
DISS. ETH Nr. 19713

TWO PROBLEMS IN TRANSPORT THEORY:

LOCALIZATION AND FRICTION

A B H A N D L U N G

zur Erlangung des Titels

DOKTOR DER WISSENSCHAFTEN

der

ETH ZÜRICH
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Abstract. Transport theory is a broad field. In this thesis, we limit the scope of our investigations

to two aspects of transport theory that are characterized by the very lack of any transport.

In a first part, we study the phenomenon that an electron traveling in a disordered solid can get

trapped in exponentially sharply localized orbitals—it experiences so-called Anderson localization. Our

investigation revolves around the series of alloys EuxCa1−xB6 for which our experimental colleagues

have found interesting transport properties. Specifically, they found a metal-insulator transition as

the alloying parameter x is lowered below x ≃ 0.3 and observed colossal magnetoresistance effects for

x in a range between 0.2 and 0.3. We show that these observations can be understood in terms of a

localization-delocalization transition. We introduce a model for conduction electrons of EuxCa1−xB6—

simplified to the extent that we can treat some aspects of it related to Anderson localization in a

mathematically rigorous way—reproducing the main features observed in the experiments.

Europium has a half-filled 4f -shell and has therefore a large magnetic moment, whereas Calcium is

non-magnetic. We place Europium and Calcium atoms on a cubic lattice according to a site percolation

process with parameter x. Because of the experimental fact that the conduction band is very weakly

populated we neglect electron-electron interactions and consider a one-particle Hamiltonian. In a Born-

Oppenheimer approximation we freeze the dynamics of the magnetic moments of the Europium atoms,

and because the moments are quite large we treat them as classical vectors. We propose to describe

the exchange coupling of a conduction electron to the magnetic moments of the Europium atoms by a

Zeeman term. The disorder comes about because the direction of the magnetic moments of Europium

atoms that do not lie in a connected cluster will—in the absence of an external magnetic field—vary

randomly.

We investigate various distributions of the magnetic moments: For temperatures above TCurie and

for pure EuB6, neighboring magnetic moments are only weakly correlated, and we model this regime

with a Gibbs distribution that slightly favors ferromagnetic alignment of neighboring moments. At

low temperatures and for x below the percolation threshold, we expect ferromagnetic alignment of

the Europium moments across connected clusters to prevail. Hence we assume that the directions

of magnetic moments are fixed across connected Europium clusters but vary randomly over distinct

clusters.

In these regimes, we prove Anderson localization, that is, almost-sure pure point spectrum of the

Hamiltonian with exponentially decaying eigenfunctions, for energies in the band tails.

Finally, we show that the case of a large external magnetic field can be modeled with a Bernoulli-

type random Schrödinger operator, where the random potential at a site takes values ±1. Here we

prove a weaker result, namely absence of diffusion for energies in the Lifshitz tails and outside a set of

energies of very small measure.

In the second part of this thesis, we discuss another hindrance to transport, namely friction. We

study the motion of a tracer particle that interacts with a dispersive medium, in our case a Bose-Einstein

condensate. For the sake of mathematical rigor, we look at the case of a very heavy tracer particle in a

very dense, non-interacting Bose gas. We argue heuristically that this mean-field limit corresponds to

a classical limit and that the quantum dynamics reduces to a classical system of Hamiltonian equations

of motion. We expect that the particle experiences friction by emission of Cerenkov radiation of gapless

(Goldstone) modes into the Bose gas.

For these—as it turns out—semi-linear integro-differential equations describing the dynamics of the

tracer particle and the medium, we prove that the particle velocity vt decays like |vt| . t−1−ε as t→ ∞,

for some ε > 0, and that the gas forms a splash that follows the position of the particle. In particular,

the decay of the particle speed is integrable and hence the particle comes to rest after having traveled

a finite distance. We prove this result by expanding the propagator around its instantaneous value

at a large but fixed time, and using asymptotic expansions of the resolvent of Schrödinger operators,

standard dispersive estimates, and a contraction principle.
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Kurzfassung. Die Transporttheorie ist ein weites Feld. Deshalb schränken wir uns in dieser Dis-

sertation auf die Behandlung von zwei Aspekten des Transports ein, die gerade dadurch charakterisiert

sind, dass gar kein Transport stattfindet.

In einem ersten Teil untersuchen wir die Quantendynamik von Elektronen, die sich in einem un-

geordneten Festkörper bewegen und in exponentiell genau lokalisierten Orbitalen gefangen werden —

man spricht dann von Anderson-Lokalisierung. Unsere Untersuchung dreht sich um die Reihe von

Legierungen EuxCa1−xB6, für die unsere Kollegen aus der Experimentalphysik interessante Trans-

porteigenschaften gefunden haben. Konkret haben sie einen Metall-Isolator-Übergang gefunden, sobald

der Legierungsparameter x unter x ≃ 0.3 fällt. Ausserdem haben sie für x in einem Bereich zwischen

0.2 und 0.3 kolossalen Magnetwiderstand beobachtet. Wir werden aufzeigen, dass diese Effekte im

Rahmen eines Lokalisierungs-Delokalisierungsübergangs verstanden werden können. Dazu führen wir

ein Modell für Leitungselektronen in EuxCa1−xB6 ein, das so weit vereinfacht ist, dass wir einige seiner

Eigenschaften mathematisch streng behandeln können, das aber trotzdem die wesentlichen Züge der

Experimente wiedergibt.

Europium hat eine halbgefüllte 4f -Schale, weshalb es ein grosses magnetisches Moment hat, wohinge-

gen Kalzium nichtmagnetisch ist. Wir setzen Europium- und Kalziumatome auf ein kubisches Gitter

gemäss einem Perkolationsprozess mit Parameter x. Weil, wie Experimente zeigen, das Leitungsband

sehr schwach gefüllt ist, vernachlässigen wir Wechselwirkungen der Elektronen untereinander und be-

trachten einen Einteilchen-Hamilton-Operator. In der Born-Oppenheimer-Näherung frieren wir die

Dynamik der magnetischen Momente der Europiumatome ein, und weil die Momente recht gross sind,

behandeln wir sie als klassische Vektoren. Die Austauschkopplung zwischen einem Leitungselektron

und dem magnetischen Moment eines Europiumatoms beschreiben wir mit einem Zeemanterm. Die

Unordnung kommt daher, dass die Richtung der magnetischen Momente der Europiumatome, die nicht

in einem zusammenhängenden Cluster liegen, zufällig variiert.

Wir werden veschiedene Verteilungen für die magnetischen Momente untersuchen: Bei Tempera-

turen über TCurie des reinen EuB6 sind benachbarte magnetische Momente nur schwach korreliert, we-

shalb wir diesen Parameterbereich mit einer Gibbsverteilung modellieren, die ferromagnetische Anord-

nung benachbarter Momente leicht bevorzugt. Bei tiefen Temperaturen und für x unterhalb der Perko-

lationsschwelle erwarten wir ferromagnetische Ordung der Momente in einem zusammenhängenden

Europiumcluster. Wir nehmen also an, dass die Richtung der magnetischen Momente in einem Europi-

umcluster fixiert ist, aber zwischen verschiedenen Clustern zufällig ändert.

In diesen Bereichen beweisen wir Anderson-Lokalisierung, das heisst fast sicher reines Punktspek-

trum des Hamilton-Operators mit exponentiell lokalisierten Eigenfunktionen für Energien nahe der

Ränder des Leitungsbandes.

Schliesslich zeigen wir, dass sich der Fall eines grossen äusseren magnetischen Feldes auf einen

Bernoulli-Schrödinger-Operator zurückführen lässt, bei dem das Zufallspotential an jedem Gitterplatz

die Werte ±1 annehmen kann. In diesem Falle beweisen wir etwas weniger, nämlich Abwesenheit von

Diffusion für Energien in den Lifshitz-Rändern und ausserhalb einer Menge von Energien von sehr

kleinem Mass.

Im zweiten Teil dieser Dissertation diskutieren wir ein weiteres Hindernis für Transport, nämlich

Reibung. Wir analysieren ein Teilchen das mit einem dispergierenden Medium wechselwirkt, in unserem

Fall mit einem Bose-Einstein-Kondensat. Aus Gründen der mathematischen Strenge schauen wir uns

den Fall eines sehr schweren Teilchens in einem sehr dichten, nicht wechselwirkenden Bose-Gas an.

Wir argumentieren heuristisch, dass dieser Molekularfeld-Limes einem klassischen Limes entspricht

und dass die Quantendynamik so zu einem System von klassischen Hamiltongleichungen führt. Wir

erwarten, dass das Teilchen durch Aussenden von Cerenkovstrahlung von Goldstone-Moden in das

Bose-Gas Reibung erfährt.
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Für die — wie es sich herausstellt — semilinearen Integro-Differentialgleichungen, die die Dynamik

des Teilchens und des Mediums beschreiben, beweisen wir, dass die Geschwindigkeit des Teilchens wie

vt . t−1−ε, ε > 0 abnimmt, wenn t → ∞, und dass das Gas eine Wolke bildet, die der Position

des Teilchens folgt. Insbesondere ist die zeitliche Abnahme der Teilchengeschwindigkeit integrierbar,

weshalb das Teilchen schliesslich zur Ruhe kommt, nachdem es eine endliche Strecke zurückgelegt

hat. Wir beweisen dieses Resultat, indem wir den Propagator um seinen instantanen Wert zu einer

grossen aber festen Zeit entwickeln, und indem wir asymptotische Entwicklungen der Resolvente eines

Schrödinger-Operators, gewisse Streuabschätzungen und ein Kontraktionsprinzip benützen.
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INTRODUCTION AND ORGANIZATION OF THE THESIS 1

Introduction and organization of the thesis

The Latin root of the word transport, trans-portare, meaning “to carry over”, neatly summarizes

what happens during transport; and the sheer amount of goods and people that are carried, ferried and

shipped around the globe each day is a testimony to its importance for the functioning of our world.

But also when we zoom in on the atomic scale of matter, the realm of condensed matter physics,

transport theory is an essential field of study: transport of matter (diffusion of a solute in a solvent),

energy (heat conduction) or charge (electrical conductivity) are physical phenomena of prime interest

and importance.

In this thesis, we focus on two phenomena where transport is actually hampered—localization and

friction. In the former, charge transport (for instance) is reduced when electrons traveling through

a disordered crystal lattice of a solid get trapped and do not contribute to electrical conductivity.

In the latter, matter transport is reduced as particles traversing a medium are slowed down because

of interaction with their environment. The aim of this thesis is to further the understanding of the

mathematics that may lie at the bottom of these phenomena. That is, we will present and study

mathematical models of localization and friction that are simplified to an extent where we can analyze

them rigorously but where they still retain the essential phenomenological features.

Localization. If we were to describe a conduction electron in a metal as one traveling in the

periodic potential of the atomic cores that are arrayed in a perfect crystal lattice we would run imme-

diately into troubles: The electron is described by a Bloch wave and as such has a non-vanishing mean

velocity that persists forever—the conductivity is infinite. In a more realistic model, scattering of the

electron on lattice vibrations (phonons) and defects in the crystal lattice reduce conductivity to a finite

amount seen in experiments. Let us concentrate on the second mechanism, the influence on conduc-

tivity of lattice imperfections; this is reasonable since we will only consider very low temperatures so

that phonons can be neglected. It is probably too difficult to describe mathematically the influence on

an electron of a combination of interstitials, impurities, dislocation etc. at prescribed locations in the

lattice. P.W. Anderson’s fruitful idea was to treat the imperfections in a summary fashion by replacing

the perfect periodic potential by a random potential, where an increasing amount of lattice imperfec-

tions is modeled by increasing randomness. In his famous 1958 paper [6] he argued that in the presence

of strong disorder caused by impurities and/or defects and neglecting electron-electron interactions,

electrons populating a weakly filled conduction band of a metal get trapped in exponentially sharply

localized one-particle orbitals. This is the phenomenon known as Anderson localization. A consequence

of localization is that the conductivity of such a material very nearly vanishes at low temperatures.

If disorder is described by an on-site random potential with bounded probability density and short-

range correlations in a one-electron tight-binding Hamiltonian then Anderson’s arguments can be made

precise, mathematically, for one-dimensional systems with arbitrarily weak disorder [30, 42], and for

higher-dimensional systems provided that disorder is strong enough, or the energy of the one-electron

orbital lies in the band tails [27, 25]. It is generally expected—but not rigorously proven—that in

two-dimensional systems of this kind, too, all states are localized, no matter how weak the disorder.

In contrast, in three or more dimensions, localized states with energies in the band tails are expected

to coexist with extended states (generalized eigenstates of the model Hamiltonian) corresponding to

energies in the continuous spectrum near the center of the band, provided the disorder is sufficiently

weak. It is expected that wave packets made from superpositions of such extended states exhibit dif-

fusive propagation corresponding to a non-zero conductivity [60, 1]. One is led to predict that, at

very low temperatures, a three-dimensional disordered semiconductor exhibits a transition from an

insulating state (all electrons in the conduction band occupy localized states) to a conducting state

(some fraction of the electrons populate extended states), as the density of electrons in the conduction

band is increased or the strength of disorder is lowered. This transition from an insulator to a metal

is called a Mott transition.
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In the first part of this thesis, we investigate a different kind of disorder, namely spin disorder.

More precisely, we will analyse a mathematical model of the alloy EuxCa1−xB6 where experimenters

have done interesting measurements the results of which we propose to explain in the framework of

Anderson localization. In the same way the electron feels the potential of its surrounding lattice of

atomic cores because it is charged, its spin feels the magnetic moments of the atomic cores. So if the

magnetic moments are disordered, we may expect similar localization effects to take place. It is the

main achievement of the first part of this thesis to show that, indeed, completely analogous results to

the case of a random potential can be proven.

Friction. Friction is arguably too all-pervading as a physical phenomenon to allow for a unified

mathematical description. We will therefore restrict our attention to one instance of it, namely the

friction a particle experiences while traveling through a dispersive medium. Dispersive here means that

the medium is “forgetful” in some sense: It forgets quickly where the particle has been by propagating

the disturbance caused by the particle to infinity in such a way that if the particle revisits a place,

(almost) all trace of its former visit is gone. Again, to be able to prove a mathematical theorem we

will have to study a simple model for the medium; we will take it to be non-interacting, for instance.

However, our methods should apply also to the interacting case. In the rigorous study of friction effects

in a model of a particle interacting with a dispersive medium, different models for the medium have been

investigated, mostly wave fields (that is, the field satisfies a wave equation) such as the electro-magnetic

field or a scalar wave field, but also the mean-field limit of an ideal gas of small particles (obeying the

Vlasov equation). In the second part of this thesis, we will derive, through physical considerations, a

model describing the motion of a heavy particle in a very dense Bose-Einstein condensate. We will prove

that the particle loses kinetic energy (and hence speed) by engendering so-called Cerenkov radiation in

the condensate. Its velocity as a function of time decays as a power law, indicative of memory effects.

If the medium were more forgetful we would expect exponential decay.

The thesis is organized as follows. First part: In Chapter 1, we give a summary of experimental

results concerning a particlar alloy, EuxCa1−xB6, which we aim to explain in the framework of Anderson

localization. Moreover, we introduce the mathematical model, state the main results and give some

definitions used throughout the first part. In Chapter 2, we discuss, as a preliminary example, the

“classical” mathematical theory of Anderson localization with random potentials.. In Chapter 3, we

prove the main results outlined in Chapter 1. Second part: In Chapter 4, we give an introduction

to the mathematical treatment of friction and introduce our model in greater generality. In Chapter

5, we present and prove the main theorem for the free Bose gas, and in Chapter 6 we describe some

technical proofs. The appendix contains results about the cluster expansion used to handle correlations

of the magnetic moments, a matrix-valued Cartan-type theorem that lies at the core of the proof of

localization, and some musings about the thermodynamic limit.
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Localization





CHAPTER 1

Introduction

In the first part of the thesis, we study the phenomenon of Anderson localization, both from a

physical and a mathematical perspective. Regarding the former, we try to elucidate later in this Chap-

ter intriguing experimental findings concerning the electric properties of Europium-based hexaborides

(EuxCa1−xB6), [62]. A Mott transition is found experimentally as the concentration, x, of the mag-

netic Europium atoms is varied, and considerable magneto-resistance effects are observed. To account

for these properties we introduce a tight-binding model for a Mott transition where the disorder is

caused by indirect exchange interactions between the electrons in a conduction band and a dilute array

of localized atoms with large magnetic moments. The model is only physically motivated, appealing

to heuristic arguments. The mathematical perspective enters with the analysis of the model, which

occupies Chapter 3. Since the mathematics of Anderson localization is quite involved, we provide an

introduction to it in Chapter 2.

Fairly simple arguments presented below lead us to introduce a model given in terms of a one-

electron tight-binding Hamiltonian with a random Zeeman interaction term acting on electron spin.

This term describes indirect exchange interactions between an electron in the conduction band and

electrons in the half-filled 4f -shell of a Eu-atom located nearby. It takes the form of a ferromagnetic

coupling of the spin of the electron in the conduction band to the static total spin of electrons in

the 4f -shell of a Eu-atom. Because the latter is quite large, S = 7/2, it can be described, in good

approximation, by a classical unit vector, ~m [44]. However, if a unit cell of the simple cubic lattice

of a EuxCa1−xB6 alloy contains a Ca-atom then ~m = 0, because a Ca-atom has spin 0. At low

temperatures, the direction of ~m is approximately constant throughout a connected Eu-cluster, because

of indirect ferromagnetic exchange interactions between the spins of different Eu-atoms in the cluster.

The direction of ~m varies randomly, however, from one Eu-cluster to another, as long as the external

magnetic field vanishes. Thus, an electron in the conduction band of a EuxCa1−xB6 alloy in zero

magnetic field propagates in a disordered quasi-static background of essentially classical spins located

in those unit cells that contain a Eu-atom. These spins are ferromagnetically coupled to the spin

operator of the electron.

One of our main results is that, as long as there is no ferromagnetic long-range order (unit cells

containing a Eu-atom do not percolate), but the concentration of Eu-atoms is not too small, in zero

magnetic field, this type of magnetic disorder causes Anderson localization in the tails of the conduction

band.

If the concentration, x, of Eu-atoms is brought above the percolation threshold then there is an

infinite connected cluster of positive density of unit cells containing a Eu-atom, and the alloy is observed

to order ferromagnetically at low enough temperatures [63]. Most Eu-spins are then aligned in a fixed

direction. The same happens if a sufficiently strong external magnetic field is applied. Finally, if x is

very small most unit cells exhibit a vanishing spin, that is, the vector ~m vanishes in most unit cells.

In all these three situations, the disorder felt by electrons in the conduction band is weak, so that the

localization threshold (or “mobility edge”) moves towards the band edges. We thus expect to observe a

delocalization– or Mott transition to a conducting state, as x increases across the percolation threshold,

xc, or if the external magnetic field is increased.

5
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It is not understood, at present, how to prove the existence of such a transition and analyze

its characteristics, although heuristically it is fairly well understood. But the existence of Anderson

localization in the band tails, for x below the percolation threshold but non-zero, and for a sufficiently

weak external magnetic field, can be proven rigorously.

The main mathematical results presented in this first part of the thesis may not be particulary

suprising, but they concern examples of Anderson localization that have not previously been studied

mathematically.

Our preliminary discussion is summarized in Figures 1 and 2.

Figure 1. x denotes the concentration of Eu-atoms, B the value of a homogeneous external

magnetic field. The concentration of conduction electrons is assumed to be approximately

constant. The shaded area corresponds to an insulating state; a Mott transition to a semi-

metal is expected to be observed at its boundary. Rigorous results are proven for a subset of

the parameter values inside the shaded area.

Figure 2. σ denotes the conductivity of the alloy. The figure provides a qualitative plot of σ.

1. Summary of experimental results concerning EuxCa1−xB6, and physical mechanisms

We begin by recalling some essential properties of EuB6. This binary compound crystallizes in a

simple cubic lattice. At the center of each unit cell of the crystal there is a divalent Eu atom, at every

corner of a unit cell there is an octahedron of B-ions; see Figure 3 below.

The 4f -shell of a Eu-atom is half filled, which, according to Hund’s rule, implies that the total spin

is S = 7/2. Electron transport is dominated by defect-state conduction with a low concentration, nc,

of around 10−3 charge carriers per unit cell [64]. At low temperatures, EuB6 orders ferromagnetically
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Figure 3. Schematic unit cell of EuB6; each cube corner is the centre of a Boron octahedron

which make up a rigid cage of covalent bonds

at a Curie temperature TC ≃ 12 K, accompanied by a significant reduction of the resistivity, ρ, in the

ordered phase [22]. The isostructural compound CaB6 is obtained by replacing Eu by isoelectronic but

non-magnetic Ca, which leads to a further reduction of nc by an order of magnitude [62]. In the series

EuxCa1−xB6, TC decreases monotonically with decreasing x, down to x ≃ 0.3. At lower values of x, no

onset of long-range magnetic order is observed. Instead spin-glass type features dominate the magnetic

response at low temperatures [63]. For the simple cubic lattice, xc = 0.31 is the site percolation limit

[63]. In the concentration range 0.2 < x < 0.3, significant localization and colossal magnetoresistance

effects, such as shown in Figure 4, have been observed. For x = 0.27, the enhancement of the low-

temperature resistivity by six orders of magnitude below 10 K may be quenched by rather moderate

magnetic fields of the order of 1 T. Detailed investigations using selected-area electron diffraction
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Figure 4. Main panel: ρ(T ) of EuxCa1−xB6 for various values of x. The thin solid line for

x = 0.27 is to guide the eye. Inset: Magnetoresistance of Eu0.27Ca0.73B6 at low temperatures.

Reprinted from [62]. Reprinted with permission.

patterns and high-resolution transmission electron-microscopy (HRTEM) have shown that also for

large concentrations of Ca for Eu, the structural quality, that is, the perfect atomic arrangement in a

simple cubic lattice is preserved and the disorder is simply in the spins on the sites of the Eu clusters.
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Energy-filtered TEM reveals a phase separation into microscopically small Ca- and Eu-rich regions,

respectively. This implies that the material is magnetically and electronically inhomogeneous [62].

Next, we sketch some ideas on a possible mechanism that may explain the long-range ferromagnetic

order observed in EuB6 at temperatures below TC. See also [48] for a similar discussion. The large

size of the unit cells of EuB6 (as compared to the size of a Eu atom) and numerical simulations [41]

suggest that ferromagnetic order is established through indirect exchange mediated by electrons in a

somewhat less than half-filled valence band, with strong on-site Coulomb repulsion preventing double

occupancy; see Figure 5. For a non-vanishing density of holes in the valence band [64], the spins of the

electrons in the valence band are expected to order ferromagnetically at very low temperatures. For

the groundstate, this is a prediction of the Thouless-Nagaoka theorem [55, 46, 5]; (see also [28] for an

analysis of ferromagnetism in the Hubbard model). Because of overlap of the orbitals of electrons in

the valence band with those in the 4f -shells of Eu-atoms, the spin of a valence electron in a unit cell

has a tendency of being “anti-parallel” to the total spin of the Eu-atom in the same unit cell, provided

the temperature is low. Appealing to Hund’s rule, this is seen to be a consequence of Pauli’s exclusion

principle and of the half-filling of the 4f -shell. Hopping processes of valence electrons into either an

empty orbital of the 4f -shell of a Eu-atom or to an empty orbital of the valence band thus give rise to

ferromagnetic order among the spins of the Eu-atoms and those of the valence electrons, the latter being

“anti-parallel” to the spins of the Eu-atoms. Because the orbitals of conduction electrons overlap with

Figure 5. Spin ordering in EuB6.

those of valence electrons, there are exchange interactions between conduction– and valence electrons

that, again because of the Pauli principle, favor anti-ferromagnetic order between conduction– and

valence electrons. Thus, the spins of conduction electrons have a tendency of being aligned with the

spins of the Eu-atoms. We will describe this tendency by a Heisenberg term that couples the spin

of a conduction electron in a unit cell ferromagnetically to the spin of the Eu-atom in the same unit

cell. Since the spin of the Eu-atom is rather large (S = 7/2), we propose to describe it as a static

classical spin, ~m. It would be of considerable interest to improve the theoretical understanding of

ferromagnetism in a one-band Hubbard model coupled to a lattice of large localized spins.

In our somewhat idealized theoretical description of EuxCa1−xB6, we place Eu- and Ca-atoms at

the centers of the unit cells of the simple cubic lattice Z3 according to a site percolation process with

probability x to find a Eu-atom at a given site. The mechanism for ferromagnetic order through indirect

exchange described above suggests that, within connected clusters of unit cells filled with Eu-atoms,

the spins of the Eu-atoms are ferromagnetically ordered. Since different Eu-clusters are separated by

regions filled with non-magnetic Ca-atoms, one expects that the directions in which the spins of Eu-

atoms are aligned vary randomly from one Eu-cluster to the next, as long as the external magnetic

field vanishes (or is very small). If there is no infinite cluster of Eu-atoms this introduces disorder, and,

because the conduction electrons are scattered at the spins of the Eu-atoms, it enhances a tendency

towards Anderson localization of conduction electrons.
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The threshold for the emergence of an infinite connected cluster in a site percolation process on Z3

is xc ≃ 0.31. For x above xc, one expects that there exists an infinite connected cluster of Eu-atoms. At

low temperature, the spins of the Eu-atoms in the infinite cluster are all aligned, so that spin-disorder

is weak. And if x is very small there is an infinite cluster of non-magnetic Ca-atoms, while Eu-clusters

are tiny, on average, and sparse. Hence, spin-disorder is again weak. However, for x in some range

below xc, and in zero external magnetic field, there is considerable disorder in the way spins in different

Eu-clusters are aligned. This enhances scattering of conduction electrons at different Eu-clusters, and

one expects that the mobility edge, E∗, separating low-lying localized orbitals from extended states

near the center of the conduction band is shifted away from the band edge towards the center of the

band. If the Fermi energy in the conduction band is approximately constant as x varies one is led to

predict that Mott transitions may be observed at some x∗ ≃ xc and some x∗ ≪ xc; see Figure 6.

Figure 6. Mobility edge, EM(x), as a function of x. There is no solid mathematical under-

standing of EM, and the figure is purely qualitative.

2. Mathematical model and results

In this section, we propose a model expected to exhibit some of the phenomena described in the last

section, namely the Mott transition and the colossal magnetoresistance observed in EuxCa1−xB6 alloys.

Our model is idealized to an extent that some of its properties, in particular Anderson localization,

can be established rigorously.

Because, experimentally, the conduction band of EuxCa1−xB6 is only weakly populated, nc .

O(10−3), we neglect interactions among conduction electrons and describe the propagation of a con-

duction electron with the help of a one-particle model. It is convenient to make use of a tight-binding

approximation. The Hilbert space of pure state vectors of a conduction electron is then given by

H = ℓ2(Z3)⊗ C
2 .(1.1)

Although valence electrons mediate an indirect exchange interaction between conduction electrons and

the electrons in the half-filled 4f -shells of Eu atoms, they do not appear explicitly in our model.

Instead, the interactions of conduction electrons with the local Eu spins are described by a Heisenberg

term coupling the spin of a conduction electron ferromagnetically to the spin of a Eu atom localized

in the same unit cell. Since the latter is quite large (S = 7/2), we describe it by a classical unit vector,

m. The Heisenberg term then takes the form of a Zeeman term, −Jm · σ, where σ is the vector of

Pauli matrices associated with a conduction electron, and J > 0 is a constant. If a unit cell j ∈ Z3 is

filled with a Eu atom then |mj | = 1; if it is filled with a Ca-atom then mj = 0. Eu- and Ca-atoms are

assumed to be distributed over the unit cells of Z3 by a site percolation process, with probability x to

place a Eu atom at any given site. The configuration, (mj)j∈Z3 , of classical spins is treated as quenched
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(in particular time-independent). Because of the observed tendency of Eu-spins in a connected Eu-

cluster to order ferromagnetically, the distribution of the configurations (mj)j∈Z3 of Eu-spins in every

connected Eu-cluster, C, is chosen to be given by a Gibbs measure

dPC(m) := Z−1
C exp{κ

∑

i,j∈C
|i−j|=1

mi ·mj + βB
∑

j

m
(z)
j }

∏

j∈C
δ(|mj |2 − 1)d3mj .(1.2)

Here, κ = κ(T ) is a temperature-dependent, positive constant (κ(T ) is decreasing with T ), β is pro-

portional to the inverse temperature, B is the strength of a uniform external magnetic field in the

z-direction, m
(z)
j is the z-component of mj , and ZC (the cluster partition function) is chosen such that

dPC is a probability measure. Distinct clusters are taken to be independent. This accounts for the fact

that the indirect exchange mechanism that is responsible for the ferromagnetic order across connected

Eu-clusters is not effective between two clusters that are separated by non-magnetic Calcium. It is

appropriate to draw attention to the paper [29] (and references therein) where a Schrödinger operator

with random vector potentials is studied. However, in their case the direction of the vectors is fixed

and only their length is varied randomly, which is arguably an easier problem and not suited to our

physical situation. See also [19] for a more elaborate continuum version.

One might envisage to combine the distribution of the Eu-clusters C and of the configurations

(mj)j∈Z3 (with mj = 0 if j is occupied by a Ca atom) into a single probability distribution that would

then describe a tendency towards Eu-Ca phase segregation. We will not consider this possibility in

this thesis.

The one-particle tight-binding Hamiltonian is chosen to be given by

H(ω) := T + vj(ω)− Jmj(ω) · σ ,(1.3)

where T
e.g.
= −∆ is a short-range hopping term (∆ is the discrete Laplacian), ω denotes the randomness

of the interaction terms, (mj(ω)) is distributed according to (1.2), and v(ω) is a Bernoulli random

potential with distribution

vj(ω) =

{
v if mj 6= 0 (that is, j occupied by Eu)

−v if mj = 0 (that is, j occupied by Ca)
.(1.4)

The potential v is incorporated in (1.3) because the potential energy of a conduction electron at a site

j may depend on whether j is occupied by a Eu atom or a Ca atom.

The physical quantity of main interest is the electrical conductivity, σ, given in linear response

theory by

σ =
e2

h
D ,(1.5)

where D is the diffusion constant of conduction electrons. At temperature T = 0 and for a given Fermi

energy EF, D is given by

D =

∫ EF

−∞
dEρ(E)D(E) ,(1.6)

where ρ(E) is the density of states and D(E) is given by the Kubo formula

ρ(E)D(E) = lim
ε→0

2ε2

3π

∑

j∈Z3

|j|2 E|〈0|(H(ω)− E − iε)−1|j〉|2 ,(1.7)

where E denotes an expectation with respect to the distributions given in (1.2) and (1.4).

In Chapter 3, we consider various limiting regimes of the model introduced in (1.2)–(1.4) of varying

mathematical difficulty:

(A) κ small, B small.
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This regime is appropriate to describe electronic properties of EuxCa1−xB6 in the absence of mag-

netic order (e.g. well above the Curie temperature of the magnetic transition). Mathematically, this is

the easiest regime. In Chapter 3, Section 3 through 6 we will focus on the case x = 1 of pure EuB6

above the Curie temperature. Using methods developed in [8] and a cluster expansion to treat the

weak correlations of the magnetic moments, it is not very difficult to establish Anderson localization,

provided the energy lies sufficiently close to the band edges (depending on B and β in (1.2)). Our

results are in agreement with experiments (see Figure 7), which find that for moderate temperatures

above TC (in our model, “moderate” means not so high as to invalidate our not including phonons)

resistivity drops with increasing B and decreasing temperature, suggesting spin disorder as the local-

izing agent. (In contrast, below TC resistivity in EuB6 even increases with increasing B.) Coexistence

Figure 7. Resistivity ρ of EuB6 as a function of applied external magnetic field, at various

temperatures both above (left) and below (right) TC. Reprinted from [64]. Reprinted with

permission.

of localized states corresponding to energies in the band tails and extended states corresponding to

energies near the center of the conduction band is expected for J small enough. However, the nature

of the spectrum of the random Schrödinger Hamiltonian H(ω) defined in (1.3) near the center of the

energy band is very poorly understood, at present.

(B) κ→ ∞, B small.

In this regime, the spins of Eu atoms in every connected Eu-cluster are completely aligned, but

their direction can vary arbitrarily from one such cluster to another one. In Chapter 3, Section 7 we

prove Anderson localization fo x < xc, so Europium does not percolate, and for energies sufficiently

close to the band edges. For x sufficiently close to 1 an infinite, ferromagnetically ordered Eu-cluster

of density fairly close to x exists, and we expect to find two mobility edges close to the band edges.

(A mobility edge separates energies corresponding to localized states from energies corresponding to

extended states.) Our results suggest that the putative mobility edge moves towards the band edges

when B is increased, in accordance with the experimental fact that colossal negative magnetoresis-

tance is observed in EuxCa1−xB6, see Figure 4, inset. Mathematically, the existence of mobility edges

remains, however, an open issue.

(C) B → ∞.

In this limit, all the spins mj are aligned in the positive z-direction. The conduction band then

splits into two independent subbands for electrons with spin in the negative z-direction and those with

spin in the positive z-direction, respectively. Within each subband, the Hamiltonian H(ω) is then
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equivalent to a “Bernoulli Hamiltonian”

H(ω) = T + v(ω) ,(1.8)

where

vj(ω) ≡ v±j (ω) :=

{
wj ± J , mj 6= 0

−wj , mj = 0
.(1.9)

Adapting methods developed in [54], we show that, at all energies in small intervals adjacent to the

band edges, except possibly in subsets of those intervals of very small Lebesgue measure, the quantity

ρ(E)D(E) introduced in (1.7) vanishes, as long as x 6= 0, 1. However, it is not known whether corre-

sponding eigenstates are exponentially localized. It should be pointed out that the localization effect

in this regime seems to be very weak, as can be seen in the inset of Figure 4.

Assuming that mobility edges, E∗, exist—separating energies E with ρ(E)D(E) = 0 from energies

E′ closer to the center of the band, where ρ(E′)D(E′) > 0—we expect (on the basis of our mathematical

analysis of regimes (A) and (B)) that, as a function of B, E∗ = E∗(B) moves ever closer to a band

edge, as B increases (that is, as magnetic disorder decreases). Thus, for 0 < x . 0.3 and for a

small, but positive density of conduction electrons, it can be expected that, at zero temperature, our

model describes a Mott transition from an insulating state at small values of the magnetic field B to a

conducting state at large values of B. If correct this conjecture would explain the colossal (negative)

magnetoresistance observed at x = 0.27 and very low temperatures; (recall Figure 4).

3. Definitions and notation

We find it convenient to gather the most frequently used definitions in this section, for ease of

reference.

Since we are dealing exclusively with the lattice Anderson model it is convenient to use the maxi-

mum norm as a distance measure in Zd, that is,

|x| := max
1≤i≤d

|xi| .

We denote the matrix elements of an operator H on ℓ2(Zd;Cr)—which are r × r-matrices—by

H(x, y)ij := 〈δx,i , Hδy,j〉 ,

where δx,i(z)k = δxzδik. For an r × r-matrix A we denote its operator norm also by | · |, that is,

|A| := sup
|v|=1

|Av| .

This should not give rise to confusion, and we have of course |tr A| ≤ r|A|. The reason for the non-

standard notation is that we want it to be distinguished from the operator norm of the operators on

ℓ2(Zd;Cr), which we denote

‖B‖ := sup
‖f‖=1

|Bf | , f ∈ ℓ2(Zd;Cr) .

Sometimes, for brevity, we write a− to denote a not further specified real number strictly lower

than, but arbitrarily close to a.

The discrete analog of the Laplacian, acting on ℓ2(Zd), is also denoted by ∆ and is defined by

(∆f)(j) =
∑

|j−j′|=1

f(j′)− f(j) .
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By Fourier transform, the spectrum of −∆ is easily found to be [0, 4d]:

(∆̂f)(k) =
∑

j∈Zd

(∆f)(j)eij·k =
∑

j∈Zd

d∑

α=1

(f(j − eα)− f(j) + f(j + eα)− f(j))eij·k

=
∑

j∈Zd

d∑

α=1

f(j)(ei(j+eα)·k − eij·k + ei(j−eα)·k − eij·k) =
∑

j∈Zd

d∑

α=1

f(j)eij·k(eikα − 1 + e−ikα − 1)

= f̂(k)
d∑

α=1

(2 coskα − 2) .

If not stated otherwise, we will consider the Laplacian with diagonal elements removed, that is,

(∆f)(j) =
∑

|j−j′|=1

f(j′) ,

and so its spectrum is [−2d, 2d].

