are based on an extremely rich HIV dataset. First, it
was shown that simple visual representations of fitness landscapes can re-
veal important features of the landscape. In particular, it was shown that
a fitness landscape based on HIV-1 sequence data was locally very rugged,
which corroborates Kauffmann’s massif central hypothesis. Despite the fact
that the simulation of the evolution of sequence populations according to the
ME and the MEEP models cannot be kept in reasonably realistic regions of
the sequence space, it has been observed that recombination is generally fa-
vored. Finally, it has been shown that the relative fitness of viral sequences
is conserved very well across the different drug environments which sug-
gests that HIV fitness landscapes are very much alike across the different
drug environments.
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A.1. INTRODUCTION

A systems analysis of mutational
effects in HIV-1 protease and

reverse transcriptase
Hinkley, T. Martins, J. Z. R. Chappey, C. Haddad, M. Whitcomb, J. M.

Stawiski, E. Petropoulos, C. J. Bonhoeffer, S.

A.1 Introduction
With more than 20 drugs currently licensed to treat HIV infection(Clercq,

2009) and over 200 mutations associated with resistance(Bennett et al.,
2009; Clavel and Hance, 2004; Johnson et al., 2008; Shafer and Schapiro,
2008), it is increasingly difficult to develop a comprehensive understanding
of HIV drug resistance. Resistance mutations differ in their potency to re-
sist drug pressure (Petropoulos et al., 2000; Rhee et al., 2004), they vary in
their degree of cross-resistance to different drugs or drug classes (Harrigan
and Larder, 2002), and they differ in the fitness costs induced in the absence
of treatment (Croteau et al., 1997; Mammano et al., 2000; Martinez-Picado
et al., 1999). Moreover their effects depend to varying degree on the con-
text of accompanying mutations (Bonhoeffer et al., 2004; Rhee et al., 2004).
The quantitative dissection of the fitness effects of resistance mutations in
presence or absence of drugs and in particular the determination how the
effect of mutations depend on the presence or absence of other mutations
thus represents a major challenge.

The delineation of epistatic interactions between mutations is not only
a matter of the size of the data set. The combinatorial complexity of the
genetic context in which any mutations appears explodes to a degree such
that the estimation of the fitness effects is not feasible with standard statis-
tical approaches, because the number of parameters to be estimated easily
outnumbers the number of data points available even for the largest data
sets. Problems in which the combinatorial complexity overwhelms standard
methods of parameter inference are a common challenge in systems biology,
and various approaches have been developed that allow a reliable parameter
estimation under conditions that lead to overfitting with standard statisti-
cal approaches. To overcome the problem of the large number of parame-
ters and to account for non-normality in the error-structure we employ here
generalised kernel ridge regression (GKRR), a regression method which, in
essence, penalises against parameters that have low explanatory power. We
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use GKRR to quantify the fitness effects of amino acid variants using a data
set that measures in vitro fitness of 70,081 HIV-1 samples in the absence of
drugs and in the presence of 15 different individual drugs. The samples were
obtained from HIV-1 subtype B infected patients undergoing routine drug-
resistance testing. Our approach allows the reconstruction of an approxi-
mate fitness landscape of the HIV protease (PR) and reverse transcriptase
(RT) and thus offers the first quantitative description of a large, realistic
and biologically relevant fitness landscape.

In vitro fitnesses of viral isolates are measured by replicative capacity
and sequenced in amino acids 1 to 99 of PR and 1 to 305 of RT. We quantify
the fitness effects that are attributable to individual amino acid variants
(main effects) and to pairwise epistatic effects between such variants (inter-
actions) using GKRR. In particular we fit two alternative models: (i) The ME
model, which predicts fitness only on the basis of the main effects and (ii)
the MEEP model, which predicts fitness using both main effects and inter-
actions. We applied GKRR because the size of the data-set used is too great
for current implementations of other regularisation techniques such as the
LASSO (Efron et al., 2002) or Dantzig selector (Candes and Tao, 2007) .

