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Abstract

In this thesis we have investigated low-temperature hole transport through p-type
GaAs quantum point contacts and quantum dots. The interest in p-type GaAs
nano-structures arises primarily from the fact that the Coulomb interaction and spin-
orbit interaction are strong in these devices. The more pronounced carrier-carrier
interactions in low-dimensional hole systems compared to their n-type counterparts
make p-doped systems especially suitable for investigating many-body effects such
as the 0.7 conductance anomaly in quantum point contacts (QPCs).

We have used the local anodic oxidation lithography by an atomic force micro-
scope and shallow chemical etching in combination with top-gates in order to define
highly tunable nano-structures in two-dimensional hole gases (2DHGs). Electronic
functionality of these devices is demonstrated by studying the 0.7 anomaly and the
g-factor anisotropy in QPCs and the observation of excited states and the time-
resolved charge detection of hole tunnellings in p-type GaAs quantum dots (QDs).

Experiments on hole QPCs demonstrate a strong anisotropic modification of the
Landé g-factor of holes due to the confinement. Therefore studying the 0.7 anomaly
in hole QPCs enables examining the conjectured connection between the anomaly
and the spin of the subbands. Furthermore we have employed magnetic fields up
to B⊥ = 13 Tesla perpendicular to the plane of the 2DHG in order to exploit
localization phenomena which are potentially linked to the 0.7 anomaly. These
experiments suggest the presence of a quasi-bound state in the QPC and support
the explanation of the 0.7 anomaly based on the Coulomb blockade and the Kondo
physics. The role of impurities in the QPC channel on the conductance is discussed
and it is shown the conductance anomaly in another QPC can be understood as being
due to an impurity coupled to the intrinsic Kondo impurity of the 0.7 anomaly.

On quantum dots, we have demonstrated the observation of excited states in
a small hole QD and deviations from the constant interaction model. Integration
of a QPC in the vicinity of a dot and the capacitive coupling of the two enables
the time-averaged as well as time-resolved charge detection of hole tunneling in the
QD. The time resolution provides information about the dense spectrum of the QD.
Moreover, the statistics of the charge transfer has been analyzed in the framework of
full counting statistics (FCS). Ordinary and factorial cumulants have been calculated
and the role of interactions in the dot and the reservoir is discussed.
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Zusammenfassung

In dieser Dissertation wird der Transport von Löchern durch Quantenpunktkontakte
(QPC) und Quantenpunkte (QD) in p-dotiertem GaAs bei tiefen Temperaturen un-
tersucht. Der Grund für das Interesse an p-dotierten GaAs-Strukturen ist in er-
ster Linie die starke Coulombwechselwirkung und Spin-Bahn-Kopplung in diesen
Systemen. Die verglichen mit n-dotiertem GaAs erhöhte Wechselwirkung zwis-
chen den Ladungsträgern in niedrig-dimensionalen Löcher-Systemen macht diese
zu geeigneten Teststrukturen für Vielteilchen-Effekte wie die 0.7-Anomalie in der
Leitfähigkeit von Quantenpunktkontakten. ‘ Mit Lithographie durch lokale Oxida-
tion mit Hilfe einer Rasterkraft-Mikroskopspitze oder mit chemischem Oberflächen-
Ätzen kombiniert mit metallischen Gattern haben wir Nanostrukturen in zweidimen-
sionalen Löchergasen hergestellt. Auf diese Weise haben wir Quantenpunktkontakte,
in denen wir die 0.7-Anomalie und die g-Faktor-Anisotropie untersucht haben, und
Quantenpunkte, in denen wir angeregte Zustände sowie das zeit-aufgelöste Tunneln
von Löchern beobachtet haben, definiert.

Das Einschränkungspotential in einem Quantenpunktkontakt verursacht eine
stark anisotrope Modifikation des Landéschen g-Faktors der Löcher. Deshalb ermög-
licht die Untersuchung der 0.7-Anomalie in Löcher-Quantenpunktkontakten Rück-
schlüsse auf den vorgeschlagenen Zusammenhang zwischen Spins und Subbändern.
Zudem haben wir mit senkrechten Magnetfeldern von bis zu 13 T Lokalisierungs-
phänomene betrachtet, welche möglicherweise ebenfalls mit der 0.7-Anomalie in
Verbindung stehen. Diese Experimente deuten auf quasi-gebundene Zustände in den
Quantenpunktkontakten hin und unterstützen die Theorien zur Erklärung der 0.7-
Anomalie, welche auf Coulombblockade und dem Kondo-Effekt beruhen. Wir disku-
tieren die Rolle von Störstellen im QPC-Kanal und zeigen, dass die 0.7-Anomalie als
Störstelle betrachtet werden kann, die im Rahmen eines Kondo-Modells verstanden
werden kann.

In einem kleinen Quantenpunkt haben wir angeregte Zustände ausgemessen
und Abweichungen vom Modell der konstanten Wechselwirkung beobachtet. Durch
das Platzieren eines Quantenpunktkontaktes neben einem QD können wir zeit-
gemitteltes sowie zeitaufgelöstes Tunneln von Löchern im QD detektieren. Die
Zeitauflösung gibt Aufschluss über das dichte Spektrum im Quantenpunkt. Schliess-
lich haben wir die Statistik des Ladungstransfers im Sinne einer vollständigen Zähl-
Statistik analysiert. Dazu haben wir normale und faktorielle Kumulanten berechnet
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und die diesbezügliche Rolle von Wechselwirkungen im Quantenpunkt und in den
Reservoirs diskutiert.
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Chapter 1

Introduction

Quantum mechanics is certainly imposing. But an inner voice
tells me that it is not yet the real thing. The theory says a lot,
but does not really bring us any closer to the secret of the ‘old
one’. I, at any rate, am convinced that He does not throw dice.

Albert Einstein, Letter to Max Born, 1926

Wave-particle duality is at the heart of quantum mechanics. The wavefunctions
follow a deterministic evolution given by the Schrödinger equation while the particle
nature of the field emerges in the measurement process. Max Born’s interpretation of
the wavefunction as a probability amplitude relating the two, is still full of counter-
intuitive surprises after about one century.

In this thesis we report on experiments in solid sate systems that reveal both
the wave and the particle nature of holes. On one hand we talk about conductance
quantization of quantum point contacts and excited states in a quantum dot which
are wave phenomena, very similar to what happens in a microwave wave-guide and
resonator. On the other hand we count the same particles tunnelling one by one
into or out of a quantum dot and talk about its statistics.

The GaAs environment, within which these experiments were realized, is a com-
plex system, consisting of many ions, electrons and nuclei each with their own dy-
namics and complications. However, by working at low temperatures, low energies
and low current and voltages, many of the afore-mentioned complications can be
neglected while various parameters involved in the experiment remain tunable.

The particles we deal with are holes on top of the valence band, a band full of
electrons, and they can be pictured as bubbles in a bottle full of water (in analogy
with the electron liquid). While the only real charge carriers in solids are electrons,
it is fascinating that the holes of a full band can be regarded as the ‘real’ particles.
For example when we talk about the spin of a hole, we in fact refer to the total spin
of an almost full band of electrons.

The dispersion relation of the GaAs valence band is such that the holes have

1



Chapter 1. Introduction

several times larger effective masses than the (conduction band) electrons. This
leads to the fact that the interactions, such as Coulomb interaction, are much more
significant among holes than electrons. This pronounced carrier-carrier interaction
in low-dimensional hole systems make p-doped systems especially suitable for inves-
tigating many-body effects such as the 0.7 conductance anomaly in quantum point
contacts. Moreover the heavy holes with which we deal here are spin-3/2 particles
which are susceptible to strong spin-orbit interaction and this has an important im-
pact on their orbital and spin dynamics. It leads for example to a strong modification
of the Landé g-factor of holes due to confinement.

This large effective mass on the other hand has the disadvantage that typi-
cal energy spacings in hole nano-structures are quite small and therefore stronger
confinement and lower temperatures are necessary in order to resolve individual
quantum states. Besides, holes, due to their large effective mass, are generally more
prone to disorder. Since phase-coherence and ballistic transport [1] are two main
requirements for quantum transport experiments, very high quality heterostructures
are desired for nano-structure realizations. The carbon-doped GaAs/AlGaAs het-
erostructures [2–5] employed here have proven to be a suitable platform for this
purpose [6].

From a technological point of view, experimental studies of hole transport in
nano-structures are notoriously challenging. This is reflected in the fact that even
though two-dimensional hole gases have been available for a long time, very few
groups worldwide have been or are working on this subject. Nonetheless thanks
to the rich physics they promise, two-dimensional hole systems have been exten-
sively investigated, including studies of fractional quantum Hall effect [7–9], g-factor
anisotropy [10–12], weak anti-localization [13], metal-insulator [14–16] and other
phase transitions in quantum hall regime [17, 18].

In nanostructures, demonstration of Coulomb blockade effects in single-hole tran-
sistors [19, 20], ballistic transport through one-dimensional hole systems [21–24],
phase-coherent transport through quantum rings [25, 26] and the observation of 0.7
anomaly in hole nanowires [27–29] are achieved so far. However, further experi-
mental investigations of these p-type GaAs nano-devices are obscured compare to
their n-type counterparts due to technological difficulties in fabricating stable p-type
GaAs nano-structures with conventional split-gate techniques. In order to overcome
these difficulties we have explored in this thesis the use of Atmoic Force Micro-
scope lithography and shallow chemical etching in combination with top-gates to
define highly tunable nano-structures in two-dimensional hole gases. The electronic
functionality of these structures is demonstrated by our studies on 0.7-anomaly in
quantum point contacts and the observation of excited states and time-resolved
charge detection of hole tunnelling in p-type GaAs quantum dots for the first time.

Besides these, holes have a number of other properties that, if cultivated, can
provide a promising potential for the quantum computation technology. Hyperfine
interaction of the confined spin with the nuclear spins which is currently one of
the main sources of decoherence in spin qubits is strongly suppressed. Moreover,
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the strong spin-orbit interaction in these systems points to the feasibility of an all-
electrical control of the spin. Due to their large effective mass, however, confined
holes have a dense spectrum that requires strong confinements and very low tem-
peratures in order to resolve the single particle energy levels, a pre-requisite for
potential hole-based spin-qubit applications. The observation of the excited states
and the demonstration of time-resolved charge detection reported in this thesis is
therefore a step in this direction.

This thesis starts with a brief introduction to the main concepts and theoreti-
cal background required to understand the measurement results in chapter 2. We
present our experimental techniques in chapter 3. This chapter contains a discussion
on sample fabrication technology, noise in electronic setups, cryogenics and low tem-
perature measurement techniques and a section on top-gate fabrication. Top-gates
prove to be an important tool for increasing the tunability of hole nano-structures.
The rest of the thesis can be divided to two parts. Chapters 4, 5, 6, 7 discuss the
many-body effects and spin physics of quantum point contacts and chapters 8, 9, 10
are dedicated to transport experiments on quantum dots.

Chapter 4 contains a very short review of many-body conductance anomalies,
especially the 0.7 feature, in quantum point contacts. We present our measurements
of this feature in hole quantum point contacts in chapter 5, where we exploit the
perpendicular magnetic field to study the effects of localization on 0.7 anomaly.
These experiments suggest the presence of a quasi-bound state in quantum point
contacts and support the idea that the 0.7 anomaly can be understood based on
Coulomb blockade and Kondo physics. When it comes to conductance anomalies
in quasi-ballistic systems, disorder is an inevitable part of the game. In chapter
6 we discuss the effect of the point contact impurities on transport and how they
are distinguished from the 0.7 anomaly. Last but not least, holes confined to two
dimension have the peculiar property that their spin is not influenced by an in-plane
magnetic field if they pass through a constriction perpendicular to the field. In
chapter 7 we report on the observation of this phenomenon and discuss the possible
explanations.

Chapter 8 reports the observation of excited states of holes confined to a small
quantum dot and deviations from the constant interaction model. In chapter 9 we
demonstrate how the individual tunnelling events of holes into/out of a quantum dot
can be detected in real-time with a nearby charge detector. This tool opens a new
window to the nano-structure, by which the statistics of the hole tunnellings can be
used to extract information about the dense spectrum of states in the dot and their
coupling to the leads. Finally in the last chapter we look deeper into the statistics
of hole transfer through the quantum dot. We show that this statistics is indeed
non-Gaussian and introduce cumulants, a set of measures that quantify deviations
of a probability distribution from the Gaussian statistics. The cumulants of charge
transfer show oscillations as a function of any parameter of the dot including the
time. We discuss the origin of these oscillations, and calculate the recently proposed
factorial cumulants for our tunnelling statistics to probe the interactions.
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Chapter 2

Basic concepts and theoretical
background

This chapter is intended to serve as a theoretical introduction to the basic concepts
used in the following chapters. It should be stressed that this is by no means a the-
oretical overview but merely a general framework based on which our experimental
results are interpreted. The vast majority of the content is extracted from textbooks
and articles to which we have referenced accordingly. Most of the materials are sim-
plified in order to present an intuitive picture. Only basic concepts common to all
chapters are discussed here. Each chapter will contain some sections introducing
additional concepts specially required in that chapter.

2.1 Valence band of GaAs

The states at the bottom of the conduction band of a lattice are composed of atomic
s-orbital |S〉 (orbital angular momentum l = 0) with spin up/down {|↑〉 , |↓〉} (spin
s = 1/2), known as spin doublet. The spherical symmetry of these orbitals leads
to the fact that in the spherical approximation (discussed below) the resulting con-
duction band at low energies is isotropic. States at the edge of the valence band
on the other hand have the symmetry of atomic p-orbitals {|X〉 , |Y〉 , |Z〉} (orbital
angular momentum l = 1) with spin up/down (s = 1/2), a sextet of degenerate
states in the absence of spin-orbit interaction. The anisotropic shape of p-orbitals
leads to the fact that the bands made of them are not isotropic. This can be seen
for example if we use a tight-binding model to make a band out of only |X〉-orbitals
in a 2D cubic lattice. The wavefunction overlap between orbitals at different sites,
which is proportional to the tunnelling amplitude, would be different in x and y
directions [30]. The degeneracy of the levels however is lifted thanks to relativity as
we will see shortly.
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2.1. Valence band of GaAs

2.1.1 Spin-orbit interaction

Spin-orbit (SO) interaction is a purely relativistic effect that enters into the Hamil-
tonian in atomic physics from a non-relativistic approximation to the Dirac equa-
tion [31]. Electrons moving in the potential of an ion feel an effective magnetic field
in their rest frame which acts on the spin. The Hamiltonian is

HSO = − ~
4m2

0c
2
σ̂ · p̂×∇V0 (2.1)

where {σ̂i} are the Pauli matrices. Noting that for a central-force atomic potential
∇V0 = r̂dV0/dr and the orbital and spin angular momenta are defined as L̂ = r× p̂
and Ŝ = 1

2
σ, we can rewrite this Hamiltonian as

HSO = − ~
2m2

0c
2

1

r

dV0

dr
Ŝ · L̂ (2.2)

and therefore orbital and spin angular momenta are coupled by SO interaction.
Introducing the total angular momentum Ĵ = L̂ + Ŝ, this coupling is written as

2L̂ · Ŝ = Ĵ2 − L̂2 − Ŝ2 (2.3)

Addition of l = 1 to s = 1/2 gives a quadruplet with j = 3/2 (mj = ±3/2,±1/2)
and a doublet with j = 1/2 (mj = ±1/2). It is obvious from Eq. 2.3 and 2.2 that
these two sets will have a different energy. Hence the j = 1/2 doublet is lowered
in energy with the corresponding band known as SO split-off band, separated by
an amount ∆SO which is about 0.34 eV is GaAs. 1 This is significant compared to
the band-gap Eg = 1.52 eV in this material (Fig. 2.1a). A similar effect in atomic
physics is responsible for the sodium D-line doublet.

Because of the SO interaction 2.2, the total angular momentum j and one of
its components for example along the z-direction mj are the only good quantum
numbers, thus |j,mj〉 is used as the basis for the atomic states. For the j = 3/2
quadruplet these states are related to the orbital and spin states as [31]∣∣∣∣32 , 3

2

〉
HH

=
− |X + iY〉 |↑〉√

2

∣∣∣∣32 , 1

2

〉
LH

=
− |X + iY〉 |↓〉+ 2 |Z〉 |↑〉√

6∣∣∣∣32 ,−1

2

〉
LH

=
|X− iY〉 |↑〉+ 2 |Z〉 |↓〉√

6

∣∣∣∣32 ,−3

2

〉
HH

=
|X− iY〉 |↓〉√

2

(2.4)

Band diagram of crystals can be obtained by a number of different methods. In
the so-called k · p method, the band edge states at the Γ point (k = 0) are used
as the basis for the expansion of Bloch states with non-zero wave vectors using
perturbation theory in k and SO interaction Eq. 2.1 [1, 31].

1For III-V semiconductor compounds ∆SO(AB) = 0.5(1− fi)∆SO(A) + 0.5(1 + fi)∆SO(B) [31].
For comparison ∆SO in Si and Ge is equal to 0.044 eV and 0.296 eV while Eg is equal to 1.11 eV
and 0.67 eV respectively.
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Chapter 2. Basic concepts and theoretical background
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sion E k(± ) ( lower irght ), DOSe? ective mass *m /m (0 lower el ft ), spin splitting
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(upper el ft ), oftheot pmost HH subbandofa0[ 01]-grown GaAs–Al 0.5 Ga0.5 As het-
erostructure with Ns = 2 × 1011 cm- 2 and |N -N |A D = 2 × 1016 cm- 2 : (a) ca l c u l a t e d
by means of ht e 14 × 14 extended Kane model, and ( b) calculated by means ofht e
4× 4 Luttinger Hamiltonian. Di? erent line styles correspond ot di? erent directions
of theni -plane wave vector k , as ni dicated. Inthe lower parts of ht e ?gures, ht e
dotted ilne indicates ht e Fermi energy EF . In t h eupper irght parts , th edotted ilne
shows ht e spin splitting of the?rst LH subband of r k [100]. (a) at ken from[ 7].
c (2000) by ht e American Physical Society

term tothesplitting ( 6.37a) of the sat tes ht at aredominantly HH-like. Otfen
this termexceedsht e contribution of 8r v8v42 Ez and 8r v8v52 Ez to the k-linear
splitting. However, of r ytpical values of hte Fermi wave vector, ht is e? ect

SO

j=3/2

j=1/2

(b)

(c)

EF

Figure 2.1: (a) Schematic of GaAs band structure in the so-called isotropic approx-
imation with conduction band, heavy and light hole bands and SO split-off band
shown. (b) Energy diagram of j = 3/2 bands vs. in-plane wavevector k‖ emphasiz-
ing the mass inversion. HH and LH bands crossing is lifted by HH-LH mixing. (c)
Self-consistently calculated dispersions E±(k‖) of the lowest HH subband in a (100)-
grown GaAs/AlGaAs heterostructure with a density of 2×1015 m−2 (lower figure)
together with the spin-splitting E+(k‖)− E−(k‖). All figures adapted from [31].

2.1.2 Luttinger Hamiltonian

Bulk semiconductors with diamond structure like Si and Ge have the point group
symmetry of a cube. GaAs, however, has a zinc blende structure and has the point
group symmetry of a tetrahedron which is essentially the cubic symmetry without
the inversion symmetry. It has been shown [31] that the total Hamiltonian of a zinc
blende bulk material can be separated into a symmetry hierarchy

Hbulk = Hspherical +Hcubic +Htetrahedron (2.5)

in which terms with lower symmetry are smaller and smaller. Although it is neces-
sary to include all these terms to make any realistic theoretical prediction, already
some insight can be obtained by keeping only the first term known as the spherical
approximation. The k ·p Hamiltonian of a crystal at zero field in this approximation
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2.1. Valence band of GaAs

is given by [32] 2

Hspherical ≈ −
~2

2m0

[
(γ1 +

5

2
γ2)k2 − 2γ(k · J)2

]
(2.6)

which enjoys full rotational symmetry. The j = 3/2 block of this Hamiltonian,
known as the Luttinger Hamiltonian, describes the j = 3/2 quadruplet and has a
four-fold degeneracy at k = 0. The parameters {γi} are material-dependent positive
numbers (γ1 > 2γ2) known as the Luttinger parameters. 3 The terms beyond the
spherical approximation in Eq. 2.5 mix different j-blocks relating the quadruplet
valence bands to the conduction band, the SO split-off band and other remote
bands. We neglect these couplings here for simplicity. Taking the z-direction as
the direction of quantization of total angular momentum and writing the above
Hamiltonian in the basis of Ĵz with mj = ±3/2,±1/2 we have [31, 33]

H4×4
spherical =


HHH c b 0
c† HLH 0 −b
b† 0 HLH c
0 −b† c† HHH

 . (2.7)

The diagonal elements of this Hamiltonian known as the diagonal approximation are

HHH/LH
diagonal = − ~2

2m0

[
(γ1 ± γ2)k2

‖ + (γ1 ∓ 2γ2)k2
z

]
. (2.8)

It is clear from this Hamiltonian that the heavy holes (HH with mj = ±3/2) and
light holes (LH with mj = ±1/2) have different effective masses along and perpen-
dicular to the quantization axis. The names heavy and light refer to the former
direction (Fig. 2.1a). The non-diagonal elements of ( 2.7) are

b =
~2

2m0

2
√

3γ3kzk−

c =
~2

2m0

√
3/2

[
(γ3 + γ2)k2

− + (γ3 − γ2)k2
+

]
,

(2.9)

with k± defind as k± = kx ± iky and mix the HH and LH bands at any non-zero
momentum in the bulk.

2.1.3 SO interaction in the effective mass approximation

The Hamiltonians described so far are not the bare Hamiltonian which includes the
bare kinetic energy and the crystal potential but in fact the dispersion relations of
the Bloch wave functions

ψnk(r) = eik·runk(r). (2.10)

2Strictly speaking the Hamiltonian in the spherical approximation is more complicated than
Eq. 2.6. The form given here assumes that γ2 = γ3 = γ [32]. The Hamiltonian in Eq. 2.7 does not
make such assumption and is more accurate.

3In GaAs γ1, γ2 and γ3 are equal to 6.85, 2.10 and 2.90 respectively.
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Chapter 2. Basic concepts and theoretical background

However in the so-called envelope function approximation they can be assumed to be
the kinetic Hamiltonain of the nearly-free particles in the solid (~k → p̂ = −i~∇).
The expansion of the dispersion relation to second order 4 in k gives the effective
mass m∗. The atomic SO interaction in Eq. 2.1 can be written in the form

HSO = −
[

p̂

m0

×∇
(

V

2m0c2

)]
· ~Ŝ (2.11)

which emphasizes its derivation from the Dirac equation. But do the nearly-free
particles in a crystal feel any SO interaction? It is interesting that indeed a similar
SO interaction term is inherited from the bare Hamiltonian by the envelope function
approximation. This can be extracted from the 8×8 k · p Hamiltonian [31] by
systematic block diagonalization and keeping only the desired band [31]. For the
conduction band this procedure gives the simple expression of

HSO ∼ −kSO

[
p̂

m∗c/v
×∇

(
V

Eg

)]
· ~Ŝ (2.12)

which is very similar to Eq. 2.11. As Eg ≈ 1 eV compared to 2m0c
2 ≈ 1 MeV, the

spin-orbit effects are drastically enhanced in solids. 5 The coefficient kSO is given by

kSO =
1

6

[
1−

(
1 +

∆SO

Eg

)−2
]
≈ ∆SO

3Eg
(2.13)

and hence ∆SO/Eg (≈ 0.22 in GaAs) is a measure of the SO interaction strength in
solids.

The Zeeman energy is also affected by the dispersion relations. To first order in
B, this can be lumped into an effective Landé g-factor so that the Zeeman shift is

HZ = g∗µBB · Ŝ. (2.14)

This change of the g-factor in p-GaAs system will be discussed in Chapter 7.

2.1.4 2D Confinement

Confining holes to two dimension defines the direction normal to the plane of the
2DHG as the natural direction of quantization [31]. The heavy holes with higher
effective mass in this direction are lowered in energy than light holes but at the same
time have lower in-plane effective mass which means that these two subbands cross
at some nonzero k‖. This change of mass of the subbands is called mass inversion.
The degeneracy at these points is lifted and the bands have an anti-crossing due
to non-diagonal elements of the Hamiltonian in the total angular momentum basis

4Discarding the terms beyond second order is called effective mass approximation.
5However the field gradients in solids are much smaller than their atomic counterparts.
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2.1. Valence band of GaAs

(Fig. 2.1b). Fortunately only the heavy hole band is occupied with typical values
for the 2D density considered in this thesis and we do not need to be bothered
either by the light holes or their mixing with the heavy holes in most of the thesis.
However one has to bear in mind that at any non-zero k‖ they are slightly mixed.
This becomes important when we discuss the anisotropy of g-factors in Chapter 7.

2.1.5 Spin-orbit interaction in 2D electron and hole gases

The heavy hole states in Eq. 2.4 described by the Hamiltonian 2.7 are spin degenerate
in the absence of magnetic field. Generally the spin degeneracy of energy bands in
solid state systems Ek↑ = Ek↓, results from time reversal symmetry and spatial
inversion symmetry. The former changes the direction of both momentum k and
spin, resulting in the so-called Kramers degeneracy Ek↑ = E−k↓ while the latter only
changes the momentum direction, implying Ek↑ = E−k↑ and Ek↓ = E−k↓.

This degeneracy is broken if either a magnetic field is applied breaking the time
reversal symmetry (known as the Zeeman shift discussed in Chapter 7) or if the
Hamiltonian contains terms that break the inversion symmetry. The latter may have
two origins: One is the so-called bulk inversion asymmetry (BIA), i.e. the presence
of the term Htetrahedral in the bulk Hamiltonian Eq. 2.5. In III-V semiconductor
compounds with zinc blende structure this lack of spatial inversion symmetry results
in the so-called Dresselhaus SO splitting [34]. Obviously this effect strongly depends
on the crystallographic directions of the lattice. For conduction band electrons in
a 2DEG grown on the [100]-plane and normal to the z-direction this interaction is
described by

HD = β
〈
k2
z

〉
(σxkx − σyky) , (2.15)

where β is the Dresselhaus coefficient and depends on the band parameters of the
host material. It follows that narrower quantum wells have larger Dresselhaus split-
ting. The other origin of the spin-splitting known as the structure inversion asym-
metry (SIA) is the electric field due to the confinement potential, band offsets or
the voltage applied to the surrounding gates (H = Hbulk + V ) which induces the
so-called Rashba spin splitting. For electrons confined in a 2DEG this interaction is
given by

HR = α 〈Ez〉 (σxky − σykx) (2.16)

and again α is called the Rashba SO coupling parameter. The quantity 〈Ez〉 is the
average electric field perpendicular to the plane. Experimentally this electric field
can be produced either by engineering the confinement potential in GaAs/AlGaAs
heterostructures or an electric field produced by the top or back-gates. The latter
method can be used to control the Rashba splitting as it was shown experimentally
by Nitta et al. [35] and Engels et al. [36]. This electrical control of SO interaction
is essential in many proposals, e.g. the Datta-Das transistor [37], that use the spin
degree of freedom instead of the charge of carriers for information processing.
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Chapter 2. Basic concepts and theoretical background

SO splitting in 2D heavy hole gases differs from that in 2D electron gases due to
fact that the quantization axis in these systems is fixed in the growth direction. Thus
the SO interactions that tends to orient the spin in the plane of 2DHG are cubic in
wavevector [6, 31]. As this subject is not directly related to the experiments reported
in the thesis we refrain from providing further details and refer the interested readers
to Winkler [31], Habib et al. [38] and Zawadzki and Pfeffer [39]. The large effective
mass of the holes enhances the effect of Rashba and Dresselhaus spin-splitting in
p-type systems. 6. Fig. 2.1c shows the energy of heavy hole (HH) bands as a function
of the in-plane wavevector and the spin-splitting between the two spin-subbands.

2.1.6 Hyperfine interaction

Confined spins in solid state environments are promising candidates for future quan-
tum information processing and computation science and technology [40]. However
it has been found that the excessive number of degrees of freedom in these systems
results in fast relaxation and decoherence of the spins, inhibiting scalable applica-
tions. Hyperfine interaction between the confined spin S and the host nuclear spins
{In} has been identified as the main origin of this decoherence [41–43]. It has been
argued that the hyperfine interaction, proportional to the wavefunction of the con-
fined particle at the position of the nuclear spin, is expected to vanish for valence
band holes due to p-type symmetry of the atomic orbitals which has a node at the
nucleus. It was recently predicted [44] that even though the hyperfine interaction
vanishes the dipole-dipole coupling between two spins is still present giving rise to
an Ising-like Hamiltonian in quasi-two-dimensional systems (e.g. lateral quantum
dots) and a coupling strength on the order of 10 µeV, one order of magnitude smaller
than the hyperfine coupling for electrons. This coupling strength indeed has been
measured recently by optical pump and probe technique in self-assembled p-doped
InGaAs quantum dots [45].

2.2 Interactions in hole gases

Most of the experiments in this thesis were performed at low temperatures where
the vibrational degrees of freedom of the crystal lattice are ‘frozen’. 7 In this regime

6Note that the effective mass in Eq. 2.12 is sort of an average effective mass of the two bands.
Therefore the carriers in the band with a larger effective mass still experience stronger SO inter-
action compared to their kinetic energy.

7Nevertheless electron-phonon interaction is usually kept in Eq. 2.17 since it is responsible for
relaxation and decoherence. Here we do not consider these effects.
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2.2. Interactions in hole gases

the Hamiltonian for a spinless system in the effective mass approximation is [46] 8

H =
N∑
i=1

(
p̂2
i

2m∗
+

1

2

N∑
j 6=i

e2/4πε

|ri − rj|
+ eV (ri)

)
(2.17)

The first two terms are the kinetic energy and the Coulomb interaction between the
particles 9. The last term is the potential energy felt by the particles due to presence
of impurities and the voltage on gates 10. m∗ is the effective mass (m∗ = 0.43me for
holes) and ε = ε0εr is the permittivity with εr = 12.9 in GaAs.

2.2.1 Relevant scales

A number of energy and length scales are associated with a hole gas. An important
length scale from the atomic physics is the effective Bohr radius defined as

a∗B =
~2

m∗e2/4πε
(2.18)

which is about a∗B ≈ 1.6 nm in our system. The physical significance of this quantity
becomes clear in a moment. At low temperatures all the states below the Fermi
energy EF are occupied. Assuming a parabolic dispersion relation, the density of
states (DoS) is constant in 2D [1] and for n particles per unit area we can write

D2D(E) =
m∗

π~2
n =

∫ EF

0

D(E)dE = EFD2D (2.19)

and therefore the Fermi energy is linear with density. Defining the Fermi momentum
pF and the Fermi wavelength λF through EF = p2

F/2m
∗ and pF = h/λF , we get

λ2D
F =

√
2π

n
(2.20)

EF ≈ 2 meV and λF ≈ 40 nm for the typical 2D density of 4×1015 m−2 studied
here. Confinement effects become important if the size of the nano-structure is of
the order of the Fermi wavelength λF .

8Even in the simple case of the so-called Jellium model two other terms responsible for the the
bulk-bulk and bulk-electron interactions He−b + Hb−b are necessary in order to fulfil the charge
stability of the system [47, 48]. Here we do not consider these technicalities.

9we take e = |e| as the electric charge of holes.
10The presence of the gates can modify the interaction term in this Hamiltonian due to screening.

we neglect these effect here.
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Chapter 2. Basic concepts and theoretical background

2.2.2 Interaction strength as the fundamental parameter

The Fermi wavelength is proportional to the (average) distance between particles.
This distance counted in units of a∗B is denoted by rs and can be calculated from

1

n
=


4π
3

(rsa
∗
B)3 3D

π(rsa
∗
B)2 2D

2(rsa
∗
B) 1D

(2.21)

If we take the distance between particles as our unit length using the new tilde vari-
ables defined by r→ (rsa

∗
B)r̃ and p̂→ ˆ̃p/(rsa

∗
B), the Hamiltonian 2.17 becomes [48]

H0/Ry
∗ =

1

r2
s

N∑
i=1

ˆ̃p2
i +

1

rs

N∑
i=1

(∑
j 6=i

1

|r̃i − r̃j|

)
+

N∑
i=1

Ṽ (r̃i) (2.22)

The first two terms are universal; apart from rs no material-dependent parameter
is involved in a homogeneous system. The potential energy, however, does depend
on material parameters through Ṽ (r̃) = eV (rsa

∗
B r̃)/Ry∗ but it usually has a series

expansion that involves no powers of rs less than -1 at any point in space. Note that
rsa
∗
B ∝ λF sets the scale of the confinement as mentioned before. The Hamiltonian

here is in units of effective Rydberg energy defined as

Ry∗ =
e2/4πε

2a∗B
(2.23)

which is about 450 meV in our system. In the Hamiltonian 2.22 the kinetic energy
and the Coulomb interaction are divided by the first and second powers of rs and
therefore this parameter sets the relative measure of these two energies. rs can also
be expressed as the ratio between Coulomb interaction and the Fermi energy 11

rs =
e2/4πε(rsa

∗
B)

EF
(2.24)

and hence it is usually called the interaction strength which is about rs ≈ 5.6 in our
two-dimensional hole system for typical densities of 4×1015 m−2.

2.2.3 Screening

In order to develop some intuition about the solutions of the many-body problem
described by the Hamiltonians 2.17 and 2.22 it is desirable to have some approximate
solutions. Especially single-particle approximations are preferred in which different
phenomenological effects motivated by Eq. 2.17 are added one by one in a mean-
field sense into an effective potential felt by the particles. One of these effects is the

11Generally average Coulomb interaction and average kinetic energy must be used for the nom-
inator and denominator here. However the same expression would be obtained for the 2D case.
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2.2. Interactions in hole gases

linear screening [1] of a potential by other carriers. The external potential Vext(r) is
modified by the presence of the other particles so that the Fourier transform of the
total potential Vtot(q) is given by [1]

〈Vtot(q)〉 =
〈Vext(q)〉
ε(q, EF , T )

(2.25)

The Lindhard’s dielectric function ε(q, EF , T ) is a monotonic functional of the DoS
D(E). In the simple case of Thomas-Fermi approximation [1]

εTF(q) = 1 +
2

qa∗B
(2.26)

and again the effective Bohr radius sets the length scale of the screening λTF = πa∗B.
External potentials are thus expected to be screened on a length scale of about
λTF ≈ 5 nm in our system (much shorter than corresponding scale for electrons),
resulting in a hard wall potential confinement. On one hand this makes it difficult
to hit the right size for a constriction to be still tunable by the gates, but on the
other hand it has the advantage that if ‘enough’ holes are around, the potential is
perfectly screened. This might be responsible for rather clean conductance plateaus
in our QPCs.

2.2.4 Phase diagram

An electron gas described by Eq. 2.22 has a very rich phase diagram [48]. Here
we only sketch a simplified qualitative picture. At large densities rs → 0 the first
term is dominant due to Pauli exclusion principle requiring no double occupancy
of the energy levels. At intermediate values of rs the second term gets dominant.
The main contribution of this term is usually due to so-called Hartree interaction
which for a homogeneous system is cancelled by the background. The screening
effect discussed above is a result of Hartree interaction in an inhomogeneous system.
The other contribution which is the so-called exchange effect becomes important at
lower densities [46] resulting in an exchange-induced ferro-magnetism (for spinful
particles). This effect will be discussed again in Chapter 4 in connection to the
so-called 0.7 anomaly. At yet lower densities (higher rs) in a disordered system
the last term gets dominant and the carriers have to obey the potential energy to
minimize the Hamiltonian. This results in a sudden drop of conductivity known
as the mobility edge which limits the density tunability (see Chapter 3). In a clean
system when second and third terms compete a transition to a solid called Wigner
crystal is predicted.

The interaction strength scales linearly with the effective mass m∗. Thanks to
their large effective mass, holes tend to localize in local potential minima. This can
be better seen in the original Hamiltonian 2.17 if we neglect the Coulomb interaction.
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2.3 Magnetoresistance

Magnetoresistance measurements are an essential tool in transport experiments and
are involved in a number of measurements reported in this thesis. Typically a
perpendicular magnetic field is applied that acts not only on the spin of the charge
carriers but also on their orbital motion. At low fields this can be captured by
the Hall effect within the framework of the Drude model. At larger fields quantum
effects become considerable, the orbital motion is quantized and the evolution of
the constant zero-field density of states (DoS) of holes into Landau levels at finite
B leads to Shubnikov-de Haas oscillations of the magnetoresistance. At even higher
fields we enter the regime of the quantum Hall effect (QHE) where the transport is
dominated by the edge states. In the following we will give a brief introduction to
these effects. For an in-depth introduction we refer the interested readers to Ihn [1].

2.3.1 Drude model and the Hall effect

The low-field magnetoresistance is used in this thesis to characterize the density
and mobility of carriers in two-dimensional hole gases (2DHG). Typically a sample
with Hall bar geometry (shown in Fig. 2.2d) is measured at low temperature using
standard four-terminal technique. The longitudinal ρXX and Hall resistivity ρXY are
related to the applied current and the measured voltages through

ρXY =
VY

IX

ρXX =
W

L

VX

IX

(2.27)

where W and L are the width and the length of the Hall bar respectively. In a
two-dimensional system at low magnetic fields from the Drude model we have [1]

ρXY =
B

ne
ρXX =

1

neµ
(2.28)

where n is the sheet carrier density and µ the mobility. From Eq. 2.28 density and
mobility are obtained by

n =
1

edρXY/dB|B=0

µ =
dρXY/dB|B=0

ρXX(B = 0)
(2.29)

According to the Drude model the mobility is related to the mean scattering time τe
by µ = eτe/m

∗. The appearance of the effective mass in the denominator indicates
that hole systems with comparable scattering times have much lower mobility than
electron systems. Furthermore, the scattering rate is proportional to the effective
mass via the density of states. For equal carrier density and type of scatterers the
scattering rate is therefore enhanced by the larger mass. An important length scale
for transport physics is the elastic mean free path le = vF τe which is the distance
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2.3. Magnetoresistance

the carriers travel between two scattering. Mean free path can be calculated from
density and mobility using the formula

le =
h

e
µ

√
n

2π
(2.30)

A magnetic field perpendicular to the plane of 2DHG forces the charge carriers
to have a cyclotron motion while their orbit center drifts with a velocity vD =
E/B normal to both electric and magnetic fields (E × B-drift) [1]. This motion
is characterized by the cyclotron frequency ωc = eB/m∗ (≈ 270 µeV/Tesla here)
and the classical cyclotron radius Rc = pF/eB (≈ 100 nm×Tesla here). Initially
the charge carriers drift normal to the applied electric field towards the edge of the
Hall bar. But as soon as the electric field built up by the accumulated charges gets
dominant, the carriers drift along the Hall bar. Different magnetoresistance regimes
are characterized by the parameter ωcτ . For ωcτ = Bµ� 1 the classical Hall effect
and the Drude model provide a sufficient description of the transport. At higher
values of this parameter quantum effects become important which are discussed in
the next section.

