mzuriCh ETH Library

Analyzing Covert Channels on
Mobile Devices

Master Thesis

Author(s):
Ritzdorf, Hubert

Publication date:
2012

Permanent link:
https://doi.org/10.3929/ethz-a-007305126

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-007305126
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Analyzing Covert Channels on
Mobile Devices

Master Thesis
Hubert Ritzdorf
Thursday 5™ April, 2012

Advisors: Prof. Dr. S. éapkun, C. Marforio

Department of Computer Science, ETH Ziirich

Abstract

In this work we investigate the problem of stealthy communication
between colluding applications on smartphones running the popular
Android operating system. Through collusion, applications can coop-
eratively perform operations they would not be able to perform sep-
arately, thus escalating their privileges. This can result in privacy in-
fringements and user data leakage. In order to collude, the two ap-
plications must communicate in a way that can bypass the application
isolation put in place by the operating system.

Throughout this thesis we present different ways to bypass the isola-
tion and thereby allow application collusion. As covert channels are
by definition harder to implement but also harder to detect, we use
them to create a circumvention that is harder to defeat. To understand
the full extent of this problem, we implement very different overt and
covert channels and analyse them by testing their throughput, bit-error
percentage and synchronisation time. Using our implemented chan-
nels we analyse some previously existing countermeasures, in particu-
lar TaintDroid and XManDroid, and comment on the countermeasures
strengths and limitations. Finally we use the lessons learned from im-
plementing these channels and propose individual countermeasures,
which can reduce the feasibility of creating such channels. In this
scenario preventing hidden communication channels remains an open
problem that we believe the research community should put more fo-
cus on.

Acknowledgments

I would like to take the opportunity to thank Prof. Srdjan Capkun for intro-
ducing me to this interesting topic and creating a productive work environ-
ment that made my thesis an enjoyable and insightful experience.

I would also like to thank Claudio Marforio for his excellent supervision of
my thesis and all the assistance and contributions he provided.

Futhermore I want to express gratitude towards Kevin Borgolte, Matthias
Herrmann, Luka Malisa, Joel Reardon and Petar Tsankov for their helpful
and enlightning thought exchange and last but not least for reviewing my
thesis. The helpful effort of Der-Yeuan Yu and Nan Zhong during the final
hours should also not go unnoticed.

Finally I want to thank Sven Bugiel and the members of System Security
Lab of the Center for Advanced Security Research Darmstadt for the very
interesting discussions, particularly about XManDroid.

ii

Contents

Contents

1 Introduction

2 Background

21 The Android Operating System
22 Related Work
3 Channels
31 Terminology
32 Prerequisites Lo
3.3 Setup and Testing Conditions
34 OvertChannels
34.1 Channel Description
342 Results e
35 CovertChannels.
3.5.1 Channel Description
352 Results
3.6 Collusion with Existing Applications
3.6.1 Channel Description
362 Results
3.7 FurtherChannels
4 Analysis of Existing Tools
41 TaintDroid e
411 Approach of TaintDroid
412 Circumvention using Implicit Data Flows
413 NativeCode
414 TaintSink Testing.
41.5 Detection of Existing Channels

iii

I

1ii

Contents

41.6 Possible Improvements 35

41.7 Evaluation 35

42 XManDroid e 35
421 Approach of XManDroid 35

422 Detection of Existing Channels 36

423 Evaluation 37

5 Countermeasures 38
51 General Techniques 38
5.2 Appropriate Countermeasures 38
5.3 Inappropriate Adjustments 42
54 Final Remarks 43

6 Conclusion 44
A Appendix 45
Bibliography 46

iv

Chapter 1

Introduction

Worldwide smartphones sales are rising rapidly and in the fourth quarter of
2011, Google Android [1] was running on more than half of the smartphones
sold worldwide [17]. Additionally, a recent study states that almost every
second Swiss owns a smartphone [9]. Therefore the security of these systems
has become an important topic.

On Android smartphones, new applications can be easily installed through
application markets and can therefore spread rapidly. At the time of this
writing over 450,000 applications are available on Google Play [2]. The com-
bination of the sheer number of applications mostly written by untrusted
parties and the feature-rich environment of a smartphone, often holding cor-
porate and private data, results in a lot of potential information leakage. A
single application having access to sensitive data, such as SMS or Contacts,
and access to the Internet, can leak sensitive data to any third party on the
Internet. Indeed such leakage has been uncovered numerous times [12, 13].
As a consequence users have become aware of the potential dangers of appli-
cations with a powerful set of permissions. However it is unclear to which
extent the application isolation can be circumvented so that two applications
can act as one powerful, even though the user carefully checked their permis-
sions. This can be achieved through collusion so that the two applications
escalate their privileges as they combine their previously separated sets of
permissions.

Previous work [24, 28] has identified this problem and provided different
channels between colluding applications that can lead to privilege escala-
tion. As a countermeasure, TaintDroid [12] presented a way of perceiving
the leakage of sensitive information by tracking the information flow of such
data within and between applications. However the focus has been explic-
itly limited to a certain group of channels. Additionally, XManDroid [4, 5]
offered a system to detect communication between applications based on
overt as well as some covert channels. It allows the policy-based filtering of

1

inter-application communication to prevent certain undesirable data flows.

We provide an implementation and detailed analysis of previously described
channels from Soundcomber [28] that use changes in volume or vibration
settings to transmit information. Furthermore we describe, implement and
analyse new channels. There are some simple channels that use the file
system, Android communication mechanisms or standard socket commu-
nication. Additionally, we have more covert channels using meta data or
side-effects of operations to communicate. Finally we also introduce a chan-
nel that makes use of an existing application. We study the practical dif-
ferences when implementing these channels and do an analysis in terms
of throughput, bit-error rate and synchronisation time. Using the analy-
sis results, when tested on different phones with different APIs, we point
towards the potential problems raised by covert channels. Using the infor-
mation gathered during implementation and testing, we introduce possible
countermeasures for channels, which have not been investigated so far.

Overall we analyse whether two less powerful and thereby seemingly harm-
less applications can pose a similar threat as a single, very powerful ap-
plication. We therefore investigate the power and applicability of different
channels as a mechanism to bypass the Android security model and allow
applications to escalate their privileges by combining them. In contrast to
most of the previous work, we mainly focus on covert channels as they
are an often overlooked way to bypass standard security mechanisms. We
additionally outline the strengths and weaknesses of the existing counter-
measures, pointing towards possible improvements.

In Chapter 2 we present a brief overview of the Android operating system
and the related work of this thesis. In Chapter 3 we describe the imple-
mented channels, our testing environment and the performance of our chan-
nels. In Chapter 4 we explain the some previously created tools and evalu-
ate their effectiveness against our channels. In Chapter 5 we propose and
evaluate possible countermeasures we found against our channels and we
conclude in Chapter 6.

Chapter 2

Background

In this chapter we present the reader with background information about
the Android operating system and related work.

2.1 The Android Operating System

In this chapter we briefly outline the main aspects of the Android operat-
ing system while keeping focus on aspects that will be relevant within the
context of this thesis.

The Android OS allows the installation of additional, third-party applica-
tions based on its powerful Application Programming Interface (API). Such
applications can be programmed using Java, which is then executed inside
the Dalvik VM. Additionally the applications can invoke native code using
the Java Native Interface (JNI). As a smartphone is a very feature-rich device
often containing a significant amount of sensitive data, the Android OS iso-
lates the different applications from each other and from certain resources.
Access to such resources has to be allowed by the user.

In order to allow the allocation of different permissions to different applica-
tions, Android offers a permission model that contains roughly 120 prede-
fined permissions!. These permissions range from access rights to sensors,
such as camera or microphone, over access rights to certain information,
such as contacts, to admission of communication, such as web traffic or
Bluetooth. One of the most important permissions is the INTERNET permis-
sion, which provides complete and unfiltered Internet access. Upon creation
of the application, the author has to define the required permissions for his
application. Upon installation the user can either choose to grant all the per-
missions and install the application or choose not to install the application
at all.

Inttp://developer.android.com/reference/android/Manifest .permission.html

http://developer.android.com/reference/android/Manifest.permission.html

2.2. Related Work

Once an application is installed, it is assigned a usually unique Unix user
id and the permissions are permanently granted so that no further user in-
teraction on this issue appears. The permissions are then enforced by both
the kernel and the Dalvik VM so that native code as well as Java code is
restricted according to the permissions. The kernel enforces some of the per-
missions by assigning the applications to certain groups and only allowing
certain operations to members of the according group [22].

However, certain interaction between the applications is desirable from the
principle of modularity and in order to simplify programming. Android
provides a possibility for inter-process communication (IPC) called intents.
The intents are objects that can be broadcasted on the system and allow the
specification of an associated action upon reception. They allow to start up
or notify other applications while providing additional data or can be used
to trigger an action, such as opening a web site in a browser. As intents can
trigger powerful actions, applications have the ability to restrict the set of
applications allowed to send a special intent and can thereby protect their
interfaces.

The smartphone usually comes with a certain amount of internal storage,
which holds the initial applications and provides the default installation lo-
cation for new applications. By default Android provides every application
with a private directory on the internal storage. Additionally a lot of users
prefer to use an SD memory card as an external storage to provide space for
big data files.

While we have outlined the permission model, we also want to emphasize
that some resources are freely accessible to every installed application. Cer-
tain system settings, such as volume or vibration settings, can be read and
edited without any special permission [28]. Additionally, no permission is
required for accessing information such as sensor data from accelerometers.

Overall, Android offers a wide range of features and resources. To protect
the user, access is limited by predefined permissions, which are statically
assigned to an application. The user has to make an informed decision
whether to grant a certain set of permissions to an application or not. Fur-
thermore Android only provides limited, well-defined IPC and otherwise
aims at isolating the applications from each other.

2.2 Related Work

In this section we present the related work for this topic and take a look at
previously described ideas and solutions concerning the confinement prob-
lem, covert channels and Android-specific research.

2.2. Related Work

In 1973, Butler W. Lampson introduced the Confinement Problem [21] as the
problem of limiting a running program from leaking data to third parties.
Lampson mentioned examples including leaking data through IPC, the file
system or file locks. Richard A. Kemmerer expanded on this and generalised
the notion of covert channels [19] in order to accommodate storage and
timing channels. He additionally presented a structured way to search for
covert channels.

In connection with Android there have been numerous publications through-
out the last years. Soundcomber [28] presented the concept of an Android
banking trojan combining information extraction out of phone calls with
communication through covert channels. This allowed low-privileged and
apparently harmless applications to coordinate and have a powerful impact.
Different covert channels on Android were presented. These channels were
using different system states, such as screen, volume or vibration settings,
as temporary data storage. We analyse some of these channels while also
providing faster and stealthier channels.

Davi et al. [10] have demonstrated that the permission-model can also be
bypassed through a chain of different attacks. They used low-level attacks,
such as heap overflows, and made use of unprotected components of priv-
ileged applications, which allow unprivileged applications to escalate their
privileges. This kind of transitive permission usage presents a serious threat,
on which we will elaborate later.

There are approaches proposing to modify the permission-based security
architecture slightly. Kirin [13, 14] was designed to check applications at
install time and reject them if they match a security rule that indicates un-
desirably powerful applications. Alternatively there has been an approach
to allow selective permissions [30] and thereby allow the user to install his
desired applications, while preventing too powerful permission sets.

