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Abstract

This thesis studies mean-variance portfolio selection (MVPS) and mean-
variance hedging (MVH) in a general semimartingale model under constraints
and develops a time-consistent formulation for MVPS as a dynamic optimi-
sation problem. The constraints are formulated via predictable correspon-
dences; trading strategies are restricted to lie in a closed convex set C(ω, t)
which may depend on the state ω and time t in a predictable way.

To obtain a solution for the constrained MVH problem, we establish the
closedness in L2 of the space GT of all gains from trade (i.e. the terminal val-
ues of stochastic integrals with respect to the price process of the underlying
assets). This is a first contribution which allows us to subsequently tackle
the problem in a systematic and unified way, and to obtain more information
on the structure of the solution by convex duality tools.

It turns out that the closedness of GT in L2 is related to the closedness,
in the semimartingale topology S(P ), for spaces of stochastic integrals with
constrained (C-valued) integrands, and we provide necessary and sufficient
conditions for the latter to hold. Applications to utility maximisation and
superreplication under constraints often bring up spaces of stochastic inte-
grals that are predictably convex. We show that such a space is closed in
S(P ) if and only if it is a space of stochastic integrals of C-valued integrands,
where C is a predictable correspondence with closed and convex values.

If the constraints are given by closed cones, MVPS viewed as a static opti-
misation problem reduces to solving a particular MVH problem. Treating the
latter as a stochastic optimal control problem allows us to characterise the
value function by the maximal solutions of two coupled backward stochastic
differential equations (BSDEs) and to describe the optimal strategy locally
as the pointwise minimiser of the drift rates.

Viewed as a dynamic optimisation problem, MVPS is time inconsistent
in the sense that it does not satisfy Bellman’s optimality principle and the
usual dynamic programming approach fails. We propose a time-consistent
formulation of this problem, which is based on a local notion of optimality. To
justify the continuous-time formulation, we prove that it is the continuous-
time limit of that in discrete time. This exploits that we establish a global
description of the locally optimal strategy in terms of the structure condition
and the Föllmer–Schweizer decomposition of the mean-variance tradeoff.
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Kurzfassung

Diese Arbeit befasst sich mitMean-Variance Portfolio Selection (MVPS) and
Mean-Variance Hedging (MVH) in einem allgemeinen Semimartingalmod-
ell unter Handelseinschränkungen und entwickelt eine zeitkonsistente For-
mulierung von MVPS als ein dynamisches Optimierungsproblem. Die Ein-
schränkungen werden durch previsible Korrespondenzen beschrieben; es wer-
den nur Strategien zugelassen, die in einer abgeschlossenen konvexen Menge
C(ω, t) liegen, die vom Zustand ω und Zeitpunkt t auf eine previsible Art
abhängen kann.

Um eine Lösung für das eingeschränkte MVH-Problem zu erhalten, zeigen
wir zunächst die L2-Abgeschlossenheit des Raums GT aller Handelserträge
(d.h. aller Endwerte von stochastischen Integralen bezüglich des Preisprozes-
ses der zugrundeliegenden Anlagen). Dies ist ein erste Neuerung, die im
Folgenden erlaubt das Problem auf eine systematische und einheitliche Weise
anzugehen und mehr Informationen über die Struktur der Lösung mittels
konvexer Dualität zu erhalten.

Es zeigt sich, dass die L2-Abgeschlossenheit von GT mit der Abgeschlos-
senheit in der Semimartingaltopologie S(P ) von Räumen von stochastischen
Integralen mit eingeschränkten (C-wertigen) Integranden zusammenhängt,
und wir geben notwendige und hinreichende Bedingungen für letztere Abge-
schlossenheit. Anwendungen in der Nutzenmaximierung und Superreplika-
tion unter Einschränkungen führen oft zu Räumen von stochastischen Inte-
gralen, die previsibel-konvex sind. Wir zeigen, dass ein solcher Raum genau
dann in S(P ) abgeschlossen ist, wenn er ein Raum stochastischer Integrale
von C-wertigen Integranden ist, wobei C eine previsible Korrespondenz mit
abgeschlossenen und konvexen Werten ist.

Falls die Einschränkungen durch abgeschlossene Kegel gegeben sind, re-
duziert sich MVPS, als ein statisches Optimierungsproblem verstanden, auf
ein bestimmtes MVH-Problem. Wenn wir letzteres als ein stochastisches
Kontrollproblem auffassen, können wir die zugehörige Wertfunktion durch
die maximalen Lösungen von zwei gekoppelten stochastischen Rückwärts-
differentialgleichungen charakterisieren und die optimale Strategie als die
punktweisen Minimierer der Driftraten beschreiben.

Als dynamisches Optimierungsproblem ist MVPS zeitinkonsistent im
Sinne, dass es Bellmans Optimalitätsprinzip nicht erfüllt und daher der
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übliche dynamische Programmierungsansatz versagt. Wir schlagen deshalb
eine zeitkonsistente Formulierung des Problems vor, die auf einem lokalen
Optimalitätsbegriff beruht. Um die zeitstetige Formulierung zu rechtferti-
gen, zeigen wir, dass sie der zeitstetige Grenzwert derer in diskreter Zeit ist.
Dies beruht auf einer globalen Beschreibung der lokal optimalen Strategie
mittels der Structure Condition und der Föllmer–Schweizer Zerlegung des
Mean-Variance Tradeoff.
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Chapter I

Introduction

This chapter describes the basic optimisation problems and gives an overview
over the main results of this thesis.

I.1 Mean-variance portfolio selection and
mean-variance hedging

Two central issues in mathematical finance are the optimisation of invest-
ments and the pricing and hedging of contingent claims. Analysing these
by means of quadratic criteria immediately leads to the classical problems
of mean-variance portfolio selection and mean-variance hedging. In simple
terms, mean-variance portfolio selection (MVPS) consists of finding a self-
financing portfolio whose terminal wealth has maximal mean and minimal
variance. Mean-variance hedging (MVH) is the problem of approximating
a given payoff by the terminal wealth of a self-financing trading strategy
with minimal mean-squared hedging error. As both problems have met with
great interest in both academia and practice, the literature is vast and we
do not give a complete survey here but rather focus on introducing the basic
problems and explaining the relation between them. The related literature is
discussed in each chapter separately. For a broader overview and the history
of both problems, we refer the reader to the survey articles [90], [87], [77]
and [89].

Let S = (St)0≤t≤T be an Rd-valued semimartingale modelling the dis-
counted prices of d risky assets and Θ a linear space of Rd-valued, S-in-
tegrable, predictable processes ϑ = (ϑt)0≤t≤T satisfying some technical con-
ditions. As trading strategies, which are available for investment, we consider
for the moment a set C ⊆ Θ, where ϑ ∈ C describes the number of shares
held dynamically over time. We call C unconstrained if C = Θ is a linear
subspace and constrained otherwise. The unconstrained case C = Θ corre-
sponds to a frictionless financial market where the investor can use any linear
combination of trading strategies. If C is constrained, not all processes ϑ ∈ Θ
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are available and the investor faces market frictions in the sense of trading
constraints. By choosing a trading strategy ϑ ∈ C and trading up to time
t ∈ [0, T ] in a self-financing way, an investor with initial capital x ∈ R can
generate the wealth

Vt(x, ϑ) := x+
∫ t

0 ϑudSu =: x+ ϑ • St. (1.1)

Mean-variance portfolio selection can then be formulated as the problem to

maximise E[VT (x, ϑ)]− γ

2
Var[VT (x, ϑ)] over all ϑ ∈ C, (1.2)

where γ > 0 denotes the risk aversion of the investor. An alternative for-
mulation is to

minimise Var[VT (x, ϑ)] = E
[
|VT (x, ϑ)|2

]
−m2 (1.3)

subject to E[VT (x, ϑ)] = m > x and ϑ ∈ C.

If C is a cone which includes in particular the unconstrained case C = Θ, it
can be shown by elementary arguments that the solutions ϑ̃ and ϑ̃(x,m) to
(1.2) and (1.3) are given by

ϑ̃ =
1

γ

1

E[1− ϕ̃ • ST ]
ϕ̃ and ϑ̃(m,x) =

m− x
E[1− ϕ̃ • ST ]

ϕ̃ = (m− x)γϑ̃,

(1.4)
respectively, where ϕ̃ is the solution to the auxiliary problem to

minimise E
[
|1− ϑ • ST |2

]
over all ϑ ∈ C. (1.5)

The latter is a particular version of the mean-variance hedging problem to

minimise E
[
|H − VT (x, ϑ)|2

]
over all ϑ ∈ C, (1.6)

where H is a square-integrable random variable denoting the time-T payoff
of some financial instrument. Mathematically, solving (1.6) corresponds to
approximating H − x in L2(P ) by an element of the space of all terminal
gains from trading given by

GT (C) := {ϑ • ST | ϑ ∈ C}.

Therefore a solution to (1.6) exists by the best approximation theorem in
Hilbert spaces if GT (C) is convex and closed in L2(P ). After establishing the
existence of a solution the main challenge is to describe the optimal strategy
more explicitly. It turns out that this is due to the combination of linear
wealth dynamics (1.1) and quadratic objective function (1.6) very tractable
in the unconstrained case C = Θ. Here the description of the optimal strat-
egy crucially relies on the fact that the best approximation with respect to
a linear subspace is a linear projection. This can be exploited either by
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combining projection and martingale techniques or by using dynamic pro-
gramming. For the latter approach we consider instead of the single static
problem (1.6) the corresponding conditional problems to

minimise E
[
|H − VT (x, ϑ)|2

∣∣Ft] over all ϑ ∈ Θt(ψ) (1.7)

where Θt(ψ) := {ϑ ∈ Θ | ϑ1[[0,t]] = ψ1[[0,t]]} denotes the set of all strategies
ϑ ∈ Θ that agree up to time t with a given ψ ∈ Θ. Since (1.6) is a standard
stochastic optimal control problem, the family of conditional problems (1.7)
is time consistent in the sense that it satisfies Bellman’s optimality principle:
If ϑ̃H is the solution to (1.6), then it is also the solution to (1.7) with ψ = ϑ̃H

for all t ∈ [0, T ]. This dynamic characterisation of optimality then indeed
allows to describe ϑ̃H more explicitly. It is worth pointing out that this
works in semimartingale settings and does not need Markovian or Brownian
frameworks, but only exploits the combination of linear wealth dynamics
(1.1), quadratic objective function (1.6) and most important the linearity of
the projection on a linear subspace; see [11] and [68] for example.

For applications, one would like to study MVPS and MVH also under
trading constraints, by requiring the strategy to lie pointwise in some set
C(ω, t) depending on the state and time which corresponds to choosing

C = Θ(C) := {ϑ ∈ Θ | ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω× [0, T ]}.

Examples of interest include no-shortselling or no-borrowing constraints; see
e.g. [21] or [55]. While MVPS and MVH have been extensively studied in
the unconstrained case in various settings, research on these problems under
constraints in continuous time covers only Itô process models so far; see
[66], [49], [63], [53] and [34]. In all these works, the characterisations of the
solution as well as the proof of its existence rely on specific features of the
underlying model. However, it is one advantage of MVPS and MVH that
these approaches allow a good description of the structure of the optimal
strategy even in general semimartingale models. So we ask if it is possible
to obtain more general results under constraints in these models as well, and
this is the question we deal with in the first part (Chapters II–IV) of this
thesis.

In the formulation (1.2) with linear C = Θ, mean-variance portfolio se-
lection is understood like in the classical Markowitz problem as a static opti-
misation problem in the sense that one determines the optimal strategy ϑ̃ for
the entire time interval [0, T ] with respect to the (static) mean-variance cri-
terion at time 0. From the description of the solution to (1.6), one can then
obtain a dynamic description of ϑ̃ via (1.5) and (1.4) as well. To study (1.2)
as a dynamic optimisation problem, one would in analogy to (1.7) consider
the conditional problems to

maximise Ut(ϑ) := E[VT (x, ϑ)|Ft]−
γ

2
Var[VT (x, ϑ)|Ft] over all ϑ ∈ Θt(ψ).

(1.8)
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However, plugging in for ψ the optimal strategy ϑ̃ to (1.2) yields that, in
contrast to (1.7), this family of conditional problem is no longer time con-
sistent and that Bellman’s optimality principle fails: If we use the solution
ϑ̃ to (1.2) on [0, t] and then determine the corresponding conditionally opti-
mal strategy by maximising in (1.8) over all ϑ ∈ Θt(ϑ̃), then this strategy is
different from ϑ̃ on (t, T ]. This time inconsistency leads us to the basic ques-
tion how to obtain a time-consistent formulation of MVPS, i.e. a dynamic
formulation that gives a solution which is in some reasonable sense optimal
for the conditional criterion Ut(·) and time consistent in the sense that if a
strategy is optimal at time 0 for the entire time interval it is at time t also
conditionally optimal on the remaining time interval (t, T ]. This question is
studied in Chapter V of this thesis. We remark that it depends of course
on the preferences of the investor whether he would like to have a (so-called
pre-commitment) strategy which involves dynamic trading and is optimal
for the static mean-variance criterion evaluated at time 0, or a strategy ϑ̂
which is optimal for the conditional mean-variance criterion in a dynamic
and time-consistent sense. One can find in the literature justifications for
both approaches.

I.2 Overview of the thesis

The results obtained in this thesis are divided into four chapters which cor-
respond to the articles [23], [25], [24] and [22]. To keep each chapter self-
contained, we deliberately allowed for redundancies and discuss the related
literature in each chapter seperately.

Convex duality in mean-variance hedging under constraints. As
in the unconstrained case where C = Θ is linear, the Markowitz problem
under constraints can be tackled by solving the particular mean-variance
hedging problem of approximating constant payoffs. So we focus first on
mean-variance hedging under constraints, and study this problem in a gen-
eral semimartingale model. The constraints are formulated via predictable
correspondences, meaning that the trading strategy is restricted to lie in a
given closed convex set C(ω, t) which may depend on the state ω and time
t in a predictable way. It is worth pointing out that this is a very gen-
eral formulation for mean-variance hedging under constraints. To obtain
the existence of a solution for mean-variance hedging, we first establish the
closedness in L2 of the space of all final gains from trade. This is a first
main contribution which allows us to subsequently tackle the problem in a
systematic and unified way. In addition, using the closedness allows us to
obtain more information on the structure of the solution by convex duality
tools. This explains and generalises the convex duality results that have
been obtained previously by other authors via ad hoc methods in specific
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frameworks.

Closed spaces of stochastic integrals with constrained integrands.
It turns out that the closedness in L2 of the space of all final gains from
trade is related to the closedness, in the semimartingale topology, for spaces
of stochastic integrals (as processes) with constrained, i.e. C-valued inte-
grands. On this issue, we are able to make both mathematical contributions
to stochastic calculus, and financial contributions in the modelling and han-
dling of trading constraints for optimisation problems from mathematical
finance. We provide necessary and sufficient conditions for the closedness in
the semimartingale topology, which are in some sense definitive results. In
most cases of economic interest, it is easy to verify that these conditions are
satisfied. Moreover, spaces of stochastic integrals that are predictably con-
vex often appear in applications to utility maximisation and superreplication
under constraints. We show that such a space is closed in the semimartin-
gale topology if and only if it is a space of stochastic integrals of C-valued
integrands, where C is a predictable correspondence with closed and convex
values. This result indicates why predictable correspondences come up nat-
urally in this context, and the necessary and sufficient condition makes it
again essentially definitive.

On the Markowitz problem under cone constraints. In this chapter,
we understand mean-variance portfolio selection as in the classical Markowitz
problem, i.e. like a static optimisation problem. Although this formulation
fails to produce a time-consistent solution in the sense that the initially op-
timal strategy is still conditionally optimal for the analogous conditional cri-
terion at a later time, this is nevertheless the usual way used in the literature
to avoid dealing with the time-inconsistency of the mean-variance criterion.
As in the unconstrained case, the solution to the Markowitz problem under
constraints can be obtained by solving the particular mean-variance hedging
problem of approximating in L2 constant payoffs by the terminal gains of a
self-financing trading strategy. To approach the latter task we slightly gener-
alise results on the closedness in L2 of the space of constrained terminal gains
by combining the space of admissible trading strategies of Černý and Kallsen
[14] with the generalisation of martingales, the so-called E-martingales, in-
troduced by Choulli, Krawczyk and Stricker [16]. Actually, E-martingales
come up naturally in quadratic optimisation problems in mathematical fi-
nance due to the possibly negative “marginal utility” of the square function
which makes this generalisation necessary. The closedness we obtain is suf-
ficient to provide the existence of solutions to the approximation problems
if the constraints are in addition convex.

By treating the approximation problems as stochastic optimal control
problems in a semimartingale framework, we obtain a factorisation of the
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value function involving two auxiliary processes. This is similar to the results
on the opportunity process by Černý and Kallsen [14] in the unconstrained
case, but due to the constraints now requires two opportunity processes.
Combining the martingale optimality principle with the factorisation of the
value function allows us to describe the optimal strategy locally in feedback
form via the pointwise minimisers of two predictable functions, which are
given in terms of the joint differential semimartingale characteristics of the
opportunity processes and the asset price process. Conversely, assuming the
existence of solutions to the approximation problems enables us to char-
acterise the opportunity processes as the maximal solutions of two coupled
backward stochastic differential equations (BSDEs) for which we also provide
verification theorems. This explains and generalises all existing results on
the Markowitz problem under cone constraints in the literature so far; com-
pare [66], [49], [63] and [53]. In particular, the generality of our framework
allows us to capture a new behaviour of the optimal strategy: It jumps from
the minimiser of one predictable function to that of a second one whenever
the optimal wealth process of the approximation problem changes its sign.
Because this phenomenon is related to jumps in the price process of the un-
derlying assets, it could not be observed in earlier work since the Markowitz
problem under constraints has only been studied in (continuous) Itô process
models so far. Of course, the presence of jumps and the resulting coupling
of the BSDEs make the situation more involved, also at a technical level.

Time-consistent mean-variance portfolio selection. As already ex-
plained, Mean-variance portfolio selection is a time-inconsistent optimal con-
trol problem in the sense that it does not satisfy Bellman’s optimality princi-
ple. Therefore the usual dynamic programming approach fails to produce a
time-consistent dynamic formulation of the optimisation problem. To over-
come this, one has to use a weaker optimality criterion which consists of opti-
mising the strategy only locally in some sense. We propose such a local notion
of optimality, called local mean-variance efficiency, for the conditional mean-
variance problem. This generalises recent results by Basak and Chabakauri
[6] and the examples on MVPS in Björk and Murgoci [9] who developed
such a formulation in Markovian settings. By exploiting that framework,
they could characterise the local notion of optimality by system of partial
differential equations. To develop a time-consistent formulation in a general
semimartingale setting we start in discrete time where this is straightforward,
and then find the natural extension to continuous time which is similar to
the formulation of local risk minimisation in continuous time introduced by
Schweizer in [85]. As we shall see, our formulation in discrete as well as in
continuous time embeds time-consistent mean-variance portfolio selection in
a natural way into the already existing quadratic optimisation problems in
mathematical finance, i.e. the Markowitz problem, mean-variance hedging,
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and local risk minimisation; compare [87] and [89]. Moreover, we provide an
alternative characterisation of the optimal strategy in terms of the structure
condition and the Föllmer–Schweizer decomposition of the mean-variance
tradeoff, which gives necessary and sufficient conditions for the existence of
a solution. The link to the Föllmer–Schweizer decomposition allows us to
exploit known results to give a recipe to obtain the solution in concrete mod-
els. Since the ingredients for this recipe can be obtained directly from the
canonical decomposition of the asset price process, this can be seen as the
analogue to the explicit solution in the one-period case. Additionally, we
obtain an intuitive interpretation of the optimal strategy as follows. On the
one hand, the investor maximises the conditional mean-variance criterion in
a myopic way one step ahead. In the multiperiod setting, this generates a risk
represented by the mean-variance tradeoff process which he then minimises
on the other hand by local risk minimisation. Finally, using the alternative
characterisation of the optimal strategy allows us to justify the continuous-
time formulation by showing that it coincides with the continuous-time limit
of that in discrete time.
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Chapter II

Convex duality in
mean-variance hedging under
constraints

II.1 Introduction

Mean-variance hedging and mean-variance portfolio selection are two clas-
sical problems in finance. The latter is also called Markowitz problem and
involves finding a trading strategy whose resulting final wealth has an opti-
mal risk-reward profile, where reward and risk are measured via mean and
variance. Understanding and solving this problem is vastly simplified by a
good knowledge about the general mean-variance or quadratic hedging prob-
lem. We study this in a general semimartingale financial market with general
convex constraints on strategies.

In more mathematical terms, let S = (St)0≤t≤T be an Rd-valued semi-
martingale modelling the discounted prices of d risky assets. A self-financing
trading strategy is described by its initial wealth x ∈ R and an Rd-valued
predictable process ϑ = (ϑt)0≤t≤T describing the numbers of shares held
dynamically over time. Its resulting final wealth is

VT (x, ϑ) := x+
∫ T

0 ϑs dSs =: x+GT (ϑ),

and if the FT -measurable random variable H gives the time-T payoff of
a financial product, mean-variance hedging for H is to solve the (linear-
quadratic control) problem to

minimise E
[
|H − x−GT (ϑ)|2

]
either over ϑ ∈ Θ(C) for fixed x or over (x, ϑ) ∈ R×Θ(C). The space Θ(C)
of allowed integrands of course imposes a square-integrability condition on
the stochastic integral process

∫
ϑ dS, and the argument in brackets indicates
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that we have trading constraints in the sense that ϑt(ω) must lie in a convex
closed subset C(ω, t) of Rd. This can depend on ω and t in a predictable
way, as made precise later, and it is worth pointing out that the C(ω, t)
need not be cones in general. One strength of our contribution is that the
above setup is essentially the most general formulation for mean-variance
hedging under constraints. Under very weak local square-integrability and
no-arbitrage-type assumptions on S, we give in Theorem 3.12 a necessary
and sufficient condition (jointly on S and C) for the space GT

(
Θ(C)

)
to be

closed in L2(P ). This allows us to prove easily in Theorem 4.1 the existence
of a solution to the mean-variance hedging problem for any H ∈ L2(P ). To
obtain more information on the structure of this solution, we then use convex
duality tools. We introduce a dual problem for which variables and objec-
tive function both involve the constraints C through their support function.
We then prove in Theorems 5.7 and 5.13 the existence of a solution to the
dual problem, show how it is related to the solution of the primal problem,
and give properties of the corresponding (primal and dual) value functions.
There are two results because we give two formulations — one in terms of
static, the other in terms of dynamic variables.

Conceptually and result-wise, our duality approach is analogous to the
classical convex duality techniques familiar from utility maximisation prob-
lems; see the work by Cvitanić and Karatzas [21], Kramkov and Schacher-
mayer [62] and Karatzas and Žitković [56]. However, the mathematics are a
bit different since our “quadratic random utility” U(x, ω) = −1

2 |x −H(ω)|2
is not increasing in x and the duality is taken in a different space. A fairly
close precursor of our work is due to Labbé and Heunis [63] who studied
the same problem when S is given by a complete Itô process model and the
constraints do not depend on ω and t. Their duality is very similar to parts
of our Theorem 5.13, but their formulations and arguments strongly depend
on the availability and use of Itô’s representation theorem. We do not need
that at all, since S and the underlying filtration F are general in our setting.

This chapter is structured as follows. Section II.2 contains a precise
problem formulation, including basic results on correspondences that we use
for modelling constraints. Section II.3 contains the central closedness result
for GT

(
Θ(C)

)
, and Section II.4 uses this to prove existence of a solution to

the mean-variance hedging problem under constraints. Finally, Section II.5
presents the duality results. We first give a careful motivation for the way
the dual problem is set up, both for static and dynamic variables. Then
we prove the main duality theorems in those two settings, and we close the
section with more detailed comments on and comparison to the literature.
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II.2 Formulation of the problem

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t≤T satisfying
the usual conditions of completeness and right-continuity, where T > 0 is a
fixed and finite time horizon. Hence we can and do choose an RCLL version,
i.e. right-continuous with left limits (RCLL), of every local P -martingale.
For all unexplained notions concerning stochastic integration, we refer to
Protter [80].

We consider a financial market consisting of one riskless asset, whose
(discounted) price is 1, and d risky assets described by an Rd-valued semi-
martingale S. We denote by H2(P ) the Banach space of all square-integrable
semimartingales, i.e. special semimartingales Y with canonical decomposi-
tion Y = Y0 + MY + AY , where MY is a square-integrable martingale Y
null at zero, MY ∈ M2

0(P ), and AY is a predictable finite variation RCLL
process null at zero, such that

‖Y ‖H2(P ) := ‖Y0‖L2(P ) + ‖([MY ]T )
1
2 ‖L2(P ) +

∥∥ ∫ T
0 |dA

Y
s |
∥∥
L2(P )

<∞.

Note that H2
loc(P ) coincides with the semimartingale space S2

loc(P ). We
suppose that S is a locally square-integrable semimartingale, for short S ∈
H2
loc(P ), with canonical decomposition S = S0 +M + A. Then there exists

a predictable increasing RCLL process B, e.g. B =
∑d

i=1(〈M i〉 +
∫
|dAi|),

with 〈M i,M j〉 � B and Ai � B for i, j = 1, . . . , d. We define an Rd×d-
valued predictable process cM and an Rd-valued predictable process a by
(cM )ij = d〈M i,Mj〉

dB and ai = dAi

dB . We set Ω := Ω × [0, T ], PB := P ⊗ B
and view Rd-valued predictable processes as P-measurable random variables,
i.e. elements of L0(Ω,P;Rd). For trading strategies, we take

Θ := ΘS := {ϑ ∈ L(S) |
∫
ϑ dS ∈ H2(P )},

where L(Y ) denotes the space of all Rd-valued, Y -integrable, predictable
processes for a semimartingale Y . Note that we work with processes with-
out identifying ϑ and ϑ′ when

∫
ϑ dS =

∫
ϑ′ dS; hence we write L(S), not

L(S). By the uniqueness of the canonical decomposition, we have that
ΘS = L2(M) ∩ L2(A) with

L2(M) :=
{
ϑ ∈ L0(Ω,P;Rd)

∣∣∣ ‖ϑ‖L2(M) :=
(
E
[ ∫ T

0 ϑ>s c
M
s ϑs dBs

]) 1
2 <∞

}
,

L2(A) :=
{
ϑ ∈ L0(Ω,P;Rd)

∣∣∣ ‖ϑ‖L2(A) :=
(
E
[( ∫ T

0 |ϑ
>
s as| dBs

)2]) 1
2 <∞

}
.

The wealth process generated up to time t ∈ [0, T ] by a self-financing trading
strategy ϑ with initial capital x ∈ R is

Vt(x, ϑ) := x+
∫ t

0 ϑs dSs =: x+Gt(ϑ),
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where the process G(ϑ) denotes the cumulative gains from trading. The set
of all outcomes of self-financing trading strategies with zero initial wealth is

GT (Θ) = {GT (ϑ) |ϑ ∈ Θ} ,

and the set of attainable payoffs is

A(Θ) = R +GT (Θ).

In contrast to strategies, we identify here final wealths that are equal P -
a.s. Due to the definition of Θ, the sets GT (Θ) and A(Θ) are thus linear
subspaces of L2(P ) by the following result.

Proposition 2.1. Let Y be in H2(P ) and Y ∗t := sup0≤s≤t |Ys|. Then

E
[(
Y ∗T
)2] ≤ 8‖Y ‖2H2(P ).

Proof. See Theorem IV.5 in [80].

A square-integrable FT -measurable random variable H is called a contin-
gent claim. We assume that an investor wants to hedge a contingent claim
by means of a self-financing trading strategy. However, since the market is
usually incomplete, perfect replication of the contingent claim, in the sense
that H = VT (x, ϑ) P -a.s. for some x and ϑ, is in general impossible. So the
investor wants to optimise the hedging performance of his trading strategy
according to some criterion. One possible choice, especially when the in-
vestor simultaneously considers buying or selling H, is the minimisation of
the mean squared hedging error, which leads to the approximation problem

E
[∣∣H − x− ∫ T0 ϑs dSs

∣∣2] = min
(x,ϑ)∈R×Θ

!

For a fixed initial capital x ∈ R, one obtains the problem of mean-variance
hedging, i.e.

E
[∣∣H − x− ∫ T0 ϑs dSs

∣∣2] = min
ϑ∈Θ

!

Mathematically, this amounts to projecting H − x onto GT (Θ) or H onto
A(Θ). Therefore a solution for every H ∈ L2(P ) exists if and only if GT (Θ)
andA(Θ) are closed in L2(P ). Note that both problems are naturally studied
in L2(P ) rather than L2(P ).

Before we introduce the mean-variance hedging problem under trading
constraints, we make the following simple observation. In the unconstrained
case, where GT (Θ) and A(Θ) are closed linear subspaces, the problem admits
a unique solution by elementary Hilbert space arguments. Under trading
constraints, this is still true if the subsets in which we want to find the best
approximation are closed and convex subsets of L2(P ). Despite its simplicity,
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this observation is very useful. We shall see that mean-variance hedging
problems can be embedded into this framework even under the additional
constraint that the trading strategy only takes values in a closed convex set,
which is allowed to depend on the state ω and time t in a predictable way.
This allows us to treat these problems in a systematic and unified way.

To model “predictable trading constraints”, we formulate them via pre-
dictable correspondences. This idea is analogous to [54], where it is used
to study the existence of the numéraire portfolio under predictable convex
constraints.

Definition 2.2. A mapping C : Ω→ 2R
d is called a correspondence. We say

that a correspondence C is predictable if C−1(F ) = {(ω, t) |C(ω, t)∩F 6= ∅}
is a predictable set (i.e. in P) for all closed F ⊆ Rd. The domain dom(C) of
a correspondence is given by dom(C) = {(ω, t) |C(ω, t) 6= ∅}. A (predictable)
selector of a (predictable) correspondence C is a (predictable) process ψ with
ψ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ dom(C).

For convenience, we recall some results on predictable correspondences
which ensure the existence of predictable selectors in all situations relevant
for us.

Proposition 2.3 (Castaing). For a correspondence C : Ω→ 2R
d with closed

values, the following are equivalent:

1) C is predictable.

2) dom(C) is predictable and there exists a Castaing representation of C,
i.e. a sequence (ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t), ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

Proof. See Corollary 18.14 in [2] or Theorem 1B in [83].

Proposition 2.4. Let C : Ω → 2R
d be a predictable correspondence with

closed values and f : Ω × Rm → Rd and g : Ω × Rd → Rm Carathéodory
functions, which means that f(ω, t, y) and g(ω, t, x) are predictable with re-
spect to (ω, t) and continuous in y and x. Then C ′ and C ′′ given by

C ′(ω, t) = {y ∈ Rm | f(ω, t, y) ∈ C(ω, t)}

and
C ′′(ω, t) = {g(ω, t, x) |x ∈ C(ω, t)}

are predictable correspondences (from Ω to 2R
m) with closed values.

Proof. See Corollaries 1P and 1Q in [83].
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Proposition 2.5. Let Cn : Ω → 2R
d for each n ∈ N be a predictable cor-

respondence with closed values and define the correspondences C ′ and C ′′ by
C ′(ω, t) =

⋂
n∈N

Cn(ω, t) and C ′′(ω, t) =
⋃
n∈N

Cn(ω, t). Then C ′ and C ′′ are

predictable and C ′ is closed-valued.

Proof. See Theorem 1M in [83] and Lemma 18.4 in [2].

For a predictable correspondence C : Ω→ 2R
d \ {∅}, we denote by

C := CS := {ψ ∈ L(S) | ψ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω}

the set of C-valued or C-constrained integrands for S and by

Θ(C) = Θ ∩ C = {ϑ ∈ Θ |ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω}

the set of all C-constrained trading strategies. With this formulation, the set
of all outcomes of C-constrained self-financing trading strategies with zero
initial wealth is

GT (Θ(C)) = {GT (ϑ) |ϑ ∈ Θ(C)},

and the set of payoffs that are attainable with C-constrained trading strate-
gies is

A(Θ(C)) = R +GT (Θ(C)).

Note that one can for example model prohibition of short-selling or rect-
angular constraints in this formulation; see Examples 4.1 in Section 5.4 of
[55]. The mean-variance hedging problem under trading constraints is then
formulated as

E
[∣∣H − x− ∫ T0 ϑs dSs

∣∣2] = min
ϑ∈Θ(C)

!

for a fixed initial capital x ∈ R, and we also study

E
[∣∣H − x− ∫ T0 ϑs dSs

∣∣2] = min
(x,ϑ)∈R×Θ(C)

!

when including the initial capital into the approximation problem. As al-
ready explained above, these problems admit solutions if GT (Θ(C)) and
A(Θ(C)) are closed and convex subsets of L2(P ). By the convexity of C,
the convexity of GT (Θ(C)) and A(Θ(C)) immediately follows. The closed-
ness will be established in the next section.

II.3 The closedness of GT (Θ(C)) and A(Θ(C))

In this section, we show that the set of all outcomes of C-constrained self-
financing trading strategies with zero initial wealth and the set of all payoffs
that are attainable with C-constrained trading strategies are both closed in
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L2(P ). To that end, we use the concept of E-martingales, which was intro-
duced and developed by Choulli, Krawczyk and Stricker in [16] to deduce the
closedness of the analogous subspaces in the unconstrained case. For easy
reference, we start by briefly recalling some definitions and results.

For a semimartingale Y , we denote its stochastic exponential by E(Y ).
Throughout this chapter, let N be a fixed local P -martingale starting at zero.
For any stopping time τ , we denote the process Y stopped at τ by Y τ and the
process Y started at τ by τY = Y −Y τ , but we set τE = τE(N) = E(N−N τ ).
So for the stochastic exponential, τE(N) denotes a multiplicative rather than
an additive restarting. In the sequel, we use the symbol E(N) (or even E)
for the family {τE(N) | τ stopping time} of processes, rather than for the
process 0E(N). Since N is RCLL, it has at most a finite number of jumps
with ∆N = −1, and so each τE(N) has P -a.s. at most a finite number of
times where it can jump to zero; this follows from the representation of the
stochastic exponential in Theorem II.37 in [80]. Therefore we can define
an increasing sequence of stopping times by T̂0 = 0 and T̂n+1 = inf{t >
T̂n | T̂nE(N)t = 0} ∧ T .

Definition 3.1. An adapted RCLL process Y is an E-local martingale if the
product of T̂nY and T̂nE is a local P -martingale for any n ∈ N. It is an
E-martingale if for any n ∈ N, we have E

[
|Y
T̂n

T̂nE
T̂n+1
|
]
<∞ and the above

product is a (true) P -martingale.

The next two propositions, which are Corollaries 3.16 and 3.17 in [16],
give some information about the structure of E-martingales.

Proposition 3.2. Let Y be a special semimartingale with canonical decom-
position Y = Y0 +MY +AY . Then Y is an E-local martingale if and only
if [MY , N ] is locally P -integrable and AY = −〈MY , N〉.

Proposition 3.3. A semimartingale Y = Y0 + MY − 〈MY , N〉 satisfying
E
[
Y ∗T (T̂nE)∗T

]
<∞ for any n ∈ N is an E-martingale.

We also need the following definitions.

Definition 3.4. We say that E is regular if T̂nE is a P -martingale for any
n.

Definition 3.5. We say that E satisfies the reverse Hölder inequality R2(P )
if there exists a constant c ≥ 1 such that E

[
|tET |2

∣∣Ft] ≤ c for any t.
The next proposition is a partial statement of Proposition 3.9 in [16].

Proposition 3.6. Assume that E satisfies R2(P ). Then E is regular if and
only if τE is a P -martingale for any stopping time τ , and in that case, τE
is a P -square-integrable P -martingale.
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Finally, a combination of Theorem 4.9 in [16] and Proposition 2.1 gives
the following equivalence of norms.

Proposition 3.7. Assume that E is regular and satisfies R2(P ). Then there
exists a constant c such that

1

c
‖Y ‖H2(P ) ≤ ‖YT ‖L2(P ) ≤ c‖Y ‖H2(P )

for every E-martingale Y . We write this for short as ‖Y ‖H2(P ) ∼ ‖YT ‖L2(P ).

Note that when 0E(N) is a strictly positive P -martingale, the definition
of an E-local martingale coincides with the notion of a local martingale under
the measure Q defined by dQ = 0E(N)T dP . This will be called the classical
case.

As explained in the previous section, we consider a possibly incomplete
financial market composed of one riskless asset, whose price is 1, and d
risky assets described by an Rd-valued semimartingale S ∈ H2

loc(P ) with
canonical decomposition S = S0 + M + A. We suppose that there exists
N ∈ M0,loc(P ) such that S is an E-local martingale. By Proposition 3.2,
this implies that 〈M,N〉 exists and A = −〈M,N〉. Moreover, we assume that
E(N) satisfies R2(P ), which gives that N is locally P -square integrable and
in bmo2, i.e. there exists a constant c > 0 such that E[〈N〉T − 〈N〉t|Ft] ≤ c
for all t ∈ [0, T ]; see Proposition 3.10 in [16]. An application of the Kunita–
Watanabe decomposition yields N = −

∫
λ dM + L with λ ∈ L2(M) and

L ∈M2
0(P ) strongly P -orthogonal to M , and hence S satisfies the structure

condition (SC), i.e.
S = S0 +M +

∫
d〈M〉λ.

Since N is in bmo2,
∫
λ dM is also in bmo2, which implies by Theorem

3.3 in [29] the inequality D2(P ), i.e. there exists a constant c > 0 such
that ‖ϑ‖L2(A) ≤ c‖ϑ‖L2(M) for all ϑ ∈ L2(M). As a consequence, we have
Θ = L2(M). To motivate the closedness proof under trading constraints, we
give below the argument for the unconstrained case, which is due to Choulli,
Krawczyk and Stricker; see Theorem 5.2 in [16].

Proposition 3.8. Assume that E = E(N) is regular and satisfies R2(P ),
and that S ∈ H2

loc(P ) is an E-local martingale. Then the following hold:

1) For each σ-field B0 ⊆ F0 and each Y0 ∈ L2(B0), the process Y0 +
∫
ϑ dS

in H2(P ) is an E-martingale.

2) The spaces GT (Θ), A(Θ) and L2(B0)+GT (Θ), for any σ-field B0 ⊆ F0,
are closed in L2(P ).

Proof. 1) The stochastic integral
∫
ϑ dS is for each ϑ ∈ Θ in H2(P ) and

hence special with canonical decomposition
∫
ϑ dS =

∫
ϑ dM+

∫
ϑ dA. Since

S is an E-local martingale, we have A = −〈M,N〉 by Proposition 3.2; so
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∫
ϑ dA = −〈

∫
ϑ dM,N〉 and therefore

∫
ϑ dS is an E-local martingale again

by Proposition 3.2. Since E is regular and satisfies R2(P ), Proposition 3.6
states that τE is a square-integrable martingale for each stopping time τ .
By Doob’s inequality and Proposition 2.1, {τE}∗T and {G(ϑ)}∗T are in L2(P )
so that {G(ϑ)}∗T {τE}∗T is in L1(P ) for every stopping time τ . Proposition
3.3 now implies that G(ϑ) is an E-martingale. Replacing G(ϑ) by Y0 shows
in the same way that the constant process Y0 is an E-martingale for any
Y0 ∈ L2(B0), and hence so is Y0 +G(ϑ).

2) Let
(
Y n

0 +GT (ϑn)
)
be a sequence in L2(B0)+GT (Θ) converging to H

in L2(P ). By part 1), each Y n
0 +G(ϑn) is an E-martingale and therefore the

sequence
(
Y n

0 + G(ϑn)
)
is a Cauchy sequence in the Banach space H2(P )

by Proposition 3.7, hence convergent to some Y ∈ H2(P ) which satisfies
YT = H. Since the space (of processes) Y0 +G(Θ) is closed in H2(P ) (either
by the construction of the stochastic integral as in Section IV.2 in [80] or by
Theorem V.4 in [71]), there exists some ϑ ∈ Θ with Y = Y0 + G(ϑ), and
therefore L2(B0) + GT (Θ) is closed in L2(P ). Choosing above B0 = {∅,Ω}
and Y n

0 = 0 for all n ∈ N then implies the closedness of A(Θ) and GT (Θ) in
L2(P ), which completes the proof.

Remark 3.9. Assuming that there exists N ∈ M0,loc(P ) such that E(N)
is regular and P -square-integrable and such that S is an E-local martingale
implies the weak no-arbitrage condition that GT (Θ) admits no approximate
profits in L2; this means that 1 /∈ GT (Θ), where denotes the closure in
L2(P ). See Section 4 in [87].

To obtain the closedness under constraints, we observe the following. If(
Y n

0 +GT (ϑn)
)
is a sequence in L2(B0) +GT (Θ(C)) converging to some H

in L2(P ), then there exist under the assumptions of Proposition 3.8 some
Y0 ∈ L2(B0) and some ϑ ∈ Θ such that Y0 +GT (ϑ) = H and

(
Y n

0 +G(ϑn)
)

converges to Y0 + G(ϑ) even in H2(P ). The question is then whether ϑ
can be chosen to be C-valued. In general (even if S is a martingale), the
answer is negative, as a simple counterexample in Section 3 of [25] illus-
trates. The reason behind this is that the linear dependence of the different
components of S can make some of the risky assets redundant in the sense
that one of them can be replicated on some predictable set by trading in
the other ones. As a consequence, there may exist different strategies with
the same gains process, and so a trading strategy is not uniquely determined
(even up to indistinguishability) by its gains process. Indeed, by the con-
struction of the stochastic integral, two strategies ψ and ϕ in Θ have the
same gains process up to indistinguishability if and only if cM (ψ − ϕ) = 0
and a>(ψ − ϕ) = 0 PB-a.e.; see Lemma 5.1 in Chapter III. Therefore the
convergence of the gains processes G(ϑn) need not imply the pointwise con-
vergence of the strategies ϑn, and so the pointwise closedness of C(ω, t) is
not sufficient to deduce that ϑ can be chosen to be C-valued. However, the
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convergence of the gains processes is sufficient to prove that we do get a
convergent sequence (ψn) of modified strategies which have the same gains
processes as the strategies ϑn. This sequence is given by the projection of
(ϑn) on the predictable range of S.

Proposition 3.10. For each Rd-valued semimartingale Y , there exists an
Rd×d-valued predictable process ΠY , called the projection on the predictable
range of Y , which takes values in the orthogonal projections in Rd and has
the following property: If ϑ ∈ L(Y ) and ϕ is predictable, then ϕ is in L(Y )
with

∫
ϕdY =

∫
ϑdY (up to indistinguishability) if and only if ΠY ϑ = ΠY ϕ

PB-a.e. We choose and fix one version of ΠY .

Proof. See Lemma 5.3 in Chapter III.

Remark 3.11. Suppose that S satisfies (SC). Then the construction of the
stochastic integral gives that

∫
ψdS = 0 if and only if

∫
ψ dM = 0 and

therefore that ΠS and ΠM coincide (PB-a.e.). Since
∫
ψ dM = 0 if and only

if cMψ = 0 PB-a.e., we see that ψ = ϑ−ΠMϑ is PB-a.e. valued in Ker(cM ),
the kernel of the matrix cM . Moreover, since ΠM is an orthogonal projection,
so is 1d×d − ΠM , and therefore ΠM = ΠS can be chosen as the pointwise
orthogonal projection on range(cM (ω, t)), the range of the matrix cM (ω, t),
which is equal to Ker(cM (ω, t))⊥.

Using the projection on the predictable range, we can now prove the
closedness in the constrained case.

Theorem 3.12. Assume that E = E(N) is regular and satisfies R2(P ), and
that
S ∈ H2

loc(P ) is an E-local martingale. Let C : Ω → 2R
d be a predictable

correspondence with closed values and such that Θ(C) is non-empty. Then
the spaces GT

(
Θ(C)

)
, A(Θ(C)) and L2(B0) +GT (Θ(C)), for any σ-field

B0 ⊆ F0, are closed in L2(P ) if and only if the projection of C on the pre-
dictable range of S is closed, i.e. ΠS(ω, t)C(ω, t) is closed PB-a.e.

Proof. “⇐”: Let
(
Y n

0 +GT (ϑn)
)
be a sequence in L2(B0) +GT (Θ(C)) con-

verging to H in L2(P ). Then there exist some Y0 ∈ L2(B0) and some ϑ ∈ Θ
such that Y0 +GT (ϑ) = H P -a.s. and

(
Y n

0 +G(ϑn)
)
converges to Y0 +G(ϑ)

in H2(P ), by the proof of Proposition 3.8. The convergence in H2(P ) im-
plies the convergence in the semimartingale topology by Theorem V.14 and
the lemma preceding Theorem IV.12 in [80]. By Theorem 4.5 in Chapter
III, the space of stochastic integrals of C-valued integrands is closed in the
semimartingale topology if the projection of C on the predictable range of
S is closed. Thus there exists ϑ̃ ∈ Θ(C) such that G(ϑ̃) = G(ϑ), and there-
fore L2(B0) + GT (Θ(C)) is closed in L2(P ). As in the proof of Proposition
3.8, choosing B0 = {∅,Ω} and Y n

0 = 0 for all n ∈ N gives the closedness of
A(Θ) and GT (Θ).
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“⇒”: First note that for any stopping time τ , the projection ΠSτ on
the predictable range of Sτ is simply ΠS

1J0,τK. Recall that S ∈ H2
loc(P ).

Arguing by contradiction, we choose a stopping time τ such that Sτ is in
H2(P ) and ΠSτ is not closed. Applying Lemma 4.4 in Chapter III with
Sτ and using that

∫
ϕdSτ =

∫
ϕ1J0,τK dS for any ϕ ∈ L(S) implies that

there exist ϑ ∈ L(S) and a sequence (ψn) of C-valued integrands such that
(
∫
ψn1J0,τK dS) converges to

∫
ϑ1J0,τK dS in the semimartingale topology, but

there is no C-valued integrand ψ such that
∫
ψ1J0,τK dS =

∫
ϑ1J0,τK dS.

An inspection of the proof of Lemma 4.4 in Chapter III shows that we
can choose ϑ and (ψn) such that (ΠSϑ)1J0,τK and (ΠSψn)1J0,τK are uni-
formly bounded and (ΠSψn)1J0,τK → (ΠSϑ)1J0,τK uniformly in (ω, t). Since∫
ψn1J0,τK dS =

∫
(ΠSψn)1J0,τK dS and

∫
ϑ1J0,τK dS =

∫
(ΠSϑ)1J0,τK dS, we

have by dominated convergence that
∫

(ψn1J0,τK + ϕ1Kτ,T K) dS →
∫
ϑ̃ dS in

H2(P ) for any ϕ ∈ Θ(C), with ϑ̃ = ϑ1J0,τK + ϕ1Kτ,T K, and hence also that
GT (ψn1J0,τK + ϕ1Kτ,T K)→ GT (ϑ̃) in L2(P ) by Proposition 2.1. But because
there exists by construction of ϑ̃ no C-valued integrand ψ with G(ψ) = G(ϑ̃)
and since G(ϑ̃) is uniquely determined in H2(P ) by its terminal value GT (ϑ̃)
by Proposition 3.7, there cannot be any ψ ∈ Θ(C) with GT (ψ) = GT (ϑ̃).
This contradicts the closedness of GT

(
Θ(C)

)
in L2(P ) and therefore com-

pletes the proof.

For a better understanding of our assumptions, we now spell them out
in a multidimensional Itô process model. This is one standard example of
a financial market, and it illustrates that our assumptions are weaker than
those in [63], [49] and [53].

Example 3.13. Let W be an Rn-valued Brownian motion on a filtered
probability space (Ω,F ,F, P ) with a filtration satisfying the usual conditions.
Note that for our results, F need not be the P -augmentation of the filtration
generated by W ; we do not use Itô’s representation theorem. Let S̄ =
(S̄i)i=1,...,d be the undiscounted price processes of the d risky assets and S̄0

the undiscounted price of the bank account. These processes are given as
the solutions to the stochastic differential equations (SDEs)

dS̄it = S̄it

(
µit dt+

n∑
j=1

σijt dW
j
t

)
, S̄i0 = si0

for i = 1, . . . , d with constants si0 > 0 and

dS̄0
t = S̄0

t rt dt, S̄0
0 = 1

with predictable Rd-, R- and Rd×n-valued processes µ, r and σ that are
P -a.s. on [0, T ] Lebesgue-integrable and Lebesgue-square-integrable, respec-
tively. In our abstract setup, we consider the discounted prices Si = S̄i/S̄0.
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The SDEs for the Si then take the form

dSit = Sit

(
(µit − rt) dt+

n∑
j=1

σijt dW
j
t

)
, Si0 = si0,

and we explicitly have

d〈M〉t = diag(St)σtσ
>
t diag(St) dt =: cMt dt,

dAt = diag(St)(µt − rt1) dt =: at dt

with 1 = (1 . . . 1)> ∈ Rd. Up to integrability conditions on µ, r and σ, the
process S satisfies (SC) if and only if (µ− r1) ∈ range(σσ>) dP ⊗ dt-a.e.,
since Sit > 0 for i = 1, . . . , d. For a sufficient condition for this, we assume
that σσ> is dP ⊗ dt-a.e. invertible, which means that n ≥ d and that σ
has dP ⊗ dt-a.e. full rank d. This condition also implies that ΠS = 1d×d
and therefore that the projection of any closed-valued predictable corre-
spondence C on the predictable range of S is closed. A natural candi-
date to obtain a local martingale N such that S is an E(N)-martingale
is N = −

∫
λ dM = −

∫
ϕdW , where ϕ = σ>λ = σ>(σσ>)−1(µ− r1) is the

instantaneous market price of risk. Here we make the frequently used as-
sumption that the mean-variance tradeoff (MVT) process

Kt :=
∫ t

0 λ
>
s d〈M〉sλs =

〈∫
λ dM

〉
t

=
〈∫

ϕdW
〉
t

=
∫ t

0 |ϕs|
2ds,

which coincides in this setup with the integrated squared market price of
risk, is uniformly bounded in t and ω. This is sufficient to guarantee that
E(−

∫
λ dM) is a true martingale and satisfies R2(P ) by Proposition 3.7

in [16]. As M is continuous, E(−
∫
λ dM) is strictly positive and dP̂ =

E(−
∫
λ dM)T dP defines an equivalent local martingale measure (ELMM)

for the process S, the so-called minimal martingale measure; see [87].
Thus we can conclude that if the MVT processK is uniformly bounded in

t and ω and σσ> is dP ⊗dt-a.e. invertible, the assumptions of Theorem 3.12
are satisfied and GT (Θ(C)) and A(Θ(C)) are closed in L2(P ) for all closed-
valued, predictable correspondences C. If we suppose in addition that S̄0

T

and 1/S̄0
T are in L∞(P ), which holds for instance if r is uniformly bounded in

t and ω, then also the corresponding sets S̄0
TGT (Θ(C)), S̄0

T

(
x+GT (Θ(C))

)
and S̄0

TA(Θ(C)) of undiscounted payoffs attainable with constrained trading
strategies considered in [63], [49] and [53] are closed in L2(P ).

