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Abstract

Combinatorial optimization is a branch of mathematical optimization that
has important applications in many fields, including artificial intelligence,
machine learning, computer vision, mathematics, auction theory, and game
theory. The submodularity function property frequently appears in many
combinatorial systems and enables efficiently finding solutions to these prob-
lems that would otherwise be intractable. Submodularity is in many ways a
discrete analogue of convexity [45] and the combinatorial structure it pro-
vides, allows the efficient search for a near-optimal solution in strongly poly-
nomial time [25] [38].

Submodular functions have received much interest in recent years and
to date the practically fastest algorithm of choice for submodular function
minimization (SFM) is the Minimum-Norm-Point (MNP) implementation
by Fujishige-Wolfe [13]. In the present work and project we bring together
ideas from interdisciplinary fields, including high-performance computing,
computer systems, optimization, algorithms and software engineering to de-
liver the fastest and most robust practical algorithm implementation for gen-
eral submodular function minimization. We successfully delivered a high-
performance submodular function minimization (HPSFO) algorithm that
reaches up to 90% of Vector peak performance, offers parallel speed up and
outperforms all the existing tested implementations by not one but several
orders of magnitude and for the three workload applications we implemented
and that scales reasonably well with respect to the problem sizes. We tested
our HPSFO with the following three workload applications: Minimum Graph
Cut, Log Determinant and Text Corpus Selection in the context of Auto-
matic Speech Recognition (ASR). Furthermore, this work provides a solid
extensible software framework featuring a design that allows accommodating
with ease new submodular function optimization algorithms and submodular
applications.
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Chapter 1

Introduction

Combinatorial optimization is a branch of mathematical optimization that
has important applications in many fields, including artificial intelligence,
machine learning, computer vision, mathematics, auction theory, and game
theory. In the combinatorial optimization problem considered in this thesis
we are given a ground set V , and we wish to find the optimal subset X ⊆ V
that minimizes (or maximizes) a given function f : 2V → R; 2V represents
the family of all possible subsets of V . A naive brute force algorithm would
evaluate the function f on all 2n subsets of V and take, e.g. the minimum,
but this is in general NP-hard. The submodularity property 1.1 frequently
appears in many combinatorial problems and can dramatically reduce the
complexity. Formally, a function f is submodular, if:

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B), ∀A,B ⊆ V . (1.1)

An equivalent and more intuitive definition of submodularity states that
adding more elements to a set brings diminishing returns:

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B),∀A ⊆ B ⊂ V . (1.2)

Submodularity is in many ways a discrete analogue of convexity [45] and
the combinatorial structure it provides, allows the efficient search for a near-
optimal solution in strongly polynomial time [25, 38]. An example is, the
problem of Text Corpora Selection, where we are given a ground set of utter-
ances or expressions and related vocabulary and we wish to find the optimal
subset of utterances that contains the maximum amount of information with
minimum vocabulary size. This application is described in detail in the work
of of Hui Lin and Jeff Bilmes [33] and this problem can be cast as a sub-
modular function minimization (SFM) problem with submodular function

5



6 Introduction

defined in equation 1.3. Minimizing this objective function achieves our wish
first by maximizing the amount of information in our selected subset X with
the term w(X c) that effectively penalizes the function by the amount of in-
formation in the complement set X c = {V \X}; and secondly by penalizing
the function with the vocabulary size defined by the term Γ(X) (Hui Lin and
Jeff Bilmes [33]):

f (X) = w(X c) + λΓ(X) (1.3)
Submodular functions have appeared in many applications in recent years

and to date the practically fastest algorithm of choice for general submodular
function minimization (SFM) is the Minimum-Norm-Point (MNP) algorithm
and implementation by Fujishige-Wolfe [13]. However, the implementation
has multiple limitations: e.g., its applicability is limited due to poor scal-
ability with respect to problem sizes and it is difficult to adapt or reuse
in different application contexts. In this thesis we applied key performance
improvements to the Fujishige-Wolfe MNP algorithm and delivered a high-
performance implementation HPSFO that outperforms the state-of-the-art
implementations and for all test applications as we will discuss in the Ex-
perimental results chapter 6. The runtime optimizations we implemented
included both, algorithmic improvements that reduce the asymptotic run-
time, and system level optimizations that map the algorithm efficiently to
multicore processor architectures. Furthermore, we implemented three work-
load applications: Minimum Graph Cut, Log Determinant and Text Corpus
Selection (ASR) to test and compare our HPSFO against all other available
implementations.

1.1 Contributions
In this work we provided a contribution to the combinatorial optimization
and machine learning community by delivering the fastest to date practical
algorithm implementation for general submodular function minimization. We
have applied Krause’s concept of incremental updates [30] of the EO function
evaluation and lowered its algorithmic complexity for all applications we
tested. To illustrate Krause’s incremental update lets take as example the
submodular function suggested by Satoru Iwata (Fujishige-Isotani [13]):

f (X) = |X ||X c| −
∑
j∈X

(5j − 2n) (1.4)

where X ⊆ V , X c = {V \X} and V = {1, 2, . . . , n}. If we keep a context
associated with the function that conveniently “remembers” the previous
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evaluation f (X) then we can effectively lower Iwata EO evaluation complexity
from O(n) to O(1), i.e., constant. The following demonstrate how to do so if
we have already computed f (X) and we wish to re-evaluate Iwata EO after
adding a new element k to subset X :

f (X∪{k}) = f (X)︸ ︷︷ ︸
Saved in context

−|X ||X c|+|X∪{k}||V \X∪{k}|−(5k−2n) (1.5)

Furthermore, we implemented a fast high-performance version of the
MNP algorithm based on Fujishige-Wolfe that outperforms all other SFM
implementations by more than one order of magnitude. In addition to the
performance improvements we also designed a solid software framework that
features easy maintainability and extensibility for both new submodular op-
timization algorithms and new applications plus built-in integration with
Matlab and a “zero-dependency” API for easy integration with other plat-
forms, e.g. Java via JNI 1.

The contributions of this thesis are:

1. Explore and develop an algorithmic improvement based on incremen-
tal update of the evaluation oracle (EO) function. We extended and
integrated into our design the idea from Krause of EO evaluation with
incremental updates that reduces the evaluation complexity and there-
fore runtime. We successfully applied this idea to all applications and
lowered the complexity (and cost) of the Log Determinant application
from O(n3) to O(n2), lowered the complexity of the Minimum Cut
from O(n3) to O(n) and lowered the complexity of the Corpus Text
Selection from O(n2 log n) to O(n).

2. Deliver a general SFM algorithm implementation optimized for locality,
vector extensions, and multi-threading. We cast Krause and Fujishige-
Wolfe implementations in terms of our high-performance foundation
that builds on top of Intel MKL automatically gaining most of the
aforementioned optimizations in a cross-platform portable fashion. We
also identified key performance bottlenecks of the MNP and deliv-
ered tailored handcrafted performance solutions, e.g., Register blocking
and loop unrolling Givens rotations. Our final HPSFO implementation
reaches up to 90% of vector peak performance and offers parallel speed
up but parallelism starts to pay off for bigger problem sizes.

1http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
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3. Provide a submodularity framework and implementation that is flexi-
ble, i.e., can be easily instantiated to various submodular function min-
imization problems. We combined the best of two seemingly orthogo-
nal computer science fields: software engineering and high-performance
computing; to build a robust, intuitive and extensible software frame-
work that features prescriptive extensibility and allows accommodating
and combining with ease multiple algorithms and applications.

4. Design a submodularity API that is reusable and portable for use in
C, C++ and Matlab. Provide integration possibilities for Matlab and
optionally Java. The internals of our submodularity high-performance
framework were designed in an intuitive Object-Oriented (OO) fashion
and we further covered it with a “zero-dependency” API that allows
uncomplicated reuse from different platforms, e.g. Java. Furthermore,
we provide a built-in and generic context-free Matlab adapter that al-
lows invoking our high-performance SFM kernel implementations from
Matlab and for unforeseen submodular function applications.

5. Evaluate the implementation on at least three different workload ap-
plication scenarios and compare its performance against state-of-the-
art implementations. We successfully delivered three application imple-
mentations: Minimum Graph Cut, Log Determinant and Text Corpus
Selection in the context of Automatic Speech Recognition (ASR). Our
final HPSFO outperformed in every case all other SFM implementa-
tions.

Figures 1.1, 1.2 and 1.3 show as example results the overall performance
gains of our final HPSFO implementation compared to the Fujishige-Wolfe
algorithm 2. Our implementation is up to 32×, 30× and 509× times faster
for the applications Minimum Cut, Log Determinant and Corpus Selection,
respectively. The speed ups tend to increase with the problem sizes. Due
to time limitation particularly while benchmarking Fujishige-Wolfe we could
not compare for sizes beyond n = 5000.

1.2 Related Work
This thesis work is the continuation of a course project Submodular func-
tion optimization for the s-t graph cut [15] corresponding to the ETH course

2Note, however, that the base Fujishige-Wolfe implementation still benefits from indi-
rectly using our high-performance foundation via the EO function evaluation.
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How to Write Fast Numerical Code [40]. In that project we took as start-
ing point the Matlab Toolbox for SFM from Prof. Krause [30], rewrote it
in C and optimized it in multiple ways described in detail in the implemen-
tation chapter 4 and section 4.1.1. In this thesis work we continued where
that project ended, and further optimized Krause MNP kernel as described
in section 4.1.2 greatly reducing its complexity and cost by using fast or-
thogonal updates. Later, Satoru Fujishige kindly provided us with his MNP
C kernel implementation [13] and after comparing how fewer floating point
operations it would involve compared to Krause due to the simplicity of the
original Wolfe algorithm, we turned the course of this work into optimiz-
ing Fujishige-Wolfe implementation too, resulting into our final and fastest
HPSFO MNP kernel version. Both heavily optimized versions were built on
top of a common high-performance infrastructure we implemented on top of
Intel MKL.

In addition, we also reviewed Bach submodular Matlab Package [4] im-
plementation and applied his approach (also present in Krause Toolbox)
to establishing convergence via the duality gap associated with the convex
Lovász extension [12] to the Fujishige-Wolfe and HPSFO implementations
within our framework which would allow for convergence in the cases of
Log Determinant and Text Corpus Selection applications. By studying Bach
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implementation we also extended our framework providing a configurable
initial index permutation that would allow in a context-free fashion speeding
up the optimization for some problems where a convenient choice of initial
permutation (or simply random) would lead the search “closer” to the opti-
mal and lower the number of iterations and thus, result in faster convergence.

Finally, we integrated Iwata scaling SFM algorithm into our submod-
ularity framework but due to time constraints we could not get it to pass
our test-suites for the three implemented applications beyond the basic Iwata
test submodular function. It was nevertheless interesting to try this approach
that while theoretically offers better complexity, practically it requires a “pre-
scan” or a series of evaluations of the EO function proportional to the size
of the ground set and in practice quickly get overtaken by our fast HPSFO
implementation. Bach also in his MNP implementation does a similar series
of evaluations “pre-scan” to compute a maximum norm required to build the
ε used to test for duality gap convergence [4] we will discuss this further in
chapter 2. In our HPSFO implementation we instead opted to make the ε
configurable for the duality gap convergence criteria.

1.3 Thesis Structure
In chapter 2 we have provided an overview of the theory relevant for sub-
modular function minimization and a self-contained description of the origi-
nal Wolfe MNP algorithm including a detailed comparison, in particular, the
algorithm algebra between Krause [30, 15] and Fujishige-Wolfe [13] MNP im-
plementations. In that chapter we also present the modified Edmonds Greedy
[11] that uses incremental update EO function evaluation.

The chapter 3 provides a brief problem statement for the three workload
applications we implemented. Here we will also define the submodular objec-
tive functions and explain for each case the details of the incremental update
EO evaluation concept.

We cover the implementation details related to performance optimiza-
tions and more in chapter 4. The chapter 5 provides Software and Object
Oriented (OO) design details of our submodularity framework. Furthermore,
the software framework chapter 5 serves as reference manual and extensibil-
ity guide including also the documentation for the generic Matlab adapter
and integration concept.
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Finally, the Experimental results chapter 6 provides a detailed perfor-
mance comparison of the different SFM kernels and for all implemented ap-
plications.



Chapter 2

Submodular Function
Minimization

In this chapter we introduce the mathematical underpinnings of our problem
and describe the Minimum-Norm-Point (MNP) algorithm in detail. Further-
more, we will describe the supported MNP implementations and review their
differences.

2.1 Overview of Submodularity
Let V be a ground set of cardinality n. A set function f : 2V → R is called
submodular if it satisfies:

f (A) + f (B) ≥ f (A ∩ B) + f (A ∪ B), ∀A,B ⊆ V . (2.1)

An equivalent and more intuitive definition states that adding more ele-
ments to a set brings diminishing returns:

f (A ∪ {x})− f (A) ≥ f (B ∪ {x})− f (B),∀A ⊆ B ⊂ V . (2.2)

2.2 Submodular Function Minimization
Given the ground set V , we consider the core problem of finding an optimal
subset X ⊆ V that minimizes the submodular function f : 2V → R:

minimize
X⊆V

f (X) (2.3)

13



14 Submodular Function Minimization

We can cast many problems as a submodular function minimization
(SFM) problem e.g., Clustering [31], MAP inference [31], Structured spar-
sity [31], etc. There are also many algorithms available for SFM e.g., M.
Groetschel [18], S. Iwata [25], A. Schrijver [41] and J. B. Orlin [38]. In this
work we will focus in optimizing the practically fastest algorithm for general
SFM, the Fujishige-Wolfe MNP [13].

2.3 The Minimum-Norm-Point Algorithm
For the sake of completeness and self-containment we are going to include
and describe here the details of the Wolfe MNP algorithm as well as some of
the most important definitions and results from Fujishige work [13] and use
it as reference throughout this work to review the most important algebraic
differences between the two MNP implementations we chose to optimize:
Krause [30] and Fujishige-Wolfe [13]. Furthermore, the algebraic details of
the Fujishige-Wolfe algorithm included here will also help motivating the
discussions on the different performance issues and improvements, and we
will continuously refer to the specific Steps of this algorithm 1 in the remain-
ing chapters.

The MNP algorithm was first introduced by Philip Wolfe [49] for finding
the MNP in the convex hull of a given finite set of points in the n-dimensional
Euclidean space Rn. Fujishige observed that this approach can be applied to
the base polytope of submodular polyhedra, and as a consequence obtain a
general approach to SFM [13] reusing the original Wolfe proposal to con-
struct a practically fast SFM algorithm and it has been to date the practical
algorithm of choice for general submodular function minimization.

For convenience, and in the context of our SFM problem let us first intro-
duce the following definitions of affine hull and convex hull of a set C (Boyd
[6]):

aff C = {wTx | x1, . . . , xn ∈ C , eTw = 1, e = (1, 1, . . . , 1)T} (2.4)
convC = {wTx | x1, . . . , xn ∈ C , eTw = 1, e = (1, 1, . . . , 1)T ,w ≥ 0} (2.5)

Furthermore, let us also introduce the main definition and theorem from
Fujishige work (Fujishige [12]):

Definition 1. (Fujishige [12]) Let E be a finite nonempty set and f be a
submodular function on 2E , i.e., f : 2E → R satisfies 2.1 for any X ,Y ⊆ E .
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We suppose that f (∅) = 0 without loss of generality. We then define polyhedra

P(f ) = {x | x ∈ RE ,∀X ∈ 2E : x(X) ≤ f (X)} (2.6)
B(f ) = {x | x ∈ P(f ), x(E) = f (E)} (2.7)

P(f ) is the submodular polyhedron and B(f ) the base polyhedron associated
with submodular function f on 2E . Since B(f ) is bounded, it is also a poly-
tope.

Theorem 1. (Fujishige Theorem 3.2 [13] [12]) Let x∗ be the minimum-norm
point in the base polyhedrom B(f ) given by Def. 1. Define

A_ = {e|e ∈ E , x∗(e) < 0}, (2.8)
A+ = {e|e ∈ E , x∗(e) ≤ 0} (2.9)

Then, A_ is the unique minimal minimizer of f , and A+ is the unique maximal
minimizer of f .

Theorem 1 proves that if we find the MNP in the base polyhedron B(f ),
then we can “read off” a minimizer (in fact all minimizers) by taking the
elements of the ground set corresponding to coordinates with non-positive
entries. Because of this theorem we can directly use Wolfe MNP algorithm
1 to solve the submodular function minimization problem by means of the
Greedy Edmonds algorithm [11]. The Wolfe MNP outlined in algorithm 1
maintains and updates a simplex S and at every step executes a linear op-
timization over the convex hull conv P of P 2.5. The Wolfe algorithm only
works if this linear optimization can be efficiently done over the polytope P̂.
Wolfe’s implementation in its original setting can not be efficiently applied
to a general polytope Q because the number of extreme points of Q can
be exponentially large with respect to the dimension n. A base polyhedron
B(f ) 1 associated with a submodular function f on 2E is a class of polytopes
where the linear optimization can be efficiently done even when the number
of extreme points of Q is exponentially large with respect to dimension n.
Edmond Greedy algorithm can be applied to a base polyhedra B(f ) associ-
ated with submodular functions. (Fujishige-Isotani [13])

The Fujishige extended version of Wolfe algorithm 1 in the context of
SFM takes as input a ground set V that contains all the set elements we
wish to use to find an optimal subset from. The Step 1 of the algorithm 1
chooses any generated point p in P and adds it to the simplex S . Note that
in the context of SFM the points set P that the Wolfe algorithm refers to
is not represented explicitly but computed iteratively as shown in Step 2 of
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Algorithm 1 Wolfe’s MNP Algorithm (Fujishige-Isotani [13])
Input: A finite set P of points pi (i ∈ I ) in Rn

Output: MNP x∗ in the convex hull conv P of the points pi (i ∈ I ).
1: {Step 1} Choose any point p in P and put S ← {p} and x̂ ← p.
2: loop {Major}
3: {Step 2} Find any point p̂ in P that minimizes the linear function
⟨x̂ , p⟩ =

∑n
k=1 x̂(k)p(k) in p ∈ P. Put S ← S ∪ {p̂}.

4: if ⟨x̂ , p̂⟩ = ⟨x̂ , x̂⟩ then
5: return x∗ ← x̂
6: else
7: loop {Minor}
8: {Step 3} Find the MNP y in the affine hull of points in S .
9: if y lies in the relative interior of the convex hull conv S then

10: x̂ ← y.
11: break {Minor}
12: end if
13: {Step 4} Let z be the point that is the nearest to y among the

intersection of the convex hull conv S and the line segment [y, x̂ ]
between y and x̂ . Also let S ′ ∪ S be the unique subset of S such
that z lies in the relative interior of the convex hull conv S ′. Put
S ← S ′ and x̂ ← z

14: end loop
15: end if
16: end loop

Algorithm 2 Edmonds’s Greedy Algorithm (Fujishige-Isotani [13][11])
Input: A weight vector w ∈ RE

Output: An optimal x∗ ∈ B(f ) that minimizes
∑

e∈E w(e)x(e) in x ∈ B(f ).

1: {Step 1} Find a linear ordering e1, e2, . . . en of elements of E such that
w(e1) ≤ w(e2) ≤ . . . ≤ w(en).

2: {Step 2} Compute x∗(ei) = f (e1, e2, . . . , ei) − f (e1, e2, . . . , ei−1) {i =
1, 2, . . . , n} .
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the Greedy algorithm 2. In other words, the actual data the MNP algorithm
operates on is generated dynamically by the evaluation of the oracle function
(EO) using as input a given ordering of the elements of the ground set V .
This is also an interesting performance issue that we can not run the MNP
algorithm using warm data [40]. For that matter, pre-computing the function
evaluation for all possible permutations of the ground set V is impractical
and not needed, since the algorithm will not visit “uninteresting” surface
areas of the implicit point set P. It is also very important to note that the
choice of initial permutation of the ground set V elements has a strong effect
in the algorithm i.e. an initial permutation of the ground set that generates
a point p in P that is “closer to the optimal” will greatly reduce the num-
ber of iterations required to find the solution. The initial permutation of the
ground set of choice in the implementations by Krause [30] and Fujishige [13]
is the sequence {1, . . . , n} but it could be chosen randomly [4] or alternatively
exploiting some property of the specific submodular problem at hand that
could lead to a reduced number of iterations.

The Step 2 of the algorithm in a Newton-like descending fashion, forms
a line segment towards the origin [x̂ , (0, 0, . . . , 0)] and picks a new point p̂
which is the intersection between that line segment and the simplex S . If the
hyperplane formed by ⟨x̂ , p̂⟩ is a supporting hyperplane of the convex hull
conv P then p̂ is the minimum-norm point and the final solution. The test for
that is shown at line 4 of Wolfe algorithm 1 or equivalently ⟨x̂ , p̂⟩−⟨x̂ , x̂⟩ < ϵ
and this is one possible convergence criteria. (Fujishige-Isotani [13]).

The other convergence criteria we have studied and integrated as part
of the Fujishige-Wolfe and our final HPSFO is the duality gap [12, 4]. The
Lovász extension allows to reuse important results from convex analysis into
submodular functions, in particular, the duality gap [12, 4]. The proposition
7.3 in Bach work [4] provides a convenient way to test for convergence in the
MNP by means of the duality gap (Bach [4]). Assuming f is a submodular
function, the condition to test is given by (Bach [4]):(

min
A⊂V

f (A)− max
s∈B(f )

s_(V )

)
< ϵ (2.10)

and ε is computed in Bach implementation (Bach [4]):

ε =

√∑n
i=1(f (V )− f (V \ {i})− f ({i}))2

n
· 1e−10 (2.11)

we have therefore, reused this criteria to test for convergence in addi-
tion to the previous one. As we will discuss in further chapters, we have
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avoided the expensive computation shown in Eq. 2.11 but rather made the
ε configurable. For practical purposes, we obtained the same results as Bach
implementation by simply configuring ε = 1e−10.

Definition 2. (Wolfe [49]) A point set P is affinely independent if no point
of P belongs to the affine hull of the remaining points.

The Step 3 of the algorithm finds the MNP y in the affine hull of points
spanned by S . Since S is affinely independent [49] see definition 2 finding the
MNP in aff S is solved using the following quadratic system (Wolfe [49]):

minimize |x|2 = wTSTSw (2.12)
s.t eTw = 1 (2.13)

Forming the Lagrangian wTSTSw + 2λ(eTw − 1) and differentiating, the
necessary conditions are obtained and they have a unique solution (Wolfe
[49]):

eTw = 1 (2.14)
eλ+ STSw = 0 (2.15)

Once the solution to the system above w is found, we compute the MNP
y = Sw. This algorithm step that involves finding the MNP y in the affine
hull of points spanned by S by solving the Lagrangian set of equations de-
picted in Eq. 2.14 is the “Holy Grail” of the performance bottlenecks of the
MNP algorithm and the main aspect around which most of the floating point
operations (flops) end up being spent. This is also the reason why all along
the execution of the algorithm we need to maintain and update a matrix
R that mirrors S and offers a convenient structure to efficiently solve these
systems. This step is also what makes the studied implementations different
from each other. The details of how the different MNP implementations solve
these equations is discussed in the next sections. Finally, once y is found and
if y lies in the relative interior of the convex hull conv S , then we put x̂ ← y,
break out of the minor loop and go back to Step 2 otherwise the algorithm
moves onto Step 4. [13]

If the point y found in Step 3 falls outside convex hull conv S , then the
Step 4 of the algorithm is executed. At this step the algorithm has made a
“mistake” and it has to be corrected by removing one of the points p′ previ-
ously added to the corral S . First, a new point z is found that is nearest to y
among the intersection of the convex hull conv S and the line segment [y, x̂ ].
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Then a subset S ′ ⊂ S is found such that z lies in the relative interior of the
conv S ′, in other words, a point p′ that defines the simplex S is removed and
is conveniently chosen in a way that z lies in the relative interior of conv S ′.
This step basically mutates the simplex matrix S and consequently its mir-
ror R required for Step 3 as discussed before. This deletion of an arbitrary
column point vector p′ out of the matrices also critically affects performance
and imposes some constraints in the design choices around representation
and other aspects. This will be discussed in detail in chapter 4. (Fujishige-
Isotani [13])

Definition 3. (Fujishige-Isotani [13]) A simplex S is called a corral if the
minimum norm point in the affine hull aff S lies in the relative interior of
the convex hull conv S .

The outermost loop at line 2 is known as the major cycle and the inner-
most loop at line 7 is known as the minor cycle. Every iteration of the major
cycle increases the size of the simplex S by one, and every iteration of the
minor cycle decreases the size of the simplex by at least one. The number of
major cycles corresponds to the number of distinct points added to the sim-
plex S . Similarly, the number of minor cycles can be viewed as the number
of “mistakes” made by the algorithm: the number of points explored which
do not end up being part of the end simplex S . The simplex S is a corral
3 whenever the algorithm goes from Step 3 to Step 2 as part of the major
cycle. Every corral S uniquely determines the MNP x̂ and every time the
algorithm forms a new corral, the norm of the new x̂ strictly decreases and
this is the reason why the MNP algorithm has guaranteed convergence after
a finite number of iterations. (Fujishige-Isotani [13])

Each time the Edmonds Greedy algorithm 2 is invoked, it executes n
evaluations of the EO. It invokes the EO using as input a valid subset of
the ground set V to be evaluated at once. An EO to be executed from the
Edmonds Greedy can conveniently be made stateless e.g. the Iwata test func-
tion [13] [26] which would, in theory, enable parallel execution of the EO. In
this work we propose a small but far reaching variation of Edmonds Greedy
algorithm 3 based on the previous idea of Krause [30] where the EO is con-
veniently made stateful and the interface to invoke it changes to passing one
set element at the time rather than a subset of elements, in a way that al-
lows for incremental update of the submodular EO function. In other words,
the function keeps a context or memory of the set of elements it has been
invoked with so far and exploits the incremental structure of the underly-
ing submodular function to incrementally update the evaluation using the
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new ei rather than evaluating the function from scratch each time on the
full subset. This seemingly trivial improvement offers massive performance
improvements as we will see in the experimental results chapter 6 and better
algorithmic complexity required in each evaluation of the EO e.g., effectively
reduced the complexity of one of our applications EO from O(n2log n) to
O(n). Finally note how the new incremental evaluation variation algorithm
requires the EO to reset or clear the context it has accumulated during one
execution of the outer Greedy algorithm, this we can see in the Step 3 of the
algorithm 3. This variation of the Edmonds Greedy algorithm requires only
very minor unobtrusive changes to the Greedy step of the MNP algorithm.
This approach resembles in a way to the differentiability concept in the con-
tinuous space, effectively offering a faster evaluation. The software design
employed allows for flexibly introducing new function types that offer higher
level of capabilities to be exploited by the MNP algorithm implementation.

Algorithm 3 Edmonds’s Greedy with incremental update EO Algorithm [30]
Input: A weight vector w ∈ RE

Output: An optimal x∗ ∈ B(f ) that minimizes
∑

e∈E w(e)x(e) in x ∈ B(f ).

1: {Step 1} Find a linear ordering e1, e2, . . . en of elements of E such that
w(e1) ≤ w(e2) ≤ . . . ≤ w(en).

2: {Step 2} Compute x∗(ei) = finc(ei)− finc(ei−1) {i = 1, 2, . . . , n}.
3: {Step 3} Reset the function context or memory, invoke freset()

2.4 Implementations
The MNP algorithm implementations studied [13] [30] [4] have a very sim-
ilar structure as described in the algorithm outline 1. There are only very
few key differences that result in different performance and number of iter-
ations required for convergence. We are going to cover the most important
difference which is the way each algorithm solves the set of equations 2.14
as part of Step 3 of the Wolfe algorithm 1. Further details more related to
the matrix representation etc will be described and discussed in detail in the
implementation chapter 4.

2.4.1 Fujishige implementation
The method employed by Fujishige in his implementation [13] to solve the
Lagrangian equations 2.14 is exactly the one described by Wolfe in [49]. We
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are going to include it here as well for completeness and use it as reference
in following chapters to discuss the different performance improvements.

The matrix of the equations 2.14 is maintained using the upper trian-
gular matrix R in the manner suggested by Golub and Saunders for the
treatment of the least squares problem [16] where the orthogonal matrix Q
of the QR decomposition is implicitly maintained, and e is the column vector
e = (1, 1, . . . , 1)T (Wolfe [49]):

eeT + STS = (QR)TQR = RT

I︷ ︸︸ ︷
(QTQ)R = RTR (2.16)

Note that RTR is simply the Cholesky decomposition of eeT + STS .
Finally, the solution to the set of equations 2.14 becomes the result of solving
the following two systems starting from Eq. 2.17. The MNP y of the affine
hull aff S is obtained by multiplying the simplex S with the resulting w
column vector (Wolfe [49]):

RT w̄ = e (2.17)
Rw = w̄ (2.18)

y = Sw (2.19)

Since R must be modified whenever S is, the steps of the Wolfe algorithm
1 are specialized as follows 1 (Wolfe [49]):

Step 1 The matrix R of dimensions 1× 1 is initialized as [(1 + |Sj |2)1/2]

Step 2 Adding a new point p to the simplex S requires appending a column
to R as well. This can be done by first solving the system below and
appending the column [r ρ]T to R on the right:

RTr = e + STSj (2.20)
ρ = (1 + ST

j Sj − rTr)1/2 (2.21)

Step 4 Let j be the position of the component deleted, then delete the j th

column of R. Once a single column is deleted from R, it becomes an
upper Hessenberg matrix [17] from the j th column and R needs to be
updated to be upper triangular again. The triangularization is imple-
mented using a sequence of Givens rotations [17] and this explained in
detail in the implementation chapter 4.