We will also mainly consider the Laplacian restricted to finite subsets Λ ⊂ Zd with zero Dirichlet

boundary conditions,

∆Λ(j, j
′) = 0

if j /∈ Λ or j′ /∈ Λ. For a Schrödinger operator H = −∆+ vj we define

HΛ := −∆Λ + 1Λ(j)vj ,
where 1Λ denotes the characteristic function of the set Λ, and we denote the corresponding Green

function by GΛ(E),

GΛ(E) := (HΛ − E)−1 .

The tool for handling these restricted Green functions is the second resolvent identity

RA −RB = RB(B −A)RA = RA(B −A)RB ,

for operators A,B and their resolvents RA, RB.

Next, we introduce some geometric notions that will be used throughout this first part of the thesis.

Definition. • An l-cube with center x ∈ Zd is the set Λl(x) := {y ∈ Zd : |x− y| ≤ l}.
• An elementary l-region is a difference of two l-cubes, that is, a set R ⊂ Zd such that there

exist two l-cubes C1, C2 satisfying R = C1\C2. The set of all elementary l-regions is denoted

by El.
• An elementary l-region Rl is called regular at energy E (sometimes, to be very clear, c-regular)

if there exists a constant c > 0 such that

‖GRl
(E)‖ < el

1/2

(1.10)

and |GRl
(E;x, y)| < e−c|x−y| for |x− y| ≥ l

10
.(1.11)

If an elementary region is not regular, it is called singular.

• For a set X ⊂ Zd we call its boundary ∂X the set {(x, y) : x ∈ X, y /∈ X, |x− y| = 1}, and its

inner boundary ∂X− the set {x ∈ X : ∃y /∈ X, |x− y| = 1}

Finally, we explain how to use the second resolvent identity for the basic perturbation of the

resolvent in the hopping terms: Consider a set X ⊂ Zd and a subset Y ⊂ X . Clearly,

HX = HY ⊕HX\Y − Γ ,
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where

Γ(x, y) =





1 x ∈ X\Y, y ∈ Y, |x− y| = 1

1 y ∈ X\Y, x ∈ Y, |x− y| = 1

0 otherwise

,

that is, Γ is the operator coupling Y along the boundary to its complement in X . The resolvent

equation reads GX = GY ⊕GX\Y +GY ⊕GX\Y ΓGX . Note that (GA ⊕GB)(x, y) = 0 unless both x

and y belong to A (or B), and that in this case (GA⊕GB)(x, y) = GA(x, y) (or GB(x, y)), for instance

• x, y ∈ Y

GX(x, y) = GY (x, y) +
∑

(z,z′)∈∂Y
GY (x, z)GX(z′, y)

• x, y ∈ X\Y
GX(x, y) = GX\Y (x, y) +

∑

(z′,z)∈∂Y
GX\Y (x, z)GX(z′, y)

• x ∈ Y, y ∈ X\Y
GX(x, y) =

∑

(z,z′)∈∂Y
GY (x, z)GX(z′, y)



CHAPTER 2

Preliminary example: random potentials with bounded density

The first mathematically rigorous results on Anderson localization in arbitrary dimensions were

established by Fröhlich and Spencer [27] in 1983—a quarter of a century after the inception of the field

by Anderson. The multi-scale analysis devised in their work has the reputation of being arcane and

difficult to understand. We will show in this chapter that—at least for random potentials with bounded

density—this is not the case. Because we will use many of the techniques, later on in Chapter 3, when

we treat the random Zeeman interaction model, this chapter also serves to set the stage for subsequent

arguments. The original method [27] has been simplified by Spencer and Dreifus (see [58, 53]) and

applied to a plethora of problems by many people, see [38] for a recent review.

We study the Anderson Hamiltonian

H(ω) = −∆+ vj(ω)(2.1)

acting on ℓ2(Zd), where −∆ is the finite-difference Laplacian and (vj)j∈Zd is a collection of independent

identically distributed random variables, the density g = dλ(v)
dv of which satisfies

‖g‖∞ <∞ .

The random potential is supposed to model the effects of defects and impurities in a real solid, as

opposed to a periodic potential representing the perfect crystal structure of ideal solids covered by

Bloch/Floquet-theory. The physically relevant result in the mathematical theory of localization is to

prove absence of conduction, represented by the vanishing of the conductivity, σ, given by

σ(E) =
e2

h
ρ(E)D(E) ,

where e is the electric charge, h is Planck’s constant, ρ(E) is the density of states, and the diffusion

constant, D, is given by the Kubo formula (see e.g. [45])

ρ(E)D(E) : = lim
ε→0

2ε2

πd

∑

x∈Zd

|x|2 E|G(E + iε, ω; 0, x)|2 ,(2.2)

D =

∫ EF

dEρ(E)D(E) ,

where

G(z, ω;x, y) = 〈δx , (H(ω)− z)−1δy〉 .
As suggested by (2.2), analysis of the behaviour of the Green function G(E+iε) as εց 0 is essential in

the investigation of the transport properties of a Hamiltonian. For instance, it is easy to see (wait for

the next chapter for precise definitions) that the density of states ρ(E) has the following representation,

ρ(E) = lim
ε→0

1

π
ImEG(E + iε; 0, 0) .

By the second resolvent formula, we compute

πρε(E) = E 1

2i
[G(E + iε)−G(E − iε)](0, 0) = E ε[G(E + iε)G(E − iε)](0, 0) ,

15
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so that
∑

x

E |G(E + iε; 0, x)|2 =
πρε(E)

ε
.

If we define

fε(x) := E |G(E + iε; 0, x)|2 ,
then we can think of the Fourier transform

f̂ε(p) =
∑

x

eip·xfε(x) ,

so that the above formula reads

πρε(E)

ε
= f̂ε(0) .

Formal computations (see [45]) lead us to the following expectation in what concerns the telltale

signature of localization and delocalization, respectively:

f̂ε(p) =
πρε(E)

Dε(p) + ε
,

where for small p

Dε(p) ∝
{
D(E)p2 diffusive regime

εp2 localized regime
.

The form of Dε(p) in the diffusive regime is easily explained: From the Kubo formula above we obtain

ρε(E)D(E) =
2ε2

πd

∑

x

|x|2f(x) = 2ε2

πd
̂|x|2f(x)(0) = −2ε2

πd
∆f̂ε(0) .

On the other hand, using Dε(0) = 0,

∆f̂ε(0) = −πρε(E)
1

ε2
∆Dε(0) ,

so that

∆Dε(0) =
d

2
D(E) .

Summarizing, precise knowledge of the function fε(x,E) is all we need in the study of the transport

properties of a Hamiltonian. Unfortunately, the analysis of the average E |G(E + iε, ω; 0, x)| is fraught
with small denominator problems coming from configurations ω = (vj)j∈Zd which are near-resonant,

as exemplified by the rank-one perturbation formula

G(z;x, x) =
1

G̃(z;x, x)−1 + vx
,(2.3)

where in G̃ the value of vx is set to 0. Since G̃ is independent of vx, we see that for some “resonant”

values of vx there is a non-integrable 1
v -divergence. One way to overcome this so-called small denomi-

nator problem was introduced in [3] (see also [4] for a simplified version), and goes under the name of

“fractional moments method”. The main idea boils down to considering E |G(E+i0, ω; 0, x)|s for some

positive s < 1, thus rendering integrable the 1
v -divergences alluded to above, and the basic inequality


∑

j

|aj |




s
2

≤
∑

j

|aj |
s
2 , ∀s ≤ 2 .

We will not discuss this method here because the other method, the multi-scale analysis, is better

suited to the random Zeeman interaction terms considered in Chapter 3.
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1. Multi-scale analysis

The multi-scale analysis is an inductive scheme to handle the small denominators due to resonant

configurations. The Hamiltonian H is regularized by restricting it to finite-size cubes Λ; induction

is then on the size of these cubes, the “scales”. The main idea is to prove exponential decay of the

off-diagonal elements of the regularized Green function, with probability approaching 1 for Λ ր Zd.

The induction proceeds roughly as follows: The strongly resonant configurations (they turn out to be

very rare) are avoided at scale n+ 1, and the decay of the Green function at scale n can then be used

to offset the small denominators coming from mildy resonant configurations to prove the decay at scale

n+ 1.

A typical result that we can prove is a theorem such as

Theorem 2.1. Consider the random Schrödinger operator (2.1) on the lattice Zd. Let E ∈ R,

k > 2d and 0 < η < 1. There is an L such that if for l0 ≥ L we have

(i) P ∑

y∈∂Λ−
l0
(0)

|GΛl0
(E + iε; 0, y)| ≤ η


 ≥ 1− l−k0 ∀ε 6= 0

(ii) P [dist (E, σ(HΛl(0))
)
< κ

]
≤ C|Λl|κ ,

for all κ > 0 small enough and all l ≥ l0,

then for m0 = − log η/2l0 we have thatP[|G(E + iε; 0, x)| ≤ em0(N−|x|) , ε 6= 0] ≥ 1− CkN
−k

holds for all x ∈ Zd.

Remarks.

• The so-called Wegner estimate (ii) in the form stated is too strong a condition. All that is

needed is P [dist (E, σ(HΛl(0))
)
< e−l

b
]
< l−k ,

for a 0 < b < 1. Using the selfadjointess of HΛl(0) we write this asP [‖GΛl(0)(E)‖ < el
b
]
> 1− l−k .(2.4)

• The Wegner estimate is actually not needed for all l ≥ l0, but only for an infinite sequence of

scales li = lα
i

0 , i ∈ N, where 1<α<2.

In [27] it was shown how Theorem 2.1 implies absence of diffusion. We reproduce their argument here

for the sake of completeness. Decompose Zd into annuli, Ai, i = 0, 1, 2, . . . where

A0 := {x : |x| < R}
Ai := {x : R2i−1 ≤ |x| < R2i} i = 1, 2, . . .

with an R to be chosen later on. Define the events

VN := {ω : |G(E + iε, ω; 0, x)| ≤ em0(N−|x|), ε 6= 0} ,
and estimate by (2.2)

ρ(E)D(E) ≤ lim
ε→0

2

πd

∞∑

i=0

(
ε2em0NiP[VNi ]

∑

x∈Ai

|x|2e−m0|x| + Cd(R2
i)d+2P[V c

Ni
]

)
,
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where Cd is a constant, and in the second term on the right hand side we used the trivial upper bound

ε2|G(E + iε, ω; 0, x)|2 ≤ 1 ;

the sequence (Ni)
∞
i=0 can be chosen at convenience. Clearly

∑

x∈Ai

|x|2e−m0|x| ≤ const e−
m0
4 R2i , j ≥ 1 ,

and by Theorem 2.1 P[V c
Ni

] = 1− P[VNi ] ≤ CkN
−k
i ,

for any k > 2d. We now choose Ni =
1
8R2

i. It follows then that

ρ(E)D(E) ≤ lim
ε→0

const

[
ε2

(
e

Rm0
8 Rd+2 +

∞∑

i=1

e−
m0
8 R2i

)
+

∞∑

i=0

Cd(R2
i)d+2−kCk8

k−d
]
.

Choosing now k > d + 2, letting first ε tend to 0 and then R to ∞ we conclude that ρ(E)D(E) = 0,

that is, σ(E) = 0. �

We can hope to prove Theorem 2.1 for all energies E if the disorder is large, that is ‖g‖∞ ≪ 1,

or in general for energies in the band tails. To make the proof more transparent we prove first the

following “finite-volume version”,

Theorem 2.2. Consider the random Schrödinger operator (2.1), and fix 1 < α < 2, N ∋ k > 2dα
2−α .

There exists an L > 0 such that if for l0 > L, and c > 0 we have thatP[|GΛl0
(E;x, y)| ≤ e−c|x−y|, ∀|x− y| ≥ l0

10
] ≥ 1− l−k0 ,

then, for all ln = lα
n

0 , P[|GΛln
(E;x, y)| ≤ e−

c
2 |x−y|, ∀|x− y| ≥ ln

10
] ≥ 1− l−kn .(2.5)

Definition. We call a cube of size l that satisfies (2.5) “l-good” (or simply “good”), and otherwise

“bad”.

The proof of this theorem uses an expansion of the resolvent (see Section 3 for notation), as in

GΛ = GB +GBΓBGΛ ,

where B is a suitable subset of Λ. It is clear from the above formula that we need an a priori estimate

on the dangling factor of GΛ. This estimate is provided by the fact that ‖GΛ(E)‖ = 1/dist(E, σ(HΛ)),

and the following elementary result,

Lemma 2.3 (Wegner estimate). If the random potential has a bounded density g, thenP[dist(E, σ(HΛ)) ≤ κ] ≤ 2‖g‖∞κ|Λ| .(2.6)

Proof. The core of the proof is the following observation,

NΛ(E; {vj}) = NΛ(0, {vj − E}) ,
where NΛ(E) denotes the number of eigenvalues of HΛ less than E. Thus, we can writeP[dist(σ(E,HΛ)) ≤ κ] ≤ E [NΛ(E + κ)−NΛ(E − κ)] = E ∫

|E−E′|≤κ

dNΛ(E
′)

dE′ dE′

= −
∑

j∈Λ
E ∫

|E−E′|≤κ

∂NΛ(E
′)

∂vj
dE′ = −

∑

j∈Λ

∫

|E−E′|≤κ
dE′

∫ ∏

j′∈Λ
dvj′g(vj′ )

∂NΛ(E
′)

∂vj

≤ ‖g‖∞
∑

j∈Λ

∫

|E−E′|≤κ
dE′

∫ ∏

j′ 6=j
dvj′g(vj′ )[NΛ(E

′, vj = −∞)−NΛ(E
′, vj = ∞)] ,
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because −∂NΛ(E′)
∂vj

is clearly positive. Now, by the minmax principle

0 ≤ NΛ(E
′, vj = −∞)−NΛ(E

′, vj = ∞) ≤ 1 ,

so P[dist(σ(E,HΛ)) ≤ κ] ≤ ‖g‖∞
∑

j∈Λ

∫

|E−E′|≤κ
dE′

∫ ∏

j′ 6=j
dvj′g(vj′ )

= 2‖g‖∞κ|Λ| .

�

Remark. Much effort has been devoted to the study of how much the conditions on the probability

density can be relaxed such that a Wegner estimate can still be proven. The most natural condition is

probably Hölder continuity of the probability measure: P is called Hölder continuous of order α > 0 if

C−1
α := inf

τ>0
sup

|b−a|≤τ

P([a, b])
|b− a|α <∞ .

In such a case one can prove [13] in a very similar fashion the following Wegner estimate,P[dist(σ(E,HΛ)) ≤ κ] ≤ 2α

C
|Λ|1+ακα ,

for all 0 < C < Cα and κ small enough. This is good enough to prove the exact same things we are

now going to prove for a bounded probability density.

Since the volume factor |Λl| grows only polynomially in l, we see from the Wegner estimate that

the probability that E is exponentially close (in l) to the spectrum of HΛl
is exponentially small.

Proof. (Of Theorem 2.2) The proof is by induction, and to keep notation light we will show the

step from l0 to l1 = lα0 . As a first step, denote by ΩW the set of configurations of the random potentials

where ‖GΛl1
(E)‖ ≥ el

1/2
1 . Because of the Wegner estimate we knowP[ΩW] ≤ Ce−l

1/2−
1 .

Denote further by Ω2+ the set of configurations where there are two or more disjoint bad cubes of size

l0 in Λl1 . Because of the induction hypothesis we knowP[Ω2+] ≤ Cl2d1 l
−2k
0 = Cl

2d− 2k
α

1 ≤ 1

2
l−k1 ,

for l0 large enough. So the probability of these problematic configurations is small,P[ΩW ∪ Ω2+] ≤ l−k1 ,

which means that the proof is finished if we can show the exponential decay for the unproblematic

configurations. Hence, for the rest of the proof, consider only configurations in Ω\(ΩW ∪ Ω2+), that

is, configurations for which ‖GΛl1
‖ ≤ el

1/2
1 , and for which there is at most one bad l0-cube in Λl1 .

(Actually, there can be more, but they all have to intersect, so that they are contained in a slightly

larger cube of size 3l0.)

First, assume that there is no bad l0-cube in Λl1 . We expand the resolvent along a sequence of

nested l0-cubes Ci from x to y.

GΛl1
(E;x, y) =

∑

(z1,z′1)∈∂C1

GC1(E;x, z1)GΛl1
(E; z′1, y)
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for x ∈ C1 but y /∈ C1. Find z
′
1 that maximizes |GΛl1

(E; z′1, y)| in the expression above, and denote it

by z̃′1. Continue expanding around the cube C2:

|GΛl1
(E;x, y)| ≤

∑

(z1,z
′
1)∈∂C1

(z2,z
′
2)∈∂C2

|GC1(E;x, z1)||GC2(E; z̃′1, z2)||GΛl1
(E; z′2, y)| ,

for y /∈ C2. We can continue this procedure until y ∈ Ck+1, and obtain

|GΛl1
(E;x, y)| ≤

∑

(zi,z′i)∈∂Ci

|GC1(E;x, z1)| . . . |GCk
(E; z̃′k−1, zk)|‖GΛl1

(E)‖ .

For the configurations under consideration, we know that ‖GΛl1
(E)‖ ≤ el

1/2
1 . So,

|GΛl1
(E;x, y)| ≤ (Cld−1

0 )ke−cl0kel
1/2
1 .

Since k ≥ |x− y|/l0 we obtain

|GΛl1
(E;x, y)| ≤ e

log(Cl
d−1
0 )

l0
|x−y|e−c|x−y|el

1/2
1

≤ e−(c− log(Cl
d−1
0 )

l0
− l

α/2
0

|x−y|
)|x−y|

≤ e−(c− log(Cl
d−1
0

)

l0
−lα/2−1

0 )|x−y| =: e−c1|x−y| ,

for |x− y| ≥ l0.

Next, we will prove exponential decay of the resolvent if there is one bad l0-cube in Λl1 , denote it

by Q. Consider first Λl1\Q, and note that by construction there is no bad l0-cube in Λl1\Q, so that

we can prove as above that

|GΛl1
\Q(E;x, y)| ≤ e−c1|x−y| , |x− y| ≥ l0 .

Restoring the couplings to the bad cube Q is only a small pertubation and does not destroy the

exponential decay:

GΛl1
(x, y) = [GΛl1

\Q +GΛl1
\QΓGΛl1

ΓGΛl1
\Q](x, y) ,

where Γ here denotes the operator corresponding to ∂Q. Using the estimates established up to now we

obtain

|GΛl1
(x, y)| ≤ e−c1|x−y| + el

1/2
1

∑

(z1,z
′
1)∈∂Q

(z2,z
′
2)∈∂Q

e−c1(|x−z1|+|z2−y|) .

(A little nicety was swept under the rug here, namely what if the distance of either x or y to ∂Q is less

than l0 (it is not possible that both are since |x − y| > l1/10). However, by the Wegner estimate we

can again establish a very crude bound |GΛl1
\Q(E;x, y)| ≤ ‖GΛl1

\Q(E)‖ ≤ el
1/2
1 for any Q and |x− y|,

having to discard configurations of measure of order e−l
1/2−
1 .)

Because

|x− y| ≤ |x− z1|+ |z1 − z2|+ |z2 − y| and

|z1 − z2| ≤ l0

we get

|GΛl1
(x, y)| ≤ e−c1|x−y|(1 + |Γ|2el

1/2
1 +l0)

≤ e−(c1−
l
1/2
1

+l0+logC|Γ|2

|x−y|
)|x−y|

≤ e−(c1−10
l
1/2
1

+l
1/α
1

+log C|Γ|2

l1
)|x−y| =: e−c

′
1|x−y| ,
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for |x− y| ≥ l1/10 and l0 large enough.

The induction step is now proven, and the claim follows since it is clear that c′n >
c
2 for all n. �

From this result of exponential decay for finite-size cubes, it is straightforward to go to the limit

Λ ր Zd. We shall now recall (see [58]) how to prove Theorem 2.1 from the finite-volume version

Theorem 2.2.

Proof of Theorem 2.1. We have for an E ∈ R, all scales l and all cubes Λl with probability at

least 1− l−k

|GΛl
(E + i0;x, y)| < e−

c
2 |x−y| for |x− y| ≥ l

10
.

Fix an x ∈ Zd and consider a sequence of cubes Λn centered at the origin with sides of length ln =

2n(2|x|+L). We expand G(E+iε; 0, x) around this sequence of nested cubes using the second resolvent

identity and obtain

G(E + iε; 0, x) = [GΛ0 +GΛ1Γ0GΛ0 +GΛ2Γ1GΛ1Γ0GΛ0 + . . . ](E + iε; 0, x) .

Since the distance between ∂Λi and ∂Λi+1 is greater than li we get that

|GΛk
Γk−1 . . . GΛ2Γ1GΛ1Γ0(E + iε; 0, x)| ≤

k−1∏

i=0

|Λi|e−
c
2 li

holds with probability at least

1−
k∑

i=1

l−ki .

For the innermost cube, if |x| ≥ L/2 we get

|GΛ0 (E + iε; 0, x)| ≤ e−
c
2 |x|

with probability at least

1− l−k0 = 1−
(

1

2|x|+ L

)k
≥ 1− (2L)−k .

For |x| < L/2, the Wegner estimate gives

|GΛ0(E + iε; 0, x)| ≤ eL
1/2

< e
c
4L

with probability at least

1− L−k .

Combined, the above estimates say that

|GΛ0(E + iε; 0, x)| ≤ e
c
2 (L−|x|)

with probability at least

1− (2L)−k − L−k ≥ 1− C̃kL
−k .

In a completely analogous way we get an estimate for GΛ0(E + iε;x, y0) for a y0 ∈ ∂Λ0:

|GΛ0 (E + iε;x, y0)| ≤ e
c
2 (L−|x|)

with probability at least

1− C̃kL
−k .
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So Theorem 2.1 follows observing that first

∞∑

k=0

k−1∏

i=0

|Λi|e−
c
2 li ≤ const ,

and second that
∞∑

i=1

l−ki + C̃kL
−k ≤ CkL

−k

for some Ck > 0. �

2. Pure point spectrum

Although we have established absence of diffusion, one might argue that a mathematically more

satisfactory result would be a more precise knowledge of the spectrum of the random Schrödinger

operator (2.1). Note that the group of translations acts ergodically on the probability space of con-

figurations (vj)j∈Zd , allowing us to conclude [42] that there exist fixed sets σpp, σac, σsc ⊂ R such

that

σpp(H(ω)) = σpp σac(H(ω)) = σac σsc(H(ω)) = σsc almost surely.

In the same work it is shown that we can determine the spectrum of (2.1) with probability one,

σ(H(ω)) = [−2d, 2d] + supp g almost surely,(2.7)

where A+B = {a+ b : a ∈ A, b ∈ B} for sets A,B ⊂ R.

With Theorem 2.1 at hand, there are several ways to show pure point spectrum with exponentially

decaying eigenfunctions, the easiest of which is due to Simon and Wolff [52],

Theorem 2.4. If for almost every E ∈ (a, b) and almost every ω

lim
ε→0

∑

x∈Zd

|G(E + iε; 0, x)|2 <∞

then, with probability one, H has pure point spectrum in (a, b) with exponentially decaying eigenfunc-

tions.

Theorem 2.1 and the lemma of Borel-Cantelli imply that for almost every ω there is an L∞ not

depending on ε such that

|G(E + iε; 0, x)| ≤ em(L∞−|x|) .

Thus Theorem 2.4 implies that H has almost surely pure point spectrum with exponentially decaying

eigenfunctions in the range of energies E where Theorem 2.1 holds, that is where we can establish

the initial estimate of Theorem 2.2. We show in the following how this can be done in various energy

regimes.

Large disorder. For large disorder, that is, ‖g‖∞ ≪ 1, the condition on the smallness of off-

diagonal elements of the resolvent in Theorem 2.2 is established simply with a norm bound: Consider

GΛ for some finite subset Λ ⊂ Zd. If we have for some E

|vx(ω)− E| ≥M + 2d ∀x ∈ Λ ,

then

‖GΛ(E,ω)‖ = (dist(E, σ(HΛ(ω))))
−1 ≤ 1

M
.
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Now, P[|vx(ω)− E| ≥M + 2d ∀x ∈ Λ] = (P[|vx(ω)− E| ≥M + 2d])
|Λ|

=(1 − P[|vx(ω)− E| < M + 2d])|Λ| ≥ (1− 2(M + 2d)‖g‖∞)|Λ| −→
‖g‖∞→0

1 .

As the above holds for any M , the condition of Theorem 2.2 is verified for all E ∈ R provided ‖g‖∞ is

small enough. (Note that ‖g‖∞ → 0 implies in particular that the support of g gets infinite.)

Low energy. In the same vein for low energy: Suppose that for some N we have |vx(ω)| ≤ N for

all x ∈ Λ. Then

σ(HΛ(ω)) ⊂ [−N − 2d,N + 2d] ,

and for |E| ≥ N + 2d+M we have

‖GΛ(E,ω)‖ = (dist(E, σ(HΛ(ω))))
−1 ≤ 1

M
.

Because Λ is finite it is clear from the Markov inequality thatP[|vx| ≤ N ∀x ∈ Λ] = P[|vx| ≤ N ]|Λ|

≥
(
1− E |vx|

N

)|Λ|
−→
N→∞

1 ,

for vx ∈ L1(Ωx). So the initial condition of Theorem 2.2 is fulfilled for |E| large enough. Obviously,

this is only of interest when the support of the probability density is infinite.

Band tails. We will treat this case extensively in Chapter 3, so the reader is asked for patience.





CHAPTER 3

Mathematics of random Zeeman interaction

1. Introduction

Now that we have explained the key ideas and main techniques used in the mathematical treatment

of Anderson localization, we are ready to discuss the random Schrödinger operator that describes the

evolution of a conduction electron in EuxCa1−xB6. Recall from Chapter 1 that it is given by

H(ω) = −∆+ vj(ω)− Jmj(ω) · σ .(3.1)

As before, we have that there exist fixed sets σpp, σac, σsc ⊂ R such that

σpp(H(ω)) = σpp σac(H(ω)) = σac σsc(H(ω)) = σsc almost surely,

and

σ(H(ω)) = [−2d, 2d] + suppdiag(H) almost surely,

where the “support of the diagonal part” of H is defined by

suppdiag(H) := {α ∈ R : ∀ε > 0 P[dist(σ(H(ω)(0, 0)), α) < ε] > 0} .
It is easy to see that suppdiag(H) = {±v ± J} so that

σ(H(ω)) = [−2d− v − J, 2d+ v + J ] almost surely,

for v, J small, whereas the band splits into several bands if v and/or J are large. Our results hold only

for the band edges of the extreme bands, so we will not distinguish the cases.

The proof of localization could run along the very same lines of the case of a random potential with

bounded density, if it were not for the fact that it is not known how to prove an a priori (Wegner-type)

estimate concerning the distribution of eigenvalues of the Hamiltonian restricted to finite-size cubes,

such as P[dist(E, σ(HΛ)) ≤ κ] ≤ Cκ|Λ| .(3.2)

Recall that in the case of a bounded probability density the constant is given by C = 2‖g‖∞, where g

is the density, explaining why the estimate is useless for the Bernoulli potential. The random Zeeman

interaction term m · σ is similar to the Bernoulli potential in the sense that is has the same spectrum

{±1}, so that we could naively expect to encounter the same difficulties. However, as it will turn out,

the continuous distribution of the random vector m on the unit sphere makes life a lot easier. It is

still not known, though, how to prove a Wegner estimate (3.2) for a Schrödinger operator with random

Zeeman interaction term (it may even be wrong in the form stated), but a new scheme introduced in [8]

circumvents this problem by establishing a Wegner-type estimate inductively, starting from an initial

scale, that will therefore hold only for energies E where we can prove the initial estimate. (The classic

Wegner estimate holds for all energies E, even if these energies lie in the region that has supposedly

absolutely continuous spectrum in the thermodynamic limit.)

Recall the main theorem from Chapter 2,

Theorem (2.1). Consider the random Schrödinger operator (2.1) on the lattice Zd. Let E ∈ R,

k > 2d and 0 < η < 1. There is an L such that if for l0 ≥ L we have

25
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(i) P ∑

y∈∂Λl0
(0)

|GΛl0
(E + iε; 0, y)| ≤ η


 ≥ 1− l−k0 ∀ε 6= 0

(ii) P [dist (E, σ(HΛl(0))
)
< κ

]
≤ C|Λl|κ ,

for all κ > 0 small enough and all l ≥ l0,

then for m0 = − log η/2l0 we have thatP[|G(E + iε; 0, x)| ≤ em0(N−|x|) , ε 6= 0] ≥ 1− CkN
−k

holds for all x ∈ Zd.

There is a certain dichotomy regarding the conditions of this Theorem. The first condition, about

the off-diagonal decay of the Green function, is to be verified only at an initial scale, whereas the

Wegner estimate (ii) has to be established on all scales. However, recent efforts of Jean Bourgain

[8] have shown that under some analyticity assumptions the Wegner estimate, too, has to be verified

only at the initial scale. Using his techniques we can prove the following reslts; consult Section 3 for

notation.

Recall from Chapter 1 the different physical regimes (A), (B), (C) for which we want to prove

Anderson localization.

Remark. For both the regimes (A) and (B) we will discard the additional Bernoulli potential

vj(ω). It would only burden the notation, without really changing any proof. This is clear for the

case of vj = vbddj + vBernoulli
j (so the random potential is a sum of independent random variables, one

of which has a bounded probability density g, and the other one is Bernoulli). The joint probability

density gv is given by the convolution, gv(x) = g ∗ (12δ−1 +
1
2δ1)(x) =

1
2g(x + 1) + 1

2g(x − 1), so it is

bounded as well, yielding the Wegner estimate and thus the pure point spectrum.

In this chapter, we prove the following results for the various regimes described in the introduction:

(A) κ small, B small, x = 1

Theorem 3.1. Consider the random Schrödinger operator (3.1), with the distribution of ω given

by

dP(m) = Z−1 exp{κ
∑

|i−j|=1

mi ·mj + βB
∑

j

m
(z)
j }

∏

j

δ(m2
j − 1)d3mj .(3.3)

There is a κ0 > 0 such that for κ < κ0 the following holds true. There exists a δ = δ(κ,B) such

that H(ω) has, with probability one, pure point spectrum for E ∈ [E− δ, E] with exponentially decaying

eigenfunctions, where E denotes the upper spectral edge (and symmetrically for the lower spectral edge).

(B) κ→ ∞, B small.

Theorem 3.2. For x < xc there exists a δ = δ(B, x) such that the random Schrödinger operator

(3.1) with magnetic moments distributed “of percolation type” according to Chapter 1 has, with proba-

bility one, pure point spectrum for E ∈ [E − δ, E] with exponentially decaying eigenfunctions, where E

denotes the upper spectral edge (and symmetrically for the lower spectral edge).

(C) B → ∞.
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Theorem 3.3. Consider the Bernoulli random Schrödinger operator

H(ω) = −∆+ λvj(ω) ,

where

vj(ω) =

{
1 , with probability x

−1 , with probability 1− x
.(3.4)

The vj are assumed to be independent. Then, in the band tail from [−λ,−cλ2 + O(λ4−)], ρ(E)D(E)

vanishes for all energies outside a set of the order of exp(− 1
2 exp(

1
2λ

−1/2−)).

This is a perturbative result, and is meaningful only for small values of λ.

2. Wegner estimate

Since the main new difficulty when considering a random Zeeman interaction term instead of a

random potential with bounded density comes from the Wegner estimate, we devote this section to the

latter.

The Wegner estimate Lemma 2.3 says that the eigenvalues of HΛ do not “clump together” too seri-

ously. This is closely related to the density of states, to which we will now give a precise mathematical

meaning. Denote by NΛ(E,ω) the number of eigenvalues of HΛ(ω) less than, or equal to E. Denote

further by PΛ(E,ω) the spectral projection of HΛ onto the interval (−∞, E). Then Stone’s formula

reads

PΛ(E,ω) = s− lim
ε→0

1

π

∫ E

−∞
Im (HΛ(ω)− E′ − iε)−1dE′ .

We can express the number of eigenvalues using the projection,

NΛ(E,ω) = tr PΛ(E,ω) =
∑

x∈Λ
tr 〈δx ,PΛ(E,ω)δx〉

= lim
ε→0

1

π

∑

x∈Λ

∫ E

−∞
tr ImGΛ(E

′ + iε;x, x)dE′ .

By the subadditive ergodic theorem, see for instance [14],

n(E) := lim
Λ→Z3

NΛ(E,ω)

|Λ| ,

the integrated density of states, exists and is independent of ω with probability one. Since n(E) is

monotone, its derivative exists almost everywhere and is denoted by ρ(E), the density of states. From

the formulae above we get

ρ(E) = lim
ε→0

1

π
E tr ImG(E + iε; 0, 0) .

Here we used translation invariance, details are discussed in Appendix C. At finite scales, we can define

ρΛ(E) =
1

2|Λ|
∑

x∈Λ
lim
ε→0

1

π
E tr ImGΛ(E + iε;x, x) .

The connection to the Wegner estimate is obvious from the relation ρΛ(E) = d
dENΛ(E)/|Λ|, where

NΛ(E) = ENΛ(E,ω). If, for instance, we know that ρΛ(E) is bounded by C uniformly in Λ then this

provides us immediately with the Wegner estimate:P [dist (E, σ(HΛ)) < κ] ≤ ENΛ(E + κ)− ENΛ(E − κ) =

=

∫

|E−E′|≤κ

d

dE′ENΛ(E′)dE′ = 2|Λ|
∫

|E−E′|≤κ
ρΛ(E

′)dE′ ≤ 4C|Λ|κ .
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The regularity of the (averaged) finite-scale density of states ρΛ(E) is thus crucial for a Wegner estimate

to hold. This is an explanation for why the Bernoulli random potential is so difficult: The unaveraged

quantity ρΛ(E,ω) is simply a sum of δ-functions, but taking the expectation value has a smoothing

effect for a random potential with a density. In the Bernoulli case, however, taking the expectation

amounts to taking a finite average as long as Λ is finite,E ρΛ(E,ω) = 1

2|Λ|

∑

configurations ω

ρΛ(E,ω)

so that ρΛ(E) still is a sum of δ-functions.

In our case of a random Zeeman interaction term, m(ω)·σ, things look much brighter—even though

its spectrum is as singular as Bernoulli’s—because taking the average entails integrating m over the

unit sphere, thus making ρΛ(E) much more regular than in the Bernoulli case.

However, it is still not straightforward to come up with a Wegner estimate, and it is only an

inductive scheme described in the next section that bears fruit. To see why the matrix-nature of

randomness complicates matters, we look back at the case of a random potential with bounded density:

In this case, the Wegner estimate is obtained by first-order eigenvalue perturbation (as long as the

probability is bounded): For Λ ⊂ Zd finite consider an interval, centered at an eigenvalue of HΛ =

−∆ + v, of length 2κ ≪ min |Eα − Eα′ |, for Eα, E′
α different eigenvalues. Compute for H(v)ξ(v) =

E(v)ξ(v)

∂E(v)

∂vj
= |ξj(v)|2 ,

and note that as ‖ξ‖ = 1 there is at least one site j0 with |ξj0 (v)|2 ≥ 1/|Λ|. Thus by varying vj0 of

order κ we get

δE(v) = O
(
κ

|Λ|

)
,

indicating that P[dist(σ(HΛ(v), E)) ≤ κ/|Λ|] is of order κ (for a bounded probability density). We

have given a rigorous proof in Lemma 2.3. An essential ingredient in the proof is the trivial identity

N(E, v) = N(0, v − E). Such an identity does not hold in general for matrix-valued potentials,

explaining why it is not possible to generalize the above proof in a straight-forward way. The difficulty

that arises when treating matrix-valued potentials can also be exemplified by doing an eigenvalue

variation. Consider the Hamiltonian H(ω) = −∆+ω−1Aω, where A = diag(λ1, . . . , λr) and ω ∈ SU(r)

random, that is, ω−1Aω a random hermitian matrix with fixed spectrum. Then

∂E(ω)

∂ωj

∣∣∣∣
ωj=1 =

∂

∂ωj

∣∣∣∣
ωj=1〈H(ω)ξ(ω) , ξ(ω)〉 = 0 .

Thus for an eigenfunction that is concentrated on sites j with ωj ≃ 1, it is not possible to move the

corresponding eigenvalue by small variations of ωj .

However, if we allow for some analyticity in the distribution of magnetic moments, it is very easy—

using a path expansion—to prove the following lemma (see Appendix 6, where the proof is done for

correlated magnetic moments using a cluster expansion.)

Lemma 3.4. Consider the random Schrödinger operator (3.1) with magnetic moments distributed

according to

dP(m) = Z−1 exp{κ
∑

|i−j|=1

mi ·mj + βB
∑

j

m
(z)
j }

∏

j

A(γ)e−γ(m
2
j−µ2)2d3mj .

