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Magnetism is one of the Six Fundamental Forces of the Universe, with the
other five being Gravity, Duct Tape, Whining, Remote Control, and The Force
That Pulls Dogs Toward The Groins Of Strangers.

Dave Barry (b. 1947) American author and columnist

iii





Abstract

Untethered microrobots, that is, autonomous mobile devices with
principle dimensions in the sub-millimeter range, can provide a means
for advanced diagnostic and therapeutic procedures inside the human
body. To power and drive such microrobots wirelessly, externally ap-
plied magnetic fields are seen most promising due to their long range.
Several methods have been proposed for actuation, classic pulling with
magnetic field gradients, bio-inspired cork-screw type motion, or more
ingenious methods involving stick/slip behavior on a surface or impact
driven propulsion. This thesis investigates two types of untethered soft-
magnetic microrobots. One is assembled from multiple individual planar
shapes. In an applied field their magnetization may interact and pro-
duce a complex behavior, unpredictable by current methods. Here, we
propose a method to compute their magnetization faster than the stan-
dard method, while still yielding precisely the same results. In addition,
the proposed description allows for the semi-analytical treatment of the
magnetization to gain further insight. This description is then used to
investigate the resulting torque on assembled shapes, and we show that
linear superposition holds well. Second, we introduce non-smooth multi-
body dynamics to describe the complex motion of microrobots involving
stiction, sliding and impact. Because of the low mass and, thus, high
resonant frequencies, it is extremely difficult to analyze these motions
experimentally, and numerical solutions are required for analysis. We
apply the theory to the Wireless Resonant Magnetic Microactuator and
integrate its non-smooth and non-linear equations of motion numerically
using Moreau’s mid-point integration scheme. Our results are quali-
tatively consistent with experimental results, and predict several non-
intuitive phenomena, such as switching of the direction of the velocity
with changing excitation frequency. This thesis provides the reader with
practical knowledge on how a particular magnetic device will behave in
magnetic fields and field gradients. From an engineering perspective, we
provide methods and results that help develop intuition and which guide
during the design and actuation of complex untethered soft-magnetic mi-
crorobots.
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Zusammenfassung

Ungebundene Mikroroboter, d.h Roboter deren Hauptmasse im Sub-
millimeter Bereich liegen, können neuartige Möglichkeiten für medizinis-
che Diagnose und Eingriffe im menschlichen Körper bieten. Wegen ihrer
grossen Reichweite scheinen von aussen angelegte Magnetfelder sehr er-
folgsversprechend um solchen Robotern kabellos Energie zuzuführen
oder sie zu steuern. Mehrere Methoden für solche Antriebe wurden
bereits vorgeschlagen: klassisches Ziehen mit magnetischen Feldgradien-
ten, von biologischen Systemen inspirierte Korkenzieher-ähnliche Fortbe-
wegung, aber auch ausgeklügeltere Methoden basierend auf Haft/Gleit
Übergänge auf einer Oberfläche oder Fortbewegung basierend auf Stössen.
Die vorliegende Arbeit untersucht zwei Arten von ungebundenen we-
ichmagnetischen Mikrorobotern. Einerseits, solche die aus mehreren
planaren Formen zusammengesetzt werden. Im angelegten Magnetfeld
kann deren Magnetisierung interragieren und ein komplexes Verhalten
erzeugen, was durch vorhandene Methoden nicht vorhersagbar ist. Hier
wird zunchst eine Methode vorgeschlagen um die Magnetisierung einer
einzelnen Form schneller zu berechnen als mit der Standartmethode,
während gleichzeitig das gleiche Ergebnis erreicht wird. Zusätzlich er-
laubt die vorgeschlagene Beschreibung lineares und gesättigtes Verhalten
analytisch mit einer einzigen Formel zu betrachten. Diese Beschreibung
wird dann verwendet um das magnetische Moment, das auf die zusam-
mengesetzte Formen wirkt zu untersuchen, und wir zeigen dass die An-
nahme von linearer Superposition vernünftig ist. Zweitens wird die kom-
plexe Fortbewegung von Mikrorobotern basierend auf Haften, Gleiten
und Stössen mit nicht-glatter Mehrkörperdynamik beschrieben. Wegen
den kleinen Massen und die daraus resultierend grossen Resonanzfre-
quenzen ist es praktisch unmöglich diese Bewegungen experimentell zu
untersuchen, und numerische Lösungen bieten die einzige Möglichkeit
für die Analyse. Die Theorie wird auf den Wireless Resonant Magnetic
Microactuator angewandt und die nicht-glatten und nicht-linearen Bewe-
gungsgleichungen werden basierend auf Moreau’s Mittelpunkt Integra-
tionsschema numerisch integriert. Die Resultate sind qualitativ konsis-
tent mit experimentellen Beobachtungen und sagen mehrere nicht in-
tuitive Verhalten, wie z.B. das Wechseln der Geschwindigkeitsrichtung
mit wechselnder Anregungsfrequenz, vorher. Im Allgemeinen bietet die
vorliegende Arbeit dem Leser praktisches Wissen wie sich ein magnetis-
cher Mikroroboter in Magnetfeldern und Magnetfeldgradienten verhal-
ten wird. Der ingineur-mässige Ansatz bietet Verfahren und Resultate
um Intuition für Auslegung und Aktuierung von komplexen ungebun-
denen weichmagnetischen Mikrorobtern aufzubauen.

vi



Acknowledgements

You’ll Never Walk Alone and many many people have been accompa-
nying me on the way to finishing or prolongating this thesis. In particu-
lar, I wish to express my gratitude to

Dr. Bradley Nelson, for providing the big picture for my research and
putting it into the right context. Dr. Nelson has this incredible talent to
motivate and to create a work environment that is just fun to work in;

Dr. Remco Leine, who has sparked my interest in the beauty of com-
plex mechanical systems, and always had an open door for inspiring
discussions on multi-body dynamics;

Dr. Jake Abbott, for motivating me to dig further and further into
magnetic modeling. Much of Chapters 2 and 3 would not have been pos-
sible without his steady encouragement;

my colleagues providing experimental validations for my mostly the-
oretical results. I have had excellent support from Olgaç Ergeneman, Sal-
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This almost makes me want to learn how magnets
work.

Bart Simpson - [making Skinner dance with
magnets]

CHAPTER 1
Introduction

1.1 Microrobotics

T he terms microrobotics or microrobots are widely and elastically used
without a precise definition. Yet, two main directions can be identi-

fied depending on the use of the prefix micro. On one hand, in its etymo-
logical sense1 to designate something generally small or minaturized, i.e.,
smaller than the scope of focus. On the other hand, capitalizing on the fact
that micro is a prefix in the SI unit system (symbol µ) designating one mil-
lionth (10−6), objects (e.g. organisms, robots) that have principal dimensions
or structures in the micrometer (µm) range may be referred to as microobjects
(e.g. microorganisms, microrobots).

Historically, microrobots designate robots that are generally small, typi-
cally having volumes of a few cm3. These robots are fabricated traditionally,
by mechanical assembly of very small components, i.e. bolts, screws, mi-
crochips etc. The reason to call these robots microrobots is because during
their development the focus is laid on their small size. Research is focused
on using smaller components, sophisticated assembly techniques and algo-
rithms to allow the robots to deal with their limited functionality. Examples
of such robots are the one cubic-inch robot presented by Flynn et al. [1989] or
the sugar-cubed mobile microrobot Alice by Caprari et al. [2002] (Figure 1.1).

In the 1990s, the advancement of microtechnology, i.e., the processes used
to fabricate integrated circuits (ICs) such as photolithography, electroplat-
ing and various etching and deposition methods, made actuated structures,
such as cantilevers and membranes at the microscale possible. The terms
microactuators and microrobots were coined to designate devices created by
these microfabrication techniques. As an extension to this, large systems hav-
ing working dimensions in the microscale are also commonly referred to as

1from ancient greek µικρóς, mikros, “small”
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1. Introduction

Figure 1.1: MIT’s cubic-inch robot (left) and EPFL’s sugar-cubed mobile mi-
crorobot (right) are examples where micro is used as designating very small in
general

micro- or nanorobotic systems. In this work, we will employ this latter, scale-
based, definition. For the interested reader, Abbott et al. [2007b] provide a
tutorial type introduction to microrobotics.

1.1.1 Potential Applications

Traditionally, large robots are used in areas that are too dangerous or un-
reachable for humans, e.g. deep-see or space exploration. In addition, wide-
spread industrial applications of robots include high-speed and precise ma-
nipulators with several degrees of freedom to perform specific preprogrammed
tasks, such as welding, assembly, painting, etc.

Extending this scheme to microrobots, two possible areas of applications
can be identified:

Microhandling or microassembly of microscopic objects. Here, microrobots
can be seen as end-effectors that are able to move and operate with
extremely high, near atomic, precision. In addition, microassembly may
allow for advanced fabrication techniques. Gauthier and Regnier [2010]
summarize the challenges and opportunities for this, and Cohn et al.
[1998] give an overview of various microassembly technologies.

Medical applications of microrobots are thought to have a large impact on
society. According to Nelson et al. [2010] the trend in medicine is to-
wards smaller devices and components to reduce recovery times and
risks for the patients; and untethered microrobots can provide a means
for advanced diagnostic and therapeutic procedures inside the human
body. See Fig. 1.2 for examples of possible medical applications of mi-
crorobots.

1.1.2 Microactuation Principles

Because of their limited size, microactuators are often made of smart ma-
terials, where one physical quantity is transduced into another one due to

2



1.1. Microrobotics

Figure 1.2: Possible medical applications of microrobots, adapted from [Nel-
son et al., 2010]

the properties of the material. Examples of such smart material behavior are
piezoresistive, thermomechanical, piezoelectric, shape-memory alloys, elec-
troactive polymers, etc. A thorough overview is beyond the scope of this
work but there are extensive reviews in literature available that present and
compare microactuation technologies, see for example Breguet et al. [2006];
Dario et al. [1992]; Fujita [1995]; Liu et al. [2010]; Madden et al. [2004] and
references therein.

One actuation technique capitalizes on the electrostatic interaction be-
tween polysilicon components to create, e.g., micromotors and resonant mi-
crostructures. State of the art reviews on modeling electrostatic interac-
tion are given for example by Batra et al. [2007] and Chuang et al. [2010].
The inherent limitation of electrostatic actuators is their small travel range
which depends on the distance between two opposing plates. Continu-
ous linear and rotational motion, a key requirement for autonomous micro-
robots, has been been made possible by the scratch drive actuators introduced
by Akiyama and Shono [1993] (Fig. 1.3(a)). This concept has been refined and

3



1. Introduction

(a) Scratch drive introduced by Akiyama
and Shono [1993]

(b) Untethered microrobot presented
in Donald et al. [2008]

Figure 1.3: Electrostatically actuated microrobots

researched through the years and optimized to devices capable of nanometer
positioning [Linderman and Bright, 2001].

Yet, scratch drive actuators still require tethers, such as, guiding rails for
both power and motion, making arbitrary motion impossible. By using a
surface with individually addressable electrodes to partially and temporarily
fix the actuator, the first electrostatic untethered microrobots were proposed
by Donald et al. [2003]. The same group then demonstrated arbitrarily steer-
able electrostatic microrobots on a planar surface [Donald et al., 2006], and
multiple individually controllable planar microrobots in Donald et al. [2008]
(Fig. 1.3(b)).

1.2 Wireless Magnetic Microrobots

Wireless microrobots that are capable of navigating bodily fluids to perform
localized sensing or targeted drug delivery will open the door to a variety
of new diagnostic and therapeutic procedures. These untethered devices can
be used in parts of the body that are currently inaccessible or too invasive
to access. Energy storage and onboard actuation mechanisms at the scale of
these microrobots are currently insufficient to generate the forces and torques
required to move through bodily fluids.

Due to their large range (larger than electrostatic fields), the most promis-
ing method of providing wireless power and control for such in vivo micro-
robots is through magnetic fields generated by external sources. Also, as
reviewed by Gillies et al. [1994], magnetic fields have a long history of han-
dling objects inside the human body, which further motivates their use for
powering and propelling microrobots.

In addition to powering, when moving in fluids at the microscale, one
has to face low Reynolds number flow regime. In this regime, as detailed
by Purcell [1977], inertia and time are negligible. This means that symmetri-

4



1.2. Wireless Magnetic Microrobots

(a) Schematic view of the spiral-type swim-
mer presented by Honda et al. [1996]

(b) Artificial bacterial flagella introduced
by Zhang et al. [2009a]. The length of the
scale bar is 4µm.

Figure 1.4: Bio-inspired microrobots mimic a rotating flagella and actuated
by rotating magnetic fields

cal propulsion methods, such as employed by fish, will not lead to propulsion
because the forward and backward motion pattern is the same. He then also
proposes successful swimming mechanisms comprising a flexible oar and a
corkscrew type motion and derives their propulsion matrix, the linear rela-
tionship between the rotational and linear velocity of the swimmer. His work
is in close relation to the discovery by Berg [1973] that the Escherichia coli
bacteria swims by rotating its flagella.

Following this example of nature, asymmetric propulsion methods have
been proposed, most prominently helical swimmers such as those introduced
by Honda et al. [1996]. The swimmer consists of a 1mm3 magnet attached to
a copper wire formed into a helical shape. The robot is propelled by external
magnetic fields which exert a torque on the magnet. Rotating the magnetic
field thus induces rotation of the magnet and consequently of the whole robot
which is then propelled forward (Fig. 1.4(a)).

Recently, artificial bacterial flagella (ABF) were introduced by Zhang et al.
[2009a]. The tail of the ABF is a helical structure made from InGaAs/GaAs/Cr
layers while the rectangular head is electroplated nickel. In a homogeneous
rotating magnetic field, the head will tend to align itself with the magnetic
field thereby inducing a rotation on the tail which then propels the ABF for-
ward. The ABF has been characterized [Zhang et al., 2009b] and successful
micromanipulation has been demonstrated by Zhang et al. [2010] (Fig. 1.4(b)).

In addition to such bio-inspired solutions, the more classical approach
of translating and rotating a magnetic body using external magnetic fields
has also been investigated. A magnetic levitation system has been presented
by Elbuken et al. [2009]. It consists of seven electromagnets connected by a
pole piece that are used to levitate permanent magnet structures in space.
The structures have a microgripper attached to them that is actuated ther-
mally by focusing laser light onto it. Successful levitation and micromanip-
ulation with commercial NdFeB magnets as well as Co-Ni-Mn-P film struc-
tures has been reported (Fig. 1.5(a)).

A magnetic microrobot that has been assembled from multiple thin elec-
troplated nickel parts has been studied by Yesin et al. [2006]. Forward propul-

5



1. Introduction

(a) Levitating microrobotic system from El-
buken et al. [2009]

(b) A magnetic microtobot assembled from
muiltiple thin nickel parts studied by Yesin
et al. [2006]

Figure 1.5: A classic microrobotic propulsion method is to apply magnetic
fields.

sion was achieved by applying a magnetic field gradient through a pair of
Maxwell coils. For rotation of the robot, a magnetic torque is generated using
the magnetic field of a Helmholtz coil pair. The microrobot was successfully
moved wirelessly through a maze. The magnetic and hydrodynamic prop-
erties of the microrobot have been measured [Kummer et al., 2007], and a
system comprising eight electromagnets for 5-DOF2 wireless micromanipu-
lation has been recently demonstrated [Kummer et al., 2010] (Fig. 1.5(b)).

A third class of actuation methods, beyond bio-inspired and classical, are
novel engineering approaches that involve ingenious interactions between
the individual parts of the microrobot and/or the microrobot and its envi-
ronment, such as the pivoting stick-slip microrobot described by Pawashe
et al. [2009]. It is composed of a NdFeB magnet of size 250× 130× 10µm3

and actuated by three pairs of electromagnets. Forward actuation is achieved
by imposing a time-varying magnetic torque on the microrobot which pivots
it over a surface in a stick-slip way (Fig. 1.6(a)).

Another propulsion method was developed by Vollmers et al. [2008]. The
microrobot consists of two nickel masses connected by a gold spring. An
applied magnetic field magnetizes the nickel bodies and, thus, creates an
attractive force between them. It is reported that an oscillating magnetic field
excites the microrobot to resonance and impact induces propulsion, hence the
name Wireless Resonant Magnetic Micro Actuator (WRMMA) (Fig. 1.6(b)).

2Degree Of Freedom
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1.3. Objective and Scope

(a) Pivoting stick-slip microrobot introduced
in Pawashe et al. [2009].

(b) The wireless resonant magnetic microac-
tuator by Vollmers et al. [2008].

Figure 1.6: Untethered Magnetic Microrobots

1.3 Objective and Scope

As detailed in the previous section, there is a growing body of experimental
research in the area of untethered magnetic microrobots. Yet, their theoreti-
cal understanding is often limited. Consider for example microrobots made
from soft-magnetic material such as nickel. When placed in an external mag-
netic field, the nickel body will become magnetized. But at the same time, its
magnetization will interact with the external field. This nonlinear interaction
is responsible for the magnetic forces and torques exerted on the body and
is well understood as detailed by Judy and Muller [1997] and Abbott et al.
[2007a].

Still, during computation of the magnetization, one must distinguish be-
tween linear and saturated behavior, and iterative solving of transcendental
equations is necessary. This current method allows, to some extent, the anal-
ysis of the magnetization. However, it does not allow for a closed form
expression, and it is especially unsuitable for fast computation necessary for
real-time control, especially if transition from the linear to the saturation re-
gion may occur.

In addition to this nonlinear interaction, several microrobots described
above consist of multiple soft-magnetic bodies placed close to each other and
placed in an applied field. Thus, in addition to the magnetization induced by
the applied field, there may also be interaction between the individual parts
of the microrobot, with the resulting behavior is not understood and perhaps
even counter-intuitive. Consider, for example, the assembled microrobot pre-
sented by Yesin et al. [2006]. The torques and forces exerted on its individual
parts are well understood. Yet, when assembled, the standard method of
analysis, assuming that the body is an ellipsoid [Abbott et al., 2007a], fails as
will be shown in Chapter 3. This thesis will provide two contributions here.

First, we will reformulate the standard method for computing the mag-
netization, and by taking advantage of the resulting structure, propose a
method for faster computation. This reformulation uses the Lagrange mul-
tiplier technique, and makes it possible to compute the magnetization as
a polynomial root solving problem, rather than the iterative approach em-
ployed in the standard method. This is particularly interesting for fast com-
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putation, e.g. for real-time control systems. Also, the advantage of our
method is that it allows for the treatment of the linear and saturated magne-
tization region with a single continuous formula where the standard results
are the limiting cases.

Second, using the proposed method for magnetization, we derive the re-
sulting torque expression, and show that the standard results are obtained as
its limiting cases. Then, we investigate superposition of shapes and give phe-
nomenological arguments that, in most of cases, interaction can be neglected.
We argue that configurations may exist where one or just few shapes domi-
nate the total torque on assembled structures.

In the case of the WRMMA [Vollmers et al., 2008], the situation is more
complex. In addition to the nonlinear interactions between both magnetic
bodies and the applied magnetic field, now one has to deal with friction be-
tween the bodies and the substrate and eventual impact between the bodies.

Here the two contributions of this thesis are as follows. First, we apply
results and methods from non-smooth multibody dynamics to analyze the
motion resulting from all these interactions. Our numerical results allow for
insight into the motion mechanism and the study of parameter influences,
the former being impossible with current experimental techniques. The lat-
ter, while possible, being difficult due to coupling effects. Here, the second
contribution is a linearized analytical model that allows for the identification
of characteristic parameters and non-dimensional quantities that translate
into design and actuation guidelines.

In general, this thesis provides the reader with practical knowledge on
how a particular magnetic device will behave in magnetic fields and field
gradients. A rigorous treatment of the physics involved, e.g., in the magne-
tization of the material (i.e., micromagnetism), is beyond the scope of this
thesis. Rather, from an engineering perspective, we provide methods and
results that help build intuition and guide the design of complex untethered
soft-magnetic microrobots.

1.4 Outline

The thesis is organized as follows.

In Chapter 2, we review the physical background for this thesis, that
is, Maxwell’s equations which describe the propagation of electromagnetic
waves. We review the models for magnetic dipoles and give a brief intro-
duction to magnetic materials. Then, we present the standard method for
calculating the magnetization of a soft-magnetic body in an externally ap-
plied field. Next, we propose a method based on Lagrangian analysis that,
both, speeds up and simplifies the computation. We conclude the chapter by
analyzing our method and demonstrate that it yields the exact same results
as the standard method.
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Microrobots assembled from planar components are investigated in Chap-
ter 3. First, using our results from the previous chapter, we derive expressions
for the magnetic torque and force acting on a sample with known magneti-
zation. Then, we employ these expressions to analytically investigate linear
superposition neglecting the interaction between the individual components.
We conclude the chapter by applying our findings to analyze the force and
torque acting on the assembled microrobot.

Chapter 4 briefly reviews non-smooth multi-body dynamics in the con-
text of microrobotics. Then, as an application example, the presented method
is applied to analyze the dynamics of the WRMMA. The numerical results
provide insight into its motion mechanism for the first time. Also they justify
simplifications in the derivation of an analytical model. This allows us to
identify non-dimensional characteristic parameters of the system that can be
used for its design and actuation.

Finally, Chapter 5 summarizes the thesis and highlights the contributions.
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Oh no! Not the magnet!

Bender - bla Futurama

CHAPTER 2
Magnetostatics

After introducing Maxwell’s equations to describe electric and magnetic
fields, the basic magnetic entity, the magnetic dipole is described. Then,
the constitutive relationships for magnetic materials are given, and a
criterion is derived to determine whether the magnetization of a soft-
magnetic sample is dominated by its shape or its material properties. We
review the standard method of computing this magnetization, and then,
based on Lagrangian analysis, propose a method that is both simpler
and faster than the standard method while still yielding the exact same
results.

2.1 Introduction

O bservations on magnetism1 can be traced back to the Greek philoso-
pher Thales in the 6th century B.C. Yet, it was not until the 17th cen-

tury A.D. that the english physicist William Gilbert has published the first
systematic experiments on magnetism. In Gilbert [1600], he concludes that
the earth is magnetic and that this is the reason that a compass needle points
towards the north.

Around two hundred years later, in 1820, the Danish physicist Oersted
discovered the connection between electrical current and magnetic field by
observing that a compass needle is also deflected by a current carrying wire.
This observation inspired French physicist Ampère to develop and present
a description of the way in which an electrical current produces a magnetic
field. He also demonstrated that two current carrying wires can repel or at-
tract each other depending on the direction of the current in them. His work
is considered to be the foundation of modern electromagnetism.

With the advent of quantum mechanics in the early 20th century, mag-
netic effects are explained from the atomic structure of material. Protons and
neutrons located in the positively charged nucleus and are surrounded by

1this introduction follows loosely the Wikipedia entry on magnetism
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(a) W. Gilbert (1544–
1603)

(b) H.C. Oersted
(1777–1851)

(c) A.M. Ampère (1775–
1835)

electrons carrying negative charges. As these electrons move, they produce a
magnetic field in space (see also Maxwell’s equation (2.2)). The state of the
electrons is described by four quantum numbers, the last one being the mag-
netic spin, which can only have the values 1/2 or −1/2, and may be loosely
interpreted as the direction of the magnetic field they produce.

Due to the Pauli exclusion principle, two electrons cannot have the same
four quantum numbers. Thus, there is only room for two electrons in each
spatial orbital, and they must have opposing magnetic spin. If this is the
case, the electrons are said to be paired, their magnetic fields cancel, and no
net magnetic field exists. The material is said to be diamagnetic. However, in
materials with unpaired electrons, a net magnetic field is produced and an
applied external magnetic field will generate reaction in the material. These
materials are called para- or ferromagnetic. They will be further examined in
Section 2.4.2.