Our assumptions are clearly far less restrictive than completeness of the
(unconstrained) financial market. The latter is imposed in [63] and [49] by
the conditions that µ, r and σ are uniformly bounded in t and ω, that σ−1

exists and is uniformly bounded in t and ω as well, and that F is the P -
augmentation of the filtration generated by W . The last two assumptions
allow to use Itô’s representation theorem and then rewrite integrals of W as
integrals of S.
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In [63] and [49], the constraints are not formulated in terms of num-
ber of shares ϑi, but in terms of the cash amounts πi := ϑiS̄i invested
in the different assets. To see that this can also be handled in our for-
mulation, let Cπ be a closed-valued predictable correspondence which de-
scribes constraints on the cash amounts. Extending [63] and [49], this need
not be deterministic. Since S̄i > 0, we can define the correspondence Cϑ

by Cϑ(ω, t) := diag
(
S̄i(ω, t)

)−1
Cπ(ω, t), which is by Proposition 2.4 again

a closed-valued predictable correspondence and describes by definition the
same constraints as Cπ, but in number of shares. Alternatively, we can
consider the dynamics of the gains process parametrised in cash amounts,
i.e.

dGt(ϑ) = ϑ>t diag(St)(µt − rt1) dt+ ϑ>t diag(St)σt dWt

= π>t
1

S̄0
t

(µt − rt1) dt+ π>t
1

S̄0
t

σt dWt = π>t dXt,

G0(ϑ) = G0(π) = 0

with the discounted returns process

dXt =
1

S̄0
t

(µt − rt1) dt+
1

S̄0
t

σt dWt, X0 = 1

as integrator. Then we can apply our results to the stochastic integrals∫
π dX with

π ∈ ΘX(Cπ) :=
{
π ∈ L(X) |

∫
π dX ∈ H2(P ) and

π(ω, t) ∈ Cπ(ω, t) for all (ω, t) ∈ Ω
}

rather than
∫
ϑ dS with ϑ ∈ Θ(Cϑ) to obtain that the set GT

(
ΘX(Cπ)

)
=

GT
(
ΘS(Cϑ)

)
is closed in L2(P ). In this parametrisation, each (undiscount-

ed) payoff in S̄0
T

(
x+GT

(
ΘX(Cπ)

))
is the final value V̄T (x, π) of the wealth

process of a self-financing trading strategy, where V̄ (x, π) is given by the
solution of the SDE

dV̄t(x, π) =
(
V̄t(x, π)rt + π>t (µt − rt1)

)
dt+ π>t σt dWt, V̄0(x, π) = x.

For no short-selling constraints, i.e. Cπ = [0,+∞)d, Jin and Zhou in [53]
do not (need to) assume invertibility of σσ> to obtain a solution to the
constrained Markowitz problem. The reason behind this is that as [0,+∞)d

is a polyhedral set, all its projections are closed. Of course, our results cover
this case as well.

To obtain (the existence of) a solution to the mean-variance hedging
problem under constraints, we assume in addition to the conditions of Theo-
rem 3.12 that C : Ω→ 2R

d also takes convex values. This gives the following
relations to predictable convexity and stability which come up naturally in
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dynamic portfolio optimisation problems. The notion of predictable con-
vexity was introduced in [44] to obtain an optional decomposition theorem
under constraints, and stability of a set of strategies is usually assumed to
establish a dynamic programming principle. The next result and its proof
are inspired by Theorems 3 and 4 in [28].

Proposition 3.14. Assume that E = E(N) is regular and satisfies R2(P ),
and that S ∈ H2

loc(P ) is an E-local martingale. Let C ⊆ Θ be non-empty and
such that GT (C) is closed in L2(P ). Then the following are equivalent:

1) The set C is predictably convex, i.e. for all ϑ and ϕ in C and all
[0, 1]-valued predictable processes k, the strategy kϑ+ (1− k)ϕ is in C.

2) The set C is convex and stable, i.e. for all ϑ and ϕ in C, all t ∈ [0, T ]
and all F ∈ Ft, the strategy ϑ1F c +

(
ϑ1[[0,t]] + ϕ1]]t,T ]]

)
1F is in C.

3) There exists a predictable correspondence C : Ω→ 2R
d with non-empty,

closed and convex values such that the projection of C on the predictable
range of S is closed, i.e. ΠS(ω, t)C(ω, t) is closed PB-a.e., and

G(C) = {G(ϕ) |ϕ ∈ C} = {G(ϑ) |ϑ ∈ Θ(C)} = GT (Θ(C)).

Proof. The implication “1) =⇒ 2)" is obvious. For the remaining ones,
we observe that by Proposition 3.7, the closedness of GT (C) in L2(P ) is
equivalent to that of G(C) in H2(P ). The equivalence “3) ⇐⇒ 1)" then
follows from part 2) of Remark 4.12 in Chapter III, and “2) =⇒ 1)" from
(the arguments in the proof of) Lemma 11 in [28].

II.4 Existence of a solution

Having established the closedness of GT (Θ(C)) and A(Θ(C)), we are able
to prove the existence of a solution to the mean-variance hedging problem
under trading constraints by using the best approximation theorem in Hilbert
spaces; see Theorem 1.4.1 in [5]. Although this looks very easy, it is worth
pointing out that our result is given for a very general framework. It covers
for instance the existence of a solution in the Itô process setting of Labbé and
Heunis [63], Hu and Zhou [49], and Jin and Zhou [53]. We also emphasise
that our approach provides a unified treatment for the above papers, which
use different and more situation-based arguments like convex duality for Itô
processes, Itô’s representation theorem, linear-quadratic optimal control and
BSDE techniques.

Theorem 4.1. Assume E = E(N) is regular and satisfies R2(P ), and that
S ∈ H2

loc(P ) is an E-local martingale. Let C : Ω → 2R
d be a predictable

correspondence with closed convex values such that Θ(C) is non-empty. Then
the following hold for every H ∈ L2(P ):
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1) There exists a solution ϑ̂(x) ∈ Θ(C) to the problem

E
[
|x+GT (ϑ)−H|2

]
= min

ϑ∈Θ(C)
!

2) There exists a solution
(
x̂, ϑ̂(x̂)

)
∈ R×Θ(C) to the problem

E
[
|x+GT (ϑ)−H|2

]
= min

(x,ϑ)∈R×Θ(C)
!

Proof. By Theorem 3.12, GT (Θ(C)) and A(Θ(C)) are closed and convex
subsets of L2(P ). Therefore Theorem 1.4.1 in [5] implies the existence of
a unique best approximation of H − x by an element in GT (Θ(C)). This
can be identified uniquely with an element G

(
ϑ̂(x)

)
in G

(
Θ(C)

)
which gives

some ϑ̂(x) ∈ Θ(C) and proves 1). In the same way, we get a unique element
v̂ in A(Θ(C)) which is the best approximation to H in L2(P ), and v̂ can
again be identified with an element

(
x̂, ϑ̂(x̂)

)
in R×Θ(C).

Remark 4.2. 1) As explained in Example 3.13, the assumptions of Theo-
rem 4.1 are satisfied in the Itô process framework of [49] and [53]. By the
argument in the proof of Theorem 11 in [53], obtaining a solution to the
constrained Markowitz problem, i.e.

minimise Var[V̄T (x, π)] = E
[
|V̄T (x, π)|2

]
− z2 (4.1)

subject to π ∈ ΘX(Kπ) and E[V̄T (x, π)] = z

for z ≥ xE[S̄0
T ] and a predictable correspondence Kπ with closed and convex

cones as values, is equivalent to finding a solution to

E
[(
V̄T (x, π)−

(
m1 −m2E(−

∫
λ dM −

∫
r dt)T

))2]
= min

π∈ΘX(Kπ)
!

for a suitable pair (m1,m2) ∈ R2 of Lagrange multipliers. Therefore the ex-
istence of a solution to (4.1) follows from Theorem 4.1 above. The dynamic
structure of this solution in a general semimartingale framework is estab-
lished in Chapter IV, which generalises the results obtained for a complete
Itô process model in Theorem 6.3 in [49].

2) The problem studied in [63] is

E
[

1
2

(
ā|V̄T (x, π)|2 + c̄VT (x, π)

) ]
+ q = min

π∈ΘX(Cπ)
!

where ā > 0 and 1/ā are in L∞(P ), c̄ ∈ L2(P ), q ∈ R and Cπ ≡ K ⊆ Rd is a
fixed closed and convex set; see Problem (5.2) in [63]. To obtain a solution to
this problem, we observe that āS̄0

T

(
x+GT

(
ΘX(Cπ)

))
is convex and closed

in L2(P ), since ā and 1/ā are in L∞(P ), and that we can write

E
[

1
2

(
ā|V̄T (x, π)|2 + c̄VT (x, π)

) ]
+q = 1

2E
[ ∣∣āV̄T (x, π) + c̄

2ā

∣∣2 ]−E[ ∣∣ c̄2ā ∣∣2 ]+q.
Then the existence of a solution follows as in the proof of Theorem 4.1 by
the best approximation theorem.
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In order to handle also constraints on the trajectory of the wealth process,
we use a simple martingale argument which already appears in [7]. For that,
we define the set of equivalent local martingale measures (ELMMs) for S
with P -square-integrable density by

P2
e(S) =

{
Q ∼ P

∣∣S is a local Q-martingale and dQ
dP ∈ L

2(P )
}
.

Proposition 4.3. Suppose that S ∈ H2
loc(P ) and that P2

e(S) 6= ∅. Let J be a
closed interval in R. Then the following hold for any ϑ ∈ Θ and any x ∈ R:

1) G(ϑ) takes values in J P -a.s. if and only if its final value GT (ϑ) does.

2) The wealth process V (x, ϑ) takes values in J P -a.s. if and only if its
final value VT (x, ϑ) does.

Proof. Since V (x, ϑ) = x+G(ϑ), the proofs for 1) and 2) are completely anal-
ogous, and the “only if" part is obvious. For the “if" part, choose Q ∈ P2

e(S)
and write J = [b1, b2] with b1, b2 ∈ R. Because Q and P are equivalent,
we can write a.s. without specifying which measure is meant. Moreover, the
density process ZQ is strictly positive and can be represented as a stochastic
exponential ZQ = E(LQ) with LQ =

∫
1

ZQ−
dZQ. In the proof of part 1) of

Proposition 3.8, the only point which uses the assumption that R2(P ) is
satisfied is to ensure that τE(N) is a P -square-integrable P -martingale for
all stopping times τ by Proposition 3.6. However, as this is already known
for ZQ = E(LQ), we can apply the same arguments here to obtain that G(ϑ)
is a Q-martingale for all ϑ ∈ Θ. Hence b1 ≤ GT (ϑ) ≤ b2 a.s. implies that
b1 ≤ Gt(ϑ) ≤ b2 for all t ∈ [0, T ] a.s. For an infinite interval, the argument
is analogous.

The previous result allows us to solve the mean-variance hedging problem
also under constraints on the trajectory of the wealth process, again via the
best approximation theorem.

Proposition 4.4. Suppose that S ∈ H2
loc(P ) and that there exists Q ∈ P2

e(S)
such that its density process ZQ satisfies R2(P ). Then the following hold for
every H ∈ L2(P ) and every closed interval J in R:

1) With

Gc(Θ) := {GT (ϑ) ∈ GT (Θ) |Gt(ϑ) ∈ J for all t ∈ [0, T ] P -a.s.},

there exists a unique solution ĝ(x) ∈ Gc(Θ) to the problem

E
[
|x+ g −H|2

]
= min

g∈Gc(Θ)
!
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2) With

Ac(Θ) := {VT (x, ϑ) ∈ A(Θ) |Vt(x, ϑ) ∈ J for all t ∈ [0, T ] P -a.s.},

there exists a unique solution v̂ ∈ Ac(Θ) to the problem

E
[
|v −H|2

]
= min

v∈Ac(Θ)
!

Proof. Thanks to Proposition 3.8, GT (Θ) and A(Θ) are closed in L2(P ).
By Proposition 4.3, we have that Gc(Θ) = {g ∈ GT (Θ) | g ∈ J P -a.s.} and
Ac(Θ) = {a ∈ A(Θ) | a ∈ J P -a.s.}. Moreover, we have

{g ∈ GT (Θ) | g ∈ J P -a.s.} = GT (Θ) ∩ {f ∈ L2(P ) | f ∈ J P -a.s.}
{v ∈ A(Θ) | v ∈ J P -a.s.

}
= A(Θ) ∩ {f ∈ L2(P ) | f ∈ J P -a.s.}.

Since J ⊆ R is closed, the set {f ∈ L2(P ) | f ∈ J P -a.s.} is closed in L2(P )
and so are {g ∈ GT (Θ) | g ∈ J P -a.s.} and {a ∈ A(Θ) | a ∈ J P -a.s.}. An
application of the best approximation theorem completes the proof.

II.5 Convex duality

While the existence in Theorem 4.1 is valid in a general framework, its easy
proof has the drawback that it only gives the existence of a solution without
any further properties. This is one motivation to study mean-variance hedg-
ing problems under trading constraints by means of convex duality. Typ-
ically, this provides additional insights into the structure of the solution,
e.g. that the value functions of the primal and dual problems are continu-
ously differentiable, strictly concave or convex, respectively, and conjugate
to each other. Moreover, the solution of the primal problem is linked via the
inverse of the “marginal utility” to the solution of the dual problem.

The general outline of these arguments follows the classical approach of
Kramkov and Schachermayer [62] to maximising the expected utility from
terminal wealth. The main idea we adopt from there is to treat the problem
first as a static optimisation problem. This can be handled easily since we can
apply duality theory in a Hilbert space. The obtained duality and existence
results are then transferred back to the level of stochastic processes. Like
for the existence of a solution, the required condition to establish this dual
formulation is the closedness of the set GT (Θ(C)). Of course, there is a lot
of related work in the literature; we discuss this in more detail in Section
II.5.3 below.

To emphasise the analogy with utility maximisation, we rewrite the
mean-variance hedging problem as a maximisation problem. This is then
our primal problem and consists of finding the optimal trading strategy over
time.
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Primal problem (stochastic processes):

E
[
−1

2 |x+GT (ϑ)−H|2
]

= max
ϑ∈Θ(C)

! (5.1)

The objective function in (5.1) is U(x, ω) = −1
2 |x−H(ω)|2, which depends

on the state ω and is strictly convex and continuously differentiable in x. Its
derivative and the inverse of that are U ′(x, ω) = −x + H(ω) and I(y, ω) =
(U ′)−1(y, ω) = −y + H(ω). Since U fails to be monotonic in x, it is not a
utility function in the proper sense. But as it satisfies the other properties
of a utility function and represents our preferences, we call it a “quadratic
utility function”.

Nw observe that (5.1) only involves the terminal wealth x+GT (ϑ). Hence
we do not change the optimal value if we regard (5.1) as an optimisation
problem over the set of square-integrable random variables defined by

C(x) = {f ∈ L2(P ) | f = x+GT (ϑ) for some ϑ ∈ Θ(C)} = x+GT (Θ(C)).

This leads to the corresponding static optimisation problem, which runs only
over a set of random variables.

Primal problem (random variables):

E[U(f)] = E
[
−1

2 |f −H|
2
]

= max
f∈C(x)

! (5.2)

By construction, both problems have the same value function

u(x) = sup
ϑ∈Θ(C)

E
[
U
(
x+GT (ϑ)

)]
= sup

f∈C(x)
E[U(f)].

II.5.1 Duality for static variables

If C : Ω → 2R
d is a predictable correspondence with closed convex values

and the assumptions of Theorem 3.12 are satisfied, we obtain from there
that GT (Θ(C)) is a closed convex subset of L2(P ). Thus the set of primal
variables has the general structure

C(x) = x+ Gc,

where
Gc is a non-empty, closed and convex subset of L2(P ). (5.3)

Moreover, the assumptions of Theorem 3.12 imply that with G = span{Gc},
the set

P2
s(G) =

{
Q� P

∣∣∣Q is a signed measure with,

Q[Ω] = 1,
dQ

dP
∈ L2(P ) and

dQ

dP
∈ G⊥

}
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of signed G-martingale measures is non-empty, where G⊥ denotes the orthog-
onal complement of G in L2(P ). Hence we also suppose in our abstract static
setting that

P2
s(G) 6= ∅. (5.4)

We emphasise that these simple structural properties will be enough to es-
tablish the desired duality results in the static setting. To obtain a dual
characterisation of the primal variables, we use the following characterisa-
tion of closed convex sets K in a Hilbert space H; see Theorem 2.5.1 in [5].
For any k ∈ H,

k ∈ K ⇐⇒ (h, k)H ≤ sup
k′∈K

(h, k′)H =: δ(h|K), ∀h ∈ H,

where (·, ·)H denotes the scalar product in H and δ(h|K) := supk′∈K(h, k′)H
is the support function of K. It is easy to see that the support function of a
general non-empty set is positively homogeneous, convex, lower semicontin-
uous and bounded from below by −mink∈K ‖k‖H‖h‖H, which is finite if K is
non-empty; see Proposition 2.5.1 in [5]. Applying this characterisation to Gc
and L2(P ), we obtain for any g ∈ L2(P ) that

g ∈ Gc ⇐⇒ E[hg] ≤ sup
g′∈Gc

E[hg′] =: δ(h|Gc), ∀h ∈ L2(P ), (5.5)

where δ(·|Gc) is the support function of the set Gc.
To deduce dual variables from the characterisation (5.5), we observe from

[62], [72] and [78] that for the general outline of the arguments for the dual
approach to hold, the dual variables should have the following properties.
First, they should be defined in such a way that the dual problem, which is
an optimisation problem over the set of dual variables, attains its solution.
Since the primal problem is a maximisation for a concave function, the dual
problem is a minimisation for a convex function. Thus it should be enough
for the existence of a solution that the set of dual variables is convex and
closed. Second, one should be able to establish a duality relation between
the set of primal and dual variables that allows one to show that the natural
candidate for the dual solution lies in the set of primal variables. This
candidate is given by the inverse I of the quadratic “marginal utility" applied
to the dual solution, as follows typically from the first order condition for
optimality in the dual problem. Third, to obtain that the value functions of
the primal and dual problems are conjugate, the product of the parameters
x and y of the primal and dual problem should appear in the upper bound
for the expectation of a primal and a dual variable for the corresponding
parameters.

Let us start with the last point. For a primal variable f ∈ C(x) and an
element h of L2(P ), the general structure of the primal variables gives

E[fh] = E[(x+ g)h] ≤ xE[h] + δ(h|Gc).
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This motivates us to define the static dual variables by

D(y) = {h ∈ L2(P ) |E[h] = y, δ(h|Gc) <∞} for y ∈ R,

because this gives the third of the above properties, i.e.

f ∈ C(x), h ∈ D(y) =⇒ E[fh] ≤ xy + δ(h|Gc). (5.6)

By continuity and linearity of the expectation and lower semicontinuity and
convexity of the support function, the set D(y) is closed and convex in L2(P )
and thus also likely to satisfy the first property listed above. Note that D(y)
contains y dQdP for any Q ∈ P2

s(G) so that it is non-empty due to (5.4). The
second property will follow via the dual characterisation of convex closed
sets in L2(P ); see the proof of Theorem 5.7 later.

Remark 5.1. 1) For a linear subspace Gc = G, the characterisation (5.5)
simplifies to orthogonality and the dual domain becomes D(y) = {h ∈
L2(P ) |E[h] = y, h ∈ G⊥c }. Moreover, we have D(y) = yP2

s(G) for any
y 6= 0. This is exploited in [48] for the dual formulation in the unconstrained
case.

2) If Gc is a cone, the support function δ(· |Gc) only takes the values 0
and ∞ and (5.5) therefore reduces to the bipolar relation

g ∈ Gc ⇐⇒ E[hg] ≤ 0, ∀h ∈ G◦c ,

where G◦c = {h ∈ L2(P ) | E[hg] ≤ 0, ∀g ∈ Gc} is the polar of Gc. Since
G◦c is again a cone, we have D(y) = yD(1) for y > 0 and D(y) = |y|D(−1)
for y < 0. The sets D(1) and D(−1) can then be interpreted as the sets
of all Radon–Nikodým derivatives of signed Gc-super- and Gc-submartingale
measures, respectively. The above simplification explains why the majority
of papers concentrates on constraints given by closed convex cones.

Returning to the general case, we work as usual with the Legendre trans-
form V in x of −U(− ·, ω) to derive the formulation of the dual problem.
The function V is given by

V (y, ω) = sup
x∈R
{U(x, ω)− xy} = U

(
I(y, ω)

)
− I(y, ω)y = 1

2y
2 − yH(ω);

it depends on the state ω and is continuously differentiable and strictly con-
vex in y. The motivation for using the Legendre transform comes from
looking for the sharpest inequality such that

U(x, ω) ≤ V (y, ω) + xy, ∀x, y ∈ R,∀ω ∈ Ω.

Plugging in f ∈ C(x) and h ∈ D(y) for x and y in the above inequality,
taking expectations and optimising on both sides gives via (5.6)

u(x) = sup
f∈C(x)

E[U(f)] ≤ inf
y∈R

{
inf

h∈D(y)
E[V (h) + gh]

}
≤ inf

y∈R

{
inf

h∈D(y)
{E[V (h)] + δ(h|Gc)}+ xy

}
= inf

y∈R
{v(y) + xy}, (5.7)
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where the value function of the dual problem on the level of random variables
is

v(y) = inf
h∈D(y)

{E[V (h)] + δ(h|Gc)}.

Note that the objective function of the dual problem explicitly involves the
constraints via the support function δ.

Dual problem (random variables):

Ψ(h) := E[V (h)] + δ(h|Gc) = min
h∈D(y)

! (5.8)

From the inequalities in (5.7), we see that if we can find for a given x
a pair

(
f̂(x), ĥ(y)

)
of primal and dual variables such that equality holds in

(5.7), we have also found a solution to the primal problem (5.2), as f̂(x)
attains the supremum. Of course, y will then also depend on x. So an
abstract recipe for solving the primal problem looks as follows:

1) Find the solution ĥ(y) to the dual problem (5.8) for any y ∈ R.

2) Find the minimiser ŷ(x) for the indirect dual problem v(y) + xy =
miny∈R!, for any x ∈ R.

3) Define ĥ := ĥ
(
ŷ(x)

)
, f̂(x) := I(ĥ) and show that E[I(ĥ)ĥ] = xŷ(x) +

δ(ĥ|Gc).

4) If we can show that f̂(x) ∈ C(x), then f̂(x) solves (5.2), since we have
by combining (5.7) with steps 1)–3) that

u(x) ≤ inf
y∈R
{v(y) + xy} = v

(
ŷ(x)

)
+ xŷ(x)

= E[V (ĥ)] + δ(ĥ|Gc) + xŷ(x)

= E
[
U
(
I(ĥ)

)
− I(ĥ)ĥ

]
+ δ(ĥ|Gc) + xŷ(x) = E

[
U
(
f̂(x)

)]
≤ u(x).

To solve the primal problem (5.2), it now remains to implement the above
recipe. We start by solving the dual problem, making use of the following
result from convex analysis; see Proposition 1.2 in [39].

Proposition 5.2. Let B be a reflexive Banach space, K a non-empty closed
convex subset of B and F a strictly convex, coercive and lower semicontinu-
ous function from B into R ∪ {+∞} that is proper on K. Then there exists
a unique solution b̂ ∈ K to

F (b) = min
b∈K

!

Taking B = L2(P ) and K = D(y), we only need to check that the dual
objective function Ψ satisfies the properties of F to apply the proposition.
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Lemma 5.3. For every H ∈ L2(P ), the mapping

h 7→ Ψ(h) = E[V (h)] + δ(h|Gc) = E
[

1
2h

2 − hH
]

+ δ(h|Gc)

from L2(P ) into R∪{+∞} is strictly convex, lower semicontinuous, coercive
and uniformly bounded from below by −1

2

(
‖H‖L2(P ) + ming∈Gc ‖g‖L2(P )

)2.
Proof. We begin by proving that the mapping h 7→ E[V (h)] from L2(P ) into
R is strictly convex and continuous. The first property follows immediately
from the strict convexity of the function V (·, ω) for all ω ∈ Ω. If (hn)
converges to h in L2(P ), then (hn) is bounded in L2(P ) and the Cauchy–
Schwarz inequality gives∣∣E [1

2h
2
n − hnH

]
− E

[
1
2h

2 − hH
]∣∣ =

∣∣E [(hn − h)
(

1
2(hn + h)−H

)]∣∣
≤ ‖hn − h‖L2(P )

(
1
2

(
supn∈N ‖hn‖L2(P ) + ‖h‖L2(P )

)
+ ‖H‖L2(P )

)
n→∞−→ 0,

which proves the claimed continuity. Since δ(· |Gc) is convex and lower semi-
continuous, the sum Ψ(·) = E[V (·)] + δ(· |Gc) is strictly convex and lower
semicontinuous. Moreover, Cauchy–Schwarz implies that

Ψ(h) = E
[

1
2h

2 − hH
]

+ δ(h|Gc) (5.9)
≥ 1

2‖h‖
2
L2(P ) − ‖h‖L2(P )

(
‖H‖L2(P ) + ming∈Gc ‖g‖L2(P )

)
which gives coercivity, since the right-hand side tends to ∞ as ‖h‖L2(P ) →
∞ because ming∈Gc ‖g‖L2(P ) is finite. Minimising the right-hand side over
‖h‖L2(P ) also gives the asserted lower bound, which completes the proof.

From the definition of D(y), we have that y dQdP is in D(y) for every y ∈ R
and Q ∈ P2

s(G). Since δ
(
y dQdP

∣∣Gc) = 0, assumption (5.4) implies that Ψ is
proper onD(y) for each y ∈ R. Therefore all the conditions of Proposition 5.2
are satisfied in the setting of the dual problem, and the existence of a solution
to the dual problem follows by combining Lemma 5.3 with Proposition 5.2.
This gives

Proposition 5.4. Under the assumptions (5.3) and (5.4), there exists a
unique solution ĥ(y) ∈ D(y) to the dual problem (5.8) for every H ∈ L2(P )
and each y ∈ R, i.e.

Ψ
(
ĥ(y)

)
= E

[
V
(
ĥ(y)

)]
+ δ
(
ĥ(y)

∣∣Gc) = inf
h∈D(y)

E[V (h)] + δ(h|Gc) = v(y)

By Proposition 5.4, the function v inherits all nice properties of Ψ, which
enables us to solve the indirect dual problem by again using Proposition 5.2.
More precisely:

Lemma 5.5. Under the assumptions (5.3) and (5.4), the function v is
strictly convex, continuous and coercive.
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Proof. If y1, y2 ∈ R and µ ∈ (0, 1), then µĥ(y1) + (1−µ)ĥ(y2) is in D
(
µy1 +

(1− µ)y2

)
; so

µv(y1) + (1− µ)v(y2) = µΨ
(
ĥ(y1)

)
+ (1− µ)Ψ

(
ĥ(y2)

)
> Ψ

(
µĥ(y1) + (1− µ)ĥ(y2)

)
≥ v
(
µy1 + (1− µ)y2

)
by Proposition 5.4 and the strict convexity of Ψ. Hence v is strictly convex,
and continuous like any convex function on R with finite values; see Corollary
II.10.1.1 in [82]. By Jensen’s inequality, ‖ĥ(y)‖L2(P ) ≥ E[ĥ(y)] = y tends
to ∞ as y → ∞. Thus coercivity of Ψ implies coercivity of v, again by
Proposition 5.4. Note that in view of 5.9, v(y) even grows quadratically as
|y| → ∞.

Since a continuous function is obviously proper, applying Proposition 5.2
to the strictly convex, continuous and coercive mapping y 7→ v(y) +xy on R
immediately gives

Corollary 5.6. Assume (5.3) and (5.4). For every x ∈ R, there exists a
unique ŷ(x) ∈ R that solves

v(y) + xy = min
y∈R

!

Now we have everything in place to formulate and prove the abstract
static version of the main result of this section.

Theorem 5.7. Suppose as in (5.3) that Gc is a non-empty, convex and closed
subset of L2(P ), and impose the assumption (5.4) that P2

s(G) 6= ∅. Then:

1) For every x ∈ R, there exists a unique solution f̂(x) ∈ C(x) to

E
[
−1

2 |f −H|
2
]

= max
f∈C(x)

!

It is given by

f̂(x) = I
(
ĥ
(
ŷ(x)

))
= −ĥ

(
ŷ(x)

)
+H,

where ĥ
(
ŷ(x)

)
∈ D

(
ŷ(x)

)
and ŷ(x) ∈ R are the unique solutions, re-

spectively, to

Ψ(h) = E
[

1
2h

2 − hH
]

+ δ(h|Gc) = min
h∈D(ŷ(x))

!

and
v(y) + xy = min

y∈R
! (5.10)
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2) The value functions u and v are conjugate, i.e.

u(x) = inf
y∈R
{v(y) + xy},

v(y) = sup
x∈R
{u(x)− xy},

and continuously differentiable. u is strictly concave and v is strictly
convex.

3) Furthermore, we have the equivalent relations

E
[
f̂(x)ĥ

(
ŷ(x)

)]
= xŷ(x) + δ

(
ĥ
(
ŷ(x)

)∣∣Gc),
E
[
f̂(x)U ′

(
f̂(x)

)]
= xu′(x) + δ

(
U ′
(
f̂(x)

)∣∣Gc), (5.11)

E
[
ĥ
(
ŷ(x)

)
V ′
(
ĥ
(
ŷ(x)

))]
= ŷ(x)v′

(
ŷ(x)

)
− δ
(
ĥ
(
ŷ(x)

)∣∣Gc).
Proof. 1) Since ŷ(x) and ĥ := ĥ

(
ŷ(x)

)
solve the problems (5.10) and (5.8),

the definition of D(y) implies that ĥ
(
ŷ(x)

)
is also the solution to

Ψ(h) + xE[h] = min
h∈L2(P )

! = min
h∈D(ŷ(x))

! (5.12)

For ε ∈ (0, 1) and h ∈ L2(P ), set hε = ĥ + εh. Then optimality of ĥ for
(5.12) gives

0 ≤ lim inf
ε↘0

Ψ(hε) + xE[hε]−
(
Ψ(ĥ) + xE[ĥ]

)
ε

= lim inf
ε↘0

{
E[(ĥ−H + x)h] +

1

2
εE[h2] +

δ(ĥ+ εh|Gc)− δ(ĥ|Gc)
ε

}
,

(5.13)

where the last expression is well defined as δ(ĥ|Gc) is finite. Hence we obtain
by using I(ĥ) = −ĥ+H and the sublinearity of δ(· |Gc) that

E
[(
I(ĥ)− x

)
h
]
≤ δ(h|Gc), ∀h ∈ L2(P ) (5.14)

and thus I(ĥ) − x ∈ Gc, i.e. I(ĥ) ∈ C(x), by the characterisation of closed
convex sets in (5.5). Plugging h = −ĥ into (5.13) and using the positive
homogeneity of δ(· |Gc) gives

E
[(
I(ĥ)− x

)
(−ĥ)

]
≤ −δ(ĥ|Gc).

Combining this with (5.14) for h = ĥ gives

δ(ĥ|Gc) = E
[(
I(ĥ)− x

)
ĥ
]

= E[I(ĥ)ĥ]− xŷ(x). (5.15)
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Hence we obtain from (5.15) as in step 4) of the recipe that

u(x) ≥ E
[
U
(
I(ĥ)

)]
= E[V (ĥ) + I(ĥ)ĥ]

= E[V (ĥ)] + δ(ĥ|Gc) + xŷ(x) = v
(
ŷ(x)

)
+ xŷ(x) ≥ u(x),(5.16)

which shows that f̂(x) := I
(
ĥ
(
ŷ(x)

))
indeed maximises E[U(f)] over C(x).

2) Since we have equality in (5.16) and ŷ(x) attains inf
y∈R
{v(y) + xy},

we also have that u(x) = inf
y∈R
{v(y) + xy} for all x ∈ R and then v(y) =

sup
x∈R
{u(x)− xy} by the biconjugate property of the Legendre transform; see

Theorem III.12.2 in [82]. To show the strict concavity of u, we fix x1, x2 ∈ R
and µ ∈ (0, 1). Then µf̂(x1) + (1− µ)f̂(x2) is in C(µx1 + (1− µ)x2) and so
part 1) yields by the strict concavity of U( · , ω) that

µu(x1) + (1− µ)u(x2) = E
[
µU
(
f̂(x1)

)
+ (1− µ)U

(
f̂(x2)

)]
< E

[
U
(
µf̂(x1) + (1− µ)f̂(x2)

)]
≤ u(µx1 + (1− µ)x2).

Continuous differentiability of u and v follows since the Legendre transform
of a strictly convex function is differentiable; see Theorems V.24.1 and V.26.3
in [82]. Since v is continuously differentiable, we obtain for the minimiser
ŷ(x) of v(y) + xy over y ∈ R the relation v′

(
ŷ(x)

)
= −x. Again by general

results on the Legendre transform, we have V ′( · , ω) = −(U ′)−1( · , ω) =
−I( · , ω) and v′ = −(u′)−1; see Theorem V.23.5 in [82]. Combining this
with v′

(
ŷ(x)

)
= −x, f̂(x) = I(ĥ) and (5.15) gives the relations (5.11). This

completes the proof.

II.5.2 Duality for dynamic variables

Under the assumptions of Theorem 3.12, Theorem 5.7 already implies the
existence of a unique solution to the primal problem (5.1) by choosing Gc =
GT (Θ(C)), i.e. there exists an optimal trading strategy ϑ̂(x) ∈ Θ(C) such
that f̂(x) = x+GT

(
ϑ̂(x)

)
. In particular, we recover part 2) of Theorem 4.1.

To establish an analogous duality result on the level of stochastic pro-
cesses, we need a dynamic version for the dual variables. If we assume for
simplicity that F = FT , we can identify every h ∈ L2(P ) with a square-
integrable RCLL martingale Z = Z(h) given by Zt = E[h|Ft] for t ∈ [0, T ].
The Kunita–Watanabe decomposition then yields

Zt = E[h|F0] +
∫ t

0 ηs dMs +Rt, t ∈ [0, T ],

with η ∈ L2(M) and R ∈ M2
0(P ) strongly P -orthogonal to M . We choose

this parametrisation because it makes it easy to calculate the dynamics of
the product of a gains process and a dual variable. Moreover, it is similar
to [21], where dual variables are supermartingale measures for the gains pro-
cesses of constrained trading strategies. The parametrisation in [21] can be
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obtained by applying the Kunita–Watanabe decomposition to the stochastic
logarithm of the density process, and in the Brownian filtration of [21], this
decomposition can of course be replaced by Itô’s representation theorem; see
[21] and Example 3.2 in [72].

Lemma 5.8. Suppose that S is in H2
loc(P ) and satisfies the structure con-

dition (SC). For every ϑ ∈ Θ and every Z ∈M2(P ), the process(
Gt(ϑ)Zt −

∫ t
0 (ηs + Zs−λs)

>cMs ϑs dBs
)

0≤t≤T (5.17)

is a P -martingale with P -integrable supremum, i.e. a martingale in H1(P ).

Proof. Applying the product rule and using that S satisfies (SC) gives that

d
(
G(ϑ)Z

)
= Z−ϑ dM + Z−ϑ

>d〈M〉λ+G−(ϑ) dZ

+ d[Z,
∫
ϑ dA] + d[Z,

∫
ϑ dM ].

Clearly,
∫
Z−ϑ dM and

∫
G−(ϑ) dZ are local P -martingales. Moreover,

〈Z,
∫
ϑ dM〉 exists because Z ∈ M2(P ) and ϑ ∈ L2(M), and [Z,

∫
ϑ dA]

is a local martingale by Yoeurp’s lemma. Writing mart
= for equality up to a

local P -martingale and using that R is strongly P -orthogonal to M , we thus
obtain d

(
G(ϑ)Z

) mart
= Z−ϑ

>d〈M〉λ + ϑ>d〈Z,M〉 mart
= (η + Z−λ)>d〈M〉ϑ.

This shows that the process in (5.17) is a local P -martingale. To check in-
tegrability, we first observe that by Doob’s inequality and Proposition 2.1,(
ZG(ϑ)

)∗
T
is in L1(P ) since Z ∈ M2(P ) and G(ϑ) ∈ H2(P ), and that the

Kunita–Watanabe inequality gives

E
[
(
∫
η>d〈M〉ϑ)∗T

]
≤ E

[ ∫ T
0 |η

>
s c

M
s ϑs| dBs

]
≤ ‖η‖L2(M)‖ϑ‖L2(M) <∞.

Moreover, using
∫
|ϑ dA| =

∫
|ϑ>cMλ| dB and the Cauchy–Schwarz and

Doob inequalities allows us to estimate the remaining term by

E
[
(
∫
Z−ϑ

>d〈M〉λ)∗T
]
≤ E

[
Z∗T
∫ T

0 |ϑ
>
s c

M
s λs| dBs

]
≤ 2‖ZT ‖L2(P )‖ϑ‖L2(A).

Replacing cMt dBt by d〈M〉t and using the estimate(
G(ϑ)Z −

∫
(η + Z−λ)>cMϑ dB

)∗
T

≤
(
ZG(ϑ)

)∗
T

+ (
∫
η>d〈M〉ϑ)∗T + (

∫
Z−ϑ

>d〈M〉λ)∗T

then shows that the local P -martingale in (5.17) has a P -integrable supre-
mum.

Using Lemma 5.8 and optimising over ϑ immediately gives for every
Z ∈M2(P )

sup
ϑ∈Θ(C)

E[GT (ϑ)ZT ] = sup
ϑ∈Θ(C)

E
[ ∫ T

0 (ηs + Zs−λs)
>cMs ϑs dBs

]
≤ E

[ ∫ T
0 δ
(
cMs (ηs + Zsλs)

∣∣C) dBs] (5.18)
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by definition of the support function δ(· |C), because each ϑs has values in
C. The next result shows that we even have equality in (5.18). Note that we
use the same symbol δ for support functions in two different Hilbert spaces
— L2(P ) on the left-hand and Rd on the right-hand side of (5.19).

Lemma 5.9. Suppose that S is in H2
loc(P ) and satisfies the structure con-

dition (SC). For every Z ∈M2(P ),

δ
(
ZT
∣∣GT (Θ(C))

)
= sup

ϑ∈Θ(C)
E[GT (ϑ)ZT ] = E

[ ∫ T
0 δ
(
cMs (ηs+Zs−λs)

∣∣C) dBs].
(5.19)

Proof. Without loss of generality, we can assume that 0 ∈ C(ω, t). Indeed,
let ϕ be in Θ(C) and set C ′ = C−ϕ, which is by Proposition 2.3 a predictable
correspondence with 0 ∈ C ′(ω, t). Then Θ(C) = Θ(C ′) + ϕ and therefore
δ
(
ZT
∣∣GT (Θ(C)

))
= δ
(
ZT
∣∣GT (Θ(C ′)

))
+ E[ZTGT (ϕ)] and

E
[ ∫ T

0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs]
= E

[ ∫ T
0 δ
(
cMs (ηs + Zs−λs)

∣∣C ′) dBs +
∫ T

0 ϕ>s c
M
s (ηs + Zs−λs) dBs

]
.

Since E[ZTGT (ϕ)] = E[
∫ T

0 ϕ>s c
M
s (ηs+Zs−λs) dBs] by Lemma 5.8, we obtain

that (5.19) holds for C if and only if it holds for C ′.
In view of (5.18), it remains to show that

sup
ϑ∈Θ(C)

E[GT (ϑ)ZT ] ≥ E
[ ∫ T

0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs].
To that end, we construct a sequence (ϑn) of C-constrained trading strategies
such that lim

n→∞
E[GT (ϑn)ZT ] = E

[ ∫ T
0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs]. Define a

function f : Ω× Rd → R by

f
(
(ω, t), z

)
:=
(
η(ω, t) + Z(ω, t−)λ(ω, t)

)>
cM (ω, t)z

and for each n ∈ N a predictable correspondence Cn by

Cn(ω, t) := C(ω, t) ∩Bn(0) ⊆ Rd

for (ω, t) ∈ Ω, where Bn(0) denotes the closure of the ball of radius n in Rd.
Note that the Cn have convex and compact values and that 0 ∈ Cn(ω, t) for
(ω, t) ∈ Ω and each n ∈ N. Moreover, f( · , z) is predictable for z ∈ Rd and
f
(
(ω, t), ·

)
is continuous for (ω, t) ∈ Ω, i.e. f is a Carathéodory function.

Let {xn,m |m ∈ N} be a Castaing representation for Cn as in Proposition
(2.3) and define

gn(ω, t) := δ
(
cM (ω, t)

(
η(ω, t) + Z(ω, t−)λ(ω, t)

)∣∣Cn(ω, t)
)

= sup
x∈Cn(ω,t)

f
(
(ω, t), x

)
.
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As gn(ω, t) = supm∈N f
(
(ω, t), xn,m(ω, t)

)
by Proposition 2.3, gn is pre-

dictable and finite-valued by the compactness of Cn(ω, t). Combining Propo-
sitions 2.4 and 2.5 gives that

Dn(ω, t) =
{
z ∈ Cn(ω, t)

∣∣ f((ω, t), z) = gn(ω, t)
}

is a predictable correspondence with non-empty, convex and compact values.
Let yn be a predictable selector of Dn. Then gn(ω, t) = f

(
(ω, t), yn(ω, t)

)
and

δ
(
cM (ω, t)

(
η(ω, t) + Z(ω, t−)λ(ω, t)

)∣∣C(ω, t)
)

= lim
n→∞

f
(
(ω, t), yn(ω, t)

)
,

where the limit is increasing since C(ω, t) =
⋃
n∈NC

n(ω, t). Let (τm)m∈N be
a localising sequence such that Sτm ∈ H2(P ). Since |yn(ω, t)| ≤ n and each
C(ω, t) contains zero, the process ϑn := ynI[[0,τn]] is in Θ(C) for each n ∈ N.
Hence Lemma 5.8 and monotone integration yield

lim
n→∞

E[GT (ϑn)ZT ] = lim
n→∞

E
[ ∫ τn

0 (yns )>cMs (ηs + Zs−λs) dBs
]

= E
[ ∫ T

0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs],
which completes the proof.

As Lemma 5.9 relates the support function δ
(
·
∣∣GT (Θ(C))

)
to the expec-

tation of the terminal value of a stochastic process, we are led to reformulate
the dual problem (5.8) on the level of stochastic processes in the following
way.

Dual problem (stochastic processes):

Ψ(ZT ) = E
[

1
2Z

2
T −ZTH +

∫ T
0 δ
(
cMs (ηs +Zs−λs)

∣∣C) dBs] = min
Z∈Y(y)

!, (5.20)

where

Y(y) =
{
Z ∈M2(P )

∣∣Z = Z0 +
∫
η dM +R with Z0 ∈ L2(P,F0),

η ∈ L2(M), R ∈M2
0(P ) strongly P -orth. to M and E[ZT ] = y

}
.

Remark 5.10. In the Itô process framework of Example 3.13 and if F is the
P -augmentation of the filtration generated by W , the above dual problem
(5.20) for stochastic processes specialises to the dual problem (5.37) consid-
ered in [63]; this only needs some adjustments for notation, along the lines
of part 2) of Remark 4.2).

Now set Gc := GT (Θ(C)) so that Lemma 5.9 gives an explicit repre-
sentation of the support function δ(· |Gc). Then the functions Ψ in (5.8)
and (5.20) coincide, and identifying each h ∈ L2(P ) with the corresponding
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square-integrable martingale also yields that (5.20) and (5.8) have the same
optimal value and therefore the same value function

v(y) = inf
Z∈Y(y)

E
[

1
2Z

2
T − ZTH +

∫ T
0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs] (5.21)

= inf
h∈D(y)

{E[V (h)] + δ(h|Gc)} .

Moreover, we have the following relation between the primal and dual vari-
ables on the level of stochastic processes.

Lemma 5.11. Suppose that S is in H2
loc(P ) and satisfies the structure condi-

tion (SC). For every x ∈ R, ϑ ∈ Θ(C) and Z ∈M2(P ) with δ(ZT |Gc) <∞,
the process((

x+Gt(ϑ)
)
Zt −

∫ t
0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs)
0≤t≤T

is a P -supermartingale.

Proof. The process
(
x + G(ϑ)

)
Z−
∫ t

0 (η + Z−λ)>cMϑ dB is a P -martingale
by Lemma 5.8 and because Z is a P -martingale. Moreover,∫

δ
(
cM (η + Z−λ)

∣∣C) dB − ∫ (η + Z−λ)>cMϑ dB

is adapted and increasing by the definition of the support function δ(· |Gc),
and integrable due to Lemma 5.9 since δ(ZT |Gc) <∞. Taking the difference
gives the result.

Remark 5.12. In our formulation, the process
( ∫

δ
(
cM (η + Z−λ)|C

)
dB
)

plays a similar role as the upper variation process A(Q) in the optional
decomposition of Föllmer and Kramkov in [44]; see also Example 3.2 in [72].

Combining Lemma 5.9 with Lemma 5.11 gives a result for stochastic
processes which is analogous to Theorem 5.7.

Theorem 5.13. Assume E = E(N) is regular and satisfies R2(P ), and that
S ∈ H2

loc(P ) is an E-local martingale. Let C : Ω → 2R
d be a predictable

correspondence with closed convex values such that Θ(C) is non-empty and
the projection of C on the predictable range of S is closed, i.e. ΠS(ω, t)C(ω, t)
is closed PB-a.e. Then:

1) For every x ∈ R and H ∈ L2(P ), there exists a solution ϑ̂(x) ∈ Θ(C)
to

E
[
−1

2 |x+GT (ϑ)−H|2
]

= max
ϑ∈Θ(C)

!

All solutions ϑ̂(x) have the same gains process G
(
ϑ̂(x)

)
and satisfy

x+GT
(
ϑ̂(x)

)
= I(ẐT ) = −ẐT +H,
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where Ẑ ∈ Y
(
ŷ(x)

)
and ŷ(x) ∈ R are the unique solutions, respectively,

to

Ψ(ZT ) = E
[

1
2Z

2
T − ZTH +

∫ T
0 δ
(
cMs (ηs + Zs−λs)

∣∣C) dBs] = min
Z∈Y(ŷ(x))

!

and
v(y) + xy = min

y∈R
!

2) The value functions u and v are conjugate, i.e.

u(x) = inf
y∈R
{v(y) + xy},

v(y) = sup
x∈R
{u(x)− xy},

and continuously differentiable. u is strictly concave and v is strictly
convex.

3) The process

(
x+G

(
ϑ̂(x)

))
Ẑ −

∫
δ
(
cM (η̂ + Ẑ−λ)

∣∣C) dB
is a P -martingale for all solutions ϑ̂(x), and

(η̂s + Ẑs−λs)
>cMs ϑ̂s(x) = δ

(
cMs (η̂s + Ẑs−λs)

∣∣C) PB-a.e.

Proof. 1) By part 3) of Theorem 3.12, we obtain that Gc = GT (Θ(C)) is a
non-empty, closed, convex subset of L2(P ). Hence we can apply Theorem
5.7 to obtain unique solutions f̂(x) ∈ C(x) to (5.2) and ĥ

(
ŷ(x)

)
∈ D

(
ŷ(x)

)
to (5.8). Since f̂(x) − x is in Gc, there exists some ϑ̂(x) ∈ Θ(C) with
x+GT (ϑ̂(x)) = f̂(x) which is a solution to (5.1), and since f̂(x) is unique,
this equality must hold for all solutions. As G

(
ϑ̂(x)

)
is an E-martingale, it

is uniquely determined by its terminal value and so all solutions ϑ̂(x) have
this as gains process. Identifying ĥ

(
ŷ(x)

)
with Ẑ shows that Ẑ solves (5.20);

this uses the observation before (5.21) that the functions Ψ in (5.20) and
(5.8) coincide due to Lemma 5.9.

2) Since the value functions of (5.1) and (5.2) and (5.20) and (5.8),
respectively, coincide, the assertion follows from part 2) of Theorem 5.7.

3) By Lemma 5.11, the process
(
x+G

(
ϑ̂(x)

))
Ẑ−

∫
δ
(
cM (η̂+Ẑ−λ)

∣∣C) dB
is a P -supermartingale with initial value xŷ(x) and final value(

x+GT
(
ϑ̂(x)

))
ẐT −

∫ T
0 δ
(
cMs (η̂s + Ẑs−λs)

∣∣C) dBs
= f̂(x)ĥ

(
ŷ(x)

)
−
∫ T

0 δ
(
cMs (η̂s + Ẑs−λs)

∣∣C) dBs.
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Moreover, Lemma 5.9 shows that

E
[ ∫ T

0 δ
(
cMs (η̂s + Ẑs−λs)

∣∣C) dBs] = δ
(
ẐT
∣∣GT (Θ(C))

)
= δ
(
ĥ
(
ŷ(x)

)∣∣Gc).
Hence the first relation in (5.11) implies that the above process has con-
stant expectation and is therefore a P -martingale. Combining this with
Lemma 5.8 yields that the increasing process

∫
δ
(
cM (η̂ + Ẑ−λ)

∣∣C) dB −∫
(η̂+ Ẑ−λ)>cM ϑ̂(x) dB is a martingale null at zero and hence indistinguish-

able from the zero process. Since the definition of the support function yields
(η̂s + Ẑs−λs)

>cMs ϑ̂s(x) ≤ δ
(
cMs (η̂s + Ẑs−λs)

∣∣C), we must have equality PB-
a.e., and this completes the proof.

II.5.3 Related work

Our approach combines duality techniques and constraints with quadratic
optimisation problems and so has connections to several areas, in particular
utility maximisation under constraints. Very informally, our results can be
viewed as the special case of a state-dependent quadratic utility U(x, ω) =
−1

2 |x − H(ω)|2. But they cannot be deduced directly because this “utility
function” is not increasing in x and since the duality must be taken in a
different setting (L2 instead of L0

+). Let us explain the relations in more
detail.

The oldest neoclassical work on utility maximisation under constraints
is probably by Cvitanić and Karatzas [21]. In an Itô process setting, they
introduced the basic ideas of using convex duality and working with the sup-
port function of the constraint set to describe the dual variables and also
the dual criterion. The seminal work of Kramkov and Schachermayer [62]
extended the duality idea to general semimartingale models without trading
constraints. One key idea there was to separate the duality arguments into a
static level of random variables and a dynamic level of stochastic processes,
like in Sections II.5.1 and II.5.2. For the static level, this also needed a
bipolar theorem in L0

+. In Karatzas and Žitković [56], general semimartin-
gale models were combined with cone constraints on trading strategies, and
the optional decomposition theorem under constraints from [44] was used
to obtain the basic duality characterisation of superreplicable consumption-
investment pairs. In contrast to [21], the support function δ of the constraint
set did not show up explicitly since the latter was a cone; see Remark 5.1.
However, [56] obtained a full duality result in the sense that like [62], they
could prove the existence of an optimiser for the dual problem and then use
that to construct an optimiser for the primal problem. The paper by Mnif
and Pham [72] is more general in that it allows convex (not necessarily conic)
constraints and does not impose non-negativity for (intermediate values of)
the wealth process. The last fact makes it impossible to parametrise strate-
gies by fractions of wealth, and this in turn forces one to use the additive
form of the optional decomposition under constraints. Together with the
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general convex constraints, this leads to an additional term in the objective
function for the dual problem. Due to these complications, [72] only obtain
a partial (verification) duality result; they show how to construct a primal
from a dual optimiser, but do not prove existence of a dual optimiser.