In order to prevent unauthorized and undetected data leakage on a smart-
phone, TaintDroid [12] was developed. It is based on information flow track-
ing and will be discussed in detail in Section 4.1. However, the effectiveness
of taint tracking solutions for containment had been discussed before [8],
leading to the conclusion that the evasion of taint tracking can be trivial and
can appear in numerous different ways. On the other hand, previous work
has also demonstrated how such trivial evasion could potentially be tack-
led [26]. We illustrate the feasibility of different channels out of the scope of
TaintDroid.

Moreover, with XManDroid [4, 5] there is a security extension which tries to
cover different channels and block communication that could lead to privi-
lege escalation. We will discuss XManDroid in detail in Section 4.2.

Chapter 3

Channels

In this chapter we present different communication channels between two
Android applications. We present overt and covert channels that we have im-
plemented and will discuss their individual advantages and disadvantages.
Additionally, we present a channel only requiring the installation of a single
application and some ideas for future channels.

The channels pose a problem to the Android security model, as through
their usage, applications can pool their privileges and thereby extend their
available set of permissions. Colluding using such a channel allows two
low-privileged applications to perform an operation, none of the two would
have been able to perform individually.

| network \
| N :
' ™ e 1 [N

Contacts Weather
Manager

F=F==
source] sink

Tl g U J
1 I]
! private smartphone data ,I

Figure 3.1: lllustration of an application collusion attack: as it has access to private data, the
Contacts Manager acts as source and, as it can access the Internet, the Weather application
acts as sink. The source sends a message to the sink through a channel [24].

3.1. Terminology

3.1 Terminology

We will describe two different types of communication channels: overt and
covert channels. As defined by Kemmerer [19], overt channels make use of
data objects protected by access control, such as files or buffers. These data
objects are intended to be used for data storage. On the other hand, data
objects employed in covert channels were intentionally designed to store sys-
tem state. However, by influencing the system state, such objects are subject
to manipulation by processes running on the system and can therefore be
used for communication.

As shown in Figure 3.1, we will describe channels allowing information
flow from a source to a sink. If not stated otherwise, the source will be an
application having access to sensitive information, but without outbound
connection. The sink application however has an outbound connection while
not having direct access to sensitive data. The transmitted data will be a
message containing potentially sensitive information.

3.2 Prerequisites

Some of the channels require a shared secret between source and sink, such
as a common meeting point or meeting time, in order to communicate. How-
ever, we feel that the search for such a shared secret in different applications
can not be used as a detection method. Either the secret might be heavily
obfuscated or the involved applications might generate it on the fly out of
information that is available to all of them.

There are channels requiring a somewhat “quiet” environment or commu-
nication medium. We view this as realistic assumption. Applications can
statically communicate at times that are likely to be “quiet”, e.g. at night.
Otherwise applications could dynamically analyse the users behaviour and
initiate the communication, as soon as the conditions appear to be favorable.
An example condition could be that the screen has been turned off for a
substantial period of time.

For some channels it would be beneficial, if source and sink application
would run under the same Unix user id. However, we experienced through
the implementation that this is not a necessity and therefore assume the
applications to have different user ids. We believe this improves the stealthi-
ness of the channels.

To signal the end of the message to the receiver, most of the channels transmit
a 0-byte. In case such a byte could appear in the communication, a proper
encoding or a length field would have to be introduced in order to prevent
data loss.

3.3. Setup and Testing Conditions

<<reports times>> <<reports m’, times>>
B ChannelManager 2

<<instantiates>>

<<instantiates with m>>

Source o Sink
@ send(byte[] msg) <<SONCS Mx> a recv()
@ synchronize() & synchronize()
SourceX SourceY SourceZ SinkX SinkY SinkZ
= send(byte[] msg) | |& send(byte[] msg) | |& send(byte[] msg) = recv(): byte[] & recv(): byte[] a recv(): byte[]
@ synchronize() @ synchronize() & synchronize() @ synchronize() | |& synchronize() | |& synchronize()

Figure 3.2: Overview of the used testing framework: The ChannelManager instantiates a source
and a sink instance, the source sends the message m to the sink and the colluding applications
report back to the ChannelManager for analysis.

3.3 Setup and Testing Conditions

We implemented the channels on two phones: Google Nexus One and Sam-
sung Galaxy S. The Google Nexus One ran Android version 2.3.6, Code-
name Gingerbread, which at the time of this writing is the most widespread
Android Platform Version!. The Samsung Galaxy S ran version 2.2.1, Co-
dename Froyo, which had the second biggest market share. The respective
API Levels were 10 and 8.

In order to test the functionality and characteristics of the channels, we im-
plemented a testing framework, as shown in Figure 3.2. The framework
allowed us to efficiently test the different channels using different configu-
rations. The central component is the ChannelManager, which is started on
the phone and coordinates all the actions. Depending on user input, the
ChannelManager picks a channel, instantiates the sink and instantiates the
source with a message. When started, source and sink synchronise and com-
municate while measuring their synchronisation times and communication
times. The applications report back their results including the measured
times and the received message to the ChannelManager. Finally the Channel-
Manager computes the bit-error percentage, saves all the information and
either starts additional tests or notifies the user.

We send messages of sizes 4, 8 and 135 bytes, as test messages. They ac-
cordingly represented short pieces of information, GPS coordinates and six
raw entries from the Contacts database with name and telephone number.
When transmitting the information the applications were running in the

Ihttp://developer.android.com/resources/dashboard/platform-versions.html

http://developer.android.com/resources/dashboard/platform-versions.html

3.4. Overt Channels

background and the screen as well as services, such as WiFi or Bluetooth,
were turned off to reduce the general noise level.

In case the channel is based on a volatile data container, synchronisation
is required in order to ensure that both applications are ready to commu-
nicate and none of the data is lost. The synchronisation time is measured
from the point when both applications are running until they are synchro-
nised in a way that they can begin communication. Although we did not
perform optimisation on these times, we present the synchronisation times
for completeness.

In order for the applications to continue running in the background, at least
one of them has to acquire a wake lock?, so that the CPU keeps running.
In our tests we use a PARTIAL_WAKE_LOCK. The acquisition of a wake lock
requires the WAKE_LOCK permission. Colluding applications could therefore
either decide to acquire this permission or communicate at a different time,
e.g. while charging, when the smartphone might keep running depending
on the user’s settings.

3.4 Overt Channels

In this section we present overt channels. They are not as well hidden as the
later presented covert channels. The visibility of the overt channels could be
limited by employing obfuscation techniques such as encoding.

The effectiveness of such obfuscation techniques can be limited and is subject
to current research as we will outline in Chapter 4.

3.4.1 Channel Description

The descriptions of the channels in this section include their basic idea, their
special characteristics as well as required permissions for the communica-
tion to work.

Communicating through External Storage

As users might want to store additional content such as music or video data
on their smartphones, they have the possibility to use external storage. This
channel makes use of such extra storage given two prerequisites are fulfilled.
First, External Storage, e.g. an SD card, has to be available. Second, the SD
card has to be writable by the source. This requires the source application
to have the WRITE_EXTERNAL_STORAGE permission. However, this is a quite
common permission, requested by a lot of applications.

2http://developer.android.com/reference/android/os/PowerManager .html

http://developer.android.com/reference/android/os/PowerManager.html

3.4. Overt Channels

The channel itself is very simple. The source application writes to a pre-
defined file in a public directory on the external storage and the sink ap-
plication reads from this file. In our implementation we chose to write
into the download directory. This appears relatively stealthy to us, as the
user will probably use the Downloads application to browse this folder. The
Downloads application however will only show actual downloads, so that
the communication file remains invisible to the ordinary user. After a rea-
sonable amount of time, the source could also delete the file again in order
to lower the visibility of this channel.

This communication is clearly asynchronous and therefore does not require
both applications to run at the same time. The implementation of the chan-
nel is fairly easy and big data chunks can be easily transferred.

Communicating through Internal Storage

The Android OS provides full access to a private directory on the inter-
nal storage for every application, which can be used to organize private
data®. This allows the construction of a covert channel if the source appli-
cation writes to a private file on its internal storage space and marks this
file as world-readable. Given that the sink application knows the name of
the source application, it can read from the world-readable file. In contrast
to other Unix systems, the Android implementations we analysed did not
offer a world-writable directory, such as /tmp/. We therefore we placed the
file in a private directory.

This channel requires no permissions at all. As in the previously presented
channel, the communication is asynchronous and straightforward to imple-
ment. However, the channel is less stealthy in the sense that it is relatively
easy to detect the creation of a world-readable file in a private directory.

Using the System Log

Android offers a central Logging facility*. This is a useful development fea-
ture, which provides a simple way of logging with different verbosity levels.
Android internally creates multiple different log files related to different con-
tents. Applications that requested the READ_LOGS permission can read those
log files. It has been shown before that these logs can contain lots of critical
and private information [23]. Therefore, the read permission is also labeled

as “dangerous” in the Android Reference®.

Shttp://developer.android.com/guide/topics/data/data-storage.html#
filesInternal

*http://developer.android.com/reference/android/util/Log.html

Shttp://developer.android.com/reference/android/Manifest.permission.html#
READ_LOGS

10

http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal
http://developer.android.com/reference/android/util/Log.html
http://developer.android.com/reference/android/Manifest.permission.html#READ_LOGS
http://developer.android.com/reference/android/Manifest.permission.html#READ_LOGS

3.4. Overt Channels

To construct the channel, the source writes a specially marked log message.
The sink application requests the READ_LOGS permission and parses the logs
for such special messages. Parsing the logs is simplified, due to the fact
that Android provides the logcat tool®, which allows the specification of a
message filter and can therefore be used to search for the special messages.

The logcat tool further allows every application to clear the entire logs. This
can be used to hide the written messages towards other user applications
once they have been read by the sink. However whether this increases the
stealthiness or not is subject to debate, as a clearing of the log is also easily
detectable and points to possible misuse.

More importantly, the sink has to read, while the special messages are still in-
side the log. The size of this time frame depends on the amount of messages
other applications are logging, the size of the log as well as the appearance
of log clearings. Therefore a “quiet” environment makes a lossless transmis-
sion easier to achieve. By repeatedly inserting messages over time, the source
can increase the chances of the sink finding at least one of the messages.

The log is designed to handle ASCII data. Therefore non-ASCII messages
have to be encoded, e.g. using Base64. The upper limit for a single line in
the log is approximately 4000 characters. Therefore longer messages have to
be split up into multiple fragments. Furthermore the log works as a ring
buffer, which can cause trouble when sending messages bigger than the ring
buffer size. Overall this channel requires a loose synchronisation as well as
some implementation specifics, which make it harder to implement than the
previously presented channels.

Shared Preferences

As a programming feature, the Android OS provides the ability to persis-
tently store and manage key-value pairs as Shared Preferences’. These
preferences can be created, accessed and modified through a simple API.
When creating Shared Preferences, the creating application can set their op-
erating mode. The operating mode can include MODE_WORLD_READABLE and
MODE_WORLD_WRITABLE, which as they suggest allow other applications to
read or write the Shared Preferences.