1Note that these steps simply correspond to updating and down-dating an existing
Cholesky decomposition.
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2.4.2 Krause implementation
The method employed by Krause in his original implementation [30] to solve
the Lagrangian 2.14 is depicted in equations 2.22. The Eq. 2.22 computes
the affine hull aff S by using a matrix space translation which reduces the
dimension of S . The idea is to fix a point from the set in this case the
column vector s0 and compute the difference with respect to all other point
column vectors, effectively creating the affine hull of S . The minimum-norm
point y is computed by solving the system on the right operand of Eq. 2.23
and centering the result. Note that while the Eq. 2.23 is shown to invert
the result of the matrix multiplication

(
ŜT Ŝ

)−1
, Krause implementation

actually invokes the Matlab solve backslash operator and does not invert the
matrix explicitly. Also note that in general the matrix Ŝ is not squared, this
is why in the original Krause implementation it is multiplied by its transpose
to get a square matrix and solve the system exactly. These two equations
are much simplified in the actual high-performance version implementation
which will discussed in the implementation chapter 4. In order to test whether
the MNP y falls within the interior of conv S we employ Eq. 2.24 to get a
representation µ of y in terms of S while enforcing that we have an affine
combination i.e.,

∑
i µi = 1 which is the reason why we add the corresponding

constraint to the system and we do so by appending a row of ones to S .

Ŝ = aff S =


s0,1 s0,2 · · · s0,k
s1,1 s1,2 · · · s1,k
... . . . ...

sn,1 sn,2 · · · sn,k

−


s0,0 s0,0 · · · s0,0
s1,0 s1,0 · · · s1,0
... . . . ...

sn,0 sn,0 · · · sn,0

 (2.22)

y = s0 − Ŝ
((

ŜT Ŝ
)−1

ŜTs0
)

(2.23)


s0,1 s0,2 · · · s0,k
s1,1 s1,2 · · · s1,k
... . . . ...

sn,1 sn,2 · · · sn,k
1 1 · · · 1

µ =

(
y
1

)
(2.24)

When y falls outside the convex hull conv S , this leads to Step 4 of the
Wolfe algorithm 1 where a new point z is found that is nearest to y among
the intersection of the convex hull conv S and the line segment [y, x̂ ]. As part
of this step we need to solve the following systems to get a representation λ
of x̂ in terms of S while again enforcing that we have an affine combination
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i.e.,
∑

i λi = 1, here as well we enforce the new constraint by adding a new
row of ones to S . Later λ is then used to find z in conv S that is closest to
y. 

s0,1 s0,2 · · · s0,k
s1,1 s1,2 · · · s1,k
... . . . ...

sn,1 sn,2 · · · sn,k
1 1 · · · 1

λ =

(
y
1

)
(2.25)

To summarize, in Krause MNP kernel implementation we need to solve
three systems depicted in equations 2.23, 2.24 and 2.25. The first system
corresponding to Eq. 2.23 is determined and the other two systems corre-
sponding to equations 2.24 and 2.25 are overdetermined. At this point it is
readily apparent that Krause implementation involves a larger number of
flops to execute Step 3 of Wolfe algorithm 1.
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Chapter 3

Applications

We have chosen the following workload applications to test our high-performance
implementation HPSFO kernel against all others. In this chapter we will
briefly provide the problem statement and a few notes about the three ap-
plications. We will also explain the algorithm concept corresponding to the
incremental update EO evaluation for each application. Note that these prob-
lems have already been extensively discussed in existing literature [4, 3, 31,
33, 28].

3.1 Minimum Graph Cut
The first application we employed to evaluate our implementation is the
Minimum Graph Cut or Minimum s-t Cut problem, which is defined as fol-
lows. Taking as input a directed weighted graph G = (V ,E ,w) with positive
weights, and designated source and target nodes (s, t). It outputs two parti-
tions S ⊂ V and T ⊂ V of vertices such that s ∈ S , t ∈ T with T = {V \S}.
The goal is to minimize the sum of the weights of the edges that separate S
from T . The Minimum Cut can thus be formulated as a SFM with the sub-
modular function defined in Eq. 3.1 where X c = {V \X} or the complement
set of X .

f (X) =
∑

u∈X , v∈Xc, (u,v)∈E

wu,v −
∑

(s,v)∈E

ws,v (3.1)

To ensure the constraint that s and t are in disjoint partitions, they are re-
moved from the ground set and added as needed. The graph cut minimization
with positive weights is a submodular problem [31] and we can employ the
MNP algorithm to efficiently find a solution. While we use the minimum cut

25
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application to compare performance-wise different SFM implementations, it
is important to note that there are much better algorithms for solving the
minimum cut problem e.g. Edmonds Karp with general complexity O(VE2)
1 [43]. Since we use Boost and BGL as discussed in chapter 5 we have also
provided a simple “zero-dependency” API to solve the minimum cut via the
Edmonds-Karp algorithm.

The incremental update EO function version of the Minimum cut problem
keeps the current set X and the result of the last evaluation of the EO
function within its context. At every incremental step, it inserts into the
current set a new element X ← X ∪ {k} and computes the new evaluation
on top of the previous evaluation by adding the sum of the weights of the
outgoing edges (k, u) ∈ E , ∀ u ∈ X c and subtracts the sum of the weights
of the incoming edges (u, k) ∈ E , ∀ u ∈ X :

f (X ∪ {k}) = f (X) +
∑

(k,v)∈E, v∈Xc

wk,v −
∑

(u,k)∈E, u∈X

wu,k (3.2)

Therefore, the incremental update improves the EO evaluation complexity
from O(n3) to O(n) where we only need to make computations relative to the
adjacency of the current node k. Note that in our implementation the non-
incremental EO evaluation is O(n3) but it could be improved to O(n2 log n).

3.2 Log Determinant
The second application we have implemented is the Log Determinant. The
Log Determinant application has been described in detail in the work of Bach
[4] but for a matter of self-containment we are going to summarize the prob-
lem description provided in Bach work [4] also here.

Given p random variables (RV) X1, . . . ,Xp that take finite number of
values, we define F(A) as the joint entropy of the variables (X[k])k∈A, this
function is submodular. Its “symmetrization” version defined as G(A) =
F(A)+F(Ac)−F(B) is also submodular and leads to the mutual information
between variables indexed by A and the those indexed by Ac = {V \A}. This
result can be applied to any distribution by means of differential entropies. In
particular, we have the application for Gaussian RV, leading to the submodu-
larity of the function defined through the Log Determinant F(A) = log |QA,A|

1http://www.boost.org/doc/libs/1_50_0/libs/graph/doc/edmonds_
karp_max_flow.html

http://www.boost.org/doc/libs/1_50_0/libs/graph/doc/edmonds_karp_max_flow.html
http://www.boost.org/doc/libs/1_50_0/libs/graph/doc/edmonds_karp_max_flow.html
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for some positive definite matrix Q ∈ Rp×p. In the context of semi-supervised
clustering, we are given p data points generated from a Gaussian process
x1, . . . , xp ∼ N (0; Σ) that are normally distributed with zero mean and co-
variance matrix Σ. Furthermore, we assume that any subset of points satisfy
the same distribution assumption with covariance matrix K[X ,X ] where K is
the p × p kernel matrix of the p data points, i.e., Kij = k(xi , xj) and k is the
kernel function associated with the Gaussian process. Given a selected set
A, we have A and Ac as two independent Gaussian processes with covari-
ance matrices ΣA and ΣAc , respectively. In order to maximize the likelihood
under the joint Gaussian process, the best covariance matrix estimates are
ΣA = KA and ΣAc = KAc . This leads to a maximization problem that derives
from the modular prior distribution on subsets p(A) =

∏
k∈A ηk

∏
k /∈A(1−ηk)

and involves the negative log-likelihood of the two independent Gaussian
processes and the mutual information between them. (Bach [4])

Finally, the semi-supervised clustering problem “two-moons” defined in
Bach work [4] can be cast as a likelihood maximization problem that can, in
turn, be represented as a SFM problem as shown Eq. 3.3 [4] where K is the
kernel matrix, in particular, a Gaussian kernel k(x , y) = exp(−α ∥ x − y ∥22)
[4]. K[A] is the sub-matrix of K formed from the columns defined by the index
set A.

f (A) = log |K[A]|︸ ︷︷ ︸
Log-likelihood A

+ log |K[Ac]|︸ ︷︷ ︸
Log-likelihood Ac

− log |K |︸ ︷︷ ︸
Mutual information I (A;Ac)

(3.3)

The non-incremental EO function complexity and cost (in flops) corre-
sponding to the Log Determinant application at every evaluation step is
O(n3) where n is the dimension of the squared kernel matrix K , i.e., the
complexity and cost is dominated by computation of the full Cholesky de-
composition corresponding to K[A] and K[Ac] [17]. The incremental update
EO evaluation version keeps a context containing the up-to-date Cholesky
decompositions corresponding to K[A] and K[Ac]. The context is initialized and
reset to A = {} and Ac = {1, . . . , n}, note that we compute the Cholesky de-
composition of Ac = {1, . . . , n} only once and store it as part of our context,
the saved computation is copied into the appropriate matrix at every function
reset call. At every incremental update EO function evaluation step a new
element j corresponding to the column from Kj is processed, the Cholesky
decomposition of K[A] is updated after appending the column Kj and con-
versely, the Cholesky decomposition of K[Ac] is down-dated after removing



28 Applications

the column corresponding to Kj :

f (A ∪ {k}) = log |Cho(K[A])+k |︸ ︷︷ ︸
update Cho +col k

+ log |Cho(K[Ac])−k |︸ ︷︷ ︸
update Cho -col k

− log |Cho(K )|︸ ︷︷ ︸
FV, computed once

(3.4)

Therefore, the incremental update improves the EO evaluation complexity
and cost from O(n3) to O(n2) based on a series of Cholesky updates and
down-dates [17].

3.3 Corpus Selection
Our third application is the Selection of Minimal Speech Corpora in the
context of Automatic Speech Recognition (ASR) or as we call it Corpus Se-
lection described in detail in the work of Hui Lin and Jeff Bilmes [33]. Again
for completeness we provide here a minimal problem description.

The problem of corpus selection is that of finding the optimal subset
from a set of utterances that simultaneously minimize the vocabulary size
and maximizes the total amount of information, measured as either the car-
dinality of the utterances set, or a weighted scheme where the utterances are
given a positive integer weight or alternatively, the duration of the speech.
The problem can be modeled as a combinatorial optimization problem de-
fined on a bipartite graph. Let V be the ground set of corpus of utterances,
let F be the vocabulary set of distinct words contained collectively in these
utterances. Then we can define the bipartite graph G = (V ,F ,E) where
E ⊆ V × F are the set of edges. Each (v, f ) = e ∈ E is an edge between
an utterance u ∈ V and a word f ∈ F if utterance v contains word f . The
goal is to find X ⊆ V that maximizes the parametric (parameter λ) objective
function (Hui Lin and Jeff Bilmes [33])

f (X) = w(X)− λΓ(X) (3.5)

or equivalently that minimizes the objective function which is a submodular
function [33] and we can efficiently solve it using our HPSFO implementation:

f (X) = w(V \X) + λΓ(X) (3.6)
The submodular objective function in Eq. 3.6 means we want to minimize
the amount of information or duration of speech in the complement set of
utterances V \X effectively maximizing the amount of information in utter-
ances of set X and penalize the vocabulary size or the amount of distinct
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words included in these utterances. The penalization is parameterized with
the trade-off coefficient λ which controls the vocabulary size of the optimal
subset of utterances. The larger the λ value, the smaller the vocabulary size
will be. (Hui Lin and Jeff Bilmes [33])

The non-incremental EO function complexity corresponding to the Cor-
pus Selection application at every evaluation step is O(n2 log n). The incre-
mental update EO function keeps a context that includes the total amount
of information contained in the current set X of utterances and an efficient
set representation containing the distinct vocabulary associated with the cur-
rent set of utterances. At every evaluation step the incremental EO simply
updates the amount of information corresponding to the passed utterance k
and inserts the associated vocabulary into the vocabulary set associated to
X :

f (X ∪ {k}) = w(V \X)− w({k})︸ ︷︷ ︸
weight of (s,k)∈E

+λ Γ(X ∪ {k})︸ ︷︷ ︸
|voc(X) ∪ voc({k})|

(3.7)

Therefore, the incremental update improves the EO evaluation complexity
from O(n2 log n) to O(n) where the O(n) originates from iterating the vo-
cabulary (adjacent edges) associated to utterance k, and the cost of inserting
new words into the vocabulary set is constant in our bitset implementation.
Note that the n corresponding to the incremental update EO should intu-
itively be small, we are only looking at the adjacency, or words connected
to utterance k but the Corpus Selection does not give hard bounds on the
maximum number of words that one utterance can have. Therefore, it would
be possible to be the worst-case, i.e., the graph having one or two utterances
that are connected to all words and thus, e.g., have adjacency n − 1.
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Chapter 4

Implementation

As previously mentioned in the introduction chapter 1 this thesis work is the
continuation of a course project [15]. In that course project we took Krause’s
MNP kernel Matlab implementation as starting point and rewrote it in C.
From there on, we applied many optimizations and branched out about ten
different major release versions or baselines. All the optimizations made to
Krause’s kernel are relevant to this work and will be discussed in the section
4.1.

Later, Satoru Fujishige provided his MNP kernel implementation and we
applied many optimization techniques that will be discussed in the corre-
sponding section 4.2. We named the resulting implementation, the HPSFO
MNP kernel.

4.1 Krause’s MNP kernel optimization
4.1.1 Course project optimizations (Azua, Chothia, Frunza

[15])

The following optimizations were covered as part of the course project Sub-
modular function optimization for the s-t graph cut [15] corresponding to
the ETH course How to Write Fast Numerical Code [40]. The ideas we ex-
plored and implemented in that project served as a base and foundation for
this thesis work. Therefore, we have included the most important results here.

Initially, we rewrote Krause submodular Toolbox Matlab [30] implemen-
tation in C substituting Matlab functions with our own matrix and vector
operations. This approach posed some challenges, e.g., what would be the
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best way to solve an overdetermined system which is done transparently in
Matlab using the operator backslash?. Our first working implementation em-
ployed Gaussian elimination to solve the three systems of equations described
in section 2.4.2 in every iteration of Step 3 and Step 4 of the algorithm 1.
Solving a determined system corresponding to Eq. 2.23 was straightforward.
However, in order to solve the overdetermined systems of equations 2.24 and
2.25 we used the standard Least Squares approach where we try to find the
x that minimizes the error cost function:

∥ Ax − b ∥22 (4.1)

For the sake of self-containment we derive the optimal solution to the Least
Squares problem below. Basically we want to find the x that minimizes error
for the overdetermined system of equations, so we take the derivative with
respect to x and set it to zero in order to find the saddle point:

∂

∂x
= 0 → ∂

∂x
∥ Ax − b ∥22 = 0

→ ∂

∂x
[(Ax − b)T (Ax − b)] = 0

→ ∂

∂x
(ATAxTx − 2ATxb − bTb) = 0

→ 2ATAx − 2ATb = 0

→ ATAx − ATb = 0

→ ATA︸ ︷︷ ︸
MMM

x = ATb︸︷︷︸
MVM︸ ︷︷ ︸

Gaussian solver

It is clear that this approach was quite expensive; in order to solve one sys-
tem and apply Gaussian elimination, a MMM and a MVM are needed that
cost 2nm2 + 2nm (m - rows of A, n - columns of A). This solution lead to
non-convergence for the largest test-cases and it was clearly due to errors
propagating as the number of operations increased. The Gaussian elimina-
tion cost in flops is 2n3

3
+ 3n2

2
− 7n

6
[17].

We had several options to overcome the convergence issues described be-
fore. We chose QR decomposition as solution since for this particular case
of solving an overdetermined system, the QR decomposition offers the best
trade-off between cost and numerical stability compared to, e.g. SVD [39].
Another strong point towards choosing QR was the existence of well known
blocked algorithms [8] designed for parallelizing the QR decomposition. We
initially planned to employ these QR block algorithms in order to optimize
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for the memory hierarchies. We took as starting point the QR decomposition
implementation in [39] and extended it to support non-squared matrices. The
derived Eq. ATAx = ATb can be solved more cheaply via QR in the following
way (substituting A by QR):

ATAx = ATb
(QR)TQRx = (QR)Tb

RT QTQ︸ ︷︷ ︸
I

Rx = RTQTb

�
��>

I
RTRx = �

��>
I

RTQTb
Rx = QTb︸︷︷︸

MVM

Finally, since R is upper triangular the final Eq. Rx = QTb can be solved us-
ing right substitution [39]. Note that in this case we bypass the costly MMM
and MVM from the solution above. The QR decomposition is known to cost
2n2(m− n

3
) flops [17] for the compact variation and 4(m2n−mn2+ n3

3
) flops

when computing Q explicitly [17]. In our initial implementation we computed
QT explicitly.

At this point the algorithm converged and we were able to reproduce the
same results (including number of iterations) as the Krause’s Matlab MNP
kernel code for all test-cases. Through profiling we found matrix operations
to be consuming the majority of the runtime. The next optimizations focus
on reducing this cost.

Our initial baselines employed a matrix representation of one dimensional
contiguous memory in row-major ordering. This turned to be very inefficient
due to the general behaviour of the MNP algorithm, namely for every itera-
tion it continuously adds and removes points from the corral S , which in our
implementation corresponds to physically appending and deleting column
vectors from matrix S . We employed pre-processing instructions or macros
and added support for both row-major and column-major representations
toggleable at compilation time. As we progressed with further improvements
we were able to test both each time and the column major representation
always delivered superior performance.

We then introduced the Intel Math Kernel Library (MKL) 1 as means to
1http://software.intel.com/en-us/articles/intel-mkl/

http://software.intel.com/en-us/articles/intel-mkl/
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solve the QR decompositions and focus our efforts on more specific bottle-
necks of our problem. Our first implementation using MKL invoked the LA-
PACK dgels driver routine, which solves overdetermined or under-determined
real linear systems using either QR or LQ factorizations. We took advantage
of the fact that we solved two right-hand sides with the same matrix S corre-
sponding to equations 2.24 and 2.25. By caching the computation of the QR
done the first time and reusing it in the second we avoided doing duplicated
work. We accomplished this by switching to the lower level API directly, us-
ing dgeqrf (QR factorization), dormqr (MVM with Q) and dtrsm (triangular
solve). We only perform the O(n3) costly step (QR) once. We did not gain
as much as we initially expected by reusing the QR factorization. We believe
this is due to the function dgels being highly optimized for building the QR
decomposition and solving the system in one step. Having resolve some of
the major bottlenecks in matrix operations we shifted our focus to optimizing
the function evaluation, which is specific to the graph-cut problem.

Initially, our graph was represented using the adjacency matrix format,
but considering the sparse structure of a graph matrix and the lack of reuse
during the computation we improved the representation of the graph to an
adjacency list represented as a structure of arrays rather than an array of
structures. This compact representation improved the locality of our EO
function for the Cut problem with neighbouring nodes stored next to each
other.

The EO functions receive a list of ground subset indexes and we often
need to sort them so we can efficiently compute set differences which we
do by invoking std::set_difference included in algorithm as part of the
standard C++ library [29]. Initially and in the C version we implemented
our own merge sort. However, we can exploit the fact that subset element
identifiers are integers between 1 and n where n is the ground set size. The
merge sort complexity is O(n log n) whereas in this specialized case of sort-
ing integer elements we reduced it to O(n). The pseudo-code for this integer
linear sorting algorithm is depicted in algorithm 4.

Until now each function EO evaluation was done as prescribed by the
Edmonds Greedy algorithm 2 as part of Step 2 of the MNP algorithm 1. The
polyhedron Greedy results in a sequence of function evaluations with subsets
ranging from the empty set to the full ground set V - for example:

f ({}), f ({3}), f ({3, 8}), f ({3, 8, 2}), ...
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Algorithm 4 Linear Sorting
Input: elems: Elements, num_elems: Size of elems
Output: elemsi ≤ elemsj∀i ≤ j

1: Find elemsmin, elemsmax
2: Set last = (elemsmax − elemsmin)
3: Initialize temp[0 …last] = 0
4: for i=0; i < num_elems; i++ do
5: temp[elemsi - elemsmin] += 1
6: end for
7: for j=0, i=0; j ≤ last; j++ do
8: for k=0; k < temp[j]; k++, i++ do
9: elems[i] = elemsmin + j + k

10: end for
11: end for
12: return elems

..

1

.2.

3

.

4

. 5..

-a

.
b

.
+c

.

d

Fig. 4.1: Graph cut - Incremental evaluation example.

This approach is wasteful, e.g., when evaluating f ({3, 8, 2}) we inspect
nodes 3 and 8, which were already considered in the previous evaluation
of f ({3, 8}). We then implemented the improved strategy discussed before,
applying Krause incremental updates of the EO evaluation depicted in algo-
rithm 3 where given f (A), we can compute f (A∪{k}) by inspecting only node
k’s adjacency. The intuition behind this is illustrated figure 4.1. In order to
include node 3 in the source partition, one needs to add the weight of edge
c and subtract the weight of edge a from the previous cut value (f ({1, 2})).
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In contrast to the method suggested by J. Edmonds 2, this new solution
using incremental update of the EO function corresponding to algorithm 3
only performs operations proportional to the in- and out-degree of a node.
Further, since fewer edges are inspected we have fewer memory accesses,
which are very expensive as there is no reuse to hide the effect of cache
misses. The implementation of the incremental evaluation in this case requires
bookkeeping the current set within a context. We employed a binary set
representation, that offers constant time for setting an element as well as for
testing existence of an element.

4.1.2 Further optimizations

As part of this thesis work further performance optimizations were applied to
Krause MNP kernel implementation. First, all matrix and vector operations
were rewritten in terms of Intel MKL 2 primitives and whenever possible take
advantage of level BLAS-1, BLAS-2 or BLAS-3 operations. Software that re-
lies on BLAS 3, LAPACK 4 or in this case Intel MKL is highly portable,
and will typically run very efficiently. The higher the BLAS level, the more
possibilities for exploiting locality, vectorization and parallelism. It is also
common to trade higher flop count in exchange for higher BLAS level to
the end of higher performance and better scalability [47]. Since this type
of improvement is common to Fujishige too, it has been described in detail
in section 4.3.1. Particularly relevant for Krause MNP kernel is the imple-
mentation of the subspace translated operation shown in Eq. 2.22 by means
of cblas_dger [23]. We can efficiently write the subspace translation as a
level BLAS-2 operation as shown in 4.2 and code listing 4.1 here we do an
outer vector vector multiplication as depicted in Eq. 4.3 effectively creating
a matrix of dimensions n×k as k replications of the column vector S0. Multi-
plying the resulting matrix by α = −1 and passing as input A the submatrix
Ŝ(1, . . . , k) we effectively converted the subspace translation or computation
of the affine hull aff S to a BLAS-2 operation taking advantage of the opti-
mizations for locality, vectorization and parallelism transparently offered by
Intel MKL.

2http://software.intel.com/en-us/articles/intel-mkl/
3http://www.netlib.org/blas/
4http://www.netlib.org/lapack/

http://software.intel.com/en-us/articles/intel-mkl/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
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A = α · x · yT + A definition of cblas_dger (4.2)

A = −1 ·


s0,0
s1,0
...

sn,0

 · (1, 1, . . . , 1) +


s0,1 s0,2 · · · s0,k
s1,1 s1,2 · · · s1,k
... . . . ...

sn,1 sn,2 · · · sn,k

 (4.3)

Listing 4.1: Subspace translated implemented in MKL BLAS-2

1 // one-time initialization
2 static tsfo_vector<T> ONES(tsfo_vector<T>::

VECTOR_BUFFER_SIZE - 1, 1.0);
3

4 CBLAS_ORDER b_order = blas_order();
5 lapack_int m = m_rows;
6 lapack_int n = m_cols;
7 double alpha = -1.0;
8 const double *x = S.data();
9 lapack_int incx = 1;

10 const double *y = ONES.data();
11 lapack_int incy = 1;
12 lapack_int lda = m;
13 cblas_dger(b_order, m, n, alpha, x, incx, y, incy, a, lda);

Next, the matrix mutations, e.g., delete columns was optimized and this
is also described in the appropriate section 4.3.3.

Another improvement to Krause MNP kernel was to simplify the step of
finding of the MNP point y in the affine hull Ŝ = aff S as depicted in Eq.
2.23 corresponding to Step 3 of the algorithm. The simplification consists
of avoiding the expensive MMM of Ŝ by its transpose ŜT and the MVM
corresponding to the multiplication of s0 by ŜT , and instead solving the
overdetermined system directly using the QR decomposition. The result was
a major reduction in flop count and higher stability, the computation is done
in the following way:

Ŝ x̂ = s0 multiplying both sides by QTs.t. S = QR (4.4)
QT Ŝx = QTs0 (4.5)

Rx = QTs0︸ ︷︷ ︸
MVM

(4.6)
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then, the Eq. 2.23 simplifies to:

y = s0 − Ŝ
((

Ŝ−1
)

s0
)

(4.7)

The last and greatest performance improvement to Krause MNP kernel
was to avoid recomputing the full QR factorization of S and Ŝ = aff S at
every Step 3. The goal ideally is to simply compute the QR factorization of
S and Ŝ once (note that we need both S = QR and Ŝ = Q̂R̂) and update
it as result of the matrix mutations due to the nature of the algorithm. Ide-
ally we would like the full cubic-cost QR computation to happen only once
across the whole execution of the MNP algorithm and from there on have
only quadratic-cost updates, but we will see in a moment why this is not
always possible for the case of Ŝ = Q̂R̂.

We represent our matrices and vectors as contiguous 1-D memory chunks
and the mutations required by the MNP algorithm do translate into actual
memory movements, this will be explained in section 4.3. The matrix muta-
tions consist of:

I Append column: corresponds to adding a new point column vector
sk+1 to the point set matrix simplex Sn×k and this effectively happens
at every Step 2 of the MNP algorithm 1.

II Delete column: corresponds to the case where the algorithm makes a
“mistake” and needs to remove an existing point column vector sj out
of the point set Sn×k and this effectively happens at every Step 4 of the
MNP algorithm 1.

III Append row: required by the specific way the MNP is implemented
by Krause, we need to append a row of ones to the S matrix as shown
in equations 2.24 and 2.25. We append a row of ones (or add a new
constraint) to ensure that we get an affine combination, e.g.,

∑
i µi = 1.

This happens at every Step 3 of Krause MNP implementation.

First we note that to append a column to S and therefore to Ŝ , we do not
require recomputing from scratch the subspace translated operation shown
in 4.2. Every time a new column is appended to S we simply update the
subspace translation in the way depicted in Eq. 4.8. Therefore, once QR is
computed for S and Ŝ , we can efficiently update the S = QR and Ŝ = Q̂R̂
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corresponding to the append column matrix mutation. The details of the QR
updates implementation are discussed in section 4.3.4.

Ŝn×k+1 =


ˆs0,1 ˆs0,2 · · · ˆs0,k s0,k+1 − s0,0
ˆs1,1 ˆs1,2 · · · ˆs1,k s1,k+1 − s1,0
... . . . ... ...
ˆsn,1 ˆsn,2 · · · ˆsn,k sn,k+1 − sn,0

 (4.8)

Next, the QR update corresponding to the delete column mutation can
also be efficiently done and this is also discussed in section 4.3.4. However,
here we note that in the specific case of deleting the point column vector
s0, destroys the existing aff S = Ŝ and requires recomputing the subspace
translation of S from scratch and therefore recomputing its QR factorization
Ŝ = Q̂R̂. Every time the MNP algorithm finds it made a “mistake” Step 4
of Wolfe algorithm 1 and the point to delete is the column vector s0 we have
to recompute aff S = Ŝ and its QR Ŝ = Q̂R̂.

Finally, appending one row to S in order to solve equations 2.24 and 2.25
can also be done more efficiently than recomputing the whole QR decom-
position of S from scratch. In this case we do not even need to physically
append the row to S which is very expensive due to the column-major matrix
ordering of S . Instead we run the append row update directly to its QR, and
use the updated QR to solve the equations, once the equations are solved we
undo the append row QR update.