2.3.2 Landau levels

A magnetic field can be incorporated in the Hamiltonian of Eq. 2.17 by minimal
coupling p̂→ Π̂ = p̂− eA (we take q=|e|=e as the charge of holes). A is the vector
potential satisfying B = ∇×A which is A = 1

2
r×B in the symmetric gauge. With

this transformation for B = ẑB, the kinetic part of the Hamiltonian becomes

HK =
1

2m∗

(
Π̂2
x + Π̂2

y

)
+

p̂2
z

2m∗
(2.31)

The new twist is that the momentum components do not commute any more, i.e.,[
Π̂x, Π̂y

]
= i~eB. (2.32)

Defining two new operators

â =
lc√
2~

(
Π̂x + iΠ̂y

)
â† =

lc√
2~

(
Π̂x − iΠ̂y

)
(2.33)

where lc =
√

~/eB (≈ 25 nm/
√

Tesla) is the magnetic length, it can be seen that â
and â† satisfy

[
â, â†

]
= 1 and other bosonic commutation relations. If additionally

we neglect the z-dependent part of the Hamiltonian as it merely gives an energy
offset due to separation of variables and 2D confinement, the kinetic part Eq. 2.31
becomes

HK = ~ωc
(
â†â+

1

2

)
+ E0 (2.34)
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Chapter 2. Basic concepts and theoretical background

which is a 1D harmonic oscillator. ωc = eB/m∗ is the cyclotron frequency introduced
before. Fig. 2.2b depicts the spatial extent of the wave functions. The wavefunction
of the mth-state has the width l

(m)
c =

√
2m+ 1lc [1]. The operator Π̂ is related to

cyclotron motion of the particles. Having a 1D harmonic oscillator for a 2D system
means that there are a lot of degeneracies. Indeed it can be shown that a set of new
operators defined as Λ̂ = p̂ + eA commute with the Hamiltonian, resulting in this
extra degeneracy and are related to the guiding center coordinates [31, 48, 49].

Fig. 2.2a shows the so-called Landau levels (LLs), the set of energy levels sepa-
rated by ~ωc mentioned here, in the density of states. The plot also shows how the
constant zero-field DoS of holes in 2D given by Eq. 2.19 transforms to these discrete
levels which are broadened by impurity scattering. At low fields (but still large
enough to satisfy B > µ−1) the presence of this oscillating density of states creates
the so-called Shubnikov-de Haas oscillations of the resistance. These oscillations can
be seen in the longitudinal resistivity ρXX shown in the inset of Fig. 2.2e. The density
difference between two spin subbands resulting from SO interaction (Fig. 2.1c) is the
origin of the complex beating pattern in these oscillations [6] and can be extracted
from the data by Fourier transformation [8, 38].

For a sample with the area A, the degeneracy of the Landau levels NL = nLA
is given by the ratio between total flux through the sample Φ = BA and the flux
quantum Φ0 = h/e so that the area underneath D0(E) and DB(E) over a full ~ωc
period is the same, i.e.,

nL = eB/h. (2.35)

The filling factor ν = n/nL is defined as the number of occupied Landau levels and
therefore it depends on both magnetic field and the 2D density n

νB = nh/e. (2.36)

2.3.3 Quantum Hall Effect

When the potential energy is added to the Hamiltonian 2.34, the Landau levels de-
picted in Fig. 2.2a are broadened due to short-range potential disorder [1]. This
potential disorder divides each Landau level into a set of localized states and ex-
tended states indicated in this figure. The extended states percolate throughout the
sample and a mobility edge arises at the transition between extended and localized
states [1]. Furthermore, the local density of states basically follow the long-range
background potential as illustrated in Fig. 2.2c. Assuming a form ψ ∝ φ(y)eikxx for
the carriers, the Hamiltonian 2.31 couples the ỹ position of center coordinate to the
wave vector kx and therefore either of the two can be used for the x axis in Fig. 2.2c.

At low temperature and low bias carrier transport happens at the Fermi energy,
thus close to the red points in Fig. 2.2c that mark the crossing of the energy levels
with the Fermi level. At these points in addition to the normal magnetic field, the
particles feel an electric potential due to the boundaries of the sample and therefore
have a so-called E×B-drift [1] along the sample boundary (Fig. 2.2d). Having only
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Figure 2.2: (a) The zero-field density of states D0(E) transforms to a set of Landau
levels separated by ~ωc at finite fields (Zeeman shift is neglected here). The localized
and extended states are indicated in the figure. (b) (taken from [1]) Quantized
cyclotron orbits in real space. The smallest orbit encloses exactly one flux quantum
Φ0. (c) The energies of LLs as a function of the guiding center coordinate y (along
the dashed cut in (d)) or the wavevector kx which is proportional to the center
coordinate y. Note that at the sample edge the energy levels have a finite derivative
and hence the carriers feel an electric field. At low temperature the current is carried
at the Fermi energy (red dots) by E×B-drift. (d) Schematic of a magnetoresistance
measurement in a sample with Hallbar geometry. The current is transferred through
chiral states at the edge of the sample in the QHE regime (EF is between the LLs
here). Note that edge states also encircle the hills in the disordered potential. (e)
(taken from [6]) Longitudinal (red) and Hall (blue) resistivity at T=70 mK in a
100 nm deep 2DHG (Bochum1282). Zeros in ρXX and plateaus in ρXY are observed
in the QHE regime whenever the Fermi energy is between Landau levels. The filling
factor is indicated for a number of integer and fractional QHE states. Inset shows
highly resolved Shubnikov-de Haas oscillations which exhibit a beating pattern due
to SO-induced density difference between spin subbands.
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Chapter 2. Basic concepts and theoretical background

half of a parabola for the dispersion relation at each side of the Hall bar means that
the edge states are in fact chiral.

Therefore when the Fermi energy is inside a gap the transport is through uni-
directional 1D channels at the boundary. According to Landauer-Büttiker theory [1]
each channel contributes e2/h to the two-terminal conductance. As a result of
this chirality there is a macroscopic spatial separation between transport in the
two directions which significantly suppresses backscattering. Therefore if the Fermi
energy is in between two Landau levels the edge channels perfectly transmit and the
four-terminal resistance VX/IX is zero. Using the Landauer formalism discussed later
it can be shown that at these points the Hall resistance RXY = VY/IX is constant
with plateaus at

RXY =
h

νe2
. (2.37)

Note that the classical Hall resistance B/ne, which crosses the plateaus in the mid-
dle, gives the above value for integer ν from Eq. 2.36. Magnetoresistance measure-
ments on a 2DHG Hallbar from the PhD thesis of B. Grbić [6] is shown in Fig. 2.2d.
Longitudinal resistivity drops to zero and plateaus develop on the Hall resistivity
when the Fermi energy is between two Landau levels as expected. The values of the
filling factor ν are indicated at some of the plateaus. The precision of quantization
given by Eq. 2.37 is found to be within 1 part of a million in very precise experi-
ments. This is striking given the amount of disorder in the system. It turns out that
the rigidity of QHE is protected by topology. The discovery of the QHE by Klaus
von Klitzing was one of the hallmarks of the new physics for which he was awarded
the Nobel prize in physics in 1985.

Some values indicated for ν in the measurement of Fig. 2.2e take rational numbers
whereas only integer numbers would be expected for the integer quantum Hall effect.
It turns out from Eq. 2.34 that at low filling factors, the kinetic energy in Eq. 2.17
is just a constant which is the same for all the occupied states and thus irrelevant.
Therefore the system enters into a new regime in which interaction effects play a
very important role. Within the composite fermion description of the fractional
quantum Hall effect, some of flux quantas are joined with the charge carriers to
make composite fermions in this regime which act as the new carriers [1]. The
discovery of fractional quantum Hall effect (FQHE) was also praised by a Nobel
prize in physics in 1998.

2.4 Semiconductor nano-structures

So far we have discussed the holes in bulk GaAs and how they are affected by
2D confinement and perpendicular magnetic field. Additional confinement results
in more interesting physics, conductance quantization and Coulomb blockade are
the two prominent examples. The former arises as the carriers are confined to one
dimension and the latter happens when they are confined in all directions. Since
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2.4. Semiconductor nano-structures

these topics are discussed in detail within the thesis, here we only introduce briefly
the main concepts. The technology used to realize these settings in p-type hole
systems will be described in the next chapter.

2.4.1 Conductance quantization in quantum point contacts

A quantum point contact (QPC) is a narrow constriction defined in a 2D elec-
tron/hole gas whose width W is of the order of the Fermi wavelength λF and
much smaller than the mean free path, so that electron transport is in the ballistic
regime. Varying the width of the constriction continuously, its conductance is found
to change between some quantized values rather than following the channel-width
continuously as expected from the classical diffusive transport. The observation of
this fact was one of the hallmarks of mesoscopic physics. Conductance quantization
in QPCs was discovered by van Wees et al. [50] (shown in Fig. 2.3a) and Wharam
et al. [51]. The constrictions in these experiments were realized by depositing metal-
lic gates on top of a heterostructure containing a 2DEG. Applying a negative voltage
to the gates depleted the electron gas underneath and shrunk the constriction width
continuously (upper left inset of Fig. 2.3a). Shortly after its discovery conductance
quantization has been reproduced in constrictions and even nano-wires fabricated
with different techniques on different material systems, establishing its place as a
universal effect.

(a) (b)

(c)

E

kx

E2

E1

E0

mR

eVSD

(a) (b)

mL

x

mL mR

Figure 2.3: (a) The first measurement of conductance quantization in a QPC. The
upper inset shows the split-gate constriction on top a 2DEG used for the measured.
(taken from [50, 52]) The lower inset (taken from [1]) shows schematically how lateral
quantization results in independent transverse channels (subbands) in a 1D struc-
ture, very much like a photon microwave waveguide. (b) (taken from [1]) Parabolic
dispersion diagram for the subbands with the energy offset En indicated for each
subband. Electrochemical potential of the left and right leads, µL and µR, define an
energy window within which the carriers in the two directions are not compensated
and a net current flows through the constriction.
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Chapter 2. Basic concepts and theoretical background

In a 1D system the lateral quantization of the wave vector (schematically rep-
resented in the lower right inset of Fig. 2.3a) results in a number of subbands each
having a parabolic dispersion 12 relation

En(kx) = E0
n +

~2k2
x

2m∗
(2.38)

as sketched in Fig. 2.3b. The charge carriers move with the group velocity vn = x̂vn

vn(kx) =
1

~
dEn(kx)

dkx
(2.39)

Therefore positive-kx branch originates from the left lead moving to the right 13 and
negative-kx branch comes from the right lead and moves to the left. Considering
the classical relation j = env, (n is the density) the total current can be written as

I =
e

L

occupied∑
{n,kx}

vn(kx)

=
e

2π

∑
n

∫ +∞

−∞
dkxvn(kx) [θ(kx)fβ(En(kx)− µL) + θ(−kx)fβ(En(kx)− µR)]

Note that the summation in the first row is only over occupied kx states. This is
ensured by the terms in the brackets in the second row. The unit step function θ(x)
is used because the population of right movers is controlled by the left lead and vice
versa. β = 1/kBT and fβ(E) = (1+eβE)−1 is the Fermi-Dirac distribution function.
Combining the above relation with Eq. 2.39 gives

I =
e

h

∑
n

∫ +∞

E0
n

dE [fβ(E − µL)− fβ(E − µR)] (2.40)

At low source-drain bias (µL/R = EF ± 1
2
eVSD and VSD � 1) the integrand becomes

− eVSD
∂fβ(E − EF )

∂E

β→∞−−−→ eVSDδ(E − EF ) (2.41)

Therefore at the limit of low temperatures the current is I = GVSD where the linear
conductance G = νe2/h is equal to the number of (partially) occupied subbands
ν times e2/h. Opening up the constriction decreases the subband offsets E0

n and
makes a step in the conductance each time a subband edge passes the Fermi energy.
Conductance measurements (like the one in Fig. 2.3a) typically show steps in units
of 2e2/h because the 1D subbands are spin-degenerate.

12The assumption of a parabolic dispersion is not really essential here.
13ψ(x) = L−1/2 exp(ikxx) is the wave function of carriers.
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So far we have assumed that each subband is perfectly transmitted. In the so-
called Landauer theory an energy-dependent transmission probability Tn(E) ∈ [0, 1]
is included in the integrand of Eq. 2.40 to account for the back-scattering

I =
e

h

∑
n

∫ +∞

−∞
dETn(E) [fβ(E − µL)− fβ(E − µR)] (2.42)

Note that Tn(E) contains the subband edge and therefore the lower limit of the
integral is sent to minus infinity. For low source-drain biases, Eq. 2.41 and its low
temperature limit can also be used in this formula. Landauer theory and its multi-
terminal generalization known as Landauer-Büttiker formalism [1] are frequently
used in this thesis.

2.4.2 Coulomb blockade in quantum dots

Quantum dots are small conducting islands that have a tunable number of confined
charge carriers. Due to this spatial confinement in all three directions, the energy
spectrum of the confined carriers is discrete. The main characteristic energy scales
are the charging energy EC which represents the energy necessary to add one more
charge carrier to the dot and is inversely proportional to its size and the quantum
mechanical confinement energy ∆E. Transport measurements on quantum dots are
possible if the dot is coupled to some charge carrier reservoirs (source and drain)
enabling charge tunnelling between the quantum dot and the reservoir. The energy
distribution of carriers in the reservoirs in equilibrium follows the Fermi-Dirac distri-
bution which brings about another energy scale kBT , the thermal excitation energy
of the carriers. If the size of the dot and therefore its electrostatic capacitance is
small enough, then the charging energy EC necessary to add one more charge carrier
to the dot is larger than kBT , and the carriers in the dot can have a fixed number.
In this case the current through the dot is blocked, an effect known as Coulomb
blockade.

Fig. 2.4a shows a schematic of a quantum dot (QD) coupled to its source and
drain leads. The number of charge carriers in the dot can be controlled by the voltage
VG applied to the gate which is capacitively coupled to the dot. The signature of
Coulomb blockade in transport is that a set of separated Coulomb resonances in the
current shown in Fig. 2.4b is observed if a very low bias is applied between source and
drain (µS ' µD). This current flows due to sequential tunnelling of single particles
from source to dot and dot to drain when two consecutive charge configurations of
the dot become degenerate by the voltage applied to the gate. To see this, note the
mth excited states of a N-hole charge state of the QD is equal to

Um(N, VG) =
(Ne− CGVG)2

2CΣ

+ Em (2.43)

which can be tuned continuously by the voltage VG applied to the gate. CΣ is
the total capacitance of the dot and besides CG includes its capacitance to the
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source and drain and all stray capacitances. It must be emphasized that a QD is a
strongly interacting particle system (most of the interaction is however Hartree) and
in principle the Hamiltonian 2.17 must be diagonalized to get the energy eigenvalues
of a QD. The assumption that the interaction between particles can be lumped into
a fixed charging energy (associated with the dot capacitance) with a set of single-
particle excited states independent of the total particle number is an approximation
called the constant interaction model [53, 54]. The electrochemical potential µmn is
defined as the energy required to add one more charge carrier to the QD (with n
and m the old and new occupied single-particle energies)

µmn(N, VG) = Um(N, VG)− Un(N − 1, VG)

=
e2

CΣ

(
N − 1

2

)
− eαVG + ∆Emn

(2.44)

where ∆Emn = Em − En and α = CG/CΣ is the gate lever arm. If we neglect the
confinement energy ∆E, the distance between the Coulomb peaks can be calculated
by the change in VG so that two consecutive charge states in the dot have the equal
electrochemical potential µ(N + 1, VG1) = µ(N, VG2). From this we obtain

∆VG =
1

eα

e2

CΣ

. (2.45)

The tunnelling current between source and drain through a QD can be used as a
spectroscopic tool to gain information about the energy spectrum of the carriers in
the dot. This is achieved by the so-called Coulomb blockade diamond measurement
(Fig. 2.4c). These measurements typically exhibit a charge stability diagram, the
parameter regime at which a given charge configuration is stable. A sufficiently
large source-drain bias voltage can lift the Coulomb blockade. This is shown in
Fig. 2.4c,d. Therefore charging energy can be read in this plot as the largest source-
drain bias at which Coulomb blockade can still happen. If ∆E � kBT the dot is in
the so-called single-particle regime, and transport occurs via single quantum level.
Each state in the quantum dot acts like a channel for current flow. The current
through the QD thus increases as soon as an excited states enters the bias window.
In this case information about the spectrum of the dot can be extracted by the steps
in the current outside the Coulomb blockade regime parallel to the diamond edge as
shown in Fig. 2.4c. The electrochemical potential due to excited states are not shown
in Fig. 2.4d. On the other side for ∆E � kBT , the dot is in the multi-level transport
regime and the transport occurs via many single-particle levels. For steep potential
wells with an area A, the mean single-particle level spacing can be calculated from
〈∆〉 = 1/DA. Using the 2D DoS (Eq. 2.19) this gives 〈∆〉 = π~2/m∗A. Since the
holes in 2D systems have much larger effective mass than electrons, 〈∆〉 is much
smaller in the case of hole quantum dots and therefore harder to resolve. This is
discussed extensively in Chapters 8 and 9.
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Figure 2.4: (a) (adapted from [55]) Schematic of a single quantum dot tunnel
coupled to the source and drain. The capacitive coupling to the gate enables the
number of charges within the dot to be tuned by the VG as depicted in b. (b)
Calculated Coulomb peaks in the current for low source-drain bias: a current flows
between source and drain at the charge degeneracy points. (c) A calculated colormap
of source-drain current as a function of applied bias and the gate voltage exhibiting
Coulomb diamonds. The edge of the diamonds are related to the configuration where
the electrochemical potentials of the dot are aligned with that of source and drain.
The charging energy can be read directly as the extension in bias direction. The
lines outside diamonds parallel to the edge are caused by the excited states. (d)
Energy diagram of the dot at the three configurations marked with I, II and III in
c. I and III both have one dot level in the bias window and a current flows from
source to drain. In II the current is blocked due to the gapped spectrum of the dot
or Coulomb blockade.
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Chapter 3

Sample Fabrication and
Measurement Setup

3.1 Sample Fabrication

Roughly speaking more than half of the time of this thesis was spent on sample
fabrication and therefore this step was the most crucial part of the project. The
starting point in fabrication were p-type GaAs/AlGaAs heterostructures containing
a two-dimensional hole gas (2DHG) grown by the group of Prof. Wieck, University
of Bochum. After producing Hall bars and mesas from these wafers and making
low resistivity Ohmic contacts to them in order to access the 2DHG, they were
characterized by standard low temperature magneto-transport measurements. Con-
ventional semiconductor nano-devices are usually created using split-gate technique
which are metallic Schottky gates evaporated on top of the heterostructure surface.
While these split-gate devices fabricated on n-type GaAs/AlGaAs heterostructures
show excellent electronic properties, they exhibit significant leakage and gate insta-
bilities on p-GaAs/AlGaAs heterostructures [6, 56, 57] most probably due to the low
Schottky barrier [58] and the fact that in order to deplete the 2DHG and create the
nano-devices, the resulting diode must be forward biased. Therefore in this thesis
atomic force microscope (AFM) and electron beam (e-beam) lithography was used
to pattern the 2DHG into a main channel and several in-plane gates.

3.1.1 Carbon doped p-type GaAs/AlGaAs heterostructures

Fig. 3.1 shows the schematics of the heterostructure used to fabricated the nano-
structures studied in this thesis. The host heterostructure consists of a 5 nm un-
doped GaAs cap layer, followed by a 15 nm thick, homogeneously C-doped layer of
AlGaAs, which is separated from the two-dimensional hole gas (2DHG) by a 25 nm
thick, undoped AlGaAs spacer layer [2]. It is to be noted that Carbon acts as an
acceptor on the (100) plane [3], and thus the anisotropy in the 2DHG formed in this
plane is significantly reduced compared to the case of Si doped (311) heterostruc-
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Figure 3.1: (adapted from [6]) (a) The schematic of the heterostructure used in
this thesis to fabricate the nano-devices. (b) Valence band energy profile along the
growth direction (red line) with the designated position of the Fermi energy (dashed
line) calculated from a self-consistent Poisson-Schrödinger solver. Inset: Magnified
confining potential of a 2DHG (red line) with the quantized level of a 2DHG (dark
blue line). The light blue line shows the spatial profile of the charge density.

tures. The functionality of devices patterned on C-doped GaAs wafers as well as the
interpretation of the transport experiments in these devices are therefore expected to
be independent of the particular orientation of the device with respect to the wafer.
The nanostructures were fabricated from 3 almost identically grown heterostruc-
tures: A2 (Bochum12029), A3-4 (Bochum13127) and A10 (Bochum20122). Fig. 3.1
illustrates the heterostructure, different layers and the thickness of each layer. The
main nominal difference between the three wafers is the doping concentration and
the variation of the Aluminium content in the AlxGa1−xAs alloy x, which was 0.35,
0.36 and 0.34 in the three wafers respectively. A word about the notation is in
order here. In reference to a sample e.g. A2.1.2, the first two characters identify
the wafer while the rest are indices that refer to a particular position in the wafer
from which the sample was fabricated. The list of all the samples discussed in this
thesis is shown in Appendix A. Prior to sample fabrication the quality of the 2DHG
was characterized by standard magnetotransport measurements at 4.2K and the
values obtained for the hole density p and mobility µ are listed in table 3.1.1. The
mean-free-path `e = ~

e
µ
√

2πn is also shown in this table for the three wafers. The
Fermi wavelength λF depends only on the density and is about 40 nm similar to
electron systems. Valence band heavy holes in 2DHG formed at the interface of
GaAs/AlGaAs heterostructures are susceptible to strong Rashba [59] and Dressel-
haus [34] spin-orbit interactions. These interactions modify the dispersion relation
and lift the degeneracy of the two spin-degenerate subbands that are referred to as
the Kramers doublets due to lack of a constant quantization axis. Assuming a cubic
k-dependence of the heavy-hole subband splitting ∆ESO = 2βk3

‖ [31] results in band
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wafer x p(1015m−2) µ(cm2/V s) `e(µm)

A2 0.35 3.8 120,000 1.2

A3-4 0.36 4 200,000 2

A10 0.34 2.7 60,000 0.5

Table 3.1: The Aluminium content x, density n and mobility µ of the three
GaAs/AlGaAs heterostructures used in this thesis. The values were obtained by
standard Hall bar measurements at a temperature of 4.2 K in the dark.

non-parabolicity and a difference in the effective masses and the Fermi wave vectors
of the two Kramers doublets. The in-plane effective masses of the two spin-split
subbands in A2 are m1 = 0.34 me and m2 = 0.53 me measured by our group from
the temperature dependence of the Shubnikov-de Haas oscillations [8]. 1 With these
effective masses and the 2D density of states of a single non-degenerate band given
by Di = m∗i /2π~2 we obtain EF = N/(D1 + D2) ≈ 2 meV for the typical density
of N= 4×1015 m−2. This value of the Fermi energy is much less than the split-
ting between heavy and light holes (due to quantum well confinement) identifying
the former as the main carriers of the two dimensional hole gas. We assume that
the average effective mass obtained from this study on A2 holds also for the other
similar C-doped GaAs heterostructures studied in this thesis. Note that this Fermi
energy is about 7 times smaller than typical Fermi energies in n-type systems with
similar carrier density. With this effective mass and density, typical values for the
interaction parameter are estimated to be rs ≥ 5. The difference in the effective
mass of the two spin-subbands results in a density mismatch of about ∆N/N = 0.29
measured from the beating of the Shubnikov-de Haas oscillations, suggesting a spin-
orbit interaction energy of ∆ESO = 0.85 meV and a significant relative spin-orbit
strength of ∆ESO/EF ≈ 33%. The decoherence length for the wafer A2 was calcu-
lated by Boris Grbić [6] from the temperature dependence of the Aharonov-Bohm
oscillations in quantum rings fabricated in this wafer [26] to be `φ =2 µm. This
value agreed with the value extracted from weak anti-localization measurements in
a Hall bar made of the same heterostructure [13] 2.

3.1.2 Optical lithography

Optical lithography was used in this thesis for the fabrication of Hall bars and
20× 20 µm2 mesa structures, which serve as platforms for AFM and e-beam lithog-
raphy, as well as for defining the Ohmic contacts. The scheme of a standard photo-
lithography process is shown in Fig. 3.2 and further details about the process and

1Slightly higher values were obtained in a similar experiment by Habib et al. [38].
2It was also found from these measurements that in a 100 nm deep 2DHG (Bochum1282), spin-

orbit scattering time τSO can be as low as 3 ps (compared to τφ =120 ps for the phase decoherence
time in that 2DHG) giving rise to a `SO = 100 nm compared to `φ = 5µm in this material.
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parameters can be found in [6]. The heterostructures received from the growers were
initially covered with a thick layer of photo-resist in order to protect the surface.
After cutting to the desired size, removing the protective layer and cleaning the
wafer with acetone and isopropanol, the sample was first dried and then covered
with a positive photoresist and exposed to the UV light through a mask containing
the desired pattern. The resolution of optical lithography is limited by the wave-
length of the UV light used in the exposure and the distance between the mask and
the sample surface and is usually around 1 µm. After development, the photoresist
exposed to the UV is removed and the wafer outside the desired pattern is then
etched down by 60-100 nm with a solution of H2O : H2SO4 : H2O2, thus removing
the 2DHG outside the desired region. In the second photo-lithography step, used
to define the Ohmic contacts, a negative photo-resist is spun on the sample surface
and a different mask with contact patterns is aligned with respect to the predefined
mesa structure. After exposure and development of the photoresist similar to the
first step, instead of etching this time Au/In/Zn is evaporated as the contact and
standard lift-off process is followed.

clean wafer bake out exposure

plasma etch

acetone
rinse

plasma etch

wet etchdevelopment

acetone rinse
HCl dip etch

resist
spin on

UV
mask

lift off in
acetone

Au/In/Zn

evaporation

Figure 3.2: (taken from [60]) Schematic of the optical lithography process used to
define the mesa and the Ohmic contacts.

3.1.3 Ohmic contacts to two-dimensional hole gases

Low resistance Ohmic contacts are necessary for low-noise transport measurements
of semiconductor nano-structures. While the technology of making good Ohmic con-
tacts to n-type GaAs/AlGaAs heterostructures are well-established, the fabrication
of good contacts to p-type GaAs wafers are proven to be more difficult [6]. Typically
AuZn, AuBe or InZn metalizations are used for Ohmic contacts to p-type GaAs [61].
Note that Be is preferentially avoided because of its poisonousness and In is very
diffusive and therefore has to be evaporated in a separate evaporating system to
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avoid cross-contamination risks. Here we provide the recipe developed by Grbić
[6] to make such contacts to C-doped heterostructures with shallow 2DHG using an
alloy of Au/In/Zn evaporated on top of the sample which was used extensively in
this thesis.

Before evaporation, the sample is cleaned for 2 minutes with plasma ashing using
O2 gas with 200 W power. It is then immediately placed in the evaporation machine
and a sequence of Au(2 nm), Zn(40 nm), In(40 nm) and Au(200 nm) is evaporated
on the sample. The first Au layer serves as the sticking layer. The key component of
the alloy is Zn while In serves to facilitate Zn diffusion through the heterostructure.
The last Au layer is evaporated to make the wire contact. Using In for the contact
metallization has the disadvantage that it alloys with the last Au layer, resulting
in soft contacts which are difficult to contact using the wire bonder. Most of the
wire bonding in this thesis was therefore performed manually. After evaporation,
the resist is removed by a standard lift-off process in warm Acetone or NMP (N-
Methyl-2-Pyrrolidine). The samples were then annealed for 2 minutes at 130◦C (to
remove water and humidity) and then 2 minutes at 500◦C in the formier gas made
of 95% N2 and 5% H2. While the duration of the annealing is not so important and
it can get longer, the temperature was found to be crucial. With this recipe contact
resistances (resistance of one contact to all the other contacts grounded) between
5-20 kΩ were obtained reproducibly at the temperature of 4.2 K. Enhancement of
the room temperature values of the (dark) contact resistance to about 100 kΩ due
to presence of oxide lines or etched trenches can be used as a quick test of their
insulating behavior at low temperatures.

3.1.4 AFM oxidation lithography

Local anodic oxidation lithography [62–64] was used extensively to pattern the nano-
structures on 2DHG in this thesis. The basic mechanism is illustrated in Fig. 3.3a.
A charged tip of an atomic force microscope (AFM) is brought close to the semi-
conductor surface in a humid environment. This setting is very similar to anodic
oxidation in which the conducting tip of the AFM, the semiconductor surface and
the water film are anode, cathode and electrolyte [65]. Applying a negative voltage
to the tip with respect to the semiconductor results in reduction of the tip and local
oxidation of the semiconductor surface. Initially, AFM oxidation has been performed
with a constant dc voltage being applied to the AFM tip [63], but it was shown by
Graf et al. [66] that the application of a square ac-modulated voltage to the AFM
tip leads to better reproducibility of the oxidation process and also enhances the
aspect ratio of the oxide lines which improves their insulating behavior. Therefore
the structures in this thesis were formed by applying a square ac-modulation with a
peak-to-peak amplitude Vac of 10-25 V superimposed on a dc offset Vdc of -5 to -15 V
with a frequency of modulation of about 1000 Hz. A Ti/N cantilever covered with
Au coating was used for the lithography and the humidity was kept in the range
of 40-45% during lithography. The set point was in the range of 0.03-0.1, much
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smaller than typical set point values during scanning (about 0.7-0.8) which means
that in the writing mode the tip was approaching the surface much more than in
the scanning mode [6].

water film

45 nm

2DHG

AFM tip

Controlled humidity
40-45 % 

EF

oxide line

2DHG

2D hole gas

oxide line

sample surfacesample surface

(a) (b)

(c)
Figure 3.3: (adapted from [6]) (a) Scheme of AFM oxidation lithography. (b) Simpel
schematic of how local depletion of 2DHG underneath the oxide line is achieved by
shifting the band above the Fermi level.

Fig. 3.4a shows an example of a double dot created by local anodic oxidation
lithography. Oxide lines as high as 15 nm are able to locally deplete the 2DHG
situated 45 nm below the surface separating the 2DHG into laterally disconnected
regions which are individually connected to metallic leads. Voltages in the range of [-
200 mV, +200 mV] can be applied between separated regions without any significant
leakage current across the oxide line (see e.g. Fig. 8.1b in Chapter 8).

Fig. 3.3b explains why surface oxidation results in the depletion of the 2DHG.
The oxide has almost twice the volume as GaAs and it is accompanied by an equal
amount of oxide below the surface [65]. This can be easily checked by exposing the
sample to a dilute (1:9) solution of Hydrochloric acid (HCl:H2O) which removes the
oxide and leaves the GaAs untouched as shown in Fig. 3.4b. The trenches left have
similar electronic properties as those before HCl-dipping. When the wafer is slightly
etched down, the sample surface is effectively brought closer to the 2DHG. Since the
position of the valence band edge at the surface has to remain at the same position
below the Fermi level, due to Fermi level pinning, the valence band is pushed down
in energy (Fig. 3.3b), and the 2DHG gets depleted below the oxide line [6].

HCl-dipping also eliminates the native oxide of GaAs. Although this oxide is ex-
pected to form again with further water rinsing and exposure to the ambient atmo-
sphere, higher oxide height and better quality of lines is obtained after HCl-dipping
of the sample. Therefore this technique was often used in this thesis. Sample A3.10.2
discussed in Chapter 6 is an example in which the oxides forming the quantum dot
were removed by subsequent HCl-dipping. The advantage of AFM oxidation lithog-
raphy over other techniques is that once the sample is placed in the AFM chamber
one can, with the same tip, inspect the sample surface, write the structure at a de-
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Figure 3.4: (a) AFM defined double quantum dot with the height profile shown in
(b). Oxide lines are as high as 25 nm. (c) Same sample after HCl-dipping. The
oxide lines are removed and the left trenches are more than 20 nm deep which is
more or less the initial height of the oxide line. Note that the scales are different
and the AFM tip does not reach the bottom of the trench in (d).

sired location and finally check the topography of the written structure and correct
for possible errors after measurement. A detailed explanation of the technique and
relevant parameters for AFM lithography on p-type GaAs/AlGaAs heterostructures
can be found in [6].

3.1.5 Electron beam lithography

AFM oxidation lithography is a flexible method for nano-fabrication however its
performance depends on two main parameters: the microscopic details of the tip, and
the sample surface, which are both difficult to control thus limiting the fabrication
yield. Motivated by the fact that it is the trench and not the oxide that depletes
the 2DHG underneath the oxide line, we used electron beam (e-beam) lithography
to define trenches on PMMA and then chemical etching to produce shallow trenches
on top of the surface. A (1:1) solution of 950K PMMA in ethylactate was used as
the e-beam resist. The crucial step is the chemical etching which again depends on
the surface details and it will be discussed in the following.
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Figure 3.5: AFM micrograph of (a) a QPC defined with e-beam lithography followed
by shallow chemical etching. (b) Representative breakdown characteristics of the
etched lines at T=4.2 K shown for the in-plane gate G1. (c) Two-terminal linear
conductance of three QPCs with different channel widths measured at T=4.2 K.
The lithographical sizes are 230, 210 and 190 nm for QPC1, QPC2 and QPC3
respectively.

Shallow chemical etching

After e-beam exposure and development, the sample was post-baked at 120◦C for
2 minutes followed by 33 seconds plasma ashing at 200 W with O2 (Plasma ashing
removes about 10 nm of PMMA from the top and widens the lines about 20 nm.
This is necessary in order to remove residual PMMA from the exposed areas). This
recipe proved to be crucial in order to get narrow and smooth trenches after etching.
The sample was etched in a fresh dilute (500:3:1) solution of acid (H2O:H2SO4:H2O2)
for about 60 seconds and rinsed in DI water immediately afterwards. The PMMA
was then removed in acetone and isopropanol and the depth of the trenches was
measured afterwards with AFM to be about 20 nm. As the etching rate was changing
each time depending on sample surface and other parameters it was necessary to
make an etch test on the mesa arm before the final e-beam lithography step in the
mesa center. Fig. 3.5a shows an example of a nano-structure fabricated with this
technique. The topographical height profile of the sample shows that the trenches
as deep as 20 nm with a width of 100 nm can be created similar to AFM oxidation
lithography. It has to be emphasized that in order to reproduce deep and clean
trenches, it is crucial that the PMMA exposed to the e-beam is removed completely.
If this condition is not met, the etched line defining the nano-structure is cut at
several points. Fig. 3.5c shows the breakdown voltage characteristic for the gate G1

in Fig. 3.5a which is typical for the etched lines. Fig. 3.5d shows the two-terminal
conductance vs. gate voltage for three different QPCs fabricated on a different
sample (A2.1.2 ) with lithographical channel widths of 230, 210 and 190 nm. The
voltage threshold for opening up the channels in the three QPCs correlate very nicely
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with the lithographical channel widths. This sample was used later on to study the
influence of pre-baised cooling with and without a top-gate (see Appendix B).

3.2 Metallic gates on two-dimensional hole gases

The in-plane gates created by AFM and e-beam lithography are in the same plane
as the channel and therefore their tunability is limited due to the geometry. In this
section we discuss how this limited tunability can be improved using a global top-
gate or a set of top-gate fingers. Metallic gates directly on top of the two-dimensional
holes gases are leaky as stated in the introduction. This is most probably due to
limited height of the Schottky barrier [58] and the fact that in order to deplete the
2DHG and create the nano-devices, the resulting diode must be forward biased.
Therefore several materials have been tried as a gate insulator between GaAs wafer
and the metallic top-gate in this thesis.

3.2.1 Insulating materials and density-mobility curves

Three main criteria are involved in the choice of the insulating material. 1) it has to
have a large dielectric constant k. The total capacitance C−1 = C−1

k +C−1
2DHG is the

series combination of the insulator capacitance Ck and the heterostructure capaci-
tance C2DHG. The higher the dielectric constant, the higher the total capacitance
and density tunability of the top-gate. 2) The breakdown voltage of the material
must be high enough to provide the desired density tunability. In homogeneous
materials, the breakdown limit is expressed in terms of a maximum electric field
(e.g. 1.6 V/nm for HfO2) however in practice the breakdown voltage of a thin film
does not scale linearly with the film thickness due to the presence of defects. The
film quality is therefore the main parameter that determines the breakdown voltage
for a given thickness or the required thickness for the desired breakdown voltage. 3)
The band gap and the band offset [67]. The conduction and valence bands of the
insulator must be far from corresponding bands of the GaAs to prohibit charge tun-
nelling to the insulator and surface charge accumulation at the interface. A good
insulator for n-type GaAs can have undesirable (enhanced noise or depletion) ef-
fects on p-type GaAs nano-structures or vice versa. Although these parameters are
well-studied and tabulated for various insulators on Silicon, not much information
is available for GaAs-based heterostructures especially in the presence of the native
oxide of the semiconductor. 3 In this section we discuss the applicability of Hafnium
and Aluminium oxides grown by atomic layer deposition (ALD) [68, 69] in a Picosun
Sunale RR-150B system on the tunablity of p-type GaAs nano-structures.

3We observed that the mere deposition of an insulator like HfO2 tends to decrease the ungated
density in the 2DHG.
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HfO2

Hafnium oxide (HfO2) is a high dielectric constant (k ≈25) material [67, 70] that
is used as the gate insulator for Field Effect Transistors (FET) and dielectric in
DRAM capacitors. It can be deposited using tetrakis (ethylmethylamido) hafnium
(TEMAH) as the precursor in ALD system. A linear growth rate of 0.08 nm per pulse
cycle has been found at a reaction chamber temperature of 250oC and at a source
temperature of 90oC. The structural quality of a 20 nm thick layer of the resulting
polycrystalline HfO2 have been investigated by scanning electron microscopy (SEM)
on freshly cleaved GaAs wafers as illustrated in Fig. 3.6(a). The surface roughness
determined by AFM is found to be 4 nm rms, independent of the layer thickness.
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Figure 3.6: (a) SEM image of a freshly cleaved GaAs wafer covered with a 20 nm
thick HfO2 layer. (b) Breakdown characteristics of the top gate at T=4.2 K (c) Hole
mobility µ as a function of the hole density P in the 2DHG in a Hall bar from A3
wafer in the range of −8V < Vtop−gate < 8V at 4.2 K.