In order to allow an information flow the sink application creates a world-
writable Shared Preference file for itself. The source application stores the
data in a String object inside the created file. The sink can then fetch the
data directly from its Shared Preferences. As with the previous Log chan-
nel, binary data should be encoded before transmission in order to allow a
complete and correct transmission.

bhttp://developer.android.com/guide/developing/tools/logcat .html
"http://developer.android.com/guide/topics/data/data-storage.html#pref

11

http://developer.android.com/guide/developing/tools/logcat.html
http://developer.android.com/guide/topics/data/data-storage.html#pref

3.4. Overt Channels

This channel requires no extra permissions, allows asynchronous communi-
cation, the permanent storage of multiple messages and is easy to implement.
However creating a world-writable Shared Preference can be detected rather
easily. As the API creates and manages XML files in the applications internal
storage directory, it would be possible to obfuscate this channel by replacing
some of the API commands with standard file operations.

Using Broadcast Intents

We previously outlined how applications can perform inter-process commu-
nication using intents. This allows the creation of a trivial and straight-
forward channel. The source sends the data to the sink as part of an intent.
Therefore it makes sense for the two applications to agree on an intent action.
The source sets the action when creating the intent and the sink filters for the
matching intents. This way the two applications can easily communicate.

The described procedure requires no extra permissions however the two ap-
plications have to be running at the same time, because the intent is volatile.
To allow the source application to check, whether the sink is currently run-
ning as well, we implemented an acknowledgment sent back from the sink
to the source. The acknowledgment uses the same technique and ensures the
two communication partners of their presence.

The implementation of this channel is relatively straightforward, however its
detection is easy, as the two applications communicate through the Android
IPC mechanism, which can be filtered as seen in Section 4.2.

Using Unix Sockets

Employing native code, applications can efficiently communicate using Unix
sockets. Unix sockets are a well-known method of inter-process communica-
tion allowing two processes to communicate in a server-client model. Unix
sockets can either be bound to a file, be unnamed or use the abstract names-
pace®. For our implementation we chose the abstract namespace, because
we can pick an address without requiring shared access to a file on the file

system.

To allow communication, the sink opens up a socket in listening mode and
the source connects to the listening socket. Afterwards the source can send
data through the socket. The sink receives the data and might have to re-
assemble the fragments to restore the original data.

The communication is synchronous, but Unix sockets inherently contain
ways to synchronise the two applications and check for the presence of the

8http://www.kernel.org/doc/man-pages/online/pages/man7/unix.7.html

12

http://www.kernel.org/doc/man-pages/online/pages/man7/unix.7.html

3.4. Overt Channels

Overt Channels Throughput (Kibit/s) Bit Errors (%)
Nexus One I Galaxy S Nexus One | Galaxy S
[Unix Sockets 340.45(+ 154.02) | 34.78(+ 11.39) | 0.00(£ 0.00) | 0.00(0.00)

Internal Storage | 292.03(% 50.06) | 32.60(+ 847) | 0.00(: 0.00) | 0.00(% 0.00)
Shared Preferences| 75.81(+ 6.83) 31.00(+£ 2.75) 0.00(% 0.00) | 0.00(£ 0.00))
Broadcast Intents 40.58(+ 8.41) 26.74(+ 4.88) 0.00(% 0.00) | 0.00(£ 0.00))

External Storage t| 11.55(+ 1.10) 6.12(£ 3.95) | 0.00(% 0.00) | 0.00(% 0.00))
System Log 2.94(+ 0.03) 2.14(£ 0.11) | 0.00(£ 0.00) | 0.00(=£ 0.00)

Overt Channels Synchronization (ms)

Nexus One | Galaxy S

[Unix Sockets 699.8(+ 126.8) \ 441.0(x 186.3)

Internal Storage N/A

Shared Preferences N/A

Broadcast Intents 88.8(+ 19.3) \ 61.8(+ 26.4)

[External Storage t N/A

System Log 501.3(£ 0.1) [516.3(£ 4.2

T Requires extra WRITE_EXTERNAL_STORAGE permission.
T Requires extra READ_LOGS permission.

Table 3.1: Listing of implemented overt channels with corresponding throughput in kibibit
per second, bit-error percentage and synchronisation time (with the 95% confidence interval in
parenthesis). The values shown are averaged over 10 runs, with 3 messages each, for both the
Nexus One and the Samsung Galaxy S.

opposing side. The sink can wait for a new connection while the source can
repeatedly try to connect until it is successful.

Because of the optimized and well-understood technology of this channel, it
offers a very high bandwidth. However, the data is being openly communi-
cated, which allows relatively easy detection.

3.4.2 Results

Table 3.1 shows the measurement results for the described overt channels. As
expected, during the measurements of these channels no bit errors occurred.
The table also gives the synchronisation times for channels, which require
synchronisation. As the other channels use persistent storage and therefore
can communicate asynchronously, they do not require synchronisation. As
stated previously, synchronisation times are not optimized.

Considering the high throughputs of these channels, the biggest test message
of 135 bytes is comparatively small. This results in relatively large variations
and therefore larger confidence intervals. When tested with bigger messages
these channels achieve throughputs, which have significantly higher orders
of magnitude. However we present these results in order to keep the overt
channels comparable to the later presented covert channels.

13

3.5. Covert Channels

These channels clearly offer simple and reliable ways of communication.
Their high throughputs allow the transmission of sensitive information of
different sizes in sub-second time intervals. They are therefore very power-
ful and should be blocked.

3.5 Covert Channels

In this section we will outline the covert channels we implemented. In con-
trast to the previously explained overt channels, they rely on data containers
that were not intended for communication. Therefore, they are generally
harder to implement, but also harder to detect. We also discuss their perfor-
mance when tested on the smartphones.

3.5.1 Channel Description

The channels described here are implemented in the previously described
setup. As all channels do not store the messages persistently, they need a syn-
chronisation mechanism. If not stated otherwise the synchronisation mecha-
nism, uses the same technique as the channel and assures the two colluding
applications of the presence of each other. None of the channels presented
here requires additional permissions.

Using a Single Setting

As outlined, Android phones allow the user to customize a variety of set-
tings. Amongst other things users can set the volume settings used when
listening to music. Changing this particular setting requires no permission,
while changing other settings require certain permissions’.

Changing such a setting can be stealthy towards the user. If the setting is
not used during the time of transmission, e.g. no music is played, the user
does not notice it. Additionally, the original state should be restored after
the communication has ended.

As any application can change this setting, it presents another possible data
storage method and allows the construction of a channel [28]. During the
communication, the setting is set to three different values: 0,1,2. The values
0 and 1 are used to by the source signal the next bit to the sink and the value
2 is used by the sink to signal it has read the previous bit. Figure 3.3 shows
an example of signaling the bits 1 and 0 to the sink.

This particular implementation requires the setting to allow at least three
different values, but even with a binary setting such a channel is possible,
when using a time-slotted protocol. However such an implementation is

http://wuw.android-permissions.org/permissionmap.html

14

http://www.android-permissions.org/permissionmap.html

3.5. Covert Channels

source Setting sink
read
2
set 1 read
1
QL set 2
é read
2
set 0
read
0
set 2
Y Y Y

Figure 3.3: Single Setting channel transferring the bit sequence 1-0

slower and more error-prone, as the length of the time slot is difficult to
choose. A shorter time slot increases the throughput, while also increasing
the risk of bits being transferred incorrectly due to unfavourable scheduling.

As two applications are very frequently reading from and writing to a sin-
gle setting, this channel can be detected by a supervisor. Such detection
approaches will be discussed later. The possible throughput of this channel
could be improved by incorporating more settings, as explained below.

Using Multiple Settings

This channel is very similar to the previously explained Single Setting chan-
nel. It uses system settings, which do not require permission to change them,
to communicate. As an improvement this channel makes use of multiple dif-
ferent such settings at the same time.

In our implementation we used one vibration setting for synchronisation
and multiple volume settings for parallel data transfer. This way two bytes
are transferred after each synchronisation. As with the previous channel, it
is only visible to the user if one of the settings is in use during communica-
tion, however it can be detected by a supervisor.

Using Automatic Broadcasts

Previous work [28] has shown that changing the vibration settings can also
be used for creating a different kind of channel. Android has special settings,

15

3.5. Covert Channels

which, whenever changed, trigger an intent to be broadcasted through the
system. The vibration settings are one of these settings!”.

Applications that have previously registered for this broadcast will receive
an intent informing them about the new state of the vibration setting. Reg-
istration for this broadcast is available to any application, as it requires no
specific permission. As the broadcast is basically the transmission of a single
bit, it can be used to create a covert channel.

After the sink application has registered for these specific broadcast, the
source simply changes the vibration settings according to the bit pattern of
the messages. The sink receives the intents, decodes the bits and reconstruct
the message. The Android OS takes care of the fact that the intents reach
the sink in the correct order and delivers the intents rather quickly depend-
ing on the CPU power. Therefore the channel has rather high bandwidth,
considering its single bit transmissions.

Intent Type

As intents provide an easy way for communication, we try to utilise them
while not openly communicating data. Therefore, we encode the transmitted
data in the additional fields of the intent, specifically the flags!!.

Additionally we could make use of other available intent features, such as
the extras. Extras can store additional data and could be used in a covert
way, e.g. by encoding information in the number of attached extras or by
the existence or non-existence of certain extras.

Another available setting is the action field, which tells the intent receiver
which action it shall perform. By using two actions such as SaveZero and
SaveOne the information could be solely encoded in the sequence of received
intent without the need to add any additional information.

Overall these channels are fairly easy to implement, as the communication
uses the provided API There is a vast variety of different possibilities for
encoding the data, which makes it hard to detect what data is transmitted.
However, depending on the amount of bits transmitted per intent, it is fea-
sible to detect that the two applications are communicating as potentially
many have to be exchanged.

Onhttp://developer.android.com/reference/android/media/AudioManager .html#
VIBRATE_SETTING_CHANGED_ACTION

Uhttp://developer.android.com/reference/android/content/Intent . html#
setFlags’%28int%29

16

http://developer.android.com/reference/android/media/AudioManager.html#VIBRATE_SETTING_CHANGED_ACTION
http://developer.android.com/reference/android/media/AudioManager.html#VIBRATE_SETTING_CHANGED_ACTION
http://developer.android.com/reference/android/content/Intent.html#setFlags%28int%29
http://developer.android.com/reference/android/content/Intent.html#setFlags%28int%29

3.5. Covert Channels

Unix Socket Discovery

This channel seeks to overcome the shortcomings of the previous channel
using Unix sockets, while maintaining most of its benefits. It uses Unix
sockets from the abstract namespace as well, however this time no data is
transferred between the sockets. The source application acts as a server and
sometimes provides, sometimes does not provide a listening socket. By
trying to connect to the listening socket of the source and evaluating the
result, the sink receives single bits. Whenever the connection attempt failed,
the sink decodes this as a 0-Bit and as a 1-Bit upon successful connection
establishment.

In order to synchronise the two sides, we use two additional, abstract Unix
sockets. These sockets are used to signal the beginning and end of a single
bit-transmission. The source application provides them to signal the informa-
tion and the sink application repeatedly tries to connect until it is successful.
As the primary communication socket, these synchronisation sockets do not
receive any data, but communicate through successful connections.

This channel offers a relatively high bandwidth while its design still leaves
room for improvement, e.g. by using multiple sockets for communication.
Moreover this channel is also relatively covert in the sense that no data trans-
fer is appearing.

Thread Enumeration

As on a regular GNU/Linux, /proc/ holds information by the kernel about
the system and the state of processes running on it. Inside /proc/ each pro-
cess has a dedicated directory. Amongst other things this directory contains
the status file that provides insight into the memory usage, signal handling
and the number of used threads.'?

