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Preface

The devastating sequence of earthquakes that stuck the city of Christchurch, New Zealand,
from September 2010 to June 2011 is the last example of seismic events occurring in coun-
tries with a long standing earthquake engineering tradition that fortunately claimed only a
limited number of lives, but where the economic and social consequences have been very
significant. Therefore, in recent years strong efforts within the earthquake engineering
community have been directed toward the development of high-performance structural
and non-structural systems, i.e. systems that for the same seismic action are less prone
to damage. In this framework a significant contribution is being provided by material
scientists with the development of so-called high performance materials, and High Perfor-
mance Fibre Reinforced Cementitious Composites (HPFRCC) fall within this category.
These are typically characterised by significant strain ductility in tension featuring strain
hardening properties which make them particularly attractive for seismic applications.

Recognising the potential of HPFRCC, the former chair of Earthquake Engineering and
Structural Dynamics at the ETH Zurich, started a research project aiming at developing
new high-performance structural systems incorporating HPFRCC. During a first experi-
mental part of the project, HPFRCC structural walls were tested under static-cyclic load
reversals. The HPFRCC walls showed a superior performance compared to conventional
reinforced concrete walls, however, the tests also made clear that to fully exploit the
possibilities offered by the new material, new analysis tools needed to be developed.

Mr. Trübs doctoral dissertation meets this challenge by developing a new and original
material model for the numerical simulation of the structural-scale (macro-scale) response
of HPFRCC elements. The material model is designed for plane-stress quadrilateral finite
elements and uses three different approaches for the description of the mechanical material
behaviour: Up to cracking strength HPFRCC is modelled by means of a linear elastic
law; the ensuing hardening phase is described using a rotating smeared-crack model and
upon reaching tensile strength softening of the material and strain localisation within
a single discrete crack are elegantly taken into account through the capabilities of the
eXtended Finite Element Method (XFEM). While the three approaches taken singularly
are well know, their combination to most accurately describe the tensile force-deformation-
behaviour of HPFRCC is new and Mr. Trüb was able to compellingly solve the significant
challenge of transitioning from one phase of the material behaviour to the next. So far,
the proposed material model has been developed for monotonic behaviour allowing the
seismic analysis of structures incorporating HPFRCC materials through non-linear static
procedures. However, the more general theoretical framework set up by Mr. Trüb readily
allows the extension of the model to full cyclic behaviour.

Pavia, July 2011 Alessandro Dazio
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Summary

High Performance Fiber Reinforced Cementitious Composites (HPFRCCs) are a relatively
new and innovative class of Fiber Reinforced Cementitious Composites which have been
developed mainly in the last decade. Their most prominent feature, which also distin-
guishes them from traditional Fiber Reinforced Concrete, is that they are strain-hardening
in direct tension. By consequence HPFRCCs are a lot more ductile than ”normal” con-
crete, which makes them suitable for a number of structural applications.

In this thesis a general framework for the numerical simulation of High Performance
Fiber Reinforced Cementitious Composites on a structural scale is developed. The pro-
posed model focuses on the tensile response of the material and it is formulated for 8-node,
quadrilateral Finite Elements and plane-stress conditions. One of the model’s key fea-
tures is that it distinguishes three different phases of behavior which are all modeled
individually. The first part of the model treats the elastic behavior of HPFRCCs and
it is formulated within the traditional theory of plane-stress elasticity. The second part
of the model covers the strain-hardening and multiple cracking phase. It is based on a
Rotating Smeared Crack Model with uncoupled components and explicit strain decom-
position. The final part of the model captures crack localization and softening. It is
based on a Discrete Cohesive Crack Model which is introduced by means of the eXtended
Finite Element Method (XFEM). The XFEM is a relatively new finite element technique
which allows for mesh-independent crack modeling. The basic idea behind it is to enrich
the Finite Element approximation space with additional discontinuous shape functions
which account for localized cracks. The transition between the Smeared Crack Model
and the XFEM model is done by an innovative new method which performs a ”splitting”
of the integration points and thereby preserves the algorithmic stability. The simulation
framework is completed by an Embedded Rebar Model which complements the HPFRCC
model.

The proposed model is calibrated and validated by a number of experimental tests and
the simulation results show an excellent agreement with the test measurements. The
overall performance of the model is very satisfactory and the different phases of behavior
are captured correctly. Furthermore, the numerical model proves to be robust and it
shows no instabilities or numerical deficiencies such as mesh-sensitivity, stress-locking or
spurious stress transfer.
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Zusammenfassung

Hochleistungs-Faserbetone (HPFRCCs) bilden eine relativ neue und innovative Klasse
faserverstärkter Betone die hauptsächlich in den letzten zehn Jahren entwickelt wurden.
Ihr charakteristisches Merkmal welches sie von traditionellem Faserbeton unterscheidet
ist, dass sie unter direktem Zug verfestigend sind. Auf Grund dessen sind Hochleistungs-
Faserbetone viel duktiler als ”normaler” Beton wodurch sie für eine Anzahl von struk-
turellen Anwendungen in Frage kommen.

In dieser Dissertation wird ein allgemeines Modell zur numerischen Simulation des Struk-
turverhaltens von Hochleistungs-Faserbetonen entwickelt. Das vorgeschlagene Modell ist
für achtknotige, rechteckige Finite Elemente im ebenen Spannungszustand formuliert und
konzentriert sich auf das Zugverhalten des Materials. Die grosse Besonderheit des Mod-
ells ist, dass es drei verschiedene Phasen des Verhaltens unterscheidet und jede davon
individuell modelliert. Der erste Teil des Modells behandelt das elastische Verhalten
von Hochleistungs-Faserbetonen und es ist innerhalb der klassischen Theorie des elastis-
chen, ebenen Spannungszustandes formuliert. Der zweite Teil umfasst die Phase der
Verfestigung und der multiplen Rissbildung. Er basiert auf der Methode der rotierenden,
verschmierten Rissen mit entkoppelten Komponenten und einer expliziten Zerlegung der
Dehnung. Der letzte Teil des Modells erfasst die Risslokalisierung und die damit ver-
bundene Entfestigung. Er basiert auf diskreten, kohäsiven Rissen, welche mit Hilfe der
”eXtended Finite Element Method” (XFEM) eingeführt werden. Die XFEM ist eine rela-
tiv neue Methode und sie erlaubt die maschenunabhängige Modellierung von Rissen. Die
grundsätzliche Idee des Vorgehens ist es, die Menge der FE-Ansatzfunktionen um eine
Anzahl von diskontinuierlichen Funktionen zu erweitern um dadurch den lokalisierten
Rissen Rechnung zu tragen. Der Übergang zwischen den beiden Modellen geschieht über
ein neuartiges Verfahren das die Integrationspunkte zerlegt und dadurch die Stabilität
des numerischen Agorithmus gewährleistet. Des Weiteren wird das Materialmodell für
Hochleistungs-Faserbeton mit einem Modell für eingebettete Armierung vervollständigt.

Durch eine Anzahl von Versuchen wird das numerische Modell kalibriert und validiert und
die Simulationsergebnisse stimmen gut mit den Versuchsmessungen überein. Insgesamt
ist das Verhalten des Modells sehr zufriedenstellend und die unterschiedlichen Phasen
des Verhaltens werden korrekt abgebildet. Zudem zeigt sich, dass das numerische Modell
robust ist und keine Instabilitäten oder numerischen Defekte wie Maschenabhängigkeiten,
fehlerhaften Spannungsaufbau oder unechten Spannungsübertrag aufweist.
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Chapter 1

Introduction

1.1 Defining the Problem

In recent years many so-called High Performance Materials have been developed by ma-
terial scientists. These reach from cutting-edge polymers and very resistant structural
glass to High Performance Fiber Reinforced Cementitious Composites (HPFRCCs) and
Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCCs). This
presents a unique opportunity for civil engineers. There is an enormous potential in ex-
ploiting the excellent mechanical properties of these new High Performance Materials and
in adopting them to engineering applications. This is especially true for the new High-
and Ultra High Performance Fiber Reinforced Cementitious Composites because their
production and handling (with the exception of SIFCON, see Section 2.3) is similar to
that of traditional construction materials and their introduction into engineering practice
is straightforward. Several of them such as Engineered Cementitious Composite (ECC),
Slurry Infiltrated Fiber Concrete (SIFCON), Reactive Powder Concrete (RPC) and Com-
pact Reinforced Composite (CRC) have been the subject of some research in the past,
while others such as Hybrid Fiber Concrete (HFC) are currently under development and
their mechanical properties are still a subject of ongoing research. The main features
that distinguish HPFRCCs from traditional Steel Fiber Reinforced Concrete are their
strain-hardening behavior in tension and their improved ductility and tensile strength.

Motivated by the perspectives of these excellent material properties preliminary tests on
HFC structural walls under static-cyclic load reversals were performed at the Institute
of Structural Engineering (IBK) at the ETH Zurich. The basic idea was to develop a
structural wall that would require neither shear nor confinement reinforcement but which
would still exhibit an excellent seismic behavior [BDT06, DBT08]. These tests confirmed
the researchers’ expectations. The HFC walls were able to undergo large inelastic defor-
mation cycles without spalling of cover concrete and without any consequential buckling
of the longitudinal reinforcement or shear failure. All three tested walls were designed
completely without shear or confinement reinforcement and shear transfer was assured
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1.2. AIM AND SCOPE 11

only by the HFC matrix and the embedded steel fibers.

One of the findings of the performed investigation was that the numerical prediction of the
structural response by means of standard Finite Element software and concrete models
was largely inaccurate. Furthermore, a literature review revealed that there seems to be
a need for a robust and accurate numerical model for High Performance Fiber Reinforced
Cementitious Composites [Li02c, Bil04]. Therefore, it was decided to develop a numerical
model for High Performance Fiber Reinforced Cementitious Composites which is the main
subject of this thesis.

1.2 Aim and Scope

In spite of the excellent properties of High Performance Fiber Reinforced Cementitious
Composites there are very few structural applications for this class of new materials.
Although some adventurous enterprises were able to realize spectacular structures – which
proved to be extremely satisfactory both in terms of mechanical behavior and economical
profitability – civil engineers seem to lack the necessary innovative spirit and remain
captives of their traditional formation where reinforced concrete and structural steel are
still most commonly viewed as the only modern construction materials. Moreover, one of
the primary obstacles preventing the widespread use of HPFRCCs is the lack of reliable
numerical models for this class of materials.

This led to the primary goal of this thesis, which is the development and the experimental
validation of a structural-scale numerical model for High Performance Fiber Reinforced
Cementitious Composites. This model should be robust and capture all the essential
characteristics of HPFRCCs which are namely strain-hardening (multiple cracking) as
well as strain-softening (localized cracking). The latter is especially important because
many HPFRCCs might potentially be used in seismic applications where the simulation
of the structural response up to complete failure is essential. This has to do with the
earthquake-specific ”load scenario” which imposes displacements rather than forces. And
especially in this scenario the capability of HPFRCC elements to sustain large, inelastic
deformations constitutes a major advantage over traditional, reinforced concrete.

The objective of the developed model is to assist in the efficient planning of future exper-
iments as well as to lay the groundwork for commercial HPFRCC Finite Element models.
A number of possible applications for the new model are shown in Figure 1.1. Note
that the latter are in accordance with the structural systems proposed in recent research
[PM05].

Based on the most likely applications for HPFRCCs the model is formulated for plane-
stress conditions. This will allow for an appropriate representation of beams, structural
walls and beam–column connections with a reasonable degree of complexity but still
manageable computational effort.
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Beams

Frame Nodes

Structural Walls

Figure 1.1: Different possible applications for the HPFRCC model

There are a number of requirements that the model should satisfy. The first of them
is that the model should be linked to the physical behavior of HPFRCCs as closely as
possible. This means that the different phases of behavior (i.e. multiple cracking, crack
localization) should be directly reflected in the model. Also, the model input parameters
should have a physical meaning.

A second requirement is that the model should use state-of-the-art Finite Element tech-
niques, especially in respect to crack localization. The model should be insensitive to the
Finite Element discretization and should not exhibit any pathological behavior at large
crack openings such as mesh-bias, spurious stress transfer or stress-locking. Furthermore,
no non-physical ”regularization” parameters should be necessary. The main reason for
these requirements is the fact that the existing models for HPFRCCs are prone to such
problems as we will see in Section 3.4.

Finally, because the new model for HPFRCCs developed during this thesis is mainly a
research tool no special emphasis is put on a commercial-grade graphical user interface.
However, great care was taken that the computer code is well documented and easily ex-
tensible. The latter is achieved by following the Object-Oriented Programming Paradigm.

1.3 Limitations

The behavior of High Performance Fiber Reinforced Cementitious Composites is rather
complex and it can be modeled on different scales with different levels of abstraction. This
may range from a microscopic scale where the constituents of HPFRCCs (like aggregates
and fibers) as well as their interaction are modeled explicitly, to a macroscopic scale where
HPFRCCs are regarded as a continuum and single fibers cannot be discerned [Kab07].

The model that is developed in this thesis is an engineering model for the structural-
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scale simulation of HPFRCC elements. On this scale the material is assumed to be
homogeneous. This abstraction is made for both the intact HPFRCC bulk material,
where microcracks are accounted for in an averaged (smeared) sense, as well as for the
macroscopic cracks where the effect of the fibers is accounted for by a cohesive traction–
separation law. For models on the microscopic scale where individual constituents are
modeled the reader is referred to [NR95].

Another limitation of the model is that it focuses on the tensile behavior of HPFRCCs.
The compressive behavior is assumed to be linear elastic. The main reason for this is the
fact that the behavior of a vast majority of real world, concrete structures is limited by
their tensile response [vM03]. However, the presented model can readily be extended by
a nonlinear compression model such as for example the one presented in [Sir09], which is
based on the theory of Plasticity.

There are also a number of limitations concerning the cohesive, localized cracks which are
part of the model. The current implementation does not allow for branching or intersecting
cracks, although it would be theoretically possible to do so (see [DMD+00]). Furthermore,
no specific focus was put on linking the material constituents (fibers, matrix) and their
bond to the macroscopic cohesive law at the crack interface. An attempt to do so can
be found in [Kab04, Kab07]. It was rather decided to take a phenomenological approach,
which means that the cohesive traction–separation law is determined experimentally.

Finally, the model is designed for plane-stress conditions. The extension to a three-
dimensional stress–strain state is theoretically possible but it is not part of this thesis.

1.4 Overview

As we have seen in Section 1.2 this thesis encompasses two major topics. On one hand
there is the subject of High Performance Fiber Reinforced Cementitious Composites and
on the other hand there is the field of numerical modeling of quasi-brittle materials.

In order to come up with a suitable numerical model for High Performance Fiber Rein-
forced Cementitious Composites the first task is therefore to fully understand the compo-
sition and behavior of Fiber Reinforced Cementitious Composites (FRCCs) and specifi-
cally HPFRCCs. For this reason Chapter 2 will give an overview of the most important
HPFRCCs and their characteristics. After summarizing the historical developments that
led from FRCCs to HPFRCCs the key differences between the two materials are empha-
sized. Following this all modern HPFRCCs are described and for each of them some
applications are given. The chapter is concluded by a comparison between the different
HPFRCCs and some guidelines indicating which materials are suitable for which kinds of
applications are given.

Chapter 3 is dedicated to the numerical modeling of quasi-brittle materials. First, the
problem of crack localization and strain-softening is explained and the available modeling
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approaches are introduced. The focus is then shifted towards the two methods that
are used for the proposed HPFRCC model (namely the Smeared Crack Model and the
eXtended Finite Element Method) and the theoretical basis for both of them are given.
Finally, the chapter is concluded by a literature review of the currently available models
for HPFRCCs and an improved model is presented.

In the next part of this thesis the new model for HPFRCCs is developed. In Chapter 4
the basic framework for the model is set up and the formulation of the underlying isopara-
metric quadrilateral Finite Element is given. This serves both as a reference for further
explanations and also as a short refresher of the Finite Element Method.

Chapter 5 then extends the linear, elastic model from Chapter 4 to account for the multiple
cracking phase of High Performance Fiber Reinforced Cementitious Composites in tension.
This is done by means of a Smeared Crack Model for strain-hardening materials.

Thereafter, the crack localization phase of the model is introduced in Chapter 6. Its
development is explained step-by-step by first introducing a stress-free crack by means
of the eXtended Finite Element Method, which is then modified to account for cohesive
forces in the spirit of the Cohesive Crack Model. The chapter is concluded by defining the
laws for crack propagation and explaining the issues related to the transfer of material
history variables.

In order to be able to use the HPFRCC model for real world problems it has to be
complemented by a model for mild steel reinforcement. This is done in Chapter 7.

After having explained all the necessary parts of the numerical model for HPFRCCs three
applications are presented in Chapter 8. Starting with a simple wedge splitting test the
model is then also applied to a 4-point bending test and a shear beam test. The validity
of the model is verified and the computational results are compared to the experiments.

The final Chapter 9 concludes this thesis with a summary of the most important findings
and suggests a number of topics for further research.



Chapter 2

Fiber Reinforced Cementitious Com-
posites (FRCC)

2.1 Introduction

This chapter will give a short overview of Fiber Reinforced Cementitious Composites
(FRCCs). After a brief look at the history of FRCCs (Section 2.1.1) and proposing a
classification in Section 2.1.3 the most important Fiber Reinforced Cementitious Com-
posites are characterized (Sections 2.2 ff.) and some applications for each of them are
presented.

2.1.1 History

Fiber Reinforced Cementitious Composites is a term commonly used for a broad class of
materials. Every FRCC consists of two basic components: a cementitious base material
called matrix, which is reinforced by steel or synthetic fibers. However, although the
microscopic components of all Fiber Reinforced Cementitious Composites are more or less
the same the individual materials can show a completely different macroscopic behavior
as we will see in the following sections of this chapter.

The most common reason why fibers are added to a material is to improve its tensile
performance i.e. its tensile ductility or its tensile strength. In fact the idea to use fibers
in order to improve the tensile properties of brittle materials is old. Already in ancient
times straw fibers were used to enhance the tensile strength of sun-baked bricks.

The scientific research on Fiber Reinforced Cementitious Composites reaches back to the
1960s [RM64]. In the early days of FRCCs straight steel fibers at relatively low volume
contents were used to improve the mechanical properties of plain concrete. However,
the early attempts were only of moderate success [vM03]. Although the fibers were able

15
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to slightly increase the toughness of the composite its ductility remained more or less
unchanged. The addition of larger volume contents of fibers was mainly prevented by
workability problems.

In order to improve workability and restrict balling of fibers the quantity of cement was
increased and the amount of coarse aggregates was reduced. Further improvement of the
workability could be achieved by the introduction of high-range water-reducing admix-
tures (superplasticizers). As a direct consequence of the improved workability the volume
content of fibers could also be increased. A further step towards better Fiber Reinforced
Cementitious Composites was the utilization of more sophisticated fibers with better bond
properties [RBCS80], as discussed in Section 2.1.2. The use of more carefully adjusted
cementitious matrices with reduced amounts of coarse aggregates and carefully adjusted
properties finally led to the High Performance Fiber Reinforced Cementitious Composites
we know today (for term definition see Section 2.1.3).

Examples of modern Fiber Reinforced Cementitious Composites are: Slurry Infiltrated
Fiber Concrete (Section 2.3), Engineered Cementitious Composites (Section 2.4), Com-
pact Reinforced Composite (Section 2.6), Reactive Powder Concrete (Section 2.7), Multi-
Scale Fiber-Reinforced Cementitious Compositesand Hybrid Fiber Concrete (Section 2.8).

For more details on the history of High Performance Fiber Reinforced Cementitious Com-
posites the reader is referred to [Naa07] and a nice overview of Fiber Reinforced Cemen-
titious Composites can be found in [BS92].

2.1.2 Fibers

Fibers are the key component of Fiber Reinforced Cementitious Composites. And they are
used in many different shapes and sizes. The most commonly used ones are certainly steel
fibers. However, there are also some Fiber Reinforced Cementitious Composites which
use synthetic fibers made of Polypropylene, Polyethylene, Polyester, Carbon, Acrylic or
Aramid. Asbestos fibers, which used to be popular, are now banned due to their detri-
mental influence on human health. Some FRCCs also use mineral and naturally occurring
fiber. The latter two present somewhat of a special case and will not be treated here.

The majority of FRCCs in civil engineering applications contain steel fibers. However,
today there is a vast number of different steel fibers to choose from. In contrast to
the early days most modern steel fibers have some kind of deformed shape in order to
improve their mechanical bond. Some common shapes are shown in Figure 2.1. They
can be smooth, indented, crimped, coiled, with hooked ends, paddles, buttons or other
anchorages. The most recent concept is to even use twisted fibers; a design which results
in excellent performance as is presented in [Naa03].

Steel fibers generally have a length between 6mm and 80mm and a diameter ranging from
0.15 mm to 1.0 mm. A very common characteristic of fibers is also their aspect ratio.
It is defined as the ratio between the length and the diameter of a fiber. The typical
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Smooth surface (round, flat or of any shape)

Indented, etched, roughened surface

Round with hooked ends

Round with end paddles

Round with end buttons

Crimped (round, flat or of any section)

Polygonal twisted (new)

Figure 2.1: Possible shapes of steel fibers [Naa03]

aspect ratios for steel fibers range between 20 and 100. When it comes to quantities the
amount of fibers in FRCCs is usually indicated by percents of total volume (vol.%) and
the typical contents for Steel Fiber Reinforced Concretes are between 0.25 and 3 vol.%.

Synthetic fibers vary much more in size and their diameter can be anything from as little
as 10 μm up to 0.8 mm. Their length is usually between 10 mm and 80 mm and typical
quantities are 0.5 to 2 vol.%. The coarser fibers normally have an aspect ratio below 100
whereas the aspect ratio of fine fibers can easily exceed 100.

In order for a fiber to perform well in a FRCC it should have the following properties
according to [Naa03]:

� A tensile strength of 2 to 3 orders of magnitude higher than that of the matrix

� A bond strength that is at least as high as the cracking strength of the matrix

� An elastic modulus that is much higher than that of the matrix (at least 3×)

Depending on the type and dimension of the fibers their effect on the mechanical properties
of a FRCC can be very different. This concept will be elaborated in detail in Section 2.8.

2.1.3 Overview and Classification

In the literature there is some confusion about the terms used to describe different FR-
CCs. Many authors come up with new names for their material or use the same name in
a different context. Therefore, this section will provide the most commonly used classifi-
cation of FRCCs as proposed by [NR06] and define the terms as they are used within the
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scope of this thesis.

High Performance Fiber Reinforced Cementitious Composites (HPFRCCs)

The most widely accepted proposition is to classify FRCCs by their stress–strain response
in direct tension and their load–deflection response in flexure [NR06, SL04]. Following this
approach a FRCC that is strain-hardening in direct tension is called High Performance
Fiber Reinforced Cementitious Composite or HPFRCC (see Figure 2.2). One of the first
stress–strain curves of a High Performance Fiber Reinforced Cementitious Composite was
published by [NS79] in 1979 although it was not recognized as such at the time.

tension( )f fcriV V

bending tension( ) ( )fcri f fcriV V V

bending( )f fcriV V

tension( )f fcriV V

cc

pc

cc pc

ccf

rf

c u

Figure 2.2: Classification of HPFRCCs taken from [NR06]

Some FRCCs are not strain-hardening in direct tension but they still show a hardening
behavior in flexure. These are called deflection-hardening FRCCs and form the category
of Ductile Fiber Reinforced Cementitious Composites (DFRCCs) [MM02]. However, it
should be emphasized that deflection-hardening is also influenced by the dimension and
cross-section geometry of a specimen and is therefore not a material property in the strict
sense [SL04]. A Fiber Reinforced Cementitious Composite which falls into neither of these
two categories is called deflection-softening FRCC. This thesis focuses on the numerical
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modeling of strain-hardening Fiber Reinforced Cementitious Composites or in other words
HPFRCCs.

The fundamental difference between strain-hardening composites and strain-softening
composites is that the ductility of the latter is only effective on a material level and
in general does not affect the overall structural ductility. Or in other words, the material
does react in a ductile manner but because it is softening in tension the failure is restricted
to a small area resulting in damage localization and formation of a limited fracture process
zone with a large crack opening. On a structural level this kind of ductility has little ben-
efit since the failure occurs locally and the rest of the structure remains elastic. Of course
this can be remedied by the addition of structural reinforcement bars which transfer the
large stresses form the localized fracture zone to other undamaged parts of the structure.
Note that in some specific cases strain-softening FRCCs can improve structural ductility
if they prevent shear failure and thereby produce a more ductile flexural failure.

Strain-hardening Fiber Reinforced Cementitious Composites on the other hand retard lo-
calization and lead to multiple cracking and structural ductility even without the addition
of reinforcement bars. For this reason they are called High Performance Fiber Reinforced
Cementitious Composites. Typical examples of HPFRCCs are Slurry Infiltrated Fiber
Concrete (Section 2.3) and Engineered Cementitious Composites (Section 2.4).

Ultra High Performance Fiber Reinforced Cementitious Composites (UH-
PFRCCs)

Another important characteristic a Fiber Reinforced Cementitious Composite can have
other than a strain-hardening behavior in tension is a very high compressive strength.
The development of such concretes with extremely high compressive strengths called Ul-
tra High Strength Concretes (UHSCs) was launched in the 1970s. In [Bac81] H.H. Bache
presented a concept to create a concrete with an extremely high compressive strength by
targeting a very dense packing of the particles in the concrete matrix. In order to achieve
this goal Bache used a large amount of cement and fine particles such as silica fume.
The application of superplasticizers ensured effective dense packing and sufficient work-
ability even at low water-to-binder ratios. Bache also eliminated the coarse aggregates
and used small-sized but extremely strong aggregates instead. The reason for not using
large particles was that they are the major source of inhomogeneities which in turn are
responsible for defects in the matrix and crack initiation. Bache called his invention Den-
sified Small Particle concrete (DSP concrete), which was later commercialized under the
name Densit� [Bac86]. Although considerable compressive strengths typically between
120 and 250 MPa can be obtained by this procedure DSP concrete has a significant
drawback: With increasing compressive strength the brittleness increases as well.

The solution to this problem was found by adding steel fibers to the cementitious ma-
trix, which increased the fracture energy and thereby reduced the brittleness. This idea
gave birth to the materials called Ultra High Performance Fiber Reinforced Cementitious



20 CHAPTER 2. FIBER REINFORCED CEMENTITIOUS COMPOSITES (FRCC)

Composites (UHPFRCCs). Most UHPFRCCs are also strain-hardening in tension (and
therefore HPFRCCs) but they also exhibit the very high compressive strength of DSP con-
crete. Originating from this concept research continued following slightly different paths
which led to the development of Compact Reinforced Composites (Section 2.6), Reactive
Powder Concrete (Section 2.7), Multi-Scale Fiber-Reinforced Cementitious Composites
and Hybrid Fiber Concrete (Section 2.8). A nice overview of UHPFRCCs can be found
in [Ros00, Ros05].

As mentioned before, not all authors use the same terminology when it comes to FRCCs.
For this reason the following section will define the terms as they are used in this thesis.

2.1.4 Terminology

Cementitious Materials are the binding component of a Fiber Reinforced Cementi-
tious Composite. For our purposes these are: cement, mortar or concrete.

FRCC stands for Fiber Reinforced Cementitious Composite and describes a cementitious
material that is reinforced by randomly oriented fibers. The FRCCs focused on in
this thesis are mainly Steel Fiber Reinforced Cementitious Composites and to a
smaller extent Synthetic Fiber Reinforced Cementitious Composites.

DFRCC denotes a subclass of FRCCs called Ductile Fiber Reinforced Cementitious
Composites which are hardening under flexural conditions (deflection-hardening)
but not strain-hardening in direct tension [MM02] (see also HPFRCCs). The ex-
pression Ductile emphasizes the fact that these composites exhibit multiple cracking
which can be considered to be form of ductility.

HPFRCC is an acronym for High Performance Fiber Reinforced Cementitious Com-
posite. It delimits a subclass of FRCCs which are strain-hardening in direct ten-
sion. Some authors also call them pseudo strain-hardening or quasi strain-hardening
[Naa07]. Strain-hardening refers to a true material property and should not be con-
founded with hardening due to a redistribution of internal stresses such as within
the cross-section of a beam (referred to as deflection-hardening).

UHSCs or Ultra High Strength Concretes are concretes with a very densely packed ma-
trix which causes them to withstand high compressive loads. They usually contain
large amounts of fly-ash and silica fume and can reach compressive strengths be-
tween 120 MPa and 250 MPa.

UHPFRCC stands for Ultra High Performance Fiber Reinforced Cementitious Compos-
ite and denotes a subclass of FRCCs that encompasses a number of Ultra High
Strength Concretes that are reinforced with steel fibers. Many UHPFRCCs are also
HPFRCCs and therefore exhibit strain-hardening and multiple cracking in direct
tension.

SCC stands for Self-Compacting Concrete and summarizes a class of concretes which
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do not need to be mechanically vibrated or compacted after casting. Their in-
herent flow characteristics guarantee excellent workability. Especially for FRCCs
self-compacting properties are highly desirable because their workability is already
negatively affected by the fibers. Also, mechanical vibration can cause unwanted
segregation of the latter. SCCs are sometimes also called Self Leveling Concretes
(SLCs).

Multiple Cracking means that a FRCC is capable of arresting the further opening of
cracks by fiber bridging action and by consequence new cracks tend to form in the
close vicinity. This is a fundamental property of HPFRCCs.

Localized Crack A localized crack is a crack at which the damage accumulates and
where deformations start concentrating. It should be characterized by the crack
opening displacement rather than a strain since the latter is gauge-dependent.

Brittle A material is called brittle if it looses its tensile strength immediately after first
cracking under uniaxial tension and is no longer able to resist any stress.

Quasi-Brittle The expression quasi-brittle describes a material that starts softening di-
rectly after first cracking under uniaxial tension. However, quasi-brittle materials
are still capable of transferring some reduced amount of stress which gradually de-
creases with increasing crack opening.

Ductile A ductile material is a material that does not fail immediately under uniaxial
tension after reaching its first cracking strength. It first enters a strain-hardening
phase, which is only then followed by a crack opening phase and localization of
failure.

Tensile Toughness is a measure for the energy dissipation capacity of a material in
tension. It is equal to the area under the stress-strain curve in uniaxial tension.

Damage Tolerance is an expression often used in conjunction with Engineered Cemen-
titious Composites (Section 2.4). It refers to a material’s insensitivity to initial
defects (e.g. air inclusions) or stress concentrations (e.g. notches) [SL04].

2.2 Steel Fiber Reinforced Concrete (SFRC)

2.2.1 Material Description

The first Fiber Reinforced Cementitious Composite that was developed in the early 1960s
was Steel Fiber Reinforced Concrete (SFRC). Although SFRC shows certain improve-
ments compared to normal concrete it is not considered to be a High Performance Fiber
Reinforced Cementitious Composite. SFRC consists of a normal strength concrete ma-
trix (containing fine and coarse aggregates) which is reinforced by relatively long, straight
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steel fibers at low volume contents. Sometimes the term Steel Fiber Reinforced Cemen-
titious Composites (SFRCCs) is preferred to the term Steel Fiber Reinforced Concrete
(SFRC) since it is a little more general and also includes fiber reinforced materials with
no coarse aggregates such as fiber reinforced mortar. A nice overview of the material and
its applications is given in [BS92, ACI73].

2.2.2 Mechanical Properties

The primary improvements of SFRC compared to normal concrete are: a higher toughness
and energy absorption capacity, greater spalling and delamination resistance, improved
durability characteristics through better crack control, as well as a higher ductility on the
material level. However, the higher toughness and energy absorption capacity are mainly
of interest for impact loading conditions and not for cyclic loading since the fiber pullout
mechanism which is responsible for the higher toughness and energy absorption is not
reversible.

Compared to normal concrete the tensile strength of SFRC is not improved significantly
and SFRC still exhibits quasi-brittle failure (no strain-hardening). The reasons for this are
the relatively low amount of fibers as well as the fact that the matrix contains too many
coarse aggregates. However, compared to unreinforced concrete the failure is more ductile
and exhibits a gradual softening behavior – hence the term quasi-brittle (see Figure 2.2
in Section 2.1.3).

2.2.3 Applications

SFRC is mainly used for non-structural elements such as pavements of industrial floors and
runways, safety vaults, tunnel linings, slope stabilization and dam or pavement repairs, as
well as for the repair and rehabilitation of marine structures [ACI73, Li02b, BS92]. Most of
these applications either make use of the improved durability characteristics or the higher
toughness of SFRC. Never the less, some structural applications have been examined
and laboratory tests have shown that SFRC is able to improve the shear capacity of
beams [Sha86, ND87, ND88, KEKK02, DPMW10] and reduce the necessary reinforcement
detailing in beam–column connections [FPH95] (see Figure 2.3) as well as minimize bond-
slip [HHK02] and prevent spalling of structural members.

A more recent application of SFRC is the strengthening of rectangular bridge piers. For
circular and square bridge piers several strategies such as FRP (Fiber Reinforced Polymer)
wrapping or welded steel plate jacketing are available. These methods improve the bond
in the lap splice region by confining the concrete. However, they cannot be applied
successfully to rectangular columns with a large aspect ratio. In [VM04a] a strengthening
method for rectangular bridge piers with lap splices in the plastic hinge region is proposed.
The basic idea is to replace the existing concrete cover in the lap splice region by a SFRC
jacket. The authors of [VM04a] showed that by replacing the existing concrete cover with
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(a) (b)

Figure 2.3: FRC beam–column connection with reduced shear reinforcement [FPH95]

a FRC that has a compressive strength of 50 MPa and contains 30 mm long steel fibers
(1 % Vol.) splitting failure in the lap splice region can be prevented and a more ductile
behavior can be obtained.

Another interesting application of Steel Fiber Reinforced Cementitious Composites is
presented in [PMCJ06]. In that paper different SFRCCs with twisted or hooked steel
fibers are used in the plastic hinge region of a structural wall which is subjected to lateral
load reversals. It was found that a SFRCC with 2 % vol. of hooked steel fibers allows for
the total elimination of boundary confinement reinforcement and a more favorable crack
distribution with no major shear-related damage.

In [CPM10a] and [CPM10b] the use of SFRCCs for punching shear resistance in slab-
column connections is investigated. The first of these two companion papers focuses on
a monotonically increasing load, whereas the second one considers lateral displacement
reversals. It is shown that the use of a SFRCC with 1.5 % vol. of hooked steel fibers can
significantly increase the punching shear strength and the rotation capacity of a slab-to-
column connection.

2.3 Slurry Infiltrated Fiber Concrete (SIFCON)

2.3.1 Material Description

The experience with traditional FRCC showed that after fiber volume contents in excess
of 2 % the fibers become difficult to place and create workability problems. In the early
1980s Lankard and co-workers experimented with a different procedure in order to solve
this issue [LN84, Lan84, Lan85]. Instead of adding the fibers to the fresh concrete they
were randomly placed in molds after which the latter were filled up with highly flowable
cement slurry. This procedure allowed for much higher fiber volume contents and gave
birth to a new class of FRCCs called Slurry Infiltrated Fiber Concrete or SIFCON. As
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a result of the higher fiber content SIFCON shows strain-hardening behavior in direct
tension and can therefore be considered to be the ”oldest” HPFRCC.

The typical fibers used in SIFCON are 30 mm to 60 mm long hooked-end steel fibers
with aspect ratios of 60 to 100. Traditionally they are randomly placed by hand or
with a commercial fiber dispensing unit, although some attempts have also been made to
artificially align the fibers [VMT96]. The unconventional casting procedure enables the
use of very high fiber volume contents ranging from 5 % to 12 % and even up to 25 % if
the fibers are aligned.

Because the cement matrix must infiltrate the relatively dense web of fibers it has to be
highly flowable. This is achieved by using a cement based slurry which does not contain
any coarse aggregates and has a w/c-ratio of about 0.3. Depending on the required
compressive strength fly-ash or silica fume can also be added.

A product which is closely related to SIFCON and should be mentioned here is Slurry
Infiltrated Mat Concrete or SIMCON. It is almost identical to SIFCON and the only
difference is that instead of fibers a steel mat is placed into the mold prior to infiltration
with the cement slurry.

A nice summary of SIFCON, including its mechanical properties and some applications,
can be found in [BS92].

2.3.2 Mechanical Properties

Because of its high fiber content Slurry Infiltrated Fiber Concrete shows outstanding
mechanical performance. Not only is it very ductile and strain-hardening in tension, but
it also has an exceptionally high toughness. In fact the toughness of SIFCON and the
related energy absorption capacity is 2 to 3 orders of magnitude larger than that of plain
concrete.

The compressive behavior of SIFCON was investigated in [HN87]. It was found that the
compressive strength can reach up to 190 MPa depending on the matrix constituents,
but typical strengths are more in the order of 70 MPa. Especially the addition of silica
fume was shown to increase the compressive strength. This can be explained by a denser
matrix packing if silica fume is added, as was detailed in Section 2.1.3. The steel fibers
also contribute to the compressive strength of SIFCON. Specifically the fibers oriented
orthogonally to the principal direction of loading are responsible for a kind of ”confining”
effect which leads to strain-hardening in compression and a compressive strength which
is approximately three times that of the pure matrix.

Being a High Performance Fiber Reinforced Cementitious Composite SIFCON shows
the three distinct phases of tensile behavior typical for strain-hardening cementitious
composites. In [NH89] the authors reported that they observed a prolonged phase of
multiple cracking prior to reaching the peak load and the onset of softening. Because of
the very high fiber content SIFCON can develop direct tensile strengths ranging between
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9 MPa to 15 MPa. On average this corresponds to about twice the strength of the plane
matrix. In [BS92] it is mentioned that there is a significant increase in tensile strength if a
threshold of 10 % fiber volume content is surpassed. The tensile strength is also increased
if a slurry containing silica fume is used since a denser matrix results in better packing
of the fibers which in turn leads to an increased fiber–matrix bond (which in some cases
can even lead to fiber fracture). Furthermore, hooked-end fibers perform a lot better
that straight fibers and their use is strongly beneficial to the tensile strength. Another
consequence of the strain-hardening behavior of SIFCON is its very high ductility. It
is not uncommon that strains of 1 % to 2 % can be reached before the material starts
softening.

When it comes to flexure the load carrying capacity of a SIFCON beam effectively ap-
proaches that of a traditional reinforced concrete beam. The only difference is that the
softening phase of a SIFCON beam is shorter because in contrast to mild steel reinforce-
ment bars the effective length of the fibers is limited. The flexural strength of Slurry
Infiltrated Fiber Concrete is directly influenced by its high tensile strength, which leads
to equivalent (elastic) flexural stresses of up to 90 MPa depending on the fiber volume
content. The latter seems to be optimal at around 8 % to 10 %. In accordance with the
observations made for direct tension and direct compression a denser matrix is beneficial
in several ways. It increases the tensile strength on the tension side and it also increases
the compressive strength on the compression side of a flexural member.

The fiber reinforcement in SIFCON is also very effective in increasing the shear strength.
In fact the shear strength of Slurry Infiltrated Fiber Concrete is about three times as high
as that of plain concrete. According to [BS92] experimental studies showed that SIFCON
can withstand shear stresses as high as 28 MPa.

2.3.3 Applications

Due to the somewhat ”extreme” nature of SIFCON and its particular fabrication method
as well as the very high material costs the applications are limited to a few special cases.
The most common are impact, blast and earthquake resistant structures. Some example
applications are security vaults, explosive-resistant containers, the repair of structural
components, bride deck and pavement rehabilitation, refractory applications and missile
defense bunkers.

In the literature one can also find a couple of laboratory tests on SIFCON such as an at-
tempt to use it for cast-in-place (CIP) beam–column joints in precast, earthquake resistant
frames [NWA87] (see Figure 2.4b) or for overreinforced beams [NRF92] (see Figure 2.4a).
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(a) Failure of a SIFCON beam [NRF92] (b) Concept of a SIFCON joint [NWA87]

Figure 2.4: Applications of SIFCON

2.4 Engineered Cementitious Composites (ECC)

Engineered Cementitious Composites (ECCs) are ultra-ductile Fiber Reinforced Cemen-
titious Composites. Most of the research into the development of ECCs was done by
Prof. Victor Li and co-workers at the University of Michigan and reaches back to the
early 1990s [Li93]. The term engineered emphasizes the fact that ECC was engineered by
using micromechanics and systematic microstructure tailoring in order to obtain certain
macroscopic properties. An overview of the material and its applications can be found in
[LK98, Li03, FL07].

2.4.1 Material Description

Like all other Fiber Reinforced Cementitious Composites ECCs consist of two primary
components: fibers and a cementitious matrix. However, the properties of a FRCC are
strongly influenced by the specific type of fiber and the matrix composition, as well as
the interaction between these two components. In the case of ECCs this was taken into
account by adjusting the fiber and matrix properties according to micromechanical theory
in order to obtain the desired macromechanical behavior [Li03, YWYL08].

Using these micromechanical principles ECCs were specifically tailored to show an ex-
tremely ductile behavior in tension. Some authors call this behavior pseudo strain-
hardening, referring to the post-yield strain-hardening usually exhibited by metals. Al-
though the macroscopic performance of ECCs in the inelastic regime is very similar to
the strain-hardening observed for metals the responsible micromechanical mechanism is a
completely different one (hence the term pseudo). In metals strain-hardening is a conse-
quence of a change in the atomic structure, whereas in ECCs it is produced by bridging
of the cracks by the incorporated fibers and multiple cracking. Schematic stress-strain
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curves of plain concrete, traditional FRC and an ECC are compared in the following
Figure 2.5 taken from [FL07].
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Figure 2.5: Typical stress-strain curves for concrete, traditional FRC and an ECC [FL07]

Depending on the matrix composition, the fiber geometry and the bond properties between
the fibers and the matrix a certain minimal fiber volume content is necessary to achieve
the typical strain-hardening behavior of HPFRCCs. If the fiber volume content is too low
quasi-brittle failure, as it is exhibited by traditional FRC (see Figure 2.5), will occur. In
this case damage localization and softening will set in immediately after formation of the
first crack. Therefore, the fiber volume content is usually chosen just above the critical
fiber volume fraction which – accounting for material heterogeneity – is typically around
2 % vol. This leads to a ductile, strain-hardening behavior but without using excessive
amounts of fibers since the latter are rather expensive [Li02c].

In ECCs synthetic fibers such as UHMWPE (Ultra-High Molecular Weight Polyethylene)
or PVA (Polyvinyl Alcohol) fibers with a length of 12 mm and a diameter of 0.038 mm
are typically used. The difference between these two fiber types is that UHMWPE fibers
show little chemical bond with the cement matrix, whereas the chemical bond strength
between the PVA fibers and the matrix is considerable. Therefore, untreated PVA fibers
are not adequate since they tend to get damaged by delamination during the pullout
process and preliminary surface treatment in order to reduce the bond strength of the
PVA fibers is therefore necessary [LWW01]. The performance of UHMWPE fibers, on
the other hand, can be improved by surface treatment that increases the bond between
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these fibers and the matrix, since the latter is small to begin with and the fibers have a
high tensile strength [Li02a]. Engineered Cementitious Composites with UHMWPE are
usually called PE-ECCs and Engineered Cementitious Composites with PVA are called
PVA-ECCs.

The used fiber volume contents are usually somewhere around 2 %, but can go up to
4 %. Typically, the synthetic fibers in ECCs have a higher aspect ratio (≈ 300) than the
steel fibers used in Steel Fiber Reinforced Concrete. Their interfacial bond strength, on
the other hand, is usually lower. As will be discussed later in this section a high aspect
ratio is essential in minimizing the fiber volume content necessary for strain-hardening
behavior.

The cementitious matrix in ECCs consists of a Portland cement paste or mortar with the
addition of fly-ash and microsilica sand. In order to obtain the desired strain-hardening
behavior described above the matrix must have a relatively low strength. If the matrix
is too strong the bridging stress provided by the fibers is not high enough to produce
multiple cracking. This is the case if the first cracking strength of the matrix exceeds the
largest possible stress that can be transferred by the fibers.

In general no or very small sized aggregates are used for the cementitious matrix of ECCs.
The main reason for this is to keep the fracture toughness of the matrix low, since a low
fracture toughness is an essential condition for multiple cracking with economic fiber
volume contents [LMW95, SLH+09]. Adding larger aggregates would result in longer
fracture paths and by consequence a higher fracture energy.

The function of the synthetic fibers is to lead to steady-state, multiple cracking which in
turn is responsible for the strain-hardening behavior and large strain capacity of ECCs.
In order to guarantee multiple cracking the bridging stress that can be transmitted by the
fibers has to be larger than the first cracking strength of the intact matrix. This condition
is referred to as the strength criterion for multiple cracking. It implies relatively strong
fibers and a weak matrix in order to prevent premature rupture of the fibers. Also, it has
to be guaranteed that the fibers are pulled out of the matrix instead of rupturing, which
imposes certain limits on the fiber strength, the bond strength and the acceptable fiber
length. A second less obvious criterion which has to be satisfied in order to assure steady-
state cracking can be explained by using fracture mechanics. Without going into too
much details, the requirement for steady-state cracking is that the crack tip propagates
in a controlled manner without rupture or complete pullout of the fibers in the already
formed part of the crack. Because the mode of crack propagation is governed by the
energetics of crack extension this requirement for steady-state cracking is referred to as
the energy criterion (for more information see [Li93]). If either the strength or the energy
criterion is not satisfied damage localization and quasi-brittle failure will occur.

The critical fiber volume fraction which is necessary to ensure multiple cracking can be
determined by following a fracture mechanics approach as described in [Li93]. It depends
on the modulus of elasticity of the fibers, their aspect ratio and the interfacial bond
strength between fibers and matrix. The larger these quantities are the fewer fibers are
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necessary to assure multiple cracking. The fiber aspect ratio has the largest influence
which explains why long and thin fibers are preferably used in PE-ECCs. The toughness
of the cementitious matrix has an influence on the necessary fiber volume fraction as
well. The higher the fracture energy of the matrix the more fibers are needed. A strong
matrix therefore requires a large amount of fibers which is the reason why a relatively
weak cement paste or mortar matrix is used for ECCs.

Most recently a number of special-purpose ECC derivatives have emerged. Apart from
the characteristic high ductility these ECC materials also satisfy some specific additional
requirement. They are namely: Self-consolidating ECC [KBL03], high early strength
ECC and light-weight ECC [Li08].

2.4.2 Mechanical Properties

The most obvious beneficial mechanical property of ECCs is their extremely ductile strain-
hardening response in tension. Experiments show that tensile strains exceeding 4 % (in
extreme cases up to 8 %) can be reached before softening sets in. This means that
structural elements made from ECC are extremely ductile and are able to bear very large
imposed deformations such as for example those produced by an earthquake. The results
of an extensive test series on ECCs including tensile, compressive and cyclic loading are
reported in [KBD03, KB04].

The tensile strength of ECCs lies somewhere between 2 MPa and 8 MPa depending on
the fiber volume content, the fiber type and the constituents of the matrix. For typical mix
designs it is around 4 MPa. This is considerably less than the tensile strength reached
by some UHPFRCCs (see Sections 2.6 and 2.8). This has to do with the low strength
matrix that is necessary to obtain the desired strain-hardening behavior with low fiber
volume contents.

The compressive strength of ECCs is similar to that of plain concrete (PE-ECC≈ 40MPa,
PVA-ECC≈ 80MPa). However, the modulus of elasticity is typically lower (≈ 20GPa).
The reason for this is that the elastic modulus of the matrix is lower than that of the
aggregates used in concrete. And since ECCs contain no coarse aggregates their total
elastic modulus is by consequence lower than that of traditional concrete [LMW95].

