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Abstract

With the increasing use of GPS in transport surveys, analysts can choose from numerous
new ways to model travel behaviour — but also face several new challenges. For instance,
information about chosen routes is now available with a high level of spatial and temporal
accuracy. However, advanced postprocessing is necessary to make this information usable for
route choice modelling. Out of many related issues, this paper focusses on generation of choice
sets for car trips extracted from GPS data. The aim is to generate choice sets for about 36,000
car trips made by 2,434 persons living in and around Zurich, Switzerland, on the Swiss Navteq
network, a very high-resolution network. This network resolution is essential for an accurate
identification of chosen routes. However, it substantially increases the requirements for the
choice set generation algorithm in regard to performance as well as choice set composition.

This paper presents a new route set generation based on shortest path search with link elimination.
The proposed procedure combines a Breadth First Search with a topologically equivalent network
reduction and ensures a high diversity between the routes, as well as computational feasibility for
large-scale problems like the one described above. To demonstrate the usability of the algorithm,
its performance and the resulting route sets are compared to those of a stochastic choice set
generation algorithm.
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1 Introduction and Related Work

With the increasing use of GPS in transport surveys, analysts can benefit from a more detailed
observation of peoples’ actual travel behaviour and numerous new ways to model this behaviour.
At the same, time micro-simulations of travel behaviour gain importance and research and
practice and necessitate exactly this more detailed representation of people’s behaviour. For
instance, information about chosen routes is now available with a level of spatial and temporal
accuracy never seen before. However, several issues have to be resolved before new route choice
models based on GPS observations can help to improve micro-simulations. Out of many related

issues, this paper focusses on generation of choice sets for car trips extracted from GPS data.

The aim is to generate choice sets for about 36,000 car trips made by 2,434 persons living
in and around Zurich, Switzerland, on the Swiss Navteq network, a high-resolution network
for navigation systems covering all regions of Switzerland. The trips originate from a study
conducted by a private sector company trying to determine whether or not participants noticed
certain billboards (Pasquier et al.,|2008]). We obtained the data, but without the socio-economic
details of the respondents, from one of the sponsors of the original data collection effort as
part of a joint project. The participants were asked to carry an on-person GPS logger for
6.65 days on average. No additional information, such as modes, trip purposes or the use of
navigation devices, was collected. The car trips where extracted using the GPS processing

routines described in Schiissler (2010)).

The network comprises 408,636 nodes and 882,120 unidirectional links representing the entire
Swiss street network, including minor and access roads. Thus, the Navteq network contains
44-times more links than the planning network for the same area (Vrtic et al.,|2005)), that has
so far been used for traditional aggregate transport models and therefore been the benchmark
for choice set generation algorithms. However, with the advent of new survey technologies and
increasingly detailed transport models, e.g. agent-based micro-simulations, the low network
network resolution is not sufficient anymore. Micro-simulation models often operate on a high-
resolution representation of the infrastructure to be able to model also local effects of transport
policies. To increase the realism of the agents’ behaviour route choice models estimated based
on high resolution route observations and networks are necessary. High resolution observations
allow to determine the exact route a traveller has actually taken and regardless wether this route
is determined by a map-matching or modelled using for example with the network-free approach
by Bierlaire and Frejinger (2008) it can only be exploited if it is represented in the network and

this can only be ensured by using a high-resolution network.

In general, two different approaches can be employed for choice set generation. The analyst can
either model the membership of an alternative to the choice set (e.g. Swait, 2001; Morikawa,

1996). Then, following Manski (1977)), the probability of observing that decision maker n
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chooses alternative 7 from the universal choice set U depends on the probability P(i|C,,) that
he chooses 7 from choice set C,, and the probability P(C,,|U) that C,, C U is his actual choice
set. Or the analyst can generate the individual choice set C,, in a step prior to the modelling. In
route choice situations, the universal choice set, i.e. all possible routes between an origin and
destination pair, is not known. Moreover, the true choice sets of travellers are not known because
this is an information that is not easily obtained from survey participants making it difficult to
establish the probability that route belongs to a choice set. Thus, the only suitable approach in
this context is to use a choice set generation procedures that extracts routes from the network

and try to find all routes with a non-zero probability of being chosen.

The most common route set generation approaches can be categorised in two ways: first, by
focussing on the path-establishing procedure, into approaches using repeated least cost path
search and approaches employing successive path development or, second, by focussing on the
output, into stochastic and deterministic procedures. Representative of the stochastic successive
path development is the random walk algorithm developed by [Frejinger ef al. (2009). Starting
from the origin node, the next link is chosen (based on a Kumaraswamy distribution) depending
on length of the link and the shortest path distance between its end node and the destination.
This is repeated until the destination node is reached. Examples for deterministic successive path
development were presented by Hoogendoorn-Lanser et al.| (2006) for multi-modal connections
and by Prato and Bekhor (2006) for car trips. Both apply branch & bound technique by creating
a branch at every node in their respective networks and bounding these branches using several

constraints.