2.2 Maxwell’s Equations

In Maxwell [1865], the Scottish mathematician and physicist James C. Maxwell
published a synthesis of previously unrelated observations, experiments and
equations of electricity, magnetism and even optics in a consistent theory.
He demonstrates that electric and magnetic fields travel through space in
the form of waves at the constant speed of light. In differential form, his
equations, Maxwell’s equations, are given by

Faraday’s Law of Induction ∇×E = −∂B
∂t

(2.1)

Ampère’s Law ∇×H = J +
∂D
∂t

(2.2)

Gauss’s Law ∇·D = ρ (2.3)
Gauss’s Law for Magnetics ∇·B = 0 (2.4)

where H(r, t) (in A/m) and E(r, t) (in V/m) are the magnetic and electric
field respectively, D(r, t) (in C/m2) and B(r, t) (in T) are the electric2 and
magnetic flux density, and ρ(r, t) (in C/m3) and J(r, t) (in A/m2) are the free

2D is also referred to as the electric displacement

14



2.2. Maxwell’s Equations

electric charge and free current density respectively, r ∈ R3 is the position
vector and t is time. The dell operator in cartesian coordinates is defined as

∇ =
[

∂
∂x , ∂

∂y , ∂
∂z

]T
.

The interpretation of (2.1)–(2.4) is as follows:

(2.1) A time-varying magnetic field is the origin of a curl of the electric field

(2.2) A current density and a time-varying electric flux density cause a curl
of the magnetic field

(2.3) A charge density is the source of the electric flux density

(2.4) The magnetic induction is source-free, i.e., magnetic monopoles don’t
exist.

In this thesis, we consider the special case of magnetostatics, i.e., no elec-
tric charges (ρ = 0), no electric fields (E = 0) and static (or low frequency)
fields ( d

dt ( · ) = 0). Then, Maxwell’s equations reduce to

∇×H = J, (2.5)
∇·B = 0, (2.6)

and J = 0 if there are no currents in the region of interest. The equivalent
integral form is ∮

∂S
H dl =

∮
S

J dS, and (2.7)∮
S

B dS = 0 (2.8)

where dS is the surface normal vector, and ∂S is the boundary of a closed sur-
face S. (2.8) states that the net flux of B through S is zero. In other words the
number of field lines entering any given volume in space is equal to the number
of field lines leaving that volume or, equivalently, no magnetic monopoles exist.

Note, however, that this is not a consequence of Maxwell’s equation, but
rather an experimental fact, that no magnetic monopoles have been observed.
It is straightforward to include magnetic monopoles in Maxwell’s equation
and, thus making the equations more symmetrical. The basic magnetic unit,
or entity, is the magnetic dipole, and its modeling is the subject of section 2.3.

The constitutive relationship between B and H, i.e., B(H), of a material
allows for the simultaneous solution of the system defined by (2.5) and (2.6).
In addition, it is one way of classifying magnetic materials, as will be shown
in Section 2.4.

2.2.1 Continuity and Boundary Conditions

Equations (2.5) and (2.6) together with the constitutive relation are valid in-
side one material or one computational domain. If the magnetic field tran-
sitions from one material to another, e.g., from air into nickel, the equations
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for both domains need to be fulfilled simultaneously at their boundary. They
can be derived from integral forms by choosing the integration domains such
that the boundary is enclosed.

The result, in the absence of surface currents (which is true for all our
applications), is found to be

H1,t = H2,t (2.9)
B1,n = B2,n (2.10)

where Hi,t and Bi,n designate the tangential and normal component of the
magnetic field and flux density in the domain i respectively. In brief, these
conditions require conservation of the tangential component of H and the
normal component of B. At the outer boundaries of the computational do-
main, these conditions reduce to Ht = 0 and Bn = 0.

2.3 The Magnetic Dipole

As mentioned above, no magnetic monopoles have been observed experi-
mentally, and this fact is expressed by Maxwell’s equation (2.4). The mag-
netic dipole is the most elementary unit in magnetism and can be modeled
using Ampère’s Law as a current loop, i.e., an electric charge that is moving
on a loop thereby creating a magnetic field. Or, in analogy to the electric
dipole, by introducing positive and negative magnetic charges always occur-
ring pairwise.

We now give the descriptions for the field of a magnetic dipole Γ (in
Am2) at a point P in space relative to the dipole, and discuss their validity.
The strength of the dipole, ||Γ||, is the magnetic moment.

2.3.1 Current Loop

||H(Γ, P)|| = ||Γ||

c2π
(

r2 + ||P||2
)3/2 (2.11)

In this model, the magnetic moment ||Γ|| = πir2 is created by a current
loop of radius r that carries the current i. The dipole points in the direction
defined by the right hand rule and c = 1 for the on-axis magnetic field. To
estimate the field magnitude radially from the center of the current loop, us-
ing c = 2 in (2.11) will yield the correct result [Kummer et al., 2007].

The current loop model is valid along the dipole axis and along an axis
extending radially from the dipole center.

2.3.2 Magnetic Charge

In order to predict the magnetic field at any desired location in space, the
charge-dipole model is more suitable [Furlani, 2001]. This dipole is created
by one positive and one negative magnetic (surface) charge ±Qm (in Am)
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separated by a distance d. The dipole moment is then Γ = Qmd, and its field
given by

H(Γ, P) =
Qm

4π

(
− P1

||P1||3
+

P2

||P2||3

)
(2.12)

with P1 = (1/2)d + P and P2 = −(1/2)d + P. For ||d|| � ||P||, this expres-
sion reduces to

H(Γ, P) =
1

4π||P||3

(
3(Γ · P)P

||P||2
− Γ

)
(2.13)

and is called the point-dipole model as it is equivalent to the case of ||d|| →
0.

2.4 Magnetic Materials

In a magnetic material (as well as in vacuum) B and H are related by the
constitutive law

B = µ(H)H (2.14)

where µ(H) is the magnetic permeability tensor. It is generally anisotropic
and nonlinear. In this thesis, we consider isotropic materials and we now
investigate two separate regions of the the permeability, linear material be-
havior, and saturated behavior.

2.4.1 Linear Material Behavior

In linear isotropic magnetic materials µ(H) reduces to a scalar

B = µ · H (2.15)
= µ0µr · H (2.16)

where µ0 = 4π × 10−7Tm/A is the permeability of free space (scalar) and
µr > 0 (dimensionless) is the relative permeability.

The latter can be used to classify magnetic materials as diamagnetic (µr <
1), paramagnetic (µr = 1...10) and ferromagnetic (µr � 10). It is a measure
of how well the material concentrates the flux lines, e.g., the higher µr the
more flux lines go through it for the same magnetic field H. For µr > 1 this
flux density increases, while for µr < 1 it decreases. Phenomenologically,
this means that diamagnetic materials (e.g. water) are repelled by a magnet,
while para- and ferromagnetic materials (e.g. iron) are attracted towards it.

Typically, an effect is only seen for ferromagnetic materials (large µr); this
is why they are commonly referred to as “magnetic materials”. Examples
are iron, nickel, cobalt and their alloys. A special case is vacuum or air
with µr = 1 in which no formal distinction is usually made between the
magnetic flux density B and the magnetic field H, and the terms are used
interchangeably.
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2.4.2 Non-Linear Effect: Saturation

The linear relationship (2.16) between B and H is a simplification and only
holds for sufficiently small magnetic fields. In fact, the permeability, rather
than the ratio of B and H, has to be interpreted as a differential quantity

µ =
∂B
∂H

. (2.17)

To understand what happens in magnetic materials, we need to look further
into their atomic structure. As has been discussed in section 2.1, para-and
ferromagnetic materials have unpaired electrons and have a comparatively
large reaction to externally applied fields.

Paramagnetic materials have no net field as the magnetic dipoles are ori-
ented randomly. When an external field is applied, these dipoles tend to
align in parallel with the field. When the external field is turned off, a ran-
dom orientation is obtained, again without net field.

In ferromagnetic materials, the same effect occurs. Yet, in addition, the
dipoles tend to spontaneously align themselves even without an external
field. Two nearby dipoles will tend to align in the same direction to reduce
their exchange energy (quantum-mechanical effect), while at longer distances
(many thousands of atoms) the dipoles are anti-aligned (classical dipole be-
havior). Because of the latter effect, generally the dipoles in the whole ma-
terial are not aligned, even at equilibrium. Rather, they are organized in
domains, the so-called Weiss domains, and there is little or no net field pro-
duced by such a material.

When a ferromagnetic material is first placed in a magnetic field, the
flux density will increase proportionally to the field strength in the material
following (2.16). In the material, the domain walls move. In addition, the
domains reorient parallel to the magnetic field and a net field is generated.
With increasing field strength, more domains align with the field, and the
permeability decreases until all domains are oriented. The material is said to
be saturated, and a further increase of the field strength has no effect on the
flux. In other words, the permeability has decreased from its initial value µr
to 1.

The phenomenon that the ferromagnetic material undergoes when placed
in an external magnetic field is called magnetization. Mathematically, it can be
described as a vector field M(r, t) (in A/m), and the constitutive relationship
B(H) is written as

B = µ0 (H + M) , (2.18)
= µ0H + µ0M. (2.19)

The behavior of the ferromagnetic materials when the external field is
turned off or an opposed external field is applied, i.e., their demagnetizing
behavior, leads to their further classification:
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Hard Magnetic materials need high external fields to reduce the magnetiza-
tion and are thus difficult to demagnetize. This fact is also described
by designating hard magnetic materials as having a high coercivity. The
magnetization of a hard magnetic material, or permanent magnet, is
independent of H and (2.19) can be used to define two characteristic
terms. For a vanishing magnetic field (H = 0), we find the remanent
flux density Br = µ0M. And for a vanishing flux density (B = 0), the
coercive field is defined as Hc = −M.

Soft Magnetic materials, on the other hand, show a low coercivity and are
consequently easier to demagnetize. For linear behavior and negligible
coercivity, their magnetization depends on H as

M = χH, (2.20)

where χ is the susceptibility. Inserting this relationship in (2.19), we
have

B = µ0H + µ0χH (2.21)
= µ0(1 + χ)H (2.22)
= µ0µrH. (2.23)

Thus, the susceptibility is related to the permeability as χ = µr − 1,
and can also be used to characterize materials as diamagnetic (χ < 0),
non-magnetic (χ = 0) or para- and ferromagnetic (χ > 0).

The magnetization behavior of ferromagnetic materials is conveniently
represented in B(H) or M(H) diagrams. See Figure 2.1 for a typical B(H)
diagram, along with its characteristic points. Note that both magnetic field
and flux density are considered to be internal to the material.

2.5 Shape Effect and Magnetization

We have seen in Section 2.4.2 that a soft magnetic material, when placed in
a magnetic field, will be magnetized. For relatively low fields, the magne-
tization grows with the internal field following (2.20). For larger fields, the
material saturates and the magnetization reaches its maximal value, the sat-
uration magnetization ms.

To relate the magnetization of a sample to an applied or external field H,
the anisotropy or demagnetizing effects that oppose the magnetization pro-
cess need to be considered. This thesis only considers shape anisotropy, i.e.,
the fact that different directions of a sample magnetize differently. Another
form of anisotropy would be crystalline anisotropy where the crystal struc-
ture of the sample has preferred magnetic directions.

To determine the magnetization of a sample analytically, we must make
the assumption that the sample is uniformly magnetized, thus M, B and
H are uniform throughout the sample. This assumption only holds true for
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remanence

coercivity

saturation

Figure 2.1: A typical magnetization curve showing the constitutive relation-
ship between B and H, and some characteristic points along the graph. Points
(a) and (d) represent saturation state, (b) and (e) the remanence, and (c) and
(f) the coercivity of the sample. (source: http://www.ndt-ed.org)

ellipsoids. Then, the task of determining the magnetization is to find its mag-
nitude and direction.

2.5.1 Low Applied Fields

For the low applied field region, we can distinguish two cases—no hystere-
sis/coercivity, or a small coercivity. For the former, the magnetic field Hi
inside the material can be written as

Hi = H + Hd, (2.24)

where Hd is the demagnetizing field of the sample. It is related to the mag-
netization through the diagonal demagnetization tensor N as

Hd = −NM, (2.25)

where the entries of N are the strictly positive, non-dimensional demagneti-
zation factors. For a cartesian coordinate system, we have

N = diag
(
nx, ny, nz

)
, (2.26)

and tr (N) = nx + ny + nz = 1. Section 2.8 discusses the computation of N.

The demagnetizing factors characterize how well a direction of the sam-
ple can be magnetized. The smaller the value, the easier this is. Conse-
quently, the direction of the sample with the smallest demagnetizing factor
is the magnetic easy axis of the sample, and the direction with the largest
demagnetizing factor is the magnetic hard axis. In this work, unless oth-
erwise specified,we will always rotate the body coordinate frame such that
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nx ≤ ny ≤ nz, i.e., the x-axis will be the easy axis of the sample.

Now, we can use (2.20) and (2.25) in (2.24) to find

χM = H−NM. (2.27)

For this, note that (2.20) is expressed in the internal field. Solving (2.27) for
M yields

M = XaH, (2.28)

where Xa is the apparent (or external) susceptibility tensor given by

Xa = (I + χN)−1 χ (2.29)

with I denoting the unity tensor. Note, that (2.28) considers only the case
for negligible coercivity, i.e., the internal field is perfectly reduced to zero by
the demagnetizing fields. However, if the material has a certain coercivity
Hc, Judy and Muller [1997] provide the expression for the magnetization as

M = N−1(H + Hc) (2.30)

= N−1H + N−1Hc (2.31)

for the case of shape dominance see Section 2.5.2.

In summary, for sufficiently low applied fields, if coercivity can be ne-
glected, the magnetization is calculated as (2.28). Small coercivities can be
taken into account using (2.30).

2.5.2 Shape or Material Dominance?

Consider one component χa of the apparent susceptibility (2.27) and observe
its limit for χ→ ∞ as

χa =
χ

1 + niχ

χ→∞−−−→ 1
ni

=: χa,max. i = x, y, z (2.32)

We see that for high susceptibilities, typical for ferromagnetic materials, the
apparent susceptibility cannot exceed a maximal value χa,max, which is de-
termined by its shape. Hence, for a known material χ and shape with
nmin = min(nx, ny, nz), the ratio

zχ =
χa

χa,max
=

nminχ

1 + nminχ
∈ (0, 1) (2.33)

describes the dominating effect of the sample as

zχ →
{

0, material dominance
1, shape dominance

. (2.34)

Figure 2.2 shows zχ as a function of nmin for different susceptibilities.
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Figure 2.2: The ratio zχ describes if the magnetic behavior of a sample is
dominated by its material properties (zχ→ 0) or by its shape (zχ→ 1)

Another definition of an effective or apparent quantity is the effective
permeability µeff relating the internal flux Bi to the applied field H as

Bi = µ0µeffH. (2.35)

A derivation is given by Brugger and Paul [2010], resulting in

µeff =
µr

1 + nmin(µr − 1)
µr→∞−−−→ 1

nmin
=: µeff,max. (2.36)

As in the case of the apparent susceptibility, the limit for high permeabilities
is 1/nmin which necessary for consistency, since µr = χ + 1. As zχ, the ratio
zµ allows also to determine if the behavior of a sample is shape or geometry
dominated:

zµ :=
µeff

µeff,max
=

nminµr

1 + nmin(µr − 1)
→
{

0, material dominance
1, shape dominance

(2.37)

Now, for the thin structures considered in this work, we usually have
nz ≈ 0.9, thus nx + ny = 1− nz ≈ 0.1, and thus nmin < 0.1. With typical
values for ferromagnetic materials of χ � 100, we see that zµ ≈ 1 for all the
cases considered in this work. Consequently, (2.28) simplifies to

M = N−1H, (2.38)

and comparing this to (2.30) shows that coercivity effects are accounted for
by a simple summation, and, thus, magnetization in the low field region is
always described as

M = N−1(H + Hc) (2.39)

with Hc 6= 0 if coercivity is considered, and Hc = 0 if it can be neglected.
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2.6. Continuous Analytical Model of the Magnetization

2.5.3 Saturating Fields

In the saturation region the magnitude of M remains constant at its saturated
magnetization value ms, ||M|| = ms, and M rotates to minimize the magnetic
energy density (in J/m3)

e1 =
1
2

µ0MTNM− µ0HTM. (2.40)

The first term in (2.40) is the demagnetizing energy due to shape anisotropy,
which tends to align M with the magnetic easy axis of the piece. The second
term is minimized when M is aligned with H.

2.5.4 Summary and Limitations of the Current Method

In summary, the computation of the magnetization is performed by comput-
ing M according to (2.39) and then checking if ||M|| ≤ ms. If so, the result
can be used, otherwise the minimization of (2.40) must be performed. Fol-
lowing the work by Abbott et al. [2007], it will be shown in Section 2.6 for
the simplified problem of axially symmetric bodies, that this minimization
requires an iterative solution of a transcendental equation and a good initial
value.

This approach is not practical for real-time computation as it is an un-
structured minimization problem. While the linear solution can be found
with minimal computation, the minimization step may significantly increase
computation. In Section 2.9, we first show that in our case of shape-dominant
pieces, the problem can be formulated as a single minimization step. This al-
lows us to exploit its properties and reformulate the problem as an equivalent
polynomial root solving problem, yielding faster overall computation times.

Remark 2.1. If it is known in advance that the magnetization stays within the linear
region, direct computation according to (2.39) is of course the fastest method. We are
interested in situations where this cannot be assumed and transitions from the linear
to the saturation region are possible.

2.6 Continuous Analytical Model of the Magnetization of on an
Ellipsoid

Abbott et al. [2007] presented a magnetization model for ellipsoids that con-
tinuously combined the linear and saturation regions. We briefly review it
here, before proposing a numerical method that does not require explicit case
distinction.

For a soft-magnetic body with axial symmetry (e.g. prolate and oblate
ellipsoids), the radial demagnetizing factors are equal, nr, and the apparent
susceptibility tensor is given by

Xa = N−1 = diag
(

1
na

,
1
nr

,
1
nr

)
, (2.41)
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2. Magnetostatics

assuming shape dominance, and denoting the axial demagnetizing factor by
na. Because of axial symmetry, H, M and the axis of symmetry are coplanar,
and the problem is essentially a 2-D problem. Assuming that H is applied at
an angle θ to this axis of symmetry, i.e., H = h [cos θ, sin θ]T, and neglecting
coercivity, the magnetization in the linear region is found from

M = N−1H = h
[

cos θ

na
,

sin θ

nr

]T
, (2.42)

and the direction of the magnetization, i.e., the angle φ, is given by

φ = tan−1
(

na

nr
tan θ

)
. (2.43)

If the computation of ||M|| according to (2.42) yields ||M|| ≤ ms, then M
and φ are accurate. Yet, if it yields ||M|| > ms, this means that the material is
saturated, and energy minimization has to be performed. Setting ||M|| = ms,
the magnetic energy density as a function of φ is given by

e =
1
2

µ0(nr − na)m2
s sin2 φ− µ0ms||H|| cos(θ − φ). (2.44)

To minimize it, M will rotate such that φ satisfies the transcendental equation

(nr − na)ms sin(2φ) = 2||H|| sin(θ − φ). (2.45)

Furthermore Abbott et al. [2007] demonstrate that the model is continuous
across the modeling boundaries, and that the magnetic field that just satu-
rates the material can be derived as

||H||sat =
msnanr√

n2
a sin2 θ + n2

r cos2 θ
, (2.46)

and depends on the applied field angle.

To summarize, this procedure allows for a continuous transition of the
magnetization model from the linear to the saturated region. This is particu-
larly important because it allows the model to be inverted so that for a given
desired torque and force (which are a function of the magnetization, as will
be shown later) the required applied magnetic field can be calculated.

On the other hand, as mentioned in Section 2.5.4, the model requires
switching between two cases, and in addition, (2.45) needs to be solved it-
eratively with a good initial value for φ. Also, the extension to the 3D case
increases the complexity of the computation. In Section (2.9), we propose a
method that eliminates the necessity for these, and, at the same time, de-
creases the computation speed, a particularly desirable feature in model-
based control schemes.

2.7 Analytical Function for the Magnetization Curve for
Numerical Simulations

Describing the magnetization as a linear and a constant, saturated region
is a necessary simplification for the analytical treatment of magnetization
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Figure 2.3: Comparison of the linear/saturated magnetization curve to the one
using a Langevin function. The latter one is used in finite element calcu-
lations. Overall the correspondence is quite good, the largest discrepancy
being oviously around the transition from the linear to the saturated region.

problems. For numerical computations using the finite element method, we
can, for negligible hysteresis, describe the magnetization curve by a Langevin
function as

||M|| = ms

(
coth(α||H||)− 1

α||H||

)
(2.47)

where α is parameter fit to experimental data. The slope at the origin is the
susceptibility χ of the material and is given by

χ = lim
||H||→0

||M|| = 1
3

msα||H||. (2.48)

Unless otherwise specified, the reference calculations will use ms = 5 ×
105A/m and χ = 10000 (thus α = 3χ/ms = 0.04m/A) to ensure shape
dominance. With M, we can build the B-H relationship typically required
for finite element software using (2.19).

Note that, in fact, a magnetization curve that has a constant magnetization
ms over a large range of field values cannot be used in finite element software
because of the zero slope. Rather, as for example in the Langevin approxima-
tion, the magnetization has to approach ms asymptotically. The two different
curves are shown in Fig. 2.3. We can clearly observe this discrepancy, which
is a source of error when comparing finite element and analytical results,
especially around the transition from linear to saturated region.

2.8 Demagnetizing Factors of Non-Ellipsoidal Shapes

The demagnetizing factors characterize how well a direction of the sample
can be magnetized. They depend only on the aspect ratio of the shape and
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2. Magnetostatics

can be calculated exactly for ellipsoids. Tabulated results for various aspect
ratios are given by Osborn [1945].

When dealing with non-ellipsoidal shapes, say a cuboid, the typical as-
sumption that is made is that an ellipsoid with the same aspect ratios, the
so-called equivalent ellipsoid, will lead to the same demagnetizing effect.
And hence, the tabulated values for such equivalent ellipsoids are widely
used for various shapes.

However, as has been shown recently by Beleggia et al. [2006], this as-
sumption may lead to significant errors and incorrect results. Therefore, the
authors derive the exact mapping between the aspect ratios of shapes that
can be described with two aspect ratios (plates, discs, cylinders, etc) and
their magnetically equivalent ellipsoid. Note, however, that the assumption
of uniform magnetization of the sample still holds.

Unless otherwise specified, we will employ the mappings proposed by Be-
leggia et al. [2006] to calculate demagnetizing factors.

2.9 Proposed Method to Calculate the Magnetization

This section is the first contribution of this dissertation. We begin by analyz-
ing the structure of the minimization problem. For this, we recall that in the
saturation region, the magnetization is found by minimizing the energy (2.40)

e =
1
2

µ0MTNM− µ0HTM (2.49)

and requiring that ||M|| = ms. Thus, it is a constrained minimization prob-
lem, or, more specifically a quadratic program with a nonlinear constraint.
Now, we observe that the unconstrained minimum of e2, where

e2 =
1
2

µ0MTNM− µ0(H + Hc)
TM (2.50)

is M = N−1(H + Hc), which is the same as the result (2.39) for the linear
region. Thus, we can conclude that in both the linear and the saturated
region, the magnetization can be found by minimizing an energy expression.
It follows that both cases can be represented in a single minimization problem
by changing the constraint from an equality to an inequality as

min
M∈R3

1
2

µ0MTNM− µ0(H + Hc)
TM, (2.51)

subject to MTM−m2
s ≤ 0 (2.52)

which is a convex minimization problem since det(N) > 0, or more exactly
a convex quadratically constrained quadratic problem [Boyd and Vanden-
berghe, 2004; Bryson and Ho, 1975]. It can be solved using a nonlinear mini-
mization tool such as the MATLAB function fmincon and will converge to a
global minimum.
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2.9. Proposed Method to Calculate the Magnetization

In a real-time control system, the minimization has to be computed within
a single control loop. Although a global minimization algorithm will con-
verge, we can speed up the computation by analyzing the problem more
closely. First, we non-dimensionalize the problem by dividing by µ0 and
defining x := M/ms as

min
x∈R3

1
2

xTNx− bTx, (2.53)

subject to xTx− 1 ≤ 0 (2.54)

with b := (H + Hc)/ms, which for the relatively low coercivities considered
here will be dominated by H for large fields (b ≈ H/ms) and, thus, in the
saturation region. This means that the energy term is not altered for the sat-
uration region while still yielding the correct result for the linear region.