The flexural behavior of ECCs is a direct consequence of the tensile and compressive
characteristics. It was investigated by [ML94] and the authors demonstrated analytically
and experimentally that in third-point bending tests the modulus of rupture of ECCs can
be as high as five times the first-cracking stress in direct tension. This can be verified by
sectional analysis of ECC beams with a nonlinear stress–strain law in both tension and
compression. Experimentally the nonlinear behavior can be observed by a spread of the
multiple cracking zone with increasing load, beginning at the tension fiber and progressing
towards the compression fiber up to about 90 % of the beam depth. This process leads
to a redistribution of efforts within the cross-section of a beam and results in a higher
structural resistance.
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The experimental investigation by [LMN+94] demonstrated that Engineered Cementi-
tious Composites with UHMWPE-fibers (Spectra) have a higher shear strength than
conventional concrete, which leads to less requirements for the shear reinforcement in
ECC structural members. With sufficiently high fiber volume contents the same shear
strengths as with traditional shear reinforcement can be reached. However, due to the
strain-hardening characteristic of ECCs the crack pattern is more favorable and exhibits
a large number of distributed fine cracks instead of a single localized crack. As a result
this leads to a relatively ductile failure. Because of the inherent ductility of ECCs the use
of confinement reinforcement in order to increase the ductility of a failure zone is not nec-
essary either. These two facts lead to less complicated and time consuming reinforcement
detailing for PE-ECC structural members.

A very important mechanical property of ECCs is their deformation compatibility with
embedded reinforcement bars [FL02b, LF99]. Because Engineered Cementitious Com-
posites are highly ductile an ECC structure reinforced with traditional reinforcement
bars exhibits a compatible deformation pattern even in the inelastic regime. As a direct
consequence no bond splitting or interface delamination failure will occur. The cracking
pattern and stress flow for a reinforced concrete and a reinforced ECC specimen are shown
schematically in the following Figure 2.6.

ccc

Figure 2.6: Cracking patterns in the inelastic deformation range [FL02b]

Another interesting mechanical property of ECC structural members is their energy dis-
sipation capacity. ECCs have a higher energy dissipation capacity than plane concrete
due to their multiple cracking behavior and fiber pullout. However, under cyclic loading
conditions this is only of minor benefit because the process is not reversible (see Fig-
ure 2.7). More interesting is the increased energy dissipation capacity that results from
the inherent spalling resistance of ECCs. Because ECCs do not spall, reinforcement bars
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are somewhat stabilized against buckling which increases the likelihood that they undergo
large plastic energy dissipation loops under cyclic loading [KB04, FL07].

(a) Compression (b) Tension

Figure 2.7: Cyclic behavior of ECC (termed DFRCC in this study) taken from [KBD03]

2.4.3 Applications

An example of a structural application are ECC column members for earthquake resis-
tant design. Compared to conventional reinforced concrete columns they show a more
damage tolerant inelastic deformation behavior. Reinforced ECC column members are
found to have a larger ductility, an enhanced energy dissipation capacity and less trans-
verse reinforcement requirements than reinforced concrete members. They also show no
spalling, interface delamination or bond splitting even at large deflections. Research on
ECC column members is presented in [FL02a] and [FL03c].

Similar research was also performed on ECC column and frame members reinforced with
Fiber Reinforced Polymer (FRP) rods instead of traditional steel reinforcement [FL03a,
FL03b]. The main advantages of FRP rods over traditional steel reinforcement are that
the residual displacements after large deformation cycles are smaller and that FRP is more
resistant to corrosion than steel. The former can be of particular interest when certain
service levels have to be satisfied after an earthquake. However, it should be noted that in
contrast to steel rebars FRP rods do not exhibit any yielding which calls for a completely
different design philosophy. Using ECCs instead of ”normal” concrete in conjunction with
FRP rods has similar advantages to steel reinforced ECC structures. Namely, there is no
interface delamination or bond splitting which is a direct consequence of the compatible
deformation between ECCs and FRP rods.

When investigating ECC shear beam members the same observations as for columns can
be made [FMNS99, FSL+00]. A direct comparison between a conventional shear beam and
a ECC shear beam with identical reinforcement detailing is shown in Figures 2.8 and 2.9.
The superior performance of the ECC beam is clearly apparent. The authors of [KWL98]
investigated ECC shear beams as well and reached the same conclusions. Furthermore,
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they also tested ECC shear joint connections and found that the extremely damage tol-
erant behavior of ECCs makes them an optimal material for such applications.

ECC Shear Beam

Reinforced Concrete Shear Beam

Figure 2.8: Comparison RC shear-beam and ECC shear-beam (from [FSL+00])
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Figure 2.9: Comparison of the hysteretic response (from [FSL+00])

Another related application is the use of ECC elements (called Ductile Fiber-Reinforced
Cement-Based Composite DFRCC in this study) in the plastic hinge region of segmentally
precast bridge piers with unbonded posttensioning [RB03, BY04]. Again ECC elements
are used for their extremely ductile behavior. The unbonded posttensioning reduces
residual displacements while the ECC plastic hinge regions retain their integrity even at
high deformation levels without spalling or crack localization. A schematic representation
of the bridge pier system proposed by [BY04] is given in Figure 2.10a.
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(a) Pier system by [BY04]

Bolted connection to frame

Existing frameDFRCC Panel

Bolted connection
between panels

Bolted connection to frame

Existing frameDFRCC Panel

Bolted connection
between panels

 
(b) Infill panels by [KB03]

Figure 2.10: ECC applications (ECC is termed DFRCC in those studies)

Other applications strive to exploit the good energy dissipation capacities of ECC struc-
tural members. One example of this is the precast infill panel system with welded wire
mesh reinforcement described in [KB02, KB03] (see Figure 2.10b). It is used for seismic
retrofitting of critical buildings such as hospitals. The precast panels have good energy
dissipation characteristics because ECCs prevent damage localization allowing the rein-
forcement to undergo large hysteretic energy dissipation cycles without risking premature
failure. Other similar energy absorption devices made from an ECC are also presented in
[NKKM04].

A very innovative application of ECCs is presented in [PMW00]. While investigating dif-
ferent connections between reinforced concrete columns and steel beams the authors also
tested an ECC beam–column connection with Spectra fibers. The study shows that ECCs
provide sufficient shear capacity to completely eliminate the transverse reinforcement in
the joint region. An image of the beam-column joint at a high deformation level is given
in Figure 2.11. The photo shows the very ductile behavior of the ECC joint exhibiting a
multitude of fine cracks but no major damage even at a high deformation level (5 % story
drift).

Figure 2.11: Steel-beam to ECC-column joint [PMW00]
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2.5 High Performance Fiber Reinforced Concrete

2.5.1 Material Description

Beginning in the last decade the research group around Prof. Parra-Montesinos and Prof.
Wight at the University of Michigan investigated several possible applications of different
High Performance Fiber Reinforced Concretes with low fiber volume contents. Their goal
was to reduce the reinforcement detailing and improve the deformation capacity of shear
dominated structural members subjected to seismic loading.

In contrast to the other materials presented in this chapter there is no clear-cut definition
for the term High Performance Fiber Reinforced Concrete (HPFRC). It is used here for a
number of strain-hardening, fiber reinforced materials with a normal strength matrix and
a low fiber volume fraction (typically in the range of 1.5% - 2%). A number of different
fiber types can be used, but the most common are Dramix� hooked steel fibers, Torex
twisted steel fibers and Spectra Ultra-High Molecular Weight Polyethylene (UHMWPE)
fibers.

The synthetic Spectra fibers have a length between 15 mm and 38 mm, a diameter of
0.038 mm and a tensile strength of 2590 MPa. Torex fibers are made of twisted steel
wire and have a length of 15 mm - 50 mm, an equivalent diameter between 0.2 mm and
0.7 mm and a tensile strength of 2470 MPa. Dramix� fibers are 30 mm long and are
either employed in form of the normal strength ZP095 fibers with a diameter of 0.55 mm
and a tensile strength of 1100 MPa, or in form of the high strength RC-80/30 fibers
which have a reduced diameter of 0.38 MPa and a tensile strength of 2300 MPa.

Typically the matrix contains water, cement, fly-ash and sand but does not include coarse
aggregates because the latter adversely affect the tensile performance of the composite
[PM05].

2.5.2 Mechanical Properties

The mechanical properties vary between different HPFRCs but the compressive strength
is typically around 50 MPa and the tensile strength ranges from 3 MPa to 5 MPa.

The most prominent feature of HPFRCs is their strain-hardening behavior in direct ten-
sion (see Figure 2.12a). What distinguishes them from most other HPFRCCs and UH-
PFRCCs it that they achieve strain-hardening behavior with less then 2% fibers by volume
due to the strong bond (or anchorage) between the fibers and the matrix.

In compression HPFRCs show a smooth, post-peak softening behavior (see Figure 2.12b)
and exhibit a large compressive strain capacity (up to 1% is possible).

From a practical standpoint the most useful features of HPFRCs are an increased shear
strength which allows for a relaxation of the confinement reinforcement requirements and
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(a) Tensile behavior (b) Compressive behavior

Figure 2.12: Mechanical behavior of HPFRCs taken from [PM05]

an overall improved ductility. Some applications which make use of these mechanical
properties are briefly discussed hereafter. A nice and more extensive summary can also
be found in [PM05].

2.5.3 Applications

A classic type of structural elements which are subjected to large shear forces during seis-
mic events are coupling beams. By consequence such coupling beams require rather intri-
cate shear reinforcement detailing for seismic resistance. In [CPMW04] and [CPMW05]
the authors showed that the shear reinforcement requirements can be relaxed and that
the overall deformation behavior of coupling beams can be improved if HPFRC is used
instead of normal reinforced concrete. Because site casting of fiber reinforced coupling
beams may be difficult for the typical contractor a precast system is proposed. The crack-
ing pattern of such a coupling beam (see Figure 2.13a) after severe cyclic loading is shown
in Figure 2.13b. Note that in order to facilitate the testing procedure the coupling beam
element depicted in Figure 2.13b was turned by 90 degrees.

A similar application are low-rise HPFRC structural walls [PMK04]. Here the use of
HPFRC leads to walls which are characterized by an outstanding damage tolerance and
a relatively large drift capacity even with considerably less shear reinforcement. The
authors estimated that in their test setup about 70 % of the total shear force was carried
by the High Performance Fiber Reinforced Concrete.

In [PMPC05] the use of HPFRC for beam–column joints is presented. The study shows
that the shear capacity of the joint region and the bond strength between the reinforce-
ment and the cementitious matrix can be increased if HPFRC is used instead of con-
ventional concrete. This confirms the findings from [CNPM09] which indicate that the
bond behavior between rebars and an HPFRC matrix is noticeably better than between
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Figure 2.13: HPFRC coupling beam taken from [CPMW04], all dimensions in [mm]

rebars and conventional concrete. Another advantage is that the transverse and the con-
finement reinforcement in the joint region can be reduced significantly. An image of
the beam-column joint investigated in [PMPC05] at a high deformation level is given in
Figure 2.14.

Figure 2.14: HPFRC beam–column joint [PMPC05]

A final application for HPFRC are cyclically loaded flexural members as presented in
[PMC07]. The investigation showed that polyethylene HPFRC (Spectra fibers) flexural
members with no transverse steel reinforcement exhibit stable hysteretic behavior with
a large drift capacity and superior damage tolerance compared to traditional concrete.
Furthermore, the HPFRC is effective in providing lateral support for the longitudinal
reinforcement and it is able to sustain significant shear stress levels.

2.6 Compact Reinforced Composites (CRC)

In the early 1980s H.H. Bache from Portlands Cement and Concrete Laboratory in Aal-
borg, Denmark discovered that by adding large amounts of small fillers (like fly-ash and
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silica fume) to a cementitious matrix the latter’s density can be increased significantly.
By consequence this procedure leads to a concrete with an extremely high compressive
strength which H.H. Bache called Densified Small Particle (DSP) concrete [Bac81, Bac86].
One of the drawbacks of DSP concrete is that with its higher compressive strength its
brittleness is magnified as well. In order to reduce this brittleness H.H. Bache added
short steel fibers to the cementitious matrix which gave birth to an Ultra High Perfor-
mance Fiber Reinforced Cementitious Composite he called Compact Reinforced Composite
(CRC) [Bac88, Bac90, Bac95].

2.6.1 Material Description

In CRCs an extremely high amount of short stiff steel fibers is used. The first mixes of
CRCs contained 6 mm long fibers (� 0.15 mm) at volume contents between 5 % and
10 %.

The cementitious matrix of CRCs has all the characteristics of the already discussed
DSP concrete. More specifically, these are an extremely dense packing of particles (see
Figure 2.15a) which is achieved by adding large amounts of microsilica (up to 20 % vol.)
and a low w/b-ratio of 0.16 to 0.18 thanks to the use of superplasticizers.

The aggregates used in CRCs need to be strong and small. If the strength of the aggregates
is not sufficient fracture surfaces will pass through them which would mean that the
high strength of the cementitious binder is not exploited to its maximal extent. Using
small sized aggregates is based on the fact that cracks in concrete are always initiated
by inhomogeneities where local stress concentrations can occur. And the smaller the
aggregate grains the better the homogeneity of the matrix. For these two reasons hard
and small aggregates such as quartz sand or calcined bauxite are usually used.

As already mentioned, an extremely high quantity of short stiff steel fibers is employed
in CRCs. The fibers mainly have an influence on the tensile strength and ductility of
CRCs on a material level. However, the fibers are not able to improve the ductility on a
structural level significantly. The use of short fibers leads to a high tensile strength of the
composite because the fibers have a similar size and spatial distribution as microcracks
which enables them to effectively arrest microcrack propagation.

Maybe, at this point it is appropriate to emphasize the difference between ductility on
a material level and ductility on a structural level. When talking about ductility on a
material level the zone of failure is described. A cementitious composite is ductile on a
material level if it fails gradually and not instantaneously (brittle failure) after formation
of a crack. The material ductility can for example be visualized by tracing the stress vs.
crack opening graph of a specimen loaded in tension. A material that provides structural
ductility on the other hand is one that, in addition to exhibiting material ductility does
not show localization of damage after the first crack is formed. This means that the
inelastic deformation will not only occur in a small region but will have a tendency to
spread within a structural element. A FRCC can only show inherent structural ductility
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if it is strain-hardening. However, if structural ductility is not an inherent property of
the cementitious composite itself it can be provided by using the traditional concept of
reinforcement bars. This is exactly what is done in CRC structural elements.

The strain-hardening phase of CRCs is not very pronounced which means that CRC
structural elements show little ductility on a structural level. In other words the short
fibers in CRCs are very effective in producing a high tensile strength and ductility on
a material level but they cannot improve the ductility on a structural level. For this
reason reinforcement bars are incorporated into CRC structural members. Because the
fibers create a locally ductile fracture zone it is possible to use very high reinforcement
ratios and more closely spaced reinforcement bars in CRCs than in traditional concrete.
Typically a reinforcement ratio of 10 % to 20 % is used. The short steel fibers create
ductile fracture zones whereas the structural reinforcement bars distribute the crack zone
deformations over the entire body of the element. The improvement in flexural strength
going from a typical reinforced concrete beam to a heavily reinforced CRC beam is shown
in Figure 2.15b.

(a) Dense particle packing (b) Bending stress comparison

Figure 2.15: Characteristics of CRC [Bac88]

The reinforcement is also used during the compactation process. In CRCs the fresh
concrete is normally vibrated by applying high-frequency vibration directly onto the re-
inforcement.

2.6.2 Mechanical Properties

Probably the most interesting mechanical property which distinguishes CRCs form other
Fiber Reinforced Cementitious Composites is their relatively high direct tensile strength.
Depending on the fiber content the maximum tensile strength can range from 6 MPa to
15 MPa. Crack initiation will usually start at a tensile stress of about 6 MPa to 7 MPa.
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As expected, CRCs have the high compressive strength of Ultra High Strength Concretes
such as DSP concrete. Depending on the quality of the aggregates and on the thermal
curing conditions the compressive strength reaches from 150 MPa to 400 MPa. A com-
pressive strength of 150 MPa is achieved with quartz aggregates whereas the 400 MPa
are reached when using calcined bauxite and heat curing. The typical module of elasticity
of CRCs is about 45 GPa.

One of the reasons why the combination of CRCs and high reinforcement contents is so
successful are the good bond characteristics between the fiber reinforced matrix and the
reinforcement bars. There are several reasons for this. The first is the high density of
the matrix. The significant content of silica fume results in large contact surfaces and by
consequence large frictional forces. Secondly, the short steel fibers provide ductility and
control crack formation in the anchorage zone of the reinforcement bars. In fact, when
using a high volume content of fibers (6 %) the material ductility of CRCs is sufficient to
give the matrix approximately the same strain capacity before crack localization as mild
steel has at yielding. This means that up to yielding of the longitudinal reinforcement
there is no visible cracking. The good bond characteristics result in shorter rebar anchor-
age lengths which are typically between 5 and 10 bar diameters [AKL00]. It is also due to
these good bond properties that the high reinforcement ratios used in CRCs are possible.

Because of the high tensile strength CRCs also have a high shear strength (see Sec-
tion 2.9.1). In fact, in many structural applications the shear reinforcement can be omit-
ted and the shear stresses are carried by the fiber reinforced matrix alone [Bac90].

Another important property of CRCs is their exceptional durability. The very dense
matrix and the lack of capillarity lead to an extremely low permeability. This means that
there is practically no corrosive agent transport and freezing–thawing problems can be
eliminated. As a result CRC elements rarely have a concrete cover of more than 10 mm
even if they are exposed to an aggressive environment.

CRC structural members have a problem in respect to their fire resistance. Because the
matrix is so dense the water inside the pores cannot escape and high vapor pressures
might build up. This can lead to spalling or explosive failure of CRC elements if they are
exposed to high temperatures.

2.6.3 Applications

A commercial application of CRCs is JointCast [AKL00, Aar08]. The concept of JointCast
is to exploit the good bond characteristics and the high strength of CRCs for in-situ cast
joints between precast elements. JointCast is used for the assembly of moment resisting
frames from precast elements and for joining precast slabs. The following Figure 2.16
shows two images of such a joint between precast floor slabs.

Although the CRC joints seem promising the major field of CRC applications are thin,
precast structural elements such as staircases, balconies or bridge deck panels [KB05].
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(a) (b)

Figure 2.16: Precast column and floor slabs are joined in-situ by JointCast [CRC]

These elements make use of the very high flexural strength of CRCs which allows them to
be extremely thin and architecturally elegant. As of late, there has also been an increase
in demand for CRC beams and columns as mentioned in [Aar08]. Another application
of CRCs is their use for impact resistant structures such as defense shelters, gas tanks,
nuclear reactor containment shields and crash barriers [BBA02].

2.7 Reactive Powder Concrete (RPC)

Reactive Powder Concrete (RPC) is an Ultra High Performance Fiber Reinforced Cemen-
titious Composite that was developed in the 1990s by the French company Bouyges. RPC
has many similarities with CRCs because both materials share the basic principles that
are used for DSP (Densified Small Particle) concrete (see Section 2.6). However, from
the common starting point of DSP concrete, CRCs and RPC evolved in two different
directions. In CRCs the main improvement compared to DSP concrete is a higher tensile
strength whereas in RPC it is a higher ductility. The two concepts that lead from DSP
concrete to RPC are the following: Firstly the ductility of the concrete matrix is im-
proved by the addition of medium sized straight steel fibers and secondly the compressive
strength of the matrix is improved by applying heat and pressure treatment [RC95].

2.7.1 Material Description

The fibers used in RPC are straight steel fibers that have about the same diameter
(� 0.15 mm) as those used in CRCs but they have a higher aspect ratio. Their typical
length is around 13 mm. Due to their larger size these fibers cannot be used at the
same amounts as those in CRCs because workability considerations limit the fiber volume
content to approximately 3 %. Therefore, the standard RPC mixes contain between 1.5 %
and 3 % fibers by volume.
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Needless to say, that the cementitious matrix of RPC shows the same characteristics as
all the other Ultra High Strength Concretes such as a dense packing of particles, a very
low w/b-ratio (0.08 for the densest RPC mixes) and a homogeneous matrix containing
small but hard aggregates such as quartz sand as well as a large amount of silica fume.
In addition to these ”standard” matrix characteristics of UHPCs, the matrix strength of
RPC is further improved by mechanical and thermal treatment during curing.

The mechanical treatment basically consists of applying pressure to the freshly cast con-
crete. This is shown to improve the RPC matrix because it increases its density by
expelling entrapped air and excess water and consequently results in a higher compressive
strength. Because applying pressure is a complicated procedure it is only used for precast
elements that are fabricated under controlled laboratory conditions.

Normally RPC is also subjected to post-set thermal treatment. The heat treatment im-
proves the microstructure of the hydrates by accelerating the pozzolanic reaction and
increasing the amount of bound water [CMF95]. This can be more or less effective de-
pending on the temperature that is applied.

Because the fibers in RPC are longer than those in CRCs they can improve the ductility on
a larger scale. Having a larger aspect ratio they show better bond with the surrounding
matrix and because of their greater length they have an effect on wider cracks. This
means that even after formation of the first macrocrack strain-hardening can still be
present leading to structures with sufficient ductility without the need for large amounts
of conventional reinforcement like in CRCs. The drawback is that due to workability
problems the medium sized fibers cannot be used in the same quantities as the short steel
fibers in CRCs. By consequence the tensile strength of RPC is not as high as that of
CRCs.

Lately the borders between different UHPFRCCs have started blurring since certain con-
cepts which distinguished a specific Ultra High Performance Fiber Reinforced Cementi-
tious Composite are also used for others and vice versa. For example there are mixes of
CRCs that include medium sized fibers such as those in RPC and RPCs that are improved
by the addition of short steel fibers.

One of the most recent derivatives of RPC is DUCTAL�, an Ultra High Performance
Fiber Reinforced Cementitious Composite that was developed in a joint-venture by the
French companies Bouygues, Lafarge and Rhodia. Although DUCTAL� is based on
the original RPC recipe several improvements have been made. The most important
are chemical surface treatment of the fibers in order to improve their bond with the
surrounding matrix and the addition of organic fillers and mineral microfibers in order to
increase the fracture energy of the matrix [ODA00, CRSQ03].
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2.7.2 Mechanical Properties

There are basically two possible versions of RPC. The first one goes by the name RPC-
200 and is suitable for use on a construction site. The other one called RPC-800 can
only be produced under laboratory conditions and is used for precast elements [RC95].
The reasons why RPC-800 cannot be produced on a construction site are that it requires
a compacting pressure during setting and heat treatment at high temperatures (250 to
400 ◦C) which are both difficult to apply in-situ.

RPC’s most outstanding mechanical property is its extremely high compressive strength
which is not rivaled by any other UHPFRCC. The compressive strength of RPC-200 is
typically between 170 MPa and 230 MPa. RPC-800 can achieve compressive strengths
of 490 MPa to 680 MPa with matrices containing quartz aggregates and even 650 MPa
to 810 MPa when steel aggregates are used [DRB96, RC95]. Because of the high density
of the concrete matrix the modulus of elasticity generally exceeds 50 GPa and can reach
75 GPa for the highest densities.

Compared to CRCs, RPC has a lower direct tensile strength. Typically it is between
8 MPa and 11 MPa. Because fibers are added in smaller quantities in RPC they cannot
be as effective in arresting the propagation of microcracks as the short fibers in CRCs.
Although the tensile strength is improved in comparison to conventional concrete the
major improvement of adding fibers to RPC is not in terms of strength but in terms
of ductility. The direct tension test presented in [CRSQ03] per example shows that
DUCTAL� retains its tensile strength even at crack openings above 0.3 mm.

RPC and CRCs obviously share the same good durability characteristics since they have
a similar high density matrix. The lack of capillarity prevents corrosive agent transport
and freezing - thawing problems [RAS96].

2.7.3 Applications

Due to the fiber reinforcement of the matrix and the thereby provided ductility RPC
structures without mild steel reinforcement can be envisioned. The large discrepancy
between RPC’s extraordinary compressive strength and its limited tensile strength can
be remedied by prestressing techniques. The secondary tensile stresses due to shear can
be carried by the inherent tensile strength of the fiber reinforced matrix which allows for
the total omission of mild reinforcement [AB04]. Following this concept very light and
slender structures can be constructed.

One possible example of this are very thin and delicate structures such as footbridges.
The high strength of RPC and the lack of mild reinforcement make such a structure
extremely light and easy to construct providing a serious alternative to steel structures.
The Sherbrooke RPC footbridge in Canada was the first industrial structure of this kind
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[ALAR98]. Two other examples of slender footbridges constructed with the RPC deriva-
tive DUCTAL� are given in the following Figure 2.17.

(a) Seonyu footbridge in Korea (b) Sakata Mirai footbridge Japan

Figure 2.17: Footbridges made of DUCTAL� [AB04]

DUCTAL� and RPC have also been used for long span beams and girders [AB04, VFG06].
When these elements are used repetitively in large structures the high strength and good
durability characteristics make DUCTAL� a cost-effective solution.

The use of RPC for columns was investigated in [MF08] and led to the conclusion that
RPC successfully prevents spalling of cover concrete and buckling of the longitudinal
reinforcement which suggests that the elimination of tie reinforcement in RPC columns
could be possible. Another application for RPC mentioned in the literature are impact
resistant military structures (especially for RPC-800) [RC95] and safes [SMK05].

2.8 Hybrid Fiber Concrete (HFC)

Hybrid Fiber Concrete (HFC) is an Ultra High Performance Fiber Reinforced Cementi-
tious Composite that was recently developed by Prof. J.G.M. van Mier from the ETH
Zürich and Prof. J.C. Walraven from the Delft University of Technology [MWvM03]. The
term Hybrid indicates that a mix of different fiber geometries is used. In contrast to tra-
ditional fiber reinforced concrete where adding fibers only leads to a higher toughness and
better durability characteristics (less shrinkage and crack formation after curing) a well
balanced mixture of HFC can significantly improve the strength of a structural element.
By consequence HFC could be applied to a whole new field of structural applications. A
good overview of the development of HFC including the micromechanical concepts behind
it can be found in [vM03].

HFC can be seen as a synthesis of the three high performance materials DSP concrete,
CRC and RPC because it combines the high compressive strength of DSP concrete with
the high tensile strength of CRCs and the ductility of RPC. The combination of these
three mechanical properties can be achieved by incorporating the concepts which are at
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their origin into the design of HFC. This means that an extremely dense matrix like the
one in DSP concrete is used. In addition short fibers like those in CRCs are added and
they are complemented with longer fibers such as those employed in RPC.

2.8.1 Material Description

Hybrid Fiber Concrete is a very ductile Ultra High Performance Fiber Reinforced Cemen-
titious Composite with a high compressive strength and a high tensile strength which ex-
hibits strain-hardening in direct tension. Its development is nicely presented in [MWvM03].
The authors experimented with a High Performance Steel Fiber Reinforced Concrete that
contained 6 mm long (� 0.16 mm) straight, 13 mm long (� 0.2 mm) straight and 60 mm
long (� 0.71 mm) hooked-end fibers. The fiber volume contents were between 1 % and
4 % and different fiber mixes were tested with a focus on the influence of each fiber type.

Most Hybrid Fiber Concretes use a mixture of steel fibers but some authors also ex-
perimented with synthetic fibers or a combination of synthetic and steel fibers [BG04,
PMAG07].

The function of the different fiber types in the micromechanical behavior of HFC is illus-
trated in Figure 2.18. Because the short straight fibers have the same dimensions and a
similar spatial distribution as potential microcracks they can effectively arrest their prop-
agation. As a result the short fibers are the main reason for the high first-cracking tensile
strength of HFC. Longer fibers on the other hand become active when macrocracks start
forming. In a first phase they effectively arrest the propagation of these macrocracks and
they are therefore responsible for the strain-hardening and multiple cracking behavior of
HFC. In a second phase when localization and formation of a large macrocrack begins
they bridge this crack and thereby produce a smooth softening curve and a ductile failure
of the material [vM04b]. This last phase corresponds to the progressive pullout of the
long hooked-end or crimped fibers. The same observations concerning the functions of
long and short fibers were also made for synthetic fibers [BOS95].
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(a) Scale at which different fiber types are active [Mar06] (b) Influence of different fibers on the
tensile behavior [BOS95]

Figure 2.18: Different functions of short and long fibers
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The concept of adding different fiber geometries in various volume contents makes the
design of HFC very flexible. Basically, the fiber mix can be selected in such a way as to
tailor a Fiber Reinforced Cementitious Composite with the desired mechanical properties.
This means that there is not one unique HFC but many different mixes with individual
characteristics. Because the properties can vary from one fiber mix to another the values
given here should be seen as a rough indication of possible magnitudes.

The macroscopic behavior of HFC is not only governed by the fiber mix but the com-
position of the concrete matrix is of equal importance. The latter should be as dense
as possible in order to maximize the bond between the matrix and the fibers. In other
words the matrix should contain an important amount of fine aggregates that fill the voids
between the larger aggregates and the fibers. The smaller the fiber diameter the more
fine fillers have to be added. This can be nicely seen in Figure 2.19. Usually silica fume,
fly-ash and a high dosage of cement as well as a fine granulometry of the aggregates are
used for this purpose. The concrete matrix strength, the fiber pullout resistance and the
tensile strength of the fibers have to be balanced delicately in order to guarantee suffi-
cient fiber pullout forces but prevent rupture of the concrete matrix or the fibers. From
an economic standpoint it is also reasonable to use the most efficient matrix possible since
the fibers are the most expensive component and they should be exploited to the highest
possible extent. Therefore, it is a lot more economic to maximize the bond between the
fibers and the matrix by using a high-density (and slightly more expensive) matrix than
to add more fiber to the concrete.

Fibre

Aggregate

Cement/
Flyash

Microsilic
a

Figure 2.19: Dense packing of the concrete matrix close to a fiber [SvM07]

Because of the dense packing of particles HFC also exhibits a very high compressive
strength making it an Ultra High Performance Fiber Reinforced Cementitious Composite.
This is to be expected since adding fine particles to the concrete mixture and targeting
a dense packing is the fundamental concept used in the design of UHPFRCCs. However,
it should be noted that the developers of HFC did not intend to produce a concrete
with a very large compressive strength but rather one with a high tensile strength and
more importantly with a balanced ratio between tensile and compressive strength. The
high compressive strength is a rather unwanted side effect that is a consequence of the
desired good bond between the fibers and the matrix which makes a dense particle packing
necessary.
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Like all Ultra High Performance Fiber Reinforced Cementitious Composites, HFC con-
tains a relatively large amount of cement and a relatively low w/b-ratio of about 0.2.
Compared to conventional concrete the workability of HFC is reduced considerably by
the addition of the long hooked-end fibers [SvM04]. The addition of short steel fibers on
the other hand has little influence on the workability. In order to counteract the reduced
workability a large amount of superplasticizer is used. Together with a careful matrix
design HFC can achieve self-compacting properties which is an important design aspect
of Hybrid Fiber Concrete. This guarantees reasonable workability of the fresh concrete
while assuring compactness of the concrete matrix and preventing the formation of voids.
It should be emphasized, that the balance of the mix is delicate since HFC has to be
fluid enough to show self-compacting properties but it also has to be dense enough to pre-
vent the segregation of fibers. In addition to the improved workability the self-compacting
properties of HFC are also largely beneficial to achieving a homogeneous fiber distribution
since compactation and vibration tend to accentuate the segregation of fibers.

HFC is very closely related to Multi-Scale Fiber-Reinforced Cementitious Composites
(MSFRCCs) which are sometimes also called High Performance Multimodal Fiber Rein-
forced Cement Composites (HPMFRCCs) [Ros97, Ros05]. Rossi was the first to propose
the use of multiple fiber geometries based on what he called the multi-scale concept
[RAM87]. The basic idea of the multi-scale concept is that different fiber sizes are neces-
sary for different stages of crack development since every fiber type can only be effective
on a scale close to its own geometrical dimensions. In [Ros97] Rossi describes the results
of a test series with a MSFRCC that contains short straight (l = 5 mm, � = 0.25 mm,
5 % Vol.) and long hooked-end fibers (l = 25 mm, � = 0.3 mm, 2 % Vol.). Since
the theoretical concepts and mechanical properties of MSFRCCs and HFC are practically
identical these two materials are not explicitly distinguished here. In fact the starting
point for HFC were HPMFRCCs [SvMW00].

Most recently the ”Laboratoire Central des Ponts et Chaussées” in Paris launched an ex-
tensive study to investigate the mechanical properties of a derivative of MSFRCCs which
is commercially known under the name CEMTECHmultiscale

� [RAPF05]. Some improve-
ments that were made during the development of CEMTECHmultiscale

� when compared
to the earlier versions of MSFRCCs are the use of three fiber geometries instead of two,
the use of higher fiber volume contents (11 % instead of 7 %) and the application of post
set heat-treatment (a procedure typically used for RPC see Section 2.7).

2.8.2 Mechanical Properties

HFC shows a very ductile behavior on the material level as well as on the structural level.
The ductility on the material level is mainly produced by the short and medium sized
fibers whereas the ductility on the structural level can be attributed to the long hooked-
end or crimped fibers. The ductility is apparent both in tension and in compression (for
more details see following paragraphs).
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Another interesting property of HFC is that it has a high toughness. The latter also
implies a high energy dissipation capacity. However, for cyclic loading this is of minor
importance since the fiber pullout process which creates the energy dissipation is not
reversible. Of much greater importance for the energy dissipation capacity of a structural
member is the fact that HFC does not spall due to its greater tensile strength and ductility.
By consequence reinforcement bars in HFC members do not buckle and can undergo large
hysteretic energy dissipation cycles [DBT08].

After casting the fresh HFC hardens very quickly. The early age compressive strength
(after 1 day) is usually already somewhere between 80 MPa and 110 MPa. The early
age splitting tensile strength reaches from 8 MPa to 10 MPa. A range of mechanical
properties of HFC at an age of 28 days is given in the following Table 2.1:

Modulus of elasticity 40 – 50 GPa
Compressive strength 120 – 160 MPa
Tensile strength 8 – 15 MPa
Flexural strength 20 – 50 MPa

Table 2.1: Characteristic mechanical properties of HFC

Compressive Behavior

The high compressive strength of HFC mentioned in Section 2.8.1 can be explained by the
very dense packing of particles in the concrete matrix and the low w/b-ratio as well as the
short fibers which delay formation of microcracks and splitting cracks by providing some
sort of ”internal” confinement [vM04b]. In addition, HFC shows a very smooth post-
peak softening behavior in compression (see Figure 2.20). This characteristic property
is due to the long crimped fibers. The short fibers probably have a secondary effect by
anchoring the long fibers more strongly in the concrete matrix. Even at extremely high
strain levels the residual compressive strength remains important. This shows that HFC
has a tendency to retain its integrity even after it has been strained significantly.



48 CHAPTER 2. FIBER REINFORCED CEMENTITIOUS COMPOSITES (FRCC)

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7

Strain [%]

S
tr

es
s 

[M
P

a]

plain concrete

confined concrete

HFC 

Figure 2.20: Compression test results of a HFC cube specimen [DBT08]

Tensile Behavior

According to [MWvM04b, Mar06] the tensile behavior of HFC can be separated into four
different phases (see Figure 2.21):
The first phase (phase 0) represents the linear, elastic behavior of the uncracked concrete.
In the second phase (phase A) the behavior is still more or less linear elastic. On the
material level this phase corresponds to the appearance of the first microcracks but their
propagation is effectively arrested by the short fibers. It is this effect that is responsible
for the high tensile strength reached by HFC. This phase is sometimes also called the
stable microcracking phase. The third phase (phase B) is characterized by the formation
of a first macrocrack followed by multiple cracking. In this stage HFC exhibits strain-
hardening which is mainly produced by the long hooked-end fibers. Before they can be
pulled out of the concrete matrix their hooked ends have to be deformed which results
in a fiber bridging stress that is higher than the first cracking stress of the matrix. The
fourth and final phase (phase C) is characterized by the onset of strain-softening. The
short straight fibers no longer participate because they have been pulled out of the matrix
completely. At this point only the long fibers remain active and they are gradually pulled
out of the matrix.

The phases proposed above are in accordance with the observations made on uniaxial ten-
sile tests with Hybrid Fiber Concrete ”dog-bone” specimens [MWvM04a]. As expected,
using only short fibers leads to a massive increase in tensile strength whereas the test
specimens with only long fibers showed strain-hardening and enhanced ductility. Using
both short and long fibers leads to the best overall performance with both a higher tensile
strength and an increased ductility.

The high tensile strength of HFC also leads to a high shear capacity. As a consequence it
is most likely that less transverse reinforcement is necessary in HFC structural members
and in most cases it can probably be omitted completely [BDT06].
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Figure 2.21: Phases of tensile behavior [Mar06]

Flexural Behavior

In analogy to the tensile response of HFC the flexural behavior is also strongly influenced
by the used type of fibers and the fiber mix proportions. Figure 2.22a taken from [Mar06]
shows the influence of different fibers. The percentage values in the plot represent the
volume content of a specific fiber type and the values in brackets indicates the length
of the respective fibers in mm. A complete discussion of this subject can be found in
[MWvM03].
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Figure 2.22

In Figure 2.22a the influence of the long hooked-end fibers is shown by the curve labeled
1%(60). It is apparent that they are responsible for some flexural-hardening up to crack
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openings of about 2 mm. Their addition to the mix results in a slightly higher flexural
strength but more importantly they are responsible for some pronounced ductility as well
as higher residual strengths at large crack openings.

The effect of the short fibers is illustrated by the curve labeled 2%(13) in Figure 2.22a. At
small crack openings the short fibers are very effective resulting in a considerable increase
in flexural strength. However, with growing crack opening their influence is reduced
asymptotically until it becomes negligible at a crack opening of approximately 7 mm.
This is easily explained by considering that at this point the crack opening approaches
half the length of the fibers and by consequence almost all of the short fibers have been
pulled out of the matrix completely. The long fibers on the other hand are still active at
this crack opening.

As can be seen from the curve labeled 2%(13) + 1%(60) experimental in Figure 2.22a the
combination of short and long fibers results in a more favorable behavior than the sum of
the two fiber contributions (curve 2%(13) + 1%(60) analytical) indicates. The short fibers
tend to reinforce the concrete in which the long hooked-end fibers are embedded. Thereby
they activate more of the long fibers forcing their hooked ends to be deformed plastically
rather than allowing pullout by destruction of the concrete matrix (see Figure 2.22b).
This effect is know as fiber synergy [Mar06] which means that the combination of fibers
in HFC produces a better performance than could be expected by the simple addition of
each fiber types individual contribution.

2.8.3 Applications

Up to date there are very few applications of Hybrid Fiber Concrete due to its rather recent
development. To the author’s knowledge, the first study on a structural application of
HFC was performed at the Institute of Structural Engineering at the ETH Zürich and
is presented in [BDT06] and [DBT08]. The main goal of this study was to design and
test a number of earthquake-resistant, structural HFC walls. The design of the HFC
mix was done by members of the Institute for Building Materials at the ETH Zürich
and is described in [SvM05, Stä08]. The most important findings were that the HFC
structural walls performed very well under cyclic loading, displaying a large ductility
even without shear or confinement reinforcement. The fibers in HFC prevented spalling
of the cover concrete and they where able to sustain nominal shear stresses of up to
7.1 MPa. Figure 2.23 shows the test setup for a HFC structural wall as well as a photo
of the wall during testing.

An application of Multi-Scale Fiber-Reinforced Cementitious Composites that could be
found in the literature is its use for structures subjected to fatigue and impact loading
[RP08]. The principal findings of that investigation were that MSFRCCs (fiber content
11 % vol.) perform much better than other HPFRCCs when they were subjected to high
strain rates during impact loading.
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(a) Crack pattern at failure (b) Reinforcement details

(c) Cross-section

Figure 2.23: HFC structural wall [BDT06], all dimensions in [mm]

2.9 Comparison

After having presented the most important Fiber Reinforced Cementitious Composites
in the preceding sections of Chapter 2 this section will focus on comparing them against
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each other in the light of possible applications. The following Figure 2.24 recapitulates
the High Performance Fiber Reinforced Cementitious Composites of Sections 2.2 ff.

Figure 2.24: Summary of Fiber Reinforced Cementitious Composites

Although DSP concrete and SFRC are not High Performance Fiber Reinforced Cemen-
titious Composites they are still mentioned in the above recapitulation because they
represent essential steps in the development of the other FRCCs. However, they will not
be considered any further in the following comparative study.
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In Figure 2.25 the HPFRCCs and UHPFRCCs are compared with respect to the fibers
they contain. It is interesting to note that the Fiber Reinforced Cementitious Composites
which contain the shortest fibers are also those which contain the highest fiber volume
contents (with the exception of SIFCON). This has to do with workability considerations.
Because short fibers do not affect the workability of concrete as much as long fiber do,
they can be added in large quantities. Also note that the diameter of synthetic fibers is
close to a magnitude smaller than the diameter of steel fibers with comparable length.

Figure 2.25: Comparison of fibers in different HPFRCCs

2.9.1 General Comparison of FRCCs

The main criterion which distinguishes the UHPFRCCs from the HPFRCCs is their high
compressive strength. It is achieved by a very dense packing of the particles in the
matrix. As a consequence of the dense matrix not only the compressive strength but also
the bond between matrix and reinforcement as well as the bond between matrix and fibers
is significantly improved. A drawback of the high compressive strength is that the matrix
becomes more brittle. These differences very clearly set ECCs, HPFRC and SIFCON
(HPFRCC) apart from the UHPFRCCs. While the compressive strength of UHPFRCCs
may be 5 to 10 times that of normal concrete the compressive strength of ECCs, HPFRC
and SIFCON are of more or less the same order of magnitude. As already mentioned in
Section 2.1.3 the concrete matrices of all the presented UHPFRCCs are very similar since
they are all based on the common concept of high density particle packing. Or in other
words: UHPFRCCs are all composed of a DSP matrix and are mainly set apart by the
employed fibers and their respective volume content.

Originally all UHPFRCCs started out with the goal to improve a very specific mechanical
property such as for example a very high compressive strength at limited brittleness in
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the case of RPC – or a higher tensile strength which would result in a more reasonable
ratio between the tensile and the compressive capacity of the material in the case of HFC.
However, they all ended up with similar mechanical properties. What was the target
property of one UHPFRCCs turned out to be just a beneficial side effect for another. The
high compressive strength of HFC for example is only a by-product of the desired high
tensile strength. The latter can only be achieved with a dense matrix with good bond
characteristics which in turn increases the compressive strength as well.

When considering MSFRCCs or HFC which include different fiber geometries the me-
chanical properties can vary a lot depending on the used fiber cocktail. A MSFRCC with
a large volume content of short fibers and few long fibers for example will approach the
mechanical properties of CRCs. This emphasizes the fact that there are no clear bound-
aries between the different UHPFRCCs and it seems that especially HFC and MSFRCCs
can be specifically tailored to approach the mechanical properties of the other UHPFR-
CCs. A different way of looking at it is that Multi-Scale Fiber-Reinforced Cementitious
Composites are some kind of synthesis of the other UHPFRCCs. By not limiting the fiber
cocktail to one specific type of fiber the fiber mix can be designed such as to resemble
that of CRCs (with a large amount of very short fibers) or that of RPC (by using an
important quantity of longer fibers) as well as anything in between.

The two material classes MSFRCCs and HFC are quite similar. Where Rossi used rather
high fiber volume contents in his studies on MSFRCCs van Mier, Walraven and co-workers
used smaller volume fractions in their experiments on HFC. Other than that the two
materials seem to be almost the same and they also share a common theoretical basis.
One small difference which merits mentioning is that HFC is self-compacting which is a
characteristic that was not reported for MSFRCCs. In the following the discussion will
be limited to HFC since there seem to be no fundamental differences between HFC and
MMFRCCs.

2.9.2 Performance Properties of FRCCs

There are many different properties that might or might not be required of a FRCC de-
pending on the specific application. The goal of this section is to discuss some performance
requirements and to compare the different Fiber Reinforced Cementitious Composites in
this light.

The following are the most sought-after properties of Fiber Reinforced Cementitious Com-
posites for structural applications:

� Tensile strength

� Shear strength

� Compressive strength

� Stirrup replacement capacity

� Bond strength

� Spalling prevention capacity

� Energy dissipation capacity

� Ductility on a material level

� Ductility on a structural level
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Tensile strength In case a Fiber Reinforced Cementitious Composite with a high ten-
sile strength is desired the best choice would be CRCs respectively a HFC with a large
volume content of short straight fibers. The highest possible tensile strength that can be
reached is about 15 MPa. If even higher tensile strengths are required one can resort to
SIFCON as long as the ”unconventional” casting procedure is not an issue. The use of a
HFC with additional medium and long fibers can ensure a higher residual tensile strength
should this be required. Although the tensile strength of ECCs is slightly higher than
that of traditional fiber reinforced concrete it rarely reaches 8 MPa. The same is true for
RPC which makes the latter two high performance materials less suitable for applications
requiring a high tensile strength.

Shear strength If the sought-after property is a high shear strength, then the most
suitable Fiber Reinforced Cementitious Composite is one that has a high tensile strength.
This can be understood by examining Figure 2.26 which shows a schematic failure enve-
lope and different two-dimensional stress states at failure (represented by Moor’s circle).
It becomes evident that the state of pure shear τpure (represented by the circle that is
concentric to the origin) is limited by the tensile strength σI of the composite, especially
if there is a large difference between the tensile strength and the compressive strength
as is typically the case for FRCCs. Another way of looking at it, is to understand that
a state of pure shear is equivalent to a state of simultaneous tension and compression
(σI = −σII) in the principal directions of the two-dimensional stress state. In FRCCs
this leads to a failure in tension long before the compressive strength is reached. This
is also in agreement with experimental evidence which suggests that Fiber Reinforced
Cementitious Composites typically fracture in mode I (crack formation due to tensile
stresses normal to the crack plane).

Failure Surface

Figure 2.26: Limitation of the shear strength by the tensile strength
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As a direct consequence, a FRCC with a high first cracking tensile strength also provides
the best option when seeking a composite with a high shear strength. Therefore, the
best choice would be a CRC or a HFC with a large volume fraction of short fibers. Of
course the discussion above is limited to the linear elastic response of the material prior
to cracking. Afterwards the shear transfer mechanism of the cracks becomes the key
parameter in determining the shear strength. This post-cracking shear strength will most
likely be positively influenced by any long steel fibers (bridging effect). However, this
prediction is only based on engineering judgment as to the author’s knowledge there is no
experimental evidence on this subject.

Stirrup replacement A property which is directly linked to the shear strength is the
capacity of a Fiber Reinforced Cementitious Composite to allow for a reduction or the
complete elimination of stirrups in a structural element. If the inherent shear capacity of
the FRCC is sufficiently large the often tedious and time consuming placement of stirrups
can be circumvented. For the obvious same reasons as mentioned above CRCs and a
HFC with short fibers are the most reasonable choices. However, other HPFRCCs such
as HPFRC or RPC are also capable of alleviating stirrup requirements as has been shown
in Sections 2.5 and 2.7.

Compressive strength If a high compressive strength is the desired property, then
RPC is probably the most suitable choice. The fiber cocktail should consist of a mod-
erate amount of medium sized fibers in order to improve toughness and prevent brittle
failure. Under construction site conditions the compressive strength of RPC can range
from 170 MPa to 230 MPa and under laboratory conditions (i.e. for precast elements)
compressive strengths of 490 MPa to 680 MPa can be reached. However, the other
UHPFRCCs such as CRCs and HFC can also be considered when looking for a high per-
formance material with a high compressive strength. ECCs on the other hand are not very
suitable since their compressive strength is more or less the same as that of conventional
concrete.

Bond strength Another property that can be sought after in Fiber Reinforced Ce-
mentitious Composites is good bond behavior with reinforcement bars. As can be looked
up in Section 2.6 on CRCs, there are three main characteristics of a FRCC that assure
a strong bond with reinforcement bars. The first one is a dense matrix which increases
the frictional forces and the second one is a certain ductility on a material level which
guarantees a favorable stress and microcrack distribution in the vicinity of the rebars.
Finally, a high tensile strength will delay cracking in the anchorage zone of a rebar which
in turn will also increase the bond strength. All these requirements are met either by
CRCs or by a HFC with an important content of short fibers.
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Spalling prevention For seismic applications, among others, it can be interesting to
prevent spalling of reinforced structural members. The most important reason for this
is that the cover concrete prevents the longitudinal reinforcement from buckling during
the compressive phase of a load cycle. However, the tensile strength which is required
to prevent spalling is small. It is mostly sufficient if a FRCC member does not loose its
outermost layer in a brittle manner but is able to maintain its integrity even after the
tensile strength of the composite is reached. This is usually the case for all HPFRCCs
and UHPFRCCs.