The utility paper closest to our results is probably the one of Pham [76].
It works in finite discrete time with cone constraints (so that, as explained in
Remark 5.1, the dual objective function has no explicit extra term), and the
key (superreplication) duality rests on the monotonicity of the utility func-
tion. But like our approach, it does not impose non-negativity constraints
on wealth, and the underlying duality is formulated in an (Lp, Lq)-setting.

The second area of related work is mean-variance hedging and mean-
variance portfolio selection. Like utility maximisation, this is huge, and we
only focus on a small sample of papers. (An attempt at a broader overview
can be found in [89]). Duality for mean-variance hedging without constraints
is discussed in Hou and Karatzas [48]. An abstract and static formulation of
Markowitz-type problems under cone constraints is given in Sun and Wang
[92]; this is similar to Section II.5.1, but gives no duality and is considerably
simpler since constraints are conic. Labbé and Heunis [63] study quadratic
utility maximisation problems in an Itô process model whose completeness
is destroyed by having convex constraints on trading strategies. They intro-
duce (in a fairly complicated way, to our mind) a dual problem for certain
processes, show that this has a solution and construct from that a solution
to the original problem. Via Itô’ s representation theorem, the last step cru-
cially exploits the completeness of the unconstrained market. The existence
proof for the dual optimiser is analogous to our Proposition 5.4, and as in
Lemma 5.3, the objective function involves an extra term from the support
function of the constraint set. It is a matter of taste whether our results
are simpler or more natural than those in [63]; but they are definitely much
more general.

Markowitz problems in complete and incomplete Itô process models are
also studied in Hu and Zhou [49] and Jin and Zhou [53]. The former has cone
constraints on strategies, the latter imposes no short sale constraints (which
are also described by cones), and both use (quadratic or linear) BSDEs to
obtain a solution. This setup has a lot of extra structure, and the continuity
of asset prices simplifies matters considerably. For an extension to general
semimartingale models with cone constraints and a more detailed discussion,
we refer to Chapter IV.



Chapter III

Closed spaces of stochastic
integrals with constrained
integrands

This chapter corresponds to the article [25] which has been published in the
Séminaire de Probabilités XLIII. I would like to thank an anonymous referee
for careful reading and helpful suggestions.

III.1 Introduction

In mathematical finance, proving the existence of a solution to optimisation
problems like superreplication, utility maximisation or quadratic hedging
usually boils down to the same abstract problem: One must show that a
subsequence of (predictably) convex combinations of an optimising sequence
of wealth processes, i.e. stochastic integrals with respect to the underlying
price process S, converges and that the limit is again a wealth process, i.e. can
be represented as a stochastic integral with respect to S. As the space of
all stochastic integrals is closed in the semimartingale topology, this is the
suitable topology to work with.

For applications, it is natural to include trading constraints by requiring
the strategy (integrand) to lie pointwise in some set C; this set is usually con-
vex to keep the above procedure applicable, and one would like it to depend
on the state and time as well. Examples of interest include no shortselling,
no borrowing or nonnegative wealth constraints; see e.g. [21, 54]. As pointed
out by Delbaen [28] and Karatzas and Kardaras [54], a natural and conve-
nient formulation of constraints is in terms of correspondences, i.e. set-valued
functions. This is the approach we also advocate and use here.

For motivation, consider a sequence of (predictably convex combinations
of) strategies and suppose (as usually happens by the convexification trick)
that this converges pointwise. Each strategy is predictable, so constraints
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should also be “predictable” in some sense. To have the limit still satisfy the
same restrictions as the sequence, the constraints should moreover be of the
form “closure of a sequence (ψn(ω, t)) of random points”, since this is where
the limit will lie. But if each ψn(ω, t) is a predictable process, the above
closure is then a predictable correspondence by the Castaing representation
(see Proposition 2.3). This explains why correspondences come up naturally.

In our constrained optimisation problem, assuming that we have pre-
dictable, convex, closed constraints, the same procedure as in the uncon-
strained case yields a sequence of wealth processes (integrals) converging to
some limit which is a candidate for the solution of our problem. (We have
cheated a little in the motivation — the integrals usually converge, not the
integrands.) This limit process is again a stochastic integral, but it still
remains to check that the corresponding trading strategy also satisfies the
constraints. In abstract terms, one asks whether the limit of a sequence
of stochastic integrals of constrained integrands can again be represented
as a stochastic integral of some constrained integrand or, equivalently, if
the space of stochastic integrals of constrained integrands is closed in the
semimartingale topology. We illustrate by a counterexample that this is not
true in general, since it might happen that some assets become redundant,
i.e. can be replicated on some predictable set by trading in the remaining
ones. This phenomenon occurs when there is linear dependence between the
components of S.

As in [21, 20, 63, 72], one could resolve this issue by simply assuming
that there are no redundant assets; then the closedness result is true for
all constraints formulated via closed (and convex) sets. Especially in Itô
process models with a Brownian filtration, such a non-redundancy condition
is useful (e.g. when working with artificial market completions), but it can
be restrictive. Alternatively, as in [53, 93, 26], one can study only constraints
given by polyhedral or continuous convex sets. While most constraints of
practical interest are indeed polyhedral, this is conceptually unsatisfactory
as one does not recover all results from the case when there are no redundant
assets. A good formulation should thus account for the interplay between
the constraints C and redundancies in the assets S.

To realise this idea, we use the projection on the predictable range of
S. This is a predictable process taking values in the orthogonal projections
in Rd; it has been introduced in [84, 32, 28], and allows us to uniquely
decompose each integrand into one part containing all relevant information
for its stochastic integral and another part having stochastic integral zero.
This reduces our problem to the question whether or not the projection of
the constraints on the predictable range is closed. Convexity is not relevant
for that aspect. Since that approach turns out to give a necessary and
sufficient condition, we recover all previous results in [21, 63, 72, 53, 26] as
special cases; and in addition, we obtain for constant constraints C(ω, t) ≡
C that closedness of the space of C-constrained integrands holds for all
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semimartingales if and only if all projections of C in Rd are closed. The
well-known characterisation of polyhedral cones thus implies in particular
that the closedness result for constant convex cone constraints is true for
arbitrary semimartingales if and only if the constraints are polyhedral.

For a general constraint set C(ω, t) which is closed and convex, the set
of stochastic integrals of C-constrained integrands is the prime example of
a predictably convex space of stochastic integrals. By adapting arguments
from [28], we show that this is in fact the only class of predictably convex
spaces of stochastic integrals which are closed in the semimartingale topology.
So in this chapter we make both mathematical contributions to stochastic
calculus and financial contributions in the modelling and handling of trading
constraints for optimisation problems from mathematical finance.

The remainder of the chapter is organised as follows. In Section III.2, we
formulate the problem in the terminology of stochastic processes and provide
some results on measurable correspondences and measurable selectors. These
are needed to introduce and handle the constraints. Section III.3 contains a
counterexample which illustrates where the difficulties arise and motivates
in a simple setting the definition of the projection on the predictable range.
The main results discussed above are established in Section III.4. Section
III.5 gives the construction of the projection on the predictable range as well
as two proofs omitted in Section III.4. Finally, Section III.6 briefly discusses
some related work.

III.2 Problem formulation and preliminaries

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t<∞ sat-
isfying the usual conditions of completeness and right-continuity. For all
notation concerning stochastic integration, we refer to the book of Jacod
and Shiryaev [52].

Set Ω := Ω × [0,∞). The space of all Rd-valued semimartingales is
denoted by S0,d(P ) := S0(P ;Rd), or simply S(P ) if the dimension is clear.
The Émery distance (see [41]) of two semimartingales X and Y is d(X,Y ) =
sup|ϑ|≤1

(∑
n∈N 2−nE

[
1 ∧ |(ϑ · (X − Y ))n|

])
, where (ϑ · X)t :=

∫ t
0 ϑsdXs

stands for the vector stochastic integral, which is by construction a real-valued
semimartingale, and the supremum is taken over all Rd-valued predictable
processes ϑ bounded by 1. With this metric, S(P ) is a complete topological
vector space, and the corresponding topology is called the semimartingale
topology. For brevity, we say “in S(P )” for “in the semimartingale topology”.
For a given Rd-valued semimartingale S, we write L(S) for the space of
Rd-valued, S-integrable, predictable processes ϑ and L(S) for the space of
equivalence classes [ϑ] = [ϑ]S = {ϕ ∈ L(S) | ϕ · S = ϑ · S} of processes in
L(S) which yield the same stochastic integral with respect to S, identifying
processes equal up to P -indistinguishability. By Theorem V.4 in [71], the
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space of stochastic integrals {ϑ·S | ϑ ∈ L(S)} is closed in S(P ). Equivalently,
L(S) is a complete topological vector space with respect to dS

(
[ϑ], [ϕ]

)
=

d(ϑ · S, ϕ · S), where ϑ and ϕ are representatives of the equivalence classes
[ϑ] and [ϕ].

In this chapter, we generalise the above closedness result from [71] to
integrands restricted to lie in a given closed set, in the following sense. Let
C(ω, t) be a non-empty, closed subset of Rd which may depend on ω and t
in a predictably measurable way. Definition 2.2 below makes this precise: C
should be a predictable correspondence with closed values. Denote by

C := CS :=
{
ψ ∈ L(S)

∣∣ ψ(ω, t) ∈ C(ω, t) for all (ω, t)
}

(2.1)

the set of C-valued or C-constrained integrands for S. If (ψn) is a sequence in
CS such that (ψn · S) converges to some X in the semimartingale topology,
does there exist a ψ in CS such that X = ψ · S ? In general, the answer
is negative, as a simple counterexample in the next section illustrates, and
so we ask under which conditions the above is true. By the closedness in
S(P ) of the space of all stochastic integrals, the limit X can always be
represented as some stochastic integral ϑ · S. Thus it is enough to decide
whether or not there exists for the limit class [ϑ] a representative ψ which
is C-valued. Equivalently, one can ask whether CS · S is closed in S(P ) or if
the corresponding set

[C] := [C]S :=
{

[ϑ] ∈ L(S)
∣∣ [ϑ] ∩ C 6= ∅

}
of equivalence classes of elements of CS is closed in

(
L(S), dS

)
.

As already explained, this question arises naturally in mathematical fi-
nance for various optimisation problems under trading constraints; see [44],
[72], [78], [63], [53] and [24]. But not all papers make it equally clear whether
the procedure outlined in the introduction can be or is being used. For [63]
and [53], this is clarified in Chapter II. Under additional assumptions, the
closedness of CS · S in the semimartingale topology is sufficient to apply the
results of Föllmer and Kramkov [44] on the optional decomposition under
constraints, which give a dual characterisation of payoffs that can be super-
replicated by constrained trading strategies. This is used in [72], [78] and [56]
to prove the existence of solutions to constrained utility maximisation prob-
lems. The results in [44] are formulated more generally for sets of (special)
semimartingales which are predictably convex.

Definition 2.1. A set S of semimartingales is predictably convex if h ·X +
(1 − h) · Y ∈ S for all X and Y in S and all [0, 1]-valued predictable
processes h. Analogously, a set C ⊆ L(S) of integrands is predictably convex
if hϑ + (1 − h)ϕ ∈ C for all ϑ and ϕ in C and all [0, 1]-valued predictable
processes h.
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The prime example of predictably convex sets of integrands is given by
C-constrained integrands when C is convex-valued. Theorem 4.11 below
shows that all predictably convex spaces C of integrands must be of this
form if C · S is in addition closed in S(P ).

To formulate precisely the assumptions on the (random and time-depen-
dent) set C, we adapt the language of measurable correspondences to our
framework of predictable measurability and recall for later use some of the
results in this context. Note that the general results we exploit do not depend
on special properties of the predictable σ-field on Ω. However, we do use
that the range space Rd is metric and σ-compact; this ensures by Proposition
1A in [83] or the proof of Lemma 18.2 in [2] that weak measurability and
measurability for a closed-valued correspondence coincide in our setting.

Definition 2.2. A mapping C : Ω→ 2R
d is called an (Rd-valued) correspon-

dence. Its domain is dom(C) :=
{

(ω, t)
∣∣ C(ω, t) 6= ∅

}
. We call a correspon-

dence C predictable if C−1(F ) :=
{

(ω, t)
∣∣ C(ω, t) ∩ F 6= ∅

}
is a predictable

set for each closed F ⊆ Rd. A correspondence has predictable graph if its
graph gr(C) :=

{
(ω, t, x) ∈ Ω× Rd

∣∣ x ∈ C(ω, t)
}

is in P ⊗ B(Rd). A pre-
dictable selector of a predictable correspondence C is a predictable process
ψ which satisfies ψ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ dom(C).

The following results ensure the existence of predictable selectors in all
situations relevant for us.

Proposition 2.3 (Castaing). For a correspondence C : Ω→ 2R
d with closed

values, the following are equivalent:

1) C is predictable.

2) dom(C) is predictable and there exists a Castaing representation of C,
i.e. a sequence (ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t), ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

Proof. See Corollary 18.14 in [2] or Theorem 1B in [83].

Proposition 2.4 (Aumann). Let C : Ω → 2R
d be a correspondence with

non-empty values and predictable graph and µ a finite measure on
(
Ω,P

)
.

Then there exists a predictable process ψ with ψ(ω, t) ∈ C(ω, t) µ-a.e.

Proof. See Corollary 18.27 in [2].

The proof of Proposition 2.4 is based on the following result on projec-
tions to which we refer later.

Proposition 2.5. Let (R,R, µ) be a σ-finite measure space, Rµ the σ-field
of µ-measurable sets and A in Rµ⊗B(Rd). Then the projection πR(A) of A
on R belongs to Rµ.
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Proof. See Theorem 18.25 in [2].

Measurability and graph measurability of a correspondence are linked as
follows.

Proposition 2.6. Let C : Ω → 2R
d \ {∅} be a correspondence. If C is

predictable, its closure correspondence C given by C(ω, t) := C(ω, t) has a
predictable graph.

Proof. See Theorem 18.6 in [2].

Since we require in (2.1) for our integrands ψ that ψ(ω, t) ∈ C(ω, t) for all
(ω, t), we shall assume, as motivated in the introduction, that C is predictable
and has closed values. Then Proposition 2.3 guarantees the existence of
predictable selectors. Moreover, we shall use that predictable measurability
of a correspondence is preserved under transformations by Carathéodory
functions and is stable under countable unions and intersections. Recall
that a function f : Ω × Rn → Rm is called Carathéodory if f(ω, t, x) is
predictable with respect to (ω, t) and continuous in x.

Proposition 2.7. Let C : Ω → 2R
d be a predictable correspondence with

closed values and f : Ω×Rm → Rd and g : Ω×Rd → Rm Carathéodory func-
tions. Then C ′ and C ′′ given by C ′(ω, t) = {y ∈ Rm | f(ω, t, y) ∈ C(ω, t)}
and C ′′(ω, t) = {g(ω, t, x) | x ∈ C(ω, t)} are predictable correspondences with
closed values.

Proof. See Corollaries 1P and 1Q in [83].

Proposition 2.8. Let Cn : Ω → 2R
d for each n ∈ N be a predictable cor-

respondence with closed values and define the correspondences C ′ and C ′′ by
C ′(ω, t) =

⋂
n∈N

Cn(ω, t) and C ′′(ω, t) =
⋃
n∈N

Cn(ω, t). Then C ′ and C ′′ are

predictable and C ′ is closed-valued.

Proof. See Theorem 1M in [83] and Lemma 18.4 in [2].

To establish a relation between predictably convex spaces of integrands
and C-valued integrands, we later use the following result, which is a refor-
mulation of the contents of Theorem 5 in [28]. We view an Rd-valued pre-
dictable process on Ω as a P-measurable Rd-valued mapping on Ω, take some
probability µ on

(
Ω,P

)
and denote by B(0, r)

L∞
and B(0, r) the closures

of a ball of radius r in L∞
(
Ω,P, µ;Rd

)
and in Rd, respectively. Predictable

convexity is understood as in the second part of Definition 2.1.

Proposition 2.9. Let K be a predictably convex and µ-weak∗-compact subset
of B(0, r)

L∞
with 0 ∈ K. Then there exists a predictable correspondence
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K : Ω → 2B(0,r) \ {∅}, whose values are convex and compact and contain
zero, such that

K =
{
ϑ ∈ L∞

(
Ω,P, µ;Rd

) ∣∣∣ ϑ(ω, t) ∈ K(ω, t) µ-a.e.
}
.

Proof. In the proof of Theorem 5 in [28], the set Cλ defined there for λ > 0
contains zero and is by Lemmas 10 and 11 in [28] a predictably convex and
weak∗-compact subset of B(0, λ)

L∞
. No other properties of Cλ are used.

So we can modify the proof of Theorem 5 in [28] by replacing the use of
the Radon–Nikodým theorem of Debreu and Schmeidler (Theorem 2 in [27])
with that of Artstein (Theorem 9.1 in [4]). This yields that K := Φr con-
structed in that proof is predictably measurable and has not only (as argued
in [28]) predictable graph. Replacing the correspondence K coming from
this construction by K ∩B(0, r) then gives that K is valued in 2B(0,r).

III.3 A motivating example

In this section, we give a simple example of a semimartingale Y and a pre-
dictable correspondence C with non-empty, closed, convex cones as values
such that CY · Y is not closed in S(P ). This illustrates where the problems
with our basic question arise and suggests a way to overcome them. The
example is the same as Example 2.2 in [26], but we use it here for a different
purpose and with different emphasis.

Let W = (W 1,W 2,W 3)> be a 3-dimensional Brownian motion and
Y = σ ·W , where

σ =

1 0 0
0 1 −1
0 −1 1

 .

The matrix σ and hence ĉ = σσ> have a non-trivial kernel spanned by
w = 1√

2
(0, 1, 1)>, i.e. Ker(ĉ) = Ker(σ) = Rw = span{w}. By construction,

the stochastic integral of each R3-valued predictable process valued in Ker(ĉ)
dP ⊗ dt-a.e. is zero, and vice versa. Thus the equivalence class [ϑ]Y of any
given ϑ ∈ L(Y ) is given by

[ϑ]Y = {ϑ+ hw | h is a real-valued predictable process}

up to dP⊗dt-a.e. equality, since adding a representative of 0 to some element
of L(Y ) does not change its equivalence class. LetK be the closed and convex
cone

K =
{

(x, y, z)> ∈ R3
∣∣ x2 + y2 ≤ z2, z ≥ 0

}
and C the (constant) predictable correspondence with non-empty and closed
values given by C(ω, t) = K for all (ω, t) ∈ Ω. Define the sequence of
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(constant) processes (ψn) by ψn = (1,
√
n2 − 1, n)> for each n ∈ N. In

geometric terms, K is a circular cone around the z-axis, and (ψn) is a se-
quence of points on its surface going to infinity. (Instead of n, any sequence
zn → ∞ in [1,∞) would do as well.) Each ψn is C-valued, and we com-
pute ψn · Y = (σψn) ·W = W 1 +

(√
n2 − 1 − n

)
(W 2 −W 3). Using this

explicit expression yields by a simple calculation that ψn · Y →W 1 locally
in M2(P ) and therefore in S(P ); see [26] for details. However, the (con-
stant) process e1 := (1, 0, 0)> leading to the limiting stochastic integral
e1 · Y = W 1 does not have values in C, and since its equivalence class is{
e1 + hw

∣∣ h is a real-valued predictable process
}
, also no other integrand

equivalent to e1 does. Thus CY · Y is not closed in S(P ).
To see why this causes problems, define τ := inf

{
t > 0

∣∣ |Wt| = 1
}
and

set S := Y τ . The arguments above then imply that the sequence (ψn ·Y τ ) is
bounded from below (uniformly in n, t, ω) and converges in S(P ) to (W 1)τ ,
which cannot be represented as ψ · S for any C-valued integrand ψ. Thus
the set CS ·S does not satisfy Assumption 3.1 of the optional decomposition
theorem under constraints in [44]. But for instance the proof of Proposition
2.13 in [56] (see p. 1835) explicitly uses that result of [44] in a setting where
constrained integrands could be given by C-valued integrands as above. So
technically, the argument in [56] is not valid without further assumptions
(and Theorem 4.5 and Corollary 4.9 below show ways to fix this).

What can we learn from the counterexample? The key point is that the
convergence of stochastic integrals ψn · Y need not imply the pointwise con-
vergence of their integrands. Without constraints, this causes no problems;
by Mémin’s theorem, the limit is still some stochastic integral of Y , here
e1 · Y . But if we insist on having C-valued integrands, the example shows
that we ask for too much. Since K is closed, we can deduce above that (|ψn|)
must diverge (otherwise we should get along a subsequence a limit, which
would be C-valued by closedness), and in fact |ψn| =

√
2n→∞. But at the

same time, (σψn) converges to e1 = (1, 0, 0)> — and this observation brings
up the key idea of not looking at ψn, but at suitable projections of ψn linked
(via σ) to the integrator Y .

To make this precise, denote the orthogonal projection on Im(σσ>) by

ΠY = 1d×d − ww> =

1 0 0
0 1

2 −1
2

0 −1
2

1
2

 .

Then ΠY ψn =
(
1, 1

2(
√
n2 − 1 − n),−1

2(
√
n2 − 1 − n)

)> converges to the
limit integrand (1, 0, 0)> = e1. We might worry about the obvious fact that
ΠY ψn does not take values in C; but for the stochastic integrals, this does
not matter because (ΠY ψn) · Y = ψn · Y . Indeed, any ϑ ∈ L(Y ) can be
written as a sum ϑ = ΠY ϑ + (ww>)ϑ of one part with values in Im(σσ>)
and another part orthogonal to the first one; and since σ>w = 0 implies
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that
(
(ww>)ϑ

)
· Y = (ϑ>ww>σ)> · W = 0, the claim follows. Going a

little further, we even have for any ϑ ∈ L(Y ) and any Rd-valued predictable
process ϕ that

ϕ ∈ L(Y ) with ϕ · Y = ϑ · Y ⇐⇒ ΠY ϕ = ΠY ϑ dP ⊗ dt-a.e., (3.1)

by using that Ker(σσ>) ∩ Im(σσ>) = {0} and that σ>(ΠY v) = σ>v for all
v ∈ Rd to check the Y -integrability of ϕ. The significance of (3.1) is that the
stochastic integral ϑ ·Y is uniquely determined by ΠY ϑ, and so ΠY ϑ gives a
“minimal” choice of a representative of the equivalence class [ϑ]Y . Moreover,
ΠY gives via (3.1) a simple way to decide whether or not a given Rd-valued
predictable process ϕ belongs to the equivalence class [ϑ]Y .

Coming back to the set K, we observe that

ΠYK =

{(
x,

1

2
(y − z),−1

2
(y − z)

)> ∣∣∣∣∣ x2 + y2 ≤ z2, z ≥ 0

}

is the projection of the cone K on the plane through the origin and with
the normal vector (0, 1, 1)>. In geometric terms, the projection of each
horizontal slice of the cone transforms the circle above the x-y-plane into an
ellipse in the projection plane having the origin as a point of its boundary.
As we move up along the z-axis, the circles become larger, and so do the
ellipses which in addition flatten out towards the line through the origin
and the point e1 = (1, 0, 0)>. But since they never reach that line although
they come arbitrarily close, ΠYK is not closed in Rd — and this is the
source of all problems in our counterexample. It explains why the limit
e1 = limn→∞ΠY ψn is not in ΠYK, which implies by (3.1) that there cannot
exist any C-valued integrand ψ such that ΠY ψ = e1. But the insight about
ΠYK also suggests that if we assume for a predictable correspondence C
that

ΠY C(ω, t) is closed dP ⊗ dt-a.e., (3.2)

we ought to get that CY · Y is closed in S(P ). This indeed works (see
Theorem 4.5), and it turns out that condition (3.2) is not only sufficient, but
also necessary.

The above explicit computations rely on the specific structure of Y , but
they nevertheless motivate the approach for a general semimartingale S. We
are going to define a predictable process ΠS taking values in the orthogonal
projections in Rd and satisfying (3.1) with dP ⊗ dt replaced by a suitable
measure on

(
Ω,P

)
to control the stochastic integrals with respect to S. The

process ΠS will be called the projection on the predictable range and will
allow us to formulate and prove our main results in the next section.
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III.4 Main results

This section contains the main results (Theorems 4.5 and 4.11) as well as
some consequences and auxiliary results. Before we can formulate and prove
them, we need some facts and results about the projection on the predictable
range of S. For the reader’s convenience, the actual construction of ΠS is
postponed to Section III.5.

As in [52], Theorem II.2.34, each semimartingale S has the canonical
representation

S = S0 + Sc + Ã+ [x1{|x|≤1}] ∗ (µ− ν) + [x1{|x|>1}] ∗ µ

with the jump measure µ of S and its predictable compensator ν. Then the
triplet (b, c, F ) of predictable characteristics of S consists of a predictable Rd-
valued process b, a predictable nonnegative-definite matrix-valued process c
and a predictable process F with values in the set of Lévy measures such
that

Ã = b ·B, [Sc, Sc] = c ·B and ν = F ·B, (4.1)

where B :=
∑d

i=1

(
[Sc, Sc]i,i + Var(Ãi)

)
+ (|x|2 ∧ 1) ∗ ν.

Note that B is locally bounded since it is predictable and increasing.
Therefore P ⊗B is σ-finite on

(
Ω,P

)
and there exists a probability mea-

sure PB equivalent to P ⊗B. By the construction of the stochastic integral,
S-integrable, predictable processes which are PB-a.e. equal yield the same
stochastic integral with respect to S (up to P -indistinguishability). Put
differently, ϕ = ϑ PB-a.e. implies for the equivalence classes in L(S) that
[ϕ] = [ϑ]. But the converse is not true; a sufficient and necessary condition
involves the projection ΠS on the predictable range of S, as we shall see
below. Because S is now (in contrast to Section III.3) a general semimartin-
gale, the actual construction of ΠS and the proof of its properties become
more technical and are postponed to the next section. We give here merely
the definition and two auxiliary results.

Definition 4.1. The projection on the predictable range of S is a predictable
process ΠS : Ω → Rd×d which takes values in the orthogonal projections in
Rd and has the following property: If ϑ ∈ L(S) and ϕ is predictable, then ϕ
is in L(S) with ϕ · S = ϑ · S if and only if ΠSϑ = ΠSϕ PB-a.e. We choose
and fix one version of ΠS .

Remark 4.2. There are many possible choices for a process B satisfying
(4.1). However, the definition of ΠS is independent of the choice of B in
the sense that (with obvious notation) ΠS,Bϑ = ΠS,Bϕ PB-a.e. if and only
if ΠS,B′ϑ = ΠS,B′ϕ PB′-a.e. This is because stochastic integrals of S do not
depend on the choice of B.

As illustrated by the example in Section III.3, the convergence in S(P ) of
stochastic integrals does not imply in general that the integrands converge
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PB-a.e. But like in the example, a subsequence of the projections of the
integrands on the predictable range does.

Lemma 4.3. Let (ϑn) be a sequence in L(S) such that ϑn · S → ϑ · S in
S(P ). Then there exists a subsequence (nk) such that ΠSϑnk → ΠSϑ PB-a.e.

Lemma 4.4. Let C : Ω → 2R
d \ {∅} be a predictable correspondence with

closed values and such that the projection on the predictable range of S is
not closed, i.e.

F̃ =
{

(ω, t) ∈ Ω
∣∣ ΠS(ω, t)C(ω, t) is not closed

}
has outer PB-measure > 0. Then there exist ϑ ∈ L(S) and a sequence (ψn)
of C-valued integrands such that ψn · S → ϑ · S in S(P ), but there is no
C-valued integrand ψ such that ψ · S = ϑ · S. Equivalently, there exists a

sequence
(
[ψn]

)
in [C]S such that [ψn]

L(S)→ [ϑ] but [ϑ] /∈ [C]S, i.e. [C]S is not
closed in L(S).

Lemmas 4.3 and 4.4 as well as the existence of ΠS will be shown in Section
III.5. Admitting that, we can now prove our first main result; related work
in [54] is discussed in Section III.6. Recall the definition of C := CS from
(2.1).

Theorem 4.5. Let C : Ω → 2R
d \ {∅} be a predictable correspondence with

closed values. Then CS ·S is closed in S(P ) if and only if the projection of C
on the predictable range of S is closed, i.e. ΠS(ω, t)C(ω, t) is closed PB-a.e.
Equivalently: There exists a C-valued integrand ψ with X = ψ · S for any
sequence (ψn) of C-valued integrands with ψn · S → X in S(P ) if and only
if the projection of C on the predictable range of S is closed.

Proof. “⇒”: This implication follows immediately from Lemma 4.4.
“⇐”: Let (ψn) be a sequence in C with ψn · S → X in S(P ). Then there
exist by Mémin’s theorem ϑ ∈ L(S) with X = ϑ · S and by Lemma 4.3 a
subsequence, again indexed by n, with ΠSψn → ΠSϑ PB-a.e. So it remains
to show that we can find a C-valued representative ψ of the limit class [ϑ] =
[ΠSϑ]. To that end, we observe that the PB-a.e. closedness of ΠS(ω, t)C(ω, t)
implies that ΠSϑ = limn→∞ΠSψn ∈ ΠSC PB-a.e. By Proposition 2.7, the
correspondences given by {ΠS(ω, t)ϑ(ω, t)}, C ′(ω, t) = {ΠS(ω, t)ϑ(ω, t)} ∩
ΠS(ω, t)C(ω, t) and C ′′(ω, t) =

{
z ∈ Rd

∣∣ ΠS(ω, t)z ∈ C ′(ω, t)
}
∩ C(ω, t)

are predictable and closed-valued. Indeed, ΠSϑ is a predictable process,
and

{
z ∈ Rd

∣∣ ΠS(ω, t)z ∈ C ′(ω, t)
}

and ΠSC = ΠSC are the pre-image
and (the closure of) the image of a closed-valued correspondence under a
Carathéodory function, respectively. Thus C ′ and C ′′ are the intersections of
two predictable and closed-valued correspondences and therefore predictable
by Proposition 2.8. So there exists by Proposition 2.3 a predictable selector
ψ of C ′′ on dom(C ′′) =

{
(ω, t)

∣∣ ΠS(ω, t)ϑ(ω, t) ∈ ΠS(ω, t)C(ω, t)
}
. This ψ
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can be extended to a C-valued integrand by using any predictable selector
on the PB-nullset

(
dom(C ′′)

)c. By construction, ψ is then in C and satisfies
ΠSψ = ΠSϑ PB-a.e., so that ψ ∈ [ϑ] by the definition of ΠS . This completes
the proof.

Theorem 4.5 gives as necessary and sufficient condition for the closedness
of the space of C-constrained integrals of S that the projection of the con-
straint set C on the predictable range of S is closed. This uses information
from both the semimartingale S and the constraints C, as well as their inter-
play. We shall see below how this allows to recapture several earlier results
as special cases.

Corollary 4.6. Suppose that S = S0 +M + A is in S2
loc(P ) and define the

process a via A = a ·B. If

[0]M =
{
ha
∣∣ h is real-valued and predictable

}
(4.2)

up to PB-a.e. equality, then CS · S is closed in S(P ) for all predictable cor-
respondences C : Ω→ 2R

d \ {∅} with closed values.

Proof. Lemma 5.1 below shows that (4.2) implies [0]S = [0]M ∩ [0]A = {0}
and therefore ΠS = 1d×d by (5.2) below. So the projection of any closed-
valued correspondence C on the predictable range of S is closed, which gives
the assertion by Theorem 4.5.

In applications from mathematical finance, S often satisfies the so-called
structure condition (SC), i.e. S = S0 +M +A is in S2

loc(P ) and there exists
an Rd-valued predictable process λ ∈ L2

loc(M) such that A = λ · 〈M,M〉 or,
equivalently, a = ĉλ PB-a.e.; this is a weak no-arbitrage type condition. In
this situation, Lemma 5.1 below gives [0]M ⊆ [0]A, and thus condition (4.2)
holds if and only if [0]M = {0} (up to PB-a.e. equality), which means that
ĉ is PB-a.e. invertible. This is the case covered in Lemma 3.1 in [72], where
one has conditions only on S but not on C. Basically this ensures that there
are no redundant assets, i.e. every stochastic integral is realised by exactly
one integrand (up to PB-a.e. equality).

The opposite extreme is to place conditions only on C that ensure closed-
ness of CS · S for arbitrary semimartingales S, as in Theorem 3.5 of [26].
We recover this as a special case in the following corollary; note that in a
slight extension over [26], the constraints need not be convex. Recall that
a closed convex set K ⊆ Rd is called continuous if its support function
δ(v|K) = supw∈K w

>v is continuous for all vectors v ∈ Rd with |v| = 1; see
[47].

Corollary 4.7. Let C : Ω→ 2R
d \ {∅} be a predictable correspondence with

closed values. Then CY · Y is closed in S(P ) for all semimartingales Y if
with probability 1, for all t ≥ 0 all projections ΠC(ω, t) of C(ω, t) are closed
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in Rd.
In particular, if with probability 1, every C(ω, t), t ≥ 0, is compact, or
polyhedral, or a continuous and convex set, then CY ·Y is closed in S(P ) for
all semimartingales Y .

Proof. If a set is compact or polyhedral, all its projections have the same
property (see Corollary 2.15 in [58]) and are thus closed. For a continuous
convex set, every projection is closed by Theorem 1.3 in [47]. Now if with
probability 1, for all t ≥ 0 all projections ΠC(ω, t) of C(ω, t) are closed, the
projection ΠY C of C on the predictable range of every semimartingale Y is
closed P ⊗BY -a.e. So CY · Y is closed in S(P ) by Theorem 4.5.

Combining Theorem 4.5 with the example in Section III.3, we obtain the
following corollary. It is formulated for fixed sets K, but can probably be
generalised to predictable correspondences C by using measurable selections.

Corollary 4.8. Suppose (Ω,F , P ) is sufficiently rich. Fix K ⊆ Rd and
define as in (2.1) KY =

{
ψ ∈ L(Y )

∣∣ ψ(ω, t) ∈ K for all (ω, t)
}
. Then

KY · Y is closed in S(P ) for all Rd-valued semimartingales Y if and only if
all projections ΠK of K in Rd are closed.

Proof. The “if” part follows immediately from Theorem 4.5. For the converse,
assume by way of contradiction that there is a projection Π in Rd such that
ΠK is not closed. Let W be a d-dimensional Brownian motion and set
Y = Π> ·W . Then Π is the projection on the predictable range of Y , and
therefore KY · Y is not closed by Theorem 4.5.

If the constraints are not only convex, but also cones, a characterisation
of convex polyhedra due to Klee [58] gives an even sharper result.

Corollary 4.9. Let K ⊆ Rd be a closed convex cone. Then KY · Y is closed
in S(P ) for all Rd-valued semimartingales Y if and only if K is polyhedral.

Proof. By Corollary 4.8, KY ·Y is closed in S(P ) if and only if all projections
ΠK are closed in Rd. But Theorem 4.11 in [58] says that all projections of
a convex cone are closed in Rd if and only if that cone is polyhedral.

Remark 4.10. Armed with the last result, we can briefly come back to the
proof of Proposition 2.13 in [56]. We have already pointed out in Section III.3
that the argument in [56] uses the optional decomposition under constraints
from [44], without verifying its Assumption 3.1. In view of Corollary 4.9,
we can now be more precise: The argument in [56] as it stands (i.e. without
assumptions on S) only works for polyhedral cone constraints; for others, one
could by Corollary 4.9 construct a semimartingale S giving a contradiction.

We now turn to our second main result. Recall again the definition of C
from (2.1) and note that for a correspondence C with convex values, C is the
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prime example of a predictably convex space of integrands. The next theorem
shows that this is actually the only class of predictably convex integrands if
we assume in addition that the resulting space C ·S of stochastic integrals is
closed in S(P ). The result and its proof are inspired from Theorems 3 and
4 in [28], but require quite a number of modifications.

Theorem 4.11. Let C ⊆ L(S) be non-empty. Then C·S is predictably convex
and closed in the semimartingale topology if and only if there exists a pre-
dictable correspondence C : Ω→ 2R

d \{∅} with closed convex values such that
the projection of C on the predictable range of S is closed, i.e. ΠS(ω, t)C(ω, t)
is closed PB-a.e., and with C · S = CS · S, i.e.

C · S = {ψ · S | ψ ∈ C}
= {ψ · S | ψ ∈ L(S) and ψ(ω, t) ∈ C(ω, t) for all (ω, t)}.

Proof. “⇐”: The pointwise convexity of C immediately implies that CS · S
is predictably convex, and closedness follows from Theorem 4.5.
“⇒”: Like at the end of Section III.2, we view predictable processes on Ω
as P-measurable random variables on Ω = Ω × [0,∞). Since we are only
interested in a non-empty space of stochastic integrals with respect to S,
we lose no generality if we replace C by C− ϕ := {ϑ− ϕ ∈ L(S) | ϑ ∈ [C]}
for some ϕ ∈ C and identify this with a subspace of L0

(
Ω,P, PB;Rd

)
which

contains zero. Indeed, if the assertion is true for C−ϕ with a correspondence
C̃, it is also true for C with C = C̃+ϕ, which is a predictable correspondence
by Proposition 2.7. In order to apply Proposition 2.9, we truncate C to get

Cq =
{
ψ ∈ C

∣∣ ‖ψ‖L∞ ≤ q} = C ∩B(0, q)
L∞

for q ∈ Q+.

Then Cq inherits predictable convexity from C and is thus a convex subset of
B(0, q)

L∞
. Moreover, Cq is closed with respect to convergence in PB-measure

since its elements are uniformly bounded by q and C·S is closed in S(P ); this
uses the fact, easily proved via dominated convergence separately for theM -
and A-integrals, that for any uniformly bounded sequence of integrands (ψn)
converging pointwise, the stochastic integrals converge in S(P ). By a well-
known application of the Krein–Šmulian and Banach–Alaoglu theorems (see
Theorems A.62 and A.63 and Lemma A.64 in [45]), Cq is thus weak∗-compact,
and Proposition 2.9 gives a predictable correspondence Cq : Ω→ 2B(0,q)\{∅}
with convex compact values containing zero such that

Cq =
{
ψ ∈ L0

(
Ω,P, PB;Rd

) ∣∣ ψ(ω, t) ∈ Cq(ω, t) PB-a.e.
}
.

By the definition of Cq we obtain, after possibly modifying the sets on a
PB-nullset, that

Cq2(ω, t) ∩B(0, q1) = Cq1(ω, t) for all (ω, t) ∈ Ω (4.3)
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for 0 < q1 ≤ q2 < ∞ by Lemma 12 in [28], since the graph of each Cq is
predictable by Proposition 2.6. Using the characterisation of closed sets in
metric spaces as limit points of converging sequences implies with (4.3) that
the correspondence C given by

C(ω, t) :=
⋃
q∈Q+

Cq(ω, t)

has closed values. Moreover, each C(ω, t) is convex as the union of an in-
creasing sequence of convex sets, and it only remains to show that C·S = C·S.

Suppose first that ψ is in C. By predictable convexity and since 0 ∈ C,
ψn := 1{|ψ|≤n}ψ is in Cn and therefore Cn- and hence C-valued. Since (ψn)
converges pointwise to ψ, the closedness of C implies that ψ is C-valued, so
that ψ ∈ C and C · S ⊆ C · S. Conversely, if ψ is in C, then ψn := 1{|ψ|≤n}ψ
is Cn-valued and hence in Cn ⊆ C. But (ψn · S) converges to ψ · S in S(P )
and C · S is closed in S(P ). So the limit ψ · S is in C · S and hence ψ ∈ C
and C · S ⊆ C · S. Finally, C · S = C · S is closed in S(P ), and therefore ΠSC
is closed PB-a.e. by Theorem 4.5. This completes the proof.

Remark 4.12. 1) Theorem 4.11 can be used as follows. Start with any
convex-valued correspondence C, form the space C · S of corresponding
stochastic integrals and take its closure in S(P ). Then Theorem 4.11 tells
us that we can realise this closure as a space of stochastic integrals from C̃-
constrained integrands, for some predictable correspondence C̃ with convex
and closed values. In other words, C · SS(P )

= C̃ · S; and one possible choice
of C̃ is C̃ =

(
ΠS
)−1

(C). Another possible choice would be C̃ = C + N,
where N denotes the correspondence of null investments for S; see Section
III.6.

2) If we assume in Theorem 4.11 that C ⊆ Lploc(S) for p ∈ [1,∞), then
C · S ⊆ Sploc(P ), and C · S is closed in Sp(P ) if and only if there exists C
as in the theorem. This can be useful for applications (e.g., mean-variance
hedging under constraints, with p = 2).

III.5 Projection on the predictable range

In this section, we construct the projection ΠS on the predictable range
of a general semimartingale S in continuous time. The idea to introduce
such a projection comes from [84] and [32], where it was used to prove the
fundamental theorem of asset pricing in discrete time. It was also used for
a continuous local martingale in [28] to investigate the structure of m-stable
sets and in particular the set of risk-neutral measures.

As already explained before Definition 4.1, a sufficient condition for ϕ ·
S = ϑ · S (up to P -indistinguishability) or, equivalently, ϕ = ϑ in L(S)
or [ϕ] = [ϑ], is that ϕ = ϑ PB-a.e. If we again view predictable processes
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on Ω as P-measurable random variables on Ω = Ω × [0,∞), i.e. elements
of L0

(
Ω,P;Rd

)
, then ϕ = ϑ PB-a.e. is the same as saying that ϕ = ϑ

in L0
(
Ω,P, PB;Rd

)
. But to get a necessary and sufficient condition for

[ϑ] = [ϕ], we need to understand not only what 0 ∈ L(S) looks like, but
rather the precise structure of (the equivalence class) [0]. This is achieved
by ΠS .

The construction of ΠS basically proceeds by generalising that of ΠY in
the example in Section III.3 and adapting the steps in [32] to continuous
time. The idea is as follows. We start by characterising the equivalence class
[0] as a linear subspace of L0

(
Ω,P, PB;Rd

)
. Since this subspace satisfies a

certain stability property, we can construct predictable processes e1, . . . , ed

which form an “orthonormal basis” of [0] in the sense that [0] equals up to
PB-a.e. equality their linear combinations with predictable coefficients, i.e.

[0] =

{
d∑
j=1

hjej

∣∣∣∣∣ h1, . . . , hd are real-valued predictable

}
(5.1)

up to PB-a.e. equality. But these linear combinations contribute 0 to the
integral with respect to S; so we filter them out to obtain the part of the
integrand which determines the stochastic integral, by defining

ΠS := 1d×d −
d∑
j=1

ej(ej)>. (5.2)

This construction then yields the projection on the predictable range as in
Definition 4.1.

To describe [0] = [0]S as a linear subspace of L0
(
Ω,P, PB;Rd

)
, we exploit

that although we work with a general semimartingale S, we can by Lemma
I.3 in [71] switch to an equivalent probability Q under which S is locally
square-integrable. Since the stochastic integral and hence [0]S are invariant
under a change to an equivalent measure, any representation we obtainQ⊗B-
a.e. also holds PB-a.e., as PB ∼ P⊗B ∼ Q⊗B. Let S = S0+MQ+AQ be the
canonical decomposition of S under Q into an Rd-valued square-integrable
Q-martingaleMQ ∈M2,d

0 (Q) null at 0 and an Rd-valued predictable process
AQ ∈ A1,d(Q) of Q-integrable variation Var(AQ) also null at 0. By Proposi-
tions II.2.9 and II.2.29 in [52], there exist an increasing, locally Q-integrable,
predictable process BQ, an Rd-valued process aQ and a predictable Rd×d-
valued process ĉQ whose values are positive semidefinite symmetric matrices
such that

(AQ)i = (aQ)i ·BQ and
〈
(MQ)i, (MQ)j

〉Q
= (ĉQ)ij ·BQ (5.3)

for i, j = 1, . . . , d. By expressing the semimartingale characteristics of S un-
derQ by those under P via Girsanov’s theorem, writing AQ and

〈
MQ,MQ

〉Q
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in terms of semimartingale characteristics and then passing to differential
characteristics with B as predictable increasing process, we obtain that we
can and do choose BQ = B in (5.3); see Theorem III.3.24 and Propositions
II.2.29 and II.2.9 in [52]. Using the canonical decomposition of S under Q
as auxiliary tool then allows us to give the following characterisation of [0]S .

Lemma 5.1. Let Q ∼ P such that S = S0 +MQ +AQ ∈ S2
loc(Q). Then

1) [0]M
Q

=
{
ϕ ∈ L0

(
Ω,P;Rd

) ∣∣ ĉQ ϕ = 0 PB-a.e.
}
.

2) [0]A
Q

=
{
ϕ ∈ L0

(
Ω,P;Rd

) ∣∣ (aQ)>ϕ = 0 PB-a.e.
}
.

3) [0]S = [0]M
Q ∩ [0]A

Q.

Moreover, [0]M
Q , [0]A

Q and [0]S all do not depend on Q.

Proof. The last assertion is clear since the stochastic integral of a semi-
martingale (like MQ, AQ, S) is invariant under a change to an equivalent
measure. Because also PB ∼ Q ⊗ B, we can argue for the rest of the proof
under the measure Q. Then the inclusions “⊇” follow immediately from the
definition of the stochastic integral with respect to a square-integrable mar-
tingale and a finite variation process, since the conditions on the right-hand
side ensure that ϕ is in L2(MQ) and L1(AQ). For the converse, we start with
ϕ ∈ [0]S and set ϕn := 1{|ϕ|≤n}ϕ. Then ϕn ·S = 0 implies that ϕn ·MQ = 0

and ϕn · AQ = 0 by the uniqueness of the Q-canonical decomposition of
ϕn · S; this uses that ϕn is bounded. Therefore we can reduce the proof of
“⊆” for 3) to that for 1) and 2). So assume now that ϕ is in either [0]M

Q

or [0]A
Q so that ϕn ·MQ = 0 or ϕn · AQ = 0. But ϕn is bounded, hence

in L2(MQ) or L1(AQ), for each n, and by the construction of the stochastic
integral, we obtain that ĉQ ϕn = 0 or (aQ)>ϕn = 0 Q ⊗ B-a.e. and hence
PB-a.e. Since (ϕn) converges pointwise to ϕ, the inclusions “⊆” for 1) and
2) follow by passing to the limit.

The following technical lemma, which is a modification of Lemma 6.2.1
in [32], gives the announced “orthonormal basis” of [0]S in the sense of (5.1).

Lemma 5.2. Let U ⊆ L0
(
Ω,P, PB;Rd

)
be a linear subspace which is closed

with respect to convergence in PB-measure and satisfies the following stability
property:

ϕ1
1F + ϕ2

1F c ∈ U for all ϕ1 and ϕ2 in U and F ∈ P.

Then there exist ej ∈ L0
(
Ω,P, PB;Rd

)
for j = 1, . . . , d such that

1) {ej+1 6= 0} ⊆ {ej 6= 0} for j = 1, . . . , d− 1;

2) |ej(ω, t)| = 1 or |ej(ω, t)| = 0;
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3) (ej)>ek = 0 for j 6= k;

4) ϕ ∈ U if and only if there are h1, . . . , hd in L0
(
Ω,P, PB;R

)
with

ϕ =
∑d

j=1 h
jej, i.e.

U =

{
d∑
j=1

hjej

∣∣∣∣∣ h1, . . . , hd are real-valued predictable

}
.

Proof. The predictable processes e1, . . . , ed with the properties 1)–4) are the
column vectors of the measurable projection-valued mapping constructed in
Lemma 6.2.1 in [32]. Therefore their existence follows immediately from the
construction given there.

By Lemma I.3 in [71], there always exists a probability measure Q as in
Lemma 5.1, and therefore the space [0]S satisfies the assumptions of Lemma
5.2. So we take a “basis” e1, . . . , ed as in the latter result and define ΠS as
in (5.2) by

ΠS := 1d×d −
d∑
j=1

ej(ej)>.

Then ΠS(ω, t) is the projection on the orthogonal complement of the linear
space spanned in Rd by e1(ω, t), . . . , ed(ω, t) so that ΠS(ω, t)γ is orthogonal
to all ei(ω, t) for each γ ∈ Rd; and Lemma 5.2 says that each element of [0]S

is a (random and time-dependent) linear combination of e1, . . . , ed, and vice
versa. In particular, ϑ − ΠSϑ is in [0]S for every predictable Rd-valued ϑ.
The next result shows that ΠS satisfies the properties required in Definition
4.1. Note that ΠS is only defined up to PB-nullsets since the ej are; so we
have to choose one version for ΠS to be specific.

Lemma 5.3 (Projection on the predictable range of S). For a semimartin-
gale S, the projection ΠS on the predictable range of S exists, i.e. there exists
a predictable process ΠS : Ω → Rd×d which takes values in the orthogonal
projections in Rd and has the following property: If ϑ ∈ L(S) and ψ is an
Rd-valued predictable process, then

ψ ∈ L(S) with ψ · S = ϑ · S ⇐⇒ ΠSψ = ΠSϑ PB-a.e. (5.4)

Proof. If we define ΠS as above, Lemma 5.2 implies that ΠS is predictable
and valued in the orthogonal projections in Rd, and it only remains to check
(5.4). So take ϑ ∈ L(S) and assume first that ΠSϑ = ΠSψ PB-a.e. The
definition of ΠS and Lemma 5.1 then yield that ϑ − ΠSϑ and ΠSϑ − ΠSψ
are in [0]S , which implies that ΠSϑ = ϑ−

(
ϑ− ΠSϑ

)
and ΠSψ are in L(S)

and also that ϑ · S = (ΠSϑ) · S = (ΠSψ) · S. Because also ψ − ΠSψ is in
[0]S ⊆ L(S), we conclude that ψ ∈ L(S) with ϑ · S = ψ · S. Conversely, if
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ψ ·S = ϑ·S, then ψ−ϑ ∈ [0]S , and we always have (ψ−ϑ)−ΠS(ψ−ϑ) ∈ [0]S .
Therefore ΠS(ψ−ϑ) ∈ [0]S which says by Lemma 5.2 that for PB-a.e. (ω, t),
ΠS(ψ − ϑ)(ω, t) is a linear combination of the ei(ω, t). But the column
vectors of ΠS are orthogonal to e1, . . . , ed for each fixed (ω, t), and so we
obtain ΠS(ψ − ϑ) = 0 PB-a.e., which completes the proof.

With the existence of the projection on the predictable range established,
it remains to prove Lemmas 4.3 and 4.4, which we recall for convenience.

Lemma 4.3. Let (ϑn) be a sequence in L(S) such that ϑn · S → ϑ · S in
S(P ). Then there exists a subsequence (nk) such that ΠSϑnk → ΠSϑ PB-a.e.