..
Compute QR O(n3)

.
start

.

Append column
QR update O(nm)

.

Delete column
QR update O(n2m)

.

Append row
QR update O(n2 + m)

.

+col

.

-col

.

+row

.

+row

.

-col

.

+col

.

+col

.

-col

Fig. 4.2: Matrix mutations to Sm×n and corresponding QR updates
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..
Compute Q̂R̂ O(n3)

.
start

.

Append column
Q̂R̂ update O(nm)

.

Delete column
Q̂R̂ update O(n2m)

.

+col

.

-col

.

-col

.

-col s0

.

+col

.

-col s0

.

+col

.

-col

Fig. 4.3: Matrix mutations to Ŝm×(n−1) and corresponding Q̂R̂ updates

In Figures 4.2 and 4.3 we have simplified state diagrams of the possi-
ble matrix mutations to S and Ŝ and the resulting QR updates. The state
color give an intuition of how much work and time is spent in that opera-
tion (the big O is also included). However, these are only simplified state
diagrams because there is more to this updates “sandwiching”, e.g., when we
delete a column we need to build up and maintain an additional Qdelete_column
that makes the R of Sn,−j (that’s it S with column j deleted) upper trian-
gular again, and this QT

delete_column needs to be applied to any subsequent
update, e.g., append column update or append row update. Similarly, when-
ever we append a new row we need to apply to this new row QT

delete_column
and then build up an update QT

append_row that will make the R of Sn+1,k
upper triangular again. Finally, when we want to do a solve step we need
to cumulatively apply all the updates to the right hand side column vec-
tor, e.g., b̂ = QT

delete_columnQT
append_rowb. In conclusion, separate from the flop

count costs of the state changes depicted in Figures 4.2 and 4.3 we have
also to take into consideration the overhead of updating and applying the
orthogonal matrices that triangularize S or Ŝ after every update, namely
bookkeeping the matrices Qdelete_column and Qappend_row. Furthermore, the re-
quired memory footprint and memory copying resulting from bookkeeping
these matrices adds up a non-negligible overhead to the overall solution. In
conclusion, we can see this overhead reflected in Fig. 6.1 where we compare
the original Matlab Krause MNP implementation to that implemented in
C++ that includes all the optimizations described here and we can observe
that the performance of the later degrades with bigger problem sizes, due
to what we believe is one the one hand its lower Level BLAS of the up-
dates, and on the other the high memory overhead connected to consistently
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maintaining all types of QR updates.

4.2 Fujishige’s MNP kernel optimization
After we received a copy of Fujishige’s MNP C kernel implementation and
we realized algebraically how simpler it was implementing the Step 3 of the
Wolfe algorithm 1 and the much lower flop count compared to Krause’s im-
plementation we decided to base our final and fastest MNP kernel HPSFO
version using Fujishige’s. We thoroughly tested his implementation and it
didn’t only outperform Krause’s most optimized version but also demon-
strated robustness by leading to convergence even in cases where the EO
function had mistakes. It is also robust with respect to the sorting algorithm
employed for implementing the Greedy algorithm step. Krause’s implemen-
tation only works using stable_sort and Fujishige’s implementation would
work with any sorting algorithm, and this is one of the many improvements
we did, using more efficient and even parallelizable sorting implementation.

We implemented the following improvements on top of Fujishige’s C ker-
nel and versioned it into our final HPSFO implementation.

For starters, we replaced all vectors and matrices with our high-performance
template class type implementations tsfo_vector<T>, tsfo_matrix<T> and
tsfo_matrix_tria<T> to take advantage of many aspects, e.g., contiguous
and aligned memory to allow vectorization, pre-allocated and aligned buffer
pooling, transparent parallelization, etc. By using abstraction the code be-
came not only faster (as we will see later) but higher overall quality i.e., has
much better communication of intent, it is a lot more readable, and thus eas-
ier to understand and maintain. The code listings 4.2 and 4.3 demonstrate
the difference in the readability and maintainability of the code. Further,
by abstracting the high-performance foundation using the class abstractions
tsfo_vector<T>, tsfo_matrix<T> and tsfo_matrix_tria<T> that wrap In-
tel MKL, we will automatically gain free speed up due to future MKL con-
tinuous updates and improvements and the release of more advanced vector
extensions, e.g., Advanced Vector Extensions 2 (AVX2) 5 6.

Listing 4.2: Fujishige S and R matrices, computing MVM x = Sw

5http://software.intel.com/en-us/avx/
6http://software.intel.com/en-us/articles/

haswell-support-in-intel-mkl/

http://software.intel.com/en-us/avx/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/
http://software.intel.com/en-us/articles/haswell-support-in-intel-mkl/
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1

2 // double linked-list of column indexes
3 ip = ivectoralloc(m_n + 2);
4 ib = ivectoralloc(m_n + 2);
5

6 // ...
7

8 // S and R matrices
9 ps = matrixalloc(m_n + 2, m_n + 2);

10 r = matrixalloc(m_n + 2, m_n + 2);
11

12 // ...
13

14 /************** step 1 *********************/
15 /******************* (A) ********************/
16

17 while (1) { /* 1000 */
18

19 // MVM implementation navigating through the double-linked
20 // list of column indexes structure ip
21 i = ih;
22 while (i != 0) {
23 for (j = 1; j <= m_n; j++) {
24 x[j - 1] += ps[i][j] * w[i];
25 }
26 i = ip[i];
27 }

Listing 4.3: HPSFO S and R matrices, computing MVM x = Sw

1 // contiguous and aligned memory data, high-performance
2 // and high-abstraction!
3 tsfo_matrix <double> S(n, 1, 0.0);
4 tsfo_matrix_tria<double> R(n, 1, 0.0);
5

6 // ...
7

8 /************** step 1 *********************/
9 /******************* (A) ********************/

10

11 while (1) { /* 1000 */
12

13 // tsfo_matrix::operator*() efficiently does an MVM
14 // via Intel MKL's cblas_dgemv
15 x = S*w;
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Next, as shown in listings 4.2 and 4.3 replaced the main concept of the
algorithm that deals with the matrix mutations from using a double-linked
list of column indexes to instead maintain the matrix S and R physically as
contiguous memory. In his implementation, Fujishige opted to avoid the ex-
pensive physical memory operations resulting from the MNP algorithm that
requires adding and deleting points to and from the point set and corral S
by means of a double-linked list of column indexes data structure. But as we
will see in the chapter 6, the benefits of doing physical memory mutations
by far outweighs its cost. We traded dealing with the expensive memory
operations required to append and delete points with taking advantage of
our high-performance foundation that builds on top of Intel MKL. We will
discuss the way we leverage the cost of doing physical matrix mutations in
section 4.3.3. Further, Fujishige implementation though more efficient mutat-
ing the main matrices S and R, suffered from very poor spatial and temporal
locality, namely the column accesses in his implementation end up fetching
arbitrary memory addresses leading to frequent cache evictions. Fujishige’s
code would not easily auto-vectorize and even if it did, the vectorization on
unaligned memory is several times slower than that of aligned memory [10]
[21].

Subsequently, we rewrote Fujishige’s code casting his implementation in
terms of Intel MKL (via our class abstractions tsfo_vector<T> and tsfo_matrix
<T>). The main steps of 1 algorithm were identified and replaced with Intel
MKL BLAS and LAPACK primitives, e.g., MVM was rewritten to use level-2
BLAS cblas_dgemv 7, replaced forward and backward solve steps to use level-
2 BLAS cblas_dtrsm 8, etc. The code listings 4.4 and 4.5 show the result
of applying this improvement to Fujishige’s implementation. We note how
we simplified and abstracted the two solve steps, we can also see a typical
pattern of bundling computation, in this case computing the usum is bundled
for the Fujishige implementation together with the back solve step, we on
the other hand do this computation explicitly. More details on this will be
discussed in section 4.3.

Listing 4.4: Fujishige find the MNP y in aff S as part of Step 3

1 // ...
2

3 /************** step 3 *********************/
4

7http://www.netlib.org/blas/dgemv.f
8http://www.netlib.org/blas/dtrsm.f

http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/dtrsm.f
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5 while (1) { /* 2000 */
6 // solve R^T\bar{u}=e
7 i = ih;
8 for (j = 1; j <= k; j++) {
9 ubar[j] = 1.0;

10 for (jj = 1; jj <= j - 1; jj++) {
11 ubar[j] -= ubar[jj] * r[i][jj];
12 }
13 ubar[j] = ubar[j] / r[i][j];
14 i = ip[i];
15 }
16

17 // solve Ru=\bar{u}
18 usum = 0.0;
19 i = it;
20 for (j = k; j >= 1; j--) {
21 u[i] = ubar[j];
22 ii = ip[i];
23 while (ii != 0) {
24 u[i] = u[i] - r[ii][j] * u[ii];
25 ii = ip[ii];
26 }
27 u[i] = u[i] / r[i][j];
28

29 // bundle sum computation inside loop
30 usum += u[i];
31 i = ib[i];
32 }
33

34 // ...

Listing 4.5: HPSFO find the MNP y in aff S as part of Step 3

1

2 // ...
3

4 /************** step 3 *********************/
5

6 while (1) { /* 2000 */
7 // solve R^T\bar{u}=e
8 tsfo_vector<double> ubar = R.solve_forward(ONES);
9

10 // solve Ru=\bar{u}
11 tsfo_vector<double> u = R.solve_backward(ubar, u);
12

13 // compute sum with vectorization
14 double usum = u.sum();
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15

16 // ...

We then, introduced support for OE with Incremental evaluation capa-
bility, so that the EO function evaluation as part of the Edmonds Greedy
algorithm step becomes several times faster due to the lower complexity to
evaluate it. The change is depicted in code listing 4.6

Listing 4.6: Incremental evaluation

1 // polyhedrom Greedy, generate a new extreme base
2 S.append_column(ZEROS);
3 sf_previous = 0.0;
4 min_F = DBL_MAX;
5

6 // use EO incremental capability f_inc(..) if available
7 if (sf_inc_context() != NULL) {
8 sf_inc_context()->reset();
9 for (int i = 0; i < n; i++) {

10 sf_new = sf_inc_context()->f_inc(m_ground[s[i]]);
11 S(s[i], k) = sf_new - sf_previous;
12 sf_previous = sf_new;
13 min_F = min(sf_new, min_F);
14 }
15 } else {
16 // otherwise simply use the standard EO f(..)
17 assert(sf_context() != NULL);
18

19 for (int i = 0; i < n; i++) {
20 x.append(m_ground[s[i]]);
21 sf_new = sf_context()->f(x);
22 S(s[i], k) = sf_new - sf_previous;
23 sf_previous = sf_new;
24 min_F = min(sf_new, min_F);
25 }
26 }

Further, we extended the convergence criteria of the separating hyper-
plane with the duality gap convergence previously discussed. Fujishige’s im-
plementation would otherwise not converge for some applications, e.g., the
Log Determinant. However, the duality gap convergence also presents an
expensive initialization step where exhaustive non-incremental evaluations
proportionally large to the ground set size are needed, in order to compute
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a norm used to build the ε needed to test for the duality gap convergence.

We also replaced the Step 4 of Wolfe algorithm 1 that employs Givens
rotations to repair the R matrix from upper Hessenberg to upper trapezoidal
[17] after a point is deleted from the set. We replaced Fujishige’s straight-
forward row Givens implementation with a handcrafted high-performance
Register blocking and loop unrolling with lower flop count that in addition
parallelizes with OpenMP (we also tested two other different alternatives),
this point is discussed in detail in the section 4.3.4.

Additionally, we replaced Fujishige quicksort2 implementation as part
of the Greedy Step 2 of Wolfe 1 and reused the parallel_sort 9 implementa-
tion provided as part of Intel Threading Building Blocks 10 (TBB). But note
that doing so leads to a different number of algorithm iterations. In order to
compare the two generic kernels we kept Fujishige quicksort2 and compared
both implementations having HPSFO in single threaded mode, e.g., for the
Gflops comparison. For the final “Fastest showcase” experiment section 6.5
we ran benchmarks of our final HPSFO implementation enabling parallelism
and breaking compatibility with respect of the number of iterations and gain-
ing further parallel speed up by using TBB parallel_sort implementation.

Finally, we kept the two versions, original Fujishige class type imple-
mentation 11 and the forked version HPSFO class implementation 12 into a
reusable and extensible software design and framework that we will discuss
in chapter 5. Note that for the sake of fair comparison , e.g., Gflops plots, we
adapted the two improvements duality gap convergence and the incremental
evaluation to the original Fujishige version tfujishige_min_norm_point_kernel
so we can compare one-to-one the two generic SFM kernels i.e., to have ex-

act same number of major and minor iterations and asymptotically the same
complexity. It is important to point out that among all improvements, the
incremental evaluation and its applicability to the different applications is
the most important result of this work and can be seen as major complexity
reduction on top of Fujishige work.

9http://software.intel.com/sites/products/documentation/hpc/
tbb/referencev2.pdf

10http://threadingbuildingblocks.org/
11tfujishige_min_norm_point_kernel
12thpsfo_min_norm_point_kernel

http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://threadingbuildingblocks.org/
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4.3 High-performance foundation

4.3.1 Fast matrix and vector
The two bricks that lay down the high-performance foundations of our final
MNP implementation are the tsfo_vector<T> and tsfo_matrix<T> imple-
mentations. We have successfully leveraged the complexity of the BLAS and
LAPACK routines and more implemented by Intel MKL 13 by using these
two template class abstractions. These two classes are however not meant
to be generally reusable but rather evolved from a course project to the
larger design it is now by fulfilling the different and specific use-cases of the
MNP algorithm and, particularly, the need for super-fast computation and
orthogonal updates. This we can see in some of the peculiar member function
signatures which far from being general, help very specific use-cases like, e.g.,
the computation of the Log Determinant EO.

At the beginning of this work we evaluated the possibility to reuse an ex-
isting matrix framework that offered similar functionality to what we needed.
The top choice at that time was the Open Source Eigen project 14. The points
that held us back from doing so are the following. Eigen is greatly optimized
for evaluating complex expressions, and for this purpose they employ Ex-
pression Templates [2] 15, and the MNP does not have a strong use-case for
complex expressions where the matrix and vector (vector in the sense of Mat-
lab matrix and vector operations) evaluations would benefit from fusing into
a single loop, how is statically done using Expression Templates, and this is
one of the strongest areas of Eigen. In fact, to be able to statically optimize
large expressions using templates they need to natively implement LAPACK
operations like, e.g., dgemm rather than delegate such functions directly to the
most optimized bleeding-edge performance Intel MKL implementation, here
16 we can see how the Eigen implementation is somewhat upper-bounded by
Intel MKL for Level-2 or Level-3 BLAS operations that do not involve ex-
pressions, e.g., MVM or MMM; note that these benchmarks are for problems
of small size and executed in a Intel(R)Core(TM)2 Quad CPU Q9400 @ 2.66
GHz ( x86_64 ) processor architecture that does not support AVX. At the
point of starting this implementation and for the very same reason stated
before Eigen did not support AVX extensions. Further, Eigen did not offer
functionality for orthogonal updates either. Therefore we decided to strive

13http://software.intel.com/en-us/intel-mkl/
14http://eigen.tuxfamily.org/index.php?title=Main_Page
15http://eigen.tuxfamily.org/dox/TopicLazyEvaluation.html
16http://eigen.tuxfamily.org/index.php?title=Benchmark

http://software.intel.com/en-us/intel-mkl/
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/dox/TopicLazyEvaluation.html
http://eigen.tuxfamily.org/index.php?title=Benchmark
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to our own vector and matrix implementations very tailored to the needs of
the MNP algorithm and to take advantage of the fastest available LAPACK
and BLAS routine implementations and more offered by Intel MKL.

The vector and matrix classes have as main attribute a contiguous 1-
D memory location which they actually do not allocate or de-allocate as we
will discuss later. These memory pointers are, however, declared in a compiler
portable way to hint the compiler for AVX or SSE vectorization. We have im-
plemented a generic means to declare aligned and restricted pointers as shown
in listing 4.7. When we declare efficiently-aligned array or pointer types, the
code that the compiler generates for these pointer arithmetic operations will
often be more efficient than for other types 17 [21]. It is of course important
that the way in which the memory is allocated complies to this declaration
and we will see later how memory allocation is done framework-wide. An ex-
ample of how we declare aligned pointer types, is in our tsfo_vector<T> class
as shown in code listing 4.8. Note in this example that the T parameter is
chained from the actual declaration of the vector type, e.g., tsfo_vector<int
> in this case if we execute a canonical loop with potential for vectorization
the compiler will, e.g., in an AVX platform execute 8 simultaneous integer
operations per cycle using the appropriate vector registers [40].

Listing 4.7: Generic memory pointer declaration to hint vectorization

1 #if defined( __INTEL_COMPILER )
2 template <typename T>
3 struct sfo_type {
4 typedef T* restrict __attribute__ ((align(32))) aptr32;
5 };
6

7 #elif defined( __GNUG__ )
8 template <typename T>
9 struct sfo_type {

10 typedef T* __restrict__ __attribute__ ((aligned(32)))
aptr32;

11 };
12 #endif

Listing 4.8: Example using the generic restrict aligned declaration

1 /**

17http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Type-Attributes.
html

http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Type-Attributes.html
http://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Type-Attributes.html
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2 * Concrete definition of vector that delegates most
3 * operations to the Intel MKL LAPACK and BLAS routines.
4 * Furthermore, it guarantees zero memory allocation
5 * during execution outside static initialization.
6 */
7 template<typename T>
8 class tsfo_vector {
9 private:

10 typename sfo_type<T>::aptr32 m_data;
11 int m_size;

In addition, the vector and matrix types offer a convenient and efficient
abstraction and wrapper around many highly optimized Intel MKL functions,
e.g., in listing 4.9 we see how the vector wraps fast vector Intel MKL func-
tions. We have also provided convenience operators to increase readability of
the code but only as long as the defined operators don’t involve expensive
memory copying that occurs when returning stack allocated objects by value
[36], e.g., returning a matrix by value as it is the case of the MMM operation.
The case of the MMM implementation is very interesting as we can see in
code listing 4.10, here we would use it as A.multiply(B, C); intending to do
C = A*B + C which is less readable than simply using the operator*() but
we did so to avoid the otherwise poor performance that would result from
returning C by value and therefore incurring into an expensive operator=()
invocation. In C++11, this issue can be solved by either defining a move
constructor or relying that the compiler would support and automatically do
Named Return Value Optimization (NRVO). However, during development
the top priority was not to have the most beautiful readable code but rather
the most beautiful readable code that would not compromise performance
in any way and by any chance and, e.g., the NRVO feature depends on the
specific compiler. However, ensuring the move semantics would be a nice
improvement that would increase the overall quality of the code.

Listing 4.9: Vector implementation of ln, min, max

1 /**
2 * Computes the natural logarithm of elements of this vector
3 */
4 template<>
5 inline tsfo_vector<double>& tsfo_vector<double>::ln() {
6 if (size() > 0) {
7 vdLn(m_size, data(), data());
8 }
9

10 return *this;
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11 }
12

13 /**
14 * Computes the max of a vector
15 */
16 template<>
17 inline double tsfo_vector<double>::max() const {
18 double result = 0.0;
19 if (m_size > 0) {
20 const lapack_int n = m_size;
21 const lapack_int incx = 1;
22 int i = cblas_idamax(n, data(), incx);
23 result = elem(i);
24 }
25 return result;
26 }
27

28 /**
29 * Computes the min of a vector
30 */
31 template<>
32 inline double tsfo_vector<double>::min() const {
33 double result = 0.0;
34 if (m_size > 0) {
35 const lapack_int n = m_size;
36 const lapack_int incx = 1;
37 int i = cblas_idamin(n, data(), incx);
38 result = elem(i);
39 }
40 return result;
41 }

Listing 4.10: Matrix MMM multiply member function avoid operator*

1 /**
2 * Performs a matrix-matrix multiplication of
3 * (C += *this + B) and returns the result in the
4 * output reference C.
5 */
6 template<>
7 inline void tsfo_matrix<double>::multiply(const tsfo_matrix<

double>& B, tsfo_matrix<double>& C) const {
8 const tsfo_matrix<T>& A = *this;
9 assert(A.cols() == B.rows());

10

11 const int m = A.rows();
12 const int n = B.cols();
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13 const int k = A.cols();
14

15 C.rows(m);
16 C.cols(n);
17 if (m == 0 || n == 0 || k == 0)
18 return;
19

20 // C = alpha*A*B + beta*C
21 const CBLAS_ORDER b_order = blas_order();
22 const double alpha = 1.0;
23 const double beta = 0.0;
24 const MKL_INT lda = A.leading_dim();
25 const MKL_INT ldb = k;
26 const MKL_INT ldc = A.leading_dim();
27

28 cblas_dgemm(b_order, CblasNoTrans, CblasNoTrans, m, n, k,
alpha, A.data(),

29 lda, B.data(), ldb, beta, C.data(), ldc);
30 }

Another interesting point is how we solve and support the MNP algo-
rithm use-cases and try to optimize the code with respect to the criteria
of performance, readability, coding efficiency and abstraction. The example
code in listing 4.11 corresponds to the Step 2 of the Wolfe algorithm 1 where
we add a new point to the set and need to update the R matrix as shown in
Eq. 2.20 Step 2 of points 2.4.1. The line 1 of this listing shows that we access
a column element of matrix R via the tsfo_matrix<T>::operator[], but
when we acquire this reference, it doesn’t involve a copy out of the matrix
Rk column, instead the R memory address pointing to column k is wrapped
within a tsfo_vector<double> (zero memory allocation remember!) and re-
turned by reference [36]. In fact, tsfo_matrix<T> maintains a std::dequeue
of tsfo_vector<double> that wrap column pointers for direct matrix column
vector access and to cover use-cases like this one. Once the vector reference is
acquired, it is used to forward-solve the system RTrk = rk . We have carefully
designed the matrix and vector abstractions to allow a column vector of a
matrix to be passed directly as right hand-side vector to solve a system with
that same matrix without having to create a copy of the column vector. The
solution x must however, be copied to a separate column vector not to risk
a race condition on the data while the underlying cblas_dtrsm invocation is
done, e.g., with enabled parallelism and this is done in the solve_forward
implementation. However, we see that the result copy x is assigned to Rk
directly and the Rk column is updated with the result x with the implicit
invocation of tsfo_vector<T>::operator=.
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Listing 4.11: ]HPSFO MNP implementation and matrix operator[]

1

2 // update R for the new S[k] by solving R^Tx=R[k] and
3 // saving it into R[k] i.e. R[k] = x
4 tsfo_vector<double>& rk = r[k];
5 rk = R.solve_forward(rk);

Our main matrix template implementation tsfo_matrix<T> transpar-
ently implements QR updates. The updates are applied if the method tsfo_matrix
<T>::qr_factorization() is invoked at least once and then any of the
matrix mutation methods tsfo_matrix<T>::append_column, tsfo_matrix
<T>::delete_column or tsfo_matrix<T>::append_row are invoked. All the
complexity of maintaining not only the main QR of the matrix but also the
QR updates is hidden away from the client code, in this case the Krause
algorithm implementation. The discussion on the structures and in general,
the pseudo state machine required to consistently maintain multiple QR up-
dates simultaneously is discussed in detail in section 4.3.4. We separated the
fast triangularization for triangular matrices after deleting one column in the
class implementation tsfo_matrix_tria<T> this way we have a convenient
separation between the two competing methods for doing orthogonal trans-
formations.

As we can see in previous listings we have used a template implementa-
tion not to lose generality, even though all Intel MKL routines require double
precision type. When we define and use template types the implementations
have to be available to all client code at compile time (rather than link time),
which is accomplished by either including the .h file or .cc .cpp files , we
strongly favored code inlining to minimize function calling overhead and at
the same time create more opportunities for the compiler to optimize and
rather “compromise” on the relatively larger sizes of the resulting binary li-
brary and applications.

4.3.2 Memory management
During the development as part of the course project, one of the improve-
ments was to avoid memory allocation during algorithm execution by pre-
allocating all the needed memory only once [36] and during static initializa-
tion. Note that Fujishige MNP implementation allocates all the needed mem-
ory within the algorithm implementation which is fine, but all this memory
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has to be allocated and de-allocated each time the Fujishige MNP kernel is
invoked whereas in our solution the allocation is done only once during the
whole execution of the library once is loaded, and allows reusing the same
memory buffers across multiple executions of the HPSFO MNP algorithm.
Our initial implementation of this idea resulted in a buffer pool that had key-
labeled memory locations explicitly referred to by the algorithm at many code
points. This solution gave us a major speed up but obviously didn’t scale well
with respect to supporting new algorithms or reusing the pre-allocated pool
buffers in other areas, e.g., EO function evaluation. Therefore we created a
reusable generic class type tbufferpool<T> that features pre-allocating and
deallocating all the needed memory for computation i.e., double-precision
matrix and vector memory and do so in an aligned way. Note that by using
this simple memory pooling strategy other areas of the code don’t become
convoluted with the details of aligned memory allocation. Further, by in-
stantiating the buffer pool to live in the global static scope, its destructor
call is guaranteed by the static deinitialization [46] and so we don’t need to
worry about catching possible exceptions at all code end points and dealing
with the resulting higher code complexity. Furthermore, matrix and vector
instances are available without requiring any explicit static initialization to
be invoked 18. The declaration of class tbufferpool<T> is depicted in list-
ing 4.12. It offers allocating a pool of memory optionally aligned in different
ways, for example we align the vectors using AVX 32-byte address align-
ment and SSE 16-byte address alignment, further we align the memory used
by our matrices to be memory address page aligned and minimize this way
as much as possible chances of translation lookaside buffers (TLB) misses
[9] [40] [7]. However, note that the memory addresses for vectors wrapping
address pointers corresponding to matrix columns is in general not aligned,
unless the number of rows is multiple of the alignment size.

Listing 4.12: Buffer pool class

1 enum talignment {
2 PAGE_ALIGNED, SSE_ALIGNED, AVX_ALIGNED, NO_ALIGNMENT
3 };
4

5 template<class T>
6 class tbufferpool {
7 private:
8 const long m_initial;
9 const long m_size;

18Except the case in which the instantiation of the matrix or vector becomes part of
an static initializer, but we do not have or support this use-case, in general the order in
which static initialization initializes global variables is undefined.
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10 const talignment m_alignment;
11 vector<T*> m_queue;
12 vector<T*> m_all;
13

14 public:
15 // constructor
16 tbufferpool(long initial, long size, talignment alignment =

NO_ALIGNMENT);
17

18 // get next buffer element from the pool
19 T* next();
20

21 // release next element from the pool
22 void release(T* buffer);
23

24 void ensure_size(long size);
25

26 // destructor
27 virtual ~tbufferpool();
28 };
29

30 // constructor
31 template <typename T>
32 inline tbufferpool<T>::tbufferpool(long initial, long size,

talignment alignment)
33 : m_initial(initial), m_size(size), m_alignment(alignment) {
34 assert(initial > 0);
35 assert(size > 0);
36

37 switch (m_alignment) {
38 case PAGE_ALIGNED: {
39 for (long i = 0; i < m_initial; ++i) {
40 T* buffer = NULL;
41 posix_memalign((void**) &buffer, sysconf(_SC_PAGESIZE)

, m_size*sizeof(T));
42 m_queue.push_back(buffer);
43 m_all.push_back(buffer);
44 }
45 break;
46 }
47 case SSE_ALIGNED: {
48 for (long i = 0; i < m_initial; ++i) {
49 T* buffer = NULL;
50 posix_memalign((void**) &buffer, 16, m_size*sizeof(T))

;
51 m_queue.push_back(buffer);
52 m_all.push_back(buffer);
53 }
54 break;
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55 }
56 case AVX_ALIGNED: {
57 for (long i = 0; i < m_initial; ++i) {
58 T* buffer = NULL;
59 posix_memalign((void**) &buffer, 32, m_size*sizeof(T))

;
60 m_queue.push_back(buffer);
61 m_all.push_back(buffer);
62 }
63 break;
64 }
65 case NO_ALIGNMENT:
66 default: {
67 for (long i = 0; i < m_initial; ++i) {
68 T* buffer = new T[m_size]();
69 m_queue.push_back(buffer);
70 m_all.push_back(buffer);
71 }
72 }
73 }
74 }

The code listing 4.13 demonstrates the use of the tbufferpool<T> class
implementation. Here we see that the matrix does not explicitly allocate
memory but instead wraps the pre-allocated memory address providing the
abstraction to efficiently invoke Intel MKL primitives. Note as well that we
used constants to initialize our buffer pool, but this would be inflexible since
we would need to change some of these values namely the MATRIX_BUFFER_SIZE
, and re-compile in order to run specific problem sizes. The solution to this
drawback is to configure it via a pre-defined environment variable which can
be read during static initialization with an appropriate function and API to
let the submodularity library know what the maximum problem sizes are. We
do so using the environment variable we defined as SFO_MAX_M_N which can
be set using, e.g., Bourne Shell export SFO_MAX_M_N=5000. From the design
standpoint this solution is a lot simpler because the different entities that
require buffer pooling (matrix, matrix triangular, vector) do not need to be
managed by a super-entity that knows and controls the memory allocation
parameters across all of them. Each tbufferpool client can pull the max-
imum size directly from the environment and statically pre-allocate all the
needed memory. We recognize this is not a perfect solution and different ap-
proaches may be employed as part of future work to make it more flexible and
without compromising in performance. Note that any solution using a super-
entity that pre-allocates all the memory in a static way, would need not only



56 Implementation

to compromise on the good Object Oriented (OO) design namely encapsula-
tion [46] because this super-entity would need to become a friend of matrix
and vector and have access to its private members but also it would require
more complex code across all library end points, e.g., benchmark, mincut
and in general all tests, e.g., test_matrix. Client applications of our library
would also require to invoke this static initialization super-allocation and de-
allocation explicitly. In conclusion, any alternative to the current design will
compromise not only on the good OO design qualities but also significantly
increase code complexity.