Energy dissipation The energy dissipation capacity of a FRCC structural member is
strongly dependent on the loading conditions. Although the energy dissipation capacity
of all FRCCs is much higher than that of plane concrete, this is only useful for non-
cyclic loads since the fiber pullout process is not reversible. Some applications such as
safety vaults or missile proof military bunkers make use of this kind of energy dissipation.
However, it is more precise to talk about toughness than energy dissipation capacity
in this context. The true reason why FRCCs can be extremely beneficial for the energy
dissipation capacity of a structural element is its function in protecting the reinforcement.
By preventing spalling and consequential buckling of the longitudinal reinforcement the
FRCC cover layer can assure that the reinforcement bars are able to undergo large plastic
deformation cycles. Basically all Fiber Reinforced Cementitious Composites are capable
of producing this result.

Ductility on a material level One of the first properties that was sought-after in
FRCCs was ductility. Already in the early days of Steel Fiber Reinforced Concrete de-
velopment the main goal was to reduce the brittleness or in other words to improve the
ductility of concrete by adding steel fibers. This characteristic is one that all mentioned
Fiber Reinforced Cementitious Composites share since every composite that has a smooth
post-peak softening behavior can be considered to fail in a ductile manner. This, however,
is only ductility on a material level. If it is desirable to have a whole structure behave in
a ductile manner, the sought-after property is ductility on a structural level.

Ductility on a structural level Structural ductility can be a desired property of
a FRCCs for example in earthquake engineering where the load bearing capacity of a
structure after it has been loaded far into the inelastic range is of interest. Inherent
ductility on a structural level can only be provided by a material that has a pronounced
strain-hardening phase. The reason for this is obvious. If the FRCC does not include any
significant strain-hardening then damage localization will occur at first cracking and there
will be no spread of cracking unless structural reinforcement is used. As a consequence
the fracture process zone will be limited to a very small part of the structural element
and the small amount of added ductility will not affect the overall structural response.
All High Performance Fiber Reinforced Cementitious Composites show strain-hardening
to some degree but the extent of the strain-hardening phase is strongly dependent on the
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fiber cocktail. In general the more long fibers a FRCC contains the more pronounced
its strain-hardening phase will be. Therefore ECCs, HPFRC, SIFCON or a HFC with
a considerable amount of medium sized and long fibers in the fiber cocktail are the best
candidates.

2.9.3 Conclusion

After this direct comparison it becomes obvious that HFC seems to combine two different
aspects. Where CRCs are mainly of interest for applications where strength is required
and ECCs are the optimal choice for applications that require ductility HFC shows a good
performance in both these fields of application. This leads to the following conclusions:

If an application requires a slender structural element consisting of a high
performance composite that has a very high compressive, tensile and shear
strength than CRCs are the optimal choice. If on the other hand an ap-
plication requires a structural element of conventional strength but that has
an extremely high inherent ability to maintain its integrity and prevent any
premature and non-ductile failure mechanism than ECCs are the most suit-
able option. In case an application requires both these aspects HFC can be
recommended.



Chapter 3

Numerical Modeling of Quasi-Brittle
Materials

3.1 Introduction

With the invention of personal computers and their widespread use in civil engineering
practice and research it has become a standard procedure to use numerical models for
the simulation of all kinds of engineering problems. The most commonly used approach
is probably the Finite Element Method (FEM) which was developed in the early 1960s.
Among other things, it allows the static and dynamic simulation of structures with any
complex geometry and arbitrary boundary conditions [Bat96].

Nowadays the technical performance and computational power of personal computers
and the theoretical models have reached a level of sophistication that allows a relatively
accurate prediction of structural responses up to failure. Such failure analysis is computa-
tionally very demanding because complicated nonlinear material models and a relatively
complex two- or three-dimensional geometrical representation are often required. Also,
the complete load path from initial cracking up to localized failure have to be tracked
since damage history plays an important role.

In the following an introduction to numerical modeling of quasi-brittle materials is given.
We recall that the final goal of this thesis is to come up with a numerical model for High
Performance Fiber Reinforced Cementitious Composites (see Section 1.2). Therefore,
special attention is accorded to those models that are deemed suitable for HPFRCCs.
Nice overviews of nonlinear modeling and failure analysis of quasi-brittle materials can
also be found in [Jir00, JP01] and [HC06].

After giving a general overview of the most popular models for quasi-brittle failure (Sec-
tion 3.1) this chapter will focus on the theoretical background of the two models that are
used in this thesis. These are the Smeared Crack Model (Section 3.2) and the eXtended
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Finite Element Method (Section 3.3). The chapter is then concluded by a literature re-
view of the existing models for HPFRCCs and the new model that was developed during
this thesis is outlined (Section 3.4).

3.1.1 Strain Localization

As mentioned in Section 1.2 an accurate representation of the tensile softening behavior
of High Performance Fiber Reinforced Cementitious Composites is essential. One of the
fundamental issues that have to be tackled when modeling the softening behavior of quasi-
brittle materials is a phenomenon called strain localization [Jir00, Wel01]. It can probably
be explained best when considering a HPFRCC truss element loaded in pure tension. Let
us distinguish the three different stages of material behavior depicted in Figure 3.1 which
were already introduced in Section 2.1.3:
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Figure 3.1: Phases of tensile behavior of a quasi-brittle material

1. In the first phase the truss is loaded within the linear, elastic regime and the stress
and the strain are both constant throughout the entire length of the truss.

2. As the elastic limit is reached the truss changes into a regime of strain-hardening.
Due to material and geometrical imperfections at first only a single section of the
truss will pass from the elastic into the inelastic regime. However, since the load
carrying capacity of the material is not reached yet (even if the stiffness is smaller
and the increase in strain will therefore be larger) a next section will automatically
pass into the hardening regime. This will continue until all sections are hardening
and the strain profile is uniform again.

3. A completely different behavior will set in as the first section starts softening. Rather
than forcing other sections to do the same the softening section is suddenly weaker
than all the others. If the load level is maintained this will result in cataclysmic
failure since whatever strain level the weaker section attains it will never be able to
equilibrate the global forces (after the onset of softening the load carrying capacity of
that section decreases with increasing strain as can be seen in Figure 3.1). Even if the
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deformation of the specimen instead of the external load is controlled all deformation
will ”localize” in the weaker section causing the other sections to unload elastically.
Hence the expression strain localization. A very graphic and detailed description of
strain localization can also be found in [Jir00].

The main problem that is associated with strain localization is that all strain accumulates
in one section while the strain in all other sections remains constant or decreases. By con-
sequence this introduces a discontinuity in the strain profile in form of a ”jump” between
the softening section and the adjacent elastic sections. In the limit case when only an
infinitely small section accumulates all the strain and all the other sections remain elastic
the strain profile takes the form of the Dirac delta-distribution (see ”strong discontinuity”
in Figure 3.2). It is obvious that this representation of strain (finite displacement divided
by zero length) is pathological and it no longer makes sense to talk about strain in this
context. It is more reasonable to consider the displacement profile. The latter exhibits a
jump at the softening section which means that a crack has formed at that location.

The initiation of localization marks the transition from a continuous to a discontinuous
model. Mathematically this is accompanied by the loss of ellipticity of the underlying
continuum mechanics differential equation. The problem becomes ill-posed. The mo-
ment of strain localization can also be seen as a classical bifurcation point where two
configurations – namely a continuous and a discontinuous one – are possible at the same
instant.

The same problem can also be explored from a different angle. A look at the energy
dissipation during localization shows that continuum models are not able to describe a
strong discontinuity accurately. This becomes obvious when recalling that the energy
dissipation in a continuum is computed by integrating the product of the stress and the
strain tensor over the volume domain of interest. Since a strong discontinuity has no width
and therefore no volume there will obviously be no energy dissipation in the localization
zone. This underlines the pathological behavior of a continuum model when applied to
the description of strong discontinuities.

There are basically two approaches that can be followed to remedy the situation. Ei-
ther a true discontinuity is introduced at the moment of localization (so called strong
discontinuity approach) or the displacement profile is regularized (smoothened). The first
approach is probably more realistic in a physical sense but it requires a discontinuous
description of the underlying problem and the continuum model has to be abandoned.
The second approach retains the continuum representation but it requires the introduc-
tion of an artificial parameter which in one way or another functions as a length scale
for the localization zone (such as for example the numerical localization bandwidth in
the Smeared Crack Model). Although some author’s argue that this length scale can be
physically interpreted as the width of the fracture process zone this is only true for small
crack openings in the early phases of localization.

There are two different degrees of regularization. Either the displacement field is partially
regularized making it continuous but not differentiable and leaving a discontinuity in
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the strain field (e.g. Smeared Crack Models) or it is fully regularized (e.g. Nonlocal
Models) which results in a continuous displacement field and a continuous strain field.
In the following Figure 3.2 the three different models of a localization zone are shown
schematically for the one-dimensional case.
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Figure 3.2: Different representations of the localization zone (adopted from [JP01])

The aspects discussed above have direct consequences on the implementation of a soft-
ening model in the Finite Element framework. When using a regularized model in Finite
Element computations it is less obvious that a length scale has to be introduced since
the Finite Element mesh already contains such a scale by the finite dimension of the
elements. However, if no special measures are taken the softening model will show patho-
logical mesh-size dependency. Even with advanced regularization techniques – which are
usually based on fracture energy and should assure correct energy dissipation during the
softening process – some undesirable side effects such as stress-locking, spurious damage
growth and directional mesh-bias cannot be completely overcome (see Section 3.2).

The origin of the mentioned deficiencies of regularized models lies in the inaccurate kine-
matic representation of a strong discontinuity and the coupling of the strain tensor com-
ponents which is inherent to continuum models. One solution is to introduce a real dis-
continuity upon initiation of softening which can remedy some of the problems mentioned
above.

3.1.2 Overview of Modeling Approaches

While discussing the physical nature of a crack in the preceding section we concluded
that the formation of a crack introduces a discontinuity into the displacement field of the
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mechanical problem. We also addressed the problems associated with the transition from
a hardening to a softening state and mentioned the two main classes of solutions: namely
Regularized Continuum Models (partially and fully regularized) and Strong Discontinuity
Models (a.k.a. Discrete Crack Models). In the following these models will be elaborated
more thoroughly.

Regularized Continuum Models

A first class of models called Regularized Continuum Models assume that the discontinuity
introduced by a crack can still be expressed by the kinematics of the continuum mechan-
ics framework (see schematic representation Figure 3.3). This means that the physical
reality of the discontinuity in the displacement field is mathematically transformed into
a continuous representation. This is done by ”smearing” the crack opening over a certain
distance or in mathematical terms regularizing the strong discontinuity (compare with
Section 3.1.1). By consequence the kinematics of the problem don’t have to be modified
to account for the cracks. The constitutive law is still expressed in terms of stresses and
strains but it has to be modified to account for the contribution of the crack opening to
the total strain. The most commonly used continuum based approaches for quasi-brittle
materials are either the theory of Damage and Plasticity or the so-called Smeared Crack
Models [Jir00]. Although Smeared Crack Models are usually presented in a physically
intuitive manner it can be shown that they are in fact equivalent to an Isotropic Damage
Model [dB02].

 

Figure 3.3: Schematic representation of the continuum model approach

The basic idea behind Smeared Crack Models is to decompose the total strain into a part
representing the continuum and a part representing the crack (so-called cracking strain).
The traction–separation law governing the crack (see Section 3.1.3) is transformed into
a stress–strain law by smearing the crack opening displacement over a fixed distance
(called the numerical localization bandwidth). Since the direction of the crack is usually
not aligned with the global coordinate system several transformations between the global
coordinate system and the local coordinate system associated with the crack are necessary.
The final result of all Smeared Crack Models is a modified constitutive matrix which
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accounts for the cracking. It is important to note that the kinematic equations of the
underlying problem remain unchanged. Depending on whether or not the crack is allowed
to change its orientation during loading one distinguishes between the Fixed Crack Model
and the Rotating Crack Model. For a more detailed review of the different Smeared Crack
Models see Section 3.2.

The theory of Plasticity is another framework that is commonly used to model quasi-
brittle materials. It was originally developed for metals but due to its widespread use and
relatively simple implementation it has also been adopted for quasi-brittle materials. The
main components of a Plasticity Model are a yield condition, a plastic flow rule and a
hardening law. The yield condition delimits the elastic domain and it is often graphically
represented by a so-called yield surface. Once the strain reaches the yield surface any
further deformation will produce an elastic strain increment (due to the internal redistri-
bution of efforts) and a plastic strain increment (representing the cracking) as governed
by the flow rule. The most commonly used flow rule is the associated flow rule which
states that the plastic flow is perpendicular to the yield surface. If a material is hardening
(or softening) a side effect of plastic flow is that the yield surface changes its shape during
plastic deformation. This change is governed by the hardening law. One distinguishes
between isotropic hardening and kinematic hardening. Isotropic hardening expresses a
change of the size of the yield surface whereas kinematic hardening indicates a translation
of the yield surface in the stress–strain space. A material can follow an isotropic hard-
ening law, a kinematic hardening law or a combination of both. More information about
the theory of Plasticity can be found in [Jir00].

Because the framework of Plasticity accounts for the accumulation of strains associated
with the crack opening but does not account for the degradation of the material it can
be combined with the theory of Damage. The basic goal behind Continuum Damage
Models is to capture the progressive loss of material integrity due to the coalescence
of microcracks. Macroscopically the latter manifests by a degradation of the material
stiffness. The simplest Continuum Damage Model is the Scalar Isotropic Damage Model.
It assumes that the material degrades isotropically and that the reduced stiffness can
be expressed by multiplying the original elastic stiffness with a scalar reduction factor.
In analogy to Plasticity Models a loading function which plays the role of the ”yield
condition” and governs the evolution of damage has to be specified. A more sophisticated
class of damage models are the Anisotropic Damage Models. They take into account that
a material tends to loose it integrity faster in the direction that exhibits large stretching
which introduces an anisotropy into the material. A nice overview of Continuum Damage
Models can be found in [dB02].

One major problem of the Plasticity Models and Continuum Damage Models is that
in their pure form they do not conserve mesh-objectivity after strain-softening sets in.
However, there are different remedies for this situation. The first one is to make the
material law a function of the numerical localization bandwidth which is inherent to the
Finite Element discretization. The numerical localization bandwidth is the width of the
single layer of elements in which the deformations localize during a numerical simulation.



3.1. INTRODUCTION 65

This procedure results in what are known as Partially Regularized Continuum Models.
Although these models achieve mesh-size objectivity they may still suffer from directional
bias (see [Jir00]). The alternative is to use a Nonlocal Model or a Gradient-Enhanced
Model which are both examples of Fully Regularized Continuum Models. However, the
latter are not part of this thesis and the reader is referred to [Jir00].

Discrete Crack Models (Strong Discontinuity Models)

An alternative to Regularized Continuum Models are the so-called Discrete Crack Models.
They account for a crack by introducing a true (strong) discontinuity into the displacement
field. The first models for discrete cracking within the Finite Element framework were
only able to introduce cracks along element edges where the displacement field can easily
be made discontinuous (see Figure 3.4a). Recently new methods which allow for crack
formation with an arbitrary path through the mesh have been developed (see Figure 3.4b).
Two of these new methods are the Embedded Discontinuities Method (EDM) and the
eXtended Finite Element Method (XFEM).

 

(a) Crack along element interfaces

 

(b) Crack crossing elements (EDM or
XFEM)

Figure 3.4: Schematic representation of the Discrete Crack Model approaches

As already mentioned, the simplest approach is to introduce discontinuities only between
elements where they can easily be modeled by means of Interface Elements. The draw-
back is that a discontinuity has to follow element boundaries and the correct prediction
of crack propagation requires computationally expensive remeshing techniques. Further-
more, remeshing in nonlinear problems requires the transfer of results between different
meshes which makes this method cumbersome. A variation of this concept is the Incipient
Discontinuity Method which inserts a potential cohesive segment at the interface between
all adjacent Finite Elements.

An alternative method is the use of elements with so-called Embedded Discontinuities. The
Embedded Discontinuities Method (EDM) is based on the Enhanced Assumed Strain
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(EAS) formulation which follows from the Hu-Washizu three-field variational principle
[Wel01]. The strain field is enhanced with an incompatible strain mode that introduces a
strong discontinuity. The advantage of this formulation is that a discontinuity can cross
the Finite Element mesh in an arbitrary manner since it is introduced into the elements
themselves. However, sensitivities to mesh alignment cannot be fully overcome [Wel01].

The third and most sophisticated approach is the eXtended Finite Element Method
(XFEM). The XFEM is based on the Partition of Unity Method (PUM) pioneered by
Melenk and Babuška in 1996 [MB96]. Similar to the EDM it allows the introduction of
strong discontinuities with mesh-independent geometry. The main difference between the
EDM and the XFEM formulation is that in the XFEM the displacement field instead of
the strain field is enhanced. Furthermore, in contrast to the Embedded Discontinuities
Method the strain field in the eXtended Finite Element Method is conforming. Also, the
two parts of the mesh which separated by a discontinuity are completely dissociated in
the XFEM which is not the case for the EDM.

An overview of Discrete Crack Models can be found in [JB02]. For more information
about the XFEM the reader is referred to Section 3.3.

Since the Embedded Discontinuities Method and the eXtended Finite Element Method
provide the possibility to include additional information about the solution into the Fi-
nite Element approximation space this procedure can in principle be used to introduce
not only discrete but also regularized discontinuities. The latter are called Embedded Lo-
calization Bands [BFE88, PJ03]. The advantage of Embedded Localization Bands over
the previously presented standard Regularized Continuum Models is that they are mesh-
independent. An example of a model with Embedded Localization Bands and a full
regularization using truncated harmonic functions is given in [Jir01]. In the same way
that the EDM or the XFEM provide a mesh-independent counterpart to Interface Ele-
ments they also offer a mesh-independent alternative to Regularized Continuum Models
in the form of Embedded Localization Bands.

A schematic overview of all the presented classes of models for localized failure is given
in the following Figure 3.5.

3.1.3 Constitutive Laws

In Section 3.1.2 the different modeling approaches are classified by their underlying kine-
matic assumptions. It should be noted, that the individual kinematic models have direct
implications on the constitutive law. In fact each type of model, or more specifically each
kinematic representation of the localization zone (strong discontinuity, weak discontinuity,
fully regularized) requires a specific type of constitutive law.

In models which represent a crack by a weak discontinuity the cracking zone is still
regarded as a continuum which means that the kinematics remain unchanged. The defor-
mations will naturally localize in a single layer of Finite Elements (numerical localization
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Figure 3.5: Overview of models for strain localization

band) and the weak discontinuity is automatically introduced because the strain interpo-
lation field is normally discontinuous at element interfaces. However, in order to account
for cracking the constitutive law (i.e. the stiffness and the stress–strain relationship)
of the cracked elements has to be modified. For the reasons described in Section 3.1.1
an artificial parameter called the numerical localization bandwidth which functions as a
length scale for the localization zone has to be introduced. The physical meaning of this
length scale can probably be best understood when considering the Smeared Crack Model
(see Section 3.2). Here the length scale provides the width over which the crack open-
ing is smeared. Or in other words it is the reference length by which to transform the
traction–separation law (σ – w) into a traction–strain law (σ – ε) such that it can be used
in a continuum representation of the localization band. Models with fully regularized
localization zones also take the ”regularization” into account in their formulation of the
constitutive equations. A Nonlocal Model for example provides a nonlocal constitutive
law in which the nonlocal average of some material state parameter is used.

In a Strong Discontinuity Model (EDM, XFEM) two constitutive laws are required. One
law which describes the behavior of the continuum (in form of a multi-dimensional stress–
strain law) and one law which describes the traction–separation relationship governing the
discontinuity (see Section 3.1.4). The simplest model is an elastic continuum combined
with a tension free crack. The propagation of the crack tip can then be expressed within
the framework of Linear Elastic Fracture Mechanics. However, for many practical prob-
lems Linear Elastic Fracture Mechanics are not very realistic. The situation can be im-
proved by using a Cohesive Crack Model as it was proposed by Hillerborg and co-workers
[HMP76]. The basic idea is to model the crack with a gradual loss of cohesion as the crack
opening increases. This assumption can be justified for plain concrete but it is especially
meaningful for Fiber Reinforced Cementitious Composites. A detailed explanation of the
Cohesive Crack Model is given in Section 3.1.4. When using a Cohesive Crack Model the
constitutive law for the continuum has to be supplemented by a traction–separation law.
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This can either be done along the lines of the traction–separation laws used in Smeared
Crack Models (linear, Hordijk etc. see Section 3.2) or by more sophisticated theories such
as Damage and Plasticity.

3.1.4 The Cohesive Crack Model

In Section 3.1.2 some numerical modeling techniques for strain localization by a Discrete
Crack Model were presented. One aspect that has not been discussed so far is the tip
of the discontinuity (e.g. the crack tip). Linear Elastic Fracture Mechanics state that a
stress singularity is present at the tip of a crack. This can cause numerical difficulties and
assuring correct energy dissipation at the crack tip is problematic. A more realistic model
was proposed by Dugdale [Dug60] and Barenblatt [Bar62]. They both considered an
imaginary extension of the crack tip and applied cohesive forces to it. Later this concept
was adopted by Hillerborg et al., who proposed the Fictitious Crack Model (sometimes
also called the Cohesive Crack Model) for numerical crack growth simulations in concrete
[HMP76].

The basic idea of the Cohesive Crack Model is relatively simple. Instead of immediately
becoming stress free a crack is assumed to loose its cohesion gradually. A cohesive zone
is introduced within which cohesive forces act on the surfaces of the newly formed crack
(see Figure 3.6a). With increasing crack mouth opening the cohesive forces decrease until
they vanish at a certain ultimate crack width. Having this in mind Hillerborg postulated
that the cohesive forces acting on a crack are governed by a traction–separation law. The
latter is directly related to the fracture energy of the material and it is therefore a means
to assure correct energy dissipation. An example of a possible traction–separation law for
normal concrete as proposed by [RCD86] is shown in Figure 3.6b.

The Cohesive Crack Model introduces a smooth transition of forces which is very beneficial
in a numerical sense since it removes the stress singularity at the crack tip and also assures
a controlled energy dissipation process. The final model represents a very clever way to
combine fracture mechanics and Finite Element Analysis for crack propagation problems.

Although the Cohesive Crack Model could have been introduced for purely numerical
reasons there is also a physical side to it. When looking at the formation of a crack
under a microscope one will realize that this is not an instantaneous but rather a gradual
process. At the tip of the crack a multitude of microscopic cracks (microcracks) will exist
which gradually coalesced and finally join to form the extension of the macroscopic crack.
In fracture mechanics this region at the crack tip is called the fracture process zone. The
cohesive forces can be seen as a means to represent this fracture process zone at the crack
tip. With increasing number and size of microcracks a steadily decreasing force can be
transmitted across the fracture process zone, which explains the gradual loss of cohesion
assumed by the Cohesive Crack Model.

The physical significance of the cohesive zone becomes even more obvious when consid-
ering Fiber Reinforced Cementitious Composites. Here the cohesive forces reflect the
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Figure 3.6

fiber bridging action, which decreases with increasing crack opening as a consequence of
gradual fiber pullout.

Essentially the same principle is reflected in Smeared Crack Models (see Section 3.2).
There cracking is also modeled as a continuous process and a gradual softening law is
used in order to ensure correct energy dissipation.

3.2 Smeared Crack Models

The basic goal of Smeared Crack Models is to compute the softening behavior of materials
in a Finite Element Analysis. In contrast to Discrete Crack Models where every crack is
represented by a strong discontinuity the principal concept of the Smeared Crack Model
is to represent a crack as an averaged strain over a certain cracking zone. In other words
the influence of the crack is ”smeared”.

One can distinguish between three different commonly used Smeared Crack Models. The
Fixed Crack Model, theMulti-directional Fixed Crack Model and the Rotating Crack Model
[Rot91]. The Multi-directional Fixed Crack Model is an extension of the Fixed Crack
Model which allows the formation of multiple cracks with different orientations at the
same integration point. The main difference between the Fixed Crack Model and the
Rotating Crack Model is that in the former the crack orientation is determined upon crack
initiation and it is kept fixed whereas in the latter the orientation of a crack may change
continuously. Although the Fixed Crack Model seems to be physically more meaningful
(since a macroscopic crack has a given, irrevocable orientation) it does not necessarily
yield more accurate results as we will see later in this chapter. Furthermore, the Rotating
Crack Model has some procedural advantages over the Fixed Crack Model. The most
prominent is probably that one does not have to worry about the complicated shear
transfer mechanisms since in the Rotating Crack Model the axes of principal strain are
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always aligned with the axes of principal stress (enforced coaxiality, see Section 3.2.4).

In his PhD thesis [Rot88] J.G. Rots demonstrated that the aforementioned three Smeared
Crack Models can be unified in a single theoretical framework and that the individual
models can be seen as limit cases of one generalized Smeared Crack Model. Before we can
discuss the Fixed Crack Model (Section 3.2.2), the Multi-directional Fixed Crack Model
(Section 3.2.3) and the Rotating Crack Model (Section 3.2.4) we will begin by explaining
the fundamental concept behind Smeared Crack Models in the following Section 3.2.1.

3.2.1 The General Concept

The basic idea behind Smeared Crack Models is to represent a crack in form of a cracking
strain which is smeared over a so-called numerical localization band. In order to do so the
total strain has to be decomposed into an elastic strain and an inelastic cracking strain.

The Smeared Crack Model then postulates that the numerical localization band can be
seen as the fracture process zone and assumes a gradual softening of this zone as pro-
posed by the Cohesive Crack Model [HMP76]. For reasons of simplicity the softening
stress–strain relationship of the fracture process zone is formulated in a coordinate sys-
tem associated with the crack. This also allows for a more physical interpretation of the
different cracking strain components. The first component is the tensile strain perpendic-
ular to the cracking plain. It corresponds to the normal crack opening and it is associated
with what is known as Mode I cracking in fracture mechanics (see Figure 3.7). In the
three-dimensional case there are also two shear components (one in 2D) which correspond
to Mode II and Mode III (only Mode II in 2D). A schematic representation of Mode II
cracking and its corresponding Smeared Crack approximation are given in Figure 3.8.

(a) Real crack (b) Smeared Crack approximation

Figure 3.7: Tensile cracking in the Smeared Crack Model (Mode I)

A further basic assumption of Smeared Crack Models is that the components of the
softening stress–strain relationship are uncoupled in the local coordinate system associated
with the crack. However, the model still allows for an implicit coupling of the components
by using a cracking shear modulus that is a function of the Mode I cracking strain (see
Section 3.2.2).
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(a) Real crack (b) Smeared Crack approximation

Figure 3.8: Shear cracking in the Smeared Crack Model (Mode II)

Another important part of a Smeared Crack Model is a criterion for crack initiation.
Usually initial crack formation is governed by a cracking surface which can be seen as the
equivalent to a yield surface in the theory of Plasticity. The simplest but most frequently
employed criterion is the constant tension cut-off criterion. It means that a crack is
initiated as soon as the highest principal tensile stress reaches a certain limit value. This
is also known as the Rankine Criterion.

Furthermore, it is necessary to describe the softening behavior of the crack in the spirit of
the Cohesive Crack Model. This is done in form of a traction–separation law. Since the
cracking behavior is expressed in a coordinate system associated with the crack and the
constitutive relationships of Mode I and Mode II cracking are assumed to be uncoupled
the traction–separation law is reduced to a scalar normal-stress vs. crack-opening law and
a scalar shear-stress vs. crack-sliding law. The former basically expresses how much stress
can be transmitted at a given crack opening. This will decrease from σcc at crack initiation
until the crack becomes stress free after having reached a critical crack opening wu. There
are a number of different softening laws currently used in practice. These reach from
simple models assuming a linear, bilinear or exponential decrease to more complicated
ones such as Hordijks Law [Rot88].

One of the problems that arise with Smeared Crack Models is that they require the
transformation of a discrete crack opening displacement into an equivalent cracking strain.
Physically speaking a crack is a displacement discontinuity that is described by a traction–
separation law (σ̃cr − w̃) in the Cohesive Crack Model. However, the Smeared Crack
Model requires that this relationship is converted into a stress–strain law (σ̃cr − ε̃cr) since
a continuum representation of the crack is used. The critical issue is that every strain
is dependent on the chosen ”gage length”. This poses a major problem because a crack
represents a singularity with infinite strain (finite displacement over zero length). In
order to solve this problem the already mentioned numerical localization band or crack
band (see Section 3.1.1) is introduced [BO83]. The latter is assumed to represent the
localized fracture process zone and it is taken as a gage length for the strain. In other
words, the numerical localization bandwidth represents the width over which the cracking
is spread. If the numerical localization band were not introduced the model would suffer
from pathological mesh-size dependency (see Section 3.1.2).
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Sometimes the numerical localization bandwidth is difficult to estimate a priori. In prin-
ciple it should correspond to the width of the single layer of Finite Elements in which
the deformations localize after cracking. Unfortunately, the width of the cracking zone
is also dependent on the crack orientation with respect to the Finite Element mesh. In
the simplest case when the crack localizes into a row of aligned elements the crack band
is equal to the element size. However, if the crack passes through the mesh in a zigzag
pattern a reasonable estimation of the numerical localization bandwidth becomes increas-
ingly difficult. Also, special care has to be taken for higher order elements where the
numerical integration scheme can have a strong influence on the choice of the cracking
band. A table with some propositions is given in [Rot88].

While investigating the most favorable Finite Element formulation and meshing Rots
found that crack localization is more accurately represented by many small elements with
a constant strain interpolation than by fewer elements with higher order interpolation
functions [Rot88]. The reason for this is that a discrete crack with ”infinite strain over
zero length” is more closely approximated by a constant strain over a narrow band than
by a linear strain over a larger band. In addition, the constant strain formulation is
also more compatible with the notion of ”smearing” a crack, which implicitly assumes a
constant cracking strain.

So far we have only discussed loading. When unloading occurs there are two basic op-
tions. The model either assumes secant unloading towards the origin or it assumes elastic
unloading parallel to the linear, elastic stiffness. Of course, a case in-between these two
extremes is also imaginable. Upon closure of a crack the cracking strain remains limited
at zero since the crack faces cannot overlap. A nonlinear compressive behavior then has
to be modeled within another theoretical framework such as for example the theory of
Plasticity.

3.2.2 The Fixed Crack Model

As already mentioned, the main characteristic of the Fixed Crack Model is that the
direction of cracking is determined upon crack initiation and it is kept fixed afterwards.
Since the Fixed Crack Model also represents the theoretical bases for the other models it
will be explained here in a bit more detail. This is done by applying the general concepts
presented in Section 3.2.1 to the specific case of the Fixed Crack Model.

The first step is to decompose the total strain into a continuum strain of the uncracked
bulk material εco and a cracking strain that accounts for the cracks in the cracking band εcr.
This is expressed in Equation (3.1). Note that all equations are formulated in incremental
form as is customary for nonlinear Finite Element Analysis.

Δε = Δεco +Δεcr Decomposition of strain (3.1)

Next, the relationship between the strain in the local coordinate system associated with
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the crack ε̃ and the strain in the global coordinate system ε is established (Equation 3.2a).
The same is done for the local stress σ̃ and the global stress σ (Equation 3.2b). In
Equations (3.2) Rε is the standard transformation matrix that performs a rotation of the
strain vector from the local to the global coordinate system (or vice versa RT

ε ).

Δε = Rε ·Δε̃ Rotation of strain (3.2a)

Δσ̃ = RT
ε ·Δσ Rotation of stress (3.2b)

Furthermore, the constitutive models for the uncracked bulk material and for the crack
are required. They are expressed in the traditional way by a constitutive matrix Dco

resp. D̃cr as given by Equations (3.3). Note that since the constitutive laws are for-

mulated incrementally Dco and D̃cr represent the tangent constitutive matrices at the
current deformation state. For the case of a plane-stress analysis the constitutive matrix
representing the cracks consists of a 2 × 2 matrix and it is conveniently formulated in
the local coordinate system associated with the cracks. Since Mode I and Mode II are
assumed to be uncoupled (see Section 3.2.1) the crack constitutive matrix is diagonal
(has no off-diagonal terms). The constitutive law for the uncracked bulk material can be
expressed by any kind of linear or nonlinear constitutive matrix.

Δσco = Dco ·Δεco Bulk material constitutive law (3.3a)

Δσ̃cr = D̃cr ·Δε̃cr Crack constitutive law (3.3b)

Solving the system of the Equations (3.1), (3.2), (3.3) together with the fact that the
local equilibrium of a cracked material point requires that Δσ̃co = Δσ̃cr := Δσ̃ leads
to the following relationship between the total stress increment Δσ and the total strain
increment Δε given in Equation (3.4).

Δσ =

[
Dco −DcoRε

(
D̃cr +RT

ε DcoRε

)−1

RT
ε Dco

]
︸ ︷︷ ︸

Dsmcr

·Δε (3.4)

From Equation (3.4) it can easily be seen that a new tangent constitutive matrix for the
cracked material Dsmcr can be determined by combining the tangent constitutive matrix
of the uncracked bulk material with the tangent constitutive matrix accounting for the
cracks. It is important to note that in general the tangent constitutive matrix accounting
for the cracks is not constant but will change with increasing crack opening (resp. cracking
strain). This variation is given by the aforementioned traction–separation law which will
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be detailed later on. Another important observation that can be made from Equation 3.4
is that Smeared Crack Models account for cracking by modifying the constitutive matrix.
This is in direct contrast to other methods such as the eXtended Finite Element Method
(see Section 3.3) which modify the element kinematics to account for cracks.

After having established the tangent constitutive matrix the standard procedures for
nonlinear Finite Element Analysis is followed. I.e. the tangent stiffness matrices of all
Finite Elements are formed, assembled and subsequently used in a traditional iterative
procedure for nonlinear analysis.

The only remaining question in the outlined procedure above is how to define the tangent
constitutive matrix for the cracks D̃cr. Taking into account the assumption of uncoupled
components (see Section 3.2.1) the tension-softening behavior of the stress normal to the
crack plane can be expressed by a scalar relationship between the Mode I cracking-stress
and the Mode I cracking-strain. For this purpose a traction–separation law (σ̃cr – w̃)
describing the behavior of a discrete crack in the softening regime in analogy to the
Cohesive Crack Model is defined. For reasons of simplicity let us consider a linear softening
law as shown in Figure 3.9 (and as given by Equation 3.5). However, in practice the
appropriate choice of the softening law is essential [Rot86, RdB89].

Figure 3.9: Linear softening traction–separation law

σ̃cr = σcc ·
(
1− w̃

wu

)
= σcc − σcc

wu
· w̃ (3.5)

Often the ultimate crack opening wu that marks the point at which a crack becomes
stress free is difficult to determine experimentally. Therefore, the traction–separation law
is usually defined by the tensile strength at crack initiation σcc (cracking strain), the shape
of the softening curve (linear in this example) and the Mode I fracture energy Gf . Using
the fracture energy as a parameter also has the advantage that it assures consumption of
the correct amount of energy during the cracking process. The fracture energy is equal
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to the area under the traction–separation curve as indicated in Figure 3.9. For the case
of linear softening it is given by Equation (3.6). The derivation of the ultimate crack
opening is then straightforward.

Gf = σcc · wu

2
⇒ wu = 2 · Gf

σcc
(3.6)

Next, the Mode I tangent softening modulus EI
cr for the discrete crack is computed. It cor-

responds to the slope of traction–separation curve. In general it is a function of the crack
opening w̃ but in the case of this example it is constant and defined by Equation (3.7).

EI
cr = −σcc

wu
= −1

2

σcc
2

Gf
(3.7)

In the more general case of a nonlinear softening law the tangent softening modulus is
typically expressed by using a parameter k(w̃) that is a function of the crack opening and
the shape of the softening curve (see Equation (3.8)).

EI
cr = −1

k

σcc
2

Gf
(3.8)

Up to this point all considerations were made for a discrete crack. Since the traditional
Finite Element Analysis does not accept the singularity of a crack in the displacement
field we now proceed by smearing the crack over the so-called numerical localization band-
width h (see also Section 3.2.1). In order to guarantee mesh independence the numerical
localization bandwidth needs to be determined from the mesh size and corresponds to the
width of the single layer of Finite Elements into which the deformations localize. Note
that the ”smearing” implies a constant cracking strain over the cracking bandwidth. Fol-
lowing the outlined procedure the traction–separation law is transformed from a stress vs.
crack-opening relationship σ̃cr(w̃) into a stress vs. cracking-strain relationship σ̃cr(ε̃cr) by
dividing the crack opening by the width of the numerical localization bandwidth. This
leads to the following tangent constitutive modulus given in Equation (3.9).

DI
cr = −1

k

σcc
2 · h
Gf

(3.9)

As mentioned in Section 3.2.1 the Fixed Crack Model does not enforce coaxiality between
the stress and the strain, therefore, shear transfer across cracks is possible. The latter is
usually described by reducing the elastic shear modulus G with a factor β which is called
the shear retention factor. This is expressed in Equation (3.10).

DII
cr = β ·G (3.10)
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In the past the shear retention factor was sometimes assumed to be constant. The advan-
tage of such a model is that it conserves the independence of the shear and the normal
stresses in the cracking zone. However, it is physically not very realistic since the shear
resistance along a crack is produced by friction and aggregate interlock, two phenom-
ena which are clearly influenced by the crack opening. Moreover, it would mean that
even cracks that have opened completely (no more stress transfer in tension) would still
transmit shear forces. A better choice is to reduce the shear reduction factor linearly or
exponentially with increasing Mode I crack opening. A linearly decreasing shear reduction
factor is given in the following Equation (3.11) where ε̃cr is the Mode I cracking strain
in the coordinate system associated with the crack and εu is the ultimate strain at which
the crack becomes stress free.

β = 1− ε̃cr
εu

(3.11)

Note that using a shear retention factor which depends on the Mode I cracking strain
adds an implicit coupling to the constitutive law.

3.2.3 The Multi-directional Fixed Crack Model

The Multi-directional Fixed Crack Model is a simple extension of the Fixed Crack Model.
It allows for the formation of multiple cracks with different orientations at the same inte-
gration point. The development is quite straight forward. The cracking strain is simply
decomposed into separate strains for each of the multiple cracks. Every crack is monitored
individually and a coordinate system transformation for each crack is performed.

In order to limit the total number of cracks at the same integration point an additional
crack initiation criterion has to be introduced. It is called the threshold angle criterion.
According to it a new crack can only form if the principal stress directions differ by more
than the threshold angle from all preexisting cracks. This means that the formation of
a new crack can be triggered in two ways: Either a new crack is initiated by a principal
tensile stress that exceeds the first cracking stress (orthogonal cracking), or it is triggered
by a rotation of the principal stress axes by more than the threshold angle [Rot88].

An important consequence of this is that the stress inside the material can at certain
points exceed the first cracking stress because the threshold angle criterion is not fulfilled.
In general this leads to an overly stiff response. However, the situation is certainly im-
proved in comparison to the Fixed Crack Model where the same problem is much more
pronounced.

An additional requirement for the Multi-directional Fixed Crack Model is to keep track of
the damage that occurred during the cracking process. After several cracks have formed at
an integration point subsequent cracks at the same location should not consume the same
amount of fracture energy as was the case during formation of the first crack. Therefore,
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it is assumed that the total fracture energy Gf is reduced by the amount that was already
consumed during previous cracking activity at that integration point. In other words, only
the tail part of the traction–separation law can be activated by a new crack. Note, that
this only applies to the case of cracks which are triggered by a violation of the threshold
angle criterion and not for (”orthogonal”) cracks that are formed by violation of the first
cracking stress criterion.

A further issue that deserves mentioning here, are the numerical problems that may arise
during a simulation with Multi-directional Fixed Crack Models. Because there are a large
number of possible combinations of loading and unloading when several cracks are active
at the same integration point the uniqueness of a solution may be lost.

3.2.4 The Rotating Crack Model

In contrast to the Fixed Crack Models the Rotating Crack Model postulates that the
crack direction is not ”frozen” upon crack initiation. It is rather assumed that the crack
changes its orientation in order to be aligned with the directions of principal strain.
By consequence the axes of orthotropy are always coaxial with the directions of principal
strain which implies that also the axes of principal stress are aligned with those of principal
strain. This property is known as enforced coaxiality.

The main advantage of using a Rotating Crack Model is that there can be no artificial
buildup of stresses above the ultimate cracking stress and there is no necessity to consider
shear transfer because the shear components are always zero in the coordinate system
associated with the crack.

J.G. Rots showed that the Rotating Crack Model can be seen as a limit case of the
Multi-directional Fixed Crack Model [Rot88]. There are two basic assumptions that are
necessary to unify the Rotating Crack Model with the Multi-directional Fixed Crack
Model. The first one is that the threshold angle is set to zero and the second one is that
the shear retention factor has to be determined in such a way as to ensure coaxiality. In
other words, the shear retention factor is always chosen such as to eliminate the shear
stress in the crack coordinate system. Furthermore, all previous cracks have to be removed
from memory as soon as a new crack is activated. However, in analogy with the Multi-
directional Fixed Crack Model the cracking energy is not recovered upon rotation.

3.2.5 Deficiencies of Smeared Crack Models

After having explained the general concept and functioning of the most important Smeared
Crack Models this section will focus on some issues that are created by the model assump-
tions.

As a very general observation, one can state that the major deficiencies of Smeared Crack
Models arise from using a continuum model for the description of a phenomenon which
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is by its physical nature discontinuous. Or formulated differently: the cause for most
of the problems with Smeared Crack Models is the artifice of ”smearing” the cracks.
The deficiencies are most pronounced at large crack openings because the kinematics
of complete material separation are not adequately represented by the Finite Element
interpolation fields.

The first consequences of the poor kinematic representation are the so-called stress locking
effect and the related spurious stress transfer. Because the compatibility of the displace-
ment field in a Finite Element Analysis has to be assured the cracking strain will influence
both strain components of a Finite Element (except if the crack is oriented parallel to an
element side). This can easily be shown by the example in Figure 3.10 (adopted from
[Rot88]).
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Figure 3.10: Spurious stress transfer (adopted from [Rot88])

Consider the two elements shown in Figure 3.10. One of them is crossed by a crack.
Following the Smeared Crack Model the discrete crack is smeared over the right element
as represented schematically in the figure. This creates a cracking strain. As becomes
clear from the indicated direction the cracking strain does also have a component in the
global y direction. Because of compatibility requirements between the left and the right
element along their common edge the y component of the cracking strain in the right
element will induce a vertical strain in the left element as well. The physical nature of
the problem on the other hand dictates that all elements which are on the left side of the
crack should be completely dissociated from those on the right side. It is clear that they
should unload after crack formation rather than being loaded any further. It is interesting
to note that even after the crack has reached the ultimate crack opening (at which point
no stresses whatsoever should be transmitted) the spurious strains and resulting stresses
will still continue to increase with increasing crack opening. This can even go so far as
to lead to cracking of the left element as soon as it in turn reaches its cracking stress
(spurious cracking).

The left element in the example on the other hand will resist against being strained by
the spurious strain. The consequence is an overly stiff response in the softening regime
with increasing imprecision as the crack opens.
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Another deficiency that is strongly related to the same mechanism that creates stress
locking is the so-called mesh-induced bias. It means that the direction of the fracture path
is influenced by the mesh of the Finite Element model. It appears that the fracture path
preferentially follow the principal directions of the mesh. This bias is more pronounced
for the Rotating Crack Model than for the Fixed Crack Models since the cracks are free
to rotate and align with the mesh.

A very comprehensive explanation of the reason for mesh bias is given by [JZ98]. Therein
a triangular element that is crossed by a crack is investigated (see Figure 3.11).
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Figure 3.11: Mesh bias (adopted from [JZ98])

The derivation of the general strain equations for this triangular element is straightforward
and of little interest here. Therefore, the results are directly presented. For more details
refer to [JZ98, Jir00]. Using area coordinates for the Finite Element interpolation fields
the strain vector after cracking can be represented as given by Equation (3.12).

⎧⎨⎩
εx
εy
γxy

⎫⎬⎭ =

⎧⎨⎩
1
−ν
0

⎫⎬⎭ · σ̃cr

E
+

⎧⎨⎩
y1 − y2

0
x2 − x1

⎫⎬⎭ · w̃

2A
(3.12)

Equation (3.12) shows the decomposition of the resulting strain vector into two parts.
Firstly an elastic strain which depends only on the stress σ̃cr, the module of elasticity E
and Poisson’s ratio ν. And secondly a cracking strain which depends on the crack opening
w̃, the area of the triangular element A and the difference of nodal coordinates x1, x2

respectively y1, y2. The interesting thing about this result is the shear strain component.
Although the physical nature of the problem clearly indicates that there should be no
global shear strain (see Figure 3.11a) the Finite Element interpolation creates a shear
strain term as soon as the crack opens (w̃ is non-zero) and the element edge 1–2 is not
parallel to the crack direction (x2 − x1 �= 0). By consequence this spurious shear term
creates a mesh bias by rotating the directions of principal strain. The limit case when
w̃ tends towards infinity is shown in Figure 3.11b. The derivation of this result in not
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presented here but can be found in [Jir00]. Simply note that the limit angle α by which
the cracking direction deviates from the true crack direction is half the angle between the
element side 1–2 and the true crack direction. Although the existence of mesh-induced
bias is demonstrated here for the very specific case of a triangular element quadrilateral
meshes show the same deficiency.

Another problem with Smeared Crack Models is the appearance of spurious kinematic
modes. This phenomenon manifests in form of Finite Element nodes ”running out of
control”. As a consequence the global stiffness matrix becomes singular and the solution
algorithm has to be stopped. According to [Rot88] this problem was found to exist for
all types of elements and numerical integration schemes although no explanation of the
cause was given.

3.3 The Extended Finite Element Method

The eXtended Finite Element Method (XFEM) is an extension of the Finite Element
Method which allows for the incorporation of a priori knowledge about the analytical
solution of a problem. The basic idea is to extend the set of standard Finite Element
interpolation functions (shape functions) with additional so-called enrichment functions.
The latter are chosen based on the expected form of the solution. The XFEM is a very
general method and it can be applied to an infinite number of physical problems. Mostly
it is used for cases where the incorporation of additional knowledge can improve the
convergence or the accuracy of the solution, i.e. in situations where the solution field
exhibits strong gradients, discontinuities or any other type of ”rough” behavior. In the
following we will focus on the application of the XFEM to cracking and modeling of strong
discontinuities.

3.3.1 The General Concept

The eXtended Finite Element Method is based on the Partition of Unity Method (PUM)
which was published by Melenk and Babuška in 1996 [MB96, BM97]. In fact the XFEM
is a particular application of the PUM as we will see later.

Most of the development of the XFEM was done by professor Belytschko’s group at the
Northwestern University in Evanston, Illinois where the name eXtended Finite Element
Method was coined. The first applications were oriented towards static crack growth in an
elastic continuum [BB99, MDB99] but research has now been extended to various fields
of physics such as hydromechanics and all sorts of interface problems.

In parallel to the eXtended Finite Element Method a practically identical method called
the Generalized Finite Element Method (GFEM) was developed by Strouboulis and co-
workers [SBC00, SCB01]. Like the XFEM the GFEM is also based on the Partition of
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Unity Method. While the applications of Belytschko et al. were more oriented towards
crack growth those of Strouboulis and co-workers were focusing on re-entrant corner sin-
gularities.

The advantage of using the eXtended Finite Element Method for the simulation of crack
growth is that the crack geometry can be arbitrary with respect to the Finite Element
mesh. As was already discussed in Section 3.1.1 a crack represents a strong discontinuity
in the displacement field. The XFEM exploits this a priori knowledge about the solution
and extends or in technical terms enriches the approximation space (the set of standard
shape functions) with additional discontinuous functions. As a consequence the crack is
modeled within the elements themselves making the crack path independent of the Finite
Element mesh. Note that the enrichment is an enhancement of the kinematics of a Finite
Element and it is independent of the constitutive law.