The electronic properties of the oxide layer as well as the tunability of the host
2DHG by the top-gate were tested separately at T = 4.2 K on a 100 µm wide Hall-
bar device. The breakdown characteristics of the 20 nm thick oxide layer on top of
the sample A3.25.2 shows no trace of leakage currents in the -8 V < Vtg < 8 V top-
gate voltage regime and is reproducible as long as the high voltage leakage current
is kept below 0.5 nA as shown in Fig. 3.6(b). The hole density P and mobility µ
of the 2DHG were determined by conventional four-terminal longitudinal and Hall
resistance measurements performed at low magnetic fields up to 0.1 T. The tunability
of P in the 2DHG is however limited to about 20-25% within the leakage free top-
gate voltage regime [Fig. 3.6(c)]. This is in contrast to the estimated depletion
voltage of Vtg ≈ 0.5 V based on a plate capacitor model taking the thicknesses and
the dielectric constants of the layers into account. This is presumably due to the
screening effect of the low mobility charges residing in the doping layer and at the
interface between the insulator and the semiconductor. The mobility edge arising
from the background potential roughness of the 2DHG is close to the density of the
ungated sample P ≈ 4× 1011 cm−2.
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Al2O3

Atomic layer deposition of Aluminium oxide (Al2O3) is the most well developed [67]
and uses Trimethylaluminium (TMA) as the precursor. Al2O3 has a dielectric con-
stant between 7-9 depending on the oxide quality and it is frequently used as the
gate insulator in semiconductor and graphene-based nano-electronics. Fig. 3.7 shows
the mobility of five Hall bars covered with Al2O3 as a gate insulator as a function of
hole density varied by the top-gate voltage. The density at each Vtop−gate value was
measured by standard Hall effect. The nominal thickness of the alumina layer was
70 nm except the sample A2.1.4 which had an oxide layer with nominal thickness
of 50 nm. The reaction chamber temperature during deposition was 300◦C except
the oxide on sample A3.3.1 which was grown at 200◦C.
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Figure 3.7: The hole mobility vs. hole density curves for five Hall bars fabricated
from the wafers A2 and A3 using 50-70 nm thick layer of Al2O3 as a gate insulator.
While the density in A2 can be changed with a factor of two and the mobility
increases monotonically with density, the density in wafer A3 can hardly be tuned
within the breakdown voltage range of the top-gate.

The samples fabricated from similar wafers have different density-mobility char-
acteristics presumably due to slightly different surface treatment during processing.
Furthermore, while the density of samples from the wafer A2 can be tuned with a
factor of two, the density in the wafer A3 is not tunable. This observation together
with the fact that the wafer A3 has a parallel conductance of about 200 kΩ (see Ap-
pendix C), suggests that the parallel conducting layer due to low mobility charges in
the doping layer in this wafer gives rise to the enhanced screening effect. Although
the bulk density is not tunable in these wafers, it is very interesting that the density
in nano-structures can be perfectly tuned with a top-gate.
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3.2.2 Leakage characteristics

The presence of the top-gate also influences the breakdown characteristics of oxide
lines or etched trenches separating in-plane gates from the channel. In order to
illustrate this effect we look at the leakage of the gate G1 in sample A4.2.2 shown
in Fig. 3.5a. The breakdown characteristics of this gate, before putting a top-gate,
was shown in Fig. 3.5b. Later on this sample was covered with a 20 nm thick layer
of HfO2 and 10/90 nm of Ti/Au metallization as the top-gate. Figure 3.8(a) shows
the absolute value of the leakage current across the separating line in the leakage
free gate configuration regime defined as | Ileak |< 0.1 nA when both the top-gate
Vtop−gate and one of the in-plane gate voltages [shown for VG1 in Fig. 3.8(a)] are
varied. The overall broadening of the leakage free domain in VG1 with respect to
the Ileak(VG1) trace recorded in the absence of the top-gate [Fig. 3.5(b)] can be
understood as the screening effect of the top-gate. The further broadening towards
higher Vtop−gate reveals the variation of the hole density in the 2DHG, i.e., a decrease
in electrochemical potential with respect to the in-plane gate barriers. The hole
density measured in situ on this sample using standard Hall effect for different
Vtop−gate values, illustrated in Fig. 3.8b, confirms a monotonic decrease in density
with the variation of the top-gate voltage. The asymmetry in the position of the
border lines [also visible in Fig. 3.5(b)] reflects the asymmetry in the applied in-
plane gate biases as one side of the separating lines was always kept at ground. The
asymmetry in the curvature of the border lines is attributed to the nonlinearities in
the tunneling probability across the barrier under asymmetric in-plane gate biases.

(a)

V
G1

 (V)
-1 -0.5 0

(b)

DV

Vg

-0.5 0.0.50 1.0.51

 

 

V
tg
 (V)

100500

2
G (2e /h)

0 1 2 3

0.5

0

-0.5

-1

V
 (

V
)

G
2

4.0

3.5

3.0

1
5

-2
P

 (
1
0

 m
)

-1 0 1 2
V  (V)top-gate

V
 (

V
)

to
p

-g
a

te

-1 0 1-2
V  (V)G1

-1

0

1

2
I  (pA)leak

(a) (b)

B A
C D

Figure 3.8: (a) Leakage current Ileak across the in-plane barrier of gate G1 in the
QPC of Fig. 3.5a as a function of the Vtop−gate voltage and the VG1 in-plane gate
voltage at T = 100 mK. The colored area shows the magnitude of Ileak in the
leakage free domain defined as Ileak < 0.1 nA. (b) Variation of the hole density with
the top-gate voltage Vtop−gate, measured on the same sample using two independent
contacts.

The parameter space in Fig. 3.8a is divided into four quarters. For negative in-
plane gates (VG1 < 0) in quarters B and C the channel and other in-plane gates (all
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grounded) act as a gate to deplete G1. In regions A and B, the positive top-gate
also acts to deplete the in-plane gate G1. Therefore the depletion length between
the gate and the channel in region B is enhanced compared to the other quarters,
explaining the extension of leakage free regime in this case.
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Figure 3.9: (a) QPC conductance G as a function of Vtop−gate at T=100 mK while
VG is kept at a constant value of 0.5 V. The arrows indicate the direction of the
consecutive Vtop−gate sweeps. The inset shows a hysteresis-free top-gate sweep in a
limited Vtop−gate regime. (b) G as a function of VG at various temperatures between
T=5 K and 100 mK at Vtop−gate = 1.4 V. (c) G as a function of VG recorded at
different top-gate voltages ranging from Vtop−gate = 2 V (leftmost trace) to Vtop−gate
= 0.6 V (rightmost trace). VG is the symmetric voltage applied to in-plane gates.

3.2.3 Top-gate stability and improved tunability

The stability of the conductance traces upon different top-gate sweeps is illustrated
in Fig. 3.9a. Sweeping Vtop−gate over the extended regime of Fig. 3.8a at a fixed
in-plane gate VG value results in a hysteretic behavior due to the charging of the
defect sites in the doping as well as in the oxide layer. On the other hand, a top-
gate sweep performed in the limited voltage range displayed in the inset of Fig. 3.9a
yields to hysteresis-free, stable conductance traces. The tunability of the QPC by
the in-plane gates at various Vtop−gate values is shown in Fig. 3.9c. It demonstrates
that while the overall shape of the individual conductance curves is slightly affected,
the range of tunability by means of VG can be optimized by the proper choice of the
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additional control parameter Vtop−gate. Moreover, our experience shows that QPCs
which were not tunable prior to top-gate deposition due to a large misalignment
between the electrochemical potential and the first QPC subband become tunable
by changing Vtop−gate.

At more positive Vtop−gate the density in the leads is lower and the opening of
the QPC requires more negative voltages on the in-plane gates corresponding to a
broader lateral confinement. At the same time, the length of the observed quantized
plateaus slightly increases in agreement with the saddle-point potential model [71].
Based on the temperature dependence shown in Fig. 3.9b along with further criteria
for the associated zero bias anomaly discussed in Chapter 5 we attribute the resonant
feature on the rise of the 2e2/h plateau to a transmission resonance arising from
the interaction with an impurity state inside the QPC. The effect of this impurity
resonance on the transmission becomes more pronounced towards narrower QPC
confinements set by less positive Vtop−gate top-gate voltages. It has to be added that
the majority of the hole QPCs exhibit a different conductance feature below the
2e2/h plateau with a markedly different temperature dependence which we attribute
to the so-called 0.7 anomaly and is the topic of next Chapter.

3.2.4 Patterned top-gate in combination with in-plane gates

Measuring the spectrum of a few-hole quantum dot can provide very interesting
information about the effects of spin-orbit and exchange interactions on the energy
levels of the hole dot. However, due to the larger effective mass of the holes com-
pared to electrons a stronger confinement and therefore larger dot charging energy is
required in order to resolve the individual states. While charging energies as large as
2-3 meV were obtained using only in-plane gates in this thesis, it would be definitely
interesting to get smaller dots with fewer confined holes in future. Further confine-
ment using in-plane gates is limited due to cross capacitance of different constriction
gates on each other.

The way to overcome this problem is to implement separate top-gate fingers
with local influence to control individual constrictions. Defining the dot using only
split-gates on top of insulating layer requires large voltages on the gates and is not
practical given the gate hysteresis and inability to tune the density in the 2DHG.
Fig. 3.10 shows two different approaches to this problem in a quantum dot. In both
cases after defining the quantum dot using electron beam lithography followed by
shallow chemical etching, the sample surface was covered by a 40-60 nm thick HfO2

as the gate insulator. In (a) a 5 nm thin layer of Ti was then deposited on the
surface and AFM lithography technique was used to oxidise this thin metal film
in order to create mutually insulated top-gate patches over the constrictions. The
thickness of the Ti layer is very crucial and is controlled by monitoring the sheet
resistance to be between 5-15 kΩ prior to AFM lithography. A too thin layer is not
a good top-gate because it is not conducting and a too thick layer can not be totally
oxidized by the AFM lithography [72, 73]. This method can be used in combination
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with either AFM or e-beam lithography for the first layer and requires a certain
quality and thickness for the insulating oxide layer. If the AFM oxide lines with the
height of 20 nm are used to define the dot, they are still visible (and the alignment is
possible) under the oxide layers as thick as 60 nm. The roughness of the oxide layer
must be below 5 nm in order for the second AFM lithography step to work. If the
dot is defined by e-beam lithography, AFM lithography on the second layer across
the etched trenches usually results in a discharge marked with the black arrow in
Fig. 3.10a.

1mm2mm

(a) (b)

Figure 3.10: False color AFM micrograph of two samples showing double-layer
lithography. After e-beam lithography and shallow etching, the samples surface
were covered by 40 nm thick layer of HfO2. The sample in (a) was then covered
with ≈ 5 nm Ti and AFM lithography was used to seperate the global gate to a
set of independent patches. Different patches are shown in different colors. For the
sample shown in (b) a second e-beam lithography followed by Ti/Au evaporation and
standard lift-off process was used to create the top-gate fingers on the constrictions.

The second method is to define the top-gate fingers by electron beam lithography
followed by Ti/Au evaporation and standard lift-off technique. The result is shown
in Fig. 3.10b. In order to align the two e-beam lithography steps, 150 nm large
alignment markers were used. This alignment markers buried under a 60 nm thick
layer of HfO2 were visible in the SEM. Note that due to thin top-gate layers these
double-layer structures are more sensitive to electrostatic discharge (ESD) than their
corresponding single-layer counterparts.

3.3 Measurement Setup

The ultimate goal in transport experiments is to measure resistances accurately and
draw conclusions from them about the underlying microscopic physical processes.
The measurement is achieved by applying a voltage across an electrical channel
(controlled by a set of gates) and measuring the current or vice versa. Large currents
and voltages are too invasive and therefore low-noise amplifiers are used for low-level
current and voltage measurements. This brings up the issue of noise and various
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3.3. Measurement Setup

techniques that are used to overcome it. Moreover, in order to observe various
quantum phenomena in semiconductor nano-devices, the characteristic energy scales
of the system must be larger than the thermal energy kBT . Therefore electronic
transport experiments are usually performed at very low temperatures. In this
section we briefly discuss how this low-temperature is achieved in the experiment,
the electrical setups that are used for low-level measurements in this thesis and
various sources of noise in these electrical setup.
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Figure 3.11: (a) (adapted from [60]) Scheme of the four-terminal resistance mea-
surement setup for a QPC using a lock-in amplifier. (b) (adapted from [55]) Scheme
of the two-terminal conductance measurement using an IV converter. The measured
sample is modelled by the resistor RS while CS stands for the total cable and para-
sitic capacitances. The circuit model of an IV converter is also shown in the figure
and various internal and external noise sources are identified. (c) (taken from [60])
Scheme of a top loading 3He/4He dilution refrigerator.

3.3.1 Electrical setups for transport measurements

Depending on the resistance of the sample, two different setups are used to measure
the resistance. [74]. Low impedance measurements (R ≤ h/e2) are usually done by
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passing a current through the system and measuring the voltage drop. Using two
independent probes for the voltage has the advantage that the cable and contact
resistances are excluded. Fig. 3.11a shows the scheme for the four-terminal conduc-
tance measurement of a sample which is a QPC in this case. A low ac bias voltage
at the frequency of 31 Hz is applied using a Stanford SRS 830 lock-in amplifier to
a large resistor (50 MΩ here) in series with the sample. This provides a constant
current of about 1-10 nA through the sample as long as the sample resistance is
small compared to this series resistance. This current can be also passed through a
small resistance (1 kΩ here), the voltage drop across which, is used to monitor the
current. The four-terminal and two-terminal voltage drops are indicated in the fig-
ure. Divided by the current they give the measured four-terminal and two-terminal
resistances.

For high impedance samples (R� h/e2), two-terminal measurements of the sam-
ple conductance were performed using a home-built IV converter. The IV converter
consists of an operational amplifier (OPA627) with a differential gain of 108-109 and
a feedback resistor RF in the range of 1-100 MΩ as shown in Fig. 3.11b. The capac-
itive gain of the IV converter can be modelled with a capacitance CF on the order
of 2 pF. A low dc or ac bias voltage is applied symmetrically or asymmetrically
across the sample and the current through the sample is measured with the IV con-
verter. In Fig. 3.11b the sample is modelled with the resistance RS. The cable and
parasitic capacitances CS on the order of 1 nF are the main parameters that limit
the measurement bandwidth. All measurements were automatized with LabVIEW
computer program [55].

3.3.2 Noise in electrical circuits

Various noise sources are indicated in the setup of Fig. 3.11b. These include the
thermal noise, the amplifier noise and the current shot noise in the sample. Noise is
usually characterized by power spectral density S(ω) defined as the Fourier trans-
form of the correlation function 4

S(ω) =

∫
dteiωt 〈〈V (0)I(t)〉〉 (3.1)

For an Ohmic resistor V (t) = RI(t) or generalized Ohmic impedance V (ω) =
Z(ω)I(ω) this expression can be written in terms of current-current correlation
which is the form one frequently encounters with. Noise power (in units of Watts)
is calculated by integrating this quantity over the measurement bandwidth. For
measurement purposes it is more convenient to express the noise in terms of power
spectral densities of voltage SV or current SI (in units of V/

√
Hz or A/

√
Hz) defined

by

S(ω) = ZS2
I (ω) =

1

Z
S2
V (ω) (3.2)

4In case of current and voltage operators this expression must be symmetrized to give real
numbers [75]. For a definition of cumulant average 〈〈X〉〉 see Chapter 10.
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Thermal fluctuations of the charges in the conductors produce a noise which is
flat for ~ω � kBT with voltage spectral density of SV =

√
4kBTR known as the

Johnson-Nyquist noise where T and R stand for temperature and the conductor
resistance. Since the sample is at cryogenic temperatures during measurement,
its thermal noise is negligible. The feedback resistance RF however is at room
temperature and has a contribution on the order of SFV ≈ 0.4 µV/

√
Hz for 10 MΩ.

The operational amplifier is also a source of current and voltage noise that appear
in its input. While the current noise is usually negligible (SI=1.6 fA/

√
Hz for

OPA627), the voltage noise SAmpV ≈ 5 nV/
√

Hz is significant, especially because it
produces a current through the sample that is multiplied by the feedback resistor
in the output. Therefore the output voltage noise of the amplifier is proportional
to ZF/ZS and is higher for low-impedance samples. Different noise sources add up
incoherently and we have

Sn,extV (f) =
√

(V n
F )2 + (V n

Amp)
2(1 + ZF/ZS)2 (3.3)

The choice of feedback resistance is therefore adjusted with the sample resistance
to minimize the noise. The signal however has a gain of ZF/ZS which limits the
bandwidth by the amplifier pole ZF = (1/RF + iCFω)−1 and the sample zero ZS =
(1/RS + iCSω)−1. Apart from these external noise sources, the fact that current is
carried by discrete charged particles and each get randomly transmitted or reflected
through a nano-structure also produces the so-called Shot noise. In a QPC with a
single degenerate channel this noise is given by SshotI =

√
eIF (see section 9.4) where

F = 1−D is the Fano factor with D the transmission probability of the QPC. For
a current on the order of 10 nA through a QPC at 50 kΩ (Vbias ≈ 500 µV) the shot
noise is about 40 fA/

√
Hz. With the same parameters and assuming 10 MΩ for the

feedback resistor, the external noise is equivalent to a current noise of 110 fA/
√

Hz
which is only a factor of 3 higher than the intrinsic noise of the QPC. The total noise
must be again calculated using incoherent sum of intrinsic and extrinsic noises.

Above we discussed about inevitable sources of noise in transport measurements.
There are also a number of other sources of noise like the Flicker noise, due to charged
fluctuators in the solid-state environment, or the 50 Hz noise from power supplies
that can be eliminated by avoiding ground loops in the measurement setup.

3.3.3 Cryogenics

Three type of refrigeration systems have been used in the experiments presented in
this thesis. The first system is a simple dewar filled with liquid helium (4He) which
cools the sample to 4.2 K equipped with a 5 Tesla magnet. The second system is a
4He system with a variable temperature insert (VTI) which is used to continuously
pump the liquid helium down to 4He vapour pressure of around 10 mbar. This
system is equipped with a 9 Tesla magnet and can achieve temperatures down to
1.2 K. These two systems were used mostly for the basic characterization of the
samples.
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A measure of the relevant energy scales in a quantum system is the quantum
confinement energy spacing which is inversely proportional to the effective mass.
Since holes in p-GaAs have effective masses m∗ that are about 5-8 times higher than
electrons in n-GaAs, measuring at very low temperatures is essential for studying the
hole transport. Most of the measurements presented in this thesis were therefore
performed in a 3He/4He dilution refrigerator equipped with a 13 Tesla magnetic
which is commonly used to cool down samples to temperatures below 60 mK [76].
Fig. 3.11c shows the scheme of this system. The fridge is composed of two nearly
independent He flow circuits that are isolated from the ambient temperature by
outer vacuum chamber (OVC), liquid nitrogen N2 shield, main liquid He bath and
inner vacuum chamber (IVC). The first circuit composed of a 4He 1K pot and the
4He rotary pump, is very similar to a VTI in which pumping on a liquid 4He vapour
is used to cool down the pot to about 1.2 K. The second circuit is a circulation
circuit in which a mixture of 3He/4He mixture is circulated by a 3He rotary pump.
The sample loaded from the top of the fridge is kept in the mixing chamber where
at temperatures below 700 mK, the mixture undergoes a phase transition to a 3He-
rich and a 3He-dilute phase. The dilute phase extends up to a container called still
where it is pumped continuously using the 3He pump and is kept at temperature
around 700 mK. At this temperature the 3He has higher vapour pressure than the
4He. Therefore mostly 3He gas is pumped and circulated by the 3He pump to a
condenser located in the 1K pot (this is why 1K pot has to be cold) and after
passing heat exchangers it is fed back to the 3He rich phase. The transfer of 3He
atoms from the rich phase to the dilute phase, due to the difference in enthalpy
because of different quantum zero-point motion of the two isotopes, provides the
cooling power at the interface between the two phases where the sample is located.
A detailed explanation of the working principles of the dilution refrigerator can be
found in [76].
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Chapter 4

The 0.7 conductance anomaly: a
short review

4.1 Introduction

Since its discovery in 1988 [50, 51] conductance quantization in ballistic quantum
point contacts (QPCs) has become one of the hallmarks of mesoscopic physics. The
experimental observation of this effect in many different systems and materials has
established its universality. From a theory point of view the conductance of a non-
interacting 1D wire is given by the Landauer formula (Eq. 2.42) namely the number
of transmitting channels times 2e2/h (2 to take into account the spin-degeneracy).
This result is obtained because in 1D, independent of the details of the dispersion
relation, the energy-dependence of density of states (DoS) cancels out exactly with
the group velocity of the carriers.

Coulomb interactions can significantly alter this picture. In 2D and 3D Fermi
liquid theory states that the role of particles is replaced with non-interacting pseudo-
particles that have a renormalized mass. This theory is not applicable in 1D and the
interactions cannot be renormalized there due to the fact that DoS is discrete at the
Fermi energy. Fortunately many-body systems in 1D have an exact solution known
as the Tomonaga-Luttinger liquid. This liquid has qualitatively different properties
than the non-interacting systems. For example it was predicted by Kane and Fisher
[77] that transport properties of a clean 1D interacting electron gas have power law
dependence on temperature and voltage. However it has been argued [78] that the
finite resistance of a finite ballistic wire is due to the contact resistance and comes
entirely from processes that take place outside the wire, where electrons are not in
the Luttinger-liquid state. Maslov and Stone [78] have shown that the conductance
of a single channel is still given by the non-interacting Landauer formula. In spite of
this the question of to what extent interactions play an essential role in 1D transport
is still far from being clear.

From an experimental point of view the conductance of quantum point contacts
and quantum wires show deviations from the single-particle picture provided by the
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Landauer formula, the most prominent one being known as the 0.7 anomaly. A clear
understanding of these anomalies is still debated in spite of extensive investigations.

In the following we will give a short review of the 0.7 anomaly in n-GaAs quan-
tum point contacts. This is by no means intended to be a complete review of the
topic. The 0.7 anomaly has a very rich literature including many essential experi-
mental and theoretical studies during almost 20 years based upon which our current,
yet incomplete, understanding is built. Only few experiments that we believe to be
directly related to our measurements are discussed here. A complete set of data from
each experiment is not presented here. Rather we have chosen to pick a particular
data set from each experiment in order to build a general picture which reflects the
diversity of the phenomenon. The goal is to set the stage to introduce the measure-
ment results on our hole QPCs in the next chapters and to be able to compare them
to electron QPCs. Interested readers are referred to a recent comprehensive review
of this field by Micolich [79]. ∗

4.2 0.7 Anomaly in linear conductance

The 0.7 anomaly is usually referred to the observation of an anomalous plateau at
the conductance value of about 0.7(2e2/h). However it is not the precise conductance
of this plateau but rather a set of qualitative features that are associated with the
anomaly. In the following we will introduce these qualitative features. The plateau
itself has been experimentally observed to have conductance values between 0.6 to
0.8(2e2/h).

4.2.1 In-plane magnetic field

Fig. 4.1a shows a typical measurement of linear conductance vs. gate voltage for an
n-GaAs quantum wire adapted from the PhD thesis of Abi Graham [80]. The figure
shows how the linear conductance is affected by the application of an in-plane mag-
netic field. Linear conductance traces taken for different magnetic fields are shifted
horizontally for clarity. The leftmost curve exhibits quantization of the conductance
in units of 2e2/h at zero magnetic field. This changes with magnetic field. However,
most of the observed features can be understood in a single particle picture. The
conductance is given by the Landauer formula and different modes are separated
in energy due to lateral confinement which gives rise to a conductance staircase in
units of 2e2/h. By applying an in-plane magnetic field the spin degeneracy is lifted
and the steps are seen in units of e2/h as expected.

What defies a single-particle understanding though, is the small plateau-like
shoulder (red arrow) around 0.8(2e2/h) on the rise of the first plateau in the leftmost
curve known as the 0.7 anomaly. This anomalous feature is less universal than the

∗Valuable discussions with Y. Meir, A. R. Hamilton, F. Sfigakis, B. R. Bulka, J. Folk and
I. Zozoulenko is appreciated.
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4.2. 0.7 Anomaly in linear conductance

conductance quantization, but it has also been widely observed in point contacts
made of different materials and fabricated with different techniques. Despite its
observation in the first conductance quantization discovery (Fig. 2.3a), it took eight
years before it was taken seriously by the community [81]. By the application of
an in-plane magnetic field, the conductance of the anomalous feature decreases and
it is gradually transformed to the first spin-split subband. This smooth transition
suggests connection between the 0.7 anomaly and the spin of the electron.
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Figure 4.1: (a) Linear conductance and (b) Transconductance of a n-GaAs nanowire
as a function of gate voltage and in-plane magnetic field adapted from PhD thesis
of Graham [80]. The smooth transition of the 0.7-feature to a half-plateau by ap-
plication of in-plane magnetic field is in contrast to the Zeeman splitting of other
subbands. At zero field there is a finite energy gap between the two spin-split sub-
bands marked with the red circle. The blue circles mark the energy jump in the
crossing of spin-split subbands at larger magnetic fields.

The data shown in Fig. 4.1a can also be represented as the gray-scale colormap
of Fig. 4.1b which shows the transconductance (derivative of linear conductance vs.
gate voltage) as a function of the gate voltage and the magnetic field. The Zeeman
splitting of the first subband by an in-plane magnetic field can be seen in this figure,
however there is a finite energy gap left at zero field between the two subbands
marked with the red circle. This gap is the manifestation of the 0.7 anomaly.

4.2.2 Temperature dependence

The peculiar temperature-dependence of the linear conductance is one of the main
features of the 0.7 anomaly. This is shown for two n-GaAs QPCs in Fig. 4.2. In
Fig. 4.2a from Kristensen et al. [82], no anomalous feature is observed at the lowest
temperature (solid line). Increasing the temperature from 0.3 K to 5.1 K smears
out the conductance but a small kink at elevated conductance of about 0.7(2e2/h) is
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visible in the plot. In Fig. 4.2b from Cronenwett et al. [83] a more obvious feature,
like a short plateau at about 0.7(2e2/h), develops as the temperature is increased
from 80 mK to 4.1 K. At the lowest temperature the remnant of the 0.7 feature is
left as a shoulder-like feature on the linear conductance.

In a single-particle picture the temperature dependence is expected to be given
by the Landauer formula Eq. 2.42 and 2.41. Increasing the temperature smears out
the conductance. In a so-called saddle point potential model of the QPC discussed
in Chapter 5, the conductance of two temperature-invariant points [84], one in the
middle of each plateau and another one in the middle of the rise between plateaus are
expected to be unaffected. These points are indicated in Fig. 4.2b with black arrows.
The temperature-invariance of the point close to the pinch-off is usually influenced
by self-consistent screening effects at low temperatures. However, at sufficiently
large temperatures this point can be clearly identified.
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Figure 4.2: The peculiar temperature dependence of the linear conductance for two
n-GaAs quantum point contacts (a) taken from Kristensen et al. [82] and (b) taken
from Cronenwett et al. [83]. Black arrows point to the temperature invariant points.
Red arrows point to the 0.7 conductance anomaly.

4.3 Possible explanations

It must be emphasized at this point that there is no general consensus on the origin
of the 0.7 anomaly to this date. What is agreed upon however is that many-body
phenomena, spin physics and strong interactions are certainly the main ingredients.
Many theoretical works to date have focused on different many-body explanations
for the anomaly, such as separation of singlet and triplet channels [85], spin and
charge channels in a Wigner crystal at low densities [86], non momentum-conserving
electron-electron scattering [87] and phonon back-scattering [88] to name a few. In
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the rest of this section we will focus on the two most promising explanations of
the anomaly, namely the spontaneous spin polarization and the quasi-bound state
model.

4.3.1 Spontaneous Spin polarization

To introduce the spontaneous spin polarization model we have to get back to the
Zeeman splittings in the transconductance data presented in Fig. 4.1b. The spin
direction of the subbands are also indicated in this figure. At the positions where
two opposite spin-subbands meet (marked with blue circles) a crossing is expected in
the plot (no anti-crossing is expected since the quantum numbers differ). However
what is observed in the experiment is neither a crossing and nor an anti-crossing.
Rather there is kink in the evolution of spin-↓ subband and a discontinuity in the
energy of the spin-↑ subband at the points of degeneracy.

Theoretical calculations by Berggren et al. [89] using Kohn-Sham spin density
functional theory (SDFT) reproduce these discontinuities remarkably well. These
calculations have shown that the kinks and the change of slopes at the crossing
points can be taken into account by a Hartree approximation. Furthermore if the
exchange and correlation effects are included it is possible to reproduce the jumps.

Therefore the discontinuities in Fig. 4.1b can be understood in terms of the van
Hove singularity of 1D DoS [46] and the exchange effects introduced in Chapter 7.
Imagine crossing one of the blue circles by increasing the gate voltage (or the electron
density in the constriction) at about 9 T along the green dashed line. At about
Vg = -1 V the 1↑-subband is lower in energy than 2↓ and therefore this subband has
a lot of electrons. As the 2↓-subband crosses the Fermi energy it gets quickly filled
with spin-↓ electrons. These newcomers start to act back (via exchange interaction
favouring parallel spins) 1 on spin-↑ electrons (in 1↑-subband) shifting their energy
up and eventually emptying the subband. Therefore due to exchange interaction
these two subbands never get stable degeneracy. There is a finite gap and a density
mismatch (finite spin polatization) close to degeneracy.

The blue circles in Fig. 4.1b have a signature in the conductance (Fig. 4.1b) that
is marked with the blue arrows. At these points there are anomalous plateaus that
have a gradual drop in conductance very similar to the gradual transformation of
the 0.7 anomaly to the spin-split subband (red arrow). This similarity suggests
that a finite energy gap between the spins and a spontaneous spin polarization may
also be responsible for the 0.7 anomaly. It was shown that by Graham et al. [90]
that features marked with blue arrows, known as the ‘0.7 analogue’ structures, have
similar conductance behavior as the 0.7 anomaly.

Motivated by the above discussion, the 0.7 gap in the transconductance has been
interpreted to be similar to a residual field due to a spontaneous spin polarization of
the low-density electrons close to the pinch off [22, 81, 82, 91–93]. This suggestion
has remained controversial in connection with the exact theory forbidding a ferro-

1Note that the electrons with the same spin do not have exchange interaction.
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magnetic ground state in 1D [94, 95]. However it must be mentioned that the setting
in typical experiments does not exactly fit into this theory due to the presence of
2D reservoirs that contact the 1D region [96].

4.3.2 Coulomb blockade and Kondo physics

An alternative explanation, motivated by the physics of quantum dots, suggests that
the Coulomb blockade-like physics could be responsible for the zero-field energy gap
observed at zero field [97]. Since any possible confined state in the QPC is strongly
coupled to the leads, higher-order processes and especially the Kondo effect are
invoked by this model.

The presence of Coulomb blockade and Kondo physics in open systems like quan-
tum point contacts and quantum wires is highly controversial [98, 99] but the pro-
posed picture is that the screened effective potential landscape of the quantum point
contact may support the formation of a strongly-coupled quasi-bound state close to
the Fermi energy, based on which the system can be described by an Anderson-like
Hamiltonian [100].

(a) (b)

(c) (d)

Figure 4.3: (adapted from [101]) A simple picture of Kondo cloud formation in
metals. (a) A single magnetic impurity is surrounded by conduction electrons (b)
One electron scatters off the impurity with the possiblity of flipping (or not) of
its spin and that of the impurity. These particles are now entangled (red). (c)
A second electron scatters off the impurity, thus becoming entangled with both
impurity and the previous scattered electron. (d) Continued scattering events build
up a state where a large number of conduction electrons are correlated with the
localized impurity. This many-body singlet state, known as the Kondo cloud, has a
lower energy than (a) (defining a temperature scale) and is the new ground state.
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This quasi-bound state can be occupied by one electron while double occupancy
of the state by opposite-spin electrons (singlet) is forbidden due to on site Coulomb
repulsion. 2 The two spin-channels propagating through the QPC thus get correlated
so that while one electron is momentarily trapped in the quasi-bound state the
propagation of the opposite spin electron is blocked essentially due to Coulomb
blockade [97]. 3 At high temperatures the trapped electron thermally fluctuates
between two spin-degenerate states but at temperatures lower than the so-called
Kondo temperature TK , it is frozen. While sequential tunnelling is momentarily
blocked, provided that the coupling to the leads is sufficiently large, higher-order
co-tunnelling processes set in. Those co-tunnelling processes that involve spin-flip
of the electron in the quasi-bound state entangle this spin with the electrons in the
leads while reducing the energy by forming a many-body spin-singlet (Fig. 4.3) [97].
Moreover they create a narrow peak in the density of states (DoS) of the quasi-bound
state at the electrochemical potential of the leads that enhances the conductance.

4.4 Spin density functional theory calculations

Rejec and Meir [102] calculated the effective potential of a quantum point contact
using spin density functional theory (SDFT) [48]. By careful self-consistent account-
ing for the effect of remote dopants and the gates used to define the QPC, they found
that the effective Kohn-Sham potential [103] of the QPC, that includes the effects
of screening and many-body interactions in a mean-field level (every spin up/down
electron experiences the same Hartree/exchange potential) is qualitatively different
from the saddle-point potential that is often assumed.

This effective potential that is density (and thus gate) dependent is shown as
white dashed curves in Fig. 4.4a,b for two different gate voltage values. The color
map shows the local density of states (LDOS) as a function of energy and longi-
tudinal position along the QPC axis. At low densities the Fermi energy is below
the top of the effective barrier (Fig. 4.4a). As the density is increased by changing
the gate voltage, the Kohn-Sham potential changes to a double-barrier potential
that has a resonance below Fermi energy and therefore supports a quasi-bound
state (Fig. 4.4b). This is mainly due to Friedel oscillations of the density which lead
to oscillating screening behavior. Fig. 4.4c shows the energies of the symmetric (red)
and anti-symmetric (blue) solutions of the SDFT calculation (with respect to the
unpolarized solution) as a function of the gate voltage and compares it to the con-
ductance of the QPC calculated using Landauer-Buttiker formalism and Kohn-Sham
wavefunctions of the unpolarized solution. The data suggests that the symmetric
solution shown in Fig. 4.4d is the ground state of the system within the gate range

2This is a good assumption provided that the overlap of the quasi-bound state with the electrons
in the leads is sufficiently weak.

3Simultaneous occupation of the resonant level with two carriers with the same spin is assumed
to be forbidden due to Pauli principle.
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of the anomaly. Spin densities of spin-↑ (left) and spin-↓ (right) electrons are shown
in Fig. 4.4d at various gate voltages A, B and C marked in the linear conductance
plot of Fig. 4.4c. Based on this, Rejec and Meir [102] suggested that at point C the
system can be described by an Anderson Hamiltonian from which the conductance
is suppressed as the Coulomb blockade through the quasi-bound state correlates
the two spin channels. They also mention that the quasi-bound state formation is
very sensitive on the length of the QPC as it requires that half of the local Fermi
wavelength fit along the QPC. No quasi-bound state is expected for short QPCs.
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Figure 4.4: SDFT calculations of a QPC adapted from [102]. (a) and (b) show the
LDOS vs. energy and longitudinal position for the Fermi energy above and below
the top of the barrier. The white dashed curve shows the Kohn-Sham potential that
is different in two cases. (c) Linear conductance (black), the energy of symmetric
(red) and anti-symmetric solutions of SDFT with respect to unpolarized solution as
a function of the gate voltage. The symmetric solution is the ground state within
the gate voltage range relevant for the 0.7 anomaly. (d) shows the density of spin-
up (left) and spin-down (right) electrons vs. longitudinal and lateral positions at
various gate voltages in figure (c). A small in-plane magnetic field is assumed that
favours spin-up population.

4.5 Temperature scaling

In order to understand the physics of the 0.7-feature it is important to quantify the
temperature scale at which conductance exhibits the maximum change. This scale
obviously depends on other configuration parameters like the gate voltage. However
it is speculated that if the temperature-dependence at each gate voltage is scaled
with its corresponding temperature scale we may get to a universal behavior that
sheds light on the physical phenomena behind the anomaly.
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4.5. Temperature scaling

4.5.1 Thermal activation

Kristensen et al. [82] were the first to study the possibility of a temperature scaling
of the anomaly. They showed that the conductance vs. temperature of Fig. 4.2b fits
to an Arrhenius-type (exponential) behavior, G0 −G(T ) ∝ e−EA/kBT that supports
activated transport phenomenon with EA as the activation energy. In their notation

GActivated = G0

[
1− Ce−TA/T

]
(4.1)

where G0 = 2e2/h is the conductance quantum, TA is the scaling parameter and C
is a constant fit to the data. The extracted TA scaled exponentially with the gate
voltage or density. This conclusion inspired several phenomenological theories of
the 0.7-anomaly [93, 104–106], including the one by D. Reilly in which a density-
dependent energy gap between two spin-subbands is assumed to explain most of the
experimentally observed features [79].

Despite theoretical support for the spontaneous spin polarization in the QPC,
the mean-field theories have failed to account for the density-dependent energy gap
assumed in this model and thus the observed temperature-dependence [96, 107, 108].

4.5.2 Kondo effect

Another type of temperature scaling that is common in quantum dots is due to the
Kondo effect [1, 109] where an unpaired trapped spin is screened by the electrons
in the leads (Fig. 4.3) and the conductance follows a temperature-dependence of the
form

GKondo = G0

[
1 + (21/s − 1)(T/TK)2

]−s
(4.2)

The parameter s is obtained from numerical renormalization group (NRG) calcula-
tions and is around 0.22 for spin-1/2 systems [83, 109].

Quantum point contacts typically show a peak in their dI/dV around zero bias
voltage, known as zero bias anomaly (ZBA), which can be regarded as a signature of
the DoS peak created by the Kondo effect. Motivated by the presence of ZBA, Cro-
nenwett et al. [83] studied the possibility of a Kondo-like fit to the conductance.
However the Coulomb blockade by a quasi-bound state is dynamical (in contrast
to quantum dots in which an electron/hole can block the current forever) and so is
the Kondo effect and therefore it is highly non-trivial to know how much sequential
tunnelling and how much co-tunnelling contribute to the current. In contrast to the
Kondo effect in quantum dots, the conductance does not go to zero at high temper-
atures and part of the current is carried by sequential tunnelling whose contribution
is not easy to estimate. Therefore the authors in [83] tried the empirical formula of

GModified Kondo = G0/2 +GKondo/2 (4.3)

which assumes that the conductance above e2/h is of Kondo origin.
Fig. 4.5a shows the result of this scaling. The temperature dependence at each

gate voltage, if scaled with a gate-dependent Kondo temperature, falls on the black
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Figure 4.5: (taken from [101]) Conductance vs. the scaled temperature calculated
from the data of Fig. 4.2b for the two models (a) Modified Kondo model (b) Ther-
mally activated model. Note that both models fit nicely to the data. The inset in
(a) shows again the temperature dependence of linear conductance vs. gate voltage
along with the temperature scales extracted from the fitting. The temperature scale
increases exponentially with the gate voltage.

curve given by Eq. 4.3. The inset shows the temperature-dependence of the linear
conductance together with the extracted Kondo temperatures that show an expo-
nential gate-dependence. Based on this fit the authors suggested the Kondo effect as
the origin of the peculiar temperature-dependence of the 0.7 feature. Although not
shown in the original paper [83], the authors mentioned that the thermally activated
fit is equally good. Fig. 4.5b from the PhD thesis of S. Cronenwett [101] shows that
a thermally activated fit to the data based on Eq. 4.1 is, if not better, as good as
the Kondo scaling.