Next, we introduce the Lagrangian of the problem by including the con-
straint in the energy term as

L(x, λ) =
1
2

xTNx− bTx +
1
2

λ(xTx− 1), (2.55)

where λ is called the Lagrange multiplier, and the factor 1/2 is introduced
for convenience later. Since we consider a convex problem, the necessary and
sufficient conditions for the minimum are

∂L
∂x

= Nx− b + λx = 0 (2.56)

and
∂L
∂λ

=
1
2

(
xTx− 1

)
≤ 0 (2.57)

with

λ

{
≥ 0, xTx− 1 = 0,
= 0, xTx− 1 < 0.

(2.58)

Evaluating (2.56), we find the solution to the minimization problem to be

x = (N + λI)−1 b. (2.59)

Inserting (2.59) in (2.57) for λ > 0 yields

bT (N + λI)−2 b− 1 = 0, (2.60)

and it can be shown that λ = max{0, λ̄} where λ̄ is the largest real solution
of the non-linear equation (2.60) [Boyd and Vandenberghe, 2004]. In gen-
eral, (2.60) has to be solved with a non-linear solver. However, in our case
b ∈ R3 and N ∈ R3×3 is always diagonal, thus (2.60) takes a comparatively
simple form, and we can further analyze it by expanding it in cartesian coor-
dinates with b = (bx, by, bz)T and N = diag

(
nx, ny, nz

)
as

b2
x

(nx + λ)2 +
b2

y

(ny + λ)2 +
b2

z
(nz + λ)2 − 1 = 0. (2.61)
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2. Magnetostatics

Rationalizing (2.61), we find that solving it is equivalent to solving for the
roots of a sixth-order polynomial in λ:

λ6 + c5λ5 + · · ·+ c1λ + c0 = 0, (2.62)

where the coefficients cj are algebraic functions of bx, by, bz, nx, ny, and nz
that can be derived analytically and stored in a function as follows.

First, we define the matrices Ny := diag
(
ny, nz, nx

)
and Nz := diag

(
nz, nx, ny

)
by permutation of the elements of N =: Nx, and the shorthand notation
∆ = det(N). Then, by rewriting (2.61) as a single fraction, grouping favor-
ably and comparing the coefficients of the λj to those in (2.62), we find for
the cj

c5 = 2 (2.63)

c4 = −||b||2 + tr
(

N2
x + 4NxNy

)
(2.64)

c3 = −2
(

bT(Ny + Nz)b− tr
(

N2
x(Ny + Nz)

)
− 4∆

)
(2.65)

c2 = −bT(N2
y + N2

z + 4NyNz)b + tr
(

N2
yN2

z

)
+ 4∆ (2.66)

c1 = −2
(

bT(NyNz(Ny + Nz))b− ∆tr
(
NxNy

) )
(2.67)

c0 = −bT(N2
yN2

z)b + ∆2 (2.68)

where tr ( · ) designates the matrix trace function.

Now, we can use a root solver, such as the roots function of MATLAB,
that uses the cj’s as inputs, to compute λ̄, which now is the largest real root
of (2.62). This algorithm considers the result from linear algebra that the
polynomial equation (2.62) is the characteristic equation of its companion
square matrix

C =


0 0 0 0 0 −c0
1 0 0 0 0 −c1
0 1 0 0 0 −c2
0 0 1 0 0 −c3
0 0 0 1 0 −c4
0 0 0 0 1 −c5

 , (2.69)

since det(λI− C) = 0 will yield (2.62). Thus, the roots of (2.62) can be calcu-
lated as the eigenvalues of C.

The computation of λ̄ (and consequently of M) using the eigenvalues of
C is faster compared to a global minimization algorithm. Thus, we have con-
verted the global minimization problem into a structured polynomial root-
solving problem and eliminated the necessity for a good initial value. Note
also, that for a given shape, thus a given N, most entries of the coefficients
cj can be precomputed, and hence the computation times can be decreased
further, as only the pre-and post-multiplication with b need to be performed
at run-time.
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2.9. Proposed Method to Calculate the Magnetization

2.9.1 Interpretation of the Lagrange Multiplier

First, note that we find the saturating field by solving (2.60) for the “just
saturation” case characterized by b = ||b||sateb and λ = 0, as

||b||sat =
1√

eT
bN−2eb

. (2.70)

We observe that the saturating field is dependent on the direction eb of the
applied field. As will be shown in Section 2.10, this is the general expression
for the saturating field derived by Abbott et al. [2007].

Now, for an interpretation of λ, consider the special case of an axial field
by setting bx 6= 0, and by = bz = 0. Then, (2.61) can be solved directly
yielding

λ̄x = bx − nx. (2.71)
We see that λ̄x < 0 for sufficiently low applied fields bx and increases linearly
with bx. Saturation is reached when λ̄x = 0, i.e., when bx = bx,sat = nx. After
saturation λ̄x keeps increasing with bx, and we have λ̄x ≈ bx for bx � nx.
This means that for low fields the shape has an influence (since ni cannot be
neglected) while for large fields the shape has no influence on the magneti-
zation.

Thus, the Lagrange multiplier is non-dimensional, and phenomenologi-
cally represents the saturation state of the x direction, i.e., the higher λx, the
more the x-axis is saturated. In general, λ represents the general magnetiza-
tion state of the sample, and we will show in the next section how the applied
field can be used to estimate boundaries for λ and, thus, for the magnetiza-
tion.

In the following, we will drop the explicit distinction between λ̄ and λ
and just use λ designating a non-negative real number.

2.9.2 Boundaries of the Lagrange Multiplier

We recall the following result from linear algebra without proof.
Let Q ∈ Rn×n be a symmetric positive definite matrix, i.e, xTQx > 0 for all x ∈ Rn

and let σmax = σ1 ≥ σ2 ≥ · · · ≥ σn = σmin be its eigenvalues. Then, it holds that

σ1||x||2 ≥ xTQx ≥ σn||x||2, ∀x ∈ Rn. (2.72)

Thus, the eigenvalues determine the boundaries of the quadratic form
Q(x) = xTQx.

Now, we note that the constraint (2.60) is an equality for a quadratic form

bT (N + λI)−2 b = 1 (2.73)

with Q = (N + λI)−2 being a diagonal positive definite matrix (since ni > 0
and λ ≥ 0) with eigenvalues σi = 1/(ni + λ)2. In particular we have

σmax =
1

(nmin + λ)2 , (2.74)
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and

σmin =
1

(nmax + λ)2 , (2.75)

for all λ ≥ 0. Applying the inequality (2.72) to (2.73) yields

σmax||b||2 ≥ bT (N + λI)−2 b ≥ σmin||b||2 (2.76)

or, equivalently

σmax||b||2 ≥ 1 ≥ σmin||b||2, (2.77)

and with (2.74) and (2.75) we can derive, after some manipulation, the bound-
aries on λ as

||b|| − nmax ≤ λ ≤ ||b|| − nmin, (2.78)

or
λ ∈

(
||b|| − nmax, ||b|| − nmin

)
. (2.79)

Or, more exactly, since λ is non-negative,

λ ∈
(

max
(
0, ||b|| − nmax

)
, max

(
0, ||b|| − nmin

))
. (2.80)

In other words, ||b|| defines three intervals for λ as

λ ∈


0, ||b|| < nmin(
0, ||b|| − nmin

)
, nmin ≤ ||b|| < nmax(

||b|| − nmax, ||b|| − nmin
)
, ||b|| > nmax

(2.81)

where the first interval corresponds to the linear case and the last one to the
fully saturated case. In the middle interval, both, linear and saturated behav-
ior are possible depending on the direction of b.

In summary, we have derived boundaries on the Lagrange multiplier
which will allow to determine boundaries on quantities depending on λ,
in particular the magnetic torque as will be shown in Chapter 3.

2.9.3 Approximate Direct Computation of λ

To avoid the root solving procedure alltogether, to further decrease the com-
putation speed, or just to get an estimate on the magnetization, we need to
approximate λ. For this, we have to approximate the constraint (2.60)

bT (N + λI)−2 b− 1 = 0 (2.82)

to solve for λ for the general case with b = ||b||eb.

First, note that for sufficiently large values of ||b||, without any approxi-
mation, λ must increase at some point such that λ� ni and, thus, dominates
the denominator. Solving (2.82) in this limit of large ||b|| yields

λ = ||b||, for ||b|| � nmax, (2.83)
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2.9. Proposed Method to Calculate the Magnetization

and, thus, allows for the investigation of this limit case without any approx-
imation of λ. Note that, for this limit case, this result is also obtained from
the last boundary (2.81) as it reduces to λ ∈ (||b||, ||b||), thus λ = ||b||.

To derive an approximation we observe that the diagonal entries of (N−
λI)−2 are

1
(ni + λ)2 , (2.84)

and a linear approximation using Taylor expansion around λ = 0 yields

1
(ni + λ)2 ≈ n−2

i − 2λn−3
i , (2.85)

or in matrix form
(N− λI)−2 ≈ N−2 − 2λN−3. (2.86)

Now, we can solve (2.82) for λ to find

λ ≈ λ0(N, b) :=
bTN−2b− 1

2bTN−3b
, (2.87)

or, in terms of the saturating field

λ0(N, b) =
1

2eT
bN−3eb

·

(
1

||b||2 sat

− 1

||b||2

)
(2.88)

This approximation is valid near λ = 0, that is, at the transition from linear
to saturated behavior. Figure 2.4 shows a typical λ vs. applied field plot for
a random direction eb and a random N, together with the Taylor approxima-
tion λ0 and the boundaries (2.80). We clearly see the linear dependence of λ
with b for λ > 0, and also that the Taylor approximation is only valid very
close to the transition from λ = 0 to λ > 0.

To derive an approximation λβ for larger λ, and thus larger ||b||, we make
the assumption that λ has an affine relationship with ||b|| as

λ ≈ λβ(N, b) := α + β||b|| (2.89)

with α, β ∈ R, and α = α(eb, N) and β = β(eb, N), that is, the coefficients do
not depend on the applied field magnitude, only its direction and the shape.
This is motivated by the form of the boundaries (2.78) and by the affine form
of the curve for λ in Fig. 2.4. To determine α and β we require for λβ the
identical transition behavior as λ0 for ||b|| = ||b||bsat, specifically, the same
value

λβ(||b||bsat) = λ0(||b||bsat) (2.90)

and the same slope

∂λβ(||b||bsat)

∂||b|| =
∂λ0(||b||bsat)

∂||b|| . (2.91)
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Figure 2.4: A typical plot of λ vs. applied field for a random direction eb
and a random N, together with the Taylor approximation λ0 and the bound-
aries (2.80).

We find

β =

(√
eT

bN−2eb

)3

eT
bN−3eb

(2.92)

and

α = − β√
eT

bN−2eb

. (2.93)

Inserting these in (2.89) yields the approximation

λβ =

√
eT

bN−2eb

eT
bN−3eb

(
||b||

√
eT

bN−2eb − 1
)

(2.94)

or, in terms of the saturating field

λβ =
1

||b||sate
T
bN−3eb

(
||b||
||b||sat

− 1
)

. (2.95)

This approximation yields the same transition from linear to saturation as
the Taylor approximation λ0 and is only to be used if a positive value is com-
puted. Furthermore, using this approximation no root solving or numerical
minimization is necessary to compute the magnetization of a sample given
the applied field angle and magnitude, which decreases the computation
time considerably.

While λβ gives the correct transition at ||b|| = ||b||sat, and, as we will see,
also for larger ||b||, it may introduce errors for situations close to the uniaxial
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Figure 2.5: The approximation λβ for λ shows the correct transition at λ = 0.
However, for large demagnetizing factors and fields applied in the corre-
sponding direction, large errors may occur.

case. For this, consider w.l.o.g3 eb = (1, 0, 0)T, that is, a field applied in the x
direction. Then, with ||b|| = b, and bsat = nx, (2.95) yields

λβ = nx (b− nx) , (2.96)

thus, a value that is scaled by nx compared to the expected value (2.70). The
relative error of the approximation in this case is∣∣∣∣λβ − λx

λx

∣∣∣∣ = ∣∣∣∣nx(b− nx)− (b− nx)

b− nx

∣∣∣∣ = |nx − 1| . (2.97)

Since 0 < nx ≤ 1, the error is small and can be neglected for nx close to 0,
but can considerable for larger nx. This is shown in Fig. 2.5 for nx = 0.15, 0.5
and 0.75 and eb = (.99, .01, 0)T. Clearly, the approximation is very good for
nx = 0.15, good for nx = 0.5 and poor for nx = 0.75. Of course, if it is known
that the field is uniaxial, one can directly use the correct value (2.70) for λ
which also corresponds to one of its limit values.

2.10 The Planar Case

The planar (2D) case with the demagnetizing factors nx and ny, and b =

b
(
cos θ, sin θ, 0

)T is instructive, and will be used extensively in the next chap-
ter. In addition, this case is studied in Abbott et al. [2007], which will be used
as a validation of the proposed method and will demonstrate that our results

3without loss of generality
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from the previous section reduce to standard results for magnetization com-
putation.

First, the saturation field (2.70) reduces to

bsat =
nxny√

n2
y cos2 θ + n2

x sin2 θ
, (2.98)

which is the result (2.46) derived in Abbott et al. [2007]. We can rewrite it
with respect to nx as

bsat

nx
=

ny/nx√
n2

y

n2
x

cos2 θ + sin2 θ

(2.99)

and observe its evolution for θ ∈ (0◦, 90◦) and different ny/nx ratios as shown
in Fig. 2.6. Because of the quadratic trigonometric terms and ny/nx > 1, the
cos-term dominates the saturating field, and we see that for angles up to
approximately 50◦, we have bsat/nx ≈ 1, meaning the saturating field is ap-
proximately equal to the smallest demagnetizing factor, and is independent
of the angle θ and the actual ny/nx ratio and thus shape. On the other hand,
for θ ≈ 90◦, we have, as expected, bsat/nx ≈ ny/nx (or bsat ≈ ny). Thus,
only for the range of angles θ ∈ (60◦, 80◦), the actual shape ratio ny/nx plays
a significant role in determining the saturation field (depending on the re-
quired accuracy).

Next, using λ we can observe the continuous evolution of the direction
and the magnitude of the magnetization. The non-dimensional magnetiza-
tion is given by (2.59)

x = (N + λI)−1 b (2.100)

and with x =
(

x1, x2
)T, we have

(
x1, x2

)T
= b

(
cos θ

nx + λ
,

sin θ

ny + λ

)T
. (2.101)

Thus, the magnitude ||x|| is found as

||x|| = b

√(
cos θ

nx + λ

)2
+

(
sin θ

ny + λ

)2
, (2.102)

and recalling that λ ≈ b for sufficiently large b, we have

||x|| ∝ b, for λ→ 0 (2.103)
||x|| = 1, for λ→ ∞, (2.104)

in other words, we find what we expect; for low fields, the magnetization is
linear with the applied field, while for large fields, the magnetization satu-
rates.
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Figure 2.6: Saturation field as a function of the applied field direction θ for
the planar case for various ny/nx ratios. This plot can be used to estimate
the saturating field for a vast range of shapes, as schematically indicated by
the inset. Note, however, that depending on the required accuracy, the ratio
ny/nx is only needed for θ ∈ (60◦, 80◦). For θ < 60◦, we have bsat ≈ nx, while
for θ > 80◦, bsat ≈ ny is a good approximation.

The angle φ between the x-axis and x is found from tan φ = x2/x1 as

tan φ =
nx + λ

ny + λ
tan θ ⇐⇒ φ = arctan

(
nx + λ

ny + λ
tan θ

)
. (2.105)

Inspecting the limit cases λ→ 0 and λ→ ∞ shows

φ = arctan
(

nx

ny
tan θ

)
, for λ→ 0 (2.106)

φ = θ, for λ→ ∞ (2.107)

and (2.106) is the same as (2.43) given by Abbott et al. [2007], while (2.107) is
the standard assumption that for high fields the direction of the magnetiza-
tion approaches the direction of the applied field.

For verification, we compare the magnetization as computed exactly by
λ and approximated by λβ for the prolate ellipsoid studied experimentally
by Abbott et al. [2007] (see inset Fig. 2.7(a)). The ellipsoid was machined from
HyMu80, an almost ideal soft-magnetic material with saturation magnetiza-
tion ms = 6.163× 105A/m, and with length 4.90mm (in x dir.) and width
2.54mm (in y and z dir.), resulting in nx = 0.18 and ny = 0.41.

The results are shown in Figure 2.7(a). Our results are identical to those
by Abbott et al. [2007] (not shown) because of the equivalent model, and we
can observe an excellent prediction of the experimental data by our model
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using λ. When the approximation λβ is used, the transition from linear to
saturated behavior is well captured as expected. For higher fields, an over-
estimate of the magnetization is seen, stemming from the approximation of
the constraint. As shown in Fig. 2.7(b), the maximal relative error of the mag-
nitude of the magnetization due this approximation stays below 10%.

The evolution of the magnetization angle θ with respect to the applied
field angle θ is shown in Figure 2.7(c). Together with Fig. 2.7(a), we can ob-
serve the model behavior. The applied field is divided in three regions by
nx and ny. For b < nx, thus λ = 0, we have linear behavior and for b > ny
(λ > 0) we have full saturation of the ellipsoid. In between, transition occurs
depending on the direction of the applied field. Until saturation is reached,
the magnitude of the magnetization grows linearly with the applied field
magnitude and the angle stays constant. After saturation, the direction of
the magnetization approaches the direction of the applied field as θ− φ→ 0,
while the magnitude of the magnetization remains constant.

Thus, the limit cases of our model result in classic magnetization results.
Our description captures these limits accurately and allows, in addition, to
the semi-analytical observation of the evolution of the magnetization of the
sample.

Remark 2.2. Note that in the planar case, the polynomial equation (2.62) for the
constraint is reduced from the sixth to the fourth order, and allows for a closed form
solution using, for example, Ferrari’s method. Since the resulting expressions are
rather complex and do not allow for further insight, for example on the θ dependence
of λ, this approach is not pursued.

2.11 Computation Time

As mentioned in Section (2.5.4), linear solutions are the fastest to solve. How-
ever, for situations where it is not known if the linear case applies, i.e., when
the magnitude of the field varies for purposes of manipulation, the clas-
sic minimization step required induces large computation times. Here, our
method provides constant fast computation times.

A comparison of the computation times of the four methods, a) classic
switching between linear/saturation, b) combined minimization, c) polyno-
mial solution and d) approximation of λ is given in Fig. 2.8. For a) the linear
solution is used to initialize the minimization if necessary. For b), the initial
vector is always the zero vector.

The times were determined by MATLAB’s tic/toc algorithm on a Mac-
BookPro2009, for calculating the magnetization x for a given N, 20 random
directions eb, and increasing field strength b. Clearly, for sufficiently low
fields, thus in the linear region, the classic method is the fastest, about 40

to 50 times faster than the polynomial solution. For saturation solutions the
polynomial solution yields about the same increase in speed compared to the
classic method. Note, however, that overall, our method provides fast com-
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(a) Magnetization in the direction of the applied field xTeb. Excellent correspondence between
the model and the data is observed. The approximation overpredicts for larger fields.
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(b) The maximal relative error for the approximation of the magnetization for this case is about
10%.
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(c) Before saturation the angle stays constant. When saturation is reached the magnetization
starts to tend toward the direction of the applied field as θ − φ→ 0.

Figure 2.7: (a) Experimental verification of the proposed method for the
ellipsoid studied by Abbott et al. [2007] with nx = 0.18, ny = 0.41, and
ms = 6.163 × 105A/m. (b) Relative error of the magnetization due to the
approximation λβ. (c) Magnetization angle θ with respect to the applied field
angle φ. The markers for the angle θ in (b) and (c) correspond to those in (a)
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Figure 2.8: Computation times for determining the magnetization on a shape
with random N and 20 random field directions. The classic method (crosses)
is superior in the linear region, but has increased computation times in the
saturation region. The proposed method (circle) yields constant low compu-
tation times across the saturation borders.

putation times, which remain constant over the saturation limits and, thus,
should be the method of choice when dealing with uncertain magnetizations.

2.12 The Inverse Problem

The advantage of using a description involving λ is that it describes the mag-
netization state of a sample incorporating both direction and magnitude of
the applied field into a single variable. Thus, the same magnetization state is
achievable with different combinations of field strength and direction.

This makes the inverse problem, where a specific magnetization state is
desired, complex, and closed-form solutions may not exist as can easily be
seen by considering inverting the approximation (2.94). It is more advanta-
geous to solve the problem numerically. For this, one must consider that λ
is bounded by (2.80), and in the case of λ > 0 it also must fulfill the con-
straint (2.60).

2.13 Summary and Contributions

This chapter has introduced the necessary background to calculate the mag-
netization of a soft-magnetic body when placed in an externally applied mag-
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netic field. The contributions of this chapter are as follows.

We have generalized the model presented by Abbott et al. [2007] by com-
bining the linear and saturated region into a single constrained minimization
step, even including coercivity. In addition, capitalizing on the structure of
the minimization problem we have reformulated it as a root-solving problem
that enables fast computation of the magnetization required in real-time con-
trol systems, such as for model-based controllers.

Furthermore, we have investigated the optimization problem analytically
by introducing a Lagrange multiplier λ that enforces the constraint. We have
derived its boundaries and proposed an interpretation. We have demon-
strated that calculating the magnetization using λ yields results identical to
the standard method. The advantage of our method is that the standard re-
sults are obtained as limit cases, and the transition between these limits can
be investigated semi-analytically.

Next, we have analytically approximated λ. For the transition region, we
found an approximation of λ based on a Taylor series expansion of the con-
straint. Motivated by these results, we have extended the approximation to
an affine function yielding the same transition behavior as the Taylor approx-
imation, while approximating λ over all applied field magnitudes and angles.

In brief, these results allow for the analytical computation of the magne-
tization for a given arbitrary field b, without the need for numerical mini-
mization procedures. In addition, we can treat the linear and the saturated
case without having to explicitly distinguish the two cases but rather by limit
considerations.

Since the magnetic force and torque depend on the magnetization, the
same simplifications in their treatment are achieved, i.e. fast computation
and analytical combination of linear and saturation region, and no need for
minimization.
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Welcome to the Future!

Magneto - X-Men

CHAPTER 3
Magnetic Force and Torque

on Assembled-MEMS
Microrobots

Using the description of the magnetization introduced in the previous
chapter, we give the resulting expressions of the magnetic torque exerted
on planar shapes placed in an applied magnetic field. We analyze the
torque resulting in a general non-dimensional torque curve. We then
investigate situations involving multiple planar shapes and give argu-
ments that in most cases their magnetic interaction can be neglected.
Using our torque description, we analyze torque ratios of specific config-
urations and conclude that dominant shapes exist allowing for further
simplification of the computation. We conclude the chapter by apply-
ing our findings to the ophthalmic microrobot presented in Yesin et al.
[2006] and Kummer et al. [2010].