The huge success of the eXtended Finite Element Method as opposed to similar meshless
methods such as the Element-Free Galerkin Method (EGM) [BLG94] can probably be
explained by its compatibility with the ”standard” Finite Element Method which is well
known and commonly employed. Or in other words, the XFEM elegantly combines the
advantages of meshless methods with the computational efficiency and robustness of the
Finite Element Method.

Next, let us look at the mathematical background of the Partition of Unity Method.
Before we can state the Partition of Unity Principle we need to introduce a few preliminary
definitions.

A set of n functions ϕi (i = 1 . . . n) which is uniquely defined on a domain Ωpu is called
a Partition of Unity if the property stated in Equation (3.13) is satisfied.

n∑
i=1

ϕi(x) = 1 ∀x ∈ Ωpu (3.13)

Verbally this means that a set of functions form a Partition of Unity if the sum of their
values at every location x within the considered domain Ωpu is equal to unity. An addi-
tional condition that has to be satisfied is that the functions in consideration are linearly
independent.

An example of three functions ϕ1,2,3 that form a Partition of Unity in the one-dimensional
domain Ωpu = [−1, 1] is given in the following:

ϕ1(x) =
1

2
(1− x)− 1

2
(1− x2) ∀x ∈ [−1, 1]

ϕ2(x) =
1

2
(1 + x)− 1

2
(1− x2) ∀x ∈ [−1, 1]

ϕ3(x) = (1− x2) ∀x ∈ [−1, 1]
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Figure 3.12: Example of three functions forming a Partition of Unity

A plot of these three functions is given in Figure 3.12. It is easily verified that the sum
of all three functions is effectively equal to unity on the entire domain [−1, 1]. The same
principle is also valid for the multi-dimensional case. In 2D for example the coordinate
x simply becomes a vector x and the domain Ωpu becomes a surface. Note that Finite
Element shape functions always form a Partition of Unity because this is necessary to
represent rigid body displacements. In fact, the three functions depicted above are nothing
other than the 2nd-order polynomial shape functions for an isoparametric 3-node truss
element.

The Partition of Unity Principle states that any unknown field (e.g. horizontal displace-
ment field u(x)) in a given domain Ωpu can be interpolated as given in Equation (3.14).

u(x) =

n∑
i=1

ϕi(x)

(
ai +

m∑
j=1

Ψj(x)bij

)
(3.14)

Where the ϕi are a set of n functions which form a Partition of Unity, ai and bij are discrete
nodal values in the domain Ωpu and Ψj are a set of m so-called enrichment functions. Let
us consider the case where only one enrichment function is used. The interpolation field
can then be expressed by Equation (3.15).

u(x) =
n∑

i=1

ϕi(x)ai︸ ︷︷ ︸
standard

+
n∑

i=1

ϕi(x)Ψ(x)bi︸ ︷︷ ︸
enrichment

(3.15)

This shows that the interpolation field can be decomposed into a standard part which
interpolates the standard nodal degrees of freedom ai and an enriched part which adds
the contribution of the enriched nodal degrees of freedom bi. Since the functions ϕi form
a Partition of Unity the enrichment function Ψ can be reproduced exactly (all ai = 0 and
all bi = 1).

It is by the way not necessary to use the same Partition of Unity for the standard and
the enriched degrees of freedom. The Partition of Unity Principle can therefore also be
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written in the form of Equation (3.16).

u(x) =

n∑
i=1

ϕi(x)ai +

n∑
i=1

ϕ̂i(x)Ψ(x)bi (3.16)

The idea of the eXtended Finite Element Method is to use the Partition of Unity Prin-
ciple in the Finite Element framework. Instead of the functions ϕi which form a global
Partition of Unity on the entire domain Ωpu an assembly of overlapping patches which
form local Partitions of Unity on the local domains Ωe of the individual Finite Elements
is used. Because the standard Finite Element shape functions Ni already form local Par-
titions of Unity they are usually also directly used as Partition of Unity Functions for
the enrichment. The advantage of using local Partitions of Unity is that a specific en-
richment can be added locally without modifying the entire computational domain and
thereby taxing the solution speed with unnecessary additional degrees of freedom in re-
gions where the enrichment is not needed. As a consequence the global stiffness matrix
of the Finite Element problem remains sparse. Note that the enrichment function Ψ still
has global character and is defined over the entire domain. It is localized by multiplying
it with the local Partition of Unity Functions which perform the task of ”windowing”
the enrichment function so to speak. Furthermore, the enrichment function is completely
mesh-independent. As a final result the hereby produced local enrichment inherits the
good approximation capabilities from the global enrichment function but it also inherits
the local character from the Partition of Unity Functions. One other very important
and fundamental property of the Partition of Unity Method is that it automatically en-
forces continuity of the enriched interpolation field across element boundaries and thereby
produces conforming elements.

The application of the PUM to the specific case of the XFEM can be written as given by
Equation (3.17) [BL05].

u(x) =
∑

all nodes

Ni(x)ui +
∑

all enriched nodes

Ni(x)Ψ(x)ei (3.17)

Any unknown field u in the computational domain Ω is expressed by the nodal values
ui and ei which are interpolated appropriately. The interpolation of the standard field
is done by the customary Finite Element shape functions Ni. In a certain subdomain
(the enriched domain Ωenr) the unknown field is enriched by an additional function Ψ
whose magnitude is determined by additional nodal degrees of freedom ei. This means
that in the enriched domain an additional field is superimposed. The character of this
field is given by the enrichment function Ψ. The multiplication with the standard shape
functions acts as a filter activating the enrichment function only in the region where it is
necessary (windowing it). In order to avoid confusions concerning the used terminology
in this thesis let us clarify the following: The function Ψ which describes the ”character”
or ”type” of the global enrichment is called enrichment function or global enrichment
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function. The functions which result from the multiplication of the local Partition of
Unity Functions (e.g. standard shape functions) with the global enrichment function are
called local enrichment functions or enriched shape functions and are usually denoted by
Nenr,i (see Equation 3.18). The local enrichment functions take the role of shape functions
for the enrichment field which is superimposed on the standard field.

Nenr,i(x) = Ni(x)Ψ(x) (3.18)

The enrichment function Ψ can have many different forms and it will depend on the
underlying problem and the a priori knowledge about the solution. However, there is one
restriction. The enrichment function should not be contained in the standard interpolation
space. If this were the case the system of equations would become linearly dependent
which would mean that the solution would loose its uniqueness resulting in a singular
stiffness matrix. Apart from that any form of enrichment function (even a discontinuous
one) can be envisaged.

Let us consider the example of a truss element with standard linear shape functions as
shown in Figure 3.13. As we discussed before these shape functions form a local Partition
of Unity.

1 2 The shape functions form a Partition of Unity:

+ =

+ = 1

Figure 3.13: Standard truss element with linear shape functions

Next, we will enrich this element by a discontinuous shape function called the Heaviside
function. The Heaviside function takes the value 0 on the left side of the discontinuity
and the value 1 on the right side of the discontinuity. In the example a discontinuity shall
be present at the location indicated by a dashed line in Figure 3.14. The latter shows the
chosen discontinuous global enrichment function Ψ (Heaviside function) as well as the local
enrichment functions which are obtained by multiplying the standard shape functions Ni

with the enrichment function (local Partition of Unity Principle). Figure 3.14 also shows
that the enrichment function can be reproduced exactly as was mentioned earlier. Note
that both local enrichment functions depicted in Figure 3.14 are associated with additional
degrees of freedom at the corresponding nodes. The global character of the enrichment
function can be seen more clearly in the example shown in Figure 3.17 on Page 87 where
more than one element is present.

In standard Finite Element Analysis the shape functions are constructed in such a way
that the nodal degrees of freedom directly correspond to the value of the interpolated
field (e.g. the displacement field) at the location of the corresponding node. If the PUM
is applied without modification this physical interpretation is unfortunately lost since the
contribution of the enrichment field is added to the standard field. However, by applying
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1 2

The enrichment function can be reproduced:

+ =

+ =

Figure 3.14: Enrichment function Ψ and resulting local enrichment functions

a suitable shift to the basis of the local enrichment the aforementioned characteristic of
the standard degrees of freedom can be recovered. In order to achieve this goal it has to be
ensured that the local enrichment takes the value 0 at the location of the node with which
it is associated. This is done by subtracting the value of the global enrichment function
at the location of the corresponding node (which is denoted by xi). The modified local
Partition of Unity Principle from Equation 3.17 then becomes Equation (3.19).

u(x) =
∑

all nodes

Ni(x)ui +
∑

all enriched nodes

Ni(x)
(
Ψ(x)−Ψ(xi)

)
︸ ︷︷ ︸

Ns
enr,i(x)

ei (3.19)

This shift of the basis is admissible since it modifies the enrichment only by a multiple of
the standard Finite Element shape functions. Applying the principle from Equation (3.19)
to the previously introduced truss example results in the following Figure 3.15. The latter
also shows that the enrichment is in fact only shifted by a multiple of the associated
standard shape function.

1 2

Shift of the basis for shape function 2:

=

=

Figure 3.15: Final enrichment for a discontinuous truss element after shift of its basis

Putting everything together this finally yields the following Equation (3.20) for the dis-
placement field interpolation of the eXtended Finite Element Method (the shifted enriched
shape functions N s

enr,i are given by Equation 3.19).

u(x) =
∑

all nodes

Ni(x)ui +
∑

all enriched nodes

N s
enr,i(x)ei (3.20)
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Let us emphasize that in the eXtended Finite Element Method the local enrichment
functions (like the standard shape functions) are associated with degrees of freedom and
those in turn are associated with nodes. Because continuity of the interpolation field at the
nodes is required the domain of influence of a degree of freedom (called its support) extends
to all elements connected to the corresponding node. In other words, the enrichment
influences all elements that are directly connected to the node with which an enriched
degree of freedom is associated. That is also the reason why one usually talks about
nodal enrichment in the XFEM. Also, this once more underlines the local character of
the enrichment. The given example with a Heaviside enrichment shown in Figure 3.14
presents a special case because after shifting the enriched shape functions are zero outside
of the element where the discontinuity is located. As a consequence they do not need to
be considered in the adjacent elements. However, for most other enrichments (or for the
Heaviside enrichment in 2D) this is not the case.

1 2 3 4 5

Elem1 Elem4Elem3Elem2

Figure 3.16: Support of node number 3

The concept of the ”support” of a node is illustrated in Figure 3.16 which shows a mesh
consisting of four three-node truss elements (two external nodes and one internal node)
with quadratic shape functions. The influence of node 3 extends to the elements 2 and 3.
Therefore, the support of node 3 consists of elements 2 and 3. The same is true for the
enriched shape functions which influence the field of all elements in the support of the
respective node.

3.3.2 An Illustrative Example

In the following the fundamental notions and basic principles of the XFEM introduced in
Section 3.3.1 will be illustrated by an example. Although the eXtended Finite Element
Method can be used to incorporate any type of function into the displacement field of
a Finite Element problem the example is oriented towards crack modeling which means
that a strong discontinuity i.e. a ”jump” is introduced.

Let us assume that the discontinuous displacement field u(x) shown in Figure 3.17 should
be reproduced by a number of eXtended Finite Elements. The nodal values of the target
displacement field are indicated in the figure (ui). The ”jump” in the field is clearly
apparent and it separates the computational domain into a negative part Ω− and a positive
part Ω+. Figure 3.17 also shows the enrichment function Ψ which should be incorporated
into the Finite Element solution space. The global character of the enrichment function is
clearly apparent. However, due to fact that the XFEM uses a local Partition of Unity the
nodes of the Finite Element mesh only have to be enriched locally (indicated by circled
dots). In the rest of the domain the enrichment function is constant. As such, it is
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already contained in the standard approximation space and therefore requires no further
enrichment.

enriched node

virtual node

2 3 5 3 2

+

x

Figure 3.17: Discontinuous displacement field and Finite Element configuration

Let us first focus on the elements with a continuous displacement field. Figure 3.18 shows
how the displacement field of those elements can be reproduced by the standard Finite
Element shape functions. The linear shape functions introduced in Figure 3.13 are used.
The nodal degrees of freedom can be directly identified in Figure 3.17 and they indicate
the number of times a specific shape function has to be taken in order to reproduce the
displacement field. Up to this point the procedure corresponds to the standard Finite
Element Method.

Next, we will discuss the element which contains the discontinuity. Following Equa-
tion (3.20) and using the standard shape functions Ni and the shifted local enrichment
functions N s

enr,i from the previous truss example (see Figure 3.15) the displacement field
in the discontinuous element can be expressed by Equation (3.21).

u(x) = N1(x)u3 +N2(x)u4︸ ︷︷ ︸
standard

+N s
enr,1e3 +N s

enr,2e4︸ ︷︷ ︸
enriched

(3.21)

The values of the standard degrees of freedom correspond to the nodal values of the
target field (u3 = 5; u4 = 3) as was the case for non-enriched elements. The extended
(additional) degrees of freedom can also be retrieved from the displacement field as shown
in Figure 3.17. To understand this the notion of virtual nodes has to be introduced. A
virtual node is a node that is associated with the extrapolation of the positive displacement
field into the negative domain and vice-versa. The positive and negative virtual nodes
are indicated in Figure 3.17 by a � and the corresponding sign. It can be shown that
the values of the enriched degrees of freedom correspond to the difference between the
”standard” nodal displacements and the virtual nodal displacements. In our example
this yields e3 = −2 and e4 = 2. The signs are determined by subtracting the nodal
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Figure 3.18: Decomposition of the displacement field

values associated with the negative domain Ω− from the corresponding values associated
with the positive domain Ω+. This has to do with the convention that a ”jump” is
considered positive if the value increases going from the negative to the positive domain.
The concept of virtual nodes and its graphical representation in Figure 3.17 inspires an
interesting interpretation of the XFEM. In crack-related applications the XFEM can be
seen as the use of two completely independent overlapping Finite Element meshes.

Using the values e3 = −2 and e4 = 2 for the enriched degrees of freedom leads to the
decomposition of the discontinuous displacement field of the ”cut” element as show in
Figure 3.18. It can easily be verified that the assembly of continuous and discontinuous
shape functions reproduces the discontinuous displacement field. We can therefore con-
clude, that the eXtended Finite Element Method is capable of reproducing a discontinuous
displacement field by the local enrichment of selected nodes.

The displacement ”jump” w at the location of the discontinuity xw is directly related
to the enriched degrees of freedom. In fact, it can easily be computed as derived in the
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following Equations (3.22).

w = u+(xw)− u−(xw) (3.22a)

w =
∑
enr

Ni(xw)Ψ
+(xw)ei −

∑
enr

Ni(xw)Ψ
−(xw)ei (3.22b)

w =
(
Ψ+(xw)−Ψ−(xw)

)∑
enr

Ni(xw)ei (3.22c)

w = ΔΨ
∑
enr

Ni(xw)ei (3.22d)

At the location of the displacement discontinuity xw the displacement value is equivo-
cal. The ”jump” corresponds to the difference between the value of the positive domain
u+ and the negative domain u− as stated in Equation (3.22a). Substituting the basic
equation of the XFEM (3.17) for u+(xw) and u−(xw) as well as using the fact that all con-
tributions of the standard shape functions cancel out (they are not equivocal) this leads
to Equation (3.22b). The enrichment function is also equivocal at the location of the
discontinuity and the positive and negative values are analogously defined as Ψ+ and Ψ−.
Equation (3.22c) is then directly obtained by simple algebraic transformation of (3.22b).
Finally, the result can also be expressed in function of the magnitude of the discontinuity
of the global enrichment function ΔΨ as expressed in Equation (3.22d). Note that a
positive displacement ”jump” increases from the negative to the positive domain.

Applying Equation (3.22d) to the example of Figure 3.17 where the enrichment is equal
to the Heaviside function gives:

w = (1− 0) ·
(2
3
· −2 +

1

3
· 2

)
= −2

3

This is of course in accordance with Figure 3.17.

3.3.3 XFEM in 2D

In the preceding Section 3.3.2 the eXtended Finite Element Method was applied to a
one-dimensional example because this is the best way to illustrate and understand it.
However, apart from the educative value there exist no practical one-dimensional applica-
tions worth mentioning. The reason for this is that the advantages of a mesh-independent
representation of a discontinuity in the one-dimensional case are negligible since adapting
the mesh to accommodate the discontinuity is straightforward. The XFEM only develops
its full potential in two- or three-dimensional applications.

Figure 3.19 shows a mesh of two-dimensional rectangular Finite Elements. It is crossed by
a discontinuity (e.g. a crack) which is indicated by a bold line. Although the discontinuity
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Figure 3.19: Discontinuity in a 2D XFEM mesh and local enrichment of nodes

is crossing the mesh in an arbitrary way it can be accounted for by the eXtended Finite
Element Method. In order to do so the nodes marked by a circled dot in Figure 3.19 are
enriched with additional degrees of freedom and the corresponding discontinuous shape
functions (compare Section 3.3.1). In virtue of the local Partition of Unity Method the
enrichment is only performed in the vicinity of the crack. Therefore, only the nodes of
those elements that are crossed by the discontinuity are enriched.

In analogy to the one-dimensional case the two-dimensional Heaviside function is used
as an enrichment function in order to introduce a strong discontinuity. However, since
4-node quadrilateral elements have four shape functions there will also be four enriched
degrees of freedom per unknown field component (e.g. u(x, y), v(x, y)) and four associated
discontinuous shape functions. Furthermore, the discontinuity within an element can only
be reproduced correctly if all nodes of that specific element are enriched and the Partition
of Unity Principle is satisfied. Elements that have all their nodes enriched are called
enriched elements. Note that not all elements in Figure 3.19 match this description.
There are also a number of elements which are only partially enriched. They are called
partially enriched elements or blending elements [CWB03] and will be discussed later.

As already mentioned, only the nodes of those elements which are crossed by the disconti-
nuity have to be enriched (local enrichment). Because the discontinuous shape functions
and the enriched degrees of freedom are associated with nodes it is more appropriate to
state that only those nodes whose support is crossed by the discontinuity are enriched.
Remember that the support of a node is the union of all elements connected to it. If the
tip of the discontinuity only touches an element edge the nodes of that element must not
be enriched since there is no discontinuity in that element yet. This leads to the following
enrichment criterion for strong discontinuities (i.e. cracks):

A node is enriched with the Heaviside function whenever a strong discontinuity
completely bisects its support.

The fact that only selective nodes are enriched has certain implications on the global flow
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of a Finite Element program based on the XFEM. In crack growth problems for example
the global number of degrees of freedom is not constant since additional degrees of freedom
have to be added whenever the crack propagates. As a consequence a Finite Element
software implementing the XFEM has to account for a changing number of degrees of
freedom which makes it impossible to use most existing codes without modification.

If the path of a discontinuity is very close to an element edge this can lead to numeri-
cal problems. The reason for this is that the added enrichment function would almost
correspond to a constant function. However, a constant function (without ”jumps”) is
already included in the standard approximation space and as a consequence adding such
a function would lead to a linear dependency of the equilibrium equations and a singular
stiffness matrix. Therefore, the so-called area criterion is usually used [Dol99, DMB00].
The area criterion is relatively straightforward and expresses the idea illustrated in Fig-
ure 3.20a. One determines the fraction of the total area A of the nodal support which
lies on either side of the discontinuity (A+/A and A−/A). If one of the two is less than
a certain threshold value (usually 10−4) the corresponding node is not enriched. In order
to compute the areas A+ and A− a Delaunay triangulation is usually performed (Fig-
ure 3.20b). As we will see in Section 6.2.6 the same subtriangulation is also necessary for
the numerical integration of the weak form of the equilibrium equations.

Cra
ck

Node

Element

(a) Areas for the area criterion

Cra
ckSubtriangles

(b) Triangulation of intersected elements

Figure 3.20: Support of a node cut by a discontinuity

If the discontinuity ends within an element a special crack tip enrichment is required. For
more information about this subject refer to Section 3.3.4 on enrichment functions.

In Section 3.3.2 the notion of two overlapping meshes was introduced to visualize the
XFEM. In two dimensions this interpretation becomes even more intuitive as the following
example illustrated in Figure 3.21 shows [JB02].

In the example a physical body and its representation by an eXtended Finite Element
are depicted at three different states. The first one (Figure 3.21a) corresponds to the
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(a) Undeformed (b) Rigid body separation (c) Uncoupled straining

Figure 3.21: Interpretation of the XFEM as overlapping meshes (adopted from [JB02])

undeformed state. The second one (Figure 3.21b) represents the case where the body is
crossed by a non-cohesive crack and it is separated by a rigid body movement. The indi-
vidual halves are not strained and remain traction-free. The third situation corresponds
to a separation of the body into two halves followed by a sequential straining of only one
of the two pieces (Figure 3.21c). For each situation the corresponding XFEM solution is
interpreted as overlapping meshes with virtual nodes. Note that although the first and the
second situation can also be resolved correctly by the Embedded Discontinuities Method
(EDM) this is not the case for the third loading condition. A certain coupling between
the two sides cannot be completely avoid when using the EDM (see [JB02]).

At the beginning of this section we introduced the notion of ”partially enriched elements”
which should be discussed here in a bit more detail. If the standard Finite Element shape
functions are used as Partition of Unity Functions in the eXtended Finite Element Method
the local Partition of Unity Principle over the domain of a Finite Element is only fulfilled
if all nodes of that element are enriched. This requirement is essential in order to be
able to reproduce the discontinuity introduced by the enrichment function. However, in a
Finite Element mesh there will also be some elements which are located in the transition
zone between the normal mesh and the fully enriched region (where the enriched shape
functions form a Partition of Unity). These elements only have some enriched nodes and
they are therefore called partially enriched elements or blending elements [CWB03]. This
situation is illustrated in Figure 3.22.

In general partially enriched elements cannot reproduce the enrichment function. Nor-
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Complete enrichment (PUM)
Partial enrichment (Blending Elements)

Figure 3.22: Completely enriched and partially enriched elements

mally this is also not necessary because the enrichment is not needed in those areas.
Nevertheless, it is important to realize that the partially enriched elements are also af-
fected by the enrichment because their displacement field approximation contains some
enriched shape functions (shape functions influence the entire support of a node). Crack
modeling with the Heaviside function represents a somewhat special case because, as we
have seen in Section 3.3.1, the enriched shape functions are zero outside of the discon-
tinuous elements (after shifting the basis). However, this is not the case for most other
enrichments. As a consequence the enriched shape functions can produce spurious terms
in the displacement field of the adjacent elements. These spurious terms might be pre-
vented but only if the standard shape functions are able to compensate for the spurious
terms induced by the enriched shape functions. For polynomial enrichment functions and
polynomial standard shape functions the spurious terms can be removed if the polynomial
order O of the standard shape functions is at least as high as that of the enriched shape
functions. This is expressed mathematically as:

O(N) ≥ O(Nenr) or

O(N) ≥ O(ϕ ·Ψ)

For the case of a Heaviside enrichment in combination with the standard linear shape
functions as Partition of Unity Functions the order of the enriched shape functions remains
the same as that of the standard shape functions (since multiplication by a constant does
not alter the order of a function). Therefore, the Heaviside enrichment does not create
any spurious terms in the blending zone between the enriched and the standard part of
the mesh. However, for other enrichment functions this can become a serious problem
and special blending elements are required to obtain good overall performance [CWB03].
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The latter can for example be constructed on the basis of the Enhanced Assumed Strain
(EAS) formulation. An alternative is to use standard shape functions that have a higher
order than the Partition of Unity Functions.

A final, challenging issue with the two-dimensional XFEM (even more challenging for
three-dimensional applications) is the description of the geometry of a crack. One possible
approach is to combine the XFEM with the so-called Level Set Method. The latter is
based on the work by Osher and Sethian [OS88, Set99] and the basic idea behind it is to
describe a geometrical shape by the ”zero level set” of a scalar function (called the Level
Set Function). The ”zero level set” is the set of all points for which the Level Set Function
Fls(x) takes the value 0. Therefore, the geometrical shape of interest is mathematically
described by the equation Fls(x) = 0 ∀x ∈ Ω where x is the vector of coordinates of
any point within the computational domain. For a circle with a radius of 3 which has
its center at the coordinates (6, 4) a possible Level Set Function would for example be
Fls(x) =

√
(6− x)2 + (4− y)2−3. The big advantage of using Level Set Functions is that

if they are cleverly formulated they can directly provide information about how certain
points are situated with respect to the described shape. In the above case for example the
Level Set Function takes negative values for points within the circle and positive values
for points outside of the circle.

3.3.4 Enrichment Functions

We have seen that the eXtended Finite Element Method is a very general framework which
allows the incorporation of a priori knowledge about the solution into the approximation
space. Because the method is based on the Partition of Unity Principle the enrichment
is automatically conforming (continuous across element boundaries) independent of the
chosen enrichment function. A second important characteristic of the XFEM is that the
enrichment is local since the Partition of Unity Functions act as windowing functions in
this context. In the following a few of the most important enrichment functions with an
emphasis on crack problems are presented. However, the choice of enrichment functions is
not limited to those given here and any other type of function could be incorporated into
the approximation space. The only restriction is that the enrichment should not already
be contained in the standard approximation space. Or in other words, no enriched shape
function should by a linear combination of the standard shape functions because this
would lead to a singular system of equations.

Strong Discontinuity Enrichment

One possible class of enrichment functions are discontinuous functions. They are used to
incorporate strong discontinuities into the displacement field of a Finite Element model
(e.g. for crack problems). Basically any discontinuous function will do. The most popular
choices are: The Heaviside function and the sign function which in some of the literature
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is also called Haar function (see Figure 3.23). The Heaviside function takes the value
0 on one side of the discontinuity and the value 1 on the other side whereas the ”sign”
function takes the values −1 and 1.

(a) Heaviside function (b) Sign function

Figure 3.23: Discontinuous enrichment functions

There is really no major difference between the Heaviside function and the sign function
since they both add a discontinuous ”character” to the solution. The magnitude of the
”jump” in the enrichment function is not important. The only small difference is that the
sign function is especially apt to be used in combination with a Level Set representation
of the crack geometry (for an explanation of Level Sets see Section 3.3.3).

An interesting concept is the use of discontinuous functions in combination with higher
order shape functions. In this case the magnitude of the displacement ”jump” can vary
at the polynomial order of the Partition of Unity Functions [MDB99]. This can be under-
stood by looking at the equation for the separation vector (Equations 3.22d or 6.21) which
clearly indicates that the variation of the separation vector is governed by the polynomial
order of the Partition of Unity Functions. The path of the crack on the other hand is
restricted to the polynomial order of the standard shape functions of the underlying Fi-
nite Element [SBCB03]. The reason for this is that both separated parts of an intersected
Finite Element need to be mapped to the parent, natural element. For an isoparametric
element this is done by means of the standard shape functions which can only map shapes
corresponding to their polynomial order.

Junction Enrichment

Another special enrichment is needed if discontinuities are branching or intersecting
[DMD+00]. Figure 3.24 shows a branching crack. The crack from bottom-left to top-
right is considered to be a continuous crack while the crack from top-left to bottom-right
is considered to be a secondary branch. The necessary nodes for the primary crack are
enriched by a Heaviside function HI as if the secondary crack were not present. The
respective nodes for the secondary branch are also enriched by a Heaviside enrichment
HII as if the primary crack were not present except for those nodes in whose support the
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junction is located. There a special junction enrichment J has to be added (indicated by
additional squares in Figure 3.24). Note, that some nodes outside of the element contain-
ing the junction might contain enriched degrees of freedom from both cracks. However,
no special ”interaction” treatment is required.

Figure 3.24: Junction of two cracks

The junction enrichment is illustrated in Figure 3.25. It can easily be constructed from a
combination of the two Heaviside functions of the individual crack branches. Note that
the representation in Figure 3.25 is only schematic. The separating lines would in fact
correspond to the true geometry of the cracks. The element containing the junction has
to be enriched with both the Heaviside enrichment for the primary crack (HI) and the
junction enrichment (J). In fact, it can easily be shown that there need to be three sets
of shape functions (1 standard and 2 enriched) to represent a junction.

(a) HI (b) HII (c) J

Figure 3.25: Enrichment functions for each crack and for the junction

For each crack that branches from the primary crack an additional enrichment of type
J has to be added to the element containing the junction. An intersection of two cracks
can be seen as a primary crack joined by two secondary cracks which branch at the
same location. Therefore an intersection requires four sets of shape functions: One set
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of standard shape function N , one set of Heaviside-enriched shape functions NH for the
primary crack and one set of junction-enriched shape functions NJ,i for each of the two
secondary cracks.

Crack Tip Enrichment

A further class of enrichment functions used in crack growth simulations are crack tip
enrichments. The most commonly used ones are the asymptotic near-tip field functions
from Linear Elastic Fracture Mechanics (Westergaard solution). This type of enrichment
was first used in combination with the XFEM by [BB99]. The near-tip displacement field
in an elastic continuum is spanned by the following four functions:

B1(r, θ) =
√
r sin

θ

2
B2(r, θ) =

√
r cos

θ

2

B3(r, θ) =
√
r sin

θ

2
cos θ B4(r, θ) =

√
r cos

θ

2
cos θ

Here r is the radius and θ is the angle in a polar coordinate system associated with the
crack tip. The angle θ is contained in the range [−π, π]. The first function B1 is a
so-called branch function and it is discontinuous along the crack line. The displacement
”jump” diminishes towards the tip of the crack until it is 0 at the exact location of the tip.
The other three functions B2 to B4 are added to improve the accuracy of the solution.
Incorporating a crack tip enrichment hence requires four enriched shape functions per
node.

An alternative to the above mentioned branch function is the use of a smooth ramp
function R(x̃, ỹ) which is multiplied by the sign(x, y) function as proposed in [DMB00].
The smooth ramp function is given by:

R(x̃, ỹ) =

⎧⎨⎩3
(

x̃
lc

)2

+ 2
(

x̃
lc

)3

for x̃ ≤ 0

0 for x̃ > 0

Where x̃ and ỹ are Cartesian coordinates associated with the crack tip and lc is the
characteristic length of the element containing the crack tip. The enrichment function Ψ
is then defined as:

Ψ(x, y) = R(x̃, ỹ) · sign(x, y)

The ramp function assures that the discontinuity reduces to 0 at the crack tip whereas
the sign function introduces the discontinuity along the line of the crack. In order to
improve the accuracy of the solution the discontinuous ramp function can also be used



98 CHAPTER 3. NUMERICAL MODELING OF QUASI-BRITTLE MATERIALS

in combination with the three continuous terms of the near-tip asymptotic field. The
advantage of the discontinuous ramp function over the branch function is that it requires
no mapping to align the discontinuity with the edges of the crack.

The crack tip enrichment (branch or ramp function) is added to the approximation space
of the elements containing a crack tip. In other words the nodes whose support is not
bisected but only slit by the discontinuity are enriched with the crack tip enrichment.
When comparing the condition for the crack tip enrichment with the condition for the
crack body enrichment (Sign or Heaviside function) one can notice that exactly those
nodes which are not enriched by the first are enriched by the second enrichment. In order
to improve the accuracy of the solution – especially for nonlinear fracture mechanics
problems or for very fine meshes – the asymptotic near-tip field enrichment can also be
extended to several elements in the vicinity of the crack tip.

Figure 3.26: Crack tip enrichment (triangle) and crack body enrichment (circle)

Figure 3.26 shows the enrichment of a crack with two tips. The enrichment of every node
is chosen on the basis of whether its support is completely bisected (Heaviside enrichment
indicated by a circle) or just slit (tip-enrichment indicated by a triangle).

Weak Discontinuity Enrichment

A final enrichment worth mentioning is the continuous but kinked v-shaped function (see
Figure 3.27). Since it is continuous but its derivative contains a discontinuity it can be
used to model weak discontinuities such as localization bands [BMUP01]. However, its
main field of application is to bi-material problems or material phase interfaces. Usually
the ”absolute value function” abs(x) is used.
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Figure 3.27: ”Absolute value” function

3.3.5 Literature Overview of the XFEM

After having explained the basic principles of the eXtended Finite Element Method a
short historical overview of the most important contributions with a special emphasis on
crack modeling is given. Other summaries can also be found in [KX03, BL05, Fuh04] and
[AH08].

Partition of Unity Method The fundamentals of the eXtended Finite Element Method
were published in 1996 by Melenk and Babuška. In their milestone paper [MB96] they
introduce the Partition of Unity Method (PUM) on which the entire XFEM is based.
This was then soon followed by a second paper on the same subject [BM97]. Within
these papers the mathematical basis for the PUM is outlined and the required proofs as
well as some examples are given. However, these papers approach the subject from a very
theoretical point of view.

Crack-tip enrichment The first paper which was directly considering an engineering
problem is the seminal paper by Belytschko and Black published in 1999 [BB99]. In it the
authors tackle the problem of crack growth simulation by Finite Elements. The main idea
in the paper is to incorporate a set of functions which span the asymptotic near-tip field of
a crack into the Finite Element approximation space. This set consists of a discontinuous
branch function and three continuous trigonometric functions spanning the near-tip field
encountered in Linear Elastic Fracture Mechanics (see Section 3.3.4). The crack surfaces
are assumed to be tension-free. One of the drawbacks of this approach is that it requires
a relatively complicated mapping procedure for each crack segment. Because of this the
proposed method is combined with a remeshing technique which is applied at a certain
distance away from the crack tip.

Jump enrichment The method proposed in [BB99] is further improved in [MDB99]. A
discontinuous function called the generalized Haar function is added to the approximation
space of the elements completely crossed by the crack. The generalized Haar function takes
the value −1 on one side of the crack and the value +1 on the other side. By introducing
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such a discontinuous enrichment remeshing can be avoided. The asymptotic near-tip field
is then exclusively used to enrich those nodes in the vicinity of the crack tip.

Ramp enrichment A further contribution to the XFEM is made in [DMB00]. For
kinked cracks the near-tip branch function requires a mapping procedure for each segment.
By using a discontinuous ramp function instead of the branch function the mapping
procedure which is necessary to align the enrichment function with the crack segments can
be avoided. However, the accuracy of the solution near the crack tip is slightly reduced.
The paper also presents the application of the XFEM to Mindlin-Reissner plates.

Intersecting cracks In [DMD+00] the concept of crack modeling with the XFEM is
extended to intersecting and branching cracks. The intersection is accounted for by an
additional junction enrichment. The paper also discusses the representation of holes by
the XFEM.

Cracks One of the most often cited papers about the XFEM is [BMUP01]. It is an
overview paper which more or less summarizes and unifies the earlier contributions to the
XFEM. Therein the enrichment by discontinuous step functions as well as the enrichment
by near-tip field functions is described. The paper also addresses the issue of intersect-
ing and branching discontinuities as well as the incorporation of weak discontinuities.
Furthermore, the case of a discontinuity along a slip line is illustrated.

Frictional contact The first to consider nonlinear crack behavior were [DMB01]. In
their paper the procedure for crack growth simulations is extended to cracks with frictional
contact.

Cohesive cracks There are several papers which introduce cohesive forces to the crack
representation within the XFEM. The earliest and most important ones are [WS01] and
[MB02]. In both these studies the employed traction–separation law is similar to the ones
used in Smeared Crack Models. In [MP03] a Cohesive Crack Model with a damage-type
constitutive law is used in combination with the XFEM. Furthermore, the model uses
discontinuous polynomial functions for the crack tip enrichment and it is argued that the
near-tip asymptotic fields are only accurate for the linear, elastic solution.

Curved cracks In [SBCB03] the description and the implementation of curved cracks
is treated. The formulation of elements with curved discontinuities evolves naturally when
higher order interpolation functions are used for the standard Finite Element displacement
field. Another paper that treats curved cracks but this time with cohesive forces is [ZB03].
A further contribution of the latter paper is to drop the branch functions because they can
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create blending problems (see Section 3.3.3). Instead a linear discontinuous enrichment
function which is constrained to become zero at the crack tip is used.

Crack coalescence A very interesting application of the Cohesive Crack Model in
combination with the XFEM is proposed by [RdBN03]. There the XFEM is used to
simulate the growth and coalescence of cracks. By introducing the concept of cohesive
segments the entire fracture process beginning with crack nucleation at different locations
followed by crack growth and finally coalescence is simulated. In [dBRN06] the same
concept is extended to dynamic crack propagation.

Multiple cracks In a similar fashion the authors of [BZMB04] considered multiple crack
growth and coalescence of cracks in solids governed by linear, elastic fracture mechanics.
The proposed procedure handles crack tip, jump and junction enrichments and a criterion
for determining the active cracks based on energy dissipation is presented.

Blending elements In [CWB03] the problems associated with partially enriched el-
ements and a proposed methodology for constructing suitable blending elements (see
Section 3.3.3) is presented.

Dynamic crack growth A method for dynamic crack growth simulation is introduced
in [BCXZ03]. The elements are based on the enrichment proposed in [ZB03] which elim-
inates the need for the near tip asymptotic field enrichment. An interesting feature of
the method proposed in [BCXZ03] is that the criterion for crack propagation is not based
on stress intensity factors or nonlocal stresses but on the loss of hyperbolicity of the gov-
erning equations (which marks the starting point of localization). In other words the
propagation of the cracks is purely driven by the material model of the continuum.

Level Set Method A further fundamental contribution to the XFEM is its combination
with the Level Set Method [OS88, Set99]. This procedure is used to model cracks in
[SCMB01a] and to model holes and inclusions in [SCMB01b]. The combination of the
XFEM and Level Sets is then further elaborated in [VBB03] where it is extended by the
notion of Vector Level Sets which can be used as a more elegant way to describe crack
growth.

3D cracks One large field of application for the XFEM is the simulation of three-
dimensional crack growth. The first paper on the subject was published by Sukumar et al.
[SMMB00]. In it planar cracks in three-dimensional elastic continua are analyzed. A few
years later the method is improved and the crack geometry and evolution are described by
Level Sets and the Fast Marching Method (FMM) [SCM03]. This method is also applied
to non-planar three-dimensional cracks as described in [MGB02] and [GMB02]. The above



102 CHAPTER 3. NUMERICAL MODELING OF QUASI-BRITTLE MATERIALS

mentioned applications illustrate the huge capabilities of the XFEM in providing a means
to model discontinuities independent of the Finite Element mesh.

Continuous–discontinuous models Some of the latest research on the XFEM goes
in the direction of combining it with Regularized Continuum Models [Wel01, WdBS01,
WSdB02, Sim03, SWS03, SS04, CMP07]. The basic idea is to use regularized Continuum
Damage Models (rate-dependent or nonlocal) in the early stages of failure. As soon as a
critical level of damage is accumulated a strong discontinuity is introduced by the XFEM.
On one hand this procedure profits from a good continuum representation of the diffuse
damage mechanisms in the early stages of failure. On the other hand it also allows for
the complete decoupling of regions separated by a crack in the later stages of failure
preventing spurious damage growth.

3.4 Numerical Modeling of HPFRCC

Although the literature on numerical modeling of concrete is abundant there are only
a handful of publications on the structural-scale simulation of High Performance Fiber
Reinforced Cementitious Composites. Some research was done on the micromechanical
modeling of HPFRCCs in an attempt to link the microstructure (fibers, matrix, bond,
etc.) to the composite behavior (e.g. [KLL00]). However, methods for the simulation of
the structural response of HPFRCC elements subjected to a two- or three-dimensional
stress state are scarce and mostly limited to ECCs (see Section 2.4). In the following
Section 3.4.1 the most commonly used structural-scale models for High Performance Fiber
Reinforced Cementitious Composites are presented. A summary can also be found in
[Kab03]. The section is then concluded by introducing the new model for HPFRCCs that
was developed during this thesis.

3.4.1 Literature Review of HPFRCC Models

Coaxial Rotating Crack Model One modeling approach for High Performance Fiber
Reinforced Cementitious Composites (such as ECCs) is proposed by Han, Feenstra and
Billington [HFB03]. It is based on a coaxial Rotating Crack Model within the general
framework of Smeared Crack Models. The basic assumption of the Rotating Crack Model
is that the strain tensor and the axes of orthotropy (cracks) are always coaxial (see
Section 3.2.4). Under this assumption the cracks can be represented by a scalar, nonlinear
stress–strain law. The latter can either be determined experimentally (by a cyclic uniaxial
tensile test) or analytically (e.g. [KLL00]). The advantages of this model are that it is
computationally efficient, robust and that it can be incorporated into standard Finite
Element codes. The model is validated in [HFB03] by comparison with ECC cantilever-
beam tests ([FL03a]) and the results showed to be sufficiently accurate.
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Hybrid Rotating–Fixed Smeared Crack Model An improvement of the model by
[HFB03] is proposed in [HET09]. The basic idea is to use a hybrid between a Rotating
Crack Model and a Fixed Crack Model. The Rotating Crack Model is used during the
first stage of behavior when the HPFRCCs are exhibiting multiple cracking and strain-
hardening. As soon as crack localization takes place the model switches to a Fixed Crack
Model. Mesh-size sensitivity is counteracted by regularizing the constitutive model with
the size of the Finite Element mesh. The model is validated with experiments on reinforced
HPFRCC shear walls under reversed cyclic loading.

Model Based on Plasticity and Embedded Discontinuities Another very inter-
esting model for the numerical simulation of ECCs is proposed by Kabele and Horii
[KH96]. In their work they identify two phases of cracking behavior: first a phase of
multiple cracking resulting in a pseudo strain-hardening behavior followed by a phase of
crack localization and tension-softening. Since both phases of behavior are completely
different they are also treated differently in the proposed numerical model. The pseudo
strain-hardening phase is modeled within the framework of hardening Plasticity by em-
ploying a Rankine yield criterion with associated flow rule and kinematic hardening. The
phase of localization and softening is represented by cracked elements with embedded
displacement discontinuities (Embedded Discontinuities Method).

Model Based on a Fixed Smeared Crack Model and Crack Bands In [KTIH99]
another computational method for the simulation of ECC is presented. Similarly to the
model presented in the previous paragraph a distinction between the multiple cracking
phase and crack localization is made. The former is modeled by a Fixed Smeared Crack
Model. This has the advantage that sliding along cracks can be accounted for explicitly.
In the proposed approach shear-stress transfer across sliding cracks is determined by a
micromechanical model. Localized cracks are modeled separately by a Crack Band Model
(Smeared Crack Model) and shear-stress transfer is also accounted for during this phase.
Von Mises Plasticity with isotropic hardening is used as a constitutive law in compression
without any extensive justification. In [KTIH99] this model is successfully applied to
ECC shear panels and an ECC cover concrete layer.

Model Based on an Equivalent Continuum and Crack Bands In [Kab00, Kab02]
the model from the preceding paragraph is further improved to include micromechanical
concepts not only for the shear transfer but also the normal crack bridging stress. This
is done by modeling the multiple cracking phase by an equivalent continuum. The basic
idea behind this concept is that a Representative Volume Element (RVE) is defined which
represents a sort of ”averaged” material point. The constitutive law for this material
point is then obtained by linking the micromechanics within the RVE to an equivalent
macroscopic stress–strain relationship. Localized cracks are again modeled by a Crack
Band Model. This concept of representing ECCs by a cascade of models on different scales
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and then ”plugging” the smaller scale model into the larger scale model is presented in
[Kab04, Kab07] in even more detail and an application is shown in [Kab06].

Model Based on Sequentially Linear Analysis A different approach is taken in
[Bil09]. This paper compares two different models by performing a case study on an
ECC-beam. The first model is a total-strain based Smeared Crack Model similar to
the ones already discussed and the second one is based on sequentially linear analysis.
Although both models seem to capture the strain-hardening behavior pretty well some
problems are encountered during the crack localization and softening phase. The Smeared
Crack Model exhibits convergence problems whereas the linear sequential analysis shows
some mesh sensitivity.

Isotropic Damage Model A further possibility to model High Performance Fiber
Reinforced Cementitious Composites is presented in [BvZ07]. In this paper a model based
on Continuum Damage Mechanics is developed. More specifically an Isotropic Damage
Model is used to account for cracking in both the strain-hardening and the strain-softening
regime. In order to deal with the issues associated with crack localization and mesh-size
dependency a material length scale equal to half the fiber length is introduced as a means
of regularization. The model is validated with three-point bending tests and an Iosipescu
shear beam test [vZ07].

Plasticity Model A final model worth mentioning is the one presented in [Sir09]. It
is based on the general framework of Plasticity. Starting out with a traditional four-
parameter Plasticity model an extension to High Performance Fiber Reinforced Cemen-
titious Composites is developed. The model includes softening in compression and both
hardening and post-peak softening in tension. The advantage of this model is that once
the yield surface is defined and the flow rule as well as the hardening respectively soften-
ing laws are formulated the model is computationally efficient and easy to implement in
a commercial software package. However, the model uses a phenomenological approach
and does not capture the physical reality of crack formation and localization.

3.4.2 Outline of the Proposed Model for HPFRCC

Recapitulating Section 3.4.1 it seems that the most popular and most often used models
for HPFRCC structural elements are variants of the Smeared Crack Model. Throughout
all studies it is recognized that Smeared Crack Models perform well during the strain-
hardening phase of the behavior of HPFRCCs but they exhibit a number of problems
after crack localization such as mesh-size sensitivity, convergence problems or difficult
choices for regularization parameters. This becomes most evident in [DHB03] where the
influence of different parameters of a Smeared Crack Model for HPFRCC elements is
explicitly investigated. However, this problem is not unique to HPFRCCs but it is a



3.4. NUMERICAL MODELING OF HPFRCC 105

general deficiency of Smeared Crack Models because they try to capture a discrete crack
by a continuum representation. For more information on the shortcomings of Smeared
Crack Models (e.g. mesh-sensitivity, mesh-bias, stress-locking etc.) refer to Section 3.2.5
and [Rot88]. The goal of this thesis is to propose a model that solves these issues.

As we have seen in Section 2.1.3 High Performance Fiber Reinforced Cementitious Com-
posites show three different phases of tensile behavior which are namely an elastic phase,
a strain-hardening and a multiple cracking phase followed by a phase of crack localization
and softening. It seems reasonable to model each of these phases individually as was
also recognized by a number of authors mentioned in Section 3.4.1. Therefore, the model
developed in this thesis uses the following approach which is also illustrated in Figure 3.28:

� the elastic phase is modeled by a linear, elastic plane-stress continuum model

� the multiple cracking phase is modeled by a Smeared Crack Model

� the crack localization phase is modeled by discrete cohesive cracks with the eXtended
Finite Element Method

Phase I: Elastic

Phase III: XFEM

Phase II: S
MCR

Figure 3.28: Outline of the new model for HPFRCCs

The most significant advantage of this new model over the ones presented in Section 3.4.1
is a more accurate and phenomenologically correct treatment of crack localization and
softening. The different parts of the model will be presented in the following Chap-
ter 4 (elastic), Chapter 5 (hardening) and Chapter 6 (softening).



Chapter 4

Elastic Model (FE Basics)

4.1 Introduction

In this chapter a model for the elastic phase of the behavior of HPFRCCs in accordance
with the suggested decomposition in Section 3.4.2 is presented. We will start out by
defining a Finite Element that is used for the model and explain how it captures the
elastic behavior of a HPFRCC structural element. Although the Finite Element Method
is well known [Bat96] it is important to be familiar with the details of the procedure in
order to understand the extensions that are made in the following Chapter 6 where the
eXtended Finite Element Method is used to capture localized cracking.

In perspective of the most common practical applications for HPFRCCs (some of which
were mentioned in Chapter 2) it was decided to develop a two-dimensional Finite Element
model for the state of plane-stress. This means that the model can be used to predict
the behavior of structural elements for which the stress components perpendicular to the
main plain of action are zero or insignificant. Hence, the proposed model can be used for
panels, wall structures and beams.

Because the model uses the eXtended Finite Element Method for crack localization (see
Chapter 6) it was not possible to develop a ”user” element for an existing Finite Element
code. Therefore, it was decided to write a custom Finite Element program from scratch
using the programming language Python [vR06]. Python is a free and open-source pro-
gramming language developed by Guido van Rossum which allows fast coding and features
the Object-Oriented Programming paradigm (OOP). The program developed during this
thesis follows this OOP paradigm making future extension by other researchers much more
convenient. It is important to note that the program was written for scientific purposes
rather than commercial use and its intent is to demonstrate the validity of the proposed
model. For this reason no emphasis was put on computational efficiency or speed and no
graphical user interface is provided.