To conclude this section, the temperature scaling of the linear conductance to
different models has initiated various theories for the 0.7-feature, however the pro-
cedure is not very reliable and cannot distinguish between the thermally activated
transport and the Kondo model. The latter has the additional complication that the
precise contribution of the Kondo effect in the conductance is difficult to estimate.

4.6 Finite bias spectroscopy

It is common to investigate the density of states in the QPC by finite bias spec-
troscopy i.e. measuring dI/dV of the nano-structure as a function of applied bias
voltage. Fig. 4.6a from [83] shows the non-linear differential conductance g of the
QPC, whose temperature dependence was shown in Fig. 4.2b, as a function of the
applied bias voltage for different gate configurations. Each curve in this figure
corresponds to a specific gate voltage and the plateaus in G(Vg) appear as the accu-
mulation of the individual g traces corresponding to different Vg gate voltages. The
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4.6. Finite bias spectroscopy

differential conductance data of Fig. 4.6a can be alternatively plotted as the color
map of Fig. 4.6b. This plot shows the transconductance which is the derivative of
the differential conductance with respect to the gate voltage.
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Figure 4.6: (adapted from [101]) (a) Nonlinear differential conductance vs. source-
drain bias for several gate voltages at T = 80 mK. Plateaus in linear conductance
correspond to the accumulation of dI/dV curves here, whose conductance is indi-
cated. ZBA is the peak around zero bias below first plateau. (b) Color map of
transconductance (numerical derivative of g with respect to gate voltage). Dark
areas correspond to plateaus and the bright regions the transition between plateaus.
The crossings of the subbands with µS and µL are indicated by the dashed lines.
The blue and green dashed lines both correspond to the first subband. For the white
plus and circle marks see the text below.

4.6.1 Zero bias anomaly

The peak around Vsd ≈ 0 for g < 1(2e2/h) in Fig. 4.6a is the zero bias anomaly
discussed before. 4 A zero bias peak in the differential conductance can have different
origins, some of which are discussed in Chapter 6. For example some theoretical and
experimental studies indicate that ZBA can even show up in a clean 2D electron
gas [111, 112].

In a Kondo model a peak emerges in the density of the state of the QPC at
the Fermi energy and a ZBA naturally arises in dI/dV as a result. This Kondo
peak in the density of states has the special feature that it is locked at the Fermi
energy (the energy at which the unpaired electron is screened by those in the leads)
and therefore it splits to two peaks if there is a finite bias between source and
drain. The current in a two terminal system however depends on both density of

4There is a similar but weaker peak at higher conductance g ∈(1.5,2)(2e2/h).
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Figure 4.7: (taken from [80]) (a) DoS of a dot with large coupling to the leads
at low temperatures has peaks at the left/right electrochemical potentials due to
Kondo effect. (b) At finite bias the peaks are suppressed [110] and separated in
energy. (c) Finite magnetic field causes Zeeman splitting and suppression of DoS
peaks [110]. For ∆ε > ∆µ the DoS peaks leave the bias window and conductance
enhancement vanishes. (d) For ∆ε < ∆µ Kondo enhancement of the conductance
still exist. The maximum current happens for ∆µ = 2∆ε implying that the splitting
of ZBA is twice the Zeeman splitting.

states and therefore shows only one peak [110] (see Fig. 4.7a,b). On the other hand
applying a finite magnetic field splits each of these two peaks and therefore results
in a splitting of ZBA at finite magnetic field. As a matter of fact a ZBA does split
by the magnetic field [83]. The splitting obtained [83] however was equal to Zeeman
splitting, while twice splitting would be expected for a Kondo DoS-peak with a more
careful consideration (Fig. 4.7c,d).

The ZBA however does not fit into a spontaneous spin polarization model of
the anomaly. Therefore some proposals have suggested that the spontaneous spin
polarization can co-exist together with the Kondo effect or set-in at temperatures
above the Kondo temperature [93, 105]. The correlation between these criteria and
the 0.7-feature is also debated [113–117]. These works have shown by measuring
the splitting of ZBA vs. magnetic field and/or density (gate voltage) that ZBA,
especially at low conductances, does not fit to a Kondo model and have suggested
that the ZBA and the 0.7 anomaly may have different origins.

4.6.2 The extra subband-line

The transconductance shown in Fig. 4.6b is very similar to the typical Coulomb
diamond measurements in quantum dots enabling the quantized subband structure
of QPC to be easily followed. Various subbands and their alignment with the source
and drain electrochemical potentials are marked in the figure. The white dashed
lines mark the evolution of the second subband with the bias and the gate voltage.
The first subband however has an anomalous subband structure.

The blue dashed lines that cut through the first plateau together with the green
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dashed lines define the first subband. A constant bias cut through this plot, for
example with Vsd > 0, reveals that as the density is increased in the QPC, only one
subband crosses the source while two subbands cross the drain. In spontaneous spin
polarization models this observation [79] has been interpreted as a sign of an energy
gap opening up between the two spin subbands as they cross the Fermi energy. The
suggested picture is that as soon as the spin-degenerate subband crosses µS, one of
the spin subbands gets pinned at µS (thus kept under-populated) while the other
spin subband enters the bias window and continues to go down in energy and get
populated. Cronenwett [101] superimposed the temperature scales kBTA/e extracted
from the thermal activation fitting of Fig. 4.5b on the transconductance plot. These
are marked with small open white circles in Fig. 4.6b.

In Coulomb blockade-like physics from a quasi-bound state model a suppression
of current is expected at low density regions of the first plateau. It is expected
that if the gate voltage is increased (the subband is pulled further below the Fermi
energy), Coulomb blockade is eventually overcome and the conductance gets back to
its normal value of 1(2e2/h). The blockaded region is thus the stripe in energy (or
gate voltage) between green and blue dashed lines with the reduced conductance at
0.8(2e2/h). Around Vsd ≈ 0 the blue lines bend down, cutting this region, connecting
to the green line. This connection bridge which is due to ZBA is interpreted as a sign
of Kondo effect. The white plus signs in Fig. 4.6b correspond to the temperature
scales extracted from the modified Kondo model. These signs fit better to the blue
lines suggesting that the Kondo effect is as robust against the applied bias as against
the temperature.

4.7 Summary

Conductance measurements on quantum point contacts and quantum wires typi-
cally show an anomalous plateau-like feature at the conductance of about 0.7(2e2/h)
which cannot be understood within a single particle theory. Some of the main exper-
imental signatures of the anomaly in n-type quantum point contacts and quantum
wires are introduced. Many theoretical models have been put forward as an expla-
nation, none of which can fully account for the experimentally observed features.
Two of these theoretical models, the spontaneous spin polarization model and the
Coulomb blockade model, are explained and discussed in connection to experiments.
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Chapter 5

The 0.7 anomaly in hole Quantum
Point Contacts

5.1 Introduction

The more pronounced carrier-carrier interactions in low-dimensional hole systems
compared to their n-type counterparts make p-doped systems especially suitable for
investigating many-body effects such as the 0.7 anomaly [27, 118]. Moreover holes
strong susceptibility to spin-orbit interaction leads to the peculiar property that
their g-factor is influenced by the lateral confinement (see Chapter 7). Therefore
studying the anomaly in hole quantum point contacts (QPCs) provides a possibility
to examine the conjectured connection between the anomaly and the spin of the
subbands [118]. For example, the strong exchange-enhancement of the g-factor for
small subband indices in electron QPCs was initially put forward as a support for the
explanation of the 0.7 anomaly based on a spontaneous spin polarization model [81].
Whereas our p-type QPCs generally exhibit a very pronounced 0.7 anomaly, no clear
evidence for exchange-enhancement of the 1D g-factor is available in these systems.

In this chapter we explore these effects in a hole QPC exhibiting an exceptionally
strong 0.7 anomaly. The quality of the data presented is remarkable not only among
the very few observations of this feature in hole systems [22, 27, 29, 118] but also
compared to the typical reports of the anomaly in n-type quantum point contacts.
We start the chapter first by presenting the standard characterization of the anomaly
in our QPC. Then we investigate the effects of a magnetic field perpendicular to the
2DHG, showing that localization effects induced by the magnetic field can reveal
information about the presence of a quasi-bound state in the point contact.

The sample presented in this chapter has the label A3.24.1 and is shown in the
inset of Fig. 5.1. This sample was fabricated by electron beam lithography followed
by shallow etching. The 2DHG is depleted under the etched black regions thus
G1 and G2 can be used as in-plane gates to tune the electrical confinement of
the QPC which has a lithographical width of 200 nm. Throughout this chapter,
the measurement results of this sample will be compared with those of the sample
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5.2. The 0.7-anomaly characterization

A4.10.1/QPC1-10 whose complete data set is presented in Appendix E. ∗

5.2 The 0.7-anomaly characterization

Measurements of the linear conductance were carried out by the application of an
ac current of 2 nA at the frequency of 31 Hz through the QPC in series with a 10 kΩ
resistor and simultaneously measuring the voltage drop across the sample using two
independent voltage contacts. This voltage drop was below 200µV and 50µV during
pinch off and around 0.7 anomaly respectively. The voltage drop across the 10 kΩ
resistor was used to measure the exact current passed through the QPC.

5.2.1 Temperature-dependence

Fig. 5.1 shows the linear conductance of our hole QPC as a function of the gate
voltage for different temperatures. At the base temperature first plateau and the
pinch-off regime can be identified. The wiggles on top of the first plateau has been
associated to the deviations from saddle-point potential [119]. By increasing the
temperature the first plateau smears out but a strong plateau at 0.7(2e2/h) ap-
pears which is the so-called 0.7 feature discussed before. Note that there is no
trace of this feature on the conductance at low temperatures. For non-interacting
carriers we expect to have two temperature-invariant points in this figure: one in
the middle of the first plateau and the other one in the middle of the conductance
rise. However only one of this points is seen in the measurements and the con-
ductance threshold is pinned at certain gate voltage due to self-consistent screening
effects. According to Landauer formula (see Eq. 5.2) resonances in the linear conduc-
tance are expected to be smeared out by increasing the temperature. The peculiar
temperature-dependence of the 0.7 anomaly, which differs from this expectation,
testifies on its many-body origin.

5.2.2 Temperature scaling

To see if the temperature-dependence of our hole QPC presented in Fig. 5.1 favors
a particular temperature scaling model, it is preferable to demonstrate these data
in the form of Fig. 5.2a where each curve displays the effect of temperature on
the conductance at constant gate voltage. A word of caution is in order here; the
temperature-dependent measurements of the linear conductance discussed here were
performed by constantly sweeping the gate voltage up and down and measuring the
conductance while starting the circulation in the dilution refrigerator. Therefore
the temperature changes slightly during each gate sweep. The values reported here
correspond to the average of the temperatures read from the mixing chamber sensor
during each sweep.

∗Valuable discussions with Y. Meir and J. Folk is appreciated.

57



Chapter 5. The 0.7 anomaly in hole Quantum Point Contacts

G1

G2

-1.2 -1 -0.8
0

0.25

0.5

0.75

1

1.25

2
G

 (
2
e

/h
)

_____

0.10
0.17
0.20
0.24
0.30
0.46
1.84

T(K)
0.10K

V  (V)g

1.84K

Figure 5.1: (a) Linear conductance G as a function of the gate voltage Vg at B = 0
for temperatures between T = 1.84 K and 100 mK. The inset shows the AFM
migrograph of the QPC.

Here we try fitting the data to the two temperature scaling models explained
in previous chapter. To which model the data fits best strongly depends on the
choice of the temperature range and the gate voltage range over which the scaling
procedure is attempted. The fact that the curves below e2/h exhibit qualitatively
similar temperature-dependence as those above, implies that a fit to Eq. 4.3 is not
possible.

Fig. 5.2b illustrates the temperature scaling procedure for different models as a
function of the scaled temperature T/TK,A. The red curves depict the activated
transport model for different values of the parameter C in Eq. 4.1. The blue curves
present the Kondo model of Eq. 4.2 for different values of s and the green curves show
the modified Kondo model of Eq. 4.3 for the same values of s. The temperature-
dependence data on the left side of the vertical dashed line of Fig. 5.2a are shown
in black at their actual temperatures (TK,A = 1) in Fig. 5.2b. Since the plot is
logarithmic the choice of the temperature scale corresponds to a shift of the black
data curves horizontally by the amount of − log TK,A to align them to a particular
model (this is shown in the figure for few data curves). As mentioned before the
conductances below e2/h cannot be fit to the modified Kondo model. The triangular
conductance dependence of the distance between the black curves and those of the
model demonstrates that the temperature scale grows almost exponentially with
the conductance. The blue curves representing Eq. 4.2 with s = 0.22 and different
Kondo temperatures are super imposed as thin lines on Fig. 5.2a.

It it evident from these comparison and Fig. 5.2 that the temperature-dependent
results from our hole QPC does not fit to the modified Kondo model suggested
in [83]. A similar result is obtained on the QPC presented in Appendix E.
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Figure 5.2: (a) Constant-gate conductance traces vs. temperature from the data
of Fig. 5.1. The data between 0.1 K and 0.25 K (vertical dotted line) is used for
the scaling procedure. (b) Conductance as a function of scaled temperature for
the measurement data and both thermally activated (Eq. 4.3), Kondo (Eq. 4.2) and
modified Kondo (Eq: 4.3) models for different parameters. Since the temperature
axis is logarithmic, the scaling temperature is determined by horizontally shifting
the measured data to fit it with the models. Modified Kondo model is obviously not
the right choice. Kondo model fits the best to the data and is represented by faint
blue solid-dashed lines in a.

5.2.3 Finite bias spectroscopy

Fig. 5.3 shows the non-linear differential conductance g = dI(Vsd, Vg)/dV of the
QPC as a function of the applied bias voltage for different gate configurations.
Measurements of the differential conductance were carried out by the simultaneous
application of an ac excitation with an amplitude of 20 µV at 31 Hz lock-in frequency,
and a dc bias Vsd of up to ±6 mV between source and drain. The voltage drop Vsd
across the QPC was measured using two independent leads. The extent of the
plateau in the bias axis suggests the subband energy spacing of the QPC to be
about 0.6 meV. 1

The comparison of the non-linear differential conductance recorded at T = 800 mK
and 100 mK shown in Fig. 5.3a,b highlights the intimate relation of the 0.7 anomaly
observed in G to the ZBA, the narrow peak arising in g around Vsd = 0 at low
temperature. This representation emphasizes the role of the ZBA in the low tem-
perature recovery of the 2e2/h unitary conductance from the 0.7 plateau. The ZBA
which seems to be responsible for the temperature dependence of the 0.7 anomaly is

1However it must be emphasized that due to the anomalous subband structure of the first
plateau it is difficult to extract a clear value of subband spacing. The value given here corresponds
to the crossing between the blue and white dashed lines in Fig. 5.6c (see also (Fig. 4.6b)) while the
crossing between white and green dashed lines are at Vsd >1 mV which is outside the range of the
bias voltage explored here.
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Figure 5.3: (a) and (b) Nonlinear differential conductance g at B = 0 as a function
of Vsd taken at T =800 mK and 100 mK respectively. Each trace correspond to
different gate voltages Vg. Plateaus in G appear as accumulation of the individual
curves in g. The extra plateau around Vsd = 0 with g ≈ 0.7(2e2/h) is only present
at T =800 mK. With decreasing temperature a gradually emerging zero-bias peak
restores the conductance at 2e2/h.

also observed at conductances well below 0.7(2e2/h) down to pinch-off in agreement
with the temperature-dependence data shown in Fig. 5.2b. Also note that the 0.7
plateau in Fig. 5.3 moves to higher conductances of about ∼0.9(2e2/h) as the bias
is increased at both low and high temperatures.

5.2.4 Zero bias peak height and width

In order to closely investigate the connection between the temperature-dependence
data of Fig. 5.1 and the emergence of ZBA with lowering temperature in Fig. 5.3b,
the (peak to valley) height and the (valley to valley) width of ZBA measured at
T = 100 mK as a function of the gate voltage together with the linear conduc-
tance for different temperatures is demonstrated in Fig. 5.4. The ZBA height shows
a double peak characteristic, only one of which (the high conductance one or the
HC-peak) seems to be responsible for the temperature evolution of the 0.7 anomaly.
The width of this peak increases with density (or lowering the gate voltage). As
this width corresponds to the Kondo temperature in the Kondo model, this increase
is consistent with the temperature scaling discussed before. The other low conduc-
tance peak or the LC-peak, located on the rise of the plateau, does not seem to be
correlated with the 0.7 anomaly and has a width that is constant in gate voltage.
Similar results is recently reported in n-GaAs QPCs [116].

The demonstrated correlation between ZBA and the temperature-dependence of
the linear conductance supports a (Coulomb blockade plus) Kondo model of the 0.7
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Figure 5.4: The height (red) and width (blue) of the zero bias anomaly as a function
of the gate voltage at T=100 mK. The two peaks of the zero bias anomaly are denoted
as high conductance (HC) peak and low conductance (LC) peak. On the same plot
the temperature dependence of the linear conductance is shown (gray).

anomaly and suggests that the ZBA (HC-peak) originates from a peak in the density
of states at the point A in Fig. 4.4c. It has been suggested that the LC-peak might
also be connected to the ferromagnetic coupling of the two spins at the point B in
Fig. 4.4c [102, 120].

5.2.5 Splitting of ZBA with B-field

Fig. 5.5a-f displays the splitting of the ZBA by application of moderate magnetic
fields perpendicular to the 2DHG plane. A series resistance due to Shubnikov-de
Haas (SdH) oscillations is subtracted from the data to keep the 1st plateau at 2e2/h.
This technique is introduced in details in Appendix C. The splitting of the ZBA is
visible already at B⊥ = 0.5 T. The splitting seems to be dependent on density
(gate voltage) at this field in agreement with the recent results of Sarkozy et al.
[114] in n-GaAs QPCs. At higher fields the splitting transforms to the Zeeman-split
subband formed at e2/h level. The 1st plateau shows an asymmetric bias-dependent
feature at Vsd = 0 whose sign alternates in Fig. 5.5a-f. This alternation agrees with
the maxima/minima of SdH oscillations in the two-terminal resistance of the 2DHG
outside the QPC shown in Fig. 5.5g and it is most probably related to the leads.

We observe the splitting of both HC-peak (at B=0.5T) and LC-peak (at B=0.75T)
in Fig. 5.5. However it is not straightforward to distinguish between a ZBA splitting
and the Zeeman splitting of 1D spin subbands. Fig. 5.5h shows the gate-dependent
linear increase of the splitting with the magnetic field. The quantitative comparison
of this splitting with the expected spin splitting for a Kondo bound-state is however
obscured in 2DHG systems by additional complication that confinements in hole
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Figure 5.5: Splitting of the ZBA by application of perpendicular magentic field
(a-f). (g) the two terminal resistance of the 2DHG vs. perpendicular magnetic field
suggest that the asymmetric shape of the dI/dV at Vsd = 0 on the 1st plateau in
(a-f) is probably connected to the density of states of the leads. (h) ZBA splitting
vs. magnetic field at two different gate voltages. Note that the linear fit does not
cross zero and therefore the splitting in non-linear.

systems result in mixing the heavy hole and light hole bands and therefore the ef-
fective Zeeman splitting strongly depends on the geometry. As a result, the Landé
g-factor in 2D, 1D and 0D are very different (see Chapter 7). Nevertheless a split-
ting of about 200 µeV can be read from Fig. 5.5h while the Zeeman splitting due to
magnetic field perpendicular to the 2DHG is expected to be about 400-600 µeV/T
as discussed in Chapter 7. Unfortunately the splitting of the ZBA with an in-plane
magnetic field was not explored on this QPC because of experimental limitations.
The observation of such splittings in another hole QPC is reported in Chapter 6.

5.2.6 Transconductance

The non-linear differential conductance of the QPC presented in Fig. 5.3b can be
alternatively drawn as a function of Vsd and Vg in the color map plot of Fig. 5.6a
which clearly demonstrates the subband structure of the constriction. The ZBA
can be seen as a high conductance ridge around Vsd = 0. The dashed line marks
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the border between HC and LC-peaks. The derivative with respect to the gate
voltage, gives the transconductance plotted in Fig. 5.6b. Dark regions of the color
map correspond to plateaus in g with the plateau values indicated in units of 2e2/h.
The bright areas represent the transitions between adjacent plateaus. Note that the
trench in between the finite bias 0.8 plateaus and the cusp-like feature at the low
conductance side of this trench are the manifestation of the ZBA. The similarity
between the hole QPC data of Fig. 5.6b to the n-type QPC data of Fig. 4.6b testifies
the structural and electronic quality of the sample. However the form of the ZBA
is different. It is a distinct feature of the 0.7 anomaly in holes that its extension
in gate voltage is comparable to the extension of the 1st plateau (presumably due
to the small subband energy spacing). This can also be seen in Fig. E.6c where
the differential conductance of the QPC from Appendix E shows an extended ridge
pointing to a strong 0.7 anomaly.

Fig. 5.6c shows the transconductance map at a higher temperature of 800 mK.
The anomalous subband structure of the first subband is marked with green and
blue dashed lines while the white dashed line is used for higher subbands. Note
that while the ZBA has disappeared at this temperature, the anomalous subband
structure persists and a clear (dark-color) gap characterizing the 0.7 plateau exist
between the pinch off and the first plateau.

5.2.7 In-plane magnetic field-dependence

The in-plane g-factor of heavy holes in [001]-plane grown quantum wells is supposed
to be zero [31]. Lateral confinement mixes heavy and light hole and results in a finite
anisotropic g-factor. In Chapter 7 we will see that the g-factor in a QPC depends
on the direction of the in-plane magnetic field with respect to the current. If they
are perpendicular, the in-plane g-factor is the same as in 2D, i.e. zero.

The linear conductance of the QPC for different in-plane (and perpendicular to
the current) magnetic fields from 0 to 13 T (with 0.5 T steps) measured at the base
temperature of 100 mK is plotted in Fig. 5.7a. The 0.7 plateau is not present at
low temperature and low magnetic fields up to about 5T. For higher fields a step
splits from the 1st plateau and moves toward lower conductances but it starts to
get faint at about 8T. Fig. 5.7b shows the same measurement performed at a higher
temperature of 800 mK. Here the 0.7 plateau is present at low fields and for magnetic
fields above 5T it lower its conductance and transforms to a small peak.

No subband spin-splitting is observed up to 13T for this direction of in-plane
magnetic field. This can be seen in transconductance data presented in Appendix F.
The fact that an in-plane magnetic field affects the 0.7 anomaly while it does not split
the 1D subband questions a direct connection between the two effects. However, the
spin-splitting of the 0D bound state can be very different than that of the observed
1D subbands.
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Figure 5.6: Finite bias spectroscopy of the QPC. (a) Differential conductance (g =
dI/dVSD) as a function of source-drain bias and the gate voltage at T = 100 mK. The
arrows point to the extension of the zero bias anomaly in bias. (b) Transconductance
(numerical derivative of g with respect to the gate voltage) at T = 100 mK. Dark
areas are the plateaus in the conductance, whose conductance in units of 2e2/h is
indicated in the figure, and the bright regions are the transitions between plateaus.
The zero bias wedge at the opening of the QPC and the gap that connects it to the
first plateau are the signatures of ZBA in transconductance. (c) Transconductance
at T = 800 mK without a sign of ZBA. The white dashed lines mark the normal
second subband. The blue and green dashed lines mark the anomalous first subband.

5.2.8 Perpendicular magnetic field-dependence

Because of the small in-plane g-factor of heavy holes, the spin-degeneracy of the sub-
bands is best lifted by applying the magnetic field perpendicular to the plane of the
2DHG. Fig. 5.8 shows the effect of such a magnetic field on the linear conductance
of the QPC. Studies of the 0.7 anomaly in this particular magnetic field orientation
are rarely reported [121]. This is mainly because the magnetic field perpendicular
to the 2DHG acts on both spin and orbital degrees of freedom, obscuring the in-
terpretation of the result. Within the QPC, the magnetic field results in Zeeman
and diamagnetic shifts and in the leads, it causes the formation of the Landau levels
which result in Shubnikov-de Haas oscillations of the resistance at low fields and
relevance of quantum Hall physics at high fields. Here we employ magnetic fields
up to B⊥ = 13 T in order to exploit localization phenomena which are potentially
linked to the 0.7 anomaly.

These effects can be seen in the two-terminal and four-terminal conductances of
the QPC at representative perpendicular magnetic fields of 0, 4, 7, 9 and 11 Tesla at a
temperature of 800 mK in Fig. 5.8a,b. The conductance of the open QPC fluctuates
wildly for different perpendicular magnetic fields. Most of these fluctuations come
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Figure 5.7: Effect of in-plane magnetic field (from 0 to 13 T with 0.5 T steps) on
the linear conductance of the QPC at (a) T = 100 mK and (b) T = 800 mK. In
both cases the conductance of the anomaly drops for the fields beyond about 5 T.

from the Shubnikov-de Haas oscillations in the resistance of the leads. These effects
can be corrected for by subtracting a separately measured field dependent serial
resistance from the total resistance after which the resulting conductance looks like
the one shown in Fig. 5.8c,d. The agreement between the final result from the two-
terminal and four-terminal measurements confirms the correction procedure and
suggests that the observed conductance vs. gate result is related to the physics
of the QPC and its connection with the leads. In the following we discuss the
implications of these results. The correction procedure employed here is discussed
in details in Appendix C.

5.3 0.7-feature and localization

Fig. 5.9 shows the corrected linear conductance for perpendicular magnetic fields
from 0 to 13 Tesla and at temperatures of 100 and 800 mK. The Zeeman splitting of
the spin-down subband can be seen in this figure as as the shift of the conductance
rise between 0.5 to 1(2e2/h) toward higher energies (lower gate voltages) with in-
creasing the perpendicular (to the plane) magnetic field. The anomalous 0.7 plateau
in Fig. 5.9a,c gradually transforms to a region of suppressed conductance close to and
after the first subband rise and a pronounced conductance peak emerges. Same de-
velopment can be seen in the linear conductance at the lower temperature of 100 mK
(Fig. 5.9b,d) however the 0.7 anomaly is lifted to the first plateau at zero field con-
sistent with the temperature-dependence of the linear conductance (Fig. 5.1).

The similarity between the conductance peak at large magnetic field in these re-
sults and a Coulomb resonance in quantum dots suggests that perhaps the conduc-
tance peak at the rise of the half-plateau is a Coulomb resonance and conductance
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Figure 5.8: Linear conductance of the QPC vs. gate voltage for different magnetic
fields at the temperature of 800 mK. (a) two-terminal and (b) four-terminal raw
measurement results. (c) and (d) show the corresponding corrected result after
accounting for the SdH oscillations in the leads.

suppression after opening of the channel is due to Coulomb blockade. A similar
gradual transformation of the 0.7-feature to a conductance peak can be seen for
another p-GaAs QPC in Appendix E.

5.3.1 Lateral shift of the channel

A resonance in the rise of the linear conductance, especially at large perpendicular
(to the plane) magnetic fields, can have many different origins [56, 122, 123]. Such
resonances usually arise from impurities in the QPC channel or deviations from a
saddle point potential due to disorder. We will see in Chapter 6 that the lateral shift
of the QPC channel is a powerful tool to distinguish between the generic effects of the
QPC and those that strongly depend on the potential boundary and the impurity
configurations. This lateral shift is achieved by applying asymmetric voltages to the
two gates surrounding the channel.
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Figure 5.9: Linear conductance vs. gate voltage for different perpendicular mag-
netic fields at temperatures of (a) 800 mK and (b) 100 mK. The Zeeman splitting
of the spin subbands can be seen as the gradual shift of the half-plateau toward
higher energy (lower gate voltage) as the field is increased. The 0.7 anomaly in (a)
transforms to a region of suppressed current, resulting in a conductance peak as
the field is enhanced. (b) shows similar behavior but the 0.7-feature is masked at
low temperature. (c) and (d) show the same data but the conductances are shifted
horizontally for clarity. The peak clearly emerges from the 0.7 plateau in (c). The
conductance traces are cut because of limited gate regime to avoid leakage.

Fig. 5.10a shows a colormap of the linear conductance of the QPC as function of
the in-plane gates at a temperature of 1.7 K. Two new axes ∆V and Vg are defined
in this figure as the symmetric and asymmetric combination of the two gate voltages
by a rotation of axes.

(
∆V

Vg

)
=

(
cos θ − sin θ

sin θ cos θ

)(
VG1

VG2

)
(5.1)
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Figure 5.10: (a) Linear conductance of the QPC in unit of 2e2/h as a function
VG1 and VG2. The two new axes of Vg and ∆V are defined as the symmetric and
anti-symmetric combination of the two gate voltages along and perpendicular to
equi-conductance lines. (b)-(d) Linear conductance G as a function of Vg at selected
magnetic fields of B = 0 T, B = 5 T and B = 9 T, respectively. The temperature
is T = 1.7 K for B = 0 T and T = 100 mK for the finite field data. Each con-
ductance curve corresponds to a different ∆V value ranging from ∆V = -0.35 V
(leftmost trace) to ∆V = 0.37 V (rightmost trace) on panel (b), from ∆V = -0.35
V to ∆V = 0.3 V for (c) and from ∆V = -0.4 V to ∆V = 0.2 V on panel (d).
The individual traces are horizontally shifted for clarity. Note that the accessible
conductance regime is limited due to leakage to the side gates.

The density of carriers in the channel can be tuned by Vg, while ∆V is responsible
for the lateral shift of the channel perpendicular to the current direction. From the
geometry of the sample this lateral shift is estimated to be around 8-10 nm/V [124].
As the effective Bohr radius a∗B which is an estimate of the size of impurities is in the
order of 1-2 nm in p-GaAs, this range covers a sufficiently large region to exclude
impurity resonance effects.
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5.3. 0.7-feature and localization

Fig. 5.10b shows the linear conductace vs. Vg for different ∆V at zero field and
a high temperature of 1.7 K. Fig. 5.10c,d shows similar measurements at the base
temperature of 100 mK with the perpendicular magnetic fields of 5 and 9 Tesla
respectively. Both zero field 0.7 plateau in b and high field conductance peak in c
and d are robust against lateral shift of the channel. The smooth transition of the
0.7(2e2/h) plateau into a Coulomb resonance peak with increasing magnetic field
has been found to be also robust against thermal cycling. Therefore we conclude
that the conductance peak is a generic feature of the QPC and is not related to any
impurity or potential imperfection in the sample.

5.3.2 Finite bias spectroscopy at finite magnetic field

Further support for the mentioned hypothesis about the origin of the conductance
resonance comes from finite bias measurements of the differential conductance. The
evolution of the differential conductance by varying the perpendicular magnetic field
is demonstrated in Appendix D. The ZBA visible in Fig. 5.6a disappears quickly with
increasing B⊥-field and transforms to a diamond-like region of suppressed conduc-
tance above 8 Tesla as shown in Fig. 5.11b. Note that the resonance has a lever
arm with both source and drain and therefore it is located between the two. The
diamond-like region of suppressed conductance has a striking similarity to a Cou-
lomb diamond in a quantum dot. A similar Coulomb diamond-like shape in the
large field differential conductance can be seen in Appendix E for another QPC.
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Figure 5.11: Finite bias spectroscopy at finite perpendicular magnetic field for (a)
B⊥ = 2 T and (b) B⊥ = 10 T. Note that these plots are turned 90◦ with respect to
Fig. 5.6a to facilitate the comparison with linear conductances in Fig. 5.9.

5.3.3 Coulomb blockade as the origin of the 0.7 anomaly

The evidences that are provided so far suggest that the conductance resonance devel-
oped at large perpendicular magnetic field can have a Coulomb blockade origin. The
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Chapter 5. The 0.7 anomaly in hole Quantum Point Contacts

smooth evolution of the 0.7 plateau to this resonance over a large range of magnetic
fields (and filling factors in the leads) and on the same gate voltage range implies
that a common origin must be involved for both of these phenomena. Therefore
the suppression of the zero-field conductance of a QPC from 2e2/h to 0.7(2e2/h)
is probably due to Coulomb blockade-like effects by a quasi-bound state. Having
established this picture, a Kondo model naturally arises at low temperatures since
the mentioned quasi-bound state has a strong coupling to the leads. This is an
important result as the quasi-bound state assumed in Kondo-model explanations of
the 0.7 anomaly has never been directly observed in the experiment.

In the following we speculate on the transition between the zero-field anomalous
0.7-feature and the conductance resonance at large perpendicular magnetic fields.
First we point out that the SDFT calculations (presented in section 4.4) suggest
that Friedel oscillations are responsible for the formation of the quasi-bound state.
These oscillations are shown to be modified due to orbital effects of a perpendicular
magnetic fields. As a result the coupling of the quasi-bound state with the leads is
expected to decrease by increasing the magnetic field. This coupling in our data is
extracted by a coupling-broadened Coulomb resonance fit to the conductance traces
measured at large magnetic fields. In the end we provide a possible picture of the
origin of the Coulomb resonance in the quantum Hall regime.

5.3.4 Friedel oscillations

The motion of particles in a hole liquid is highly correlated. On a mean-field level
the bare potential of the quantum point contact is modified due to screening, ex-
change and correlation effects of the other holes. This was discussed in section 4.4
and it was pointed out that according to SDFT calculations, Friedel oscillations in a
2DEG can change the bare saddle point potential to support a resonant quasi-bound
state [97, 102]. The amplitude of the Friedel oscillations around a test impurity is
modified at large perpendicular magnetic fields as shown in Fig. 5.12 [125]. The
nearest oscillation is largely enhanced with decreasing the filling factor (the Landau
levels occupancy) in expense of oscillations further apart. This can be understood
since at large magnetic fields the wavelength distribution of the holes is reduced
to the magnetic length and its multiples depending on the filling factor. Holes can
contribute to screening only at these specific wavelengths leading to larger oscilla-
tions independent of the dimensionality. For the quasi-bound state, a perpendicular
magnetic field acts not only on the spin degree of freedom but also on the orbital
part of the resonant wavefunction, shrinking it as the magnetic length decreases
with ∝ 1/

√
B. Due to this combined orbital effect and the enhanced Friedel oscilla-

tions, the coupling of the quasi-localized state to the source and drain is expected to
decrease and the localization of the holes in the lower-lying spin subband becomes
more prominent. It is noteworthy that according to Rensink [125] the amplitude of
the Friedel oscillations is proportional to the effective mass of the screening carriers
and stronger localization is expected for holes with an 8 times larger effective mass
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Figure 5.12: The electron density modulation near an impurity vs. distance from
the impurity for different filling factors in the bulk adapted from [125]. The first dip
in the density oscillations is enhanced at lower filling factors in expense of the other
oscillations.

5.3.5 Coulomb peak fitting to the resonance line shape

The suppression of coupling of the bound state to the leads can be quantified by a
simple empirical model. Here we show that the linear conductance traces at large
perpendicular magnetic fields can be fit with a Lorentzian peak superimposed on a
saddle point potential background. Based on Landauer formula (Eq. 2.42) the linear
conductance can be calculated using

G(µ, Vg) = e2/h

∫ +∞

−∞
T (E, V g)

(
−∂fβ(E − µ)

∂E

)
dE (5.2)

The transmission T = Tsaddle + TFano is assumed to be composed of two parts

Tsaddle(εs) =
1

1 + exp (−2πεs)
(5.3)

TFano(εp) =
1

1 + q2

(q + εp)
2

1 + ε2p
(5.4)

The first part gives the transmission of a saddle-point potential [71] of the form
V (x, y) = V0 − 1/2mω2

xx
2 + 1/2mω2

yy
2 and the second part is the transmission of

an asymmetric resonant line shape. This type of line shape can appear due to the
so-called Fano effect which is the interference between two channels, one with a
continuous spectrum and the other one with a discrete spectrum [1]. The parameter
q = − cotφF with φF being the phase difference between the two paths controls
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Figure 5.13: (a) Linear conductance measurement (solid) and the fit (dashed) at
13 T at the temperatures of 100 and 800 mK. Note that the peak is asymmetric
around the vertical dashed line. The white arrow points to the part where the peak
shows deviation from Lorentzian line shape. (b) The coupling constant extracted
from the fits like the one in (a) as a function of magnetic field for 100 and 800 mK.
The coupling decreases with increasing magnetic field. The solid lines have slopes
of dΓ/dB=-4.6 and -4.8 µeV/T for blue and red respectively.

the asymmetry of the lineshape. The energy and gate voltage dependence of the
transmissions Tsaddle and TFano is contained in εs = (E − Es(Vg))/~ωx and εp =
(E − Ep(Vg))/~Γ respectively. The parameter Γ is the coupling broadening of the
resonant peak that we wish to extract. Both energies Ep and Es = V0 +~ωy(n+0.5),
for the first spin-split subband (n = 0), are assumed to be linearly dependent on
the gate voltage

Es,p(Vg) = E0
s,p + Cs,pVg (5.5)

Fig. 5.13a shows two examples of the fitting to the measured linear conductances
at 13 Tesla. The Fano parameter q was found consistently larger than 100 resulting
in a very symmetric Lorentzian line shape [1] of the form TFano = (1 + ε2p)

−1. This
is reassuring since if transport is through a generic Coulomb blockaded resonance
we expect no parallel channel for the current. It must be mentioned that with the
parameters left, there are several redundancies in the model. The width of the
saddle point conductance rise vs. gate voltage is given with both ωx and Cs and
the width of the Lorentzian peak is given by both Γ and Cp. The capacitances can
be approximately extracted from zero field and large field finite bias spectroscopy
data. The temperature was plugged in from the measurement and Γ and ωx were
extracted from the fitting.

Overall the fitting works quite well, apart from the fact that the measured peak is
very asymmetric with respect to the dashed symmetry axis shown in the figure.The
white arrow points to the deviation between the model and the data. Such an asym-
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5.3. 0.7-feature and localization

metry may arise however due to the self-consistent nature of the quasi-bound state
that is probed. Fig. 5.13b shows the coupling constant of the impurity extracted
from the fit. The coupling decreases by increasing the perpendicular magnetic field
(the peak gets narrower) as expected. Also please note that the coupling seems to
be temperature-dependent, possibly due to a temperature-dependent screening.

(a) T=800mK

B=0 - 13T

(b) (c) (d)

Figure 5.14: (a) The evolution of the 0.7 anomaly in linear conductance to a con-
ductance peak with perpendicular magnetic field (b-d) Schematic of edge states at
different gate voltages.

