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Zusammenfassung

Höhere Teichmüllertheorie befasst sich mit dem Studium von Räu-
men von Darstellungen der Fundamentalgruppe einer orientierbaren
Fläche in gewisse Lie Gruppen. Ein Zweig der höheren Teichmüller-
theorie ist das Studium von solchen Darstellungen in Hermitesche
Liegruppen G mit maximaler Toledozahl.

In dieser Arbeit konstruieren wir Koordinaten für den Raum der
Darstellungen mit maximaler Toledozahl in die symplektische Grup-
pe Sp(2n,R). Diese Koordinaten verallgemeinern Fenchel-Nielsen
Koordinaten auf dem Teichmüllerraum. Dabei spielt die Zerlegung
der zugrundeliegenden Fläche in Teilstücke (sogennante Hosen) und
das Studium der Darstellung der Fundamentalgruppe davon eine
herausragende Rolle. Die resultierenden Koordinaten sind wie im
klassischen Fall Längen- und Twistparameter. In unserem Fall sind
dies Matrizen aus GL(n,R), die noch gewisse Relationen zu erfüllen
haben.

Die Koordinaten nutzen wir für zwei Anwendungen: wir können
zeigen, dass die Limeskurve zu einer maximalen Darstellung in gewis-
sen Fällen auch für nicht-geschlossene Flächen stetig ist. Ausserdem
zählen wir Zusammenhangskomponenten von maximalen Darstel-
lungen für nicht geschlossene Flächen.

Darüberhinaus präsentieren wir die Konstruktion von Doppelver-
hältnissen für maximale Darstellungen. Dies ist eine gemeinsame Ar-
beit mit Tobias Hartnick. Wir konstruieren ein Doppelverhältnis auf
Quadrupeln im Shilovrand eines beschränkten symmetrischen Gebi-
ets, das durch gewisse Funktorialitätseigenschaften eindeutig charak-
terisiert ist. Mit Hilfe dieses Doppelverhältnis und der Limeskurve
kann man einer maximale Darstellung ein striktes Doppelverhält-
nis im Sinne von Labourie zuordnen. Daraus ergeben sich gewisse
Konsequenzen, wie zum Beispiel die Eigentlichkeit der Wirkung der
Abbildungsklassengruppe auf dem Raum der maximalen Darstellun-
gen.
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Abstract

Higher Teichmüller theory is concerned with the study of spaces of
representations of the fundamental group of an orientable surface
into certain Lie groups. One branch of higher Teichmüller theory is
the study of representations into Hermitian Lie group with maximal
Toledo invariant.

In this text we give coordinates for the space of representations
with maximal Toledo invariant into the symplectic group Sp(2n,R).
These coordinates generalize Fenchel-Nielsen coordinates on Teich-
müller space. The decomposition of the given surface into pieces
(so called pairs of pants) and the study of the fundamental group
of pairs of pants plays an important role. Our coordinates are, as
in the classical case, length and twist parameters, which are here
matrices from GL(n,R), which have to satisfy some relations.

We use these coordinates for two applications: we can show that the
limit curve associated with a maximal representation is continuous
for a class of maximal representations of the fundamental group of
a non-closed surface. Furthermore we count connected components
of spaces of maximal representations of non-closed surfaces.

Finally we present results obtained in joint work with Tobias Hart-
nick. We construct a cross ratio on quadruples on the Shilov bound-
ary of a bounded symmetric domain of tube type which is uniquely
characterized by their behavior under products, a functoriality con-
dition and some normalization. We use this cross ratio and the limit
curve for a maximal representation to associate a strict cross in the
sense of Labourie to maximal representations. The cross ratio can be
used to deduce some consequences, e.g. the properness of the action
of the mapping class group on the space of maximal representations.
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Chapter 1

Introduction

1.1 Teichmüller Space and Representa-
tions of Fundamental Groups

Let Σg be a closed and oriented surface of genus g ≥ 2. The space
of marked conformal structures is the Teichmüller space T (Σg) and
the study of this space is called Teichmüller theory.

The Teichmüller space has a number of other realizations, for exam-
ple

• as the space of marked hyperbolic structures on Σg,

• as the space of quadratic holomorphic differentials (Teichmüller’s
theorem)

• a subset of the space of representations of the fundamental
group π1(Σg) into PSL(2,R)

For the correspondence with the first two structure see e.g. [42]. We
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2 CHAPTER 1. INTRODUCTION

explain the relation between hyperbolic structures and representa-
tions later in this section.

Since PSL(2,R) is a Hermitian Lie group as well as a real split Lie
group, there are two natural ways for generalization of Teichmüller
theory. Indeed, if G is a Hermitian Lie group or a real split Lie
group, the space Hom(π1(Σg), G) has connected components, which
share a lot of properties with hyperbolizations. If G is a real split Lie
group, then these components are the Hitchin components, which we
briefly introduce in Section 2.5. If G is a Hermitian Lie group, the
components are distinguished by the maximality of the Toledo in-
variant. This text is concerned with these representations. The goal
is to give coordinates for several spaces of maximal representations.

We refer the reader to [1, 42, 51, 52] for an introduction to classical
Teichmüller theory and [17] for an overview over higher Teichmüller
theory and the relation between classical Teichmüller theory and
representations of fundamental groups.

Maximal representations have been studied using various techniques.
With methods from bounded cohomology one can obtain geometric
results for maximal representations ([18], [13],[58],[15]). Higgs bun-
dles techniques were used to get informations on the topology of the
space of maximal representations ( [34, 7, 31, 6, 32]) as well as to ob-
tain results on the deformation behavior of maximal representations
[8].

In the reminder of this section we will introduce some notations
and present the relation between hyperbolic structures on a surface
Σ and representations of π1(Σ). We give a short introduction to
Fenchel-Nielsen Coordinates on T (Σg) in Section 1.2. In Section
1.3 we generalize these coordinates to coordinates on the space of
maximal representations into Sp(2n,R). In Section 1.4 we present
some applications for these coordinates. In Section 1.5 we show how
to associate a cross ratio with maximal representations and deduce
some consequences. Finally, Section 1.6 contains a guide for the
reader.
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Let us first fix some notation needed throughout this text: We de-
note by Σg,m,l an oriented surface of genus g with m boundary com-
ponents and l punctures and by Γg,m,l its fundamental group. An
oriented surface of genus g with m boundary component is denoted
by Σg,m, its fundamental group by Γg,m. A surface of genus g with-
out boundary is denoted by Σg, its fundamental group by Γg.

A hyperbolic structure on Σg,m,l is a Riemannian metric of constant
sectional curvature −1. We will always assume that the boundary
components are geodesics. If the metric is complete, the punctures
are “moved to infinity”. A neighborhood of such a puncture at
infinity is called a cusp.

Note that the fundamental group can not distinguish between punc-
tures and boundary components. Therefore we mostly use the ori-
ented surfaces Σg,m of genus g and m boundary components and
their fundamental groups Γg,m.

We fix the following standard presentation for Γg,m

Γg,m = 〈A1, B1, . . . , Ag, Bg, C1, . . . , Cm|
[Ag, Bg] . . . [A1, B1]Cm . . . C1 = e〉.

The Cj correspond to loops around boundary components. We call
the Ai, Bi and Cj the standard generators.

Let G be a topological group. We denote by Hom(Γg,m, G) the set
of homomorphism from Γg,m into G. The group G acts by pointwise
conjugation on Hom(Γg,m, G). The quotient space with respect to
this action is

Rep(Γg,m, G) = Hom(Γg,m, G)/G,

the representation variety. We equip Hom and Rep with a topology.
If m 6= 0, then Γg,m is a free group of degree 2g + m − 1 and
Hom(Γg,m, G) can be identified with G2g+m−1 and we can carry over
the topology. If m = 0, then we have only one relation in Γg, hence
Hom(Γg, G) is a quotient with respect to this relation and we can use
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the quotient topology. If G is algebraic, then so is Hom(Γg,m, G).
We also take the quotient topology for Rep(Γg,m, G).

We now present the link between hyperbolic structures on oriented
surfaces and representations of fundamental groups into PSL(2,R).
For details see [57, Ch. 3.4]. A hyperbolic structure on a surface
Σ gives rise to a (PSL(2,R),D)-structure, i.e. Σ locally looks like
an open subset of D (local charts (Ui, ϕi)) and the transition maps
between local charts gi,j : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) are locally
constant and elements of PSL(2,R). A (PSL(2,R)),D)-structure
on a topological space induces a representation of the fundamental
group π1(Σ) into PSL(2,R):

Let [γ] ∈ Γg,m,l, where γ : [0, 1] → Σg is a closed loop. There
exist 0 = t0 < t1 < . . . < tn−1 < tn = 1 such that γ([ti−1, ti]) ⊂ Ui
(where we possibly have to adapt the numeration of the Ui). Denote
by gi,i+1 ∈ PSL(2,R) the transition map. Putting

̺([γ]) := gn−1,n · · · g1,2

defines the holonomy representation ̺ : Γg,m,l → PSL(2,R). The
holonomy representation can be defined for every (G,X)-structure.
For (PSL(2,R),D)-structures a holonomy representation is called a
hyperbolization. They are faithful and have discrete image and they
are characterized by this property. If m = 0 and the metric on Σg,0,l
is complete, one can identify Σ̃g,0,l with the hyperbolic disc D via

the developing map Σ̃g → D.

If m ≥ 1 then one can identify Σ̃g,m,l with a subset of D with the
following surface doubling construction. Let Σg,m,l be a hyperbolic
surface with boundary (i.e. m ≥ 1). Then we can take a sec-
ond copy of the same surface with the same hyperbolic structure
and glue every boundary component of one copy with one boundary
component of the same length of the other component. The result
is the hyperbolic surface Σ2g+m−1,0,2l without boundary (see Fig-
ure 1.2). For this surface we get a representation of the fundamental
group Γ2g+m−1,0,2l as described above and its universal cover can be
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identified with D. We can restrict the representation of Γ2g+m−1,0,2l

to a representation of Γg,m,l into PSL(2,R). Furthermore we obtain
an identification of the universal cover of Σg,m,l with a subset of the
hyperbolic disk. For more details on the doubling construction and
the restriction of representation see Section 3.5.6.

Not all representations of Γg,m,l into PSL(2,R) are holonomy rep-
resentations, because they have to be faithful and have discrete im-
age. It turns out, that holonomy representations ̺ into PSL(2,R)
are also distinguished by a numerical invariant, the Toledo invari-
ant T̺ , which we define in in Section 2.2.3. The Toledo invariant
can be defined for every representation ̺ of the fundamental group
of an oriented surface Σ of negative Euler characteristic χ(Σ) into
a Hermitian Lie group G (which we define in Section 2.1.1). The
Toledo invariant cannot take arbitrary values. By the Milnor-Wood
inequality (see [18, Thm. 1] and Section 2.2):

|T̺| ≤ |χ(Σ)| rkX ,
where rkX is the rank of X , the symmetric space associated with
G.

If Σ has non-empty boundary, then T• is surjective on the interval
[−|χ(Σ)| rkG, |χ(Σ)| rkG]. If Σ is closed then T• only takes finitely
many values (see Theorem 2.2.10).

The following theorem classifies hyperbolizations in terms of the
Toledo invariant.

Theorem 1.1.1. (Goldman, [33]) A representation ̺ : Γg → PSL(2,R)
is a hyperbolization if and only if T̺ = 2g − 2.

Since 2g − 2 = |χ(Σg)| rkD, this motivates

Definition 1.1.2. Let G be a Hermitian Lie group. A representa-
tion ̺ : Γg,m → G is maximal if its Toledo invariant is maximal,
i.e.

T̺ = |χ(Σ)| rkX .
The space of maximal representations is denoted by Repmax(Γg,m, G).
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Theorem 1.1.1 says in particular that a representation into PSL(2,R)
is a hyperbolization if and only if it is maximal.

Maximal representations share a lot of properties with hyperboliza-
tions, whence Repmax(Γg,m, G) is called higher Teichmüller space.
In Section 2.2 below we define the Toledo invariant in full detail and
present the most important properties.

1.2 Fenchel-Nielsen Coordinates for Teich-

müller Space

Fenchel-Nielsen coordinates are coordinates on the Teichmüller space
T (Σg). An introduction to these can be found in [42]. The ba-
sic idea for these coordinates is a decomposition of a given surface
into smaller pieces, the investigation of hyperbolic structures on the
smaller pieces and a careful study of the reconstruction of the given
surface from the building blocks. In Section 1.3 we will generalize
the ideas presented in this section to obtain coordinates for maximal
representations.

The building block is the surface of genus 0 and 3 boundary com-
ponents Σ0,3. We call it pair of pants or Y -piece (Figure 1.2). A
hyperbolic structure with geodesic boundaries on Σ0,3 is uniquely
determined by the length of the boundaries. Formally we have:

Proposition 1.2.1. Let Σ0,3 be a pair of pants and (λ1, λ2, λ3) ∈
R3

+. Then there is a unique hyperbolic structure on Σ0,3 such that
the boundary length are λ1, λ2 and λ3 respectively.

For a geometric proof using hyperbolic geometry see [42, Thm.
4.3.1]. The proposition can also be deduced from the results in
Section 1.3 (Corollary 3.1.5). The λi are called length parameter.

One can construct all surfaces with negative Euler characteristic
χ(Σg,m) = 2−2g−m by gluing several copies of Σ0,3, see for example
a decomposition of Σ2 in Figure 1.2.
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Figure 1.1: Pair of pants Σ0,3

Indeed, to obtain Σg,m, we first glue 2g +m− 2 ≥ 1 pairs of pants
such that the result is a surface of genus 0 and 2g + m boundary
components (Σ0,2g+m). Finally we close g handles as in Figure 1.4.
The result is the surface Σg,m. This construction is explained in
more detail in Section 3.5.1.

Figure 1.2: Σ2 decomposed into pairs of pants.

The construction of a surface Σg,m from pairs of pants fixes a set of
simply closed curves {di}in Σg,m, namely the boundaries curves of
the pairs of pants. The choice of a decomposition into pairs of pants
(or of curves inducing such a decomposition) modulo deformation is
called a marking. A surface with marking and hyperbolic structure
has a marked hyperbolic structure.

We have seen that we can construct every surface of negative Euler
characteristic from some copies of Σ0,3, which we can equip with a
hyperbolic metric. We can glue two boundary components of one
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or two hyperbolic surfaces if and only if the have the same length
and obtain again a hyperbolic surface. This shows in particular that
every surface with negative Euler characteristic can be equipped
with a hyperbolic structure. For details for the gluing see Section
3.5.

A marked hyperbolic structure on a surface is determined by finitely
many parameters. Given a decomposition {di} of Σg,m into pairs of
pants and a hyperbolic structure on Σg,m. Any curve di is freely
homotopic to a unique closed geodesic d̄i with respect to the given
hyperbolic metric. If we cut the surface along these closed geodesics,
we get some pairs of pants with geodesic boundary. The hyperbolic
structure on each pair of pants is uniquely determined by the length
of the boundary geodesics, the length parameter. The gluing along
geodesic boundary components of same length is unique up to rota-
tion along the boundary, the twist parameter.

Thus length and twist parameter determine the marked hyperbolic
structure uniquely and give Fenchel-Nielsen coordinates on Teich-
müller space.

In particular we have:

Theorem 1.2.2. (Fenchel-Nielsen coordinates) Let Σg be a closed
surface of genus g ≥ 2. Fix a marking on Σg. Then there are
3g − 3 length and 3g − 3 twist parameters, hence the Teichmüller
space T (Σg) is homeomorphic to R6g−6.

In summary, to obtain similar coordinates for representations, one
has to understand representation of Γ0,3 on one hand and the gluing
on the other hand.
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1.3 Coordinates for Maximal Represen-

tations

In this section we state the main results of this text, Theorem 1.3.1
and Theorem 1.3.10 below, which provide coordinates for the set of
maximal representations Γ0,3 into Sp(2n,R) on one hand and a the
gluing construction for such representations on the other hand. In
the last part, we give coordinates for maximal representations of the
fundamental groups of Σ1,1, Σ1,2 and Σ2,0. These surfaces can be
obtained from one or two pairs of pants. Stating the coordinates in
full detail is a little bit more involved, the most general statements
can be found in Section 3.6.2.

1.3.1 Representations of Γ0,3 into Sp(2n,R)

To state the main theorem, denote by B the set of matrices in
GL(n,R) whose eigenvalues have absolute value strictly less than
1 and define

R := {(X1, X2, X3) ∈ B̄3|X3(X
⊤
2 )−1X1 is symmetric

and positive definite}.

Note that O(n) acts by diagonally by conjugation on R. Recall that
Γ0,3 = {C3, C2, C1|C3C2C1 = I}. Here and in the sequel we write
elements of Sp(2n,R) as

g =

(
A B
C D

)
,

where A, B, C and D are real n× n-matrices, which have to satisfy
some relations (see also Section 2.1.5).

The following theorem was inspired by [48, Ch. 10], where results
of [30] are presented. We will explain the geometric idea behind it
in Section 3.1 below.
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Theorem 1.3.1. Let f̄ : R → Rep(Γ0,3, Sp(2n,R)) be the map
which assigns to (X1, X2, X3) ∈ R the representation ̺ = f̄(X1, X2, X3)
of Γ0,3 into Sp(2n,R) defined by

̺(C1) := c1 =

(
X1 0

X1 +X−1
2 X⊤

3 (X⊤
1 )−1

)

̺(C2) := c2 =

(
−X−1

3 X⊤
1 −X2 − (X⊤

2 )−1 X2 +X−1
3 X⊤

1

−X−1
3 X⊤

1 − (X⊤
2 )−1 X−1

3 X⊤
1

)

̺(C3) := c3 =

(
(X⊤

3 )−1 −(X⊤
3 )−1 −X−1

1 X⊤
2

0 X3

)
.

Then f̄ induces a homeomorphism

f : R/O(n) → Repmax(Γ0,3, Sp(2n,R)).

The Xi can be seen as generalized length parameters.

Theorem 1.3.1 will we be proven in Section 3.3. For the proof we use
the following theorem to identify for each ̺(Ci) a triples of points
in the Shilov boundary Š (which will be introduced in Section 2.1.1
below) as well as its image under ̺(Ci). This yields equation for
each ̺(Ci) which we can solve completely.

The calculations for these equations are preformed in TΩ, the upper
half plane model for the symmetric space associated with Sp(2n,R),
respectively in a certain part of its boundary. The model TΩ is de-
fined and discussed in Section 2.1.1. In Remark 3.1.6 we describe the
boundary and the action of the image of a maximal representation
on it.

Theorem 1.3.2. Let G be a Hermitian Lie group of tube type. Let
̺ : Γ0,3 → G be a representation and denote ci := ̺(Ci). Assume
that each ci has a fixed point yi ∈ Š. Then we can express the Toledo
invariant as follows:

T̺ =
1

2

(
β(y1, y2, y3) + β(y1, c1 · y3, y2)

)
, (1.1)

where β denotes the Maslov index.
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We will define the Maslov index in Section 2.3.1 and prove the the-
orem in Section 3.2.

Theorem 1.3.2 yields that each representation as in Theorem 1.3.1
is maximal.

Before we turn to the twist parameters, we state some remarks:

Remark 1.3.3. In Theorem 1.3.1 X3(X
⊤
2 )−1X1 was symmetric and

positive definite. A direct calculation shows that c3c2c1 = I if and
only if X3(X

⊤
2 )−1X1 is symmetric. Its signature determines the

Toledo invariant. Indeed with Formula (1.1) we get

T̺ =
1

2
(n+ sgnX3(X

⊤
2 )−1X1).

This can be used to write down certain non-maximal representations
explicitly, see Proposition 3.3.3 below.

The Xi describe the differential of the ci in certain fixed points
(Corollary 3.3.10).

Remark 1.3.4. Let now n = 1, i.e. we consider Sp(2,R) = SL(2,R).
Then the Xi from Theorem 1.3.1 are just real numbers with the
property: X1X2X3 > 0. The real number Xi is the eigenvalue of ci
which has absolute value in (0, 1]. These eigenvalues determine the
translation length of ci.

Recall that for a metric space (X, d) and an isometry g of X , the
translation length of g is defined as

τX(g) = inf
x∈X

d(x, gx).

For an isometry γ of D this translation length is non-zero if and only
if γ is hyperbolic, i.e. g is conjugate to a matrix

(
x

x−1

)

with x 6= ±1. In this case the translation number is

τD(ci) = 2
∣∣ log |Xi|

∣∣.
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Since the translation length of ci is equal to the length of the bound-
ary geodesic at the boundary component Ci, the Xi determine these
boundary length and vice versa. This is the relation between the
length parameter in the Fenchel-Nielsen coordinates and our gener-
alized length parameter.

In the sequel we need the following corollary, which gives us a stan-
dard form for certain elements of the image of a maximal represen-
tation. It is an immediate consequence of Theorem 1.3.1.

Corollary 1.3.5. Let ̺ : Γg,m → Sp(2n,R) be a maximal represen-
tation. Then there exists for each standard generator Ci matrices
X ∈ GL(n,R) and S1, S2 and S3 symmetric and positive definite,
such that the image ̺(Ci) is conjugate to each of the following ma-
trices:

(
X 0

X + S1X (X⊤)−1

)

(
−S2X −X − (X⊤)−1 X + S2X

−S2X − (X⊤)−1 S2X

)

(
(X⊤)−1 −(X⊤)−1 − S3X

0 X

)
.

Remark 1.3.6. In Section 3.4 below we prove a result similar to
Theorem 1.3.1 to parametrize representation of Γ0,3 into a general
Hermitian Lie group of tube type.

1.3.2 Gluing

To complete Fenchel-Nielsen coordinates for representations we need
a gluing construction for representations. Here we briefly introduce
the problem, all details and proofs can be found in Section 3.5.
There are two gluing construction which we need to obtain a general
surfaces from pairs of pants: gluing two surfaces (Figure 1.3) and
closing handles (Figure 1.4).
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Figure 1.3: Gluing two surfaces.

Figure 1.4: Closing a handle.

To obtain an oriented surface whose orientation is compatible with
its building blocks, we have to respect the orientation of the building
blocks.

Note that the loops generating the fundamental groups of the sur-
faces are oriented according to the boundary orientations. Denote
the loops by C1 and C2. To write down the new fundamental group,
we have to identify C1 with C−1

2 . On the level of a representation
we can glue representations ̺1 and ̺2 of the fundamental groups if
and only if ̺1(C1) = ̺2(C2)

−1. Since we investigate representations
up to conjugation, it is enough that ̺1(C1) and ̺2(C2)

−1 are con-
jugate. We discuss this in detail in Section 3.5, where we also prove
the following propositions.

(A) Gluing of two surfaces

Proposition 1.3.7. Consider [̺′1] ∈ Rep(Γg1,n1 , G) and [̺′2] ∈
Rep(Γg2,n2 , G) with n1 ≥ 1 and n2 ≥ 1. Assume that there
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exists ̺1 ∈ [̺′1] and ̺2 ∈ [̺′2] such that ̺1(Ci) = g̺2(C̄j)
−1g−1

for some g ∈ G. Then there is a class of representations of Γ
defined by

̺ := ̺1 ∗ (g̺2g−1) : Γ → G

such that [̺|Γg1,n1
] = [̺1] and [̺|Γg2,n2

] = [̺2].

Remark 1.3.8. Note that ̺ is not unique. Let h be an element
of the centralizer of ̺2(C̄j). Then the representation ̺h := ̺1∗
(gh̺2(gh)

−1) also satisfies: [̺h|Γg1,n1
] = [̺1] and [̺h|Γg2,n2

] =
[̺2].

(B) Closing handles

Proposition 1.3.9. Let [̺′] ∈ Rep(Γg,n, G) with n ≥ 2. As-
sume that there exists g ∈ G such that ̺′(Ci)

−1 = g̺′(Cj)g
−1.

Then there exists a representation ̺f of Γf such that ̺f |Γ = ̺.

By Corollary 1.3.5 we can restrict the investigation of the gluing in
the Sp(2n,R)-case to the following case:

Theorem 1.3.10. Let

c =

(
X 0

X + (X⊤)−1S (X⊤)−1

)
(1.2)

and

c̄ =

(
(X̄⊤)−1 −(X̄⊤)−1 − S̄X̄

0 X̄

)
(1.3)

be elements in Sp(2n,R) with X and X̄ invertible and S and S̄
symmetric positive definite.

(i) Suppose X and X̄ contracting. Then c̄ and c−1 are conjugate
in Sp(2n,R) if and only X⊤ and X̄ are conjugate in GL(n,R).
If X̄ = GX⊤G−1, then c̄ = gc−1g−1 with

g = g1g2g3 =

(
Ȳ GY −1 − (G⊤)−1 −Ȳ G

GY −1 −G

)
,
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where

Y = −
(

∞∑

i=0

(X⊤)i(X⊤ ·X + S)X i
1

)−1

and

Ȳ =

∞∑

i=0

(X̄⊤)i(I + X̄⊤S̄X̄)X̄ i.

(ii) It X or X̄ has an eigenvalue of absolute value 1, then c̄ and
c−1 are not conjugate in Sp(2n,R).

The matrix G from Theorem 1.3.9 (i) can be seen as a generalized
twist parameter.

The matrices Y and Ȳ are fixed points of c resp. c̄ in the boundary
of TΩ.

Remark 1.3.11. Proposition 1.3.10 has a geometrical interpretation
for G = Sp(2,R) = SL(2,R). It corresponds to the fact, that one can
glues two hyperbolic surfaces along two geodesic boundaries if and
only if they have the same length. Indeed, let Σ1 and Σ2 be surfaces
with boundary components C1 resp. C2 and ̺1 and ̺2 hyperboliza-
tions. Define c := ̺1(C1) and c̄ := ̺2(C2) and assume that they
are in the form of Proposition 1.3.10. Then the lengths of the cor-
responding boundaries are equal to the translation length of c resp.
c̄. The translation length is uniquely determined by the eigenvalues
of c and c̄. Then one can glue along these boundary components if
and only if X and X̄ are equal and their absolute values is different
from 1, i.e. c and c̄ are hyperbolic and have the same translation
length. But this is precisely the statement of Proposition 1.3.10.

1.3.3 Fenchel-Nielsen Coordinates for Maximal Rep-
resentations into Sp(2n,R)

Combining the results of the two previous sections we see, that we
have a length parameter X ∈ GL(n,R) for every boundary compo-
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nent and a length parameter X and a twist parameter G for every
boundary component of an embedded pair of pants.

Recall that Γ1,1 = 〈A,B,C|[A,B]C = e〉.

Proposition 1.3.12. There exists a bijection between

{
(X1, X2, G) ∈ GL(n,R)3|X1 ∈ B, (X1, X2, GX

⊤
1 G

−1) ∈ R
}
/O(n)

and Repmax(Γ1,1, Sp(2n,R)) induced by the map which assigns to
(X1, X2, G) the representation ̺ defined by:

̺(A) =

(
X1 0

X1 + (X⊤
1 )−1S (X⊤

1 )−1

)
,

̺(B) =

(
Ȳ GY −1 − (G⊤)−1 −Ȳ G

GY −1 −G

)
,

̺(C) =

(
C1 C2

C3 C4

)

with

C1 =− (X⊤
2 )−1X1(S

⊤)−1X⊤
1 −X2 − (X⊤

2 )−1

C2 =X2 + (X⊤
2 )−1X1(S

⊤)−1X⊤
1

C3 =− (X⊤
2 )−1X1(S

⊤)−1X⊤
1 − (X⊤

2 )−1

C4 =(X⊤
2 )−1X1(S

⊤)−1X⊤
1

S =X⊤
1 X

−1
2 (G⊤)−1X1G

⊤

Y =−
(

∞∑

i=0

(X⊤
1 )i(X⊤

1 ·X1 + S)X i
1

)−1

Ȳ =(G⊤)−1

(
∞∑

i=0

(X1)
i(G⊤ ·G+X1G

⊤S−1GX⊤)(X⊤
1 )i

)
G−1.

The matrices Y and Ȳ are fixed points in the boundary of TΩ of ̺(A)
respectively ̺(B)̺(A)−1̺(B)−1 .
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Proposition 1.3.13. There exists a bijection between

{
(X1, X2, X3, X̄1, X̄2, G) ∈ GL(n,R)6|(X1, X2, X3) ∈ R,

(X̄1, X̄2, GX
⊤
1 G

−1) ∈ R,X1 contracting
}
/ ∼

and Repmax(Γ0,4, Sp(2n,R)), where for k, l ∈ O(n),

(X1, X2, X3, X̄1, X̄2, G)

and
(kX1k

−1, kX2k
−1, kX3k

−1, lX̄1l
−1, lX̄2l

−1, lGk−1)

are equivalent.

Proposition 1.3.14. There exists a bijection between

{
(X1, X2, X3, G3, G2, G1) ∈ GL(n,R)6|(X1, X2, X3) ∈ R,

(G1X
⊤
3 G

⊤
1 , G2X

⊤
2 G

−1
2 , G3X

⊤
1 G

−1
3 ) ∈ R,

Xi contracting
}
/ ∼

and Repmax(Γ2,0, Sp(2n,R)), where for l, k ∈ O(n),

(X1, X2, X3, G3, G2, G1)

and

(kX1k
−1, kX2k

−1, kX3k
−1, lG3k

−1, lG2k
−1, lG1k

−1)

are equivalent.

1.4 Applications

We present three applications for our coordinates:

(i) We count connected components of Repmax(Γg,m, Sp(2n,R)),
if m ≥ 1,
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(ii) we show continuity of the limit curve for certain maximal rep-
resentations of Γg,m with m ≥ 1,

(iii) we identify standard representations in the sense of [35].

We can also calculate the number of connected components of the
space of maximal representations for surfaces with boundary, i.e.
Repmax(Γg,m, Sp(2n,R)) for m ≥ 1 and we proof continuity of the
limit curve of maximal representations of the fundamental group
of a non-closed surface for which the standard generators have S-
hyperbolic image (see Definition 1.4.3). Both results where known
for closed surfaces. Connected components have been counted using
Higgs-bundle techniques, which are quite far from our methods.

Theorem 1.4.1. [31, 34] The space Repmax(Γg, Sp(2n,R)) has 3 ·
22g connected components if n ≥ 3 and 3 · 22g + 2g − 4 connected
components if n = 2.

We use an invariant to find a lower bound for the connected compo-
nents. For an upper bound of the number of connected components
we use Theorem 3.6.9 and the gluing results from Section 1.3.2 to
define paths in Repmax(Γg,m, Sp(2n,R)) to join every representation
with a standard representation. We obtain

Theorem 1.4.2. Let m ≥ 1 then Repmax(Γg,m, Sp(2n,R)) has
22g+m−1 connected components.

For a proof see Section 4.2.

To distinguish the class of representations for which the limit curve
is continuous, we need the following definition:

Definition 1.4.3. Let G be a Hermitian Lie group and g ∈ G. Then
g is Shilov-hyperbolic (or S-hyperbolic) if it has a pair (X+, X−) of
transversal fixed points in Š, such that g contracts an open and dense
subset of Š to X+ and g−1 contracts an open and dense subset to
X−.
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Remark 1.4.4. We will discuss S-hyperbolic elements in G in Section
3.3.3. An element c ∈ Sp(2n,R) as in Corollary 1.3.5 is S-hyperbolic
if and only if X has no eigenvalue of absolute value 1.

For a maximal representation ̺, one can glue along ̺(Ci) if and only
if it is S-hyperbolic. In particular the generators ̺(Ai) and ̺(Bj)
are automatically S-hyperbolic.

In Section 4.1 we show that the limit curve for any representation
whose generators are S-hyperbolic is continuous:

Theorem 1.4.5. Let h : Γg,m → PSL(2,R) be a hyperbolization for
a surface with geodesic boundaries. Denote by L its limit set in S1.
Let ̺ : Γg,m → Sp(2n,R) be a maximal representation s.t. ̺(Ci) is
S-hyperbolic for all i. Then there exists a monotone, ̺-equivariant,
continuous map

ϕ : L → Š.

For maximal representations of Γg into Sp(2n,R) the theorem is
proved in [13].

Furthermore we will prove:

Proposition 1.4.6. Let ̺ be maximal representation as in Theorem
1.4.5 . Then the associated limit curve is unique.

The general parameters from Theorem 3.6.9 distinguish certain types
of representations, which are standard representations in the sense
of [35]:

Definition 1.4.7. A representation is a product representation if it
is in the image of the diagonal map i : SL(2,R)n → Sp(2n,R).

Let ∆ : SL(2,R) → SL(2,R)n be the diagonal embedding. The
centralizer of i ◦ ∆(SL(2,R)) ⊂ Sp(2n,R) is precisely O(n). This
gives an embedding ϕ∆ of SL(2,R) × O(n) into Sp(2n,R). A rep-
resentation is a twisted diagonal representation if its image is in
ϕ∆(SL(2,R)×O(n)).
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Corollary 1.4.8. A maximal representation ̺ is conjugate to a
product representation into Sp(2n,R) if and only if and only if there
exist length and twist parameter which are diagonal.
The representation ̺ is twisted diagonal, if and only if there exists
length and twist parameter of the form d ·k with d diagonal with one
single eigenvalue and k ∈ O(n).

We prove this corollary in Section 3.6.2.

Corollary 1.4.9. A maximal representation of Γg,m such that all
̺(Ci) are S-hyperbolic is Anosov.

We will prove Corollary 1.4.9 in Section 3.5.6.

For a definition of Anosov representation see Definition A.3.1.

1.5 Cross Ratios

Chapter 5 is joint work with Tobias Hartnick. It is concerned with
three interrelated problems:

(i) the development of a functorial theory of generalized cross ra-
tios on Shilov boundaries of bounded symmetric domains of
tube type (following work of Clerc and Ørsted [25]);

(ii) estimates for the translation length of isometries of bounded
symmetric domains of tube type, which have two transversal
fixed points in the Shilov boundary, in terms of these cross
ratios;

(iii) applications to maximal representations of surface groups into
Hermitian Lie groups (as suggested by earlier work of Labourie
[47] and Wienhard [58]).
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Concerning (i) we recall that the classical four point cross ratio on
CP1 is defined by the formula

[a : b : c : d] :=
(a− d)(c− b)

(c− d)(a− b)
;

its restriction to the circle classifies orbits of ordered quadruples
under the action of PSL(2,R). For boundaries of more general sym-
metric spaces the space of invariant functions on 4-tuples will no
longer be one-dimensional, hence it is not obvious how to extend the
definition of the cross ratio to more general semisimple Lie groups.
In fact, it is not even clear what would be the correct notion of
boundary to be used in a general theory of cross ratios. Various in-
equivalent definitions of generalized cross ratios (in different degrees
of generality) exist in the literature, see e.g. [56, 9, 43, 3] and [47,
Subsec. 4.2.6].

A Hermitian symmetric spaceD is of tube type, if it is biholomorphic
to V ⊕ iΩ ⊂ V C, where V is a real vector space, V C its complexifi-
cation and Ω an open cone (see Section 2.1.1). We will introduce a
cross ratio on the Shilov boundary of a bounded symmetric domain
D of tube type, which generalizes the classical cross ratio on S1.
Our basic idea is that a good generalization of the classical cross
ratio should be functorial (in a sense to be made precise below) and
well-behaved under products. If we demand these two properties
then there is actually only one choice:

Theorem 1.5.1. For every bounded symmetric domain D of tube
type with Shilov boundary Š there exists a subset Š(4+) of Š4 (defined
in Definition 5.1.7 below) and a function BŠ : Š(4+) → R× called
the generalized cross ratio of Š, such that the family of functions
{BŠ} is characterized uniquely by the following properties:

(i) BŠ is invariant under the group of biholomorphic automor-
phisms of D.

(ii) If f : D1 → D2 is a balanced tight morphism (see Definition
5.1.14 below), then the corresponding generalized cross ratios
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BŠ1
, BŠ2

satisfy

BŠ2
(f̄(x), f̄(y), f̄(z), f̄(t)) = BŠ1

(x, y, z, t),

where (x, y, z, t) ∈ Š
(4+)
1 and f̄ is the boundary extension of f .

(iii) If D = D1 × D2 is a direct product of bounded symmetric do-
mains of ranks r1, r2 with projections pj : D → Dj and corre-
sponding boundary extensions p̄j : Š → Šj then

BŠ(x, y, z, t)
r1+r2 == BŠ1

(p̄1(x), p̄1(y), p̄1(z), p̄1(t))
r1BŠ2

(p̄2(x), p̄2(y), p̄2

(iv) BS1 is the restriction of the classical four point cross ratio.

(Theorem 1.5.1 will be proved in Section 5.1.4 below.)

The proof of the theorem is constructive. Cross ratios for irreducible
bounded symmetric domains of tube type have been constructed by
Clerc and Ørsted in [25], and it is easy to modify their construction
in such a way that it becomes functorial. The main difficulty is then
to show that the extension of these generalized cross ratios to arbi-
trary bounded symmeric domains by means of (iii) is still functorial.
In fact, as will be explained in more details in Section 5.1.2 below,
this can only be achieved by restricting the class of admissible mor-
phisms to exclude obvious pathologies.

One of the reasons for the importance the classical cross ratio in
hyperbolic geometry is the fact that is can be used to define the
hyperbolic metric. As a consequence, it can also be used to mea-
sure translation lengths (which we introduced in Remark 1.3.4) of
hyperbolic isometries. In this case γ has an attractive fixed point
γ+ ∈ S1 and a repellent fixed point γ− ∈ S1 and we have

τD(γ) = τ∞D (γ) := log[γ− : ξ : γ+ : γ.ξ], (1.4)



1.5. CROSS RATIOS 23

where ξ ∈ S1 \ {γ±} is an arbitrary auxiliary point. The right
hand side of this equation is referred to as the period of γ. If g is
an isometry of a bounded symmetric domain D of tube type which
admits a pair of transverse fixed points g± in Š, then we can use our
generalized cross ratios we can define a period

τ∞D (g, g+, g−) := logBŠ(g
−, ξ, g+, g.ξ) (1.5)

using a generic auxiliary point ξ ∈ Š. Reordering g± if necessary
we can always assume τ∞D (g, g+, g−) ≥ 0. Without any further as-
sumptions we then find a constant CD depending only on D such
that (see Corollary 5.2.8 below)

τD(g) ≥ CD · τ∞D (g, g+, g−). (1.6)

Remarkably, no hyperbolicity assumptions on g are required for this
inequality to hold. On the other hand, if g is hyperbolic with at-
tractor g+ and repellor g−, then we also get the converse inequality

τD(g) ≤ C′
D · τ∞D (g, g+, g−). (1.7)

for some constant C′
D depending only on D. In fact, the hyper-

bolicity assumption can be weakened considerably to include e.g.
products of unipotent isometries, but not dropped altogether; see
Corollary 5.2.8 for details.

Our main application of Inequality (1.6) concerns maximal repre-
sentations ̺ : Γg → G. Let ϕ be the limit curve for the maximal
representation. Then we may define Γ-invariant function on quadru-
ples on the circle by the formula

b̺(a, b, c, d) := BŠ(ϕ(a), ϕ(b), ϕ(c), ϕ(d)).

We want a continuous cross ratio, so we ask ϕ to be continuous. This
is true for closed surfaces as well as for a class of representations for
surfaces with boundary (see Section 4.1). But we will not get any
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new informations for the latter as we will explain in Remark 1.5.7.
Furthermore the definition of the period does not make any sense if
g ∈ G does not admit a transverse pair of fixed points. Therefore
we will restrict ourselves to representations for closed surfaces.

However for representations ̺ of Γg this function turns out to be a
strict weak cross ratio in the sense of Labourie [46], which we refer
to as the cross ratio of ̺.