A prevalent version of the route set generation with repeated least cost path search is the
Stochastic Choice Set Generation. Before each least cost path search, the link costs in the
network are drawn from a probability distribution, e.g. a normal distribution (Ramming, 2002;
Dugge, |2006; Bliemer et al.,|2007) or a truncated normal distribution (Nielsen, [2000; |Prato and
Bekhor, 2007). In addition to the link cost, [Nielsen| (2000) and Bovy and Fiorenzo-Catalano
(2007) also randomised the preference parameters for the generalised cost function. The
procedure ends when a predefined number of draws or when the route set reaches a predefined

size.

Deterministic route set generation approaches using repeated least cost path search are link
elimination, link penalty and path labelling. Path labelling was introduced by Ben-Akiva et al.
(1984). The least cost path is determined according to different cost functions, called labels.
Possible labels include minimum travel time, distance, number of left turns or congestion but
also maximum scenery. The maximum number of routes in the set equals the number of labels.
In the link penalty approach, presented by de la Barra ef al.| (1993), the cost function remains
the same. Instead, link cost on all links of the current least cost path is increased by a certain

factor. Then, the new least cost path is searched. This is repeated until a predefined number



Route choice sets for very high-resolution data February 2012

of routes are found. For link elimination, one or more links of the current least cost path are
eliminated before the next least cost path is searched. The elimination follows a certain order.
This order can be random, duplicating the order of appearance in the route (Azevedo et al.,
1993)) or controlled by criteria (Prato and Bekhor, 2007). The number of links eliminated each
time increases until the required number of routes is found. Some link elimination approaches
ensure that the k-least cost paths are found (Lawler, |1976; van der Zijpp and Fiorenzo-Catalano,
2005), while others only accept paths within constraints such as maximum amount of overlap

with other paths or a maximum detour time (van der Zijpp and Fiorenzo-Catalano, [2005).

In comparing these route set generation approaches, recent research has primarily focussed on
the composition of the choice sets. Several authors (e.g. Prato and Bekhor, 2007} |Bekhor ez al.,
2006; Bliemer and Bovy, 2008) showed that the size and composition of the route set strongly
influence the outcome of model estimation. Misspecifications lead to biased parameter estimates
and choice probabilities. As|Bliemer and Bovy| (2008)) showed, this is especially true when there
are correlation between alternatives. Ideally, the choice set contains all relevant and no irrelevant

routes.

An issue these recent studies do not address are the challenges imposed by high-resolution
behavioural observations and high-resolution networks. The high level of spatial detail consider-
ably amplifies the difficulties in finding all relevant routes and sorting out the irrelevant ones.
However, omitting relevant routes in the choice sets leads to biased parameter estimates, as we
could show in Schiussler and Axhausen| (2009). This is caused by the much higher number of
objectively available routes in a high-resolution network that deviate only slightly from each
other. Yet, routes are only perceived and considered by the traveller as individual alternatives
if they differ enough from other alternatives. This dilemma can either be solved by applying
behaviourally advanced choice set generation procedures or by exploring a large number of
routes to find all route alternatives relevant for the choice observed and, afterwards, reducing
the resulting route set to the individual choice set considering attractiveness, plausibility and

similarity between the routes (Bovy, 2009).

The major problem with the first option is that recently developed behaviourally advanced choice
set generation procedures are basically not computable in reasonable time for the high level
of spatial detail. As it is shown in the next section of this paper, they would run for weeks to
generate choice sets for as few as 500 OD pairs. Thus, only the second option of generating large
route sets with a simpler algorithm based on repeated least cost path search and subsequently
reducing the choice set size is applicable to the problem at hand. But even for these simpler
algorithms computational efficiency is a predominant issue. In addition to the large number of
routes that have to be generated, the identification of each route becomes substantially more time
consuming in a high-resolution network because the least cost path algorithm has to evaluate

substantially more nodes and links to find the least cost path. Therefore, more research effort is
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needed on the computational efficiency of such algorithms.

This paper contributes to this line of research by presenting an algorithm that is specifically
designed to meet the requirements for route set generation in high-resolution networks discussed
above: an acceptable computation time as well as resulting route sets in which the routes are
reasonable in terms of generalised travel costs and heterogeneous enough to be perceived by the
traveller as individual alternatives. Moreover, the algorithm produces a route set as exhaustive
as possible which increases the chances that all relevant alternatives, i.e. all alternatives with
a choice probability substantially higher than zero, are detected. The subsequent reduction to
individual choice sets is beyond the scope of this paper and discussed in Schiissler and Axhausen
(2009) and |Schiissler (2010).

The proposed link elimination algorithm combines a Breadth First Search with topologically
equivalent network reduction. It ensures a significant level of diversity between the routes as
well as high computational speed while enabling the use of any given link cost function. Breadth
First search trees are chosen over alternatives like Depth-First, Best-First or Multiway tree
search Nievergelt and Hinrichs| (1993)) since they best meet the general goal of producing a route
choice set of n diverse, feasible least cost routes, because (i) the tree data structure can be built
on demand and does not have to be balanced out as a pre-process, (ii) in highly unbalanced trees,
Breadth-First-Search treats tree node expansion order equally for tree nodes at same depth, (iii)
does not need any assumptions about relevant, resp. irrelevant sub-trees for tree node expansion

order, and (iv) processes tree nodes for short routes earlier than long ones.