5.3.6 Coulomb resonance in the quantum Hall regime

At large perpendicular B-field the holes are forced to propagate along edge states.
When the QPC is closed, the edge states do not percolate and are decoupled in the
source and drain, the only current being due to the tunnelling between outermost
edge states in two sides (Fig. 5.14d). As the gate voltage is lowered, the edge states
penetrate inside the potential hill of the QPC from the two sides. Therefore the
density increases in the QPC and the Fermi wavelength is decreased until half of
the Fermi wavelenth fits inside the QPC. This happens presumably at the apex of
the peak in the linear conductance (the green curve in Fig. 5.14a). Since the Fermi
wavelength is a measure of separation of the holes, at this point the intra-channel
interaction starts to dominate over the kinetic energy and further tunnelling of the
holes is blocked due to Coulomb blockade (Fig. 5.14c). Coulomb blockade is the

73



Chapter 5. The 0.7 anomaly in hole Quantum Point Contacts

main reason for the region of suppressed conductance after the peak. Note that in
the QHE regime the leads can play the role of reservoirs for the localized state. As
the gate voltage is further decreased, Coulomb energy is overcome, the continuum
of states at higher energy are reached, the edge states merge together, and current
flows through the QPC (Fig. 5.14b). This scenario suggest a different picture on
the two side of the conductance peak apex and therefore supports the observed
asymmetry mentioned in previous section.

5.4 Summary

Transport measurements on a high quality p-GaAs QPC exhibiting a strong 0.7
anomaly is presented. The 0.7 anomaly is investigated in details using linear con-
ductance and finite bias spectroscopy at different field orientations. It is shown that
the 0.7 plateau gradually transforms to a strong resonance peak in the linear con-
ductance by applying a magnetic field perpendicular to the 2DHG. This resonance is
accompanied by a diamond-like region of suppressed finite bias differential conduc-
tance very similar to a Coulomb diamond in quantum dots. Coulomb blockade-like
effect by a quasi-bound state is therefore suggested as the origin of this conductance
peak and the 0.7 anomaly which is its low-field pre-cursor. Possible explanations for
the emergence of the peak at large perpendicular magnetic field is discussed.

The experiment results presented in this chapter suggest the presence of a quasi-
bound state in quantum point contacts and support the idea that the 0.7 anomaly
can be understood based on Coulomb blockade and Kondo physics. It would be
interesting to repeat this experiment in electron QPCs in n-type GaAs systems to
see if perpendicular magnetic field leads to a similar effect.
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Chapter 6

Impurities in the QPC

6.1 Introduction

We saw in chapter 4 that the 0.7 anomaly is associated with a number of qualitative
features in linear and non-linear conductance. In the last chapter we introduced a
generic effect in a QPC exhibiting a standard 0.7 anomaly which has been observed
in many other hole QPCs. In this chapter we study another hole quantum point
contact in sample A3.10.2 which also exhibits a very clear conductance anomaly,
however a closer investigation of its properties especially the temperature depen-
dence of the linear conductance differs from a standard 0.7 anomaly. Moreover by
comparing the signatures of the anomaly with a number of toy-models we are able
to understand the origin of the observed anomalies and find qualitative agreement
with measurements. What is interesting here and what makes it of general rele-
vance is that this is one of the rare cases where such an understanding and thereby
differentiation of the anomalies is possible. And it points to the difficulties of distin-
guishing between channel imperfections and the generic 0.7 anomaly. Furthermore,
the results presented here suggests both the coexistence and the interplay between
the impurity and the 0.7 anomaly in this sample and testifies the local origin of
the zero bias anomaly. This sample has been cooled down 5 times and the features
discussed in this chapter have always been qualitatively reproduced. ∗

6.2 Temperature-dependence

Fig. 6.1 shows the linear conductance of the QPC as a function of the symmetric
voltage applied to the surrounding gates measured at temperatures from 100 mK to
600 mK. In contrast to the QPC discussed in the previous chapter (and similar to
the QPC shown in Appendix E), here there is an anomalous plateau at 0.75(2e2/h)
visible even at the base temperature. By increasing the temperature the conductance
of the plateau decreases to around 0.65(2e2/h) in accordance with the corresponding

∗Valuable discussions with Y. Meir and S. Ulloa are appreciated.
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Figure 6.1: Temperature-dependence of the conductance anomaly from 0.1 K (right)
to 0.6 K (left). The conductance of the anomaly decreases with increasing the
temperature but it does not get stronger. The measurement was performed at
∆V = +113 mV (see Fig. 6.3a). Curves are shifted horizontally for clarity.

data in the literature [83]. The full length of the first plateau cannot be seen in the
figure as the gate voltage range is limited by the leakage.

6.3 Magnetic field-dependence

Fig. 6.2a,b shows the effect of in-plane and perpendicular magnetic fields respectively
on this anomaly. The effect of perpendicular magnetic field is qualitatively different
than the one discussed in previous chapter. 1 As the field increases, the conductance
of the anomalous feature gradually decreases but instead of transforming to a half-
plateau it crosses 0.5(2e2/h) and saturates around 0.4(2e2/h). At higher fields of
around 4 Tesla a separate and seemingly independent plateau appears at 0.5(2e2/h).
We have paid extra attention to make sure that the precise value of the large-field
conductance of the anomalous plateau does not come from our resistance subtraction
method. Furthermore similar result can be seen in Fig. 6.2a under the influence of
an in-plane magnetic field, applied perpendicular to the current direction. 2 As a
reminder the g-factor of holes in 1D structures in this particular direction is strongly
suppressed as will be discussed in chapter 7 (see also [126]). The difference between
Fig. 6.2a and b arises due to the lower value of the in-plane g-factor but the essence
of the effect, the fact that the anomalous feature crosses the conductance of the
half-plateau, can be seen in both. The features that are present for an in-plane

1Here also a field-dependent series resistance is subtracted from the measured data which was
confirmed to be consistent with the Shubnikov-de Haas (SdH) oscillations in the leads.

2In order to do measurements with in-plane magnetic field the sample was warmed up and
cooled down with the new orientation.
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Figure 6.2: Effect of (a) in-plane and (b) perpendicular-to-the-plane magnetic field
on the linear conductance of the QPC. The steps in the two cases are 0.5 and
0.25 Tesla respectively. The curves are shifted horizontally for clarity. For perpen-
dicular case a gate-independent and field-dependent series resistance is subtracted
which was checked to be due to the SdH oscillations in the leads as discussed in
details in previous chapter. (Both measurements are with ∆V = +113 mV)

field of 12 Tesla, are already developed at the perpendicular field of about 2.5 Tesla.
From this we estimate a ratio of ≈5 for the two corresponding g-factors. Therefore
in order to study this effect we will focus on the perpendicular magnetic field from
now on.

6.4 Lateral shift of the channel

By employing an asymmetric combination of the voltages applied to the two gates
it is possible to shift the quantum point contact laterally as discussed in chapter 5.
Fig. 6.3a shows the linear conductance of the QPC as a function of the voltages
applied to G1 and G2. There are two charge re-arrangements induced by the gate G2
shown in the figure by black arrows. Two new axes of Vg and ∆V are introduced as
the symmetric and asymmetric combination of G1 and G2 with a rotation of axes as
introduced before. The edge of the anomalous plateau is marked with dashed green
line and is not parallel to the conductance edge. Therefore this plateau strongly
depends on ∆V . This can be seen on the left-most curve of Fig. 6.3b-d where the
zero-field conductance of the QPC is shown for different asymmetric voltages ∆V .
While the anomalous feature at 0.75(2e2/h) is present for positive ∆V in b and c it
is absent for negative ∆V in d. The effect of perpendicular magnetic field for these
three asymmetric gate configurations confirms that while b and c are very similar to
Fig. 6.2b discussed before, the half-plateau in d appears suddenly at fields of around
4 Tesla independent of the asymmetric gate configuration.
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Figure 6.3: Effect of lateral shift of the channel on the linear conductance. (a) Lin-
ear conductance as a function of the voltage applied to G1 and G2 at T=100 mK.
Two new axes of Vg and ∆V are defined as the symmetric and asymmetric combina-
tion of these voltages and make an angle θ =35◦ with the old axes (see Eq. 5.1). The
anomalous plateau is marked with a green dashed line. Two charge re-arrangements
induced by VG2 are marked with arrows. (b)-(d) Linear conductance vs. Vg for dif-
ferent voltage asymmetries ∆V =+113, 0 and -186 mV. Each plot shows the effect
of perpendicular magnetic field for 0 to 5 Tesla. Curves are shifted for clarity.

This measurement imply that the anomalous feature observed in this QPC has
a strong dependence on the lateral position of the channel and therefore seems to
be due to impurities and/or potential imperfections in the channel.

6.5 Finite bias spectroscopy

The non-linear differential conductance dI/dV of the quantum point contact is
shown in Fig. 6.4a,b at 600 and 100 mK respectively. These two measurements
were performed along different directions of the gate configuration: the former along
∆V = 0 and the latter along VG1 = VG2. They both have the distinct feature that
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Figure 6.4: (a) and(b) Non-linear differential conductance g = dI/dV as a function
of bias voltage for different gate voltages at 600 mK and 100 mK. The first plateau
has an upward slope with VSD in both cases. In (b) this upward slope is more
extreme and linear and a peak at zero bias is also evident. The dI/dV have a clear
accumulation, called bunching here, around two gate voltages shown with red arrows.
These bunchings are also visible in the transconductance, numerical derivative of g
with respect to the gate voltage d2I/dV dVg shown in (c). (a) and (b) were measured
along ∆V = 0 and VG1 = VG2 respectively. This means that ∆V was changed 64 mV
during the gate sweep in the later case.

the first plateau shifts to higher conductances by increasing the bias. This upward
shift is more extreme and becomes a linear bias dependence at the base tempera-
ture (b). The emergence of an asymmetric zero bias anomaly (ZBA) at the base
temperature challenges our conclusion in previous section about the connection of
the anomalous feature with the 0.7 anomaly. Numerical differentiation of dI/dVSD
in Fig. 6.4b with respect to the gate voltage gives the transconductance plotted in
a gray-scale color map in Fig. 6.4c. The transconductance confirms the subband
structure of the point contact confirming the ballistic transport through the QPC.
Two charge re-arrangements marked with red arrows, visible in this figure are also
seen in the differential conductance of Fig. 6.4b (again marked with red arrows).
However these re-arrangements happen on the first plateau and do not affect the
conductance anomaly discussed here.

6.5.1 Zero bias anomaly

As expected the shape of the ZBA 3 also depends on ∆V and changes by the lateral
shift of the channel. Fig. 6.5 shows a zoom into low bias part of the differential
conductance for various values of ∆V . While for negative ∆V (Fig. 6.5a) a clean

3Only one ZBA was observed for this QPC and the width and amplitude of this ZBA was
monotonic with gate voltage.
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Figure 6.5: Effect of lateral shift of the channel on the ZBA. A zoom into low-bias
ZBA at ∆V = (a) -186 mV, (b) 0 and (c) +113 mV. The ZBA is symmetric in
(a), it gets asymmetric in (b) and splits in (c). A bunching of several dI/dV -curves
develops around the ZBA toward postive ∆V .

and isolated zero bias anomaly is observed from pinch-off to the first plateau, it
becomes slightly asymmetric for ∆V = 0. At the same time several dI/dV -curves
at different gate voltages get closer in the conductance. At positive asymmetric of
∆V =+113 mV the ZBA is split into two peaks and a bunch of dI/dV curves have
approached together and created a plateau-like structure that follows the shape of
a zero bias peak. Note that the ZBA is more symmetric above the plateau.

As discussed before and will be shown in more details later, a zero bias peak
can have non-Kondo origin. To see whether the ZBA observed here is related to the
Kondo effect, we investigate the effect of an in-plane magnetic field on the splitting of
the peak in Fig. 6.6a,b. Here negative ∆V is chosen for which the ZBA is symmetric.
The single peak at zero field splits at B||= 2 T and the splitting grows further at
B||= 4 T. The peaks are marked with small red arrows. This splitting of the ZBA
can be compared to the Zeeman splitting of the subbands extracted from the width
of the half-plateaus as discussed in chapter 7. The latter shown in Fig. 6.6c shows
a factor of 4 between the in-plane and perpendicular to the plane g-factors which
more or less agrees with our estimation before. The splitting of the ZBA is clearly
gate dependent but it approximately agrees with the in-plane (perpendicular to the
current) g-factor of the 1D subband.

6.6 QPC Simulations

The measurement results presented in this chapter bring about the following puzzle:
There is an anomalous plateau at the opening of the first subband at the conduc-
tance of about 0.75(2e2/h). This feature has a temperature dependent behavior that
is generic of the typical 0.7 anomaly reported in the literature [81–83]. The feature is
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Figure 6.6: (a)-(c) The ZBA splits by application of an in-plane magnetic field
(perpendicular to the current direction). The split peaks are marked with red arrows.
The splitting depends on the gate voltage. (d) A comparison of 1D subband splitting
due to in-plane and perpendicular-to-the-plane magnetic fields in this sample.

accompanied by a zero bias peak in dI/dV that disappears at high temperature and
splits with increasing in-plane magnetic field. These are all signatures of a classical
0.7 anomaly. However there are two discrepancies compared to common 0.7 anoma-
lies: first, by applying an in-plane magnetic field our anomalous feature gradually
falls in conductance, crosses the 0.5(2e2/h) and saturates around 0.4(2e2/h). At
larger fields the seemingly independent half plateau emerges due to Zeeman split-
ting of spin-degenerate subbands. Were we confident about the 0.7 anomaly, this
could have suggested that the 0.7 anomaly and the subband spins are independent.
But the fact that the anomalous plateau can get turned on and off by tuning ∆V
and lateral shift of the channel, suggests that it is not an intrinsic effect of the
QPC and depends on the details of the channel potential. To resolve this puzzle we
have performed simple simulations of the effect of different impurities and potential
imperfections on the QPC characteristic using Landauer-Buttiker formalism.

6.6.1 Ideal QPC: saddle point potential

The transport properties of an ideal QPC is reproduced here from Landauer-Büttiker
theory [71, 127, 128]. According to this theory the current in the low-bias regime is
given by Eq. 5.2 discussed before. In the non-linear case the current is given by

I = e/h
∑
n

∫ +∞

−∞
dETn(E)[fβ(E − µL)− fβ(E − µR)] (6.1)

Assuming a symmetric voltage bias, the electrochemical potentials of the leads are
given by µL−EF = −µR +EF = eVSD/2 and in the case of low bias (VSD � 1) this
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formula reduces back to Eq. 5.2. Tn(E) is the transmission of channel n. Hereafter
we take into account only two spin-degenerate subbands and assume that apart from
a (possible) shift in energy, the transmission is the same for all the channels. This
is of course not true, because once a channel is open it acts to modify the potential
felt by the other channels through screening but we neglect these interaction effects.
Differential conductance g = dI/dV can be calculated readily from Eq. 6.1

g(VSD, Vg) =
e2

2h

∑
n

∫
dETn(E + EF )[−f ′β(E − VSD/2)− f ′β(E + VSD/2)] (6.2)

were we have shifted E → E + EF . Note that g is symmetric in bias as it should
be. The derivative of the Fermi function is −f ′β(E) = (β/4)/ cosh2 (βE/2) with β =
1/kBT and it approaches to delta function at zero temperature limβ→∞−f ′β(E) =
δ(E). Therefore the second part of the integrand causes both shift and smear-
ing out of the transmission. With this introduction we plug in the transmission
of an ideal QPC with a saddle point potential from Eq. 5.3 into the linear con-
ductance formula, Eq. 5.2, and differential conductance formula, Eq. 6.2. We take
εs = (E − EF − Es)/~ωx with s as the spin-index of the degenerate subband. The
energy threshold of the band Es changes linearly with the gate voltage similar to sec-
tion 5.3.5. Fig. 6.8a,b show the energy-dependence of the transmission and the linear
conductance vs. gate voltage for different temperatures calculated from Eq. 5.2 for
this transmission. Higher temperature only smears out the data. Fig. 6.8c shows
the non-linear differential conductance calculated from Eq. 6.2.
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Figure 6.7: Schematic of feeding two 1D channels with parabolic dispersion by
source-drain bias and how it influences the gate-dependence of the conductance.
(a)-(b) bias voltage is half of the subband energy spacing VSD = ∆E/2. difference
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Figure 6.8: Characteristics of an ideal quantum point contact with saddle-point
potential. (a) transmission vs. energy. (b) temperature-dependence (horizontally
shifted) and (d) in-plane magnetic field dependence of the linear conductance. (c)-(e)
differential conductance at zero and finite (8 T) field.

Fig. 6.7 shows the energy diagram of a 1D system with two subbands. According
to differential conductance formula, Eq. 6.2, source and drain have separate contri-
butions to g(VSD, Vg) (all the terms are positive) and each time a non-degenerate
subband edge is lowered than the electrochemical potentials of source and/or drain,
a contribution of 0.25(2e2/h) is added to the differential conductance. It is easy to
convince oneself that with the energy diagram given in Fig. 6.7 and the conductance
vs. gate voltage shown there for different bias voltages, the non-linear differential
conductance of Fig. 6.8c can be completely understood. According to this picture,
the plateaus in the differential conductance are parallel to the bias axis in agree-
ment with Fig. 6.8c. In reality however, all the plateaus have a bias dependent
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conductance due to Coulomb interactions. This effect can be taken into account by
assuming a non-linear drop of the potential between the source and the bottleneck
of the constriction [128]. In this case the potential drop across the QPC can be
phenomenologically written as U0(VSD) = U0− αeVSD + γeV 2

SD/2 and this quantity
must be inserted in Eq. 6.1 and the second derivative of the Fermi-Dirac distribution
also taken into account. Here we neglect these effects. An important observation is
that the ZBA does not appear in a saddle point potential. Using a phenomenologi-
cal model similar to here, Chen et al. [115] have shown that the zero-bias anomaly
can occur in 1D whenever the subband energy rises slightly with increasing dc bias,
irrespective of the precise functional form of this rise in energy. Here we assume that
the subband energy is constant with bias and only depends on the gate voltage.

Applying an in-plane magnetic field results in Zeeman splitting of the subbands
as shown in Fig. 6.8d. Here we assume that the energy of the spin-up subband is
pinned to certain gate voltages due to self-consistent screening effects as is usually
seen in the experiment. The differential conductance at finite magnetic field shows
more dense plateaus due to spin-degeneracy lifted subbands.

6.6.2 QPC with an additional transmission resonance

The transmission probability can be calculated using Fermi golden rule in the lowest
approximation [1, 47] and it contains the density of states of source and drain and the
matrix element of tunnelling between different states of the leads. All these can be
phenomenologically lumped into an energy-dependence of the transmission. Here we
make a simple model of these potential imperfections by assuming the transmission
to be a Lorentzian resonance superimposed on top of the transmission of a saddle
point potential, shown in Fig. 6.9a which is very similar to the model used to fit the
large-magnetic field conductance peak in section 5.3.5. The temperature-dependence
shown in Fig. 6.9b confirms that such transmission resonances disappear quickly
by increasing the temperature. It is interesting though that the resonances leads
to a zero bias peak in the differential conductance, shown in Fig. 6.9c, that again
disappears by increasing the temperature.The assumption that the transmission is
the same for all the subbands results in appearance of the zero bias peak at all the
three rises of the differential conductance shown in the figure. Had we taken into
account the screening effects, the higher zero bias peaks would have been suppressed.
Note that there are also curves with split zero bias peaks in the zero-field differential
conductance.

Application of an in-plane magnetic field splits the subbands but as we have
assumed equal transmission for spin-split subbands the resonance appears in both
subbands as shown in Fig. 6.9d. The finite bias spectroscopy at finite magnetic field
shows similar pattern as the zero-field one, but here the split zero bias peaks are
even more evident.

To summarize this section, we conclude that the zero bias peak can appear in
g due to a transmission resonance, get suppressed by increasing the temperature
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Figure 6.9: Characteristics of an quantum point contact with a resonance in the
transmission (a). (see Fig. 6.8 for explanations). The resonances disappears by
increasing the temperature (b). It is observable on both spin-split subbands (d). It
gives rise to a zero bias peak (c)-(d) for the narrow gate regime corresponding to
the anomaly, marked with red circle and arrow. The zero bias peak is even split at
a certain gate voltage marked in red ellipse in (e).

and split by application of an in-plane magnetic field. In contrast to the commonly
observed ZBA in QPCs, this peak appears at a certain gate voltage and splits at
slightly higher conductances. It would be very interesting to know what are the
effects of screening on this result if it is included even in a simple phenomenological
modification of the transmission.
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6.6.3 QPC with a spurious charge impurity nearby

Another type of imperfections that we consider is capacitive coupling of the channel
bottom to a potential well or impurity that can get filled at a certain gate voltage.
The QPC has a saddle-point transmission but the potential of the nano-structure
shown in Fig. 6.10a has a minima with a certain state that can get filled by an
electron/hole from either the channel or the leads. We assume that this state is
weakly coupled to outside and its occupancy is given by a Fermi-Dirac distribution.
Upon filling at a certain gate voltage the conductance trace of the QPC is shifted
horizontally proportional to the capacitive coupling between them and a feature ap-
pears in the linear conductance as shown in Fig. 6.10b. Increasing the temperature
has two effects: first, it decreases the conductance of the QPC at this gate voltage
and therefore the feature also gradually decreases in conductance, very similar to
the standard 0.7-feature behavior. Second, it extends the width of the feature by
broadening the occupation profile of the impurity in the gate voltage. This occu-
pation profile is given by the depth of the potential well and the temperature. For
temperatures above the ionization energy of the impurity the anomaly is expected
to vanish (not taken into account here).

Fig. 6.10c shows the differential conductance data which looks very similar to a
corresponding one from an ideal QPC (Fig. 6.8c). The only difference is the bunch-
ing of several dI/dV curves at the the gate voltages of the filling of the impurity.
This feature is very similar to the measurements performed on the QPC presented in
Fig. 6.4b. Note that in contrast the model assumed here does not produce any zero
bias peak. Perhaps the most interesting feature of this model is that application
of an in-plane magnetic field, shown in Fig. 6.10b, results in very similar measure-
ment features presented earlier in this chapter. Apart from Zeeman splitting of
the subband, one can also imagine a g-factor for the impurity state however, here
we assume this g-factor to be zero. As the spin-degenerate subband splits gradu-
ally only one subband is affected by the impurity filling. Starting from 0.75(2e2/h)
the conductance anomaly crosses 0.5(2e2/h), saturates at 0.4(2e2/h) and seemingly
independent half-plateau appears at higher fields, all very consistent with the mea-
surements on this QPC. Finite-field differential conductance in Fig. 6.10e has nothing
new for us except same dI/dV bunching discussed before.

6.7 Possible explanation

After reviewing some of the effects of impurities on the characteristics of QPCs,
we suggest the following picture. It is plausible that since the anomalous feature
can appear/disappear by lateral shift of the channel, some impurity or potential
imperfections of the QPC must be involved. The model of a QPC with a nearby
charge impurity fits quite well to the temperature-dependent and magnetic field-
dependent data. The effect of lateral shift of the channel can be due to a ∆V -
dependence of the capacitive coupling of the impurity to the bottom of the channel
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Figure 6.10: Characteristics of an quantum point contact with a nearby charge
impurity. (a) schematic of the potential of the point contact, supporting an impurity
state. Blue depleted regions separate the in-plane gates from the channel. (b) the
feature survives higher temperatures and drops in conductance. (d) the feature drops
in conductance and appears only in the rise of one spin-split subband by appying an
in-plane field. (c)-(e) bunching of several dI/dV -curves (marked with red arrow).

which is conceivable. Based on the measurement shown in Fig. 6.3, we conclude
that the impurity is located near gate G2. With positive ∆V the channel is pushed
toward the impurity and with negative ∆V the channel is pulled back. However,
the main measurement feature that defies this simple model is the presence of a
strong ZBA within a large gate voltage range. Motivated with the measurements on
the ZBA in section 6.5.1, we assume that it has different origins as the anomalous
conductance feature discussed here. If the ZBA is due to Kondo effect, as suggested
extensively in the literature [83, 97, 100] and the splitting with in-plane magnetic
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Figure 6.11: Evolution of the ZBA with perpendicular magnetic field B⊥ and the
gate asymmetry ∆V . A field-dependent series resistance is subtracted to keep the
first plateau at 2e2/h.

field suggests [110], it is not due to the impurity. Fig. 6.5 suggests that as the channel
is pushed toward the impurity, the ZBA tends to get asymmetric and eventually split
to two peaks. These data is presented in further details in Fig. 6.11 where the effect
of perpendicular magnetic field (after subtracting a series resistance) on the ZBA is
also shown in addition to the ∆V -dependence.

The first row with ∆V = -286 mV with channel far from the impurity shows a
symmetric ZBA that with increasing magnetic field starts to split aroundB⊥ = 0.4 T.
As the channel is pushed toward the impurity, some of the dI/dV curves are bunched
together. This is the onset of the occupation of the impurity. For the conductances
below these bunching (more positive gate voltage) the state is above the electro-
chemical potential of the leads and it is empty. For the conductances above these
bunching the state is filled. When the channel is very close to the impurity in the
third line with ∆V=+300 mV, the ZBA is split even at zero field. It is very interest-
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ing that this zero-field splitting of the ZBA happens only when the impurity state is
empty (conductances below the bunching). Above that the ZBA is symmetric and
single peaked. By applying the magnetic field the splitting of the ZBA grows even
further. At about B⊥ = 0.4 T, the unoccupied state-ZBA starts to split very similar
to the first row and this splitting grows further by increasing the magnetic field.

Several publications have associated the ZBA with the leads and not with the
QPC [111, 112]. Notwithstanding the questions about the origin of the ZBA, the
zero-field splitting reported here supports a local origin of the ZBA with a position
located inside or around the QPC. Furthermore, apart from the controversial origin
of the Kondo effect in QPCs, the system investigated here is very similar to the
extensively theoretically investigated settings of Kondo effect in a parallel double-
dot [130–135] or in a single dot side-coupled to another dot [136, 137]. Except Wang
[134] that assumes only contact interaction between the dots, the others assume a
tunnel coupling between the two dots. The ZBA splits as a result of the hybridization
between the two dots as experimentally observed here, supporting the idea that there
is a ∆V -dependent tunnel coupling between the channel and the impurity in our
case. The parallel double dot system, accidentally formed here, is a very interesting
system to study two-channel Kondo effect [138].
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Figure 6.12: Temperature-dependence of the linear conductance at ∆V = 0. The
rightmost and leftmost curves have temperatures of 100 mK and 2 K respectively and
the steps are not equidistant. The low-temperature conductance anomaly marked
with the red arrow on the right drops in conductance and smears out and a new
anomaly appears at higher temperature (marked with the red arrow on the left).

The Kondo theories of the 0.7-feature predict that the ZBA is a signature of the
Kondo screening of an unpaired spin occupied the quasi-bound state of the QPC. At
very high temperatures the Kondo effect is suppressed, the impurity is ionized and
the 0.7-feature is expected to show up if the channel is not pushed too much to the
impurity (for not too positive ∆V ). Fig. 6.12 shows the temperature dependence
of the linear conductance at ∆V = 0 and up to a temperature of 2 K. The weak
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anomaly originally at 0.75(2e2/h) decreases in conductance to about 0.6(2e2/h) and
at even higher temperature the 0.7-feature emerges as expected.

6.8 Summary

A conductance anomaly in a hole QPC is experimentally investigated in detail. It is
shown using simple toy-models that seemingly paradoxical features in the conduc-
tance arise due to a charge impurity nearby the QPC. However, the QPC exhibits a
zero bias peak in the differential conductance that appears to have a different origin
and is affected when the channel is pushed toward the impurity using asymmetric
gate voltages. The splitting of this peak by in-plane and perpendicular magnetic
fields suggests a Kondo origin for the ZBA and the tunnel coupling to the impurity
results in a zero-field splitting of the ZBA. The result is consistent with the Kondo
picture of the 0.7-anomaly and supports a local origin of the ZBA located at the
QPC. The difference with common 0.7 anomaly therefore seems to be caused by an
impurity in the channel.
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Chapter 7

Anisotropic Zeeman splitting of
1D states in p-GaAs QPCs

7.1 Introduction

A magnetic field changes the energy of a system by coupling to its magnetic moment,
an effect known as the Zeeman shift. For a free electron the only contribution to
the magnetic moment is from the spin S and the energy difference between spin-
up and down is given by ∆E = gsµBB with gs = 2. For electrons in atoms the
orbital angular momentum L also contributes to the magnetic moment which due
to spin-orbit interactions is mixed with the spin. The g-factor is modified, and
the z-component of spin and orbital angular momenta are no longer good quantum
numbers and the Zeeman shift depends on the total angular momentum J = L + S
which is the only conserved parameter (together with L2, S2 and J2).

In a solid-state environment the spin-orbit interaction can be much stronger
than in free space and strongly modifies the proportionality constant in the Zeeman
shift formula [46, 139] so that for electrons in bulk GaAs, the g-factor is given by
g∗n−GaAs = -0.44. This value is valid even in electron systems confined to two or one
dimension provided that the carrier density is high enough. Only as the number of
1D subbands decreases below 20 propagating channels, Daneshvar et al. [57] found
deviations due to exchange enhancement of the g-factor which has also been observed
in 2D systems in the quantum Hall regime [140].

Much richer spin physics is expected in hole systems [31]. In two-dimensional
hole gases the growth direction becomes the preferred direction of quantization for
heavy holes due to quantum confinement [31]. As a result Zeeman splitting is sig-
nificant perpendicular to the plane and zero for in-plane magnetic fields in quantum
wells (QWs) grown on high-symmetry (100) and (111) surfaces [12, 38]. For other
surfaces however a B‖-linear splitting is obtained the magnitude of which depends
on the in-plane orientation of B‖ relative to the crystal axes [12]. While the g-factor
measurements in 2D rely on the involved technique of analyzing commensurability
effects in Shubnikov-de Haas oscillations at different angles, in lower dimensions
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the subband structure of the system provides direct information about the Zeeman
spin-splitting of the carriers. ∗

7.1.1 Confinement Anisotropy: previous and present works

The interesting feature of valence band compared to the conduction band is that
any finite in-plane k‖ mixes the heavy holes with the light holes which have a non-
zero g-factor. In particular any further confinement results in such a mixing in the
confinement direction, modifying the isotropy of the in-plane Zeeman splitting. This
effect was first studied by Danneau et al. [141] on quantum wires made in a 2DHG
on (311)A surface. On this surface the two main in-plane crystallographic directions
[011] and [233] have different two dimensional g-factors which are equal to 0.2 and
0.6 respectively [31]. In their 1D system aligned along [233], Danneau et al. observed
a clear lifting of the spin degeneracy and crossings of the subbands when the in-plane
magnetic field B was applied parallel to the wire. The effective g-factor was found
to be decreasing with the subband index toward the 2D limit of 0.6. When B was
oriented perpendicular to the wire, no spin splitting was discernible up to B = 8.8 T.
The authors associated this result with the importance of quantum confinement in
spin-3/2 systems.

Motivated by this work, Koduvayur et al. [23] studied QPCs made by AFM
lithography along both [011] and [233] directions on (311)A surface and concluded
that the anisotropy of the 1D hole spin-splitting was primarily due to the crystal-
lographic anisotropy of the spin-orbit interaction rather than the 1D confinement.
They reported that the effective g-factor does not depend on 1D energy level number
N for B ‖ [011] but has a strong N dependence for B ‖ [233]. This was in contrast
to Klochan et al. [126] who repeated this experiment on quantum wires made along
both [011] and [233] directions in a 2DHG on (311)A surface and found that in spite
of two-dimensional anisotropy of the Zeeman splitting, the g-factor is significantly
altered from these values with a subband-dependent value for in-plane magnetic field
B parallel to the wires while for B perpendicular to the wires in both directions,
the result is essentially equal to the anisotropic 2D limits mentioned before.

These experiments suggest that perhaps the role of confinement anisotropy is
different in quantum wires compared to quantum point contacts motivating more
experiments to resolve the puzzle. This is conceivable as the lateral confinement
is probably more pronounced in long quantum wires compared to point contacts
making them more alike one-dimensional systems. Moreover it would be desirable
to perform these experiment on nano-structures made from high symmetry QWs
where the crystallographic anisotropy does not play any role. Recently Chen et al.
[142] did similar experiments on quantum wires fabricated along [011] and [011]
crystallographic axes of a high-mobility undoped (100)-oriented heterostructure and
reported similar confinement anisotropy of the hole g-factor. 1 Moreover they re-

∗Valubale discussions with U. Zulicke and O. Klochan is apperciated.
1We had already observed this effect in a number of quantum point contacts (see Appendix F)

92



7.2. Transconductance

ported a monotonic increase of the g-factors with the subband index approaching
g∗ = 0.5 for N>4 subbands even though a value of zero in 2D limit is expected.

We have measured the Zeeman splitting in eight quantum point contacts made
with both AFM and e-beam lithography along two different directions of [011] and
[011] on (100)-plane of p-GaAs in this thesis. No dependence with respect to the
angle between QPC axis and the crystallographic directions were observed as ex-
pected. The g-factors extracted from our experiments agree qualitatively with those
reported in [126, 141, 142]. We observe clear spin-splitting if the in-plane magnetic
field B is applied parallel to the QPC axis while no spin-splitting was observed when
B is perpendicular to the QPC axis. Since the QPCs measured in this thesis have
lithographical lengths comparable to their widths, it is striking to observe such a
significant effect due to their lateral confinement. As a consequence the zero in-plane
g-factor of holes becomes finite once the carriers are confined in one direction. In
other words the holes do not ‘feel’ any in-plane magnetic field when they pass a con-
striction perpendicular to the field. This finding highlights the difference between
spin-3/2 holes compared to the electrons and can have important implications for
future nanotechnology devices that wish to exploit the spin of the carriers besides
their charge.

In this chapter we study three similar quantum point contacts fabricated with
e-beam lithography on the same chip A4.10.1 in three different directions. These
QPCs called QPC1, QPC2, QPC3 are in 45◦, 0◦ and 90◦ with respect to the in-plane
field. The standard linear and finite bias differential conductance measurements were
performed at base temperature in a dilution refrigerator with in-plane magnetic field
up to 13 Tesla in a fixed direction. The field angle with respect to the plane was
less than 2 degree. Unless explicitly mentioned B stands for in-plane magnetic field
in this chapter. As the role of confinement anisotropy in hole quantum wires is
best summarized in [142] and it is the only reported experiment on (100)-plane, in
the following we will compare our results on hole quantum point contacts to those
reported in this paper. While our measurements are in qualitative agreement with
these result, a number of quantitative differences must be highlighted. We obtain
larger values of the g-factor compared to those reported in [142]. This might be
because the strong confinement in our case results in subband splittings that are
larger than the quantum wires studied by Chen et al. [142] implying that exchange
enhancement of g-factor in hole systems, not observed to date, may play a role.

7.2 Transconductance

The signature of spin-splitting is shown in the transconductance plots shown in
Fig. 7.1, where the high transconductance regimes shown in blue indicate the sub-
bands while the yellow, orange and red areas indicate the plateaus between these
subbands. The transconductance was obtained from a numerical derivative of the

when this paper first appeared.
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measured linear conductance with respect to the gate voltage. A clear Zeeman
splitting is observed for QPC1 (Fig. 7.1a) and QPC2 (Fig. 7.1b) while for QPC3
in which the current flows perpendicular to the magnetic field, no spin-splitting is
discernible up to 13 T (Fig. 7.1c). Similar effects on five other QPCs are shown in
Appendix F. Two features of these data are worth mentioning here. First, QPC2
which is oriented parallel to the B field, seems to have a larger splitting compared
to QPC1 which has a 45◦ angle with the field. The other interesting feature of the
data is that although the first subband does not split in QPC2, consistent with the
data from other QPCs parallel to the field in Appendix F and in agreement with
those reported in [142], it does split for QPC1.
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Figure 7.1: Transconductance (numerical derivative with respect to the gate volt-
age) with arbitrary unit as a function of gate voltage and in-plane magnetic field mea-
sured at T = 100 mK. (a) QPC1 (45◦ with respect to magnetic field) (b) QPC2 (par-
allel to magnetic field) (c) QPC3 (perpendicular to magnetic field). The (blue) high
transconductance regimes highlighted with dashed lines indicate the subbands. The
linear conductance values in units of e2/h are indicated on each plateau.

There are two ways to calculate the g-factor in one-dimensional systems. The
common approach is to calculate it from the source-drain bias at which the 1D
subbands cross, divided by the magnetic field at which spin-split subband crossings
occur [23, 27, 126, 142]. In our quantum point contacts however the subband split-
ting is so large (a factor of 2-6 larger than the figures reported in these references)
that no spin-split crossing happens up to magnetic field of 13 T. Therefore we use
the second approach which requires independent determination of gate lever arm
from finite bias spectroscopy, to transform the x-axes in Fig. 7.1 to an energy axis.

Table 7.2 quantifies the splitting of spin subbands in Fig. 7.1. The width of the
lines is the main source of error. For the first subband in QPC2 and the subbands
of QPC3 a maximum splitting is reported based on the width of these lines.
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7.3. Calculation of lever arm

QPC1 QPC2 QPC3

dVg(1)/dB 0.013(±0.001) <0.001

dVg(2)/dB 0.013(±0.001) 0.017(±0.002) <0.001

dVg(3)/dB 0.024(±0.002) <0.002

dVg(4)/dB <0.002

Table 7.1: Spin-splitting of subbands per Tesla measured in the gate voltage for the
data presented in Fig. 7.1. The numbers in parentheses are the errors. A maximum
splitting is indicated for the cases where a clear spin-splitting is not observed.

7.3 Calculation of lever arm

The gate lever arm can be calculated from the finite bias differential conductance
plots shown in Fig. 7.2. Bright areas in this plot are the plateaus with conductances
indicated in the figure in units of e2/h. The dark regions highlighted with dashed
lines are transitions between the plateaus due to subbands entering or leaving the
bias window. Some of these transitions are noted in Fig. 7.2c. The white dashed lines
mark the alignment of the subbands with the electrochemical potential of source and
drain. The blue and green dashed lines show the evolution of the first subband with
the applied bias which is anomalous (only one subband crosses the source while two
subbands cross drain) due to the presence of 0.7 feature as discussed in previous
chapters. It is noteworthy that the gray dashed lines crossing the 2nd conductance
plateau very similar to the blue dashed lines that cut the 1st conductance plateau,
are probably signatures of a ‘0.7 Analogue’ [90]. Therefore we do not consider the
first subband and the gray dashed line in our analysis in this chapter. Only the
white dashed lines are taken into account in the following.