By choosing a finite generating set S we can think of the group Γ
as a metric space with word metric dS . With respect to this metric
the translation length of γ ∈ Γ on Γ is given by the formula

lS(γ) := inf
η∈Γ

‖ηγη−1‖S . (1.8)

If we combine the estimate for b̺ arising from (1.6) with Labourie’s
equivalence theorem for strict weak cross ratios (see [47] and The-
orem 5.3.4) then we obtain the following relation between lS and
translation length in D:

Theorem 1.5.2. Let Γ be the fundamental group of a closed oriented
surface Σ, D a bounded symmetric domain and S a finite generating
set S for Γ. Then for every maximal representation ̺ : Γ → G there
exist A,B > 0 such that for all γ ∈ Γ,

τD(̺(γ)) ≥ A · lS(γ)−B.

(Theorem 1.5.2 will be proved in Theorem 5.3.10 below.)

In the language of [27] Theorem 1.5.2 says that maximal represen-
tations are well-displacing, where the constants A and B implicit in
this statement depend on the maximal representation in question.
This well-displacing property has a number of well-known conse-
quences, which we list briefly. Firstly, given any finite generating
set S of Γ we can define an associated word metric dS on Γ. Then,
using results from [27] we obtain:
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Corollary 1.5.3. For every x ∈ D and every finite generating set
S of Γ the map

(Γ, dS) → (D, dD), γ 7→ ̺(γ).x

is a quasi-isometric embedding.

Theorem 1.5.2, Corollary 1.5.3 and the Milnor-Švarc lemma imply:

Corollary 1.5.4. There exists constants C,D > 0 such that for all
γ ∈ Γ

C−1τD(γ)−D ≤ τD(̺(γ)) ≤ CτD(γ) +D

Another consequence of Theorem 1.5.2 concerns the mapping class
group of Σ. Fix a bounded symmetric domain D of tube type
and denote by G the corresponding automorphism group. The set
Hommax(Γ, G) of maximal representations of Γ into G can be con-
sidered as a subset of GS for any finite generating set S of Γ; this
induces a locally compact topology on Hommax(Γ, G). We denote
by Repmax(Γ, G) the quotient of Hommax(Γ, G) by the conjugation
action of G, i.e. the moduli space of conjugacy classes of maximal
representations of Γ into G. Combining Corollary 1.5.4 with results
from [58] we obtain:

Corollary 1.5.5. In the above situation the action of the mapping
class group of Σ on Repmax(Γ, G) is proper.

For classical simple groups Corollary 1.5.5 was proved by Wienhard
[58] (see also [47] for the symplectic case).

As a final application we consider the energy functional of a maximal
representation ̺ as introduced in [47]: we denote by E̺ := (Σ̃×D)/Γ
the associated D-bundle over Σ and by Γ(E̺) the space of smooth
sections of E̺. In this notation the energy of a complex structure J
on Σ with respect to ̺ is given by (see [47, Sec. 5.1])

e̺(J) := inf{
∫

Σ

〈df ∧ df ◦ J〉 | f ∈ Γ(E̺)}.
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Then e̺ descends to a functional e̺ on Teichmüller space T (Σ) called
the energy functional of ̺. In this context, our results imply:

Corollary 1.5.6. For any maximal representation ̺ : Γ → G the
associated energy functional e̺ : T (Σ) → R is proper.

(The fact that Theorem 1.5.2 implies Corollaries 1.5.3-1.5.6 is well-
known; see Subsection 5.3.5 below for precise references.)

Remark 1.5.7. Theorem 1.5.2, Corollary 1.5.3, Corollary 1.5.4 and
Corollary 1.5.6 are also true for representations ̺ of Γg,m which
are S-hyperbolically generated. Corollary 1.5.6 is true if we replace
Repmax(Γ, G) by

Rephmax(Γ, G) := {̺ ∈ Repmax(Γ, G)|̺ is S-hyperbolically generated}.

This follows from the surface doubling construction described in
Proposition 3.5.16. Indeed, let Σ2g+m−1 be a double of Σg,m and
˜̺ : Γ2g+m−1 → G a double of ̺. Then ˜̺ is maximal and its restric-
tion to Σg,m ⊂ Σ2g+m−1 is equal to ̺. The results above are true
for ˜̺, because it is a representation of a closed surface. Clearly they
are also true for ̺ because it is a restriction of ˜̺.

The representations for which we can show continuity of the limit
curve are precisely the ones which are S-hyperbolically generated.
For these representations we have a weak strict cross ratio and we
can use this cross ratio to show the results directly.

Recall that we need a pair of transverse fixed points in Š for g ∈ G
to be able to define the period. In particular one cannot generalize
the results above straight forward for representations which are not
hyperbolically generated.

Therefore we restrict ourselves to representations for closed surfaces.
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1.6 Guide for the reader

In Section 2.1 we introduce notations needed throughout this text.
The first parts (Section 2.1.1 and Section 2.1.2) are concerned with
bounded symmetric domains, the Shilov boundary, Jordan algebras
and their relations. Thereafter we introduce and discuss boundary
morphisms for Shilov boundaries (Section 2.1.3). Section 2.1.4 is
concerned with the Cayley transform and we show that a certain
action of the Levi factor of the stabilizer of a point in the Shilov
boundary is linear (this is joint work with Tobias Hartnick). In
Section 2.1.5 we present the group Sp(2n,R), its bounded symmetric
domain and its Shilov boundary.

Section 2.2 contains definitions of (bounded) cohomology via ho-
mogeneous and inhomogeneous cocycles, because we need both to
connect results from [18] and [23]. Furthermore we define the Toledo
invariant and maximal representations and state some properties for
both.

In Section 2.3.1 we define the Maslov index, discuss the relation
with the Kähler class and introduce the Souriau index which we will
need for the proof of Formula (1.1). We introduce the (generalized)
rotation number from [18] and the limit curve.

Chapter 2.1 does not contain any new material. The reader may
skip it and come back if necessary.

The geometric idea behind the parameters for maximal representa-
tions of Γ0,3 into Sp(2n,R) is explained in Section 3.1.

The first results can be found in Section 3.2 where we prove Formula
(1.1) and deduce some consequences for maximal representations.

In Section 3.3 we proof Theorem 1.3.1. Section 3.3.3 contains result
on the dynamics of generators of maximal representations and their
fixed points in the Shilov boundary which might be also interesting
by their own.

In Section 3.4 we parametrize representations of Γ0,3 into an arbi-
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trary Hermitian Lie group of tube type.

Section 3.5 is dedicated to the study of the gluing construction which
is used in Section 3.6 to state parameters for all maximal represen-
tations into Sp(2n,R).

In Sections 4.1 and 4.2 we show continuity for the limit curve in
some cases and count connected components.

Section 5.1 is concerned with the construction of generalized cross
ratios and the proof of their functorial characterization, i.e. Theo-
rem 1.5.1. Along the way we establish various useful properties of
cross ratios. The key step in the proof is Proposition 5.1.12 which
establishes the desired functoriality.

Section 5.2 is devoted to the relation between generalized cross ra-
tios and translation lengths. We first provide bounds for translation
lengths of elements of the general linear group acting on the asso-
ciated symmetric space. Using the linear representation of the Levi
factor constructed in Section 2.1.4 we thereby obtain bounds for the
translation length of special isometries of general bounded symmet-
ric domains of tube type, which we are able to express in terms of
the period of the isometry in question, see Corollary 5.2.8.

In Section 5.3 we associate with every maximal representation of the
fundamental group of a closed, oriented surface of genus ≥ 2 a strict
weak cross ratio in the sense of Labourie. Using Labourie’s equiva-
lence theorem for such cross ratios and the estimates from Section
5.2 we then establish the well-displacing property of maximal rep-
resentations in Theorem 5.3.10. Finally, we indicate how to deduce
Corollaries 1.5.3, 1.5.4, 1.5.5 and 1.5.6.

Appendix A.1 contains some matrix calculations. Appendix A.2
collects some Jordan theoretic facts used in our proof of the functo-
riality theorem. Appendix A.3 contains a definition of Anosov rep-
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resentation and establishes a certain uniqueness property of limit
curves of maximal representations, which is a consequence of work
of Burger, Iozzi and Wienhard in [15]. In the preparation of this
appendix we profited from a manuscript on Anosov representations
by Anna Wienhard and Olivier Guichard (which has now appeared
as a part of [36]).
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Chapter 2

Preliminaries

2.1 Basic Notions and Facts

In this section we collect definitions and facts used later in this text.
The reader may skip this section and come back to it if necessary.

2.1.1 Hermitian Symmetric Spaces, Bounded Sym-
metric Domains and Tube Type Domains

Symmetric Spaces

The main references for this Subsection are [39] and [5].

Definition 2.1.1. Let (M, g) be a Riemannian manifold. It is called
locally symmetric space if for any x ∈M there exists a local isometry
sx which is an involution and which has x as an isolated fixed point.
If each sx is a global isometry, M is a (Riemannian) symmetric
space.

31
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Example 2.1.2. The hyperbolic spaces Hn, the Euclidean spaces
En and the spheres Sn are symmetric spaces.

The isometry sx acts involutively on TxM , hence the eigenvalues
of dsx|x can only be ±1. But if one of the eigenvalues is 1, there
would be a small piece of geodesic starting in x fixed by sx which
contradicts the assumption that x is an isolated fixed point, hence
dsx|x acts by multiplication with −1 on TxM .

Riemannian symmetric spaces are geodesically complete. Indeed
given a geodesic σ with σ(0) = x, then sx(σ(t)) = σ(−t) if σ(t) is
defined. In this case sσ(t)σ(0) = σ(2t). Since geodesics are always
defined for small t > 0, this showns that geodesics are defined for all
t ∈ R. Then by the Hopf-Rinow Theorem, M is complete and we
can join any two points x and y by a geodesic.

Let σ be a geodesic. Then the isometry sσ(t/2)◦sσ(0) is isotopic to the
identity and it maps σ(0) to σ(t). Therefore the identity compontent
G of the isometry group of M (which is in fact a finite dimensional
Lie group [39, Lem. 3.2]) acts transitively on geodesics. Indeed,
since M is geodesically complete, one can join any two points by a
geodesic and G acts transitively on M . The stabilizer of a point in
M is a compact subgroup K of G. A symmetric space is irreducible
if it is not the product of two symmetric spaces. Every symmetric
space M can be written as a product ([39, Ch. V.5]):

M = E ×M1 × . . .×Mm ×N1 × . . .×Nn,

where E is isometric to an Euclidean (flat) space,Mi is non-compact
irreducible and Nj is compact irreducible. If n = 0, the space M is
called of non-compact type, if M = N1 × . . . ×Nn, it is of compact
type.

Let G be a finite dimensional Lie group and K a maximal com-
pact subgroup. Then G/K can be equipped with the structure of a
symmetric space. It is called the symmetric spaces associated with
G.



2.1. BASIC NOTIONS AND FACTS 33

Definition 2.1.3. Let (M, g) be a (locally) Riemannian symmetric
space. It is called (locally) Hermitian symmetric space if there exists
an invariant complex structure on M , i.e. a complex structure

J : TM → TM,

which commute with isometries.
A Lie group G is Hermitian if its associated symmetric space is
Hermitian.

Hermitian symmetric spaces are automatically Kähler with Kähler
form

ω(X,Y ) := g(JX, Y )

(for a proof of this fact see [13, Lemma 2.1]).

Bounded Symmetric Domains and Jordan Algebras

Hermitian symmetric spaces are closely related to bounded symmet-
ric domains. This section contains material collected for [38] in joint
work with Tobias Hartnick. We follow [29], see also [55] and [50].

Let W be finite-dimensional complex vector space. A connected
open subset D ⊂ W is a domain. A bounded domain D is called
symmetric if for every z ∈ D there exists a biholomorphic involutive
automorphism sz of D such that z is an isolated fixed point of sz.
Recall that for any domain D, the Bergman space H2(D) is the space
of holomorphic square integrable functions on W . If D is bounded
then this space is infinite-dimensional, because it contains at least
all polynomials. Thus a reproducing kernel kD : D2 → C× can be
defined by the formula

f(z) =

∫

D

f(w)kD(w, z)dw (f ∈ H2(D), z ∈ D).

(see e.g. [29, Chap. IX.2]). The kernel kD is the Bergmann kernel
of D. Later we will consider also multiples of the Bergmann kernel
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and we will sometimes refer to the kernel introduced here as the
unnormalized Bergmann kernel.

The kernel has an important transformation property. Let g be a
biholomorphic transformation for D. Then:

kD(gz, gw) = j(z, g)kD(z, w)j(w, g), (2.1)

where j(z, g) is the automorphy factor.

The tensor

gjk(z) :=
∂2

∂zj∂z̄k
log kD(z, z)

defines a Hermitian metric on D, called the Bergman metric, for
whichbiholomorphic transformations are isometries (see [29, Prop
IX.2.6]). Similar to the kernel function we will sometimes refer to
this metric as the unnormalized Bergman metric. Since the point in-
volutions sz are biholomorphic, they are also global isometries, hence
a bounded symmetric domain is a Riemannian symmetric space.
Since the point involutions are holomorphic, they commute with the
complex structure, hence a bounded symmetric domain is in fact a
Hermitian symmetric space.

Surprisingly there is a converse statement.

Theorem 2.1.4. (Harish-Chandra embedding,[37]) Every Hermi-
tian symmetric space is biholomorphic to a bounded symmetric do-
main.

For a more detailed discussion and a proof see [39] or [59].

Let D and D′ be bounded symmetric domains with involutions sz
and s′z′ respectively. A holomorphic map f : D 7→ D′ is a morphism
if for any z ∈ D we have

f ◦ sz = s′f(z) ◦ f.

Equivalently, f is an affine holomorphic map with respect to the
Bergman metric on D. Given a bounded symmetric domain D, we
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denote by G(D) the group of all automorphisms of D. Its identity
component G(D)0 is a finite-dimensional connected adjoint semisim-
ple Lie group acting transitively on D, and the stabilizer of each
point is a maximal compact subgroup.

Example 2.1.5. Let D ⊂ C be the open unit disc. It is clearly a
bounded domain in a complex vector space. By [29, Prop. X.4.5]
the Bergmann kernel of D is

kD(z, w) =
2

π

1

(1− zw̄)2
.

Example 2.1.6. The kernel for a polydisc Dr is

kP (z, w) =
∏

kD(zi, wi)

Example 2.1.7. Let V := Symn(R) be the vector space of real
symmetric n× n-matrices and V C its compactification. Then

D = {X ∈ V C| In −X∗X is positive definite}

is a bounded symmetric domain with kernel function ([29, Thm.
X.1.2]):

kD(z, w) =
ΓΩ(2n)

πn(n+1)/2ΓΩ(n)
det

(
z − w̄

i

)−2n

,

where ΓΩ is the generalized Γ-function defined in Corollary VII.1.3
in [29].

Tube Type Domains and Jordan Algebras

Recall that the unit disc and the upper half plane are two models
for hyperbolic two space. A bounded symmetric domain can be seen
as a disc model for a Hermitian symmetric space and Theorem 2.1.4
says that any Hermitian symmetric space has such a disc model.
Now one can ask for a generalization of the upper half plane model.
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Definition 2.1.8. A Hermitian symmetric space is of tube type if it
is biholomorphic to V ⊕ iΩ ⊂ V C, where Ω is a proper, open cone
in a real vector space V . A Hermitian Lie group is of tube type if its
associated Hermitian symmetric space is of tube type.

Example 2.1.9. The Hermitian symmetric space associated with
Sp(2n,R) is of tube type. The Hermitian symmetric space associated
with SU(p, q) is of tube type if and only if p = q.

Hermitian symmetric spaces of tube type admit nice descriptions
using Jordan algebras. Our main reference is again [29].

Definition 2.1.10. A Jordan algebra is a finite dimensional algebra
V with

(i) xy = yx ∀x, y ∈ V (Commutativity)

(ii) x2(xy) = x(x2y) ∀x, y ∈ V .

Define the left multiplication L on V by

L(x)y := xy, x, y ∈ V.

The Axiom (ii) for Jordan algebras can be rephrased as [L(x), L(x2)] =
0 for all x ∈ V , i.e.the left multiplication with x and x2 commute.
One can use this property to show that a Jordan algebra is power
associative ([29, Prop. II.1.2]), even if a Jordan algebra need not to
be associative in general.

We introduce the quadratic representation for V :

P (x) := 2L(x)2 − L(x2)

and the box operator

x�y := L(xy) + [L(x), L(y)].
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Definition 2.1.11. A real Jordan algebra V is called Euclidean if
it is unital with unit e and if it admits an scalar product (·, ·) with

(xy, z) = (y, xz), ∀x, y, z ∈ V

i.e. L(x) is self-adjoint for all x ∈ V .

The complexification of a real Jordan algebra V , denoted by V C is
again a Jordan algebra.

Example 2.1.12. Let V = Symn(R) be the set of symmetric n×n-
matrices. Let · be the usual matrix product. Then defining a product
on Symn(R) via

xy :=
1

2
(x · y + y · x),

gives V the structure of a Jordan algebra. Let

(X,Y ) := tr(X · Y ).

Then (·, ·) defines a scalar product which gives V the structure of
an Euclidean Jordan algebra.

A consequence of the existence of the scalar product is the spectral
theorem ([29, Ch.III]). Before we state it, we need the following
definition.

Definition 2.1.13. An element c of V is called idempotent if c2 = c.
Two idempotents c1 and c2 are orthogonal if c1c2 = 0. An idempo-
tent c is primitive if it is non-zero and cannot be written as the sum
of two non-zero idempotents.
A collection {c1, . . . , cr} of pairwise orthogonal, primitive idempo-
tents is called Jordan frame if

c1 + . . .+ cr = e.

Note that two orthogonal idempotents c1 and c2 are also orthogonal
with respect to the scalar product:

(c1, c2) = (c21, c2) = (c2, c1c2) = 0.
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The cardinality r is the same for all Jordan frames. It is called the
rank of V .

Now we can state the spectral theorem for Euclidean Jordan alge-
bras:

Theorem 2.1.14. ([29, Thm. III.1.2]) Given an Euclidean Jordan
algebra V of rank r and x ∈ V . Then there exists a Jordan frame
{c1, . . . , cr} and λi ∈ R such that

x =

∞∑

i=1

λici.

Definition 2.1.15. Let x =
∑r
i=1 λici for some Jordan frame {ci}.

The numbers λi are called spectral values. The Jordan algebra de-
terminant and the Jordan algebra trace are defined as

detV x =
∏

λi, trV x :=
∑

λi.

Example 2.1.16. Let V = Symn(R) be as in Example 2.1.12. The
the spectral value decomposition corresponds to the fact that sym-
metric matrices are diagonalizable with real eigenvalues. In partic-
ular the matrices

ci :=




0
. . .

1
. . .

0



,

with 1 on the ith diagonal position and 0 everywhere else form a
Jordan frame and all Jordan frames are conjugate under O(n). The
spectral theorem is a direct generalization of this fact. In fact the
proof relies on this fact for L(x). The Jordan algebra determinant
as well as the Jordan algebra trace are the usual ones.



2.1. BASIC NOTIONS AND FACTS 39

Another important notion is the open (symmetric) cone ([29, Ch.III])
associated with a Jordan algebra:

Definition 2.1.17. Let V be a Euclidean Jordan algebra. Define

Ω := {x ∈ V |L(x) positive definite}.

It is clear from the definition that Ω is proper open cone. It is in
fact a symmetric cone (see [29, p.4]). In particular the group

G(Ω) = {g ∈ GL(V )|gΩ = Ω}

acts transitively on Ω. For other characterizations and more details
see [29, Ch.III]. One important description is the following

Ω = {x ∈ V | All spectral values are strictly positive}.

The space

TΩ = V ⊕ iΩ = {
∑

µici| imµi > 0}

is biholomorphic to a bounded symmetric domain in V C via the
Cayley transform

p : z 7→ (z − ie)(z + ie)−1.

It maps TΩ biholomorphically to the bounded domain

D :=
{
v =

∑
λici ∈ V C|{ci} Jordan frame, |λi| < 1

}
. (2.2)

The inverse of p is given by

c : z 7→ i(e+ z)(e− z)−1.

See [29, p.190] for details.

We say that D is the bounded symmetric domain associated with
V . The group of orientation preserving isometries of D is denoted
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by G(D). The domain D is isomorphic to G(D)/K, where K is a
stabilizer of a point in D. The subgroup K is a maximal compact
subgroup of G(D).

Now we can state another spectral theorem:

Theorem 2.1.18. Let V be a Euclidean Jordan algebra. Fix a
Jordan frame {c1, . . . , cR} and let z ∈ V C. Then there exists k ∈ K
and 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λr, such that

z = k
∑

λici.

Since TΩ is biholomorphic to a bounded domain, we can define the
Bergman metric on TΩ as in Subsection 2.1.1. The map

j :

{
TΩ → TΩ

z 7→ −z−1.

is an isometric involution having ie as a unique fixed points. We can
use it to give TΩ the structure of a Hermitian symmetric space ([29,
Thm. X.1.1] ).

Remark 2.1.19. We have seen in (2.2) how to relate a bounded sym-
metric domain D to a Euclidean Jordan algebra V . This relation is
in fact functorial. For details see [2].

The group of biholomorphic transformations, denoted by G(TΩ),
admits a nice decomposition . Denote by N+ the subgroup of G(TΩ)
which acts by addition with an element of V on TΩ. By [29, Prop.
IX.3.4] this is indeed an isometry. We denote by n+

v the element of
N+ with

n+
v (x) = x+ v.

Now we have

Proposition 2.1.20. ([29, Prop. X.5.5]) The group G(TΩ) decom-
poses as

G(TΩ) = N+G(Ω)G(TΩ)ie,

where G(TΩ)ie is the stabilizer of ie ∈ TΩ.
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Later we will need another subgroup N− := jN+j−1. It acts as
follows:

n−
v : x 7→ (x−1 − v)−1,

and it gives another decomposition of G(TΩ):

G(TΩ) = N−G(Ω)G(TΩ)ie

We observe that

(n+
v )

−1 = n+
−v and (n−

v )
−1 = n−

−v

Definition 2.1.21. Let V be a Jordan algebra. The automorphism
group of V is

Aut(V ) := {g ∈ GL(V )|g(xy) = (gx)(gy) ∀x, y ∈ V } .

Another important group is the structure group of a Jordan algebra.

Definition 2.1.22. Let V be a Jordan algebra and τ(x, y) := trL(xy).
Then V is semi-simple, if τ is non-degenerate. The structure group
Str(V ) of a semi-simple Jordan algebra V is:

Str(V ) := {g ∈ GL(V )|P (gx) = gP (x)g∗},

where g∗ is the adjoint of g w.r.t. τ .

Proposition 2.1.23. [29, Prop. VIII.2.4, Prop VIII.2.8] The group
Aut(V ) is a subgroup of Str(V ). If V is simple Euclidean, then
Str(V ) = G(Ω)⊗ {±1}.

Finally we introduce the character χ (cf. [23, p.99]):

Definition 2.1.24. Let V be a real or complex Jordan algebra and
Str(V ) be the structure group of V . Then we define the character χ
on Str(V ) via:

detV (gx) = χ(g)detV (x),

where g ∈ Str(V ) and x ∈ V .
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Lemma 2.1.25. Let D ⊂ V C as in (2.2). Then K ⊂ G(D) is
contained in the structure group Str(V C).

Proof. By Lemma A.2.2 every k ∈ K extends to a linear map V C →
V C, since it fixes 0. Since it also fixes the Shilov boundary it is
contained in G(Σ) in [29, X.3.], which contained in Str(V C) by [29,
Prop. X.3.1].

2.1.2 The Shilov Boundary of a Bounded Sym-
metric Domain

For spaces of non-positive curvature there exists many notions of
boundary. In this section we introduce a boundaries, the Bergmann-
Shilov boundary for domains and the Shilov boundary for bounded
domains. We follow [29, Ch. X].

Definition 2.1.26. Let D be a domain and A(D) the space of
continuous functions on D̄ which are holomorphic onD. A Bergman-
Shilov boundary is a closed set B in ∂D such that

max
z∈D

|f(z)| = max
z∈B

|f(z)|, ∀f ∈ A(D).

The Shilov boundary ŠD of a bounded domain D is the smallest
closed subset in ∂D such that

max
z∈D

|f(z)| = max
z∈Š

|f(z)|, ∀f ∈ A(D).

We will usually write Š instead of ŠD.

Proposition 2.1.27. [29, Prop. IX.5.5] V is the unique Bergman-
Shilov boundary of TΩ.

The Shilov boundary behaves nicely with respect to products.
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Proposition 2.1.28. Let D, D1 and D2 a bounded symmetric do-
mains with D = D1 ×D2. Then

ŠD = ŠD1 × ŠD2 .

Note that this is not true for the geodesic boundary! For any
bounded symmetric domain, the action of its isometry group G ex-
tends to the topological boundary. This action has been studied in
detail before, see [59, I.5.]. The closure of D in its ambient vector
space decomposes into a finite number of G-orbits. It turns out that
the Shilov boundary is precisely the unique closed orbit of G in D̄.

Proposition 2.1.29. Let D be a bounded symmetric domain. Then
the Shilov boundary Š is equal to the unique closed orbit in ∂D, the
stabilizer of a point in Š is a certain maximal parabolic subgroup Q
of G.

Let D ⊂ V C be a bounded symmetric domain in the complexifica-
tion of an Euclidean Jordan algebra V . The Shilov boundary can
be described in terms of the Jordan algebra structure. In fact the
following are equivalent:

(i) z ∈ Š,

(ii) z =
∑
λici, where c1, . . . , cr is a Jordan frame and |λi| = 1,

(iii) z ∈ p(V ),

(iv) z̄ = z−1.

Proof. The first part is proven in [59] Part I Section 6, the second
part follows is [29, p.190, Prop.X.2.3, Thm.X.4.6].

Example 2.1.30. The unit disc D ⊂ C is a bounded symmetric
domain. Its topological compactification D̄ equals D ∪ S1. The
action of Is(D) extends to S1.
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Example 2.1.31. By Proposition 2.1.28 the Shilov boundary of a
polydisc Dr is equal to (S1)r.

Example 2.1.32. Let D be the bounded symmetric domain asso-
ciated with Sp(2n,R) (cf. Example 2.1.7). Then

Š = {X ∈ V C|X∗X = I}.

Another important concept is transversality of pairs of points in Š.
We define transversality here in terms of Jordan algebras:

Definition 2.1.33. Let V be a Jordan algebra. Then x, y ∈ V are
transversal (denoted by x ⋔ y) if

detV (x− y) 6= 0.

In Proposition A.2.3 in the Appendix we show the equivalence of
various notions of transversality.

Lemma 2.1.34. Transversality in the topological closure T̄Ω ⊂ V C

is invariant under the action of the isometry group G(TΩ). Two
points in T̄Ω are transverse if and only if c(x) and c(y) are transver-
sal in c(T̄Ω) ⊂ D̄.

Proof. Follows from the proof of Proposition A.2.3.

Since transversality is defined for all V respectively V C, in particular
it is defined for x, y ∈ D̄ respectively x, y ∈ T̄Ω.

Example 2.1.35. The set p(V ) ⊂ ∂D is the set of points in Š ⊂ D̄
transversal to e.

We write

Š(n) := {(z1, . . . , zn) ∈ Šn | ∀i 6= j : zi ⋔ zj}

for the set of pairwise transverse n-tuples in Š. Since the G-action
preserves transversality, each Š(n) is a union of G-orbits. For n = 2
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we see from Proposition A.2.3 that Š(2) is the unique G-orbit in Š2

of maximal dimension. This characterization can be used to identify
Š(2) in concrete examples.

Example 2.1.36. For example, if G = Sp(2n,R) the Shilov bound-
ary Š is identified with the Lagrangian Grassmannian L(R2n) of
R2n. Indeed the Lagrangian subspace spanned by the standard ba-
sis vectors en+1, . . . , e2n is stabilized by the subgroup

{(
A 0
C D

)
∈ Sp(2n,R)

}

and this is also the stabilizer of the point 0 ∈ V . In both cases
Sp(2n,R) acts transitively, hence one can identify Š and L(R2n).
This identification give the following interpretation of the set Š(2)

L(R2n)(2) = {(V,W ) ∈ L(R2n)2 |V ⊕W = R2n},
since the right hand hand side is an open G-orbit.

Returning to the general case we recall that G-orbits in Š(3) are
classified by the generalized Maslov index µŠ of Clerc and Ørsted,
see [25]. (For a complete classification of orbits in Š3 see [24].) Con-
cerning G-orbits in Š(4) we will confine ourselves with the following
result. For the notion of Jordan frame used therein see [29, Ch. 4].

Let Š be the Shilov boundary of a tube type domain D.

Proposition 2.1.37. Let (z1, . . . , z4) ∈ Š(4), and suppose µŠ(zi, zj , zk)
is maximal for some {i, j, k} ⊂ {1, . . . , 4}. Then z1, . . . , z4 are con-
tained in the boundary of a common maximal polydisc. More pre-
cisely, if µŠ(z1, z2, z3) is maximal, then there exists g ∈ G and a
Jordan frame (c1, . . . , cr) such that

g.(z1, . . . , z4) = (
∑

(−1) · cj ,
∑

(−i) · cj ,
∑

1 · cj ,
∑

λjcj).

Proof. Let r := rk(V ). We may assume w.l.o.g. that µŠ(z1, z2, z3)
is maximal, i.e.

µŠ(z1, z2, z3) = r = µŠ(−e,−ie, e).
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Since the Maslov index classifies orbits of transverse triples we then
find g ∈ G with

g.(z1, z2, z3) = (−e,−ie, e).
Let z = g.z4. Then there exists a Jordan frame (c1, . . . , cr) and
λi ∈ C with |λi| = 1 such that

z =
r∑

i=1

λici,

see the proof of [29, Proposition X.2.3]. We deduce that

g.(z1, . . . , z4) = (
∑

(−1) · cj ,
∑

(−i) · cj ,
∑

1 · cj ,
∑

λjcj),

hence the quadruple g.(z1, . . . , z4) is contained in the Shilov bound-
ary of the polydisc

ϕc : Dr → D, (λ1, . . . , λr) 7→
r∑

i=1

λici

associated with the Jordan frame c = (c1, . . . , cr), and consequently
(z1, . . . , z4) is contained in the Shilov boundary of the maximal poly-
disc g−1 ◦ ϕc.

2.1.3 Boundary Morphisms

Let D be a bounded symmetric domain. Recall that we denote by
kD and gD the Bergman kernel, respectively the Bergman metric of
D and we write G(D) for the group of biholomorphisms of D. Recall
that the action of G(D) on D extends continuously to an action on
ŠD. In the sequel we denote by GD the identity component of G(D)
and by gD its Lie algebra. We define ĜC

D to be the simply-connected

complex Lie group with Lie algebra gD⊗C and Ĝ to be the analytic
subgroup of ĜC

D with Lie algebra gD. We observe that ĜD is a finite
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covering of GD.

An affine holomorphic map between bounded symmetric domains
will be referred to as a morphism; we recall that a holomorphic map
is a morphism if and only if it commutes with the corresponding
point involutions. Given any morphism β : D1 → D2 of bounded
symmetric domains, there exists a unique morphism β̂ : ĜD1 → ĜD2

for which β is equivariant (see e.g. [2, Thm. V.1.9]); we refer to β̂
as the equivariant lift of β.

Definition 2.1.38. A morphism β : D1 → D2 of bounded symmet-
ric domains with respective Shilov boundaries Šj := ŠDj

is called a

boundary morphism if it admits a continuous extension β̄ : Š1 → D2

satisfying β̄(Š1) ⊂ Š2.

Every bounded symmetric domain is isomorphic to the unit ball of
a positive Hermitian Jordan triple system W with respect to the
spectral norm (see e.g. [22]). If D is of tube type, then W can be
chosen to be the complexification of a Euclidean Jordan algebra V ,
which we denote by V C := V ⊗C; in this situation we write D = DV
and abbreviate GV := GDV

. We then define KV := stab0(GV )
and Q±,V := stab±e(GV ), where eV denotes the unit element of
the Jordan algebra V . We use the small gothic letters gV , kV , q+,V
to denote the respective Lie algebras. The group KV is a maximal
compact subgroup of GV and thus induces a Cartan decomposition
gV = kV ⊕ pV , where pV is the Killing orthogonal complement of kV
in gV . In particular, T0DV ∼= pV . The subgroups Q±,V are conju-
gate maximal parabolic subgroups of GV . We refer to the parabolics
in their conjugacy class as Shilov parabolics. Note that Q+,V and
Q−,V share the same Levi factor L(Q±,V ) = Q+,V ∩Q−,V , which is
the pointwise stabilizer of {±eV }.

We will use the term morphism of Euclidean Jordan algebras as a
shorthand for unital algebra homomorphism of Euclidean Jordan
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algebras. Every morphism α : V1 → V2 of Euclidean Jordan alge-
bras in the above sense induces a morphism αC : V C

1 → V C
2 which

restricts to a morphism α† : DV1 → DV2 of bounded symmetric do-
mains. Every morphism of the form α† is automatically a boundary
morphism; indeed this follows from the fact that the Shilov bound-
ary ŠV := ŠDV

of DV can be described as [29, Thm. X.4.6] (cf.
Proposition 2.1.29)

ŠV = {z ∈ V C | z invertible, z−1 = z̄}. (2.3)

The following proposition implies that these are essentially the only
boundary morphisms of bounded symmetric domains of tube type.

Proposition 2.1.39. Let D1,D2 be bounded symmetric domains of
tube type with respective Shilov boundaries Š1 and Š2, and β : D1 →
D2 be an injective morphism (i.e. affine holomorphic). Then the
following are equivalent:

(i) β is a boundary morphism.

(ii) There exist Euclidean Jordan algebras V1, V2, a unital Jordan
algebra homomorphism α : V1 → V2 and isomorphisms Dj ∼=
DVj

intertwining β and α† : DV1 → DV2 .

(iii) β is a Kähler-tight map of Hermitian symmetric spaces.

(iv) The equivariant lift β̂ of β is a tight homomorphism with re-
spect to the Kähler class of ĜD2

The concepts of a tight map between symmetric spaces, respectively
a tight homomorphism as referred to in the proposition are defined
in [16], where the implications

(iii) ⇒ (iv) ⇒ (i)

are proved (see [16, Cor. 2.16 and Thm. 4.1]). As far as the impli-
cation (ii) ⇒ (iii) is concerned, we learned the following argument
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from O. Guichard: We may assume Dj = DVj
and β = αC for some

morphism α : V1 → V2 of Euclidean Jordan algebras. We then have
embeddings of the Poincaré disc into Dj given by

ιj : D → Dj , λ 7→ λ · ej,

where ej is the unit element of Vj ; these satisfy β ◦ ι1 = ι2. Now
the embeddings ι1 and ι2 are tight and positive; however, as proved
in [16, Lemma 8.1], a morphism intertwining positive tight discs is
itself tight. This implies (iii). Thus the only missing implication
is (i) ⇒ (ii); for this we provide a Jordan algebraic proof in the
appendix (see Proposition A.2.1).

Remark 2.1.40. In the sequel we will often consider a fixed bounded
symmetric domain D. We then choose a Euclidean Jordan algebra V
with DV and denote by G,K,Q±,Ω, TΩ, Š respectively the objects
denoted by GV ,KV , Q±,V ,ΩV , TΩV

and ŠV in this section.

2.1.4 The Cayley transform and representations
of Levi factors

To obtain a better understanding of the fine structure of G we ob-
serve that the Cayley transform c : DV → TΩ induces an isomor-
phism

ĉ : G→ G(TΩ)
0, g 7→ c ◦ g ◦ c−1. (2.4)

Denote by g(TΩ) and g(Ω) the Lie algebras of G(TΩ) and recall

G(Ω) := {g ∈ GL(V ) | gΩ = Ω}.

and the decomposition G(TΩ) = N+G(Ω)Gie.

The Lie algebra g(TΩ) admits a Z-grading with g(TΩ)0 = g(Ω),
g(TΩ)±1

∼= V and g(TΩ)n = {0} for |n| > 1 (see e.g [49, Sec. 6]). The
subgroups N± are the analytic subgroups of G(TΩ)

0 corresponding
to g(TΩ)±1. Then G(Ω) normalizes N± and we can thus form the
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semidirect products P+ := N+G(Ω) and P− := N−G(Ω). (The
reason for these sign conventions will become clear in Proposition
2.1.41.) It turns out that P± are maximal parabolic subgroups of
G(TΩ)

0 and that P− stabilizes 0 ∈ V . Its unipotent radical is given
by N− and its Levi factor is given by G(Ω) (see [49, Sec. 7]). Now
we have:

Proposition 2.1.41. Let ĉ : G→ G(TΩ)
0 be the isomorphism given

by (2.4). Then ĉ(Q−) = P− and ĉ(L(Q−)) = G(Ω).

Proof. Since P− stabilizes 0 ∈ V the group ĉ−1(P−) stabilizes c−1(0) =
−e.
Thus ĉ−1(P−) ⊂ Q− is a subgroup, but being maximal parabolic
itself we find ĉ−1(P−) = Q−. Passing to the corresponding Levi
factors yields the second statement.

For later reference we record the following consequences:

Corollary 2.1.42. (i) The unipotent radical of a Shilov parabolic
is abelian.

(ii) The map ĉ provides a linear representation ĉ : L(Q±) →
GL(V ) for the Levi factor of the standard Shilov parabolics.

We will exploit the linear representation of L(Q±) in Section 5.2.1
below to estimate translation lengths.

2.1.5 Sp(2n,R)

Let In be the n× n-unit matrix and

J =

(
0 −In
In 0

)
.
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The group Sp(2n,R) consists of real 2n×2n-matrices g with g⊤Jg =
J . It consists of four n× n matrices A, B, C and D such that

g =

(
A B
C D

)
.

The equation above give the following relations:

A⊤D − C⊤B = I, A⊤C = C⊤A, D⊤B = B⊤D. (2.5)

A direct calculation shows that this set of equations is equivalent to
the following:

(
A B
C D

)−1

=

(
D⊤ −B⊤

−C⊤ A⊤

)
.

This is a generalisation to the formula for the inverse in SL(2,R).

The dimension of Sp(2n,R) over the real numbers is 2n2 + n

Let V := Symn(R) be the set of real symmetric n×n-matrices. The
product

x · y :=
xy + yx

2

gives V the structure of a Jordan algebra (see Definition 2.1.10).
It is a unital algebra with the unit matrix as the unit. In this
context we will denote it by e. The set of positive definite matrices
in V is an open cone and it is indeed the cone Ω. Let V C be the
complexification of V ; it is a Jordan algebra as well and clearly
V C = Symn(C).

By [29, Theorem X.1.1], we have TΩ ⊂ D(p) and the set given by

D := {X ∈ V C| In −X∗X is positive definite}

is a bounded symmetric domain. Its topological closure is

D̄ = {X ∈ V C| In −X∗X is positive semi-definite}
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The Shilov boundary of D is given by

Š := {X ∈ V C| X∗X = In}.

It turns out that the group G(TΩ) of biholomorphic transformations
of TΩ is Sp(2n,R).

The group Sp(2n,R) acts on TΩ as follows:

g =

(
A B
C D

)
: X 7→ (AX +B)(CX +D)−1.

Now we discuss the subgroups appearing in the decomposition of
G(TΩ) in Proposition 2.1.20.

First we calculate the stabilizer of ie ∈ TΩ.

(A(ie) +B)(C(ie) +D)−1 = ie

⇔ iA+B = −C + iD

⇔ A = D, B = −C.
The identification:

(
A B
−B A

)
7→ A+ iB

identifies the stabilizer with U(n).

Let
G(Ω) := {g ∈ GL(V )|gΩ = Ω}.