The status files are world-readable in the investigated Android versions and
a process can “write” its status file by performing the corresponding oper-
ations. In our channel we combine these read and write operations to a
communication channel based on two of the values inside the status file:
Number of threads and locked memory size.

The source application creates and terminates dummy threads, in order to
influence the number of threads. This value is read by the sink application,
which derives the transmitted data from it. In order to achieve synchronisa-
tion between the two applications, they manipulate the locked memory size
and thereby signal the other side their current state. This ensures that the
number of threads is read if and only if the desired value has been reached.

12http: //www.kernel . org/doc/man-pages/online/pages/man5/proc.5. html

17

http://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html

3.5. Covert Channels

After initial tests, we detected that there is a certain amount of noise on
this channel. Initially the source application had nine threads. However
one of them was periodically disappearing. In order to get a reasonable
bandwidth and account for the noise, we do the following. We transmit
four bits at a time. For the possible values between 0 and 15 the double
amount of threads is created. This allows the sink to eliminate the noise of a
single thread disappearing periodically.

The status file offers more information, such as additional memory usage
information or signal bitmaps, which could be used to achieve a higher band-
width. Additionally, parsing from the stat file, inside the process directory,
can be more efficient. However the implemented channel demonstrates the
problem of world-readable /proc/ files. A detection of this channel would
be feasible based on the observation that two applications are frequently
reading each others /proc/ files.

w »)]

N

User processes time Te (jiffy)

L L L L L L L
0 125 250 375 500 625 750 875 1000
Timeslot (ms)

Figure 3.4: The schematic rise of the value inside /proc/stat when sending the bits, which
are given at the top of the figure.

Reading /proc/stat

The previous channel has shown that reading from the /proc/ directory can
be beneficial when trying to create a covert channel. However in the previous
example source and sink could be identified relatively easy when supervising
/proc/ directories. This channel also reads from /proc/ but in a more covert
way.

/proc/stat saves a number of kernel and system statistics, including the
amount of time the system spent working on user processes'>. This is a

Bhttp://www.kernel. org/doc/man-pages/online/pages/man5/proc.5.html

18

http://www.kernel.org/doc/man-pages/online/pages/man5/proc.5.html

3.5. Covert Channels

-©-Throughput

10’; - Bit errors percentage||1-8

9r 11.6

8t 1.4
(%2}
g 7+ 1.2 9
g_ 6L 1 [

(]

< =
% 5r -10.8 E
E 4r 0.6 @
=

3r 0.4

2r+ 10.2

1 - —- B—8—1.-0

0 0.2

100 125 150 175 200 225 250 275 300

Figure 3.5: lllustrated trade-off between higher throughput and lower bit-error percentage by
varying the length of the static time slot for the channel reading from /proc/stat. The amount
of bit errors decreases with bigger time slots and vanishes for a time slot of 300 ms. These
results were averaged over 10 runs, with three messages each, taken on the Samsung Galaxy S.

system-wide value and therefore does not directly link to a single process.
As this value is monotonically increasing, user processes can only influence
the amount by which the value increases.

A channel can be constructed from these starting points as follows. The col-
luding applications wait for a time with limited activity of user processes
in order to limit the amount of noise introduced by other applications. The
source application either tries to significantly increase the counter by per-
forming intensive dummy operations or sleeps in order not to increase the
counter, as seen in Figure 3.4.

We implemented this channel using fixed time slots. During a time slot the
source performs one of the described actions depending on the current bit.
The sink takes the value from /proc/stat at the beginning and end of the
time slot and computes the difference. However, there is still a major prob-
lem to be solved. The sink has to define a threshold to decode the computed
difference into a bit. As this threshold depends on the environment as well
as the architecture, we implemented a learning phase, which allows the sink
to find a usable threshold value.

During the learning phase, the sink will observe time slots with and with-
out computation by the source application. We compute the threshold by
averaging over the observed values. Using this threshold the two sides can
perform the synchronisation and communication of the channel.

We believe that this channel makes it harder to identify the two colluding
applications than the previous one. Especially the source application is hard

19

3.5. Covert Channels

to identify as it is simply performing dummy computations from time to
time. However this channel is also significantly harder to implement. It
requires a “quiet” environment in terms of user process activity, a learning
phase to determine the correct threshold value and even afterwards is not
safe from bit errors due to noise. Within certain bounds, throughput can be
traded against bit-error rate by varying the static length of the time slot, as
shown in Figure 3.5.

Free Blocks on the File System

For this covert channel we store information in a container that is accessible
and mutable by both applications: the amount of free blocks on the file
system. When the two colluding applications write data into their own
private directories they use the same file system partition. By querying
the number of free blocks, they can infer information about the file system
usage of the other application. Out of this, we construct a channel. The
source application will either reserve more space or free up space on the file
system to signal a 1 or a 0.

When only the amount of free space is used as a communication mechanism
several problems arise. First of all, there will probably be noise on this
channel due to the fact that other applications also use the file system. In
order to deal with the noise we use denoising on this channel. As the two
applications communicate by the number of free blocks on the system, the
source application will either reserve or free three blocks at once and the sink
application will decode this using certain thresholds. Different denoising
techniques could be applied, but we found these values to be a good trade-
off between required time of the file system operation and the amount of
noise that can be compensted.

A more general problem arises from the fact that this channel operates us-
ing fixed timeslots for synchronisation, as no other mechanism is available.
Fixed timeslots however are conflicting with generally unbounded times for
file system operations. Therefore the length of the time slot is a trade-off
between throughput and possible bit errors, due to overlong file system op-
erations that extend the time slot. If we want to ensure that our channel
has a very low error rate, then we have to make sure that almost all execu-
tion times are within the time slot. This leads us to focus on the worst-case
execution times.

The length of a proper time slot depends on the used file system and its
characteristics. In our tests we experienced that the YAFFS2 file system on
the Nexus One and the Robust FAT File System (RFS) on the Galaxy S were
behaving significantly different. First of all their block sizes are 4 KiB and 16
KiB respectively. Therefore the channel on the Galaxy S has to write more
data to the file system. With regards to execution times, our measurements

20

3.5. Covert Channels

have shown that the execution times on YAFFS2 are more predictable. On
RFS however we observed file system operations, which took longer than
500ms. Such operations derail the synchronisation of the channel and cause
bit errors.

Furthermore the proper length of the time slot also depends on the expected
noise level induced by concurrent file system usage of other applications.
These adjustments make the implementation rather difficult. However the
resulting channel does not require any additional privileges and is very
stealthy, as the source application just changes the size of a private file. This
channel could be enhanced by combining it with another technique that pro-
vides synchronisation, as the currently used fixed timeslot is dependent on
worst case runtimes.

Processor Frequency

Energy saving is an important issue on smartphones, but at the same time
they are supposed to offer powerful performance when necessary. As a
solution Android makes use of Dynamic Frequency Scaling (DFS), which
is available in the Linux kernel. In DFS, depending on the current load
pattern, the kernel decides how to change the clock frequency according to
a selected algorithm: the frequency governor. The choice of a governor and
its associated parameters determines how fast the kernel raises or lowers the
frequency.

Using the fact that user processes can influence the clock frequency by in-
ducing a high CPU load, we can construct a channel. While the sending
application creates a load pattern according to the message, the receiving
application observes the development of the processor frequency and recon-
structs the bits.

Obtaining information about the current clock frequency can be performed
in different ways, e.g. rather stealthy by repeatedly running a fixed number
of operations and observing their execution times. In case of high clock
rates execution times should be lower than in case of the lower clock rates.
However, constructing such a channel is non-trivial as the two applications
have to be tightly synchronised.

As such a tight synchronisation depending on different execution times and
scheduling is hard to achieve, we decided to retrieve the current clock fre-
quency in a faster and more reliable way: by querying it from the kernel
by reading the value of the special file /sys/devices/system/cpu/cpu0/-
cpufreq/scaling_cur_freq't. Through the use of multiple read operations
we try to denoise the value in case of fast-changing governors and check
whether it is ramping up over time, which would be the expected behaviour

Yphttp: //www.kernel. org/doc/Documentation/cpu-freq/user-guide.txt

21

http://www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt

3.5. Covert Channels

Processor Frequencies during Communication

Galaxy S —=—
Nexus One —>—

e = a]

Processor Frequency

HE-E-E--- T
AXXXHXRX

nmE

Time (10ms intervals)

Figure 3.6: An example showing the different patterns in processor frequency caused by different
frequency scaling governors, when creating 300ms of heavy CPU load.

in case the sending application intensively uses the CPU for an extended
period of time. Fetching the current frequency value this way however is
less stealthy than the previously presented way. For this channel we chose
a simpler and more reliable method as its construction provides additional
challenges.

The potential throughput of the channel depends on how well user processes
can control the clock frequency. The faster the clock frequency changes the
shorter the timeslot and the higher the potential throughput can be. This is
because within a timeslot the processes have to wait until the desired state
is reached and wait again until processor frequency returned to its original
state. How fast the frequency can change depends on multiple factors. Most
importantly the CPU frequency scaling governor and its parameters.

In our experiments we came across the ondemand on the Nexus One as well
as the conservative frequency governor on the Galaxy S. As the names sug-
gest the ondemand governor provides quick changes in the processor fre-
quency, when demanded, while the conservative governor smoothly adjusts
the processor frequency!®. Additionally the chosen parameters influenced
the governors in such a way that decisions about frequency changes where
less frequent and less drastic for the conservative governor. An example can
be seen in Figure 3.6, where the ondemand governor on the Nexus One reacts
much faster and therefore allows a potentially higher throughput.

The creation of a channel is generally possible, however, the chosen fre-

Bhttp: //www.kernel . org/doc/Documentation/cpu-freq/governors.txt

22

http://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

3.5. Covert Channels

quency governor and its options significantly influence the potential through-
put and thereby the practical relevance. As seen, this channel is not easy to
implement. It is stealthy except for the fact that the sink queries the current
frequency many times. This channel is however particularly noise-prone
and a “quiet” execution environment is required.

Timing Channel

Timing channels have been long known as a way of extracting informa-
tion [20]. We present this Timing Channel that can be used for covert com-
munication. As two colluding applications are running on the same phone,
they share resources, such as the CPU. Different processes, which are com-
peting for resources, interfere with each other and thereby influence each
others execution behaviour. This allows a channel in which the presence
and absence of interference can be used to transmit information. The send-
ing application either does or does not perform some CPU-intensive opera-
tions. The receiving application always performs CPU-intensive operations
and measures their runtime. Assuming roughly fair scheduling, the receiv-
ing application should be able to determine the source applications execution
state.

In our implementation both applications perform dummy RC41¢ operations.
After synchronisation, they communicate in fixed time slots and transmit
one bit per slot. The source signals a 1 by doing computation in the slot and
signals a 0 by sleeping. The sink goes through an initial learning phase in
which it observes the spectrum of measured execution times in order to es-
tablish a threshold allowing the distinction between 1 and 0. As a threshold
we use the moving average of previously observed execution times. After
receiving enough measurements, the sink enters the synchronisation phase.
Upon successful synchronisation the actual communication begins.