Vertical dashed lines in Fig. 7.2 evaluate the bias at which the electrochemical
potential of source and drain are aligned against two subsequent subbands and
therefore give the subband splittings in eV. As a general trend the subband splitting
gets smaller as the constriction opens up toward more negative gate voltage. The
same effect also causes the change in the slope of the white dashed lines as one moves
toward more negative gate voltage. The first subband is again more complicated as
discussed before. Table 7.3 summarizes the subband splittings and gate lever arms
αn = 0.5dVSD(n)/dVg(n) obtained from the slope of white dashed lines for different
subbands averaged between the source and the drain lines. The errors are again due
to extended width of the lines in Fig. 7.2.
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Bright areas are plateaus whose conductance is indicated in the figure. Dashed lines
mark when subbands are aligned with the electrochemical potential of source/drain.

QPC1 QPC2 QPC3

∆E2,3(meV) 1.32(±0.05) 1.14(±0.05) 0.89(±0.02)

∆E3,4(meV) 0.89(±0.05) 0.77(±0.03)

α2(meV/V) 2.6(±0.2) 2.6(±0.3) 2.5(±0.2)

α3(meV/V) 1.8(±0.1) 1.9(±0.2) 1.7(±0.1)

α4(meV/V) 1.7(±0.2) 1.4(±0.1)

Table 7.2: The energy spacing between consecutive subbands ∆En,n+1, measured
from the position of the vertical dashed lines and the gate lever arm αn on subband
n, calculated from the slopes of the white dashed lines in Fig. 7.2. The numbers in
parentheses are the errors.

7.4 Zeeman splitting anisotorpy

The above results can be combined to give the Zeeman spin-splitting energies per
Tesla listed in Table. 7.4. In this table the results from two samples A4.2.1 and
A4.2.2, measured parallel to the magnetic field as discussed in Appendix F, are also
included. The numerical value of splitting for the first subband is not clear due
to ambiguity in assigning the lever arm. Nevertheless it is clear from Fig. 7.1 that
the first subband in QPC1 has a non-zero spin-slitting. The ratio between spin-
splittings of the 2nd subband in QPC2 and QPC1 agrees with the factor of

√
2

expected from the miss-alignment of the latter with respect to the field.
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7.4. Zeeman splitting anisotorpy

QPC1 QPC2 QPC3 A4.2.1 A4.2.2

∆E1(µeV/T) >0 0(?) 0(?)

∆E2(µeV/T) 33(±3) 44(±7) <3 25(±5) 36(±5)

∆E3(µeV/T) 46(±6) <4 37(±6) 28(±4)

∆E4(µeV/T) <3 56(±6)

Table 7.3: Zeeman spin-splitting of the subbands. The numbers in parentheses are
the errors.

From these data we can calculate the g-factor. In order to be consistent with the
literature we adapt the following definition of the effective Landé g-factor in which
the spin of holes is included in the g-factor

∆E = g∗µBB (7.1)

This is plausible since confinement mixes the heavy and light holes, hence opposing
a clear spin assignment to the subbands. Note that µB = ~e/2me ≈ 58 µeV/T is the
Bohr magneton with me the free electron mass. With this definition g∗ is obtained
from

g∗n =
αn
µB

dVg(n)

dB
(7.2)

The g-factors are listed in Table 7.4. Only the absolute value of the g-factor are
stated here as its sign cannot be deduced from our experiment. The same result
is obtained by extrapolating the spin-splitting lines in Fig. 7.1 to find the crossing
field B > 13 T outside the plots and divide the subband splitting by this crossing
field to get the Zeeman shift as is commonly performed in the 1D spin-splitting
literature [23, 27, 126, 142]. We stress that the values obtained here are a factor
of 2-3 higher than those reported in the literature [23, 27, 126, 142]. This might
be connected to the fact that the subband splitting in our QPCs are a factor of
2-6 higher than those reported in previous works indicating a stronger confinement.
This large subband spacing and leakage-limited gate voltage range is probably the
reason that only few subbands are observed in our quantum point contacts.

QPC1 QPC2 QPC3 A4.2.1 A4.2.2

B∠45◦I B ‖ I B ⊥ I B ‖ I B ‖ I
g1 >0 0(?) 0(?)

g2 0.55(±0.05) 0.75(±0.1) <0.05 0.45(±0.1) 0.6(±0.1)

g3 0.8(±0.1) <0.05 0.65(±0.1) 0.4(±0.05)

g4 <0.05 0.95(±0.1)

Table 7.4: g-factor of the 1D subbands. The numbers in parentheses are the errors.
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Chapter 7. Anisotropic Zeeman splitting of 1D states in p-GaAs QPCs

7.5 Possible explanations

As discussed in the introduction the anisotropy terms cubic in ~k‖ that would result
in a linear in B‖ spin-splitting are absent for (100) oriented quantum wells, however
a substantial linear spin-splitting can be achieved because of heavy and light hole
(HH-LH) mixing at ~k‖ = (kx, ky) 6= 0 [31, 142]. To linear oder in B‖ (page 174
of [31])

HHH
[100] =z7h7h

51

(
Bxk

2
xσx −Byk

2
yσy
)

+ z7h7h
52

(
Bxk

2
yσx −Byk

2
xσy
)

+ z7h7h
53 {kx, ky}

(
Bxk

2
xσx −Byk

2
yσy
)

+O(B3
‖)

(7.3)

The z7h7h parameters (related to Z parameters introduced later) are constants that

contain the HH-LH mixing. ~~k = −i~~∇ is the momentum operator. In 2D the Zee-
man splitting is the average of the above expression over the whole Fermi circle [142].
In 1D systems the transverse quantization of wavevector amplifies one of the kx or
ky on the expense of the other, thus boosting up corresponding terms in the above
Hamiltonian. However this anisotropy due of wavevector quantization does not ex-
plain the anisotrpy observed here and reported in the literature. For example 2 if
the current is in x-direction with ψ ∝ φn(y)eikxx, an order of magnitude estimate of
the transverse wavevector ky can be calculated from the zero field subband splittings
using En = ~2k2

y,n/2m
∗ while kx ≈ 0 in linear conductance measurements. With this

substitution only the following terms are left which contribute to the spin-splitting

HHH
[100] → g∗xxBxσx + g∗yyByσy (7.4)

where the effective g-factors are given by

g∗xx = 3γ2k
2
y,n (0.5κZ1 − γ3Z2)

g∗yy = 3γ2k
2
y,n

(
0.5κZ1 − γ2

3Z2/γ2

) (7.5)

parameters γ1, γ2, γ3 are the Luttinger parameteres [31] which are respectively
equal to 6.85, 2.10 and 2.90 in GaAs and κ = 1.2 is the (valence-band) bulk g-
factor. Parameters Z1 and Z2, responsible for HH-LH mixing, depend on the precise
confinement potential of the two dimensional hole gas by the quantum well (for a
15 nm wide rectangular QW Z2/Z1 ≈ -2 [31]).

Confinement enhancement of the g-factor

Equation 7.5 emphasizes the role of confinement on the Zeeman splitting. The g-
factor in this formula is proportional to (the expectation value of) k2

y,n which is
by itself proportional to the subband spacing. This can explain why the value
of g-factors in our measurements are larger than those reported in the literature
approximately proportional to the ratio of corresponding subband spacings.

2No dependence on crystallographic directions is assumed.
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7.6. Perpendicular magnetic field

The origin of confinement anisotropy is however more intricate because it does
not come out of the above 2D considerations as it was discussed by Chen et al. [142].
In the context of the above 2D theory, our experimental observation of gxx � gyy
requires either γ3/γ2 = 1.4 be much less than one which is not correct or that the
sign of the above formula is different (only the absolute value of the g-factor is
measured in our experiment) and the values of Z1 and Z2 are substantially altered
from the above values due to triangular confinement. More theoretical work, perhaps
in the framework of a quasi-1D theory [143, 144], is necessary in order to resolve
this problem.

Exchange interaction

Another possible origin of the large measured g-factors is the Coulomb interaction.
Strong confinement increases the overlap between the wavefunctions of the parti-
cles, strengthening the exchange interaction. The exchange interaction on the other
hand can enhance the spin-splitting as it has been observed in 2D [145] and 1D
systems [57, 146]. This effect can be explained as follows. In short, neglecting
the spin-orbit interaction, the density mismatch between particles with spin-↑ and
spin-↓ can increase the particle-particle interactions felt by low population subband
(spin-↑) as they mainly feel the particles with opposite spin (high-population spin-↓).
This is because the interaction between particles with the same spin is suppressed
anyway due to Pauli exclusion principle. The extra particle-particle interaction can
create an energy difference in the form of J (n↓ − n↑) which further increases the
spin splitting [145].

In two-dimensional hole systems no sign of exchange enhancement of the g-factor
has been observed up to the interaction parameter of rs < 15 [10]. While the inter-
action parameter is lower in the leads of our QPCs rs ≈ 5, it is expected to be higher
inside QPCs because of lower density and get enhanced due to confinement. If this
were true we would expect that the g-factor scales inversely with the subband index
which is certainly not the case. Therefore we believe that the exchange interaction
is irrelevant for the measurements reported here.

7.6 Perpendicular magnetic field

For the sake of completeness here we shortly discuss the Zeeman splitting for the
magnetic field perpendicular to the plane. Fig. 7.3 shows the transconductance of
QPC1 measured in this particular field direction. The filling factors on different
plateaus are indicated in the figure. A clear diamagnetic shift as a result of the
magnetic field in addition to the Zeeman spin-splitting of subbands is clear in this
data. However it is not straightforward to transform the gate voltage axis of Fig. 7.3
to an energy axis. The classical cyclotron radius and the magnetic length in our
system are 100 nm/Tesla, meaning that already at few Tesla the wavefunctions are
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Chapter 7. Anisotropic Zeeman splitting of 1D states in p-GaAs QPCs

strongly influence by the field and the zero-field lever arms extracted from Fig. 7.2a
are not valid anymore. Nevertheless reading the spin-splitting of dVg(2)/dB ≈ 0.11
for the 2nd subband from the low field B⊥ < 3T part of Fig. 7.3 and using the zero-
field lever arm α2 ≈ 2.6 from Table. 7.3 gives a perpendicular g-factor of g⊥ ≈ 5. This
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Figure 7.3: Transconductance (numerical derivative with respect to the gate volt-
age) of QPC1 with arbitrary unit as a function of gate voltage and magnetic field
perpendicular to the plane measured at T = 1.1 K. Blue areas are plateaus whose
filling factor are indicated in the figure. Red and yellow lines are transitions between
these plateaus as the subbands pass the Fermi energy. The blue stripe parallel to
the red subband edge is the signature of a high-field conductance peak due to 0.7
anomaly discussed in Chapter 5. More information about the 0.7 anomaly in this
QPC is shown in Appendix E

value must be treated with some care. For comparison the theoretical perpendicular
g-factor of holes in 2D is gHH⊥ = 6κ ≈ 7.2[31] which agrees with the optically
measured values in the literature [147, 148].

7.7 Conclusion and future works

In this chapter we have explored the role of confinement on the in-plane anisotropy
of the Zeeman spin-splitting of our hole quantum point contacts. It has been shown
that the g-factor is zero if the in-plane magnetic field is applied perpendicular to
the current direction. This means that the holes experience no magnetic field if
they pass a constriction perpendicular to the field. The results presented here are
in qualitative agreement with the works presented in [27, 126, 142]. The values for
the g-factor are however higher than the figures reported in previous works. The
role of confinement and exchange interaction on the enhancement of the g-factor is
discussed and it is shown that the although 2D theory [31] can correctly account for
this enhancement, it does not provide an explanation of the observed anisotropy.
A clear experimental demonstration of exchange enhancement of the g-factor in 1D
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7.7. Conclusion and future works

hole systems is still elusive in spite of the fact that these interactions are supposedly
stronger in these systems.
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Chapter 8

Excited states in a p-GaAs single
quantum dot

8.1 Introduction

Quantum dots implemented in GaAs heterostructures are promising candidates for
the experimental realization of quantum computation [40], as well as various spin-
tronic devices [149]. However, research based on electronic transport through such
small conducting islands has been, so far, almost exclusively focused on electron
quantum dots on n-type GaAs heterostructures [150–153]. The recently emerging
interest in low-dimensional hole-doped systems arises primarily from the fact that
spin-orbit as well as carrier-carrier Coulomb interaction (Eint) effects are more pro-
nounced in such systems compared to the more established n-doped systems. The
main reason for this is that holes have a much higher effective mass than electrons,
and thus a smaller Fermi energy EF. This enables the investigation of novel regimes
with much higher interaction parameter rs = Eint/EF . In a confined system like
a quantum dot the interaction is characterized by the ratio of charging energy and
confinement energy λ = Eint/∆ [154]. While the former is given by the dot geometry
and the dielectric constant, the latter depends on geometry and the effective mass.
For a parabolic potential this is equal to

λ =
e2

4πεl0~ω
=

l0
a∗B
∝ m∗l0 (8.1)

where l0 =
√

~/m∗ω is a measure of the size of the dot. For the same size of
quantum dots, the interactions are thus stronger in hole quantum dots compared to
electron dots due to the larger effective mass.

Stronger spin-orbit interactions in bulk two-dimensional hole-doped systems are
expected to lead to significantly reduced spin relaxation times. On the other hand,
it was also shown [155] that spin relaxation of holes confined into quantum wells
is much slower than in the bulk case, but still several orders of magnitude faster
than electron spin relaxation. This was one of the main reasons why p-type systems
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8.1. Introduction

received little attention in efforts to utilize the carriers’ spin in quantum information
technologies. However, it was recently predicted [156] that further confinement of
holes into quantum dots can significantly increase the relaxation time T1 of hole
spins, so that it can be comparable, or even larger than the one of the electron spins
as it was tested by optical pumping experiments in self-assembled p-doped InGaAs
quantum dots [157]. The other interesting time scale is the spin decoherence time
which besides spin-orbit interaction is governed by the hyperfine interaction between
the electron and the bath of nuclear spins [41–43]. The hyperfine interaction however
is suppressed in p-GaAs due to p-type orbital symmetry of holes [44] as it was
experimentally confirmed recently [45] and longer decoherence times T2 are expected.
It has been predicted that for all spin-orbit mechanisms the spin decoherence times
in quantum dots are as large as the spin relaxation times (T2 = 2T1) [158].

In this chapter the results of Coulomb blockade measurements in such a single-
hole transistor defined on a p-type carbon doped GaAs heterostructure is presented.
The area occupied by the confined holes in the investigated device turns out to
be much smaller than in previously reported p-type quantum dots [19]. Thus the
single-level regime becomes accessible for characterization via electrical transport
experiments for the first time.
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Figure 8.1: (a) AFM image of the sample topology. The 15 nm high oxide lines are
prepared by local anodic oxidation and create insulating barriers in the underlying
2DHG separating it into electrically disconnected areas. The dashed circle indicates
the location of the QD which is connected to source and drain contacts by two
constrictions. The couplings of the dot to the leads are tuned individually by the in-
plane gates G1 and G2 while the electrochemical potential of the dot can be varied
by applying a background voltage on the nearby QPC (plunger gate). (b) Typical
breakdown characteristics of the oxide lines at 60 mK base temperature.

The sample shown in Fig. 8.1 was patterned in the 2DHG by AFM lithogra-
phy [63, 64] as described in chapter 3. Voltages in the range of [-200 mV, +200 mV]
can be applied between separated regions without any significant leakage current
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Chapter 8. Excited states in a p-GaAs single quantum dot

across the oxide line, as illustrated in Fig. 8.1(b). A small quantum dot is formed
between the source (S) and drain (D) leads. The coupling of the dot to S and
D through two constrictions can be tuned individually by applying voltages on the
nearby in-plane gates G1 and G2. The background voltage applied to the qpc is used
to align the electrochemical potential and thus the number of the confined holes in
the dot with respect to the electrochemical potentials in S and D. Therefore this
gate will be called plunger gate throughout this chapter. It is to be noted that qpc
can serve also as a non-destructive detector for sensing the charge state of the dot
as will be discussed in the next chapter.

The transport experiments were carried out at 60 mK base temperature of a
standard 3He/4He dilution refrigerator. The two-terminal electrical conductance
was measured by the simultaneous application of a symmetrical ac bias with an
amplitude of 20 µV at 31 Hz lock-in frequency and dc biases up to 2 mV between
S and D. The resolution of the current detection was better than 20 fA at 0.5 Hz
bandwidth.

8.2 Coulomb resonances

From Coulomb diamond measurements it is found that the dot is symmetrically
coupled to the S and D leads when the control gates of the nominally 140 nm wide
constrictions are tuned according to VG2 = VG1 − 115 mV within the [-200 mV,
+200 mV] insulating regime of the oxide lines. In order to explore Coulomb block-
aded transport the differential conductance of the dot was measured as a function
of the Vqpc gate voltage at zero dc bias. The pronounced conductance resonances
observed at different gate configurations are illustrated in Fig. 8.2. The fact that the
dot closes with increasing Vqpc confirms that the electrical transport is maintained
by holes. At the two gate configurations selected in Fig. 8.2 the peak positions were
stable through several consecutive gate sweeps on a time scale of a day with an
accuracy of 0.1 mV. However, at some particular gate configurations sudden rear-
rangements of the background charges made reproducible measurements difficult.
From the relative shift of the resonances at different VG1 and VG2 voltages it is also
clearly visible that the plunger gate not only tunes the number of holes in the dot
but it also acts on the two constrictions leading to a change in the coupling strength
of the dot to S and D. The latter effect can be compensated by accordingly changing
the voltages on the two side gates G1 and G2 as it is indicated in Fig. 8.2.
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8.3. Resonance peak shape and hole temperature
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Figure 8.2: Zero bias differential conductance through the dot measured at 60mK
base temperature as a function of the plunger gate voltage at two different gate
configurations (a) [VG1 = 45 mV, VG2 = -70 mV] and (b) [VG1 = -105 mV, VG2 =
-220 mV], both in the symmetric coupling regime.

8.3 Resonance peak shape and hole temperature

In the weak coupling regime each resonance line has been fitted with an expression
for a thermally broadened Coulomb blockade peak in the multi-level as well as in
the single-level transport regime according to [159]

G = Gmax · cosh−2

[
αe(Vqpc − V0)

νkBThole

]
, (8.2)

where Gmax and V0 are the amplitude and the position of the Coulomb peak, re-
spectively. The lever arm α of the plunger gate can be determined from Coulomb
diamond measurements, as will be discussed later. The coefficient ν in the denomi-
nator of the cosh function equals 2 in the single-level regime while it is roughly 2.5 in
case of multi-level transport [159]. For comparison a coupling broadened Lorentzian
function was also fitted to each resonance [159].

The magnified view of a representative peak at Vqpc = 67.3 mV in Fig. 8.2(b) as
well as the fitted curves are shown in Fig. 8.3. In all cases the thermally broadened
resonance fits significantly better to the data than the coupling broadened resonance,
confirming that the dot is indeed in the weak coupling regime and that the peak
broadening is determined by temperature rather than by the coupling to the leads.
From Coulomb diamond measurements (see below) it can also be concluded that
kBThole ≈ ∆� EC, where ∆ and EC are the mean single-particle level spacing and
the charging energy of the dot, respectively. This indicates that the dot is in the
single-level transport regime and ν = 2 applies in Eq. 8.2. As a fitting parameter we
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Figure 8.3: Magnified view of the Coulomb peak at Vqpc = 67.3 mV, VG1 = -
105 mV, VG2 = -220 mV in Fig. 8.2(b). The experimental data (dots) are fitted
to a thermally broadened (solid line) as well as to a coupling broadened resonance
lineshape (dashed line). The thermally broadened model reveals a hole temperature
of Thole = 185 mK.

obtain typical hole temperatures in the range of Thole = 160 − 190 mK. In case of
symmetric coupling to the leads it is straightforward to evaluate the ΓS ≈ ΓD = Γ
coupling strength from the Gmax = e2Γ/(8hkBThole) single-level transport formula
for the resonance amplitude. Using the fitted values of Thole we obtain Γ ∼ 1 µeV
in agreement with the condition of the thermally broadened model.

8.4 Coulomb diamonds

Coulomb diamond measurements, i.e., measurements of the differential conductance
as a function of bias voltage Vbias and plunger gate voltage Vqpc, were performed in
the weak coupling regime. The result of an overall voltage scan is shown in Fig. 8.4.
The size of the diamonds clearly increases towards higher Vqpc values which indicates
the reduction of the electrostatic size of the dot, a phenomenon, that is characteristic
to quantum dots with a small number of confined particles. From the extent of the
last well resolvable diamonds in bias direction measured in the -30 mV < Vqpc < 20
mV regime the value of EC ≈ 2meV is estimated for the charging energy, while the
lever-arm of the plunger gate is α ≈ 0.28. This charging energy corresponds to a
capacitance of the dot C = e2/EC ≈ 8×10−17F. Attributing a disk-like shape to the
dot, the capacitance is given by C = 8ε0εrr, where r is the radius of the dot and εr =
12.9 for GaAs . This enables the rough estimation of the electronic diameter of the
dot to be ≈ 170 nm, which is in good agreement with the lithographic dimensions
of the sample and indicates an upper limit of ≈ 90 for the number of holes stored
in the dot.
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Figure 8.4: Logarithmic color map of the Coulomb diamonds observed in the finite
bias differential conductance of the dot (dark regions represent low conductance).
The charging energy associated with the size of the diamonds is clearly enhanced
at higher plunger gate voltages. The measurement was performed at VG1 = 45 mV
and VG2 = -70 mV gate configuration at 60 mK base temperature.

It is also visible in Fig. 8.4 that in certain dot configurations like at Vqpc = -7
mV and -21 mV, low-frequency switching noise due to charge rearrangements in the
sample becomes quite expressed. Since these switching events may occur on a time
scale of one day, a reasonable resolution of the consequent Coulomb diamond mea-
surements is determined by the size of the scanned area in the [Vbias, Vqpc] parameter
space. Therefore, in order to resolve conductivity peaks outside the Coulomb di-
amonds which are related to excited states, the high resolution conductance scans
are focused to a smaller regime in Fig. 8.4.

8.5 Excited states of the quantum dot

In case of a quantum dot with steep potential walls, the mean single-particle level
spacing can be calculated as ∆ = 2π~2/gm∗A, where g is the degeneracy of hole
states and A is the electronic area of the dot. Taking into account the electrostatic
size of the dot as deduced from the charging energy and assuming an effective mass
of 0.53 me, the mean single-particle level spacing is estimated to be ∆ ≈ 20 µeV. Due
to the large effective mass of holes this is one order of magnitude smaller than typical
values in electron quantum dots, but still comparable to kBThole. An accordingly
refined Coulomb diamond scan was performed at the same gate configuration as for
the data presented in Fig. 8.4, and the result is displayed in Fig. 8.5. Apart from a
small displacement due to a background charge rearrangement at Vqpc ≈ 4.5 meV the
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Chapter 8. Excited states in a p-GaAs single quantum dot

three diamonds in Fig. 8.5 can be directly mapped to Fig. 8.4. Outside the diamonds,
parallel to the edges, lines of higher differential conductance are visible. The presence
of the lines is further visualized in Fig. 8.6(a) by displaying various cross sections
of the uppermost diamond along the Vbias axis. Apart from the missing left side
counterpart of the right hand side line at ≈ 380 µeV which reveals the weak coupling
of the excited states to the leads, the well visible left-right symmetry of the line
distribution excludes an alternative explanation in terms of resonances in the random
potential landscape of the leads. One can, therefore, unambiguously attribute these
lines to elastic sequential tunnelling through the single-level excited states of the dot.
The weak coupling of the excited states made the simultaneous detection of second
order current steps in the Coulomb blockaded region, characteristic to inelastic co-
tunnelling [160] via the excited states difficult. However, a faint contrast in the
middle of the Coulomb diamonds was found in the strongly coupled regime where
the connecting excited state lines outside the diamonds were no longer resolvable.

10

8

6

4

2

0
0-2 21-1

V  (mV)SD

V
 (

m
V

)
q

p
c

2
log[G (e /h)]

-3 -2.5-4

V =45mVG1

V =-70mVG2

-3.5-4.5

530meV

380meV
215meV

120meV

510meV

235meV

130meV

Figure 8.5: (a) High resolution scan of the Coulomb diamonds displayed in Fig. 8.4
in the 0 < Vqpc < 10 mV regime. The parallel lines of higher conductivity outside
the diamonds are attributed to sequential elastic tunneling through single-particle
excited states of the dot. The corresponding excitation energies of the levels are also
indicated. The black oval marks the fluctuations due to charge noise in the system.

While the broadening of the observed lines clearly exceeds both kBThole and the
estimated ∆ = 20µeV, the energy of the lowest well distinguishable excited state is
found to be 120±10 µeV. According to the above estimation this corresponds to an
electronic dot diameter of ≈ 50 nm which implies an electronic area that is smaller
by one order of magnitude compared to the value deduced from the charging energy
and indicates a hole occupation number of N ≤ 10. Beside the inaccuracy of the
applied simple models this discrepancy may reflect the general breakdown of the
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8.5. Excited states of the quantum dot

constant interaction model as well as the pronounced role of the strong hole-hole
interactions at small occupation numbers. It is also to be noted that the value of
the effective mass used for the estimation of the single-level spacing is taken from
measurements of the extended 2DHG. It is conceivable that the effective mass of
the carriers confined in the dot is different.
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Figure 8.6: (a) Individual differential conductance traces recorded at various
plunger gate voltages between Vqpc = 8 and 10 mV indicated by the horizontal
lines on the right hand side of panel Fig. 8.5. Each curve is vertically shifted for
better visibility by an offset which is proportional to the corresponding Vqpc value.
The open circles and triangles indicate the local maxima which line up with the dif-
ferent excited state lines highlighted in the upper panel. (b) Excited state energies
deduced from the lines at the right (N) and left (H) sides in Fig. 8.5.

In the following the consequences of a small hole occupation number on the shape
of the dot potential and on the spatial extension of the dot is briefly discussed.
Due to their large effective mass compared to electrons, valence band holes can
screen the confining potential more efficiently which results in an effective hard
wall potential. Depending on the dot geometry this leads to a single-particle level
spacing that generally increases with ∝ N2. In contrast, the observed equidistant
distribution of the excited state levels displayed in Fig. 8.6(b) recalls a parabolic
two-dimensional confining potential which reveals weak screening, providing further
experimental evidence for the small number of holes stored in the dot. Although
the actual potential landscape of the dot is not known, a quantitative analysis of a
two-dimensional harmonic potential characterized by a ∆ = ~ω = 120 µeV single-
particle level spacing and a hole effective mass of m∗ = 0.53 me also predicts a
50-110 nm spatial extension of the wavefunction for N = 1-10 holes. This is in
good numerical agreement with the dot size determined directly from the observed
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Chapter 8. Excited states in a p-GaAs single quantum dot

single-particle level spacing and a two-dimensional density of states and supports
our argument about the break-down of the constant interaction model in the small
N regime. In order to be able to determine the exact number of holes in the dot
and thus explore the effects of hole-hole correlations experimentally, it is desirable
to implement additional low noise QPC charge detection measurements in the close
vicinity of the dot and work towards smaller dot sizes. While the former will be
discussed in the next chapter. the latter is experimentally challenging due to the
strong cross-capacitance of G1 and G2 in-plane gates on the opposite constrictions
that prohibits independent tuning of the tunnel barriers. A set of top-gate fingers
separated from the heterostructure by an insulating as described in section 3.2.4
would therefore be necessary to achieve stronger confinement.

8.6 Conclusion

We fabricated a quantum dot on a p-type GaAs/AlGaAs heterostructure by AFM
oxidation lithography. Clear and reproducible Coulomb resonances were observed at
weak couplings to the leads. From the Coulomb diamond measurements a charging
energy with a magnitude up to ∼ 2 meV was found at elevated plunger gate voltages
indicating a small number of the confined holes. Lines of higher conductivity in
the charge stability diagram outside the Coulomb blockaded region of the dot are
resolved for the first time. They are attributed to sequential tunneling through
single-hole excited states which may open new routes to the electrical manipulation
of the individual hole spins.
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Chapter 9

Time-resolved single-hole
detection in quantum dots

9.1 Introduction

In the last chapter we saw how in-plane gates can be used in order to tune the number
of holes in the quantum dot. This tunability is achieved as a result of capacitive
coupling of these in-plane gates to the quantum dot. It is a fascinating experimental
observation that the same capacitance coupling provides the possibility of measuring
the charge of the quantum dot with a precision of a small fraction of an electron’s
charge using a nearby quantum point contact. The conductance of the point contact
changes as a function of the average charge population in the quantum dot [161]. In
this chapter we report on the observation of this phenomenon in a p-GaAs quantum
dot system. Looking at the noise of the current through the point contacts provides
much more information than just the average current. We will see that the telegraph
noise of current enables time-resolved detection of the single-particle charging and
de-charging of the nearby quantum dot [162–164]. This on the other hand reveals
more information about the spectrum of the quantum dot, the relaxation of excited
states to the ground state and their coupling to the leads. ∗

9.2 Charge detection in p-GaAs quantum dots

The sample and the measurement set-up are shown in Fig. 9.1a. The sample consists
of a quantum dot (QD) together with a nearby quantum point contact (QPC). The
charging energy of the QD is 2 meV which corresponds to a total capacitance of
C∑ ≈ 80aF . If we assume a disk-like shape for the dot then C = 8ε0εrr, where
r is the dot radius and εr = 12.9 for GaAs. This provides an (upper) estimate of
≈ 170 nm for the electronic diameter of the dot, giving an upper limit of 90 on the
number of holes in the quantum dot. With this diameter the mean single-particle

∗Valuable discussions with B. Küng is appreciated.
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Chapter 9. Time-resolved single-hole detection in quantum dots

level spacing can be calculated as ∆ = π~2/m∗A which is around ∆ ≈ 20 µV.
The overall potential of the QPC is used to control the electrochemical potential

of the dot, while the plunger gate is used to tune the QPC. The in-plane gates G1
and G2 are used to tune the tunnel coupling between the dot and source (S) and
drain (D) but they also have a significant lever arm on the dot.

Fig. 9.1b shows simultaneous measurements of QPC and QD current as a function
of the voltage applied to the G1 at the temperature of ∼ 1.2K. As the gate voltage
is increased, the holes are unloaded from the dot one by one. The dot current shows
clear Coulomb peaks at the charge degeneracy points where the charge state of the
dot changes by one electron charge. This can be clearly seen as a 30 pA-height step
in the QPC current (≈ 4%) at the position of the Coulomb peaks. Note that the
average QPC current decreases as a function of G2 due to the corresponding lever
arm since no electrostatic compensation was performed here. This was because it
was realized that changing Vqpc or Vpg activates other fluctuators in the sample,
therefore these voltages were kept constant during the experiment.
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Figure 9.1: (a) AFM micrograph of the single dot with a QPC as an integrated
charge read-out used for this experiment. The lines are defined by eBeam lithography
technique followed by shallow etching described in chapter 2 and are 20nm deep.
The applied bias voltages are shown on the same figure. The dot bias and the QPC
bias are both symmetric. (b) The dot current (blue) and QPC current (green) as a
function of G2 measured at the temperature of 1.2 K. The same bias of 100µV is
applied to both quantum dot and the QPC and both currents were measured with
an I-V converter with Rf = 100MΩ feedback resistance.

9.3 Time-resolved charge detection

When the bandwidth of the detector circuit ΓD is low, the QPC only responds to the
average charge population of the dot. Individual charging events are too fast to be
followed when the dot current is measurable. With the bandwidth of about 3 KHz
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9.3. Time-resolved charge detection

due to the IV-converter, time-resolved charge detection becomes possible only when
the dot current is below 0.5 fA which requires much more closed tunnel barriers.

9.3.1 The noise in the QPC current

The sample in Fig. 9.1a was later cooled down in a dilution refrigerator with a base
temperature of 100 mK. In order to facilitate the search for the proper regime, the
detector current noise is plotted in Fig. 9.2a as a function of the in-plane gates G1
and G2, while a bias voltage of 700µV was applied to the dot. The voltage bias
on QPC will be always 250µV from now on unless explicitly mentioned in the text.
The noise in the detector current increases along diagonal stripes in G1-G2 plane,
indicating charge tunnelling effects.
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Figure 9.2: (a) The noise (standard deviation) of the detector current as a function
of the in-plane gates G1 and G2. The bias over the quantum dot was 700µV.
(b) The schematic of the result with the level scheme of the dot with respect to the
electrochemical potential of the leads at various points. The inset shows the constant
bias cut through the Coulomb diamond between two charge states in the quantum
dot. Two new axes Vg and ∆V can be defined as the symmetric and asymmetric
linear combination of VG1 and VG2.

Fig. 9.2b shows schematically what we expect to see. Increasing the voltage
on the gates causes crossing of the Coulomb diamonds at finite bias (the inset of
Fig. 9.2b). This results in parallel stripes in the G1-G2 plane where the dot level
µN is between the electrochemical potentials of source µS and drain µD. On each
stripe the lower edge corresponds to µN ∼ µD and the upper edge to µN ∼ µD. The
in-plane gates also have a lever arm on the tunnel barriers. As a result for example
increasing VG1 increases the height of the tunnel barrier between the source and the
dot, eventually completely closing this barrier. This is shown in Fig. 9.2b. The level
scheme of the dot with respect to the source and drain is shown at various points in
the figure. At the two stripe tails the noise is expected to be only due to fluctuations
in the dot population due to thermal noise of left and right reservoirs. In a short
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Chapter 9. Time-resolved single-hole detection in quantum dots

part of the stripe, the dot is coupled to the source and drain with similar couplings.
Inside this stripe, the noise is due to shot noise as a result of uni-directional current
flow from source to drain through the dot. Motivated by this schematic we define
two new gate axes Vg and ∆V as the symmetric and anti-symmetric combination
of VG1 and VG2. Vg is used to tune the (electrochemical potential) levels in the dot
while ∆V can be used to tune the coupling asymmetry to the source and drain.

The measurement in Fig. 9.2a shows qualitatively similar result. Especially the
stripe B is as expected whereas the other stripes are quite different. The reason is
that the stripe A is too fast and the stripe C too slow to have a significant effect on
the detector current noise due to inevitable influence of Vg on the tunnel barriers.
On this plot an anti-crossing of two resonances is visible indicated by D probably
due to resonances in the dot/leads.

9.3.2 Telegraph noise

If we look at the detector current at any point inside the stripe B in Fig. 9.2a using
a proper filter, the current shows a telegraph noise behaviour as a function of time
because of the holes tunneling into and out of the dot. This telegraph noise is shown
in Fig 9.3a for a point in the middle of white dashed line for a 200 msec time trace.
For this trace an 8th-order software low pass filter with 3 KHz bandwidth was used.
The transient time-response of this sharp filter results in some ringing effects due to
Gibbs phenomenon [165] at the points the current changes abruptly.

Fig. 9.3b shows the normalized histogram of the current plotted in Fig. 9.3a, indi-
cating that the current switches between two current-level states. The lower current
level corresponds to a state where the dot holds one excess hole. The Gaussian dis-
tribution of each state is due to the Gaussian noise on the detector current. Using a
threshold between the two levels it is possible to identify the state of the quantum
dot at any time. The random variables τin and τout quantify the time it takes for a
hole to tunnel into and out of the dot respectively. We can define the corresponding
rates by the inverse of the average of these times

Γin =
1

〈τin〉
Γout =

1

〈τout〉
(9.1)

The total time of consecutive tunnelling in and out of a hole, the so-called event
time, is τevent = τin + τout and its average is given by

〈τevent〉 = 〈τin〉+ 〈τout〉

=
1

Γin
+

1

Γin

(9.2)

motivating the definition of an event rate as

Γevent =
1

〈τevent〉
=

ΓinΓout
Γin + Γout

(9.3)
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Figure 9.3: (a) The QPC current as a function of time, showing a few holes tun-
nelling into and out of the quantum dot. The lower current level corresponds to
a state when the dot holds one excess hole. The QPC current was filtered with a
3 KHz software filter and re-sampled at a frequency of 14 KHz. The random vari-
ables τin and τout quantify the time it takes for a hole to tunnel into and out of
the dot respectively and are used to calculate the tunnelling rates as explained in
the text. (b) the normalized histogram of the detector current showing two distinct
current levels corresponding to the two charge state of the dot

The exact distribution of tunnelling times will be discussed later. Note that a
time trace like the one shown here does not specify if tunnelling in and out processes
happened between the dot and both leads (thus producing a net current and shot
noise) or between the dot and only one of the leads (no current and only thermal
noise) or a mixed state. This has to be tuned by the gates as discussed with respect
to Fig. 9.2a.

9.3.3 Fermi distribution of the leads

Tunnelling rates between the dot and the leads discussed in the previous section
depend on the occupancy/availability of the states in the leads. Thus the Fermi
distribution of the leads enters the picture

Γin = ΓSf(εS) + ΓDf(εD)

Γout = ΓD(1− f(εD)) + ΓS(1− f(εS))
(9.4)

where we have defined the bare tunnelling rates of source and drain ΓS/D determined

by the Fermi-golden rule [1], the Fermi-Dirac distribution f(ε) = (exp(ε/kBT ) + 1)−1

of the leads1 and the tunnelling energy measured from the electrochemical potentials
of the source and drain

εS/D = µN − µS/D (9.5)

Fig. 9.4 show the number of events in a 200 msec time interval as a function
of dot bias and the gate voltage for two different gate configurations, exhibiting

1Note that f(−ε) = 1− f(ε)
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Coulomb diamond pattern. From these diamonds a charging energy of EC ≈ 2 meV
is extracted. Individual energy levels are not resolved as expected (Thole ∼ 180 mK
that is approximately equal to the expected mean energy spacing).
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Figure 9.4: The number of charge tunnelling events in a 200 msec-long time interval
as a function of the dot bias and the symmetric gate voltage Vg showing a typical
Coulomb diamond diagram. The other gate configurations are (a) VG1 = -180 mV,
VQPC = 167 mV, VPG = -371 mV and (b) VG1 = -140 mV, VQPC = 190 mV,
VPG = -320 mV. The symbol A refers to a point where source and drain levels are
700µV apart and the dot resonance is in the middle.

Using the balance equation Γevent = p0Γin = p1Γout the occupancies p0/1 are

p1 =
Γin

Γin + Γout
p0 =

Γout
Γin + Γout

(9.6)

which are also the average duty cycles of the telegraph noise if written in terms of〈
τin/out

〉
. For low dot bias εS ∼ εD, we get p1 ∼ f(ε) and hence the temperature

can be extracted by the amount of time the detector signal spends in the ”one”-
state. This occupation along the white dashed cut through Fig. 9.4a is shown in
Fig. 9.5a where a temperate of 180 mK is extracted from the fit. A fit to the
corresponding number of events, plotted in Fig. 9.5b provides the lower temperature
limit of 100 mK. This discrepancy is justified given the uncertainties in the latter
due to the finite length of the time traces (1 sec each) and the finite bandwidth of
the detector (2 KHz).