The developed Finite Element program uses isoparametric, plane-stress, 8-node quadri-
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lateral elements. The main reason for using 8-node and not 4-node elements is that they
are able to reproduce a linear strain field variation over an element (instead of a con-
stant strain field) which is the typical situation for most applications (e.g. beams) and
results in smother strain and stress profiles as well as better convergence performance.
The implemented quadrilateral element is presented in the following Section 4.2.

4.2 Isoparametric Quadrilateral Finite Element

This Section will provide the theoretical basis for the implemented Finite Element and
will serve as a reference for the following chapters. It can be seen as a short summary of
Finite Element Analysis but of course the main goal is not to give an extensive lecture
on the Finite Element Method but rather to summarize the most important concepts
and directly apply them to the specific case of the aforementioned isoparametric, 8-node
quadrilateral element. Most of the developments can also be found in [Bat96].

The standard Finite Element Analysis procedure with isoparametric plane-stress elements
consists of the following basic steps:

1. Discretization

2. Selection of shape functions (interpolation functions)

3. Formulation of the shape function matrix N

4. Formulation of the strain–displacement transformation matrix B

5. Computation of the element stiffness matrix Ke and force vector Fe

6. Assembly

7. Solution of the global system of equations

8. Update of the element state and computation of secondary results

9. Equilibrium check (not mandatory for linear analysis)

The individual steps are explained in more detail in the following Sections 4.2.1 – 4.2.9.

4.2.1 Discretization

The first step in the Finite Element procedure is to discretize the computational domain.
This means that a structure is subdivided into a number of Finite Elements which are
defined by the geometric location of their nodes. The isoparametric 8-node elements
used in this thesis are defined by four corner nodes and four intermediate nodes on the
element edges. Every edge passes through three adjacent nodes and the element’s shape
is completely defined by the location of the nodes. By consequence each edge can be
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parabolic. An example of a quadrilateral Finite Element and the used node numbering is
shown in the following Figure 4.1a.
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(b) Parent domain

Figure 4.1: Isoparametric 8-node quadrilateral element

Figure 4.1b shows what is called the parent element. Since every element within a structure
can theoretically be different a parent element is defined. The latter is formulated in a
coordinate system of natural coordinates r, s which both range from −1 to 1. The real
element is then obtained from the parent element by a coordinate mapping procedure
which uniquely relates the natural coordinates r, s to the real coordinates x, y. This
mapping procedure will be introduced in Section 4.2.2.

At each node of an element a number of degrees of freedom are introduced. This consti-
tutes the basic step in the discretization process. It is assumed that a continuum with
its infinite number of degrees of freedom can be approximated by a discrete number of
nodes and their associated degrees of freedom. Each node i of the considered plane-stress
element has two associated displacement degrees of freedom denoted by ui and vi in the
directions of the global x- and y-axis respectively. From this we can define a displace-
ment vector de which contains all nodal degrees of freedom of an element as given in
Equation (4.1).

de = (u1, v1, u2, v2, u3, v3, u4, v4, u5, v5, u6, v6, u7, v7, u8, v8) (4.1)

Note that the degrees of freedom are ordered by node.
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4.2.2 Shape Functions

The next step is to choose a set of so-called shape functions Ni which are used to approx-
imate the unknown fields within the element. Sometimes these shape functions are also
called interpolation functions since they interpolate the nodal values in order to find a
value at any position within the element. The element presented here is called isopara-
metric because all unknowns of the element (including the geometry) are interpolated
using the same set of interpolation functions.

Note that every node of the element has an associated shape function. The Finite Element
Method then uses the following procedure: Any unknown field is interpolated by multi-
plying the nodal value of the respective unknown with the associated nodal shape function
and then summing up the contributions of all shape functions. This is shown exemplarily
in Equations (4.2) for the interpolation of the geometry i.e. the nodal coordinates (xi, yi).

x(r, s) =
8∑
1

Ni(r, s)xi y(r, s) =
8∑
1

Ni(r, s)yi (4.2)

This constitutes a mapping procedure for the geometry and can be understood as fol-
lows: Any given point within the parent element has a pair of coordinates (r, s). The
corresponding point in the real element is obtained by computing the values of the shape
functions Ni at the coordinates (r, s) and then multiplying them with the coordinates
(xi, yi) of the associated nodes. Finally, the contributions of all nodes are summed up to
yield the global coordinates (x, y).

This procedure is not only used for the interpolation of the geometry but for all unknown
fields. For the displacement fields this yields the following Equations (4.3).

u(r, s) =

8∑
1

Ni(r, s)ui v(r, s) =

8∑
1

Ni(r, s)vi (4.3)

Since we are formulating an isoparametric element the same shape functions Ni as for the
geometry are used. The displacements of any point (r, s) within the element are again
found by interpolating the nodal displacements values ui and vi.

The main requirement for a set of shape functions is that they form a Partition of Unity
(see Section 3.3.1). This means that the sum of all shape functions is always equal to
unity at every point within the element. Another typical requirement is that a shape
function has the value 1 at the location of its associated node and that all other shape
functions are reduced to zero at that location. This condition will guarantee that the
nodal value and the value of the interpolation field at the node location coincide.
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Using these conditions the shape functions for the 8-node quadrilateral element can easily
be determined [Bat96]. They are given in Equations (4.4).

N1(r, s) = 1/4 · (1 + r)(1 + s)− 1/4 · (1− r2)(1 + s)− 1/4 · (1− s2)(1 + r) (4.4a)

N2(r, s) = 1/4 · (1− r)(1 + s)− 1/4 · (1− r2)(1 + s)− 1/4 · (1− s2)(1− r) (4.4b)

N3(r, s) = 1/4 · (1− r)(1− s)− 1/4 · (1− r2)(1− s)− 1/4 · (1− s2)(1− r) (4.4c)

N4(r, s) = 1/4 · (1 + r)(1− s)− 1/4 · (1− r2)(1− s)− 1/4 · (1− s2)(1 + r) (4.4d)

N5(r, s) = 1/2 · (1− r2)(1 + s) (4.4e)

N6(r, s) = 1/2 · (1− s2)(1− r) (4.4f)

N7(r, s) = 1/2 · (1− r2)(1− s) (4.4g)

N8(r, s) = 1/2 · (1− s2)(1 + r) (4.4h)

It can easily be verified that the Equations (4.4) satisfy the requirements mentioned above.

4.2.3 Shape Function Matrix

The next step is to gather the shape functions from Equations (4.4) into the so-called
shape function matrix N. For the 8-node isoparametric plane-stress element this is given
in Equation (4.5).

N =

[
N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8 0
0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8

]
(4.5)

This matrix allows the more convenient and computer friendly computation of the un-
known fields. Note that the shape functions Ni(r, s) are still functions of r, s so the shape
function matrix N(r, s) is also a function of r, s.

Using this compact notation and combining Equations (4.3) and (4.5) the displacement
vector u of any given point (r, s) in the quadrilateral element can be computed as shown
in Equation (4.6) where de is the vector of nodal displacement unknowns introduced in
Equation (4.1).

u(r, s) =

{
u(r, s)
v(r, s)

}
= N(r, s) · de (4.6)

This relationship stipulates that the displacement of any point (r, s) can be computed
from the nodal displacements.
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4.2.4 Strain–Displacement Transformation Matrix

By using the kinematic equations of the underlying mechanical problem the strain field
can be computed from the displacement field. For the plain-stress problem considered
here the kinematic equations linking the strain ε to the displacement u are given by
Equation (4.7).

ε(r, s) =

⎧⎨⎩
εx
εy
γxy

⎫⎬⎭ =

⎡⎣∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

⎤⎦{
u(r, s)
v(r, s)

}
(4.7)

In Equation (4.7) ∂ denotes the partial differential operator. Together with Equation (4.6)
the strain can be computed as expressed by Equation (4.8).

ε(r, s) =

⎡⎣∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

⎤⎦ ·N(r, s) · de (4.8)

Usually a new matrix called the strain–displacement transformation matrix B is intro-
duced. It is constructed by applying the differential operators from Equation 4.8 to the
shape function matrix N (Equation 4.5). Following this procedure the strain can be
computed directly from the nodal displacements by the following Equation (4.9a).

ε(r, s) = B(r, s) · de with (4.9a)

B =

⎡⎣Nx
1 0 Nx

2 0 · · · Nx
7 0 Nx

8 0
0 Ny

1 0 Ny
2 · · · 0 Ny

7 0 Ny
8

Ny
1 Nx

1 Ny
2 Nx

2 · · · Ny
7 Nx

7 Ny
8 Nx

8

⎤⎦ (4.9b)

Nx
i := ∂Ni/∂x Ny

i := ∂Ni/∂y (4.9c)

The high indices denote a derivation by the indicated coordinate. The problem with the
derivation by x and y is that the shape functions Ni are expressed in natural coordinates
(r, s) and not real coordinates (x, y). However, r and s are functions of x and y.

In order to solve this problem the so-called Jacobi transformation is applied to the differen-
tials. This transformation links the differential operators in the natural coordinate system
to the differential operators in the global coordinate system. Using the standard proce-
dure for the derivation of vector functions and respecting the chain rule it becomes clear
that the natural differentials can be linked to the real differentials by Equations (4.10).

∂

∂r
=

∂

∂x
· ∂x
∂r

+
∂

∂y
· ∂y
∂r

∂

∂s
=

∂

∂x
· ∂x
∂s

+
∂

∂y
· ∂y
∂s

(4.10)
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Using matrix notation Equations (4.10) can be rewritten as Equation (4.11).

{
∂/∂r
∂/∂s

}
=

[
∂x/∂r ∂y/∂r
∂x/∂s ∂y/∂s

]
︸ ︷︷ ︸

J

·
{
∂/∂x
∂/∂y

}
(4.11)

In Equation (4.11) the Jacobi transformation matrix J is introduced (to be precise it is
the transposed of the Jacobi-matrix found in the mathematical literature). Of course the
inverse transformation is given by Equation (4.12).

{
∂/∂x
∂/∂y

}
= J−1 ·

{
∂/∂r
∂/∂s

}
(4.12)

Applying this result to Equation (4.9c) the shape function derivatives by x and y can be
replaced by their natural counterparts.

{
Nx

i (r, s)
Ny

i (r, s)

}
= J−1

{
N r

i (r, s)
N s

i (r, s)

}
(4.13)

The determination of the shape function derivatives in the natural coordinate system is
straight forward. Using Equation (4.4) this yields Equations (4.14) and (4.15).

N r
1 (r, s) = +1/4 · (1 + s)−1/4 · (1− s2)+1/2 · r(1 + s) (4.14a)

N r
2 (r, s) = −1/4 · (1 + s)+1/4 · (1− s2)+1/2 · r(1 + s) (4.14b)

N r
3 (r, s) = −1/4 · (1− s)+1/4 · (1− s2)+1/2 · r(1− s) (4.14c)

N r
4 (r, s) = +1/4 · (1− s)−1/4 · (1− s2)+1/2 · r(1− s) (4.14d)

N r
5 (r, s) = −r(1 + s) (4.14e)

N r
6 (r, s) = −1/2 · (1− s2) (4.14f)

N r
7 (r, s) = −r(1− s) (4.14g)

N r
8 (r, s) = +1/2 · (1− s2) (4.14h)
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N s
1 (r, s) = +1/4 · (1 + r)−1/4 · (1− r2)+1/2 · s(1 + r) (4.15a)

Ns
2 (r, s) = +1/4 · (1− r)−1/4 · (1− r2)+1/2 · s(1− r) (4.15b)

Ns
3 (r, s) = −1/4 · (1− r)+1/4 · (1− r2)+1/2 · s(1− r) (4.15c)

Ns
4 (r, s) = −1/4 · (1 + r)+1/4 · (1− r2)+1/2 · s(1 + r) (4.15d)

Ns
5 (r, s) = +1/2 · (1− r2) (4.15e)

N s
6 (r, s) = −s(1− r) (4.15f)

N s
7 (r, s) = −1/2 · (1− r2) (4.15g)

N s
8 (r, s) = −s(1 + r) (4.15h)

What remains to be determined are the terms of the Jacobi transformation matrix in
Equation (4.11). For this purpose the coordinate interpolation procedure given in Equa-
tions (4.2) can be used. Performing the necessary derivations we find Equations (4.16).

∂x

∂r
=

8∑
1

∂Ni(r, s)

∂r
xi =

8∑
1

N r
i (r, s)xi (4.16a)

∂x

∂s
=

8∑
1

∂Ni(r, s)

∂s
xi =

8∑
1

N s
i (r, s)xi (4.16b)

∂y

∂r
=

8∑
1

∂Ni(r, s)

∂r
yi =

8∑
1

N r
i (r, s)yi (4.16c)

∂y

∂s
=

8∑
1

∂Ni(r, s)

∂s
yi =

8∑
1

N s
i (r, s)yi (4.16d)

The terms of the Jacobi matrix in Equation (4.16) can be computed numerically at the
location of a point of interest (r, s) for which the strain should be determined.

4.2.5 Element Stiffness Matrix and Force Vector

As a next step the element stiffness matrix Ke and the element force vector Fe are
computed. These two key quantities can be derived from the weak form of equilibrium of
a Finite Element (sometimes also called the integral form of equilibrium). It is given in
Equation (4.17).
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∫
Ωe

δεT · σ dΩe =

∫
Ωe

δuT · f dΩe + δde
T ·Pe (4.17)

The weak form of equilibrium can be interpreted as the equilibrium of the internal and
the external virtual work over the domain of a Finite Element Ωe. Let us assume that a
Finite Element which is in equilibrium is subjected to an infinitesimal, virtual nodal dis-
placement δde. This nodal displacement will cause an infinitesimal, virtual displacement
field variation δu which in turn will cause an infinitesimal, virtual strain field variation
δε. For an element subjected to this virtual deformation the weak form of equilibrium
states that the external virtual work done by the element nodal forces Pe and the element
surface forces f should be equal to the internal virtual work done by internal stresses σ.

By further assuming a linear, elastic constitutive law (as it is postulated for this phase
of the behavior of HPFRCCs in Section 4.1) the stress and strain fields can be linked by
the following Equation (4.18).

σ = Dε (4.18)

In the case of the linear, elastic, plane-stress conditions used here the constitutive matrix
D is given by Equation 4.19 [Bat96].

D =
E

1− ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ (4.19)

Substituting Equation (4.18) into Equation (4.17) the latter becomes Equation (4.20).

∫
Ωe

δεT ·D · ε dΩe =

∫
Ωe

δuT · f dΩe + δde
T ·Pe (4.20)

The next step is to discretize the integral form of equilibrium in Equation (4.20) fol-
lowing the Bubnov-Galerkin approach [Bat96]. This means that the displacement field
and the strain field are replaced by their Finite Element approximations given in Equa-
tions (4.6) and (4.9a). Note that the same interpolation is used for both the virtual and
the real fields. The discretized equation of equilibrium is given by Equation (4.21).

∫
Ωe

(B · δde)
T ·D ·B · de dΩe =

∫
Ωe

(N · δde)
T · f dΩe + δde

T ·Pe (4.21)

And after some simple algebraic transformation this becomes Equation (4.22).

δdT
e ·

∫
Ωe

BTDB dΩe · de = δdT
e

∫
Ωe

NT f dΩe + δde
T ·Pe (4.22)
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It is clear that Equation (4.22) must hold for any arbitrary variation of the virtual nodal
displacements δde which finally leads to the Finite Element Equilibrium Equation (4.23).

∫
Ωe

BTDB dΩe︸ ︷︷ ︸
Ke

·de =

∫
Ωe

NT f dΩe︸ ︷︷ ︸
Fe

+Pe (4.23)

The matrix Ke is called the element stiffness matrix and it expresses the relationship
between any externally applied forces and the resulting nodal displacements. The vector
Fe is called the element force vector and it represents the work-equivalent nodal forces
of any arbitrary element loads. Pe is the vector of external forces acting on the element
nodes.

The next question that arises is how to compute the integrals for the element stiffness
matrix and the element load vector. We recall that both the shape function matrix N(r, s)
(see Equation (4.5)) as well as the strain–displacement transformation matrix B(r, s) (see
Equation (4.9a)) are functions of the natural coordinates (r, s). Therefore, it is reasonable
to compute the integrals in the natural domain instead of the real domain. This requires
a coordinate transformation of the integration domain. Without going into any details
the infinitesimal volume element dΩe can be expressed by the differentials of the natural
domain as given in Equation (4.24).

dΩ = t · dx · dy = det (J) · t · dr · ds (4.24)

The variable t represents the thickness of the plane-stress element. As long as the thickness
does not vary within the element there is no need to integrate over it since the stress
and strain are considered to be constant over that dimension (part of the plane-stress
assumptions). It is sufficient to multiply the area of the domain with the thickness of the
element.

After performing a coordinate system transformation from the real to the natural domain
using Equation (4.24) and considering that the natural domain is spanned by r ∈ (−1, 1)
and s ∈ (−1, 1) the element stiffness matrix and the element force vector can be expressed
by Equation (4.25).

Ke =

∫ 1

r=−1

∫ 1

s=−1

BT (r, s)D(r, s)B(r, s) detJ(r, s) t drds (4.25a)

Fe =

∫ 1

r=−1

∫ 1

s=−1

NT (r, s)f(r, s) detJ(r, s) t drds (4.25b)

The integrals in Equation (4.25) can be computed with a numerical integration scheme.
Two of the most popular numerical integration schemes in Finite Element Analysis are
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the Gauss-Legendre and the Gauss-Lobatto integration rules. Here the Gauss-Legendre
quadrature is chosen. The basic principle behind these numerical integration schemes is
to compute the values of the integrand at several specific and well chosen locations (called
Gauss points) and then multiplying them with the respective Gauss point’s representative
surface (called its weight).

The Gauss-Legendre scheme is able to integrate a regular polynomial function of the order
2n− 1 correctly if n Gauss points are used. The plane-stress 8-node elements used here
will at most produce a stiffness matrix of the 4th order in both r and s as long as the
distortion remains constant (J constant). Therefore, a 3 × 3 Gauss-Legendre integration
rule is required to integrate the stiffness matrix exactly. For more heavily distorted
elements the 3 × 3 integration scheme is only an approximation. However, with mesh-
refinement the solution will rapidly converge towards the exact solution. The following
Table 4.1 gives the locations and weights of the Gauss-Legendre integration points in a
3× 3 quadrature over the natural domain r ∈ (−1, 1), s ∈ (−1, 1).

rgp sgp αgp

+
√
3/5 +

√
3/5 5/9 · 5/9

−√
3/5 +

√
3/5 5/9 · 5/9

−√
3/5 −√

3/5 5/9 · 5/9
+
√
3/5 −√

3/5 5/9 · 5/9
0 +

√
3/5 8/9 · 5/9

−√
3/5 0 5/9 · 8/9
0 −√

3/5 8/9 · 5/9
+
√
3/5 0 5/9 · 8/9
0 0 8/9 · 8/9

Table 4.1: Gauss-Legendre Quadrature 3× 3

Replacing the analytical integral in Equations (4.25) with the numerical integration
scheme the element stiffness matrix and the force vector can be computed as the sums
over all Gauss points given in Equations (4.26).

Ke =
∑

Gauss points

BT (rgp, sgp)D(rgp, sgp)B(rgp, sgp) · t · detJ(rgp, sgp)αgp (4.26a)

Fe =
∑

Gauss points

NT (rgp, sgp)f(rgp, sgp) · t · detJ(rgp, sgp)αgp (4.26b)

In Equation (4.26) (rgp, sgp) are the natural coordinates of a Gauss point and αgp is its
respective weight. This final results shows that the element stiffness matrix is computed by
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evaluating the strain–displacement transformation matrix and the Jacobi transformation
matrix at a number of discrete integration points.

4.2.6 Assembly

The next step in the Finite Element procedure is the assembly of all elements to a global
structure. Since elements connecting to the same node and sharing the same degrees of
freedom act in parallel the contributions of each individual element to the global stiffness
matrix and the global force vector can simply be added up. Special care has to be
taken that the element contributions are added at the correct location within the global
system of equations. For this purpose it is easiest to number all degrees of freedom of the
system sequentially. Each number then corresponds to one equation. By identifying which
element degree of freedom corresponds to which global degree of freedom the stiffness
matrix terms and the force vector terms can be added to the correct global equation. For
more detailed information about the assembly procedure the reader is referred to [Bat96].

4.2.7 Solution of the Global System of Equations

After introducing the appropriate support conditions and possible external nodal loads
the global system of equations can be solved for the unknown nodal degrees of freedom.
The easiest way to take support conditions into account is to omit the equations which
correspond to a blocked degree of freedom. These equations can later be used to determine
the reaction forces of the support. More complicated support conditions such as springs
or constraint equations could also be taken into account but they are not discussed here
(for more information see [Bat96]).

The global system of equations can be solved by inverting the reduced global stiffness
matrix (reduced by the equations corresponding to the blocked support conditions). The
most commonly used method for inverting the global stiffness matrix is the Gauss elimi-
nation algorithm. More information about this procedure can be found in any textbook
on linear algebra.

Solving the global system of equations yields the nodal displacement unknowns. By identi-
fying the matching global (system) and local (element) unknowns the nodal displacements
of each element can be determined.

4.2.8 Secondary Results

Once the primary nodal displacement unknowns have been determined the next step in
the procedure it to compute other secondary unknowns of the element. The previously
introduced Equations (4.6), (4.9a) and (4.18) can be used to compute the displacements,
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strains and stresses at any arbitrary position within the element in function of the element
nodal displacements. For clarity they are repeated here:

u(r, s) = N(r, s) · de

ε(r, s) = B(r, s) · de

σ(r, s) = D · ε(r, s) (for lin. el. analysis)

Typically the secondary results are only computed at the locations of the Gauss points
and the rest of the field is interpolated.

4.2.9 Equilibrium Check

The final step is checking for nodal equilibrium within the structure. This means that
each node of the structure is checked and it is verified that all element reactions Re and
all externally applied equivalent nodal loads Fe and nodal loads Pe sum up to zero. This
step is not mandatory for linear analysis since the nodal equilibrium is automatically
satisfied if the material law is linear. If the material law is nonlinear the deformation
state predicted with a tangent constitutive matrix will deviate from the true equilibrium
state and a corrective procedure such as a Newton-Raphson equilibrium iteration has to
be implemented [Bat96].

The element reaction forces Re are computed by virtue of the principle of virtual work as
expressed in Equation (4.27).

Re =

∫
Ωe

BTσ dΩe (4.27)

Or with numerical integration over the natural domain this becomes Equation (4.28).

Re =
∑

Gauss points

BT (rgp, sgp)σ(rgp, sgp) · t · detJ(rgp, sgp)αgp (4.28)

Once the equilibrium at every node is satisfied the Finite Element Analysis ends and the
results can be plotted.



Chapter 5

Multiple Cracking Model

5.1 Introduction

After having introduced a model for the elastic phase in Chapter 4 in this chapter we will
extend the model to capture the characteristic strain-hardening phase of High Performance
Fiber Reinforced Cementitious Composites in tension. As proposed in Section 3.4.2 the
strain-hardening phase is modeled by a Smeared Crack Model or more precisely a Rotating
Crack Model.

Using a Smeared Crack Model for the strain-hardening phase makes sense from both a
physical and also from a modeling point of view. A HPFRCC structural member that
undergoes strain-hardening will exhibit a large number of very fine parallel cracks (known
as multiple cracking) that are distributed all over the heavily strained zones. Due to
fiber bridging action the cracks do not localize and stresses can be redistributed in the
structure. Also the crack width (e.g. ≈ 10−4 m for ECCs) and the crack-to-crack distance
(e.g. ≈ 10−3 m for ECCs) are typically much smaller than the geometry of the analyzed
structure. Therefore, it is reasonable and justified to use a continuum representation of
the multiple cracking and strain-hardening phase in the sense of a Representative Volume
Element [BO83, Kab07]. The effect of the cracks is thereby taken into account in an
averaged way. It would make no sense to account for every small crack individually as
this would firstly be highly inefficient and secondly these cracks are active on a meso-scale
and their effect is only perceived as an additional strain at the scale of the structure. This
is in contrast to localized cracks which truly represent a loss of cohesion of the structure
and which ultimately separate the continuum into two disconnected parts. Therefore,
localized cracks are modeled by a discrete crack approach as will be shown in Chapter 6.

For the model presented here it was decided to use a Rotating Crack Model for the strain-
hardening phase. There are two reasons for this. Firstly the multiple, fine cracks that
form in a HPFRCC during the strain-hardening phase can be seen as the coalescence of a
number of microcracks. The latter can easily close and open depending on the direction

119
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of loading. With rotating principal stress directions some microcracks become inactive
whereas others are activated and start opening. On the scale of the structure this leads
to a rotation of the perceived cracking direction. Note that as with every model this is
only an approximation but one that seems reasonable from a macroscopic point of view.
This is especially true if one keeps in mind that the rotation of the principal stresses
in a structural element is normally a very gradual process. However, it is important to
guarantee that the correct amount of energy is consumed during cracking and that no
energy can be recovered through rotation of the principal stress directions.

The second reason for using a Rotating Crack Model and not a Fixed Crack Model (see
Sections 3.2.2 and 3.2.4) is a purely practical one. As we have seen in Section 3.2.2 the
Fixed Crack Model requires the introduction of a shear retention factor or a crack-sliding
vs. shear-stress relationship which is experimentally difficult to determine and might add
a level of sophistication to the model that is hard to relate to the physical reality of the
material. The Rotating Crack Model on the other hand does not need this parameter as
it assumes permanent coaxiality between the directions of principal strain and principal
stress.

Using a Rotating Crack Model for the strain-hardening phase of High Performance Fiber
Reinforced Cementitious Composites is in accordance with the majority of HPFRCC
models suggested by other authors (see Section 3.4.1). However, it is very important to
note that in contrast to the existing models the one proposed here only uses a Smeared
Crack Model for the strain-hardening phase of HPFRCCs and not for the crack localization
and softening phase. This is motivated by the fact that once a crack localizes it changes its
nature and should no longer be described by a continuum model because this contradicts
the physical reality of a crack and leads to a number of numerical problems as elaborated
in Section 3.2.5.

The proposed Rotating Crack Model is presented in the following Section 5.2. It is
formulated to be used in conjunction with the isoparametric, quadrilateral plane-stress
elements introduced in Chapter 4.

5.2 Smeared Crack Hardening Model

The Rotating Crack Model for the strain-hardening phase of High Performance Fiber
Reinforced Cementitious Composites that is presented in this section is an adaptation
of the Smeared Crack Model given in [Rot88] and closely follows the implementation
proposed in [JZ98]. It should be noted, that in contrast to the classical Smeared Crack
Models the model presented hereafter is not used for crack localization and softening.
By consequence there is no need to introduce a numerical localization bandwidth (see
Section 3.2.1). Furthermore, accounting for cracking in an averaged or ”smeared” way
closely reflects the physical reality of multiple cracking in strain-hardening HPFRCCs
whereas the smearing of a crack in the traditional Smeared Crack Models is only an
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artifice that is used to capture a discrete crack by a continuum representation. However,
although the Rotating Crack Model presented here is used for strain-hardening it shares
most of its theoretical basis with the conventional Smeared Crack Models which were
presented in Section 3.2.

As we have seen in Section 3.2 Smeared Crack Models account for cracking by modifying
the constitutive relationship to include the cracking strain. We should therefore keep in
mind, that in the setting of a nonlinear (incremental) Finite Element Analysis there are
two things that are required from the Smeared Crack constitutive law. Firstly this is
an algorithmic stress function which returns the global stress increment Δσ in function
of the global strain increment Δε. And secondly this is a tangent constitutive matrix
D at any given global strain state ε. The algorithmic stress function and the tangent
stiffness matrix for a Rotating Crack Model for our isoparametric quadrilateral element
from Chapter 4 are presented in the following.

5.2.1 Strain Decomposition

Let εtot be the total strain at any unknown target state of the material. The first fun-
damental concept of the proposed Rotating Crack Model is a decomposition of the total
strain εtot into a concrete strain εco and a cracking strain εcr. This allows for the individual
treatment of the concrete and the cracks (different constitutive laws). By doing so the
model achieves great flexibility and consistently separates the cracking behavior from the
bulk material behavior. One way to look at this, is to think of the cracking strain as
being superimposed on the standard concrete behavior. From a physical point of view
this makes perfect sense since the effect of multiple cracking is macroscopically observed
as an additional strain in the direction of cracking. This is schematically illustrated in
Figure 5.1.

Figure 5.1: Schematic representation of the strain decomposition

Mathematically the strain decomposition is expressed by Equation (5.1) which must hold
true for any state of the material.

εtot = εco + εcr (5.1)
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The nonlinear Finite Element solution technique requires that the problem is formulated
in incremental form. Departing from a state of equilibrium at which the total strain εeqtot
and also the individual strain components εeqco, ε

eq
cr are known a total strain increment Δεtot

is applied (as part of the Finite Element solution procedure) leading to the target state ex-
pressed in Equation (5.2a). This will entail an a priori unknown increment of the concrete
strain Δεco and of the cracking Δεcr strain as given by Equations (5.2b) and (5.2c).

εtot = εeqtot +Δεtot (5.2a)

εco = εeqco +Δεco (5.2b)

εcr = εeqcr +Δεcr (5.2c)

5.2.2 Rotation into the Crack System

The second fundamental assumption of the Rotating Crack Model is that the cracking
direction is always coaxial with the directions of principal strain (see Section 3.2.4). For
the herein developed plane-stress model this means that every material point can have
two orthogonal sets of cracks each one corresponding to one of the principal directions of
total strain. This is shown schematically in Figure 5.2.

Strain tensor global system

Strain tensor crack system

x

y

Figure 5.2: Crack system in the direction of principal strain

Figure 5.2 shows an element that is cracking in both directions of principal strain. In
the global coordinate system (x, y) the strain is given by εtot = (εx, εy, γxy) (engineering
notation). Because the crack directions are coaxial with the directions of principal strain
the strain state in the coordinate system associated with the cracks (ξ, η) is given by
ε̃tot = (εξ, εη) and does not have any shear component as shown in Figure 5.2. The crack
directions are defined by the unit direction vectors nξ = (nξ,x, nξ,y) and nη = (nη,x, nη,y).
Note that the components of the direction vectors are directly linked to the angle of
rotation of the coordinate system α as given by Equation (5.3).
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nξ =

{
nξ,x

nξ,y

}
=

{
cosα
sinα

}
nη =

{
nη,x

nη,y

}
=

{− sinα
cosα

}
(5.3)

With changing state of total strain the principal directions will rotate and with them
the crack directions will rotate as well. This means that for a given strain increment
Δεtot the principal directions of total strain will in general rotate and lead to a rotation
of the cracks. However, since the cracks are always coaxial with the principal directions
their new orientation can easily be obtained by determining the principal directions of the
target strain state εtot. The components of the unit vector in the first principal direction
nξ = (nξ,x, nξ,y) are given by Equation (5.4) and the unit vector of the second principal
direction is given by nη = (−nξ,y, nξ,x) due to its orthogonality with nξ (as follows directly
from Equation 5.3).

nξ,x =
1
2
γxy(

(εξ − εx)2 +
1
4
γ2
xy

) 1
2

nξ,y =
εξ − εx(

(εξ − εx)2 +
1
4
γ2
xy

) 1
2

(5.4)

Because the cracks are always acting in the principal directions it is convenient to rotate
the global strain into the coordinate system associated with the crack. The rotation
between the local and the global coordinate system and vice versa is done by the rotation
matrices Rσ and Rε given in Equation (5.5). This results in Equations (5.6) which give
the relationship between the local stress σ̃ respectively strain ε̃ and the global stress σ
respectively strain ε.

Rσ =

⎡⎣ n2
ξ,x n2

ξ,y

n2
ξ,y n2

ξ,x

nξ,xnξ,y −nξ,xnξ,y

⎤⎦ Rε =

⎡⎣ n2
ξ,x n2

ξ,y

n2
ξ,y n2

ξ,x

2nξ,xnξ,y −2nξ,xnξ,y

⎤⎦ (5.5)

σ = Rσ · σ̃ ε̃ = RT
σ · ε (5.6a)

ε = Rε · ε̃ σ̃ = RT
ε · σ (5.6b)

Note that the transformation expressed by Equations (5.6) does not only perform the
rotation of the stress and strain vectors but it also eliminates the shear value by exploiting
the fact that the local system is coaxial with the principal directions (the shear strain
component is zero).

5.2.3 Constitutive Equations

The next thing that needs to be defined are the constitutive equations. As we have already
mentioned in Section 5.2.1 we will define individual constitutive laws for both the cracks
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and the bulk material. In nonlinear Finite Element Analysis the material behavior is
typically given by a constitutive law of the type Δσ = χ(Δε) that relates the incremental
strains to an incremental stresses. It turns out that in the case of Smeared Crack Models
it is more convenient to express the material behavior by a compliance law of the type
Δε = φ(Δσ) where φ is the inverse function of χ. For the uncracked bulk material we
assume a linear, elastic behavior as defined by Equation (4.18) in Section 4.2.5. This
leads to a compliance law for the bulk concrete as given by Equation (5.7). The elastic
compliance matrix Cco is given by Equation (5.8) and it is computed as the the inverse
of the elastic constitutive matrix Cco = D−1

co (see Equation 4.19).

Δεco = φco(Δσco) = Cco ·Δσco (5.7)

Cco =
1

E

⎡⎣ 1 −ν 0
−ν 1 0
0 0 2(1 + ν)

⎤⎦ (5.8)

The cracking law is also defined in compliance format and it is conveniently formulated
in the local coordinate system associated with the cracks (principal directions). It relates
the local cracking strain increments Δε̃cr to the local cracking stress increments Δσ̃cr.

The third fundamental assumption of the proposed Rotating Crack Model is that the
components of the cracking law are uncoupled. This means that a set of cracks in the
first principal direction ξ does not interact with a set of of cracks in the second principal
direction η. Although it is a simplification this seems to be a reasonable assumption and
it is standard for Rotating Crack Models. Note that a coupling between the components
can still be introduced by an implicit relationship between the cracking laws. Considering
all this, the compliance law for the cracks is given by Equation (5.9).

Δε̃cr = φcr(Δσ̃cr) =

{
φcr,ξ(Δσ̃cr,ξ)
φcr,η(Δσ̃cr,η)

}
(5.9)

For the model presented here it is assumed that the compliance functions in both principal
directions are the same (φcr,ξ = φcr,η) and that they are nonlinear. A schematic cracking
law for High Performance Fiber Reinforced Cementitious Composites is illustrated in
Figure 5.3. Note that the cracking strain remains zero as long as the total stress does
not exceed the first cracking stress of the material (σ̃cr < σcc). During unloading it
is assumed that the microcracks in HPFRCCs close completely which manifests in an
unloading branch of the cracking law that returns to the origin. However, unloading with
a residual cracking strain is also a viable option and the choice depends on the specific
HPFRCC.

In principle this model can readily be extended to a cyclic one by simply providing a com-
pliance curve or function that represents the material’s cyclic behavior. Such a law could



5.2. SMEARED CRACK HARDENING MODEL 125

per example be determined experimentally by means of a cyclic direct tension/compression
test (e.g. [KBD03, KB04]).

softening (XFEM)
un

lo
ad

in
g

Figure 5.3: Piecewise linear cracking law for HPFRCCs

The cracking law is only valid until the post-cracking strain εpc and the corresponding
post-cracking stress σpc are reached. After that a localized crack which is represented by
a discrete cohesive discontinuity is introduced. The latter is modeled by the eXtended
Finite Element Method as will be explained in Chapter 6. Furthermore, the specific
details on how and when the transition between the smeared and the discrete model is
performed can be found in Sections 6.4 and 6.5.

5.2.4 Algorithmic Stress Function

As we have mentioned in the introduction to this chapter one of the primary goals is to
come up with an algorithmic stress function that computes the stress increment Δσ for
any given total strain increment Δεtot. Such a function for the herein developed Rotating
Crack Model is derived in the following.

We start out with Equation (5.1) which represents the decomposition of the total strain
at the target state for which the stress should be computed. We also assume that we are
currently at a state of equilibrium where all state variables (i.e. εeqtot, σ

eq
tot, ε

eq
co, σ

eq
co, ε̃

eq
cr, σ̃

eq
cr)

are known. We can then express Equation (5.1) of the target state in incremental form
by using Equations (5.2). This yields Equation (5.10).

εeqtot +Δεtot = εeqco +Δεco + εeqcr +Δεcr (5.10)

Because the constitutive law for the cracks is given in the local coordinate system as-
sociated with the cracks (corresponding to the principal directions of the target strain
state εtot) Equation (5.10) is rotated into the crack coordinate system as was explained in
Section 5.2.2. Using Equation (5.6a) this leads to Equation (5.11).
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RT
σ (ε

eq
tot +Δεtot) = RT

σ (ε
eq
co +Δεco) +RT

σ (ε
eq
cr +Δεcr)︸ ︷︷ ︸

ε̃eqcr +Δε̃cr

(5.11)

Note that the rotation matrices depend on the total strain state and will change over time
which introduces the characteristic rotation of the cracks. Also note that the last term
in Equation (5.11) which corresponds to the cracking strain can be directly expressed in
the local coordinate system where it is well known.

The next step is to use the compliance functions defined in Section 5.2.3 (Equations 5.7
and 5.9). Replacing the strain increments in Equation (5.11) with the values computed
through the compliance functions results in Equation (5.12).

RT
σ [εeqtot +Δεtot] = RT

σ [εeqco + φco(Δσco)] + ε̃eqcr + φcr(Δσ̃cr) (5.12)

In order to solve Equation (5.12) we need a relationship between the stress in the concrete
and the cracking stress. This is provided by the local equilibrium of the cracks which
enforces that the cracking stress σ̃cr and the projection of the concrete stress onto the
crack system σ̃co are equal (Equation 5.13).

σ̃co = σ̃cr (5.13)

Rotating Equation (5.13) back into the global system by using Equation (5.6a) the global
concrete stress can be related to the local cracking stress as indicated in Equation (5.14).

Rσσ̃co︸ ︷︷ ︸
σco

= Rσσ̃cr (5.14)

In analogy to Equations (5.2) in Section 5.2.1 the incremental equations σco = σeq
co+Δσco

and σ̃cr = σ̃eq
cr + Δσ̃cr can be used to transform Equation (5.14) directly into Equa-

tion (5.15). With the latter the global concrete stress increments can be computed from
the local cracking stress increments.

Δσco = Rσ (σ̃
eq
cr +Δσ̃cr)− σeq

co (5.15)

Using Equation (5.15) in conjunction with Equation (5.12) finally yields the following
Equation (5.16) which relates the incremental stress in the crack system to the global
strain increment.

RT
σ [εeqtot +Δεtot] = RT

σ

[
εeqco + φco

(
Rσ (σ̃

eq
cr +Δσ̃cr)− σeq

co

)]
+ ε̃eqcr + φcr(Δσ̃cr) (5.16)
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By simple algebraic manipulation the above Equation (5.16) can be rewritten as Equa-
tion (5.17). Note that two new terms Δε̃eq and Δσeq are introduced. Although they are
only used to alleviate the notation there is also a physical interpretation. The term Δε̃eq

corresponds to the local strain disequilibrium that is created by the rotation of the crack
axes whereas Δσeq can be interpreted as the global stress disequilibrium between the bulk
material and the cracks that is created by the rotation of the axes. If there is no rotation
of the crack axes both terms are zero.

RT
σ ε

eq
tot −RT

σ ε
eq
co − ε̃eqcr︸ ︷︷ ︸

Δε̃eq

+RT
σΔεtot = RT

σφco

(
Rσσ̃

eq
cr − σeq

co︸ ︷︷ ︸
Δσeq

+RσΔσ̃cr

)
+ φcr

(
Δσ̃cr

)
(5.17)

Equation (5.17) has to be solved for Δσ̃cr. In the most general case the compliance
functions φco and φcr are nonlinear functions of Δσ̃cr and by consequence a numerical
solution procedure needs to be implemented. In Section 5.2.3 the assumption was made
that the compliance function for the bulk material is linear (see Equation 5.7) but that the
cracking compliance function is nonlinear. Therefore, Equation (5.17) is solved by using
the Newton-Raphson iteration algorithm. In order to do so Equation (5.17) has to be
linearized. The linearized versions of the compliance laws are given in Equations (5.18).

φlin
co

(
Δσeq +Rσ(Δσ̃cr + δσ̃cr)

)
= φco

(
Δσeq +RσΔσ̃cr

)
+ CcoRσδσ̃cr (5.18a)

φlin
cr (Δσ̃cr + δσ̃cr) = φcr(Δσ̃cr) + C̃crδσ̃cr (5.18b)

In Equation (5.18b) C̃cr is the tangent compliance matrix for the cracks at the current
state in the crack coordinate system. Since the components are assumed to be uncoupled
it is given by Equation (5.19).

C̃cr =

[
∂φcr,ξ

∂Δσ̃cr,ξ
0

0 ∂φcr,η

∂Δσ̃cr,η

]
(5.19)

Linearizing Equation (5.17) by using Equations (5.18) leads to Equation (5.20).

Δε̃eq +RT
σΔεtot = RT

σφco

(
Δσeq +RσΔσ̃cr

)
+ φcr(Δσ̃cr) +

(
RT

σCcoRσ + C̃cr

)︸ ︷︷ ︸
C̃smcr

δσ̃cr (5.20)

Finally Equation (5.20) can be solved iteratively by repetitively solving for δσ̃cr as given
in Equation (5.21) and then updating Δσ̃n+1

cr := Δσ̃n
cr + δσ̃n

cr.
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δσ̃n
cr = C̃−1

smcr

[
Δε̃eq +RT

σΔεtot −RT
σφco

(
Δσeq +RσΔσ̃n

cr

)− φcr(Δσ̃n
cr)

]
(5.21)

There are a couple of remarks that should be made about Equation (5.21). The first

one is that the crack compliance matrix C̃cr can either be updated to the new state of
Δσ̃n+1

cr at every iteration step (full Newton-Raphson) or it can be kept constant (modified
Newton-Raphson). Here it was decided to use the full Newton-Raphson technique since

it converges faster and the matrix inversion C̃−1
smcr is computationally inexpensive because

it is only a 2 × 2 matrix. Another important thing is to realize that the rotation matrix
Rσ does not change during the iteration since it is determined by the principal directions
of the total strain εtot = εeqtot +Δεtot which remain unchanged.

One way to look at Equation (5.21) is to interpret it as a kind of ”inner” equilibrium
iteration during which the cracking stress and the concrete stress are brought into equi-
librium. Once the iteration has converged the global stress increment Δσ follows directly
from Equation (5.15). It can be returned as the result of the stress return algorithm and
the standard Finite Element procedure is followed from there.

There is one final note that should be made here. The state of the cracked concrete is only
saved as an equilibrium state once the ”external” Finite Element iteration has reached
equilibrium and not when the ”inner” equilibrium of Equation (5.21) has converged.
It is absolutely vital, that the stress-return algorithm is entered with the total strain
increment from the last global equilibrium state. Otherwise numerical problems such as
false unloading will negatively affect the robustness of the algorithm.

5.2.5 Tangent Constitutive Matrix

The second key parameter that needs to be computed for the proposed Rotating Crack
Model is the tangent constitutive matrixDsmcr at the current strain state. The easiest way
to come up with the tangent constitutive matrix is to formulate it in the local coordinate
system of the crack and to rotate it into the global coordinate system afterwards. In
Section 5.2.4 we already developed the tangent compliance matrices for the bulk material
C̃co = RT

σCcoRσ and the cracks C̃cr in the crack coordinate system. We also found that

the compliance matrix of the cracked concrete C̃smcr is equal to the sum of the concrete
compliance matrix and the cracking compliance matrix as given in Equation (5.22).

C̃smcr = C̃co + C̃cr = RT
σCcoRσ + C̃cr (5.22)

Adding up the compliance matrices of the bulk material and the cracks in order to obtain
the total compliance matrix is also justified by the fact that these components act in
series as becomes clear from Figure 5.1.

The constitutive matrix D̃smcr can then be obtained by inverting the compliance matrix
(D̃smcr = C̃−1

smcr). However, there still remains a problem. The constitutive matrix D̃smcr
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only covers the behavior in the principal directions and does not allow for a rotation of
the principal stresses. The situation can be remedied by introducing a shear term D̃shear

into the compliance matrix. This term should lead to a rotation of the principal stress
directions if a local shear strain is applied. Therefore, the tangent compliance matrix
takes the form given in Equation (5.23).

⎧⎨⎩
Δσ̃ξ

Δσ̃η

Δτ̃ξ,η

⎫⎬⎭ =

⎡⎢⎣D̃smcr,11 D̃smcr,12 0

D̃smcr,21 D̃smcr,22 0

0 0 D̃shear

⎤⎥⎦
︸ ︷︷ ︸

D̃

⎧⎨⎩
Δε̃ξ
Δε̃η
Δγ̃ξ,η

⎫⎬⎭ (5.23)

The components D̃smcr,11, D̃smcr,12, D̃smcr,21, D̃smcr,22 in Equation (5.23) are directly taken

from D̃smcr. The constitutive matrix shows that there is a coupling between the normal
components. This is due to the concrete contribution which includes Poisson’s effect.

What remains to be determined is the shear term D̃shear of the constitutive matrix in
Equation (5.23). It can be inferred from the condition that the directions of principal
stress should remain coaxial with the directions of principal strain. A shear term that
enforces coaxiality of the principal stress and the principal strain was first published in
[Baž83] and further elaborated in [Rot88]. It can be derived by investigating what happens
to a state of principal stress (resp. principal strain) when a shear stress increment (resp.
shear strain increment) is applied. The situation can be illustrated by Mohr’s circle as
shown in Figure 5.4.

(a) Shear stress increment (b) Shear strain increment

Figure 5.4: Rotation of principal directions by shear stress or strain increment

Figure 5.4 clearly shows that the shear stress increment Δτ̃ξ,η produces a rotation of the
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principal stress axes by Δασ whereas the shear strain increment Δγ̃ξ,η results in a rotation
of the principal strain axes by Δαε. Using basic trigonometry the rotation angles can be
computed as given in Equation (5.24) where σI , σII are the principal stresses and εI , εII
are the principal strains.

tan (2Δασ) =
2Δτ̃ξ,η
σI − σII

tan (2Δαε) =
Δγ̃ξ,η
εI − εII

(5.24)

If the stress and the strain vector are to remain coaxial it is clear that the rotation
angles Δαε and Δασ need to be identical. The relationship between the shear stress
increment and the shear strain increment that respects this condition directly follows
from Equation (5.24) as given by Equation (5.25). Comparing this with Equation (5.23)
the condition for coaxiality becomes apparent. The constitutive matrix explicitly enforces
coaxiality between the principal strain and the principal stress directions if the shear term
given in Equation (5.25) is used.

Δτ̃ξ,η =
σI − σII

2(εI − εII)︸ ︷︷ ︸
D̃shear

Δγ̃ξ,η (5.25)

Finally, the constitutive matrix has to be rotated from the local coordinate system into
the global one. This is done by using the standard transformation rule given in Equa-
tion (5.26).

D = RD̃RT where (5.26a)

R =

⎡⎣ n2
ξ,x n2

ξ,y −2nξ,xnξ,y

n2
ξ,y n2

ξ,x 2nξ,xnξ,y

nξ,xnξ,y −nξ,xnξ,y n2
ξ,x − n2

ξ,y

⎤⎦ (5.26b)

Note that the rotation matrix R is related to the rotation matrix Rσ from Equation (5.5)
but it is not identical. In fact Rσ is a reduced version of R that does not only perform the
rotation but also eliminates the shear terms since these are not used in the stress return
algorithm. The components of the unit vector nξ = (nξ,x, nξ,y) are computed as given in
Equation (5.4).