This channel is based on multiple assumptions. In order for the two appli-
cations to successfully communicate, they need relatively consistent channel
behaviour. This includes that execution times throughout the communica-
tion time do not differ significantly. An especially negative impact is in-
curred by other applications that produce short, bursty CPU usage. These
applications act similarly as the source application and can therefore cause
the sink application to detect a 1, while a 0 was sent. Through our experi-
ments, we found the Java Garbage Collection to have such CPU-usage pat-
terns and cause the mentioned bit errors.

In order to avoid noise coming from processor frequency scaling, as ex-
plained for the Processor Frequency channel in Section 3.5.1, the two sides
have to “wake up” the CPU. This ensures a certain processor frequency and

6http: //wuw.openssl. org/docs/crypto/rc4.html

23

http://www.openssl.org/docs/crypto/rc4.html

3.5. Covert Channels

20

T T T T
Pooo® @nen 6S@BED 0D AWEFE 0O LI @ BRDO @@@gﬁ@@ogm@%

ommﬁm@oom o%ﬂm @‘%@00 @0 g@m@@»mzmm@qpm@@
L

ié), s aP@O HWOED @ SEHEB VW ED AW O X COBROEED
(0]
£
= © :
14 @ o0 ® 06 © @ O TWW O B @ WTO@ORED D ocﬂ@@o%%@@%)o@ocm i
o]
0o@BCO @+ +00 @IW A0 + O ® HEO o o @® Pot+ o +0 oo
12 | o e
OHe e DOOOODOOO 1% O ReaiI9S @
1 0 1 1 i 1 1
0 1000 2000 3000 4000 5000 6000

Measurements

Figure 3.7: Measurements taken by the sink application to infer information sent over a Timing
Channel. The blue dots show measurements while the source is sending a ‘1’, green crosses
while it is sending a ‘0’. 5400 measurements are needed to receive a 135-byte message (5
measurements are used to assign a value to a bit through a majority-vote mechanism). The red
line shows a moving average used as a threshold value.

makes the channel more stable. To further denoise the channel, the sink takes
multiple measurements and performs majority voting, as seen in Figure 3.7.

Once more the length of the time slot presents a difficult trade-off between
throughput and bit-error rate. The result however is a very stealthy channel
as all the applications do is perform computation. The necessary denoising
techniques significantly lower the throughput, which therefore is lower than
in previous channels.

3.5.2 Results

Table 3.2 shows the results for the different covert channels that have been
tested in terms of throughput, bit errors and synchronisation time. On both
of the phones, each of the channels has been run 10 times with three different
messages transmitted in each run. We observe that the throughput of the
different channels is in different orders of magnitude.

Based on the results, we observe two classes of channels here. The lower
four channels of the table use static fixed time slots, while the other chan-
nels have more sophisticated mechanisms to keep them synchronised during

24

3.5. Covert Channels

Covert Channels Throughput (bps) Bit Errors (%)
Nexus One Galaxy S Nexus One | Galaxy S

Type of Intents 3350.85(+ 134.11) | 4324.13(+ 555.32) | 0.00(+ 0.00) | 0.00(+ 0.00)
[Unix Socket Discovery | 2610.92(+ 305.25) | 1647.78(+ 170.70) | 0.00(% 0.00) | 0.00(=£ 0.00)
Multiple Settings 239.76(+ 9.41) 284.91(+ 1.90) 0.00(£ 0.00) | 0.00(£ 0.00)
Thread Enumeration 157.73(% 0.97) 139.39(+ 7.40) 0.00(% 0.00) | 0.00(+£ 0.00)
|Automatic Intents [28] 51.38(+ 0.41) 90.67(+ 0.39) 0.00(£ 0.00) | 0.00(£ 0.00)
Single Settings [28] 46.88(+ 0.31) 65.89(+ 0.73) 0.00(£ 0.00) | 0.00(£ 0.00)
Free File System Blocks| 13.07(=% 0.00) 9.80(+ 0.00) 0.01(£ 0.02) | 0.03(+ 0.03)
Reading /proc/stat 7.82(=£ 0.00) 3.26(+ 0.00) 0.10(£ 0.05) | 0.00(=+ 0.00)
IProcessor Frequency 4.88(=% 0.00) 0.47(% 0.09) 0.14(% 0.08) | 4.67(£ 2.26)
Timing Channel 3.70(% 0.00) 3.69(+ 0.01) 0.10(£ 0.11) | 0.05(= 0.05)

Covert Channels Synchronization (ms)

Nexus One I Galaxy S
Type of Intents 716.8(+ 168.2) 473.0(+ 249.0)
[Unix Socket Discovery 5.2(+ 0.8) 13.9(+ 2.2)
Multiple Settings 314.9(+ 21.8) 302.1(+ 11.0)
Thread Enumeration 71.6(+ 7.1) 110.1(+ 8.8)
|Automatic Intents [28] | 1083.2(% 75.1) 435.1(+ 180.8)
Single Settings [28] 267.5(+ 3.2)

Free File System Blocks

1038.2(% 5.1)

1442.7(+ 15.6)

Reading /proc/stat

6923.4(* 8.1)

16669.2(+ 48.7)

Processor Frequency

8203.9(L 7.2)

78866.1(£ 9156.8)

Timing Channel

10286.8(+ 16.1)

(
(
(
(
273.4(+ 11.9)
(
(
(
(

68057.6(+ 105259.4)

Table 3.2: Listing of implemented covert channels with corresponding throughput, bit-error
percentage and synchronisation time (with the 95% confidence interval in parenthesis). The
values shown are averaged over 10 runs with 3 messages each for both the Nexus One and the
Samsung Galaxy S.

communication. The lower four channels have lower throughputs as the ap-
plications always have to wait for the end of the slot and do not benefit from
faster execution. Additionally, these channels have a certain amount of bit
errors, some of which are caused by noise and some of which are caused by
overly long execution times not fitting into the static time slot.

The Processor Frequency channel performs significantly worse on the Sam-
sung Galaxy S because of its different frequency scaling governor, as out-
lined in the description of the channel. The less predictable behaviour leads
to more bit errors and a lower throughput.

The channel using the Free Blocks on the File System performs worse on the
Galaxy because of the reasons we outlined considering the different file sys-
tem and its sometimes very slow performance.

Overall, we think that even the slower channels are still usable and therefore
pose a threat to the security system. As an example, we show the times
required for sending GPS coordinates (64 bit), including synchronisation

25

3.6. Collusion with Existing Applications

time and sending the terminating null byte. Sending this data through the
Free Blocks channel would take roughly 6.5 seconds on the Nexus One and
roughly 8.8 seconds on the Galaxy S. The chances for error-free transmission
would be above 99% and 98% for the two phones. From our perspective, this
poses a relevant threat.

3.6 Collusion with Existing Applications

In this section we extend the concept of covert communication and make use
of already existing applications as one of our colluding applications. This
leaves us with two opportunities: either we replace the source or the sink with
an existing application. Both of these options are feasible [23]. To replace
the source we can find applications that have access to sensitive information
and dump it into the system log. Therefore the sink from the System Log
channel, described in Section 3.4.1, could be used to leak such data to the
Internet.

However when we depend on another application as source, we can not
control which data we will be able to read. Therefore, we will replace the
sink, so that we keep control of the data selection [24].

3.6.1 Channel Description

In this section, we describe a channel that only requires a single installation
and that we have successfully implemented and tested.

| network

(N
N4 Contacts ---
Manager

Slc

source

g T\)"

Figure 3.8: Collusion between a source application and a web script serving as sink [24]. The
source uses RC4 operations to influence the processor frequency and the sink uses RC4 operations
to estimate the frequency and infer the message.

26

3.6. Collusion with Existing Applications

Using the System Browser

In this scenario we replace the sink application with a piece of JavaScript that
is embedded into a web page. The source application triggers the browser
to open the web page at a time when the user is likely not to notice, e.g. at
night, and tries to communicate with the JavaScript. As seen in Figure 3.8
the communication is made more difficult by an additional trust boundary
as the browser executes JavaScript in a sandbox.

The channel we will construct is similar to the channel based on Processor Fre-
quency, described in Section 3.5.1. However out of the JavaScript sandbox we
can not query the processor frequency directly from the kernel. Therefore
the channel works as follows: The source application manipulates the proces-
sor frequency according to the bit-pattern of the message. For a 1, it raises
the processor frequency by performing dummy RC4 operations and for a 0
it sleeps to keep the processor frequency low. The sink tries to estimate the
processor frequency and reconstructs the message.

To estimate the processor frequency, the sink tests how many, dummy Java-
Script RC4!7 operations it can perform in a fixed time period. As explained,
this requires tight synchronisation and is quite noise-prone. Therefore the
colluding parties transmit each bit multiple times and the sink performs
majority vote to determine the decoded bit.

The implementation of this channel is tricky. However, we think on the
positive side it is also stealthy as long as the JavaScript can be hidden from
the user. The communication can be hidden from the user by hiding the
browser, redirecting to another page on completion or if the web page can
be disguised as something desirable. For the browser to execute JavaScript,
the screen apparently has to stay on. Therefore we kept the screen on using
the according WAKE_LOCK. As discussed below the throughput is relatively
low.

One-App Channel Throughput (bps) Bit Errors (%)
Nexus One | Galaxy S | Nexus One | Galaxy S

Browser Channel [1.29(% 0.00) [0.60(% 0.00) [0.43(£ 0.61) | 3.22(% 5.02) |

One-App Channel Synchronization (ms)
Nexus One | Galaxy S

Browser Channel [10268.0(+ 35.0) | 65083.0(% 60.2) |

Table 3.3: Showing the implemented channel only requiring one application with corresponding
throughput, bit-error percentage and synchronisation time (with the 95% confidence interval in
parenthesis). The values shown are averaged over 10 runs with 3 messages each for both the
Nexus One and the Samsung Galaxy S.

7http://code.google.com/p/crypto-js/

27

http://code.google.com/p/crypto-js/

3.7. Further Channels

3.6.2 Results

The measurement results for the channel, which is colluding with an existing
application, are shown in Table 3.3. As we can see, throughputs are very
low. This is due to the necessary denoising techniques that require multiple
transmissions. The Galaxy S is performing worse for this channel, as the
channel is very similar to the channel based on processor frequency. For the
Processor Frequency channel the Galaxy S was performing worse because of
the conservative frequency governor, as explained in Section 3.5.1.

The transmission of data with 64 bits, such as GPS coordinates, would take
around 66 seconds including synchronisation and termination. This might
still be feasible is some scenarios.

3.7 Further Channels

Due to the limited time period we could not implement and test all the
potential channels we identified. Therefore we list some more ideas here as
future work.

As outlined by Murdoch et al. [25], as soon as two applications have gen-
eral Internet access, they are able to communicate through different covert
channels. However we do not see a reasonable scenario for collusion in this
setup, as sensitive information could be sent anywhere directly. Therefore
we do not cover these kinds of channels.

Analogous to the Processor Frequency channel, we described earlier, we could
have created additional channels, based on kernel information. As an exam-
ple a channel based on the amount of time the CPU was idle seems feasible.

The kernel also provides such information!8.

As Lampson stated [21], the file system offers different opportunities for
covert channels. Examples of how to use meta-data from the file system [27]
can also be constructed on Android. Similarly to the Socket Discovery chan-
nel, explained in Section 3.5.1, we could implement a file discovery, which
encodes information in the existence of a file.