Then, for |E|+ γ large and κ small, the finite-scale density of states, defined by

ρΛ(E) =
1

2|Λ|
∑

x∈Λ
lim
ε→0

1

π
tr ImEGΛ(E + iε;x, x) ,
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is bounded uniformely in Λ.

With the Wegner estimate at hand, we can proceed as in Chapter 2 to prove pure point spectrum

with exponentially decaying eigenfunctions.

The Wegner estimate in the fractional-moments approach. Although it does not figure

as prominently as in the multi-scale analysis, a Wegner-type estimate does enter the estimates of the

fractional-moments method. A uniform estimate on the average of a fractional power of the diagonal

elements of the resolvent is needed, see [4],

sup
z∈C\R

E |G(z;x, x)|s ≤ C .

For random potentials with e.g. bounded density this is a simple consequence of (2.3). For the random

Zeeman interaction we have an analogous formula,

G(z;x, x) = (G̃(z;x, x)−1 + σ ·mx)
−1 ,

the quantities here being 2× 2-matrices, and in G̃ the value of mx has been set to zero. Unfortunately,

it is not easy to get a uniform estimate from this formula; and again the problem is the fixed spectrum

of σ ·mx. If we try to compute the expectation by conditioning on the values of (my)y 6=x,E |G(z;x, x)|s =
∫

dµ⊥(mx)

∫
dµ(mx)|(G̃(z;x, x)−1 + σ ·mx)

−1|s ,

then we run into problems because
∫

dµ(mx)|(A + σ ·mx)
−1|s → ∞, A→ ±1 .

We see that the fractional-moments approach is plagued with the same difficulties, and we will not

pursue it any further.

3. Multi-scale analysis with inductive Wegner estimate

The method devised by Fröhlich and Spencer [27] to prove Anderson localization for a random

Schrödinger operator H consists of proving exponential decay of the Green function of the operator

restricted to finite subsets Λ, with probability approaching one on ever larger scales. As discussed in

Chapter 2, two ingredients are needed for their inductive scheme to work. First, a certain control over

the off-diagonal elements of the Green function at an initial scale, and second, an a priori control over

the clumping together of eigenvalues of HΛ on all scales—the Wegner estimate. The main technical

innovation in [8] is to prove also the Wegner-type estimate inductively, so that it, too, has to be verified

only at an initial scale.

We turn now our attention to the proof of Theorems 3.1 and 3.2. Its most technical part is

contained in the following lemma (see page 13 for definitions),

Lemma 3.5. Let E ∈ R. Consider the random Schrödinger operator (3.1). There are N0 and k

such that if for all Rl ∈ El, 1
2N

1/4d
0 ≤ l ≤ N0,P[Rl is c-regular at energy E] ≥ 1− l−k ,

then P[RN is
c

2
-regular at energy E] ≥ 1−N−k ,

for all RN ∈ EN , for all N ≥ N0.
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3.1. Sketch of proof. Recall the main strategy of the multi-scale analysis: We establish existence

of “good” cubes with high probability at an initial scale, and use this information to show existence of

good cubes with even higher probability, inductively, at larger scales. The probability that a cube Λl
is good should behave like 1−pl, where pl ∝ l−k, and k is some integer. The key point is that, at finite

scales, we have to prove existence of good cubes only with high probability and not with probability

one: Denote by Ω the whole probability space, that is, the set of all configurations ω of the random

magnetic moments (mj)j∈Z3 . From the outset, we can discard configurations ω that are difficult to

handle, as long as they have small probability.

The induction step from scale ln to ln+1 . l2n proceeds as follows: Consider a cube Λln+1 of size

ln+1. Since “bad” cubes of size ln are, by the induction hypothesis, improbable, the probability that

there are many, say N , bad ln-cubes in a ln+1-cube is even smaller, of the order of pNln . The integer N

is chosen such that pNln < pln+1 . Therefore, only configurations ω where the ln+1-cube contains not too

many bad ln-cubes need to be considered.

To prove that Λln+1 is good we proceed in the following way. In a first step, we excise the bad ln-

cubes (of which there are not too many) from Λln+1 . Iterating the resolvent identity along a sequence of

ln-cubes and using the induction hypothesis at scale ln we prove that Λln+1\{bad cubes} is good. The

difficulty is now that, to couple a bad cube Λln back to Λln+1 , we need a slightly larger cube covering

Λln that satisfies a Wegner-type estimate. But by the induction hypothesis, the Wegner estimate holds

for cubes of this size only with probability 1−pln, whereas we should like to establish it with the much

larger probability 1− pln+1.

As discussed in detail in Chapter 2, for random potentials with a bounded probability density it

has been known for a long time [61] how to establish a Wegner-type estimate simultaneously on all

scales l. Recent mathematical work [8], triggered by our study of the hexaboride alloys, shows how to

establish a Wegner estimate inductively.

We have already argued that we can restrict our attention to configurations ω where there are

not too many bad cubes of size ln in Λln+1—call these bad cubes Bk. The key idea is to modify each

configuration ω by changing in ω = (mj)j∈Λln+1
only the values of mj for j inside the Bk such that,

for this new configuration ω′, each bad cube has a neighbourhood satisfying a Wegner estimate. In a

second step, one shows with the help of complex analysis that these configurations ω′ have actually

very large probability.

Technically, this is done as follows (see also Figure 1): Pick one of the bad cubes, call it B. Now,

cover the bad cube B with a slightly larger cube B(1). Then the probability that the configuration in

the ring B(1)\B makes the cube B(1) bad, no matter what the configuration inside B, is smaller than

pln . Thus, the probability that there are many, say N , equicentered cubes B(i) of increasing diameter

such that, for all i, the configuration in the ring B(i)\B(i−1) makes the cube B(i) bad, no matter what

the configuration in the interior, B(i−1), is very small, namely of the order of pNln . We can therefore,

from the outset, restrict considerations to configurations ω where each bad cube B can be replaced

by a larger cube B(i0−1) with the property that the configuration ω can be modified inside the cube

B(i0−1) alone such that the cube B(i0−1) has a good neighborhood B(i0). The modified configuration

shall be denoted by ω′.

We can now use again the resolvent identity to establish the desired bound on ‖GΛln+1
(E,ω′)‖.

We have thus found that ‖GΛln+1
(E)‖ is bounded at scale ln+1 for one fixed configuration ω′. One

may think that this is far too little, since a single point ω′ has zero probability in Ω. However, in a

last step, one shows, using a matrix-valued Cartan-type lemma, that the probability of configurations

for which ‖GΛln+1
(E)‖ satisfies the desired estimate is at least 1− pn+1.

To understand the last step we need to recall a result from complex analysis, known as Cartan’s

lemma. The precise mathematical statement can be found in the appendix. For the purpose of this

sketch, a rough understanding of the lemma will suffice: The lemma says that an analytic function
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Figure 1. Generic cube of size ln+1. The bad cubes of size ln, of which we suppose there

are not too many, are depicted as smaller cubes. The construction of a good neighborhood

of a bad cube is hinted at.

that is bounded away from zero at one point of its domain of definition is at most points not too close

to zero. We need a higher-dimensional matrix-valued analog of this lemma due to Bourgain [8], which

we relegate to the appendix. This generalized lemma says that if ‖GΛn+1(E;ω)‖ is not too large for

one configuration ω′, it is not too large for most configurations; actually only exponentially few (in ln)

configurations have to be excluded. It is important to point out that in order to apply this lemma the

distribution of magnetic moments on the unit sphere needs to have a bounded density with respect to

the uniform measure on the sphere.

We can apply this lemma, for we have explicitly constructed a configuration ω′ with the desired

properties.

The off-diagonal decay is standard now, using again iteration of the resolvent equation along a

sequence of nested cubes.

3.2. Proof of Lemma 3.5. We are now ready to discuss the proof with all technical details.

Proof. To simplify the presentation we will first do the proof for regime (A), more precisely

for κ = 0, x = 1. We are thus looking at independent unit vectors mj , j ∈ Zd, that are uniformly

distributed on the unit sphere,

dP(m) =
∏

j

δ(m2
j − 1)d3mj .

We will show later on how the proof has to be modified to cover correlations and percolation effects.

The proof is by induction. For sake of readability we perform the step from N0 to N1. Take

n < N0 < N1 with N1 < N2
0 and n = N

1/8d
1 < N

1/4d
0 .

Induction hypothesis: Elementary l-regions are c-regular with probability at least 1− l−k for scales
n
2 ≤ l ≤ N0.
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First step: Let B be an elementary N1-region, and fix an integer M > 32d. The probability that

there are many singular n-regions is small: Denote by Ω1 ⊂ Ω the set of all configurations ω such

that there are M or more disjoint singular n-regions R ⊂ B. Thanks to the induction assumption, its

probability is bounded by P[Ω1] ≤ CN2dM
1 n−kM < n− 1

2kM ,(3.5)

if k > 32d2. The first factor is an upper bound on the number of possibilities to place M n-regions

in B, since |B| ≤ CNd
1 and elementary regions are differences of two cubes; the second factor is due

to independence. We restrict to configurations ω ∈ Ωc
1, that is, to configurations where there are at

most M singular n-regions R ⊂ B all of which are disjoint, or where there are (possibly more than

M) intersecting singular n-regions no M of which are disjoint. In the latter case, these n-regions are

contained in a cube of diameter (2M − 1)2n. In the former case, group regions R that have a mutual

distance less than 10Mn and cover them with minimal cubes Q. In addition, if a cube Q happens to

lie at a distance ≤ n from ∂B then replace it by a minimal covering cube (again denoted by Q) of

which each side either intersects ∂B or is at a distance at least n from it. These cubes Q satisfy by

construction

4n ≤ diam Q ≤ 20M2n(3.6)

dist(Q,Q′) ≥ 10Mn for distinct Q,Q′ .(3.7)

Denote the union of these new (and at most M) cubes by Λ. The first result is that a Wegner estimate

holds on B\Λ,

Lemma 3.6. There is an n such that

‖GB\Λ(E)‖ ≤ 2nd+1en
1/2

.

Proof. By the resolvent identity, we have

GB\Λ(E;x, y) = GW (x)(E;x, y) +
∑

(z,z′)∈∂W (x)

GW (x)(E;x, z)GB\Λ(E; z′, y) ,

where W (x) = C(x) ∩ (B\Λ) with C(x) an n-cube with center x. Summing over y ∈ B\Λ and taking

the supremum we obtain

sup
x∈B\Λ

∑

y∈B\Λ
|GB\Λ(E;x, y)| ≤ sup

x∈B\Λ

∑

y∈W (x)

‖GW (x)(E)‖

+ sup
x∈B\Λ

∑

(z,z′)∈∂W (x)

|GW (x)(E;x, z)| sup
w∈B\Λ

∑

y∈B\Λ
|GB\Λ(E;w, y)| .

Since the W (x) are regular n-regions for all x ∈ B\Λ by construction of Λ (if x is in an outer corner

of B, W (x) is actually a n/2-region, which explains the lower bound in the induction hypothesis) we

can use (1.10) and (1.11) at scale n to get

‖GB\Λ(E)‖ ≤ sup
x∈B\Λ

∑

y∈B\Λ
|GB\Λ(E;x, y)| ≤ 2nd+1en

1/2

,

for κdn
d−1e−cn < 1/2, where the constant κd is such that the magnitude of the boundary of an n-cube

is bounded by κdn
d−1. �

The second result ist the off-diagonal decay,

Lemma 3.7. There is an n and a c1 < c such that

|GB\Λ(E;x, y)| ≤ e−c1|x−y| ,

for |x− y| ≥ n.
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Proof. We expand the resolvent along a sequence of regular n-cubes Ci as follows:

GB\Λ(E;x, y) =
∑

(z1,z′1)∈∂C1

GC1(E;x, z1)GB\Λ(E; z′1, y)

for x ∈ C1 but y /∈ C1. Find z
′
1 that maximizes |GB\Λ(E; z′1, y)| in the expression above, and denote it

by z̃′1. Continue expanding around the cube C2:

|GB\Λ(E;x, y)| ≤
∑

(z1,z
′
1)∈∂C1

(z2,z
′
2)∈∂C2

|GC1(E;x, z1)||GC2(E; z̃′1, z2)||GB\Λ(E; z′2, y)| ,

for y /∈ C2. We can continue this procedure until y ∈ Ck+1, and obtain

|GB\Λ(E;x, y)| ≤
∑

(zi,z′i)∈∂Ci

|GC1(E;x, z1)| . . . |GCk
(E; z̃′k−1, zk)|‖GB\Λ(E)‖

≤ (κdn
d−1)ke−cnk2nd+1en

1/2

,

Since k ≥ |x− y|/n we are left with

|GB\Λ(E;x, y)| ≤ Ce−c|x−y|+
log(κdnd−1)

n |x−y|+n1/2

≤ Ce−(c− log(κdnd−1)

n −n−1/3)|x−y|e−n
2/3+n1/2

≤ e−(c− log(κdnd−1)

n −n−1/3)|x−y| =: e−c1|x−y| ,

for |x− y| ≥ n and n large enough. �

We have thus completed the first step, namely we constructed with probability at least 1−n−1
2 kM

a decomposition of B = Λ ∪ (B\Λ) such that

‖GB\Λ(E)‖ ≤ 2nd+1en
1/2

(3.8)

|GB\Λ(E;x, y)| ≤ e−c1|x−y| for |x− y| ≥ n .(3.9)

Remark. By repeating the above argument, (3.8), (3.9) hold for any N -region ⊂ B\Λ, N ≥ n.

Second step: After showing that the Green function is well-behaved outside the cubes constituting

Λ, all we are wanting for a norm estimate on the whole of B is a norm estimate on neighbourhoods of

these cubes. To achieve this, we make the following construction. Let Q be one of the components of

Λ, and let

Q = Q(0) ⊂ Q(1) ⊂ Q(2) ⊂ · · · ⊂ Q(M)

be a sequence of equicentered cubes with dist(∂Q(i−1), ∂Q(i)) = n. Next, we introduce an auxiliary

notion: Call a ring Q(i)\Q(i−1) ring-singular if the configuration in the ring Q(i)\Q(i−1) is such that

Q(i) is singular for all configurations in Q(i−1). Since P[Q(i) is singular] ≤ n−k (it is here that we

need the induction hypothesis to hold over a range of initial scales), the probability that Q(i)\Q(i−1)

is ring-singular is at most n−k. Denote with Ω2 ⊂ Ω the set of configurations ω where for some cube

Q ⊂ B, Q ⊂ Q(1) ⊂ Q(2) ⊂ · · · ⊂ Q(M) as above, we have that each ring Q(i)\Q(i−1) is ring-singular.

Its probability is bounded by P[Ω2] ≤ Nd+1
1 n−kM < n− 1

2 kM .

Hence let us restrict further to configurations ω ∈ (Ω1 ∪Ω2)
c, that is, to configurations where for each

component Q of Λ there is some 1 ≤ i ≤ M such that the ring Q(i)\Q(i−1) is not ring-singular, and

denote this Q(i−1) by Q. The new cubes are at least 8Mn-separated by definition, see (3.7). The union

of these larger cubes is called Λ, and it is clear that (3.8),(3.9) still hold. By construction, Λ has the

property that each of its components Q has an n-neighbourhood Q′ such that the ring Q′\Q is not
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ring-singular. Hence we can modify any given configuration ω ∈ (Ω1 ∪ Ω2)
c on each Q such that the

resulting ω′ satisfies

GB\Λ(E,ω
′) = GB\Λ(E,ω)(3.10)

‖GQ′(E,ω′)‖ < e10Mn1/2

for all Q′ ,(3.11)

due to (3.6) and (20M2n)1/2 < 10Mn1/2. Estimates (3.10),(3.11) and the so-called Fröhlich-Spencer

coupling lemma (since it “couples” singular subsets to their complement) allow us to establish a bound

on ‖GB(E,ω′)‖,

Lemma 3.8. There is an n such that

‖GB(E,ω′)‖ ≤ e11Mn1/2

.

Proof. Fix x, y ∈ B. We have to distinguish three cases:

(a) x, y ∈ Λ

(b) x, y ∈ B\Λ
(c) x ∈ Λ, y ∈ B\Λ

(a): ExpandingGB alternatingly along ∂Λ and ∂Λ′ (where Λ′ :=
⋃
Q′), and denoting the corresponding

operators Γ and Γ′, respectively, we obtain

GB(x, y) = [GΛ′ +GΛ′Γ′GB\ΛΓGΛ′ +GΛ′Γ′GB\ΛΓGΛ′Γ′GB\ΛΓGΛ′ + . . . ](x, y) ,

since here GB\Λ(·, y) = 0. Now, clearly ‖GΛ′‖ ≤ maxQ′‖GQ′‖ as HΛ′ is block diagonal. Thus, we

estimate each factor of GΛ′(u, v) by (3.11), and because

dist(∂Λ′, ∂Λ) ≥ n

we estimate with (3.10), that is, (3.9),

|[Γ′GB\ΛΓ](u, v)| ≤ e−c1|u−v| ≤ e−c1n

to get

|GB(x, y)| ≤ e10Mn1/2

(1− |∂Λ||∂Λ′|e−c1n+10Mn1/2

)−1 ≤ 2e10Mn1/2

,

for n large enough.

(b): Since now GΛ′ (·, y) = 0 a similar expansion looks like

GB(x, y) = [GB\Λ′ +GB\Λ′Γ′GB\Λ +GB\Λ′Γ′GB\ΛΓGΛ′Γ′GB\Λ + . . . ](x, y) .

By the remark after (3.9) we have ‖GB\Λ′‖ ≤ 2nd+1en
1/2

, and thus

|GB(x, y)| ≤ 2nd+1en
1/2

+ |Γ′|(2nd+1en
1/2

)2(1− |∂Λ||∂Λ′|e−c1n+10Mn1/2

)−1

≤ e3n
1/2

,

for n large enough.

(c): A very similar expansion again is in this case

GB(x, y) = [GΛ′ +GΛ′Γ′GB\Λ +GΛ′Γ′GB\ΛΓGΛ′Γ′GB\Λ + . . . ](x, y) ,

and yields

|GB(x, y)| ≤ e10Mn1/2

+ |Γ′|2nd+1en
1/2

(1− |∂Λ||∂Λ′|e−c1n+10Mn1/2

)−1

≤ 2e10Mn1/2

,

for n large enough.
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As seen previously, we can bound the norm via matrix elements,

‖GB(E,ω′)‖ ≤ sup
x∈B

∑

y∈B
|GB(E,ω′;x, y)| ,

and thus obtain the desired result

‖GB(E,ω′)‖ ≤ Nd+1
1 2e10Mn1/2 ≤ e11Mn1/2

.(3.12)

�

Third step: Now that we have a bound on ‖GB(E)‖ for at least one point in probability space, we

have all the requirements to invoke the Cartan-type lemma proven in Appendix B to prove the norm

estimate with high probability on the whole of B,

Lemma 3.9. There is an n such thatP[‖GB(E)‖ > eN
1/2
1 ] ≤ N−2k

1 .

Proof. We apply Lemma B.4 (with n = m = |Λ|, N = |B|) to the real analytic matrix function

on (R3)Λ

A(xj , j ∈ Λ) = HB(ωj (j ∈ B\Λ), xj (j ∈ Λ))− E

to get P[x ∈ (R3)Λ : ‖GB(E;ωj (j ∈ B\Λ), xj (j ∈ Λ))‖ > et]

< C|Λ|eC|Λ|e
− c′t

|Λ|Mn1/2 < M(21M2n)de−C(M2n)−d−1t .

Denote by Ω3 ⊂ Ω the set

{ω ∈ (Ω1 ∪Ω2)
c : ω

∣∣
Λ
is such that ‖GB(E;ω)‖ > eN

1/2
1 } .

Combining all of the above we obtainP[‖GB(E)‖ > eN
1/2
1 ] ≤ P[Ω1 ∪Ω2 ∪ Ω3]

≤ n− 1
2kM + n− 1

2kM + (2N1)
dMM(21M2n)de−C(M2n)−d−1N

1/2
1

≤ 2N
− 1

16dkM
1 + CN

dM+ 1
8

1 e−CN
3
8
− 1

8d
1 ≤ N−2k

1 ,

for M > 32d, and n (and thus N1) large enough. �

All that remains is to verify the off-diagonal decay at scale N1,

Lemma 3.10. There is an n such that

|GB(E;x, y)| ≤ e−c1|x−y| for |x− y| ≥ N1

10
,

Proof. Recall Λ, the set introduced in the beginning of the proof, which is the union of at most

M cubes of size 4n ≤ diam(Q) ≤ 20M2n, and let us restrict to configurations where ‖GB(E)‖ ≤ eN
1/2
1 .

We use again the F-S coupling lemma, but this time in an inductive manner, for to get information on

the decay of off-diagonal elements it is required to couple one singular cube at a time. For, consider

the situation where we would like to couple a singular set S that consists of two or more disjoint cubes

of some fixed size. Choosing two points that are far apart compared to the size of a cube does then not

imply that at least one of the points is far away from ∂S, which is needed for the off-diagonal decay.

Therefore, define A := (B\Λ) ∪Q for some cube Q ⊂ Λ.
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Let x, y ∈ A : |x − y| > N1/(3
M−110). (We need the factor of 3M−1 in the denominator of the

separation of x and y for the coupling of the next M − 1 cubes.)

(a): x, y /∈ Q

GA(x, y) = [GA\Q +GA\QΓGAΓGA\Q](x, y) ,

where Γ here denotes the operator corresponding to ∂Q. Using the estimates established up to now (if

the distance of either x or y to ∂Q is less than n - it is not possible that both are since |x − y| is too
large - estimate the corresponding term with the norm bound, the rest goes through analogously) we

obtain

|GA(x, y)| ≤ e−c1|x−y| + eN
1/2
1

∑

(z1,z
′
1)∈∂Q

(z2,z
′
2)∈∂Q

e−c1(|x−z1|+|z2−y|) .

It is clear that the norm estimate on GA is established in exactly the same way as for GB (possibly

having to exclude events of measure N−2k
1 , but MN−2k

1 < N−k
1 , for N1 large enough). Because

|x− y| ≤ |x− z1|+ |z1 − z2|+ |z2 − y|+ 2 and

|z1 − z2| ≤ 20M2n

we get

|GA(x, y)| ≤ e−c1|x−y|(1 + |Γ|2eN1/2
1 +20M2n+2)

≤ e−(c1−N−1/3
1 )|x−y|C|Γ|2eN

1/2
1 +20M2n+2−N2/3

1 /(3M10)

≤ e−(c1−N−1/3
1 )|x−y| =: e−c

′
1|x−y| ,

for N1 = n8d large enough.

(b): x ∈ Q, y /∈ Q

GA(x, y) = [GAΓGA\Q](x, y)

implies

|GA(x, y)| ≤ eN
1/2
1

∑

(z,z′)∈∂Q
|GA\Q(z

′, y)|

≤ eN
1/2
1 |Γ|e−c1|z′−y| ≤ e−c

′
1|x−y| ,

by using |x− y| ≤ |x− z|+ |z′ − y|+ 1 and the same arguments as in (a).

Repeat now the above steps for A→ A∪Q for some other cube Q ⊂ Λ, and |x−y| > N1/(3
M−210),

and so on until all singular cubes have been “coupled”, that is, A = B. In this way we obtain the

sought after decay

|GB(E;x, y)| ≤ e−c1|x−y| for |x− y| ≥ N1

10
,

with probability at least 1−N−k
1 . We denoted the resulting “mass” again by c1. �

Thus, the induction step is performed, and Lemma 3.5 proven as it is apparent that limi→∞ ci >

c/2, for N0 large enough. �
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4. Pure Point Spectrum

The vanishing of the diffusion constant so far proven is a pointwise result, that is we have showed

D(E) = 0 for energies E at which G(E) satisfies certain hypotheses. As argued in Chapter 2 it may be

mathematically more satisfactory to determine the nature of the spectrum, or at least part of it. There

are several ways of deducing pure point spectrum from the exponential decay of the Green function. We

have used the simplest, due to Simon and Wolff [52], in Chapter 2, but their method is unfortunately

not applicable for matrix-valued potentials or potentials with too singular a probability density. We

will pursue another method using generalized eigenfunctions, closely following [9].

The problem with the direct application of Lemma 3.5 is that for proving almost sure point spec-

trum in an interval I the Green function G(E,ω) needs to be small for all energies E ∈ I simultaneously

(essentially because uncountable intersections of sets of measure 1 can have measure< 1). The following

remark is essential and follows easily by considering (1.10):

Remark. Regularity at scale l is stable under perturbation of the energy of order e−l
1
2 +.

The key observation for proving the absence of continuous spectrum is a representation of the

spectrum of a Schrödinger operator [51] using generalized eigenfunctions.

Definition 4.1. A function ψ on Zd is called a generalized eigenfunction with generalized eigen-

value E of a self-adjoint operatorH , if ψ is a polynomially bounded solution to the equation Hψ = Eψ.

In the same work it is proven that

σ(H) = {E : E is a generalized eigenvalue of H} .

All we need to show is therefore that any generalized eigenfunction of H(ω) is actually a true eigen-

function. Consider thus a polynomially bounded solution ψ(ω) of the equation

H(ω)ψ(ω) = E(ω)ψ(ω) ,

where E ∈ I, the set where we can prove the initial estimate of Lemma 3.5. To reduce notation, we

will in the following pretend that I = σ(H).

The problem is that E and ψ depend on the configuration ω. We want to get rid of that depen-

dence by finding a finite set of “deterministic” energies that are close to the generalized eigenvalues

E(ω). Because regularity is stable under slight perturbation of the energy, this will enable us to prove

regularity for all energies simultaneously.

Fix therefore a scale l and evenly spaced points (Ei)
N
i=1 ∈ σ(H) with spacing e−l

2
3 such that E1 =

inf σ(H) and |EN − supσ(H)| ≤ e−l
2
3 (N is of order el

2
3 , since the spectrum is compactly supported),

and consider cubes centered at 0 of size L := ℓ2 and 2L, denoted by ΛL and Λ2L, respectively. Consider

a tiling of Λ2L with l-cubes, denote it by F . Define

Fbad := {Λ ∈ F : GΛ(E,ω) is not regular} ,

and denote by C (= C(E)) the connected component of

ΛL ∪
⋃

Λ∈Fbad

Λ .(3.13)

Lemma 3.11. With probability larger than 1− l−
kl
4 we have that for all energies E

C ⊂ Λ 3
2L

with obvious notation.
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Proof. Assume that (3.13) is violated. Then there is a chain

Λ(1), Λ(2), · · · , Λ(r)

of distinct l-cubes ∈ Fbad such that Λ(1) ∩ ΛL 6= ∅, Λ(i) ∩ Λ(i+1) 6= ∅, and Λ(r) ∩ Λc
3
2L

6= ∅. In

particular,

r ≥ ℓ2
1

2ℓ
=
ℓ

2
.

The number of such r-chains is bounded by

(2ℓ2)d−1Crd ,

since there are at most Cd possibilities for Λ(i+1) given Λ(i). The probability of a given chain of

non-regular cubes is at most

ℓ−kr ,

so that the probability of (3.13) going awry is at most

(2ℓ2)d−1Crdℓ
−kr ≤ ℓ2d(Cℓ−k)l/2 < ℓ−

kℓ
3 ,

for l large enough. Adding these exceptional sets over all el
2
3 energies Ei (because of the aforementioned

stability of the regularity of cubes under perturbation of the energy) we get the final bound on the

probability

el
2
3 l−

kl
3 = el

2
3 −log l kl

3 < l−
kl
4 ,

for l large enough. �

Denote by ΩC the set of configurations such that for all energies E we have that C(E) ⊂ Λ 3
2L

. For

ω in ΩC consider a polynomially bounded solution of H(ω)ψ(ω) = E(ω)ψ(ω). For x ∈ Zd the center of

a E-regular cube Λl, and |x| ≤ lN for some N , |ψ(x)| is small for l large enough:

ψ(x) =
∑

(z,z′)∈∂Λl

GΛl
(E ;x, z)ψ(z′) ,

and hence

|ψ(x)| ≤ |∂Λl|e−c|x−z|(1 + |z′|)m ≤ Cld−1e−cllNm ≤ e−c
−l .(3.14)

For ω ∈ Ω∂ΛL , setting to zero the wave function ψ(ω) outside C yields an approximate eigenfunction

of HΛ2L(ω) to the generalized eigenvalue E(ω) of the full Hamiltonian H(ω):

(HΛ2L − E)1Cψ = (H − E)1Cψ

=[H − E ,1C ]ψ = [H,1C ]ψ = [−∆,1C ]ψ .

The last commutator is small because it is supported on ∂C and because cubes intersecting ∂C are by

construction regular:

|[−∆,1C ]ψ(j)|

= |
∑

|j−j′|=1

1C(j
′)ψ(j′)− 1C(j)

∑

|j−j′|=1

ψ(j′)| ≤
{
0 j /∈ ∂C
dM j ∈ ∂C

,

where M := max{|ψ(j′)| : j′ ∈ ∂C, |j − j′| = 1}. From (3.14) we get

‖(HΛ2L − E)1Cψ‖ = ‖[−∆,1C]ψ‖ ≤ d|∂C|1/2e−c−l ≤ d|Λ2L|1/2e−c
−l ≤ e−c

−l .(3.15)
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This implies that HΛ2L must have an eigenvalue close to E : Let ζα be the normalized eigenfunctions

of HΛ2L and Eα the corresponding eigenvalues. We write1ΛLψ =
∑

cαζα

and obtain with (3.15)

e−c
−l ≥ ‖

∑
cα(Eα − E)ζα‖2 =

∑

α

c2α(Eα − E)2

≥
∑

α:|Eα−E|>e−
c−
4

l

c2α(Eα − E)2 ≥
∑

α:|Eα−E|>e−
c−
4

l

c2αe
− c−

2 l ,

hence
∑

α:|Eα−E|>e−κl

c2α ≤ e−
c−

2 l ,

We can assume ψ(0) = 1, so in particular
∑
α c

2
α ≥ 1, and therefore

dist(E , σ(HΛL)) ≤ e−
c−

4 l .(3.16)

Obviously, σ(HΛ2L) depends only on the random variables inside Λ2L, that is on {ωj : j ∈ Λ2L}. This
is the (almost) “deterministic” set that lies close to E , alluded to above. Fix an energy E ∈ σ(HΛ2L )

and consider an overlapping covering of the ring Λ10L\Λ2L with cubes of size l (such that the allowed

perturbation of the energy is greater than e−
c−

4 l). The number of cubes in this covering is bounded

by (10L)d/ld = Cld, and so the probability that all cubes in the covering are E-regular is at least

1− Cldl−k = 1− Cld−k .

Adding these exceptional sets over all energies in σ(HΛ2L) (so that the cubes covering the ring are in

particular E(ω)-regular for all E(ω)) we get an exceptional set of size

Cld−kLd = Cl3d−k .

In the proof of Lemma 3.5 we have shown how to prove regularity of the ring Λ10L\Λ2L for the case

where we have an overlapping covering of regular cubes. We have thus reached our goal: For an

ω ∈ ΩC we have that for (ωj)j∈Λ10L\Λ2L
of probability (restricted to the ring) at least 1 − Cl3d−k the

ring Λ10L\Λ2L is E(ω)-regular for all E(ω). Because of independence we finally obtainP[ω : Λ10L\Λ2L is E(ω)-regular for all E(ω)]
≥ (1− l−

kl
4 )(1 − Cl3d−k) ≥ 1− Cl4d−k .(3.17)

Now, with the exponential decay of the Green function established for rings on all scales with probability

approaching 1, the proof that H has almost surely pure point spectrum is straight-forward (and does

not need independence).

Definition 4.2. For an orthonormal basis {ψi}∞i=1 of Hilbert space and a sequence (ai) with

ai > 0,
∑
i ai < ∞, define the Borel measure ρ(B) :=

∑
i ai〈ψi ,1B(H)ψi〉 =

∑
i aiµψi(B), whith µψ

the spectral measure of H associated to ψ. Any Borel measure equivalent to ρ is called a spectral

measure. This equivalence class is independent of {ψi} and {ai} as ρ(B) = 0 if and only if 1B(H) = 0.

Proof of point spectrum. Define the sequence of events

An :={ω : Λ5Ln\ΛLn is E(ω)-regular for all E(ω)} ,
where Ln = 2nL for some L large enough, and observe that

∑

n

P[Ac
n] ≤

∑

n

CL
1
2 (4d−k)
n <∞ ,
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for k large enough. Hence the Borel-Cantelli lemma says that for Ω∞ := ∩n≥1 ∪k≥n Ac
n, that is, “A

c
n

infinitely often”, we have P[Ω∞] = 0. So, for every ω ∈ Ωc
∞ there is anN(ω) such that Rn := Λ5Ln\ΛLn

is regular for all n ≥ N(ω) and all E(ω).
Let ψ be a generalized eigenfuction of H(ω) with generalized eigenvalue E(ω). Using the resolvent

identity we can write

ψ(x) =
∑

(z,z′)∈∂Rn

GRn(E(ω);x, z)ψ(z′) ∀x ∈ Rn .

Choose an arbitrary x with |x| ≥ LN(ω)+1. It is easy to see that there exists an n such that

dist(x, ∂R−
n ) ≥ |x|/3 ≥ Ln−1. We get

|ψ(x)| ≤ |∂Rn|e−c|x|/3(1 + |z′|)m ≤ CL(d−1)
n e−c|x|/3Lmn ,

from the polynomial boundedness of ψ. Apparently, CL
(d−1+m)
n ≤ ecLn−1/2 ≤ ec|x|/6, provided L is

large enough. We get

|ψ(x)| ≤ e−c|x|/6

for all x outside a cube of size LN(ω)+1. We have therefore proven that for almost every configuration

ω any generalized eigenfunction corresponding to a generalized eigenvalue decays exponentially and is

thus a true eigenfuction.

To conclude the proof we need the following well-known fact:

Lemma 3.12. For almost every ω ∈ Ω there exists a spectral measure ρω such that almost every

energy E, with respect to ρω, is a generalized eigenvalue.

Denote the set of ω such that there exists a spectral measure ρω with ρω-a.e. energy a generalized

eigenvalue by Ωgen. We have P[Ωc
∞ ∩ Ωgen] = 1 .

Fix now an ω ∈ Ωc
∞ ∩ Ωgen. If σcont ∩ I := σac ∪ σsc ∩ I 6= ∅ there exists a ψ ∈ Hac ⊕ Hsc such

that µψ(σcont ∩ I) > 0, in particular ρcontω (σcont ∩ I) > 0. But since ρω-a.e. energy is a generalized

eigenvalue, and thus because of what we have proven above a true eigenvalue, we have ρcontω ({E ∈
σcont ∩ I is an eigenvalue }) > 0, and because ρcontω is a continuous measure, we have that the number

of eigenvalues is uncountable, which is a contradiction as H is separable. Therefore σcont ∩ I = ∅

almost surely. �

4.1. Dynamical Localization. So far we have used only the polynomial boundedness of the

generalized eigenfunctions, and not yet the full eigenfunction expansion. The latter can be used to

prove dynamical localization, as opposed to the previously established spectral localization. We discuss

the case of a random potential in order not to burden the notation with spin indices. For an interval

I we define

r2(t, ω) := 〈e−itHω1I(Hω)δ0 , x
2e−itHω1I(Hω)δ0〉 ,

the mean square of the distance from the origin of a particle, initially localized (for simplicity ψ(0) = δ0)

with spectral support in I. We say that Hω exhibits dynamical localization in I if

sup
t∈R

r2(t, ω) <∞ almost surely.

See [16] for a discussion of the subtle difference between pure point spectrum with exponentially

decaying eigenfunctions and actual dynamical localization.

Use the generalized eigenfunction expansion to write

e−itHω1I(Hω)δ0 (x) =

∫

I

dρω(E)e−itEF (x, 0;E,ω) ,
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where F (x, 0;E,ω) is defined ρ(E)-almost everywhere by

(1 + x2)δ/2
N(E)∑

j=1

fj(x,E)fj(0, E) ,

with δ > d/2 and {fj}N(E)
j=1 orthogonal functions in ℓ2(Zd) such that ϕj(x,E) := (1 + x2)δ/2fj(x,E)

are solutions of

(Hω − E)ϕ = 0 ,

and N(E) counts multiplicity. Normalization is such that

N(E)∑

j=1

‖fj(E)‖2 = 1 .

We can thus estimate

r2(t, ω) = ‖x e−itHω1I(Hω)δ0 (x)‖2

≤ ρω(I)

∫

I

dρω(E)‖xF (0, x;E,ω)‖2 .

The almost sure exponential decay of the ϕj(x) established in the last section allows one to conclude

supt r
2(t, ω) <∞ with probability one. For details see [35].