Proof. As in the proof of Theorem V.4 in [71], we can switch to a probability
measure Q ∼ P such that dQdP is bounded, S−S0 = MQ+AQ is inM2,d(Q)⊕
A1,d(Q) and ϑn ·S → ϑ ·S inM2,d(Q)⊕A1,d(Q) along a subsequence, again
indexed by n. Since ϑn ·S → ϑ ·S inM2,1(Q)⊕A1,1(Q), we obtain by using
(4.1) with BQ = B that

EQ

[∫ ∞
0

(ϑns − ϑs)>ĉQs (ϑns − ϑs)dBs +

∫ ∞
0

∣∣(ϑns − ϑs)>aQs ∣∣dBs] −→ 0

as n→∞, which implies that there exists a subsequence, again indexed by
n, such that

(ϑn − ϑ)>ĉQ(ϑn − ϑ)→ 0 and |(ϑn − ϑ)>aQ| → 0 Q⊗B-a.e. (5.5)

Since PB ∼ Q⊗B, Lemma 5.1 gives

[0]S =
{
ϕ ∈ L0

(
Ω,P;Rd

) ∣∣ ĉQϕ = 0 and (aQ)>ϕ = 0 Q⊗B-a.e.
}
.

Let e1, . . . , ed be predictable processes from Lemma 5.2 which satisfy prop-
erties 1)–4) for [0]S and set

U =
{
ψ ∈ L0

(
Ω,P;Rd

) ∣∣∣ ψ>ϕ = 0 Q⊗B-a.e. for all ϕ ∈ [0]S
}
,

V =
{
ψ ∈ L0

(
Ω,P;Rd

) ∣∣∣ ψ>ϕ = 0 Q⊗B-a.e. for all ϕ ∈ [0]M
Q
}

so that loosely speaking, U⊥ = [0]S and V ⊥ = [0]M
Q
. Then [0]M

Q ∩ U
and [0]A

Q ∩ V satisfy the assumptions of Lemma 5.2 and thus there exist
predictable processes u1, . . . , ud and v1, . . . , vd with the properties 1)–4) for
[0]M

Q ∩U and [0]A
Q ∩ V , respectively. By the definition of U and V we also

obtain, using [0]S = [0]M
Q ∩ [0]A

Q , that

(ej)>uk = (ej)>vk = (uj)>vk = 0 Q⊗B-a.e. for j, k = 1, . . . , d
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and

[0]M
Q

=

{
d∑
j=1

hjej +

d∑
k=1

hd+kuk

∣∣∣∣∣ h1, . . . , h2d real-valued predictable

}
,

[0]A
Q

=

{
d∑
j=1

hjej +

d∑
k=1

hd+kvk

∣∣∣∣∣ h1, . . . , h2d real-valued predictable

}

up to Q⊗B-a.e. equality. Therefore ΠMQ and ΠAQ can be written as

ΠMQ
= 1d×d −

d∑
j=1

ej(ej)> −
d∑

k=1

uk(uk)>,

ΠAQ = 1d×d −
d∑
j=1

ej(ej)> −
d∑

k=1

vk(vk)>,

and we have (
d∑

k=1

vk(vk)>

)
ΠAQϑn =

(
d∑

k=1

vk(vk)>

)
ϑn, (5.6)

all up to Q ⊗ B-a.e. equality. Since ΠMQ
(ϑn − ϑ) and ΠAQ(ϑn − ϑ) are by

Lemma 5.1 Q⊗ B-a.e. valued in Im(ĉQ) and Im
(
(aQ)>

)
, respectively, (5.5)

yields ΠMQ
ϑn → ΠMQ

ϑ and ΠAQϑn → ΠAQϑ Q ⊗ B-a.e. From the latter
convergence and (5.6), it follows that(

d∑
k=1

vk(vk)>

)
ϑn →

(
d∑

k=1

vk(vk)>

)
ϑ Q⊗B-a.e.,

and since Q⊗B ∼ PB and

ΠS = ΠMQ
+

d∑
k=1

vk(vk)> Q⊗B-a.e.,

we obtain that ΠSϑn → ΠSϑ PB-a.e. by combining everything.

The only result whose proof is now still open is Lemma 4.4. This provides
the general (and fairly abstract) version of the counterexample in Section
III.3, as well as the necessity part for the equivalence in Theorem 4.5.

Lemma 4.4. Let C : Ω → 2R
d \ {∅} be a predictable correspondence with

closed values and such that the projection on the predictable range of S is
not closed, i.e.

F̃ =
{

(ω, t) ∈ Ω
∣∣ ΠS(ω, t)C(ω, t) is not closed

}
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has outer PB-measure > 0. Then there exist ϑ ∈ L(S) and a sequence (ψn)
of C-valued integrands such that ψn · S → ϑ · S in S(P ), but there is no
C-valued integrand ψ such that ψ · S = ϑ · S. Equivalently, there exists a

sequence
(
[ψn]

)
in [C]S such that [ψn]

L(S)→ [ϑ] but [ϑ] /∈ [C]S, i.e. [C]S is not
closed in L(S).

Proof. The basic idea is to construct a ϑ ∈ L(S) which is valued in ΠSC \
ΠSC on some F ∈ P with F ⊆ F̃ and PB(F ) > 0, and in C on F c. Then
there exists no C-valued integrand ψ ∈ [ϑ] by the definition of ΠS since
ΠSϑ /∈ ΠSC on F ; but one can construct a sequence (ψn) of C-valued
integrands with ΠSψn → ΠSψ pointwise since ΠSϑ ∈ ΠSC. However, this is
technically a bit more involved for several reasons: While C, ΠSC and ΠSC
are all predictable, (ΠSC)c need not be; so F̃ need not be predictable, and
one cannot use Proposition 2.3 to obtain a predictable selector. In addition,
ΠSC \ΠSC need not be closed-valued.

We first argue that F̃ is PPB -measurable. Let B(0, n) be a closed ball
of radius n in Rd. Then ΠS

(
C ∩ B(0, n)

)
is compact-valued as C is closed-

valued. Since C is predictable and ΠS(ω, t)x with x ∈ Rd is a Carathéodory
function, ΠSC is predictable by Proposition 2.7. By the same argument,
ΠS
(
C ∩B(0, n)

)
= ΠS

(
C ∩B(0, n)

)
is predictable since C ∩B(0, n) is, and

then so is ΠSC =
∞⋃
n=1

ΠS
(
C ∩ B(0, n)

)
as a countable union of predictable

correspondences; see Proposition 2.8. Then Proposition 2.6 implies that ΠSC
and ΠS

(
C ∩B(0, n)

)
have predictable graph; hence so does ΠSC. Therefore

gr(ΠSC) ∩
(
gr(ΠSC)

)c is P ⊗B(Rd)-measurable, and so by Proposition 2.5,

F̃ =
{

(ω, t) ∈ Ω
∣∣ ΠS(ω, t)C(ω, t) is not closed

}
=
{

(ω, t) ∈ Ω
∣∣ ΠS(ω, t)C(ω, t) \ΠS(ω, t)C(ω, t) 6= ∅

}
= πΩ

(
gr(ΠSC) ∩

(
gr(ΠSC)

)c)
is indeed PPB -measurable. Thus there exists a predictable set F ⊆ F̃ with
PB(F ) > 0.

Now fix some C-valued integrand ψ̃ ∈ L(S) and define the correspon-
dence C ′ by

C ′(ω, t) =

{
ΠS(ω, t)C(ω, t) \ΠS(ω, t)C(ω, t) for (ω, t) ∈ F,
ψ̃(ω, t) else.

Then C ′ has non-empty values and predictable graph and therefore admits
a PB-a.e. predictable selector ϑ by Proposition 2.4. By possibly subtracting
a predictable PB-nullset from F , we can without loss of generality assume
that ϑ takes values in C ′. Moreover, the predictable sets Fn := F ∩{|ϑ| ≤ n}
increase to F and so we can, by shrinking F to some Fn if necessary, assume
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that ϑ is uniformly bounded in (ω, t) on F . Let {ϕm | m ∈ N} be a Castaing
representation of C as in Proposition 2.3. Then ΠSC = {ΠSϕm | m ∈ N},
and because ϑ ∈ ΠSC, we can find for each n ∈ N a predictable process
ψn such that ΠS(ω, t)ψn(ω, t) ∈ ϑ(ω, t) + B(0, 1

n) on F and ψn = ψ̃ on F c.
Note that on F , we have ϑ ∈ ΠSC ⊆ ΠSRd and therefore ΠSϑ = ϑ; so
ΠSϑ = 1Fϑ+1F cΠ

Sψ̃ and this shows that ΠSψn → ΠSϑ uniformly in (ω, t)
by construction. Since ΠSϑ ∈ L(S) because ϑ is bounded on F , we thus first
get ΠSψn ∈ L(S), hence ψn ∈ L(S), and then also that ψn · S → ϑ · S in
S(P ) by dominated convergence. But now {ΠSϑ} ∩ ΠSC = ∅ on F shows
by Lemma 5.3 that there exists no C-valued integrand ψ ∈ [ϑ] and therefore
[ϑ] /∈ [C]. This ends the proof.

III.6 Related work

We have already explained how our results generalise most of the existing
literature on optimisation problems under constraints. In this section, we
discuss the relation to the work of Karatzas and Kardaras [54].

We start by introducing the terminology of [54]. For a given S with
triplet (b, c, F ), the linear subspace of null investments N is given by the
predictable correspondence

N(ω, t) :=
{
z ∈ Rd

∣∣ z>c(ω, t) = 0, z>b(ω, t) = 0

and F (ω, t)({x | z>x 6= 0}) = 0
}

(see Definition 3.6 in [54]). Note that we use F instead of ν and that our B
is slightly different than in [54]. But this does not affect the definition of N.
As in Definition 3.7 in [54], a correspondence C : Ω→ 2R

d is said to impose
predictable closed convex constraints if

0) N(ω, t) ⊆ C(ω, t) for all (ω, t) ∈ Ω,

1) C(ω, t) is a closed and convex set for all (ω, t) ∈ Ω, and

2) C is predictable.

To avoid confusion, we call constraints with 0)–2) KK-constraints in the
sequel.

In the comment following their Theorem 4.4 on p. 467 in [54], Karatzas
and Kardaras (KK) remark that C · S is closed in S(P ) if C describes KK-
constraints. For comparison, our Theorem 4.5 starts with C which is pre-
dictable and has closed values, and shows that C · S is then closed in S(P )
if and only if ΠSC is closed PB-a.e. So we do not need convexity of C, and
our condition on C and S is not only sufficient, but also necessary.
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Before explaining the connections in more detail, we make the simple but
important observation that

0) plus 1) imply that C + N = C (for all (ω, t) ∈ Ω). (6.1)

Indeed, eachN(ω, t) is a linear subspace, hence contains 0, and so C ⊆ C+N.
Conversely, 1

εz ∈ N ⊆ C for every z ∈ N and ε > 0 due to 0); so for every
c ∈ C, (1− ε)c+ z ∈ C by convexity and hence c+ z = lim

ε↘0
(1− ε)c+ z is in

C by closedness, giving C + N ⊆ C.
As a matter of fact, KK say, but do not explicitly prove, that C · S is

closed in S(P ). However, the clear hint they give suggests the following
reasoning. Let (ϑn) be a sequence in C such that (ϑn · S)→ X in S(P ). By
the proof of Theorem V.4 in [71], there exist ϑ̃n ∈ [ϑn] and ϑ ∈ L(S) such
that ϑ · S = X and ϑ̃n → ϑ PB-a.e. From the description of N in Section
3.3 in [54], ϑ̃n ∈ [ϑn] translates into ϑ̃n − ϑn ∈ N PB-a.e. or ϑ̃n ∈ ϑn + N
PB-a.e. Because each ϑn has values in C, (6.1) thus shows that each ϑ̃n can
be chosen to be C-valued, and by the closedness of C, the same is then true
for the limit ϑ of (ϑ̃n). Hence we are done.

In order to relate the KK result to our work, we now observe that

0) plus 1) imply that ΠSC is closed PB-a.e.

To see this, we start with the fact that the null investments N and [0]S are
linked by

[0]S = {ϕ | ϕ is Rd-valued predictable with ϕ ∈ N PB-a.e.}; (6.2)

see Section 3.3 in [54]. Recalling that ΠS is the projection on the orthogonal
complement of [0]S , we see from (6.2) that the column vectors of ΠS are
PB-a.e. a generating system of N⊥ so that the projection of ϑ ∈ L(S) on the
predictable range of S can be alternatively defined PB-a.e. as a predictable
selector of the closed-valued predictable correspondence {ϑ + N} ∩ N⊥ or
PB-a.e. as the pointwise projection ΠN(ω,t)ϑ(ω, t) in Rd of ϑ(ω, t) on N(ω, t),
which is always a predictable process. This yields ΠSC = {C+N}∩N⊥ PB-
a.e.; but by (6.1), C+N = C due to 0) and 1), and so ΠSC is PB-a.e. closed
like C and N⊥.

In the KK notation, we could reformulate our Theorem 4.5 as saying that
for a predictable and closed-valued C, the space C ·S is closed in S(P ) if and
only if C + N is closed PB-a.e. This is easily seen from the argument above
showing that ΠSC = {C + N} ∩N⊥ PB-a.e. If C is also convex-valued, 0)
is a simple and intuitive sufficient condition; it seems however more difficult
to find an elegant formulation without convexity.

The difference between our constraints and the KK formulation in [54]
is as follows. We fix a set C of constraints and demand that the strategies
should lie in C pointwise, so that ϑ(ω, t) ∈ C(ω, t) for all (ω, t). KK in
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contrast only stipulate that ϑ(ω, t) ∈ C(ω, t) + N(ω, t) or, equivalently, that
[ϑ] ∈ [C]. At the level of wealth (which is as usual in mathematical finance
modelled by the stochastic integral ϑ · S), this makes no difference since all
N-valued processes have integral zero. But for practical checking and risk
management, it is much simpler if one can just look at the strategy ϑ and tick
off pointwise whether or not it lies in C. If S has complicated redundancy
properties, it may be quite difficult to see whether one can bring ϑ into C
by adding something from N. Of course, when discussing the closedness of
the space of integrals ϑ ·S, we face the same level of difficulty when we have
to check whether ΠSC is closed PB-a.e. But for actually working with given
strategies, we believe that our formulation of constraints is more natural and
simpler to handle.



Chapter IV

On the Markowitz problem
under cone constraints

IV.1 Introduction

Mean-variance portfolio selection is a classical problem in finance. It con-
sists of finding in a financial market a self-financing trading strategy whose
final wealth has maximal mean and minimal variance. It is often called the
Markowitz problem after its inventor Harry Markowitz who proposed it in a
one-period setting as a formulation for portfolio optimisation; see [69] and
[70]. We study this problem here in continuous time in a general semimartin-
gale model and under cone constraints, meaning that each allowed trading
strategy is restricted to always lie in a closed cone which might depend on
the state and time in a predictable way. For applications in the management
of pension funds and insurance companies, the inclusion of such constraints
into the setup is very useful as they allow to model regulatory restrictions,
like for example no shortselling.

As in the unconstrained case, the solution to the Markowitz problem can
be obtained by solving the particular mean-variance hedging problem of ap-
proximating in L2 a constant payoff by the terminal gains of a self-financing
trading strategy. To get existence of a solution to the latter problem, we
show first that the space GT (C) of constrained terminal gains is closed in
L2; this is sufficient if the constraints, and hence GT (C), are in addition
convex. Our approach here combines the space of (L2-)admissible trading
strategies of Černý and Kallsen [14] with E-martingales, a generalisation of
martingales introduced by Choulli, Krawczyk and Stricker [16]. The latter
notion comes up naturally in quadratic optimisation problems in mathemati-
cal finance due to the negative “marginal utility” of the square function. The
closedness result and hence the existence of optimal strategies for the con-
strained Markowitz problem constitute a first major contribution, especially
in view of the generality of our setting.
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Our main focus and achievement, however, is the subsequent structural
description of the optimal strategy by its local properties. This is made
possible by treating the approximation in L2 as a problem in stochastic
optimal control and systematically using ideas and results from there. By
exploiting the quadratic and conic structure of our task, we first obtain a
decomposition of its value process J(x, ϑ) into a sum involving two auxiliary
coefficient processes. This is similar to the results by Černý and Kallsen [14]
in the unconstrained case, but now requires two opportunity processes L±,
due to the constraints. An analogous opportunity process also plays a central
role in the analysis by Nutz [75] of power utility maximisation, and some
of the ideas and techniques are similar. Using the martingale optimality
principle for J(x, ϑ) next allows us to describe first the drift of L± and
from there the optimal strategy locally in feedback form via the pointwise
minimisers of two predictable functions g±; these are given in terms of the
joint differential semimartingale characteristics of the opportunity processes
L± and the price process S. The drift equations can also be rewritten as
a system of coupled backward stochastic differential equations (BSDEs) for
L±, and we show that the opportunity processes are the maximal solutions
of this system. This is motivated by a similar result in [75]. Conversely, we
also prove verification results saying that if we have minimisers of g± (or a
solution to the BSDE system), then we can construct from there an optimal
strategy. This explains and generalises all results so far in the literature on
the Markowitz problem under cone constraints; see [66], [49], [63] and [53].

The generality of our framework allows us to capture a new behaviour
of the optimal strategy: It jumps from the minimiser of one predictable
function to that of a second one, whenever the optimal wealth process of
the approximation problem changes sign. Because this phenomenon is due
to jumps in the price process S of the underlying assets, it could not be
observed in earlier work since the Markowitz problem under constraints has
so far only been studied in (continuous) Itô process models. Not surprisingly,
the presence of jumps and the resulting nontrivial coupling of the BSDEs
make the situation more involved; we explain in Section IV.6 how things
quickly simplify if S is continuous. The usefulness of our general results
can also be illustrated by applying them to Lévy processes. Here the two
random equations for the joint differential characteristics of L± and S reduce
to two coupled ordinary differential equations. These allow us to describe the
solution explicitly, and it turns out that its behaviour is quite different than
in the unconstrained case; the details and examples illustrating the various
effects have been worked out and will be presented elsewhere.

The chapter is organised as follows. Section IV.2 gives a precise formula-
tion of the problem, recalls basic results on predictable correspondences and
proves the closedness in L2 of the space of constrained terminal gains. In Sec-
tion IV.3, we use dynamic programming arguments to establish the general
structure of the value process J(x, ϑ) in terms of the opportunity processes
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L±. Section IV.4 exploits this via the martingale optimality principle to
derive the local description of the optimal strategy and the characterisation
of the opportunity processes via coupled BSDEs. Section IV.5 contains the
more computational parts of the proofs from Section IV.4, and Section IV.6
concludes with a comparison to related work.

IV.2 Formulation of the problem and preliminaries

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t≤T satisfying
the usual conditions of completeness and right-continuity, where T > 0 is
a fixed and finite time horizon. We can and do choose for every local P -
martingale a right-continuous version with left limits (RCLL for short). All
unexplained notation concerning stochastic integration can be found in the
books of Jacod and Shiryaev [52] and Protter [80]. For local martingales, we
use the definition in [80].

We consider a financial market consisting of one riskless asset, whose (dis-
counted) price is 1, and d risky assets described by an Rd-valued RCLL semi-
martingale S = (St)0≤t≤T . We suppose that S is locally square-integrable,
S ∈ H2

loc(P ), in the sense that S is special with canonical decomposition
S = S0 + M + A, where M is an Rd-valued locally square-integrable local
martingale null at zero, M ∈ M2

0,loc(P ), and A is an Rd-valued predictable
RCLL process of finite variation and null at zero. Using semimartingale
characteristics, we write 〈M〉 = c̃M • B and A = bS • B, where all processes
are predictable, B is RCLL and strictly increasing and null at 0, and c̃M

is d × d-matrix-valued. For details, see Section II.2 in [52] or Section IV.4
below. On the product space Ω := Ω × [0, T ] with the predictable σ-field
P, define PB := P ⊗ B. As trading strategies available for investment, we
consider a set C of S-integrable, Rd-valued, predictable processes; this will
be specified more precisely later. We call C unconstrained if C is a linear
subspace and constrained otherwise. By trading with a strategy ϑ ∈ C up to
time t ∈ [0, T ] in a self-financing way, an investor with initial capital x ∈ R
can generate the wealth

Vt(x, ϑ) := x+
∫ t

0 ϑu dSu =: x+ ϑ • St.

In this chapter, we understand mean-variance portfolio selection as in the
usual Markowitz problem, i.e. as the static optimisation problem of finding
a (dynamic) self-financing trading strategy whose final wealth has maximal
mean and minimal variance. This is static in the sense that we only con-
sider the optimisation at the initial time 0 without looking at intermediate
conditional versions. Mathematically, this can be formulated as

maximise E[VT (x, ϑ)]− γ

2
Var[VT (x, ϑ)] over all ϑ ∈ C, (2.1)
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where the parameter γ > 0 describes the risk aversion of the investor. The
most common alternative formulation is to

minimise Var[VT (x, ϑ)] = E
[
|VT (x, ϑ)|2

]
−m2

subject to E[VT (x, ϑ)] = m > x and ϑ ∈ C. (2.2)

If C = K is a cone, we obtain from the purely geometric structure of the
optimisation problems the following global description of the solutions to
(2.1) and (2.2).

Lemma 2.1. If C = K is a cone, the solutions to (2.1) and (2.2) are given
by

ϑ̃ =
1

γ

1

E[1− ϕ̃ • ST ]
ϕ̃ and ϑ̃(m,x) =

m− x
E[1− ϕ̃ • ST ]

ϕ̃, (2.3)

respectively, where ϕ̃ is the solution to

minimise E
[
|VT (−1, ϑ)|2

]
= E

[
|1− ϑ • ST |2

]
over all ϑ ∈ C. (2.4)

Proof. This follows from the arguments in the proof of Proposition 3.1 and
Theorem 4.2 in [92] which are derived in an abstract L2-setting by Hilbert
space arguments. Note that the convexity assumed in [92] is not necessary
for the equations (2.3) to hold; it is used in [92] only for the existence of a
solution to (2.4), which we do not assert here.

If C is a convex set, but not necessarily a cone, one can under suitable
feasibility conditions still establish the existence of a solution to (2.1) and
(2.2) by using Lagrange multipliers; see [63] and [34]. However, these solu-
tions admit less structure so that their dynamic behaviour over time cannot
be described very explicitly. We therefore concentrate from Section IV.3
onwards on constraints which are given by cones. Before that, however, we
want to prove existence of an optimal strategy in a continuous-time setting.

We first observe that despite its simplicity, Lemma 2.1 is very useful
as it relates the solution to the Markowitz problems (2.1) and (2.2) to the
solution of a constrained mean-variance hedging problem, namely minimising
the mean-squared hedging error between a given payoff H ∈ L2(P ) and a
constrained self-financing trading strategy, i.e. to

minimise E
[
|VT (x, ϑ)−H|2

]
= E

[
|x+ ϑ • ST −H|2

]
over all ϑ ∈ C.

(2.5)
Indeed, (2.4) corresponds to the very particular version of this problem with
H ≡ 0 and x = −1, or H ≡ 1 and x = 0. Since (2.5) is an approxima-
tion problem in the Hilbert space L2(P ), it admits a solution for arbitrary
H ∈ L2(P ) if the space

GT (C) = {ϑ • ST |ϑ ∈ C}
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of terminal constrained gains is convex and closed in L2(P ). Such con-
strained mean-variance hedging problems in a general semimartingale frame-
work have been studied in Chapter II. As explained there, one can formulate
constraints on trading strategies and then adapt closedness results from the
unconstrained case to obtain closedness under constraints as well. This needs
a suitable choice of strategies and constraints which we now introduce.

Conceptually, our choice of space of strategies can be traced back to
Černý and Kallsen [14]. They start with simple integrands of the form
ϑ =

∑m−1
i=1 ξiIKσi,σi+1K with stopping times 0 ≤ σ1 ≤ · · · ≤ σm ≤ τn ≤ T for

some n ∈ N and bounded Rd-valued Fσi-measurable random variables ξi for
i = 1, . . . ,m − 1, where (τn) is a localising sequence of stopping times with
Sτn ∈ H2(P ). Their (L2-)admissible strategies are then those integrands
ϑ ∈ L(S) for which there exists a sequence (ϑn)n∈N of simple integrands
such that

1) ϑn • ST
L2(P )−→ ϑ • ST .

2) ϑn • St
P−→ ϑ • St for all t ∈ [0, T ].

A discussion why such a class of strategies is economically reasonable and
mathematically useful can be found in [14]. For our purposes, we need to
modify that definition a little.

Instead of simple strategies, another natural space of strategies coming
from the construction of the stochastic integral is Θ := ΘS := L2(M)∩L2(A)
with

L2(M) :=
{
ϑ ∈ L0(Ω,P;Rd)

∣∣ ‖ϑ‖L2(M) :=
(
E
[ ∫ T

0 ϑ>s d〈M〉s ϑs
]) 1

2 <∞
}
,

L2(A) :=
{
ϑ ∈ L0(Ω,P;Rd)

∣∣ ‖ϑ‖L2(A) :=
(
E
[( ∫ T

0 |ϑ
>
s dAs|

)2]) 1
2 <∞

}
.

Next, the trading constraints we consider are formulated via predictable
correspondences.

Definition 2.2. A correspondence is a mapping C : Ω → 2R
d . We call

a correspondence C predictable if C−1(F ) := {(ω, t) |C(ω, t) ∩ F 6= ∅} is a
predictable set for all closed sets F ⊆ Rd. The domain of a correspondence C
is dom(C) := {(ω, t) |C(ω, t) 6= ∅}. A (predictable) selector of a (predictable)
correspondence C is a (predictable) process ψ with ψ(ω, t) ∈ C(ω, t) for all
(ω, t) ∈ dom(C).

For a correspondence C : Ω→ 2R
d \ {∅}, the sets of C-valued or C-con-

strained integrands and of square-integrable C-constrained trading strategies
are given by

C := CS := {ϑ ∈ L(S) |ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω},
Θ(C) := Θ ∩ C = {ϑ ∈ Θ |ϑ(ω, t) ∈ C(ω, t) for all (ω, t) ∈ Ω}.



70 IV On the Markowitz problem under cone constraints

Definition 2.3. A trading strategy ϑ ∈ C is called C-admissible (in L2(P ))
if there exists a sequence (ϑn)n∈N in Θ(C), called approximating sequence
for ϑ, such that

1) ϑn • ST
L2(P )−→ ϑ • ST .

2) ϑn • Sτ
P−→ ϑ • Sτ for all stopping times τ .

The set of all C-admissible trading strategies is called Θ(C), and we set
Θ := Θ(Rd).

In comparison to Černý and Kallsen [14], there are two differences. In-
stead of using simple strategies for the approximation, we use strategies
from Θ(C); the reason is that it can easily happen with time-dependent con-
straints that no simple strategy satisfies them. (The constraints can also be
so bad that no strategy in Θ satisfies them either; but such situations are
almost pathological.) The second difference is that we stipulate 2) for all
stopping times τ and not only for deterministic times t; this is needed for
dynamic programming arguments, as explained at the end of this section.

Before addressing the issue of closedness of GT (Θ(C)) in L2(P ), we re-
call some results on predictable correspondences, used later to ensure the
existence of predictable selectors.

Proposition 2.4 (Castaing). For a correspondence C : Ω→ 2R
d with closed

values, the following are equivalent:

1) C is predictable.

2) dom(C) is predictable and there exists a Castaing representation of C,
i.e. a sequence (ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t), ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

In particular, every predictable C admits a predictable selector ψ.

Proof. See Corollary 18.14 in [2] or Theorem 1B in [83].

Proposition 2.5. Let C : Ω → 2R
d be a predictable correspondence with

closed values and f : Ω × Rm → Rd and g : Ω × Rd → Rm Carathéodory
functions, which means that f(ω, t, y) and g(ω, t, x) are predictable with re-
spect to (ω, t) and continuous in y and x. Then the mappings C ′ and C ′′

given by
C ′(ω, t) = {y ∈ Rm | f(ω, t, y) ∈ C(ω, t)}

and
C ′′(ω, t) = {g(ω, t, x) |x ∈ C(ω, t)}

are predictable correspondences (from Ω to 2R
m) with closed values.
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Proof. See Corollaries 1P and 1Q in [83].

Proposition 2.6. Let Cn : Ω → 2R
d for each n ∈ N be a predictable cor-

respondence with closed values and define the correspondences C ′ and C ′′ by
C ′(ω, t) =

⋂
n∈N

Cn(ω, t) and C ′′(ω, t) =
⋃
n∈N

Cn(ω, t). Then C ′ and C ′′ are

predictable and C ′ is closed-valued.

Proof. See Theorem 1M in [83] and Lemma 18.4 in [2].

Now we aim to prove closedness in L2(P ) of the space GT (Θ(C)) of
constrained terminal gains. To that end, we combine the (modified) space
of (L2-)admissible trading strategies of Černý and Kallsen, studied in [14]
under the assumption that there exists an equivalent local martingale mea-
sure (ELMM) Q for S with dQ

dP ∈ L
2(P ), with the more general absence-of-

arbitrage condition that S is an E-local martingale, introduced by Choulli,
Krawczyk and Stricker in [16]. Since we are interested in solving (2.4), such
a generalisation is useful as a solution to (2.4) can exist even if there is no
ELMM for S. The simplest example for this occurs when S is a Poisson
process. Then one can compute straightforwardly that the solution to (2.4)
is given by ϕ̃ = 1J0,τK, where τ = inf{t > 0 |∆St = 1}∧T . To see that there
exists no E(L)MM, we simply observe that each integrand ϑ ≡ c > 0 is an
arbitrage opportunity.

Let us first recall the notion of an E-martingale. For a semimartingale Y ,
we denote its stochastic exponential by E(Y ). Throughout this chapter,
we let N stand for a local P -martingale null at zero and ZN for
a strictly positive adapted RCLL process. We shall see below how
N and ZN are related. For any stopping time τ , we denote the process Y
stopped at τ by Y τ and the process Y started at τ by τY := Y −Y τ ; but we
set τE(N) := E(N − N τ ). So for stochastic exponentials, τE(N) denotes a
multiplicative rather than an additive restarting. Since N is RCLL, it has at
most a finite number of jumps with ∆N = −1, and so each τE(N) has P -a.s.
at most a finite number of times where it can jump to zero; this follows from
the representation of the stochastic exponential in Theorem II.37 in [80].
Therefore we can define an increasing sequence of stopping times by T0 = 0
and Tm+1 = inf{t > Tm | TmE(N)t = 0} ∧ T .

Definition 2.7. An adapted RCLL process Y is an E-local martingale if the
product of TmY and TmE(N) is a local P -martingale for any m ∈ N. It is an
(E , ZN )-martingale if for anym ∈ N we have E

[
|YTmZNTm

TmE(N)Tm+1 |
]
<∞

and the product of TmY and ZNTm
TmE(N) is a (true) P -martingale.

In comparison to Definition 3.11 in [16], we have generalised the definition
of E-martingales to (E , ZN )-martingales by introducing the process ZN . This
is needed for a clean formulation of our results, but it also makes intuitive
sense. Suppose Q is an equivalent martingale measure for Y and write its
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density process with respect to P as ZQ = ZQ0 E(NQ). By the Bayes rule, the
product Y ZQ is then a P -martingale and so is 0Y ZQ = (Y − Y0)ZQ. One
consequence is that the product of 0Y and E(NQ) is a local P -martingale
so that Y is an E(NQ)-local martingale. (Of course, ZQ > 0 implies that
Tm ≡ T for m ≥ 1.) We also have that 0Y ZQ0 E(NQ) is a true P -martingale
so that Y is an (E(NQ), ZQ)-martingale. But unless we know more about
ZQ0 , we cannot assert that the product 0Y E(NQ) is a true P -martingale
(since it need not be P -integrable); so Y is not an E(NQ)-martingale in
the sense of [16]. Hence we see that in the abstract definition, ZNTm plays a
similar role at time Tm as the density ZQ0 of Q at time 0, and its main role
is to ensure integrability properties. (This is not needed in [16] because the
authors there work with Y = ϑ • S ∈ H2(P ) and assume that E(N) satisfies
the reverse Hölder inequality R2(P ). In our notation, this allows to take
ZN ≡ 1.)

Remark 2.8. If N is as above a local martingale, then Jm := 1KTm,T K •

E(1KTm,T K • N) is for each m also a local martingale; if N is in addition
locally square-integrable, then so is Jm; and both statements still hold if we
multiply Jm by a strictly positive FTm-measurable random variable. There
is no problem with adaptedness since Jm = 0 on KTm, T K.

Conversely – and this will be used later – suppose N is a semimartingale.
If Jm is for each m a local martingale, then writing Jm = (E(1KTm,T K •

N)−1KTm,T K) • N and observing that E(1KTm,T K • N)− 6= 0 on KTm, Tm+1K by
the definition of Tm shows that 1KTm,Tm+1K • N is a local martingale for each
m, and then so is N . Again this still holds if we replace Jm by βmJm for an
FTm-measurable βm > 0, and again local square-integrability transfers, from
Jm (or βmJm) to N .

The next two propositions give some information about the structure of
E-local martingales and (E , ZN )-martingales. The results are almost literally
taken from Corollaries 3.16 and 3.17 in [16]; the proofs there still work for
our generalisation.

Proposition 2.9. Let Y be a special semimartingale and Y = Y0+MY +AY

its canonical decomposition. Then Y is an E-local martingale if and only if
[MY , N ] is locally P -integrable and AY = −〈MY , N〉.

Proposition 2.10. A semimartingale Y = Y0 + MY − 〈MY , N〉 satisfying
E
[
Y ∗T
(
ZNTm

TmE(N)
)∗
T

]
<∞ for any m ∈ N is an (E , ZN )-martingale.

We also need the following definitions.

Definition 2.11. We say that (E , ZN ) with E = E(N) is regular and square-
integrable if 1KTm,T K • (ZNTm

TmE(N)) is a square-integrable (true) P -martin-
gale and ZNTm is square-integrable for any m.
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Lemma 2.12. Suppose (E , ZN ) with E = E(N) is regular and square-inte-
grable. Let (Xn)n∈N be a sequence of (E , ZN )-martingales with Xn

T ∈ L2(P )
and Xn

T → H in L2(P ) as n→∞. Then there exist a subsequence (Xn`)`∈N
and an E-local martingale X given by XT = H and

Xt :=
E[H TmE(N)T |Ft]

TmE(N)t
on JTm, Tm+1J (2.6)

such that Xn` → X in the semimartingale topology (in S(P ), for short) as
`→∞. If E(N) satisfies the reverse Hölder inequality R1(P ), then X is an
(E , ZN )-martingale.

Proof. 1) To show that X above is an E-local martingale with XT = H, we
argue similarly as in the proof of Proposition 3.12.iii) in [16]. More precisely,
we exploit that we need not assume E(N) to satisfy Rq(P ) with q = 2 as
used there; it is sufficient to exploit that E(N) always satisfies R1(P ) in
a local sense. We define for each m ∈ N0 a sequence of stopping times
τmk = Tm1F ck +T1Fk with Fk :=

{
E
[
|TmE(N)T |

∣∣FTm] ≤ k} for k ∈ N. Then
we rewrite (2.6) after multiplication with ZNTm as

Lt := XtZ
N
Tm

TmE(N)t = E[XTZ
N
Tm

TmE(N)T |Ft] on JTm, Tm+1J (2.7)

and note that the right-hand side is in L1(P ) sinceXT =H and ZNTm
TmE(N)T

are both in L2(P ). Hence Lt1{Tm≤t<Tm+1} is in L1(P ) and so is then
XTmZ

N
Tm

TmE(N)Tm . To argue that X is an E-local martingale, we want
to prove that (TmXZNTm

TmE(N))τ
m
k is a P -martingale, and (2.7) already

gives the martingale property for the unstopped process TmL. So due to
TmX = X −XTm , the P -integrability of Lt and τmk ≥ Tm, it only remains to
show that

XTmZ
N
Tm

TmE(N)t∧τmk 1{Tm≤t<Tm+1} ∈ L
1(P ). (2.8)

But ZNTm
TmE(N) is a P -martingale and remains so after stopping by τmk , and

the final value of that stopped process is

ZNTm
TmE(N)τmk = ZNTm

TmE(N)Tm1F ck + ZNTm
TmE(N)T1Fk .

Multiplying by XTm , conditioning on FTm and using the definition of Fk
hence gives (2.8); indeed, we have

E
[
|XTmZ

N
Tm

TmE(N)T1Fk |
]

≤ E
[
|XTmZ

N
Tm

TmE(N)Tm |E[|E(N)T | | FTm ]1Fk
]
<∞.

This shows that X is an E-local martingale; and if E(N) satisfies R1(P ),
we have Fk = Ω, hence τmk = T , for k large enough so that X is even an
(E , ZN )-martingale.
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2) Now fix m ∈ N and take any subsequence of (Xn), again denoted by
(Xn) in this step for ease of notation. Set Y n,m := TmXn = Xn − (Xn)Tm

so that by the definition of (E , ZN )-martingales, the product of ZNTm
TmE(N)

and Y n,m is a martingale. Note that (Y n,m)τ
m
k = (Xn − (Xn)Tm)1Fk and

(Y m)τ
m
k = (X −XTm)1Fk for each k ∈ N. Since Xn

T → XT = H in L2(P )
and

Xn
t
TmE(N)t = E[Xn

T
TmE(N)T |Ft] on JTm, Tm+1J (2.9)

for the (E , ZN )-martingales Xn by (2.7), we obtain for n→∞ that

E
[
|(Xn

Tm+1∧τmk
−XTm+1∧τmk )ZNTm

TmE(N)Tm+1∧τmk |
]

≤ E
[
|(Xn

T −H)ZNTm
TmE(N)T |

]
≤ ‖Xn

T −H‖L2(P )‖ZNTm
TmE(N)T ‖L2(P )

tends to 0, and from the definition of τmk that for n→∞,

E
[
|(Xn

Tm+1∧τmk
−XTm+1∧τmk )ZNTm

TmE(N)Tm+1∧τmk |
]

= E
[
|E[(Xn

T −H) TmE(N)T |FTm ]ZNTm
TmE(N)Tm+1∧τmk |

]
≤ E

[
|(Xn

T −H)ZNTm
TmE(N)T |

]
k −→ 0.

This gives ZNTm
TmE(N)T∧τmk Y n,m

T∧τmk
→ ZNTm

TmE(N)T∧τmk Y m
T∧τmk

in L1(P ) as
n → ∞ because TmE(N)T = 0 on {Tm+1 < T}. Theorem 4.21 in [50] then
yields a subsequence (Y nj ,m)j∈N such that(

ZNTm
TmE(N)Y nj ,m

)τmk −→ (
ZNTm

TmE(N)Y m
)τmk locally in H1

loc
(P )

as j → ∞ and therefore ZNTm
TmE(N)Y nj ,m → ZNTm

TmE(N)Y m in S(P )

as j → ∞ by Theorem V.14 in [80]. Because 1
ZNTm

TmE(N)
1JTm,Tm+1J is a

semimartingale and the multiplication of semimartingales is continuous in
S(P ), we get Y nj ,m1JTm,Tm+1J → Y m

1JTm,Tm+1J in S(P ) as j → ∞. Note
that the subsequence (nj)j∈N depends on m.

3) Now we construct the desired subsequence (n`)`∈N by a diagonal ar-
gument, as follows. Start with m = 0 and the original sequence (Xn) to
obtain from step 2) a subsequence (nj(0))j∈N, and take n1 := n1(0). Then
take m = 1, apply step 2) for the subsequence (Xnj(0))j∈N to get a new sub-
sequence (nj(1))j∈N, and take n2 := n1(1). Iterating this procedure yields
our subsequence (n`)`∈N, and we claim that Xn` → X in S(P ) as ` → ∞.
To see this, use the definition of Y n,m to write

Xn` =
∞∑
m=0

Y n`1JTm,Tm+1J +

∞∑
m=0

Xn`
Tm
1JTm,Tm+1J +Xn`

T 1JT K. (2.10)

Since Y nj(m),m
1JTm,Tm+1J → Y m

1JTm,Tm+1J as j → ∞, the first sum con-
verges in S(P ) to

∞∑
m=0

Y m
1JTm,Tm+1J = X −

∞∑
m=0

XTm1JTm,Tm+1J −XT1JT K,
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where the equality now uses the definition of Y m = X − XTm . To obtain
the convergence of the second sum in (2.10), we observe that

E
[
|Xn

Tm −XTm |ZNTm
]

= E
[
|E[(Xn

T −H) TmE(N)T |FTm ]|ZNTm
]

≤ ‖Xn
T −H‖L2(P )‖ZNTm

TmE(N)T ‖L2(P )

by (2.9) for all m ∈ N0 and for m = ∞ with T∞ := T and therefore as
`→∞,
∞∑
m=0

ZNTmX
n`
Tm
1JTm,Tm+1J +Xn`

T 1JT K −→
∞∑
m=0

ZNTmXTm1JTm,Tm+1J +XT1JT K

(2.11)
locally in H1(P ) with the localising sequence (Tm). As local convergence in
H1(P ) implies convergence in S(P ) again by Theorem V.14 in [80], (2.11)
also holds in S(P ). Because

∑∞
m=0

1
ZNTm

1JTm,Tm+1J is a semimartingale and

the multiplication of semimartingales is continuous in S(P ), this completes
the proof.

Corollary 2.13. Suppose that (E , ZN ) with E = E(N) is regular and square-
integrable, S = S0 +M −〈M,N〉 is in H2

loc(P ) and (ϑn)n∈N is a sequence in
Θ such that ϑn • ST → H in L2(P ). Then ϑn • S is an (E , ZN )-martingale
for each n ∈ N, and there exist ϑ ∈ Θ with ϑ • ST = H and

ϑ • St =
E[(ϑ • ST ) TmE(N)T |Ft]

TmE(N)t
=
E[H TmE(N)T |Ft]

TmE(N)t
on JTm, Tm+1J

and a subsequence (ϑnk)k∈N in Θ such that ϑnk • S → ϑ • S in S(P ) as
k →∞.

Proof. By Proposition 2.10, S is an E-local martingale and ϑn • S is an
(E , ZN )-martingale for each n. Then Lemma 2.12 gives the existence of an
E-local martingale X and a subsequence (ϑnk) in Θ such that XT = H and
Xt = E[H TmE(N)T |Ft]

TmE(N)t
on JTm, Tm+1J and ϑnk • S → X in S(P ). As the space

of stochastic integrals is closed under convergence in S(P ) by Theorem V.4
in [71], there exists some ϑ ∈ L(S) with ϑ • S = X. Since convergence
in S(P ) implies ucp-convergence and therefore that ϑnk • Sτ → ϑ • Sτ in
probability for all stopping times τ , we obtain that ϑ ∈ Θ which completes
the proof.

To deal with the fact that different integrands may lead to the same
stochastic integral (or, in financial terms, that we may have redundant as-
sets), we introduce the projection on the predictable range. For a detailed
explanation of the related issues of selecting particular representatives of
equivalence classes of integrands as well as for sufficient conditions for the
closedness of the projection on the predictable range for certain correspon-
dences, we refer the reader to Chapter III.
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Proposition 2.14. For each Rd-valued semimartingale Y , there exists an
Rd×d-valued predictable process ΠY , called the projection on the predictable
range of Y , which takes values in the orthogonal projections in Rd and has
the following property: If ϑ is in L(Y ) and ϕ is predictable, then ϕ is in L(Y )
with ϕ • Y = ϑ • Y (up to indistinguishability) if and only if ΠY ϑ = ΠY ϕ
PB-a.e. We choose and fix one version of ΠY .

Proof. See Lemma 5.3 in Chapter III.

Example 2.15. For the frequently used Itô process models of the form

dY i
t

Y i
t

= (µit − rt) dt+

m∑
k=1

σikt dW
k
t ,

ΠY is the projection on the orthogonal complement of the kernel of σσ>. If
each σtσ>t is invertible (as is usually assumed), ΠY is just the identity. This
holds in particular when m = d and each σt is invertible, i.e. when the model
is complete without the constraints.

After these preparations, we obtain the closedness of GT (Θ(C)) by the
following theorem. We recall that this implies the existence of a solution
to the constrained mean-variance hedging problem (2.5), for any payoff
H ∈ L2(P ), if C has also convex values.

Theorem 2.16. Suppose that (E , ZN ) with E = E(N) is regular and square-
integrable and S = S0 + M − 〈M,N〉 is in H2

loc(P ) so that S is an E-local
martingale by Proposition 2.9. Let C : Ω→ 2R

d \ {∅} be a predictable corre-
spondence with closed values such that the projection of C on the predictable
range of S is closed, i.e. ΠS(ω, t)C(ω, t) is PB-a.e. closed. Then GT (Θ(C))
is closed in L2(P ).

Proof. Let (ϑn) be a sequence in Θ(C) with ϑn • ST → H in L2(P ). Using
the definition of Θ(C) and a diagonal argument yields a sequence (ϕn) in
Θ(C) with ϕn • ST → H in L2(P ). Then Corollary 2.13 implies that there
exist ϑ ∈ Θ with ϑ • ST = H and a subsequence, again indexed by n, with
ϕn • S → ϑ • S in S(P ). Since C • S = {ψ • S |ψ ∈ C} is closed in S(P ) by
Theorem 4.5 in Chapter III, the integrand ϑ can be chosen C-valued; this uses
the assumption on ΠSC. As convergence in S(P ) implies ucp-convergence,
we obtain ϕn • Sτ → ϑ • Sτ in probability for all stopping times τ , and
therefore ϑ is in Θ(C). This completes the proof.

Remark 2.17. Theorem 2.16 should be compared to the main result of
Theorem 3.12 in Chapter II. It has a considerably weaker assumption than
the latter and is therefore a stronger result in that respect. On the other
hand, Θ(C) is bigger than the space Θ(C) considered in Chapter II so that
one feels it could be easier for GT (Θ(C)) to be closed in L2(P ).
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Having clarified the existence of a solution to (2.5) or (2.4), our goal
in the sequel is to describe its structure in more detail. This is done via
stochastic control techniques and in particular dynamic programming, and
for that, we need certain properties for the space Θ(C) of strategies we work
with. This is the reason why we slightly changed the definition in comparison
to [14]: We want to show, without assuming that there exists an ELMM Q
for S with dQ

dP ∈ L
2(P ), that Θ(C) is stable under bifurcation and almost

stable.

Lemma 2.18. For any predictable correspondence C : Ω → 2R
d \ {∅}, the

space Θ(C) has the following properties:
1) Θ(C) is stable under bifurcation: If ϑ, ϕ are in Θ(C), σ is a stopping

time, F ∈ Fσ and ϑ1J0,σK = ϕ1J0,σK, then ψ = ϑ1F + ϕ1F c is also in Θ(C).

2) Θ(C) is almost stable: For all ϑ, ϕ in Θ(C), stopping times σ and
F ∈ Fσ with P [F ] > 0, there is for each ε ∈ (0, P [F ]) a set Fε ⊆ F in Fσ
with P [F \ Fε] ≤ ε such that

ψ := ϑ1F cε + (ϑ1J0,σK + ϕ1Kσ,T K)1Fε is in Θ(C)

and ϑ • Sσ is uniformly bounded on Fε.

Proof. By the definition of Θ(C), we must in both cases find a sequence

(ψn) in Θ(C) such that ψn • ST
L2(P )−→ ψ • ST and ψn • Sτ

P−→ ψ • Sτ for all
stopping times τ . We start with approximating sequences (ϑn) and (ϕn) in
Θ(C) for ϑ, ϕ ∈ Θ(C).

1) For ψn := ϑn1F + ϕn1F c ∈ Θ(C), the local character of stochastic
integrals yields

‖ψn • ST − ψ • ST ‖L2(P )

= ‖(ϑn • ST − ϑ • ST )1F + (ϕn • ST − ϕ • ST )1F c‖L2(P )
n→∞−→ 0

and, for all stopping times τ ,

ψn • Sτ = (ϑn • Sτ )1F+(ϕn • Sτ )1F c
P−→ (ϑ • Sτ )1F+(ϕ • Sτ )1F c = ψ • Sτ .

2) By Egorov’s theorem, we can find for each ε ∈ (0, P [F ]) a set Fε ∈ Fσ
with P [F \ Fε] ≤ ε such that ϑn • Sσ → ϑ • Sσ and ϕn • Sσ → ϕ • Sσ
uniformly on Fε. For the sequence ψn := ϑn1F cε + (ϑn1J0,σK + ϕn1Kσ,T K)1Fε
in Θ(C), we obtain again from the local character of stochastic integrals that∥∥ψn • ST − (ϑ1F cε + (ϑ1J0,σK + ϕ1Kσ,T K)1Fε

)
• ST

∥∥
L2(P )

≤ ‖(ϑn • ST − ϑ • ST )1F cε ‖L2(P ) + ‖(ϑn • Sσ − ϑ • Sσ)1Fε‖L2(P )

+ ‖(ϕn • Sσ − ϕ • Sσ)1Fε‖L2(P ) + ‖(ϕn • ST − ϕ • ST )1Fε‖L2(P )
n→∞−→ 0,
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where the first and the last term on the right-hand side converge to zero
by the choice of (ϑn) and (ϕn) and the two middle terms by the uniform
convergence on Fε. Since

ψn • Sτ = (ϑn • Sτ )1F cε + (ϑn • Sσ∧τ )1Fε + (ϕn • Sτ − ϕn • Sσ∧τ )1Fε ,

ψ • Sτ = (ϑ • Sτ )1F cε + (ϑ • Sσ∧τ )1Fε + (ϕ • Sτ − ϕ • Sσ∧τ )1Fε

for all stopping times τ again by the local character of stochastic integrals,
we obtain that ψn • Sτ

P−→ ψ • Sτ for all stopping times τ .
Finally, to get ϑ • Sσ uniformly bounded on Fε as well, one starts instead

of F with some F ′N := F ∩ {|ϑ • Sσ| ≤ N} ∈ Fσ. Then F ′N ↗ F , so P [F ′N ]
increases to P [F ] as N → ∞, and taking N(ε) large enough will give the
result. This completes the proof.

IV.3 Dynamic programming

In this section, we establish a dynamic description of the optimal strategy
for (2.4) by dynamic programming. To that end, we consider the problem to

minimise E
[
|VT (x, ϑ)|2

]
= E

[
|x+ ϑ • ST |2

]
over all ϑ ∈ Θ(K) (3.1)

for a fixed x ∈ R and a predictable correspondence K : Ω→ 2R
d \ {∅} with

closed cones as values. We view (3.1) as a stochastic optimal control problem
and want to study the corresponding value process.

We first need some notation. For any stopping time τ with values in
[0, T ], we denote by Sτ,T the family of all stopping times σ with τ ≤ σ ≤ T
(so that τ ∈ S0,T ). In order to describe the optimisation starting at time τ
with wealth x, we define for τ ∈ S0,T , σ ∈ Sτ,T and ϑ ∈ Θ(K) with ϑ = 0
on J0, τK the space

K(ϑ, σ; τ) :=
{
ϕ ∈ Θ(K)

∣∣ϕ = 0 on J0, τK and ϕ1Kτ,σK = ϑ1Kτ,σK
}

=
{
ϕ ∈ Θ(K)

∣∣ϕ1J0,σK = ϑ1J0,σK
}
.

Note that K(ϑ, σ;σ) = K(0, σ;σ). We then define for ϕ ∈ K(ϑ, σ; τ) the
random variables

Γ(ϕ, σ;x, τ, ϑ) := E
[
|VT (x, ϕ)|2

∣∣Fσ] = E
[
|x+

∫ σ
τ ϑu dSu +

∫ T
σ ϕu dSu|2

∣∣Fσ],
and for σ ∈ Sτ,T and ϑ ∈ Θ(K) with ϑ = 0 on J0, τK

J̄(σ;x, τ, ϑ) := ess inf
ϕ∈K(ϑ,σ;τ)

Γ(ϕ, σ;x, τ, ϑ).