As outlined previously it makes sense to combine some of the channels in
order to eliminate their weaknesses. Namely a synchronisation method for
the channel using the Free Blocks on the File System would be beneficial. Such
a synchronisation could be provided by the Timing Channel in order to get a
stealthy and better performing hybrid channel.

As we have explained, wake locks can be used to run applications in the
background. However they could also be used to create a channel by encod-

18http: //www.kernel .org/doc/Documentation/cpuidle/sysfs. txt

28

http://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt

3.7. Further Channels

ing the message in the possibility to execute operations. Whenever the source
holds a wake lock, it allows the sink to execute.

As the Android environment is so feature-rich, there are also other, more
esoteric covert channels imaginable. We have previously mentioned that
sensor data from accelerometers can be accessed without any permission.
Our concepts test [16] on the Nexus One have shown that when is phone
is lying on a solid ground, such as a tabletop, phone vibration is detectable
by the accelerometer. This would allow channel using vibration to transmit
information.

In another scenario the user could be actively used as a covert channel. The
principles of such a channel has been demonstrated by TouchLogger [6], a
key logger that uses the phone movements to infer the pressed keys. The
user could be a channel when the source acts as a game that has to be solved
by moving the phone according to a certain pattern and the sink observes
the movements the user generates. Given that the user tries to win the game,
the movement pattern should be quite significant and it might be possible
to transfer information.

It has been demonstrated that information can be efficiently and loss-free en-
coded in sound signals [3], which also allows the creation of a covert channel
on a smartphone. To communicate through this channel, the source plays spe-
cific sounds and the sink uses the microphone to receive and decode them.

Even if the last few ideas were more esoteric it gets obvious that a lot of very
different covert channels seem possible, so that general solutions to block or
detect covert channels on smartphones are unlikely to cover all the channels.

29

Chapter 4

Analysis of Existing Tools

In this chapter we present existing approaches aiming to prevent unautho-
rised data flows including sensitive information and evaluate their strength
towards our previously described channels.

4.1 TaintDroid

Following the observation that a smartphone holds lots of sensitive informa-
tion, which are handled by third-party applications, TaintDroid [12] tries to
monitor the data flow of specified, sensitive data classes and alerts the user
whenever it detects leakage of information from such classes.

4.1.1 Approach of TaintDroid

TaintDroid is implemented as a modification of the Android operating sys-
tem. In order to alert the user, TaintDroid places taint sources in the system,
which allow the initial identification of sensitive data. Such taint sources
include private data, such as Contacts or stored SMS, sensor data from the
camera or location information. Data retrieved from these sources is tagged
and the tags are stored in shadow memory

Using dynamic taint-tracking, TaintDroid follows the information flow of
the tagged data. According to a specified logic such tags are propagated
or removed depending on the performed operations and their operands.
The taint propagation is done on multiple levels. Inside the Dalvik VM
TaintDroid employs variable tracking and is able to track taint propagation
through primitive data types as well as exception handling or array lookups.
Native code however is unmonitored by TaintDroid, so that it taints all val-
ues that have been accessed or are returned by native code. Additionally
TaintDroid propagates Taint through IPC messages, by performing message-
level taint tracking.

30

4.1. TaintDroid

Whenever tagged data reaches the network as a taint sink, TaintDroid raises
an alarm. The user is presented with a notification noting the application,
which leaked the data, the class the leaked data originated from and the
actual network transmission, as seen in Figure A.1.

4.1.2 Circumvention using Implicit Data Flows

As stated by the authors, TaintDroid does not track implicit [(x 1

data flows, but only explicit data flows. Implicit data flows y = 1;
can therefore be used to remove taint from tagged dataand | }else{
leak such data without raising an alert. Code 4.1 shows an y = 0;

example of an implicit data flow for a single bit between |

x and y. We present multiple relatively simple techniques code 4.1: Implicit
that allow an adversary to remove the taint. data flow

Previous work has shown that such untainting can be a

problem when trying to detect privacy leaks of untrusted code. If such code
is aware of an environment, which tries to detect wrong-doing, then it is
relatively easy to evade such detection techniques and very hard to counter
the evasion, because a black-box approach would have to be applied [8].

A trivial n-way switch statement allows [Ui (21

the untainting of log,(n) bits per execution case 0: y = 0; break;
of the switch statement [8]. An example case 1: y = 1; break;
for 2 bits is shown in Code 4.2. However case 2: y = 2; break;
through repeated execution long messages case 3: y = 3; break;
can be untainted. This method is very easy ¥

to implement, very fast and undetected by Code 4.2: Switch untainting
TaintDroid.

The Java Exception Handling offers an- tryd

other possibility to untaint data, as it al- if(x) {

lows a simple control flow redirection throw new Exception();
that can be used to construct an im- }

plicit data flow. As shown in Code 4.3, y = 03

this method is also fairly easy to im-| }catch(Exception e){
plement while offering a fast untaint-) y =L

ing procedure and being undetected by

TaintDroid [26]. Code 4.3: Exception untainting

Additionally we present two new mechanisms that allow taint removal in
the case of TaintDroid. First we leverage the file system and later we show
the feasibility of having a timing-based taint removal.

As stated before, Android applications have read and write access to a pri-
vate directory on the file system. This allows a procedure that utilises file cre-
ation and file checks to transmit and thereby untaint information. Code 4.4

31

4.1. TaintDroid

demonstrates the procedure for transmitting a single bit. The information is
encoded in the existence or non-existence of a private file with an arbitrary
name. While this channel is also relatively easy to implement, its speed is
limited by the operation times of the file system and the current file system
usage.

if (taintedBit){
createlocalFile (’untaint.txt’)

}

if (fileExists (’untaint.txt’)){
untaintedBit = 1;
deletelLocalFile(’untaint.txt’)

}else{
untaintedBit = O;

}

Code 4.4: Untainting using the file system

In order to demonstrate that also more advanced, hardly detectable tech-
niques can be applied, we layout our implementation of a timing-based taint
removal technique. It works very similar to the previously presented tech-
nique using the file system, except for the fact that for this channel the infor-
mation is encoded in the execution time of a certain code section. As seen
in Code 4.5 the application delays its own execution in order to transmit a
1. The achievable throughput of this channel is rather limited. It depends
on the chosen delay. If the delay is chosen too short, the delay might appear
through unfavourable scheduling, resulting in a flipped bit. This technique
can be obfuscated further by the use of multiple threads or fake computa-
tion.

startTime = currentMilliSeconds ();
if (taintedBit){
sleep(sleepTime);

}

endTime = currentMilliSeconds ();

if((endTime - startTime) >= sleepTime){
untaintedBit = 1;

}elsed{
untaintedBit = 0;

}

Code 4.5: Timing-based untainting

Finally we present a table containing achieved throughput of our techniques,
when removing the taint of random data blobs in Table 4.1. The tests were
performed on a Nexus One with TaintDroid installed. Even though the time-
based procedure is significantly slower we still consider it to be feasible and

32

4.1. TaintDroid

l Name \ Throughput ‘
256-way switch statement | ~31,000,000 bps
Exception ~100,000 bps
File discovery 498 bps
Time-based 99 bps

Table 4.1: Untainting techniques tested on a Nexus One with the measured throughput when
removing the taint off random blobs.

a threat to the system. Once an application is running it usually not in a rush
to send off the data, as it can keep running in the background, and thereby
has the required time for untainting. Additionally small data portions like
GPS coordinates or credit card information can still be untainted in less than
a second.

In general this taint removal can be viewed as a covert channel through
which the application talks to itself. Therefore other mechanisms used for
covert channels, which have been presented here or in previous work, could
be used in order to perform untainting.

4.1.3 Native Code

During our tests, the TaintDroid modification did not allow JNI code execu-
tion from shared libraries contained in newly installed applications. There-
fore we did not test further issues related to native code execution, which
potentially would allow further ways of taint removal.

The policy of disallowing bundled libraries however seems very invasive, as
libraries also appear in popular applications such as Angry Birds!.

4.1.4 Taint Sink Testing

The TaintDroid authors claim that the network is used as a taint sink so
that any tainted data being sent will raise an alarm [12]. Other taint sinks
such as Bluetooth connections or sent SMS appear not to be used. Our
verification tests revealed that sending contact information using the Java
HttpURLConnection indeed triggered the alarm notification.

However sending the same data through a UDP connection using a Java
DatagramSocket did not raise an alarm. Additionally the possibility to leak
data through the browser, by opening a web site and providing confiden-
tial information as an argument, also went undetected [23]. We therefore
conclude that the taint sink implementation of TaintDroid is incomplete and
allows data leakage even without taint removal.

Inttps://play. google.com/store/apps/details?id=com.rovio.angrybirds

33

https://play.google.com/store/apps/details?id=com.rovio.angrybirds

4.1. TaintDroid

Name Mean Bandwidth Conf. Int. Degradation
Internal Filesystem 48405.38 bps | 13489.98 bps 83.8%
Shared Preferences 41309.36 bps | 10552.54 bps 46.8%
Broadcast Intents 17541.89 bps | 2888.21 bps 57.8%
External Filesystem’ 8298.07 bps | 1895.08 bps 29.9%
System Log? 2538.80 bps 36.44 bps 15.6%
Type of Intents 1533.19 bps 96.18 bps 54.2%
Multiple Settings 225.53 bps 29.25 bps 5.9%
Automatic Intents [28] 45.61 bps 0.25 bps 11.2%
Single Setting [28] 40.31 bps 3.23 bps 14.0%

 Needs extra WRITE_EXTERNAL_STORAGE permission
1 Needs extra READ_LOGS permission

Table 4.2: Throughput measurements on the Nexus One with TaintDroid installed. The through-
put degradation is computed in comparison to the results without TaintDroid installed.

4.1.5 Detection of Existing Channels

When we tested our previously described channels on a Nexus One that
had TaintDroid installed we made the following observations. The straight-
forward channels using the Internal Storage and the Broadcast Intents got de-
tected. This was according to our expectations, as these channels did not
hide their data leakage in any way.

Additionally the channel using Multiple Settings got detected. This was be-
cause we used byte-wise operations, such as bitmasks and shifts, to split up
the data to fit it into the different settings and put it back together later. The
taint propagated through all these operations.

The overt External Storage channel was not detected. As explained in the
TaintDroid installation instructions® the external storage should be format-
ted as ext2 or ext3. However in our tests this channels was neither detected
with FAT32 nor ext2.

The two other overt channels, System Log and Shared Preferences, are unde-
tected by TaintDroid even though they should be detected. For the Log
channel we found, that the log is written using native code, so that the taint
can not propagate correctly. However we could not identify why Shared
Preferences stays undetected. The covert channels were undetected as ex-
pected, as covert channels are not handled by TaintDroid.

All channels involving JNI Code execution could not be tested as they were
blocked, as explained in Section 4.1.3. The three channels that initially got
detected could evade detection by using one of the presented untainting
techniques at the source. Table 4.2 presents an overview of the measure-
ments with TaintDroid present and evasion techniques activated. We ob-

Zhttp://appanalysis.org/download.html

34

http://appanalysis.org/download.html

4.2. XManDroid

serve that the channels perform worse because of the overhead induced by
TaintDroid, however they are still applicable.

For all the channels tested in this scenario the bit-error rate was zero. There-
fore we do not show this information in Table 4.2. As TaintDroid supervises
accesses to the file system and additionally uses the file system for its own
purposes, we can observe a degradation in the performance of channels us-
ing the file system. Additionally the monitoring of intents creates a certain
overhead as mentioned by the authors, which shows in the reduced through-
put of our intent-based channels.