The algorithm — as well as the specifications of the state-of-the-art algorithms it is compared to —
are described in the next section. Subsequently, the usability of the algorithm is demonstrated by
first comparing its computational performance and resulting route sets to those of the Stochastic
Choice Set Generation. The paper closes with some conclusions and an outlook on further

work.

2 Generating Route Sets

As established in the previous section, the procedures discussed in the remainder of this paper
focus on generation of a route set that can afterwards be reduced to the individual choice set.
The reduction approaches themselves are beyond the scope of this paper. Thus, the goal is to find
the maximum number of feasible and low cost routes in a the shortest amount of computation
time possible. Thereby, a feasible route is continuous, contains no loops and has low travel
costs. The requirement of low costs stems from the assumption that travellers overall to prefer
low cost routes, though there perception of what low costs are might differ. Travel cost, in this

application, is defined as the free-flow travel time since no other (generalised) cost information is
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available in the network data. The algorithms themselves, however, operate with any generalised

travel cost function, e.g. travel time estimates from loaded networks, when and where available.

In order to reach this goal, four procedures were tested and are presented and discussed in
different levels of detail in this section. First, our own procedure, a Breadth First Search on Link
Elimination, including two performance optimisation features is presented. Second, three other
state-of-the-art choice set generation procedures, a Stochastic Choice Set Generation, a Branch
& Bound approach and a random walk are briefly discussed and it is argued why - apart from
the approach presented in this paper - only the Stochastic Choice Set Generation could be used
for the study at hand.

2.1 Route set generation with Breadth First Search on Link Elimination
(basic BFS-LE algorithm)

The new Breadth First Search on Link Elimination (BFS-LE) calculates repeated least cost
paths of a given origin-destination (OD) pair for a given network, represented as a strongly
connected, weighted, directed graph G/(V, E'). The vertices of the graph G(V, E) are geo-coded
in an Euclidean space with coordinates (z,,y,), while an edge e € FE defines its cost as its
weight (negative utility). The cost function itself can take any form and depends solely on the
available network information. It does neither impair the functionality nor the computation time

of the algorithm.

The least cost paths are calculated with the so-called A-Star Landmarks routing algorithm
presented in Lefebvre and Balmer (2007)). Its computational performance is at least one order
of magnitude better than the simple Dijkstra. The SCSG method cannot take advantage of
the A-Star Landmarks router’s performance because it requires a preprocessing to estimate
remaining travel costs. Since the SCSG changes link costs, this preprocessing would have to be

re-performed after each link cost variation step.

For constructing the BFS-LE tree, some definitions have to be given first: The input network
G(V, E) defines the root of the tree and is denoted as G° = G(V, E°) (see Figure [1h). G¢ =
G(V, EY) is a sub-network of G at depth d of the tree, while d also indicates the number of
edges removed from root network G°. The least cost path from vg to vp (vo,vp € V;vo # vp)
in a network G is called P?(vo,vp) and is defined by the set of p edges e/ € P% i = [1..p].
If no path exists, P? is empty. Therefore, each tree node of the BFS-LE tree is defined by one

sub-network GG¢ and its least cost path P?(vp, vp).
The construction of the BFS-LE tree is based on the following four rules:

e Tree node expansion: the creation of the child nodes of a BFS-LE tree node is done using



Figure 1: Basic BFS-LE tree: (a) is the root of the tree with the given network, (b) shows a leaf node (no path from vy to vp) and (c) is an example of
a sub-network that is already present at depth d.
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the following rule: for each edge ¢ of path P¢ a sub-network G+ = G(V, E4*1) =
G(V, E4\(e2)) is constructed and the least cost path P?*! (v, vp) based on network G4+
is calculated (see Figure [I|for an example).

e Uniqueness of sub-networks: a child node of a node at depth d will be created only if the
sub-network G4*! is not already created at another node of the tree at depth d + 1, since
that node and its sub-tree do not produce new sub-networks, resp. new paths (Figure[If).

e Leaf definition: a tree node is a leaf of the BFS-LE tree if the path P? of graph G is
empty (Figure [Ib).

e Breadth first: child nodes (nodes at depth d + 1) will only be constructed if all parent

nodes (nodes at depth d) are already created.

Last, but not least, the BFS-LE tree creates one least cost path per tree node, and at each depth
d at most b(d) routes are calculated. Since the routes S have to be unique, none-null routes,
not all calculated routes in the BFS-LE tree can be part of the set. Therefore, a route P¢ of a
sub-network G¢ of the BFS-LE tree is added to the route set S only if the route is not empty
(see Figure[Ib) and it does not already exist in .S (see Figure [I] where the routes assigned to .S
are marked with a grey background). Furthermore, since the addition of a path P? to the route
set S is dependent on the paths already assigned before, and these paths are dependent on the
order of parsing through the edges ¢¢ of a path P to create the child tree nodes, it is necessary
to complete the whole tree at depth d before assigning the new paths to the set S. If the set S¢
keeping the disjoint paths P? at depth d with P? N S = () contains more paths than necessary
for a route set with size n then a subset of S¢ is assigned to S such that ||S|| = n. Since the
outcome of the route set generation should not depend on the processing order of the links at
depth d this subset is created by randomly drawing routes from S¢. If S¢ contains less routes

than necessary for a route set with size n the whole set S¢ is added to S.