Listing 4.13: Matrix example using the bufferpool class

1 // static up-front allocation
2 template<typename T>
3 tbufferpool<T> tsfo_matrix<T>::s_bufferpool =
4 tbufferpool<T>(MATRIX_POOL_INITIAL, MATRIX_BUFFER_SIZE,

PAGE_ALIGNED);
5

6 /**
7 * reusable init method i.e., for all constructors
8 */
9 template<typename T>

10 inline void tsfo_matrix<T>::init(tbufferpool<T>& bufferpool) {
11 // ...
12

13 m_data = bufferpool.next();
14

15 // ...
16 }
17

18 /**
19 * reusable release method i.e., subclasses
20 */
21 template<typename T>
22 inline void tsfo_matrix<T>::release(tbufferpool<T>& bufferpool

) {
23 // ...
24

25 bufferpool.release(m_data);
26 m_data = NULL;
27

28 // ...
29 }
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4.3.3 Fast matrix mutations
As discussed in the previous section 4.2 when we forked our HPSFO MNP
kernel version the main and only drawback was the point column deletion
from matrices S and R while we represent our matrices as contiguous 1-D
memory because this involves physical and expensive memory movements
using memmove 19 at every iteration of the algorithm. This use-case occurs as
part of Step 4 of the Wolfe algorithm 1 when it finds it made a “mistake”
that needs to be corrected by deleting an existing point from the corral S .
We employed two different strategies to reduce the cost of these memory
movements and the pay-off was very substantial in terms of performance.

The first improvements was to introduce a Gaping strategy. If we physi-
cally delete one column j from a matrix represented as contiguous 1-D mem-
ory in column-major ordering, our matrix gets “split” in two blocks: the first
block from the beginning of the matrix until j and the second block from
j + rows until the end of the matrix cols× rows. The physical deletion in this
case would correspond to moving the second block from j + rows to j and
this we can do with memmove. However, if the column we delete is the first
one, i.e., j = 0 we are effectively moving the entire matrix forward! and this
leads to very poor performance. What we do then is to keep track not only
of the memory address corresponding to the beginning of the matrix but also
a gap shift that specifies how far ahead from the beginning address is the
actual content of the matrix. Therefore, using this strategy and in the case of
deleting j = 0 we don’t need to move memory but only increase the memory
address pointer. Similarly, deleting columns at the beginning of the matrix
is cheap, since we only move small portions of memory. The final solution
simply checks what half of the matrix the deleted column is in, if it is in
the first half then the gaping is used and we move the first block forward,
otherwise we move the second matrix block backward. For this strategy to
work, we require 2× the amount of memory we would normally do to store
a matrix, since the content might shift forward and the end of the matrix
could exceed the maximum size boundary. The idea is that if the gap shift
overtakes the maximum matrix memory size we simply move the matrix con-
tent backward and tidy it back to have zero gap. The code listing 4.14 shows
how we compute the address of a given element ai,j using the gaping strat-
egy. One downside of Gaping worth mentioning is that the matrix memory
address with a non-zero gap is no longer memory page-size aligned and, for
that matter, no longer AVX or SSE aligned.

19http://www.cplusplus.com/reference/clibrary/cstring/memmove/

http://www.cplusplus.com/reference/clibrary/cstring/memmove/
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Listing 4.14: Matrix element access in column-major with gapping

1 /**
2 * Use the m_left_gap to keep track of how much the contents
3 * of the matrix are shifted to the right due to physical
4 * column deletions
5 */
6 template<typename T>
7 inline T& tsfo_matrix<T>::elem(int i, int j) {
8 return m_data[m_left_gap + j*m_rows + i];
9 }

10

11 template<typename T>
12 inline T& tsfo_matrix<T>::operator()(int i, int j) {
13 return elem(i, j);
14 }

The second major improvement originates from the observation that when
we physically delete a column from R i.e., an upper triangular matrix and in
the case that the column j to be deleted is in the first half of the matrix so
that the gaping strategy explained before applies; we do not require to move
the first full matrix block forward, instead we only require moving the upper
triangular elements and ignore the strictly lower triangular elements (which
are, by the way, ignored in Intel MKL functions like, e.g., cblas_dtrsm). The
major pay-off of copying over only the upper triangular memory originates
from the fact that our matrices are always overdetermined, i.e., m >> n
so we have effectively reduced the amount of memory to move by a factor
of m. The code listing 4.15 demonstrates the final implementation. At line
30 of this listing we can see how we efficiently copy the memory for the
upper triangular case, in a spatial-locality friendly way, i.e., innermost loop
to iterate over the rows of each column.

Listing 4.15: Matrix optimized delete column with gap and triangular

1 /**
2 * Removes the column block specified by begin and end, very
3 * efficiently moves data in column-major representation.
4 */
5 template<typename T>
6 inline void tsfo_matrix<T>::delete_column_with_gap(int begin,

int end, bool triangular) {
7 assert(begin >= 0 && end >= 0);
8 assert(begin <= end);
9 assert(end < m_cols);

10

11 double ratio = (double) begin / (double) m_cols;
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12 assert(ratio <= 1.0);
13

14 int block = end - begin + 1;
15 assert(m_cols >= block);
16

17 // deleted column is in second half of the matrix
18 if (ratio > 0.5) {
19 // move second block backwards
20 if (end < (m_cols - 1)) {
21 T* from = data() + m_rows * begin;
22 memmove(from, from + m_rows * block, (m_cols - end) *

m_rows * sizeof(T));
23 }
24

25 } else {
26 // deleted column is in first half of the matrix
27 int gap = block * m_rows;
28 if (begin > 0) {
29 // move first block forwards
30 s_bufferpool.ensure_size(gap + m_left_gap + (m_cols -

block)*m_rows);
31 if (triangular) {
32 for (int j = begin; j >= block; --j) {
33 int jj = j - block;
34 #pragma simd
35 for (int i = 0; i < j; i++) {
36 elem(i, j) = elem(i, jj);
37 }
38 }
39 } else {
40 memmove(data() + gap, data(), begin * m_rows * sizeof(

T));
41 }
42 }
43 m_left_gap += gap;
44

45 // tidy back
46 if (m_left_gap >= MAX_M_N*m_rows) {
47 memcpy(data() - m_left_gap, data(), (m_cols - block)*

m_rows * sizeof(T));
48 m_left_gap = 0;
49 }
50 }
51 m_cols -= block;
52 }



60 Implementation

4.3.4 Fast orthogonal updates
As described in sections 4.1 and 4.2 we employ fast orthogonal transforma-
tions to either update (after matrix mutations) an existing QR factorization
in the case of Krause MNP kernel implementation or re-triangularize the R
of the implicit QR decomposition maintained in the Fujishige MNP kernel
implementation.

In order to repair a broken upper triangular matrix we employ the two
types of orthogonal transformations: Householder reflectors and Givens rota-
tors [17] [48] and use them extensively to introduce zeros below the diagonal
of a matrix effectively recovering an upper triangular matrix R which we
need to efficiently solve a system. Orthogonal transformations are unitary
i.e., they preserve the 2-norm and inner product after the transformation
and algorithms built using them are norm-wise backward stable and there-
fore offer favorable error propagation properties [48]. Householder reflectors
offer an excellent solution to zero out elements at “larger scale”, e.g., all el-
ements of a vector except the first, whereas Givens rotations is the method
of choice to zero out elements more selectively.

In general, we have a column vector x as shown in example 4.9 and we
would like to apply an orthogonal transformation Hi that will zero out all
elements starting at element i + 1.

H T
i



x1
x2
...
xi
...

xm


=



x̂1
...
x̂i
0
...
0


(4.9)

We can find such Hi using Householder reflectors. Let v ∈ Rn be nonzero,
an n-by-n matrix P of the form P = I − 2vvT

vT v is called a Householder reflector
[17]. Taking v as shown in Eq. 4.10 we get a H1 that will zero out or annihilate
the elements i ≥ 2 in example 4.9.

v =


∥x∥2
0
...
0

−


x1
x2
...

xm

 (4.10)

We can also find such Hi using Givens rotations, defined as G in Eq. 4.11
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where c = x1√
x2
1+x2

2

and s = x2√
x2
1+x2

2

[17] and there are multiple ways to com-
pute s and c, this way is the simplest but it doesn’t guard against overflow.
In general we can use Givens rotations to annihilate non-zero elements at any
point in the matrix using the rank-2 changes of the Identity as depicted in
Eq. 4.12. Finally, we can again build a H1 that will annihilate the elements
i ≥ 2 in example 4.9 by rotating pairwise all elements from the bottom as
depicted in Eq. 4.13 note that we annihilate from the bottom-up.

G =

(
c s
−s c

)
→ GT

(
x1
x2

)
=

(
x̂1
0

)
(4.11)

Gi,j =



1 · · · 0 · · · 0 · · · 0
... . . . ... ... ...
0 · · · c · · · s · · · 0
... ... . . . ... ...
0 · · · −s · · · c · · · 0
... ... ... . . . ...
0 · · · 0 · · · 0 · · · 1


(4.12)

G(1, 2)TG(2, 3)T . . .G(m − 1,m)T︸ ︷︷ ︸
H1


x1
x2
...

xm

 =


x̂1
0
...
0

 (4.13)

The Eq. 4.14 shows the effect of deleting an arbitrary column j from
the matrix. The matrix becomes in upper Hessenberg form and needs to be
triangularized by annihilating the two elements marked in light gray. The Eq.
4.15 shows the effect of appending one column at the end. In this case we
need to annihilate the elements starting from k = n + 1 assuming we always
have a determined or overdermined system. And last, in Eq. 4.16 we see the
effect of appending one row (in our case a single row of ones as shown in
equations 2.24 and 2.25) to an upper triangular matrix, it becomes the so-
called ’triangular-pentagonal’ matrix [32]. We will cover in the next sections
4.3.4 and 4.3.4 how these cases are handled in our implementation.


× × × × ×
× × × ×
× × ×

0 × ×
×

 delete column k=2−−−−−−−−−−→


× × × ×
0 × × ×
0 0 × ×
0 0 × ×
0 0 0 ×

 (4.14)
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
× × × ×
× × ×
× ×

0 ×


append column−−−−−−−−→


× × × × ×
× × × ×
× × ×

0 × ×
×
×

 (4.15)


× × × ×
× × ×
× ×

0 ×

 append row of ones−−−−−−−−−−→


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
1 1 1 1

 (4.16)

QR factorization updates

In Krause’s MNP kernel implementation, the QR decompositions for S and Ŝ
are initially computed, and this cost accounts for the number of flops shown
in Eq. 4.17 [17] and the actual cost of invoking Intel MKL LAPACKE_dgeqrf
is shown in Eq. 4.18 [1].

Cflop = 2n2(m − n
3
) (4.17)

Cflop =

(
2mn2 − 2n3

3
+ 2mn +

17n
3

)
(4.18)

Subsequently if the point column vector s0 is deleted, the full subspace
translated Ŝ and therefore its Q̂R̂ will need to be recomputed. The QR de-
composition is obtained by invoking the LAPACK routine provided in Intel
MKL LAPACKE_dgeqrf and in LAPACK version 3.4.0 and later we have also
the more interesting possibilities LAPACKE_dgeqrt and LAPACKE_dgeqrt that
use Kressner’s WY representation which offers better performance [32]. We
didn’t use the newer QR routines because Intel MKL released a version at
the level of LAPACK 3.4.0 only after we had already implemented all the QR
updates and the WY representation differs from the compact LAPACK QR
representation we employed. The Eq. 4.19 provides an example of the com-
pact QR LAPACK representation. It stores the R elements and Householder
reflectors within a single QR matrix instead of two, it takes advantage from
the fact that R is upper triangular and that the Householder reflectors can
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be conveniently compacted as elementary reflectors into the strictly lower
triangular of QR. The trick however, is to leave the diagonal free for the
ri,i elements by normalizing the elementary reflectors dividing by the first
elementary coefficient of the reflector and storing it in a separate column
vector named τ . Each Householder reflector can then be recovered by doing
P = I − τ 2vvT

vT v , but in practice we hardly need to this, since building all
reflectors and accumulating them is expensive i.e., many MMM instead we
use optimized LAPACK routines that will apply those compact elementary
reflectors to a vector or a matrix, e.g., dormqr20, dlarf21, dlarfx22. It was
important to understand well the compact QR representation in the context
of the QR updates since we needed in several cases to pack updates this way
, e.g., appending a new column.

QR =


r0,0 r0,1 r0,2 r0,3

v1,0/v0,0 r1,1 r1,2 r1,3
v2,0/v0,0 v1,1/v0,1 r2,2 r2,3
v3,0/v0,0 v2,1/v0,1 v1,2/v0,2 r3,3

 , τ =


v0,0
v0,1
v0,2
v0,3

 (4.19)

At this point we are ready to discuss the different QR update algorithms
tailored to the Krause MNP algorithm, e.g., taking into account the updates
“sandwiching” and not in a more general setting. For a more comprehensive
and general discussion on QR updates refer to the work of Sven Hammarling,
Craig Lucas [19] and Daniel Kressner 23 [32].

The delete column QR update scenario shown in Eq. 4.14 is implemented
by the the algorithm depicted in 5. Note that in this case we can also delete
a block of p columns and not just one, e.g., Eq. 4.20. The cost in flops for
this algorithm is depicted in Eq. 4.21 [19] where p is the number of columns
deleted and k the index of the lowest column deleted, we can see that the
column-block deletion update is lead by the cost of applying the old Q to
the new matrix Sm×(n−p). The actual implementation of this algorithm was
adapted and integrated from the existing Fortran implementation delcols.
f and delcolsq.f 24 corresponding to that publication [19]. Note that the
cost to apply r elementary reflectors in factored form Q = Q1Q2 . . .Qr to a
matrix C ∈ Rm×k is 2kr(2m− r) flops [17]. However, the actual cost in flops

20http://www.netlib.org/lapack/double/dormqr.f
21http://www.netlib.org/lapack/double/dlarf.f
22http://www.netlib.org/lapack/double/dlarfx.f
23http://www.math.ethz.ch/~kressner/qrupdate.php
24http://www.maths.manchester.ac.uk/~clucas/updating/

http://www.netlib.org/lapack/double/dormqr.f
http://www.netlib.org/lapack/double/dlarf.f
http://www.netlib.org/lapack/double/dlarfx.f
http://www.math.ethz.ch/~kressner/qrupdate.php
http://www.maths.manchester.ac.uk/~clucas/updating/
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corresponding to LAPACKE_dormqr is (4mnk − 2nk2 + 3nk) [1].


× × × × ×
× × × ×
× × ×

0 × ×
×

 delete column k=1,block=2−−−−−−−−−−−−−−−→


× × ×
0 × ×
0 × ×
0 0 ×
0 0 ×

 (4.20)

Cflop = (4mn(n − p)− 2n(n − p)2 + 3n(n − p))︸ ︷︷ ︸
LAPACKE_dormqr

+4np(n
2
−p−k)+p2(

p
2
+k)+pk2

(4.21)

Algorithm 5 Delete column QR update
Input: Begin index k, p number of deleted column(s) and existing QR de-

composition of S (or Ŝ).
Output: Updated QRdelete_column

1: Delete existing QRdelete_column if present
2: Copy QRdelete_column ← S using cblas_dcopy
3: Apply existing QT to S in QRdelete_column using LAPACKE_dormqr.

{Generate and apply (n − k) householder reflectors}
4: for j ← k, n do
5: Generate Householder reflector Hj to annihilate non-zero elements be-

low diagonal of column j using dlarfg
6: Apply the newly created Hj to trailing columns j +1 . . . n using dlarfx
7: end for

The append column QR update scenario shown in Eq. 4.15 is implemented
by the algorithm depicted in 6. The cost in flops for this algorithm is depicted
in equations 4.22 and 4.23 corresponding to the append column update when
there are no previous deletions and when there are previous column deletions
respectively.

Cflop = (4mn + n)︸ ︷︷ ︸
LAPACKE_dormqr

+2(m − n + 1)︸ ︷︷ ︸
dlarfp

(4.22)
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Cflop = (4mn + n)︸ ︷︷ ︸
LAPACKE_dormqr

+2× 2(m − n + 1)︸ ︷︷ ︸
2×dlarfp

+(n − k)×
n∑

j=k

4p(n − j) + (n − j)︸ ︷︷ ︸
(n−k)×dlarfx

(4.23)

= (4mn + n) + 4(m − n + 1) + (n − k)(4p + 1)
n∑

j=k

(n − j) (4.24)

= (4mn + n) + 4(m − n + 1) +
(n − k)(4p + 1)(k − n − 1)(k − n)

2
(4.25)

In these equations we have that k is the minimum column index among
all existing delete column updates and p is the total number of columns pre-
viously deleted. Furthermore, we assume that the cost in flops for dlarfx is
(4mn + n) [1].

It is readily apparent that the cost greatly depends on the specific work-
load i.e., if there are no column deletions or “mistakes”, then Krause imple-
mentation will perform very well. On the other hand, if we get accumulated
deletion updates, it greatly increases the cost also for subsequent append
column updates. Therefore, the gain in reduced flops compared to recom-
puting the QR decomposition from scratch each time will greatly depend on
the specific workload application and how much the MNP algorithm makes
“mistakes” or points that need to be deleted from the beginning of the ma-
trix. One can see that the cost of this overhead together with lower Level-2
BLAS will not always win compared to a Level-3 BLAS QR decomposition.

The append row QR update scenario shown in Eq. 4.16 is implemented
by the algorithm depicted in 7 that builds on top of Kressner’s dbqru.f
routine which offers a more efficient tailored implementation of compact

WY representation than a similar one built solely on top of LAPACK 3.2.0
routines [32]. The cost in flops for this algorithm is shown in Eq. 4.26 [32].
However, note that during this work, a new Intel MKL version was released
including the newest LAPACK 3.4.0 that offers a new more efficient set of QR
factorization and update routines using Kressner’s WY representation that
solve the ’triangular-pentagonal’ QR update problem DGEQRT 25 and DTPQRT

25http://www.netlib.org/lapack/explore-html/d2/dcf/dgeqrt_8f.
html

http://www.netlib.org/lapack/explore-html/d2/dcf/dgeqrt_8f.html
http://www.netlib.org/lapack/explore-html/d2/dcf/dgeqrt_8f.html
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Algorithm 6 Append column QR update
Input: New column Sn+1 and existing QR decomposition of S (or Ŝ).
Output: Updated QR (and optionally QRdelete_column) with new column

Sn+1

1: Rn+1 ← sn+1 using cblas_dcopy.
2: Apply QT to new column Rn+1 ← QTsn+1 using LAPACKE_dormqr.
3: Generate Householder reflector to annihilate non zero elements below

(m − n) to Rn+1 using dlarfp
4: if There is a valid QRdelete_column update then
5: Copy new column Rdelete_column

n+1 ← Rn+1 using cblas_dcopy.
{Apply QT

delete_column to the new updated column}
6: Set r ← Rdelete_column

n+1

7: for j ← begin, n do
8: Apply individual reflector Hj encoded in QRdelete_column to column

vector beginning at rj using dlarfx.
9: end for

10: Generate Householder reflector to annihilate non zero elements below
(m − n) to Rdelete_column

n+1 using dlarfp
11: end if

26. Moving to this newer implementations was no longer possible due to time
constraints, note that moving to these LAPACK 3.4 27 routines involves a
larger change in the actual QR representation to be WY and affects the other
two algorithms 6 and 5.

Cflop = n2
��7
1

p + 4m��7
1

p (4.26)

In conclusion, for the Krause MNP kernel we extensively used the House-
holder reflectors solution. On the one hand because it would annihilate many
non-zero elements at once, e.g., append column case with m >> n. On the
other hand, it is easier and more maintainable to employ one single approach
to store, copy and apply the transformations, i.e., the compact LAPACK QR
format discussed before rather than mixing QR formats with that of an ex-
plicitly accumulated set of Givens rotations Q = GT

1 GT
2 . . .GT

mI .

26http://www.netlib.org/lapack/explore-html/d1/d55/dtpqrt_8f.
html

27http://www.netlib.org/lapack/lapack-3.4.0.html

http://www.netlib.org/lapack/explore-html/d1/d55/dtpqrt_8f.html
http://www.netlib.org/lapack/explore-html/d1/d55/dtpqrt_8f.html
http://www.netlib.org/lapack/lapack-3.4.0.html
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Algorithm 7 Append row QR update
Input: New row, existing QR (or QRdelete_column) decomposition of S (or Ŝ).
Output: Updated QRappend_row corresponding to the new row.

1: if There is a valid QRdelete_column update then
2: Copy QRappend_row ← QRdelete_column plus an extra row using

cblas_dcopy.
3: else
4: Copy QRappend_row ← QR plus an extra row using cblas_dcopy.
5: end if
6: Invoke dbqru.f 28 that generates and applies a sequence of n Householder

reflectors and stores the result into QRappend_row in compact format.

Triangular matrix updates

As part of Step 4 of the Fujishige-Wolfe MNP algorithm 1 and when a “mis-
take” is made, we need to delete one point column from S , e.g. Eq. 4.14. This
update requires re-triangularizing the R matrix after one column deletion see
Step 4 in 2.4.1. In this case Wolfe algorithm employed Givens rotations to
annihilate the non-zero elements below the diagonal. After the fast triangu-
larization update was implemented we were very happy we could reuse the
exact same fast Givens delete column update procedure for the implementa-
tion of the Log Determinant application with incremental evaluation where
we down-date the existing Cholesky decomposition of set Ac = {V \ A}.
In fact, due to the behavior of the MNP algorithm in the Log Determinant
application where most of the time is spent updating and down-dating the
Cholesky decomposition of the incremental EO is where our handcrafted Reg-
ister blocking with loop-unrolling and parallel Givens implementation excels.

As discussed before, and in order to re-triangularize a matrix after a delete
column update using Givens rotations we rotate two matrix elements, e.g. Eq.
4.11, then we need to propagate the transformation to the trailing columns.
The self-contained example code in listing 4.16 demonstrates the concept
and the listing 4.17 does the same but using Intel MKL and the LAPACK
primitives cblas_drotg 29 that generates the sin and cosine that rotates the
elements a and b; and the routine dlasr 30 that applies the rotation to a
vector. In fact, there are multiple ways to generate the sins and cosines and
we conveniently use them in the appropriate scenario:

29http://www.netlib.org/blas/drotg.f
30http://www.netlib.org/lapack/patch-3.0/src/dlasr.f

http://www.netlib.org/blas/drotg.f
http://www.netlib.org/lapack/patch-3.0/src/dlasr.f
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1. drotg fastest way to generate a Givens rotation

2. dlartg31 generate Givens rotation with higher precision

3. dlartgp32 generate Givens rotation with guaranteed positiveness of the
upper element or in other words, guarantees positiveness of the diagonal
elements of a matrix.

Listing 4.16: Basic Givens triangularization example

1 // create a simple matrix in column major order
2 const int ROWS = 3;
3 const int COLS = 3;
4 double matrix[ROWS][COLS];
5

6 // set 1's in the upper triangular and 2's in the band
7 // below the diagonal, now we want to annihilate the 2's
8 // using Givens rotations
9 matrix[0][0] = 1; matrix[1][0] = 1; matrix[2][0] = 1;

10 matrix[0][1] = 2; matrix[1][1] = 1; matrix[2][1] = 1;
11 matrix[0][2] = 0; matrix[1][2] = 2; matrix[2][2] = 1;
12

13 for (int j = 0; j < COLS; j++) {
14 double a = matrix[j][j];
15 double b = matrix[j][j + 1];
16

17 // generate rotation P that annihilates element (j + 1, j)
18 double h = sqrt(a*a + b*b);
19 double c = a / h;
20 double s = b / h;
21

22 // apply the rotation to trailing columns
23 for (int jj = j; jj < COLS; ++jj) {
24 a = matrix[jj][j];
25 b = matrix[jj][j + 1];
26

27 double x = c*a + s*b;
28 double y = c*b - s*a;
29

30 matrix[jj][j] = x;
31 matrix[jj][j + 1] = y;
32 }
33 }

31http://www.netlib.org/lapack/explore-html/dd/d24/dlartg_8f.
html

32http://www.netlib.org/lapack/explore-html/df/dc2/dlartgp_8f.
html

http://www.netlib.org/lapack/explore-html/dd/d24/dlartg_8f.html
http://www.netlib.org/lapack/explore-html/dd/d24/dlartg_8f.html
http://www.netlib.org/lapack/explore-html/df/dc2/dlartgp_8f.html
http://www.netlib.org/lapack/explore-html/df/dc2/dlartgp_8f.html
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Listing 4.17: Basic Givens triangularization example using Intel MKL

1 // create a simple matrix in column major order
2 const int ROWS = 3;
3 const int COLS = 3;
4 double matrix[ROWS][COLS];
5

6 // set 1's in the upper triangular and 2's in the band
7 // below the diagonal, now we want to annihilate the 2's
8 // using Givens rotations
9 matrix[0][0] = 1; matrix[1][0] = 1; matrix[2][0] = 1;

10 matrix[0][1] = 2; matrix[1][1] = 1; matrix[2][1] = 1;
11 matrix[0][2] = 0; matrix[1][2] = 2; matrix[2][2] = 1;
12

13 double cc[COLS];
14 double ss[COLS];
15

16 for (int j = 0; j < COLS; j++) {
17 double a = matrix[j][j];
18 double b = matrix[j][j + 1];
19 double c = 0.0;
20 double s = 0.0;
21 double r = 0.0;
22

23 // generate rotation P that annihilates element (j + 1, j)
24 cblas_drotg(&a, &b, &c, &s);
25

26 // replicate the sins and cosines
27 for (int jj = j; jj < COLS; ++jj) {
28 cc[jj] = c;
29 ss[jj] = s;
30 }
31

32 // apply the rotation to trailing columns
33 char side = 'L'; // Left, A := P*A
34 char pivot = 'V'; // Variable pivot
35 char direct = 'F'; // Forward
36 lapack_int m = ROWS - j;
37 lapack_int n = COLS - j;
38 lapack_int lda = ROWS;
39 dlasr(&side, &pivot, &direct, &m, &n, &cc[j], &ss[j], ((

double*) matrix) + j*ROWS + j, &lda);
40 }

Taking a closer look at the two example listings 4.16 and 4.17 we should
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note that the matrix is in column-major order and to apply the update to the
trailing columns we iterate over the columns at stride of size m, this we see
in lines 23 and 39 of the listings 4.16 and 4.17 respectively. In other words,
the memory access pattern has very poor spatial locality and reuse [9] [7]
since the memory accesses hop in stride-m elements each time, and unless
the problem sizes are small enough to fit in cache entirely, the cache will
be evicted at every step due to capacity (or conflict) misses33 [7] having a
cache miss rate of one, i.e., one miss for every memory access. As soon as we
get matrices of higher dimension this becomes a real problem and we will be
spending most of the time wasting cycles due to cache misses and the cost of
transferring memory to cache. A possibility to overcome this issue would be
to simply switch to row-major ordering but this is not really an option for the
MNP algorithm 1 since we require point column elements to be contiguous
in memory so we can efficiently remove and append them whether physically
or via pointers. We nevertheless, tried using row-major ordering and overall
the performance was much poorer.