Chapter 6

Strain Localization Model

6.1 Introduction

As discussed at several occasions in previous Chapters (i.e. Section 3.1.1) strain localiza-
tion and localized cracking of HPFRCC structural members is a critical issue. A number
of modeling approaches which tackle this problem were presented in Section 3.1.2. The
most advanced concept is probably that of the eXtended Finite Element Method (XFEM)
which was discussed in detail in Section 3.3. In contrast to other models such as for in-
stance interface elements, the eXtended Finite Element Method allows for the formation
of cracks which are completely mesh-independent. Yet the XFEM is capable of repre-
senting localized cracks by strong discontinuities as opposed to the popular continuum
approaches (e.g. Smeared Crack Models or Damage and Plasticity Models) which require
artificial regularization techniques. Furthermore, the cracks introduced by the XFEM
are completely free of spurious stress transfer and other numerical instabilities. For this
reason the crack localization phase of HPFRCC structural members (see in Section 3.4.2)
is modeled by the eXtended Finite Element Method.

Although the XFEM has many advantages over the other mentioned methods these come
at a price. The implementation of eXtended Finite Elements is more complicated and
requires modifications of the Finite Element Method which go beyond simply adding a
new ”user” element to an existing Finite Element software package. The main reason for
this is that the number of global degrees of freedom may change during the computation
(see Section 6.4) since the extended degrees of freedom are only added when they are
required. This is unusual for traditional Finite Element Analysis and standard Finite
Element software is typically not prepared to handle this situation. Furthermore, the
eXtended Finite Element Method entails some interaction between the crack geometry
and the Finite Element mesh which is non-standard. Therefore, the eXtended Finite
Elements developed during this thesis could not be implemented as ”user” elements and
a completely new code had to be written. The basic element used in that code was

131
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presented in Section 4.2 and its extension is explained in the following sections.

We will begin by introducing a strong discontinuity into the isoparametric, quadrilateral
element from Section 4.2 by means of the XFEM. This discontinuity represents a localized
crack and can either be traction free at its surface or it can transmit cohesive forces in
the spirit of the Cohesive Crack Model by Hillerborg [HMP76] (see also Section 3.1.4).
First we will be focusing on stress-free cracks (Section 6.2) which will then be extended to
cohesive cracks (Section 6.3). Thereafter, the crack tip and its propagation will be treated
(Section 6.4) and the modifications that have to be made if the crack propagates in strain-
hardening FRCCs will be discussed (Section 6.5). The latter also constitutes the main
innovation and challenge of this thesis since this is the first time that a combination of the
Smeared Crack Model and the eXtended Finite Element Method have been attempted.

In the following it is assumed that the reader is familiar with the basics of the XFEM
which were discussed in Section 3.3.

6.2 Extended Finite Element Cracking Model

As already mentioned the isoparametric, 8-node quadrilateral element introduced in Sec-
tion 4.2 is used as a starting point and it is modified by the XFEM to include a crack.
For this purpose the standard Finite Element Analysis procedure has to be adapted. The
basic steps of the XFEM procedure are given in the following (new steps are emphasized):

1. Discretization

2. Selection of standard shape functions

3. Selection of a global enrichment function Ψ

4. Formulation of the enriched shape functions

5. Crack–Mesh interaction

6. Formulation of the shape function matrix Nenr

7. Formulation of the strain–displacement transformation matrix Benr

8. Computation of the element stiffness matrix Ke and force vector Fe

9. Assembly

10. Solution of the global system of equations

11. Update of the element state and computation of secondary results

12. Equilibrium check
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Note that some steps do not deviate from the standard Finite Element Analysis procedure
given in Section 4.2. These are not repeated here. The other steps are elaborated in more
detail in the following sections.

6.2.1 Enrichment Function

We recall that the enrichment function Ψ is a function with global character which is
used to improve the Finite Element approximation space (see Section 3.3.4). In order to
model a localized crack in a HPFRCC structural member a generalized two-dimensional
sign(x, y) enrichment function centered at the crack is used. It will introduce a strong
discontinuity into the approximation space of those Finite Elements crossed by a crack.
The sign(x, y) enrichment function takes the value +1 in the positive domain Ω+ (to the
left of the crack) and the value −1 in the negative domain Ω− (to the right of the crack)
as defined by Equation 6.1.

Ψ(x, y) = sign(x, y) =

{
+1 ∀(x, y) ∈ Ω+

−1 ∀(x, y) ∈ Ω− (6.1)

The next step in the eXtended Finite Element Method is to define a set of Partition of
Unity Functions which are used to ”localize” or ”window” the global enrichment function
(see Section 3.3.1). It is important to note that the Partition of Unity Functions will
determine the opening profile of the crack as explained in Section 3.3.4. If the Partition
of Unity Functions are linear the crack opening profile will also be linear over the length
of an element whereas a quadratic profile is obtained with quadratic Partition of Unity
Functions. In order to get a more realistic, quadratic crack opening profile and for the sake
of an easier implementation the quadratic shape functions of the isoparametric, 8-node
element given in Equations (4.4) are also used as Partition of Unity Functions.

6.2.2 Enriched Shape Functions

With the global enrichment function from Equation (6.1) and the Partition of Unity
Functions from Equations (4.4) the enriched shape functions Nenr,i can be determined
according to the Partition of Unity Method (PUM) by Melenk and Babuška [MB96].

Since we have chosen eight Partition of Unity Functions (the standard shape functions for
8-node quadrilateral elements) the PUM will yield eight enriched shape functions. Each
of them is associated with one of the element nodes. If a specific node is enriched than all
elements connected to that node have to be enriched with the associated enriched shape
function.

The shifted, enriched shape functions are given by Equation (6.2) (for more details on the
shifting procedure see Section 3.3.1).
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Nenr,i(r, s) = Ni(r, s) · [Ψ(x, y)−Ψ(xi, yi)] (6.2)

Equation (6.2) is directly obtained from Equation (3.19). Note that the upper index in-
dicating the shift is omitted in order to alleviate the notation. The pair (xi, yi) represents
the coordinates of the node with which the enriched shape function in question is associ-
ated. Also note that the enrichment function is formulated in global coordinates (x, y) – a
fact which once again underlines the enrichment function’s global character. In order to
evaluate an enriched shape function at some natural coordinates (r, s) the correspond-
ing global coordinates (x, y) are required. They can easily be obtained by the isopara-
metric coordinate mapping procedure given in Equation (4.2). Using the specific sign()
enrichment function the enriched shape functions can be expressed by Equation (6.3).
Figures 6.1 and 6.2 show four of the eight shifted, enriched shape functions for a basic
element which is cut by a straight crack going from (0.5,−1.0) to (−0.5, 1.0). Note that
due to the shift of the bases the shape function values can exceed 1.

Nenr,i(r, s) = Ni(r, s) · [sign(x, y)− sign(xi, yi)] (6.3)

(a) Nenr,2 (b) Nenr,3

Figure 6.1: Shifted, enriched shape functions

The transition from the standard Finite Element to the eXtended Finite Element contain-
ing a crack is done by interpolating the displacement field using not only the standard
shape functions Ni but also using the enriched shape functions Nenr,i according to the
fundamental equation of the eXtended Finite Element Method (3.20). Because the en-
riched shape functions are discontinuous the interpolation field will also be discontinuous
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(a) Nenr,5 (b) Nenr,8

Figure 6.2: Shifted, enriched shape functions

and it will thereby introduce a crack.

u(r, s) =

8∑
1

Ni(r, s)ui +
∑

enriched nodes

Nenr,i(r, s)uenr,i (6.4a)

v(r, s) =

8∑
1

Ni(r, s)vi +
∑

enriched nodes

Nenr,i(r, s)venr,i (6.4b)

In the above Equations (6.4) uenr,i and venr,i are the additional degrees of freedom for the
enriched nodes. Therefore, the degrees of freedom will be dstd,i = (ui, vi) for a standard
node and denr,i = (ui, vi, uenr,i, venr,i) for an enriched node. Depending on an element’s
location with respect to the crack it can have between one and eight enriched nodes (see
Section 6.2.3). E.g. a fully cracked element will have eight enriched nodes whereas an
uncracked element will have none. Elements in the transition zone (blending elements)
will have between 1 and 7 enriched nodes.

Comparing this section with Section 4.2.2 it becomes apparent that the only difference
between the eXtended Finite Element and the standard Finite Element are the additional
discontinuous terms in the displacement field interpolation. Note that the interpolation
of the element geometry (coordinates) does not change and Equation (4.2) remains the
same.

It should be emphasized, that the enrichment of the displacement field explained in this
section represents the prime modification introduced by the eXtended Finite Element
Method. Apart from some details concerning the selection of the enriched nodes and
a slight adaptation of the numerical integration scheme the standard Finite Element
Analysis procedure is followed.
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6.2.3 Crack–Mesh Interaction

An issue that arises with the introduction of cracks is the geometrical interaction between
the crack trajectories and the Finite Element mesh. With the eXtended Finite Element
Method this interaction is restricted to a minimum because the Finite Element mesh does
not have to change in order to accommodate a crack. In principle the XFEM allows the
latter to take an arbitrary path through the mesh but the geometry of the crack is still
limited by the underlying Finite Element formulation. More specifically the crack path
is determined by the polynomial order of the shape functions of the underlying Finite
Element [SBCB03].

For the isoparametric, quadrilateral elements with quadratic shape functions used in this
thesis the crack could in principal have a parabolic curvature within an element and
the crack geometry could be approximated by a piecewise quadratic line. However, in
order to simplify the geometrical computation of the intersection segments between the
crack trajectory and the individual Finite Elements as well as to alleviate the coordinate
mapping procedure between the real and the natural domain it was decided to limit the
crack trajectory to element-wise linear segments. For the same reasons the quadrilateral
Finite Elements are also restricted to having straight edges (although the shape functions
would allow parabolic ones). A further assumption which is made for the sake of simplicity
is that an element is either uncracked or fully crack (for more details see Section 6.4.1).
For typical civil engineering applications these approximations are reasonable and with
mesh-refinement the Finite Element solution converges towards the exact solution. It is
important to note that these restrictions are not limitations of the method but rather
simplifications for the ease of implementation.

A popular way to represent the crack geometry in the Finite Element mesh is to use
Level Sets [OS88, Set99, SCMB01b]. For this thesis it was refrained from using Level
Sets because the Level Set values are typically only saved at the node locations (and
interpolated using the Finite Element shape functions) which introduces an additional
approximation. Although this approximation is completely acceptable for computational
purposes it was found that it results in deformation plots which are not very nice.

For this reason the intersection between the crack trajectory and the elements is computed
by means of traditional vector geometry. Once an intersection segment of an element with
the crack is determined it can be used to distinguish the positive domain Ω+ (to the left of
the crack segment) where the enrichment function from Section 6.2.1 takes the value +1
from the negative domain Ω− (to the right of the crack segment) where the enrichment
function takes the value −1. This information is then used to compute the enriched shape
functions (see Equation 6.3) as explained in Section 6.2.2.

The intersection information is also used to determine which nodes have to be enriched.
As explained in Section 3.3.3 only a subset of nodes in the immediate vicinity of the
crack have to be enriched. They are effectively determined by the area criterion which
was given in Section 3.3.3. However, apart from some rare exceptions (due to numerical
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issues) the set of enriched nodes consists of the nodes of the cracked elements.

As a part of the crack–mesh interaction, a subtriangulation of the cut elements is per-
formed. It essentially consists of subdividing the positive and negative domain of a cut
element into triangles. These subtriangles are then used for two different purposes. Firstly,
they are used to compute the area of the positive and the negative domain of a node’s
support since this information is required for the area criterion (see Section 3.3.3, Fig-
ure 3.20). And secondly they are used for the numerical integration of the element stiffness
matrix and the element force vector as we will see in Section 6.2.6. Since the positive and
the negative domains of quadrilateral elements with straight edges always have convex
polygonal shapes the subtriangles can be formed by connecting each edge of the poly-
gon with the polygon’s centroid as shown in Figure 6.3. For more complicated element
geometries a Delaunay Triangulation has to be performed.
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Figure 6.3: Subtriangulation of a cut element

6.2.4 Shape Function Matrix

In analogy to Section 4.2.3 the shape functions are assembled into a shape function matrix
N. What differs from the standard procedure is that in addition to the standard shape
functions Ni, the shape function matrix for an eXtended Finite Element should also
contain the enriched shape functions Nenr,i introduced in Section 6.2.2. For each enriched
node two additional degrees of freedom are added to the element. Since the number
of enriched nodes of an element can range from 0 to 8 the shape function matrix and
the vector of element degrees of freedom have a variable size. The generic procedure
in assembling the shape function matrix is to loop over all nodes of an element and to
append the corresponding block of shape functions associated with that node (standard
or enriched) as indicated in Equation (6.5).
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N =

[
. . .

Ni 0
0 Ni︸ ︷︷ ︸
standard

. . .
Nj 0 Nenr,j 0
0 Nj 0 Nenr,j︸ ︷︷ ︸

enriched

. . .

]
(6.5)

The vector of element degrees of freedom is assembled analogously. Note that the enriched
degrees of freedom are inserted close to the original degrees of freedom of a given node
since they are mentally associated with the latter (node-wise assembly). However, this
is only a matter of preference and it would also be possible to add all enriched degrees
of freedom at the end of the displacement vector. The only important thing, is that the
shape function matrix and the displacement vector are assembled in a consistent fashion.

de = (. . . ui, vi︸︷︷︸
standard

. . . uj, vj , uenr,j, venr,j︸ ︷︷ ︸
enriched

. . . ) (6.6)

Equation (4.6) remains unchanged and it will compute the displacement field of both
standard and eXtended Finite Elements in the same way. However, the shape function
matrix and the nodal displacement vector used in the equation are different.

6.2.5 Strain–Displacement Transformation Matrix

The strain–displacement transformation matrix is established following the same proce-
dure as given in Section 4.2.4. The kinematic Equation (4.8) remains the same except for
the minor inconvenience that the strain cannot be evaluated at the exact location of the
discontinuity (where it is infinite). However, this is of no concern because the determina-
tion of a ”strain” across the crack is not meaningful and it is more reasonable to evaluate
the crack opening displacement as shown in Section 6.3.

The Jacobi transformation given by Equation (4.13) is performed in the same way as for
standard elements since it links the natural and the global differential operators which
are independent of the function to which they are applied. The only difference in the
procedure is that in the strain–displacement transformation matrix of an eXtended Fi-
nite Element the derivatives of the enriched shape functions need to be added at the
appropriate locations. This is exemplarily shown in Equation (6.7).

B =

[
. . .

Nx
i 0
0 Ny

i

Ny
i Nx

i︸ ︷︷ ︸
standard

. . .

Nx
j 0 Nx

enr,j 0
0 Ny

j 0 Ny
enr,j

Ny
j Nx

j Ny
enr,j Nx

enr,j︸ ︷︷ ︸
enriched

. . .

]
(6.7a)

Nx := ∂N/∂x Ny := ∂N/∂y Nx
enr := ∂Nenr/∂x Ny

enr := ∂Nenr/∂y (6.7b)
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Equation (6.7b) indicates that the enriched shape function derivatives are needed in ad-
dition to the standard shape function derivatives. The former can be computed by differ-
entiating Equation (6.3) by x and y. Respecting the product rule we have:

∂Nenr,i(r, s)

∂x
=

∂Ni(r, s)

∂x
· [sign(x, y)− sign(xi, yi)] +Ni(r, s)

∂

∂x
· [sign(x, y)− sign(xi, yi)]

∂Nenr,i(r, s)

∂y
=

∂Ni(r, s)

∂y
· [sign(x, y)− sign(xi, yi)] +Ni(r, s)

∂

∂y
· [sign(x, y)− sign(xi, yi)]

The second term in both equations requires the differentiation of [sign(x, y)− sign(xi, yi)].
The result is zero in both cases since the two functions are constant (except for the location
of the discontinuity where the stain cannot be evaluated). As a consequence the second
term in both of the above equations can be dropped which yields Equations (6.8).

∂Nenr,i(r, s)

∂x
=

∂Ni(r, s)

∂x
· [sign(x, y)− sign(xi, yi)] (6.8a)

∂Nenr,i(r, s)

∂y
=

∂Ni(r, s)

∂y
· [sign(x, y)− sign(xi, yi)] (6.8b)

Equations (6.8) show that for the specific sign() enrichment used here, the derivatives
of the enriched shape functions are directly related to the derivatives of the standard
shape functions. The enriched shape function derivatives are obtained by multiplying the
standard shape function derivatives with a step function which is equal to the difference
between the enrichment function at the location of interest and the enrichment function at
the location of the node with which the enriched shape function in question is associated.
Note that the derivatives of the standard shape functions in Equation (6.8) are determined
by using Equation (4.13) which performs a Jacobi transformation to pass from the natural
coordinate system to the global coordinate system.

The Jacobi transformation matrix J is computed in the same way as for the standard
quadrilateral elements (see Equations 4.16). It would be wrong to include the enriched
shape functions since they are used to interpolate the discontinuous displacement field
and not the geometry of the element (implicit assumption of small deformations).

6.2.6 Element Stiffness Matrix and Force Vector

The equilibrium equation for an eXtended Finite Element can be derived in the same way
as it was done for the standard quadrilateral elements in Section 4.2.5 (Equations 4.17 –
4.25). However, there is a slight difference between standard elements and enriched ele-
ments. In the derivation of the weak form of equilibrium the divergence theorem (a.k.a.
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Green’s theorem) is used which is only applicable to domains that are sufficiently regular
(no singularities or discontinuities) [SP03]. Therefore, the weak form of equilibrium has
to be evaluated on each side of the crack individually resulting in an integration by parts
of the positive domain Ω+

e and the negative domain Ω−
e . Respecting this constraint the

stiffness matrix Ke and the force vector Fe follow directly from Equation (4.23) and are
given by Equations (6.9).

Ke =

∫
Ω+

e

BTDB dΩ+
e +

∫
Ω−

e

BTDB dΩ−
e (6.9a)

Fe =

∫
Ω+

e

NT f dΩ+
e +

∫
Ω+

e

NT f dΩ−
e (6.9b)

For cracked elements the internal virtual work would technically have to be augmented by
an integral over the surface of the crack. For the stress free cracks considered here there
is evidently no work done on the crack surface and that term can be dropped. However,
this will not be the case if cohesive forces are added to the crack (see Section 6.3).

The integration of Equations (6.9) is performed numerically in analogy to Section 4.2.5.
However, the application of the standard Gauss-Legendre integration scheme poses a
problem. Because the domain of a cracked element has to be integrated by parts the
standard procedure is on longer applicable.

At this point the subtriangulation introduced in Section 6.2.3 comes into play. Because a
crack can cut a quadrilateral element into two a priori unknown polygonal domains the
locations and weights of the necessary Gauss points cannot be determined easily. There-
fore, the two domains are decomposed into subtriangles and the integration is performed
over the individual, triangular subdomains Ω�. This leads to Equations (6.10).

Ke =
∑
�

[∫
Ω�

BTDB · dΩ�

]
(6.10a)

Fe =
∑
�

[∫
Ω�

NT f · dΩ�

]
(6.10b)

There is one last difficulty to overcome. In Equation (4.26) the numerical integration
is performed in the natural domain of the parent quadrilateral element (the strain–
displacement transformation matrix is formulated in those coordinates). The positions
and weights of the Gauss points on the other hand are only well known in the natural
domain of the parent triangle. Therefore, the Gauss points have to be mapped from the
parent triangle to the parent quadrilateral element.
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Basically, the mapping is done in two steps. The first step is to perform a coordinate
mapping from the parent triangle to the real quadrilateral element. This is relatively
straightforward. Since the global coordinates of all subtriangle vertices (x�,i, y�,i) are
known the standard linear shape functions for triangular elements N�,i can be used to
perform the mapping. The latter are given in Equations (6.11) ( r� and s� are the natural
coordinates of the parent triangle domain).

N�,1(r�, s�) = 1− r� − s� (6.11a)

N�,2(r�, s�) = r� (6.11b)

N�,3(r�, s�) = s� (6.11c)

The global coordinates (x, y) of any point r�, s� in the natural subtriangle domain can
then be computed by Equation (6.12).

x(r�, s�) =
3∑
1

N�,i(r�, s�) · x�,i y(r�, s�) =
3∑
1

N�,i(r�, s�) · y�,i (6.12)

In addition to the coordinates the weights (representative areas) of the integration points
need to be mapped. The relationship between the real weight αgp of an integration point
and its natural weight in a subtriangle α�,gp is given by Equation (6.13) where J� is the
Jacobi matrix for the subtriangle.

αgp = detJ�(r�,gp, s�,gp) · α�,gp (6.13)

The Jacobi matrix for the transformation of differentials between the parent triangle and
the real domain can be computed analogously to the procedure outlined in Section 4.2.4.
Using the shape functions for a subtriangle given in Equations (6.11) this yields Equa-
tion (6.14) where (x�,i, y�,i) are the global coordinates of the subtriangle vertices.

detJ� = (x�,2 − x�,1)(y�,3 − y�,1)− (x�,3 − x�,1)(y�,2 − y�,1) (6.14)

The second step of the coordinate mapping procedure is more complex because it requires
an inverse mapping. If the coordinates of a point were known in the parent quadrilateral
element the shape functions for isoparametric, quadrilateral 8-node elements from Equa-
tion (4.4) could be used to map the point from the parent domain to the global domain by
means of Equation (4.2). Unfortunately the inverse is the case. The real coordinates (x, y)
of the point are known and the parent coordinates (r�, s�) need to be found. Because the
shape functions for the used quadrilateral element are quadratic the mapping equations
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cannot be inverted easily (nonlinear equations). Therefore, the system of equations has to
be solved numerically. This is done by using the well known Newton-Raphson algorithm.
Note that if the quadrilateral element only had four nodes one could also use the analytical
procedure detailed in [ZHMO99] for the inverse mapping. However, the Newton-Raphson
algorithm is more general as it can be used for higher order shape functions and for linear
shape functions it converges after one iteration.

The subtriangles are integrated using a 7-point Gauss-Legendre quadrature. The latter is
required in order to achieve the same accuracy as for the standard quadrilateral elements
with a 3 × 3 integration rule. The appropriate locations (r�,gp, s�,gp) and weights α�,gp

of the Gauss-Legendre quadrature points in a natural triangle can be found in the Finite
Element literature [Bat96]. Figure 6.4 shows the Gauss-quadrature points that are used
to compute the stiffness matrix and the force vector of a quadrilateral element that is cut
by a crack.

cr
ac
k

Figure 6.4: Integration points for a cut element

It should be emphasized, that the subtriangulation is only performed for the purpose of
numerical integration and it has nothing to do with remeshing. No additional degrees
of freedom have to be introduced and there are also no restrictions regarding the shape
of the subtriangles (unlike for triangular Finite Elements which may exhibit numerical
problems if they are strongly distorted).

Putting everything together, the final Finite Element matrix of a cracked element is
given by Equations (6.15). Note that the shape function matrix N and the strain–
displacement transformation matrix B are the eXtended Finite Element versions given
in Equations (6.5) and (6.7). The coordinates of the integration points in the natural
domain of the parent element (r�,gp, s�,gp) are computed using the mapping procedure
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explained above.

Ke =
∑
�

[ ∑
Gauss points

BT (r�,gp, s�,gp) ·D ·B(r�,gp, s�,gp) · t · detJ�α�,gp

]
(6.15a)

Fe =
∑
�

[ ∑
Gauss points

NT (r�,gp, s�,gp) · f · t · detJ�α�,gp

]
(6.15b)

6.3 Extension to Cohesive Cracks

In Section 6.2 we focused on modeling a stress free crack with the XFEM. However,
the final goal is to model localized cracking and softening of High Performance Fiber
Reinforced Cementitious Composite structural members. As already discussed at length
in Chapter 2, HPFRCCs do not fail in a brittle manner but exhibit a very pronounced
softening phase during which fibers bridge the macroscopic cracks and transmit cohesive
forces across the crack surfaces. As a consequence the model presented in Section 6.2
needs to be extended to incorporate cohesive forces at the crack locations.

This is done by means of the Cohesive Crack Model by Hillerborg [HMP76] (see also
Section 3.1.4). The basic idea behind the Cohesive Crack Model is to abstract the non-
linear fracture behavior due to aggregate interlock, fibers etc. by replacing it with a set
of cohesive forces which act on the crack surfaces and transfer stresses in function of the
crack mouth opening (see Figure 6.5). Although the Cohesive Crack Model was originally
proposed for traditional concrete it makes even more sense to apply it to Fiber Rein-
forced Cementitious Composites since the cohesive forces in the model directly relate to
the physical nature of the fiber pullout process.

6.3.1 The Separation Vector

The first thing that has to be done when analyzing a crack is to compute its opening
profile. It is characterized by the separation vector w. In the eXtended Finite Element
model the crack is represented by a strong discontinuity in the element displacement
field which separates the computational domain into a positive and a negative part. On
the discontinuity itself (i.e. the crack) it is not possible to compute the strain since
it is singular. However, the separation vector can be computed. It corresponds to the
”jump” in the displacement field which is equal to the difference between the displacement
field in the positive domain and the displacement field in the negative domain at the
location of the discontinuity. By definition the positive direction of the separation vector
is pointing from the negative domain to the positive domain. It can therefore be computed
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Figure 6.5: Cohesive forces on a XFEM crack

as given by Equation (6.16) where w denotes the separation vector and (rw, sw) are the
natural coordinates of any point located on the discontinuity. The vectors u +(rw, sw) and
u −(rw, sw) represent the equivocal displacement field at the location of the discontinuity
coming either from the positive domain or from the negative domain.

w(rw, sw) =

{
wx

wy

}
= u +(rw, sw)− u −(rw, sw) (6.16)

Replacing the displacement fields by their Finite Element approximations from Equa-
tions (6.4) yields Equations (6.17) and it becomes evident that the terms containing the
standard shape functions cancel each other out which leads from Equations (6.16) to
Equation (6.18).

u +(rw, sw) =

8∑
1

Ni(rw, sw)

{
ui

vi

}
+

∑
enriched nodes

N+
enr,i(rw, sw)

{
uenr,i

venr,i

}
(6.17a)

u −(rw, sw) =
8∑
1

Ni(rw, sw)

{
ui

vi

}
+

∑
enriched nodes

N−
enr,i(rw, sw)

{
uenr,i

venr,i

}
(6.17b)

In analogy to the displacement field, N+
enr,i and N−

enr,i denote the enriched shape functions
evaluated on the discontinuity.

w(rw, sw) =
∑

enriched nodes

N+
enr,i(rw, sw)

{
uenr,i

venr,i

}
−

∑
enriched nodes

N−
enr,i(rw, sw)

{
uenr,i

venr,i

}
(6.18)

Equation (6.18) can be further simplified by replacing the enriched shape functions with
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their definition (see Equation (6.2)). Again using the notation Ψ+ and Ψ− for the equiv-
ocal values of the enrichment function this yields Equations (6.19).

N+
enr,i(rw, sw) = Ni(rw, sw)

(
Ψ+(xw, yw)−Ψ(xi, yi)

)
(6.19a)

N−
enr,i(rw, sw) = Ni(rw, sw)

(
Ψ−(xw, yw)−Ψ(xi, yi)

)
(6.19b)

Substituting Equations (6.19) in Equation (6.18) and dropping the terms which cancel
each other out the separation vector can be computed by Equation (6.20)

w(rw, sw) =
∑

enriched nodes

Ni(rw, sw)
(
Ψ+(xw, yw)−Ψ−(xw, yw)

){uenr,i

venr,i

}
(6.20)

Because the enrichment function used here is the generalized two-dimensional sign(x, y)
function centered at the discontinuity it takes the values Ψ+ = 1 and Ψ− = −1 in the
positive respectively the negative domain which finally yields Equation (6.21) for the
separation vector.

w(rw, sw) =
∑

enriched nodes

2 ·Ni(rw, sw)

{
uenr,i

venr,i

}
(6.21)

Or using matrix notation in analogy to Equation (6.5) this can be rewritten as Equa-
tions (6.22) where de is the element displacement vector introduced in Equation (6.6).

w(rw, sw) = Ncoh(rw, sw) · de with (6.22a)

Ncoh(rw, sw) =

[
. . .

0 0
0 0︸︷︷︸

standard

. . .
0 0 2Ni 0
0 0 0 2Ni︸ ︷︷ ︸

enriched

. . .

]
(6.22b)

Note that this derivation is the two-dimensional equivalent to Equations (3.22). As we
have already discussed in Section 6.2.1 the variation of the crack opening in the herein
presented XFEM model is parabolic over the length of an element due to the quadratic
Partition of Unity Functions. This is reflected in Equation (6.22) which shows that the
separation vector is a quadratic function of (rw, sw) (the shape functions Ni(rw, sw) are
quadratic).
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6.3.2 The Traction–Separation Law

Typically the cohesive forces of a crack decrease with increasing crack mouth opening and
the relationship between the separation vector w̃ = (wξ, wη) and the cohesive stresses
σ̃coh = (σξ, τη) is called the traction–separation law. It is usually formulated in the local
coordinate system (ξ, η) associated with the crack as illustrated in Figure 6.6.

 

 

 

x

y

 

(a) Local coordinate system of a crack

 

(b) Separation vector and cohesive forces

Figure 6.6: Cohesive crack coordinate system

Because most traction–separation laws are nonlinear they need to be expressed in in-
cremental form. The global Finite Element solution algorithm for nonlinear problems
requires that the traction–separation law provides two things [Bat96]: Firstly this is a
stress return algorithm χcoh(Δw̃) which is used for the computation of the element re-

action forces (see Section 6.3.4) and secondly this is a tangent constitutive matrix D̃coh

which is used to compute the tangent element stiffness matrix (see Section 6.3.3). This
is expressed in Equations (6.23).

Δσ̃coh = χcoh(Δw̃) (6.23a)

Δσ̃coh = D̃coh ·Δw̃ (6.23b)

The constitutive traction–separation law can be formulated using any theory that links
the crack opening w̃ and the cohesive stresses σ̃coh (i.e. Plasticity, Damage etc.). Unfortu-
nately, for HPFRCCs there is no conclusive experimental evidence or sophisticated model
that would provide a traction–separation law for localized cracks. Such a law would have
to take fiber pull-out, fiber deformation, aggregate interlock etc. into account and it is
different for every specific HPFRCC. Therefore, it was decided to use a simple traction–
separation law which assumes an uncoupled behavior of the normal-opening component
and the shear-sliding component. However, as research in that field progresses it would
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be straightforward to use a more sophisticated law that accounts for implicit or explicit
coupling of the components. Using the assumption of uncoupled components the tangent
cohesive matrix in the local coordinate system is given by Equation (6.24).

D̃coh =

[
DI

coh 0
0 DII

coh

]
(6.24)

Although the traction–separation law is conveniently formulated in the local coordi-
nate system associated with the crack the Finite Element Method requires a traction–
separation relationship in global coordinates. By consequence a rotation of the coordinate
system has to be performed. Basic trigonometry immediately yields the relationship be-
tween the local cohesive stresses σ̃coh and the global cohesive stresses σcoh as well as the
relationship between the local separation vector w̃ and the global separation vector w
(Equation 6.25) (T−1 = TT ).

σcoh = TT (α) · σ̃coh w̃ = T(α) ·w where T(α) =

[
cosα sinα
− sinα cosα

]
(6.25)

In Equations (6.25) α denotes the angle of rotation between the local and the global
coordinate system. Introducing Equations (6.25) into Equation (6.23b) the linearized
traction–separation law in global coordinates is found (Equation 6.26).

Δσcoh(x, y) = TT · D̃coh ·T︸ ︷︷ ︸
Dcoh

·Δw(x, y) (6.26)

6.3.3 Element Stiffness Matrix and Force Vector

The next step is to modify the weak form of the element equilibrium. As we have already
mentioned in Section 6.2.6 the equilibrium equation for a cracked element has to be
augmented by a term δWcoh that accounts for the virtual work done by the cohesive forces
on the crack surface. Due to the possible nonlinearity of the cohesive law the weak form
of equilibrium has to be used in its linearized, incremental form [Bat96]. Equation (4.17)
therefore becomes Equation (6.27).

∫
Ωe

δεT ·Δσ dΩe =

∫
Ωe

δuT ·Δf dΩe + δWcoh + δde
T ·ΔPe (6.27)

The virtual work of the cohesive forces can be computed by integrating over the crack
surfaces Γ+

e and Γ−
e of the element (see Figure 6.5) as given by Equation (6.28) where δu+

and δu− denote the virtual displacements of the positive respectively the negative field
at the crack location.
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δWcoh =

∫
Γ+
e

δu+T ·Δσ+
coh dΓ+

e +

∫
Γ−
e

δu−T ·Δσ−
coh dΓ−

e (6.28)

We recall that the positive direction of the traction vector in the local coordinate system
of the crack points from the negative to the positive domain. Taking into account that
the local equilibrium of the crack requires that Δσ−

coh = −Δσ+
coh := Δσcoh this yields

Equation (6.29).

δWcoh = −
∫
Γ+
e

δu+T ·Δσcoh dΓ+
e +

∫
Γ−
e

δu−T ·Δσcoh dΓ−
e (6.29)

If we make the additional assumption of small deformations we can conclude that Γ+
e =

Γ−
e := Γe which leads from Equation (6.29) to Equation (6.30).

δWcoh = −
∫
Γe

(
δu+T − δu−T

)
·Δσcoh dΓe (6.30)

In analogy to Equation (6.16) we can define a virtual separation vector as δw = δu+ − δu−

which yields Equation (6.31). This equation also makes perfect sense from a physical point
of view. It expresses the fact that the additional virtual work term for the cohesive in-
terface is computed as the integral product of the crack opening and the cohesive forces
acting along the crack.

δWcoh = −
∫
Γe

δwT ·Δσcoh dΓe (6.31)

The next step is to use the traction–separation law that was introduced in Section 6.3.2.
Using Equation (6.23b) leads to Equation (6.32).

δWcoh = −
∫
Γe

δwT ·Dcoh ·Δw dΓe (6.32)

Returning to Equation (6.27) we can replace the virtual work of the cohesive interface
with Equation (6.32). After also applying the constitutive law for the continuum which
was given in Equation (4.18) we find the equilibrium equation for an eXtended Finite
Element with a cohesive crack (Equation 6.33).

∫
Ωe

δεT ·D ·Δε dΩe +

∫
Γe

δwT ·Dcoh ·Δw dΓe =

∫
Ωe

δuT ·Δf dΩe + δde
T ·ΔPe (6.33)

Equation (6.33) can be discretized using the Finite Element approximations given by
Equations (4.6) and (4.9a) as was done in Section 4.2.5. Note however, that the shape
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function matrix and the strain–displacement transformation matrix are the extended ver-
sions from Equations (6.5) and (6.7a). What is needed in addition is the Finite Element
approximation of the separation vector which was developed in Section 6.3.1 and is given
in Equation (6.22a). Again we use the same interpolation for both the real and the virtual
fields. For clarity the Finite Element approximations are repeated hereafter:

Δu = N ·Δde Δε = B ·Δde Δw = Ncoh ·Δde

δu = N · δde δε = B · δde δw = Ncoh · δde

Substituting the above approximation fields in Equation (6.33) and preforming the same
algebraic simplifications as in Section 4.2.5 we find Equation (6.34).

∫
Ωe

BTDB dΩe︸ ︷︷ ︸
Kstd

e

·Δde +

∫
Γe

NT
cohDcohNcoh dΓe︸ ︷︷ ︸

Kcoh
e

·Δde =

∫
Ωe

NTΔf dΩe︸ ︷︷ ︸
Δ�Fe

+ΔPe (6.34)

Note that for the reasons explained in Section 6.2.6 the integration of the standard stiffness
matrix Kstd

e and of the incremental force vector ΔFe in Equation (6.34) needs to be done
by parts as given in Equations (6.9). Comparing Equation (6.34) and Equation (4.23) it
becomes obvious that the cohesive forces in a cracked element can be handled by adding
an additional stiffness matrix Kcoh

e to the standard stiffness matrix Kstd
e . Regrouping the

terms of Equation (6.34) this leads to the following Finite Element stiffness matrix for a
cracked element with cohesive forces (Equations 6.35).

Ke = Kstd
e +Kcoh

e where (6.35a)

Kstd
e =

∫
Ω+

e

BTDB dΩ+
e +

∫
Ω−

e

BTDB dΩ−
e (6.35b)

Kcoh
e =

∫
Γe

NT
cohDcohNcoh dΓe (6.35c)

In the following we will focus on the new stiffness matrix term Kcoh
e which accounts for

the cohesive forces. The standard stiffness matrix and the force vector are computed as
usual (Section 6.2.6).

The integral over the area of the cohesive crack is computed numerically in the same
fashion as it is done for the body of the element. Since the Partition of Unity Functions
are parabolic the variation of the separation vector along the crack interface will in general
also be quadratic. By consequence the integrand of the stiffness matrix contribution that
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accounts for the cohesive forces is of the 4th order. Therefore, a numerical integration
scheme with 3 Gauss points was chosen as it is sufficient to integrate the stiffness matrix
contribution Kcoh

e exactly. The numerically integrated version of the stiffness matrix term
accounting for the cohesive forces is given in Equation (6.36) where α�,gp are the weights
of the Gauss points in the natural domain [−1, 1] and J� is the Jacobi matrix for the
coordinate transformation between the natural line segment and the crack line in the
global element domain.

Kcoh
e =

∑
Gauss pts. Γe

NT
coh(r�,gp, s�,gp)DcohNcoh(r�,gp, s�,gp) · t · detJ�α�,gp (6.36)

Note that a similar mapping procedure as the one described in Section 6.2.6 (for the
subtriangles) has to be applied to the integration points on the cohesive interface. The
coordinates of the integration points are mapped from the natural domain [−1, 1] to
the crack in the real domain of the element Ωe and then they are inversely mapped to
the natural domain of the parent quadrilateral element where they have the coordinates
(r�,gp, s�,gp). Simultaneously the natural weights α�,gp of the quadrature points on the
cohesive interface are mapped to the real domain using αgp = detJ� · α�,gp.

Because straight crack segments are used the mapping from the natural domain [−1, 1]
to the real domain can be performed using the linear shape functions given in Equa-
tion (6.37).

N�,1(r�) =
1− r�

2
N�,2(r�) =

1 + r�
2

(6.37)

Following the standard methodology the real coordinates (x, y) of a point with the natural
coordinate r� ∈ [−1, 1] can then be determined by Equations (6.38) where (x1, y1) and
(x2, y2) are the start respectively the end point coordinates of the crack segment in the
real domain.

x = N�,1x1 +N�,2x2

y = N�,1y1 +N�,2y2
(6.38)

The transformation of crack segment differentials expressed by the Jacobi determinant is
given in Equation (6.39).

det J� =
dΓe

dr�
=

√(
dx

dr�

)2

+

(
dy

dr�

)2

(6.39)

Applying the above Equation (6.39) to the coordinate mapping functions from Equa-
tion (6.38) finally yields the scaling factor between the crack segment in the natural
domain and the same segment in the real domain (Equation 6.40).
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detJ� =
1

2

√
(x2 − x1)2 + (y2 + y1)2 (6.40)

Although it has been mentioned before, let us emphasize a very important realization
about the eXtended Finite Element Method. The XFEM enhances the kinematics of
a problem (the displacement field) independently of the constitutive law. This is in
contrast to Smeared Crack Models where the constitutive law is modified to account for
a cracking strain (see Chapter 3.2). The above derivation of the element stiffness matrix
clearly shows that any type of constitutive law for the continuum (in form of the tangent
constitutive matrix D) and any type of traction–separation law for the cohesive crack (in

form of the tangent constitutive matrix D̃coh) can be used. One can for example consider
a linear, elastic continuum with a nonlinear cohesive crack whose traction–separation
law is based on Damage and Plasticity. Or it is possible to envisage an elasto-plastic
continuum with a crack that is described by a nonlinear law with implicit coupling of the
components. This could even be taken a step further and a cyclic traction–separation law
could be implemented. In fact, providing a cyclic law for both the compliance function of
the smeared crack model (see Section 5.2.3) and for the traction–separation relationship
in the XFEM model would be the only two steps necessary to use the model in cyclic
simulations.

Of course nonlinear constitutive laws require special nonlinear computational analysis
techniques such as an incremental, iterative solution procedure [Bat96]. Because the
formation of macroscopic cracks will often induce structural softening and might even
lead to ”snap-back” behavior [CW88] an Arc-length solution technique was implemented
[Wem71, Rik72, Rik79, Rik84, Cri81, CW88, Cri97].

6.3.4 Secondary Results and Element Reactions

Finally, the transition from a stress-free to a cohesive crack requires two other minor
modifications. The first one concerns the computation of secondary results. In addi-
tion to the displacement, the strain and the stress field in the bulk material it is also
possible to compute secondary results on the cohesive interface. These are the separa-
tion vector w(rw, sw) and the cohesive stresses σcoh(rw, sw) acting along the discontinuity.
They can be computed as given in Equations (6.41) which follow directly from Equa-
tions (6.22) , (6.23a) and (6.25). The crack opening increment used in Equation (6.41b)
can be computed as Δw = w − weq. Furthermore, the term weq denotes the separa-
tion vector at the last global equilibrium state and σ̃eq

coh denotes the corresponding local
cohesive stress vector.

w(rw, sw) = Ncoh(rw, sw) · de (6.41a)

σ̃coh(rw, sw) = σ̃eq
coh + χcoh (T(α) ·Δw(rw, sw)) (6.41b)
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The second modification is related to the computation of the element reaction forces.
When applying the concept of virtual work in order to find the element reaction forces
as was done in Section 4.2.8, the contribution of the cohesive interface has to be consid-
ered. We refrain from going through the full demonstration and simply give the result in
Equation (6.42).

Re =

∫
Ωe

BTσ dΩe +

∫
Γe

NT
cohσcoh dΓe (6.42)

The global cohesive stress vector σcoh which is used in Equation (6.42) can easily be
determined from the local cohesive stress vector σ̃coh (Equation (6.41b)) by applying the
rotation expressed in Equation (6.25).

Using numerical integration in analogy to Equation (4.28) finally yields Equation (6.43).

Re =
∑

Gauss pts. Ωall�

BT (r�,gp, s�,gp)σ(r�,gp, s�,gp) · t · detJ�α�,gp +

∑
Gauss pts. Γe

NT
coh(r�,gp, s�,gp)σcoh(r�,gp, s�,gp) · t · detJ�α�,gp

(6.43)

The first sum is performed over all Gauss integration points of all subtriangles as ex-
plained in Section 6.2.6 whereas the second term sums up the contributions of all inte-
gration points on the cohesive interface. It is important to note that the locations of all
integration points need to be known in the natural domain of the parent quadrilateral
element (r�,gp, s�,gp) which requires the application of the mapping procedure explained
in Sections 6.2.6 and 6.3.3.

6.4 Crack Propagation

So far we have been focusing on the body of a crack in a Finite Element mesh. We have
seen how the XFEM can be used to introduce a crack (see Section 6.2) and how cohesive
forces can be added to that crack (see Section 6.3). However, we have not discussed how
a crack will evolve over time. In most cases a localized crack in a structural element
will form at a location of very high tensile stresses and it will then propagate as the
deformations increase.

There are two major issues that have to be considered when modeling crack propagation.
The first one is a realistic model of the crack tip. Because the propagation of the crack
is typically governed by the stress or the strain field in the vicinity of the crack tip
an accurate model of that region is required. Such a crack tip model will be proposed in
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Section 6.4.1. The second component of a crack propagation model is a law which governs
crack evolution. It should provide a crack propagation criterion which determines the
conditions under which a crack will grow. Furthermore, the crack propagation criterion
also needs to define the direction in which the crack will propagate. This is detailed in
Section 6.4.2.

In the literature there are two basic approaches that are used for quasi-static crack prop-
agation in combination with the XFEM. The first one is oriented towards linear, elastic
fracture mechanics and can be found in [BB99, MDB99, Dol99]. It employs a maximum
circumferential stress criterion for crack propagation and it computes the necessary stress
intensity factors by using domain forms of the J-integral. This approach is extended to
cohesive cracks in [MB02] and [ZB03]. The length of the crack increment is typically
taken as the control parameter for the nonlinear Finite Element solution procedure and
it is normally set to between 1/2 and 3/2 of the characteristic element length [VBB03].
The second approach is more oriented towards cohesive crack growth. It was pioneered
in [Wel01, WS01] and it is based on a nonlocal average of the stress tensor in the vicinity
of the crack tip. The same approach was also used in [MKS05]. The reason for using a
nonlocal average is that in the Finite Element approximation the stress at the crack tip
is not known exactly and the Finite Element interpolation functions do not provide the
needed accuracy to determine the latter. It is this second approach which is followed in
the model presented here. A very similar method was also proposed by [MP03]. Instead
of using a nonlocal average the stress at the crack tip is interpolated by a fourth-order
polynomial field that is fitted to the integration point stress values in the vicinity of the
crack tip with a least-squares approximation.

6.4.1 Crack Tip Model

Before the crack tip model is given let us recall that the geometry of the crack is restricted
to be element-wise linear (see Section 6.2.3). Furthermore, following the model proposed
in [WS01, Wel01] it is assumed that the crack grows from element edge to element edge
(although it is possible that the crack grows over multiple elements in one step). By doing
so it is guaranteed that an element is either completely bisected by a discrete crack or it is
not cracked at all. In other words, there are no partially cut elements. This is illustrated
in Figure 6.7.

Using a model in which the crack tip is always located on the edge between two elements
strongly simplifies the implementation. The main condition for the crack tip element is
that the displacement jump at the tip is constrained to zero. If the crack tip is located
inside an element this requires special enrichment functions as described in [MDB99] or
[DMB00]. For the model presented here this can be achieved in a more convenient way.
The crack tip opening is constrained to zero by not enriching the nodes of the edge on
which the crack tip lies (see Figure 6.7) since this will cause the enrichment field (and by
consequence the displacement jump) to be zero along that edge [Wel01]. The latter can
easily be verified by acknowledging the fact that all Partition of Unity Functions associated
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Figure 6.7: Evolution of a crack

with nodes that are not located on the edge containing the crack tip are always zero along
that edge.

6.4.2 Crack Propagation Criterion

The model for crack propagation that is used here strongly follows the propositions made
in [SWS03] and it is adapted to work in combination with the Rotating Crack Model that
was introduced in Chapter 5. As mentioned in the introduction to this chapter the crack
propagation criterion requires two things: namely a condition for crack propagation and
a rule to determine the direction of propagation.

Here a relatively simple condition for crack propagation is used. The crack is extended
whenever the principal strain εI or εII at any integration point in the element ahead of the
crack tip exceeds a given localization strain threshold εloc. Note that only the principal
strain component that is closer to orthogonal to the last crack segment is relevant. If
more than one element ahead of the crack tip fulfill the propagation condition the crack
is extended through all of those elements. An alternative is to extend the crack only
when all integration points in the element ahead of the crack tip fulfill the propagation
criterion. However, in [SWS03] it was shown that upon mesh refinement identical results
are obtained with both variants. In the context of High Performance Fiber Reinforced
Cementitious Composites a propagation criterion based on the maximum principal strain
is justified by the fact that softening in HPFRCCs is typically triggered by excessive fiber
pullout when a critical normal strain is reached.

The crack propagation criterion is only checked at the end of a load step when a new state
of global equilibrium has been reached. This guarantees that the Finite Element solution
algorithm remains robust and that the quadratic convergence rate of the Newton-Raphson
method is conserved [WS01]. On the other hand this means that cracks will only propagate
at the beginning of the next step and the localization strain threshold can be temporarily
exceeded in the immediate vicinity of the crack tip. In the cohesive crack framework such
a simplification is admissible since energy is dissipated upon crack opening rather the
upon crack extension and according to [WS01] ”the numerical result is not particularly
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sensitive to exactly when a discontinuity is extended or the length of the discontinuity
extension”.

The second and more critical part of the crack propagation model is determining the
direction of propagation. As already mentioned, a model based on nonlocal averaging
is used. The first step is to compute a nonlocal strain ε̂ at the crack tip in analogy to
the procedure explained in [SWS03]. The term nonlocal strain means that the latter is
not only a function of the properties at the exact location of evaluation, but that it is
computed from the values in a circumjacent region. In this specific case the nonlocal
strain is computed by averaging the strain values of all integration points in a v-shaped
window (circular sector) ahead of the crack tip. The v-shaped window spans an angle of
90◦ and has a length of 3 times the characteristic element length as shown in Figure 6.8.