116



9.3. Time-resolved charge detection

-214 -213 -212 -211 -210

0

0.2

0.4

0.6

0.8

1

V  (mV)G2

 

0

50

100

150

C
o
u
n
ts

 (
#
)

O
cc

u
a
tio

n
 p

ro
b
a
b
ili

ty

-214 -213 -212 -211 -210

V  (mV)G2

T=0.18K T=0.1K
(a) (b)

Figure 9.5: The population of the dot and the number of events along the white
dashed cut in Fig. 9.4a. (a) Occupation probability of the dot extracted from the
duty cycle of time traces together with a Fermi-Dirac distribution fit. (b) Event rate
with a thermally broadened fit from which a temperature of 100 mK is extracted.

9.3.4 Tunnel rates

Changing a gate voltage does not only cause an energy shift of the dot levels, but also
affects the height of the tunnel barriers connecting the dot to the leads2. Fig. 9.6a
shows a sketch of the potential landscape of the QD with a bias voltage applied to
the source and drain. For elastic tunnelling the holes entering the dot have to tunnel
through a potential barrier of height USB − µN while the holes leaving the dot have
to cross a barrier of height UDB−µN . Even in WKB (semi-classical) approximation
the tunnelling amplitude of holes across a barrier depend not only on the height but
also on the width and the exact shape of the potential barrier. These details are of
course not known but if we assume that the gate voltage changes only the height of
the barrier to first order, for small perturbation to this barrier height δUSB and the
dot level δµN , the tunnelling rate is expected to depend exponentially on the gate
voltage [167].

Γ ∼ Γ exp (−κ(δUSB/DB − δµN)] (9.7)

The dot levels and potential barrier height depend capacitively on the gates. Chang-
ing only δV keeps µN constant and only affects USB/DB. Assuming the structure is
symmetric this results in δUSB/DB = ∓γL/Rδ (∆V ) and therfore

ΓS ∼ exp [+γSδ (∆V )] ΓD ∼ exp [−γDδ (∆V )] (9.8)

Fig. 9.6b shows how the tunnelling rates Γin and Γout change as a function of the
asymmetric gate voltage ∆V for the point A in the Coulomb diamond (Fig. 9.4). At
this point Γin = ΓS and Γout = ΓD. The rates change exponentially in agreement

2This section is written along a similar part from the PhD thesis of S. Gusstavson [55] [166].
For example same notation is used.
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with the prediction of Eq. 9.8. The solid lines are fits to the data indicating γS and
γD. It is convenient for future references to define a normalized barrier asymmetry
parameter a that depends strongly on ∆V

a =
Γin − Γout
Γin + Γout

(9.9)

a = 0 indicates a symmetric coupling, while a = ±1 is the asymmetric configuration
where one of the rates, either Γin or Γout is dominant.
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Figure 9.6: The rates for tunnelling into and out of the dot as a function of the asym-
metric voltage ∆V on the in-plane gates for the point A indicated in Fig. 9.4b. At
this point Γin and Γout are the rate of source-dot and dot-drain tunnelling barriers re-
spectively. The rates indeed change exponentially with the asymmetric gate voltage.
The solid lines are fits with log Γin = +62.3∆V +10.5 and log Γout = −42.2∆V −3.3.

9.3.5 Time histograms

So far we discussed only in terms of average tunnelling times τin, τout and τevent.
Fig. 9.7 shows the histogram of these tunnelling times for the two different coupling
symmetry configuration (a) (a = 0) and (b) (a = 0.83). The histograms shown in
this figure for τin and τout are linear in the logarithmic scale for more than over 4
orders of magnitude. Therefore, it is an experimental observation that these ran-
dom variables have exponential distribution with the following probability density
function (PDF) 3

pin(t = τin) = Γin exp(−Γinτin) pout(t = τout) = Γout exp(−Γoutτout) (9.10)

This is expected as in the weak coupling regime (hΓ � kBT ), the individual tun-
nelling events are sufficiently separated in time from each other and are thus in-
dependent. The stability of the sample is striking, considering that for each of

3For an stream of particles with inter-arrival times given by i.i.d exponential distribution p(t) =
λ exp (−λt), the number of arrivals in a (0, T ) period is a Poisson distribution pT (n) = e−λT (λT )n/n!
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9.3. Time-resolved charge detection

these plots about two million events over more than 5 hours were taken into ac-
count. The key property of the exponential distribution is its being memoryless
P (τ > t + s|τ > s) = P (τ > t), justifying the use of Markovian statistics and the
rate equation technique to calculate the probabilities. The rate equation for the
previous results trivially reads

ṗin = −Γinpin ṗout = −Γoutpout (9.11)

This Markovian statistics property has to be applied with some care. Any extra
internal degree of freedom in the dot (e.g. two indistinguishable dot states) that is
coupled to the leads, often called hidden states, result in some memory effects and the
tunnelling time distributions become multi-exponential or totally non-exponential
in general [168–171]. In a hole quantum dot with a dense spectrum there are many
hidden states with different couplings to the leads that could result in non-Markovian
statistics if the relaxation rate is comparable to the tunnel couplings. Therefore we
should emphasize that the exponential distribution of the tunnelling times is merely
an experimental observation (see appendix G for violation of this assumption).
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Figure 9.7: The histogram of times a hole needs to tunnel into the dot (blue),
tunnel out of the dot(green) and the event time defined as the sum of two consec-
utive tunneling in and out events (red) for different tunnel barrier asymmetry. (a)
Symmetric configuration (a = 0). τin and τout have the same distribution and the
(non-exponential) event time distribution shows a clear anti-bunching effect. The
inset shows a zoom into the first 5 msec part of the τin histogram, showing devia-
tions from Markovian statistics due to memory effects as a result of the transient
response of the filter. (b) Asymmetric configuration (a=0.83). In this case τin is
∼ 10 times shorter than τout in average and the quantum dot acts effectively as a
single barrier system. The event time distribution is very similar to an exponential
distribution corresponding to the bottleneck barrier and the anti-bunching effect is
diminished. About two million events accumulated over more than 5 hours were
used to calculate the histograms which indicates the stability of the sample.

Another source of memory effects is the low pass filter used to filter the data [172].
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Chapter 9. Time-resolved single-hole detection in quantum dots

This can be seen in the inset of Fig. 9.7a where a zoom into the first 5 msec part of the
τin distribution is shown. At very short times characterized by the inverse bandwidth
of the filter, the exponential distribution is suppressed. The non-Markovian behavior
of the filter can also be clearly seen. This transient behavior can be ignored if the
relevant rates in the system are smaller than the filter bandwidth (Γ� ΓD).

Also shown in this figure is the distribution of event times τevent = τin + τout.
Each event corresponds to a hole being transferred from source to drain. This
distribution is clearly non-exponential for the symmetric coupling configuration in
Fig. 9.7a. Thus the individual charge transfer effects are not independent. This is a
result of Coulomb blockade and manifests itself as the strong suppression of τevent
distribution for short times. In other words, the holes have to wait until the previous
holes leaves the dot before the new one can enter. This short-time suppression is
commonly called anti-bunching [55] and is the origin of sub-poissonian shot noise.
This is no longer true for the asymmetric coupling configuration in Fig. 9.7b. The
anti-bunching effect is (partially) diminished and the τevent distribution resembles
more an exponential distribution. In this case τevent ≈ τout and the dot behaves
effectively like a single-barrier system (note that the fast barrier coupling Γin is still
slower than the bandwidth. A truly single-barrier system would not be countable).

9.3.6 Connection to the queueing theory

In contrast to what it may sound, the anti-bunching effect introduced in this chap-
ter has nothing to do with the fermionic statistics of holes. Similar behavior has
been observed for photons in quantum dot single photon sources [173] or the photon
blockade effect [174]. In fact any single-capacity classical system would show exactly
the same behaviour. Particularly this topic has been studied quite intensively in the
80 s and 90 s in the framework of queueing theory in connection with the traffic
engineering of computer networks [175]. Data packets coming to a network node
usually have exponential inter-arrival time (Markovian statistics). In addition due
to the variable length of the packets, even if the service rate of a switch/router is
constant, the dispatching time becomes a Markovian process. Such a system is usu-
ally described by the M/M/1/K model (Markovian input/Markovian output/single
server/buffer size K). Of particular interest is the buffer size of the device. A single-
packet buffer switch/router exhibits the same statistical properties as a Coulomb
blockaded quantum dot in the weak coupling regime.

9.4 Fano factor

The current spectral density SI(ω) is defined by the expression 4

S2
I (ω) =

∫
dteiωt 〈〈I(0)I(t)〉〉 (9.12)

4For a definition of cumulant average 〈〈X〉〉 see Chapter 10
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9.4. Fano factor

The squared current spectral density is proportional to power spectral density (see
section 3.3.2). The charge Q transferred from source to drain is Q(t) =

∫ t
0
I(τ)dτ .

This implies

〈Q〉 = 〈I〉 t (9.13)

It can be shown [1, 176] from these two definitions (using limt→∞ sin2 ωt/ω2t = πδ(ω))
that the variance of this charge is given by〈〈

Q2
〉〉

= tS2
I (0) (9.14)

On the other hand, Q is the number of transferred charges n times the unit charge
q. (〈Q〉 = q 〈n〉 and 〈〈Q2〉〉 = q2 〈〈n2〉〉). Combining Eq. 9.13 and 9.14 we get

S2
I (0) =

〈〈Q2〉〉
〈Q〉

〈I〉

= e
q

e

〈〈n2〉〉
〈n〉

〈I〉

= eF 〈I〉

(9.15)

This is the Shockley formula and relates the zero-frequency shot noise power to
the average current. Here we have defined the Fano factor as F = q/e.C2/C1 (we
use the notation Cm ≡ 〈〈nm〉〉). The appearance of charge in this formula enables
measuring the charge of carriers using simultaneous noise and average current mea-
surement. This technique has been used to measure the charge of quasi-particles
in the fractional quantum Hall regime [177, 178] and quantum dots in the Kondo
regime [179, 180] and the double charge of Cooper pairs in superconductors [181].
It is noteworthy that measuring noise with a nearby QPC can only be used to mea-
sure C2/C1. Although this is an interesting probe for the correlation between the
carriers, measuring the charge of the quasi-particle carriers is not possible with a
pure counting experiment. 5

For a Poissonian process the variance and the mean are the same C2 = C1 and
therefore the Fano factor is equal to unity. Any suppression of the Fano factor
below one indicates correlations between the carriers. This quantity is shown in
Fig. 9.8 as a function of barrier asymmetry. Note that the Fano factor approaches
unity for a → ±1 showing that the statistics is effectively Poissionian for very
asymmetric barriers. This goes in parallel with the time histogram in Fig. 9.7b.
For the symmetric case the Fano factor drops to 0.5 indicating that the Coulomb
blockade regulates the current as was discussed in connection to Fig. 9.7a. The solid
line shows the model prediction discussed in chapter 10. The agreement with the
model is striking. The figure also shows the so-called skewness which is another
statistical property of transport, again discussed in chapter 10.

5The charge of holes can be extracted from quantum hall measurements and its equal to the
charge of electrons, thus we have F = C2/C1.
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Figure 9.8: The first two normalized cumulants of the statistical distribution of
holes traversed the dot as a function of tunnel barrier asymmetry a, calculated from
100 time traces, each 10 sec long. The blue points show C2/C1 or the Fano factor
and the red points show C3/C1 which is the skewness (see chapter 10). The solid
lines are the model predictions. While the Fano factor agrees quite well to the model
the skewness points are scattered much more due to the limited statistics.

.

9.5 The excited state spectrum

As discussed in previous chapters, the large effective mass of the holes results in a
dense spectra of confined states and therefore hole quantum dots can be considered to
be a bridge between electron quantum dots and metallic SETs. This manifests in the
fact that it is not possible to resolve the excited states in the diamond measurements
like the one shown in Fig. 9.4. Were this resolution possible, we would expect a
stepwise increase of the number of events with the steps parallel to the edges of
the diamond. Nevertheless we can already see in this figure that the number of
events generally increases with increasing dot bias. This can be seen more clearly
in Fig. 9.9 where the tunneling rates are shown as a function of the dot bias on
resonance (VG2 = −295mV ). It can be seen from this plots that Γin, Γout and the
event rate Γevent all increase exponentially with the dot bias. More insight into the
role of dot spectra in the result is obtained if we look at the Γin and Γout diamonds
in Fig. 9.10. The equi-Γ lines are parallel to the edges of the diamond. In particular
Γin depends only on the difference in the electrochemical potentials of the source
and the dot µS − µ0

N (Note that for negative dot bias the role of source and drain
changes). This suggests that the number of available (excited) states between these
two levels is the cause of the increase in the rate. Provided that they have enough
energy, the tunnelling-in holes can occupy any of these states and this increases
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9.5. The excited state spectrum

events/s

Gin

Gout

-2 -1 0 1 2
V  (mV)sd

0

500

1000

1500

2000

R
a
te

s 
(H

z)

 

events/s

Gin

Gout

-2 -1 0 1 2
V  (mV)sd

2
10

3
10

R
a
te

s 
(H

z)

 

Figure 9.9: The tunnelling rates Γin, Γout and the event rate Γevent all increase with
the dot bias. This is shown in both linear (a) and logarithmic (b) scales, indicating
that the overall dependence is exponential.

the tunnel rate with bias. Similarly Γout depends only on the difference between
the electrochemical potentials of the drain and the dot µ0

N − µD, meaning that the
number of options also increases with the dot bias for tunnelling-out holes.
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Figure 9.10: The rates of (a) tunnelling into the dot (b) and tunnelling out of the
dot measured at the same time as the number of events in Fig. 9.4b.

9.5.1 Possible explanations

The increase in Γin and Γout with the dot-bias can be understood in terms of the
additional available tunnelling channels in a dense spectrum system. A schematic
of the energy spectrum of the dot with N0− 1, N0 and N0 + 1 holes inside is shown

123



Chapter 9. Time-resolved single-hole detection in quantum dots

E

N

N0 N0+1N0-1

mN0

(0)
EN0

(1)
EN0

(0)
EN -10

(b) (c)(a)

EC

Figure 9.11: (a) Typical energy spectra of a dot with N0 − 1, N0 and N0 + 1 holes
inside (adapted from [1]). Also shown are possible transitions between the N0 − 1
and N0 charge states. The dark color arrows represent the transition between the
ground states while the light color ones represent similar transitions involving the
excited states (The thick line of the ground state is just for clarity and does not
indicate degeneracy and nor a broader linewidth). (b) and (c) show two possible
scenarios for explaining the bias-dependence of the event rate. (b) Strongly energy
dependent barriers and no relaxation in the dot. The tunnelling is exponentially
enhanced at higher energies. (c) In the case of moderate energy-dependence of
barriers, tunnelling into and out of the dot both involves many excited states and
the relaxation does not change the qualitative picture.

in Fig. 9.11a. The blue/green arrows show the possible transitions for tunnelling
into/out of the N0 state. The dark color arrows represent the transitions between
the ground states while the light color ones represents the transitions involving the
excited states. Therefore, for example it is possible for a hole in the ground state
of N0 to tunnel out and leave the dot in the excited state of N0 − 1 charge state.
Motivated by these ideas, the level diagram of the dot is represented in Fig. 9.11b,c
with excited states above and below the ground state electrochemical potential µ±mN0 .

The exponential increase of the tunnelling rates with bias suggests a strong
energy-dependence of the barriers. This has two consequences: first, the bias voltage
applied to the source and drain will have a gating effect along the same direction
discussed in section 9.3.4. As the bias is applied symmetrically this would favor Γout
exponentially against Γin. Second, since the dot has an almost continuous spectra
the holes can tunnel in and out elastically at all energies. Due to a strong energy-
dependence of the barriers the higher levels would have exponentially higher rates.
Therefore tunnelling happens basically at an energy εS within a kT window of µS
optimized by the corresponding Fermi distribution (εS is measured from µS as in
Eq. 9.6). If there is no relaxation in the dot, tunnelling out would also happen at the
same energy and therefore increase exponentially with the bias in agreement with
the data. This scenario is shown schematically in Fig. 9.11b.

However there are two problems with this scenario: first, the relaxation of a hole
to the ground state would drastically change this picture and second, in the absence
of relaxation the tunnelled-in hole can tunnel back to the source especially if the
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9.5. The excited state spectrum

drain barrier is higher than the source barrier ΓS > ΓD. In this case we can write

Γin = ΓSf(εS) Γout = ΓS(1− f(εS)) + ΓD (9.16)

a =
ΓS(2f(εS)− 1) + ΓD

ΓS + ΓD
(9.17)

For large asymmetry ΓS � ΓD this gives a→ 2f(εS)−1, which is a value around
zero and independent of ∆V . This is in contrast with the previous observations that
Γin and Γout can be tuned as a function of ∆V as plotted in Fig. 9.6 together with
the Fano factor measurements of Fig. 9.8. There obviously the barrier asymmetry a
takes all the values between ±1 as a function of ∆V . Also the apparent Fano-factor
of the thermal noise is equal to 1/2 and this is obviously in contrast to the Fano
factor measurement results, indicating that the relaxation is much faster than the
tunnel barriers (∼1 KHz in this case).

Another possible explanation assuming a moderate energy-dependence of bar-
riers is that many excited states contribute to both tunnelling in and out rates as
shown schematically in Fig. 9.11c. Here Γout also increases with dot bias even if the
relaxation is taken into account.

9.5.2 Complications arising due to QPC back-action

Detecting the charge state of the dot with a nearby QPC is invasive. Besides de-
phasing of the charge coherence induced by the detector [182, 183] the power con-
sumed by the QPC is emitted as photons and phonons throughout the sample and
hence may cause back-actions on the quantum dot either by increasing the effective
temperature of the leads [184] or due to photon and phonon-assisted 6 tunnelling
(PAT) [185, 186]. These PAT effects are usually understood in terms of energy
transfer between the QPC and the electrons/holes in the dot so that they could
overcome Coulomb blockade [187, 188]. Therefore it is characterized by an energy
cut-off corresponding to the mean level spacing of the dot, below which this energy
transfer does not take place. Identifying the dense spectra of the quantum dot as the
source of the peculiar bias dependence of the rates, it is curious if the detector has
any back-action on the quantum dot due to PAT and how much does it contribute
to the transport and its statistical properties.

Fig. 9.12 shows how the variation of the bias on the detector QPC influences the
tunnelling rates in the dot. For large QPC bias (V bias

QPC > 600µV ) many fluctuators
in the QPC are activated and the overall quality of the signal is degraded. The
red shaded area shows the onset this degradation. Fig. 9.12b shows the effect of
a symmetric QPC bias on the Fano factor and skewness of the hole transfer dis-
tribution. The agreement between the measurements and the model (dashed line)
indicates that the effect of the QPC on the dot can be phenomenologically lumped

6This effect is sometimes called Boson-assisted tunnelling
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Chapter 9. Time-resolved single-hole detection in quantum dots

into tunnelling rates Γin and Γout. While Γout shown in Fig. 9.12a increases mono-
tonically with the QPC bias, Γin decreases, suggesting that the influence of QPC
on the dot is most probably a simple gating effect. Considering the close proximity
of the QPC leads and the dot tunnel barriers in Fig. 9.1a this is not surprising as
most of the applied bias voltage drops over the QPC. Therefore the source tunnel
barrier increases (decreasing Γin) and the drain tunnel barrier decreases (increasing
Γout) for positive QPC bias. For all the other experiments the QPC bias is kept at
250µV unless explicitly mentioned.
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Figure 9.12: (a) Γin, Γout and Γevent as a function of the bias voltage on the QPC.
The decrease in Γin and increase in Γout is most probably due to gating effect. (b)
The Fano factor and Skewness as a function of QPC bias show that the statistics of
electron transport is not influenced by the emission of energy quanta by the QPC.
The dashed lines show the model predictions discussed in the text. The red shaded
area shows the onset of the detector signal degradation due to charge fluctuators in
the QPC (Counting is not possible for V bias

QPC < 50µV ).

.

9.6 Rate equation simulation

In this section we employ a simple rate equation model to understand the role of
the dense spectrum of the quantum dot on the tunnelling rates measured in the
experiment. The the number of states of a degenerate (symmetric) two-dimensional
harmonic oscillator grows quadratically with energy. However we expect our quan-
tum dot to be far from few hole regime, as discussed before. Therefore a linear
spectrum with a constant mean-level spacing is assumed in the following.

9.6.1 Excited states just for Γin

To verify the ideas developed in the previous section we did some rate equation
calculations for a dot with a single state in EN configuration and few excited states
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9.6. Rate equation simulation

in the EN+1 configuration. All the states in the dot are assumed to be coupled to
the leads with a similar tunnelling rate of 100 Hz. This system can be described by

ṗN =
∑
j

[
ΓN←(N+1,j)p

j
N+1 − Γ(N+1,j)←NpN

]
ṗ i
N+1 = Γ(N+1,i)←NpN − ΓN←(N+1,i)p

i
N+1 +

∑
j 6=i

[
WN+1
i←j p

j
N+1 −W

N+1
j←i p

i
N+1

] (9.18)

The WN+1
i←j parameters describe the relaxation of the excited states to the ground

state and are non-zero (and independent of i and j) for i < j. The tunnelling rates
Γin = ΓN+1←N and Γout = ΓN←N+1 depend on the gate and the electrochemical
potentials of the source and drain as discussed in 9.3.3.
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Figure 9.13: Rate equation simulation for a dot with the spectrum of EmN+1 =
{0, 200, 400, 600, 800}µeV in N + 1 charge state. (a) The event rate Γevent as a
function of bias and the gate voltage. The excited states are parallel to the source
electrochemical potential (b) Γin, Γout and Γevent along the white dashed cut in a.
Γin increases with 100 Hz increments each time an excited states comes below µS ,
while Γout mainly stays constant at 100 Hz with short peaks at the bias correspond-
ing to µS = µmN due to thermal noise with the soruce. The event rate increases
stepwise starting from 50 Hz but tends to saturate at 100 Hz limited by the fun-
nelling out rate. (c) Comparison of the event rate and the particle current along
the white dashed line in a. The difference comes from the thermal fluctuations each
time the electrochemical potential of the source aligns with one of the states of the
dot. The difference between these two is also shown for increasing the relaxation
Γγ = {0, 50, 100, 200, 400, 800} Hz in the dot. Except the ground state, the thermal
fluctuations of the excited states goes down to zero with increasing the relaxation.

Fig. 9.13a shows the finite bias measurement of event rate calculated by setting
the left side of the above equations to zero and finding the steady-state values, using
the normalization condition pN +

∑
j p

j
N+1 = 1. The total tunnelling rates are then

calculated using the recipe Γout =
∑

j Γjoutpj/
∑

j pj and a similar one for Γin.
The tunnelling rates along the white dashed line of this figure are shown in

Fig. 9.13b. As a function of dot bias, Γin increases with 100 Hz steps each time
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Chapter 9. Time-resolved single-hole detection in quantum dots

one of the excited states enters the bias window whereas Γout mainly stays constant
at 100 Hz but shows a small peaks each time one of the excited states aligns with
µS due to thermal noise and back-and-forth tunnelling with this lead. Γevent also
increases with the dot bias but the step height decreases so that it tends to saturate
at 100 Hz tunnelling out rate as the bottleneck barrier. Fig. 9.13c shows the effect
of relaxation on the result. The difference between the event rate and the particle
current caused by thermal noise quickly goes to zero as soon as the relaxation rate
becomes comparable with the tunnel couplings.

9.6.2 Excited states for Γin and Γout

Fig. 9.14 shows the result of similar calculations this time assuming that both N and
N+1-hole configurations have each 20 states with equal energy spacing of 100 µV. A
temperature of 200 mK is assumed for the leads. Both tunnelling rates Γin and Γout
depend on the dot bias and the agreement with the measurement data of Fig. 9.10
and the event rate in Fig. 9.4b is remarkable.
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Figure 9.14: Rate equation simulation of a dot with a dense spectra of 100 µV
equi-distant energy levels. (a) Γin in (a) and Γout in (b) both increase with the dot
bias. The equi-Γin lines and equi-Γout lines are parallel to source and drain lines
respectively. (c) Γevent

9.6.3 Energy-dependence of barriers

Fig. 9.15a shows a horizontal cut through the diamonds of Fig. 9.14 at V g = −3mV
as a function of the dot bias. The coupling to the source is assumed to be 10%
stronger than the drain here so that Γin and Γout are not on top of each other.
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Figure 9.15: The effect of energy dependence of barriers on the tunnelling rates (a)
energy-independent barriers, the rates increase linearly with bias. (b) the barriers
open up exponentially (0.4 dec/meV) with the energy. The rates follow the same
exponential dependence with bias.

9.7 Summary and outlook

In this chapter we have reported on time-resolved charge detection of holes tunnelling
into/out of a quantum dot using a nearby charge detector. This time resolution
provides the possibility to divide the dot current into a tunnelling in and a tunnelling
out rates. Moreover it provides information about the spectrum of excited states
and their relaxations in the quantum dot.

The photons emitted from the quantum point contact can trigger excitation and
relaxation between different quantum dot states. It is interesting to explore this
effect and photon-assisted tunnellings of holes between the dot and the leads in a
hole quantum dot with a dense spectrum. Unfortunately this was not possible here
due to activation of charge traps by the QPC bias higher than 600 µeV. As the
number of emitted photons is expected to increase with the QPC bias, it would be
desirable to study this effect on a new sample.
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Chapter 10

Statistics of hole transport

10.1 Introduction

The basic tool in transport experiments is to apply voltage, measure current or
vice versa. In the last chapter we saw that the noise of the current opens a new
window (that is time) to the experiment revealing more information about the sys-
tem through statistics. For example we saw that the sub-Poissonian distribution
of the particles imply a dot in the coulomb blockade regime without the need to
change any external parameter. The question in this chapter is if there is more
information contained in the statistics beyond noise that is not available otherwise.
Especially if the interactions in the system can show up in the statistics and if the
statistics of electrons/holes differ from those of classical particles. This statistics is
usually described by the probability distribution function P (n) or alternatively by
the generating function obtained from this distribution by G(z) =

∑
n z

nP (n).
The experimental studies of statistics using charge detection with a nearby quan-

tum point contact started by Gustavsson et al. [189, 190] and Fujisawa et al. [191]
and was continued by Fricke et al. [192, 193]. All these experiments were performed
in quantum dots fabricated in n-GaAs 2DEG. Therefore it is very interesting to
compare these results with those obtained in the completely different system of p-
GaAs 2DHG quantum dots where the interactions are supposed to be stronger in
the dot (if we compare mean level spacing ∆E ∼ 10µeV to the charging energy
Ec ∼ 2 meV) and in the leads (low Fermi energy EF ∼ 2 meV). ∗

10.2 Counting experiments

Fig. 10.1a shows a typical counting experiment scenario. The number of particles
that pass through the nano-structure within a time (0, τ) is a random variable Pτ (n)

∗Valuable discussions with D. Kambly, Ch. Flindt, F. Hassler, L. Levitov and W. Belzig is
appreciated.
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10.2. Counting experiments

and quite generally it can be written [194] as

Pτ (n) =
∞∑
N=0

Rτ (N)Qτ (n,N) (10.1)

Here Rτ (N) describes the probability distribution of the number of attempts N
during this period. All the information about the interactions and temperature in
the leads is contained in Rτ (N). The distribution Qτ (n,N) describes the probability
that n out of N attempted particles make it to the drain. For example if the nano-
structure is a simple (energy-independent) scatterer we have (p+ q = 1)

Pτ (n) =
∞∑
N=0

Rτ (N)

(
N

n

)
pnqN−n

Assuming no thermal or quantum fluctuations in the leads in an ideal case, Rτ (N) =
δ (N − 〈N〉) and we have

Pτ (n) =

(
〈N〉R
n

)
pnqN−n (10.2)

which in the case of weak-coupling (p� 1) results in a Poisson distribution

Pτ (n) = e−〈N〉p
〈N〉p
n!

(10.3)

The parameter Γ = 〈N〉Rτp is defined as tunnel coupling. Rτ (N) is a very narrow
distribution and most of the time can be approximated by a delta function. Levitov
and Lesovik [194, 195] have calculated this distribution for an ideal Fermi gas at
zero temperature

〈N〉Rτ =
2eV τ

h
〈〈N2〉〉Rτ =

1

π2
logEF τ/~ (10.4)

The mean grows linearly with time but the variance grows only logarithmically in
time. Therefore after long enough times, the distribution is very sharp (Fig. 10.1d).
Plugging in some realistic numbers: V > kBT/e ∼ 10µV to have uni-directional
current flow, EF ∼ 10meV for a 2DEG in n-GaAs and τ ∼ 10µsec if we were able
to look at the nano-structure with a bandwidth of B ∼100 kHz, into these formula
we get

〈N〉Rτ ∼ 48, 000 〈〈N2〉〉Rτ ∼ 2 (10.5)

This result suggests that the particles from the reservoir will attempt to travel
through the nano-structure quite regularly. Note that this picture can change con-
siderably if one considers non-zero temperature, disorder or interactions in the leads.
Especially temperature fluctuations also grow linearly with time. Therefore it is not
clear what the fluctuations in the number of attempts are in a p-GaAs 2DHG with
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Figure 10.1: (a) Typical counting experiment scenario. The incident particles are
scattered at the nano-structure, either transmitted (green) or coherently reflected
back (red). The probability distribution function QT (n,N) describes the probabil-
ity that n out of N incident particles are transmitted. The probability distribution
of the number of attempts by the incident particles is described by the function
RT (N). (b) The current flow without the scatterer. each spike corresponds to a
particle passing through the conductor. The random variable ∆t quantifies the time
intervals between the particles. For an idealized current this time interval is con-
stant but in reality due to thermal and quantum fluctuations it has a distribution
described by RT (N). (c) The current in presence of the scatterer is modified due
to the random nature of scattering process described by QT (n,N). Note that the
scattering process does not have to be instantaneous and the nano-structure intro-
duces a memory effect. It can hold a particle for a while and then release it. (d)
Probability distribution of the number of particles passing the conductor in absence
of the scatterer reflects RT (N) and is a very narrow distribution. (e) The same
distribution in presence of the scatterer.
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10.3. Theory of FCS in the weak coupling regime

rs > 5. In the absence of the nano-structure this reservoir noise is the only source
of randomness in the experiment (P (n) = Rτ (n)). This noise has been observed by
low-temperature amplification for ballistic and diffusive systems [196].

The current can be schematically represented as shown in Fig. 10.1b and is what
happens in a QPC on a plateau or in the edge states of quantum Hall effect. The
picture changes dramatically in the presence of the nano-structure (Fig. 10.1c). For
example if the nano-structure is a simple scatterer, the reservoir noise can be ne-
glected for [194]

p〈〈N2〉〉Rτ � q〈N〉Rτ (10.6)

which is safely true especially in the weak-coupling regime (p � 1). In this case
P (n) = Q(n, 〈N〉Rτ ) and the output becomes random only due to the scatterer
(Fig. 10.1e). Please note that the scattering process does not need to be instanta-
neous. The nano-structure can hold a particle and release it after a while.

Another source of non-trivial interaction effects in the strong-coupling regime is
the co-tunnelling effect [1, 197]. Braggio et al. [198] have shown that these higher or-
der tunnelling effects leads to non-Markovian statistics of the charge transfer through
the quantum dot. These effects can be neglected in the weak-coupling regime.

10.3 Theory of FCS in the weak coupling regime

It was shown by Bagrets and Nazarov [199] that the information about the number of
transferred charges in the weak-coupling regime can be easily captured in the master
equation with a slight modification. The usual two states diagram of Fig. 10.2a does
not keep this information. To keep track of the number of charges traversed we have
to replace it with a chain of two states as shown in Fig.10.2b. The connection with
the two-state system is that P (n) = p0(n) + p1(n) and

p0 =
∑
n

p0(n) p1 =
∑
n

p1(n)

A better way to keep track of the number of transferred charges is to separate
different transferred charge sectors in the chain by the (red) vertical lines in Fig. 10.2c
and multiply the diagonal rate by an auxiliary symbol (for example z) each time
the system goes form one charge sector to the next. Attention must be paid that
this modification is different than the replacement (Γout → Γ̃out = zΓout) as it might
seem at first sight. Such a replacement would influence the probability of each
charge sector by future charge sectors which is not desired. 1

With this modification p0,1(n) becomes proportional to the z in powers of the
number of transferred charges p0,1(n)→ p̃0,1(n, z) = znp0,1(n). Keeping both z and
n is redundant and even if we ignore (trace out) the n-dependence by writing

p̃0,1(z) =
∑
n

p̃0,1(n, z) =
∑
n

znp0,1(n) (10.7)

1Although the notation (Γout → Γ̃out = zΓout) is used from now on it should not be confusing.
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the information about the transferred particles is contained in the power series
expansion of p̃0(z) and p̃1(z). On the diagram this means we do not need to have
a chain of two states any more and the system can be represented in the compact
form shown in Fig. 10.2d. The sum of the z-dependent two state probabilities is not
one any more but the generating function as a power series in the auxiliary symbol!

p̃0(z) + p̃1(z) =
∑
n

zn(p0(n) + p1(n))

=
∑
n

znP (n) = G(z)
(10.8)
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Figure 10.2: The state diagram of a two state sytstem with respect to the number
of transferred charge. This information is lost in (a) but it is contained in the index
of the 0 and 1 states in (b) and in both the charge index and power of z in (c).
The red lines separate different charge sectors and the probability gets a factor of z
each time crossing these lines. The state diagram (c) can be condensed to the state
diagram (c) after a Z -transfrom as explained in the text.

This complex-value auxiliary symbol z is commonly called the counting field.
Mathematically what we did in 10.7 is a Z-transform. The system in Fig. 10.2b can
be described as (time-dependence is implicit)

ṗ0(n) = −Γinp0(n) + Γoutp1(n− 1)

ṗ1(n) = Γinp0(n)− Γoutp1(n)
(10.9)
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10.3. Theory of FCS in the weak coupling regime

which after a Z-transform with respect to n becomes [1]

d

dt

(
p̃0(z)

p̃1(z)

)
= M(z)

(
p̃0(z)

p̃1(z)

)
(10.10)

M(z) =

(
−Γin zΓout

Γin −Γout

)
. (10.11)

The time evolution of the state probabilities can be calculated using eigenvalues
and eigenvectors of matrix M (Note that M is not symmetric and its right and left
eigenvectors |un〉〉 and 〈〈un| are not necessarily transpose of each other. Nevertheless
they satisfy the orthogonality condition 〈〈vn| um〉〉 = δnm).

|p(z, t)〉〉 = eλ1(z)t |u1(z)〉〉〈〈v1(z)| p0〉〉+ eλ2(z)t |u2(z)〉〉〈〈v2(z)| p0〉〉 (10.12)

Having |p(z, t)〉〉 =
(
p0(z)
p1(z)

)
, the generating function can be calculated as in Eq. 10.8

G(z, t) = p0(z, t) + p1(z, t)

10.3.1 Two-state system

So far our formalism was quite general. Eq. 10.3 and 10.8 can be used for any system.
For the two-level system of Fig. 10.2 the eigenvalues are

λ± = −1

2
(Γin + Γout)±

1

2

√
(Γin + Γout)

2 − 4ΓinΓout(1− z) (10.13)

These can be equivalently written as (using definitions 9.3 and 9.9)

λ± =
2Γevent
1− a2

[
−1±

√
1− (1− a2)(1− z)

]
(10.14)

Since the only time-dependence of the generating function is in the form of λ±t and
Γeventt = 〈n〉, the probability distribution depends only on the mean event number
〈n〉 and it will be presented in this way in this chapter. This has the advantage that
the statistics becomes universal and will only depend on the asymmetry a.

Moreover at large times, we can only keep the eigenvalue with the smaller real
part. This is the eigenvalue that goes to zero with z → 1. Therefore at large times
we have

G(z) = exp [λ+t] (t→∞) (10.15)

For a→ ±1 the exponent becomes

λ+t = Γeventt(z − 1) (10.16)

resulting inG(z) = exp [−〈n〉 (z − 1)] which is the generating function of the Poisson
distribution with the mean 〈n〉 (see Eq. 10.31). For a→ 0 the exponent of Eq. 10.15
becomes

λ+t = 2Γeventt(
√
z − 1) (10.17)
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The extra factor 1/2 in the exponent of z leads to the sub-Poissonian value of
the Fano factor discussed in chapter 8. The distribution function in this case be-
comes [200]

P (n) =
∞∑

NL,NR=0

PP (NL)PP (NR)δ(n− (NL +NR)/2) (10.18)

in which PP (NL/R) are the Poisson distributions of left and right barriers. 2
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Figure 10.3: The histogram of the number of holes passed through the quantum
dot during T=50 msec at the point A in Fig. 9.4b with symmetric barriers (a = 0).
The blue and green lines shows the Poisson and Gaussian distributions respectively,
calculated using the mean and variance of the measured data. Please note that all
these distributions are discrete and the connecting lines are just guides to the eye.
While the Gaussian distribution fits well to the histogram, the data is best fit to the
Bagrets-Nazarov distribution with the input parameters Γin and Γout.

10.3.2 Charge transfer distribution

The generating function G(z, t) calculated in the previous section is related to the
distribution of transferred charge through Eq. 10.20 via a Z-transform. An inverse
Z-transform can be used to extract the distribution P (n). However, it is easier to
define the characteristic function using

F (χ) = G(eiχ) =
∑
n

P (n, t)eiχn (10.19)

2Note that this is not a convolution.
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10.4. Cumulants as non-Gaussian qualifiers

which is related to the distribution function with a Fourier transform. The inverse
Fourier transform readily gives the distribution. Fig. 10.3 shows the distribution of
the number of events detected in the point A in Fig. 9.4b in 50-msec time windows.
At this point the µS/D are separated by 700µV bias with the electrochemical poten-
tial of the dot in the middle of them. In the same figure we show the Bagrets-Nazarov
model calculated in Eq. 10.15 compared to the best Poissonian and Gaussian dis-
tributions calculated from the mean and variance of the data. The agreement of
the Bagrets-Nazarov model with the data is striking, while the essence of the dis-
tribution is captured by a much simpler Gaussian distribution. The cumulants,
introduced in the next section, are the tools that signify the difference between
these two distributions.