The big question then became, can we do better than this? Seeking an
answer to this question we implemented three different approaches using
the same main idea of Register blocking with loop-unrolling, there has been
interesting research in this area [37] [47]. In a nutshell, we fix a block of size
NB and place it logically on top of the diagonal of the matrix, example in
Fig. 4.27 shows how this stencil is done for two blocking steps with NB = 4,
here we load all the non-zero elements of the red block into registers, we then
generate and apply Givens rotations on registers for that red diagonal block
and save it back to the matrix. Note that there is an anti-diagonal dependency
for the elements of this red block as we can see in Fig. 4.4 where the arrow
i ← j means that element j requires element i to be computed first. By
solving the diagonal red block first that has anti-diagonal dependencies, we
can do the more interesting sweeps to the green row block. This way we have
effectively reused multiple generated rotations sins and cosines in registers
for the diagonal red block and we can reuse and apply them at once to the
trailing columns row green block in a anti-diagonal dependency-free fashion,
and thus significantly increase performance. Fig. 4.4 shows the concept as
“diagonal conquer”, we try to conquer the diagonal block elements first, then
apply the rotations deeper along the elements of each trailing column in
a spatial locality friendly way. In Eq. 4.27 we highlight every two vertical
elements used for generating the rotations, the gray one is the element we
want to annihilate by rotating it with the red element above. Now we have

33Assuming a set-associative cache, e.g., 8-way set associative.
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NB rotations we can apply at once to every column of the row block depicted
in green. Here is the important detail and trade-off; the larger the block
size NB, the deeper down the rows of each trailing column we can apply
the Givens rotations at every step and the more we can reuse by filling
the cache lines since this is precisely the contiguous memory direction of
column-major ordering, but at the same time the more we run into the issue
of register-spilling [37] while computing the red diagonal block. Note that we
need

(
NB(NB+3)

2
+ 2NB

)
registers for every choice of NB, we were able to gain

speed up until NB = 8. We implemented three variations of this main idea
that are shown in points 4.3.4. In conclusion, by introducing blocking, we
have improved the spatial locality and reduced the cache miss rate to, e.g.,
1
8
. However, using Givens rotations we access NB + 1 column elements only

once and then move on, so there is not really a lot of reuse.



× × × × × × × × × × × × ×
0 × × × × × × × × × × × ×
0 0 ..× × × × ..× × × × × × ×
0 0 × × × × × × × × × × ×
0 0 0 × × × × × × × × × ×
0 0 0 0 × × × × × × × × ×
0 0 0 0 0 × .. ..× × × × ..× × ×..
0 0 0 0 0 0 × × × × × × ×
0 0 0 0 0 0 0 × × × × × ×
0 0 0 0 0 0 0 0 × × × × ×
0 0 0 0 0 0 0 0 0 × .. × × ×..
0 0 0 0 0 0 0 0 0 0 × × ×
0 0 0 0 0 0 0 0 0 0 0 × ×
0 0 0 0 0 0 0 0 0 0 0 0 ×
0 0 0 0 0 0 0 0 0 0 0 0 0



.... (4.27)

Choice #1 Register blocking and OpenMP Load the diagonal block
into registers, generate and apply Givens rotations to the whole di-
agonal red block in registers and update the matrix. Now iterate over
the trailing columns and update NB + 1 rows of each column at once.
Furthermore, applying the Givens rotation to the trailing columns can
be done in parallel and we used OpenMP for this, gaining up to 2×
parallel speed up for some applications, e.g., the Log Determinant ap-
plication.
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Fig. 4.4: Conquer diagonal block to apply deeper to trailing columns NB = 4

Choice #2 Register blocking and accumulated rotations level 3 BLAS
Load the diagonal block into registers and conquer it, i.e, generate and
apply Givens rotations to the diagonal red block in registers and update
the matrix. Now accumulate all the individual rotations in registers into
an orthogonal matrix i.e. GT

NB
. . .GT

2 GT
1 I = H . Create a patch of the

row green block and apply H to the row block, saving the result of the
computation directly on the main matrix via MMM i.e., Intel MKL
cblas_dgemm 34. The MMM API forces us to do C = α · AB + β · C
which means that C is our matrix, A is our H and B has to be a patch
containing the block row, i.e., we can’t have B to be our main matrix.
Therefore this requires a large memory operation, i.e., extracting the
row block patch. A discussion has been started proposing to have an
additional simpler Intel MKL dgemm API to support in-place MMM
A = α · AB. 35

Choice #3 Register blocking and transposition auto-vectorization
Load the diagonal block into registers, generate and apply Givens rota-
tions to the whole diagonal red block in registers and update the matrix.
Now create a patch out of the matrix transposing the row block. Ap-
ply the rotations to this block using auto-vectorization and save the
block back to the matrix. This requires two large memory operations
i.e. extracting and saving back the row block patch.

34http://www.netlib.org/blas/dgemm.f
35http://software.intel.com/en-us/forums/topic/277788

http://www.netlib.org/blas/dgemm.f
http://software.intel.com/en-us/forums/topic/277788
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The code listing 4.18 shows the Registers blocking with loop unrolling
for solving the red blocks depicted in Eq. 4.27, this code is common to the 3
Choices discussed in points 4.3.4. We applied this same stencil up to NB = 16
but we were able to gain speed up only until NB = 8. There are a few interest-
ing points to this listing. First, note that the specific rotation generator is not
hard-coded into the function. The GENROT is a template parameter that allows
subclassing or generating a new method/class and most importantly inlining
each specific rotation primitive, as we have previously discussed there are
several choices for generating rotations and we need the flexibility of switch-
ing between them without the performance hit of doing a function call each
time. Second, we do not do peeling of the blocking, instead we let the algo-
rithm overflow by at most NB−1, the reason is simply to avoid the increased
code complexity of handling the peeling border cases and its bad locality
(verified using Intel VTune 36). Note that here we do not incur in illegal
memory accesses, we have during initialization generously allocated enough
memory to fit this overflow according to the maximum problem sizes we are
going to run. However, we do incur into uninitialized value accesses, which
leads to two possible problems: signalling NaN and accessing denormalized
floating point values [10]. Doing computation on denormalized floating point
values can incur in a performance hit [10], therefore as shown in line 24 of
listing 4.18 we initialize the exact overflowed accesses to zero. However, in
our experiments we could verify that without initializing this memory we
would have the highest performance. Finally, note that the blocking offers
improved locality, good temporal locality since the diagonal block is loaded
once and the registers reused multiple times; and also good spatial locality
because the NB accessed columns in this block will be conveniently loaded
into the cache-lines.

Listing 4.18: Register blocking Givens with loop-unrolling

1 template<typename T> template<typename GENROT>
2 inline void tsfo_matrix_tria<T>::triangularize4(int begin, int

block, GENROT genrot) {
3 tsfo_matrix_tria<double>& r = *this;
4

5 const int m = r.rows();
6 const int n = r.cols();
7

8 double x00, x01, x02, x03, x10, x11, x12, x13, x21, x22, x23,
x32, x33, x43;

9 double xx0, xx1, xx2, xx3, xx4;

36http://software.intel.com/en-us/intel-vtune-amplifier-xe

http://software.intel.com/en-us/intel-vtune-amplifier-xe
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10 double u00, u01, u02, u03, u10, u11, u12, u13, u21, u22, u23,
u32, u33, u43;

11 double uu0, uu1, uu2, uu3, uu4;
12 double c0, c1, c2, c3, s0, s1, s2, s3, d;
13 int im1, ip1, ip2, ip3;
14 int jp1, jp2, jp3;
15

16 int nb = 4;
17 assert(nb == TRIANGULARIZE_NB);
18 int n_iter = (n - begin)
19 ? (n - begin) / nb
20 : (n - begin) / nb + 1;
21 int nb_end = begin + n_iter*nb;
22

23 // avoid uninitialized value accesses by zeroing out
24 memset(r.data() + m*n, 0, m*(nb_end - n + 1)*sizeof(T));
25

26 int i = begin - block + 2;
27 int j = begin;
28

29 // blocked step
30 for (int k = 0; k < n_iter; ++k, i += nb, j += nb) {
31 im1 = i - 1;
32 ip1 = i + 1;
33 ip2 = i + 2;
34 ip3 = i + 3;
35

36 jp1 = j + 1;
37 jp2 = j + 2;
38 jp3 = j + 3;
39

40 // make the stencil as easy as possible
41 x00=r(im1,j); x01=r(im1,jp1); x02=r(im1,jp2); x03=r(im1,jp3);
42 x10=r(i, j); x11=r(i, jp1); x12=r(i, jp2); x13=r(i, jp3);
43 x21=r(ip1,jp1); x22=r(ip1,jp2); x23=r(ip1,jp3);
44 x32=r(ip2,jp2); x33=r(ip2,jp3);
45 x43=r(ip3,jp3);
46

47 // make nb steps ahead using registers only
48 genrot(&x00, &x10, &c0, &s0, &d);
49 u00 = c0*x00 + s0*x10;
50 u10 = c0*x10 - s0*x00;
51

52 u01 = c0*x01 + s0*x11;
53 u11 = c0*x11 - s0*x01;
54

55 u02 = c0*x02 + s0*x12;
56 u12 = c0*x12 - s0*x02;
57
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58 u03 = c0*x03 + s0*x13;
59 u13 = c0*x13 - s0*x03;
60

61 x11 = u11;
62 x12 = u12;
63 x13 = u13;
64 genrot(&x11, &x21, &c1, &s1, &d);
65 u11 = c1*x11 + s1*x21;
66 u21 = c1*x21 - s1*x11;
67

68 u12 = c1*x12 + s1*x22;
69 u22 = c1*x22 - s1*x12;
70

71 u13 = c1*x13 + s1*x23;
72 u23 = c1*x23 - s1*x13;
73

74 x22 = u22;
75 x23 = u23;
76 genrot(&x22, &x32, &c2, &s2, &d);
77 u22 = c2*x22 + s2*x32;
78 u32 = c2*x32 - s2*x22;
79

80 u23 = c2*x23 + s2*x33;
81 u33 = c2*x33 - s2*x23;
82

83 x33 = u33;
84 genrot(&x33, &x43, &c3, &s3, &d);
85 u33 = c3*x33 + s3*x43;
86 u43 = c3*x43 - s3*x33;
87

88 // save back to matrix
89 r(im1,j)=u00; r(im1,jp1)=u01; r(im1,jp2)=u02; r(im1,jp3)=u03;
90 r(i, j)=u10; r(i, jp1)=u11; r(i ,jp2)=u12; r(i ,jp3)=u13;
91 r(ip1,jp1)=u21; r(ip1,jp2)=u22; r(ip1,jp3)=u23;
92 r(ip2,jp2)=u32; r(ip2,jp3)=u33;
93 r(ip3,jp3)=u43;
94 // ...

The Choice #1 Register blocking and OpenMP in points 4.3.4 after the
Register blocking (red) step where the diagonal dependencies are solved, sim-
ply iterates along the trailing columns corresponding to the green row block,
applying the sines and cosines already in registers to the NB + 1 row ele-
ments of every column. The sample code corresponding to NB = 4 is shown
in listing 4.19. First, note that we load NB + 1 rows for each column into
registers, apply the rotations and save it back. Second, note that the loop
iterates hopping in a stride-m pattern and therefore it can not take advan-
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tage of auto-vectorization or for that matter intrinsics, we need contiguous
memory access for that. Note as well that touching the top element r(i,
jj); might or might not lead to a cold cache miss [40] due to the structure
of the stencil, as we can see in Eq. 4.27 the top row of the current sweep
overlaps with the row of the previous sweep. However, for all the block sizes
(we tried up to NB = 16), the row elements of the column jj will definitely
fit into cache and depending on the matrix size we will get at most one cold
cache miss at every iteration. Finally, note that the OpenMP configuration
is set to runtime to be read from the environment variable OMP_SCHEDULE.
We tried and gained some parallel speed up using OMP_SCHEDULE=guided,32
and several other chunk_size values but the highest gain so far was setting
it to OMP_SCHEDULE=static,70. As we will discuss later, there is lot of poten-
tial to improve on performance by doing experimental design and analysis
on the so many factors and levels that we have. It is not hard to see that
the performance factors OMP_SCHEDULE and block size NB interact with re-
spect to the Response Time of this hotspot triangularize operation. This is
the fastest solution of all, we tried different scenarios to check whether the
level-3 BLAS variant would outperform this version it didn’t even for very
large problem sizes. The extra memory copying and extra flops to accumulate
and apply the rotations to the row-block simply defeats the gains of using
level-3 BLAS. The performance results of transposing and auto-vectorizing
were also disappointing

Listing 4.19: Choice 1 applying Givens rotations directly and OpenMP

1 #pragma omp parallel for schedule(runtime) \
2 private(xx0, xx1, xx2, xx3, xx4, xx5, xx6, xx7, xx8, uu0,

uu1, uu2, uu3, uu4, uu5, uu6, uu7, uu8)
3 for (int jj = (j + nb); jj < n; jj++) {
4 xx0 = r(i - 1, jj);
5 xx1 = r(i , jj);
6 xx2 = r(i + 1, jj);
7 xx3 = r(i + 2, jj);
8 xx4 = r(i + 3, jj);
9 xx5 = r(i + 4, jj);

10 xx6 = r(i + 5, jj);
11 xx7 = r(i + 6, jj);
12 xx8 = r(i + 7, jj);
13

14 uu0 = c0*xx0 + s0*xx1;
15 uu1 = c0*xx1 - s0*xx0;
16

17 xx1 = uu1;
18 uu1 = c1*xx1 + s1*xx2;
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19 uu2 = c1*xx2 - s1*xx1;
20

21 xx2 = uu2;
22 uu2 = c2*xx2 + s2*xx3;
23 uu3 = c2*xx3 - s2*xx2;
24

25 xx3 = uu3;
26 uu3 = c3*xx3 + s3*xx4;
27 uu4 = c3*xx4 - s3*xx3;
28

29 xx4 = uu4;
30 uu4 = c4*xx4 + s4*xx5;
31 uu5 = c4*xx5 - s4*xx4;
32

33 xx5 = uu5;
34 uu5 = c5*xx5 + s5*xx6;
35 uu6 = c5*xx6 - s5*xx5;
36

37 xx6 = uu6;
38 uu6 = c6*xx6 + s6*xx7;
39 uu7 = c6*xx7 - s6*xx6;
40

41 xx7 = uu7;
42 uu7 = c7*xx7 + s7*xx8;
43 uu8 = c7*xx8 - s7*xx7;
44

45 r(i - 1, jj) = uu0;
46 r(i , jj) = uu1;
47 r(i + 1, jj) = uu2;
48 r(i + 2, jj) = uu3;
49 r(i + 3, jj) = uu4;
50 r(i + 4, jj) = uu5;
51 r(i + 5, jj) = uu6;
52 r(i + 6, jj) = uu7;
53 r(i + 7, jj) = uu8;
54 }

The Choice #2 Register blocking and accumulated rotations level 3 BLAS
in points 4.3.4 uses the sines and cosines already precomputed in registers to
build an accumulated orthogonal Givens rotation matrix GT

nb . . .GT
1 I = H .

We created a Matlab code generator based on the Symbolic Math Toolbox
37 that generates the structure of H directly on registers without doing the
expensive accumulation via NB MMM as shown in code listing 4.20, it is
of course not so interesting for the NB = 4 case but more to bigger sizes ,

37http://www.mathworks.com/products/symbolic/

http://www.mathworks.com/products/symbolic/
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e.g., the NB = 16 which would be very hard to do manually bug-free. The
result implementation we can see in code listing 4.21. We build gc from the
generated Matlab code that contains the result of accumulating the NB ro-
tations. We then create a patch corresponding to the row block using Intel
MKL mkl_domatcopy and finally we apply the accumulated Givens at once
to the matrix by multiplying it to the patch and placing the result directly
on the main matrix using Intel MKL cblas_dgemm. As previously discussed
this approach would offer better performance if we weren’t constrained by
the cblas_dgemm function signature to create the extra patch and do the
unnecessary extra matrix scalar multiply and matrix matrix sum.

Listing 4.20: Accumulated Givens code generator using Matlab

1 clear all;
2

3 % block size
4 nb = 4;
5

6 % defining 0 and 1 as symbols too
7 sym_0 = sym('0');
8 sym_1 = sym('1');
9

10 c0 = sym('c0');
11 c1 = sym('c1');
12 c2 = sym('c2');
13 c3 = sym('c3');
14

15 s0 = sym('s0');
16 s1 = sym('s1');
17 s2 = sym('s2');
18 s3 = sym('s3');
19

20 % create H orthogonal matrix using the sin and cos symbols
21 % filling in the first rotation
22 I=repmat(sym_0,(nb+1),(nb+1));
23 for i=1:(nb+1)
24 I(i,i)=sym_1;
25 end
26 H = I;
27 H(1:2,1:2) = [c0 s0; -s0 c0];
28

29 G = I;
30 G(2:3,2:3) = [c1 s1; -s1 c1];
31 H = G*H;
32

33 G = I;
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34 G(3:4,3:4) = [c2 s2; -s2 c2];
35 H = G*H;
36

37 G = I;
38 G(4:5,4:5) = [c3 s3; -s3 c3];
39 H = G*H;
40

41 % generate the C++ code
42 for i=1:(nb+1)
43 for j=1:(nb+1)
44 if H(i, j) ~= sym_0
45 fprintf('gc(%d, %d)=%s;\t', i - 1, j - 1, char(H(i

, j)));
46 end
47 end
48 fprintf('\n');
49 end

Listing 4.21: Choice 2 applying Givens rotations with level 3 BLAS

1 // pre-allocated once
2 static tsfo_matrix<double> gc(nb + 1, nb + 1, 0.0);
3 static tsfo_matrix<double> t1(nb + 1, 0);
4 static const double alpha = 1.0;
5 static const double beta = 0.0;
6

7 //...
8

9 if (n - j - nb > 0) {
10 // accumulated Givens orthogonal matrix (generated)
11 gc(0,0)=c0; gc(0,1)=s0;
12 gc(1,0)=-c1*s0; gc(1,1)=c0*c1;
13 gc(2,0)=c2*s0*s1; gc(2,1)=-c0*c2*s1;
14 gc(3,0)=-c3*s0*s1*s2; gc(3,1)=c0*c3*s1*s2;
15 gc(4,0)=s0*s1*s2*s3; gc(4,1)=-c0*s1*s2*s3;
16

17 gc(1,2)=s1;
18 gc(2,2)=c1*c2; gc(2,3)=s2;
19 gc(3,2)=-c1*c3*s2; gc(3,3)=c2*c3; gc(3,4)=s3;
20 gc(4,2)=c1*s2*s3; gc(4,3)=-c2*s3; gc(4,4)=c3;
21

22 // create temporary row block working patch
23 {
24 const int mm = nb + 1;
25 const int nn = n - j - nb;
26 t1.cols(nn);
27 const lapack_int lda = r.leading_dim();
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28 const lapack_int ldb = t1.leading_dim();
29 mkl_domatcopy(r.char_order(), 'N', mm, nn, alpha, &r(i - 1,

j + nb), lda, t1.data(), ldb);
30 }
31

32 // apply the accumulated Givens gc to the matrix row block
33 // (excluding the diagonal block) at once using dgemm
34 {
35 const int mm = gc.rows();
36 const int nn = t1.cols();
37 assert(nn > 0);
38 const int kk = gc.cols();
39 const CBLAS_ORDER b_order = r.blas_order();
40 const MKL_INT lda = gc.leading_dim();
41 const MKL_INT ldb = t1.leading_dim();
42 const MKL_INT ldc = r.leading_dim();
43 cblas_dgemm(b_order, CblasNoTrans, CblasNoTrans, mm, nn, kk,

alpha, gc.data(), lda, t1.data(), ldb, beta, &r(i - 1,
j + nb), ldc);

44 }

The Choice #3 Register blocking and auto-vectorization in points 4.3.4,
creates a transposed temporary patch of the row block and uses auto-vectorization
to apply the rotations to the trailing columns. The code in listing 4.22 shows
the details for this implementation. We can see the two large memory op-
erations it performs to copy/ transpose a temporary patch from and to the
main matrix. Further, there we instruct the Intel compiler to enforce vec-
torization of the loop at line 418 using #pragma simd. Pragma simd is de-
signed to minimize the amount of source code changes needed in order to
obtain vectorized code [21]. Compiling the code using the Intel compiler /
opt/intel/composer_xe_2013.0.060/bin/intel64/icpc in an Intel Core 2
Duo architecture, i.e., only SSE2 and no AVX; and using the options -vec
-report6 to generate verbose auto-vectorization output and -S instructs to
output the actual assembly, we get the following compiler output:
sfo_matrix_tria.h(419): SIMD LOOP WAS VECTORIZED.
referring to the loop starting at line 419 in our listing. Furthermore, inspect-
ing the assembly we can verify that the code does get auto-vectorized since
we see how the SSE2 registers are being loaded and used, this we can check in
listing 4.23 and cross check with the line numbers generated in the assembly
as comments to the right, we can see in lines 6 through 10 that the matrix
elements are loaded from the matrix into vector registers. We were happy
to see we manage to get the code auto-vectorized however, it didn’t perform
better than the other two previous alternatives.
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Listing 4.22: Choice 3 transposition with auto-vectorization

402 // ...
403 if (n - j - nb > 0) {
404 // create temporary working patch for the row block
405 int mm = nb + 1;
406 int nn = n - j - nb;
407 t1.rows(nn);
408 t1.cols(mm);
409 lapack_int lda = r .leading_dim();
410 lapack_int ldb = t1.leading_dim();
411 mkl_domatcopy(r.char_order(), 'T', mm, nn, alpha, &r(i - 1,

j + nb), lda, t1.data(), ldb);
412

413 // provide all necessary hints to the compiler:
414 // restrict and 32-byte memory address alignment
415 typename sfo_type<T>::aptr32 data = t1.data();
416

417 // auto-vectorize
418 #pragma simd
419 for (int jj = 0; jj < t1.rows(); jj++) {
420 xx0 = data[nn*0 + jj];
421 xx1 = data[nn*1 + jj];
422 xx2 = data[nn*2 + jj];
423 xx3 = data[nn*3 + jj];
424 xx4 = data[nn*4 + jj];
425

426 uu0 = c0*xx0 + s0*xx1;
427 uu1 = c0*xx1 - s0*xx0;
428

429 xx1 = uu1;
430 uu1 = c1*xx1 + s1*xx2;
431 uu2 = c1*xx2 - s1*xx1;
432

433 xx2 = uu2;
434 uu2 = c2*xx2 + s2*xx3;
435 uu3 = c2*xx3 - s2*xx2;
436

437 xx3 = uu3;
438 uu3 = c3*xx3 + s3*xx4;
439 uu4 = c3*xx4 - s3*xx3;
440

441 data[nn*0 + jj] = uu0;
442 data[nn*1 + jj] = uu1;
443 data[nn*2 + jj] = uu2;
444 data[nn*3 + jj] = uu3;
445 data[nn*4 + jj] = uu4;
446 }
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447

448 // copy temporary patch back to main matrix
449 lda = t1.leading_dim();
450 ldb = r .leading_dim();
451 mkl_domatcopy(r.char_order(), 'T', nn, mm, alpha, t1.data(),

lda, &r(i - 1, j + nb), ldb);
452 }

Listing 4.23: Generated assembly auto-vectorized code

1 L..LN52641:
2 jbe L_B221.22 # Prob 10% #419.29
3 L..LN52642:
4 L_B221.19: # Preds L_B221.18
5 movl %r13d, (%rsp) #
6 movsd %xmm4, 696(%rsp) #
7 movsd %xmm1, 688(%rsp) #
8 movsd %xmm6, 680(%rsp) #
9 movsd %xmm7, 672(%rsp) #

10 movsd %xmm8, 616(%rsp) #
11 movq 152(%rsp), %r11 #
12 movq 168(%rsp), %r13 #
13 movq 160(%rsp), %r14 #
14 L..LN52643:
15 L_B221.20: # Preds L_B221.19 L_B221.20
16 L..LN52644:
17 movsd (%r8,%r11,8), %xmm7 #420.11
18 L..LN52645:
19 movaps %xmm9, %xmm11 #427.14
20 L..LN52646:
21 movsd -32(%r14,%r11,8), %xmm8 #421.11
22 L..LN52647:
23 movaps %xmm10, %xmm13 #427.23
24 L..LN52648:
25 mulsd %xmm8, %xmm11 #427.14
26 L..LN52649:
27 mulsd %xmm7, %xmm13 #427.23
28 L..LN52650:
29 mulsd %xmm10, %xmm8 #426.23
30 L..LN52651:
31 mulsd %xmm9, %xmm7 #426.14
32 L..LN52652:
33 subsd %xmm13, %xmm11 #427.23
34 L..LN52653:
35 addsd %xmm7, %xmm8 #426.23
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4.4 Cache Analysis
In this section we will discuss the reuse or operational intensity correspond-
ing to our Register blocking with loop unrolling Givens update as part of our
final HPSFO implementation and corresponding to Step 4 of Wolfe algorithm
1. Our analysis assumes an architecture as described in Table 6.1 particularly
8-way set associative with a cache line consisting of 8 double values. Further-
more we make the best-case scenario assumption that whenever we touch a
memory location, the first element of that memory location will be mapped
to the first cache-line element, which is in general not true, but this give us a
best-case scenario for the analysis. Note that the worst-case scenario would
consist on the first memory location we touch ending in the last cache-line
element which would result in one extra cache miss in some cases.

We will first define the operational intensity as [40]:

I (n) = # operations
# off-chip accesses (LLC cache misses) (4.28)

The total number of operations in our case and assuming 6 operations
to generate a rotation for one pair and 6 operations to apply a rotation to a
pair, where n is the number of columns in the matrix and j the index of the
column deleted:

(⌈
n − j
NB

⌉
× 6

2
·
(

NB +
NB(NB + 3)

2

))
+
6

2
(NB +1)×


⌈

n−j
NB

⌉∑
k=j

(n − k − NB)


(4.29)

We will focus on how the reuse or operational intensity in Eq. 4.28 changes
by affecting the denominator with different values of NB. For a given NB block
size we can find the number of cache misses, which would be an upper bound
to the total LLC cache misses. In general, we analyze the case where the
matrix is not small enough to fit entirely in cache.

We first notice that to build our stencil previously presented in Eq. 4.27
and to apply NB blocked rotations, we need a logical block of dimension
(NB + 1) × NB. Therefore, the amount of memory accesses for a given NB
with the stencil defined in Eq. 4.27 corresponding to a single diagonal red
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block is:

NB∑
i=1

(i + 1) =
NB(NB + 3)

2
(4.30)

the total amount of memory accesses corresponding to the diagonal red
block is: ⌈

n − j
NB

⌉
×

(
NB(NB + 3)

2

)
(4.31)

and the total amount of memory accesses corresponding to the row green
block is:

(NB + 1)×


⌈

n−j
NB

⌉∑
k=j

(n − k − NB)

 (4.32)

evaluating the formula in Eq. 4.30, particularly for NB = 8 we have 44
accesses out of which 9 are cold or compulsory misses [7] because we have
9 rows for NB = 8. Therefore the miss rate corresponding to conquering
the diagonal red block is 9

44
≈ 0.2. Applying the rotations to the green

block in Eq. 4.27 we get a miss rate of 2
9
≈ 0.22 i.e. 2 cold misses out of 9

memory accesses. Therefore, the miss rate for NB = 8 results in the following
operational intensity:

I (n) = # operations
0.2×Diagonal block accesses + 0.22× Row block accesses (4.33)

Following the same reasoning we get for NB = 7 a very similar result even
though in this case we have one miss less in the diagonal block compared to
NB = 8, the miss rate for the diagonal block is 7

35
= 0.2 and for the row block

the miss rate is 1
8
= 0.125:

I (n) = # operations
0.2×Diagonal block accesses + 0.125× Row block accesses (4.34)

Here we see that the operational intensity would increase due to almost
halving the miss rate corresponding to the row block but it doesn’t improve
with respect to the diagonal block accesses. We tested both block sizes and
could not see the gain of using NB = 7 instead of NB = 8. Contrary to our
expectation and for bigger problem sizes we actually observed a performance
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degradation using NB = 7. Furthermore, we tested the block size NB = 16
and performance degraded considerably even though the miss rate for this
case is slightly better 7+2∗8+3∗1

152
≈ 0.17 and 3

17
= 0.17, we believe this effect

is caused by not having enough registers to hold all the needed temporary
data while conquering the diagonal block, i.e., register spilling [7].

Note that increasing the NB to sizes beyond 16 would simply make perfor-
mance worse due to what we believe is the result of register spilling. There-
fore, we would search the optimal NB < 16. Due to time constraints, we
didn’t investigate further but analyzing, e.g., NB = 13, we get a promising
miss rate of 7+2∗5

104
≈ 0.16 and 2

13
≈ 0.15 corresponding to the diagonal and

row blocks, respectively. It actually takes a lot of time to implement, test,
benchmark and compare the stencil of the handcrafted Register blocking with
loop unrolling because we don’t have a generator for this. Therefore, we leave
as part of future work to try out interesting block sizes like NB = 13.