A.2 Results
Figure A.1 shows the predictive power of the ME and MEEP models

based on a 6-fold cross-validation by randomly subdividing the data set into
training and test sets of 65,000 and 5,000 independent virus samples, re-
spectively. The goodness of the fit is quantified by the percentage deviance
explained. Deviance is the standard measure of goodness of fit in gener-
alised models (i.e. in models with non-normal error structure), and is anal-
ogous to the R2 of linear models with normal error structure (Nelder and
Wederburn, 1972). The predictive power across the environments ranges
from 35.0% to 65.9% for MEEP and from 26.8% to 57.9% for ME. MEEP has
an average predictive power of 54.8% across all 16 environments. MEEP
represents on average an 18.3% improvement in predictive power relative
to ME. Note, that in a regularised regression such as the GKRR, increase
in predictive power measured by cross-validation is the appropriate model
validation method. Hence, the substantial increase in predictive power of
the MEEP over the ME model validates the inclusion of epistatic terms ir-
respective of their large number. Our kernelised approach allows to include
higher order epistatic interactions without substantial increases in compu-
tational requirements. Including three-way epistasis marginally decreases
predictive power (data not shown). This decrease is due to the substan-
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tial increase in effective coefficients and does not imply that higher order
epistatic interactions do not contribute to fitness.
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Figure A.1: Analysis of predictive power. The figure shows the predictive power of
the ME and MEEP model in a drug free and 15 drug containing environments (for
acronyms of drugs see chapter 4). The predictive power is measured by the percent-
age deviance explained in a cross-validation data set based on 5,000 independent
virus samples. The bars represent mean and the whiskers the standard errors from
a six-fold cross-validation. The MEEP model outperforms the ME model in all en-
vironments.

A analogous approach was taken to investigate the relative role of intra-
versus intergenic epistasis (i.e. interactions within PR or RT versus in-
teractions between PR and RT). Four models were fitted: ME only, ME +
intragenic epistasis, ME + intergenic epistasis and the full MEEP model
(see Figure A.2). Including intragenic epistasis consistently leads a much
greater gain of predictive power than including intergenic epistasis. The
ME + intragenic epistasis model is generally as good, and sometimes even
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marginally better, than the MEEP model, which indicates that adding in-
tergenic epistatic effects to the ME + intragenic epistasis model does not
further improve the predictive power. Decreases in predictive power are at-
tributable to the fact that adding a large number of unnecessary parameters
to a model can result in a reduction in predictive power in GKRR.
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Figure A.2: Analysis of predictive power of different epistatic models for four rep-
resentative environments. The figure shows that most of the predictive power
attributable to epistasis is in fact attributable to intra- rather than intergenic
epistatic interactions. In the NNRTI environment adding intergenic epistasis de-
creases predictive power. This decrease reflects that adding a large number of pa-
rameters with little or no explanatory power can reduce the predictive power of
GKRR. The bars represent mean and the whiskers the standard errors from a six-
fold cross-validation.
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To verify that the estimates of the MEEP model are meaningful we ob-
tained sequences of PR and RT of treated and untreated patients from Stan-
ford HIV Drug Resistance Database (Shafer, 2006) and determined the change
of frequency of amino acid variants in treated versus untreated patients.
The change of frequency of amino acid variants is significantly correlated
with the fitness gain of amino acid variants in presence versus absence of
drugs relative to the consensus sequence (p < 10−16 and ρ = 0.30, Spearman
rank).

Because protein structure and epistasis are interrelated (Bershtein et al.,
2006; Halabi et al., 2009) we investigated the relation between epistasis in
the drug-free environment and protease structure as an independent ver-
ification that the estimates of the 802,611 epistatic effects are biologically
meaningful. Fig. A.3 shows the strength of the epistatic effects between
amino acid residues of the HIV-1 PR, revealing significant enrichment in
epistatic interactions in the flap elbow, the cantilever and the fulcrum, struc-
tural units that have previously been described as being important to pro-
tein function (Hornak et al., 2006). Bootstrap analysis by random shuffling
of the protein sequence reveals that epistasis is significantly enriched both
within these structural domains and between the structural domains and
the rest of the protein (p < 10−5). Moreover, in accordance with expectation
the strength of the epistatic interactions between amino acid residues cor-
relates with physical proximity in 3D structure of PR (p = 0.00857 based on
100’000 bootstrap repeats, see supplementary figure A.5). The significant
correlation between epistasis and secondary structure or proximity demon-
strates that the estimated epistatic effects are biologically meaningful. Such
correlations could not have been produced artifactually as our procedure in-
cludes no structural information for parameter estimation.
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Figure A.3: Cumulative strength (CS) of the absolute epistatic effects in the HIV-1
PR as measured in the drug-free environment. The cumulative effect between two
positions is calculated as the sum over the absolute values of all epistatic interac-
tions between the amino acid variants at those positions as estimated by the MEEP
model. We plot CS1.5 to enhance visual clarity
. The regions corresponding to the flap elbow, fulcrum and cantilever, colored
in red, yellow, and green, respectively, are significantly enriched in epistasis
(see supplementary figure A.4). The inset shows the structure of the HIV-1
PR (Protein Data Bank ID 1A30, rendered with PyMOL). The region en-
riched in epistatic interaction, corresponding to the flap elbow, is somewhat
larger than the literature description of this region (Hornak et al., 2006).
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A.3 Discussion
Previous studies on epistasis in viruses did not allow a comprehensive