It is contained in G(TΩ), because it acts linearly with real matrices
on V C. The group G(Ω) is isomorphic to GL(n,R) acting via

g : X 7→ g⊤Xg.

The action is transitive, because one can write any positive definite
matrix g as h⊤h (Cholesky decomposition). We have

G(Ω) =

{(
A 0
0 (A⊤)−1

)∣∣∣∣A ∈ GL(n,R)
}



2.2. THE TOLEDO INVARIANT 53

Indeed, this follows directly of the definition of the action.

The vector space V itself acts by translation on TΩ, hence it is also
contained in G(TΩ). We denote by the group of these transforma-
tions by N+. Again by definition of the action we get:

N+ =

{(
In X
0 In

)∣∣∣∣X ∈ V

}

Lemma 2.1.43. The subgroup of G(TΩ) generated by G(Ω) and N+

acts transitively on TΩ.

Proof. Let x+ iy ∈ TΩ and g ∈ G(Ω) such that ge = y. Then

x+ iy =

(
In x
0 In

)
g(ie)

This shows that TΩ = Sp(2n,R)/U(n).

The bounded symmetric domain D and the upper half plane TΩ are
biholomorphicaly equivalent under the Cayley transform.We can use
this to calculate the action of g ∈ Sp(2n,R) on D:

p ◦ g ◦ c =
(
I −iI
I iI

)(
A B
C D

)(
I −iI
I iI

)

=

(
C −B + i(A+D) C +B + i(A−D)
−C −D + i(A−D) B − C + i(A+D)

)

2.2 The Toledo Invariant

This section is concerned with the definition and properties of the
Toledo invariant.



54 CHAPTER 2. PRELIMINARIES

2.2.1 (Bounded) Cohomology

Later we will need methods from (bounded) group cohomology. Here
we introduce two different definitions and shortly discuss the relation
between them, because we have to combine results from different
sources which are formulated in both pictures.

Let G be a group and A = R, C or S1. We define:

Cn(G,A) ={f : Gn → A}
Cnb (G,A) ={f : Gn → A|f bounded}
Cnc (G,A) ={f : Gn → A|f contiuous}
Cncb(G,A) ={f : Gn → A|f bounded and continuous}.

The Homogeneous Picture

Define the (usual) boundary operator δn : Cn∗ (G,A) → Cn+1
∗ (G,A):

(δnf)(g0, . . . , gn) :=

n∑

i=0

(−1)if(g0, . . . , ĝi, . . . , gn).

A direct calculation shows δn+1 ◦ δn = 0, hence (Cn∗ (G,A), δn)
is a complex. But its homology is zero. So we rather take the
complex (Cn∗ (G,A)

G, δn) of G-invariant functions, where now δn
is the restriction of the boundary operator to Cn(G,A)G. Define
Bn∗ (G,A) := im δn ⊂ Cn+1

∗ (G,A)G (space of homogeneous cobound-
aries) and Zn∗ (G,A) := ker δn+1 ⊂ Cn+1

∗ (G,A)G (space of homoge-
neous cocycles) and

Hn
∗ (G,A) := Zn∗ (G,A)/B

n
∗ (G,A).

We call Hn
b (G,A) the bounded cohomology of G and Hn

cb(G,A) the
continuous bounded cohomology of G.
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The Inhomogeneous Picture

We can define the same cohomology theories using inhomogeneous
cocycles. Define the boundary operator

(dnf)(g1, . . . , gn+1) =

n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn) + f(g2, . . . , gn+1)

Again this defines complexes (Cn∗ (G,A), dn) with B
n
∗ (G,A) := im δn−1 ⊂

Cn∗ (G,A)
G (space of inhomogeneous coboundaries) and Zn∗ (G,A) :=

ker δn ⊂ Cn∗ (G,A)
G (space of homogeneous cocycles)

Hn
∗ (G,A) := Zn∗ (G,A)/B

n
∗ (G,A).

Connection between these pictures

The definitions for Hn
∗ are equivalent. Here we present maps which

maps homogeneous to inhomogeneous cocycles representing the same
element in Hn and vice versa. Let f be an inhomogeneous n-cocycle,
i.e. δf = 0, then

f̃(g0, g1, . . . , gn) := f(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn)

is an homogeneous cocycle. Its inverse is provided by

h̄(g1, . . . , gn) := h(e, g1, g1g2, g1g2g3, . . . , g1g2g3 . . . gn),

where h is a homogeneous cocycle.

2.2.2 The Kähler cocycle and the Kähler class

We will now define the Kähler cocycle, the Maslov index and the
Souriau index which we will need to define the Toledo invariant.
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Let D be a bounded symmetric domain of rank r andG the unit com-
ponent of its group of isometries. Equipped with the unnormalized
Bergmann metric it has minimal holomorphic sectional curvature
−2/p, where p is a constant (see [26, p. 273] resp. [28, III, prop.
V.3.7]). We follow [26] and scale the metric with the constant p/2
to get a metric g with minimal sectional curvature −1. From now
on we consider D equipped with this normalized metric and define
the associated kernel function

k(z, w) := kD(z, w)
2
p .

(cf. [26, Ch.1]). Recall the Kähler form

ω(X,Y ) := g(JX, Y ),

where g is the metric associated with ω.

Definition 2.2.1. We define the Kähler cocycle. Let z1, z2, z3 in D.

c(z1, z2, z3) :=

∫

T (z1,z2,z3)

ω.

where T (x, y, z) is a triangle with geodesic sides spanned by x, y and
z.

By Stoke’s theorem c is independent of the triangle chosen.

This defines a map from D3 to R with the following properties

Proposition 2.2.2. (i) c is G-invariant.

(ii) c(z1, z2, z3) + c(z1, z3, z4) = c(z2, z3, z4)+ c(z1, z2, z4) (Cocycle
property).

(iii) |c| < rπ.

(iv) sup |
∫
∆ ω| = rπ, where the supremum runs over all geodesic

triangles ∆ in D.
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Proof. The first properties comes from the G-invariance of ω and
the second from Stokes theorem. The third property is Theorem 3.1
in [26] and the fourth follows from the remark thereafter.

For g1, g2, g3 ∈ G we define

cG(g1, g2, g3) :=
1

2π
c(g10, g20, g30),

which is a G-invariant homogeneous cocycle on G,

Definition 2.2.3. This defines cohomology classes κG ∈ H2
c (G,R)

resp. κbG ∈ H2
cb(G,R), the Kähler class resp. the bounded Kähler

class.

2.2.3 Definition of the Toledo Invariant

For the most general definition of the Toledo invariant we follow [18].

The definition is easier for closed surfaces, so we begin with this
case:
Let Σ be an orientable surface without boundary, Γ its fundamental
group and G a group. Then H2(Σ,Z) ≃ R. A generator of H2(Σ,R)
is called fundamental class, it is denoted by [Σ].

Let κ ∈ H2(G,R) and ̺ : Γ → G be a homomorphism. The pullback
̺∗(κ) ∈ H2(Γ,R) can be considered as an element of H2(Σ,R).
Therefore we can apply the natural pairingH2(Σ,R)×H2(Σ,R) → R
and define:

T̺,κ := 〈̺∗(κ), [Σ]〉 ∈ R.

For surfaces with boundary we haveH2(Σ,R) = 0. ButH2(Σ, ∂Σ,R) ≃
R. Therefore we need a relative class which we can pair with [Σ, ∂Σ].
We have an element ̺∗(κ) ∈ H2(Γ,R) and we need one inH2(Σ, ∂Σ,R).
There is no way of doing this assignment in ordinary cohomology,
because H2(Σ,R) = 0. We need bounded cohomology. Now let
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κb ∈ H2
b (G,R). Its image under

H2
cb(G,R) → H2

b (Γ,R) ≃ H2
b (Σ,R) ≃ H2(Σ, ∂Σ,R)

can be paired with [Σ, ∂Σ] to obtain a real number T̺,κb .

Definition 2.2.4. Let ̺ : Γ → G be a representation. Then T̺ :=
T̺,κb

G
is the Toledo invariant of ̺.

Remark 2.2.5. It is important to notice that the Toledo invariant
does not only depend on the fundamental group but also on the
underlying surface. For example the surfaces Σ0,3 and Σ1,1 have
fundamental groups

Γ0,3 = 〈C1, C2, C3|C3C2C1 = e〉, Γ1,1 = 〈A,B,C|[A,B]C = e〉

which are isomorphic as abstract groups, because both are free of
rank 2. But clearly the Toledo invariant depends on the underlying
surface.

Later we will need another form of the Toledo invariant which is also
due to Burger, Iozzi and Wienhard [18, Ch.7] expressing the Toledo
invariant in terms of a generalized rotation numbers.

Let B ⊂ G be a closed subgroup. Consider the long exact sequence
induced by the coefficient sequence:

0 −→ Homc(B,R/Z)
δ−→ Ĥ2

cb(B,Z) −→ Ĥ2
cb(B,R) ≃ H2

cb(B,R) −→ . . . ,
(2.6)

where Ĥ• is the Borel cohomology as defined in [18, Sec. 2.3].

For κ ∈ Ĥ2
cb(B,Z), we denote its image in Ĥ2

cb(B,R) by κR. If
κR = 0, we have κ = δ(fB) and fB is unique. Note that for amenable
groupsB (e.g. compact or abelian groups)H2

cb(B,R) = 0. Therefore
the following definition makes sense.

Definition 2.2.6. Let κ ∈ H2
cb(G,Z). Then the map

Rotκ :

{
G→ R/Z
g 7→ f〈g〉(g)
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is called the rotation number of G.

From the definition there are some immediate consequences ([18,
Lemma 7.2]):

Proposition 2.2.7. (i) The rotation number is conjugation in-
variant,

(ii) if κR|B = 0, then the rotation number is continuous homomor-
phism and δ(Rotκ |B) = κB,

(iii) if σ : G1 → G2 is a continuous homomorphism and κ1 =
σ∗(κ2) then

Rotκ1(g1) = Rotκ2(σ(g1)).

Let now R̃otκ : G̃→ R be the unique lift of Rotκ with R̃otκ(e) = 0.
Then

Theorem 2.2.8. [18, Thm. 12] Let κ ∈ H2
cb(G,Z). Let m ≥ 1 and

̺ : Γg,m → G a representation. Choose a lift ˜̺ : Γg,m → G̃. Then

T̺,κ = −
m∑

i=1

R̃otκ(˜̺(Ci)).

To state a the similar theorem for the closed surfaces we need the
commutator map. Recall that G̃ is a central extension of G. Then
the commutator map G×G→ G̃ is defined

[g, h]∼ := [g̃, h̃],

where g̃ and h̃ are arbitrary lifts.

Theorem 2.2.9. (Theorem 8.3 in [18]) Let κ ∈ H2
c (G,Z) and ̺ :

Γg → G be a representation. Then

T̺,κ = −R̃otκ




g∏

j=1

[̺(Ai), ̺(Bi)]
∼


 .
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In Section 2.3.4 we will express the (generalized) rotation number
in terms of the Souriau index which enables a computation of the
Toledo invariant using the ̺(Γ)-action on Š rather than on its uni-
versal covering.

2.2.4 Properties of the Toledo Invariant and Max-
imal Representations

We collect here some important properties of the Toledo invariant.

Theorem 2.2.10. ([18, Thm 1, Prop. 3.2])

(i) |T̺| ≤ |χ(Σ)| rkX (Milnor-Wood inequality)

(ii) T• is continuous

(iii) If ∂Σ = ∅, then the image of T• is finite

(iv) If ∂Σ 6= ∅, then T• is surjective on the interval
[
− |χ(Σ)| rkX , |χ(Σ)| rkX

]

(v) Let Σ be a surface divided by a separating loop l into two sub-
surfaces Σ1 and Σ2. Denote by ̺1 and ̺2 the restrictions of ̺
to Σ1 resp. Σ2. Then

T̺ = T̺1 + T̺2

(vi) Let Σ′ be a surface obtained by cutting a surface Σ along a
non-separating loop. Let i : Σ′ → Σ be the canonical map.
Then

Ti∗̺ = T̺.

Definition 2.2.11. A representation ̺ : π1(Σ) → G with maximal
Toledo invariant, i.e.

T̺ = |χ(Σ)| rkX
is called maximal. We denote the set of maximal representations of
Γ into G by Repmax(Γ, G).
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There are some ways to construct maximal representations:

Example 2.2.12. A representation ̺ : Γg,m → PSL(2,R) is a hy-
perbolization for Σg,m if and only it is maximal.

Example 2.2.13. Let ̺i : Γ → PSL(2,R) be a family of maximal
representations. Then (̺1, . . . , ̺r) : Γ → PSL(2,R)r is maximal.

Example 2.2.14. Let ̺ : Γ → G a maximal representation and
i : G → H be tight (see [16] for a definition and properties). Then
i ◦ ̺ is maximal as well.

Here is the structure theorem for maximal representations due to
Burger, Iozzi and Wienhard:

Theorem 2.2.15. ([18, Thm.5]) Let G be a connected semisimple
algebraic group defined over R such that G = G(R)◦ is Hermitian.
Let ̺ : Γ → G be a maximal representation Then

(i) ̺ is injective with discrete image,

(ii) the Zariski closure H < G of the image of ̺ is reductive,

(iii) the reductive Lie group H := H(R)◦ has compact centralizer
in G and the symmetric space Y associated to H is Hermitian
of tube type,

(iv) ̺(Γ) stabilizes a maximal tube type subdomain T ⊂ Y.

Maximal representation are characterized by the existence of an
equivariant boundary map with a certain monotonicity property:

Definition 2.2.16. A triple in D is called maximal if it positively
oriented. A triple in Dr is maximal if all its components are maximal.
A triple in Š is maximal if it is contained in the boundary of a
maximal polydisc and maximal there. A map S1 → Š is monotone
if it maps maximal triples to maximal triples.



62 CHAPTER 2. PRELIMINARIES

Remark 2.2.17. In Section 2.3.1 we introduce the Maslov index β,
which is a skew-symmetric, G-invariant map from Š3 to R. It clas-
sifies orbits of transversal triples in Š3. A triple in Š is maximal as
defined above if and only if its Maslov index is maximal.

For the following theorem fix a hyperbolization h of the surface Σg,m.
It yields an action of Γg,m on S1.

Proposition 2.2.18. A representation ̺ : Γg,m → G is maximal
if and only if there exists a map ϕ : S1 → Š with the following
properites:

(i) ϕ maps transverse pairs to transverse pairs,

(ii) ϕ is ̺-equivariant,

(iii) ϕ is monotone,

(iv) ϕ is left-continuous.

This is Theorem 8 in [18].

Remark 2.2.19. For closed surfaces the limit curve is continuous (see
[13, 15]). We will show continuity for a class of representations for
surfaces with boundary (Section 4.1).

2.3 Maslov Index and Rotation Numbers

2.3.1 The Maslov Index

Originally the Maslov index was defined for transverse triples of
Lagrangian subspaces. Clerc and Ørstedt extended the definition
from the space of Lagrangians to the Shilov boundary Š of a bounded
symmetric domain of tube type. In [25] they defined it for triples
of pairwise transverse points in Š using Jordan algebra techniques
and show that is classifies orbits of such triples. Clerc extended this
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definition to arbitrary triples in the Shilov boundary of bounded
symmetric domains of tube type ([20]) and later also to the non
tube type case ([21]).

Since we only need the Maslov index for tube type domains, we
will restrict ourselves to this case. Before recalling the definition for
general triples from [20] we first present the definition of the Maslov
index for triples of pairwise transverse points in Š following [25]. Fix
a Jordan frame {ci}. Let

εk :=

k∑

i=1

ci −
r∑

i=k+1

ci ∈ Š.

Proposition 2.3.1. ([25, Thm. 4.3]) There are r + 1 orbits of
pairwise transverse triples in S3. Each εj represents one orbit.

Now we define

Definition 2.3.2. Let (x1, x2, x3) a triple of pairwise transverse
points in Š. The Maslov index β is

β(x1, x2, x3) = 2k − r,

if (x1, x2, x3) is in the orbit of (−e,−iεk, e).

We will now sketch the definition of the Maslov index for general
triples, which is due to Clerc in [20]. Let c be the Kähler cocycle
defined in Section 2.2.2. We want to extend c to Š3 representing
points in Š as endpoints of certain curves in D.

Definition 2.3.3. Let x ∈ Š. Let γ : [0, 1] → D̄ be a C1- curve
with γ(0) = x and γ(t) ∈ D for t ∈ (0, 1]. Then γ is a Γ-radial curve
in x, if there exists g mapping D isometrically to TΩ and γ(0) to 0
such that

d

dt
(gγ(t))|0 ∈ iΩ.
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Theorem 2.3.4. ([20, Thm. 3.3]) Let (x1, x2, x3) ∈ Š3 and γ1, γ2
and γ3 Γ-radial curves in x1, x2 and x3 respectively. Then

β(x1, x2, x3) := lim
t→0

1

π
c(γ1(t), γ2(t), γ3(t))

exists. It is independent of the chosen Γ-radial curves and it takes
its values in [−r, r]. If z1, z2 and z3 are pairwise transversal, then
β defined here coincides with the Maslov index defined above.

Definition 2.3.5. The function β defined above is theMaslov index.
A triple (x1, x2, x3) ∈ Š3 with β(x1, x2, x3) = r is maximal ; it is
minimal if β(x1, x2, x3) = −r.

Proposition 2.3.6. ([20, Thm 3.5]) The Maslov index β has the
following properties:

(i) β is G-invariant.

(ii) β(x1, x2, x3)+β(x1, x3, x4) = β(x2, x3, x4)+β(x1, x2, x4) (Co-
cycle property).

(iii) β is skew-symmetric.

(iv) On the set of transverse triples β takes values in {−r,−r +
2, . . . , r − 2, r} and it classifies G-orbits of transverse triples.

Remark 2.3.7. The Maslov index β(x1, x2, x3) can be seen as the
area of an ideal triangle with vertices x1, x2 and x3.

Example 2.3.8. For the unit disc D the Maslov index becomes
particularly easy; it coincides with the orientation cocycle o. Let
(x1, x2, x3) ∈ (S1)3. Then:

o(x1, x2, x3) =





1 if (x1, x2, x3) is positively oriented

−1 if (x1, x2, x3) is negatively oriented

0 else.
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Example 2.3.9. Let D = P = Dr. Then the Shilov boundary
is equal to (S1)r and we can define the Maslov index for a triple
x1 = (λ1, · · · , λr), x2 = (µ1, . . . , µr) and x3 = (σ1, . . . , σr):

β(x1, x2, x3) =
∑

o(λi, µi, σi).

Let {ci} be a Jordan frame in a bounded symmetric domain D as-
sociated with the Jordan algebra V . If

x1 =
∑

λici, x2 =
∑

µici, x3 =
∑

σici,

with λi, µi, σi ∈ S1, then

β(x1, x2, x3) =
∑

o(λi, µi, σi).

Example 2.3.10. We denote by Sp(W ) the group of linear transfor-
mations of W which leave ω invariant. We define the Maslov index
for triples of Lagrangians. Let L1, L2, L3 be Lagrangian subspaces.
Then

q :

{
L1 ⊕ L2 ⊕ L3 → R
(x1, x2, x3) 7→ ω(x1, x2) + ω(x2, x3) + ω(x3, x1)

is a quadratic form on the vector space L1 ⊕ L2 ⊕ L3. The Maslov
index of (L1, L2, L3) is defined to be the signature of this quadratic
form. It is an integer which takes values between −n and n. For
triples of pairwise transverse triples, it only takes values {−n,−n+
2, . . . , n−2, n} and it classifies the Sp(W )-orbits of transverse triples
of Lagrangian subspaces. Furthermore it satisfies the cocycle prop-
erty:

β(L1, L2, L3)− β(L1, L2, L4) + β(L1, L3, L4)− β(L2, L3, L4) = 0.

The space of Lagrangians ofW forms a boundary of the Siegel upper
half plane (cf. Example 2.1.36), which is a Hermitian symmetric
space of tube type.
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Example 2.3.11. For several interesting configuration of (x1, x2, x3),
the Maslov index has an explicit interpretation for G = Sp(2n,R).
Recall that the Shilov boundary of the associated bounded symmet-
ric domain has an open dense subset, which is mapped to V under
the Cayley transform (see Section 2.1.1). For G = Sp(2n,R) the Jor-
dan algebra V is precisely the set of symmetric real n× n-matrices.
Given a triple (x1, x2, x3) ∈ V 3, assume that x1 and x3 as well as
x2 and x3 are transversal . Since G acts transitively on transverse
pairs there exists g̃ ∈ G mapping the ordered pair (x1, x3) to (0,∞).
Furthermore, since g̃x2 is a symmetric, it is diagonalisable via con-
jugating with an element k from O(n). But this conjugation can
be expressed in terms of the action of G(Ω) on V and we can as-
sume gx2 is diagonal (see Section 2.1.5). Since the Maslov index is
G-invariant, we get

β(x1, x2, x3) = β(0, g.x2,∞).

But since 0, gx2 and∞ are codiagonal, they are in the same polydisc
(see Example 2.1.6). In particular the Maslov index is the sum of
the Maslov index of the orientation cocycles in the factors of the
polydisc. This shows that the Maslov index β(0, g.x2,∞) is the
signature of the symmetric bilinear form defined by gx2.

In particular β can be calculated using the signs of the eigenvalues
of g · x2 and it takes values between −n and n.

Remark 2.3.12. Definition 2.3.3 shows that the Maslov index is also
defined for triples in V . For V = R, the Maslov index βR is the
unique antisymmetric map with βR(x1, x2, x3) = 1 if x1 < x2 < x3
and βR(x1, x2, x3) = 0 if xi = xj for i 6= j.

Now let V be an arbitrary Euclidean Jordan algebra. If x1, x2, x3 ∈
V , then there exists g ∈ G(TΩ) and a Jordan frame {c1, . . . , cr} such
that

gx1 =
∑

λici, gx2 =
∑

µici, gx3 =
∑

σici,

with λi, µi, σi ∈ R. Then

β(x1, x2, x3) =
∑

β(λi, µi, σi).
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2.3.2 The Kähler Class and the Maslov Index

Let c be the Kähler cocycle on D. We define:

cG(g1, g2, g3) :=
1

2π
c(g10, g20, g30),

where 0 ∈ D is an arbitrary base point. We use the same factor
1
2π as in [14, Ch. 4]. From the properties of c we see that cG is a
homogeneous cocycle for G. It defines a cohomology class κG, the
Kähler class and a bounded cohomology class κbG ∈ H2

cb(G,R).

The Maslov index defines a cohomology class κβ via the homoge-
neous cocycle on G defined by:

cβ,b(g1, g2, g3) := β(g1b, g2b, g3b).

Note that cβ,b and cβ,b′ are maybe not equal, but they are cohomol-
ogous ([14, Prop 4.3]).

Proposition 2.3.13. ([14, Prop.4.3])

κβ = 2κG.

2.3.3 The Souriau Index

Let G be a Hermitian Lie group of tube type, D its associated
bounded symmetric domain and Š its Shilov boundary, realized as a
subset of the Jordan algebra V C. The universal covering Š, denoted
by Ř, is given by

Ř = {(σ, θ)|σ ∈ Š, θ ∈ R, det V Cσ = eirθ},

where r = rkG ([23, Thm 3.5]). Denote by G̃ the universal cover of
G.

Definition 2.3.14. Let σ̃1 = (σ1, θ1), σ̃2 = (σ2, θ2) ∈ Ř. They are
transversal (σ̃1 ⋔ σ̃2) if σ1 and σ2 are transversal.
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Let σ̃1 ⋔ σ̃2 and g̃ ∈ G̃ such that

g̃σ̃1 =
(∑

eiθjcj , θ
)
, g̃σ̃2 =

(∑
eiϕjcj , ϕ

)
.

Note that transversality is equivalent to σi 6= θi for all i. Define the
Souriau index for transversal points:

m(σ̃1, σ̃2) =
1

π

[∑
{θj − ϕj + π} − r(θ − ϕ)

]
,

where {x} is the unique representative of [x] mod 2π in (−π, π).
If σ̃1 and σ̃2 are not transversal then define

m(σ̃1, σ̃2) := β(σ1, σ2, σ3) +m(σ̃1, σ̃3) +m(σ̃3, σ̃2),

where σ̃3 := (σ3, θ3) ∈ Ř is transversal to σ̃1 and σ̃2 and β is the
Maslov index defined above.

The following proposition collects properties of the Souriau index
([23, Prop. 5.3 and 5.4]):

Proposition 2.3.15. The Souriau index is skew-symmetric, i.e.
m(σ̃1, σ̃2) = −m(σ̃2, σ̃1) and G̃-invariant.

Remark 2.3.16. By [23, Thm. 6.1] we have the following relation be-
tween the Souriau-index and the Maslov index on the Shilov bound-
ary: let a, b, c ∈ Š and ã, b̃, c̃ ∈ Ř be arbitrary lifts. Then

β(a, b, c) = m(ã, b̃) +m(b̃, c̃) +m(c̃, ã). (2.7)

Proposition 2.3.17. Let x̃1, x̃2 ∈ Ř two lifts of x ∈ Š and ỹ ∈ Ř.
Then

m(x̃1, x̃2) = m(x̃1, ỹ) +m(ỹ, x̃2).

Proof. We use Formula 2.7. We have:

0 = β(x, x, y) = m(x̃1, x̃2) +m(x̃2, ỹ) +m(ỹ, x̃1)

and the statement follows from the skew-symmetry of m.
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Immediate consequences from Proposition 2.3.17 and theG-invariance
are:

Lemma 2.3.18. Let g ∈ G and x ∈ Š fixed by g. Let g̃ ∈ G̃ and
x̃ ∈ Ř be lifts. Then m(g̃nx̃, x̃) = n ·m(g̃x̃, x̃).

Lemma 2.3.19. Let x ∈ Š and x̃ ∈ Ř a lift. Let H < G̃ be the lift
of the stabilizer of x in G. Then

m( · x̃, x̃) : H → R

is a homogeneous quasimorphism.

Lemma 2.3.20. Let g ∈ G, y ∈ Š a fixed point of g and x ∈ Š an
arbitrary point. Let x̃ and ỹ be arbitrary lifts of x and y and g̃ a lift
of g which fixes ỹ ∈ Ř.

Then
β(y, gx, x) = m(g̃x̃, x̃).

Proof. By Formula (2.7) and the assumptions we have

β(y, gx, x) = m(ỹ, g̃ · x̃) +m(g̃ · x̃, x̃) +m(x̃, ỹ).

By G̃-invariance and skew-symmetry we have m(ỹ, g̃x̃) +m(x̃, ỹ) =
0.

Remark 2.3.21. Let σ1, σ2 ∈ Š transversal. Let k ∈ K such that

kσ1 =
∑

eiθjcj , kσ2 =
∑

eiϕjcj,

for some Jordan frame {cj}. As in [23, Ch.5] we define

Ψ(σ1, σ2) :=
∑

{θj − ϕj + π}.

If σ1 and σ2 are not transversal, there exists σ3 ∈ Š transversal to
both of them and we define

Ψ(σ1, σ2) := πβ(σ1, σ2, σ3) + Ψ(σ3, σ2) + Ψ(σ1, σ3).



70 CHAPTER 2. PRELIMINARIES

In particular

β(σ1, σ2, σ3) =
1

π

[
Ψ(σ1, σ2) + Ψ(σ2, σ3) + Ψ(σ3, σ2)

]
. (2.8)

Ψ is invariant under K and skew-symmetric ([23, Prop.5.4]).

An important property of Ψ is [23, Formula (16)]:

e2iΨ(σ,τ) = (detσ)2(det τ)−2,

where det is the Jordan algebra determinant.

Proposition 2.3.22. Fix b ∈ Š. Then the map

f :

{
K → R/Z
k 7→

[
1
πΨ(b, kb)

]

is a homomorphism. It does not depend on b.

Proof. Let k1, k2 ∈ K. Then

e2iΨ(b,k1k2b) = (det b)2(det k1k2b)
−2 = χ(k1k2)

−2(det b)2(det b)−2

=χ(k1)
−2(det b)2(det b)−2χ(k2)

−2(det b)2(det b)−2 = e2i
(
Ψ(b,k1b)+Ψ(b,k2b)

)
,

where χ is the character on Str(V C) introduced in Definition 2.1.24.
Therefore f is a homomorphism.
Now we show independence of b: let b, b′ ∈ Š. Then there exists
l ∈ K such that b′ = lb. Then Ψ(b′, kb′) = Ψ(b, l−1klb) for all
k ∈ K. Since f is a homomorphism into the abelian group R/Z,
Ψ(b, l−1klb) = Ψ(b, kb), for all k. Hence f does not depend on b.

2.3.4 The Rotation Number and the Souriau In-
dex

Recall κβ ∈ H(G,Z), defined in Section 2.3.2. We will express the
rotation number Rotκβ

in terms of the map Ψ defined in Section
2.3.3.
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Proposition 2.3.23. Fix b ∈ Š. Given g ∈ G, let g = geghgu its
refined Jordan decomposition. Let k ∈ C(ge) ∩ K, where C(ge) is
the conjugacy class of ge. Then

Rotκβ
(g) =

[
1

π
Ψ(b, kb)

]
∈ R/Z.

For the refined Jordan decomposition see [44] or [4].

Proof. Recall that 1
πΨ(b, kb) defines a homomorphism K → R/Z

(Proposition 2.3.22). Define B := 〈g〉. Given h, h′ ∈ B the refined
Jordan decompositions are compatible, i.e. h′e, h

′
u, h

′
h, hu, he, hh com-

mute pairwise. Since Rot is conjugation invariant ([18, Lem.7.2]),
we can assume that the elliptical part k of g in the refined Jordan
decomposition is in K. Under this assumptions this holds for all
elements in B, because the Jordan decompositions are compatible.
We are searching for fB : B → R which defines a homomorphism
B → R/Z and such that ∂fb is a representative of κβ . Let g = gughk
be the refined Jordan decomposition of g. Choose b ∈ Š such that
gugh fixes b. Then for any h ∈ B, huhh fixes b, since h is the limit of
powers of g and their refined Jordan decompositions are compatible.
Now we define

fB :

{
B → R
h 7→ 1

πΨ(b, hb).

Note that Ψ(b, kb) = Ψ(b, heb) and therefore by Proposition 2.3.22
it defines a homomorphism B → R/Z.
It remains to show δfB = κβ|B . Let g1, g2 ∈ B and denote by
k1, k2 ∈ K the respective elliptic parts of the refined Jordan decom-
position:

δfB(g1, g2) =fB(g1)− fB(g1g2) + fB(g1)

=Ψ(b, k1b)−Ψ(b, k1k2b) + Ψ(b, k2)

=
1

π
[Ψ(b, k1b) + Ψ(k1b, k1k2b) + Ψ(k1k2b, b)]
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=β(b, k1b, k1k2b) = β(b, g1b, g1g2b),

where we used K-invariance of Ψ and Formula (2.8). This finishes
the proof, because β(b, g1b, g1g2b) is an inhomogeneous cocycle defin-
ing κβ (c.f. Section 2.2.1).

Definition 2.3.24. Let G be a group and f : G → R be a map.
Then f is a quasimorphism, if there exists C ∈ R such that

|f(gh)− f(g)− f(h)| ≤ C, ∀g, h ∈ G.

A quasimorphism is homogeneous, if f(gn) = nf(g) for all g ∈ G
and n ∈ N.

Proposition 2.3.25. Let

τ(g̃) := lim
n→∞

m(b̃, g̃nb̃)

n
.

be the homogenization of g̃ 7→ m(b̃, g̃b̃). Then τ is a quasimorphism
of G̃ and

τ = −R̃otκβ

Proof. First note that τ does not depend on b̃ (cf. [23, Ch.10]).

Since τ(e) = R̃otκβ
(e) = 0 it is enough to show that

τ(g̃) = −Rotκβ
(g) mod Z

for g ∈ G and g̃ any lift, because the lifts of both sides are unique.
First note that both sides are conjugation invariant and only depend
on the elliptic part of the refined Jordan decomposition of g. Hence
it is enough to show this equality for g = k ∈ K.
By Proposition 10.4 in [23] and Proposition 2.3.23 we have

e2iπτ(k̃) = χ(k)2 = e−2iπΨ(b,kb)/π = e−2iπRotκβ

for all k ∈ K and all lifts k̃ of k.
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Corollary 2.3.26. Let g ∈ G and x ∈ Š a fixed point of g. Let
g̃ ∈ G̃ and x̃ ∈ Ř be lifts. Then

R̃otκβ
(g̃) = m(g̃x̃, x̃)

and R̃otκβ
(g̃) = 0 if g̃ has a fixed point in Ř.

Proof. We calculate

τ(g̃) = lim
n→∞

m(g̃nx̃, x̃)

n
= lim
n→∞

n ·m(g̃x̃, x̃)

n
= m(g̃x̃, x̃),

where we have used Lemma 2.3.18.

Recall the classical translation number T on ˜PSL(2,R). Let g ∈
PSL(2,R) and g̃ ∈ ˜PSL(2,R) a lift and x̃ ∈ R. Then:

T (g̃) = lim
n→∞

g̃nx̃− x̃

n
.

Remark 2.3.27. The number T (g̃) is independent of x̃. If g ∈
PSL(2,R) has a fixed point x ∈ S1 and g̃ and x̃ are lifts, then
T (g̃) = g̃x̃− x̃.

Proposition 2.3.28. Let g ∈ PSL(2,R) and g̃ ∈ ˜PSL(2,R) a lift.

R̃otκβ
(g̃) = −T (g̃).

Proof. The map T satisfies T (e) = 0 and

−T (g̃) = Rotκβ
mod Z

(see Proposition 2.3.23 and Remark 2.3.21). Hence−T (g̃) = R̃otκβ
(g̃).

We finish this subsection with a short lemma, which we will need
later.
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Lemma 2.3.29. Let f be a homogeneous quasimorphism. Then
f(g) = −f(g−1).

Proof. Since f(e) = f(en) = nf(e) for all n ∈ N, f(e) = 0. By the
definition of quasimorphism we have:

n|f(g) + f(g−1)| = |f(gn) + f(g−n)− f(e)| ≤ r

for all n ∈ N, hence f(g) + f(g−1) = 0.

2.4 Limit Curves

One of the most important properties of maximal representations
̺ : Γ → G is the existence of a boundary curve from some boundary
of Γ into Š, the Shilov boundary of the Hermitian Lie group G. In
this section we will shortly recall the construction of limit curve. Let
D be the bounded symmetric domain associated with G and Š its
Shilov boundary. The following results are due to Burger, Iozzi and
Wienhard ([12, 14, 18] and the references therein).

The most general statement is

Theorem 2.4.1. ([14, Thm. 4.7]) Let G be a connected semisimple
algebraic group defined over R, G = G(R)◦ and let P be a mini-
mal parabolic subgroup defined over R. Assume that the continuous
homomorphism ̺ : H → G has Zariski dense image and let (B, ν)
be a Poisson boundary for H such that the diagonal H-action on
(B ×B, ν × ν) is ergodic.
Then there exists a measurable H-equivariant map ϕ : B → G/P .
Moreover, any such map verifies that for almost every (b1, b2) ∈ B2,
the images ϕ(b1), ϕ(b2) are transverse.

See [12, Ch.7] for a proof.
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Remark 2.4.2. Such a Poisson boundary exists for any finitely gen-
erated group with finite generating set S and measure

µ :=
1

2|S|
∑

s∈S

(δs + δs−1)

([12, Prop. 6.1]).

Let h : Γg,m → PSL(2,R) be a hyperbolization for Σg,m with m
cusps, i.e. the realization of Γg,m as a lattice in PSL(2,R). This in-
duces an action of Γg,m on S1. Later there will be ̺◦h−1-equivariant
maps from S1 into Š for a given maximal representation Γg,m → G
and we will shortly write ̺-equivariant map.

Note that S1 equipped with the round measure λ is a Poisson bound-
ary for Γg for (̺(Γg), µ). Let ̺ : Γg,m → G be a maximal, then
Theorem 2.4.1 gives a ̺-equivariant map ϕ : S1 → Š.

It is monotone, i.e. it maps positive/negative triples in S1 to maxi-
mal/minimal triples in Š.

This leads to the following characterization of maximality ([18, Thm.
8]):

Theorem 2.4.3. The representation ̺ : Γ → G is maximal if and
only if there exists a limit curve ϕ : S1 → G which is left continuous,
monotonous and ̺-equivariant, where Γ acts on S1 via h.

Remark 2.4.4. For maximal representations of Γg, the limit curve ϕ
is continuous ([13]).

The following theorem summarizes further properties of the limit
curve:

Theorem 2.4.5. ([18, Thm. 5.1]) Let ̺ : Γg → G be a maximal
representation with Zariski dense image. Then there are two Borel
maps

ϕ± : S1 → Š

with the following properties
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(i) ϕ+ and ϕ− are strictly ̺-equivariant,

(ii) ϕ− is left continuous and ϕ+ is right continuous,

(iii) for every x 6= y, ϕǫ(x) is transverse to ϕδ(y) for all ǫ, δ ∈
{+,−},

(iv) for all x, y, z ∈ S1

βŠ(ϕǫ(x), ϕδ(y), ϕη(z)) = rXβ(x, y, z),

for all ǫ, δ, η ∈ {+,−}.

Moreover ϕ+ and ϕ− are the unique maps satisfying (1) and (2).

In Appendix A.3 we prove:

Proposition 2.4.6. Let ̺ : Γg → G be a maximal representation.
Then the limit curve ϕ for ̺ is unique.

Let ̺ : Γg,m → PSL(2,R) be a hyperbolization. Denote by L the
limit set of ̺(Γg,m) in S1 and by µPS its Patterson-Sullivan measure.
Then (L, µPS) is a Poisson boundary for ̺(Γg,m) and we can apply
this combined with Theorem 2.4.1 to obtain results as Theorem 2.4.3
and Theorem 2.4.5 for non-closed surfaces (see Section 4.1).

2.5 Hitchin representations

Another branch of higher Teichmüller theory is the study of Hitchin
representations.

Let G be a split real group. We define

Rep+(Γg, G) := Hom+(Γg, G)/G,

where Hom+(Γg, G) is the set of reducible representations.
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Hitchin identified in [40] connected components of Rep+(Γg, G) which
are homeomorphic to R(2g−2) dimG. Their elements are characterized
as follows: since G is a split real Lie group, there exists a unique
irreducible representation i : PSL(2,R) → G. A representation
̺ : Γg → G is called Fuchsian if ̺ = i◦̺′, where ̺′ : Γg → PSL(2,R)
is a hyperbolisation.

Definition 2.5.1. A Hitchin component of Rep+(Γg, G) is a com-
ponent which contains Fuchsian representations.

Geometric properties of Hitchin representations have been studied
by Labourie [47, 45, 46]. They share the following properties with
maximal representations [47]

(i) They are faithful and have discrete image,

(ii) they admit limit curves from S1 to some boundary of symmet-
ric space associated with G,

(iii) they have the Anosov property.

See also Theorem in 6.1 [13], Proposition 2.2.18 and Theorem 2.2.15.
The group Sp(2n,R) is the only Hermitian Lie group which is also
split-real. Therefore one can define maximal representations as well
as Hitchin representations for it. The Hitchin components form a
proper subset of the maximal representations.
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Chapter 3

Parameters for
Representation
Varieties

3.1 The Geometric Idea behind the Pa-
rameters

3.1.1 The SL(2,R)-Case

In this section we explain the geometric idea behind Theorem 1.3.1
by discussing the case G = Sp(2,R) = SL(2,R).

The most important fact here is that Theorem 2.2.8 formulates in
this situation as follows:

Theorem 3.1.1. . Let ̺ : Γg,m → PSL(2,R) be a representation.

79
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Choose a lift ˜̺ : Γg,m → ˜PSL(2,R). Then

T̺ =

m∑

i=1

T (˜̺(Ci)).