The complexity of the BFS-LE tree can be estimated via the breadth of the tree b at depth d,
called b(d). Since the number of child nodes of a node containing graph G is equal to the

number of edges ¢! € P? while respecting Uniqueness of sub-networks,

bd+1)< Y 1P/ ; with b(0)=1. (1)

j=1..b(d)

Usually, in real, high-resolution networks a least cost path of an OD pair can easily contain
many dozens of edges, which let b(d) grow very fast for increasing depth d. Uniqueness of
sub-networks helps to decrease that complexity, but does not typically prevent the production of
a wide BFS-LE tree.

The BFS-LE route set generation method presented here produces n different paths from v
to vp if n paths exist. Otherwise, it will return the set of all possible paths from v to vp. The

algorithm guarantees the shortest paths P° to be part of S. Even more, each set S¢ at depth d



Route choice sets for very high-resolution data February 2012

contains the (d + 1)th shortest path of the input network G. Therefore, assuming S°, S1, .., ¢
are completely added to the resulting set S, then it contains at least the first (d + 1) shortest
paths of network G.

While the algorithm performs well for a Manhattan-network it is also necessary to estimate
pathological cases for BFS-LE method. For BFS-LE, the worst case happens if at each depth d
only the (d + 1)th-shortest path is found. To create a route set .S of size n for such a situation the
BFS-LE algorithm needs to expand the tree until depth n — 1. This pathological case happens
only if all of the n-shortest paths of an OD pair are disjoint.

2.1.1 Performance optimisation 1: BFS-LE(PO1)

As mentioned above, it is necessary to create the whole set S? before adding it, or a randomly
drawn subset, to S. But this produces a fair amount of computational overhead for the final
depth d. For example, the BFS-LE tree at depth d can already be very wide (b(d) > 1), but
only one additional path of S? needs to be added to S to reach route set size n. Furthermore,
while the generation of G via link elimination is not costly at all, the calculation of the shortest
path — even with the Landmarks A-Star routing algorithm — is the most time-consuming part
of the BFS-LE method. A simple, but efficient, way to reduce that computational overhead
is to randomly shuffle the order for which tree node at depth d the shortest path is calculated.
With that, it is not necessary to produce the whole breadth of the tree at depth d when the route
set size is already reached and the resulting choice sets do not systematically differ from those

generated with the non-optimised algorithm.

Performance gain is located only at depth d where route set size n is reached. For all previous
depths, performance stays the same because all routes of the previous depths have to remain
in the choice set. This is due to the above stated goal of the route set generation to produce
feasible least cost paths and the design of the algorithm. The lower the tree-level the costlier are,
in general, the generated routes. Thus, omitting routes in higher levels to include routes in lower

levels would lead to higher cost routes, contradicting the objectives of the procedure.

Regarding the relationship between the possible performance gain and the choice set size the
following holds. If n is large, then the depth of the tree is large too, and the performance gain of
that optimisation is negligible. But the typical route set to generate on a high-resolution transport
network lies between 20 and 100 routes per OD pair, which typically ends up with a depth d of
the BFS-LE tree between two to four. In such cases, the BFS-LE(PO1) method can efficiently

reduce computational time.
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Figure 2: Examples of merging edges for producing a topologically equivalent network
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2.1.2 Performance optimisation 2: BFS-LE(P02)

The second optimisation of the BFS-LE stems from the problem that even a cleaned network
contains many nodes that do not model junctions, intersections or dead-ends. These nodes
usually model changes in network characteristics such as free flow speed or number of lanes.
They are crucial for a correct routing but can be neglected in the link elimination stages leading
to an increase in the computational performance. Thus, before the link elimination stage, the

input network G(V, E) is reduced to a topologically equivalent network G' = G(V', E').

To create (G, so-called “pass” vertices that do not model junctions, intersections or dead-
ends, are removed from G and their incident edges are combined per direction. Figure 2]
illustrates the procedure to generate G'. Therefore, V' C V and £’ = E" U E™. V' keeps the
remaining vertices, called “non-pass” vertices or “non-pass’” nodes in the subsequent analysis.
E" contains the set of untouched edges of E. E™ defines the set of merged edges ¢;; , =
merge(e;, €;, .., €x); €, €j, .., € € E. By assigning G’ as the root of the BFS tree, the complexity
of the tree is markedly reduced compared to the basic BFS-LE method, since some nodes of the
tree at depth d are treated as one tree node and therefore b(d) is reduced (i.e. edges e3 and e, of
G in Figure|l| will be combined to edge e34 and the first two tree nodes of depth d = 2 are treated
only once which reduces b(2) to 5). In order to ensured that the performance optimisation P02
does not change resulting route set, the least cost path calculation still needs to be executed on

the networks G¢ due to three reasons:

1. vo and/or vp can be part of the removed “pass” vertices and therefore are not part of V.
2. The costs of merged edges can differ.