10.4 Cumulants as non-Gaussian qualifiers

10.4.1 Cumulants

For any discrete and possibly time-dependent distribution X(t) the generating func-
tion (GF) is defined as

G(z, t) = 〈zX〉 =
∑
n

znPX(n, t) (10.20)

From this generating function, moment generating function (MGF) is defined as:

M(z, t) = 〈ezX〉 = G(ez, t) (10.21)

and the cumulant generating function (CGF) is defined as

S(z, t) = ln[M(z, t)] = ln [G(ez, t)] (10.22)

Note that the normalization of probability distribution X requires that

G(z = 1) = M(z = 0) = 1, S(z = 0) = 1 (10.23)

From these two generating functions the (non-central) moments and cumulants are
obtained via differentiation

µm = ∂mz M(z, t)|z→0 (10.24)

Cm = ∂mz S(z, t)|z→0 (10.25)

and are the coefficients of Taylor expansion of the corresponding generating func-
tions. Therefore, knowing either of moments or cumulants specifies the distribution
completely. It follows from this definition that the moments of a distribution

µm = 〈nm〉 =
∑
n

nmPX(n) (10.26)
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and the cumulants have the following relation

Cn = 〈〈nm〉〉 = µn −
n−1∑
m=1

(
n− 1

k − 1

)
Cmµn−m (10.27)

The first few cumulants are given below in terms of moments

C1 = µ1

C2 = µ2 − µ2
1

C3 = µ3 − 3µ2µ1 + 2µ3
1

C4 = µ4 − 4µ3µ1 − 3µ2
2 + 12µ2µ

2
1 − 6µ4

1

These are mean, variance, skewness (asymmetry) and kurtosis (sharpness) respec-
tively and are schematically shown for a distribution in Fig. 10.4. Higher order
cumulants capture even more subtle details of the distribution function.

P(n,t)

n

C (t)1

C (t)2

C (t)3

C (t)4

Figure 10.4: The cumulants of a time-dependent distribution depend on time and
characterize the details of this distribution. The mean C1, the variance C2, the
skewness (asymmetry) C3 and the kurtosis (sharpness) C4 are shown in the figure.

Cumualants have an important property that make them interesting for statis-
tical physics. For a sum of two independent distributions X = X1 + X2 it can be
readily seen from 10.21 and 10.22 that the MGF and CGF of the total X are the
product and sum of MGF and CGF of each part respectively. These properties carry
on to the moments and cumulants. From this it follows that for any cumulative dis-
tribution like the number of charges passed through a conductor, after a certain time
within which the charge transfer processes are correlated, all the cumulants grow
linearly with time. This is the reason why we will always look at the normalized
cumulants Cn/C1 for (n > 1) to study such correlations in this chapter.

Another consequence of this proprety is that the cumulant average of a product
〈〈X1X2 · · ·Xn〉〉 defined as

〈〈X1X2 · · ·Xn〉〉 = ∂z1∂z2 · · · ∂zn ln 〈e
∑
zkXk〉|~z→0 (10.28)

is zero if any subset of the involved random variables Xk is independent of the
rest [201]. For example 〈〈X1X2〉〉 = 〈X1X2〉 − 〈X1〉〈X2〉 is obviously zero if X1 and
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10.4. Cumulants as non-Gaussian qualifiers

X2 are independent. It implies that for non-zero cumulant average, the random
variables must be necessarily connected and this is the reason that the cumulants
are called irreducible correlators.

10.4.2 Correlation time

Fig. 10.4.2 shows the auto-correlation R(τ) of the detector current (with telegraph
noise like the one shown in Fig. 9.3) as a function of the shift time at the point A in
Fig. 9.4b. The auto-correlation is defined as

R(τ) = lim
T→∞

1

T

∫ T

0

dtI(t)I(t+ τ) (10.29)

On the same figure the histogram of the total event time is re-plotted from
Fig. 9.7a. Whereas the dip in the event time distribution is given by the time scale
〈τevent〉 = 〈τin〉 + 〈τout〉 = Γ−1

in + Γ−1
out, the fall-off of the auto-correlation function

is characterized by the time scale τcor = (Γin + Γout)
−1 which is (in the case of

symmetric barriers, 4 times) smaller than the average event time. For the present
case we obtain 〈τevent〉 ≈ 11 msec and τcor ≈ 3 msec. Using Γevent = 89 Hz this gives
〈n〉cor ≈ 0.25 as the time-scale for which we expect correlations in the statistics.
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Figure 10.5: Auto-correlation function of the telegraph noise of the detector (blue)
and the distribution of the event time duration (green) as a function of time.

10.4.3 Bagrets-Nazarov distribution

The cumulants of the charge transfer can be calculated in the most general case
using equations 10.12 and 10.8. In the long-time limit (t � τcor) the CGF is given
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by S(z) = λ+(ez)t where λ+ is given by Eq. 10.14. Taking the derivatives of this
result we obtain

C1 = 〈n〉
C2 = 〈n〉 (1 + a2)/2

C3 = 〈n〉 (1 + 3a4)/4

(10.30)

These cumulants are compared in Fig. 9.8 to the Fano factor and skewness measured
in the quantum dot and it fits quite well to the measured data.

10.4.4 Poisson and Gaussian distributions

For a Poissonian distribution the CGF is

SP (z) = ln
∑
n=0

enz
[
e−µ

µn

n!

]
= µ(ez − 1) (10.31)

and all the cumulants are the same and equal to µ. For a Gaussian distribution only
the first two cumulants (mean µ and variance σ2) are non-zero.

SG(z) = ln
∑
n

enz
[

1√
2πσ

e−
(n−µ)2

2σ2

]
= zµ+

z2

2
σ2 (10.32)

This means that the central limit theorem can be cast in the statement that the
higher order cumulants of sum of i.i.d distributions cancel each other in the limit
of many distributions. Therefore any deviation from Gaussian statistics (which
for a cumulative distribution is due to correlations) is captured by higher order
cumulants. This proves to be a strong tool if for example we look at the distribution
of transferred charge through the quantum dot during longer times (here 200msec)
in Fig. 10.6a. The Gaussian distribution describes the data as good as the model
developed in previous section but a closer look at the logarithmic scale (Fig. 10.6b)
shows the differences between the two distributions and shows that the data favours
the Bagrets-Nazarov model. All these minor differences are reflected in non-zero
higher (m > 2) cumulants of the distribution. However, as usual nothing comes for
free. It turns out that measuring higher order cumulants of current is in general
difficult and requires good signal to noise and enough statistics. In the next section
we discuss these issues in the context of our counting experiment.

10.5 Difficulties of measuring cumulants

10.5.1 The problem of limited bandwidth

Measuring cumulants using a counting experiment relies on the fact that the current
is either unidirectional or the direction of each charge transfer is identified by some
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Figure 10.6: The histogram of the number of holes having passed through the
quantum dot during T=200msec in (a) linear and (b) logarithm scales together with
Poisson (blue), Gaussian (red) and Bagrets-Nazarov (red) distributions. Increasing
the bin size, the data histogram resembles more to the Gaussian distribution (green).
However, in logarithm scale the minor differences of the two distribution can be
identified and again the measured data favours the Bagrets-Nazarov distribution.

other means (for example using a double dot). This is a safe assumption provided
that the bias is sufficiently large eVSD � kBT which is the case here with the bias
of 700µV and the base temperature of 100 mK. Moreover each time the detector
current passes a certain threshold it is assumed to be a sign of change in the charge
state of the quantum dot. The latter is the main sources of errors in a counting
experiment. In principle many fast events can be missed if two fast tunnel in/out
processes are followed by each other within a time faster than the inverse bandwidth.
Besides, missing a fast event between two slow events effectively results in the two
slow events appear cascaded and therefore having a longer duration [202]. For a
Markov process this effects can be systematically taken into account following the
ideas by Naaman and Aumentado [202] as shown in the Fig. 10.7. The full state-
space of the system+detector is a tensor product of the state-space of each and
therefore has 4 states. The state diagram of the full system is shown in the figure
with black symbols as the states of the system and the green symbols indicating
those of the detector. The detector follows the state transitions in the system with
a delay of the order of Γ−1

D . The branch with the counting field z, is the branch at
which the detector reports one charge transfer to the drain.

Fig. 10.8 shows the effect of change of bandwidth on the cumulants calculated
from the above model (solid lines). In this case Γ10=Γ01=178 Hz and the change of
the bandwidth does not affect the result as always ΓD � Γ10/01. Similar uncertain-
ties arise when determining of the time of an event due to finite bandwidth, noise
and finite sampling rate. However, again if the detector bandwidth and sampling
rates are considerably larger than the other rates in the system the finite bandwidth
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Figure 10.7: The system-detector model used by Naaman and Aumentado [202] to
take into account the finite bandwidth corrections. The red dotted circle marks the
branch at which the detector reports one charge transfer to the drain.

effects can be neglected.

10.5.2 The problem of limited signal to noise ratio

Another source of error in counting the number of transferred holes are the false
counts due to either the noise of the detector [203] or difficulties in setting a proper
current threshold for the detector. This issue can be circumvented to some extent by
decreasing the bandwidth thus increasing the signal to noise. Fig. 10.8 shows the first
few normalized cumulants as a function of mean event number for different detector
bandwidths, compared to the cumulants extracted from the model as described in
10.4.3 and using the numerical method introduced by Kambly et al. [204]. At very
short time intervals (〈n〉 ∼ 10−2 � 1) the number of holes passing through the
quantum dot is either 0 or 1. The probability p of transmission is so low that the
distribution is well described by the Poisson distribution, for which all the cumulants
are the same. Therefore the normalized cumulants plotted here all start from 1 at low
mean event numbers. At larger times however, there are systematic deviations from
the model. These deviations are more dramatic for 7 kHz and 6 kHz bandwidths in
Fig. 10.5.1a,b respectively and they decrease with decreasing the bandwidth.

This error source can be taken into account by adding a false count source to the
state diagram as shown in Fig. 10.9b. The change with respect to Fig. 10.7 is the
introduction of the false count rates denoted by ΓX and ΓY and shown by the red
arrows in the figure. The reason for including these rates is schematically shown in
Fig. 10.9a.

The false counts simply add to correct counts N = Nc + Nf . The important
point is that if the false counts are not correlated to the state of the system then the
CGFs simply add up S(z) = Sc(z) +Sf (z) and so do the cumulants. In the diagram
of Fig. 10.9b, this is the case when p0ΓX = p1ΓY .
Fig. 10.10a shows the normalized cumulants calculated from this model for the case
when ΓX and ΓY are the same and equal to 0, 20, 60, 120, 220 and 300 Hz. The other
parameters of the model are Γ10=Γ01=100 Hz (hence p0 = p1 = 0.5) and ΓD=5 kHz.
The false counts in this case have some minor effects on the oscillations and at
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Figure 10.8: The first few normalized cumulants of charge transfer through the dot
for the bandwidth of the software filter varied from (a) 7 kHz to (f) 1 kHz. The thin
dot-line in each plot is extracted from the measurement while the thick solid line
is calculated from the theory. The discrepancy between the measurement and the
model decreases by decreasing the filter bandwidth.
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Figure 10.9: (a) The schematic of detector current histogram, showing the source
of the false counts and possible asymmetries in them due to position of the current
threshold. Lowering the bandwidth decreases the overlap and thus the false count
rates. (b) The state diagram of system-detector modified to include the effect of the
false counts (red branches) denoted by ΓX/Y rates. The detector reports a charge
transfer each time the system goes from green state 1 to 0.

large times the normalized cumulants simply get an offset. Fig. 10.10b shows similar
results for the case of asymmetric false rates ΓX � ΓY . The effect of increasing the
false rate ΓX in this case is much more dramatic. The higher the cumulants, the
stronger the oscillations they show and eventually kick out of the calculation range.

This result agrees qualitatively with those obtained from the measurements vary-
ing the bandwidth of the detector in Fig. 10.8, supporting the idea that the correlated
false counts severely distort the cumulants.

10.5.3 The problem of finite statistics

The last source of errors in calculating cumulants is the finite amount of statistics.
For a simple coin-flipping experiment, it requires quite a lot of trails to make any
statement about the fairness of a coin, and this is only the mean. The higher
cumulants require even more statistics. Since in a counting experiment the event rate
is limited basically by the bandwidth, large statistics requires long measurements
that are practically limited by the stability of the sample and the patience of the
experimentalist.

Fig. 10.5.3 shows the histogram of the transferred charge in 2-sec time intervals,
made out of an ensemble of 10,000 data set (about 2 milion events). The Bagrets-
Nazarov model is plotted in red and the black arrows point to some deviations from
this model caused by the finite statistics. For normal moments an N-estimate of
the moment is calculated by µNm = 1

N

∑N
i=1 n

m
i . The hope is that in case of large

statistics, these estimates converge to the theoretical ones limN→∞ µ
N
m = µm. The

estimation error due to finite statistics can be easily calculated

∆µNm =

√
µ2m − µ2

m

N
(10.33)
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Figure 10.10: Effect of (a) symmetric (ΓX = ΓY ) and (b) asymmetric (ΓX � ΓY )
false count rates on the normalized cumulants calculated from the model of Fig. 10.9
for ΓX = 0, 20, 60, 120, 220 and 300 Hz. The thick curve in each color set shows the
case of no false counts. Different cumulants are shifted vertically for clarity. While
the oscillations are mainly damped in (a), they are enhanced and unstable in the
case of correlated false counts of (b).
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Figure 10.11: The histogram of the transferred charge in 2-sec time intervals, made
out of an ensemble of 10,000 data set (about 2 milion events). The Bagrets-Nazarov
model is plotted in red and the black arrows point to some of deviations from this
model caused by the finite statistics.

From these, the errors in the cumulants can be in principle calculated using
Eq. 10.27, but this is difficult due to the recursive form of this formula. It can be
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Figure 10.12: The first few cumulants as a function of mean event number for the
point A in Fig. 9.4b and symmetric barriers (a = 0). The error bars are calculated
using Eq. 10.34. Solid lines show the calculations from the model.

shown [205] that the covariance of the cumulants is given by

〈∆Cn∆Cm〉 =
m!

N
σ2mδnm +O

(
1

N2

)
(10.34)

The error in the cumulants increase factorially with the order of the cumulant. 3

Besides that the relative error of consecutive cumulants increase due to power m
in the exponent of σ2. The N in the denominator signifies the importance of the
amount of statistics for reasonable accuracy. If a fixed total number of events K
are used to calculate the cumulants as a function of 〈n〉, then we have N = K/ 〈n〉.
Also as argued in 10.4.1, σ2 = C2 eventually grows linearly with 〈n〉 and therefore

the error in the cumulant Cm grows with 〈n〉(m+1)/2.

10.5.4 Universal oscillations of cumulants

Fig. 10.5.4 shows the first few cumulants as a function of the mean event number
that is proportional to time. Error bars in this figure are calculated using Eq. 10.34.
The data indicated with small circles agrees very well to the solid lines calculated
from the model within the range of error bars.

10.6 Cumulants and interactions

The oscillations of the cumulants do not have any interesting physical origin [204]
and can be understood using complex analysis following the ideas of M. Berry [207].
The generating function of a probability distribution can be described by all its zeros

3Note that the cumulants also grow factorially with their order [192, 193, 206].
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and poles in the complex z-plane. Assuming that the current flow is uni-directional
PX(n) = 0 for (n < 0), this function does not have any pole but only a set of zeros
{zn} and possibly some branch points. Since PX(n) is always positive, the zeros
of the GF are all negative. The change in the distribution as a function of any
parameter can be represented by the movement of these zeros in the complex plane.
Each zero of GF becomes a set of logarithmic singularities (poles) for CGF given
by znm = ln zn = ln | zn | +i(2m± ∠zn), which are all off real axis. To calculate
the cumulants we are interested in the zero-frequency derivatives of the CGF with
respect to z, hence the dominant pole(s) are the one(s) close to zero. Assuming a
pair of poles are dominant we can approximate the CGF by

S(z) ≈ ln (z − z00) + ln (z − z∗00) (10.35)

Calculating the mth cumulant gives [204]

Cm = ∂mz S(z)|z=0 =
2(m− 1)!

| z00 |2
cos (m∠z00) (10.36)

and oscillates as a function of the argument of the dominant poles 4 and any pa-
rameter that continuously changes the position of the poles.

10.6.1 Generalized Binomial distributions

Abanov and Ivanov [208] recently showed (see also [209]) that for any non-interacting
Hamiltonian (quadratic in fermionic operators) the GF can be written as

G(z) = z−Q
∏
i

(1− pi + zpi) (10.37)

Each term (1 − pi + zpi) in this product is the GF of a Binomial distribution with
one trial. Therefore the above expression shows that in non-interacting systems
the charge transfer statistics can be factored out to effectively independent single-
particle events. The pre-factor z−Q corresponds to a deterministic background
charge transfer in the opposite direction and can be neglected in uni-directional
case [204]. All the zeros of this GF lie on the negative real axis zi = (1− pi)/pi < 0.
Interactions in the Hamiltonian may displace the zeros off the real axis. It would
be interesting to experimentally probe the position of these zeros as a function of
parameters of the system, like gates, bias, temperature etc. However, this is not
possible by looking at cumulants, since the poles of CGF are off real axis for both
interacting and non-interacting systems, resulting in trivial oscillations of the cu-
mulants.

4Note that the frequency of oscillation depends on the cumulant order in agreement with the
measured data.
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10.6.2 Factorial cumulants

Motivated by the above discussion Kambly et al. [204] suggested to use the factorial
cumulants as a probe for interactions. The factorial moment generating function

MF (z) =
〈

(z + 1)X
〉

= G(z + 1, t) (10.38)

and the factorial cumulant generating function (FCGF)

SF (z) = ln [MF (z)] (10.39)

can be used to define the factorial moments and cumulants as

ζm = ∂mz MF (z, t)|z→0 Fm = ∂mz SF (z, t)|z→0 (10.40)

Note that ζm = 〈n(n− 1) · · · (n−m+ 1)〉 justifying the name factorial moment.
Factorial moments and cumulants satisfy the same relation as between ordinary
moments and cumulants in Eq. 10.27

Fn = ζn −
n−1∑
m=1

(
n− 1

k − 1

)
Fmζn−m (10.41)

By writing the power expansion of the SF (z) = S(ln(z + 1)), it can be shown that

Fn =
n∑
k=1

s(n, k)Ck (10.42)

where the s(k, n) are the Stirling numbers of the first kind given by the expansion
[ln(1 + z)m] = m!

∑∞
k=m s(k,m)zk/k!. Eq. 10.41 and 10.42 both can be used to

calculate the factorial cumulants from the measurement data. Their importance
lies in the fact that in contrast to CGF, FCGF keeps the imaginary part of the
position of GF zeros (apart from transforming from zero to pole). Therefore any
oscillation the factorial cumulants indicates that the zeros of GF are displaced from
the real axis due to interactions. These interactions can be either in the scattering
nano-structure or in the reservoirs

G(z) =
∞∑
n=0

zn
∑
N

R(N)Q(n,N)

=
∑
N

R(N)
∞∑
n=0

znQ(n,N)

(10.43)

For the special case of a Poissonian scatterer the GF becomes

G(z) =
∑
N

R(N)eNp(z−1) = GR(ep(z−1)) (10.44)

and the FCGF is equal to CGF of only the reservoir SF (z) = SR(pz) and measuring
the statistics directly probes the GF poles of the distribution of reservoir attempts.
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10.6. Cumulants and interactions

10.6.3 Measurement data

Fig. 10.13 shows the first few factorial cumulants, calculated from the ordinary cumu-
lants of Fig. 10.5.4 using Eq. 10.42. In contrast to the latter, the factorial cumulants
seem to be monotonic, with alternating sign for different orders.
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Figure 10.13: Factorial cumulants: (a) F1-F7 and (b) F8-F12 as a function of mean
event number. The solid lines shows the theory.

The difficulty with factorial cumulants is that they can show non-trivial features
like oscillations at very different scales. These features are best captured in the log-
log plot of Fig. 10.14 where the alternating sign of these cumulants for consecutive
orders is visible by the blue/red color code. Any zero-crossing oscillation (like the
one from Eq. 10.36) reflects as alternative red and blue segments on these curves
(see for example those in appendix H). The white arrow in Fig. 10.14a,b point to
faint oscillations that are not crossing zero. These oscillations get stronger with
increasing the order of the cumulants and at F11 and F12 start to cross the zero.

So far all the data in this chapter was taken at point A in Fig. 9.4b without
changing any experimental parameter e.g. the gate voltages or the source-drain
bias. This is a point (VG2 = −295mV ) where the electrochemical potential of dot’s
ground state lies between those of source and drain, separated by VSD = 700µV . To
check the reliability of the oscillations in the factorial cumulants, we have measured
the statistics and calculated the factorial cumulants at the same gate configuration
but higher symmetric bias of VSD = 2.5mV . As the charging energy of the dot is
EC 2mV and the dot resonance is in the center of the charging window, there is still
only one charging level in the bias window. However, more excited states contribute
to the current as discussed in the previous chapter. Γin and Γout that were the same
at the low bias case and equal to 178 Hz change to different values of 2.8 kHz and
1.1 kHz respectively. As a result the normalized asymmetry a changes from zero in
low bias case to a = 0.44 at large bias case. Fig. 10.15 shows the log-log plot of the
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Figure 10.14: The log-log plot of factorial cumulants for VSD=0.7 mV : (a) F1-F7
and (b) F8-F12 as a function of mean event number. The positive/negative part of
the data is shown in blue/red. The white arrows point to faint oscillations of the
cumulants.
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Figure 10.15: The log-log plot of factorial cumulants for VSD=2.5 mV : (a) F1-F7
and (b) F8-F12 as a function of mean event number. The positive/negative part
of the data is shown in blue/red. The white arrows point to the oscillations of the
cumulants.

resulting factorial cumulants in this case. While the general features are very similar
to those of Fig. 10.14, the oscillations marked with the white arrow are enhanced.

The event rate Γevent in the low and large-bias cases are 89 Hz and 790 Hz
respectively, that is a factor of 9 different. However, the oscillations in the two cases
happen at similar time scales and those of the large-bias case tend to happen at even
higher times. Moreover, the oscillations seem to be periodic in log(t) indicating that
they are not coming from the response of the filter. In the case of single charge level
in bias window, the factorial cumulants are not expected to show any oscillations due

150



10.7. Summary and outlook

to the nano-structure [204]. Therefore it is interesting if the observed oscillations
indicate interactions in the reservoir might be relevant.

10.7 Summary and outlook

The statistics of hole transfer through the quantum dot is studied. It is shown that
this statistics is indeed non-Gaussian and cumulants are introduced which are a set
of measures that quantify deviations of a probability distribution from the Gaussian
statistics. The cumulants of charge transfer show oscillations as a function of any
parameter of the dot including the time. The origin of these oscillations is discussed,
the recently proposed factorial cumulants is calculated for our tunnelling statistics
to probe the interactions in the dot.

When the bias window is large enough to include more than one charging level,
the interaction effects within the dot become significant [204]. Due to large energy-
dependence of the barriers in hole quantum dots, two consecutive charging levels
have very different couplings to the leads and therefore it is challenging to access
to this regime. Attempts to calculated the factorial cumulants for this regime (Ap-
pendices G and H) has unfortunately failed in this experiment most probably due to
presence of other flutctuators in the vicinity of the quantum dot. This is certainly
worth trying again provided that large bias counting regime is available in a similar
quantum dot.
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Appendices

A List of samples

name AFM picture wafer info processed structure

A2.1.2 Bochum12029
p=3.8×1015m−2

µ=1.2×105cm2/Vs

03/07/10 Three QPCs
used for pre-biased cool
down measurements re-
ported in Appendix B.

A2.3

1mm2mm

(a)

Bochum12029
p=3.8×1015m−2

µ=1.2×105cm2/Vs

14/10/10 A QD defined by chem-
ical etching plus aligned
top-gate fingers on top
of HfO2, discussed in
section 3.2.4.
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(d)

Bochum12029
p=3.8×1015m−2

µ=1.2×105cm2/Vs

07/02/11 A QD defined by chem-
ical etching. A sec-
ond step EBL aligned to
the structure was used
to correct some under-
etched lines.

A2.9.2 Bochum12029
p=3.8×1015m−2

µ=1.2×105cm2/Vs

19/10/07 A small QD made by
AFM lithography. This
sample is discussed in
Chapter 8. The charge
detector was too open in
this sample.
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name AFM picture wafer info processed structure

A3.10.2 Bochum13127
p=4×1015m−2

µ=2.0×105cm2/Vs

16/04/08 A QD with a charge
detector QPC made by
AFM lithography fol-
lowed by HCl dipping.
The detector QPC was
discussed in Chapter 6.
The dot was too dirty.

A3.24.1 Bochum13127
p=4×1015m−2

µ=2.0×105cm2/Vs

07/01/09 Three QPCs
one of the QPCs, shown
in this picture, ex-
hibited a strong 0.7
anomaly discussed in
Chapter 5

A4.2.4 Bochum13127
p=4×1015m−2

µ=2.0×105cm2/Vs

19/11/09 A QD plus detector de-
fined by chemical etch-
ing followed by AFM
patterning of Ti top-
gate layer separated by
HfO2. Section 3.2.4.

A4.10.1
A4.2.1
A4.2.2

Bochum13127
p=4×1015m−2

µ=2.0×105cm2/Vs

17/08/09 Three QPCs fabricated
in different orientations
by chemical etching
used to study the
g-factor anisotropy,
discussed in Chapter 7
and Appendix F.

A10.8.1 Bochum20122
p=2.7×1015m−2

µ=0.6×105cm2/Vs

15/12/12 A QD plus charge detec-
tor QPC fabricated by
chemical etching. This
sample was discussed in
Chapters 9 and 10.
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B Pre-biased cool down of p-GaAs nano-structures

Doping GaAs with Si creates impurities with mostly hydrogen-like shallow energy
levels below the band edge. Some of these impurities are however linked to lo-
cal lattice distortions depending on the occupation of the level. These are deep
donor levels or DX centers [210] which have energy scales of more than 10 meV.
The occupancy of these levels can be controlled via an electric field applied by the
top-gate that shifts their potential above or below the Fermi energy at room tem-
perature. Once cooled down below 150 K they are frozen and act as an imprinted
top-gate on the two-dimensional electron gas depending on their occupancy. This
so-called pre-biased cooling technique can be used in combination with split-gates
to provide excellent tunability in n-type GaAs nano-structures. Furthermore these
nano-structures usually suffer from switching noises known as Flicker noise. It has
been shown that charge tunneling between deep donors and the 2DEG is the main
origin of these switchings [211] and pre-biased cooling can be used to suppressed
them [212]. Not much is known about the spectrum of Carbon acceptors in GaAs
and it is not clear if they form deep levels in p-GaAs. In this Appendix we study
possible effects of pre-biased cooling on three p-GaAs quantum point contacts fab-
ricated on the sample A2.1.2. A linear conductance of these QPCs as a function of
in-plane gates was shown in Fig. 3.5c.

1st 0V
2nd 0V
3rd 0V
4th +350 mV
5th -460 mV
6th +350 mV

0.40.30.20.10-0.1-0.2-0.3-0.4-0.5
0
2
4
6
8

10

0

4

8

10

12

0

2

4

6

8

V  (V)g

-4
-1

 
G

 (
1
0

W
)

-4
-1

 
G

 (
1
0

W
)

-4
-1

 
G

 (
1
0

W
)

(a) QPC1

(b) QPC2

(c) QPC3

T=4.2K

Figure B.1: Effect of pre-biased cool down using in-plane gates on two-terminal
conductance of three QPCs in sample A2.1.2. The lithographical sizes are 230, 210
and 190 nm for QPC1, QPC2 and QPC3 respectively. The voltages applied to the
in-plane gates during 6 cool downs are shown in the inset of (c).
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Figure B.2: Pinch-off in-plane gate voltages of the three QPCs as a function of
top-gate voltage for different cool downs. The QPCs are open on lower left corner
(negative in-plane and top-gate voltages) and closed at upper right corner (positive
in-plane and top-gate voltages) of each plot. Dashed lines are guides to the eyes
and mark the transition between these two states at each cool down. Measurements
range are limited due to in-plane gates leakage that varied at each cool down.

Fig. B.1 illustrates the effect of applying a voltage on the in-plane gates in this
(ungated) sample during cool down. The pinch-off value of the in-plane gates hardly
changes and there is no significant correlation between the cool down bias and the
position of conductance traces in the gate voltage axis. Moreover it seems that
several cool downs have increased the series resistance of the QPCs in (b) and (c)
presumably due to surface oxidation of the ungated sample.

Later on this sample was covered with a 60 nm thick layer of HfO2 and an
evaporated 10/90 Ti/Au metal film as the top-gate. The sample was cooled down
six times with pre-bias voltage values of 0, +1 and -1 V on the top-gate. The cool
down bias was alternated between positive and negative values in consecutive cool
downs to exclude similar effects that arise from multiple cool downs. The top-gate
was leakage free in the regime of -1 < Vtop−gate < +1.2 V with slight variations in
each cool down.

The conductance trace of the QPCs were measured as a function of combined
top-gate and in-plane gates at each cool down. In order to focus on the relative shift
in the QPC potential with respect to the electrochemical potential of the leads and
the tunability of the QPC, the in-plane gate voltages at which the QPC opens up
Vpinch−off , defined as the point with the highest transconductance on the conduc-
tance trace, are discussed in the following rather than the full linear conductance
trace. Fig. B.2 shows how the pinch-off voltage Vpinch−off was modified by Vtop−gate
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on the three QPCs after each cool down.
These plots can be visualized as 2D plots in which the third axis is the QPC

conductance. Toward negative in-plane and top-gate voltages (lower left corner of
the plots) the QPCs are open while toward positive in-plane and top-gate voltages
(upper right corner of the plots) they are closed. Measured pinch-off voltages, that
are extrapolated by the dashed lines as a guide to the eyes, mark the transitions be-
tween these two states. While the opening threshold of zero biased cool downs have
the highest fluctuations, the biased cool downs have more reproducible thresholds
and exhibit a significant shift in the in-plane gate pinch-off value which correlates
to the bias during the cool down. Especially in cool downs with negative-biased
top-gate, a similar transition is observed on all QPCs (QPC3 was totally closed
after negative-biased cool downs). This result can be summarized as the following.
Applying a positive (negative) bias on the top-gate during cool down tends to open
(close) the QPC. The efficiency of the pre-biased cooling is 0.4 V in the negative
case and less than 0.2 V in the positive case.

The pre-biased cool down in n-type quantum wells is understood as the popula-
tion/depopulation of deep donor centers as discussed before. Observation of similar
effects in p-GaAs suggests presence of deep acceptors due to Carbon in AlGaAs.
This result can be used to enhance further tunability of p-type nano-structures
during cool downs. 5

5The measurements and data analysis presented in this section is adapted from the semester
thesis of Daniela Scherer.
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C Correction procedure to eliminate the magnetic

field-dependent resistance of the leads

Here we discuss the detailed procedure of correcting for a series resistance by which
we eliminate the field-dependence of the leads. The procedure is applied to sample
A3.24.1 which was extensively discussed in chapter 5. The corrected conductance
is calculated from the raw measured conductance using the formula 6

Gcorrected(Vg) =
1

(Graw(Vg)−Gp)−1 −Rseries

(11.45)
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Figure C.3: (a) Comparison between the resistance of the open QPC (Vg = −1.1V )
(white dashed line in b) with the series resistance subtracted from four-terminal
resistance of the QPC to keep the conductance of plateaus constant. The black
arrow points to the depopulation of the spin down subband. (b) Transconductance
(numerical derivative of the raw measured linear conductance with respect to gate
voltage) as a function of gate voltage and perpendicular magnetic field. The red
areas are plateaus in the conductance whose filling factor is indicated while the high
transconductance yellow lines mark the transitions between the plateaus. The white
arrow points to the development of a suppressed conductance discussed in the text.

The part Gp comes from the fact that the heterostructure used to fabricate this
sample (A3 /Bochum13127) shows a gate-independent parallel conductance of about
200KΩ which does not depend on the gate voltage and also does not change con-
siderably with the magnetic field without any correlation to SdH oscillations. This
parallel conductance can be observed as the non-zero conductance of the QPC in
pinch-off in Fig. 5.8a,b. Therefore for the purpose of the high-conductance measure-
ments we are interested in here, it is justified to subtract it from the raw data.

6In principle it is also possible to first subtract the resistance and then the conductance. The
order of these depends on the circuit model assumed. This formula has the advantage that after
removing the parallel conductance the series resistance does not affect the pinch-off resistance.
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Figure C.4: Comparison of the magnetic field dependence of the series resistance
used in the compensation formula 11.45 with the (a) two-terminal resistance of the
lead and (b) resistance of the open QPC (Vg = −1.1V ), all at 100 mK. (c) shows a
similar comparison at 800 mK. Note that the two-terminal resistance of the 2DHG
depends on temperature as shown in (d) and so does the series resistance.

Using the Landauer-Buttiker formalism, the four-terminal resistance of the QPC
is given by [121, 213, 214]

Rxx =
h

e2

(
1

νQPC
− 1

ν0

)
(11.46)

νQPC and ν0 are the filling factors inside the QPC and the leads respectively. The
former can be extracted from transconductance (derivative of the conductance with
respect to the gate voltage) of the QPC as a function of the gate voltage and the
perpendicular magnetic field shown in Fig. C.3b. The low transconductance red ar-
eas corresponds to plateaus in linear conductance and high transconductance yellow
regions are the transitions between the plateaus when the subband energies align
with the electrochemical potential of the source and the drain. The 1st subband at
Vg ∼-0.8 V at zero field splits linearly to two subbands due to Zeeman splitting (as-
suming that the gate lever arm is constant). Identifying the filling factor inside the
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QPC as shown in the figure, a field-dependent series resistance is subtracted from
the measured resistance of the QPC to keep its conductance at the value νQPC(e2/h).
Therefore in order to separate the effect of SdH oscillations in the leads from other
orbital effects happening in the QPC, it is necessary to add a resistance of about

Radded = −Rseries =
h

e2

1

ν0

(11.47)

to the measured four-terminal resistance of the QPC.
In order to confirm the validity of this procedure, we have plotted in Fig. C.3a

the (negative) series resistance used to correct the four-terminal conductance of the
QPC as a function of magnetic field in green. On the same plot, the four-terminal
resistance of the open QPC (fixed gate voltage Vg = −1.1V ) is shown in blue. For
this particular gate voltage the change in νQPC from 2 to 1, happens at about 4.5
Tesla (shown by white dashed lines in Fig. C.3b) and this is the reason why the
four-terminal resistance of the QPC increases at about B = 4.5T marked with the
black arrow in Fig. C.3a.

A similar procedure can be performed for the two-terminal resistance and in-
deed the same result is obtained. Fig. C.4a compares the serial resistance Rseries

subtracted from the raw two-terminal resistance with the resistance of the leads
measured between two independent contacts as a function of B-field. A similar
comparison between the subtracted serial resistance Rseries and the resistance of
the open QPC (fixed gate voltage Vg = −1.1V ) is shown in Fig. C.4b. The fact
that the resistance of the leads correlates very well with the subtracted series resis-
tance suggests that indeed what is removed by the correction procedure is the effect
of the leads. Note that the SdH oscillations depend on temperature (Fig. C.4c)
and therefore different series resistances are used for 100 mK and 800 mK cases.
Fig. C.4d compares the series resistance to the two-terminal resistance of the 2DHG
at 800 mK.
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D Evolution of the finite bias differential conduc-

tance at large perpendicular magnetic fields
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Figure D.5: The evolution of non-linear differential conductance with magnetic
field perpendicular to the plane of 2DHG. A region of suppressed conductance in
the form of a dimaond-like structure is visible in (h).
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E Another example of a QPC with 0.7-feature
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Figure E.6: A4.10.1/QPC1-10. (a) Temperature dependence of the linear con-
ductance. The inset shows the AFM micrograph of the sample. (b) and (c) show
differential conductance vs. source-drain bias and gate voltage at zero field and base
temperature exhibit ZBA. (d) Transconductance as a function of gate voltage and
perpendicular magnetic field shows the Zeeman splitting and diamagnetic shift. The
blue arrow points to the appearance of the conductance suppression consistent with
e. The red arrow points to the appearance of the 2nd peak in the conductance,
also shown in e. (e) Effect of perpendicular (to the plane) magnetic field on the
linear conductance at the temperature of 1.1 K (a field-dependent series resistance
is subtracted). The 0.7-feature gradually transforms to a conductance peak. Inset
shows a diamond-like structure on differential conductance at B⊥ = 10 T.
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F Anisotropic Zeeman spin-splitting of hole QPCs
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Figure F.7: Transconductance d2I/dVSDdVg (a.u.) of quantum point contacts on
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162



G Three charge-state regime

-5 0 5
-260

-250

-240

-230

-220

-210

-200

V  (mV)SD

1
10

2
10

0 20 40 60 80

Time (ms)
C

o
u
n
ts

 #

 

N+2
N+1
N

2.5 7.5-2.5-7.5

(pA)

2vDI

0
10

1
10

2
10

3
10

4
10

5
10

A

V
 (

m
V

)
G

(a) (c)

Time (s)
0 0.5 1 1.5 2 2.5 3

2.1

2.2

2.3

2.4

2.5

I
 (

n
A

)
q

p
c

N

N+1

N+2

(b)

Figure G.8: (a) The detector noise as a function of the dot bias and the symmetric
gate voltage. (b) shows the 3-level telegraph noise of the detector current at the point
A in (a). The levels correspond to 3 charge state of the dot. (c) the histogram of the
times the dot spends in N , N + 1 and N + 2 charge state, showing non-linearities
that suggest non-Markovian statistics in this case.
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H Cumulants in the three charge-state regime
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Figure H.10: (a) and (b) show the normalized cumulants measured at the point A
in Fig. G.9a together with the model calculations (solid lines). The detector current
showed fluctuations in the time scale of minutes as shown in (c). Each point is
the estimation of the current level of different states from a 10-sec time trace. The
calculation of cumulants was only possible if only part of the data, corresponding
to the green curve above the black dashed line was kept. (d) First few factorial
cumulants calculated from ordinary cumulants show oscillations in all scales along
with the predictions of Kambly et al. [204]. (e) and (f) show the factorial cumulants
in a log-log plot. The alternation of red and blue segments in each curve indicate
zero-crossing oscillations in the cumulants.
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[15] R. Leturcq, D. L’Hôte, R. Tourbot, C. J. Mellor, and M. Henini, Resistance
noise scaling in a dilute two-dimensional hole system in gaas , Phys. Rev. Lett.
90, 076402 (2003).

[16] S. V. Kravchenko and M. P. Sarachik, Metal-insulator transition in two-
dimensional electron systems , Reports on Progress in Physics 67, 1 (2004).
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[123] J. U. Nöckel and A. D. Stone, Resonance line shapes in quasi-one-dimensional
scattering , Phys. Rev. B 50, 17415 (1994).

[124] T. Heinzel, G. Salis, R. Held, S. Lüscher, K. Ensslin, W. Wegscheider, and
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[143] D. Csontos, U. Zülicke, P. Brusheim, and H. Q. Xu, Landé-like formula for
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[171] C. Flindt, T. c. v. Novotný, A. Braggio, and A.-P. Jauho, Counting statistics
of transport through coulomb blockade nanostructures: High-order cumulants
and non-markovian effects , Phys. Rev. B 82, 155407 (2010).

[172] C. Flindt, A. Braggio, and T. Novotný, Non-markovian dynamics in the theory
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