3.1 Introduction

F abricating truly 3D mechanical structures at the microscale is chal-
lenging. With current MEMS fabrication methods, mechanical parts

are built using 2D (planar) geometries with desired thickness. Three-dimensional
structures can be obtained by bending or assembling these planar parts (Fig. 3.1),
and it has been demonstrated that very complex structures can be built with
such methods [Iwase and Shimoyama, 2005; Syms et al., 2003; Yang et al.,
2005].

Assembled-MEMS microrobots have the potential to provide increased
functionality over simpler geometries, as MEMS sensors and actuators can
be incorporated onto the body of the microrobot. A microrobot that is as-
sembled from electroplated nickel components has been developed recently
by Yesin et al. [2006], and 2-DOF magnetic control (1-DOF rotation, 1-DOF
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3. Magnetic Force and Torque on Assembled-MEMS Microrobots

(a) Individual nickel parts (b) Assembled microrobot

Figure 3.1: [

Relatively simple 2D parts can be assembled into complex 3D
structures]Relatively simple 2D parts can be assembled into complex 3D
structures. The parts shown have dimensions 2.0 mm× 1.0 mm× 42 µm,

and can be further miniaturized.

translation) was demonstrated in a planar fluid-filled maze.

Models of soft-magnetic MEMS microactuators with simple planar ge-
ometries, e.g. cantilevers, have been developed by Judy and Muller [1997].
However, there is no prior work on modeling the magnetic properties of
assembled structures, which is needed for precise control of our proposed
untethered devices. Consider, for example, the microrobot in Fig. 3.1. In the
standard approach, the complex, assembled shape is simplified to a single el-
lipsoid having the same overall dimensions. This results in an ellipsoid with
a circular cross section perpendicular to its long axis because of the equal di-
mensions of the microrobot. Because of this symmetry, equal demagnetizing
factors are found for these directions, and, hence, no torque around the long
axis is predicted. However, experimentally, a torque can be measured. Con-
sequently, there is a clear need to modify the current models. Finite element
methods (FEM) can be used to model magnetic behavior of arbitrary assem-
blies but are impractical in real-time control of magnetic devices because of
long computation times.

The contributions of this chapter are as follows. We first derive a general
non-dimensional torque curve using our description of the magnetization in-
troduced in the previous chapter. We demonstrate that, as expected, it repro-
duces standard results as limit cases. In addition, we can analyze the torque
by applying the properties of the Lagrange multiplier. From our results a
sin(2θ) behavior for the torque follows naturally for both low and high fields
without further assumptions.

Also, we predict that for a field applied at an angle θ < 45◦, for exam-
ple, the torque will always increase with the magnitude of the applied field
and asymptotically reach its limit value. For larger angles, the torque may
decrease after saturation, or continue increasing to a maximum value and
then decrease asymptotically to its limit. This has been previously observed
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but without the ability to predict the limit at 45◦. Furthermore, knowing
the boundaries of the involved Lagrange multiplier allows us to identify not
only maximal torques, but also minimal torques on shapes, allowing for de-
sign optimization.

We then investigate the superposition of shapes and give phenomenolog-
ical arguments that, in most cases superposition can be neglected. We argue
that configurations may exist where one or only a few shapes dominate the
total torque on assembled structures. Finally, we propose that assembled de-
vices should be modeled as the superposition of simple geometries, and ver-
ify this experimentally and numerically with a microrobot assembled from
electroplated nickel parts, showing that we can predict the torque along the
long axis of the microrobot.

3.2 Single Soft-Magnetic Body

The magnetic force F and torque T acting on a body inside an arbitrary,
closed surface S and placed in a magnetic field can be computed as

F =
∮

S
σM · n dS, (3.1)

T =
∮

S
r× (σM · n) dS, (3.2)

where n is an outwards normal vector on the surface S, r is the position of
the body, and σM is the Maxwell stress tensor given by

σM = H⊗ B− 1
2
(H · B) I (3.3)

with ⊗ representing the dyadic product1 and I the unity tensor. The consti-
tutive relationship B(H) must be chosen in the material that is crossed by S.

Equations (3.1) and (3.2) are commonly used in finite element software to
compute magnetic forces and torques on bodies. Yet, analytical evaluation is
not practical. Instead, one assumes that the body with volume V is magne-
tized by H to the magnetization M, and behaves, consequently, as a dipole
with dipole moment Γ = MV. Then, it is possible to apply the force and
torque expressions on dipoles given by

F = µ0

∫
V
(M ·∇)H dν ≈ µ0V(M ·∇)H (3.4)

T = µ0

∫
V
(M×H)dν ≈ µ0VM×H (3.5)

For completeness, note that the force and torque expression can also be ex-
pressed with the magnetic flux density B, since in air B = µ0H. In general,
M and H vary over the body, hence the integral expressions. The simplifying

1The dyadic product P = u⊗ v of a column vector u and a row vector v is a tensor of rank
two. The entries are given by Pij = uivj (using Einstein’s summation convention)
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expressions consider only H at the center of mass of the body, which is an
adequate assumption when the body is small compared to spatial changes in
the applied field, and assuming uniform magnetization M.

Equation (3.4) is a compact notation for a complex operation. However,
using the constraint provided by Maxwell’s equation (2.5) (with J = 0), we
can express (3.4) in a more intuitive form

F = µ0V
[

M ·
∂H
∂x

, M ·
∂H
∂y

, M ·
∂H
∂z

]T
. (3.6)

Comparing (3.5) and (3.6), we observe that the magnetic force depends on
the spatial gradient of the magnetic field, while the magnetic field depends
on its magnitude and direction. However, since in the case of soft-magnetic
materials the magnetization also depends on the strength and the direction
of the magnetic field, the force depends on the spatial gradient, the strength,
and the direction of the magnetic field H, making its understanding complex
and unintuitive.

However, as argued by Abbott et al. [2007], because we can always apply
higher forces by generating higher gradients, we can limit our investigation
to the magnetic torque. In the force expression, the field is decoupled from
the field gradient. Hence, knowledge of the field allows prediction of the
magnetization as discussed in the previous section. Then, the field gradient
allows for the computation of the force.

Remark 3.1. As a reference for later discussions, note that for a permanent mag-
net M is fixed, i.e., independent of H. Then, the magnitude of the torque (3.5)
follows a sin θ behavior where θ is the angle between M and H, since ||T|| =
µ0V||M||||H|| sin θ.

3.2.1 Assumptions for the Investigation

For the analytical treatment, we set the body coordinate frame such that the
x-axis is aligned with the longest axis of the body, and the z-axis with the
shortest; the y-axis is oriented such that a right-handed coordinate frame
is obtained. It follows from this convention that the demagnetizing factors
fulfill nx ≤ ny ≤ nz.

Demagnetizing Factors

Beleggia et al. [2006] state that any uniformly magnetized body can be related
to a magnetically equivalent ellipsoid that has the same three demagnetizing
factors ni. They derive the exact relationships for the equivalent ellipsoids of
shapes with up to two non-dimensional parameters, in particular for rectan-
gular and elliptical plates.

Because of this equivalence, the quantities (magnetization, torque, etc.)
that only involve the demagnetizing factors will remain constant and inde-
pendent of the actual shape. Therefore, we will give our results in the general
way, and use results where available to validate them. We use thin plates to
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illustrate configurations. Whenever it is instructive, we will give typical val-
ues for a thin plate as nz = 0.85, ny = 0.1, nx = 0.05.

Applied Field

We will assume that the applied field H is in one of the principal planes of
the body. Without loss of generality, we set

H =
(
hx, hy, 0

)T
= h

(
cos θ, sin θ, 0

)T (3.7)

for the planar case, where h is the magnitude of the applied field and θ the
angle between H and the x-axis. Similarly, for the coercivity of the sample,
we assume

Hc =
(
hcx, hcy, 0

)T
= hc

(
cos θc, sin θc, 0

)T (3.8)

where hc is the magnitude of the coercivity and θc the angle between Hc and
the x-axis. For applied fields in other planes, the results are obtained by cyclic
permutation of the indices x, y and z. We recall that in non-dimensional form
(see Section 2.9), we have

b = (H + Hc)/ms, (3.9)

and that we are considering the case of shape dominant magnetization (see
Section (2.5.2)).

3.2.2 Classical torque analysis

Abbott et al. [2007] analyze the torque expression on ellipsoids using their
continuous magnetization model (see Section 2.6). They derive the conditions
on the applied field angle and field strength to obtain the maximal possible
torque on the ellipsoid. They find that for an applied field strength ||H||, the
optimal field angle θopt is given by

θopt =


45◦, ||H|| ≤ ||H||low

arctan
(

nr
na

√
||H||2−m2

s n2
a

m2
s n2

r−||H||2

)
, ||H||low ≤ ||H|| ≤ ||H||high

arcsin
(
(nr−na)ms

2||H||

)
+ 45◦, ||H||high ≤ ||H||

(3.10)

where na and nr are the axial and radial demagnetizing factors (see sec-
tion 2.6), and the limit field ||H||low and ||H||high are given by

||H||low =
msnanr

√
2√

n2
a + n2

r
(3.11)

||H||high = ms

√
n2

a + n2
r

2
(3.12)

Furthermore, they find that the torque on a soft-magnetic body has an upper
limit, independent of the applied field strength, given by

||T||max =
µ0V(nr − na)m2

s
2

(3.13)
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3.2.3 Torque Analysis using Lagrange multiplier

Based on Section 2.9, the non-dimensional magnetization x = M/ms can be
expressed as (2.59)

x = (N + λI)−1 b. (3.14)

With b = b eb + bcebc, non-dimensionalizing the torque expression (3.5)
yields

τ =
T

µ0Vm2
s
= b2(N + λI)−1

(
eb +

bc

b
ebc

)
× eb. (3.15)

This expression is now equivalent for any body described by N. Because of
the vanishing z-component of H in (3.7) the resulting cross product has only
an entry in the z-direction. For bc = 0, it is given by

τz =
1
2

ny − nx

(nx + λ)(ny + λ)
b2 sin(2θ) (3.16)

For λ = 0, we obtain the standard result for the linear region, that is,
a quadratic behavior in the applied field strength b and a sin(2θ) behavior
which has a maximum at θ = 45◦. Furthermore, for a symmetric shape in
the x − y plane no torque is obtained, since in that case nx = ny (assuming
uniform magnetization). For λ > 0, the shape of the curve is more complex
since λ = λ(b, θ).

Furthermore, we observe that the maximal torque that can be exerted on
the body in the limit of large λ ≈ b is given by

τz,max =
1
2
(ny − nx), (3.17)

then λ dominates the denominator of (3.16) and approaches b. Note that (3.17)
is the non-dimensional form of the maximal torque (3.13) derived by Abbott
et al. [2007].

We can further analyze the torque curve as follows. The ratio τR of the
torque τz to its maximal value is found as

τR :=
τz

τz,max
=

b2 sin(2θ)

(nx + λ)(ny + λ)
. (3.18)

We see that in the limit of large fields, when λ ≈ b, τR approaches sin(2θ)
asymptotically. This shows that the maximal torque in the large field limit
is again obtained for θ = 45◦, which is again a standard result (see (3.10)).
However, it follows naturally from our description, without typical assump-
tions, e.g. that M and H are parallel2. Furthermore, the total differential dτR
shows the evolution of the torque after saturation has been reached (λ > 0).
Assuming λ ≈ b we have

dτR =
∂τR
∂b

db +
∂τR
∂θ

dθ. (3.19)

2These assumptions are also not made by Abbott et al. [2007]. Rather, the optimal angle for
the maximal torque is calculated by inverting the magnetization model.
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We then find

dτR =
b2(nx + ny) + 2bnxny(

b2 + b(nx + ny) + nxny
)2 sin(2θ)db+ (3.20)

+
2b2

b2 + b(nx + ny) + nxny
cos(2θ)dθ. (3.21)

Now, the first term in the sum is always positive (for typical values for
θ ∈ (0◦, 90◦)). However, the second term changes sign at θ = 45◦. Thus,
for angles θ ≤ 45◦, the torque is monotonically increasing and reaches its
limit without reaching a maximal value. For angles θ > 45◦, the second term
eventually dominates, as its numerator has similar behavior and its denom-
inator is smaller. Thus, for these angles the torque first may increase and
reach a maximum, eventually even the absolute maximum value τR = 1, and
then decreases and approaches its limit. The fact that the curve may increase
or decrease after saturation for certain angles has been also described quali-
tatively by Abbott et al. [2007] by observation of their numerical results. Yet,
no predictions on when this is the case could be made, except in terms of the
angle for the maximal torque (3.10). From our model we can conclude that
increasing the field will always increase the torque as long as θ < 45◦.

Next, our description also allows for the derivation of the minimal torque
on a structure, and, hence provides a design criteria. Of course, for θ = 0◦

or θ = 90◦ the torque vanishes. Yet, for θ different from these values, we
note that the maximal possible value for λ is given by its upper boundary
from (2.78) as

λmax = max(0, b− nmin) (3.22)
= max(0, b− nx) (3.23)

Substituting λmax in (3.16) yields the minimal torque as

τz,min =
1
2

ny − nx

(nx + λmax)(ny + λmax)
b2 sin(2θ) (3.24)

=


1
2

ny−nx
nxny

b2 sin(2θ), λmax = 0
1
2

ny−nx
b+ny−nx

b sin(2θ), λmax = b− nx.
(3.25)

and the ratio of the extremal values is

τz,min

τz,max
= min

(
b2 sin(2θ)

nxny
,

b sin(2θ)

b− nx + ny

)
(3.26)

which basically shows the range of the torque that can be applied to the sam-
ple for a given angle θ and field strength b.

Figure 3.18 illustrates these findings for θ = 15◦ and 75◦ and different
ny/nx ratios representing the change of shape. The ny/nx ratio approx-
imately represents the aspect ratio of the body, thus larger ratios repre-
sent thin long shapes in the x − y plane, violating our assumption of nx <
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Figure 3.2: Torque ratio τz/τmax vs. applied field strength for two applied
field angles θ and different ny/nx ratios. We see the quadratic increase for
sufficiently low fields, and the asymptotic beheavior towards sin(2θ) for high
fields. The influence of increasing ny/nx, thus shape, is to decrease the torque
for small angles, while increasing it for larger angles. The dotted lines repre-
sent the minimal achievable torque for the given field/angle configuration.

ny < nz for the sake of generality. Note, that the figure is completely non-
dimensional, thus representing a general torque curve.

We also observe the asymptotic approach of the limit, in both cases sin(2θ) =
1/2. For θ = 15◦, the torque increases monotonically to this limit. For
θ = 75◦, the torque decreases immediately after saturation for ny/nx = 2
and 3 without reaching the maximum. For ny/ny ≥ 4 the torque further
increases after saturation, reaches its maximal value, then decreases asymp-
totically towards its limit. The dotted lines represent the respective minimal
values that were derived. They are identical for both angles.

As for the influence of shape, we observe that at small angles, larger
aspect ratios decrease the torque while increasing it for large aspect ratios.
However, this change is rather small for small angles, thus making the torque
rather insensitive to even large changes in the aspect ratio. For large angles
a change in the aspect ratio may lead to significant changes in the resulting
torque. This, again, can be used as a design guideline for wireless magnetic
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Figure 3.3: Numerical illustration that torques for θ < 45◦ are increasing
monotonically to their limit, while for θ > 45◦ the torques may attain a
maximum and decrease afterwards. For θ = 45◦ the limit and the maximum
are identical and reached asymptotically.

manipulation systems.

Figure 3.3 shows torque curves for θ = 44◦, 45◦ and θ = 46◦ for dif-
ferent aspect ratios. This illustrates numerically what we discussed above
(see (3.21)): for θ = 44◦, the torque curve increases monotonically and ap-
proaches its limit asymptotically; for θ = 46◦, the maximum value is reached
before decreasing to the limit; for θ = 45◦, the limit and the maximum are
identical and reached asymptotically.
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Figure 3.4: τz/τmax as a function of the applied field angle θ for nx = 0.05,
and ny = 0.2. The numbers in the curves signify the normalized field strength
b. We identify a sin(2θ) behavior for low and high fields with a maximum at
45◦. In between, until about b = 0.2 torques curves approach a sin θ behavior,
indicating that the part behaves more like a permanent magnet with fixed
magnetization.

Finally, Fig. 3.4 shows the torque vs. angle curves for nx = 0.05 and
ny/nx = 4 and different applied field magnitudes. We can identify the
sin(2θ) behavior at low and high fields. In the intermediate values, until
approximately b < ny = 0.2, thus until the piece is fully saturated, the curves
approach a sin θ behavior. This indicates that the part behaves more like a
permanent magnet with fixed magnetization M.

To summarize, using our description of the magnetization we derived a
torque expression using λ. This is a generalization of the standard available
results. The standard results can be obtained by observing the limits of our
model. Thus, we can accurately predict the limit behavior of the torque,
and, in addition, examine its evolution towards these limits. We show that
the torque increases or decreases after saturation depending on the applied
field angle, and that for small angles the torque is insensitive to even large
changes in aspect ratio. Our magnetization description predicts the minimal
torque on a magnetic body, thus characterizing and assessing designs for
their suitability for specific tasks.

Remark 3.2. Recall that in all our derivations uniform magnetization of the sample
is assumed. Particularly for low fields and for shapes different from ellipsoids, this
is wrong. The actual magnetization of the sample is a vector field, as introduced
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in Section 2.4.2, having a mean direction over the volume of the sample. Because
of this, assuming uniformity overestimates the actual magnetization of the sample.
Consequently, the torque is overestimated.

3.2.4 Finite Element Analysis

To verify our results, we perform numerical simulations using the commer-
cial finite element software Maxwell3D-V13

3. For this, the shapes are placed
inside a large rectangular box under vacuum (µr = 1). The dimension of the
box is 5× 4× 3mm3. The magnetization is modeled using a Langevin curve
(see Section 2.7) with the respective parameters being given for each case.
The applied magnetic field represents the boundary conditions on the outer
faces of the box.

For the simulations, Maxwell employs an adaptive mesher algorithm us-
ing tetrahedral mesh elements, and increases their number in critical regions
by 30%. Typically 15-30000 tetrahedrons are generated until the simulation
converges for an energy criteria. This criteria is either that the energy error
is less then 0.01% or 0.001% set by observing manually the evolution, or the
maximal number of iterations, set to 10 or 15, has been reached. The energy
criteria employed by Maxwell in the magnetostatic case is to compute ∇×H
in the entire domain and compare it zero, since Maxwell’s equation (2.5) must
hold with J = 0.

3.3 Superposition of Soft-Magnetic Shapes

When two soft-magnetic shapes are placed close to each other in an applied
magnetic field, the field produced by their magnetization may alter the ef-
fective applied field, and thus the resulting mutual magnetization will be
different from the value calculated using the methods in Section 2.5 or 2.9.
Three scenarios for the analysis can be identified:

1. We can neglect the interaction and compute the total torque by the sum
of the individual torques.

2. One, or a few, shapes dominate the torque on the structure and the
computation can be simplified by computing the magnetization/torque
only on the the dominant structure.

3. Interaction of all parts must be considered.

No analytical methods exist to consider interacting parts. However, here we
show that interactions only occur in very specific cases. We note that when
the applied field is sufficiently high, saturation occurs and the susceptibility
of the samples drops to zero. Thus, their mutual effect can be neglected.
For intermediate and low applied fields, the magnetic field produced by the
shapes due to their magnetization typically drops with the distance cubed or
even with the fifth power (see Section 2.3). Thus, after a few, typically less

3www.ansoft.com

51



3. Magnetic Force and Torque on Assembled-MEMS Microrobots

0 0.5 1 1.5 2 2.5 3
0

10

20

30

normalized applied field  



Figure 3.5: Torque ratio for two parallel shapes with nx = 0.05, ny = 0.1 and
nz = 0.85 rotated by 90◦ around their common x-axis. Clearly, the torque on
the shape perpendicular to the applied field is larger, since τB/τA > τ0 ≈ 1.9
(see text).

than 3 to 4 body lengths, their interaction can be neglected, as well.

From this, it is clear that interaction has to be considered only for mod-
erate and low applied fields, when structures are displaced less than 3 or
4 body-lengths. The method of choice is typically finite element software.
For other configurations we can either compute the sum of the individual
torques, or consider an equivalent shape with the same overall geometry.
This covers scenarios 1 and 3.

For scenario 2, we now turn to investigate configurations that may exhibit
dominant structures.

3.3.1 The Effect of Orientation

Consider two identical shapes A and B with nx < ny < nz. We are interested
in the ratio of their torques τA and τB. Since, the torque depends on the
magnetization, and the magnetization on the field strength and direction, the
orientation of the shapes significantly influences the torque ratio. We will
examine two special cases.

First, consider the shapes placed perpendicular to each other such that
their x axis coincides, i.e., the x− y plane of A is in the plane of the applied
field, while the x− y plane of B is perpendicular to it (see inset in Fig. 3.5).
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Then, using (3.16), the ratio of the torques τB and τA is found as

τB
τA

=
nz − nx

ny − nx
·
(nx + λA)(ny + λA)

(nx + λB)(ny + λB)
(3.27)

=
nz − nx

ny − nx
·

nxny + λA(nx + ny) + λ2
A

nxnz + λB(nx + nz) + λ2
B

(3.28)

for θ 6= 0, 90◦. We observe that in the limit of large fields (λA ≈ λB � 0), we
have

τB
τA

=
nz − nx

ny − nx
=: τ∞, (3.29)

while in the linear limit (λA = λB = 0) the ratio of the torques simplifies to

τB
τA

=
nz − nx

ny − nx
·

nxny

nxnz
=

nz − nx

ny − nx
·

ny

nz
=

ny

nz
τ∞ =: τ0 (3.30)

With typical values of nx = 0.05, ny = 0.1 and nz = 0.85, we have τ0 ≈ 1.9
and τ∞ ≈ 16. This means that for both of these limit cases, the torque on the
plate perpendicular to the applied field is significantly larger than the torque
on the plate that lies parallel to the field. These results can be also derived
classically.

However, our description allows further insight. For sufficiently low ap-
plied fields, λB will be zero, while λA is already positive. Thus, the torque
ratio increases quadratically with λA. Increasing the field will further in-
crease λA and, thus, increase the torque ratio. However it will also even-
tually turn λB positive and start increasing the denominator of (3.28), thus
decreasing the torque ratio. This indicates the possibility of an optimal field
strength/direction that results in the largest torque ratio between the two
samples.

This is shown in Figure 3.5. Clearly, the plate perpendicular to the ap-
plied field has a larger torque, since τB/τA > τ0 ≈ 1.9. We also observe how
the torque ratio tends towards its high field limit τ∞. But also, as predicted
by our model, much higher values are possible before. We also recall, that for
θ < 45◦ we found that the torque on a single shape increases monotonically,
while for θ > 45◦, it may attain a maximum before decreasing to its limit.

To summarize, it is expected that such configurations will dominate the
torques on combined structures. Also, as argued in the previous section, this
shows that we need only consider the dominant shapes and can neglect the
non-dominant ones to obtain a good estimate for the torque.

Now assume both shapes are perpendicular to applied field such that
the field is applied in their x − z plane, and B is rotated by 90◦ along their
common y axis (‘cross’ configuration, see inset in Fig 3.6). In the frame of A,
the field has an angle θ, while for B it is −90◦ + θ. Thus, the ratio of the sin
terms in the torque (3.16) is sin(2θ)/ sin(−180◦+ 2θ) = −1, and the resulting
torque ratio is

τB
τA

= −
nxnz + λA(nx + nz) + λ2

A
nxnz + λB(nx + nz) + λ2

B
. (3.31)
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Figure 3.6: Torque ratio for the ‘cross’ configuration. For the low and high
field limits and for θ = 45◦, the torque on both shapes is equal and opposed
as τB/τA = −1. However, we observe dominance of shape B for angles < 45◦

and A for angles > 45◦.