3. The edges of the generated routes must be part of G“.

In contrast to the BFS-LE(PO1), BFS-LE(PO2) can decreases computing time at each depth of
the BES tree. The performance gain strongly depends on (i) the number of edges that can be
merged in G, (ii) the OD pair itself and (iii) the number of calculated paths of the BFS tree that

contain vertices v ¢ V.

10
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2.2 Alternative choice set generation procedures

In addition to the proposed BFS-LE algorithm three other state-of-the-art algorithms have been

implemented and tested in the course of this study:

e a Stochastic Choice Set Generation (SCSG)
e a Branch & Bound algorithm proposed by Prato and Bekhor (2006), and
e random walk introduced by Frejinger et al.|(2009).

In this subsection, these algorithms are introduced and briefly discussed before a short computa-
tion time comparison reveals why only the SCSG algorithm was used for further comparison
with the BFS-LE in the remainder of this paper. Other algorithms, such as the labelling approach,
were found inappropriate for the problem at hand right from the beginning due to the very

limited number of network attributes available.

2.2.1 Stochastic Choice Set Generation (SCSG)

The Stochastic Choice Set Generation (SCSG) is a stochastic repeated shortest path search based
algorithms. Since only few link attributes were available a simple implementation was chosen in
which the network is changed by randomly drawing the cost, i.e. free-flow travel times, of each
network link from a probability distribution. The shortest path search itself is carried out using
the Dijkstra’s algorithm (Dyjkstra, [1959). Normal distributions — truncated at zero cost with the
mean at the initial link cost and employing different multiples of the initial link cost as standard
deviations — were tested. However, insufficient variation in the resulting route costs was created.
Thus, the same routes were found over and over again, making it extremely time-consuming
to generate route sets of sufficient size. |Dugge| (2006) reported similar problems for routes
consisting of many small links. She reasoned that with an increasing number of links and stable
travel cost, the standard deviation of a route decreases. Therefore, and because the aim was to
generate as many heterogeneous routes as possible, a uniform distribution was used, ranging
from zero to twice the initial link costs. Unfortunately, a further increase in route heterogeneity
by introducing randomised the preference parameters for the generalised cost function as done
for example by Bovy and Fiorenzo-Catalano| (2007), was not possible because there was only

one cost attribute, i.e. free-flow travel time, available.

2.2.2 Branch & Bound(B&B)
The Branch & Bound algorithm was implemented because its authors could show that the
resulting route sets have attractive properties. In |Prato and Bekhor (2007), they compare the

algorithm to other choice set generation procedures and conclude that it produces realistic and

11
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heterogeneous routes that allow estimation of models with a higher prediction accuracy than
models derived from other choice sets.

The realism of the resulting choice sets stems from the constraints imposed on the branches
of the route tree. These constraints impose directional, temporal, loop, similarity and left turn
restrictions to limit the number of branches. However, since the algorithm processes each
tree level completely before moving on to the next next level, its computation time increases
exponentially with the number of links in the paths (Prato, 2009). Thus, in our experiments,
the Branch & Bound algorithm terminated in reasonable computation time only for OD pairs
connected by very short paths, i.e. paths with less than 30 links. This is not sufficient considering

that our chosen routes contain an average number of 65.69 links.

2.2.3 Constrained Random Walk(CRW)

Frejinger et al.| (2009) hypothesise that the true choice set is the universal choice set. Thus,
they propose to use a path set generation that corresponds to an importance sampling approach,
because it allows to obtain unbiased parameters in the model estimation by correcting each
alternative with regard to its sampling probability. An instance for such an approach is their
constrained random walk. The constraint biases the random walk towards the shortest path. This
is done by using a double bounded Kumaraswamy distribution whose cumulative distribution
function depends on the costs of the already established path and an cost estimate for the
remaining path. The extent to which the random walk is biased towards the shortest path

depends on the parameters chosen for the Kumaraswamy distribution.

However, finding the appropriate parameter setting for the problem at hand proved to be difficult.
Several parameter settings were tested but none were suitable for the entire data set with its high
variation in route lengths. If the parameters were too strict, only the shortest path was found.
If they were too weak, the algorithm wandered around and needed a long time to terminate i.e.
find the end node of the route. The resulting route is unreasonably long, i.e. more then ten times

longer than the shortest path.

2.2.4 Computational feasibility

Unfortunately, the issues discussed impact the computation time of the B&B and the CRW so
strongly that they become inapplicable for the problem at hand. As can be seen in Figure[3] both
approaches led to impractically long computation times, even for a small number of alternatives

and short routes.

In Figure 3] the run times of all four algorithms are presented on a logarithmic scale for a target
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Figure 3: Average computation time of the algorithms for 20 alternatives and 90 minutes time
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choice set size of 20 and a sample of 500 OD pairs that are representative of the 36,000 main
study OD pairs in terms of distance, main road type of the shortest path and network density at
origin and destination. A time abort threshold was introduced to capture OD pairs for which the
choice set generation could not be completed within a time interval predefined by the analyst. If
the computation time for any OD pair exceeds this time abort threshold, the routes generated
until then are stored as the choice set for the OD pair and the choice set generation moves on to
the next OD pair. In the runs shown in Figure 3] this time abort threshold is set to 90 minutes per
OD pair. Since the time criterion is only checked after a route has been completed, an additional
abort criterion was imposed on the CRW to prevent it from exploring the network for hours
trying to finish just one route and to avoid completely unrealistic routes. If the number of links
in the random walk path exceeds ten times the number of links of the shortest path for the given
OD pair, the random walk was stopped and restarted. If by then the time abort threshold was

violated, the choice set generation for this OD pair was stopped.