Because the family {Γ(ϕ, σ;x, τ, ϑ) |ϕ ∈ K(ϑ, σ; τ)} is stable under taking
minima by part 1) of Lemma 2.18, the family {J̄(σ;x, τ, ϑ) |σ ∈ Sτ,T } for
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any fixed τ ∈ S0,T is a submartingale system for any ϑ ∈ Θ(K) with ϑ = 0

on J0, τK. It is a martingale system for ϑ̃ ∈ Θ(K) with ϑ̃ = 0 on J0, τK if and
only if ϑ̃ = ϕ̃(x,τ) is optimal for the problem to

minimise E
[
|x+

∫ T
τ ϕu dSu|2

]
= E

[
|x+ ϕ • ST |2

]
over all ϕ ∈ K(0, τ ; τ).

(3.2)
These facts follow by standard arguments as e.g. in Chapter 1 of [40] or
the proof of Theorem 4.1 in [64]. We now exploit the quadratic and conic
structure of our problem to obtain a decomposition of J̄ .

Proposition 3.1. For any stopping time τ ∈ S0,T , there exist families of
random variables {L̄±(σ) |σ ∈ Sτ,T } such that

J̄(σ;x, τ, ϑ) = ess inf
ϕ∈K(ϑ,σ;τ)

E
[
|x+

∫ σ
τ ϑu dSu +

∫ T
σ ϕu dSu|2

∣∣Fσ]
=
(
(x+

∫ σ
τ ϑu dSu)+

)2
L̄+(σ) +

(
(x+

∫ σ
τ ϑu dSu)−

)2
L̄−(σ)

(3.3)

for any σ ∈ Sτ,T and any ϑ ∈ Θ(K) with ϑ = 0 on J0, τK. The random
variables L̄±(σ) do not depend on x, τ or ϑ and are explicitly given by

L̄±(σ) := ess inf
ϕ∈K(0,σ;σ)

E
[
|1±

∫ T
σ ϕu dSu|2

∣∣Fσ] = J̄(σ;±1, σ, 0). (3.4)

In particular, all the L̄±(σ) are [0, 1]-valued, and L̄±(T ) = 1.

Proof. Fix x, τ, ϑ and σ and define L̄±(σ) by (3.4). The last assertion is
then obvious, and the intuition for (3.3) is that the quadratic structure of
our problem and the fact that the constraints are given by cones allow us
to pull out an Fσ-measurable factor. Note that we can also write ϑ • Sσ
instead of

∫ σ
τ ϑu dSu because ϑ = 0 on J0, τK. For the detailed proof of (3.3),

we argue by contradiction. Suppose first that

J̄(σ;x, τ, ϑ) <
(
(x+ ϑ • Sσ)+

)2
L̄+(σ) +

(
(x+ ϑ • Sσ)−

)2
L̄−(σ) on F ′

for some set F ′ ∈ Fσ with P [F ′] > 0. Then there exist ϕ ∈ K(ϑ, σ; τ) and
F ∈ Fσ with F ⊆ F ′ and P [F ] > 0 such that

E
[
|x+ϕ • ST |2

∣∣Fσ] < ((x+ϑ • Sσ)+
)2
L̄+(σ)+

(
(x+ϑ • Sσ)−

)2
L̄−(σ) (3.5)

on F . Since J̄(σ;x, τ, ϑ) ≥ 0, we have F ⊆ {0 < |x+ ϑ • Sσ|} and can write

E
[
|x+ ϕ • ST |2

∣∣Fσ] =
(
(x+ ϑ • Sσ)+

)2
E

[(
1 +

1Kσ,T Kϕ

(x+ ϑ • Sσ)+
• ST

)2 ∣∣∣∣Fσ]
+
(
(x+ ϑ • Sσ)−

)2
E

[(
1−

1Kσ,T Kϕ

(x+ ϑ • Sσ)−
• ST

)2 ∣∣∣∣Fσ] (3.6)
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on F . Plugging the last expression into (3.5), we obtain

E

[(
1±

1Kσ,T Kϕ

(x+ ϑ • Sσ)±
• ST

)2 ∣∣∣∣Fσ] < L̄±(σ)

on F± := F ∩ {x+ ϑ • Sσ ≷ 0}. To derive a contradiction to the definition
of L̄±(σ), it remains to show that

ψ± :=
1Kσ,T Kϕ

(x+ ϑ • Sσ)±
1G± ∈ K(0, σ;σ)

for some sets G± ∈ Fσ with G± ⊆ F± and P [G±] > 0. To that end, let
(ϕn)n∈N be an approximating sequence in Θ(K) for ϕ. By passing to a
subsequence again indexed by n, we can assume that ϕn • Sσ → ϕ • Sσ
P -a.s. Then we can find G+ ∈ Fσ with G+ ⊆ F+ and P [G+] > 0 such that
m ≥ |x+ϑ • Sσ| ≥ 1

m on G+ for some m ∈ N, by continuity of P from below,
and ϕn • Sσ → ϕ • Sσ uniformly on G+, by Egorov’s theorem. Moreover, we
obtain that ψn :=

1Kσ,T Kϕ
n

(x+ϑ•Sσ)+
1G+ ∈ Θ(K) because K is cone-valued, and

|ψn • S% − ψ+ • S%| ≤ (|ϕn • S% − ϕ • S%|+ |ϕn • Sσ − ϕ • Sσ|)
1

m
1G+

for all stopping times %. By the choice of (ϕn) and the local character of
stochastic integrals, the right-hand side converges to zero in probability for
all stopping times %, and in L2(P ) for % = T . Since ψn • S = 0 = ψ+ • S on
J0, τK, we have that ψ+ ∈ K(0, σ;σ). By analogous arguments, we can also
establish that ψ− ∈ K(0, σ;σ).

To complete the proof of (3.3), we now assume that

J̄(σ;x, τ, ϑ) >
(
(x+ ϑ • Sσ)+

)2
L̄+(σ) +

(
(x+ ϑ • Sσ)−

)2
L̄−(σ) on F

for some set F ∈ Fσ with P [F ] > 0. Then there exist ϕ+ and ϕ− in
K(0, σ;σ), some ε > 0 and Fε ∈ Fσ with Fε ⊆ F and P [Fε] > 2ε such that

J̄(σ;x, τ, ϑ) ≥
(
(x+ ϑ • Sσ)+

)2
E
[
|1 + ϕ+ • ST |2

∣∣Fσ]
+
(
(x+ ϑ • Sσ)−

)2
E
[
|1− ϕ− • ST |2

∣∣Fσ]+ 2ε on Fε. (3.7)

By the definition of the essential infimum, there exists ϕε ∈ K(ϑ, σ; τ) with

E
[
|x+ ϕε • ST |2

]
< E

[
J̄(σ;x, τ, ϑ)

]
+ ε2. (3.8)

Since {|x + ϑ • Sσ| ≤ m} ↗ Ω for m → ∞, there exists Gε ∈ Fσ with
Gε ⊆ Fε and P [Gε] > ε and such that |x+ϑ • Sσ| ≤ m on Gε, and therefore

χ :=
(
(x+ ϑ • Sσ)+ϕ+ + (x+ ϑ • Sσ)−ϕ−

)
1Gε ∈ K(0, σ;σ)

by the local character of stochastic integrals. Moreover, we can by part 2)
of Lemma 2.18 without loss of generality choose Gε such that

ψ := ϕε1Gcε + (ϑ1J0,σK + χ1Kσ,T K)1Gε ∈ K(ϑ, σ; τ).
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Then we use that ϕε ∈ K(ϑ, σ; τ), the definitions of ψ and χ, and (3.7) to
write

E
[
|x+ ϕε • ST |2

∣∣Fσ] ≥ 1GcεE
[
|x+ ψ • ST |2

∣∣Fσ]+ 1Gε J̄(σ;x, τ, ϑ)

≥ 1GcεE
[
|x+ ψ • ST |2

∣∣Fσ]+ 1Gε

(
E
[
|x+ ϑ • Sσ + χ • ST |2

∣∣Fσ]+ 2ε
)
.

In view of (3.8), the definition of ψ and since P [Gε] > ε and ψ ∈ K(ϑ, σ; τ),
we obtain after taking expectations that

E
[
J̄(σ;x, τ, ϑ)

]
> E

[
|x+ ϕε • ST |2

]
− ε2

≥ E
[
|x+ ψ • ST |2

]
+ 2ε2 − ε2 ≥ E

[
J̄(σ;x, τ, ϑ)

]
+ ε2

which is a contradiction. So (3.3) must hold.

Our next result shows that the random variables L̄±(σ) and J̄(σ;x, τ, ϑ)
can be aggregated into nice RCLL processes.

Proposition 3.2. 1) There exist RCLL submartingales (L±t )0≤t≤T , called
opportunity processes, such that

L±σ = L̄±(σ) P -a.s. for each σ ∈ S0,T . (3.9)

2) Fix x ∈ R and τ ∈ S0,T . Define the RCLL process (Jt(ϑ;x, τ))0≤t≤T
for every ϑ ∈ Θ(K) with ϑ = 0 on J0, τK by

Jt(ϑ;x, τ) =
(
(x+

∫ t
τ ϑu dSu)+

)2
L+
t +

(
(x+

∫ t
τ ϑu dSu)−

)2
L−t . (3.10)

Then we have for each ϑ ∈ Θ(K) with ϑ = 0 on J0, τK that

Jσ(ϑ;x, τ) = J̄(σ;x, τ, ϑ) P -a.s. for each σ ∈ Sτ,T . (3.11)

Moreover, J(ϑ;x, τ) is a submartingale for every ϑ ∈ Θ(K) with ϑ = 0 on
J0, τK, and J(ϑ̃;x, τ) is a martingale for ϑ̃ ∈ Θ(K) with ϑ̃ = 0 on J0, τK if
and only if ϑ̃ = ϕ̃(x,τ) is optimal for (3.2).

Proof. 1) For τ ≡ 0, (L̄±(t))0≤t≤T are submartingales by Proposition 3.1
and they have by Theorem VI.4 in [33] RCLL versions if the mappings
t 7→ E[L̄±(t)] are right-continuous. We only prove this for L̄− as the ar-
gument for L̄+ is completely analogous, but argue a bit more generally than
directly needed. Fix a stopping time σ ∈ Sτ,T . By (3.4) and the definition of
the essential infimum, there exists for each ε > 0 some ϑε ∈ K(0, σ;σ) with

E
[
L̄−(σ)

]
> E

[
|1− ϑε • ST |2

]
− ε,

and ϑε can be chosen in Θ as the L2(P )-closure of GT (Θ(K)) contains
GT (Θ(K)). Let (σn) be a sequence in Sσ,T with σn ↘ σ. Then

(1Kσn,T Kϑ
ε) • S

H2(P )−→ (1Kσ,T Kϑ
ε) • S
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and thus E[|1− (1Kσn,T Kϑ
ε) • ST |2] → E[|1− (1Kσ,T Kϑ

ε) • ST |2] by Theorem
IV.5 in [80]. Therefore

E
[
L̄−(σ)

]
> lim

n→∞
E
[
|1− (1Kσn,T Kϑ

ε) • ST |2
]
− ε ≥ lim

n→∞
E
[
L̄−(σn)

]
− ε,

which yields E[L̄−(σ)] ≥ lim
n→∞

E[L̄−(σn)] as ε > 0 was arbitrary. Conversely,

the submartingale property of L̄− gives E[L̄−(σ)] ≤ lim
n→∞

E[L̄−(σn)], where

the limit exists by monotonicity. So we get E[L̄−(σ)] = lim
n→∞

E[L̄−(σn)],
completing the proof of right-continuity.

2) Thanks to step 1), we can take as L± an RCLL version of (L̄±(t))0≤t≤T .
To prove (3.9), take σ, σn ∈ Sτ,T such that σn ↘ σ and each σn takes only
finitely many values. Then (3.9) holds for each σn and so lim

n→∞
L̄±(σn) =

lim
n→∞

L±σn = L±σ because L± are RCLL. Since all processes take values in

[0, 1], dominated convergence yields E[L±σ ] = lim
n→∞

E[L̄±(σn)] = E[L̄±(σ)]

by the argument in step 1), and since the submartingale property, (3.9) for
σn and again dominated convergence give

L̄±(σ) ≤ lim
n→∞

E
[
L̄±(σn)

∣∣Fσ] = lim
n→∞

E
[
L±σn

∣∣Fσ] = L±σ ,

we obtain (3.9) for σ as well. This proves part 2).
3) The equality in (3.11) follows directly from the definition (3.10),

(3.9) and the decomposition (3.3) in Proposition 3.1. The properties of
the J̄-family then immediately give the remaining assertion in part 2).

The next result gives an alternative description of the processes L± and
some further useful properties.

Lemma 3.3. Suppose that there exists a solution ϕ̃(x,τ) to (3.2). Then:
1) We have the decomposition

ϕ̃(x,τ) = x+ϕ̃(1, τ) + x−ϕ̃(−1,τ). (3.12)

2) For any σ ∈ Sτ,T , we have on {Vσ(x, ϕ̃(x,τ)) ≷ 0} that

L±σ = E

[(
1±

1Kσ,T Kϕ̃
(x,τ)

V ±σ (x, ϕ̃(x,τ))
• ST

)2∣∣∣∣Fσ] = E

[
1±

1Kσ,T Kϕ̃
(x,τ)

V ±σ (x, ϕ̃(x,τ))
• ST

∣∣∣∣Fσ].
3) The process τM̃ (x,τ) = 1Kτ,T K • M̃

(x,τ) with

M̃ (x,τ) := (x+ ϕ̃(x,τ) • S)+L+ − (x+ ϕ̃(x,τ) • S)−L−

is a square-integrable martingale.
4) If K : Ω → 2R

d \ {∅} is convex-valued, then (ϑ • S)M̃ (x,τ) is a
submartingale for all ϑ ∈ Θ(K) with ϑ = 0 on J0, τK.
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Proof. 1) The decomposition (3.12) of the optimal strategy is obtained like
(3.6) directly from the fact that our optimisation problem is quadratic and
the constraints are conic.

2) If there exists a solution ϕ̃(x,τ) to (3.2), we obtain by part 2) of Propo-
sition 3.2 that Jσ(ϕ̃(x,τ);x, τ) = E[|x+ ϕ̃(x,τ) • ST |2|Fσ] and therefore

L+
σ = E

[(
1 +

1Kσ,T Kϕ̃
(x,τ)

V +
σ (x, ϕ̃(x,τ))

• ST

)2∣∣∣∣Fσ] on F := {Vσ(x, ϕ̃(x,τ)) > 0} ∈ Fσ

by dividing in (3.3). For the proof of the second equality, we can assume

that the process ϑ :=
1Kσ,T Kϕ̃

(x,τ)

V +
σ (x,ϕ̃(x,τ))

1F is in Θ(K) by part 2) of Lemma 2.18
and by possibly shrinking F . Then the first equality implies for all ε > −1
that

0 ≤
E
[
|1 + ((1 + ε)ϑ) • ST |2

∣∣Fσ]− E[|1 + ϑ • ST |2
∣∣Fσ]

|ε|
= − sign(ε)E[(ϑ • ST )(1 + ϑ • ST )|Fσ] + |ε|E

[
|ϑ • ST |2

∣∣Fσ]. (3.13)

Taking lim
ε↗0

and lim
ε↘0

in (3.13) yields E[(ϑ • ST )(1 + ϑ • ST )|Fσ] = 0, which

implies that E[|1 + ϑ • ST |2|Fσ] = E[1 + ϑ • ST |Fσ] and therefore the
second asserted equality. The argument for L−σ is completely analogous and
therefore omitted.

3) Using the second equalities in part 2), we can write for σ ∈ Sτ,T that

E[x+ ϕ̃(x,τ) • ST |Fσ] = (x+ ϕ̃(x,τ) • Sσ)+L+
σ − (x+ ϕ̃(x,τ) • Sσ)−L−σ ,

which immediately gives that τM̃ (x,τ) = 1Kτ,T K • M̃
(x,τ) is a square-integrable

martingale.
4) Since ϑ ∈ Θ(K) implies that 1F×(s,t]∩Kτ,T Kϑ is in K(0, τ) for all s ≤ t

and A ∈ Fs, it follows from the first order condition of optimality for (3.2)
that

E
[
1F

(
(1Kτ,T Kϑ) • St − (1Kτ,T Kϑ) • Ss

)
(x+ ϕ̃(x,τ) • ST )

]
= E

[(
(1F×(s,t]∩Kτ,T Kϑ) • ST

)
(x+ ϕ̃(x,τ) • ST )

]
≥ 0

and therefore that ((1Kτ,T Kϑ) • St)E[(x + ϕ̃(x,τ) • ST )|Ft], 0 ≤ t ≤ T , is a
submartingale.

The martingale optimality principle in Proposition 3.2 gives a dynamic
description of the solution ϕ̃ = ϕ̃(x,0) only for J(ϕ̃;x, 0) 6= 0. This can
cause problems. But (3.10) shows that if J(ϕ̃;x, 0) becomes 0, then either
V (x, ϕ̃) = 0 or L+ = 0 or L− = 0. In the latter two cases, the payoffs 1{L+

τ =0}
or −1{L−τ =0} with τ = inf{t > 0 | Jt(ϕ̃;x, 0) = 0}∧T are in GT (Θ(K1Kτ,T K)),
and in the terminology of Section 4 in [87], these random variables provide
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approximate profits in L2 which is a weak form of arbitrage. So intuitively,
we have difficulties with describing ϕ̃ only if the basic model allows some
kind of arbitrage. The next result, which generalises Lemma 3.10 in [14],
gives a sufficient condition to prevent such problems.

Lemma 3.4. Suppose that there exist N ∈ M2
0,loc(P ) and ZN such that

(E , ZN ) with E = E(N) is regular and square-integrable and S is an E-local
martingale. Then L± and their left limits L±− are (0, 1]-valued.

Proof. We prove the assertion for L+ and L+
− by way of contradiction; the

completely analogous proof for L− and L−− is omitted. Define the stopping
time τ := inf{t > 0 |L+

t = 0} ∧ T and suppose that P [L+
τ = 0] > 0. By

(3.4), (3.9) and the definition of τ , ess inf
ϕ∈K(0,τ ;τ)

E
[
|1 + ϕ • ST |2

∣∣Fτ ]1{L+
τ =0} =

L+
τ 1{L+

τ =0} = 0 and so there exists a sequence (ϑn) in K(0, τ ; τ) such that
((ϑn • ST )1{L+

τ =0}) converges to −1{L+
τ =0} in L

2(P ). Since L+
T = 1, we have

that

{L+
τ = 0} = {L+

τ = 0, τ < T} =
∞⋃
m=0

{L+
τ = 0, Tm ≤ τ < Tm+1}

and hence P [L+
τ = 0, Tm ≤ τ < Tm+1] > 0 for some m ∈ N0. But each

ϑn • S is an (E , ZN )-martingale by Corollary 2.13, and since ZNTm
TmE(N) is

square-integrable, we get for every F ∈ Fτ that

0 = lim
n→∞

E
[
ZNTm

TmE(N)T (ϑn • ST )1{L+
τ =0,Tm≤τ<Tm+1}∩F

]
= −E

[
ZNTm

TmE(N)τ1{L+
τ =0,Tm≤τ<Tm+1}∩F

]
.

Since TmE(N) 6= 0 on JTm, Tm+1J, choosing F := {TmE(N)τ > 0} or F :=
{TmE(N)τ < 0} gives a contradiction to the assumption that P [L+

τ = 0] > 0.
So we get L+ > 0.

To prove L+
− > 0, define the stopping time σ := inf{t > 0 |L+

t− = 0} ∧ T
and assume that F∞ := {L+

σ− = 0} has P [F∞] > 0. Because TmE(N) 6= 0
on JTm, Tm+1J and

{L+
σ− = 0} = {L+

σ− = 0, σ > 0} =

∞⋃
m=0

{L+
σ− = 0, Tm < σ ≤ Tm+1},

there exists some m ∈ N0 with P [Fm,+∞ ] > 0 or P [Fm,−∞ ] > 0, where

Fm,±∞ := F∞ ∩ {Tm < σ ≤ Tm+1} ∩ {TmE(N)σ− ≷ 0}.

We fix m and treat without loss of generality only the “+” case here so that
P [Fm,+∞ ] > 0. Setting σn := inf{t > 0 |L+

t ≤ 1
n}∧T gives σn < σ and σn ↗ σ

P -a.s. on F∞, and defining

Fm,+n := {0 < L+
σn ≤

1

n
} ∩ {Tm ≤ σn < Tm+1} ∩ {TmE(N)σn > 0} ∈ Fσn
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yields by the definition of σn that

E
[

ess inf
ϕ∈K(0,σn;σn)

E
[
|1 + ϕ • ST |2

∣∣Fσn]1Fm,+n

]
= E[L+

σn1Fm,+n
] ≤ 1

n
P [Fm,+n ].

Thus there exist ϕn ∈ K(0, σn;σn) such that lim
n→∞

E
[
|1 +ϕn • ST |21Fm,+n

]
=

0. This implies as above via Corollary 2.13 and the square-integrability of
ZNTm

TmE(N) that

0 = lim
n→∞

E
[
ZNTm

TmE(N)T (ϕn • ST )1Fm,+n

]
= − lim

n→∞
E
[
ZNTm

TmE(N)σn1Fm,+n

]
= −E

[
ZNTm

TmE(N)σ− 1Fm,+∞

]
.

This contradicts the fact that P [Fm,+∞ ] > 0 so that we must have P [F∞] = 0.

The lemma below allows us to parametrise the optimal strategy in terms
of units of wealth. The proof uses the technique in [31], which also appears
in [16] and [14].

Lemma 3.5. Suppose that L± and their left limits L±− are (0, 1]-valued and
that there exists a solution ϕ̃(x,τ) to (3.2). Then there exists ψ̃(x,τ) ∈ L(S)
such that

V (x, ϕ̃(x,τ)) = x+ ϕ̃(x,τ) • S = x E(ψ̃(x,τ) • S) (3.14)

and

L±t = E
[
|E(ψ̃(x,τ)

1Kt,T K • S)T |2
∣∣Ft] on {x+ ϕ̃(x,τ) • St ≷ 0}. (3.15)

Proof. Define the stopping times σn = inf{t > 0 | |Vt(x, ϕ̃(x,τ))| ≤ |x|
n+1} ∧ T

for n ∈ N, set σ = lim
n→∞

σn and F =
⋂
n∈N{σn < σ} ∈

∨∞
n=1Fσn = Fσ−

and consider the square-integrable martingale M (x,τ)
t = E[VT (x, ϕ̃(x,τ))|Ft]

for t ∈ [0, T ]. Lemma 3.3 yields

M
(x,τ)
t = (x+ ϕ̃(x,τ) • St)

+L+
t − (x+ ϕ̃(x,τ) • St)

−L−t for t ≥ τ ,

E
[
(M

(x,τ)
T )2

∣∣Ft] =
(
(x+ ϕ̃(x,τ) • St)

+
)2
L+
t

+
(
(x+ ϕ̃(x,τ) • St)

−)2L−t for t ≥ τ , (3.16)

and since L± are (0, 1]-valued and σn ≥ τ , we get |M (x,τ)
σn | ≤ |x|

n+1 , |M
(x,τ)
σn | >

0 on {σn < σ}, F = {M (x,τ)
σ− = 0} and 1FE[M

(x,τ)
T |Fσ−] = 0. Then the
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martingale property of M (x,τ), conditioning on Fσ−, and using Cauchy–
Schwarz and (3.16) yields

1{σn<σ} = E

[
M

(x,τ)
T

M
(x,τ)
σn

1{σn<σ}

∣∣∣∣Fσn] = E

[
M

(x,τ)
T

M
(x,τ)
σn

1{σn<σ}1F c

∣∣∣∣Fσn]

≤ E
[(

M
(x,τ)
T

M
(x,τ)
σn

)2

1{σn<σ}

∣∣∣∣Fσn] 1
2

P [F c|Fσn ]
1
2

≤
(

1

L+
σn

+
1

L−σn

) 1
2

1{σn<σ}P [F c|Fσn ]
1
2 .

Since

1F = lim
n→∞

1{σn<σ}1F ≤ lim
n→∞

(
1

L+
σn

+
1

L−σn

) 1
2

1F1{σn<σ}P [F c|Fσn ]
1
2

=

(
1

L+
σ−

+
1

L−σ−

) 1
2

1F1F c = 0,

this gives P [F ] = 0 and therefore that V−(x, ϕ̃(x,τ)) 6= 0 on J0, σK and
V (x, ϕ̃(x,τ)) = 0 on Jσ, T K. Therefore ψ̃(x,τ) := ϕ̃(x,τ)

V−(x,ϕ̃(x,τ))
1J0,σK is well de-

fined and satisfies (3.14). Plugging (3.14) into the equations of part 2) of
Lemma 3.3 yields (3.15) and completes the proof.

IV.4 Local description and structure

In this section, we use the dynamic characterisation of the solution of (3.1)
to derive a local description for the structure of the optimal strategy. To
that end, we first give a local description of the underlying processes by
their differential semimartingale characteristics.

As in [52], Theorem II.2.34, each Rd-valued semimartingale X has, with
respect to some truncation function h : Rd → Rd, the canonical representa-
tion

X = X0 +Xc +AX,h + h(x) ∗ (µX − νX) + [x− h(x)] ∗ µX

with the jump measure µX of X and its predictable compensator νX . The
quadruple (bX , cX , FX , B) of differential characteristics of X then consists
of a predictable Rd-valued process bX , a predictable nonnegative-definite
symmetric matrix-valued process cX , a predictable process FX with values
in the set of Lévy measures on Rd, and a predictable increasing RCLL process
B null at zero such that

AX,h = bX • B, 〈Xc〉 = cX • B, νX = FX • B.
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We use the same predictable process B for all the finitely many semimartin-
gales appearing in this chapter, and since they are all special, we can and do
always work with the (otherwise forbidden) truncation function h(x) = x,
which simplifies computations considerably. We then write AX instead of
AX,h. For two (special) semimartingales X and Y , we denote their joint
differential characteristics by

(bX,Y , cX,Y , FX,Y , B) =

(( bX

bY

)
,
( cX cXY

cY X cY

)
, FX,Y , B

)
.

By adding t to B, we can assume that B is strictly increasing. Recall that
PB = P⊗B. For the locally square-integrable semimartingale S, there exists
by Proposition II.2.29 in [52] a predictable nonnegative-definite symmetric
matrix-valued process c̃M such that 〈M〉 = c̃M • B, and it is given by
c̃M = cS +

∫
xx>FS(dx)− bS(bS)>∆B.

To prepare for the local description of the optimal strategy, we need
some notation. For two [0, 1]-valued (hence special) semimartingales `+ and
`−, we look at their joint differential characteristics with S and define the
predictable functions

g1,±(ψ) := g1,±(ψ;S, `+, `−) := `±−ψ
>cSψ ± 2`±−ψ

>bS ± 2ψ>cS`
±
, (4.1)

g2,±(ψ) := g2,±(ψ;S, `+, `−) := `±−

∫ ({
(1± ψ>u)+

}2 − 1∓ 2ψ>u
)
FS(du)

+

∫ ({
(1± ψ>u)+

}2 − 1
)
yFS,`

±
(du, dy)

+

∫ {
(1± ψ>u)−

}2
(`∓− + z)FS,`

∓
(du, dz),

(4.2)

g±(ψ) := g±(ψ;S, `+, `−) := g1,±(ψ;S, `+, `−) + g2,±(ψ;S, `+, `−).
(4.3)

All these functions have ψ ∈ Rd as arguments and depend on ω, t via `±t−(ω)
and the joint characteristics of S and `±. For ease of notation, we shall
drop in the proofs all superscripts >, writing xy instead of x>y for the scalar
product of two vectors x, y.

Our first main result is now a local description of the optimal strategy
ϕ̃ for (3.1). It is obtained by examining the drift rate of J(ϑ), as follows.
Recall that the constraints are given by a predictable correspondence K with
closed cones as values.

Theorem 4.1. For each ϑ ∈ Θ(K), define a K-valued predictable process ψ
via

ψ := 1{V−(x,ϑ)6=0}
ϑ

|V−(x, ϑ)|
+ 1{V−(x,ϑ)=0}ϑ (4.4)
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or equivalently

ϑ =: V +
− (x, ϑ)ψ + V −− (x, ϑ)ψ + 1{V−(x,ϑ)=0}ψ.

Then:
1) The finite variation part of J(ϑ) is given by A(ϑ) = bJ(ϑ) • B with

bJ(ϑ) =
(
V +
− (x, ϑ)

)2{
g+(ψ;S, `+, `−) + b`

+}
+
(
V −− (x, ϑ)

)2{
g−(ψ;S, `+, `−) + b`

−}
+ 1{V−(x,ϑ)=0}

(∫ (
(ψ>u)+

)2
(`+− + y)FS,`

+
(du, dy)

+ `−−ψ
>cSψ +

∫ (
(ψ>u)−

)2
(`−− + z)FS,`

−
(du, dz)

)
≥ 0.

2) If there exists a solution ϕ̃ = ϕ̃(x,0) ∈ Θ(K) to problem (3.1) with the
property that

V (x, ϕ̃) = x+ ϕ̃ • S = x E(ψ̃ • S),

then the joint differential characteristics of (S,L+, L−) satisfy the two cou-
pled equations

bL
±

= −min
ψ∈K

g±(ψ;S,L+, L−) = −g±(±ψ̃;S,L+, L−) on {V−(x, ϕ̃) ≷ 0}.

(4.5)

Proof. 1) Since J(ϑ) is given by (3.10), finding its drift rate bJ(ϑ) is a straight-
forward, but lengthy computation; this is done in Lemma 5.2 below. Then
bJ(ϑ) is nonnegative because J(ϑ) is a submartingale by the martingale op-
timality principle in Proposition 3.2.

2) The basic idea to prove the first equality is (as usual) to assume that
the set

D :=
{

(ω, t)
∣∣ bL+

> −min
ψ∈K

g+(ψ;S,L+, L−)
}
∩ {x E(ψ̃ • S)− > 0}

has PB(D) > 0 and then to construct from D via measurable selection a
strategy ϑ in Θ(K) which violates the submartingale property of J(ϑ). This
simple idea is technically a bit involved because one must ensure that ϑ is
K-admissible and that there exists a set D′ ∈ P with D′ ⊆ D, PB(D′) > 0
and V−(x, ϑ) > 0 on D′. The details are as follows.

Since V (x, ϕ̃) = x E(ψ̃ • S) is a stochastic exponential, it changes sign
only at jumps with ψ̃∆S < −1, which P -a.s. can only happen a finite number
of times. So there exist stopping times τ1 ≤ τ2 such that PB(D∩ Kτ1, τ2K) > 0
and x E(ψ̃ • S)− > 0 on Kτ1, τ2K. By part 2) of Lemma 2.18, we can choose
Fε ∈ Fτ1 such that ϕ̃1J0,σ1K ∈ Θ(K) and (x+ ϕ̃ • Sσ1)1Fε ≥ 0 is uniformly
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bounded and Dε := D∩ Kσ1, σ2K has PB(Dε) > 0, where σi := τi1Fε + T1F cε
for i = 1, 2 are stopping times. Because g+ is a Carathéodory function
by Lemma 5.1 below and K is a predictable correspondence, we can con-
struct by Propositions 2.5 and 2.4 a K-valued predictable process ϕ with
g+(ϕ) < −bL+ on Dε and g+(ϕ) = 0 else. After possibly shrinking Dε, we
can also assume without loss of generality that ϕ is bounded, which implies
that ϕ is in L(S) so that ϕ • S is well defined and has P -a.s. only a fi-
nite number of jumps with ϕ∆S < −1. Thus there exists stopping times
%1 ≤ %2 such that D′ := Dε∩ K%1, %2K has PB(D′) > 0 and E(ψ • S)− > 0 on
K%1, %2K, where ψ := ϕ1K%1,%2K. By stopping E(ψ • S)− and S, we can even
choose %2 such that E(ψ • S)− is bounded and E(ψ • S)−ψ ∈ Θ(K); this
uses that K is cone-valued. Moreover, since (x + ϕ̃ • Sσ1)1Fε is bounded,
also (x + ϕ̃ • Sσ1)1FεE(ψ • S)−ψ is in Θ(K). Therefore the sum ϑ :=
ϕ̃1J0,σ1K + (x+ ϕ̃ • Sσ1)1FεE(ψ • S)−ψ is in Θ(K) and has (x+ ϑ • S)− > 0

and g+( ϑ
(x+ϑ•S)−

) = g+(ψ) < −bL+ on D′. In view of part 1), 1D′ • A(ϑ) =

(1D′b
J(ϑ)) • B = (1D′(x+ϑ • S)−{g+(ψ)+bL

+}) • B is strictly decreasing on
a non-negligible set, and so J(ϑ) cannot be a submartingale. This contradicts
the martingale optimality principle and thus establishes the equality for bL+ .
The argument for bL− is completely analogous and therefore omitted.

To explain the significance as well as the limitations of Theorem 4.1, let
us suppose that we have an optimal strategy ϕ̃ for problem (3.1). Then part
2) of Theorem 4.1 gives a kind of BSDE description for the pair (L+, L−)
since it expresses their drift rates in terms of their joint semimartingale
characteristics with S. However, this description is not yet fully informative
on its own. A closer look at (4.5) shows that we only have a description of
the drift of L+ (or L−) when V−(x, ϕ̃) is positive (or negative). Once V (x, ϕ̃)
hits 0, it stays there, being a stochastic exponential, and we can no longer
tell how L± behave. Even worse, V (x, ϕ̃) might jump across 0 so that we
immediately lose track of the drift of L+ or L−, depending on whether the
jump goes downwards or upwards. To overcome this difficulty and obtain a
full characterisation of L±, we must be able to “restart V (x, ϕ̃) whenever it
jumps across or to 0”. This can be achieved by assuming that not only (3.1),
but each problem (3.2) for x and τ has a solution. This key insight can be
traced back to Černý and Kallsen [14].

The second condition we need to get a description of L± is that these
processes as well as their left limits are strictly positive. As already explained
before Lemma 3.4, this can be interpreted as a kind of absence-of-arbitrage
condition. In fact, if – as in [14] – there exists an equivalent local martingale
measure for S with density in L2(P ), that condition is automatically satis-
fied; a slightly more general result is given in Lemma 3.4 above. For the case
without constraints, we provide a sharper result in Theorem 6.2 below.

Corollary 4.2. Suppose that L± and their left limits L±− are all (0, 1]-valued
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and that there exists a solution ϕ̃(x,τ) to (3.2) for any x ∈ R and any stopping
time τ . Then the joint differential characteristics of (S,L+, L−) satisfy

bL
+

= −min
ψ∈K

g+(ψ;S,L+, L−) and bL
−

= −min
ψ∈K

g−(ψ;S,L+, L−).

(4.6)
Moreover, for all x ∈ R and all stopping times τ , there exists a solution to
the SDE

dV
(x,τ)
t =

(
(V

(x,τ)
t− )+ψ̃+

t + (V
(x,τ)
t− )−ψ̃−t

)
1Kτ,T K dSt, V

(x,τ)
0 = V (x,τ)

τ = x
(4.7)

such that ψ̃± are in argmin
ψ∈K

g±(ψ;S,L+, L−) on {V (x,τ)
− ≷ 0}∩ Kτ, T K and

ψ̃±1{V (x,τ)
− ≷0}∩Kτ,T K ∈ L(S), and we have

ϕ̃(x,τ) =
(
(V

(x,τ)
− )+ψ̃+ + (V

(x,τ)
− )−ψ̃−

)
1Kτ,T K. (4.8)

Note that ψ̃± are not the positive and negative parts of the process ψ̃ from
Theorem 4.1.

Proof. By Lemma 3.5, we have V (x, ϕ̃(x,τ)) = x E(ψ̃(x,τ) • S) for some
ψ̃(x,τ) ∈ L(S) with ψ̃(x,τ) = ψ̃(x,τ)

1Kτ,T K so that ψ̃± := ψ̃(x,τ)
1{V−(x,ϕ̃(x,τ))≷0}

are in L(S) and yield (4.7) with V (x,τ) := V (x, ϕ̃(x,τ)). Moreover, (4.5)
in Theorem 4.1 shows that ψ̃± are minimisers for g± on {V−(x, ϕ̃(x,τ)) ≷
0}∩ Kτ, T K, and finally (4.8) holds by construction because we have V (x,τ) =
V (x, ϕ̃(x,τ)) = x+ ϕ̃(x,τ) • S.

Remark 4.3. For the purpose of constructing an optimal strategy, the re-
sult in Corollary 4.2 is not yet optimal. Ideally, one would like to take any
minimisers ψ̃± for g±, solve the SDE (4.7) and obtain that ϕ̃(x,τ) defined by
(4.8) is optimal. However, it is not obvious whether these ψ̃± are automat-
ically in L(S). (That would of course imply solvability of (4.7), and even
optimality of ϕ̃(x,τ) if that strategy is K-admissible.)

Before we proceed with our BSDE descriptions, let us briefly return to
the classical (but constrained) Markowitz problem in (2.2). For given initial
wealth x and target mean m, we know from Lemma 2.1 that the optimal
strategy is given by ϑ̃(m,x) = m−x

E[1−ϕ̃•ST ] ϕ̃, where ϕ̃ = ϕ̃(−1,0) solves (3.2) for

x = −1, τ = 0. To express ϑ̃(m,x) in feedback form, write

V (x, ϑ̃(x,m)) = x+ m−x
E[1−ϕ̃•ST ]

(
V (−1, ϕ̃) + 1

)
= m̃+ m−x

E[1−ϕ̃•ST ]V (−1, ϕ̃)

(4.9)

with
m̃ := x+

m− x
E[1− ϕ̃ • ST ]

=
m− xE[ϕ̃ • ST ]

E[1− ϕ̃ • ST ]
.
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By Corollary 4.2, we have ϕ̃(−1,0) = (V
(−1,0)
− )+ψ̃+ +(V

(−1,0)
− )−ψ̃− and there-

fore

ϑ̃(m,x) =
(
V−(x, ϑ̃(m,x))− m̃

)+
ψ̃+ +

(
V−(x, ϑ̃(m,x))− m̃

)−
ψ̃−

by plugging in for V (−1,0) = V (−1, ϕ̃) from (4.9). This shows that ϑ̃(m,x)

is indeed a state feedback control, and it also makes it clear that the critical
level for switching between the “positive and negative case strategies” ψ̃+

and ψ̃− is not zero (as one might think from the appearance of positive and
negative parts), but rather m̃.

Having found in Theorem 4.1 and Corollary 4.2 necessary conditions for
optimality, we now turn to sufficient ones.

Theorem 4.4 (Verification theorem I). Let `± be semimartingales such that

1) `± and their left limits `±− are all (0, 1]-valued and `±T = 1.

2) The joint differential characteristics of (S, `+, `−) satisfy

b`
+

= −min
ψ∈K

g+(ψ;S, `+, `−) and b`
−

= −min
ψ∈K

g−(ψ;S, `+, `−).

(4.10)

3) The solution to the SDE

dVt = (V +
t−ψ̃

+
t + V −t−ψ̃

−
t ) dSt, V0 = x (4.11)

with ψ̃± ∈ argmin
ψ∈K

g±(ψ) on {V− ≷ 0} exists and satisfies that

ϕ̄ := V +
− ψ̃

+ + V −− ψ̃
− ∈ Θ(K). (4.12)

Then ϕ̃ := ϕ̄ is the solution to (3.1). In particular, (V +)2`+ + (V −)2`− is
of class (D).

To better explain the significance of our results, let us rewrite the drift
descriptions (4.6) and (4.10) into a BSDE as follows. Consider the pair of
coupled backward equations

`± = − inf
ψ∈K

g±(ψ;S, `+, `−) • B +H`± • Sc +W `± ∗ (µS − νS) +N `± ,

`±T = 1, (4.13)

where a solution is a tuple (`±, H`± ,W `± , N `±) satisfying suitable properties;
see below for a more precise formulation. Then Corollary 4.2 says that the
opportunity processes L± from (3.9) satisfy the BSDE system (4.13), and
Theorem 4.4 conversely allows us to construct from a solution to (4.13) a
solution to the basic problem (3.1), if the natural candidate strategy ϕ̄ from
(4.12) has sufficiently good properties.
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Remark 4.5. More generally, we could use Theorem 4.4 to construct so-
lutions to (3.2) for any x ∈ R and stopping time τ . Indeed, if we replace
the SDE (4.11) with (4.7), the definition of ϕ̄ in (4.12) by (4.8) and assume
that ϕ̄(x,τ) is in Θ(K), then ϕ̄(x,τ) is the solution to (3.2). The argument is
exactly the same as below for problem (3.1).

Proof of Theorem 4.4. For ϑ ∈ Θ(K), define

j(ϑ) = (V +(x, ϑ))2`+ + (V −(x, ϑ))2`−

and a K-valued predictable process ψ by (4.4) so that

ϑ = V +
− (x, ϑ)ψ + V −− (x, ϑ)ψ + 1{V−(x,ϑ)=0}ψ.

If ϑ ∈ Θ(K), then sup0≤t≤T |Vt(x, ϑ)| ∈ L2(P ). Since `± are (0, 1]-valued, we
then have sup0≤t≤T |jt(ϑ)| ∈ L1(P ) and so j(ϑ) is a special semimartingale
with canonical decomposition j(ϑ) = j0(ϑ) + M j(ϑ) + Aj(ϑ). Lemma 5.2
below gives Aj(ϑ) = bj(ϑ) • B with

bj(ϑ) = b̄ϑ =
(
V +
− (x, ϑ)

)2{
g+(ψ;S, `+, `−) + b`

+}
+
(
V −− (x, ϑ)

)2{
g−(ψ;S, `+, `−) + b`

−}
+ 1{V−(x,ϑ)=0}

(∫ (
(ψu)+

)2
(`+− + y)FS,`

+
(du, dy)

+ `−−ψc
Sψ +

∫ (
(ψu)−

)2
(`−− + z)FS,`

−
(du, dz)

)
.

Since b̄ϑ ≥ 0 by the BSDE (4.10) in 2) and because `± are nonnegative, j(ϑ)
is therefore a submartingale, and using |VT (x, ϑ)|2 = jT (ϑ) due to `±T = 1
gives

E
[
|VT (x, ϑ)|2

]
≥ E

[
(x+)2`+0 + (x−)2`−0

]
. (4.14)

Because ϑ ∈ Θ(K) was arbitrary and the closure in L2 of GT (Θ(K)) contains
GT (Θ(K)), by definition, (4.14) extends to all ϑ ∈ Θ(K).

To show that ϕ̄ is optimal, we want to argue that j(ϕ̄) is a supermartin-
gale, since we then get the reverse inequality in (4.14) which is enough to
conclude. Because ϕ̄ is only in Θ(K), however, we do not know a priori if
j(ϕ̄) is special and thus must localise as in Lemma 5.2. So we define for each
n ∈ N the set Dn := {|ϕ̄| ≤ n} ∈ P and Xn := 1Dn

• j(ϕ̄) = jn(ϕ̄). We
first note that (4.12) and (4.11) imply that V = V (x, ϕ̄). The SDE (4.11)
then implies that V remains at 0 after V− hits zero, and so ϕ̄1{V−=0} = 0
by (4.12). For ψ̄ defined from ϕ̄ via (4.4) or (5.1) in Lemma 5.2 below, we
then get ψ̄ = ϕ̄ = 0 on {V− = 0} = {V−(x, ϕ̄) = 0} and therefore from (5.2)
below that

b̄ϕ̄ =
(
V +
− (x, ϕ̄)

)2{
g+(ψ̄;S, `+, `−) + b`

+}
+
(
V −− (x, ϕ̄)

)2{
g−(ψ̄;S, `+, `−) + b`

−}
.



IV.4 Local description and structure 93

But (4.4) also gives that ϕ̄ = V +
− (x, ϕ̄)ψ̄ + V −− (x, ϕ̄)ψ̄ = V +

− ψ̄ + V −− ψ̄, and
comparing this to (4.12) shows that ψ̄ = ψ̃+ on {V− > 0} and ψ̄ = ψ̃− on
{V− < 0}. Because ψ̃± are minimisers for g±, we obtain that b̄ϕ̄ ≡ 0.

Now each Xn is by Lemma 5.2 below and the above argument a special
semimartingale with finite variation part AXn

= Aj
n(ϕ̄) = bj

n(ϕ̄) • B =
(1Dn b̄

ϕ̄) • B ≡ 0. So each Xn is a local martingale, which means that j(ϕ̄)
is a σ-martingale. Since j(ϕ̄) ≥ 0, it is therefore a supermartingale and so
ϕ̄ solves (3.1). By part 2) of Proposition 3.2, j(ϕ̄) is then even a martingale
on [0, T ] and hence in particular of class (D).

If we assume in addition that the constraints are convex, we can prove our
verification result in a second, different way. This approach can be viewed
as a version of the maximum principle, in the sense that global optimality is
deduced from the fact that local optimality as in (4.15) below implies that
certain derivatives vanish. The same comment as in Remark 4.5 applies here
as well.

Theorem 4.6 (Verification theorem II). Let K : Ω → 2R
d \ {∅} be a pre-

dictable correspondence with closed and convex cones as values and `± semi-
martingales such that

1) `± and their left limits `±− are all (0, 1]-valued and `±T = 1.

2) The joint differential characteristics of (S, `+, `−) satisfy

b`
+

= −min
ψ∈K

g+(ψ;S, `+, `−) and b`
−

= −min
ψ∈K

g−(ψ;S, `+, `−).

(4.15)

3) The solution to the SDE

dVt = (V +
t−ψ̃

+
t + V −t−ψ̃

−
t ) dSt, V0 = x

with ψ̃± ∈ argmin
ψ∈K

g±(ψ) on {V− ≷ 0} exists and satisfies that

ϕ̄ := V +
− ψ̃

+ + V −− ψ̃
− ∈ Θ(K)

and V +`+ − V −`− is of class (D).

Then ϕ̃ := ϕ̄ is the solution to (3.1).

Proof. In abstract terms, problem (3.1) consists of minimising ‖h − g‖L2 ,
for h ≡ −x, over the convex set of all g ∈ GT (Θ(K)). The necessary and
sufficient first order condition for the optimal ḡ is then that (h−ḡ, ḡ−g)L2 ≥ 0
for all g, which can be rewritten as

E[VT (x, ϕ̄)(ϕ̄ • ST )] ≤ E[VT (x, ϕ̄)(ϑ • ST )] (4.16)
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for all ϑ ∈ Θ(K). Since GT (Θ(K)) is contained in the L2(P )-closure of
GT (Θ(K)), it is even sufficient to have (4.16) only for all ϑ ∈ Θ(K). Because
`±T = 1, we can write Z(x,0)

T := VT (x, ϕ̄) = V +
T (x, ϕ̄)`+T − V

−
T (x, ϕ̄)`−T . So if

we define the process Z(x,0) := V +(x, ϕ̄)`+−V −(x, ϕ̄)`−, then (4.16) follows
if we show that for each ϑ ∈ Θ(K), the product Z(x,0)(ϑ • S) is a submar-
tingale, and Z(x,0)(ϕ̄ • S) is a supermartingale. This is done in Lemma 5.4
below.

Remark 4.7. 1) Because `± take values in [0, 1], Theorem 4.4 plus the
estimate |V +`+−V −`−| ≤

(
1 + (V +)2

)
`+ +

(
1 + (V −)2

)
`− show that we do

not need the assumption that V +`+ − V −`− is of class (D). But of course,
we do not want to base our second proof for the verification result on the
verification result itself, via Theorem 4.4, so that making the assumption in
Theorem 4.6 is reasonable.

2) The above choice of Z(x,0) may look ad hoc. One can show by con-
sidering dynamic versions of (3.1) that on the contrary, it is actually very
natural (and this can in turn be used for more results). But we refrain from
doing this for reasons of space.

We now return to the formulation of the equations (4.6) or (4.10) as a
coupled system of BSDEs. We first recall that by Proposition II.2.29 and
Lemma III.4.24 in [52], any special semimartingale ` can be decomposed as

` = A` +H` • Sc +W ` ∗ (µS − νS) +N ` (4.17)

with H` ∈ L2
loc(S

c), W ` ∈ Gloc(µ) and N ` ∈M0,loc(P ) where 〈Sc, (N `)c〉 =

0 and MP
µ (∆N `|P̃) = 0. Then

∆` = ∆A` + (W ` − Ŵ `)1{∆S 6=0} + ∆N `

and therefore

p(∆`∆S) =

∫ (
∆A` + (W `(u)− Ŵ `)

)
uFS(du). (4.18)

This allows us to rewrite the functions g± from (4.1)–(4.3) as

g±(ψ;S, `+, `−)

= `±−ψ
>cSψ ± 2`±−ψ

>bS ± 2ψ>cSH`±

+ `±−

∫ ({
(1± ψ>u)+

}2 − 1∓ 2ψ>u
)
FS(du)

+

∫ ({
(1± ψ>u)+

}2 − 1
)(

∆A`
±

+W `±(u)− Ŵ `±
)
FS(du)

+

∫ {
(1 + ψ>u)−

}2(
`∓− + ∆A`

∓
+W `∓(u)− Ŵ `∓

)
FS(du)

=: h±(ψ;S, `+, `−). (4.19)
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We now consider the coupled system of backward equations

`± = − inf
ψ∈K

h±(ψ;S, `+, `−) • B +H`± • Sc +W `± ∗ (µS − νS) +N `± ,

`±T = 1. (4.20)

A solution of (4.20) consists of tuples (`±, H`± ,W `± , N `±) such thatH`± are
in L2

loc(S
c), W `± are in Gloc(µ), N `± are inM0,loc(P ) with 〈Sc, (N `±)c〉 = 0

and MP
µ (∆N `± |P̃) = 0, and `± are (special) semimartingales with val-

ues in [0, 1]. Moreover, being a solution also includes the condition that
inf
ψ∈K

h±(ψ;S, `+, `−) are finite-valued processes. For brevity, we sometimes

call only (`+, `−) a solution. Then Corollary 4.2 can be restated as

Corollary 4.8. Suppose that L± and their left limits L±− are all (0, 1]-valued
and that there exists a solution to (3.2) for any x ∈ R and any stopping time
τ . Then the opportunity processes satisfy the coupled BSDE system

L± = − inf
ψ∈K

h±(ψ;S,L+, L−) • B +HL± • Sc +WL± ∗ (µS − νS) +NL± ,

L±T = 1. (4.21)

Moreover, there exist K-valued processes ψ̃± such that

h±(ψ̃±;S,L+, L−) = inf
ψ∈K

h±(ψ;S,L+, L−).

From Example 3.26 in [14] and the counterexample in [15], one can deduce
that the opportunity processes L± are not the only solution to the BSDE
system (4.20), not even in the unconstrained case and if S is continuous
and under uniform integrability assumptions. However, it turns out that L±

are the maximal processes which satisfy (4.20). This result is motivated by
similar ones in [75].