We observe that τB/τA = −1 in both, the linear (λA = λB = 0) and the high
field limit (both λ � 0), meaning that the torque is exactly opposed on both
samples. In addition, it is also −1 when λA = λB 6= 0 which occurs for an
applied field angle of 45◦ due to symmetry.

Again, these could have been derived with the classical description lead-
ing to the wrong conclusion that no net torque can be applied to the assem-
bled structure, as the total torque would vanish for every case (τA + τB =
τA − τA = 0). Yet, our description shows that for λA 6= λB > 0, a torque
ratio different from −1, and hence a non-zero net torque on the assembled
structure could be obtained.

The torque ratio is plotted in Fig 3.6. We observe that B is dominant for
small θ, and it follows from symmetry that A will be dominant for θ close to
90◦. Since their interaction is exactly opposed for θ = 45◦, we expect maximal
effect of the interaction between 0◦ and 45◦ and examine this further using
experiments.

3.3.2 The Effect of Material

The torque ratio (3.28) assumes both samples with the same aspect ratio and,
thus, volume, made from the same material. If this is not the case, i.e., if the
the samples have different saturation magnetizations ms,A and ms,B respec-
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tively, (3.28) has to be modified accordingly as

τB
τA

=
m2

s,B

m2
s,A

·
nz − nx

ny − nx
·

nxny + λA(nx + ny) + λ2
A

nxnz + λB(nx + nz) + λ2
B

(3.32)

and we see that we can scale the torque ratio significantly by choosing the
appropriate materials. This also applies to the ratio (3.31).

3.3.3 Doubling one Dimension

For simplifying the computation in the case of superposition, we consider
the case when the two shapes are placed in parallel, and, thus, no shape
dominates the interaction. As an instructive example we compare the torque
τS on a single shape S (‘single’) to the torque τD on a shape D (‘double’) that
doubles the dimension in the shortest direction. Assuming the field applied
in the (x− z) plane, the ratio of the torques is given by

τD
τS

= 2 ·
nzD − nxD
nzS − nxS

·
(nxS + λS)(nzS + λS)

(nxD + λD)(nzD + λD)
(3.33)

where the factor 2 accounts for the volume difference, and the subscripts
S and D designate the variables for the single and the double shape, re-
spectively. We can identify a lower limit for sufficiently low fields, thus
λS = λD = 0, as (

τD
τS

)
min

= 2 ·
nzD − nxD
nzS − nxS

·
nxSnzS
nxDnzD

(3.34)

and a limit for sufficiently high fields as(
τD
τS

)
∞
= 2

nzD − nxD
nzS − nxS

. (3.35)

There is no straightforward mapping between the demagnetizing factors
niS and niD. To obtain an estimate, we use the procedures from Beleg-
gia et al. [2006] to numerically compute niS for thin rectangular plates of
sizes (Lx, Ly, Lz) and, similarly, for plates with double thickness (Lx, Ly, 2Lz).
We consider a total of 100 aspect ratios Ly/Lx ∈ (0.1, 1) and 100 ratios
Lz/Lx ∈ (0.01, 0.1), resulting in a total of 10000 configurations. The results
are shown in Fig 3.7, together with the fits for niD = niD(niS). Excellent
fits are found using MATLAB’s fit function with the polynomial models, a
linear one for nx and quadratic ones for both ny and nz as

nxD = 1.525nxS + 0.0026 RMSE = 0.003 (3.36)

nyD = −0.797n2
yS + 1.66nyS + 0.0022 RMSE = 0.002 (3.37)

nzD = 0.8495n2
zS + 0.025nzS + 0.123 RMSE = 0.0003 (3.38)

where RMSE designates the root mean square error of the fit.
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Figure 3.7: Numerical fit of the demagnetizing factors niS for thin rectangular
plates of sizes (Lx, Ly, Lz) and with those for for plates with double thickness
niD, thus size (Lx, Ly, 2Lz).

With these relationships, the ratio (3.33) has been calculated for nxS = 0.05
and nzS = 0.85 and is shown in Figure 3.8, together with the minimal and
limit values (

τD
τS

)
min

= 1.207, and
(

τD
τS

)
∞
= 1.705 (3.39)

We can observe an interesting result: even though the high field limit value
is 1.7, after saturation, the torque ratio is approximately 2, meaning that the
torque on the plate with double thickness is twice the torque on the sin-
gle plate. Conversely, in saturation, we can approximate the torque on two,
parallel non-interacting plates with the torque on a single plate with double
thickness, i.e. τD ≈ 2τS. Before saturation, no such simplification is possible.

3.4 Verification

3.4.1 Ellipsoid

For the prolate ellipsoid introduced in Section 2.10 (Fig. 2.7(a)), we show the
results for the torque from Abbott et al. [2007] in Fig. 3.9(a). As expected,
the data is well predicted by the model. The sharp corners in the model,
due to the sharp transition from linear to saturated behavior are smoothed
by the data. In Fig. 3.9(b), we show the effect of calculating the torque using
the approximation λβ. We see that the transition from linear to the saturated
behavior is well predicted. The approximation is also very good for small
angles. However, for larger angles, especially those where the slope of the
curve changes sign (θ = 55◦ and 70◦), the error can increase significantly
with the applied field.

3.4.2 Planar Shapes

We now investigate the case with more extreme aspect ratios, i.e., thin planar
shapes. Following Beleggia et al. [2006], an elliptical plate with aspect ratios
la = ay/ax , and lt = t/(2ax), where ax and ay are the semi-axes in x and y
directions, respectively, and t is the thickness, has a magnetically equivalent
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Figure 3.8: Torque ratio τD/τS relating the torque on a single plate to the
torque on the same plate with double thickness. We see that in saturation the
2τS is a good approximation of τD.

ellipsoid with aspect ratio lx = a′z/a′x and ly = a′z/a′y where a′x, a′y and a′z are
the semi-axes of the ellipsoid in the respective directions. They provide the
numerical procedures to determine this equivalent ellipsoid. What is impor-
tant, is that both shapes have the same demagnetizing factor, and, therefore,
should theoretically show the same non-dimensional torque behavior.

To investigate this, we calculated using FEM the torque on a thin ellip-
tical plate with la = 0.5 and lt = 0.025. The corresponding ellipsoid has
aspect ratios lx = 0.047 and ly = 0.090, resulting in demagnetizing factors
nx = 0.027, ny = 0.073 and nz = 0.90 for both cases. For the magnetization,
we use a Langevin curve with ms = 5× 105A/m and χ = 10000 to enforce
shape dominance.

The results are shown in Fig. 3.10 for θ = 15◦ and 75◦ together with the
analytical results. We see that the analytical model generally predicts the be-
havior of the torque curves, especially for the small angle θ = 15◦, and for
both angles when the field is applied in the (x− z) plane of the piece (bottom
figure).

When the field is applied in the (x− y) plane of the shape (top figure), we
observe the largest discrepancy in the transition from the intermediate to the
fully saturated region (around ny) for θ = 75◦. For the ellipsoid, we see a shift
of the peak. The shift is due to the difference in the magnetization curves:
the Langevin curve models a smaller magnetization and a larger transition
region. For the elliptical plate, the peak disappears in the FE results and is
smoothed. Besides to the difference in the magnetization, this is mostly due
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(a) As expected, the data is predicted very well by the model.

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.6

0.4

0.8

1

normalized applied field

theoretical max

 

 

model

approximation



(b) Using approximation λβ predicts the transition from the linear to the saturated behavior
well. For small angles, the entire range is predicted well. For larger angles, the error may be
significant as the slope at the transition is maintained.

Figure 3.9: (a) Torque results for a prolate ellipsoid with nx = 0.18 and
ny = 0.41 from Abbott et al. [2007]. (b) Error on the torque due to the
approximation λβ.
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Figure 3.10: Theoretical torque curves (lines) compared to FEM results (mark-
ers) for an ellipsoid and an elliptical thin plate having the same demagnetiz-
ing factors nx = 0.027, ny = 0.073 and nz = 0.90. See text for discussion.

to the assumption of uniform magnetization.

In general, the differences are within 10%, which is within acceptable
limits for verification.

3.4.3 Superposition

Now we verify our previous argumentation on superposition. We have seen
in Section 3.3.1 that configurations with dominant shapes may exist. To avoid
this, and to ensure that both pieces contribute equally to the combined struc-
ture, we have to consider a parallel arrangement as shown in the inset of
Fig. 3.11 for two thin elliptical plates with la = 0.5 and lt = 0.025. Using
FEM, we calculate the total torque on the structure, again for θ = 15◦ and
75◦. The distance d between the two plates varies from 0.5 to 8 times the
thickness t of the plates.

The FE results for the torque, τFEM, for θ = 15◦ and 75◦ are shown in
Fig. 3.11 normalized with the torque on a single plate τS. For both angles, we
see that after saturation (b > 0.025 for θ = 15◦ and b > 0.1 for θ = 75◦) the
ratio τFEM/τS is approximately 2, confirming that superposition can be used
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Figure 3.11: Torque on two parallel thin plates calculated by FEM, τFEM, nor-
malized with the theoretical torque on a single plate, τS, as a function of the
distance between the plates. Below saturation, interaction can be observed
when the plates are closer than a few body-lengths. When they are farther,
or when the applied field is higher than the saturation field, superposition
holds as τFEM ≈ 2τS.

to approximate the total torque, i.e. τFEM ≈ 2τS. Note that the limits of sat-
uration are given in terms of the individual piece, not the combined structure.

Before saturation, we observe that for d/t = 0.5, i.e., when the plates are
very close, the torque ratio is about 1.5 and increases with increasing d/t up
to > 1.8 for d/t ≥ 4. Thus, also for low fields, superposition holds when
the plates are sufficiently far away from each other, e.g., 3 to 4 body-lengths.
This confirms our argumentation from Section 3.3.

3.4.4 Experimental: Microrobot

For the experimental investigation we consider the the microrobot assembled
from elliptical nickel parts as shown in Fig. 3.1. The fabrication process is
described in detail by Yesin et al. [2006].
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Figure 3.12: Microfabricated nickel parts (left) are assembled to form a micro-
robot (middle). Rather than using the actual complex shapes of the parts for
the computation, we consider the microrobot as a superposition of simpler
geometries (right). The frames of the individual parts are assigned with the
x-axis along the longest dimension of the body and with the z-axis along the
shortest dimension. The body frame coincides with part 1.

We are interested in the torque on the assembled structure and investi-
gate two situations. In the first, the fields are applied in the xy-plane and the
torque around the z-axis is measured. We expect the out-of plane part to be
dominant as shown in Section 3.3.1. In the second, the fields are applied in
the yz-plane and the torque around the x-axis is measured. This is the ‘cross’
configuration analyzed in Section 3.3.1.

We assign a body frame and the individual component frames as shown
in Fig. 3.12. In our simplifying model, we consider two elliptical parts with
semi axes 1mm, and 0.5mm and thickness 42µm, resulting in the demagne-
tizing factors nx = 0.02439, ny = 0.06405 and nz = 0.9115.

Magnetization data was then collected for the individual shape with a
MicroMag 3900 vibrating-sample magnetometer (VSM) from Princeton Mea-
surements Corp. Figure 3.13 shows the magnetization along the x and y axes
plotted against the applied field. Using the demagnetizing values for the
specific directions and the definitions of internal and demagnetizing fields
field (2.24) and (2.25), respectively, the magnetization curve is corrected for
the shape and shown in Figure 3.14, where the magnetization is plotted
against the internal field. Clearly, the shape effects have been corrected for,
as both curves coincide, and we are left with intrinsic material properties. In
particular, we find ms = 4.89× 105 A/m for nickel.

For the reference FE analysis, these shape-corrected magnetization curves
are fitted to a Langevin-type magnetization curve (see Section 2.7). We find
α = 1.71× 10−4 m/A for nickel. This fit is also shown in Fig. 3.14. Note that,
by using a Langevin function, hysteresis is neglected.

The magnetic torque was measured using a custom-built torque magne-
tometer developed by Bergmüller et al. [1994], which works by applying a
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Figure 3.13: Original magnetization data for nickel taken along two axes.
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Figure 3.14: Magnetization data corrected for shape effects using known de-
magnetizing factors, and the best Langevin fit. This fit is used in FE calcula-
tions.
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uniform field at a desired angle with respect to the microrobot. Before the
torque on the microrobot was measured, the noise in the system was mea-
sured by measuring the torque signal of the sample holder. This signal was
then subtracted from the torque measurement on the microrobot. It is not
possible to know the precise orientation of the sample in the magnetometer.
But since it is known that no torque is expected at 0◦ and 90◦, the data is
shifted by a few degrees to match these transitions. In the following, we use
these corrected measurements.

The torque results are shown in Fig. 3.15, along with corresponding ana-
lytical and FE results. We see very good agreement between the experimen-
tal data and the FE results. Generally, we find good agreement between our
model (the only available model) and the experimental data. The sharp cor-
ners in our model stemming from the transition to saturation are smoothed
by the data and the FE results due to the smoother transition from the linear
to the saturated region.

In Fig. 3.15(a) we can observe the effect of the dominant shape, consid-
ering only the torque on the plate perpendicular to the applied field plane
(dashed curve). We see that, both, the assembled and the dominant shape
model model predict almost the same torque, and we can conclude that the
dominant shape is an adequate predictor for the torque on the entire struc-
ture. The assumption of larger magnetization resulting in a larger torque
for the assembled model, is counteracted by considering only the dominant
shape, thereby reducing the predicted torque.

Figure 3.15(b) shows the results for the ‘cross’ configuration. As expected,
we observe that for very low fields the torque is zero from FEM results and
our model (note that the field b = 0.016 corresponds to B = 0.01T and is
below the rest field of the torque magnetometer, so no experimental data is
available). This confirms our finding in Section 3.3.1 that for low fields the
torque ratio in the cross configuration is −1 (see Fig. 3.6), and is due to the
torques on the individual parts canceling each other out. So for these fields,
the torque along the long axis of the microrobot vanishes as does the torque
around the long axis of a body with axial symmetry. However, increasing the
applied field leads to different magnetizations and, hence, different torques
on the individual parts. Therefore, a net torque is exerted on the microrobot.
This net torque vanishes at 0◦ and 45◦, which is expected from the symmetry.

3.5 Summary and Contributions

The torque acting on a soft-magnetic sample has been analyzed based on the
description introduced in Chapter 2. The results agree with the classical ap-
proach, and properly handle the continuous transition between the linear and
saturated region. In addition to the increased computation speed stemming
from the results of the previous chapter, we can predict minimal torques, the
limit value for the torque, and that for fields applied at angles < 45◦, the
torque will always increase, while for > 45◦, the torque attains a maximum
and then decreases asymptotically to its limit.
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(a) Torque about z-axis versus applied field angle. The field is applied in the xy-plane.
We see that the torque on the microrobot is essentially provided by the dominant shape
perpendicular to the applied field plane.
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(b) Torque about x-axis versus applied field angle. The field is applied in the yz-plane.
Note that the model and FEM predict zero torque for sufficiently low field magnitude.

Figure 3.15: Comparison of analytical model, FEM simulations, and exper-
imental data for the torque on an assembled microrobot. Insets show the
orientation of the applied field and the resulting torque. Good agreement is
observed between the data, the FEM results and the assembled model assum-
ing linear superposition. The plots are grouped according to the normalized
applied field strength b.
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Next, we analytically analyzed superposition of shapes and showed that
mutual effects only occur for close shapes and fields below saturation. This
provides a method to compute approximations of the forces and the torques
acting on a soft-magnetic 3D assembled-MEMS device.

The results were then applied to the ophthalmic microrobot presented
by Yesin et al. [2006]. We found very good agreement between analytical,
FEM and experimental data. The model captures the behavior of the indi-
vidual parts, as well as the behavior of the assembled microrobot, which was
not possible with previous methods.

The proposed model captures the magnetic behavior of devices assembled
from thin parts that are widely used in MEMS. In fact, most of the structures
of interest fabricated by MEMS processes will be similar to the planar parts
analyzed in this chapter. Therefore, this method can be used to model a va-
riety of MEMS devices, both tethered and untethered.

Previous work does not allow for full 6-DOF control of magnetic devices
due to the simplicity of the structures considered. For example, spherical
bodies can be controlled with up to 3-DOF and axially symmetric bodies
with up to 5-DOF Abbott et al. [2007]. Our model captures the characteristics
of complex 3D structures and allows us, for the first time, to consider full
6-DOF control of untethered devices. This will provide major advances in
the control of in vivo biomedical devices, as well as in wireless micromanip-
ulation systems.
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With magnetism, power of uncondensed steam, gravitation,
radiant energy of electric waves, equilibrium and activity of
atoms, all inscrutable to human eyes, man still cries, “I believe
only what I can see”

anonymus

CHAPTER 4
Modeling the Motion of

Microrobots using
Non-Smooth Multi-Body

Dynamics
In this chapter, we apply non-smooth multi-body dynamics to describe
the motion of microrobots. After introducing the mathematical back-
ground, we apply the theory to the wireless resonant magnetic microac-
tuator, in particular the MagMite microrobots, as an example. We first
analyze the robot using a simplified analytical model, which allows us
to derive characteristic and non-dimensional parameters that describe
its dynamics. We then perform a numerical study to analyze the non-
linearities. We can predict several non-intuitive phenomena, such as
switching of the direction of the velocity with changing excitation fre-
quency, and show that both erratic and controlled motion occur under
specific conditions. While consistent with the experimental observations,
our numerical results indicate that previous speculations on the motion
mechanism may be wrong. The presented method is readily applied to
other microrobots as well.

4.1 Introduction

F or effective propulsion at the microscale, methods that convert ex-
ternal energy directly into mechanical motion without any complex

mechanisms, e.g., those involving cogs or electronic circuits, are more practi-
cal as they lower energy loss and fabrication complexity.

As an example, consider the wireless resonant magnetic microactuator
(WRMMA) introduced by Vollmers et al. [2008] and shown in Fig. 4.1(a).
The WRMMA consists of two nickel masses connected through a gold spring
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Figure 4.1: (a) Wireless resonant magnetic microactuator in size comparison
with a US penny. (b) 1D Mechanical model of the WRMMA. Both body and
hammer have height H and width W (not shown), LB denotes the length of
the body, and LH the length of the hammer, and c, k, and g are the damping
coefficient, the spring stiffness, and the gravitational acceleration respectively.

and has overall dimensions of roughly 300 × 300 × 50µm3. As shown in
Fig. 4.1(b), one mass—the body—rests on a gold support structure which
in turn has frictional contact with the substrate, whereas the other one—the
hammer—is lifted above the ground and can move freely without friction.

Initially not magnetized, the nickel bodies become magnetized when an
external magnetic field is applied. As a result, an attractive magnetic force
arises between them. Then, time-variant magnetic fields are used to induce
oscillatory motion and, it is assumed that, impact between the hammer and
the body drives the robot forward. An additional electrostatic clamping force
between the body and the substrate allows to control the vertical (reaction)
force between the robot and the substrate.

Primary responses and driving behaviors have been experimentally char-
acterized by Frutiger et al. [2010], and the overall performance was observed
to be largely as intended by design: first, reliable turning behavior thanks to
alignment with the external magnetic field, and second, controlled forward
and backward motion thanks to rectification with a phase-shifted clamping
force. Besides these primary behaviors several other modes of operation have
been discovered, e.g, naturally driving backwards without the need for a
clamping signal. Furthermore, phenomena such as changing the velocity
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4.2. Non-Smooth Multi-Body Dynamics with Set-Valued Force Laws

direction when increasing or decreasing the frequency, and also erratic be-
haviors, were observed.

Several impact actuators have been presented in literature (see for exam-
ple the work by Zhao et al. [2004] and references therein), and analysis of
their nonlinear behavior is also available. In general, the analysis is focused
on the conditions necessary for impact, and it is implicitly assumed that
impact is necessary for motion. However, Mita et al. [2003] observe experi-
mentally that the actuator might drive backwards under certain conditions.
Yet, the results of Zhao et al. [2004] do not predict this. In fact, most models
do not address the influence of external parameters, such as friction or actu-
ation schemes that are different from a harmonic force. However, in the case
of the WRMMA, these parameters have significant influence on the driving
performance. For example, with the electrostatic clamping force, an addi-
tional variable vertical force can be applied, resulting in a variable friction
force or the robot can be fixed and released periodically.

The contribution of this chapter are a basic theoretical model and the nu-
merical analysis necessary to design the WRMMA and predict its motion.
The chapter is organized as follows. We first review the mathematical back-
ground of non-smooth multi-body dynamics with unilateral contact. This
is necessary to model mechanical systems with impact and friction such as
the WRMMA. Then, we describe the WRMMA and present a simplified an-
alytical model of it. This model is used to derive its characteristic and non-
dimensional parameters. Finally, we conduct numerical simulations to deter-
mine the motion mechanism of the WRMMA, and investigate the influence of
the system parameters on the performance, e.g., the velocity of the WRMMA.

4.2 Non-Smooth Multi-Body Dynamics with Set-Valued Force
Laws

We review the relevant parts of the mathematical framework of non-smooth
multi-body dynamics with set-valued force laws. We follow closely the de-
scription by Leine and van de Wouw [2008] and Transeth et al. [2008]. The
focus is laid on unilateral contacts with impact and friction. A complete re-
view is beyond the scope of this thesis, and for a detailed introduction the
reader is referred to standard textbooks [Glocker, 2001; Leine and Nijmei-
jer, 2004; Leine and van de Wouw, 2008] and research results [Moreau, 1988;
Transeth et al., 2008].

4.2.1 Notation and Mathematical Preliminaries

Definition 4.1. (Normal Vector) Let C ⊂ Rn be a convex set and x ∈ C. A vector
y ∈ Rn is normal to x with respect to C if

yT(x? − x) ≤ 0, x ∈ C, ∀x? ∈ C. (4.1)
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Definition 4.2. (Normal Cone) Let C ⊂ Rn be a convex set and x ∈ C. The set of
vectors y ∈ Rn that are normal to x form the normal cone NC(x) of C in x

NC(x) =
{

y | yT(x? − x) ≤ 0, x ∈ C, ∀x? ∈ C
}

. (4.2)

If x is in the interior of C then NC(x) = 0. If x /∈ C, then NC(x) = ∅.

Definition 4.3. (Proximal Point) The proximal point of a closed convex set C to a
point z is the closest point in C to z

proxC(z) = argminx?∈C||z− x?||, z ∈ Rn. (4.3)

The vector z−proxC(z) is an element of the normal cone of C at the proximal
point, i.e.,

x = proxC(z)⇐⇒ z− x ∈ NC(x), (4.4)

and by substituting z = x− ry, and noting that −y ∈ NC(x)⇔ −ry ∈ NC(x)
for r > 0, we find

x = proxC(x− ry), r > 0⇐⇒ −y ∈ NC(x) (4.5)

4.2.2 Multibody Dynamics

In what follows, we will assume a multibody system comprised of n rigid,
i.e. non-deformable, and convex bodies. The position and orientation of such
a system in space is described by a set of generalized coordinates q ∈ R f n,
where f is the number of degrees of freedom for each body, e.g. f = 3 for
planar motion with three degrees of freedom x, y, θ.

Smooth Equations of Motion

The smooth, i.e., impact- and friction-free, Newton-Euler equations of motion
for this system read

Mq̈− h(q, q̇, t) = 0, (4.6)

where M ∈ R f n× f n is the mass matrix, t represents the time, ˙( · ) denotes
the differentiation with respect to t, i.e. ˙( · ) = d

dt ( · ), h is the vector of
generalized smooth, noncontact forces, e.g., gravity, magnetic force, spring,
damping forces, etc., and q̇ ∈ R f n and q̈ ∈ R f n represent the generalized
velocities and accelerations of the system.