4.5 Cost Analysis

In this section we will cover the cost analysis corresponding to the final
HPSFO kernel implementation. We have left out the cost analysis corre-
sponding to the high-performance Krause version for two main reasons: it is
too complex to analyze due to the update “sandwiching” and it is not our
best implementation performance-wise. The cost function we will present in
this section may be validated using Performance Counters (PC) which we do
in our benchmark application by enabling PAPI 38

38Performance counters may be off, appearing lower flops than the real value for even
more than one order of magnitude.
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Cflop(Step 1) = (n × Cflop(EO)︸ ︷︷ ︸
Edmonds Greedy

+ 2(n + 1)︸ ︷︷ ︸
initialization

+ 2n︸︷︷︸
x=Sw, Sn×1

(4.35)

Cflop(Step 2) = (n × Cflop(EO)︸ ︷︷ ︸
Edmonds Greedy

+ nk︸︷︷︸
RT rk+1=rk+1

+2nk + 2k + 8n

︸ ︷︷ ︸
S←S∪p̂, update R

(4.36)

Cflop(Step 3) = nk︸︷︷︸
RT ū=e

+ nk︸︷︷︸
Ru=ū

+2n︸ ︷︷ ︸
Find the MNP y in aff S

+ 2nk︸︷︷︸
x=Sw, Sn×k

(4.37)

Cflop(Step 4) = 4n +
(k − j)2

2︸ ︷︷ ︸
R delete column update j︸ ︷︷ ︸

Find and remove “mistake”, point z

(4.38)

The detailed cost in flops for the different steps of the Wolfe algorithm
1 corresponding to our HPSFO MNP kernel implementation is shown in
Equations 4.35 through 4.38. Here we have that n is the size of the ground
set V and k is the size of the corral and number of columns in S and R.
Further, we assume that the cost of the cblas_dtrsm operation is nm2 and
n2m for sides ’L’ and ’R’ respectively [1] which we use to compute the two
solve in Step 3 Eq. 4.37 but note that for the three solve steps we do, our right
hand size has always only one column and thus, our solve cost is nk [17]. As
pointed out previously, we can see that the cost in flops is dominated by Step
3 Eq. 4.37 and Step 4 Eq. 4.38. In the case of Step 4 the cost depends on what
index of the matrix most column deletions happen, and this strongly varies
from application to application as we will see in the Experimental results
chapter 6, e.g., the Minimum Cut consistently leads to many mistakes of
the MNP algorithm and the mistakes tend to be the most costly since it is
dominated by column deletions among the first column indexes of the matrix.
It is easy to see that if column deletions happen more often at the beginning
of the matrix then the cost of Step 4 becomes n2

2
whereas deletions at the

end of the matrix have constant cost, in fact, using our high-performance
foundation deleting a column at the end of our tsfo_matrix only takes to
decrease the int value of m_cols. The final cost will of course depend on
the specific EO for the specific problem at hand, e.g., the Log Determinant
application as we will see the in chapter 6 is dominated by the EO function
evaluation with cost O(n3) and O(n2) corresponding to the non-incremental
and incremental EO function evaluation, respectively.



Chapter 5

Software Framework

In the Implementation Chapter 4 we discussed the details relevant to opti-
mization and high-performance foundation. In this Chapter we will cover the
aspects related to project design, code quality and organization. We strived
to the highest quality in all areas not only performance and this is reflected
in our Object Oriented (OO) top-down design [35], level of test coverage
and ease of extensibility. This Chapter will also serve as a user manual and
reference for any future work and extensions to the code base of this work.

5.1 Software Design
The main design of our submodularity framework is depicted in Fig 5.1 1.
We have two main class hierarchies: the hierarchy corresponding to the SFO
algorithm kernels and the hierarchy of the EO function evaluation “contexts”.
The hierarchy of the SFO kernels only “knows” about the minimal abstract
interfaces for the EO function evaluation contexts abstract_sf_context and
abstract_sf_inc_context and this is referred to as the need-to-know pol-
icy: barring every module from accessing any information that is not strictly
required for its proper functioning [35] which allows one to extend both hi-
erarchies with minimal impact on each other. All the SFO kernel needs to
know and depend upon is that there are these two abstract types that offer
two levels of EO evaluation: non-incremental f(x) and incremental f_inc(
x) and the kernel implementations will try to use the one with the highest
capability in this case the incremental version.

1We would like to thank Change Vision, Inc. for providing us with a free version of
Astah Professional http://astah.net/ to create this class diagram.
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Fig. 5.1: Submodularity Framework Class diagram

As we can see on the left side of Fig. 5.1 the SFO kernel hierarchy is quite
simple. We have a top abstract type tabstract_sfo_kernel which would
split into two branches, one for minimization abstract_sfmin_kernel and
optionally a future possible one for submodular maximization
abstract_sfmax_kernel. We have of course only covered the branch of sub-
modular function minimization in this work but this design can be easy
extended to support submodular maximization kernels as well. The abstract
level offers a simple interface to invoke the kernel by simply invoking run,
initialization is similarly simple and requires the concrete context to op-
timize over, the ϵ convergence or error and the resolution, which defines
the size of the minimum minimizer and is a lower bound for nonzero val-
ues of |f (X) − f (Y )| for Y ⊂ X , its default value is 1.0 for integer val-
ued submodular functions [13, 24]. We currently integrated into this design
and support three SFM MNP implementations: optimized high-performance
Krause implementation, Fujishige-Wolfe base implementation 2 and our high-
performance HPSFO fastest MNP kernel implementation. We have thor-
oughly tested all our kernels, not only validating the correctness of results

2Adapted Fujishige base C implementation to the new OO design, added incremental
evaluation and duality gap convergence.
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but we also validate the number of major and minor iterations for the sole
purpose of performance regression testing so we don’t introduce code changes
that lead to an inflated number of iterations. We have also integrated the
Scaling kernel from Iwata [24] but we could not get it to pass the tests be-
yond the simple Iwata test function evaluation. Iwata’s kernel separate from
offering lower theoretical complexity bounds i.e., offering lower polynomial
complexity achieves so by exhaustively evaluating the EO function a number
of times proportional to the ground set size and in practice does not perform
well as it gets quickly overtaken by all other kernels even for small problem
sizes where this pre-evaluation shouldn’t actually take long. 3

On the right side of Fig. 5.1 we can see the EO function evaluation context
hierarchy. Since the EO function evaluation requires a lot more than just a
stateless function to evaluate, e.g., in the Minimum Graph Cut case we need
the underlying graph context or more generally each EO function context
needs to provide its own ground set V ; we have designed the EO function as
a First-class citizen [42, 35] and this has greatly simplified the design com-
pared to what we initially had implemented in C during the course project
(and same for other C SFM implementations) where the kernels needed to
know not only about the function pointers but also about what data to pass
to those functions, this design was inherited in our initial C implementation
from the Krause submodularity Matlab toolbox [30] and Bach framework
uses the same idea [4]. In the case of incremental function evaluation we
do really need a lot more context, e.g., efficient set representation to keep
track of what elements belong to A and its complement AC = {V \ A},
etc. We have two main abstractions to choose inheriting from when we
want to introduce a new application namely tabstract_sfo_context and
tabstract_sfo_inc_context for non-incremental and incremental evalua-
tion, respectively. Note that if we add support for incremental evaluation,
the basic function evaluation must also be available not only for testing pur-
poses 4 but also to evaluate the function as part of the MNP algorithm
when finding the norm used to test for convergence while using the duality
gap convergence criteria, and therefore we have a multiple inheritance which
is not really an issue of duplicated attribute members while using virtual
inheritance [46]. Therefore, we have the plain EO function contexts inherit-
ing from tabstract_sf_context and the incremental EO function contexts
inheriting from tabstract_sf_inc_context offering the incremental capa-

3We could observe this behavior even when the final results were not correct as it didn’t
pass our tests.

4We use the result of the plain function evaluation to test the incremental function
evaluation implementations
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bility and inheriting from its non-incremental concrete implementation so
it offers both function evaluations, e.g., tlogdet_sf_inc_context inherits
from tabstract_sf_inc_context as specialization inheritance [35] and in-
herits from tlogdet_sf_context as implementation inheritance [35] effec-
tively inheriting from tabstract_sf_context twice. Finally, note that the
EO function evaluation context does not “know” anything about the exis-
tence of the SFO kernel hierarchy and thus, abstract kernels and concrete
kernel implementations may evolve without affecting the EO function con-
texts in any way.

Finally, in the middle of the diagram we see the tsfo_kernel_factory
whose sole responsibility is to create SFO kernels and therefore, abstract

away the “plumbing” of SFO kernels and EO function evaluation contexts.
It offers a generic create function to that creates ready-to-run SFO kernel
instances, and it is generically parameterized with the actual EO function
context type being used otherwise we would need two create functions [46].
This class is implemented as a Singleton [14] offering a convenient way to
instantiate the working instance of the SFO kernel. Putting it all together
the sample code depicted in listing 5.1 shows how the different abstractions
fit together and are used to run our “two-moons” semi-supervised cluster-
ing SFM problem solver with incremental evaluation. Lets break down this
code listing into several easy steps, up to line 5 we initialize the submod-
ular function context including parameters specific to the two-moons prob-
lem. Line 6 uses tsfo_kernel_factory to create a ready-to-run SFM ker-
nel over the Log Determinant context. Line 10 runs the context and from
line 13 we obtain the results including the optimal subset and the optimal
function evaluation on that subset. Further we can also obtain some details
related to the execution of the SFM kernel. Note we don’t see anywhere
what concrete SFM kernel was used, unless a specific SFO kernel is set,
tsfo_kernel_factory will use the default one, our favorite and indisputably
fastest HPSFO thpsfo_min_norm_point_kernel implementation. We can set
or change the current preferred kernel to create by invoking the class prop-
erty writer tsfo_kernel_factory::INSTANCE.kernel(FUJISHIGE); in this
case we made the Fujishige MNP kernel the default one for SFM. If we
wanted to execute the exact same Log Determinant application but without
incremental function evaluation (perhaps for the sake of performance com-
parison), the only change required to listing 5.1 would be at line 5 replacing
tlogdet_sf_inc_context by tlogdet_sf_context, easy enough!

Listing 5.1: Log Determinant “two moons” semi-supervised clustering
SFM solver
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1 // LogDet requires specific resolution
2 double resolution = 0.0;
3

4 // setup the LogDet application using incremental evaluation
5 tlogdet_sf_inc_context sf_context(K, s, fv);
6 tabstract_sfo_kernel& sfo_kernel =
7 tsfo_kernel_factory::INSTANCE.create(sf_context,

tabstract_sfo_kernel::DEFAULT_EPSILON, resolution);
8

9 // run the kernel, takes long?
10 sfo_kernel.run();
11

12 // retrieve the solution or optimal subset
13 tsfo_vector<int> subset = sfo_kernel.subset();
14

15 // retrieve the optimal value corresponding to the
16 // optimal subset above
17 double f_eval = sfo_kernel.subopt();
18

19 // find out a bit more about the problem we just solved
20 long major_iter = sfo_kernel.major_iter();
21 long minor_iter = sfo_kernel.minor_iter();
22 uint_64 flops_count = sfo_kernel.flops_count();

How would the situation change if we wanted to solve instead say, e.g.,
the Minimum Graph Cut via SFM? the code listing 5.2 shows how to do
so, which looks strikingly similar to the listing 5.1, and it is no coincidence.
Note that the only change we intuitively need, is to change to the specific
EO context corresponding to the Minimum Cut problem, the rest remains
the same.

Listing 5.2: Minimum Graph Cut SFM solver

1 // setup the MinCut application, requires a graph
2 tmincut_sf_inc_context sf_context(graph);
3 tabstract_sfo_kernel& sfo_kernel = tsfo_kernel_factory::

INSTANCE.create(sf_context);
4

5 // run the kernel, takes long?
6 sfo_kernel.run();
7

8 // retrieve the solution or optimal subset
9 tsfo_vector<int> subset = sfo_kernel.subset();

10

11 // retrieve the optimal value corresponding to the
12 // optimal subset above
13 double f_eval = sfo_kernel.subopt();
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14

15 // find out a bit more about the problem we just solved
16 long major_iter = sfo_kernel.major_iter();
17 long minor_iter = sfo_kernel.minor_iter();
18 uint_64 flops_count = sfo_kernel.flops_count();

In the two listings discussed before 5.1 and 5.2 we notice that in order to
simply use or invoke our SFM framework, the submodularity library client
code would need to “know” about our class hierarchies: kernels and contexts;
factory, sfo vector and matrix, etc. The dependency chain gets longer and
longer to the extreme of Intel MKL, Boost etc. Therefore, we alternatively
offer a “zero dependency” API discussed also in section 5.3 with function
signatures that have minimal or no dependency other than basic C++ types,
e.g., Log Determinant in API or Façade [14] and this is shown in code listing
5.3 which matches exactly the same problem description and parameters as
in Bach Matlab submodular package [4]. We took the effort to implement
this plain C++ API for every application so that we could easily invoke
our SFM solvers from several client code end points and with minimal de-
pendency footprint. We reused these “zero dependency” API functions from
different areas: kernels test-suites, benchmarking and for uncomplicated inte-
gration with the Roofline Tool [44] to generate Roofline plots for the different
applications and kernels.

Listing 5.3: Zero dependency API Façade for the Log Determinant

1 //==========================================================
2 // Name : sfo_function_logdet.h
3 // Author : Giovanni Azua (azuagarg@student.ethz.ch)
4 // Since : 11.05.2012
5 // Description : Provides the main API entry point for
6 // invoking the Log Determinant application
7 //==========================================================
8

9 #ifndef SFO_FUNCTION_LOGDET_H_
10 #define SFO_FUNCTION_LOGDET_H_
11

12 #include <stdint.h>
13

14 #include "sfo_kernel_config.h"
15

16 /**
17 * Solve the two-moons semi-supervised Clustering problem
18 * with SFM using incremental evaluation.
19 *
20 * Input:
21 * @param n size of the problem input
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22 * @param K_data kernel matrix (1-D array of dimension n*n)
23 * @param s_data labelled points (1-D array of dimension n)
24 * @param fv Log determinant evaluation on the full set
25 *
26 * Output:
27 * @param optimal subset
28 * @param optimal_size size of the optimal subset
29 * @param major_iter number of iterations of the major loop
30 * @param minor_iter number of iterations of the minor loop
31 * @param flops_count total number of flops
32 */
33 void sfo_function_logdet(int n, double* K_data, double* s_data

, double fv, int*& optimal, long& optimal_size, long&
major_iter, long& minor_iter, uint64_t& flops_count);

34

35 /**
36 * Solve the two-moons semi-supervised Clustering problem
37 * with SFM using non-incremental evaluation.
38 *
39 * Input:
40 * @param n size of the problem input
41 * @param K_data kernel matrix (1-D array of dimension n*n)
42 * @param s_data labelled points (1-D array of dimension n)
43 * @param fv Log determinant evaluation on the full set
44 *
45 * Output:
46 * @param optimal subset
47 * @param optimal_size size of the optimal subset
48 * @param major_iter number of iterations of the major loop
49 * @param minor_iter number of iterations of the minor loop
50 * @param flops_count total number of flops
51 */
52 void sfo_function_logdet_noninc(int n, double* K_data, double*

s_data, double fv, int*& optimal, long& optimal_size,
long& major_iter, long& minor_iter, uint64_t& flops_count)
;

53

54 #endif /* SFO_FUNCTION_LOGDET_H_ */

5.2 Extensibility guide
This section offers a developers guide to extend the existing framework with
new SFM (or in general SFO) kernel implementations or with new applica-
tions. The Software design we have provided allows for prescriptive extensi-
bility which can be summarized in a small and easy to follow set of steps.



94 Software Framework

5.2.1 Adding SFO kernels
Step 1 Extend and implement abstract kernel

The first step to add a new kernel is to implement it by extending the abstract
kernel definition i.e., tabstract_sfmin_kernel, use existing implementations
as example how this is done, e.g., thpsfo_min_norm_point_kernel as shown
in listing 5.4 we see the typical declarations required and the implementation
must also be provided. The initialization of the kernel requires at least the
desired Epsilon convergence and Resolution and the initial permutation that
could possibly place the starting point closer to convergence. All these pa-
rameters have sensible defaults. Special attention must be given to handling
the Edmonds Greedy step 2 and 3 since we need at that point to check what
capabilities the given context has, and at the end of the algorithm where the
size of the minimum minimizer and optimal subset and evaluation must be
computed, the existing implementations may be used as example.

Listing 5.4: Adding a new SFO kernel HPSFO example

1 #include "abstract_sfmin_kernel.h"
2

3 class thpsfo_min_norm_point_kernel : public virtual
tabstract_sfmin_kernel {

4 public:
5 // constructor
6 thpsfo_min_norm_point_kernel(tabstract_sf_context&

sf_context, double epsilon = DEFAULT_EPSILON,
7 double resolution = DEFAULT_RESOLUTION, tsfo_vector<int>

initial_perm = tsfo_vector<int>());
8 thpsfo_min_norm_point_kernel(tabstract_sf_inc_context&

sf_inc_context, double epsilon = DEFAULT_EPSILON,
9 double resolution = DEFAULT_RESOLUTION, tsfo_vector<int>

initial_perm = tsfo_vector<int>());
10

11 // run the optimization
12 virtual void run();
13

14 // destructor
15 virtual ~thpsfo_min_norm_point_kernel();
16 };

Step 2 Add the kernel to factory

For the kernel to be accessible as depicted in our main design 5.1 we need to
add it to the tsfo_kernel_factory in file sfo_kernel_factory.h. Simply
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add a new constant so the new kernel can be uniquely identified, e.g., code
listing 5.5 where we add XXX kernel.

Listing 5.5: Add kernel constant identifier

1 enum tkernel {
2 KRAUSE, FUJISHIGE, HPSFO, IWATA, /* >>> */ XXX /* <<< */
3 };

Then extend the tsfo_kernel_factory implementation to support cre-
ating the new kernel, e.g., code listing 5.6.

Listing 5.6: Add kernel creation code to factory

1 template<class C>
2 inline tabstract_sfo_kernel& tsfo_kernel_factory::create(C&

context, double epsilon, double resolution, tsfo_vector<
int> initial_perm) {

3 // ...
4

5 switch (m_kernel) {
6 // ...
7 case XXX: {
8 m_sfo_kernel = new txxx_kernel(context, epsilon,
9 resolution, initial_perm);

10 break;
11 }
12 // ...
13 }
14

15 assert(m_sfo_kernel != NULL);
16 return *m_sfo_kernel;
17 }

Step 3 Add the kernel to kernel configuration

Now that we have populated the factory with the new kernel we need to
add the ability for the new kernel to be set as factory default from the “zero
dependency” API by adding the appropriate function and setter invocation
in file src/api/sfo_kernel_config.h and provide the implementation in
src/sfo_kernel_config.cc as shown in example code listing 5.7.

Listing 5.7: Add kernel configuration for new kernel

1

2 // ==================================
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3 // src/api/sfo_kernel_config.h
4 // ==================================
5

6 /**
7 * Enables XXX's kernel
8 */
9 void set_xxx_kernel();

10

11 // ==================================
12 // src/sfo_kernel_config.cc
13 // ==================================
14

15 /**
16 * Enables XXX kernel
17 */
18 void set_XXX_kernel() {
19 tsfo_kernel_factory::INSTANCE.kernel(XXX);
20 }

At this point, we have successfully integrated the new kernel XXX in our
design and framework and it can be set as default SFM kernel for bench-
marking or testing or for execution from client code and applications or to
be reused from Matlab.

Step 4 Make the new kernel available for benchmarking

The benchmarking is implemented in file src/test/benchmark.cc and there
we use Boost program_options library 5 for the flexibility of supporting and
handling many application arguments. If we want to add support for our
new demonstrative kernel XXX we simply first add it as possible choice in the
help corresponding to the input argument i.e., --kernel=xxx, and add the
appropriate invocation to the kernel configuration that we implemented in
the previous step. The sample code listing 5.8 demonstrates how to do this.

Listing 5.8: Add kernel configuration for new kernel

1 po::options_description desc("Sfo benchmark options");
2 desc.add_options()
3 // ...
4 ("kernel", po::value<string>(&kernel)->default_value("hpsfo")

, "Sfo kernel e.g. krause, fujishige, hpsfo, iwata, xxx")
5 // ...
6 ;

5http://www.boost.org/doc/libs/1_51_0/doc/html/program_
options.html

http://www.boost.org/doc/libs/1_51_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_51_0/doc/html/program_options.html
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7

8 po::variables_map vm;
9 po::store(po::parse_command_line(argc, argv, desc), vm);

10 po::notify(vm);
11

12 if (vm.count("help")) {
13 cout << desc << endl;
14 return EXIT_SUCCESS;
15

16 } else {
17 // ...
18 } else
19 if (kernel == "xxx") {
20 // set xxx kernel as current
21 set_xxx_kernel();
22

23 } else
24 // ...
25 }

Once this is done, that’s all it takes for the benchmarking framework to
invoke and produce performance results for our new example kernel imple-
mentation XXX.

Step 5 Add tests for all applications

To test a new kernel we simply add a corresponding new test-case to each
existing application test-suite. So far we have four application test suites i.e.,
three applications plus Iwata test function test-suite. The test-suite files are:
test/sfo_iwata_test.cc, test/sfo_mincut_test.cc, test/sfo_logdet_test
.cc and test/sfo_corpussel_test.cc. Lets take the example of test/sfo_iwata_test
.cc, code listing 5.9 demonstrate how this is done. Once the test-suite is
implemented for each application, it is fairly simple to add a new kernel for
testing. We use the googletest framework 6 as test infrastructure. The TEST
macro has two parameters, first one is the name of the test-suite, in this
case Iwata and the second corresponds to the name of the test-case in this
case XXX_Iwata 7. Note that when we create a new application test-suite,
we provide functions, e.g., in this case iwata_test to test all kernels. There
are some situations however where we will want to customize the test oracle
to have the specific tests check for a precise number of expected major and
minor iterations, we do this often to make sure that not only the results are

6http://code.google.com/p/googletest/
7http://code.google.com/p/googletest/wiki/Primer#Simple_Tests

http://code.google.com/p/googletest/
http://code.google.com/p/googletest/wiki/Primer#Simple_Tests
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correct but also have a stricter check, that there wasn’t a change leading
to diverging number of iterations and thus, result in a negative impact in
performance.

Listing 5.9: Adding new kernel to the Iwata test-suite

1

2 TEST(Iwata, XXX_Iwata)
3 {
4 // set the current kernel
5 set_xxx_kernel();
6

7 // invoke the Iwata test
8 iwata_test(iwata_min_test_data, iwata_min_num_tests);
9 }

5.2.2 Adding applications
Step 1 Extend and implement abstract function context

To add a new application the first need to implement the abstract EO func-
tion context definition tabstract_sf_context and most importantly provide
the implementation for the virtual function f(x). Here again the best way
to start would be to take a look at an existing EO function context im-
plementation, e.g., code listing 5.10 shows the full self-contained example
corresponding to the non-incremental Iwata function evaluation. We see at
line 14 of this listing the implementation of the constructor that is mainly
responsible to initialize the ground set, the ground set is declared in the
superclass. Then at line 22 we have the actual function Iwata evaluation
implementation.

Listing 5.10: Example EO function context implementation

1 class tiwata_sf_context : public tabstract_sf_context {
2 public:
3 // constructor
4 tiwata_sf_context(int n);
5

6 // function evaluation
7 virtual double f(const tsfo_vector<int>& x);
8

9 // virtual destructor
10 virtual ~tiwata_sf_context();
11 };
12

13 // constructor that initializes the ground set
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14 tiwata_sf_context::tiwata_sf_context(int n) :
tabstract_sf_context(n) {

15 // initialize the ground set
16 for (int i = 1; i <= m_n; i++) {
17 m_ground.append(i);
18 }
19 }
20

21 // function evaluation
22 double tiwata_sf_context::f(const tsfo_vector<int>& x) {
23 int size = x.size();
24 double sum = 0;
25

26 for (int i = 0; i < x.size(); i++) {
27 sum += 5 * (double) x[i];
28 sum -= 2 * m_n;
29 }
30

31 return size * (m_n - size) - sum;
32 }

Step 2 [Optionally] Add support for incremental evaluation

Once the non-incremental function evaluation is implemented and tested,
its results can be used as test oracle for testing the incremental evaluation
version. Once more, it makes sense to use an example to illustrate the idea,
e.g., code listing 5.11 shows the definition for the incremental evaluation
EO function context corresponding to the Corpus Selection problem. In this
listing we have overridden the most important member functions f_inc and
reset. The private members reveal what data it uses to compute the evalu-
ation incrementally, namely it uses m_vocabulary_set to keep track of the
vocabulary set of X i.e. the distinct set of words corresponding to the ut-
terances that have been chosen by invoking f_inc so far and additionally
uses m_weight_sum8 to keep track of the total weight sum of the utterances
which have not been passed so far and that belong to the set XC = {V \X},
this total weight sum is decreased by the edge weight of the utterance being
passed and is initialized or reset to

∑
u∈U wu namely the weights correspond-

ing to the edges between the source node and each utterance.

Listing 5.11: Example EO function incremental context implementation

8We compute the total sum once and save it in m_total_weight_sum and reset the
m_weight_sum value to the pre-computed total sum.
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1 class tcorpussel_sf_inc_context : public virtual
tabstract_sf_inc_context, public virtual
tcorpussel_sf_context {

2 private:
3 tbitset m_vocabulary_set;
4 double m_weight_sum;
5 double m_total_weight_sum;
6

7 public:
8 // constructor
9 tcorpussel_sf_inc_context(const thp_adjlist_bidir& graph,

double lambda = DEFAULT_LAMBDA);
10

11 virtual double f_inc(int x);
12

13 virtual void reset();
14

15 virtual ~tcorpussel_sf_inc_context();
16 };
17

18 // function evaluation
19 double tcorpussel_sf_inc_context::f_inc(int x) {
20 // make sure it is an utterance
21 assert(m_ground[0] <= x && x <= m_ground[m_ground.size() -

1]);
22

23 const sfo_type<int>::aptr32 out_startpos = m_graph.
out_startpos();

24 const sfo_type<int>::aptr32 out_end_nodes = m_graph.
out_end_nodes();

25 const sfo_type<int>::aptr32 in_startpos = m_graph.
in_startpos();

26 const sfo_type<double>::aptr32 in_weights = m_graph.
in_weights();

27

28 int num_vertices = m_graph.num_vertices();
29

30 // sum the weight of the utterances already in the set
31 int idx = in_startpos[x];
32 m_weight_sum -= (double) in_weights[idx];
33

34 // update the current vocabulary
35 int a_i = x;
36 int end_idx;
37 if (a_i < num_vertices - 1) {
38 end_idx = out_startpos[a_i + 1];
39 } else {
40 end_idx = m_graph.num_edges();
41 }



5.2 Extensibility guide 101

42

43 int n = m_ground.size();
44 for (int j = out_startpos[a_i]; j < end_idx; ++j) {
45 int element = out_end_nodes[j] - n - 2;
46 m_vocabulary_set.set(element);
47 }
48

49 int vocabulary_size = m_vocabulary_set.size();
50

51 double gamma = (double) vocabulary_size;
52

53 return m_weight_sum + m_lambda*gamma;
54 }
55

56 // function reset
57 void tcorpussel_sf_inc_context::reset() {
58 // reset the vocabulary set
59 m_vocabulary_set.clear();
60 m_weight_sum = m_total_weight_sum;
61 }

Step 3 Implement “zero dependency” API

After we have the EO function evaluation context and optionally its incre-
mental version, we move into creating a “zero dependency” API which we
prefer for the sake of simplicity over increasing and scattering the dependency
footprint. The zero dependency API consists of a function or set of functions
with minimal dependencies that executes the SFM for the new application.
We have already discussed the code listing that illustrates this idea in 5.3 and
the implementation 5.1. As convention and to keep the code base organized
we place the header files containing the declarations of these API functions in
the folder, e.g., src/api/sfo_function_logdet.h and the implementation in
src/sfo_function_logdet.cc and the idea is that if there are other libraries
or applications that require access to the SFM functionality with minimal
dependency, we can do so by adding src/api to the includes directory path
and linking against the compiled version of our library. We do this already
to integrate with the Roofline tool [44].

Step 4 Make the new application available for benchmarking

Once we have the new application integrated, we can start running bench-
marks to compare how well the different SFM kernels perform with respect
to this new application. We need to modify the implementation file test/
benchmark.cc and add a static function wrapper which invokes the “zero
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dependency” API and is passed to the benchmarking framework for auto-
mated benchmarking i.e. that execute this function wrapper multiple times
and measures elapsed times, taking means and standard deviations etc. An
example wrapper function is shown in code listing 5.12 corresponding to the
Log Determinant application with and without incremental evaluation. The
two most important points while implementing this wrapper is first to keep
the wrapper signature unchanged and second the wrapper should only invoke
the application SFM solver and not do things like loading application-specific
parameters from disk, e.g., graph in DIMACS format [5] etc.