5. Proof for Correlated Variables

In the proofs of the foregoing sections independence of the random variables is used only when

estimating the probability of occurence of several singular regions. All we need is that this probability

is low, which is particularly easy in the independent case, but independence is not essential. In regime

(A), for κ & 0, the random variables are weakly correlated, and our proof goes through essentially

unchanged. Using a cluster expansion we will prove in Appendix A, for the case of the particular

Gibbs measure (3.3) under consideration, the following estimate,

|P[ k⋂
i=1

ΩSi ]−
k∏

i=1

P[ΩSi ]| ≤ (k − 1)e−mL
k∑

i=1

|Si| ,(3.18)

for all events ΩSi supported on subsets Si which satisfy dist(Si, Sj) > L (see Appendix A for results

and definitions). If the random variables are weakly correlated in this sense, then the proofs still hold.

See [59] for the first result on localization for correlated random potentials. Their results are not strong

enough for the inductive Wegner scheme, though.

Proof of Lemma 3.5 for correlated variables. The proof proceeds along the very same

lines, albeit with the following modifications:

• In the first step, the singular n-regions are required to be at a mutual distance of at least n,

rather than being merely disjoint. So Ω̃1 ⊂ Ω is defined as the set of configurations where

there are M or more singular n-regions R ⊂ B that are at least n-separated. Then we have

with (3.18)P[Ω̃1] ≤ N
(d+1)M
1

(
n−kM + (M − 1)e−mnM(2n+ 1)d

)
≤ n− 1

2 kM ,

for k > 16d(d+1) and n large enough. We restrict then to configurations ω ∈ Ω̃c
1 where there

are at most M singular n-regions that are n-separated, or where there are (possibly more

than M) singular n-regions no M of which have mutual distance greater than n. In the latter

case, these cubes are contained in a cube of size (4M − 3)n. The estimates of the first step

are unchanged.
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• In the second step, modify the construction by considering n-separated rings Q̃(i), i = 1, . . . ,M

of thickness n around each cube Q ⊂ Λ, rather than touching rings. That is, consider a

sequence of equicentered cubes

Q = Q(0) ⊂
◦
Q(1) ⊂ Q(1) ⊂ · · · ⊂

◦
Q(M) ⊂ Q(M) ,

with
◦
Q(i) an n-neighbourhood of Q(i−1), and Q(i) an n-neighbourhood of

◦
Q(i). Define the

ring Q̃(i) to be Q(i)\
◦
Q(i).

Denote by ΩQ(i)
the set of configurations ω such that Q(i) is singular. By the induction

hypothesis we have P[ΩQ(i)
] ≤ n−k. Introduce now the set

Ω̃Q(i)
:= {ω : Q(i)(ω

∣∣
Q̃(i)

, ω′∣∣
◦
Q(i)

) is singular ∀ω′∣∣
◦
Q
} .

Evidently, Ω̃Q(i)
⊂ ΩQ(i)

, that is,P[Ω̃Q(i)
] ≤ P[ΩQ(i)

] ≤ n−k ,

and Ω̃Q(i)
has support in Q̃(i). Thus, define by Ω̃2 ⊂ Ω the set of configurations where for

some cube Q ⊂ Λ every ring Q̃(i) is singular, in the sense that the cube Q(i) is singular no

matter the configuration in
◦
Q(i). Its probability is bounded byP[Ω̃2] ≤ Nd+1

1

(
n−kM + (M − 1)e−mnM(2n+ 1)d

)
≤ n− 1

2kM .

So as in the independent case, we restrict to configurations in Ω̃c
2 where for each Q there is

an i such that the ring Q̃(i) is not singular. Replace each Q by its
◦
Q(i). Hence the new cubes

are still 6Mn-separated, and the rest of step two remains unchanged.

• The third step and the off-diagonal decay do not require independence and remain unchanged.

�

Proof of the analogon of Theorem 2.1 from Lemma 3.5. This proof does not need inde-

pendence and remains thus unchanged. �

Proof of absence of diffusion. Here, too, independence is not needed, and we may infer

absence of diffusion as we did for independent random variables. �

Proof of point spectrum. Independence is used when estimating the probability of occurence

of a chain of non-regular cubes. Simply modify the notion of connectedness in the definition of C: Two
l-cubes Λ,Λ′ are called “connected” if |∂Λ− ∂Λ′| ≤ l. The chain is modified to consist of

Λ(1), Λ(2), · · · , Λ(r) ,

such that |Λ(1) − ΛL| ≤ l, |Λ(i) − Λ(i+1)| ≤ l, and |Λ(r) − Λc
3
2L

| ≤ l. In particular,

(2ℓ)2d ≥ r ≥ ℓ2
1

4ℓ
=
ℓ

4
.

The number of such r-chains is bounded by

(2ℓ2)d−1C2r
d .

The probability of a given chain of non-regular cubes is at most

l−kr + (r − 1)e−mlrld ≤ e−
m
2 l ,

for l large enough. This estimate is good enough to proceed with the proof.
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The second instance where independence is used is (3.17), and since ΩC and the set of configurations

where the ring Λ10L\Λ2L is covered by only regular l-cubes are supported on sets a distance ≃ L/2

apart we have P[ω : Λ10L\Λ2L is E(ω)-regular for all E(ω) ∈ IE1 ]

≥ (1− l−
kl
4 )(1− Cl3d−k)− e−mL/2Cl2d ≥ 1− Cl4d−k .

for l large enough. The rest of the proof carries over verbatim. �

6. Verification of the initial conditions

All that is left to do is to establish the initial estimate of Lemma 3.5. Bourgain [8] showed how

the estimates can be proved for energies in the band tail. For notational convenience, set J = 1 and

v = 0. The upper edge of the spectrum is then E = 2d + 1. The Neumann series expansion of the

Green function

GN (E;ω) =
1

E

1

1− E−1HN (ω)

shows that we have to prove that the probability of ‖HN (ω)‖ > E − κ, for some small κ > 0, is low.

The basic idea is that for a ξ ∈ ℓ2(QN ;C2) with 〈HN (ω)ξ, ξ〉 > E − κ, neighbouring ξj , j ∈ QN have

to be close, and each ξj has to be close to the eigenvector with eigenvalue +1 of the random matrix

σ · hj . This implies that the +1-eigenvectors of the random matrices on different lattice sites have to

be close which happens with low probability as long as they are only weakly correlated.

Thus let us assume ‖HN(ω)‖ > E − κ. Then there is a ξ ∈ ℓ2(QN ;C2), |ξ| = 1 such that

〈HN (ω)ξ , ξ〉 =
∑

j∈QN

〈(σ · hj)ξj , ξj〉+
∑

|j−j′|=1

〈ξj , ξj′ 〉 > 2d+ 1− κ .

It follows that
∑

j∈QN

〈(σ · hj)ξj , ξj〉 > 1− κ(3.19)

∑

|j−j′|=1

〈ξj , ξj′〉 > 2d− κ .

From the latter follows the closeness of neighbouring ξj : For
∑

j

〈ξj , ξj+eα 〉 > 1− κ ,

with eα the unit vectors of Zd, implies
∑

j

|ξj − ξj+eα |2 = 2−
∑

j

2Re〈ξj , ξj+eα 〉 < 2κ .(3.20)

Furthermore, for K ∈ Zd, |Kα| ≤ l we have
∑

j

|ξj − ξj+K |2 ≤
∑

j

(|ξj − ξω1 |+ |ξω1 − ξω2 |+ · · ·+ |ξωn − ξj+K |)2 ,

where the ωi = ωi(j) describe a shortest path from j to j + K, and n = |K1| + · · · + |Kd| − 1. We

obtain
∑

j

|ξj − ξj+K |2 ≤
∑

j

(n+ 1)|ξj − ξωi |2 + · · ·+ (n+ 1)|ξωn − ξj+K |2

≤ (n+ 1)22κ ≤ 2d2ℓ2κ .(3.21)
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If we denote the eigenvectors corresponding to the eigenvalues +1 and −1 of σ · hj with η+j and η−j ,

respectively, we have the decomposition

ξj = αjη
+
j + βjη

−
j ⇒ 〈(σ · hj)ξj , ξj〉 = (|αj |2 − |β2

j |) ,

and from (3.19) we get
∑

j

|αj |2 − |β2
j | > 1− κ .(3.22)

Hence we obtain that up to scaling and a phase factor the ξj are close to the eigenvectors η+j :

∑

j

|ξj − eiϕj |ξj |η+j |2 =
∑

|(αj − eiϕj |ξj |)η+j + βjη
−
j )|2

=
∑

j

|αj − eiϕj |ξj ||2 + |βj |2 = 1 +
∑

j

|αj − eiϕj |ξj ||2 − |αj |2

=1−
∑

j

|αj |2 − (
√
|αj |2 + |βj |2 − e−iϕjαj︸ ︷︷ ︸

|αj |

)2

≤ 1−
∑

j

|αj |2 − (|αj |+ |β|j − |αj |)2 ≤ κ ,

where in the last step we used (3.22) . Combining this last result with (3.20) we find
∑

j

|ξj+eα − |ξj |eiϕjη+j |2

≤ 2
∑

j

|ξj+eα − ξj |2 + |ξj − |ξj |eiϕjη+j |2 ≤ 2(2κ+ κ) = Cκ ,

and using this
∑

j

||ξj+eα |eiϕj+eαη+j+eα − |ξj |eiϕjη+j |2 ≤

2
∑

j

||ξj+eα |eiϕj+eαη+j+eα − ξj+eα |2 + |ξj+eα − |ξj |eiϕjη+j |2 ≤ 2(κ+ Cκ) = Cκ .

Furthermore we have
∑

j

|eiϕj+eα |ξj+eα |η+j+eα − eiϕj+eα |ξj |η+j+eα |
2

=
∑

j

(|ξj+eα | − |ξj |)2|η+j+eα |
2 ≤

∑

j

|ξj+eα − ξj |2 ≤ 2κ ,

and hence finally
∑

j

||ξj |eiϕj+eα η+j+eα − |ξj |eiϕjη+j |2

≤ 2
∑

j

||ξj |eiϕj+eα η+j+eα − |ξj+eα |eiϕj+eαη+j+eα |
2 + ||ξj+eα |eiϕj+eαη+j+eα − |ξj |eiϕjη+j |2

≤ 2(2κ+ Cκ) = Cκ .

Since
∑

j |ξj |2 = 1 we rewrite the last result as

∑

j

|ξj |2|〈η+j , η+j+eα 〉| > 1− Cκ .
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From the bound (3.21) on the distance of ξj and ξj+K for K as above we get
∑

j

||ξj |2 − |ξj−K |2||〈η+j , η+j+eα 〉| ≤
∑

j

(|ξj |+ |ξj−K |)||ξj | − |ξj−K ||

≤2

√∑

j

|ξj |2
√∑

j

|ξj − ξj−K |2 ≤ 2
√
2dl

√
κ .

Hence we find
∑

j

|ξj |2|〈η+j+K , η+j+eα+K〉| =
∑

j

|ξj−K |2|〈η+j , η+j+eα 〉| > 1− Cl
√
κ .(3.23)

If we take κ ∝ l−3 and average (3.23) over K ∈ {0, . . . , l − 1}d there is a j ∈ QN such that

∑

0≤Kα<l

|〈η+j+K , η+j+K+eα
〉| > qld ,

for any q < 1, for l and hence N large enough. Now, since E|〈η+1 , η+2 〉| < 1, a large deviation estimate

(see, for instance, [18]) givesP 1

ld

∑

0≤Kα<l

|〈η+j+K , η+j+K+eα
〉| > q


 ≤ e−cl

d

.

Thus it follows that for κ ∝ (kc logN)−3/dP [‖HN (ω)‖ > E − κ
]
≤ N−k .

With this information we can easily verify the conditions of Lemma 3.5 for energies in the band tail.

Let I be the interval [E−(logN0)
−4, E] and δ = (logN0)

−3/d−(logN0)
−4. Since dist(σ(HN0), E)) > δ

with probability at least 1−N−k
0 we obtain for E ∈ I

‖GN0(E)‖ ≤ 1

δ
≤ (logN0)

4

(4 − 3/d) log logN0
< eN

1/2
0 and

|GN0(E + i0;x, y)| ≤ e−c|x−y| ,

where c < 1
2 ((4 − 3/d) log logN0)

1/2/(logN0)
2, the latter from the Combes-Thomas argument. Thus

it is apparent that we have established the conditions for Lemma 3.5 in the required range of inital

scales between n and N0.

The proof of Theorem 3.1 is finished. �

7. Percolation

Let us now turn to regime (B)—that is to the proof of Theorem 3.2. Magnetic moments are placed

according to a site percolation process with parameter x. The moments are distributed uniformely on

a sphere of fixed radius, but are required to be equal in a cluster of neighbouring moments. Although

it might seem that this perfect correlation of the magnetic moments across connected clusters throws

us well out of the regime of weak correlations where we could prove Anderson localization, there is

a result on the cluster size distribution which is equivalent to the exponential decorrelation used in

section 5.

Indeed, as long as we are below the percolation threshold, x < xc, we have the following result

about the cluster size distribution [31, 33],P[diam C(0) ≥ m] ≤ e−α(x)m ,
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where α(x) > 0, C(0) denotes the cluster 0 is in. Because of translation invarianceP[∃C ⊂ Λ : diam C ≥ m] ≤ P[⋃
j∈Λ

{diam C(j) ≥ m}] ≤ |Λ|e−α(x)m .(3.24)

There is a similar bound on the probability of large clusters for 1 > x > xc, namelyP[|C(0)| = m] ≤ exp(−β(x)m d−1
d ) ,

with β(x) > 0. However,P[|C(0)| ≥ m] =
∑

k≥m
P[|C(0)| = k] + P[0 lies in infinite cluster] ,

and the last term is a constant > 0 since x > xc, rendering the estimate useless. For the rest of this

section, we restrict ourselves therefore to x < xc.

With (3.24) at hand, we discard in the proof of Lemma 3.5 from the beginning a small set Ωperc of

configurations where there are clusters in the N1-region B of size larger than n/10, where n = N
1/8d
1 <

N
1/4d
0 , with N0 the initial scale in Lemma 3.5. We haveP[Ωperc] ≤ n8d2e−α(p)n/10 < n− 1

2kM ,

for n large enough. For configurations in Ωc
perc we can repeat the proof of Lemma 3.5 that we did

for the correlated case, as n-regions that are a distance n apart are independent because there are no

clusters of size bigger than n/10, and distinct clusters are by construction independent.

To see that the Cartan-type Lemma B.4 is still applicable we divide probability space into 2|B|

parts, one for each percolation configuration in B. Fix one of the 2|B| “percolation pictures”. As the

moments in one cluster are all identical we take as domain (S2)#{clusters} instead of (S2)|Λ|, and the

smallness of the exceptional set follows as in the appendix. Since the bound on the exceptional set is

certainly bounded by the one where each site is occupied Lemma B.4 carries over verbatim.

The deduction of pure point spectrum in the band tails from Lemma 3.5 is done as in the case of

correlated magnetic moments.

It remains to check whether the initial-scale estimates can still be established. Take QN an N -

region. For a normalized function ξ to have 〈HQN ξ , ξ〉 κ-close to the upper spectral edge, 2d + 1,

neighboring ξj have to be close to maximize the hopping term, and each ξj has to be close to the

eigenvector with eigenvalue +1 of the random matrix σ ·mj . In addition, sites j with mj = 0 should

be avoided: As in the previous section, we have

1− κ <
∑

j

〈(σ ·mj)ξj , ξj〉 =
∑

j:mj 6=0

〈(σ ·mj)ξj , ξj〉 .

On the other hand, we know that
∑

j〈ξj , ξj〉 = 1, so that subtraction yields
∑

j:mj 6=0

〈(1− σ ·mj)ξj , ξj〉+
∑

j:mj=0

〈ξj , ξj〉 < κ .

Since 1− σ ·mj is a positive matrix, we get the desired result
∑

j:mj=0

〈ξj , ξj〉 < κ .(3.25)

In the previous section, we established for any K ∈ Zd with |Kα| ≤ ℓ
∑

j

|ξj − ξj+K |2 ≤ 2d2ℓ2κ ,(3.26)

Since
∑

j |ξj |2 = 1 we know that there exists a j such that

|ξj |2 >
1

|QN |
=

1

Nd
=:

1

ℓ2d
.
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Set κ = 1
8d2 ℓ

−2d−2. Because
∑

j |ξj − ξj+K |2 ≤ 2d2ℓ2κ we have

|ξj − ξj+K |2 ≤ 2d2ℓ2κ =
1

4
ℓ−2d ,

and therefore

|ξj+K | = |ξj − (ξj − ξj+K)| ≥ |ξj | − |ξj − ξj+K | > 1

2
ℓ−d .

By (3.25) this implies that mj+K 6= 0. As this is true for all K ∈ Zd with |Kα| ≤ ℓ, we get that there

exists a cluster of size ℓ, but by the percolation estimate we know that with probability larger than

1− ℓ2d exp(−α(x)ℓ) there are no clusters of size larger than ℓ in QN . We have therefore proven thatP[‖HQN (ω)‖ > E − κ] ≤ N exp(−α(x)N1/2) ≤ N−k ,

for N large enough. The proof of Theorem 3.2 is finished as in the previous section. �

8. Bernoulli in the Lifshitz tails

In our analysis of EuxCa1−xB6 we have investigated so far both the regimes x above and below

the percolation threshold, but in either case we restricted attention to a weak external magnetic field.

In this section, we will analyze regime (C) (B → ∞) introduced at the end of Chapter 1. As argued

there, the spin up and spin down bands split, and each is described by a Bernoulli Hamiltonian

H(ω) = −∆+ v(ω) ,

where

vj(ω) ≡ v±j (ω) :=

{
v ± J , mj 6= 0

−v , mj = 0
.

We will concentrate on one subband, and for the sake of simplicity we choose x = 1
2 and shift the

energy such that

H(ω) = −∆+ λvj(ω) ,

where

vj(ω) :=

{
1 , with probability 1

2

−1 , with probability 1
2

.

The singular nature of the Bernoulli probability “density” makes it hard to prove a Wegner estimate

(see the discussion in Section 2), and not even the inductive scheme that we used to our advantage in

Section 3 is applicable (recall that a bounded probability density is required). We will therefore pursue

an old method [54] that gives at least the partial results which constitute Theorem 3.3. We should

also mention that the Bernoulli problem has been solved in the continuum [9], but with methods that

do not extend to the lattice.

We have explained in Section 2 why it is difficult to get a good estimate on the density of states

for the Bernoulli Hamiltonian. However, it stands to reason that in the extreme band tails—the so-

called Lifshitz tails—things might be easier. Lifshitz argued that near Einf := inf σ(H) the integrated

density of states n(E) should behave like exp(−c(E − Einf)
−d/2). His heuristic argument (see, for

instance, [14]) is very similar to the ideas we have encountered in the previous section: In order for

the Hamiltonian H(ω) to have an eigenvalue close to Einf the corresponding eigenfunction ξ has to

minimize both 〈−∆ξ , ξ〉 and 〈vξ , ξ〉. To minimize the former, the eigenfunction ξ has to be spread out

over a region of size at least |E −Einf |−1/2, see (3.26), comprising |E −Einf |d/2 sites. To minimize the

potential term, vj has to equal −1 for all the sites in the support of ξ, which happens with probability

(1/2)|E−Einf|d/2 because of independence.
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In this section, we will prove rigorously that for a Bernoulli potential the integrated density of

states is indeed exponentially small:

Lemma 3.13. For d = 3 and E ∈ [−λ,−cλ2+O(λ4−)], the integrated density of states satisfies the

estimate

n(E) ≤ C exp(−1

2
(2λ)−

1
2 ) ,

where c, C > 0 are constants. We defer the proof for the moment and will instead give a proof of

Theorem 3.3 using the smallness of the integrated density of states in the Lifshitz tails. See Section 2

for notions and definitions.

Proof of Theorem 3.3. As noted earlier on in Chapter 2, we can determine the spectrum of a

random Schrödinger operator with probability one,

σ(H(ω)) = [−λ, 4d+ λ] almost surely .

(From the point of view of notation, it is convenient to work in this section without the subtraction

of 2d from the discrete Laplacian). We focus on the lower edge of the spectrum, that is, [−λ, 0]. The

task at hand is to establish conditions (i), (ii) of Theorem 2.1, as Lemma 3.5 is not applicable for too

singular a probability density.

The following considerations show that the task indeed boils down to finding a good bound on the

integrated density of states n(E). Recall that we denoted by NΛ(E) the number of eigenvalues of HΛ

less than E, for some Λ ⊂ Zd. The probability that there is an eigenvalue below E is bounded in terms

of n(E): P[NΛ(E) ≥ 1] = E1{NΛ(E)≥1} ≤ ENΛ(E)1{NΛ(E)≥1} ≤ ENΛ(E) .(3.27)

Since Dirichlet boundary conditions raise eigenvalues [14] we haveENΛ(E) ≤ |Λ|n(E) .(3.28)

We combine this result with the following lemma to obtain exponential off-diagonal decay with prob-

ability at least 1− |Λ|n(E).

Lemma (Combes-Thomas). Whenever HΛ has no spectrum below E1 then for E < E1,

|GΛ(E;x, y)| ≤ 2

δ
exp(−1

2

√
δ|x− y|),(3.29)

where δ := |E − E1|.

Proof. Let U(a) be the operator of multiplication by ea·x (actually ea·x ⊗ 1, but we drop the

identity matrix for sake of clarity), and compute

[U(−a)(HΛ − E)U(a)]f(x) =

[HΛ − E]f(x) +

d∑

j=1

(
(eaj − 1)f(x+ ej) + (e−aj − 1)f(x− ej)

)

=: [HΛ − E]f(x) + [QΛ(a)]f(x) ,

where ej denote the unit vectors in Zd. Thus, QΛ(a) is a bounded operator with

‖QΛ(a)‖ ≤
d∑

j=1

2(coshaj − 1) ≤ C

d∑

j=1

a2j = C|a|2 ,

with C < 2 for a small. Hence, if we choose |a| =
√
δ/2C, we obtain

dist(σ(HΛ +QΛ(a)), E) ≥ δ

2
,
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and hence

‖[U(−a)(HΛ − E)U(a)]−1‖ = ‖[HΛ − E +QΛ(a)]
−1‖ ≤ 2

δ
.

Therefore we can bound the matrix elements

2

δ
≥ |[U(−a)GΛ(E)U(a)](x, y)| = |ea·(x−y)GΛ(E;x, y)| ,

from which the claim follows choosing a ‖ (x− y) . �

Since the spectrum of H(ω) is compactly supported we can easily get a bound for n(E): Using

2

π

∫ E

−∞
dE′ ε

(x− E′)2 + ε2
=

2

π
arctan(

E − x

ε
) + 1 ≥ Θ(E − x) ∀ε > 0 ,

where Θ is the Heaviside function, the spectral theorem provides the bound

2

π

∫ E

−∞
dE′ ImEG(E′ + iε; 0, 0) ≥ E 〈δ0 ,P(E,ω)δ0〉 = n(E) ∀ε > 0 .(3.30)

The last equality is due to translation invariance and is discussed in Appendix C.

Remark. Observe that the above estimate on n(E) holds for any ε > 0. It will turn out to be

essential to choose ε small but not too small, depending on λ.

This estimate implies that in order to get a bound on the integrated density of states, we have to

bound the imaginary part of the averaged Green function. The strategy is simple. If λ is small the

first thought is to expand the resolvent (−∆+ λv(ω)− E − iε)−1 in powers of λ around (−∆−E)−1.

But since we consider the average E (−∆− λv(ω)−E)−1, there may be an optimal energy E0 around

which to expand. This energy is found as follows. Formally, we have that

G(E + iε) =
1

−∆+ λv − E − iε
=

1

−∆+ E0 − iε+ λv + (−E0 − E)

= G0

∑

n≥0

((−λv + E + E0)G0)
n ,

where we have introduced the unperturbed Green function

G0(−E0 + iε) = (−∆+ E0 − iε)−1 .

The first terms are

G = G0 −G0[λv − (E + E0)]G0 +G0[λv − (E + E0)]G0[λv − (E + E0)]G0 + . . .

Using that E v = 0 and E v2 = 1, we obtainEG = G0 +G2
0[E + E0] + λ2G0(0, 0)G

2
0 +G3

0[E + E0]
2 + . . . .

Thus, we see that, in order for the λ2-term to vanish, we must choose

E + E0 = −λ2G0(−E0 + iε; 0, 0) = O(λ2)(3.31)

to arrive at EG = G0 +O(λ4).

To make the above considerations mathematically respectable, we iterate the second resolvent

identity

G(E + iε;x0, x) = G0(−E0 + iε;x0, x) +
∑

y

G0(−E0 + iε;x0, y)[−λv + (E + E0)]G(E + iε; y, x) ,

with 0 < E0 = −E − λ2Σ(E), where λ2Σ(E) is motivated by (3.31) and is defined in a self-consistent

way by

λ2Σ(E) = λ2(−∆− E − λ2Σ(E)− iε)−1(0, 0) .
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Since E0 has to be positive in order for G0(E0) to exist as a bounded operator we have as an upper

limit for E

E∗ = λ2∆−1(0, 0) < 0 .(3.32)

Indeed, we have that E0 ≥ Cλ4−δ if E ≤ E∗ − λ4−δ for a positive constant C, any small δ > 0 and λ

small enough, see [17]. (It will become clear later on why we need a lower bound on E0.) In Figure 2

we depict the expected nature of the spectrum. We will prove absence of diffusion for (most) energies

E ≤ E∗ − λ4−δ. It is expected that Hω has a mobility edge, separating pure point from absolutely

continuous spectrum, slightly above E∗, but this is well outside the scope of this thesis. Next, we

Figure 2. Expected nature of the spectrum of the Bernoulli Hamiltonian −∆ + λvj for

small values of λ.

iterate the resolvent identity M times with the intention of optimizing the truncation parameter M ,

later on, to minimize the remainder term. Setting W := −λv − λ2Σ and Gε := G(E + iε) we get

Gε =

M∑

m=0

Gε0 [WGε0]
m +Gε0 [WGε0]

M WGε .(3.33)

The dangling factor Gε in the remainder is estimated trivially by 1/ε. The key observation is that the

imaginary part of the first M + 1 terms on the right-hand side can be shown to be proportional to ε,

whereas the remainder term multiplying Gε is of order e−(2λ)−1/2

. Thus we choose ε2 = e−(2λ)−1/2

and

get the estimate

ImEG(E′ + iε; 0, 0) ≤ const e−
1
2 (2λ)

−1/2

,

which implies Lemma 3.13 by (3.30), as the spectrum is compactly supported.

Summarizing, with probability larger than

1− |Λ|Ce− 1
2 (2λ)

−1/2

(3.34)

there is off-diagonal exponential decay of the resolvent GΛ(E), for E ∈ [−λ,−cλ2 + O(λ−4−)], see

(3.32). Therefore, for any initial scale l0 there is a λ such that (1.11) holds with high probability.

Having established condition (1.11) of the multiscale analysis, we are looking for a Wegner estimate.

Because of the very singular nature of the Bernoulli potential, the inductive scheme devised in [8] does

not work. In [54], the following trick was introduced: For each scale ln, we define µ(J) = µln(J) to be

the expected number of eigenvalues of HΛln
in an interval J . The following easy estimate shows how

we have to proceed:P[dist(E, σ(HΛl
)) ≤ κ] ≤ ENΛl

(E + κ)− ENΛl
(E − κ) = µl(E − κ,E + κ) .

We see that (1.10) is fulfilled if we exclude a set of “singular” energies, and the following lemma shows

that this set of energies has very small measure.

Lemma. Let µ be a measure on an interval I. Let S be the set of energies E for which the measure

is singular at scale ε, that is at which

µ(E − ε, E + ε) ≥ ε1/2 .

If |S| denotes the Lebesgue measure of S then

|S| ≤ 2µ(I)ε1/2 .
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Proof. An easy application of Fubini’s theorem shows that

ε1/2|S| ≤
∫

S

dE

∫

I

dµ(x)1[E−ε,E+ε](x)

≤
∫

I

dµ

∫

I

dE1[E−ε,E+ε](x) = µ(I)2ε .

�

Appealing to multiscale analysis, we see that, at each scale ln ≃ l2
n

0 , we have to exclude energies

of measure C exp(− 1
2 l

1
22

n

0 ). Thus the total measure of energies we might have to excise is

|Eexc| = |
⋃

n

Eexc
n | ≤

∞∑

n=0

C exp(−1

2
l2

n−1

0 ) ≤ 2C exp(−1

2
l
1
2
0 ) .

Because the integrated density of states is so small, we can choose l0 to be exponentially large in λ−1/2−

(but not larger because of the factor Λl ∝ l3 in (3.34)), and hence the set of energies we have to excise

is of order exp(− 1
2 exp(

1
2λ

−1/2−)). Summarizing, for all energies in [−λ,−cλ2 +O(λ4−)]\Eexc we have

proven—provided of course that Lemma 3.13 holds—that the initial conditions for Theorem 2.1 hold

and we can prove absence of diffusion as in Chapter 2. �

Proof of Lemma 3.13. Recall that we have to estimate

ImEG(E + iε; 0, 0) .

We use the expansion (3.33) of the Green function,

Gε =

N∑

m=0

Gε0 [WGε0]
m
+Gε0 [WGε0]

N
WGε ,

which we write in abbreviated form

Gε(0, 0) =: AεN (0, 0) +
∑

y

BεN (0, y)Gε(y, 0) .

Thus we can estimate

ImGε(0, 0) ≤ ImAεN (0, 0) + |Im
∑

y

BεN (0, y)Gε(y, 0)|

≤ ImAεN (0, 0) +

(∑

y

|BεN (0, y)|2
)1/2(∑

y

|Gε(y, 0)|2
)1/2

≤ ImAεN (0, 0) +

(∑

y

|BεN (0, y)|2
)1/2

1

ε
,(3.35)

where we used that ImGε(0, 0) ≥ 0 (which follows easily from the spectral theorem), the Schwartz

inequality and the self-adjointness of H . Next, we average over the random vectors and obtain with

Jensen’s inequality

ImEGε(0, 0) ≤ ImEAεN (0, 0) +

(E∑
y

|BεN (0, y)|2
)1/2

1

ε
.(3.36)

Similarly, we have E |Gε(x, z)| ≤ E|AεN (x, z)|+
(E∑

y

|BεN (x, y)|2
)1/2

1

ε
.(3.37)

From now on we drop the superscript ε for sake of readability.
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Self-energy correction. We elucidate the simplification due to the energy shift λ2Σ by noting the

effect of averaging in the resolvent expansion. A first and second application of the resolvent equation

yields

G = G0 − λG0vG− λ2G0ΣG

= G0 − λG0vG0 + λ2G0vG0vG− λ2G0ΣG+ λ3G0vG0ΣG .

By definition of Σ it is clear that the “descendants” of the third term will cancel the ones of the fourth

upon averaging. This cancelation holds of course at every renewed application of the resolvent equation

such that the average of BN will in the end contain but one (of order λN+1 and thus subleading) term

containing Σ. The order N of the perturbation expansion will be chosen to minimize the remainder

term.

In computing the terms of the formE[G0(λvG0)
m](x, y)

=E[ ∑

x1,...,xm

G0(x, x1)λvx1G0(x1, x2) . . . λvxmG0(xm, y)] ,

it is easiest to use a graphical representation: G0(x, y) corresponds to a line joining x and y, while

the interaction v corresponds to a vertex. Averaging over the randomness yields terms represented

by graphs obtained by fusing an even number (since expressions involving an odd number of v vanish

upon averaging because of E v = 0) of vertices at a time until none remains unpaired (in particular, m

has to be even). Because

1 = Ev2n ≪ γ(n)
(Ev2)n = γ(n)

γ(n) = (2n)!
2nn! = number of full pair contractions

we can use Wick’s theorem to get an upper bound by considering only fusions of pairs of vertices. The

self-energy correction alluded to above means on the graphic level that we do not have to consider

graphs containing tadpoles, as they get canceled by the λ2Σ-shift in energy.

We begin with the term BN . In the graphical representation, |BN (0, y)|2 = BN (0, y)BN(0, y)
∗ is

given by Figure 3. The leading diagram that results upon averaging is the ladder diagram, see Figure

4. The resulting graph is depicted in Figure 5 and estimated in the following.

Figure 3. Graphical representation of the remainder term |BN |2.

Figure 4. Leading diagram in |BN (0, y)|2. Contraction is along dotted lines.
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Figure 5. The resulting graph.

Bounds on graphs. The asymptotic behaviour of the free propagator G0 for E0 > 0 is [36]:

|G0(E0; 0, x)| =
C

|x|e
−
√
E0|x|(1 + o(|x|)) , |x| → ∞

Since ultraviolet regularity is trivial because of the lattice we can bound the propagator by

(3.38) |G0(E0; 0, x)| ≤
C

|x|+ 1
e−

√
E0|x| .

Here and in the following, C denotes different, largely irrelevant constants. The ladder diagram is now

easily estimated:

λ2
∑

y

|G0(xN , y)|2 = λ2
∑

y

|G0(0, y)|2 ≤ Cλ2
∫

d3y
e−2

√
E0|y|

(1 + |y|)2

= λ2
C√
E0

∫
d3y

e−2|y|

(
√
E0 + |y|)2 ≤ C

(
λ2√
E0

)
=: A .

Summing next over xN , xN−1, . . . we get as a bound on the ladder diagram contributing to E |BN (0, y)|2
the value AN+1. We see that in order to make the remainder term E |BN |2 small we need to put a

lower bound on E0, namely E0 > λ4−δ, for some δ > 0. In particular, we have from the discussion

after (3.32) as an upper bound for E

E + λ4−δ ≤ E∗ .(3.39)

By construction, any graph contributing to E |BN |2 is one-particle irreducible. Tadpole (self-energy)

corrections to a propagator line are canceled by the energy shift λ2Σ, as explained above. The next-

order subgraph is shown Figure 6 and is estimated as follows:

Figure 6. Contraction along the dotted lines yields the lip diagram.

λ4
∑

x4

|G0(x1, x4)|3 ≤ Cλ4
∫

dx3|G0(0, x)|3 ≤ Cλ4
∫

d3x
e−3

√
E0|x|

(|x| + 1)3

= Cλ4
∫

d3x
e−3|x|

(|x|+√
E0)3

≤ Cλ4 log(E−1
0 ) .

The next-order subgraph that might occur is shown in Figure 7 and is bounded by Cλ6E
−1/2
0 ,

λ6
∑

x,y

G0(0, y)
2G0(y, x)

2G0(0, x)

≤ λ6E
−1/2
0

∫
dx3dy3

e−2|y|

(|y|+
√
E0)2

e−2|y−x|

(|y − x|+
√
E0)2

e−|x|

|x|+
√
E0

≤ Cλ6E
−1/2
0

∫ cutoff

dx3dy3
1

(|y|+√
E0)2

1

(|x|+√
E0)2

1

|x− y|+√
E0

.
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Now use

|x− y| =
√
x2 + y2 − 2|x||y| cos θ =

√
2|x||y|

√
x2 + y2

2|x||y| − cos θ

≥
√
2|x||y|

√
1− cos θ

=⇒ sin θ

|x− y| ≤
1√

2|x||y|
sin θ√

1− cos θ
=

√
1 + cos θ√
2|x||y|

≤ 1√
|x||y|

to see that the integral remains bounded for E0 → 0:

Cλ6E
−1/2
0

∫ cutoff

dx3dy3
1

(|y|+√
E0)2

1

(|x|+√
E0)2

1

|x− y|+√
E0

≤ Cλ6E
−1/2
0

∫ cutoff

d|x|d|y| |y|
2

|y|2
|x|2
|x|2

sin θdθ

|x− y|

≤ Cλ6E
−1/2
0

∫ cutoff

d|x|d|y| 1

|x|1/2|y|1/2 ≤ Cλ6E
−1/2
0 .

We can easily convince ourselves (see [20, 17] for a more thorough discussion of the various graphs

Figure 7. The moustache graph.

that occur) that the worst kind of graph is depicted in Figure 8, where the beads stand for one-particle

irreducible subgraphs. If we can bound the subgraphs between u2i−1 and u2i (the value of which we

Figure 8. Worst type of diagram in |BN |2.
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denote by fi(u2i−1 − u2i)) we go to Fourier space to localize it:

|
∫

d3x
∏

i

d3uiG0(0− u1)f1(u1 − u2) . . . fn(u2n−1 − u2n)G0(u2n − y)G0(y − vi) . . . G0(vj − 0)|

= |(G0 ∗ f1 ∗G0 ∗ f2 ∗ · · · ∗G0)(0)|

= C|
∫

d3k Ĝ0(k)f̂1(k)Ĝ0(k) . . . f̂n(k)Ĝ0(k)|

≤ C‖f1‖1 . . . ‖fn‖1
∫

d3k|Ĝ0(k)|n+2 ≤ C‖f1‖1 . . . ‖fn‖1
∫

d3k

(
1

k2 + E0

)n+2

≤ C‖f1‖1 . . . ‖fn‖1
1

E
n+1/2
0

.