Rigid Body Kinematics

We describe the position and orientation in space of a rigid body j by its
generalized coordinates qj as

qj =

(
IrG
p

)
∈ R7, (4.7)

where IrG ∈ R3 is the position of the center of the gravity of the rigid body
with respect to the inertial frame I = (O, eI

x, eI
y, eI

z), and p = (e0, e)T with
e0 ∈ R and e = (e1, e2, e3) ∈ R3 is a unit quaternion describing its orientation.
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It is constrained by pTp = 1. The transformation from a body-fixed frame B
into the inertial frame is done through the rotation matrix RI

B, i.e., Ir = RI
BBr,

calculated from the unit quaternion as

RI
B =

(
2e2

0 − 1
)

I + 2
(

eeT + e0ẽ
)

, (4.8)

where

ẽ =

 0 −e3 e2
e3 0 −e1
−e2 e1 0

 (4.9)

is the skew-symmetric form of e. The rotation matrix can also be computed
from RI

B = HH̄T, with

H =
(
−e ẽ + e0I

)
, (4.10)

and

H̄ =
(
−e −ẽ + e0I

)
. (4.11)

In the planar case, qj simplifies to

qj =

(
IrG
θ

)
∈ R3, (4.12)

where now IrG ∈ R2, and θ ∈ R describes the orientation of the rigid body
with respect to the global x-axis.

Of course, whether the generalized coordinates of a rigid body have the
form (4.7) or (4.12) depends on the problem, and it is possible that only a
subset has to be considered, e.g. if rotations can be neglected, p is not used
in (4.7) and then qj = IrG ∈ R3.

For a system consisting of m rigid bodies the individual qj are collected

in a vector q =
(
qT

1 , qT
2 , . . . , qT

m
)T.

Contact Kinematics

Consider the two convex bodies, say body 1 and body 2, shown in Fig. 4.2,
and assume that the region where they are close to each other is sufficiently
smooth. In each body-fixed point Ci on the surface of body i, we can define
an outward normal ni and a tangent plane Ti spanned by vectors ti and si.

Two points C1 and C2 on the surface of body 1 and body 2 respectively,
are said to form a contact pair, if their normals oppose each other, i.e.,

n1 = −n2. (4.13)

To determine whether the bodies are in contact or not, we define the contact
distance, or normal gap, gN as

gN =
(
rOC2 − rOC1

)T n1 =
(
rOC1 − rOC2

)T n2. (4.14)
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Figure 4.2: Contact kinematics, taken from Leine and van de Wouw [2008]

We say that the bodies are separated if gN > 0, are in contact if gN = 0, and
penetrate each other if gN < 0. The relative normal velocity γN of the bodies
is defined as

γN =
(
vC2 − vC1

)T n1 (4.15)

where the vCi are the absolute velocities of the points Ci. In addition, the

components γTj of the relative tangential velocity γT =
(
γT1 , γT2

)T ∈ T1 are
given by

γT1 =
(
vC2 − vC1

)T t1, γT2

(
vC2 − vC1

)T s1, (4.16)

and in case of contact, i.e., gN = 0, γT is the relative sliding velocity.

4.2.3 Set-Valued Force Laws for Unilateral Contact with Impact
and Friction

This section describes the set-valued force laws for Coulomb friction and
normal contact on velocity level. Initially formulated as inclusions, the force
laws are then reformulated using the proximal point function for the numer-
ical implementation.

We will employ hard contact laws, that is, assume impenetrability of the
bodies and idealize the contact area to a contact point thereby neglecting the
local indentation of the bodies. In case of impact, this assumptions allow us
to avoid unphysical penetration, additional parameters (e.g. spring-damper
contact), and the resulting stiff ordinary differential equations (ODEs).

On the other hand, we model physical restitution behavior at the cost of
a set-valued force law. In case of friction, a hard friction law allows to model
sticktion effects which are not possible by employing a regularized (e.g. an
arctan function) ODE. Again, a set-valued force law is required.
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Signorini’s Contact Law

In case of unilateral contact (gN = 0), the contact force (not impulse) λN
along the normal direction of the contact is nonnegative (λN ≥ 0). However,
when the contact is open gN > 0, the contact force must vanish, i.e., λN = 0.
This is known as Signorini’s contact law and is formulated on displacement
level as an inequality complementarity condition between gN and λN as

gN ≥ 0, λN ≥ 0, gNλN = 0. (4.17)

On velocity level, the relationship between the relative velocity γN and λN
for a closed contact gN = 0 can be expressed as an inclusion

− γN ∈ NCN (λN) (4.18)

where CN = {λN | λN ≥ 0} = R+ is the convex set of admissible contact
forces, and NCN is the normal cone to CN .

Newton Impact Law

Signorini’s contact law (4.18) does not cover impact. A Newton-type normal
impact with restitution coefficient εN is modeled as

γ+
N = −εNγ−N , gN = 0, 0 ≤ ε ≤ 1 (4.19)

where γ+
N and γ−N are the post- and pre-impact velocities respectively. Im-

pact is characterized by a sudden change in the relative velocity, accompa-
nied by a normal contact impulse ΛN > 0. In situations, where the contact
does not participate in the impact, often in multi-contact situations, we have
ΛN = 0 and allow for higher postimpact velocities than prescribed by New-
tons impact law, i.e., γ+

N > −εNγ−N . Thus, similarly to Signorini’s contact
law, Newton-type impact can be modeled as an inequality complementarity
condition

ΛN ≥ 0, ξN ≥ 0, ΛNξN = 0, (4.20)

with ξN = γ+
N + εNγ−N , and can be expressed on velocity level as inclusion

− ξN ∈ NCN (ΛN) (4.21)

where CN = R+ is the convex set of admissible normal impulses.

Coulomb Friction Force

The spatial Coulomb friction law is a constitutive law relating the normal and
the tangential contact forces. It can be modeled as an inclusion on velocity
level as

− γT ∈ NCT (λT) (4.22)

where γT is the relative sliding velocity, NCT is the normal cone to the set CT
and

CT = {λT | ||λT || ≤ µλN} (4.23)

is the set of admissible friction forces for isotropic friction with µ > 0 being
the friction coefficient.
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4.2.4 Non-Smooth Equations of Motion

We now formulate the non-smooth equations of motion with unilateral fric-
tional contact. The main approach is to take the contact (impulsive and non-
impulsive) forces as Lagrange multipliers into account and modify (4.6) ac-
cordingly.

In case of impact-free motion (ΛN = 0), and denoting byH =
{

i | gNi = 0
}

the set of closed contacts, this yields

Mu̇− h(q, u, t) = ∑
i∈H

wNi λNi + wTiλTi . (4.24)

For the general 3D motion of n bodies j, it holds that F(q)u = q̇ almost
everywhere, with

F(q) =


FH1 07×6 · · · 07×6

07×6 FH2 · · ·
...

...
. . . 07×6

07×6 · · · 07×6 FHn

 (4.25)

and

FHj =

(
I3×3 03×3
04×3

1
2 H̄T

j

)
(4.26)

where H̄ is found from (4.11).

For the planar case considered in this thesis, we have F(q) = I, thus
in (4.24) we have u = q̇ almost everywhere. And wNi and wTi designate the
generalized force directions in normal and tangential directions respectively.
For the planar case, they are found from

wNi =

(
∂gNi

∂q

)T

, and wTi =

(
∂γTi

∂q̇

)T

. (4.27)

In case of impact, and more specifically during the time-instant of impact,
the equations read

M(u+ − u−) = ∑
i∈H

wNi ΛNi + wTi ΛTi . (4.28)

Since impact is usually associated with jumps in the velocity and are mod-
eled to occur instantaneously, the time derivative of the velocity u(t) does not
always exist. To account for this, an atomic measure dη is introduced and as-
sumed that the differential measure du can be decomposed as

du = u̇dt + (u+ − u−)dη, (4.29)

where dt is the Lebesgue measure and
∫
{t1} dη = 1. The latter property al-

lows us to integrate over a singleton {t1}, and thus take impact into account.
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Consequently, the impact-free equation of motion (4.24) and the impact equa-
tion (4.28) can be combined into

Mdu− h(q, u, t)dt = ∑
i∈H

wNi dPNi + wTi dPTi (4.30)

with the contact impulse measures

dPNi = λNi dt + ΛNi dη, and (4.31)
dPTi = λTi dt + ΛNi dη, (4.32)

which satisfy the inclusions

− dPNi ∈ NCN (ξN), and (4.33)
−dPTi ∈ NCT (ξT) (4.34)

with NCN and NCT being the normal cones of the admissible normal and tan-
gential impulses respectively.

The equality of measures (4.30) describes the dynamics of a system com-
posed of multiple bodies at velocity level with impact and friction and be-
cause of the atomic measure, it yields meaningful results even in case of
velocity jumps. Its numerical integration is detailed in the next section.

4.2.5 Time Discretization

The algorithm for the numerical integration of the equality of measures (4.30)
has been introduced in Moreau [1988] and uses a mid-point time stepping in-
tegration scheme. Given an initial state, the goal is find the state of the system
at the next time instant.

The main idea behind the mid-point time stepping scheme is to divide
the problem into two subproblems. First, during the first half integration
step, the contact problem is solved, i.e., the closed contacts are determined,
and the corresponding percussion measures are calculated. Then, the states
of the system are moved accordingly during the second half integration step.

We now briefly review the relevant aspects of the algorithm. Assume
an integration interval I = [tA, tE] where tA is the time at the beginning of
integration and tE at the end of it. Then, we set qA = q(tA) and uA = u(tA)
as the generalized coordinates and velocities at time tA. The objective is to
determine their values at the end of the integration interval, i.e., qE = q(tE)
and uE = u(tE). This is done in four main steps:

Step 1: Determine the mid-point tM of the integration interval I, and the
corresponding states of the generalized coordinates qM

tM = tA +
1
2

∆t, (4.35)

qM = qA +
1
2

F(qA)uA∆t, (4.36)

where ∆t is the step size.
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Step 2: At tM, determine the set of closed contactsH =
{

i | gNi (qM, tM) ≤ 0
}

by solving the contact kinematics (4.14).

Step 3: Solve the contact problem. In time-discretized form, the equality of
measures at time tM (4.30) reads

M (uE − uA)− h∆t = ∑
i∈H

wNi dPNi + wTi dPTi , (4.37)

where h = h(qM, uA, tM). Two cases are distinguished:

Case 1: H = ∅. All the contacts are open, and the contact impulse mea-
sures PNi and PTi are zero. We find the velocity uE from (4.37) as

uE = uA + M−1h∆t. (4.38)

Case 2: H 6= ∅. Closed contacts exist, and we have

uE = uA + M−1

(
h∆t + ∑

i∈H
wNi PNi + wTi PTi

)
, (4.39)

with unknowns PNi and PTi . They are given as inclusions (4.33)
and (4.34), and solved iteratively by rewriting them as proximal
point equations based on the equivalence (4.5) as

− PNi ∈ NCNi
(ξNi ) ⇔ PNi = proxR+

0
(PNi − rNξNi ) (4.40)

−PTi ∈ NCTi
(ξTi ) ⇔ PTi = proxCTi

(PTi − rTξTi ) (4.41)

with the admissible sets

CNi = R+
0 , and (4.42)

CTi =
{

PTi | ||PTi || ≤ µPNi

}
, (4.43)

the combined relative velocities

ξNi = γNiE + εNγNi A, and (4.44)
ξTi = γTiE, (4.45)

and the convergence parameters rN and rT . The larger rN and rT
are chosen, the faster the Newton-Raphson method used to solve
the proximal point equations (4.40) and (4.41) may converge. The
solutions of (4.40) and (4.41) are then used in (4.39) to determine
uE. However, convergence is not guaranteed, and too large values
rN and rT may cause divergence. Therefore, a critical examination
of the results is necessary.

Note that (4.45) may be extended similarly to (4.44) with a term
εTγTi A comprising a tangential restitution coefficient εT . This may
be interesting when modeling springy ball effects. Yet, in this the-
sis, we will always assume εT = 0 unless otherwise specified.
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Step 4 Determine the final states of the system

tE = tM +
1
2

∆t, (4.46)

qE = qM +
1
2

F(qM)uE∆t, (4.47)

and use qE and uE as the start values for the next time step integration.

In conclusion, by performing steps 1—4 at each timestep, we can solve the
initial value problem for the motion of a multi-body system with friction and
impact (even frictional impact). Since the procedure involves Euler integra-
tion, the error is approximately of order O(∆t2), thus the timestep ∆t must
be chosen sufficiently small to avoid numerical drift and sufficient frequency
resolution.

Event-Driven Schemes

As an example for an event-driven scheme, consider the model by Pawashe
et al. [2009] to describe the stick/slip motion of a microrobot. The authors
explain that, during the numerical integration of the equations of motion,
three possible solutions can occur: a) physically impossible cases (e.g. micro-
robot lost contact with surface), b) possible stick↔slip transitions depending
on the friction force, and c) sticktion. These conditions must be evaluated at
each time step and appropriate solutions must be then taken.

Clearly, the advantage of using the previously described time-stepping
scheme over such an event-driven algorithm is its robustness, as it does not
require the explicit distinction between the impact, stick and slip phases.

4.2.6 Solution from a Linear Complementarity Problem

As shown by Glocker and Studer [2005] for planar systems, the non-smooth
equations of motion (4.24) and (4.28) can also be combined and rewritten
as a linear complementarity problem (LCP). Thus, the contact problem can
be solved with standard LCP solvers, providing an alternative to the itera-
tive approach using the contact impulse measures. For many contacts, the
iterative approach above is favorable as it uses the results from the previous
time-step and can thus increase the computation speed. Also, the iterative
approach is the sole possibility to model spatial friction, thus it is more gen-
eral than the LCP description.

On the other hand, for few contacts and planar problems, both methods
are comparable. In this work, we will employ the LCP method since we will
consider a planar problem with only two contacts. For the solution of the
LCP problem, Lemke’s algorithm is used from a freely available source1.

1http://people.sc.fsu.edu/~jburkardt/m src/lemke/lemke.html
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Body Hammer

Figure 4.3: Free body diagram of the WRMMA.

4.3 Wireless Resonant Magnetic Microactuator—System
Overview

In this Section, we review the parameters and forces required to model the
motion of the Wireless Resonant Magnetic Microactuator (WRMMA)2 pre-
sented by Vollmers et al. [2008].

The magnetic torque on the WRMMA will act such that the easy axis of
the device, typically the long axis (but could be a diagonal, too), will align
with the applied field. Since rotational inertia scales down faster with size
compared to the mass, we assume that the forward motion begins after the
WRMMA is aligned with the field. This assumption is well supported by
experimental observations. Thus, a 1D model will be employed to describe
its motion.

Figure 4.3 shows the free body diagram of the WRMMA. The position of
the body is described with coordinates (x1, y1) and the hammer with coor-
dinate x2. Note, that y1 is only necessary for consistency in the numerical
integration procedure, since we consider only unilateral contacts that are al-
lowed to open.

The λNi and λTi in Fig. 4.3 designate normal and tangential non-impulsive
contact forces respectively. The other terms are explained in the following
sections. Section 4.3.1 summarizes the forces stemming from the structure
of the device, i.e., gravity, spring and damping forces and their parameters
as determined by experiments. Then, we derive the forces applied to the
microrobot, that is the magnetic driving force and the electrostatic clamping
force in Section 4.3.2 and 4.3.3 respectively.

2The terms WRMMA, MagMite or microrobot are used interchangeably

78



4.3. Wireless Resonant Magnetic Microactuator—System Overview

4.3.1 Mass, Spring, Damper

The size of the device is such that it fits roughly a 300× 300× 50µm3 total
volume 3. In the first prototypes the body and the hammer each had a length
of about 150µm, a width of W = 130µm and a height of H = 50µm as de-
tailed in Vollmers et al. [2008]. The density of nickel is ρNi = 8900kg/m3,
which results in masses of the order of 10× 10−9kg for each part. Experi-
mental characterization and the determination of the parameter values used
in the following has been carried out by Frutiger [2010].

As for modeling the geometry, we will consider devices with asymmet-
rical mass distribution. We denote by mB the mass of the body and by
mH = α mB the mass of the hammer, where α = mH/mB is the mass ra-
tio. Further, we assume the same width and height for the body and the
hammer, only the lengths differing. We consider a total device length of
Ldevice = LH + LB + g0 = 300µm, where LH and LB are the length of the
hammer and the body respectively, and g0 is the equilibrium gap (see (4.54)
below). Because of equal height and width, we have

LH = αLB (4.48)
LB = (Ldevice − g0)/(1 + α) (4.49)

and thus α equivalently designates a length ratio.

Neglecting the mass of the spring and the frame, the total mass mT of the
device is mT = mB + mH = (1 + α)mB, and the gravitational force FG acting
on the WRMMA is given by

FG = −FG ey (4.50)

= −βmT g ey (4.51)

= −β(1 + α)mBg ey (4.52)

where g = 9.81kg/m2, and β > 0 is a non-dimensional parameter to study
the effect of unknown vertical forces, such as additional mass due to the gold
frame and spring or parasitic electrostatic forces, leading to changing fric-
tional behavior of the robot.

The spring stiffness k in the ex direction has been found to be linear, thus
the spring force acting on the body is given by

FS = FS ex (4.53)
= k (x2 − x1 − g0) ex (4.54)
= k gN2 ex (4.55)

where gN2 is the gap between the body and the hammer, g0 is the gap at rest,
and k = 10.6N/m is a typical value.

3This was a requirement in the 2007 RoboCup Nanogram Demonstration Competition orga-
nized by NIST
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As for the damping force FD, we assume a linear drag coefficient c, stem-
ming from squeeze-film damping, which has been described by Cheng and
Fang [2005] or Andrews et al. [1993]. Thus, we have

FD = FD ex (4.56)
= c (ẋ2 − ẋ1) ex, (4.57)
= c ġN2 ex, (4.58)

with ġN2 = (ẋ2− ẋ1) being the relative velocity of the body and the hammer,
and c ≈ 1× 10−6Ns/m, well supported by experiments.

4.3.2 Magnetic Force

In a homogeneous magnetic field, no net force is exerted on a single, ideally
soft, magnetic body because of the lack of magnetic field gradients (see (3.4)).
Thus, the force between the parts of the WRMMA arises solely due to the in-
teraction of both magnetizations.

The two nickel parts basically act as a magnetic flux concentrator, ampli-
fying the applied magnetic flux B in the air gap between them, i.e., Bgap =
Am(gN2)B with Am(gN2) being the amplification factor as a function of the
gap. The magnetic energy in the sufficiently small air gap gN2 with volume
V = A · gN2, where A = W · H is the facing pole area, is given by

Egap =
1
2

∫
V

BgapHgap dV (4.59)

=
A||B||2

2µ0
gN2 A2

m(gN2), (4.60)

with Hgap = Bgap/µ0. From the energy, the force on the body (and on the
hammer) is determined as

FM = FM ex (4.61)

= −
dEgap

dgN2
ex (4.62)

= −A||B||2

2µ0
A2

m(gN2)

(
1 +

2gN2

Am(gN2)

dAm(gN2)

dgN2

)
ex. (4.63)

The amplification factor Am(gN2) has been approximated from numerical
experiments by Brugger and Paul [2010] as

Am(gN2) =
cgµeff + g̃N2

cg + g̃N2
. (4.64)

Here g̃N2 is the gap normalized with the total magnetic length of the device,
i.e., g̃N2 = gN2/(LH + LB), and cg is a geometry dependent fit factor. The
effective permeability µeff is given by (2.36), and for the geometry dominant
case we have µeff = 1/nx, where again nx must be calculated for the device
with (magnetic) length LH + LB (i.e., not the body or hammer only). Because
the result has been derived from a numerical fit, the demagnetizing factor
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Figure 4.4: Schematic of the magnetic driving signal with peak-to-peak am-
plitude B and offset B

nx =: nxB used by Brugger and Paul [2010] has to be used. It is approximated
by

nxB = W̃H̃
(

ln
(

4
W̃ + H̃

)
− 1
)

, (4.65)

where again ˜( · ) refers to the values normalized by the total magnetic length.
We find nxB = 0.0687.

Since a numerical fit has to be used in any case, we wish to simplify the
force expression in (4.63) by replacing the expression in the brackets by a fit
factor κ2 and modify the amplification factor as

A2
κ(gN2) =

cgµeff + g̃N2

(cg + g̃N2)2 . (4.66)

This form has been found through observing the numerical fit with respect to
FEM results as shown below. This modification results in the more compact
force description

FM = −A||B||2

2µ0
κ2 A2

κ(gN2)ex (4.67)

For consistency with the previous chapter, we calculate the demagnetizing
factor using the procedures from Beleggia et al. [2006] and find nx = 0.1161.

The magnitude of the applied magnetic field B is a square wave signal
with frequency fa, peak-to-peak amplitude B and DC offset B. It is shown in
Fig. 4.4 and described mathematically by

||B(t)|| = 1
2

B
(

sgn (sin (2π fat)) + B
)

, (4.68)

where sgn( · ) is the signum function

sgn(x) =


−1, for x < 0
0, for x = 0
1, for x > 0

. (4.69)
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For B = 1, (4.68) describes an on/off signal which is typically used in the
experiments.

In conclusion, by inserting (4.68) in (4.67), we obtain the time-varying
magnetic force between the body and he hammer as

FM(gN2, t) =
A||B(t)||2

2µ0
κ2 A2

κ(gN2) ex (4.70)

=
AB2

8µ0
κ2 A2

κ(gN2)︸ ︷︷ ︸
:=FM(gN2)

(
sgn (sin (2π fat)) + B

)2
ex (4.71)

and the influence of the shape only on the magnitude of the force can be
analyzed with B = 1 and t = 0 by normalizing as

8µ0||FM||
AB2 = κ2 A2

κ(gN2) (4.72)

As for the exact amplification factor Am, the normalization results in

8µ0||FM||
AB2 = A2

m(gN2)

(
1 +

2gN2

Am(gN2)

dAm(gN2)

dgN2

)
. (4.73)

To determine the fit parameters for both cases, we perform a finite ele-
ment analysis (Ansoft Maxwell 3Dv13) with µr = 600 as the permeability
value for bulk nickel, i.e., sufficiently high to neglect the influence of the
material, and the mass ratios α = {0.5, 1, 1.5}. We have nx = 0.1161 using Be-
leggia et al. [2006] and nxB = 0.0687 using Brugger and Paul [2010].

The FE results, together with both fits are shown in Fig. 4.5(a). Both
fits are excellent as shown by their goodness parameters, small root means
square error (RMSE) and R2 ≈ 1, in 4.1 together with the fit parameters. The
approximated version using κ (straight lines) has an RMS error half as big
as the fit using the more complex version (dashed lines). Also, it predicts
slightly better the area around the simulated equilibrium gap and the non-
linear behavior for smaller gaps. In addition it has a simpler form. Therefore,
we will use this approximated version using κ for further analysis and the
numerical implementation.

We observe in Fig. 4.5(a) that the curves are identical for identical mass
ratios, and that they differ slightly for different mass ratios. This is an im-
portant result for experimental design, as it shows that as long as the mag-
netic volume is the same, the magnetic force between the body and the ham-
mer will stay similar. This means that fabrication imperfections, resulting in
slightly different magnetic volumes will still yield the same force between the
body and the hammer and thus effects resulting from a different force can
be excluded. In addition, the mass ratio can be neglected for an approximate
force calculation. Also, since the mass influences the resonant frequency of
the device, this result shows that the same magnetic force is obtained for dif-
ferent designs, as long as the total magnetic volume is kept constant.
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α cg κ RMSE R2

Brugger
0.5 0.105 16.00 0.982

1 0.110 19.03 0.981

1.5 0.108 18.29 0.981

κ approx.
0.5 0.027 2.823 7.032 0.997

1 0.025 3.074 6.768 0.998

1.5 0.025 3.028 6.740 0.998

Table 4.1: Fit parameters and goodness of fit values for the magnitude of the
magnetic force

For α = 1, and the corresponding values for cg and κ, Fig. 4.5(b) shows (4.72)
for various µr, showing the effect of the permeability of the material. As it is
expected, lower permeability tend to lower forces.