Listing 5.12: Integrating new application with benchmark, wrapper func-
tion

1 static void logdet_workload_wrapper(long &minor_iter, long &
major_iter, uint64_t &flops_count) {

2 // invoke the kernel API
3 int *optimal = NULL;
4 long optimal_size;
5 sfo_function_logdet(n, K_data, s_data, fv,
6 optimal, optimal_size, minor_iter, major_iter,

flops_count);
7 delete[] optimal;
8 }
9

10 static void logdet_workload_wrapper_noninc(long &minor_iter,
long &major_iter, uint64_t &flops_count) {

11 // invoke the kernel API
12 int *optimal = NULL;
13 long optimal_size;
14 sfo_function_logdet_noninc(n, K_data, s_data, fv,
15 optimal, optimal_size, minor_iter, major_iter,

flops_count);
16 delete[] optimal;
17 }

We need to also modify the main function in test/benchmark.cc to han-
dle the new application, example listing 5.13 demonstrates this again for
the case of the Log Determinant application. The “benchmark framework”
wasn’t actually meant to support accommodating hundreds of applications
but a few, to evaluate the performance differences between the implemented
kernels and for a handful of applications. The benchmark file can be easily
extended to a framework, in fact its core function run_benchmark remains
unchanged when adding not only new SFM kernel implementations but also
the EO function contexts corresponding to new applications.
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Listing 5.13: Integrating new application with benchmark

1 if (workload == "logdet") {
2 if (input_file.empty()) {
3 cerr << "Input Error: 'input-file' must be provided.\n";
4 return EXIT_FAILURE;
5 }
6

7 // read application problem file
8 const char* filename = input_file.c_str();
9 ifstream is(filename);

10 tlogdet_moons_generator generator;
11 is >> generator;
12

13 // application parameters
14 n = generator.n();
15 K_data = generator.K();
16 s_data = generator.s();
17 fv = generator.fv();
18

19 // run benchmark
20 if (INCEVAL) {
21 run_benchmark(logdet_workload_wrapper);
22

23 } else {
24 run_benchmark(logdet_workload_wrapper_noninc);
25 }
26

27 // ...

Step 5 Add application test-suite

For each supported application we have one test-suite containing three types
of tests: test the function evaluation non-incrementally, test the function
evaluation incrementally (both should produce the same result), and test
the different SFM kernel implementations against the incremental function
evaluation by invoking the appropriate “zero dependency” API functions.
We have built a test support class set_factory.h that given an interval
of integer possible values generates the following sets: empty, full, singleton
first, singleton last, odd and even. The function evaluation and kernel tests
use this set_factory.h to test each application using the different generated
sets.
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5.3 Project Structure
The project is structured as shown in Fig. 5.2 which matches the typical struc-
ture for projects when using Subversion. We have the root $SFO_HOME where
the project sources are, next we have tags where we branch out the different
releases and we have trunk where we have the current working version. Under
trunk we have code where the sources are and at the same level build and
build_debug corresponding to Release and Debug builds respectively, these
are generated using CMake build framework 9 as will be discussed in section
5.4. Under code we find src where the sources of our library are and test
containing all test-suites and test infrastructure code, e.g., benchmark.cc and
set_factory.h implementations. The CMake project file CMakeLists.txt is
found under code and will be described in the section 5.4. The src folder
contains several sub-folders as described in points 5.3. Currently we have over
60 test-cases corresponding to SFM kernels, applications, high-performance
code foundation matrix and vector, and more.

api Contains only header files corresponding to the “zero dependency” API
with minimal dependency footprint other than C++ primitive types
in order to invoke our SFM framework functionality, e.g., SFM solve
Minimum Graph Cut, Log Determinant, Iwata or Corpus Selection.
We use Boost BGL 10 to load the graph files in DIMACS format [5]
and this is also made part of the api folder. In conclusion, any client
application wanting to use our SFM solvers for the implemented appli-
cations should include this api folder in their include folder list, e.g.,
in gcc this is done using the environment variable C_INCLUDE_PATH or
CPLUS_INCLUDE_PATH 11.

context Contains the abstract EO function contexts header and implemen-
tation files for all applications with non-incremental and incremental
variations.

fortran Contains a few Fortran routines reused for the QR updates, e.g.,
Kressner routine 12 for updating a QR decomposition after appending
a row block [32].

kernel Contains abstract and concrete SFM kernel implementations: Fu-
jishige, Krause, Iwata and HPSFO.

9http://www.cmake.org/
10http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/index.

html
11http://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
12http://www.math.ethz.ch/~kressner/qrupdate.php

http://www.cmake.org/
http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_51_0/libs/graph/doc/index.html
http://gcc.gnu.org/onlinedocs/gcc/Environment-Variables.html
http://www.math.ethz.ch/~kressner/qrupdate.php
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Fig. 5.2: Submodularity project structure

logdet Implementation files specific to the Log Determinant application,
here we included the file logdet_moons_generator.cc but the name is
a bit misleading, this implementation was initially intended to mirror
Bach’s Matlab implementation for generating two-moons data sets but
was instead written to serialize and deserialize the two-moons dataset
files exported from Matlab. The reason for not generating the two-
moons data was two fold, first to avoid spending too much time on it,
e.g., porting to C++ some Matlab operations etc and second to have
the exact same input as the Bach’s MNP algorithm does i.e., generating
the files involves using random generators etc.

mincut Contains a standalone application for executing the Minimum Cut
SFM solver via the “zero dependency” API. This we use among others,
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as part of the benchmark scripts to test or validate the solutions pro-
duced during benchmarking i.e., make sure that the benchmark results
are correct.

support Contains support or helper implementations for the submodularity
framework, e.g., bitset.h a binary set representation with constant
time for adding an element to the set and testing whether an element
belongs to a set. There we also have bufferpool.h, quicksort.cc,
linear_sort.h for sorting integer-valued arrays i.e. ground set index
elements in O(n) time, etc.

5.4 Build Process
We employed the CMake project for building and generating project files, e.g.,
Eclipse, Visual Studio or Xcode project files. The project is configured via the
CMakeLists.txt file [34]. In this CMake project specification file we mainly
define: external dependencies including their include and link paths, tog-
gle project-wide macros, define compilation parameters and settings, define
project targets. So far we have the following project targets: submodularity
library, benchmark standalone application, mincut standalone application,
all test suites using googletest and the Matlab MEX library to use HPSFO
directly from Matlab, we will discuss this in details in section 5.6.

The file README.txt contains the most important commands we used to,
e.g., generate project files, generate build directories in Release and Debug
modes, use valgrind to troubleshoot possible segmentation faults and in
general work with our submodularity framework. For completeness we are
going to include some of the most important commands here.

The following command generates and executes the Release build:

$ cd $SFO_HOME/trunk
$ rm -rf build; mkdir build; cd build;
$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=icc \

-DCMAKE_CXX_COMPILER=icpc \
-DCMAKE_Fortran_COMPILER=ifort ../code

$ make

The following command generates and executes the Debug build:

$ cd $SFO_HOME/trunk
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$ rm -rf build_debug; mkdir build_debug; cd build_debug;
$ cmake -DCMAKE_BUILD_TYPE=Debug -DCMAKE_C_COMPILER=icc \

-DCMAKE_CXX_COMPILER=icpc \
-DCMAKE_Fortran_COMPILER=ifort ../code

$ make

The following command generates Eclipse project files:

$ cd $SFO_HOME/trunk/build_debug
$ cmake -G "Eclipse CDT4 - Unix Makefiles" ../code

5.5 Software Dependencies
The submodularity framework we implemented has the following main soft-
ware dependencies:

Boost We use the following Boost libraries: filesystem, system, graph
, program_options and chrono. We use the Graph library to load
maxflow DIMACS graph files and to find the Minimum Graph Cut
using Edmonds Karp implementation. We use Boost Chrono library
portable high-resolution timer to collect response time for the execu-
tion of the SFM implementations. The library program_options helps
simplify development of standalone applications that have many argu-
ments, e.g., the benchmark standalone application.

PAPI We use the PAPI library 13 to collect performance indicators, e.g.,
response time, flop counts and mega flops. Performance counters (PC)
help validating the estimated theoretical flop count.

Intel MKL As previously discussed, we use Intel MKL as part of our high-
performance foundation that provides implementation for BLAS, LA-
PACK routines and more.

Intel TBB We employed Intel Threading Building Blocks14 (TBB) to take
advantage of parallel sorting as part of the Edmonds Greedy step in
both variations non-incremental 2 and incremental 3. We have added
as future work the possibility to extend the use of TBB enriching our
high-performance foundation even further, e.g., parallelizing loops that
can not be made so with auto-vectorization and OpenMP or reusing
fast parallel reductions.

13http://icl.cs.utk.edu/papi/
14http://threadingbuildingblocks.org/

http://icl.cs.utk.edu/papi/
http://threadingbuildingblocks.org/
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5.6 Matlab integration
We have built an adapter that allows invoking our HPSFO implementation
directly from Matlab 15. The C++ entry point to Matlab is implemented in
src/sfo_matlab_adapter.cc 16 where we define the standard Matlab entry
point C++ function mexFunction with predefined signature. The code listing
5.14 shows our Matlab C++ entry point which is very similar to previous
listings e.g, 5.1, it defines a EO function context, creates and run the default
SFM kernel and finally returns the optimal subset result to Matlab. The main
difference with other API implementations is that the EO evaluation context
we use is tmatlab_sf_adapter. That is, we have a context that simply wraps
a true context defined elsewhere (in this case in Matlab) and surrogates that
true context within our framework, but the calls to the EO function evalua-
tion f(x) are delegated to the actual Matlab function. Every time the SFM
kernel invokes the function, it is calling our tmatlab_sf_adapter function
implementation which in turn delegates the call to the Matlab function han-
dle passing the context “param” defined also in Matlab, we then return to
the SFM algorithm the result of the Matlab function handle invocation.

Listing 5.14: Matlab adapter C++ entry point

1 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const
mxArray *prhs[]) {

2 // first argument should be a function handle
3 if (!mxIsClass(prhs[0], "function_handle")) {
4 mexErrMsgTxt("ERROR: first input argument must be a

function handle.");
5 }
6

7 // second argument should be a struct 'param' context
8 if (!mxIsStruct(prhs[1])) {
9 mexErrMsgTxt("ERROR: second argument must be a struct.");

10 }
11

12 // setup the Matlab context adapter and run the SFM kernel
13 tmatlab_sf_adapter sf_context(prhs[0], prhs[1]);
14 tabstract_sfo_kernel& sfo_kernel = tsfo_kernel_factory::

INSTANCE.create(sf_context);
15 sfo_kernel.run();
16

17 // output the optimal subset
18 tsfo_vector<int> subset = sfo_kernel.subset();

15We have tested this with Matlab 64-bit R2012a (7.14.0.739)
16http://www.mathworks.com/help/techdoc/apiref/mexfunction.html

http://www.mathworks.com/help/techdoc/apiref/mexfunction.html
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19 mxArray *result = mxCreateDoubleMatrix(subset.size(), 1,
mxREAL);

20 for (int i = 0; i < subset.size(); ++i) {
21 (mxGetPr(result))[i] = subset[i];
22 }
23 plhs[0] = result;
24 }

In CMakeLists.txt we included an additional target that generates a
Matlab library corresponding to the C++ entry point in listing 5.14, the
name of the generated library is hpsfo_matlab.mexmaci64 in this case for
Mac OS X 64-bit. Starting Matlab and pointing its default folder to the
location where our hpsfo_matlab.mexmaci64 is, we can test the HPSFO from
Matlab as shown in the Matlab code listing 5.15 where we define the Iwata
test function F_iwata, invoke our HPSFO kernel and obtain the optimal
subset results.

Listing 5.15: Matlab Iwata example that invokes HPSFO

1 % ==================================
2 % test integration
3 % ==================================
4

5 clear all;
6

7 % define the true context
8 param.n = 28;
9 param.ground = 1:28;

10

11 % define the Iwata function handler
12 F_iwata = @(param, A) length(A)*(param.n-length(A))-sum(5*A-2*

param.n);
13

14 % invoke the HPSFO kernel
15 subset = hpsfo_matlab(F_iwata, param)
16

17 % output
18 subset =
19

20 10
21 11
22 12
23 13
24 14
25 15
26 16
27 17
28 18
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29 19
30 20
31 21
32 22
33 23
34 24
35 25
36 26
37 27
38 28



Chapter 6

Experimental Results

In this chapter we will discuss the results we obtained comparing our best
HPSFO implementation against all others and for the different applications.
We are also going to discuss the different aspects that affect performance
and how they differ from one workload application to another. Additionally,
we will also see that the performance our fastest implementation is lead by
multiple factors and levels that interact and therefore we propose an Experi-
mental Design study [27] and Workload characterization [27] to gain the best
performance for the specific application workload.

As discussed before we built on top of Intel Parallel Studio 1 and Intel
MKL 2 and therefore we also employed the Intel C/C++ Compiler 3. We
compiled the code using the following flags, this we generate via our CMake
project build by actually executing make VERBOSE=1 [34]:

$ /opt/intel/composer_xe_2013.0.060/bin/intel64/icpc -fasm-blocks
-pthread -Wall -Wcheck -O3 -DNDEBUG -align -finline-functions
-malign-double -no-prec-div -openmp -complex-limited-range
-xHost -opt-multi-version-aggressive -scalar-rep
-unroll-aggressive -vec-report6 -restrict
-o build/src/kernel/hpsfo_min_norm_point_kernel.cc.o
-c code/fastcode_project/code/src/kernel/hpsfo_min_norm_point_kernel.cc

The flags are actually specified per compiler and in the file $SFO_HOME/
code/cmake/compiler_settings.cmake. These settings are described in de-
tail in the Intel Compiler Users Manual [22] but we will comment on some of

1http://software.intel.com/en-us/intel-parallel-studio-home/
2http://software.intel.com/en-us/intel-mkl
3http://software.intel.com/en-us/intel-compilers/
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the most important ones. We employed -xHost to gain the best performance
for the underlying architecture i.e. generate instructions for the highest in-
struction set and processor available on the compilation host, use AVX or
SSE2 if applies [22]. The -O3 includes -O2 which enables auto-vectorization
and -O3 enables more aggressive optimizations, such as prefetching, scalar re-
placement, and loop and memory access transformations [22]. Finally we en-
abled -restrict to hint the compiler for more aggressive auto-vectorization
and -vec-report6 to show verbose diagnostics on what loops were auto-
vectorized and most importantly the reasons why some loops where not auto-
vectorized.

While using Intel MKL and from version 11 we have several key MKL con-
figuration environment variables that affect performance. The most impor-
tant one is the one that controls MKL multi-threading MKL_NUM_THREADS, if it
is set, it will restrict the number of threads used by MKL to the value given;
setting it two 1 will disable parallelism, if it is not set, then MKL will use
as many threads as CPU cores available. The other critically important en-
vironment configuration is Conditional Numerical Reproducibility (CBWR)
MKL_CBWR 4 that offers a trade-off between highest performance for the given
platform and reproducibility of the results. The other two main configura-
tion parameters we modify via environment variables is the OpenMP ones.
OMP_NUM_THREADS restricts the number of threads used for OpenMP, setting
it two 1 will also disable parallelism. OMP_SCHEDULE configures the OpenMP
scheduler e.g. static,70 meaning all the threads are allocated the number of
iterations before they execute the loop iterations. The iterations are divided
among threads equally by default but in this case we fix it to an optimal
level of 70. We conducted most of our experiments disabling parallelism i.e.,
setting export MKL_NUM_THREADS=1 and export OMP_NUM_THREADS=1 we spe-
cially do so for the Gflop/s plots. Those experiment for which parallelism is
enabled are stated clearly or suffixed with _mt meaning multi-threading.

6.1 Benchmark environment
The development and benchmarking of our submodularity framework was
done in two platforms. Most of the development was done in a Mac OS X
Intel Core Duo architecture depicted in table 6.2. We did most of the bench-
marking in an Intel Sandy-Bridge architecture with specification detailed in

4http://software.intel.com/en-us/articles/
introduction-to-the-conditional-numerical-reproducibility-cnr

http://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
http://software.intel.com/en-us/articles/introduction-to-the-conditional-numerical-reproducibility-cnr
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CPU-core manufacturer Intel
Model name Sandy Bridge-E i7-3930K C2
Number of CPU cores 6
CPU-core frequency 3.20Ghz
Max Turbo Frequency 3.80Ghz
Instruction Set Extensions SSE4.2, AVX
Cycles for FP additions (Latency/Throughput) (3/1)
Cycles for FP multiplications (Latency/Throughput) (5/1)
Maximum theoretical FP peak performance (in Gflop/s) 24
Cache Line Size 64-byte
L1 Data (per core) 32kB 8-way set associative
L1 Instruction (per core) 32kB 8-way set associative
L2 Unified (common) 256kB 8-way set associative
L3 12MB 16-way set associative
FP Registers (per core) 16

Tab. 6.1: Sandy Bridge-E CPU specification

CPU-core manufacturer Intel
Model name Core 2 Duo T9900
Number of CPU cores 2
CPU-core frequency 3.06Ghz
Instruction Set Extensions -
Cycles for FP additions (Latency/Throughput) (3/1)
Cycles for FP multiplications (Latency/Throughput) (5/1)
Maximum theoretical FP peak performance (in Gflop/s) 6
L1 Data (per core) 32kB 8-way set associative
L1 Instruction (per core) 32kB 8-way set associative
L2 Unified (common) 4MB 8-way set associative
FP Registers (per core) 16

Tab. 6.2: Intel Core 2 Duo CPU specification
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table 6.1 [20], as part of a custom Desktop build tailored for conducting the
benchmarks of this thesis work 6.3, e.g., we used the Desktop high-end fastest
quad-channel RAM available in the market.

We integrated our submodularity framework and generated the Roofline
plots with the Roofline tool [44] that currently only works for the Intel Core
Duo platform. Due to this constraint we installed dual-boot in the develop-
ment MacBook Pro using the same OS version Ubuntu 11.10 kernel 3.0.0-
23-generic. At this time the Roofline tool can’t accurately compute the Op-
erational Intensity due to not being able to accurately measure the transfer
rate between Last Level Cache (LLC) and the RAM for the Sandy-Bridge ar-
chitecture. Therefore our standard performance benchmarks were conducted
using the Sandy-Bridge CPU architecture which is AVX-capable and the
Roofline plots in the Intel Core Duo architecture which is SSE2-capable only.

All performance benchmarks shown in the next sections were obtained
by executing 3 warm up runs and averaging (mean) over 10 repetitions. We
also computed standard deviations but they were too small to show i.e. 2
orders of magnitude or more smaller than the mean and therefore not re-
ally useful. We implemented several Bourne Shell scripts for running per-
formance benchmarks $SFO_HOME/code/benchmark_mincut.sh, $SFO_HOME/
code/benchmark_logdet.sh and $SFO_HOME/code/benchmark_corpussel.sh

These Shell scripts only require successfully completing a Release build and
they will invoke the standalone application benchmark passing the appropri-
ate parameters and problem files found under root folder $SFO_HOME/code/
test and sub-folders genrmf_data, genmoons_data and genbipartite_data

Motherboard Asus Rampage IV Extreme LGA2011
CPU Intel i7 3930K C2
CPU Cooler Noctua NH-D14
RAM Corsair Dominator GT CMT16GX3M4X2133C9 16GB
Graphic Card EVGA 670 FTW
PSU Corsair AX1200 Gold
Case Corsair 800D
Hard drive 240GB Mercury EXTREME Pro 3G SSD
OS Ubuntu 11.10
OS kernel version 3.0.0-23-generic

Tab. 6.3: Benchmark hardware
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respectively.

6.2 Minimum Graph Cut
In this section we will discuss the experimental results corresponding to the
Minimum Graph Cut application discussed in section 3.1. We generated sev-
eral Minimum Graph Cut problems using the GENRMF tool 5 [5] and com-
bined a balanced mix of Wide and Long graphs.
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Fig. 6.1: Runtime(s) Min Cut Krause Matlab Toolbox vs HP

We are going to quickly review the performance gains of our high-performance
version of Krause MNP kernel implementation. The Fig. 6.1 shows the per-
formance gain of our high-performance version of Krause MNP kernel im-
plementation compared to the original Matlab Toolbox implementation 6. In
this case they both feature incremental function evaluation so we are look-
ing at the gains due to all performance optimizations discussed in sections
4.1 and 4.3.4. We can observe that the performance gap reduces with bigger

5http://www.informatik.uni-trier.de/~naeher/Professur/
research/generators/maxflow/genrmf/index.html

6http://users.cms.caltech.edu/~krausea/sfo/

http://www.informatik.uni-trier.de/~naeher/Professur/research/generators/maxflow/genrmf/index.html
http://www.informatik.uni-trier.de/~naeher/Professur/research/generators/maxflow/genrmf/index.html
http://users.cms.caltech.edu/~krausea/sfo/
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problem sizes and our explanation for this is the trade-off between lower flop
count and higher Level BLAS. Krause’s toolbox recomputes QR each time
which belongs to Level-3 BLAS at the cost of cubic flop cost whereas our
high-performance version applies increasingly costly Level-2 BLAS updates
e.g., generating and selectively applying a set of Householder reflectors in
algorithm 5 combining dlarfg and dlarfx.

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000
N

R
un

tim
e 

(s
)

kernel

fujishige
hpsfo
krause-hp

10-2

10-1

100

101

102

103

104

0 1000 2000 3000 4000 5000
N

Lo
g 

R
un

tim
e 

(s
)

Fig. 6.2: Runtime(s) Min Cut with Incremental Evaluation

Now we will focus only on the performance results for our fastest MNP
kernel implementation the HPSFO. Fig. 6.2 depicts the runtime or response
time differences between the MNP kernels and using incremental evaluation:
Fujishige, Krause and our final HPSFO kernel. We enabled the incremen-
tal evaluation feature in the Fujishige implementation to find the net gains
due to our faster high-performance implementation. We can observe that
our HPSFO implementation outperforms all others taking into account the
high-performance foundation, fast memory operations and fast orthogonal
updates using Registers blocking with loop unrolling for re-triagularizing the
matrix R after a column vector point deletion.

Fig 6.3 shows the gain in our HPSFO kernel implementation due only to
incremental EO function evaluation. The gain here is only due to the algo-
rithmically superior implementation corresponding to the modified Edmonds
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Fig. 6.3: Runtime(s) Min Cut HPSFO: Incremental vs non Incremental

3 where we only need to look at a specific node and its adjacency rather than
redoing so for all nodes at every EO evaluation as part of the Greedy Step.

Fig 6.4 shows the performance plot using Gflop/s defined as:

Gflop/s = flop count
Runtime(secs) · 1e9

(6.1)

Here we fix the flop count to one of the two cases i.e., take the one with
highest, and assume they are asymptotically the same and therefore compa-
rable. Note that the flop count for Fujishige and HPSFO is nearly exactly the
same except for a few exceptions e.g., as part of Step 4 of Wolfe algorithm
1 we need to repair the broken upper-triangular matrix R, in the HPSFO
implementation we generate the sins and cosines once and apply them as
shown in listing 4.16 requiring a total of 6 flop to apply the rotation for two
row elements per column. Fujishige implementation requires 9 flop to do the
same. We can see that for about the same amount of work reflected in flop
count we manage to do the same much faster reaching in this up to 90% of
scalar peak performance for the Sandy-Bridge architecture described in table
6.1.

The Fig. 6.5 shows the Roofline plot obtained in our Intel Core Duo ar-
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Fig. 6.4: Gflop/s Minimum Cut with inc. evaluation HPSFO vs Fujishige

chitecture 6.2. Here we see that Krause MNP implementation appears to
have higher performance Flops but in reality Krause algorithm requires algo-
rithmically a lot more floating point operations to achieve the same therefore
inflating the Flops plots. It is therefore not really comparable to the other two
MNP kernel implementations Fujishige and HPSFO. However, we can see a
similar trend shared across all MNP implementations, the Operational Inten-
sity decreases with bigger problem sizes, meaning that the MNP algorithm is
fundamentally memory bound [40]. This effect is what we believe an intrinsic
lack of reuse issue of the MNP algorithm where the new points explored by
are dynamically and sequentially generated and not often reused for compu-
tation. We were nevertheless happy to see that our HPSFO implementation
has at least the same Operational Intensity as the Fujishige implementa-
tion despite the expensive physical memory operations corresponding to the
physical matrix updates due to Step 4 of the Wolfe algorithm 1. Finally, the
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Roofline plot confirms the results of our previous Gflop performance plot,
that our HPSFO implementation features higher performance than Fujishige
for SSE2 as well as AVX-enabled architectures.

The Fig. 6.6 shows the time distribution per Step corresponding to the
Steps of Wolfe algorithm 1. This plot give us essentially a dissection of the
algorithm revealing where the percentage of time is spent for each case. We
have included Fujishige, HPSFO and HPSFO with multi-threading. We can
see that in Fujishige MNP implementation, the Step 3 of Wolfe algorithm
increasingly becomes the bottleneck with bigger problem sizes, this is due
to what we believe the bad locality of Fujishige implementation rooted in
the arbitrary column accesses resulting from the high indirection while it-
erating columns via the double linked list of column indexes. The HPSFO
implementation on the other hand, benefits from the solve steps using the
highly-optimized Intel MKL implementation of cblas_dtrsm on top of page
and AVX-aligned contiguous memory. However, we clearly note for HPSFO
the higher percentage of computation time corresponding to Step 4 where
the physical column deletions take place. Finally, the HPSFO parallel imple-
mentation better balances all Steps by executing the re-triangularization of



120 Experimental Results

Fujishige HPSFO HPSFO Parallel

0

20

40

60

80

100

512 1000 2000 3000 4000 5000 512 1000 2000 3000 4000 5000 512 1000 2000 3000 4000 5000
n

%

Step Step 1 Step 2 Step 3 Step 4

Fig. 6.6: Runtime(s) distribution by Step Min Cut

the broken R matrix as part of Step 4 in parallel using OpenMP as shown
in code listing 4.19. Overall, the HPSFO features a better time distribution
across steps without any specific Step turning into a clear bottleneck.

The Fig. 6.7 shows the rate of convergence i.e., the Runtime vs the Error
and duality gap. We observe how the algorithm quickly drops at the begin-
ning reaching more than 50% of the target Epsilon Error e−10 in much less
than half the time. Note that we generated this data by tracing the HPSFO
implementation using snapshots of 10 iterations, further we have filtered out
many points (all those not multiple of 500) to avoid cluttering the plot. The
HPSFO uses two convergence criteria, one based on error and the other on
the duality gap as explained in section 2. We can see in this Fig. that the
criteria that lead to convergence is the Epsilon Error convergence namely the
criteria of whether the hyperplane supported by the last point x̂ separates
the convex hull of S from the origin.

The Fig. 6.8 shows the Histogram where the bins are 10% of the number
of columns of the matrices S and R and we count how many columns are
deleted at every ten percent of the matrix e.g., we see that as part of the
Step 4 of the Wolfe algorithm 1 most column deletions for the Minimum
Cut application occur in the first ten percent of the columns i.e., at the be-
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ginning of the matrix which is the most costly in every respect. Physically
deleting columns at the beginning is very costly and this is what motivated
our improvement using the Gaping strategy explained in section 4.3.3. The
cost of re-triangularizing the matrix R using Givens rotations as explained
in section 4.3.4 is also greatly affected by the position of the deleted col-
umn j namely delete cost ≈ (n−j)2

2
[19]. If j is small or close to zero as in

this case, the cost becomes ≈ n2

2
, in this case the more trailing columns we

need to apply the Givens rotations to and the more the application will ben-
efit from higher parallelism and sensible values of the OpenMP Scheduler,
more static and bigger chunk sizes. We included this Fig. and discussion
to motivate doing Workload Characterization [27] and performance analysis
per application. Note that the MNP algorithm reveals a consistent behavior
with respect to each application, where it tends to make more costly mis-
takes in some cases. The Minimum Cut application is one example where the
MNP Wolfe algorithm tends to make costly mistakes, low j column deletions.

6.3 Log Determinant
In this section we will discuss the experimental results corresponding to the
Log Determinant application discussed in section 3.2. We initially tried to
write a C++ version of the “two-moons” problem generator included in Bach
submodular Package 7 [4] implemented in file plot_figure_sfm_moons.m. For
this purpose we intended to create our own tlogdet_moons_generator C++
version but due to time constraints and also to ensure exact reproducibil-
ity of the results comparing to Bach implementation, we decided to instead
export the problems generated by the Bach submodular Package implemen-
tation and use tlogdet_moons_generator to seamlessly import and export.
We exported the generated problems as shown in Matlab listing 6.1 using the
function save including not only the problem input parameters but also the
optimal subset, function evaluation and number of iterations as test oracle
for our Log Determinant test-suite.