Considering the computation time of the B&B depicted in Figure [3] it becomes clear that
applying this algorithm is not so much a question of computational performance but feasibility.
In our experiments the B&B failed to determine any route at all in 229 out of 500 OD pairs

within 90 minutes per OD pair and in 161 of the remaining 271 OD pairs it determined just one
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route. Allowing for longer search times did not appear reasonable since the computation of this
experiment alone took 17 days. The CRW was at least able to determine more than 5 routes for
466 OD pairs. However, doing this took - even with the additional constraint - 12 days in this
experiment while determining the choice sets with the SCSG and the BFS-LE only took 7 days
and little more than 2 hours, respectively.

Thus, of the four algorithms tested in this study, only the SCSG and the BFS-LE were appropriate
to choice set generation in the very high-resolution network at hand. Consequently, only these

two algorithms are more closely evaluated in the remainder of this paper.

3 Computational Performance

All tests described in this section were run on systems having two Dual-Core AMD Opteron
Processors 2222 running at 3 GHz. The 4 GB allocated memory was connected through a front
side bus clocked at 1,000 MHz. As the code was not multi-threaded, only one of the CPU cores
was actually used by the tests. The performance analysis was conducted on a sub-sample of
500 OD pairs. The OD pairs are representative of the 36,000 main study OD pairs in terms of
distance, main road type of the shortest path and network density at origin and destination. This
was achieved by using a stratified random sampling approach to draw the OD pairs with the
strata defined by the criteria mentioned above. The main road type used by the shortest path was
motorway for 9.1%, extra-urban road for 11.6%, urban main road for 62.2% and local road for
7.3% of the OD pairs. The main road type for the remaining 9.8% could not be decided because
they used several road types in similar proportions. The shortest path distance distributions for
each main road type showed reasonable patterns. The median of the shortest path distance was
18.93 km for motorway, 8.71 km for extra-urban road, 3.75 km for urban main road and 1.42 km
for local road as the main road type. Median distance of trips that could not be categorised was
8.18 km. Concerning network density, a threshold of 15 nodes within a radius of 200 metres was
chosen to distinguish between high and low density areas at the start and end points. The share
for each of the resulting four density classes is about 25%. This share, however, varies with the
main road types. Extra-urban trips for instance tend to start and/or end in lower density areas

whereas a higher share of trips using main urban main roads start and/or end in dense areas.

For performance evaluation of the BFS-LE algorithm, the BFS-LE(P02) version with both
performance optimisation options (topologically equivalent network reduction and shuffling
of the sub-network list at depth d) was employed in the performance analysis; whereas in the
SCSG, a uniform distribution ranging from zero to twice the initial link costs was used. The

computational performance was evaluated according to the following criteria:

e Route set sizes

14



Route choice sets for very high-resolution data February 2012

Figure 4: Average computation time depending on route set size and time abort threshold
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Figure d] shows the computation time depending on the route set size and the time abort threshold.
As expected, the computation time rises with increasing route set size and time abort threshold.
The impact of the route set size is stronger than that of the time abort threshold. Most prominent,
however, is the impact of the choice set algorithm itself on the computation time. The average
computation time per OD pair with the BFS-LE algorithm does not exceed 10 minutes even for
100 alternatives and a time abort threshold of 150 minutes, whereas the average computation time
with the SCSG algorithm is already 9.5 minutes for 20 alternatives and a time abort threshold
of 30 minutes. Thus, the computation time of the SCSG is on average 32 times higher than
those of the BFS-LE(P02) for several reasons. First, the SCSG reaches the time abort threshold
much more often than the BFS-LE(P02). Second, the average time to adapt the network and
determine the new shortest path is 0.45 seconds for the BFS-LE(P02) and 0.79 seconds for the
SCSG. Third, the number of routes calculated to derive a route set size of 100 with a time abort
threshold of 90 minutes adds up to 1039 on average for the BFS-LE(P02) and 3525 for the
SCSG. However, it can also be seen in Figure {4 that the increase in computation time over route
set size grows for the BFS-LE(P02) while it lessens for the SCSG. This originates again from
the frequency the time abort threshold was reached. For the BFS-LE(P02), this number is very

low in the beginning and rises strongly with increasing route set size. For the SCSG, this rise
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Figure 5: Computation time depending on the least cost path distance
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slows down for route set sizes of 80 and 100. Only a few additional OD pairs, that have not
reached the abort threshold for smaller route set sizes, reach the time abort threshold for larger

route set sizes.

As discussed in the previous section, the performance of both algorithms depends to a large
degree on the network structure. Thus, the subsequent figures evaluate the computational
performance with regard to characteristics of the OD pairs for the runs with a route set size of
100 and a time abort threshold of 90 minutes.