Let now ̺ : Γ0,3 → Sp(2,R) = SL(2,R) be a hyperbolization (i.e. a
maximal representation). For the sake of simplicity we assume that
ci := ̺(Ci) is hyperbolic for all i, i.e. we assume the surface to have
three geodesic boundary components and no cusps. Nevertheless the
following discussion works along precisely the same lines if one or
more of the generators are parabolic. Denote by c+i the attractive
and by c−i the repellent fixed point of ci.

The discussion in the SL(2,R) case relies on four observations:
First observe that the fixed points of the hyperbolic isometries ci
are as in the relative position as indicated in Figure 3.1. Indeed, the
ci correspond to geodesic boundary components of Σ0,3. Choosing
a universal cover embedded in D shows that the axis and hence the
endpoints of these axes are as in Figure 3.1. We can formalize this
to:

o(c±1 , c
±
2 , c

±
3 ) = 1,

where o is the orientation cocycle for triples of S1 introduced in
Section 2.3.1. This is a first constraint for the fixed points of the ci.

The second observation concerns the position of c1 · c+3 , c2 · c+1 and
c3 · c+2 relative to the c±i . We will show that maximality implies the
relative positions are as in as in Figure 3.1. Therefore we get with
the formula in Theorem 3.1.1:

T̺ = T (c̃1) + T (c̃2) + T (c̃3),

where the c̃i ∈ ˜SL(2,R) generate a lift of the representation ̺ into

˜SL(2,R) and T is the translation number on ˜SL(2,R) (Definition
3.1.1). We can choose the lifts of, say, c1 and c2 such that they have
fixed points in R = S̃1, because the ci all have fixed points in S1. In
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c−1

c+1
c−2

c+2

c−3
c+3

c1 · c+3

c2 · c+1

c3 · c+2

Figure 3.1: S1

c̃+3 c̃−1 c̃+1 c̃−2 c̃+2 c̃−3 c̃+3

c̃1c̃2

Figure 3.2: R with the dynamics of c̃1 and c̃2.

this case we have T (c̃1) = T (c̃2) = 0, hence T̺ = T (c̃3) = −T (c̃2c̃1).
The second equality follow from the fact that the translation number
T is a homogeneous quasimorphism (Proposition 2.3.25 and Propo-
sition 2.3.28). By Remark 2.3.27 we have T (c̃2c̃1) = c̃2c̃1c̃

+
3 − c̃+3 , so

this reduces the calculation of T̺ to

T̺ = c̃+3 − c̃2c̃1c̃
+
3 .

Now we can calculate of the relative position of c1 · c+3 . In Figure
3.2 you see the universal cover R of S1 as well as lifts of c±i . Recall

c̃+3 c̃−1 c̃+1 c̃−2 c̃+2 c̃−3 c̃+3

A B C

Figure 3.3: R with the intervals A, B and C.
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that we have chosen c̃1 and c̃2 such that they fix all lifts of c±1
resp. c±2 . The arrows indicate the direction of displacement for c̃1
resp. c̃2. The lifts of attractive fixed points remain attractive in a
neighborhood, the lifts of repellent ones remain repellent.

Consider now Figure 3.3 and recall that by assumption T̺ = c̃+3 −
c̃2c̃1c̃

+
3 = 1. Hence c̃2c̃1c̃

+
3 = c̃+3 . By definition of the action of

c̃1, we know that c̃1c̃
+
3 is either in A, B or C. If it would be in

C, then c̃2c̃1c̃3 would be in C as well, and T (c̃2c̃1) = 0, which is
a contradiction. For the same reason it cannot be in B. Hence it
has to be in A. Hence c1 · c+3 is in the relative position indicated in
Figure 3.1. The same argument can be used for the relative position
of c3 ·c+2 and c1 ·c+3 , but they can also be determined using properties
of the orientation cocycle on S1. One can summarize this discussion
to:

o(c+1 , c1 · c+3 , c+2 ) = o(c+2 , c2 · c+1 , c+3 ) = o(c+3 , c3 · c+2 , c+1 ) = 1. (3.1)

The first two equalities follow from the PSL(2,R)-invariance and
skew-symmetry of 0 and the relation c3c2c1 = e.

Remark 3.1.2. In the discussion above we only used that the c+i are
fixed points of the ci. It also works if we replace some c+i by c−i and
it also works for representations where one or more generators are
parabolic.

The first and the second observation led to Theorem 1.3.2.

The third observation is the following calculation, which shows that
for every maximal triple f1, f2, f3 ∈ S1 and every triple z1, z2, z3 ∈
S1 with

o(f1, z2, f2) = o(f2, z3, f3) = o(f3, z1, f1) = 1, (3.2)

there exists a maximal representation ̺ : Γ0,3 → SL(2,R) = Sp(2,R),
such that fi is a fixed point of ̺(Ci) =: ci and

z1 = c3 ·f2 = c−1
1 ·f2, z2 = c1 ·f3 = c−1

2 ·f3, z3 = c2 ·f1 = c−1
3 ·f1.
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Note that if ̺ exists, it is automatically maximal by Theorem 1.3.2.

From now on we perform our calculations in the upper half plane
model H2 of hyperbolic 2-space, because Condition (3.2) as well as
the calculation with matrices become particularly easy there. In-
deed, the orientation cocycle carries over to the antisymmetric co-
cycle o on ∂H2 = R∪{∞} with o(x1, x2, x3) = 1 if x1 < x2 < x3 and
o(x1, x2, x3) = 0 if x1 = x2 Recall that we investigate representations
up to conjugation. Hence we can assume that (f1, f2, f3) = (0, 1,∞),
because SL(2,R) acts 3-transitively on maximal triples. Now our as-
sumptions for the zi become:

o(z1, 0, 1) = o(0, z2, 1) = o(1, z3,∞) = 1.

and by definition of o we can rephrase that to:

z1 < 0 < z2 < 1 < z3. (3.3)

Recall that the group SL(2,R) acts via Möbius transforms isometri-
cally on H2: (

a b
c d

)
z =

az + b

cz + d
.

This action extends to ∂H2 = R∪ {∞} with the same formula. For
the point ∞ we have:

(
a b
c d

)
∞ =

a

c

and (
a b
c d

)
z = ∞ iff cz + d = 0.

Now we come back to our desired representation. The isometries c1,
c2 and c3 are characterized by:

c1 :





0 7→ 0

z1 7→ 1

∞ 7→ z2

, c2 :





1 7→ 1

z2 7→ ∞
0 7→ z3

, c3 :





∞ 7→ ∞
z3 7→ 0

1 7→ z1

(3.4)
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This characterization determines ci ∈ SL(2,R) up to sign and we can
calculate the ci explicitly. We proceed with the explicit calculation
of c1: Assume

c1 :=

(
a b
c d

)
.

From (3.4) we get:

(
a b
c d

)
0 =

b

d

!
= 0

(
a b
c d

)
z1 =

az1 + b

cz1 + d

!
= 1

(
a b
c d

)
∞ =

a

c

!
= z2

The first condition gives b = 0, the third gives c = a/z2 and from
the determinant condition we get d = 1/a. Together with the second
equation this yields

a2 =
1

−z1(z−1
2 − 1)

and the right-hand side is positive by assumption. Hence we can
choose m1, m2 and m3 such that

z1 = −m2
1, z2 = (m2

2 + 1)−1, z3 = m2
3 + 1. (3.5)

This is possible by (3.3). Conversely for any triple of non-zero mi,
the zi defined via these formulae are in the right position.

Therefore a = 1
m1m2

is a solution for any m1 and m2 chosen as
above. Fixing such a triple (m1,m2,m3), similar calculations as for
c1 give (cf. Section 3.3)

c1 =

(
1

m1m2
0

m2+
1

m2

m1
m1m2

)
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c2 =


 −m2

m3
− m3

m2
− 1

m2m3

m3+
1

m3

m2

−m2+
1

m2

m3

1
m2m3




c3 =

( m1

m3
−m1(

1
m3

+m3)

0 m3

m1

)

A direct computation shows that c3c2c1 = 1. Hence there exists
a representation with the desired properties 3.2. This finishes the
third part.

Remark 3.1.3. In (3.5) we had to chose a sign for mi. This sign does
not affect the action of the ci on D̄. This corresponds to the fact, that
the center of SL(2,R) acts trivially on D̄. Furthermore this sign gives
rise to different connected components of Repmax(Γ0,3, SL(2,R)).

Recall from Remark 1.3.4 that eigenvalues of the ci and the boundary
length of the associated hyperbolic surfaces are related.

The eigenvalues of the ci are:

c1 : m1m2,
1

m1m2
, c2 : − m2

m3
, − m3

m2
, c3 :

m1

m3
,
m3

m1
.

It turns out that they determine the representation uniquely:

We put x1 := 1/m1m2, x2 := m3/m2 and x3 := m3/m1 and get

c1 =

(
x1 0

x1 + x−1
2 x3 x−1

1

)

c2 =

(
−x−1

3 x1 − x2 − x−1
2 x2 + x−1

3 x1
−x−1

3 x1 − x−1
2 x−1

3 x1

)

c3 =

(
x−1
3 −x−1

3 − x−1
1 x2

0 x3

)

These matrices are precisely in the form of the matrices in Theorem
1.3.1 and the xi are coordinates for the representation.

The ci have by construction at least one fixed points in S1. A direct
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calculation shows that each ci has a fixed point fi,

f1 =

(
−1 + x21

)
x2

x1(x1x2 + x3)
, f2 =

x1x2 + x22x3
x1x2 + x3

, f3 =
−x1 − x2x3
x1 (−1 + x23)

.

which may or may not coincide with the given one.

We summarize: any maximal representation ̺ : Γ0,3 → SL(2,R) is
determined by the eigenvalues of its generators and every triple of
non-zero numbers may appear as triple of such generators. But we
want to remark that different triples may define conjugated repre-
sentations.

The forth and last observation concerns fixed points of the genera-
tors and their dynamical properties.

Each xi controls the dynamic of ci in its fixed points. The point f1
is equal to 0 if and only if |x1| = 1. The fixed point 0 is attractive
if and only if |x1| < 1, it is repellent if and only if |x1| > 1. Analog
results hold for the other ci.

Above we have constructed parameters (x1, x2, x3) for maximal rep-
resentations into SL(2,R). But they depend on the choice of the
fixed points (f1, f2, f3). For example the triple (f1, f2, f3) = (c+1 , c

+
2 , c

+
3 )

gives other parameters than (f1, f2, f3) = (c−1 , c
−
2 , c

−
3 ). We want to

use the dynamical characterization of fixed points to obtain unique
coordinates for a representation. We choose for the calculation of
xi the attractive fixed point if the corresponding generator is hy-
perbolic and the unique fixed point if it is parabolic. This yields a
triple (x1, x2, x3) with |xi| < 1 or xi ∈ B.

This proves Proposition 1.2.1 and

Proposition 3.1.4.

Repmax(Γ0,3, SL(2,R)) = {(x1, x2, x3)|xi ∈ (0, 1]∪[−1, 0), x1x2x3 > 0}.

Corollary 3.1.5. Repmax(Γ0,3,PSL(2,R)) = {(x1, x2, x3)|xi ∈ (0, 1]}.

Together with Remark 1.3.4 this proves Proposition 1.2.1
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3.1.2 The Sp(2n,R)-case

Now we generalize this discussion for maximal representations Γ0,3

to Sp(2n,R) and follow the four steps from the SL(2,R)-case.

The main tool for the generalization are the limit curves (Prop.
2.2.18). Let ̺ : Γ0,3 → Sp(2n,R) be a maximal representation. Its
limit curve ϕ : S1 → Š is ̺-equivariant and maps maximal triples
to maximal triples. Therefore every generator c := ̺(Ci) of ̺ has
a fixed point fi = ϕ(c+i ) in Š. Combining (3.1) with the fact that
limit curves map maximal triples to maximal triples we get:

β(f1, f2, f3) = β(f1, c1f3, f2) = β(f2, c2f1, f3) = β(f3, c3f2, f1) = n

It remains to show that any such configuration can come from a
maximal representation. So let (f1, f2, f3) be a maximal triple and
triple (Z1, Z2, Z3) with

β(f1, Z3, f2) = β(f2, Z1, f3) = β(f3, Z2, f1) = n. (3.6)

We may ask if there is a maximal representation ̺ : Γ0,3 → Sp(2n,R)
such that fi are fixed points for ci := ̺(Ci) and the Zj = cjfi? Again
the answer is yes. Note that by Formula (1.1) such a representation
is automatically maximal.

We need a suitable model for our calculations on the Shilov bound-
ary.

Remark 3.1.6. As in the SL(2,R)-case we choose a suitable model
and perform direct calculation with matrices. Since the symmet-
ric space associated with Sp(2n,R) is of tube type, we can turn
to the tube model TΩ = V ⊕ iΩ, where V = Sym(n,R) and Ω =
Sym(n,R)+, the set of symmetric positive matrices. This is a gener-
alized upper half plane model which is only available for tube type
groups.
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Let

(
A B
C D

)
∈ Sp(2n,R) and X ∈ TΩ. Then

(
A B
C D

)
X = (AX +B)(CX +D)−1.

The action of Sp(2n,R) on its bounded symmetric domain D ex-
tends to an action on the Shilov boundary. The Cayley transform,
which maps TΩ to D, maps V ⊂ T̄Ω to an open and dense subset of
Š. It is precisely the set of points transversal to a certain point in
Š (see Section 2.1.4). So it is clear that Sp(2n,R) does not act on
V , since the Shilov boundary is a Sp(2n,R)-orbit. But nevertheless
there exists a ̺(Γ) invariant subset of Š, namely the limit curve.
Furthermore, by Theorem 2.2.18 (i) any two points in the image of
the limit curve are transversal. So we can conjugate the representa-
tion such that the Cayley transform maps ϕ(S1) − {pt} into V . It
remains to add one single point ∞ to V to obtain a ̺(Γ)-invariant
set.

For the calculation with ∞ we have the following formulas:

(
A B
C D

)
∞ = AC−1

and (
A B
C D

)
X = ∞ iff CX +D = 0.

See also Remark 3.2.6.

Remark 3.1.7. A direct calculation shows that the stabilizer of the
maximal triple (0, e,∞) is

{(
A 0
0 A

)∣∣∣∣A ∈ O(n)

}

Since all maximal triples are in the same G-orbit the stabilizers of
maximal triples are conjugate to O(n).
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Since Sp(2n,R) acts three-transitively on maximal triples on the
Shilov boundary, we can assume without loss of generality (f1, f2, f3) =
(0, 1,∞) and summarize (3.6)

c1 :





0 7→ 0

Z1 7→ 1

∞ 7→ Z2

, c2 :





1 7→ 1

Z2 7→ ∞
0 7→ Z3

, c3 :





∞ 7→ ∞
Z3 7→ 0

1 7→ Z1

So we have a system of three equations for each ci and these equation
determine ci up to multiplication with an element of G stabilizing
a maximal triple. Therefore we have more solutions than in the
SL(2,R)-case. We solve these equations completely in Section 3.3.2
where we prove Proposition 3.3.3.

But as in the SL(2,R) case we can use a dynamical criterion to find
a canonical fixed point for every generator. We explain the idea
using a representation ̺ : Γ0,3 → PSL(2,R)r. In this case the Shilov
boundary is (S1)r and the Maslov index is the sum of the orientation
cocycles from each component. As usual we denote the generators by
c1, c2 and c3. We now investigate c1, the investigation for the other
generators works along the same lines. We write c1 = (a1, . . . , ar),
where ai ∈ SL(2,R).

Each ai is either parabolic or hyperbolic, hence it has one or two fixed
points on S1. If ai is hyperbolic, we denote the repellent fixed point
of ai by a

−
i , the attractive fixed point by a+i . If it is parabolic we

denote the unique fixed point by a0. We assume without loss of gen-
erality that a1, . . . , ak are hyperbolic and ak+1, . . . , an are parabolic.
Hence any fixed point of c1 has the form (aǫ11 , . . . , a

ǫ1
k , a

0
k+1, . . . , a

0
n),

where ǫi ∈ {+,−}. Observe that among these we have two canonical
fixed points, namely:

X+ := (a+1 , . . . , a+, a
0
k+1, . . . , a

0
r) and X

− := (a−1 , . . . , a
−
k , a

0
k+1, . . . , a

0
r).

Both are characterized by the dynamical properties of c1: in X
+ the

action is non-expanding, inX− the action is non-contracting (see be-
low for the precise definitions). Proposition 3.3.4 is a generalization
of this fact for Sp(2n,R).
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3.2 A Formula for the Toledo Invariant

Recall Thorem 1.3.2:

Theorem 3.2.1. Let G be a Hermitian Lie group of tube type. Let
̺ : Γ0,3 → G and denote ci := ̺(Ci). Assume that each ci has a fixed
point yi ∈ Š. Then we can express the Toledo invariant as follows:

T̺,κβ
= β(y1, y2, y3) + β(y1, c1 · y3, y2). (3.7)

Remark 3.2.2. The Maslov index is antisymmetric and G-invariant,
hence

β(y1, c1 · y3, y2) = β(y2, c2 · y1, y3) = β(y3, c3 · y2, y1), (3.8)

i.e. we can also express the Toledo invariant in terms of c2y1 or c3y2
and the fixed points y1, y2 and y3.

Remark 3.2.3. Recall that the Maslov index can be seen as the area
of an ideal triangle in D̄ with vertices in Š (cf. Theorem 2.3.4). In
Section 1.1 we defined the Toledo invariant for closed surfaces as an
integral over Σg, which can be identified with a 4g-gon in hyperbolic
2-space.

Proof of Proposition 3.2.1. We will calculate the Toledo invariant
using the following formula from [18, Thm.12]

T̺,κβ
= −R̃otκβ

(c̃1)− R̃otκβ
(c̃2)− R̃otκβ

(c̃3), (3.9)

where the c̃i generate some lift of the representation ̺ to G̃, the
universal covering of G, and R̃ot is the generalized rotation number
introduced in Section 2.3.4. Since this formula is independent of the
chosen lift, we can choose a lift which makes the calculation easier.

We choose c̃1 and c̃2 such that both have fixed points in Ř, which is
possible since c1 and c2 have fixed points in Š. Then c̃3 := (c̃2c̃1)

−1

is a lift of c3 and by definition c̃1, c̃2 and c̃3 generate a representation
of Γ0,3 into G̃.
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Since c̃1 and c̃2 have fixed points in Ř, we have R̃otκβ
(c̃1) = R̃otκβ

(c̃2) =

0 (Corollary 2.3.26). Therefore it suffices to calculate R̃otκβ
(c̃3).

Since R̃ot is a homogeneous quasimorphism ([18, Thm.11]), we have

R̃otκβ
(c̃) = −R̃otκβ

(c̃−1) (see [18] and Prop 2.3.29), hence

R̃otκβ
(c̃3) = R̃otκβ

((c̃2c̃1)
−1) = −R̃otκβ

(c̃2c̃1).

By Corollary 2.3.26, R̃otκβ
(c̃2c̃1) = m(ỹ3, c̃2c̃1ỹ3), since ỹ3 is the lift

of a fixed point of c2c1. Furthermore (Lemma 2.3.17)

m(c̃2c̃1ỹ3, ỹ3) = m(c̃1ỹ3, ỹ3) +m(c̃2c̃1ỹ3, c̃1ỹ3)

We can summarize the discussion above to

T̺ =− R̃otκβ
(c̃1)− R̃otκβ

(c̃2)− R̃otκβ
(c̃3) = −R̃otκβ

(c̃3)

=R̃otκβ
(c̃2c̃1) = m(c̃2c̃1ỹ3, ỹ3) = m(c̃1ỹ3, ỹ3) +m(c̃2(c̃1)ỹ3, c̃1ỹ3)

Now we will express the right hand side in terms of the Maslov index.
By Lemma 2.3.20 we get

m(c̃1ỹ3, ỹ3)+m(c̃2(c̃1ỹ3), c̃1ỹ3) = β(y2, c2(c1y3), c1y3)+β(y1, c1·y3, y3)

and

β(y2, c2(c1y3), c1y3) + β(y1, c1 · y3, y3)
=β(c1 · y3, y2, y3) + β(y1, c1 · y3, y3)
=β(y1, c1 · y3, y2) + β(y1, y2, y3).

In the first step we used G-invariance, the fact that c2c1 = c−1
3 and

the anti-symmetry and in the second step the cocycle property. This
finishes the proof.

Remark 3.2.4. The proof of Proposition 3.2.1 relies on the fact that
m(x̃, g̃x̃) behaves like a homogeneous quasimorphism if x̃ is the lift
of a fixed point of g. Therefore we cannot expect a similar formula
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for representations where one or more generators do not have a fixed
point. In particular the right hand side of the formula only takes a
finite number of values, but since Γ0,3 is free, the Toledo invariant
is surjective on the interval [−r, r], where r is the rank of G ([18,
Thm.1]).

Corollary 3.2.5. Let ̺ be a maximal representation of Γ0,3 into a
Hermitian Lie group G of tube type. Then

(i) each ci := ̺(Ci) has a fixed point yi ∈ Š,

(ii) β(y1, y2, y3) = r,

(iii) β(y1, c1 · y3, y2) = r.

Conversely if ̺ satisfies (i)-(iii), then ̺ is maximal.

Proof. Let ̺ : Γ0,3 → G be a maximal representation. Then (i)
follows from [18, Lemma 8.8]. Properties (ii) and (iii) as well as the
converse follow immediately from Formula 1.1.

Remark 3.2.6. An important consequence of Proposition 3.2.5 (ii)
is the fact that given a fixed point yi of ci, the fixed points of all cj
with j 6= i are transverse to yi. In particular, if we calculate in TΩ
as in Section 3.1.2, we can assume that yi = ∞. Then every fixed
point of cj , i 6= j is contained in V .

3.3 Parameters for Repmax(Γ0,3, Sp(2n,R))

3.3.1 Proof of Theorem 1.3.1

First we introduce and recall some terminology:

Definition 3.3.1. Let G ∈ GL(k,R). Then we denote by σ(G) the
spectrum of G and G is
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(i) contracting if σ(G) ⊂ D,

(ii) expanding if σ(G) ⊂ C− D̄,

(iii) non-expanding if σ(G) ⊂ D̄,

(iv) non-contracting if σ(G) ⊂ C− D.

Let c ∈ Sp(2n,R) and X ∈ T̄Ω a fixed point for c. Then we say that
c is

(i) contracting in X if dc|X is contracting,

(ii) expanding in X if dc|X is expanding,

(iii) non-expanding in X if dc|X is non-expanding,

(iv) non-contracting in X if dc|X is non-contracting

Define
B := {G ∈ GL(n,R)|G contracting.}

and

R := {(X1, X2, X3) ∈ B̄3|X3(X
⊤
2 )−1X1 is symmetric and positive definite}.

Note that
B̄ = {X ∈ GL(n,R)|σ(X) ⊂ D̄}.

and that O(n) acts by component wise conjugation on R. Recall
Γ0,3 = {C3, C2, C1|C3C2C1 = e}.
Recall Theorem 1.3.1:

Theorem 3.3.2. Let f̄ : R → Rep(Γ0,3, Sp(2n,R)) be the map
which assigns to (X1, X2, X3) ∈ R the representation ̺ = f̄(X1, X2, X3)
of Γ0,3 into Sp(2n,R) defined by

̺(C1) := c1 =

(
X1 0

X1 +X−1
2 X⊤

3 (X⊤
1 )−1

)
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̺(C2) := c2 =

(
−X−1

3 X⊤
1 −X2 − (X⊤

2 )−1 X2 +X−1
3 X⊤

1

−X−1
3 X⊤

1 − (X⊤
2 )−1 X−1

3 X⊤
1

)

̺(C3) := c3 =

(
(X⊤

3 )−1 −(X⊤
3 )−1 −X−1

1 X⊤
2

0 X3

)
.

f : R/O(n) → Repmax(Γ0,3, Sp(2n,R)).

For the proof of Theorem 3.3.2 we need two propositions which we
will prove in Section 3.3.2 resp. Section 3.3.3.

Proposition 3.3.3. Let ̺ : Γ0,3 → Sp(2n,R)) be a representation
such that c1 := ̺(C1) fixes 0, c2 := ̺(C2) fixes e and ̺(C3) fixes ∞.
Then there exist X1, X2, X3 ∈ GL(n,R) with X3(X

⊤
2 )−1X1 symmet-

ric such that

c1 =

(
X1 0

X1 +X−1
2 X⊤

3 (X⊤
1 )−1

)

c2 =

(
−X−1

3 X⊤
1 −X2 − (X⊤

2 )−1 X2 +X−1
3 X⊤

1

−X−1
3 X⊤

1 − (X⊤
2 )−1 X−1

3 X⊤
1

)

c3 =

(
(X⊤

3 )−1 −(X⊤
3 )−1 −X−1

1 X⊤
2

0 X3

)
,

and

T̺ =
1

2
(n+ sgnX3(X

⊤
2 )−1X1). (3.10)

Proposition 3.3.4. Let

c =

(
A 0

A+ (A⊤)−1S (A⊤)−1

)
∈ Sp(2n,R), (3.11)

where A is invertible and S symmetric and positive definite.

(i) If σ(A) ⊂ S1 , then 0 is the unique fixed point of c in V .

(ii) If σ(A) * S1, then c has a unique fixed point Y in which
the action is non-expanding. If g maps 0 to Y then gcg−1 =
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(
A′ 0
C′ (A′⊤)−1

)
where A′ has no eigenvalue of absolute strictly

value bigger that 1 and C′ is some n× n-matrix.

In case (i) we call 0, in case (ii) we call Y the canonical fixed point
of c.

Proof of Theorem 3.3.2. First we show that the map f is well-defined.
A direct calculation shows that for c1, c2 and c3 as above, the prod-
uct c3c2c1 is equal to the identity if and only if X3(X

⊤
2 )−1X1 is

symmetric. It remains to show that f̄(X1, X2, X3) does not de-
pend on the representative of the equivalence class in R/O(n). Let
(X1, X2, X3) ∈ R and k ∈ O(n) and c1, c2 and c3 be the generators of
f̄(X1, X2, X3). Then the generators of f̄(kX1k

−1, kX2k
−1, kX3k

−1)
are lc1l

−1, lc2l
−1 and lc3l

−1 where

l =

(
k 0
0 k

)
,

hence f̄(X1, X2, X3) and f̄(kX1k
−1, kX2k

−1, kX3k
−1) are in the

same conjugacy class in Rep(Γ0,3, Sp(2n,R)) and f is well-defined.
Furthermore f̄(X1, X2, X3) is maximal by Formula (3.10) in Propo-
sition 3.3.3.

To show that f is bijective, we construct an inverse map. The main
ingredients are Proposition 3.3.3 and Proposition 3.3.4. Let ̺′ be a
maximal representation and define c′i := ̺′(Ci).

Every c′i is conjugate to some c as in Corollary 1.3.5. Therefore we
can apply Proposition 3.3.4 and each c′i has a canonical fixed point
X+
i (in which it acts non-expandingly). Since the triple (X+

1 , X
+
2 , X

+
3 )

is maximal (Cor. 3.2.5), there exists h ∈ Sp(2n,R) which maps this
triple to (0, e,∞). Therefore the images of C1, C2 resp. C3 under
the representation ̺ := h̺′h−1 fix 0, e resp. ∞. We can apply
Proposition 3.3.3 and get (X1, X2, X3) with X3(X

⊤
2 )−1X1 symmet-

ric positive definite, such that ̺ = f̄(X1, X2, X3). By construc-
tion the ̺(Ci) are non-expanding in 0, e and ∞, respectively, hence
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(X1, X2, X3) ∈ R. Since h is unique up to left-multiplication with
k ∈ stabG((0, e,∞)) = O(n), the triple (X1, X2, X3) is unique up to
conjugation by an element in O(n). This provides a map inverse to
f̄ .

3.3.2 Parameters for Maximal Representations

In this section we proof Proposition 3.3.3. We do all calculation in
the tube model TΩ, in particular we use the boundary V ⊂ T̄Ω.

We define

R̃n := {(X1, X2, X3) ∈ GL(n,R)3|X3(X
⊤
2 )−1X1 symmetric

and positive definite}

Remark 3.3.5. Note that (X1, X2, X3) ∈ R̃n if and only if

(λ1X1, λ2X2, λ3X3) ∈ R̃

for (λ1, λ2, λ3) ∈ R̃1.

Proof of Proposition 3.3.3. The proof relies on the information for
the position of the points c1∞, c20 and c3e in V expressed in terms
of the Maslov index in Corollary 3.2.5.

Define Z1, Z2 and Z3 in Š by

Z1 := c3e = c−1
1 e, Z2 := c1∞ = c−1

2 ∞, Z3 := c20 = c−1
3 0,

where the second equalities hold because c3c2c1 = id and each of 0,
e and ∞ is a fixed points of one of the ci.

We can summarize that to the following conditions for the ci:

c1 :





0 7→ 0

Z1 7→ e

∞ 7→ Z2

c2 :





e 7→ e

Z2 7→ ∞
0 7→ Z3

c3 :





∞ 7→ ∞
Z3 7→ 0

e 7→ Z1

(3.12)



3.3. PARAMETERS 97

These conditions gives a system of three equations for each ci, which
determine each ci up to an element of a stabilizer of a maximal triple
in Š. We will calculate all solutions of these equations.

By (3.8) we have

β(0, Z2, e) = β(Z1, 0,∞) = β(e, Z3,∞) (3.13)

and by Example 2.3.11 this is the case if and only if −Z1, Z
−1
2 − In

and Z3 − In have the same signatures. If Z is a symmetric matrix
of signature l, then there exists an invertible matrix M , such that

Z =MIp,qM
⊤ with p− q = l and Ip,q =

(
Ip

−Iq

)
.

The matrix M is unique up to right multiplication with k ∈ O(p, q).
Note that k ∈ O(p, q) if and only if kIp,qk

⊤ = Ip,q or equivalently
Ip,qkIp,q = (k⊤)−1. So for the rest of the proof we fix Mi, s.t.

−Z1 =M1Ip,qM
⊤
1 , Z

−1
2 − In =M2Ip,qM

⊤
2 , Z3 − In =M3Ip,qM

⊤
3 ,

(3.14)

Now we solve the systems of equations. Write the ci in block form

as in Section 2.1.5 and recall that

(
A B
C D

)
is symplectic if and

only if

A⊤D − C⊤B = I, A⊤C = C⊤A, D⊤B = B⊤D

and the action of Sp(2n,R) on V as

(
A B
C D

)
X = (AX +B)(CX +D)−1.

Lets start with c1:

c1 =

(
A B
C D

)
:





0 7→ 0

∞ 7→ Z2

Z1 7→ e
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• From the first condition we get B = 0.

• Together with the condition that g is a symplectic matrix we
have D = (A⊤)−1.

• The second condition is equivalent to AC−1 = Z2. Hence
C = Z−1

2 A.

• The last condition is AZ1(CZ1 + D)−1 = e, therefore D =
AZ1 − CZ1.

Combining the last two results we get

(A⊤)−1 = D = AZ1 − Z−1
2 AZ1 = (Z−1

2 − In)︸ ︷︷ ︸
=M2Ip,qM⊤

2

A (−Z1)︸ ︷︷ ︸
=M1Ip,qM⊤

1

. (3.15)

Therefore A := (M⊤
2 )−1k1M

−1
1 is a solution of this equation for

all k1 ∈ O(p, q) and these are the only solutions. Indeed, since
D = (A⊤)−1 we can write Equation (3.15) as

M−1
2 D(M⊤

1 )−1 =M−1
2 (A⊤)−1(M⊤

1 )−1 = Ip,qM
⊤
2 AM1Ip,q,

which is equivalent to

((M⊤
2 AM1)

⊤)−1 = Ip,qM
⊤
2 AM1Ip,q,

hence M⊤
2 AM1 ∈ O(p, q). For C we calculate:

C =(Z−1
2 − I)A+A =M2Ip,qM

⊤
2 (M⊤

2 )−1k1M
−1
1 + (M⊤

2 )−1k1M
−1
1

=M2Ip,qk1M
−1
1 + (M⊤

2 )−1k1M
−1
1 .

We summarize this to:

c1 =

(
(M⊤

2 )−1k1M
−1
1 0

M2Ip,qk1M
−1
1 + (M⊤

2 )−1k1M
−1
1 M2(k

⊤
1 )

−1M⊤
1

)
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Here is the calculation of c2:

c2 =

(
A B
C D

)
:





In 7→ In

Z2 7→ ∞
0 7→ Z3

• From the first condition we get A+B = C +D.

• The second gives CZ2 +D = 0, hence C = −DZ−1
2 .

• The third is equivalent to BD−1 = Z3, therefore B = Z3D.

• Furthermore the matrix has to be symplectic, hence A⊤D −
C⊤B = In. This is equivalent to A = (D⊤)−1 +(D⊤)−1B⊤C.

Combining the first and the last of these items, we get (D⊤)−1 =
C+D−B− (D⊤)−1B⊤C. Together with the other items this yields

(D−1)⊤ = (Z3 − In)︸ ︷︷ ︸
M3Ip,qM⊤

3

D (Z−1
2 − In)︸ ︷︷ ︸

M2Ip,qM⊤
2

and we see that D = (M⊤
3 )−1k2M

−1
2 is a solution for any k2 ∈

O(p, q), as above. We get

c2 =

(
A B
C D

)

with

A =− (M⊤
3 )−1Ip,q(k

⊤
2 )

−1M⊤
2 −M3Ip,qk2M

−1
2 − (M⊤

3 )−1k2M
−1
2

B =M3Ip,qk2M
−1
2 + (M⊤

3 )−1k2M
−1
2

C =− (M⊤
3 )−1k2Ip,qM

⊤
2 − (M⊤

3 )−1k2M
−1
2

D =(M⊤
3 )−1k2M

−1
2
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Now we calculate c3, it is similar to the case above:

c3 =

(
A B
C D

)
:





∞ 7→ ∞
Z3 7→ 0

e 7→ Z1

Note that by the construction of the configuration the Zi are all
invertible.

• From the first condition we get C = 0.

• Together with the condition that g is a symplectic matrix we
have D = (A⊤)−1.

• The second condition is equivalent to AZ3 + B = 0. Hence
B = −AZ3.

• The last condition says (A+B)D−1 = Z1.

This gives
A (Z3 − In)︸ ︷︷ ︸
M3Ip,qM⊤

3

A⊤ = −Z1︸︷︷︸
M1Ip,qsM⊤

1

.

and A := M1k3M
−1
3 is a solution for all k3 ∈ O(p, q), as in the

calculation for c1 and we get:

c3 =

(
M1k3M

−1
3 −M1k3Ip,qM

⊤
3 −M1k3M

−1
3

0 (M⊤
1 )−1(k⊤3 )

−1M⊤
3

)

Calculating c−1
3 c−1

1 and comparing this matrix with c2 shows that
the product c3c2c1 is the identity if and only if k3(k

⊤
2 )

−1k1 = 1.

Note that the sixtuples (M1,M2,M3, k1, k2, k3) as above define pre-
cisely the same representation as (M1k

−1
1 ,M2,M3(k

⊤
2 )

−1, e, e, e). Hence
the ki do not give new parameters. We choose k1 = k3 = Ip,q and
k2 = id.
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We get:

c1 =

(
(M⊤

2 )−1Ip,qM
−1
1 0

M2Ip,qIp,qM
−1
1 + (M⊤

2 )−1Ip,qM
−1
1 M2Ip,qM

⊤
1

)

c2 =

(
A B
C D

)

c3 =

(
M1Ip,qM

−1
3 −M1Ip,qIp,qM

⊤
3 −M1Ip,qM

−1
3

0 (M⊤
1 )−1Ip,qM

⊤
3

)

with

A =− (M⊤
3 )−1Ip,qM

⊤
2 −M3Ip,qM

−1
2 − (M⊤

3 )−1M−1
2

B =M3Ip,qM
−1
2 + (M⊤

3 )−1M−1
2

C =− (M⊤
3 )−1Ip,qM

⊤
2 − (M⊤

3 )−1M−1
2

D =(M⊤
3 )−12M−1

2

Now define

X1 :=(M⊤
2 )−1Ip,qM

−1
1

X2 :=M3Ip,qIp,qM
−1
2

X3 :=(M⊤
1 )−1Ip,qM

⊤
3 .

Observe X3(X
⊤
2 )−1X1 = (M−1

1 )⊤Ip,qM
−1
1 is a symmetric matrix of

signature p− q.

We use Formula (1.1) to deduce the Formula 3.10. By construction
the generators have y1 = 0, y2 = e and y3 = ∞ as fixed points,
hence β(y1, y2, y3) = n. For the second term in Formula (1.1) we
calculate

β(y3, c3 · y2, y1) = β(c3 · y2, y1, y3) = β(c3 · e, 0,∞). (3.16)

By Example 2.3.11, −β(c3 ·e, 0,∞) is the signature of the symmetric
matrix c3 · e and we calculate

c3 · e = (X⊤
3 )−1 − (X⊤

3 )−1 −X−1
1 X⊤

2 X
−1
3 = −X−1

1 X⊤
2 X

−1
3 .
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Hence β(c3 · e, 0,∞) = sgnX−1
1 X⊤

2 X
−1
3 = sgnX3(X

⊤
2 )−1X1. This

finishes the proof.

The matrices of the form X3(X
⊤
2 )−1X1 have a geometrical interpre-

tation:

X3(X
⊤
2 )−1X1 = −Z−1

1 = (M1Ip,qM
⊤
1 )−1

X1(X
⊤
3 )−1X2 = (Z−1

2 − In)
−1 = (M2Ip,qM

⊤
2 )−1

X2(X
⊤
1 )−1X3 = Z3 − In =M3Ip,qM

⊤
3 .

3.3.3 Fixed Points of Generators of Maximal Rep-
resentations

From Proposition 3.3.3 we know that image of a standard genera-
tor, ̺(Ci), under a maximal representation ̺ : Γ0,3 → Sp(2n,R) is
conjugate to

c =

(
A 0

A+ (A⊤)−1S (A⊤)−1

)
∈ Sp(2n,R), (3.17)

with A invertible and S symmetric definite. Throughout this section
we will assume that c has this form. It has at least one fixed point
in Š, but maybe more. We will show that c has a unique fixed
point in Š, in which it acts non-expandingly. The same proof can
be used to show that c has a unique fixed point in which it acts
non-contractingly. The fixed non-attracting fixed point and the non-
repellent fixed point are transversal if and only if A has no eigenvalue
of absolute value 1. We use the non-expanding fixed point as the
canonical fixed point.

Remark 3.3.6. All fixed points of c are in V . Indeed, c can appear as
the image of a standard generator under a maximal representation of
Γ0,3, say c = ̺(C1). We can assume that a fixed point of, say, ̺(C3)
is equal to ∞. By Formula (1.1) every fixed point of c is transverse
to ∞, hence is contained in V .



3.3. PARAMETERS 103

Remark 3.3.7. In the sequel we sometimes write C for A+(A⊤)−1S.

Proof of Proposition 3.3.4

We prove the theorem for S-hyperbolic c in Section 3.3.3 and for
S-parabolic c in Section 3.3.3 and use this to write down the desired
fixed point explicitly. Note that we use here that there are Sp(2n,R)
contains copies of Sp(2k,R) for k ≤ n. This statement does not
hold in an analogous form for other Hermitian Lie groups (e.g. the
exceptional one), whence this proof can not be generalized one-to-
one.

Proof of Proposition 3.3.4. (i) follows immediately from Proposition
3.3.16.