As we have seen before, for E0 > λ4−δ the worst subgraph goes like λ4 log(E−1
0 ), so the worst graph is

bounded by

C

(
λ4 log(E−1

0 )

E0

)N/2
1√
E0

= C

(
λ2| logE0|1/2√

E0

)N
1√
E0

.

The number of graphs contributing to E |BN (0, x)|2 is less than (2N)!
2NN !

≃ 2N(N/e)N
√
2 < 2NN !, so

(∑

y

E|BN (0, y)|2
)

≤ 2NN !
C√
E0

(
λ2| logE0|1/2√

E0

)N
≤ N !((Cλ)δ

+

)N
1

λ2−δ
.

Choosing now N ∼= (Cλ)−δ renders this remainder term exponentially small in λ−δ:
(∑

y

E|BN (0, y)|2
)

≤ C′ 1

λ2−δ
NNe−N

√
NN−N ≤ C′e−C̃λ

−δ

.(3.40)

Equation (3.36) leaves us with bounding ImEAεN (0, 0). From the discussion of the term BN it is clear

that the worst graph is of the form depicted in Figure 9, and we estimate

Figure 9. Worst type of graph in AN .

T (m) :=Im
∑

xi

G0(0− x1)(G
2
0G0)(x1 − x2) . . . (G

2
0G0)(xm/2−1 − xm/2)G0(xm/2 − 0)

=Im G0 ∗ (G2
0G0) ∗ · · · ∗ (G2

0G0) ∗G0 (0) = Im

∫

[−π,π]3
d3k Ĝ0(k)Ĝ3

0(k) . . . Ĝ0(k) .

Considering

Im Ĝ0(k) = Im
1

ǫ(k) + E0 − iε
=

ε

(ǫ(k) + E0)2 + ε2
<

ε

(ǫ(k) + E0)2
,

and

Im Ĝ3
0(k) = Im

(
1

ǫ(k) + E0 − iε

)3

= Im

(
ǫ(k) + E0 + iε

(ǫ(k) + E0)2 + ε2

)3

< C
ε

(ǫ(k) + E0)6
,
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heeding the following calculation for the imaginary part of the product of complex numbers (x and y

denote the maximum of the |xk| and |yk|, respectively),

|Im
m∏

k=1

(xk + iyk)| ≤
∑

j odd

(
m

j

)
xm−jyj ≤ max{1, xm}

∑

j

(my)j

j!

< C
∞∑

j=1

(my)j

j!
= C(emy − 1) ≤ 2Cmy ,

for y small enough, and using the bounds on the diagram established above, we find

T (m) ≤ Cεm

(
λ2√
E0

)m
≤ Cmελδm ,

where we discard logarithmic factors. We have thus, recalling that there are less than 2m/2(m/2)!

graphs with m/2 vertices,

ImEAεN (0, 0) = ImE N∑

m=0

Gε0(λvG
ε
0)
m(0, 0) ≤

N∑

m=0

2m/2(m/2)!λδm/2C
m

2
ε .

Recalling N ∼= (Cλ)−δ we get

ImEAεN (0, 0) ≤ Cε

N∑

m=0

2m/2(m/2)!m
1

Nm/2
≤ Cε

N∑

m=0

m3/2
( m
Ne

)m/2
≤ Cε .(3.41)

Recalling (3.35) and combining (3.40) with (3.41) we obtain as a bound on the imaginary part of the

averaged Green function

ImEGε(0, 0) ≤ Cε+ C′e−cλ
−δ 1

ε
.

If ε & e−
c
2λ

−δ

then

ImE Gε(0, 0) ≤ Cε+ C′e−
c
2λ

−δ ≤ Cε .

From equation (3.30) we get, for all E satisfying condition (3.39),

n(E) ≤ 2

π

∫ E

dE′ ImEGε(E′; 0, 0) ≤ const ε = const e−cλ
−δ

,(3.42)

which is our desired bound on the integrated density of states. By a similar computation we get forE |AN (x, z)| E |AN (x, z)| ≤ Ce−
1
2

√
E0|x−z|

and hence E |G(x, z)| ≤ Ce−
1
2

√
E0|x−z| + 2Ce−

C̃
2 λ

−δ

,

for ε & e−
c
2λ

−δ

. �



Part 2

Friction





CHAPTER 4

Introduction

Although friction is ubiquitous as a phenomenon in the physical world it does not often make

an appearance in the mathematical literature. Indeed, we know of only a few instances of a rigorous

mathematical analysis of friction. The physics approach usually consists of adding explicitely a term

that mimicks the effect of friction to the equations governing the evolution of the system under consid-

eration. The physical system that we have in mind in the context of friction is that of a tracer particle

traveling in a dispersive medium. In a very crude approximation, we could study Newton’s equation

of motion for the particle where we lump together all the interaction of the tracer particle with the

medium in an effective friction term that is usually chosen proportional to the velocity,

mẍ(t) = −∇V (x(t)) − ηẋ(t) , η > 0 .(4.1)

For a confining potential, for instance V (x) = |x|2, the particle approaches the minimum of the po-

tential well, x = 0, exponentially fast with rate η
2m , as one computes easily. For a constant external

force, V (x) = −F · x, the particle reaches a limiting speed F
η proportional to the external force, with

exponential rate η
m . In particular, the particle comes to a full stop exponentially fast if the external

force vanishes.

A more elaborate approach is the Langevin equation that models the effects of the medium by a

memory and a random term, see [57] or for the quantum case [23]. The Langevin equation in one

dimension is given by

mẍ(t) = −∇V (x(t)) − η2
∫ t

0

µ(t− τ)ẋ(τ)dτ + ηζ(t) ,

where Newton’s equation has been modified by two terms, a mean force characterized by a memory

function µ(t), and a random force ζt given by a stationary Gaussian process with mean zero and

covariance

〈ζtζs〉 =
1

2π

∫
|ρ̂(k)|2 cos(k(t− s))dk

µ(t) = −∂t〈ζtζ0〉 =
1

2π

∫
k|ρ̂(k)|2 sin(kt)dk .

Here, η is a friction constant, and ρ(x) is a function describing the coupling between particle and

medium. The non-linear effective equation we will end up studying is structurally similar to the

Langevin equation insofar as there will also be a linear “memory term”, whereas non-linear (in the

velocity) terms will take the place of the random term ζt.

Rigorous results. In [10] the authors investigate how realistic the aforementioned “linear” model

of friction (4.1) is. They study rigorously a Hamiltonian model of a classical particle interacting with

a homogeneous dissipative medium. The medium consists of an independent scalar wave field at each

point in space. They prove that for wave medium dimension d = 3, and for c sufficiently large (where c

denotes the “speed of light” in the medium), the particle indeed exhibits the above behaviour of linear

friction. More precisely, they prove that the particle approaches a minimum of a confining potential

with exponential rate η
2 , and a limiting velocity v(F ) with exponential rate η in the case of a constant

59
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external force F . Here, η is some effective friction parameter depending on the form factor of the

interaction between the particle and the wave fields.

The assumption of independent scalar wave fields at each point in space seems too strong a sim-

plification, and it might be precisely this complete lack of memory effects that leads to the exponential

relaxation rates. In an earlier work, [40], a Hamiltonian model of a classical particle (with relativistic

kinetic energy) in a confining potential interacting with a scalar wave field is investigated. It is proven

that solutions of finite energy converge in some local sense to the set of stationary solutions as t→ ∞.

The relaxation rate depends on the spatial decay of the initial conditions and is exponential only for

rapid spatial decay of the latter.

The earliest attempt at understanding rigorously the friction effect felt by a particle in a dispersive

medium seems to be [15, 7]. There, the Pauli-Fierz model for a charged extended particle in a central

potential, interacting with the electro-magnetic field is studied. The authors find that, under some

conditions on the radius and the frequency of revolution of the particle, orbits that are initially close to

those allowing the purely mechanical circular motion stay close to these orbits for exponentially long

times.

More recently, Pulvirenti et al. [12] analyzed the time-evolution of a disk subjected to a constant

force interacting with a gas of free particles in the mean-field (Vlasov) approximation. They find that

for sufficiently small positive values of v∞− v0, the difference between the equilibrium velocity and the

initial velocity of the disk, the disk reaches v∞ with a power law t−(d+2), where d is the dimension of

the physical space in which the disk moves. They find that the power law is due to recollisions, and

that any Markovian approximation (which amounts to neglecting the recollisions) yields an exponential

rate.

The phenomenon of runaway particles is investigated in [47]. The authors look at a Hamiltonian

model of a charged particle under the influence of a strong constant electric field and interacting with

a medium that is described as a Vlasov fluid that is not perturbed by the particle. They find that

if the singularity of the particle-medium interaction is integrable and the electric field is large enough

then the particle escapes to infinity with a quasi-uniformely accelerated motion.

New Hamiltonian model of friction. Recently, some Hamiltonian models of friction have been

introduced in [26] and analyzed in [24]. This second part of the thesis is a contribution to that body

of work. In this introduction, we follow closely [24].

The goal is not to study an effective model for friction but to understand how friction comes about

in a Hamiltonian system. We shoot a tracer particle into a dispersive medium (here taken to be a

Bose-Einstein condensate) and investigate its trajectory. Because the tracer particle interacts with

the medium there should be some energy transfer from the particle to the medium where the energy

is dissipated, hence the particle should be slowed down—it experiences friction. As discussed above,

the rate of approach to some equilibrium position seems to depend sensitively on how “forgetful” the

medium is. We will not make any assumptions weakening the memory of the bath—such as independent

baths at each point in space, or a wave bath with high velocity of light such that energy is rapidly

dissipated away from the particle—so that it is not too surprising that we will find only a power-law

approach to equilibrium.

Mathematically, we consider a tracer particle of Mass M coupled to a bath of n identical bosons

of mass m confined to some cubic region Λ ⊂ R3,

H = − 1

2M
∆

(Λ)
X + V (X)−

n∑

i=1

1

2m
∆(Λ)
xi

+ g

n∑

i=1

W (xi −X) + λ
∑

i<j

φ(xi − xj) ,(4.2)

acting on the Hilbert space H(n) ⊗ HP := (P+L
2(Λ)⊗n) ⊗ L2(Λ). P+ denotes the projection onto

symmetric wavefunctions and is used because we are considering Bosons. The parameters g, λ ≥ 0

denote coupling constants, W is a fast decaying interaction potential between tracer particle and
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medium, φ is a potential, of positive type and also of fast decay at infinity, describing two-body

interactions between medium particles, and V is an external potential affecting only the tracer particle.

The Laplacians are required to have, for instance, periodic boundary conditions on ∂Λ.

We are interested in the thermodynamic limit Λ ր R3 of this system, with the particle density

ρ = n
|Λ| kept fixed. It is therefore convenient to pass to a second quantized description on Fock space

F+ ⊗ L2(Λ) :=
(⊕

n≥0 H(n)
)
⊗ L2(Λ) in order to accomodate an arbitrary number of bosons. To

understand the thermodynamic limit Λր R3 of this system is a mathematical problem that is not at all

understood rigorously. For our purposes it is enough, though, to carry out the following computations

on a formal level. Only the resulting model will be analyzed in a mathematically rigorous way. We

therefore pretend that we have given some sense to the limit Λ ր R3 and drop the reference to the

finite cube Λ in the following.

In second quantized notation, the Hamiltonian (4.2) takes the following form,

H =− 1

2M
∆X + V (X) +

∫
1

2m
∇a†(x)∇a(x)d3x

+ g

∫
W (x−X)

(
a†(x)a(x) − ρ

)
d3x

+
λ

2

∫ (
a†(x)a(x) − ρ

)
φ(x − y)

(
a†(y)a(y)− ρ

)
d3xd3y ,

where we modified the Hamiltonian so as to give states of small total energy the desired value ≈ ρ.

Note that we just added a (infinite) constant and a chemical potential, so that the new Hamiltonian

describes the same physics. Here, a†, a are creation and annihilation operators,

[a(x), a†(y)] = δ(x− y)1 , [a(x)♯, a(y)♯] = 0 .

We introduce a mean-field parameter N > 0

λ =
λ0g

2

N
, ρ =

Nρ0
g2

,

as we are interested in a high-density and weak-interaction limit, N → ∞. For our purposes, it is more

natural to work with rescaled and shifted creation and annihilation operators,

b♯N :=
1√
N
a♯ −

√
ρ0
g2
.

In the following, we consider a very heavy tracer particle with mass M = NM0 moving in an external

potential V (X) = Nv(X). In the new variables, the Hamiltonian is given by H = NH(N), where

H(N) =− 1

N2

1

2M0
∆X + v(X) +

∫
1

2m
∇b†N (x)∇bN (x)d3x

+ g

∫
W (x−X)[b†N(x)bN (x) +

√
ρ0
g2

(b†N (x) + bN(x))]d
3x

+
λ0g

2

2

∫ (
b†N(x)bN (x) +

√
ρ0
g2

(b†N(x) + bN (x))

)
×

× φ(x − y)

(
b†N (y)bN (y) +

√
ρ0
g2

(b†N (y) + bN (y))

)
d3xd3y .

Recall the Schrödinger equation,

i~∂tψt = Hψt ,

which in our case reads

i∂tψt = Hψt ⇐⇒ i
1

N
∂tψt = H(N)ψt ,
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so that 1
N is seen to play the role of ~. Note that the kinetic energy is usually proportional to ~2. This

is why we chose to scale the mass as M =M0N .

The “mean-field limit” N → ∞ corresponds therefore to a “classical limit” ~ → 0, and we obtain

the following classical Hamiltonian system. For a system in a finite periodic box, this could probably

be made rigorous, see [32, 39]. But again, for our purposes a heuristic derivation is sufficient. The

phase space of the system is given by

Γ = R
6 ×H1(R3) ,

where H1(R3) is the complex Sobolev space over R3. The Poisson brackets are

{X,X} = {P, P} = 0 , {Xi, Pj} = δij

{β♯, β♯} = 0 , {β(x), β̄(y)} = iδ(x − y) .

Finally, the Hamilton functional is given by

H =
P 2

2M0
+ v(X) +

∫ |∇β(x)|2
2m

d3x+ g

∫
W (x −X)

(
|β(x)|2 + 2

√
ρ0
g2

Re β(x)

)
d3x

+
λ0g

2

2

∫ (
|β(x)|2 + 2

√
ρ0
g2

Re β(x)

)
φ(x− y)

(
|β(y)|2 + 2

√
ρ0
g2

Re β(y)

)
d3xd3y .(4.3)

Setting α(x) = β(x) +
√

ρ0
g2 we see that the Hamiltonian takes the form

H =
P 2

2M0
+ v(X) +

∫ |∇α(x)|2
2m

d3x+ g

∫
W (x−X)

(
|α(x)|2 − ρ0

g2

)
d3x

+
λ0g

2

2

∫ (
|α(x)|2 − ρ0

g2

)
φ(x − y)

(
|α(y)|2 − ρ0

g2

)
d3xd3y ,

and for W = 0 we can read off the explicit ground state,

Pt ≡ 0

Xt ≡ X0 : a minimum of v(x)

αt ≡ α0 = eiθ
√
ρ0
g2
,

where eiθ is an arbitrary phase. Note that, for ρ0 > 0, the continuous gauge symmetry

α(x) → eiθα(x), α(x) → e−iθα(x)

of the Hamilton functional is spontaneously broken in the ground states, which corresponds to Bose-

Einstein condensation. It is expected that the Bose gas exhibits gapless (Goldstone) modes.

In the β-variables, the equations of motion are found to be

Ẋt =
Pt
M
,

Ṗt =−∇XV (Xt)− g

∫
∇XW (x−Xt)(|βt(x)|2 + 2

√
ρ0
g2

Re βt(x))dx,

iβ̇t(x) =(− 1

2m
∆+ gW (x−Xt))βt(x) +

√
ρ0W (x−Xt)

+λ0g
2[φ ∗ (|βt|2 + 2

√
ρ0
g2

Re βt)](x)(βt(x) +

√
ρ0
g2

).

For a pure Bose gas (that is, W = 0) and in the weak coupling limit λ0 → 0 while λ0ρ0 =const, the

frequency spectrum of the fluctuations β can be found: The equation for β takes the form

iβ̇t = − 1

2m
∆βt + 2λ0ρ0φ ∗ Re βt ,
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Figure 1. Interacting Bose gas: linear dispersion relation for small wave vectors. Mo-

mentum states with |P | > M0v∗ decay by emitting Cerenkov radiation, that is, the particle

experiences friction. Momentum states with |P | ≤ M0v∗ describe stable, ballistic propaga-

tion.

and writing β = ξ + iη we find

ξ̇t = − 1

2m
∆ηt

η̇t =
1

2m
∆ξt − 2λ0ρ0φ ∗ ξt .

Differentiating the lower line with respect to time and plugging in the upper yields

η̈t = − 1

4m2
∆2ηt +

1

m
λ0ρ0φ ∗∆ηt .

By Fourier transform we obtain

−Ω2η̂(k) = − 1

4m2
k4η̂(k)− k2

m
λ0ρ0(2π)

3
2 φ̂ η̂(k) .

The dispersion relation found is linear for small |k|:

Ω(k) = |k|

√
k2

4m2
+

(2π)
3
2λ0ρ0
m

φ̂(k) ≃ |k|

√
(2π)

3
2λ0ρ0φ̂(0)

m
=: |k|v∗ ,

where v∗ is the speed of sound in the Bose gas. In Figure 1 we plot the joint energy-momentum spectrum

of the tracer particle and the medium (for W = v = 0). We see that for momenta |P | > M0v∗ the

energy, P 2

2M0
, of the particle is embedded in the continuous energy spectrum. Resonance theory suggests

that as soon as the interaction is switched on (that is, W 6= 0) the state of the particle decays into

states of smaller velocity by exciting gapless modes in the Bose gas (Cerenkov radiation). The speed

of the particle diminishes until it has dropped below v∗. For the non-interacting Bose gas, the speed

of sound equals zero, so that the tracer particle comes to a full stop eventually.

In summary, the physical interpretation is that a particle shot into a condensed Bose gas experiences

friction by emission of Cerenkov radiation and is decelerated until its speed comes to lie below the

speed of sound in the Bose gas.



64 4. INTRODUCTION

Figure 2. Non-interacting Bose gas: quadratic dispersion relation, v∗ = 0, so that all

momentum states decay.



CHAPTER 5

Free Bose gas

1. Outline of strategy

We do not intend to study the full model but certain limiting regimes. We consider the free Bose

gas, that is the limit λ0 = 0. Furthermore, we consider the model without forcing, so v = 0. In this

case, the equations of motion are

Ẋt =
Pt
M0

Ṗt = −g
∫

R3

∇WXt(x)

(
|βt(x)|2 + 2

√
ρ0
g2

Re βt(x)

)
d3x(5.1)

iβ̇t(x) = hXtβt(x) +
√
ρ0W

Xt(x) ,

where WXt(x) :=W (x−Xt), and h
Xt :=

(
− 1

2m∆+ gWXt
)
.

For simplicity, we choose m = 1
2 and require the potential W

(A1) to be smooth,

(A2) to decay exponentially at infinity,

(A3) to be spherically symmetric,

(A4) to satisfy Ŵ (0) 6= 0.

Remark. Under these assumptions there are no bound states, nor zero-energy resonances for g

small.

In the main part of this chapter we prove that the tracer particle experiences friction and is

decelerated to a full stop in accordance with the heuristic findings of the previous chapter. We prove

a lower bound for the strength of this friction mechanism, namely |Pt| ≤ ct−1−ε, t → ∞, for some

explicit ε > 0 depending on the initial conditions. At large times, the medium is shown to exhibit

the expected behavior: It forms a “splash” that follows the motion of the tracer particle. Remarkably,

even though initial conditions β0 can be chosen to be very small (in L2-sense), the splash that the

medium forms is not square integrable. This is a consequence of the fact that we chose the medium to

be non-interacting. This fact is also responsible for making it difficult to “guess” the right asymptotic

behaviour of |Pt| on a heuristic level. See [26, 24] for a more thorough discussion.

In [24] the problem is analysed in the weak-coupling limit g → 0. They find completely analogous

results. Nevertheless, our findings are interesting in their own right as we treat a particle coupled fully

to the medium (as opposed to a weak coupling limit), which is usually a much harder problem. The

main technical difference is that the generator of time evolution of the reservoir, hXt = −∆+ gWXt ,

depends on time, for g 6= 0, through the position Xt of the particle. In addition, the generator of

translations, ∂x, no longer commutes with hXt .

In order to be able to state a precise theorem, introduce the continuous, monotonically increasing

function Ω : (−∞, 1) → R+,

Ω(δ) :=
1

π

∫ 1

0

1

1 + (1− r)
1
2

(1− r)−
1
2

(
1

1− 2δ
(r−

1
2 − r−δ) + r

1
2−δ
)
dr ,

65
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and denote by δ∗ the value at which Ω = 1,

Ω(δ∗) = 1 .

The computer says

δ∗ ≃ 0.66 .

In the subsequent sections, we will prove the following main theorem.

Theorem 5.1. For any δ ∈ I := (12 , δ
∗) there exists a g0 > 0 and an ε0 > 0 such that if 0 ≤ g ≤ g0

and ‖〈x〉3β0‖2, |P0| ≤ ε0 and ‖〈x〉3∂xβ0‖2 <∞ then

|Pt| ≤ Cδt
− 1

2−δas t→ ∞,

and

lim
t→∞

‖βt +
√
ρ0(h

Xt)−1WXt‖∞ = 0 .

In particular, the particle comes to rest after a finite distance: There is a X∞ ∈ R3 such that Xt → X∞,

and

βt → −√
ρ0(h

X∞)−1WX∞ /∈ L2(R3) .

Remarks.

• Assumption (A4), that is, Ŵ (0) 6= 0, is essential for the theorem to hold. However, it is

also this assumption which makes the fluctuation field βt evolve to a not square-integrable

function, as

̂(−∆)−1W = O(k−2), |k| → 0 .

• δ∗ is critical in the following sense,

δ → δ∗ as g0, ε0 → 0 .

Unfortunately, we do not know whether the decay exponent is universal (that is, independent

of initial conditions).

• It is not easy to guess the right power law from some linearization of the equations of mo-

tion. This is essentially because the eventual configuration of the fluctuation field βt is, as

mentioned, not square-integrable, has therefore infinite energy and is unphysical as an initial

condition.

The main strategy for proving Theorem 5.1 is easily explained. We split the equation for Ṗ. into a part

linear in P. and a non-linear part,

Ṗt = L1(P )(t) + L2(P )(t) +N (P,X, β)(t) .

Then we establish a decay estimate for the solution of one of the linear parts of the equation, call it

K(t):

K̇(t) = L1(K)(t) .

We can then rewrite P in terms of this decaying solution and the remaining terms

Pt = K(t)P0 +

∫ t

0

K(t− s)(L2(P )(s) +N (P,X, β)(s))ds .

Using the decay of K(t), the local existence of small solutions to the full equation and a bootstrap

argument (in the form of a contraction lemma) we prove the theorem.
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A little more detailed: By some elementary manipulations that we will do in the next section we

obtain the following equation for Ṗt,

Ṗt = 2ρ0Re 〈(1 + gh−1W )∂xW , e−iht(X0 −Xt) · ∂x(h)−1W 〉

− 2
ρ0
M0

Re 〈(1 + gh−1W )∂xW ,

∫ t

0

e−ih(t−s)Ps · ∂x(h)−1Wds〉

+ N (P,X, β)(t) ,

where N (P,X, β)(t) is a non-linear remainder. To reduce the amount of notation define

f(t) = 2
ρ0
M0

Re 〈(1 + gh−1W )∂x1W , e−iht∂x1(h)
−1W 〉 .

It is easy to see that f(t) is of order t−
3
2 as t→ ∞. We have thus

Ṗt = f(t)

∫ t

0

Psds−
∫ t

0

f(t− s)Psds+N (P,X, β)(t) .

We turn now to the linear equation

K̇(t) = −
∫ t

0

f(t− s)K(s)ds .

Essentially by Fourier transformation we prove

Lemma 5.2. The function K : R+ → R satisfies

K(t) = Ct−
1
2 +O(t−1) as t→ ∞.

Note that in the proof of the lemma use is made of the fact that Ŵ (0) =
∫
Wd3x 6= 0.

As advertised, we can now express Pt as

Pt = K(t)P0 +

∫ t

0

K(t− s)f(s)

∫ s

0

Ps1ds1ds+

∫ t

0

K(t− s)N (P,X, β)(s)ds .(5.2)

Remark. Superficially, all three terms are only of order t−
1
2 , that is, if Pt is to decay faster there

must be some cancelation.

We effect this cancelation in the following way. Integrate the equation for Ṗ from 0 to t to obtain

the equivalent equation

Pt = P0 −
∫ t

0

∫ s

0

f(s− s1)Ps1ds1ds+

∫ t

0

f(s)

∫ s

0

Ps1ds1ds

+

∫ t

0

N (P,X, β)(s)ds .

Multiply it by K(t) and subtract it from (5.2) to obtain

Pt(1−K(t)) =

∫ t

0

K(t)

∫ s

0

f(s− s1)Ps1ds1ds

+

∫ t

0

(K(t− s)−K(t))f(s)

∫ s

0

Ps1ds1ds

+

∫ t

0

(K(t− s)−K(t))N (P,X, β)(s)ds .
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The first term still does not have the required decay. We cancel the leading term of it by regrouping

the terms and using the explicit form of f(t) to obtain

Pt(1−K(t)) = K(t)Re 〈∂x1W̃ , (−ih)−1

∫ t

0

[e−ih(t−s) − e−iht]∂x1(h)
−1WPsds〉

+

∫ t

0

(K(t− s)−K(t))f(s)

∫ t

s

Ps1ds1ds

−
∫ t

0

K(t− s)f(s)ds

∫ t

0

Ps1ds1 +

∫ t

0

(K(t− s)−K(t))N (P,X, β)(s)ds .

Remark. The third term of the right hand side has good decay, as seen by
∫ t

0

K(t− s)f(s)ds =

∫ t

0

K(s)f(t− s)ds = K̇(t)

We know that K(t) = O(t−
1
2 ) as t→ ∞, so we may hope that K̇(t) = O(t−

3
2 ) as t→ ∞, and this will

indeed turn out to be the case.

We make the self-consistent assumption that Pt = O(t−
1
2−δ) for some δ > 1

2 and find that all terms

on the right hand side have the appropriate decay. To invoke a contraction principle we would like to

divide by 1 −K(t) to get an integral equation for Pt. Since K(t) → 1 as t → 0 we need to be careful

for small values of t. However, since we know that K(t) is eventually small we can adopt the strategy

of “waiting for long enough”. We divide the time axis [0,∞) into two parts, a finite one [0, T ], and an

infinite one [T,∞), such that K(t) ≪ 1 for t ≥ T . In the finite part, standard local existence proofs

provide a solution Pt, t ∈ [0, T ], and in the infinite one we have—after division by 1−K(t)—an integral

equation for (Pt)T≤t≤∞ with an inhomogeneous part depending on (Pt)0≤t≤T ,

Pt = Y (χ[T,∞)P.)(t) +G(χ[0,T )P.)(t) ,

which is amenable to a contraction principle. For this purpose, introduce the family of Banach spaces

Bδ,T := {f : t
1
2+δf ∈ L∞[T,∞)}

with norm

‖f‖δ,T := ‖t 1
2+δf‖∞ .

The main technical task is now to show that, for T large enough, first the inhomogeneous term G(t)

is small in Bδ,T , and second that Y (·) : Bδ,T → Bδ,T is a contraction. The contraction lemma then

guarantees the existence of a solution in Bδ,T , which is the claim.

To prove these estimates we use the following asymptotic expansion of the propagator,

e−iht = Ct−
3
2B1 +O(t−

5
2 ) ,

valid in the topology of B(L2,3, L2,−3), where L2,s denotes a weighted L2 space,

L2,s = {f : ‖〈x〉sf‖2 <∞} .
This expansion is correct if h = −∆+ gW has no eigenvalues and no zero resonance, which is the case

for our choice of W and g small enough. The operator B1 is given by

B1(·) = 〈· , (1 + (−∆)−1gW )−11〉(1 + (−∆)−1gW )−11 ,

so that it is easy to see that in a term of the form

〈∂xW , e−iht . . .〉 ,

the leading term is in effect of order t−
5
2 for spherically symmetric W .

To facilitate later discussions we rescale the equation such that

2m = 1, |Ŵ (0)| = 1.
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2. Main theorem

Recall from Section 1 the continuous, monotonically increasing function Ω : (−∞, 1) → R+,

Ω(δ) :=
1

π

∫ 1

0

1

1 + (1− r)
1
2

(1− r)−
1
2

(
1

1− 2δ
(r−

1
2 − r−δ) + r

1
2−δ
)
dr ,

and recall that we have denoted by δ∗ the value at which Ω = 1,

Ω(δ∗) = 1 .

We have

δ∗ ≃ 0.66 .

For the system of equations (5.1) we prove the following main theorem,

Theorem 5.3. Suppose that in (5.1) the external potential vanishes, V = 0, and the potential W

is smooth, spherically symmetric, decays rapidly at |x| = ∞, and satisfies

|Ŵ (0)| 6= 0 .

Then, for any δ ∈ I := (12 , δ
∗) there exists a g0 > 0 and an ε0 > 0 such that if 0 ≤ g ≤ g0 and

‖〈x〉3β0‖2, |P0| ≤ ε0 and ‖〈x〉3∂xβ0‖2 <∞ then

|Pt| ≤ ct−
1
2−δas t→ ∞,(5.3)

and

lim
t→∞

‖βt +
√
ρ0(h

Xt)−1WXt‖∞ = 0 .(5.4)

In particular, the particle comes to rest after a finite distance: There is a X∞ ∈ R3 such that Xt → X∞,

and

βt → −√
ρ0(h

X∞)−1WX∞ /∈ L2(R3) .

The theorem will be proved in section 5.

Now we present the main difficulties in the proof and the strategies of overcoming them. Similar to

what was proved in [24], we start with decomposing the equation for Ṗt into a linear and a non-linear

part. The linear equations can be solved explicitly, and we use the solution to rewrite the equation for

Pt in terms of this solution and the non-linear part. Since we expect that the momentum Pt decays

for large times t it is reasonable to assume that eventually the dynamics is dominated by the linear

part. The detailed knowledge of the decay properties of the solution to the linear part and standard

dispersive estimates enable us to use a contraction principle to establish the claim.

There is one major technical difference to the model studied in [24], namely that the generator

of time evolution, hXt = −∆ + gWXt , depends on time through the position Xt of the particle.

Mathematically, this makes it more involved to cancel various terms by symmetry considerations, and,

as additional complication, the generator of translations, ∂x, no longer commutes with hXt . We treat

this as follows. Since we expect that the particle will come to rest at some X∞ ∈ R3, we expand the

propagator U(t, s) gererated by hXt = −∆+ gWXt around the “instantaneous” propagator e−ihXt t, at

some large time t where

e−ihXt t = e−ihXT t
∣∣
t=T

is to be understood. By Duhamel’s principle we obtain

U(t, 0) = e−ihXt t − i

∫ t

0

e−ihXt(t−s)(Xs −Xt) · ∂xWXte−ihXtsds+ . . . .

To facilitate later discussions we rescale the equation such that

2m = 1, |Ŵ (0)| = 1.
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3. Reformulation of the problem and the local wellposedness

Recall the general plan outlined above of decomposing the equation for Ṗt into linear and non-

linear parts. In the following, we carry out this plan albeit in a slightly more elaborate form: We first

decompose the fluctuation field βt into a main part and a remainder, the ‖·‖∞-norm of which will go

to 0 as t→ ∞.

Since the generator hXt depends on the position Xt of the particle, we expand it around its value

at a position XT for some large time T . Define β̄X := −√
ρ0(h

X)−1WX and introduce a new function

δt by

βt =: β̄XT +
√
ρ0

N0∑

|α|=1

1

α!
(Xt −XT )

α∂αx (h
XT )−1WXT + δt .(5.5)

Then δt satisfies the equation

iδ̇t = hXT δt + g(WXt −WXT )δt − i

√
ρ0

M
Pt ·

N0∑

|α|=1

1

α!
α(Xt −XT )

α−1∂αx (h
XT )−1WXT −G1

δ0 = β0 − β̄XT −√
ρ0

N0∑

|α|=1

1

α!
(X0 −XT )

α∂αx (h
XT )−1WXT ,(5.6)

where αXα−1 means the vectorX = (α1X
(α1−1,α2,α3), α2X

(α1,α2−1,α3), α3X
(α1,α2,α3−1)), and the term

G1 is defined as

G1 := hXtrN0 ,

with rN defined by

β̄Xt =: β̄XT +
√
ρ0
∑

|α|≤N

1

α!
(Xt −XT )

α∂αx (h
XT )−1WXT + rN ,

and estimated in the following lemma,

Lemma 5.4. For any N ∈ N

β̄Xt = β̄XT +
√
ρ0
∑

|α|≤N

1

α!
(Xt −XT )

α∂αx (h
XT )−1WXT + rN ,(5.7)

where ‖〈x〉3hXtrN‖2 ≤ CN |Xt −XT |N+1.

Proof. The claim follows immediately by Taylor-expanding the function β̄t around β̄T in the

vector-variable Xt−XT . To control the remainder we used the fact that (hX)−1 is a bounded operator

from L2,3 to L2,−3, and the exponential decay of W . �

We take the first N0 terms in the expansion of β̄Xt , where N0 := min{n ∈ N : (n+1)(δ− 1
2 ) ≥ 3

2},
because for T ≥ t, |Xt −XT | = O(t

1
2−δ), hence |Xt −XT |N0+1 = O(t−

3
2 ).

Using Duhamel’s principle we can rewrite δt in the form

δt = e−ihXT tδ0 − ig

∫ t

0

e−ihXT (t−s)[WXs −WXT ]δsds

−
√
ρ0

M

N0∑

|α|=1

1

α!

∫ t

0

e−ihXT (t−s)∂αx (h
XT )−1WXTPsα(Xs −XT )

α−1ds+ i

∫ t

0

e−ihXT (t−s)G1(s)ds(5.8)

The function δt admits the following estimate: Define an estimating function µ : R+ → R+ by

µ(t) := max
0≤s≤t

(1 + s)
1
2+δ|Ps| .(5.9)
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Proposition 5.5. If µ(T ) ≤ 1 then for any τ ≤ T we have

‖〈x〉−3
δτ‖2 . (1 + τ)−

1
2 .(5.10)

The proposition will be proved in Section 6.

In what follows we derive an equation for Ṗt. To this end, we rewrite equation (5.8) for δt as

δt = e−ihXT t√ρ0(X0 −XT ) · ∂x(hXT )−1WXT −
√
ρ0

M

∫ t

0

e−ihXT (t−s)Ps · ∂x(hXT )−1WXT ds

+ e−ihXT t(β0 − β̄XT +
√
ρ0

N0∑

|α|=2

1

α!
(X0 −XT )

α∂αx (h
XT )−1WXT )

− ig

∫ t

0

e−ihXT (t−s)[WXs −WXT ]δsds

−
√
ρ0

M

N0∑

|α|=2

1

α!

∫ t

0

e−ihXT (t−s)∂αx (h
XT )−1WXTPsα(Xs −XT )

α−1ds+ i

∫ t

0

e−ihXT (t−s)G1(s)ds

=:

6∑

n=1

Dn(t) ,

(5.11)

whereD1 and D2 will be the main terms (being linear in Pt) in the equation for Ṗt, whereasD3 through

D6 will constitute remainder terms.