Figure 6.8: V-shaped window for computing the nonlocal cracking strain

The averaging is done by using a Gaussian weight function α̂(r) as proposed in [WS01]
which is given in Equation (6.44). The parameter l determines how fast the influence
of the integration points decreases with increasing distance r to the crack tip and it is
typically set to three times the characteristic element length.

α̂(r) =
1

(2π)
3
2 · l3 · e− r2

2l2 (6.44)

The nonlocal strain at the crack tip can then be computed by averaging the strain values
at the integration points εgp as given by Equation (6.45) [MKS05]. Therein α̂gp is the
weight determined by Equation (6.44) and αgp is the standard weight (representative
area) of an integration point.
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ε̂ =
∑

Gauss pts.

εgp ·
α̂gpαgp∑
α̂gpαgp

(6.45)

Finally, the direction of crack extension follows by assuming that the crack propagates
perpendicular to the dominant nonlocal principal strain.

6.4.3 Discrete Crack Nucleation

So far the main focus of the explanation has been the propagation of a preexisting, discrete
crack. However, in some circumstances there is no notch or starting point for a crack
and the latter will localize somewhere in the middle of the Finite Element domain (see
the application presented in Section 8.4). We call this process discrete crack nucleation
and in order to handle the situation consistently a crack nucleation criterion needs to
be defined. Once the localized crack has nucleated we can then revert to the crack
propagation criterion which governs the propagation of the two tips of the newly nucleated
crack.

For all the examples in this thesis the following numerical crack nucleation criterion is
proposed: A discrete crack will nucleate within the Finite Element domain as soon as the
localization strain threshold εloc is exceeded at any integration point of a Finite Element.
Of course this has to be checked after the currently existing cracks have all propagated at
the current loadstep in order to prevent a new crack from nucleating where a preexisting
crack should have propagated to. The newly nucleated crack is introduced at the location
of the integration point which has exceeded the localization strain threshold and with an
orientation perpendicular to the principal tensile strain direction at that point. If multiple
integration points within an element exceed the localization strain threshold than the
integration point with the highest principal strain value is selected. The nucleated crack
segment is then extended to the edges of the element within which the crack originated
and its further propagation is governed by the crack propagation criterion introduced in
Section 6.4.2.

6.5 Material State Transfer

In Section 6.2 a model for localized cracking with the XFEM was presented. As explained
there the crack can transmit cohesive forces and the transition from a Rotating Crack
Model to a discrete eXtended Finite Element model is governed by the laws detailed
in Section 6.4. However, we did not discuss what happens to the bulk material during
this transition. Because the transition from a Rotating Crack Model to an eXtended
Finite Element model marks the onset of softening the bulk material in the vicinity of the
localization zone will start to unload as governed by the Rotating Crack Model given in
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Chapter 5. However, there is one key issue that remains to be solved. During cracking of
an element the locations of the integration points change due to the separate integration of
the positive and the negative domain and the consequential subtriangulation introduced
in Section 6.2.6. And this requires a mapping of the material history from the old to the
new integration locations.

If the bulk material is elastic the material history transfer does not pose a problem since
the strain state of the new integration points εgp can be recovered from the nodal degrees
of freedom de via the strain–displacement transformation matrix (εgp = B · de) and
the stresses can be computed via the linear, elastic constitutive matrix (σgp = D · εgp).
However, in the present case the bulk material is nonlinear (Rotating Crack Model) and
the method above is not applicable since the material law is path dependent and can only
be expressed in incremental form. As a consequence the stress, the strain and all the
material state variables need to be transfered at the time of cracking from the old set of
integration points to the new one.

It is important to note that this material state mapping does not involve the primary
unknowns (nodal degrees of freedom) but only the secondary unknowns such as the stresses
and the material history variables. This is in contrast to remeshing techniques where the
position of some nodes may change.

The literature proposes a number of different mapping techniques for the internal his-
tory variables such as the closest point transfer, the shape function projection trans-
fer or the least-squares projection transfer [PJ04]. For the specific case of the XFEM
in conjunction with a nonlinear bulk material there are only a handful of publications
[WdBS01, WSdB02, SWS03, SS04, CMP07]. In [WdBS01] and [WSdB02] the history
variables are interpolated proportionally to the distance between the old and the new
integration points whereas in [SWS03] the maximum value of the history variable of the
element is transfered to all new integration points.

Unfortunately, all of the above methods introduce a small error into the computation and
result in a deviation from the equilibrium path which can adversely affect the robustness
of the solution algorithm. More specifically, this means that a Finite Element which is
in a state of equilibrium will become ”unbalanced” by a change of the integration points.
Moreover, this will happen during a time of drastic change when the transition from
the Rotating Crack Model to the eXtended Finite Element model is performed and the
stability of the solution algorithm is already critical.

In order to alleviate this problem a new transfer method based on what we call inte-
gration point splitting is developed. It is similar to the procedure presented in [EGC06]
but in addition to integrating both sides of a cut element accurately it also simplifies
the material state transfer. Following the integration point splitting technique the latter
can be performed without interpolation. This new method can also be seen as an ad-
vanced version of the closest point transfer technique as will be detailed in the following
Sections 6.5.1 and 6.5.2.
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6.5.1 Representative Integration Point Areas

The basic idea behind the material state transfer method developed herein is that each
integration point represents a certain area of the computational domain (given by its
weight). The values of the stress, the strain and the material history variables are assumed
to be constant over an integration point’s representative area and they are given by the
respective values at the location of the integration point. An integral over the entire
domain is then computed as an assembly of patches with constant values corresponding
to the representative areas of the integration points. Figure 6.9 shows the representative
domains of the integration points for a 3 × 3 Gauss quadrature in both the natural and
the real domain.

(a) Natural domain (b) Real domain

Figure 6.9: Representative areas of the integration points for a 3× 3 Gauss rule

Because it was decided to use quadrilateral elements that have straight edges in the real
domain (see Section 6.2.3) the isoparametric mapping procedure will project vertical and
horizontal lines in the natural domain to straight lines in the real domain. By consequence
the representative areas of the integration points are of quadrilateral shape.

The idea of the proposed material state transfer method is to split these subquadrilaterals
into smaller patches which are each in turn represented by an integration point. In other
words, the integration points and their representative areas are ”split” into sub-points
and their respective sub-areas. This procedure is explained in the following Section 6.5.2.

6.5.2 Integration Point Splitting

If an eXtended Finite Element is cracked the traditional procedure would be to subtri-
angulate the element and then integrate the individual subtriangles in order to respect
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the discontinuity introduced by the crack as explained in Section 6.2.6 (see Figure 6.4).
However, the innovative new procedure proposed here is to regard the representative areas
of the original integration points (see Section 6.5.1) as subdomains and to integrate them
individually. If a subdomain is not cut by the crack a standard 3× 3 Gauss quadrature is
used whereas if the subdomain is split by a crack it is subtriangulated in analogy to the
standard procedure. This is shown in Figure 6.10.

cr
ac
k

Figure 6.10: Integration of a cracked element with the integration point splitting technique

Note that if a subdomain is split into two quadrilateral parts these are integrated in the
same fashion as the unsplit subquadrilaterals. The integration points for a subtriangle
are found by mapping them from a natural triangle whereas those for a subquadrilateral
are found by mapping them from a natural quadrilateral. The inverse mapping of all
integration points to the natural domain of the parent element is then performed in the
same way as explained in Section 6.2.6.

The major advantage of the integration point splitting technique is that an integration
point is effectively equivalent to the sum of the subpoints within its representative area as
long as the material state variables of the original point and the subpoints are identical.
The integration points are ”split” into subpoints so to speak. This also constitutes the
key idea behind the material history transfer procedure. Because an integration point
is equivalent to the sum of its subpoints the material state can be transfered one-to-one
from the original point to the subpoints without changing the element energy balance.

This technique might seem excessive at first as it appears to increase the number of
integration points by more than a factor of nine. However, this is not the case since
typically only a very small number of elements are cut by a crack. Furthermore, the
additional computational burden is only small because most of the solution time is spent
during the inversion of the global stiffness matrix. And the rank of the latter is not



160 CHAPTER 6. STRAIN LOCALIZATION MODEL

affected by the increased number of integration points. The reduced number of numerical
instabilities due to a consistent material state transfer most likely even leads to faster
convergence of the solution and by consequence less computation time (less global stiffness
matrix inversions).



Chapter 7

Reinforcement Model

7.1 Introduction

Although the behavior of High Performance Fiber Reinforced Cementitious Composites
is improved significantly in comparison to plain concrete the tensile strength of HPFR-
CCs is still not sufficient for most practical applications. In some cases the fibers in
HPFRCCs can replace secondary reinforcement such as confinement and shear reinforce-
ment (see [DBT08]) but longitudinal reinforcement is typically required. In addition,
using longitudinal rebars in High Performance Fiber Reinforced Cementitious Composite
structural members is also reasonable from an economical standpoint as they can be used
”selectively” in regions of high tensile stresses. In order to obtain a useful simulation
tool for HPFRCC structural members a steel reinforcement model has to be added to
the isoparametric, quadrilateral elements presented in Chapter 4. The implementation of
such a model is described in the following Section 7.2 of this chapter.

There are basically three different approaches to reinforcement modeling in concrete struc-
tures. These are namely the Discrete Rebar Model, the Smeared Reinforcement Model and
the Embedded Rebar Model.

The most primitive one is the Discrete Rebar Model which is equivalent to using truss
elements for the individual reinforcement bars. The disadvantage is that the nodes of the
Finite Element mesh have to be adjusted such as to accommodate the nodes of the rebar
elements. This may lead to unfavorable Finite Element meshes with an unnecessarily
large number of elements or with strongly distorted elements.

The second possibility is to use a Smeared Reinforcement Model. This approach is best
suited for slabs or shells with a distributed reinforcement mesh. The primary assumption
of the model is that the reinforcement is distributed uniformly over the entire element and
that it can therefore be approximated by an equivalent membrane layer of reinforcement
steel. The latter is taken into account by modifying the constitutive equations to include
a reinforcement contribution.

161
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The third model which is adopted in this thesis is the Embedded Rebar Model by [CTC87].
The latter is based on the original formulation by [PZ76] and basically comes down to
an additional term that is added to the weak form of equilibrium in order to account for
the virtual work done by the reinforcement. The strain within the reinforcement bars
is computed via the standard shape functions of the underlying element and the virtual
work is integrated over the length of the rebars. However, only the contribution in the
direction of the rebars is considered. More specific details about the model are presented
in Section 7.2.

The Embedded Rebar Model was chosen here because the mesh independence of the
localized crack model (see Chapter 6) should be conserved for the reinforcement model
as well. In fact, there is a strong analogy between the XFEM implementation of the
Cohesive Crack Model presented in Section 6.3 and the Embedded Rebar Model as was
also recognized by [Hub06]. In the case of the XFEM-crack the virtual work of the cohesive
forces is integrated along the crack interface whereas in the case of the Embedded Rebar
Model the same is done with the virtual work of the rebars.

It should be noted, that the main goal of the rebar model presented hereafter is to come
up with a simple representation for reinforcement bars in HPFRCC structural members
that can be used in the computation of some example problems (see Chapter 8). However,
it is not the primary focus of this thesis. Therefore, some simplifications concerning the
model are made. The first one is the assumption that a reinforcement bar can be modeled
by a set of element-wise straight segments. In addition perfect bond between the rebars
and the concrete elements is assumed. An extension of the model to curved embedded
rebars with bond slip can be found in [EH89].

Finally, it is assumed that the embedded reinforcement bars are not crossed by a localized
crack. The elements containing rebars are allowed to undergo multiple cracking (which
is modeled by the Rotating Crack Model presented in Chapter 5) but the combination
of the Embedded Rebar Model and the eXtended Finite Element Method requires some
additional considerations concerning the reinforcement bars at the discrete crack locations
which are beyond the scope of this thesis. A more detailed discussion of this issue and an
outline of what these additional considerations entail are given in Section 8.4.6.

7.2 Rebar Model

As already mentioned in the introductory Section 7.1 the Embedded Rebar Model is
adopted for this thesis. The theoretical background of the model is given in the following.

One way of looking at the Embedded Rebar Model is to think of a rebar as an additional
element which is superimposed on the unreinforced element. The rebar element has the
same number of nodes and the same shape functions as the underlying element but it is
integrated only along the line-segment where the rebar is located. This is illustrated in
Figure 7.1.
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Figure 7.1: Decomposition of the Embedded Rebar Model

Following this approach results in an additional virtual work term for the reinforcement
bar δWrebar which has to be added to the weak form of equilibrium. For this reason
Equation (4.17) has to be rewritten as Equation (7.1). Note that the latter was also
transformed into incremental form because the constitutive law for the reinforcement bars
is typically nonlinear which requires the linearization of the weak form of equilibrium.

∫
Ωe

δεT ·Δσ dΩe + δWrebar =

∫
Ωe

δuT ·Δf dΩe + δde
T ·ΔPe (7.1)

The remaining task is to express the virtual work term δWrebar as a function of the virtual
nodal displacement increment δde.

The first step towards the solution is to link the nodal displacements to the strain values
at the location of the reinforcement bars. Because the standard shape functions of the
underlying element are also used for the embedded rebar element the strain acting on
the rebar can be computed with the normal strain–displacement transformation matrix
B (see Equation 4.9). This is expressed in Equation (7.2).

Δεrebar = B(r, s) ·Δde

δεrebar = B(r, s) · δde

∀ (r, s) on the rebar (7.2)

7.2.1 Rotation into the Rebar System

The next step is to perform a rotation of the global strain into the local coordinate system
associated with the rebar. This is illustrated in Figure 7.2.

Due to the assumed perfect bond between the reinforcement and the HPFRCC matrix
the local strain in the direction of the rebar ε̃rebar has to be the same as the projection of
the global strain vector εrebar onto the rebar system. This is expressed in Equation (7.3).

ε̃rebar = Trebar · εrebar where Trebar = (cos2 α, sin2 α, sinα cosα) (7.3)
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Figure 7.2: Local coordinate system associated with a rebar

Note that in this specific case the rotation matrix Trebar reduces to a vector because we
are only interested in the local strain in the direction of the reinforcement bar. The other
components are ignored. The angle α in Equation (7.3) designates the rotation angle
between the global axes and the local axes of the rebar as indicated in Figure 7.2.

In virtue of the principle of duality the local stress in the reinforcement σ̃rebar can be
rotated back into the global system according to Equation (7.4).

σrebar = TT
rebar · σ̃rebar (7.4)

7.2.2 Constitutive Equation

A further component that is needed for the Embedded Rebar Model is a constitutive
law. Since a rebar is a one-dimensional element the constitutive law reduces to a scalar
function. It is most conveniently formulated in the local coordinate system associated
with the rebar and should relate the stress in the rebar σ̃rebar to the longitudinal rebar
strain ε̃rebar as given by Equations (7.5). Because the constitutive law for reinforcing
steel is usually nonlinear it has to be formulated in incremental form. The nonlinear
algorithmic stress function χrebar is provided by Equation (7.5a) and its linearized version

with the tangent constitutive modulus D̃rebar is given in Equation (7.5b).

Δσ̃rebar = χrebar (Δε̃rebar) (7.5a)

Δσ̃rebar = D̃rebar ·Δε̃rebar (7.5b)
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For reasons of simplicity a standard elasto-plastic law with strain-hardening as shown in
Figure 7.3 was implemented. However, this can easily be extended to a more sophisticated
one such as the Ramberg–Osgood [RO43] or the Menegotto–Pinto [MP73] model.

un
lo
ad
in
g

Figure 7.3: Elasto-plastic constitutive law for the embedded rebar model

In Figure 7.3 E denotes the elastic modulus of the reinforcement bars and βE is the
hardening modulus after yielding. The yield strength is given by fy.

7.2.3 Embedded Rebar Stiffness Matrix Contribution

The stiffness matrix of the embedded rebar element can be determined with the help of
the weak form of equilibrium from Equation (7.1). The virtual work term δWrebar which
accounts for the rebars can be computed as given in Equation (7.6). The virtual work
is integrated over the length L of the embedded rebar segment (see Figure 7.2) and the
cross-section area of the rebar is denoted by Arebar.

δWrebar =

∫
L

δε̃ T
rebar ·Δσ̃rebar · ArebardL (7.6)

Replacing the stress increment by means of the linearized constitutive law from Equa-
tion (7.5b) this can be rewritten as Equation (7.7).

δWrebar =

∫
L

δε̃ T
rebar · D̃rebarΔε̃rebar · ArebardL (7.7)
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Further using the rotation Equation (7.3) for both the virtual and the real local strain
Equation (7.7) can be transformed into Equation (7.8).

δWrebar =

∫
L

(
Trebarδεrebar

)T · D̃rebar ·TrebarΔεrebar · ArebardL (7.8)

Finally, Equation (7.8) is discretized with the Finite Element approximation of the strain
field (Equation 7.2) which yields Equation (7.9).

δWrebar =

∫
L

(
TrebarB · δde

)T · D̃rebar ·TrebarB ·Δde · ArebardL (7.9)

After rearranging the terms and some simple algebraic transformations the stiffness matrix
for an embedded rebar element is found (Equation 7.10).

δWrebar = δdT
e

∫
L

BTTT
rebarD̃rebarTrebarB ·ArebardL︸ ︷︷ ︸

Krebar
e

·Δde (7.10)

Reintroducing this result into the weak form of equilibrium from Equation (7.1) and
respecting the fact that the equilibrium has to be satisfied for any arbitrary variation of the
virtual nodal displacements δde results in the stiffness matrix given in Equations (7.11)
(for the standard virtual work term see Section 4.2.5). It is composed of a stiffness
contribution that accounts for the standard, isoparametric, quadrilateral element and a
stiffness contribution that accounts for the embedded reinforcement.

Ke = Kstd
e +Krebar

e where (7.11a)

Kstd
e =

∫
Ωe

BTDB dΩe (7.11b)

Krebar
e =

∫
L

BTTT
rebarD̃rebarTrebarB · ArebardL (7.11c)

At this point it becomes obvious that there is a strong similarity between the stiffness
matrix contribution of a cohesive crack introduced in Section 6.3.3 and the stiffness ma-
trix contribution of an embedded rebar. By analogy the integral in Equation (7.11c) is
also evaluated numerically with a three-point Gauss integration rule. This involves the
same mapping procedure of the integration points from the natural domain [−1, 1] to the
real domain of the rebar and then an inverse mapping from the real domain to the parent
quadrilateral domain (because the strain–displacement transformation matrix is formu-
lated in those coordinates). The details are not repeated here and the reader is referred
to Section 6.3.3.
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7.2.4 Secondary Results and Element Reactions

Once the global system of equations has been solved the element nodal displacements de

can be used to compute some secondary results for the embedded rebar element. The
first one is the local strain in the rebar. From Equations (7.2) and (7.3) it follows directly
that the local strain can be computed by Equation (7.12).

ε̃rebar = Trebar ·B · de (7.12)

The effective stress in the rebar can then be found through Equation (7.13). Due to the
nonlinearity of the rebar material law it has to be computed via the incremental stress
return algorithm (see Section 7.2.2). The local strain increment is given by Δε̃rebar =
ε̃rebar − ε̃ eq

rebar and ε̃ eq
rebar respectively σ̃ eq

rebar are the local strain and stress at the last global
equilibrium state.

σ̃rebar = σ̃eq
rebar + χrebar (Δε̃rebar) (7.13)

The element reaction forces which are used in the global equilibrium iteration follow from
the principle of virtual work. In addition to the standard term for the isoparametric,
quadrilateral element (see Section 4.2.9) the virtual work contribution of the reinforce-
ment has to be taken into account. After a rotation of the rebar stress into the global
coordinate system via Equation (7.4) the element reaction forces can be computed as
given by Equation (7.14).

Re =

∫
Ωe

BTσ dΩe +

∫
L

BTTT
rebarσ̃rebarArebar dL (7.14)

Equation (7.14) is of course evaluated numerically in analogy to Section 6.3.4.



Chapter 8

Applications

8.1 Introduction

After having explained the theoretical basis for the newly developed numerical model for
High Performance Fiber Reinforced Cementitious Composites in the preceding Chapters 4
to 6, this chapter will present a couple of applications. The idea is to prove the validity
of the model and to compare some simulation results with experimental test data. We
will mainly focus on the model’s capability to capture the general characteristics of the
material response and especially the different phases of behavior. However, no major
attempt will be made to calibrate the model parameters as closely as possible to the
experimental results as this would equate to a ”curve fitting” exercise which is deemed
unreasonable. A more meaningful approach would be to determine the model parameters
based on more detailed experimental knowledge about the cracking behavior of HPFRCCs
(cracking-stress vs. cracking-strain law, traction–separation law, shear-transfer law) which
is unfortunately not available for the materials used in the presented applications. An
alternative would be to develop sophisticated micromechanical models as was done in
[Kab07] but this is beyond the scope of this thesis.

In the following three different applications are presented. The first one is the simulation
of a wedge splitting test (Section 8.2). In Section 8.3 the numerical model is then applied
to a 4-point bending test and finally a shear beam test is simulated in Section 8.4.

8.2 Wedge Splitting Test

In this first example the newly developed numerical model is applied to an Ultra High
Strength Concrete wedge splitting test [XSDK04]. The primary goal of this application is
to focus on the strain-softening part of the model without involving the strain-hardening
phase. For this reason an Ultra High Strength Concrete (UHSC) specimen instead of

168
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a High Performance Fiber Reinforced Concrete (HPFRC) specimen is used. However,
an application with a High Performance Fiber Reinforced Concrete will be presented in
Section 8.3.

In the first two sections the test setup (Section 8.2.1) and the material of the test specimen
(Section 8.2.2) are described. This is then followed by an explanation of the used Finite
Element discretization (Section 8.2.3) and a description of the input parameters for the
numerical model (Section 8.2.4). Finally, the results of the simulation are presented and
a comparison with the experimental data is made (Section 8.2.5). The investigation of
the example is concluded by a mesh-refinement analysis which demonstrates the correct
convergence behavior of the model (Section 8.2.6).

8.2.1 Test Setup

The wedge splitting test which is used here to validate the crack localization phase of
the numerical model is taken from [XSDK04]. A photo of the test setup is shown in
Figure 8.1a. The basic goal of this kind of test is to compute the fracture energy of
a material. A crack is initiated at the tip of a sawn starter notch and it is forced to
propagate from the top of the specimen to its bottom. Figure 8.1b shows the geometry
of the wedge splitting test specimen. Its general dimensions are 300× 300 mm and it has
a thickness of 100 mm. The splitting forces at the top of the specimen are applied by
means of a triangular wedge (see Figure 8.1a) which redirects the vertical actuator force
such that a pair of horizontal forces is created.

(a) Test setup (b) Specimen geometry in mm

Figure 8.1: Wedge splitting test taken from [XSDK04]

The primary result of this wedge splitting test is a relationship between the horizontal
splitting force Fsp and the crack opening displacement (COD). According to [XSDK04],
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the latter was measured by means of two high-precision displacement gauges which were
located at the mouth of the starter notch. The resulting splitting force vs. crack opening
displacement curve is given in Section 8.2.5.

8.2.2 Material

Because the goal of this simulation is the validation of the crack localization part of the
numerical model a quasi-brittle Ultra High Strength Concrete without fiber reinforcement
is chosen. Nevertheless, the UHSC does exhibits some cohesive forces in the sense of the
Cohesive Crack Model by Hillerborg due to crack tortuosity and aggregate interlock. A
description of the used UHSC is given in the following.

The primary constituents of the UHSC were crushed basalt (1027 kg/m3), quartz sand
(440 kg/m3) and Portland CEM I 42.5R cement (540 kg/m3). As fine fillers quartz powder
(231 kg/m3) and silica fume (162 kg/m3) were used. In order to obtain the necessary
workability 16.8 kg/m3 of superplastizicer were also included in the mix. Water was
added at an amount of 163 kg/m3 resulting in a w/b ratio of 0.232. More details about
the material constituents can be found in [XSDK04] where it is labeled UHSC-2.

The authors of [XSDK04] also determined some of the basic mechanical properties of
the UHSC in question. They fond that it had a very high axial compressive strength of
147.7 MPa which is typical for Ultra High Strength Concretes. Furthermore, the tensile
splitting strength was measured to be 8.6 MPa and the elastic modulus was 53′000 MPa
with a Poisson’s ratio of 0.18.

8.2.3 Finite Element Discretization

The wedge splitting test is discretized using the 8-node quadrilateral elements introduced
in Chapter 4. As shown in Figure 8.2a an almost regular grid of 15× 13 elements is used.
The elements in the critical part of the specimen are a little smaller and they are arranged
in such a way as to induce crack propagation through a column of central elements instead
of along element borders. The reasoning behind this is to demonstrate the correct working
of the eXtended Finite Element Model. The Finite Element mesh contains a total of 189
elements and 628 nodes which results in about 1′250 degrees of freedom.

As can be seen in Figure 8.2a the starter notch is introduced by means of the XFEM. The
corresponding enriched nodes are indicated by circles. In order to avoid some numerical
problems which are created if a single point of support is used (the equilibrium equations
become singular because the specimen can rotate freely) all nodes of the central, bottom
element are fixed. This is acceptable from a physical point of view since the pivot point
in the experiment also has a certain width.
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8.2.4 Model Input Parameters

The next step is to define the input parameters for the numerical model. For the most
part these are directly taken from [XSDK04]. The parameters for the elastic bulk material
were already introduced in Section 8.2.2 and are taken as E = 53′000 MPa and ν = 0.18.

A further parameter that is needed for the simulation is the principal strain εloc at which
crack localization and softening sets in (see Section 6.4.2). It can be estimated with
the help of the splitting tensile strength which was measured to be 8.6 MPa [XSDK04].
Dividing this value by the modulus of elasticity E yields an approximate localization
strain of 0.16 �.

Because the material is not strain-hardening (no fibers) there is no multiple cracking phase
and the parameters for the Smeared Crack phase can be ignored.

Finally, the model requires a Mode I and a Mode II traction–separation law for the
cohesive crack during the localization phase. For the traction–separation law in Mode I
the propositions made in [XSDK04] are adopted which means that the bilinear softening
curve shown in Figure 8.2b is used. It accounts for crack tortuosity as well as aggregate
interlock and it assures correct energy dissipation during the cracking process.

Softening starts at the already mentioned splitting tensile strength of σpc = 8.6 MPa
and rapidly progresses up to a crack opening of 0.0154 mm and the corresponding stress
of 1.07 MPa. The traction–separation law then flattens out and the crack reaches its
stress-free state at an ultimate crack opening of wu = 0.11 mm.

(a) Finite Element discretization (b) Mode I traction–separation law

Figure 8.2: Numerical model

Because the wedge splitting test is a pure Mode I problem the Mode II law is of no
concern.
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8.2.5 Results

In this section the results of the simulation are presented and they are compared to
the experimental data. The experimental and the numerical splitting force vs. crack
opening displacement (COD) curves are plotted in Figure 8.3. Overall there is an excellent
agreement between the simulation and the experiment. The curve labeled ”Test results”
represents the mean value of the test measurements presented in [XSDK04].
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Figure 8.3: Splitting force vs. crack opening displacement (test results from [XSDK04])

The most interesting result is that the peak load is determined very accurately. This is
even more astonishing when acknowledging the fact that the peak load does not correspond
to the end of the elastic phase (which is marked by ①). Rather, the maximum load
carrying capacity is only reached after the crack has propagated some small distance into
the specimen. This can be explained by a redistribution of the internal efforts and it is
typical for wedge splitting tests with cohesive materials.

The softening branch of the behavior is also captured fairly accurately even up to complete
separation of the specimen.

In Figure 8.3 another interesting observation concerning the numerical model can be
made. The softening curve is not completely smooth but exhibits a small number of
”sawtooth-like” spikes. These are a consequence of the fact that crack growth is not
continuous. More specifically, the crack is always incremented by the length of an entire
element (see Section 6.4.1) which manifests itself in an artificial buildup of stresses until
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the crack propagates and the excess stresses are released. However, the errors are small
and the solution converges upon mesh refinement (see Section 8.2.6).

The evolution of the crack during the simulation is illustrated in Figure 8.4. Each stage
of the crack is labeled by a circled number (e.g. ①) which is also used to mark the
corresponding point in the splitting force – crack opening displacement curve in Figure 8.3.

(a) COD = 0.045 mm, ① (b) COD = 0.072 mm, ② (c) COD = 0.073 mm, ③

(d) COD = 0.09 mm, ④ (e) COD = 0.11 mm, ⑤ (f) COD = 0.13 mm, ⑥

(g) COD = 0.16 mm, ⑦ (h) COD = 0.22 mm, ⑧ (i) COD = 0.4 mm, ⑨

Figure 8.4: Crack evolution (Deformation ×100)

Finally, Figure 8.5 shows a plot of the stress field in x-direction (horizontal) at peak load
(see point ② in Figure 8.3). The high stresses in the vicinity of the crack tip are clearly
apparent. Also note how the stresses directly behind the crack tip still remain high since
the cohesive forces are large at small crack openings. On the other hand the part of
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the crack which is far away from the tip has completely unloaded and the stresses in
x-direction are reduced to zero.

Figure 8.5: Stress field in horizontal direction at peak load

8.2.6 Mesh Refinement

Because the splitting force vs. crack opening displacement curve of the simulation exhibits
a number of unconventional spikes (see Section 8.2.5) and because mesh-insensitivity is a
key feature of the proposed model a mesh refinement analysis is performed. The number
of elements is more or less doubled and a new mesh of 30 × 25 elements is generated.
This results in a refined model with 750 elements, 2′309 nodes and approximately 4′610
degrees of freedom as is illustrated in Figure 8.6. Note that in order to keep the model
consistent the width of the support zone is kept the same as in the model with the coarse
mesh.

In Figure 8.7 the splitting force vs. crack opening curves that were obtained with the fine
mesh (Mesh 30× 25) are plotted together with those from the original simulation (Mesh
15×13). The results clearly indicate that the coarse mesh already provides fairly accurate
results and that the proposed model is not sensitive to mesh refinement at all. The elastic
branch of the response is identical and the peak load as well as the softening behavior
are very close. The most obvious difference is that the aforementioned spikes which are
related to an artificial buildup of stresses due to the element-wise propagation of the crack
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Figure 8.6: Refined mesh

are strongly reduced. This is a direct consequence of the larger number of elements which
allows for a smoother crack propagation (smaller crack growth increments). However, the
two curves never deviate much from one another and they coincide whenever the crack
just propagated and the artificial stress buildup is released. It is interesting to note that
because the crack propagates in shorter increments the spikes are smaller in magnitude
but larger in number. Also note that the two results remain close even at large crack
openings which is often not the case for other models. Overall, this mesh refinement
analysis clearly shows that the proposed model is not particularly sensitive to the used
mesh size and that the solution converges very quickly.
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Figure 8.7: Splitting force vs. crack opening displacement for two different mesh sizes
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8.2.7 Conclusions

This simulation of a wedge splitting test clearly shows the correct working of the crack
localization and strain-softening part of the proposed numerical model. In the simulation
the crack is able to propagate independently of the Finite Element mesh and the results
are in excellent agreement with the experimental measurements. Furthermore, the model
is not mesh-sensitive and the simulation is stable up to complete separation of the wedge
splitting test specimen without any locking or spurious stress transfer effects.

The excellent agreement between the test and the simulation results is partly due to
the particularly realistic input parameters provided by the authors of [XSDK04]. Un-
fortunately this publication does not explain explicitly how the input parameters were
determined. However, the paper states that the input parameters are in close accordance
with the global recommendations by the CEB-FIP model code [CEB90].

The next step is to use the numerical model for the simulation of a test example with a
HPFRCC material in which case the strain-hardening phase of the model will have to be
taken into account as well. This is done in the following Section 8.3.

8.3 4-Point Bending Test

In this second example the numerical model is applied to a HPFRCC 4-point bending
test which was carried out at the University of Michigan. The test results were kindly
provided by Prof. G. J. Parra-Montesinos and R. D. Lequesne. The test setup and the
material properties are described in Sections 8.3.1 and 8.3.2 respectively. Thereafter, the
used Finite Element discretization is given in Section 8.3.3 followed by an explanation
of how the input parameters for this simulation are chosen (Section 8.3.4). Finally, the
results of the simulation are presented and discussed in Section 8.3.5 and a comparison
with the experimental results is made.

8.3.1 Test Setup

As already mentioned, the setup that is simulated here is a standard 4-point bending
test which was performed at the University of Michigan. The results of that test are not
published individually but they are part of the work leading to [LSPMW09]. A photo of
the test setup is shown in Figure 8.8a.

The test was conducted following the ASTM standard [AST06], which means that the
test specimen had a span of 45 cm and a cross-section 15 cm in height and 15 cm in
width. Figure 8.8b shows the geometry and the loading conditions of the test. The two
loads were applied by means of a load distribution beam and a single actuator, which was
controlled by the displacement measured at mid-span.
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(a) Test setup (b) Specimen geometry

Figure 8.8: 4-point bending test (photo courtesy of [LSPMW09])

The beam itself consisted of a Self-Consolidating High Performance Fiber Reinforced
Concrete featuring strain-hardening in direct tension. More detailed information about
the material is given in the following Section 8.3.2.

8.3.2 Material

The material that was used to manufacture the test specimen was a Self-Consolidating
High Performance Fiber Reinforced Concrete (SCHPFRC) that was developed at the Uni-
versity of Michigan [LCPN06]. Its main characteristics are summarized in the following.

The matrix of the SCHPFRC contained crushed limestone (187 g/kg) with a maximum
aggregate size of about 12 mm and ASTM Type III Portland cement (155 g/kg). It
also included a significant amount of fly-ash (136 g/kg) and silica sand (342 g/kg). As
chemical admixtures the products Glenium� 3200 HES (0.78 g/kg) and RHEOMAC�

VMA 362 (5.9 g/kg) were used. Water was added at an amount of 124 g/kg resulting in
a w/c ratio of 0.8.

The fiber reinforcement of the SCHPFRC consisted of Dramix� RC-80/30-BP steel fibers
which were added at a total volume fraction of 1.5 % (49 g/kg). These hooked-end fibers
are made of high strength steel (2300 MPa) and have a length of 30 mm and a diameter
of 0.38 mm which results in an aspect ratio of 79.

The modulus of elasticity of the Self-Consolidating High Performance Fiber Reinforced
Concrete was approximately 28′000 MPa and its Poisson’s ratio was 0.14. The average
compressive strength was about 38 MPa. What is essential about the tensile behavior of
this SCHPFRC is its pronounced strain-hardening phase. This can be seen in Figure 8.9
taken from [LCPN06]. As a consequence the concrete undergoes a prolonged phase of
multiple cracking before strain localization occurs at approximately 0.5 % strain. This is
in direct contrast to the Ultra High Strength Concrete presented in Section 8.2.2 which
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already started softening at 0.016 % (see Section 8.2.4). More detailed information about
the SCHPFRC can be found in [LCPN06] where it is labeled Mix 6.

Strain (%) (valid up to peak stress only)

S
tr

es
s

Tensile Stress-Strain Curve

Mix 6

6.9

5.5

4.1

2.9

1.4

1.510.50
0

200

400

600

800

1000

Figure 8.9: Tensile stress–strain curve of the used SCHPFRC (adopted from [LCPN06])

8.3.3 Finite Element Discretization

The first step in setting up a numerical model for the bending test described in Sec-
tion 8.3.1 is to choose an appropriate Finite Element discretization. The following Fig-
ure 8.10 shows the chosen Finite Element mesh. It consists of 160 quadrilateral elements
and contains a total of 531 nodes which results in about 1060 degrees of freedom. The
central zone which is of primary interest is discretized with a finer mesh than the border
zones. This is necessary in order to obtain more accurate strain and stress fields and also
to get a more realistic crack propagation behavior.

Figure 8.10: Finite Element discretization
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8.3.4 Model Input Parameters

The next step in the procedure is the choice of the input parameters for the material
model in accordance with the material characteristics outlined in Section 8.3.2. All pa-
rameters were chosen before the simulation was run which led to a ”blind” prediction of
the behavior. Each phase of the material model requires its own parameters as explained
in the following.

Elastic Model

The elastic part of the model is defined by the modulus of elasticity E and Poisson’s ratio
ν (see Section 4.2.5, Equation 4.19). The used SCHPFRC is regarded as homogeneous and
isotropic and the modulus of elasticity in compression and in tension is assumed to be the
same. It is also assumed that the material remains linear-elastic in compression which is
a simplification. However, this can be accepted as long as the compressive strength of the
SCHPFRC (38 MPa in the simulation) is not exceeded. Following the indications given
in Section 8.3.2 the modulus of elasticity and Poisson’s ratio were taken as 28′000 MPa
and 0.14, respectively.

Rotating Smeared Crack Model

The Rotating Crack Model requires the input of an uniaxial stress vs. cracking-strain
relationship (see Section 5.2.3). This is entered into the numerical model by means of a
piecewise linear curve. Unloading is assumed to occur linearly and origin-oriented with
complete closure of microcracks leaving no residual strain. The stress vs. cracking-strain
curve was calibrated by means of the direct tension test results taken from [LCPN06] as
shown in Figure 8.11, which is a close-up of Figure 8.9.

The Smeared Crack Model only covers the strain-hardening phase after first cracking
up to the onset of softening. From the tensile test shown in Figure 8.11 the point of
first cracking can be roughly identified as point ① with a stress of 2.8 MPa. Although
this is probably not the point at which the first microcracks appear in the material it is
clearly the beginning of multiple cracking and significant cracking-strain accumulation.
The stress vs. cracking-strain relationship for the Smeared Crack Model is input into the
program in form of a piecewise linear curve going from point ① to point ② (Figure 8.11).
Note that such a calibration neglects the contribution of the elastic bulk material during
the strain-hardening phase since it is very small in comparison. However, the cracking-
strain is set to zero at point ①. As a result the input curve for the Rotating Crack Model
is a polylinear line going from a first cracking stress σcc of 2.8 MPa to an ultimate stress
of σpc = 3.5 MPa and a corresponding strain of εpc = 0.4 % (see Figure 8.12b). The
intermediate point on the curve is located at a stress of 3.17 MPa and a strain of 0.15 %.
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Tensile Stress-Strain Curve
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Figure 8.11: Calibration by means of a direct tension test taken from [LCPN06]

Extended Finite Element Model

The eXtended Finite Element model needs three basic input parameters. The first one
is the total principal strain at which the material starts softening εloc (see Section 6.4.2).
It can easily be identified to be 0.45 % from the direct tension test shown in Figure 8.11.
The other two parameters are more difficult to determine. They are the Mode I traction–
separation law and the shear vs. crack-sliding law (Mode II). Especially the latter is very
difficult to express as unfortunately no experimental data on this subject are available.
However, for the presented example shear sliding along the crack interface is not an issue
and it can therefore be ignored.

The Mode I traction–separation law is also relatively difficult to identify. For the purpose
of this simulation a rough estimation is performed as follows: The softening branch of the
stress–strain curve from the direct tension test is linearly extrapolated to find the strain
at total separation of the material (Figure 8.11 linear extrapolation through point ③). Of
course the strain plotted in Figure 8.11 is only valid up to peak stress. Afterwards it is
just an artifact that is computed from the displacement measurements of the measuring
device which was attached to the central part of the tension test specimen and had a
gauge length of 175 mm. In fact, the computed strain value after the peak load results
from a combination of the residual strains in the bulk material and the crack opening
displacement of the localized crack which is ”smeared” over the length of the gauge. It
is clear that at the extrapolated point of zero stress the specimen would have unloaded
completely and the strain computed from the device readings would be solely caused by
the localized crack. The crack opening at which the localized crack becomes completely
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stress-free can therefore be estimated by multiplying the extrapolated strain with the
gauge length. This procedure results in an ultimate crack opening wu of 3.2 mm.

For the numerical model the softening curve is defined as a straight line starting at a stress
of 3.5MPa and unloading to 0 over a length of 3.2mm. It should be emphasized, that this
very crude approximation could certainly be improved by choosing a more sophisticated
input curve. Unfortunately, the determination of such a curve is hindered by the limited
experimental data. However, the goal of this example is not to come up with a perfect
match between the numerical and experimental results but rather to demonstrate the
general capabilities of the model. A more detailed calibration and a sensibility analysis
of the input parameters would have to follow for any practical application.

Figure 8.12 shows the material input curves that are used for the numerical model. Note
that although the curve for the eXtended Finite Element model (Figure 8.12c) is chosen to
be a straight line in this simulation, the developed material model accepts any piecewise
linear relationship as an input.

(a) Elastic (b) SMCR (c) XFEM

Figure 8.12: Input curves for the simulation

8.3.5 Results

In this section the results of the numerical simulation are discussed. In order to get
a general impression of the performance of the model the experimental load–deflection
curves of the 4-point bending tests mentioned in [LSPMW09] and the results of the
numerical simulation are shown in the following Figure 8.13.

The overall performance of the numerical model seems to be pretty good. The computed
curve looks similar to the ones measured in the test series although the peak load is slightly
overestimated. One possible explanation for this is that the HPFRC tensile strength
measured in a direct tension test generally overestimates the true tensile strength of the
material because tension test specimen are relatively small in comparison to the fiber
length, which causes a preferential alignment of the fibers in the longitudinal direction.
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Figure 8.13: Total actuator load vs. mid-point deflection (test results from [LSPMW09])

The experimental curve which should match the simulation most closely is the one labeled
”Batch 1 - Beam 1”(in that test the crack also localized at midspan).

The different behavioral phases I, II and III of the model (see Section 8.3.4) are clearly
marked in the numerical load–deflection curve shown in Figure 8.13. First there is a
linear, elastic phase. This is then followed by a phase of microcracking which starts at
an actuator load of approximately 20 kN . During this second phase the stiffness is at
first more or less retained due to a redistribution of stresses within the cross-section of
the beam. Beginning at about 40 kN the simulated load–deflection curve flattens out
and shortly after reaching an actuator load of 60 kN the deformations localize and a
discrete crack is formed. Interestingly enough there is still some global hardening even
after formation of the localized crack. This effect is analogous to the one observed for
the wedge splitting test in Section 8.2.5. However, the increase in load is only minor and
at a little more than 65 kN the ultimate load carrying capacity is reached and the beam
enters the global softening regime.

It should be noted, that although the numerical and the experimental curves do not match
exactly the general trends are captured correctly. By refining the input parameters the
results could certainly be improved especially because the former are estimated so crudely.
However, this requires specific experimental data on the traction–separation law of a
localized crack in this type of SCHPFRC.

In the following sections the individual stages of the simulation are examined in more
detail.
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Elastic Phase

During the elastic phase the simulated load–deflection curve is linear (see Figure 8.13)
which is of course to be expected. However, the slopes of the measured load–deflection
curves are a little steeper than the slope of the simulated curve which suggests that
the elastic modulus of the SCHPFRC was probably a bit higher than assumed. This
could easily be the case as the modulus of elasticity that was used for the simulation
(Section 8.3.4) was measured on a different batch of SCHPFRC.

Figure 8.14: Stress in horizontal direction at a total load of 20 kN

Figure 8.14 shows a plot of the stress field in the longitudinal direction at a total load
of 20 kN . This corresponds to the end of the elastic phase. The stress-profile is more
or less linear and it is in accordance with the results obtained by solving the analytical
Bernoulli beam equations which (at a total load of 20 kN) yield a stress of 2.67 MPa for
the outermost beam fibers at midspan.

Multiple Cracking Phase

During the multiple cracking phase there is a strong redistribution of stresses within the
central third of the beam due to the strain-hardening character of the material law. This is
comparable to what can be observed with steel beams. The following Figures 8.15 and 8.16
show the evolution of the cracking zone. At a total load of 40 kN the cracked zone has
almost reached the central axis (see Figure 8.15). As can be seen in Figure 8.13 this leads
to a higher resistance of the cross-section without much loss in stiffness.

Figure 8.16 on the other hand shows the stress field towards the end of the multiple
cracking phase. The beam is now cracked over almost its entire depth and only a small
compression zone remains. There is also some significant cracking on the tension face of
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Figure 8.15: Stress in horizontal direction at a total load of 40 kN

the beam along its entire length. At this point the stiffness has dropped significantly and
it represents the cracked stiffness of the beam.

Figure 8.16: Stress in horizontal direction at a total load of 62 kN

Crack Localization Phase

During this final phase the strain starts to localize and a discrete, softening crack forms in
the central region. Figure 8.17 shows the stress field at the initiation of localized cracking.

Because the softening crack can form at any location within the central region where the
crack localization stress of 3.5 MPa is exceeded (in reality this depends strongly on the
fiber distribution) a small notch is introduced at the center of the span.
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Figure 8.17: Stress in horizontal direction at a total load of 64 kN

Figure 8.18 shows the deformed beam at peak load (68 kN). The localized crack has
propagated about halfway through the tension zone but it is still able to transmit a
significant amount of stresses due to the fibers that bridge the crack (cohesive forces).

Figure 8.18: Deformation plot at a total load of 68 kN (10×)

After this point the beam starts softening. The crack quickly evolves until it crosses the
entire tension zone as can be seen in Figure 8.19.

The stress field at this stage reveals that the crack has undergone significant unloading
as can be seen in Figure 8.20. Only the tensile stress around the crack tip remains high.
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Figure 8.19: Deformation plot at a total load of 49 kN (10×)

Figure 8.20: Stress in horizontal direction at a total load of 49 kN (after softening)

8.3.6 Conclusions

The numerical simulation of the presented 4-point bending test shows that the developed
Finite Element model is capable of capturing the general behavior of High Performance
Fiber Reinforced Cementitious Composite structures. Although some of the input param-
eters are only estimated very crudely the numerical results show a good agreement with
the test results. Most importantly, the model is able to reproduce the different phases of
behavior from the initial elastic phase through the multiple cracking phase up to crack
localization and softening.
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8.4 Shear Beam Test

In this final example the failure of an ”Ohno shear beam” made from ECC (see Sec-
tion 2.4) is simulated. The test is adopted from [Kan98] and the goal of the example is
to demonstrate the full potential of the newly developed numerical model. Because the
test specimen was designed to fail in shear – or more specifically in a shear failure mode
called diagonal tension – this simulation will show the capability of the model to repro-
duce multiple cracking as well as crack localization in a direction that is non-orthogonal
with respect to the Finite Element mesh. Furthermore, the simulation will illustrate the
application of the reinforcement model presented in Chapter 7 and it will also demon-
strate the use of a shear-sliding law in the context of the XFEM crack model introduced
in Chapter 6. Note that the same example is also analyzed in [Kab00].

8.4.1 Test Setup

The general idea of the ”Ohno shear beam” test is to set up a configuration in which the
central part of a beam is subjected to a constant shear force. This is achieved by the
system shown in Figure 8.21. In the tests presented in [Kan98] the loads were applied by
means of a loading beam which transmitted a central actuator force to the two loading
points indicated in Figure 8.21.

Constant Shear Force

Figure 8.21: Configuration of the ”Ohno shear beam” test in [Kan98]

As can be seen in Figure 8.21 the beam had a total length of 150 cm and a rectangular
cross-section of 15 cm × 20 cm. The central region of constant shear indicated in Fig-
ure 8.21 had a length of 40 cm which resulted in a shear-span-to-depth-ratio of 1. In order
to prevent flexural failure a longitudinal reinforcement consisting of 12 high strength steel
rebars with a nominal diameter of 13 cm was used. However, the specimen did not include
any structural shear reinforcement and the shear resistance was provided by the inherent
properties of the Engineered Cementitious Composite.
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8.4.2 Materials

The material which was used for the shear beam test was an Engineered Cementitious
Composite with 2% V ol. Polyvinyl Alcohol fibers (PVA-ECC). The latter had a length
of 12 mm and a diameter of 40 μm which results in an aspect ratio of 300. Furthermore,
the fibers had an elastic modulus of 22 GPa and a shear modulus of 110 MPa.

The matrix of the composite consisted of mainly cement and fine sand as is common for
ECCs. The water-to-cement ratio was 0.45 and the sand-to-cement ratio was 0.4. The
matrix also included a good amount of superplasticizer and some other viscous agent.
More details about the mix can be found in [Kan98].