For (ii) we have to combine methods from the last two subsections.
As in the proof of Proposition 3.3.13 we can assume that A is of block

form

(
A1 0
0 A4

)
where the eigenvalues of A2 all have absolute

value 1 and the absolute values of the eigenvalues of A1 are different
from 1. If A1 is a k×k matrix, we denote by C1 the upper left k×k
block in the n×n-matrix A+(A⊤)−1S. Then C1 = A1+(A⊤

1 )
−1S1,

where S1 is the upper left k × k block of the right size of S; it is
automatically symmetric positive definite. Then

c1 =

(
A1 0
C1 (A⊤

1 )
−1

)
∈ Sp(2k,R)

is by construction hyperbolic. Hence it has a unique fixed point
Y1 in Vk = Sym(k,R) in which the action of c1 is contracting. By

Lemma 3.3.9 Y =

(
Y1 0
0 0

)
∈ V is a fixed point of c and c acts

non-expandingly in X .

Now it remains to show that this is the unique fixed point with this

property. After conjugating c with g =

(
1 −Y
0 1

)
, we can assume
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that 0 is a non-repellent fixed point. Let Ȳ be another fixed point.
Again, after eventual conjugation with an isometry h ∈ O(n) (which

stabilizes 0) we can assume that Ȳ =

(
Ȳ1 0
0 0

)
, with Ȳ1 invertible.

By Lemma 3.3.9 (ii)

hgc1(hg)
−1 =

(
Ā 0
C̄ (Ā⊤)−1

)
,

with

Ā =

(
Ā1 Ā2

0 Ā4

)
and C̄ =

(
C̄1 C̄2

C̄3 C̄4

)

and Ȳ1 is a fixed point of c̄1 =

(
Ā1 0
C̄1 (Ā⊤

1 )
−1

)
. Since Ȳ1 is in-

vertible we can calculate dc̄1|Ȳ1
as in the proof of Lemma 3.3.14 and

we get

dc̄1|Ȳ1
: v 7→ (Ȳ1(A

⊤
1 )

−1Ȳ −1
1 )c(Ȳ1(A

⊤)−1Ȳ −1
1 )⊤

and the action of c̄1 in Ȳ1 is expanding. Hence c has at least one
expanding direction in any fixed point different from 0 and 0 is the
only non-repellent fixed point. This finishes the proof.

In Section 3.3.3 and 3.3.3 we introduce and discuss hyperbolic re-
spectively parabolic isometries and we prove Proposition 3.3.4 for
these two cases before we conclude the general case in 3.3.3.

Now we recall shortly some facts used later, fix some terminology
and show how to construct fixed points for c.

Recall that the equation for a fixed point Y ∈ V is

Y (A+ (A⊤)−1S)Y + Y (A⊤)−1 −AY = 0. (3.18)

Remark 3.3.8. Later we will sometimes assume that certain matri-

ces Y ∈ Sym(n,R) have the special form

(
Y1 0
0 0

)
with Y1 ∈
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Sym(k,R) diagonal and invertible. This is allowed since every ele-
ment of V is a symmetric matrix. Hence there exists k ∈ O(n) such

that kY k−1 has this form. Furthermore l :=

(
k 0
0 k

)
∈ Sp(2n,R)

and if Y is a fixed point for g =

(
A 0
C D

)
, then kY k−1 is a fixed

point for

lgl−1 =

(
kAk−1 0
kCk kDk−1

)
.

Clearly the spectrum of A is equal to the spectrum of kAk−1.

We can use a block structure of A to construct fixed points of c in
Š.

Lemma 3.3.9. (i) Let A =

(
A1 A2

0 A4

)
∈ GL(n,R), such that

A1 is a k × k-matrix. Write S =

(
S1 S2

S3 S4

)
, where S1 has

the same size as A1. Now let i ∈ {1, 4} and define

di =

(
Ai 0

Ai + (A⊤
i )

−1Si (A⊤
i )

−1

)
∈ Sp(2k,R).

Let Y1 ∈ Symk(R) be a fixed point for d1. Then Y =

(
Y1 0
0 0

)

is a fixed point for c.

(ii) Conversely if

(
Y1 0
0 0

)
is a fixed point for c with Y1 invert-

ible, then A =

(
A1 A2

0 A4

)
, where A1 has the same size as

Y1 and Y1 is a fixed point for c1 defined as in (i).

(iii) Let Y be a fixed point of c. Then the differential of c in Y is

dc|Y (v) : v 7→ (−Y C +A)v(CY +D)−1.
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Corollary 3.3.10. Using the notation from Theorem 1.3.1 we have:

dc1|0(v) = X1vX
⊤
1 , dc2|e(v) = X2vX

⊤
2 , dc3|∞(v) = X3vX

⊤
3 .

Remark 3.3.11. The matrices d1 and d4 can appear as images of stan-
dard generators of a maximal representations into Sp(2k,R) resp.
Sp(2(n− k),R) (see Proposition 3.3.3).

Proof of Lemma 3.3.9. (i) For statement (i) note that S1 is posi-
tive definite symmetric because S is. The verification that Y
is a fixed point point of c is straight forward. Indeed inserting(
Y1 0
0 0

)
in the fixed point equation (3.18) gives

(
Y1A1Y1 0

0 0

)
+

(
Y1((A

⊤)−1S)1Y1 0
0 0

)

+

(
Y1(A

⊤)−1
1 Y1((A

⊤)−1)2
0 0

)
−
(
A1Y1 0
A3Y1 0

)

= 0.

Since we assume in (i) that A3 = 0 and that Y1 is a fixed point
for c1, this equality is true.

(ii) follows from the same equation. The matrix A3 is equal to 0
since Y1 is invertible.

(iii) We calculate the differential of c at some point Y ∈ V . We
know:

c : Y 7→ AY (CY +D)−1.

First we calculate a power series for the map v 7→ (C(Y + v)+
D)−1 for small v ∈ V . We abbreviate M := CY +D.

(C(Y + v) +D)−1 =(M + Cv)−1 = (1 +M−1Cv)−1M−1

=

∞∑

i=0

(−M−1Cv)iM−1,
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where we where allowed to use the geometric series for matrices
since we asked v to be small.

Therefore we get

A(Y + v)(C(Y + v) +D)−1

=AY (C(Y + v) +D)−1 +Av(C(Y + v) +D)−1

=

∞∑

i=0

AY (−M−1Cv)iM−1 +

∞∑

i=0

Av(−M−1Cv)iM−1

and the differential in the point Y is:

dc|Y (v) = (−AY (CY +D)−1C +A)v(CY +D)−1.

If Y is a fixed point of c this is:

dc|Y (v) = (−Y C +A)v(CY +D)−1.

Proof of Proposition 3.3.4 for S-hyperbolic Isometries

We recall

Definition 3.3.12. Let G be a Hermitian Lie group and g ∈ G.
Then g is Shilov-hyperbolic (or S-hyperbolic) if it has a pair (g+, g−)
of transversal fixed points in Š, such that g contracts an open and
dense subset of Š to g+ and g−1 contracts an open and dense subset
to g−. Note that the fixed points c+ and c− are uniquely determined.

Proposition 3.3.13. Let c be as in (3.17) with σ(A) ∩ S1 = ∅.
Then c is S-hyperbolic.

Before we give the general proof, we need a proof in a special case:

Lemma 3.3.14. Let c be as in (3.17).
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(i) Assume that A only has eigenvalues of absolute value strictly
smaller than 1. Then c has a unique fixed Y point transversal
to 0. It satisfies β(Y, 0,∞) = n. The action of c in Y is
expanding and the differential dc|Y acts as on TY V as

dc|Y : v 7→ (Y (A⊤)−1Y −1)c(Y (A⊤)−1Y −1)⊤.

(ii) If A only has eigenvalues of absolute value strictly bigger that
1, then c has a unique fixed point Y transversal to 0. It satisfies
β(0, Y,∞) = n. The action of c in Y is contracting and the
differential dc|Y acts as on TY V as

dc|Y : v 7→ (Y (A⊤)−1Y −1)v(Y (A⊤)−1Y −1)⊤.

Furthermore in both cases Y is invertible and depends continuously
on c.

Proof. (i) We are searching for a fixed point Y transversal to 0,
hence we search for an invertible one. We can reformulate
the fixed point equation 3.18 to A⊤Y −1A − Y −1 = S̄, where
S̄ := A⊤A+ S is positive definite symmetric.

One verifies easily that

Y −1 = −
∞∑

i=0

(A⊤)iS̄Ai,

is a solution, which is clearly negative definite. The sum con-
verges since A is contracting. Furthermore it is unique because
the equation for Y −1 is a linear matrix equation [41, Ch.4.3]
which has a unique solution if and only if for any eigenvalues
λ and µ of A, λµ 6= 1. Here this is clearly true by assumption.
In particular Y depends continuously on c.

From Lemma 3.3.9 we know that if Y is a fixed point of c,
then:

dc|Y (v) = (−Y C +A)v(CY +D)−1.
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For Y = 0 we have dc|0(v) = AvA⊤ and for general Y we get,
using the fixed point formula,

A− Y C = Y (A⊤)−1Y −1 and (CY +D)−1 = Y −1A−1Y,
(3.19)

hence

dc|Y (v) = (Y (A⊤)−1Y −1)v(Y (A⊤)−1Y −1)⊤.

Therefore c is expanding in Y .

(ii) Analogously.

Proof of Proposition 3.3.13. By Lemma A.1.1 we can assume that

A =

(
A1 0
0 A4

)
,

such that the eigenvalues of the k×k-matrix A1 have absolute value
strictly bigger than 1 and the absolute values of A4 have absolute
value strictly less than 1. We use Lemma 3.3.14 and Lemma 3.3.9
to construct the desired fixed points X+ and X−. By Lemma 3.3.14

(
A1 0

A1 + (A⊤
1 )

−1S1 (A⊤
1 )

−1

)
∈ Sp(2k,R)

and (
A4 0

A4 + (A⊤
4 )

−1S4 (A⊤
4 )

−1

)
∈ Sp(2(n− k),R)

have fixed points Y1 resp. Y4 transversal to 0 in their respective
Shilov boundaries. By Lemma 3.3.9

y1 :=

(
Y1 0
0 0

)
, y4 :=

(
0 0
0 Y4

)
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are fixed points for c, and since Y1 ∈ Symk(R) (with k as above) and
Y4 ∈ Symn−k(R) are invertible, y1 − y4 is invertible, hence y1 and
y4 are transversal.

By Lemma 3.3.9 (iii) we know that

dc|y1 : v 7→ (−y1C +A)v(Cy1 +D)−1.

A straight forward calculation shows that

−y1C +A =

(
A1 − Y1C1 Y1C2

0 A4.

)

Since Y1 is invertible and a fixed point for c1 we get from (3.18):

A1 − Y1C1 = Y −1
1 (A⊤

1 )
−1Y1,

hence

−y1C +A =

(
Y −1
1 (A⊤

1 )
−1Y1 Y1C2

0 A4.

)

The eigenvalues are the eigenvalues of (A⊤
1 )

−1 and A4, hence it is
contracting

The same calculation shows

(Cy1 +D)−1 = (−y1C +A)⊤.

Hence c acts contracting in y1 Along the same lines one can show
that y4 is a repellent fixed point for c.

Let g be an isometry which maps (0,∞) to (y4, y1). Then gcg−1 =(
Ā 0
0 (Ā⊤)−1

)
where Ā is a conjugate to −y1C + A, hence con-

tracting. Therefore gcg−1 contracts V to 0 and V can be seen as
an open and dense subset of the Shilov boundary Š of the bounded
symmetric space associated with Sp(2n,R).
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Proof of Proposition 3.3.4 for S-parabolic Isometries

Definition 3.3.15. Let G be a Hermitian Lie group. Then g ∈ G
is Shilov-parabolic or S-parabolic if g has a unique fixed point in Š.

Proposition 3.3.16. Let c be as in 3.17. Assume σ(A) ⊂ S1. Then
c is S-parabolic.

Proof. Let Y ∈ V be a fixed point. Since Y is a symmetric matrix
we can assume without loss of generality that

Y =

(
Y1 0
0 0

)

such that Y1 is a square matrix and diagonal invertible. Now we can
apply Lemma 3.3.9 (ii). Therefore A decomposes into a block form
and the eigenvalues of A1 also have absolute value 1. Multiplying
both sides of the fixed point equation (3.18) for Y1 from the left with
A⊤

1 Y
−1
1 and from the right with Y −1

1 (which we are allowed to, since
Y1 was chosen to be invertible), we get

A⊤
1 Y

−1
1 A1 − Y −1

1 = A⊤
1 A1 + S1.

The right hand side is positive definite, but for the left hand we can
choose an eigenvector v to a (possibly complex) eigenvalue λ with
|λ| = 1. Since A1 is a real matrix, we have A⊤

1 = A∗ and hence

v∗A⊤
1 Y

−1
1 A1v − v∗Y −1

1 v =v∗A∗
1Y

−1
1 A1v − v∗Y −1

1 v

= λ̄λ︸︷︷︸
=1

v∗Y −1
1 v − v∗Y −1

1 v = 0,

which is a contradiction. Hence 0 is the only fixed point of c.
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3.4 Parameters for Rep(Γ0,3, G)

3.4.1 Motivation

Remark 3.4.1. As a first hint for a generalization for general groups
of tube type we decompose c1, c2 and c3 from Section 3.3.2 according
to the decomposition of G(TΩ) from Proposition 2.1.20 as:

c1 =

(
(M⊤

2 )−1M−1
1 0

(M2 + (M⊤
2 )−1)M−1

1 M2M
⊤
1

)

=

(
1 0

M2M
⊤
2 + 1 1

)

︸ ︷︷ ︸
∈N−

(
(M⊤

2 )−1M−1
1 0

0 M2M
⊤
1

)

︸ ︷︷ ︸
∈G(Ω)

c2 =

(
1 1 +M3M

⊤
3

0 1

)

︸ ︷︷ ︸
∈N+

(
M3M

−1
2 0

0 (M⊤
3 )−1M⊤

2

)

︸ ︷︷ ︸
∈G(Ω)

·

·
(

M2M
⊤
2 0

−1− (M2M
⊤
2 )−1 (M⊤

2 )−1M−1
2

)

︸ ︷︷ ︸
∈N−G(Ω)

c3 =

(
M1M

−1
3 −M1(M

⊤
3 +M−1

3 )
0 (M⊤

1 )−1M⊤
3

)

=

(
M1M

−1
3 0

0 (M⊤
1 )−1M⊤

3

)

︸ ︷︷ ︸
∈G(Ω)

(
1 −1−M3M

⊤
3

0 1

)

︸ ︷︷ ︸
∈N+

or

c1 = n−

−Z−1
2

θ(g2)g
−1
1 , c2 = n+

Z3
g3θ(g2)

−1n−

Z−1
2

, c3 = g1g
−1
3 n+

−Z3
,
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where

gi =

(
Mi 0
0 (M⊤

i )−1.

)
∈ G(Ω), n−

Z−1
2

=

(
1 0

Z−1
2 1

)
∈ N−

and

n+
Z3

=

(
1 Z3

0 1

)
∈ N+

Note that the third matrix in the decomposition of c2 only depends
on M2.

3.4.2 Generalization

In this section we will generalize the results from Section 3.3 to
representations from Γ0,3 to arbitrary Hermitian Lie groups G of
tube type. The main result is 3.4.4.

Recall that the symmetric space associated with G is biholomorphic
to a tube domain V ⊕ iΩ, where V is an Euclidean Jordan algebras
and Ω is the symmetric cone in V . The group G(Ω) ⊂ GL(V ), which
fixes Ω acts transitively on Ω. It is closed under taking adjoints with
respect to the Euclidean structure of V . We denote the adjoint of
g ∈ G(Ω) by g∗. From [29, Thm. III.5.3] we have with θ(g) := (g∗)−1

for all x ∈ Ω:
(gx)−1 = θ(g)x−1.

If x = ge for g ∈ G(Ω), then x−1 = θ(g)e. In particular the proper-
ties symmetric and positive definite are defined in G(Ω).

Before we can formulate the generalization for the results from pre-
vious section, we show that the symmetric cone Ω in a simple Eu-
clidean Jordan algebra and the cone of symmetric positive definite
matrices in G(Ω) are G(Ω)-equivariantly identifiable.

Proposition 3.4.2. Let Ω ⊂ V the symmetric cone in a simple
Euclidean Jordan algebra. Let K := G(Ω)∩O(V ). Then the cone C
of symmetric positive definite matrices in G(Ω) is the homogeneous
cone G(Ω)/K ≃ Ω.
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Proof. The map g 7→ gg∗ provides a map from G(Ω) to C and the
stabilizer of e is equal to K. Surjectivity for this map follows from
Proposition 3.4.3 (ii).

Proposition 3.4.3. (i) Let V be an Euclidean Jordan algebra
with scalar product 〈·, ·〉. Fix a Jordan frame {c1, . . . , cr}. De-
fine K := G(Ω) ∩O(V ) and

A := {P (a)|a =
∑

λici, λi > 0}.

Let g ∈ G(Ω). Then there exists k, h ∈ K and a ∈ A such that
g = kah.

(ii) Let s ∈ G(Ω) ⊂ GL(V ) be positive definite and symmetric
with respect to the given scalar product. Then s = gg∗ for
some g ∈ G(Ω).

Proof. (i) Let g ∈ G(Ω). Let x := g.e. Then x = k
∑
λici ([29,

Ch. IV.2]), hence g.e = ka.e, with a ∈ A and k ∈ K. In par-
ticular g = kah with h ∈ K, since (ka)−1g ∈ G(Ω) stabilizes
e.

(ii) We can assume that all a ∈ A are diagonal matrices. By (i)
we can write s = kP (a)h and since the property symmetric
positive definite is invariant under conjugation with h ∈ K,
we can assume s = P (a)k.

Since P (a) is symmetric ([29, Prop. VII.2.4]) and by construc-
tion positive define, k only has positive eigenvalues. Indeed let
λ be an eigenvalue and v be a non-zero eigenvector, we have

〈v, P (a)kv〉 = λ 〈v, P (a)v〉︸ ︷︷ ︸
>0

> 0.

But since k is orthogonal, the eigenvalue has to be 1. Hence
k = id and s = P (a).
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Define ā :=
∑√

λici. It is an element of Ω and it satisfies
ā2 = a. and there exists a matrix

√
a with positive eigenvalues

and
√
a
2
= a. Furthermore P (ā)P (ā)⊤ = P (ā)2 = P (ā2) =

P (a) = s ([29, Ch. II.3]), where we used P (a) = P (a)⊤ ∈
G(Ω).

Let ̺ : Γ0,3 → G be a maximal representation and define ci := ̺(Ci).
From the discussion in Section 3.3 and Formula 1.1 we know that
the ci have fixed points yi ∈ Š. As in the previous section we can
conjugate ̺ such that the fixed points are 0, e and ∞ respectively.

Recall that in the last section we used the points in V :

Z1 := c3e = c−1
1 e, Z2 := c1∞ = c−1

2 ∞, Z3 := c20 = c−1
3 0,
(3.20)

and by Corollary 3.2.5 they satisfy

β(Z1, 0,∞) = β(0, Z2, e) = β(e, Z3,∞) = r, (3.21)

We will express these conditions in terms of the spectral values of
Zi (see Theorem 2.1.14) and relate these points to points in Ω, the
open symmetric cone in V .

As in Example 2.1.6 we use the fact that we can calculate the Maslov
index easily if the three points are in a common polydisc. Recall that

Ω =
{
x ∈ V |x =

∑
λici, λi > 0 for some Jordan frame (ci)

}
.

Now we can characterise the properties above as follows:

• β(Z1, 0,∞) = r if and only if all spectral values of Zi are
strictliy negative if and only if −Z1 ∈ Ω,

• β(0, Z2, e) = r if and only if all spectral values are in (0, 1) if
and only if Z−1

2 − e ∈ Ω,
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• β(e, Z3,∞) = r if and only if all spectral values are strictly
bigger than 1 if and only if Z3 − e ∈ Ω.

Since G(Ω) acts transitively on Ω all conditions are fulfilled if and
only if there exists g1, g2 and g3 in G(Ω) with

Z1 = −g1e, Z2 = (g2e+ e)−1, Z3 = g3e+ e. (3.22)

Note that the gi are unique up to an element in the stabilizer of e.

We use these observations to generalise Proposition 3.3.3:

Proposition 3.4.4. Let g1, g2 and g3 in G(Ω) and Zi ∈ V as in
(3.22). Then the representations of Γ0,3 into G defined by

c1 = n−

−Z−1
2

θ(g2)g
−1
1 , c2 = n+

Z3
g3θ(g2)

−1n−

Z−1
2

, c3 = g1g
−1
3 n+

−Z3

is maximal. Conversely the generators ci = ̺(Ci) of any maximal
representation ̺ : Γ0,3 → G, such that c1 fixes 0, c2 fixed e and c3
fixes ∞, are of this form.

Remark 3.4.5. The idea for these formulae for ci comes from Remark
3.4.1.

Proof. It is immediately clear that c3c2c1 = e, for c1, c2 and c3
constructed as above, hence they define a representation ̺ of Γ0,3

and by construction of the points Zi and Formula (1.1) ̺ is maximal.

Conversely, let ̺ : Γ0,3 → G be a maximal representation. As usual
we define ci := ̺(Ci). Defining the Zi ∈ V as above, we can sum-
marize properties of ci as in Section 3.3:

c1 :





Z1 7→ e

0 7→ 0

∞ 7→ Z2

c2 :





e 7→ e

0 7→ Z3

Z2 7→ ∞
c3 :





e 7→ Z1

Z3 7→ 0

∞ 7→ ∞.

These properties determine ci up to an element of the stabilizer of
a maximal triple. Choose g̃1, g̃2 and g̃3 in G(Ω) such that

Z1 = −g̃1e, Z2 = (g̃2e+ e)−1, Z3 = g̃3e+ e. (3.23)



3.4. PARAMETERS FOR Rep(Γ0,3, G) 117

Note that the g̃i exist because G(Ω) acts transitively on Ω, but they
are not unique. We define

c̃1 := n−

−Z−1
2

θ(g̃2)g̃
−1
1 , c̃2 := n+

Z3
g̃3θ(g̃2)

−1n−

Z−1
2

, c̃3 := g̃1g̃
−1
3 n+

−Z3
.

A direct computation shows

c̃1(Z1, 0,∞) =c1(Z1, 0,∞) = (e, 0, Z2)

c̃2(e, 0, Z2) =c2(e, 0, Z2) = (e, Z3,∞)

c̃3(e, Z2,∞) =c3(e, Z3,∞) = (Z1, 0,∞).

Hence c̃i and ci coincide up to multiplication with an element of
G stabilizing a maximal triple. Using c̃1 =

(
n−

−Z−1
2

θ(g̃2)
)
g̃−1
1 , we

observe

(n−

−Z−1
2

θ(g̃2))
−1c1(Z1, 0,∞)

=θ(g̃2)
−1(n−

−Z2
)−1c1(Z1, 0,∞) = θ(g̃2)

−1(n−
−Z2

)−1(e, 0, Z2)

=θ(g̃2)
−1((e− Z−1

2 )−1, 0,∞) = (−e, 0,∞)

and

g̃−1
1 (Z1, 0,∞) = (−e, 0,∞).

This shows that θ(g̃2)
−1(n−

−Z2
)−1c1 and g̃1 only differ by an element

k1 of the stabilizer of (−e, 0,∞). In particular c1 = n−
Z2
g̃2k1g̃

−1
1 .

Along the same lines one can show that there exists k2 and k3 in the
stabilizer of (−e, 0,∞) such that

c2 = n+
Z3
g̃3k2g̃

−1
2 n−

−Z2

and
c3 = g̃1k3g̃

−1
3 n+

−Z3
.

A direct calculation shows that c3c2c1 = 1 if and only if k3k2k1 = 1.
Now defining

g1 := g̃1k
−1
1 , g2 := g̃2, g̃3 := g3k2

finishes the proof.
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Remark 3.4.6. The fixed point discussion from the previous section
is harder to generalize. We used subspaces of the Shilov boundary
associated with Sp(2n,R) which are Shilov boundaries associated
with Sp(2m,R) with m < n. Such subspaces do not exist for all
types of Hermitian Lie groups of tube type, e.g. the exceptional
one. However we shortly indicate how to obtain the derivative of c1
in a fixed point Y ∈ V . Recall that the stabilizer of 0 in G(TΩ) is
equal to N−G(Ω). Now let c1 = n+

v g as above and Y ∈ V a fixed
point. Then

n+
Y cn

+
Y = n−

ṽ g̃

for some ṽ ∈ V and g̃ ∈ G(Ω) and

g̃ = n−
−ṽn

+
Y cn

+
Y

and ṽ can be obtained by evaluating both sides at the point ∞,
since n−

ṽ (∞) = ṽ−1. A direct calculation shows that the differential
of n−

ṽ g̃ in 0 is equal to g̃.

3.5 Gluing

So far we only considered representations of Γ0,3. To obtain pa-
rameters for more general representations, we will discuss gluing
constructions for surfaces (Section 3.5.1), the effect on fundamental
groups and their representations (Section 3.5.2) as well as gluing
for conjugacy classes of representations (Section 3.5.3). In Section
3.5.4 we apply the gluing criteria obtained in these sections to rep-
resentations into Sp(2n,R). Finally we introduce the gluing graph
in Section 3.5.5 which is a tool to encode the gluing for a surface
Σg,m.

3.5.1 Gluing constructions for Surfaces

In this section we recall gluing constructions for oriented surfaces.
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We consider all surfaces oriented and all boundary components carry
the induced orientation. We have two operations to get new surfaces
from given ones:

(A) Gluing two surfaces
Let Σl and Σr two surfaces each of which has at least one
boundary component. Using an orientation reversing homeo-
morphism f : Cl → Cr between boundary components1 Cl of
Σl and Cr of Σr, we can glue the two surfaces along Cr resp.
Cl and we obtain a new surface

Σf := Σl ∐f Σr = (Σl ∐Σr)/{x = f(x) ∀x ∈ Cl}.

The Euler characteristic of the new surface is:

χ(Σf ) = χ(Σl) + χ(Σr).

Figure 3.4: Gluing two surfaces.

(B) Closing handles
Let Σ be a surface which has at least two boundary components
and let f : C1 → C2 be an orientation reversing homeomor-
phism between two different boundary components. Gluing
along these boundary components gives a new surface

Σf = Σ/{x = f(x) ∀x ∈ C1}
1l for left, r for right.
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The genus of Σf is the genus of Σ plus one, the number of
boundary components has shrunk by two. For the Euler char-
acteristic we get:

χ(Σf ) = χ(Σ).

Figure 3.5: Closing a handle.

3.5.2 Gluing for Fundamental Groups and Rep-
resentations

We express the fundamental group Γf of Σf in terms of the funda-
mental groups Σl and Σr or Σ respecively.

(A) Gluing two surfaces.

Proposition 3.5.1. Let (Σl, xl) and (Σr, xr) be pointed ori-
ented surfaces with fundamental groups

π1(Σl, xl) = Γg1,n1 = 〈A1, B1, . . . , Ag1 , Bg1 , C1, . . . , Cn1 |
Cn1 . . . C1[Ag1 , Bg1 ] . . . [A1, B1] = e〉.

and

π1(Σr, xr) = Γg2,n2 = 〈Ā1, B̄1, . . . , Āg2 , B̄g2 , C̄1, . . . , C̄n2 |
C̄n2 . . . C̄1[Āg2 , B̄g2 ] . . . [Ā1, B̄1] = e〉.
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Assume that xl is on the boundary component of Σl labeled by
Ci and xr is on the boundary component of Σr labeled by C̄j.
Let cl be a representative of Ci, cr be a representative for C̄j
and f : cl → cr a orientation reversing homeomorphism with
f(xl) = xr.
Then the fundamental group of Σf is generated by

{A1, B1, . . . , Ag1 , Bg1 , C1, . . . , Ci−1, Ci+1, . . . , Cn1 ,

Ā1, B̄1, . . . , Āg2 , B̄g2 , C̄1, . . . , C̄j−1, C̄j+1, . . . , C̄n2}

and the only relation is

Cn1 · · ·Ci+1C̄j−1 · · · C̄1[Āg2 , B̄g2 ] · · · [Ā1, B̄1]·
·C̄n2 · · · C̄j+1Ci−1 · · ·C1[Ag1 , Bg1 ] · · · [A1, B1] = e.

In particular π1(Σf ) is the amalgam of π1(Σ1) and π(Σ2) along
Ci.

Proof. By assumption we have [f(cl)] = C̄−1
j , because f is

orientation reversing. Since we identify cl and f(cl), we get

Ci = C̄−1
j = C̄j−1 · · · C̄1[Āg2 , B̄g2 ] · · · [Ā1, B̄1]C̄n2 · · · C̄j+1.

Inserting this into the relation of π1(Γl) gives the desired result.

Example 3.5.2. Let Σ and Σ̄ be two surfaces homeomorphic
to Σ0,3. Let 〈C1, C2, C3|C3C2C1 = e〉 and 〈C̄1, C̄2, C̄3|C̄3C̄2C̄1 =
e〉 be their fundamental groups. Given a homeomorphism be-
tween boundary components as in Proposition 3.5.1 we can
glue them along boundary components and get a surface home-
omorphic to Σ0,4. Assume C̄1 = C−1

3 (= C2C1) and we finally
get the fundamental group of Σ0,4 in the presentation

〈C1.C2.C̄2, C̄1|C̄3C̄2C2C1 = e〉.



122 CHAPTER 3. PARAMETERS

Given representations of Γg1,m1 and Γg2,m2 with m1,m2 ≥ 1
into a group G. Under a certain condition they can be ex-
tended to a representation of Γg1+g2,m1+m2−2.

Proposition 3.5.3. Let Σg1,n1 , Σg2,n2 , Γn1,g1 and Γg2,n2 as
above. Let ̺1 : Γg1,n1 → G and ̺2 : Γg2,n2 → G be rep-
resentations. Assume that there exists Ci and C̄j such that
̺1(Ci) = ̺2(C̄j)

−1. Then there exists a unique representation

̺f : π1(Σf ) → G

such that ̺f |Γg1,n1
= ̺1 and ̺f |Γg2,n2

= ̺2.

We say that we glue ̺1 and ̺2.

Proof. We define:

̺f (Al) := ̺1(Al)

̺f (Bl) := ̺1(Bl)

̺f (Āk) := ̺2(Āk)

̺f (B̄k) := ̺2(B̄k)

̺f (Cl) := ̺1(Cl)

̺f (C̄k) := ̺2(C̄k).

This is well defined since ̺1(Ci) = ̺2(C̄j)
−1.

(B) Closing handles.
As above we have:

Proposition 3.5.4. Recall

π1(Σ, x) = Γg,n = 〈A1, B1, . . . , Ag1 , Bg1 , C1, . . . , Cn|
Cn . . . C1[Ag, Bg] . . . [A1, B1] = e〉.

We assume that the base point for Γ is on Ci and we glue along
the boundary curves Ci and Cj. Then

π1(Σf ) = 〈Γ, t|tCit−1 = C−1
j 〉.
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Remark 3.5.5. We can consider Γ as a subset of π1(Σf ).

Example 3.5.6. Given Σ0,3 and f , say, an orientation revers-
ing homeomorphism C3 → C2 as in Proposition 3.5.4. Then
we get a new loop T and we have the presentation of π1(Σf )

〈C1, C3, T |C3TC
−1
3 T−1C1 = e〉.

We have an statement analog to Proposition 3.5.3.

Proposition 3.5.7. Let ̺ be a representation of Γ into some
group G and assume there exists g ∈ G such that ̺(Ci)

−1 =
g̺(Cj)g

−1. Then there exists a unique representation

̺f : π1(Σf ) → G

with ̺f (t) = g and ̺j |π1(Σ) = ̺.

3.5.3 Gluing in Rep(Γ, G)

Recall that G acts on Hom(Γ, G) by conjugation and we defined the
quotient

Rep(Γ, G) := Hom(Γ, G)/G.

We denote by [̺] the equivalence class generated by ̺ in Rep(Γ, G).
In this section we extend the result from the previous section to
Repmax(Γg,m, G).

As above we have to discuss two cases

(A) Gluing of two surfaces

Proposition 3.5.8. Consider [̺′1] ∈ Rep(Γg1,n1 , G) and [̺′2] ∈
Rep(Γg2,n2 , G) with n1 ≥ 1 and n2 ≥ 1. Assume there exists
̺1 ∈ [̺′1] and ̺2 ∈ [̺′2] such that ̺1(Ci) = g̺2(C̄j)

−1g−1 for
some g ∈ G. Then there is a class of representations of Γ
defined by

̺ := ̺1 ∗ (g̺2g−1) : Γ → G

such that [̺|Γg1,n1
] = [̺1] and [̺|Γg2,n2

] = [̺2].
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Proof. Follows immediately from Proposition 3.5.3.

Remark 3.5.9. Note that ̺ is not unique. Let h be an element
of the centralizer of ̺2(C̄j). Then the representation ̺h := ̺1∗
(gh̺2(gh)

−1) also satisfies: [̺h|Γg1,n1
] = [̺1] and [̺h|Γg2,n2

] =
[̺2].

(B) Closing handles

Proposition 3.5.10. Let [̺′] ∈ Rep(Γg,n, G) with n ≥ 2. As-
sume that there exists g ∈ G such that ̺′(Ci)

−1 = g̺′(Cj)g
−1.

Then there exists a representation ̺f of Γf such that ̺f |Γ = ̺.

3.5.4 Gluing in Sp(2n,R)

In the last section we have seen that we can glue along two generators
c and c̄ of maximal representations if and only if c̄ and c−1 are
conjugate in the target group of the maximal representation. In the
next proposition we show that this is possible if and only if c and c̄
are hyperbolic.

Theorem 3.5.11. Let

c =

(
X 0

X + (X⊤)−1S (X⊤)−1

)
(3.24)

and

c̄ =

(
(X̄⊤)−1 −(X̄⊤)−1 − S̄X̄

0 X̄

)
(3.25)

be elements in Sp(2n,R) with X and X̄ invertible and S and S̄
symmetric positive definite.

(i) Suppose X and X̄ contracting. Then c̄ and c−1 are conjugate
in Sp(2n,R) if and only X⊤ and X̄ are conjugate in GL(n,R).
If X̄ = GX⊤G−1, then c̄ = gc−1g−1 with

g = g1g2g3 =

(
Ȳ GY −1 − (G⊤)−1 −Ȳ G

GY −1 −G

)
,
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where

Y = −
(

∞∑

i=0

(X⊤)i(X⊤ ·X + S)X i
1

)−1

and

Ȳ =

∞∑

i=0

(X̄⊤)i(I + X̄⊤S̄X̄)X̄ i.

(ii) It X or X̄ has an eigenvalue of absolute value 1, then c̄ and
c−1 are not conjugate in Sp(2n,R).

Remark 3.5.12. The length parameters from Theorem 3.3.2 are only
unique up to conjugation with an element of O(n). For the gluing
of two representations we have to choose representatives from these
equivalence classes and glue them. The conjugation class of the
resulting representation does not depend on this choice. Indeed, re-
place X and S by kXk−1 and kSk−1 resp. X̄ and S̄ by k̄X̄k̄−1 and
k̄S̄k̄−1 and the G is replaced by k̄Gk−1, and the resulting represen-
tation from both sets of parameters are conjugate.

Proof of Proposition 3.5.11. (i) First note that since c and c̄ are
hyperbolic, they have fixed points Y resp. Ȳ which are transver-
sal to 0 resp. ∞. We are searching for g with c̄ = gc−1g−1.
We want to write g = g1g2g3, where the gi have the following
properties: g3 maps the transverse pair (0, Y ) to (0,∞), g2
fixes (0,∞) and g1 maps the transverse pair (0,∞) to (∞, Ȳ ).
We choose

g1 :=

(
Ȳ −1
1 0

)

and

g3 :=

(
Y −1 −1
1 0

)
.

Then

g−1
1 c̄g1 =

(
X̄

(X̄⊤)−1

)
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and

g3c
−1g−1

3 =

(
X⊤

X−1

)

By assumption X̄ as well as X⊤ are contracting. Hence, if
there exists g2 such that g−1

1 c̄g1 = g2g3c
−1g−1

3 g−1
2 , then g2 has

to stabilize the pair (0,∞), i.e.

g2 =

(
G

(G⊤)−1

)

In particular there has to be a G ∈ GL(n,R) such that X̄ =
GX⊤G−1. Then g = g1g2g3.

(ii) From Corollary 1.3.5 we know that we can assume

c =

(
X 0
M (X⊤)−1

)
, c̄ =

(
X̄ 0
M̄ (X̄⊤)−1

)
,

As explained in the second part of the proof of Theorem 3.3.2
we can assume that X−1 and X̄ are non-expanding. Then 0
is the unique fixed point for c−1 and c̄ where the differential
is non-expanding. Hence if there exists g ∈ Sp(2n,R) with
gc̄g−1 = c−1, then g has to fix 0. Assume

g =

(
A 0
X (A⊤)−1

)
.

Assume that gc̄g−1 = c−1. Then AX̄A−1 = X−1. This is a
first condition for c−1 and c̄ to be conjugate. If X̄ and X−1

are not conjugate, we are done.

Now assume that AX̄A−1 = X−1. Then we can write

g =

(
A 0
C (A⊤)−1

)
=

(
1 0

CA−1 1

)(
A 0
0 (A⊤)−1

)
.

Define C̄ := CA−1 andM ′ := (A⊤)−1M̄A−1. RecallAX̄A−1 =
X−1 and (X⊤)−1M ′ is symmetric and positive definite.
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We can summarize that to the equation

gc̄g−1 =

(
1 0
C̄ 1

)(
X−1 0
M ′ X⊤

)(
1 0

−M ′ 1

)

=

(
X−1 0

C̄X−1 +M ′ −X⊤C̄ X̄⊤

)
!
= c−1 =

(
X−1 0
−M⊤ X⊤

)
.

In particular: C̄X−1+M ′−X⊤C̄ = −M⊤, which is equivalent
to

(X⊤)−1C̄X−1 − C̄ + (X⊤)−1M ′ = −(X⊤)−1M⊤.

Note that by construction (X⊤)−1M̄ is positive definite, hence
−(X⊤)−1M⊤ is negative definite. Let λ be an eigenvalue of
X−1 with |λ| = 1 and let v be a non-zero eigenvector for λ.
Such an eigenvalue exists by assumption. Then

v∗
(
(X∗)−1C′X−1 − C′ + (X∗)−1M ′

)
v =v∗(X∗)−1M ′v

=− v∗(X∗)−1M∗v,

which is a contradiction since the left hand side is strictly
positive and the right hand side is strictly negative. Therefore
c−1 and c̄ cannot be conjugate.

3.5.5 The Gluing Graph

To be able to state coordinates for more general surfaces with need
to encode the gluing involving several pairs of pants and handles in
a clear way.

Let Σg,m be the topological surface with genus g and m ≥ 1 bound-
ary components and χ(Σg,m) < 0. It can be build using 2g − 2 +m
pairs of pants (see Chapter 3.5.1).

This gluing can be visualized in a gluing graph. Given Σg,m with a
decomposition into pairs of pants. We construct the gluing graph
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for this decomposition as follows: we represent any pair of pants
and any boundary component by a vertex. We add an edge between
two pairs of pants with a common boundary component for each
common boundary component. Furthermore we join every pair of
pants with the vertices associated with its boundary components.
Note that these graphs are connected.

Here are some examples:

Clearly the graph depends on the decomposition into pairs of pants.

Lemma 3.5.13. Let let n3 be the number of threevalent vertices and
n1 the number of univalent vertices in the graph. Then the genus of
the associated surface is

g =
n3 − n1

2
+ 1.
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The Euler characteristic of the graph is equal to 1− g.