4.1.6 Possible Improvements

The authors have stated that JNI code tracking and IPC tracking with a finer
granularity might be future work. Additionally there has been work on
how to identify implicit data flows [8]. However it is unclear to this point,
whether this is practical on such resource-constrained devices.

4.1.7 Evaluation

Overall TaintDroid provides a suitable approach to detect unauthorised leak-
age of sensitive information sent over the Internet. However TaintDroid only
detected two of the overt channels we implemented.

The TaintDroid authors have stated that they do not take implicit data flows
into account. We feel that this is a serious limitation. A general TaintDroid
evasion by taint removal is relatively easy and with acceptable or no degra-
dation of throughput. The application author simply has to be aware of
possible tracking techniques. Additionally TaintDroid can be evaded by
taint sink avoidance. Therefore we conclude that the current TaintDroid im-
plementation does provide neither a robust privacy protection nor a reliable
detection of secret communication between applications.

4.2 XManDroid

XManDroid [4, 5] is a system trying to identify communication channels be-
tween applications in order to allow selective filtering to prevent confused
deputy attacks and application collusion. In this section we describe XMan-
Droid, analyse its performance when tested with our channels and conclude
on its design.

4.2.1 Approach of XManDroid

XManDroid is an Android extension, which uses a system-centric approach
in order to detect and filter communication between applications. XMan-
Droid captures communication channels between applications and creates

35

4.2. XManDroid

<policy name="No leaking contacts">
<node>
<permission name="android.permission.READ_CDNTACTS"/>
<negpermission name="android.permission.INTERNET"/>
</node>
<node>
<permission name="android.permission.INTERNET"/>
<negpermission name="android.permission.READ_CONTACTS"/>
</node>
</policy>

Figure 4.1: The XManDroid policy we used to test our channels. The source application that
had access to the contact database is not allowed to share data with the sink application which
can send data to the Internet.

a directed graph showing the information flow. Based on this global view,
XManDroid allows the definition of policies, in order to block communica-
tion between applications having certain characteristics. These policies can
be based on the permissions of the involved applications so that this proce-
dure is not limited to specific applications but generally applicable.

The communication detection mechanisms of XManDroid work on multi-
ple different levels. They capture communication through the file system,
through sockets and through intents. Additionally XManDroid is able to
detect information transfer through covert channels, created by repeatedly
modifying system settings, as demonstrated in Section 3.5.1. In order to
implement this TOMOYO Linux [18] is employed as it can intercept sys-
tem calls and offers mandatory access control at kernel level. Whenever a
communication link is identified, an according edge is added to the commu-
nication graph of applications.

Based on the current system state, given in the graph, and the policies, com-
munication is either blocked or allowed. IPC calls are supervised using an
extended Reference Monitor. These decisions are cached so that the over-
head is relatively low and the authors claim it is not perceivable by the user.

In contrast to TaintDroid, XManDroid does not track individual informa-
tion flows containing sensitive information, but observes communication
channels between different applications and blocks communication which
violates a policy not taking the actual communication content into account.

4.2.2 Detection of Existing Channels

Using our implemented channels we ran a series of tests on an early pro-
totype of XManDroid that was installed on a Nexus One, running Android
version 2.2.1 as provided by the XManDroid developers. We tried to leak
contact information to the Internet by giving the source access to the con-

36

4.2. XManDroid

tacts and the sink access to the Internet. We tested whether the “No leaking
contacts” that is shown in Figure 4.1 would block communication between
source and sink.

The prototype implementation of XManDroid that we could test blocked the
communication for the overt External Storage channel and the covert channels
Single Setting, Multiple Settings and Automatic Intents. These were channels
XManDroid aimed at blocking so that these results were expected.

Because the available prototype came with a particular version of TOMOYO
Linux, the overt channels Internal Storage and Shared Preferences were unde-
tected. However the developers assured that these was a particular problem
of the prototype, because the private directories had been white-listed. Ad-
ditionally the channels Broadcast Intents, Unix Socket Communication and Type
of Intents should be detectable by XManDroid, but are not detected by the
prototype.

The channels using information out of /proc/, namely Reading /proc/stat
and Threads Enumeration can be detected and blocked by XManDroid, be-
cause /proc/ can be blocked by mandatory access control enforced by the
TOMOYO kernel.

This leaves the channels System Log, Unix Sockets Discovery, Free Blocks on File
System, Processor Frequency and Timing Channel uncovered. However the last
two channels are low-level covert channels, which are not yet considered by
XManDroid.

4.2.3 Evaluation

Overall XManDroid presents a promising and well-designed approach for
the detection and prevention of covert communication. XManDroid is exten-
sible in the sense that once a new detection mechanisms for covert communi-
cation has been found, it can be integrated into the existing framework. The
additional edges are then appearing in the graph and the newly discovered
covert communication can be blocked.

As limitation we would perceive the fact that XManDroid has to ensure it
hooks into all the API functionalities that can be used to create a covert
channel. Given the size of the Android API this is a challenging task. An
additional limitation arises from the fact that the communication prevention
appears regardless of the actual communication content and therefore might
lead to false positives.

37

Chapter 5

Countermeasures

After stating a few general techniques usable against covert channels, we
use this chapter to elaborate on some of the countermeasures that were dis-
cussed in previous work or that we newly introduce. We evaluate the appli-
cability of countermeasures and state some that we would not implement.

5.1 General Techniques

There are multiple general techniques that can be applied as countermea-
sures [24]. We shortly outline them as we apply them later.

Limiting Multitasking: Multitasking is desirable from a usability view, how-
ever it enables all the channels that require synchronous communication.
By more coarse-grained multitasking or limited multitasking channels can
therefore either be blocked or seriously degraded.

Less powerful API: The more powerful the API is, the more effects and side-
effects are resulting. Therefore, a more constrained API gives less opportu-
nities for collusion and is easier to control.

More user interaction: An educated user might be able to adjust the system
according to his wishes. However this is a very difficult trade-off as the user
could also feel overwhelmed and ignore additional information.

5.2 Appropriate Countermeasures

In this section we present countermeasures that we view as appropriate in
order to reduce the feasibility of application collusion attacks.

38

5.2. Appropriate Countermeasures

Limit System Log Readability

The Android System Log has been designed as a mechanism to simplify the
development of applications on the Android platform. However more than
once application developers have forgotten to strip all of their log messages
before they deployed their applications. This allowed the access to a large
number of critical information, as outlined in Section 3.4.1. Furthermore we
have shown that a channel can be created through these log files, which is
undetected by TaintDroid and XManDroid.

As it is very hard for users to understand the possible impact of this permis-
sion, we propose that access to the log is only granted, if the permission is
granted and “USB debugging” is activated. This requires the user to enable
“USB debugging” in the development settings, where he is prompted with
a warning about the dangers to the integrity of his data. Furthermore the
phone has to be connected to a computer through USB.

We think that this method would be very effective in blocking the problem,
as ordinary users are unlikely to perform USB debugging. At the same time
we believe that this method is not too invasive towards developers, as they
probably read the log files through the logcat tool and the Android Debug
Bridge(adb) on their computer at which time USB debugging is enabled
anyway.

When analyzing 25900 random applications, we found that the READ_LOGS
permission had been requested for 436 applications so that an estimated
1.68% of applications request it. Out of these 436 applications we found 38
that did not make use of the permission through static analysis [15]. These
numbers are consistent with findings of the developers of XManDroid.

Overall we conclude that our proposal would block the misuse of a relatively
powerful, harmless looking permission, which has not been used extensively.
Furthermore this permission allows the creation of a channel, which is non-
trivial to detect. Our proposal should not be too invasive as it still allows
debugging for developers.

Selecting the Frequency Scaling Governor

In Section 3.5.1 and 3.6.1 we outlined the possibility to communicate using
the processor frequency, which is enabled by the fact that user processes
are able to control the frequency to a certain extent. We evaluate different
strategies to counter this problem.

Dynamic Frequency Scaling can be disabled through the performance gov-
ernor that sets the processor frequency statically to highest available one.
Disabling frequency scaling completely obviously blocks the Processor Fre-
quencyaway channel. However it will also increase the energy consumption

39

5.2. Appropriate Countermeasures

of the phone, thereby lowering the battery-powered run time. Furthermore
the Timing Channel and the Reading /proc/stat channel would be simplified,
as they no longer have to take varying frequencies into account.

Our explanation as well as the results in Tables 3.2 and 3.3 demonstrated that
the control by user processes is more limited in the case of a conservative
governor, which was in use on the Galaxy S. This governor reacts slower
and thereby makes it harder to control the frequency. This setting hinders
multiple different channels and comes without negative impacts for the user.

We therefore propose to select the conservative governor for CPU Frequency
Scaling as it makes communication significantly slower. Obviously this is
just a complication as detecting or blocking such channels is considered
very hard [11].

Limiting Access to /proc/

We outlined that the /proc/ directory saves a lot of different status values,
which allow a lot of different ways of covert communication. Previous work
has noted that access to /proc/ could be limited in order to disable or de-
grade some of the channels [24]. Different technical solutions exist as XMan-
Droid made use of TOMOYO and another option would be the use of SEAn-
droid [29]. However there are different policies on how to restrict access to
/proc/:

Totally blocking /proc/ for all applications seems very restrictive. It is likely
to disrupt applications that are checking /proc/version or /proc/config to
obtain system information. Such applications could be system applications
as well as some legitimate third-party applications, such as task managers.

Using a system, such as SEAndroid or TOMOYO, we can allow selective
access to /proc/. We could allow applications to access the folder created
for their uid, but prevent access from other directories. This would block
channels such as Thread Enumeration. Additionally, we could allow access
to general files in /proc/, which can not be influenced by an application,
such as /proc/version. However we would deny access to files such as
/proc/stat that depend on the behaviour of unprivileged applications. This
policy blocks both /proc/-related channels we have presented, while we
believe that it will not be too invasive.

The previous policies have not allowed the presence of a task manager that
would need access to all directories. As long as such an application is
present, we do not believe that blocking covert channels completely is possi-
ble. However, in order to prevent information leakage while allowing a task
manager, we propose the following: every application having the INTERNET
permission should not be allowed to read from /proc/ directories other than
its own. This would prevent possible covert channels through /proc/ to be

40

5.2. Appropriate Countermeasures

used as a way to leak data to the Internet. We believe that an efficient im-
plementation would be possible as every application that has the INTERNET
permission is already part of a special Unix group.

We have outlined that different policies exist in this domain. The decision is
a trade-off between implementation complexity, usability and security. We
would propose that selective access to /proc/ is allowed. This blocks the
described channels as well as possible side-channel attacks against other
applications.

Restrict Access to the Browser

Any application can send an intent to the system browser in order to open a
certain web page. This and the possible resulting issues had been presented
in 2010 [23]. However as nothing changed, Thomas Cannon did an imple-
mentation, which demonstrated a remote-shell without any permissions [7].
This should clearly indicate that the right to command the browser can re-
sult in a full Internet access. In order to remove this shortcoming we outline
possible solutions.

As opening the browser can lead to full Internet access, the Browser can
only be opened by applications that themselves have the INTERNET permis-
sion. This proposal is rather restrictive as the possibility to open the browser
was put in place especially for applications that do not require full Internet
access. These applications had the chance to forward users to web sites or
show advertisements.