Lemma 4.9. The opportunity processes L± satisfy L± ≥ `± for any solu-
tion (`+, `−) of the BSDE (4.20). In particular, under the assumptions of
Corollary 4.2, (L+, L−) is the maximal solution of (4.20).

Proof. This argument only uses the definitions of L± in (3.9) and (3.4)
as essential infima. Let (`+, `−) be any solution to (4.20) and define the
stopping time τ := inf{t > 0 | `+t > L+

t } ∧ T . By (3.9), there exists a
sequence (ϑn) in Θ(K1Kτ,T K) such that lim

n→∞
E[|VT (1, ϑn)|2|Fτ ] = L+

τ P -a.s.
The same argument as in the proof of Lemma 5.2 then shows that the process
j(ϑn) = (V +(1, ϑn))2`+ + (V −(1, ϑn))2`− is a submartingale, and so we ob-
tain from `+T = 1 and Vτ (1, ϑn) = 1 that `+τ ≤ lim

n→∞
E
[
|VT (1, ϑn)|2

∣∣Fτ ] = L+
τ .

By the definition of τ , this implies that P [τ < T ] = 0 and therefore that
L+ ≥ `+ P -a.s. The proof of L− ≥ `− P -a.s. is analogous and therefore
omitted.
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IV.5 Proofs

This section contains the more technical proofs. Several results and compu-
tations do not use the precise definition (3.9) of the processes L±, but only
some of their properties. To emphasise this, we formulate the corresponding
results here for generic processes `±. Recall that we drop the superscript >

in all proofs.
We first show that the predictable functions in (4.1)–(4.3) are well defined

and have nice properties.

Lemma 5.1. Let `± be two [0, 1]-valued semimartingales. Then the pre-
dictable functions g1,±, g2,± and g± defined in (4.1)–(4.3) are Carathéodory
functions, which are convex and continuously differentiable in ψ with

∇g1,±(ψ) = 2`±−c
Sψ ± 2`±−b

S ± 2cS`
±
,

∇g2,±(ψ) = 2`±−

∫ (
(1± ψ>u)+u− u

)
FS(du)

± 2

∫
(1± ψ>u)+uyFS,`

±
(du, dy)

∓ 2

∫
(1± ψ>u)−u(`∓− + z)FS,`

∓
(du, dz).

Proof. We only prove the assertion for g2,− as the arguments for the other
functions are completely analogous or obvious. So we write g2,− as

g2,−(ψ;S, `+, `−) = `−−

∫
f1(ψ, u)FS(du) +

∫
f2(ψ, u, y)FS,`

−
(du, dy)

+

∫ (
f3(ψ, u)`+− + f4(ψ, u, z)

)
FS,`

+
(du, dz)

with

f1(ψ, u) =
{

(1− ψu)+
}2 − 1 + 2ψu,

f2(ψ, u, y) =
({

(1− ψu)+
}2 − 1

)
y,

f3(ψ, u) = {(1− ψu)−
}2
,

f4(ψ, u, z) =
{

(1− ψu)−
}2
z.

Since S is in H2
loc(P ) and the jumps of `± are bounded by 1, we ob-

tain that
∫
|u|2FS(du),

∫
|u|2|y|FS,`−(du, dy),

∫
|u|2|y|2FS,`−(du, dy) and∫

|u|2|z|FS,`+(du, dz) are finite. Combining this with the estimates

|f1(ψ, u)| = |ψu|21{ψu≤1} + |2ψu− 1|1{ψu>1} ≤ 2|ψ|2|u|2,
|f2(ψ, u, y)| =

∣∣((ψu)2 − 2ψu
)
y1{ψu≤1} − y1{ψu>1}

∣∣ ≤ |ψ|2|u|2(|y|+ |y|2),

|f3(ψ, u)| = |ψu− 1|21{ψu≤1} ≤ |ψ|2|u|2,
|f4(ψ, u, z)| = |ψu− 1|2|z|1{ψu≤1} ≤ |ψ|2|u|2|z|
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gives that g2,− is finite-valued for all ψ ∈ Rd. The convexity of g2,− then
follows immediately from the convexity of f1, . . . , f4 in ψ. To verify the con-
tinuous differentiability of g2,−, we want to differentiate under the integrals
via an appeal to dominated convergence. To that end, we fix ψ ∈ Rd, take
an open ball Bε(ψ) of radius ε > 0 around ψ and estimate for ξ ∈ Bε(ψ) the
partial derivatives

|∇ψf1(ξ, u)| = | − 2(1− ξu)+u+ 2u| ≤ 2|ξuu|1{ξu≤1} + 2|u|1{ξu>1}

≤ 2(|ψ|+ ε)|u|2 + 2|u|1{|u|> 1
|ψ|+ε

} ≤ 4(|ψ|+ ε)|u|2 =: h1(u),

|∇ψf2(ξ, u, y)| = | − 2(1− ξu)+uy| = 2|ξu||u||y|1{ξu≤1}

≤ 2(|ψ|+ ε)|u|2|y| =: h2(u, y),

|∇ψf3(ξ, u)| = |2(1− ξu)−u| = 2|1− ξu||u|1{ξu≤1}

≤ 2(|ψ|+ ε)|u|2 =: h3(u),

|∇ψf4(ξ, u, z)| = |2(1− ξu)−uz| = 2|1− ξu|1{ξu≤1}|u|z| =: h4(u, z).

Since h1, . . . , h4 are all integrable, we may indeed interchange differentiation
and integration, and so g2,− is continuously differentiable in ψ. In particular,
g2,− is continuous in ψ and a Carathéodory function.

We next want to compute the drift of J(ϑ) for Theorem 4.1. Note below
that the superscripts ± for ` only serve as indices; they do not denote positive
and negative parts, unlike V ±(x, ϑ). While this notation may be slightly
ambiguous, we found `(±) too heavy.

Lemma 5.2. Let `± be [0, 1]-valued semimartingales and set

j(ϑ) :=
(
V +(x, ϑ)

)2
`+ +

(
V −(x, ϑ)

)2
`−.

For each ϑ ∈ Θ(K), we define the K-valued predictable process ψ as in (4.4)
via

ϑ =: V +
− (x, ϑ)ψ + V −− (x, ϑ)ψ + 1{V−(x,ϑ)=0}ψ. (5.1)

Then the process jn(ϑ) := 1Dn
• j(ϑ) is a special semimartingale for each

Dn := {|ϑ| ≤ n} ∈ P and n ∈ N. In the canonical decomposition jn(ϑ) =
jn0 (ϑ) +M jn(ϑ) +Aj

n(ϑ), we have Ajn(ϑ) = (1Dn b̄
ϑ) • B with

b̄ϑ =
(
V +
− (x, ϑ)

)2{
g+(ψ;S, `+, `−) + b`

+}
+
(
V −− (x, ϑ)

)2{
g−(ψ;S, `+, `−) + b`

−}
+ 1{V−(x,ϑ)=0}

(∫ (
(ψ>u)+

)2
(`+− + y)FS,`

+
(du, dy)

+ `−−ψ
>cSψ +

∫ (
(ψ>u)−

)2
(`−− + z)FS,`

−
(du, dz)

)
. (5.2)

If j(ϑ) is special, then bj(ϑ) = b̄ϑ.
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Proof. The Meyer–Itô formula (Theorem IV.71 in [80]) and integration by
parts give

d
(
V +(x, ϑ)

)2
= 2V +

− (x, ϑ)ϑ dS + 1{V−(x,ϑ)>0}ϑ d[Sc]ϑ

+ ∆
(
V +(x, ϑ)

)2 − 2V +
− (x, ϑ)ϑ∆S,

d
(
V −(x, ϑ)

)2
= − 2V −− (x, ϑ)ϑ dS + 1{V−(x,ϑ)≤0}ϑ d[Sc]ϑ

+ ∆
(
V −(x, ϑ)

)2
+ 2V −− (x, ϑ)ϑ∆S

and

1Dnd
{
`+
(
V +(x, ϑ)

)2}
= 1Dn

(
V +
− (x, ϑ)

)2
d`+ + 1Dn`

+
−

(
2V +
− (x, ϑ)ϑ dS

+ 1{V−(x,ϑ)>0}ϑ d[Sc]ϑ+
{

∆
(
V +(x, ϑ)

)2 − 2V +
− (x, ϑ)ϑ∆S

})
+ 21DnV

+
− (x, ϑ)ϑ d[Sc, (`+)c] + 1Dn∆

(
V +(x, ϑ)

)2
∆`+, (5.3)

1Dnd
{
`−
(
V −(x, ϑ)

)2}
= 1Dn

(
V −− (x, ϑ)

)2
d`− + 1Dn`

−
−

(
− 2V −− (x, ϑ)ϑ dS

+ 1{V−(x,ϑ)≤0}ϑ d[Sc]ϑ+
{

∆
(
V −(x, ϑ)

)2
+ 2V −− (x, ϑ)ϑ∆S

})
− 21DnV

−
− (x, ϑ)ϑ d[Sc, (`−)c] + 1Dn∆

(
V −(x, ϑ)

)2
∆`−. (5.4)

Since ∆V (x, ϑ) = ϑ∆S, S ∈ H2
loc(P ), |∆`±| ≤ 1 and ϑ is bounded on

Dn, the supremum of the jumps of each term in (5.3) and (5.4) is locally
integrable. So Theorem III.36 in [80] implies that these terms are all special
and we can calculate their compensators as

1Dn
•
{
`+
(
V +(x, ϑ)

)2}
mart
= 1Dn

(
V +
− (x, ϑ)

)2 • A`+
+ (1Dn`

+
−) •

(
(2V +
− (x, ϑ)ϑ) • AS + 1{V−(x,ϑ)>0} • [ϑ • Sc]

)
+ 1Dn`

+
−
{(

(V−(x, ϑ) + ϑu)+
)2 − (V +

− (x, ϑ)
)2 − 2V +

− (x, ϑ)ϑu
}
∗ νS

+ 1Dn

{((
V−(x, ϑ) + ϑu

)+)2 − (V +
− (x, ϑ)

)2}
y ∗ νS,`+

+ 21DnV
+
− (x, ϑ) • [ϑ • Sc, (`+)c],

1Dn
•
{
`−
(
V −(x, ϑ)

)2}
mart
= 1Dn

(
V −− (x, ϑ)

)2 • A`−
+ (1Dn`

−
−) •

(
− (2V −− (x, ϑ)ϑ) • AS + 1{V−(x,ϑ)≤0} • [ϑ • Sc]

)
+ 1Dn`

−
−
{(

(V−(x, ϑ) + ϑu)−
)2 − (V −− (x, ϑ)

)2
+ 2V −− (x, ϑ)ϑu

}
∗ νS

+ 1Dn

{(
(V−(x, ϑ) + ϑu)−

)2 − (V −− (x, ϑ)
)2}

z ∗ νS,`−

− 21DnV
−
− (x, ϑ) • [ϑ • Sc, (`−)c],
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where we denote by mart
= equality up to a local martingale. Adding both

equations and passing to differential characteristics gives

Aj
n(ϑ)

= 1Dn

(
1{V−(x,ϑ)>0}`

+
−ϑc

Sϑ+ 2V +
− (x, ϑ)ϑ

(
`+−b

S + cS,`
+)

+
(
V +
− (x, ϑ)

)2
b`

+

+ `+−

∫ {(
(V−(x, ϑ) + ϑu)+

)2 − (V +
− (x, ϑ)

)2 − 2V +
− (x, ϑ)ϑu

}
FS(du)

+

∫ {(
(V−(x, ϑ) + ϑu)+

)2 − (V +
− (x, ϑ)

)2}
yFS,`

+
(du, dy)

+ 1{V−(x,ϑ)≤0}`
−
−ϑc

Sϑ− 2V −− (x, ϑ)ϑ(`−−b
S + cS,`

−
) +

(
V −− (x, ϑ)

)2
b`
−

+ `−−

∫ {(
(V−(x, ϑ) + ϑu)−

)2 − (V −− (x, ϑ)
)2

+ 2V −− (x, ϑ)ϑu
}
FS(du)

+

∫ {(
(V−(x, ϑ) + ϑu)−

)2 − (V −− (x, ϑ)
)2}

zFS,`
−

(du, dz)
)
• B.

By plugging in (5.1), we obtain first(
(V−(x, ϑ) + ϑu)±

)2 − (V ±− (x, ϑ)
)2

=
(
V ±− (x, ϑ)

)2{(
(1± ψu)+

)2 − 1
}

+
(
V ∓− (x, ϑ)

)2(
(1∓ ψu)−

)2
+ 1{V−(x,ϑ)=0}

(
(ψu)±

)2
and therefore also Ajn(ϑ) = (1Dn b̄

ϑ) • B with

b̄ϑ =
(
V +
− (x, ϑ)

)2{
`+−ψc

Sψ + 2ψ(`+−b
S + cS`

+
) + b`

+

+ `+−

∫ {(
(1 + ψu)+

)2 − 1− 2ψu
}
FS(du)

+

∫ {(
(1 + ψu)+

)2 − 1
}
yFS,`

+
(du, dy)

+

∫ (
(1 + ψu)−

)2
(`−− + z)FS,`

−
(du, dz)

}
+
(
V −− (x, ϑ)

)2{
`−−ψc

Sψ − 2ψ(`−−b
S + cS`

−
) + b`

−

+ `−−

∫ {(
(1− ψu)+

)2 − 1 + 2ψu
}
FS(du)

+

∫ {(
(1− ψu)+

)2 − 1
}
zFS,`

−
(du, dz)

+

∫ (
(1− ψu)−

)2
(`+− + y)FS,`

+
(du, dy)

}
+ 1{V−(x,ϑ)=0}

{∫ (
(ψu)+

)2
(`+− + y)FS,`

+
(du, dy) + `−−ψc

Sψ

+

∫ (
(ψu)−

)2
(`−− + z)FS,`

−
(du, dz)

}
after collecting terms. The assertion then follows by inserting the definitions
of g±.
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The following result should be folklore, but we have not found a direct
reference.

Lemma 5.3. Any stochastic exponential has local time 0 at the origin.

Proof. If L0(X) denotes the local time at 0 of the semimartingale X, the
Meyer–Tanaka formula (Theorem IV.70 in [80]) gives

1
2dL

0(X) = dX+ − 1{X−>0} dX −∆(X+) + 1{X−>0}∆X

= dX+ − 1{X−>0} dX − 1{X−>0}X
− − 1{X−≤0}X

+. (5.5)

IfX is of finite variation, then L0(X) ≡ 0 by construction (e.g. from Theorem
IV.66 in [80]). Now if X = E(N), then (the proof of) Theorem II.37 in [80]
allows us to write X = UV with U > 0, V of finite variation and [U, V ] ≡ 0.
So using the product rule and (5.5) for V with L0(V ) ≡ 0 yields

dX+ = d(UV +)

= U−1{V−>0} dV + 1{V−>0}U−V
− + 1{V−≤0}U−V

+

+ V +
− dU + ∆U∆(V +)

= 1{V−>0}(U− dV + V− dU) + 1{V−>0}
(
U−V

− + ∆U(V + − V−)
)

+ 1{V−≤0}
(
U−V

+ + (∆U)V +
)
.

But U−V − + ∆U(V + − V−) = (U− + ∆U)V − + ∆U∆V = UV − because
[U, V ] ≡ 0, and signV = signX since U > 0. So we get

dX+ = 1{X−>0} d(UV ) + 1{X−>0}UV
− + 1{X−≤0}UV

+

= 1{X−>0} dX + 1{X−>0}X
− + 1{X−≤0}X

+,

and (5.5) thus yields that L0(X) ≡ 0.

The next result proves a bit more than Theorem 4.6.

Lemma 5.4. Let K : Ω → 2R
d \ {∅} be a predictable correspondence with

closed and convex cones as values and `± semimartingales such that

1) `± and their left limits `±− are all (0, 1]-valued and `±T = 1.

2) The joint differential characteristics of (S, `+, `−) satisfy

b`
+

= −min
ψ∈K

g+(ψ;S, `+, `−) and b`
−

= −min
ψ∈K

g−(ψ;S, `+, `−).

3) For each x ∈ R and each stopping time τ , there exists a solution to the
SDE

dV
(x,τ)
t =

(
(V

(x,τ)
t− )+ψ̃+

t + (V
(x,τ)
t− )−ψ̃−t

)
1Kτ,T K dSt =: ϕ̄

(x,τ)
t dSt,

V0 = Vτ = x (5.6)
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with ψ̃± ∈ argmin
ψ∈K

g±(ψ) on {V (x,τ)
− ≷ 0}∩Kτ, T K such that the processes

ψ̃±1{V (x,τ)
− ≷0}∩Kτ,T K are in L(S), V (x,τ)

T is in L2(P ) and

Z(x,τ) := Z(x,τ)(`+, `−) := (V (x,τ))+`+ − (V (x,τ))−`− (5.7)

is of class (D).

Then 1Kτ,T K • Z
(x,τ) is a square-integrable martingale, (ϑ • S)Z(x,τ) is a

submartingale for every ϑ ∈ Θ(K) with ϑ = 0 on J0, τK and (ϕ̄(x,τ) • S)Z(x,τ)

is a local martingale, which is uniformly bounded from below by a square-
integrable random variable and hence a supermartingale. Moreover, there
exists N (x,τ) ∈M2

0,loc(P ) such that Z(x,τ) = (Z(x,τ))τE(N (x,τ)).

Proof. Throughout this proof, we fix x and τ and drop all superscripts (x, τ)
to alleviate the notation. We also point out that the superscripts + and −

have different meanings for different processes; they are just indices for `
and ψ̃, but denote positive and negative parts for V and for all quantities
involving jumps.

1) First note that by its definition, V equals x+ ϕ̄ • S = V (x, ϕ̄). More-
over, the definition of Z gives that V Z = (V +)2`+ +(V −)2`− is nonnegative
like `±. To argue that 1Kτ,T K • Z is a σ-martingale, we first compute (as in
Lemma 5.2) its semimartingale characteristics and then argue (as in The-
orem 4.4) that the assumptions imply that its drift term vanishes, at least
σ-locally. This is very computational and so we only give the key steps
below.

2) We first need the dynamics of V ±. By its definition, V is a stochastic
exponential so that its local time at 0 vanishes, by Lemma 5.3. The Itô–
Meyer–Tanaka formula (see Theorem IV.68 in [80]) therefore simplifies as in
(5.5) with L0(X) ≡ 0 to

dV + = V +
− ψ̃

+
1Kτ,T KdS + 1{V−>0}V

− + 1{V−≤0}V
+,

dV − = −V −− ψ̃−1Kτ,T KdS + 1{V−>0}V
− + 1{V−≤0}V

+.

Using the SDE (5.7) to compute ∆V and plugging that into V ± = (V− +
∆V )± gives after some calculations that

1{V−>0}V
− = V +

− (1 + ψ̃+
1Kτ,T K∆S)−,

1{V−≤0}V
+ = V −− (1− ψ̃−1Kτ,T K∆S)−,

and therefore by plugging in that

dV ± = ±V ±−
(
ψ±1Kτ,T KdS ± (1± ψ±1Kτ,T K∆S)−

)
+ V ∓− (1∓ ψ∓1Kτ,T K∆S)−.

(5.8)
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In particular, computing the jumps of V ± and using u+(1+u)− = (1+u)+−1
and u− (1− u)− = −

(
(1− u)+ − 1

)
gives

∆V ± = V ±−
(
(1± ψ̃±1Kτ,T K∆S)+ − 1

)
+ V ∓− (1∓ ψ̃∓1Kτ,T K∆S)−. (5.9)

3) Because Z = V +`+ − V −`−, we next need to compute the products
V ±`±. Using the product rule, (5.8) and (5.9) and collecting terms gives
(after a while)

d(V ±`±) = V ±−
{
d`± ± `±−

(
ψ̃±1Kτ,T KdS ± (1± ψ̃±1Kτ,T K∆S)−

)
± ψ̃±1Kτ,T Kd[Sc, (`±)c] + ∆`±

(
(1± ψ̃±1Kτ,T K∆S)+ − 1

)}
+ V ∓− (`±− + ∆`±)(1∓ ψ̃∓1Kτ,T K∆S)−

and therefore

dZ = V +
−
{
d`+ + `+−

(
ψ̃+

1Kτ,T KdS + (1 + ψ̃+
1Kτ,T K∆S)−

)
+ ψ̃+

1Kτ,T Kd[Sc, (`+)c] + ∆`+
(
(1 + ψ̃+

1Kτ,T K∆S)+ − 1
)

− (`−− + ∆`−)(1 + ψ̃+
1Kτ,T K∆S)−

}
− V −−

{
d`− − `−−

(
ψ̃−1Kτ,T KdS − (1− ψ̃−1Kτ,T K∆S)−

)
− ψ̃−1Kτ,T Kd[Sc, (`−)c] + ∆`−

(
(1− ψ̃−1Kτ,T K∆S)+ − 1

)
− (`+− + ∆`+)(1− ψ̃−1Kτ,T K∆S)−

}
. (5.10)

For later use, we already note that this yields

dZc = V +
−
(
d(`+)c + `+−ψ̃

+
1Kτ,T KdS

c
)
−V −−

(
d(`−)c− `−−ψ̃−1Kτ,T KdS

c
)
(5.11)

and by using (5.9) that

∆Z = V +
−
{
`+−
(
(1 + ψ̃+

1Kτ,T K∆S)+ − 1
)

+ ∆`+(1 + ψ̃+
1Kτ,T K∆S)+

− (`−− + ∆`−)(1 + ψ̃+
1Kτ,T K∆S)−

}
− V −−

{
`−−
(
(1− ψ̃−1Kτ,T K∆S)+ − 1

)
+ ∆`−(1− ψ̃−1Kτ,T K∆S)+

− (`+− + ∆`+)(1− ψ̃−1Kτ,T K∆S)−
}
. (5.12)

4) For each n, we define the setDn := {|V +
− ψ̃

++V −− ψ̃
−| ≤ n}∩Kτ, T K ∈ P

and the process Zn := 1Dn
• Z. Then sup0≤s≤T |∆Zns | is like S locally

square-integrable so that Zn is special, and we even have this integrabil-
ity for each term from above in ∆Zn = 1Dn∆Z. To compute the finite
variation part AZn from the canonical decomposition of Zn, we can there-
fore compensate each summand separately, and so we find from (5.10) that
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AZ
n

= (1Dnβ) • B with

β = V +
−

{
b`

+
+ `+−

(
ψ̃+bS +

∫
(1 + ψ̃+u)−FS(du)

)
+ ψ̃+cS`

+

+

∫
y
(
(1 + ψ̃+u)+ − 1

)
FS,`

+
(du, dy)

−
∫

(`−− + z)(1 + ψ̃+u)−FS,`
−

(du, dz)
}

− V −−
{
b`
− − `−−

(
ψ̃−bS −

∫
(1− ψ̃−u)−FS(du)

)
− ψ̃−cS`−

+

∫
z
(
(1− ψ̃−u)+ − 1

)
FS,`

−
(du, dz)

−
∫

(`+− + y)(1− ψ̃−u)−FS,`
+

(du, dy)
}
. (5.13)

But by the assumption in 2), we have b`± = −g±(ψ̃±;S, `+, `−). Plugging
that into (5.13), using the definition of g± in (4.3), collecting terms and
using Lemma 5.1 leads after lengthy but straightforward computations to
β = −V +

−
1
2 ψ̃

+∇g+(ψ̃+) + V −−
1
2 ψ̃
−∇g−(ψ̃−). Because ψ̃± is by assumption

2) the minimiser for g± on {V− ≷ 0}∩Kτ, T K, both summands are 0 on
Kτ, T K by the first order conditions for optimality. Hence each Zn is a local
martingale so that 1Kτ,T K • Z is a σ-martingale. But Z is of class (D) by
assumption 3) and therefore 1Kτ,T K • Z is a true martingale, and it is then
even square-integrable because 1Kτ,T K • ZT = VT −(x+`+τ −x−`−τ ) is in L2(P )

due to `±T = 1 and `±τ ∈ (0, 1].
5) Now we look at the product of ϑ • S and Z for either ϑ ∈ Θ(K) or

ϑ = ϕ̄. By the product rule,

X := (ϑ • S)Z = (Z−ϑ) • S + (ϑ • S)− • Z + [ϑ • S,Z],

where Z = (x+`+ − x−`−)τ + 1Kτ,T K • Z ∈ H2(P ). For ϑ ∈ Θ(K), we have
ϑ • S ∈ H2(P ) so that X is special and all the jumps appearing when we
compute the above expressions have integrable suprema. For ϑ = ϕ̄, we
set Dn := {|ϕ̄| ≤ n} ∈ P and Xn := 1Dn

• X. Then Xn is special and
all its jump terms have locally integrable suprema, as can be seen from the
explicit expression (5.12) for ∆Z. So setting Dn := Ω for ϑ ∈ Θ(K), we
can in both cases compute the finite variation term AX

n from the canonical
decomposition of Xn as

AX
n

= 1Dn
•
{

(Z−ϑ) • AS + 〈(ϑ • S)c, Zc〉+
(∑

∆(ϑ • S)∆Z
)p}

= (1Dnϑ) •
{
Z− • A

S + 〈Sc, Zc〉+
∑

p(∆S∆Z)
}

= (1Dnϑγ) • B.

By using (5.11) and (5.12) as well as the definition (5.7) of Z, we explicitly
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obtain after collecting terms that

γ = V +
−

{
`+−b

`+ + cS`
+

+ `+−c
Sψ̃+ + `+−

∫ (
(1 + ψ̃+u)+ − 1

)
FS(du)

+

∫
y(1 + ψ̃+u)+uFS,`

+
(du, dy)−

∫
(`−− + z)(1 + ψ̃+u)−uFS,`

−
(du, dz)

}
− V −−

{
`−−b

`− + cS`
− − `−−cSψ̃− + `−−

∫ (
(1− ψ̃−u)+ − 1

)
FS(du)

+

∫
z(1− ψ̃−u)−uFS,`

−
(du, dz)−

∫
(`+− + y)(1− ψ̃−u)−FS,`

+
(du, dy)

}
on Kτ, T K. By comparing this to the expression for ∇g± in Lemma 5.1, we
see that

ϑγ = 1
2

(
V +
− ϑ∇g+(ψ̃+) + V −− ϑ∇g−(ψ̃−)

)
,

and both summands are nonnegative by the first order conditions for opti-
mality since ψ̃± are the minimisers of g± on {V− ≷ 0}∩Kτ, T K by assumption
2) and ϑ = 0 on J0, τK. For ϑ = ϕ̄ = (V +

− ψ̃
+ + V −− ψ̃

−)1Kτ,T K, we get as
in step 4) that ϕ̄γ = 0. So Xn is a local submartingale for ϑ ∈ Θ(K),
and because Dn = Ω here, Xn = X is actually even a true submartingale
since its supremum is integrable. For ϑ = ϕ̄, Xn is a local martingale; so
X = (V +)2`+ + (V −)2`−−xZ ≥ −|x| sup0≤s≤T |Zs| is a σ-martingale which
is bounded from below by an square-integrable random variable by step 1)
and 5) and Doob’s maximal inequality so that it is a local martingale by
Proposition 3.3 in [3] and hence a supermartingale by Fatou’s Lemma.

6) Finally, it remains to argue that Z = Zτ E(N) for some local martin-
gale N , which is then in M2

0,loc(P ) by Remark 2.8 because 1Kτ,T K • Z is in
M2(P ). To that end, we define σ := inf{t > 0 |Vt = 0} and note from the
SDE (5.6) that σ ≥ τ for x 6= 0, V− 6= 0 on J0, σK and V = 0 on Jσ, T K.
Hence the definition (5.7) of Z gives that Z− 6= 0 on J0, σK and Z = 0 on
Jσ, T K so that N := (1Kτ,σK

1
Z−

) • Z is well defined and gives Z = Zτ E(N).
This completes the proof.

IV.6 Related work

To round off the chapter and put our contribution into perspective, we finally
discuss the connections of our work to the existing literature. This naturally
splits in two parts.

IV.6.1 The unconstrained case

For (semimartingale) models without constraints, one key motivation to
study the Markowitz problem has been the mean-variance hedging prob-
lem (2.5). The solution of (2.5), for an arbitrary payoff H, can be described
more explicitly if one knows the variance-optimal martingale measure or
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the opportunity-neutral measure; see for example Theorem 4.6 in [87] and
Theorem 4.10 in [14]. Finding those measures is intimately linked to the
approximation in L2(P ) of the constant 1 by stochastic integrals of S, i.e. to
(2.4). While there is a vast literature on mean-variance hedging, the most
general results for these problems without constraints have been obtained by
Černý and Kallsen [14], and their work has also provided a lot of inspiration
for our approach. We now quickly explain how the main results of [14] can
be obtained directly as special cases of our setting.

Suppose that there are no constraints so that C ≡ K ≡ Rd. The first
key simplification is then that the opportunity processes L± agree so that
we can write L := L+ = L−. One way to see this is to look at the proof
of Proposition 3.1 and note there that the distinction according to the sign
of x+ ϑ • Sσ becomes superfluous since K is symmetric. Alternatively, one
can look at the definitions of L̄±(σ) in (3.4) and observe that they agree for
+ and − because K(0, σ;σ) contains with ϕ also −ϕ. Again this only needs
that K is a cone and symmetric around 0, but we shall exploit K ≡ Rd later.
Recall that Θ = Θ(Rd).

To get good properties for the (single) opportunity process L, we next
suppose as in [14] that there exists an equivalent σ-martingale measure
(EσMM) Q for S with dQ

dP ∈ L
2(P ). (Because S ∈ H2

loc(P ), we then have
that sup0≤t≤τn |St| ∈ L

1(Q) so that Q is actually an equivalent local mar-
tingale measure (ELMM) for S.) Lemma 3.4 then tells us that both L and
L− are strictly positive; this recovers Lemma 3.10 from [14]. A substantial
sharpening is given in Theorem 6.2 below.

Moving on to the local description in Section IV.4, we see from L+ =
L− = L that we only need to consider a setting with `+ = `− =: `. Then
(4.2) reduces to

g2,+(ψ) = `−

∫ (
(1 + ψ>u)2 − 1− 2ψ>u

)
FS(du)

+

∫ (
(1 + ψ>u)2 − 1

)
yFS,`(du, dy)

=

∫
(ψ>u)2(`− + y)FS,`(du, dy) +

∫
2ψ>uyFS,`(du, dy)

= g2,−(−ψ),

and therefore (4.3) yields

g+(ψ) = `−ψ
>cSψ + 2`−ψ

>bS + 2ψ>cS` + g2,+(ψ) = g−(−ψ).

If in addition `− is strictly positive, we can rewrite this as

g+(ψ) = `−(ψ>c̄ψ + 2ψ>b̄) = g−(−ψ)
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with

c̄ := c̄(S, `) := cS +

∫
uu>

(
1 +

y

`−

)
FS,`(du, dy), (6.1)

b̄ := b̄(S, `) := bS +
cS`

`−
+

∫
u
y

`−
FS,`(du, dy), (6.2)

as in (3.25) and (3.23) in [14]. So g± are quadratic functions and we can
easily, by completing squares, find their minimisers and minimal values in
explicit form. The result is

min
ψ∈Rd

g+(ψ) = g+(ψ̃+) = −`−b̄>(c̄)−1b̄ = min
ψ∈Rd

g−(ψ) = g−(ψ̃−) (6.3)

with
ψ̃+ = −ψ̃− =: ψ̃ = −(c̄)−1b̄ =: −ā, (6.4)

where (c̄)−1 denotes the Moore–Penrose pseudoinverse of c̄. We remark that
this is well defined whenever a minimiser exists, hence in particular if there
is an optimal strategy.

Under the assumption (made in [14]) that there is an EσMM Q for S
with dQ

dP ∈ L
2(P ), Theorem 2.16 for C ≡ Rd tells us that GT (Θ) is closed in

L2(P ). The same is true for

GT (Θ1Kτ,T K) = GT (Θ(Rd1Kτ,T K))

for any stopping time τ , and so (3.2) has a solution ϕ̃(x,τ) for every pair
(x, τ). Corollary 4.2 thus allows us to identify ϕ̃(x,τ); indeed, ψ̃+ = −ψ̃− = ψ̃
reduces the SDE (4.7) to

dV
(x,τ)
t = V

(x,τ)
t− ψ̃t1Kτ,T K dSt, V

(x,τ)
0 = V (x,τ)

τ = x

whose solution is of course

V (x,τ) = x E
(
(ψ̃1Kτ,T K) • S

)
= x E

(
(−ā1Kτ,T K) • S

)
,

and so (4.8) yields

ϕ̃(x,τ) = V
(x,τ)
− ψ̃1Kτ,T K = −x E

(
(−ā1Kτ,T K) • S

)
−ā1Kτ,T K. (6.5)

This recovers Lemma 3.7 from [14].
One major simplification in the unconstrained case is that we no longer

need to distinguish between the cases V−(x, ϕ̃) > 0 and V−(x, ϕ̃) < 0 because
there is only one opportunity process L. In terms of the discussion before
Corollary 4.2, we no longer need to worry about jumps of V (x, ϕ̃) across 0
since these do not affect the description of L. All we need is to be able to
“restart V (x, ϕ̃) when it jumps to 0”, which is the important insight obtained
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by Černý and Kallsen [14]. The adjustment process ã from [14] is moreover
seen to be given by ã = ā = −(c̄)−1b̄ = −ψ̃, by comparing (6.5) to (3.12) in
[14].

The above result highlights an important difference between our approach
and that in [14]. We obtain our results by systematically using stochastic
control ideas and in particular the martingale optimality principle (MOP).
To illustrate this with an example, we see from the above that ã = −ψ̃ is
obtained as the minimiser of the function g, which means that we exploit the
MOP by using that the drift of J(ϑ) must vanish for the optimal strategy. In
contrast, Černý and Kallsen [14] obtain ã by closely examining the structure
of the optimal strategies ϕ̃(x,τ) for variable τ , and they prove its properties
using the optimality of ϕ̃(x,τ) via martingale orthogonality conditions. They
do not explicitly use dynamic programming and never mention the MOP.

The next proposition summarises the most important results for the un-
constrained case C ≡ Rd. We give no proof; this all follows directly by
specialising our earlier results.

Proposition 6.1. Suppose that S is in H2
loc(P ). Then:

1) There exists an RCLL submartingale L = (Lt)0≤t≤T , called opportu-
nity process, such that for each x ∈ R and τ ∈ S0,T , the process

Jt(ϑ;x, τ) =
(
x+

∫ t
τ ϑudSu

)2
Lt, 0 ≤ t ≤ T

is a submartingale for every ϑ ∈ Θ with ϑ = 0 on J0, τK. Moreover,
J(ϑ̃;x, τ) is a martingale for ϑ̃ ∈ Θ with ϑ̃ = 0 on J0, τK if and only if
ϑ̃ = ϕ̃(x,τ) is optimal for (3.2). The process L is given explicitly as an
RCLL version of

L̄(t) := ess inf
{
E
[
|1−

∫ T
t ϕu dSu|2

∣∣Ft] ∣∣ϕ ∈ Θ with ϕ = 0 on J0, tK
}
,

0 ≤ t ≤ T.

2) Suppose that L and L− are both > 0 and that there exists a solution
ϕ̃(1,τ) to (3.2) with x = 1 for any stopping time τ . Then the joint
differential characteristics of (S,L) satisfy

bL = L−b̄
>(c̄)−1b̄ (6.6)

and we have V (1, ϕ̃(1,τ)) = E
(
(−ā1Kτ,T K) • S

)
with ā = (c̄)−1b̄. A

sufficient condition for the assumptions in 2) is that there exists an
EσMM Q for S with dQ

dP ∈ L
2(P ).

3) Conversely, let ` be a semimartingale such that

a) ` and its left limit `− are (0, 1]-valued and `T = 1.
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b) The joint differential characteristics of (S, `) satisfy

b` = `−b̄
>(c̄)−1b̄.

c) For ā := (c̄)−1b̄, we have that

λ̄(τ) := E
(
(−ā1Kτ,T K) • S

)
−ā1Kτ,T K) ∈ Θ.

Then ϕ̃(1,τ) := −λ̄(τ) is the solution to (3.1) with x = 1 for each
τ ∈ S0,T , and L := ` is the opportunity process.

Note that the equation (6.6) for the joint differential characteristics of
(S, `) is the same as (3.32) in [14]. Moreover, parts 2) and 3) of Proposi-
tion 6.1 essentially recover Theorem 3.25 of [14]; our result is actually even
stronger since we do not need the assumption from [14] that the process
E((−ā1Kτ,T K) • S)` is of class (D) for each stopping time τ ∈ S0,T .

The results of Černý and Kallsen [14] show (as repeated in part 2) of
Proposition 6.1) that a sufficient condition for the existence of all optimal
strategies ϕ̃(1,τ) for τ ∈ S0,T as well as for strict positivity of L and L− is
the existence of an EσMM Q for S with dQ

dP ∈ L2(P ). Our next theorem
sharpens this into a precise characterisation by giving necessary and suffi-
cient conditions. This result is also one reason why we have introduced the
notion of (E , ZN )-martingales in the precise form of Section IV.2.

Theorem 6.2. For S ∈ H2
loc(P ), the following are equivalent:

1) The opportunity process L and its left limit L− are (0, 1]-valued and
there exists a solution ϕ̃(1,τ) to (3.2) with x = 1 for any stopping time
τ ∈ S0,T .

2) There exist N ∈ M2
0,loc(P ) and ZN such that (E , ZN ) with E = E(N)

is regular and square-integrable and S = S0 +M−〈M,N〉 is an E-local
martingale.

Proof. The implication “2) =⇒ 1)” is easy. Indeed, the closedness in L2(P )
of GT (Θ(C)) obtained from Theorem 2.16 implies the existence of all the
ϕ̃(1,τ) by taking C = Rd1Kτ,T K, and strict positivity of L and L− is from
Lemma 3.4. We prove the converse implication “1) =⇒ 2)” in several steps.

1) Fix τ and use Lemma 3.5 to write V (1, ϕ̃(1,τ)) = E(ψ̃(1,τ) • S) =
E((ψ̃(1,τ)

1Kτ,T K) • S). As in Lemma 3.3, using that L+ = L− = L, con-
sider the process M̃ (1,τ) = V (1, ϕ̃(1,τ))L and the square-integrable martin-
gale 1Kτ,T K • M̃

(1,τ) = 1Kτ,T K • (V (1, ϕ̃(1,τ))L). Because L− > 0, we can
write L = L0 E(K ′). Moreover, Corollary 4.2 and its proof give that ψ̃(1,τ)

coincides on the set Kτ, T K ∩ {V−(1, ϕ̃(1,τ)) 6= 0} with the minimiser ψ̃ of
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the function g, which is ψ̃ = −ā = −(c̄)−1b̄ by (6.4), so that V (1, ϕ̃(1,τ)) =
E((−ā1Kτ,T K) • S). This implies

M̃ (1,τ) = Lτ + 1Kτ,T K •
(
V (1, ϕ̃(1,τ))L0 E(K ′)

)
= Lτ + 1Kτ,T K •

(
E
(
(−ā1Kτ,T K) • S

)
Lτ E

(
1Kτ,T K • K

′))
= LτE

(
1Kτ,T K • N

)
(6.7)

by Yor’s formula, with N := −ā • S+K ′− [ā • S,K ′]. Moreover, by Lemma
3.3 for ϑ := ±1Kτn,τn+kK for a localising sequence with Sτm ∈ H2(P ) for allm,
we obtain that the product of τnS and M̃ (1,τ) is for each n a local martingale
(with (τn+k)k∈N as localising sequence).

2) At the end of step 1), we have glossed over a point that we must settle
now. While (6.7) is correct as it stands, the subsequent definition of N on
all of J0, T K requires us to show that ā is in L(S). To do that, we recall
that K ′ = 1

L−
• L (this is called the extended mean-variance tradeoff process

in Definition 3.11 in [14]) and introduce the opportunity-neutral measure
P ∗ ≈ P by dP ∗

dP := LT
E[L0] E(AK′ )T

. Then Girsanov’s theorem (see Lemma A.9

in [14]) gives as in the proof of Lemma 3.17 in [14] that bS,P ∗ = b̄
1+∆AK′

and
[S]p,P

∗
= c̃S,P

∗
• B = c̄

1+∆AK′
• B. Note that AK′ is increasing because L is

a submartingale, and Corollary 4.2 with (6.3) gives

AK
′

= 1
L−

• AL = bL

L−
• B =

(
− 1

L−
minψ∈Rd g(ψ;L)

)
• B = (b̄>(c̄)−1b̄) • B.

So we obtain from ā = −(c̄)−1b̄ and since [S]p,P
∗ − 〈MS,P ∗〉 is nonnegative

definite that∫
|ā dAS,P ∗ |+

∫
ā>d〈MS,P ∗〉ā = (|ā>bS,P ∗ |+ ā>c̃M,P ∗ ā) • B

≤ 2
b̄>(c̄)−1b̄

1 + ∆AK′
• B ≤ 2AK

′
,

which shows that ā is in both L(AS,P
∗
) and L2

loc(M
S,P ∗) and therefore in

L(S). Hence N is well defined and a semimartingale. As in Section IV.2,
define the stopping times T0 := 0 and Tm+1 = inf{t > Tm | TmE(N)t = 0}∧T ,
and note that (Tm) increases to T stationarily.

3) Step 1) with τ = Tm implies that

1KTm,T K • M̃
(1,Tm) = LTm1KTm,T K • E(1KTm,T K • N)

is for each m a square-integrable martingale. By Remark 2.8, this implies
that N is inM2

0,loc(P ) because L > 0. Then step 1) also shows that (E , ZN )

with E = E(N) and ZN = L is regular and square-integrable, since the
product of LTm and TmE(N) = E(1KTm,T K • N) is M̃ (1,Tm). Finally, step 1)
with τn replaced by τn∧Tm yields for n→∞ that S is an E-local martingale.
This ends the proof.
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An alternative description of L and hence of the optimal strategies is
via the BSDE (4.21) in Corollary 4.8. Combining (6.3) with the fact that
h± = g± in Section IV.4, we obtain that the BSDE system (4.21) (for L±)
collapses to the single BSDE (for L)

L = (L−b̄
>(c̄)−1b̄) • B +HL • Sc +WL ∗ (µS − νS) +NL, LT = 1.

By also using (6.1), (6.2) and (4.17)–(4.19), we can rewrite the drift term
(with respect to B) into a more explicit form and obtain

L = HL • Sc +WL ∗ (µS − νS) +NL

+

{(
bS + cS

HL

L−
+

∫
∆AL +WL(u)− ŴL

L−
uFS(du)

)>
×
(
cS +

∫
uu>

(
1 +

∆AL +WL(u)− ŴL

L−

)
FS(du)

)−1

×
(
bS + cS

HL

L−
+

∫
∆AL +WL(u)− ŴL

L−
uFS(du)

)
L−

}
• B,

LT = 1. (6.8)

This is much simpler than the constrained case because we no longer have
a coupled system of BSDEs (for L±). Note that (6.8) has one more term
than the otherwise identical equation (3.37) in [14]; it seems that Černý
and Kallsen [14] have somewhere lost ∆AL, as has also been noted by other
authors.

IV.6.2 The continuous case

To the best of our knowledge, all results on the Markowitz problem under
constraints in continuous-time models have been obtained when S is con-
tinuous. Before discussing individual papers, we therefore explain how our
results simplify for continuous S.

First of all, Lemma 3.5 yields that V (x, ϕ̃(x,τ)) = x E(ψ̃(x,τ) • S). So if
(3.1) (when we start from τ = 0) has a solution, the process V (x, ϕ̃(x,0))
has a unique sign on all of J0, T K because the stochastic exponential of a
continuous process never hits 0. One can then show with some extra work
that

ϕ̄(x,τ) := x E
(
(ψ̃(x,0)

1Kτ,T K) • S
)
ψ̃(x,0)

1Kτ,T K =
x

Vτ (x, ϕ̃(x,0))
ϕ̃(x,0)

1Kτ,T K

is optimal for (3.2) (when we start from τ); more precisely, this can be done
if we have the existence of an optimal strategy ϕ̃(x,τ) for all (x, τ) or if the
constraints correspondence C has convex closed cones as values. So if S is
continuous, we basically do not need to study all the conditional problems;
it is enough to understand and describe ϕ̃(x,0).
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In the local description in Section IV.4, we next see in (4.2) that g2,± ≡ 0
when S has no jumps; so (4.3) gives g± = g1,± and (4.1) shows that g+ and
g− only depend on `+ and `−, respectively. This implies in turn that the
two coupled equations in (4.5) in Theorem 4.1 decouple; and since we have
already seen above that V (x, ϕ̃) has a unique sign on J0, T K, we need in fact
only one of those two equations (depending on the sign of x).

To describe the optimal strategy ϕ̃(x,0), we must find the minimiser ψ̃(x,0)

of g+ or g− (depending on the sign of x). Because g± are simple quadratic
functions of ψ, as the terms g2,± are absent, finding their minimisers over the
constraint set K is straightforward in principle. But explicit (closed form)
expressions can be expected only in special cases.

Conversely, Theorem 4.4 allows us to construct a solution ϕ̃(x,0) to (3.1)
from a solution to the BSDEs in (4.20). Those equations take the more
explicit form

`± = − inf
ψ∈K

h±(ψ;S, `±) • B +H`± •M +N `± , `±T = 1 (6.9)

with
h±(ψ;S, `±) = `±−ψ

>cSψ ± 2`±−ψ
>bS ± 2ψ>cSH`± .

In the unconstrained case C ≡ K ≡ Rd, we can find the minimal value of h±

explicitly by completing the square. Since we then also need not distinguish
between `+ and `−, as seen in Section IV.6.1, the BSDE (6.9) becomes (after
doing the computations)

L = HL •M +NL +

{(
bS + cS

HL

L−

)
(cS)−1

(
bS + cS

HL

L−

)
L−

}
• B,

LT = 1. (6.10)

This equation can also be found in Kohlmann and Tang [60], Mania and
Tevzadze [68] or Bobrovnytska and Schweizer [11], among others. Of course,
(6.10) can also be obtained as a special case of (6.8) by simply dropping
there all the jump terms. Note that even if S is continuous, L need not be,
due to the presence of the orthogonal martingale term NL.

After these general remarks, let us now discuss and compare the most
important results in the literature so far.

We start with Hu and Zhou [49], Labbé and Heunis [63] and Li, Zhou
and Lim [66]. They all use for S a multidimensional Itô process model as in
Example 2.15 of the form

dSt = diag(St)
(
(µt − rt1) dt+ σt dWt

)
(6.11)

with a vector drift process µ and a matrix volatility process σ. An important
assumption is that dimS = dimW and that σ is invertible (even uniformly
elliptic); this means that the model without constraints is complete and
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implies that the projection ΠS on the predictable range of S is simply the
identity. Finally, the constraints are given by closed convex cones K which
are constant (i.e. do not depend on t or ω).

In [49], the approach is to first study a more general constrained stochas-
tic linear-quadratic (LQ) control problem and then derive results for the
Markowitz problem as a special case. One inherent disadvantage is that this
usually provides less intuition and insight than a direct approach as in this
chapter. At the more abstract level, [49] prove verification theorems; they
show how solutions to certain BSDEs induce solutions to certain LQ control
problems and also prove existence of solutions to their BSDEs under suitable
conditions. In the context of the model (6.11), one key assumption is that the
instantaneous Sharpe ratio process λ̄ := σ−1(µ− r1) = σ>(σσ>)−1(µ− r1)
is uniformly bounded ; this is exploited to prove solvability of the BSDEs by
using results of Kobylanski [59]. Moreover, the arguments exploit (via the
use of BSDE comparison theorems) that the opportunity processes L± are
continuous since the filtration generated by the driving Brownian motion has
no discontinuous martingales. Boundedness of λ̄ also implies the existence
of an EσMM Q for S with dQ

dP ∈ L2(P ); in fact, one can take for Q the
minimal martingale measure given by dQ = E(−λ̄ •W )T dP . Theorem 2.16
then implies the closedness in L2(P ) of GT (Θ(K)) and hence the solvability
of (3.1). For applications, one drawback of assuming λ̄ bounded is that this
restrictive condition is often hard to check or even not satisfied in specific
(e.g. Markovian) models for S. Moreover, we could not find in [49] any ex-
planation where the BSDEs come from so that the presentation seems to us
not fully transparent. One simple illustration is that the authors of [49] also
observe that one needs only one of the two BSDEs; but their explanation
seems to miss that this is directly due to the continuity of S, as explained
above before (6.9).

In [63], the final setting is even more special since the coefficients µ, r, σ
in (6.11) are all deterministic functions. Labbé and Heunis [63] use convex
duality to obtain existence and the structure of the solution to the Markowitz
problem, by first solving a dual problem and then constructing from that the
desired primal solution. More precisely, existence is proved for random coef-
ficients and even (fixed) convex closed, but not necessarily conic, constraints
if λ̄ = σ−1(µ − r1) is bounded (as in [49]). However, the results on the
structure of the optimal portfolio are obtained by first studying and solving
the HJB equation for the dual problem, and this hinges crucially on the
assumption of deterministic coefficients. It also needs closed convex cones
for the constraints. From our perspective, the use of duality is in general
not really necessary to obtain the structure of the solution to the primal
problem. Duality is very often useful for proving the existence of a (primal)
solution; but if that is achieved differently (or assumed), structural results
about the solution can usually be derived directly in the primal setting, as
we have done here.



IV.6 Related work 113

Finally, one of the earliest papers on the Markowitz problem under con-
straints in a continuous-time setting is due to Li, Zhou and Lim [66]. The
coefficients µ, r, σ there are deterministic functions, λ̄ = σ−1(µ−r1) is again
bounded, and constraints are given by C ≡ K ≡ Rd+ (no shortselling). The
treatment in [66] combines LQ control with Markovian and PDE techniques;
instead of working with BSDEs as in [49], the authors of [66] study the (pri-
mal) HJB equation associated to the Markowitz problem, construct for that
a viscosity solution, and use a verification result to then derive the optimal
strategy. A major step in their proof is to deal with a potential irregularity
in the HJB equation (the set Γ3 in [66], where v(t, x) = 0). From our general
perspective, there are two comments. One is that a (well-hidden) assump-
tion in [66] is that the vector µ− r1 is in Rd+ (since the coefficient B in the
abstract problem (3.1) in [66] must lie in the positive orthant). By looking
at our functions g± = g1,± in (4.1) and using that K ≡ Rd+, we then directly
obtain the minimisers ψ̃+ = 0, ψ̃− = (σσ>)−1(µ − r1) = (σ>)−1λ̄, so that
the optimal strategy is directly given. Secondly, the fact that V (x, ϕ̃) has
a unique sign implies that the potential irregularity in the HJB equation is
actually not relevant since the optimiser will not go there; this explains why
there is no genuine smoothness problem in [66].

While all the above papers consider models which are complete with-
out constraints, there has also been some recent work going beyond such
restrictive setups; we mention here Jin and Zhou [53] and Donnelly [34].
Both use duality techniques to prove the existence of a solution; [34] has an
Itô process model with regime-switching coefficients and (deterministic and
constant) convex constraints, while [53] studies no-shortselling constraints
(C ≡ K ≡ Rd+) in an incomplete Itô process model. The latter paper also
obtains the optimal strategy more explicitly for the special case of deter-
ministic parameters µ, r, σ; this is possible because (like in [63]) the dual
problem becomes much simpler under that condition. All in all, it seems
fair to say that even for continuous S, our results on the structure of the
optimal strategy in the Markowitz problem under constraints contain and
substantially extend all the available literature so far.