Definition 3.5.14. Let Σg,m be a surface with negative Euler char-
acteristic. Then we call the decomposition into pairs of pant as in
Figure 3.5.14 with graph standard decomposition. We denote the

P1 P2 Pm+g−3 Pm+g−2

Hg

Hg−2 Hg−1

Figure 3.6: Standard graph

handle by Hi and the pairs of pants by Pi. This graph is the stan-
dard graph.

3.5.6 Surface Doubling

Definition 3.5.15. Given a surface Σ1 = Σg,m with at least one
boundary component. Then we can take a second copy Σ2 of this
surface and glue each boundary component of Σ1 to one boundary
component Σ2. The result is a closed surface of genus 2g +m − 1.
This construction is the surface doubling.

Given a surface with hyperbolic structure and geodesic boundary
components, we can perform the surface doubling as well. The dou-
ble carries a hyperbolic structure which is unique up to a twist along
the former boundary curves.

From Proposition 3.5.11 and the fact that every matrix in GL(n,R)
is conjugate to its transverse (Lemma A.1.5), we get

Proposition 3.5.16. We can perform this doubling construction
for a representation into Sp(2n,R) if and only if each generator of
the boundary components is S-hyperbolic.
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Figure 3.7: Surface doubling for Σ0,3

Figure 3.8: Surface doubling for Σ1,1

Remark 3.5.17. The double of a representation is not unique.

Lemma 3.5.18. Let ̺ : Γg,m → G a representation into some
group. Then there exists a canonical restriction ̺Hi

and ̺Pi
to the

fundamental group for any handle Hi and any pair of pants Pj as
in the standard graph.

Proof. Recall that [Ag, Bg] . . . [A1, B1]Cm · · ·C1 = e.

(i) Restriction to Hi

̺Hi
(A) := ̺(Ai)

̺Hi
(B) := ̺(Bi)
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̺Hi
(C) := [̺(Ai), ̺(Bi)]

−1

(ii) Restriction to Pk

(a) k ∈ {1, . . . ,m− 1}

̺Pk
(C1) := ̺(Ck, . . . , C1)

̺Pk
(C2) := ̺(Ck+1)

̺Pk
(C3) := ̺([Ag, Bg] . . . [A1, B1]Cm · · ·Ck+2)

(b) k ∈ {m, . . . ,m+ g − 2}

̺Pk
(C1) := ̺([Ak−m, Bk−m] . . . [A1, B1]Cm . . . C1)

̺Pk
(C2) := ̺([Ak−m+1, Bk−m+1])

̺Pk
(C3) := ̺([Ag, Bg] . . . [Ak−m+2, Bk−m+2])

From Proposition 3.5.16 we can deduce Corollary 1.4.9:

Proof. (Proof of Corollary 1.4.9) Since the generators are S-hyperbolic,
there exists a double of ̺, which is a maximal representation of the
fundamental group of the closed surface Σ2g+m−1. From [13] we
know that such a representation is Anosov. Hence the same holds
for ̺.

3.6 More Parameters

We use the gluing graph introduced in the previous section to state
parameters for Repmax(Γg,m, Sp(2n,R)). In Section 3.6.1 we give
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parameters for representations of Γ1,1, Γ0,4, Γ1,2 and Γ2,0, since their
underlying surfaces can be obtained from one or two pairs of pants,
which makes the statements slightly easier.

Recall
B = {X ∈ GL(n,R)|X contracting}.

and

R := {(X1, X2, X3) ∈ B̄3|X3(X
⊤
2 )−1X1 is symmetric

and positive definite}.

3.6.1 Parameters for Surfaces obtained from one
or two Pairs of Pants

Recall Γ1,1 = 〈A,B,C|[A,B]C = e〉 (see also Example 3.5.6).

We label the gluing graph for Σ1,1 as follows:

X2
X1, G

Proposition 3.6.1. There exists a bijection between

{
(X1, X2, G) ∈ GL(n,R)3|X1 ∈ B, (X1, X2, GX

⊤
1 G

−1) ∈ R
}
/O(n),

and Repmax(Γ1,1, Sp(2n,R)).

Proof. Let ̺ : Γ1,1 → Sp(2n,R) be a maximal representation. Then
we can define ̺′ : Γ0,3 → Sp(2n,R) by

̺′(C1) := ̺(A), ̺′(C2) := ̺(C), ̺′(C3) := ̺(BA−1B−1).

By Theorem 2.2.10 ̺′ is a maximal representation of Γ0,3.
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We can assume that the ̺′(Ci) are as in Theorem 3.3.2 for some
triple (X1, X2, X3) ∈ R. Then ̺′(C1) has the form of c and ̺′(C3)
has the form of c̄ in Proposition 3.5.11 and by construction ̺′(C1)

−1

and ̺′(C3) are conjugate and by the same proposition they are both
hyperbolic. Since ̺′(C1)

−1 and ̺′(C3) are conjugate, there exists
G ∈ GL(n,R) with X3 = GX⊤

1 G
−1 and

̺(B) =

(
Y3GY

−1
1 − (G⊤)−1 Y3G
GY −1

1 −G

)
,

where Y1 is the fixed point of ̺′(C1) transversal to 0 and Y3 is the
fixed point of ̺′(C3) transversal to ∞. By Remark 3.5.12 this triple
(X1, X2, G) is unique up to conjugation with an element from O(n).

We can construct a maximal representation of Γ0,3 for any triple X1,
X2 and G with X1 contracting and (X1, X2, (GX1G

−1)⊤) ∈ R and
close the handle according to Proposition 3.5.10 resp. Proposition
3.5.11. This provides an inverse map to the construction given above.

Corollary 3.6.2. There exists a surjective map from B×GL(n,R)×
Ω onto Repmax(Γ1,1, Sp(2n,R)).

Remark 3.6.3. Note that the triple (X1, X2, GX1⊤G−1) is an ele-
ment of R̃ if and only if GX⊤

1 G
−1(X⊤

2 )−1X1 is symmetric positive
definite, which is the case if and only if

(X⊤
1 )−1GX⊤

1 G
−1(X⊤

2 )−1 = [(X⊤
1 )−1, G](X⊤

2 )−1

is symmetric positive definite.

Proposition 3.6.4. There exists a bijection between
{
(X1, X2, X3, X̄1, X̄2, G) ∈ GL(n,R)6|(X1, X2, X3) ∈ R,

(X̄1, X̄2, GX
⊤
1 G

−1) ∈ R,X1 contracting
}
/ ∼

and Repmax(Γ0,4, Sp(2n,R)) where for k, l ∈ O(n)

(X1, X2, X3, X̄1, X̄2, G)



134 CHAPTER 3. PARAMETERS

and
(kX1k

−1, kX2k
−1, kX3k

−1, lX̄1l
−1, lX̄2l

−1, lGk−1)

are equivalent.

Proof. The graph

X1 X3

X2

X̄1 G

X̄2

is a gluing graph for Σ0,4. We denote the left pair of pants by P1,
the right one by P2. The restriction of a maximal representation ̺
to the fundamental groups of P1 and P2 yield two maximal repre-
sentations ̺1 and ̺2 of Γ0,3. They admit parameters (X1, X2, X3)
respectively (X̄1, X̄2, X̄3) (Theorem 3.3.2) such that X1 is contract-
ing and by Proposition 3.5.11 there exists G ∈ GL(n,R) such that
X̄3 = GX⊤

1 G
−1 . The matrices G,X1, X2, X3, X̄1, X̄2 determine the

representation uniquely. By Remark 3.5.12, these parameters are
unique up to the two O(n) actions.

Corollary 3.6.5. There exists a surjective map from B×GL(n,R)3×
Ω2 onto Rep

max
(Γ0,4, Sp(2n,R)).

We label the gluing graph for Σ1,2 as follows

X1 G

X2

X̄
H, Y
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As above we show:

Proposition 3.6.6. There exists a bijection between
{
(X1, X2, G, Y, X̄,H) ∈ GL(n,R)6|(X1, X2, GX̄

⊤G−1) ∈ R,

(Y, X̄,HY ⊤H−1) ∈ R, Y, X̄ contracting
}
/ ∼

and Repmax(Γ1,2, Sp(2n,R)), where for k, l ∈ O(n)

(X1, X2, G, Y, X̄,H)

and
(kX1k

−1, kX2k
−1, kGl−1, lY l−1, lX̄l−1, lHl−1)

are equivalent.

Corollary 3.6.7. There exists a surjective map from B2×GL(n,R)2×
Ω2 onto Repmax(Γ1,2, Sp(2n,R)).

Proposition 3.6.8. There exists a bijection between
{
(X1, X2, X3, G3, G2, G1) ∈ GL(n,R)6|(X1, X2, X3) ∈ R,

(G1X
⊤
3 G

⊤
1 , G2X

⊤
2 G

−1
2 , G3X

⊤
1 G

−1
3 ) ∈ R,Xi contracting

}
/ ∼

and Repmax(Γ2,0, Sp(2n,R)), where for l, k ∈ O(n)

(X1, X2, X3, G3, G2, G1)

and

(kX1k
−1, kX2k

−1, kX3k
−1, lG3k

−1, lG2k
−1, lG1k

−1)

are equivalent.

3.6.2 General parameters

In this section we state the most general theorem for Fenchel-Nielsen
coordinates for maximal representations of Γg,m into Sp(2n,R).

The strategy to obtain these coordinates is the same as for the ex-
amples above.
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(i) Choose a decomposition of the underlying surface into pairs
of pants and handles and write down the corresponding gluing
graph,

(ii) Theorem 1.3.1 gives us coordinates for representations of Γ0,3

and Proposition 1.3.12 gives coordinates for representations of
Γ1,1,

(iii) From Proposition 3.5.11 and Remark 3.5.12 we know in which
cases we can glue representations and how we get twist param-
eters.

Theorem 3.6.9. Let ̺ : Γg,m → Sp(2n,R) be a maximal repre-
sentation. Then there exist length and twist parameters as in the
following gluing graph:

X1

X2

G1 W1

X3

G2 Wm+g−3 Gg+m−2

Jg−1

Zg−1

Yg−1, Hg−1

Jg
Yg, Hg

Figure 3.9: General gluing graph

where the W•, X•, Y•, Z• are length parameter and the G•, H•, J• are
twist parameters subject to the usual relations and identifications.

Conversely any representations defined with these parameters is max-
imal.

Remark 3.6.10. Theorem 3.6.9 will be used in Section 4.2 to define
paths in Repmax(Γg,m, Sp(2n,R)).
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Having these general coordinates at hand we can finally prove Corol-
lary 1.4.8.

Proof. (Proof of Corollary 1.4.8) Let ̺ = (̺1, . . . , ̺r) be a product
representation. We can assume that the representations ̺i are all in
the form given by Theorem 3.3.2 for Sp(2,R) = SL(2,R). Then for

any generator ci =

(
Ai Bi
Ci Di

)
of ̺ the blocks Ai, Bi, Ci and Di

are diagonal and the ci have by construction the right fixed points
and the right dynamics. In particular all length and twist parameters
are diagonal.

The converse follows from the explicit formulae in Theorem 1.3.1
and Theorem 1.3.10.

The second statement follows immediately from the definition.
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Chapter 4

Applications

In this part we use our parameters to show continuity of the limit
curve for representations of the fundamental groups of surfaces with
boundary (Section 4.1). Furthermore, we count connected compo-
nents of Rep(Γg,m, Sp(2n,R)) with m ≥ 1 in Section 4.2.

4.1 Continuity of Limit Curves

In this section we prove Theorem 1.4.5. It was known before that
limit curves are continuous for representations of Γg into Sp(2n,R)
([13]) and for maximal representations into general Hermitian Lie
groups of tube type ([15]). In this section we use our parameters to
extend this result to another class of maximal representations.

The proof of Theorem 1.4.5 is a modification of the proof in [13],
inspired by [15]. It can be found at the end of this section. We
prepare the proof by reformulating some results from [13] and [18].

First we need an existence statement over some maps from L to Š.
It is a modified version of [18, Thm 5.1].

139
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Theorem 4.1.1. Let h be as in Theorem 1.4.5 and ̺ : Γg,m → G
a maximal representation with Zariski dense image. Then there are
two Borel maps

ϕ± : L → Š

with the following properties

(i) ϕ+ and ϕ− are strictly ̺-equivariant,

(ii) ϕ− is left continuous and ϕ+ is right continuous,

(iii) for every x 6= y, ϕǫ(x) is transverse to ϕδ(y) for all ǫ, δ ∈
{+,−},

(iv) for all x, y, z ∈ L

βŠ(ϕǫ(x), ϕδ(y), ϕη(z)) = rXβ(x, y, z),

for all ǫ, δ, η ∈ {+,−}.

Moreover ϕ+ and ϕ− are the unique maps satisfying (1) and (2).

Proof. Existence of the limit curve follows from Theorem 2.4.1 and
the fact that L with the Patterson-Sullivan measure λ is a Poisson
boundary for Γg,m.

Property (iv) is the only part where we need our assumptions for
the generators. Since Lemma 5.7 in [18] is not true for arbitrary
representations for surfaces with boundary, we have to replace this
lemma by Lemma 4.1.2). Property (iv) follows from Lemma 5.6
in [18] and Lemma 4.1.2. All other properties can be proved as in
[18].

Recall the interval

((x, y)) = {z ∈ L|β(x, z, y) = 1}
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and the essential graph EssGr(ϕ), which is the support of the push-
forward measure of λ into L × Š under the map

x 7→ (x, ϕ(x)).

We use the notation of Theorem 1.4.5.

Lemma 4.1.2. Let ̺ be as in Theorem 1.4.5 and (x1, f1), (x2, f2) ∈
EssGr(ϕ) with x1 6= x2. Then f1 ⋔ f2.

Proof. The limit set L is a Cantor set in S1. If ((x1, x2)) and
((x2, x1)) both are non-empty, one can apply the proof of Lemma
5.7 in [18] and we are done. If, say, ((x1, x2)) is empty, then x1 and
x2 are fixed points of a hyperbolic isometry γ, whose axis projects
to a boundary of the hyperbolic surface. We can assume x1 = γ+

is the attractive fixed point for γ. We show that f1 is the unique
attractive fixed point for ̺(γ) ∈ Š.
Indeed, since γ represents a boundary of the surface, there exists
g ∈ h(Γ0,3) such that (x1, x2) = g(c+i , c

−
i ) for some generator ci

of h(Γ0,3). Therefore γ = gcig
−1, hence ̺(γ) = ̺(g)̺(ci)̺(g)

−1

is hyperbolic. Hence it contracts an open and dense subset of Š,
which contains almost all of ϕ(L) to ̺(γ)+, it also contracts a set
of positive measure in EssGr(ϕ) to (x1, ̺(γ)

+), hence the latter is
in EssGr(ϕ). Since the set Fx1 = {f ∈ Š|(x1, f) ∈ EssGr(ϕ)} con-
tains precisely the right and the left limit of points in the fiber in
the essential graph over x1 ([13, Lem.8.6]). Therefore this fiber only
contains (x1, ̺(γ)

+). Working with γ−1 in stead of γ shows that
the fiber over x2 only contains (x2, ̺(γ)

−) = (x2, f2). Hence, by
assumption f1 and f2 are transversal.

The set of positive triples in L, denoted by L(3), is invariant under
h(Γ). Define

E̺ := Γ\(L(3) × V ).

and denote by p the canonical projection from E̺ to h(Γ)\L(3).
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Let ϕ± be the limit curves from Theorem 4.1.1. Recall Š can be
identified with L(V ), the space of Lagrangian in V and ϕ−(x) ⊕
ϕ+(y) = V for all x 6= y in S1 (Theorem 4.1.1 (iii)). This induces a
splitting of bundles

E̺ = E̺− ⊕ E̺+.

As explained in [13, Sec. 8.2], there are metrics ‖ · ‖+u and ‖ · ‖−u on
E̺ for u ∈ L(3).

Note that L(3) is not invariant under the geodesic flow gt. But for
u = (u−, uo, u+) ∈ L(3) ⊂ (S1)(3) we can define the set

T[u] = {t ∈ R|[gtu] ∈ h(Γ)\L(3)}.
and for all ξ ∈ E̺ the flow gtξ is defined for all t ∈ Tp(ξ)

Lemma 4.1.3. (i) For every ξ ∈ E̺+

lim
t→∞
t∈Tp(ξ)

‖g̺t ξ‖± = 0 monotonically and

lim
t→−∞
t∈Tp(ξ)

‖g̺t ξ‖± = ∞ monotonically

(ii) For every ξ ∈ E̺−

lim
t→−∞
t∈Tp(ξ)

‖g̺t ξ‖± = 0 monotonically and

lim
t→∞
t∈Tp(ξ)

‖g̺t ξ‖± = ∞ monotonically

The proof works as the proof of Lemma 8.8 in [18].

Lemma 4.1.4. There exists a continuous metric ‖ · ‖ on E̺ which
is equivalent to ‖ · ‖+ and ‖ · ‖−.

It is clear that Γ\L(3) is compact and from Lemma 4.1.3 we get: for
any C ⊂ L(3) compact, the set of metrics

{‖ · ‖±u |u ∈ C}
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is bounded.

Lemma 4.1.5. Let E̺ = E̺− ⊕ E̺+ and ‖ · ‖ the continuous metric
as in 4.1.4.

(i) For every ξ ∈ E̺+

lim
t→−∞
t∈Tp(ξ)

‖g̺t ξ‖ = ∞ and lim
t→∞
t∈Tp(ξ)

‖g̺t ξ‖ = 0

(ii) For every ξ ∈ E̺−

lim
t→∞
t∈Tp(ξ)

‖g̺t ξ‖ = ∞ and lim
t→−∞
t∈Tp(ξ)

‖g̺t ξ‖ = 0

Proof. From the proof of Lemma 8.8 in [13] we get ‖gtξ‖− → ∞ if
t→ −∞ for ξ ∈ E̺+ and ‖gtξ‖+ → ∞ if t→ ∞ for ξ ∈ E̺−. Lemma
4.1.5 follows from the equivalence of ‖ · ‖± to the continuous metric
‖ · ‖.

Now we have all ingredients to prove continuity of limit curves in
our special case.

Proof of Theorem 1.4.5. Throughout this proof we omit the state-
ment t ∈ T[u] for expressions as ‖gtξ‖u.
We have the following characterization of the splitting

E̺± = {ξ ∈ E̺ : lim
t→±

‖g̺t ξ‖ = 0}.

We want to show continuity of the splitting, which implies continuity
of the limit curves. Let um be a converging sequence in T 1Σ with
limit u, and let F ⊂ E̺(u) be any accumulation point of

{E̺+(um) : m ≥ 1}.
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Let {mk} be any subsequence such that limk→∞ E̺+(umk
) = F .

For every ξ ∈ F take ξk ∈ E̺+ such that ξk → ξ. We want to
show ξ ∈ E̺+. Let ξ = ξ+ ⊕ ξ− with ξ+ ∈ E̺+ and ξ− ∈ E̺−.
Every functions ‖g̺t ξk‖ : [0,∞) → R is bounded above by A2‖ξk‖,
where A is the constant coming from the equivalence of the norms
‖ · ‖ and ‖ · ‖±. But since ‖ξk‖ converges to ‖ξ‖ the functions are
uniformly bounded and the limit ‖g̺t ξ‖ is bounded as well. But if
ξ− 6= 0, by Lemma 4.1.5, ‖g̺t ξ‖t→∞ → ∞, which is a contradiction
to boundedness of ‖g̺t ξ‖.

Remark 4.1.6. An adaption of this argument for representations,
where ̺(Ci) are parabolic fails, because in this case one has to
choose h(Γ) such that it does not act cocompactly on the hyper-
bolic plane. Hence one can not construct the continuous metric as
above. Nevertheless it seems quite plausible that the limit curve is
continuous in this case, since the images of the generators Ci only
have one fixed point in Š (Proposition 3.3.4). Hence the limit curve
is automatically continuous in these points.

Proposition 4.1.7. Let ̺ be maximal representation which is S-
hyperbolically generated. Then the associated limit curve is unique.

Proof. Let ˜̺ be a double of ̺. Then by Lemma A.3.2, every element
̺(γ) ∈ ˜̺(Γ) contracts an open and dense subset of to ϕ̃(γ), which is
equal to ̺(γ) if ̺(γ) ∈ ̺(Γ). Hence the limit curve is unique.

4.2 Connected components

We have seen in Section 1, that connected components of spaces of
maximal representations of fundamental groups of closed surfaces
have been counted using Higgs bundle techniques. Olivier Guichard
and Anna Wienhard gave in [35] one example for a representation
in each connected component of Repmax(Γg, Sp(2n,R)).
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The parameters from Theorem 3.3.2 allow us to count the connected
components of Repmax(Γg,m, Sp(2n,R)) for surfaces with boundary
Σg,m withm ≥ 1. First we show that #π0(Repmax(Γg,m, Sp(2n,R))) ≥
22g+m−1 (Proposition 4.2.5). Then we show, that one can deform
every representation of Γg,m with m ≥ 1 into some standard repre-
sentation (Proposition 4.2.6). This gives an upper bound and shows
that #π0(Repmax(Γg,m, Sp(2n,R))) = 22g+m−1.

Before we start, we collect some fact needed later in this section.

Lemma 4.2.1. The set

B = {X ∈ GL(n,R)|X contracting}
has two connected components distinguished by the sign of the deter-
minant.

Recall

R̃n ={(X1, X2, X3) ∈ GL(n,R)3|X3(X
⊤
2 )−1X1 symmetric

and positive definite},
R ={(X1, X2, X3) ∈ B̄3|X3(X

⊤
2 )−1X1 symmetric and positive definite}

R∗ ={(X1, X2, X3) ∈ B3|X3(X
⊤
2 )−1X1 symmetric and positive definite}

and

Lemma 4.2.2. Note that (X1, X2, X3) ∈ R̃n if and only if

(λ1X1, λ2X2, λ3X3) ∈ R̃n

for (λ1, λ2, λ3) ∈ R̃1.

Proposition 4.2.3. The sets R̃n, R and R∗ have four connected
components distinguished by the signs of the determinants of the Xi.

Proof. We begin with R̃. It can be identified with GL(n,R)2 × Ω,
where Ω is the set of symmetric and positive definite matrices in
GL(n,R). Indeed, the map from R̃ to GL(n,R)2 × Ω

(X1, X2, X3) 7→ (X1, X2, X3(X
⊤
2 )−1X1)
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is a homoeomorphism between these spaces. Since GL(n,R) has
two connected components distinguished by the signs of the deter-
minants of X1 and X2, R̃ has four connected components (Ω is con-
nected). Now we proof the proposition for R. The main ingredient
for the proof is Lemma 4.2.2.
In any connected component of R̃ there is at least one connected
component of R. Indeed, let (X1, X2, X3) ∈ R̃ arbitrary, then there
exists λ1, λ2 and λ3 in (0, 1] such that (λ1X1, λ2X2, λ3X3) ∈ R.
Hence |π0(R)| ≥ |π0(R̃)|.
Now we show equality. Let (X1, X2, X3) and (Y1, Y2, Y3) be triples
in R, such that there is a path s = (s1, s2, s3) joining them in R̃. By
Lemma 4.2.2 there exists for any t a triple (λ1(t), λ2(t), λ3(t)) ∈
(0, 1]3 such that (λ1(t)s1(t), λ2(t)s2(t), λ3(t)s3(t)) ∈ R for all t.
Since the image of s is compact, there exists λ1, λ2 and λ3 such
that the path s̃(t) := (λ1s1(t), λ2s2(t), λ3s3(t)) is in R. It joins
(λ1X1, λ2X2, λ3X3) and (λ1Y1, λ2Y2, λ3Y3) in R. Furthermore by
construction there is a path joining (X1, X2, X3) and (λ1X1, λ2X2, λ3X3)
as well as a path joining (λ1Y1, λ2Y2, λ3Y3) and (X1, X2, X3). Hence
(X1, X2, X3) and (Y1, Y2, Y3) are in the same connected component
of R and |π0(R)| = |π0(R̃)|.
The proof for R∗ goes along the same lines.

We use the notions from Theorem 3.6.9 resp. Figure 3.9.

Proposition 4.2.4. The signs of the determinants of length pa-
rameters Xi and Yj and twist parameters Hk distinguish connected
components.

Proof. By Lemma 1.4.9 representations ̺ with ̺(Ci) S-hyperbolic
for all i are Anosov. Since they are dense in the representation va-
riety Rep(Γg,m, Sp(2n,R), it is enough to prove the proposition for
this case. For Anosov representations we can apply Lemma 4.11 in
[35], which expresses the first Stiefel-Whitney class of a certain bun-
dle in terms of the representation ̺. We use the notation from [35].
For this lemma we need the interpretation of the Shilov boundary
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as the space of Lagrangian subspaces (see Example 2.1.36). We can
assume ξ(tsγ) = 〈en+1, . . . , e2n〉 and

̺(γ) =

(
X 0
Y (X⊤)−1

)
.

The matrix ̺(γ) acts on the last n components of the vectors in ξ(tsγ)

by multiplication with (X⊤)−1. Therefore we get by [35, Lemma
4.11]

sw1(̺)([γ]) = sgn(det ̺(γ)|ξ(tsγ )) = sgn(det(X⊤)−1) = sgn(detX)

For the twist parameter, we also have to consider elements of Sp(2n,R)
of the form

̺(γ̄) =

(
Y3GY

−1
1 − (G⊤)−1 Y3G
GY −1

1 −G

)
.

We want to calculate sw1(̺)(γ̄) as above. Hence we investigate
the differential of ̺(γ̄) in a fixed point. We know that ̺(γ̄) is S-
hyperbolic and that it has a pair of transversal fixed points Y and
Y ′ with

β(Y1, Y, 0) = β(e, Y ′,∞) = n.

In particular Y − Y1 is positive definite. By construction Y1 is neg-
ative definite, hence the sign of its determinant only depends on n.
To obtain the derivative of d in Y we calculate

(
1 −Y
0 1

)(
Y3GY

−1
1 − (G⊤)−1 Y3G
GY −1

1 −G

)(
1 Y
0 1

)

=

(
(Y3GY

−1
1 − (G⊤)−1)− Y GY −1

1 0
GY −1

1 GY −1
1 Y −G

)

Hence the same argument as above applies.

It is enough to consider the length parameters Xi and Yj and twist
parameters Hk because they already determine the Stiefel-Whitney
classes. Indeed, sw1(̺)(Ai), sw1(̺)(Bi) and sw1(̺)(Cj) are uniquely
determined by them.
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Define:

X± :=




± 1
2

1
2

. . .
1
2


 and G± :=




±1
1

. . .

1


 .

Proposition 4.2.5. Repmax(Γg,m, Sp(2n,R)) has at least 22g+m−1

connected components if m ≥ 1.

Proof. We can explicitly write down parameters for 22g+m−1 rep-
resentations which are by Proposition 4.2.4 in different connected
components. The length parameters of all of these representations
are either X+ or X−. The twist parameter are either G+ or G−.

We have a complete freedom of choice for the twist parameters Hk

between G+ or G− as well as for all length parameter Xi and Yj ,
except X1, betweeen X+ or X−. This leaves only one choice for all
other length parameter if we want them to be either X+ or X−. By
Proposition 4.2.4 they all lie in different connected compontens.

The representations associated with these parameters are twisted
diagonal representations as defined in [35].

Proposition 4.2.6. Let ̺ : Γg,m → Sp(2n,R) be a maximal rep-
resentation and we label its parameters as in Figure 3.9. It can be
deformed into a representation ¯̺ with length parameters

L̄i := Xsgn det(Li)

where Li ∈ {Wi, Xi, Yi, Zi} is a length parameter from Figure 3.9
and

T̄j := Gsgn det(Tj),

where Tj ∈ {Gj, Hj , Jj} is a twist parameter and sgndet ∈ {+,−}

Together with Proposition 4.2.5 we get:
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Theorem 4.2.7. Repmax(Γg,m, Sp(2n,R)) has 22g+m−1 connected
components if m ≥ 1.

Before we can prove Proposition 4.2.6 we need two lemmas, which
are special cases.

Lemma 4.2.8. Let ̺ : Γ0,3 → Sp(2n,R) be a maximal repre-
sentation with three contracting parameters X1, X2 and X3. Let
X3(t) : [0, 1] → B and X2(t) : [0, 1] → B be two path starting in
X1 resp. X2. Then there exists a path X1(t) : [0, 1] → B such that

X3(t)
(
X2(t)

⊤
)−1

X1(t) is symmetric and positive definite for any t,
i.e. the path (X1(t), X2(t), X3(t)) gives parameters for maximal rep-
resentations of Γ0,3 into Sp(2n,R) for any t, such that all Xi(t) are
contracting. Hence it defines a path in Repmax(Γ0,3, Sp(2n,R)).

Proof. Since X1, X2 and X3 are parameters for a representation,
we know that S := X3(X

⊤
2 )−1X1 is symmetric and positive def-

inite. Defining X̃1(t) := (X3(t)(X2(t)
⊤)−1)−1S, we get a path

with X̃1(0) = X1 such that X̃1(t), X2(t) and X3(t) are parame-
ters for a maximal representation for any t ∈ [0, 1]. To fix the issue
that X̃1(t) might be non-contracting for some t, we choose a curve
λ : [0, 1] → R>0 such that λ(0) = 1 and 1/λ(t) is bigger than the ab-
solute value of the biggest eigenvalue of X̃1(t) for all t. Now putting
X1(t) := λ(t)X̃1(t) finishes the proof.

Corollary 4.2.9. Every maximal representation of Γ0,3 into Sp(2n,R)
with parameters (X1, X2, X3) can be deformed into the representa-
tion with parameters (Xsgn detX1 , Xsgn detX2 , Xsgn detX3).

Lemma 4.2.10. Let ̺ : Γ1,1 → Sp(2n,R) be a maximal represen-
tation with parameters (X1, X2, G) as in Proposition 3.6.1. Then ̺
can be deformed into a maximal representation ¯̺ with parameters

X̄1 = Xsgn detX1 , X̄2 = Xsgn detX2 , G = Gsgn detG.
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Proof. Let X1(t) and G(t) be paths in GL(n,R) joining X1 and
X± resp. G and G±. Choose a path S(t) in the symmetric posi-
tive definite matrices joining GX⊤

2 G
−1(X⊤

2 )−1X1 and 1
2I such that

X1(t) := (G(t)X(t)⊤2 G(t)
−1(X(t)⊤2 )−1)−1S(t) is contracting for all

t. This is possible since one can scale S(t) as in the proof of Proposi-
tion 4.2.8 such that the eigenvalues ofX1(t) are small enough. These
paths defines a path in Repmax(Γ1,1, Sp(2n,R)) joining ̺ with the
desired representation.

Proof of Proposition 4.2.6. We prove Proposition 4.2.6 by recurrence.
By Lemma 4.2.8 and Lemma 4.2.10 it is true for representations of
Γ0,3 and Γ1,1. So we assume now that it is true for Γg,m with m ≥ 1.

(i) The case Γg,m+1

Let ̺ : Γg,m+1 → Sp(2n,R) be a maximal representation. First
note that we obtain Σg,m+1 by gluing Σg,m and Σ0,3. Let
(X1, X2, X3) be parameters of the restriction of ̺ to π1(Σ0,3).

By recurrence assumption we can deform the parameters of
̺|Γg,m

as requested. This produces a path X(t) for the bound-
ary component of Σg,m along which we can glue Σg,m and Σ0,3.
Joining the twist parameter for this boundary component with
G+ resp. G− defines a path from X3 to X+ resp. X−. By
Lemma 4.2.8 this path, together with a path X2(t) joining X2

and X+ resp. X− produces a path which joins ̺ with the
desired representation.

(ii) The case Γg+1,m

This case works analogously by gluing a surface Σ1,2 to Σg,m.



Chapter 5

Cross Ratios

This chapter is joint work with Tobias Hartnick.

5.1 Construction of functorial cross ra-
tios

5.1.1 Definition and basic properties of general-
ized cross ratios

Let V be a simple Euclidean Jordan algebra and denote by D = DV
the associated irreducible bounded symmetric domain of tube type.
Since D is simply-connected, the rational powers of a continuous
function k : D × D → C× with k(0, 0) = 1 are well-defined. Indeed,
given integers p, q ∈ Z, q > 0 we define kp/q as the unique continuous
function satisfying

(kp/q)q = kp, k(0, 0) = 1. (5.1)

151
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There are two natural kernel functions on D, which are closely re-
lated. On the one hand, there is the Bergman kernel kD of D, on
the other hand there is the kernel kdet := det ◦K associated with the
canonical automorphy kernel K : V C × V C → End(V C) of V (see
[25] and also [29, 55] for background). By [29, Prop. X.4.5] there
exists a constant C = C(V ) such that

kDV
= C · k−1

det. (5.2)

This implies that the weighted Bergman cross ratio of weight α as
given by

B
(α)
D : D4 → C×, (x, y, z, t) 7→ kαD(t, x)k

α
D(y, z)

kαD(t, z)k
α
D(y, x)

. (5.3)

can be expressed in terms of the canonical automorphy kernel as

B
(α)
DV

(x, y, z, t) =
k−αdet(t, x)k

−α
det (y, z)

k−αdet(t, z)k
−α
det(y, x)

. (5.4)

Weighted Bergman cross ratios on bounded symmetric domains of
tube type were introduced by Clerc and Ørsted in [25]. For sim-
ple V the normalization in their paper corresponds to the choice

α = − rk(V )
dimV (see [29, Prop.III.4.3]). Here we will choose a different

normalization.

Definition 5.1.1. Let D be an irreducible bounded symmetric do-
main. Then the normalized cross ratio BD is defined as the weighted

Bergman cross ratio B
(− 1

2 dim V
)

D of weight α := − 1
2 dimV . Moreover,

the normalized kernel function is defined to be kV := k−αdet .

For later reference we record that, by definition,

BDV
(x, y, z, t) =

kV (t, x)kV (y, z)

kV (t, z)kV (y, x)
. (5.5)

Moreover, our kernel kV and the kernel function denoted k in [25]
are related by the formula

k
2·rk(V )
V = k. (5.6)
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There are two reasons for our different normalization: In the rank
one case, our cross ratio is the square root of the cross ratio of
Clerc and Ørsted. In view of [25, Lemma 5.4] this implies that
the continuous extension of our cross ratio to the circle yields the
classical cross ratio rather than its square, as demanded by Property
(iv) in Theorem 1.5.1 (see Example 5.1.8 below). Our reason for
taking an additional rth root in the higher rank case is as follows:
Suppose α : V1 → V2 is a morphism of Euclidean Jordan algebras of
respective ranks r1, r2; then the corresponding kernels k(1), k(2) in
the sense of [25] have the following equivariance property [25, Prop.
6.2]:

k(2)(α
C(z), αC(w)) = k(1)(z, w)

r2
r1 (z, w ∈ DV1).

Our normalization is chosen in such a way that this translates into
the following invariance property:

Lemma 5.1.2 (Clerc-Ørsted). Let α : V1 → V2 be a morphism of
simple Euclidean Jordan algebras. Then for all x, y, z, t ∈ DV1 we
have

kV2(α
C(z), αC(w)) = kV1(z, w),

and hence

BV2(α
C(x), αC(y), αC(z), αC(t)) = BV1(x, y, z, t).

This is a first instance of the functoriality property of Theorem 1.5.1.
In order to obtain a similar functoriality property for general cross
ratios, we choose the following normalization in the reducible case:

Definition 5.1.3. Let V be a Euclidean Jordan algebra and V =
V1 ⊕ · · · ⊕ Vm a decomposition of V into simple ideals. Then the
normalized kernel function kV is defined by the formula

kV (z, w)
rkV =

m∏

j=1

kVj
(zi, wi)

rk Vj , kV (0, 0) = 1,
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where the kernels kVj
are defined as in (5.1.1), and the normalized

cross ratio of D = DV is defined by (5.5).

Remark 5.1.4. The definition of weighted Bergman cross ratios makes
sense for arbitrary domains which are biholomorphic to a bounded
domain (so that the Bergman kernel is well-defined). In this gen-
erality we do, however, not see any preferable normalization. For
bounded symmetric domains, which are not of tube type, the nor-
malization can be chosen as follows: Define BD by the formula

BD := B
(− 1

2 dimC D
)

D

if D is irreducible, and extend to the non-irreducible case as above.
With these definitions, large parts of the theory carry over to the
non-tube type case, since the automorphy kernel is defined for any
Jordan triple system. However, since all our applications are con-
cerned with the tube type case, and the notation in the non-tube
type case is considerably more complicated, we do not develop the
theory in this larger generality.

Our normalized kernel functions extend continuously to the Shilov
boundary. More precisely:

Proposition 5.1.5. Let V be a Euclidean Jordan algebra. Then the
normalized kernel kV extends continuously to the Shilov boundary
and for z, w ∈ Š we have

kV (z, w) 6= 0 ⇔ z ⋔ w.

Let us first assume that V is simple. Then kdet extends continuously
to the Shilov boundary and the extension satisfies kdet(z, w) 6= 0 iff
z ⋔ w, see Proposition A.2.3 in the appendix. It follows that we can
extend kV to a continuous nowhere-vanishing function on Š(2).

Lemma 5.1.6. Let X be a topological space, f : X → C be a
continuous function and denote X ′ := f−1(C \ {0}). Let f̃ : X ′ →
C \ {0} be any continuous function with f̃n = f |X′ . Then f̃ extends
continuously by 0 to all of X.
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Proof. We have to show that the extension f̃ to all of X by 0 is
continuous. For this let xk ∈ X ′ with xk → x, where x ∈ X \X ′.

Then f(xk) → f(x) = 0 by continuity of f , hence f̃(xk)
n → 0. This,

however, implies already f̃(xk) → 0 = f̃(x), which yields continuity
of the extended function.

Applying the lemma we deduce that for simple V the kernel kV ex-
tends continuously to all of Š with zero set given by the complement
of Š(2). Another application of the lemma then reduces the general
case to the irreducible one, thereby finishing the proof of Proposition
5.1.5.

As an immediate consequence of Proposition 5.1.5 and (5.5) we de-
duce that BD extends continuously to a function

BŠ : Š(2) × Š(2) = {(x, y, z, t) ∈ Š4 |x ⋔ y, z ⋔ t} → C,

which is nonzero on Š(4) ⊂ Š(2) × Š(2). It turns out, however, that
the present domain for BŠ is too large for our purposes: Neither is
the extended cross ratio real-valued on Š(2) × Š(2), nor can we show
functoriality for these domains. It turns out, a posteriori, that the
following domain is ideally suited for our purposes:

Definition 5.1.7. Let D be a bounded symmetric domain and Š
the associated Shilov boundary. A quadruple (x, y, z, t) ∈ Š(4) is
called extremal if any triple (a, b, c) ∈ Š3 of pairwise distinct points
with a, b, c ∈ {x, y, z, t} has either maximal or minimal Maslov index.
(Such a triple is then called maximal or minimal accordingly.) We
denote the set of extremal quadruples in Š4 by Š(4+). Then the
generalized cross ratio of the Shilov boundary Š is the function

BŠ : Š(4+) → C×, (x, y, z, t) 7→ kV (t, x)kV (y, z)

kV (t, z)kV (y, x)
. (5.7)

The term generalized refers to the following example:



156 CHAPTER 5. CROSS RATIOS

Example 5.1.8. Let V = (R, ·) so that V C = RC = C and DV = D
is the Poincaré disc. Then for x,w, z ∈ C we have K(z, w)x =
(1 − zw̄)2x, in particular kR(z, w) = 1− zw̄ and thus

BD(a, b, c, d) =
(1 − dā)(1− bc̄)

(1 − dc̄)(1− bā)
.

We deduce that

BS1(a, b, c, d) =
(1 − dā)(1− bc̄)

(1 − dc̄)(1− bā)
=

(a− d)(c − b)

(c− d)(a − b)
= [a : b : c : d].