Recalling (5.1) and using βT = β̄XT + δT we thus arrive at the following equation for Ṗt, where we

evaluate at t = T to effect the cancelations due to spherical symmetry, which is only perfect when all

centers agree:

Ṗt
∣∣
t=T

= − 2ρ0Re 〈∂xWXT , e−ihXT T (X0 −XT ) · ∂x(hXT )−1WXT 〉

− 2g
√
ρ0Re 〈β̄XT ∂xW

XT , e−ihXT T (X0 −XT ) · ∂x(hXT )−1WXT 〉

+ 2
ρ0
M

Re 〈∂xWXT ,

∫ T

0

e−ihXT (T−s)Ps · ∂x(hXT )−1WXT ds〉

+ 2g

√
ρ0

M
Re 〈β̄XT ∂xW

XT ,

∫ T

0

e−ihXT (T−s)Ps · ∂x(hXT )−1WXT ds〉

+ R(P, T ) ,

with R(P, T ) defined as

R(P, T ) = −2
√
ρ0〈(1 +

g√
ρ0
β̄XT )∂xW

XT ,

6∑

n=3

Dn〉 − g〈∂xWXT , |δT |2〉 .(5.12)

By shifting the center of integration and using the spherical symmetry of W the above equation is

equivalent to (k = 1, 2, 3)

Ṗ
(k)
T = − 2ρ0Re 〈(1 +

g√
ρ0
β̄)∂xk

W , e−ihT (X0 −XT )k∂xk
(h)−1W 〉

+ 2
ρ0
M

Re 〈(1 + g√
ρ0
β̄)∂xk

W ,

∫ T

0

e−ih(T−s)P (k)
s ∂xk

(h)−1Wds〉

+ R(P, T )k ,

or

ṖT = L(P )(T ) +R(P, T ) ,(5.13)
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where

L(P ) :=



L(P (1))

L(P (2))

L(P (3))


 .

Remark: From now on, we will write t for T for esthetic reasons.

The local well-posedness of this equation is standard, as summarized in

Theorem 5.6. The equation (5.13) is locally well-posed: If P0 ∈ R3 and 〈x〉3β0 ∈ L2(R3) then

there exists a time Tloc = Tloc(|P0|, ‖〈x〉3β0‖2) such that |Pt| <∞ for any time t ≤ Tloc. Moreover, for

any Tloc > 0 there exists an ε0(Tloc) such that if |P0|, ‖〈x〉3β0‖2 ≤ ε0(Tloc) then P satisfies the estimate

|Pt| ≤ T−2
loc t ∈ [0, Tloc] .(5.14)

Proof. The local well-posedness of (5.13) can be proved by standard techniques, hence we omit

the details here. The second assertion follows considering that if P0 = 0 and β0 = 0 then Pt = 0 is a

global solution. �

4. The existence of the solution in the infinite time interval

It is hard to derive a decay estimate for Pt directly from (5.13). In what follows we will rearrange

terms until a fixed point theorem becomes applicable.

We will express the solution of the full equation (5.13) in terms of the solution K(t) of one part of

the linear equation,

K̇(t) = ZRe 〈[1− g(h)−1W ]∂x1W ,

∫ t

0

e−ih(t−s)K(s)∂x1(h)
−1Wds〉 ,(5.15)

K(0) = 1.

Here the constant Z ∈ R+ is defined as

Z := 2
ρ0
M
.

In Section 7 we prove the following lemma,

Lemma 5.7. Let K(t) be a solution of equation (5.15) with K(0) = 1. Then there exists a real

constant C such that

ZK(t) =
3√
2
π− 5

2 (1 + Cg)t−
1
2 +O(t−1) .(5.16)

With K(t) at hand, we can write the Duhamel-like formula

Pt = K(t)P0 + Z

∫ t

0

K(t− s)Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ s

0

Ps1ds+

∫ t

0

K(t− s)R(P, s)ds .

We now repeat the same steps as in [24] to arrive at

Pt =
1

1−K(t)
A(P )(t) +

1

1−K(t)

∫ t

0

[K(t− s)−K(t)]R(P, s)ds ,(5.17)

where the linear operator A is defined by

A(P )(t) =− Z

∫ t

0

[K(t− s)−K(t)]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

Ps1ds1ds

+ Z

∫ t

0

K(t− s)Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds

∫ t

0

Ps1ds1(5.18)

+ ZK(t)Re 〈[1− g(h)−1W ]∂x1W , (−ih)−1

∫ t

0

[e−ih(t−s) − e−iht]Psds∂x1(h)
−1W 〉 .



4. THE EXISTENCE OF THE SOLUTION IN THE INFINITE TIME INTERVAL 73

Since we plan to use a fixed point theorem, we introduce a family of suitable Banach spaces,

Bδ,Tloc
:= {f : t

1
2+δf ∈ L∞[Tloc,∞)}

with norm

‖f‖δ,Tloc
:= ‖t 1

2+δf‖∞ .

We divide the time interval [0,∞) into two parts [0, Tloc) and [Tloc,∞). Introduce the Heaviside

function χTloc
:= 1[0,Tloc) and rewrite (5.17) as

Pt = Υ((1− χTloc
)P )(t) +Gt,(5.19)

where

Υ((1− χTloc
)P )(t) :=

1

1−K(t)
A((1− χTloc

)P )(t) +
1

1−K(t)

∫ t

0

[K(t− s)−K(t)][R(P, s)−R(χTloc
P, s)]ds

Gt :=
1

1−K(t)
A(χTloc

P )(t) +
1

1−K(t)

∫ t

0

[K(t− s)−K(t)]R(χTloc
P, s)ds .

The following two propositions, proven in Sections 8 and 9, show that for Tloc large enough, Υ((1 −
χTloc

)P )(t) : Bδ,Tloc
→ Bδ,Tloc

is a contraction, and Gt is small in Bδ,Tloc
if the initial conditions for P

and β are small enough, which will allow us to prove the main theorem.

Proposition 5.8. There is an M > 0 such that for Tloc ≥ M the mapping Υ((1 − χTloc
)P )(t) :

Bδ,Tloc
→ Bδ,Tloc

is a contraction, or more precisely:

(1) For any function q ∈ Bδ,Tloc

t
1
2+δ
∣∣ 1

1−K(t)
A((1 − χTloc

)qt)
∣∣ ≤ [

1

π
Ω(δ) + ε(Tloc)]‖qt‖δ,Tloc

,

where ε(Tloc) → 0 as Tloc → ∞.

(2) Recall that the solution P exists in the time interval [0, Tloc] according to Theorem 5.6. Suppose

that Q1, Q2 : [0,∞) → R3 are two functions satisfying

Q1(t) = Q2(t) = Pt for t ∈ [0, Tloc] ,

and in the interval [Tloc,∞)

‖Q1‖δ,Tloc
, ‖Q2‖δ,Tloc

≪ 1 .

Then,

t
1
2+δ
∣∣ 1

1−K(t)

∫ t

0

[K(s− t)−K(t)][R(Q1, s)−R(Q2, s)]ds
∣∣ . (‖Q1‖δ,Tloc

+ ‖Q2‖δ,Tloc
) ‖Q1 −Q2‖δ,Tloc

.

Proposition 5.9. Suppose that Tloc ≥M (see Proposition 5.8) and |P0|, ‖〈x〉3β0‖2 ≤ ε0(Tloc) (see

Theorem 5.6). Then Gt is in the Banach space Bδ,Tloc
, and its norm is small. Specifically, for any

t ≥ Tloc

t
1
2+δ
∣∣ 1
1−K(t)A(χTloc

P )(t)
∣∣ ≤ ε(Tloc)

t
1
2+δ
∣∣ 1
1−K(t)

∫ t
0 [K(t− s)−K(t)]R(χTloc

P, s)ds
∣∣ ≤ ε(Tloc) ,

with ε(Tloc) → 0 as Tloc → ∞.
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5. Proof of main theorem

As discussed before, we divide the time interval [0,∞) into two parts, [0, Tloc] and [Tloc,∞). The

existence of the solution in the finite domain was proven in Theorem 5.6. For the infinite domain,

Propositions 5.8 and 5.9 enable us to apply the contraction lemma on (5.19) to see that P ∈ Bδ,Tloc
.

By the definition of Bδ,Tloc
we have proven (5.3).

To prove (5.4), we estimate (5.20) in ‖·‖∞-norm and use standard L1 → L∞-bounds [65],

‖δt‖∞ ≤ ‖e−ihXT tδ0‖∞ + g

∫ t

0

‖e−ihXT (t−s)[WXs −WXT ]δs‖∞ds

+

√
ρ0

M

N0∑

|α|=1

1

α!

∫ t

0

‖e−ihXT (t−s)∂αx (h
XT )−1WXT Psα(Xs −XT )

α−1‖∞ds

+

∫ t

0

‖e−ihXT (t−s)G1(s)‖∞ds .

To control the various terms forming the first term on the right hand side we use

‖eiht∂αx (h)−1W‖∞ = O(t−
1
2 ) ,

which is implied by the observation that

∂xi(h)
−1W = (h)−1∂xiW − (h)−1g∂xiW (h)−1W ,

so that each term of eiht∂αx (h)
−1W is of the form

eihth−1f , f ∈ L1 ,

and the estimate

‖eihth−1‖L1→L∞ = O(t−
1
2 ).

For the second term on the right hand side use

‖e−ihXT (t−s)[WXs −WXT ]‖∞ ≤ (t− s)−
3
2 ‖WXs −WXT ‖1 . (t− s)−

3
2 .

For the term containing G1 use the Hölder inequality:

‖G1(s)‖1 = ‖〈x〉3G1(s)〈x〉−3‖1 ≤ ‖〈x〉3G1(s)‖2‖〈x〉−3‖2 =
π

2
‖〈x〉3G1(s)‖2 . (1 + s)−

3
2 ,

where we used the definition of G1 = hXrN0 and its estimation in Lemma 5.4.

To deal with the appearance of δs on the right hand side, introduce the function

Q̃(t) := max
0≤s≤t

s
1
2 ‖δs‖∞ ,

and use the above preparations to obtain

‖δt‖∞ ≤ ‖e−ihXT tδ0‖∞ + g

∫ t

0

(t− s)−
3
2 ‖δs‖∞ds

+

√
ρ0

M

N0∑

|α|=1

1

α!

∫ t

0

‖e−ihXT (t−s)∂αx (h
XT )−1WXT ‖∞(1 + s)−

1
2−δds+

∫ t

0

‖e−ihXT (t−s)G1(s)‖∞ds

. ‖e−ihXT tβ0‖∞ + ‖e−ihXT tβ̄XT ‖∞ +

N0∑

|α|=1

‖e−ihXT t 1

α!
(X0 −XT )

α∂αx (h
XT )−1WXT ‖∞

+ g

∫ t

0

(t− s)−
3
2 ‖[WXs −WXT ]‖1‖δs‖∞ds+

∫ t

0

(t− s)−
1
2 (1 + s)−

1
2−δds+

∫ t

0

(t− s)−
3
2 ‖G1(s)‖1ds

. t−
3
2 ‖β0‖1 + t−

1
2 + t−

1
2 + gQ̃(t)

∫ t

0

(t− s)−
3
2 (1 + s)−

1
2 ds+ t−

1
2 +

∫ t

0

(t− s)−
3
2 (1 + s)−

3
2ds

. t−
3
2 ε0 + gQ̃(t)t−

1
2 + 3t−

1
2 + t−

3
2 .



6. PROOF OF PROPOSITION 5.5 75

Combining the above estimates we obtain, for t = T ,

T
1
2 ‖δT‖∞ . gQ̃(T ) + 1 ,

or

Q̃(T ) . gQ̃(T ) + 1 ,

and so since g is small

Q̃(T ) . 1 .

Since βT = −√
ρ0(h

XT )−1WXT + δT , this proves (5.4).

The proof of the main theorem is finished. �

6. Proof of Proposition 5.5

For any time τ ≤ T we apply Duhamel’s principle to rewrite (5.6) as

δτ = e−ihXT τ δ0 − ig

∫ τ

0

e−ihXT (τ−s)[WXs −WXT ]δsds

−
√
ρ0

M

N0∑

|α|=1

1

α!

∫ τ

0

e−ihXT (τ−s)∂αx (h
XT )−1WXTPsα(Xs −XT )

α−1ds+ i

∫ τ

0

e−ihXT (τ−s)G1(s)ds

=:

4∑

n=1

Bn .

(5.20)

Now we estimate each term on the right hand side of (5.20). Recall the definition of µ(T ) in (5.9) and

the assumption µ(T ) ≤ 1. By the definition of δ0 and the propagator estimates of Proposition 5.15 we

have

‖〈x〉−3
B1‖2 = ‖〈x〉−3

e−ihXT τ [β0 − β̄XT −√
ρ0

N0∑

|α|=1

1

α!
(X0 −XT )

α∂αx (h
XT )−1WXT ]‖2

≤ ‖〈x〉−3e−ihXT τβ0‖2 + ‖〈x〉−3e−ihXT τ β̄XT ‖2

+
√
ρ0

N0∑

|α|=1

1

α!
|X0 −XT |α‖〈x〉−3

e−ihXT τ∂αx (h
XT )−1WXT ‖2

. (1 + τ)−
3
2 ‖〈x〉3β0‖2 + (1 + τ)−

1
2 + (1 + τ)−

3
2µ(T )

≤ (1 + τ)−
1
2 [1 + ε0 + µ(T )] ,

where in the third line we used the fact

|X0 −XT | ≤
∫ T

0

|Ps|ds . µ(T ) .

For the last line we recall the overarching hypothesis of Theorem 5.3 ‖〈x〉3β0‖2 ≤ ε0.

For B3 we have

‖〈x〉−3B3‖2 . µ(T )

∫ τ

0

(1 + τ − s)−
3
2 (1 + s)−

1
2−δds

. µ(T )(1 + τ)−
1
2−δ ;
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recall that we only consider δ ∈ (12 , δ
∗) and δ∗ < 1. Similarly for B4

‖〈x〉−3
B4‖2 . µN0+1(T )

∫ τ

0

(1 + τ − s)−
3
2 (1 + s)−

3
2ds

. µN0+1(T )(1 + τ)−
3
2 .

Since B2 depends on δτ , we have to proceed in a different way. Define the function Q by

Q(τ) := max
0≤s≤τ≤T

(1 + s)
1
2 ‖〈x〉−3

δs‖2 .

Then B2 admits the estimate

‖〈x〉−3
B2‖2 . g

∫ τ

0

(1 + τ − s)−
3
2 ‖〈x〉3(WXT −WXs)δs‖2ds

. gQ(τ)

∫ τ

0

(1 + τ − s)−
3
2 (1 + s)−

1
2ds

. gQ(τ)(1 + τ)−
1
2 .

In the first line, we use the fact

|〈x〉3WX· | . 〈x〉−3
,

which holds since |X·| is bounded.
Collecting the estimates above we find

(1 + τ)
1
2 ‖〈x〉−3

δτ‖ . gQ(τ) + 1 + ε0 + µ(T ) ,

which by definition of Q(τ) yields for any 0 ≤ τ ≤ T

Q(τ) . gQ(τ) + 1 + ε0 + µ(T ) .

As g is small we obtain

Q(τ) . 1 + ε0 + µ(T ) . 1 ,

which is the claim.

7. Proof of Lemma 5.7

We follow the strategy of [24]. Define Z := 2ρ0
M and a function G : R → C by

G(k + i0) :=
i

2
〈(h+ k + i0)−1∂x1(h)

−1W , [1− g(h)−1W ]∂x1W 〉

− i

2
〈[1− g(h)−1W ]∂x1W , (h− k − i0)−1∂x1(h)

−1W 〉(5.21)

Now, we relate G to the solution K:

Lemma 5.10. The solution K of (5.15) takes the form

K(t) = − 1

π

∫ ∞

−∞
Re

1

ik + ZG(k + i0)
cos ktdk.

In particular,

K(t) = 0 for t < 0.

The proof of Lemma 5.10 is done as in [24] and is not repeated here. With this explicit expression

for K, we can prove Lemma 5.7 with the help of the following lemma,
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Lemma 5.11. The function G(k + i0) satisfies

G(k + i0) =

{
(i− 1)π

2

3 (1 +O(g))k
1
2 + C1k +O(k

3
2 ) if k > 0

(−i− 1)π
2

3 (1 +O(g))|k| 12 + C2k +O(|k| 32 ) if k < 0
,

with C1, C2 being some constants.

Lemma 5.11 is proven at the end of this section.

Proof of Lemma 5.7. Decompose K(t) into two parts,

K(t) = K+(t) +K−(t) ,

with

K+(t) := − 1

π

∫ ∞

0

Re
1

ik + ZG(k + i0)
cos ktdk

and

K−(t) := − 1

π

∫ 0

−∞
Re

1

ik + ZG(k + i0)
cos ktdk

Define a new function g : R+ → R by

|k|− 1
2 g(|k| 12 ) : = − 1

π
Re

1

ik + ZG(k + i0)

= − 1

Zπ

ReG

( kZ + ImG)2 + (ReG)2

=
3(1 +O(g))

2π3Z
|k|− 1

2 (1 +O(k
1
2 )) ,

where we used the explicit form of G(k+i0) of Lemma 5.11. By construction, the function g is smooth

on [0,∞) and satisfies (because G(k) is bounded as k → ∞, see [49])

|g(ρ)| ≤ C(1 + ρ)−3 .

We can now directly compute as in [24]

K+(t) =

∫ ∞

0

k−
1
2 g(k

1
2 ) cos ktdk

= 2

∫ ∞

0

g(ρ) cos(ρ2t)dρ

= 2g(0)

∫ ∞

0

cos(ρ2t) +D

with D defined as

D := 2

∫ ∞

0

[g(ρ)− g(0)] cos(ρ2t)dρ .

The first term on the right hand side is the dominant one:

2g(0)

∫ ∞

0

cos(ρ2t)dρ = 2g(0)t−
1
2

∫ ∞

0

cosx2dx =
3(1 +O(g))

2
√
2Z

π− 5
2 t−

1
2 ,

where we used the Fresnel integral
∫∞
0 cosx2dx = (π/8)

1
2 .

We prove now that D is a correction of order t−
3
2 . This implies

K+ =
3(1 +O(g))

2
√
2Z

π− 5
2 t−

1
2 +O(t−1) .
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Since we find by completely analogous computation

K− =
3(1 +O(g))

2
√
2Z

π− 5
2 t−

1
2 +O(t−1)

the claim follows.

To estimate D first integrate by parts:

|D| = t−1|
∫ ∞

0

ρ−1[g(ρ)− g(0)]∂ρ sin(ρ
2t)dρ|

= t−1|
∫ ∞

0

H(ρ) sin(ρ2t)dρ|

with H(ρ) := ∂ρρ
−1[g(ρ) − g(0)] a smooth function satisfying |H(ρ)| . (1 + ρ)−2. Write H(ρ) =

H(0) + ρ[ρ−1(H(ρ)−H(0))] and perform again integration by parts to obtain

|D| = t−1|H(0)||
∫ ∞

0

sin(ρ2t)dρ|+ 1

2
t−2 lim

ρ→0

|H(ρ)−H(0)|
ρ

+
1

2
t−2|

∫ ∞

0

∂ρ[ρ
−1(H(ρ)−H(0))]|dρ .

The first term on the right hand side can be computed explicitely,

t−1|H(0)||
∫ ∞

0

sin(ρ2t)dρ| = t−
3
2 |H(0)|

√
π

8
,

and the second term is obviously of order t−2. The last term is controlled by

t−2

∫ ∞

0

(1 + ρ)−2dρ . t−2

by the fact that |∂ρ[ρ−1(H(ρ)−H(0))]| . (1 + ρ)−2. �

Proof of Lemma 5.11. We start by studying the function G(k), k ∈ C\R+ whose limit on the

real axis is G(k + i0), k ∈ R. Define a variable ζ by ζ := k
1
2 , where k is in the domain C\R+, and

k
1
2 = +k

1
2 > 0 for k > 0. By standard theory we know that G(k), k ∈ C\R+ is analytic in ζ.

The claim follows by expanding (h+ k)−1 around h−1. By classical results, see for example [34], if

the constant |g| in h = −∆+ gW is sufficiently small and W decays sufficiently fast at ∞, then h has

no zero-resonance or eigenvectors. This together with the discussions above and results in [34] imply

that

(h+ k)−1 = B0 + ζB1 + ζ2B2 +O(ζ3) ,(5.22)

in the topology of B(L2,3, L2,−3), Bi being operators in B(L2,3, L2,−3), namely

B0 = (1 + (−∆)−1gW )−1(−∆)−1

B1 =
1

4π
〈· , (1 + (−∆)−1gW )1〉(1 + (−∆)−1gW )1 .

We cannot apply this expansion directly because ∂x1h
−1W /∈ L2,3. So first, observe that 1 − gh−1W

is bounded and define for brevity

∂x1W1 := [1− g(h)−1W ]∂x1W ,
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so that W1 is rapidly decaying. Then use the second resolvent identity to rewrite the terms of G(k),

i

2
〈[(−∆± k + i0)−1 − (h± k + i0)−1gW (−∆± k + i0)−1]∂x1 [(−∆)−1 − (−∆)−1gWh−1]W ,∂x1W1〉

=
i

2
〈(−∆± k + i0)−1∂x1(−∆)−1W ,∂x1W1〉

(5.23)

− i

2
〈(−∆± k + i0)−1∂x1(−∆)−1gWh−1W ,∂x1W1〉

(5.24)

+
i

2
〈(h± k + i0)−1gW (−∆± k + i0)−1∂x1(−∆)−1W ,∂x1W1〉

(5.25)

− i

2
〈(h± k + i0)−1gW (−∆± k + i0)−1∂x1(−∆)−1gWh−1W ,∂x1W1〉 .

(5.26)

The term (5.23) is rewritten as

i

2
〈(−∆± k + i0)−1∂x1(−∆)−1W ,∂x1W1〉 =

i

6
〈(−∆± k + i0)−1W ,W1〉 ,

for which we can now use (5.22). The constant term in the expansion vanishes in the difference (5.21).

For the k1/2-term we get (consider first k > 0)

1

24π
k1/2(i− 1) 〈W , (1 + (−∆)−1gW 〉〈(1 + (−∆)−1gW ,W1〉

=
1

24π
k1/2(i− 1)

[
〈W , 1〉〈1 ,W 〉+O(g)

]
,

where we used W1 =W +O(g) in ‖·‖∞. Using 〈W , 1〉 = 〈1 ,W 〉 = (2π)
3
2 Ŵ (0) the last line equals

π2

3
k1/2(i− 1)(1 +O(g)) .

The term (5.24) is treated analogously and gives a contribution of order k
1
2O(g).

The term (5.25) is rewritten as

i

2
〈(h± k + i0)−1gW (−∆± k + i0)−1∂x1(−∆)−1W ,∂x1W1〉

=g
i

2
〈(−∆± k + i0)−1∂x1(−∆)−1W ,W (h± k − i0)−1∂x1W1〉 .(5.27)

On the right hand side of the scalar product, we can use the expansion for (h+ k− i0), as ∂x1W1 is in

the appropriate weighted L2-space:

W (h+ k − i0)−1∂x1W1 =WB0(∂x1W1) + k
1
2WB1(∂x1W1) + . . .(5.28)

Note that each factor in the expansion is a rapidly decaying function of x. We consider thus

〈(−∆± k + i0)−1∂x1(−∆)−1W ,V 〉 = 〈(ρ2 ± k + i0)−1ρ1ρ
−2Ŵ , V̂ 〉

=2π

∫ π

0

∫ ∞

0

(ρ2 ± k + i0)−1ρ cosϑŴ (ρ)V̂ (ρ, ϑ)dρ sinϑdϑ = O(1)

by scaling ρ→ ρk
1
2 . On the other hand, we know from general theory that

〈(−∆+ k + i0)−1∂x1(−∆)−1W ,V 〉(5.29)

is analytic in ζ = k
1
2 ∈ {Im ζ > 0}, so that the next order is k

1
2 . Plugging this and (5.28) into (5.27),

and noting that the constant term vanishes in the difference (5.21), we are left with a contribution of

order k
1
2O(g) for the term (5.25).
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The term (5.26) can be treated in the exact same way and yields a contribution of order k
1
2O(g2).

The case k < 0 is treated analogously. �

8. Proof of Point (1) of Proposition 5.8

Similar to [24] we decomposition the linear operator A, defined in (5.18), to be

A((1 − χTloc
)q) :=

3∑

k=1

Γk((1− χTloc
)q) ,

where the terms Γk are defined as

Γ1 := −Z
∫ t

0

[K(t− s)−K(t)]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

qs1(1− χTloc
(s1))ds1ds

Γ2 := Z

∫ t

0

K(t− s)Re 〈[1 − g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds

∫ t

0

qs1(1− χTloc
(s1))ds1

Γ3 := ZK(t)Re 〈[1− g(h)−1W ]∂x1W , (−ih)−1

∫ t

0

[e−ih(t−s) − e−iht]qs(1− χTloc
(s))ds∂x1(h)

−1W 〉 .

Define two continuous functions Ω1, Ω2 : (−∞, 1) → R+ by

Ω1(δ) :=
1

(1− 2δ)π

∫ 1

0

1

1 + (1− r)
1
2

(1 − r)−
1
2 [r−

1
2 − r−δ]dr(5.30)

Ω2(δ) :=
1

π

∫ 1

0

1

1 + (1− r)
1
2

(1 − r)−
1
2 r

1
2−δdr .(5.31)

Recall the function Ω(δ) introduced before Theorem 5.3. It is given by the sum Ω(δ) = Ω1(δ) +Ω2(δ),

and we compute

Ω(δ) =
1

πd(2d− 1)
+

1

2
√
π

(
2Γ(12 − δ)

Γ(1− δ)
− Γ(−δ)

Γ(32 − δ)

)
.

Note that Ω(δ) has only apparent singularities at δ = 0, 12 . It is a continuous, monotonically increasing

function

Ω : (−∞, 1) → R
+

satisfying

lim
δ→−∞

Ω(δ) = 0

Ω(0) = 1− log 4

π
≃ 0.56

Ω(
1

2
) = 1 +

log 4− 2

π
≃ 0.8 .

lim
δ→1

Ω(δ) = ∞

Numerical analysis suggests that Ω(δ) < 1 for all δ < 0.66.

Point (1) of Proposition 5.8 is covered by the following lemma,

Lemma 5.12. If qt ∈ Bδ,Tloc
then there is a small constant ε(Tloc) satisfying ε(∞) = 0 such that

|Γ1| ≤ t−
1
2−δ[Ω1(δ) + ε(Tloc)](1 +O(g))‖q‖δ,Tloc

|Γ3| ≤ t−
1
2−δ[Ω2(δ) + ε(Tloc)](1 +O(g))‖q‖δ,Tloc

|Γ2| ≤ t−
1
2−δε(Tloc)‖q‖δ,Tloc

,
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Proof. We start with Γ2. The second term in the product is easy to estimate,

|
∫ t

0

qs1(1− χTloc
(s1))ds1| ≤ (1 + t)

1
2−δ‖q‖δ,Tloc

.(5.32)

The first term is estimated as follows. Apply the Fourier transform to the convolution function, then

inverse Fourier transform to find

Z

∫ t

0

K(t− s)Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds = 1

2π

∫ ∞

−∞

F (k)

ik + ZG(k + i0)
e−iktdk ,

where F (k) is defined as

F (k) : = Z

∫ ∞

0

eiksRe 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds

=
Z

2

∫ ∞

0

eiks[〈[1 − g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉+ 〈[1 − g(h)−1W ]∂x1W , eihs∂x1(h)

−1W 〉]ds

=
Z

2
[〈[1 − g(h)−1W ]∂x1W , (−ih+ ik − 0)−1∂x1(h)

−1W 〉+ 〈[1 − g(h)−1W ]∂x1W , (ih+ ik − 0)−1∂x1(h)
−1W 〉]

= −ZG(k + i0) .

Around k = 0, the term F (k)
ik+ZG(k+i0) has the expansion

F (k)

ik + ZG(k + i0)
= −1 + Ck

1
2 +O(k) .

The constant term does not contribute, as is seen by integration by parts,
∫ ∞

−∞

F (k)

ik + ZG(k + i0)
e−iktdk =

∫ ∞

−∞

1

it
∂k

(
F (k)

ik + ZG(k + i0)

)
e−iktdk ,

and the Fourier transform of k
1
2 is of order t−

3
2 . The detailed computations are identical to [24] and

thus omitted. We obtain

|Z
∫ t

0

K(t− s)Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds| . (1 + t)−

3
2 .(5.33)

Combining (5.32) and (5.33), we have

|Γ2| . (1 + t)−
3
2 (1 + t)

1
2−δ‖q‖δ,Tloc

= (1 + t)−
1
2 (1 + t)−

1
2−δ‖q‖δ,Tloc

≤ T
−1

2

loc (1 + t)−
1
2−δ‖q‖δ,Tloc

,

which is the desired estimate.

Now, we turn to Γ1. Recall the asymptotic expression for K in Lemma (5.16),

ZK(t) =
3√
2
π− 5

2 (1 + Cg)t−
1
2 +O(t−1) ,

and observe that by Duhamel’s principle and the second resolvent identity there exists a C̃ ∈ R such

that

Re 〈[1− g(h)−1W ]∂x1W , e−iht∂x1(h)
−1W 〉 = 1

3
Re 〈W , ei∆tW 〉+O(gt−

3
2 )

= − 1

3
√
2
π

3
2 t−

3
2 (1 + C̃g) + o(t−

3
2 ) .(5.34)

Now to the proof of (5.34):

〈[1− g(h)−1W ]∂x1W , e−iht∂x1(h)
−1W 〉 = 〈∂x1W , ei∆t∂x1(−∆)−1W 〉 − g〈(h−1W )∂x1W , ei∆t∂x1(−∆)−1W 〉

−g〈V , ei∆t∂x1(−∆)−1Wh−1W 〉+ g〈V ,
∫ t

0

ei∆(t−s)W e−ihs∂x1h
−1W 〉 ,
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where we used the abbreviation

V = [1− g(h)−1W ]∂x1W .

Concerning the various terms on the right hand side we use the propagator estimates in 5.15 to get:

〈∂x1W , ei∆t∂x1(−∆)−1W 〉 = 1

3
〈W , ei∆tW 〉

g|〈(h−1W )∂x1W , ei∆t∂x1(−∆)−1W 〉| ≤ gt−
3
2 ‖〈x〉3(h−1W )∂x1W‖2‖〈x〉3W‖2

g|〈V , ei∆t∂x1(−∆)−1Wh−1W 〉| ≤ gt−
3
2 ‖〈x〉3V ‖2‖〈x〉3Wh−1W‖2

g|〈V ,
∫ t

0

ei∆(t−s)W e−ihs∂x1h
−1W 〉| ≤ g‖〈x〉3V ‖2

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3W e−ihs∂x1h

−1W‖2ds

.g

∫ t

0

(1 + t− s)−
3
2 (1 + s)−

3
2 ‖〈x〉4W‖2ds . gt−

3
2 .

This concludes the proof of (5.34).

We take the leading order terms K̃, M̃, Γ̃1 to approximate these functions,

ZK̃(t) :=
3√
2
π− 5

2 t−
1
2 (1 + Cg)

M̃ := − 1

3
√
2
π

3
2 t−

3
2 (1 + C̃g)

Γ̃1 := −Z
∫ t

0

[K̃(t− s)− K̃(s)]M̃ (s)

∫ t

s

qs1 [1− χT (s1)]ds1ds .

Now compute

|Γ̃1| ≤
1 +O(g)

2π

∫ t

0

[(t− s)−
1
2 − t−

1
2 ]s−

3
2

∫ t

s

|qs1 |ds1ds

≤ 1 +O(g)

(1− 2δ)π

∫ t

0

[(t− s)−
1
2 − t−

1
2 ]s−

3
2 (t

1
2−δ − s

1
2−δ)ds‖qt‖δ,T

=
1 +O(g)

(1− 2δ)π

∫ t

0

(t− s)−
1
2 t−

1
2

1

(t− s)
1
2 + t

1
2

s−
1
2 (t

1
2−δ − s

1
2−δ)ds‖qt‖δ,T ,

Change variables s = rt to obtain

|Γ̃1| ≤ t−
1
2−δ(1 +O(g))Ω1(δ)‖qt‖δ,T ,

where the constant Ω1 is defined in (5.30). In what follows we estimate |Γ1−Γ̃1|. Divide the integration

region [0, t] into three parts, [0, T
1
3

loc],[T
1
3

loc, t− T
1
3

loc], and [t− T
1
3

loc, t].

I1 :=Z

∫ T
1
3
loc

0

[K(t− s)−K(s)]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

qs1 [1− χTloc
(s1)]ds1ds

−Z
∫ T

1
3
loc

0

[K̃(t− s)− K̃(s)]M̃ (s)

∫ t

s

qs1 [1− χTloc
(s1)]ds1ds .

We have

|K(t− s)−K(t)|, |K̃(t− s)− K̃(t)|

.t−
1
2 (t− s)−

1
2

s

t
1
2 + (t− s

1
2 )

+ (t− s)−
3
2 − t−

3
2(5.35)

.t−
3
2 (1 + s)
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because s ≤ T
1
3

loc, and t ≥ Tloc. And consequently

|K(t− s)−K(t)|Re 〈[1 − g(h)−1W ]∂x1W , e−iht∂x1(h)
−1W 〉+ |K̃(t− s)− K̃(t)||M̃(s)| . t−

3
2 s−

1
2 (1 +O(g)) .

Plug this into I1 to obtain

|I1| . t−1−δ(1 +O(g))

∫ T
1
3
loc

0

s−
1
2ds‖qt‖δ,Tloc

= t−1−δ(1 +O(g))2T
1
6

loc‖qt‖δ,Tloc
. t−

1
2−δT

− 1
3

loc (1 +O(g))‖qt‖δ,Tloc
.

Now we turn to the second interval, [T
1
3

loc, t− T
1
3

loc].

I2 :=Z

∫ t−T
1
3
loc

T
1
3
loc

[K(t− s)−K(t)]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

(1 − χTloc
(s1))qs1ds1ds

−Z
∫ t−T

1
3
loc

T
1
3
loc

[K̃(t− s)− K̃(t)]M̃(s)

∫ t

s

(1− χTloc
(s1))qs1ds1ds

=Z

∫ t−T
1
3
loc

T
1
3
loc

[(K(t− s)−K(t))− (K̃(t− s)− K̃(t))]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

(1− χTloc
(s1))qs1ds

+Z

∫ t−T
1
3
loc

T
1
3
loc

[K̃(t− s)− K̃(t)][Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉 − M̃(s)]

∫ t

s

(1− χTloc
(s1))qs1ds1ds .

Using

|K(t− s)− K̃(t− s)| . (1 + t− s)−1

|K(t)− K̃(t)| . (1 + t)−1

|Re 〈[1 − g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉 − M̃(s)| . s−

3
2 ,

and

|K̃(t− s)− K̃(t)| . t−1(t− s)−
1
2 s ,

we obtain

|I2| . T
− 1

3

loc t
− 1

2−δ‖qt‖δ,Tloc
.

In the third interval, s ∈ [t− T
1
3

loc, t], we have

Re 〈[1 − g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉 . t−

3
2 ,

and hence

|I3| =|Z
∫ t

t−T
1
3
loc

[K(t− s)−K(t)]Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉

∫ t

s

(1− χTloc
(s1))qs1ds1ds

−Z
∫ t

t−T
1
3
loc

[K̃(t− s)− K̃(t)]M̃(s)

∫ t

s

(1 − χTloc
(s1))qs1ds1ds|

.

∫ t

t−T
1
3
loc

(|t− s|− 1
2 + t−

1
2 )ds t−1−δ‖qt‖δ,Tloc

.T
1/6
loc t

−1−δ‖qt‖δ,Tloc

≤T−1/3
loc t−

1
2−δ‖qt‖δ,Tloc

.

Putting together, we have shown that

|Γ1| . t−
1
2−δ[Ω1(δ) + ε(Tloc)](1 +O(g))‖qt‖δ,Tloc

,

where ε(Tloc) → 0, as Tloc → ∞.
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Finally, we turn to Γ3. Similar to the strategy in estimating Γ1, we start with retrieving the main

part. Define a new function Ṽ to approximate the function V (t) := Re 〈[1− g(h)−1W ]∂x1W , (−ih)−1e−iht∂x1(h)
−1W 〉

when t is large (simply by integrating (5.34)),

Ṽ :=

√
2

3
π

3
2 (1 + C̃g)t−

1
2 .

Now, define an approximation Γ̃3 of Γ3,

Γ̃3 := ZK̃(t)

∫ t

0

[Ṽ (t− s)− Ṽ (t)](1 − χTloc
(s))qsds

Compute

|Γ̃3| ≤t−
1
2
1

π
(1 +O(g))

∫ t

0

[(t− s)−
1
2 − t−

1
2 ]s−

1
2−δds‖qt‖δ,Tloc

=t−1 1

π
(1 +O(g))

∫ t

0

s

(t− s)
1
2 + t

1
2

(t− s)−
1
2 s−

1
2−δds‖qt‖δ,Tloc

.

The change variables s = tr yields

|Γ̃3| ≤ t−
1
2−δ 1

π
(1 +O(g))

∫ 1

0

(1− r)−
1
2

1

1 + (1− r)
1
2

r
1
2−δdr‖qt‖δ,Tloc

= t−
1
2−δΩ2(δ)(1 +O(g))‖qt‖δ,Tloc

.