As an alternative, opening the browser with the screen turned off could be
denied in order to protect the user from attacks similar to the one by Thomas
Cannon. However this would still leave room for other attacks.

Finally an increased amount of user interaction could help to prevent the
problem. Either the user would be asked whenever an application tries to
open the browser or a system-wide preference could be chosen. However
for two reasons this does not seem like an appropriate solution to us. The
ordinary user would have trouble deciding on whether or not to open a
certain web site. Additionally the user is left with almost no time to correct
his decision as data can be leaked very quickly.

Overall blocking requests to open the browser from applications that do not
have Internet access seems to be the best solution to us. It is rather invasive
but also tackles a very serious problem.

Selective Fuzzy Timing

As described, hardware-level channels, such as Timing Channel or Processor
Frequency, are very hard to prevent. In order to block them on Android,

41

5.3. Inappropriate Adjustments

we propose the following: applications that require precise timing, have
to request such timing using a new REQUIRE_PRECISE_TIMING permission.
Such applications are then handled in a special way.

As we have seen the hardware-channels already have a relatively low band-
width. In order to work properly, they have to be well synchronised and
therefore require precise timing. If such precise timing is not present these
channels either fail or are unusable because of their extremely low through-
put. Test measurements with our working Timing Channel on the Nexus
One have shown that fuzzy timing that only moves in 20 ms intervals is
sufficient to completely block communication. Of course the parameters
of fuzzy timing, sufficient to block communication, are dependent on the
implementation. However we believe that there exists a value, sufficiently
small so that normal applications are not affected and sufficiently large to
make hardware channels infeasible.

If two applications having the new REQUIRE_PRECISE_TIMING permission
would run in parallel at least one of them has to be running in the back-
ground. We can think of different possible policies to block communication
in this case. Either we use CPU slicing to limit the affect the applications can
have on each other or we pause the background application. The Android
reference explicitly states that background services have to be prepared to
be interrupted!.

This new permission would allow the introduction of fuzzy timing and
would allow automatic actions by the system that are intended to render
communication on a hardware-level unusable, because their bandwidth is
too low.

5.3 Inappropriate Adjustments

As stated at the beginning of this thesis Android already contains a very
wide range of different permissions. Furthermore we require that the user
has a certain understanding of the permissions and their impact, so that
he can make an educated decision whether or not he wants to install the
application. We therefore believe that the introduction of new permissions
should only occur if they are easily understandable and allow the system to
block previously possible wrong-doing.

As an example, we do not believe that splitting up or limiting the very
powerful INTERNET permission is a good idea. Possible solutions could be
additional white lists for accessible URL per application or differentiating
depending on the type of traffic. This would generally not prevent informa-

http://developer.android.com/reference/android/app/Service . html#
ProcessLifecycle

42

http://developer.android.com/reference/android/app/Service.html#ProcessLifecycle
http://developer.android.com/reference/android/app/Service.html#ProcessLifecycle

5.4. Final Remarks

tion leakage as covert communication on network layer is possible [25] and
as collusion partners might reside in the networks or at one of the endpoints.

Another example would be the addition of a permission to change the vol-
ume and vibration settings. This could prevent the channels introduced by
Soundcomber [28]. However as a lot of application might request such a per-
mission this would bloat the lists of required permissions and would likely
lower the user’s overall permission awareness.

5.4 Final Remarks

We have seen that certain hardware-level channels are very hard if not im-
possible to close completely. Probably no single countermeasure will be able
to shut down covert channels as a whole. Additionally poor programming
of privileged applications can lead to a transitive permission misuse allow-
ing covert channels through these applications. This problem arises when
powerful interface are not or only poorly protected [10]. Such design errors
are very hard to be handled correctly by possible countermeasures as the
distinction between legitimate and illegitimate use is usually non-trivial.

43

Chapter 6

Conclusion

In this thesis, we have implemented and analysed a variety of overt and
covert channels between Android applications. The functionalities of these
channels range from being hardware-related, for the Timing Channel, over
being OS-related, for Unix Socket Discovery or Thread Enumeration, to being
high-level API-related, for Single Setting or Type of Intents. We have shown
that, due to their fundamental differences, it is very hard if not impossible
for a single countermeasure to block or detect all the channels. We have anal-
ysed the existing tools TaintDroid and XManDroid, which we showed were
only able to detect or block a subset of our presented channels. Therefore,
application collusion attacks remain an open research problem. We have
then proposed a number of different countermeasures, which tackle some
previously unsolved problems. As part of an extension to the typical appli-
cation collusion problem, we have demonstrated the possibility for covert
collusion with an existing application, which reduces the requirements to
mount a collusion attack as only a single application must be installed.

While stealthy communication on Android devices remains an open prob-
lem, we have demonstrated the benefits and limitations of existing counter-
measures as well as our own countermeasures. Given the implications of
hardware-related channels, i.e., their throughput which is sufficient to trans-
fer private information, application collusion attacks remain an interesting
research problem.

44

Appendix A

Appendix

TaintDroid Notify Detail

Application:

Destination IP Adddress:
]

Taint:
Address Book (ContactsProvider)

Data:

GET /leak?data=John+Doe1-234-567-890
HTTP/1.1

User-Agent: Dalvik/1.4.0 (Linux; U; Android
2.3.4; Nexus One Build/GRJ22)

Host: 172.30.83.237:8000

Connection: Keep-Alive

Accept-Encoding: gzip

]

Figure A.1: Sample Notification of TaintDroid when an application tries to leak the Contact
information for the sample contact John Doe.

45

Bibliography

[1]
2]
3]

[4]

[5]

6]

[7]

8]

[9]

Google Android. http://www.android.com/.
Google play. http://play.google.com/about/features/.

Iftach Ian Amit. Data Exfiltration - the way Q would have done it.
Technical report, SOURCE Barcelona, 2011.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, and
Ahmad-Reza Sadeghi. XManDroid: A New Android Evolution to Mit-
igate Privilege Escalation Attacks. Technical Report TR-2011-04, Tech-
nische Universitdt Darmstadt, Apr 2011.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer,
Ahmad-Reza Sadeghi, and Bhargava Shastry. Towards Taming
Privilege-Escalation Attacks on Android. In 19th Annual Network &
Distributed System Security Symposium (NDSS), Feb 2012.

Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes On Touch
Screen From Smartph one Motion. In 6th USENIX Workshop on Hot
Topics in Security (HotSec 11), San Francisco, CA, August 2011.

Thomas Cannon. Android No-Permissions Reverse Shell. http:
//vimeo.com/33576202.

Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the Limits of Infor-
mation Flow Techniques for Malware Analysis and Containment. In De-
tection of Intrusions and Malware, and Vulnerability Assessment (DIMVA),
July 2008.

comparis.ch AG. (2,9 Millionen Schweizer haben ein Smart-
phone). http://www.comparis.ch/~/media/files/mediencorner/
medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf.

[10] Lucas Davi, Alexandra Dmitrienko, Ahmad-reza Sadeghi, and Marcel

46

http://www.android.com/
http://play.google.com/about/features/
http://vimeo.com/33576202
http://vimeo.com/33576202
http://www.comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf
http://www.comparis.ch/~/media/files/mediencorner/medienmitteilungen/2012/telecom/verbreitung-smartphone.pdf

Bibliography

Winandy. Privilege Escalation Attacks on Android. Information Security,
6531:346-360, 2011.

[11] Dorothy E. Denning and Peter J. Denning. Data Security. ACM Comput-
ing Surveys (CSUR), 11:227-249, September 1979.

[12] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon
Jung, Patrick McDaniel, and Anmol N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 393—407, Vancouver,
October 2010.

[13] William Enck, Damien Octeau, Patrick Mcdaniel, and Swarat Chaud-
huri. A Study of Android Application Security. USENIX Security,
(August):935-936, 2011.

[14] William Enck, Machigar Ongtang, and Patrick McDaniel. =~ On
lightweight mobile phone application certification. Security, pages 235—
245, 2009.

[15] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David
Wagner. Android permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications security, CCS "11, pages
627-638, New York, NY, USA, 2011. ACM.

[16] William]. Francis. A quick tutorial on coding Android’s
accelerometer. http://www.techrepublic.com/blog/app-builder/
a-quick-tutorial-on-coding-androids-accelerometer/472.

[17] Inc. Gartner. Gartner Says Worldwide Smartphone Sales Soared in
Fourth Quarter of 2011 With 47 Percent Growth, 2012. http://www.
gartner.com/it/page.jsp?id=1924314.

[18] T. Harada, T. Horie, and K. Tanaka. Task Oriented Management Obvi-
ates Your Onus on Linux (TOMOYO Linux). Linux Conference, 2004.

[19] Richard A. Kemmerer. A Practical Approach to Identifying Storage and
Timing Channels: Twenty Years Later. In 18th Annual Computer Security
Applications Conference (ACSAC), pages 109-118, December 2002.

[20] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, pages 104-113, 1996.

[21] Butler W. Lampson. A note on the confinement problem. Communica-
tions of the ACM, 16:613-615, October 1973.

[22] Zach Lanier and Jon Oberheide. TEAM JOCH Presents: Lessons In
Mobile Penetration Testing, 2011. SOURCE Barcelona.

47

http://www.techrepublic.com/blog/app-builder/a-quick-tutorial-on-coding-androids-accelerometer/472
http://www.techrepublic.com/blog/app-builder/a-quick-tutorial-on-coding-androids-accelerometer/472
http://www.gartner.com/it/page.jsp?id=1924314
http://www.gartner.com/it/page.jsp?id=1924314

Bibliography

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These
aren’t the permissions you're looking for. Technical report, Blackhat,
2010.

Claudio Marforio, Francillon Aurélien, and Srdjan Capkun. Applica-
tion Collusion Attack on the Permission-Based Security Model and its
Implications for Modern Smartphone Systems. Technical Report 724,
ETH Zurich, April 2011.

Steven J. Murdoch and Stephen Lewis. Embedding Covert Channels
into TCP/IP. In Information Hiding, pages 247-261, 2005.

Srijith K. Nair, Patrick N. D. Simpson, Bruno Crispo, and Andrew S.
Tanenbaum. A Virtual Machine Based Information Flow Control Sys-
tem for Policy Enforcement. Electron. Notes Theor. Comput. Sci., 197(1):3—
16, February 2008.

P.A. Porras and R.A. Kemmerer. Covert flow trees: a technique for iden-
tifying and analyzing covert storage channels. In Research in Security
and Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium
on, pages 36 =51, may 1991.

Roman Schlegel, Kehuan Zhang, Xiaoyong Zhou, Mehool Intwala, Apu
Kapadia, and XiaoFeng Wang. Soundcomber: A Stealthy and Context-
Aware Sound Trojan for Smartphones. In Proceedings of the 18th Annual
Network and Distributed System Security Symposium (NDSS), pages 17-33,
February 2011.

Stephen Smalley, NSA, and Trust Mechanisms (R2X). SEAndroid.
http://selinuxproject.org/page/SEAndroid.

Whisper Systems. Selective permissions for Android. http://www.
whispersys.com/permissions.html.

Date Internet sources have been accessed: Friday 27" April, 2012

48

http://selinuxproject.org/page/SEAndroid
http://www.whispersys.com/permissions.html
http://www.whispersys.com/permissions.html