Remark 5.1.9. A similar computation for then rank r polydisc D =
Dr (or Lemma 5.1.15 below) shows that

B(S1)r (a, b, c, d) =

(
r∏

i=1

(ai − di)(ci − bi)

(ci − di)(ai − bi)

)1/r

.

In particular, the cross ratio is invariant under the diagonal embed-
ding of D into Dr. This sort of functoriality explains our normaliza-
tion in the reducible case.

The following proposition summarizes the basic properties of our
construction:

Proposition 5.1.10. Let D be a bounded symmetric domain of tube
type with Shilov boundary Š.

(i) The normalized cross ratio BD and the generalized cross ratio
BŠ are invariant under G(D).

(ii) Suppose D = D1×D2 is the product of two bounded symmetric
domains D1,D2 of respective ranks r1, r2 with corresponding
Shilov boundaries Š, Š1, Š2 and Š is identified with Š1 × Š2.
Then

BŠ(x, y, z, t)
r1+r2 = BŠ1

(x1, y1, z1, t1)
r1BŠ2

(x2, y2, z2, t2)
r2 .
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Indeed, the second statement holds by definition and can be used
to reduce the proof of the first statement to showing invariance of
BD for irreducible bounded symmetric domains. In this case we can
appeal to the following general fact:

Proposition 5.1.11. Let C be complex domains biholomorphic to a
bounded domain and let c : D → C be a biholomorphism. Then for
all (x, y, z, t) ∈ D4 and for every α ∈ Q we have

B
(α)
D (x, y, z, t) = B

(α)
C (c(x), c(y), c(z), c(t)).

Proof. Since the equality is invariant under taking rational powers,
it suffices to prove the proposition for α = 1. According to [29, Prop.
IX.2.4] the Bergman kernels on D and C are related by the formula,

kD(z, w) = kC(c(z), c(w)) det C(Jc(z))det C(Jc(w)),

where Jc denotes the complex Jacobian of c. Now write out the
definition of the Bergman cross ratio an cancel the Jacobian terms
to obtain

B
(1)
D (x, y, z, t) = B

(1)
C (c(x), c(y), c(z), c(t)).

5.1.2 Balanced morphisms and functoriality

We now aim to establish the functoriality property of generalized
cross ratios, which motivated (and a posteriori justifies) our normal-
izations. Indeed, we will prove the following proposition; the notion
of a balanced tight morphism will be defined in Definition 5.1.14
below (see also Example 5.1.17).

Proposition 5.1.12. Let D1,D2 be bounded symmetric domains of
tube type with respective Shilov boundaries Š1, Š2, let β : D1 → D2 be
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a balanced tight morphism and β̄ : Š1 → Š2 its boundary extension.
Then for all (x, y, z, t) ∈ Š(4+) we have

BŠ2
(β̄(x), . . . , β̄(t)) = BŠ1

(x, . . . , t).

In the case of irreducible bounded symmetric domains the proposi-
tion is true for arbitrary morphisms. Indeed, this follows by contin-
uous extension from Lemma 5.1.2. However, in the general case one
cannot expect such an unconditional result, as the following generic
counterexample shows:

Example 5.1.13. Consider the Jordan algebra embedding α : R2 →
R3 given by (λ1, λ2) 7→ (λ1, λ1, λ2). Then

kR2(λ, µ) = (1 − λ1µ1)
1
2 (1− λ2µ2)

1
2

6= (1 − λ1µ1)
2
3 (1− λ2µ2)

1
3 = kR3(αC(λ), αC(µ)).

We will ask for functoriality under all morphisms except for those
which on some polydisc look like the one in Example 5.1.13. This
leads to the definition of a balanced morphism. Denote by trV the
Jordan algebra trace of V and remind the reader that [29, Thm.
III.1.2] for any Jordan frame (c1, . . . , cr) of V we have

x =

r∑

j=1

λjcj ⇒ trV (x) =

r∑

j=1

λj .

Now we define:

Definition 5.1.14. A Jordan algebra homomorphism α : V → W
is called balanced if for all v ∈ V

1

rkV
trV (v) =

1

rkW
trW (α(v)).

A tight morphism β : D1 → D2 is called balanced if there exists
Jordan algebras V,W and isomorphisms D1

∼= DV and D2
∼= DW

intertwining β with the complexification of a balanced morphism of
Euclidean Jordan algebras.
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The notion is clearly invariant under complexification. Note that
nonzero idempotents have positive trace and thus go to nonzero
idempotents under balanced morphisms; this shows that every bal-
anced Jordan algebra homomorphism is injective. Moreover, we have
the following characterization of balanced Jordan algebra homomor-
phisms: Let (c1, . . . , cr) be a Jordan frame in V and α : V → W a
Jordan algebra homomorphism. Then α(c1), . . . , α(cr) is a family of
idempotents with α(ci)α(cj) = 0 and

∑
α(ci) = e. We thus find a

Jordan frame (c11, . . . , c1l1 , . . . , cr1, . . . , crlr) of W such that

α(cj) =

lj∑

k=1

cjk.

We have trW (α(cj)) = lj and thus α is balanced if and only if

l1 = · · · = lr.

Conversely, if the latter condition is true for any Jordan frame
(c1, . . . , cr) of V , then α is balanced. Note that we obtain in partic-
ular

rkW = lj · rkV (j = 1, . . . , r),

so that rkW is divisible by rkV . The morphism in Example 5.1.13
clearly violates this condition, and thus is not balanced. Heaving
clarified our notion of morphism, we now turn to the proof of Propo-
sition 5.1.12. The following lemma adapts results from [25] to our
setting:

Lemma 5.1.15. If (c1, . . . , cr) is a Jordan frame in a Euclidean
Jordan algebra W of rank r and λj ∈ D, µj ∈ D, then

kW




r∑

j=1

λjcj ,

r∑

j=1

µjcj


 =

r∏

j=1

(1− λjµj)
1
r . (5.8)
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Proof. If W is simple, then [25, Lemma 5.4] applies directly and in
view of (5.6) yields the explicit formula

k2rW




r∑

j=1

λjcj ,
r∑

j=1

µjcj


 = k




r∑

j=1

λjcj ,
r∑

j=1

µjcj


 =

r∏

j=1

(1− λjµj)
2 ,

which implies (5.8). For the general case, consider a decomposition
W = W1 ⊕ · · · ⊕ Wn into simple ideals. Let rl := rk(Wl) and
(cl1, . . . , clrl) be a Jordan frame for Wl. Then (c11, . . . , cnrn) is a
Jordan frame for W and, in fact, any Jordan frame for W is of this
form (as follows e.g. from [29, Prop. X.3.2]). Let

z :=

n∑

l=1

rl∑

j=1

λljclj , w :=

n∑

l=1

rl∑

j=1

µljclj

zl =

rl∑

j=1

λljcjl, wl :=

rl∑

j=1

µljclj .

By the simple case we have

kWl
(zl, wl)

rkWl =

rl∏

j=1

(1− λljµj),

hence

kW (z, w)rkW =

n∏

l=1

(kWl
(zl, wl))

rkWl =

n∏

l=1

rl∏

j=1

(1− λljµj),

which is (5.8).

For general bounded symmetric domains it is not true that the nor-
malized kernel function itself is functorial; the following proposition
provides a substitute, which is sufficient for our purposes. Let us
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call two elements v1, v2 ∈ V co-diagonalizable if there exists a Jor-
dan frame (c1, . . . , cr) of V and elements λj ∈ D, µj ∈ D such that

v1 =
r∑

j=1

λjcj ∈ DV , v2 =
r∑

j=1

µjcj ∈ DV .

By [29, X.2.2] x and y are co-diagonalizable if and only if [L(x), L(y)] =
0. Then we have:

Proposition 5.1.16. Let α : V → W be an injective homomor-
phism of Euclidean Jordan algebras. If α is balanced, then for every
pair of co-diagonalizable elements v1, v2 ∈ D we have

kW (αC(v1), α
C(v2)) = kV (v1, v2). (5.9)

Conversely, if (5.9) holds for all co-diagonalizable v1, v2 ∈ DV , then
α is balanced.

Proof. If α is balanced, then rV := rk(V ) and rW := rk(W ) are
related by rW = mαrV for some constant multiplicity mα. Given a
Jordan frame (c1, . . . , cr) in V and elements

v1 =

r∑

j=1

λjcj ∈ DV , v2 =

r∑

j=1

µjcj ∈ DV

with λj ∈ D, µj ∈ D we have

αC(v1) =

r∑

j=1

λjα(cj), αC(v2) =

r∑

j=1

µjα(cj).

Now each α(cj) decomposes as

α(cj) = dj1 + · · ·+ djµα
,

where the djl are primitive idempotents. Now we obtain

kV (v1, v2)
rV =

r∏

j=1

(1− λjµj),
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whence

kV (v1, v2)
rW =




r∏

j=1

(1− λjµj)



mα

=
r∏

j=1

(1− λjµj)
mα .

Similarly,

kW (αC(v1), α
C(v2))

rW =

r∏

j=1

mα∏

l=1

(1− λjµj) =

r∏

j=1

(1− λjµj)
mα .

As kV (0, 0) = kW (αC(0), αC(0))rW , this implies (5.9). On the other
hand, if α is not balanced and v1, v2 are as above, then the multi-
plicity function mα is non-constant and thus

kV (v1, v2) =

r∏

j=1

(1 − λjµj)
1
r V 6=

r∏

j=1

(1− λjµj)
mα(cj)

rW

= kW (αC(v1), α
C(v2)).

Now we can finally prove Proposition 5.1.12:

Proposition 5.1.12. In view of Proposition 2.1.39 we may assume
that D1 = DV and D2 = DW for Euclidean Jordan algebras V,W
and β̄ = αC|Š1

for a balanced morphism α : V → W . Let β̂ : ĜV →
ĜW be the equivariant lift of β so that αC(g.w) = β̂(g).αC(w) for all
g ∈ ĜV and v ∈ Š1. Observe that the actions of ĜV and ĜW factor
through GV and GW ; hence for every g ∈ GV there exists h ∈ GW
such that for all v ∈ ŠV ,

αC(gv) = hαC(v). (5.10)

Now assume (x, y, z, t) ∈ Š(4+); then by Proposition 2.1.37 we find
g ∈ GV such that gx, gy, gz, gt are diagonalized by a common Jordan
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frame (c1, . . . , cr). Let h ∈ GW be an element such that (5.10) holds
for all v ∈ Š1. Using Proposition 5.1.10 and Proposition 5.1.16 we
now obtain

BŠ1
(x, y, z, t) = BŠ1

(gx, gy, gz, gt)

=
kV (gt, gx)kV (gy, gz)

kV (gt, gz)kV (gy, gx)

=
kW (αC(gt), αC(gx))kW (αC(gy), αC(gz))

kW (αC(gt), αC(gz))kW (αC(gy), αC(gx))

=
kW (hαC(t), hαC(x))kW (hαC(y), hαC(z))

kW (hαC(t), hαC(z))kW (hαC(y), hαC(x))

= BŠ2
(hαC(x), hαC(y), hαC(z), hαC(t))

= BŠ2
(β̄(x), β̄(y), β̄(z), β̄(t)),

which is the desired functoriality.

Example 5.1.17. The following are examples of balanced Jordan
algebra homomorphisms (balanced morphisms of bounded symmet-
ric domains):

• Jordan algebra homomorphisms α : V → W between simple
Jordan algebras (tight holomorphic morphisms between irre-
ducible bounded symmetric domains) are balanced by Lemma
5.1.2.

• If rk(V ) = rk(W ) then every injective Jordan algebra homo-
morphism α : V → W is balanced. (Similarly for domains of
equal rank.)

• In particular, maximal polydisc embeddings are balanced.

• Any Jordan algebra homomorphism α : R → W (any tight
holomorphic disc) is balanced.

• Compositions of balanced Jordan algebra homomorphisms (or
balanced tight holomorphic morphisms) are balanced.
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5.1.3 Further properties of generalized cross ra-
tios

We now collect a couple of further properties of generalized cross
ratios. We will focus on those properties needed in the proof of
Theorem 1.5.1 and those required in order to relate our cross ra-
tios to strict cross ratios on the circle in the sense of Labourie [47].
Throughout this section we fix a Euclidean Jordan algebra V , asso-
ciated bounded symmetric domain D and Shilov boundary Š.

Lemma 5.1.18. If X is a set and k : X2 → C× is an arbitrary
function then

b :

{
X4 → C×

(x, y, z, t) 7→ k(t,x)k(z,y)
k(t,z)k(y,x)

has the following properties:

b(x, y, z, t) = b(z, t, x, y) (5.11)

b(x, y, z, t) = b(x, y, z, w)b(x,w, z, t) (5.12)

b(x, y, z, t) = b(x, y, w, t)b(w, y, z, t) (5.13)

Proof. Straightforward computation.

Since the normalized kernel is only partially defined, this does not
directly apply. Still we have:

Corollary 5.1.19. Let D be a bounded symmetric domain of tube
type with Shilov boundary Š. Then the generalized cross ratio BŠ :
Š4+ → C× satisfies (5.11)-(5.13) above, whenever both sides of the
equation are well-defined.

Proof. Using Proposition 5.1.10 we can reduce to the irreducible
case. In this case, Lemma 5.1.18 yields (5.11)-(5.13) for the weighted
Bergman cross ratio BD, and by continuity these properties extend
to BŠ .
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Our next goal is to show that BŠ maps Š(4+) to R \ {0, 1}. Thus let
(x, y, z, t) ∈ Š(4+); if (x, y, z) is maximal then we may apply Propo-
sition 2.1.37 in order to find g ∈ G and a Jordan frame (c1, . . . , cr)
of V such that

g.(x, y, z, t) = (−e,−ie, e,
r∑

j=1

λjcj).

Since the embedding of a maximal polydisc is balanced (Example
5.1.17), we can apply Proposition 5.1.12 to obtain

BŠ(x, y, z, t) = B(S1)r (−e,−ie, e, λ),

where λ = (λj). Similary if (x, x, z) is minimal then we find λ ∈
(S1)r with

BŠ(x, y, z, t) = B(S1)r (e,−ie,−e, λ).
In any case we may assume V = Rr, D = Dr and Š = (S1)r and
either (a, b, c) = (−e,−ie, e) or (a, b, c) = (e,−ie,−e). We will only
discuss the first case here, leaving the second (completely analogous)
case to the reader. Since (−e,−ie, e, λ) is assumed extremal, the
possible values of λ are seriously restricted: Indeed, (−1, λj , 1) is
positive iff λj is contained in the lower half-circle and negative, iff
λj is contained in the upper half-circle. Since (−e, λ, e) is either
maximal or minimal we see that either λj is contained in the lower
half-circle for all j = 1, . . . , r or in the upper half-circle for all j =
1, . . . , r. Correspondingly, let us call λ positive or negative. In the
positive case, all the λj are contained in a fixed quarter circle. For
special values of λ, the expression B(S1)r (−e,−ie, e, λ) is easy to
compute:

Lemma 5.1.20. If λ1 = · · · = λr, then

B(S1)r (−e,−ie, e, λ) = [−1 : −i : 1 : λ1].

Proof. The Jordan algebra homomorphism R → Rr given by di-
agonal embedding is tight and balanced; its complexification maps
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(−1,−i, 1, λ1) to (−e,−ie, e, λ). Then the lemma follows from Propo-
sition 5.1.12 and Example 5.1.8.

This is enough information to determine the sign ofB(S1)r (−e,−ie, e, λ)
in general:

Proposition 5.1.21. The cross-ratio B(S1)r is real-valued on ((S1)r)(4+).
More precisely, B(S1)r (−e,−ie, e, λ) is positive/negative iff λ is pos-
itive/negative.

Proof. Consider the function f : (S1 \ {−1,−i, 1})r → S1 given by

f(λ) :=
B(S1)r(−e,−ie, e, λ)
|B(S1)r(−e,−ie, e, λ)|

.

We haveB(S1)r(−e,−ie, e, λ)r =
∏
[−1,−i, 1, λj] ∈ R, hence f(λ)r ∈

R∩S1 = {±1}. Therefore f takes values in the set R2r of 2r-th roots
of unity. Since R2r is discrete and f is continuous, f must be lo-
cally constant. In particular, if λ and µ are contained in the same
connected component of (S1 \{−1,−i, 1})r and B(S1)r (−e,−ie, e, µ)
is a positive/negative real number, then B(S1)r (−e,−ie, e, λ) os also
positive/negative. Combining this with Lemma 5.1.20 we obtain the
proposition.

We can use the proposition to derive an explicit formula for the gen-
eralized cross ratio on the polydisc. Let us call an extremal quadru-
ple (a, b, c, d) positive/negative if it is conjugate to (−e,−ie, e, λ) for
some positive/negative λ. Then Proposition 5.1.21 and Example
5.1.8 combine to the following formula:

Corollary 5.1.22. Suppose (x, y, z) is maximal and (x, y, z, t) ∈
((S1)r)(4+). Then

B(S1)r (x, y, z, t) = ǫ(x, y, z, t) · r

√√√√√

∣∣∣∣∣∣

r∏

j=1

[xj : yj : zj : tj ]

∣∣∣∣∣∣
,
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where

ǫ(x, y, z, t) =

{
+1 (x, y, z, t) positive
−1 (x, y, z, t) negative

In the case, where (x, y, z, t) is positive, there are two possibilities
for t: Either, each tj lies in between xj and yj or between yj and tj .
This corresponds to the cases of (x, t, y) or (y, t, z) being maximal.
These two cases can be distinguished by the cross ratio as follows:

Lemma 5.1.23. If (x, y, z) and (x, t, y) are maximal, then 0 <
B(S1)r(x, y, z, t) < 1. If (x, y, z) and (y, t, z)are maximal, then

B(S1)r (x, y, z, t) > 1.

Proof. The assumptions imply 0 < [xj : yj : zj : tj ] < 1, respectively
[xj : yj : zj : tj ] > 1 for each j, hence the lemma follows from the
explicit formula in Corollary 5.1.22.

We leave it to the reader to formulate the corresponding statements
for the case where (x, y, z) in minimal. In any case we obtain:

Corollary 5.1.24. We have BŠ(Š
(4+)) = R \ {0, 1}.

Proof. Let (x, y, z, t) ∈ Š(4+). If (x, y, z) is maximal, then depending
on t we have either B(S1)r(x, y, z, t) < 0 (if (x, y, z, t) is negative) or
B(S1)r(x, y, z, t) < 1 (if (x, t, y) is maximal) or B(S1)r(x, y, z, t) > 1
(if (y, t, z) is maximal). If (x, y, z) is minimal one may argue sim-
ilarly (or reduce to the former case by means of suitable cocycle
properties). This shows the inclusion ⊂. For the converse inclusion,
it suffices to see that BS1 is onto R \ {0, 1} and R has a balanced
embedding into every Euclidean Jordan algebra.

As a consequence we obtain the following additional identity:

Corollary 5.1.25. For all (x, y, z, t) ∈ Š(4+) we have

BŠ(x, y, z, t) = BŠ(y, x, t, z).
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Proof. This follows immediately from the real-valuedness and the
property kdet(z, w) = kdet(w, z).

5.1.4 Proof of the functorial characterization

We claim that the family of normalized cross ratios {BŠ} satis-
fies Properties (i)-(iv) from Theorem 1.5.1 and is uniquely char-
acterized by these properties. Indeed, Properties (i) and (iii) were
proved in Proposition 5.1.10, Property (ii) was established in Propo-
sition 5.1.12, and Property (iv) was checked in Example 5.1.8. It
thus remains to establish uniqueness in order to prove Theorem
1.5.1. For this we argue as follows: Given a Shilov boundary Š,
any (x, y, z, t) ∈ Š(4+) is contained in the boundary of a maximal
polydisc by Proposition 2.1.37. Since the embedding of a maximal
polydisc is balanced, the family {BŠ} is uniquely determined by the
family {B(S1)r}. Condition (iii) of Theorem 1.5.1 implies that

B(S1)r(x, y, z, t)
r =

∏
BS1(xj , yj , zj, tj).

Since BR is determined by (iv), this determines Br
Rr for every r.

Since BRr is assumed real-valued, we have in fact determined BRr

up to a locally constant function into {±1}. To fix this sign, consider
a diagonal disc embedding R → Rr; the transversal quadruples of the
Shilov boundary S1 hit every connected component, and therefore
determine the sign uniquely (see the proof of Proposition 5.1.21).
This shows uniqueness and finishes the proof of Theorem 1.5.1.

5.2 Periods and translation lengths

5.2.1 Translation length for linear groups

We recall from the introduction that given an action of a group G
on a metric space X the translation length τX(g) of g ∈ G on X is
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defined by the formula

τX(g) := inf
x∈X

d(x, g.x). (5.14)

If g ∈
GL(V ) is an element of the general linear group of some finite-
dimensional Hilbert space V and X = P(V ) is given by the space of
positive definite symmetric endomorphisms of V (as described e.g.
in [11, Ch. II.10]) this translation length can be estimated easily.
Since τX(g) = τX(g−1) we may assume det(g) ≥ 1. Then we have:

Lemma 5.2.1. Let g ∈ GL(V ) and assume det(g) ≥ 1. Then

τP(V )(g) ≥
1√

dimV
· log det(g)2.

If all eigenvalues of g are of modulus ≥ 1, then

τP(V )(g) ≤ 2 · log det(g)2.

Proof. Let p ∈ P(V ) and c : [0, d(p, gp)] → P(V ) a unit speed
geodesic joining p with gp. We deduce from the description in [11,
Ch. II.10] that there exists h ∈ GL(V ) such that p = hh⊤ and
a symmetric endomorphism X of V of norm 1 such that c(t) =
h exp(tX)h⊤. Moreover, gp = ghh⊤g⊤. Since c(d(p, gp)) = gp we
have

h exp(d(p, gp) ·X)h⊤ = ghh⊤g⊤

⇒ det(h exp(d(p, gp) ·X)h⊤) = det(ghh⊤g⊤)

⇒ exp(d(p, gp) · tr(X)) = det(g)2

⇒ exp(d(p, gp) · tr(X)) = exp(log det(g)2)

Since both d(p, gp) · tr(X) and log det(g)2 are real this implies

d(p, gp) · tr(X) = log det(g)2.
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Since det(g) ≥ 1 this means

d(p, gp) · | tr(X)| = log det(g)2. (5.15)

Now observe that

| tr(X)| = |(X |1)| ≤ ‖X‖ · ‖1‖ = 1 ·
√
dimV =

√
dimV .

Inserting into (5.15) we obtain

d(p, gp) ≥ 1√
dimV

| log det(g)2|.

Passing to the infimum over all p ∈ P(V ) we obtain the first inequal-
ity.

For the converse inequality we use the following consequence of the
existence of a real Jordan canonical form: Assume that the eigenval-
ues of g (with multiplicity) are given by λ1, . . . , λm. Then there ex-
ists a sequence hn ∈ GL(V ) such that (h−1

n ghn)(h
−1
n ghn)

⊤ converges
to a diagonal matrix ĝ with entries |λ1|2, . . . |λm|2. In particular we
obtain

τ(g) = inf
h∈GL(V )

d(hh⊤, ghh⊤g⊤) ≤ d(idV , ĝ).

Then [11, Cor. 10. 42] yields

τ(g) ≤




m∑

j=1

(log |λj |2)2



1
2

≤ 2 ·
m∑

j=1

| log |λj ||.

Now, if |λj | > 1 for all j = 1, . . . ,m, then the right hand side is
precisely given by 2 · log det(g)2.
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We can use the lemma to compute translation lengths for isome-
try groups of totally geodesic subspaces of P(V ) by means of the
following general result:

Lemma 5.2.2. Let X be a complete CAT (0)-manifold. Let Y ⊂ X
a totally geodesic subspace and h be an isometry of X with hY ⊂ Y .
Then

τX(h) = τY (h).

Proof. By assumption, Y is closed, convex and complete with re-
spect to the induced metric. This implies [11, II.2.4] that there
exists an orthogonal projection π : X → Y . Given x ∈ X \ Y
we denote by σx the constant speed geodesic with σx(0) = π(x),
σx(1) = x. By construction, σx is the unique geodesic which con-
tains x and intersects Y orthogonally. This description implies in
particular that

hσx = σhx (x ∈ X \ Y ). (5.16)

For any y ∈ Y denote by τy the geodesic joining y and h.y. By
assumption, τy is contained in Y for every y ∈ Y . In particular,
given x ∈ X \ Y , the geodesic τπ(x) is orthogonal to both σx and
h.σx, whence the shortest connetion between these two geodesics.
We deduce that

d(σx, h.σx) = d(σx ∩ τπ(x), h.σx ∩ τπ(x)) = d(σx(0), h.σx(0)).

Combining this with (5.16) we obtain for all x ∈ X \Y the inequality

d(x, hx) = d(σx(1), σhx(1)) ≥
≥d(σx, h.σx) = d(σx(0), h.σx(0)) = d(p(x), h.p(x)).

Then the lemma follows by passing to the infimum.

We will apply the lemma in the following form:
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Corollary 5.2.3. Assume G ⊂ GL(V ) is a reductive subgroup.
Then K := G ∩O(V ) is a maximal compact subgroups and

ι : G/K 7→ P(V ), gK 7→ g⊤g

is an embedding. If for all symmetric matrices X ∈ gl(V ) with
exp(X) ∈ G already exp(tX) ∈ G for all t ∈ R, then ι(G/K) is
totally geodesic in P(V ) and for g ∈ G,

τι(G/K)(g) = τP(V )(g).

Proof. For the first statement see [11, Thm. II.10.58]. Then the
second statement follows from Lemma 5.2.2.

5.2.2 Special isometries and their periods

Throughout this section D is a bounded symmetric domain realized
by means of a Euclidean Jordan algebra V and G = GV . If D = D
is the Poincaré disc, then a period can be defined for all hyperbolic
isometries g of D; equivalently, g has two fixed points in S1. In
higher rank these two assumptions differ. Let us call an isometry
g ∈ G special if it admits a pair of transverse fixed points g± ∈
Š. This asumption is sufficient to define a period; no hyperbolicity
assumptions are required. For the rest of this section let g be a
special isometry and label the two fixed points in such a way that
either g− is non-attractive or g+ is non-repellent. We then call z ∈ Š
admissible if (g−, z, g+, gz) ∈ Š(4). Given any admissible point z we
define

τ∞D (g, g+, g−)z := logBŠ(g
−, z, g+, gz).

Lemma 5.2.4. The expression τ∞D (g, g+, g−)z does not depend on
the choice of admissible point z.

Proof. Let F (y) := BŠ(g
−, y, g+, gy). We claim that F is constant

on the set X of admissible points. If y, z ∈ X with (g−, y, g+, z) ∈
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Š(4), then

F (z) = BŠ(g
−, z, g+, gz) = BŠ(g

−, z, g+, y) · BŠ(g−, y, g+, gz)
= BŠ(gg

−, gz, gg+, gy) ·BŠ(g−, y, g+, gz)
= BŠ(g

−, y, g+, gz) ·BŠ(g−, gz, g+, gy)
= BŠ(g

−, y, g+, gy) = F (y);

otherwise we can find w ∈ X with (g−, y, g+, w), (g−, z, g+, w) ∈ Š(4)

which then yields F (y) = F (w) = F (z).

In view of the lemma we may define

τ∞D (g, g+, g−) := τ∞D (g, g+, g−)z

and refer to it as the period of g with respect to the pair (g+, g−). If
g+ and g− are clear from the context, we will simply write τ∞D (g).

Remark 5.2.5. Strictly speaking, our axiomatically defined general-
ized cross ratio has domain Š(4+), so that the period can only be
defined if (g−, z, g+, gz) ∈ Š(4+). However, we have constructed an
explicit model of the cross ratio on all of Š(4), which on the subset
Š(4+) agrees with the axiomatic one. The last lemma then implies
that the period as defined above only depends on the axiomatically
defined cross ratio, but in order to compute it we can use our con-
crete model as defined on all of Š(4).

We now choose some auxiliary data which will allow us to express
τ∞D (g) in more explicit terms. Since g± are transverse we can choose
some h ∈ G with hg± = ±e. We then define

g1 := hgh−1 ∈ L(Q+). (5.17)

By Proposition 2.1.41 we then have

g2 := ĉ(g1) = c ◦ g1 ◦ c−1 ∈ G(Ω) ⊂ GL(V ). (5.18)

Note that our enumeration of fixed points implies det(g2) ≥ 1. Now
we claim:
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Proposition 5.2.6. Assume that D is irreducible. Then the period
of g with respect to (g+, g−) is given in terms of the above auxiliary
data by

τ∞D (g) =
1

2 · dimV
· log det(g2)2.

Proof. It follows from the G-invariance of the generalized cross ratio
that

τ∞D (g) = logBŠ(−e, z, e, g1z)

for all z in some dense subset of Š. Since D is irreducible, we have

BD = B
(− 1

2 dim V
)

D . We then use Proposition 5.1.11 to deduce that

BD(x, y, z, t) = B
(− 1

2 dim V
)

TΩ
(c(x), c(y), c(z), c(t)) ((x, y, z, t) ∈ D4),

where TΩ is the tube over Ω andB
(− 1

2 dim V
)

TΩ
is the associated weighted

Bergman kernel. By continuity we deduce that if xn is any sequence
in D converging to e then for all w in a dense open subset of V we
have

τ∞D (g) =
1

2 · dimV
· log

(
kTΩ(w, 0)

kTΩ(g2w, 0)
· lim
n→∞

kTΩ(g2w, c(xn))

kTΩ(w, c(xn))

)
.(5.19)

Now we claim that

lim
n→∞

kTΩ(g2w, c(xn))

kTΩ(w, c(xn))
= 1. (5.20)

Indeed, let λ ∈ [0, 1). Then

c(λ · e) = i
1 + λ

1− λ
e.

Using [29, X.1.3] we obtain

lim
n→∞

kTΩ(g2w, c(xn))

kTΩ(w, c(xn))
= lim

λ→1

(
det(g2w − i 1+λ1−λe)

det(w − i 1+λ1−λe)

)− 2n
r
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= lim
λ→1

(
det(1−λ1+λg2w − ie)

det(1−λ1+λw − ie)

)− 2n
r

= 1.

In view of (5.19) and (5.20) it remains to show that

kTΩ(w, 0)

kTΩ(g2w, 0)
= det(g2)

2. (5.21)

Since g2 : TΩ → TΩ is biholomorphic, we see from [29, Prop. IX.2.4]
that

kTΩ(w, 0) = kTΩ(g2w, g20) det CJg2(w)det CJg2(0),

where Jg2 denotes the complex Jacobi matrix of g2. Note that g2 is
a real matrix, because it is in G(Ω)0 ⊂ GL(V ). Since it is linear, we
have Jg2 ≡ g2 and g20 = 0, whence

kTΩ(w, 0) =kTΩ(g2w, g20) det CJg2(w)det CJg2(0)

=kTΩ(g2w, 0) det(g2)
2.

This establishes (5.21) and finishes the proof.

5.2.3 Translation lengths of special isometries

We now want to estimate the translation lengths τD(g) of a special
isometry g of a bounded symmetric domain D of tube type with
respect to the (unnormalized) Bergman metric on D. All quanti-
tative statements in this section depend on this choice of metric.
We keep the notation introduced in the last section. In particular,
g+, g−, g1, g2 are defined as before. Since det(g2) ≥ 1, we deduce
that g2 has at least one eigenvalue of modulus ≥ 1, and we will get
the strongest estimates if actually all eigenvalues of g2 are ≥ 1. In
our applications we will always be in a situation, where all eigenval-
ues are in fact strictly greater than 1; we will then call (g+, g−) an
attractor-repellor pair for g. Nevertheless, we find it worthwhile to
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point out that some of our estimates work without this hyperbol-
icity assumption. In the irreducible case we are going to prove the
following:

Theorem 5.2.7. Let D be an irreducible bounded symmetric domain
of tube type and g ∈ G = G(D) with two transverse fixed points g±

labelled as above. Then

τD(g) ≥
√
dimC D · τ∞D (g, g+, g−),

and if all eigenvalues of the auxiliary matrix g2 have modulus ≥ 1,
then

τD(g) ≤ 2 dimC D · τ∞D (g, g+, g−).

The restriction to irreducible bounded symmetric domains is easy
to remove:

Corollary 5.2.8. Let D be a bounded symmetric domain of tube type
which decomposes as D = D1 × · · · × Dm into irreducible bounded
symmetric domains. Assume that g ∈ G(D)0 admits two transverse
fixed points g± ∈ Š labeled as above. Then

τD(g) ≥
√
min
j

dimC Dj · τ∞D (g, g+, g−),

and if all eigenvalues of the auxiliary matrix g2 have modulus ≥ 1,
then

τD(g) ≤ 2 · rkD ·max
j

dimC Dj
rkDj

· τ∞(g).

This is notably the case if (g+, g−) is an attractor-repellor pair for
g.

Proof. Identifying G(D)0 with the product of the group G(Dj)0 we
can then write g = (g1, . . . , gm) for some gj ∈ G(Dj)0. Let us
abbreviate rj := rkDj , nj := dimC Dj , r := rkD, τj := τDj

(gj) and
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τ∞j := τ∞Dj
(gj) so that

τD(̺(γ)) =

√√√√
m∑

j=1

τ2j , τ∞D (̺(γ)) =

m∑

j=1

rj
r
τ∞j .

By Theorem 5.2.7 we thus obtain

τ∞D (g) =

m∑

j=1

rj
r
τ∞j ≤




m∑

j=1

rj
r


 ·max

j
τ∞j

≤

√√√√
m∑

j=1

(τ∞j )2 ≤ max
j

1
√
nj

·

√√√√
m∑

j=1

nj(τ∞j )2

≤ 1√
minj nj

√√√√
m∑

j=1

τ2j =
1√

minj nj
τD(g).

For the other inequality Theorem 5.2.7 yields

τD(g) =

√√√√
m∑

j=1

τ2j ≤
m∑

j=1

τj ≤ 2 ·
m∑

j=1

dimC Dj · τ∞j

= 2 ·
m∑

j=1

dimC Dj · r ·
nj
rj

· rj
r

· τ∞j

≤ 2 · r ·max
j

nj
rj

· τ∞.

Theorem 5.2.7. Since translation length is invariant under both con-
jugation and isometries we have

τD(g) = τD(g1) = τTΩ(g2), (5.22)
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where both D and TΩ are equipped with the respective Bergman
metrics. Since the inclusion iΩ ⊂ TΩ is totally geodesic (see [54, p.
361]), Lemma 5.2.2 yields

τTΩ(g2) = τiΩ(g2) (5.23)

for the restriction of the Bergman metric to iΩ. Now G(Ω) acts
transitively on iΩ with stabilizer of ieV given by K := G(Ω)∩O(V )
[29, Prop. I.4.3]. We deduce that the inclusion G(Ω) ⊂ GL(V ) in-
duce an embedding ι : iΩ ∼= G(Ω)/K → P(V ). We want to apply
Corollary 5.2.3 to this inclusion, thus let us check the assumptions
of that corollary. Denote by p(Ω) the symmetric matrices in the Lie
algebra g(Ω) ⊂ gl(V ) of G(Ω). Then G(Ω) admits a polar decom-
position G(Ω) = K(Ω) exp(p(Ω)) [29, Prop. I.1.9, I.4.3 and Thm.
III.5.1]. In particular, if X is a symmetric matrix with exp(X) ∈ G,
then there exist k ∈ K(Ω) and Y ∈ p(Ω) such that

eX = keY ⇒ e2X = (eX)⊤eX = (keY )⊤keY = e2Y .

Then the uniqueness of the Polar decomposition in GL(V ) yields
2X = 2Y , whence X ∈ p(Ω) and exp(tX) ∈ G for all t ∈ R. Thus
Corollary 5.2.3 applies and yields

τι(iΩ)(g2) = τP(V )(g2). (5.24)

Now on iΩ we have two metrics, one induced from the restriction
of the Bergman metric H of TΩ, and one given by pullback of the
metric on P(V ) via ι. We claim that the latter metric is twice
the former. Denote by 1 ∈ P(V ) the identity matrix. Under the
canonical identifications TeΩ ∼= V and T1P(V ) = SymdimV (R) the
differential of the embedding ι at e is given by [29, Thm. III.3.1]

dιe : V → SymdimV (R), x 7→ L(x).

The Bergman metric in x is given by the formula [29, X.1.3 and Ch.
III.4]

Hx(u, v) :=
r

2n
trV ((P (x)

−1u)v),
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where r := rkV , n := dimV and trV is again the Jordan algebra
trace. On the other hand, the metric of P(V ) is given by [11, Ch.
II.10]

gx(X,Y ) = tr(x−1Xx−1Y ),

where tr is the usual matrix trace. Since trV (x) =
r
n · tr(L(x)) [29,

III.4.2] we have

He(u, v) =
1

2
gI(L(u), L(v)).

Both the Bergman metric and the restriction of the metric on P(V )
to the image of Ω are invariant under G(Ω); we thus deduce that the
Riemannian metrics on Ω and ι(Ω) coincide up to a global factor of
1
2 . This proves the claim and shows that

τiΩ(g2) =
1

2
· τι(iΩ)(g2). (5.25)

Combining (5.22), (5.23), (5.24) and (5.25) we obtain

τD(g) =
1

2
· τP(V )(g2). (5.26)

In view of Proposition 5.2.1 and Proposition 5.2.6 we now deduce

τD(g) ≥ 1

2 ·
√
dimV

log det(g2)
2 =

√
dimC D · τ∞D (g).

and, if all eigenvalues of g2 are ≥ 1,

τD(g) ≤ log det(g2)
2 = 2 · dimCD · τ∞D (g).

Remark 5.2.9. Analyzing the proof we see that the key estimate is
provided by applying Lemma 5.2.1 to a faithful linear representation
for the Levi factor of a Shilov parabolic. We have used the represen-
tation constructed in Corollary 2.1.42, which has the advantage that
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it can be defined in a uniform way for all classical and exceptional
bounded symmetric domains of tube type. It is easy to see that for
e.g. the symplectic case there exist faithful linear representations of
much smaller dimension. One can use these representations to ob-
tain better constants in the above estimate; in particular, the above
constants are not sharp. This possible improvement requires, how-
ever, a careful case by case analyis, and since the above estimates
are sufficient for our purposes, we will not carry out the necessary
case by case considerations here.

5.3 Maximal representations, strict cross
ratios and well-displacing

5.3.1 Maximal representations, limit curves and
strict cross ratios

The aim of this section is the construction of a strict cross ratio for
maximal representation of Γg

Now let Γ := Γg with g ≥ 2, ̺ : Γ → G be a maximal representation
and ϕ : S1 → Š the associated monotone continuous limit curve. As
a consequence of monotonicity two distinct points x 6= y ∈ S1 are
mapped to transverse points under ϕ; thus if

(S1)4∗ := {(x, y, z, t) ∈ (S1)4 |x 6= t, y 6= z}

denotes the domain of the classical cross ratio, then we obtain a map

ϕ(4) : (S1)4∗ → Š(2) × Š(2), (x, y, z, t) 7→ (ϕ(x), ϕ(y), ϕ(z), ϕ(t)).

Moreover, the dense subset (S1)(4) ⊂ (S1)4∗ satisfies

ϕ(4)((S1)(4)) ⊂ Š(4+), (5.27)



5.3. CROSS RATIOS AND REPRESENTATIONS 181

where the right hand side is precisely the domain of definition of BŠ .
We may thus define a function

b̺ := (ϕ(4))∗BŠ :

{
(S1)(4) → R \ {0, 1}
(x, y, z, t) 7→ BŠ(ϕ(x), ϕ(y), ϕ(z), ϕ(t)).

Since BŠ extends continuously to Š(2) × S(2), we may also extend
b̺ to a continuous function

b̺ : (S
1)4∗ → R.