4.3.3 Electrostatic Clamping Force

In the experimental setup, the substrate on which the microrobot is moving
is patterned with a set of electrodes that can be set to a specific electrostatic
potential. This results in charge separation in the gold frame of the robot,
and consequently in an electrostatic clamping force FC that acts vertically on
the body

FC = −FC(t) ey. (4.74)

Similarly to the magnetic field, the applied potential is varied as an on/off
signal which results in a square dependency of the force on the potential. In
addition, the signal is shifted by a phase ϕ ∈ [−π/2, π/2] with respect to the
magnetic field, or

FC(t) = FC0

(
sgn (sin (2π fat + ϕ)) + 1

)2
. (4.75)

The actual numerical value of FC0
is not of interest. In the simulations it is

chosen sufficiently high (FC0
= 1N), such that the body sticks to the sub-

strate, i.e., it is immobile. The effect for lower values, i.e., when the body is
still moving, can be examined by varying the parameter β in (4.52).

Experimental Findings

Vollmers et al. [2008] and Frutiger et al. [2010] describe the effect of clamp-
ing as to smoothen the velocity of the robot. In addition, it was determined
experimentally that a phase shift of ϕ = ±π/2 changed the sign of the di-
rection of the velocity of the robot. It was also found, that, contrary to initial
thoughts, clamping is not necessary for the motion. We will discuss these
findings further in our numerical results in Section 4.6.
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(a) Each curve (or symbol dataset) represents the identical results for different applied fields
B ∈ {1, 3, 5}mT. Both fits are very satisfactory. We use the approximated version using κ due
to its simpler description and because it captures the data around the equilibrium gap and the
non-linear transition at small gaps somewhat better.
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(b) As expected, lower permeabilities will result in lower forces

Figure 4.5: (a) Normalized magnetic force for different mass ratios
α. (b) Normalized magnetic force for different permeabilities µr =
{0.4, 15, 63, 251, 1000}. (α = 1). In both figures, the dotted vertical line repre-
sents the equilibrium gap (20µm) used in the numerical simulations.
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4.4 A Linear Model for the Dynamics

Before solving the equations of motion numerically, we analyze the equations
of motions of the WRMMA analytically and derive its characteristic parame-
ters. After stating the assumptions for the analysis, we derive the equations
of motion. Then, we give their solution for sticktion, stick↔slip transitions
and sliding.

4.4.1 Assumptions

1. no damping, i.e., c = 0, to keep the equations simple, but also because
experimentally c has been found very small

2. no clamping, i.e., FC0
= 0, to focus on the natural motion principle

3. small oscillations, i.e., gN2 ≈ g0

4. sinusoidal magnetic field, i.e.,

||B(t)|| = 1
2

B
( 4

π
sin (2π fat) + B

)
. (4.76)

A consequence of assumption 3 is that impact between the body and the
hammer is not considered. In addition, the amplitude of the magnetic force
can be assumed independent of the gap and constant, i.e.,

FM(gN2) ≈ FM(g0) =: F0. (4.77)

The justification of assumption 4 lays in the Fourier expansion of a square
wave: a square wave can be described by sgn(sin(2π fat)) whose Fourier
expansion is

sgn(sin(2π fat)) =
4
π

∞

∑
k=1

sin((2k− 1)2π fat)
2k− 1

(4.78)

=
4
π

(
sin(2π fat) +

1
3

sin(6π fat) + · · ·
)

. (4.79)

Using only the first term of the expansion is a necessary simplification to treat
the problem analytically with reasonable effort. Also, since the magnetic field
is squared to calculate the force, higher order terms would give rise to higher
order harmonics with small, and thus negligible, amplitudes. The resulting
force is obtained as (dropping the unit vector ex)

FM(t) =
AB2

8µ0
κ2 A2

κ(g0)︸ ︷︷ ︸
:=F0

(
4
π

sin (2π fat) + B
)2

︸ ︷︷ ︸
:= f (t)

(4.80)

= F0

(
4
π

sin (2π fat) + B
)2

(4.81)

= F0

(
B2 + 2

4
π
B sin(2π fat) +

16
π2 sin2(2π fat)

)
(4.82)

= F0

(
B2 +

8
π2 +

8
π
B sin(2π fat)− 8

π2 sin(4π fat + π/2)
)

(4.83)
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where in the last equality we have used the trigonometric identity sin2(x) =
1
2 (1− cos(2x)) = 1

2 (1− sin(2x + π/2)).

4.4.2 Equations of Motion

In general, when both the body and the hammer are moving, the system is
described by the following system of two coupled second order differential
equations {

mB ẍ1(t) = FS + FM(t) + FT(ẋ1(t))
mH ẍ2(t) = −FS − FM(t)

(4.84)

where the dot designates differentiation with respect to time, mB and mH =
αmB are the mass of the body and the hammer respectively, FS is the spring
force and FM the magnetic force (see Section 4.3). The friction force FT is
described by an inclusion

FT(ẋ1) ∈ −µFG sgn(ẋ1) (4.85)

or, equivalently

FT(ẋ1) =


−µFG, ẋ1 > 0
[−1, 1]µFG ẋ1 = 0
µFG, ẋ1 < 0

. (4.86)

with FG = βmT g from (4.51).

The advantage of the set-valued force law is now apparent. If the sgn
function is regularized, or smoothened, by some arctan function to obtain
an equation rather than an inclusion, the slope around ẋ1 = 0 will be very
steep causing numerically stiff equations. In addition, and worse, the body
can practically never stick, and hence the physics are not correctly modeled.
In contrast, a set-valued friction law as (4.86) allows us to clearly define the
motion states and the transition conditions as follows

ẋ1 = 0⇒
{

body sticks as long as |FT| < µFG

body sticks until |FT| = µFG (stick→slip transition)

(4.87)

ẋ1 6= 0⇒



body slides as long as ẋ1 6= 0
body slides until ẋ1 = 0 (slip→stick transition)

or
body keeps sliding: ẋ1 6= 0

body switches velocity (forward↔backward slip transition)
(4.88)

Using (4.54) for FS, and the mass ratio α = mH/mB, the system (4.84) can be
rewritten as{

mH ẍ1(t) = αk(x2(t)− x1(t)− g0) + αFM(t) + αFT(ẋ1(t))
mH ẍ2(t) = −k(x2(t)− x1(t)− g0)− FM(t)

(4.89)
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where k is the stiffness of the spring, and g0 the rest gap of the spring. We
now define

s(t) := x1(t) + x2(t), and d(t) := x2(t)− x1(t)− g0. (4.90)

Inversely, we have of course x1(t) = 1
2 (s(t) − d(t)), ẋ1 = 1

2 (ṡ(t) − ḋ(t)),
and ẍ1 = 1

2 (s̈(t)− d̈(t)), and similarly for x2(t), ẋ2(t) and ẍ2(t). With these
definitions, the system now reads{

mH s̈(t) = (α− 1)kd(t) + (α− 1)FM(t) + αFT(ṡ(t)− ḋ(t))

mH d̈(t) = −(α + 1)kd(t)− (α + 1)FM(t)− αFT(ṡ(t)− ḋ(t))
, (4.91)

or, written as a second order differential inclusion system{
mH s̈(t)− (α− 1)kd(t) ∈ (α− 1)FM(t)− αµFG sgn(ṡ(t)− ḋ(t))

mH d̈(t) + (α + 1)kd(t) ∈ −(α + 1)FM(t) + αµFG sgn(ṡ(t)− ḋ(t))
. (4.92)

Noting that FM(t) = F0 f (t) (see (4.80)), we now introduce the non-dimensional
parameters σ, δ, τ and η, and the characteristic variables sc, dc, and tc as

t = tcτ, s(t) = scσ(τ), d(t) = dcδ(τ), η =
dc

sc
, (4.93)

with

1
tc

=

√
k

mH
= ω1 = 2π f1, dc =

F0

k
, and η =

F0

µFG
, (4.94)

where ω1 and f1 are the natural frequency of the hammer-spring oscillator
(keeping the body fixed or tethered) in rad/s and Hz respectively. The char-
acteristic displacement dc represents the change of the gap given the magnetic
force and the spring since F0 = kdc. Finally, η is a non-dimensional parameter
representing the ratio of the maximal magnetic force to the maximal friction
force.

By substituting (4.93)—(4.94) into (4.92), noting that

d( · )
dt

=
1
tc

d( · )
dτ

, and
d2( · )

dt2 =
1
t2
c

d( · )
dτ

, (4.95)

and observing that

sgn
(

ds(t)
dt
− dd(t)

dt

)
= sgn

(
sc

tc

dσ(τ)

dτ
− dc

tc

dδ(τ)

dτ

)
(4.96)

= sgn
(

dσ(τ)

dτ
− η

dδ(τ)

dτ

)
, (4.97)

we can non-dimensionalize the system (4.92). For this, we note that for the
remainder of this section, a dot ˙( ) represents differentiation with respect to
the non-dimensional time τ. We find

σ̈(τ)− (α− 1)ηδ(τ) ∈ (α− 1)η f (τ)− α sgn(σ̇(τ)− ηδ̇(τ))

δ̈(τ) + (α + 1)δ(τ) ∈ −(α + 1) f (τ) +
α

η
sgn(σ̇(τ)− ηδ̇(τ))

(4.98)
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and with the non-dimensional actuation frequency f̃ := fa/ f1, we have

f (τ) =
(

4
π

sin (2π fatcτ) + B
)2

(4.99)

=

(
4
π

sin
(

fa

f1
τ

)
+ B

)2
(4.100)

=

(
4
π

sin
(

f̃ τ
)
+ B

)2
. (4.101)

The non-dimensional system states and stick↔slip conditions equivalent to (4.87)
and are (4.88)

σ̇ = ηδ̇⇒


body sticks as long as |FT| <

1
η

F0

body sticks until |FT| =
1
η

F0 (stick→slip transition)

(4.102)

σ̇ 6= ηδ̇⇒



body slides as long as σ̇ 6= ηδ̇

body slides until σ̇ = ηδ̇ (slip→stick transition)
or

body keeps sliding: σ̇ 6= ηδ̇

body switches velocity (forward↔backward slip transition)
(4.103)

In conclusion, the dynamics of the system are described by the second or-
der non-dimensional differential inclusion system (4.98) with the non-dimensional
parameters α, η and f̃ .

Note, that η is a key parameter for the design and actuation of the sys-
tem; on the one hand the magnetic force depends amongst others on the
material, the geometry of the device and the actuation field strength. On the
other hand, the maximal friction force strongly depends on the environmen-
tal conditions such as surface roughness or humidity.

This finding illustrates that as long as the non-dimensional parameters
remain constant, the effects of individual parameters on the overall perfor-
mance of the system, say the velocity of the robot, may compensate each
other. Thus, care must be taken during the experimental investigation to
isolate individual effects. Of course, the mathematical model allows more
insight at the cost of simplification.

We now further investigate the special cases of sticktion and stick→slip
transition.
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4.4.3 Solution for Sticktion

During sticktion, we have σ̇(τ) = ηδ̇(τ), thus sgn(σ̇(τ)− ηδ̇(τ)) = 0. Substi-
tuting this into (4.98) eliminates the set-valued parts and yields two equations{

δ̈(τ)− (α− 1)δ(τ) = (α− 1) f (τ)

δ̈(τ) + (α + 1)δ(τ) = −(α + 1) f (τ)
(4.104)

and we can sum up both equations to reduce the system to a single equation

δ̈(τ) + δ(τ) = − f (τ)⇔ δ̈(τ) = −δ(τ)− f (τ) (4.105)

which represents a forced oscillation with driving force − f (τ). For its solu-
tion, we rewrite the driving force to bring it into standard form. With (4.83)
written in non-dimensional form, we have

− f (t) = −
(
B2 +

8
π2 +

8
π
B sin(2π fat)− 8

π2 sin(4π fat + π/2)
)

(4.106)

= −
(
B2 +

8
π2

)
− 8

π
B sin( f̃ τ) +

8
π2 sin(2 f̃ τ + π/2) (4.107)

= −
(
B2 +

8
π2

)
:=A0

+
8
π
B

:=A1

sin( f̃ τ + π) +
8

π2

:=A2

sin(2 f̃ τ + π/2) (4.108)

where in the last equation we have used that − sin(x) = sin(x + π). With
a coordinate shift q(τ) := δ(τ) − A0 we obtain the standard equation of a
driven oscillator as

q̈(τ) + q(τ) =
2

∑
n=1

An sin(n f̃ τ + π/n) (4.109)

Since linear superposition holds, the solution q(τ) is the sum of the solutions
to the individual excitations of the system, i.e.,

q(τ) = q1(τ) + q2(τ) (4.110)

where the qn(τ) are the solutions of

q̈n(τ) + qn(τ) = An sin(n f̃ τ + π/n), n = 1, 2. (4.111)

They are found to be

qn(τ) =
An

n f̃ Qn
sin(n f̃ τ + π/n− ϕn), n = 1, 2, (4.112)

where ϕn is the phase-shift of the response with respect to the driving phase
that can be approximated for driven oscillators without damping as

ϕn( f̃ ) = lim
ν→0

arctan
(

ν

1− (n f̃ )2

)
. (4.113)
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In (4.112) the Qn are given by

Qn =
1

n f̃

∣∣∣1− (n f̃ )2
∣∣∣⇐⇒ n f̃ Qn =

∣∣∣1− (n f̃ )2
∣∣∣ . (4.114)

Finally, the solution is found substituting (4.114) into (4.112), by summing up
the qn(τ) and by changing back to the original variable δ(τ) = q(τ) + A0 as

δ(τ) = A0 +
2

∑
n=1

An∣∣1− (n f̃ )2
∣∣ sin(n f̃ τ + π/n− ϕn), (4.115)

for n = 1, 2. We observe resonant behavior for f̃ → 1/n, i.e., the amplitudes
of the sin terms grow to infinity and ϕn( f̃ → 1/n)→ π/2.

In conclusion, (4.115) describes the motion of the WRMMA, during stick-
tion, i.e., the oscillation of the hammer. The numerical approximations of the
An are

A0 = −
(
B2 +

8
π2

)
≈ −

(
B2 + 0.81

)
(4.116)

A1 =
8
π
B ≈ 2.55B (4.117)

A2 =
8

π2 ≈ 0.81 (4.118)

4.4.4 Frequency Range for Sticktion→Sliding Transition

We now derive the conditions on the driving frequency f̃ to transition the sys-
tem from pure sticktion to a sliding behavior, and thus to actual propulsion.
The solution for sticktion, the inclusions (4.104), can be written as inequalities
and read 

∣∣δ̈(τ)− (α− 1)δ(τ)− (α− 1) f (τ)
∣∣ < α

η∣∣δ̈(τ) + (α + 1)δ(τ) + (α + 1) f (τ)
∣∣ < α

η

, (4.119)

where the | · | takes care of both negative and positive transitions, and the
system remains in sticktion as long as these conditions are fulfilled. Sub-
stituting the oscillator equation (4.105) into the inequalities yields the same
sticktion condition ∣∣∣δ(τ) + f (τ)

∣∣∣ < 1
η

, (4.120)

which is independent of the mass ratio α. Now, we can insert the solution for
δ(τ), (4.115), into the condition and find∣∣∣∣∣A0 +

2

∑
n=1

An∣∣1− (n f̃ )2
∣∣ sin(n f̃ τ + π/n− ϕn) + f (τ)

∣∣∣∣∣ < 1
η

, (4.121)

with n = 1, 2. Now, rather than attempting to solve this condition for f̃ in
general, we observe that for 1− (n f̃ )2 → 0, that is, for f̃ sufficiently close to
1/n, the term An/

∣∣1− (n f̃ )2
∣∣ will dominate the expression on the left as it
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Figure 4.6: Frequency range for sticktion

tends towards infinity. Then, because |sin(x)| ≤ 1 ∀x, the condition reduces
to

An∣∣1− (n f̃ )2
∣∣ < 1

η
⇐⇒

∣∣∣1− (n f̃ )2
∣∣∣ > ηAn (4.122)

⇐⇒
{

1− (n f̃ )2 > ηAn

1− (n f̃ )2 < −ηAn
, n = 1, 2. (4.123)

which finally yields the sticktion conditions on f̃ as

f̃ <

√
1− ηAn

n2 =: f (s)1n (4.124)

and

f̃ >

√
1 + ηAn

n2 =: f (s)2n (4.125)

for n = 1, 2. Figure 4.6 shows the sticktion areas in the f̃ − η diagram for
B = 1. For f̃ in the vicinity of 1/n, the system will remain in sticktion
if f̃ < f (s)1n or if f̃ > f (s)2n . If these conditions are not fulfilled, the system
transitions into sliding. Thus, we have related a key parameter of the system,
η, to the frequency ranges at which the WRMMA will move, and because
An = An(B), also to DC offset B of the actuation signal.

Also, note that the limit f (s)1n only exists if

1− ηAn ≥ 0⇔ η ≤ 1
An

, n = 1, 2. (4.126)
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For n = 1, we have 1/A1 ≈ 0.39/B, and the existence condition yields

η =
F0

µFG
≤ 0.39
B,

(4.127)

in other words, for the typically value B = 1, the limit exists for maximal
magnetic forces that are less than half of the maximal friction force.

To conclude, conditions (4.124) and (4.125) capture the most important
parameters of the system, and allow for successful design and actuation.

4.4.5 Solution for Sliding

During sliding we have σ̇(τ) > ηδ̇(τ) or σ̇(τ) < ηδ̇(τ), the friction force
is maximal, and thus the inclusion system can be written as a system of
differential equations

σ̈(τ)− (α− 1)ηδ(τ) + γα = (α− 1)η f (τ)

δ̈(τ) + (α + 1)δ(τ)− γ
α

η
= −(α + 1) f (τ)

(4.128)

with γ := sgn(σ̇(τ)− ηδ̇(τ)) = ±1.

For the solution of the system (4.128), we note that the second equation
does not involve σ(τ), and that it describes again a driven linear oscilla-
tor. Therefore, the solution for δ(τ) has the same form as in the case for
pure sticktion. Inspired by its solution (4.115), we describe δ(τ) with two
frequency components as

δ(τ) = a0 +
2

∑
n=1

an sin(n f̃ τ + π/n− φn), (4.129)

and unknowns a0, an and φn for n = 1, 2. We have for the second derivative

δ̈(τ) = −
2

∑
n=1

(
n f̃
)2 an sin(n f̃ τ + π/n− φn). (4.130)

Then, from (4.108) we have

− f (t) = A0 +
2

∑
n=1

An sin(n f̃ τ + π/n), (4.131)

and inserting (4.129)—(4.131) into the second equation of (4.128) allows to
identify the unknown coefficients an as

a0 = A0 −
γ

η

1
1 + 1

α

, and (4.132)

an =
1

1−
(

n f̃√
1+α

)2 An, (4.133)
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and the phase shift can be approximated as

φn( f̃ ) = lim
ν→0

arctan

 ν

1−
(

n f̃√
1+α

)2

 . (4.134)

As in the sticktion case, we observe the possibility for resonant behavior. But
opposed to the sticktion case, where resonance occurs for f̃ ≈ 1/n, during
sliding, resonance occurs for

f̃ ≈
√

1 + α

n
, (4.135)

that is, increased by the factor
√

1 + α. This is consistent with the fact that a
symmetrical two mass spring oscillator (α = 1) has a resonant frequency at
f̃ =
√

2.

It is important that the coefficients of the periodic terms in (4.129), i.e., a1
and a2 are not dependent on the motion direction of the device, since γ is not
appearing in the expressions. This means that they are not influenced by the
current motion direction of the body.

We now turn to investigate σ̈(τ), noting that the actual solution of σ(τ) is
of little interest. Rather, we turn to investigate the expression 1

2
(
σ̈(t)− ηδ̈(τ)

)
,

that is, the acceleration of the body. From (4.128), we have

σ̈(τ) = (α− 1)ηδ(τ) + (α− 1)η f (τ)− γα (4.136)

= (α− 1)η
(

δ(τ) + f (τ)
)
− γα (4.137)

and

−ηδ̈(τ) = (α + 1)η
(

δ(τ) + f (τ)
)
− γα, (4.138)

and, thus, finally

1
2
(
σ̈(t)− ηδ̈(τ)

)
= αη

(
δ(τ) + f (τ)

)
− γα. (4.139)

Now, knowing that the solutions for δ(τ) and f (τ) are periodic, their sum is
periodic as well, and takes the form

δ(τ) + f (τ) = g0 +
2

∑
n=1

gn sin(n f̃ τ + βn), (4.140)

with unknowns gn, g0 = a0 − A0, and with (4.132) we have

g0 = −γ

η

α

α + 1
. (4.141)

Inserting (4.141) and (4.140) into (4.139), we find after some manipulations

1
2
(
σ̈(t)− ηδ̈(τ)

)
= −γα

2α + 1
α + 1

+ αη
2

∑
n=1

gn sin(n f̃ τ + βn). (4.142)
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This expression allows for the following interpretation: There are two forces
acting on the body, a constant and a periodic one. The constant force de-
pends only on the mass ratio α, represents frictional effects as its direction is
opposed to the velocity of the body (because of the −γ term) and thus effec-
tively decelerates the body. On the other hand, the periodic force depends
(in addition to α) on the maximal magnetic force and maximal friction force
(through η) and indirectly on the spring through f̃ τ. It does not depend on
γ and can thus both accelerate and decelerate the body.

4.4.6 Summary of the Linear Model

In summary, we have derived the following non-dimensional and character-
istic parameters to describe the motion of the device:

Characteristic time tc relating the mass of the hammer and the spring through
the natural frequency tc = 1/ω1 =

√
mH/k. tc is of course the natural

period of the oscillator.

Characteristic (relative) displacement dc for given spring and magnetic force

Non-dimensional time τ = t/tc and frequency f̃ = fa/ f1 allowing to com-
pare different designs

Non-dimensional coordinates σ(τ) and δ(τ) to describe the kinematics of
the device

Ratio of maximal magnetic to maximal friction force η that allows to derive
actuation frequency limits in case of sliding, η = F0/(µFG)

It is interesting that some of these parameters are pure design parameters,
such as the characteristic time tc, while others are both design and actuation
parameters, such as the characteristic displacement dc. The ratio η relates
magnetic and friction force, both being design and actuation parameters,
since the magnetic force depends on the geometry of the magnetic bodies
as well as on the applied field strength, and the friction force depends on the
properties of the involved surfaces, but may also be varied through clamping.

The presented analytical model, especially the conditions for the transi-
tion of complete sticktion to sliding, are valid in the vicinity of f̃ ≈ 1. For the
complete frequency range, a numerical investigation is indispensable and the
subject of the next section.

4.5 Numerical Model for the Dynamics

To solve the equations of motion of the WRMMA without assumptions, we
use the non-smooth dynamics approach as described in Section 4.2. This
approach provides a mathematically sound formalism for the dynamics of
rigid bodies with set-valued interaction laws for the description of unilateral
contact, friction and impact.
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Body Hammer

Figure 4.7: Free body diagram of the WRMMA.

As mentioned, the numerical integration is performed using a mid-point
time-stepping method introduced by Moreau [1988], discretizing the equality
of measures

Mdu− h(q, u, t)dt−∑ wNidPNi −∑ wTidPTi = 0, (4.143)

which is a combined description of the non-impulsive and impulsive motion.
In the following we describe the individual terms of (4.143).