quantification of individual fitness effects and epistatic interactions, because
they focussed either on a limited set of interactions (Sanjuan et al., 2004),
made use of sequence data only (Chen et al., 2004), or did not correct for
the effect of the genetic background (Bonhoeffer et al., 2004). Our study
demonstrates that despite the combinatorial complexity of the problem bi-
ologically meaningful estimates for main effects and epistatic interactions
can be obtained from large data sets that link fitness measurements to
genotype. We verified the estimated effects using independent data. First,
we showed that models including epistatic interactions explain on average
54.8% of the deviance in fitness across the 16 different environments based
on six-fold cross-validation. Second, we found a highly significant correla-
tion between the change of the estimated main effects in presence versus
absence of drugs and the change in frequency of the corresponding amino
acid variants in treated versus untreated patients based on independent
data from the Stanford HIV drug resistance database (Shafer, 2006). Fi-
nally, we found a correlation between epistasis and PR structural domains
or physical proximity in the 3D structure of PR.

Ever since the synthesis of Darwinian evolution with genetic inheritance
in the early 20th century, the debate about the relative role of epistasis and
main effects in determining fitness has remained at the heart of evolution-
ary genetics (Provine, 1971; Wolf et al., 2000) and, with the advent of sys-
tems biology, it is possible to measure these epistatic effects more compre-
hensively(Costanzo et al., 2010; de Visser and Elena, 2007; Jasnos and Ko-
rona, 2007; Kouyos et al., 2007; Yeh et al., 2009). Supporting Sewall Wright’s
view of the dominant role of epistasis (Provine, 1971; Wolf et al., 2000), we
find that epistasis and, in particular, intragenic epistasis is crucial in de-
termining fitness. For our data set the inclusion of epistatic interactions
improves the predictive power by an average of 18.3% across all environ-
ments. Our approach provides us with a predictive model for realistic fit-
ness landscapes, opening up new avenues to study evolutionary adaptation
on complex fitness landscapes and to simulate the evolution of drug resis-
tance.
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A.4 Supplementary Figures
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Figure A.4: Statistical test of enrichment of epistasis in fulcrum, cantilever and
flap elbow in the HIV-1 protease. The plots are identical to figure 3 in the main text
except for the coloring. For both plots we test whether interactions are enriched in
the cyan compared to the magenta regions. Panel A thus compares the epistatic
interactions between fulcrum, cantilever, and flap elbow and the rest of the protein
to all other remaining interactions. The mean absolute epistasis in the cyan and
magenta regions is 0.0202 and 0.00856, respectively. Bootstrap analysis by random
shuffling of the positions in the protease reveals that the mean in the cyan region
is significantly higher (p < 10−5 based on 100’000 repeats). In panel B the cyan
region corresponds to the interactions within and between the fulcrum, cantilever,
and flap elbow and the magenta region corresponds to the interactions between
these regions and the rest of the protease. The means of the cyan and magenta
regions are 0.0355 and 0.0161. Bootstrap analysis also confirms that these means
are significantly different (p < 10−5 based on 100’000 repeats).
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Figure A.5: Cumulative absolute epistatic effects versus physical proximity (Å) in
the HIV-1 protease. The strength of the epistatic effect is measured as in figure 3 in
the main text. Physical proximity is correlated to the cumulative absolute epistatic
effect (p = 0.00857 based on 100’000 bootstrap repeats).
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Figure A.6: Relative predictive power under varying lambda. Lambda was var-
ied from its position as calculated with the square root approximation and the
corresponding predictive power (relative to the predictive power for the calcu-
lated lambda) was measured against the cross validation set under environments
NODRUG , 3TC, and ABC. The maximum possible predictive power is indicated by
a circle (for optimal lambda choice). Lambda as would be calculated using a full
GKRR for each bisection interval is shown by a triangle. NODRUG shows the same
prediction for lambda, 3TC shown a better prediction for lambda and ABC shows a
worse prediction. Important to note is that in all cases, the prediction (both for the
square root approximation and for a GKRR approximation) for the final lambda dif-
fers from the optimal lambda, in predictive power, by less than 1%. It can therefore
be concluded that our square root approximation for lambda is robust.
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