The last statement needs an important clarification. We focus here on
constraints on strategies and there in particular on the structure of the op-
timiser for the Markowitz problem. There have been quite a few papers on
the Markowitz problem (usually in the form (2.2) of minimising the variance
subject to a given mean for the final wealth) with the additional constraint of
having a nonnegative wealth process. One of the earliest papers on this topic
is due to Korn and Trautmann [61], and more recent contributions include
Bielecki, Jin, Pliska and Zhou [7] and Xia [94]. In most cases, the discussion
and solution goes as follows. If one has a good equivalent martingale mea-
sure Q, say, then nonnegative wealth V (x, ϑ) ≥ 0 as a process is equivalent
to having nonnegative final wealth, VT (x, ϑ) ≥ 0. If one also has a complete
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model, every final payoff is replicable and so it is enough to solve the static
Markowitz problem over (nonnegative) final wealth only. This is done in [61]
via duality and utility-based techniques and in [7] via Lagrange multipliers.
The paper by Xia [94] is a little different; it actually reduces the problem
of minimising E[|y − VT (x, ϑ)|2] for continuous S and y > x by observing
(and proving) that it is optimal to first minimise the expected squared short-
fall E[|(y− VT (x, ϑ))+|2] and then stop the corresponding wealth process as
soon as it hits y. But in all these cases, a nonnegative wealth constraint is
substantially easier to deal with than constraints imposed on strategies.



Chapter V

Time-consistent mean-variance
portfolio selection

V.1 Introduction

In his seminal paper “Portfolio selection” [69], Harry Markowitz gave to the
common wisdom that investors try to maximise return and minimise risk
a quantitative description by saying that the return should be measured
by the expectation and the risk by the variance. In a one period financial
market, mean-variance portfolio selection then simply consists of finding the
self-financing portfolio whose one-period terminal wealth has maximal mean
and minimal variance. Since the mean-variance criterion is quadratic with
respect to the strategy, we can calculate the solution, the so-called mean-
variance efficient strategy, directly and explicitly. Apart from the appealing
and immediate interpretation of the optimisation criterion this probably ex-
plains its popularity.

Although one can obtain explicit formulas in one period, a multiperiod
or continuous-time treatment is considerably more delicate; this has already
been observed by Mossin in [74]. The reason is the well-known fact that the
mean-variance criterion does not satisfy Bellman’s optimality principle.

One way to deal with this issue is to treat mean-variance portfolio selec-
tion as in the Markowitz problem considered by Richardson [81], Schweizer
[86] and Li and Ng in [65]. It consists of simply plugging in the multi-
period or continuous-time terminal wealth into the one period criterion and
to maximise that with respect to the strategy over the entire time interval.
Although this formulation fails to produce a time-consistent solution in the
sense that it is optimal for the conditional criterion at a later time, this is
nevertheless a common way to avoid dealing with the time inconsistency of
the mean-variance criterion used in the literature. There it is sometimes re-
ferred to as mean-variance portfolio selection under precommitment, as the
investor commits to follow the strategy which is optimal at time zero even
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though it is not (conditionally) optimal later on.
In this chapter, we approach the time inconsistency of the mean-variance

criterion in a different way. We try to find a solution which is in some
reasonable way optimal for the conditional mean-variance criterion and time-
consistent in the sense that if it is optimal at time zero, it is also optimal
on any remaining time interval. In a Markovian framework, such a time-
consistent formulation has been introduced by Basak and Chabakauri in [6].
However, to find a time-consistent formulation in general is an open problem
as pointed out by Schweizer at the end of the survey article [89]. As the
failure of Bellman’s optimality principle indicates, we have to use a different
notion of optimality for the dynamic criterion than the classical one used
in dynamic programming. As in [6], we follow Robert Strotz who suggested
in [91] (for a different time-inconsistent deterministic optimisation problem)
to maximise not over all possible future strategies, but only those one is
actually going to follow. In discrete time, this leads to determining the
optimal strategy by a backward recursion starting from the terminal date.
For a continuous-time formulation one has to combine this recursive approach
to time inconsistency with a limit argument. In a Markovian framework, for
optimal consumption problems with non-exponential discounting this has
recently been studied by Ekeland and Lazrak in [36] and [35] and Ekeland and
Pirvu in [37] and [38] and for mean-variance portfolio selection problems by
Basak and Chabakauri [6] and Björk, Murgoci and Zhou [10]. These authors
give the definition of the time-consistent solution via a backward recursion
the interpretation of a Nash subgame perfect equilibrium strategy for an
interpersonal game. Building on these specific cases, Björk and Murgoci
developed in [9] a “general theory of Markovian time inconsistent stochastic
control problems” for various forms of time inconsistency in a Markovian
setting. In all these problems one exploits that the underlying Markovian
structure turns all quantities of interest into deterministic functions. Then
recursive optimality can be characterised by a system of partial differential
equations (PDEs), so-called extended Hamilton–Jacobi–Bellman equations,
and one can provide verification theorems which allow to deduce that if one
has a smooth solution to the PDE, this gives the solution to the optimal
control problem.

Although it is known how to formulate and handle time-inconsistent op-
timal control problems in a Markovian framework, it is still an open ques-
tion how to do this in a more general setting and how to apply martin-
gale techniques to these kind of problems (see for example page 35 in [8]).
For the problem of mean-variance portfolio selection, we answer these open
questions in this chapter. In discrete time, obtaining the time-consistent
solution by recursive optimisation is straightforward. To find the natural
extension of this formulation to continuous time, we introduce a local no-
tion of optimality called local mean-variance efficiency ; this is a first main
result. In continuous time, the definition of local mean-variance efficiency
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is of course inspired by the concept of continuous-time local risk minimisa-
tion introduced by Schweizer in [85]. As we shall see, our formulation in
discrete as well as in continuous time embeds time-consistent mean-variance
portfolio selection in a natural way into the already existing quadratic op-
timisation problems in mathematical finance, i.e. the Markowitz problem,
mean-variance hedging, and local risk minimisation; see [87] and [89]. More-
over, we provide an alternative characterisation of the optimal strategy in
terms of the structure condition and the Föllmer–Schweizer decomposition
of the mean-variance tradeoff process. This is a second main result and gives
necessary and sufficient conditions for the existence of a solution. The link
to the Föllmer–Schweizer decomposition allows us to exploit known results
and to give a recipe to obtain the solution in concrete models. Since the
ingredients for this recipe can be obtained directly and explicitly from the
canonical decomposition of the price process, this can be seen as the analog
to the explicit solution in the one-period case. Besides this, we obtain an
intuitive interpretation of the optimal strategy. On the one hand the investor
maximises the conditional mean-variance criterion in a myopic way one step
ahead. This generates a risk represented by the mean-variance tradeoff pro-
cess which he then minimises by local risk minimisation on the other hand.
Using the alternative characterisation of the optimal strategy allows us to
justify the continuous-time formulation by showing that it coincides with
the continuous-time limit of the discrete-time formulation. This underlines
that our reasoning in discrete time, where the solution is determined by a
backward recursion, is consistent with the way of defining optimality in con-
tinuous time and is our third main result. On the technical side, the link to
the Föllmer–Schweizer decomposition exploit and extend known results.

Recently Cui et al. proposed in [19] an alternative way to deal with the
time inconsistency of the mean-variance criterion. Relaxing the self-financing
condition by allowing the withdrawal of money out of the market, they ob-
tain a strategy which dominates the solution for the Markowitz problem in
the sense that while both strategies achieve the same mean-variance pair for
the terminal wealth their optimal strategy enables the investor to receive a
free cash flow stream during the investment process. Compared to our study
their reasoning and techniques are different. In particular, their solution is
not time-consistent in our sense.

The remainder of the chapter is organised as follows. In the next sec-
tion we explain the basic problem and the issue of time inconsistency of the
mean-variance criterion and introduce the required notation for this. To es-
tablish the time-consistent formulation, we start in Section V.3 in discrete
time and then find the natural extension of that to continuous time in Sec-
tion V.4. The convergence of the solutions obtained in discretisations of a
continuous-time model to the solution in continuous time is shown in the
last section.
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V.2 Formulation of the problem and preliminaries

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t≤T satisfying
the usual conditions of completeness and right-continuity, where T ∈ (0,∞)
is a fixed and finite time horizon. For all unexplained notation concerning
stochastic integration we refer to the book of Dellacherie and Meyer [33].
Our presentation of the basic problem here builds upon that in Basak and
Chabakauri, [6], Björk, Murgoci and Zhou [10] and Schweizer [89].

We consider a financial market consisting of one riskless asset whose price
is 1 and d risky assets described by an Rd-valued semimartingale S. As set
of trading strategies we choose Θ := ΘS := {ϑ ∈ L(S) |

∫
ϑdS ∈ H2(P )}

where L(S) is the space of all Rd-valued, S-integrable, predictable processes
and H2(P ) the space of all square-integrable semimartingales, i.e. special
semimartingales X with canonical decomposition X = X0 +MX +AX such
that

‖X‖H2(P ) := ‖X0‖L2(P )+
∥∥([MX ,MX ]T

) 1
2
∥∥
L2(P )

+
∥∥ ∫ T

0 |dA
X
s |
∥∥
L2(P )

< +∞.

The wealth generated by using the self-financing trading strategy ϑ ∈ Θ up
to time t ∈ [0, T ] and starting from initial capital x ∈ R is given by

Vt(x, ϑ) := x+
∫ t

0 ϑudSu =: x+ ϑ • St.

Note that we use the notation above also for the stochastic integral in dis-
crete time. Since we work with ΘS , we can always find representative square-
integrable portfolios for the financial market (S,ΘS) as explained in the ap-
pendix. These are portfolios ϕi ∈ Θ for i = 1, . . . , d such that the financial
market (S̃,Θ

S̃
) with S̃i := ϕi • S for i = 1, . . . , d satisfies S̃ ∈ H2(P ) and

which are representative in the sense that (S̃,Θ
S̃

) generates the same wealth
processes as (S,ΘS), i.e. ΘS • S = Θ

S̃
• S̃. We can and do therefore assume

without loss of generality that S is inH2(P ) and hence special with canonical
decomposition S = S0 +M +A, where M is an Rd-valued square-integrable
martingale null at zero, i.e. M ∈M2

0(P ), and A is an Rd-valued predictable
RCLL process null at zero with square-integrable variation. Besides simpli-
fying the presentation this allows to refer directly to the standard literature
on quadratic optimisation in mathematical finance which usually assumes
(local) square-integrability of S. Conversely, this change of parameterisation
of the financial market can be used to generalise local risk minimisation and
quadratic hedging to the case where S is a general semimartingale and not
necessarily locally square-integrable; this will be explained in more detail in
future work.

In the one-period case, where T = 1, ϑ • S1 = ϑ>1 (S1−S0) =: ϑ>1 ∆S1 and
ϑ1 is an F0-measurable Rd-valued random vector, mean-variance portfolio
selection (MVPS) with risk aversion γ > 0 can be formulated as the problem
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to

maximise E[x+ ϑ>1 ∆S1]− γ

2
Var[x+ ϑ>1 ∆S1] over all F0-measurable ϑ1.

(2.1)
The solution, the so-called mean-variance efficient strategy, is then

ϑ̃1 :=
1

γ
Cov[∆S1|F0]−1E[∆S1|F0] =: ϑ̂1 (2.2)

which, as already explained in the introduction, is given by an explicit for-
mula in terms of the risk aversion and the conditional mean and variance
of the stock price changes. Note that Cov[∆S1|F0]−1 denotes the Moore-
Penrose pseudoinverse (see [1]) and therefore the solution exists if and only
if E[∆S1|F0] is in the range of Cov[∆S1|F0].

Having obtained the formulation and the explicit form of the solution in
one period, we ask ourselves how the two extend to multiperiod or continuous
time. An immediate extension of the formulation is simply to plug in the
multiperiod or continuous-time terminal wealth into the one-period criterion.
This corresponds to considering MVPS as in the classical Markowitz problem
which is to

maximise E[VT (x, ϑ)]− γ

2
Var[VT (x, ϑ)] over all ϑ ∈ Θ. (2.3)

In this setup, MVPS is a static optimisation problem as one determines the
optimal strategy ϑ̃ with respect to the criterion evaluated at time 0. This
typically leads to a characterisation of the optimal strategy ϑ̃ via its terminal
gains ϑ̃ • ST =

∫ T
0 ϑ̃udSu. As this means that we determine a predictable

process ϑ̃ on [0, T ] implicitly by the terminal value of its stochastic integral∫ T
0 ϑ̃udSu, the question is then how to obtain a more explicit dynamic de-
scription of ϑ̃ on [0, T ]. A natural idea to do this is to use instead of the
single static the family of corresponding dynamic formulations of (2.3). For
this, one would consider for any t ∈ [0, T ] to

maximise Ut(ϑ) := E[VT (x, ϑ)|Ft]−
γ

2
Var[VT (x, ϑ)|Ft] over all ϑ ∈ Θt(ψ),

(2.4)
where Θt(ψ) =

{
ϑ ∈ Θ

∣∣ ϑ1[[0,t]] = ψ1[[0,t]]

}
denotes all strategies ϑ ∈ Θ that

agree up to time t with a given ψ ∈ Θ. Then one uses the optimal strategy ϑ̃
for (2.3) on [0, t] and determines the optimal strategy on (t, T ] by maximising
(2.4) over Θt(ϑ̃). However, it is well known that this produces a strategy
which is different from ϑ̃ on (t, T ] which basically means that the formulation
(2.4) is time inconsistent in the sense that it does not satisfy Bellman’s
optimality principle. This time inconsistency leads us to the basic question
we study in this chapter, namely how to obtain a time-consistent formulation
of MVPS, i.e. a dynamic formulation that gives a solution which is in some
reasonable sense optimal for the dynamic criterion and time consistent.
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The reason for the time inconsistency of the formulation (2.4) is the
conditional variance term. Due to the total variance formula

Var[VT (x, ϑ)|Ft] = E
[

Var[VT (x, ϑ)|Ft+h]
∣∣Ft]

+ Var
[
E
[∫ T
t+h ϑdS

∣∣Ft+h]+ Vt+h(x, ϑ)
∣∣∣Ft],

we see that the objective function at time t is given by the conditional
expectation of the objective function at time t + h and some adjustment
term, i.e.

Ut(ϑ) = E
[
Ut+h(ϑ)

∣∣Ft]− γ

2
Var

[
E
[∫ T
t+h ϑdS

∣∣Ft+h]+ Vt+h(x, ϑ)
∣∣∣Ft] (2.5)

for all ϑ ∈ Θ. As this adjustment term does not only depend on the strategy
via its behaviour on (t, t+ h] but also on (t+ h, T ], it cannot be interpreted
as a running cost term, and therefore the objective function is not of the
“standard form” which is crucial for the dynamic programming approach to
work; see for instance [9], or [43] for a textbook account. The economic
explanation for the time-inconsistent behaviour of the investor is as follows.
At time t, the investor uses the strategy on (t+ h, T ] not only to maximise
the time (t+ h) objective function Ut+h(ϑ), but also to minimise the second
term. This means that he tries to hedge some of the risk coming from
the strategy used on (t, t+ h]. At time t+ h, the outcome of the trading on
(t, t+h] is already known and there is no need to hedge against it. Therefore
the investor at time t+ h chooses the trading strategy on (t+ h, T ] only to
maximise Ut+h(ϑ), and so his objective and hence his choice will be in general
different from that at time t.

An alternative explanation for the failure of the time consistency of the
dynamic formulation (2.4) is of course that already the underlying mean-
variance preferences are time inconsistent due to their non-monotonicity;
see for example [67].

To handle the inconsistency of the criterion, we follow, as already ex-
plained in the introduction, the recursive approach to time inconsistency
proposed by Strotz in [91] for the deterministic optimal consumption prob-
lem with non-exponential discounting. This suggests to choose the best
strategy not among all available strategies, but among those one is actually
going to follow. For the discrete-time case, this is formulated straightfor-
wardly by recursively optimising backward starting from T , as we illustrate
in the next section.

V.3 Discrete time

In this section, we develop a time-consistent formulation for the mean-
variance portfolio selection problem in discrete time and derive the general
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structure of the solution. As this mainly serves for the motivation of the
continuous-time case, we restrict our presentation here for simplicity to the
one dimensional case d = 1.

Let T ∈ N and assume that trading only takes place at fixed times
k = 0, 1, . . . , T , where we choose at time k the number of shares ϑk+1 to be
held over the time period (k, k + 1]. In this setting, we obtain an optimal
strategy by recursively optimising starting from T , which is equivalent to
optimality with respect to local perturbations. This is then a time-consistent
solution to MVPS in the recursively optimal sense introduced by Strotz [91].
Due to the local nature of optimisation we call this notion of optimality local
mean-variance efficiency, which is formulated as follows.

Definition 3.1. Let ψ ∈ Θ be a strategy and k ∈ {1, . . . , T}. A local
perturbation of ψ at time k is any strategy ϑ ∈ Θ with ϑj = ψj for all j 6= k.
We call a trading strategy ϑ̂ ∈ Θ locally mean-variance efficient (LMVE) if

Uk−1(ϑ̂) ≥ Uk−1(ϑ) P-a.s. (3.1)

for all k = 1, . . . , T and any local perturbation ϑ ∈ Θ of ϑ̂ at time k or,
equivalently,

Uk−1(ϑ̂) ≥ Uk−1(ϑ̂+ δ1{k}) P-a.s. (3.2)

for all k = 1, . . . , T and any δ ∈ Θ.

Note that since Ut(ϑ) = Vt(x, ϑ) + Ut(1Kt,T Kϑ) =: Vt(x, ϑ) + U t(ϑ), the
structure of mean-variance preferences implies that conditions (3.1) and (3.2)
do not depend for fixed k on the strategy used on {0, . . . , k − 1}. This
allows us to derive the following recursive formula for the LMVE strategy ϑ̂,
which underlines the time-consistency of the solution. This formula already
appeared in a Markovian framework in Proposition 5 in [6] and in a slightly
different semimartingale setting in an unpublished Master thesis by Sigrid
Källblad.

Lemma 3.2. A strategy ϑ̂ ∈ Θ is LMVE if and only if it satisfies

ϑ̂k =
1

γ

E[∆Sk|Fk−1]

Var [∆Sk|Fk−1]
−

Cov
[
∆Sk,

∑T
i=k+1 ϑ̂i∆Si|Fk−1

]
Var [∆Sk|Fk−1]

(3.3)

for k = 1, . . . , T .

Proof. Plugging ϑ̂ and ϑ̂+δ1{k} into (2.5), we obtain that (3.2) is equivalent
to

− δk
(
E[∆Sk|Fk−1]− γ Cov

[
∆Sk,

∑T
i=k ϑ̂i∆Si

∣∣∣Fk−1

])
+
γ

2
Var [δk∆Sk|Fk−1] ≥ 0 (3.4)
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for all k = 1, . . . , T and any δ ∈ Θ. Since Var [δk∆Sk|Fk−1] ≥ 0 for all
k = 1, . . . , T and any δ ∈ Θ, it follows immediately that ϑ̂ satisfies (3.2) if
(3.3) holds. For the converse, we argue by backward induction; so assume
that (3.3) holds for j = k+1, . . . , T . Because the conditional covariance term
in (3.4) vanishes on D := {Var[∆Sk|Fk−1] = 0}, we set ε = E[∆Sk|Fk−1]1D
and

ϕ =

(
1
γ

E[∆Sk|Fk−1]

Var
[
∆Sk

∣∣Fk−1

] − Cov
[
∆Sk,

∑T
i=k+1 ϑ̂i∆Si

∣∣Fk−1

]
Var
[
∆Sk

∣∣Fk−1

] − ϑ̂k
)
1Dc.

Then choosing δ = ε1Dn1{k} ∈ Θ with Dn = {E[(ε∆Sk)
2|Fk−1] ≤ n} and

δ = ϕ1Dn1{k} ∈ Θ with Dn{E[(ϕ∆Sk)
2|Fk−1] ≤ n} for each n ∈ N implies

that ε = 0 and ϕ = 0, as we could otherwise derive a contradiction to (3.4).
By the Cauchy–Schwarz inequality and since ε = 0, the right-hand side of
(3.3) is always well defined by setting 0

0 = 0, and equal to ϑ̂ since ϕ = 0.
This completes the proof.

To simplify (3.3), we use the canonical decomposition of S = S0 +M+A
into a martingale M and a predictable process A, which is in discrete time
given by the Doob decomposition, i.e. M0 := 0 =: A0, ∆Ak = E[∆Sk|Fk−1]
and ∆Mk = ∆Sk−E[∆Sk|Fk−1] for k = 1, . . . , T . Then (3.3) can be written
as

ϑ̂k =
1

γ

∆Ak
E [(∆Mk)2|Fk−1]

−
Cov

[
∆Mk,

∑T
i=k+1 ϑ̂i∆Ai|Fk−1

]
E [(∆Mk)2|Fk−1]

(3.5)

for k = 1, . . . , T . From this it follows by the Cauchy–Schwarz inequality that
the existence of a LMVE strategy ϑ̂ implies that S satisfies the structure
condition (SC), i.e. there exists a predictable process λ given by

λk :=
∆Ak

E [(∆Mk)2|Fk−1]
=

E[∆Sk|Fk−1]

Var [∆Sk|Fk−1]
for k = 1, . . . , T

such that the mean-variance tradeoff (MVT) process

Kk :=
k∑
i=1

(
E[∆Si|Fi−1]

)2
Var [∆Si|Fi−1]

=
k∑
i=1

λ2
iE
[
(∆Mi)

2|Fi−1

]
=

k∑
i=1

λi∆Ai

for k = 0, . . . , T is finite-valued. This is not surprising, as these quantities
also appear naturally in other quadratic optimisation problems in mathe-
matical finance; see [87]. For each ϑ ∈ Θ, we define the process of expected
future gains Z(ϑ) and the square integrable martingale Y (ϑ) of its canonical
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decomposition by

Zk(ϑ) : = E

[
T∑

i=k+1

ϑi∆Si

∣∣∣∣Fk
]

= E

[
T∑

i=k+1

ϑi∆Ai

∣∣∣∣Fk
]

= E

[
T∑
i=1

ϑi∆Ai

∣∣∣∣Fk
]
−

k∑
i=1

ϑi∆Ai

=: Yk(ϑ)−
k∑
i=1

ϑi∆Ai

for k = 0, 1, . . . , T . Note that for the LMVE strategy ϑ̂, the process Z(ϑ̂) has
already been introduced in a discrete-time semimartingale setting in Sigrid
Källblad’s Master thesis and in the Markovian framework in [6] in discrete
and continuous time, where it is a function Zt(ϑ̂) = f(Wt, St, Xt, t) of time
t and the underlying state variables, i.e. current wealth Wt, stock St and
hidden Markov factor Xt. Using the Galtchouk–Kunita–Watanabe (GKW)
decomposition

T∑
i=1

ϑi∆Ai = Y0(ϑ) +
T∑
i=1

ξi(ϑ)∆Mi + LT (ϑ)

of Y (ϑ) with a square-integrable martingale L(ϑ) strongly orthogonal to M ,
we can rewrite Z(ϑ) as

Zk(ϑ) = Yk(ϑ)−
k∑
i=1

ϑi∆Ai = Y0(ϑ) +
k∑
i=1

ξi(ϑ)∆Mi + Lk(ϑ)−
k∑
i=1

ϑi∆Ai

(3.6)
for k = 0, 1, . . . , T . Inserting the last expression into (3.5), we can reformu-
late Lemma 3.2 by combining the above as follows.

Lemma 3.3. The LMVE strategy ϑ̂ exists if and only if we have both

1) S satisfies (SC) with λ ∈ L2(M), i.e. KT ∈ L1(P ).

2) There exists ψ̂ ∈ Θ such that

ψ̂ =
1

γ
λ− ξ(ψ̂), (3.7)

where ξ(ψ̂) is the integrand in the GKW decomposition of
∑T

i=1 ψ̂i∆Ai.

In that case, ϑ̂ = ψ̂.
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Proof. By Lemma 3.2 the existence of a LMVE strategy ϑ̂ and a strategy
satisfying (3.5) are equivalent. As already explained, (3.5) implies by the
Cauchy–Schwarz inequality that S satisfies (SC). Since we obtain

Cov
[
∆Mk,

∑T
i=k+1 ϑ̂i∆Ai

∣∣∣Fk−1

]
= Cov

[
∆Mk, Zk(ϑ̂)

∣∣∣Fk−1

]
= ξk(ϑ̂)E

[
(∆Mk)

2|Fk−1

]
(3.8)

by simply plugging into (3.5) the definition of Z(ϑ̂) and (3.6), it follows that
ϑ̂ satisfies (3.7) and, conversely, that each strategy ψ̂ ∈ ΘS satisfying (3.7)
is LMVE. Moreover, since ϑ̂ ∈ Θ = L2(M) ∩ L2(A), we have that YT (ϑ̂) =∑T

i=1 ϑ̂i∆Ai ∈ L2(P ) and therefore that ξ(ϑ̂) ∈ L2(M) by construction.
Rewriting (3.7), this implies that λ = γϑ̂+ξ(ϑ̂) is in L2(M) andKT ∈ L1(P ),
which completes the proof.

Integrating both sides of (3.7) with ψ̂ = ϑ̂ with respect toM and plugging
in the GKW decomposition then gives

T∑
i=1

ϑ̂i∆Mi =
1

γ

T∑
i=1

λi∆Mi −
T∑
i=1

ξi(ϑ̂)∆Mi

=
1

γ

T∑
i=1

λi∆Mi + Y0(ϑ̂) + LT (ϑ̂)−
T∑
i=1

ϑ̂i∆Ai.

After rearranging terms and adding 1
γKT = 1

γ

∑T
i=1 λi∆Ai on both sides we

arrive at

1

γ
KT = Y0(ϑ̂)+

T∑
i=1

(
1

γ
λi − ϑ̂i

)
∆Mi+

T∑
i=1

(
1

γ
λi − ϑ̂i

)
∆Ai+LT (ϑ̂), (3.9)

which means that the terminal value of the MVT process KT admits a de-
composition

KT = K̂0 +

T∑
i=1

ξ̂i∆Si + L̂T (3.10)

into a square-integrable F0-measurable random variable K̂0, the terminal
value

∑T
i=1 ξ̂i∆Si of a stochastic integral with respect to the price process,

and the terminal value of a square-integrable martingale L̂ strongly orthog-
onal to M . If the integrand ξ̂ is in Θ and one replaces the left-hand side by
any H ∈ L2(Ω,F , P ), a decomposition of the form

H = Ĥ0 +
T∑
i=1

ξ̂Hi ∆Si + L̂HT
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is called the Föllmer–Schweizer (FS) decomposition of H, and the integrand
ξ̂H yields the so-called locally risk minimising strategy for the contingent
claim H; see e.g. [87] and [88]. However, it turns out that ξ̂ = λ − γϑ̂
is in general not in Θ and therefore (3.10) does not necessarily coincide
with the FS decomposition of KT . But nevertheless, (3.10) gives a nice
explanation what the investor is doing in order to invest optimally. On
the one hand, he is optimising the conditional mean-variance criterion for
the wealth of the next period in a myopic way one step ahead by choosing
1
γλk = 1

γ
E[∆Sk|Fk−1]

Var[∆Sk|Fk−1] for k = 1, . . . , T ; see (2.1) and (2.2). In the multiperiod
setting, this generates a risk given by 1

γKT . This risk is then minimised
in the sense of local risk minimisation by the investor on the other hand
which leads to the intertemporal hedging demand 1

γ ξ̂ = ξ̂(ϑ̂) in the solution.
Besides this interpretation we also obtain an alternative, in some sense global,
characterisation of the LMVE strategy in terms of the structure condition
and the MVT process, which is summarised in the next lemma.

Lemma 3.4. There exists a LMVE strategy ϑ̂ if and only if S satisfies (SC)
and (the terminal value of) the MVT process KT is in L1(P ) and can be
written as

KT = K̂0 +
T∑
i=1

ξ̂i∆Si + L̂T (3.11)

with K̂0 ∈ L2(Ω,F0, P ), ξ̂ ∈ L2(M) such that ξ̂−λ ∈ L2(A), and L̂ ∈M2
0(P )

strongly orthogonal to M . In that case, ϑ̂ is given by ϑ̂ = 1
γ

(
λ− ξ̂

)
.

If KT is in L2(P ) and admits a decomposition (3.11), the integrand ξ̂ is in
Θ and (3.11) coincides with the Föllmer–Schweizer decomposition of KT .

Proof. By plugging (3.7) into (3.9) and comparing the resulting equation
with (3.10), we obtain that ξ̂ = λ − γϑ̂ = γξ(ϑ̂) and therefore the first
assertion. If KT is in L2(P ), this gives that λ ∈ ΘS , which implies that
ξ̂ ∈ Θ and completes the proof.

V.4 Continuous time

In continuous time, we should like to obtain the time-consistent solution
in analogy to discrete time by optimising the mean-variance criterion with
respect to local perturbations. For a precise formulation of this we need a
local description of the underlying quantities and a limit argument. To that
end, let us fix some terminology first.

Recall from Section V.2 that we can and do assume that S is square-
integrable with canonical decomposition S = S0 + M + A, where M is an
Rd-valued square-integrable martingale null at zero, i.e. M ∈ M2

0(P ), and
A is an Rd-valued predictable finite variation RCLL process null at zero. By
Propositions II.2.9 and II.2.29 in [52], there exist an increasing, integrable,
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predictable process B, an Rd-valued predictable process a and a predictable
Rd×d-valued process cM whose values are positive semidefinite symmetric
matrices such that

ϑ • A = (ϑ>a) • B and 〈ϑ •M〉 = (ϑ>cMϑ) • B for all ϑ ∈ Θ. (4.1)

By adding t to B, we can assume that B is strictly increasing. Set PB :=
P ⊗ B. There exist many processes B, a and cM satisfying (4.1), but our
results do not depend on the specific choice we make. Using the Moore–
Penrose pseudoinverse (cM )−1 of cM (see [1]) or the arguments preceding
Theorem 2.3 in [30], we define a predictable process λ := (cM )−1a which
gives a decomposition

a = cMλ+ η (4.2)

such that η is valued in Ker(cM ). Then S satisfies the structure condition
(SC) if and only if η = 0 and λ ∈ L2

loc(M), i.e. the mean-variance tradeoff
(MVT) process K given by Kt =

∫ t
0 λ
>
u d〈M〉uλu = 〈λ • M〉t for t ∈ [0, T ] is

P -a.s. finite. In continuous time, the process of expected future gains Z(ϑ)
and the square-integrable martingale Y (ϑ) of its canonical decomposition
are given by

Zt(ϑ) := E

[∫ T

t
ϑudSu

∣∣∣∣Ft] = E

[∫ T

0
ϑudAu

∣∣∣∣Ft]− ∫ t

0
ϑudAu

=: Yt(ϑ)−
∫ t

0
ϑudAu

for t ∈ [0, T ] and each strategy ϑ ∈ Θ. Using the (continuous-time) GKW
decomposition ∫ T

0
ϑudAu = Y0(ϑ) +

∫ T

0
ξu(ϑ)dMu + LT (ϑ)

of Y (ϑ), we can rewrite Z(ϑ) as

Zt(ϑ) = Yt(ϑ)−
∫ t

0
ϑudAu = Y0(ϑ)+

∫ t

0
ξu(ϑ)dMu+Lt(ϑ)−

∫ t

0
ϑudAu (4.3)

for t ∈ [0, T ], exactly as in discrete time.
A partition of [0, T ] is a finite set τ = {t0, t1, . . . , tm} with 0 = t0 < t1 <

· · · < tm = T , and its mesh size is |τ | := maxti,ti+1(ti+1 − ti). A sequence of
partitions (τn)n∈N is increasing if τn ⊆ τn+1 for all n; it tends to the identity
if limn→∞ |τn| = 0. For later use, we associate to each partition τ the σ-field

Pτ := σ
({
F0 × {0}, Fi × (ti, ti+1]

∣∣ti, ti+1 ∈ τ, F0 ∈ F0, Fti ∈ Fti
})

on Ω × [0, T ]. Note for any sequence of partitions (τn)n∈N tending to the
identity that σ

( ⋃
n∈N
Pτn

)
is equal to the predictable σ-field P and that Pτn
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increases to P if (τn)n∈N is in addition increasing. The optimality with
respect to local perturbations can then be formulated in continuous time as
follows. Recall the notations Ut(ϑ) from (2.4) and U t(ϑ) = Ut

(
1Kt,T Kϑ

)
.

Definition 4.1. For ϑ, δ ∈ Θ and a partition τ of [0, T ], we set

uτ [ϑ, δ] :=
∑

ti,ti+1∈τ

Uti(ϑ)− Uti(ϑ+ δ1(ti,ti+1])

E[Bti+1 −Bti |Fti ]
1(ti,ti+1] (4.4)

=
∑

ti,ti+1∈τ

U ti(ϑ)− U ti(ϑ+ δ1(ti,ti+1])

E[Bti+1 −Bti |Fti ]
1(ti,ti+1].

A strategy ϑ̂ ∈ Θ is called locally mean-variance efficient (in continuous
time) if

lim inf
n→∞

uτn [ϑ̂, δ] ≥ 0 PB-a.e. (4.5)

for any increasing sequence (τn)n∈N of partitions tending to the identity and
any δ ∈ Θ.

Intuitively, uτ [ϑ, δ] measures the change in the tradeoff between mean
and variance when we perturb ϑ locally by δ along τ . Condition (4.5) then
says that perturbing the optimal stratetgy ϑ̂ locally should always decrease
this tradeoff, at least asymptotically. The appropriate “time scale” for this
asymptotic is given by the process B which is sometimes also referred to in
the literature as operational time. In analogy to discrete time, finding the
time-consistent solution by recursive optimisation is captured by comparing
at time ti strategies which differ only on (ti, ti+1] but are equal on (ti+1, T ].
Passing to the limit then takes this recursive optimisation to continuous time.
By the usual embedding of the discrete-time case into the continuous-time
setting (as for example explained in Section I.1f in [52]) it is straightforward
to see that the continuous-time formulation (4.5) coincides with that in dis-
crete time (3.2), since we can choose Bt =

∑T
k=1 1{k≤t} in this situation (see

Section II.3 in [52]).
The definition of local mean-variance efficiency above as well as the sub-

sequent treatment are inspired by the concept of local risk minimisation in
continuous time introduced by Schweizer in [85]; see also [87] and [88]. To
obtain a characterisation of the LMVE strategy ϑ̂ we need to derive the
asymptotics of (4.5). As in [88], the first ingredient for this is a decompo-
sition of uτ into three terms Aτ1 , Aτ2 and Aτ3 for which we can control the
asymptotics of each one separately. This follows by using the same argu-
ments as in [88] which we give here for completeness.

Proposition 4.2. For all strategies ϑ, δ ∈ Θ and every partition τ of [0, T ],
we have

uτ [ϑ, δ] = Aτ1 +Aτ2 +Aτ3 ,
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where

Aτ1 = EB

[(
γ
(
ξ(ϑ) + ϑ

)
− λ− γ

2 δ
)>
cMδ + δ>η

∣∣∣Pτ]
Aτ2 = γ

2

∑
ti,ti+1∈τ

Var
[∫ ti+1
ti

δdA
∣∣Fti]

E[Bti+1−Bti |Fti ]
1(ti,ti+1]

Aτ3 = γ
∑

ti,ti+1∈τ

Cov
[
Lti+1 (ϑ)−Lti (ϑ)+

∫ ti+1
ti

(ξ(ϑ)+ϑ+δ)dM,
∫ ti+1
ti

δdA
∣∣Fti]

E[Bti+1−Bti |Fti ]
1(ti,ti+1].

Proof. Plugging ϑ and ϑ+ δ1(ti,ti+1] into the definition of U(·) gives that

Uti(ϑ)− Uti(ϑ+ δ1(ti,ti+1]) = −E
[∫ ti+1

ti

δudSu

∣∣∣∣Fti]
+ γ Cov

[∫ T

0
ϑudSu +

1

2

∫ ti+1

ti

δudSu,

∫ ti+1

ti

δudSu

∣∣∣∣Fti] . (4.6)

Using S = S0 +M +A and the definition of Y (ϑ) we can write

∫ T

0
ϑudSu − E

[∫ T

0
ϑudSu

∣∣∣Fti] = YT (ϑ)− Yti(ϑ) +

∫ T

ti

ϑudMu,

which gives

Cov

[∫ T

0
ϑudSu +

1

2

∫ ti+1

ti

δudSu ,

∫ ti+1

ti

δudSu

∣∣∣∣∣Fti
]

= Cov

[
YT (ϑ)− Yti(ϑ) +

∫ ti+1

ti

(
ϑu +

1

2
δu

)
dMu,

∫ ti+1

ti

δudMu

∣∣∣∣∣Fti
]

+ Cov

[
YT (ϑ)− Yti(ϑ) +

∫ ti+1

ti

(ϑu + δu) dMu,

∫ ti+1

ti

δudAu

∣∣∣∣∣Fti
]

+
1

2
Var

[∫ ti+1

ti

δudAu

∣∣∣∣Fti] . (4.7)

Since Y (ϑ) and
∫
ϑdM are martingales, the second term on the right-hand

side above equals

Cov

[
Yti+1(ϑ)− Yti(ϑ) +

∫ ti+1

ti

(ϑu + δu) dMu,

∫ ti+1

ti

δudAu

∣∣∣∣∣Fti
]
. (4.8)

With an analogous argument and inserting the Galtchouk–Kunita–Watanabe
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decomposition Y (ϑ) = Y0(ϑ) +
∫
ξ(ϑ)dM + L(ϑ), we obtain

Cov

[
YT (ϑ)− Yti(ϑ) +

∫ T

ti

ϑdM +
1

2

∫ ti+1

ti

δdM,

∫ ti+1

ti

δdM

∣∣∣∣Fti]
= Cov

[ ∫ ti+1

ti
(ξ(ϑ) + ϑ)dM +

∫ ti+1

ti
dL(ϑ) + 1

2

∫ ti+1

ti
δdM,

∫ ti+1

ti
δdM

∣∣∣∣Fti]
= E

[∫ ti+1

ti

d
〈∫ (

ξ(ϑ) + ϑ+ 1
2δ
)
dM,

∫
δdM

〉
|Fti

]
= E

[∫ ti+1

ti

(
ξ(ϑ) + ϑ+ 1

2δ
)>
cMδdB

∣∣∣∣Fti] . (4.9)

By the martingale property of
∫
δdM and using a = cMλ+ η we have

E

[∫ ti+1

ti

δudSu

∣∣∣∣Fti] = E

[∫ ti+1

ti

(δ>u c
M
u λu + δ>u ηu)dBu

∣∣∣∣Fti] . (4.10)

Combining (4.6)–(4.10) we conclude that

Uti(ϑ)− Uti(ϑ+ δ|(ti,ti+1])

= E

[∫ ti+1

ti

((
γ
(
ξ(ϑ)u + ϑu

)
− λu + γ

2 δu
)>
cMu δu − δ>u ηu

)
dBu

∣∣∣∣∣Fti
]

+ γ Cov

[
Yti+1(ϑ)− Yti(ϑ) +

∫ ti+1

ti

(ϑu + δu) dMu,

∫ ti+1

ti

δudAu

∣∣∣∣∣Fti
]

+
γ

2
Var

[∫ ti+1

ti

δudAu

∣∣∣∣Fti] .
After dividing by E[Bti+1 − Bti |Fti ], multiplying by 1(ti,ti+1] and summing
over ti, ti+1 ∈ τ , we obtain uτ [ϑ, δ] on the left-hand side and Aτ1 , Aτ3 and Aτ2
on the right-hand side, as

∑
ti,ti+1∈τ

E

[∫ ti+1
ti

((
γ
(
ξ(ϑ)u + ϑu

)
− λu + γ

2 δu
)>

cMu δu−δ>u ηu
)
dBu

∣∣∣Fti]
E[Bti+1−Bti |Fti ]

1(ti,ti+1]

= EB

[(
ξ(ϑ) + ϑ− λ+ 1

2δ
)>
cMδ + δ>η

∣∣∣Pτ] = Aτ1 ,

which completes the proof.

Since Aτ1 is of the same form as the corresponding term in Proposition
2.2 in [88], we obtain its asymptotic behaviour by the same argument as in
Lemma 3.1 in [88]. The additional term δ>η is not relevant for this.

Lemma 4.3. Let (τn)n∈N be an increasing sequence of partitions tending to
the identity. Then

lim
n→∞

Aτn1 =
(
γ
(
ξ(ϑ) + ϑ

)
− λ+

γ

2
δ
)>

cMδ − δ>η PB-a.e. (4.11)
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Proof. We observe that
(
γ
(
ξ(ϑ) + ϑ

)
− λ+ 1

2δ
)>
cMδ−δ>η ∈ L1(PB), since

ϑ and δ are in Θ, and recall that (Pτn)n∈N increases to the predictable σ-
field P, since (τn)n∈N is increasing and tending to the identity. As Aτn1 =

EB
[(
γ
(
ξ(ϑ) + ϑ

)
− λ+ 1

2δ
)>
cMδ−δ>η

∣∣Pτn] by definition, (Aτn1 )n∈N is a uni-
formly integrable PB-martingale and (4.11) follows from the martingale con-
vergence theorem, since

(
γ
(
ξ(ϑ) + ϑ

)
− λ+ 1

2δ
)>
cMδ − δ>η is predictable.

To show that the term Aτn2 is asymptotically negligible, we establish the
following general convergence result. For this we argue with the predictable
measurability of X and need not assume continuity of X as in Proposition
3.5 in [88]. Applying our techniques to local risk minimisation enables us to
generalise this concept and some related results to a general semimartingale
setting. In particular, we are able to drop the continuity of A and (SC) in
Theorem 1.6 and Proposition 5.2 in [88]; this will be explained in more detail
in future work.

Lemma 4.4. Let (τn)n∈N be an increasing sequence of partitions of [0, T ]
tending to the identity and X ∈ H2(P ) a predictable finite variation process
such that X =

∫
αdB for α ∈ L0(B). Then

lim
n→∞

∑
ti−1,ti∈τn

Var
[
Xti −Xti−1 |Fti−1

]
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti] = 0 PB-a.e. (4.12)

Proof. We first decompose∑
ti−1,ti∈τn

Var
[
Xti −Xti−1 |Fti−1

]
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti]

=
∑

ti−1,ti∈τn

E
[
(Xti −Xti−1)2|Fti−1

]
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti]

−
∑

ti−1,ti∈τn

(
E[Xti −Xti−1 |Fti−1 ]

)2
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti].

For the proof of (4.12) we then only need to show that both sums on the
right-hand side converge to the same limit α∆X. To that end, set tτn =
inf{s ∈ τn | s ≥ t} and tτn− = sup{s ∈ τn | s < t} for each t ∈ [0, T ],
and Xn(ω, t) = (Xtτn − Xtτn−)(ω) and X̃n(ω, t) = E[Xn

t |Ftτn− ](ω) for all
(ω, t) ∈ Ω× [0, T ]. Using X =

∫
αdB we can write∑

ti−1,ti∈τn

E[(Xti −Xti−1)2|Fti−1 ]

E[Bti −Bti−1 |Fti−1 ]
1(ti−1,ti]

=
∑

ti−1,ti∈τn

E[(Xti −Xti−1)
∫ ti
ti−1

αudBu|Fti−1 ]

E[Bti −Bti−1 |Fti−1 ]
1(ti−1,ti] = EB[Xnα|Pτn ]
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and ∑
ti−1,ti∈τn

(
E[Xti −Xti−1 |Fti−1 ]

)2
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti]

=
∑

ti−1,ti∈τn

E[Xti −Xti−1 |Fti−1 ]
E
[∫ ti
ti−1

αudBu

∣∣∣Fti−1

]
E[Bti −Bti−1 |Fti−1 ]

1(ti−1,ti]

= X̃nEB[α|Pτn ].

By estimating supn∈N |Xnα| ≤ 2|α| sup0≤s≤T |Xs| ≤ 2|α|
∫ T

0 |dXu| we ob-
tain that supn∈N |Xnα| ∈ L1(PB) as

∫ T
0 (
∫ T

0 |dXs|)|αu|dBu =
( ∫ T

0 |dXs|
)2 ∈

L1(P ). Since X is RCLL and tτn ↘ t and tτn− ↗ t as n → ∞, it fol-
lows that Xn converges pointwise to ∆X. Combining this with the inte-
grability of supn∈N |Xnα| gives that EB[Xnα|Pτn ] tends to α∆X PB-a.e.
by Hunt’s lemma (see [33], V.45), since Pτn increases to P and α∆X is
predictable. As the PB-a.e. convergence of EB[α|Pτn ] to α already fol-
lows by the martingale convergence theorem, it remains to show that X̃n

converges to ∆X PB-a.e. for the convergence of the second sum. Since
supn∈N |Xtτn − Xtτn−| ≤ 2

∫ T
0 |dXs| ∈ L2(P ) for all t ∈ [0, T ] and Xn con-

verges pointwise to ∆X, it follows by Hunt’s lemma that

X̃n
t −→ E[∆Xt|Ft−] P -a.s. for each t ∈ [0, T ]. (4.13)

By Theorem III.5 in [80] the limit coincides with ∆Xt, as ∆X is predictable.
Since {limn→∞ X̃

n 6= ∆X} ∈ F ⊗B([0, T ]), we obtain that X̃n converges to
∆X PB-a.e. from (4.13) by Fubini’s theorem. This completes the proof.

With this we have now everything in place to derive the asymptotics of
uτ [ϑ, δ].

Lemma 4.5. Let (τn)n∈N be an increasing sequence of partitions of [0, T ]
tending to the identity. Then

lim
n→∞

uτn [ϑ, δ] =
(
γ
(
ξ(ϑ) + ϑ

)
− λ+

γ

2
δ
)>

cMδ − δ>η PB-a.e.

for all ϑ, δ ∈ Θ.

Proof. The proof follows immediately by combining Proposition 4.2 and
Lemma 4.3 after we have shown that Aτn2 and Aτn3 converge to 0 PB-a.e.
To that end, we estimate∣∣∣∣Cov

[
Yti+1(ϑ)− Yti(ϑ) +

∫ ti+1

ti

(ϑ+ δ) dM,

∫ ti+1

ti

δdA

∣∣∣∣Fti]∣∣∣∣2
≤ Var

[
Yti+1(ϑ)− Yti(ϑ) +

∫ ti+1

ti

(ϑ+ δ) dM

∣∣∣∣Fti]Var

[∫ ti+1

ti

δdA

∣∣∣∣Fti]
= E

[
Xti+1 −Xti+1

∣∣Fti]Var

[∫ ti+1

ti

δdA

∣∣∣∣Fti]
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by using the Cauchy-Schwarz inequality and X :=
〈
Y +

∫
(ϑ+δ)dM

〉
. Again

by the Cauchy-Schwarz inequality we obtain from the above that

|Aτn3 | ≤ γ

 ∑
ti,ti+1∈τn

E[Xti+1 −Xti+1 |Fti ]
E[Bti+1 −Bti |Fti ]

1(ti,ti+1]

 1
2

×

 ∑
ti,ti+1∈τn

Var
[∫ ti+1

ti
δudAu

∣∣∣Fti]
E[Bti+1 −Bti |Fti ]

1(ti,ti+1]


1
2

=
√

2γ

(
dPX
dPB

∣∣∣
Pτn

) 1
2

(Aτn2 )
1
2 , (4.14)

where PX := P ⊗ X and dPX
dPB

∣∣
Pτn =

∑
ti,ti+1∈τn

E[Xti+1−Xti |Fti ]
E[Bti+1−Bti |Fti ]

1(ti,ti+1]. It

is straightforward to verify that
(
dPX
dPB

∣∣
Pτn
)
n∈N is a PB-martingale by simply

checking the definition; see Lemma 3.4 in [88]. Since dPX
dPB

∣∣
Pτn is non-negative,

it follows directly by the martingale convergence theorem that
(
dPX
dPB

∣∣
Pτn
)
n∈N

is PB-a.e. convergent and hence PB-a.e. bounded in n. (Moreover, the limit
coincides with the Radon–Nikodým derivative of the absolutely continuous
part of PX with respect to PB.) Since

∫
δdA =

∫
δ>a dB, applying Lemma

4.4 with α = δ>a yields that limn→∞A
τn
2 = 0 PB-a.e. and therefore also

that limn→∞A
τn
3 = 0 PB-a.e. by (4.14). This completes the proof.

Having the representation of our criterion above, we can now describe
the solution.

Theorem 4.6. The LMVE strategy ϑ̂ exists if and only if we have both

1) S satisfies (SC) with λ ∈ L2(M), i.e. KT ∈ L1(P ).

2) There exists ψ̂ ∈ Θ such that

ψ̂ =
1

γ
λ− ξ(ψ̂), (4.15)

where ξ(ψ̂) is the integrand in the GKW decomposition of
∫ T

0 ψ̂udAu.

In that case, ϑ̂ = ψ̂.

Proof. Using Lemma 4.5 it follows by definition that ϑ̂ is LMVE if and only
if (

γ
(
ξ(ϑ̂) + ϑ̂

)
− λ+

γ

2
δ
)>

cMδ − δ>η ≥ 0 PB-a.e. (4.16)

for all δ ∈ Θ. If 1) and 2) hold, (4.16) reduces to γ
2 δ
>cMδ ≥ 0 for ϑ̂ :=

ψ̂ = 1
γλ− ξ(ψ̂) and all δ ∈ Θ, which immediately gives that this strategy ϑ̂
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is LMVE. For the converse, we first observe that since cMη = 0, choosing
δ = η1{|η>a|≤n} for each n ∈ N gives that δ ∈ Θ and −δ>δ ≥ 0 in (4.16).
This implies that η = 0 PB-a.e. and therefore that S satisfies (SC). Set
ϕ = 1

γλ−
(
ξ(ϑ̂)+ ϑ̂

)
. Then plugging δ = ϕ1{ϕ>cMϕ+|ϕ>a|≤n} ∈ Θ into (4.16)

for each n ∈ N yields that −γ
2ϕ
>cMϕ ≥ 0 PB-a.e. so that ϕ = 0 in L2(M),

which gives that λ = γ
(
ξ(ϑ̂) + ϑ

)
∈ L2(M). This completes the proof.

As in discrete time, we say that a random variable H ∈ L2(Ω,FT , P )
admits a Föllmer–Schweizer decomposition if it can be written as

H = Ĥ0 +

∫ T

0
ξ̂Hu dSu + L̂HT ,

where Ĥ0 ∈ L2(Ω,F0, P ), ξ̂H ∈ Θ and L̂H ∈ M2
0(P ) is strongly P -ortho-

gonal to M . Using this notion we can then give the following alternative
characterisation of the LMVE. Note that in contrast to the definition of
optimality, this alternative description is global.