Figure 4.7 recalls the free body diagram of the WRMMA consisting of
the body with coordinates (x1, y1) and the hammer with coordinate x2. The
generalized coordinates and the associated velocities are

q =
(

x1 y1 x2
)T , u =

(
vx,1 vy,1 vx,2

)T (4.144)

with q̇ = u for almost all t. The system has a frictional contact between
the body and the floor with a gap gN1. We assume that this contact always
remains closed, i.e., gN1 = 0, and, therefore, consider it to be a frictional
bilateral contact with sliding velocity γT1(u) = vx,1 and friction coefficient
µ. Furthermore, there is a frictionless unilateral contact between the body
and the hammer with gap gN2 ≥ 0 and restitution coefficient ε. The matrices
WN =

(
wN1 wN2

)
and WT =

(
wT1 wT2

)
of generalized force directions

are

WN =

(
0 1 0
−1 0 1

)T
, WT =

(
1 0 0
0 1 0

)T
. (4.145)

The mass matrix M = diag (mB, mB, mH) is constant and the vector h of
the non-contact forces is composed of the gravitational force FG, the clamping
force FC, the spring force FS, damping FD and magnetic force FM between
the body and the hammer; i.e.,

h = FG + FC + FD + FM, (4.146)
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which have been derived in Section 4.3 as

FG =
(
0 −β(mB + mH)g 0

)T , (4.147)

FS(x1, x2) =
(
−k(x2 − x1 − g0) 0 k(x2 − x1 − g0)

)T , (4.148)

FD(vx,1, vx,2) =
(
c(vx,2 − vx,1) 0 −c(vx,2 − vx,1)

)T , (4.149)

Fm(gN2, t) =
(

fm(gN2, t) 0 − fm(gN2, t)
)T (4.150)

Fc(t) =
(
0 − fc(t) 0

)T . (4.151)

with

fm(gN2, t) =
AB2

8µ0
κ2 A2

κ(gN2)
(

sgn (sin (2π fat)) + B
)2

(4.152)

fc(t) = FC0

(
sgn (sin (2π fat + ϕ)) + 1

)2
. (4.153)

and B = 1 unless otherwise specified.

4.5.1 Numerical Integration Procedure

The midpoint integration scheme is implemented in MATLAB to find the
velocity and the position of both the body and the hammer. The integra-
tion is performed by sweeping over system parameters such as the actuation
frequency fa. In these parameter sweeps, the initial conditions at a specific
frequency are the results of the simulation at the previous frequency. When
sweeping the parameters in different directions, this may result in different
steady-state solutions—an inherent phenomenon of a nonlinear system.

The goal parameter of interest in all of our studies is the mean velocity
of the robot, which we define to be the mean displacement of the body per
actuation period T = 1/ fa, i.e.,

urobot :=
x1(t + T)− x1(t)

T
. (4.154)

This definition is reasonable since we have seen before that the hammer has
an oscillatory motion, and thus no net displacement.

For a given frequency, the number of periods for the integration proce-
dure is determined iteratively until a convergence criteria is reached. This
is either the absolute error threshold of 5× 10−4µm/s between to consecu-
tive periods, or the maximal number of iterations. The latter is 300 for the
first frequency, and then 100 for the next. This ensures that the system has
reached steady state and yields a good compromise between accuracy and
computational time.

To avoid numerical problems due to the occurring small numbers, we de-
scribe the parameters in the scaled µMKSfA unit system as shown in Tab.4.24.

4This table and other scaled unit systems can be found in the manual of the finite element
software ANSYS (www.ansys.com)
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Parameter MKS Unit multiply by to obtain µMKSfAUnit
Length m 106 µm
Force N 109 nN
Time s 1 s
Mass kg 103 g
Pressure Pa 10−3 kPa
Velocity m/s 106 µm/s
Acceleration m/s2 106 µm/s2

Density kg/m3 10−15 g/µm3

Mag. Field Intensity A/m 109 fA/µm
Mag. Flux Density T 10−12 (no unit descr.)
Permeability H/m 10−21 (no unit descr.)

Table 4.2: Using the scaled µMKSfA unit system rather than the MKS system
allows to study phenomena at the microscale without numerical problems.

Parameter Description Value Unit
ρNi density of nickel 8900 kg/m3

c linear damping 1× 10−3 g/s
g0 equilibrium gap 20 µm
µ friction coefficient 0.5 -
ε coefficient of restitution 0.5 -

Table 4.3: Constant parameters throughout the numerical analysis

Since this uses the µm as one of its base units, it represents a natural choice
to model phenomena at the microscale.

The time-step for the integration dt is set to one thousandth of the actua-
tion period, dt = 10−3T, in order to ensure sufficient temporal resolution.

4.5.2 Parameter Sets

The parameter sets investigated in this work are as follows.

For the frequency sweeps, we typically scan a frequency range of f̃ ∈
{0.3, 2.25} in 75 equidistant steps. The investigated parameters are the strength
of the magnetic field B = {1, 3, 5}mT, the friction β = {8, 16, 32, 48, 96}, and
the effect of the periodic clamping force with a phase shift ϕ = (−π/2, 0, π/2)
with respect to the magnetic force. The total length of the device is kept con-
stant at Ldevice = LH + LB + g0 = (α + 1)LB = 300µm, and the considered
mass (and length) ratios are α ∈ {0.5, 1, 1.5}. Table 4.3 shows parameters that
are kept constant throughout the numerical analysis.

The resonant frequency is set to fn = 2300Hz and the spring stiffness is
calculated from k = mH(2π fn)2.
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Figure 4.8: Robot velocity vs. actuation frequency for α = 1.5 and B =
{1, 3, 5}mT. The dashed vertical lines represent the resonant frequencies f̃ =
1 and f̃ = 1.58.

4.6 Simulation Results

We discuss the simulation results. First, we give insight into the motion prin-
ciples of the device and the influence of the parameters. Then, we investigate
the influence of the clamping signal.

4.6.1 No Clamping: Natural Motion Principle

For the unclamped mode ( fc = 0), Figure 4.8 shows the results for α = 1.5
and β = {8, 16, 32, 48, 96} for the applied flux densities B = 1, 3 and 5mT. The
main resonant frequency for the two mass spring oscillator is f̃ =

√
α + 1 =√

2.5 ≈ 1.58 and is shown as vertical dotted line together with the tethered
resonant frequency f̃ = 1. Figure 4.9 shows again the results for B = 3mT
without the plot for β = 8 and 96 to show better the behavior around f̃ = 1.

For each applied field, we observe reversible (non-hysteretic) motion around
f̃ = 1, that has both positive and negative directions. For larger fields,
B = 3, 5mT, we also observe peaks around f̃ = 1.58. These are hysteretic,
i.e., up-sweeping and down-sweeping the frequency does not result in the
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Figure 4.9: Robot velocity vs. actuation frequency for B = 3mT, α = 1.5. The
vertical lines represent the actuation limits from the analytical model (corre-
spondence is through the plot marker). Note that the lower limit for β = 16
does not exist. The dashed vertical lines represent the resonant frequencies
f̃ = 1 and f̃ = 1.58.

same velocity. This is indicated by the arrows for B = 3mT and β = 8. The
same can be observed for B = 5mT and β = 8, 16, 32. This hysteretic behavior
corresponds very well with empirical observations by Vollmers et al. [2008].

We also see that for increasing friction (increasing β) the magnitude of
the velocity decreases for the frequency range around f̃ = 1.58 and vanishes
for sufficiently large values of β. On the other hand, for the range around
f̃ = 1, the magnitude of the velocity remains relatively constant, and only
the frequency range decreases with increasing β. This can also be seen in
Fig. 4.9 together with the corresponding frequency limits for the actuation
as derived by the analytical model. We can observe that the analytical lim-
its (4.124) and (4.125) correspond fairly well to the actual limits (correspon-
dence is through color or the markers at the top/bottom of the vertical lines).

The motion principle can be observed in phase plots showing the gap
versus the velocity of the body. Figure 4.10 shows these phase plots for
f̃ = {1, 1.58}, that is, for both the tethered and the two-mass-spring reso-
nant frequency and for varying β. In both cases, the motion is periodic as
predicted by the analytical model. However, we observe a fundamental dif-
ference in the phase plots and hence in the actuation principle. For the fre-
quency range around f̃ = 1, the motion is a stick-slip motion identifiable by
the horizontal lines corresponding to ẋ1 = 0. For the range around f̃ = 1.58,
impact occurs, identifiable by the vertical line and the corresponding velocity
jump. However, note that the occurring impact does not necessarily means
that the body is pushed forward by the hammer. In fact, the velocities in
Fig. 4.8 are mostly in the positive direction, indicating that the hammer is
pulling the body.
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This finding is in clear contrast to the speculations by Vollmers et al. [2008]
and Frutiger et al. [2010], where it is assumed that the impact of the hammer
onto the body breaks the static friction of the body and moves it forward,
e.g. the hammer pushing the body. Instead, our results indicate that natural
motion may occur by pure sliding (for low β around f̃ = 1) or stick/slip mo-
tion of the body (larger β, f̃ = 1), or by impact ( f̃ =

√
1 + α), still the latter

occurring through the hammer pulling the body.

Our results also show that for the right field/friction combination mo-
tion in both directions is possible when sweeping the frequency. Figure 4.11

shows the phase plots for frequencies where positive and negative net mo-
tion is observed for β = 48 and B = 5mT. No fundamental difference can
be observed to explain forward and backward motion for the individual fre-
quency ranges. This indicates the sensitivity of the device to small changes
in the environment, especially on the friction.

Figure 4.12 shows the effect of the mass ratio α for B = 5mT. Because the
resonant frequencies f̃ =

√
1 + α for the two mass spring oscillator decrease

with decreasing α, and because the actuation range around those frequen-
cies is relatively large, these areas for small α merge with the actuation areas
around f̃ = 1 and show an erratic behavior. Again positive and negative
motion directions are possible. For certain β, only positive, for certain only
negative, and for certain, the velocity changes direction with changing fre-
quency. Also, for smaller α, motion for a larger friction range is possible.

From these results, we conclude that the mass ratio α and the friction rep-
resented by β influence significantly the frequency range of motion of the de-
vice. This is interesting for multi-agent control scenarios, i.e., where multiple
devices are actuated on the same substrate. Yet, rather than focusing only
on designing the resonant frequencies appropriately through α (or equiv-
alently through the spring stiffness k) as suggested previously by Frutiger
et al. [2010], the friction in the system has to be taken into account as well.

4.6.2 Effect of Clamping

Figure 4.13 shows the results when a periodic clamping force with a phase
shift ϕ with respect to the magnetic signal is applied to the body (see (4.153)).
The other parameters are set as α = 1.5, B = 5mT, and we show the results
for β = 8 and 96, together with the respective curve for no clamping as a
reference.

We observe for β = 8 that the actuation range is shifted to lower frequen-
cies, from f̃ = 1.58 to about f̃ = 1.2. The net maximal velocity remains about
the same as in the no-clamping case for ϕ = ±π/2. Clearly, changing ϕ from
−π/2 to π/2 reverses the direction of the velocity. The motion in this cases is
rather smooth and also changes direction for changing frequencies (keeping
ϕ constant). A slight hysteresis is observed for ϕ = π/2 around f̃ = 1.1. For
ϕ = 0, higher velocities are possible, however, we also observe erratic motion
between f̃ = 1.2 and 1.58, that is, exactly in the range of smooth motion for
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Figure 4.10: Phase plots for f̃ = 1 (left column) and f̃ =
√

1 + α (right
column) with α = 1.5 and B = 5mT. The vertical axis is the velocity of the
body, ẋ1 in mm/s, and the horizontal axes is the gap between the body and
the hammer, gN2 = x2− x1− g0 in µm. The rows correspond to increasing β,
thus friction in the system. For motion at f̃ = 1, we can identify oscillatory
sliding (β = 8, 16, 32) or stick/slip behavior (β = 48, 96). At f̃ = 1.58 impact
can be observed, even though the net motion does not occur by the hammer
pushing the body, but rather the hammer pulling on it. For β = 96 no motion
occurs for f̃ = 1.58. 101
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Figure 4.11: Phase plots around f̃ = 1 (top row) and f̃ = 1.58 (bottom row)
for β = 48 and B = 5mT. The vertical axes is again the velocity of the body,
ẋ1 in mm/s, and the horizontal axes is the gap between the body and the
hammer, gN2 = x2 − x1 − g0 in µm. In the left column, we have positive net
motion of the robot, in the middle column negligible net motion occurs, and
in the right column there is negative net motion. Yet, no significant difference
is observable in the motion mechanism.

ϕ = ±π/2. Smooth motion occurs around f̃ = 1.58 and higher. Thus, for
the same frequency, we can have both smooth motion (ϕ = ±π/2) or erratic
or even no motion (ϕ = 0). This effect has been described by Frutiger et al.
[2010]. Finally, we also observe that for ϕ = 0 changing the frequency does
not lead to change in the direction of the velocity.

For β = 96, we see that compared to the no clamping case, the fre-
quency of actuation remains constant and that the overall velocity is in-
creased. Again, the velocity is smooth and changes direction when switching
ϕ between −π/2 and π/2. For these cases, the motion is unidirectional. On
the other hand, for ϕ = 0, we observe smooth motion, with changing velocity
directions as the frequency is changed. Around f̃ = 1 the motion may stop
completely, again an effect described by Frutiger et al. [2010].

Figure 4.14 shows the continuous variation of ϕ from −π/2 to π/2 for
the two cases of β = 96, f̃ = 1 and β = 8, f̃ = 1.58. Clearly, a phase shift
from −π/2 to π/2 induces a change in the velocity direction with about
the same magnitude. However, this change may occur monotonically (for
β = 96, f̃ = 1) or show an optimum as in the case of β = 8, f̃ = 1.58 around
ϕ = 0. Interestingly, we remark that the phase shift that leads to a maximum
velocity of the robot for β = 8, is very close to the phase shift that will stop
its motion for β = 96.
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Figure 4.12: The effect of the mass ratio α for B = 5mT. The dashed vertical
lines represent the resonant frequencies f̃ = 1 and f̃ =

√
1 + α. We can

observe how the actuation range around the decreasing resonant frequency
f̃ =

√
1 + α merges with those around f̃ = 1 resulting in an increasingly

erratic behavior with decreasing α.

Now, our model allows further insight and we can observe the effect of
clamping in the phase plots shown in Fig. 4.15. In (a), we have β = 96 and
f̃ = 1. We observe that the stick/slip motion remains the driving mechanism.
However, clamping acts to rectify based on the phase shift ϕ. For ϕ = −π/2
the body is only moving in the negative direction, while for ϕ = π/2 only in
the positive direction. This, and the larger motion amplitude explain the in-
crease in the overall velocity of the robot. In these two cases, the bidirectional
stick/slip motion is transformed into a unidirectional stick/slip motion of the
body. For ϕ = 0, we have positive and negative motion of the body, show-
ing basically a snap-shot of the transition from positive only to negative only
motion.

In Fig. 4.15(b),we have β = 8 and f̃ = 1.58, and we can identify the impact
driven motion for the no clamping case. However, in the clamping cases, we
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Figure 4.13: The effect of the clamping signal. For low friction (β = 8), the
actuation range is shifted to lower frequencies. For larger friction (β = 96)
the net velocity is increased. For a given frequency, changing the phase shift
ϕ from −π/2 to π/2 changes the direction of the velocity. Still, for low
friction, for ϕ = −π/2 or ϕ = π/2, sweeping the frequency also changes the
direction of the velocity. No phase shift ϕ = 0 induces erratic motion for low
friction at frequencies where smooth motion was observed before (around
f̃ = 1.2), followed by smooth motion for f̃ = 1.58 and higher. For β = 96, no
phase shift leads to smooth motion that is bidirectional when the frequency
is swept.

see stick/slip motion with much smaller body velocities. The motion of the
body has again been rectified by the clamping force as the sliding is mostly
only in one direction, positive for ϕ = π/2, and negative for ϕ = 0,−π/2.
Thus, the clamping force has changed the motion mechanism from impact to
stick/slip driven motion. For this case, the lower body velocities still lead to
net velocities comparable to the no clamping case.

Note, that this finding, especially the one for the impact case, indicates
that clamping has a different effect of what has been speculated by Vollmers
et al. [2008] and Frutiger et al. [2010]. There, it was thought that impact
allows for clamping down the body and thus to achieve higher impact ve-
locities of the hammer and thus larger propulsion of the robot. Our results
indicate that impact may be completely eliminated, and the effect of clamp-
ing is a change from impact driven to a stick/slip motion.
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Clearly, a phase shift from −π/2 to π/2 induces a change in the velocity
direction with about the same magnitude. However, this change may occur
monotonically (for β = 96, f̃ = 1) or show an optimum as in the case of
β = 8, f̃ = 1.58 around ϕ = 0.

To conclude, clamping has a significant effect on the velocity of the robot.
It acts by inducing a stick/slip regime to the body independently of its no
clamping motion mechanism. A phase shift of ϕ = ±π/2 rectifies the oscilla-
tory motion of the body and leads to a smoother motion of the robot. More-
over, in the frequency range around the resonant frequency f̃ of the tethered
device, the velocities are increased and the motion still remains smooth. This
suggests that this configuration is useful for controlled and repeatable mo-
tion.

4.7 Summary and Contributions

This chapter has reviewed the mathematical background of non-smooth dy-
namics necessary for modeling the motion of complex microrobots in general,
and the Wireless Resonant Magnetic Microactuator (WRMMA) or MagMite
in particular. We gave an overview of the WRMMA system and the occurring
forces in it.

We then integrated the non-smooth equations of motion numerically and
derived the frequency/velocity curves of the robot which are qualitatively
consistent with the experimental findings by Vollmers et al. [2008] and Frutiger
et al. [2010]. These include a shift of the actuation frequency between the
tethered and the untethered mode, the occurrence of the change of the direc-
tion of the velocity with changing frequency, and the rectifying effect of the
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Figure 4.15: The effect of clamping shown in the phase plots (α = 1.5, B =
5mT). We see that clamping changes the motion mechanism fundamentally.
In (a) the stick/slip motion remains but is rectified from bidirectional (no
clamping) to unidirectional (ϕ = ±π/2). In (b) there is a change from impact
driven to stick/slip motion.
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clamping force.

This chapter has mainly four general contributions. For one, we propose
an analytical model around the resonant frequency of the tethered device,
allowing us to identify non-dimensional and characteristic parameters of the
system that help comparing different designs. Furthermore we can predict
the frequency range in which motion will occur. This range corresponds well
with the numerical findings. We have also shown that the magnetic force
between the body and the hammer varies insignificantly as long as the total
magnetic volume is the same. Thus, the magnetic force itself does not con-
tribute to variations in the behavior of the devices with same total magnetic
volume.

Second, a numerical parameter study to investigate and predict the over-
all behavior of the microrobot. This is only possible numerically, given the
large variations in the fabrication of the devices and the large number of ex-
perimental parameters that need to be controlled. We identified two main re-
gions of motion: around f̃ and

√
1 + α f̃ . Around f̃ , we have smooth motion

stemming from stick/slip behavior, around
√

1 + α f̃ , the motion is impact
driven, may be hysteretic or even non-predictable/erratic. For small mass
ratios, these regions overlap. For large ones, they are separated. To profit
from the smooth motion around f̃ , the mass ratio should be increased. At
the same time, using clamping, the overall velocity is increased resulting in
smooth, repeatable velocities, that can controllably change the direction by
changing the frequency.

Third, using the numerical results, we can explain the motion mechanism
of the WRMMA, which is impossible using current experimental methods
due to the high frequency oscillations and simultaneous net motion. We
show that there are two fundamentally different mechanisms, a stick/slip
motion around the resonant frequency of the tethered device, and a much
faster, impact driven motion around the resonant frequency of the two-mass
oscillator. We also show that the impact may not lead to the expected for-
ward impulse transfer; rather the pulling of the hammer dominates. This is
in contrast with the speculations by Vollmers et al. [2008] and Frutiger et al.
[2010] which are based on experimental observations of the overall velocities
only.

Fourth, our results also suggest that the effect of clamping is different than
it was thought before, namely to clamp down the robot to achieve higher im-
pact velocities and thus higher net velocities and smoother motion of the
robot. We see that the effect of clamping is to transform the motion mecha-
nism to stick/slip motion and rectification occurs by fixing the robot during
forward or backward sliding for the right phase shift. Experimentally, the ex-
act same effect has been observed which indicates the validity of our results.

Finally, considering multi-agent control scenarios, we found that the large
driving frequency ranges can be reduced by the friction. We can conclude
that not only the mass ratio (or equivalently the resonant frequency) is the
important parameter to separate driving regions of individual robots. In-
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stead, one must consider the friction (represented by β) as well. Increasing
the normal force, thus β on the device can be done by a small constant clamp-
ing force sufficiently small not to stop the device completely. Of course, when
designing robots, care must be taken to avoid that the multiple individual fre-
quency ranges of motion overlap. Again, the friction helps here to reduce this
range.

To conclude, we have successfully applied non-smooth multi-body dy-
namics to describe the motion of a complex microrobot. We have given the
general theory to describe motion including planar friction and frictional
impact with unilateral contacts. It is believed that this method is readily ap-
plied to other microrobots as well, as it does not contain any specificities.
On the contrary, mechanical systems with friction and frictional impacts are
amongst the most complex ones, thus the method described herein will apply
to a large range of different microrobots and will guide through their design
and actuation phase.
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Maybe an asteroid will hit or something will happen to the
magnetic polar fields, ... Or maybe the guy who was making
calendars ran out of paper. Who knows?

George Noory (b. 1950) American radio talk show host

CHAPTER 5
Summary and Contributions

In this thesis we presented the necessary background to understand and
predict the magnetization, torque, and motion of soft-magnetic bodies
when placed in externally applied magnetic fields. From an engineering
perspective, we provided methods and results that help build intuition
and that guide during the design of complex untethered soft-magnetic
microrobots.

W e have generalized the computation procedure for the magnetiza-
tion. Capitalizing on this, we have converted it from an unstruc-

tured minimization to a root-solving problem. We proposed an interpretation
of the root and derived its boundaries, allowing us to derive boundaries on
its dependent quantities.

We also derived two approximations of the root. This allows us to de-
crease computation times considerably, which in turn allows for real-time
model-based controllers. The advantage of our method is that the standard
results are obtained as limit cases, and the transition between these limits can
be investigated analytically.

Next, we used our description to investigate and analyze the torque re-
sulting on a single soft-magnetic shape when placed in an external field. We
demonstrated that the standard results are obtained by limit considerations.
In addition, based on the boundary of the root, we can derive minimal torque
values, allowing for design considerations. We can also predict that for fields
applied at angles smaller than 45◦, the torque will always increase with the
applied field and asymptotically reach its large field limit.

Then, we investigated superposition on shapes and gave phenomenolog-
ical arguments that in most of the cases superposition can be neglected. We
argued that configurations may exist where one or just a few shapes domi-
nate the total torque on assembled structures. As a consequence, we propose
that assembled devices should be modeled as the superposition of simple
geometries, and validate this experimentally and numerically with a micro-
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robot assembled from electroplated nickel parts.

After this, we turned our investigations to the motion of complex micro-
robots and proposed to use results from non-smooth multi-body system to
model their behavior. The applied method allows for the investigation of sys-
tems that include friction, and frictional impact between an arbitrary number
of bodies.

As an example, we studied the Wireless Resonant Magnetic MicroActu-
ator that is driven by oscillating fields in the kHz range. The proposed nu-
merical method is the sole method for gaining further insight into the actual
propulsion mechanism. For this, we analyzed the system analytically and
derived frequency limits for actuation. Then, using a numerical parameter
study, we identified two main regions of motion, showing two fundamen-
tally different motion mechanisms, stick/slip and impact driven, which are
in clear contrast to previous speculations based on observations of the overall
velocities of the robot.

The applied method can be readily used to model other microrobots. As
mechanical systems with friction and frictional impacts are amongst the most
complex mechanical systems to analyze, the method described in this work
will apply to a large range of different microrobots and will guide engineers
through their design and actuation phase.
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