Listing 6.1: Export “two-moons” data from Matlab

1 p = param_F.p; % problem size i.e. n=2*p
2 fv = param_F.FV; % function evaluation on the full set
3 s = param_F.s; % labeled points
4 K = param_F.K; % kernel matrix

7http://www.di.ens.fr/~fbach/submodular/

http://www.di.ens.fr/~fbach/submodular/
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5

6 % run the MNP algorithm
7 rand ('state',seed);
8 randn('state',seed);
9 t = tic;

10 [x_primal,x_dual,dual_values_mnp,primal_values_mnp,gaps_mnp,
added1_mnp,added2_mnp,time_mnp,major_iter,minor_iter] =
minimize_submodular_FW_minnormpoint(F,param_F,100000,1,1e
-16);

11 toc(t)
12

13 name_txt = sprintf('logdet_two_moons_n%d.txt', p);
14 name_mat = sprintf('logdet_two_moons_n%d.mat', p);
15 x_size = size(x_primal, 1);
16 subopt = primal_values_mnp(size(primal_values_mnp, 1));
17 save(name_txt, 'p', 'fv', 's', 'K', 'x_size', 'x_primal', '

subopt', 'major_iter', 'minor_iter', '-ascii', '-double');
18 save(name_mat, 'p', 'fv', 's', 'K', 'x_size', 'x_primal', '

subopt', 'major_iter', 'minor_iter');
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Fig. 6.9: Runtime(s) Log Determinant Non Incremental Evaluation

The Fig. 6.9 compares the execution times for the different SFM kernels.
This time we didn’t enable EO incremental evaluation to compare one-to-one
with Bach MNP implementation. We see that the HPSFO implementation
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outperforms the others for a small margin and the reason why will be read-
ily apparent after we take a look at the distribution of time per algorithm
Step. There are a few important points to discuss regarding this compari-
son. First, Bach implementation randomizes the starting permutation of the
points, again for the sake of fair comparison we changed that to start from
the same initial permutation that we used i.e., the sequence 1, . . . , n. Second,
the Wolfe algorithm 1 (and therefore Fujishige and HPSFO implementations)
did not initially converge for the Log Determinant application, we extended
the convergence criteria of our Wolfe-based implementations to include and
additionally test for the same duality gap convergence as in the Bach sub-
modular Package MNP implementation. Furthermore, even though we could
not analyze it in detail due to time constraints, Bach implementation doesn’t
appear to be robust due to its direct attempt to compute the Cholesky de-
composition corresponding to Step 2 of the Wolfe MNP algorithm 1, it would
often fail with error

not positive definite when adding new point in step 2, exit

due to the non semi-positive definiteness of the S matrix after adding a
new point. Finally, Bach MNP implementation computes an upper bound
on the maximum norm of all points used in the duality gap stopping criteria,
and for this, it executes a series of evaluations of the EO function propor-
tional to the size of the ground set as shown in Eq. 2.11, this pre-scanning for
big problem sizes is very expensive and defeats the purpose. In our HPSFO
implementation we kept the duality gap convergence criteria but without
computing the ϵ error using this upper bound, instead we use the same input
parameter ϵ value (maxed at e−10) as threshold that we used in the initial
separating hyperplane convergence test to also test for the duality gap.

The Fig. 6.10 shows the Runtime performance plots comparing the in-
cremental evaluation versions of the MNP kernel implementations: Krause,
Fujishige and our favorite HPSFO. Again the results are very tight and we
are going to discuss later why this happens. Nevertheless we see a small fa-
vorable margin for the HPSFO implementation.

The Fig. 6.11 shows the performance gain due only to incremental evalua-
tion and corresponding to our HPSFO implementation. In the semi-supervised
clustering algorithm corresponding to the “two-moons” dataset and evaluat-
ing the non-incremental version of the EO function, at every evaluation step
we need to compute the Cholesky decomposition of the submatrix corre-
sponding to both the current set X and its complement X c = {V \ X},
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Fig. 6.10: Runtime(s) Log Determinant with Incremental Evaluation
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this cost is roughly 2 × n3

3
. By using incremental evaluation we keep in our

context the Cholesky decomposition of the two matrices and update one and
down-date the other incrementally at every EO evaluation. We have dis-
cussed the incremental evaluation idea for the Log Determinant application
in section 3.2. The cost in flops for up-dating and down-dating a Cholesky
decomposition are (2mn +4n +3) and

(
(n−j)2

2

)
, respectively. In this case we

have successfully reduced the cost and complexity of the EO evaluation from
O(n3) to O(n2) and this is reflected in our Runtime Fig. 6.11 where we can
observe a gain of roughly one order of magnitude in runtime. It is important
to note that the incremental EO function evaluation corresponding to the
Log Determinant application heavily uses our high-performance foundation
4.3.1 e.g., fast matrix mutations 4.3.3 and fast orthogonal updates 4.3.4.
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Fig. 6.12: Gflop/s Log Determinant with inc. evaluation HPSFO vs Fujishige

The Fig. 6.12 shows the Gflop/s performance plot comparing Fujishige
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vs HPSFO. In this case we withdrew some of our high-performance improve-
ments applied to the EO incremental evaluation for the Fujishige version,
namely we withdrew the fast matrix mutations 4.3.3 and so it uses the col-
umn deletion without our Gaping strategy optimization. In this specific ap-
plication and in the incremental EO function evaluation case we put under
stress test our high-performance foundation, in particular, our fast matrix
mutations 4.3.3 and, more specifically, the fast Givens rotations using Regis-
ter blocking and loop unrolling 4.3.4, since this is the exact same procedure
8 required to down-date an existing Cholesky decomposition [48] we success-
fully “killed two birds with one fast bullet”. We can happily observe that
continuously executing our fast Givens implementation contributes to get-
ting up to 90% of SSE2 vector peak performance.
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Fig. 6.13: Roofline Log Determinant with inc. evaluation

The Fig. 6.13 shows the Roofline comparing Fujishige vs HPSFO and in
the Intel Core Duo platform 6.2. Here they both have the exact same high-
performance EO evaluation implementation. We can see they perform very

8While the procedure is the same, we need a more specialized Givens rotation generator
function that will produce non-negative matrix diagonal elements, i.e., dlartgp
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closely. The reason why there are no big differences between the different
MNP algorithms and for the Log Determinant becomes readily apparent in
Fig 6.14. Here we see that 99.9% of the time is spent doing function evalua-
tion. The number of iterations is also very low as to make any big difference
between the algorithms: 73, 76 and 123 major iterations for problem sizes 1k,
2k and 3k respectively; in this application the MNP algorithm also makes
very few “mistakes” and this we can see also in Fig 6.16. It becomes clear
that for this application the highest performance pay-off would go into op-
timizing the EO evaluation function which we already did by implementing
the incremental evaluation version.

The Fig. 6.15 shows the convergence rate of the Log Determinant appli-
cation for the Error as well as the duality gap. We can see that convergence
is driven by the duality gap criteria and that the duality gap decreases slowly
until it drops sharply. Comparing to Bach’s original problem setup and im-
plementation, we have the exact same number of iterations. Furthermore,
this plot reveals an interesting detail and possible improvement over Bach
implementation that we took advantage of. Bach implementation and for the
purpose of duality gap convergence test, pre-computes an Epsilon that takes
the maximum norm which is built by evaluating all singletons using the EO
evaluation, this is very expensive, say for sizes over 10k and not really needed
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Fig. 6.15: Runtime(s) vs Error and duality gap Log Determinant

since the duality gap convergence as we can see in these plots decreases slowly
until it makes a sharp drop. Therefore, we can simply make the duality gap
Epsilon configurable rather than pre-computing it exactly.

The Fig. 6.16 shows the column deletion histogram corresponding to the
Log Determinant application. It is clear that for this case the Wolfe MNP
algorithm doesn’t make too many mistakes but rather a few and all costly
i.e., point deletions as part of the Step 4 of the algorithm occur always at the
beginning of the matrix or first 10% of the columns of the matrices S and R.

After reviewing Fig. 6.14, it reveals the fact that all the time is spent
doing incremental EO function evaluation, which in turn means we spend
most of the time running our fast Givens rotations Register blocking and
loop unrolling implementation. Therefore, we enabled parallelism at both
MKL and OpenMP and configure OpenMP to the best configuration found
export OMP_SCHEDULE=static,70 9. The Fig. 6.17 shows the near 2× paral-
lel speed up we gain for this specific problem and it is mainly thanks to our
fast orthogonal update implementation.

9We would need experimental design and ANOVA analysis in addition to workload
characterization to get the best factor levels for each application.
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6.4 Corpus Selection
We obtained the data for the Corpus Selection from the authors of the publi-
cation “Optimal Selection of Limited Vocabulary Speech” [33]. Their datasets
were uniform meaning the amount of information associated with the opti-
mal set of utterance was the cardinality of the utterances set. The resulting
submodular function did not behave very well since we would get a flattened
function image and quickly find any result with low number of iterations. We
fixed that by associating a weight to each utterance i.e. a weight between the
Source node and each Utterance node, we choose the weights values to be
very skewed. By doing so we effectively increased the selectivity of the op-
timal subset and the MNP algorithm then produced more interesting results.

The Fig. 6.18 shows the comparison between Fujishige and HPSFO ker-
nel implementations and using the EO incremental function evaluation in
both and for the Corpus Selection application. We observe that our HPSFO
implementation features above 10× speed up over Fujishige base.
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Fig. 6.18: Runtime(s) Corpus Selection with Incremental Evaluation

The Fig. 6.19 shows the net gain from using non-incremental EO function
evaluation to the incremental version. We successfully reduced the complex-
ity of the EO function evaluation from O(n2 log n) to O(n).
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mental

The Fig. 6.20 shows the Gflop/s plot once more comparing the two main
contenders and we see how our HPSFO implementation not only outperforms
Fujishige-Wolfe but also scales relatively well with respect to the problem
sizes. The problem sizes we obtained for the Corpus Selection [33] were not
really big and an optimal is found after only a few seconds.

The Fig. 6.21 shows the Roofline plot resulting for the Corpus Selection.
This confirms the results we obtained in our standard performance Gflop/s
plot, here we also see higher performance measured in billion flop operations
per second.

The Fig. 6.22 shows the distribution of the Runtime for the Corpus Se-
lection for every Step of the Wolfe algorithm 1. Note how the time spent
doing Step 3 is non-negligible, and as seen before this correlates with the
higher performance we observed in the previous performance plots that fa-
vor our HPSFO implementation. Furthermore, note how the Step 3 again
becomes the performance bottleneck for Fujishige implementation. The Step
3 of Wolfe algorithm finds the MNP within the affine hull aff S and does so
by solving the systems previously shown in Eq. 2.17.
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Fig. 6.20: Gflop/s Corpus Selection with inc. evaluation HPSFO vs Fujishige

In Fig. 6.23 we can see the details of the convergence for the Corpus Se-
lection application. Again, we have very nice fast initial drop of the Error
and convergence led by the duality gap criteria.

6.5 Fastest showcase
In this section we will only emphasize how better our final fastest HPSFO
is performance-wise, by first breaking the number of iterations compatibility
with the Fujishige-Wolfe base 10 implementation using a more efficient sort-

10In all our previous benchmarks we utilized the same quicksort2 implementation by
Fujishige not to break the compatibility with the improved HPSFO with respect to the
number of algorithm iterations.



134 Experimental Results

0.1

1

10

1 10 100

Pe
rf

o
rm

a
n
ce

 [
Fl

o
p
/C

y
cl

e
]

Operational Intensity [Flop/Byte]

Submodular Function Minimization Corpus Selection

SSE 2x (8.0 F/C)

Balanced SSE (4.0 F/C)

Balanced Scalar (2.0 F/C)

MemLo
ad (1

.9 B/C)

MemRand (0
.34 B/C)

fujishige
hpsfo

100

1600

100

1600

Fig. 6.21: Roofline Corpus Selection with inc. evaluation

Fujishige HPSFO HPSFO Parallel

0

20

40

60

80

100

10 100 200 400 800 1600 10 100 200 400 800 1600 10 100 200 400 800 1600
n

%

Step Step 1 Step 2 Step 3 Step 4

Fig. 6.22: Runtime(s) distribution by Step Corpus Selection



6.5 Fastest showcase 135

10-4

10-3

10-2

10-1

0.0 0.5 1.0 1.5 2.0 2.5
Runtime(s)

lo
g(
E
rr
or
)

n

400
800
1600

10-10

10-5

100

105

0.0 0.5 1.0 1.5 2.0 2.5
Runtime(s)

lo
g(

D
ua

lit
y 

G
ap

)

Fig. 6.23: Runtime(s) vs Error and duality gap Corpus Selection

ing algorithm std::sort or TBB11 tbb:parallel_sort as part of the Greedy
Edmonds algorithm step 2 and 3. The reason why changing the sorting al-
gorithm leads to different number of iterations is due to how the sorting
algorithm stirs elements that have the same value, effectively leading the
algorithm to explore different points in a different order. This behavior is
conceptually the same to providing an initial random permutation of the
indexes, a feature available in our framework implementation that we could
have also explored and is left for future work.

The Fig. 1.1, 1.2 and 1.3 show the overall gain of our final and fastest
parallel HPSFO implementation compared to Fujishige-Wolfe. The perfor-
mance gap increases with the problem sizes for all applications. For small
problem sizes we disabled parellelism and only enabled it for sizes where it
would make a difference.

The Fig. 6.24 shows the convergence rate of our HPSFO implementation
for a 10k Minimum Cut Wide problem. In this case we are looking at 17’393
major and 24’546 minor iterations for a total of 8.199358e+12 flops. Here we
see again a sharp drop of the Error within the first few seconds and a slower
Error-led convergence thereafter. We can either use a very fast few-seconds

11http://http://threadingbuildingblocks.org/

http://http://threadingbuildingblocks.org/
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solution at ϵ = e−6 Epsilon-Error or a high-quality no-compromise solution
at ϵ = e−10 Epsilon-Error that would otherwise take 25 minutes.
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Fig. 6.24: Runtime(s) vs Error and duality gap Min Cut

The Fig. 6.25 shows the convergence rate of our HPSFO implementation
for a 10k Log Determinant problem (over 2.3GB data file). In this case we
are looking at 109 major and 111 minor iterations for a total of 6.708646e+15
flops. Here we see a very slow drop of the Error and duality gap that takes
well over 22 hours and ends finally in duality gap-led convergence.
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Chapter 7

Conclusions and Future
Work

7.1 Conclusions
In this work we have optimized two existing MNP kernels for general SFM:
Krause [30] and Fujishige-Wolfe [13, 49]. We have successfully cast their im-
plementation in terms of our high-performance foundation that builds on
top of Intel MKL and Intel TBB. By building on top of Intel MKL and Intel
TBB, our implementations will automatically benefit from continuous up-
dates and improvements to those libraries, e.g., support for more advanced
vector extensions AXV2 1. We successfully optimized Krause implementation
to take advantage of fast orthogonal updates and we did so by “sandwiching”
different QR update types. In this case we reduced the cost and complexity of
its generic kernel implementation delivering a speed up of up to 12× times
faster over Krause Matlab Toolbox MNP implementation. We reused the
same high-performance foundation built in the abstractions tsfo_vector<T
>, tsfo_matrix<T> and tsfo_matrix_tria<T> to optimize Fujishige-Wolfe
MNP algorithm. Instrumenting both MNP implementations and validat-
ing our findings using Performance counters with PAPI we realized that
Fujishige-Wolfe implementation was algebraically much simpler and offered
lower cost, we therefore took Fujishige-Wolfe as base to build the final and
fastest HPSFO implementation. Our final HPSFO implementation success-
fully outperforms all others and for all the applications we tested. Note that
in some cases, e.g., the Log Determinant application, the Fujishige MNP im-

1http://software.intel.com/en-us/articles/
haswell-support-in-intel-mkl/
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plementation would indirectly benefit from our high-performance foundation
via the function evaluation EO. Moreover, Fujishige-Wolfe implementation
only benefits from compiler improvements, whereas our HPSFO directly ben-
efits from compiler and improvements to Intel high-performance libraries, i.e.,
BLAS, LAPACK. One important result of the performance analysis of the
MNP algorithm is that it is fundamentally memory-bound, as the Roofline
plot Figures revealed, e.g., 6.5 and as we have discussed this is rooted in
the low reuse nature of the algorithm, therefore the MNP would directly
benefit from higher memory transfer rates. In conclusion, we have built a
high-performance HPSFO implementation that features both types of paral-
lelism SIMD and MIMD.

In addition to the generic high-performance optimizations applied to the
generic Krause and Fujishige-Wolfe MNP kernels, we also implemented the
algorithmic complexity improvements originally described by Krause as in-
cremental update evaluation of the EO function and as part of the Greedy
step. We successfully lowered the complexity of the EO function evaluation
for all applications and therefore their runtime.

Finally, we built a C++ software framework that allows coherent coexis-
tence of different SFO algorithms and applications. Furthermore, our frame-
work is designed for extensibility, it provides a “zero-dependency” API that
allows reuse from different platforms, e.g., Java JNI and offers built-in generic
integration with Matlab. We have successfully delivered a high-performance
platform for SFM, with a very fast implementation HPSFO that is cross-
platform portable, easy to reuse, extend and maintain.

7.2 Future work
There are several areas with opportunities for further research and improve-
ments. First, it would be a welcome addition to further utilize TBB within
our high-performance foundation to exploit extra parallelism for possible
bottleneck loops where auto-vectorization and OpenMP are not applicable.
Auto-vectorization or for that matter intrinsics are, in general, not applicable
for loops that access non-contiguous memory locations. Similarly, OpenMP
is not applicable for loops which are not in canonical form [2].

In section 4.3.4 we described our fast Register blocking with loop un-
rolling implementation to repair a previously upper triangular matrix after
a column deletion due to “mistakes” made by the MNP algorithm. It is pos-
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sible that the algorithm make mistakes where multiple columns need to be
deleted, so far our workload applications were not affected by this case, it
is rather rare but it happens. We implemented a general re-triangularization
using Givens rotations that would work for deleting any number of columns
and not just one but it didn’t outperform doing several runs of a single up-
date sweep. Note that a general implementation for any number of columns
can not be implemented with Register blocking and loop unrolling since the
number of deleted columns needs to be fixed to develop such function. It
would be an interesting approach left for future work to re-triangularize a
matrix in upper Hessenberg form when more than one column is deleted
and do so faster than our blocked Givens approach, or perhaps build a code
generator that will create Register blocking and loop unrolling functions for
different number of deleted columns. Furthermore, it would be a welcome
addition to implement and test additional block sizes even if done manually
as discussed in section 4.4.

We have provided very high test coverage, production-level testing indeed
and for all the applications we implemented. In the case of the Minimum Cut
we were able to test and cross check the results between Krause and Fujishige-
Wolfe [13] implementations making sure the outputs where correct in every
case. We then generated a test-oracle and implemented regression test-suites
to make sure that future delta improvements would not break the correctness
of the algorithm implementations. We even check the number of iterations
to make sure that future performance improvement changes leave the algo-
rithm functional behavior invariant. We did so too for the Log Determinant
application where we succeeded to match the results of Bach implementa-
tion [4] exactly. It would be nevertheless, a great improvement to provide
performance regression test-suites to check that delta improvements do not
wind up degrading performance. Having such performance test-suites plus a
diligent tracking of performance results via a version control system would
ensure that there is no unexpected performance degradation due to seem-
ingly innocuous code changes.

An important but trivial addition left for further work, would be to cre-
ate a additional Matlab adapter corresponding to the incremental update
of the EO evaluation function. In this case we simply require introducing
a new class implementation, i.e., tmatlab_sf_inc_adapter that subclasses
both tmatlab_sf_adapter and tabstract_sf_inc_context and add this in-
cremental variant as part of the “zero-dependency” Façade implementation
sfo_matlab_adapter.cc. Doing so will allow future Matlab applications to
take advantage of the more efficient incremental evaluation EO.
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As discussed previously, we have integrated the Iwata SFM kernel
tiwata_sfm_scaling_kernel as part of our framework but due to mistakes
in either side we could not get it to pass all of our application test-suites. Due
to time constraints we could not fix this and it would be a great improvement
to get the Iwata SFM kernel to pass all test-suites and then get performance
results using our benchmark framework implementation benchmark.cc.

Next, the runtime of the high-performance MNP kernels is affected by
many factors and levels:

• Environment variable MKL_NUM_THREADS: number of Threads available
to Intel MKL has levels 1,…,c where c could be the number of cores
available to the underlying platform or even more.

• Environment variable OMP_NUM_THREADS: number of Threads available
to OpenMP has levels 1,…,c where c could be the number of cores
available to the underlying platform or even more.

• Environment variable OMP_SCHEDULE: that contains scheduler type (static
, dynamic, guided, auto) and chunk size which is an integer number
and defines the block size assigned to one thread, , e.g., static,70.
The Register blocking with loop unrolling solution that computes fast
Givens rotations to update the R matrix has the innermost loop where
OpenMP is used as shown in code listing 4.19 is set to be configured
from environment via this OMP_SCHEDULE environment variable.

• Triangularization NB blocking size. So far we have implemented blocking
sizes 0,2,4,7,8,15 and 16. In general bigger block sizes tend to perform
best for larger problem sizes and take more advantage of parallelism via
OpenMP whereas smaller sizes, e.g., NB=4 are best suited for single
threaded and fast execution of smaller problem sizes. A batch process
that would require computing many problems of similar characteristics,
e.g., size etc would benefit from fine tuning this NB size to that specific
workload.

• Triangularization “mode”: so far we have three triangularization imple-
mentations blas3, openmp and auto-vectorization and their results
may vary in the future, e.g., once AVX2 is available, or Intel MKL
provides an inplace implementation of MMM of the form A = α · AB
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• Givens rotation primitive: we have sqrt-based, cblas_drotg, dlartg
and dlartgp. Some problems may take advantage of using the faster
but less accurate cblas_drotg implementation.

Some of these factors would naturally interact leading in some cases to
unexpected performance results, e.g., the NB triangularization block size and
OMP_NUM_THREADS would clearly interact. A further work where we do work-
load characterization depending on the application would also bring an extra
advantage. If we know where most of the time for that application is spent
and how, by exploring the tracing results we saw, e.g., in 6.6 and 6.8 then we
can better tune the different parameters accordingly. One can imagine that if
an application makes a lot of mistakes or Step 4 of the Wolfe algorithm 1 and
the mistakes are more costly, i.e., the deleted columns are at the beginning
of the matrices, then the algorithm will perform best for a given triangular-
ization mode and NB size and a specific OMP_SCHEDULE setting. Therefore we
would propose as extension of this work to first externalize all these factors
to, e.g., environment variables. Then develop an Experimental design, e.g.,
2k factorial design and ANOVA to study the effects of different parameter
combinations in the runtime and pick the best for the specific application at
hand.



144 Conclusions and Future Work



Bibliography

[1] E. Anderson, J. Dongarra, and S. Ostrouchov. Lapack working note
41: Installation guide for lapack. Technical report, Knoxville, TN, USA,
1992.

[2] P. Arbenz. Parallel numerical computing eth zurich, 2012.

[3] F. Bach. Convex Analysis and Optimization with Submodular Func-
tions: a Tutorial.

[4] F. Bach. Learning with submodular functions: A convex optimization
perspective. CoRR, abs/1111.6453, 2011.

[5] T. Badics. Maxflow generator in dimacs format, 1991.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, New York, NY, USA, 2004.

[7] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s
Perspective. Addison-Wesley Publishing Company, USA, 2010.

[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel tiled qr
factorization for multicore architectures. In Proceedings of the 7th in-
ternational conference on Parallel processing and applied mathematics,
PPAM’07, pages 639–648, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] S. Chellappa, F. Franchetti, and M. Püschel. How to write fast numerical
code: A small introduction. In Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE), volume 5235
of Lecture Notes in Computer Science, pages 196–259. Springer, 2008.

[10] I. Corporation. Intel® 64 and IA-32 Architectures Optimization Refer-
ence Manual. Number 248966-018. March 2009.

145



146 BIBLIOGRAPHY

[11] J. Edmonds. Combinatorial optimization - eureka, you shrink! In
M. Jünger, G. Reinelt, and G. Rinaldi, editors, Combinatorial optimiza-
tion - Eureka, you shrink!, chapter Submodular functions, matroids,
and certain polyhedra, pages 11–26. Springer-Verlag New York, Inc.,
New York, NY, USA, 2003.

[12] S. Fujishige. Submodular Functions and Optimization (2nd ed.). Elsevier
Press, Amsterdam, The Netherlands, 2005.

[13] S. Fujishige, T. Hayashi, and S. Isotani. The minimum-norm-point al-
gorithm applied to submodular function minimization and linear pro-
gramming. 2006.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1 edition, Nov. 1994.

[15] Z. C. Giovanni Azua, Andrei Fruza. How to write fast numerical code
project: Submodular function optimization for the s-t graph cut, 2010.

[16] G. H. Golub and M. A. Saunders. Linear least squares and quadratic
programming. Technical report, Stanford, CA, USA, 1969.

[17] G. H. Golub and C. F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[18] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method
and its consequences in combinatorial optimization. Combinatorica,
1(2):169–197, 1981.

[19] S. Hammarling and C. Lucas. Updating the qr factorization and the
least squares problem, 2008.

[20] Intel. Core-i7 lga 2011 datasheet volume-1, 2011.

[21] Intel. A guide to vectorization with intel ®c++ compilers, 2012.

[22] Intel. Intel compiler user and reference guide, 2012.

[23] Intel. Intel math kernel library, 2012.

[24] S. Iwata. A faster scaling algorithm for minimizing submodular func-
tions. SIAM Journal on Computing, 32:833–840, 2001.



BIBLIOGRAPHY 147

[25] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly
polynomial algorithm for minimizing submodular functions. J. ACM,
48:761–777, July 2001.

[26] S. Iwata and J. B. Orlin. A simple combinatorial algorithm for sub-
modular function minimization. In Proceedings of the twentieth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’09, pages
1230–1237, Philadelphia, PA, USA, 2009. Society for Industrial and Ap-
plied Mathematics.

[27] R. Jain. The Art of Computer Systems Performance Analysis: techniques
for experimental design, measurement, simulation, and modeling. Wiley,
1991.

[28] S. Jegelka and J. Bilmes. Submodularity beyond submodular energies:
Coupling edges in graph cuts. In Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pages 1897 –1904, june 2011.

[29] N. M. Josuttis. The C++ standard library: a tutorial and reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[30] A. Krause. Sfo: A toolbox for submodular function optimization. J.
Mach. Learn. Res., 11:1141–1144, Mar. 2010.

[31] A. Krause. Tutorial on intelligent optimization with submodular func-
tions, 2011.

[32] D. Kressner. A note on using compact wy representations for updating
qr decompositions, 2009.

[33] H. Lin and J. A. Bilmes. Optimal selection of limited vocabulary speech
corpora. In INTERSPEECH, pages 1489–1492. ISCA, 2011.

[34] K. Martin and B. Hoffman. Mastering CMake: A Cross-Platform Build
System. Kitware Inc, 01 2003.

[35] B. Meyer. Object-oriented software construction (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[36] S. Meyers. Effective C++ : 55 Specific Ways to Improve Your Programs
and Designs. Addison-Wesley Professional, third edition, May 2005.

[37] B. K. A. Om, D. Kressner, and E. S. Quintana-ortiz. Blocked algorithms
for the reduction to hessenberg-triangular form revisited, 2008.



148 BIBLIOGRAPHY

[38] J. Orlin. A faster strongly polynomial time algorithm for submodular
function minimization. Mathematical Programming, 118:237–251, 2009.
10.1007/s10107-007-0189-2.

[39] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press, 3 edition, 2007.

[40] M. Püschel. How to write fast numerical code, 2008.

[41] A. Schrijver. A combinatorial algorithm minimizing submodular
functions in strongly polynomial time. J. Comb. Theory Ser. B,
80(2):346–355, Nov. 2000.

[42] M. L. Scott. Programming Language Pragmatics, Second Edition. Mor-
gan Kaufmann, Nov. 2006.

[43] J. Siek, L.-Q. Lee, and A. Lumsdaine. Boost graph library.
http://www.boost.org/libs/graph/, June 2000.

[44] R. Steinmann. Applying the roofline model, 2012.

[45] P. Stobbe and A. Krause. Efficient minimization of decomposable sub-
modular functions. In Proc. Neural Information Processing Systems
(NIPS), 2010.

[46] B. Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2000.

[47] F. G. Van Zee, R. van de Geijn, and G. Quintana-Orti. Restructuring
the QR algorithm for High-Performance application of givens rotations.
Technical report, The University of Texas at Austin, Department of
Computer Sciences, Oct. 2011.

[48] D. S. Watkins. Fundamentals of Matrix Computations (3rd Edition).
John Wiley & Sons, Inc, New Jersey, USA, 2010.

[49] P. Wolfe. Finding the nearest point in a polytope. Mathematical Pro-
gramming, 1976.



List of Figures

1.1 Runtime(s) Minimum Cut Fujishige vs HPSFO-Fastest . . . . 9
1.2 Runtime(s) Log Determinant Fujishige vs HPSFO-Fastest . . 9
1.3 Runtime(s) Corpus Selection Fujishige vs HPSFO-Fastest . . . 10

4.1 Graph cut - Incremental evaluation example. . . . . . . . . . . 35
4.2 Matrix mutations to Sm×n and corresponding QR updates . . 39
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