Theorem 4.7. There exists a LMVE strategy ϑ̂ if and only if S satisfies
(SC) and (the terminal value of) the MVT process KT is in L1(P ) and can
be written as

KT = K̂0 +

∫ T

0
ξ̂dS + L̂T (4.17)

with K̂0 ∈ L2(Ω,F0, P ), ξ̂ ∈ L2(M) such that ξ̂−λ ∈ L2(A), and L̂ ∈M2
0(P )

strongly P -orthogonal to M . In that case, ϑ̂ is given by ϑ̂ = 1
γ

(
λ − ξ̂

)
,

ξ(ϑ̂) = 1
γ ξ̂,

Zt(ϑ̂) =
1

γ

(
K̂0 +

∫ t

0
ξ̂dS + L̂t −Kt

)
(4.18)

and

Ut
(
ϑ̂
)

= x+

∫ t

0

(
ϑ̂+

1

γ
ξ̂

)
dS

+
1

γ

(
K̂0 + L̂t −

1

2
E
[
KT −Kt +

〈
L̂
〉
T
−
〈
L̂
〉
t

∣∣∣Ft]) (4.19)

with canonical decomposition

Ut
(
ϑ̂
)

= x+
1

γ

(
K̂0 +

∫ t

0
λdM + L̂t −

1

2
E
[
KT +

〈
L̂
〉
T

∣∣∣Ft])
+

1

2γ

(
Kt +

〈
L̂
〉
t

)
. (4.20)

If KT is in L2(P ) and admits a decomposition (4.17), the integrand ξ̂ is in
Θ and (4.17) coincides with the Föllmer–Schweizer decomposition of KT .
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Proof. The equivalence between the existence of the LMVE strategy ϑ̂ and
the decomposition (4.17) follows from Theorem 4.6 by the same arguments
as in discrete time given in the proof of Lemma 3.4 and before. Indeed by
comparing (3.9) and (3.10), the integrability properties can be ticked off from
the corresponding parts in the decomposition, since KT =

∫ T
0 λ>u d〈M〉uλu is

in L1(P ) or L2(P ), respectively. This also yields (4.18) by simply plugging
ϑ̂ = 1

γ (λ − ξ̂) and the parts of (4.17) into (4.3). For the proof of (4.20),
we observe that the square-integrable martingale R(ϑ̂) given by Rt(ϑ̂) =

E
[ ∫ T

0 ϑ̂udSu
∣∣Ft] for t ∈ [0, T ] is equal to 1

γ (K̂0 + λ •M + L̂). Inserting this
into the definition of Ut(ϑ̂) gives

Ut(ϑ̂) = x+Rt(ϑ̂)− γ

2
E
[(
RT (ϑ̂)−Rt(ϑ̂)

)2∣∣∣Ft]
= x+Rt(ϑ̂)− γ

2
E
[〈
R(ϑ̂)

〉
T
−
〈
R(ϑ̂)

〉
t

∣∣∣Ft]
= x+

1

γ
(K̂0 + λ •Mt + L̂t)

− 1

2γ
E
[
〈λ •M〉T − 〈λ •M〉t + 〈L̂〉T − 〈L̂〉t

∣∣∣Ft]
and therefore (4.20). Since Rt(ϑ̂) =

∫ t
0 ϑ̂udSu + 1

γ

(
K̂0 +

∫ t
0 ξ̂udSu + L̂t−Kt

)
by (4.18), we then obtain (4.19) from (4.20), which completes the proof.

In specific Markovian frameworks, relations like in Theorem 4.7 have
been obtained in [6] and [9] by arguments using the Feynman-Kac formula,
which are available there. The link between the LMVE strategy ϑ̂ and the
FS decomposition now allows us to exploit known results on the FS decom-
position to give a sufficient condition for the existence of ϑ̂. To formulate
this, we first need to introduce some of the terminology used in [16]. Since
the existence of ϑ̂ implies that S satisfies (SC) with λ ∈ L2(M), we have
that −λ •M is a square-integrable martingale. For any stopping time σ we
denote σE(−λ • M) = E

(
− (λ1]]σ,T ]]) • M

)
. Since −λ • M is RCLL, it has

P -a.s. at most a countable number of jumps with ∆(−λ •M) = −1, and so
we can define an increasing sequence of stopping times T̂n by T̂0 = 0 and
T̂n+1 = inf{t > T̂n | T̂nE(−λ •M)t = 0} ∧ T.

Definition 4.8. We call E(−λ • M) regular if for any n, T̂nE(−λ • M) is a
martingale.

Definition 4.9. We say that E(−λ •M) satisfies the reverse Hölder inequal-
ity R2(P ), if there exists a constant c ≥ 1 such that for any t,

E
[
|tE(−λ •M)T |2

∣∣Ft] ≤ c.
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Definition 4.10. We say that an RCLL process X is an E(−λ • M)-
martingale, if for any n ∈ N, E

[
|XT̂n

T̂nE(−λ • M)T̂n+1
|
]
< +∞ and

(1KT̂n,T K
• X) T̂nE(−λ •M) is a martingale.

Definition 4.11. A local martingale N ∈M2
loc(P ) is in bmo2, if there exists

a constant c such that

E [〈N〉T − 〈N〉t|Ft] ≤ c2

for all t ∈ [0, T ]. The smallest such constant c is denoted by ‖N‖bmo2 .

With the definitions above we can give the following sufficient condition
for the existence of the LMVE strategy.

Corollary 4.12. Suppose that S satisfies (SC) and that E(−λ •M) is regular
and satisfies R2(P ). Then the LMVE strategy ϑ̂ exists and is given by ϑ̂ =
1
γ

(
λ − ξ̂

)
, where ξ̂ ∈ Θ is the integrand in the FS decomposition of KT ∈

L2(P ), and

Zt(ϑ̂) =
1

γ
E
[
E
(
− (λ1Kt,T K) •M

)
T

(KT −Kt)
∣∣Ft] (4.21)

for t ∈ [0, T ].

Proof. By Proposition 3.10 in [16], we have that −λ • M is in bmo2 and
therefore that KT = 〈λ • M〉T is in L2(P ) because E(−λ • M) is regular
and satisfies R2(P ). Moreover, by Theorem 5.5 in [16], S admits an FS
decomposition (in the stronger sense of Definition 5.4 in [16]), which implies
in particular that every H ∈ L2(P ) has an FS decomposition, if and only if
E(−λ •M) is regular and satisfies R2(P ). Combining this with Theorem 4.7
we obtain that the LMVE strategy ϑ̂ exists and can be represented as above
in terms of the FS decomposition of KT . Since a random variable admits an
FS decomposition if and only if it is the terminal value of an E-martingale in
H2(P,F) (see the discussion preceding Theorem 5.5 in [16]), we obtain that

E
[
E
(
− (λ1Kt,T K) •M

)
T
KT

∣∣Ft] = K̂0 +

∫ t

0
ξ̂udSu + L̂t

by Proposition 3.12.i) in [16] and therefore (4.21) via (4.18), which completes
the proof.

Remark 4.13. 1) If E(−λ • M) is strictly positive in addition to the as-
sumptions above, then it is the density process of an equivalent martingale
measure for S, the so-calledminimal martingale measure (MMM) P̂ ; see [46].
In this case, (4.21) can be written as Zt(ϑ̂) = 1

γ Ê[KT −Kt|Ft]. This relation
has been obtained in [6] and [9] in the specific Markovian frameworks used
there by arguments using the Feynman-Kac formula.
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2) If the MMM exists and its density process satisfies R2(P ) and S is
continuous, then the FS decomposition coincides with the GKW decompo-
sition under P̂ ; see [17]. In the case, where S is discontinuous, the relation
between the two decompositions is more complicated and has recently been
established in [18].

3) Applying the previous results allows us to obtain the LMVE strategy
in concrete models in the following way. First, we check if S satisfies (SC) by
using its canonical decomposition. If this is true, we obtain λ and thereforeK
and E(−λ •M) directly from the canonical decomposition of S. If E(−λ •M)
is regular and satisfies R2(P ), we can try to obtain the FS decomposition of
KT via Theorem 4.3 in [18], which gives the LMVE strategy by Theorem 4.7.
Moreover, if E(−λ •M), the candidate for the density process of the MMM,
is strictly positive in addition to the previous assumptions, the MMM exists
and we can derive the FS decomposition as explained in the previous remark
from the GKW decomposition of KT under P̂ .

4) Since one can obtain the ingredients λ, K and E(−λ • M) directly
and explicitly from the canonical decomposition of S, obtaining (a candidate
for) the LMVE strategy as explained in 3) is more explicit than solving the
static but multiperiod or continuous-time Markowitz problem via finding the
variance-optimal martingale measure; see [88] and compare Section 3 of [6].

The optimality condition (4.15) basically tells us that the locally mean-
variance efficient strategy ϑ̂ is a fixed point of the mapping Ĵ : Θ→ Θ given
by

Ĵ(ϑ) =
1

γ
λ− ξ(ϑ). (4.22)

Exploiting again the relation to the FS decomposition, we can show that this
fixed point can be obtained by an iteration. Since the iteration algorithm
reduces to a backward recursion in discrete time, this can be seen as the
continuous-time analogue of the recursive derivation of the LMVE strategy
in Lemma 3.2 in discrete time.

Lemma 4.14. If the mean-variance tradeoff process K is bounded and con-
tinuous, the mapping Ĵ(ϑ) = 1

γλ− ξ(ϑ) is a contraction on (Θ, ‖.‖β,∞) with
modulus of contraction c ∈ (0, 1) where

‖ϑ‖β,∞ :=

∥∥∥∥∥∥
(∫ T

0

1

E(−βK)u
ϑ>u d〈M〉uϑu

) 1
2

∥∥∥∥∥∥
L2(P )

.

In particular, the locally mean-variance efficient strategy ϑ̂ is given as the
limit

ϑ̂ = lim
n→∞

ϑn

in (Θ, ‖.‖β,∞), where ϑn+1 = Ĵ(ϑn) for n ≥ 1, for any starting value ϑ0 =
ϑ ∈ Θ.
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Proof. Integrating both sides of (4.22) with respect to M and using the
definition of ξ(ϑ) we obtain∫ T

0
Ĵu(ϑ)dMu =

∫ T

0

1

γ
λudMu + Y0(ϑ) + LT (ϑ)−

∫ T

0
ϑudAu

and from this

1

γ
KT −

∫ T

0

(
1

γ
λu − ϑu

)
dAu = Y0(ϑ) +

∫ T

0

(
1

γ
λu − Ĵu(ϑ)

)
dMu + LT (ϑ)

after rearranging terms and inserting the zero term 1
γKT− 1

γ

∫ T
0 λudAu. Com-

paring the last equation with the definition of the mapping J in the proof of
Corollary 5 in [79] gives that Ĵ(ϑ) = 1

γλ−J
(

1
γλ− ϑ

)
, as L(ϑ) is strongly or-

thogonal to M and therefore the right-hand side is the GKW decomposition
of the left-hand side. If K is bounded and continuous, it follows from the ar-
guments in the proof of Corollary 5 in [79] that J : (Θ, ‖.‖β,∞)→ (Θ, ‖.‖β,∞),
and hence also Ĵ , is a contraction with modulus of contraction c ∈ (0, 1),
which immediately implies that the sequence (ϑn) converges to ϑ̂ for any
starting value ϑ0 = ϑ ∈ Θ by Banach’s fixed point theorem.

Remarks 4.15. 1) Note that this proves that in our setting, the locally
mean-variance efficient strategy ϑ̂ can indeed be obtained by the iteration
procedure suggested in [9].

2) If the jumps of K are uniformly bounded by some constant b ∈ (0, 1),
it follows from the remark following Corollary 5 in [79] that J and therefore
Ĵ are still contractions on (Θ, ‖.‖β,∞) with modulus of contraction c ∈ (0, 1);
see also Lemma 5.6 later.

3) Using the “salami technique” in [73], one can show that the iterations
still converge if K is only bounded, even though the modulus of contraction
c is then not necessarily in (0, 1).

V.5 Convergence of solutions

To establish a link between the intuitive situation in discrete time, where
the time-consistent optimal strategy is found by a backward recursion, and
the continuous-time formulation given by a limiting argument, we show that
the solutions obtained in discretisations of a continuous-time model converge
to the solution in continuous time. This underlines that our formulation in
continuous time is indeed the natural extension of that in discrete time. For
this result, however, we need to discretise in an appropriate sense.

Let (τn)n∈N be an increasing sequence of partitions of [0, T ] such that
|τn| → 0 and assume for simplicity that S is one dimensional, i.e. d = 1.
Then we choose B = 〈M〉 and set PB = P〈M〉 which we deliberately denote
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by PM in this section. Moreover, we denote by Sn the RCLL discretisation
of S with respect to the partition τn, which is given by Snti = Sti for all
ti ∈ τn and constant on [ti, ti+1), and by Fn = (Fnt )0≤t≤T the filtration given
by Fnt = Fti for t ∈ [ti, ti+1). This discretisation corresponds to the situ-
ation that we only trade at a finite number of given trading dates ti ∈ τn.
Under the assumption that S = S0 + M + A is square-integrable, all Sn

are square-integrable semimartingales on (Ω,F ,Fn, P ) with Doob decom-
positions Sn = S0 + M̄n + Ān in Fn as constructed in Section V.3. Since
the processes M̄n and Ān there are a priori only defined on τn, we extend
them to piecewise constant right-continuous processes on [0, T ] by taking
M̄n
t = M̄n

ti and Ānt = Ānti for t ∈ [ti, ti+1) and ti ∈ τn, which is consistent
with the Doob–Meyer decomposition of the semimartingale Sn with respect
to the filtration Fn. This will be the usual embedding we use to include
the discrete-time case into the continuous-time framework (as for example
explained in Sections I.1f and I.4g in [52]). Note that M̄n and Ān are not
obtained by discretising the continuous-time processesM and A in the same
way as we obtain Sn from S; this explains the choice of notation, and it is
the source of the difficulties in proving our result. For later references we
denote byM2

0(P,Fn) the space of all square-integrable Fn-martingales null
at zero and by H2(P,Fn) the space of all special Fn-semimartingales with
finite H2(Fn)-norm.

To ensure the existence of a solution in the continuous-time setting, we
assume the conditions of Corollary 4.12. These also yield the existence of
solutions in all discretised settings, in which we have

λn =
∑

ti,ti+1∈τn

∆Ānti+1

E[(∆M̄n
ti+1

)2|Fti ]
1(ti,ti+1]

and

Kn
T =

∑
ti,ti+1∈τn

∆Ānti+1

E[(∆M̄n
ti+1

)2|Fti ]
∆Ānti+1

.

Since we are changing our optimisation criterion each time we increase the
partition, we cannot use the elegant approximation techniques for standard
utility maximisation problems as in [57] to obtain the convergence of the so-
lutions. Instead, we have to work directly with the structure of the solution.
We exploit that we have ϑ̂n = 1

γ (λn − ξ̂n) and ϑ̂ = 1
γ (λ − ξ̂) as global de-

scriptions in discrete as well as in continuous time, where ξ̂n is the integrand
in the discrete-time Föllmer–Schweizer decomposition of Kn

T with respect to
Sn and (Ω,F ,Fn, P ), i.e.

Kn
T = K̂n

0 +

∫ T

0
ξ̂nudS

n
u + L̂nT = K̂n

0 +
∑
ti∈τn

ξ̂nti∆S
n
ti + L̂nT
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for n ∈ N, and ξ̂ is the integrand in the continuous-time Föllmer–Schweizer
decomposition of KT with respect to S, i.e.

KT = K̂0 +

∫ T

0
ξ̂udSu + L̂T .

For the proof of the convergence ϑ̂n = 1
γ (λn − ξ̂n)

L2(M)−→ ϑ̂ = 1
γ (λ − ξ̂) we

then show that
λn

L2(M)−→ λ∞ := λ (5.1)

and
ξ̂n

L2(M)−→ ξ̂∞ := ξ̂ (5.2)

separately. For the latter we also need to establish that

Kn
T
L2(P )−→ K∞T := KT . (5.3)

The main difficulty is that the canonical decomposition is not stable
under discretisation in the following sense. As already pointed out, M̄n

and Ān are not simply obtained by discretising M and A to Mn
t := Mti

and Ant := Ati for t ∈ [ti, ti+1). From the discrete-time Doob decompo-
sition, they are rather given by the processes M̄n

t := Mn
t + MA,n

t , where
MA,n
t :=

∑i
k=1(∆Antk − E[∆Antk |Ftk−1

]), and Ānt :=
∑i

k=1E[∆Antk |Ftk−1
] for

t ∈ [ti, ti+1). Note that we set 〈Mn〉 := 〈Mn〉Fn , 〈M̄n〉 := 〈M̄n〉Fn and
〈MA,n〉 := 〈MA,n〉Fn to simplify notation. For the Fn-martingale MA,n,
which represents the “discretisation error” in the canonical decomposition,
we already know from Lemma 4.4 that

lim
n→∞

d〈MA,n〉
d〈Mn〉

= lim
n→∞

∑
ti−1,ti∈τn

Var
[
Ati −Ati−1 |Fti−1

]
E[〈M〉ti − 〈M〉ti−1 |Fti−1 ]

1(ti−1,ti] = 0

PM -a.e. Moreover, if λ •M ∈ bmo2, we have

Var
[
Ati −Ati−1 |Fti−1

]
≤ E

[
(Ati −Ati−1)2

∣∣Fti−1

]
= E

[(∫ ti−1

ti

λud〈M〉u
)2 ∣∣∣∣Fti−1

]

= E

[(∫ ti−1

ti

λ2
ud〈M〉u

)(∫ ti−1

ti

d〈M〉u
) ∣∣∣∣Fti−1

]
≤
∥∥(1(ti−1,ti]λ) •M

∥∥2

bmo2
E

[∫ ti

ti−1

d〈M〉u
∣∣∣∣Fti−1

]
(5.4)

by applying Jensen’s inequality and the definition of the bmo2-norm, which
gives∥∥∥d〈MA,n〉

d〈Mn〉

∥∥∥
L∞(PM )

≤ sup
ti−1,ti∈τn

∥∥(1(ti−1,ti]λ) •M
∥∥2

bmo2
≤
∥∥λ •M∥∥2

bmo2
. (5.5)
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However, to obtain the convergences (5.1)–(5.3) above, we shall finally need
to use that d〈MA,n〉

d〈Mn〉 −→ 0 in L∞(PM ), and we also need a tight control in
L∞(PM ) on the Kn

T and their jumps, for an arbitrary increasing sequence of
partitions tending to the identity. A sufficient condition for this is given in
the following lemma.

Lemma 5.1. Assume that K =
∫
µKdt and that µK is uniformly bounded

in ω and t by some constant cµ > 0. Then:

1) d〈MA,n〉
d〈Mn〉

L∞(PM )−→ 0, which implies d〈M̄n〉
d〈Mn〉

L∞(PM )−→ 1 and d〈Mn〉
d〈M̄n〉

L∞(PM )−→ 1.

2) There exist n0 ∈ N and b ∈ (0, 1) such that supn≥n0
‖Kn

T ‖L∞(P ) is
finite and supn≥n0

‖(∆Kn)∗T ‖L∞(P ) ≤ b, and moreover (∆Kn)∗T → 0
in L∞(P ).

Proof. 1) This immediately follows from (5.5) above and observing that

‖(λ1(s,t]) •M‖2bmo2 ≤ sup
s≤u≤t

‖E[Kt −Ku|Fu]‖L∞(P ) ≤ cµ(t− s).

From d〈MA,n〉
d〈Mn〉

L∞(PM )−→ 0 we then obtain that d〈M̄n〉
d〈Mn〉

L∞(PM )−→ 1 by using M̄n =

Mn+MA,n and the Cauchy–Schwarz inequality. The latter convergence also

implies that d〈Mn〉
d〈M̄n〉

L∞(PM )−→ 1.

2) Since d〈Mn〉
d〈M̄n〉 −→ 1 in L∞(PM ), we can choose n0 ∈ N such that we

have supn≥n0

∥∥d〈Mn〉
d〈M̄n〉

∥∥
L∞(PM )

≤ c for some c > 0. By the Cauchy–Schwarz
inequality we can estimate

(∆Ānti+1
)2 =

(
E
[∫ ti+1

ti
λud〈M〉u

∣∣∣Fti])2

≤ E[Kti+1 −Kti |Fti ]E
[∫ ti+1

ti
d〈M〉u

∣∣∣Fti] ,
which gives for n ≥ n0 that

‖(∆Kn)∗T ‖L∞(P ) =

∥∥∥∥∥ sup
ti,ti+1∈τn

(∆Ānti+1
)2

E[(∆M̄n
ti+1

)2|Fti ]

∥∥∥∥∥
L∞(P )

≤
∥∥∥∥d〈Mn〉
d〈M̄n〉

∥∥∥∥
L∞(PM )

∥∥∥∥∥ sup
ti,ti+1∈τn

E[Kti+1 −Kti |Fti ]

∥∥∥∥∥
L∞(P )

≤ cµc|τn|
n→∞−→ 0.

By the same arguments we obtain ‖∆Kn
ti+1
‖L∞(P ) ≤ cµc(ti+1−ti) for n ≥ n0

and therefore supn≥n0
‖Kn

T ‖L∞(P ) ≤ cµcT after summing up. This completes
the proof.
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Because d〈Mn〉
d〈M̄n〉

L∞(PM )−→ 1 implies the existence of some n0 ∈ N and c > 0

such that supn≥n0

∥∥d〈Mn〉
d〈M̄n〉

∥∥
L∞(PM )

≤ c, we can already prove (5.1) via the
next lemma.

Lemma 5.2. Let λ ∈ L2(M) and assume that
∥∥∥d〈Mn〉
d〈M̄n〉

∥∥∥
L∞(PM )

≤ c for some

c > 0. Then λn
L2(M)−→ λ.

Proof. Using (SC), we can write

λn =
∑

ti,ti+1∈τn

E[
∫ ti+1

ti
λud〈M〉u|Fti ]

E[
∫ ti+1

ti
d〈M〉u|Fti ]

E[(∆Mn
ti+1

)2|Fti ]
E[(∆M̄n

ti+1
)2|Fti ]

1(ti,ti+1]

= EM
[
λ
∣∣Pτn ]d〈Mn〉

d〈M̄n〉
.

Since the σ-fields Pτn increase to the predictable σ-field P and λ is in
L2(PM ) and predictable,

(
EM [λ | Pτn ]

)
n∈N is a square-integrable martin-

gale on
(
Ω× [0, T ],P, (Pτn)n∈N, PM

)
which converges to λ PM -a.e. and in

L2(PM ) by the martingale convergence theorem. To conclude the assertion,
we use the following simple fact with Xn = λn, Y n = d〈Mn〉

d〈M̄n〉 and P = PM .
Let (Xn) and (Y n) be two sequences of random variables such that Xn → X
P -a.s. and in L2(P ), Y n → Y P -a.s. and ‖Y n‖L∞(P ) ≤ c and ‖Y ‖L∞(P ) ≤ c
for some c > 0. Then XnY n → XY P -a.s. and in L2(P ). Due to the
estimate

‖XnY n −XY ‖L2(P ) ≤ ‖(Xn −X)Y n‖L2(P ) + ‖X(Y n − Y )‖L2(P )

≤ c‖Xn −X‖L2(P ) + 2c‖X‖L2(P )

this can be seen by using that XnY n → XY P -a.s. and Lebesgue’s dom-
inated convergence with majorant 2c|X| ∈ L2(P ), which completes the
proof.

For the proof of (5.3) we establish the following result which is slightly
more general than we actually need.

Lemma 5.3. Let λ • M ∈ bmo2 and assume that ξn
L2(M)−→ ξ and that ξn is

Pτn-measurable for each n ∈ N. Then ξn • ĀnT → ξ • AT in L2(P ).
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Proof. As each ξn is piecewise constant along τn, we obtain

E
[(
ξn • ĀnT − ξ • AT

)2]
= E

(∑
ti∈τn

ξnti(∆Ā
n
ti −∆Anti) + (ξn − ξ) • AT

)2


= E

(∑
ti∈τn

−ξnti∆M
A,n
ti
− (ξn − ξ) • AT

)2


≤ 2E

[(
ξn •MA,n

T

)2
]

+ 2E
[(

(ξn − ξ) • AT
)2]

and therefore that

E
[(
ξn • ĀnT − ξ • AT

)2] ≤ 2E
[
(ξn)2 • 〈MA,n〉T

]
+ 2‖ξn − ξ‖2L2(A) (5.6)

by Itô’s isometry, since ξn • MA,n ∈ M2
0(P,Fn). Replacing 〈MA,n〉 by

d〈MA,n〉
d〈Mn〉

• 〈Mn〉 and using that ξn ∈ L2(M) and d〈MA,n〉
d〈Mn〉 are piecewise con-

stant along τn, we can write

E
[
(ξn)2 • 〈MA,n〉T

]
= E

(ξn√d〈MA,n〉
d〈Mn〉

)2

• 〈M〉T


= EM

(ξn√d〈MA,n〉
d〈Mn〉

)2
 .

Moreover,
(
d〈MA,n〉
d〈Mn〉

)
n∈N

is bounded in L∞(PM ) due to (5.5). Applying again
the simple fact from the proof of the previous lemma, this time withXn = ξn,

Y n =
√

d〈MA,n〉
d〈Mn〉 and P = PM , we obtain that

(
ξn
√

d〈MA,n〉
d〈Mn〉

)
converges to

0 in L2(PM ). To complete the proof we observe that the second term on
the right-hand side of (5.6) also vanishes, since we have ‖ξn − ξ‖2L2(A) ≤
8‖λ ·M‖bmo2

∥∥ξn − ξ∥∥2

L2(M)
by Theorem 3.3 in [29]. By combining Jensen’s

inequality with the definition of the bmo2-norm as in the last line of (5.4),
we can replace the constant 8 actually by 1.

Now (5.3) follows immediately by combining the two previous lemmas.

Corollary 5.4. Let λ ·M ∈ bmo2 and assume that
∥∥∥d〈Mn〉
d〈M̄n〉

∥∥∥
L∞(PM )

≤ c for

some c > 0. Then Kn
T

L2(P )−→ KT .

To conclude the convergence of the LMVE strategies, it then remains to
show (5.2). For this we establish the convergence of the discrete Föllmer–
Schweizer decompositions obtained in a sequence of discretisations of a fi-
nancial market as the partitions tend to the identity. More precisely, we
want to prove the following result.
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Theorem 5.5. Suppose that K is bounded, d〈MA,n〉
d〈Mn〉

L∞(PM )−→ 0 and that
there exist n0 ∈ N and b ∈ (0, 1) such that supn≥n0

‖Kn
T ‖L∞(P ) < ∞ and

supn≥n0
‖(∆Kn)∗T ‖L∞(P ) ≤ b. Let Hn, H ∈ L2(P ) be contingent claims and

(τn)n∈N an increasing sequence of partitions of [0, T ]. Write the Föllmer–
Schweizer decompositions of Hn and H with respect to Sn on (Ω,F ,Fn, P )
and S on (Ω,F ,F, P ) as

Hn = Ĥn
0 +

∫ T

0
ξ̂nudS

n
u + L̂nT = Ĥn

0 +
∑
ti∈τn

ξ̂nti∆S
n
ti + L̂nT (5.7)

and

H = Ĥ0 +

∫ T

0
ξ̂udSu + L̂T . (5.8)

Then ξ̂n converges to ξ̂ in L2(PM ), if Hn → H in L2(P ) and |τn| → 0.

For the rest of the section, we always work under the assumptions of
Theorem 5.5. To simplify notation we set H∞ := H, S∞ := S, ξ̂∞ := ξ̂,
M̄∞ := M∞ = M , Ā∞ := A, K∞ := K etc. Note that MA,∞ = 0. As
we deal with GKW decompositions with respect to different martingales,
we denote the GKW decomposition of a random variable H ∈ L2(P ) with
respect to X ∈M2

0(P,Fn) for some n ∈ N := N ∪ {+∞} by

H = E[H|F0] +

∫ T

0
ξu(X,H)dXu + LT (X,H),

if we need to clarify the dependence on H and X. If n ∈ N, i.e. in discrete
time, we have

ξt(X,H) =
E
[
H∆Xti

∣∣Fti−1

]
E
[
(∆Xti)

2
∣∣Fti−1

]
for t ∈ [ti, ti+1). The first step in the proof of Theorem 5.5 is then to
observe that the Föllmer–Schweizer decomposition can be obtained under
our assumptions by a fixed point iteration, as is shown in Lemma 5.6 below.
This is basically the proof of Corollary 5 in [79] and the remark following
that. However, as we are interested in the convergence of different Föllmer–
Schweizer decompositions, we need to establish that several constants are
independent of n. This allows us to adapt the method of proof of [12] and
[13] to our situation. That method is used there to show the convergence
of solutions to discretisations of a continuous-time BSDE to the solution in
continuous time. Denoting by ξ∞,p the p-th step of the fixed point iteration
leading to ξ̂n, for n ∈ N, (where ξ̂∞ = ξ̂) gives the decomposition

ξ̂n − ξ̂ = (ξ̂n − ξn,p) + (ξn,p − ξ∞,p) + (ξ∞,p − ξ̂).

To establish the convergence of the FS decompositions, it then remains to
show that ξn,p converges to ξ̂n in L2(M) for sufficiently large n uniformly in
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n as p → ∞, and that ξn,p converges to ξ∞,p in L2(M) for each p ∈ N0 as
n→∞, which will be done in Propositions 5.7 and 5.8.

Lemma 5.6. Under the assumptions of Theorem 5.5 there exist n0 ∈ N and
b ∈ (0, 1) such that the following hold for all n ∈ N≥n0 := {n ∈ N | n ≥ n0}:

1) ΘSn = L2(M̄n), and

‖ϑ‖β,n :=

∥∥∥∥∥∥
(∫ T

0

1

E(−βKn)u
ϑud〈M̄n〉uϑu

) 1
2

∥∥∥∥∥∥
L2(P )

defines a norm on ΘSn which is equivalent to ‖.‖L2(M̄n) for any β ∈
(0, 1

b ), where the equivalence constant k can be chosen independent of
n, e.g.

k = max

(
exp

(
β

1− βb
sup
n≥n0

‖Kn
T ‖L∞(P )

)
,

∥∥∥∥ 1

E(−βK∞)T

∥∥∥∥
L∞(P )

)
.

2) The mapping Jn : ΘSn → ΘSn which maps ϑ ∈ ΘSn into the integrand

ξ

(
M̄n, Hn −

∫ T

0
ϑudĀ

n
u

)
of M̄n in the Galtchouk-Kunita-Watanabe decomposition of Hn(ϑ) :=

Hn −
∫ T

0 ϑudĀ
n
u, i.e.,

Hn(ϑ) = E [Hn(ϑ)|F0] +

∫ T

0
ξu(M̄n, Hn(ϑ))dM̄n

u + LnT (M̄n, Hn(ϑ)),

is a contraction on (ΘSn , ‖.‖β,n) with a modulus of contraction c ∈
(0, 1) that can be chosen independent of n, for any β ∈ (1, 1

b ).

3) The integrand ξ̂n in the Föllmer–Schweizer decomposition is given as
the limit

ξ̂n = ξn,∞ = lim
p→∞

ξn,p

in (ΘSn , ‖.‖β,n), where ξn,0 = 0 and ξn,p = Jn(ξn,p−1) for all p ∈ N.

Proof. 1) Under the assumptions of Theorem 5.5, there exists n0 ∈ N with

sup
n∈N≥n0

‖Kn
T ‖L∞(P ) <∞

and therefore

‖ϑ‖L2(M̄n) ≤ ‖ϑ‖ΘSn ≤
(
1 + sup

n∈N≥n0

‖Kn
T ‖

1
2

L∞(P )

)
‖ϑ‖L2(M̄n),
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which implies that ΘSn = L2(M̄n) for all n ∈ N≥n0 . Moreover, since
there exists b ∈ (0, 1) such that supn≥n0

‖(∆Kn)∗T ‖L∞(P ) ≤ b, the process
1

E(−βKn) = 1∏
0<s≤·(1−β∆Kn

s ) is increasing such that 1
E(−βKn) ≥ 1 and

∥∥∥∥( 1

E(−βKn)

)∗
T

∥∥∥∥
L∞(P )

≤

∥∥∥∥∥∥exp

 ∑
0<s≤T

−β log(1− β∆Kn
s )

∥∥∥∥∥∥
L∞(P )

≤ exp

(
β

1− βb
sup
n≥n0

‖Kn
T ‖L∞(P )

)
<∞

for all n ≥ n0 and any β ∈ (0, 1
b ). Since K

∞ is of finite variation, both parts
of the decomposition K∞ =

∑
∆K∞+ (K∞−

∑
∆K∞) exist. By estimat-

ing 1 ≤ 1
E(−βK∞) = 1

E(−β
∑

∆K∞−β(K∞−
∑

∆K∞)) ≤ e

(
β

1−βb+β
)
‖K∞T ‖L∞(P ) we

therefore obtain that the increasing process 1
E(−βK∞) is uniformly bounded

and
1

k
‖ϑ‖L2(M̄n) ≤ ‖ϑ‖β,n ≤ k‖ϑ‖L2(M̄n)

holds with k = max

(
exp

(
β

1−βb supn≥n0
‖Kn

T ‖L∞(P )

)
,
∥∥∥ 1
E(−βK∞)T

∥∥∥
L∞(P )

)
for all ϑ ∈ ΘSn , for all n ∈ N≥n0 .

2) Following the remark after the proof of Corollary 5 in [79], we apply
Proposition 1 in [79] with β > µ2 > 1, ϑ = ϑ1 − ϑ2, ψ = Jn(ϑ1) − Jn(ϑ2),
V0 = Hn

0 (ϑ1) − Hn
0 (ϑ2), L = Ln

(
M̄n, H(ϑ1)

)
− Ln

(
M̄n, H(ϑ2)

)
and C =

1
E(−βKn) which gives that

‖Jn(ϑ1)− Jn(ϑ2)‖2β,n = E

[∫ T

0

1

E(−βKn)s
ψsd〈M̄n〉sψs

]
≤ 1

µ2
E

[∫ T

0

1

E(−βKn)s
ϑsd〈M̄n〉sϑs

]
=

1

µ2
‖ϑ1 − ϑ2‖2β,n,

and therefore that Jn is a contraction on (ΘSn , ‖.‖β,n) with c := 1
µ2

as
modulus of contraction for all n ∈ N≥n0 .

3) This is an immediate consequence of 2) and Banach’s fixed point
theorem.

By part 3) of Lemma 5.6 each Föllmer–Schweizer decomposition can be
obtained for sufficiently large n by a fixed point iteration in p. Then the
next proposition says that these fixed point iterations converge for p → ∞
even uniformly in n.
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Proposition 5.7. Under the assumptions of Theorem 5.5, there exists n0 ∈
N such that

sup
n∈N≥n0

‖ξn,p − ξ̂n‖L2(M)
p→∞−→ 0.

Proof. Using that there exist n0 ∈ N and b ∈ (0, 1) by Lemma 5.6 such
that the Jn are contractions on (ΘSn , ‖.‖β,n) with a common modulus of
contraction c ∈ (0, 1) independent of n, for any β ∈ (1, 1

b ), and that ξn,0 = 0
for each n ∈ N≥n0 , we obtain that

sup
n∈N≥n0

∥∥ξn,p − ξ̂n∥∥
L2(M̄n)

≤ k sup
n∈N≥n0

∥∥ξn,p − ξ̂n∥∥
β,n

≤ kcp sup
n∈N≥n0

∥∥ξ̂n∥∥
β,n
≤ k2cp sup

n∈N≥n0

∥∥ξ̂n∥∥
L2(M̄n)

.

(5.9)

To get an estimate for the right-hand side of (5.9), we are going to use
the continuity of the Föllmer–Schweizer decomposition and results on the
equivalence of norms for E-local martingales. To that end, we view each
Sn on (Ω,F ,Fn, P ). There we have that Sn = S0 + M̄n + λn • 〈M̄n〉 is an
E(−λn • M̄n)-martingale (recall Definition 4.10) by Corollary 3.17 in [16],
and E(−λn • M̄n) is regular and satisfies R2(P ) with the same constant
exp

(
supn∈N≥n0

‖Kn
T ‖L∞(P )

)
for each n ∈ N≥n0 by Proposition 3.7 in [16].

Therefore Sn admits a Föllmer–Schweizer decomposition by and in the sense
of Theorem 5.5 in [16], which implies that ‖ξ̂n • SnT ‖L2(P ) ≤ ‖Hn‖L2(P ) for
all n ∈ N≥n0 . As the constant in R2(P ) is the same for all n ∈ N≥n0 , an
inspection of the proof of Theorem 4.9 in [16] yields that∥∥ξ̂n • Sn∥∥H2(Fn)

≤ c̄
∥∥ξ̂n • SnT∥∥L2(P )

also holds with the same constant c̄ > 0 for all n ∈ N≥n0 , which implies

sup
n∈N≥n0

∥∥ξ̂n∥∥
L2(M̄n)

≤ sup
n∈N≥n0

∥∥ξ̂n • Sn∥∥H2(Fn)
≤ c̄ sup

n∈N≥n0

‖Hn‖L2(P ). (5.10)

Moreover, as d〈M̄n〉
d〈Mn〉 → 1 in L∞(PM ) by our assumptions and part 1) of

Lemma 5.1, there exists a constant c̃ > 0 such that
1

c̃
‖ϑ‖L2(M̄n) ≤ ‖ϑ‖L2(M) ≤ c̃‖ϑ‖L2(M̄n)

for all ϑ ∈ ΘSn = L2(M̄n) and all n ∈ N≥n0 by possibly enlarging n0.
Combining this with (5.9) and (5.10) gives that

sup
n∈N≥n0

∥∥ξn,p − ξ̂n∥∥
L2(M)

≤ k2cpc̄c̃ sup
n∈N≥n0

∥∥Hn
∥∥
L2(P )

p→∞−→ 0,

since supn∈N≥n0

∥∥Hn
∥∥
L2(P )

is bounded because Hn → H in L2(P ). This
completes the proof.
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Before we can conclude the proof of Theorem 5.5, we need to establish not
only the convergence of the fixed point iterations as the number of iterations
p tends to infinity, but also at each step as the mesh of the partitions goes
to 0.

Proposition 5.8. Under the assumptions of Theorem 5.5,

‖ξn,p − ξ∞,p‖L2(M)
n→∞−→ 0 (5.11)

for each p ∈ N0.

Proof. We prove this by induction on p ∈ N0. To that end, we observe that
(5.11) is clearly true for p = 0, as we have ξn,0 = ξ∞,0 = 0, and so we assume
as induction hypothesis that (5.11) holds for p ∈ N0. By Lemma 5.2 this
implies that

Hn,p := Hn −
∫ T

0
ξn,pu dĀnu −→ H∞,p := H −

∫ T

0
ξ∞,pu dAu

in L2(P ) as n→∞. For each n ≥ n0 we can write

ξn,p+1
t = ξt(M̄

n, Hn,p) =
E
[
Hn,p∆M̄n

ti

∣∣Fti−1

]
E
[
(∆M̄n

ti
)2
∣∣Fti−1

]
=

(
E
[
Hn,p∆Mn

ti

∣∣Fti−1

]
E
[
(∆Mn

ti
)2
∣∣Fti−1

] +
E
[
Hn,p∆MA,n

ti

∣∣Fti−1

]
E
[
(∆MA,n

ti
)2
∣∣Fti−1

]
×
E
[
(∆MA,n

ti
)2
∣∣Fti−1

]
E
[
(∆Mn

ti
)2
∣∣Fti−1

] )∆〈Mn〉ti
∆〈M̄n〉ti

=

(
ξt(M

n, Hn,p) + ξt(M
A,n, Hn,p)

(
d〈MA,n〉
d〈Mn〉

)
t

)(
d〈Mn〉
d〈M̄n〉

)
t

(5.12)

for t ∈ [ti, ti+1) by plugging in M̄n = Mn + MA,n and the definition of the
discrete-time GKW decomposition. Since

‖ξ(Mn, Hn,p)− ξ(Mn, H∞,p)‖L2(M) ≤ ‖Hn,p −H∞,p‖L2(P ) → 0

as n→∞ by the orthogonality of the terms in the GKW decomposition and

ξ(Mn, H∞,p)→ ξ(M,H∞,p) = ξ∞,p+1 as n→∞

in L2(M) by Theorem 3.1 in [51], we obtain that

ξ(Mn, Hn,p)→ ξ∞,p+1 as n→∞ (5.13)
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in L2(M). Moreover,∥∥∥ξ(MA,n, Hn,p)d〈M
A,n〉

d〈Mn〉

∥∥∥
L2(M)

≤
∥∥ξ(MA,n, Hn,p)

∥∥
L2(MA,n)

∥∥∥∥√d〈MA,n〉
d〈Mn〉

∥∥∥∥
L∞(PM )

≤
∥∥Hn,p

∥∥
L2(P )

∥∥∥∥∥
√
d〈MA,n〉
d〈Mn〉

∥∥∥∥∥
L∞(PM )

−→ 0 as n→∞ (5.14)

by our assumptions. Since these also give via part 1) of Lemma 5.1 that
d〈Mn〉
d〈M̄n〉 → 1 in L∞(PM ), combining (5.12)–(5.14) implies that

ξn,p+1 L2(M)−→ ξ∞,p+1 as n→∞,

which completes the proof.

Now we have everything in place to finish the proof of Theorem 5.5.

Proof of Theorem 5.5. The only remaining point is to show that we can con-
trol each of the terms in the decomposition

ξ̂n − ξ̂ = (ξ̂n − ξn,p) + (ξn,p − ξ∞,p) + (ξ∞,p − ξ̂)

in a sufficient way. To that end, fix an arbitrary ε > 0. Then we choose n0

and p in N such that supn≥n0
‖ξn,p − ξ̂n‖L2(M) ≤ ε and ‖ξ∞,p − ξ̂‖L2(M) ≤ ε

by Lemma 5.6 and Proposition 5.7. By possibly enlarging n0, Proposition 5.8
allows us to obtain that ‖ξn,p − ξ∞,p‖L2(M) ≤ ε for all n ≥ n0 and therefore
that

‖ξ̂n − ξ̂‖L2(M) ≤ sup
n≥n0

‖ξn,p − ξ̂n‖L2(M)

+ ‖ξn,p − ξ∞,p‖L2(M) + ‖ξ∞,p − ξ̂‖L2(M) ≤ 3ε,

which completes the proof.

Combining the previous results then gives the convergence of the LMVE
strategies.

Theorem 5.9. Suppose that K is bounded, d〈MA,n〉
d〈Mn〉

L∞(PM )−→ 0 and that
there exist n0 ∈ N and b ∈ (0, 1) such that supn≥n0

‖Kn
T ‖L∞(P ) < ∞

and supn≥n0
‖(∆Kn)∗T ‖L∞(P ) ≤ b. Let (τn)n∈N be an increasing sequence

of partitions of [0, T ] and ϑ̂n be the LMVE strategy with respect to Sn on
(Ω,F ,Fn, P ) and ϑ̂ the LMVE strategy with respect to S on (Ω,F ,F, P ).
Then ϑ̂n converges to ϑ̂n in L2(M) as |τn| → 0.
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Proof. Since Kn = 〈λn •Mn〉Fn and K = 〈λ •M〉 are bounded, E(λn •Mn)
and E(λ • M) satisfy R2(P ) and are regular with respect to Fn and F,
respectively, by Proposition 3.7 in [16]. By Corollary 4.12 this implies that
ϑ̂n and ϑ̂ exist and are given by ϑ̂n = 1

γ (λn − ξ̂n) and ϑ̂ = 1
γ (λ− ξ̂), where ξ̂n

and ξ̂ denote the integrand of the Föllmer–Schweizer decomposition of Kn
T

and KT . Since K = 〈λ • M〉 is bounded and hence λ • M is in bmo2, the
convergence of ϑ̂n to ϑ̂ in L2(M) follows by combining Lemma 5.2, Corollary
5.4 and Theorem 5.5, which completes the proof.

V.6 Appendix: Representative square-integrable
portfolios

In this appendix we show the existence of representative square-integrable
portfolios as announced in Section V.2. As stated in Lemma 6.1 below,
these are strategies ϕi ∈ ΘS for i = 1, . . . , d, which are representative in the
sense that the financial market (S̃,Θ

S̃
) with S̃i := ϕi • S for i = 1, . . . , d

generates the same wealth processes as the financial market (S,ΘS), i.e.
ΘS • S = Θ

S̃
• S̃. To obtain these we use the notion of σ-square-integrability:

A semimartingale X is σ-square-integrable, which we denote by X ∈ H2
σ(P ),

if there exists an increasing sequence (Dn) of predictable sets such that
Dn ↑ Ω and 1Dn • X ∈ H2(P ) for each n. The basic idea for the proof is then
the following. Even though square-integrability is a global property of the
strategy ϑ it implies that ϑ is σ-square-integrable, i.e. ϑ • S ∈ H2

σ(P ), which
can be characterised (ω, t)-pointwise. Since there exists a one-to-one corre-
spondence between σ-square-integrable and square-integrable integrands by
Proposition 2 in [42] (see below), the (ω, t)-pointwise characterisation of σ-
square-integrability is sufficient to find the representative square-integrable
portfolios. To derive this characterisation we need to work with the notion
of predictable characteristics which we introduce next.

As in [52], Theorem II.2.34, each semimartingale S has the canonical
representation

S = S0 + Sc + Ã+ [x1{|x|≤1}] ∗ (µ− ν) + [x1{|x|>1}] ∗ µ

with the jump measure µ of S and its predictable compensator ν. Then
the quadruple (b, c, F,B) of predictable characteristics of S consists of a pre-
dictable Rd-valued process b, a predictable nonnegative-definite symmetric
matrix-valued process c, a predictable process F with values in the set of
Lévy measures and a predictable non-decreasing process B null at zero such
that

Ã = b • B, [Sc, Sc] = c • B and ν = F • B. (6.1)

Using this local description of the semimartingale S we can then prove the
existence of representative square-integrable portfolios.
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Lemma 6.1. There exist strategies ϕi ∈ ΘS for i = 1, . . . , d such that the
financial markets (S,ΘS) and (S̃,Θ

S̃
) with S̃i = ϕi • S for i = 1, . . . , d admit

the same wealth processes, i.e. ΘS • S = Θ
S̃
• S̃.

Proof. By Proposition 2 in [42] (and the paragraph preceding that), σ-
square-integrablity of a semimartingale X is equivalent to the existence of a
strictly positive, bounded predictable process ψ such that ψ • X ∈ H2(P ).
As ψ is bounded and strictly positive, we can therefore always switch back
and forth between σ-square-integrable X and square-integrable semimartin-
gales Y by using the associativity of the stochastic integral, i.e. Y = ψ • X
andX = 1

ψ
• (ψ • X) = 1

ψ
• Y . Moreover, this also allows to reduce our prob-

lem to σ-square-integrability, which we consider first. Like any semimartin-
gale, a stochastic integral ϑ • S of an S-integrable process ϑ is σ-square-
integrable if and only if the sum of its squared jumps,

∑
0<s≤·(ϑ

>
s ∆Ss)

2,
is σ-integrable. By Theorem II.1.8 in [52], the latter condition is equiva-
lent to

∫ ·
0

∫
Rd(ϑ

>
s x)2Fs(dx)dBs being σ-integrable, which holds if and only if∫

Rd(ϑ
>
s x)2Fs(dx) < +∞ PB-a.e. If S is one dimensional, i.e. d = 1, we can

write ϑ2
s

∫
Rd x

2Fs(dx) =
∫
Rd(ϑ

>
s x)2Fs(dx) < +∞ PB-a.e., which basically

tells us that we must have ϑ = 0 PB-a.e. on the set Dc := {
∫
Rd x

2F (dx) =
+∞} ∈ P. Therefore setting ϕ1 := ψ1D, where ψ is the integrand from
Proposition 2 in [42], gives the desired strategy.

In the multidimensional case, the situation is more involved due to the
linear dependence between the different components of S. To deal with
this issue, we use similar techniques as in Chapter III, where we also refer
the reader to for more explanations on problems arising from this. For
the rest of the proof, we consider integrands ϑ ∈ L(S) as elements of
L0(Ω× [0, T ],P, PB;Rd) and define the linear subspace V by

V =

{
ϑ ∈ L0(Ω× [0, T ],P, PB;Rd)

∣∣∣∣ ∫
Rd

(ϑ>x)2F (dx) < +∞ PB-a.e.
}
.

By definition, V satisfies the stability property that ϑ1
1D + ϑ2

1Dc ∈ V for
all ϑ1, ϑ2 ∈ V and D ∈ P, and it is closed with respect to convergence in
PB-measure by Fatou’s lemma. So there exist by Lemma 6.2.1 in [32] (see
also Lemma 5.2 in Chapter III) vi ∈ V for i = 1, . . . , d such that

1) {vi+1 6= 0} ⊆ {vi 6= 0} for i = 1, . . . , d− 1,

2) |vi(ω, t)| = 1 or |vi(ω, t)| = 0,

3) (vi)>vk = 0 for i 6= k,

4) ϑ ∈ V if and only if ϑ =
∑d

i=1(ϑ>vi)vi PB-a.e.

Since vi is in V and bounded by 2), vi ∈ L(S) and vi • S is σ-square-
integrable for i = 1, . . . , d. By Proposition 2 in [42], there exist strictly
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positive, bounded predictable processes ψi such that (ψivi) • S ∈ H2(P ) for
i = 1, . . . , d, and we set ϕi = ψivi and S̃i = ϕi • S. Since we can write each
ϑ ∈ ΘS ⊆ V by 4) as ϑ =

∑d
i=1(ϑ>vi)vi =

∑d
i=1

(ϑ>vi)
ψi

ϕi PB-a.e., we obtain

that ϑ̃ = ( (ϑ>v1)
ψ1 , . . . , (ϑ>vd)

ψd
) =: Ψϑ is in Θ

S̃
, where Ψ :=

(
v1

ψ1 , . . . ,
vd

ψd

)>
is

an Rd×d-valued predictable process, and that ϑ • S = ϑ̃ • S̃ by the associa-
tivity of the stochastic integral. Conversely, we have for each ϑ̃ ∈ Θ

S̃
that

ϑ =
∑d

i=1 ϑ̃
iϕi = Φϑ̃ ∈ ΘS with ϑ • S = ϑ̃ • S̃, where Φ :=

(
ϕ1, . . . , ϕd

)
is an Rd×d-valued predictable process, which allows us to conclude that
ΘS • S = Θ

S̃
• S̃ and completes the proof.

Remark 6.2. As an alternative to the proof above one can introduce a
predictable correspondence C by

C(ω, t) :=

{
y ∈ Rd

∣∣∣∣ ∫
Rd

(y>x)2F (dx) < +∞
}

for all (ω, t) ∈ Ω× [0, T ]. Then the condition ϑ ∈ V can be formulated as the
pointwise constraint that ϑ(ω, t) ∈ C(ω, t) PB-a.e. As the values of C are
linear subspaces, one can deduce the existence of representative σ-square-
integrable portfolios by using (the arguments in the proof of) Theorem B.3
in Nutz [75]. The correspondence of the transformed constraints C̃ is then of
course equal to Rd for all (ω, t) ∈ Ω× [0, T ] and the representative σ-square-
integrable portfolios are the representative portfolios.
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