Next, we write the difference Γ3 − Γ̃3 as

Γ3 − Γ̃3 =Z[K(t)− K̃(t)]

∫ t

0

[V (t− s)− V (t)](1 − χTloc
(s))qsds

+ZK̃(t)

∫ t

0

[V (t− s)− Ṽ (t− s)](1 − χTloc
(s))qsds(5.36)

+ZK̃(t)[Ṽ (t)− V (t)]

∫ t

0

(1− χTloc
(s))qsds .

We know

|K(t)− K̃(t)| . t−1 ,

and

|V (t− s)− Ṽ (t− s)| . (1 + t− s)−
3
2 .

Plug these into (5.36) to find the desired estimate

|Γ3 − Γ̃3| .t−1

∫ t

0

(1 + s)−
1
2−δds‖qt‖δ,Tloc

+ t−
1
2 (1 +O(g))

∫ t

0

(1 + t− s)−
3
2 (1 + s)−

1
2−δds‖qt‖δ,Tloc

+t−2

∫ t

0

(1 + s)−
1
2−δds‖qt‖δ,Tloc

.t−1−δ(1 +O(g)))‖qt‖δ,Tloc
≤ (1 +O(g))T

− 1
2

loc t
− 1

2−δ‖qt‖δ,Tloc
.

Putting it together, we have shown

|Γ3| . t−
1
2−δ[Ω2(δ) + ε(Tloc)](1 +O(g))‖qt‖δ,Tloc

,

which finishes the proof. �
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9. Proof of Point (2) of Proposition 5.8

Point (2) is proven by the next result,

Lemma 5.13. Let Q1 and Q2 be as in Proposition (5.8), and recall the definition of R(P, t) in

(5.12). If |P0| ≤ T−3
loc then, for k = 3, 4, 5, 6,

∫ t

0

|K(t− s)−K(t)||D̃k(Q1)− D̃k(Q2)|(s)ds ≤ t−
1
2−δε(Tloc)‖Q1 −Q2‖δ,Tloc

(‖Q1‖δ,Tloc
+ ‖Q2‖δ,Tloc

) .

Proof. Because the proof is rather long we divide it into sections.

9.1. The term D̃3. Because of the spherical symmetry of W certain terms in the definition

vanish. For notational convenience, we define

(1 +
g√
ρ0
β̄Xt)∂xW

Xt := V Xt .

Note that V is rapidly decaying. This makes D̃3 take the form

D̃3(t) = −2
√
ρ0Re 〈V Xt , e−ihXt tβ0〉 − 2ρ0Re 〈V Xt , e−ihXt t

N0∑

|α|=2

1

α!
(X0 −Xt)

α∂αx (h
Xt)−1WXt〉

=: D̃31 + D̃32 .

For D̃31 we write

〈V Xt , e−ihXt tβ0〉 = 〈V , e−ihtβ−Xt
0 〉 ,

and compute

|〈V , e−iht(β−Xt
0 − β−X̃t

0 〉| ≤ ‖〈x〉3V ‖2t−
3
2 ‖〈x〉3(β−Xt

0 − β−X̃t
0 )‖2 . t−

3
2 ‖〈x〉3(β0 − β

∫ t
Tloc

(Q1−Q2)(s)ds

0 )‖2

=t−
3
2 ‖〈x〉3

∫ t

Tloc

∂sβ

∫ s
Tloc

(Q1−Q2)(s1)ds1

0 ds‖2 = t−
3
2 ‖〈x〉3∂xβ0 ·

∫ t

Tloc

(Q1 −Q2)(s)ds‖2

≤t− 3
2 ‖〈x〉3∂xβ0‖2

∫ t

Tloc

|Q1 −Q2|(s)ds . t−1−δ‖Q1 −Q2‖δ,Tloc
,

where we used Xt = XTloc
+
∫ t
Tloc

Q1(s)ds and X̃t = XTloc
+
∫ t
Tloc

Q2(s)ds.

The term D̃32 is treated similarly,

|D̃32(Q1)− D̃32(Q2)|(t) . |〈V , e−iht
N0∑

|α|=2

(X̃t −Xt)
α∂αx (h)

−1W 〉|

≤ ‖V ‖1
N0∑

|α|=2

‖e−iht∂αx (h)
−1W‖∞|

∫ t

tloc

[Q1(s)−Q2(s)]
α|

. t−
3
2

N0∑

|α|=2

∫ t

tloc

|[Q1(s)−Q2(s)]
α| . t−1−δ

N0∑

|α|=2

‖Qα1 −Qα2 ‖δ,Tloc

. t−1−δ(‖Q2
1‖δ,Tloc

+ ‖Q2
2‖δ,Tloc

)‖Q1 −Q2‖δ,Tloc
.

The estimate for K is as in [24],

|K(t− s)−K(t)| . (1 + t− s)−
1
2 (1 + t)−1s ,

so the claim follows for D̃3.
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9.2. The term D̃4. Consider

D̃4(t) =− ig〈V Xt ,

∫ t

0

e−ihXt(t−s)[WXs −WXt ]δsds〉

=− ig〈V Xt ,

∫ t

0

e−ihXt(t−s)∂xW
Xt · (Xs −Xt)δsds〉

− ig〈V Xt ,

∫ t

0

e−ihXt(t−s)O(|Xs −Xt|2)
∑

|α|=2

∂αxW
Sδsds〉

= : D̃41 + D̃42 .

The second term is easier and thus omitted. Two terms depend on Q, namely (Xs − Xt) and δ−Xt
s .

We use the expansion [34] e−ihτ = τ−
3
2B1 + τ−

5
2B2 + . . . in B(L2,−6, L2,6) and the fact that V is odd

in x so that the t−
3
2 -term vanishes to compute

|D̃41(Q1)− D̃41(Q2)|(t) . g|〈V ,
∫ t

0

e−ih(t−s)∂xW · (X̃t − X̃s +Xs −Xt)δ
−Xt
s ds〉|

. g‖V 〈x〉6‖2
∫ t

0

(1 + t− s)−
5
2 ‖〈x〉−6(X̃t − X̃s +Xs −Xt) · B2(∂xWδ−Xt

s )‖2ds

. g

∫ t

0

|X̃t − X̃s +Xs −Xt|(1 + t− s)−
5
2 ‖〈x〉6∂xWδ−Xt

s ‖2ds

. g

∫ t

0

|X̃t − X̃s +Xs −Xt|(1 + t− s)−
5
2 (1 + s)−

1
2ds .

Both Q1 and Q2 are in Bδ,Tloc
, and thus

|X̃t − X̃s +Xs −Xt| = |
∫ t

s

[Q1 −Q2](s1)ds1| ≤ ‖Q1 −Q2‖δ,Tloc

∫ t

s

s
− 1

2−δ
1 ds1

. ‖Q1 −Q2‖δ,Tloc
(t

1
2−δ − s

1
2−δ).

Now write

(t
1
2−δ − s

1
2−δ) = −t 1

2−δs
1
2−δ(tδ−

1
2 − sδ−

1
2 ) ,

and use that for s ≤ t and any ε > 0

tε − sε ≤ t− s

t1−ε

to estimate

|D̃41(Q1)− D̃41(Q2)|(t) . g‖Q1 −Q2‖δ,Tloc

∫ t

0

(1 + t− s)−
3
2 t−1s

1
2−δ(1 + s)−

1
2 ds

. gt−1−δ‖Q1 −Q2‖δ,Tloc
.

Since also δs depends on Q we have to estimate also

g|〈V ,
∫ t

0

e−ih(t−s)∂xW · (X̃t − X̃s)(δ
−Xt
s − δ̃−X̃t

s )ds〉|

.g

∫ t

0

(1 + t− s)−
5
2 |X̃t − X̃s|‖〈x〉6∂xW (δ−Xt

s − δ̃−X̃t
s )‖2ds(5.37)

This is more involved. Introduce a new function η,

ηs := δ−Xt
s − δ̃−X̃t

s .
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By (5.6), η satisfies the following equation,

iη̇s = hηs + g(WXs−Xt −W X̃s−X̃t)δ−Xt
s + gW X̃s−X̃tηs − gWηs

+ i

√
ρ0

M
(Q1 −Q2)(s)

N0∑

|α|=1

1

α!
α(Xs −Xt)

α−1∂αx (h)
−1W

+ i

√
ρ0

M
Q2(s)

N0∑

|α|=1

1

α!
α[Xs −Xt − X̃s + X̃t]

α−1∂αx (h)
−1W

− (hXs−Xt − hX̃s−X̃t)rN0 − hX̃s−X̃t(rN0 − r̃N0) ,

which implies by Duhamel’s principle

ηs = e−ihsη0 − ig

∫ s

0

e−ih(s−s1)(WXs1−Xt −W X̃s−X̃t)δ−Xt
s ds1 + g

∫ s

0

e−ih(s−s1)W X̃s1−X̃tηs1ds1

+ g

∫ s

0

e−ih(s−s1)Wηs1ds1 + . . . .

We will only treat the displayed terms, the others are similar but easier and hence omitted. From

(5.37) and the discussion of the previous term it is clear that we are done if we can prove

‖〈x〉−3
ηt‖2 . t−

1
2 ‖Q1 −Q2‖δ,Tloc

.

With the usual estimates we obtain

‖〈x〉−3
e−ihtη0‖2 . t−

1
2 ‖Q1 −Q2‖δ,tloc

and

‖〈x〉−3
g

∫ t

0

e−ih(t−s)(WXs−Xt −W X̃s−X̃t)δ−Xt
s ds‖2

.g

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3(WXs−Xt −W X̃s−X̃t)‖2(1 + s)−

1
2ds

.g

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3∂xW‖2

∫ t

s

|Q1 −Q2|(s1)ds1(1 + s)−
1
2 ds

.g‖Q1 −Q2‖δ,Tloc

∫ t

0

(1 + t− s)−
3
2 (1 + s)

1
2−δ(1 + s)−

1
2ds

.gt−δ‖Q1 −Q2‖δ,Tloc
.

The next term contains η implicitely and is therefore dealt with in the by now familiar way. Introduce

a new function L,

L(t) := max
s≤t

s
1
2 ‖〈x〉−3

ηs‖2 .

Then

‖〈x〉−3
g

∫ t

0

e−ih(t−s)W X̃s−X̃tηsds‖2 . g

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3W X̃s−X̃tηs‖2ds

. gL(t)

∫ t

0

(1 + t− s)−
3
2 s−

1
2 ds

. gL(t)t−
1
2 .

The last term is treated in the same way

‖〈x〉−3g

∫ t

0

e−ih(t−s)Wηsds‖2 . gL(t)t−
1
2 ,
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so that we obtain in the end

t
1
2 ‖〈x〉−3

ηt‖2 . ‖Q1 −Q2‖δ,Tloc
+ gt

1
2−δ‖Q1 −Q2‖δ,Tloc

+ 2gL(t) .

Maximizing both sides over t yields

L(t) . 2‖Q1 −Q2‖δ,Tloc
+ 2gL(t) ,

and because g is small

L(t) . ‖Q1 −Q2‖δ,Tloc
,

which finishes the proof for D̃4.

Consider now the term D̃5. The treatment of it is very similar to D̃4 but much easier, and hence

omitted.

9.3. The term D̃6. Consider finally

i〈V Xt ,

∫ t

0

e−ihXt(t−s)G1(s)ds〉 ,

so that

|D̃6(Q1)− D̃6(Q2)|(t) = |〈∂xW ,

∫ t

0

e−ih(t−s)(hXs−Xtr−Xt

N0
− hX̃s−X̃t r̃−X̃t

N0
)ds〉| .

With the usual procedure there are two terms to be estimated,

|〈∂xW ,

∫ t

0

e−ih(t−s)(hXs−Xt − hX̃s−X̃t)r−Xt

N0
(s)ds〉| ,

and

|〈∂xW ,

∫ t

0

e−ih(t−s)hX̃s−X̃t(r−Xt

N0
− r̃−X̃t

N0
)(s)ds〉| .

For the first, use

hXs−Xt − hX̃s−X̃t = g(WXs−Xt −W X̃s−X̃t)

to obtain

|〈∂xW ,

∫ t

0

e−ih(t−s)(hXs−Xt − hX̃s−X̃t)r−Xt

N0
(s)ds〉|

.g

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3(WXs−Xt −W X̃s−X̃t)(hXs−Xt)−1〈x〉−3‖2‖〈x〉3hXs−Xtr−Xt

N0
‖2ds

.g

∫ t

0

(1 + t− s)−
3
2 ‖〈x〉3(WXs−Xt −W X̃s−X̃t)(hXs−Xt)−1〈x〉−3‖2(1 + s)−

3
2ds

.g‖Q1 −Q2‖Tloc,δ

∫ t

0

(1 + t− s)−
3
2 (1 + s)

1
2−δ‖〈x〉3∂xW (hXs−Xt)−1〈x〉−3‖2(1 + s)−

3
2 ds

.g‖Q1 −Q2‖Tloc,δ

∫ t

0

(1 + t− s)−
3
2 (1 + s)

1
2−δ(1 + s)−

3
2ds

.g‖Q1 −Q2‖Tloc,δt
−1−δ ,

where in the second step we used

‖〈x〉3hXsrN0(s)‖2 . (1 + s)−
3
2 .

We are left with a last term,

|〈∂xW ,

∫ t

0

e−ih(t−s)hX̃s−X̃t(r−Xt

N0
− r̃−X̃t

N0
)(s)ds〉| .(5.38)
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Recall that rN0(s) is the remainder term in the Taylor expansion of (hXs)−1WXs , so we can write

rN0(s) = (−1)N0+1

∫ s

t

∫ s1

t

. . .

∫ sN0

t

∂j1x . . . ∂
jN0+1
x (h

XsN0+1 )−1W
XsN0+1 Ẋ

jN0+1
sN0+1 . . . Ẋ

j1
s1ds .

In (5.38) we use hY = h+ g(WY −W ), the W -term of which is easy to estimtate, and for the h-term

we observe

ie−ihthf(t) = i∂t(e
−ihtf(t))− ieihs∂tf(t) ,

of which the first term leads even to improved decay, and the second is by now standard. Each term

Ẋ(s) = Q1(s), and
˙̃
X(s) = Q2(s) gives a decay factor of order s−

1
2−δ, and the many derivatives render

(h)−1 harmless. So with the usual estimates we obtain

|〈∂xW ,

∫ t

0

e−ih(t−s)hX̃s−X̃t(r−Xt

N0
− r̃−X̃t

N0
)(s)ds〉|

.(‖Q1‖δ,Tloc
+ ‖Q2‖δ,Tloc

)‖Q1 −Q2‖δ,Tloc
t−1−δ .

The last step is to incorporate the term g〈∂xWXt , |δt|2〉. But this is straight forward, because

|δt(Q1)|2 − |δt(Q2)|2 = (δt(Q1)− δt(Q2))δ
∗
t (Q1) + δt(Q2)(δ

∗
t (Q1)− δ∗t (Q2)) ,

and so, using the estimates from above,

|〈∂xWXt , |δt(Q1)|2 − |δt(Q2)|2〉| . ‖〈x〉3∂xWXtδt(Q1)− δt(Q2)‖1|‖〈x〉−3
δ∗t (Q1)‖∞

. (‖Q1‖Tloc,δ + ‖Q2‖Tloc,δ)‖Q1 −Q2‖Tloc,δt
−1−δt−

1
2 ,

where we also used

‖〈x〉−3
δ∗t (Q1)‖∞ . t−

1
2 ,

which is proven in complete analogy to (5.10).

�

10. Proof of Proposition 5.9

As in [24], we prove first

Lemma 5.14.

|A(χTloc
(P ))| ≤ ε(Tloc)t

− 1
2−δ .

Proof. Recall the definition of A in (5.18) and the local existence estimate |Pt| ≤ T−2
loc for t ∈

[0, Tloc]. Then compute

|A(χTloc
P )| ≤Zε(Tloc)[

∫ Tloc

0

|K(t− s)−K(t)||Re 〈[1 − g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉|ds

+|
∫ t

0

K(t− s)Re 〈[1− g(h)−1W ]∂x1W , e−ihs∂x1(h)
−1W 〉ds|

+|K(t)|
∫ Tloc

0

|Re 〈[1− g(h)−1W ]∂x1W , (−ih)−1[e−ih(t−s) − e−iht]∂x1(h)
−1W 〉ds] .

As proved in (5.33) the second term on the right hand side is of order t−
3
2 . For the third term, we have

by a computation similar to (5.35)

|Re 〈[1 − g(h)−1W ]∂x1W , (−ih)−1[e−ih(t−s) − e−iht]∂x1(h)
−1W 〉| . (1 + t− s)−

1
2 (1 + t)−1s+ (1 + t− s)−

3
2 .
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So we obtain

|A(χTloc
P )| .ε(Tloc)[(1 + t)−1

∫ Tloc

0

(1 + t− s)−
1
2

s

(1 + s)
3
2

ds+

∫ Tloc

0

(1 + t− s)−
3
2 (1 + s)−

3
2ds

+ (1 + t)−
3
2 + (1 + t)−

3
2

∫ Tloc

0

(1 + t− s)−
1
2 sds+ (1 + t)−

1
2

∫ Tloc

0

(1 + t− s)−
3
2 ds]

≤ ε(Tloc)(1 + t)−
1
2−δ ,

where ε(Tloc) → 0 as Tloc → ∞. �

We are left with proving

∫ t

0

[K(t− s)−K(t)]D̃k(χTloc
P, s)ds

∣∣ ≤ t−
1
2−δε(Tloc) ,

for k = 3, 4, 5, 6. As in in the proof of Proposition 5.8, all we have to show is

|D̃k(χTloc
P, s)| ≤ s−1−δε(Tloc) .

The estimates are very similar to the ones in the proof of Proposition 5.8, so we will do only the first

two, D̃3 and D̃4.

|D̃3(χTloc
P, t)| . |〈∂xWXt , e−ihXt tβ0〉|+ |〈∂xWXt , e−ihXt t

N0∑

|α|=2

1

α!
(X0 −Xt)

α∂αx (h
Xt)−1WXt〉|

.‖∂xWXt〈x〉3‖2t−
3
2 ‖〈x〉3β0‖+ ‖∂xW 〈x〉3‖2t−

3
2 .

This, together with (5.16) and the fact that we consider t ≥ Tloc, imply the claim.

For D̃4, observe

|D̃4(χTloc
P, t)| . g|〈∂xWXt ,

∫ Tloc

0

e−ihXt(t−s)∂xW
Xt · (Xs −XTloc

)δsds〉|

. g

∫ Tloc

0

(1 + t− s)−
5
2

∫ Tloc

s

|Ps1 |ds1‖〈x〉−3
δ−Xt
s ‖2ds .

Because of the local existence estimate (5.14), we have

∫ Tloc

s

|Ps1 |ds1 ≤ T−2
loc .

So we can estimate

|D̃4(χTloc
P, t)| . gT−2

loc

∫ Tloc

0

(1 + t− s)−
5
2 (1 + s)−

1
2 ds . gT

− 3
2

loc (1 + t)−
5
2 .

The term g〈∂xWXt , |δt|2(χTloc
P )〉 is treated as follows,

|g〈∂xWXt , δt(χTloc
P )δ∗t (χTloc

P )〉| . ‖〈x〉3∂xWδt(χTloc
P )‖1‖〈x〉−3

δ∗t (χTloc
P )‖∞

.

∫ Tloc

0

(1 + t− s)−
3
2T−2

loc dst
− 1

2

. T−1
loc t

−2 .

�
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11. Propagator Estimates

In this section we prove the propagator estimates used throughout the second part of the thesis.

Define h := −∆+ gW , with g ∈ R small and W (x) =W (|x|).

Proposition 5.15. If W : R3 → R is a smooth function and decays exponentially fast at ∞ we

have

‖〈x〉−3
eith(h)−1+εφ‖2 ≤ C(1 + t)−

1
2 (1+2ε)‖〈x〉3φ‖2 , ε ∈ [0, 1](5.39)

‖〈x〉−5
eith∂x(h)

−1W‖2 ≤ C(1 + t)−
3
2(5.40)

‖〈x〉−5
eith∂αx (h)

−1W‖2 ≤ C(1 + t)−
3
2 , |α| ≥ 2 .(5.41)

Estimate (5.39) is a classic result, see e.g. [34]. In the proof of the remaining assertions we will

use the following

Lemma 5.16. For any smooth, spherically symmetric and fast decaying function ϕ we have

‖〈x〉−5e−it∆∂x(−∆)−1ϕ‖2 ≤ C(1 + t)−
3
2 ‖〈x〉4ϕ‖2 .

Proof. By Fourier transform we obtain

e−it∆∂x(−∆)−1ϕ = C

∫

R3

eik·xeit|k|
2 k

|k|2 ϕ̂(k)dk ,

for some constant C ∈ R. Since ϕ is spherically symmetric, so is ϕ̂. Using polar coordinates (R3 ∋ k =

ρg(α, ϑ)) we find

e−it∆∂x(−∆)−1ϕ = C

∫ 1

−1

∫ 2π

0

∫ ∞

0

eiρ|x| cosϑeitρ
2

ρg(α, ϑ)ϕ̂(ρ)dρdαd cosϑ

= C

∫ 1

−1

∫ 2π

0

∫ ∞

0

eitρ
2

ρg(α, ϑ)ϕ̂(ρ)dρdαd cosϑ

+ C

∫ 1

−1

∫ 2π

0

∫ ∞

0

eiρ|x| cosϑ − 1

ρ
ρ2eitρ

2

g(α, ϑ)ϕ̂(ρ)dρdαd cosϑ

= C

∫ 1

−1

∫ 2π

0

∫ ∞

0

eiρ|x| cosϑ − 1

ρ
ρ2eitρ

2

g(α, ϑ)ϕ̂(ρ)dρdαd cosϑ ,

as the unit vector g(α, ϑ) averages to zero over the unit sphere. Denote by fx(ρ) the smooth function
eiρ|x| cos ϑ−1

ρ and evaluate the ρ-integral by scaling ρ→ t
1
2 ρ as follows:

∫ ∞

0

fx(ρ)ρ
2eitρ

2

ϕ̂(ρ)dρ = t−
3
2

∫ ∞

0

fx(ρt
− 1

2 )ρ2eiρ
2

ϕ̂(ρt−
1
2 )dρ .

Since ρ2eiρ
2

is not integrable we integrate by parts which yields

t−
3
2

∫ ∞

0

fx(ρt
− 1

2 )ρ2eiρ
2

ϕ̂(ρt−
1
2 )dρ = −t− 3

2
1

2i

∫ ∞

0

eiρ
2

∂ρ(ρfx(ρt
− 1

2 )ϕ̂(ρt−
1
2 ))dρ

=− t−
3
2
1

2i

∫ ∞

0

eiρ
2

fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 )dρ− t−

3
2
1

2i

∫ ∞

0

eiρ
2

ρ∂ρ(fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 ))dρ .

The first term on the second line is easily seen to be given by

t−
3
2
1

2i

∫ ∞

0

eiρ
2

fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 )dρ = Ct−

3
2 (fx(0)ϕ̂(0) + o(1)) = Ct−

3
2 (cosϑ|x|ϕ̂(0) + o(1)) ,
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where o(1) is short for o(1) , t→ ∞. In the second term we integrate by parts again to get

t−
3
2
1

2i

∫ ∞

0

eiρ
2

ρ∂ρ(fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 ))dρ

=− Ct−
3
2 (f ′

x(0)ϕ̂(0) + fx(0)ϕ̂
′(0))− t−

3
2
1

2i

∫ ∞

0

eiρ
2

∂2ρ(fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 ))dρ .

The last term is given by

t−
3
2
1

2i

∫ ∞

0

eiρ
2

∂2ρ(fx(ρt
− 1

2 )ϕ̂(ρt−
1
2 ))dρ = Ct−

3
2 (∂2r

∣∣∣∣
r=0

fx(r)ϕ̂(r) + o(1)) .

Summarizing, we have shown

|e−it∆∂x(−∆)−1ϕ(x)| ≤ Ct−
3
2 (|x|3‖y2ϕ‖1 + o(1)) ,

because f ′′
x (0) = −i cos3 ϑ|x|3, and ϕ̂′′(0) =

∫
y2ϕd3y. Using Hölder’s inequality we arrive at

‖〈x〉−5e−it∆∂x(−∆)−1ϕ‖2 ≤ Ct−
3
2 ‖〈x〉4ϕ‖2 ,

which is the claim. �

Proof of Proposition 5.15. We only prove (5.40), the proof of (5.41) is easier and hence omit-

ted. Define the function

ξ := (1 + gW (−∆)−1)−1W .

The function ξ is spherically symmetric, and from the equation (−∆)−1ξ = h−1W we get

ξ = (−∆)h−1W =W − gWh−1W ,

from wich it is easy to see that ξ decays exponentially fast at ∞, since h−1 is a bounded operator

H 2,s → H 2,−s for s > 1
2 .

By Duhamel’s principle, we rewrite eith∂xh
−1W as

eith∂xh
−1W = eith∂x(−∆)−1ξ

= e−it∆∂x(−∆)−1ξ +

∫ t

0

eih(t−s)gW e−is∆∂x(−∆)−1ξds .

The desired estimate follows from (5.39) and Lemma 5.16. �

12. Weighted L2 spaces

Weighted L2 spaces are a useful tool when dealing with Schrödinger operators −∆+ V (x), since

the resolvent (−∆+ V − z)−1 may not remain bounded as an operator on L2 as z approaches the real

axis. It remains, however, bounded as an operator between certain weighted L2 spaces.

Definition 12.1. For any s ∈ R, we denote by L2,s the set of functions

〈x〉−sL2 ,

which is the set of all measurable functions f that satisfy

‖〈x〉sf‖2 <∞ .

Clearly, L2,s ⊂ L2,s′ for s′ < s, so that we define

L2,s−0 :=
⋂

γ<s

L2,γ .

It is a classic result (see e.g. [2]), sometimes called the limiting absorption principle, that for sufficiently

fast decaying potential V , the limits

(−∆+ V − E ± i0)−1 E 6= eigenvalue
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exist as bounded operators from L2,s to L2,−s for s > 1
2 (s > 1 for E = 0).

13. Absence of Eigenvalues and Zero Resonance

In this section, we show that the operator H = −∆+ gW has no eigenvalues or zero resonance for

g small enough. There are many results in the literature that cover the case of a smooth, exponentially

decaying potential (see for instance [50]), but since part of the proofs are elementary we give them

here for completeness.

(i) Absence of eigenvalues ≤ 0 and zero resonance:

This is elementary to show. Recall that a zero resonance is defined as a solution of Hψ = 0

that is not in L2 but in L2,− 1
2−0. Let thus E ≤ 0 and assume that ψ ∈ L2,− 1

2−0 satisfies the

equation

(−∆+ gW − E)ψ = 0 .

Then we have

(1+ (−∆− E)−1gW )ψ = 0

(eε|x| + g(−∆− E)−1W eε|x|)e−ε|x|ψ = 0

(1+ ge−ε|x|(−∆− E)−1W eε|x|)e−ε|x|ψ = 0 ,(5.42)

for some small ε > 0. For brevity, set AE := e−ε|x|(−∆ − E)−1W eε|x|. By looking at the

integral kernel of AE ,

AE(x, y) = e−ε|x|
e−|E|

1
2 |x−y|

|x− y| W (y)eε|y| ∈ L2(R6) ,

we see that AE is Hilbert-Schmidt, so in particular compact (uniformely in E). By the

analytic Fredholm theorem, and the fact that 1 + gAE is invertible for g = 0, we conclude

that there exists an r > 0 such that for all |g| < r and all E ≤ 0, the resolvent (1+ gAE)
−1

exists. Equation (5.42) thus implies ψ = 0, so that E ≤ 0 is not an eigenvalue, nor E = 0 a

zero resonance.

(ii) Absence of Positive Eigenvalues:

This is considerably harder than the above. See [50] for the classic results.





APPENDIX A

Cluster expansion

In regime (A), that is, for pure EuB6 above the Curie temperature, we should allow for weak

correlations between the random magnetic moments at different sites, if we want our model of a

disordered solid to be (more) realistic. The cluster expansion is a well established, robust method

suiting this purpose. In the following, we give an introduction to this topic and state the most important

results.

1. Connected parts

Let Λ be a finite set. For a symmetric function ϕ : {a ⊂ Λ} → C define the “connected parts”

(“truncated function”,“Ursell function”) ϕT recursively by

ϕ(a) =:
∑

Π∈partitions of a

∏

b∈Π

ϕT(b) .(A.1)

We will be dealing with ϕ of the form ϕ = e−V where V is some other symmetric function modeling

the interaction between elements of Λ. Note that any symmetric function V : {a ⊂ Λ} → C can be

written as a sum of “atoms” v as follows

V (a) =
∑

b⊂a
vb

va : = V (a)−
∑

b(a

vb ∀∅ 6= a ⊂ Λ .

To understand the denomination “connected parts” for ϕT compute

ϕ(Λ) = exp(−V (Λ)) = exp(−
∑

a∈P∗(Λ)

va) =
∏

a∈P∗(Λ)

exp(−va) ,

where P∗(Λ) denotes the power set of Λ without the empty set. We rewrite this with the usual trick

∏

a∈P∗(Λ)

exp(−va) =
∏

a∈P∗(Λ)

(exp(−va)− 1 + 1) =
∑

A⊂P∗(Λ)

∏

a∈A
ζ(a) ,(A.2)

where we introduced the standard abbreviation ζ(a) := exp(−va)− 1.

Any A ⊂ P∗(Λ) is decomposed uniquely into sets C = {a1, . . . , an}, ai ⊂ Λ that are
⋃
i ai-connected

in the following sense: For any two points p, q ∈ ⋃i ai ⊂ Λ there exists a sequence of ai ∈ C such that

p ∈ a1, a1 ∩ a2 6= ∅, . . . , am−1 ∩ am 6= ∅, q ∈ am. The empty set is, by definition, a-connected if and

only if |a| = 1. We therefore have

∑

A⊂P∗(Λ)

∏

a∈A
ζ(a) =

∑

Π∈partitions of Λ

∏

y∈Π

∑

C⊂P∗(y)
C y-connected

∏

a∈C
ζ(a) ,(A.3)

where the sets
⋃
i ai from the decomposition of A constitute the sets y of the partition. An empty

product is defined to be 1. Comparing (A.3) to (A.1) we find an explicit expression for the connected

95
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parts:

ϕT(y) = exp(−V )T(y) =
∑

C⊂P∗(y)
C y-connected

∏

a∈C
ζ(a) .(A.4)

The expansion in connected parts is particularly transparent if V is a sum of two-body potentials v:

V (Λ) = V (p1, p2, . . . , pn) :=
∑

1≤i<j≤n
v(pi, pj) ,

so the “atoms” va are nonzero only for two-element subsets a ⊂ Λ:

va =

{
v(p, q) a = {p, q}
0 otherwise .

The sets A ⊂ P∗(Λ) in (A.2) are sets of two-element subsets of Λ, that is, graphs :

e−V =
∏

1≤i<j≤n
e−v(pi,pj) =

∑

G∈Gn

∏

(i,j)∈G
ζ(pi, pj) ,

where Gn denotes the set of all (unoriented) graphs with n vertices. Our notion of connectedness for a

set C ∈ P(P∗(Λ)) clearly coincides for two-element subsets with the natural one for graphs. Thus we

get the name-giving formula

ϕT(y) = exp(−V )T(y) =
∑

G∈Cy

∏

(i,j)∈G
ζ(pi, pj) ,

where Cy denotes the set of connected graphs with the elements of y as vertices.

Thus we understand the general situation: One is given a set of objects Λ furnished with a notion of

connectedness by the interaction V that gives rise to a natural defition of connected parts of a function

defined on subsets of Λ. For example, in the case of Λ ⊂ Zd and v a nearest-neighbor interaction it is

clear that the induced notion of connectedness is the same as the natural one of the lattice Zd, thus

implying

ϕT(y) = exp(−V )T(y) = 0 , if y is not connected.

2. Logarithm of partition function

Let (Ω, µ) be a measure space and µ a finite measure. Ω is a set of objects, such as spins on a

lattice or coordinates of particles in a box, which interact with a symmetric Gibbs factor e−βV (x1,x2,...,xn)

defined on finite sequences of Ω, where β is a small parameter such as the inverse temperature.

The cluster expansion is a means to write the logarithm of the grand canonical partition function

as a sum over clusters. The partition function Z is defined as

Z =

∞∑

n=0

1

n!

∫
dµ(x1) . . . dµ(xn)e

−βV (x1,x2,...,xn)

The goal of the cluster expansion is to use combinatorics and analysis to write Z as the exponential of

an absolutely convergent sum over “simpler terms”.
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Upon substituting the definition (A.1) of connected parts into the partition function (with ϕ =

e−βV ), we obtain

Z =
∑

n

1

n!

∑

Π∈partitions of {1,2,...,n}

∏

Y ∈Π

∫
dYµϕT(Y )

=
∑

n

1

n!

∑

m≥1

∑

Π={X1,...,Xm}

∏

Y ∈Π

∫
dYµϕT(Y )

=
∑

n

1

n!

∑

m≥1

1

m!

∑

Π=(X1,...,Xm)

∏

Y ∈Π

∫
dYµϕT(Y ) .

As ϕ, and hence ϕT, is symmetric the integral
∫
dYµϕT(Y ) depends only on |Y |. The number of

ordered partitions Π = (X1, . . . , Xm), with |Xi| = ni fixed,
∑
i ni = n , ni ≥ 1, m fixed, is n!

n1!···ni!
, so

Z =
∑

n

1

n!

∑

m≥1

1

m!

∑
∑

i ni=n

n!

m∏

i=1

1

ni!

∫
dniµϕT(x1, . . . , xni) .

Formally, we can carry out the sum over n and get

Z =
∑

m≥1

1

m!

∑

n1,...,nm

m∏

i=1

1

ni!

∫
dniµϕT(x1, . . . , xni) .

Note that

∑

n1,...,nm≥1

m∏

i=1

ani =


∑

n≥1

an



m

,

to get

(A.5) Z = exp


∑

n≥1

1

n!

∫
dnµϕT(x1, . . . , xn)


 .

Written for the case of two-body interactions, the partition function and its logarithm take the

form

Z =
∑

n≥0

1

n!

∫
dµ(x1) . . . dµ(xn)

∑

G∈Gn

∏

(i,j)∈G
ζ(xi, xj) ,

logZ =
∑

n≥1

1

n!

∫
dµ(x1) . . . dµ(xn)

∑

G∈Cn

∏

(i,j)∈G
ζ(xi, xj) .

Remark. Compare also to the probabilistic version. Let X1, . . . , Xn be random variables on a

probability space Ω and consider the moment generating functionE eX·t =
∑

|α|≥0

1

α!
µαt

α ,

where α is a multiindex and µα := EXα. Its logarithm is the cumulant generating function

logE eX·t =
∑

|α|≥1

1

α!
καt

α ,

where κα are the cumulants, related to the moments via

µα =
∑

Π∈partitions of α

∏

Y ∈Π

κY .
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3. Polymer models

Let us now turn to the random Zeeman interaction model of regime (A), that is, we look at

an electron on the lattice Zd interacting with a static background of random magnetic moments,

represented by unit vectors {m}j∈Zd distributed as

dP(m) = Z−1 exp{κ
∑

|x−y|=1

mx ·my + βB
∑

x

m(3)
x }

∏

x

δ(m2
x − 1)d3mx

=: Z−1 exp(−V (m))
∏

x

dµ(mx) .

Since the number of lattice sites is constant for a fixed finite Λ ⊂ Zd considered in our application, we

first have to find a suitable grand canonical formulation of the problem. Expanding the Gibbs factor

as in (A.2) yields

ZΛ =

∫ ∏

x∈Λ
dµ(mx) exp(−V (m)) =

∫ ∏

x∈Λ
dµ(mx)

∑

A⊂P∗(Λ)

∏

a∈A
ζ(a) .

=

∫ ∏

x∈Λ
dµ(mx)

∑

n

1

n!

∑

C1,...,Cn⊂P∗(Λ)
Ci connected

∏

i<j

(1 + ζ̃(Ci, Cj))

n∏

i=1

∏

a∈Ci

ζ(a) ,

where ζ̃ takes care of the non-intersection property of the Ci:

ζ̃(C1, C2) :=

{
−1 (

⋃
c∈C1

c) ∩ (
⋃
c∈C2

c) 6= ∅

0 otherwise .

The notion of connectedness of the Ci is the one introduced in section 1.3.1. Note that such a ζ̃

corresponds to a two-body hard-core interaction,

Ṽ (C1, C2, . . . , Cn) =
∑

1≤i<j≤n
ṽ(Ci, Cj)

ṽ(C1, C2) =

{
∞ (

⋃
c∈C1

c) ∩ (
⋃
c∈C2

c) 6= ∅

0 otherwise

ζ̃(C1, C2) = exp(−ṽ(C1, C2))− 1 .