Figure [5|presents the computation time relative to the distance of the least cost path between each
OD pair is shown. The BFS-LE(P02) clearly outperforms the SCSG for short trips, especially in
the band under 10 km, covering 75 % of the car trips in this sample as can be seen in Figure [0
The BFS-LE(P02) reveals unsteady behaviour only for OD pairs that are 10-30 km apart. In
Switzerland, this distance band typically contains trips between neighbouring agglomerations
and has the highest probability of containing pathological cases as described in the previous
section. For trips longer than 40 km the BFS-LE(P02) outperforms the SCSG again. However,
these values have to be treated with care because they represent only few observations. This
applies especially to the peak at 43 km which represents a single OD pair for which the SCSG

algorithm could not find 100 routes within 90 minutes.
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Figure 6: Distribution of the least cost path distances
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Figure 7: Computation time depending on the number of non-pass nodes on the least cost path
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A closer look at the underlying networks structure was needed to explain the unsteady behaviour
of the BFS-LE(P02) for medium-distance trips. This is done in Figure [/ depicting minimum
and maximum computation time per OD pair depending on the number of non-pass nodes of the
least cost path. The graphs reveal that, in principal, the computation time rises with an increasing

number of non-pass nodes. This explains the good performance for short-distance trips. These
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trips take place in an urban or suburban environment where not much can and is gained by the
topologically equivalent network reduction. The medium and long trips were more affected
by the reduction, but each to a different extent, so that the number of non-pass nodes is only
weakly correlated with distance. For those trips, the minimum computation time rises, but at the
same time the probability of a pathological case, or at least reaching the time abort threshold,
decreases. This leads to the unsteady performance behaviour for medium distance trips. Since
this depends entirely on the network structure, there is, unfortunately, no algorithmic way to

improve the performance other than the time abort threshold used in this study.

4 Structure of the Derived Route Sets

A thorough evaluation of route set generation approaches does not consider only their computa-
tional performance but also the structure and quality of resulting route sets. The guideline for

this analysis were the following questions suggested by Bovy| (2009)):

1. Is the size of the route set sufficient?
2. How often/well is the chosen route reproduced?
3. How diverse are the routes?

4. How plausible is the hierarchical sequence?

In principal, the analyst defines for both algorithms what route set size is sufficient, and the
algorithms search new routes until this route set size is reached or no further routes exist.
Exceptions are OD pairs reaching the time abortion threshold. For the current settings, this
occurs only for 6 % (at most) of the OD pairs with the BFS-LE(P02), but for up to 50 % of
the OD pairs with the SCSG. The analyst has to decide how to treat the affected OD pairs in

subsequent applications.

The reproduction of the chosen route was measured in two ways. First, the number of times the
complete chosen route had been reproduced was counted. The BFS-LE(P02) achieved this for
63 % of the OD pairs with a choice set size of 20 and for 73 % of the OD pairs with a choice
set size of 100. The respective figures of the SCSG were 64 % and 75 %. These figures are
better than those reported by Ramming (2002) and |Prato and Bekhor (2007). With their link
elimination algorithms, the chosen route was reproduced for 60 % of the OD pairs by Ramming
(2002)) and for 58 % of the OD pairs by |[Prato and Bekhor (2007)). For their stochastic choice
set generation algorithms the respective figures were 38-50 % and 49-61 %. It has to be noted,
though, that their choice set generation set-ups were different. Ramming (2002) performed only
48 shortest path searches for each OD pair and choice set algorithm and Prato and Bekhor (2007)

even less, namely 10.
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Figure 8: Path size of routes resulting choice sets
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In the second step, the choice sets not containing the chosen route were examined more closely.
For them, the overlap between the route that best reproduces the chosen route and the chosen
route itself was calculated as percentage of the chosen route length. The resulting mean coverage
of the chosen route varies between 76 % and 82 % for the BFS-LE(P02) and between 76 % and
78 % for the SCSG. Considering network resolution and number of possible paths between an

OD pair, both algorithms are adequately able to reproduce the chosen route.

To investigate the diversity of the routes set, the path size PS;,, for each route was determined

using the well-known formulation of Ben-Akiva and Bierlaire (1999):

PS;,, = l—a) ; 2

a;n- (Li ZjeC’n 5aj% *
where I'; is the set of all links of path ¢, [, the length of link a, L; the length of path i and Lg,
the length of the shortest path in C),, using link a. d,; equals one if link a is on path 7 and zero
otherwise. The path size ranges between 0 and 1, with 0 indicating complete overlap and 1
no overlap at all. Figure [§]depicts the distribution of average path size of all routes in each
choice set. As expected, the overlap between the routes increases for both algorithms with
choice set size. For all choice set sizes, however, the path size distribution indicates considerably
more diversity between the routes generated with the BFS-LE(P02) than those generated with
the SCSG. This finding holds even after filtering routes that are unreasonable long (in terms
of distance or travel time) or overlap too much with each other as discussed in [Schiissler and
Axhausen| (2009).
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Figure 9: Standard deviation of route distances per choice set normalised by chosen route
distance
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Another indicator for the diversity of the produced route sets is the distribution of route distances.
For each route set the standard deviation of route distances has been calculated and normalised
by the distance of the chosen route. Figure[9]shows the distribution of these normalised standard
deviations by choice set size and generation algorithm. It can be seen that the distributions are
very similar across choice set sizes and generation algorithms. This means that both algorithms
produce similar distance distributions and that the distance distribution of routes found later in

the choice set generation is similar to that of the routes found earlier on.