Definition 5.3.1. Let ̺ : Γ → G be a maximal representation
and ϕ : S1 → Š an associated limit curve. Then the function b̺ :
(S1)4∗ → R defined above is called the cross ratio of the maximal
representation ̺.

Because of our functorial construction of generalized cross ratios the
following functoriality of the b̺ comes for free:

Proposition 5.3.2. Let G,H be Hermitian Lie groups of tube type,
̺ : Γ → H a maximal representation and t : H → G a homo-
morphism inducing a tight holomorphic morphism of the underlying
bounded symmetric domains. Then t ◦ ̺ is maximal and b̺ = bt◦̺.

Proof. The homomorphism t induces a map t∗ : ŠH → ŠG of the
corresponding Shilov boundaries [16]. Now if ϕ is a limit curve for
̺, then t∗ ◦ ϕ is a limit curve for t ◦ ̺. Thus the proposition follows
from Property (ii) of Theorem 1.5.1.

The main properties of cross ratios of maximal representations are
collected in the following theorem:

Theorem 5.3.3. The cross ratio b̺ : (S1)4∗ → R is a continuous
Γ-invariant function satisfying the following properties:

b̺(x, y, z, t) = b̺(z, t, x, y) (5.28)
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b̺(x, y, z, t) = b̺(x, y, z, w)b̺(x,w, z, t) (5.29)

b̺(x, y, z, t) = b̺(x, y, w, t)b̺(w, y, z, t) (5.30)

x = z or y = t ⇔ b̺(x, y, z, t) = 1 (5.31)

t = x or z = y ⇔ b̺(x, y, z, t) = 0 (5.32)

Proof. Γ-invariance on (S1)(4) follows from Γ-equivariance of ϕ and
G-invariance of BŠ on S(4+) (Proposition 5.1.10). By continuity
we obtain Γ-invariance on all of (S1)4∗. By a similar extension ar-
gument, Properties (5.28)-(5.30) follow from Corollary 5.1.19. For
(x, y, z, t) ∈ (S1)(4) the inclusion (5.27) together with Proposition
5.1.24 implies b̺(x, y, z, t) 6∈ {0, 1}. It thus remains to consider the
cases x = z, y = t, t = x and z = y. In the last two cases the
vanishing of ϕ∗kV along the diagonal implies b̺(x, y, z, t) = 0. In
the first two cases we get b̺(x, y, z, t) = 1 as a consequence of the
similar property for BŠ . This establishes (5.31)-(5.32) and finishes
the proof.

In fact, it follows from Corollary 5.1.25 that b̺ also satisfies

b̺(x, y, z, t) = b̺(y, x, t, z).

However, we are not going to use this property in the sequel. In
the language of [46, Def. 3.2] the theorem says precisely that b̺ is
a strict weak cross ratio. Concerning such cross ratios we have the
following equivalence theorem of Labourie:

Theorem 5.3.4 (Labourie). Let b1 and b2 be strict weak cross ra-
tios. Then there exist C,D > 0 such that for all quadruples (x, y, z, t)
with (x, y, z) and (x, t, z) positively oriented

D log b1(x, y, z, t)−D ≤ log b2(x, y, z, t) ≤ C log b1(x, y, z, t) + C

The proof is based on the following lemma, which is contained in
[47, Prop. 3.3.7]1.

1The proposition is originally stated for cross ratios in the sense of [47], i.e.
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Lemma 5.3.5. For every strict weak cross ratio b there exists a
Γ-equivariant continuous map (with respect to the trivial action on
R)

ψ : R× (S1)3+ → S1

such that log b(x, y, z, ψs(x, y, z)) = s. This function satisfies

ψs+t(x, y, z) = ψt(x, ψs(x, y, z), z). (5.33)

Proof of Theorem 5.3.4. Let ψ1
s and ψ2

s be maps associated to b1
and b2 by means of Lemma 5.3.5. Define a function T : (S1)3+ → R
by

T (x, y, z) := log b1(x, y, z, ψ
2
1(x, y, z))

This map is positive and continuous. Since ψ2
s is Γ-equivariant, T is

Γ-invariant. Furthermore it satisfies

ψ2
1(x, y, z) = ψ1

T (x,y,z)(x, y, z). (5.34)

Since (S1)3+/Γ is compact, |T | has a global maximum A. Now
consider the function f : R → R (depending on x, y, z) given by

f(s) := log b1(x, y, z, ψ
2
s(x, y, z))

For n ∈ Z we have

|f(n)| =
∣∣log b1(x, y, z, ψ2

n(x, y, z))
∣∣

=

∣∣∣∣∣
n−1∑

i=0

log b1(x, ψi(x, y, z), z, ψi+1(x, y, z))

∣∣∣∣∣

=

∣∣∣∣∣
n−1∑

i=0

log b1(x, ψi(x, y, z), z, ψ1(x, ψi(x, y, z), z))

∣∣∣∣∣
≤A · |n|

strict weak cross ratios which are additionally Hölder continuous. However,
Hölder continuity is actually never used in the proof.
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Because of monotonicity of f we get for 0 ≤ s ∈ [n, n+ 1):

f(s) ≤ f(n+ 1) ≤ An+A ≤ As+A

and for 0 ≥ s ∈ [n, n+ 1):

|f(s)| ≤ |f(n)| ≤ A|n| ≤ A(|s|+ 1) = A|s|+A.

We can summarize these inequalities by saying that for all s ∈ R

| log b1(x, y, z, ψ2
s(x, y, z))| = |f(s)| ≤ A · |s|+A.

Now given any t ∈ S1 we can choose s ∈ R such that ψ2
s(x, y, z) = t.

By Lemma 5.3.5 we have s = log b2(x, y, z, t), hence

| log b1(x, y, z, t)| ≤ A · |s|+A

= A · | log b2(x, y, z, t)|+A.

If (x, y, z) and (x, t, z) are positively oriented then log bj(x, y, z, t) >
0, j = 1, 2. This proves the upper bound, and the lower bound is
obtained by reversing the roles of b1 and b2.

Remark 5.3.6. Note that the compactness of Σ is crucial for the
proof of Theorem 5.3.4.

Corollary 5.3.7. Let ̺ : Γ → G be a maximal representation with
associated cross ratio b̺. Then there exists D > 0 such that for all
(x, y, z, t) ∈ (S1)4∗ with (x, y, z) and (x, t, z) positively oriented,

log b̺(x, y, z, t) ≥ D · log[x : y : z : t]−D.

5.3.2 Explicit formulas in the symplectic case

For maximal representations into symplectic groups there is a more
classical construction of an associated weak cross ratio described in
[47, Ch. 3.2.5]. This construction is based on the identification of
the Shilov boundary associated with Sp(2n) with the Lagrangian
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Grassmannian L(V ) of V = (Rn × Rn, ω), where ω(x, y) = x⊤Jy
with

J =

(
In

−In

)
.

The classical cross ratio Bclass : L(V )(4∗) → C is given as follows:

Let L(j) = 〈l(j)1 , . . . , l
(j)
n 〉, j = 1, . . . , 4, be pairwise transverse La-

grangians and define

Aijab := ω(l(i)a , l
(j)
b ).

Then

Bclass(L
(1), L(2), L(3), L(4)) :=

det(A12) det(A34)

det(A14) det(A32)
.

Given a maximal representation ̺ : Γ → Sp(2n) with associated
limit curve ϕ : S1 → L(V ) one then defines a function

b̺,class(x, y, z, t) :

{
(S1)4∗ → R
(x, y, z, t) 7→ Bclass(ϕ(x), ϕ(y), ϕ(z), ϕ(t))

which turns out to be a weak cross ratio. We claim that our cross
ratio b̺ is related to the classical cross ratio by the formula

b̺,class = bn̺ . (5.35)

It n is even, then this formula implies in particular that, contrary
to the claims in [47] the weak cross ratio b̺,class is not strict. To
establish (5.35) it suffices to show that Bn

Š
and Bclass coincide on

L(V )(4+); by conjugation-invariance and Proposition 2.1.37 it then
suffices to show that they coincide on the Shilov boundary ŠP of a
given maximal polydisc P in L(V ). Let G := Sp(2n) and define an
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embedding ι : H := SL(2,R)n → G by

g = (g1, . . . , gn) 7→




a1 b1
. . .

. . .

an bn
c1 d1

. . .
. . .

cn dn




;

then every H-orbits in L(V ) is the Shilov boundary of a maximal
polydisc. We choose the basepoint L0 = 〈(e1, e1), (e2, e2), . . . , (en, en)〉 ∈
L(V ), where ek denotes the kth standard basis vector of Rn, and set
ŠP := ι(H).L0. We now provide an H-equivariant identification
ν : (S1)n → ŠP : The action of g ∈ H on the former is given by
g.λ = (S−1gS) · λ, where

S =
1√
2

(
1 −i
−i 1

)

and the ·-action is given by Möbius transformations. In particular,

g.(1, . . . , 1) =((S−1g1S) · 1, . . . , (S−1gnS) · 1)
=(S−1 · (g1 · 1), . . . , S−1 · (gn · 1)).

On the other hand, the action on ŠP is given by

g · L0 =〈
(
(a1 + b1)e1, (c1 + d1)e1

)
, . . . ,

(
(an + bn)en,

(
(cn + dn)en

)
〉

=〈
(
(a1 + b1)(c1 + d1)

−1e1, e1
)
, . . . ,

(
(an + bn)(cn + dn)

−1en,
(
en
)
〉

=〈
(
(g1 · 1)e1, e1

)
, . . . ,

(
(gn · 1)en, en

)
〉,

The points (1, . . . , 1) and L0 have the same stabilizer in H . Thus
the desired identification is given by

ν(λ1, . . . , λn) = (((S · λ1)e1, e1), . . . , ((S · λn)en, en)).
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By functoriality the pullback ν∗BŠ to (S1)n satisfies
(
ν∗BŠ((λ

(1)
1 , . . . , λ(1)n ), . . . , (λ

(4)
1 , . . . , λ(4)n ))

)n

=

n∏

j=1

[λ
(1)
j : λ

(2)
j : λ

(3)
j : λ

(4)
j ].

We now compare this to the classical cross ratio: If L(j) ∈ L(V )

is of the form L(j) = 〈(α(j)
1 e1, e1), . . . , (α

(j)
n en, en)〉, then a direct

calculation shows that

Aijab := (α(j)
a − α

(i)
b ) · δab ⇒ det(Aij) =

n∏

k=1

(α
(j)
k − α

(i)
k ),

and thus

Bclass(L
(1), L(2), L(3), L(4)) =

∏n
k=1(α

(2)
k − α

(1)
k )

∏n
k=1(α

(4)
k − α

(3)
k )

∏n
k=1(α

(4)
k − α

(1)
k )

∏n
k=1(α

(2)
k − α

(3)
k )

=

n∏

k=1

[α
(1)
k : α

(2)
k : α

(3)
k : α

(4)
k ].

In particular we finally obtain

ν∗Bclass((λ
(1)
1 , . . . , λ(1)n ), . . . , (λ

(4)
1 , . . . , λ(4)n ))

=

n∏

j=1

[S · λ(1)j : S · λ(2)j : S · λ(3)j : S · λ(4)j ]

=

n∏

j=1

[λ
(1)
j : λ

(2)
j : λ

(3)
j : λ

(4)
j ],

which establishes (ν∗BŠ)
n = ν∗Bclass and thus Bn

Š
= Bclass on

L(V )(4+). In particular, on this domain we obtain

|BŠ(L(1), L(2), L(3), L(4))| =
∣∣∣∣
det(A12) det(A34)

det(A14) det(A32)

∣∣∣∣
1
n

.
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Since the sign of BŠ can always be determined combinatorially, this
provides an explicit formula for the functorial cross ratio in the sym-
plectic case.

5.3.3 Translation lengths under maximal repre-
sentations

We now apply cross ratios of maximal representations for estimates
of the corresponding translation lengths. For this we fix a maximal
representation ̺ : Γ → G and denote by ϕ the associated continuous
monotone limit curve. Since every γ ∈ Γ \ {e} is hyperbolic when
considered as an element of PU(1, 1), it has a unique attractive fixed
point γ+ and a unique repellent fixed point γ−. We may thus define

g± := ϕ(γ±). (5.36)

Then we have:

Proposition 5.3.8. The pair (g+, g−) is an attractor-repellor pair
for ̺(γ).

Proof. By Lemma A.3.2 the element ̺(γ) contracts a dense open
subset of Š to g+. This implies that the corresponding element g1
contracts a dense open subset of Š to e, and thus for every v ∈ V
we have gn2 .v → ∞. This implies that every eigenvalue of g2 has
modulus > 1.

In particular, we can define the associated period

τ∞D (̺(γ)) := τ∞D (̺(γ), g+, g−);

we then have for any ξ ∈ S1 \ {γ±},

τ∞D (̺(γ)) = b̺(γ
−, ξ, γ+, γ.ξ). (5.37)

Now we have the following special case of Corollary 5.2.8:
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Theorem 5.3.9. Let Σ be a closed oriented surface of negative Eu-
ler characteristic and Γ = π1(Σ) its fundamental group. Let G be
a semisimple Hermitian Lie group with finite center and associated
bounded symmetric domain D and ̺ : Γ → G a maximal represen-
tation. Then there exist positive constants C1(D), C2(D) depending
only on D such that for all γ ∈ Γ,

C1(D) · τ∞D (̺(γ)) ≤ τD(̺(γ)) ≤ C2(D) · τ∞D (̺(γ)),

where the period is given by (5.37) and the translation length is taken
with respect to the (unnormalized) Bergman metric on D.

Indeed, if D1, . . . ,Dl are the irreducible factors of D then we can
choose

C1(D) :=
√

min
j

dimC Dj

and

C2(D) := 2 · rk D ·max
j

dimC Dj
rk Dj

.

5.3.4 Well-displacing

The following theorem is the main result of this section:

Theorem 5.3.10 (Well-displacing). Let Γ be the fundamental group
of a closed oriented surface Σ of genus ≥ 2, D a bounded symmetric
domain and S a finite generating set for Γ. Then for every maximal
representation ̺ : Γ → G(D)0 there exist A,B > 0 such that for all
γ ∈ Γ,

τD(̺(γ)) ≥ A · lS(γ)−B.

The proof is based on Theorem 5.3.9 and Labourie’s equivalence
theorem for cross ratios (in the form of Corollary 5.3.7). The third
ingredient is a version of the Milnor-Švarc lemma for translation
length, which we describe briefly. Let Γ be the fundamental group
of a closed oriented surface of genus ≥ 2 as in the theorem and S a
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finite generating set for Γ. We then denote by ‖ · ‖S the word length
with respect to S and by

dS(γ1, γ2) := ‖γ−1
2 γ1‖S

the associated word metric. We also recall that the translation
length lS of the pair (Γ, S) is defined by (1.8) (see p. 24).

Lemma 5.3.11. Let S be an arbitrary finite generating set for Γ.
Then there exist constants A,B > 0 such that for every γ ∈ Γ

τD(γ) ≥ A · lS(γ)−B.

Proof. We fix a compact fundamental domain F for the Γ-action
on D. We know that every γ ∈ Γ is hyperbolic, i.e. there exists a
geodesic σ on which γ acts by translation and we have γ · σ(t) =
σ(t + τD(γ)) for all t. There exists η ∈ Γ such that ησ intersects F ,
say y := ησ(t0) ∈ F . Then we have for any x ∈ F :

d(x, ηγη−1x) ≤ d(x, y) + d(y, ηγη−1y) + d(ηγη−1y, ηγη−1x)

≤ 2diam(F ) + τD(ηγη
−1).

Now we fix a basepoint x ∈ F and apply the Milnor-Švarc lemma
[11, Prop. I.8.19] with respect to this base point. We then obtain
positive constants A,B′ satisfying

d(x, γx) = d(ex, γx) ≥ A · dS(e, γ)−B′ = A · lS(γ)−B′

for all γ ∈ Γ. We deduce that

τD(γ) = τD(ηγη
−1) ≥ d(x, ηγη−1x)− 2diam(F )

≥ A · lS(ηγη−1)−B′ − 2diam(F ) = A · lS(γ)− (B′ + 2diam(F )).

Now the proof of Theorem 5.3.10 follows easily.
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Theorem 5.3.10. Given γ ∈ Γ, choose ξ ∈ S1 such that (γ−, ξ, γ+)
is positively oriented. Then also (γ−, γ.ξ, γ+) is positively oriented,
and using Corollary 5.3.7, Theorem 5.3.9, Equation (1.4) and Lemma
5.3.11 we find positive constants C1, . . . , C4 such that

τD(̺(γ)) ≥ C1 · τ∞D (̺(γ))

= C1 · log b̺(γ−, ξ, γ+, γξ)
≥ C2 · log[γ− : ξ : γ+ : γξ]− C2

= C2 · τ∞D (γ)− C2

= C2 · τD(γ)− C2

≥ C3 · ℓS(γ)− C4.

Note that compactness of Σ was indispensable for the proof of The-
orem 5.3.10.

5.3.5 Proofs of Corollaries 1.5.3-1.5.6

All three corollaries are well-known consequences of the well-displacing
property established in Theorem 5.3.10. For the convenience of the
reader we provide some explicit references:

Corollary 1.5.3 follows from [27, Prop. 4.2.1] and [27, Lemma 4.0.4],
since higher genus surface groups are hyperbolic.

Corollary 1.5.4 follows from [58, Lemma 2.7] (or Corollary 1.5.3 and
the Milnor-Švarc lemma) and the proof of Theorem 5.3.10.

Corollary 1.5.5 follows from Corollary 1.5.4 and [58, Prop. 2.4].

Finally, Corollary 1.5.6 follows from [47, Thm. 5.2.2].
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5.4 Determining Maximal Representations

via Cross Ratios

This section is also joint work with Tobias Hartnick, even if it does
not appear in [38]. It uses ideas communicated to us by Marc Burger.
In [38] we associated a cross ratio with any maximal representation
into a Lie group of Hermitian type of tube type. In this section we
show that this cross ratio characterizes the representation in some
cases.

Proposition 5.4.1. Let G1 and G2 two simple groups and ̺1 and
̺2 two representations of Γ into G1 resp. G2 which are both maximal
and Zariski dense. Assume b̺1 = b̺2 . Then G1 and G2 and ̺1 and
̺2 are isomorphic under some algebraic morphism.

Proof. Define:

M := {(̺1(γ), ̺2(γ))|γ ∈ Γ}Z ⊂ G1 ×G2

and denote by p1 and p2 the projection on the respective factors. The
algebraic groupM has only finitely many connected components and
the same is true for the image of pi. Since pi(M) contains a ̺i(Γ)
(hence infinitely many points), it cannot be discrete. By Lemma
5.4.2 the pi(M) = Gi. Now let Kj := pj(ker p3 − j). As a kernel
Kj is a normal subgroup of Gj and since Gj is simple Kj is either
trivial or equal to Gj .

Assume that K1 = G1. Then G1 × {e} ⊂ ker p2 ⊂ M . Since p2 is
surjective, we can find for any given g2 ∈ G2 a g1 ∈ G1 such that
(g1, g2) ∈M and if G1 ×{e} ⊂M we get M = G1 ×G2. But in this
case the Zariski closure of the diagonal limit curve (ϕ1(γ), ϕ2(γ))
is equal to Š × Š. Hence the two cross ratios b̺1 and b̺2 can not
coincide.

Therefore K1 and K2 are trivial and M is the graph of an algebraic
transformation between G1 and G2.
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Lemma 5.4.2. Let H be a Zariski dense subgroup of a simple alge-
braic group G. Then H is discrete or equal to G.

Proof. Use the Lie algebra of the Zariski closure of H . By simplicity,
it is either trivial or equal to the Lie algebra of G.



194 CHAPTER 5. CROSS RATIOS



Appendix A

Appendix

A.1 Matrix calculations

Lemma A.1.1. Let A ∈ GL(n,R). Then it is conjugate in GL(n,R)
to a block matrix 


A1

. . .

Ak




such that the characteristic polynomial of Ai is a maximal power
of an irreducible factor of the characteristic polynomial of A. In
particular the eigenvalues of Ai have the same absolute value.

This lemma follows immediately from Cayley-Hamilton and the fol-
lowing lemma:

Lemma A.1.2. Let A ∈Matn,n(k) and p a polynomial over k. Let
p = p1 · p2 with p1 and p2 relatively prime. Then

ker p(A) = ker p1(A)⊕ ker p2(A).

195
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Proof. It is clear that ker p(A) ⊃ ker p1(A)+ker p2(A) and it remains
to show that the sum is direct and that equality holds. Since p1 and
p2 are relatively prime, we find polynomials r1 and r2 such that
1 = r1p1 + r2p2, i.e. id = r1(A)r1(A) + r2(A)p2(A).

If v ∈ ker p1(A) ∩ ker p2(A) , then

v = id(v) = r1(A)r1(A)v + r2(A)p2(A)v = 0,

hence the sum is direct.

Let v ∈ ker p(A) then ri(A)pi(A)v ∈ ker p3−i(A), hence ker p(A) ⊂
ker p1(A) + ker p2(A). This finishes the proof.

Remark A.1.3. Lemma A.1.1 implies that A is conjugate to the
matrix 


A>

A<
A=




where the absolute values of the eigenvalues of A> are strictly bigger
than 1, the absolute values of the eigenvalues of A< are strictly
smaller than 1 and the absolute values of A= are equal to 1.

Proposition A.1.4. The map (N1, N2, N3) 7→ (N1N
⊤
2 , N2N

⊤
3 , N3N

⊤
1 )

induces a bijection between O(n)\GL(n,R)3/O(n) and

R = {(X1, X2, X3)|X3(X
⊤
2 )−1X1 sym. pos. definite, i = 1, 2, 3}/O(n),

where O(n)×O(n) acts on GL(n,R)3 by right and left multiplication
and O(n) acts on the last set by conjugation.

Proof. First note thatX3(X
⊤
2 )−1X1 is positive definite and symmet-

ric if and only if Xi+2(X
⊤
i+1)

−1Xi is positive definite and symmetric
for all i ( mod 3).

Since Xi+2(X
⊤
i+1)

−1Xi is positive definite and symmetric there ex-

ists canonical Ñi such thatXi+2(X
⊤
i+1)

−1Xi = ÑiÑ
⊤
i . SinceNiN

⊤
i =

ÑiÑ
⊤
i , there exist ki ∈ O(n) such that Ni = Ñiki. Therefore
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N−1
i Xi(N

⊤)−1 ∈ O(n) and a direct calculation shows that li =
Ñ−1
i+1Xi(Ñ

⊤
i )−1 ∈ O(n) and li = kik

−1
i+1, hence l1l2l3 = id. This

gives N1 = Ñ1k1, N2 = Ñ2l3l2k1 and N3 = Ñ3l3l2k1. This provides
an inverse to the map given above.

Lemma A.1.5. Let k be one of the fields R or C. Every matrix
X ∈ GL(n, k). Then X is conjugate in GL(n, k) to its transpose
X⊤.

Proof. First let X ∈ GL(n, k) be a single Jordan block, i.e.

X =




λ 1
λ 1

. . .
. . .

λ 1
λ




for some λ ∈ C. Then one can easily check that X⊤ = hXh−1 with

h =




1
1

. .
.

1
1



.

Therefore the statement is true for Jordan blocks and hence for
matrices which consists of Jordan blocks.

Now let X ∈ GL(n,C) and J its Jordan canonical form. Then
there exists l ∈ GL(n,C) such that X = lJl−1 and we have X⊤ =
(l⊤)−1J⊤l⊤. Furthermore there exists h such that J⊤ = hJh−1,
hence X⊤ = (l⊤)−1hl−1Xlh−1l⊤.

Let X ∈ GL(n,R). Then X and X⊤ are conjugate over C. But
two real matrices conjugate over C are also conjugate over R. This
finishes the proof.
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A.2 Complements to the theory of Eu-

clidean Jordan algebras

Throughout this article we have made essential use of results from
the theory of Euclidean Jordan algebras. Most of these results are
standard and can be found in the literature, see in particular [29,
10]. However, we need two results on Euclidean Jordan algebras,
which are not covered by these references and appear to be partly
new. These are discussed in this appendix. Our first result concerns
morphisms of Euclidean Jordan algebras and is needed to complete
the proof of Proposition 2.1.39.

Proposition A.2.1. Let D1,D2 be bounded symmetric domains of
tube type with respective Shilov boundaries Š1 and Š2, and β : D1 →
D2 be a boundary morphism. Then there exist Euclidean Jordan
algebras V1, V2, a Jordan algebra homomorphism α : V1 → V2 and
isomorphisms Dj ∼= DVj

intertwining β and αC.

The proof uses the theory of positive Hermitian Jordan triple sys-
tems (pHJts’). We refer the reader to [22] for background. We recall
that the unit balls of such triples systems (always with respect to
the spectral norm) are circled (i.e. invariant under the diagonal
multiplication with elements of S1) and symmetric (see [50, Thm.
4.1]), and that every bounded symmetric domain arises as the unit
ball of a pHJts (see [50, Thm. 1.6 and Thm. 4.1] and [22]). Every
morphism of pHJts’ induces a morphism of the corresponding unit
balls. Conversely we have:.

Lemma A.2.2. LetW1,W2 be positive Hermitian Jordan triple sys-
tems and D1,D2 their unit balls with respect to the respective spectral
norms. Then every morphism β : D1 → D2 with β(0) = 0 extends
to a morphism W1 →W2 of pHJts.

Proof. We adapt an argument of Loos [50] going back to Cartan [19,

p. 30] (see also [29, L. X.5.2]): Consider the maps β
(1)
t (z) := β(eitz)
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and β
(2)
t (z) := eitβ(z) for t ∈ R. Since D1 and D2 are circled, these

mapD1 intoD2; moreover, both maps are affine, since β is, and share

the same z-derivative at the origin. Since also β
(1)
t (0) = β

(2)
t (0) =

0 we deduce [53, Prop. 3.2] that β
(1)
t = β

(2)
t ; comparing Taylor

expansions, we see that β is linear and thus extends to β :W1 →W2.
Since the derivative of a morphism of bounded symmetric domains
is a morphism of Jordan triple systems [2, Thm. III.2.8] and the
exponential map intertwines the Jordan triple structures on Wj and
T0Wj , the lemma follows.

Now we can deduce Proposition A.2.1:

Proposition A.2.1. By applying suitable isomorphisms we may as-
sume that D1 and D2 are the unit balls of pHJts’ W1,W2 with re-
spect to the corresponding spectral norms and that β(0) = 0. Then
Lemma A.2.2 applies and provides a linear extension β :W1 →W2,
which is a morphism of Euclidean Jordan triple systems. Note that
by uniqueness, β|Š1

is the boundary extension of β. Since D1 and

D2 are of tube type, the elements of Šj are precisely the maximal
tripotents of the Jordan triple system Wj [22, Thm. 4.2]. Now
pick e1 ∈ Š1 arbitrarily and define e2 := β(e1). Out of the respec-
tive triple products {·, ·, ·} we then obtain complex Jordan algebra
structures on W1 and W2 by

x · y := {x, ej , y};

by construction, β is a morphism (W1, ·) → (W2, ·) and maps the
Euclidean real forms given by

Vj := {z ∈ Wj | {ej, z, ej} = z}

to each other. Then the restriction α : V1 → V2 is the desired
morphism of Euclidean Jordan algebras with αC|D1 = β.

Our second result concerns a refinement of results from [25] con-
cerning transversality on Shilov boundaries. We denote by K :
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V C × V C → End(V C) the canonical automorphy kernel of V and by
detV the Jordan algebra determinant (see [29, Ch. II.2]). We also
denote by Str(V C) the structure group of V C ([29, p.147]). Then we
have the following characterization of transversality:

Proposition A.2.3. Let V be a Euclidean Jordan algebra, D the
associated bounded symmetric domain and Š its Shilov boundary.
Then z, w ∈ Š are transverse iff one of the following equivalent
conditions holds true:

(i) detV (z − w) 6= 0.

(ii) K(z, w) is invertible.

(iii) K(z, w) ∈ Str(V C).

(iv) detK(z, w) 6= 0.

(v) (z, w) is the unique open G-orbit in Š × Š.

The lion’s share of the proof is provided in [25]. In order to complete
the arguments given there, we need to understand the transforma-
tion behavior of the automorphy kernel. For this we remark that by
[55, Ch. II, Sec. 5] there exists a function J : G × D → Str(V C),
called the canonical automorphy factor, satisfying

K(gz, gw) = J(g, z)K(z, w)J(g, w)∗ (A.1)

for g ∈ G, z, w ∈ D.

Proposition A.2.3. Let us first prove equivalence of the statements
(i)-(iv): The implication (i) ⇒ (ii) is provided in [25, Lemma 5.1].
The implication (ii) ⇒ (iii) follows from the fact that K(z0, w0) ∈
Str(V C) for z0, w0 ∈ D together with the continuity of K and the
fact that Str(V C) is closed in GL(V C). Finally, the implication (iii)
⇒ (iv) is obvious.
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Thus it remains to show (iv) ⇒ (i). Let w, z ∈ Š be arbitrary and
assume detK(z, w) 6= 0. Recall that

detK(z, w) = kdet(z, w) = k2 dimV
V (z, w)

We know that there exists g ∈ G and a Jordan frame (c1) such that

gz =
∑

zici, gw =
∑

wici.

Using Lemma 5.1.15 we get

detK(gz, gw) =k2 dimV
V (gz, gw) =

∏
(1− ziw̄i)

2 dimV
rk V

=
∏(

(wi − zi)w̄i
)2 dim V

rk V ,

since |wi| = 1 Furthermore from [29, Thm III.1.2] we get

det V C(gz − gw) =
∏

(zi − wi),

which shows that detK(gz, gw) 6= 0 if and only if detV C(gz− gw) 6=
0. But by (A.1) this is the case if and only if detK(z, w) 6= 0 and
by [25, Ch. 4] detV C(gz − gw) 6= 0 if and only if detV C(z − w) 6= 0.
This finishes the proof of the equivalence of (i)-(iv).

We deduce in particular that

Š[2] := {(z, w) ∈ Š | detK(z, w) 6= 0} = {(z, w) ∈ Š | det V (z−w) 6= 0}

The first description together with (A.1) and the continuity of detK(·, ·)
imply already that Š[2] is G-invariant and open; the second descrip-
tion together with [25, Prop. 3.4] shows that Š(2) is even a G-orbit.
Since Š[2] is the unique open G-orbit in Š2 we obtain Š(2) = Š[2],
which finishes the proof.

As a corollary of the characterization (i) of transversality in Propo-
sition A.2.3 we get:
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Corollary A.2.4. The image p(V ) of V under the inverse Cayley
transform is precisely the subset of points in Š, which are transverse
to e.

Proof. First note that the classical Cayley transform cR maps S1 \
{1} homeomorphically onto R. We denote its inverse by pR : R →
S1 \ {1}. Now let v ∈ V . By the spectral theorem (in the version of
[29, Thm. III.1.]) there exists a Jordan frame (c1, . . . , cn) such that
v =

∑
λici with λi real. Then

p(v) =
∑

pR(λi)ci ∈ Š,

is transversal to e, because pR(λi) 6= 1 for all i. Conversely, every
w ∈ Š can be writen as

∑
µici for some Jordan frame (c1, . . . , cn)

and complex numbers µi ∈ S1. If w is transverse to e then µi 6= 1
and

c(w) =
∑

cR(µi)ci.

Since c−1
R

(µi) ∈ R we have c(w) ∈ V .

A.3 Uniqueness of limit curves of Anosov
representations

The purpose of this appendix is to sketch a proof of Proposition 2.4.6,
which claims that the continuous monotone limit curve associated
with a maximal representation is unique. As mentioned in the body
of the text this is a consequence of the Anosov property of maximal
representations as established in [15] (see also Theorem A.3.3).

Before we start the proof, we shortly state the definition of Anosov
representations following [36]. Let (N, g) be a closed negatively
curved Riemannian manifold andM := T 1N its unit tangent bundle
equipped with the geodesic flow ϕt for the metric g. We denote by
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M̂ := T 1N the π1(N)-cover of M and by abuse of notation by ϕt
the geodesic flow on M̂ .

Let G be a semisimple Lie group and (P+, P−) be a pair of opposite
parabolic subgroups of G and set F± := G/P±. The subgroup L :=
P+ ∩ P− is the Levi factor of both P+ and P−. The homogeneous
space X := G/L is the unique open G-orbit in the product F+×F−.
From this product structure X inherits two G-invariant distributions
E+ and E−: (E±)(x+,x−) = Tx±

F±. As a consequence any X -
bundle is equipped with two distributions which are denoted also by
E+ and E−.

Let varrho : π1(N) → G be a representation. We set

X̺ := π1(N)\(M̂ ×X ),

where π1(N) acts diagonally on M̂×X . The space X̺ is a X -bundle
over M .

Definition A.3.1. A representation ̺ : π1(N) → G is said to be
(P+, P−)-Anosov if

(i) the flat bundle X̺ admits a section σ : M → X̺ which is flat
along flow lines (i.e. the restriction of σ to any geodesic leaf is
flat).

(ii) The (lifted) action of ϕt on σ∗E+ (resp. σ∗E−) is dilating
(resp. contracting).

The section σ will be called Anosov section.

In writing this appendix we profited from a manuscript on Anosov
representations by O. Guichard and A. Wienhard, which by now has
appeared as part of [36]. Since the latter article discusses in detail
various generalizations of Proposition 2.4.6, we will only provide a
brief outline of the argument. We recommend the reader to consult
[36] for more details. Throughout this appendix we fix a maximal
representation ̺ : Γ → G.
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Lemma A.3.2. Let γ ∈ Γ − {id} and γ+ ∈ S1 its attractive fixed
point. Then for any limit curve ϕ the sequence ̺(γ)n contracts an
open and dense set U = U(ϕ, γ) of the Shilov boundary to ϕ(γ+).

Let us first ensure that this indeed yields the desired conclusion:

Proposition 2.4.6. Assume ϕ1 and ϕ2 are two limit curves for the
maximal representation ̺ and let x ∈ U = U(ϕ1, γ) ∩ U(ϕ2, γ),
which is non-empty by the lemma. Then ̺(γ)nx converges to both
ϕ1(γ

+) and ϕ2(γ
+), whence ϕ1(γ

+) = ϕ2(γ
+). Since {γ+|γ ∈ Γ} is

dense in S1, we have ϕ1 = ϕ2.

We will now sketch the proof of Lemma A.3.2. Throughout we fix
γ ∈ Γ − {id} with repellent fixpoint γ− and attractive fixed point
γ+ in S1; to simplify notation we will assume ϕ(γ+) = eV ; since the
statement of the lemma is conjugation-invariant, this is no loss of
generality. To formulate the Anosov property, on which the proof
relies, we have to introduce two bundles and an associated flow.
Thus letM := T 1Σ the unit tangent bundle of Σ and M̄ := T 1Σ̃ the
unit tangent bundle of its universal covering; denote by p : M̄ →M
the canonical projection. We identify points of M̄ with positive
triples in (S1)3 in such a way that (v−, v0, v+) corresponds to the
projection of v0 onto the geodesic v−v+. As before we denote by Š

(2)

the space of transverse pairs in the Shilov boundary of G. Then we
define a flat Š(2)-bundle over M by

E̺ := Γ\(M̄ × Š(2)).

Since E̺ := p∗E̺ is a trivial bundle we have a splitting

TE̺ ∼= TM ⊕ T Š(2) ∼= TM ⊕ (T Š ⊕ T Š)|Š(2) .

To distinguish the second and the third summand in the last decom-
position we denote them by Ē+

̺ and Ē−
̺ respectively. By definition

the fiber of Ē±
̺ over (v−, v0, v+) ∈M is Tv± Š.



A.3. UNIQUENESS OF LIMIT CURVES 205

Every continuous limit curve ϕ : S1 → Š defines a continuous section
σϕ of E̺, whose lift σ̄ϕ : M̄ → E̺ is given by the formula

(v−, v0, v+) 7→ ((v−, v0, v+), (ϕ(v−), ϕ(v+))).

We introduce the notations

π+ : σ∗
ϕE

+
̺ →M, π− : σ∗

ϕE
−
̺ →M

for the canonical projections of the bundles σ∗
ϕE

±
̺ .

There are natural flows on these bundles given as follows: On M
and M̄ there are the geodesic flow ϕt resp. ϕ̄t. The flow ϕ̄t lifts to
a flow on Ē̺ via

ϕ̂t(v, s) := (ϕ̄t(v), s).

By construction this flow is compatible with the Γ-action on Ē̺,
hence it descends to a flow ϕ̂t on E̺. Furthermore the maps σ̄ϕ
and σϕ are invariant under the respective flows. From the explicit
description

σ∗
ϕE

±
̺ = {(m, e) ∈M × E±

̺ |σϕ(m) = p±̺ (e)}
we see that the bundles σ∗

ϕE
± are invariant under the flow ψt :=

ϕt × ϕ̂t|M×E±
̺
. We denote by ψ̄t the corresponding flow on σ̄∗

ϕĒ
±
̺ .

Now the main technical result of [15] reads as follows:

Theorem A.3.3 (Burger-Iozzi-Wienhard). The section σϕ : M →
E̺ is an Anosov section, i.e. for any continuous family of norms
(‖ · ‖m)m∈M on σ∗

ϕE
±
̺ there exist constants A, a > 0 such that for

every m ∈M , v± ∈ (σ∗
ϕE

±
̺ )m and t > 0,

‖ψ±t(v
±)‖π±(ψ±t(v±)) ≤ A exp(−at)‖v±‖m.

Returning to our isometry γ, denote by ω a geodesic in Σ̃ joining
γ− and γ+. Note that γ acts on ω by translation. In particular if
τ = τΣ̃(γ), then

γ · ω(t) = ω(t+ τ), (t ∈ R),
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and
dγ · ω̇(t) = ω̇(t+ τ) = ϕτ (ω̇(t)). (A.2)

One can now deduce Lemma A.3.2 along the following lines.

(i) We see from the definition of σ̄ϕ that the fibers of σ̄∗
ϕĒ

±
̺ along

ω̇(t) are canonically isomorphic with Tϕ(γ+)Š; moreover the

canonical isomorphisms ιt : σ̄
∗
ϕĒ

±
̺ → Tϕ(γ+)Š intertwine with

the flow ψt, i.e. if v ∈ (σ̄∗
ϕ(E

+
̺ ))ω̇(t0), then

ιt0(v) = ιt0+t(ψtv).

(ii) The flow ψt and the action of γ on ω̇ intertwine, i.e.

̺(γ)v = ψτ (v)

for all v in the fiber over ω̇(R) ⊂ M̄ .

(iii) The contraction property carries over to Tϕ(γ+)Š. Let v ∈
Tϕ(γ+)Š and x = ι−1

0 v. Then:

‖d̺(γ).v‖ = ‖d̺(γ).ι0(x))‖ = ‖ιτ (̺(γ).x))‖
= ‖ι−1

0 ιτ (̺(γ).x))‖0 = ‖̺(γ).x‖τ
= ‖ψ̄τ (x)‖τ = ‖ψτ (Γx)‖p(ω̇(τ))
≤ A exp(−aτ)‖Γx‖p(ω̇(0)) = A exp(−aτ)‖x‖0
= A exp(−aτ)‖v‖.

In particular, limn→∞ ‖d̺(γn).v‖ = 0 for all v ∈ Tϕ(γ+)Š.

(iv) We now claim that γ acts contractingly on U := exp(TeV Š),
which is open and dense in Š. (Recall our assumption that
eV = ϕ(γ+).) Indeed, γ acts contractingly on Tϕ(γ+)Š, and
the exponential map intertwines this action with the action on
U , whence ̺(γ) contracts U to ϕ(γ+) as claimed.
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