The most important mechanical property of this Fiber Reinforced Cementitious Com-
posite is its very pronounced strain hardening phase in direct tension which is typical for
ECCs. This can be seen in Figure 8.23 which shows the results of a series of direct tension
tests with this material. The compressive strength of the composite on the other hand is
relatively limited due to the weak matrix (see Section 2.4.1) and it was measured to be
42 MPa. Finally, the elastic modulus of the composite was determined to be 12.8 GPa.

The reinforcement bars used in the test were made of high strength steel which had an
elastic modulus of 192 GPa, a yield strength of 563 MPa and a hardening coefficient in
the post yield regime of 0.01.

8.4.3 Finite Element Discretization

For the numerical simulation the discretization shown in Figure 8.22 is selected. It con-
tains a total of 928 8-node, quadrilateral elements which corresponds to 2933 nodes and
roughly 5866 degrees of freedom. The central region is discretized using a finer mesh
than for the border regions. This increases the accuracy in the zone of primary interest
while still limiting the overall number of nodes. Figure 8.22 also shows the discretization
of the embedded reinforcement elements (dashed lines) which are implemented using the
model presented in Chapter 7. Note that the location of the rebars does not impose
any constraints on the Finite Element mesh. This underlines the compatibility of the
reinforcement model with the general approach and particularly the XFEM.

Figure 8.22: Finite Element discretization
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8.4.4 Model Input Parameters

Since ECCs are High Performance Fiber Reinforced Cementitious Composites it is evident
that all three proposed phases of the model (see Section 3.4.2) need to be activated. By
consequence a number of input parameters for each of these phases need to be defined as
is done in the following.

Elastic Model

The elastic phase is defined by the module of elasticity E and Poisson’s ratio ν of the
material. According to [Kan98] the elastic modulus of the composite was 12.8 GPa as
already mentioned in Section 8.4.2. Furthermore, following the suggestions by [Kab00]
the value of Poission’s ratio is taken as 0.2 for the simulation.

Rotating Smeared Crack Model

The input parameters for the Rotating Smeared Crack Model are calibrated with the help
of the direct tension tests provided in [Kan98] in analogy to the procedure presented in
Section 8.3.4. This is shown in Figure 8.23. Note that there is a relatively large scatter
in the direct tension test results as indicated by the different responses of the three direct
tensile test specimens. In order to be on the conservative side and because the 4-point
bending test suggested that direct tension tests tend to overestimate the tensile response
of HPFRCCs it was decided to calibrate the numerical model with the weakest of the
three specimens. The resulting input curve for the smeared crack phase is depicted in
Figure 8.24b.

Figure 8.23: Calibration by means of a direct tension test taken from [Kan98]
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The unloading model was selected based on the observation in [Kan98] that ”microcrack
closure was not significant even at complete unloading”. Therefore, the used Smeared
Crack Model assumes that the cracking strain remains constant upon unloading (only
the elastic strain unloads). As soon as a compressive force is applied the cracks close
immediately and perfect contact is restored.

The transition from the Smeared Crack Model to the discrete XFEM model is triggered
at a total strain of 0.8% which clearly marks the onset of tension softening as can be seen
in Figure 8.23.

Extended Finite Element Model

Unfortunately, there is very little information available about the behavior of localized
cracks in ECC. For this reason we rely heavily on the indications made in [Kab00]. The
cohesive stress vs. crack opening law is assumed to be a linearly decreasing function as
depicted in Figure 8.24c. The crack opening at which the crack becomes tension-free
is set to 6 mm since this corresponds to the theoretical value which is predicted by the
micromechanics of fiber bridging. The assumption of a linear softening law can be justified
by observing the softening branches of the direct tension tests in Figure 8.23 which are
also more or less linear.

(a) Elastic (b) SMCR (c) XFEM

Figure 8.24: Input curves for the shear beam test simulation

One additional question that arises in contrast to the 4-point bending example is the
definition of a shear sliding law at the localized, cohesive crack. Because there are no
experimental results on this subject we have to rely on a micromechanical model. For
the present example the implicitly coupled shear law presented in [Kab00] is used. In
this context ”implicitly coupled” means that the shear stress at the crack interface τξ is
not only a function of the shear sliding displacement wξ but also a function of the crack
opening wη. Following this approach the shear sliding law given in Equation (8.1) is used.
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Note that the shear stress τξ is a linear function of the crack sliding displacement wξ.
However, the former decreases exponentially with increasing crack opening wη. The other
parameters in Equation (8.1) all depend on the characteristics of the used PVA-fibers
which were given in Section 8.4.2. These are the fiber volume fraction Vfib which is
2% V ol., the fiber length lfib which is 12 mm and the fiber diameter dfib which is 40 μm.
The parameters Efib and Gfib denote the modulus of elasticity and the shear modulus of
the fibers which are 22 GPa and 110 MPa respectively. Finally, the parameter kfib is a
cross-section correction factor and it is taken as 0.9 in accordance with [Kab00].

Embedded Rebar Model

For the embedded reinforcement bars the elasto-plastic material law presented in Sec-
tion 7.2.2 and depicted in Figure 7.3 is adopted without modification. The parameters
that are selected to represent the high strength steel reinforcement bars in the simulation
are 192 GPa for the elastic modulus, 563 MPa for the yield strength and 0.01 for the
hardening coefficient. This is in perfect agreement with the indications made in [Kan98].

8.4.5 Results

In the following the results of the ”Ohno” shear beam test simulation are presented. The
main focus will lie on a qualitative discussion of the observed behavior. Never the less,
the results clearly show that the mechanics of the numerical model work correctly.

Multiple Cracking

The first observation that can be made is that the strain-hardening nature of the ECC
clearly leads to multiple cracking of the test specimen. This is illustrated in Figure 8.25
which shows the evolution of the cracked zone.

Cracking of the specimen is initiated in form of flexural cracks at midspan as well as over
the left support. However, the longitudinal reinforcement in those regions prevents the
flexural cracks from localizing as was the case in the example presented in Section 8.3. The
reason for this is that once the ECC starts cracking the additional internal loads are mostly
carried by the reinforcement because the latter is much stiffer than the cracked composite
(as long as the rebars have not yielded). This behavior is of course to be expected as
the longitudinal reinforcement was selected with exactly this goal in mind. In fact, the
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Figure 8.25: Evolution of the multiple cracking zone

longitudinal rebars remain elastic during the entire simulation and by consequence they
prevent flexural failure. This is also in agreement with the experimental observations
published in [Kan98].

Following the initial flexural cracks a number of fine and evenly distributed shear cracks
gradually start forming predominantly in the central part of the beam as shown in Fig-
ure 8.25. This behavior is a direct consequence of the multiple-cracking nature of ECC
which does not only manifest in direct tension tests but also causes a nice crack distribu-
tion in the present case of diagonal shear tension.

Strain Localization

After a certain point the multiple cracks cease to spread any further and the behavior
of the flexurally and the shear dominated regions becomes distinctly different. In those
regions where the cracks are of primarily flexural nature and where steel reinforcement
is present the cracks begin to stabilize. The central region, on the other hand, which is
mainly dominated by shear cracks is starting to experience an accumulation of strain.
The latter is caused by a gradual opening of the multiple cracks and it eventually leads to



8.4. SHEAR BEAM TEST 193

strain localization in the central region as shown in Figure 8.26. The same behavior can
also be observed experimentally as can be seen in Figure 8.29a. Note however, that the
photo contains a second set of multiple cracks in the opposite diagonal direction. This
can be explained by the fact that a cyclic test was used in the experiment and, therefore,
the second set of cracks is created by the inverse loading cycle.

29.75 kN 89.25 kN

37 kN 111 kN

39.25 kN 117.75 kN

46 kN 138 kN

55 kN 165 kN

59.5 kN 178.5 kN

0.01 % 0.273 % 0.537 % 0.8 %

Figure 8.26: Strain localization in the shear dominated region (principal strain contours)
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Discrete Cracking

Once the principal strain in the simulation reaches 0.8% the formation of a discrete crack
is triggered. The principal strain contours at that stage are given in Figure 8.27. It can
be clearly seen in Figure 8.27, that a discrete crack nucleates at the center of the beam as
governed by the crack nucleation criterion given in Section 6.4.3. Because the formation
of a shear tension crack is a relatively brittle process the localization takes place very
quickly and the crack crosses the central region almost instantly.

63.75 kN 191.25 kN

0.01 % 0.273 % 0.537 % 0.8 %

Figure 8.27: Principal strain contours at initiation of a localized crack

Figure 8.28 shows the deformed shape of the shear beam after the discrete crack has
localized and propagated to the upper and lower reinforcement layers. In the numerical
simulation the discrete crack forms in the diagonal between the left support and the right
load at an angle of about 23◦. This is in excellent agreement with the experimental
observations as shown in Figure 8.29a.

67.5 kN
202.5 kN

Figure 8.28: Deformation after crack localization (×40)

A closeup of the localized shear crack is shown in Figure 8.29b. Note that the deformation
plot is amplified by a factor of 60 in order to visualize the crack opening profile. The
latter shows the typical cusp-shaped opening of a cohesive crack which is relatively large
at the center and diminishes gradually towards the crack tips. A very close observation
of the crack also reveals a slight shear sliding between the crack surfaces. The latter is
more significant at the center of the crack as prescribed by the shear sliding law given in
Equation (8.1).
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(a) Photo of the cracked test specimen (taken
from [Kab00] but original by [Kan98])

202.5 kN

(b) Localized shear crack (×60)

Figure 8.29: Comparison of the cracking pattern

Although the preceding sections clearly demonstrate the great potential of the developed
numerical model the present example also presents some challenges which could not be
completely overcome. These will be discussed in the following Section 8.4.6.

8.4.6 Conclusions

This last example with an ”Ohno shear beam” clearly shows that the mechanics of the
developed numerical model function properly. The simulation does not only prove that the
multiple cracking and the crack localization phases of the model work correctly, even when
the cracking does not take place in a direction orthogonal to the Finite Element mesh,
but the embedded reinforcement model also performed very well in combination with the
proposed material model for HPFRCCs. Furthermore, the example also demonstrates the
successful use of an implicitly coupled shear sliding law.

The major issue that was encountered during this simulation is the fact that the current
model is not capable of capturing the interaction between discrete, localized cracks and
embedded reinforcement bars (see Section 7.1). For this reason the simulation cannot
be continued up to complete shear failure of the specimen. Although at first glance
the intersection of the discrete crack and the reinforcement bars seems to be a small
problem this is definitely not the case. Simply smearing the crack opening over the length
of the intersected reinforcement element is incorrect as this would induce an arbitrary
mesh dependence which the proposed model intends to prevent in the first place. The
best way to explain the difficulty is the following: If the discrete crack were to cross
a reinforcement bar without any specific dispositions this would lead to an immediate
plastification and complete rupture of the rebar at the location of the intersection. In
reality this does of course not take place and the discrete crack causes some additional
strains and possibly some plastification of the reinforcement, not only in one section but
along a small segment of the rebar in the immediate vicinity of the crack. This type of
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strain penetration and its extent are primarily governed by the local bond between the
reinforcement and the High Performance Fiber Reinforced Cementitious Composite and a
crack–rebar interaction model would have to account for this mechanism. Unfortunately,
such a model is beyond the scope of this thesis, however, some further research in this
direction would certainly be invaluable.

Another recurring problem is the issue of choosing suitable input curves for the hardening
and the softening model which could not be solved here to complete satisfaction. There
is definitely more research needed in that direction as well.



Chapter 9

Summary and Conclusions

9.1 Summary

High Performance Fiber Reinforced Cementitious Composites (HPFRCCs) are a relatively
new and innovative class of Fiber Reinforced Cementitious Composites which have been
developed mainly in the last decade. As we have seen in Chapter 2 they exhibit excellent
mechanical properties which make them a reasonable alternative to traditional reinforced
concrete for a number of structural applications. The most prominent and also character-
istic feature of HPFRCCs is their strain-hardening behavior in direct tension. Although
there are many different kinds of HPFRCCs all of them are based on two fundamental
concepts.

The first one is that different fiber sizes fulfill different functions. Short fibers (i.e. 6 mm)
are effective at arresting microcrack propagation and they therefore increase the tensile
strength of the composite. In order to do so, they have to be added in large quantities
since there is also a large number of microcracks. Long fibers (i.e. 30mm – 60mm) on the
other hand can only be used in smaller volume fractions due to workability considerations
and their numbers are not sufficient to prevent microcrack propagation. However, their
advantage is that they are able to bridge macroscopic cracks even at large crack openings
and they thereby increase the ductility of the composite. Of course the optimal solution
from a mechanical point of view is to combine different fiber lengths in one HPFRCC.
This increases both its tensile strength and its ductility and even exploits some synergetic
effects (see Section 2.8).

The second core concept of High Performance Fiber Reinforced Cementitious Compos-
ites is that dense particle packing and matrix homogeneity lead to a higher compressive
strength. This principle is exploited by using primarily small aggregates and adding a
significant amount of fine fillers like silica fume and fly-ash to the cementitious matrix.
Together with low water-to-binder ratios which can be obtained with the help of super-
plasticizers this results in a new class of Fiber Reinforced Cementitious Composites called

197



198 CHAPTER 9. SUMMARY AND CONCLUSIONS

Ultra High Performance Fiber Reinforced Cementitious Composites. Although the dense
particle packing primarily influences the compressive strength of a composite there is also
a direct interaction with the fiber reinforcement. A dense, cementitious matrix provides
better anchorage for the fibers which in turn improves their effectiveness. In most cases
the matrix strength and its density have to be tailored carefully in order to get the de-
sired interaction with the fibers. In some cases this can be a very dense matrix in order
to improve the fibers’ effectiveness in increasing the tensile strength of the composite (see
Section 2.8) and in other cases this can be an extremely weak matrix which results in
multiple cracking and a large ductility (see Section 2.4).

As already mentioned, the distinguishing feature of High Performance Fiber Reinforced
Cementitious Composites is that they are strain-hardening in direct tension. Because this
behavior is not exhibited by traditional concrete the currently existing numerical models
are mostly inadequate for the simulation of HPFRCC structural elements. Furthermore,
the fibers in HPFRCCs also lead to a more ductile softening behavior. And since many
applications of HPFRCCs (such as those in earthquake engineering for example) exploit
this ductility it is important to capture the softening part of the behavior as well. Having
this in mind, a new Finite Element model for the structural simulation of HPFRCC
elements was developed during this thesis. In Chapter 3 a number of possible candidate
models were analyzed in respect to their suitability for a HPFRCC model. It turns out,
that both the continuum model approach and the Discrete Crack Model approach on their
own are not capable of modeling the complete behavior of HPFRCCs. While continuum
models are well suited for the strain-hardening and multiple cracking phase they exhibit
a number of problems such as mesh-sensitivity, mesh-bias and stress-locking during the
strain-softening phase of the behavior. Discrete Crack Models on the other hand are well
suited for the crack localization and softening phase but they cannot capture multiple
cracking. Furthermore, the traditional discrete crack approach is bound to the Finite
Element mesh and arbitrary crack growth requires elaborate remeshing techniques. In
the framework of this thesis it was therefore decided to combine a Smeared Crack Model
with a Discrete Crack Model in order to fully represent all behavioral aspects of HPFRCC
elements. More specifically, a Rotating Crack Model was used for the strain-hardening
phase of the material and a Discrete Crack Model based on the eXtended Finite Element
Method (XFEM) was used for the crack localization and strain-softening phase. Especially
the use of the new and innovative eXtended Finite Element Method is what distinguishes
the herein presented approach from other existing models. Using the XFEM entails the
significant advantage that crack localization can take place independently of the Finite
Element mesh and a ”true” separation of cracked structural elements with no numerical
artifices can be achieved.

The numerical model itself is separated into three different phases each of which was
presented in its own chapter (see Chapters 4, 5 and 6). The underlying Finite Element
is a standard 8-node, quadrilateral, isoparametric element which is formulated for plane-
stress conditions. This allows for a number of different structural elements (such as beams,
columns, walls and beam-to-column connections) to be modeled with reasonable accuracy.
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In compression and during the initial, elastic phase in tension a two-dimensional, linear,
elastic Hooke law is employed.

As soon as the HPFRCC material surpasses its first cracking strength the model transi-
tions into a Rotating Crack Model. Through a conscious separation of the elastic strain
and the cracking-strain a clear distinction between the material law governing the elastic
bulk material and the law governing the cracks is achieved. The multiple cracks are ac-
counted for in an averaged sense by including the aforementioned cracking-strain which
is computed by a nonlinear stress vs. cracking-strain law with uncoupled components. In
order to achieve maximal robustness the Rotating Crack Model was implemented with an
”inner” equilibrium iteration which ensures compatibility between the bulk material and
the Smeared Cracks.

Once the model enters the softening regime a discrete crack is introduced by means of the
eXtended Finite Element Method. The basic idea behind this method is to add discon-
tinuous shape functions to the approximation space of the elements which are bisected
by a discrete crack. In order to account for the crack-bridging effect of the fibers cohe-
sive forces according to Hillerborg’s Cohesive Crack Model are added to the XFEM crack
model. The implementation showed that the introduction of a discrete crack with the
help of the XFEM is a very ”clean” and straightforward solution. Following the Parti-
tion of Unity Principle the specific knowledge about the discontinuous character of the
solution can easily be incorporated into the approximation space in form of a set of ad-
ditional shape functions. The developments in Chapter 6 clearly demonstrated that once
the general concept of adding enriched shape functions is accepted the rest of the Finite
Element procedure can be followed without modification. The only additional deviation
from the standard procedure is caused by the discontinuous character of the interpolation
field which requires an adaptation of the numerical integration scheme. The big difference
between the XFEM and other methods for discrete crack modeling (such as for example
the Embedded Discontinuities Method) is that both parts of a cut element are completely
dissociated. Furthermore, inter-element continuity of the crack is guaranteed by virtue
of the shared extended degrees of freedom. Possible cohesive forces are accounted for by
an additional stiffness matrix contribution which is computed by integrating the virtual
work along the crack surface.

During the implementation it was found that a critical part of the model is the transition
from the Rotating Crack Model to the eXtended Finite Element model. It is governed by a
set of crack propagation rules that define under which circumstances a crack propagates.
In the presented model the crack propagation criterion is based on a nonlocal average
of the maximum principal strain in the vicinity of the crack tip. Another key issue
of the transition process that had to be solved is the transfer of the material history
variables between integration points (caused by a change of the integration scheme). For
this purpose a new material state transfer method called integration point splitting was
developed. As its name suggests, the basic idea behind this method is to replace an
integration point by a number of subpoints which represent the same integration domain
but respect the geometry of the discontinuity. By doing so, the material state can be
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transfered one-to-one without unbalancing the element equilibrium which is very beneficial
to the overall robustness and consistency of the solution procedure.

Although HPFRCCs have improved tensile properties which can reduce the need for
secondary reinforcement such as shear or confinement reinforcement the fibers typically
cannot replace the longitudinal rebars. For this reason the numerical model was supple-
mented by a rebar model (see Chapter 7). In order to conserve the mesh-independent
character of the procedure an Embedded Rebar Model was used. Looking closely at the
implementation it becomes clear that this kind of model is very similar to the cohesive
crack extension of the XFEM model. The virtual work performed by the embedded re-
inforcement bars is integrated analogously to the cohesive crack contribution. The final
result is an additional stiffness matrix term for each rebar segment within a reinforced
Finite Element.

In order to test the proposed model a special purpose Finite Element program was written
in the programming language Python. A conscious effort was made to obtain a program
which is easily extensible and modifiable by other researchers. This was achieved by
following the modular design philosophy offered by the Object-Oriented Programming
paradigm. In short, the model is split into a number of objects which all interact with
one another. Every one of these objects represents a piece of the model such as for
example a node, a degree of freedom, a rebar, a Finite Element or a crack. Of course
the same principle can also be applied to each of the aforementioned objects and a Finite
Element object for instance can be decomposed into a number of shape function objects,
integration point objects and so forth. Future researchers can take full advantage of this
setup by simply modifying or replacing the components they seek to improve without
having to worry about the other components or risking to break existing code.

The thesis is concluded by applying the newly developed numerical model to a number of
tests and then comparing the results with the corresponding experimental observations.
The first example that was analyzed is a wedge splitting test of an Ultra High Strength
Concrete. The primary goal of this first application was to focus on the crack localization
phase of the model which explains why an Ultra High Strength Concrete test instead of
a High Performance Fiber Reinforced Concrete test was used. The computational results
showed an excellent agreement with the test results and demonstrated that the crack
propagation and localization feature of the model works correctly. This first example was
then followed up by a second one in which the full capabilities of the HPFRCC model
could be tested. It consisted of a 4-point bending test of an HPFRCC beam. The results
illustrated that the model performed well and that the different phases of HPFRCC
behavior are all represented correctly by the proposed model. Finally, the model was
applied to an ECC Ohno shear beam test in order to verify the validity of the embedded
rebar model and also to test the implementation of an implicitly coupled shear sliding law
for localized cracks. The performance of the model also proved to be very satisfactory
in this shear dominated setup and the multiple cracking as well as the crack localization
mechanism were captured correctly.
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All these observations lead to the following conclusions which are expressed in Section 9.2.

9.2 Conclusions

It is the author’s strong belief that High Performance Fiber Reinforced Cementitious Com-
posites will revolutionize the civil engineering practice in the near future. Especially in
industrialized countries where labor costs are high in comparison to those of the construc-
tion materials HPFRCC structural elements are a cost-effective alternative to traditional
structural elements in numerous cases. A vast majority of the experimental work cited in
Chapter 2 clearly demonstrates that fibers can increase the tensile strength of a compos-
ite to the point where additional shear reinforcement becomes dispensable. Even more
importantly, the right mix of fibers and a specifically tailored cementitious matrix can
result in a strain-hardening behavior which turns a traditionally brittle material into a
highly ductile one. By consequence a lot of time consuming and intricate reinforcement
detailing can be saved as it is being taken care of by the intrinsic properties of HPFRCCs.

In spite of all these facts, HPFRCCs have not yet found their way into engineering practice.
One of the main reasons for this is the lack of realistic and accurate numerical models
which would allow planing engineers to incorporate HPFRCC structural elements into
their design. This thesis should be seen as a first step towards overcoming this obstacle.
The work and the sophisticated model presented herein provide a framework for the
simulation of HPFRCC structural members.

The most outstanding feature of the proposed model is its clear distinction between the
behavioral phases of HPFRCCs (strain-hardening, crack localization) which makes it more
realistic and closely mirrors the properties of this class of materials. The input parameters
all have a physical meaning and they can be determined by relatively simple material
tests. Nevertheless, the model is extremely flexible both in terms of the geometry of the
represented structural elements and in terms of the material laws that can be employed.

In respect to the numerical aspects of the proposed model it can be concluded that the lat-
ter is very stable, theoretically sound and shows no instabilities or inconsistencies. There
is no need for ”artificial”, numerical parameters and the model is neither mesh-sensitive
nor does it exhibit stress-locking, mesh-bias or any other kind of mesh dependency which
causes many other models to fail. To a large degree this is due to the excellent perfor-
mance of the eXtended Finite Element Method. In fact, the latter is an extremely useful
extension of the standard Finite Element Method and it will probably see a lot more
applications in the future. A related finding is that the XFEM does perform very well
with the quadrilateral, higher order elements which are used in this work. To the author’s
knowledge this is the first time that the XFEM has been applied to non-triangular higher
order elements and it is certainly the first time that it has been combined with a Smeared
Crack Model.

One of the consequences of the combined Smeared Crack – eXtended Finite Element
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model is that a critical transfer of the material history variables has to be performed
during the transition between the aforementioned two phases. In this thesis it is shown
that the innovative integration point splitting technique which was developed precisely
for this purpose proves to be a simple and stable solution. The main benefit of this
procedure is that the material state transfer does not unbalance the elements which is
especially important during the transition phase because convergence of the global solution
algorithm is inherently delicate at that time.

From the examples presented in Chapter 8 it can be concluded that the developed nu-
merical model is capable of simulating the response of HPFRCC elements. All results
are in good agreement with the experimental measurements and the different phases of
behavior are captured very well. The wedge splitting test for example demonstrates that
the model allows for a complete separation of the material with an arbitrary crack path.
Furthermore, the 4-point bending test example nicely shows the different influences of
the strain-hardening phase and the tension-softening phase of HPFRCC behavior. It also
demonstrates how the material input curves can be calibrated with the help of a direct
tension test and that the results are reasonable even with very crude estimates of some
of the input parameters. However, this also points out one of the areas in which more
research is needed. Although the developed model is very general and sets up a generic
framework for how HPFRCCs can be treated it requires accurate knowledge about the
stress vs. cracking-strain relationship and the traction–separation law of a specific ma-
terial (see Section 9.3). Finally, the shear beam test illustrates that the embedded rebar
model works well in combination with the proposed HPFRCC model and it also demon-
strates that the model is not limited to flexural applications. The example proves that
the multiple cracking and the crack localization mechanisms are truly mesh-independent
and that cracking can be captured correctly even when it occurs in a direction that is
non-orthogonal with respect to the Finite Element mesh. However, it also turned out that
the model can still be improved by developing a method for the treatment of intersections
between embedded rebars and discrete cracks (see Section 9.3).

A final couple of findings are related to the implementation of the numerical model. As
already mentioned, the model was coded in the programming language Python. It turns
out, that the latter is very well suited for scientific purposes. The syntax is intuitive
and the fact that the language is not type-safe makes coding much faster and more
flexible. Another significant advantage is that Python comes with a large library of
preexisting tools and some additional libraries such as one for scientific computation
(SciPy) or one for plotting (Matplotlib) are readily available. Furthermore, Python’s
full support of the Object-Oriented Programming (OOP) paradigm gives it an advantage
over other commonly used scientific programming environments such as MatLab. In fact,
using Object-Oriented Programming proved invaluable during the development process
as it allowed for easy modification or exchange of certain parts of the program without
having to worry about breaking the rest of the code. This also holds true for further
improvements of the code as some researchers might want to base their future work on it.
On a final note the author would like to recommend that researchers which are planning
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to write scientific software learn about Object-Oriented Programming and also about
Object-Oriented Software Design since OOP goes way beyond the paradigmatic concepts
like encapsulation or inheritance and ”good” Object-Oriented Programming involves a
lot of important design decisions.

9.3 Outlook

The work presented in this thesis introduces a general framework for the simulation of
HPFRCC structural elements. Although the resulting numerical model is theoretically
sound and solves many issues there is of course always room for improvement. In the
following a few possible topics for further research are suggested. They are ordered in
sequence of their perceived importance beginning with the most important.

� One of the biggest difficulties with the current model is an accurate estimation of the
material input curves. These are the stress vs. cracking-strain law and the traction–
separation law. Although the former can be determined from a direct tension test
the 4-point bending beam example in Section 8.3 indicated that this procedure tends
to overestimate the strength of the material. In Section 8.3 it was suspected that the
most likely reason for this is a preferential alignment of the fibers in the longitudinal
direction of a direct tension test specimen. Another possible explanation could be
that this is some kind of size effect which is caused by the fact that there is a higher
probability of a ”weak” cross-section in a larger specimen. However, these are just
speculations and more research in this direction is needed.
The same is true for the traction–separation law but the problem is even more
pronounced. The traction–separation law which was used in the 4-point bending
beam example (see Section 8.3) had to be estimated very crudely because no exper-
imental data on this subject was available. For this reason an important research
topic for further work is the investigation of the stress transfer mechanisms of a
macroscopic crack in High Performance Fiber Reinforced Cementitious Composites.
Such an investigation should be both experimental and theoretical and a possible
goal could be to come up with a micromechanical model which links the matrix and
the fiber characteristics of an arbitrary HPFRCC to its cohesive traction–separation
law. Some attempts in this direction have been made in [Kab04, Kab07] but more
research is needed.

� A second key improvement would be to implement an interaction model between
discrete cracks and embedded reinforcement bars. As we have seen in Section 8.4.6
this would enable the simulation of the shear beam example from Section 8.4 up
to complete failure. Such an extension would have to be capable of reproducing
the strain penetration at the location of the discrete cracks and it probably should
account for the bond behavior between HPFRCCs and embedded rebars.

� As we have seen in Chapter 2 High Performance Fiber Reinforced Cementitious
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Composites are well suited for a number of seismic applications. However, the
proposed numerical model is only partially useful for simulating the response of
structural elements subjected to earthquake loading as it does currently not consider
cyclic effects. From a theoretical standpoint the proposed model is fully capable of
computing the cyclic response of structures. The only additional requirement is that
a cyclic material law for all three phases of the model is implemented. This is not a
major challenge since the general framework can be used without modification. For
this reason a direction of further research could be to extend the material models
in order to include cyclic stiffness and strength degradation. This also includes the
material law for the reinforcement which would have to be replaced by a more
sophisticated one such as the model by Ramberg–Osgood [RO43] or the model by
Menegotto–Pinto [MP73].

� Another very interesting extension of the proposed model would be to implement
it in a three-dimensional solid element. In principle the used methods (SMCR
and XFEM) can easily be extended to 3D. The corresponding publications for the
individual models are readily available and from the current point of view all pro-
cedures that were used to make the transition between the two models could also
be extended to 3D. The greatest challenge of such an undertaking would proba-
bly be handling the computational geometry involved with the description of the
crack surfaces. One possible way to go could be to use Level Sets as was done in
[MGB02, GMB02, SCM03].

� One aspect which has been neglected in this thesis is the compressive behavior
of High Performance Fiber Reinforced Cementitious Composites. Although tensile
cracking is the most common cause of failure of HPFRCC elements there are still
some rare cases where compressive crushing may occur. For this reason it would be
interesting to extend the current model to capture nonlinear compressive failure or
even more interestingly biaxial compression–tension failure. This could be done by
combining the model presented herein with the one proposed in [Sir09]. Such an
undertaking should not present to many difficulties because of the clear separation
between the strain components. It should suffice to add a plastic strain component
to the already present elastic and cracking-strain components (see [Rot88]).

� A further minor improvement that could be made is to allow for crack tips to be
located inside of elements. We recall, that in the current model crack tips can only
lie on element edges which forces the cracks to grow step-by-step. This can result in
small ”sawtooth-like” spikes in the response as was discussed in Section 8.2. In order
to obtain a more continuous crack growth an additional crack tip enrichment along
the lines of [MDB99] or [DMB00] could be introduced. In combination with this
one would also have to refine the crack growth criterion. A possibility could be to
only let the crack propagate through the representative domain of those integration
points that have exceeded the localization strain instead of trough an entire element
(see Section 6.4.2). One would possibly also have to adapt the numerical solution
scheme and an imaginable option might be to modify the currently used arc-length
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method to consider the crack length increment as the control parameter.

� A final proposition for improvement is not related to research but rather oriented
towards the usability of the proposed model. Before the latter can be used in
engineering practice it will have to be supplemented by a graphical user interface
(GUI) which helps to input the problem geometry. Such a GUI should include a set
of powerful mesh generation tools which allow automatic mesh generation and mesh
refinement. On a related note the program code would also have to be optimized
in respect to computational speed. This could include recoding the time critical
methods in C++ or Fortran and optimizing the solution algorithm for multicore-
processing.



Notation

Lower Case Roman Symbols

ai Standard nodal unknown associated with node i
bij Enriched nodal unknown associated with node i and enrichment j
dfib Fiber diameter
de Finite Element displacement vector (nodal degrees of freedom)
dstd,i Vector of nodal degrees of freedom of node i for a standard node
denr,i Vector of nodal degrees of freedom of node i for an enriched node
ei Enriched nodal displacement degree of freedom associated with node i
fy Yield strength of the reinforcement steel
f Vector of Finite Element surface forces
h Numerical localization bandwidth
i Primary index
j Secondary index
k Softening law factor in the Smeared Crack Model
kfib Fiber cross-section correction factor
l Length
lfib Length of a fiber
lc Characteristic length of an element
m Number of enrichment functions
n Number of shape functions
nη,x X-component of the unit vector nη (projection onto the x-axis)
nη,y Y-component of the unit vector nη (projection onto the y-axis)
nξ,x X-component of the unit vector nξ (projection onto the x-axis)
nξ,y Y-component of the unit vector nξ (projection onto the y-axis)
nη Unit vector in the direction normal to the 2nd crack set
nξ Unit vector in the direction normal to the 1st crack set
r Horizontal natural coordinate of a Finite Element / Radius
rgp Horizontal natural coordinate of a Gauss integration point
rw Horizontal natural coordinate of a point on a discontinuity

206
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r� Horizontal coordinate in a triangular, natural domain
r�,gp Horizontal coordinate of a Gauss point in a triangular, natural domain
r� Horizontal coordinate in a rectangular, natural domain
r�,gp Horizontal coordinate of a Gauss point in a rectangular, natural domain
r� Natural coordinate in a line segment [−1, 1]
s Vertical natural coordinate of a Finite Element
sgp Vertical natural coordinate of a Gauss integration point
sw Vertical natural coordinate of a point on a discontinuity
s� Vertical coordinate in a triangular, natural domain
s�,gp Vertical coordinate of a Gauss point in a triangular, natural domain
s� Vertical coordinate in a rectangular, natural domain
s�,gp Vertical coordinate of a Gauss point in a rectangular, natural domain
t Thickness
u Displacement component in x-direction
u+ Displacement on the right face of a crack (positive domain)
u− Displacement on the left face of a crack (negative domain)
ui Nodal displacement in x-direction associated with node i
uenr,i Enriched nodal displacement degree of freedom of node i in x-direction
u Displacement vector
u+ Displacement vector on the right face of a crack (positive domain)
u− Displacement vector on the left face of a crack (negative domain)
v Displacement component in y-direction
vi Nodal displacement in y-direction associated with node i
venr,i Enriched nodal displacement degree of freedom of node i in y-direction
w Crack opening displacement
w̃ Crack opening displacement (in crack coord. sys.)
wu Crack opening at which a crack becomes stress free
wη Crack opening component (in crack coord. sys.)
wξ Crack sliding component (in crack coord. sys.)
w Crack opening displacement vector (separation vector)
w̃ Crack opening displacement vector (in crack coord. sys.)
weq Crack opening displacement vector at the last global equilibrium
x Cartesian coordinate in horizontal direction
x̃ Cartesian x-coordinate in the local system associated with a crack
x�,i Cartesian x-coordinate of the ith vertex of a subtriangle
xi Horizontal Cartesian coordinate of the ith node
xw X-coordinate of a location on a discontinuity (crack)
x Vector of Cartesian coordinates
xi Vector of Cartesian nodal coordinates of the ith node
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y Cartesian coordinate in vertical direction
ỹ Cartesian y-coordinate in the local system associated with a crack
y�,i Cartesian y-coordinate of the ith vertex of a subtriangle
yi Vertical Cartesian coordinate of the ith node
yw Y-coordinate of a location on a discontinuity (crack)

Upper Case Roman Symbols

A Area
A+ Area of the positive domain
A− Area of the negative domain
Arebar Cross-section area of an embedded rebar
Bi Crack tip enrichment function i
B Strain–displacement transformation matrix
Benr Enriched strain–displacement transformation matrix
Cco Tangent compliance matrix for the bulk material (continuum)

C̃co Tangent compliance matrix for the bulk material (in crack coord. sys.)

C̃cr Tangent compliance matrix for a set of cracks (in crack coord. sys.)

C̃smcr Smeared Crack tangent compliance matrix (in crack coord. sys.)
DI

cr Mode I constitutive modulus associated with a multiple cracking law
DI

coh Mode I constitutive modulus associated with a cohesive crack law
DII

coh Mode II constitutive modulus associated with a cohesive crack law

D̃rebar Constitutive modulus for a reinforcement bar (in rebar coord. sys.)

D̃shear Shear term in the tangent constitutive matrix (in crack coord. sys.)

D̃smcr,ij Term ij in the Smeared Crack constitutive matrix (in crack coord. sys.)
D Tangent constitutive matrix
Dcoh Tangent constitutive matrix for a cohesive crack

D̃coh Tangent constitutive matrix for a cohesive crack (in crack coord. sys.)
Dco Tangent constitutive matrix for the bulk material (continuum)

D̃cr Tangent constitutive matrix for a set of cracks (in crack coord. sys.)
Dsmcr Tangent constitutive matrix for a Smeared Crack material

D̃smcr Smeared Crack tangent constitutive matrix (in crack coord. sys.)
E Modulus of elasticity
EI

cr Mode I softening modulus associated with a Smeared Crack law
Efib Modulus of elasticity of a fiber
Fe Finite Element force vector (equivalent nodal forces)
Fls Level Set function
Fsp Splitting force in a wedge splitting test
G Elastic shear modulus
Gf Mode I fracture energy
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Gfib Elastic shear modulus of a fiber
H Heaviside enrichment function
HI Heaviside enrichment function for crack branch I
HII Heaviside enrichment function for crack branch II
J ”Junction” enrichment function
J Jacobi transformation matrix
J� Jacobi transformation matrix for a triangular, natural domain
J� Jacobi transformation matrix for a natural line segment domain
Ke Finite Element stiffness matrix
Kstd

e Standard Finite Element stiffness matrix
Kcoh

e Element stiffness matrix contribution accounting for a cohesive crack
Krebar

e Element stiffness matrix contribution accounting for an embedded rebar
L Length of a reinforcement bar segment in a Finite Element
Ni Finite Element shape function associated with node i
N�,i Linear shape function for a subtriangle (associated with node i)
N�,i Linear shape function for a line segment (associated with node i)
Nenr,i Enriched shape function associated with node i
N s

enr,i Shifted enriched shape function associated with node i
N+

enr,i Enriched shape function i on the right face of a crack (positive domain)
N−

enr,i Enriched shape function i on the left face of a crack (negative domain)
NH Heaviside enriched shape function
NJ ”Junction” enriched shape function
N r

i Shape function derivative by r (associated with node i)
N s

i Shape function derivative by s (associated with node i)
Nx

i Shape function derivative by x (associated with node i)
Ny

i Shape function derivative by y (associated with node i)
Nx

enr,i Enriched shape function derivative by x (associated with node i)
Ny

enr,i Enriched shape function derivative by y (associated with node i)
N Shape function matrix
Nenr Enriched shape function matrix
Ncoh Interpolation matrix yielding the separation vector in the XFEM
O() Polynomial order of a function
Pe Vector of external element nodal forces
R Ramp enrichment function
Re Vector of element reaction forces
R Coordinate system rotation matrix (local to global)
Rε Reduced rotation matrix associated with the strain (local to global)
Rσ Reduced rotation matrix associated with the stress (local to global)
T Cohesive crack rotation matrix
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Trebar Reinforcement bar rotation matrix
Vfib Fiber volume fraction

Lower Case Greek Symbols

α Crack or rebar orientation angle
α̂ Nonlocal weight (Gaussian weight function)
αgp Gauss-weight of an integration point
α̂gp Nonlocal weight of a Gauss integration point
α�,gp Gauss-weight of an integration point in a triangular, natural domain
α�,gp Gauss-weight of an integration point on a natural line segment [−1, 1]
β Shear retention factor / Hardening coefficient
γ̃ Engineering shear strain in the local coord. sys. associated with a crack
γxy Engineering shear strain component
δWcoh Virtual work term accounting for a cohesive interface
δWrebar Virtual work term accounting for a reinforcement bar
δde Virtual nodal displacement variation vector
δu Virtual displacement variation vector
δu+ Virtual displacement variation vector of the right crack face
δu− Virtual displacement variation vector of the left crack face
δw Virtual separation vector variation
δε Virtual strain variation vector
δεrebar Virtual strain variation vector in an embedded reinforcement bar
δσ̃cr Cracking-stress iteration increment vector (in crack coord. sys.)
δσ̃n

cr Cracking-stress iteration increment vector at step n (in crack coord. sys.)
ε̃ Strain in the local coordinate system associated with a crack
εI First principal strain
εII Second principal strain
ε̃cr Mode I cracking-strain component (in crack coord. sys.)
εloc Localization strain (principal strain at which a crack localizes)
εpc Post-cracking strain (maximum cracking-strain before softening)
ε̃rebar Strain in an embedded rebar (in rebar coord. sys.)
ε̃eqrebar Strain in a rebar at the last global equilibrium (in rebar coord. sys.)
εu Cracking-strain at which a crack become stress free
εx Engineering strain component in x-direction
εy Engineering strain component in y-direction
εη Strain component in η-direction (2nd local crack direction)
εξ Strain component in ξ-direction (1st local crack direction)
ε Strain vector (engineering notation)
ε̃ Strain vector in the local coordinate system associated with a crack
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ε̂ Nonlocal strain vector at the crack tip
εco Strain vector in the bulk material (continuum)
εeqco Continuum strain vector at the last global equilibrium state
εcr Cracking-strain vector (equivalent strain contribution of a set of cracks)
ε̃cr Cracking-strain vector (in crack coord. sys.)
εeqcr Cracking-strain vector at the last global equilibrium state
ε̃eqcr Cracking-strain vector at the last global equilibrium (in crack coord. sys.)
εgp Strain vector at a Gauss-point location
εrebar Strain vector in the embedded reinforcement bar
εtot Total strain vector
ε̃tot Total strain vector in the local coordinate system associated with a crack
εeqtot Total strain vector at the last global equilibrium state
η Second coordinate in a crack or rebar coordinate system (Cartesian)
θ Angle in the polar coordinate system associated with a crack
ν Poisson’s ratio
ξ First coordinate in a crack or rebar coordinate system (Cartesian)
σ̃ Stress in the local coordinate system associated with a crack
σI First principal stress
σII Second principal stress
σcc First-cracking stress (crack initiation stress)
σ̃cr Mode I cracking stress component (in crack coord. sys.)
σpc Post-cracking stress (maximum cracking-stress before softening)
σ̃rebar Stress in an embedded reinforcement bar (in rebar coord. sys.)
σ̃eq
rebar Rebar stress at the last global equilibrium (in rebar coord. sys.)

ση Cohesive crack normal stress (in crack coord. sys.)
σξ Cohesive crack shear stress (in crack coord. sys.)
σ Stress vector (engineering notation)
σ̃ Stress vector in the local coordinate system associated with a crack
σcoh Cohesive stress vector of a localized crack
σ̃coh Cohesive stress vector of a localized crack (in crack coord. sys.)
σ̃eq
coh Cohesive stress vector at the last global equilibrium (in crack coord. sys.)

σco Stress vector acting on the bulk material (continuum)
σ̃co Stress vector acting on the bulk material (in crack coord. sys.)
σeq
co Stress vector acting on the bulk material at the last global equilibrium

σcr Stress vector acting on a set of multiple cracks
σ̃cr Stress vector acting on a set of multiple cracks (in crack coord. sys.)
σ̃eq
cr Cracking-stress vector at the last global equilibrium (in crack coord. sys.)

σrebar Stress vector in an embedded reinforcement bar
σtot Total stress vector
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σeq
tot Total stress vector at the last global equilibrium state

τpure Shear stress in a state of pure shear
τ̃ Shear stress in the local coordinate system associated with a crack
φ() Compliance function (material compliance law)
φco() Compliance function for the bulk material (continuum)
φlin
co () Linearized compliance function for the bulk material (continuum)

φcr() Compliance function for a set of multiple cracks
φlin
cr () Linearized compliance function for a set of multiple cracks

φcr,η() Compliance function for the 2nd crack set
φcr,ξ() Compliance function for the 1st crack set
ϕi Partition of Unity function associated with node i
ϕ̂i Partition of Unity function for the enrichment associated with node i
χ() Constitutive function (material law)
χcoh() Cohesive crack constitutive function
χrebar() Reinforcement bar constitutive function
∂ Partial differential operator

Upper Case Greek Symbols

Γe Domain of the crack face in an element
Γ+
e Domain of the right crack face in an element

Γ−
e Domain of the left crack face in an element

dΓe Finite Element domain differential for the crack face
dΓ+

e Finite Element domain differential for the positive crack face
dΓ−

e Finite Element domain differential for the negative crack face
Δαε Deviation angle from the direction of principal strain
Δασ Deviation angle from the direction of principal stress
Δγ̃ξ,η Shear strain increment (in crack coord. sys.)
Δε̃rebar Strain increment in an embedded reinforcement bar (in rebar coord. sys.)
Δε̃η Strain increment in direction of η (in crack coord. sys.)
Δε̃ξ Strain increment in direction of ξ (in crack coord. sys.)
Δσ̃cr,η Stress increment in direction of the 2nd crack set (in crack coord. sys.)
Δσ̃cr,ξ Stress increment in direction of the 1st crack set (in crack coord. sys.)
Δσ̃rebar Stress increment in an embedded reinforcement bar (in rebar coord. sys.)
Δσ̃η Stress increment in direction of η (in crack coord. sys.)
Δσ̃ξ Stress increment in direction of ξ (in crack coord. sys.)
Δτ̃ξ,η Shear stress increment (in crack coord. sys.)
ΔΨ Magnitude of the ”jump” in a discontinuous global enrichment function
Δf Vector of surface force increments
ΔFe Element force vector increments (equivalent nodal force increments)
ΔPe Vector of external element nodal force increments
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Δu Displacement vector increment
Δw Separation vector increment
Δw̃ Separation vector increment (in crack coord. sys.)
Δε Strain vector increment
Δε̃ Strain increment vector in the local coord. sys. associated with a crack
Δεco Strain increment vector in the bulk material (continuum)
Δεcr Cracking-strain increment vector (see εcr)
Δε̃cr Cracking strain increment vector (in crack coord. sys.)
Δε̃eq Strain increment vector due to rotation of the principal axes (crack sys.)
Δεrebar Strain increment vector in an embedded reinforcement bar
Δεtot Total strain increment vector
Δσ Stress increment vector
Δσ̃ Stress increment vector in the local coord. sys. associated with a crack
Δσeq Stress increment vector due to the rotation of the principal axes
Δσcoh Cohesive stress increment vector
Δσ̃coh Cohesive stress increment vector (in crack coord. sys.)
Δσ+

coh Cohesive stress increment vector on the positive crack face
Δσ−

coh Cohesive stress increment vector on the negative crack face
Δσco Stress increment vector in the bulk material (continuum)
Δσ̃co Stress increment vector in the bulk material (in crack coord. sys.)
Δσ̃cr Stress increment vector in a set of multiple cracks (in crack coord. sys.)
Δσ̃n

cr Cracking-stress increment vector at iteration n (in crack coord. sys.)
Δσ̃n+1

cr Cracking-stress increment vector at iteration n+1 (in crack coord. sys.)
Ψ Global enrichment function
Ψ+ Global enrichment function evaluated on the right face of a crack
Ψ− Global enrichment function evaluated on the left face of a crack
Ψj Global enrichment function number j
Ω Computational domain
Ω� Domain of a subtriangle
Ω+ Domain to the right of a discontinuity (positive domain)
Ω− Domain to the left of a discontinuity (negative domain)
Ωe Domain of a Finite Element
Ω+

e Domain of a Finite Element to the right of a discontinuity
Ω−

e Domain of a Finite Element to the left of a discontinuity
Ωenr Enriched domain
Ωpu Domain of a Partition of Unity
Ωall� Domain encompassing all subtriangles
dΩe Finite Element domain differential (volume element)
dΩ� Domain differential for a subtriangle
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dΩ+
e Finite Element domain differential for the positive domain

dΩ−
e Finite Element domain differential for the negative domain
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[Baž83] Z.P. Bažant. Comment on Orthotropic Models for Concrete and Geomate-
rials. Journal of Engineering Mechanics, 109(3):849–865, 1983.

[BB99] T. Belytschko and T. Black. Elastic Crack Growth in Finite Elements with
Minimal Remeshing. International Journal for Numerical Methods in En-
gineering, 45(5):601–620, 1999.

[BBA02] V. Bindiganavile, N. Banthia, and B. Aarup. Impact Response of Ultra-
High-Strength Fiber-Reinforced Cement Composite. ACI Materials Jour-
nal, 99(6), 2002.

[BCXZ03] T. Belytschko, H. Chen, J. Xu, and G. Zi. Dynamic crack propagation based
on loss of hyperbolicity and a new discontinuous enrichment. International
Journal for Numerical Methods in Engineering, 58:1873–1905, 2003.

[BDT06] D. Buzzini, A. Dazio, and M. Trüb. Quasi-static Cyclic Tests on Three
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