The most ambiguous criterion for evaluation of the choice set structure is the plausibility of the
hierarchical sequence. Since this study is concerned with the generation of choice sets for car
route choice, this analysis focussed on the shares and sequences of road types. Four road-type
categories were defined: motorways, extra-urban main roads, urban main roads and local roads.
The average share for each road type was calculated as a percentage of the total route length.
The road type shares in the chosen routes were then compared to the average road type shares in
the BFS-LE(P02) and the SCSG choice sets. The analysis revealed, that road type shares were
similar for the choice sets of both algorithms and fairly stable over the different choice set sizes.
The chosen routes were travelled on average 12 % on motorways, 16 % on extra-urban roads,
36 % on urban-main roads and 36 % on local roads. The respective figures for the BFS-LE(P02)
choice sets are 16 %, 18 %, 35 % and 32 % and for the SCSG choice sets 17 %, 18 %, 34 % and
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Figure 10: Number of motorway segments with less than 3 links
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31 %. This indicates that the routes generated by both algorithms reflect actual choice behaviour.

Bovy (2009)’s main concern about the plausibility of hierarchical sequences was the unrealistic
shifting between different hierarchical levels. Given the structure of the Swiss road networks,
repeated switching between extra-urban main roads and urban main roads is inevitable for
off-motorway trips between cities. Thus, unrealistic shifting between different road types is
most likely to occur with motorways. Figure[I0]shows the number of times a routes contains
a motorway segment consisting of 3 or less links as percentage of the total number of routes
containing at least one motorway segment. Both algorithms perform almost equally well with
nearly 80 % of the trips using the motorway containing no segment consisting of 3 links or less,
and over 90 % containing at most one such motorway segment. The chosen routes, however,
contain even fewer cases with repeated switching between the motorway and other road types.
This implies that, in reality, repeated switching between motorways and other road types is
rare but it does sometimes occur. Thus, this type of behaviour cannot be excluded a-priori as

unrealistic.
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5 Conclusion and Outlook

The generation of choice sets in very high-resolution networks is a new challenge for transporta-
tion modellers. The number of routes in the universal choice set increases substantially while
the size of the individual choice set, i.e. the number of relevant routes, probably remains the
same. Thus, a large route set has to be extracted from the network, and afterwards reduced, to
increase the chances that all relevant routes are included in the individual choice set. However,
extracting routes from a high-resolution network is cumbersome and extremely time-consuming.
Therefore, computational performance becomes a very important criterion in the evaluation of
choice set generation algorithms again. Many of the advanced choice set generation algorithms
presented recently are simply not applicable because they would run for weeks in order to

generate choice sets for a few hundred OD pairs.

This paper compares different choice set algorithms and demonstrates that only approaches
based on repeated shortest path search are applicable to high-resolution networks. A new
algorithm is presented employing Breadth First Search on Link Elimination and includes two
performance optimisation features: a randomisation of the processing order within each tree
depth and a topologically equivalent network reduction. The computational performance of
this BFS-LE(P02) algorithm and the quality of the resulting choice sets is compared to the

performance and results of a Stochastic Choice Set Generation (SCSG) algorithm.

In terms of computational efficiency, the BFS-LE(P02) clearly outperforms the SCSG. Partic-
ularly for typical urban trips under 10 km, the SCSG struggled to find enough routes to meet
the required choice set size, while the BFS-LE(P02) works most efficiently in this setting. Con-
sidering reproduction of the chosen route and road type composition, both algorithms perform
almost equally well. The routes of the BFS-LE(P02) choice sets are, however, more diverse than
those of the SCSG choice sets. Overall, the BFS-LE(P02) is clearly advantageous and can be

recommended for generating choice sets in high-resolution networks.

Another advantage of the BFS-LE(P02) is that it can, like the SCSG, use any cost function
specified by the analyst without changing the algorithm structure or computational performance.
The only requirement is appropriate network information. One way to derive a more reasonable
cost function would be to employ loaded dynamic travel time networks instead of free-flow
times. This can be implemented straightforwardly because the whole algorithm, including the
A-Star Landmarks router, is designed accordingly. Demonstrating this is a future research topic
requiring additional data about network loads: for example, from a micro-simulation. Other
cost functions could, for instance, be derived from the comparison between the attributes of
the minimum time path and the chosen path or the preferences for different road types. Choice
sets resulting from different cost functions could then be compared to the results of the SCSG

using the same cost functions and in case of multiple-component cost functions also randomised
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preference parameters for the different cost components.

The increasing use of GPS in transport surveys makes the issue of choice set generation in
high-resolution networks more pressing. But it also opens up new ways to derive choice sets,
namely the generation of individual choice sets from repeated GPS observations. This would
allow the analyst to approximate the actual individual choice sets and allow valuable insights
into the actual decision-process. Though a first attempt in this direction has been undertaken by
Rich et al.|(2007), more research is necessary before this approach can become state-of-the-art

in route choice modelling.
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