Since we chose the Ci in such a way that they do not share elements the integral factorizes (in addition,

we use here that dµ is a probability measure)

ZΛ =
∑

n

1

n!

∑

C1,...,Cn⊂P∗(Λ)
Ci connected

∏

i<j

(1 + ζ̃(Ci, Cj))

n∏

i=1

∫ ∏

x∈Ci

dµ(mx)
∏

a∈Ci

ζ(a)

︸ ︷︷ ︸
=:z(Ci)

,

and we have arrived at a so-called polymer system:

ZΛ =
∑

n

1

n!

∑

C1,...,Cn⊂P∗(Λ)
Ci connected

∏

i<j

(1 + ζ̃(Ci, Cj))

n∏

i=1

z(Ci)

logZΛ =
∑

n≥1

1

n!

∑

C1,...,Cn⊂P∗(Λ)
Ci connected

ϕ̃T(C1, . . . , Cn)

n∏

i=1

z(Ci) ,(A.6)
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where ϕ̃ = e−Ṽ . The above expression for the logarithm of ZΛ is just formula (A.5) with weighted

counting measure and hard-core interaction Ṽ . To be very clear we write C for the “support” (⊂ Λ)

of the polymer C ⊂ P∗(Λ).

Sometimes in the literature (see e.g. [11]), this procedure of creating a polymer model is considered

a first instance of “taking connected parts” with respect to connectedness induced by V . That both

are the same has been made clear in the section on connected parts:

ZΛ =

∫ ∏

x∈Λ
dµ(mx) exp(−V (m)) =

∑

Π∈partitions of Λ

∏

Y ∈Π

∫
dY µ exp(−V )T(Y ) .

=
∑

n

1

n!

∑

Y1,...,Yn⊂Λ⋃
i Yi=Λ

∏

i<j

(1 + ζ̃(Yi, Yj))

n∏

i=1

∫
dYiµ exp(−V )T(Yi) ,

where

ζ̃(Y, Z) :=

{
−1 Y ∩ Z 6= ∅

0 otherwise .

Since (A.4) yields exp(−V )T(Y ) = 1 + (exp(−v(Y )) − 1) for |Y | = 1, and
∫
dµ(h) = 1, it is clear

that we can drop the condition ∪iYi = Λ if we modify the weights of Y ’s with |Y | = 1:

ZΛ =
∑

n

1

n!

∑

Y1,...,Yn

∏

i<j

(1 + ζ̃(Yi, Yj))

n∏

i=1

w(Yi) ,

where

w(Y ) :=

{∫
dY µ exp(−V )T(Y ) if |Y | > 1

∫
dY µ exp(−V )T(Y )− 1 if |Y | = 1 .

In the general terms of the previous section, Ω = {subsets of Λ}, and µ is the counting measure

multiplied by the weight factor w. Thus we write

ZΛ =
∑

n

1

n!

∫
dµ(Y1) . . . dµ(Yn)

∏

i<j

(1 + ζ̃(Yi, Yj))

and consequently, (A.5) yields

logZΛ =
∑

n≥1

1

n!

∫
dµ(Y1) . . . dµ(Yn)

∑

G∈Cn

∏

(i,j)∈G
ζ̃(Yi, Yj)

=
∑

n≥1

1

n!

∑

Y1,...,Yn

n∏

i=1

w(Yi)
∑

G∈Cn

∏

(i,j)∈G
ζ̃(Yi, Yj) ,

where we used graph-notation since we are dealing with a polymer system and hence with a two-point

interaction (hard-core). Because of the simple form of the function ζ̃, we can further simplify things

by singling out a subset G̃n ⊂ Gn of graphs of polymers where two vertices Yi, Yj are connected with

an edge iff Yi ∩ Yj 6= ∅, the polymers are then called “incompatible”, Yi 6∼ Yj . The above expressions

become

ZΛ =
∑

n

1

n!

∑

Y1,...,Yn

n∏

i=1

w(Yi)
∑

G∈G̃n

(−1)|E(G)| ,

logZΛ =
∑

n≥1

1

n!

∑

Y1,...,Yn

n∏

i=1

w(Yi)
∑

G∈G̃n∩Cn

(−1)|E(G)|(A.7)

=
∑

n≥1

1

n!

∑

Y1,...,Yn

n∏

i=1

w(Yi) ϕ̃
T(Y1, . . . , Yn) .(A.8)
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Note that we have now two types of Ursell functions, one, ϕT(Y ) = exp(−V )T(Y ), hidden in the

weights w(Y ), and another ϕ̃T({Yi}) = exp(−Ṽ )T({Yi}). This is at the first glance slightly confusing.

The former stems from the connectedness induced by V , and the latter from the one induced by Ṽ ,

that is, non-intersection of the Yi.

4. Convergence

There are two recent papers that deal comprehensively with the convergence issues [56, 21], the

former introducing a generalized form of the Kotecky-Preiss convergence criterion for discrete and

continuous systems, and the latter providing refined convergence criteria, though only for polymer

systems. Since in our application we are dealing with a polymer system we recall the useful notion of

(in)compatibility between polymers:

Ci ∼ Cj if
⋃

c∈Ci

∩
⋃

c∈Cj

= ∅ “Ci and Cj are compatible”

Ci 6∼ Cj if
⋃

c∈Ci

∩
⋃

c∈Cj

6= ∅ “Ci and Cj are incompatible” .

Of the various criteria entailing convergence of (A.6) the one of Kotecky and Preiss suits our needs

best: If there exists a function a : P0
∗ (P0(Zd)) → [0,∞) such that

∑

C 6∼C0

|z(C)|ea(C) ≤ a(C0) ∀C0 ,(A.9)

then (A.6) converges absolutely. (With P0(X) we denote the set of finite subsets of X .) Furthermore,

we have the following uniform bound in Λ,

1 +
∑

n≥1

1

n!

∑

C1,...,Cn

|ϕT(C0, C1, . . . , Cn)|
n∏

i=1

|z(Ci)| ≤ ea(C0) ∀C0 ,

implying the existence of the thermodynamic limit Λ→ Zd of derivatives of logZΛ, that is, correlation

functions. In accordance with literature, we write ϕT to mean the Ursell function associated to the

hard-core repulsion between polymers, formerly denoted by ϕ̃T. From the above inequality follows,

with (A.9), the useful inequality

∑

n≥1

1

n!

∑

C1,...,Cn

6∼C

|ϕT(C1, . . . , Cn)|
n∏

i=1

|z(Ci)| ≤ a(C) ∀C ,(A.10)

where by C1, . . . Cn 6∼ C we mean ∃i : Ci 6∼ C.

Since the weight of a polymer decreases rapidly with size it is possible to obtain refined estimates

if the cluster-size is bounded from below: If we can show that

∑

C 6∼C0

em|C||z(C)|︸ ︷︷ ︸
|z(C)|

ea(C) ≤ a(C0) ∀C0 ,

holds for some m > 0, then we can extract exponential decay and obtain, for
∑
i |Ci| ≥ L,

∑

n≥1

1

n!

∑

C1,...,Cn

6∼C

|ϕT(C1, . . . , Cn)|
n∏

i=1

|z(Ci)| ≤ e−mLa(C) ∀C .(A.11)
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5. Decay of correlations

In this section we use the results about the cluster expansion proved so far to show that for β

small enough, events relating to subsets of the lattice that are distant are only weakly correlated under

the Gibbs measure (3.3). So in the following, (Ω,P) denotes the probability space of configurations of

magnetic moments {mj}j∈Zd with distribution

dP(m) = Z−1 exp{κ
∑

|i−j|=1

mi ·mj + βB
∑

j

m
(3)
j }

∏

j

δ(m2
j − 1)d3mj .

Definition 5.1. An event A ⊂ Ω is said to have support in S ⊂ Zd if

ω ∈ A =⇒ (ω
∣∣
S
, ω′∣∣

Sc) ∈ A ∀ω′∣∣
Sc .

Lemma A.1. Consider events ΩSi with support in Si ⊂ Zd, satisfying dist(Si, Sj) > L, for i 6= j.

Then we have that for any η > 0 there is a κ0 > 0 such that for all 0 ≤ κ < κ0

|Pκ[ΩS1 ∩ ΩS2 ]− Pκ[ΩS1 ]Pκ[ΩS2 ]| ≤ e−ηL(|S1|+ |S2|) ,

and inductively

|Pκ[ n⋂
i=1

ΩSi ]−
n∏

i=1

Pκ[ΩSi ]| ≤ (n− 1)e−ηL
n∑

i=1

|Si| . (3.18)

Remark. We also prove that κ0 = κ0(β,B) is a decreasing function of both the inverse temperature

β and the strength B of the external magnetic field, so that at fixed correlation parameter κ the maximal

decay parameter η is a decreasing function of both β and B. Going through the proof of pure point

spectrum in the band tails, we see that the region where we can prove point spectrum shrinks with

increasing β and B, suggesting that resistivity drops with lowering temperatures and increasing the

external magnetic field—in agreement with the experimental results shown in Figure 7, left.

Proof. We drop the subscript κ in the following.P [ΩS1 ∩ ΩS2 ] = E [1ΩS1
1ΩS2

]
=

1

Z

∫
dµ e

∑
〈x,y〉 κmx·my+βB

∑
xm

(3)
x 1ΩS1

1ΩS2
,

with the one-site measure

dµ(mx) = δ(m2
x − 1)d3mx .

The covariance is obtained by derivation of the logarithm of the following partition function.

Zλ =

∫
dµ e

∑
〈x,y〉 κmx·my+βB

∑
xm

(3)
x +λ11ΩS1

(m)+λ21ΩS2
(m)

.

We have thus Z0 = Z, and

∂

∂λ1

∂

∂λ2

∣∣∣∣∣
0

logZλ = E [1ΩS1
1ΩS2

]
− E [1ΩS1

]E [1ΩS2

]
.

As we have seen, the cluster expansion is a means to write the logarithm of Zλ as a restricted sum,

where one sums only over polymers that are connected in some sense, that is, over polymers that

constitute a cluster. The evaluation of the derivatives at λi = 0 implies that the sum extends only over

clusters that contain exactly one factor of 1ΩS1
and one of 1ΩS2

,

∂

∂λ1

∂

∂λ2

∣∣∣∣∣
0

logZλ =
∑

n≥1

1

n!

∑

C1,...,Cn

6∼S1, 6∼S2

ϕT(C1, . . . , Cn)
∏

i

z(Ci) .(A.12)
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The weight z(C) of a polymer C is given by

z(C) =

∫ ∏

x∈C
d3mx δ(m

2
x − 1)

∏

〈x,y〉∈C
(eκmx·my − 1)

∏

x∈C
(eβBm

(3)
x − 1) .

We use

|eβmx·my − 1| ≤ eβ|mx||my| − 1 ≤ eβ(m
2
x+m

2
y) − 1

= (eβm
2
x − 1)(eβm

2
y − 1) + (eβm

2
x − 1) + (eβm

2
y − 1)

to disentangle the integration variables. Thus we have

|
∏

〈x,y〉∈C
(eβmx·my − 1)| ≤

∏

〈x,y〉∈C

(
(eβm

2
x − 1)(eβm

2
y − 1) + (eβm

2
x − 1) + (eβm

2
y − 1)

)

=
∑

i

∏

x∈C

(
eβm

2
x − 1

)nx(i)

,

where the summation ranges from 1 to 3|C| (here, |C| shall denote the number of bonds in C), and

0 ≤ ni(x) ≤ 2d. Clearly,
∑

x nx(i) ≥ |C| for all i. For the factor
∏
x∈C(e

βBm(3)
x − 1) we consider the

regime of eβB ≥ 2 and estimate its absolute value by (eβBm
(3)
x − 1)|C|. For small values of the product

βB, we get additional decay factors and we could estimate the product by 1.

We obtain

|z(C)| ≤ 3|C|max
i

∏

x∈C

∫
d3mxδ(m

2
x − 1)(eκm

2
x − 1)ni(x)(eβB|m(3)

x | − 1)(A.13)

= (3(eβB − 1))|C| max
i

∏

x∈C
(eκ − 1)ni(x) ≤ [3(eβB − 1)(eκ − 1)

1
d ]|C| ,(A.14)

since |C| < d|C|.
We see that condition (A.9) is fulfilled, for it is easy to see that it is enough to show

sup
x∈C0

∑

C 6∼{x}
|z(C)|ea|C| ≤ a ,

where we have already included the customary ansatz a(C) = a|C|. For any a, η > 0 there exists a

κ = κ(β,B) > 0 small enough, such that

sup
x∈C0

∑

C 6∼{x}
eη|C||z(C)|ea|C| ≤

∑

n≥1

2n/d(2d)2n[3(eβB − 1)(eκ − 1)
1
d ]ne(η+a)n ≤ a ,

since the number of polymers of size n is less than (2d)2n2n/d.

Equation (A.12) tells us that our sum extends only over clusters that meet both S1 and S2, that

is, the diameter of the clusters is at least L, since the distance of S1 and S2 is at least L. Therefore

(see (A.11)) we get

| ∂
∂λ1

∂

∂λ2

∣∣∣∣∣
0

logZλ| ≤ e−ηLa|S1 ∪ S2| .

Taking a = 1 concludes the proof. �



6. PROOF OF LEMMA 3.4 103

6. Proof of Lemma 3.4

Using a path expansion we write formally

ρΛ(E) = lim
ε→0

1

|Λ|
∑

x∈Λ
s=±

1

π
Im

∑

ω:x→x
ω⊂Λ

∫
dµ(m)




−→∏

j∈ω

1

σ ·mj − E − iε



ss

= lim
ε→0

1

|Λ|
∑

x∈Λ
s=±

1

π
Im

∑

ω:x→x
ω⊂Λ

∑

{si=±}
s1=s,s|ω|+1=s

∫
dµ(m)

|ω|∏

j=1

(
1

σ ·mω(j) − E − iε

)

sjsj+1

,

where the arrow indicates a path-ordered product since the Pauli matrices do not commute. Recall

our choice of probability measure

dµΛ(m) =
1

ZΛ

∏

x∈Λ
dµ(mx)e

−V (m)(A.15)

V (m) =
∑

〈x,y〉∈Λ×Λ
κmx ·my, κ > 0 ,

where 〈x, y〉 denote nearest neighbors (we forget about the external magnetic field, but it easily be

incorporated as in the previous section). We want to use the cluster expansion to estimate the contri-

bution Fω of a path ω with fixed spin configuration to ρΛ(E),

Fω :=
1

ZΛ

∫ ∏

x∈Λ
dµ(mx) e

−V (m)

|ω|∏

j=1

(
1

σ ·mω(j) − E − iε

)

sjsj+1︸ ︷︷ ︸
=:fω

.

We proceed as in the previous section, starting with

Fω =
∂

∂λ

∣∣∣∣∣
λ=0

log

∫ ∏

x∈Λ
dµ(mx) e

−V (m)+λfω .

As in the previous section, evaluation of the derivative at λ = 0 means that only clusters with exactly

one factor of fω survive. So

Fω =
∑

n≥1

∑

C1,...,Cn

6∼ω

ϕT(C1, . . . , Cn)
∏

i

z(Ci) ,

where

z(C) =

∫ ∏

x∈C
dµ(mx)

∏

〈x,y〉∈C
(eκmx·my − 1) ,

and

z(C) =

∫ ∏

x∈C
dµ(mx)

∏

〈x,y〉∈C
(eκmx·my − 1)

∏

x∈ω

(
1

σ ·mx − E − i0

)

sjsj+1

for the one polymer containing ω. So if we can show that the weight of the polymer containing ω goes

like α|ω| for some small α > 0, and the Kotecky-Preiss criterion holds for these weights z(C) we have

with (A.10)

|Fω| ≤ α|ω|a|ω| .
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Thus, for α small enough we are able to resum the path expansion

πρΛ(E) ≤ 1

|Λ|
∑

x∈Λ
si=±

∑

ω:x→x
ω⊂Λ

∑

{s=±}
s1=s,s|ω|+1=s

α|ω|ea|ω||ω|(A.16)

=
∑

ω:x→x
ω⊂Λ

∑

{si=±}
s1=s,s|ω|+1=s

α|ω|ea|ω||ω| ≤
∞∑

|ω|=1

(2d)|ω|2|ω|α|ω|ea|ω||ω| ≤ C .(A.17)

The constant C goes to 0 for |E|, γ → ∞.

Remark. Exactly the same computation for x 6= y yields |EG(E + i0;x, y)| ≤ Ce−m|x−y| (because

the sum over |ω| starts only at |ω| = |x− y|).
As we have seen in the section on the decay of correlations, the following condition suffices:

sup
x∈C0

∑

C 6∼{x}
|z′(C)|ea|C| ≤ a ,(A.18)

Next, we estimate the weights of the polymer C containing the path ω:

z(C) =

∫ ∏

x∈C
d3mx g(m

2
x)

∏

〈x,y〉∈C
(eκmx·my − 1)

∏

x∈C∩ω

(
1

σ ·mx − E − i0

)

sjsj+1

∏

x∈ω\C
αx ,

where

αx :=

∫
dµ(m0)

(
1

m0 · σ − E − i0

)

sjsj+1

(x = ω(j)) .

In finding bounds for α, we take advantage of the analyticity of g, the one-site distribution of the

random vectors,

|αx| = |
∫

d3mxg(m
2
x)

(
1

mx · σ − E − i0

)

sjsj+1

|(A.19)

We write mx = mxn, where n varies over the, say, north hemisphere of S2, and mx runs from −∞ to

∞. So we have

α := max
x

|αx| = max
ss′

|
∫

d2n

∫ ∞

−∞
dm0 g(m

2
0)

(
1

m0n · σ − E − i0

)

ss′
| .

We think of m0 as a complex variable and, since the integrand is meromorphic with single poles at

±(E+ i0), we deform the contour Γ so as to avoid the poles and get, with D := min+,− dist (Γ,±(E+

i0)),

α ≤
∫

d2n

∫

Γ

dm0A(γ)|e−γ(m
2
0−m2)2 | 1

D
,

since ||(A − z)−1|| = (dist (spec A, z))−1 for a normal matrix A. It is now apparent that for either

|E| >> m (that is, energy in the band tail) or γ << 1 (that is, large disorder), we can deform the

contour so as to get

α ≤ 2

D
,

as small as we desire.
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Remark. For sake of simplicity we consider a self-avoiding path ω. The calculations carry over to

the general case since

|ai1j1 . . . aipjp | ≤ (max |aij |)p ≤
∑

ij

|aij |p ≤ n||A||p(A.20)

for any n × n-matrix A = (aij). For a path ω that intersects itself, say, p times at x, αx in (A.19)

changes into
∫

d3mxg(m
2
x)

(
1

mx · σ − E − i0

)

sj1sj1+1

. . .

(
1

mx · σ − E − i0

)

sjpsjp+1

,

which is estimated by contour deformation in precisely the same way as before, using (A.20) in addition.

For the term z(C) we do the same trick, deform the contour to avoid the poles and get

z(C) =
∏

x∈ω\C
αx

∫ ∏

x∈C
d2nx

∫∫
. . .

∫

Γ

dhx2g(h
2
x2
)t(x2)

∫

Γ

dhx1g(h
2
x1
)t(x1)

∏

〈x,y〉∈C
(eκmxmynx·ny − 1) ,

where {x1, . . . , x|C|} = C, and

t(x) =





(
1

σ·mx−E−i0

)
ss′

x ∈ ω

1 otherwise

Hence,

|z(C)| ≤
(

2

D

)|ω| ∫ ∏

x∈C
d2nx

∫

Γ

∏

x∈C
g(m2

x)
∏

〈x,y〉∈C
(eκ|mx||my| − 1) .

The remaining integral is estimated as in the previous section:

|z(C)| ≤
(

2

D

)|ω|
3|C|max

i

∏

x∈C

∫
d3mxA(γ)e

−γ(m2
x−µ2)2(eκm

2
x − 1)ni(x) .(A.21)

Divide the radial integration region into two parts, the interval [0, R] and its complement. The tail is

estimated as follows:
∫

dΩx

∫ ∞

R

d|mx|m2
xA(γ)e

−γ(m2
x−m2)2(eκm

2
x − 1)n(x) ≤

4π

∫ ∞

R

d|mx|m2
xA(γ)e

−γ(m2
x−m2)2+κ2dm2

x .

The exponential above is a Gaussian in m2
x with mean m2 + κd/γ, and thus the integral can be made

as small as we like by choosing R large enough: For any ε > 0 there is an R independent of C such

that
∫

dΩx

∫ ∞

R

dm3
xA(γ)e

−γ(m2
x−m2)2(eκm

2
x − 1)n(x) ≤ ε .

Thus we are left with the integral over [0, R]:

∫
dΩx

∫ R

0

d|mx||mx|2A(γ)e−γ(m
2
x−m2)2(eκm

2
x − 1)n(x) ≤

4π

∫ R

0

d|mx||mx|2A(γ)e−γ(m
2
x−m2)2(eκR

2 − 1)2d .



106 A. CLUSTER EXPANSION

Since the Gaussian is normalized to 1 if integrated over the whole R3 we obtain
∫

dΩx

∫ R

0

d|mx||mx|2A(γ)e−γ(m
2
x−m2)2(eκm

2
x − 1)n(x) ≤ (eκR

2 − 1)2d ≤ (2κR2)2d ,

for κ small enough. Recalling equation (A.13), we have that for any ε > 0 there exists a κ > 0 such

that (by choosing first R large and then κ small enough)

|z(C)| ≤
(

2

D

)|ω|
3|C|(2ε)|C| ≤

(
2

D

)|ω|
(3d2ε)|C| .

The polymers not containing the path ω are estimated analogously.

We see that condition (A.18) is fulfilled: For any a > 0 there exists an ε = ε(κ, γ or E) small

enough, such that

sup
x∈C0

∑

C 6∼{x}
|z(C)|ea|C| ≤

∑

n≥1

(2d)2nεnean ≤ a .

�



APPENDIX B

A matrix-valued Cartan-type theorem

In this appendix we recall a theorem proven by Bourgain in [8] that lies at the core of the inductive

Wegner estimate used in Chapter 3, and show how to modify it so that we can apply it to the random

Zeeman interaction problem.

Some generality does not hurt, so consider the random Schrödinger operator

H(ω) = −∆+A(ω) ,(B.1)

acting on the Hilbert space l2(Zd;Cr), with

A(ω) =
∑

x∈Zd

a(ωx)ex ⊗ ex ,

where a is a real-analytic function ranging in the hermitian r × r-matrices, defined on a convex,

bounded subset U ⊂ Rν , that extends to an analytic function on U + ediam(U)Dν ⊂ Cν , where

D = {z ∈ C : |z| ≤ 1} is the unit disk in the complex plane. The random variables ωx are independent

and identically distributed according to

dP(ωx) = g(ωx)d
νωx(B.2)

with g : U → R+ a bounded density with respect to Lebesgue measure.

Theorem B.1. There exists an N0 such that the random Schrödinger operator (B.1) with random

variables distributed according to (B.2) with g a bounded density has, with probability one, pure point

spectrum for E ∈ [E − (logN0)
−4, E] with exponentially decaying eigenfunctions, where E denotes the

upper spectral edge.

To start we state without proof (see, for instance, [43]) the classical result usually called a Cartan

estimate.

Lemma B.2. Let f(z) be a function analytic in the disc {z : |z| ≤ eR}, |f(0)| = 1, and let η be an

arbitrary small positive number. Then the estimate

log |f(z)| ≥ − log
15e3

η
logMf (eR) ,

where Mf (r) = max|z|=r |f(z)|, is valid everywhere in the disc {z : |z| ≤ R} outside a set of discs with

sum of radii
∑

rj ≤ ηR .

In particular, we have

|{x ∈ [−R,R] : |f(x)| < δ}| ≤ 30e3Rδ
1

log Mf ,

where | · | denotes Lebesgue measure.

The next lemma is a higher-dimensional generalization [8],
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Lemma B.3. Let F be a real-analytic function on Ω = [a, b]n which extends to an analytic function

on Dn, D = {z ∈ C : |z − a+b
2 | < e

2 |a− b|}, with the bound

MF := max
z∈Dn

|F (z1, . . . , zn)| <∞ .

Assume furthermore that there is an a ∈ Ω such that

|F (a)| > ε ,

where 0 < ε < 1/2. Denoting for δ > 0

Eδ = {x ∈ Ω : |F (x)| < δ}
we have

µ({x ∈ Ω : |F (x)| < δ}) < C‖g‖∞n|a− b|nδ
c

log MF /ε ,

where µ denotes a measure with bounded density g with respect to Lebesgue measure, and C, c > 0 are

constants.

Crucial is the dependence on the dimension n. For the normalized Lebesgue measure (uniform

probability distribution) one can even drop the volume factor |a− b|n as it is cancelled by ‖g‖∞.

Proof. The proof is derived from the classical statement for n = 1. Using polar coordinates with

the origin at a we write

µ(Eδ) =

∫
dnx g(x)1Eδ

(x) =

∫

Sn−1

dζ

∫ r(ζ)

0

dr rn−1g(a+ rζ)1Eδ
(a+ rζ) ,(B.3)

where r(ζ) is defined by Ω = {a + rζ : ζ ∈ Sn−1 , 0 ≤ r ≤ r(ζ)}. Now, for a fixed ζ ∈ Sn−1,

f(r) := F (a + rζ) is a real analytic function of r ∈ I = [0, r(ζ)]. It extends to an analytic function

f(z) on the neighbourhood D = I + e
2 max(1, r(ζ)) · D ⊂ C of I, where maxz∈D |f(z)| ≤ MF and

|f(0)| = |F (a)| > ε. From Cartan’s lemma, it follows that
∫

I

dr 1Eδ
(a+ rζ) = |{r ∈ I : |f(r)| < δ}| < Cδ

c
log MF /ε r(ζ) ,

with C, c > 0 constants. Substituting into (B.3) we obtain the desired bound

µ(Eδ) < C‖g‖∞δ
c

log MF /ε

∫

Sn−1

dζ r(ζ)n

︸ ︷︷ ︸
n|Ω|

= n‖g‖∞|a− b|nCδ
c

log MF /ε .

�

The next lemma generalizes the result to matrix-valued functions [8],

Lemma B.4. Let A(x) be a real analytic self-adjoint N × N -matrix function of x ∈ Ω = [a, b]n,

satisfying the following conditions (with m≪ N , B1, B2, B3 > 1)

(1) A(x) has an analytic extension A(z) to z ∈ Dn (D as in the previous lemma) with

‖A(z)‖ < B1 z ∈ D(B.4)

(2) There is a subset Λ of {1, 2, . . . , N} such that |Λ| ≤ m and for all z ∈ Dn.

‖
(
R{1,...,N}\ΛA(z)R{1,...,N}\Λ

)−1‖ < B2 ,(B.5)

where RS denotes coordinate restriction to S.

(3) For some a ∈ Ω we have

‖A(a)−1‖ < B3 .(B.6)
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Then

µ(EK) := µ({x ∈ Ω : ‖A(x)−1‖ > K}) < C‖g‖∞n|a− b|nK− c
m log B1B2B3 .(B.7)

Proof. The main idea is to reduce the inversion of A(x) to that of a smaller matrix, its Schur

complement. Consider the following analytic matrix-valued function on Dn with index set Λ,

B(z) = RΛA(z)RΛ − (RΛA(z)RΛc)(RΛcA(z)RΛc)−1(RΛcA(z)RΛ) ,(B.8)

satisfying by (B.4) and (B.5)

‖B(z)‖ < 2B2
1B2 for z ∈ Dn .(B.9)

The invertibility of A(x) is equivalent to that of B(x), and more precisely

‖B(x)−1‖ . ‖A(x)−1‖ .
(
1 + ‖(RΛcA(z)RΛc)−1‖

)2
(1 + ‖B(x)−1‖)(B.10)

. B2
2(1 + ‖B(x)−1‖) .

Because B(x) is self-adjoint and (B.6,B.10)

| detB(a)| =
∏

λ∈σ(B(a))

|λ| ≥ ‖B(a)−1‖−m > (CB3)
−m .(B.11)

Also,

‖B(x)−1‖ ≤ ‖B(x)‖m−1

| detB(x)| <
(2B2

1B2)
m−1

| detB(x)| .(B.12)

Now, consider the analytic function on Dn

F (z) = (2B2
1B2)

−m detB(z) .(B.13)

We have |F (z)| ≤ 1 by (B.9) and |F (a)| > (CB2
1B2B3)

−m by (B.11). Application of Lemma B.3 with

ε = (CB2
1B2B3)

−m to F yields

µ({x ∈ Ω : | detB(x)| < K}) < C‖g‖∞n|a− b|n
(

K

(2B2
1B2)m

) c

m log cB2
1
B2B3

(B.14)

< C‖g‖∞n|a− b|nK c
m log B1B2B3 .(B.15)

If | detB(x)| > K then ‖A(x)−1‖ < (2B2
1)
mBm+2

2 K−1 by (B.10,B.12), so that the claim follows from

(B.14). �

It is not essential that the function A be defined on [a, b]n. Consider the random Zeeman interaction

case, for instance. Here, Ω = (S2)n with the normalised uniform measure. For each i ∈ Λ ⊂ Zd we

have spherical coordinates ψi : (0, 2π)× (0, π) → S2 which parametrize the sphere outside half a great

arc in a real-analytic way. We then apply Lemma B.4 to the function

G := A ◦ ψ : ((0, 2π)× (0, π))n → {hermitian 2n× 2n-matrices}
(ϕi, ϑi) 7→ −∆+ ψi(ϕi, ϑi) · σ .

The analyticity assumptions of the lemma a certainly fulfilled, as A and ψ and hence G are entire

functions. On ((0, 2π)× (0, π))n the pull-back measure is dµ∗ =
∏
i sinϑidϑidϕi, so ‖g‖∞ = 1, and we

have the estimate

µ(EK) = µ∗(ψ−1(EK)) < Cn(2π2)nK− c
m log B1B2B3 ,

for the case the function G = A ◦ ψ fulfills assumptions (1)-(3). Here we have used that the half great

arc that is not parametrized by the spherical coordinates has zero measure.
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Remark. An interesting class of functions A(ω) is given by

A(ω) = U(ω)−1diag(λ1, . . . , λr)U(ω) ,

where the U are distributed according to the normalized Haar measure on SU(r). The required chart

is the exponential map exp : U ⊂ su(r) → SU(r). For example, the exponential map maps the open

ball of radius π centered at 0 diffeomorphically onto SU(2)\{−1}.



APPENDIX C

Thermodynamic limit

For a cube ΛL, define

nΛ(E,ω) :=
1

|Λ|
∑

x∈Λ
tr 〈δx ,PΛ(E,ω)δx〉 .

We want to prove

Lemma C.1.

lim
L→∞

EnΛL(E,ω) = tr E 〈δx0 ,P(E,ω)δx0〉 .

Proof. The claim is intuitively clear from translation invariance in the limit of the whole lattice

Zd. Divide the cube ΛL into an interior region Λ0 and a boundary of thickness L1/2. ThenEnΛL(E,ω) =
1

|ΛL|
∑

x∈Λ0

tr E 〈δx ,PΛL(E,ω)δx〉+
1

|ΛL|
∑

x∈ΛL\Λ0

tr E 〈δx ,PΛL(E,ω)δx〉 ,

and as ‖PΛL‖ = 1 ∀L the second term goes to 0 as L → ∞, and we drop it from now on. Denote the

lower and upper edge of the (almost sure) spectrum of H by E0 and E1, respectively. By assumption,

|E0|, |E1| <∞. We introduce an approximation of 1[E0,E] by continuous functions χn with

χn ≥ 1[E0,E] , supp χn ⊂ [E0, E1]

lim
n→∞

‖χn − 1[E0,E]‖∞ = 0 .

Since χn(x) is continuous and defined on a compact interval we can by Weierstrass approximate it

uniformely with polynomials pnm in (x− z)−1, Im z 6= 0. ThereforeEnΛL(E,ω) = lim
n→∞

1

|ΛL|
∑

x∈Λ0

tr E 〈δx , χn(HΛL(ω))δx〉

= lim
n→∞

lim
m→∞

1

|ΛL|
∑

x∈Λ0

tr E 〈δx , pnm(GΛL(z, ω))δx〉 .

For a summand of pnm(GΛL(z, ω)) we use a path expansion: For |z| large enough we have

GΛL(z, ω)
k(x, x) =

∑

y1,...,yk−1

k−1∏

i=0

∑

γ:yi→yi+1

−→∏

y∈γ
G0
ΛL

(y) , ,

where γ is a path in ΛL, y0 = yk = x, and G0
ΛL

(y) = (Ay−z)−1. It is thus clear that EGΛL(z, ω)
k(x, x)

depends only negligibly on the base point x: For any other base point x0 ∈ Λ0 we have the translated

paths τx−x0γ that give a differing contribution only if they intersect Λc
L. But in this case they are of

combined length |Γ| at least 2L1/2, and thus their contribution is estimated from above by

Ld(k−1)(2d)|Γ|e−C(z)|Γ| ≤ CLd(k−1)e−C
′(z)L1/2 ≤ e−CL

1/2

,

as we can choose |z| large enough for each fixed L. Therefore we have

1

|ΛL|
∑

x∈Λ0

tr E 〈δx , pnm(GΛL(z, ω))δx〉 =
|Λ0|
|ΛL|

tr E 〈δx0 , pnm(GΛL(z, ω))δx0〉+O(Lde−CL
1/2

) ,
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where the error term does not depend on n or m. Taking now the limits m,n→ ∞ yieldsEnΛL(E,ω) =
|Λ0|
|ΛL|

E 〈δx0 ,PΛL(E,ω)δx0〉+O(Lde−CL
1/2

) ,

and hence

lim
L→∞

EnΛL(E,ω) =

lim
L→∞

(1− 2L−1/2)d E 〈δx0 ,PΛL(E,ω)δx0〉+O(Lde−CL
1/2

) = E 〈δx0 ,P(E,ω)δx0〉 .

�

A second proof [37] appeals to Birkhoff’s ergodic theorem. Define

ñΛ(E,ω) :=
1

|Λ| tr (P(E,ω)1Λ) = 1

|Λ|
∑

j∈Λ
tr 〈δj ,P(E,ω)δj〉 ,

and note that (Xj)j∈Zd for Xj := tr 〈δj ,P(E,ω)δj〉 is an ergodic stochastic process, as obviously

Xj(Tiω) = Xj−i(ω)

for (Tjω)i = ωi−j . Thus apply the ergodic theorem to (Xj)j∈Zd to get

ñΛ(E,ω) =
1

|Λ|
∑

j∈Λ
Xj −→ EX0 = E tr 〈δ0 ,P(E,ω)δ0〉 .

It remains to show that dñΛ(E) converges vaguely to the density of states measure dn(E) = ρ(E)dE,

that is, ∫
dñΛ(E)ϕ(E) −→

∫
dn(E)ϕ(E) , ∀ϕ ∈ C0(R) ,

where C0(R) denotes the continuous complex-valued functions vanishing at infinity. For the same

reasons as above, it is enough to take ϕ(E) of the form 1/(E − z) for some z ∈ C\R. We obtain
∫

dñΛ(E)
1

E − z
=

1

|Λ|tr
(

1

H − z
1Λ) =

1

|Λ|
∑

x∈Λ
tr G(x, x) ,

and ∫
dnΛ(E)

1

E − z
=

1

|Λ| tr
(

1

HΛ − z

)
=

1

|Λ|
∑

x∈Λ
tr GΛ(x, x) .

The resolvent equation yields

|
∑

x∈Λ
GΛ(x, x) −G(x, x)| = |

∑

x∈Λ

∑

∂Λ

GΛ(x, z)G(z, x)|

≤
∑

∂Λ

‖GΛ(z, ·)‖‖G(z, ·)‖ ≤
∑

∂Λ

‖GΛ‖‖G‖ ≤ C|Λ| d−1
d

1

(Im z)2
,

implying

|
∫

dñΛ(E)
1

E − z
−
∫

dnΛ(E)
1

E − z
| ≤ C|Λ|− 1

d
1

(Im z)2
ΛրZd

−→ 0 .

As dnΛ converges vaguely to dn the claim is (again) proven.
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Poincaré, Phys. Theor. 58 (1993), 155–171.

16. R. del Rio, S. Jitomirskaya, Y. Last, and B. Simon, What is localization?, Physical Review Letters 75 (1995),

117–119.

17. Alexander Elgart, Lifshitz tails and localization in the three-dimensional Anderson model, Duke Mathematical Jour-

nal 146 (2009), no. 2, 331–360.

18. Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der mathematischen Wis-

senschaften, vol. 271, Springer, 1985.

19. L. Erdoes and D. Hasler, Wegner estimate and Anderson localization for random magnetic fields, ArXiv e-prints

(2010).
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